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Zusammenfassung

Diese Dissertation widmet sich den Eigenschaften von Grundzuständen großer, relativistischer
Coulomb-Systeme. Ein Beispiel für ein solches System ist ein neutrales Atom. Diese können
durch relativistische Vielteilchen-Hamilton-Operatoren beschrieben werden, wie zum Beispiel
den Chandrasekhar- oder projizierten Coulomb–Dirac-Operatoren.

Atome mit hoher Kernladungszahl weisen zwei besonders interessante Längenskalen auf,
die Thomas–Fermi- und die Scott-Längenskala. Auf Ersterer befindet sich der Großteil der
Elektronen, die zur führenden Ordnung der Grundzustandsenergie im Grenzwert großer Teil-
chenzahlen beitragen. Elektronen, die sich auf der Scott-Skala befinden, sind sehr nahe am
Kern lokalisiert und verursachen Quantenkorrekturen der Grundzustandsenergie. Wegen des
Heisenbergschen Unschärfeprinzips muss davon ausgegangen werden, dass die Geschwindig-
keit dieser Elektronen ein wesentlicher Bruchteil der Lichtgeschwindigkeit ist und die Quan-
tenkorrekturen daher zusätzlich relativistisch korrigiert werden. Das Ziel dieser Arbeit ist
das Studium der Einteilchendichte eines Grundzustands auf diesen beiden Längenskalen im
Grenzwert großer Teilchenzahlen.

Auf der Thomas–Fermi-Längenskala zeigen wir, dass die reskalierte Einteilchendichte eines
Grundzustands gegen die wasserstoffartige Thomas–Fermi-Dichte konvergiert. Wir zeigen zu-
erst schwache Konvergenz in den semiklassischen Lp-Räumen für den Chandrasekhar- und den
Brown–Ravenhall-Operator. In einer gemeinsamen Arbeit mit Heinz Siedentop [125] beweisen
wir außerdem die Konvergenz der Dichte in der Coulomb-Norm für den Chandrasekhar-, den
Brown–Ravenhall- und den Furry-Operator. Diese Ergebnisse zeigen, dass sich der Hauptteil
der Elektronen eines relativistisch beschriebenen Atoms dennoch nicht-relativistisch verhält.

Auf der Scott-Skala beweisen wir, basierend auf einer Zusammenarbeit mit Rupert L.
Frank, Heinz Siedentop und Barry Simon [67], dass die reskalierte Einteilchendichte eines
Grundzustands des Chandrasekhar-Operators schwach gegen die Summe der Quadrate der
Eigenfunktionen des entsprechenden Einteilchen-Wasserstoff-Operators konvergiert. Die Kon-
vergenz gilt sowohl für die gesamte Dichte als auch in jedem festen Drehimpulskanal. Die
Klasse der erlaubten Test-Funktionen, für die diese Konvergenzen gelten, beinhaltet kompakt
getragene Funktionen, die integrierbar oder durch ein Vielfaches des Coulomb-Potentials be-
schränkt sind. Dies bestätigt die von Lieb [115] geäußerte, sogenannte starke Scott-Vermutung
für relativistische Coulomb-Systeme und zeigt insbesondere, dass kernnahe Elektronen rela-
tivistische Korrekturen erzeugen. Als Nebenprodukt erhalten wir außerdem eine punktweise
obere Schranke an die relativistische Wasserstoff-Dichte, welche im Einklang mit dem asym-
ptotischen Verhalten der nicht-relativistischen Wasserstoff-Dichte für große Abstände zum
Kern steht. Im Anschluß illustrieren wir, wie diese Ergebnisse auf den Furry-Operator verall-
gemeinert werden können.

Ein wichtiges Werkzeug für den Beweis der starken Scott-Vermutung basiert auf einer
Zusammenarbeit mit Rupert L. Frank und Heinz Siedentop [66]. Wir betrachten den frak-



tionalen Laplace-Operator mit Hardy-Potential und kritischer oder subkritischer Kopplungs-
konstante. Es wird gezeigt, dass die L2-Normen, die durch Potenzen dieses Operators erzeugt
werden, zu den L2-Normen, die durch Potenzen des fraktionalen Laplace-Operators erzeugt
werden, äquivalent sind. Darüberhinaus erhalten wir verallgemeinerte und umgekehrte Hardy-
Ungleichungen. Eine Verallgemeinerung auf Lp ist möglich, wenn ein Mikhlin-Multiplikator-
Satz für den verallgemeinerten Hardy-Operator bewiesen werden kann, was bisher nur für
positive Kopplungskonstanten gelungen ist. Dies ist eine Verallgemeinerung des Ergebnisses
für den gewöhnlichen, nicht-fraktionalen Hardy-Operator von Killip u. a. [102].



Abstract

This dissertation is dedicated to the study of properties of large relativistic Coulomb systems,
a neutral atom being one particular example. Such systems can be described by relativistic
many-particle quantum Hamiltonians such as the Chandrasekhar or projected Coulomb–Dirac
operators.

Heavy atoms possess two very interesting length scales, namely the Thomas–Fermi and the
Scott length scale. The bulk of the electrons contributing to the leading order of the ground
state energy in the limit of large particle numbers is located on the former length scale and
is described semiclassically. Electrons on the Scott length scale are localized very close to
the nucleus and generate quantum corrections to the ground state energy. By Heisenberg’s
uncertainty principle, the innermost electrons’ velocities are a substantial fraction of the
velocity of light. Consequently, a relativistic description is mandatory. The aim of this thesis
is to give new insights on properties of the one-particle ground state density on these two
length scales in the limit of large particle numbers.

Our first result shows that the rescaled one-particle density of a ground state on the
Thomas–Fermi length scale converges to the hydrogenic Thomas–Fermi density. We show that
the density converges weakly in the semiclassical Lp spaces for the Chandrasekhar and the
Brown–Ravenhall operator. Moreover, based on a joint work with Heinz Siedentop [125], we
prove that the density also converges in Coulomb norm for the Chandrasekhar, the Brown–
Ravenhall, and the Furry operator. These results show that the bulk of the electrons in a
relativistically described system in fact still behaves non-relativistically.

Based on a joint work with Rupert L. Frank, Heinz Siedentop, and Barry Simon [67], we
prove that the rescaled one-particle density of a ground state of the Chandrasekhar operator
on the Scott length scale converges weakly to the sum of the squares of the eigenfunctions
of the corresponding one-particle operator. In particular, we show convergence in each fixed
angular momentum channel and convergence of the total density. The class of test functions
for which this weak convergence holds contains in particular compactly supported functions
that are integrable or bounded by a multiple of the Coulomb potential. This proves Lieb’s so-
called strong Scott conjecture [115] for relativistic Coulomb systems and shows in particular
that relativistic effects occur close to the nucleus. As a byproduct we obtain a pointwise
upper bound on the relativistic hydrogenic density which is in accordance with the asymp-
totic behavior of the non-relativistic hydrogenic density for large distances to the nucleus.
Afterwards, we generalize these results to the Furry operator.

One crucial tool for the proof of the strong Scott conjecture is established in a joint work
with Rupert L. Frank and Heinz Siedentop [66]. We consider the fractional Laplace operator
with Hardy potential and critical or subcritical coupling constant. We show that the L2 norms
that are generated by powers of this operator are equivalent to the norms generated by powers
of the fractional Laplacian. Moreover, we derive generalized and reversed Hardy inequalities



for this generalized Hardy operator. A generalization of these results to Lp is possible if a
Mikhlin multiplier theorem associated to this operator can be proven. So far, this was only
feasible if the coupling constant is positive. This is a generalization of the result concerning
the ordinary, non-fractional Hardy operator, obtained by Killip et al [102].



Vorwort

Die Dissertation ist in drei Teile gegliedert. In der Einleitung geben wir einen Überblick über
Vielteilchen-Quantenmechanik, insbesondere über große Coulombsysteme. Wir argumentieren
dann, weshalb eine relativistische Beschreibung solcher Systeme im Grenzfall großer Teilchen-
zahlen notwendig ist und geben eine Auswahl relativistischer Modelle. Die Einleitung schließt
mit einer Zusammenfassung der erarbeiteten Ergebnisse und in der Arbeit verwendeter No-
tation.

Die anschließenden Kapitel beinhalten die präzisen Definitionen des vorliegenden Systems
sowie die Formulierungen der Hauptresultate und deren Beweise. Die meisten Resultate wur-
den in wissenschaftlichen Kollaborationen erarbeitet. Das Verhältnis zu diesen, beziehungswei-
se den daraus hervorgegangenen Publikationen, wird zu Beginn jedes Kapitels hervorgehoben.

Schließlich formulieren wir einige offene Fragen, die im Zusammenhang mit den Ergebnis-
sen der Dissertation stehen und diskutieren Ansätze zur Lösung dieser Probleme.
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A.3 Pseudo-Differential- und singuläre Integral-Operatoren . . . . . . . . . . . . . 196



B Anhang zur starken Scott-Vermutung im Chandrasekhar-Modell 199
B.1 Beweise der Lemmata 5.3.9 und 5.4.5 . . . . . . . . . . . . . . . . . . . . . . . 199
B.2 Einfacher Beweis für eine obere Schranke für die nicht-relativistische Wasser-

stoffdichte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C Anhang zur starken Scott-Vermutung im Furry-Modell 205

D Anhang zu Hardy-Operatoren und Sobolew-Normen in Lp 207
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Kapitel 1

Einführung und Überblick über
relativistische Modelle der
Quantenmechanik

1.1 Vielteilchen-Quantenmechanik und Resultate für schwere
Atome

Die Grundzustandsenergie großer Coulomb-Systeme, wie beispielsweise Atome oder Moleküle,
als auch die Verteilung der Elektronen in solchen Systemen, sind von fundamentalem Interesse
in der Physik und der Quantenchemie. Systeme auf atomaren Längenskalen werden quanten-
mechanisch beschrieben. Ihr Verständnis beruht auf präzisen Untersuchungen des zugrunde-
liegenden Hamilton-Operators. Beispielsweise beschreibt

N∑
ν=1

(
−1

2
∆ν −

Z

|xν |

)
+

∑
1≤ν<µ≤N

1

|xν − xµ|
in

N∧
ν=1

L2(R3 : Cq) (1.1)

ein nicht-relativistisches Atom in der Born–Oppenheimer-Approximation. Hierbei bezeichnet∧N
ν=1 L

2(R3 : Cq) den Unterraum der antisymmetrischen Funktionen aus L2(R3N : CqN ).
Das System besteht aus einem am Ursprung fixierten Kern mit Kernladung Z, der mit
N Elektronen über das Coulomb-Potential wechselwirkt. Darüberhinaus wird die Coulomb-
Wechselwirkung der Elektronen untereinander berücksichtigt. Hierbei sind die physikalischen
Einheiten so gewählt, dass ~ = |e| = m = 1, wobei ~ das reduzierte Plancksche Wirkungs-
quantum, e die Elementarladung und m die Elektronenmasse bezeichnen. Die Zahl der Spin-
Freiheitsgrade jedes Elektrons wird mit q bezeichnet. In der Realität ist q = 2. Wir konzen-
trieren uns von nun an auf den Fall neutraler Atome, das heißt N = Z.

Allerdings ist es – wie im klassischen Kepler-Problem – hoffnungslos, exakte Lösungen der
(stationären) Schrödinger-Gleichung zu finden, wenn das System bereits aus mehr als zwei
Teilchen besteht. Aus diesem Grund benötigt man Modelle für Vielteilchen-Quantensysteme,
die einfacher zu lösen sind, aber das System immer noch hinreichend akkurat beschreiben.
Dichtefunktionaltheorien sind vielversprechende Kandidaten solcher Modelle, da sie hoch-
dimensionale, lineare Probleme auf niedrigdimensionale nicht-lineare Probleme reduzieren.
Diese können beispielsweise mit Methoden der Funktionalanalysis und den partiellen Dif-
ferentialgleichungen behandelt werden. Dichtefunktionaltheorien haben sich als sehr zweck-



2 1. Einführung

dienlich in der Untersuchung von Eigenschaften von Grund- und angeregten Zuständen großer
Coulomb-Systeme erwiesen. Der Hohenberg–Kohn-Satz [89] besagt beispielsweise, dass es ein
Energie-Funktional gibt, welches nur von der Einteilchendichte abhängt, dessen Infimum exakt
mit der wahren Grundzustandsenergie des Vielteilchensystems übereinstimmt. In der Praxis
stellt sich leider heraus, dass es sehr schwer ist, dieses Funktional zu bestimmen, insbesondere,
wenn man verlangt, dass das Funktional universell und nicht auf ein bestimmtes Atom oder
Molekül zugeschnitten sein soll.

Der Durchbruch eines besonders simplen Dichtefunktionals, der Thomas–Fermi-Theorie
[173, 58, 59], gelang im Rahmen der grundlegenden Arbeit [119] von Lieb und Simon. Die
Autoren zeigten, dass das Infimum des Thomas–Fermi-Funktionals (Lenz [110]) mit der ersten
Ordnung der asymptotischen Entwicklung der Grundzustandsenergie eines neutralen Atoms
(N = Z) im Grenzwert großer Teilchenzahlen übereinstimmt. Diese wird durch den Hauptteil
der Elektronen erzeugt, die sich auf Orbitalen im Abstand Z−1/3 entfernt vom Kern befinden.
Diese Längenskala wird auch als Thomas–Fermi-Längenskala bezeichnet. Darüberhinaus zeig-
ten Lieb und Simon sowie Baumgartner [8], dass die auf der Thomas–Fermi-Längenskala res-
kalierte Einteilchendichte eines Grundzustands gegen den wasserstoffartigen Thomas–Fermi-
Minimierer konvergiert.

Obwohl die Energie für N → ∞ asymptotisch richtig durch die Thomas–Fermi-Theorie
vorhergesagt wird, stellt sich heraus, dass die relative Genauigkeit für größere Atome nur etwa
10% beträgt. Tatsächlich ist die Thomas–Fermi-Energie, welche von der Größenordnung Z7/3

ist, alleine zu tief, was für einige Diskussionen sorgte. Bereits 25 Jahre vor dem Erscheinen des
Artikels von Lieb und Simon schlug Foldy [60], inspiriert von numerischen Resultaten, vor,
dass der führende Term wie Z12/5 skalieren sollte. Dagegen hatte Scott die Vermutung [152],
dass die Energie durch die wenigen, aber hoch-energetischen, kernnahen Elektronen korrigiert
werden müsste. Da diese nur von

”
endlich vielen“ Elektronen erzeugt würde, sollte die Größen-

ordnung mit der der Eigenwerte des wasserstoffartigen Operators, sprich Z2, übereinstimmen.
Diese Vermutung (Lieb [115] nannte sie Scott-Vermutung, siehe auch Simon [157, Problem
10b]) wurde später von Hughes [92, 93] (untere Schranke) und von Siedentop und Weikard
[156, 153, 154, 155] (obere und untere Schranke) bewiesen. Damit verwandt ist die, eben-
falls von Lieb [115] geäußerte, sogenannte starke Scott-Vermutung. Sie besagt, dass die auf
der Wasserstoff-Längenskala Z−1 reskalierte Einteilchendichte eines Grundzustands gegen die
Summe der Quadrate der Eigenfunktionen des Wasserstoff-Hamilton-Operators konvergiert.
Diese wurde von Iantchenko u. a. [95] bewiesen. Zudem wurde die Konvergenz der Einteil-
chendichtematrix [96] gezeigt. Für die Konvergenz der Dichte auf anderen Skalen verweisen
wir auf [94]. Diese Effekte können als echte Quantenkorrekturen interpretiert werden.

Schließlich vermuteten Schwinger [151] sowie Englert und Schwinger [44, 45, 46], dass der
dritte Term der asymptotischen Entwicklung wie Z5/3 skalieren sollte und durch die Aus-
tauschenergie der Elektronen auf Längen Z−2/3 entfernt vom Kern erzeugt werden müsse.
Fefferman und Seco gelang der Beweis dieser Vermutung in einer Reihe von Arbeiten [55, 49,
57, 52, 50, 51, 53].

Die Resultate über die Grundzustandsenergie wurden in verschiedene Richtungen verall-
gemeinert. Beispielsweise wurde die Scott-Vermutung für Ionen (Bach [3, 2]), für Moleküle
(Ivrii und Sigal [97], Solovej und Spitzer [163], Balodis [7]) und für Moleküle in magnetischen
Feldern (Sobolev [160] und Ivrii [98]) bewiesen.

Allerdings ist es fragwürdig, schwere Atome (sprich Z � 1) nicht-relativistisch zu beschrei-
ben, da der schwere Kern bereits den Hauptteil der Elektronen auf Orbitale lokalisiert, deren
Abstände Z−1/3 zum Kern betragen. Wegen des Heisenbergschen Unschärfeprinzips ist da-
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von auszugehen, dass sich insbesondere kernnahe Elektronen mit Geschwindigkeiten bewegen,
die einen substantiellen Bruchteil der Lichtgeschwindigkeit c betragen. Aus diesem Grund ist
eine relativistische Beschreibung unumgänglich. Beispiele für relativistische Operatoren sind
der Chandrasekhar- und projizierte Coulomb–Dirac-Operatoren. Zu diesen gehören wiederum
beispielsweise der Brown–Ravenhall- und der Furry-Operator. Letzterer findet auch Anwen-
dungen in der Quantenchemie, um beispielsweise die Grundzustandsenergie großer Atome und
Moleküle bis auf chemische Genauigkeit zu bestimmen, siehe beispielsweise Reiher und Wolf
[145] für einen umfassenden Überblick.

Ein erstes Ergebnis über schwere, relativistisch beschriebene Atome lieferte Sørensen [139].
Er zeigte, dass für Z, c → ∞ und fixiertem Quotient Z/c = γ ≤ 2/π, die führende Ordnung
der Grundzustandsenergie eines neutralen Atoms, welches durch den Chandrasekhar-Operator
beschrieben wird, ebenfalls durch die Thomas–Fermi-Energie gegeben ist. Analoge Ergebnisse
wurden von Cassanas und Siedentop [19] für den Brown–Ravenhall- mit γ ≤ 2/(π/2 + 2/π)
und implizit von Handrek und Siedentop [80] für den Furry-Operator mit γ < 1 gezeigt.
Diese Ergebnisse implizieren, dass sich der Hauptteil der Elektronen auf der Längenskala
Z−1/3 eines relativistisch beschriebenen Atoms immer noch nicht-relativistisch verhält.

Elektronen auf der Scott-Längenskala Z−1 befinden sich sehr viel näher am Kern und
sollten wegen des Heisenbergschen Unschärfeprinzips Geschwindigkeiten von der Größenord-
nung der Lichtgeschwindigkeit aufweisen, weshalb relativistische Effekte zu erwarten sind.
Dies wurde zuerst von Schwinger [151] vorhergesehen, der eine relativistische Korrektur des
Z2-Terms herleitete, die kleiner als die nicht-relativistische ist. Dies ist zu erwarten, da die
relativistische kinetische Energie (z.B.

√
p2 + 1− 1), insbesondere für große Impulse, kleiner

als die nicht-relativistische kinetische Energie ist. Eine solche Korrektur wurde dann auch von
Frank u. a. [69] und Solovej u. a. [162] für den Chandrasekhar-, von Frank u. a. [70] für den
Brown–Ravenhall- und schließlich von Handrek und Siedentop [80] für den Furry-Operator
bewiesen.

Eine gemeinsame Eigenschaft relativistischer Operatoren ist, dass ihre kinetische Energie,
zumindest für große Impulse, wie das Coulomb-Potential, also wie die inverse Länge skaliert.
Dies hat zwei wichtige Konsequenzen. Erstens sind störungstheoretische Argumente für die
Untersuchung dieser Operatoren oft nicht anwendbar. Zweitens können die Operatoren nur
für hinreichend kleine Kopplungskonstanten des Coulomb-Potentials definiert werden.

Das Ziel dieser Arbeit ist das Studium der Einteilchendichte eines Grundzustands rela-
tivistischer Vielteilchen-Operatoren auf der Thomas–Fermi- und der Scott- beziehungsweise
Wasserstoff-Längenskala im Grenzwert großer Teilchenzahlen. Da die Kopplungsstärke des
Coulomb-Potentials des Kerns proportional zur Teilchenzahl ist, reskalieren wir die Opera-
toren und betrachten daher streng genommen den Grenzwert, in dem sowohl die Teilchen-
zahl, als auch die Lichtgeschwindigkeit gegen Unendlich gehen und ihr Quotient die kriti-
sche Kopplungskonstante nicht überschreitet. Wir betonen, dass dieser Grenzwert nicht der
nicht-relativistische Grenzwert ist, in welchem die Lichtgeschwindigkeit unabhängig von der
Kernladungszahl gegen Unendlich strebt.

Wir geben im Folgenden einen kurzen Überblick über die nicht-relativistische Thomas–
Fermi-Theorie und anschließend über die relativistischen Operatoren, die in dieser Arbeit
behandelt werden.
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1.2 Thomas–Fermi-Theorie

Wir geben einen kurzen Überblick über die wichtigsten Eigenschaften der Thomas–Fermi-
Theorie im neutralen Fall

∫
R3 ρ = N = Z. Einen sehr viel detaillierterer Überblick bietet Lieb

[115] an, der teilweise auf den grundlegenden Arbeiten von Lieb und Simon [118, 119] beruht.

Das Thomas–Fermi-Funktional ist durch

ETF
Z (ρ) :=

∫
R3

(
3

10
γTFρ

5/3(x)− Z

|x|
ρ(x)

)
dx+D(ρ, ρ)

auf seinem natürlichen Definitionsbereich

I := {ρ ∈ L5/3(R3) : D(ρ, ρ) <∞, ρ ≥ 0}

definiert. Hierbei ist γTF := (6π2/q)2/3 die Thomas–Fermi-Konstante und D(ρ, ρ) die elek-
trostatische Selbstenergie der Ladungsdichte ρ, die durch

D(ρ, σ) =
1

2

∫
R3

∫
R3

ρ(x)σ(y)

|x− y|
dx dy

gegeben ist. Wir bemerken, dass D ein Skalarprodukt auf I definiert und daher eine Norm,
die sogenannte Coulomb-Norm ‖ρ‖C := D(ρ, ρ)1/2, induziert. Das Infimum des Funktionals
heißt Thomas–Fermi-Energie und ist durch

ETF(Z) := inf
I
ETF
Z

definiert. Es ist bekannt, dass ein Minimierer existiert und dieser eindeutig ist. Der Mini-
mierer wird Thomas–Fermi-Dichte genannt und mit ρTF

Z (x) bezeichnet. Das Thomas–Fermi-

Funktional hat eine natürliche Längenskala, die sogenannte Thomas–Fermi-Längenskala Z−
1
3 .

Es gilt

ETF
Z (Z2ρ(Z1/3·)) = Z7/3ETF

1 (ρ(·)) ,

das heißt die natürliche Energieskala des Thomas–Fermi-Funktionals ist Z7/3. Insbesondere
folgt aus dieser Skalierungseigenschaft, dass der Minimierer ρTF

Z (x) = Z2ρTF
1 (Z1/3x) erfüllt,

wobei ρTF
1 der wasserstoffartige Thomas–Fermi-Minimierer (sprich Z = 1) ist (Gombás [74]).

Aus den Arbeiten von Lieb und Simon [119] sowie Baumgartner [8] ist bekannt, dass die
Thomas–Fermi-Theorie sowohl die Grundzustandsenergie als auch die Grundzustandsdichte
auf der Thomas–Fermi-Längenskala des nicht-relativistischen Vielteilchen-Coulomb-Systems
(1.1) zu führender Ordnung richtig beschreibt. Bezeichnet ES(Z) die Grundzustandsenergie
(definiert als das Infimum des Spektrums) und ρS

Z(x) die Einteilchendichte eines Grundzu-
stands des Schrödinger-Operators (1.1), so gilt

lim
Z→∞

ES(Z)

Z7/3
= ETF(1)

und

lim
Z→∞

∫
M
Z−2ρS

Z(Z−1/3x) dx =

∫
M
ρTF

1 (x) dx

für alle beschränkten und messbaren Mengen M ⊆ R3.
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Schließlich führen wir noch das Thomas–Fermi-Potential

ΦTF
Z (x) =

Z

|x|
− ρTF

Z ∗
1

| · |

ein. Es ist nicht-negativ, sphärisch symmetrisch, verhält sich bei Null wie das Coulomb-
Potential und erfüllt im Unendlichen die Sommerfeld-Asymptotik [165], verhält sich dort also
wie |x|−4. Zudem genügt es der Skalierungsrelation ΦTF

Z (x) = Z4/3ΦTF
1 (Z1/3x). Das Thomas–

Fermi-Potential und die -Dichte erfüllen die Thomas–Fermi-Gleichung

γTFρ
TF
Z (x)2/3 = ΦTF

Z (x) ,

woraus ersichtlich ist, dass ΦTF
Z ∈ L5/2(R3)

1.3 Ortsraumdarstellungen relativistischer Hamilton-Operato-
ren

In diesem Abschnitt stellen wir die in dieser Dissertation behandelten relativistischen Ein-
teilchen-Operatoren vor. Wir geben ihre Definitions- und Formbereiche an und nennen Be-
dingungen an die Kopplungskonstante des Coulomb-Potentials, um sie definieren zu können.
Zudem geben wir eine Zusammenfassung der hier benötigten Eigenschaften der Spektren.
Ausführlichere Abhandlungen können beispielsweise den Büchern von Balinsky und Evans [6]
und Thaller [171] sowie Matte und Stockmeyer [124] und den darin enthaltenen Referenzen
entnommen werden.

1.3.1 Chandrasekhar-Operator

Der Chandrasekhar- beziehungsweise Herbst-Operator ist der simpelste der hier untersuchten
Operatoren. Er wurde ursprünglich von Chandrasekhar benutzt, um die (Nicht-)Stabilität
von Neutronensternen zu studieren [20] (siehe auch [120, 121] für eine Untersuchung des Kol-
lapses von Neutronensternen). Der Einteilchen-Operator wurde erstmals von Herbst [87] und
Weder [179, 180] untersucht. Wir definieren ihn als die Friedrichs-Erweiterung im Hilbertraum
L2(R3 : Cq) der zu √

−c2∆ + c4 − c2 − Z

|x|

gehörigen quadratischen Form auf C∞c (R3 : Cq). Der Operator hat eine natürliche Längen-
skala, die sogenannte Wasserstoff-Längenskala c−1. Für ψc(x) := c3/2ψ(cx) ist dies aus der
Gleichheit (

ψc,

[√
−c2∆ + c4 − c2 − Z

|x|

]
ψc

)
= c2

(
ψ,

[√
−∆ + 1− 1

γ

|x|

]
ψ

)
ersichtlich, wobei γ := Z/c. Die quadratische Form (auf H1/2(R3 : Cq)) ist genau dann von
unten beschränkt, wenn γ ≤ 2/π. Dies folgt aus der Ungleichung

√
−∆− 2/π

|x|
≥ 0
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(Kato [101, Kapitel 5, Gleichung (5.33)], Herbst [87, Theorem 2.5] und Weder [179]) sowie
aus der Tatsache |p| ≥

√
p2 + 1 − 1 ≥ |p| − 1. Tatsächlich zeigten Raynal u. a. [141], dass

der tiefste Punkt des Spektrums echt größer ist als −1, selbst, wenn γ = 2/π. Dies wurde
bereits von Hardekopf und Sucher [81] numerisch angedeutet. Für γ > 2/π ist er von unten
unbeschränkt und somit

”
instabil“.

Für γ < 2/π ist der quadratische Formbereich H1/2(R3). Da der Operator skalar ist und
es keine Wechselwirkungen gibt, die den Spin der Elektronen miteinbeziehen, betrachten wir
im Folgenden ohne Beschränkung der Allgemeinheit lediglich den Fall q = 1.

Da der Operator sphärisch symmetrisch ist, kommutiert er mit dem Erzeuger von Rota-
tionen. Man kann daher den Hilbertraum in die direkte Summe

L2(R3) = L2(R+, r
2 dr)⊗ L2(S2, dω) =

⊕
`∈N0

H`

zerlegen. Hierbei ist dω das normierte Lebesgue-Maß auf der zweidimensionalen Kugelscha-
le S2, H` = L2(R+, r

2 dr) ⊗ K` und K` der Eigenraum bezüglich des `-ten Eigenwerts des
Laplace–Beltrami-Operators auf S2. Man stellt fest, dass die maximal erlaubte Kopplungskon-
stante mit dem Drehimpulskanal, auf welchen projiziert wird, steigt. Insbesondere ist der auf
den ersten Drehimpulskanal eingeschränkte Chandrasekhar-Operator nach unten beschränkt,
wenn γ ≤ π/2, siehe [6, Lemma 2.2.3 und Theorem 2.2.4].

Obwohl die Eigenwerte λZ,n,` (n ∈ N0) nicht explizit bekannt sind, folgt aus
√
p2 + 1 −

1 ≤ p2/2 und der unteren Schranke von Frank u. a. [70, Theorem 2.2], dass sie im `-ten
Drehimpulskanal den Abschätzungen

− Z2

2(n+ `+ 1)2
≥ λZ,n,` ≥ −konst · Z2

(n+ `+ 1)2

genügen. Der Ausdruck auf der linken Seite der Ungleichung ist gerade der n-te Eigenwert
des Schrödinger-Operators im Drehimpulskanal `. Die relativistischen Eigenwerte haben also
dieselbe Energiegrößenordnung, was aus der x 7→ x/c skalierten Form des Operators sofort
ersichtlich ist, und dasselbe Verhalten in n und ` wie die nicht-relativistischen Wasserstoff-
Eigenwerte. Diese Eigenschaften sind dem Verhalten der relativistischen kinetischen Energie
für kleine Impulse |p| geschuldet, da

√
p2 + 1− 1 = p2/2 +O(p4).

Schließlich ist nach [87, Theorem 2.3] das Spektrum des Chandrasekhar-Operators für
γ < 2/π in [0,∞) absolut stetig, das heißt es gibt kein singulär-stetiges Spektrum und keine
eingebetteten Eigenwerte. Insbesondere ist Null kein Eigenwert.

Obwohl der Chandrasekhar-Operator spektraltheoretisch gut verstanden ist, weist er den-
noch einige physikalische Defizite auf. Erstens ist die kinetische Energie

√
p2 + 1 nicht-lokal

und verletzt damit eines der grundlegendsten physikalischen Prinzipien. Zweitens können
wegen der Einschränkung γ ≤ 2/π an die Kopplungskonstante, nur Atome mit Kernladungs-
zahlen kleiner als 88 beschrieben werden. Physikalisch geeignetere Operatoren basieren auf
dem Dirac-Operator, den wir nun vorstellen.

1.3.2 Coulomb–Dirac-Operatoren

Im Jahre 1928 stellte Dirac [35, 36] eine Lorentz-invariante Bewegungsgleichung für quanten-
mechanische Teilchen mit Spin, die sich in einem externen elektromagnetischen Feld befinden,
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auf, die sogenannte Dirac-Gleichung. Thallers Buch [171] gibt darüber eine umfassende Be-
schreibung. Für freie Teilchen lautet die Gleichung

i∂tψ(t, x) =
(
−icα · ∇+ βc2

)
ψ(t, x) (1.2)

mit den Dirac-Matrizen α = (α1, α2, α3),

αj =

(
0C2 σj
σj 0C2

)
,

den Pauli-Matrizen σ := (σ1, σ2, σ3) und β = diag (1, 1,−1,−1). Der Operator auf der
rechten Seite von (1.2) heißt freier Dirac-Operator. Er wirkt auf Zustände ψ(t, x) ∈ C4,
der zu Grunde liegende Hilbertraum ist L2(R3 : C4). Der Definitionsbereich, auf dem der
freie Dirac-Operator selbstadjungiert realisiert werden kann, ist H1(R3 : C4). Nach einer
Blockdiagonalisierung durch die Foldy–Wouthuysen-Transformation nimmt er die Gestalt

UFW

(
−icα · ∇+ βc2

)
U∗FW =

( √
−c2∆ + c4 0

0 −
√
−c2∆ + c4

)
(1.3)

an. Daher ist das Spektrum gerade (−∞,−c2] ∪ [c2,∞). Physikalisch bedeutet das, dass
Zustände

”
negative Energie“ besitzen können und es ein unendlich tiefes Energie-Reservoir,

den sogenannten Dirac-See, gibt. Durch Einführen elektromagnetischer Felder und des La-
dungskonjugationsoperators sieht man, dass diese Zustände als

”
Anti-Teilchen“ mit positiver

Energie gedeutet werden können, das heißt sie haben zwar dieselbe Masse, aber umgekehrte
elektrische Ladung. Solche Teilchen nennt man Positronen.

In dieser Arbeit sind wir vor allem an Dirac-Operatoren mit einem durch das Coulomb-
Potential beschränktem sphärisch symmetrischen Potential interessiert. Der Einteilchen-Ope-
rator für das Wasserstoff-Problem, welcher zunächst auf S(R3 : C4) definiert werden kann, ist
durch

DH
Z := −icα · ∇+ c2β − Z

|x|
in L2(R3 : C4)

gegeben. Durch Skalieren von x 7→ x/c ist es wieder ersichtlich, dass DH
Z unitär äquivalent zu

c2

[
−iα · ∇+ β − γ

|x|

]
=: c2DH

γ

ist, wobei wieder γ := Z/c.
Es ist bekannt, dass DH

γ genau dann wesentlich selbstadjungiert ist, wenn |γ| ≤
√

3/2. Dies

folgt aus den Resultaten von Weidmann [181], siehe auch [171, Theorem 4.4]. Für γ ∈ (
√

3/2, 1]
gibt es eine ausgezeichnete (man sagt auch

”
physikalisch relevante“) selbstadjungierte Er-

weiterung von DH
γ . Für γ ∈ (

√
3/2, 1) wurde sie zuerst von Schmincke [149], Wüst [183],

Nenciu [135] und Klaus und Wüst [106] begründet. Nach Schmincke und Wüst zeichnete sich
die Realisierung dadurch aus, dass alle Zustände im Definitionsbereich des Coulomb–Dirac-
Operators endliche potentielle Energie haben. Nencius Realisierung zeichnete sich hingegen
dadurch aus, dass die Zustände endliche kinetische Energie haben. Klaus und Wüst zeigten
schließlich, dass die beiden Realisierungen übereinstimmen und das wesentliche Spektrum
immer noch (−∞, 1] ∪ [1,∞) ist, siehe [107] oder [171, S. 117]. Zusammengefasst erfüllt der
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Definitionsbereich dom(DH
γ ) dieser Realisierung H1(R3 : C4) ⊂ dom(DH

γ ) ⊂ H1/2(R3 : C4)

und der quadratische Formbereich ist H1/2(R3 : C4). Insbesondere sind die Erwartungswerte
der kinetischen und potentiellen Energie in dom(DH

γ ) endlich, was die Bezeichnung
”
physi-

kalisch relevant“ erklärt. Die Verallgemeinerung für γ = 1 erfolgte durch Esteban und Loss
[47]. In dieser Arbeit beschränken wir uns nur auf den Fall γ < 1.

Der Coulomb–Dirac-Operator DH
γ hat keine eingebetteten Eigenwerte (Kalf [100]) und

kein singulär-stetiges Spektrum in [0,∞) (Vogelsang [178] und Richard und Tiedra de Aldecoa
[146]). Der tiefste Eigenwert ist λ1 =

√
1− γ2 und es gilt limk→∞ λk = 1. Da der Operator

sphärisch symmetrisch ist, kann, analog zur Drehimpulskanalzerlegung für skalare Operatoren,
eine Partialwellenzerlegung durchgeführt werden, siehe auch [6, Abschnitt 2.1.1] und Anhang
C. Für ` ∈ N0 und 1/2 ≤ j = `±1/2 sind die Eigenwerte und Eigenfunktionen im Kanal (j, `)
explizit bekannt (siehe Sommerfelds antizipierte Feinstrukturformel [164], als auch Darwin
[30] und Gordon [75]). Für eine prägnante Abhandlung des Eigenwertproblems siehe auch
Bethe [10] oder Thaller [171, Abschnitt 7.4]. Die Eigenwerte in der Spektrallücke (−1, 1) im
Kanal (j, `) erfüllen die beidseitigen Schranken

− γ2

2(n+ `+ 1)2
≥ λγ,n,j,` − 1 ≥ −konst · γ2

(n+ `+ 1)2
,

was aus der expliziten Darstellung der Eigenwerte oder, für ` ∈ N, beispielsweise aus [80,
Lemma 1] extrahiert werden kann.

Anders als im Chandrasekhar-Modell bedeutet
”
Instabilität“ für den Coulomb–Dirac-

Operator den Zusammenbruch der Selbstadjungiertheit des Operators. Die Stabilität für γ ≤ 1
folgt aus der scharfen Hardy-artigen Ungleichung∫

R3

|ϕ|2

|x|
dx ≤

∫
R3

(
|σ · ∇ϕ|2

1 + |x|−1
+ |ϕ|2

)
dx

für alle ϕ ∈ H1(R3 : C2) von Dolbeault u. a. [38].

Brown–Ravenhall-Operator

Der Umstand, dass ein Teilchen sowohl Elektronen- als auch Positronen-Charakter haben
kann ist zumindest fragwürdig. Darüberhinaus fanden Brown und Ravenhall in [16], dass
die Energieniveaus in Helium sich wegen der erlaubten Zustände negativer Energie nicht
durch den Dirac-Operator beschreiben ließen. Aus diesem Grund ließen sie nur Zustände
zu, die bezüglich des freien Dirac-Operators positive Energie haben. Das heißt, dass der
zugrundeliegende Hilbertraum der erlaubten Zustände durch

H0 := Λ0(L2(R3 : C4)) := 1(0,∞)(−icα · ∇+ c2β)(L2(R3 : C4))

gegeben ist. Der auf diesen Raum eingeschränkte Coulomb–Dirac-Operator DH
Z wird Brown–

Ravenhall-Operator genannt. Er wurde zuerst von Evans u. a. [48] mathematisch behandelt.
Unter anderem zeigten die Autoren, dass die zugehörige quadratische Form auf H1/2(R3 : C4)
für alle γ ≤ γB = 2/(π/2 + 2/π) nach unten durch −γ(π/4 − 1/π) beschränkt ist. Für
γ < γB ist der Formbereich gerade H1/2(R3 : C4) ∩ H0. Für γ > γB ist die quadratische
Form nach unten unbeschränkt. Das heißt, der Operator kann Atome beschreiben, deren
Kernladungszahl 124 nicht überschreitet. Tatsächlich zeigte Tix [174, 176], dass der Operator
für γ ≤ γB von unten mindestens durch 1 − γB > 0 beschränkt ist. Für γ < γB ist das
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wesentliche Spektrum des Operators [c2,∞) und das singulär-stetige Spektrum ist leer [48,
Theorem 2]. Darüberhinaus gibt es keine eingebetteten Eigenwerte und das Spektrum in
[c2,∞) ist absolut stetig [6, Theorem 3.4.1]. Wie oben erwähnt, kann wegen der sphärischen
Symmetrie eine Partialwellenzerlegung durchgeführt werden. Balinsky und Evans [5] zeigten,
dass der auf den Kanal (j, `) (mit ` ∈ N0, und 1/2 ≤ j = ` ± 1/2) eingeschränkte Operator
genau dann nach unten beschränkt ist, wenn

γ ≤ 4

[
Γ((`+ 1)/2)2

Γ((`+ 2)/2)2
+

Γ((2j − `+ 1)/2)2

Γ((2j − `+ 2)/2)2

]−1

.

Die Eigenwerte λZ,n,j,` im Kanal (j, `) erfüllen, wie die des Chandrasekhar-Operators, die
Schranken

− Z2

2(n+ `+ 1)2
≥ λZ,n,j,` − 1 ≥ −konst · Z2

(n+ `+ 1)2
,

siehe insbesondere [70, Theorem 2.1] für die untere Schranke. Darüberhinaus sind sie kleiner
als die Dirac-Eigenwerte, was für ` ≥ 1 beispielsweise sofort aus dem Min-Max-Prinzip für
Operatoren mit Spektrallücken (Griesemer und Siedentop [77]) folgt.

Furry-Operator

Die Projektion auf den positiven Spektralbereich des freien Dirac-Operators ist natürlich nicht
die einzige Möglichkeit. Furry und Oppenheimer [71] schlugen vor, auf den positiven Spek-
tralraum des Coulomb–Dirac-Operators zu projizieren. Der zugrunde liegenden Einteilchen-
Hilbertraum ist dann

HZ := ΛZ(L2(R3 : C4)) := 1(0,∞)(D
H
Z )(L2(R3 : C4)) .

Wie bereits weiter oben bemerkt wurde, gibt es für γ ∈ (0, 1) eine physikalisch relevante,
selbstadjungierte Realisierung von DH

γ , die dadurch charakterisiert ist, dass H1(R3 : C4) ⊆
dom(DH

γ ) ⊆ H1/2(R3 : C4) (Nenciu [135]). Daher ist

ΛZ(S(R3 : C4)) ⊆ H1/2(R3 : C4)

und dicht in HZ . Die zugehörige, auf ΛZ(S(R3 : C4)) eingeschränkte, quadratische Form ist
daher wohldefiniert für γ ∈ (0, 1). Der quadratische Formbereich ist H1/2(R3 : C4) ∩ HZ .

Mittleman-Prinzip und physikalische Relevanz der Operatoren

Bevor wir zu den Ergebnissen dieser Arbeit kommen, diskutieren wir kurz die Relevanz der
hier untersuchten relativistischen Operatoren.

In der Praxis (z.B. in der Quantenchemie) ist es unabdingbar zu wissen, welches Modell am
besten für numerische Untersuchungen großer Coulomb-Systeme geeignet ist. Dazu kann man
beispielsweise die gemessenen Grundzustandsenergien (siehe beispielsweise [109]) mit denen
der (nicht-)relativistischen Operatoren vergleichen. Es stellt sich zum Einen heraus, dass der
nicht-relativistische Schrödinger-Operator zu hohe Energien liefert. Im Gegensatz dazu liegt
die Grundzustandsenergie des Chandrasekhar-Operators zu tief. Zudem beschreibt der Ope-
rator lediglich Atome, deren Kernladungszahl kleiner als 88 sind. Die Grundzustandsenergien
der projizierten Coulomb–Dirac-Operatoren liegen zwischen diesen beiden Extremen.
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In [129, Abschnitt II] schlug Mittleman ein Variationsprinzip zur Herleitung von Hamilton-
Operatoren aus einem Standard QED-Hamilton-Operator im Fock-Raum vor, welches zur
möglichst exakten Bestimmung von Grundzustandsenergien verwendet werden kann. Neben
den oben besprochenen sogenannten no-pair-Operatoren, kann auch das sogenannte Fuzzy-
Modell mit diesem Prinzip hergeleitet werden. Hierbei wird bezüglich des durch die Kern-
Elektron- und Elektron-Elektron-Wechselwirkung erzeugten mittleren Feldes im Geiste der
Hartree–Fock-Theorie projiziert, sprich der zugrundeliegende Hilbertraum ist 1(0,∞)(D

H
Z +

χ)(L2(R3 : C4)) für ein mittleres Feld χ. Beispiele für χ sind eventuell abgeschirmte Thomas–
Fermi-Potentiale oder das mittlere Feld der Dirac–Fock-Gleichungen. Für numerische Rech-
nungen, die die Grundzustandsenergie für große Z & 90 betreffen, stellt sich heraus, dass es
praktisch keinen Unterschied macht, ob man den Berechnungen das Furry- oder das Fuzzy-
Bild zu Grunde liegt, siehe auch [129, 145, 148, 80].

1.4 Zusammenfassung der Ergebnisse

Wir schließen die Einleitung mit einer Zusammenfassung der Ergebnisse dieser Arbeit und
verweisen auf die jeweiligen Kapitel.

Auf der Thomas–Fermi-Längenskala zeigen wir, dass die reskalierte Einteilchendichte ei-
nes Grundzustands gegen die wasserstoffartige Thomas–Fermi-Dichte konvergiert. Einerseits
konvergiert sie in der sogenannten Coulomb-Norm in den Chandrasekhar-, Brown–Ravenhall-
und Furry-Modellen, siehe Kapitel 2. Daraus folgt insbesondere schwache Konvergenz, bei-
spielsweise wegen der Hardy–Littlewood–Sobolew-Ungleichung in L6/5(R3). Das Argument
beruht auf der Scott-Korrektur für die entsprechenden Operatoren und verwendet die Nicht-
Negativität eines Terms, der sich bei der Herleitung der unteren Schranke der asymptotischen
Formel für die Energie aus einer Korrelationsungleichung ergibt. Dies ist eine gemeinsame Ar-
beit mit Heinz Siedentop [125]. Andererseits zeigen wir schwache Konvergenz in den semiklas-
sischen Lp-Räumen, also p = 5/2, 4 für den Chandrasekhar- (siehe Kapitel 3) und den Brown–
Ravenhall-Operator (siehe Kapitel 4) für γ ≤ 2/π, der kritischen Chandrasekhar-Kopplung.
Für den Brown–Ravenhall-Operator mit γ ∈ (2/π, 2/(π/2 + 2/π)) müssen die Testfunktionen
zudem durch ein Vielfaches des Coulomb-Potentials beschränkt und Lipschitz-stetig sein. Der
Beweis beruht im Wesentlichen auf der Herleitung der führenden Ordnung der Grundzustand-
senergie des geeignet gestörten Vielteilchen-Operators. Mit

”
geeignet“ meinen wir, dass die

Störung auf der richtigen Längenskala, sprich Z−1/3, und der richtigen Energieskala, sprich
Z7/3,

”
leben“ muss. Dies ist der Fall, wenn die Störung wie UZ(x) = Z4/3U(Z1/3x) skaliert,

was anhand des Integrals
∫
Rd ρ

TF
Z (x)UZ(x) dx und der Skalierungsrelation von ρTF

Z gesehen
werden kann. Diese Ergebnisse unterstreichen, dass sich der Hauptteil der Elektronen eines re-
lativistisch beschriebenen Atoms immer noch nicht-relativistisch verhält. Sie stehen insbeson-
dere im Einklang mit der Tatsache, dass der führende Term der asymptotischen Entwicklung
der Grundzustandsenergie durch die nicht-relativistische Thomas–Fermi-Energie gegeben ist.

Auf der Scott-Skala zeigen wir, dass die reskalierte Einteilchendichte eines Grundzustands
des Vielteilchen-Chandrasekhar-Operators schwach gegen die wasserstoffartige Dichte, sprich
die Summe der Quadrate der Eigenfunktionen des entsprechenden relativistischen Wasserstoff-
Atoms konvergiert, siehe Kapitel 5. Einerseits zeigen wir Konvergenz in jedem festen Drehim-
pulskanal und andererseits der gesamten Dichte. Die Klasse der Test-Funktionen, für die
diese Konvergenzen gelten, beinhalten insbesondere kompakt getragene Funktionen, die in-
tegrierbar oder durch ein Vielfaches des Coulomb-Potentials beschränkt sind. Im Hinblick
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auf die allgemeine Natur relativistischer Operatoren und die Kato-Ungleichung ist dieses Er-
gebnis optimal, da man nicht erwarten kann, dass die Test-Funktionen singulärer als das
Coulomb-Potential am Ursprung sind. Dieses Resultat bestätigt Liebs sogenannte starke
Scott-Vermutung [115] und zeigt insbesondere, dass kernnahe Elektronen relativistische Kor-
rekturen erzeugen. Das Ergebnis ist außerdem im Einklang mit der relativistischen Korrektur
der Scott-Korrektur der Grundzustandsenergie (Solovej u. a. [162] und Frank u. a. [69]). Als
Nebenprodukt erhalten wir eine punktweise obere Schranke an die wasserstoffartige Dichte,
welche für große Kernabstände im Einklang mit der Singularität der Thomas–Fermi-Dichte
und insbesondere mit dem Abfall der nicht-relativistischen Dichte steht. Das bedeutet, dass
sie wie r−3/2 abfällt. Die Beweise beruhen auf der Scott-Korrektur, einer Verallgemeinerung
des Feynman–Hellmann-Satzes sowie einer neuen Äquivalenz von Sobolew-Normen, die von
Potenzen des Herbst-Operators erzeugt werden. Diese Ergebnisse basieren auf einer gemein-
samen Arbeit mit Rupert L. Frank, Heinz Siedentop und Barry Simon [67].

Im Anschluß zeigen wir, dass die starke Scott-Vermutung auch im Furry-Modell wahr
ist. Der entscheidende Grund hierfür ist, dass das Vielteilchen-Problem auf ein effektives
Problem reduziert wird, welches durch den Wasserstoff-Operator beschrieben wird und die
Furry-Projektion mit diesem Operator gerade kommutiert.

Ein wichtiges Werkzeug für den Beweis der starken Scott-Vermutung ist ein weiteres Er-
gebnis dieser Arbeit, welches sich auf eine Zusammenarbeit mit Rupert L. Frank und Heinz
Siedentop [66] stützt, siehe Kapitel 7. Wir betrachten den fraktionalen Laplace-Operator mit
Hardy-Potential La,α = (−∆)α/2 + a|x|−α und kritischer oder subkritischer Kopplungskon-
stante. Es wird gezeigt, dass die L2-Normen, die durch Potenzen dieses sogenannten verallge-
meinerten Hardy-Operators erzeugt werden, zu den L2-Normen, die durch Potenzen des frak-
tionalen Laplace-Operators erzeugt werden, äquivalent sind. Darüberhinaus erhalten wir ver-
allgemeinerte und umgekehrte Hardy-Ungleichungen. Tatsächlich sind diese, neben kürzlich
hergeleiteten Schranken für den Wärmeleitungskern exp(−La,α) von Bogdan u. a. [15] für
a < 0 und Cho u. a. [24] beziehungsweise Jakubowski und Wang [99] für a > 0, die wesentli-
chen Zutaten für den Beweis der Äquivalenz der Normen.

Die Verallgemeinerung dieses Ergebnisses auf Lp ist bisher nur für positive Kopplungs-
konstanten möglich, siehe Kapitel 8. Der Beweis des Ergebnisses beruht wesentlich auf der
Gültigkeit eines Spektralmultiplikator-Theorems. Dieses kann bisher nur für den Wärmelei-
tungskern (sehr direkt allerdings) und alle erlaubten Kopplungskonstanten sowie für hinrei-
chend glatte Funktionen und nicht-negative Kopplungen gezeigt werden.

Wir stellen in Anhang D zwei mögliche Beweise für ein Multiplikator-Theorem für a ≥ 0
vor. Der erste Beweis, welcher tatsächlich für den Operator (−∆)α/2 + V und alle mess-
baren V ≥ 0 geführt wird und wesentlich auf Ideen von Hebisch [84, 85] aufbaut, beruht
auf klassischer Calderón–Zygmund-Theorie und scheitert an schlechten punktweisen Schran-
ken kompakt getragener, glatter Funktionen des Operators. Allerdings liefert der Beweis ein
Multiplikator-Theorem für den Spezialfall d = 1 und α ∈ (1, 2) sowie für alle d ∈ N und
α ∈ (0, 2), wenn der Multiplikator zudem kompakt getragen und hinreichend regulär ist.

Der zweite Beweis beruht auf einem Multiplikator-Satz für Operatoren, deren Wärmelei-
tungskerne nur algebraisch abfallen, keine Singularitäten aufweisen, aber eine gewisse Hölder-
Bedingung erfüllen (Hebisch [85]). Dieser Beweis ist auf den Operator La,α zugeschnitten. Die
größte Schwierigkeit besteht darin, die Glattheitsedingung des gestörten Wärmeleitungskerns
nachzuweisen. Dazu verifiziert man sie zunächst für den Wärmeleitungskern von (−∆)α/2

und verwendet dann Störungstheorie in Form der Duhamel-Formel sowie die kürzlich ge-
wonnenen Schranken von Cho u. a. [24] beziehungsweise Jakubowski und Wang [99] für den
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Wärmeleitungskern von La,α mit positiver Kopplungskonstante. Die Gültigkeit des Ergebnis-
ses für negative Kopplungskonstanten ist noch völlig offen und kann wahrscheinlich weder mit
der ersten oder der zweiten Methode bewiesen werden.

Notation

Folgende Notation wird häufig in dieser Arbeit verwendet. Abweichungen davon, oder weitere
Notationen, werden innerhalb des jeweiligen Kapitels separat eingeführt.

1. Mit A, a oder konst werden generische positive Konstanten bezeichnet, falls nichts ande-
res ausdrücklich behauptet wird. Sollte A von Parameter(n) s abhängen, schreiben wir
As, um diese Abhängigkeit zum Ausdruck zu bringen.

”
Triviale“ Abhängigkeiten, wie

von der Dimension d des zugrunde liegenden Raums, werden, unter Missbrauch dieser
Notation, manchmal unterdrückt. Positive Konstanten können von Zeile zu Zeile vari-
ieren. Wir werden sie trotzdem mit demselben Buchstaben kennzeichnen, es sei denn,
wir sagen etwas anderes.

2. Für zwei Zahlen X,Y ∈ [0,∞) schreiben wir X . Y , wann immer es eine Konstante
A > 0 gibt, sodass X ≤ A · Y . Um gegebenenfalls Abhängigkeiten von A von einem
Parameter s zu kennzeichnen, schreiben wir X .s Y . Darüberhinaus meint X ∼ Y ,
dass Y . X . Y . In diesem Fall sagen wir, dass X zu Y äquivalent ist. Schließlich
verwenden wir die Notation

X ∧ Y := min{X,Y } und X ∨ Y := max{X,Y } .

3. Die Gauß-Klammer für ein x ∈ R ist durch [x] := max{k ∈ Z : k ≤ x} definiert.

4. Der Real- beziehungsweise Imaginärteil einer komplexen Zahl z wird mit <(z), bezie-
hungsweise =(z) bezeichnet.

5. Wir arbeiten durchweg in euklidischen Räumen. Hierbei bezeichnet d ∈ N die Dimension
des zugrundeliegenden Raums Rd.
Das Komplement einer Menge Ω ⊆ Rd wird mit Ωc bezeichnet.

Der Durchmesser von Ω wird mit diam Ω = sup{|x− y| : x, y ∈ Ω} bezeichnet.

Der Abstand eines Punktes x ∈ Rd zu Ω wird mit d(x,Ω) = inf{|x − y| : y ∈ Ω}
bezeichnet.

Der p-te Lebesgue-Raum (1 ≤ p ≤ ∞) Cq-wertiger Funktionen über einer Teilmenge
Ω ⊆ Rd wird mit Lp(Ω : Cq) bezeichnet. Für q = 1 schreiben wir auch Lp(Ω). Die
Lp-Norm einer Funktion f wird mit ‖f‖p oder ‖f‖Lp(Ω) bezeichnet. Der Raum der lokal
integrierbaren Funktionen wird mit L1

loc(Ω) bezeichnet und ist durch

L1
loc(Ω) := {f : Ω→ C messbar : f |K ∈ L1(K) für alle K ⊆ Ω kompakt}

definiert, wobei mit f |K die Einschränkung der Funktion f auf die Menge K gemeint
ist. Der Raum aller kompakt getragenen Lp-Funktionen wird mit Lpcomp bezeichnet.

Der s-te Lp-Potential-Raum (s ∈ R) wird mit W s,p(Rd) bezeichnet. Er beinhaltet alle
Funktionen f für die die Norm ‖(1−∆)s/2f‖Lp endlich ist. Dabei bezeichnet (1−∆)s/2
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den Operator, der durch Multiplikation mit (1+4π2|ξ|2)s/2 im Fourierraum gegeben ist.
Für p = 2 schreiben wir Hs(Rd) = W s,2(Rd). Die Norm wird mit ‖f‖Hs bezeichnet. Un-
ter Missbrauch der Terminologie werden wir W s,p auch als Sobolew-Raum bezeichnen,
selbst wenn s keine natürliche Zahl ist.

Der Raum der glatten, kompakt getragenen Funktionen wird mit C∞c (Rd) bezeichnet.

Der Raum der Schwartz-Funktionen wird mit S(Rd) bezeichnet.

Die d− 1-dimensionale Einheitssphäre in Rd wird mit Sd−1 bezeichnet.

Die um x ∈ Rd zentrierte Kugel mit Radius R wird mit Bx(R) bezeichnet.

Der Träger einer Funktion f auf Rd wird mit supp f bezeichnet.

6. Die charakteristische Funktion einer Menge Ω ⊂ Rd wird mit 1Ω oder χΩ bezeichnet.

Die Heaviside-Funktion wird mit θ(x) bezeichnet. Wir verwenden, falls nichts anderes
behauptet wird, die Konvention θ(x) = 1, wenn x > 0 und θ(x) = 0, wenn x ≤ 0.

7. Wir schreiben X− für den negativen Teil einer reellen Zahl oder eines selbstadjungierten
Operators X und definieren X− als positive Größe, das heißt X− = −Xχ(−∞,0](X). Der
positive Teil ist durch X+ = max{X, 0} definiert.

8. Je nach Kontext meinen beispielsweise |p| oder p entweder einen (Fourier-)Multiplikator
oder den (Pseudo-)Differentialoperator

√
−∆ beziehungsweise −i∇ in L2(Rd).

9. Das innere Produkt in einem Vektorraum V wird entweder mit (·, ·), (·, ·)V , 〈·, ·〉, oder
〈·, ·〉V bezeichnet. Sollte V komplexwertig sein, ist das innere Produkt so definiert, dass
es semilinear im ersten und linear im zweiten Argument ist.

10. Der Definitionsbereich eines linearen Operators A wird mit dom(A) bezeichnet.

Die Operatornorm von A wird mit ‖A‖ bezeichnet.

Der Kern beziehungsweise das Bild von A werden mit ker(A) beziehungsweise ran(A)
bezeichnet.

Das Spektrum wird mit σ(A) oder spec(A) bezeichnet. Insbesondere wird das Punkt-
spektrum mit σp(A) und das wesentliche Spektrum mit σess(A) bezeichnet.

11. Für lineare, selbstadjungierte Operatoren A und B meint die Schreibweise A ≤ B, dass
B − A ein nicht-negativer Operator ist. Wir bezeichnen solche Ungleichungen auch als
Form-Ungleichungen, da sie (f,Af) ≤ (f,Bf) für alle f im gemeinsamen Formbereich
von A und B bedeuten. Die Relation ≤ ist eine Partialordnung auf den selbstadjungier-
ten Operatoren [11, Seite 112].

Angenommen, A und B sind zusätzlich nicht-negativ. Eine Funktion f : [0,∞) → R
heißt operatormonoton, wenn aus A ≤ B die Form-Ungleichung f(A) ≤ f(B) folgt.
Beispielsweise sind die Abbildungen x 7→ xs mit s ∈ (0, 1] mit dem Löwner–Heinz-
Theorem operatormonoton, siehe [18, Theorem 2.6].

Eine Funktion f : [0,∞)→ R heißt operatorkonvex, wenn für alle λ ∈ [0, 1] die Unglei-
chung f((1−λ)A+λB) ≤ (1−λ)f(A)+λf(B) gilt. Beispielsweise sind die Abbildungen
x 7→ xs mit s ∈ [1, 2] operatorkonvex, siehe wieder [18, Theorem 2.6].
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12. In den Kapiteln 4 und 6 werden matrixwertige Operatoren in L2(Rd : Cn) behandelt.
Für Operatoren S in L2(Rd) werden wir, wenn es aus dem Kontext ersichtlich ist, den
Zusatz ⊗1Cn bei S ⊗ 1Cn vernachlässigen.



Kapitel 2

Konvergenz der semiklassischen
Dichte mittels der Scott-Korrektur

Dieses Kapitel beruht auf der gemeinsamen Arbeit [125] mit Heinz Siedentop. Die Ergebnisse
dieses Kapitels sowie deren Darstellung und Beweise stimmen mit denen, die in [125] erarbeitet
wurden, überein.

Wir geben einen sehr einfachen Beweis für die Konvergenz der auf der Thomas–Fermi-
Längenskala reskalierten Einteilchendichte eines Grundzustands der drei untersuchten Viel-
teilchen-Operatoren. Dieser beruht im Wesentlichen auf der Scott-Korrektur und der Beobach-
tung, dass es nützlich ist, einen positiven Term, der bei der Herleitung der unteren Schranke
der asymptotischen Entwicklung der Grundzustandsenergie auftritt, nicht zu verwerfen. Im
Rahmen der Ionisierungsvermutung für den nicht-relativistischen Vielteilchen-Schrödinger-
Operator geht diese Beobachtung auf Fefferman und Seco [54] zurück. Der Einfachheit halber
geben wir im Folgenden nur die Formeln für den Chandrasekhar-Operator wieder. Die Ver-
allgemeinerung auf die anderen beiden relativistischen Operatoren erfolgt analog. Es müssen
lediglich die Bereiche der erlaubten Kopplungskonstanten (im Brown–Ravenhall-Modell sind
Kopplungen in (0, 2/(π/2 + 2/π)] und im Furry-Modell in (0, 1) erlaubt) sowie die Bedeutung
der Einteilchendichte angepasst werden.

Wir beginnen mit einer kurzen Wiederholung der Definition des vorliegenden Systems.
Wir untersuchen einen am Ursprung fixierten Kern der Ladung Z, welcher mit N Elektronen,
die q Spin-Freiheitsgrade haben, über das Coulomb-Potential wechselwirkt. Darüberhinaus
berücksichtigen wir die Wechselwirkungen zwischen den Elektronen, welche ebenfalls Coulom-
bisch sind. Im Folgenden betrachten wir lediglich neutrale Atome, also N = Z. In atomaren
Einheiten ist der Chandrasekhar-Operator durch die Friedrichs-Erweiterung im fermionischen
Vielteilchen-Hilbertraum

∧Z
ν=1 L

2(R3 : Cq) der zu

Z∑
ν=1

(√
−c2∆ν + c4 − c2 − Z

|xν |

)
+

∑
1≤ν<µ≤Z

1

|xν − xµ|

gehörenden quadratischen Form auf
∧Z
ν=1C

∞
c (R3 : Cq) definiert. Hierbei bezeichnet c die

Lichtgeschwindigkeit, welche durch das Inverse der Feinstrukturkonstanten gegeben ist. Die
quadratische Form ist genau dann nach unten beschränkt, wenn Z/c =: γ ≤ 2/π (Kato [101,
Kapitel 5, Gleichung (5.33)], Herbst [87, Theorem 2.5], Weder [179]). Für γ < 2/π ist der qua-

dratische FormbereichH1/2(R3Z : CqZ )∩
∧Z
ν=1(L2(R3 : Cq)). Wir bezeichnen die so gewonnene
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Friedrichs-Erweiterung mit CZ . Eine allgemeine fermionische Grundzustandsdichtematrix ist
durch

M∑
µ=1

wµ|ψµ〉〈ψµ| (2.1)

gegeben, wobei die ψµ eine Orthonormalbasis für den Grundzustandseigenraum formen und

wµ ≥ 0 Gewichte sind, die der Normierungsbedingung
∑M

µ=1wµ = 1 genügen. Mit der Darstel-
lung (2.1) drücken wir die Tatsache aus, dass ein fermionischer Grundzustand im Allgemeinen
entartet ist. Die zugehörige Einteilchendichte ρZ ist durch

ρZ(x) := N
M∑
µ=1

wµ

q∑
σ1,...,σN=1

∫
R3(N−1)

|ψµ(x, σ1;x2, σ2; ...;xN , σN )|2 dx2... dxN

definiert.

Wir bezeichnen die Grundzustandsenergie dieses Systems mit E(Z) := inf spec(CZ). Frank
u. a. [69] und Solovej u. a. [162], beziehungsweise Frank u. a. [70] für den Brown–Ravenhall-
Operator und Handrek und Siedentop [80] für den Furry-Operator, bestimmten die ersten
beiden Terme der asymptotischen Entwicklung der Grundzustandsenergie für Z, c → ∞ mit
festem Quotienten γ := Z/c. Die Autoren zeigten

E(Z) = ETF(Z) +
(q

4
− s(γ)

)
Z2 +O(Z47/24) , (2.2)

wobei ETF(Z) das Infimum des neutralen Thomas–Fermi-Funktionals und

s(γ) := γ−2 TrL2(R3:Cq)

[(√
−∆ + 1− 1− γ

|x|

)
−
−
(
−1

2
∆− γ

|x|

)
−

]
> 0

die Spektralverschiebung zwischen dem relativistischen Chandrasekhar- und dem nicht-rela-
tivistischen Wasserstoff-Operator bezeichnet. Dies ist die Differenz der Summe der negativen
Eigenwerte von (

−1

2
∆− γ

|x|

)
⊗ 1Cq und

(√
−∆ + 1− 1− γ

|x|

)
⊗ 1Cq .

Analoge Formeln gelten für den Brown–Ravenhall- und den Furry-Operator, siehe [70, For-
mel (1.8) und (1.11)] beziehungsweise [80, Formel (9) und (11)]. Diese Ergebnisse zeigen,
dass der führende Beitrag zur Grundzustandsenergie durch die nicht-relativistische Thomas–
Fermi-Theorie beschrieben wird. Unser Ergebnis betrifft die Grundzustandsdichte auf dieser
Längenskala und besagt, dass sie für Z, c → ∞ durch die wasserstoffartige Thomas–Fermi-
Dichte ρTF

1 approximiert wird.

Wir erinnern daran, dass die Thomas–Fermi-Dichte die Relation ρTF
Z (x) = Z2ρTF

1 (Z1/3x)
erfüllt. Diese Skalierungsrelation sowie der führende Term von E(Z) zeigen, dass die Thomas–
Fermi-Theorie Elektronen auf der Längenskala Z−1/3 und Energieskala Z7/3 beschreibt. Unser
Resultat über die Konvergenz der Grundzustandsdichte auf dieser Längenskala unterstreicht
diese Beobachtung und zeigt insbesondere, dass sich der Hauptteil der Elektronen in relati-
vistisch beschriebenen Vielteilchen-Coulomb-Systemen dennoch nicht-relativistisch verhält.
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Führt man die auf der Thomas–Fermi reskalierte Grundzustandsdichte

ρ̂Z(x) := Z−2ρZ(Z−1/3x) (2.3)

ein und erinnert sich an die durch die elektrostatische Selbstwechselwirkungsenergie erzeugte
Coulomb-Norm

‖ρ‖2C := D(ρ, ρ) =
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y|
dx dy ,

lautet unser Resultat wie folgt.

Satz 2.0.1. Sei γ ∈ (0, 2/π]. Dann konvergiert für Z, c → ∞ und fixiertem Z/c = γ die auf
der Thomas–Fermi-Längenskala reskalierte Dichte in Coulomb-Norm gegen die wasserstoff-
artige Thomas–Fermi-Dichte. Insbesondere gilt

‖ρ̂Z − ρTF
1 ‖C = O(Z−3/16)

für Z →∞.

Bevor wir zum Beweis kommen, machen wir zwei

Bemerkungen 2.0.2.

1. Solovej u. a. [162] beweisen die Scott-Korrektur auch im molekularen Fall, vernach-
lässigen allerdings ebenfalls den oben bemerkten positiven Term bei der Herleitung
der unteren Schranke an die Grundzustandsenergie. Der Beweis lässt sich somit für
Moleküle verallgemeinern, so lange der Abstand der Kerne zueinander auf der Thomas–
Fermi-Längenskala Z−1/3 gehalten wird.

2. Mit der Cauchy–Schwarz-Ungleichung folgt, dass die reskalierte Dichte auch schwach
konvergiert. Sei dazu σ : R3 → R eine Funktion mit endlicher Coulomb-Norm, sprich
‖σ‖C <∞. Dann gilt

D(σ, ρ̂Z − ρTF
1 ) = O(Z−3/16) .

Beispiele für Funktionen mit endlicher Coulomb-Norm sind

• Funktionen in L6/5(R3) (was aus der Hardy–Littlewood–Sobolev-Ungleichung er-
sichtlich ist) oder

• homogene Ladungsdichten auf Kugelschalen.

Setzt man schließlich σ := −(1/4π)∆U , wobei U im Unendlichen verschwinden soll,
erhält man außerdem

lim
Z→∞

∫
Uρ̂Z =

∫
UρTF

1

für alle solche U .

Beweis des Satzes 2.0.1. Wie eingangs erwähnt, ist die grundlegende Beobachtung, einen ge-
wissen positiven Term in der unteren Schranke im Beweis der asymptotischen Entwicklung
der Grundzustandsenergie nicht zu verwerfen. Folgt man dem Beweis der unteren Schranke, so
stellt man fest, dass der Beweis der Scott-Korrektur von Frank u. a. nicht nur die Scott-Formel
(2.2) liefert.
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Mit einer Korrelationsungleichung von Lieb [114] (basierend auf Onsagers Lemma [138]
und später weiter verbessert, siehe beispielsweise [117, 9, 111]), der Hölder- und der Lieb–
Thirring-Ungleichung schätzt man zunächst die Selbstwechselwirkungsenergie durch∑

µ

wµ(ψµ,
∑
i<j

1

|xi − xj |
ψµ) ≥ D[ρZ ]− konst

∫
ρ

4/3
Z

≥ D[ρZ − ρTF
Z ]−D[ρTF

Z ] + 2D(ρZ , ρ
TF
Z )− konst

√∫
ρZ

√∫
ρ

5/3
Z

≥ ‖ρZ − ρTF
Z ‖2C −D[ρTF

Z ] +

∫
ρZ(x)

(
ρTF
Z ∗

1

| · |

)
(x) dx− konst Z

1
2

+ 7
6

(2.4)

ab. Mit dieser Schranke sowie der trivialen Ungleichung(
ρTF
Z ∗

1

| · |

)
(x) ≥

∫
|x−y|≥RZ(x)

ρTF
Z (y)

|x− y|
dy ,

wobei RZ(x) der Radius des Austauschlochs ist, welches durch

1

2
=

∫
|x−y|≤RZ(x)

ρTF
Z (y) dy

definiert ist, folgen aus dem Beweis der Scott-Korrektur [69, Theorem 1, Lemma 5 und Pro-
position 3] (wobei wir bemerken, dass die zweite Summe in [69, Proposition 3] bei ` = Z
abgeschnitten sein muss) für festes γ ∈ (0, 2/π] die Schranken

ETF(Z) +
(q

4
− s(γ)

)
Z2 + ‖ρTF

Z − ρZ‖2C − konst Z47/24

≤ E(Z) ≤ ETF(Z) +
(q

4
− s(γ)

)
Z2 + konst Z47/24 . (2.5)

Man bemerkt, dass die linke und die rechte Seite bis auf Terme der Ordnung Z47/24 identisch
sind. Subtrahiert man sie und stellt die Ungleichung um, erhält man

‖ρTF
Z − ρZ‖2C ≤ konst Z47/24. (2.6)

Aufgrund der Skalierungsrelation ρTF
Z (x) = Z2ρTF

1 (Z1/3x) und der Definition von ρ̂Z in (2.3),
erhält man durch Skalieren

‖ρTF
Z − ρZ‖2C =

1

2

∫
R3

dx

∫
R3

dy
(ρTF
Z (x)− ρZ(x))(ρTF

Z (y)− ρZ(y))

|x− y|

=
Z7/3

2

∫
R3

dx

∫
R3

dy
(ρTF

1 (x)− ρ̂1(x))(ρTF
1 (y)− ρ̂1(y))

|x− y|
.

Die behauptete Konvergenz folgt, indem man diese Gleichheit mit (2.6) kombiniert, durch
Z7/3 teilt und die Wurzel zieht.

Wir bemerken schließlich, dass auch in den Beweisen der Scott-Korrektur für den Brown–
Ravenhall- und den Furry-Operator der fehlende Term in Ungleichung (2.4) hinzuaddiert
werden kann. Aus diesem Grund können die obigen Argumente auch für diese beiden Opera-
toren übertragen werden, wobei – wie oben geschildert – lediglich der Bereich der erlaubten
Kopplungskonstanten und die Definition der Einteilchendichte angepasst werden müssen.



Kapitel 3

Konvergenz der semiklassischen
Dichte im Chandrasekhar-Modell

3.1 Einführung

In diesem Kapitel geben wir einen alternativen Beweis der Konvergenz der auf der Thomas–
Fermi-Längenskala reskalierten Einteilchendichte eines Grundzustands des Chandrasekhar-
Operators im Grenzwert großer Teilchenzahlen. Dieser verwendet das Argument der linea-
ren Antwort sowie die Kenntnis des führenden Terms der asymptotischen Entwicklung der
Grundzustandsenergie des adäquat gestörten Chandrasekhar-Operators. Die Herleitung die-
ses Terms beruht stark auf den Argumenten von Sørensen [139] zur Herleitung des führenden
Terms für den ungestörten Operator, weshalb dieser Beweis keine Konvergenzrate liefert.

Die Organisation des Kapitels ist wie folgt. Im nächsten Abschnitt geben wir eine präzise
Definition des vorliegenden Systems und den wichtigen Größen, formulieren unser Ergebnis
und illustrieren den Beweis. In den nächsten vier Abschnitten bestimmen wir die führende
Ordnung der Grundzustandsenergie des gestörten Chandrasekhar-Operators. Im letzten Ab-
schnitt verwenden wir dieses Resultat zusammen mit dem Argument der linearen Antwort,
um das Konvergenzresultat zu beweisen.

3.2 Definitionen und Resultate

Wir beginnen mit der konkreten Beschreibung des vorliegenden Systems. Wir betrachten
einen am Ursprung fixierten Kern der Ladung Z, welcher mit N = Z Elektronen, die q Spin-
Freiheitsgrade haben, über das Coulomb-Potential wechselwirkt. Darüberhinaus berücksichti-
gen wir die Coulomb-Wechselwirkungen zwischen den Elektronen. Da keine Wechselwirkungen
auftreten, die den Spin der Elektronen miteinbeziehen, setzen wir der Einfachheit halber q = 1.
Wir beschreiben das System durch den Chandrasekhar-Operator und erinnern im Folgenden
an Notation, die in diesem Kapitel verwendet wird. Der Operator ist durch die Friedrichs-
Erweiterung im fermionischen Vielteilchen-Hilbertraum

∧Z
ν=1 L

2(R3) der zu

Z∑
ν=1

(√
−c2∆ν + c4 − c2 − Z

|xν |

)
+

∑
1≤ν<µ≤Z

1

|xν − xµ|
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gehörenden quadratischen Form auf
∧Z
ν=1C

∞
c (R3) definiert. Diese Erweiterung wird für Z/c =:

γ ∈ (0, 2/π] mit CZ bezeichnet. Die Grundzustandsenergie E(Z) := inf spec(CZ) des Systems
ist ein Eigenwert von CZ (Lewis u. a. [112] und Vugalter und Zhislin [185]), welcher ent-
artet sein kann. Wir bezeichnen mit ψ1, ..., ψM eine Basis des zugehörigen Eigenraums. Die
zugehörige Grundzustandsdichtematrix wird mit

dC =
M∑
µ=1

wµ|ψµ〉〈ψµ|

bezeichnet, wobei wµ ≥ 0 Gewichte sind, die die Normierungsbedingung
∑M

µ=1wµ = 1
erfüllen. Die Einteilchendichte ist durch

ρZ(x) := N

M∑
µ=1

wµ

∫
R3(N−1)

|ψµ(x, x2, ..., xN )|2dx2...dxN für x ∈ R3

definiert.
Wir erinnern daran, dass die Thomas–Fermi-Dichte beziehungsweise das -Potential den

Skalierungsrelationen ρTF
Z (x) = Z2ρTF

1 (Z1/3x) und ΦTF
Z (x) = Z4/3ΦTF

1 (Z1/3x) genügen, wo-
bei ρTF

1 und ΦTF
1 jeweils die wasserstoffartigen (Z = 1) Minimierer beziehungsweise Potentiale

sind. Wir zeigen im Folgenden, dass die Grundzustandsdichte auf der Thomas–Fermi-Skala

ρ̂Z(x) := Z−2ρZ(Z−1/3x)

schwach gegen die wasserstoffartige Thomas–Fermi-Dichte konvergiert.

Satz 3.2.1. Seien γ ∈ (0, 2/π] und U ∈ L5/2(R3) ∩ L4(R3). Dann gilt für Z, c → ∞ mit
festem Z/c = γ,

lim
Z→∞

∫
ρ̂Z(x)U(x) dx =

∫
ρTF

1 (x)U(x) dx .

Der Beweis der Behauptung beruht auf dem Argument der linearen Antwort. Um die-
ses anwenden zu können, benötigen wir die folgende Aussage über den führenden Term der
Grundzustandsenergie des geeignet gestörten Chandrasekhar-Operators.

Behauptung 3.2.2. Seien λ > 0, 0 ≤ U ∈ L5/2(R3) ∩ L4(R3), UZ(x) := Z4/3U(Z1/3x),
CZ,λ := CZ − λ

∑N
ν=1 UZ(xν) und Eλ(Z) := inf spec(CZ,λ). Dann ist

Eλ(Z) ≥ −
∫ (

p2

2
− ΦTF

Z (q)− λUZ(q)

)
−
d̄p dq −D[ρTF

Z ]− o(Z7/3).

Der Beweis verläuft analog zu dem von Sørensen [139]. Wir reduzieren zunächst das lineare
Vielteilchen-Problem auf ein nicht-lineares Einteilchen-Problem mit Hilfe einer Korrelations-
ungleichung. Eine sofortige Lokalisierung im Phasenraum wie im nicht-relativistischen Fall
(siehe z.B. Lieb [115]) führt zu Problemen, da das Coulomb-Potential nicht in den

”
relati-

vistischen, semiklassischen Lp-Räumen“ L5/2 ∩ L4 liegt. Insbesondere kann man daher nicht
ohne Weiteres das relativistische Analogon der Lieb–Thirring-Ungleichung, die Daubechies-
Ungleichung [31], verwenden, um die potentielle Energie durch kinetische Energie zu kontrol-
lieren. Wir lokalisieren daher zunächst R3 in drei Regionen. Die entstehenden Lokalisierungs-
fehler der kinetischen Energie wurden bereits in [139, Abschnitt 5] hergeleitet und behandelt.
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Die kernnächsten Elektronen bewegen sich schneller als ein substantieller Bruchteil der
Lichtgeschwindigkeit, weshalb ihre kinetische Energie mit gutem Gewissen durch die hyperre-
lativistische Dispersionsrelation |p| beschrieben werden kann. Ihr Beitrag zur Grundzustand-
senergie wird durch die Hardy–Lieb–Thirring-Ungleichung von Frank u. a. [64] abgeschätzt.
Es stellt sich heraus, dass die Ruheenergie des Elektrons den größten Beitrag liefert.

Man erwartet, dass sich die meisten Elektronen in der äußersten Region befinden, wo
eine semiklassische Beschreibung angebracht ist. Hier lokalisieren wir – wie Lieb [115] – das
Problem im Phasenraum mittels kohärenter Zustände und zeigen, dass die Energie mit der
nicht-relativistischen Thomas–Fermi-Energie vergleichbar ist.

Der Beitrag zur Energie in der mittleren Zone – in der sich keine Coulomb-Singularität
mehr befindet – wird durch die Daubechies-Ungleichung abgeschätzt. Der Grund für die
Einführung dieser Region ist, dass die innere und äußere Regionen nicht überlappen, da
die Ruheenergie der Elektronen uns zwingt, den Lokalisierungsradius der inneren Zone echt
kleiner zu wählen als den Radius, der die äußere Zone definiert. Dieser wird wiederum durch
die Lokalisierungsfehler bestimmt, die bei der Phasenraumlokalisierung auftreten.

3.3 Reduzierung auf ein Einteilchen-Problem und Lokalisie-
rung

Sei g ∈ C∞c (R3) sphärisch symmetrisch, sodass g ≥ 0, ‖g‖2 = 1 und supp g ⊆ B0(1). Die
Funktion g wird später in der Definition der kohärenten Zustände auftauchen. Für R > 0
definieren wir gR(x) := R−3/2g(x/R). Für beliebiges 0 ≤ ρ ∈ L1(R3) schätzen wir zunächst
die Selbstwechselwirkung der Elektronen durch ein mittleres Feld ρ ∗ | · |−1 ∗ g2

R ab. Dies ist
gerade das Potential, welches man nach der Phasenraumlokalisierung von ρ ∗ | · |−1 erhält,
siehe (3.8b) später. Mit der Korrelationsungleichung von Mancas u. a. [123] erhält man

∑
ν<µ

1

|xν − xµ|
≥

N∑
ν=1

ρ ∗ g2
R ∗

1

| · |
(xν)−

N∑
ν=1

Lρ∗g2R
(xν)−D[ρ ∗ g2

R] (3.1)

mit dem Austauschpotential

Lρ∗g2R
(x) =

∫
|x−y|≤R(x)

(ρ ∗ g2
R)(y)

|x− y|
dy

und dem Radius R(x) des Austauschlochs, welcher durch

1

2
=

∫
|x−y|≤R(x)

(ρ ∗ g2
R)(y) dy (3.2)

definiert ist. Wir setzen nun ρ = ρTF
Z . Cassanas und Siedentop [19, Lemma 5] haben bereits

‖LρTF
Z ∗g

2
R
‖∞ ≤ AgZ gezeigt. Wegen der sphärischen Symmetrie von g2

R kann man den New-

tonschen Satz [136] verwenden, um D[ρTF
Z ∗ g2

R] ≤ D[ρTF
Z ] abzuschätzen. Damit ist die rechte

Seite von (3.1) nach unten durch

N∑
ν=1

ρTF
Z ∗ g2

R ∗
1

| · |
(xν)−AgZ2 −D[ρTF

Z ]
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beschränkt. Somit kann der auf der Längenskala c−1 reskalierte Operator Cγ,λ von unten
durch eine Summe von Einteilchen-Operatoren abgeschätzt werden, nämlich

Cγ,λ ≥
N∑
ν=1

[√
−∆ν + 1− 1− γ

|xν |
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(xν
c

)
− λ

c2
UZ

(xν
c

)]
− c−2D[ρTF

Z ]−Agc−2Z2 .

Die quadratische Form wird durch Slater-Determinanten ψ(x1, ..., xN ) = N−1/2m1∧· · ·∧mN

minimiert, wobei (mν ,mµ) = δν,µ und mν ∈ H1/2(R3). Da C∞c (R3) ein determinierender
Bereich von

√
−∆ + 1 − 1 − γ|x|−1 − U für 0 < γ ≤ 2/π ist (Herbst [87]) und L4 ∩ L5/2-

Funktionen relativ
√
−∆ + 1-Form-beschränkt sind, genügt, es lediglich mν ∈ C∞c (R3) zu

betrachten.
Für β ∈ (0, 1/2) definieren wir wie in [139] monotone Funktionen θ1, θ2 ∈ C∞c (R+ : [0, 1]),

die θ1(x)2 + θ2(x)2 = 1 und

θ1(x) =

{
1 für x < 1− β
0 für x > 1 + β

θ2(x) =

{
0 für x < 1− β
1 für x > 1 + β

erfüllen. Wir lokalisieren R3 mit den Funktionen

χ1(x) := θ1

(
|x|
R̃i

)
χ2(x) := θ1

(
|x|
R̃a

)
θ2

(
|x|
R̃i

)
χ3(x) := θ2

(
|x|
R̃a

)
.

Hierbei bezeichnen R̃i = cRi beziehungsweise R̃a = cRa die reskalierten Längenskalen, wobei
Ri = Z−r und Ra = Z−t, r ∈ (8/9, 1) sowie t ∈ (1/3, 2/3). Mit der Lokalisierungsformel von
Lieb und Yau [122, Theorem 9],

(f,
√
−∆ + 1f) =

k∑
j=1

(f, χj
√
−∆ + 1χjf)− (f, Lf) ,

und

L(x, y) =

k∑
j=1

Lj =
1

(2π)2

K2(|x− y|)
|x− y|2

k∑
j=1

(χj(x)− χj(y))2 ,

erhält man mit T (−∆) =
√
−∆ + 1− 1(

ψ,

N∑
ν=1

[
T (−∆ν)− γ

|xν |
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(xν
c

)
− λ

c2
UZ

(xν
c

)]
ψ

)

=

3∑
j=1

N∑
ν=1

(
mν , χj

[
T (−∆)− γ

|x|
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(x
c

)
− λ

c2
UZ

(x
c

)]
χjmν

)

−
N∑
ν=1

(mν , Lmν) .

(3.3)

Mit der obigen Wahl von Ri und Ra zeigte Sørensen, dass viele der Lokalisierungsfehler nur
zur Ordnung o(Z7/3) in der Grundzustandsenergie beitragen. Genauer gesagt zeigte er, dass
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die rechte Seite von (3.3) nach unten durch

3∑
j=1

N∑
ν=1

(
mν , χj

[
T (−∆)− γ

|x|
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(x
c

)
− λ

c2
UZ

(x
c

)]
χjmν

)
−AR̃−2

i

∑
ν

(χ1mν , χ1mν)−AR̃−2
i

∑
ν

(χ2mν , χ−χ2mν)− o(Z7/3)

(3.4)

beschränkt ist, wobei R immer noch ein freier Parameter und χ− die charakteristische Funk-
tion der Kugel B0(2R̃i) ist, siehe insbesondere [139, Formel (5.6)].

Wir untersuchen im Folgenden die drei Regionen einzeln genauer. In der inneren und der
mittleren Region arbeiten wir mit dem auf der Längenskala c−1 reskalierten Operator und
zeigen, dass die Beiträge zur Energie nur o(Z1/3) betragen. Des Weiteren vernachlässigen wir
in diesen Regionen das mittlere Feld ρTF

Z ∗ | · |−1 ∗ g2
R(x/c).

3.4 Energie in der inneren Region

Die Energie in der innersten Region ist∑
ν

(mν , χ1

[
T (−∆)− γ

|x|
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(x
c

)
− λ

c2
UZ

(x
c

)
−AR̃−2

i

]
χ1mν)

≥
∑
ν

(mν , χ1

[
T (−∆)− γ

|x|
− λ

c2
UZ

(x
c

)
−AR̃−2

i

]
χ1mν).

(3.5)

In dieser Region schätzen wir die kinetische Energie nach unten durch |p| − 1 ab. Um die
Coulomb-Singularität zu kontrollieren, verwenden wir folgendes Resultat von Frank u. a. [64].

Behauptung 3.4.1 (Hardy–Lieb–Thirring-Ungleichung [64, Theorem 2.1]). Es gibt ein A >
0, sodass für alle Funktionen V auf R3

Tr

(√
−∆− 2/π

|x|
− V

)
−
≤ A

∫
R3

V (x)4
+ dx

gilt.

Um dieses Resultat anwenden zu können, schätzen wir
√
p2 + 1−1 ≥ |p|−1 ab, verwenden

χ1(x)21{|x|≤2R̃i} = χ1(x)2, setzen

V (x) = 1{|x|≤2R̃i}

[
1 +

λ

c2
UZ

(x
c

)
+AR̃−2

i

]
≥ 0

und bemerken, dass wegen V ∈ L4(R3) und der Hardy–Lieb–Thirring-Ungleichung der Ope-
rator

(√
−∆− γ/|x| − V

)
− in der Spurklasse ist. Mit der Bessel-Ungleichung und (mν ,mµ) =

δνµ kann somit die rechte Seite von (3.5) nach unten durch

N∑
ν=1

(mν , χ1

[√
−∆− γ

|x|
− V (x)

]
χ1mν) ≥

∑
n

µn

N∑
ν=1

|(χ1mν , fn)|2

≥
∑
n

µn‖χ1fn‖22 ≥ −Tr

(√
−∆− 2/π

|x|
− V

)
−
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abgeschätzt werden, wobei µn den n-ten negativen Eigenwert von
√
−∆ − γ/|x| − V (x) mit

der zugehörigen, normierten Eigenfunktion fn bezeichnet.

Wendet man die Hardy–Lieb–Thirring-Ungleichung an und skaliert x 7→ γ−1Z2/3x, findet
man, dass

Tr

(√
−∆− 2/π

|x|
− V

)
−
≤ A

∫
R3

V (x)4 dx

=

∫
|x|≤2R̃i

(
1 +

λZ4/3

c2
U

(
Z1/3

c
x

)
+AR̃−2

i

)4

dx

=
Z2

γ3

∫
|x|≤ 2γ

Z2/3
R̃i

(
1 + λγ2Z−2/3U(x) +AR̃−2

i

)4
dx .

Da U ∈ L4(R3) und R̃2
i ≥ Z2α für ein α > 0, kommt der größte Beitrag zum Fehler von der

Ruheenergie des Elektrons, welcher durch

Z2

∫
|x|≤ 2γ

Z2/3
R̃i

14 dx = AR̃3
i

beschränkt ist. Da R̃i = o(Z1/9), ist dieser Beitrag von der Größenordnung o(Z1/3) und daher
akzeptabel.

3.5 Energie in der mittleren Region

In dieser Region zeigen wir, dass

∑
ν

(mν , χ2

[
T (−∆)− γ

|x|
+ c−2ρTF

Z ∗
1

| · |
∗ g2

R

(x
c

)
− λ

c2
UZ

(x
c

)
−AR̃−2

i χ−

]
χ2mν)

≥
∑
ν

(mν , χ2

[
T (−∆)− γ

|x|
− λ

c2
UZ

(x
c

)
−AR̃−2

i χ−(x)

]
χ2mν)

mit o(Z1/3) beiträgt. Um die potentielle Energie durch kinetische Energie zu kontrollieren,
verwenden wir

Behauptung 3.5.1 (Daubechies [31]). Sei T (p) = T (|p|) =
√
p2 + 1−1 mit Umkehrfunktion

T−1(t) =
√
t2 + 2t, F (s) :=

∫ s
0

[
T−1(t)

]3
dt sowie V ≥ 0. Dann gibt es eine Konstante A > 0,

sodass

Tr
(√
−∆ + 1− 1− V (x)

)
−
≤ A

∫
F (V ) dx .

Da (1 + t/2)3/2 ≤ A(1 + t3/2), kann man

F (s) =

∫ s

0
(t2 + 2t)3/2 dt =

∫ s

0
(2t)3/2

(
1 +

t

2

)3/2

dt ≤ A(s5/2 + s4) =: P (s)
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abschätzen. Auf dem Gebiet

supp (χ−χ2) = supp

(
χB0(2R̃i)

θ1

(
|x|
R̃a

)
θ2

(
|x|
R̃i

))
verwenden wir R̃2

i > R̃i für hinreichend großes Z > 1 und erhalten

V (x) =
γ

|x|
+
λ

c2
UZ

(x
c

)
≥ γ

2R̃i
≥ AR̃−2

i .

Somit ist −AR̃−2
i ≥ −V (x). Mit dem Variationsprinzip, der Daubechies- und der Bessel-

Ungleichung sowie der Substitution x 7→ γ−1Z2/3x, erhält man∑
ν

(
mν , χ2

[
T (−∆)− V (x)−AR̃−2

i χ−

]
χ2mν

)
≥
∑
ν

(mν , χ2 [T (−∆)− 2V (x)]χ2mν)

≥ −A
∫
R3

F

(
2χ2

(
γ

|x|
+
λZ4/3

c2
U

(
Z1/3

c
x

)))
dx

≥ −AZ
2

γ3

∫
γZ−2/3R̃i≤|x|≤γZ−2/3R̃a

P

[
γ2Z−2/3

(
1

|x|
+ λU(x)

)]
dx

≥ −A(R̃1/2
a + Z−5/12R̃9/8

a + R̃−1
i + Z−2/3) = o(Z1/3) .

Da |x|−5/2 am Ursprung integrierbar ist, wird dieser Beitrag zur Energie nur größer, wenn
man von Null bis γZ−2/3R̃a integriert. Entsprechend haben wir den |x|−4-Term von γZ−2/3R̃i
bis Unendlich integriert. Mit der Hölder-Ungleichung und U ∈ L5/2∩L4 haben wir schließlich

Z2− 5
3

∫
γZ−2/3R̃i≤|x|≤γZ−2/3R̃a

U
5
2 ≤ Z

1
3 ‖U‖

5
2
4

(∫
|x|≤γZ−2/3R̃a

dx

) 3
8

= Z−
5
12 R̃

9
8
a ‖U‖

5
2
4 (3.6a)

und

Z2−8/3

∫
γZ−2/3R̃i≤|x|≤γZ−2/3R̃a

U4 ≤ Z−2/3 ‖U‖44 (3.6b)

abgeschätzt. Der größte Beitrag zur Energie in dieser Region kam also vom nicht-relativisti-
schen s5/2-Term.

3.6 Die Thomas–Fermi-Region

In der äußersten Region betrachten wir den verbleibenden Ausdruck der Energie in der un-
skalierten Form, das heißt∑

ν

(mν , χ3(c·)
[
Tc(−∆)− Z

|x|
+ ρTF

Z ∗
1

| · |
∗ g2

R − λUZ(x)

]
χ3(c·)mν)−D[ρTF

Z ]−AZ2 ,

(3.7)
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wobei Tc(−∆) =
√
−c2∆ + c4 − c2. Dieser Ausdruck wird, bis auf Fehler o(Z7/3), die nicht-

relativistische Thomas–Fermi-Energie ergeben. Die Strategie ist sehr ähnlich zu der von Lieb
[115].

Wir erinnern daran, dass g ∈ C∞c (R3) sphärisch symmetrisch ist und supp g ∈ B0(1) sowie
‖g‖2 = 1 erfüllt. Weiterhin definierten wir die reskalierte Funktion gR(x) = R−3/2g(x/R). Wir
wählen nun R = Z−s, wobei 1/3 < t < s < 2/3 sein soll und erinnern daran, dass t durch
Ra = Z−t definiert war.

Wir setzen d̄p := (2π)−3dp und Tc(p) :=
√
c2p2 + c4 − c2. Des Weiteren definieren wir

Φ̃(x) := Z|x|−1 + λUZ(x)− ρTF
Z ∗ | · |−1(x) .

Definiert man die kohärenten Zustände gpqR (x) = gR(x − q)eipx und die Projektion Πpq =
|gpgR 〉〈g

pq
R | auf diese Zustände, erhält man

(f, f) =

∫
(f,Πpqf)d̄p dq, (3.8a)

(f, Φ̃ ∗ g2
Rf) =

∫
Φ̃(q)(f,Πpqf)d̄p dq und (3.8b)

(f, [
√
−c2∆ + c4 − c2]f) ≥

∫
Tc(p)(f,Πpqf)d̄p dq −AR−2 . (3.8c)

Die letzte Formel für die Lokalisierung der kinetischen Energie im Phasenraum wurde von
Sørensen in [139, Lemma B.1] gezeigt. Für unsere Wahl von R ist der Lokalisierungsfehler
nach Summation über alle Teilchen von der Größenordnung o(Z7/3). Wir müssen nun den
Fehler bestimmen, der entsteht, wenn man Z/|x|+ λUZ durch (Z| · |−1 + λUZ) ∗ g2

R in (3.7)
ersetzt. Wir beginnen mit dem Beitrag des Coulomb-Potentials. Zum einen folgt aus dem
Newtonschen Satz

1

|x|
− 1

| · |
∗ g2

R =

{
0 für x /∈ supp gR

6= 0 für x ∈ supp gR
. (3.9)

Andererseits ist R < Ra/4 für hinreichend großes Z. Aus der Definition von χ3(cx) =
θ2(|x|/Ra) folgt, dass die Träger von χ3(c·) und gR für hinreichend großes Z disjunkt sein
werden, das heißt χ3(c·)1supp gR = 0 für hinreichend großes Z. Daraus folgt, dass bei der
Ersetzung von Z/|x| durch Z| · |−1 ∗ g2

R kein Fehler entsteht.
Der Fehlerterm

∑
i(χ3(c·)mi, [UZ ∗ g2

R − UZ ]χ3(c·)mi) wird mit Hilfe etwas (ε ∈ (0, 1))
kinetischer Energie kontrolliert. Wir zeigen

Lemma 3.6.1. Seien gZ−s(x) := Z3s/2g (Zsx) mit s > 1/3 und Ug := g2
Z−s ∗ UZ . Dann gilt

für alle ε > 0∑
ν

(χ3(c·)mν , [ε(
√
−c2∆ + c4 − c2)− λ(UZ − Ug)]χ3(c·)mν)

≥ −Aγε

[(
λ

ε

)5/2

Z7/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥5/2

5/2
+

(
λ

ε

)4

Z4/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥4

4

]
.

Beweis. Wegen der Skalierungsrelation von gZ−s gilt

gZ−s(x) = Z
3s
2 g1(Zsx) = Z

1
2 · Z

3
2

(s− 1
3

)g1(Zs−
1
3 · Z

1
3x) = Z

1
2 g
Z−s+

1
3
(Z

1
3x) .



3.6 Die Thomas–Fermi-Region 27

Wir verwenden, wie in der mittleren Region, die Daubechies-Ungleichung. Wegen des Varia-
tionsprinzips können wir die Lokalisierung χ3 auf die äußere Region wieder vernachlässigen.
Wir fahren nun mit dem durch x 7→ x/c skalierten Operator fort und betrachten die mit c2

multiplizierte Summe der negativen Eigenwerte von

ε

[√
−∆ + 1− 1− λ

εc2
UZ

(x
c

)
+

λ

εc2

∫
UZ

(x
c
− y
)
g2
Z−s(y) dy

]
. (3.10)

Um die Daubechies-Ungleichung anwenden zu können, brauchen wir nur die ‖·‖p-Normen von
λ(εc2)−1 · (UZ(x/c)− Ug(x/c)) mit p = 5/2, 4 kontrollieren. Skaliert man x 7→ cx, verwendet
‖gZ−s‖2 = 1 und die obige Skalierungsrelation von gZ−s und skaliert abschließend (x, y) 7→
Z−1/3(x, y), erhält man(

λ

εc2

)p
c3

∫
dx

∣∣∣∣∫ dy g2
Z−s(y) (UZ(x)− UZ(x− y))

∣∣∣∣p
=

(
λ

εc2

)p
c3Z(1+4/3)p

∫
dx

∣∣∣∣∫ dy g2
Z−s+1/3(Z1/3y)

(
U(Z1/3x)− U(Z1/3(x− y)

)∣∣∣∣p
= γ−(3−2p)(λ/ε)pZ−

2
3
p+2

∥∥U − g2
Z−s+1/3 ∗ U

∥∥p
p
,

was die Behauptung zeigt.

Mit diesen Abschätzungen können wir die Phasenraumlokalisierung durchführen und er-
halten somit für alle ε ∈ (0, 1)

∑
ν

(mν , χ3(c·)
[
Tc(−∆)− Z

|x|
− λUZ(x) + ρ ∗ 1

| · |
∗ g2

R

]
χ3(c·)mν)

=
∑
ν

(mν , χ3(c·)
[
Tc(−∆)− Φ̃ ∗ g2

R −
Z

|x|
+

Z

| · |
∗ g2

R − λUZ + λUZ ∗ g2
R

]
χ3(c·)mν)

=
∑
ν

(mν , χ3(c·)
[
Tc(−∆)− Φ̃ ∗ g2

R − λUZ + λUZ ∗ g2
R

]
χ3(c·)mν)

≥ −
∫

[(1− ε)Tc(p)− Φ̃(q)]−
∑
i

∣∣(χ3(c·)mi, g
pq
R )
∣∣2 d̄p dq − o(Z7/3)

−Aγε

[(
λ

ε

)5/2

Z7/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥5/2

5/2
+

(
λ

ε

)4

Z4/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥4

4

]
.

Zum Schluß werden wir ε so wählen, dass der durch UZ−Ug erzeugte Fehler ebenfalls o(Z7/3)
ist.

Wir befassen uns nun genauer mit dem ersten Summanden der rechten Seite letzten Kette
von Ungleichungen. Für hinreichend großes Z ist R/Ra < 1/4. Für |q| < Ra/4 folgt daraus

|x| ≤ |q|+ |x− q| ≤ Ra
4

+R <
Ra
2

für x ∈ supp gpqR .

Per Definition von χ3(cx) ist daher (miχ3(c·), gpqR ) = 0 für |q| < Ra/4 und somit

supp q

∣∣(χ3(c·)mi, g
pq
R )
∣∣ ⊂ R3 \B0(Ra/4)
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für hinreichend großes Z. Verwendet man diese Beobachtung und die Bessel-Ungleichung,
erhält man

(ψ,CZ,λψ)

≥ −
∫

|q|>Ra
4

[(1− ε)Tc(p)− Φ̃(q)]−d̄p dq −D[ρTF
Z ]− o(Z7/3)

−Aγε

[(
λ

ε

)5/2

Z7/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥5/2

5/2
+

(
λ

ε

)4

Z4/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥4

4

]
.

(3.11)

Als Nächstes schätzen wir die Differenz zwischen der Thomas–Fermi-Energie und obigem
Integral ab, sprich∫

|q|>Ra
4

(
(1− ε)p

2

2
− ΦTF

Z (q)− λUZ(q)

)
−
d̄p dq −

∫
|q|>Ra

4

[(1− ε)Tc(p)− Φ̃(q)]−d̄p dq .

Dies geschieht in zwei Schritten. Zunächst passen wir den Integrationsbereich von

−
∫

|q|>Ra
4

[(1− ε)Tc(p)− Φ̃(q)]−d̄p dq

an, das heißt wir schreiben

−
∫

|q|>Ra
4

[(1− ε)Tc(p)− Φ̃(q)]−d̄pdq

=

∫
|q|>Ra

4
;(1−ε) p2

2
≤Φ̃(q)

[(1− ε)Tc(p)− Φ̃(q)]d̄pdq

+

∫
|q|>Ra

4
;(1−ε)Tc(p)≤Φ̃(q)≤(1−ε) p2

2

[(1− ε)Tc(p)− Φ̃(q)]d̄pdq .

(3.12)

Der erste Term auf der rechten Seite hat bereits den richtigen Integrationsbereich. Für diesen
muss nur noch der Fehler bestimmt werden, der entsteht, wenn man Tc(p) durch p2/2 im
Integranden ersetzt. Der zweite Term ist ein Fehlerterm, von dem gezeigt werden muss, dass
er von der Ordnung o(Z7/3) ist. Analog zu den Rechnungen in [139, Seiten 14-16] schätzen
wir diesen mit Hilfe des Skalierungsverhaltens Φ̃(x) = Z4/3Φ̃1(Z1/3x) durch∫

|q|>Ra
4

;(1−ε)Tc(p)≤Φ̃(q)≤(1−ε) p2
2

[−(1− ε)Tc(p) + Φ̃(q)]d̄p dq

≤
∫

|q|>Ra
4

;(1−ε)Tc(p)≤Φ̃(q)≤(1−ε) p2
2

Φ̃(q)d̄p dq

= Z1/3

∫
|q|>Ra

4
Z1/3;(1−ε)Tc(p)≤Z4/3Φ̃1(q)≤(1−ε) p2

2

Φ̃1(q)d̄p dq
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ab. Auf dem Gebiet {(p, q) ∈ R6 : (1 − ε)Tc(p) = (1 − ε)(
√
c2p2 + c4 − c2) ≤ Z4/3Φ̃1(q)} ist

für ε < 1/2

(1− ε)p2 ≤ 2Z4/3Φ̃1(q) + 2γ2Z2/3Φ̃1(q)2

und die Integrationsgrenzen implizieren daher insbesondere mit ε < 1/2 die Ungleichungen

2Z4/3Φ̃1(q) ≤ (1− ε)p2 ≤ 2Z4/3Φ̃1(q)
[
1 + γ2Z−2/3Φ̃1(q)

]
.

Mit X := 2Z4/3Φ̃1(q), Y := γ2Z−2/3Φ̃1(q), V := (1− ε)p2 und W := RaZ
1/3/4 schätzt man

den zweiten Term auf der rechten Seite von (3.12) nach unten durch

− (4π)2

(2π)3
Z1/3

∫
|q|≥W

dq Φ̃1(q)

∫ X(1+Y )

X

V 1/2

2(1− ε)3/2
dV

= −(4π)2

(2π)3

Z1/3

(1− ε)3/2

∫
|q|≥W

dq Φ̃1(q)
X3/2

3
[(1 + Y )3/2 − 1]

≥ −AZ1/3

∫
|q|≥W

dq Φ̃1(q)X3/2
[
Y + Y 3/2

]

≥ −AZ7/3

∫
|q|≥W

dq Φ̃1(q)5/2
[
Z−2/3Φ̃1(q) + Z−1Φ̃1(q)3/2

]

ab. Es verbleibt, die Terme

Z5/3

∫
|q|≥RaZ1/3

Φ̃1(q)7/2 dq ≤ Z5/3

∫
|q|≥RaZ1/3

(
1

|q|
+ λU(q)

)7/2

dq (3.13a)

und

Z4/3

∫
|q|≥RaZ1/3

Φ̃1(q)4 dq ≤ Z4/3

∫
|q|≥RaZ1/3

(
1

|q|
+ λU(q)

)4

dq (3.13b)

zu kontrollieren. Da U ∈ L5/2 ∩ L4 ist, ist auch U ∈ L7/2. Daraus folgt, dass der durch U
erzeugte Fehler von der Ordnung Z5/3 beziehungsweise Z4/3 ist. Der Fehler, der durch das
Coulomb-Potential erzeugt wird, beläuft sich auf

Z5/3

∫ ∞
RaZ1/3

q2−7/2 dq = AZ5/3−1/6R−1/2
a = o(Z11/6) (3.14a)

beziehungsweise

Z4/3

∫ ∞
RaZ1/3

q2−4 dq = AZ4/3−1/3R−1
a = o(Z5/3). (3.14b)
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Somit ist

−
∫

|q|>Ra
4

[(1− ε)Tc(p)− Φ̃(q)]−d̄p dq

≥
∫

|q|>Ra
4

;(1−ε) p2
2
≤Φ̃(q)

[(1− ε)Tc(p)− Φ̃(q)]d̄p dq − o(Z7/3)

und es verbleibt lediglich, den Integranden in der zweiten Zeile von (3.12) zu modifizieren.
Mit Tc(p) ≥ p2/2− p4/(8c2) erhält man∫

|q|>Ra
4

;(1−ε) p2
2
≤Φ̃(q)

[(1− ε)Tc(p)− Φ̃(q)]d̄p dq

≥
∫

|q|>Ra
4

;(1−ε) p2
2
≤Φ̃(q)

[
(1− ε)p

2

2
− Φ̃(q)

]
d̄p dq − 1− ε

8c2

∫
|q|>Ra

4
;(1−ε) p2

2
≤Φ̃(q)

p4d̄p dq .

Als Nächstes bemerkt man, dass auf dem Integrationsbereich des p-Integrals

|p| ≤

√
2Z
|q| + 2λUZ(q)

1− ε

ist. Damit ist der p4-Fehler mit 0 < ε < 1/2 unter Vergrößerung des Integrationsbereichs von
(1− ε)p2/2 ≤ Φ̃(q) zu p2/4 ≤ Z/|q|+ λUZ(q) durch

Z−2

∫
|q|>Ra; p

2

4
≤Z/|q|+λUZ(q)

p4d̄p dq ≤ AZ−2

∫
|q|>Ra

(
Z

|q|
+ λZ4/3U(Z1/3q)

)7/2

dq

= AZ5/3

∫
|q|>RaZ

1
3

(
1

|q|
+ λU(q)

)7/2

dq

kontrollierbar. Die rechte Seite ist aber von der gleichen Form wie (3.13a), das heißt auch
dieser Fehler ist von der Ordnung o(Z11/6).

Schließlich erhalten wir also∫
|q|>Ra

4
;(1−ε) p2

2
≤Φ̃(q)

[
(1− ε)p

2

2
− Φ̃(q)

]
d̄p dq ≥ −

∫ [
(1− ε)p

2

2
− ΦTF

Z (q)− λUZ(q)

]
−
d̄p dq

= −
∫ [

p2

2
− ΦTF

Z (q)− λUZ(q)

]
−
d̄p dq

−
(

(1− ε)−3/2 − 1
)∫ [p2

2
− ΦTF

Z (q)− λUZ(q)

]
−
d̄p dq
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und der verbleibende, von ε abhängige, Fehler beläuft sich auf

Aγε

[(
λ

ε

)5/2

Z7/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥5/2

5/2
+

(
λ

ε

)4

Z4/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥4

4

]

+
(

(1− ε)−3/2 − 1
)∫ [p2

2
− ΦTF

Z (q)− λUZ(q)

]
−
d̄p dq .

(3.15)

Da g2
Z−s+1/3 wegen s > 1/3 ein glättender Kern ist, ist (3.15) mit der Wahl

ε =
1

2
max

{
‖U − g2

Z−s+1/3 ∗ U‖5/2
1 + ‖U − g2

Z−s+1/3 ∗ U‖5/2
, Z−1/3+δ

}
= o(Z0) , δ ∈ (0, 1/3) (3.16)

nach oben durch eine Konstante mal

λ
5
2 ‖U − g2

Z−s+1/3 ∗ U‖ 5
2
Z

7
3 + λ4Z

7
3
−3δ +

(
‖U − g2

Z−s+1/3 ∗ U‖ 5
2

2(1 + ‖U − g2
Z−s+1/3 ∗ U‖ 5

2
)

+
Z−1/3+δ

2

)
Z

7
3

beschränkt. Hierbei haben wir die Skalierungseigenschaft von ΦTF
Z (q) + λUZ(q) sowie (1 −

ε)−3/2 − 1 ≤ Aε für hinreichend großes Z verwendet. Daraus folgt, dass der letzte Ausdruck
ebenfalls von der Ordnung o(Z7/3) ist.

Somit ist schließlich

(ψ,CZ,λψ) ≥ −
∫ [

p2

2
−
(
Z

|q|
− ρTF

Z ∗
1

| · |
+ λUZ(q)

)]
−
d̄p dq −D[ρTF

Z ]− o(Z7/3) ,

was Behauptung 3.2.2 zeigt.

3.7 Zusammenführung und Beweis von Satz 3.2.1

Der Beweis beruht auf den Ideen von Conta und Siedentop [25].

Lemma 3.7.1. Sei 0 ≤ U ∈ L5/2(R3). Dann gilt

lim
λ↘0

−1

λZ7/3

∫
p2

2
−ΦTF

Z (q)−λUZ(q)≤0

p2

2
−ΦTF

Z (q)≥0

(
p2

2
− ΦTF

Z (q)− λUZ(q)

)
d̄p dq = 0.

Beweis. Aus dem Skalierungsverhalten von ΦTF
Z + λUZ folgt

−1

λZ7/3

∫
p2

2
−ΦTF

Z (q)−λUZ(q)≤0

p2

2
−ΦTF

Z (q)≥0

(
p2

2
− ΦTF

Z (q)− λUZ(q)

)
d̄p dq

≤ 1

Z7/3

∫
p2

2
−ΦTF

Z (q)−λUZ(q)≤0

p2

2
−ΦTF

Z (q)≥0

UZ(q)d̄p dq =

∫
p2

2
−ΦTF

1 (q)−λU(q)≤0

p2

2
−ΦTF

1 (q)≥0

U(q)d̄p dq

=A

∫
dq U(q)[(ΦTF

1 (q) + λU(q))3/2 − ΦTF
1 (q)3/2] .
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Das letzte Integral konvergiert majorisiert für λ → 0 gegen Null. Eine gleichmäßig in λ
integrierbare Majorante (ohne Beschränkung können wir |λ| < 1 annehmen) ist U(q)(ΦTF

1 (q)+
λU(q))3/2, da sowohl U , als auch ΦTF

1 in L5/2(R3) sind. Die Integrierbarkeit ist aus der Hölder-
Ungleichung ersichtlich.

Beweis von Satz 3.2.1. Sei ohne Beschränkung der Allgemeinheit U ≥ 0. Ansonsten zerlegt
man U in seinen positiven und negativen Anteil und zeigt den Satz für U+ und U− separat.
Wegen √

c2p2 + c4 − c2 = c2
(√

1 + (p/c)2 − 1
)
≤ p2

2
und dem Ergebnis von Lieb und Simon zur führenden Ordnung der Grundzustandsenergie
des nicht-relativistischen Problems [118, Theorem I.1] folgt, dass die Thomas–Fermi-Energie
zu führender Ordnung in Z automatisch eine obere Schranke an die Grundzustandsenergie
von CZ ist. Wir erinnern, dass dC die Grundzustandsdichtematrix mit dazugehöriger Einteil-
chendichte ρZ von CZ war. Mit dieser Beobachtung und Behauptung 3.2.2 erhält man

λ

∫
ρ̂Z(x)U(x) dx =

λ

Z7/3

∫
ρZ(x)UZ(x) dx =

1

Z7/3
Tr
(
dC [CZ − CZ,λ]

)

≤ 1

Z7/3

 ∫
p2

2
≤ΦTF

Z (q)

(
p2

2
− ΦTF

Z (q)

)
d̄p dq −D[ρTF

Z ] + o(Z7/3)

−
∫

p2

2
≤ΦTF

Z (q)+λUZ(q)

(
p2

2
− ΦTF

Z (q)− λUZ(q)

)
d̄p dq +D[ρTF

Z ] + o(Z7/3)



=
1

Z7/3

 ∫
p2

2
≤ΦTF

Z (q)

λUZ(q)d̄p dq

−
∫

p2

2
−ΦTF

Z (q)−λUZ(q)≤0

p2

2
−ΦTF

Z (q)≥0

(
p2

2
− ΦTF

Z (q)− λUZ(q)

)
d̄p dq + o(Z7/3)


= λ

∫
ρTF

1 (x)U(x) dx+ o(λ) + o(Z0) .

Teilt man beide Seiten durch λ (für λ < 0 dreht sich die Ungleichung um) und lässt zuerst
Z →∞ gehen, erhält man

lim sup
Z→∞

∫
ρ̂Z(x)U(x) dx ≤

∫
ρTF

1 (x)U(x) dx+
1

λ
o(λ) für λ ≥ 0, bzw.

lim inf
Z→∞

∫
ρ̂Z(x)U(x) dx ≥

∫
ρTF

1 (x)U(x) dx− 1

λ
o(λ) für λ ≤ 0 .

Die Behauptung folgt mit Lemma 3.7.1, wenn man den Grenzwert λ→ 0 ausführt.



Kapitel 4

Konvergenz der semiklassischen
Dichte im Brown–Ravenhall-Modell

4.1 Einführung

In diesem Kapitel geben wir einen alternativen Beweis der schwachen Konvergenz der auf der
Thomas–Fermi-Längenskala reskalierten Einteilchendichte eines Grundzustands des Brown–
Ravenhall-Operators. Wie im letzten Kapitel verwenden wir das Argument der linearen Ant-
wort sowie die Kenntnis über den führenden Term der asymptotischen Entwicklung der
Grundzustandsenergie des adäquat gestörten Brown–Ravenhall-Operators. Die Herleitung
dieses Terms gestaltet sich in diesem Fall jedoch deutlich schwieriger, wenn die Kopplungskon-
stante zwischen der kritischen Chandrasekhar- und der kritischen Brown–Ravenhall-Konstan-
ten liegt, da man Kommutatoren der Lokalisierungsfunktionen mit gewissen unitären Trans-
formationen des Brown–Ravenhall-Operators, den sogenannten T -Transformationen, kontrol-
lieren muss. Aus diesem Grund erhalten wir zwar dasselbe Konvergenzresultat für γ ≤ 2/π
wie für den Chandrasekhar-Operator, aber ein schwächeres, wenn 2/π < γ < 2/(π/2 + 2/π)
ist. Darüberhinaus gilt dieses nur für subkritische Kopplungskonstanten.

Das Kapitel ist wie folgt gegliedert. Im nächsten Abschnitt stellen wir das Modell vor
und geben eine unitär äquivalente Darstellung des Brown–Ravenhall-Operators. Im Anschluß
formulieren wir unser Hauptresultat und illustrieren den Beweis. Im anschließenden Abschnitt
zeigen wir, wie das Ergebnis für γ ≤ 2/π sofort aus dem für den Chandrasekhar-Operator
folgt und diskutieren zwei Möglichkeiten, wie man für γ > 2/π verfahren könnte.

Als Nächstes untersuchen wir die T -Transformationen und geben punktweise Abschätzun-
gen an ihre Integral-Kerne an. Wir zeigen dann, wie die Kommutatoren dieser Transforma-
tionen mit den Lokalisierungsfunktionen des letzten Kapitels abgeschätzt werden können.

Mit diesen Abschätzungen werden wir in der Lage sein, dem Beweis Sørensens zu folgen,
um die Energie in den drei Regionen zu untersuchen. Wir zeigen wieder, dass die innere
und mittlere Region nur mit o(Z7/3) beitragen und die äußere Region bis auf Fehler o(Z7/3)
die Thomas–Fermi-Energie liefert. Der Beweis des Hauptresultats folgt dann wie im letzten
Kapitel mit dem Argument der linearen Antwort.



34 4. Schwache Konvergenz im Brown–Ravenhall-Modell

4.2 Überblick über das Modell, Definitionen und Resultat

Der Einteilchen-Dirac-Operator eines Elektrons im Feld einer Punktladung Z ist im Brown–
Ravenhall-Modell durch die Friedrichs-Erweiterung der auf S(R3 : C4) definierten quadrati-
schen Form

(ψ,DZψ) :=

(
ψ,

[
−icα · ∇+ c2β − Z

|x|

]
ψ

)
im Hilbert-Raum

H =
(
1(0,∞)(−icα · ∇+ c2β)

)
(L2(R3 : C4))

gegeben. Die Form ist genau dann nach unten beschränkt, wenn γ := Z/c ≤ γB = 2/(2/π +
π/2), siehe [48].

Durch eine unitäre Transformation kann der Operator in H als selbstadjungierter Operator
in L2(R3 : C2) dargestellt werden. Dazu parametrisiert man die erlaubten Zustände wie folgt.
Ist ψ ∈ H ein Dirac-Spinor, so kann ψ mittels

ψ =

(
Φ0(p/c)u
Φ1(p/c)u

)
(4.1)

durch einen Pauli-Spinor u ∈ L2(R3 : C2) dargestellt werden, wobei

Φ0(p) := φ0(|p|) , Φ1(p) := φ1(|p|)σ · p
|p|

=: φ1(|p|)h(p) , p ∈ R3 (4.2)

mit

φj(p) :=

√
E1(p) + (−1)j

2E1(p)
, j ∈ {0, 1}

und Ec(p) :=
√
c2p2 + c4 sind. Des Weiteren sind σ = (σ1, σ2, σ3) die drei Pauli-Matrizen

sowie h(p) := σ · p/|p| der Helizitätsoperator. Schließlich ist p, abhängig vom Kontext,
entweder der Differentialoperator −i∇, oder der Fourier-Multiplikator p ∈ R3. Nach Evans
u. a. [48] ist

Φc : L2(R3 : C2)→ H

u 7→
(

Φ0(p/c)u
Φ1(p/c)u

)
(4.3)

eine unitäre Abbildung. Insbesondere ist auch die Einschränkung von Φc auf H1(R3 : C2)
eine unitäre Abbildung in H1(R3 : C4) ∩ H.

Der Brown–Ravenhall-Operator für ein Elektron im externen Potential −Z/|x|, der auf
Pauli-Spinoren wirkt, ist mit dem verdrehten Potential

Tc
(
Z

| · |

)
:=

(
Φ0(p/c)
Φ1(p/c)

)(
Z

| · |
⊗ 1C4

)(
Φ0(p/c)
Φ1(p/c)

)
= Φ0

(p
c

)( Z

| · |
⊗ 1C2

)
Φ0

(p
c

)
+ Φ1

(p
c

)( Z

| · |
⊗ 1C2

)
Φ1

(p
c

)
durch

Ec(p)− c2 − Tc
(
Z

|x|

)
in L2(R3 : C2)
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gegeben. Sofern es aus dem Kontext ersichtlich ist, schreiben wir von nun an p statt p.

Der Erwartungswert der Energie in einem Vielteilchen-Zustand ψ des Brown–Ravenhall-
Operators mit Coulomb-Potential eines Kerns der Ladung Z, der mit N = Z Elektronen wech-
selwirkt ist unter Berücksichtigung der Coulomb-Selbstwechselwirkung zwischen den Elektro-
nen durch

E [ψ] :=

ψ,
 N∑
ν=1

(DZ − c2)ν +
∑

1≤ν<µ≤N

1

|xν − xµ|

ψ
 (4.4)

auf dem Formbereich QN := S(R3N : C4N )∩
∧N
ν=1 H gegeben. Mit (4.3) kann (4.4) auch durch

Pauli-Spinoren ausgedrückt werden, nämlich

(
⊗Nν=1Φ

∗
c

)
◦ E ◦

(
⊗Nν=1Φc

)
:
N∧
ν=1

L2(R3 : C2)→ R . (4.5)

Da die quadratische Form des Vielteilchen-Problems für γ ≤ γB ebenfalls nach unten be-
schränkt ist, kann man nach Friedrichs einen Vielteilchen-Operator definieren, dessen Grund-
zustandsenergie

E(Z) := inf {E [ψ] : ψ ∈ QN , ‖ψ‖ = 1}

und Grundzustandsdichte Gegenstände dieses Kapitels sein sollen. Es ist bekannt, dass E(Z)
ein Eigenwert ist (Morozov und Vugalter [133]). Dieser kann entartet sein und wir bezeichnen
mit ψ1, ..., ψM eine Basis des entsprechenden Eigenraums. Die zugehörige Grundzustands-
dichtematrix ist durch

dB =
M∑
µ=1

wµ|ψµ〉〈ψµ|

gegeben, wobei wµ ≥ 0 Gewichte sind, die die Normierungsbedingung
∑M

µ=1wµ = 1 erfüllen.
Im Folgenden untersuchen wir die zugehörige Einteilchen-Grundzustandsdichte

ρB(x) := N

M∑
µ=1

wµ

4∑
σ1,...,σN=1

∫
R3(N−1)

|ψµ(x, σ1;x2, σ2; ...;xN , σN )|2 dx2...dxN für x ∈ R3

sowie die auf der Thomas–Fermi-Längenskala reskalierte Dichte ρ̂B(x) := Z−2ρB(Z−1/3x).

Wir formulieren nun unser Hauptresultat.

Satz 4.2.1. Seien γ ∈ (0, 2/π] und U ∈ L5/2 ∩ L4(R3). Dann konvergiert für Z, c → ∞ mit
fixiertem Z/c = γ,

lim
Z→∞

∫
R3

ρ̂B(x)U(x) dx =

∫
R3

ρTF
1 (x)U(x) dx.

Ist γ ∈ (2/π, γB), so gilt das gleiche Resultat unter der zusätzlichen Voraussetzung, dass
U ∈ | · |−1L∞(R3) und U Lipschitz-stetig ist.

Wir betonen, dass hier ρTF
Z die Thomas–Fermi-Dichte mit der Thomas–Fermi-Konstanten

γTF := (6π2/q)2/3 ist, wobei q = 2 gesetzt wird. Für den Beweis von Satz 4.2.1 werden wir
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wie im letzten Kapitel das Argument der linearen Antwort verwenden. Dazu definieren wir
UZ(x) = Z4/3U(Z1/3x) mit U aus Satz 4.2.1 sowie für λ ∈ R,

Eλ[ψ] :=

ψ,
 N∑
ν=1

(−icα · ∇+ c2β − c2 − Z

|x|
− λUZ)ν +

∑
1≤ν<µ≤N

1

|xν − xµ|

ψ


auf QN . Unser Ziel ist es, zu zeigen, dass das Infimum von Eλ zu führender Ordnung in Z
durch die entsprechende Thomas–Fermi-Energie gegeben ist. Dazu beweisen wir die folgende

Behauptung 4.2.2. Seien γ ∈ (0, 2/π], λ > 0, 0 ≤ U ∈ L5/2 ∩L4(R3), UZ(x) = Z
4
3U(Z

1
3x)

und
Eλ(Z) := inf

ψ∈QN
Eλ[ψ] .

Dann ist

Eλ(Z) ≥ −
∫ (

p2

2
− ΦTF

Z (q)− λUZ(q)

)
−
d̄p dq −D[ρTF

Z ]− o(Z7/3) .

Ist γ ∈ (2/π, γB), so gilt das gleiche Resultat unter der zusätzlichen Voraussetzung, dass
U ∈ | · |−1L∞(R3) und U Lipschitz-stetig ist.

Mit dieser Ungleichung erfolgt der Beweis von Satz 4.2.1 dann wie in Abschnitt 3.7.

4.3 Beweis von Behauptung 4.2.2 für γ ≤ 2/π

Für γ ≤ 2/π folgen wir dem Beweis von Cassanas und Siedentop [19] und beginnen damit die
Selbstwechselwirkung der Elektronen durch eine Korrelationsungleichung zu kontrollieren. Ist
0 ≤ σ ∈ L1(R3), dann definiert man Rσ(x) durch die Gleichheit∫

|x−y|≤Rσ(x)

σ(y) dy =
1

2
.

Das zu σ gehörende Lochpotential ist durch

Lσ(x) :=

∫
|x−y|<Rσ(x)

σ(y)

|x− y|
dy

definiert. Für R = Z−s mit s ∈ (1/3, 2/3) definieren wir gR(x) = R−3/2g(x/R), wobei
0 ≤ g ∈ C∞c (R3) sphärisch symmetrisch, ‖g‖2 = 1 und supp g ⊆ B0(1) erfüllt. Weiter sei
ρR := ρTF

Z ∗g2
R. Mit der Korrelationsungleichung von Mancas u. a. [123] schätzen wir zunächst

die Selbstwechselwirkung durch

∑
1≤ν<µ≤N

1

|xν − xµ|
≥

N∑
ν=1

[
ρR ∗

1

| · |
(xν)− LρR(xν)

]
−D[ρR]

ab. Wegen der sphärischen Symmetrie von g2 können wir den Newtonschen Satz verwenden
und ρR durch ρTF

Z in D[ρR] ersetzen, um die rechte Seite weiter nach unten abzuschätzen.
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Mit der Schranke ‖LρR‖∞ ≤ AgZ aus [19, Lemma 5] haben wir für alle normierten ψ ∈
H1/2(R3N : C4N ) ∩

∧N
ν=1 H das N -Teilchen-Problem auf das Einteilchen-Problem

Eλ[ψ] ≥ −Tr
[
Λ+(|D0| − c2 − VR,λ)Λ+

]
− −AgZ

2 −D[ρTF
Z ] (4.6)

reduziert, wobei Λ+ := 1(0,∞)(D0) und VR,λ := Z| · |−1−ρR ∗ 1
|·| +λUZ . Zwar haben die Pauli-

Spinoren vier Komponenten – jeweils Spin ±1 für Elektronen und Positronen – doch haben wir
es hier wegen der Projektion auf den positiven Spektralbereich des freien Operators nur mit
zwei Spinzuständen zu tun. Schreibt man die Spektralprojektionen mit Hilfe der Gradierung
D0/|D0|

Λ± :=
1

2

(
1± D0

|D0|

)
,

so kann man diese durch eine unitäre Transformation

U :=

(
0 1
−1 0

)
ineinander überführen, da

U−1D0U =

(
0 −1
1 0

)(
c2 cσ · p

cσ · p −c2

)(
0 1
−1 0

)
=

(
−c2 −cσ · p
−cσ · p c2

)
= −D0.

Entsprechend erhält man auch UD0U
−1 = −D0, weshalb Λ− = U−1Λ+U . Definiert man

X := (|D0| − c2 − VR,λ)⊗ 1C2 , erhält man mit dem Variationsprinzip und der Zyklizität der
Spur

−Tr

[
Λ+

(
X 0
0 X

)
Λ+

]
−
≥ −Tr

[
Λ+

(
X− 0
0 X−

)
Λ+

]
= −Tr

[
Λ+

(
X− 0
0 X−

)]
.

Weiter gilt mit der Darstellung von Λ− durch U und Λ+, der Unitarität von U und der
Zyklizität der Spur

Tr

[
Λ−

(
X− 0
0 X−

)]
= Tr

[
Λ+U

(
X− 0
0 X−

)
U−1

]
= Tr

[
Λ+

(
X− 0
0 X−

)]
.

Wegen Λ+ + Λ− = 1C4 haben wir schließlich

2Tr

[
Λ+

(
X− 0
0 X−

)]
=Tr

[
Λ+

(
X− 0
0 X−

)]
+ Tr

[
Λ−

(
X− 0
0 X−

)]
=Tr

(
X− 0
0 X−

)
.

Da |D0(p)| = Ec(p) ist, erhält man

Eλ(Z) ≥ −TrL2(R3:C2)

[
Ec(p)− c2 − VR,λ

]
− −D[ρTF

Z ]−AgZ2 .

Die Behauptung folgt durch Anwenden von Behauptung 3.2.2 des letzten Kapitels für Kopp-
lungen γ ≤ 2/π. Streng genommen müsste Behauptung 3.2.2 in

∧N
ν=1 L

2(R3 : C2), also für
q = 2, bewiesen werden. Der Beweis erfolgt jedoch mit exakt derselben Strategie, außer,
dass die kohärenten Zustände in der Thomas–Fermi-Region einen zusätzlichen (trivialen)
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Spin-Freiheitsgrad tragen und durch gpgR (x, σ) = gR(x− q)eipx ⊗ eσ gegeben sind. Hierbei ist
σ ∈ {1, 2} und {eσ}2σ=1 bezeichnet die Standard-Basis in C2.

Durch diese Abschätzung erhalten wir die Behauptung zwar für γ ≤ 2/π, nicht jedoch für
die größere Brown–Ravenhall-Kopplung γB > 2/π.

Es gibt nun zwei Möglichkeiten, wie man diesen Umstand beheben kann.

1. In [70] zeigten Frank u. a., dass der Brown–Ravenhall-Operator im nullten Drehim-
pulskanal mit kritischer Kopplung γB durch den Chandrasekhar-Operator im nullten
Drehimpulskanal mit Kopplung 2/π kontrolliert werden kann. Der Grund hierfür ist,
dass die Coulomb-Singularität im Brown–Ravenhall-Modell durch die Transformation
Tc ”

ausgeschmiert“ wird, weshalb in diesem Modell eine höhere Kopplungskonstante
erlaubt ist. Die Idee wäre, diese Strategie für den Operator mit dem modifizierten Po-
tential γ|x|−1 + λc−2UZ(x/c) anzuwenden.

2. Wie im ersten Punkt beschrieben, rührt das Problem von der Coulomb-Singularität
her. Man könnte also stattdessen dem Beweis von Sørensen [139] (beziehungsweise des
letzten Kapitels) folgen und das Problem wieder in die drei Regionen des letzten Ka-
pitels zerlegen. In der ersten Region wird die kritische Coulomb-Singularität durch die
Hardy–Lieb–Thirring-Ungleichung für den Brown–Ravenhall-Operator (Frank [62]) kon-
trolliert. Dies ist die einzige Region, in der man wirklich die unitäre Transformation
Tc benötigt, um auch die kritische Kopplungskonstante zu behandeln. In den anderen
beiden Regionen sollte man die Transformation verwerfen können, da das modifizierte
Potential keine Singularitäten mehr aufweist, die nicht mit kinetischer Energie durch
die Daubechies-Ungleichung kontrolliert werden könnten. Bei dieser Lokalisierung tre-
ten jedoch vom Kommutieren der Lokalisierungsfunktionen χ mit den Operatoren Φm

der T -Transformation zusätzliche
”
Lokalisierungsfehler“ auf. Die Aufgabe besteht darin

zu zeigen, dass das durch diese Kommutatoren erzeugte
”
Lokalisierungspotential“ eben-

falls durch kinetische Energie kontrollierbar ist. Dies ist die Strategie, der wir in den
kommenden Abschnitten folgen werden.

4.4 Kommutatoren mit der T -Transformation

Arbeitet man mit der Strategie von Sørensen [139], um den führenden Term in der asym-
ptotischen Entwicklung der Grundzustandsenergie zu erhalten, führt man wieder die glatten
und sphärisch symmetrischen Lokalisierungsfunktionen χj (j = 1, 2, 3) ein. Die innere Region
reicht dabei bis zu einem Radius Ri = Z−r mit r ∈ (8/9, 1), die mittlere Region von Z−r

bis Ra = Z−t mit t ∈ (11/30, 2/3) und die äußere Region beginnt schließlich bei Z−t. Wir
definieren daher

χ1(x) = θ1

(
|x|
Ri

)
, χ2(x) = θ1

(
|x|
Ra

)
θ2

(
|x|
Ri

)
, χ3(x) = θ2

(
|x|
Ra

)
, (4.7a)

wobei die θj ∈ C∞c (R+ : [0, 1]) die Gleichheit θ1(x)2 + θ2(x)2 = 1 erfüllen, monoton sind und
so definiert sind, dass

θ1(x) =

{
1 für x < 1− β
0 für x > 1 + β

und θ2(x) =

{
0 für x < 1− β
1 für x > 1 + β

(4.7b)
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mit 0 < β < 1/2 gelten. Da wir auch wieder mit dem durch x 7→ x/c skalierten Operator
arbeiten werden, führen wir außerdem

χ̃1(x) = θ1

(
|x|
R̃i

)
, χ̃2(x) = θ1

(
|x|
R̃a

)
θ2

(
|x|
R̃i

)
, χ̃3(x) = θ2

(
|x|
R̃a

)
(4.7c)

ein, wobei R̃i = cRi und R̃a = cRa sind.
Im letzten Abschnitt haben wir gezeigt, dass der auf ein Teilchen reduzierte Brown–

Ravenhall-Operator nach der Blockdiagonalisierung durch

Ec(p)− c2 − Tc(VR,λ) in L2(R3 : C2)

gegeben ist, wobei VR,λ := Z| · |−1 − ρR ∗ 1
|·| + λUZ . Hierbei ist Tc der unitäre Operator, der

für skalare Potentiale V wie Tc(V ) = Φ0(p/c)V Φ0(p/c)+Φ1(p/c)V Φ1(p/c) wirkt. Neben den
bekannten Lokalisierungsfehlern, die durch das Lokalisieren von Ec(p) entstehen (siehe [139,
Formel (5.6)]), treten durch das Kommutieren der χj mit den Φm weitere

”
Lokalisierungsfeh-

ler“ auf. Im Folgenden betrachten wir die Kommutatoren von Φm mit der monotonen und
sphärisch symmetrischen Lokalisierungsfunktion χR(x) := χ(x/R) ∈ C∞c (R3 : [0, 1]), die

χ(x) =

{
1 für |x| ∈ [0, 1]

0 für |x| ≥ 2
(4.8)

erfüllt. Dies ist ausreichend, denn χ1(x) kann durch χRi(x), χ3(x) kann durch 1 − χRa(x)
und χ2(x) kann durch 1− χRi(x)− (1− χRa(x)) ausgedrückt werden. Allgemein gilt für eine
reellwertige Funktion V , f ∈ L2(R3 : C2) aus dem quadratischen Formbereich von V ⊗ 1C2

und Φ ∈ {Φ0,Φ1}

(f,ΦχV χΦf) =(f, {χΦ + [Φ, χ]}V {[χ,Φ] + Φχ}f)

=(f, χΦV Φχf) + (f, [Φ, χ]V Φχf) + (f, χΦV [χ,Φ]f) + (f, [Φ, χ]V [χ,Φ]f)

=(f, χΦV Φχf) + 2Re(f, χΦV [χ,Φ]f) + (f, [Φ, χ]V [χ,Φ]f) .

(4.9)

Mit der Cauchy–Schwarz-Ungleichung kann man den mittleren Term der letzten Zeile durch
den ersten und den letzten Term abschätzen, denn für V 1/2 := V/|V |1/2 und alle ε > 0 ist

2
∣∣∣(V 1/2Φχf, |V |1/2[χ,Φ]f)

∣∣∣ ≤2ε1/2
∥∥∥V 1/2Φχf

∥∥∥ · ε−1/2
∥∥∥|V |1/2[χ,Φ]f

∥∥∥
≤ε
∥∥∥V 1/2Φχf

∥∥∥2
+ ε−1

∥∥∥|V |1/2[χ,Φ]f
∥∥∥2

=ε(f, χΦV Φχf) + ε−1(f, [Φ, χ]|V |[χ,Φ]f) .

(4.10)

Der Doppelkommutator von χ2 kann mit der Cauchy–Schwarz-Ungleichung durch die Dop-
pelkommutatoren, die nur χRi und χRa beinhalten, abgeschätzt werden. Der erste Term auf
der rechten Seite von (4.9) ist das gewünschte, lokalisierte, verdrehte Potential. Im nächsten
Abschnitt werden wir argumentieren, dass wir die T -Transformation in der mittleren und
äußeren Region vernachlässigen können, siehe auch Anhang A.2.

Der Term mit dem Doppelkommutator muss entweder sofort beschränkt oder durch Aus-
borgen etwas kinetischer Energie kontrolliert werden. Es stellt sich heraus, dass wir letztere
Strategie verwenden müssen. Folgendes Lemma erlaubt uns den Doppelkommutator durch
ein

”
Lokalisierungspotential“ L zu kontrollieren. Dazu müssen die Schwartz-Kerne der Φj

bestimmt werden. Eine kurze Zusammenfassung über Schwartz-Kerne, Pseudodifferential-
operatoren und Symbole wird in Anhang A.3 gegeben.
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Lemma 4.4.1. Seien V ≥ 0 und χ reellwertige Funktionen auf R3 und Φ = Φ(p) ein Symbol
nullter Ordnung mit Werten in den 2 × 2-Matrizen. Sei Φij(x, y) = K(x − y)Mij der Kern
des durch Φij(p) definierten Faltungsoperators, wobei i, j ∈ {1, 2} und |Mij | ≤ 1. Sei

L(x) :=

∫
R3

dy

∫
R3

dz |K(x− z)||χ(x)− χ(z)|V (z)|K(y − z)||χ(y)− χ(z)| . (4.11)

Dann gilt

|(f, [Φ, χ]V [χ,Φ]f)| ≤ 4

∫
R3

L(x)|f(x)|2 dx (4.12)

für alle f ∈ L2(R3 : C2) aus dem quadratischen Formbereich von V ⊗ 1C2.

Sofern keine Verwechslungsgefahr mit den durch Ec(p) erzeugten Lokalisierungsfehlern
besteht, werden wir im Folgenden solche L, die durch das Kommutieren der Lokalisierungs-
funktionen χj mit der T -Transformation entstehen, ebenfalls als

”
Lokalisierungsfehler“ oder

”
Lokalisierungspotentiale“ bezeichnen.

Beweis. Seien i, j, l ∈ {1, 2}. Wir schreiben f = (f1, f2)T , wobei fj ∈ L2(R3). Weiter definie-
ren wir

Sij(x, y) := [χ,Φij ](x, y) = K(x− y)(χ(x)− χ(y))Mij .

Da |Mij | ≤ 1, gilt insbesondere

|Sij(x, y)| ≤ |K(x− y)||χ(x)− χ(y)| =: S(x, y) = S(y, x) .

Schließlich definieren wir

gi,z(x, y) :=
√
S(x, z)S(z, y)|fi(x)| .

Dann erhält man mit der Cauchy–Schwarz-Ungleichung

|(f, [Φ, χ]V [χ,Φ]f)| =

∣∣∣∣∣∣
∫
R3

dx

∫
R3

dy

∫
R3

dz
∑
i,j,l

fi(x)Sij(x, z)V (z)Sjl(z, y)fl(y)

∣∣∣∣∣∣
≤
∫
dz V (z)

∑
j

∑
i,l

∫
dx

∫
dy |fi(x)||Sij(x, z)||Sjl(z, y)||fl(y)|

≤ 2

∫
dz V (z)

∑
i,l

∫
dx

∫
dy gi,z(x, y)gl,z(y, x)

≤
∫
dz V (z)

∑
i,l

∫
dx

∫
dy (gi,z(x, y)2 + gl,z(y, x)2)

≤ 4

∫
dz V (z)

∑
i

∫
dx

∫
dy S(x, z)S(z, y)|fi(x)|2 .
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Wir bestimmen nun die Lokalisierungspotentiale von [Φj , χ]V [χ,Φj ] = [Φj−1, χ]V [χ,Φj−
1]. Hierzu leiten wir zunächst Schranken an die Integralkerne von Φ0 − 1 und Φ1 her. Wir
erinnern an die Definition

φj(p) =

√
e(p) + (−1)j

2e(p)
, p ∈ R3

mit dem Symbol der relativistischen kinetischen Energie e(p) =
√
p2 + 1. Beide φj−1 hängen

nur von |p| ∈ R+ ab, sind reell analytisch und haben eine analytische Fortsetzung auf den
Streifen {z ∈ C : |=(z)| < 1}. Des Weiteren verhalten sie sich asymptotisch wie

√
2(φ0(p)− 1) =

{√
2− 1− |p|

2

4
√

2
+O(|p|4) für |p| → 0

1
2|p| +O(|p|−2) für |p| → ∞

√
2(1− φ1(p)) =

{
1− |p|√

2
+O(|p|3) für |p| → 0

1
2|p| +O(|p|−2) für |p| → ∞

.

Beide fallen somit wie |p|−1 im Unendlichen ab, was wiederum bedeutet, dass die Kerne
am Ursprung eine |x|−2-Singularität haben. Wegen der komplexen Analytizität fallen sie für
große Abstände wegen des Paley–Wiener-Satzes exponentiell ab. Diese Heuristik würde auf
die Abschätzung

|[χ, φj ](x, y)| = |[χ, φj − 1](x, y)| ≤ Ae−M |x−y|

|x− y|2
|χ(x)− χ(y)|

führen, wobei M > 0 durch die komplexe Analytizität von φj bestimmt ist. Wir beginnen mit
der Untersuchung der ersten Komponente Φ0 = φ0 ⊗ 1C2 der T -Transformation.

Lemma 4.4.2. Es gibt Konstanten A > 0 und 0 < a < 1, sodass

|(φ0 − 1)(x)| ≤ Ae−a|x|

|x|2
für x ∈ R3 .

Darüberhinaus ist φ0 − 1 ∈ C∞(R3 \ {0}).

Beweis. Der exponentielle Abfall rührt von der komplexen Analytizität von φ0(|p|) − 1 für
alle |p| ∈ {z ∈ C : |=(z)| < 1}, wie wir gleich sehen werden. Da wir diesen Abfall nur für
große |x| beweisen wollen, betrachten wir nur |x| ≥ 1. Wir fassen die Fouriertransformation
von φ0(|p|) − 1 als oszillierendes Integral auf (siehe beispielsweise [168, Kapitel VI, §1.4]
und Anhang A.3). Sei dazu χ ∈ S(R3) eine radiale und positive Funktion im Fourierraum
mit χ(0) = 1 und ε > 0. Dann erhält man mit φ̃(p) := φ0(p) − 1 und der Tatsache, dass
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χ(εp)pφ̃(p) sin(p|x|) eine gerade Funktion in p ∈ R ist, zunächst

lim
ε→0

∫
R3

eipxφ̃(p)χ(ε|p|) dp =
A

|x|
lim
ε→0

∫ ∞
0

χ(εp)pφ̃(p) sin(p|x|) dp

=
A

|x|2
lim
ε→0

∫ ∞
−∞

χ(εp)pφ̃(p)|x| sin(p|x|) dp

=
A

|x|2
lim
ε→0

[
−pφ̃(p)χ(εp) cos(p|x|)

∣∣∞
−∞ +

∫
R

(pφ̃(p)χ(εp))′ cos(p|x|) dp
]

=
A

|x|2
lim
ε→0

∫
R

[
εχ′(εp) · pφ̃(p) + χ(εp)(pφ̃(p))′

]
cos(p|x|) dp

=
A

|x|2

∫
R

(pφ̃(p))′ cos(p|x|) dp .

(4.13)

Hierbei haben wir ausgenutzt, dass wir den Limes ε → 0 in das Integral ziehen durften,
da beide Integrale separat majorisiert konvergieren. Um dies für den ersten Summanden der
dritten Zeile von (4.13) zu sehen, integrieren wir nochmals partiell und erhalten

|x|−3

{
εχ′(εp)pφ̃(p) sin(p|x|)

∣∣∞
−∞ −

∫
R

[
ε2χ′′(εp)pφ̃(p) + εχ′(εp)(pφ̃(p))′

]
sin(p|x|) dp

}
.

(4.14)

Der Randterm verschwindet, da χ ∈ S. Der zweite Summand kann durch die Abschätzung
|φ̃(p)| ≤ A|p|−1 und die Substitution p 7→ ε−1p durch

ε2

∫
R
χ′′(εp)pφ̃(p) sin(p|x|) dp ≤ ε

∫
R

∣∣χ′′(p)∣∣ dp ≤ Aε
abgeschätzt werden, was für ε→ 0 verschwindet. Der letzte Summand in (4.14) ist bis auf die
Tatsache, dass χ(εp) cos(p|x|) durch ε|x|−1χ′(εp) sin(p|x|) ersetzt wird, von der gleichen Form
wie der zweite Summand in der dritten Zeile in (4.13). Diesen werden wir nun behandeln.
Wir bemerken, dass

(pφ̃(p))′ = − p2

(2p2 + 2)

√
p2 +

√
p2 + 1 + 1

+

√
1√
p2 + 1

+ 1− 1

sich wie
√

2 − 1 + O(p2) bei p = 0 und wie 1/(8|p|2) + O(|p|−3) für |p| → ∞ verhält. Daher
ist (pφ̃(p))′ eine integrierbare Majorante des Integranden

(pφ̃(p))′
[
χ(εp) cos(p|x|) +

εχ′(εp)

|x|
sin(p|x|)

]
.

Damit verschwindet für ε → 0 auch der dritte Summand in (4.14) und man erhält die be-
hauptete rechte Seite in (4.13).

Da (pφ̃)′(p) eine analytische Fortsetzung auf den Streifen {z ∈ C : |=(z)| < 1} hat und
die Schranke |(pφ̃)′(p)| ≤ A(1 + <(p))−2 gleichmäßig in |=(p)| < 1 erfüllt, folgt mit dem
Paley–Wiener-Satz (siehe beispielsweise [143, Theorem IX.14]) die Abschätzung∫

R
(pφ̃)′(p) cos(p|x|) ≤ Ae−a|x|
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für alle 0 < a < 1. Dies folgt im Wesentlichen aus einer Kontur-Integration über ein Rechteck
der Breite 2R und Höhe a < 1 in den komplexen Zahlen, dem Cauchyschen Integralsatz und
dem abschließenden Grenzübergang R → ∞, siehe auch [169, Kapitel 4, Theorem 2.1] und
Abbildung 4.1.

Re p

Im p

R−R

Γ1

Γ2

1

a

−a

−1

Abbildung 4.1: Konturintegral über (pφ̃)′(p)

Die Glattheit und die |x|−2-Singularität sind Konsequenzen aus [168, Kapitel VI, §4, Propo-
sition 1], welche wir verwenden dürfen, φ0(p)− 1 ein Symbol der Ordnung −1 ist.

Mit diesen Schranken und Lemma 4.4.1 ist das Lokalisierungspotential der ersten Kom-
ponente der T -Transformation somit durch

L
(0)
R (x) :=

∫
R3

dy

∫
R3

dz
e−a|x−z|e−a|y−z|

|x− z|2|y − z|2
V (z)

∣∣∣χ( x
R

)
− χ

( z
R

)∣∣∣ ∣∣∣χ( y
R

)
− χ

( z
R

)∣∣∣ (4.15)

gegeben. Dieses schätzen wir in Abschnitt A.1.3 für V ∈ r−1L∞ durch

L
(0)
R (x) ≤ AR−2θ(3R− |x|) +AaR

−3e−a|x|/3θ(|x| − 3R)

ab, siehe auch (A.39).
Als Nächstes bestimmen wir das Lokalisierungspotential der zweiten Komponente Φ1(p) =

φ1(|p|)h(p) der T -Transformation. Mit der Gleichheit

|p| =
√
p2 + 1− 1 =

√
(e(p) + 1)(e(p)− 1)
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erhält man

√
2φ1(|p|)h(p) =

√
e(p)− 1√
e(p)

· σ · p
|p|

=

√
e(p)− 1σ · p√

e(p)
√

(e(p) + 1)(e(p)− 1)
=

σ · p√
e(p)(e(p) + 1)

.

(4.16)

Mit ĝ(p) := [e(p)(e(p) + 1)]−1/2 und Missbrauch der Notation von ĝ(p) als Faltungsoperator
mit Kern g(x), ist die Wirkung des Kommutators auf f ∈ L2(R3 : C2)

√
2[Φ1, χ]f(x) =

σ

i
[ĝ(p)((∇χ)f))(x) + ĝ(p)(χ(∇f))(x)− χ(x)ĝ(p)(∇f)(x)]

=
σ

i

∫
R3

dy g(x− y) [(∇χ)(y)f(y) + (χ(y)− χ(x))(∇f)(y)]

=
σ

i

∫
R3

dy {g(x− y)(∇χ)(y)f(y)

− [(∇yg(x− y))(χ(y)− χ(x)) + g(x− y)(∇χ)(y)] f(y)}

=
σ

i

∫
R3

dy (∇yg(x− y))(χ(x)− χ(y))f(y) .

(4.17)

Bei der partiellen Integration im dritten Schritt haben wir verwendet, dass f im Unendlichen
verschwindet. Daher ist[

σ · p√
e(p)(e(p) + 1)

, χ

]
(x, y) = −iσ · (∇yg(x− y))(χ(x)− χ(y)) .

Mit Lemma 4.4.1 ist das Lokalisierungspotential der zweiten Komponente der T -Transforma-
tion

L
(1)
R (x) :=

∫
R3

dy

∫
R3

dz V (z) |∇zg(x− z)| |∇yg(z − y)|
∣∣∣χ( x

R

)
− χ

( z
R

)∣∣∣ ∣∣∣χ( z
R

)
− χ

( y
R

)∣∣∣ .
(4.18)

Wir bestimmen nun wie in Lemma 4.4.2 den Abfall sowie die Singularitäten von g(x) und
∇g(x).

Lemma 4.4.3. Sei ĝ(p) = [e(p)(e(p) + 1)]−1/2. Dann gelten die folgenden Schranken.

1. Es gibt Konstanten A > 0 und 0 < a < 1, sodass

|g(x)| ≤ Ae−a|x|

|x|2
für x ∈ R3 .

2. Es gibt Konstanten A > 0 und 0 < a < 1, sodass

|∇g(x)| ≤ Ae−a|x|

|x|3
für x ∈ R3 .

Darüberhinaus sind g,∇g ∈ C∞(R3 \ {0}).
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Beweis. (1) ĝ(p) hat dieselben Analytizitätseigenschaften wie φ̃(p) = φ0(p) − 1 und fällt im
Unendlichen ebenfalls wie |p|−1 ab. Die Behauptung folgt daher wie in Lemma 4.4.2 aus dem
Paley–Wiener-Satz und der Tatsache, dass ĝ(p) ein Symbol der Ordnung −1 ist.

(2) Für den Beweis des exponentiellen Abfalls sei wieder |x| ≥ 1. Mit der gleichen Strategie
wie in Lemma 4.4.2 ist die als oszillierendes Integral aufgefasste Fouriertransformation für
ε > 0, r := |x| und er := x/|x| gleich

∇ lim
ε→0

∫
R3

dp eipxĝ(p)χ(ε|p|) = ∂rr
−1 lim

ε→0

∫ ∞
0

dp χ(εp)pĝ(p) sin(pr) er

= ∂rr
−1 lim

ε→0

∫
R
dp χ(εp)pĝ(p) sin(pr) er .

(4.19)

Nach zwei partiellen Integrationen ist die rechte Seite von (4.19)

− ∂rr−3 lim
ε→0

[∫
R
χ(εp)pĝ(p)∂2

p sin(pr) dp

]
er

= ∂rr
−3 lim

ε→0

[
−rχ(εp)pĝ(p) cos(pr)

∣∣∞
−∞ +

∫
R

(χ(εp)pĝ(p))′∂p sin(pr) dp

]
er

= ∂rr
−3 lim

ε→0

[
(χ(εp)pĝ(p))′ sin(pr)

∣∣∞
−∞ −

∫
R

(χ(εp)pĝ(p))′′ sin(pr) dp

]
er ,

wobei die Randterme wegen χ ∈ S verschwinden. Da |pĝ(p)| . 1 für alle p ∈ R und χ ∈ S,
erhält man∫

R
|ε2χ′′(εp)pĝ(p) sin(pr)| dp = ε

∫
R
|χ′′(p) · (p/ε)ĝ(p/ε) sin(ε−1pr)| dp ≤ ε

∫
R
|χ′′(p)| dp ≤ Aε

nach der Substitution p 7→ p/ε. Insbesondere zeigt dies, dass |χ′′(p)| eine integrierbare Majo-
rante von χ′′(p)(p/ε)ĝ(p/ε) sin(ε−1pr) ist. Andererseits konvergiert wegen |(pĝ(p))′| ≤ A(1 +
|p|)−2 und χ ∈ S, ∫

R
εχ′(εp)(pĝ(p))′ sin(pr) dp

majorisiert (mit der integrierbaren Majoranten A(1 + |p|)−2) gegen Null für ε→ 0.
Da schließlich |(pĝ(p))′′| ≤ A(1 + |p|)−3 gilt, folgt aus dem Satz der majorisierten Konver-

genz, dass die rechte Seite von (4.19) für ε→ 0 gegen

− ∂rr−3

∫
R

(pĝ(p))′′ sin(pr) dp er

=

(
3r−4

∫
R

(pĝ(p))′′ sin(pr) dp− r−3

∫
R
p(pĝ(p))′′ cos(pr) dp

)
er

(4.20)

konvergiert. Da sowohl (pĝ(p))′′ als auch p(pĝ(p))′′ analytische Fortsetzungen auf die Menge
{z ∈ C : |=(z)| < 1} haben und gleichmäßig in |=(p)| < 1 durch eine Konstante mal (1 +
<(p))−2 beschränkt sind, folgt aus dem Paley–Wiener-Satz wieder, dass die rechte Seite von
(4.20) durch e−a|x| für ein 0 < a < 1 und |x| ≥ 1 beschränkt ist.

Die Glattheit und die |x|−3-Singularität folgen ebenfalls aus [168, Kapitel VI, §4, Behaup-
tung 1], welche wir verwenden dürfen, da pĝ(p) ein Symbol nullter Ordnung ist. Alternativ
kann man auch Behauptung 2 aus ebenjenem Abschnitt verwenden.
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Wir machen an dieser Stelle eine Bemerkung zum exponentiellen Abfall der Kerne der Φj .
Tatsächlich erwartet man wegen des Paley–Wiener-Satzes, dass die Kerne wie e−|x| abfallen.
Der Grund hierfür ist, dass die φj auf ganz C\{±i} holomorph sind. Dies würde man vermut-
lich mit einer geschickteren Anwendung des Cauchyschen Integralsatzes entlang der Kurven
Γ1 beziehungsweise Γ2 in Abbildung 4.4 sehen.

Re p

Im p

R−R

Γ1

Γ2

i

Abbildung 4.2: Konturintegral über F (p)

Des Weiteren heben wir an dieser Stelle die Tatsache hervor, dass die Integralkerne der

Φj im masselosen Fall keinen exponentiellen Abfall haben. In diesem Fall sind Φ
(0)
0 = 1C2 und

Φ
(0)
1 (p) = σ · p/|p| = h(p) der Helizitätsoperator, das heißt es gibt nur ein Lokalisierungs-

potential der zweiten Komponente der masselosen T -Transformation. In [88, Proposition 6]
zeigten Hoever und Siedentop

([h, χ]f)(x) = − 1

iπ2

∫
σ · (x− y)

|x− y|4
(χ(x)− χ(y))f(y) dy für f ∈ L2(R3 : C2) (4.21)

für Lipschitz-stetige und kompakt getragene Funktionen χ. In [130, Lemma 3.2.1] wurde für
m > 0 der Integralkern des regularisierten Helizitätsoperators

hm(p) :=
σ · p√
p2 +m2

von Morozov bestimmt. Es gilt die folgende Aussage.
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Lemma 4.4.4. Seien m > 0 und f ∈ L2(R3 : C2). Dann gilt(
σ · p√
p2 +m2

f

)
(x) =

m2

2π2i
lim
ε→0

∫
R3\B0(ε)

K2(m|x− y|)σ · (x− y)

|x− y|2
f(y) dy (4.22)

mit der um den Ursprung zentrierten Kugel B0(ε) mit Radius ε > 0. Darüberhinaus gilt für
eine Lipschitz-stetige und kompakt getragene Funktion χ([

σ · p√
p2 +m2

, χ

]
f

)
(x) = − m2

2π2i

∫
R3

K2(m|x− y|)σ · (x− y)

|x− y|2
(χ(x)− χ(y))f(y) dy .

Wie in [88, Proposition 6] ist die ε-Regularisierung im zweiten Teil der Aussage dieses
Lemmas wegen der Lipschitz-Stetigkeit von χ nicht mehr nötig. Damit ist der regularisierte
Doppelkommutator für f = (f1, f2)T und f∗ = (f1, f2)

(f, [hm, χ]V [χ, hm]f)

=
m4

4π4

∫
dz V (z)

∫
dx dy f∗(x)

K2(m|x− z|)σ · (x− z)
|x− z|2

(χ(x)− χ(z))

× K2(m|z − y|)σ · (z − y)

|z − y|2
(χ(z)− χ(y))f(y) .

(4.23)

Insbesondere stellt man für m → 0 den Integralkern von [h, χ]V [χ, h] wieder her und für
f ∈ L2(R3 : C2) und Lipschitz-stetiges χ gilt die Konvergenz [hm, χ]f → [h, χ]f in L2, siehe
auch den Beweis von [88, Proposition 6].

Aus den Schranken für die modifizierte Bessel-Funktion K2(mr) (für festes m > 0) [137,
Formel 9.6.9 und 9.7.2], nämlich

K2(mr) ∼ 2 (mr)−2 für r → 0

K2(mr) ∼
√
π

2

e−mr√
mr

für r →∞

und Lemma 4.4.3 ist andererseits ersichtlich, dass das asymptotische Verhalten des Kerns von
|Φ1(x)| am Ursprung und im Unendlichen (bis auf das Gewicht des exponentiellen Abfalls)
äquivalent zu dem von |K2(m|x|)|/|x| ist, wenn m ≤ a, wobei a das Gewicht des exponentiellen
Abfalls von |Φ1(x)| bezeichnet. Insbesondere gibt es ein Aa > 0, sodass

|Φ1(r)| ≤ Aar−1K2(ar) für alle r > 0 . (4.24)

Das Vorgehen zur Beschränkung des Lokalisierungspotentials von [Φ1, χR]V [χR,Φ1] (mit
0 ≤ V ∈ r−1L∞ und χR(x) = χ(x/R)) ist daher wie folgt. In Anhang A.1 schätzen wir
das Lokalisierungspotential von [hm, χR]V [χR, hm] mit dem regularisierten Helizitätsopera-
tor hm für die Lokalisierungsfunktion χR und V (z) = |z|−1 ab. Für m → 0 ist der Fehler
durch R−1F (|x|/R)θ(3− |x|/R) beschränkt (siehe auch (A.25)), wobei F höchstens logarith-
mische Singularitäten der Form (A.26) hat und sonst stetig und beschränkt ist. Das Lokali-
sierungspotential von [Φ1, χR]V [χR,Φ1] kann wegen (4.24) und |V (x)| ≤ ‖rV ‖∞|x|−1 durch
das von [hm, χR]V [χR, hm] abgeschätzt werden, siehe (A.37). Zusammen mit dem Lokalisie-
rungspotential [Φ0, χR]V [χR,Φ0] der ersten Komponente (A.39) zeigen wir, dass der gesamte
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Lokalisierungsfehler mit einem 0 < a < 1 durch

LR(x) := A1

[
R−1F

(
|x|
R

)
+R−2

]
θ(3R− |x|)

+A2(R−2 +R−1 +R−1/2 + 1 +R1/2)e−aRθ(3R− |x|)
+A3(R−3 +R−3/2 +R−1/2 +R1/2)e−a|x|/2θ(|x| −R)

(4.25)

beschränkt ist, wobei die Aj (mit j = 1, 2, 3) von a abhängen. Dabei hat F (|x|/R) logarith-
mische Singularitäten bei |x| = R und |x| = 2R und ist sonst beschränkt. Die Singularitäten
sind von der Form (A.26) und mit der Daubechies-Ungleichung behandelbar.

4.5 Beweis von Behauptung 4.2.2 für γ < γB

In (4.6) haben wir bereits gesehen, dass für alle normierten ψ ∈ H1/2(R3N : C4N ) ∩
∧N
ν=1 H

die untere Schranke

Eλ[ψ] ≥ −TrL2(R3:C4)

[
Λ+(|D0| − c2 − VR,λ)Λ+

]
− −AgZ

2 −D[ρTF
Z ]

gilt, wobei VR,λ = Z|x|−1 − ρR ∗ | · |−1 + λUZ war. Wir wenden nun die unitäre Φc-Trans-
formation (siehe (4.3)) an und folgen der Strategie Sørensens, indem wir den transformierten
Einteilchen-Operator Ec(p)− c2−Tc(VR,λ) mittels der χj aus (4.7a) in drei radiale Regionen
lokalisieren. Wir erhalten

− TrL2(R3:C2)

(
Ec(p)− c2 − Tc(VR,λ)

)
− + o(Z7/3)

≥ −
3∑
j=1

TrL2(R3:C2)

(
χj(Ec(p)− c2 −AR−2

i χ1 −AR−2
i χ2χ−(c·))χj − Tc(χjVR,λχj)

)
− ,

(4.26)

wobei R−2
i χ1 und R−2

i χ2χ−(c·) Lokalisierungsfehler der kinetischen Energie Ec(p) sind, siehe
auch (3.4). Insbesondere war χ− die charakteristische Funktion der am Ursprung zentrierten
Kugel B0(2R̃i) mit Radius 2R̃i. Für j = 1, 2 vernachlässigen wir das nicht-negative mittlere
Feld ρR ∗ | · |−1 und erhalten so eine untere Schranke von (4.26). Um den Operator vollständig
lokalisieren zu können, müssen wir noch die T -Transformation mit den χj vertauschen. Wie
wir zu Beginn von Abschnitt 4.4 gesehen haben, ist∑

m=0,1

(f,ΦmχjV χjΦmf)

≤
∑
m=0,1

[
(1 + ε)(f, χjΦmV Φmχjf) + (1 + ε−1)(f, [Φm, χj ]V [χj ,Φm]f)

] (4.27)

für V ≥ 0, j ∈ {1, 2, 3} und alle ε ∈ (0, 1). In unserer konkreten Situation ist V = Z/|x| +
λUZ − (ρR ∗ | · |−1)(x)χ3(x). Wir erinnern daran, dass R = Z−s und Ra = Z−t mit 11/30 <
t < s < 2/3 sind. Somit gilt in der äußeren Region

1

|x|
χ3(x) =

1

| · |
∗ g2
R(x)χ3(x)
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einerseits wegen des Newtonschen Satzes für x /∈ supp g2
R und andererseits wegen der Größe

des Trägers von g2
R für x ∈ supp g2

R, siehe auch (3.9) und die anschließende Diskussion. Daher
ist (

Z

|x|
− ρR ∗

1

| · |

)
χ3(x) = g2

R ∗ ΦTF
Z (x)χ3(x) ≥ 0 ,

das heißt (ρR ∗ | · |−1)(x)χ3(x) ≤ Z/|x|. Wegen der Annahmen λ > 0 und 0 ≤ U ∈ r−1L∞ ist
daher

0 ≤ Z

|x|
+ λUZ − (ρR ∗ | · |−1)(x)χ3(x) ≤ A Z

|x|
.

Die Lokalisierungspotentiale LR(x) (4.25) von [Φm, χj ]V [χj ,Φm] wurden für V ∈ r−1L∞ in
Abschnitt 4.4 und Anhang A.1 berechnet, siehe (4.25) für das endgültige Lokalisierungspo-
tential. Damit und mit R−2

i χ1 ≤ c2χ1 kann die rechte Seite von (4.26) nach unten durch

− Tr

[
χ1

(
Ec(p)−Ac2 −

(
(1 + ε)Tc

(
Z

|x|
+ λUZ

)
+ 2ε−1c2(LRi + LRa)(x)

))
χ1

]
−

− Tr

[
χ2

(
Ec(p)− c2 −

(
(1 + ε)Tc

(
Z

|x|
+ λUZ

)
+

2c2

ε
(LRi + LRa) +

A

R2
i

χ−(c·)
))

χ2

]
−

− Tr
[
χ3

(
Ec(p)− c2 −

(
(1 + ε)Tc(VR,λ) + 2ε−1c2(LRi + LRa)

))
χ3

]
− − o(Z

7
3 )

abgeschätzt werden. Die Idee ist es nun, die T -Transformation nur in der inneren Region zu
behalten. Sie ist notwendig, um die Singularität des Coulomb-Potentials

”
aufzuweichen“ und

Kopplungskonstanten γ > 2/π behandeln zu können. In den anderen beiden Regionen spielt
die Singularität keine Rolle mehr, weshalb die T -Transformation hier vernachlässigbar sein
sollte und wir dem Beweis des letzten Kapitels folgen können sollten.

Im Folgenden quantifizieren wir diese Intuition. Der Einfachheit halber geben wir die
Formeln für die auf der Längenskala c−1 reskalierten T -Transformationen wieder. Mit der
Definition der χ̃j aus (4.7c) zeigen wir in Anhang A.2

• −(χ̃2f, T1(U)χ̃2f) ≥ −A(χ̃2f, |x|−1χ̃2f) für alle 0 ≤ U(x) ≤ |x|−1, siehe Lemma A.2.1,

• |(χ̃jf, (|x|−1 − T1(|x|−1)χ̃jf)| ≤ A(R̃−2
i δj,2 + R̃−2

a δj,3)‖f‖22, siehe Lemma A.2.2 und

• |(f, (U − T1(U))f)| ≤ AM‖f‖22 für Lipschitz-stetige Potentiale U mit Lipschitz-Kon-
stante M , siehe Lemma A.2.3.

In der mittleren Region (j = 2) verwenden wir Lemma A.2.1, um T1(c−2UZ(x/c) + γ|x|−1)
durch eine Konstante mal |x|−1 in der quadratischen Form zu ersetzen. In der äußeren Re-
gion (j = 3) folgt aus Lemma A.2.2, dass der Fehler, der bei der Ersetzung von T1(γ/|x|)
durch γ/|x| entsteht, von der Größenordnung R̃−2

a = o(Z−2/3) ist. Nach Summation über alle
Teilchen trägt dieser Fehler also nur mit o(Z1/3) bei.

Schließlich verwenden wir in der äußeren Region noch Lemma A.2.3, um den Fehler zu
kontrollieren, der bei der Ersetzung von T1(c−2UZ(x/c) + c−2ρR(x/c)) durch c−2UZ(x/c) +
c−2ρR(x/c) entsteht. Die Lipschitz-Konstante von c−2UZ(x/c) = c−2Z4/3U(Z1/3x/c) ist von
der Größenordnung O(Z−2+4/3−2/3) = O(Z−4/3). Multipliziert man diesen Fehler noch mit
der Teilchenzahl, ist der Fehler von der Ordnung O(Z−1/3), also insbesondere o(Z1/3).

Die Lipschitz-Konstante des mittleren Feldes c−2g2
R ∗ρTF

Z ∗ | · |−1(x/c) ist von der Ordnung
c−2Z1/3R−1, also für R = Z−s mit s < 2/3 von der Ordnung o(Z−1), da ‖ρTF

Z ∗ | · |−1‖∞ ≤
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AZ4/3. Multipliziert man dies noch mit der Teilchenzahl, folgt, dass dieser Fehler von der
Ordnung o(Z0) und damit immer noch akzeptabel ist. Definiert man R̃ = cR, χTF

Z = ρTF
Z ∗|·|−1

und erinnert sich an die Skalierungsrelation χTF
Z (y) = Z4/3χTF

1 (Z1/3y), so sieht man in der
Tat

c−2
∣∣∇ (g2

R ∗ χTF
Z

)
(x/c)

∣∣ = AR−3Z−2+4/3

∣∣∣∣∇ ∫ g2

(
x/c− y
R

)
χTF

1 (Z1/3y) dy

∣∣∣∣
= AR−3Z−2+4/3−3

∣∣∣∣∇ ∫ g2

(
x− y
R̃

)
χTF

1 (γZ−2/3y) dy

∣∣∣∣
≤ AgZ−2+4/3−3R−3R̃3−1 = AgZ

−5/3R−1 = o(Z−1) .

In der zweiten Gleichheit haben wir y 7→ y/c skaliert und in der letzten Abschätzung∣∣∣∣∇ ∫ g2

(
x− y
R̃

)
χTF

1 (γZ−2/3y) dy

∣∣∣∣ ≤ R̃−1‖χTF
1 ‖∞

∫ ∣∣∣∣(∇g2)

(
x− y
R̃

)∣∣∣∣ dy ≤ AgR̃−1+3

verwendet. Somit erhalten wir die untere Schranke

Eλ[ψ] ≥− Tr
[
χ1

(
Ec(p)−Ac2 − (1 + ε)Tc

(
Z|x|−1 + λUZ

)
− 2ε−1c2(LRi + LRa)

)
χ1

]
−

− Tr
[
χ2

(
Ec(p)− c2 −

(
AZ|x|−1 +AR−2

i χ−(c·) + 2ε−1c2(LRi + LRa)
))
χ2

]
−

− Tr
[
χ3

(
Ec(p)− c2 −

(
(1 + ε)VR,λ + 2ε−1c2(LRi + LRa)

))
χ3

]
− −D[ρTF

Z ]− o(Z
7
3 ) .

Wie im letzten Kapitel untersuchen wir im Folgenden die drei Regionen einzeln genauer. In der
inneren und der mittleren Region arbeiten wir mit dem auf der Längenskala c−1 reskalierten
Operator.

4.5.1 Energie in der inneren Region

Wir zeigen, dass der Beitrag von

−Tr

[
χ̃1

(√
−∆ + 1−A− T1

(
γ(1 + ε)

|x|
+
λ

c2
(1 + ε)UZ

(x
c

))
− 2ε−1(LR̃i + LR̃a)(x)

)
χ̃1

]
−

von der Größenordnung o(Z1/3) ist. Hierbei ist χ̃1(x) = θ1(|x|/R̃i), siehe (4.7c).
Tix [175, Theorem 1] (siehe auch Balinsky und Evans [4, Lemma 2.4]) zeigte, dass die Dif-

ferenz des massiven und des masselosen Brown–Ravenhall-Operators zu einem beschränkten
Operator fortgesetzt werden kann, das heißt es gilt

‖(
√
−∆ + 1− 1− T1(γ|x|−1))− (

√
−∆− T (0)

1 (γ|x|−1))‖ ≤ A

gleichmäßig in γ ∈ (0, γB]. Hierbei bezeichnet T (0)
1 die unitäre Transformation des masselosen

Brown–Ravenhall-Operators. Für skalare Potentiale V ist sie als

T (0)
1 (V ) :=

1

2

(
V ⊗ 1C2 +

σ · p
|p|

V
σ · p
|p|

)
definiert. Mit V1(x) = c−2λ(1 + ε)UZ(x/c) und V2(x) = 2ε−1(LR̃i(x) +LR̃a(x)) +A genügt es
daher (mit dem gleichen Argument wie in Abschnitt 3.4) die Summe der negativen Eigenwerte
von

√
−∆− T (0)

1

(
γ(1 + ε)

|x|

)
− T1(V1)− χ̃2

1V2
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abzuschätzen.

Dazu verwenden wir eine Modifikation der Hardy–Lieb–Thirring-Ungleichung für den
Brown–Ravenhall-Operator (Frank [62, Theorem 5.1]). Diese besagt, dass es für Potentia-
le V auf R3 mit Werten in den hermiteschen 4 × 4-Matrizen eine Konstante A > 0 gibt,
sodass

Tr

[√
−∆− T (0)

1

(
γB
|x|

+ V

)]
−
≤ A

∫
R3

TrC4V (x)4
+ dx .

Wir zeigen

Lemma 4.5.1. Seien V1 und V2 skalar- und reellwertige Funktionen. Dann gibt es eine Kon-
stante A > 0, sodass

Tr

[√
−∆− T (0)

1

(
γB
|x|

)
− T1(V1)− V2

]
−
≤ A

∫
R3

(V1(x)4
+ + V2(x)4

+) dx .

Beweis. Wie im Beweis von [62, Theorem 5.1] gibt es für alle t ∈ (0, 1/2) eine Konstante
Kt > 0, sodass

√
−∆− T (0)

1 (γB|x|−1) ≥ Kt`
−1+2t(−∆)t − `−1 =: H0 für alle ` > 0 ,

siehe [62, Formel (5.3)]. Damit kann die Zahl der negativen Eigenwerte unterhalb −τ < 0
nach oben durch

N

(
−τ,
√
−∆− T (0)

1

(
γB
|x|

)
− T1(V1)− V2

)
≤ N

(
−τ, 1

2
(H0 ⊗ 1C2 − 2T1(V1)) +

1

2
(H0 − 2V2)⊗ 1C2

)
≤ N(−τ,H0 ⊗ 1C2 − 2T1(V1)) +N(−τ, (H0 − 2V2)⊗ 1C2)

= N (−τ,Φ0((H0 − 2V1)⊗ 1C2)Φ0 + Φ1((H0 − 2V1)⊗ 1C2)Φ1) + 2N(−τ,H0 − 2V2)

≤ 4N(−τ,H0 − 2V1) + 2N(−τ,H0 − 2V2)

abgeschätzt werden. Hierbei haben wir verwendet, dass für selbstadjungierte, nach unten
halbbeschränkte Operatoren A und B wegen des Variationsprinzips N(−τ, (A + B)/2) ≤
N(−τ,A) +N(−τ,B) gilt sowie Φ2

0 + Φ2
1 = 1 und die Tatsache, dass H0⊗1C2 mit Φ0 und Φ1

kommutiert. Die Behauptung folgt dann wie in [62], indem man ` = (στ)−1 für ein zum Schluß
zu optimierendes σ ∈ (0, 1) (in Abhängigkeit von t) wählt, und die Cwikel–Lieb–Rosenbljum-
Schranke [147, 113, 28] für N(−τ,H0 − 2V1) und N(−τ,H0 − 2V2) mit

N(−τ,H0 − 2Vj) = N(0, (−∆)t −K−1
t (στ)−(1−2t)(2Vj − (1− σ)τ))

verwendet. Man erhält

N

(
−τ,
√
−∆− T (0)

1

(
γB
|x|

)
− T1(V1)− V2

)
≤ At(στ)−3(1−2t)/(2t)

[∫
R3

(V1(x)− (1− σ)τ)
3
2t
+ dx+

∫
R3

(V2(x)− (1− σ)τ)
3
2t
+ dx

]
.
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Wendet man nun
”
Liebs Formel“ [113] an, sprich, multipliziert beide Seiten mit τ1−1 = 1,

integriert über τ und optimiert in σ und t ∈ (3/8, 1/2), erhält man das gewünschte Ergebnis,
nämlich

Tr

[√
−∆− T (0)

1

(
γB
|x|

)
− T1(V1)− V2

]
−

≤ Aσ,t
∫ ∞

0
dτ τ−3(1−2t)/(2t)

[∫
R3

(V1(x)− (1− σ)τ)
3
2t
+ dx+

∫
R3

(V2(x)− (1− σ)τ)
3
2t
+ dx

]
≤ A

∫
R3

(V1(x)4
+ + V2(x)4

+) dx .

Anwenden des Lemmas zeigt, dass die Ruheenergie des Elektrons∫
|x|≤R̃i

14 dx = AR̃3
i = o(Z1/3)

beiträgt. Das Test-Potential trägt mit

Z4(−2+4/3)

∫
R3

U(c−1Z1/3x)4 dx ≤ A‖U‖44Z−2/3

und das Lokalisierungspotential mit

ε−4

∫
|x|≤R̃i

LR̃i(x)4 dx ≤ ε−4

∫
LR̃i(x)4 dx

≤ A1ε
−4R̃−4

i

∫
|x|≤3R̃i

F (|x|/R̃i)4 dx

+A2ε
−4
(
R̃−2
i + R̃−1

i + R̃
−1/2
i + 1 + R̃

1/2
i

)4
e−4aR̃i

∫
|x|≤3R̃i

dx

+A3ε
−4
(
R̃−3
i + R̃

−3/2
i + R̃

−1/2
i + R̃

1/2
i

)4
∫

|x|≥2R̃i

e−2a|x| dx

≤ Aε−4R̃−1
i

zum Fehler bei. Dieser Fehler ist kleiner als der der Ruheenergie des Elektrons, wenn ε als
hinreichend kleine negative Potenz von Z gewählt wird. Mit derselben Rechnung folgt, dass
der größte Beitrag von LR̃a von der Größenordnung ε−4R̃−1

a ≤ ε−4R̃−1
i ist. Mit der Wahl ε =

[Z−1/240] und der Definition von Ri ist der Fehler dieser Region wieder von der Größenordnung
o(Z1/3).

4.5.2 Energie in der mittleren Region

In dieser Region kann das volle Coulomb-Potential mit beliebiger Kopplungskonstante γ mit
der Daubechies-Ungleichung kontrolliert werden. Für A > 0 betrachten wir

−Tr
[
χ̃2

(
E1(p)− 1−A

(
|x|−1 + ε−1(LR̃i(x) + LR̃a)

)
−Aχ−R̃−2

i

)
χ̃2

]
−
.
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In Abschnitt 3.5 hatten wir gesehen, dass die Beiträge des Coulomb-Potentials und R̃−2
i χ−

mit der Daubechies-Ungleichung durch∫
R̃i≤|x|≤R̃a

(|x|−5/2 + |x|−4) dx . R̃1/2
a = o(Z1/3)

abgeschätzt werden konnten. Schließlich müssen noch die Beiträge der Lokalisierungsfehler
LR̃i und LR̃a bestimmt werden, sprich∫

R̃i≤|x|≤R̃a

[
ε−5/2(LR̃i(x)5/2 + LR̃a(x)5/2) + ε−4(LR̃i(x)4 + LR̃a(x)4)

]
dx .

Der größte Beitrag kommt hierbei vom ersten Summanden des A1-Terms in (4.25) zur Potenz
5/2. Dieser ist wegen der Definition von R̃a = cRa = cZ−t mit t > 11/30 und mit der Wahl
ε = [Z−1/240] durch

(εR̃a)
−5/2

∫
R̃i≤|x|≤R̃a

F

(
|x|
R̃a

)5/2

dx . ε−5/2R̃1/2
a = O(Z157/480) = o(Z1/3)

beschränkt. Die anderen Fehler sind entweder exponentiell klein oder durch ε−5/2R̃−2
a be-

schränkt.

4.5.3 Die Thomas–Fermi-Region

Wir erinnern nochmals daran, dass R = Z−s und Ra = Z−t mit 11/30 < t < s < 2/3
definiert wurden. Um das verbleibende Lokalisierungspotential der Kommutatoren mit der
T -Transformation und den Fehler UZ − Ug mit Ug := UZ ∗ g2

R, der von der Phasenraumlo-
kalisierung kommt, zu kontrollieren, borgen wir uns etwas (ε = [Z−1/240] und 0 < ε2 < 1/2)
kinetische Energie. Dann betrachten wir den Ausdruck

− Tr

(
χ3

[
(1− ε− ε2)(Ec(p)− c2)− (1 + ε)

(
Z

|x|
− ρTF

Z ∗
1

| · |
+ λUZ

)
∗ g2
R

]
χ3

)
−
−D[ρTF

Z ]

− c2εTr
(
χ̃3

[
E1(p)− 1− ε−2(LR̃i(x) + LR̃a)

]
χ̃3

)
−

− ε2 Tr
(
χ3

[
Ec(p)− c2 − ε−1

2 λ(UZ − Ug)
]
χ3

)
− ,

(4.28)

wobei wir, wie in Abschnitt 3.6, |x|−1χ3 = | · |−1 ∗ g2
R(x)χ3(x) verwendet haben, siehe auch

(3.9) und die anschließende Diskussion. Wie in den beiden letzten Regionen wird das Lokali-
sierungspotential in der zweiten Zeile mit Hilfe der Daubechies-Ungleichung abgeschätzt. Da
R̃a > R̃i, trägt für hinreichend großes Z lediglich der A3-Term aus (4.25) von LR̃i bei, das
heißt der Lokalisierungsfehler fällt exponentiell in Z ab. Der größte Fehler von LR̃a verhält
sich wie in der mittleren Region wie

ε

∫
R̃a≤|x|≤3R̃a

[
ε−5R̃−5/2

a F (|x|/R̃a)5/2 + ε−8R̃−4
a F (|x|/R̃a)4

]
dx . ε−4R̃1/2

a = o(Z1/3)

für ε = [Z−1/240] und R̃a = cRa = cZ−t mit t > 11/30.
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In Lemma 3.6.1 wurde bereits gezeigt, dass

− Tr(χ3[ε2(Ec(p)− c2)− λ(UZ − Ug)]χ3)−

≥ −Aε2

[(
λ

ε2

)5/2

Z7/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥5/2

5/2
+

(
λ

ε2

)4

Z4/3
∥∥U − g2

Z−s+1/3 ∗ U
∥∥4

4

]
.

Damit und d̄p = (2π)−3dp schätzen wir (4.28) mit denselben Schritten wie in Abschnitt 3.6
durch

−
∫

|q|≥Ra
4

[
(1− ε− ε2)(Ec(p)− c2)− (1 + ε)

(
Z

|q|
− ρTF

Z ∗
1

| · |
(q) + λUZ(q)

)]
−
d̄p dq −D[ρTF

Z ]

−Aε2

[(
λ

ε2

)5/2

Z7/3‖U − g2
Z−s+1/3 ∗ U‖

5/2
5/2 +

(
λ

ε2

)4

Z4/3‖U − g2
Z−s+1/3 ∗ U‖44

]
− o(Z7/3)

nach unten ab. Man verfährt dann wieder wie im Beweis von Sørensen beziehungsweise Ab-
schnitt 3.6, indem zunächst der Integrationsbereich angepasst und anschließend mit dem semi-
klassischen, nicht-relativistischen Phasenraumintegral verglichen wird. Man erhält schließlich

Eλ[ψ] ≥ −
∫ [

(1− ε− ε2)
p2

2
− (1 + ε)

(
Z

|q|
− ρTF

Z ∗
1

| · |
(q) + λUZ(q)

)]
−
d̄p dq −D[ρTF

Z ]

−Aε2

[(
λ

ε2

) 5
2

Z
7
3 ‖U − g2

Z−s+1/3 ∗ U‖
5
2
5
2

+

(
λ

ε2

)4

Z
4
3 ‖U − g2

Z−s+1/3 ∗ U‖44

]
− o(Z

7
3 )

= −
∫ [

p2

2
−
(
Z

|q|
− ρTF

Z ∗
1

| · |
(q) + λUZ(q)

)]
−
d̄p dq −D[ρTF

Z ]

−

(
(1 + ε)5/2

(1− ε− ε2)3/2
− 1

)∫ [
p2

2
−
(
Z

|q|
− ρTF

Z ∗
1

| · |
(q) + λUZ(q)

)]
−
d̄p dq

−Aε2

[(
λ

ε2

) 5
2

Z
7
3 ‖U − g2

Z−s+1/3 ∗ U‖
5
2
5
2

+

(
λ

ε2

)4

Z
4
3 ‖U − g2

Z−s+1/3 ∗ U‖44

]
− o(Z

7
3 ).

Mit der Wahl ε = [Z−1/240] und

ε2 =
1

4
max

{
‖U − g2

Z−s+1/3 ∗ U‖5/2
1 + ‖U − g2

Z−s+1/3 ∗ U‖5/2
, Z−1/3+δ

}
= o(Z0) , δ ∈ (0, 1/3)

gilt (1 + ε)5/2(1− ε− ε2)−3/2 − 1 ≤ A(ε+ ε2). Daraus ist ersichtlich, dass alle Fehler von der
Ordnung o(Z7/3) sind und man erhält schließlich

Eλ[ψ] ≥ −
∫ [

p2

2
−
(
Z

|q|
− ρTF

Z ∗
1

| · |
+ λUZ(q)

)]
−
d̄p dq −D[ρTF

Z ]− o(Z7/3),

was Behauptung 4.2.2 zeigt.



Kapitel 5

Die starke Scott-Vermutung für
Chandrasekhar-Atome

Dieses Kapitel beruht auf einer Zusammenarbeit mit Rupert L. Frank, Heinz Siedentop und
Barry Simon. Hinzugefügte Bemerkung vor der Drucklegung: Die Darstellung der Ergebnisse
dieses Kapitels folgt einem internen vorläufigen Arbeitsmanuskript der Autoren dieser Zusam-
menarbeit. Die endgültige Version ist zwischenzeitlich, also seit Einreichung der Dissertation
und vor Drucklegung, als Preprint im ArXiv [67] unter wesentlicher Verbesserung sowohl der
Darstellung als auch der Ergebnisse erschienen.

Wir betrachten die auf der Längenskala c−1 reskalierte Einteilchendichte eines Grund-
zustands des Vielteilchen-Chandrasekhar-Operators und zeigen, dass sie gegen die Summe
der Quadrate der Eigenfunktionen des relativistischen Einteilchen-Wasserstoff-Operators im
Grenzwert großer Teilchenzahlen konvergiert. Der Beweis beruht auf dem Argument der li-
nearen Antwort, einer Verallgemeinerung des Feynman–Hellmann-Satzes sowie einer neuen
Äquivalenz von Sobolew-Normen, die durch Potenzen von

√
−∆ beziehungsweise

√
−∆−γ/|x|

erzeugt werden, siehe auch Kapitel 7.
Die Resultate dieses Kapitels bestätigen die von Lieb [115] geäußerte starke Scott-Vermu-

tung und zeigen insbesondere, dass kernnahe Elektronen relativistische Korrekturen erzeugen.
Das Kapitel beginnt mit der Definition des vorliegenden Systems und der Formulierung der

Hauptresultate. Im Anschluß werden die Ergebnisse interpretiert und mit denen des nicht-
relativistischen Falls von Iantchenko u. a. [95] verglichen. Danach wird die Strategie des
Beweises genauer erläutert.

5.1 Einführung, Definitionen und Resultate

Unser System besteht aus einem am Ursprung fixierten Kern der Ladung Z, welcher mit
N Elektronen, die q Spin-Freiheitsgrade haben, über das Coulomb-Potential wechselwirkt.
Darüberhinaus berücksichtigen wir die Coulombischen Wechselwirkungen zwischen den Elek-
tronen untereinander. Das System wird durch den Chandrasekhar-Operator beschrieben. Er
ist in atomaren Einheiten durch die Friedrichs-Erweiterung im fermionischen Vielteilchen-
Hilbertraum

∧N
ν=1 L

2(R3 : Cq) der zu

N∑
ν=1

(√
−c2∆ν + c4 − c2 − Z

|xν |

)
+

∑
1≤ν<µ≤N

1

|xν − xµ|
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gehörenden quadratischen Form auf
∧N
ν=1C

∞
c (R3 : Cq) definiert. Wir konzentrieren uns im

Folgenden auf den Fall N = Z und q = 1. Die quadratische Form ist genau dann nach
unten beschränkt, wenn Z/c =: γ ≤ 2/π (Kato [101, Kapitel 5, Gleichung (5.33)]). Für
γ < 2/π ist der quadratische Formbereich H1/2(R3N ) ∩

∧N
ν=1(L2(R3)). Wir bezeichnen die

erhaltene Friedrichssche Erweiterung mit CZ . Bekanntermaßen ist inf spec(CZ) ein Eigenwert
von CZ (Lewis et al [112] und Vugalter und Zhislin [185]). Dieser kann entartet sein und
wir bezeichnen mit ψ1, ..., ψM eine Basis des zugehörigen Eigenraums. Wir bezeichnen die
zugehörige Grundzustandsdichtematrix mit

d =

M∑
µ=1

wµ|ψµ〉〈ψµ| ,

wobei wµ ≥ 0 Gewichte sind, die die Normierungsbedingung
∑M

µ=1wµ = 1 erfüllen. Die
zugehörige Einteilchendichte ist dann

ρd(x) := N
M∑
µ=1

wµ

∫
R3(N−1)

|ψµ(x, x2, ..., xN )|2dx2...dxN für x ∈ R3 .

Wir bezeichnen mit Y`m, ` ∈ N0, m = −`, ..., ` Kugelflächenfunktionen, die in L2(S2)
normiert sind [126, Formel (B.93)]. Sei weiter

ρ`,d(r) :=
Nr2

2`+ 1

∑̀
m=−`

M∑
µ=1

wµ

∫
R3(N−1)

∣∣∣∣∫
S2
Y`m(ω)ψµ(rω, x2, ..., xN ) dω

∣∣∣∣2 dx2...dxN

für r ∈ R+

die radiale Grundzustandsdichte im `-ten Drehimpulskanal. Wegen der Vollständigkeitsrelation
der Y`m gilt r2

∫
S2 ρd(rω) dω =

∑
`(2`+ 1)ρ`,d(r).

Unser Resultat betrifft die Grundzustandsdichte auf Abständen der Größenordnung Z−1

zum Kern. Es ist bekannt, dass Elektronen auf dieser Längenskala zur Scott-Korrektur der
Thomas–Fermi-Approximation der Grundzustandsenergie von CZ beitragen, siehe Solovej u.
a. [162] und Frank u. a. [69]. Wie in diesen Arbeiten spielt der auf der Längenskala c−1

reskalierte, relativistische Wasserstoff-Operator

CHγ :=
√
−∆ + 1− 1− γ

|x|
in L2(R3)

eine fundamentale Rolle. Wegen der sphärischen Symmetrie kann man den Operator in Dre-
himpulskanäle zerlegen, was auf die radialen Operatoren

CH` :=

√
− d2

dr2
+
`(`+ 1)

r2
+ 1− 1− γ

r
in L2(R+, dr)

führt. Wir betonen, dass wir uns von nun an, es sei denn, etwas anderes wird explizit bemerkt,
mit L2(R+) immer auf L2(R+, dr) beziehen, sprich das Maß ist dr und nicht r2dr. Weiter
betonen wir, dass die Eigenwerte von CH` nicht entartet und von m unabhängig sind, weshalb
wir einen Index m unterdrücken. Wenn ψHn,` (mit n ∈ N0) die normierten Eigenfunktionen

von CH` bezeichnen, definieren wir die zugehörige wasserstoffartige Dichte im Kanal ` durch

ρH` (r) :=

∞∑
n=0

∣∣ψHn,`(r)∣∣2 . (5.1)
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Die gesamte Dichte ist dann durch

ρH(r) :=
1

4πr2

∞∑
`=0

(2`+ 1)ρH` (r)

gegeben.
Unser erstes Resultat stellt sicher, dass die reskalierten Grundzustandsdichten ρ`,d und

ρd auf der Längenskala Z−1 gegen etwas Endliches konvergieren. Genauer gesagt zeigen wir,
dass die wasserstoffartigen Dichten für alle r ∈ R+ endlich sind. Um dieses und die folgenden
Hauptresultate präzise zu formulieren, führen wir die Abbildung

[0, 1]→ [0, 2/π]

σ 7→ Φ(σ) := (1− σ) tan
πσ

2

(5.2)

ein. Die Funktion erfüllt Φ(0) = 0, limσ→1 Φ(σ) = 2/π und ist auf [0, 1] streng monoton.
Daher gibt es ein eindeutiges σγ ∈ [0, 1], sodass Φ(σγ) = γ.

Satz 5.1.1 (Existenz von ρH` und ρH). Seien γ ∈ (0, 2/π), ` ∈ N0 und 1/2 < s < min{3/2−
σγ , 3/4}. Dann erfüllen die wasserstoffartigen Dichten ρH` und ρH die Abschätzungen

ρH` (r) ≤ As,γ(`+ 1/2)−4s

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]
und

r2ρH(r) =
1

4π

∞∑
`=0

(2`+ 1)ρH` (r) ≤ As,γ(r2−4s + r1/2) .

Die Test-Funktionen, für welche die starke Scott-Vermutung wahr ist, sind in den Funktio-

nenräumen K(0)
s,δ und Ks,δ enthalten. Diese werden in (5.20) und (5.26) in den Abschnitten 5.3

beziehungsweise 5.4 definiert. In diesen Abschnitten werden wir einige Inklusionseigenschaften
(siehe (5.21) und Lemma 5.4.2) sowie Spur- und Sobolew-Ungleichungen (siehe Behauptungen
5.3.10 und 5.4.6) zeigen.

Um eine ungefähre Vorstellung von diesen Klassen zu bekommen, bemerken wir an dieser
Stelle lediglich, dass kompakt getragene Funktionen, die durch ein Vielfaches des Coulomb-
Potentials beschränkt oder integrierbar sind, in diesen Klassen enthalten sind.

Wir erinnern schließlich daran, dass der Raum aller kompakt getragenen Lp-Funktionen
mit Lpcomp bezeichnet wird. Damit sind wir in der Lage, die Hauptresultate dieses Kapitels,
sprich die Konvergenz der reskalierten Grundzustandsdichten, zu formulieren.
Satz 5.1.2 (Konvergenz in einem festen Drehimpulskanal). Seien γ ∈ (0, 2/π), `0 ∈ N0,
1/2 < s′ < s < min{3/2 − σγ , 1}, δ′ ∈ [0, 2s′ − 1] und ε ∈ [0, 2s − 1]. Sei U = U1 + U2 mit

U1 ∈ r−1L∞comp, U2 ∈ K(0)
s,ε und |U2|2s ∈ K(0)

s′,δ′. Dann gilt für Z, c→∞ mit fixiertem Z/c = γ

lim
Z→∞

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr =

∫ ∞
0

ρH`0(r)U(r) dr .
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Satz 5.1.3 (Konvergenz in allen Drehimpulskanälen). Seien γ ∈ (0, 2/π), 1/2 < s′ < s <
min{3/2−σγ , 3/4}, δ′ ∈ [4(s− s′), 2s′− 1], δ ∈ [0, 2s− 1] und ε ∈ [0, 2s− 1]. Sei U = U1 +U2

eine Funktion auf (0,∞) mit U1 ∈ r−1L∞comp, U2 ∈ Ks,ε und |U2|2s ∈ Ks′,δ′ ∩ Ks,δ. Dann gilt
für Z, c→∞ mit fixiertem Z/c = γ

lim
Z→∞

∫
R3

c−3ρd(c
−1x)U(x) dx =

∫
R3

ρH(x)U(x) dx .

Wir bemerken, dass das Intervall [4(s−s′), 2s′−1] 3 δ′ nicht leer ist, das heißt 4s+1 ≤ 6s′,
falls s′ ≥ 2/3. Ist ansonsten 1/2 < s′ < 2/3, muss zusätzlich s ≤ (6s′ − 1)/4 verlangt werden,
was bereits s ≤ 3/4 sicher stellt.

Folgendes kann zu den Hauptergebnissen dieses Kapitels zu bemerkt werden.
(1) Wie wir in der Einführung erwähnt haben, sind diese Ergebnisse die relativistischen

Analoga zur starken Scott-Vermutung, die von Iantchenko u. a. [95] bewiesen wurde. Wir
diskutieren an dieser Stelle einige Ähnlichkeiten und Unterschiede der Sätze 5.1.2 und 5.1.3
mit den Resultaten aus [95]. Beide Resultate zeigen die Konvergenz der Grundzustandsdich-
ten auf der Längenskala Z−1 gegen die entsprechenden wasserstoffartigen Dichten in einem
gewissen schwachen Sinne. Auf der einen Seite können unsere Test-Funktionen eine Coulomb-
Singularität am Ursprung haben (sogar Riemann-Singularitäten, wie sin(1/r)r−1 sind er-
laubt). Diese sind in der Arbeit von Iantchenko u. a. nicht abgedeckt. In Anbetracht der
allgemeinen Natur relativistischer Coulomb-Systeme ist dieses Ergebnis optimal, da stärkere
Singularitäten nicht von der kinetischen Energie kompensiert werden können. Naturgemäß ist
dies im nicht-relativistischen Fall anders. Iantchenko u. a. konnten dagegen zeigen, dass die
reskalierte Grundzustandsdichte punktweise gegen die wasserstoffartige Dichte konvergiert,
das heißt Delta-Funktionen sind als Test-Funktionen erlaubt. Dies ist im relativistischen Fall,
insbesondere am Ursprung, nicht unbedingt erwartbar, da die Eigenfunktionen singulär sein
können. Anhand der Eigenfunktionen des Coulomb–Dirac-Operators kann dies explizit gese-
hen werden, wobei die Singularität am Ursprung von der Kopplungskonstanten γ abhängt,
siehe auch [10] oder [172, Formel (8.266)].

(2) Die wasserstoffartige Dichte ist im relativistischen Fall deutlich weniger untersucht als
im nicht-relativistischen Fall. Im nicht-relativistischen Fall zeigten Heilmann und Lieb [86],
dass die wasserstoffartige Dichte am Ursprung endlich ist, monoton in r fällt und sich für
r → ∞ wie r−3/2/(

√
2π2) + o(r−3/2) verhält. Zusammen mit der starken Scott-Vermutung

zeigt dies insbesondere, dass es einen gewissen
”
glatten“ Übergang zwischen der quantenme-

chanischen Längenskala Z−1 und der semiklassischen Längenskala Z−1/3 gibt, da die (reska-
lierte) Thomas–Fermi-Dichte gerade wie r−3/2 am Ursprung divergiert. (Man erinnere sich
an die Skalierungsrelation ρTF

Z (x) = Z2ρTF
1 (Z1/3x)). Für das hier vorliegende relativistische

Modell nach Chandrasekhar können wir immerhin zeigen, dass ρH` (siehe (5.1)) wegen der
Sätze 5.2.2 und 5.2.3 im nächsten Abschnitt, beziehungsweise Behauptungen 5.3.3 und 5.3.4
in Abschnitt 5.3, fast überall endlich ist. Darüberhinaus ist die potentielle Energie, sprich
das Integral gegen r−1, in jedem Kanal endlich, siehe Bemerkung 5.3.5. Satz 5.1.1 ist aller-
dings etwas präziser und weckt insbesondere etwas Hoffnung, was die Asymptotik für große
Abstände zum Kern angeht. Das Resultat sagt zum Einen, dass ρH` und ρH für alle r ∈ R+

endlich sind und liefert zum Anderen die punktweise obere Schranke

ρH(r) ≤ Aγr−3/2 für r →∞ .

(Eine analoge Schranke im nicht-relativistischen Fall kann mit sehr ähnlichen Argumenten
hergeleitet werden, siehe Anhang B.2 für weitere Details.) Obwohl eine entsprechende untere
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Schranke fehlt und die implizite Konstante Aγ wahrscheinlich alles andere als optimal ist,
deutet dieses Ergebnis bereits an, dass ρH ein ähnliches asymptotisches Verhalten wie die
nicht-relativistische Dichte für große Abstände zum Kern haben kann. Dies ist auch zu erwar-
ten, da sich lediglich die kernnächsten Elektronen, deren Geschwindigkeiten ein substantieller
Bruchteil der Lichtgeschwindigkeit sind, relativistisch verhalten sollten, wohingegen sich die
kernfernen Elektronen (bereits auf der Längenskala Z−1/3, wie wir in den Kapiteln 2 bis 4
gesehen hatten) nicht-relativistisch verhalten.

Wie wir bereits im vorigen Punkt angedeutet haben, ist es offen, die Singularität von
ρH und ρH`=0 am Ursprung zu bestimmen. Sie sollte, wie im Coulomb–Dirac-Modell, von
der Kopplungskonstanten γ abhängen. Schließlich wäre es wünschenswert, Aussagen über
die Monotonie von ρH machen zu können. Man könnte, wie im nicht-relativistischen Fall,
erwarten, dass ρH ebenfalls monoton fällt.

(3) Der Beweis von Satz 5.1.2 beruht wieder auf dem Argument der linearen Antwort und
verläuft analog zu den Beweisen von Lieb und Simon [119], Baumgartner [8] (welcher Grif-
fiths Lemma [78], siehe auch [159, Theorem 1.27], verwendet) sowie Iantchenko u. a. [95]: wir
differenzieren bezüglich der Kopplungskonstanten λ einer Störung U im `-ten Drehimpulska-
nal des Chandrasekhar-Operators. Die Ableitung, sprich die

”
Antwort“, ist gerade die gegen

U integrierte Grundzustandsdichte. Um Satz 5.1.3 zu beweisen, vertauscht man die Summe
über die Drehimpulse mit der Ableitung, um das Resultat für einen fixen Drehimpulskanal
anwenden zu können, sprich Satz 5.1.2. Dass diese beiden Grenzwerte miteinander vertauscht
werden dürfen, folgt aus dem Weierstraßschen Majorantenkriterium mit einer Majoranten,
die gleichmäßig in λ und Z in ` summierbar ist, siehe auch Behauptung 5.4.3.

Formal ist die Strategie (um die Notation einfach zu halten, hier für die gesamte Dichte)
wie folgt: Zunächst schreiben wir die gemittelte, reskalierte Grundzustandsdichte als∫

R3

c−3ρd(|x|/c)U(|x|) dx =
1

λc2
Tr

[(
CZ −

(
CZ − λ

Z∑
ν=1

c2U(c|xν |)

))
d

]
.

Ist beispielsweise λ > 0, so kann die rechte Seite mit dem Variationsprinzip von oben (mit
der Konvention, dass der Negativteil positiv ist, sprich A− = −Aχ(−∞,0)(A)) durch

1

λc2
Tr

[(
CZ − λ

Z∑
ν=1

c2U(c|xν |)

)
−

− (CZ)−

]

abgeschätzt werden. Andererseits suggeriert die Scott-Korrektur, dass die Differenz dieser
Grundzustandsenergien für ein festes λ im Grenzwert großer Teilchenzahlen Z gegen die Spek-
tralverschiebung zwischen dem gestörten und dem ungestörten relativistischen Wasserstoff-
Operator mit Kopplungskonstante γ konvergiert. In diesem Grenzwert erhält man

1

λ
Tr[(CHγ − λU)− − (CHγ )−] ,

wobei CHγ den relativistischen Einteilchen-Wasserstoff-Operator auf der Längenskala c−1 be-
zeichnet. An dieser Stelle müssen wir den Limes λ→ 0 durchführen. Im Geiste von Hellmann
und Feynman erwarten wir, dass der Grenzwert gerade

1

λ
Tr[(CHγ − (CHγ − λU))dH ] =

∫
R3

ρH(|x|)U(|x|) dx
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ist, wobei dH den Grundzustand von CHγ bezeichnet. Wäre das untere Ende des wesent-
lichen Spektrums nicht Null, wäre das Resultat wohlbekannt und folgte aus gewöhnlicher
Störungstheorie. Jedoch trifft dies nicht auf den Wasserstoff-Operator zu, weshalb wir gezwun-
gen sind, eine Regularisierungsprozedur durchzuführen. Eine der Bedingungen für die Existenz
der Ableitung ist, dass die Störung auf dem Kern des ungestörten Operators verschwindet.
Dies ist insbesondere dann wahr, wenn Null kein Eigenwert des ungestörten Operators ist.
Die größte technische Schwierigkeit besteht somit darin, zu rechtfertigen, dass die Ableitung
der Summe der negativen Eigenwerte existiert und durch den behaupteten Ausdruck gegeben
ist. Dies gestaltet sich am schwierigsten im nullten Drehimpulskanal für Kopplungen γ > 1/2
wegen des Mangels einer Drehimpulsbarriere.

(4) In Abschnitt 5.2 zeigen wir, dass es (neben der Bedingung, dass die Störung auf dem
Kern des ungestörten Operators verschwindet) genügt zu zeigen, dass eine gewisse

”
relative

Spurklasse-Bedingung“ sowie weitere damit verbundene, wohlbegründete technische Annah-
men erfüllt sind, um die Summe der negativen Eigenwerte ableiten zu dürfen. Die relative
Spurklasse-Bedingung bedeutet, dass der Operator (CH` +M)−sU(CH` +M)−s für ein hinrei-
chend großes M > − inf specCH` (und damit für alle hinreichend großen M > − inf specCH` )
und s > 1/2 ein Operator der Spurklasse ist. Die Bedingung s > 1/2 ist ausschlaggebend, da
(1 + k)−1 /∈ L1(R+, dr). Für ` ≥ 1 sind die Operatoren (C` +M)(CH` +M)−1 (wobei C` nur
die kinetische Energie im `-ten Kanal meint) für alle γ < 3/2 wegen der Hardy-Ungleichung
beschränkt. Wegen der Operatormonotonie positiver Wurzeln reduziert sich die Verifikation
der Spurklasse-Bedingung daher darauf zu zeigen, dass (C`+M)−sU(C`+M)−s in der Spur-
klasse ist, was relativ unkompliziert ist. Für ` = 0 ist die Situation etwas delikater, da die
Operatoren nur für γ < 1/2 beschränkt sind. An dieser Stelle machen wir Gebrauch von den
Resultaten aus Kapitel 7, welche besagen, dass für festes γ < 2/π, die Normen, die durch die
Operatoren (|p| − γ/|x|)s und |p|s (in L2(R3) und daher insbesondere für ` = 0) erzeugt wer-
den, äquivalent zueinander sind, wenn s ∈ (1/2, 3/2−σγ) (wobei σγ ∈ [0, 1] nach (5.2) definiert
wurde). Genau an dieser Stelle braucht man die Einschränkung an die Kopplungskonstante
γ < 2/π.

Der Rest des Kapitels ist wie folgt gegliedert. Im nächsten Abschnitt bestimmen wir
die Ableitung der Summe über die negativen Eigenwerte eines linearen Operators A − λB
bezüglich λ. Dies ist, wie eben angesprochen, eines der hauptsächlichen technischen Werkzeu-
ge in diesem Kapitel. In Abschnitt 5.3 zeigen wir, dass die Bedingungen der verallgemeinerten
Feynman-Hellmann-Sätze von Test-Funktionen, für welche die starke Scott-Vermutung gel-
ten soll, erfüllt werden. In Abschnitt 5.4 leiten wir eine Majorante her (Behauptung 5.4.3),
welche uns erlauben wird, das Weierstraßsche Majorantenkriterium anzuwenden. Dies ist
entscheidend für den Beweis von Satz 5.1.3, um die Summe über die Drehimpulse mit den
Grenzprozessen limλ→0 limZ→∞ zu vertauschen. Darüberhinaus werden wir in diesem Ab-
schnitt auch Satz 5.1.1 zeigen, da der Beweis sehr ähnlich zu dem von Behauptung 5.4.3
verläuft. Im letzten Abschnitt setzen wir schließlich alle Teile zusammen und beweisen die
beiden Konvergenzresultate, Satz 5.1.2 und Satz 5.1.3.

5.2 Differenzierbarkeit der Summe negativer Eigenwerte

Im Folgenden beweisen wir verallgemeinerte Feynman–Hellmann-Theoreme. Wir beginnen
mit der Formulierung eines Satzes mit

”
natürlichen“ Annahmen an die Operator-Störung.

Im Anschluß werden wir dieses Theorem unter sanfteren Annahmen an die Störung verallge-
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meinern. Diese Verallgemeinerungen werden wir schließlich anwenden, um die starke Scott-
Vermutung in einem festen Drehimpulskanal zu beweisen.

Im Folgenden schreiben wir A− = −Aχ(−∞,0)(A), das heißt der Negativteil einer Größe
ist positiv.

5.2.1 Differenzierbarkeit unter einer Spurklasse-Bedingung

Satz 5.2.1. Sei A ein selbstadjungierter Operator, sodass A− ein Spurklasse-Operator ist. Sei
B ein nicht-negativer Operator und relativ Form-Spurklasse-beschränkt bezüglich A, das heißt
es gibt eine hinreichend große Zahl M > | inf spec(A)|, sodass (A+M)−1/2B(A+M)−1/2 in
der Spurklasse ist. Dann erfüllen die einseitigen Ableitungen von

λ 7→ S(λ) := Tr(A− λB)−

die Relationen

TrBχ(−∞,0)(A) = D−S(0) ≤ D+S(0) = TrBχ(−∞,0](A) .

Insbesondere ist S bei λ = 0 genau dann differenzierbar, wenn B|kerA = 0.

Bemerkungen. (1) Aus der relativen Spurklasse-Beschränktheit folgt, dass die rechte Seite
der Behauptung endlich ist. Sei dazu P = χ(−∞,0](A), dann folgt aus der Zyklizität der Spur

TrBP = Tr (P (A+M))
(

(A+M)−1/2B(A+M)−1/2
)
<∞ ,

da P (A+M) beschränkt ist.
(2) Aus dem Variationsprinzip folgt, dass S konvex ist. Seien dazu t ∈ [0, 1] und λ1, λ2 ∈ R,
dann gilt

S((1− t)λ1 + tλ2) = Tr[(1− t)(A− λ1B) + t(A− λ2B)]−

≤ (1− t) Tr(A− λ1B)− + tTr(A− λ2B)− = (1− t)S(λ1) + tS(λ2) .

Daraus folgt, dass die links- und rechtsseitigen Ableitungen von S tatsächlich existieren, siehe
beispielsweise [159, Theorem 1.26].
(3) Wenn die untere Grenze des wesentlichen Spektrums echt positiv ist, ist das Resultat
wohlbekannt und folgt aus dem klassischen Satz von Feynman–Hellmann (für jeden einzelnen
Eigenwert und damit auch für die Summe über alle Eigenwerte). Dieses Resultat wird auch
im Beweis verwendet. Der Punkt ist, dass man die Summe der negativen Eigenwerte auch
dann ableiten darf, wenn die untere Grenze des wesentlichen Spektrums Null ist, sprich, in
dem Fall, in welchem gewöhnliche Störungstheorie nicht (direkt) anwendbar ist.

Beweis. Schritt 1. Die Idee ist es, den Hauptsatz der Differential- und Integralrechnung an-
zuwenden. Wir behaupten, dass für alle λ ∈ R der Operator (A− λB)− in der Spurklasse ist
und, dass S(λ) := Tr(A− λB)− die Gleichheit

S(λ)− S(0) =

∫ λ

0
T (λ′) dλ′

mit
T (λ) := TrBχ(−∞,0)(A− λB)
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erfüllt.
Per Voraussetzung ist S(0) < ∞. Da B relativ Form-Spurklasse-beschränkt bezüglich

A ist, ist B insbesondere infinitesimal Form-beschränkt bezüglich A, siehe [144, Seite 369].
Daraus folgt insbesondere, dass (A − λB + M)−1/2(A + M)1/2 für alle λ ∈ R beschränkt
ist, wenn M hinreichend groß gewählt wird. Damit und mit dem gleichen Argument wie in
der ersten Bemerkung zur Endlichkeit von TrBχ(−∞,0](A) folgt, dass B auch relativ Form-
Spurklasse-beschränkt bezüglich (A − λB + M) ist. Daher ist T (λ) für alle λ ∈ R endlich.

Insbesondere folgt daraus, dass das Integral
∫ λ

0 T (λ′) dλ′ endlich ist.
Um zu zeigen, dass (A−λB)− ein Operator der Spurklasse ist und die behauptete Formel

für S(λ) gilt, regularisieren wir S(λ) und T (λ). Dazu führen wir für µ ∈ (−∞, 0) ∩ ρ(A) die
Funktionen

Sµ(λ) := Tr(A− λB − µ)− und Tµ(λ) = TrBχ(−∞,µ)(A− λB)

ein. Hierbei bezeichnet ρ(A) die Resolventenmenge von A. Da B insbesondere relativ kompakt
ist und inf σess(A) ≥ 0, hat A − λB nur endlich viele Eigenwerte unterhalb der Schwelle
µ < 0. Aus dem Feynman–Hellmann-Satz folgt, dass die Funktion λ 7→ Sµ(λ) für alle λ ∈ R,
für die µ /∈ σp(A − λB) ist, differenzierbar ist und die Ableitung durch Tµ(λ) gegeben ist.
Die Bedingung µ /∈ σp(A − λB) ist wegen des Birman–Schwinger-Prinzips äquivalent zur
Bedingung 1/λ /∈ σ(B1/2(A − µ)−1B1/2). Da B relativ Form-kompakt bezüglich A ist, ist
der Birman–Schwinger-Operator kompakt. Daraus folgt aber wiederum, dass die Bedingung
1/λ /∈ σ(B1/2(A − µ)−1B1/2) auf dem Komplement einer diskreten Menge wahr ist. Daher
gilt für jedes λ ∈ R

Sµ(λ) = Sµ(0) +

∫ λ

0
Tµ(λ′)dλ′ .

Wir lassen nun µ ↗ 0 gehen. Da µ 7→ Sµ(0), beziehungsweise µ 7→ Tµ(λ′), nicht-fallend mit
endlichem Grenzwert S(0), beziehungsweise endlichem und integrierbaren Grenzwert T (λ′),
sind, folgt aus dem Satz der monotonen Konvergenz, dass auch der Grenzwert limµ↗0 Sµ(λ) =
S(λ) endlich ist und die behauptete Gleichheit erfüllt.

Schritt 2. Wir behaupten, dass

lim sup
λ↘0

T (λ) ≤ TrBχ(−∞,0](A)

und
lim inf
λ↗0

T (λ) ≥ TrBχ(−∞,0)(A) .

Aus diesen Ungleichungen und Schritt 1 folgt

TrBχ(−∞,0)(A) ≤ D−S(0) ≤ D+S(0) ≤ TrBχ(−∞,0](A) . (5.3)

Für ε > 0 definieren wir die
”
ausgeschmierten“ charakteristischen Funktionen

f+
ε (α) =


1 für α ∈ (−∞, 0]

1− α/ε für α ∈ [0, ε]

0 für α ∈ [ε,∞)

und f−ε (α) =


1 für α ∈ (−∞,−ε]
−α/ε für α ∈ [−ε, 0]

0 für α ∈ [0,∞)

.

Offenbar ist f−ε ≤ χ(−∞,0) ≤ f+
ε und daher

TrBf−ε (A− λB) ≤ T (λ) ≤ TrBf+
ε (A− λB) . (5.4)



5.2 Differenzierbarkeit der Summe negativer Eigenwerte 63

Wir behaupten, dass für alle ε > 0

lim
λ→0

TrBf±ε (A− λB) = TrBf±ε (A) (5.5)

und

lim sup
ε↘0

TrBf+
ε (A) = TrBχ(−∞,0](A) , lim inf

ε↘0
TrBf−ε (A) = TrBχ(−∞,0)(A) (5.6)

gelten. Sobald wir diese Grenzwerte gezeigt haben, können wir zuerst λ→ 0 und dann ε↘ 0
in (5.4) gehen lassen, woraus die Behauptung dieses Schritts folgt.

Um (5.5) zu zeigen, schreiben wir

TrBf±ε (A− λB) = TrCK(λ)g±ε (A− λB)K(λ)∗ ,

wobei C = (A+M)−1/2B(A+M)−1/2, K(λ) = (A+M)1/2(A− λB +M)−1/2 und g±ε (α) =
(α+M)f±ε (α). Da A−λB im Norm-Resolventen-Sinne für λ→ 0 gegen A konvergiert (nach
[142, Theorem VIII.25]) und die g±ε stetig sind, konvergiert g±ε (A − λB) → g±ε (A) in Norm,
siehe [142, Theorem VIII.20]. Darüberhinaus konvergiert K(λ)∗ stark gegen die Identität,
denn für ϕ ∈ ran((A + M)−1/2) und ψ = (A + M)1/2ϕ ∈ H (dem zugrunde liegenden
Hilbertraum) ist ∥∥∥((A− λB +M)−1/2 − (A+M)−1/2)(A+M)1/2ϕ

∥∥∥
=
∥∥∥((A− λB +M)−1/2 − (A+M)−1/2)ψ

∥∥∥→ 0 .
(5.7)

Diese Konvergenz gilt, da A−λB insbesondere im starken Resolventen-Sinne gegen A konver-
giert. Aus [142, Theorem VIII.20] folgt, dass jede stetige und beschränkte Funktion f(A−λB)
stark gegen f(A) konvergiert. Wählt man M = 1 + | inf spec(A − λB)| für λ > 0 und
M = 1 + | inf spec(A)| für λ < 0 sowie θ̃ als ausgeglättete Heaviside-Funktion und

f(α) = (α+M)−1/2θ̃(α− (1−M))

folgt (5.7). Für allgemeines ϕ ∈ H sei ϕn := χ(−∞,n)(A)ϕ ∈ D(A). Dann ist

lim
λ→0

lim
n→∞

∥∥∥((A− λB +M)−1/2 − (A+M)−1/2)(A+M)1/2ϕn

∥∥∥ = 0 ,

wobei wir die Grenzwerte vertauscht haben, was erlaubt ist, da ‖K(λ)∗‖ gleichmäßig in λ
beschränkt ist, da B infinitesimal Form-beschränkt bezüglich A ist.

Sei nun C =
∑

n cn|ψn〉〈ψn| die Singulärwertzerlegung von C. Mit der Zyklizität der Spur,
der Norm-Konvergenz g±ε (A− λB) → g±ε (A) und der starken (und insbesondere schwachen)
Operator-Konvergenz K(λ)∗ → 1, erhalten wir schließlich mit dem Satz der majorisierten
Konvergenz (da K(λ) und g±ε (A−λB) gleichmäßig in λ beschränkt sind und C ein Spurklasse-
Operator ist)

lim
λ→0

Tr(CK(λ)g±ε (A− λB)K(λ)∗)

= lim
λ→0

∑
n

cn · (K(λ)∗ψn, g
±
ε (A− λB)K(λ)∗ψn)

=
∑
n

cn(ψn, g
±
ε (A)ψn) = Tr(Cg±ε (A)) = TrBf±ε (A) .
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Dies zeigt die Konvergenz (5.5).

Um (5.6) zu zeigen, schreiben wir ähnlich

Tr(Bf±ε (A)) =

∫
R
g±ε (α)d

(∑
n

cn(ψn, E(α)ψn)

)

mit derselben Singulärwertzerlegung C =
∑

n cn|ψn〉〈ψn| wie eben und dem Spektralmaß
dE von A. Wir bemerken, dass die Funktionen g+

ε beziehungsweise g−ε auf dem Träger von
dE beschränkt sind und für ε ↘ 0 punktweise gegen (α + M)χ(−∞,0](α), beziehungsweise
(α + M)χ(−∞,0)(α) konvergieren. Da d

∑
n cn(ψn, E(α)ψn) ein endliches Maß ist, folgt aus

dem Satz der majorisierten Konvergenz

lim
ε↘0

TrBf+
ε (A) =

∫
R

(α+M)χ(−∞,0](α) d

(∑
n

cn(ψn, E(α)ψn)

)
= TrBχ(−∞,0](A) ,

beziehungsweise

lim
ε↘0

TrBf−ε (A) =

∫
R

(α+M)χ(−∞,0)(α) d

(∑
n

cn(ψn, E(α)ψn)

)
= TrBχ(−∞,0)(A) .

Dies zeigt (5.6) und damit die Behauptung dieses Schritts.

Schritt 3. Wir zeigen nun, dass die linke Ungleichung in (5.3) tatsächlich eine Gleichheit
ist. Wegen des Variationsprinzips sind die im ersten Schritt definierten Funktionen Sµ konvex
und konvergieren für µ↗ 0 punktweise gegen S. Daraus folgt mit [159, Theorem 1.27]

D−S(0) ≤ lim inf
µ↗0

D−Sµ(0) .

Aus gewöhnlicher Störungstheorie (sprich, wegen des Feynman–Hellmann-Satzes) ist bekannt,
dass

D−Sµ(0) = Tµ(0) .

Aus monotoner Konvergenz folgt

lim
µ↗0

Tµ(0) = TrBχ(−∞,0)(A) ,

woraus schließlich D−S(0) ≤ TrBχ(−∞,0)(A) folgt.

Schritt 4. Schließlich zeigen wir, dass die rechte Ungleichung in (5.3) ebenfalls eine Gleich-
heit ist. Wir kürzen wieder P := χ(−∞,0](A) ab. Wegen des Variationsprinzips ist

−Tr(A− λB)− ≤ Tr(A− λB)P .

Daher ist

S(λ)− S(0) ≥ λTrBP

und deshalb

D+S(0) = lim
λ↘0

S(λ)− S(0)

λ
≥ TrBP

wie behauptet.
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5.2.2 Eine Verallgemeinerung

Die Bedingung, dass B relativ Form-Spurklasse-beschränkt bezüglich A ist, ist für unsere
Anwendung zu stark, in der wir A = CH` und B = U wählen werden. Wegen Katos Unglei-
chung genügt es die relative Spurklasse-Bedingung bezüglich C` zu verifizieren. Allerdings ist
(C` + 1)−1/2U(C` + 1)−1/2 im Allgemeinen kein Spurklasse-Operator, da

∫∞
0 (k + 1)−1 dk im

Unendlichen logarithmisch divergiert, siehe insbesondere den Beweis von Behauptung 5.3.10
später.

In diesem Unterabschnitt stellen wir daher zwei Verallgemeinerungen von Satz 5.2.1 vor,
in der die relative Spurklasse-Bedingung etwas abgemildert wird. Wir verlangen lediglich, dass
B relativ Form-Spurklasse-beschränkt bezüglich (A+M)2s für ein s ∈ (1/2, 1] ist. Dabei kann
s beliebig nahe an 1/2 sein. Allerdings benötigen wir dann noch die weitere Annahme, dass
die Operatoren (A+M)s und (A− λB +M)s vergleichbar sind. Diese Eigenschaft kann oft
eher schwer verifiziert werden, weshalb wir im Anschluß eine weitere Verallgemeinerung von
Satz 5.2.1 vorstellen. Hier muss der Operator Bs durch eine kleinere Potenz des Operators
(A+M)s

′
(mit 1/2 < s′ < s) kontrolliert werden können. In Anwendungen ist diese Annahme

mit Hilfe klassischer Sobolew-Ungleichungen deutlich leichter verifizierbar.

Satz 5.2.2. Sei A ein selbstadjungierter Operator, sodass A− ein Spurklasse-Operator ist. Sei
B ≥ 0 ein bezüglich A relativ Form-beschränkter Operator. Angenommen, es gibt 1/2 ≤ s ≤ 1,
sodass für eine hinreichend große Zahl M > 0 sowohl

(A+M)−sB(A+M)−s ein Spurklasse-Operator ist, (5.8)

als auch
lim sup
λ→0

∥∥(A+M)s(A− λB +M)−s
∥∥ <∞ (5.9)

gilt. Dann sind die Aussagen in Satz 5.2.1 wahr.

Wir bezeichnen mit ‖ · ‖1 die Spurnorm.

Beweis. Wir folgen den Schritten im Beweis von Satz 5.2.1. Zu Beginn des ersten Schritts
mussten wir zeigen, dass T (λ) = TrBχ(−∞,0)(A − λB) endlich und gleichmäßig beschränkt
für λ in einer Umgebung von Null ist. Dies folgt aus

lim sup
λ→0

∥∥(A− λB +M)−sB(A− λB +M)−s
∥∥

1
<∞ (5.10)

und der Tatsache, dass (A−λB+M)2sχ(−∞,0)(A−λB) (für hinreichend kleine λ) gleichmäßig
in λ beschränkt ist. Die Endlichkeit von (5.10) folgt wiederum aus den Bedingungen (5.8) und
(5.9).

Im ersten Schritt mussten wir außerdem zeigen, dass jedes gegebene µ ∈ (−∞, 0) ∩ ρ(A)
kein Eigenwert von A−λB für alle λ ∈ R in einer Umgebung um Null, abseits einer diskreten
Menge, ist. Wir verifizieren dies nun unter den aktuellen Bedingungen. Dazu bemerken wir
zunächst, dass die Differenz der gestörten und ungestörten Resolvente durch

(A− λB +M)−1 − (A+M)−1 = (A− λB +M)−1+sD(λ)E(λ)(A+M)−1+s

ausgedrückt werden kann, wobei

D(λ) = (A− λB +M)−s(A+M)s
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und
E(λ) = λ(A+M)−sB(A+M)−s .

Wegen Voraussetzung (5.9) ist D(λ) beschränkt und wegen Voraussetzung (5.8) ist E(λ) ein
Spurklasse-Operator. Da s ≤ 1, folgt daraus, dass (A−λB+M)−1−(A+M)−1 ein Spurklasse-
Operator ist und somit insbesondere kompakt ist. Aus dem Satz von Weyl folgt daher, dass
das negative Spektrum von A − λB diskret ist. Da B relativ Form-beschränkt bezüglich A
ist, ist A − λB eine analytische Familie vom Typ (B) [101, Kapitel Sieben, Theorem 4.8].
Somit können die Eigenwerte von A− λB zumindest lokal als analytische Funktionen von λ
beschrieben werden. Da µ per Voraussetzung kein Eigenwert von A ist, kann es somit lediglich
eine diskrete Menge von λ’s nahe Null geben, sodass µ ein Eigenwert von A − λB ist. Dies
war aber gerade die Behauptung.

Wir kommen nun zum zweiten Schritt. Dort mussten wir (5.5) zeigen. Wir schreiben
wieder

TrBf±ε (A− λB) = TrCK(λ)g±ε (A− λB)K(λ)∗ ,

wobei jetzt C = (A + M)−sB(A + M)−s, K(λ) = (A + M)s(A − λB + M)−s und g±ε (α) =
(α + M)2sf±ε (α) sind. Aus dem gleichen Grund wie zuvor konvergiert g±ε (A − λB) gegen
g±ε (A) in Norm. Die starke Konvergenz K(λ)∗ → 1 folgt ebenfalls wie zuvor (zunächst gilt
die Konvergenz nur auf Elementen in ran(A+M)−s) mit der Bemerkung, dass K(λ)∗ wegen
der Bedingung (5.9) gleichmäßig in λ beschränkt ist für λ nahe Null. Daher konvergiert
auch K(λ)g±ε (A − λB)K(λ)∗ → g±ε (A) wie zuvor im schwachen Operator-Sinne. Da per
Voraussetzung (5.8) C ein Operator der Spurklasse ist, folgt wieder (5.5).

Die Schritte 3 und 4 bleiben schließlich unverändert. Dies schließt den Beweis von Satz
5.2.2.

Wir kommen nun zur zweiten Verallgemeinerung von Satz 5.2.1.

Satz 5.2.3. Sei A ein selbstadjungierter Operator, sodass A− in der Spurklasse ist und B ein
nicht-negativer Operator. Angenommen, es gibt Zahlen max{1/2, s′} < s < 1, sodass für ein
M > 0 die Bedingung (5.8) (mit demselben s) erfüllt ist und eine Konstante a > 0, sodass

B2s ≤ a(A+M)2s′ (5.11)

gilt. Dann sind die Aussagen in Satz 5.2.1 wahr.

Die Annahme s′ < s ist für unseren Beweis entscheidend (zumindest für ein Vorzeichen
von λ). Allerdings wissen wir nicht, ob sie auch notwendig für den Satz ist.

Wir bemerken, dass (5.11) mit der Hölder- und der Young-Ungleichung impliziert, dass B
infinitesimal Form-beschränkt bezüglich A ist. Dies sieht man beispielsweise wie folgt. Ist dµ
ein normiertes, nicht-negatives Maß, dann gilt∫

x2s′ dµ(x) ≤
(∫

x2s dµ(x)

) s′
s
(∫

dµ(x)

)1− s
′
s

.

Daher gibt es mit dem Spektralsatz für alle κ ∈ (0, 1) ein Mκ > 0, sodass

(ψ,B2sψ) ≤ a(ψ, (A+M)2s′ψ) ≤ a(ψ, (A+M)2sψ)
s′
s ≤ κ(ψ, (A+Mκ)2sψ) .

Insbesondere folgt daraus, dass A − λB im Sinne quadratischer Formen für alle λ ∈ R defi-
nierbar ist.
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Wir werden Satz 5.2.3 aus Satz 5.2.2 folgern, indem wir zeigen, dass Bedingung (5.11) die
Bedingung (5.9) impliziert. An dieser Stelle ist s′ < s entscheidend. Wir formulieren dieses
Argument als separates Lemma, dessen Aussage und Beweis von Neidhardt und Zagrebnov
[134] inspiriert sind.

Lemma 5.2.4. Sei A ein selbstadjungierter Operator mit inf specA > 0 und sei B ein Ope-
rator, welcher B ≥ 0 oder B ≤ 0 erfüllt. Angenommen, es gibt Zahlen max{1/2, β} < α < 1,
sodass

‖|B|αA−β‖ <∞

gilt. Falls es eine Konstante C gibt, die nur von α und β abhängt, die M ≥ C‖|B|αA−β‖1/(α−β)

erfüllt, dann gelten die Ungleichungen

1

2
(A+M)2α ≤ (A+B +M)2α ≤ 2(A+M)2α .

Die Konstanten 1/2 und 2 können durch beliebige Konstanten 1− ε und 1 + ε mit ε > 0
auf Kosten der Konstanten C ersetzt werden, welche dann von ε abhängen wird.

Dieses Lemma impliziert sofort Satz 5.2.3.

Beweis von Satz 5.2.3. Wir verifizieren die Annahmen in Satz 5.2.2 mit Hilfe von Lemma
5.2.4, wobei A durch A + M sowie B durch −λB ersetzt werden und α = s sowie β = s′

gesetzt werden. Das Anwenden des Lemmas zeigt, dass (5.9) durch (5.11) impliziert wird.

Bevor wir zum Beweis von Lemma 5.2.4 kommen, bemerken wir, dass das Lemma zur
Verifikation von (5.9) im intuitiv schwierigeren Fall λ > 0 tatsächlich nicht nötig ist. Wir
zeigen direkt

Lemma 5.2.5. Sei A ein nach unten beschränkter, selbstadjungierter Operator, B ein nicht-
negativer Operator und M > | inf specA|. Angenommen, es gibt a > 0 und s ∈ [1/2, 1],

sodass B2s ≤ a(A + M)2s. Dann gilt für alle M >
∣∣∣inf spec

(
A−

(
22s−1a

)−1/(2s)
B
)∣∣∣ und

0 < λ <
(
22s−1a

)−1/(2s)

(A+M)2s ≤
(
1− 22s−1aλ2s

)−1
22s−1(A− λB +M)2s .

Insbesondere folgt daraus, dass die behauptete Formel für D+S(0) aus Satz 5.2.3 unter
der (erwartbaren und schwächeren) Bedingung B2s ≤ a(A+M)2s gilt.

Beweis. Aus Operatorkonvexität von x 7→ x2s mit 2s ∈ [1, 2] (siehe beispielsweise Bhatia [11,
Theorem V.2.9 und Theorem V.2.10]) folgt

(A+M)2s = (A+M − λB + λB)2s ≤ 22s−1
(
(A− λB +M)2s + λ2sB2s

)
≤ 22s−1(A− λB +M)2s + 22s−1aλ2s(A+M)2s .

Für λ <
(
22s−1a

)−1/(2s)
folgt daraus

(A+M)2s ≤
(
1− 22s−1aλ2s

)−1
22s−1(A− λB +M)2s ,

was behauptet war.
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Wir vermuten, dass für hinreichend kleines λ < 0 und ansonsten gleichen Voraussetzungen,
dieses Lemma immer noch wahr ist.

Wir stellen nun den Beweis von Lemma 5.2.4 vor.

Beweis von Lemma 5.2.4. Schritt 1. Wir zeigen, dass es unter den zusätzlichen Bedingungen∥∥|B|αA−α∥∥ < 1 (5.12)

und
A+B > 0 , (5.13)

einen Operator S gibt, sodass

(A+B)−α = (1− S)A−α . (5.14)

Zudem erfüllt die Operatornorm von S die Schranke

‖S‖ ≤ C(1)
α,β

1

(inf specA)α−β

∥∥|B|αA−β∥∥ ‖|B|αA−α‖(1−α)/α

1− ‖|B|αA−α‖1/α
.

Um dies zu zeigen, definieren wir für t > 0 die verallgemeinerten Birman–Schwinger-Opera-
toren

Y (t) := (A+ t)−α|B|(A+ t)−1+α .

Wir werden in Kürze zeigen, dass Bedingung (5.12) die Invertierbarkeit der Operatoren 1 ±
Y (t) impliziert. Akzeptiert man dies für den Moment, sieht man, dass für t > 0

(A+B + t)−1 = (A+ t)−1 ∓ (A+ t)−1+αY (t)(1± Y (t))−1(A+ t)−α ,

wobei das obere Vorzeichen gewählt wird, wenn B ≥ 0 und das untere Vorzeichen gewählt
wird, wenn B ≤ 0. Im Folgenden verwenden wir, dass für alle Zahlen h > 0 die Gleichheit

h−α = cα

∫ ∞
0

(h+ t)−1t−α dt mit cα = π−1 sin(πα)

mit α < 1 gilt. Aus dem Spektralsatz und der obigen Beobachtung zur Differenz von (A +
t)−1 − (A+B + t)−1 folgt

A−α − (A+B)−α = cα

∫ ∞
0

(
(A+ t)−1 − (A+B + t)−1

)
t−α dt

= ±cα
∫ ∞

0
(A+ t)−1+αY (t)(1± Y (t))−1(A+ t)−αt−α dt .

Somit gilt (5.14) mit dem Operator S (durch Anwenden von Aα von rechts auf beiden Seiten
der letzten Gleichung), der durch

S := ±cα
∫ ∞

0
(A+ t)−1+αY (t)(1± Y (t))−1(1 + tA−1)−αt−α dt (5.15)

definiert ist. Offenbar ist

‖S‖ ≤ cα
∫ ∞

0

∥∥∥(A+ t)−1+β
∥∥∥∥∥∥(A+ t)α−βY (t)

∥∥∥∥∥(1± Y (t))−1
∥∥ t−α dt . (5.16)
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Wir beschränken nun die drei Terme des Integranden separat. Zunächst ist

‖Y (t)‖ ≤ ‖(A+ t)−α|B|α‖ · ‖|B|1−α(A+ t)−1+α‖
≤ ‖A−α|B|α‖ · ‖|B|1−αA−1+α‖

≤
∥∥|B|αA−α∥∥1/α

.

Im ersten Schritt haben wir (mit t > 0)

|B|α(A+ t)−2α|B|α ≤ |B|αA−2α|B|α

verwendet. Im letzten Schritt haben wir |B|2α ≤ ‖|B|αA−α‖A2α sowie die Operatormonotonie
von x 7→ x(1−α)/α mit 1/2 ≤ α ≤ 1 verwendet. Wegen Annahme (5.12) ist also ‖Y (t)‖ < 1,
weshalb 1± Y (t) invertierbar ist mit

∥∥(1± Y (t))−1
∥∥ ≤ (1− ‖Y (t)‖)−1 ≤

(
1−

∥∥|B|αA−α∥∥1/α
)−1

.

Als Nächstes beschränken wir in ähnlicher Weise∥∥∥(A+ t)α−βY (t)
∥∥∥ ≤ ∥∥∥(A+ t)−β|B|α

∥∥∥ · ∥∥(A+ t)−1+α|B|1−α
∥∥

≤
∥∥∥A−β|B|α∥∥∥ · ∥∥A−1+α|B|1−α

∥∥
≤
∥∥∥|B|αA−β∥∥∥ · ∥∥|B|αA−α∥∥(1−α)/α

.

Schließlich ist ∥∥∥(A+ t)−1+β
∥∥∥ ≤ (inf specA+ t)−1+β .

Setzt man diese Schranken in (5.16) ein, folgt

‖S‖ ≤ cα

∥∥|B|αA−β∥∥ · ‖|B|αA−α‖(1−α)/α

1− ‖|B|αA−α‖1/α

∫ ∞
0

dt

tα(inf specA+ t))1−β

= C
(1)
α,β

1

(inf specA)α−β
·
∥∥|B|αA−β∥∥ · ‖|B|αA−α‖(1−α)/α

1− ‖|B|αA−α‖1/α
.

Wir betonen, dass die Voraussetzung β < α an dieser Stelle entscheidend ist, damit das
Integral konvergiert. Dies zeigt die Behauptung in Schritt 1.

Schritt 2. Die Aussage des Lemmas wird folgen, indem wir Schritt 1 anwenden, wobei A
durch A+M (mit einer hinreichend großen Konstante M) ersetzt wird.

Wir bemerken zunächst∥∥∥|B|α(A+M)−β
∥∥∥ ≤ ∥∥∥|B|αA−β∥∥∥ <∞ . (5.17)

Darüberhinaus behaupten wir die Gültigkeit der Schranke

∥∥|B|α(A+M)−α
∥∥ ≤ C(2)

α,β

∥∥|B|αA−β∥∥
Mα−β . (5.18)
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In der Tat erhält man mit dem Spektralsatz

|B|2α ≤
∥∥∥|B|αA−β∥∥∥2

A2β ≤
∥∥∥|B|αA−β∥∥∥2

(
sup
a≥0

a2β

(a+M)2α

)
(A+M)2α

=

∥∥∥|B|αA−β∥∥∥ C
(2)
α,β

Mα−β

2

(A+M)2α , (5.19)

was (5.18) zeigt.
Aus (5.18) folgt, dass Bedingung (5.12) des ersten Schritts (mit A+M anstatt A) erfüllt

ist, wenn

M >
(
C

(2)
α,β

∥∥∥B|αA−β∥∥∥)1/(α−β)
,

was wir im Folgenden annehmen. Ungleichung (5.19), zusammen mit Operatormonotonie von
x 7→ x1/(2α) (mit α ≥ 1/2), impliziert im Fall B ≤ 0 die Form-Ungleichung

B ≥ −

∥∥∥|B|αA−β∥∥∥ C
(2)
α,β

Mα−β

1/α

(A+M) .

Daraus folgt

A+M +B ≥

1−

∥∥∥|B|αA−β∥∥∥ C
(2)
α,β

Mα−β

1/α
 (A+M) > 0 .

Dies zeigt, dass die Bedingung (5.13) in Schritt 1 (mit A+M anstatt A) erfüllt ist. Für B ≥ 0
ist (5.13) trivialerweise erfüllt.

Wendet man das Ergebnis aus Schritt 1 an, findet man

(A+M +B)−α = (1− SM )(A+M)−α = (A+M)−α(1− S∗M ) ,

wobei SM wie in (5.15) (mit A+M anstatt A) definiert ist und die Schranke

‖SM‖ ≤
C

(1)
α,β

M (α−β)/α

(
C

(2)
α,β

)(1−α)/α ∥∥|B|αA−β∥∥1/α

1−
(
C

(2)
α,β

)1/α
‖|B|αA−β‖1/αM−(α−β)/α

erfüllt. Daher gibt es eine Konstante C, die nur von α und β abhängt, sodass

‖SM‖ ≤ 1− 1√
2
, falls M ≥ C

∥∥∥|B|αA−β∥∥∥1/(α−β)
.

Da 1− 1/
√

2 <
√

2− 1, folgt daraus

(A+B +M)−2α = (A+M)−α(1− S∗M )(1− SM )(A+M)−α

≤ ‖1− SM‖2(A+M)−2α

≤ (1 + ‖SM‖)2(A+M)−2α

≤ 2(A+M)−2α .
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Darüberhinaus ist

(A+M)−2α = (A+B +M)−α(1− S∗M )−1(1− SM )−1(A+B +M)−α

≤
∥∥∥(1− SM )−1

∥∥∥2
(A+B +M)−2α

≤ (1− ‖SM‖)−2(A+B +M)−2α

≤ 2(A+B +M)−2α .

Dies schließt den Beweis dieses Lemmas.

5.3 Test-Funktionen und Resultate für festen Drehimpuls

In diesem Abschnitt wenden wir die Sätze 5.2.2 und 5.2.3 an. Dabei spielt A die Rolle des
Chandrasekhar-Operators CH` , wohingegen B die Rolle der Störung U übernehmen wird. Satz
5.2.2 wird für die Behandlung der Coulomb-Singularität und Satz 5.2.3 für die Behandlung

des K(0)
s,δ -Teils des Potentials verwendet. Unser Ziel ist es, die Annahmen der jeweiligen Sätze

zu verifizieren.

Wir führen die Notation

p` :=

√
− d2

dr2
+
`(`+ 1)

r2

C` :=
√
p2
` + 1− 1

ein und erinnern an die Definition von

CH` = C` −
γ

r
in L2(R+, dr) ,

wobei γ ∈ (0, 2/π) eine feste Konstante ist. Darüberhinaus bezeichnet ρH` die Summe der
Quadrate der normierten Eigenfunktionen von CH` , siehe (5.1). Wir erinnern an einige grund-
legende Eigenschaften von CH` .

Lemma 5.3.1. Seien ` ∈ N0 und γ ≤ 2/π, dann ist CH` von unten beschränkt und es gilt
Tr(CH` )− <∞. Ist γ < 2/π, dann ist Null kein Eigenwert von CH` .

Beweis. Die untere Beschränktheit folgt aus

CH` ≥ p` − 1− γ

r
≥ p0 − 1− γ

r
≥ −1 ,

wobei die letzte Ungleichung aus Katos Ungleichung [101, Kapitel Fünf, Formel (5.33)] folgt.
Die Endlichkeit von Tr(CH` )− wurde in [69, Lemma 1] gezeigt. Die Tatsache, dass Null kein
Eigenwert von CH` ist, wurde von Herbst in [87, Theorem 2.3] gezeigt.

Im nächsten Unterabschnitt fahren wir mit der Definition der Klasse der Test-Funktionen
K(0)
s,δ , für die die Scott-Vermutung für festes ` gilt, fort. Nach der Definition geben wir einige

konkrete Beispiele von Funktionen in dieser Klasse und nennen die Hauptergebnisse dieses
Abschnitts. Diese werden dann im letzten Unterabschnitt bewiesen.
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5.3.1 Test-Funktionen für festen Drehimpuls

Die Test-Funktionen, für die Satz 5.1.2 gilt, sind für s ≥ 1/2 und δ ∈ [0, 2s− 1] in

K(0)
s,δ := {W ∈ L1

loc(R+) : ‖W‖K(0)
s,δ

<∞}

‖W‖K(0)
s,δ

:= sup
R≥1/2

Rδ
[∫ R

0

( r
R

)2s−1
|W (r)| dr +

∫ ∞
R
|W (r)| dr

] (5.20)

enthalten. Wir schränken uns hier und im Folgenden auf den Bereich δ ≤ 2s − 1 ein, da

nicht einmal die charakteristische Funktion auf einem festen Intervall für δ > 2s − 1 in K(0)
s,δ

enthalten ist.

Wir bemerken folgende einfache, aber nützliche Inklusionseigenschaften für K(0)
s,δ , nämlich

K(0)
s′,δ ⊆ K

(0)
s,δ für 1/2 ≤ s′ < s und δ ∈ [0, 2s′ − 1] (5.21)

Diese folgt aus der Definition von K(0)
s,δ und (r/R)2s−11{r≤R} ≤ (r/R)2s′−11{r≤R}. Das bedeu-

tet, je kleiner s ist, desto glatter muss die Funktion am Ursprung sein.

Wir stellen einfache Beispiele von Funktionen vor, die in K(0)
s,δ enthalten sind.

Beispiel 5.3.2. Beispiele von Funktionen W ∈ K(0)
s,δ sind

• r−1L∞([0, ρ]) für ein ρ > 0 mit s > 1/2 und δ ∈ [0, 2s − 1]. Modulo einer Konstanten,
ist die Norm ist durch max{ρδ, ρδ log ρ} · ‖rW‖∞ beschränkt.

• L1(R+, r
δ dr) für alle s ≥ 1/2 mit δ ∈ [0, 2s− 1].

Die erste Behauptung ist offensichtlich. Um die zweite zu sehen, verwenden wir δ ≤ 2s−1
sowie r ≤ R im ersten Summanden und R ≤ r im zweiten Summanden der Definition und
erhalten

Rδ
∫ R

0

( r
R

)2s−1−δ ( r
R

)δ
|W (r)| dr +

∫ ∞
R

Rδ|W (r)| dr ≤ ‖W‖L1(R+,rδ dr) .

5.3.2 Ergebnisse für festen Drehimpuls

Wir kommen nun zu den zwei wichtigsten Behauptungen dieses Abschnitts. Sie sind unbedingt
nötig, um die lineare Antwort zu berechnen und spielen daher eine entscheidende Rolle im
Beweis der Konvergenzresultate.

Behauptung 5.3.3. Seien γ ∈ (0, 2/π), ` ∈ N0, 1/2 < s′ < s < min{3/2 − σγ , 1}, δ′ ∈
[0, 2s′ − 1] und ε ∈ [0, 2s − 1]. Sei 0 ≤ U ∈ K(0)

s,ε mit U2s ∈ K(0)
s′,δ′. Dann ist die Abbildung

λ 7→ Tr(CH` − λU)− bei λ = 0 differenzierbar mit Ableitung
∫∞

0 ρH` (r)U(r) dr.

Behauptung 5.3.4. Seien γ ∈ (0, 2/π), ` ∈ N0 und 0 ≤ U ∈ r−1L∞comp(R+). Dann ist die

Abbildung λ 7→ Tr(CH` − λU)− bei λ = 0 differenzierbar mit Ableitung
∫∞

0 ρH` (r)U(r) dr.

Wir bemerken Folgendes zur Endlichkeit von ρH` .

Bemerkungen 5.3.5.



5.3 Test-Funktionen und Resultate für festen Drehimpuls 73

1. Wir betonen, dass es Teil der Aussage ist, dass das Integral
∫∞

0 U(r)ρH` (r) dr für Funk-
tionen U , die die Bedingungen der Behauptung erfüllen, endlich ist. Wir werden jedoch
später einen direkteren Beweis dieser Tatsache geben, siehe Behauptung 5.4.8.

2. Behauptung 5.3.4 impliziert insbesondere für jedes feste R <∞, dass∫ R

0

ρH` (r)

r
dr <∞ , falls γ < 2/π .

Es gilt jedoch noch mehr – die potentielle Energie in jedem festen Kanal, sprich obiges
Integral mit R = ∞ ist endlich. Diese Tatsache beruht auf Lemma 5.3.1 und kann
ohne die Maschinerie des letzten Abschnitts zu verwenden, hergeleitet werden. Dazu
verwendet man die normierten Eigenfunktionen ψHn,` von CH` als Test-Funktionen für
ein γ′ ∈ (γ, 2/π]. Dann folgt aus dem Variationsprinzip für jedes N ∈ N die Ungleichung

N∑
n=0

(
ψHn,`,

(√
p2
` + 1− 1− γ′

r

)
ψHn,`

)
≥ −Tr

(√
p2
` + 1− 1− γ′

r

)
−
.

Da die rechte Seite endlich ist, gilt

N∑
n=0

(
ψHn,`,

1

r
ψHn,`

)
≤ 1

γ′

N∑
n=0

(
ψHn,`,

(√
p2
` + 1− 1

)
ψHn,`

)
+

1

γ′
Tr

(√
p2
` + 1− 1− γ′

r

)
−
.

Da die Eigenwerte negativ sind, gilt weiter(
ψHn,`,

(√
p2
` + 1− 1

)
ψHn,`

)
≤ γ

(
ψHn,`,

1

r
ψHn,`

)
für alle n ≤ N . Setzt man dies in die obige Gleichung ein und erinnert sich daran, dass
γ′ > γ, folgt

N∑
n=0

(
ψHn,`,

1

r
ψHn,`

)
≤ (γ′ − γ)−1 Tr

(√
p2
` + 1− 1− γ′

r

)
−
.

Die Behauptung folgt dann im Grenzwert N →∞.

Im Folgenden leiten wir die Behauptungen 5.3.3 und 5.3.4 aus den abstrakten Sätzen des
vorigen Abschnitts her. Der Rest dieses Abschnitts befasst sich daher mit der Verifikation der
Annahmen dieser Sätze.

5.3.3 Beweis von Behauptung 5.3.3

Wir nehmen folgendes Resultat aus Kapitel 7 vorweg. Es besagt, dass es ein s > 1/2 gibt
(welches von der festen Kopplungskonstanten γ < 2/π abhängt), sodass die durch |p|s und(
|p| − γ|x|−1

)s
erzeugten Normen äquivalent zueinander sind. Wir erinnern daran, dass σγ ∈

[0, 1] nach (5.2) definiert wurde.
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Lemma 5.3.6 (Satz 7.1.1). Seien γ ∈ (0, 2/π] und s ∈ (0, 1]. Dann gibt es ein As,γ < ∞,
sodass (

|p| − γ

|x|

)2s

≤ As,γ |p|2s in L2(R3) .

Falls außerdem s < 3/2− σγ ist, dann gibt es ein as,γ > 0, sodass(
|p| − γ

|x|

)2s

≥ as,γ |p|2s in L2(R3) .

Bemerkung 5.3.7. Tatsächlich kann die erste Ungleichung für jedes γ ≤ 2/π und die zweite
Ungleichung für jedes γ < 1/2 direkt hergeleitet werden. In diesen Fällen gelten die Unglei-
chungen des Lemmas sogar für s = 1 und implizieren wegen Operatormonotonie positiver
Wurzeln die Ungleichungen für s < 1. Wegen der Hardy-Ungleichung sind∥∥∥∥(|p| − γ

|x|

)
f

∥∥∥∥ ≤ ‖|p|f‖+ γ
∥∥|x|−1f

∥∥ ≤ (1 + 2γ) ‖|p|f‖

und ∥∥∥∥(|p| − γ

|x|

)
f

∥∥∥∥ ≥ ‖|p|f‖ − γ ∥∥|x|−1f
∥∥ ≥ (1− 2γ) ‖|p|f‖ .

Der Punkt von Lemma 5.3.6 ist, dass beliebige Kopplungskonstanten γ < 2/π behandelt
werden können, wenn man die Potenz s = 1 (was

”
Operator-Ungleichungen“ entspricht)

verkleinert, aber immer noch über 1/2 behält (was
”
Form-Ungleichungen“ entspricht).

Aus Lemma 5.3.6 folgern wir

Korollar 5.3.8. Sei γ ∈ (0, 2/π]. Falls 0 < s < min{3/2 − σγ , 1} und M > − inf specCH` ,
dann sind (

CH` +M
)−s

(C` +M)s und
(
CH` +M

)s
(C` +M)−s

gleichmäßig in ` beschränkt.

Beweis. Da 0 ≥
√
p2
` + 1 − 1 − p` ≥ −1 ist, folgt aus dem Satz von Kato–Rellich, dass(

CH` +M
)−1 (

p` − γr−1 +M
)

und (CH` + M)
(
p` − γr−1 +M

)−1
beschränkt sind. Wegen

Operatormonotonie von x 7→ xs und der Annahme s ≤ 1 sind damit auch die Operatoren(
CH` +M

)−s (
p` − γr−1 +M

)s
und

(
CH` +M

)s (
p` − γr−1 +M

)−s
beschränkt. Es genügt

daher zu zeigen, dass
(
p` − γr−1 +M

)−s
(p` +M)s und

(
p` − γr−1 +M

)s
(p` +M)−s be-

schränkt sind. Mit Lemma 5.3.6 und der Annahme an s folgt

(p` +M)2s ≤ 2(2s−1)+
(
p2s
` +M2s

)
≤ 2(2s−1)+

(
a−1
s,γ

(
p` −

γ

r

)2s
+M2s

)
.

Der Operator auf der rechten Seite ist, modulo einer Konstanten, durch (p` − γr−1 + M)2s

beschränkt. Dies zeigt, dass
(
p` − γr−1 +M

)−s
(p` +M)s beschränkt ist. Der Beweis der

Beschränktheit von
(
p` − γr−1 +M

)s
(p` +M)−s verläuft analog.

Die folgenden Aussagen zeigen, dass unser Raum der Test-Funktionen K(0)
s,δ (siehe (5.20))

in natürlicher Weise in diesem Problem auftaucht.
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Lemma 5.3.9. Sei M > 0 eine feste Konstante und s ∈ (1/2, 1]. Dann gilt für alle r ≥ 0
und ν ≥ 1/2 ∫ ∞

0
dk

krJν(kr)2

(
√
k2 + 1− 1 +M)2s

≤ As,M
[( r
ν

)2s−1
1{r≤ν} + 1{r≥ν}

]
.

Wir verschieben diese Rechnung in Anhang B.1. Der Parameter R ≥ 1/2 in der Defini-

tion der Klasse K(0)
s,δ ist gerade ν, welches die Rolle von ` + 1/2 einnimmt. Wir zeigen nun,

dass Funktionen in K(0)
s,δ relative Spurklassen- und Form-Ungleichungen bezüglich (C` +M)s

erfüllen. Dazu erinnern wir zunächst an die Fourier–Bessel- (oder Hankel-)Transformation Φ`,
welche durch

(Φ`f)(k) := i`
∫ ∞

0
(kr)1/2J`+1/2(kr)f(r) dr für alle ` ∈ N0

definiert ist (siehe beispielsweise Messiah [126, Formel (B.105)]). Es ist bekannt, dass für jedes
` ∈ N0 der Operator Φ` auf L2(R+) unitär ist und p2

` diagonalisiert. Das bedeutet, dass für
jedes f aus dem Definitionsbereich des Operators gilt

(Φ`p
2
`f)(k) = k2(Φ`f)(k) .

Im Folgenden bezeichnet ‖ · ‖2 die Hilbert–Schmidt-Norm.

Behauptung 5.3.10. Seien M > 0, s ∈ (1/2, 1], δ ∈ [0, 2s − 1], ` ∈ N0 und 0 ≤ W ∈ K(0)
s,δ .

Dann gilt

‖W 1/2(C` +M)−s‖22 ≤ As,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(5.22)

und insbesondere

W ≤ As,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(C` +M)2s . (5.23)

Per Dualität kann aus dieser Behauptung eine Sobolew-Ungleichung gewonnen werden,
siehe Anhang D.3.

Beweis. Mit der Fourier–Bessel-Transformation und Lemma 5.3.9 erhält man

‖W 1/2(C` +M)−s‖22 =

∫ ∞
0

drW (r)

∫ ∞
0

dk
krJ`+1/2(kr)2

(
√
k2 + 1− 1 +M)2s

≤ As,M (`+ 1/2)−δ‖W‖K(0)
s,δ

.

Die Form-Ungleichung folgt unmittelbar aus der Spur-Ungleichung.

Kombiniert man Korollar 5.3.8 und Behauptung 5.3.10 sieht man, dass man die vori-
gen Spur- und Form-Ungleichungen auch bezüglich des relativistischen Wasserstoff-Operators
formulieren kann.
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Behauptung 5.3.11. Seien M > − inf specCH` , γ ∈ (0, 2/π), 1/2 < s < min{3/2 − σγ , 1},
δ ∈ [0, 2s− 1], ` ∈ N0 und 0 ≤W ∈ K(0)

s,δ . Dann gilt

‖W 1/2(CH` +M)−s‖22 ≤ Aγ,s,M (`+ 1/2)−δ‖W‖K(0)
s,δ

. (5.24)

Insbesondere gilt

W ≤ Aγ,s,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(CH` +M)2s . (5.25)

Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung 5.3.3. Wir wenden Satz 5.2.3 mit A = CH` , B = U und s > 1/2 mit
s < min{3/2− σγ , 1} an. Die Potenz 1/2 < s′ < s kann beliebig klein sein.

Wir verifizieren nun die Bedingungen von Satz 5.2.3. Die Annahmen, die CH` betreffen,
folgen aus Lemma 5.3.1. Insbesondere impliziert die Tatsache, dass Null kein Eigenwert von
CH` ist, dass die links- und rechtsseitigen Ableitungen bei λ = 0 übereinstimmen.

Die Bedingung, dass (CH` + M)−sU(CH` + M)−s ein Spurklasse-Operator für ein M >

− inf specCH` ist, folgt aus Behauptung 5.3.11 mit U ∈ K(0)
s,ε .

Schließlich folgt die Ungleichung U2s ≤ a(CH` +M)2s′ für 1/2 < s′ < s aus der Annahme

U2s ∈ K(0)
s′,δ′ und (5.25). Insbesondere ist U relativ Form-beschränkt bezüglich CH` mit beliebig

kleiner Form-Schranke.

5.3.4 Beweis von Behauptung 5.3.4

Um Behauptung 5.3.4 zu zeigen, benötigen wir eine Verallgemeinerung des zweiten Teils von
Lemma 5.3.1, die wir ebenfalls aus Kapitel 7 vorwegnehmen.

Lemma 5.3.12 (Satz 7.4.1). Sei 0 < s ≤ 1. Für jedes γ′ > 0 gibt es ein as,γ,γ′ > 0, sodass,
wenn s < 3/2− σγ, dann gilt für alle 0 ≤ U(x) ≤ γ′/|x|(

|p| − γ

|x|
+ U

)2s

≥ as,γ,γ′ |p|2s in L2(R3) .

Außerdem gibt es für jedes 0 < γ′ < 2/π − γ ein a′s,γ,γ′ > 0, sodass, wenn s < 3/2 − σγ+γ′,
dann gilt für alle 0 ≤ U(x) ≤ γ′/|x|(

|p| − γ

|x|
− U

)2s

≥ a′s,γ,γ′ |p|2s in L2(R3) .

Wie im Beweis von Korollar 5.3.8 folgern wir
Korollar 5.3.13. Seien γ ∈ (0, 2/π), ` ∈ N0 und 0 ≤ U ∈ r−1L∞(R+). Falls 0 < s <
min{3/2− σγ , 1} sowie M > − inf specCH` sind, gilt

lim sup
λ→0

∥∥∥(CH` − λU +M
)−s (

CH` +M
)s∥∥∥ <∞ .

Beweis. Der Beweis verläuft analog zu dem von Korollar 5.3.8. Wir ersetzen als Erstes(
CH` − λU +M

)−s
durch (p` − γ/r − λU +M)−s, wenden dann Lemma 5.3.12 an und ver-

fahren mit dem Parameter M wie im Beweis von Korollar 5.3.8. Bei der Anwendung von
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Lemma 5.3.12 unterscheiden wir zwischen λ < 0 und λ > 0. Im ersten Fall folgt die behaupte-
te Schranke sofort. Im zweiten Fall wählen wir γ′ > 0 so, dass s < 3/2− σγ+γ′ . Dann können
wir für jedes 0 < λ ≤ γ′/‖rU‖∞ die Ungleichung aus Lemma 5.3.12 anwenden. Wir beto-
nen, dass die Konstante dieser Ungleichung nicht von λ abhängt. Dies zeigt die behauptete
Schranke.

Beweis von Behauptung 5.3.4. Wir wenden Satz 5.2.2 mit A = CH` , B = U ∈ r−1L∞comp und
1/2 < s < min{3/2− σγ , 1} an.

Die Annahmen, die CH` betreffen, haben wir bereits im Beweis von Behauptung 5.3.3
nachgewiesen. Die Tatsache, dass U relativ Form-beschränkt bezüglich CH` ist, folgt aus der
Kato-Ungleichung.

Die Bedingung, dass der Operator
(
CH` +M

)−s
U
(
CH` +M

)−s
ein Spurklasse-Operator

ist, folgt aus Behauptung 5.3.11 und U ∈ K(0)
s,ε für s ∈ (1/2, 1] und ε ∈ [0, 2s− 1].

Die Bedingung, dass
(
CH` +M

)s (
CH` − λU +M

)−s
gleichmäßig für λ nahe Null be-

schränkt ist, folgt aus den Korollaren 5.3.8 und 5.3.13. Dies schließt den Beweis.

5.4 Kontrolle großer Drehimpulse

5.4.1 Neue Klasse von Funktionen und eine Majorante

Die Funktionen, für welche Satz 5.1.3 gelten, sind für s ≥ 1/2 und δ ∈ [0, 2s−1] in der Klasse

Ks,δ := {W ∈ L1
loc(R+) : ‖W‖Ks,δ <∞}

‖W‖Ks,δ := sup
R≥1/2

Rδ

[∫ R

0

( r
R

)2s−1
|W (r)| dr +

∫ R2

R

( r
R

)4s−1
|W (r)| dr

+R4s−1

∫ ∞
R2

|W (r)| dr
] (5.26)

enthalten.

Wir geben wieder einfache Beispiele von Funktionen, die zu Ks,δ gehören.

Beispiel 5.4.1. Beispiele von Funktionen W ∈ Ks,δ sind

• r−1L∞([0, ρ]) für ein ρ > 0 mit s > 1/2 und δ ∈ [0, 2s − 1]. Die Norm ist durch eine
Konstante mal

max{ρδ/2 + ρδ/2+2s−1/2(1 + log ρ), ρδ + ρδ/2+2s−1/2, ρδ} · ‖rW‖∞

beschränkt.

• L1(R+, r
δ dr) ∩ L1(R+, r

4s−1+δ dr) für jedes s ≥ 1/2 mit δ ∈ [0, 2s− 1].

Die erste Behauptung folgt wieder aus einer direkten Rechnung. Für die zweite Behaup-
tung schätzen wir den zweiten Summanden in der Definition (5.26) durch den dritten Sum-
manden ab, verwenden δ ≤ 2s − 1 und r ≤ R im ersten Summanden und R ≤ r im letzten
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Summanden. Wir erhalten schließlich

Rδ
∫ R

0

( r
R

)2s−1−δ ( r
R

)δ
|W (r)| dr +

∫ ∞
R

R4s−1+δ|W (r)| dr

≤
∫ R

0
|W (r)|rδ dr +

∫ ∞
R
|W (r)|r4s−1+δ dr

≤ ‖W‖L1(R+,rδ dr) + ‖W‖L1(R+,r4s−1+δ dr) .

Funktionen in Ks,δ erfüllen ebenfalls einige nützliche Inklusionseigenschaften.

Lemma 5.4.2. Seien 1/2 ≤ s′ < s und δ ∈ [0, 2s − 1]. Dann erfüllt die Klasse Ks,δ die
folgenden Inklusionseigenschaften.

1. Ist W ∈ Ks′,δ mit δ ∈ [0, 2s′ − 1] kompakt getragen mit supp (W ) = [0, ρ] für ein ρ > 0,
dann ist W ∈ Ks,δ mit ‖W‖Ks,δ ≤ (1 + ρ2(s−s′))‖W‖Ks′,δ .

2. Es gilt Ks,δ ⊆ K
(0)
s,δ .

Wie für die K(0)
s,δ -Klasse bedeutet das, dass Funktionen in Ks,δ glatter am Ursprung sein

müssen, je kleiner s ist. Darüberhinaus müssen Funktionen in Ks,δ schneller im Unendlichen

abfallen als solche in K(0)
s,δ .

Beweis. Die erste Eigenschaft folgt aus den Beobachtungen

(r/R)2s−11{r≤R} ≤ (r/R)2s′−11{r≤R} ,

(r/R)4(s−s′)1{R≤r≤ρ≤R2} ≤ ρ2(s−s′) ,

R4(s−s′)1{R2≤ρ} ≤ ρ2(s−s′)

und der Definition (5.26).
Für die zweite Eigenschaft verwendet man (R/r)4s−11{R≤r≤R2} ≤ 1{R≤r≤R2} und R1−4s ≤

24s−1 auf dem Gebiet r ≥ R2 ≥ 1/4.

Die folgende entscheidende Behauptung wird es uns erlauben, das Weierstraßsche Ma-
jorantenkriterium anzuwenden, um Satz 5.1.3 mehr oder weniger direkt aus Satz 5.1.2 zu
folgern.

Behauptung 5.4.3. Seien 0 < γ ≤ 2/π, 0 ≤ V (r) ≤ γ/r, λ ∈ R, 1/2 < s′ < s ≤ 3/4,
ε ∈ [0, 2s − 1], δ ∈ [0, 2s − 1] und δ′ ∈ [4(s − s′), 2s′ − 1]. Sei weiterhin U = U1 + U2 eine
reellwertige Funktion auf (0,∞) mit U1 ∈ r−1L∞comp(R+) und U2 ≤ 0 oder U2 ≥ 0, sodass
U2 ∈ Ks,ε und |U2|2s ∈ Ks′,δ′ ∩ Ks,δ. Sei schließlich

α :=
(
As,aγ (1− 2/π)−2s‖|U2|2s‖Ks,δ +A−2

s,s′‖|U2|2s‖Ks′,δ′
)1/(2s)

,

wobei As,s′ die universelle Konstante C aus Lemma 5.2.4, aγ die Konstante aus Behauptung
5.4.7 und As,aγ die Konstante aus (5.29) sind. Falls λ

|λ| < min

{
1− γ
‖rU1‖∞

, α−1

}
(5.27)
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erfüllt, gibt es eine Konstante Aγ,s < ∞ und ein Lγ ∈ N, sodass für alle N 3 ` ≥ Lγ die
Abschätzung

Tr(C` − V − λU)− − Tr(C` − V )− ≤ Aγ,sλ‖U‖Ks,ε(`+ 1/2)−4s−ε

gilt.

Wir machen einige Bemerkungen zu dieser Aussage.
Bemerkungen 5.4.4.

1. Diese Aussage ist ausschlaggebend, um Satz 5.1.3 zu zeigen, da sie uns erlaubt die
Summation über ` mit dem Grenzwert λ→ 0 zu vertauschen, um schließlich die Scott-
Vermutung für festes ` (Satz 5.1.2) anzuwenden. Wir bemerken dabei, dass die Schranke
linear in λ ist und uns daher erlaubt abzuleiten.

In der konkreten Situation später wird V entweder γ/r oder ein abgeschirmtes Thomas–
Fermi-Potential sein. Damit ‖U1‖Ks,ε endlich ist, muss ε ≤ 2s − 1 sein, siehe Beispiel
5.4.1. Um also die Abschätzung

λ−1(2`+ 1) [Tr(C` − V − λU)− − Tr(C` − V )−] = o
(
(`+ 1/2)−1

)
zu erhalten, müssen wir 2s− 1 ≥ ε > 2− 4s verlangen, das heißt s > 1/2 und ε ≥ 0.

2. Die Bedingungen |U2|2s ∈ Ks′,δ′ ⊆ K
(0)
s′,δ′ und U2 ∈ Ks,ε ⊆ K(0)

s,ε (wegen der zweiten
Inklusionseigenschaft aus Lemma 5.4.2) zeigen, dass Behauptung 5.3.3 für solche U2

anwendbar ist. Um im nullten Drehimpulskanal für γ > 1/2 ableiten zu dürfen brauchen
wir später die zusätzliche Einschränkung s < 3/2− σγ .

3. Die Spurklasse-Bedingung deutet nur an, wie singulär U beim Ursprung sein darf. Sie
sagt nichts darüber aus, wie langsam die Funktion im Unendlichen abfällt. Wir sind
auf dieses Phänomen bereits bei festem Drehimpuls gestoßen. Wir konnten Satz 5.2.2
nicht verwenden, um beispielsweise die Endlichkeit der potentiellen Energie in jedem
festen Kanal zu beweisen, da wir keine Kontrolle über den langreichweitigen Teil des
Coulomb-Potentials hatten.

4. Die Bedingung, dass U2 eine definite Funktion ist, ist wahrscheinlich technischer Natur
und kommt daher, dass wir Lemma 5.2.4 anwenden wollen, wobei B = λU2 und A =
(C`+a(`+1/2)−2). In der konkreten Anwendung später, sprich im Beweis von Satz 5.1.3,
ist dies jedoch kein großer Verlust, da der Beweis des Satzes ohnehin (wegen Linearität)
auf den Fall, für welchen U nicht-negativ und entweder U1 oder U2 ist, zurückgeführt
wird, siehe auch Unterabschnitt 5.5.1.

5.4.2 Beweis von Behauptung 5.4.3

Die folgenden drei Aussagen motivieren die Definition der Klasse Ks,δ.

Lemma 5.4.5. Seien a > 0 und s ∈ (1/2, 3/4]. Dann gilt für jedes r ≥ 0 und ν ≥ 1/2 die
Abschätzung ∫ ∞

0
dk

krJν(kr)2

(
√
k2 + 1− 1 + aν−2)2s

≤ As,a
[( r
ν

)2s−1
1{r≤ν} +

( r
ν

)4s−1
1{ν≤r≤ν2} + ν4s−11{r≥ν2}

]
.
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Der Beweis dieser Abschätzung kann ebenfalls in Anhang B.1 nachgeschlagen werden.
Der Parameter R ≥ 1/2 in der Definition von Ks,δ ist gerade ν, was wiederum die Rolle

von `+ 1/2 einnimmt. Wir zeigen nun, dass Funktionen in der Ks,δ-Klasse relative Spur- und
Form-Ungleichungen bezüglich (C` + a(`+ 1/2)−2)s erfüllen.

Behauptung 5.4.6. Seien a > 0, s ∈ (1/2, 3/4], δ ∈ [0, 2s − 1], ` ∈ N0 und 0 ≤ W ∈ Ks,δ.
Dann gilt

‖W 1/2(C` + a(`+ 1/2)−2)−s‖22 ≤ As,a(`+ 1/2)−δ‖W‖Ks,δ (5.28)

und insbesondere

W ≤ As,a(`+ 1/2)−δ‖W‖Ks,δ(C` + a(`+ 1/2)−2)2s . (5.29)

Auch aus dieser Ungleichung kann per Dualität eine Sobolew-Ungleichung gewonnen wer-
den, siehe wieder Anhang D.3.

Beweis. Mit der Fourier–Bessel-Transformation und Lemma 5.4.5 folgt wieder

‖W 1/2(C` + a(`+ 1/2)−2)−s‖22

=

∫ ∞
0

drW (r)

∫ ∞
0

dk
krJ`+1/2(kr)2

(
√
k2 + 1− 1 + a(`+ 1/2)−2)2s

≤ As(`+ 1/2)−δ‖W‖Ks,δ .

Die Form-Ungleichung ist eine unmittelbare Konsequenz aus der Spur-Ungleichung.

Für V ≤ γ/r und geeignete Potentiale U zeigen wir, dass inf spec(C` − V − λU) ≥
−aγ(`+ 1/2)−2, falls |λ| hinreichend klein ist. Dies rührt im Wesentlichen vom Verhalten der
kinetischen Energie für kleine Impulse her und wird für den Beweis von Behauptung 5.4.3
wesentlich sein. Für λ = 0 wurde dies bereits von Frank u. a. [70, Theorem 2.2] gezeigt.

Behauptung 5.4.7. Seien ` ∈ N, 0 < γ ≤ 2/π, 0 ≤ V (r) ≤ γ/r, λ ∈ R, s ∈ (1/2, 3/4], δ ∈
[0, 2s− 1] und U = U1 +U2 eine reellwertige Funktion auf (0,∞), sodass U1 ∈ r−1L∞comp(R+)
und |U2|2s ∈ Ks,δ. Dann gibt es eine Konstante aγ > 0, sodass

C` − V − λU ≥ −aγ(`+ 1/2)−2

für alle λ gilt, die

|λ| < min

{
1− γ
‖rU1‖∞

,
(
As,aγ (1− 2/π)−2s‖|U2|2s‖Ks,δ

)−1/(2s)
}

erfüllen, wobei As,aγ die Konstante aus (5.29) ist.

Beweis. Wir benutzen, dass, wenn ` ≥ 1, dann ist p` − κ/r ≥ 0 für alle κ ≤ π/2 (siehe
beispielsweise [6, Lemma 2.2.3 und Theorem 2.2.4]). Insbesondere ist also C` − κ/r für alle
` ≥ 1 und κ ≤ π/2 von unten beschränkt. Mit γ + λ‖rU1‖∞ < 1, dem Variationsprinzip und
den Argumenten des Beweises von [70, Theorem 2.2] gilt somit die Abschätzung

(2/π)C` − (V + λU1) ≥ −(2/π)aγ(`+ 1/2)−2



5.4 Kontrolle großer Drehimpulse 81

für alle ` ∈ N mit einem hinreichend großen aγ > 0. Andererseits haben wir wegen (5.29) die
Schranke

|U2|2s ≤
As,aγ

(1− 2/π)2s
‖|U2|2s‖Ks,δ(`+ 1/2)−δ(1− 2/π)2s(C` + aγ(`+ 1/2)−2)2s .

Die Behauptung folgt dann aus der Operatormonotonie von Potenzen zwischen Null und
Eins.

Damit kommen wir zum

Beweis von Behauptung 5.4.3. Mit dem Variationsprinzip haben wir

s`,λ := Tr(C` − V − λU)− − Tr(C` − V )− ≤ λTr(d`,λU) ,

wobei d`,λ die orthogonale Projektion auf den negativen Spektralraum von C` − V − λU
bezeichnet. Definiert man

A := d`,λ(C` − V − λU + a`)
s

B := (C` − V − λU + a`)
−s(C` + a`)

s

C := (C` + a`)
−sU(C` + a`)

−s ,

so gilt
s`,λ ≤ λTrABCB∗A∗ .

Wir wählen
a` :=

a

(`+ 1/2)2

für ein hinreichend großes a > aγ (mit aγ aus der unteren Schranke aus Behauptung 5.4.7)
und betonen, dass a möglicherweise von γ abhängt, aber unabhängig von ` und λ ist. Da d`,λ
auf den negativen Spektralraum von C` − V − λU projiziert, folgt aus Behauptung 5.4.7 die
Schranke ‖A‖2 ≤ a2s(`+ 1/2)−4s.

Wir widmen uns nun dem Operator B und zeigen ‖B‖ ≤ As,γ . Dazu schreiben wir B =
B1B2, wobei

B1 := (C` − V − λU + a`)
−s(C` − V − λU1 + a`)

s

B2 := (C` − V − λU1 + a`)
−s(C` + a`)

s .

Wir schätzen als Erstes ‖B2‖ ab, indem wir

(C` + a`)
2 ≤ Aγ(C` − V − λU1 + a`)

2

zeigen und dann die Operatormonotonie der Abbildung x 7→ xs mit s ∈ (0, 1] verwenden. Mit
der Hardy-Ungleichung(

f,
(`+ 1/2)2

r2
f

)
=

∫ ∞
0

`(`+ 1) + 1/4

r2
|f(r)|2 dr ≤ (f, p2

`f)

und dem Satz von Plancherel, sprich

‖(p` + a`)(C` + a`)
−1‖ ≤ 1√

2a`
+

1

2
+

√
a`

2
√

2
,
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erhalten wir

‖(C` − V − λU1 + a`)f‖

≥
[
1− (γ + |λ|‖rU1‖∞)

(
1√
2a

+
1

2`+ 1
+

√
a

8
(`+ 1/2)−2

)]
‖(C` + a`)f‖ .

Wählt man a > aγ hinreichend groß, sieht man, dass

‖(C` − V − λU1 + a`)f‖ ≥ Aγ‖(C` + a`)f‖ (5.30)

für alle ` ≥ Lγ gilt, wobei Lγ durch die Ungleichung

1√
2a

+
1

2Lγ + 1
+

√
a/8

(Lγ + 1/2)2
< 1 (5.31)

definiert ist (wir erinnern an γ+ |λ|‖rU1‖∞ < 1). Aus (5.30) und der Operatormonotonie von
x 7→ xs mit s ∈ (0, 1] folgt dann

(C` + a`)
2s ≤ Aγ(C` − V − λU1 + a`)

2s

für alle ` ≥ Lγ und λ ∈ R, welche (5.27) erfüllen. Wir schätzen nun ‖B1‖ ab. Mit Lemma
5.2.4 (welches voraussetzt, dass λU2 eine definite Funktion ist), erhalten wir

(C` − V − λU1 + a`/2 + a`/2)2s ≤ 2(C` − V − λU1 + a`/2− λU2 + a`/2)2s ,

wenn wir die Ungleichung

‖|λU2|s(C` − V − λU1 + a`/2)−s
′‖ ≤ As,s′(a`/2)s−s

′

= As,s′(a/2)s−s
′
(`+ 1/2)2(s′−s) (5.32)

für ein 1/2 < s′ < s zeigen können. Mit Operatormonotonie (da s′ < s) und (5.29) haben wir

|U2|2s ≤ As′,aγ (`+ 1/2)−δ
′‖|U2|2s‖s′,δ′(C` + a`)

2s′

≤ As′,γ(`+ 1/2)−δ
′‖|U2|2s‖s′,δ′(C` − V − λU1 + a`)

2s′ .

Daher ist die linke Seite von (5.32) durch

A
1/2
s′,γ |λ|

s
√
‖|U2|2s‖s′,δ′(`+ 1/2)−δ

′/2

beschränkt. Wegen der Einschränkung (5.27) an λ und δ′ ≥ 4(s−s′) ist die rechte Seite durch
den gewünschten Ausdruck (`+ 1/2)2(s′−s) beschränkt. Dies zeigt (5.32) und damit auch die
Schranke ‖B‖ ≤ As,γ , welche gleichmäßig in λ und ` ist.

Schließlich berechnen wir die Spurnorm von C. Mit der Cauchy–Schwarz-Ungleichung für
Spurideale [158, Theorem 2.8] und Behauptung 5.4.6 ist ‖C‖1 nach oben durch

‖C‖1 ≤
∥∥∥|U |1/2(C` + a`)

−s
∥∥∥2

2
≤ As,a‖U‖Ks,ε(`+ 1/2)−ε

beschränkt. Kombiniert man die Schranken für ‖A‖2, ‖B‖2 und ‖C‖1, erhält man schließlich

s`,λ ≤ Aγ,sλ‖U‖Ks,ε(`+ 1/2)−4s−ε ,

was behauptet war.
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5.4.3 Beweis von Satz 5.1.1 zur Existenz von ρH

Die Strategie für den Beweis von Satz 5.1.1 ist sehr ähnlich zu der von Behauptung 5.4.3.
Da die Sätze des Abschnitts 5.2, insbesondere die Behauptungen 5.3.3 und 5.3.4, bereits
die Endlichkeit der Dichten punktweise fast überall für alle ` ≤ Lγ und ein gewisses, festes
Lγ = O(1) garantieren, müssen wir lediglich die großen Drehimpulse kontrollieren.

Bevor wir zum Beweis von Satz 5.1.1 kommen, beginnen wir mit einer Aufwärmübung.
Wir zeigen, ohne die Maschinerie des Abschnitts 5.2 in Anspruch zu nehmen, direkt die
Endlichkeit von ρH` und ρH punktweise fast überall.

Behauptung 5.4.8. Seien γ ∈ (0, 2/π) und ` ∈ N0. Falls 1/2 < s < min{3/2 − σγ , 3/4},
ε ∈ [0, 2s − 1], W (0) ∈ K(0)

s,ε und W ∈ Ks,ε, dann gibt es Konstanten As,γ,` und As,γ > 0,
sodass∫ ∞

0
ρH` (r)W (0)(r) dr ≤ As,γ,`‖W (0)‖K(0)

s,ε
und

∫
R3

ρH(x)W (|x|) dx ≤ As,γ‖W‖Ks,ε .

Beweis. Es bezeichne d` die orthogonale Projektion auf den negativen Spektralraum von
C` − γ/r. Dann ist ∫ ∞

0
ρH` (r)W (r) dr = Tr d`W = TrABCB∗A∗ ,

wobei nun

A := d`(C` − γ/r + a`)
s

B := (C` − γ/r + a`)
−s(C` + a`)

s

C := (C` + a`)
−sW (C` + a`)

−s

sind, wobei a` = aγ(` + 1/2)−2 mit einem hinreichend großen aγ > 0, welches nicht von
` abhängt. Wegen [70, Theorem 2.2] gilt zunächst wieder die gewöhnliche Schranke ‖A‖ ≤
as,γ(` + 1/2)−4s. Wie im Beweis von Behauptung 5.4.3 ist ‖C‖1 ≤ As,γ(` + 1/2)−ε‖W‖Ks,ε .
Die gleichmäßige Beschränktheit von ‖B‖ in ` wurde für γ ≤ 2/π, hinreichend großes aγ und
alle ` ≥ Lγ im Beweis von Behauptung 5.4.3 gezeigt (dort war es ‖B2‖). Dabei erfüllte die
feste Zahl Lγ die Ungleichung (5.31). Für ` ≤ Lγ spielt die Gleichmäßigkeit der Abschätzung
von ‖B‖ in ` keine Rolle, da wir es hier nur mit einer festen und endlichen Zahl von Drehim-
pulskanälen zu tun haben. In diesem Fall schätzen wir

‖B‖ ≤ ‖B1‖‖B2‖‖B3‖

ab, wobei

B1 := (C` + a`)
s(p` + a`)

−s

B2 := (p` + a`)
s(p` − γ/r + a`)

−s

B3 := (p` − γ/r + a`)
s(C` − γ/r + a`)

−s .

Mit dem Satz von Plancherel ist ‖B1‖ ≤ As für alle ` ∈ N0. Mit Lemma 5.3.6 gilt für festes
γ < 2/π

(p` + a`)
2s ≤ 2(2s−1)+(p2s

` + a2s
` ) ≤ 2(2s−1)+

(
a−1
s,γ

(
p` −

γ

r

)2s
+ a2s

`

)
,
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falls 1/2 < s < min{3/2−σγ , 1}. Hierbei ist as,γ die Konstante aus Lemma 5.3.6. Der Operator
auf der rechten Seite ist klarerweise durch eine Konstante mal (p` − γ/r + a`)

2s beschränkt.
Somit ist auch ‖B2‖ ≤ As,γ für alle ` ∈ N0. Um die Endlichkeit von ‖B3‖ zu zeigen, verwenden

wir, dass die Differenz
√
p2 + 1− 1− |p| beschränkt ist. Daher gibt es ein A > 0, sodass

‖(p` − γ/r + a`)(C` − γ/r + a`)
−1‖ ≤ 1 + ‖(p` − C`)(C` − γ/r + a`)

−1‖
≤ A(`+ 1/2)2 ≤ AL2

γ .

Verwendet man dann die Operatormonotonie der Abbildung x 7→ xs mit s ∈ (0, 1] und
kombiniert die Schranken für B1, B2 und B3, erhält man schließlich

‖B‖ ≤ As,γ .

Kombiniert man nun die Schranken für A,B und C, erhält man∫
R3

ρH(x)W (|x|) dx =

∞∑
`=0

2`+ 1

4π
Tr d`W ≤ Aγ,s

∞∑
`=0

(2`+ 1)(`+ 1/2)−4s−ε‖W‖Ks,ε .

Die rechte Seite ist summierbar, falls 2s− 1 ≥ ε > 2− 4s, sprich s > 1/2 und ε ≥ 0.
Das obige Argument führt auch auf den direkteren Beweis der Endlichkeit von ρH` . Mit

W (0) ∈ K(0)
s,ε erhält man∫ ∞

0
ρH` (r)W (0)(r) dr = Tr d`W

(0) ≤ Aγ,s(`+ 1/2)−ε‖W (0)‖K(0)
s,ε
,

was aus der obigen Beweisführung mit den Operatoren

A := d`(C` − γ/r +M)s

B := (C` − γ/r +M)−s(C` +M)s

C := (C` +M)−sW (0)(C` +M)−s

folgt, wobei M > − inf specCH` eine Konstante der Ordnung O(1) ist.

Mit dieser Vorbereitung kommen wir zum

Beweis von Satz 5.1.1. Wir setzen U = δr (der radialen Delta-Funktion bei r ∈ R+) in den
obigen Überlegungen und schreiben, wie zuvor,

ρH` (r) = Tr d`δr = TrABCB∗A∗

mit

A := d`(C` − γ/r + a`)
s

B := (C` − γ/r + a`)
−s(C` + a`)

s

C := (C` + a`)
−sδr(C` + a`)

−s ,

a` = aγ(` + 1/2)−2 und einem hinreichend großen aγ > 0, welches nicht von ` abhängt.
Zunächst haben wir wieder die gewöhnliche Schranke ‖A‖ ≤ as,γ(` + 1/2)−4s wegen [70,
Theorem 2.2]. Die Spur von C ist gerade (C` + a`)

−2s(r, r), da der Kern (C` + a`)
−2s(r, r′)
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wegen der Sobolew-Einbettung (mit 2s > d = 1) eine stetige Funktion in beiden Variablen
ist. Die Diagonale wurde bereits in Lemma 5.4.5 durch

(C` + a`)
−2s(r, r) ≤ As,aγ

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]
abgeschätzt. Die Endlichkeit von ‖B‖ wurde im Beweis von Behauptung 5.4.8 gezeigt. Kom-
biniert man die Schranken für A,B und C, erhält man

ρH` (r) = Tr d`δr

≤ As,γ(`+ 1/2)−4s

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]
.

Insbesondere ist die mit 2`+ 1 multiplizierte Seite für s > 1/2 summierbar und man erhält

r2ρH(r) =
1

4π

∞∑
`=0

(2`+ 1)ρH` (r) ≤ As,γ(r2−4s + r1/2) .

5.5 Beweis der Konvergenzresultate

5.5.1 Beweis von Satz 5.1.2 (fester Drehimpuls)

Wir behaupten als Erstes, dass es genügt den Satz für nicht-negative Funktionen U , die

entweder in r−1L∞comp(R+) oder in K(0)
s,ε mit U2s ∈ K(0)

s′,δ′ , 1/2 < s′ < s < min{3/2 − σγ , 1},
ε ∈ [0, 2s− 1] und δ′ ∈ [0, 2s′ − 1] enthalten sind.

Tatsächlich sind (U1)+, (U1)−, (U2)+ und (U2)− vier Funktionen mit den benötigten
Eigenschaften. Da die Behauptung von Satz 5.1.2 linear in U ist, genügt es, diese für jede
einzelne dieser vier Funktionen separat zu zeigen.

Wir nehmen daher von nun an an, dass U ≥ 0 entweder in r−1L∞comp(R+) oder in K(0)
s,ε mit

U2s ∈ K(0)
s′,δ′ mit 1/2 < s′ < s < min{3/2−σγ , 1} enthalten ist. Wir definieren die orthogonale

Projektion Π` auf den `-ten Drehimpulskanal durch

Π` :=
∑̀
m=−`

|Y`,m〉〈Y`,m|

sowie den geeignet gestörten Chandrasekhar-Operator

CZ,λ := CZ − λ
N∑
ν=1

c2U(c|xν |)Π`0,ν in

N∧
ν=1

L2(R3) .
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Hierbei wirkt die Projektion Π`0,ν als Π`0 bezüglich dem ν-ten Teilchen. Da U2s ∈ K(0)
s′,δ′ ,

ist U2s ≤ a(CH` + M)2s′ für 1/2 < s′ < s wegen (5.25). Insbesondere ist U infinitesimal
Form-beschränkt bezüglich CH` (siehe auch die Diskussion zwischen Satz 5.2.3 und Lemma
5.2.4), weshalb CZ,λ im Sinne quadratischer Formen für alle λ ∈ R definiert werden kann. Ist
U ∈ r−1L∞comp(R+), dann kann CZ,λ für alle λ in einer Umgebung von Null (welche unabhängig
von Z ist) mittels Katos Ungleichung definiert werden.

Wir erinnern daran, dass d ein Grundzustand des Vielteilchen-Operators CZ war und
bemerken die Gleichheit

λ(2`0 + 1)

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr = c−2Tr(d(CZ − CZ,λ)) . (5.33)

Wir schätzen im Folgenden die rechte Seite nach oben ab. Dazu definieren wir

Cc(v) =
√
−c2∆ + c4 − c2 − v in L2(R3)

für selbstadjungierte Operatoren v in L2(R3), die Form-beschränkt bezüglich |p| mit Form-
Schranke < c sind. Wir erinnern daran, dass wir mit ρTF

Z den eindeutigen Minimierer des
Thomas–Fermi-Funktionals eines neutralen Atoms mit Grundzustandsenergie ETF(Z) be-
zeichnen (Lieb und Simon [119, Theorem II.20]). Wir erinnern außerdem an den Radius
RTF
Z (x) des Austauschlochs bei x ∈ R3, der durch∫

|x−y|≤RTF
Z (x)

ρTF
Z (y) dy =

1

2

definiert ist und setzen

χTF
Z (x) :=

∫
|x−y|≥RTF

Z (x)

ρTF
Z (y)

|x− y|
dy .

Schließlich definieren wir für Spurklasse-Operatoren A die Spur im `-ten Drehimpulskanal
durch

Tr`A := Tr Π`AΠ` .

Wir reduzieren nun das Vielteilchen-Problem auf ein Einteilchen-Problem und schätzen dazu
als Erstes Tr dCZ,λ von unten durch Terme, die nur Einteilchen-Operatoren beinhalten, ab.

Lemma 5.5.1. Für alle λ in einer Umgebung von Null und alle N 3 L < Z gilt

TrCZ,λd ≥ −
L−1∑
`=0

Tr`Cc(Z|x|−1 + λc2U(c|x|)Π`0)−

−
Z∑
`=L

Tr`Cc(Z|x|−1 + λc2U(c|x|)Π`0 − χTF
Z )− −D[ρTF

Z ] .

Beweis. Die Korrelationsungleichung von Mancas u. a. [123] liefert zunächst

∑
ν<µ

1

|xν − xµ|
≥

Z∑
ν=1

χTF
Z (xν)−D[ρTF

Z ].
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Wenn d(1) die Einteilchendichtematrix von d bezeichnet, folgt aus der Nicht-Negativität und
der sphärischen Symmetrie von χTF

Z (x)

TrCZ,λd ≥ −
L−1∑
`=0

Tr` d
(1)Cc(Z|x|−1 + λc2U(c|x|)Π`0)

−
∞∑
`=L

Tr` d
(1)Cc(Z|x|−1 − χTF

Z (x) + λc2U(c|x|)Π`0)−D[ρTF
Z ]

für jedes L < Z. Da der Absolutbetrag der Energie monoton fällt, wenn ` wächst (siehe auch
Behauptung 5.4.7), kann der letzte Ausdruck weiter nach unten abgeschätzt werden, indem
man d(1) durch eine Einteilchendichtematrix ersetzt, die so definiert ist, dass alle Kanäle
` < L vollständig besetzt sind. Da es ohnehin nie mehr als Z besetzte Drehimpulskanäle
gibt, kann die zweite Summe sicherlich bei Z abgeschnitten werden. Die Anwendung des
Variationsprinzips zeigt schließlich die behauptete Schranke.

Als Nächstes erinnern wir an einige Resultate aus [69], welche das asymptotische Verhal-
ten der Grundzustandsenergie von CZ betreffen. Frank u. a. zeigten in [69, Theorem 1 und
Theorem 2], dass die Spektralverschiebung zwischen den wasserstoffartigen Schrödinger- und
Chandrasekhar-Operatoren

s(γ) := γ−2Tr

[(√
p2 + 1− 1− γ

|x|

)
−
−
(
p2

2
− γ

|x|

)
−

]
(5.34)

für alle γ ≤ 2/π endlich ist. Insbesondere gilt für alle v ≤ (2/π)r−1 und ` ∈ N0

Tr`

[(√
p2 + 1− 1− v

)
−
−
(
p2

2
− v
)
−

]
≤ a

(
`+

1

2

)−2

. (5.35)

Das heißt dass die mit dem Entartungsfaktor 2` + 1 multiplizierte Spektralverschiebung in
jedem Drehimpulskanal immer noch summierbar ist.

Lemma 5.5.2. Es gilt

inf specCZ = ETF(Z) +

(
1

4
− s(γ)

)
Z2 +O(Z47/24) . (5.36)

Wenn darüberhinaus L = [Z1/9] ist, gilt außerdem

−
L−1∑
`=0

Tr`Cc(Z|x|−1)− −
Z∑
`=L

Tr`Cc(Z|x|−1 − χTF
Z )− −D[ρTF

Z ]

≥ ETF(Z) +

(
1

4
− s(γ)

)
Z2 − konst Z47/24 . (5.37)

Beweis. Die erste Behauptung ist [69, Theorem 1]. Die Zweite folgt aus der Kombination der
Ersten, der nicht-relativistischen Scott-Korrektur (siehe auch [70, Proposition 4.1]), (5.34)
sowie (5.35). Wie Frank u. a. später in [70] bemerkten, ist es unabdingbar, die Summe über `
auch im nicht-relativistischen Fall (bei Z) abzuschneiden. Dies liegt daran, dass das mittlere
Feld Z/|x| −χTF

Z (x) nur wie Z/|x| im Unendlichen abfällt, weshalb die Summe der negativen
Eigenwerte über alle Kanäle divergiert.
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Mit diesen Vorbereitungen beginnen wir mit dem Hauptteil des Beweises von Satz 5.1.2.
Aus (5.36) und (5.37) folgt für L = [Z1/9] die Ungleichung

TrCZd = inf specCZ = ETF(Z) +

(
1

4
− s(γ)

)
Z2 + konst Z47/24

≤ −
L−1∑
`=0

Tr`Cc(Z|x|−1)− −
Z∑
`=L

Tr`Cc(Z|x|−1 − χTF
Z )− −D[ρTF

Z ]

+ konst Z47/24 .

Kombiniert man dies mit der Schranke aus Lemma 5.5.1, erhält man

Tr(CZ − CZ,λ)d ≤
L−1∑
`=0

(
Tr`Cc(Z|x|−1 + λc2U(c|x|)Π`0)− − Tr`Cc(Z|x|−1)−

)
+

Z∑
`=L

(
Tr`Cc(Z|x|−1 + λc2U(c|x|)Π`0 − χTF

Z )−

−Tr`Cc(Z|x|−1 − χTF
Z )−

)
+ konst Z47/24 .

Offensichtlich verschwindet die Differenz der Spuren nur dann nicht, wenn ` = `0. Für hin-
reichend großes Z wird irgendwann L = [Z1/9] > `0. Für solche Z vereinfacht sich daher der
letzte Ausdruck zu

Tr(CZ − CZ,λ)d ≤ Tr`0Cc(Z|x|−1 + λc2U(c|x|))− − Tr`0Cc(Z|x|−1)−

+ konst Z47/24

= c2
(
Tr`0C1(γ|x|−1 + λU(|x|))− − Tr`0C1(γ|x|−1)−

+konst Z−1/24
)

= c2(2`0 + 1)
(

Tr
(
CH`0 − λU

)
− − Tr

(
CH`0
)
− + konst Z−1/24

)
.

Hierbei haben wir verwendet, dass die Operatoren CH`0 und CH`0−λU nicht vonm ∈ {−`0,−`0+
1, ..., `0−1, `0} abhängen, weshalb die Spur Tr`0 den Entartungsfaktor 2`0 +1 gibt. Setzt man
diese Schranke in (5.33) ein und lässt Z →∞ gehen, erhält man

lim sup
Z→∞

λ

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr ≤ Tr

(
CH`0 − λU

)
− − Tr

(
CH`0
)
− .

Daraus folgt

lim sup
Z→∞

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr ≤ λ−1

(
Tr
(
CH`0 − λU

)
− − Tr

(
CH`0
)
−

)
für λ > 0, beziehungsweise

lim inf
Z→∞

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr ≥ λ−1

(
Tr
(
CH`0 − λU

)
− − Tr

(
CH`0
)
−

)
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für λ < 0. Jetzt können wir λ → 0 gehen lassen. Gemäß der Behauptungen 5.3.3 bezie-
hungsweise 5.3.4 konvergieren die rechten Seiten der letzten beiden Ungleichungen gegen∫∞

0 ρH`0(r)U(r) dr. Dies zeigt, dass
∫∞

0 c−3ρ`0,d(c
−1r)U(r) dr einen Grenzwert für Z →∞ hat

und dieser gerade durch den behaupteten Ausdruck gegeben ist. Die schließt den Beweis des
Satzes.

5.5.2 Beweis von Satz 5.1.3 (alle Drehimpulse)

Wir wissen bereits, dass die starke Scott-Vermutung in jedem festen Drehimpulskanal – also
für alle Kanäle ` ≤ Lγ für ein beliebiges, festes Lγ = O(1) – und gewisse Test-Funktionen
wahr ist. Die Summierung über ` = 0, ..., Lγ stellt daher kein Problem dar. Um die Vermutung
allerdings für die gesamte Dichte zu beweisen – das heißt wir summieren über alle ` ∈ N0 –
müssen wir wissen, ob man die Summierung über ` (für ` ≥ Lγ) mit den Grenzwerten λ→ 0
und Z →∞ vertauschen kann. An dieser Stelle kommt die Majorante aus Behauptung 5.4.3
zum Einsatz. Wir erinnern daran, dass U als sphärisch symmetrisch vorausgesetzt war, wes-
halb wir den gestörten Operator wieder in Drehimpulskanäle zerlegen können. Wir erinnern
und definieren dann für L′ ∈ N die Operatoren

CZ =
N∑
ν=1

(√
−c2∆ν + c4 − c2 − Z

|xν |

)
+

∑
1≤ν<µ≤N

1

|xν − xµ|
,

C
Lγ
Z,λ := CZ − λ

N∑
ν=1

c2U(c|xν |)
L′∑

`0=Lγ

Π`0,ν in

N∧
ν=1

L2(R3) .

Mit denselben Argumenten wie im vorigen Unterabschnitt können wir annehmen, dass U ≥ 0
entweder in r−1L∞comp(R+) oder in Ks,ε mit U2s ∈ Ks,δ ∩ Ks′,δ′ enthalten und sphärisch
symmetrisch ist. Wir erinnern daran, dass die Parameter die Schranken 1/2 < s′ < s <
min{3/2 − σγ , 3/4}, δ′ ∈ [4(s − s′), 2s′ − 1], δ ∈ [0, 2s − 1] und ε ∈ [0, 2s − 1] erfüllen.

Darüberhinaus erinnern wir an die Inklusionseigenschaft Ks,δ ⊆ K
(0)
s,δ aus Lemma 5.4.2, welche

sicherstellt, dass Satz 5.1.2, sprich, die starke Scott-Vermutung in jedem einzelnen Drehim-
pulskanal, für solche Test-Funktionen wahr ist. Wir wählen Lγ aus Behauptung 5.4.3, das
heißt Lγ erfüllt die Ungleichung (5.31).

Wie in (5.33) ist

λ
L′∑

`0=Lγ

(2`0 + 1)

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr = c−2 Tr(d(CZ − C

Lγ
Z,λ)) . (5.38)

Wir erinnern an die Reihenfolge limλ→0 limZ→∞ limL′→∞ der durchzuführenden Grenzwer-
te. Unser erstes Ziel besteht darin, den Grenzwert Z → ∞ mit dem Grenzwert L′ → ∞
zu vertauschen, um das Vielteilchen-Problem wieder auf ein effektives Einteilchen-Problem
zu reduzieren, welches nur noch wasserstoffartige Operatoren involviert. Im Anschluß ver-
tauschen wir noch die Grenzwerte λ → 0 und L′ → ∞, um Satz 5.1.2, sprich die starke
Scott-Vermutung für festen Drehimpuls, anzuwenden. Die Vertauschung dieser Grenzwerte
ist gerechtfertigt, sobald wir das Weierstraßsche Majorantenkriterium mit der Majoranten
aus Behauptung 5.4.3 anwenden können.
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Wir verwenden wie vorher Lemma 5.5.1 und 5.5.2, und erhalten die Abschätzung

c−2 Tr(d(CZ − C
Lγ
Z,λ))

≤ c−2
L−1∑
`=0

Tr`Cc

 Z

|x|
+ λc2U(c|x|)

L′∑
`0=Lγ

Π`0


−

− Tr`Cc

(
Z

|x|

)
−


+ c−2

Z∑
`=L

Tr`Cc

 Z

|x|
− χTF

Z + λc2U(c|x|)
L′∑

`0=Lγ

Π`0


−

− Tr`Cc

(
Z

|x|
− χTF

Z

)
−


+ konst Z−1/24 .

Reskaliert man noch x 7→ x/c, so sieht man, dass (5.38) nach oben durch

∞∑
`=0

(
Tr`C1

(
γ|x|−1 + λU(|x|)

)
− − Tr`C1(γ|x|−1)−

)
θ(`− Lγ)θ(L− 1− `)θ(L′ − `)

+

∞∑
`=0

(
Tr`C1

(
γ|x|−1 − c−2χTF

Z (x/c) + λU(|x|)
)
−

−Tr`C1(γ|x|−1 − c−2χTF
Z (x/c))−

)
θ(`− L)θ(Z − `)θ(L′ − `)

+ konst Z−1/24

(5.39)

beschränkt ist. Hier haben wir bereits antizipiert, dass die zweite Summe für L = [Z1/9] immer
bei L und nicht bei Lγ = O(1) beginnt. Wegen Behauptung 5.4.3 sind beide Summanden für
hinreichend kleines |λ|, ein 1/2 < s < min{3/2− σγ , 3/4} und ε ∈ [0, 2s− 1] nach oben durch

As,γλ‖U‖Ks,ε(`+ 1/2)−4s−ε (5.40)

beschränkt. Nachdem man beide Seiten von (5.38) durch λ geteilt sowie den Entartungsfaktor
(2` + 1) von Tr` nicht vergessen hat, sieht man, dass die Majorante gleichmäßig in λ und Z
summierbar in ` ist, wenn s und ε die Bedingungen aus dem Satz erfüllen. Für Z → ∞
verschwindet daher die zweite Summe in (5.39), da sie durch L−4s−ε+2 beschränkt ist. Damit
erhalten wir für λ > 0

lim sup
Z→∞

lim
L′→∞

L′∑
`=Lγ

(2`+ 1)

∫ ∞
0

c−3ρ`,d(c
−1r)U(r) dr

≤ lim
L′→∞

L′∑
`=Lγ

(2`+ 1)λ−1
(

Tr
(
CH` − λU

)
− − Tr

(
CH`
)
−

)
,

beziehungsweise für λ < 0

lim inf
Z→∞

lim
L′→∞

L′∑
`=Lγ

(2`+ 1)

∫ ∞
0

c−3ρ`,d(c
−1r)U(r) dr

≥ lim
L′→∞

L′∑
`=Lγ

(2`+ 1)λ−1
(

Tr
(
CH` − λU

)
− − Tr

(
CH`
)
−

)
.
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Mit dem Weierstraßschen Majorantenkriterium und der mit (2`+ 1)/λ multiplizierten Majo-
ranten aus (5.40) kann man schließlich die Grenzwerte lim infλ↘0, falls λ > 0, beziehungsweise
lim supλ↗0, falls λ < 0, mit der Summe über ` (genauer gesagt mit dem Limes L′ →∞) ver-
tauschen. Gemäß der Behauptungen 5.3.3 und 5.3.4, sprich der starken Scott-Vermutung für
festes ` (welche wegen der Inklusionseigenschaften aus Lemma 5.4.2 anwendbar sind), kon-
vergieren die rechten Seiten der letzten beiden Abschätzungen gegen

L′∑
`=Lγ

(2`+ 1)

∫ ∞
0

ρH` (r)U(r) dr für λ→ 0 .

Lässt man nun L′ →∞ gehen, erhält man (zusammen mit den ersten Lγ − 1 Summanden)

lim
Z→∞

∫
R3

c−3ρd(c
−1x)U(|x|) dx = lim

Z→∞

∞∑
`=0

(2`+ 1)

∫ ∞
0

c−3ρ`,d(c
−1r)U(r) dr

=

∞∑
`=0

(2`+ 1)

∫ ∞
0

ρH` (r)U(r) dr =

∫
R3

ρH(x)U(|x|) dx ,

was den Beweis von Satz 5.1.3 schließt.
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Kapitel 6

Die starke Scott-Vermutung für
Furry-Atome

Das Ziel dieses Kapitels ist die Verallgemeinerung der starken Scott-Vermutung auf das
Furry-Modell. Der Beweis beruht wieder auf dem Argument der linearen Antwort und den
verallgemeinerten Feynman–Hellmann-Sätzen des letzten Kapitels. Die Schwierigkeit besteht
darin, die Bedingungen dieser Sätze nachzuweisen. Dazu zeigen wir, dass die Normen, die
durch Potenzen des Furry-Operators mit Kopplungen γ < 1 erzeugt werden, zu denen, die
durch Potenzen des Chandrasekhar-Operators mit Kopplungen κγ < 2/π erzeugt werden,

äquivalent sind, wobei κγ =
√

1− γ2 cot(π
√

1− γ2/2). Diese Äquivalenz erlaubt es, relative
Spur- und Form-Ungleichungen bezüglich des Furry-Operators auf entsprechende Ungleichun-
gen bezüglich des Chandrasekhar-Operators zurückzuführen, um damit die Bedingungen der
Feynman-Hellmann-Sätze zu verifizieren.

6.1 Einführung, Definitionen und Resultate

Unser System besteht aus einem am Ursprung fixierten Kern mit Kernladung Z sowie N = Z
Elektronen, die durch den Dirac-Operator beschrieben werden. Der unprojizierte Einteilchen-
Operator, welcher ein Elektron im Feld einer Punktladung Z beschreibt, ist in atomaren
Einheiten durch

DH
Z := −icα · ∇+ c2β − Z

|x|
in L2(R3 : C4) (6.1)

gegeben. Hierbei bezeichnet c wieder die Lichtgeschwindigkeit. Der obere Index H hebt die
wasserstoffartige Natur dieses Operators hervor. Des Weiteren sind

α =

(
0 σ
σ 0

)
, β =

(
1C2 0
0 −1C2

)
,

und σ = (σ1, σ2, σ3) die drei Pauli-Matrizen in der Standard-Darstellung. Unter Skalieren
x 7→ x/c ist DH

Z unitär äquivalent zu

c2

[
−iα · ∇+ β − γ

|x|

]
=: c2DH

γ , (6.2)
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wobei γ := Z/c. Nenciu [135] zeigte, dass DH
γ , zuerst auf S(R3 : C4) definiert, eine ausgezeich-

nete selbstadjungierte Erweiterung besitzt, wenn γ ∈ (−1, 1). Der Definitionsbereich dieser
Realisierung beinhaltet H1(R3 : C4) und der Formbereich ist H1/2(R3 : C4). Insbesondere
sind potentielle und kinetische Energie getrennt voneinander endlich [149, 183, 106], sprich

〈ϕ,DH
γ ψ〉 = 〈ϕ, (−iα · ∇+ β)ψ〉 − 〈ϕ, γ|x|−1ψ〉

für ϕ ∈ H1/2(R3 : C4) und ψ ∈ dom(DH
γ ). Unter Missbrauch der Notation unterscheiden wir

im Folgenden nicht mehr zwischen dem ursprünglichen Operator und seiner Erweiterung.

Wie wir in der Einleitung bereits bemerkt haben, ist die Tatsache, dass ein Teilchen sowohl
positive, als auch negative Energie besitzen kann, fragwürdig. In Kapitel 4 haben wir die Pro-
jektion des Vielteilchen-Operators auf den positiven Spektralraum des freien Dirac-Operators
untersucht, was auf den Brown–Ravenhall-Operator führte. Im vorigen Kapitel sahen wir,
dass sich das Vielteilchen-Problem auf der Längenskala Z−1 im Grenzwert Z → ∞ auf ein
effektives Einteilchen-Problem, welches lediglich wasserstoffartige Operatoren involviert, re-
duziert. Um die Scott-Vermutung auch für den Vielteilchen-Dirac-Operator zu untersuchen,
erscheint es daher sinnvoll, zunächst die Projektion dieses Operators auf den positiven Spek-
tralraum des Coulomb–Dirac-Operators zu betrachten, was auf den Furry-Operator führt.
Der zugrunde liegende Einteilchen-Hilbertraum ist in diesem Fall

HZ := ΛZ(L2(R3 : C4)) := 1(0,∞)(D
H
Z )(L2(R3 : C4)) .

Entsprechend definiert man die Projektion Λγ für den reskalierten Operator DH
γ und bezeich-

net den entsprechenden Hilbertraum mit Hγ . Mit Nencius obigem Resultat ist

ΛZ(S(R3 : C4)) ⊆ H1/2(R3 : C4)

und dicht in HZ .

Der Vielteilchen-Furry-Operator wird mit

DZ :=
N∑
ν=1

(DH
Z − c2)ν +

∑
1≤ν<µ≤N

1

|xν − xµ|
in

N∧
ν=1

HZ (6.3)

bezeichnet. Eine allgemeine Grundzustandsdichtematrix d von DZ in
∧N
ν=1 HZ kann als

d =

M∑
µ=1

wµ|ψµ〉〈ψµ| (6.4)

geschrieben werden. Hierbei bilden die ψµ ∈
∧N
ν=1 HZ eine Orthonormalbasis für den Grund-

zustands-Eigenraum und wµ sind nicht-negative Gewichte, die
∑M

µ=1wµ = 1 erfüllen. Dies
spiegelt die Tatsache wider, dass ein fermionischer Grundzustand entartet sein kann. Wir
bezeichnen die dazugehörige (über den Spin gemittelte) Einteilchendichte mit

ρd(x) := N

M∑
µ=1

wµ

4∑
σ,σ2,...,σN=1

∫
R3(N−1)

|ψµ(x, σ;x2, σ2; ...;xN , σN )|2 dx2...dxN . (6.5)
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Wegen der vorliegenden sphärischen Symmetrie ist es sinnvoll – analog zur Drehimpuls-
kanalzerlegung für sphärisch symmetrische Operatoren in L2(R3 : C) – eine Partialwellen-
zerlegung durchzuführen (siehe [6, Abschnitt 2.1.1] und Anhang C). Demnach besitzt jedes
f ∈ L2(R3 : C4) die Darstellung

f(x) =
∑
`∈N0

∑
1
2
≤j=`± 1

2

j∑
m=−j

∑
±

f±j,`,m(|x|)
|x|

Φ±j,`,m

(
x

|x|

)
∈
⊕
`∈N0

⊕
1
2
≤j=`± 1

2

j⊕
m=−j

Hj,`,m , x ∈ R3 ,

wobei f±j,`,m ∈ L
2(R+, dr) und Φ±j,`,m ∈ L

2(S2 : C4) sphärische Dirac-Spinoren sind, die eine

Orthonormalbasis von L2(S2 : C4) bilden, das heißt insbesondere 〈Φ±j,`,m,Φ
±
j′,`′,m′〉L2(S2:C4) =

δ``′δjj′δmm′ . Des Weiteren sind Hj,` :=
⊕j

m=−j Hj,`,m und Πj,`,m und Πj,` bezeichnen die
orthogonalen Projektionen auf Hj,`,m beziehungsweise Hj,`. Für einen Spurklasse-Operator A
in L2(R3 : C4) bezeichnet

Trj,`(A) := Tr(Πj,`AΠj,`) =

j∑
m=−j

Tr(Πj,`,mAΠj,`,m) =:

j∑
m=−j

Trj,`,m(A)

die Spur im Kanal (j, `) beziehungsweise (j, `,m). Für die explizite Darstellung der Φ±j,`,m
und weitere Details verweisen wir auf Anhang C. Für r ∈ R+ definieren wir die radiale
Grundzustandsdichte ρj,`,d im Kanal (j, `) (mit ` ∈ N0, 1/2 ≤ j = `± 1/2, x′ = (x2, ..., xN ) ∈
R3(N−1) und σ′ = (σ2, ..., σN ) ∈ {1, ..., 4}N−1) durch

ρj,`,d(r) :=
Nr2

2j + 1

∑
σ′

∫
R3(N−1)

dx′ [TrL2(S2:C4)(Πj,`,1d)](r;x′, σ′; r;x′, σ′) .

Hierbei meint Πj,`,1 die Projektion auf Hj,` bezüglich des ersten Teilchens, das heißt Πj,`,1

wirkt als Πj,` bezüglich des ersten Teilchens. Man kann diese Gleichheit auch expliziter
schreiben, indem man ψ̃(x;x′, σ′) ∈ C4+N−1 als die Sammlung {ψ(x, σ;x′, σ′)}4σ=1 für fes-
tes σ′ ∈ {1, ..., 4}N−1 definiert. Dann ist

ρj,`,d(r) =
Nr2

2j + 1

j∑
m=−j

∑
±

M∑
µ=1

wµ
∑
σ′

∫
R3(N−1)

dx′
∣∣∣∣∫

S2
dω 〈Φ±j,`,m(ω), ψ̃µ(rω;x′, σ′)〉C4

∣∣∣∣2 ,
(6.6)

wobei das Skalarprodukt in C4 nur bezüglich der ersten vier Komponenten von ψ̃µ zu ver-
stehen ist. Wir bemerken an dieser Stelle, dass die Spektralprojektion Λγ mit der Parti-
alwellenzerlegung kommutiert, sprich Πj,`,mΛγ = ΛγΠj,`,m. Dies ist beispielsweise aus der
Partialwellenzerlegung von DH

γ (welcher die Hj,`,m invariant lässt) ersichtlich, siehe auch [6,
Abschnitte 2.1.1 und 2.1.2]. Weiter bezeichnet man die radiale Dichte im Drehimpulskanal `
für r ∈ R+ mit

ρ`,d(r) :=
∑

1
2
≤j=`± 1

2

(2j + 1)ρj,`,d(r) .

Unser Hauptresultat betrifft die Grundzustandsdichte auf Abständen der Größenordnung
Z−1 zum Kern. Handrek und Siedentop [80] zeigten, dass Elektronen auf dieser Längenskala
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zur Scott-Korrektur der Thomas–Fermi-Approximation der Grundzustandsenergie des Ope-
rators (

∧Z
ν=1 ΛZ)DZ(

∧Z
ν=1 ΛZ) beitragen. Wie in dieser Arbeit spielt auch hier der reskalierte

Coulomb–Dirac-Operator

Λγ(DH
γ − 1)Λγ = Λγ(α · p+ β − γ

|x|
− 1)Λγ in L2(R3 : C4)

eine fundamentale Rolle. Wir betonen, dass die Eigenfunktionen und Eigenwerte von Λγ(DH
γ −

1)Λγ explizit bekannt sind (siehe beispielsweise das klassische Lehrbuch von Bethe [10] oder
Thaller [172, Formel (8.265) und (8.266)]). Es bezeichne ψHn,j,`,m (mit n ∈ N0, ` ∈ N0, 1/2 ≤
j = `± 1/2 und m ∈ {−j, ..., j}) die normierte Eigenfunktion des Operators

Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m in L2(R3 : C4) (6.7)

mit dazugehörigem Eigenwert eγ,n,j,`, welcher unabhängig von der Azimuthal-Quantenzahl m
ist. Die Eigenfunktionen sind von der Form

ψHn,j,`,m(x) =
∑
±

(ψHn,j,`)
±(|x|)
|x|

Φ±j,`,m(x/|x|) ,

wobei die Funktionen (ψHn,j,`)
±(r) ∈ L2(R+) ebenfalls unabhängig von m sind.

Wir definieren dann die radiale wasserstoffartige Dichte im Kanal (j, `) (mit ` ∈ N0,
1/2 ≤ j = `± 1/2) als

ρHj,`(r) :=
∞∑
n=0

∑
±
|(ψHn,j,`)±(r)|2 . (6.8)

Dementsprechend ist die wasserstoffartige Dichte im Kanal ` durch

ρH` (r) :=
∑

1
2
≤j=`± 1

2

(2j + 1)ρHj,`(r)

und die gesamte wasserstoffartige Dichte durch

ρH(r) :=
1

4πr2

∞∑
`=0

ρH` (r)

gegeben.

Unser erstes Resultat stellt sicher, dass die reskalierten Grundzustandsdichten ρ`,d und ρd
auf der Längenskala Z−1 konvergieren. Genauer gesagt zeigen wir, dass die wasserstoffartigen
Dichten für alle r ∈ R+ endlich sind. Um dieses und die folgenden Hauptresultate präzise zu
formulieren, erinnern wir an den Raum Lpcomp der kompakt getragenen Lp-Funktionen und
führen die Abbildungen

[0, 1]→ [0, 2/π]

γ 7→ Ψ(γ) =
√

1− γ2 cot
(π

2

√
1− γ2

)
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und

[0, 1]→ [0, 2/π]

σ 7→ Φ(σ) := (1− σ) tan
πσ

2

ein. Beide Funktionen sind auf [0, 1] streng monoton steigend. Zudem erfüllen sie Ψ(0) = 0,
limγ→1 Ψ(γ) = 2/π, Φ(0) = 0 und limσ→1 Φ(σ) = 2/π. Darüberhinaus ist Ψ konvex und Φ
konkav. Daher gibt es genau ein κγ ∈ [0, 2/π], sodass Ψ(γ) = κγ und genau ein σκ ∈ [0, 1],
sodass Φ(σκ) = κ. Führt man diese beiden Relationen zusammen, erkennt man, dass es ein
eindeutiges σγ ∈ [0, 1] gibt, sodass

Ψ−1(Φ(σγ)) = γ. (6.9)

Durch Vergleichen der linken und rechten Seite dieser Gleichung, welche als

(1− σγ) tan
(π

2
σγ

)
=
√

1− γ2 cot
(π

2

√
1− γ2

)
umgeschrieben werden kann, findet man mit dem Ansatz 1− γ2 = (1− σγ)2, dass

σγ = 1−
√

1− γ2 (6.10)

die eindeutige Lösung von (6.9) ist. Insbesondere gelten σ0 = 0 und σ1 = 1 und σγ ist streng
monoton steigend auf [0, 1]. Mit diesen Vorbereitungen formulieren wir

Satz 6.1.1 (Existenz von ρH` und ρH). Seien 0 < γ < 1, ` ∈ N0 und 1/2 < s < min{3/2 −
σγ , 3/4}. Dann erfüllen die wasserstoffartigen Dichten ρH` und ρH

ρH` (r) ≤ As,γ(`+ 1/2)1−4s

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]

sowie

r2ρH(r) =
1

4π

∞∑
`=0

ρH` (r) ≤ As,γ(r2−4s + r1/2) .

Die Test-Funktionen, für welche die starke Scott-Vermutung wahr ist, gehören zu den aus

Kapitel 5 bekannten Funktionenräumen K(0)
s,δ und Ks,δ. Wir erinnern an die Definitionen

K(0)
s,δ := {W ∈ L1

loc(R+) : ‖W‖K(0)
s,δ

<∞}

‖W‖K(0)
s,δ

:= sup
R≥1/2

Rδ
[∫ R

0

( r
R

)2s−1
|W (r)| dr +

∫ ∞
R
|W (r)| dr

] (6.11)
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und

Ks,δ := {W ∈ L1
loc(R+) : ‖W‖Ks,δ <∞}

‖W‖Ks,δ := sup
R≥1/2

Rδ

[∫ R

0

( r
R

)2s−1
|W (r)| dr +

∫ R2

R

( r
R

)4s−1
|W (r)| dr

+R4s−1

∫ ∞
R2

|W (r)| dr
] (6.12)

für s ≥ 1/2 und δ ∈ [0, 2s− 1].

Wir erinnern daran, dass r−1L∞comp(R+)-Funktionen sowohl in K(0)
s,δ , als auch in Ks,δ für

s > 1/2 und δ ∈ [0, 2s−1] liegen. Des Weiteren sind L1(R+, r
δ dr) ⊆ K(0)

s,δ und L1(R+, r
δ dr)∩

L1(R+, r
4s−1+δ dr) ⊆ Ks,δ, wenn s ≥ 1/2 und δ ∈ [0, 2s− 1].

Wir erinnern an die grundlegenden Inklusionseigenschaften.

Lemma 6.1.2. Seien 1/2 ≤ s′ < s und δ ∈ [0, 2s − 1]. Dann erfüllen die Räume K(0)
s,δ und

Ks,δ die folgenden Inklusionseigenschaften.

1. Es gilt K(0)
s′,δ ⊆ K

(0)
s,δ , falls δ ∈ [0, 2s′ − 1].

2. Ist W ∈ Ks′,δ mit δ ∈ [0, 2s′ − 1] kompakt getragen mit supp (W ) = [0, ρ] für ein ρ > 0,
dann W ∈ Ks,δ mit ‖W‖Ks,δ ≤ (1 + ρ2(s−s′))‖W‖Ks′,δ .

3. Es gilt Ks,δ ⊆ K
(0)
s,δ .

Dies bedeutet, dass die Funktionen glatter am Ursprung sein müssen, je kleiner s ist.
Darüberhinaus müssen Funktionen aus Ks,δ schneller im Unendlichen abfallen als Funktionen

aus K(0)
s,δ .

Wir sind nun in der Lage, die Hauptresultate dieses Kapitels, sprich die Konvergenz der
reskalierten Grundzustandsdichten, zu formulieren.

Satz 6.1.3 (Konvergenz in einem festen Drehimpulskanal). Seien 0 < γ < 1, `0 ∈ N0,
1/2 < s′ < s < min{3/2 − σγ , 1}, δ′ ∈ [0, 2s′ − 1] und ε ∈ [0, 2s − 1]. Sei U = U1 + U2 mit

U1 ∈ r−1L∞comp, U2 ∈ K(0)
s,ε und |U2|2s ∈ K(0)

s′,δ′. Dann gilt für Z, c→∞ mit fixierten Z/c = γ

lim
Z→∞

∫ ∞
0

c−3ρ`0,d(c
−1r)U(r) dr =

∫ ∞
0

ρH`0(r)U(r) dr .

Satz 6.1.4 (Konvergenz in allen Drehimpulskanälen). Seien 0 < γ < 1, 1/2 < s′ < s <
min{3/2−σγ , 3/4}, δ′ ∈ [4(s− s′), 2s′− 1], δ ∈ [0, 2s− 1] und ε ∈ [0, 2s− 1]. Sei U = U1 +U2

eine Funktion auf (0,∞) mit U1 ∈ r−1L∞comp, U2 ∈ Ks,ε und |U2|2s ∈ Ks′,δ′ ∩ Ks,δ. Dann gilt
für Z, c→∞ mit fixierten Z/c = γ

lim
Z→∞

∫
R3

c−3ρd(c
−1x)U(x) dx =

∫
R3

ρH(x)U(x) dx .

Folgendes ist zu den Hauptergebnissen dieses Kapitels zu bemerken.
(1) Bereits im nicht-relativistischen Fall wurde von Iantchenko u. a. nach [95, Theorem

2] bemerkt, dass es nicht notwendig ist, eine Folge von Grundzustandsdichtematrizen zu
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betrachten. Stattdessen könnte man auch eine Folge von Zuständen dZ in
∧Z
ν=1 HZ verwenden,

die lediglich approximierende Grundzustände sind, das heißt sie erfüllen

lim
Z→∞

Tr(DZdZ)− EQ(Z)

Z2
= 0 .

Hierbei bezeichnet EQ(Z) den tiefsten Punkt im Spektrum von DZ in
∧Z
ν=1 HZ , welcher kein

Eigenwert sein muss. Beispielsweise ist im nicht-relativistischen Fall bekannt, dass der tiefste
Punkt des Spektrums des Vielteilchen-Operators kein Eigenwert ist, wenn N > 2Z.

(2) Der Beweis der Konvergenzresultate erfolgt wieder mit dem Argument der linearen
Antwort und verläuft analog zum Beweis des letzten Kapitels. Wir zeigen zunächst, dass die
Differenz der Erwartungswerte des geeignet gestörten und ungestörten Vielteilchen-Hamilton-
Operators im ungestörten Grundzustand für Z →∞ gegen die Spektralverschiebung zwischen
den entsprechend gestörten und ungestörten wasserstoffartigen Einteilchen-Operatoren kon-
vergiert. Dann verwenden wir die verallgemeinerten Feynman–Hellmann-Sätze des letzten
Kapitels, um die Summe der negativen Eigenwerte des gestörten Wasserstoff-Operators abzu-
leiten. Die Schwierigkeit in der Anwendung dieser Sätze besteht darin, die Voraussetzungen,
wie beispielsweise die relative Spurklasse-Bedingung, nachzuweisen. Im Kanal (j, `) muss man
beispielsweise zeigen, dass

(Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m)1/2(Πj,`,mΛγ(DH
γ − 1 +M)ΛγΠj,`,m)−s

für ein M > | inf spec(Πj,`,mΛγ(DH
γ −1)ΛγΠj,`,m)| und s > 1/2 ein Hilbert–Schmidt-Operator

ist. Die Bedingung s > 1/2 ist, wie im Fall des Chandrasekhar-Operators, entscheidend,
da (1 + k)−1 /∈ L1(R+, dr). Die

”
Idee“ ist es, die relative Spurklasse-Bedingung bezüglich

des Furry-Operators auf die Spurklasse-Bedingung bezüglich des Chandrasekhar-Operators

zurückführen, da diese bereits im letzten Kapitel für Funktionen aus den Klassen K(0)
s,δ und Ks,δ

nachgewiesen wurde. Die größte technische Hürde, die wir hier nehmen müssen, ist zu zeigen,
dass die Chandrasekhar- und Furry-Operatoren miteinander vergleichbar sind. In Korollar
7.1.8 des nächsten Kapitels zeigen wir, dass die von |p|s ⊗ 1C4 und |α · p− γ/|x||s erzeugten
Normen für festes γ < 1 in L2(R3 : C4) (und daher in jedem Kanal (j, `)) äquivalent zueinan-
der sind, wenn 1/2 < s < 3/2− σγ , wobei σγ ∈ [0, 1] in (6.10) definiert wurde. Man erinnere
sich dazu auch an Lemma 5.3.6 des letzten Kapitels. Auf diesem Ergebnis aufbauend, zeigen
wir in Korollar 6.2.9, dass die Operatoren Λγ((|p| + M)s ⊗ 1C4)Λγ und (Λγ(DH

γ + M)Λγ)s

vergleichbar sind. Dies ist eines der wichtigsten Werkzeuge in diesem Kapitel.
(3) Es erscheint plausibel, die eben besprochene Maschinerie zu umgehen und die Konver-

genzresultate viel direkter zu zeigen. Wir erinnern daran, dass die Eigenwerte des Coulomb–
Dirac-Operators explizit bekannt sind (Sommerfeld [164], Gordon [75] und Darwin [30]). Wäre
es möglich, eine Schranke wie

Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m ≤ aΠj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m (6.13)

für geeignete (nicht-negative, sphärisch symmetrische) Funktionen U zu zeigen, so würde diese
Ungleichung die Schranke

eγ,n,j,`,0 − eγ,n,j,`,λ
λ

≤ a · eγ,n,j,`,0

implizieren, wobei eγ,n,j,`,λ die negativen Eigenwerte von Πj,`,mΛγ(DH
γ − λU − 1)ΛγΠj,`,m

bezeichnen. Insbesondere ist die rechte Seite in n ∈ N0 summierbar. Für festes ` ∈ N0
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und 1/2 ≤ j = ` ± 1/2 würde diese Ungleichung die Vertauschung des Grenzwerts λ → 0
mit der Summe über n erlauben, um im Anschluß das gewöhnliche Feynman–Hellmann-
Theorem anzuwenden. Diese Hoffnung wird durch die Arbeit von Iantchenko u. a. [95] im
nicht-relativistischen Fall genährt. Mit Hilfe ihres Lemmas 2 zeigten sie zunächst punktweise
Konvergenz der Radialdichten, indem sie U(r) = δ(r − a) für ein festes a > 0 ansetzten. Mit
der Poincaré-Ungleichung konnten sie |f(a)|2 ≤ 4aπ−1‖f ′‖22 abschätzen, was es ihnen erlaubte
eine zu (6.13) ähnliche Schranke an die Eigenwerte des gestörten Operators zu formulieren.
Sie verfuhren dann wie eben geschildert, um die Summe der negativen Eigenwerte nach λ ab-
zuleiten. Für weitere Details verweisen wir auf ihre Beweise von [95, Lemma 2 und Theorem
1].

(4) Wie im letzten Kapitel, zeigen wir, dass die wasserstoffartige Dichte ρH für alle r ∈ R+

endlich ist und erhalten ebenfalls die punktweise obere Schranke

ρH(r) ≤ Aγr−3/2 für r →∞ .

Obwohl die Eigenfunktionen des Coulomb–Dirac-Operators explizit bekannt sind, ist es im-
mer noch ein offenes Problem, sowohl das exakte asymptotische Verhalten für r → ∞ zu
bestimmen, als auch die Monotonie von ρH zu zeigen.

Notation

Wir werden oft Funktionen des Furry-Operators ΛγD
H
γ Λγ (oder seiner Projektion auf Hj,`,m)

mit Funktionen von Operatoren S ⊗ 1C4 in L2(R3 : C4) (oder ihrer Projektionen auf Hj,`,m)
vergleichen. Hierbei ist S typischerweise ein nach unten beschränkter, sphärisch symmetri-
scher, skalarer Operator wie

√
−∆− γ/|x|, oder eine nicht-negative, sphärisch symmetrische,

skalarwertige Funktion, wie die Test-Funktion U . Um die Notation einfach zu halten, werden
wir allerdings den Zusatz 1C4 unterdrücken, falls dies unmittelbar aus dem Kontext hervor-
geht.

6.2 Anwendung der Feynman–Hellmann-Sätze im Furry-Bild
– fester Drehimpuls

Die beiden wichtigsten technischen Werkzeuge für die Durchführung des Arguments der li-
nearen Antwort wurden bereits im letzten Kapitel eingeführt, siehe die Sätze 5.2.2 und 5.2.3.
Der Vollständigkeit halber wiederholen wir diese hier kurz. Coulombische Singularitäten wer-

den mit dem ersten, und K(0)
s,δ -Funktionen mit dem zweiten Satz behandelt. Im Folgenden

schreiben wir wieder A− = −Aχ(−∞,0), das heißt der Negativteil ist positiv definiert.

Behauptung 6.2.1. Sei A ein selbstadjungierter Operator, sodass A− in der Spurklasse
ist. Sei B ≥ 0 ein bezüglich A relativ Form-beschränkter Operator. Angenommen, es gibt
1/2 ≤ s ≤ 1, sodass für eine hinreichend große Zahl M > 0 sowohl

(A+M)−sB(A+M)−s in der Spurklasse ist (6.14)

sowie

lim sup
λ→0

∥∥(A+M)s(A− λB +M)−s
∥∥ <∞ (6.15)
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gilt. Dann erfüllen die einseitigen Ableitungen von

λ 7→ S(λ) := Tr(A− λB)−

die Relationen

TrBχ(−∞,0)(A) = D−S(0) ≤ D+S(0) = TrBχ(−∞,0](A) .

Insbesondere ist S bei λ = 0 genau dann differenzierbar, wenn B|kerA = 0.

Behauptung 6.2.2. Sei A ein selbstadjungierter Operator, sodass A− in der Spurklasse ist
und B ein nicht-negativer Operator. Angenommen, es gibt Zahlen max{s′, 1/2} < s < 1,
sodass für ein M > 0 die Bedingung (6.14) (mit demselben s) erfüllt ist und eine Konstante
a > 0, sodass

B2s ≤ a(A+M)2s′ (6.16)

gilt. Dann sind die Aussagen in Behauptung 6.2.1 wahr.

Wir erinnern nochmals daran, dass die Bedingungen der Behauptungen garantieren, dass
die rechtsseitige Ableitung endlich ist. Des Weiteren stimmen die links- und rechtsseitigen
Ableitungen überein, wenn Null kein Eigenwert von A ist.

In der Anwendung wird A der Furry-Operator Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m sein, wohinge-

gen B = Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m die Rolle der Test-Funktion übernimmt. Wir erinnern
zunächst an einige grundlegende Eigenschaften von ΛγD

H
γ Λγ .

Lemma 6.2.3. Seien ` ∈ N0, 1/2 ≤ j = ` ± 1/2 und γ ∈ (0, 1). Dann ist ΛγD
H
γ Λγ von

unten beschränkt und Trj,`(Λγ(DH
γ − 1)Λγ)− < ∞. Darüberhinaus ist Null kein Eigenwert

von Λγ(DH
γ − 1)Λγ.

Beweis. Per Definition von Λγ ist ΛγD
H
γ Λγ von unten beschränkt.

Die Endlichkeit von Trj,`(Λγ(DH
γ − 1)Λγ)− folgt beispielsweise aus der expliziten Formel

der Eigenwerte (Sommerfeld [164], Gordon [75] und Darwin [30])

eγ,n,j,` =

1− γ2(
n+ 1 + `− (j + 1

2) +
√

(j + 1/2)2 − γ2
)2

+ γ2


1/2

− 1 .

Alternativ folgt sie, für ` ≥ 1, aus dem Min-Max-Prinzip für Operatoren mit Spektrallücken
(Griesemer u. a. [76]), welches

Trj,`(Λγ(DH
γ − 1)Λγ)− ≤ Trj,`(Λ0(DH

γ − 1)Λ0)−

mit Λ0 := 1(0,∞)(α ·p+β) impliziert sowie [70, Theorem 2.1], welches wiederum besagt, dass
die rechte Seite endlich ist. Man bemerkt, dass das Min-Max-Prinzip [76, Theorem 1] auf
Drehimpulskanäle eingeschränkte Dirac-Operatoren mit radialen Potentialen, die Coulomb-
Singularitäten besitzen, anwendbar ist. Wegen ` ≥ 1 und der Hardy-Ungleichung sind auch
Kopplungskonstanten γ ∈ (0, 1) behandelbar. Für mehr Details verweisen wir auf die Diskus-
sion nach [80, Formel (29)].

Die Tatsache, dass Null kein Eigenwert von Λγ(DH
γ − 1)Λγ ist, wird im Buch von Thal-

ler [171, Corollary 4.22] oder Balinsky und Evans [6, Theorem 3.1.4] bewiesen. Obwohl die
Aussage dort nur für γ ≤

√
3/2 gemacht wird, setzt sie sich auf das Intervall [

√
3/2, 1) fort,

da der Beweis lediglich von der Gültigkeit eines Virial-Satzes abhängt. Dieser wurde jedoch
auch für Coulomb–Dirac-Operatoren von Kalf [100] für Kopplungen |γ| < 1 gezeigt.
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Die folgenden Behauptungen zeigen die Anwendbarkeit der Behauptungen 6.2.1 und 6.2.2.
Sie sind entscheidend, um die lineare Antwort zu berechnen und spielen daher eine zentrale
Rolle beim Beweis der Konvergenzresultate.

Behauptung 6.2.4. Seien γ ∈ (0, 1), 1/2 < s′ < s < min{3/2− σγ , 1}, δ′ ∈ [0, 2s′ − 1] und

ε ∈ [0, 2s − 1]. Seien 0 ≤ U ∈ K(0)
s,ε mit U2s ∈ K(0)

s′,δ′, ` ∈ N0 und 1/2 ≤ j = ` ± 1/2 und
m ∈ {−j, ..., j}. Dann ist die Abbildung

λ 7→ Trj,`,m(Λγ(DH
γ − λU ⊗ 1C4 − 1)Λγ)−

bei λ = 0 differenzierbar mit Ableitung
∫∞

0 ρHj,`(r)U(r) dr.

Behauptung 6.2.5. Seien γ ∈ (0, 1), 0 ≤ U ∈ r−1L∞comp(R+), ` ∈ N0 und 1/2 ≤ j = `± 1/2
und m ∈ {−j, ..., j}. Dann ist die Abbildung

λ 7→ Trj,`,m(Λγ(DH
γ − λU ⊗ 1C4 − 1)Λγ)−

bei λ = 0 differenzierbar mit Ableitung
∫∞

0 ρHj,`(r)U(r) dr.

Wir bemerken Folgendes zur Endlichkeit von ρHj,` beziehungsweise ρH` (r) =
∑

1
2
≤j=`± 1

2
(2j+

1)ρHj,`(r).

Bemerkungen 6.2.6. Wie im letzten Kapitel, ist es Teil der Behauptungen, dass das Integral∫∞
0 ρH` (r)U(r)dr für die Test-Funktionen aus den obigen Behauptungen endlich ist. Wir geben

später wieder einen direkteren Beweis dieser Tatsache (Behauptung 6.3.5), der nicht auf der
Maschinerie der Behauptungen 6.2.2 und 6.2.1 beruht.

Des Weiteren kann wieder sehr direkt gezeigt werden, dass die potentielle Energie im
Kanal ` endlich ist, was aus einer expliziten Rechnung von Burke und Grant [17] folgt. Sie
bestimmten den Erwartungswert des Coulomb-Potentials für die Eigenfunktionen ψHn,j,`,m.
Darauf aufbauend zeigten Handrek und Siedentop in [80, Lemma 2], dass es für gegebenes
γ0 ∈ (0, 1) eine Konstante aγ0 gibt, sodass für alle n ∈ N0, j ≥ 1/2, ` = j± 1/2, m = −j, ..., j
und γ ∈ (0, γ0] die Ungleichung

〈ψHn,j,`,m,
γ

|x|
ψHn,j,`,m〉 ≤

aγ0γ
2

(n+ `+ 1)2

gilt. Offensichtlich ist die rechte Seite in n ∈ N0, m = −j, ..., j und 1/2 ≤ j = ` ± 1/2
summierbar.

Wir zeigen die Behauptungen 6.2.4 und 6.2.5 mit Hilfe der Behauptungen 6.2.2 beziehungs-
weise 6.2.1. Der Rest dieses Abschnitts befasst sich daher mit der Verifikation der Annahmen
dieser Sätze. Dazu reduzieren wir das Problem zunächst auf den Chandrasekhar-Operator
und verwenden dann die Resultate des letzten Kapitels.

In diesem und dem nächsten Abschnitt werden wir oft die Davis–Sherman-Ungleichung
[32, 33] (siehe auch [18, Theorem 4.19]) verwenden. Sie besagt, dass für alle operatorkonvexen
Funktionen f und alle orthogonalen Projektionen P die Form-Ungleichung

Pf(PAP )P ≤ Pf(A)P
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für alle selbstadjungierten Operatoren A in einem Hilbertraum H gilt. Ist darüberhinaus
f(0) = 0, so vereinfacht sich die Ungleichung zu

f(PAP ) ≤ Pf(A)P . (6.17)

Tatsächlich gilt mit P̃ = 1− P

f(PAP ) = Pf(PAP )P + P̃ f(PAP )P̃ ,

da P mit PAP und daher jeder Funktion f(PAP ) kommutiert. Andererseits gilt wegen des
Spektralsatzes P̃ f(T )P̃ = P̃ f(P̃ T P̃ )P̃ für jeden selbstadjungierten Operator T , der mit P̃
beziehungsweise P vertauscht. Daher erhält man mit T = PAP

P̃f(PAP )P̃ = P̃ f(P̃PAPP̃ )P̃ = P̃ f(0)P̃

und die rechte Seite verschwindet, wenn f(0) = 0. Typischerweise ist die Situation so, dass
A ≥ 0 und f(x) = x2s mit s ∈ [1/2, 1].

6.2.1 Vergleich der Chandrasekhar- und Furry-Operatoren

Wir bezeichnen den masselosen Coulomb–Dirac-Operator mit

D0
γ := −iα · ∇ − γ

|x|
in L2(R3 : C4) .

Wir nehmen folgendes Resultat (Korollar 7.1.8) aus Kapitel 7 vorweg. Es besagt, dass es
ein s > 1/2 gibt (welches von der festen Kopplungskonstanten γ < 1 abhängt), sodass die
durch |p|s und |D0

γ |s erzeugten Normen äquivalent sind. Wir erinnern an die Relation σγ =

1−
√

1− γ2, siehe (6.10).

Lemma 6.2.7. Seien γ ∈ (0, 1) und s ∈ (0, 1]. Dann gibt es eine Konstante As,γ <∞, sodass

|D0
γ |2s ≤ As,γ |p|2s ⊗ 1C4 in L2(R3 : C4)

und, falls zusätzlich s < 3/2− σγ, dann gibt es eine Konstante as,γ > 0, sodass

|D0
γ |2s ≥ as,γ |p|2s ⊗ 1C4 in L2(R3 : C4) .

Bemerkung 6.2.8. Die erste Schranke ist eine unmittelbare Konsequenz aus der Hardy-Un-
gleichung und der Operatormonotonie von x 7→ xs mit 0 < s < 1. Die zweite Schranke folgt
aus Lemma 5.3.6 (siehe auch Satz 7.1.1 des nächsten Kapitels) und einer Beobachtung von
Morozov und Müller [132]. Für s = 1 zeigen Sie in Lemma IV.4, dass (D0

γ)2 nach unten durch
eine Konstante mal (|p| − κγ/|x|)2 ⊗ 1C4 abgeschätzt werden kann. Andererseits besagt ihr
Lemma IV.5, dass auf dem orthogonalen Komplement dieses Kanals (D0

γ)2 tatsächlich durch
eine Konstante mal |p|2 ⊗ 1C4 abgeschätzt werden kann. Dies kann wiederum (wie zuvor mit
der Hardy-Ungleichung) weiter von unten durch (|p| − κγ/|x|)2 ⊗ 1C4 abgeschätzt werden,
wobei κγ = Ψ(γ) (siehe die Diskussion vor (6.10)). Die zweite Abschätzung in Lemma 6.2.7
würde daher sofort für alle ` ≥ 1 und γ < 1 beziehungsweise für ` = 0 und κγ < 1/2 (wegen der
Hardy-Ungleichung), sprich γ <

√
3/2 aus der Operatormonotonie von x 7→ xs mit 0 < s < 1

folgen. Der Punkt von Lemma 6.2.7 ist, dass beliebige Kopplungskonstanten γ < 1 behandelt
werden können, wenn man die Potenz s = 1 (was

”
Operator-Ungleichungen“ entspricht)

verkleinert, aber immer noch über 1/2 behält (was
”
Form-Ungleichungen“ entspricht).
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Aus Lemma 6.2.7 folgern wir folgendes wichtige

Korollar 6.2.9. Seien γ ∈ (0, 1) und M > | inf spec(ΛγD
H
γ )| = 0. Falls 0 < s < min{3/2 −

σγ , 1}, dann gilt

Λγ (|p|+M)2s Λγ ≤
2 max{a−1

s,γ , 1}
(1− γ2)s

(
Λγ(DH

γ +M)Λγ
)2s

. (6.18)

Ist 0 < s ≤ 1, dann gilt zudem

(Λγ(DH
γ +M)Λγ)2s ≤ AM,γΛγ (|p|+M)2s Λγ .

Beweis. Wir beginnen mit der ersten Ungleichung und bemerken zunächst, dass

(DH
γ )2 ≥ (1− γ2)|D0

γ |2

nach dem Beweis von [132, Corollary I.2] gilt. Da ΛγD
H
γ Λγ = Λγ |DH

γ |Λγ und Λγ |DH
γ |2sΛγ =

(ΛγD
H
γ Λγ)2s (wegen des Spektralsatzes), erhält man mit der Operatormonotonie von x 7→ xs

mit s ∈ (0, 1]

Λγ(|D0
γ |2s +M2s)Λγ ≤ (1− γ2)−sΛγ(|DH

γ |2s +M2s)Λγ

≤ 2(1−2s)+(1− γ2)−s
(
Λγ(DH

γ +M)Λγ
)2s

.

Es genügt daher

Λγ (|p|+M)2s Λγ ≤ 2(2s−1)+ max{1, a−1
s,γ}Λγ(|D0

γ |2s +M2s)Λγ (6.19)

zu zeigen. Mit Lemma 6.2.7 und der Annahme an s gilt

(|p|+M)2s ≤ 2(2s−1)+
(
|p|2s +M2s

)
≤ 2(2s−1)+

(
a−1
s,γ |D0

γ |2s +M2s
)
.

Die rechte Seite ist durch 2(2s−1)+ max{1, a−1
s,γ}(|D0

γ |2s +M2s) beschränkt, was (6.19) zeigt.

Um die zweite Behauptung zu zeigen, verwenden wir wieder ΛγD
H
γ = Λγ |DH

γ |, um

(
Λγ(DH

γ +M)Λγ
)2s ≤ 2(2s−1)+Λγ

(
(Λγ |DH

γ |Λγ)2s +M2s
)

Λγ

= 2(2s−1)+Λγ
(
|DH

γ |2s +M2s
)

Λγ

zu folgern. Mit der Hardy-Ungleichung und (α · p+ β)2 = p2 + 1 erhält man

|DH
γ |2 = (DH

γ )2 ≤ 2

(
p2 + 1 +

γ2

|x|2

)
≤ aγ(|p|2 + 1) ≤ aM,γ(|p|+M)2 .

Daraus folgt mit Operatormonotonie positiver Wurzeln und der vorigen Schranke(
Λγ(DH

γ +M)Λγ
)2s ≤ aM,γΛγ (|p|+M)2s Λγ ,

was den Beweis schließt.



6.2 Anwendung der Feynman–Hellmann-Sätze im Furry-Bild – fester
Drehimpuls 105

Wir führen die folgenden nicht-radialen Operatoren

p` := Πj,`,m(
√
−∆⊗ 1C4)Πj,`,m ,

C` := Πj,`,m

(
(
√
−∆ + 1− 1)⊗ 1C4

)
Πj,`,m in L2(R3 : C4)

sowie die entsprechenden radialen Operatoren

p
(r)
` :=

√
− d2

dr2
+
`(`+ 1)

r2
, (6.20)

C
(r)
` :=

√
− d2

dr2
+
`(`+ 1)

r2
+ 1− 1 in L2(R+ : C, dr) (6.21)

ein und bemerken, dass die Schranken aus Korollar 6.2.9 in jedem einzelnen Raum Hj,`,m
gelten. Wir erinnern daran, dass jedes Element f ∈ Hj,`,m von der Form

f(x) =
∑
±
|x|−1f±(|x|)Φ±j,`,m(x/|x|)

ist, wobei f± ∈ L2(R+) und Φ±j,`,m, bis auf (j, `,m)-abhängige Normierungskonstanten, die

C4-Vektoren (Y`,m−1/2, Y`,m+1/2, 0, 0) beziehungsweise (0, 0, Y2j−`,m−1/2, Y2j−`,m+1/2) sind. So-

wohl DH
γ , als auch |p|⊗1C4 lassen die Räume Hj,`,m invariant, das heißt sie kommutieren mit

der Projektion Πj,`,m, denn für f ∈ Hj,`,m ∩H1/2(R3 : C4) und g ∈ Hj′,`′,m′ ∩H1/2(R3 : C4)
sind

〈f, (|p| ⊗ 1C4)g〉L2(R3:C4) = (〈f+, p
(r)
` g+〉L2(R+:C) + 〈f−, p(r)

2j−`g
−〉L2(R+:C))δjj′δ``′δmm′

und (mit κj,` = j(j + 1)− `(`+ 1) + 1/4, siehe auch [6, Formel (2.1.43)])

〈f,DH
γ g〉L2(R3:C4) = 〈

(
f+

f−

)
,

(
1− γ

r − d
dr −

κj,`
r

d
dr −

κj,`
r −1− γ

r

)(
g+

g−

)
〉L2(R+:C2)δjj′δ``′δmm′ .

Diese Tatsache und der Spektralsatz zeigen, dass die Projektion von (6.18) auf Hj,`,m, sprich

Πj,`,mΛγ(|p|+M)2sΛγΠj,`,m ≤ as,γΠj,`,m(Λγ(DH
γ +M)Λγ)2sΠj,`,m , (6.22)

äquivalent ist zu

Λγ(Πj,`,m(|p|+M)Πj,`,m)2sΛγ ≤ as,γ(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)2s . (6.23)

6.2.2 Beweis von Behauptung 6.2.4

Wir erinnern an die Spur- und Form-Ungleichungen aus Behauptung 5.3.10, die für die Klasse

K(0)
s,δ galten. In diesem Kapitel wurden sie bezüglich Potenzen von C

(r)
` +M formuliert. Wegen

des Satzes von Plancherel kann man sie aber genauso gut durch Potenzen von p
(r)
` +M aus-

drücken. Hier werden wir sie allerdings bezüglich des nicht-radialen Operators p` formulieren.
Im Folgenden bezeichnen ‖·‖1 und ‖·‖2 die Spur- beziehungsweise die Hilbert–Schmidt-Norm
im jeweiligen Hilbertraum, also entweder L2(R3 : C4) oder L2(R+ : C, dr).
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Behauptung 6.2.10. Seien M > 0, s ∈ (1/2, 1], δ ∈ [0, 2s − 1], ` ∈ N0, 1/2 ≤ j = ` ± 1/2

und 0 ≤W ∈ K(0)
s,δ . Dann gilt

‖(Πj,`,m(W ⊗ 1C4)Πj,`,m)1/2(p` +MΠj,`,m)−s‖22 ≤ As,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(6.24)

und insbesondere

Πj,`,m(W ⊗ 1C4)Πj,`,m ≤ As,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(p` +MΠj,`,m)2s . (6.25)

Beweis. Es genügt (6.24) zu zeigen, da die Form-Ungleichung unmittelbar aus der Spur-
Ungleichung folgt. Da Πj,`,m mit p` + MΠj,` kommutiert und Hj,`,m invariant unter |p| ist,
gilt zunächst

(p` +MΠj,`,m)−sΠj,`,mWΠj,`,m(p` +MΠj,`,m)−s

= Πj,`,m(p` +MΠj,`,m)−sΠj,`,mWΠj,`,m(p` +MΠj,`,m)−sΠj,`,m

= Πj,`,m(|p|+M)−sΠj,`,mWΠj,`,m(|p|+M)−sΠj,`,m

= Πj,`,m(|p|+M)−sW (|p|+M)−sΠj,`,m .

Bezeichnet {(f+
n , f

−
n )}n∈N eine Orthonormalbasis in L2(R+ : C2), kann die linke Seite von

(6.24) mit der Abkürzung A` := (p
(r)
` +M)−sW (p

(r)
` +M)−s durch

Trj,`,m[((|p|+M)−sW (|p|+M)−s)⊗ 1C4 ]

=
∑
n

(
〈f+
n , (p

(r)
` +M)−sW (p

(r)
` +M)−sf+

n 〉L2(R+)

+〈f−n , (p
(r)
2j−` +M)−sW (p

(r)
2j−` +M)−sf−n 〉L2(R+)

)
≤ TrL2(R+:C2)((A` +A2j−`)⊗ 1C2)

= 2(‖W 1/2(p
(r)
` +M)−s‖22 + ‖W 1/2(p

(r)
2j−` +M)−s‖22) .

abgeschätzt werden. Kombiniert man dies mit Behauptung 5.3.10 des letzten Kapitels, sprich

‖W 1/2(p
(r)
` +M)−s‖22 ≤ As,M (`+ 1/2)−δ‖W‖K(0)

s,δ

,

und bemerkt, dass (`+1/2)(2j−`+1/2)−1 ≤ 3 für 1/2 ≤ j = `±1/2, folgt die Behauptung.

Kombiniert man Korollar 6.2.9 in jedem Kanal (j, `,m) (sprich (6.23)) und Behauptung
6.2.10, erhält man eine Verallgemeinerung der Ungleichungen (6.24) und (6.25) bezüglich des
Furry-Operators.

Behauptung 6.2.11. Seien M > | inf spec(Πj,`,mΛγD
H
γ ΛγΠj,`,m)|, γ ∈ (0, 1), 1/2 < s <

min{3/2− σγ , 1}, δ ∈ [0, 2s− 1], ` ∈ N0, 1/2 ≤ j = `± 1/2 und 0 ≤W ∈ K(0)
s,δ . Dann gilt

‖(Πj,`,m(W ⊗ 1C4)Πj,`,m)1/2Λγ(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)−s‖22

≤ Aγ,s,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(6.26)

und insbesondere

Πj,`,mΛγ(W ⊗ 1C4)ΛγΠj,`,m

≤ Aγ,s,M (`+ 1/2)−δ‖W‖K(0)
s,δ

(Πj,`,mΛγ(DH
j,` +M)ΛγΠj,`,m)2s .

(6.27)
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Da ΛγΠj,`,m = Πj,`,mΛγ , ist die linke Seite von (6.26) äquivalent zu

‖(Πj,`,mΛγ(W ⊗ 1C4)ΛγΠj,`,m)1/2(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)−s‖22 .

Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung 6.2.4. Wir wenden Behauptung 6.2.2 mit 1/2 < s′ < s < min{3/2−
σγ , 1},

A = Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m und

B = Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m ≥ 0

an. Dazu verifizieren wir die Annahmen von Behauptung 6.2.2. Die Annahmen, die den un-
gestörten Operator Πj,`,mΛγ(DH

γ −1)ΛγΠj,`,m betreffen, folgen aus Lemma 6.2.3. Insbesondere
stimmen die links- und rechtsseitigen Ableitungen bei λ = 0 überein, da Null kein Eigenwert
von Λγ(DH

γ − 1)Λγ ist.
Für M ′ > 1 ist die Hilbert–Schmidt-Norm

‖(Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m)1/2(Πj,`,mΛγ(DH
γ − 1 +M ′)ΛγΠj,`,m)−s‖2

wegen Behauptung 6.2.11 mit M := M ′ − 1 > 0 endlich, da U ∈ K(0)
s,ε .

Schließlich verifizieren wir

(Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m)2s ≤ a(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)2s′ (6.28)

für ein 1/2 ≤ s′ < s. Man bemerkt, dass diese Form-Ungleichung wieder impliziert, dass
Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m infinitesimal Form-beschränkt bezüglich Πj,`,mΛγD

H
γ ΛγΠj,`,m ist.

Um (6.28) zu zeigen, verwenden wir die Davis–Sherman-Ungleichung (6.17) mit f(x) = x2s

und erhalten

(Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m)2s ≤ Πj,`,mΛγ(U ⊗ 1C4)2sΛγΠj,`,m .

Die linke Seite von (6.28) ist somit wegen (6.27) durch eine Konstante mal (Πj,`,mΛγ(DH
γ +

M)ΛγΠj,`,m)2s′ beschränkt, da U2s ∈ K(0)
s′,δ′ . Dies schließt den Beweis von Behauptung 6.2.4.

6.2.3 Beweis von Behauptung 6.2.5

Die größte Schwierigkeit in der Anwendung von Behauptung 6.2.1 besteht darin (6.15), sprich

lim sup
λ→0

‖
(
Λγ(DH

γ +M)Λγ
)s (

Λγ(DH
γ − λU +M)Λγ

)−s ‖ <∞ (6.29)

für 0 ≤ U(x) ≤ ‖rU‖∞|x|−1 und ein 1/2 < s < min{3/2− σγ , 1} (in jedem Drehimpulskanal)
nachzuweisen. Wir zeigen zunächst, dass Λγ(DH

γ − λU + M)Λγ für hinreichend kleines |λ|
invertierbar ist.

Lemma 6.2.12. Seien 0 < γ < 1, U ∈ r−1L∞(R+), M > 0 und λ ∈ R so, dass |λ| <
2/(πAγ‖rU‖∞) (wobei Aγ die Konstante aus (6.18) mit s = 1/2 ist). Dann gilt

inf spec
(
Λγ(DH

γ − λU +M)Λγ
)
> 0 . (6.30)
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Beweis. Aus Katos Ungleichung und Korollar 6.2.9 mit s = 1/2 folgt

Λγ(DH
γ − λU +M)Λγ ≥ Λγ(DH

γ +M)Λγ − |λ|‖rU‖∞Λγ |x|−1Λγ

≥ Λγ(DH
γ +M)Λγ −

π

2
‖rU‖∞|λ|Λγ(|p|+M)Λγ

≥
(

1− π

2
‖rU‖∞Aγ |λ|

)
Λγ(DH

γ +M)Λγ ≥
(

1− π

2
‖rU‖∞Aγ |λ|

)
MΛγ > 0 ,

was (6.30) zeigt.

Die Abschätzung (6.29) ist äquivalent zu

lim sup
λ→0

‖
(
Λγ(DH

γ +M)Λγ
)s (

Λγ(DH
γ − λU +M)Λγ

)−s
ϕ‖ ≤ aγ,s,M‖ϕ‖

für eine Konstante aγ,s,M > 0 und alle ϕ ∈ Hγ . Setzt man ψ :=
(
Λγ(DH

γ − λU +M)Λγ
)−s

ϕ ∈
Hγ , ist dies äquivalent zur Form-Ungleichung(

Λγ(DH
γ +M)Λγ

)2s ≤ a2
γ,s,M

(
Λγ(DH

γ − λU +M)Λγ
)2s

(6.31)

für alle λ in einer offenen Umgebung von Null und einer von λ unabhängigen Konstanten
aγ,s,M . Wir zeigen diese Ungleichung im folgenden

Lemma 6.2.13. Seien 0 < γ < 1, 0 ≤ U(r) ∈ r−1L∞, 1/2 ≤ s < min{3/2 − σγ , 1} und
M > | inf spec(ΛγD

H
γ )| = 0. Falls λ ∈ R

|λ| < min

{
1

(24s−1As,γ)1/(2s)‖rU‖∞
,

2

πA1/2,γ‖rU‖∞
,

(
2

πA1/2,γ‖rU‖∞

)2

,

1

24−1/s(1 +M−2)A
1/s
s,γ

(
1 + 4

(
γ + 2

πA1/2,γ

)2
) , 1


erfüllt, wobei As,γ die Konstante aus (6.18) ist, dann gibt es eine Konstante aγ,s,M > 0,
sodass (

Λγ(DH
γ +M)Λγ

)2s ≤ aγ,s,M (Λγ(DH
γ − λU +M)Λγ

)2s
.

Beweis. Wir haben bereits in (6.30) gesehen, dass Λγ(DH
γ − λU + M)Λγ > 0, wenn λ die

Bedingung des Lemmas erfüllt. Wir unterscheiden nun zwischen λ < 0 und λ > 0 und
beginnen mit dem Fall λ > 0. Aus Operatorkonvexität von x 7→ x2s mit s ∈ [1/2, 1] und der
Davis–Sherman-Ungleichung (6.17) folgt(

Λγ(DH
γ +M)Λγ

)2s
=
(
Λγ(DH

γ − λU +M + λU)Λγ
)2s

≤ 22s−1
(
Λγ(DH

γ − λU +M)Λγ
)2s

+ 22s−1λ2s (ΛγUΛγ)2s

≤ 22s−1
(
Λγ(DH

γ − λU +M)Λγ
)2s

+ 22s−1λ2sΛγU
2sΛγ .

(6.32)

Da U(x) ≤ ‖rU‖∞|x|−1, folgt aus der Hardy-Ungleichung

U2 ≤ 4‖rU‖2∞(|p|+M)2 .
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Mit Operatormonotonie von x 7→ xs mit s ∈ [0, 1] und Korollar 6.2.9 erhält man dann

ΛγU
2sΛγ ≤ 4s‖rU‖2s∞Λγ(|p|+M)2sΛγ ≤ 4s‖rU‖2s∞As,γ

(
Λγ(DH

γ +M)Λγ
)2s

,

wobei As,γ die Konstante aus (6.18) ist. Setzt man diese Abschätzung in (6.32) ein, erhält
man(

Λγ(DH
γ +M)Λγ

)2s ≤ 22s−1(1− 24s−1As,γ‖rU‖2s∞λ2s)−1
(
Λγ(DH

γ − λU +M)Λγ
)2s

,

was die Aussage für λ > 0 zeigt.
Falls λ < 0, definieren wir µ := −λ > 0 und ε :=

√
µ ∈ (0, 1). Wegen Operatorkonvexität

ist (
Λγ(DH

γ +M)Λγ
)2s

=

[
(1− ε)Λγ(DH

γ + µU +M)Λγ + εΛγ

(
DH
γ −

1− ε
ε

µU +M

)
Λγ

]2s

≤ 22s−1(1− ε)2s
(
Λγ(DH

γ + µU +M)Λγ
)2s

+ 22s−1ε2s

(
Λγ

(
DH
γ −

1− ε
ε

µU +M

)
Λγ

)2s

.

(6.33)

Hierbei haben wir verwendet, dass beide Operatoren wegen (6.30) und der Bedingung an
λ = −µ (die Kopplungskonstante der Störung im zweiten Summanden ist O(

√
µ) für klei-

ne µ) nicht-negativ sind, weshalb wir die Operatorkonvexität verwenden durften. Der erste
Summand auf der rechten Seite ist bereits der gewünschte Ausdruck. Im Folgenden schätzen
wir den zweiten Summanden durch

ε2sF (µ) ·
(
Λγ(DH

γ +M)Λγ
)2s

ab und zeigen, dass F (µ) gleichmäßig in µ beschränkt ist. Die Behauptung folgt dann wie im
Fall λ > 0, indem man diesen Term auf die linke Seite von (6.33) bringt und beide Seiten der
Ungleichung durch (1− ε2s‖F‖∞) teilt (was erlaubt ist, wenn ε klein genug ist). Zunächst ist
wegen ΛγD

H
γ = Λγ |DH

γ | und (6.17)(
Λγ

(
DH
γ −

1− ε
ε

µU +M

)
Λγ

)2s

≤ Λγ

(
|DH

γ | −
1− ε
ε

µU +M

)2s

Λγ .

Mit (α ·p+β)2 = p2 + 1, U(x) ≤ ‖rU‖∞|x|−1 und der Hardy-Ungleichung schätzen wir dann(
|DH

γ | −
1− ε
ε

µU +M

)2

≤ 4

(
|p|2 +M2 + 1 +

(
γ +

1− ε
ε

µ‖rU‖∞
)2

|x|−2

)

≤ 4(1 +M−2)

((
1 + 4

(
γ +

1− ε
ε

µ‖rU‖∞
)2
)
|p|2 +M2

)

≤ 4(1 +M−2)

(
1 + 4

(
γ +

1− ε
ε

µ‖rU‖∞
)2
)

(|p|+M)2
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ab. Zieht man die s-te Wurzel aus diesem Ausdruck und wendet Korollar 6.2.9 an, erhält man

F (µ) = 24s−1(1 +M−2)sAs,γ

(
1 + 4

(
γ +

1− ε
ε

µ‖rU‖∞
)2
)s

≤ 24s−1(1 +M−2)sAs,γ

(
1 + 4

(
γ +

2

πA1/2,γ

)2
)s

,

was den Beweis beschließt.

Beweis von Behauptung 6.2.5. Wir wenden Behauptung 6.2.1 mit s < min{3/2− σγ , 1},

A = Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m und

B = Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m ≥ 0

an. Die Bedingungen an Λγ(DH
γ −1)Λγ wurden bereits im Beweis von Behauptung 6.2.4 nach-

gewiesen. Die Tatsache, dass Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m relativ Form-beschränkt bezüglich
Πj,`,mΛγ(DH

γ − 1)ΛγΠj,`,m ist, folgt aus Katos Ungleichung und Korollar 6.2.9 (siehe auch
(6.30)) in jedem Kanal (j, `,m).

Für M > 0 ist die Hilbert–Schmidt-Norm

‖(Πj,`,mΛγ(U ⊗ 1C4)ΛγΠj,`,m)1/2(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)−s‖2

wegen Behauptung 6.2.11 endlich, da U ∈ K(0)
s,ε .

Schließlich ist auch Annahme (6.15), konkret (6.29) beziehungsweise

(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)2s ≤ Aγ,s,M

(
Πj,`,mΛγ(DH

γ − λU +M)ΛγΠj,`,m

)2s
für λ in einer offenen Umgebung von Null wegen Lemma 6.2.13 erfüllt, da das Lemma insbe-
sondere in jedem einzelnen Kanal (j, `,m) gilt.

6.3 Kontrolle großer Drehimpulse

Um die Notation möglichst einfach zu halten, unterdrücken wir ⊗1C4 , sofern dies aus dem
Kontext ersichtlich ist. Darüberhinaus bezeichnen wir den freien, massiven Dirac-Operator
mit D = α · p + β und erinnern an die Notation Trj,`,m(A) = Tr(Πj,`,mAΠj,`,m) für einen
Spurklasse-Operator A in L2(R3 : C4).

Die folgende Behauptung wird es uns – wie im letzten Kapitel – erlauben, das Weierstraß-
sche Majorantenkriterium anzuwenden, um Satz 6.1.4 aus Satz 6.1.3 zu folgern.

Behauptung 6.3.1. Seien 0 < γ < 1, 0 ≤ V (r) ≤ γ/r, λ ∈ R, 1/2 < s′ < s ≤ 3/4,
ε ∈ [0, 2s − 1], δ ∈ [0, 2s − 1] und δ′ ∈ [4(s − s′), 2s′ − 1]. Sei weiterhin U = U1 + U2 eine
reellwertige Funktion auf (0,∞) mit U1 ∈ r−1L∞comp(R+) und U2 ≤ 0 oder U2 ≥ 0, sodass
U2 ∈ Ks,ε und |U2|2s ∈ Ks′,δ′ ∩ Ks,δ. Falls |λ| die Schranke

|λ| < min

{
3

10‖rU1‖∞
, A

1/s
s,s′‖|U2|2s‖−1/(2s)

Ks′,δ′
,

(1− γ) ·
[
‖rU1‖∞ +A1/(2s)

s,aγ ‖|U2|2s‖1/(2s)Ks,δ

]−1
} (6.34)
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erfüllt, wobei As,s′ die universelle Konstante C, welche in Lemma 5.2.4 auftaucht, bezeichnet
und As,aγ die Konstante in (6.36) bezeichnet, dann gibt es ein Aγ,s < ∞ und ein Lγ ∈ N,
sodass für alle N 3 ` ≥ Lγ, 1/2 ≤ j = `± 1/2 und m ∈ {−j, ..., j} die Abschätzung

Trj,`,m(Λγ(D − V − λU − 1)Λγ)− − Trj,`,m(Λγ(D − V − 1)Λγ)−

≤ Aγ,sλ‖U‖Ks,ε(`+ 1/2)−4s−ε

gilt.

6.3.1 Beweis von Behauptung 6.3.1

Wir beginnen die zu Behauptung 5.3.10 analogen Spur- und Form-Ungleichungen bezüglich
C` + a(` + 1/2)−sΠj,`,m zu formulieren. Wir erinnern daran, dass diese nötig waren, um
Funktionen aus den Klassen Ks,δ kontrollieren zu können. Die folgende Behauptung folgt aus
Behauptung 5.4.6 genau wie Behauptung 6.2.10 aus Behauptung 5.3.10 folgte.

Behauptung 6.3.2. Seien a > 0, δ ∈ [0, 2s − 1], s ∈ (1/2, 3/4], ` ∈ N0, 1/2 ≤ j = ` ± 1/2
und 0 ≤W ∈ Ks,δ. Dann gilt

‖(Πj,`,mWΠj,`,m)1/2(C` + a(`+ 1/2)−2Πj,`,m)−s‖22 ≤ As,a(`+ 1/2)−δ‖W‖Ks,δ (6.35)

und insbesondere

Πj,`,mWΠj,`,m ≤ As,a‖W‖Ks,δ(`+ 1/2)−δ(C` + a(`+ 1/2)−2Πj,`,m)2s . (6.36)

Für den Beweis von Behauptung 6.3.1 kontrollieren wir wieder Dirac-Operatoren durch
entsprechende skalare Operatoren. Dazu brauchen wir unter anderem

Lemma 6.3.3. Seien a > 0 und ` ∈ N0 so, dass 1 ≥ a(`+ 1/2)−2. Dann gilt

(α · p+ β − 1 + a(`+ 1/2)−2)2 ≥ (
√
p2 + 1− 1 + a(`+ 1/2)−2)2 .

Beweis. Die Aussage ist äquivalent zur Ungleichung

p2 + 1 + (1− a(`+ 1/2)−2)2 − 2(1− a(`+ 1/2)−2)(α · p+ β)

≥ p2 + 1 + (1− a(`+ 1/2)−2)2 − 2(1− a(`+ 1/2)−2)
√
p2 + 1 .

Da 1 ≥ a(`+ 1/2)−2 und α · p+ β ≤ |α · p+ β| =
√
p2 + 1, folgt die Behauptung.

Für V ≤ γ/r und geeignete Potentiale U zeigen wir, dass es ein aγ > 0 gibt, sodass

inf spec (Πj,`,mΛγ(D − V − λU − 1)ΛγΠj,`,m) ≥ −aγ(`+ 1/2)−2 ,

falls |λ| klein genug ist. Dies folgt im Wesentlichen aus der `-Abhängigkeit der Eigenwerte
des Coulomb–Dirac-Operators beziehungsweise dem Verhalten von |Πj,`,mDΠj,`,m| für kleine
Impulse. Genauer gesagt kann man anhand der exakten Ausdrücke der Eigenwerte [164, 30, 75]
sehen, dass es ein ãγ > 0 gibt, sodass

Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m ≥ −ãγ(`+ 1/2)−2 (6.37)

für alle ` ∈ N0 und 1/2 ≤ j ≤ ` ± 1/2. Tatsächlich zeigten Handrek und Siedentop in [80,
Corollary 1], dass die Abweichung zwischen den Eigenwerten des Dirac- und des Schrödinger-
Operators im Kanal (j, `) mit ` ∈ N und 1/2 ≤ j = ` ± 1/2 durch eine Konstante mal
γ4/[` (n+ `)3] (mit n ∈ N) beschränkt ist. Wir erinnern nochmals daran, dass die Eigenwerte
des sphärisch symmetrischen Operators unabhängig von m ∈ {−j, ..., j} sind.
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Behauptung 6.3.4. Seien ` ∈ N0, 1/2 ≤ j = ` ± 1/2, 0 < γ < 1, 0 ≤ V (r) ≤ γ/r, λ ∈ R,
s ∈ (1/2, 3/4], δ ∈ [0, 2s − 1], U(r) = U1 + U2 eine reellwertige Funktion auf (0,∞) mit
U1 ∈ r−1L∞(R+) und |U2|2s ∈ Ks,δ. Dann gibt es eine Konstante aγ > ãγ und ein Lγ ∈ N,
sodass für alle N 3 ` ≥ Lγ

Πj,`,mΛγ(D − 1− V − λU)ΛγΠj,`,m ≥ −aγ(`+ 1/2)−2

gilt, sofern |λ| die Schranke

|λ| < (1− γ) ·
[
‖rU1‖∞ +A1/(2s)

s,aγ ‖|U2|2s‖1/(2s)Ks,δ

]−1
(6.38)

erfüllt, wobei As,aγ die Konstante aus (6.36) ist.

Beweis. Zunächst gilt wegen der Schranke (6.37) für den tiefsten Eigenwert des Coulomb–
Dirac-Operators im Kanal (j, `) die Abschätzung

Πj,`,mΛγ(D − V − 1)ΛγΠj,`,m ≥ Πj,`,mΛγ(DH
γ − 1)ΛγΠj,`,m ≥ −aγ(`+ 1/2)−2 .

Als Nächstes bemerkt man, dass die Hardy-Ungleichung (zunächst in L2(R+) – man erinnere
sich auch an die Definition (6.20))(

g,
(`+ 1/2)2

r2
g

)
=

∫ ∞
0

`(`+ 1) + 1/4

r2
|g(r)|2 dr ≤ (g, (p

(r)
` )2g)

sowie (mit dem Satz von Plancherel ebenfalls zunächst in L2(R+))

‖(p(r)
` + aγ(`+ 1/2)−2)(C

(r)
` + aγ(`+ 1/2)−2)−1‖

≤ `+ 1/2√
2aγ

+
1

2
+

√
aγ

2
√

2(`+ 1/2)

auch in Hj,`,m gelten. Dies folgt mit denselben Argumenten wie im Beweis von Behauptung
6.2.10 (mit f(x) =

∑
± |x|−1f±(|x|)Φ±j,`,m(x/|x|) ∈ Hj,`,m und a` = aγ(`+ 1/2)−2), denn

〈f, (p` + a`)
−1Πj,`,m|x|−2Πj,`,m(p` + a`)

−1f〉L2(R3:C4)

= 〈f+, (p
(r)
` + a`)

−1r−2(p
(r)
` + a`)

−1f+〉L2(R+)

+ 〈f−, (p(r)
2j−` + a`)

−1r−2(p
(r)
2j−` + a`)

−1f−〉L2(R+)

≤ (`+ 1/2)−2 + (2j − `+ 1/2)−2 ≤ 10(`+ 1/2)−2

(6.39)

und

〈f, (C` + a`)
−1(p` + a`)

2(C` + a`)
−1f〉L2(R3:C4)

= 〈f+, (C
(r)
` + a`)

−1(p
(r)
` + a`)

2(C
(r)
` + a`)

−1f+〉L2(R+)

+ 〈f−, (C(r)
2j−` + a`)

−1(p
(r)
2j−` + a`)

2(C
(r)
2j−` + a`)

−1f−〉L2(R+)

≤

(
`+ 1/2√

2aγ
+

1

2
+

√
aγ

2
√

2(`+ 1/2)

)2

.

(6.40)
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Mit der Dreiecksungleichung, Lemma 6.3.3 (in jedem Kanal (j, `,m) und für alle ` ≥ Lγ ≥√
aγ − 1/2) und den obigen Schranken erhält man für f = Πj,`,mf (und der Tatsache, dass

DH
γ den Raum Hj,`,m invariant lässt und mit Λγ kommutiert),

‖Πj,`,mΛγ(DH
γ − 1 + aγ(`+ 1/2)−2)ΛγΠj,`,mf‖

= ‖(D − γ/|x| − 1 + aγ(`+ 1/2)−2)Λγf‖
≥ ‖(D − 1 + aγ(`+ 1/2)−2)Λγf‖ − γ‖|x|−1Λγf‖

≥

[
1− γ

√
10

(
1√
2aγ

+
1

2`+ 1
+

√
aγ
8

(`+ 1/2)−2

)]
‖(C` + aγ(`+ 1/2)−2)Λγf‖

≥

[
1− γ

√
10

(
1√
2aγ

+
1

2`+ 1
+

√
aγ
8

(`+ 1/2)−2

)]
‖Λγ(C` + aγ(`+ 1/2)−2)Λγf‖ .

(6.41)

Die letzte Ungleichung gilt (wegen Λγ ≤ 1) für alle N 3 ` ≥ Lγ , falls aγ hinreichend groß
gewählt wird und Lγ ∈ N die Ungleichung

√
10

(
(2aγ)−

1
2 + (2Lγ + 1)−1 +

√
aγ
8

(Lγ + 1/2)−2

)
< 1 (6.42)

erfüllt. Damit ist für alle ` ≥ Lγ(
Λγ(C` + aγ(`+ 1/2)−2Πj,`,m)Λγ

)2
≤ (1− γ)−2

(
Πj,`,mΛγ(DH

γ − 1 + aγ(`+ 1/2)−2)ΛγΠj,`,m

)2
.

Aus dieser Ungleichung, der Positivität von Πj,`,mΛγ(DH
γ − 1 + aγ(` + 1/2)−2)ΛγΠj,`,m für

hinreichend großes aγ (wegen (6.37)) und der Operatormonotonie der Quadratwurzel folgt

Λγ(C` + aγ(`+ 1/2)−2Πj,`,m)Λγ

≤ (1− γ)−1Πj,`,mΛγ(DH
γ − 1 + aγ(`+ 1/2)−2)ΛγΠj,`,m

≤ (1− γ)−1Πj,`,mΛγ(D − V − 1 + aγ(`+ 1/2)−2)ΛγΠj,`,m .

(6.43)

Andererseits folgt aus der Hardy-Ungleichung (6.39) und dem Satz von Plancherel (6.40) die
Gültigkeit der Ungleichung

Πj,`,mU1Πj,`,m ≤ ‖rU1‖∞(C` + aγ(`+ 1/2)−2Πj,`,m)

für alle N 3 ` ≥ Lγ . Darüberhinaus folgt aus (6.36)

|Πj,`,mU2Πj,`,m|2s ≤ As,aγ‖|U2|2s‖Ks,δ(`+ 1/2)−δ(C` + aγ(`+ 1/2)−2Πj,`,m)2s .

Wegen Operatormonotonie von x 7→ xs mit s ∈ (0, 1] folgt daraus

Πj,`,mUΠj,`,m ≤
[
‖rU1‖∞ +A1/(2s)

s,aγ ‖|U2|2s‖1/(2s)Ks,δ

]
(C` + aγ(`+ 1/2)−2Πj,`,m) .

Kombiniert man diese Schranke mit (6.43) unter der Voraussetzung (6.38) an λ, erhält man
schließlich

Πj,`,mΛγ(D − V − 1 + aγ(`+ 1/2)−2)ΛγΠj,`,m

≥ (1− γ)Λγ(C` + aγ(`+ 1/2)−2Πj,`,m)Λγ ≥ Πj,`,mΛγλUΛγΠj,`,m ,

was die Behauptung zeigt.
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Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung 6.3.1. Wegen des Variationsprinzips ist (für jedes 1/2 ≤ j = `±1/2)

sj,`,λ := Trj,`,m(Λγ(D − V − λU − 1)Λγ)− − Trj,`,m(Λγ(D − V − 1)Λγ)−

≤ λTr(dj,`,λΠj,`,mΛγUΛγΠj,`,m) ,

wobei dj,`,λ die orthogonale Projektion auf den negativen Spektralbereich von Πj,`,mΛγ(D −
V −λU−1)ΛγΠj,`,m bezeichnet. Wir erinnern nochmals daran, dass die negativen Eigenwerte
dieses Operators nicht von m abhängen, weshalb wir keinen Index m schreiben. Definiert man

A := dj,`,λ (Πj,`,mΛγ(D − V − λU − 1 + a`)ΛγΠj,`,m)s

B := (Πj,`,mΛγ(D − V − λU − 1 + a`)ΛγΠj,`,m)−s Λγ(C` + a`Πj,`,m)s

C := (C` + a`Πj,`,m)−sΠj,`,mUΠj,`,m(C` + a`Πj,`,m)−s ,

so gilt

sj,`,λ ≤ λTrABCB∗A∗ .

Wir wählen

a` :=
a

(`+ 1/2)2

für ein hinreichend großes a > aγ (aus der unteren Schranke in Behauptung 6.3.4) und
betonen, dass a zwar von γ abhängen kann, aber unabhängig von ` und λ gewählt wird. Weiter
bemerken wir, dass wegen Behauptung 6.3.4 Πj,`,mΛγ(D−V −λU−1+a`)ΛγΠj,`,m ≥ 0 ist. Da
dj,`,λ auf den negativen Spektralraum von Πj,`,mΛγ(D−V −λU − 1)ΛγΠj,`,m projiziert, folgt
aus Behauptung 6.3.4, dass ‖A‖2 ≤ a2s(`+1/2)−4s für alle N 3 ` ≥ Lγ und einem hinreichend
großem Lγ , welches (6.42) erfüllt (wobei aγ durch a ersetzt werden muss). Darüberhinaus ist
(wie im Beweis von Behauptung 5.4.3) ‖C‖1 ≤ As,aγ‖U‖Ks,ε(`+ 1/2)−ε, was unmittelbar aus
Behauptung 6.3.2 folgt.

Wir widmen uns nun dem Operator B und zeigen, dass ‖B‖ ≤ As,γ . Dazu schreiben wir
B = B1B2, wobei

B1 := (Πj,`,mΛγ(D − V − λU − 1 + a`)ΛγΠj,`,m)−s

(Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,m)s

B2 := (Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,m)−s Λγ(C` + a`Πj,`,m)s .

Wir schätzen ‖B2‖ ab, indem wir zuerst die Form-Ungleichung

Λγ(C` + a`Πj,`,m)2Λγ ≤ Aγ (Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,m)2

zeigen und im Anschluß die Operatormonotonie von x 7→ xs mit s ∈ (0, 1] sowie die folgende
Ungleichung von Frank [63, Formel (2.7)], welche eng mit (6.17) verwandt ist, verwenden. Ist
T ≥ 0 ein linearer Operator mit trivialem Kern, P eine orthogonale Projektion und f eine
operatormonotone Funktion, dann gilt

Pf(T )P ≤ Pf(PTP )P .
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Falls f(0) = 0, vereinfacht sich die rechte Seite zu f(PTP ) (siehe auch die Diskussion nach
(6.17)). In unserem Fall sind T = (C` + a`Πj,`,m)2, P = Λγ , f(x) = xs und 0 < s ≤ 1. Somit
lautet die Ungleichung

Λγ(C` + a`Πj,`,m)2sΛγ ≤ Λγ
(
Λγ(C` + a`Πj,`,m)2Λγ

)s
Λγ

=
(
Λγ(C` + a`Πj,`,m)2Λγ

)s
.

(6.44)

Mit der Dreiecksungleichung und Λγ ≤ 1 schätzen wir zunächst für f = Πj,`,mf

‖Πj,`,mΛγ(D − γ/r + γ/r − V − λU1 − 1 + a`)ΛγΠj,`,mf‖
≥ ‖Λγ(DH

γ − 1 + a`)Λγf‖ − (2γ + |λ|‖rU1‖∞)‖|x|−1Λγf‖
(6.45)

ab. Da Λγ mit DH
γ − 1 + a` vertauscht, folgt aus Lemma 6.3.3

‖Λγ(DH
γ − 1 + a`)Λγf‖ = ‖(DH

γ − 1 + a`)Λγf‖
≥ ‖(D − 1 + a`)Λγf‖ − γ‖|x|−1Λγf‖
≥ ‖(C` + a`Πj,`,m)Λγf‖ − γ‖|x|−1Λγf‖

(6.46)

wie im Beweis von (6.41). Kombiniert man (6.45) und (6.46) mit der Hardy-Ungleichung
(6.39)

Πj,`,m|x|−2Πj,`,m ≤ 10(`+ 1/2)−2(p` + a`Πj,`,m)2

sowie dem Satz von Plancherel (6.40)

‖(p` + a`Πj,`,m)(C` + a`Πj,`,m)−1‖ ≤ 1√
2a`

+
1

2
+

√
a`

2
√

2
,

erhält man

‖Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,mf‖

≥
[
1−
√

10(3γ + λ‖rU1‖∞)

(
1√
2a

+
1

2`+ 1
+

√
a

8
(`+ 1/2)−2

)]
‖(C` + a`)Λγf‖ .

Wählt man a > aγ hinreichend groß, folgt

‖Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,mf‖ ≥ Aγ‖(C` + a`)Λγf‖ (6.47)

für alle N 3 ` ≥ Lγ , wobei Lγ durch die Ungleichung

33√
10

(
(2a)−

1
2 + (2Lγ + 1)−1 +

√
a

8
(Lγ + 1/2)−2

)
< 1 (6.48)

bestimmt ist. Verwendet man (6.47), die Operatormonotonie von x 7→ xs mit s ∈ (0, 1] (wegen
Behauptung 6.3.4 ist auch Λγ(Dj,` − V − λU1 − 1 + a`)Λγ nicht-negativ) und (6.44), erhält
man schließlich

Λγ(C` + a`Πj,`,m)2sΛγ ≤ Aγ (Πj,`,mΛγ(D − V − λU1 − 1 + a`)ΛγΠj,`,m)2s

für alle ` ≥ Lγ und λ ∈ R, welche (6.34) erfüllen. Dies zeigt ‖B2‖ <∞.
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Wir schätzen nun ‖B1‖ ab. Wegen Lemma 5.2.4 (welches voraussetzt, dass der Operator
λΠj,`,mΛγU2ΛγΠj,`,m definit ist) gilt

(Πj,`,mΛγ(D − V − λU1 − 1 + a`/2 + a`/2)ΛγΠj,`,m)2s

≤ 2 (Πj,`,mΛγ(D − V − λU1 − 1 + a`/2− λU2 + a`/2)ΛγΠj,`,m)2s ,

sofern man zeigen kann, dass

‖ |λΠj,`,mΛγU2ΛγΠj,`,m|s (Πj,`,mΛγ(D − V − λU1 − 1 + a`/2)ΛγΠj,`,m)−s
′
‖

≤ As,s′(a/2)s−s
′
(`+ 1/2)2(s′−s)

(6.49)

für ein 1/2 < s′ < s gilt. Wie in der Abschätzung von ‖B2‖ verwenden wir (6.47), Operator-
monotonie positiver Wurzeln und (6.44) und erhalten zunächst

‖(C` + a`Πj,`,m)s
′
Λγ (Πj,`,mΛγ(D − V − λU1 − 1 + a`/2)ΛγΠj,`,m)−s

′
‖ ≤ As′,γ . (6.50)

Wegen (6.17) und (6.36) ist

|λΠj,`,mΛγU2ΛγΠj,`,m|2s ≤ |λ|2sΛγΠj,`,m|U2|2sΠj,`,mΛγ

≤ As′,γ |λ|2s(`+ 1/2)−δ
′‖|U2|2s‖Ks′,δ′Λγ(C` + a`Πj,`,m)2s′Λγ .

Daher ist die linke Seite von (6.49) durch

A
1/2
s′,γ |λ|

s
√
‖|U2|2s‖Ks′,δ′ (`+ 1/2)−δ

′/2

beschränkt. Wegen der Bedingung (6.34) an λ und δ′ ≥ 4(s−s′) ist dies durch den gewünschten
Ausdruck (`+1/2)2(s′−s) beschränkt. Dies zeigt (6.49) und damit die Abschätzung ‖B‖ ≤ As,γ ,
welche gleichmäßig in λ und ` ist.

Kombiniert man die Schranken für ‖A‖2, ‖B‖2 und ‖C‖1, erhält man schließlich

sj,`,λ ≤ Aγ,sλ‖U‖Ks,ε(`+ 1/2)−4s−ε für alle 1/2 ≤ j = `± 1/2 .

6.3.2 Beweis von Satz 6.1.1 zur Existenz von ρH

Die Strategie für den Beweis von Satz 6.1.1 ist sehr ähnlich zu der von Behauptung 6.3.1.
Da die Behauptungen 6.2.2 und 6.2.1 (insbesondere Behauptungen 6.2.4 und 6.2.5) bereits
die Endlichkeit der Dichten fast überall für alle ` ≤ Lγ (mit einem festen Lγ = O(1)) zeigen,
müssen wir lediglich die großen Drehimpulskanäle kontrollieren.

Bevor wir zum Beweis von Satz 6.1.1 kommen, beginnen wir mit einer Aufwärmübung,
welche zeigt, dass die Dichten ρH` und ρH punktweise fast überall endlich sind. Wir betonen,
dass die Beweise nicht auf der Maschinerie der Behauptungen 6.2.1 und 6.2.2 beruhen.

Behauptung 6.3.5 (Existenz von ρH` und ρH). Seien γ ∈ (0, 1) und ` ∈ N0. Falls 1/2 <

s < min{3/2− σγ , 3/4}, ε ∈ [0, 2s− 1], W (0) ∈ K(0)
s,ε und W ∈ Ks,ε, dann gibt es Konstanten

As,γ,` und As,γ > 0, sodass∫ ∞
0

ρH` (r)W (0)(r) dr ≤ As,γ,`‖W (0)‖K(0)
s,ε

und

∫
R3

ρH(x)W (|x|) dx ≤ As,γ‖W‖Ks,ε .
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Beweis. Es bezeichne dj,` die orthogonale Projektion auf den negativen Spektralraum von
Πj,`,mΛγ(DH

γ − 1)ΛγΠj,`,m mit 1/2 ≤ j = `± 1/2 und m ∈ {−j, ..., j}. Dann ist∫ ∞
0

ρHj,`(r)W (r) dr = Tr dj,`W = TrABCB∗A∗ ,

wobei nun

A := dj,`(Πj,`,mΛγ(DH
γ − 1 + a`)ΛγΠj,`,m)s

B := (Πj,`,mΛγ(DH
γ − 1 + a`)ΛγΠj,`,m)−sΛγ(C` + a`Πj,`,m)s

C := (C` + a`Πj,`,m)−sΠj,`,mWΠj,`,m(C` + a`Πj,`,m)−s

mit a` = aγ(` + 1/2)−2 und einem hinreichend großen, von ` unabhängigen aγ > 0 sind.
Zunächst gilt wegen der Abschätzung (6.37) die übliche Schranke ‖A‖ ≤ as,γ(` + 1/2)−4s.
Als Nächstes ist, wie im Beweis von Behauptung 6.3.1, ‖C‖1 ≤ As,a(`+ 1/2)−ε‖W‖Ks,ε . Die
gleichmäßige Beschränktheit von ‖B‖ in ` wurde für γ < 1, hinreichend großes aγ und alle
` ≥ Lγ im Beweis von Behauptung 6.3.1 gezeigt (dort war es ‖B2‖). Dabei erfüllte die geste
Zahl Lγ ≥

√
a−1/2 die Ungleichungen (6.42) und (6.48). Für ` ≤ Lγ spielt die Gleichmäßigkeit

der Abschätzung von ‖B‖ in ` keine Rolle, da wir es hier nur mit einer festen und endlichen
Zahl von Drehimpulskanälen zu tun haben. In diesem Fall schätzen wir

‖B‖ ≤ ‖B1‖‖B2‖‖B3‖

ab, wobei

B1 := (C` + a`Πj,`,m)s(p` + a`Πj,`,m)−s

B2 := (p` + a`Πj,`,m)sΛγ(Πj,`,mΛγ(DH
γ + a`)ΛγΠj,`,m)−s

B3 := (Πj,`,mΛγ(DH
γ + a`)ΛγΠj,`,m)s(Πj,`,mΛγ(DH

γ − 1 + a`)ΛγΠj,`,m)−s .

Mit dem Satz von Plancherel ist zunächst ‖B1‖ ≤ As in jedem Kanal. Wegen Korollar 6.2.9
beziehungsweise (6.23) gilt für festes γ < 1 und 1/2 < s < min{3/2 − σγ , 1} die Schranke
‖B2‖ ≤ As,γ für alle ` ∈ N0. Schließlich folgt aus (6.37) die Abschätzung

‖(Πj,`,mΛγ(DH
γ − 1 + a` + 1)ΛγΠj,`,m)(Πj,`,mΛγ(DH

γ − 1 + a`)ΛγΠj,`,m)−1‖
≤ 1 +A(`+ 1/2)2 ≤ ALγ .

Aus der Operatormonotonie von x 7→ xs mit s ∈ (0, 1] und der Kombination der Schranken
für B1, B2 und B3 folgt schließlich

‖B‖ ≤ As,γ .

Aus der Kombination der Schranken für A,B und C folgt somit∫
R3

ρH(x)W (|x|) dx =
∞∑
`=0

∑
1
2
≤j=`± 1

2

2j + 1

4π
Tr dj,`W

≤ Aγ,s
∞∑
`=0

∑
1
2
≤j=`± 1

2

(2j + 1)(`+ 1/2)−4s−ε‖W‖Ks,ε
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und die rechte Seite ist summierbar, falls 2s− 1 ≥ ε > 2− 4s, sprich s > 1/2 und ε ≥ 0.

Mit diesen Argumenten kann man auch direkt die Endlichkeit der Dichte ρH` fast überall

zeigen. Für W (0) ∈ K(0)
s,ε erhält man∫ ∞

0
ρH` (r)W (0)(r) dr =

∑
1
2
≤j=`± 1

2

(2j + 1) Tr dj,`W
(0) ≤ Aγ,s(`+ 1/2)1−ε‖W (0)‖K(0)

s,ε

was aus den obigen Argumenten mit den Operatoren

A := dj,`(Πj,`,mΛγ(DH
γ − 1 +M)ΛγΠj,`,m)s

B := (Πj,`,mΛγ(DH
γ − 1 +M)ΛγΠj,`,m)−sΛγ(C` +MΠj,`,m)s

C := (C` +MΠj,`,m)−sΠj,`,mW
(0)Πj,`,m(C` +MΠj,`,m)−s

folgt, wobei M > 1 eine Konstante der Ordnung O(1) ist.

Damit kommen wir zum Beweis der punktweisen oberen Schranken für die wasserstoffar-
tigen Dichten.

Beweis von Satz 6.1.1. Wir setzen U = δr ⊗ 1C4 (der radialen Delta-Funktion bei r ∈ R+) in
den obigen Überlegungen und schreiben, wie zuvor,

ρH` (r) =
∑

1
2
≤j=`± 1

2

(2j + 1) Tr dj,`(δr ⊗ 1C4) =
∑

1
2
≤j=`± 1

2

(2j + 1) TrABCB∗A∗ ,

wobei

A := dj,`(Πj,`,mΛγ(DH
γ − 1 + a`)ΛγΠj,`,m)s

B := (Πj,`,mΛγ(DH
γ − 1 + a`)ΛγΠj,`,m)−sΛγ(C` + a`Πj,`,m)s

C := Πj,`,m(C` + a`Πj,`,m)−s(δr ⊗ 1C4)(C` + a`Πj,`,m)−sΠj,`,m

mit a` = aγ(`+ 1/2)−2 und einem hinreichend großen, von ` unabhängigen aγ > 0. Zunächst
gilt wegen (6.37) die gewöhnliche Schranke ‖A‖ ≤ as,γ(`+1/2)−4s. Die Spur von C kann wie in

Behauptung 6.2.10 durch 2(C
(r)
` +a`)

−2s(r, r)+2(C
(r)
2j−`+a`)

−2s(r, r) abgeschätzt werden. Hier

haben wieder verwendet, dass der Kern (C
(r)
` + a`)

−2s(r, r′) wegen der Sobolew-Einbettung
(mit 2s > d = 1) eine stetige Funktion in beiden Variablen ist. Die Diagonale wurde bereits
in 5.4.5 durch

(C
(r)
` + a`)

−2s(r, r) ≤ As,aγ

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]

abgeschätzt. Eine analoge Rechnung zeigt, dass, modulo einer `-unabhängigen Konstante,

diese Schranke auch für (C
(r)
2j−` + a`)

−2s(r, r) gilt, da 2j − ` = `± 1 mit 1/2 ≤ j = `± 1/2 ist.
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Die Endlichkeit von ‖B‖ wurde im Beweis von Behauptung 6.3.5 gezeigt. Kombiniert man
die Schranken für A,B und C, erhält man

ρH` (r) =
∑

1
2
≤j=`± 1

2

(2j + 1) Tr dj,`δr

≤ As,γ(`+ 1/2)1−4s

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+1/2)2}

]
.

Insbesondere ist die rechte Seite für s > 1/2 summierbar und man erhält

r2ρH(r) =
1

4π

∞∑
`=0

ρH` (r) ≤ As,γ(r2−4s + r1/2) .

6.4 Beweis der Konvergenzresultate

Der Beweis von Satz 6.1.4 verläuft völlig analog zu dem von Satz 5.1.3 des letzten Kapitels,
weshalb wir ihn hier nicht nochmals wiederholen werden. Die wichtigsten Werkzeuge für
den Beweis sind die starke Scott-Vermutung in jedem Drehimpulskanal (Satz 6.1.3) und die
Majorante aus Behauptung 6.3.1, welche es erlaubt, die Summierung über ` ∈ N0 mit den
Grenzwerten λ→ 0 und Z →∞ zu vertauschen.

Wir konzentrieren uns von nun an auf den Beweis von Satz 6.1.3, sprich der starken
Scott-Vermutung in einem festen Drehimpulskanal.

Wie im letzten Kapitel genügt es (aufgrund der Linearität der Aussage über U), den Satz

für nicht-negatives U , welches entweder zu r−1L∞comp(R+), oder zuK(0)
s,ε mit U2s ∈ K(0)

s′,δ′ gehört.
Wir erinnern daran, dass die Parameter die Ungleichungen 1/2 < s′ < s < min{3/2− σγ , 1},
ε ∈ [0, 2s− 1] und δ′ ∈ [0, 2s′ − 1] erfüllen. Wir definieren als Erstes den gestörten Coulomb–
Dirac-Operator

DZ,λ := DZ − λ
N∑
ν=1

c2U(c|xν |)Πj0,`0,ν in

N∧
ν=1

HZ mit
1

2
≤ j0 = `0 ±

1

2
.

Hierbei wirkt Πj0,`0,ν als Πj0,`0 bezüglich des ν-ten Teilchens. Da U2s ∈ K(0)
s′,δ′ , ist

(Πj,`,mΛγUΛγΠj,`,m)2s ≤ a(Πj,`,mΛγ(DH
γ +M)ΛγΠj,`,m)2s′

für 1/2 < s′ < s wegen (6.17), sprich (Πj,`,mΛγUΛγΠj,`,m)2s ≤ Πj,`,mΛγU
2sΛγΠj,`,m und

(6.27). Siehe dazu auch den Beweis von Behauptung 6.2.4 sowie (6.28). Insbesondere ist U
daher infinitesimal Form-beschränkt bezüglich Πj,`,mΛγD

H
γ ΛγΠj,`,m, weshalb DZ,λ im Sinne

quadratischer Formen für alle λ ∈ R definiert werden kann. Ist U ∈ r−1L∞comp(R+), so kann
DZ,λ mittels Katos Ungleichung und Korollar 6.2.9 für alle λ in einer offenen Umgebung von
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Null, welche nicht von Z abhängt, definiert werden (siehe auch (6.30)). Mit der Definition
(6.6) von ρj0,`0,d(r) ist

λ(2j0 + 1)

∫ ∞
0

c−3ρj0,`0,d(c
−1r)U(r) dr = c−2 Tr(d(DZ −DZ,λ)) , (6.51)

wobei wir daran erinnern, dass d ein Grundzustand von DZ in
∧N
ν=1 HZ war. Wir schätzen

nun die rechte Seite dieser Gleichung nach oben ab. Für selbstadjungierte Operatoren v in
L2(R3 : C4), die Form-beschränkt bezüglich |p| mit Formschranke < (CγΥγ)−1c sind (mit
Cγ und Υγ aus [132, Formeln (1.2), (1.4)], siehe auch [132, Formel (1.6)], welche gerade
|DH

γ | ≥ CγΥγ |p| besagt), definieren wir

Dc(Z/|x|+ v) = −icα · ∇+ c2β − Z

|x|
− v in HZ .

Wir erinnern daran, dass ρTF
Z der eindeutige Minimierer des Thomas–Fermi-Funktionals für

ein neutrales Atom ist, dessen Grundzustandsenergie mit ETF(Z) bezeichnet wird. Wir erin-
nern außerdem an den Radius RTF

Z (x) des Austauschlochs bei x ∈ R3, der durch∫
|x−y|≤RTF

Z (x)

ρTF
Z (y) dy =

1

2

definiert ist und setzen

χTF
Z (x) :=

∫
|x−y|≥RTF

Z (x)

ρTF
Z (y)

|x− y|
dy .

Der Bequemlichkeit halber führen wir Uc(x) := c2U(cx) ein und schätzen als Erstes Tr dDZ,λ

nach unten durch eine Summe von Einteilchen-Operatoren ab. Wir erinnern daran, dass
Trj,`(A) = Tr(Πj,`AΠj,`) für Spurklasse-Operatoren A in L2(R3 : C4) war.

Lemma 6.4.1. Für alle λ in einer Umgebung von Null und alle N 3 L < Z gilt

Tr(DZ,λd) ≥ −
L−1∑
`=0

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
+ λUcΠj0,`0 + c2)ΛZ)−]

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
− χTF

Z + λUcΠj0,`0 + c2)ΛZ)−]−D[ρTF
Z ] .

Beweis. Die Korrelationsungleichung von Mancas u. a. [123] liefert zunächst∑
1≤ν<µ≤Z

1

|xν − xµ|
≥

Z∑
ν=1

χTF
Z (xν)−D[ρTF

Z ] .

Wenn d(1) die Einteilchendichtematrix von d in HZ bezeichnet, folgt aus der Nicht-Negativität
sowie der sphärischen Symmetrie von χTF

Z (x)

Tr(DZ,λd) ≥
L−1∑
`=0

∑
1
2
≤j=`± 1

2

Trj,`[d
(1)(ΛZDc(

Z

|x|
+ λUcΠj0,`0 + c2)ΛZ)]

+

∞∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[d
(1)(ΛZDc(

Z

|x|
− χTF

Z + λUcΠj0,`0 + c2)ΛZ)]−D[ρTF
Z ]
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für alle L < Z. Da der Absolutbetrag der Energie monoton fällt, wenn ` wächst (siehe auch
Behauptung 6.3.4), kann der letzte Ausdruck weiter nach unten abgeschätzt werden, indem
man d(1) durch eine Einteilchendichtematrix ersetzt, die so definiert ist, dass alle Kanäle ` < L
vollständig besetzt sind. Da es ohnehin nie mehr als Z besetzte Drehimpulskanäle gibt, kann
die zweite Summe sicherlich bei Z abgeschnitten werden. Anwenden des Variationsprinzips
zeigt schließlich die behauptete Schranke.

Wir erinnern nun an die Resultate von Handrek und Siedentop [80], welche die asym-
ptotische Entwicklung der Grundzustandsenergie von DZ in

∧N
ν=1 HZ betreffen. Die Autoren

zeigten in [80, Theorem 1]

Tr(DZd) = ETF(Z) +

(
1

2
− s(γ)

)
Z2 +O(Z47/24) für Z →∞

mit der endlichen Spektralverschiebung

s(γ) =
1

γ2

∞∑
`=0

∑
1
2
≤j=`±1/2

[
Trj,`

(
Λγ(DH

γ − 1)Λγ
)
− − (2j + 1)

∞∑
n=1

γ2

2(n+ `)2

]
. (6.52)

Lemma 6.4.2. Es gilt

Tr(DZd) = ETF(Z) +

(
1

2
− s(γ)

)
Z2 +O(Z47/24) . (6.53)

Ist darüberhinaus L = [Z1/9], dann gilt außerdem

−
L−1∑
`=0

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
+ c2)ΛZ)−]

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
− χTF

Z + c2)ΛZ)−]−D[ρTF
Z ]

≥ ETF(Z) +

(
1

2
− s(γ)

)
Z2 − konst Z47/24 .

(6.54)

Beweis. Die erste Aussage ist gerade [80, Theorem 1]. Sei nun dZ,χ die Einteilchendichtema-
trix in HZ , sodass

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
− χTF

Z + c2)ΛZ)−] = Tr[Dc(
Z

|x|
− χTF

Z + c2)dZ,χ] .

Sei weiter ΛZ,χ := 1(0,∞)(D
H
Z + χTF

Z ), wobei wir bemerken, dass Πj,`ΛZ,χ = ΛZ,χΠj,` wegen

der sphärischen Symmetrie von χTF
Z gilt. Da ‖χTF

Z ‖ ≤ AZ4/3 und Tr dZ,χ ≤ Z (wir erinnern,
dass die linke Seite von (6.54) eine untere Schranke an TrDZd ist und Tr d = Z), folgt aus
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[80, Lemma 3] und dem Variationsprinzip

Tr[Dc(
Z

|x|
− χTF

Z + c2)dZ,χ]

≥ Tr[(ΛZ,χDc(
Z

|x|
− χTF

Z + c2)ΛZ,χ)dZ,χ]−Ac2−4‖χTF
Z ‖2∞Tr dZ,χ

≥ −
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZ,χDc(
Z

|x|
− χTF

Z + c2)ΛZ,χ)−]−AZ5/3 .

Mit dem Min-Max-Prinzip für Operatoren mit Spektrallücken [76] kann die rechte Seite (wie
in der Herleitung von [80, Formel (29)]) weiter nach unten durch

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(Λ0Dc(
Z

|x|
− χTF

Z + c2)Λ0)−]−AZ5/3

abgeschätzt werden. Hierbei bezeichnet Λ0 = 1(0,∞)(cα · p + c2β) die Projektion auf das
Brown–Ravenhall-Bild. Daher ist die linke Seite von (6.54) durch

−
L−1∑
`=0

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
+ c2)ΛZ)−]

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(Λ0Dc(
Z

|x|
− χTF

Z + c2)Λ0)−]−D[ρTF
Z ]−AZ5/3

nach unten beschränkt (vergleiche auch mit [80, Formel (33)]). Kombiniert man dies mit der
nicht-relativistischen Scott-Korrektur [70, Proposition 4.1] (siehe auch [80, Formel (36)]) und
(6.52), folgt die zweite Aussage des Lemmas.

Kombiniert man (6.53) und (6.54), erhält man mit L = [Z1/9]

TrDZd ≤ −
L−1∑
`=0

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
+ c2)ΛZ)−]

−
Z∑
`=L

∑
1
2
≤j=`± 1

2

Trj,`[(ΛZDc(
Z

|x|
− χTF

Z + c2)ΛZ)−]−D[ρTF
Z ] +AZ47/24 .

Setzt man dies und die Abschätzung aus Lemma 6.4.1 in (6.51) ein, erhält man

Tr(DZ −DZ,λ)d

≤
(

Trj0,`0 [(ΛZDc(
Z

|x|
+ λUc + c2)ΛZ)−]− Trj0,`0 [(ΛZDc(

Z

|x|
+ c2)ΛZ)−]

)
θ(L− `0)

+

(
Trj0,`0 [(ΛZDc(

Z

|x|
− χTF

Z + λUc + c2)ΛZ)−]

−Trj0,`0 [(ΛZDc(
Z

|x|
− χTF

Z + c2)ΛZ)−]

)
θ(`0 − L) + konst Z47/24 ,



6.4 Beweis der Konvergenzresultate 123

wobei θ(n) = 1, falls n > 0 und θ(n) = 0, falls n ≤ 0. Wir bemerken, dass sich die Spuren
immer gegenseitig auslöschten, es sei denn sowohl ` = `0 als auch j = j0.

Für hinreichend großes Z ist immer L = [Z1/9] > `0. Skaliert man x 7→ x/c, vereinfacht
sich der letzte Ausdruck zu

Tr(DZ −DZ,λ)d

≤ Trj0,`0 [(ΛZDc(
Z

|x|
+ λUc + c2)ΛZ)−]− Trj0,`0 [(ΛZDc(

Z

|x|
+ c2)ΛZ)−])

+ konst Z47/24

= c2

(
Trj0,`0 [(ΛγD1(

γ

|x|
+ λU + 1)Λγ)−]− Trj0,`0 [(ΛγD1(

γ

|x|
+ 1)Λγ)−]

+konst Z−1/24
)

= c2(2j0 + 1)
(

Trj0,`0,m0

(
Λγ
(
DH
γ − λU − 1

)
Λγ
)
− − Trj0,`0,m0

(
Λγ
(
DH
γ − 1

)
Λγ
)
−

+konst Z−1/24
)

für beliebiges m0 ∈ {−j0, ..., j0}. Der Entartungsfaktor (2j0+1) der letzten Ungleichung rührt
von der Tatsache, dass die Eigenwerte der Operatoren Πj0,`0,m0Λγ

(
DH
γ − λU − 1

)
ΛγΠj0,`0,m0

und Πj0,`0,m0Λγ
(
DH
γ − 1

)
ΛγΠj0,`0,m0 nicht von m ∈ {−j0, ..., j0} abhängen. Setzt man diese

Schranke in (6.51) ein, teilt durch λ und lässt Z →∞ gehen, erhält man

lim sup
Z→∞

∫ ∞
0

c−3ρj0,`0,d(c
−1r)U(r)dr

≤ λ−1
(

Trj0,`0,m0

(
Λγ
(
DH
γ − λU − 1

)
Λγ
)
− − Trj0,`0,m0

(
Λγ
(
DH
γ − 1

)
Λγ
)
−

)
,

falls λ > 0 und

lim inf
Z→∞

∫ ∞
0

c−3ρj0,`0,d(c
−1r)U(r)dr

≥ λ−1
(

Trj0,`0,m0

(
Λγ
(
DH
γ − λU − 1

)
Λγ
)
− − Trj0,`0,m0

(
Λγ
(
DH
γ − 1

)
Λγ
)
−

)
,

falls λ < 0. Wir lassen nun λ → 0 gehen. Wegen der Behauptungen 6.2.4 und 6.2.5 konver-
gieren die rechten Seiten der letzten beiden Ungleichungen gegen

∫∞
0 ρHj0,`0(r)U(r) dr. Multi-

plikation beider Seiten mit (2j0 + 1) und Summierung über 1/2 ≤ j0 = `0 ± 1/2 zeigt, dass∫∞
0 c−3ρ`0,d(c

−1r) dr für Z → ∞ einen Grenzwert hat und dieser gerade durch den behaup-
teten Ausdruck gegeben ist. Dies schließt den Beweis von Satz 6.1.3.
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Kapitel 7

Äquivalenz von Sobolew-Normen
für verallgemeinerte
Hardy-Operatoren in L2

Dieses Kapitel beruht auf der gemeinsamen Arbeit [66] mit Rupert L. Frank und Heinz
Siedentop. Die Ergebnisse dieses Kapitels sowie deren Darstellung und Beweise stimmen mit
denen, die in [66] erarbeitet wurden, überein. Die Einleitung ist leicht abgewandelt und es wird
ein kurzer, ergänzender Überblick über Ergebnisse im Zusammenhang mit Hardy-Operatoren
gegeben.

7.1 Einleitung und Hauptresultat

Wir beginnen mit einem kurzen Überblick über einige Ergebnisse, die im Zusammenhang mit
Hardy-Operatoren stehen. Im Anschluß beschreiben wir unsere Situation und das Hauptresul-
tat dieses Kapitels. Darüberhinaus geben wir einige unmittelbare Konsequenzen beziehungs-
weise Anwendungen des Resultats.

Im Folgenden schreiben wir X . Y für nicht-negative Größen X und Y , wann immer es
eine Konstante A > 0 gibt, sodass X ≤ A · Y . Um gegebenenfalls Abhängigkeiten von A von
einem Parameter r zu kennzeichnen, schreiben wir X .r Y . Darüberhinaus meint X ∼ Y ,
dass Y . X . Y . In diesem Fall sagen wir, dass X zu Y äquivalent ist. Schließlich verwenden
wir die Notation

X ∧ Y := min{X,Y } und X ∨ Y := max{X,Y } .

7.1.1 Überblick über Hardy-Operatoren

Die klassische Hardy-Ungleichung [82, Formel (4)]∫ ∞
a

(
F (x)

x

)κ
dx ≤

(
κ

κ− 1

)κ ∫ ∞
a

f(x)κ dx

mit F (x) =
∫ x
a f(t) dt und κ > 1 ist eine der am längsten bekannte Ungleichung, die die

gewichtete Lκ-Norm einer abfallenden Funktion mit ihrem Gradienten in Relation bringt.
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Für κ = 2 ist diese Ungleichung auch als quantenmechanisches Unschärfeprinzip bekannt,
siehe beispielsweise [143, p. 169]. In drei Dimensionen besagt sie∫

R3

|∇ψ|2 ≥ 1

4

∫
R3

|ψ(x)|2

|x|2
dx .

Als quadratische Form-Ungleichung kann dies als −∆ ≥ |x|−2/4 geschrieben werden, wodurch
die Verbindung zur (für Physiker) gebräuchlichen Formulierung σ2

xσ
2
p ≥ 1/4 offensichtlich

wird, wobei σx beziehungsweise σp die Standardabweichung für den Ort beziehungsweise den
Impuls bezeichnen.

Die Ungleichung ist zudem von fundamentaler Wichtigkeit in vielen Fragen der harmoni-
schen Analysis, den partiellen Differentialgleichungen und der Spektraltheorie.

Die Ungleichung wurde von Herbst [87] für den fraktionalen Laplace-Operator verallge-
meinert. Für 0 < α < d besagt sie∥∥∥|p|α/2f∥∥∥2

L2(Rd)
≥ Hd,α

∥∥∥|x|−α/2f∥∥∥2

L2(Rd)
für alle f ∈ C∞c (Rd) (7.1)

mit einer positiven Konstanten Hd,α. Wir verwenden hier und im Folgenden die Notation

|p| =
√
−∆ .

Die optimale, sprich größt-mögliche, Konstante auf der rechten Seite wurde in [87, Theorem
2.5] zu

Hd,α =
2αΓ((d+ α)/4)2

Γ((d− α)/4)2

bestimmt. Im Spezialfall α = 2 war die Konstante natürlich bereits lange vorher bekannt.
Auch der andere physikalisch relevante Fall d = 3 und α = 1 war bekannt. Man spricht dann
von Katos Ungleichung [101, Kapitel 5, Gleichung (5.33)]. Für alternative Herleitungen der
Ungleichung mit scharfer Konstante verweisen wir auf [108, 184, 64, 68].

Setzt man

a∗ := −Hd,α = −2αΓ((d+ α)/4)2

Γ((d− α)/4)2
,

so folgt aus der Hardy-Ungleichung mit scharfer Konstanten, dass der Hardy-Operator

La,α := |p|α + a|x|−α in L2(Rd)

nicht-negativ für alle a ≥ a∗ ist. Genauer gesagt ist La,α als die Friedrichs-Erweiterung der
entsprechenden quadratischen Form auf C∞c (Rd) definiert.

Zahlreiche Variationen dieser Ungleichung wurden bereits untersucht. Ekholm und Frank
[43] untersuchten beispielsweise Störungen des klassischen Hardy-Operators (α = 2) in d ≥ 3
Dimensionen. Sie zeigten für alle γ > 0 und r ≥ 0 die Hardy–Lieb–Thirring-Ungleichung

Tr
(
|D −A|2 + a∗ |x|−2 − V

)γ
−
≤ Aγ,d,r

∫
Rd
V+(x)γ+ d+r

2 |x|r dx .

Frank u. a. [64] verallgemeinerten die Idee und betrachteten Störungen von La,α mit 0 <
α < min{2, d} und d ≥ 2. Sie erhielten eine Schranke an die Zahl der negativen Eigenwerte
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unterhalb einer fixierten negativen Schwelle des gestörten Operators, die mit der semiklas-
sisch vorhergesagten Schranke für den ungestörten Hardy-Operator übereinstimmt. Mit dieser
Schranke erhielten sie analog

Tr
(
|D −A|α + a∗ |x|−α − V

)γ
− ≤ Aγ,d,α

∫
Rd
V+(x)γ+ d

α dx

für alle γ > 0 und allen magnetischen Vektorpotentialen A ∈ L2
loc(Rd : Rd).

Yafaev [184] bestimmte die scharfe Konstante Cα,d in Hardy–Rellich-Ungleichungen

∫
Rd
|x|−α

∣∣∣∣∣∣∣f(x)−
∑

|β|≤[α−d2 ]

(β!)−1(∂βf)(0)xβ

∣∣∣∣∣∣∣
2

dx ≤ Cα,d
∫
Rd
|ξ|α

∣∣∣f̂(ξ)
∣∣∣2 dξ ,

wobei f̂ die Fourier-Transformation von f bezeichnet.
In einem ganz anderen Zusammenhang, dem Problem der Überschussladung von Atomen,

zeigte Lieb [116] in drei Dimensionen die Form-Ungleichung |p||x| + |x||p| > 0, indem er das
Problem auf die Ungleichung |p|2|x|+ |x||p|2 > 0 zurückführte, welche tatsächlich äquivalent
zum quantenmechanischen Unschärfeprinzip ist. Im selben Kontext zeigten Handrek und
Siedentop [79] die Positivität von |p||x| + |x||p| in zwei Dimensionen. Chen und Siedentop
[21] verallgemeinerten diese Überlegungen und zeigten die Positivität des Jordan-Produkts
Ia,b,d := 1

2(|p|a|x|b + |x|b|p|a). Hierbei sind a und b positive Konstanten. Im Fall b = d − a
reduziert sich dies auf die übliche Hardy-Ungleichung für den fraktionalen Laplace-Operator
(siehe Gleichung (5)), nämlich

Ia,b,d ≥ |x|
b
2

[
|p|a − 2a

(
Γ
(
d+a

4

)
Γ
(
d−a
a

)) |x|−a] |x| b2 .
Da Hardy-Operatoren nur eine einzige Längenskala besitzen, ist es nicht erwartbar, dass

die Operatoren für beliebig negative Kopplungskonstanten nach unten beschränkt sind.
Es stellt sich jedoch natürlich die Frage, ob die Operatoren mit beziehungsweise ohne

Hardy-Potential in gewissen Sinnen äquivalent zueinander sind.
Im Falle des Schrödinger-Operators auf Lp(Rd) fanden Killip u. a. [102], dass die Sobolew-

Normen, die durch Potenzen von −∆ beziehungsweise −∆ + a|x|−2 erzeugt werden, unter
gewissen Bedingungen an p und die Kopplungskonstante a, tatsächlich äquivalent zueinan-
der sind [102, Theorem 1.2]. Das Ziel dieses Kapitels ist es, diese Äquivalenz auch für die
Operatoren La,α in L2(Rd) zu zeigen.

7.1.2 Definitionen, Hauptresultat und Anwendungen

Für a ≥ a∗ und s > 0 tauchen die Normen∥∥∥Ls/2a,αf
∥∥∥
L2(Rd)

in vielen Anwendungen in natürlicher Art und Weise auf. Da der Operator für allgemeines
s ∈ (0, 2] (insbesondere s /∈ {1, 2}) jedoch nur schwer Hand zu haben ist, ist es unerlässlich,
die Verbindung der obigen Normen mit denen des Operators wenn a = 0 ist, sprich∥∥∥|p|αs/2f∥∥∥

L2(Rd)
,
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zu verstehen. Beispielsweise hatten wir in den Kapiteln 5 und 6 gesehen, dass gewisse Spur-
und Form-Ungleichungen bezüglich Potenzen s/2 des Operators La,1 verifiziert werden muss-
ten, um die verallgemeinerten Feynman–Hellmann-Theoreme anwenden zu dürfen. Insbeson-
dere mussten wir Potenzen s > 1 untersuchen, um mögliche Probleme am Ursprung zu kon-
trollieren.

Mit der Hardy-Ungleichung sieht man leicht ein, dass die Normen für s ∈ (0, 1] und alle
a ≥ a∗ äquivalent sind, siehe auch Bemerkung 7.1.2. Natürlich folgt durch

”
Quadrieren der

Operatoren“ (siehe Bemerkung 7.1.3) die Äquivalenz auch für s = 2 und, wegen Operatormo-
notonie positiver Wurzeln, auch für alle s ≤ 2. Allerdings gilt die Äquivalenz dann nur unter

der Einschränkung a > −H1/2
d,2α. Die natürliche Vermutung ist, dass man zwischen s = 1 und

s = 2 interpolieren können sollte. Damit meinen wir, dass es für alle a > a∗ ein sa,d,α gibt,
sodass die Normen für alle 0 < s < sa,d,α äquivalent sind.

Für α = 2 wurde ein solches Ergebnis erst kürzlich von Killip u. a. [102] bewiesen.
Tatsächlich behandeln die Autoren das allgemeinere Problem, bei dem die L2-Normen durch
Lp-Normen ersetzt werden, wobei p in einem von a und d abhängigen Intervall liegt.

Das Hauptresultat dieses Kapitels ist die Verallgemeinerung der Resultate von [102] für
den Fall 0 < α < 2 ∧ d und p = 2. Der Fall p 6= 2 gestaltet sich schwieriger und wird im
letzten Kapitel diskutiert.

Definitionen und Resultat

Für die exakte Formulierung unseres Hauptresultats verwenden wir für 0 < α < d die folgende
Parametrisierung der Kopplungskonstante a durch die Potenz des formalen Grundzustands
von La,α, siehe auch [64, Proposition 4.1] sowie den Beweis dieser Behauptung. Wir definieren

Ψα,d(σ) := −2α
Γ(σ+α

2 ) Γ(d−σ2 )

Γ(d−σ−α2 ) Γ(σ2 )
falls σ ∈ (−α, (d− α)/2] \ {0} (7.2)

und Ψα,d(0) = 0. Nach [64, Lemma 3.2] und [99, Seite 8] ist die Funktion σ 7→ Ψα,d(σ) stetig
und streng monoton fallend auf (−α, (d− α)/2] und es gelten

lim
σ→−α

Ψα,d(σ) =∞ und Ψα,d

(
d− α

2

)
= a∗ .

Daraus folgt, dass wir für alle a ∈ [a∗,∞)

δ := Ψ−1
α,d(a) (7.3)

definieren können. Wir bemerken an dieser Stelle den Gegensatz zum Fall α = 2. Für α = 2
ist δS(a) = (d− 2)/2− [(d− 2)2 + 4a]1/2/2 (S für Schrödinger), das heißt δS(a)→ −∞, wenn
a→∞.

Mit diesen Vorbereitungen können wir das Hauptergebnis dieses Kapitels formulieren.

Satz 7.1.1 (Äquivalenz von Sobolew-Normen). Seien α ∈ (0, 2 ∧ d), a ∈ [a∗,∞), δ durch
(7.3) definiert und s ∈ (0, 2].

1. Ist αs/2 + δ < d/2, dann gilt

‖|p|α
s
2 f‖L2(Rd) .d,α,a,s ‖L

s
2
a,αf‖L2(Rd) für alle f ∈ C∞c (Rd) . (7.4)
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2. Ist αs/2 < d/2, dann gilt

‖L
s
2
a,αf‖L2(Rd) .d,α,a,s ‖|p|α

s
2 f |L2(Rd) für alle f ∈ C∞c (Rd) . (7.5)

Wir bemerken, dass das Intervall für s in (7.5) scharf ist, was gesehen werden kann,
indem man eine am Ursprung konstante Schwartz-Funktion in die Ungleichung einsetzt. Des
Weiteren werden die Schranken an die Parameter für α = 2 aus [102] wiederhergestellt.

Bemerkung 7.1.2. Der entscheidende Punkt des Satzes ist, dass er Potenzen s > 1 (soweit
nicht a = a∗ im Falle (7.4)) erlaubt. Für s ≤ 1 kann das Resultat direkter eingesehen werden.
Aus der Hardy-Ungleichung (7.1) folgen für a > a∗ die Form-Ungleichungen(

1− a

a∗

)
|p|α ≤ La,α ≤ |p|α , falls a < 0 , |p|α ≤ La,α ≤

(
1 +

a

a∗

)
|p|α , falls a > 0 ,

und wegen Operatormonotonie positiver Wurzeln auch(
1− a

a∗

)s
|p|αs ≤ Lsa,α ≤ |p|αs , falls a < 0 , |p|αs ≤ Lsa,α ≤

(
1 +

a

a∗

)s
|p|αs , falls a > 0

mit 0 < s < 1. Dies zeigt (7.4) und (7.5) für 0 < s ≤ 1.

Bemerkung 7.1.3. Ein weiterer entscheidender Punkt dieses Satzes ist, dass der volle Bereich
a ≥ a∗ und α < 2∧d abdeckt wird. Tatsächlich gibt es für s = 2 und α < d/2 einen einfacheren
Beweis von (7.5) und, unter einer weiteren Einschränkung an a, einen einfacheren Beweis von
(7.4). Mit (7.1) folgt zunächst

‖La,αf‖L2(Rd) ≤ ‖|p|
αf‖L2(Rd) + |a| ‖|x|αf‖L2(Rd) ≤

(
1 + |a|H−1/2

d,2α

)
‖|p|αf‖L2(Rd) ,

was (7.5) für α < d/2 und s = 2 zeigt. Aus der Operatormonotonie positiver Wurzeln folgt
die Behauptung insbesondere für alle s ≤ 2 und α < d/2.

Um unsere zweite Behauptung präzise zu formulieren, definieren wir a∗∗ := −H1/2
d,2α (was

für α < d/2 wohldefiniert ist). Das zu a∗∗ gehörige δ∗∗ ist nach (7.3) gerade δ∗∗ = d/2−α, das
heißt a∗∗ > a∗ wegen δ∗∗ < (d−α)/2 und der Monotonie der Abbildung (7.2). Wir behaupten,
dass für |a| < |a∗∗| die Ungleichung (7.5) für alle s ≤ 2 gilt. Um dies zu zeigen, genügt es
wieder (wegen Operatormonotonie positiver Wurzeln), die Behauptung für s = 2 zu zeigen.
In diesem Fall folgt aus der Dreiecks- und der Hardy-Ungleichung

‖La,αf‖L2(Rd) ≥ ‖|p|
αf‖L2(Rd) − |a| ‖|x|

αf‖L2(Rd) ≥
(

1− |a|H−1/2
d,2α

)
‖|p|αf‖L2(Rd) ,

was behauptet wurde.

Beweisstrategie

Aus (7.4) und der Hardy-Ungleichung (7.1) folgt sofort eine Hardy-Ungleichung für Potenzen
von La,α.

Behauptung 7.1.4 (Verallgemeinerte Hardy-Ungleichung). Seien α ∈ (0,min{2, d}), a ∈
[a∗,+∞), und δ durch (7.3) definiert. Dann gilt für alle 0 < αs/2 < min{(d− 2δ)/2, d}

‖|x|−αs/2f‖2 .d,α,a,s

∥∥∥Ls/2a,αf
∥∥∥

2
für alle f ∈ C∞c (Rd) . (7.6)

Falls umgekehrt 0 < αs/2 < min{d− 2δ, d} und obige Abschätzung gilt, dann ist auch αs/2 <
(d− 2δ)/2.
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Tatsächlich ist die Strategie des Beweises gerade umgekehrt. Wir werden nicht (7.6) aus
Satz 7.1.1 folgern. Stattdessen ist (7.6) eine wichtige Zutat für den Beweis von Satz 7.1.1 und
wir werden diese daher zuerst zeigen. Eine weitere Zutat für den Beweis des Hauptresultats
ist die folgende umgekehrte Hardy-Ungleichung. Diese gibt eine untere Schranke an die Norm

von |x|−αs/2f , welche durch die Differenz
(
Ls/2a,α − |p|αs/2

)
f ausgedrückt wird. Solche Unglei-

chungen scheinen – selbst für α = 2 – bisher unbekannt gewesen zu sein. Für α = 2 könnten
sie vermutlich ebenfalls mit unserer Beweisstrategie für die punktweisen Abschätzungen der
Differenz der Wärmeleitungskerne der Hardy-Operatoren gewonnen werden.

Behauptung 7.1.5 (Umgekehrte Hardy-Ungleichung für Differenzen). Seien α ∈ (0, 2 ∧ d)
und a ∈ [a∗,+∞). Dann gilt für alle s ∈ (0, 2]∥∥∥(Ls/2a,α − |p|αs/2

)
f
∥∥∥

2
.d,α,a,s

∥∥∥|x|−αs/2 f∥∥∥
2

für alle f ∈ C∞c (Rd) .

Bevor wir fortfahren, zeigen wir, dass Satz 7.1.1 eine unmittelbare Konsequenz der Be-
hauptungen 7.1.4 und 7.1.5 ist.

Beweis von Satz 7.1.1. Falls αs/2 < (d − 2δ)/2, erhalten wir mit Hilfe der Behauptungen
7.1.5 und 7.1.4

‖|p|α
s
2 f‖L2(Rd) ≤

∥∥∥L s2a,αf∥∥∥
L2(Rd)

+
∥∥∥(Ls/2a,α − |p|αs/2

)
f
∥∥∥

2

. ‖L
s
2
a,αf‖L2(Rd) + ‖|x|−αs/2f‖2

. ‖L
s
2
a,αf‖L2(Rd) .

Dies zeigt (1) des Satzes. Wir bemerken, dass die Annahme αs/2 < d in Behauptung 7.1.4
automatisch aus s ≤ 2 und α < d folgt.

Falls αs/2 < d/2, argumentieren wir ähnlich, verwenden dieses mal aber die Hardy-Un-
gleichung (7.1) (mit αs, anstatt α) anstatt Behauptung 7.1.4. Dies zeigt (2) des Satzes.

Wir haben damit den Beweis von Satz 7.1.1 auf den der Behauptungen 7.1.4 und 7.1.5
zurückgeführt. Wir illustrieren nun ihre Beweise. Sie beruhen – wie die im Fall α = 2 in [102]
– sehr stark auf beidseitigen punktweisen Schranken für den Wärmeleitungskern von La,α.
Diese wurden erst kürzlich von Bogdan u. a. [15] für 0 > a ≥ a∗ und Jakubowski und Wang
[99] sowie Cho u. a. [24] für a > 0 bewiesen.

Im ersten Schritt verwenden wir die Schranken an e−tLa,α , um punktweise Schranken an

den Riesz-Kern L−s/2a,α herzuleiten.

Satz 7.1.6 (Riesz-Kerne der verallgemeinerten Hardy-Operatoren). Seien α ∈ (0, 2 ∧ d),
a ∈ [a∗,∞) und δ durch (7.3) definiert. Sei ferner 0 < αs/2 < min{d, d− 2δ}. Dann gilt

L−s/2a,α (x, y) ∼d,α,a,s |x− y|α
s
2
−d
(

1 ∧ |x|
|x− y|

∧ |y|
|x− y|

)−δ
. (7.7)

Eine Anwendung dieses Satzes ist beispielsweise der Beweis von Behauptung 7.1.4.
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Beweis von Behauptung 7.1.4. Offensichtlich ist (7.6) äquivalent zur L2-Beschränktheit des

Operators |x|−αs/2L−s/2a,α . Mittels der oberen Schranke aus Satz 7.1.6 folgt dies aus der L2-
Beschränktheit des Operators mit dem Integralkern

|x|−α
s
2 |x− y|α

s
2
−d
(

1 ∧ |x|
|x− y|

∧ |y|
|x− y|

)−δ
.

Diese wiederum folgt unmittelbar mittels eines Schur-Tests. Da dasselbe Argument bereits
in [102, Proposition 3.2] (mit s anstatt αs/2 und σ anstatt δ) durchgeführt wurde und wir
ähnliche Schur-Tests später nochmals durchführen werden, unterlassen wir hier die Details.

Die Tatsache, dass die Ungleichung (7.6) für αs/2 ≥ (d − 2δ)/2 im Allgemeinen falsch
ist, folgt aus der unteren Schranke aus Satz 7.1.6 mit demselben Gegenbeispiel wie in [102,
Proposition 3.2].

Diese Schranken reduzieren den Beweis von Behauptung 7.1.4 auf den von Satz 7.1.6,
welchen wir in Abschnitt 7.2 geben.

Wir fahren nun mit der Strategie des Beweises fort. Während die Beweise von Behauptung
7.1.4 und Satz 7.1.6 die punktweisen Schranken von e−La,α verwenden, benötigen wir gute
punktweise Schranken an die Differenz der Wärmeleitungskerne von La,α und |p|α, um den Be-
weis von Behauptung 7.1.5 zu schließen. Diese Schranken werden in Abschnitt 7.3 und insbe-
sondere in Lemma 7.3.1 diskutiert. Wir betonen an dieser Stelle, dass die Wärmeleitungskerne
für α < 2 keinen außerdiagonalen Gaußschen Abfall haben (wie im Fall α = 2). Tatsächlich
fallen die Kerne lediglich algebraisch ab, was die Herleitung der punktweisen Schranken an
den Riesz-Kern und die Differenz der Wärmeleitungskerne erheblich erschwert.

Anwendungen

Wir schließen die Einleitung mit einigen Anwendungen des Hauptresultats, Satz 7.1.1. Die
unmittelbarste Anwendung ist der Beweis einer Sobolew-Ungleichung für den Operator La,α.
Diese folgt sofort aus Satz 7.1.1 und der üblichen Sobolew-Ungleichung.

Korollar 7.1.7. Seien α ∈ (0, 2 ∧ d), a ∈ [a∗,∞) und sei δ durch (7.3) definiert. Dann gilt
für alle s ∈ (0, 2] mit αs/2 < min{(d− 2δ)/2, d/2}

‖f‖
L

2d
d−αs (Rd)

.d,α,a,s

∥∥∥L s2a,αf∥∥∥
L2(Rd)

für alle f ∈ C∞c (Rd) . (7.8)

Für weitere Sobolew-Ungleichungen, die La,α involvieren, verweisen wir auf Anhang D.3.
In [65] zeigten Frank u. a. die erstaunliche Tatsache, dass Cwikel–Lieb–Rosenbljum-

und Lieb–Thirring-Ungleichungen aus Sobolew-Ungleichungen hergeleitet werden können. Die
Herleitung der schwierigeren Hardy–Lieb–Thirring-Ungleichungen würde daher (zumindest
für subkritische Kopplungskonstanten) aus ihrer Arbeit und Satz 7.1.1 folgen.

Als Nächstes verallgemeinern wir das Hauptresultat auch auf den masselosen Coulomb–
Dirac-Operator

Dν := −iα · ∇ − ν

|x|
in L2(R3 : C4)

mit 0 ≤ ν ≤ 1 in der Nenciu- [135] beziehungsweise Esteban–Loss-Realisierung [47] (siehe auch
die Diskussion in Abschnitt 1.3.2 über die erlaubten Kopplungskonstanten und ihr Verhältnis
mit selbstadjungierten Realisierungen). Der fundamentale Unterschied zum Herbst-Operator
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ist, dass Dν nicht von unten beschränkt ist. Nichtsdestotrotz können wir, auf den Ergebnis-
sen von Morozov und Müller [132] aufbauend, analoge Schranken für |Dν | wie in Satz 7.1.1
herleiten.

Korollar 7.1.8. Seien ν ∈ (0, 1] und s ∈ (0, 2].

1. Falls zusätzlich s < 1 + 2
√

1− ν2, dann gilt

‖|p|
s
2 f‖L2 .ν,s ‖|Dν |

s
2 f‖L2 für alle f ∈ C∞c (R3 : C4) . (7.9)

2. Es gilt

‖|Dν |
s
2 f‖L2 .ν,s ‖|p|

s
2 f‖L2 für alle f ∈ C∞c (R3 : C4). (7.10)

Beweis. Wir beginnen mit dem Beweis des einfacheren zweiten Teils, welcher auch ohne unser
Hauptresultat bewiesen werden kann. Die Idee ist die Gleiche wie in Bemerkung 7.1.3. Wir
erinnern zunächst an die Gleichheit (−iα · ∇)2 = −∆ ⊗ 1C4 . Mittels der Cauchy–Schwarz-
und der Hardy-Ungleichung (7.1) mit d = 3 und α = 2 ist

(Dν)2 ≤ Aν (−∆)⊗ 1C4 .

Wegen Operatormonotonie der Wurzel erhalten wir (wie in Bemerkung 7.1.2) für alle 0 < t ≤ 1

|Dν |2t ≤ Atν |p|2t ⊗ 1C4 .

Dies zeigt (7.10) mit s = 2t.
Wir kommen nun zum schwierigeren Teil des Beweises des Korollars. In [132] zeigten

Morozov und Müller
(Dν)2 ≥ Aν (La,1)2 ⊗ 1C4

mit
a = −

√
1− ν2 cot

(π
2

√
1− ν2

)
, falls ν < 1 , a = −π

2
, falls ν = 1 ,

siehe auch [132, Lemma II.5, Lemma III.1 und Abschnitt IV]. Obwohl die Autoren die Schran-
ke nicht explizit formulieren, kann sie direkt aus ihren Resultaten gefolgert werden. Die auf
den nullten Drehimpulskanal eingeschränkte Schranke ist zu ihrem Lemma IV.4 äquivalent,
wohingegen ihr Lemma IV.5 besagt, dass (Dν)2 auf dem orthogonalen Komplement dieses
Kanals tatsächlich durch eine Konstante mal −∆⊗1C4 nach unten abgeschätzt werden kann.
Wie zuvor, kann −∆⊗1C4 mit der Hardy-Ungleichung weiter nach unten durch (La,1)2⊗1C4

abgeschätzt werden. Mit der Operatormonotonie positiver Wurzeln erhalten wir daher für alle
0 < t < 1

|Dν |2t ≥ Atν L2t
a,1 ⊗ 1C4 .

Die Beobachtung a = Ψ1,3(1−
√

1− ν2) und Satz 7.1.1 mit s = 2t implizieren dann (7.9).

Die hauptsächliche Motivation für Satz 7.1.1 ist natürlich der Beweis der starken Scott-
Vermutung für den Chandrasekhar- und den Furry-Operator, siehe Kapitel 5 und 6. Hier
müssen wir gewisse Form- und Spur-Ungleichungen bezüglich des Chandrasekhar- bezie-
hungsweise des Furry-Operators zeigen. Diese lassen sich mit unserem Resultat sofort auf
die entsprechenden Ungleichungen bezüglich

√
−∆ zurückführen, welche deutlich leichter zu

beweisen sind.
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7.2 Wärmeleitungs- und Riesz-Kerne

Wir beweisen in diesem Abschnitt Satz 7.1.6. Dazu erinnern wir an die kürzlich von Bogdan u.
a. [15] (für a < 0) und Jakubowski und Wang [99] sowie Cho u. a. [24] (für a > 0) bewiesenen
beidseitigen punktweisen Schranken für den Wärmeleitungskern von La,α für a ≥ a∗. Für
a = 0 wurden die Schranken bereits von Blumenthal und Getoor [12] gezeigt. Im Spezialfall
a = 0 und α = 1 zeigt eine explizite Rechnung, dass der Wärmeleitungskern gerade der
Poisson-Kern ist, siehe auch [170, Theorem 1.14].

Satz 7.2.1 (Wärmeleitungskerne verallgemeinerter Hardy-Operatoren). Seien α ∈ (0, 2∧ d),
a ≥ a∗ und sei δ durch (7.3) definiert. Dann erfüllt der Wärmeleitungskern von La,α für alle
x, y ∈ Rd und t > 0 die beidseitigen Schranken

e−tLa,α(x, y) ∼

(
1 ∨ t

1/α

|x|

)δ (
1 ∨ t

1/α

|y|

)δ
t−d/α

(
1 ∧ t1+d/α

|x− y|d+α

)
. (7.11)

Für a > 0 kann man auch das Maximumprinzip der Wärmeleitungsgleichung bezie-
hungsweise die Trotter-Formel verwenden, um die folgende, simplere Schranke zu erhalten.
Diese ist interessanterweise ausreichend, um die Differenz der gestörten und ungestörten
Wärmeleitungskerne abzuschätzen (Lemma 7.3.1) und damit die umgekehrte Hardy-Unglei-
chung (Behauptung 7.1.5) zu zeigen.

Lemma 7.2.2. Seien α ∈ (0, 2∧d) und a ∈ (0,∞). Dann erfüllt der Wärmeleitungskern von
La,α für alle x, y ∈ Rd und t > 0 die Schranke

0 ≤ e−tLa,α(x, y) ≤ e−t|p|
α
(x, y) . (7.12)

Alternativ folgt das Lemma auch aus der Duhamel-Formel (siehe später auch (7.16))

e−|p|
α − e−La,α = a

∫ 1

0
e−(1−s)|p|α |x|−αe−sLa,α ds

und der Positivität der Wärmeleitungskerne (welche für e−La,α ebenfalls auch direkt aus der
Trotter-Formel folgt).

Kombiniert man diese Schranke mit der aus Satz 7.2.1 für a = 0, erhält man

0 ≤ e−tLa,α(x, y) . t−d/α

(
1 ∧ t1+d/α

|x− y|d+α

)
.

Aus den Schranken an den Wärmeleitungskern können wir sofort die behaupteten Schran-
ken an den Riesz-Kern herleiten.

Beweis von Satz 7.1.6. Mit dem Spektralsatz kann der Riesz-Kern durch

L−s/2a,α (x, y) =
1

Γ(s/2)

∫ ∞
0

e−tLa,α(x, y) ts/2
dt

t
(7.13)
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dargestellt werden. Setzt man die beidseitigen Schranken für e−tLa,α aus Satz 7.2.1 ein und
skaliert t 7→ |x− y|αt, sieht man, dass die rechte Seite von (7.13) zu∫ ∞

0
t−

d
α

+ s
2

(
1 ∨ t

1/α

|x|

)δ (
1 ∨ t

1/α

|y|

)δ (
1 ∧ t1+d/α

|x− y|d+α

)
dt

t

=|x− y|α
s
2
−d
∫ ∞

0
dt t

s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ |x− y|
|x|

t
1
α

)δ (
1 ∨ |x− y|

|y|
t
1
α

)δ (7.14)

äquivalent ist. Da L−s/2a,α (x, y) symmetrisch in x und y ist, können wir ohne Beschränkung der
Allgemeinheit |x| ≤ |y| annehmen. Daher müssen wir nur noch zeigen, dass das Integral auf
der rechten Seite von (7.14) für |x| ≤ |y| zu(

1 ∧ |x|
|x− y|

)−δ
äquivalent ist. Dazu unterscheiden wir zwischen den Fällen |x− y| ≤ 4|x| und |x− y| ≥ 4|x|.

Fall |x− y| ≤ 4|x|. In diesem Fall ist |y| ≤ |x|+ |x− y| ≤ 5|x| und daher

|x− y| . |x| ∼ |y| .

Daher ist das Integral in (7.14) zu∫ ∞
0

dt t
s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)2δ

äquivalent, wobei λ := |x|/|x− y| ≥ 1/4. Wir müssen nun zeigen, dass dieses zu 1 äquivalent
ist. Wir haben∫ λα

0
dt t

s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)2δ
=

∫ λα

0
dt t

s
2

(
1 ∧ t−

d
α
−1
)
∼ 1 ,

da λ ≥ 1/4 und da das Integral wegen der Annahme s/2 < d/α konvergiert. Andererseits gilt
wieder wegen λ ≥ 1/4 und αs/2 < d∫ ∞

λα
dt t

s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)2δ
=

∫ ∞
λα

dt t
s
2

(
1 ∧ t−

d
α
−1
)
λ−2δt

2δ
α

.
∫ ∞
λα

dt t
s
2
− d
α
−1λ−2δt

2δ
α ∼ λ

sα
2
−d . 1 .

Das Integral konvergierte wegen der Annahme s/2 + 2δ/α < d/α. Dies zeigt die behauptete
obere Schranke. Da das Integral von λα bis Unendlich nicht-negativ ist, folgt die behauptete
untere Schranke auch aus dem vorigen Integral von Null bis λα, welches echt positiv ist.

Fall |x − y| ≥ 4|x|. In diesem Fall ist sowohl |x − y| ≤ |x| + |y| ≤ 2|y|, als auch |y| ≤
|x|+ |x− y| ≤ 5

4 |x− y|, weshalb auch

|x| ≤ |y| ∼ |x− y| .

Daher ist das Integral in (7.14) zu∫ ∞
0

dt t
s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)δ (
1 ∨ t

1
α

)δ
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äquivalent, wobei λ := |x|/|x − y| ≤ 1/4. Wir zeigen nun, dass dieses zu λ−δ äquivalent ist.
Wegen λ ≤ 1/4 und δ > −α ist∫ 1

λα
dt t

s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)δ (
1 ∨ t

1
α

)δ
=

∫ 1

λα
dt t

s
2λ−δt

δ
α ∼ λ−δ

und unter Verwendung von s/2 + 2δ/α < d/α ist∫ ∞
1

dt t
s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)δ (
1 ∨ t

1
α

)δ
=

∫ ∞
1

dt t
s
2
− d
α
−1λ−δt

δ
α t

δ
α ∼ λ−δ .

Andererseits ist (mit δ > −α, was insbesondere αs/2 + α+ δ ≥ 0 zur Folge hat)∫ λα

0
dt t

s
2

(
1 ∧ t−

d
α
−1
)(

1 ∨ λ−1t
1
α

)δ (
1 ∨ t

1
α

)δ
=

∫ λα

0
dt t

s
2 ∼ λ

sα
2

+α . λ−δ .

Dies zeigt die behauptete obere Schranke. Da außerdem das letzte Integral nicht-negativ ist,
erhalten wir auch die behauptete untere Schranke. Damit ist der Satz bewiesen.

7.3 Differenz der Wärmeleitungskerne

In diesem Abschnitt beweisen wir Behauptung 7.1.5. Der Schlüßel hierfür sind möglichst gute
Schranken an die Differenz der Wärmeleitungskerne von La,α und |p|α, das heißt

Kα
t (x, y) := e−t|p|

α
(x, y)− e−tLa,α(x, y) .

Die Schranken an die individuellen Wärmeleitungskerne e−t|p|
α
(x, y) und e−tLa,α(x, y) wurden

im letzten Abschnitt diskutiert. Das folgende Lemma besagt, dass es bei der Differenz der
Kerne effektive Auslöschungen in den Regionen (|x| ∨ |y|)α ≥ t und |x| ∼ |y| gibt. Es ist
interessant zu beobachten, dass die beidseitigen Schranken für e−tLa,α nur für a < 0 benötigt
werden. Für a ≥ 0 reicht das Maximumprinzip (Lemma 7.2.2) für die Zwecke dieses Abschnitts
aus.

Wir formulieren die Differenz der Kerne mit Hilfe der Funktionen

Lα,δt (x, y) := 1{(|x|∨|y|)α≤t}t
− d
α

(
t2/α

|x||y|

)δ
+ 1{(|x|∨|y|)α≥t}

t

(|x| ∨ |y|)d+α

(
1 ∨ t1/α

|x| ∧ |y|

)δ
und

Mα
t (x, y) := 1{(|x|∨|y|)α≥t}1{ 1

2
|x|≤|y|≤2|x|}

t1−
d
α

(|x| ∧ |y|)α

(
1 ∧ t1+ d

α

|x− y|d+α

)
.

Mit dem Positiv-Teil δ+ := max{δ, 0} (sprich δ+ = 0, wenn a ≥ 0 und δ+ = δ, wenn
a < 0) zeigen wir

Lemma 7.3.1 (Differenz der Kerne). Seien α ∈ (0, 2 ∧ d), a ∈ [a∗,∞) und sei δ durch (7.3)
definiert. Dann gilt für alle x, y ∈ Rd und t > 0

|Kα
t (x, y)| . L

α,δ+
t (x, y) +Mα

t (x, y) . (7.15)
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Beweis. Wegen der Symmetrie in x und y genügt es |x| ≤ |y| zu betrachten. Durch Skalieren
sieht man weiter ein, dass es genügt, t = 1 zu untersuchen, weshalb wir von nun an den Index
t bei den Funktionen Kα

t , Lα,δt und Mα
t vernachlässigen.

Falls a ≥ 0 (sprich δ ≤ 0), kombinieren wir das Maximumprinzip (Lemma 7.2.2) und die
Schranke aus Satz 7.2.1 für a = 0 und erhalten

0 ≤ Kα(x, y) ≤ e−|p|
α
(x, y) ∼ 1 ∧ |x− y|−d−α .

Dies zeigt die Schranke Kα(x, y) . Lα,0(x, y), falls |y| ≤ 1 (durch Beschränken des Minimums
durch 1), oder, im Fall |y| ≥ 1 und |x| ≤ |y|/2 (durch Beschränken des Minimums durch
|x− y|−d−α . |y|−d−α).

Falls a < 0 (sprich δ > 0), kombinieren wir wieder das Maximumprinzip und Satz 7.2.1.
Dann folgt

0 ≤ −Kα(x, y) ≤ e−La,α(x, y) .
(

1 ∨ |x|−δ
)(

1 ∨ |y|−δ
)(

1 ∧ |x− y|−d−α
)
.

Dies zeigt die Schranke −Kα(x, y) . Lα,δ(x, y), falls |y| ≤ 1 (da dann das Produkt der ersten
beiden Faktoren auf der rechten Seite kleiner oder gleich (|x||y|)−δ ist), oder, falls |y| ≤ 1
und |x| ≤ |y|/2 (da dann der kleinere der ersten beiden Faktoren gleich 1 ist und der dritte
Faktor, also 1 ∧ |x− y|−d−α, durch |y|−d−α abgeschätzt werden kann).

Wir können daher von nun annehmen, dass |y| ≥ 1 und |x|/2 ≤ |y| ≤ 2|x|. Mit der
Duhamel-Formel ist

a

∫ 1

0
ds e−(1−s)|p|α |x|−αe−sLa,α

= e−|p|
α

∫ 1

0
ds es|p|

α
(|p|α + a|x|−α)e−sLa,α − e−|p|

α

∫ 1

0
ds es|p|

α |p|αe−sLa,α

= −e−|p|
α

∫ 1

0
ds es|p|

α
∂se
−sLa,α − e−|p|

α

∫ 1

0
ds ∂se

s|p|αe−sLa,α

= −e−|p|
α
(e|p|

α
e−La,α − 1) = e−|p|

α − e−La,α .

(7.16)

Falls a ≥ 0, verwenden wir Lemma 7.2.2 und Satz 7.2.1 (mit a = 0) und schließen, dass

0 ≤ Kα(x, y) .
∫ 1

0
ds

∫
Rd
dz |z|−α s−

d
α (1− s)−

d
α

(
1 ∧ (1− s)1+ d

α

|x− z|d+α

)(
1 ∧ s1+ d

α

|y − z|d+α

)
.

Falls a < 0, verwenden wir Satz 7.2.1 und schließen, dass

0 ≤ −Kα(x, y) .
∫ 1

0
ds

∫
Rd
dz s−

d
α (1− s)−

d
α |z|−α

(
1 ∧ (1− s)1+ d

α

|x− z|d+α

)

×

(
1 +

s
δ
α

|y|δ

)(
1 +

s
δ
α

|z|δ

)(
1 ∧ s1+ d

α

|y − z|d+α

)

.
∫ 1

0
ds

∫
Rd
dz s−

d
α (1− s)−

d
α |z|−α

(
1 ∧ (1− s)1+ d

α

|x− z|d+α

)

×

(
1 +

s
δ
α

|z|δ

)(
1 ∧ s1+ d

α

|y − z|d+α

)
.
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Die zweite Ungleichung rührt von der Tatsache her, dass s1/α ≤ 1 ≤ |y|.
Es verbleibt somit∫ 1

0
ds

∫
Rd
dz s−

d
α (1− s)−

d
α |z|−α

(
1 ∧ (1− s)1+ d

α

|x− z|d+α

)1 +
s
δ+
α

|z|δ+

(1 ∧ s1+ d
α

|y − z|d+α

)
(7.17)

zu beschränken. Dazu zerlegen wir die z-Integration in zwei Teile und beginnen mit der Region
|z| ≥ |x|/2. In diesem Fall schätzen wir

|z|−α . |x|−α und s
1
α ≤ 1 ≤ |y| . |x| . |z|

ab. Wir schätzen (7.17) in dieser Region ab, indem wir diese Schranken anwenden und die
z-Integration auf ganz Rd fortsetzen. Das Integral ist dann durch eine Konstante mal

1

|x|α

∫ 1

0
ds

∫
Rd
dz s−

d
α (1− s)−

d
α

(
1 ∧ (1− s)1+ d

α

|x− z|d+α

)(
1 ∧ s1+ d

α

|y − z|d+α

)

.
1

|x|α

∫ 1

0
ds

∫
Rd
dz e−(1−s)|p|α(x, z)e−s|p|

α
(z, y)

=
1

|x|α

∫ 1

0
ds e−|p|

α
(x, y)

.
1

|x|α
(

1 ∧ |x− y|−d−α
)

= Mα(x, y)

beschränkt. Hierbei haben wir zum einen Satz 7.2.1 zwei mal (mit a = 0) und zum anderen
die Halbgruppen-Eigenschaft verwendet.

Schließlich müssen wir noch (7.17) in der Region |z| ≤ |x|/2 abschätzen. Wir beschränken∫
|z|≤ 1

2
|x|

dz |z|−α 1

|x− z|d+α

1 +
s
δ+
α

|z|δ+

 1

|y − z|d+α

.
1

|x|d+α|y|d+α

∫
|z|≤ 1

2
|x|

dz |z|−α
1 +

s
δ+
α

|z|δ+


∼ 1

|x|d+α|y|d+α

(
|x|d−α + s

δ+
α |x|d−α−δ+

)
∼ 1

|x|d+α|y|d+α
|x|d−α ,

wobei wir im vorletzten Schritt α + δ+ < d (was aus δ ≤ (d− α)/2 und α < d folgt) und im
letzten Schritt wieder s1/α ≤ 1 ≤ |y| . |x| verwendet haben. Setzt man dieses Ergebnis in
(7.17) ein, erhalten wir∫ 1

0
ds s−

d
α (1− s)−

d
α

∫
|z|≤ 1

2
|x|

dz |z|−α
(

1 ∧ (1− s)1+ d
α

|x− z|d+α

)1 +
s
δ+
α

|z|δ+

(1 ∧ s1+ d
α

|y − z|d+α

)

.
|x|d−α

|x|d+α|y|d+α

∫ 1

0
ds s(1− s) ∼ |x|d−α

|x|d+α|y|d+α
.

1

|y|d+α
≤ Lα,δ+(x, y) ,
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wobei wir im vorletzten Schritt wieder 1 ≤ |y| . |x| verwendet haben. Dies zeigt die behaup-
tete Schranke an die Differenz der Wärmeleitungskerne.

Wir verwenden diese Schranken, um den Beweis des Hauptresultats zu schließen, denn es
verbleibt nur noch die umgekehrte Hardy-Ungleichung (Behauptung 7.1.5) zu zeigen. Dazu
verwenden wir (siehe beispielsweise [72] und [161, Theorem 0.3.1])

Lemma 7.3.2 ((Gewichteter) Schur-Test). Seien (X, dµ) und (Y, dν) messbare Räume und
sei w(x, y) eine auf X × Y messbare Funktion. Angenommen, K(x, y) : X × Y → C erfüllt

sup
x∈X

∫
Y
w(x, y)

1
p |K(x, y)| dν(y) ≡ A1 <∞

und

sup
y∈Y

∫
X
w(x, y)

− 1
p′ |K(x, y)| dµ(x) ≡ A2 <∞

für ein 1 < p <∞ beziehungsweise 1 ≤ p ≤ ∞, falls w(x, y) ≡ 1. Dann ist der durch

(Tf)(x) :=

∫
Y
K(x, y)f(y) dν(y)

definierte Operator von Lp(Y, dν) nach Lp(X, dµ) beschränkt. Insbesondere gilt

‖Tf‖Lp(X,dµ) ≤ A
1
p′
1 A

1
p

2 ‖f‖Lp(Y,dν) .

Damit kommen wir zum

Beweis von Behauptung 7.1.5. Für s = 2 ist die Behauptung trivial, weshalb wir von nun an
0 < s < 2 voraussetzen. Wegen der Gleichheit∫ ∞

0

dt

t
t−s/2(e−t − 1) = Γ(−s/2)

erhalten wir durch Anwenden des Spektralsatzes und Skalieren(
Ls/2a,α − |p|αs/2

)
f = − 1

Γ(−s/2)

∫ ∞
0

dt

t
t−s/2

((
e−t|p|

α − 1
)
f −

(
e−tLa,α − 1

)
f
)

= − 1

Γ(−s/2)

∫ ∞
0

dt

t
t−s/2

(
e−t|p|

α − e−tLa,α
)
f

= − 1

Γ(−s/2)

∫ ∞
0

dt

t
t−s/2

∫
Rd
dy Kα

t (·, y)f(y) .

Mit Hilfe von Lemma 7.3.1 schätzen wir∥∥∥(Ls/2a,α − |p|αs/2
)
f
∥∥∥

2
.

∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2L

α,δ+
t (x, y) |y|α

s
2 g(y)

∥∥∥∥
2

+

∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2Mα

t (x, y) |y|α
s
2 g(y)

∥∥∥∥
2

(7.18)

ab, wobei wir die Abkürzung g(y) := |y|−αs/2|f(y)| verwendet haben. Das Ziel ist es, beide
Terme auf der rechten Seite von (7.18) durch eine Konstante mal ‖g‖2 zu beschränken.
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Wir beginnen mit dem ersten Term und berechnen∫ ∞
0

dt

t
t−

s
2L

α,δ+
t (x, y) = (|x||y|)−δ+

∫
t≥(|x|∨|y|)α

dt

t
t−

s
2
− d−2δ+

α

+

∫
t≤(|x|∨|y|)α

dt

t
t−

s
2

t

(|x| ∨ |y|)d+α

(
1 ∨ t1/α

|x| ∧ |y|

)δ+

∼ 1

(|x| ∨ |y|)
sα
2

+d

(
|x| ∨ |y|
|x| ∧ |y|

)δ+
.

Hierbei haben wir s/2 + (d− 2δ+)/α > 0 (was aus δ ≤ (d− α)/2 folgt) verwendet. Daher ist∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2L

α,δ+
t (x, y)|y|α

s
2 g(y)

∥∥∥∥
2

.

∥∥∥∥∥
∫
Rd
dy

1

(|x| ∨ |y|)d

(
|x| ∨ |y|
|x| ∧ |y|

)δ+
g(y)

∥∥∥∥∥
2

.

Für alle δ+ < β < d− δ+ (so ein β existiert, da δ ≤ (d− α)/2 < d/2) ist

sup
y∈Rd

∫
Rd
dx

(
|y|
|x|

)β 1

(|x| ∨ |y|)d

(
|x| ∨ |y|
|x| ∧ |y|

)δ+
=

∫
Rd

dz

|z|β(|z| ∨ 1)d

(
|z| ∨ 1

|z| ∧ 1

)δ+
<∞ .

Mit einem gewichteten Schur-Test (Lemma 7.3.2) können wir daher schließen, dass∥∥∥∥∥
∫
Rd
dy

1

(|x| ∨ |y|)d

(
|x| ∨ |y|
|x| ∧ |y|

)δ+
g(y)

∥∥∥∥∥
2

. ‖g‖2 .

Dies zeigt, dass der erste Term in (7.18) die behauptete Schranke erfüllt.
Wir betrachten nun den zweiten Term in (7.18). Da auf dem Träger des Kerns |x| ∼ |y|

ist, haben wir∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2 Mα

t (x, y)|y|
αs
2 g(y)

∥∥∥∥ .

∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4 g(y)

∥∥∥∥ .
Dies ersetzt den ursprünglichen Kern durch einen symmetrischen Kern, weshalb nur ein ein-
ziger (statt zwei) Schur-Test durchgeführt werden muss. Wir erhalten

sup
y∈Rd

∫
Rd
dx

∫ ∞
0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4

= sup
y∈Rd

∫
1
2
|y|≤|x|≤2|y|

dx

∫
t≤(|x|∨|y|)α

dt

t
t−

s
2

t1−
d
α

(|x| ∧ |y|)α

(
1 ∧ t1+ d

α

|x− y|d+α

)
(|x||y|)

αs
4

. sup
y∈Rd

|y|
αs
2
−α

∫
1
2
|y|≤|x|≤2|y|

dx

∫
t≤(2|y|)α

dt

t
t−

s
2

+1− d
α

(
1 ∧ t1+ d

α

|x− y|d+α

)
.

Nun vertauschen wir die Reihenfolge der Integrationen und führen zunächst das x-Integral
aus. Wir beschränken∫

1
2
|y|≤|x|≤2|y|

dx

(
1 ∧ t1+ d

α

|x− y|d+α

)
≤
∫
Rd
dx

(
1 ∧ t1+ d

α

|x− y|d+α

)
∼ t

d
α .



140 7. Hardy-Operatoren und Sobolew-Normen in L2

Daher ist das obige Supremum durch eine Konstante mal

sup
y∈Rd

|y|
αs
2
−α

∫
t≤(2|y|)α

dt

t
t−

s
2

+1 ∼ 1 (7.19)

beschränkt. Daher zeigt der Schur-Test, dass∥∥∥∥∫
Rd
dy

∫ ∞
0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4 g(y)

∥∥∥∥ . ‖g‖2 ,

womit die Behauptung gezeigt ist.

7.4 Eine Verallgemeinerung

Wir schließen das Kapitel mit einer leichten Verallgemeinerung des Hauptresultats, welche
beim Beweis der starken Scott-Vermutung eine wichtige Rolle spielt. Es stellt sich heraus,
dass das Resultat auch für Operatoren |p|α + V gilt, wobei V eine Funktion auf Rd ist, die

a

|x|α
≤ V (x) ≤ ã

|x|α
(7.20)

erfüllt. Hierbei ist a∗ ≤ a ≤ ã <∞. Wir zeigen

Satz 7.4.1. Seien α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã <∞ und sei δ = δ(a) durch (7.3) definiert. Sei
s ∈ (0, 2].

1. Falls αs/2 + δ < d/2, dann gilt für alle V , die (7.20) erfüllen

‖|p|αs/2f‖L2(Rd) .d,α,a,s ‖(|p|α + V )s/2f‖L2(Rd) für alle f ∈ C∞c (Rd) . (7.21)

2. Falls αs/2 < d/2, dann gilt für alle V , die (7.20) erfüllen

‖(|p|α + V )s/2f‖L2(Rd) .d,α,a,s ‖|p|αs/2f‖L2(Rd) für alle f ∈ C∞c (Rd) . (7.22)

Wir betonen, dass δ bezüglich a und nicht bezüglich ã definiert ist. Interessanterweise
hängen die Konstanten in Satz 7.4.1 nicht von ã ab. Mit einem Approximationsargument
ließe sich daher die Klasse der erlaubten Potentiale V vermutlich noch vergrößern.

Der Beweis von Satz 7.4.1 folgt unmittelbar aus den folgenden beiden Behauptungen in
demselben Stil, wie Satz 7.1.1 aus den Behauptungen 7.1.4 und 7.1.5 folgte.

Behauptung 7.4.2. Seien α ∈ (0, 2∧ d), a∗ ≤ a ≤ ã <∞ und δ durch (7.3) definiert. Dann
gilt für alle 0 < αs/2 < min{(d− 2δ)/2, d} und alle V , die (7.20) erfüllen

‖|x|−αs/2f‖2 .d,α,a,s

∥∥∥(|p|α + V )s/2f
∥∥∥

2
für alle f ∈ C∞c (Rd) .

Beweis. Wegen des Maximumprinzips gilt für alle x, y ∈ Rd und t > 0

0 ≤ e−t(|p|α+V )(x, y) ≤ e−tLa,α(x, y) (7.23)

und daher, mit dem Analogon von (7.13), auch

(|p|α + V )−s/2(x, y) ≤ L−s/2a,α (x, y) .

Dies zeigt, dass die oberen Schranken in Satz 7.1.6 auch für den Operator (|p|α+V )−s/2 gültig
sind. Die Behauptung folgt nun im gleichen Stil wie Behauptung 7.1.4.
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Behauptung 7.4.3. Seien α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã <∞ und s ∈ (0, 2]. Dann gilt für alle
V , die (7.20) erfüllen∥∥∥((|p|α + V )s/2 − |p|αs/2

)
f
∥∥∥

2
.d,α,a,s

∥∥∥|x|−αs/2 f∥∥∥
2

für alle f ∈ C∞c (Rd) .

Beweis. Für s = 2 ist die Aussage trivial, weshalb wir von nun an s ∈ (0, 2) annehmen. Sei

K̃α
t (x, y) := e−t|p|

α
(x, y)− e−t(|p|α+V )(x, y) .

Wegen des Maximumprinzips gilt für alle x, y ∈ Rd und t > 0

e−t|p|
α
(x, y)− e−tLa,α(x, y) ≤ K̃α

t (x, y) ≤ e−t|p|α(x, y)− e−tLã,α(x, y) .

Da δ̃ = Ψ−1
α,d(ã) ≤ δ, folgt aus Lemma 7.3.1 mit a und ã die Abschätzung

|K̃α
t (x, y)| . L

α,δ̃+
t (x, y) + L

α,δ+
t (x, y) +Mα

t (x, y) . L
α,δ+
t (x, y) +Mα

t (x, y) .

Mit dieser Schranke folgt die Behauptung mit den gleichen Schritten wie im Beweis von
Behauptung 7.1.5.
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Kapitel 8

Äquivalenz von Sobolew-Normen
für verallgemeinerte
Hardy-Operatoren in Lp

8.1 Einleitung und Hauptresultat

Das Ziel dieses Kapitels ist die Verallgemeinerung des Hauptresultats über die Äquivalenz
von Sobolew-Normen verallgemeinerter Hardy-Operatoren La,α = |p|α + a|x|−α von L2(Rd)
(Satz 7.1.1) auf Lp(Rd). Hierbei liegt p in einem Intervall, welches von a, αs und d abhängt.
Einerseits ist diese Verallgemeinerung von reinem mathematischen Interesse motiviert. An-
dererseits könnte die gewonnene Äquivalenz der Sobolew-Normen (sowie andere Werkzeuge,
die im Zusammenhang mit harmonischer Analysis stehen und in diesem Kapitel erarbeitet
werden) für die Untersuchung nicht-linearer partieller Differentialgleichungen, die La,α invol-
vieren, hilfreich sein, um Probleme auf den Operator |p|α ohne Potential zu reduzieren. Für
α = 2 wurde das entsprechende Ergebnis beispielsweise von Killip u. a. [104, 103] verwendet,
um die Wohlgestelltheit der energiekritischen, nicht-linearen Schrödinger-Gleichung in d = 3
mit Hardy-Potential

(i∂t − La,2)u = |u|4u

oder die Schwelle zwischen Streuung und Explosion nach endlicher Zeit der fokussierenden,
kubischen, nicht-linearen Schrödinger-Gleichung mit Hardy-Potential

(i∂t − La,2)u = −|u|2u

zu untersuchen.
Um unsere Resultate präzise zu formulieren, definieren wir für 0 < α < 2 ∧ d wieder

Ψα,d(σ) := −2α
Γ(σ+α

2 ) Γ(d−σ2 )

Γ(d−σ−α2 ) Γ(σ2 )
falls σ ∈ (−α, (d− α)/2] \ {0}

und Ψα,d(0) = 0. Nach [64, Lemma 3.2] und [99, Seite 8] ist die Funktion σ 7→ Ψα,d(σ) stetig
und streng monoton fallend in (−α, (d− α)/2] und es gelten

lim
σ→−α

Ψα,d(σ) =∞ und Ψα,d

(
d− α

2

)
= a∗
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mit der kritischen Kopplungskonstanten

a∗ := −2αΓ((d+ α)/4)2

Γ((d− α)/4)2
.

Konsequenterweise definieren wir wieder für alle a ∈ [a∗,∞)

δ := Ψ−1
α,d(a) . (8.1)

Unser Hauptresultat basiert auf der Annahme, dass man wenigstens ein Mikhlin-Mul-
tiplikator-Theorem für La,α beweisen kann, siehe Satz 8.2.1. Anschaulich gesprochen sind
Spektralmultiplikator-Theoreme, wie Mikhlin- oder Hörmander-Multiplikator-Theoreme, die
Analoga zum Spektralsatz im Hilbertraum L2. Bekanntermaßen folgt aus dem Spektralsatz
insbesondere, dass messbare und beschränkte Funktionen selbstadjungierter Operatoren L2-
beschränkt sind. Die entsprechende Aussage in Lp, sprich, dass Funktionen selbstadjungierter
Operatoren, welche zuvor auf L2 definiert sind, auch Lp-beschränkt (mit 1 < p < ∞) sind,
benötigt im Allgemeinen deutlich stärkere Regularitätsbedingungen an die Funktion (auch
Multiplikator genannt). Im Falle eines Mikhlin-Multiplikator-Satzes [127] verlangt man, dass
der Multiplikator m mindestens s mal stetig differenzierbar ist und die Mikhlin-Bedingung

|λj∂jλm(λ)| .j 1 für alle j = 0, ..., s

erfüllt. Bei einem Hörmander-Multiplikator-Theorem [90] muss der Multiplikator F dagegen
gleichmäßig in lokalen Sobolew-Räumen liegen. Damit meinen wir, dass F ∈ Hs

loc(R) für ein
hinreichend großes s > 0 sein muss und für ein 0 6= ϕ ∈ C∞c (R) die Hörmander-Bedingung

sup
t>0
‖ϕ(·)F (t·)‖Hs <∞

erfüllt sein muss. Die Verbindung zur Mikhlin-Bedingung wird offenbar, wenn man in der
Hörmander-Bedingung eine Variablensubstitution durchführt, was darauf führt, dass wenigs-
tens ∑

0≤j≤[s]

sup
t>0

t−1‖tj∂jϕ(·/t)F (·)‖22 <∞

erfüllt ist. Insbesondere folgt daraus, dass Funktionen, die die Mikhlin-Bedingung erfüllen,
auch die Hörmander-Bedingung erfüllen. Sowohl für Mikhlin- als auch für Hörmander-Mul-
tiplikator-Theoreme ist s > d/2 eine hinreichende Bedingung für die Lp-Beschränktheit von
Fouriermultiplikatoren für 1 < p <∞, siehe auch [166, Kapitel IV, §3, Theorem 3] und [90].

In diesem Kapitel und in Anhang D untersuchen wir die Lp-Beschränktheit von Spektral-
multiplikatoren von La,α, welche in Satz 8.2.1 für Mikhlin-Multiplikatoren und in Satz D.2.1
für Hörmander-Multiplikatoren behandelt werden. Obwohl es für unsere Anwendung keine
direkte Rolle spielt (da wir α < d voraussetzen), bemerken wir außerdem, dass Hebisch [85,
Theorem 3.8] bereits ein Hörmander-Multiplikator-Theorem für |p|α+V mit nicht-negativem
Potential V zeigte, wenn d = 1 und α > d = 1. Dieses wird in Satz D.1.2 wiederholt und im
Anschluß ein etwas gestraffterer Beweis gegeben. Die neue Beobachtung ist, dass der Beweis
tatsächlich ein Multiplikator-Theorem für alle d ∈ N und α ∈ (0, 2) liefert, wenn die Funktion
zusätzlich kompakt getragen und hinreichend regulär ist (Behauptung D.1.9). Wir erläutern
in diesem Zusammenhang außerdem, woher die Einschränkungen an d und α kommen und
weshalb die Argumente wahrscheinlich nicht für |p|α + V verwendet werden können, wenn V
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einen Negativ-Teil hat. Wir bemerken schließlich, dass vor Kurzem Chen u. a. [22, Abschnitt
5.3] (siehe auch ihr Theorem 3.1 und Corollary 3.2) mit völlig unterschiedlichen Techniken
das gleiche Resultat zeigten. Zudem zeigen die Autoren Hörmander-Multiplikator-Theoreme
unter sehr viel allgemeineren Bedingungen an den zugrunde liegenden Operator. Ihre Argu-
mente basieren dabei nicht auf Abschätzungen, die den Wärmeleitungskern involvieren. Ihr
Ergebnis für |p|α + V ist dabei lediglich eins von vielen Korollaren.

Die Argumente für die Beweise der Spektralmultiplikator-Sätze sind durch die von Killip
u. a. [102] für a < 0 beziehungsweise Hebisch [84, 83, 85] für a ≥ 0 inspiriert. Im Folgenden
meinen gestrichene Indizes immer die dualen Hölder-Indizes, sprich p−1+p′−1 = 1. Der Beweis
des Mikhlin-Multiplikator-Theorems für La,α mit a < 0 beruht auf folgender technischen
Annahme, die im Wesentlichen den Wellenpropagator cos(τ

√
La,α) betrifft, wie wir später

sehen werden.

Annahme 8.1.1. Seien d ∈ N, α ∈ (0, 2 ∧ d), a ∈ [a∗, 0), δ durch (8.1) definiert und
q ∈ (d/(d− δ), 2). Dann gilt folgende Behauptung:

Sei f ∈ Lq(Rd) und Rd = F∪Ω eine Calderón–Zygmund-Zerlegung bezüglich |f |q ∈ L1(Rd)
auf der Höhe hq; das heißt F ∩ Ω = ∅ und Ω =

⋃
kQk, wobei {Qk}k eine Familie dyadischer

Würfel mit Durchmesser 2rk ist, deren Innere disjunkt sind und die Ungleichungen

|Qk| ≤
1

hq

∫
Qk

|f(x)|q dx ≤ 2d|Qk| und |f(x)| ≤ h fast überall auf (
⋃
k

Qk)
c

erfüllen. Sei f = g + b, wobei g auf jedem Würfel Qk konstant ist, |g(x)| . h für fast alle
x ∈ Rd, b(x) =

∑
k bk =

∑
k f(x)χQk(x) und

∫
Qk
bk(x) dx = 0. Seien ferner

j0 := 3

([
4

α

]
+

[
d

2α

])
und µ := j0/3 .

Angenommen, m : [0,∞)→ C ist beschränkt und messbar und erfüllt

|∂jm(λ)| .j λ
−j für alle j ∈ {0, 1, ..., j0} .

Seien a(λ) := m(λ)
(
1− exp

(
−rαkλ2

))µ
, 2Z 3 R > rk und ϕ ∈ C∞c (R) so, dass supp (ϕ) ⊆

[−1/2α/2, 1/2α/2], ϕ(τ) = 1 für |τ | < 1/4α/2 und

ϕ̌R(λ) := Rα/2ϕ̌(Rα/2λ) =
1

2π

∫
eiλτϕ

( τ

Rα/2

)
dτ .

Definiert man

a1(λ) := (a ∗ ϕ̌R)(λ) = π−1

∫ ∞
0

cos(λτ)â(τ)ϕ
( τ

Rα/2

)
dτ ,

dann gibt es ein β > 0, sodass

‖a1bk‖L1(R<d(x,Qk)<2R) .
(rk
R

)β
r
d/q′

k ‖bk‖q

gilt.

�
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Bislang konnten wir ein Multiplikator-Theorem für La,α nur für

• den Wärmeleitungskern e−La,α und alle a ≥ a∗ (Lemma 8.3.2) und

• a ≥ 0 (Satz D.2.1 und Behauptung D.2.3 für ein Hörmander-Multiplikator-Theorem)

zeigen. Die Gültigkeit unseres Hauptresultats hängt entscheidend von Abschätzungen an
Littlewood–Paley-Funktionen (kurz (LP)-Funktionen, auch

”
square functions“), Satz 8.3.4

ab. Diese beruhen allerdings darauf, dass der Multiplikator

mε(λ) :=
∑
N∈2Z

εN · (λ/Nα/2)−se−k(λ/Nα/2)2
(

1− e−(2α−1)(λ/Nα/2)2
)k

für 2N 3 2k > s > 0 und eine Folge {εN} mit Rademacher-Verteilung, Lp-beschränkt ist.
Dies ist – im Rahmen dieses Kapitels – der Hauptgrund für die Wichtigkeit der Spektralmul-
tiplikator-Sätze.

Mit dieser Einführung formulieren wir nun unser Hauptresultat über die Äquivalenz der
Lp-Sobolew-Normen des verallgemeinerten Hardy-Operators La,α.

Satz 8.1.2 (Äquivalenz von Sobolew-Normen in Lp(Rd)). Seien d ∈ N, 0 < α < 2∧d, a ≥ a∗,
δ durch (8.1) definiert und s ∈ (0, 2]. Sei außerdem Annahme 8.1.1 wahr, falls s ∈ (0, 2).

1. Falls 1 < p <∞ die Ungleichungen αs/2 + δ < d/p < min{d, d− δ} erfüllt, gilt

‖|p|α
s
2 f‖Lp(Rd) .d,p,α,s ‖L

s
2
a,αf‖Lp(Rd) für alle f ∈ C∞c (Rd).

2. Falls max{αs/2, δ} < d/p < min{d, d− δ} (was bereits 1 < p <∞ sicherstellt), gilt

‖L
s
2
a,αf‖Lp(Rd) .d,p,α,s ‖|p|α

s
2 f‖Lp(Rd) für alle f ∈ C∞c (Rd).

Der Grund, weshalb wir für s = 2 auf die Annahme 8.1.1 verzichten können, ist dass wir
in diesem Fall keine Littlewood–Paley-Theorie und damit auch kein Spektralmultiplikator-
Theorem benötigen. Stattdessen können wir direkt die gewöhnliche und die verallgemeinerte
Hardy-Ungleichung (Lemma 8.1.3 und Behauptung 8.1.4) wie im Beweis von Satz 7.1.1 des
letzten Kapitels verwenden.

Für s < 2 verläuft der Beweis ähnlich zu dem in L2(Rd) des vorigen Kapitels. Dort war es
entscheidend, dass man eine verallgemeinerte Hardy-Ungleichung und umgekehrte Hardy-Un-

gleichungen für die Differenz Ls/2a,α − |p|αs/2 zeigen konnte. In diesem Kapitel verallgemeinern
wir diese beiden Ungleichungen auf Lp. Wir erinnern an die Standard Hardy-Ungleichung
in Lp (siehe beispielsweise Herbst [87, Theorem 2.5] auch für die optimale Konstante in der
Ungleichung).

Lemma 8.1.3 (Hardy-Ungleichung). Seien α ∈ (0, 2 ∧ d) und p ∈ (1,∞). Dann gilt für alle
s > 0 mit αs/2 < d/p

‖|x|−αs/2f‖p ≤ 2−αs/2
Γ((d/p− αs/2)/2)Γ(d/(2p′))

Γ((d/p′ + αs/2)/2)Γ(d/(2p))
‖|p|αs/2f‖p für alle f ∈ C∞c (Rd) .

Wir formulieren nun die verallgemeinerte Hardy-Ungleichung in Lp, welche wie im vorigen
Kapitel mit Hilfe des Riesz-Kerns von La,α hergeleitet werden kann.
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Behauptung 8.1.4 (Verallgemeinerte Hardy-Ungleichung). Seien 1 < p <∞, α ∈ (0, 2∧d),
a ∈ [a∗,+∞), δ durch (8.1) definiert und αs/2 ∈ (0, d). Dann gilt für alle s > 0 mit αs/2+δ <
d/p < d− δ

‖|x|−αs/2f |p .d,α,a,s,p ‖Ls/2a,αf‖p für alle f ∈ C∞c (Rd) . (8.2)

Falls umgekehrt αs/2 ∈ (0,min{d, d − 2δ}) und obige Abschätzung wahr ist, dann ist auch
αs/2 + δ < d/p < d− δ.

Beweis. Die Aussage ist äquivalent zur Lp-Beschränktheit des Operators |x|−αs/2L−s/2a,α . Wir
erinnern an die punktweisen Schranken an den Riesz-Kern von La,α (Satz 7.1.6), sprich

L−s/2a,α (x, y) ∼d,α,a,s |x− y|α
s
2
−d
(

1 ∧ |x|
|x− y|

∧ |y|
|x− y|

)−δ
.

Die Aussage folgt also aus der Lp-Beschränktheit des Operators mit dem Integralkern, der
durch obigen Kern, multipliziert mit |x|−αs/2, gegeben ist. Dies wird mit Hilfe eines Schur-
Tests bewiesen. Da dasselbe Argument bereits in [102, Proposition 3.2] (mit s anstatt αs/2
und σ anstatt δ) ausgeführt wurde und wir ähnliche Schur-Tests bereits im vorigen Kapitel
durchgeführt haben und später nochmals durchführen werden, unterlassen wir hier die Details.

Die Tatsache, dass (8.2) für d/p ≤ αs/2 + δ oder d/p ≥ d − δ im Allgemeinen falsch ist,
folgt aus der unteren Schranke an den Riesz-Kern mit Hilfe derselben Gegenbeispiele wie in
[102, Proposition 3.2].

Wir bemerken wieder, dass, obwohl diese Ungleichung eine entscheidende Zutat für den
Beweis von Satz 8.1.2 ist, diese auch direkt aus ihm folgt (wenn Annahme 8.1.1 verifiziert
werden kann).

Da wir in Lp keinen Spektralsatz für La,α haben, werden wir Funktionen (in unserem Fall
die Funktion t 7→ ts) von La,α mit Hilfe von Satz 8.3.4 durch (LP)-Funktionen ausdrücken.
Neben den üblichen Littlewood–Paley-Projektionen, die im Wesentlichen Test-Funktionen
(umgangssprachlich

”
Buckel-Funktionen“) sind, werden wir weitere Projektionen mit Hilfe

der Wärmeleitungskerne definieren. Der Grund hierfür ist offensichtlich – wir haben gute
punktweise Schranken an den Kern selbst sowie die Differenz zwischen den gestörten und
ungestörten Kernen, siehe Lemma 7.3.1. Die Konstruktion von auf Halbgruppen basierenden
Littlewood–Paley-Theorien wird beispielsweise ausführlich in Stein [167] behandelt.

Trotz der guten Schranken an diese Differenz ist a priori nicht klar, ob die Projektionen
selbst und die Differenz Lp-beschränkt sind. Hinreichend hierfür wäre die Gültigkeit eines
Multiplikator-Satzes für La,α. Wie wir eingangs bereits bemerkt haben, ist ein solcher Satz
nur unter gewissen Voraussetzungen an den Multiplikator verifizierbar. Bislang waren wir nur
in der Lage die Lp-Beschränktheit des Wärmeleitungskerns für alle a ≥ a∗ (siehe Lemma 8.3.2)
sowie ein Hörmander-Multiplikator-Theorem für alle a ≥ 0 (siehe Satz D.2.1 und Behauptung
D.2.3) zu zeigen. Für a < 0 genügt dies allerdings (im Gegensatz zu a ≥ 0) noch nicht, um
Abschätzungen an die (LP)-Funktionen, Satz 8.3.4, zu beweisen. Nichtsdestotrotz können wir
immerhin Bernstein-Abschätzungen (Lemma 8.3.2), und Entwicklungen von Lp-Funktionen
(Lemma 8.3.3) zeigen, wenn die Littlewood–Paley-Projektionen durch den Wärmeleitungskern
ausgedrückt werden. Diese Werkzeuge sind beispielsweise in der Untersuchung partieller Diffe-
rentialgleichungen unverzichtbar, da sie es erlauben, Probleme auf bestimmten Längenskalen
separat zu untersuchen, um anschließend alles wieder zusammenzusetzen.

Mit dieser Motivation für Littlewood–Paley-Theorie formulieren wir die durch (LP)-Funk-
tionen ausgedrückte, umgekehrte Hardy-Ungleichung.
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Behauptung 8.1.5 (Umgekehrte Hardy-Ungleichung in Lp). Seien α ∈ (0, 2 ∧ d), a ≥ a∗,
δ durch (8.1) definiert, p ∈ (1,∞), wenn a ≥ 0 und p ∈ (d/(d − δ), d/δ), wenn a < 0. Seien
weiter s ∈ (0, 2) und

P a,αN := e−La,α/N
α − e−La,α/(N

α/2α) , PαN := P 0,α
N für N ∈ 2Z .

Dann gilt∥∥∥∥∥∥∥
∑
N∈2Z

|Nαs/2PαNf |2
1/2

−

∑
N∈2Z

|Nαs/2P a,αN f |2
1/2

∥∥∥∥∥∥∥
p

.d,α,a,s ‖|x|−αs/2f‖p

für alle f ∈ C∞c (Rd).

Bevor wir zur Formulierung des Mikhlin-Multiplikator-Satzes kommen, erinnern wir noch-
mals an die beidseitigen punktweisen Schranken an den Wärmeleitungskern von La,α von
Bogdan u. a. [15] für a < 0 und Cho u. a. [24] oder Jakubowski und Wang [99] für a > 0.

Satz 8.1.6 (Wärmeleitungskerne verallgemeinerter Hardy-Operatoren). Seien α ∈ (0, 2∧ d),
a ≥ a∗ und δ durch (8.1) definiert. Dann erfüllt der Wärmeleitungskern von La,α für alle
x, y ∈ Rd und t > 0 die beidseitigen Schranken

e−tLa,α(x, y) ∼

(
1 ∨ t

1/α

|x|

)δ (
1 ∨ t

1/α

|y|

)δ
t−d/α

(
1 ∧ t1+d/α

|x− y|d+α

)
.

Für a > 0 folgt aus dem Maximumprinzip für die Wärmeleitungsgleichung und der Schran-
ke aus Satz 8.1.6 für a = 0 wieder die simplere Schranke

0 ≤ e−tLa,α(x, y) . t−d/α

(
1 ∧ t1+d/α

|x− y|d+α

)

für t > 0 und α ∈ (0, 2 ∧ d).

8.2 Ein Mikhlin-Multiplikator-Theorem für La,α
Das Ziel dieses Abschnitts ist es, ein Mikhlin-Multiplikator-Theorem für La,α zu zeigen. Dies
ist die entscheidende Zutat für den Beweis der Lp-Beschränktheit von Littlewood–Paley-
Projektionen und von Abschätzungen an (LP)-Funktionen, um damit das Hauptresultat dieses
Kapitels zu zeigen.

Der Beweis verläuft sehr ähnlich zu dem von Killip u. a. [102, Theorem 4.1] (siehe auch
[105], [166, Kapitel II, §2-3] und [39]).

Der Hauptunterschied (und auch die größte Schwierigkeit) zwischen den Beweisen der
Sätze für La,α und für −∆ + a|x|−2 ist, dass der Wellenpropagator cos(τ

√
La,α) keinen kom-

pakten distributionellen Träger hat, wenn α 6= 2. Damit meinen wir, dass⋃
τ≤Rα/2

supp (cos(τ
√
La,α)δy) ⊆ By(cR) für alle y ∈ Rd und ein c > 0
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im Allgemeinen falsch ist. Der Grund hierfür ist, dass der zugehörige Wärmeleitungskern
keine Davies–Gaffney-Abschätzungen

|(e−tLa,αf1, f2)| . e−r
2/t‖f1‖2‖f2‖2 für alle t > 0

erfüllt. Hierbei sind f1 und f2 kompakt getragen und r der kleinste Abstand zwischen ihren
Trägern. Wir verweisen auf Coulhon und Sikora [27, Theorem 3.4] für eine detailliertere
Abhandlung über diesen Zusammenhang.

Bevor wir zur Formulierung des Satzes kommen, bemerken wir, dass Multiplikator-Sätze
für eine große Bandbreite abstrakter Operatoren auf abstrakten Räumen bewiesen wurden.
Allerdings beruhen diese meistens auf der Annahme, dass der zugehörige Wärmeleitungskern
punktweise Gaußsche Schranken [84, 41, 23] oder sogenannte verallgemeinerte Gaußsche
Abschätzungen [13] erfüllt. Der Kern kann sogar lokale Singularitäten besitzen, wie beispiels-
weise der von −∆+a|x|−2. Für einen Überblick über Multiplikator-Sätze verweisen auf Duong
u. a. [40] und die dort enthaltenen Referenzen.

Satz 8.2.1. Seien α ∈ (0, 2 ∧ d), 0 < c < α,

j0 := max

{
3

([
4

α

]
+

[
d

2α

])
, 2[d/(2c)]

[
d

2

(
1 +

1

c

)
+ 1

]
+ 1

}
,

a ≥ a∗ sowie m : [0,∞)→ C eine beschränkte und messbare Funktion, die

|∂jm(λ)| .j λ
−j für alle j ∈ {0, 1, ..., j0}

erfüllt. Falls Annahme 8.1.1 wahr ist, lässt sich m(
√
La,α), zunächst über den Spektralsatz in

L2 definiert, eindeutig von einem Lp(Rd)∩L2(Rd) zu einem Lp-beschränkten Operator für alle
1 < p <∞, falls a ≥ 0 beziehungsweise für alle r0 < p < r′0 := d/δ, falls a < 0, fortsetzen.

Wir erinnern daran, dass r−1
0 + r′−1

0 = 1. Nach dem Beweis stellen wir ein Beispiel vor,
welches die Optimalität des Intervalls r0 < p < r′0 für a < 0 zeigt. Insbesondere ist der
Wärmeleitungskern e−La,α auf Lp unbeschränkt für alle p, die nicht in diesem Intervall ent-
halten sind. Wir bemerken außerdem, dass die Zahl der hier verlangten Ableitungen sehr
wahrscheinlich nicht optimal ist, doch dies spielt hier nicht die Hauptrolle.

Beweis. Falls a ≥ 0, folgt die Aussage aus dem Hörmander-Multiplikator-Satz D.2.1 bezie-
hungsweise Behauptung D.2.3. Wir betrachten daher im Folgenden nur noch den Fall a < 0.

Wegen des Spektralsatzes in L2 ist der Operator T := m(
√
La,α) auf L2(Rd) beschränkt.

Wegen der Dualität der Lp-Räume und dem Marcinkiewicz-Interpolationssatz (siehe beispiels-
weise [166, Anhang B]) genügt es zu zeigen, dass T schwach Lq(Rd) beschränkt ist für alle
r0 < q < 2, das heißt

|{x : |Tf(x)| > h}| . h−q‖f‖qq für alle h > 0 . (8.3)

Neben der Tschebyscheff-Ungleichung ist die entscheidende Idee eine Calderón–Zygmund-
Zerlegung [166, Kapitel I, §3, Theorem 4] von |f |q ∈ L1 auf der Höhe hq. Dies liefert eine
Zerlegung Rd = F ∪ Ω, wobei F ∩ Ω = ∅, Ω =

⋃∞
k=1Qk und {Qk}k eine Familie dyadischer

Würfel mit Durchmesser 2rk ist, deren Innere disjunkt sind. Weiter ist per Konstruktion

|Qk| ≤
1

hq

∫
Qk

|f(x)|q dx ≤ 2d|Qk| und |f(x)| ≤ h fast überall auf (
⋃
k

Qk)
c . (8.4)
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Daraus ergeben sich die Abschätzungen∫
Qk

|f(x)| dx . ‖f‖Lq(Qk)|Qk|
1
q′ . h|Qk| . h1−q

∫
Qk

|f(x)|q dx , (8.5)

wobei wir in der ersten Abschätzung die Hölder-Ungleichung und in den letzten beiden
Abschätzungen die definierende Eigenschaft der dyadischen Würfel, sprich (8.4), verwendet
haben.

Wir zerlegen nun f = g + b und definieren

g(x) =

{
f(x), für x ∈ (

⋃
kQk)

c

|Qk|−1
∫
Qk
f(x) dx, für x ∈ Qk

, (8.6)

das heißt g ist auf jedem Würfel Qk konstant. Insbesondere ist |g(x)| . h für fast alle x ∈ Rd
wegen (8.4) und (8.5). Mit dieser Wahl ist

b(x) =
∑
k

bk(x) =
∑
k

f(x)χQk(x) und∫
Qk

bk(x) dx = 0 für jeden Würfel Qk .

In unserer Situation ist es natürlich, die Oszillationen der bk durch die Halbgruppe e−tLa,α

auszudrücken. Dazu definiert man µ := j0/3 = [4/α]+[d/(2α)] und zerlegt weiter bk = gk+ b̃k,
wobei

b̃k := (1− e−r
α
kLa,α)µbk (8.7a)

und

gk := [1− (1− e−r
α
kLa,α)µ]bk =

µ∑
ν=1

cνe−νr
α
kLa,αbk . (8.7b)

Die Zahl µ wird nur bei den Abschätzungen, die b̃k betreffen, eine Rolle spielen.

Da f = g +
∑

k gk +
∑

k b̃k, kann die linke Seite von (8.3) durch

|{x : |Tf(x)| > h}| . |{|Tg| > h/3}|+ |{|T
∑
k

gk| > h/3}|+ |{|T
∑
k

b̃k| > h/3}|

abgeschätzt werden. Mit der Tschebyscheff-Ungleichung, der L2-Beschränktheit von T , (8.6)
zusammen mit q < 2 und |g(x)| . h ist der Beitrag von g akzeptabel, denn

|{|Tg| > h/3}| . h−2 ‖Tg‖22 . h−2 ‖g‖22 . h−q ‖g‖qq ≤ h
−q ‖f‖qq .

Als Nächstes bestimmen wir den Beitrag, der von den gk kommt. Verwendet man wieder die
Tschebyscheff-Ungleichung und die L2-Beschränktheit von T , kann man zunächst

|{|T
∑
k

gk| > h/3}| . h−2‖T
∑
k

gk‖22 . h−2‖
∑
k

gk‖22 (8.8)
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abschätzen. Mit Hilfe der Schranken an den Wärmeleitungskern aus Satz 8.1.6 kann die rechte
Seite weiter durch∥∥∥∥∥∑

k

gk

∥∥∥∥∥
2

2

=
∑
ν,ν′

∑
k,`

(bk, e
−(νrαk+ν′rα` )La,αb`)

.µ

∑
rk≥r`

r−dk

∫
Qk

dx |bk(x)|
(

1 ∨ rk
|x|

)δ

×
∫
Q`

dy

(
1 ∨ rk
|y|

)δ (
1 ∧

rd+α
k

|x− y|d+α

)
|b`(y)|

(8.9)

abgeschätzt werden. Hierbei haben wir die Symmetrie in k und ` verwendet, weshalb man
nur die Doppelsumme

∑
rk≥r` betrachten muss. Zusätzlich haben wir das Maximumprinzip

verwendet, um den −ν ′rα` -Term zu vernachlässigen. Aus diesem Grund reicht es auch aus
nur den ν = 1-Term des Wärmeleitungskerns zu betrachten. Darüberhinaus haben wir die
endlichen Summen über ν und ν ′ ausgeführt. Um fortzufahren, fixieren wir zunächst k und
x ∈ Qk und betrachten zwei Fälle für die Summe über r`. Im ersten Fall betrachten wir nur
die Würfel Q`, deren Schnitt mit einer am Ursprung zentrierten Kugel mit Radius rk nicht
leer ist, das heißt Q`∩B0(rk) 6= ∅. Dies impliziert insbesondere Q` ⊆ B0(2rk), da r` ≤ rk und
die Würfel dyadisch sind. In diesem Fall müssen wir uns nur um

∑
`:Q`⊆B0(2rk)

∫
Q`

dy
rδk
|y|δ
|b`(y)|

kümmern. Um diesen Beitrag zu kontrollieren, wenden wir zunächst die Hölder-Ungleichung
(sowohl in ` als auch in y) an und verwenden dann (8.4), um

∑
`:Q`⊆B0(2rk)

∫
Q`

dy
rδk
|y|δ
|b`(y)|

.

 ∑
`:Q`⊆B0(2rk)

∫
Q`

dy
rq
′δ
k

|y|q′δ

1/q′  ∑
l:Q`⊆B0(2rk)

∫
Q`

dy |b`(y)|q
1/q

.r
d
q′
k

 ∑
`:Q`⊆B0(2rk)

hq |Q`|

1/q

. r
d
q′
k r

d
q

k · h = hrdk

(8.10)

zu erhalten, wobei wir y 7→ rky skaliert haben. Hier war es entscheidend, dass q′ < d/δ.
Für die Würfel Q`, deren Schnitt mit der am Ursprung zentrierten Kugel mit Radius rk

schon leer ist, brauchen wir nur

∑
`:Q`∩B0(rk)=∅

∫
Q`

dy

(
1 ∧

rd+α
k

|x− y|d+α

)
|b`(y)|

≤
∑

`:r`≤rk

∫
Q`

dy

(
1 ∧

rd+α
k

|x− y|d+α

)
|b`(y)|
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zu kontrollieren. Setzt man 1 = |Q`|−1
∫
Q`
dy′ ein und verwendet die Dreiecksungleichung, um

|x− y′|2 ≤ (|x− y|+ |y − y′|)2 ≤ 2(|x− y|2 + 4r2
k) für alle y, y′ ∈ Q`

abzuschätzen und führt dann das Integral über y aus, so kann dieser Term weiter durch

∑
`:r`≤rk

‖b`‖1
|Q`|

∫
Q`

dy′

1 ∧
rd+α
k(

1
2 |x− y′|

2 − 4r2
k

) d+α
2

 . hrdk (8.11)

kontrolliert werden. Hierbei haben wir wieder (8.5) verwendet, um |Q`|−1 ‖b`‖1 ≤ h zu be-
schränken. Darüberhinaus haben wir das Integral über Q` durch eine Konstante mal rd` ab-
geschätzt und die Summe

∑
`:r`≤rk r

d
` nach oben durch rdk beschränkt.

Setzt man (8.10) und (8.11) zurück in (8.9) ein, folgt∥∥∥∥∥∑
k

gk

∥∥∥∥∥
2

2

. h
∑
k

∫
Qk

(
1 ∨ rk
|x|

)δ
|bk(x)| dx

.h

[∑
k

∫
Qk

(
1 ∨ rk
|x|

)δq′
dx

]1/q′ [∑
k

∫
Qk

|bk(x)|q dx

]1/q

.h

[∑
k

|Qk|

]1/q′

‖f‖q . h2−q‖f‖qq ,

wobei wir wieder zuerst die Hölder-Ungleichung und dann (8.4) (wie in Abschätzung (8.10))
verwendet haben, zusammen mit q/q′ + 1 = q und 1 − q/q′ = 2 − q. Blickt man auf die
Abschätzungen (8.8) zurück, zeigt dies, dass der Beitrag der gk akzeptabel ist.

Schließlich fokussieren wir uns auf den
”
schlechten“ Teil b̃k. Sei Q∗k der 2

√
d skalierte

Würfel von Qk, das heißt der kleinste konzentrische Würfel, der eine Kugel mit Radius 2rk
beinhaltet. Wegen{∣∣∣∣∣T∑

k

b̃k

∣∣∣∣∣ > h

3

}
⊆
⋃
j

Q∗j ∪

x ∈ Rd \
⋃
j

Q∗j :

∣∣∣∣∣T∑
k

b̃k

∣∣∣∣∣ > h

3


folgt aus der Tschebyscheff-Ungleichung und (8.4) die Abschätzung∣∣∣∣∣

{∣∣∣∣∣T∑
k

b̃k

∣∣∣∣∣ > h

3

}∣∣∣∣∣ .∑
j

|Q∗j |+ h−1
∑
k

‖T b̃k‖L1(Rd\Q∗k)

. h−q‖f‖qq + h−1
∑
k

‖T b̃k‖L1(Rd\Q∗k) .

Um den Beweis zu schließen, genügt es

‖T b̃k‖L1(Rd\Q∗k) . h1−q‖bk‖qq (8.12)
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zu zeigen. Dazu unterteilen wir Rd\Q∗k weiter in dyadische Anuli der Form R < d(x,Qk) < 2R,
wobei rk ≤ R ∈ 2Z. Wir zeigen dann die folgende entscheidende Abschätzung (vergleiche auch
mit [102, Formel (4.11)])∥∥∥T b̃k∥∥∥

L2(d(x,Qk)>R)
.
(rk
R

)αµ
R
−d

(
1
2
− 1
q′

)
‖bk‖q . (8.13)

Aus dieser Abschätzung und (8.5) schließen wir (8.12), da∥∥∥T b̃k∥∥∥
L1(Rd\Q∗k)

=
∑
R≥rk

∥∥∥T b̃k∥∥∥
L1(R<d(x,Qk)≤2R)

.
∑
R≥rk

R
d
2

∥∥∥T b̃k∥∥∥
L2(d(x,Qk)>R)

.
∑
R≥rk

R
d
2

(rk
R

)αµ
R
−d

(
1
2
− 1
q′

)
‖bk‖q . r

d
q′
k ‖bk‖q . h1−q ‖bk‖qq .

(8.14)

Die letzte Summe konvergiert, da αµ > d/q′ ∈ (δ, d/2), was wahr ist, da αµ > 4 + d/2 − 2α
und α < 2 ∧ d.

Um (8.13) zu zeigen, schreiben wir

(T b̃k)(x) =

∫
Qk

[
m(
√
La,α)(1− e−r

α
kLa,α)µ

]
(x, y)bk(y) dy.

Sei nun a(λ) := m(λ)(1− e−r
α
k λ

2
)µ (wobei wir λ2 mit La,α identifizieren), welche wir auf ganz

R als gerade Funktion fortsetzen. Die Abfall-Bedingungen an ∂jm(λ) implizieren

|∂ja(λ)| . |λ|−j(1 ∧ rα/2k |λ|)
2µ für alle 0 ≤ j ≤ j0 . (8.15)

Sei nun ϕ ∈ C∞c (R) so, dass supp (ϕ) ⊆ [−1/2α/2, 1/2α/2], ϕ(τ) = 1 für |τ | < 1/4α/2 und

ϕ̌R(λ) := Rα/2ϕ̌(Rα/2λ) =
1

2π

∫
eiλτϕ

( τ

Rα/2

)
dτ .

Da sowohl a, als auch ϕ gerade Funktionen sind, ist

a1(λ) := (a ∗ ϕ̌R)(λ) = π−1

∫ ∞
0

cos(λτ)â(τ)ϕ
( τ

Rα/2

)
dτ .

Im Gegensatz zum klassischen Hardy-Operator (sprich α = 2), hat der Wellenpropagator
cos(τ

√
La,α) von La,α keinen kompakten distributionellen Träger, da der Wärmeleitungskern

keine Davies–Gaffney-Abschätzung erfüllt (Coulhon und Sikora [27, Theorem 3.4]). Wäre das
der Fall, dann wäre

supp (a1(
√
La,α)δy) ⊆

⋃
τ≤(R/2)α/2

supp (cos(
√
τ2La,α)δy) ⊆ {z ∈ Rd : |y − z| ≤ R/2} ,

da ϕ(τ/Rα/2) auf {τ : |τ | ≤ (R/2)α/2} getragen ist. Das bedeutet aber

‖a1(
√
La,α)b̃k‖L1(Rd\Q∗k) = 0



154 8. Hardy-Operatoren und Sobolew-Normen in Lp

und die linke Seite von (8.12) würde verschwinden. Da der Wellenpropagator jedoch keinen
kompakten distributionellen Träger hat, muss zudem

‖a1bk‖L1(R<d(x,Qk)<2R) .
(rk
R

)β
r
d/q′

k ‖bk‖q (8.16)

für ein β > 0 erfüllt sein. Dies ist gerade die Aussage von Annahme 8.1.1.
Für den Rest des Beweises konzentrieren wir uns auf den verbleibenden Teil des Multipli-

kators a, nämlich

a2(λ) := a1(λ)− a(λ) =

∫
[a(θ)− a(λ)]ϕ̌R(λ− θ)dθ .

Falls |λ| ≤ R−α/2, verwenden wir (8.15) und den schnellen Abfall von ϕ̌ und erhalten∣∣∣∣∫ a(λ)ϕ̌R(λ− θ)dθ
∣∣∣∣ . (1 ∧ rα/2k |λ|)

2µ . (1 ∧ rα/2k |λ|)
2µ(|λ|Rα/2)−2µ

sowie ∣∣∣∣∫ a(θ)ϕ̌R(λ− θ)dθ
∣∣∣∣ . (1 ∧ rα/2k |λ|)

2µ(|λ|Rα/2)−2µ . (8.17)

Daher ist

|a2(λ)| . (1 ∧ rα/2k |λ|)
2µ(|λ|Rα/2)−2µ , falls |λ| ≤ R−α/2. (8.18)

Für |λ| ≥ R−α/2 entwickeln wir a(θ) in einer Taylor-Reihe bis zur Ordnung j0 − 1 und
definieren

a(θ)− a(λ) = Pj0(θ) + E(θ) , wobei Pj0(θ) =

j0−1∑
`=1

a(`)(λ)

`!
(θ − λ)`

und E den Fehler bezeichnet, welchen wir mittels (8.15) durch

|E(θ)| ≤ |a(θ)|+ |a(λ)|+ |Pj0(θ)| . (1 ∧ rα/2k |λ|)
2µ

∣∣∣∣θ − λλ
∣∣∣∣j0 , falls |θ − λ| > λ

2

(mit 2µ ≤ j0), beziehungsweise

|E(θ)| ≤
∥∥∥a(j0)

∥∥∥
L∞([λ

2
, 3λ
2

])
|θ − λ|j0 . (1 ∧ rα/2k |λ|)

2µ

∣∣∣∣θ − λλ
∣∣∣∣j0 , falls |θ − λ| ≤ λ

2

abschätzen.
Für alle ` ≥ 1 gilt ∫

(θ − λ)`ϕ̌R(θ − λ)dθ =
(
∂`ϕR

)
(0) = 0.

Daher trägt Pj0(θ) nicht zur a2(λ) definierenden Faltung bei, weshalb

|a2(λ)| .
∫
|E(θ)||ϕ̌R(λ− θ)|dθ . (1 ∧ rα/2k |λ|)

2µ(|λ|Rα/2)−j0 für |λ| ≥ R−α/2. (8.19)
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Kombiniert man (8.18) und (8.19) mit R > rk, schließen wir, dass

|a2(λ)| .

(
1 ∧ rα/2k |λ|
|λ|Rα/2

)2µ

(1 +Rαλ2)
2µ−j0

2

.
(rk
R

)αµ ∫ ∞
0

(
t

Rα

) j0−2µ
2

e−t/R
α
e−tλ

2 dt

t
,

wobei wir (1 + x)−s =
∫∞

0 ts−1e−t(1+x) dt für s > 0 verwendet haben. Damit und mit dem
Spektralsatz sowie anschließender Anwendung der Minkowski-Ungleichung, erhalten wir

∥∥∥a2(
√
La,α)bk

∥∥∥
2
.
(rk
R

)αµ ∫ ∞
0

(
t

Rα

) j0−2µ
2

e−t/R
α ∥∥e−tLa,αbk

∥∥
2

dt

t
. (8.20)

Um (8.13) zu zeigen, beweisen wir∥∥e−tLa,αbk
∥∥

2
. t−

d
2α (t+ rαk )

d
αq′ ‖bk‖q . (8.21)

Mit dieser Abschätzung können wir (8.20) weiter durch

‖a2(
√
La,α)bk‖L2(Rd)

.
(rk
R

)αµ
R
−d

(
1
2
− 1
q′

)
‖bk‖Lq

∫ ∞
0

(
t

Rα

) j0−2µ
2
− d

2α
(

1 +
t

Rα

) d
αq′

e−t/R
α dt

t

.
(rk
R

)αµ
R
−d

(
1
2
− 1
q′

)
‖bk‖Lq

für alle R ≥ rk beschränken. Hierbei haben wir (j0−2µ)/2−d/(2α) > 0 verwendet. Abgesehen
vom Beweis von (8.21) schließt das den Beweis von (8.13) und damit auch den Beweis des
Satzes.

Mit Hilfe der Schranken an den Wärmeleitungskern aus Satz 8.1.6 reduziert sich der Beweis
von (8.21) darauf, die Abschätzung

t−
d
α

∥∥∥∥∥∥
∫
Rd

(
1 ∨ t

1
α

|x|

)δ (
1 ∨ t

1
α

|y|

)δ (
1 ∧ t1+ d

α

|x− y|d+α

)
bk(y)

∥∥∥∥∥∥
2

. t−
d
2α (t+ rαk )

d
αq′ ‖bk‖q (8.22)

zu zeigen. Um diese Schranke zu beweisen, unterscheiden wir die vier Fälle

• |x|, |y| ≤ t1/α,

• |x| ≤ t1/α, |y| > t1/α,

• |x| > t1/α, |y| ≤ t1/α und

• |x|, |y| ≥ t1/α.

Die Schranken in den ersten drei Fällen werden später im Beweis der Bernstein-Ungleichungen
in größerer Allgemeinheit bewiesen werden, siehe (8.24). Die Schranke ist durch (man ersetze
Nα durch t−1, q durch 2 und p durch q)

t
− d
α

(
1
q
− 1

2

)
‖bk‖q = t

− d
2α

+ d
αq′ ‖bk‖q
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gegeben. Der letzte Fall, sprich |x|, |y| ≥ t1/α, führt auf die behauptete rk-Abhängigkeit. Mit
der Minkowski- und der Hölder-Ungleichung erhält man∥∥∥∥∥∥∥∥

∫
|y|≥t

1
α

(
1 ∧ t1+ d

α

|x− y|d+α

)
bk(y) dy

∥∥∥∥∥∥∥∥
2

.
∫
Rd
|bk(y)|

∥∥∥∥∥
(

1 ∧ t1+ d
α

|x|d+α

)∥∥∥∥∥
2

.t
d
2α ‖bk‖1 . t

d
2α r

d
q′
k ‖bk‖q .

Dies schließt den Beweis des Mikhlin-Multiplikator-Theorems für La,α.
Bemerkung 8.2.2. (1) Wir schließen den Beweis mit der Bemerkung, dass das Intervall der
erlaubten p tatsächlich optimal ist, selbst, wenn man |∂jm(λ)| .j |λ|−j für alle j ≥ 0 annimmt.
Wegen Selbstadjungiertheit und Dualität genügt es, das Fehlschlagen für p ≥ d/δ mit δ > 0
zu zeigen. Sei dazu beispielsweise m(λ) := e−λ

2
und ϕ ∈ C∞c (Rd) in der Einheitskugel B0(1)

getragen, sodass ϕ(x) = 1 für |x| ≤ 1/2. Aus der unteren Schranke an den Wärmeleitungskern
folgt dann für |x| ≤ 1

[m(
√
La,α)ϕ](x) = [e−La,αϕ](x) & |x|−δ

∫
|y|≤1/2

dy |y|−δ
(

1 ∧ 1

|x− y|d+α

)
& |x|−δ

ist, wobei wir die untere Schranke des Wärmeleitungskerns aus Satz 8.1.6 verwendet haben.
Somit ist m(

√
La,α)ϕ /∈ Lp(Rd) für alle p ≥ d/δ.

(2) Neben der L2-Beschränktheit, die im Wesentlichen aus Bedingungen der Art

sup
x

∫
Rd
dy |K(x, y)| . 1

folgt, ist eine Glattheitsbedingung der Form

sup
y,z∈Rd

∫
|x−y|>2|y−z|

|K(x− y)−K(x− z)| dx <∞ , (8.23)

welche für die schwache Lq-Beschränktheit benötigt wird, um mit Interpolation die Lp-
Beschränktheit singulärer Integraloperatoren zu folgern, entscheidend (siehe beispielsweise
[56, 166, 186, 84, 39]). Wir bemerken, dass diese Bedingung beispielsweise erfüllt ist, wenn
K außerhalb des Ursprungs stetig differenzierbar ist und |∇K(x)| . |x|−n−1 gilt. Der we-
sentliche Inhalt dieser Aussage ist, dass K ∗ ψ in L1 außerhalb des Trägers von ψ ist, wobei
ψ eine beliebige kompakt getragene Funktion ist, deren Mittelwert Null ist. Insbesondere ist
(vergleiche mit (8.12)) ∫

d(x,supp ψ)≥2diam (supp ψ)

|(K ∗ ψ)(x)| dx <∞ .

Die Glattheitsbedingung (8.23) entspricht dann der Wahl ψ(w) = δ(w − y)− δ(w − z).
Im Beweis haben wir gesehen, dass die größte Schwierigkeit darin besteht, den

”
schlech-

ten Teil“ bk der Calderón–Zygmund-Zerlegung zu kontrollieren. Obwohl bk im Vergleich zur
fixierten Höhe h beliebig groß sein kann, oszilliert die Funktion, ihr Träger ist vergleichsweise
klein und besitzt eine konkrete Struktur. Mit dieser Struktur meinen wir Ungleichungen wie
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(8.4) und (8.5), die von der Höhe der Calderón–Zygmund-Zerlegung abhängen. Fefferman [56,
Theorem 2’ und 3] beobachtete bereits, dass es sinnvoll ist, bk an den in Frage stehenden Kern
anzupassen. Im euklidischen Fall wäre beispielsweise

ψ = (1− exp(−rα|p|α))δy

eine kanonische Wahl, da ψ
”
moralisch“ auf der Kugel {|x − y| ≤ r} getragen ist und ver-

schwindenden Mittelwert hat, sprich
∫
ψ = 0. Natürlich ist diese Aussage über den Träger

sehr vage, selbst, wenn α = 2. In jedem Fall motivieren diese Überlegungen die Wahl der b̃k,
sprich (8.7a).
(3) Die Idee, Schranken des Wärmeleitungskerns zu verwenden, um Multiplikator-Sätze für
Schrödinger-Operatoren −∆ + V herzuleiten, geht zumindest auf Hebisch [84] zurück. Er be-
wies einen Hörmander-Multiplikator-Satz für beliebige Potentiale V ≥ 0 unter Verwendung
des Maximumprinzips und der expliziten Schranken des Wärmeleitungskerns von −∆. Hier
ist es entscheidend, dass der Kern exponentiell schnell abfällt.

Später gelang es ihm Multiplikator-Sätze für Operatoren zu zeigen, deren Wärmeleitungs-
kerne nicht mehr exponentiell abfallen, aber eine gewisse Hölder-Bedingung erfüllen.

Konkret bewies er folgende Aussage. Ist A ein nicht-negativer, selbstadjungierter Operator
und es existieren positive Zahlen c, b,m, sodass für alle t > 0 die Schranken

sup
y∈Rd

∫
|e−tA(x, y)|(1 + t−1/m|x− y|)c dx <∞ ,

sup
y∈Rd

td/m
∫
|e−tA(x, y)|2 dx <∞ und∫

Rd
|e−tA(x, y)− e−tA(x, z)| dx . t−b/m|y − z|b für alle y, z ∈ Rd

wahr sind, dann erfüllt A ein Hörmander-Multiplikator-Theorem [85, Theorem 3.1]. Das heißt
für F ∈ Hs

loc(R) mit

s > 2[d/(2c)]

[
d

2

(
1 +

1

c

)
+ 1

]
+

1

2

und einem 0 6= ϕ ∈ C∞c (R), sodass supt>0 ‖ϕF (t·)‖Hs <∞, ist F (A) schwach L1-beschränkt
und Lp-beschränkt für alle p ∈ (1,∞). In Anhang D.2 zeigen wir, aufbauend auf diesem Satz,
wie man einen Hörmander-Multiplikator-Satz (siehe Satz D.2.1 und Behauptung D.2.3) für
La,α mit a ≥ 0 zeigen kann. Dazu zeigen wir zuerst, dass |p|α in Rd mit α ∈ (0, 2 ∧ d) die
obigen drei Bedingungen erfüllt. Im Anschluß verwenden wir Störungstheorie in Form der
Duhamel-Formel (7.16), um den Fall a > 0 zu behandeln. Die punktweisen Schranken für
exp(−La,α)(x, y) mit a > 0 sind entscheidend, um den Beweis zu schließen.

In Lemma 8.3.2 des nächsten Abschnitts zeigen wir die Lp-Beschränktheit des Wärmelei-
tungskerns für alle a ≥ a∗ ohne auf ein abstraktes Multiplikator-Theorem zurückgreifen zu
müssen. Diese folgt im Wesentlichen direkt aus den Schranken des Kerns exp(−tLa,α)(x, y).

8.3 Littlewood–Paley-Theorie

In diesem Abschnitt definieren wir zwei Familien von Littlewood–Paley-Projektionen und ver-
wenden den Spektralmultiplikator-Satz, um ihre Lp-Beschränktheit zu folgern. Darüberhinaus
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beweisen wir Bernstein-Abschätzungen, eine durch Eigenfunktionen von La,α ausgedrückte
Zerlegung der Eins in Lp(Rd) sowie die entscheidenden Abschätzungen an (LP)-Funktionen.
Letztere ersetzen den im letzten Kapitel oft verwendeten Spektralsatz, um die Lp-Normen von

|p|αs/2f und Ls/2a,αf auszudrücken und miteinander vergleichen zu können. Im Allgemeinen sind
(LP)-Funktionen nützlich, um beispielsweise die Orthogonalität von Fouriertransformationen
– beziehungsweise hier Entwicklungen von Funktionen durch Eigenfunktionen von La,α – in
Lp oder anderen Funktionenräumen auszudrücken und zu quantifizieren.

Definition 8.3.1 (Littlewood–Paley-Projektionen). Sei Φ : [0,∞) → [0, 1] eine glatte, kom-
pakt getragene Funktion, sodass

Φ(λ) = 1 für 0 ≤ λ ≤ 1 und Φ(λ) = 0 für λ ≥ 2.

Für dyadische Zahlen N ∈ 2Z definieren wir

ΦN (λ) = Φ(λ/Nα/2) und ΨN (λ) = ΦN (λ)− ΦN/2(λ) ∈ C∞c (R+).

Offenbar bildet {ΨN (λ)}N∈2Z eine Zerlegung der Eins für λ ∈ R+. Wir definieren die gewöhn-
lichen Littlewood–Paley-Projektionen durch

P̃ a,αN := ΨN (
√
La,α) und P̃αN := P̃ 0,α

N .

Daneben definieren wir eine weitere Familie von Littlewood–Paley-Projektionen durch den
Wärmeleitungskern, nämlich

P a,αN := e−La,α/N
α − e−La,α/(N

α/2α) und PαN := P 0,α
N .

Als Nächstes leiten wir Bernstein-Ungleichungen für diese Projektionen her. Diese sind
besonders nützlich, wenn der Spektralparameter λ lokalisiert ist, da niedrige Lebesgue-Inte-
grierbarkeit auf Kosten gewisser Potenzen von N zu hoher Lebesgue-Integrierbarkeit verbes-
sert werden kann. Für kleine Energien sind diese

”
Kosten“ tatsächlich nützlich und verbessern

die Ungleichung.

Lemma 8.3.2 (Bernstein-Abschätzungen). Sei 1 < p ≤ q <∞, wenn a ≥ 0 beziehungsweise
d/(d− δ) < p ≤ q < d/δ, falls 0 > a ≥ a∗. Dann gelten die folgenden Aussagen.
(1) Die Projektionen P a,αN und, wenn Annahme 8.1.1 erfüllt ist, P̃ a,αN sind auf Lp(Rd) be-
schränkt.
(2) Falls Annahme 8.1.1 erfüllt ist, gilt ‖(La,α/Nα)

s
2 P̃ a,αN f‖p ∼ ‖P̃ a,αN f‖p, das heißt

Nαs/2‖P̃ a,αN f‖p ∼ ‖L
s
2
a,αP̃

a,α
N f‖p

für alle f ∈ C∞c (Rd) und alle s ∈ R.
(3) Die Projektionen P a,αN und, wenn Annahme 8.1.1 erfüllt ist, P̃ a,αN sind von Lp nach Lq

beschränkt mit Norm O(N
d
(

1
p
− 1
q

)
).

Beweis. Die erste Behauptung für P̃ a,αN folgt aus Satz 8.2.1. Für P a,αN folgt sie auch direkt
aus der dritten Behauptung mit p = q. Die zweite Behauptung folgt ebenfalls unmittelbar
aus Satz 8.2.1.
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Wir zeigen nun die dritte Behauptung. Man bemerkt zunächst, dass P̃ a,αN mit Satz 8.2.1
als Produkt von Lp-beschränkten Multiplikatoren geschrieben werden kann. Für r ∈ (p, q) ist
in der Tat

‖P̃ a,αN f‖Lq ≤ ‖e−La,α/N
α‖Lr→Lq‖eLa,α/N

α
P̃ a,αN eLa,α/N

α‖Lr→Lr‖e−La,α/N
α‖Lp→Lr‖f‖Lp

. Nd(1/p−1/r+1/r−1/q)‖f‖Lp .

Daher genügt es, die Behauptung für e−La,α/N
α

zu zeigen. Für a ≥ 0 genügt es wegen des
Maximumprinzips, die Lp → Lq-Norm von e−|p|

α/Nα
zu bestimmen. Mit der der Substitution

x 7→ N−1x und der Youngschen Ungleichung mit r = (1 + 1/q − 1/p)−1 ≥ 1 gilt

‖e−La,α/Nα
f‖q . Nd‖1 ∧ N

−α−d

|x|d+α
‖r ‖f‖p . N

d
(

1
p
− 1
q

)
‖f‖p .

Für 0 > a ≥ a∗ verwenden wir die Schranken an e−La,α aus Satz 8.1.6 und schätzen∥∥∥e−La,α/N
α
f
∥∥∥
q

.Nd

∥∥∥∥∥
(

1 ∨ N
−1

|x|

)δ ∫
Rd

(
1 ∨ N

−1

|y|

)δ (
1 ∧ N−α−d

|x− y|d+α

)
|f(y)| dy

∥∥∥∥∥
q

(8.24)

ab. Um die rechte Seite weiter zu beschränken, unterscheiden wir zwischen vier Fällen.

Fall 1: |x| ≤ N−1, |y| ≤ N−1.

Mit der Hölder-Ungleichung, d/(d − δ) < p ≤ q < d/δ sowie δ ≤ (d − α)/2, kann die rechte
Seite von (8.24) durch

Nd−2δ

∥∥∥∥∥∥∥|x|−δ
∫

|y|≤N−1

|y|−δ|f(y)| dy

∥∥∥∥∥∥∥
Lq(|x|≤N−1)

.Nd−2δ
∥∥∥|x|−δ∥∥∥

Lq(|x|≤N−1)

∥∥∥|y|−δ∥∥∥
Lp′ (|y|≤N−1)

‖f‖p . N
d
(

1
p
− 1
q

)
‖f‖p

(8.25a)

abgeschätzt werden, wobei wir (x, y) 7→ (N−1x,N−1y) skaliert haben.

Fall 2: |x| ≤ N−1, |y| > N−1.

Die rechte Seite von (8.24) kann wieder mit der Hölder-Ungleichung durch

Nd−δ
∥∥∥∥|x|−δ ∫

Rd

(
1 ∧ N−α−d

|x− y|d+α

)
|f(y)| dy

∥∥∥∥
Lq(|x|≤N−1)

.Nd−δ
∥∥∥|x|−δ∥∥∥

Lq(|x|≤N−1)

∥∥∥∥(1 ∧ N
−α−d

|y|d+α

)∥∥∥∥
p′
‖f‖p . N

d
(

1
p
− 1
q

)
‖f‖p

(8.25b)

abgeschätzt werden.
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Fall 3: |x| > N−1, |y| ≤ N−1.

Mit der Minkowski- und der Hölder-Ungleichung kann (8.24) durch

Nd−δ

∥∥∥∥∥∥∥
∫

|y|≤N−1

|y|−δ
(

1 ∧ N−α−d

|x− y|d+α

)
|f(y)| dy

∥∥∥∥∥∥∥
q

.Nd−δ
∥∥∥∥(1 ∧ N

−α−d

|x|d+α

)∥∥∥∥
q

∥∥∥|y|−δ∥∥∥
Lp′ (|y|≤N−1)

‖f‖p . N
d
(

1
p
− 1
q

)
‖f‖p

(8.25c)

beschränkt werden.

Fall 4: |x| > N−1, |y| > N−1.

Wie im Fall a ≥ 0 verwenden wir die Young-Ungleichung, um den letzten Beitrag auf der
rechten Seite von (8.24) durch

Nd

∥∥∥∥∫
Rd

(
1 ∧ N−α−d

|x− y|d+α

)
|f(y)| dy

∥∥∥∥
q

.Nd

∥∥∥∥(1 ∧ N
−α−d

|x|d+α

)∥∥∥∥
r

‖f‖p . N
d
(

1
p
− 1
q

)
‖f‖p

(8.25d)

abzuschätzen, wobei wir 1 + 1/q = 1/r + 1/p verwendet haben.

Aus der Lp-Beschränktheit der (LP)-Projektionen folgt unmittelbar die folgende Entwick-
lung von Lp-Funktionen.

Lemma 8.3.3 (Entwicklung der Identität). Sei 1 < p <∞, falls a ≥ 0 und d/(d− δ) < p <
d/δ, falls a ∈ [a∗, 0). Dann gilt für alle f ∈ Lp(Rd)

f(x) =
∑
N∈2Z

[P a,αN f ](x)

und, falls Annahme 8.1.1 erfüllt ist, außerdem

f(x) =
∑
N∈2Z

[P̃ a,αN f ](x)

als Elemente aus Lp(Rd). Insbesondere konvergieren die Summen in Lp(Rd).

Beweis. Die Konvergenz in L2 folgt aus dem Spektralsatz und der Tatsache, dass Null kein
Eigenwert von La,α ist (siehe auch [64, Proposition 4.1]) und ist aus der Gleichheit

‖f −
∑
N∈2Z

P a,αN f‖22 =

∫ 1−
∑
N∈2Z

P a,αN (λ)

2

d(f,ELa,αf)(λ)

ersichtlich. Hierbei bezeichnet dELa,α das Spektralmaß von La,α. Wäre Null ein Eigenwert mit
zugehöriger Eigenfunktion f , wäre die rechte Seite der Gleichheit in der Aussage des Lemmas
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Null (was aus den Definitionen von P a,αN und P̃ a,αN ersichtlich ist), wohingegen die linke Seite
von Null verschieden ist.

Für p 6= 2 garantieren Lemma 8.3.2 beziehungsweise Satz 8.2.1, dass Partialsummen für
alle p in der Behauptung Lp-beschränkt sind. Wegen Dichtheit von C∞c in Lp, genügt es
daher die Konvergenz für f ∈ C∞c (Rd) zu zeigen. Für solche f folgt die Konvergenz in Lp

aus der Konvergenz in L2 und der Beschränktheit in Lp für alle erlaubten p mit der Hölder-
Ungleichung.

Satz 8.3.4 (Abschätzungen der (LP)-Funktionen). Fixiere s > 0 und sei 1 < p < ∞, falls
a ≥ 0 und d/(d − δ) < p < d/δ, falls a ∈ [a∗, 0). Sei k ∈ N so, dass 2k > s. Falls Annahme
8.1.1 erfüllt ist, gilt∥∥∥∥∥∥∥

∑
N∈2Z

∣∣∣Nαs/2P̃ a,αN f
∣∣∣2
 1

2

∥∥∥∥∥∥∥
p

∼
∥∥∥L s2a,αf∥∥∥

p
∼

∥∥∥∥∥∥∥
∑
N∈2Z

∣∣∣Nαs/2(P a,αN )kf
∣∣∣2
 1

2

∥∥∥∥∥∥∥
p

für alle f ∈ C∞c (Rd).

Wir bemerken, dass die Funktion λ 7→ e−λ
2/Nα − e−λ

2/(Nα/2α) (welche P a,αN definiert)
nur zur zweiten Ordnung bei λ = 0 verschwindet. Die Einschränkung 2k > s garantiert,

dass Nαs/2L−s/2a,α (P a,αN )k tatsächlich ein Mikhlin-Multiplikator ist. Da wir die Abschätzungen
jedoch nur für s ∈ (0, 2) benötigen, können wir später ohne Beschränkung k = 1 wählen.

Der Beweis verläuft mit Hilfe des Mikhlin-Multiplikator-Satzes für La,α wie in [166, Kapitel
IV, §5] im euklidischen Fall mit nur geringfügigen Modifikationen, siehe auch [105, Theorem
4.3].

Beweis. Für g = Ls/2a,αf genügt es

‖g‖p ∼ ‖S̃(g)‖p , wobei S̃(g) :=

∑
N∈2Z

∣∣∣Nαs/2P̃ a,αN L
−s/2
a,α g

∣∣∣2
1/2

beziehungsweise

‖g‖p ∼ ‖S(g)‖p , wobei S(g) :=

∑
N∈2Z

∣∣∣Nαs/2(P a,αN )kL−s/2a,α g
∣∣∣2
1/2

zu zeigen. Wir bemerken zunächst, dass g tatsächlich in Lp ist. Um dies zu sehen, führen wir

P̃ a,α≤N := ΦN (
√
La,α) und P̃ a,α>N := 1− P̃ a,α≤N

ein und bemerken, dass diese Operatoren wegen Satz 8.2.1 Lp-beschränkt sind. Schreibt man
dann

g = Ls/2a,αP̃
a,α
≤1 f + Ls/2−ka,α P̃ a,α>1

(
Lka,αf

)
und verwendet nochmals Satz 8.2.1, sieht man, dass g ∈ Lp(Rd).

Wir zeigen nun ‖S(g)‖p . ‖g‖p. Dazu beobachten wir zuerst, dass

Nαs/2(P a,αN )kL−s/2a,α = m
(√
La,α/Nα/2

)
mit m(λ) := λ−se−kλ

2
(

1− e−(2α−1)λ2
)k

(8.26)
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gilt und m(λ) die Bedingungen aus Satz 8.2.1 erfüllt. Insbesondere gilt die Abschätzung
|λj∂jm(λ)| .j λ

2k−se−kλ
2

für alle j ∈ N0. Sei nun εN eine Folge statistisch unabhängiger und
identisch verteilter Zufallsvariablen mit P (εN = ±1) = 1/2 für alle N ∈ 2Z, sprich εN ist eine
Folge mit Rademacher-Verteilung. Dann erfüllt der Multiplikator

mε(λ) :=
∑
N∈2Z

εNm(λ/Nα/2)

|λj∂jmε(λ)| .j 1 gleichmäßig in der Wahl der Vorzeichen {εN} ⊆ {±1}. Die Summierbarkeit
beruht dabei auf der Einschränkung 2k > s. Mit der Chintschin-Ungleichung (E bezeichnet
den Erwartungswert)

‖(
∑
N

|gN |2)1/2‖p
Lp(Rd)

∼
∫
Rd

E{|
∑
N

εNgN (x)|p} dx

(siehe beispielsweise [166, Kapitel IV, §5, Formel (44) und Anhang D]), der Identifikation
gN = m(

√
La,α/Nα/2)g, dem Satz von Fubini und Satz 8.2.1, erhalten wir∫

Rd
|S(g)(x)|p dx ∼

∫
Rd

E {|(mεg)(x)|p} dx = E ‖mεg‖pp . ‖g‖
p
p ,

das heißt ‖S(g)‖p . ‖g‖p.
Die umgekehrte Ungleichung ‖g‖p . ‖S(g)‖p folgt aus der gerade bewiesenen Ungleichung

mittels Dualität. Dazu definieren wir

m̃(λ) :=

∑
N∈2Z

m(λ/Nα/2)2

−1

mit demselben m(λ) wie in (8.26). Man stellt wieder fest, dass m̃(λ) die Bedingungen aus Satz
8.2.1 erfüllt und daher einen Lp-beschränkten Operator definiert. Mit der Cauchy–Schwarz-
Ungleichung in N , der Lp-Beschränktheit von S und m̃ erhält man

|(g, h)| =

∣∣∣∣∣∣
∑
N∈2Z

(
g,m

(√
La,α/Nα/2

)2
m̃
(√
La,α

)
h

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
N∈2Z

(
m
(√
La,α/Nα/2

)
g,m

(√
La,α/Nα/2

)
m̃
(√
La,α

)
h
)∣∣∣∣∣∣

≤
(
S(g), S

(
m̃
(√
La,α

)
h
))
≤ ‖S(g)‖p

∥∥∥m̃(√La,α)h∥∥∥
p′
. ‖S(g)‖p ‖h‖p′

für alle h ∈ Lp′(Rd). Dies zeigt ‖g‖p . ‖S(g)‖p. Die Äquivalenz ‖g‖p ∼ ‖S̃(g)‖p wird analog
bewiesen.

8.4 Beweis von Behauptung 8.1.5 und Satz 8.1.2

Ein Schlüssel zum Beweis von Behauptung 8.1.5 sind punktweise Schranken an die Differenz
der Wärmeleitungskerne von |p|α und La,α, sprich

Kα
t (x, y) := e−t|p|

α
(x, y)− e−tLa,α(x, y) .
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Neben den individuellen Schranken an die Kerne haben wir im letzten Kapitel punktweise
Schranken an Kα

t (x, y) hergeleitet und durch die Funktionen

Lα,δt (x, y) := 1{(|x|∨|y|)α≤t}t
− d
α

(
t2/α

|x||y|

)δ
+ 1{(|x|∨|y|)α≥t}

t

(|x| ∨ |y|)d+α

(
1 ∨ t1/α

|x| ∧ |y|

)δ
und

Mα
t (x, y) := 1{(|x|∨|y|)α≥t}1{ 1

2
|x|≤|y|≤2|x|}

t1−
d
α

(|x| ∧ |y|)α

(
1 ∧ t1+ d

α

|x− y|d+α

)
ausgedrückt. Wir hatten gesehen, dass es effektive Auslöschungen in den Regionen (|x| ∨
|y|)α ≥ t und |x| ∼ |y| gab. Wir erinnern an

Lemma 8.4.1. Seien α ∈ (0, 2 ∧ d), a ∈ [a∗,∞) und sei δ durch (8.1) definiert. Dann gilt
für alle x, y ∈ Rd und t > 0

|Kα
t (x, y)| . L

α,δ+
t (x, y) +Mα

t (x, y) .

Der Beweis von Behauptung 8.1.5 verläuft analog wie im letzten Kapitel mittels Schur-
Tests und den Schranken von Lemma 8.4.1.

Beweis von Behauptung 8.1.5. Mit der Dreiecksungleichung im Folgenraum `2 und der `1 ↪→
`2-Einbettung schätzen wir∥∥∥∥∥∥∥
∑
N∈2Z

|N
αs
2 PαNf |2

1/2

−

∑
N∈2Z

|N
αs
2 P a,αN f |2

1/2
∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥
∑
N∈2Z

|N
αs
2 (PαN − P

a,α
N )f |2

1/2
∥∥∥∥∥∥∥
p

.

∥∥∥∥∥∥
∫
Rd
dy

∑
N∈2Z

N
αs
2 |Kα

N−α(x, y)| |f(y)|

∥∥∥∥∥∥
p

.

∥∥∥∥∥∥
∫
Rd
dy

∑
N∈2Z

N
αs
2

∣∣∣Lα,δ+N−α(x, y)
∣∣∣ |y|αs2

 |f(y)|
|y|

αs
2

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∫
Rd
dy

∑
N∈2Z

N
αs
2 |Mα

N−α(x, y)| |y|
αs
2

 |f(y)|
|y|

αs
2

∥∥∥∥∥∥
p

(8.27)

ab. Daher genügt es zu zeigen, dass die rechte Seite durch
∥∥|x|−αs/2f∥∥

p
für alle f ∈ C∞c (Rd)

beschränkt ist. Um die Notation zu vereinfachen, definieren wir g(x) = |x|−αs/2|f(x)|.
Wir verwenden, wie im L2-Fall, Schur-Tests, um die Behauptung zu zeigen. Wir beginnen

mit dem ersten Summanden und berechnen∑
N∈2Z

N
αs
2 L

α,δ+
N−α(x, y) = (|x||y|)−δ+

∑
N≤(|x|∨|y|)−1

N
αs
2

+d−2δ+

+
∑

N≥(|x|∨|y|)−1

N
αs
2

N−α

(|x| ∨ |y|)d+α

(
1 ∨ N−1

|x| ∧ |y|

)δ+

∼ (|x||y|)−δ+(|x| ∨ |y|)−αs/2−d+2δ+ +
1

(|x| ∨ |y|)
sα
2

+d

(
|x| ∨ |y|
|x| ∧ |y|

)δ+
.
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Hier haben wir αs/2 + d − 2δ+ > 0 verwendet, was aus δ ≤ (d − α)/2 folgt. Wir bemerken,
dass die beiden Summanden gleich sind, da

|x| ∨ |y|
|x||y|

=
1

|x| ∧ |y|
.

Daher ist∥∥∥∥∥∥
∫
Rd
dy

∑
N∈2Z

N
αs
2 L

α,δ+
N−α(x, y)|y|α

s
2 g(y)

∥∥∥∥∥∥
p

.

∥∥∥∥∫
Rd
dy

(|x| ∨ |y|)2δ+−d

(|x||y|)δ+
g(y)

∥∥∥∥
p

.

Für alle (p ∨ p′)δ+ < β < (p ∧ p′)(d − δ+) (solche β existieren, da d − 2δ ≥ α > 0 und
d/(d− δ+) < p, p′ < d/δ+) haben wir

sup
y∈Rd

∫
Rd
dx

(
|y|
|x|

)β
p (|x| ∨ |y|)2δ+−d

(|x||y|)δ+
=

∫
Rd

(1 ∨ |z|)2δ+−d

|z|δ++β
p

dz <∞

und analog (wegen der Symmetrie des Integralkerns in x und y)

sup
x∈Rd

∫
Rd
dy

(
|x|
|y|

) β
p′ (|x| ∨ |y|)2δ+−d

(|x||y|)δ+
=

∫
Rd

(1 ∨ |z|)2δ+−d

|z|δ++ β
p′

dz <∞ .

Mit Hilfe eines gewichteten Schur-Tests folgt daraus∥∥∥∥∫
Rd
dy

(|x| ∨ |y|)2δ+−d

(|x||y|)δ+
g(y)

∥∥∥∥
p

. ‖g‖p ,

was zeigt, dass der erste Term in (8.27) die behauptete Schranke erfüllt.

Der zweite Term in (8.27) wird wie im Beweis von Behauptung 7.1.5 mit Hilfe eines
ungewichteten Schur-Tests behandelt. Insbesondere wird das letzte Integral (7.19),

sup
y∈Rd

|y|
αs
2
−α

∫
t≤(2|y|)α

dt

t
t−

s
2

+1 ∼ sup
y∈Rd

|y|
αs
2
−α

∫
t≥(2|y|)−1

dt

t
t
αs
2
−α ∼ 1

durch die Summe

sup
y∈Rd

|y|
αs
2
−α

∑
2Z3N≥(2|y|)−1

N
αs
2
−α ∼ 1

ersetzt. Dies zeigt die behauptete Ungleichung.

Wir zeigen nun, dass Satz 8.1.2 unmittelbar aus Behauptungen 8.1.4 und 8.1.5 sowie der
Littlewood–Paley-Theorie des letzten Abschnitts folgt.

Beweis von Satz 8.1.2. Wir nehmen im Folgenden immer 1 < p <∞ an. Für s ∈ (0, 2) folgt
die Behauptung

‖|p|α
s
2 f‖p .d,p,α,s ‖L

s
2
a,αf‖p
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durch Anwenden von Satz 8.3.4 (was δ+ < d/p < d− δ+ benötigt), der Dreiecksungleichung,
Behauptung 8.1.4 (was αs/2 + δ < d/p < d− δ benötigt) und Behauptung 8.1.5 (was wieder
δ+ < d/p < d− δ+ benötigt), denn

‖|p|α
s
2 f‖p ∼

∥∥∥∥∥∥∥
∑
N∈2Z

|Nαs/2PαNf |2
1/2

∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥
∑
N∈2Z

|Nαs/2P a,αN f |2
1/2

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
∑
N∈2Z

|Nαs/2PαNf |2
1/2

−

∑
N∈2Z

|Nαs/2P a,αN f |2
1/2

∥∥∥∥∥∥∥
p

.
∥∥∥Ls/2a,αf

∥∥∥
p

+
∥∥∥|x|−αs/2f∥∥∥

p
.
∥∥∥Ls/2a,αf

∥∥∥
p
.

Wir bemerken, dass die Annahme αs/2 < d in Behauptung 8.1.4 automatisch aus s ≤ 2 und
α < d folgt.

Die andere Ungleichung, sprich

‖L
s
2
a,αf‖p .d,p,α,s ‖|p|α

s
2 f‖p ,

wird analog bewiesen, verwendet aber Lemma 8.1.3 (was αs/2 < d/p benötigt), anstatt
Behauptung 8.1.4. Die andere Schranken an p, sprich δ+ < d/p < d − δ+ werden wieder für
die Abschätzungen der (LP)-Funktionen (Satz 8.3.4) und die umgekehrte Hardy-Ungleichung
(Behauptung 8.1.5) benötigt.

Für s = 2 wird die obige Littlewood–Paley-Theorie nicht benötigt. Die Ungleichung
‖La,αf‖p . ‖|p|αf‖p folgt aus der Dreiecksungleichung und der gewöhnlichen Hardy-Un-
gleichung, Lemma 8.1.3. Die andere Ungleichung folgt aus

‖|p|αf‖p ≤ ‖(|p|α − La,α)f‖p + ‖La,αf‖p = ‖|x|−αf‖p + ‖La,αf‖p

und der verallgemeinerten Hardy-Ungleichung, Behauptung 8.1.4.

8.5 Eine Verallgemeinerung

Wie im letzten Kapitel ist es möglich, Satz 8.1.2 auf Operatoren |p|α +V zu verallgemeinern,
wobei V eine Funktion auf Rd ist, die den Schranken

a

|x|α
≤ V (x) ≤ ã

|x|α
(8.28)

mit a∗ ≤ a ≤ ã <∞ genügt. Wir zeigen folgenden

Satz 8.5.1. Seien α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã < ∞, δ = δ(a) durch (8.1) definiert und
s ∈ (0, 2]. Sei weiterhin Annahme 8.1.1 erfüllt, wenn s ∈ (0, 2).



166 8. Hardy-Operatoren und Sobolew-Normen in Lp

1. Falls 1 < p < ∞ die Ungleichungen αs/2 + δ < d/p < min{d, d − δ} erfüllt, dann gilt
für alle V , die (8.28) erfüllen

‖|p|αs/2f‖Lp(Rd) .d,α,a,s ‖(|p|α + V )s/2f‖Lp(Rd) für alle f ∈ C∞c (Rd) . (8.29)

2. Falls max{αs/2, δ} < d/p < min{d, d − δ} (was bereits 1 < p < ∞ sicherstellt), dann
gilt für alle V , die (8.28) erfüllen

‖(|p|α + V )s/2f‖Lp(Rd) .d,α,a,s ‖|p|αs/2f‖Lp(Rd) für alle f ∈ C∞c (Rd) . (8.30)

Wir betonen nochmals, dass δ bezüglich a und nicht bezüglich ã definiert ist und die
Konstanten des Satzes nicht von ã abhängen.

Der Beweis von Satz 8.5.1 für s < 2 folgt unmittelbar aus den folgenden beiden Behaup-
tungen und den Abschätzungen der (LP)-Funktionen (Satz 8.3.4) im selben Stil, wie Satz
8.1.2 aus den Behauptungen 8.1.4 und 8.1.5 und den Abschätzungen an die (LP)-Funktionen
folgte. Für s = 2 werden lediglich die gewöhnliche und die folgende verallgemeinerte Hardy-
Ungleichung sowie die Dreiecksungleichung benötigt.

Behauptung 8.5.2. Seien α ∈ (0, 2∧d), p ∈ (1,∞), a∗ ≤ a ≤ ã <∞, δ durch (8.1) definiert
und αs/2 ∈ (0, d). Dann gilt für alle s > 0 mit αs/2 + δ < d/p < d− δ und alle V , die (8.28)
erfüllen

‖|x|−αs/2f |p .d,α,a,s ‖(|p|α + V )s/2f‖p für alle f ∈ C∞c (Rd) .

Beweis. Mit dem Maximumprinzip gilt für alle x, y ∈ Rd und t > 0

0 ≤ e−t(|p|α+V )(x, y) ≤ e−tLa,α(x, y) . (8.31)

Wegen des Spektralsatzes gilt

L−s/2a,α (x, y) =
1

Γ(s/2)

∫ ∞
0

e−tLa,α(x, y)ts/2
dt

t

und entsprechend für (|p|α + V )−s/2(x, y). Daraus folgt die Ungleichung

(|p|α + V )−s/2(x, y) ≤ L−s/2a,α (x, y) ,

was zeigt, dass die oberen Schranken für L−s/2a,α (x, y) (Satz 7.1.6) auch für (|p|α+V )−s/2 gelten.
Die Behauptung folgt dann im selben Stil wie Behauptung 8.1.4.

Behauptung 8.5.3. Seien α ∈ (0, 2∧d), a∗ ≤ a ≤ ã <∞, δ durch (8.1) definiert, p ∈ (1,∞),
wenn a ≥ 0 und p ∈ (d/(d− δ), d/δ), wenn a < 0. Seien weiter s ∈ (0, 2) und

P V,αN := e−(|p|α+V )/Nα − e−(|p|α+V )/(Nα/2α) , PαN := P 0,α
N für N ∈ 2Z .

Dann gilt für alle V , die (8.28) erfüllen∥∥∥∥∥∥∥
∑
N∈2Z

|Nαs/2PαNf |2
1/2

−

∑
N∈2Z

|Nαs/2P V,αN f |2
1/2

∥∥∥∥∥∥∥
p

.d,α,a,s

∥∥∥|x|−αs/2 f∥∥∥
p

für alle f ∈ C∞c (Rd).
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Beweis. Sei
K̃α
t (x, y) := e−t|p|

α
(x, y)− e−t(|p|α+V )(x, y) .

Wegen des Maximumprinzips gilt für alle x, y ∈ Rd und t > 0

e−t|p|
α
(x, y)− e−tLa,α(x, y) ≤ K̃α

t (x, y) ≤ e−t|p|α(x, y)− e−tLã,α(x, y) .

Daher impliziert Lemma 8.4.1 mit a und ã, dass die entsprechende Aussage auch für K̃α
t

anstatt Kα
t gilt. Hierbei haben wir verwendet, dass δ̃, was durch (8.1) mit ã anstatt a definiert

ist, die Ungleichung δ̃ ≤ δ erfüllt. Mit Hilfe des Analogons von Lemma 8.4.1 folgt der Beweis
dieser Behauptung im gleichen Stil wie der von Behauptung 8.1.5.
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Kapitel 9

Offene Fragen

Wir formulieren schließlich einige offene Fragen, die im Zusammenhang mit den Ergebnissen
dieser Arbeit stehen. Wir beginnen mit einigen Wünschen und Vermutungen, die die hier
behandelten physikalischen Modelle betreffen.

Fragen bezüglich der behandelten physikalischen Modelle

• In Kapitel 4 wurde die schwache Konvergenz der Einteilchendichte eines Grundzustands
gegen die wasserstoffartige Thomas–Fermi-Dichte gezeigt. Für Kopplungskonstanten
γ ≤ 2/π konnten wir die erwartete schwache Konvergenz in den semiklassischen Lp-
Räumen mit p = 5/2, 4 zeigen. Für γ ∈ (2/π, 2/(π/2 + 2/π)) gelang uns dies nur, wenn
die Test-Funktionen zusätzlich punktweise durch ein Vielfaches des Coulomb-Potentials
beschränkt und Lipschitz-stetig waren. Zudem konnten wir γ = 2/(π/2 + 2/π) nicht
behandeln. Es wäre daher wünschenswert, diese beiden technischen Einschränkungen
umgehen zu können.

• Die starke Scott-Vermutung konnte für das Furry-Modell deshalb relativ direkt ge-
zeigt werden, da das effektive Einteilchen-Problem durch den Wasserstoff-Operator be-
schrieben wird und die Projektion im Furry-Bild gerade mit diesem kommutiert. Im
Brown–Ravenhall-Modell ist eine direkte Verallgemeinerung der Methoden aus dem
Furry-Modell nicht erwartbar, da Kommutatoren mit der freien Projektion auftreten
und kontrolliert werden müssen.

• Die wasserstoffartige Dichte ρH(x), sprich die Summe der Betragsquadrate der Eigen-
funktionen der hier behandelten relativistischen Operatoren, wurde bisher nicht im De-
tail studiert. Dies steht im starken Gegensatz zur nicht-relativistischen Dichte, die von
Heilmann und Lieb [86] eingehend untersucht wurde. Wie wir bereits erwähnt haben,
zeigten die Autoren, dass die Dichte punktweise endlich ist, monoton fällt und sich für
q = 2 und große Kernabstände asymptotisch wie 2r−3/2/(

√
2π2) + o(r−3/2) verhält.

Insbesondere ist die Dichte am Ursprung endlich und sie erfüllt nach der Arbeit von
Rakowsky und Siedentop [140] (mit m = 1 und der starken Scott-Vermutung für nicht-
relativistische Atome [95]) die punktweise obere Schranke

ρH(0) ≤ π

12
.
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Für die Chandrasekhar- und Furry-Operatoren konnten wir zwar immerhin zeigen, dass
ρH für große Kernabstände nach oben durch eine implizite Konstante mal r−3/2 be-
schränkt ist. Jedoch fehlt erstens die scharfe Konstante und zweitens eine entsprechende
untere Schranke, um ein Ergebnis über die Asymptotik der Dichte für r →∞ zu formu-
lieren. Da Elektronen, die sich weit weg vom Kern befinden, keine relativistischen Effekte
mehr

”
spüren“ sollten, vermuten wir, dass die Asymptotik der relativistischen Dichte

mit der der nicht-relativistischen Dichte übereinstimmt. Dies würde nochmals unter-
streichen, dass die Thomas–Fermi-Theorie den Großteil der Elektronen des Vielteilchen-
Systems korrekt beschreibt, da die Thomas–Fermi-Dichte am Ursprung gerade wie r−3/2

divergiert. Wir erinnern an das Skalierungsverhalten ρHZ (x) = Z3ρHZ=1(Zx) der Dichte
des Wasserstoffatoms mit Kernladung Z und ρTF

Z (x) = Z2ρTF
1 (Z1/3x). Schließlich ver-

bleibt die Bestimmung des Monotonieverhaltens sowie der Singularität am Ursprung.
Insbesondere sollte letztere von der Kopplungskonstanten γ abhängen, was bereits an
den explizit bekannten Eigenfunktionen des Coulomb–Dirac-Operators ersichtlich ist,
siehe beispielsweise Bethe [10]. Am Ursprung verhalten sich die Eigenfunktionen im

Kanal j = 1/2 wie r
√

1−γ2−1.

Der Beweis der obigen Eigenschaften im nicht-relativistischen Fall beruhte sehr stark auf
den Eigenschaften der explizit bekannten Eigenfunktionen, welche für die hier bespro-
chenen relativistischen Modelle nur für den Coulomb–Dirac-Operator im Furry-Bild be-
kannt sind. Diese beinhalten allerdings hypergeometrische konfluente Funktionen, sind
also nur sehr schwer zu handhaben. Nichtsdestotrotz könnte eine WKB-Untersuchung
mit dem semiklassischen Parameter 1/c etwas Licht ins Dunkel bringen. Diese Hoffnung
wird bereits durch Bethe [10, Seite 316] geweckt. Er beobachtete, dass die relativisti-
schen Eigenfunktionen wieder in die nicht-relativistischen Eigenfunktionen übergehen,
wenn man c → ∞ für festes Z gehen lässt. Eine detailliertere Abhandlung über den
nicht-relativistischen Grenzwert von Dirac-Operatoren kann in [171, Kapitel 6] und den
dort enthaltenen Referenzen gefunden werden.

• In der Einleitung haben wir kurz das Mittlemansche Prinzip zur Herleitung relati-
vistischer Hamilton-Operatoren aus QED-Hamilton-Operatoren angesprochen. Dieses
Prinzip sollte zur präzisesten Vorhersage der Grundzustandsenergie schwerer (Z � 1)
Atome führen. Wir verweisen auf [129, Abschnitt II] für eine detaillierte Beschreibung
dieses nichtlinearen Variationsprinzips. Sehr grob gesagt, schlug Mittleman vor, dass
man zunächst den tiefsten Eigenwert eines (mit einer noch frei wählbaren Projek-
tion) projizierten Vielteilchen-Dirac-Operators finden sollte. Im Anschluß sollte man
diesen Eigenwert über alle

”
erlaubten“ Projektionen maximieren. Die Projektion, die

den höchsten Eigenwert liefert, bestimmt demnach den
”
physikalisch relevantesten“

Hamilton-Operator.

Eine erste natürliche Frage, die man an diesem Punkt stellen muss, ist, über welche
Projektionen man überhaupt variieren soll. Man sollte sicherlich solche ausschließen,
welche ganz oder teilweise auf den negativen Teil des Spektrums (den

”
Dirac-See“) des

Dirac-Operators projizieren.

Weiterhin kann man folgende zwei Vermutungen äußern, welche die asymptotische Ent-
wicklung der Grundzustandsenergie des Vielteilchen-Operators im Grenzwert großer
Teilchenzahlen beziehungsweise Kernladungen betreffen.
(1) Aufgrund der Intuition, dass der größte Beitrag von kernfernen,

”
langsamen“ Elek-
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tronen auf der Längenskala Z−1/3 erzeugt wird, könnte man erwarten, dass die führende
Ordnung der Grundzustandsenergie für alle

”
erlaubten“ Projektionen wieder durch die

Thomas–Fermi-Energie gegeben ist.
(2) Des Weiteren sollte die Z2-Korrektur im Furry-Bild am höchsten sein, da diese nur
durch das effektive Einteilchen-Problem, welches nur Wasserstoff-Operatoren beinhaltet,
erzeugt wird. Diese Intuition stützt sich auf das Variationsprinzip für Operatoren mit
Spektrallücken [77, 131], welches die höchsten Eigenwerte des Coulomb–Dirac-Operators
liefert, wenn bezüglich des Furry-Bilds projiziert wird. Dies ist auch das zu Grunde lie-
gende Argument von Schwinger für die Herleitung der relativistischen Scott-Korrektur
[150].

Diese beiden Vermutungen sind bis heute ungeklärt und stellen interessante mathema-
tische beziehungsweise physikalische Probleme dar.

Offene mathematische Fragestellungen

• Wie wir in Kapitel 8 erwähnt haben (und in Anhang D.1 erörtern werden), ist es offen
einen Mikhlin- oder Hörmander-Multiplikator-Satz für |p|α + V für V ≥ 0, wenn d ≥ 2
oder d = 1 und α ≤ 1 sind, zu zeigen. Eine weitere eng damit verwandte Frage ist die
Lp-Beschränktheit der zugehörigen Maximalfunktion

sup
t>0
|F (t(|p|α + V ))|

sowie der Summierbarkeit von Entwicklungen von Funktionen in Eigenfunktionen von
|p|α + V , das heißt, ob

lim
t→0

F (t(|p|α + V ))f = f

punktweise fast überall oder in Lp gilt, wenn F hinreichend glatt ist und F (0) = 1
erfüllt. Für F (λ) = (1− λ)γ+ mit γ = γ(d, α) > 0 führt dies auf die Frage der Bochner–
Riesz-Summierbarkeit.

Schließlich stellt sich im gleichen Kontext die Frage an die kleinste Zahl der benötigten
Ableitungen an den Multiplikator damit dieser Lp-beschränkt ist. Im Schrödinger-Fall
−∆ +V mit V ≥ 0 ist beispielsweise bekannt, dass diese Zahl mindestens d/2 sein muss
(Hebisch [84]). Des Weiteren gilt Bochner–Riesz–Summierbarkeit, wenn γ > (d− 1)/2.

• In Kapitel 8 konnten wir kein Mikhlin-Multiplikator-Theorem für La,α = |p|α + a|x|−α
mit a < 0 zeigen, da der Wellenpropagator cos(τ

√
La,α) keinen kompakten distributio-

nellen Träger hat. Insbesondere war es offen eine Abschätzung der Art ‖Tbk‖L1(Rd\Q∗k) .

h1−q‖bk‖q zu zeigen, wobei {Qk} eine Familie dyadischer Würfel (mit relativ konkre-
ter Struktur) war, die aus einer Calderón–Zygmund-Zerlegung hervorging und bk auf
Qk getragene Funktionen waren. Die Q∗k waren dilatierte Versionen der Qk. Mit Stones
Formel

cos(τ
√
La,α) =

1

2πi
lim
ε↘0

∫ ∞
0

cos(τ
√
λ)((La,α − (λ+ iε))−1 − ((La,α − (λ− iε))−1) dλ

könnte es möglich sein hinreichend gute punktweise Schranken des Wellenpropagators
zu erhalten und damit die gewünschte Abschätzung zu zeigen.
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• Es wäre wünschenswert, die Äquivalenz der Sobolew-Normen auch für den Coulomb–
Dirac-Operator mit durch punktweise beschränktem Coulomb-Potential zu beweisen.
Konkret erwarten wir, dass Satz 7.4.1 auf diesen Fall verallgemeinerbar ist. Mit der
Definition von σγ aus (6.10) formulieren wir folgende

Vermutung 9.0.1. Seien 0 < s ≤ 1 und 0 < γ < 1. Für alle γ′ > 0 gibt es ein
as,γ,γ′ > 0, sodass, wenn s+ σγ < 3/2, dann ist für alle 0 ≤ U(x) ≤ γ′/|x|∣∣D0

γ + U
∣∣2s ≥ as,γ,γ′ |p|2s ⊗ 1C4 in L2(R3 : C4)

und für alle 0 < γ′ < 1− γ gibt es ein a′s,γ,γ′ > 0, sodass, wenn s+ σγ+γ′ < 3/2, dann
gilt für alle 0 ≤ U(x) ≤ γ′/|x|∣∣D0

γ − U
∣∣2s ≥ a′s,γ,γ′ |p|2s ⊗ 1C4 in L2(R3 : C4) .

Die Behauptung folgt sofort, wenn

– U = γ′/|x|, oder

– ` ≥ 1 mit γ + γ′ < 3/2.

Der erste Fall ist offensichtlich, denn es ist D0
γ ∓ U = D0

γ±γ′ und man kann direkt
Lemma 6.2.7 anwenden. Im zweiten Fall folgt die Aussage aus der Dreiecksungleichung,
der Hardy-Ungleichung(

f,
(`+ 1/2)2

r2
f

)
=

∫ ∞
0

`(`+ 1) + 1/4

r2
|f(r)|2 dr ≤ (f, p2

`f) ,

und der Operatormonotonie von x 7→ xs für 0 < s < 1, denn für f ∈ (Hj,0)⊥ ist

‖(D0
γ ∓ U)f‖ ≥ ‖|p|f‖ − (γ + γ′)‖|x|−1f‖ ≥

(
1− γ + γ′

`+ 1/2

)
‖|p|f‖ .

Für ` = 0 und allgemeine U sollten die Argumente von Morozov und Müller [132]
verwendet werden können, um (D0

γ±U)2 ≥ aγ,γ′(D0
γ+γ′)

2 zu zeigen. Anschließend würde
man wieder Lemma 6.2.7 verwenden.

Diese Vermutung erscheint
”
universeller“ als Lemma 6.2.13, denn dort mussten wir

eine Kleinheitsbedingungen an γ′ stellen, die nur indirekt etwas mit der Äquivalenz der
Sobolew-Normen aus Kapitel 7 zu tun hatte.



Anhang A

Anhang zur semiklassischen Dichte
im Brown–Ravenhall-Modell

A.1 Kommutator mit den T -Transformationen

Im Folgenden betrachten wir das durch den Operator [Φj , χR]V [χR,Φj ] erzeugte Lokalisie-
rungspotential mit V = |z|−1 und der Lokalisierungsfunktion χR(x) = χ(x/R) mit χ aus (4.8)
im masselosen und massiven Fall. Wir beginnen mit der schwierigeren, zweiten Komponente
der T -Transformation.

Nach Lemma 4.4.1 und Lemma 4.4.3 ist das durch den Operator [Φ1, χR]V [χR,Φ1] er-
zeugte Lokalisierungspotential durch

L
(1)
R (x) = A

∫
R3

dy

∫
R3

dz
e−a|x−z|e−a|z−y|

|x− z|3|z − y|3
V (z)|χR(x)− χR(z)||χR(y)− χR(z)| (A.1)

mit einem a ∈ (0, 1) beschränkt.
Im masselosen Fall ist dagegen φj = 1 für j ∈ {0, 1}, das heißt man muss lediglich das

durch [h, χR]V [χR, h] erzeugte Potential betrachten, wobei h = σ ·p/|p| der Helizitätsoperator
ist. Um den Lokalisierungsfehler in diesem Fall zu bestimmen, berechnen wir zunächst das
Lokalisierungspotential, das durch [hm, χR]V [χR, hm] erzeugt wird, wobei hm := σ · p/(p2 +
m2)1/2 für ein m > 0 den regularisierten Helizitätsoperator bezeichnet. Dieses lässt sich nach
(4.23) und Lemma 4.4.1 durch

L(x) := Am4

∫
R3

dy

∫
R3

dz
K2(m |x− z|)K2(m |z − y|)

|x− z| |z − y|
V (z)|χR(x)− χR(z)||χR(y)− χR(z)|

(A.2)

abschätzen. Wir erinnern nochmals an das asymptotische Verhalten vonK2 (siehe [137, Formel
9.6.9 und 9.7.2]), nämlich

K2(mr) ∼ 2 (mr)−2 für r → 0 ,

K2(mr) ∼
√
π

2

e−mr√
mr

für r →∞

für festes m > 0. Daraus folgt, dass es ein Aa > 0 gibt, sodass

|Φ1(r)| ≤ Aar−1K2(ar) für alle r > 0 .
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Dies zeigt, dass das von [Φ1, χR]V [χR,Φ1] erzeugte Lokalisierungspotential (A.1) durch das
von [hm, χR]V [χR, hm] erzeugte Potential beschränkt werden kann, wenn m ∈ (0, a] nicht zu
groß ist. Wir untersuchen daher im Folgenden lediglich (A.2) für ein festes m > 0. Lässt man
m→ 0 gehen, erhält man eine obere Schranke für das Lokalisierungspotential der masselosen
T -Transformation.

A.1.1 Das y-Integral

Wir beginnen mit der Berechnung des y-Integrals. Hierbei untersuchen wir verschiedene Re-
gionen, siehe dazu Abbildung A.1.

y

z

R 2R

R

2R

0
χ(y) − 1

III

1

I

1 − χ(z)

V

χ(y) − χ(z)

IV

−χ(z)

II

1

VI

χ(y)

VII
0

Abbildung A.1: y-z-Gitter

Sind beispielsweise sowohl |y| ≤ R, als auch |z| ≤ R, so ist das Integral identisch Null. Für
die Region |y| , |z| ∈ [R, 2R] verwenden wir den Mittelwertsatz sowie die Lipschitz-Stetigkeit
von χ und schätzen die Differenz durch MR−1 ab, wobei M = ‖∇χ‖∞.

Für die Regionen, in welcher der Abstand |y − z| ≥ ||y| − |z|| ≥ R ist, verwenden wir die
exponentielle Asymptotik K2(|y− z|) ≤ Ae−|y−z||y− z|−1/2. In den Regionen, in welchen der
Abstand |y − z| Null werden kann (beispielsweise, wenn R ≤ |z| ≤ 2R und 2R ≤ |y| ≤ 3R
sind), verwenden wir stattdessen K2(|y − z|) ≤ A|y − z|−2. Für Region I verwenden wir
beispielsweise die exponentielle Asymptotik, wohingegen, wenn wir in Region II die Fälle
2R ≤ |y| ≤ 3R und |y| ≥ 3R unterscheiden, wir in ersterem die r−2-Asymptotik von K2(r)
verwenden. Wir definieren

I = m2

∫
R3

K2(m |y − z|)
|y − z|

|χR(y)− χR(z)| dz . (A.3)
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I: |z| ≤ R, |y| ≥ 2R.

I ≤ Am3/2

∫
|y|≥2R

e−m|y−z|

|y − z|3/2
= Am3/2

∫ ∞
2R

dr r2

∫ 1

−1
du

exp

(
−m

√
r2 + |z|2 − 2r |z|u

)
(r2 + |z|2 − 2r |z|u)3/4

= Am3/2 |z|−1
∫ ∞

2R
dr r

∫ (r+|z|)2

(r−|z|)2
du

e−m
√
u

u3/4

≤ Am3/2 |z|−1
∫ ∞

2R
dr r

[
(r + |z|)2 − (r − |z|)2

]
· e−m(r−|z|)

(r − |z|)3/2

= Am3/2

∫ ∞
2R−|z|

dr
[
r2 + |z|2 + 2r |z|

] e−mr

r3/2

≤ Am3/2

(∫ ∞
0

r1/2e−mr dr +R2

∫ ∞
R

r−3/2e−mr dr

)
≤ A1 +A2R

1/2m1/2e−mR

(A.4)

Sobald wir die Integration über z ausführen, werden wir sehen, dass der zweite Term für
m→ 0 verschwindet.

II: R ≤ |z| ≤ 2R, |y| ≥ 2R. Wir unterscheiden zwei Fälle.

1. 2R ≤ |y| ≤ 3R.

I ≤ A
∫

2R≤y≤3R

dy |y − z|−3 = A

∫ 3R

2R
dr r2

∫ 1

−1
du (r2 + |z|2 − 2r |z|u)−3/2

= A |z|−1
∫ 3R

2R
dr r

(
1

r − |z|
− 1

r + |z|

)
= A log

(
1 +

5R2

4R2 − |z|2

)
≤ A

(
1− log

(
2− |z|

R

))
(A.5a)

2. |y| ≥ 3R. Man erhält wie in Region I

I ≤ A1 +A2R
1/2m1/2e−m(3R−|z|) ≤ A1 +A2R

1/2m1/2e−mR , (A.5b)

sprich einen konstanten Term sowie einen Term, der für m→ 0 verschwindenden wird.

III: |z| ≤ R, R ≤ |y| ≤ 2R.

I ≤ Am2−2

∫ 2R

R
dr r2

∫ 1

−1
du (r2 + |z|2 − 2r |z|u)−3/2 = A

∫ 2R

R
dr

r2

r |z|

(
1

r − |z|
− 1

r + |z|

)
= A

∫ 2R

R
dr

r

r2 − |z|2
≤ A

(
1− log

(
1− |z|

R

))
(A.6)

IV: R ≤ |z| ≤ 2R, R ≤ |y| ≤ 2R. Um diese Fehler kümmern wir uns, wenn wir zur
z-Integration kommen.
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V: R ≤ |z| ≤ 2R, |y| ≤ R.

I ≤ A
∫
|y|≤R

dy |y − z|−3 = A

∫ R

0
dr r2

∫ 1

−1
du (r2 + |z|2 − 2r |z|u)−3/2

= A

∫ R

0
dr

r

|z|

(
1

|z| − r
− 1

|z|+ r

)
= A |z|−1

∫ R

0
dr

r2

|z|2 − r2
≤ A

(
1− log

(
|z|
R
− 1

))
(A.7)

VI: |z| ≥ 2R, |y| ≤ R. Diese Region wird ähnlich wie I behandelt.

I ≤ Am
3
2 e−m|z|

∫
|y|≤R

em|y|

|y − z|
3
2

dy = Am3/2e−m|z|
∫ R

0
dr r2emr

∫ 1

−1
du (r2 + |z|2 − 2r|z|u)−

3
4

= Am3/2e−m|z||z|−1

∫ R

0
dr remr

(√
|z|+ r −

√
|z| − r

)
≤ A

e−m|z|
(
−2 + emR(2− 2mR+m2R2)

)
m3/2|z|3/2

(A.8)

Hierbei haben wir
√
|z|+ r −

√
|z| − r ≤ Ar|z|−1/2 abgeschätzt. Für m→ 0 verhält sich die

rechte Seite wie R3m3/2|z|−3/2.

VII: |z| ≥ 2R, R ≤ |y| ≤ 2R. Wir unterscheiden wieder zwei Fälle.

1. 2R ≤ |z| ≤ 3R.

I ≤ A
∫

R≤|y|≤2R

dy

|y − z|3
= A

∫ 2R

R
dr r2

∫ 1

−1
du (r2 + |z|2 − 2r |z|u)−3/2

= A

∫ 2R

R
dr

r

|z|

(
1

|z| − r
− 1

|z|+ r

)
= A |z|−1

∫ 2R

R
dr

r2

|z|2 − r2

≤ A
(
− R
|z|

+ log

(
1− 2R|z|

(2R− |z|)(R+ |z|)

))
≤ A

(
1− log

(
|z|
2R
− 1

))
(A.9a)
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2. |z| ≥ 3R. Wir gehen analog wie in Region I vor.

I ≤ Am
3
2

∫
R≤|y|≤2R

dy
e−m|y−z|

|y − z|
3
2

= Am
3
2

∫ 2R

R
dr r2

∫ 1

−1
du

exp
(
−m

√
r2 + |z|2 − 2r|z|u

)
(r2 + |z|2 − 2r|z|u)

3
4

= Am3/2 |z|−1
∫ 2R

R
dr r

∫ (|z|+r)2

(|z|−r)2
du

e−m
√
u

u3/4

≤ Am3/2 |z|−1
∫ 2R

R
dr r

[
(|z|+ r)2 − (|z| − r)2

] e−m(|z|−r)

(|z| − r)3/2

= Am3/2

∫ 2R−|z|

R−|z|
(r + |z|)2 emr

(−r)3/2
dr = Am3/2

∫ |z|−R
|z|−2R

dr (|z| − r)2 e−mr

r3/2
dr

≤ Am2

∫ m(|z|−R)

m(|z|−2R)

[
r1/2m−2 +

|z|2

r3/2

]
e−r dr

≤
∫ ∞

0
dr r1/2e−r +

m2|z|2

m3/2(|z| − 2R)3/2

∫ ∞
0

dr e−r ≤ A1 +A2m
1/2|z|1/2

(A.9b)

A.1.2 Das z-Integral

Als Nächstes integrieren wir die Ergebnisse der y-Integration noch über z mit V (z) = |z|−1.
Ähnlich wie eben untersuchen wir die verschiedenen Regionen separat.

I: |x| ≥ R, |z| ≤ R, |y| ≥ 2R. Es verbleibt

[A1 +A2R
1/2m1/2e−mR]m2

∫
dz V (z)

K2(m |x− z|)
|x− z|

|χR(x)− χR(z)| (A.10)

abzuschätzen.

1. R ≤ |x| ≤ 2R.

[A1 +A2R
1/2m1/2e−mR]−1L(x) ≤ A

∫ R

0
dr r

∫ 1

−1

du

(r2 + |x|2 − 2r |x|u)3/2

= A |x|−1
∫ R

0
dr

(
1

|x| − r
− 1

|x|+ r

)
= A |x|−1

∫ R

0
dr

r

|x|2 − r2

= AR−1 R

|x|

∫ R/|x|

0
dr

r

1− r2
= −AR−1 R

|x|
log

(
1− R2

|x|2

)
≡ R−1F (|x|/R)

(A.11a)

Für |x| ↘ R verhält sich F (|x|/R) wie log(2|x|/R− 2), hat also nur eine logarithmische
Divergenz, ist aber sonst stetig. Daher kann F (|x|/R) in die Daubechies-Ungleichung
eingesetzt werden.
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2. |x| ≥ 2R.

[A1 +A2R
1
2m

1
2 e−mR]−1L(x) ≤ Am

3
2

∫ R

0
dr r

∫ 1

−1
du

exp
(
−m

√
r2 + |x|2 − 2r|x|u

)
(r2 + |x|2 − 2r|x|u)

3
4

≤ Am3/2|x|−1

∫ R

0
dr
[√
|x|+ r −

√
|x| − r

]
e−m(|x|−r) ≤ Am

3
2

|x|
3
2

∫ R

0
dr re−m(|x|−r)

= A
m

3
2

|x|
3
2

·
e−m|x|

[
1 + emR(mR− 1)

]
m1/2

(A.11b)

In führender Ordnung verhält sich dieser Fehler wie m2, verschwindet also im Grenz-
wert m → 0. Man sieht, dass der A2R

1/2m1/2e−mR-Term für m → 0 somit nicht zum
Lokalisierungsfehler beiträgt. Andererseits verschwindet der Fehler für festes m > 0
exponentiell schnell, wenn R→∞.

II.(i): R ≤ |z| ≤ 2R, 2R ≤ |y| ≤ 3R.

1. |x| ≤ R.

L(x) ≤ A
∫

R≤|z|≤2R

dz |z|−1 |x− z|−3

(
1− log

(
2− |z|

R

))

= A

∫ 2R

R
dr r

(
1− log

(
2− r

R

))∫ 1

−1

du

(r2 + |x|2 − 2r|x|u)3/2

= A|x|−1

∫ 2R

R
dr

(
1

r − |x|
− 1

r + |x|

)(
1− log

(
2− r

R

))
= AR−1 R

|x|

[
log

(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

+

(
Li2

(
1

2− |x|/R

)
− Li2

(
1

2 + |x|/R

))]
≡ R−1F (|x|/R) ,

(A.12a)

wobei Li2 den Dilogarithmus

Li2(x) = −
∫ x

0

log(1− t)
t

dt

bezeichnet [137, Formel 27.7.1]. Wir zeigen am Beispiel des Summanden (r−|x|)−1 log(2−
r/R) wie dieser zu Stande kommt. Den anderen Summanden erhält man analog. Durch
Skalieren r 7→ Rr ist ersichtlich, dass es genügt, R = 1 zu betrachten. Mit der Definition
von Li2(x) sowie w := 2− |x| ∈ [1, 2], (w − 1)/w ∈ [0, 1/2] und 1− (w − 1)/w = 1/w ∈
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[1/2, 1] erhält man

−
∫ 2

1

log(2− r)
r − |x|

dr = −
∫ w

w−1

log(w − r)
r

dr = −
∫ 1

(w−1)/w

log(w(1− r))
r

dr

= log(w) · log

(
w − 1

w

)
+ Li2(1)− Li2

(
w − 1

w

)
= log(w) · log

(
w − 1

w

)
+ Li2(1)

−
(

Li2(1)− log

(
w − 1

w

)
· log

(
1

w

)
− Li2(1/w)

)
= Li2(1/w) = Li2(1/(2− |x|)) ,

wobei wir Eulers Reflexionsformel (beziehungsweise die Abel-Identität [1])

Li2(z) + Li2(1− z) = Li2(1)− log(z) log(1− z)

für z ∈ [1/2, 1] mit z = (w − 1)/w in der vorletzten Gleichheit verwendet haben.

Der erste Summand in der vorletzten Gleichheit von (A.12a) verhält sich bei |x| = R
wie log(2R/(3(R − |x|))), divergiert also logarithmisch und ist sonst stetig. Der zweite
Summand ist hingegen eine beschränkte Funktion, die bei |x| = R maximal wird und
dort den Wert (π2−6Li2(1/3))/6 ≈ 1, 28 annimmt. Insbesondere verhält sich die rechte
Seite wie R−1 für |x| ↘ 0.

2. R ≤ |x| ≤ 2R. Mit dem Mittelwertsatz erhält man

L(x) ≤ AR−1

∫
R≤|z|≤2R

dz |z|−1|x− z|−2

(
1− log

(
2− |z|

R

))

= AR−1

∫ 2R

R
dr r

(
1− log

(
2− r

R

))∫ 1

−1

du

r2 + |x|2 − 2r|x|u

= AR−1|x|−1

∫ 2R

R
dr log

(
(r + |x|)2

(r − |x|)2

)(
1− log

(
2− r

R

))
≤ AR−1

∫ 2R/|x|

R/|x|
dr log

(
(r + 1)2

(r − 1)2

)(
1− log

(
2− r|x|

R

))
≤ AR−1 .

(A.12b)

Tatsächlich kann der erste Summand der rechten Seite wieder explizit berechnet werden
und ist gerade

AR−1

[
R

|x|

(
2 log

(
4R

2R− |x|
− 1

)
+ log

(
1− 2R

R+ |x|

))
+ log

(
4R2 − |x|2

|x|2 −R2

)]
.

Der Ausdruck in eckigen Klammern ist bei |x| ≈ 1, 6R maximal und durch ca. 2, 8
beschränkt. Dies kann auch direkt gesehen werden, da log((r+1)2(r−1)−2) integrierbar
ist und daher das Integral eine auf [1, 2] beschränkte, stetige Funktion von |x|/R ergibt.
Analog verhält es sich mit dem zweiten Summanden, da auch das Produkt mit log(2−
r|x|/R) für jedes |x| ∈ [R, 2R] integrierbar ist.
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3. 2R ≤ |x| ≤ 3R.

L(x) ≤ A
∫

R≤|z|≤2R

dz |z|−1 |x− z|−3

(
1− log

(
2− |z|

R

))

= A

∫ 2R

R
dr r

∫ 1

−1

(
1− log

(
2− r

R

)) du

(r2 + |x|2 − 2r |x|u)3/2

= A|x|−1

∫ 2R

R
dr

(
1

|x| − r
− 1

r + |x|

)(
1− log

(
2− r

R

))
= A|x|−1

∫ 2R

R
dr

r

|x|2 − r2

(
1− log

(
2− r

R

))
= AR−1 R

|x|

[(
log(|x| −R)− log(2R− |x|) + log

(
(2R− |x|)(R+ |x|)
(2R+ |x|)(R− |x|)

))
−
(

Li2

(
1

2− |x|/R

)
+ Li2

(
1

2 + |x|/R

))]
≡ R−1F (|x|/R)

(A.12c)

Hierbei hat F (|x|/R) eine logarithmische Singularität bei |x| = 2R und ist ansonsten
stetig. Nach Wood [182, Formel (11.3)] verhält sich Li2(1/(2−|x|/R)) (beziehungsweise
Li2(1/(2− |x|/R)) + Li2(1/(2 + |x|/R))) dort wie log2(|x|/R− 2).

4. |x| ≥ 3R.

L(x) ≤ Am3/2

∫
R≤|z|≤2R

dz |z|−1 |x− z|−3/2 e−m|x−z|
(

1− log

(
2− |z|

R

))

≤ Am−1/2R−3/2e−m|x|
∫ 2mR

mR
dr rer

(
1− log

(
2− r

mR

))
≤ A

[
m−1/2R−3/2e−m|x|

(
1− e2mR + 2mRe2mR

)
+m3/2R1/2e2mRe−m|x|

]
(A.12d)

Hierbei haben wir

−m−1/2R−3/2e−m|x|
∫ 2mR

mR
dr rer log

(
2− r

mR

)
≤ −2m1/2R−1/2e2mRe−m|x|

∫ 2mR

mR
dr log

(
2− r

mR

)
= 2m3/2R1/2e2mRe−m|x|

abgeschätzt. Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwin-
det er für festes m > 0 exponentiell schnell, wenn R→∞ (da |x| ≥ 3R).

Der Punkt dieser Rechnungen ist, dass die rechte Seite höchstens quadratische logarith-
mische Singularitäten bei |x| = R und |x| = 2R haben kann (welche immer noch integrierbar
sind, selbst wenn sie zu höheren Potenzen genommen werden), da zusätzliche Faktoren wie
log(2− r/R) integrierbar sind. Wir werden daher von nun an ähnliche Rechnungen (die noch
in den Regionen III, V und VII vorkommen) nicht mehr explizit ausführen, sondern nur auf
die logarithmischen Singularitäten in |x| hinweisen.
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II.(ii): R ≤ |z| ≤ 2R, |y| ≥ 3R. Es verbleibt

[A1 +A2R
1/2m1/2e−mR]m2

∫
R≤|z|≤2R

dz V (z)
K2(m |x− z|)
|x− z|

|χR(x)− χR(z)| (A.13)

abzuschätzen.

1. |x| ≤ R.

[A1 +A2R
1/2m1/2e−mR]−1L(x) ≤ A

∫
R≤|z|≤2R

dz

|z| |x− z|3

= A

∫ 2R

R
dr r

∫ 1

−1

du

(r2 + |x|2 − 2r |x|u)3/2
= A |x|−1

∫ 2R

R
dr

(
1

r − |x|
− 1

r + |x|

)
= A

∫ 2R

R

dr

r2 − |x|2
= AR−1 R

|x|
log

(
(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

)
≡ R−1F (|x|/R) ,

(A.14a)

wobei sich F (|x|/R) bei |x| = R wie log(2R/(3(R−|x|))) verhält, also logarithmisch di-
vergiert und sonst stetig ist. Insbesondere ist die rechte Seite (modulo einer Konstanten)
durch R−1 beschränkt, wenn |x| ↘ 0.

2. R ≤ |x| ≤ 2R.

[A1 +A2R
1/2m1/2e−mR]−1L(x) ≤ AR−1

∫
R≤|z|≤2R

dz

|z| |x− z|2

= AR−1

∫ 2R

R
dr r

∫ 1

−1

du

r2 + |x|2 − 2r |x|u
= AR−1 |x|−1

∫ 2R

R
dr log

(
(|x|+ r)2

(|x| − r)2

)
≤ AR−1

∫ 2R/|x|

R/|x|
dr log

(
(r + 1)2

(r − 1)2

)
≤ AR−1

(A.14b)

3. 2R ≤ |x| ≤ 3R.

[A1 +A2R
1/2m1/2e−mR]−1L(x) ≤ A

∫
R≤|z|≤2R

dz

|z||x− z|3

≤ A
∫ 2R

R
dr r

∫ 1

−1
du (r2 + |x|2 − 2r |x|u)−3/2

= A |x|−1
∫ 2R

R
dr

(
1

r − |x|
− 1

r + |x|

)
= A

∫ 2R

R

dr

(|x|2 − r2)

= AR−1 R

|x|
log

(
1− 2R|x|

(2R− |x|)(R+ |x|)

)
≡ R−1F (|x|/R) ,

(A.14c)

wobei sich F (|x|/R) bei |x| = 2R wie log(4/(3(|x| − 2R))) verhält, also logarithmisch
divergiert und ansonsten stetig ist.
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4. |x| ≥ 3R.

[A1 +A2R
1/2m1/2e−mR]−1L(x) ≤ Am3/2

∫
R≤|z|≤2R

dz |z|−1|x− z|−3/2e−m|x−z|

≤ Am3/2R−3/2e−m|x|
∫

R≤|z|≤2R

dz |z|−1em|z| ≤ Am1/2R−1/2
(
e2mR − emR

)
e−m|x|

(A.14d)

Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwindet er für festes
m > 0 exponentiell schnell, wenn R→∞.

III: |z| ≤ R, R ≤ |y| ≤ 2R. Wir müssen nur noch

m2

∫
|z|≤R

dz V (z)
K2(m |x− z|)
|x− z|

(
1− log

(
1− |z|

R

))
(A.15)

betrachten.

1. R ≤ |x| ≤ 2R.

L(x) ≤ A
∫
|z|≤R

dz |z|−1|x− z|−3

(
1− log

(
1− |z|

R

))

= A

∫ R

0
dr r

(
1− log

(
1− r

R

))∫ 1

−1
du (r2 + |x|2 − 2r|x|u)−3/2

= A|x|−1

∫ R

0
dr

(
1

|x| − r
− 1

|x|+ r

)(
1− log

(
1− r

R

))
= A|x|−1

∫ R

0
dr

r

|x|2 − r2

(
1− log

(
1− r

R

))
≡ R−1F (|x|/R) ,

(A.16a)

wobei F (|x|/R) eine logarithmische Singularität bei |x| = R hat und ansonsten stetig
ist.

2. |x| ≥ 2R.

L(x) ≤ Am3/2

∫
|z|≤R

e−m|x−z|

|z||x− z|3/2

(
1− log

(
1− |z|

R

))
dz

≤ Am−1/2R−3/2e−m|x|
∫ mR

0
dr rer

(
1− log

(
1− r

mR

))
≤ A

[
m−1/2R−3/2e−m|x|

(
1− emR +mRemR

)
+m3/2R1/2emRe−m|x|

]
(A.16b)

Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwindet er für festes
m > 0 exponentiell schnell, wenn R→∞.
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IV: R ≤ |z| ≤ 2R, R ≤ |y| ≤ 2R. In allen kommenden Integralen skalieren wir (y, z) 7→
R(y, z). Wir betrachten zunächst das Hilfsintegral (mit den reskalierten Gößen 1 ≤ |y| ≤ 2
und 1 ≤ |z| ≤ 2)∫

1≤|y|≤2

dy

|y − z|2
= A

∫ 2

1
dr r2

∫ 1

−1

du

r2 + |z|2 − 2r|z|u

= A |z|−1
∫ 2

1
dr r

[
log((r + |z|)2)− log((r − |z|)2)

]
≤ A|z|−1,

(A.17)

wobei wir in der letzten Ungleichung die Tatsache verwendet haben, dass log((r−|z|)2) immer
noch integrierbar ist.

1. |x| ≤ R.

L(x) ≤ AR−1

∫
1≤|z|≤2

dz |z|−1
∣∣∣ x
R
− z
∣∣∣−3

∫
1≤|y|≤2

dy |y − z|−2

≤ AR−1

∫
1≤|z|≤2

dz |z|−2
∣∣∣ x
R
− z
∣∣∣−3

= AR−1

∫ 2

1
dr

1

r(|x| /R)

(
1

r − |x|R
− 1
|x|
R + r

)

= AR−1

∫ 2

1

dr

r(r2 − (|x| /R)2)
= AR−1 R

2

|x|2
log

(
4R2 − |x|2

4(R2 − |x|2)

)
≡ R−1F (|x|/R)

(A.18a)

Für |x| → 0 ist F (|x|/R) ≤ 3/8 und für |x| → R verhält sich F (|x|/R) wie log(3R/8((R−
|x|))), hat also eine logarithmische Divergenz.

2. R ≤ |x| ≤ 2R. Wir verwenden zwei mal den Mittelwertsatz sowie zweimal (A.17) und
erhalten

L(x) ≤ AR6−3−4

∫
1≤|z|≤2

dz |z|−1
∣∣∣ x
R
− z
∣∣∣−2

∫
1≤|y|≤2

dy |y − z|−2

≤ AR−1

∫
1≤|z|≤2

dz
∣∣∣ x
R
− z
∣∣∣−2
≤ AR−1 · R

|x|
≤ AR−1 .

(A.18b)

3. 2R ≤ |x| ≤ 3R. Mit dem Hilfsintegral (A.17) ist

L(x) ≤ AR−1

∫
1≤|z|≤2

dz |z|−1
∣∣∣ x
R
− z
∣∣∣−3

∫
1≤|y|≤2

dy |y − z|−2

≤ AR−1

∫
1≤|z|≤2

dz |z|−2
∣∣∣ x
R
− z
∣∣∣−3

= AR−1

∫ 2

1
dr

1

r(|x|/R)

(
1

|x|
R − r

− 1
|x|
R + r

)

= AR−1 R

|x|

∫ 2

1

dr
|x|2
R2 − r2

= AR−1 R
2

|x|2
log

(
1 +

2R|x|
(|x| − 2R)(R+ |x|)

)
≡ R−1F (|x|/R) ,

(A.18c)
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wobei F (|x|/R) lediglich eine logarithmische Singularität bei |x| = 2R hat, sich dort
wie log(4R/(3(|x| − 2R))) verhält und ansonsten stetig ist.

4. |x| ≥ 3R.

L(x) ≤ Am3/2R6−3−2− 1
2

∫
1≤|z|≤2

dz |z|−1| x
R
− z|−

3
2 e−m|x−Rz|

∫
1≤|y|≤2

dy |y − z|−2

≤ Am3/2R1/2e−m|x|
∫

1≤|z|≤2

dz |z|−2emR|z| = Am1/2R1/2(e2mR − emR)e−m|x|

(A.18d)

Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwindet er für festes
m > 0 exponentiell schnell, wenn R→∞.

V: R ≤ |z| ≤ 2R, |y| ≤ R. Es verbleibt

m2

∫
R≤|z|≤2R

dz V (z)
K2(m |x− z|)
|x− z|

|χR(x)− χR(z)|
(

1− log

(
|z|
R
− 1

))
(A.19)

zu betrachten.

1. |x| ≤ R.

L(x) ≤ A
∫

R≤|z|≤2R

dz |z|−1|x− z|−3

(
1− log

(
|z|
R
− 1

))

≤ A
∫ 2R

R
dr r

(
1− log

( r
R
− 1
))∫ 1

−1
du (r2 + |x|2 − 2r |x|u)−3/2

= A |x|−1
∫ 2R

R
dr

(
1

r − |x|
− 1

r + |x|

)(
1− log

( r
R
− 1
))

= A

∫ 2R

R

dr

(r2 − |x|2)

(
1− log

( r
R
− 1
))
≡ R−1F (|x|/R) ,

(A.20a)

wobei F (|x|/R) bei |x| = R logarithmisch divergiert und ansonsten stetig ist. Insbeson-
dere verhält sich die rechte Seite wie R−1 für |x| ↘ 0.

2. R ≤ |x| ≤ 2R. Mit dem Mittelwertsatz erhält man

L(x) ≤ AR−1

∫
R≤|z|≤2R

dz |z|−1|x− z|−2

(
1− log

(
|z|
R
− 1

))

= AR−1

∫ 2R

R
dr r

(
1− log

( r
R
− 1
))∫ 1

−1
du (r2 + |x|2 − 2r |x|u)−1

= AR−1|x|−1

∫ 2R

R
dr log

(
(r + |x|)2

(r − |x|)2

)(
1− log

( r
R
− 1
))

= AR−1

∫ 2R/|x|

R/|x|
dr log

(
(r + 1)2

(r − 1)2

)(
1− log

(
r|x|
R
− 1

))
≤ AR−1 .

(A.20b)

Dieses Integral ist ähnlich zu dem in Region II.(i).(2).
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3. 2R ≤ |x| ≤ 3R. Analog zu (1) erhalten wir hier

L(x) ≤ A|x|−1

∫ 2R

R
dr

(
1

|x| − r
− 1

|x|+ r

)(
1− log

( r
R
− 1
))

= A|x|−1

∫ 2R

R
dr

r

|x|2 − r2

(
1− log

( r
R
− 1
))
≡ R−1F (|x|/R) ,

(A.20c)

wobei F (|x|/R) bei |x| = 2R eine logarithmische Singularität hat und ansonsten stetig
ist.

4. |x| ≥ 3R.

L(x) ≤ Am3/2R−3/2e−m|x|
∫

R≤|z|≤2R

dz |z|−1 em|z|
(

1− log

(
|z|
R
− 1

))

≤ A
[
m1/2R−1/2

(
e2mR − emR

)
e−m|x| +m3/2R1/2e2mRe−m|x|

] (A.20d)

Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwindet er für festes
m > 0 exponentiell schnell, wenn R→∞.

VI: |z| ≥ 2R, |y| ≤ R. Es verbleibt

m
1
2
[
−2 + emR(2− 2mR+m2R2)

] ∫
|z|≥2R

dz V (z)|z|−
3
2 e−m|z|

K2(m|x− z|)
|x− z|

|χR(x)− χR(z)|

≤ m
1
2R−

3
2
[
−2 + emR(2− 2mR+m2R2)

]∫
|z|≥2R

dz V (z)e−m|z|
K2(m|x− z|)
|x− z|

|χR(x)− χR(z)|

(A.21)

zu betrachten.

1. |x| ≤ R.

L(x) ≤ AR−
3
2
[
−2 + emR(2− 2mR+m2R2)

] ∫
|z|≥2R

dz |z|−1|x− z|−
3
2 e−m|z|e−m|x−z|

≤ AR−3
[
−2 + emR(2− 2mR+m2R2)

]
em|x|

∫
|z|≥2R

dz |z|−1e−2m|z|

= AR−3m−2(1 + 4mR)
[
−2 + emR(2− 2mR+m2R2)

]
e−4mRem|x|

(A.22a)
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2. R ≤ |x| ≤ 2R und 2R ≤ |z| ≤ 3R.[
−2 + emR(2− 2mR+m2R2)

]−1
L(x)

≤ Am−3/2R−3/2

∫
2R≤|z|≤3R

dz |z|−1|x− z|−3e−m|z|

= Am−3/2R−3/2

∫ 3R

2R
dr re−mr

∫ 1

−1
du (r2 + |x|2 − 2r|x|u)−3/2

= Am−3/2R−3/2|x|−1

∫ 3R

2R
dr

(
1

r − |x|
− 1

r + |x|

)
e−mr

≤ Am−3/2R−3/2e−2mR

∫ 3R

2R

dr

(r2 − |x|2)

= Am−3/2R−3/2e−2mR ·R−1 R

|x|
log

(
1 +

2R|x|
(2R− |x|)(3R+ |x|)

)
= Am−3/2R−3/2e−2mR ·R−1F (|x|/R) ,

(A.22b)

wobei F (|x|/R) bei |x| = 2R lediglich eine logarithmische Singularität hat, sich dort
wie log(4R/(10R− 5|x|)) verhält und ansonsten stetig ist.

3. R ≤ |x| ≤ 2R und |z| ≥ 3R.

L(x) ≤ AR−3/2
[
−2 + emR(2− 2mR+m2R2)

] ∫
|z|≥3R

dz |z|−1|x− z|−3/2e−m|z|e−m|x−z|

≤ AR−3
[
−2 + emR(2− 2mR+m2R2)

]
em|x|

∫
|z|≥3R

dz |z|−1e−2m|z|

= Am−2R−3
[
−2 + emR(2− 2mR+m2R2)

]
e−6mR(1 + 6mR)em|x|

(A.22c)

Die Fehler in dieser Region verschwinden im Grenzwert m → 0. Andererseits verschwinden
sie für festes m > 0 exponentiell schnell, wenn R→∞.

VII.(i): 2R ≤ |z| ≤ 3R, R ≤ |y| ≤ 2R.

1. |x| ≤ R.

L(x) ≤ Am3/2

∫
2R≤|z|≤3R

dz
e−m|x−z|

|z||x− z|3/2

(
1− log

(
|z|
2R
− 1

))

≤ Am3/2R−3/2em|x|
∫ 3R

2R
dr re−mr

(
1− log

( r

2R
− 1
))

≤ A
(
m1/2R−1/2 +m3/2R1/2

)
em(|x|−2R)

(A.23a)

Dieser Fehler verschwindet im Grenzwert m→ 0. Andererseits verschwindet er für festes
m > 0 exponentiell schnell, wenn R→∞.
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2. R ≤ |x| ≤ 2R.

L(x) ≤ A
∫

2R≤|z|≤3R

dz |z|−1|x− z|−3

(
1− log

(
|z|
2R
− 1

))

= A

∫ 3R

2R
dr r

(
1− log

( r

2R
− 1
))∫ 1

−1

du

(r2 + |x|2 − 2r |x|u)3/2

= A |x|−1
∫ 3R

2R
dr

(
1

r − |x|
− 1

r + |x|

)(
1− log

( r

2R
− 1
))

= A

∫ 3R

2R

dr

r2 − |x|2
(

1− log
( r

2R
− 1
))
≡ R−1F (|x|/R) ,

(A.23b)

wobei F (|x|/R) bei |x| = 2R eine logarithmische Singularität hat und ansonsten stetig
ist.

VII.(ii): |x| ≤ 2R, |z| ≥ 3R, R ≤ |y| ≤ 2R.

L(x) ≤ Am3/2

∫
|z|≥3R

dz
e−m|x−z|

|z| |x− z|3/2
(1 +

√
m|z|)

= Am3/2

∫ ∞
3R

dr r(1 +
√
mr)

∫ 1

−1
du

exp

(
−m

√
r2 + |x|2 − 2r |x|u

)
(r2 + |x|2 − 2r |x|u)3/4

= Am3/2 |x|−1
∫ ∞

3R
dr (1 +

√
mr)

∫ (r+|x|)2

(r−|x|)2
du

e−m
√
u

u3/4

≤ Am3/2

∫ ∞
3R

dr r
e−m(r−|x|)

(r − |x|)3/2
(1 +

√
mr)

= Am2

∫ ∞
m(3R−|x|)

dr (rm−1 + |x|)(1 +
√
r +m|x|) e−r

r3/2

≤ Am
∫ ∞
mR

dr r−1/2(1 +
√
r)e−r ≤ Am

(
1 + (mR)−1/2

)
e−mR

(A.24)

Diese Region gibt also keinen Beitrag für m → 0. Andererseits verschwindet der Fehler für
fixes m > 0 exponentiell schnell, wenn R→∞.

Für m→ 0, das heißt im masselosen Fall, erhält man somit von den Regionen I, II.(i)/d),
II.(ii) III/b), IV/d), V/d), VI, VII.(i)/a) und VII.(ii) keinen Beitrag zum Lokalisierungsfehler.
Der Beitrag setzt sich folglich nur noch aus der Summe der restlichen Terme zusammen und
ist von der Form

R−1F (|x|/R)θ(3− |x|/R) , (A.25)

wobei F (|x|/R) lediglich logarithmische Divergenzen bei |x| = R und |x| = 2R hat. Diese
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sind von der Form[
− log

(
1− |x|

R

)
− log2

(
1− |x|

R

)]
θ(R− |x|)

+

[
− log

(
1− R

|x|

)
− log2

(
1− R

|x|

)
− log

(
2− |x|

R

)
− log2

(
2− |x|

R

)]
θ(2R− |x|)θ(|x| −R)

+

[
− log

(
|x|
R
− 2

)
− log2

(
|x|
R
− 2

)]
θ(3R− |x|)θ(|x| − 2R) .

(A.26)

Die Terme stammen von folgenden Integralen:

• Der erste Summand kam von II.(i).(1), II.(ii).(1), IV.(1) und V.(1),

• der zweite Summand von V.(1),

• der dritte Summand von I.(1) und III.(1),

• der vierte Summand von III.(1),

• der fünfte Summand von VI.(2), VII.(i).(2)

• der sechste Summand von VII.(i).(2),

• der siebte Summand von II.(ii).(3), II.(i).(3), IV.(3), V.(3) und

• der achte Summand von II.(ii).(3) und V.(3).

Andererseits erhält man für festes m > 0 folgende
”
neue“ Fehler im massiven Fall für das

Lokalisierungspotential von [hm, χR]|x|−1[χR, hm] beziehungsweise [Φ1, χR]|x|−1[χR,Φ1].

I: |z| ≤ R, |y| ≥ 2R, |x| ≥ R.[
1 +Am1/2R1/2e−mR

]
·
[
R−1 · R

|x|
log

(
|x|2

|x|2 −R2

)
θ(2R− |x|)θ(|x| −R)

+A
m

|x|3/2
· e−m|x|(1 + emR(mR− 1))θ(|x| − 2R)

] (A.27)

II.(i): 2R ≤ |y| ≤ 3R, R ≤ |z| ≤ 2R.[
m−1/2R−3/2e−m|x|(1− e2mR + 2mRe2mR) +m3/2R1/2e2mRe−m|x|

]
θ(|x| − 3R) (A.28)

II.(ii): |y| ≥ 3R, R ≤ |z| ≤ 2R.[
1 +Am1/2R1/2e−mR

]
·
[
R−1 R

|x|
log

(
(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

)
θ(R− |x|)

+R−1θ(2R− |x|)θ(|x| −R)

+R−1 R

|x|
log

(
(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

)
θ(3R− |x|)θ(|x| − 2R)

+m1/2R−1/2(e2mR − emR)e−m|x|θ(|x| − 3R)
]

(A.29)
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III: R ≤ |y| ≤ 2R, |z| ≤ R.

[
m−1/2R−3/2e−m|x|(1− emR +mRemR) +m3/2R1/2em(R−|x|)

]
θ(|x| − 2R) (A.30)

IV: R ≤ |y| ≤ 2R ,R ≤ |z| ≤ 2R.

m1/2R1/2(e2mR − emR)e−m|x|θ(|x| − 3R) (A.31)

V: |y| ≤ R, R ≤ |z| ≤ 2R.

[
m1/2R−1/2(e2mR − emR)e−m|x| +m3/2R1/2e2mRe−m|x|

]
θ(|x| − 3R) (A.32)

VI: |y| ≤ R, |z| ≥ 2R.

m−2R−3(1 +mR)
[
−2 + emR(2− 2mR+m2R2)

]
e−4mRem|x|θ(R− |x|)

+

[
m−

3
2R−

3
2
[
−2 + emR(2− 2mR+m2R2)

]
e−2mRR−1 R

|x|
log

(
1 +

2R|x|
(2R− |x|)(3R+ |x|)

)
+m−2R−3(1 + 6mR)

[
−2 + emR(2− 2mR+m2R2)

]
e−6mRem|x|

]
θ(2R− |x|)θ(|x| −R)

(A.33)

VII.(i): R ≤ |y| ≤ 2R, 2R ≤ |z| ≤ 3R.

(m1/2R−1/2 +m3/2R1/2)em(|x|−2R)θ(R− |x|) (A.34)

VII.(ii): R ≤ |y| ≤ 2R, |z| ≥ 3R.

m(1 + (mR)−1/2)e−mRθ(2R− |x|) (A.35)
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Insgesamt ist der neue Fehler die Summe folgender Terme:

θ(R− |x|)
{
R−1/2e−mR · R

|x|
log

(
(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

)
+m−2R−3(1 +mR)[−2 + emR(2− 2mR+m2R2)]e−4mRem|x|

+(m1/2R−1/2 +m3/2R1/2)em(|x|−2R)
} (A.36a)

θ(2R− |x|)m(1 + (mR)−1/2)e−m(3R−|x|) (A.36b)

θ(2R− |x|)θ(|x| −R)

{
2m1/2R1/2e−mR ·R−1 ·

[
R

|x|
log

(
|x|2

|x|2 −R2

)
+ 1

]
+m−3/2R−3/2[−2 + emR(2− 2mR+m2R2)]e−2mRR−1 R

|x|
log

(
1 +

2R|x|
(2R− |x|)(3R+ |x|)

)
+m−2R−3(1 + 6mR)[−2 + emR(2− 2mR+m2R2)]e−6mRem|x|

}
(A.36c)

θ(3R− |x|)θ(|x| − 2R)

{
(1 +m1/2R1/2e−mR) ·R−1 R

|x|
log

(
(2R− |x|)(R+ |x|)
(R− |x|)(2R+ |x|)

)}
(A.36d)

θ(|x| − 2R)

{[
1 +Am1/2R1/2e−mR

]
· m

|x|3/2
· e−

m
2
|x|(1 + emR(mR− 1))

+R−3/2e−
m
2
|x|(1− emR +mRemR +m2R2emR)

}
e−

m
2
|x|

≤ θ(|x| − 2R)

{[
1 +Am1/2R1/2e−mR

]
· m

(2R)3/2
· (e−mR + (mR− 1))

+R−3/2(e−mR − 1 +mR+m2R2)
}

e−
m
2
|x|

(A.36e)

θ(|x| − 3R)
{[

1 +Am1/2R1/2e−mR
]

e−
2m
3
|x|(e2mR − emR)m1/2R−1/2

+m−1/2R−3/2(1− e2mR + 2mRe2mR)e−
2m
3
|x| +m3/2R1/2e2mRe−

2m
3
|x|
}

e−
m
3
|x|

≤ θ(|x| − 3R)
{[

1 +Am1/2R1/2e−mR
]

(1− e−mR)m1/2R−1/2

+m−1/2R−3/2(1− e2mR + 2mRe2mR)e−2R +m3/2R1/2)
}

e−
m
3
|x|

(A.36f)

Bei den beiden letzten Fehlern haben wir alle negativen Potenzen von |x| durch die untere
Grenze (also entweder 2R oder 3R) abgeschätzt. Die letzte verbleibende x-Abhängigkeit steckt
somit in e−m|x|/2 für |x| ≥ 2R, beziehungsweise e−m|x|/3 für |x| ≥ 3R. Alles in allem kann der
Lokalisierungsfehler für festes m > 0 und nichtnegative Potentiale, die durch |x|−1 beschränkt
sind, durch eine m-abhängige Konstante mal

L
(1)
R (x) ≤ A1R

−1F

(
|x|
R

)
θ(3R− |x|)

+A2(R−2 +R−1 +R−1/2 + 1 +R1/2)e−mRθ(3R− |x|)
+A3(R−3/2 +R−1/2 +R1/2)e−m|x|/2θ(|x| −R)

(A.37)

abgeschätzt werden. Hierbei hat F (|x|/R) logarithmische Singularitäten bei |x| = R und
|x| = 2R und ist sonst stetig und beschränkt. Die Singularitäten sind von der Form (A.26).
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A.1.3 Lokalisierungspotential der ersten Komponente der T -Transforma-
tion

Schließlich bestimmen wir noch das Lokalisierungspotential für die erste Komponente der T -
Transformation mit V (z) = |z|−1. Mit den punktweisen Schranken aus Lemma 4.4.2 für den
Integralkern von φ0 − 1, können wir das Lokalisierungspotential (4.15), sprich

L
(0)
R (x) =

∫
R3

dy

∫
R3

dz
e−m|x−z|e−m|y−z|

|x− z|2|z||y − z|2
∣∣∣χ( x

R

)
− χ

( z
R

)∣∣∣ ∣∣∣χ( y
R

)
− χ

( z
R

)∣∣∣
für festes m > 0 abschätzen. Wir unterscheiden dieses mal nur zwei Fälle, |x| ≤ 3R und
|x| ≥ 3R. In beiden Fällen verwenden wir für die Differenz |χR(y) − χR(z)| die Lipschitz-
Stetigkeit von χ. Für die Differenz |χR(x)−χR(z)| verwenden wir die Lipschitz-Stetigkeit nur
für |x| ≤ 3R. Das Integral über y gibt wegen der Translationsinvarianz einfach eine Konstante,
das heißt wir müssen nur noch

L
(0)
R (x) ≤ AR−2

(∫
R3

dz
e−m|x−z|

|z||x− z|
θ(3R− |x|) +R

∫
R3

dz
e−m|x−z|

|z||x− z|2
θ(|x| − 3R)

)
(A.38)

behandeln.

Wir beginnen mit der inneren Region |x| ≤ 3R. Zunächst bestimmen wir hier das Integral
über den Winkel mit r = |z| zu∫ 1

−1
du

exp(−m
√
|x|2 + r2 − 2r|x|u)√

|x|2 + r2 − 2r|x|u
=

e−m||x|−r| − e−m(|x|+r)

mr|x|
.

Hierbei haben wir – in dieser Reihenfolge – die Substitutionen u 7→ u/(r|x|), u 7→ u+ (|x|2 +
r2)/2, u 7→ −u/2 und u 7→ u2 verwendet. Damit ist für |x| ≤ 3R

L
(0)
R (x) ≤ Am−1R−2|x|−1

∫ ∞
0

dr
[
e−m||x|−r| − e−m(|x|+r)

]
= Am−2R−2|x|−1

[
1− e−m|x|

]
.

Die |x|−1-Singularität wird dabei gerade vom letzten Faktor in eckigen Klammern neutrali-

siert, weshalb die Daubechies-Ungleichung verwendet werden kann. Insbesondere ist L
(0)
R (x) ≤

Am−1R−2 für |x| ≤ 3R.

Für |x| ≥ 3R erhalten wir nur einen Beitrag, wenn |z| ≤ 2R ist. Wir müssen daher nur
noch

AR−1

∫
|z|≤2R

dz
e−m|x−z|

|z||x− z|2
θ(|x| − 3R)

bestimmen. Mit denselben Substitutionen für das Winkelintegral wie eben erhält man mit
r = |z|

1

r|x|

∫ |x|+r
|x|−r

e−mu

u
du ≤ 1

r|x|

∫ ∞
|x|−r

e−mu

u
du ≤ 1

mr|x|
· e−m(|x|−r)

|x| − r
.
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Mit |x| − r ≥ R und den darauf folgenden Substitutionen r 7→ r + |x| und r 7→ −r erhalten
wir für |x| ≥ 3R

L
(0)
R (x) ≤ Am−1R−1|x|−1

∫ |x|
|x|−2R

dr
e−mr

r
≤ Am−1R−1|x|−1

∫ ∞
|x|−2R

e−mr

r
dr

≤ AR−1 e−m(|x|−2R)

m2|x|(|x| − 2R)
≤ Am−2R−3 R

|x|
e2mR−m|x| .

Der Lokalisierungsfehler für die erste Komponente des Spinors beläuft sich also auf eine Kon-
stante mal

L
(0)
R (x) ≤ Am−2R−2|x|−1(1− e−m|x|)θ(3R− |x|) +Am−2R−3 R

|x|
e2mR−m|x|θ(|x| − 3R)

≤ Am−1R−2θ(3R− |x|) +Am−2R−3e−m|x|/3θ(|x| − 3R).

(A.39)

A.2 Vergleich der verdrehten und unverdrehten Potentiale

Wir schätzen V − T1(V ) in der mittleren und der äußeren Region ab. Hierbei ist V ≥ 0
entweder das Coulomb-Potential, das mittlere Feld, oder das Test-Potential. Wir bemerken
zunächst die Gleichheit

T1(V )− V =
∑
j=0,1

(
ΦjV Φj − V 1/2Φ2

jV
1/2
)

=
∑
j=0,1

(
V 1/2Φj [V

1/2,Φj ] + [Φj , V
1/2]ΦjV

1/2 + [Φj , V
1/2][V 1/2,Φj ]

)
=
∑
j=0,1

[Φj , V ]Φj .

(A.40)

Des Weiteren erinnern wir an die punktweisen Schranken der Kerne von Φ0 − 1 und Φ1 aus
Lemma 4.4.2 und Lemma 4.4.3, nämlich

|(Φ0 − 1)(x)| ≤ Ae−a|x|

|x|2

und

|Φ1(x)| ≤ Ae−a|x|

|x|3

für gewisse A > 0 und 0 < a < 1.
Wir schätzen zunächst die Differenz des verdrehten und unverdrehten Coulomb-Potentials

ab und beginnen mit einer Abschätzung, die in der mittleren Region verwendet wird.

Lemma A.2.1. Seien 0 ≤ U ≤ |x|−1, χ̃2 wie in (4.7c) und f2 := χ̃2f für f ∈ L2(R3 : C2).
Dann ist

−(f2, T1(U)f2) ≥ −A(f2, |x|−1f2)
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Beweis. Wegen −(f2, T1(U)f2) ≥ −(f2, T1(|x|−1)f2) müssen wir nur noch zeigen, dass

|(f2, (|x|−1 − T1(|x|−1))f2)|

=
∣∣ ∑
j=0,1

(
f2,
(
|x|−

1
2 Φj [|x|−

1
2 ,Φj ] + [Φj , |x|−

1
2 ]Φj |x|−

1
2 + [Φj , |x|−

1
2 ][|x|−

1
2 ,Φj ]

)
f2

) ∣∣
durch eine Konstante mal (f2, |x|−1f2) abgeschätzt werden kann. Aus der Cauchy–Schwarz-
Ungleichung und der Tatsache, dass Φj ein durch Eins beschränkter Operator ist, sprich∣∣∣(f2, |x|−1/2Φj [|x|−1/2,Φj ]f2

)∣∣∣ ≤ ‖|x|−1/2f2‖ · ‖Φj [|x|−1/2,Φj ]f2‖

≤ (f2, |x|−1f2) + (f2, [Φj , |x|−1/2][|x|−1/2,Φj ]f2) ,

folgt, dass man nur noch

|(f2, [Φj , |x|−1/2][|x|−1/2,Φj ]f2)| ≤ A(f2, |x|−1f2) , j ∈ {0, 1}

zeigen muss. Mit [Φ0, V ] = [Φ0− 1, V ], der Cauchy–Schwarz-Ungleichung (wie im Beweis von
Lemma 4.4.1) und den punktweisen Schranken der Lemmata 4.4.2 und 4.4.3 reduziert sich
dies auf die Behauptung (mit 0 < a < 1)∫

R3

dz
e−a|x−z|

|x− z|3

∣∣∣∣ 1

|x|1/2
− 1

|z|1/2

∣∣∣∣ ∫
R̃i≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣ ≤ A|x|−1 (A.41)

für |x| ∈ [R̃i, R̃a] (was wir von nun an voraussetzen). Die | · |−3-Singularität der Integrale ist
wegen der Differenz der Potentiale integrierbar. Wir beschränken zunächst das y-Integral und
beginnen mit der Region |y| ∈ [|z|/2, 2|z|]. Nach Skalieren von y 7→ |z|y erhält man∫
|z|/2≤|y|≤2|z|

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣ ≤ 2π|z|−
1
2

∫ 2

1/2
dr r2

∣∣∣∣ 1

r1/2
− 1

∣∣∣∣ ∫ 1

−1

du

(r2 + 1− 2ru)
3
2

= 2π|z|−1/2

∫ 2

1/2
dr r

∣∣∣∣ 1

r1/2
− 1

∣∣∣∣ ( 1

|r − 1|
− 1

r + 1

)
≤ A|z|−1/2 .

(A.42a)

Ist |y| ≤ |z|/2, so ist∫
R̃i≤|y|≤|z|/2

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣ ≤ Ae−a|z|/2

|z|1/2
θ(|z| − 2R̃i) (A.42b)

und, wenn |y| ≥ 2|z| ist, dann∫
2|z|≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣ ≤ A|z|−1/2

∫
2|z|≤|y|≤R̃a

dy
e−a|y|/2

|y|3

≤ A|z|−1/2e−a|z| log

(
R̃a
2|z|

)
θ(R̃a − 2|z|) .

(A.42c)
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Insgesamt ist also∫
R̃i≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣
≤ A|z|−1/2

[
e−a|z|/2

(
θ(|z| − 2R̃i) + log

(
R̃a
2|z|

)
θ(R̃a − 2|z|)

)
+ 1

]
.

Wir untersuchen nun die drei Regionen |z| ≥ 2|x|, |z| ≤ |x|/2 und |x|/2 ≤ |z| ≤ 2|x|. In
der ersten Region ist |x− z| ≥ |z|/2 und man schätzt die linke Seite von (A.41) weiter durch

|x|−1/2

∫
|z|≥2|x|

dz
e−a|z|/2

|z|3

∫
R̃i≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣
≤ A|x|−1/2−3−1/2

∫
|z|≥2|x|

dz

[
e−a|z|

(
1 + log

(
R̃a
2|z|

)
θ(R̃a − 2|z|)

)
+ e−a|z|/2

]
≤ AR̃−3

i |x|
−1e−a|x|/2(1 + log(R̃a/R̃i))

ab. Die rechte Seite fällt exponentiell schnell in Z ab und ist insbesondere durch eine Konstante
mal |x|−1 beschränkt.

In der zweiten Region ist |x− z| ≥ |x|/2 und die linke Seite von (A.41) kann durch∫
|z|≤|x|/2

dz
e−a|x|/2

|x|3|z|1/2

∫
R̃i≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣
≤ Ae−a|x|/2|x|−3

∫
|z|≤|x|/2

|z|−1

[
e−a|z|/2

(
1 + log

(
R̃a
2|z|

)
θ(R̃a − 2|z|)

)
+ 1

]
≤ A|x|−1e−a|x|/2(1 + log R̃a)

abgeschätzt werden. Die rechte Seite fällt also ebenfalls exponentiell schnell in Z ab und
ist insbesondere durch eine Konstante mal |x|−1 beschränkt. Schließlich schätzen wir für
|z| ∈ [|x|/2, 2|x|]∫
|x|/2≤|z|≤2|x|

dz
1

|x− z|3

∣∣∣∣ 1

|x|1/2
− 1

|z|1/2

∣∣∣∣ ∫
R̃i≤|y|≤R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|1/2
− 1

|z|1/2

∣∣∣∣
≤ A

∫
|x|/2≤|z|≤2|x|

dz
1

|x− z|3|z|
1
2

∣∣∣∣∣ 1

|x|
1
2

− 1

|z|
1
2

∣∣∣∣∣
[

e−a|z|

(
1 + log

(
R̃a
2|z|

)
θ(R̃a − 2|z|)

)
+ 1

]

≤ A|x|−1/2

[
e−a|x|/2

(
1 + log

(
R̃a
|x|

))
+ 1

] ∫
|x|/2≤|z|≤2|x|

dz
1

|x− z|3

∣∣∣∣ 1

|x|1/2
− 1

|z|1/2

∣∣∣∣
≤ A|x|−1

ab. Hierbei haben wir den exponentiellen Abfall in |x| ≥ R̃i und (A.42a) in der letzten
Abschätzung verwendet.
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Folgende Abschätzung ist für die Bestimmung des Fehlers in der äußeren Region hinrei-
chend.

Lemma A.2.2. Seien χ̃2 und χ̃3 wie in (4.7c) sowie f2 := χ̃2f und f3 := χ̃3f für f ∈ L2(R3 :
C2). Dann sind

|(f2, (|x|−1 − T1(|x|−1))f2)| ≤ AR̃−2
i ‖f2‖2

|(f3, (|x|−1 − T1(|x|−1))f3)| ≤ AR̃−2
a ‖f3‖2 .

Beweis. Wir zeigen die Rechnung nur für χ̃3. Die Rechnung für χ̃2 kann auf die für χ̃3

zurückgeführt werden. Wir verwenden die Darstellung |x|−1−T1(|x|−1) =
∑

j=0,1[|x|−1,Φj ]Φj

aus der dritten Gleichheit in (A.40). Für j ∈ {0, 1} ist∑
j=0,1

|(f3,Φj [|x|−1,Φj ]f3)| ≤ ‖f3‖2
∑
j=0,1

‖[|x|−1,Φj ]f3‖2 .

Mit den punktweisen Schranken der Lemmata 4.4.2 und 4.4.3 und der Cauchy–Schwarz-
Ungleichung (wie im Beweis von Lemma A.2.1l) kann der zweite Teil des Produkts kontrolliert
werden. Wir erhalten für j = 0, 1 mit 0 < a < 1 und ||x| − |z|| ≤ |x− z|

‖[|x|−1,Φj ]f3‖22 ≤
∫
R3

dx |f3(x)|2
∫
R3

dz
e−a|x−z|

|x− z|3

∣∣∣∣ 1

|x|
− 1

|z|

∣∣∣∣ ∫
|y|≥R̃a

dy
e−a|y−z|

|y − z|3

∣∣∣∣ 1

|y|
− 1

|z|

∣∣∣∣
=

∫
R3

dx |f3(x)|2
∫
R3

dz
e−a|x−z|||x| − |z||
|x− z|3|x||z|2

∫
|y|≥R̃a

dy
e−a|y−z|||y| − |z||
|y − z|3|y|

≤ R̃−2
a

∫
R3

dx |f3(x)|2
∫
R3

dz
e−a|x−z|

|x− z|2|z|2

∫
|y|≥R̃a

dy
e−a|y−z|

|y − z|2
.

Wir unterscheiden nun zwischen |z| ≤ R̃a/2 und |z| ≥ R̃a/2 und beginnen mit |z| ≤ R̃a/2. In
dieser Region schätzen wir das y-Integral durch eine Konstante ab, indem wir den Integra-
tionsbereich auf R3 vergrößern. Gleichzeitig ist wegen |x| ≥ R̃a, |x − z| ≥ |x| − |z| ≥ |x|/2.
Damit verbleibt

AR̃−2
a

∫
R3

dx |f3(x)|2
∫
|z|≤R̃a/2

dz
e−a|x|/2

|x|2|z|2
≤ AR̃−3

a e−aR̃a/2‖f3‖2

und die rechte Seite ist für hinreichend großes Z sicherlich durch R̃−4
a ‖f3‖2 beschränkt.

Für |z| ≥ R̃a/2 schätzen wir den |z|−2-Faktor im z-Integral durch R̃−2
a ab und führen die

y- und z-Integrationen über ganz R3 durch. Zusammengefasst ist also

‖[|x|−1,Φj ]f3‖22 ≤ AR̃−4
a ‖f3‖22 ,

was die Behauptung zeigt.

Die Differenz der verdrehten und unverdrehten Test-Potentiale und mittleren Felder wird
schließlich mit folgender Abschätzung behandelt.

Lemma A.2.3. Sei U ≥ 0 Lipschitz-stetig mit Lipschitz-Konstante M . Dann ist

|(f, (U − T1(U))f)| ≤ AM‖f‖22 .
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Beweis. Wir verwenden wieder die Darstellung U −T1(U) =
∑

j=0,1[U,Φj ]Φj aus der dritten
Gleichheit in (A.40). Für j ∈ {0, 1} ist

|(f,Φj [U,Φj ]f)| ≤ ‖f‖2‖[U,Φj ]f‖2.

Mit den punktweisen Schranken der Lemmata 4.4.2 und 4.4.3 und der Cauchy–Schwarz-
Ungleichung kann der zweite Teil des Produkts kontrolliert werden. Wir erhalten mit a ∈ (0, 1)

‖[U,Φj ]f‖22 ≤ Aa
∫
R3

dx |f(x)|2
∫
R3

dz
e−a|x−z|

|x− z|3
|U(x)− U(z)|

∫
R3

dy
e−a|y−z|

|y − z|3
|U(y)− U(z)|

≤ AaM2

∫
R3

dx |f(x)|2
∫
R3

dz
e−a|x−z|

|x− z|2

∫
R3

dy
e−a|y−z|

|y − z|2
≤ AaM2‖f‖2 .

A.3 Pseudo-Differential- und singuläre Integral-Operatoren

Wir geben hier einen kurzen Überblick über Pseudo-Differentialoperatoren und ihre wichtigs-
ten Eigenschaften, die wir für die Untersuchung der T -Transformation benötigen. Dieser hält
sich sehr stark an [168, Kapitel VI, §1-4].

Definition A.3.1. Seien m ∈ R und d ∈ N. Dann ist Sm der Vektorraum aller Funktionen
a = a(x, p) ∈ C∞(Rd × Rd), die

|∂βx∂αp a(x, p)| ≤ Aα,β(1 + |p|)m−|α|

für alle Multiindizes α und β erfüllen. Elemente aus Sm heißen Symbole m-ter Ordnung.

Formal definiert ein Symbol a einen Pseudo-Differentialoperatoren Ta, der Funktionen f
auf

(Tf)(x) =

∫
Rd
a(x, p)f̂(p)eixp dp

abbildet, wobei f̂ die Fourier-Transformation von f bezeichnet. Die Φj aus (4.2) sind bei-
spielsweise translationsinvariante Operatoren, das heißt sie wirken als Multiplikatoren im
Fourierraum, sprich

(Φ̂jf)(p) = Φj(p)f̂(p) .

Eine alternative Schreibweise der Wirkung von Ta ist als wiederholtes Integral

(Taf)(x) =

∫ ∫
a(x, p)eip(x−y)f(y)dy dp .

Dieses Integral konvergiert jedoch nicht notwendigerweise, selbst wenn f ∈ S. Zur Re-
gularisierung des Integrals führt man χ ∈ C∞c (Rd × Rd) mit χ(0, 0) = 1 ein und setzt
aε(x, p) := χ(εx, εp)a(x, p). Wenn a ∈ Sm, dann ist auch aε ∈ Sm, gleichmäßig in ε ∈ (0, 1].
Außerdem konvergiert limε→0 Taεf = Taf in S, wann immer f ∈ S, siehe [168, Kapitel VI,
§1.3]. Daher ist

(Taf)(x) = lim
ε→0

∫ ∫
aε(x, p)e

ip(x−y)f(y)dy dp .
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Pseudo-Differentialoperatoren lassen sich auch als singuläre Integrale auffassen. Wir schreiben

(Taf)(x) =

∫
Rd
k(x, z)f(x− z) dz (A.43)

mit folgendem Verständnis. Für jedes x ist k(x, ·) eine Distribution, deren Fourier-Transfor-
mation die Funktion a(x, ·) ist. Formal ist dies die Identität

a(x, p) =

∫
Rd
k(x, z)e−ixp dz .

Das heißt, (A.43) kann als Faltung der Distribution k(x, z) mit der Funktion f ∈ S, ausgewer-
tet am Punkt x, aufgefasst werden. Nach [168, Proposition 1] ist k(x, z) ∈ C∞(Rd×Rd \ {0})
und es gilt

|∂βx∂αz k(x, z)| ≤ Aα,β,N |z|−d−m−|α|−N , z 6= 0

für alle Multiindizes α, β und alle N ≥ 0, sodass d + m + |α| + N > 0 erfüllt ist. Das
bedeutet, dass die Distribution k(x, ·) mit einer Funktion übereinstimmt, die sehr schnell im
Unendlichen abfällt.
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Anhang B

Anhang zur starken
Scott-Vermutung im
Chandrasekhar-Modell

B.1 Beweise der Lemmata 5.3.9 und 5.4.5

In diesem Abschnitt berechnen wir Integrale mit Bessel-Funktionen. Wir erinnern an die
beiden zu beweisenden Behauptungen.

Lemma B.1.1. (1) Sei M > 0 eine feste Konstante und s ∈ (1/2, 1]. Dann gilt für alle r ≥ 0
und ν ≥ 1/2 ∫ ∞

0
dk

krJν(kr)2

(
√
k2 + 1− 1 +M)2s

≤ As,M
[( r
ν

)2s−1
1{r≤ν} + 1{r≥ν}

]
.

(2) Seien a > 0 und s ∈ (1/2, 3/4]. Dann gilt für jedes r ≥ 0 und ν ≥ 1/2 die Abschätzung∫ ∞
0

dk
krJν(kr)2

(
√
k2 + 1− 1 + aν−2)2s

≤ As,a
[( r
ν

)2s−1
1{r≤ν} +

( r
ν

)4s−1
1{ν≤r≤ν2} + ν4s−11{r≥ν2}

]
.

Beweis von Lemma 5.3.9. Wir beginnen mit dem Fall s < 1 und erinnern dazu an punktweise
Schranken für |Jν(x)| für ν ≥ 1 (siehe beispielsweise [26, Lemma 3.2]). Es gilt

|Jν(x)|2 ≤ konst
1

ν2
für 0 ≤ x ≤ 3

2
ν und

|Jν(x)|2 ≤ konst
1

x
für x ≥ 3

2
ν .

Mit diesen Schranken genügt es

ν−2

3ν/(2r)∫
0

dk
kr

(
√
k2 + 1− 1 +M)2s

+

∞∫
3ν/(2r)

dk
1

(
√
k2 + 1− 1 +M)2s

(B.1)
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abzuschätzen. Der Nenner der Integranden besitzt zwei Längenskalen. Für k & 1 wird der
Nenner am besten durch k2s approximiert, wohingegen er für k . 1 am besten durch M2s

angenähert wird.
Wegen 1/2 < s < 1 ist (B.1) für r ≤ ν durch eine Konstante mal[

ν−2

∫ 1

0
kr dk + ν−2

∫ ν/r

1
k1−2sr dk +

∫ ∞
ν/r

k−2s dk

]
1{r≤ν}

≤ As
[
r

ν2
+

r

ν2

(( r
ν

)2s−2
+ 1

)
+
( r
ν

)2s−1
]

1{r≤ν} ≤ As
( r
ν

)2s−1
1{r≤ν}

beschränkt.
Ist andererseits r ≥ ν, so wird (B.1) durch eine Konstante mal[
ν−2

∫ ν/r

0
kr dk +

∫ 1

ν/r
dk +

∫ ∞
1

k−2s dk

]
1{r≥ν} ≤ As

[
1

r
+ 1 +

ν

r
+ 1

]
1{r≥ν} ≤ As1{r≥ν}

beschränkt.
Für ν ∈ [1/2, 1] verwenden wir die Abschätzungen t|Jν(t)|2 ≤ Amin{1, t1+2ν} (siehe [137,

Formel 9.1.7 und 9.2.1]) und k2 + 1 ≤ AM (
√
k2 + 1− 1 +M)2 und erhalten (für alle r ∈ R+)∫ ∞

0
dk

krJν(kr)2

(k2 + 1)s
≤ A

(
r1+2ν

∫ 1/r

0
k1+2ν−2s dk +

∫ ∞
1/r

k−2s dk

)
≤ Asr2s−1 ,

beziehungsweise für r ≥ 1

r1+2ν

∫ 1/r

0
dk

k1+2ν

(k2 + 1)s
+

∫ ∞
1/r

dk

(k2 + 1)s
≤
∫ 1

0

dk

(k2 + 1)s
+

∫ ∞
0

dk

(k2 + 1)s
= As .

Schließlich behandeln wir den Fall s = 1. Mit [37, Formel 10.22.69] ist∫ ∞
0

dk
krJν(kr)2

k2 + 1
= r

iπ

2
Jν(ir)H(1)

ν (ir) ,

wobei H
(1)
ν die erste Hankel-Funktion bezeichnet. Mit [137, Formel 9.6.3 und 9.6.4] kann die

rechte Seite durch die modifizierten Bessel-Funktionen Iν und Kν ausgedrückt werden und
man erhält ∫ ∞

0
dk

krJν(kr)2

k2 + 1
= rKν(r)Iν(r) . (B.2)

Mit der punktweisen Schranke (siehe beispielsweise Iantchenko u. a. [95, p. 185])

Kν(νx)Iν(νx) ≤ 9

4ν(1 + x2)1/2
für alle ν ≥ 1

2
,

ist insbesondere (mit x = r/ν)∫ ∞
0

dk
krJν(kr)2

k2 + 1
≤ A

( r
ν

1{r≤ν} + 1{r≥ν}

)
.
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Beweis von Lemma 5.4.5. Wie im Beweis von Lemma 5.3.9 verwenden wir für ν ≥ 1 die
Schranken von Cordoba [26, Lemma 3.2] an |Jν(x)|. Es genügt daher die Summe

ν−2

3ν/(2r)∫
0

dk
kr

(
√
k2 + 1− 1 + aν−2)2s

+

∞∫
3ν/(2r)

dk
1

(
√
k2 + 1− 1 + aν−2)2s

(B.3)

abzuschätzen. In diesem Fall besitzt der Nenner der Integranden drei Längenskalen. Für
k & 1 approximiert man den Nenner wieder mit k2s. In der Übergangsregion ν−1 . k . 1
approximiert man

√
k2 + 1 − 1 ∼ k2/2, das heißt der Nenner wird durch k4s angenähert.

Schließlich wird der Nenner im Bereich k . ν−1 am besten durch a2sν−4s approximiert.
Wir beschränken nun den zweiten Summanden von (B.3). Ist ν/r ≤ 1, unterscheiden wir

zwischen den Fällen ν−1 ≤ ν/r (sprich ν ≤ r ≤ ν2) und ν/r ≤ ν−1 (sprich r ≥ ν2). Im ersten
Fall erhält man  1∫

ν/r

k−4s dk +

∫ ∞
1

k−2s dk

1{ν≤r≤ν2}

= As

(( r
ν

)4s−1
+ 1

)
1{ν≤r≤ν2} ≤ As

( r
ν

)4s−1
1{ν≤r≤ν2}

und im zweiten Fall[
ν4s

∫ ν−1

ν/r
dk +

∫ 1

ν−1

dk k−4s +

∫ ∞
1

dk k−2s

]
1{r≥ν2} ≤ Asν4s−11{r≥ν2} .

Falls ν/r ≥ 1, muss nur der Bereich k ≥ 1 untersucht werden. Man erhält

∞∫
ν/r

dk k−2s1{r≤ν} = As

( r
ν

)2s−1
1{r≤ν} .

Wir widmen uns nun dem ersten Summanden von (B.3). Ist ν/r ≤ 1, unterscheidet man
wieder zwischen ν−1 ≤ ν/r (sprich ν ≤ r ≤ ν2) und ν/r ≤ ν−1 (sprich r ≥ ν2). Im ersten
Fall integriert man und erhält[

ν−2+4sr

∫ ν−1

0
k dk + ν−2r

∫ ν/r

ν−1

k1−4s dk

]
1{ν≤r≤ν2}

≤ Asrν4s−41{ν≤r≤ν2} ≤ As
( r
ν

)4s−1
1{ν≤r≤ν2} .

Hierbei haben wir
r

ν4−4s
≤
( r
ν

)4s−1
⇔ r2−4s ≤ ν5−8s

abgeschätzt, was wahr ist, da (mit 1/2 < s ≤ 3/4) r2−4s ≤ ν2−4s ≤ ν5−8s ist. Im zweiten Fall
erhält man

ν−2+4sr

∫ ν/r

0
dk k 1{r≥ν2} ≤ Asν4sr−11{r≥ν2}

≤ Asν4s−21{r≥ν2} ≤ Asν4s−11{r≥ν2} .
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Falls ν/r ≥ 1 ist, führt die Integration auf[
ν−2+4sr

∫ ν−1

0
k dk + ν−2r

∫ 1

ν−1

k1−4s dk + ν−2r

∫ ν/r

1
k1−2s dk

]
1{r≤ν}

≤ As
[
rν4s−4 + ν−2r

(ν
r

)2−2s
]

1{r≤ν} ≤ As
( r
ν

)2s−1
1{r≤ν} .

Hier haben wir verwendet, dass der zweite Summand in der letzten Abschätzung wegen ν ≥
1/2 durch r2s−1ν−2s ≤ 2(r/ν)2s−1 und der erste Summand (mit s ≤ 3/4) durch

r

ν
· ν4s−3 ≤

( r
ν

)2s−1

beschränkt ist.
Für ν ∈ [1/2, 1] verwenden wir wieder die Schranken t|Jν(t)|2 ≤ Amin{1, t1+2ν} und

k2 + 1 ≤ Aa(
√
k2 + 1− 1 + 4a)2 und erhalten (für alle r ∈ R+)∫ ∞

0
dk

krJ1/2(kr)2

(k2 + 1)s
≤ A

(
r1+2ν

∫ 1/r

0
k1+2ν−2s dk +

∫ ∞
1/r

k−2s dk

)
≤ Asr2s−1 ,

beziehungsweise, falls r ≥ 1,

r1+2ν

∫ 1/r

0
dk

k1+2ν

(k2 + 1)s
+

∫ ∞
1/r

dk

(k2 + 1)s
≤
∫ 1

0

dk

(k2 + 1)s
+

∫ ∞
0

dk

(k2 + 1)s
= As .

B.2 Einfacher Beweis für eine obere Schranke für die nicht-
relativistische Wasserstoffdichte

Wie wir in der Einleitung bemerkt haben, zeigten Heilmann und Lieb [86], dass die nicht-
relativistische Dichte für r → ∞ sich asymptotisch wie r−3/2/(

√
2π2) + o(r−3/2) verhält.

Ihr Beweis beruhte sehr stark auf den genauen Eigenschaften und Asymptotiken der explizit
bekannten Wasserstoffeigenfunktionen. Es ist allerdings möglich, mit den einfachen Methoden
des Beweises von 5.1.1 wenigstens eine entsprechende obere Schranke mit nicht-expliziter
Konstante zu zeigen.

Da im Folgenden keine relativistischen Operatoren auftauchen, missbrauchen wir die No-
tation und bezeichnen mit ρH` und ρH die nicht-relativistischen wasserstoffartigen Dichten.
Wir bezeichnen die orthogonale Projektion auf den negativen Spektralraum von p2

`/2 − 1/r
wieder mit d` und schreiben

ρH` (r) = Tr d`δr = TrABCB∗A∗ ,

wobei

A := d`(p
2
`/2− 1/r + a`)

1/2

B := (p2
`/2− 1/r + a`)

−1/2(p2
`/2 + a`)

1/2

C := (p2
`/2 + a`)

−1/2δr(p
2
`/2 + a`)

−1/2
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mit a` > | inf spec(p2
`/2−1/r)|. Wegen der expliziten Formel der nicht-relativistischen Wasser-

stoffeigenwerte, welche durch −1/(2(n+ `+ 1)2) gegeben sind (für einen Spin-Freiheitsgrad),
setzen wir a` = a(` + 1/2)−2 mit einer hinreichend großen Konstanten a > 0, welche un-
abhängig von ` ist.

Zunächst haben wir die übliche Schranke ‖A‖ ≤ a(`+1/2)−2. Die Spur von C ist gerade die
Diagonale (p2

`/2+a`)
−1(r, r), da der Kern (p2

`/2+a`)
−1(r, r′) (wegen der Sobolew-Ungleichung

mit 2 > d = 1) eine stetige Funktion in beiden Variablen ist. Die Diagonale wurde bereits in
(B.2) zu

(p2
`/2 + a`)

−1(r, r) =

∫ ∞
0

dk
krJ`+1/2(kr)2

k2/2 + a(`+ 1/2)−2
= 2rK`+1/2

( √
2ar

`+ 1/2

)
I`+1/2

( √
2ar

`+ 1/2

)

≤ Aa
[

r

`+ 1/2
1{r≤(`+1/2)2} +

r

`+ 1/2
· (`+ 1/2)2

r
1{r≥(`+1/2)2}

]
bestimmt. Die Operatornorm von B ist endlich, da

p2
`

2
− 1

r
+ a` =

1

2

(
p2
`

2
+ a`

)
+

1

2

(
p2
`

2
− 2

r
+ a`

)
und die rechte Seite von unten durch (p2

`/2+a`)/2 beschränkt ist, wenn a > 0 so groß gewählt
wird, dass auch p2

`/2− 2/r + a` > 0 ist.
Kombiniert man die Schranken für A,B und C, erhält man

ρH` (r) = Tr d`δr ≤ Aa(`+ 1/2)−2

[
r

`+ 1/2
1{r≤(`+1/2)2} + (`+ 1/2)1{r≥(`+1/2)2}

]
.

Die mit 2`+1 multiplizierte rechte Seite ist immer noch summierbar und man erhält schließlich

r2ρH(r) =
∞∑
`=0

(2`+ 1)ρH` (r) ≤ Aar1/2 .



204 B. Anhang zur starken Scott-Vermutung im Chandrasekhar-Modell



Anhang C

Anhang zur starken
Scott-Vermutung im Furry-Modell

Partialwellenzerlegung

Die folgende Zusammenfassung stammt aus dem Anhang von [80], siehe auch [6, Abschnitt
2.1.1].

Seien Y`,m die Kugelflächenfunktionen auf der Einheitssphäre S2, welche die Normierungs-
bedingung

∫
S2 |Y`,m|

2 dω = 1 erfüllen. Hierbei bezeichnet dω das gewöhnliche Flächenmaß auf
S2. Für |m| > ` setzt man Y`,m ≡ 0. Für die Menge der erlaubten Indizes I := {(`, j,m) : ` ∈
N0, 1/2 ≤ j = `± 1/2,m = −j, ..., j}, definiert man sphärische Pauli-Spinoren durch

Ωj,`,m(ω) :=



 √
j+m

2j Y`,m− 1
2
(ω)√

j−m
2j Y`,m+ 1

2
(ω)

 falls j = `+ 1
2 −√ j−m+1

2j+2 Y`,m− 1
2
(ω)√

j+m+1
2j+2 Y`,m+ 1

2
(ω)

 falls j = `− 1
2 .

Die Ωj,`,m bilden eine Orthonormalbasis von L2(S2 : C2) für (`, j,m) ∈ I. Zudem sind sie
die gemeinsamen Eigenfunktionen der Operatoren L2, J2 (mit dem gesamten Drehimpuls
J = L+S, sprich der Summe von Bahndrehimpuls und Spin) und J3 jeweils mit Eigenwerten

`(`+1), j(j+1) und m. Der Unterraum H
(0)
j,`,m, der zum gemeinsamen Eigenraum des gesamten

Drehimpulses J und des Bahndrehimpulses L gehört, ist durch

H
(0)
j,`,m = span{x 7→ |x|−1f(|x|)Ωj,`,m(x/|x|) : f ∈ L2(R+)}

gegeben. Dies führt auf die orthogonale Zerlegung

L2(R3 : C2) =
⊕
`∈N0

⊕
1
2
≤j=`± 1

2

H
(0)
j,` :=

⊕
(`,j,m)∈I

H
(0)
j,`,m

des Hilbertraums der Zweier-Spinoren.
Der Hilbertraum L2(R3 : C4) wird mit Hilfe der sphärischen Dirac-Spinoren

Φ+
j,`,m =

(
iΩj,`,m

0

)
und Φ−j,`,m =

(
0

−Ωj,2j−`,m

)
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zerlegt. Die Φ±j,`,m bilden eine Orthonormalbasis von L2(S2 : C4) für (`, j,m) ∈ I und es gilt
analog

L2(R3 : C4) =
⊕
`∈N0

⊕
1
2
≤j=`± 1

2

Hj,` :=
⊕

(`,j,m)∈I

Hj,`,m ,

wobei nun

Hj,`,m = span

{
x 7→ f+(|x|)

|x|
Φ+
j,`,m(x/|x|) +

f−(|x|)
|x|

Φ−j,`,m(x/|x|) : f+, f− ∈ L2(R+)

}
.

Die orthogonale Projektion auf diese Räume wird mit Πj,` beziehungsweise Πj,`,m bezeichnet.
Man bemerkt, dass die Φ±j,`,m keine Eigenfunktionen von L2 mehr sind.



Anhang D

Anhang zu Hardy-Operatoren und
Sobolew-Normen in Lp

Im ersten Abschnitt geben wir einen gestraffteren Beweis für ein Hörmander-Multiplikator-
Theorem für |p|α+V mit V ≥ 0 wieder, welches zuerst von Hebisch [85, Theorem 3.8] bewiesen
wurde. Im Anschluß beweisen wir einen Hörmander-Multiplikator-Satz für |p|α + a|x|−α mit
a ≥ 0, welcher auf dem abstrakten Spektralmultiplikator-Satz [85, Theorem 3.1] beruht. Im
letzten Abschnitt zeigen wir einige interessante Hardy–Sobolew-Ungleichungen.

D.1 Ein Hörmander-Multiplikator-Theorem für |p|α + V

In [84] gelang es Hebisch ein Hörmander-Multiplikator-Theorem für −∆ + V in L2(Rd) zu
beweisen, wenn V ≥ 0. (Genauer gesagt meinen wir mit −∆ + V den selbstadjungierten
Operator in L2(Rd), den man durch die Friedrichs-Erweiterung der zugehörigen quadrati-
schen Form erhält, die zunächst auf C∞c (Rd) definiert ist.) Der Beweis beruht wesentlich auf
Schranken an den Wärmeleitungskern exp(∆−V )(x, y), welcher mit der Trotter-Formel nach
oben durch exp(∆)(x, y) abgeschätzt werden kann.

Natürlich kann die Trotter-Formel auch für exp(−(|p|α + V )) mit α ∈ (0, 2) und V ≥ 0
verwendet werden. Wie wir bereits in Kapitel 8 gesehen haben, ist es allerdings bei wei-
tem nicht klar, ob man mit den Schranken an e−|p|

α
überhaupt ein Mikhlin-Multiplikator-

Theorem für |p|α + V beweisen kann. Der Grund hierfür war, dass der Wärmeleitungskern
lediglich algebraisch abfällt, was es erschwerte, den Beitrag des

”
schlechten Teils“ der Cal-

derón–Zygmund-Zerlegung zu kontrollieren, siehe insbesondere (8.12). (Wir machen bereits
jetzt auf die Schranke (D.7a) aufmerksam, welche der Schranke (8.12) stark ähnelt, allerdings
relativ einfach bewiesen werden kann.) Tatsächlich gelang es Hebisch in [85, Theorem 3.8]
auch ein Hörmander-Multiplikator-Theorem für |p|α + V zu zeigen, zumindest, wenn d = 1
und α > 1 sind. Andernfalls muss eine zusätzliche Annahme erfüllt sein, damit der Beweis
(welcher wieder auf einer Calderón–Zygmund-Zerlegung beruht) funktioniert. Das Ziel dieses
Abschnitts ist es, seinen Beweis zu straffen und herauszustellen, woher die Einschränkungen
an d und α kommen. Die neue Beobachtung ist, dass der Beweis tatsächlich ein Multiplikator-
Theorem für alle d ∈ N und α ∈ (0, 2) liefert, wenn der Multiplikator kompakt getragen und
hinreichend regulär ist, siehe Behauptung D.1.9.

In diesem Abschnitt werden wir häufig die folgende Notation verwenden, welche es erlaubt
Integralkerne von Funktionen F (|p|α + V ) quantitativ zu behandeln.
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Sei ωb(x, y) = (1 + |x − y|)b für ein b ∈ R. Dann definiert man für eine messbare, kom-
plexwertige Funktion K(x, y) auf Rd × Rd die b-te Schur-Norm

‖K‖b := max

{
sup
x

∫
|K(x, y)|ωb(x, y) dy , sup

y

∫
|K(x, y)|ωb(x, y) dx

}
. (D.1)

Man bemerkt, dass K einen Lp-beschränkten (1 ≤ p ≤ ∞) Integraloperator definiert, falls
‖K‖0 < ∞, was aus Youngs Ungleichung für Integraloperatoren folgt (siehe beispielsweise
[161, Theorem 0.3.1]).

Unter der folgenden technischen Annahme an punktweise Schranken von kompakt getra-
genen, glatten Funktionen des Operators ψ(|p|α + V ) (die durch den Spektralsatz definiert
sind) ist es möglich, ein Hörmander-Multiplikator-Theorem zu zeigen.

Annahme D.1.1. Seien

• d = 1 und α ∈ (0, 1], oder

• d ∈ N \ {1} und α ∈ (0, 2),

dann gilt folgende Aussage.

Sei ψ ∈ C∞c (R) mit supp ψ ⊆ [−1, 1] und ψ(x) = 1 für x ∈ [0, 2−α/2] und definiere
ψk(λ) = ψ(2αkλ) für k ∈ Z. Dann gibt es ein ε > 0, sodass für alle 0 ≤ c < d+ε die Schranke

|ψk(|p|α + V )(x, y)| ≤ Aψ2−kd(1 + 2−k|x− y|)−c (D.2)

für alle x, y ∈ Rd gilt.

Tatsächlich ist es möglich, (D.2) unter der schwächeren Bedingung c < α zu zeigen, siehe
Lemma D.1.8. Es wird später ersichtlich sein, dass die Annahme wesentlich ist, um eine
bekannte Eigenschaft des Hardy–Littlewoodschen Maximaloperators ausnutzen zu können.
Um sie zu verwenden, muss die punktweise Schranke an ψk(|p|α + V ) wenigstens für ein
c > d gelten, siehe (D.17). Aus diesem Grund können wir auch den Fall d = 1 und α > 1
ohne weitere Annahmen behandeln. In diesem Fall wurde das Multiplikator-Theorem auch
kürzlich von Chen u. a. [22] (allerdings mit völlig anderen Methoden) bewiesen.

Wir formulieren nun

Satz D.1.2. Seien α ∈ (0, 2), 0 ≤ b ≤ b̃ < b0 < α,

s := s(d, b, b̃, κ) = max{b+ d/2, b− b̃+ κ} (D.3)

mit

κ = κ(d, b0, b̃) = 2[(b̃+d/2)/(b0−b̃)]((b̃+ d/2)(1 + 1/(b0 − b̃)) + 1) . (D.4)

Sei zudem Annahme D.1.1 erfüllt. Ist für ε > 0, 0 6= ϕ ∈ C∞c (R+) der Multiplikator F eine
messbare und beschränkte Funktion, sodass

sup
t>0
‖ϕ(·)F (t·)‖Hs+(1+ε)/2(R) <∞ (D.5)

gilt, dann ist F (|p|α+V ) schwach L1 → L1-beschränkt und Lp-beschränkt für alle 1 < p <∞.
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In einem ersten Schritt reduzieren wir den Beweis auf die Verifikation von punktweisen
Schranken und Schranken an die Schur-Normen von F (|p|α+V ). Wir verwenden für den Rest
dieses Abschnitts die Abkürzung Hα := |p|α + V .

Beweis von Satz D.1.2. Wegen ‖F‖∞ <∞ ist zunächst F (Hα) wegen des Spektralsatzes L2-
beschränkt. Die Lp-Beschränktheit folgt aus dem Interpolationssatz von Marcinkiewicz und
der Dualität der Lp-Räume, wenn man zeigen kann, dass F (Hα) schwach L1 → L1-beschränkt
ist. Dazu führt man eine Calderón–Zygmund-Zerlegung von f ∈ L1(Rd) auf der Höhe λ durch.
Nach dieser Zerlegung gibt es Mengen F und Ω =

⋃
iQi, wobei {Qi} eine Familie disjunkter

dyadischer Würfel ist, sodass Rd = F ∪Ω und F ∩Ω = ∅. Insbesondere ist |f(x)| . λ für fast
alle x ∈ F . Wir definieren ki = [log2(diam Qi)] und zerlegen f = g+

∑
i bi, wobei supp bi ⊆ Qi

und f, g, bi sowie Qi die Schranken

|g(x)| . λ

∫
|bi| . λ|Qi|

∑
i

|Qi| . ‖f‖1/λ

erfüllen. Als Nächstes definieren wir 0 ≤ ϕ ∈ C∞c (R) mit supp ϕ ⊆ [2−α, 2α/2] so, dass∑
k∈Z ϕ(2αkλ) = 1 für alle λ > 0. Sei darüberhinaus 0 ≤ ψ ∈ C∞c (R) so, dass supp ψ ⊆ [−1, 1]

mit ψ(λ) = 1 für λ ∈ [0, 2−α/2]. Schließlich definiert man

Fk(λ) := ϕ(2αkλ)F (λ) und ψk(λ) = ψ(2αkλ) .

Wenn j < k, dann ist ψkFj = 0 (einerseits ist λ ≤ 2−αk und andererseits λ ≥ 2−αj−α) und
somit ψk(Hα)Fj(Hα) = 0. Andererseits ist ψk(Hα)Fj(Hα) = Fj(Hα), wenn j > k. Damit
zerlegt man

F (Hα)f =
∑
j,i

Fj(Hα)bi + F (Hα)g

=
∑
i

∑
j≤ki

Fj(Hα)bi +
∑
j>ki

Fj(Hα)bi

+ F (Hα)g

=
∑
i

∑
j≤ki

Fj(Hα)bi +
∑
i,j

Fj(Hα)ψki(Hα)bi −
∑
i

Fki(Hα)ψki(Hα)bi + F (Hα)g

=
∑
i

∑
j≤ki

Fj(Hα)bi + F (Hα)

(∑
i

ψki(Hα)bi + g

)
−
∑
i

Fki(Hα)ψki(Hα)bi .

Wir schätzen nun die schwache L1-Norm dieses Ausdrucks ab. Es bezeichne Q∗i die kon-
zentrische Kugel um Qi mit dem gleichen Mittelpunkt wie Qi und Radius 2diam(Qi) so-
wie S :=

⋃
iQ
∗
i . Damit können die schwachen L1-Normen der drei Summanden auf der

rechten Seite der letzten Ungleichung mittels der Tschebyscheff-Ungleichung, der Schranke∑
i |Qi| . ‖f‖1/λ und der L2-Beschränktheit beschränkter Funktionen von Hα durch

|{x : |
∑
i

∑
j≤ki

(Fj(Hα)bi)(x)| > λ

3
}| ≤ |S|+ 3

λ

∫
Sc
|
∑
i

∑
j≤ki

(Fj(Hα)bi)(x)| dx

.
‖f‖1
λ

+
3

λ

∫
Sc
|
∑
i

∑
j≤ki

(Fj(Hα)bi)(x)| dx ,
(D.6a)
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|{x : |F (Hα)

(∑
i

ψki(Hα)bi + g

)
| > λ

3
}| . λ−2‖

∑
i

ψki(Hα)bi + g‖22

. λ−2

(
λ‖f‖1 + ‖

∑
i

ψki(Hα)bi‖22

) (D.6b)

und

|{x : |
∑
i

Fki(Hα)ψki(Hα)bi| >
λ

3
}| . λ−1‖

∑
i

Fki(Hα)ψki(Hα)bi‖1 (D.6c)

abgeschätzt werden. Der Satz ist also bewiesen, wenn man∫
Sc
|
∑
i

∑
j≤ki

(Fj(Hα)bi)(x)| dx .
∑
i

‖bi‖1 ≤ ‖f‖1 , (D.7a)

‖
∑
i

ψki(Hα)bi‖22 . λ‖f‖1 (D.7b)

sowie

‖
∑
i

(Fkiψki)(Hα)bi‖1 .
∑
i

‖bi‖1 ≤ ‖f‖1 (D.7c)

verifizieren kann.

Im Folgenden verifizieren wir (D.7a) bis (D.7c). Wir beginnen mit (D.7a) und (D.7c),
welche, im Gegensatz zu (D.7b), die Annahme D.1.1 nicht benötigen.

Um (D.7a) und (D.7c) zu zeigen, zeigen wir, dass ‖F (Hα)‖b endlich ist, wenn F kom-
pakt getragen und hinreichend regulär ist (siehe Behauptung D.1.6). Die wesentliche Idee
zur Beschränkung von ‖F (Hα)‖b ist, dass man F (Hα) durch den bereits gut bekannten
Wärmeleitungskern e−Hα ausdrückt. Dazu definiert man K(µ) := F (− logµ)µ−1 und ent-
wickelt K(µ) =

∑
n∈Z K̂(n)einµ in einer Fourier-Reihe. Somit ist F (Hα) = K(e−Hα)e−Hα ,

weshalb nur noch ‖ein exp(−Hα)e−Hα‖b beschränkt werden muss. Dazu schätzen wir im Fol-
genden ‖e−Hα‖b, ‖ein exp(−Hα)‖b sowie ‖ein exp(−Hα)e−Hα‖b ab.

Lemma D.1.3. Sei α ∈ (0, 2) und V ≥ 0. Dann gilt für alle t > 0 und b0 < α

sup
y∈Rd

∫
|e−tHα(x, y)|(1 + t−1/α|x− y|)b0 dx <∞ und (D.8a)

sup
y∈Rd

td/α
∫
|e−tHα(x, y)|2 dx <∞ . (D.8b)

Beweis. Da V ≥ 0, folgt aus der Trotter-Formel, dass es genügt (D.8a) und (D.8b) zu zeigen,
wobei e−tHα(x, y) durch e−t|p|

α
(x, y) ersetzt wird. Des Weiteren folgt aus der Substitution

x 7→ t1/αx, dass es ausreicht den Fall t = 1 zu betrachten.
Wegen

1 ∧ 1

|x− y|d+α
∼ 1

(1 + |x− y|)d+α
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ist für alle y ∈ Rd das Integral ∫
Rd

(1 + |x− y|)b0
(1 + |x− y|)d+α

dx

endlich, falls b0 < α. Dies zeigt (D.8a).
Aus dem Satz von Plancherel folgt andererseits∫

Rd
|e−|p|α(x, y)|2 dx ∼

∫
Rd

e−2|p|α dp = konst ,

was die Endlichkeit der linken Seite von (D.8b) zeigt.

Aus Lemma D.1.3 erhält man mit [85, Theorem 2.1] Schranken an die Schur-Normen von
ein exp(−Hα), welche wir in dem folgenden Hilfssatz zusammenfassen.

Lemma D.1.4. Seien α ∈ (0, 2), 0 ≤ b̃ < b0 < α und n ∈ R. Dann gibt es ein A > 0, welches
nur von b0, b̃, d und ‖e−Hα‖b0 abhängt, sodass∥∥∥ein exp(−Hα)

∥∥∥
b̃
≤ A(1 + |n|)κ (D.9)

gilt, wobei κ = κ(d, b0, b̃) = 2[(b̃+d/2)/(b0−b̃)]((b̃+ d/2)(1 + 1/(b0 − b̃)) + 1).

Mit Hilfe dieser Schranke erhält man (ähnlich wie in [83, Theorem 3.1])

Lemma D.1.5. Seien α ∈ (0, 2), 0 ≤ b ≤ b̃ < b0 < α, n ∈ R, κ wie in Lemma D.1.4 sowie
s = s(d, b, b̃, κ) = max{b+ d/2, b− b̃+ κ} aus (D.3). Dann ist

‖ein exp(−Hα)e−Hα‖b .b0,b̃,d
(1 + |n|)s . (D.10)

Beweis. Für K(x, y) = e−Hα(x, y) zerlegen wir für ein beliebiges ` ≥ 0 (welches zum Schluß
gewählt wird)

∫
Rd
|(einKK)(x, y)|ωb(x, y) dx =

 ∫
|x−y|≤`

+

∫
|x−y|≥`

 |(einKK)(x, y)|ωb(x, y) dx .

Das erste Integral beschränken wir mit der Cauchy–Schwarz-Ungleichung, der Unitarität von
einK (das heißt ‖einK‖L2→L2 = 1) und (D.8b) durch∫

|x−y|≤`

|(einKK)(x, y)|ωb(x, y) dx . (1 + `)b`d/2‖einKK‖L2(By(`))

≤ (1 + `)b+d/2‖K‖L2 ,

wobei By(`) die um y zentrierte Kugel mit Radius ` bezeichnet. Für das zweite Integral
verwenden wir die Submultiplikativität von ωb, (D.8a) und (D.9) und erhalten∫

|x−y|≥`

|(einKK)(x, y)|ωb̃(x, y)ωb−b̃(x, y) dx

≤ (1 + `)b−b̃‖einKK‖b̃ ≤ (1 + `)b−b̃‖einK‖b̃‖K‖b0 . (1 + `)b−b̃(1 + |n|)κ‖K‖b0 .

Wählt man ` = |n| folgt (D.10).
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Die beiden letzten Lemmata zeigen, dass die Endlichkeit von nur sehr niedrigen Schur-
Normen dem langsamen, algebraischen Abfall von exp(−Hα)(x, y) für große Abstände |x− y|
geschuldet sind.

Die folgende Behauptung erlaubt es, Schur-Normen von kompakt getragenen, hinreichend
regulären Funktionen von Hα zu kontrollieren. Diese Schranken sind wesentlich für die Veri-
fikation von (D.7a) und (D.7c).

Behauptung D.1.6. Seien α ∈ (0, 2), 0 ≤ b ≤ b̃ < b0 < α, s := s(d, b, b̃, κ) aus (D.3),
κ = κ(d, b0, b̃) aus (D.4) und ε > 0. Falls F ∈ Hs+(1+ε)/2(R) mit supp F ⊆ [η, ξ] und
−∞ < η < ξ <∞, dann gilt

‖F (Hα)‖b . ‖F‖Hs+(1+ε)/2 . (D.11)

Ist weiter G ∈ Hκ+(1+ε)/2(R), dann gilt auch

‖G(e−Hα)‖b . ‖G‖Hκ+(1+ε)/2 . (D.12)

Beweis. Wir definieren die Funktion K(λ) := λ−1F (− log λ), welche

‖K‖Hs+(1+ε)/2 . ‖F‖Hs+(1+ε)/2 und supp K ⊆ [e−ξ, e−η]

erfüllt. Als Nächstes entwickeln wir K(λ) =
∑

n K̂(n)einλ, wobei K̂(n) die Fourier-Koeffizi-
enten von K bezeichnen. Daher ist

F (Hα) = K(e−Hα)e−Hα =
∑

K̂(n)ein exp(−Hα)e−Hα

und mit (D.10) und der Cauchy–Schwarz-Ungleichung erhält man

‖F (Hα)‖b .
∑
n

|K̂(n)|(1 + |n|)s

≤

(∑
n

|K̂(n)|2(1 + |n|)2s+1+ε

)1/2(∑
n

(1 + |n|)−1−ε

)1/2

. ‖K‖Hs+(1+ε)/2 . ‖F‖Hs+(1+ε)/2 .

Dies zeigt (D.11).
Ähnlich beweist man (D.12). Aus Lemma D.1.3 folgt, dass es eine Konstante A > 0

gibt, sodass ‖e−Hα‖L2→L2 ≤ A, das heißt spec(e−Hα) ⊆ [−A,A]. Somit hängt G(e−Hα) nicht
von den Werten von G außerhalb des Intervalls [−A,A] ab. Setzt man H = φG, wobei
φ ∈ C∞c ([−2A, 2A]) mit φ = 1 auf [−A,A], so gilt G(e−Hα) = H(e−Hα). Entwickelt man
nun wieder H(e−Hα) =

∑
n Ĥ(n)ein exp(−Hα) in einer Fourierreihe, erhält man mit (D.9) und

Cauchy–Schwarz

‖H(e−Hα)‖b ≤
∑
n

|Ĥ(n)|‖ein exp(−Hα)‖b .
∑
n

|Ĥ(n)|(1 + |n|)κ . ‖H‖Hκ+(1+ε)/2

. ‖G‖Hκ+(1+ε)/2 ,

was (D.12) zeigt.

Mit Hilfe von Dilatationen erhalten wir
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Korollar D.1.7. Seien α ∈ (0, 2), 0 ≤ b ≤ b̃ < b0 < α, s := s(d, b, b̃, κ) aus (D.3), ϕ ∈ C∞c (R)
mit supp ϕ ⊆ [2−α, 2α/2], Fk(λ) := ϕ(2αkλ)F (λ) und F aus Satz D.1.2. Dann gilt

sup
x∈Rd

∫
|Fk(Hα)(x, y)|(1 + 2−k|x− y|)b dy . ‖ϕ(·)F (2−αk·)‖Hs+(1+ε)/2 . 1 . (D.13)

Bevor wir diese Aussage zeigen, verifizieren wir die Bedingungen (D.7a) und (D.7c).

Beweis von (D.7a) und (D.7c). Für y ∈ Qi und x ∈ (Q∗i )
c gilt |x− y| & 2ki . Damit und mit

Korollar D.1.7 erhalten wir für ein beliebiges 0 < b < α∫
(Q∗i )c

|(Fj(Hα)bi)(x)| dx ≤ ‖bi‖1 sup
y∈Qi

∫
(Q∗i )c

|Fj(Hα)(x, y)|2b(j−ki) · 2−b(j−ki) dx

. 2b(j−ki)‖bi‖1 sup
y∈Qi

∫
|x−y|≥2ki

|Fj(Hα)(x, y)|(1 + 2−j |x− y|)b dx

≤ 2b(j−ki)‖bi‖1 sup
y∈Rd

∫
Rd
|Fj(Hα)(x, y)|(1 + 2−j |x− y|)b dx

. 2b(j−ki)‖bi‖1 .

Summiert man diese Abschätzung über alle j ≤ ki, erhält man∑
j≤ki

∫
(Q∗i )c

|(Fj(Hα)bi)(x)| dx .
∑
j≤ki

2b(j−ki)‖bi‖1 . ‖bi‖1 ,

was gerade (D.7a) ist.

Der Beweis von (D.7c) ist noch simpler. Da Fk und ψk die Bedingungen von Korollar
D.1.7 erfüllen, folgt

‖(Fkψk)(Hα)‖L1→L1 = ‖(Fkψk)(Hα)‖0 . ‖ϕF (2−αk·)‖Hs+(1+ε)/2‖ψ0‖Hs+(1+ε)/2 . 1 ,

wobei jetzt s = s(d, 0, 0, κ) aus (D.3) ist. Dies impliziert Bedingung (D.7c), denn

‖
∑
i

(Fkiψki)(Hα)bi‖1 ≤
∑
i

‖(Fkiψki)(Hα)‖0‖bi‖1 . ‖f‖1 .

Wir ergänzen nun den

Beweis von Korollar D.1.7. Wir definieren Dilatationen δt durch δtx := tx für x ∈ Rd und
δtf := f ◦ δt, das heißt (δtf)(x) = f(tx) für Funktionen f auf Rd. Dann gilt

δ2kHαδ2−k = δ2k |p|αδ2−k + δ2kV δ2−k = 2−αk(|p|α + 2αkV ◦ δ2k) =: 2−αk (Hα)k ,

wobei (Hα)k := |p|α + 2αkV ◦ δ2k , das heißt Hα = 2−αkδ2−k(Hα)kδ2k . Definiert man F̃k :=
Fk ◦ δ2−αk , sprich Fk(λ) = F̃k(2

αkλ), erhält man

Fk(Hα) = δ2−k F̃k((Hα)k)δ2k .
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Wir behaupten nun

Fk(Hα)(x, y) = 2−kdF̃k((Hα)k)(2
−kx, 2−ky) . (D.14)

Dies ist ersichtlich, wenn man das innere Produkt der beiden Operatoren, die durch die
obigen Integralkerne definiert sind, mit Funktionen f ∈ L2(Rd) nimmt. Mit der Beobachtung
(g, δ2kf) = 2−kd(δ2−kg, f) erhalten wir

(f, Fk(Hα)f) = (f, δ2−k F̃k((Hα)k)δ2kf) = 2+kd(δ2kf, F̃k((Hα)k)δ2kf)

= 2−kd
∫
f(x)F̃k((Hα)k)(2

−kx, 2−ky)f(y) dx dy .

Wenden wir (D.14) und Behauptung D.1.6 mit der kompakt getragenen und hinreichend
regulären Funktion F̃k(λ) = ϕ(λ)F (2−αkλ) und dem Operator (Hα)k = |p|α + 2αkV ◦ δ2k an
(wir erinnern daran, dass im Beweis dieser Behauptung lediglich der Wärmeleitungskern mit
V = 0 eine Rolle spielte), erhalten wir mit der Substitution y 7→ 2ky,

sup
x∈Rd

∫
|Fk(Hα)(x, y)|(1 + 2−k|x− y|)b dy

= sup
x∈Rd

∫
|F̃k((Hα)k)(x, y)|(1 + |x− y|)b dy

. ‖F̃k‖Hs+(1+ε)/2 = ‖ϕ(·)F (2−αk·)‖Hs+(1+ε)/2

und die rechte Seite ist wegen der Annahme von Satz D.1.2 gleichmäßig in α und k beschränkt.

Der Beweis von (D.7b) beruht auf exzellenten punktweisen Schranken von |ψk(Hα)(x, y)|.
An diesem Punkt kommt Annahme D.1.1 ins Spiel. Unglücklicherweise sind wir nur in der
Lage, sie für c < α zu verifizieren, da der Wärmeleitungskern lediglich algebraisch abfällt.

Behauptung D.1.8. Seien α ∈ (0, 2), ψ ∈ C∞c (R) mit supp ψ ⊆ [−1, 1] und ψ(x) = 1 für
x ∈ [0, 2−α/2]. Sei weiter ψk(λ) = ψ(2αkλ). Dann gilt für alle 0 ≤ c < α

|ψk(Hα)(x, y)| . 2−kd(1 + 2−k|x− y|)−c

für alle x, y ∈ Rd.

Beweis. Wir schreiben ψ0(Hα) = (ψ0(Hα)eHα)e−Hα und bemerken, dass die Funktion F (λ) :=
ψ0(λ)eλ die Bedingungen von Behauptung D.1.6 erfüllt. Für k = 0 impliziert Behauptung
D.1.6 dann für alle 0 ≤ c < α (mit der Submultiplikativität von ωc)

|ωc(x, y)ψ0(Hα)(x, y)| ≤
∣∣∣∣∫ (ψ0(Hα)eHα

)
(x, z)ωc(x, z) e−Hα(z, y)ωc(z, y) dz

∣∣∣∣
≤ ‖ψ0(Hα)eHα‖c sup

x∈Rd
e−|p|

α
(x)(1 + |x|)c . 1 ,

also die gewünschte Schranke. Für k 6= 0 verwendet man die Dilatationsmethoden aus Korollar
D.1.7 mit dem Multiplikator

Fk(λ) := ψk(λ)e2αkλ ≡ ψ(2αkλ)F (2αkλ)
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(anstatt Fk(λ) := ϕ(2αkλ)F (λ)), woraus die Endlichkeit von

sup
x∈Rd

∫
(ψk(Hα)e2αkHα)(x, y) (1 + 2−k|x− y|)c dy ≤ ‖ψ0F‖Hs+(1+ε)/2

und mit dem obigem Argument die behauptete Schranke von |ψk(Hα)(x, y)| folgt.

Obwohl supx e−|p|
α
(x)(1 + |x|)c sogar für alle c ≤ d+α endlich ist, folgen aus dem Beweis

keine besseren punktweise Schranken an |ψk(Hα)(x, y)|. Andererseits ist die Endlichkeit der
Schur-Norm ‖ψk(Hα)‖b für b < α ein Indiz, dass bessere Schranken plausibel sind, insbeson-
dere solche, die wir in Annahme D.1.1 postulieren.

Um fortzufahren, nehmen wir im Folgenden an, dass Annahme D.1.1 erfüllt ist, das heißt,
es gibt ein ε > 0, sodass für alle c < d+ ε

|ψk(Hα)(x, y)| . 2−kd(1 + 2−k|x− y|)−c (D.15)

gilt. Wir erinnern, dass die Annahme im Fall d = 1 und α > 1 wegen Behauptung D.1.8 auto-
matisch erfüllt ist. Wir bemerken an dieser Stelle, dass diese Schranke, zusammen mit Korollar
D.1.7, ebenfalls (D.7c) (wofür wir ‖(ψkFk)(Hα)‖L1→L1 . 1 zeigen mussten) impliziert.

In jedem Fall erlaubt uns (D.15) eine bekannte Eigenschaft des Hardy–Littlewoodschen
Maximaloperators auszunutzen (siehe (D.17)), welche wesentlich für die Verifikation von
(D.7b), sprich ‖

∑
i ψki(Hα)bi‖22 . λ‖f‖1, ist.

Beweis von (D.7b). Es bezeichne y0 den Mittelpunkt eines fixierten dyadischen Würfels Qi.
Falls y ∈ Qi, dann folgt aus der Dreiecksungleichung und |y − y0| . 2ki für y ∈ Qi

1 + 2−ki |x− y| ≤ 1 + 2−ki(|y − y0|+ |x− y0|) . 1 + 2−ki |x− y0| für x ∈ Rd .

Wiederholt man das Argument nochmals, erhält man auch die umgekehrte Schranke, zusam-
mengefasst also

1 + 2−ki |x− y| ∼ 1 + 2−ki |x− y0| für x ∈ Rd , y ∈ Qi . (D.16)

Mit dieser Abschätzung, (D.15) sowie
∫
|bi| . λ|Qi|, erhält man

|ψki(Hα)bi(x)| ≤
∫

2−kid(1 + 2−ki |x− y|)−c|bi(y)| dy

. λ|Qi|2−kid(1 + 2−ki |x− y0|)−c . λ

∫
Qi

2−kid(1 + 2−ki |x− y|)−c dy

= λ(2−kid(1 + 2−ki | · |)−c ∗ χQi)(x) .

Für ein beliebiges h ∈ L2(Rd) gilt

|(h, 2−kid(1 + 2−ki | · |)−c ∗ χQi)| = |(2−kid(1 + 2−ki | · |)−c ∗ h, χQi)| . (Mh,χQi) , (D.17)

wobei M den (zentrierten) Hardy–Littlewoodschen Maximaloperator bezeichnet und wir

sup
ε>0
|(φε ∗ f)(x)| . (Mf)(x)

für f ∈ Lp(Rd) (mit 1 ≤ p ≤ ∞) und einen glättenden Kern φε(x) = ε−dφ(x/ε), welcher
eine radial abfallende, integrierbare Majorante besitzt, verwendet haben (siehe beispielsweise
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[166, Kapitel III, §3, Theorem 2]). Da M insbesondere L2-beschränkt ist (siehe beispielsweise
[166, Kapitel I, §1, Theorem 1]), erhält man zusammen mit den Eigenschaften der Calderón–
Zygmund-Zerlegung

|(h,
∑
i

ψki(Hα)bi)| . (Mh,
∑
i

λχQi) . ‖h‖2‖λ
∑
i

χQi‖2

. ‖h‖2 · λ
√∑

|Qi| . ‖h‖2 ·
√
λ‖f‖1 .

Dies schließt den Beweis von (D.7b) und damit den Beweis von Satz D.1.2 unter der Voraus-
setzung, dass Annahme D.1.1 erfüllt ist.

Wir bemerken schließlich, dass dieser Beweis immerhin ein Hörmander-Multiplikator-
Theorem für kompakt getragene Funktionen liefert.

Behauptung D.1.9. Seien α ∈ (0, 2), 0 ≤ b ≤ b̃ < b0 < α und s = s(d, b, b̃, κ) aus (D.3). Ist
für ε > 0, 0 6= ϕ ∈ C∞c (R+), der Multiplikator F eine messbare, kompakt getragene Funktion,
sodass

sup
t>0
‖ϕF (t·)‖Hs+(1+ε)/2(R) <∞

gilt, dann ist F (Hα) schwach L1 → L1-beschränkt und Lp-beschränkt für alle 1 < p <∞.

Beweis. Wie im Beweis von Satz D.1.2 genügt es zu zeigen, dass F (Hα) schwach L1-beschränkt
ist. Dazu führt man dieselbe Calderón–Zygmund-Zerlegung durch, weshalb es genügt, (D.7a)
bis (D.7c) zu zeigen. Wir haben bereits gesehen, dass (D.7a) und (D.7c) auch für Funktionen
F gilt, die nicht kompakt getragen sind. Es verbleibt wieder (D.7b) nachzuweisen. Da nun
aber F kompakt getragen ist, kann die linke Seite von (D.6b) direkter abgeschätzt werden.
Wir erinnern an die gewünschte Ungleichung

|{x : |F (Hα)

(∑
i

ψki(Hα)bi + g

)
| > λ

3
}| . λ−1‖f‖1 . (D.18)

Wie zuvor folgt aus der L2-Beschränktheit beschränkter Funktionen von Hα zunächst

|{x : |F (Hα)g| > λ

6
}| . λ−2‖g‖22 ≤ λ−1‖f‖1 .

Andererseits folgt aus Behauptung D.1.6 (welche nun anwendbar ist, da F kompakt getragen
und hinreichend glatt ist) und Korollar D.1.7

|{x : |F (Hα)
∑
i

ψki(Hα)bi| >
λ

6
}| . λ−1

∑
i

‖F (Hα)ψki(Hα)bi‖1

≤ λ−1‖F (Hα)‖0
∑
i

‖ψki(Hα)‖0‖bi‖1 . λ−1
∑
i

‖bi‖1 ≤ λ−1‖f‖1 .

Dies schließt den Beweis.
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D.2 Ein Hörmander-Multiplikator-Theorem für La,α mit a ≥ 0

In [85, Theorem 3.1] werden hinreichende Bedingungen für die Gültigkeit eines Hörmander-
Multiplikator-Theorems gegeben, falls der zugehörige Wärmeleitungskern lediglich algebraisch
abfällt. Neben den Eigenschaften aus Lemma D.1.3, muss der Kern eine Hölder-Bedingung
erfüllen. Wir zitieren

Satz D.2.1 (Hebisch [85]). Sei A ein nicht-negativer, selbstadjungierter Operator auf L2(Rd).
Angenommen, es gibt positive Zahlen c, b,m, sodass für alle t > 0 die Schranken

sup
y∈Rd

∫
Rd
|e−tA(x, y)|(1 + t−1/m|x− y|)c dx <∞ ,

sup
y∈Rd

td/m
∫
Rd
|e−tA(x, y)|2 dx <∞

sowie ∫
|e−tA(x, y)− e−tA(x, z)| dx . t−b/m|y − z|b für alle y, z ∈ Rd (D.19)

wahr sind. Sei F ∈ Hs
loc(R) mit

s > 2[d/(2c)]

[
d

2

(
1 +

1

c

)
+ 1

]
+

1

2

und für ein 0 6= ϕ ∈ C∞c (R+) gilt supt>0 ‖ϕF (t·)‖Hs < ∞. Dann ist F (A) schwach L1-
beschränkt und Lp-beschränkt für alle p ∈ (1,∞).

Der Beweis dieses Satzes verläuft ähnlich zu dem von Zo [186] (siehe auch [83, Ab-
schnitt 4-6]) und beruht stark auf der Regularität und der Endlichkeit von Schur-Normen
des Wärmeleitungskerns. Aus diesem Grund wird auch die obige Maschinerie, die von Schur-
Normen anderer Funktionen von La,α abhängt, nicht benötigt. Insbesondere wird das Problem
des langsamen Abfalls der |ψk(La,α)(x, y)| umgangen. Da a ≥ 0 (und damit δ ≤ 0), reduziert
sich die Verifikation der ersten beiden Schranken auf die, die den freien Wärmeleitungskern
e−t|p|

α
involvieren. Dies sind gerade die Schranken aus Lemma D.1.3, das heißt es sind m = α

und 0 < c < α in den obigen Annahmen. Die Verifikation der dritten Bedingung stellt
sich als schwieriger heraus, da wir nur Schranken mit nicht expliziten Konstanten an den
Wärmeleitungskern besitzen. Das heißt, jede mögliche Auslöschung der e−La,α geht durch eine
Abschätzung verloren. Nichtsdestoweniger ist es möglich die Bedingung zunächst für a = 0 zu
bestätigen. Im Anschluß verwenden wir Störungstheorie in Form der Duhamel-Formel (7.16)
sowie die regularisierende Eigenschaft von e−La,α für kleine |x| und |y|, um die Bedingung
auch für a > 0 nachzuweisen. Wir beginnen mit dem Fall a = 0.

Behauptung D.2.2. Seien d ∈ N und α ∈ (0, 2). Dann gilt (D.19) für A = |p|α, m = α und
beliebiges b ∈ (0, 1].

Beweis. Nach Verschieben von x 7→ x + z und der darauffolgenden Substitution x 7→ t1/αx
ist ersichtlich, dass es ausreicht∫

Rd

∣∣∣e−|p|α(x, 0)− e−|p|
α
(x,w)

∣∣∣ dx . |w|b (D.20)
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für ein b > 0 zu zeigen, wobei w = t−1/α(y − z). Da e−|p|
α
(x) wegen (D.8a) integrierbar

ist, genügt es, den Fall |w| ≤ 1/2 zu untersuchen. Dazu zerlegen wir das Integral über x
bei |x| = 3|w| und betrachten zuerst |x| ≤ 3|w|. Da der Wärmeleitungskern nach Satz 8.1.6
gleichmäßig in x beschränkt ist, folgt aus der Dreiecksungleichung∫

|x|≤3|w|

∣∣∣e−|p|α(x, 0)− e−|p|
α
(x,w)

∣∣∣ dx ≤ 2

∫
|x|≤4|w|

∣∣∣e−|p|α(x, 0)
∣∣∣ dx . |w|d .

Für |x| ≥ 3|w| verwenden wir den Mittelwertsatz, um die linke Seite von (D.20) durch

|w|
∫

|x|≥2|w|

dx |∇x
∫
Rd

eipxe−|p|
α
dp|

abzuschätzen. Im Folgenden zeigen wir, dass das Integral über |x| ≥ 2|w| gleichmäßig in |w|
beschränkt ist. Mit der Fourier–Bessel-Transformation (siehe beispielsweise Stein und Weiss
[170, Kapitel IV, Theorem 3.3]) und der Rekursionsbeziehung für Ableitungen der Bessel-
Funktionen [137, Formel 9.1.30]

d

dz
(z−νJν(z)) = −z−νJν+1(z) für z > 0 , ν ∈ R , (D.21)

erhält man für r = |x|∣∣∣∣∇ ∫
Rd

eipxe−|p|
α
dp

∣∣∣∣ =

∣∣∣∣∂r ∫ ∞
0

kd−1e−k
α
(kr)−(d−2)/2J(d−2)/2(kr) dk

∣∣∣∣
=

∣∣∣∣∫ ∞
0

kde−k
α
(kr)1−d/2Jd/2(kr) dk

∣∣∣∣ . (D.22)

Wir zerlegen nun das Integral über x ein weiteres mal bei |x| = 2 und zeigen zuerst, dass die
rechte Seite von (D.22) für |x| ≥ 2 integrierbar ist. Um dies zu sehen, integrieren wir partiell,
verwenden wieder (D.21) und erhalten∫ ∞

0
kde−k

α
(kr)1−d/2Jd/2(kr) dk = −r−1

∫ ∞
0

e−k
α
kd∂k

[
(kr)1−d/2Jd/2−1(kr)

]
dk

= r−1

∫ ∞
0

e−k
α
kd−1(d− αkα) · (kr)1−d/2Jd/2−1(kr) dk .

Wegen des e−k
α
-Faktors existiert das Integral über k für große k. Allerdings müssen wir wegen

des Verhaltens des Integranden bei kleinen k Vorsicht walten lassen. Integriert man noch n−1
mal partiell, sieht man, dass die rechte Seite der letzten Formel gleich

r1−d/2−n
∫ ∞

0
k1+d/2−nJd/2−n(kr)

n∑
j=0

aje
−kαkjα dk

= r−d
∫ ∞

0
(kr)1+d/2−nJd/2−n(kr)

n∑
j=0

aje
−kαkjα dk

(D.23)

ist, wobei aj = aj(d, α) ∈ R und die kjα-Faktoren vom Ableiten von e−k
α

kommen. Der
Randterm der partiellen Integrationen bei k =∞ verschwindet wegen des e−k

α
-Faktors. Wir

erklären gleich, wieso auch der Randterm bei k = 0 verschwindet.
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Wir unterscheiden zwischen ungeraden und geraden d. Ist d gerade, wählen wir n = d/2,
womit der j-te Summand der rechten Seite von (D.23) (mit (D.21) und J−m(z) = (−1)mJm(z)
für m ∈ N, siehe [137, Formel 9.1.5]) gleich ist zu

ajr
−d
∫ ∞

0
(kr)J0(kr)kjαe−k

α
dk = −ajr−d−1

∫ ∞
0

∂k((kr)J−1(kr))kjαe−k
α
dk

= −ajr−d−1

∫ ∞
0

k−1 · krJ1(kr)
(
αjkjα − αkjα+α

)
e−k

α
dk ,

wobei der Randterm der partiellen Integration bei k = 0 quadratisch verschwunden ist. Mit
der Schranke |J1(z)| . min{z, z−1/2} (siehe [137, Formel 9.1.7 und 9.2.1]), kann der Absolut-
betrag der rechten Seite der letzten Formel durch eine Konstante mal

r−d

(∫ r−1

0
kr · (kjα + kjα+α)e−k

α
dk +

∫ ∞
r−1

(kr)−1/2(kjα + kjα+α)e−k
α
dk

)

abgeschätzt werden. Der zweite Summand ist durch eine Konstante mal r−d−1/2, wohingegen
der erste Summand durch r−d−1−jα + r−d−1−(j+1)α beschränkt ist. Damit ist der Beitrag
gerader d für |x| = r ≥ 2 in Rd integrierbar. Für n = d/2− 1 ist der Integrand von (D.23)

(kr)2J1(kr)

n∑
j=0

ajk
jαe−k

α
= −rk2∂k(J0(kr))

n∑
j=0

ajk
jαe−k

α
,

das heißt die Randterme der partiellen Integrationen verschwanden mindestens quadratisch.
Ist d dagegen ungerade, wählen wir n = (d + 1)/2 und verwenden [37, Formel 10.16.1],

das heißt J−1/2(kr) =
√

2/π(kr)−1/2 cos(kr). Damit wird (D.23) zu√
2

π
r−d

∫ ∞
0

e−k
α

cos(kr)

n∑
j=0

ajk
jα dk

=
a0√
2π
r−d

∫
R

e−|k|
α
eikr dk +

√
2

π
r−d−1

∫ ∞
0

r cos(kr)
n∑
j=1

aje
−kαkjα dk .

Das erste Integral über k ist gerade der Wärmeleitungskern e−|p|
α
(r) in einer Dimension,

welcher nach Satz 8.1.6 wie r−1−α abfällt. Integriert man den zweiten Summanden noch
einmal partiell, erhält man

−
√

2

π
r−d−1

n∑
j=1

aj

∫ ∞
0

(jαkjα−1 − αkjα+α−1)e−k
α

sin(kr) dk .

Dies zeigt, dass sowohl das Integral über k als auch das darauffolgende Integral über {x ∈ Rd :
|x| ≥ 2} existieren. Mit [37, Formel 10.16.1]) ist der Integrand von (D.23) für n = (d − 1)/2
gerade

kr sin(kr)
n∑
j=0

ajk
jαe−k

α
= −(∂k cos(kr))

n∑
j=0

ajk
jα+1e−k

α
,

woraus ersichtlich ist, dass die Randterme der partiellen Integrationen bei k = 0 mindestens
linear verschwinden.
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Führt man die beiden Fälle zusammen, folgt

|w|
∫
|x|≥2

|∇
∫
Rd

eipxe−|p|
α
dp| dx . |w| .

Schließlich schätzen wir (D.22) für 2|w| ≤ |x| ≤ 2 mit den Schranken [137, Formel 9.1.60 und
9.2.1] an |Jd/2(z)| für d ≥ 1 ab, sprich |Jd/2(z)| . min{1, z−1/2}. Mit diesen Schranken ist die
rechte Seite von (D.22) durch eine Konstante mal∫ r−1

0
kde−k

α
(kr)1−d/2 dk +

∫ ∞
r−1

kde−k
α
(kr)

1−d
2 dk

beschränkt. Der zweite Summand ist wegen (kr)(1−d)/21{k≥r−1} ≤ 1 gleichmäßig in r be-

schränkt. Andererseits ist der erste Summand durch eine Konstante mal r1−d/2 beschränkt.
Dies zeigt, dass das Integral über 2|w| ≤ |x| ≤ 2 gleichmäßig in |w| existiert und daher auch
die Schranke

|w|
∫

2|w|≤|x|≤2

|∇
∫
Rd

eipxe−|p|
α
dp| dx . |w|

gilt.

Durch Anwenden von Störungstheorie kann dieses Resultat auf La,α mit a ≥ 0 verallge-
meinert werden.

Behauptung D.2.3. Seien d ∈ N, a ≥ 0, α ∈ (0, 2 ∧ d) und c ∈ (0, α). Dann gilt das
Hörmander-Multiplikator-Theorem D.2.1 für La,α in Rd mit

s > 2[d/(2c)]

[
d

2

(
1 +

1

c

)
+ 1

]
+

1

2
.

Wir betonen, dass die punktweisen Schranken an exp(−tLa,α)(x, y) (mit δ < 0) für den Be-
weis entscheidend sind, in dem Sinn, dass der Kern bei kleinen |x| und |y|

”
regularisierender“

wirkt. Es ist dabei jedoch nicht zwingend notwendig, dass die exakte Relation (8.1) zwischen
der Kopplungskonstante und δ besteht. Der Grund dafür ist, dass es nicht auf die Größe
der Kopplungskonstante, sondern nur auf das Potential (beziehungsweise die Singularität)
ankommt.

Beweis. Es genügt, die Bedingungen in [85, Theorem 3.1] zu verifizieren. Die ersten beiden
Annahmen sind gerade die Aussagen aus Lemma D.1.3, welche direkt aus der Trotter-Formel
und den Eigenschaften von exp(−|p|α) folgen. Daher muss nur noch die Hölder-Bedingung
(D.19) nachgewiesen werden. Wie in Behauptung D.2.2 folgt aus der Substitution x 7→ t1/αx
und der L1 → L1-Beschränktheit von e−La,α , dass es ausreicht, die Abschätzung∫

Rd

∣∣e−La,α(x,w)− e−La,α(x, y)
∣∣ dx . |w − y|b (D.24)

für |w − y| ≤ 1/2 und ein b > 0 zu zeigen. Mit der Duhamel-Formel (7.16)

e−La,α(x,w) = e−|p|
α
(x,w)− a

∫ 1

0
ds

∫
Rd
dz e−(1−s)La,α(x, z)|z|−αe−s|p|

α
(z, w)
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und der Dreiecksungleichung ist die linke Seite von (D.24) durch∫
Rd

∣∣∣e−|p|α(x,w)− e−|p|
α
(x, y)

∣∣∣ dx
+ a

∫
Rd
dx

∣∣∣∣∫ 1

0
ds

∫
Rd
dz e−(1−s)La,α(x, z)|z|−α

(
e−s|p|

α
(z, w)− e−s|p|

α
(z, y)

)∣∣∣∣
beschränkt. Die Behauptung für den ersten Summanden wurde bereits in Behauptung D.2.2
für alle b ∈ (0, 1] gezeigt. Für γ ∈ (0, 1) und |z| ≥ |w − y|γ kann der zweite Summand mit
Hilfe des Maximumprinzips,

∫
Rd dx exp(−(1− s)La,α)(x, z) . 1,

e−s|p|
α
(x) ≥ e−s|p|

α
(y) für alle |x| ≤ |y| und s > 0

(siehe beispielsweise [12, Formel (5.1)] oder [14, Seite 13]), der Formel für den Riesz-Kern von
|p|α

|p|−α(x, y) =

∫ ∞
0

e−s|p|
α
(x, y) ds =

Γ((d− α)/2)

πd/22αΓ(α/2)
|x− y|−d+α

(siehe beispielsweise [166, Kapitel V, §1.1]) und [91, Theorem 4.5.10] (mit 1 ≤ p ≤ ∞ und
0 < d − d + α − d/p < 1, das heißt α − 1 < d/p < α und |z|−α ∈ Lp(|z| ≥ |w − y|γ) für
p ∈ (d/α,∞]) durch∫ 1

0
ds

∫
Rd
dx e−(1−s)La,α(x, z)

∫
|z|≥|w−y|γ

dz |z|−α
∣∣∣e−s|p|α(z, w)− e−s|p|

α
(z, y)

∣∣∣
.

∫
|z|≥|w−y|γ

dz |z|−α
∫ ∞

0
ds
(

e−s|p|
α
(z, w)− e−s|p|

α
(z, y)

)
×
(
1{|z−w|≤|z−y|} − 1{|z−w|≥|z−y|}

)
=

Γ((d− α)/2)

πd/22αΓ(α/2)

∫
|z|≥|w−y|γ

dz |z|−α
∣∣∣|z − w|−d+α − |z − y|−d+α

∣∣∣
.d,α |w − y|d−d+α−d/p ‖|z|−α‖Lp(|z|≥|w−y|γ) = A|w − y|

1−γ
p

(αp−d)

abgeschätzt werden. Somit verbleibt der Fall |z| ≤ |w− y|γ mit obigem γ < 1. Wie im Beweis
von Behauptung D.2.2 erwarten wir in dieser Region keine weiteren Auslöschungen mehr.
Daher genügt es (mit der Dreiecksungleichung) die Beiträge von e−s|p|

α
(z, w) beziehungsweise

e−s|p|
α
(z, y) separat zu untersuchen. Wegen Symmetrie reicht es, nur den Summanden mit

e−s|p|
α
(z, w) zu behandeln. Wir untersuchen nun genauer das Verhalten für s ≶ |w− y|εα und

|z − w| ≶ |w − y|ε mit 0 < ε < γ. Einerseits berechnet man für s ≥ |w − y|εα und beliebiges
|z − w| (unter Verwendung des Maximumprinzips, Ausführung der Integration über x und
Verwendung von exp(−s|p|α)(z, w) . s−d/α)∫ 1

|w−y|αε
ds

∫
|z|≤|w−y|γ

dz |z|−αe−s|p|
α
(z, w)

. |w − y|γ(d−α)

∫ 1

|w−y|αε
ds s−d/α . |w − y|(γ−ε)(d−α) .
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Andererseits führt die Verwendung des Maximumprinzips und das Ausführen der Integration
über x für das Raum-Zeit-Gebiet |z − w| ≥ |w − y|ε und s ∈ (0, 1) auf

∫
|z|≤|w−y|γ
|z−w|≥|w−y|ε

dz |z|−α|z − w|−d−α
|z−w|α∫

0

ds s+

∫
|z|≤|w−y|γ
|z−w|≥|w−y|ε

dz |z|−α
1∫

|z−w|α

ds s−d/α

.
∫

|z|≤|w−y|γ
|z−w|≥|w−y|ε

dz |z|−α|z − w|−d+α . |w − y|(γ−ε)(d−α) .

Somit verbleibt das Raum-Zeit-Gebiet |z − w| ≤ |w − y|ε und s ≤ |w − y|αε mit ε < γ. An
dieser Stelle verwenden wir die entscheidenden Schranken für den Wärmeleitungskern mit
a > 0 aus Satz 8.1.6. Verwendet man 1 − s ≥ konst (für s ≤ |w − y|αε ≤ 2−αε), δ ∈ (−α, 0),
verschiebt x 7→ x+ z und wendet die Hölder-Ungleichung an, erhält man

∫
Rd
dx

∫ |w−y|αε
0

ds

∫
|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−α
(

1 ∨ (1− s)1/α

|x|

)δ (
1 ∨ (1− s)1/α

|z|

)δ

× (1− s)−d/α
(

1 ∧ (1− s)1+d/α

|x− z|d+α

)
e−s|p|

α
(z, w)

.
∫
Rd

dx

(1 + |x|)d+α

∫
|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−α−δ
∫ |w−y|αε

0
ds s−d/α

(
1 ∧ s1+d/α

|z − w|d+α

)

.
∫

|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−α−δ|z − w|−d+α

≤

 ∫
|z|≤|w−y|γ

|z|−(α+δ)p dz


1/p ∫

|z−w|≤|w−y|ε

|z − w|−(d−α)p′ dz


1/p′

. |w − y|(d−(α+δ)p)γ/p · |w − y|(d−(d−α)p′)ε/p′ = |w − y|γ
(
d
p
−α−δ

)
+ε

(
α− d

p

)
.

Die letzten beiden letzten Integrale konvergieren, da p < d/(α+ δ) und p′ < d/(d−α), sprich
p ∈ (d/α, d/(α + δ)). Dieses Intervall ist nicht leer, da δ < 0. Darüberhinaus ist ersichtlich,
dass der Exponent γ(d/p− α− δ) + ε(α− d/p) positiv ist, was den Beweis von Behauptung
D.2.3 schließt.

Hätten wir das Maximumprinzip für e−(1−s)La,α(x, z) im Raum-Zeit-Gebiet |z| ≤ |w−y|γ ,
|z − w| ≤ |w − y|ε und s ≤ |w − y|αε mit 0 < ε < γ < 1 verwendet, hätten wir∫ |w−y|αε

0
ds

∫
|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−αe−s|p|
α
(z, w)
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integrieren müssen. Dieser Ausdruck kann allerdings nur durch das Integral∫
|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−α|z − w|−d+α

abgeschätzt werden, welches logarithmisch divergiert. Alternativ könnte man die Hardy–
Littlewood-Sobolew-Ungleichung

‖f ∗ | · |−α‖q . ‖f‖p

mit 1 + 1/q = 1/p + α/d anwenden, wobei in unserer Situation q = ∞, p = d/(d − α) und
f = e−s|p|

α
(z)θ(|w − y|ε − |z|) sind. Dies würde∫

|z|≤|w−y|γ
|z−w|≤|w−y|ε

dz |z|−αe−s|p|
α
(z, w)

.

 ∫
|x|≤|w−y|ε

(
s

(s2/α + |x|2)(d+α)/2

)d/(d−α)

dx


(d−α)/d

. s−1

zeigen, das heißt das darauffolgende Integral über s würde ebenfalls logarithmisch divergieren.

Stand der Dinge und Ausblick

Wir fassen unsere Resultate zusammen. Der Hauptgrund, weshalb wir ein Hörmander-Multi-
plikator-Theorem für |p|α + V nur für d = 1 und α > 1 erhalten, sind schlechte punktweise
Schranken für kompakt getragenen Funktionen von |p|α + V beziehungsweise die Tatsache,
dass es nicht offensichtlich ist, dass diese Funktionen radial abfallende, integrierbare Majo-
ranten besitzen. Die schlechten Schranken sind wiederum der Tatsache geschuldet, dass die
Schur-Norm ‖e−(|p|α+V )‖b nur dann endlich ist, wenn b < α, was wiederum aus dem langsamen
Abfall des freien Wärmeleitungskerns folgt. Andererseits liefert Dziubanski einen Hoffnungs-
schimmer in diese verzwickte Situation. In [42] betrachtete er eine mit Dilatationen ausge-
stattete, nilpotente Lie-Gruppe N homogener Dimension q sowie

”
Glowackis Distribution“

[73], die durch

Pf = lim
ε→0

∫
|x|>ε

f(0)− f(x)

|x|q+1
Ω(x) dx

definiert ist. Hierbei bezeichnet |x| die homogene Norm, dx das rechts-invariante Haar-Maß auf
N und Ω 6= 0 ist eine positive, symmetrische und glatte Funktion auf N \ {0}, die homogen
vom Grad 0 ist. Für N = Rq und Ω(x) ≡ 1 ist P gerade

√
−∆. Die durch P erzeugte

Halbgruppe in L2(N ) wurde von Glowacki [73] untersucht. Dziubanski verallgemeinerte seine
Überlegungen und betrachtete die durch PN (N ∈ N) erzeugte Halbgruppe, die als

e−tP
N
f =

∫ ∞
0

exp(−tλN )dE(λ)f
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geschrieben werden kann, wobei dE das Spektralmaß von P bezeichnet. Das Hauptresultat
seiner Arbeit ist eine punktweise Schranke an den Wärmeleitungskern e−tP

N
. Für alle N > q

zeigte er
e−tP

N
(x) .N t−q/N (1 + t−1/N |x|)−q−N .

Diese Abschätzung sowie die Ideen von Hulanicki und Stein [61, Seiten 208-215] erlaubten es
ihm durch geschickte Iteration ein Mikhlin-Multiplikator-Theorem für P zu beweisen. Insbe-
sondere erhält er die optimale Bedingung an die Regularität des Multiplikators.

Obwohl aus der Trotter-Formel die Abschätzung e−t(|p|+V )(x, y) ≤ e−t|p|(x, y) folgt, ist

nicht klar, ob auch eine Abschätzung der Art e−t(|p|+V )N (x, y) . e−t|p|
N

(x, y) wahr ist. Of-
fensichtlich wäre diese hinreichend, um Dziubanskis Iterationsmethode anzuwenden und ein
Multiplikator-Theorem auch für |p|+V zu zeigen. Die Verallgemeinerung dieser Ideen für |p|α
beziehungsweise |p|α + V (α 6= 1) ist ein weiteres offenes Problem.

Selbst wenn die Ideen von Hebisch und Dziubanski Multiplikator-Theoreme für |p|α + V
und alle d ∈ N und α ∈ (0, 2) liefern sollten, ist es bei weitem nicht klar, ob diese auch dann
anwendbar sind, wenn das Potential einen Negativ-Teil hat. Der Grund dafür ist, dass die
obigen Methoden stark auf der Endlichkeit von gewissen ‖ · ‖b-Normen beruhen. Die Gewich-
te ωb können allerdings nicht die Singularitäten des Wärmeleitungskerns im Falle negativer
Potentiale kompensieren. Damit meinen wir, dass bereits einfache Abschätzungen, wie bei-
spielsweise

sup
y∈Rd

∫
Rd
|e−La,α(x, y)|2 dx <∞ ,

oder die Auslöschungseigenschaft der Wärmeleitungskerne von La,α für a < 0 niemals erfüllt
sein können. Ein Ausweg aus diesem Dilemma könnten

”
gewichtete ‖ · ‖b-Normen“ im Geiste

von Milman und Semenov [128], wie

sup
y∈Rd

(
1 ∨ 1

|y|

)−δ ∫
Rd
|K(x, y)|

(
1 ∨ 1

|x|

)−δ
ωb(x, y) dx

sein. Allerdings bringt auch diese Idee mindestens zwei Schwierigkeiten mit sich. Erstens
ist es unklar, ob Hebischs Formalismus mit diesen gewichteten Normen wieder zu einem
Spektralmultiplikator-Theorem führt. Andererseits wird dadurch die Klasse der untersuchba-
ren Operatoren stark eingeschränkt, da eine ausgezeichnete Kenntnis des zugehörigen Wärme-
leitungskerns vorausgesetzt wird. Diese Kenntnis hängt wiederum stark vom Grundzustand
des untersuchten Operators ab, siehe auch die Beweise von [128, Theorem A, Theorem B], wel-
che beispielsweise zur Herleitung von Schranken an exp(−(−∆ + a|x|−2)) verwendet werden
können (siehe auch [128, Theorem 1, Theorem 2, Corollary 3]).

D.3 Hardy–Sobolew-Ungleichungen

In diesem Abschnitt beweisen wir einige (gewichtete) Hardy–Sobolew-Ungleichungen. Die
ersten Resultate sind unmittelbare Konsequenzen aus den Form-Ungleichungen aus Kapitel
5 und der Äquivalenz der Sobolew-Normen in L2 und gelten nur für d = 3 und α = 1 in
festen Drehimpulskanälen. Wir betonen nochmals, dass diese Ungleichungen in L2(R+, dr)
formuliert sind. Sie lassen sich vermutlich mit ähnlichen Rechnungen auf beliebige d ∈ N und
α ∈ (0, 2 ∧ d) verallgemeinern. Die letzten beiden Resultate gelten für La,α in L2(Rd) mit
beliebigem α ∈ (0, 2 ∧ d) und beruhen auf den Techniken aus Kapitel 7.
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Wir beginnen mit gewichteten Hardy–Sobolew–Ungleichungen für |p| + a|x|−1 in L2(R3)
mit a < 0 und erinnern an die Notation

p` =

√
− d2

dr2
+
`(`+ 1)

r2
in L2(R+, dr)

sowie die Abkürzung C` =
√
p2
` + 1− 1. Per Dualität folgt aus Behauptung 5.3.10

Lemma D.3.1. Seien M > 0, ` ∈ N0 und s ∈ (1/2, 1]. Dann gilt für f ∈ C∞c (R+)

sup
r≥0

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} + 1{r≥`+ 1

2
}

−1

|f(r)|2 ≤ As,M‖(C` +M)sf‖22 .

Beweis. Dies folgt aus der Unitarität der Fourier–Bessel-Transformation, sprich

f(r) =

∫ ∞
0

√
krJ`+1/2(kr)(Φ`f)(k)(

√
k2 + 1− 1 +M)s

(
√
k2 + 1− 1 +M)s

dk ,

der Cauchy–Schwarz-Ungleichung und Lemma 5.3.9.

Kombiniert man dieses Ergebnis mit dem Satz von Plancherel, sprich

‖(C` +M)s(p` +M)−s‖ ≤ as,M

und der Äquivalenz der Sobolew-Normen für |p|+a|x|−1 in L2(R3) (Lemma 5.3.6 und Korollar
5.3.8, welche anwendbar sind, wenn s zusätzlich eingeschränkt wird), erhält man

Lemma D.3.2. Seien M > 0, ` ∈ N0, a ≥ −2/π und 1/2 < s < min{3/2 − δ, 1} mit δ aus
(7.3). Dann gilt für f ∈ C∞c (R+)

sup
r≥0

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} + 1{r≥`+ 1

2
}

−1

|f(r)|2 ≤ As,M‖(p` + a|x|−1 +M)sf‖22 .

Wir bemerken schließlich, dass wir per Dualität aus Behauptung 5.3.10 auch die folgende
gewichtete Sobolew-Ungleichung erhalten.

Lemma D.3.3. Seien a > 0, ` ∈ N0 und s ∈ (1/2, 3/4]. Dann gilt für f ∈ C∞c (R+)

sup
r≥0

( r

`+ 1
2

)2s−1

1{r≤`+ 1
2
} +

(
r

`+ 1
2

)4s−1

1{`+ 1
2
≤r≤(`+ 1

2
)2}

+

(
`+

1

2

)4s−1

1{r≥(`+ 1
2

)2}

]−1

|f(r)|2

≤ As,a‖(C` + a(`+ 1/2)−2)sf‖22 .

Wir kommen nun zu den ungewichteten Hardy–Sobolew-Ungleichungen und beginnen mit
einer Aufwärmübung.
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Lemma D.3.4. Seien 2s > d/α und a ≥ 0, dann gilt

‖f‖L∞(Rd) ≤ ‖(La,α + 1)sf‖L2(Rd) für alle f ∈ C∞c (Rd) .

Beweis. Mit Dunfords und Pettis Ungleichung für Integraloperatoren [177, Abschnitt 46.2]
(siehe auch [29, Corollary 2.14]) und wegen der Selbstadjungiertheit von La,α genügt es,

sup
x∈Rd

∫
Rd
dy
∣∣(La,α + 1)−s(x, y)

∣∣2 = sup
x∈Rd

(La,α + 1)−2s(x, x) <∞

nachzuweisen. Mit dem Spektralsatz, dem Maximumprinzip und 2s > d/α erhält man

1

Γ(2s)
(La,α + 1)−2s(x, x) =

∫ ∞
0

dt t2s−1e−t(La,α+1)(x, x) .
∫ ∞

0
dt t2s−1− d

α e−t <∞ .

Das folgende Resultat zeigt, dass für d ≥ 3 und 2s > 1/α der Operator (La,α + 1)−s

im nullten Drehimpulskanal von L2(Rd) nach L∞ beschränkt ist. Dieses Resultat kommt
im Wesentlichen durch sphärische Ausmittelungen beziehungsweise Glättungen durch eine
Integration über Sd−1 zustande.

Lemma D.3.5. Seien d ≥ 3, α ∈ (0, 2) und a ≥ a∗ so, dass δ ≤ min{(d − 1)/2, (d − α)/2}
mit δ aus (7.3). Ist 2s > 1/α, dann gilt

‖| · |(d−1)/2f‖L∞(R+) ≤ Aα,d,s ‖(La,α + 1)sf‖L2(Rd) für alle radialen f ∈ C∞c (Rd) .

Wir bemerken, dass die Einschränkung 2αs < d− 2δ hier nicht nötig ist, da wir hier nicht
die Äquivalenz der Sobolew-Normen von Potenzen der Operatoren |p|α und La,α verwenden.
Diese obere Schranke an s garantierte die (für den Beweis der Äquivalenz wesentliche) verall-
gemeinerte Hardy-Ungleichung, Behauptung 7.1.4. Die Schranke δ ≤ (d − α)/2 stellt sicher,
dass Potenzen des Operators La,α mit Hilfe des Spektralsatzes und des Wärmeleitungskerns
definiert werden können.

Beweis. Wir zeigen die Aussage wieder mit Hilfe der obigen Ungleichung für Integralopera-
toren und definieren dazu

K(r, r′) :=

∫
Sd−1

(La,α + 1)−s(rω, r′ν) dω für alle ν ∈ Sd−1 ,

wobei wir bemerken, dass der Kern (La,α+1)−s(x, y) nur von |x|, |y| und dem Winkel zwischen

x = rω und y = r′ν abhängt. Für g(r) := r
d−1
2 f(r) mit ‖f‖L2(Rd) =

√
|Sd−1|‖g‖L2(R+,dr) = 1

haben wir mit K̃(r, r′) = r
d−1
2 K(r, r′)r′

d−1
2 , |x| = r und allen ν ∈ Sd−1

|x|(d−1)/2((La,α + 1)−s|x|(d−1)/2|x|−(d−1)g)(x)

=

∫ ∞
0

∫
Sd−1

r(d−1)/2(La,α + 1)−s(rν, r′ω)r′(d−1)/2g(r′) dω dr′ =

∫ ∞
0

K̃(r, r′)g(r′) dr′ .

Es genügt daher zu zeigen, dass für alle ν ∈ Sd−1

sup
r>0

∫ ∞
0

dr′
∣∣∣K̃(r, r′)

∣∣∣2 = sup
r>0

rd−1

∫ ∞
0

dr′r′d−1K(r, r′)K(r′, r)

= sup
r>0

rd−1

∫
Sd−1

dω

∫
Sd−1

dω′
∫ ∞

0
dr′r′d−1 (La,α + 1)−s (rω, r′ν) (La,α + 1)−s (r′ν, rω′)
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endlich ist. Die Behauptung folgt insbesondere, wenn der Mittelwert des letzten Integrals über
ν ∈ Sd−1 endlich ist, also wenn

|Sd−1|−1 sup
r>0

rd−1

∫
Sd−1

dω

∫
Sd−1

dω′ (La,α + 1)−2s (rω, rω′) <∞ .

Um dies zu verifizieren, verwenden wir nochmals den Spektralsatz,

t−d/α

(
1 ∧ t

1+d/α

|x|d+α

)
∼ t

(t2/α + |x|2)
d+α
2

und die Tatsache, dass auch e−tLa,α(x, y) nur von |x|, |y| und dem Winkel zwischen x und y
abhängt. Es reicht daher aus

sup
r>0

rd−1

∫ ∞
0

dt e−tt2s−1

(
1 ∨ t

1/α

r

)2δ ∫ π

0
dθ

t(sin θ)d−2

(t2/α + 2r2 − 2r2 cos θ)
d+α
2

= sup
r>0

r2αs−1

∫ ∞
0

dt e−tr
α
t2s
(

1 ∨ t1/α
)2δ
∫ 1

−1
du

(1− u2)
d−3
2

(t2/α + 2− 2u)
d+α
2

(D.25)

zu untersuchen. Für t → ∞ fällt das Winkel-Integral wie t−
d+α
α ab, wohingegen es sich für

t→ 0 wie t−1−1/α verhält. Dies ist aus∫ 1

−1
du

(1− u2)
d−3
2

(t2/α + 2− 2u)
d+α
2

=
1

t1+ 1
α

∫ 1

−1

du

t2/α

(1−u
t2/α

)
d−3
2 (1 + u)

d−3
2

(1 + 2(1−u)

t2/α
)
d+α
2

≤ 2
d−3
2

t1+ 1
α

∫ 2

0

du

t2/α

( u
t2/α

)
d−3
2

(1 + 2u
t2/α

)
d+α
2

.α,d t
−1− 1

α

ersichtlich, wobei wir u 7→ u+ 1 verschoben, u 7→ −u gespiegelt, den Integrationsbereich auf
[0,∞) vergrößert und schließlich u 7→ t2/αu skaliert haben. Daher ist die rechte Seite von
(D.25) durch

sup
r>0

(
r2αs−1

∫ 1

0
dt e−tr

α
t2s−1− 1

α + r2αs−1

∫ ∞
1

dt e−tr
α
t2s+

2δ
α
− d+α

α

)
(D.26)

beschränkt. Skaliert man t 7→ r−αt im ersten Summanden und integriert anschließend über t
von 0 bis ∞, sieht man, dass er wegen 2αs > 1 durch eine Konstante beschränkt ist.

Wir betrachten nun den zweiten Summanden. Für r →∞ fällt er offensichtlich exponen-
tiell schnell ab. Wir untersuchen nun das Verhalten für r → 0. Für 2αs+2δ = d ist der zweite
Summand von (D.26) gerade r2αs−1Γ(0, rα) mit der unvollständigen Γ-Funktion Γ(0, rα) (sie-
he [34, Formel 6.5.3]). Dieser Ausdruck verhält sich für r → 0 in jedem Fall wie −r2αs−1 log r,
ist also in diesem Grenzwert endlich, da 2αs > 1. Falls 2αs+ 2δ 6= d schätzen wir den zweiten
Summanden von (D.26) durch eine Konstante mal

θ(2αs+ 2δ − d)rd−1−2δ

∫ ∞
rα

dt

t
e−tt2s+

2δ
α
− d
α + θ(d− 2αs− 2δ)r2αs−1

∫ ∞
1

dt

t
e−tr

α
t2s+

2δ
α
− d
α

≤ θ(2αs+ 2δ − d)rd−1−2δ

∫ ∞
0

dt

t
e−tt2s+

2δ
α
− d
α + θ(d− 2αs− 2δ)r2αs−1

∫ ∞
1

dt

t
t2s+

2δ
α
− d
α

≤ A
(
rd−1−2δ + r2αs−1

)
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ab, wobei θ(x) die Heaviside-Funktion mit der Konvention θ(0) = 0 bezeichnet. Im Fall
2αs + 2δ > d haben wir die Substitution t 7→ r−αt durchgeführt. Da δ ≤ (d − 1)/2 und
2αs > 1, ist dieser Ausdruck ebenfalls endlich für r → 0.

Wir schließen mit folgenden Bemerkungen.
(1) Wegen Dualität ist die L2 → L∞-Beschränktheit der Resolventen äquivalent zur L1 → L2-
Beschränktheit.
(2) Das Lemma zeigt, dass L2(R+, dr)-Potentiale relativ beschränkt bezüglich La,α mit α ≥ 1
im nullten Drehimpulskanal sind, selbst wenn a = a∗.
(3) Schließlich wäre es interessant∥∥(1−Π0)[(La,α + 1)−s − (|p|α + 1)−s]

∥∥
Lq(Rd)→Lr(Rd)

<∞

für gewisse q und r zu zeigen, wobei Π0 die Projektion auf den nullten Drehimpulskanal meint.
Damit wäre es möglich, Sobolew-Einbettungen und L2 → L∞-Schranken im orthogonalen
Komplement des nullten Drehimpulskanals für La,α aus den entsprechenden Ergebnissen für
|p|α herzuleiten.
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tifiques de l’École Normale Supérieure, 24(2):215–225, 1991.



LITERATURVERZEICHNIS 239

[156] Heinz K. H. Siedentop und Rudi Weikard: On the leading energy correction for
the statistical model of the atom: Non-interacting case. Abh. Braunschweig. Wiss. Ges.,
38:145–158, 1986.

[157] B. Simon: Fifteen problems in mathematical physics. In: Perspectives in Mathematics.
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