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Zusammenfassung

Diese Dissertation widmet sich den Eigenschaften von Grundzustinden grofler, relativistischer
Coulomb-Systeme. Ein Beispiel fiir ein solches System ist ein neutrales Atom. Diese kénnen
durch relativistische Vielteilchen-Hamilton-Operatoren beschrieben werden, wie zum Beispiel
den Chandrasekhar- oder projizierten Coulomb-Dirac-Operatoren.

Atome mit hoher Kernladungszahl weisen zwei besonders interessante Lingenskalen auf,
die Thomas—Fermi- und die Scott-Léngenskala. Auf Ersterer befindet sich der Grofiteil der
Elektronen, die zur fiithrenden Ordnung der Grundzustandsenergie im Grenzwert grofier Teil-
chenzahlen beitragen. Elektronen, die sich auf der Scott-Skala befinden, sind sehr nahe am
Kern lokalisiert und verursachen Quantenkorrekturen der Grundzustandsenergie. Wegen des
Heisenbergschen Unschérfeprinzips muss davon ausgegangen werden, dass die Geschwindig-
keit dieser Elektronen ein wesentlicher Bruchteil der Lichtgeschwindigkeit ist und die Quan-
tenkorrekturen daher zusétzlich relativistisch korrigiert werden. Das Ziel dieser Arbeit ist
das Studium der Einteilchendichte eines Grundzustands auf diesen beiden Léngenskalen im
Grenzwert grofler Teilchenzahlen.

Auf der Thomas—Fermi-Lingenskala zeigen wir, dass die reskalierte Einteilchendichte eines
Grundzustands gegen die wasserstoffartige Thomas—Fermi-Dichte konvergiert. Wir zeigen zu-
erst schwache Konvergenz in den semiklassischen LP-Réumen fiir den Chandrasekhar- und den
Brown-Ravenhall-Operator. In einer gemeinsamen Arbeit mit Heinz Siedentop [125] beweisen
wir auerdem die Konvergenz der Dichte in der Coulomb-Norm fiir den Chandrasekhar-, den
Brown—Ravenhall- und den Furry-Operator. Diese Ergebnisse zeigen, dass sich der Hauptteil
der Elektronen eines relativistisch beschriebenen Atoms dennoch nicht-relativistisch verhéilt.

Auf der Scott-Skala beweisen wir, basierend auf einer Zusammenarbeit mit Rupert L.
Frank, Heinz Siedentop und Barry Simon [67], dass die reskalierte Einteilchendichte eines
Grundzustands des Chandrasekhar-Operators schwach gegen die Summe der Quadrate der
Eigenfunktionen des entsprechenden Einteilchen-Wasserstoff-Operators konvergiert. Die Kon-
vergenz gilt sowohl fiir die gesamte Dichte als auch in jedem festen Drehimpulskanal. Die
Klasse der erlaubten Test-Funktionen, fiir die diese Konvergenzen gelten, beinhaltet kompakt
getragene Funktionen, die integrierbar oder durch ein Vielfaches des Coulomb-Potentials be-
schriankt sind. Dies bestétigt die von Lieb [115] geduBerte, sogenannte starke Scott-Vermutung
fiir relativistische Coulomb-Systeme und zeigt insbesondere, dass kernnahe Elektronen rela-
tivistische Korrekturen erzeugen. Als Nebenprodukt erhalten wir auflerdem eine punktweise
obere Schranke an die relativistische Wasserstoff-Dichte, welche im Einklang mit dem asym-
ptotischen Verhalten der nicht-relativistischen Wasserstoff-Dichte fiir groflie Abstéinde zum
Kern steht. Im Anschluf illustrieren wir, wie diese Ergebnisse auf den Furry-Operator verall-
gemeinert werden kénnen.

Ein wichtiges Werkzeug fiir den Beweis der starken Scott-Vermutung basiert auf einer
Zusammenarbeit mit Rupert L. Frank und Heinz Siedentop [66]. Wir betrachten den frak-



tionalen Laplace-Operator mit Hardy-Potential und kritischer oder subkritischer Kopplungs-
konstante. Es wird gezeigt, dass die L?-Normen, die durch Potenzen dieses Operators erzeugt
werden, zu den L?-Normen, die durch Potenzen des fraktionalen Laplace-Operators erzeugt
werden, dquivalent sind. Dariiberhinaus erhalten wir verallgemeinerte und umgekehrte Hardy-
Ungleichungen. Eine Verallgemeinerung auf L? ist moglich, wenn ein Mikhlin-Multiplikator-
Satz fiir den verallgemeinerten Hardy-Operator bewiesen werden kann, was bisher nur fiir
positive Kopplungskonstanten gelungen ist. Dies ist eine Verallgemeinerung des Ergebnisses
fiir den gewohnlichen, nicht-fraktionalen Hardy-Operator von Killip u. a. [102].



Abstract

This dissertation is dedicated to the study of properties of large relativistic Coulomb systems,
a neutral atom being one particular example. Such systems can be described by relativistic
many-particle quantum Hamiltonians such as the Chandrasekhar or projected Coulomb—Dirac
operators.

Heavy atoms possess two very interesting length scales, namely the Thomas—Fermi and the
Scott length scale. The bulk of the electrons contributing to the leading order of the ground
state energy in the limit of large particle numbers is located on the former length scale and
is described semiclassically. Electrons on the Scott length scale are localized very close to
the nucleus and generate quantum corrections to the ground state energy. By Heisenberg’s
uncertainty principle, the innermost electrons’ velocities are a substantial fraction of the
velocity of light. Consequently, a relativistic description is mandatory. The aim of this thesis
is to give new insights on properties of the one-particle ground state density on these two
length scales in the limit of large particle numbers.

Our first result shows that the rescaled one-particle density of a ground state on the
Thomas—Fermi length scale converges to the hydrogenic Thomas—Fermi density. We show that
the density converges weakly in the semiclassical LP spaces for the Chandrasekhar and the
Brown-Ravenhall operator. Moreover, based on a joint work with Heinz Siedentop [125], we
prove that the density also converges in Coulomb norm for the Chandrasekhar, the Brown—
Ravenhall, and the Furry operator. These results show that the bulk of the electrons in a
relativistically described system in fact still behaves non-relativistically.

Based on a joint work with Rupert L. Frank, Heinz Siedentop, and Barry Simon [67], we
prove that the rescaled one-particle density of a ground state of the Chandrasekhar operator
on the Scott length scale converges weakly to the sum of the squares of the eigenfunctions
of the corresponding one-particle operator. In particular, we show convergence in each fixed
angular momentum channel and convergence of the total density. The class of test functions
for which this weak convergence holds contains in particular compactly supported functions
that are integrable or bounded by a multiple of the Coulomb potential. This proves Lieb’s so-
called strong Scott conjecture [115] for relativistic Coulomb systems and shows in particular
that relativistic effects occur close to the nucleus. As a byproduct we obtain a pointwise
upper bound on the relativistic hydrogenic density which is in accordance with the asymp-
totic behavior of the non-relativistic hydrogenic density for large distances to the nucleus.
Afterwards, we generalize these results to the Furry operator.

One crucial tool for the proof of the strong Scott conjecture is established in a joint work
with Rupert L. Frank and Heinz Siedentop [66]. We consider the fractional Laplace operator
with Hardy potential and critical or subcritical coupling constant. We show that the L? norms
that are generated by powers of this operator are equivalent to the norms generated by powers
of the fractional Laplacian. Moreover, we derive generalized and reversed Hardy inequalities



for this generalized Hardy operator. A generalization of these results to LP is possible if a
Mikhlin multiplier theorem associated to this operator can be proven. So far, this was only
feasible if the coupling constant is positive. This is a generalization of the result concerning
the ordinary, non-fractional Hardy operator, obtained by Killip et al [102].



Vorwort

Die Dissertation ist in drei Teile gegliedert. In der Einleitung geben wir einen Uberblick iiber
Vielteilchen-Quantenmechanik, insbesondere iiber grole Coulombsysteme. Wir argumentieren
dann, weshalb eine relativistische Beschreibung solcher Systeme im Grenzfall grofler Teilchen-
zahlen notwendig ist und geben eine Auswahl relativistischer Modelle. Die Einleitung schlief3t
mit einer Zusammenfassung der erarbeiteten Ergebnisse und in der Arbeit verwendeter No-
tation.

Die anschlieBenden Kapitel beinhalten die prézisen Definitionen des vorliegenden Systems
sowie die Formulierungen der Hauptresultate und deren Beweise. Die meisten Resultate wur-
den in wissenschaftlichen Kollaborationen erarbeitet. Das Verhiltnis zu diesen, beziehungswei-
se den daraus hervorgegangenen Publikationen, wird zu Beginn jedes Kapitels hervorgehoben.

SchlieBlich formulieren wir einige offene Fragen, die im Zusammenhang mit den Ergebnis-
sen der Dissertation stehen und diskutieren Ansétze zur Losung dieser Probleme.
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Kapitel 1

Einfithrung und Uberblick iiber
relativistische Modelle der
Quantenmechanik

1.1 Vielteilchen-Quantenmechanik und Resultate fiir schwere
Atome

Die Grundzustandsenergie grofler Coulomb-Systeme, wie beispielsweise Atome oder Molekiile,
als auch die Verteilung der Elektronen in solchen Systemen, sind von fundamentalem Interesse
in der Physik und der Quantenchemie. Systeme auf atomaren Lingenskalen werden quanten-
mechanisch beschrieben. Thr Verstédndnis beruht auf prézisen Untersuchungen des zugrunde-
liegenden Hamilton-Operators. Beispielsweise beschreibt

N N
3 (—;AV - ’fV’) + > o N\ L*(®R?: C9) (1.1)

v=1 1<v<pu<N |2y — @]

ein nicht-relativistisches Atom in der Born—Oppenheimer-Approximation. Hierbei bezeichnet
/\]VV:1 L%*(R? : C9) den Unterraum der antisymmetrischen Funktionen aus L2(R3Y : CqN).
Das System besteht aus einem am Ursprung fixierten Kern mit Kernladung Z, der mit
N Elektronen iiber das Coulomb-Potential wechselwirkt. Dariiberhinaus wird die Coulomb-
Wechselwirkung der Elektronen untereinander beriicksichtigt. Hierbei sind die physikalischen
Einheiten so gewé#hlt, dass i = |e|] = m = 1, wobei h das reduzierte Plancksche Wirkungs-
quantum, e die Elementarladung und m die Elektronenmasse bezeichnen. Die Zahl der Spin-
Freiheitsgrade jedes Elektrons wird mit ¢ bezeichnet. In der Realitét ist ¢ = 2. Wir konzen-
trieren uns von nun an auf den Fall neutraler Atome, das heifit N = Z.

Allerdings ist es — wie im klassischen Kepler-Problem — hoffnungslos, exakte Lésungen der
(stationéren) Schrodinger-Gleichung zu finden, wenn das System bereits aus mehr als zwei
Teilchen besteht. Aus diesem Grund benétigt man Modelle fiir Vielteilchen-Quantensysteme,
die einfacher zu l6sen sind, aber das System immer noch hinreichend akkurat beschreiben.
Dichtefunktionaltheorien sind vielversprechende Kandidaten solcher Modelle, da sie hoch-
dimensionale, lineare Probleme auf niedrigdimensionale nicht-lineare Probleme reduzieren.
Diese konnen beispielsweise mit Methoden der Funktionalanalysis und den partiellen Dif-
ferentialgleichungen behandelt werden. Dichtefunktionaltheorien haben sich als sehr zweck-



2 1. Einfiihrung

dienlich in der Untersuchung von Eigenschaften von Grund- und angeregten Zusténden grofler
Coulomb-Systeme erwiesen. Der Hohenberg—Kohn-Satz [89] besagt beispielsweise, dass es ein
Energie-Funktional gibt, welches nur von der Einteilchendichte abhéingt, dessen Infimum exakt
mit der wahren Grundzustandsenergie des Vielteilchensystems iibereinstimmt. In der Praxis
stellt sich leider heraus, dass es sehr schwer ist, dieses Funktional zu bestimmen, insbesondere,
wenn man verlangt, dass das Funktional universell und nicht auf ein bestimmtes Atom oder
Molekiil zugeschnitten sein soll.

Der Durchbruch eines besonders simplen Dichtefunktionals, der Thomas—Fermi-Theorie
[173, 58, [59], gelang im Rahmen der grundlegenden Arbeit [I19] von Lieb und Simon. Die
Autoren zeigten, dass das Infimum des Thomas—Fermi-Funktionals (Lenz [I10]) mit der ersten
Ordnung der asymptotischen Entwicklung der Grundzustandsenergie eines neutralen Atoms
(N = Z) im Grenzwert grofier Teilchenzahlen iibereinstimmt. Diese wird durch den Hauptteil
der Elektronen erzeugt, die sich auf Orbitalen im Abstand Z~1/3 entfernt vom Kern befinden.
Diese Langenskala wird auch als Thomas—Fermi-Léngenskala bezeichnet. Dariiberhinaus zeig-
ten Lieb und Simon sowie Baumgartner [§], dass die auf der Thomas-Fermi-Léngenskala res-
kalierte Einteilchendichte eines Grundzustands gegen den wasserstoffartigen Thomas—Fermi-
Minimierer konvergiert.

Obwohl die Energie fiir N — oo asymptotisch richtig durch die Thomas—Fermi-Theorie
vorhergesagt wird, stellt sich heraus, dass die relative Genauigkeit fiir groffere Atome nur etwa
10% betriigt. Tatséchlich ist die ThomasFermi-Energie, welche von der GréSenordnung Z7/3
ist, alleine zu tief, was fiir einige Diskussionen sorgte. Bereits 25 Jahre vor dem Erscheinen des
Artikels von Lieb und Simon schlug Foldy [60], inspiriert von numerischen Resultaten, vor,
dass der fiihrende Term wie Z'2/5 skalieren sollte. Dagegen hatte Scott die Vermutung [152],
dass die Energie durch die wenigen, aber hoch-energetischen, kernnahen Elektronen korrigiert
werden miisste. Da diese nur von ,,endlich vielen“ Elektronen erzeugt wiirde, sollte die Groflen-
ordnung mit der der Eigenwerte des wasserstoffartigen Operators, sprich Z2, iibereinstimmen.
Diese Vermutung (Lieb [I15] nannte sie Scott-Vermutung, siehe auch Simon [I57, Problem
10b]) wurde spéter von Hughes [92), 93] (untere Schranke) und von Siedentop und Weikard
[156], [153), 154], 155] (obere und untere Schranke) bewiesen. Damit verwandt ist die, eben-
falls von Lieb [115] geduBerte, sogenannte starke Scott-Vermutung. Sie besagt, dass die auf
der Wasserstoff-Lingenskala Z ! reskalierte Einteilchendichte eines Grundzustands gegen die
Summe der Quadrate der Eigenfunktionen des Wasserstoff-Hamilton-Operators konvergiert.
Diese wurde von Iantchenko u. a. [95] bewiesen. Zudem wurde die Konvergenz der Einteil-
chendichtematrix [96] gezeigt. Fiir die Konvergenz der Dichte auf anderen Skalen verweisen
wir auf [94]. Diese Effekte konnen als echte Quantenkorrekturen interpretiert werden.

SchlieBlich vermuteten Schwinger [151] sowie Englert und Schwinger [44], 45| [46], dass der
dritte Term der asymptotischen Entwicklung wie Z5/3 skalieren sollte und durch die Aus-
tauschenergie der Elektronen auf Lingen Z~2/3 entfernt vom Kern erzeugt werden miisse.
Fefferman und Seco gelang der Beweis dieser Vermutung in einer Reihe von Arbeiten [55] 49,
57, 52, 50, 511 53].

Die Resultate iiber die Grundzustandsenergie wurden in verschiedene Richtungen verall-
gemeinert. Beispielsweise wurde die Scott-Vermutung fiir Ionen (Bach [3| 2]), fiir Molekiile
(Ivrii und Sigal [97], Solovej und Spitzer [163], Balodis [7]) und fiir Molekiile in magnetischen
Feldern (Sobolev [160] und Ivrii [98]) bewiesen.

Allerdings ist es fragwiirdig, schwere Atome (sprich Z > 1) nicht-relativistisch zu beschrei-
ben, da der schwere Kern bereits den Hauptteil der Elektronen auf Orbitale lokalisiert, deren
Abstéinde Z~1/3 zum Kern betragen. Wegen des Heisenbergschen Unschérfeprinzips ist da-
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von auszugehen, dass sich insbesondere kernnahe Elektronen mit Geschwindigkeiten bewegen,
die einen substantiellen Bruchteil der Lichtgeschwindigkeit ¢ betragen. Aus diesem Grund ist
eine relativistische Beschreibung unumgénglich. Beispiele fiir relativistische Operatoren sind
der Chandrasekhar- und projizierte Coulomb-Dirac-Operatoren. Zu diesen geh6ren wiederum
beispielsweise der Brown—Ravenhall- und der Furry-Operator. Letzterer findet auch Anwen-
dungen in der Quantenchemie, um beispielsweise die Grundzustandsenergie grofler Atome und
Molekiile bis auf chemische Genauigkeit zu bestimmen, siehe beispielsweise Reiher und Wolf
[145] fiir einen umfassenden Uberblick.

Ein erstes Ergebnis iiber schwere, relativistisch beschriebene Atome lieferte Sgrensen [139].
Er zeigte, dass fiir Z,¢ — oo und fixiertem Quotient Z/c = v < 2/7, die fithrende Ordnung
der Grundzustandsenergie eines neutralen Atoms, welches durch den Chandrasekhar-Operator
beschrieben wird, ebenfalls durch die Thomas—Fermi-Energie gegeben ist. Analoge Ergebnisse
wurden von Cassanas und Siedentop [19] fiir den Brown-Ravenhall- mit v < 2/(7w/2 + 2/m)
und implizit von Handrek und Siedentop [80] fiir den Furry-Operator mit v < 1 gezeigt.
Diese Ergebnisse implizieren, dass sich der Hauptteil der Elektronen auf der Léngenskala
Z~1/3 eines relativistisch beschriebenen Atoms immer noch nicht-relativistisch verhélt.

Elektronen auf der Scott-Lingenskala Z~! befinden sich sehr viel niher am Kern und
sollten wegen des Heisenbergschen Unschérfeprinzips Geschwindigkeiten von der Grofienord-
nung der Lichtgeschwindigkeit aufweisen, weshalb relativistische Effekte zu erwarten sind.
Dies wurde zuerst von Schwinger [I51] vorhergesehen, der eine relativistische Korrektur des
Z2-Terms herleitete, die kleiner als die nicht-relativistische ist. Dies ist zu erwarten, da die
relativistische kinetische Energie (z.B. \/p? + 1 — 1), insbesondere fiir grofie Impulse, kleiner
als die nicht-relativistische kinetische Energie ist. Eine solche Korrektur wurde dann auch von
Frank u. a. [69] und Solovej u. a. [162] fiir den Chandrasekhar-, von Frank u. a. [70] fiir den
Brown—Ravenhall- und schliellich von Handrek und Siedentop [80] fiir den Furry-Operator
bewiesen.

Eine gemeinsame Eigenschaft relativistischer Operatoren ist, dass ihre kinetische Energie,
zumindest fiir grofle Impulse, wie das Coulomb-Potential, also wie die inverse Linge skaliert.
Dies hat zwei wichtige Konsequenzen. Erstens sind storungstheoretische Argumente fiir die
Untersuchung dieser Operatoren oft nicht anwendbar. Zweitens kénnen die Operatoren nur
fiir hinreichend kleine Kopplungskonstanten des Coulomb-Potentials definiert werden.

Das Ziel dieser Arbeit ist das Studium der Einteilchendichte eines Grundzustands rela-
tivistischer Vielteilchen-Operatoren auf der Thomas—Fermi- und der Scott- beziehungsweise
Wasserstoff-Langenskala im Grenzwert grofler Teilchenzahlen. Da die Kopplungsstirke des
Coulomb-Potentials des Kerns proportional zur Teilchenzahl ist, reskalieren wir die Opera-
toren und betrachten daher streng genommen den Grenzwert, in dem sowohl die Teilchen-
zahl, als auch die Lichtgeschwindigkeit gegen Unendlich gehen und ihr Quotient die kriti-
sche Kopplungskonstante nicht iiberschreitet. Wir betonen, dass dieser Grenzwert nicht der
nicht-relativistische Grenzwert ist, in welchem die Lichtgeschwindigkeit unabhéngig von der
Kernladungszahl gegen Unendlich strebt.

Wir geben im Folgenden einen kurzen Uberblick iiber die nicht-relativistische Thomas—
Fermi-Theorie und anschliefend iiber die relativistischen Operatoren, die in dieser Arbeit
behandelt werden.
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1.2 Thomas—Fermi-Theorie

Wir geben einen kurzen Uberblick iiber die wichtigsten Eigenschaften der Thomas-Fermi-

Theorie im neutralen Fall [p; p = N = Z. Einen sehr viel detaillierterer Uberblick bietet Lieb

[115] an, der teilweise auf den grundlegenden Arbeiten von Lieb und Simon [I18] [1T9] beruht.
Das Thomas—Fermi-Funktional ist durch

8" = [ (S @) - L)) do+ Dio.p)

auf seinem natiirlichen Definitionsbereich
T:={pe L’*®R*: D(p,p) <0, p>0}

definiert. Hierbei ist ypp 1= (672/¢)?/3 die Thomas-Fermi-Konstante und D(p, p) die elek-
trostatische Selbstenergie der Ladungsdichte p, die durch

1 p@)aly)
Dlo,o) = 2/11@3/3@ oyl Y

gegeben ist. Wir bemerken, dass D ein Skalarprodukt auf Z definiert und daher eine Norm,
die sogenannte Coulomb-Norm. ||p|c := D(p, p)*/?, induziert. Das Infimum des Funktionals
heifit Thomas—Fermi-Energie und ist durch

ETF(Z) .= inf ExF

definiert. Es ist bekannt, dass ein Minimierer existiert und dieser eindeutig ist. Der Mini-
mierer wird Thomas—Fermi-Dichte genannt und mit p¥ (z) bezeichnet. Das Thomas-Fermi-
Funktional hat eine natiirliche Léngenskala, die sogenannte Thomas—Fermi-Léangenskala Z -3,
Es gilt

E5(Z2p(ZV%)) = ZTPE (p())

das heiBt die natiirliche Energieskala des Thomas—Fermi-Funktionals ist Z7/3. Insbesondere
folgt aus dieser Skalierungseigenschaft, dass der Minimierer p¥ (z) = Z2pI¥ (Z'/3z) erfiillt,
wobei piF der wasserstoffartige Thomas-Fermi-Minimierer (sprich Z = 1) ist (Gombés [74]).

Aus den Arbeiten von Lieb und Simon [119] sowie Baumgartner [§] ist bekannt, dass die
Thomas—Fermi-Theorie sowohl die Grundzustandsenergie als auch die Grundzustandsdichte
auf der Thomas—Fermi-Léngenskala des nicht-relativistischen Vielteilchen-Coulomb-Systems
(1.1 zu fithrender Ordnung richtig beschreibt. Bezeichnet ES(Z) die Grundzustandsenergie
(definiert als das Infimum des Spektrums) und p%(x) die Einteilchendichte eines Grundzu-
stands des Schrédinger-Operators , so gilt

und

lim Z7205(Z2732) dw :/ i (x) dx
Z—0o0 J M M

fiir alle beschrinkten und messbaren Mengen M C R3.



1.3 Ortsraumdarstellungen relativistischer Hamilton-Operatoren 5

SchlieBlich fithren wir noch das Thomas—Fermi-Potential

() = 2 3 e
|z] -
ein. Es ist nicht-negativ, sphérisch symmetrisch, verhélt sich bei Null wie das Coulomb-
Potential und erfiillt im Unendlichen die Sommerfeld-Asymptotik [165], verhélt sich dort also
wie |z|~%. Zudem geniigt es der Skalierungsrelation ®L¥ (z) = Z4/30T¥(Z1/3z). Das Thomas—
Fermi-Potential und die -Dichte erfiillen die Thomas—Fermi-Gleichung

Tieed (@) = o3 (@),

woraus ersichtlich ist, dass ®LF € L5/2(R3)

1.3 Ortsraumdarstellungen relativistischer Hamilton-Operato-
ren

In diesem Abschnitt stellen wir die in dieser Dissertation behandelten relativistischen Ein-
teilchen-Operatoren vor. Wir geben ihre Definitions- und Formbereiche an und nennen Be-
dingungen an die Kopplungskonstante des Coulomb-Potentials, um sie definieren zu kénnen.
Zudem geben wir eine Zusammenfassung der hier benotigten Eigenschaften der Spektren.
Ausfiihrlichere Abhandlungen kénnen beispielsweise den Biichern von Balinsky und Evans [6]
und Thaller [I71] sowie Matte und Stockmeyer [I124] und den darin enthaltenen Referenzen
entnommen werden.

1.3.1 Chandrasekhar-Operator

Der Chandrasekhar- beziehungsweise Herbst-Operator ist der simpelste der hier untersuchten
Operatoren. Er wurde urspriinglich von Chandrasekhar benutzt, um die (Nicht-)Stabilitét
von Neutronensternen zu studieren [20] (siehe auch [120, [121] fiir eine Untersuchung des Kol-
lapses von Neutronensternen). Der Einteilchen-Operator wurde erstmals von Herbst [87] und
Weder [179, [180] untersucht. Wir definieren ihn als die Friedrichs-Erweiterung im Hilbertraum
L3(R3 : C9) der zu

V=cA+ct - - z
]

gehorigen quadratischen Form auf C°(R3 : CY). Der Operator hat eine natiirliche Lingen-
skala, die sogenannte Wasserstoff-Lingenskala ¢!, Fiir ¢.(x) := ¢3/%(cx) ist dies aus der
Gleichheit

(wc, [m N é,] w) . (w, [\/TH _ 1’1‘] w)

ersichtlich, wobei v := Z/c. Die quadratische Form (auf HY/?(R3 : C%)) ist genau dann von
unten beschriankt, wenn v < 2/7. Dies folgt aus der Ungleichung

\f—ﬁgzo
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(Kato [I01, Kapitel 5, Gleichung (5.33)], Herbst [87, Theorem 2.5] und Weder [I79]) sowie
aus der Tatsache |p| > +/p?+1 —1 > |p| — 1. Tatséichlich zeigten Raynal u. a. [141], dass
der tiefste Punkt des Spektrums echt grofier ist als —1, selbst, wenn v = 2/7. Dies wurde
bereits von Hardekopf und Sucher [81] numerisch angedeutet. Fiir v > 2/7 ist er von unten
unbeschrénkt und somit ,,instabil “.

Fiir 4 < 2/ ist der quadratische Formbereich H'/2(R3). Da der Operator skalar ist und
es keine Wechselwirkungen gibt, die den Spin der Elektronen miteinbeziehen, betrachten wir
im Folgenden ohne Beschrankung der Allgemeinheit lediglich den Fall ¢ = 1.

Da der Operator sphérisch symmetrisch ist, kommutiert er mit dem Erzeuger von Rota-
tionen. Man kann daher den Hilbertraum in die direkte Summe

L*(R%) = LA(Ry, r? dr) @ L*(S%, dw) = €P Ho
£eNg

zerlegen. Hierbei ist dw das normierte Lebesgue-Mafl auf der zweidimensionalen Kugelscha-
le §2, Hy = L*(Ry,r?dr) ® K, und K, der Eigenraum beziiglich des /-ten Eigenwerts des
Laplace-Beltrami-Operators auf S?. Man stellt fest, dass die maximal erlaubte Kopplungskon-
stante mit dem Drehimpulskanal, auf welchen projiziert wird, steigt. Insbesondere ist der auf
den ersten Drehimpulskanal eingeschrénkte Chandrasekhar-Operator nach unten beschrankt,
wenn 7y < /2, siehe [6l Lemma 2.2.3 und Theorem 2.2.4].

Obwohl die Eigenwerte Az, ¢ (n € Ng) nicht explizit bekannt sind, folgt aus y/p? +1 —
1 < p?/2 und der unteren Schranke von Frank u. a. [70, Theorem 2.2], dass sie im /-ten
Drehimpulskanal den Abschiatzungen

72 A
_ >\ > Lk | R —
2(n+ 0+ 1)2 = At = O G Ty

geniigen. Der Ausdruck auf der linken Seite der Ungleichung ist gerade der n-te Eigenwert
des Schrodinger-Operators im Drehimpulskanal £. Die relativistischen Eigenwerte haben also
dieselbe Energiegréfienordnung, was aus der x +— z/c skalierten Form des Operators sofort
ersichtlich ist, und dasselbe Verhalten in n und ¢ wie die nicht-relativistischen Wasserstoft-
Eigenwerte. Diese Eigenschaften sind dem Verhalten der relativistischen kinetischen Energie
fiir kleine Impulse |p| geschuldet, da \/p? +1 — 1 = p?/2 + O(p?).

Schlieflich ist nach [87, Theorem 2.3] das Spektrum des Chandrasekhar-Operators fiir
v < 2/7 in [0,00) absolut stetig, das heifit es gibt kein singulér-stetiges Spektrum und keine
eingebetteten Eigenwerte. Insbesondere ist Null kein Eigenwert.

Obwohl der Chandrasekhar-Operator spektraltheoretisch gut verstanden ist, weist er den-
noch einige physikalische Defizite auf. Erstens ist die kinetische Energie y/p? + 1 nicht-lokal
und verletzt damit eines der grundlegendsten physikalischen Prinzipien. Zweitens konnen
wegen der Einschriankung v < 2/7 an die Kopplungskonstante, nur Atome mit Kernladungs-
zahlen kleiner als 88 beschrieben werden. Physikalisch geeignetere Operatoren basieren auf
dem Dirac-Operator, den wir nun vorstellen.

1.3.2 Coulomb—Dirac-Operatoren

Im Jahre 1928 stellte Dirac [35, [36] eine Lorentz-invariante Bewegungsgleichung fiir quanten-
mechanische Teilchen mit Spin, die sich in einem externen elektromagnetischen Feld befinden,
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auf, die sogenannte Dirac-Gleichung. Thallers Buch [I71] gibt dariiber eine umfassende Be-
schreibung. Fiir freie Teilchen lautet die Gleichung

i0u)(t, ) = (—z’ca -V + Bc2) U(t, ) (1.2)

mit den Dirac-Matrizen a = (a1, e, a3),

aj = < 0@2 g > ’
O'j 0@2
den Pauli-Matrizen o := (01,092,03) und § = diag (1,1,—1,—1). Der Operator auf der
rechten Seite von ([1.2]) heifit freier Dirac-Operator. Er wirkt auf Zustinde ¢ (t,z) € C%,
der zu Grunde liegende Hilbertraum ist L?(R3 : C*). Der Definitionsbereich, auf dem der

freie Dirac-Operator selbstadjungiert realisiert werden kann, ist H'(R3 : C*). Nach einer
Blockdiagonalisierung durch die Foldy—Wouthuysen-Transformation nimmt er die Gestalt

, VAT A
Upw (—ica -V + Bc?®) Upy = < ¢ OA+C —\/—CST—i—c‘l ) (1.3)
an. Daher ist das Spektrum gerade (—oo, —c?] U [c?,00). Physikalisch bedeutet das, dass
Zusténde ,,negative Energie* besitzen kénnen und es ein unendlich tiefes Energie-Reservoir,
den sogenannten Dirac-See, gibt. Durch Einfiithren elektromagnetischer Felder und des La-
dungskonjugationsoperators sieht man, dass diese Zustidnde als ,, Anti-Teilchen“ mit positiver
Energie gedeutet werden kénnen, das heifit sie haben zwar dieselbe Masse, aber umgekehrte
elektrische Ladung. Solche Teilchen nennt man Positronen.

In dieser Arbeit sind wir vor allem an Dirac-Operatoren mit einem durch das Coulomb-
Potential beschrinktem sphérisch symmetrischen Potential interessiert. Der Einteilchen-Ope-
rator fiir das Wasserstoff-Problem, welcher zunichst auf S(R3 : C*) definiert werden kann, ist
durch

Z
DY .= —ica -V + 6 — Tl in L?(R3 : C%)
X

gegeben. Durch Skalieren von x +— x/c ist es wieder ersichtlich, dass Dg unitir dquivalent zu

e

]

A l—ia-V+8— =: cQDf
ist, wobei wieder v := Z/c.

Es ist bekannt, dass Df genau dann wesentlich selbstadjungiert ist, wenn |y| < v/3/2. Dies
folgt aus den Resultaten von Weidmann [I81], siche auch [I71], Theorem 4.4]. Fiir v € (v/3/2,1]
gibt es eine ausgezeichnete (man sagt auch ,physikalisch relevante®) selbstadjungierte Er-
weiterung von D?. Fiir v € (v/3/2,1) wurde sie zuerst von Schmincke [149], Wiist [I83],
Nenciu [I35] und Klaus und Wiist [I06] begriindet. Nach Schmincke und Wiist zeichnete sich
die Realisierung dadurch aus, dass alle Zustéinde im Definitionsbereich des Coulomb-Dirac-
Operators endliche potentielle Energie haben. Nencius Realisierung zeichnete sich hingegen
dadurch aus, dass die Zustédnde endliche kinetische Energie haben. Klaus und Wiist zeigten
schliefllich, dass die beiden Realisierungen iibereinstimmen und das wesentliche Spektrum
immer noch (—oo,1] U [1,00) ist, siehe [107] oder [I71) S. 117]. Zusammengefasst erfiillt der
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Definitionsbereich dom(Df ) dieser Realisierung H(R3 : C*) C dom(D,IY{ ) € HY2(R? : C%)
und der quadratische Formbereich ist H'/2(R? : C*). Insbesondere sind die Erwartungswerte
der kinetischen und potentiellen Energie in dom(Df ) endlich, was die Bezeichnung ,,physi-
kalisch relevant“ erklédrt. Die Verallgemeinerung fiir v = 1 erfolgte durch Esteban und Loss
[47]. In dieser Arbeit beschréinken wir uns nur auf den Fall v < 1.

Der Coulomb-Dirac-Operator D,I;I hat keine eingebetteten Eigenwerte (Kalf [100]) und
kein singulér-stetiges Spektrum in [0, co) (Vogelsang [I78] und Richard und Tiedra de Aldecoa
[146]). Der tiefste Eigenwert ist A\; = y/1 —~2 und es gilt limg_,oo Ay = 1. Da der Operator
sphérisch symmetrisch ist, kann, analog zur Drehimpulskanalzerlegung fiir skalare Operatoren,
eine Partialwellenzerlegung durchgefiihrt werden, siehe auch [6, Abschnitt 2.1.1] und Anhang
Fiir £ € Nygund 1/2 < j = ¢4+1/2 sind die Eigenwerte und Eigenfunktionen im Kanal (j, £)
explizit bekannt (sieche Sommerfelds antizipierte Feinstrukturformel [164], als auch Darwin
[30] und Gordon [75]). Fiir eine prignante Abhandlung des Eigenwertproblems sieche auch
Bethe [10] oder Thaller [I71, Abschnitt 7.4]. Die Eigenwerte in der Spektralliicke (—1,1) im
Kanal (j,¢) erfiillen die beidseitigen Schranken

7 "
——— > X i — 1> —konst - ———
2n+ 0+ 1)2 = "t TS = ons (n+0+1)%°

was aus der expliziten Darstellung der Eigenwerte oder, fiir £ € N, beispielsweise aus [80),
Lemma 1] extrahiert werden kann.

Anders als im Chandrasekhar-Modell bedeutet ,,Instabilitit® fiir den Coulomb-Dirac-
Operator den Zusammenbruch der Selbstadjungiertheit des Operators. Die Stabilitét fiir v < 1
folgt aus der scharfen Hardy-artigen Ungleichung

2 , 2
/ Md:Jc §/ (\0' ch_\l + \(,02) dx
Rs |7 R \ 1+ [z]
fiir alle ¢ € H'(R? : C?) von Dolbeault u. a. [38].

Brown—Ravenhall-Operator

Der Umstand, dass ein Teilchen sowohl Elektronen- als auch Positronen-Charakter haben
kann ist zumindest fragwiirdig. Dariiberhinaus fanden Brown und Ravenhall in [I6], dass
die Energieniveaus in Helium sich wegen der erlaubten Zustdnde negativer Energie nicht
durch den Dirac-Operator beschreiben lielen. Aus diesem Grund lielen sie nur Zustédnde
zu, die beziiglich des freien Dirac-Operators positive Energie haben. Das heiflt, dass der
zugrundeliegende Hilbertraum der erlaubten Zusténde durch

0 = Ao(L2(R? : €1)) 1= 1(g o) (—icar- V + 2B)(LA(R? : C1)

gegeben ist. Der auf diesen Raum eingeschriankte Coulomb—Dirac-Operator Dg wird Brown—
Ravenhall-Operator genannt. Er wurde zuerst von Evans u. a. [48] mathematisch behandelt.
Unter anderem zeigten die Autoren, dass die zugehérige quadratische Form auf H'/2(R? : ch
fir alle v < 9 = 2/(7/2 4+ 2/m) nach unten durch —v(w/4 — 1/7) beschrankt ist. Fiir
v < ~p ist der Formbereich gerade H'/ 2R3 : CY N Hy. Fiir v > vp ist die quadratische
Form nach unten unbeschrinkt. Das heifit, der Operator kann Atome beschreiben, deren
Kernladungszahl 124 nicht tiberschreitet. Tats#chlich zeigte Tix [174, [176], dass der Operator
fiir v < g von unten mindestens durch 1 — yp > 0 beschrankt ist. Fiir v < vp ist das
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wesentliche Spektrum des Operators [c2,00) und das singulir-stetige Spektrum ist leer [48),

Theorem 2|. Dariiberhinaus gibt es keine eingebetteten Eigenwerte und das Spektrum in
[c2,00) ist absolut stetig [6, Theorem 3.4.1]. Wie oben erwithnt, kann wegen der sphérischen
Symmetrie eine Partialwellenzerlegung durchgefiihrt werden. Balinsky und Evans [5] zeigten,
dass der auf den Kanal (j,¢) (mit ¢ € Np, und 1/2 < j = £ £+ 1/2) eingeschriinkte Operator
genau dann nach unten beschrankt ist, wenn

<4 D((0+1)/2)2 T((25—£0+1)/2) -1
T D@22 T (@ -+ 2)/2p

Die Eigenwerte Az, j, im Kanal (j, ¢) erfiillen, wie die des Chandrasekhar-Operators, die

Schranken ) )
Z Z
-~ > Aznj¢— 1> —konst - ————
2n+ 0+ 1)2 = "Amit T = ons (n+0+1)%°
siehe insbesondere [7(), Theorem 2.1] fiir die untere Schranke. Dariiberhinaus sind sie kleiner
als die Dirac-Eigenwerte, was fiir £ > 1 beispielsweise sofort aus dem Min-Max-Prinzip fiir

Operatoren mit Spektralliicken (Griesemer und Siedentop [77]) folgt.

Furry-Operator

Die Projektion auf den positiven Spektralbereich des freien Dirac-Operators ist natiirlich nicht
die einzige Moglichkeit. Furry und Oppenheimer [71] schlugen vor, auf den positiven Spek-
tralraum des Coulomb-Dirac-Operators zu projizieren. Der zugrunde liegenden Einteilchen-
Hilbertraum ist dann

97 = Az(L*(R?: CY)) i= 1 00)(DF)(L*(R? : CY)).

Wie bereits weiter oben bemerkt wurde, gibt es fiir v € (0,1) eine physikalisch relevante,

selbstadjungierte Realisierung von Df , die dadurch charakterisiert ist, dass H'(R3 : C*) C

dom(Dg) C HY?(R? : C*) (Nenciu [I35]). Daher ist
Az(S(R? : CY) € HY?(R? : C*)

und dicht in $z. Die zugehorige, auf Az(S(R? : C*)) eingeschriinkte, quadratische Form ist
daher wohldefiniert fiir v € (0,1). Der quadratische Formbereich ist H'/2(R? : C*) N $.

Mittleman-Prinzip und physikalische Relevanz der Operatoren

Bevor wir zu den Ergebnissen dieser Arbeit kommen, diskutieren wir kurz die Relevanz der
hier untersuchten relativistischen Operatoren.

In der Praxis (z.B. in der Quantenchemie) ist es unabdingbar zu wissen, welches Modell am
besten fiir numerische Untersuchungen grofler Coulomb-Systeme geeignet ist. Dazu kann man
beispielsweise die gemessenen Grundzustandsenergien (siehe beispielsweise [109]) mit denen
der (nicht-)relativistischen Operatoren vergleichen. Es stellt sich zum Einen heraus, dass der
nicht-relativistische Schrodinger-Operator zu hohe Energien liefert. Im Gegensatz dazu liegt
die Grundzustandsenergie des Chandrasekhar-Operators zu tief. Zudem beschreibt der Ope-
rator lediglich Atome, deren Kernladungszahl kleiner als 88 sind. Die Grundzustandsenergien
der projizierten Coulomb—Dirac-Operatoren liegen zwischen diesen beiden Extremen.
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In [129, Abschnitt IT] schlug Mittleman ein Variationsprinzip zur Herleitung von Hamilton-
Operatoren aus einem Standard QED-Hamilton-Operator im Fock-Raum vor, welches zur
moglichst exakten Bestimmung von Grundzustandsenergien verwendet werden kann. Neben
den oben besprochenen sogenannten no-pair-Operatoren, kann auch das sogenannte Fuzzy-
Modell mit diesem Prinzip hergeleitet werden. Hierbei wird beziiglich des durch die Kern-
Elektron- und Elektron-Elektron-Wechselwirkung erzeugten mittleren Feldes im Geiste der
Hartree-Fock-Theorie projiziert, sprich der zugrundeliegende Hilbertraum ist 1(0700)(Dg +
X)(L?(R3 : C*)) fiir ein mittleres Feld x. Beispiele fiir y sind eventuell abgeschirmte Thomas—
Fermi-Potentiale oder das mittlere Feld der Dirac—Fock-Gleichungen. Fiir numerische Rech-
nungen, die die Grundzustandsenergie fiir grofie Z = 90 betreffen, stellt sich heraus, dass es
praktisch keinen Unterschied macht, ob man den Berechnungen das Furry- oder das Fuzzy-
Bild zu Grunde liegt, siehe auch [129] 145} 148, [80].

1.4 Zusammenfassung der Ergebnisse

Wir schlieflen die Einleitung mit einer Zusammenfassung der Ergebnisse dieser Arbeit und
verweisen auf die jeweiligen Kapitel.

Auf der Thomas—Fermi-Lingenskala zeigen wir, dass die reskalierte Einteilchendichte ei-
nes Grundzustands gegen die wasserstoffartige Thomas—Fermi-Dichte konvergiert. Einerseits
konvergiert sie in der sogenannten Coulomb-Norm in den Chandrasekhar-, Brown—Ravenhall-
und Furry-Modellen, siehe Kapitel [2l Daraus folgt insbesondere schwache Konvergenz, bei-
spielsweise wegen der Hardy-Littlewood-Sobolew-Ungleichung in L%/5(R3). Das Argument
beruht auf der Scott-Korrektur fiir die entsprechenden Operatoren und verwendet die Nicht-
Negativitéat eines Terms, der sich bei der Herleitung der unteren Schranke der asymptotischen
Formel fiir die Energie aus einer Korrelationsungleichung ergibt. Dies ist eine gemeinsame Ar-
beit mit Heinz Siedentop [125]. Andererseits zeigen wir schwache Konvergenz in den semiklas-
sischen LP-R&umen, also p = 5/2, 4 fiir den Chandrasekhar- (siehe Kapitel und den Brown—
Ravenhall-Operator (siehe Kapitel [4)) fiir v < 2/7, der kritischen Chandrasekhar-Kopplung.
Fiir den Brown-Ravenhall-Operator mit v € (2/m,2/(7w/2+2/m)) missen die Testfunktionen
zudem durch ein Vielfaches des Coulomb-Potentials beschrinkt und Lipschitz-stetig sein. Der
Beweis beruht im Wesentlichen auf der Herleitung der fithrenden Ordnung der Grundzustand-
senergie des geeignet gestorten Vielteilchen-Operators. Mit ,,geeignet“ meinen wir, dass die
Stérung auf der richtigen Lingenskala, sprich Z~1/3, und der richtigen Energieskala, sprich
Z7/3, leben“ muss. Dies ist der Fall, wenn die Stérung wie Uy (x) = Z*/3U(Z'/3x) skaliert,
was anhand des Integrals [pq pf (x)Uz(x) dr und der Skalierungsrelation von pi! gesehen
werden kann. Diese Ergebnisse unterstreichen, dass sich der Hauptteil der Elektronen eines re-
lativistisch beschriebenen Atoms immer noch nicht-relativistisch verhélt. Sie stehen insbeson-
dere im Einklang mit der Tatsache, dass der fithrende Term der asymptotischen Entwicklung
der Grundzustandsenergie durch die nicht-relativistische Thomas—Fermi-Energie gegeben ist.

Auf der Scott-Skala zeigen wir, dass die reskalierte Einteilchendichte eines Grundzustands
des Vielteilchen-Chandrasekhar-Operators schwach gegen die wasserstoffartige Dichte, sprich
die Summe der Quadrate der Eigenfunktionen des entsprechenden relativistischen Wasserstoff-
Atoms konvergiert, siche Kapitel 5| Einerseits zeigen wir Konvergenz in jedem festen Drehim-
pulskanal und andererseits der gesamten Dichte. Die Klasse der Test-Funktionen, fiir die
diese Konvergenzen gelten, beinhalten insbesondere kompakt getragene Funktionen, die in-
tegrierbar oder durch ein Vielfaches des Coulomb-Potentials beschrinkt sind. Im Hinblick
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auf die allgemeine Natur relativistischer Operatoren und die Kato-Ungleichung ist dieses Er-
gebnis optimal, da man nicht erwarten kann, dass die Test-Funktionen singuldrer als das
Coulomb-Potential am Ursprung sind. Dieses Resultat bestétigt Liebs sogenannte starke
Scott-Vermutung [115] und zeigt insbesondere, dass kernnahe Elektronen relativistische Kor-
rekturen erzeugen. Das Ergebnis ist aulerdem im Einklang mit der relativistischen Korrektur
der Scott-Korrektur der Grundzustandsenergie (Solovej u. a. [162] und Frank u. a. [69]). Als
Nebenprodukt erhalten wir eine punktweise obere Schranke an die wasserstoffartige Dichte,
welche fiir groe Kernabstinde im Einklang mit der Singularitdt der Thomas—Fermi-Dichte
und insbesondere mit dem Abfall der nicht-relativistischen Dichte steht. Das bedeutet, dass
sie wie r3/2 abfillt. Die Beweise beruhen auf der Scott-Korrektur, einer Verallgemeinerung
des Feynman-Hellmann-Satzes sowie einer neuen Aquivalenz von Sobolew-Normen, die von
Potenzen des Herbst-Operators erzeugt werden. Diese Ergebnisse basieren auf einer gemein-
samen Arbeit mit Rupert L. Frank, Heinz Siedentop und Barry Simon [67].

Im Anschlufl zeigen wir, dass die starke Scott-Vermutung auch im Furry-Modell wahr
ist. Der entscheidende Grund hierfiir ist, dass das Vielteilchen-Problem auf ein effektives
Problem reduziert wird, welches durch den Wasserstoff-Operator beschrieben wird und die
Furry-Projektion mit diesem Operator gerade kommutiert.

Ein wichtiges Werkzeug fiir den Beweis der starken Scott-Vermutung ist ein weiteres Er-
gebnis dieser Arbeit, welches sich auf eine Zusammenarbeit mit Rupert L. Frank und Heinz
Siedentop [66] stiitzt, siehe Kapitel |7} Wir betrachten den fraktionalen Laplace-Operator mit
Hardy-Potential L4, = (—A)*/? + alz|~® und kritischer oder subkritischer Kopplungskon-
stante. Es wird gezeigt, dass die L?-Normen, die durch Potenzen dieses sogenannten verallge-
meinerten Hardy-Operators erzeugt werden, zu den L?-Normen, die durch Potenzen des frak-
tionalen Laplace-Operators erzeugt werden, dquivalent sind. Dariiberhinaus erhalten wir ver-
allgemeinerte und umgekehrte Hardy-Ungleichungen. Tatséchlich sind diese, neben kiirzlich
hergeleiteten Schranken fiir den Warmeleitungskern exp(—~L, ) von Bogdan u. a. [15] fiir
a < 0 und Cho u. a. [24] beziehungsweise Jakubowski und Wang [99] fiir a > 0, die wesentli-
chen Zutaten fiir den Beweis der Aquivalenz der Normen.

Die Verallgemeinerung dieses Ergebnisses auf LP ist bisher nur fiir positive Kopplungs-
konstanten moglich, sieche Kapitel [8l Der Beweis des Ergebnisses beruht wesentlich auf der
Giiltigkeit eines Spektralmultiplikator-Theorems. Dieses kann bisher nur fiir den Warmelei-
tungskern (sehr direkt allerdings) und alle erlaubten Kopplungskonstanten sowie fiir hinrei-
chend glatte Funktionen und nicht-negative Kopplungen gezeigt werden.

Wir stellen in Anhang [D] zwei méogliche Beweise fiir ein Multiplikator-Theorem fiir a > 0
vor. Der erste Beweis, welcher tatsichlich fiir den Operator (—A)®? + V und alle mess-
baren V' > 0 gefithrt wird und wesentlich auf Ideen von Hebisch [84] [85] aufbaut, beruht
auf klassischer Calderéon—Zygmund-Theorie und scheitert an schlechten punktweisen Schran-
ken kompakt getragener, glatter Funktionen des Operators. Allerdings liefert der Beweis ein
Multiplikator-Theorem fiir den Spezialfall d = 1 und a € (1,2) sowie fiir alle d € N und
a € (0,2), wenn der Multiplikator zudem kompakt getragen und hinreichend regulér ist.

Der zweite Beweis beruht auf einem Multiplikator-Satz fiir Operatoren, deren Warmelei-
tungskerne nur algebraisch abfallen, keine Singularitéiten aufweisen, aber eine gewisse Holder-
Bedingung erfiillen (Hebisch [85]). Dieser Beweis ist auf den Operator £, o zugeschnitten. Die
grofite Schwierigkeit besteht darin, die Glattheitsedingung des gestorten Warmeleitungskerns
nachzuweisen. Dazu verifiziert man sie zunichst fiir den Wirmeleitungskern von (—A)*/2
und verwendet dann Stérungstheorie in Form der Duhamel-Formel sowie die kiirzlich ge-
wonnenen Schranken von Cho u. a. [24] beziehungsweise Jakubowski und Wang [99] fir den
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Wirmeleitungskern von £, o, mit positiver Kopplungskonstante. Die Giiltigkeit des Ergebnis-
ses fiir negative Kopplungskonstanten ist noch vollig offen und kann wahrscheinlich weder mit
der ersten oder der zweiten Methode bewiesen werden.

Notation

Folgende Notation wird haufig in dieser Arbeit verwendet. Abweichungen davon, oder weitere
Notationen, werden innerhalb des jeweiligen Kapitels separat eingefiihrt.

1. Mit A, a oder konst werden generische positive Konstanten bezeichnet, falls nichts ande-
res ausdriicklich behauptet wird. Sollte A von Parameter(n) s abhéngen, schreiben wir
Ag, um diese Abhéngigkeit zum Ausdruck zu bringen. , Triviale“ Abhéngigkeiten, wie
von der Dimension d des zugrunde liegenden Raums, werden, unter Missbrauch dieser
Notation, manchmal unterdriickt. Positive Konstanten kénnen von Zeile zu Zeile vari-
ieren. Wir werden sie trotzdem mit demselben Buchstaben kennzeichnen, es sei denn,
wir sagen etwas anderes.

2. Fiir zwei Zahlen XY € [0,00) schreiben wir X <Y, wann immer es eine Konstante
A > 0 gibt, sodass X < A-Y. Um gegebenenfalls Abhéngigkeiten von A von einem
Parameter s zu kennzeichnen, schreiben wir X <y Y. Dariiberhinaus meint X ~ Y,
dass Y < X < Y. In diesem Fall sagen wir, dass X zu Y dquivalent ist. Schliefllich
verwenden wir die Notation

X AY :=min{X,Y} und X VY :=max{X,Y}.

3. Die GauB-Klammer fiir ein z € R ist durch [z] := max{k € Z : k < z} definiert.

4. Der Real- beziehungsweise Imaginérteil einer komplexen Zahl z wird mit R(z), bezie-
hungsweise (z) bezeichnet.

5. Wir arbeiten durchweg in euklidischen Rd&umen. Hierbei bezeichnet d € N die Dimension
des zugrundeliegenden Raums R¢.

Das Komplement einer Menge © C R? wird mit Q¢ bezeichnet.
Der Durchmesser von © wird mit diam Q = sup{|z — y| : z,y € Q} bezeichnet.

Der Abstand eines Punktes z € RY zu Q wird mit d(x,Q) = inf{|lz —y| : y € Q}
bezeichnet.

Der p-te Lebesgue-Raum (1 < p < oo) Cl-wertiger Funktionen iiber einer Teilmenge
Q C R? wird mit LP(Q : C9) bezeichnet. Fiir ¢ = 1 schreiben wir auch LP(Q). Die
LP-Norm einer Funktion f wird mit || f[|, oder || f||z»(q) bezeichnet. Der Raum der lokal
integrierbaren Funktionen wird mit L{. () bezeichnet und ist durch

Lio() == {f : @ — C messbar : f|x € L'(K) fiir alle K C Q kompakt}

definiert, wobei mit f|x die Einschrinkung der Funktion f auf die Menge K gemeint
ist. Der Raum aller kompakt getragenen LP-Funktionen wird mit LZmp bezeichnet.

Der s-te LP-Potential-Raum (s € R) wird mit W*P(R?) bezeichnet. Er beinhaltet alle
Funktionen f fiir die die Norm ||(1— A)*2f||» endlich ist. Dabei bezeichnet (1 — A)*/2
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10.

11.

den Operator, der durch Multiplikation mit (1+472|¢|?)*/2 im Fourierraum gegeben ist.
Fiir p = 2 schreiben wir H*(R%) = W*2(R?). Die Norm wird mit || f||zs bezeichnet. Un-
ter Missbrauch der Terminologie werden wir W#*P auch als Sobolew-Raum bezeichnen,
selbst wenn s keine natiirliche Zahl ist.

Der Raum der glatten, kompakt getragenen Funktionen wird mit C2°(R?) bezeichnet.
Der Raum der Schwartz-Funktionen wird mit S(R) bezeichnet.

Die d — 1-dimensionale Einheitssphiire in R? wird mit S*~! bezeichnet.

Die um x € R? zentrierte Kugel mit Radius R wird mit B,(R) bezeichnet.

Der Triiger einer Funktion f auf R? wird mit supp f bezeichnet.

Die charakteristische Funktion einer Menge 2 C R wird mit 1o oder xq bezeichnet.

Die Heaviside-Funktion wird mit 6(z) bezeichnet. Wir verwenden, falls nichts anderes
behauptet wird, die Konvention #(x) = 1, wenn = > 0 und 0(z) = 0, wenn = < 0.

Wir schreiben X _ fiir den negativen Teil einer reellen Zahl oder eines selbstadjungierten
Operators X und definieren X _ als positive Grofle, das heifit X = —Xx(_0,0)(X). Der
positive Teil ist durch X} = max{X,0} definiert.

Je nach Kontext meinen beispielsweise |p| oder p entweder einen (Fourier-)Multiplikator
oder den (Pseudo-)Differentialoperator v/—A beziehungsweise —iV in L?(R9).

Das innere Produkt in einem Vektorraum V wird entweder mit (-,-), (-, )v, (-,-), oder
(-, -)v bezeichnet. Sollte V' komplexwertig sein, ist das innere Produkt so definiert, dass
es semilinear im ersten und linear im zweiten Argument ist.

Der Definitionsbereich eines linearen Operators A wird mit dom(A) bezeichnet.
Die Operatornorm von A wird mit ||A|| bezeichnet.

Der Kern beziehungsweise das Bild von A werden mit ker(A) beziehungsweise ran(A)
bezeichnet.

Das Spektrum wird mit o(A) oder spec(A) bezeichnet. Insbesondere wird das Punkt-
spektrum mit o,(A) und das wesentliche Spektrum mit oess(A) bezeichnet.

Fiir lineare, selbstadjungierte Operatoren A und B meint die Schreibweise A < B, dass
B — A ein nicht-negativer Operator ist. Wir bezeichnen solche Ungleichungen auch als
Form-Ungleichungen, da sie (f, Af) < (f, Bf) fiir alle f im gemeinsamen Formbereich
von A und B bedeuten. Die Relation < ist eine Partialordnung auf den selbstadjungier-
ten Operatoren [I1), Seite 112].

Angenommen, A und B sind zusétzlich nicht-negativ. Eine Funktion f : [0,00) — R
heifit operatormonoton, wenn aus A < B die Form-Ungleichung f(A) < f(B) folgt.
Beispielsweise sind die Abbildungen z +— z® mit s € (0,1] mit dem Lowner—Heinz-
Theorem operatormonoton, siehe [I8, Theorem 2.6].

Eine Funktion f : [0,00) — R heiBt operatorkonvez, wenn fiir alle A € [0, 1] die Unglei-
chung f((1=A)A+AB) < (1—-X)f(A)+Af(B) gilt. Beispielsweise sind die Abbildungen
x +— x® mit s € [1,2] operatorkonvex, siche wieder [I8, Theorem 2.6].
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12. In den Kapiteln |4/ und |§| werden matrixwertige Operatoren in L?(R? : C") behandelt.
Fiir Operatoren S in L?(R?) werden wir, wenn es aus dem Kontext ersichtlich ist, den
Zusatz ®1cn bei S ® 1¢n vernachléssigen.



Kapitel 2

Konvergenz der semiklassischen
Dichte mittels der Scott-Korrektur

Dieses Kapitel beruht auf der gemeinsamen Arbeit [125] mit Heinz Siedentop. Die Ergebnisse
dieses Kapitels sowie deren Darstellung und Beweise stimmen mit denen, die in [125] erarbeitet
wurden, iiberein.

Wir geben einen sehr einfachen Beweis fiir die Konvergenz der auf der Thomas—Fermi-
Langenskala reskalierten Einteilchendichte eines Grundzustands der drei untersuchten Viel-
teilchen-Operatoren. Dieser beruht im Wesentlichen auf der Scott-Korrektur und der Beobach-
tung, dass es niitzlich ist, einen positiven Term, der bei der Herleitung der unteren Schranke
der asymptotischen Entwicklung der Grundzustandsenergie auftritt, nicht zu verwerfen. Im
Rahmen der Ionisierungsvermutung fiir den nicht-relativistischen Vielteilchen-Schrédinger-
Operator geht diese Beobachtung auf Fefferman und Seco [54] zuriick. Der Einfachheit halber
geben wir im Folgenden nur die Formeln fiir den Chandrasekhar-Operator wieder. Die Ver-
allgemeinerung auf die anderen beiden relativistischen Operatoren erfolgt analog. Es miissen
lediglich die Bereiche der erlaubten Kopplungskonstanten (im Brown—Ravenhall-Modell sind
Kopplungen in (0,2/(7w/2+2/7)] und im Furry-Modell in (0, 1) erlaubt) sowie die Bedeutung
der Einteilchendichte angepasst werden.

Wir beginnen mit einer kurzen Wiederholung der Definition des vorliegenden Systems.
Wir untersuchen einen am Ursprung fixierten Kern der Ladung Z, welcher mit N Elektronen,
die g Spin-Freiheitsgrade haben, {iber das Coulomb-Potential wechselwirkt. Dariiberhinaus
beriicksichtigen wir die Wechselwirkungen zwischen den Elektronen, welche ebenfalls Coulom-
bisch sind. Im Folgenden betrachten wir lediglich neutrale Atome, also N = Z. In atomaren
Einheiten ist der Chandrasekhar-Operator durch die Friedrichs-Erweiterung im fermionischen
Vielteilchen-Hilbertraum /\f:1 L2(R3 : C9) der zu

Z
Z 1

Z (\/—CQA,,—&—c‘l—cQ— ) + Z e a—

v=1 “rV’ 1<v<u<Z |xV - x,u|

gehorenden quadratischen Form auf /\f:1 C°(R3 : CY9) definiert. Hierbei bezeichnet ¢ die
Lichtgeschwindigkeit, welche durch das Inverse der Feinstrukturkonstanten gegeben ist. Die
quadratische Form ist genau dann nach unten beschréinkt, wenn Z/c =: v < 2/7 (Kato [101]
Kapitel 5, Gleichung (5.33)], Herbst [87, Theorem 2.5], Weder [179]). Fiir v < 2/7 ist der qua-
dratische Formbereich H/2(R3% : C4 Z)ﬂ /\f:1 (L3(R3 : C%)). Wir bezeichnen die so gewonnene
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Friedrichs-Erweiterung mit Cz. Eine allgemeine fermionische Grundzustandsdichtematrix ist
durch

M
> wulth) (bl (2.1)
pn=1

gegeben, wobei die v, eine Orthonormalbasis fiir den Grundzustandseigenraum formen und
wy, > 0 Gewichte sind, die der Normierungsbedingung Zf‘le wy, = 1 geniigen. Mit der Darstel-
lung driicken wir die Tatsache aus, dass ein fermionischer Grundzustand im Allgemeinen
entartet ist. Die zugehorige Einteilchendichte pz ist durch

M q
=N ,01;29,092; ...; LN, 2dxy...d
pz(x) Zwu Z /RB(N—I) [Yu(x, 015 22, 02 TN, ON)|" dxy...dxy

pn=1 01,...,0N=1

definiert.

Wir bezeichnen die Grundzustandsenergie dieses Systems mit E(Z) := inf spec(Cy). Frank
u. a. [69] und Solovej u. a. [162], beziehungsweise Frank u. a. [70] fiir den Brown-Ravenhall-
Operator und Handrek und Siedentop [80] fiir den Furry-Operator, bestimmten die ersten
beiden Terme der asymptotischen Entwicklung der Grundzustandsenergie fiir Z,c — oo mit
festem Quotienten v := Z/c. Die Autoren zeigten

E(Z)=E™(Z) + (% ~s(7)) 2%+ 0(Z"7/), (2.2)

wobei ETF(Z) das Infimum des neutralen Thomas-Fermi-Funktionals und

s(7) == 72 Tr paggssco) [(\/TH —1- 7)_ . <1A 7 )_] >0

] 20 x|

die Spektralverschiebung zwischen dem relativistischen Chandrasekhar- und dem nicht-rela-
tivistischen Wasserstoff-Operator bezeichnet. Dies ist die Differenz der Summe der negativen
Eigenwerte von

<—1A—7> ®1ce und <\/—A+1—1— 7) ® 1ca .

2 | |z

Analoge Formeln gelten fiir den Brown-Ravenhall- und den Furry-Operator, siehe [70, For-
mel (1.8) und (1.11)] beziehungsweise [80, Formel (9) und (11)]. Diese Ergebnisse zeigen,
dass der fithrende Beitrag zur Grundzustandsenergie durch die nicht-relativistische Thomas—
Fermi-Theorie beschrieben wird. Unser Ergebnis betrifft die Grundzustandsdichte auf dieser
Léngenskala und besagt, dass sie fiir Z,¢ — oo durch die wasserstoffartige Thomas—Fermi-
Dichte plTF approximiert wird.

Wir erinnern daran, dass die Thomas-Fermi-Dichte die Relation pL¥ (z) = Z2pT¥ (Z'/3x)
erfiillt. Diese Skalierungsrelation sowie der fithrende Term von E(Z) zeigen, dass die Thomas—
Fermi-Theorie Elektronen auf der Lingenskala Z~'/3 und Energieskala Z7/3 beschreibt. Unser
Resultat iiber die Konvergenz der Grundzustandsdichte auf dieser Léngenskala unterstreicht
diese Beobachtung und zeigt insbesondere, dass sich der Hauptteil der Elektronen in relati-
vistisch beschriebenen Vielteilchen-Coulomb-Systemen dennoch nicht-relativistisch verhélt.
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Fiihrt man die auf der Thomas—Fermi reskalierte Grundzustandsdichte
pz(x) = Z2p (27 32) (2.3)

ein und erinnert sich an die durch die elektrostatische Selbstwechselwirkungsenergie erzeugte

Coulomb-Norm (#)p(y)
1 px)p(y
2
pllc == D(p,p 2/ / = dxdy,
Iolle:=D(pp) =5 [ ] F2E

lautet unser Resultat wie folgt.

Satz 2.0.1. Sei v € (0,2/7]. Dann konvergiert fiir Z,c — oo und fiziertem Z/c =~y die auf
der Thomas—Fermi-Ldngenskala reskalierte Dichte in Coulomb-Norm gegen die wasserstoff-
artige Thomas—Fermi-Dichte. Insbesondere gilt

62 = p¥llc = 0(Z3/1)
fir Z — oo.

Bevor wir zum Beweis kommen, machen wir zwei
Bemerkungen 2.0.2.

1. Solovej u. a. [162] beweisen die Scott-Korrektur auch im molekularen Fall, vernach-
léssigen allerdings ebenfalls den oben bemerkten positiven Term bei der Herleitung
der unteren Schranke an die Grundzustandsenergie. Der Beweis ldsst sich somit fiir
Molekiile verallgemeinern, so lange der Abstand der Kerne zueinander auf der Thomas—
Fermi-Lingenskala Z~1/3 gehalten wird.

2. Mit der Cauchy—Schwarz-Ungleichung folgt, dass die reskalierte Dichte auch schwach
konvergiert. Sei dazu o : R — R eine Funktion mit endlicher Coulomb-Norm, sprich
lo|lc < oo. Dann gilt

Do, pz — o) = O(27219),

Beispiele fiir Funktionen mit endlicher Coulomb-Norm sind
e Funktionen in L%°(R3) (was aus der Hardy-Littlewood-Sobolev-Ungleichung er-
sichtlich ist) oder
e homogene Ladungsdichten auf Kugelschalen.

Setzt man schliefilich o := —(1/47)AU, wobei U im Unendlichen verschwinden soll,
erhdlt man auflerdem

i [ Upz = [ U
Z—00
fiir alle solche U.

Beweis des Satzes[2.0.1. Wie eingangs erwihnt, ist die grundlegende Beobachtung, einen ge-
wissen positiven Term in der unteren Schranke im Beweis der asymptotischen Entwicklung
der Grundzustandsenergie nicht zu verwerfen. Folgt man dem Beweis der unteren Schranke, so
stellt man fest, dass der Beweis der Scott-Korrektur von Frank u. a. nicht nur die Scott-Formel

(2.2) liefert.
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Mit einer Korrelationsungleichung von Lieb [114] (basierend auf Onsagers Lemma [I3§]
und spéter weiter verbessert, siehe beispielsweise [117, 9 111]), der Holder- und der Lieb—
Thirring-Ungleichung schétzt man zunéchst die Selbstwechselwirkungsenergie durch

4/3
Zw,u ¢M’Z |.%‘ — | u) = Dlpz] — konst /pz/

1<J

> Dlpz — p3F) - DR + 2D (o, 3°) —onst | [ pzy | [ 6 (2.4)

|
> |z = pz"II&: — Dlpz" ] + /pz(x) <ng * |_|> (x) da: — konst Z3+%

ab. Mit dieser Schranke sowie der trivialen Ungleichung

(7ot [

lz—y|>Rz(z)

wobei Rz (z) der Radius des Austauschlochs ist, welches durch
1 _ TF d
5 = pz (y)dy
lz—y|<Rz(z)

definiert ist, folgen aus dem Beweis der Scott-Korrektur [69, Theorem 1, Lemma 5 und Pro-
position 3] (wobei wir bemerken, dass die zweite Summe in [69, Proposition 3] bei { = Z
abgeschnitten sein muss) fiir festes v € (0,2/7| die Schranken

E™(2) + (4= 5(0)) 2* + 193" = pzl|% — konst 2°7/24

<E(2z)<E™(Z2)+ (% - 3(7)) Z% + konst Z47/% . (2.5)

Man bemerkt, dass die linke und die rechte Seite bis auf Terme der Ordnung Z47/2* identisch
sind. Subtrahiert man sie und stellt die Ungleichung um, erhilt man

195" — pzll% < konst Z47/24, (2.6)

Aufgrund der Skalierungsrelation pL¥ (z) = Z2pT¥ (Z'/3x) und der Definition von pz in (2.3),
erhélt man durch Skalieren

TF(,\ _
I3 = palle = [ o /Rgdy — p2(2))(3* (v) — P2 ()

|z =yl
20 [ =060 - i)
R3 R3 [z =y '
Die behauptete Konvergenz folgt, indem man diese Gleichheit mit kombiniert, durch
Z7/3 teilt und die Wurzel zieht. U

Wir bemerken schliellich, dass auch in den Beweisen der Scott-Korrektur fiir den Brown—
Ravenhall- und den Furry-Operator der fehlende Term in Ungleichung hinzuaddiert
werden kann. Aus diesem Grund kénnen die obigen Argumente auch fiir diese beiden Opera-
toren iibertragen werden, wobei — wie oben geschildert — lediglich der Bereich der erlaubten
Kopplungskonstanten und die Definition der Einteilchendichte angepasst werden miissen.



Kapitel 3

Konvergenz der semiklassischen
Dichte im Chandrasekhar-Modell

3.1 Einfiihrung

In diesem Kapitel geben wir einen alternativen Beweis der Konvergenz der auf der Thomas—
Fermi-Léngenskala reskalierten Einteilchendichte eines Grundzustands des Chandrasekhar-
Operators im Grenzwert grofier Teilchenzahlen. Dieser verwendet das Argument der linea-
ren Antwort sowie die Kenntnis des fiihrenden Terms der asymptotischen Entwicklung der
Grundzustandsenergie des adédquat gestorten Chandrasekhar-Operators. Die Herleitung die-
ses Terms beruht stark auf den Argumenten von Sgrensen [139] zur Herleitung des fithrenden
Terms fiir den ungestorten Operator, weshalb dieser Beweis keine Konvergenzrate liefert.

Die Organisation des Kapitels ist wie folgt. Im néchsten Abschnitt geben wir eine prézise
Definition des vorliegenden Systems und den wichtigen Gréflen, formulieren unser Ergebnis
und illustrieren den Beweis. In den néchsten vier Abschnitten bestimmen wir die fithrende
Ordnung der Grundzustandsenergie des gestorten Chandrasekhar-Operators. Im letzten Ab-
schnitt verwenden wir dieses Resultat zusammen mit dem Argument der linearen Antwort,
um das Konvergenzresultat zu beweisen.

3.2 Definitionen und Resultate

Wir beginnen mit der konkreten Beschreibung des vorliegenden Systems. Wir betrachten
einen am Ursprung fixierten Kern der Ladung Z, welcher mit N = Z Elektronen, die ¢ Spin-
Freiheitsgrade haben, iiber das Coulomb-Potential wechselwirkt. Dariiberhinaus beriicksichti-
gen wir die Coulomb-Wechselwirkungen zwischen den Elektronen. Da keine Wechselwirkungen
auftreten, die den Spin der Elektronen miteinbeziehen, setzen wir der Einfachheit halber ¢ = 1.
Wir beschreiben das System durch den Chandrasekhar-Operator und erinnern im Folgenden
an Notation, die in diesem Kapitel verwendet wird. Der Operator ist durch die Friedrichs-
Erweiterung im fermionischen Vielteilchen-Hilbertraum /\fz1 L?(R3) der zu
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gehorenden quadratischen Form auf /\f:1 C>°(R3) definiert. Diese Erweiterung wird fiir Z/c =:
~v € (0,2/7] mit Cz bezeichnet. Die Grundzustandsenergie E(Z) := inf spec(Cyz) des Systems
ist ein Eigenwert von Cz (Lewis u. a. [I12] und Vugalter und Zhislin [I85]), welcher ent-
artet sein kann. Wir bezeichnen mit 1, ...,y eine Basis des zugehorigen Eigenraums. Die
zugehorige Grundzustandsdichtematrix wird mit

M
d = walt) (Yl

p=1
bezeichnet, wobei w,, > 0 Gewichte sind, die die Normierungsbedingung Efyzl wy, = 1
erfiillen. Die Einteilchendichte ist durch
M
pz(x) = NZwM/ [z, 29, .oy 2N )|*das...doy  fiir © € R?
e R3(N-1)

definiert.

Wir erinnern daran, dass die Thomas—Fermi-Dichte beziehungsweise das -Potential den
Skalierungsrelationen pL¥(z) = Z2pI¥ (Z'/3z) und ®LF (v) = Z4/30T¥(Z'/32) geniigen, wo-
bei plTF und <I>1TF jeweils die wasserstoffartigen (Z = 1) Minimierer beziehungsweise Potentiale
sind. Wir zeigen im Folgenden, dass die Grundzustandsdichte auf der Thomas—Fermi-Skala

pz(x) = Z 2pz(Z2~x)
schwach gegen die wasserstoffartige Thomas—Fermi-Dichte konvergiert.

Satz 3.2.1. Seien v € (0,2/7] und U € L*?(R%) N L*(R3). Dann gilt fir Z,c — oo mit
festem Z/c =,
lim [ py(2)U(x) da = / T (VU () d
Z—00
Der Beweis der Behauptung beruht auf dem Argument der linearen Antwort. Um die-
ses anwenden zu konnen, bendtigen wir die folgende Aussage iiber den fiihrenden Term der
Grundzustandsenergie des geeignet gestorten Chandrasekhar-Operators.

Behauptung 3.2.2. Seien A > 0, 0 < U € L5/2(R3) N LYR3), Uy(x) == Z*B3U(ZY3%z),
Czxi=Cyz = AN Uy(x,) und Ex(Z) := inf spec(Cy.»). Dann ist

2
@)= - [ (5 -850 - \20)) dpda— DIFE) - o(27F)

Der Beweis verlduft analog zu dem von Sgrensen [139]. Wir reduzieren zunéchst das lineare
Vielteilchen-Problem auf ein nicht-lineares Einteilchen-Problem mit Hilfe einer Korrelations-
ungleichung. Eine sofortige Lokalisierung im Phasenraum wie im nicht-relativistischen Fall
(siehe z.B. Lieb [I15]) fithrt zu Problemen, da das Coulomb-Potential nicht in den ,relati-
vistischen, semiklassischen LP-Réumen“ L2 N L* liegt. Insbesondere kann man daher nicht
ohne Weiteres das relativistische Analogon der Lieb—Thirring-Ungleichung, die Daubechies-
Ungleichung [31], verwenden, um die potentielle Energie durch kinetische Energie zu kontrol-
lieren. Wir lokalisieren daher zunichst R3 in drei Regionen. Die entstehenden Lokalisierungs-
fehler der kinetischen Energie wurden bereits in [139, Abschnitt 5] hergeleitet und behandelt.
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Die kernnéchsten Elektronen bewegen sich schneller als ein substantieller Bruchteil der
Lichtgeschwindigkeit, weshalb ihre kinetische Energie mit gutem Gewissen durch die hyperre-
lativistische Dispersionsrelation |p| beschrieben werden kann. Ihr Beitrag zur Grundzustand-
senergie wird durch die Hardy—Lieb—Thirring-Ungleichung von Frank u. a. [64] abgeschétzt.
Es stellt sich heraus, dass die Ruheenergie des Elektrons den gréfiten Beitrag liefert.

Man erwartet, dass sich die meisten Elektronen in der &uflersten Region befinden, wo
eine semiklassische Beschreibung angebracht ist. Hier lokalisieren wir — wie Lieb [I15] — das
Problem im Phasenraum mittels kohérenter Zustéinde und zeigen, dass die Energie mit der
nicht-relativistischen Thomas—Fermi-Energie vergleichbar ist.

Der Beitrag zur Energie in der mittleren Zone — in der sich keine Coulomb-Singularitét
mehr befindet — wird durch die Daubechies-Ungleichung abgeschétzt. Der Grund fiir die
Einfiihrung dieser Region ist, dass die innere und &uflere Regionen nicht iiberlappen, da
die Ruheenergie der Elektronen uns zwingt, den Lokalisierungsradius der inneren Zone echt
kleiner zu wihlen als den Radius, der die duflere Zone definiert. Dieser wird wiederum durch
die Lokalisierungsfehler bestimmt, die bei der Phasenraumlokalisierung auftreten.

3.3 Reduzierung auf ein Einteilchen-Problem und Lokalisie-
rung

Sei g € C°(R3) sphirisch symmetrisch, sodass g > 0, ||g|l2 = 1 und supp g C By(1). Die
Funktion g wird spéter in der Definition der kohérenten Zustédnde auftauchen. Fiir R > 0
definieren wir gg(x) := R™%/2g(z/R). Fiir beliebiges 0 < p € L'(R?) schiitzen wir zunichst
die Selbstwechselwirkung der Elektronen durch ein mittleres Feld p * | - |1 % g% ab. Dies ist
gerade das Potential, welches man nach der Phasenraumlokalisierung von p * | - |~ erhiilt,
siche spater. Mit der Korrelationsungleichung von Mancas u. a. [123] erhilt man

N
> _ZP*QR* ZLM (2,) = Dp * g7 (3.1)
v<ph | Ty = x“| v=1
mit dem Austauschpotential
_ (0% 97) ()
N =

|z—y|<R(x)

und dem Radius R(z) des Austauschlochs, welcher durch

3= / (p* g7)(y) dy (3.2)

lz—y|<R(z)

definiert ist. Wir setzen nun p = pL¥. Cassanas und Siedentop [19, Lemma 5] haben bereits
I PLF xg? oo < AgZ gezeigt. Wegen der sphirischen Symmetrie von g% kann man den New-

tonschen Satz [136] verwenden, um D[p¥ x g%] < D[p,"] abzuschétzen. Damit ist die rechte
Seite von (3.1)) nach unten durch

ZPZ * gR * —|(x,,) AgZ2 - D[P}F]
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beschrénkt. Somit kann der auf der Lingenskala ¢! reskalierte Operator C,,» von unten
durch eine Summe von Einteilchen-Operatoren abgeschétzt werden, ndmlich

g orp, L 5 (CL“V) A (%)
> § i VY. P = WY 2y, (T
A [ +1 ) +c Tpy *| | *9r czUZ -
—c—ZD[pZ | — Age 222,

Die quadratische Form wird durch Slater-Determinanten ¢ (x1, ...,xx) = N=Y2min--Amy
minimiert, wobei (m,,m,) = d,, und m, € HY?(R3). Da C*(R?) ein determinierender
Bereich von v=A+1 — 1 — ~|z|~' = U fiir 0 < v < 2/7 ist (Herbst [87]) und L* N L5/2-
Funktionen relativ v/—A + 1-Form-beschrinkt sind, geniigt, es lediglich m, € C(R?) zu
betrachten.

Fiir 8 € (0,1/2) definieren wir wie in [139] monotone Funktionen 6y, 6, € C°(Ry : [0,1]),
die 61 (x)? 4 (x)? = 1 und

1 firz<1-0 0 firz<1-p
01 (x) = ) Oa(z) = i}
0 firz>1+p 1 firz>1+p

erfiillen. Wir lokalisieren R3 mit den Funktionen

w=a () e (g)e(E) we=a(F).

Hierbei bezeichnen ]5% = cR; beziehungsweise Ra = cR, die reskalierten Langenskalen, wobei
Ri=Z"und R, = Z7% r € (8/9,1) sowie t € (1/3,2/3). Mit der Lokalisierungsformel von
Lieb und Yau [122, Theorem 9],

k

(FV=A+1F) =D (fixsV=A+Tx;f) = (f, Lf),

j=1

und

a 1 Ky(lz —yl) -
L(z,y) = E L; = E X; () — x;( )
( ) J (271') |.%' _ y\2 = J J ))

> v o qp 1 Ty A Ty
(“; [T(_A”) TR *ﬁ*gR( 2) - ab (c)] ﬂ’)
:ii <mV,Xj [T(—A) - ‘%’ Y ’1‘ - (%) . C%UZ (i)} ijy> (3.3)

Mit der obigen Wahl von R; und R, zeigte Sgrensen, dass viele der Lokalisierungsfehler nur
zur Ordnung o(Z 7/ 3) in der Grundzustandsenergie beitragen. Genauer gesagt zeigte er, dass
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die rechte Seite von ({3.3) nach unten durch

23:2_: (mij [T(—A) - % +e P py |1 * g <$> - %Uz (i)] x]'my>

—AR7?Y (Camy, ximy) — AR (xemy, x—xamy) — o(Z77%)

v

(3.4)

beschrankt ist, wobei R immer noch ein freier Parameter und x_ die charakteristische Funk-
tion der Kugel By(2R;) ist, siche insbesondere [139, Formel (5.6)].

Wir untersuchen im Folgenden die drei Regionen einzeln genauer. In der inneren und der
mittleren Region arbeiten wir mit dem auf der Lingenskala c¢~! reskalierten Operator und
zeigen, dass die Beitrége zur Energie nur o(Z 1/ 3) betragen. Des Weiteren vernachlissigen wir
in diesen Regionen das mittlere Feld pLF « |- |71 x g%(z/c).

3.4 Energie in der inneren Region

Die Energie in der innersten Region ist

S [T-0) = ot el b () = S0 (2) - AR )

> Z(’mu,Xl {T(—A> - iUZ ( ) — ARZZ] X1My).

x| e

14

(3.5)

In dieser Region schétzen wir die kinetische Energie nach unten durch |p| — 1 ab. Um die
Coulomb-Singularitét zu kontrollieren, verwenden wir folgendes Resultat von Frank u. a. [64].

Behauptung 3.4.1 (Hardy—Lieb—Thirring-Ungleichung [64, Theorem 2.1]). Es gibt ein A >
0, sodass fiir alle Funktionen V auf R>

Tr(xﬁ—ig— )gA/RBV(:c)idx
gilt.

Um dieses Resultat anwenden zu koénnen, schitzen wir \/]7274—1 —1 > |p|—1 ab, verwenden
X1($)21{‘x|§21§i} = X1(m)2, setzen

)\

und bemerken, dass wegen V € L*(R3) und der Hardy-Lieb-Thirring-Ungleichung der Ope-
rator (vV/—A —~/|z| — V) _ in der Spurklasse ist. Mit der Bessel-Ungleichung und (m,, m,) =
dyu kann somit die rechte Seite von (3.5) nach unten durch

N
Z(mle |:V_A__V :|le11 >ZﬂnZ’X1mmfn

v=1 ’ |

DWHNALE @—M?)_

]
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abgeschétzt werden, wobei p1, den n-ten negativen Eigenwert von v —A — v/|z| — V() mit
der zugehorigen, normierten Eigenfunktion f,, bezeichnet.

Wendet man die Hardy-Lieb-Thirring-Ungleichung an und skaliert 2 — ' Z2/3z, findet
man, dass

2
Tr(vV— _2m <A V(z)dzx
|| - R3
4
4/3 1/3 R
= 1+ M2 20 (250 ar2) de
c? c ¢
|| <2R;
z? 2.,-2/3 5 2\4
= / <1+)qZ U(z) + AR; ) dz |
|z < 2/3R1

Da U € L*(R?) und Rf > 7% fiir ein o > 0, kommt der grofite Beitrag zum Fehler von der
Ruheenergie des Elektrons, welcher durch

zZ? / 1Yde = AR}

oy
|x‘§2273 R

beschriinkt ist. Da R; = o(Z1/9), ist dieser Beitrag von der GréBenordnung o(Z'/3) und daher
akzeptabel.

3.5 Energie in der mittleren Region

In dieser Region zeigen wir, dass

> (mu, x2 [T(—A) - % +c 2" ,1| * g (x) - C%Uz (%) - ARZQX—] X2m)

> S omos [1-8) = = S0 (£) - AR )] xam)

v

mit o(Z 1/ 3) beitrigt. Um die potentielle Energie durch kinetische Energie zu kontrollieren,
verwenden wir

Behauptung 3.5.1 (Daubechies [31]) Sei T(p) = T(|p|) = V/p? + 1—1 mit Umkehrfunktion

L) =V 2, F(s) = [) [T~ ]3 dt sowie V> 0. Dann gibt es eine Konstante A > 0,
sodass

Tr (x/T—H—l—V(J:))_ gA/F(V)da:.

Da (1+ t/2)3/2 < A(1 +t3/?), kann man

. . /
F(s) :/ (12 + 2032 a4 :/ (20)%/? (1 + ;)3 Yt < A 1 5 = P(s)

0 0
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abschéitzen. Auf dem Gebiet

x x
supp (x-Xx2) = supp <XBO(2Ri)01 (g) b2 <|R|>>

verwenden wir R? > R; fiir hinreichend groBes Z > 1 und erhalten

Y A z g )
= — — —) > —=> AR “°.
Viw) || * CQUZ (c) T oR;, T B;

Somit ist —AR;% > —V(x). Mit dem Variationsprinzip, der Daubechies- und der Bessel-
Ungleichung sowie der Substitution z — v~1Z2/3z, erhilt man

> (moxe [T(=2) = V@) - AR | xam, )

>3 (myx2 [T(-4) — 2V ()] xam,)

4/3 1/3
—A F | 2x9 N + iU Z x dx
R3 |z c? c

a4z / P [722—2/3 <1 + )\U(m))] dz

||

Y

Y

¥Z=2/3R;<|x|<vZ~2/3Rq
> —A(RY? + 275/ RY8 4 RV 4 2723 = o(Z1/3).
Da |z|~%/2 am Ursprung integrierbar ist, wird dieser Beitrag zur Energie nur groBer, wenn

man von Null bis vZ~2/3 R, integriert. Entsprechend haben wir den |z|~4-Term von vZ —2/3R;
bis Unendlich integriert. Mit der Holder-Ungleichung und U € L5/2N L* haben wir schlieflich

W=

5 5 5 8 5 ~2 5
Z*7s / U2 < Z3|U||? / dr | =Z u=R§|U|? (3.6a)
By 5 |z|<vZ~2/3Rq
VZ 23 Ri<|a|<yZ~2/3 Ry

und

72-8/3 / Ut < 2728 |U ! (3.6b)
¥Z 23R <|x|<yZ~2/3Rq

abgeschétzt. Der grofite Beitrag zur Energie in dieser Region kam also vom nicht-relativisti-
schen s°/2-Term.

3.6 Die Thomas—Fermi-Region

In der duflersten Region betrachten wir den verbleibenden Ausdruck der Energie in der un-
skalierten Form, das heif3t

Z

S movs(e) [TA—A) Gt eE ‘1, « gk — AUz(@) | xa(eymy) — D[p}F) — AZ2,

(3.7)
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wobei T,.(—A) = vV—c2A + ¢4 — ¢2. Dieser Ausdruck wird, bis auf Fehler o(Z7/3), die nicht-
relativistische Thomas—Fermi-Energie ergeben. Die Strategie ist sehr &hnlich zu der von Lieb
[115).

Wir erinnern daran, dass g € C°(R?) sphirisch symmetrisch ist und supp g € By (1) sowie
llgll, = 1 erfiillt. Weiterhin definierten wir die reskalierte Funktion gg(z) = R=3/%g(z/R). Wir
wéhlen nun R = Z7%, wobei 1/3 < t < s < 2/3 sein soll und erinnern daran, dass ¢ durch
R, = Z~! definiert war.

Wir setzen dp := (27) 3dp und Te.(p) := \/c2p? + c* — ¢®. Des Weiteren definieren wir

B(x) = Zla| ' + AUz(a) — p3F % |- | ().

Definiert man die kohérenten Zustinde gh/(z) = gr(z — ¢)e” und die Projektion II,, =
|97 (g%| auf diese Zustéinde, erhélt man

(1) = / (/. Ty f)dp da, (3.80)
(f.® # gif) = / (q)(f,Tpof)dpdg und (3.8b)
(f,[V=CA + A — Af) > / To(p)(f, Ty f)dpdg — AR (3.8¢)

Die letzte Formel fiir die Lokalisierung der kinetischen Energie im Phasenraum wurde von
Sorensen in [139, Lemma B.1] gezeigt. Fiir unsere Wahl von R ist der Lokalisierungsfehler
nach Summation iiber alle Teilchen von der GréSenordnung o(Z7/3). Wir miissen nun den
Fehler bestimmen, der entsteht, wenn man Z/|z| + AUz durch (Z] - |~ + A\Uy) * g% in
ersetzt. Wir beginnen mit dem Beitrag des Coulomb-Potentials. Zum einen folgt aus dem
Newtonschen Satz

(3.9)

i_i*g2: 0 fiir ¢ supp gr
lz| |- R #0 fiir z € supp ggr

Andererseits ist R < R,/4 fiir hinreichend grofies Z. Aus der Definition von ys(cz) =
O2(|x|/Ry) folgt, dass die Tréger von x3(c:) und gg fiir hinreichend grofies Z disjunkt sein
werden, das heifit x3(c-)lsupp g = O fiir hinreichend grofies Z. Daraus folgt, dass bei der
Ersetzung von Z/|z| durch Z| - |71 x g% kein Fehler entsteht.

Der Fehlerterm Y, (x3(c-)m;, [Uz * g% — Uz|x3(c-)m;) wird mit Hilfe etwas (¢ € (0,1))
kinetischer Energie kontrolliert. Wir zeigen

Lemma 3.6.1. Seien gy—(x) := Z3/2g(Z°x) mit s > 1/3 und U, := 9%, * Uz. Dann gilt
fiir alle e > 0

S (e mu, [6(V=EA + ¢t — E) = MUz - Uy)lxs(e)my)

v

A\ 7/3 2 5/2 A\ 4/3 2 4
> —Aqe - Z HU_ngs+1/3*UH5/2+ - z HU_ngsH/B*UHz;

Beweis. Wegen der Skalierungsrelation von g;-s gilt

NI

G7-+(@) = 2% g1(Z°%) = 22 - 2307 3g((2°75 - Z3w) = Z2g,, .\ (Z3).

1
Z—s+3
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Wir verwenden, wie in der mittleren Region, die Daubechies-Ungleichung. Wegen des Varia-
tionsprinzips kénnen wir die Lokalisierung x3 auf die duflere Region wieder vernachléssigen.
Wir fahren nun mit dem durch x + x/c skalierten Operator fort und betrachten die mit c?
multiplizierte Summe der negativen Eigenwerte von

€|:\/T+1—1—€)C\2UZ (aé)—i—;c;/UZ (%—y) g%s(y)dy] . (3.10)

Um die Daubechies-Ungleichung anwenden zu kénnen, brauchen wir nur die || -||,-Normen von
Mec?) - (Ugz(x/e) — Uy(x/c)) mit p = 5/2,4 kontrollieren. Skaliert man z — cx, verwendet
lgz-sll]2 = 1 und die obige Skalierungsrelation von g,-s und skaliert abschlieend (x,y)
Z=Y3(x,y), erhilt man

by p
<Ec2> C3/d$’

p

/ dy ¢-.(y) (Uz(x) - Uz(z — v))

AP p
= <502> ch(1+4/3)p/ dx / dy g%_sﬂ/g(Zl/P’y) (U(Zl/3:n) - U(Z1/3(:B — y))
2
— 7_(3—21’7)()\/5)10Z—§p+2 HU _ g%_erl/s x UH? 7
was die Behauptung zeigt. O

Mit diesen Abschitzungen kénnen wir die Phasenraumlokalisierung durchfithren und er-
halten somit fiir alle ¢ € (0,1)

Z

S0 xale) [ Te(-8) = 2 = AU0) + 1 1 %] valem)

~ VA A
= Z(m,,,xg(c-) [Tc(—A) — D xgh— Tl + T % g — NUz + \Ug * g%} x3(c)my)

= Z(my,xg(o) [Tc(—A) — D s gk — NUz + NUy * g%} x3(c)my)

v

>~ [10-2T0) = B@)- 3 | (xale i, 50 dp g - o(27)

—Ae

A2 7/3 2 5/2 A\ 4/3 2 4
(2) 200 = e < UG+ (2) 290 = v U1l

Zum SchluB werden wir ¢ so wihlen, dass der durch Uz — U, erzeugte Fehler ebenfalls o(Z7/3)
ist.

Wir befassen uns nun genauer mit dem ersten Summanden der rechten Seite letzten Kette
von Ungleichungen. Fiir hinreichend grofies Z ist R/R, < 1/4. Fiir |q| < R,/4 folgt daraus

R R
|x]§|q\+]a:—q]§f+R<7a fiir « € supp g} .

Per Definition von x3(cx) ist daher (m;xs(c), g) = 0 fiir |¢| < R,/4 und somit

Supp ¢ ‘(Xg(c')mi,g%q)‘ C R3\ Bo(R./4)
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fiir hinreichend grofiles Z. Verwendet man diese Beobachtung und die Bessel-Ungleichung,
erhilt man

(¢, Cz )
> — (1 —e)Te(p) — ®(q)]-dpdg — D[pF"] — o(Z7/?)
lq|>Ba
A\ %2 5/2 A\ ! 4
2| (2) 2N - B U+ (2) 20 - U

(3.11)

Als Néichstes schitzen wir die Differenz zwischen der Thomas—Fermi-Energie und obigem
Integral ab, sprich

/ ((1 - 6)]922 — 95 (q) - AUz(cJ)> dpdq — / [(1 = &)T(p) — ()] -dpdy.
lgf>Ze B jgl>Ze

Dies geschieht in zwei Schritten. Zunéchst passen wir den Integrationsbereich von

— [ 10T - $0)-dpdg
lq|> Ea

an, das heifit wir schreiben
— [ -2~ $a)-dpia
lg|>fe
- [ -9 - dwld
la|>Ba;(1-2) B <d(q)

" / (1 — £)Tu(p) — B(q)]dpda.

la> e (1-e)Te(p) <B(q) < (1-)

(3.12)

Der erste Term auf der rechten Seite hat bereits den richtigen Integrationsbereich. Fiir diesen
muss nur noch der Fehler bestimmt werden, der entsteht, wenn man T,(p) durch p?/2 im
Integranden ersetzt. Der zweite Term ist ein Fehlerterm, von dem gezeigt werden muss, dass
er von der Ordnung o(Z7/?) ist. Analog zu den Rechnungen in [I39, Seiten 14-16] schitzen
wir diesen mit Hilfe des Skalierungsverhaltens ®(z) = Z*/3®,(Z"/?z) durch

/ (1 — &)Tulp) + B(q))dpda
lg|>Ea 3 (1—2)Te (p)<P(q) < (1—2) B

< / ®(q)dpdg

lal>Bes(1—e) T (D) <B(g)<(1—2) &2

=zZ'/3 / ®1(q)dpdg

la|>Ba Z1/3,(1—e) T.(p) < Z/381 (q)<(1—2) B2

[
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ab. Auf dem Gebiet {(p,q) € RS : (1 — &)T.(p) = (1 — &)(1/2p? + & — ¢2) < Z*38 ()} ist
fire <1/2

(1—e)p*< 2Z4/3<f'1(q) + 272Z2/3(f1(q)2
und die Integrationsgrenzen implizieren daher insbesondere mit ¢ < 1/2 die Ungleichungen

2243, (q) < (1 - 2)p? < 22'3®1(q) [1 +22 1 (g)] .

Mit X := 2Z%3®,(q), Y := 1227 23®1(q), V := (1 — e)p? und W := R,Z'/3 /4 schitzt man
den zweiten Term auf der rechten Seite von (3.12)) nach unten durch

2 ~ X(14Y) 1/2
_ @21/3 / dgq @1((1)/ Vidv

(2m)3 X 2(1 —¢)3/2
la|>W
_ (4) 2 Z/3 3/2
-~ G T / dg & (10 1 v )
lg|>W
> _AZY3 / dg $1(q) X3/ [Y + Y3/2]
lg|>W
> —AZ"? / dg ®1(q)"/? [2—2/3<i>1(q) + Z—lél(q)ﬂ
lg|>W
ab. Es verbleibt, die Terme
~ 1 7/2
Z5/3 / $1(q)?dg < 2°/3 / <|q’ + )\U(q)> dgq (3.13a)
la|>Ra21/3 |al>RaZ1/3
und
- 1 4
AL / ®1(q) dg < 243 / <|q| +\U(q )) dq (3.13b)
la|>Ra21/3 |al>Ra21/3

zu kontrollieren. Da U € L5/2 N L* ist, ist auch U € L7/2. Daraus folgt, dass der durch U
erzeugte Fehler von der Ordnung Z%/3 beziehungsweise Z%/3 ist. Der Fehler, der durch das
Coulomb-Potential erzeugt wird, belduft sich auf

oo
Zwi@zmngquzAZW*”%a”deZ”“> (3.14a)
beziehungsweise

#Bﬂsz4m=A%”“%f=dT®. (3.14D)
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Somit ist

- / (1 - &)Tu(p) — B(q))_dpdg

R
lq|>=~

> / (1= )Tu(p) — B(q)]dpdg — o(Z7/3)

2~
lq|>£a;(1—¢) B- <d(q)

und es verbleibt lediglich, den Integranden in der zweiten Zeile von (3.12) zu modifizieren.
Mit To.(p) > p?/2 — p*/(8¢?) erhilt man

/ (1 — &)T(p) — B(q)¥ip dg

2 ~
lq|>Ba;(1—¢) B2 <(q)
2

~ 1—¢
> {(1 — 6)% — <1>(Q)] dpdq — —— / pldpdy.

2 = 2~
lg|>Ea;(1—2) B- <d(q) lg|>Ea;(1—2) B2 <(q)

Als Néchstes bemerkt man, dass auf dem Integrationsbereich des p-Integrals

ol < 420Uz (q)
Pi= 1—¢

ist. Damit ist der p*-Fehler mit 0 < & < 1/2 unter VergréBerung des Integrationsbereichs von
(1 —e)p?/2 < @(q) zu p?/4 < Z/]q| + AUz(g) durch

7 7/2
z7* / pldpdg < AZ™? / (I\ + >\Z4/3U(Z1/3q)> dq
q
lal> Ra; 22 <Z/|q|+AU (q) lg|>Ra
1 7/2
= AZ5/3 / <|| + AU(q)) dg
q
lg[>RaZ3

kontrollierbar. Die rechte Seite ist aber von der gleichen Form wie (3.13a)), das heifit auch
dieser Fehler ist von der Ordnung o(Z'/6).
SchlieBlich erhalten wir also

[ o-ab -ew]wanz - [ o=k - e @ -] i

(=g -1) [ 2 - a5 - 2nto) dva

_ / [792 — 37" (q) - )\UZ(Q)} dpdq
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und der verbleibende, von € abhéngige, Fehler belduft sich auf

A\ 7/3 2 5/2 AN\ 4/3 2 4
Al o) 2 U = g7-ss1ss U”5/2 +Z) % U = 97-ss1s5 = U
; (3.15)
+ ((1 )2 1) / [1’2 — 3T (q) - /\Uz(q)} dpdq.
Da g%,s 115 Wegen s > 1/3 ein glittender Kern ist, ist (3.15) mit der Wahl
1 U—g>_. x* U
S S B it/ Bantl ls/2 27T — o0(20%), 5 (0,1/3) (3.16)
2 1+ HU_gZ75+1/3 >|<[]||5/2
nach oben durch eine Konstante mal
5 7 7 HU*QE—SH/?, *Ul|s Z~1/3+6 7
N |U — g% inys % U Z5 + A1Z3730 4 2+ 3
Z—s+1/3 2 2(1+ ”U_Qéfsﬂ/g *ng) 2

beschréinkt. Hierbei haben wir die Skalierungseigenschaft von ®L¥(q) + AUz(q) sowie (1 —
5)*3/ 2 1 < Ae fiir hinreichend grofies Z verwendet. Daraus folgt, dass der letzte Ausdruck
ebenfalls von der Ordnung o(Z7/3) ist.

Somit ist schliefflich

2 A
(¥, Cza) > —/ [])2 - <M —p" 1| + )\UZ(q))] dpdq — D[pLF] — o(Z7/3),

was Behauptung [3.2.2] zeigt.

3.7 Zusammenfithrung und Beweis von Satz [3.2.]]

Der Beweis beruht auf den Ideen von Conta und Siedentop [25].
Lemma 3.7.1. Sei 0 < U € LY?(R3). Dann gilt

) -1 2
o / (&~ 05 @ - \Uz(a)) dpdg ~o.

2
B —®TF (q)-AUz(q)<0
2
B —07(¢)>0

Beweis. Aus dem Skalierungsverhalten von @}F + AUz folgt

-1 p2
\Z7/3 / (2 — @3 (q) - AUZ(Q)) dpdq

2
B —®TF (q)-AUz(q)<0
2
B —2TF(9)>0

1
<3 / Uz(q)dpdg = / Ul(q)dpdq
22§ TF (q)—AUz(q)<0 22T (g)— AU (q)<0
2 _aTF (g)>0 22 _3TF (¢)>0

:A/ dg U(q)[(®TF (q) + \U(q))¥? — ®TF (¢)3/7].
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Das letzte Integral konvergiert majorisiert fiir A — 0 gegen Null. Eine gleichméfig in A
integrierbare Majorante (ohne Beschrinkung kénnen wir [A| < 1 annehmen) ist U(q)(®T% (q)+
AU (q))?/?, da sowohl U, als auch ®TF in L%/2(R3) sind. Die Integrierbarkeit ist aus der Holder-
Ungleichung ersichtlich. O

Beweis von Satz[3.2.1. Sei ohne Beschrinkung der Allgemeinheit U > 0. Ansonsten zerlegt
man U in seinen positiven und negativen Anteil und zeigt den Satz fiir Uy und U_ separat.

Wegen
2
VeRp? et -t =72 <\/1 + (p/c)? — 1) <

-2
und dem Ergebnis von Lieb und Simon zur fithrenden Ordnung der Grundzustandsenergie
des nicht-relativistischen Problems [I18, Theorem I.1] folgt, dass die Thomas—Fermi-Energie
zu fithrender Ordnung in Z automatisch eine obere Schranke an die Grundzustandsenergie
von C ist. Wir erinnern, dass d© die Grundzustandsdichtematrix mit dazugehériger Einteil-
chendichte pz von Cz war. Mit dieser Beobachtung und Behauptung erhilt man

A/;’)Z(x)U(x) do = ﬁ /pz(m)UZ(x) de = Zi/gTr (d°[C7 — Cz))

1 2
< 7773 / <p2 - ‘pEF(Q)) dpdq — D[pLF] + o(Z7/3)

2
<ol (q)

2
- [ (B0 200 dpda-+ DI+ o2

2
2= <®TF(q)+AUz(q)

1
= W / )\UZ(Q)dp dq

2
E-<oTF(q)

p2
- [ (5o - s ) dvda + o2

2
B —®TF (q)—AUz(q)<0
2
B —07(¢9)>0

=\ / pi ¥ (2)U(z) dx + o(\) + o(Z°) .

Teilt man beide Seiten durch A\ (fiir A < 0 dreht sich die Ungleichung um) und lésst zuerst
Z — oo gehen, erhéilt man

lim sup/ﬁz(x)U(x) dzx < /p?F(m)U(x) dx + %0()\) fiir A > 0, bzw.
Z—00

liminf/ﬁz(x)U(:z) dx > /p?F(x)U(x) dx — %0()\) fiir A <0.

Z—00

Die Behauptung folgt mit Lemma wenn man den Grenzwert A — 0 ausfiihrt. O



Kapitel 4

Konvergenz der semiklassischen
Dichte im Brown—Ravenhall-Modell

4.1 Einfiihrung

In diesem Kapitel geben wir einen alternativen Beweis der schwachen Konvergenz der auf der
Thomas—Fermi-Léngenskala reskalierten Einteilchendichte eines Grundzustands des Brown—
Ravenhall-Operators. Wie im letzten Kapitel verwenden wir das Argument der linearen Ant-
wort sowie die Kenntnis iiber den fiihrenden Term der asymptotischen Entwicklung der
Grundzustandsenergie des adidquat gestorten Brown-Ravenhall-Operators. Die Herleitung
dieses Terms gestaltet sich in diesem Fall jedoch deutlich schwieriger, wenn die Kopplungskon-
stante zwischen der kritischen Chandrasekhar- und der kritischen Brown—Ravenhall-Konstan-
ten liegt, da man Kommutatoren der Lokalisierungsfunktionen mit gewissen unitéren Trans-
formationen des Brown—Ravenhall-Operators, den sogenannten T -Transformationen, kontrol-
lieren muss. Aus diesem Grund erhalten wir zwar dasselbe Konvergenzresultat fir v < 2/7
wie fiir den Chandrasekhar-Operator, aber ein schwicheres, wenn 2/m < v < 2/(7/2 4 2/7)
ist. Dartiberhinaus gilt dieses nur fiir subkritische Kopplungskonstanten.

Das Kapitel ist wie folgt gegliedert. Im néchsten Abschnitt stellen wir das Modell vor
und geben eine unitir dquivalente Darstellung des Brown—Ravenhall-Operators. Im Anschlufl
formulieren wir unser Hauptresultat und illustrieren den Beweis. Im anschlieBenden Abschnitt
zeigen wir, wie das Ergebnis fiir v < 2/7 sofort aus dem fiir den Chandrasekhar-Operator
folgt und diskutieren zwei Moglichkeiten, wie man fiir v > 2/7 verfahren kénnte.

Als Néchstes untersuchen wir die 7-Transformationen und geben punktweise Abschétzun-
gen an ihre Integral-Kerne an. Wir zeigen dann, wie die Kommutatoren dieser Transforma-
tionen mit den Lokalisierungsfunktionen des letzten Kapitels abgeschéitzt werden kénnen.

Mit diesen Abschétzungen werden wir in der Lage sein, dem Beweis Sgrensens zu folgen,
um die Energie in den drei Regionen zu untersuchen. Wir zeigen wieder, dass die innere
und mittlere Region nur mit o(Z7/3) beitragen und die #uBere Region bis auf Fehler o(Z7/3)
die Thomas—Fermi-Energie liefert. Der Beweis des Hauptresultats folgt dann wie im letzten
Kapitel mit dem Argument der linearen Antwort.



34 4. Schwache Konvergenz im Brown—Ravenhall-Modell

4.2 Uberblick iiber das Modell, Definitionen und Resultat

Der Einteilchen-Dirac-Operator eines Elektrons im Feld einer Punktladung Z ist im Brown-—
Ravenhall-Modell durch die Friedrichs-Erweiterung der auf S(R? : C*) definierten quadrati-

schen Form 2

(v, Dzy) = (Ib, [—ica V426 - W] ¢>
im Hilbert-Raum

9 = (L(g,00)(—ica - V +*B)) (L*(R* : CY))
gegeben. Die Form ist genau dann nach unten beschriankt, wenn v := Z/c < vp =2/(2/m +
7/2), siehe [48].

Durch eine unitére Transformation kann der Operator in $) als selbstadjungierter Operator

in L2(R3 : C?) dargestellt werden. Dazu parametrisiert man die erlaubten Zustinde wie folgt.
Ist 1 € $ ein Dirac-Spinor, so kann 1 mittels

o= (Wiron) @

durch einen Pauli-Spinor u € L?(R? : C?) dargestellt werden, wobei

o (p) := do(lp]) , @@:wmmﬁfzwmmmm,pew (4.2)

mit
Ei(p) + (=1)7
2E1(p) ’

und E.(p) := /2p? + ¢* sind. Des Weiteren sind o = (01,09, 03) die drei Pauli-Matrizen
sowie h(p) := o - p/|p| der Helizitétsoperator. Schlieflich ist p, abhéingig vom Kontext,
entweder der Differentialoperator —iV, oder der Fourier-Multiplikator p € R3. Nach Evans
u. a. [48] ist

¢;(p) := j € {01}

®.: L*(R*:C?) = §

- (32)
1p/cju

eine unitire Abbildung. Insbesondere ist auch die Einschrinkung von ®. auf H!(R3 : C?)
eine unitire Abbildung in H'(R? : C*) N §H.

Der Brown-Ravenhall-Operator fiir ein Elektron im externen Potential —Z/|z|, der auf
Pauli-Spinoren wirkt, ist mit dem wverdrehten Potential

() = (o ) () (26 )

00 (2) (Zore)an (B)+ o (2) (Zote)n(?)

am—é—n(é) in L2(R? : C?)

durch
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gegeben. Sofern es aus dem Kontext ersichtlich ist, schreiben wir von nun an p statt p.

Der Erwartungswert der Energie in einem Vielteilchen-Zustand 1 des Brown—Ravenhall-
Operators mit Coulomb-Potential eines Kerns der Ladung Z, der mit N = Z Elektronen wech-
selwirkt ist unter Berticksichtigung der Coulomb-Selbstwechselwirkung zwischen den Elektro-
nen durch

N

E) = (v, |D (Dz =P+ Y

v=1 1<v<pu<N

1
|z _xu‘

v (4.4)

auf dem Formbereich Qp := S(R3V : (C4N) N /\Z],V:1 $ gegeben. Mit (4.3) kann (4.4) auch durch
Pauli-Spinoren ausgedriickt werden, nédmlich

N
(@)L, ®)) 0 £ 0 (®)_,®c) : /\ L*(R*: C*) - R. (4.5)

r=1

Da die quadratische Form des Vielteilchen-Problems fiir v < ~p ebenfalls nach unten be-
schrinkt ist, kann man nach Friedrichs einen Vielteilchen-Operator definieren, dessen Grund-
zustandsenergie

E(Z) == inf{&[Y] : ¥ € Qn, [[¥[| = 1}

und Grundzustandsdichte Gegenstinde dieses Kapitels sein sollen. Es ist bekannt, dass E(Z)
ein Eigenwert ist (Morozov und Vugalter [133]). Dieser kann entartet sein und wir bezeichnen
mit 1, ..., eine Basis des entsprechenden Eigenraums. Die zugehorige Grundzustands-
dichtematrix ist durch

M
4 = wul) (Wl
pn=1
gegeben, wobei w, > 0 Gewichte sind, die die Normierungsbedingung E/Jy:l wy, = 1 erfiillen.

Im Folgenden untersuchen wir die zugehorige Einteilchen-Grundzustandsdichte

M 4
B 2 .. 3
=N E E ,01;22,092;...; LN, dxs...d f eR
p-(x) wy /Rg(Nl) [Yu(x, 015 22, 02 TN,oN)|°dxy...dxy  fir z

p=1 01,...,0N=1

sowie die auf der Thomas-Fermi-Lingenskala reskalierte Dichte pP(z) := Z—2pB(Z~'/3z).
Wir formulieren nun unser Hauptresultat.

Satz 4.2.1. Seien v € (0,2/7] und U € L% N L*(R3). Dann konvergiert fiir Z,c — oo mit
fiziertem Z/c =,

lim PP (2)U (x) dx = / pi¥(z)U(x) de.
Z—00 JRr3 R3

Ist v € (2/m,vB), so gilt das gleiche Resultat unter der zusdtzlichen Voraussetzung, dass
Uc|-|7'L®(R3) und U Lipschitz-stetig ist.

Wir betonen, dass hier pEF die Thomas—Fermi-Dichte mit der Thomas—Fermi-Konstanten
yrr = (672/q)%/3 ist, wobei ¢ = 2 gesetzt wird. Fiir den Beweis von Satz werden wir
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wie im letzten Kapitel das Argument der linearen Antwort verwenden. Dazu definieren wir

Uz(z) = Z*3U(Z"Y3z) mit U aus Satz sowie fiir A € R,

1
e

(8

auf Qn. Unser Ziel ist es, zu zeigen, dass das Infimum von &, zu fithrender Ordnung in Z
durch die entsprechende Thomas—Fermi-Energie gegeben ist. Dazu beweisen wir die folgende

Behauptung 4.2.2. Seien v € (0,2/7], A >0, 0< U € L>2NLAR3), Uz(z) = Z%U(Z%JI)
und

E\(Z) = inf &[],

Dann ist

2
E\(Z) > - / <p2 93 (q) - AUz(q>>dp dg — D[p3"] —o(Z7?%).

Ist v € (2/m,vB), so gilt das gleiche Resultat unter der zusdtzlichen Voraussetzung, dass
Ue| |7LL®(R3) und U Lipschitz-stetig ist.

Mit dieser Ungleichung erfolgt der Beweis von Satz dann wie in Abschnitt

4.3 Beweis von Behauptung fiir v <2/m

Fiir v < 2/7 folgen wir dem Beweis von Cassanas und Siedentop [19] und beginnen damit die
Selbstwechselwirkung der Elektronen durch eine Korrelationsungleichung zu kontrollieren. Ist
0 < o € L}(R?), dann definiert man R,(x) durch die Gleichheit

1

U(y)dy:§-

|z—y|<Ro (z)
Das zu o gehorende Lochpotential ist durch

_ a(y)
Lo(w) = / |z —y !

|.7,‘—y|<Rg($)

definiert. Fiir R = Z~° mit s € (1/3,2/3) definieren wir gr(z) = R32g(z/R), wobei
0 < g € C°(R?) sphirisch symmetrisch, ||g|]l2 = 1 und supp g C Bo(1) erfiillt. Weiter sei
PR = p}F* g722. Mit der Korrelationsungleichung von Mancas u. a. [123] schitzen wir zunéchst
die Selbstwechselwirkung durch

1 al 1
Z 7‘ > Z [PR * ﬁ(%/) - LPR(:EV) — Dlpr]

Ty, —T
1§u<u§N‘ v K v=1

ab. Wegen der sphirischen Symmetrie von ¢ kénnen wir den Newtonschen Satz verwenden
und pr durch p}F in D[pr] ersetzen, um die rechte Seite weiter nach unten abzuschétzen.
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Mit der Schranke ||L,;|loc < AgZ aus [19, Lemma 5] haben wir fiir alle normierten ¢ €
HY2®R3N . ™y n /\i\[:1 $ das N-Teilchen-Problem auf das Einteilchen-Problem

Ex[Y] > =Tr [A4(|Do| — ¢ = Vra)Ay] = AgZ* — D[p}"] (4.6)

reduziert, wobei Ay := 1(g o0)(Do) und Vg 5 := Z|- | — pr ﬁ + AUyz. Zwar haben die Pauli-
Spinoren vier Komponenten — jeweils Spin +1 fiir Elektronen und Positronen — doch haben wir
es hier wegen der Projektion auf den positiven Spektralbereich des freien Operators nur mit
zwei Spinzustidnden zu tun. Schreibt man die Spektralprojektionen mit Hilfe der Gradierung

Do/|Dy| B b
A 1+ =9
£ < !D0!>’

so kann man diese durch eine unitare Transformation

0 1
U= ( -1 0 )
ineinander iiberfiithren, da

1 (0 -1 c? co-p 0 11\ —c? —co-p\ _
v DOU_<1 0 co-p —c? -1 0/) \ —co-p c? = Do

Entsprechend erhiilt man auch UDoU~! = —Dg, weshalb A_ = U 'A, U. Definiert man
X :=(|Dg| — ¢* — Vg.\) ® 1¢2, erhélt man mit dem Variationsprinzip und der Zyklizitét der
Spur

X 0 X_ 0 X_ 0
a5 4] (5 8] (5 2)]
Weiter gilt mit der Darstellung von A_ durch U und A4, der Unitaritdt von U und der
Zyklizitdt der Spur

(5 2]y 2 )5 2]

Wegen Ay + A_ = 1¢4+ haben wir schliellich

wfe (5 (5 2 )] (v )
(5L,
Da | Do(p)| = E.(p) ist, erhiilt man

E\(Z) = =Trppms.c) [Ee(p) — & = VRl = Dlpg"] = A, 2°.

Die Behauptung folgt durch Anwenden von Behauptung - 2| des letzten Kapitels fiir Kopp-
lungen v < 2/7. Streng genommen miisste Behauptung in /\N L3(R3 : C?), also fiir
q = 2, bewiesen werden. Der Beweis erfolgt jedoch mit exakt derselben Strategie, aufler,
dass die kohérenten Zusténde in der Thomas—Fermi-Region einen zusitzlichen (trivialen)
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ipT

Spin-Freiheitsgrad tragen und durch g% (z,0) = gr(z — q)e
o € {1,2} und {e,}2_; bezeichnet die Standard-Basis in C2.

® e, gegeben sind. Hierbei ist

Durch diese Abschétzung erhalten wir die Behauptung zwar fiir v < 2/7, nicht jedoch fiir
die groflere Brown—-Ravenhall-Kopplung v > 2/7.
Es gibt nun zwei Moglichkeiten, wie man diesen Umstand beheben kann.

1. In [70] zeigten Frank u. a., dass der Brown-Ravenhall-Operator im nullten Drehim-
pulskanal mit kritischer Kopplung vp durch den Chandrasekhar-Operator im nullten
Drehimpulskanal mit Kopplung 2/7 kontrolliert werden kann. Der Grund hierfiir ist,
dass die Coulomb-Singularitéit im Brown—Ravenhall-Modell durch die Transformation
Te ,ausgeschmiert“ wird, weshalb in diesem Modell eine hohere Kopplungskonstante
erlaubt ist. Die Idee wire, diese Strategie fiir den Operator mit dem modifizierten Po-
tential y|z|~! + Ae72Uz(z/c) anzuwenden.

2. Wie im ersten Punkt beschrieben, riithrt das Problem von der Coulomb-Singularitét
her. Man konnte also stattdessen dem Beweis von Sgrensen [I39] (beziehungsweise des
letzten Kapitels) folgen und das Problem wieder in die drei Regionen des letzten Ka-
pitels zerlegen. In der ersten Region wird die kritische Coulomb-Singularitéit durch die
Hardy-Lieb—Thirring-Ungleichung fiir den Brown-Ravenhall-Operator (Frank [62]) kon-
trolliert. Dies ist die einzige Region, in der man wirklich die unitére Transformation
T. benotigt, um auch die kritische Kopplungskonstante zu behandeln. In den anderen
beiden Regionen sollte man die Transformation verwerfen kénnen, da das modifizierte
Potential keine Singularitéiten mehr aufweist, die nicht mit kinetischer Energie durch
die Daubechies-Ungleichung kontrolliert werden kénnten. Bei dieser Lokalisierung tre-
ten jedoch vom Kommutieren der Lokalisierungsfunktionen x mit den Operatoren ®,,
der T-Transformation zusétzliche , Lokalisierungsfehler “ auf. Die Aufgabe besteht darin
zu zeigen, dass das durch diese Kommutatoren erzeugte ,,Lokalisierungspotential “ eben-
falls durch kinetische Energie kontrollierbar ist. Dies ist die Strategie, der wir in den
kommenden Abschnitten folgen werden.

4.4 Kommutatoren mit der 7-Transformation

Arbeitet man mit der Strategie von Sgrensen [139], um den fithrenden Term in der asym-
ptotischen Entwicklung der Grundzustandsenergie zu erhalten, fiihrt man wieder die glatten
und sphérisch symmetrischen Lokalisierungsfunktionen y; (j = 1,2, 3) ein. Die innere Region
reicht dabei bis zu einem Radius R; = Z7" mit r € (8/9,1), die mittlere Region von Z~"
bis R, = Z~¢ mit ¢t € (11/30,2/3) und die dufere Region beginnt schlieBlich bei Z~t. Wir
definieren daher

a@ =0 (). uw=a(fe(R). ww-u(l).  wmw

wobei die 0; € C>°(Ry : [0,1]) die Gleichheit 61 (x)? + 62(z)? = 1 erfiillen, monoton sind und
so definiert sind, dass

1 fi 1-— fii 1-—
01(x) = s b und Oo(x) = 0 fira < b (4.7b)
0 firz>1+p 1 firz>1+p
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mit 0 < 5 < 1/2 gelten. Da wir auch wieder mit dem durch z — x/c skalierten Operator
arbeiten werden, fithren wir auflerdem

ein, wobei RZ = cR; und Ra = cR, sind.
Im letzten Abschnitt haben wir gezeigt, dass der auf ein Teilchen reduzierte Brown-—
Ravenhall-Operator nach der Blockdiagonalisierung durch

Eo(p) — ¢ — To(Vry) in L3(R®: C?)

gegeben ist, wobei Vg \ 1= Z]- |71 — pr * |—1‘ + AUyz. Hierbei ist T, der unitére Operator, der
fiir skalare Potentiale V' wie T.(V') = ®o(p/c)V ®o(p/c) + P1(p/c)V ®1(p/c) wirkt. Neben den
bekannten Lokalisierungsfehlern, die durch das Lokalisieren von E.(p) entstehen (siehe [139]
Formel (5.6)]), treten durch das Kommutieren der x; mit den ®,, weitere , Lokalisierungsfeh-
ler* auf. Im Folgenden betrachten wir die Kommutatoren von ®,, mit der monotonen und
sphirisch symmetrischen Lokalisierungsfunktion xg(z) := x(z/R) € C(R3 : [0,1]), die

~J1 fiir [z| € [0,1]
x(@) = {0 fir |x| > 2 (48)

erfiillt. Dies ist ausreichend, denn x;(z) kann durch xg,(x), x3(x) kann durch 1 — xpg, ()
und x2(z) kann durch 1 — xg, (z) — (1 — xg, (7)) ausgedriickt werden. Allgemein gilt fiir eine
reellwertige Funktion V, f € L?(R3 : C?) aus dem quadratischen Formbereich von V & 1¢2
und ¢ € {®g, 1}

(f; 2xVx@f) =(f, {x® + [®, x]}V{[x, @] + 2x}/)
(f;x®VOXS) + (f, [®, x]VOxXS) + (f,xPVx, ®If) + (f, [®, X]V X, ®]f)
=(f,x®Vex[) + 2Re(f, x®V[x, ®If) + (f, [®, x]V [x, ®If) -

(4.9)

Mit der Cauchy—Schwarz-Ungleichung kann man den mittleren Term der letzten Zeile durch
den ersten und den letzten Term abschitzen, denn fiir V1/2 := V/|V|'/2 und alle £ > 0 ist

2|(VI20xf, V2L, @1 f)| <262 |V 2exs | - 72 v ) |
§5HV1/2<I>fo2 fe! H|V\1/2[X,<I>]fH2 (4.10)

=e(f XV OxXS) +e ' (f.[@,X]|VI[x. D]f)-

Der Doppelkommutator von x2 kann mit der Cauchy—Schwarz-Ungleichung durch die Dop-
pelkommutatoren, die nur xg, und x g, beinhalten, abgeschétzt werden. Der erste Term auf
der rechten Seite von ist das gewiinschte, lokalisierte, verdrehte Potential. Im néchsten
Abschnitt werden wir argumentieren, dass wir die T-Transformation in der mittleren und
duBeren Region vernachldssigen kénnen, siehe auch Anhang

Der Term mit dem Doppelkommutator muss entweder sofort beschrinkt oder durch Aus-
borgen etwas kinetischer Energie kontrolliert werden. Es stellt sich heraus, dass wir letztere
Strategie verwenden miissen. Folgendes Lemma erlaubt uns den Doppelkommutator durch
ein ,Lokalisierungspotential“ L zu kontrollieren. Dazu miissen die Schwartz-Kerne der ®;
bestimmt werden. Eine kurze Zusammenfassung iiber Schwartz-Kerne, Pseudodifferential-
operatoren und Symbole wird in Anhang gegeben.
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Lemma 4.4.1. Seien V > 0 und x reellwertige Funktionen auf R® und ® = ®(p) ein Symbol
nullter Ordnung mit Werten in den 2 x 2-Matrizen. Sei ®;;(x,y) = K(x — y)M;; der Kern
des durch ®;j(p) definierten Faltungsoperators, wobei i,j € {1,2} und |M;j| < 1. Sei

Lw)i= [y [ 1K@ =)l =XV EIKG =2l ~x@. @1

Dann gilt

|(f; [@, XV X, 1) < 4/1@3 L(z)|f (z)[* dz (4.12)

fiir alle f € L*(R3 : C?) aus dem quadratischen Formbereich von V @ 1¢.
Sofern keine Verwechslungsgefahr mit den durch E.(p) erzeugten Lokalisierungsfehlern
besteht, werden wir im Folgenden solche L, die durch das Kommutieren der Lokalisierungs-

funktionen y; mit der 7-Transformation entstehen, ebenfalls als , Lokalisierungsfehler “ oder
,,Lokalisierungspotentiale“ bezeichnen.

Beweis. Seien 4,7,1 € {1,2}. Wir schreiben f = (fi1, fa)T, wobei f; € L?(R3). Weiter definie-
ren wir

Sij(,y) =[x, Pizl(z,y) = K(z — y)(x(z) — x(y)) Mij .

Da |M;j| < 1, gilt insbesondere

1S5 (z, )| < [K(z —y)lIx(x) — x(W)| = S(z,y) = S(y,z) .

Schliefflich definieren wir

gi,2<x7y) =V S(x,z)S(z,y)]fZ(x)\ .

Dann erhélt man mit der Cauchy—Schwarz-Ungleichung

@Vl =| [ do [ ay [ ax @Sy (VS i)
0,7,

< [ dzV(z) de [ dy |fi(2)]|Si;(z, 2)|[S5(z, 9)I| fi(y)]
/ ;;/ / Y j 5l Yy \y

<2 [dzV(z) dz [ dy gi.(x,y)g1:(y, )
/ ;/ / Y gi2 (2, 9)g1,:(y

< [ dzV(z) dz | dy (giz(x,y)* + g1,2(y, )%
/ ZZZ:/ / Y (9i2(2,9)° + 912y

< 4/dz V(Z)Z/dx/dy S(x,2)S(z,y)|fi(2)]?.
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Wir bestimmen nun die Lokalisierungspotentiale von [®;, x|V [x, ®;] = [®; —1, x]V[x, ®; —
1]. Hierzu leiten wir zunéchst Schranken an die Integralkerne von ®; — 1 und ®; her. Wir
erinnern an die Definition

e(p) + (=1)/ 3
i(p) = , PER
¢J( ) 2€(p)
mit dem Symbol der relativistischen kinetischen Energie e(p) = \/p? + 1. Beide ¢; — 1 héngen

nur von |p| € Ry ab, sind reell analytisch und haben eine analytlsche Fortsetzung auf den
Streifen {z € C: |J(z)| < 1}. Des Weiteren verhalten sie sich asymptotisch wie

_ p|? o
\/§(¢0(p)—1):{\/§ 1— L5 +0(pl")  fiir [p| =0

oy T OUpl™?) fiir [p| — o0
Ip\ i

1— 54 O(|p*) fiir |p| — 0

3p] + O(|P‘ ) fiir |p| — oo

Beide fallen somit wie |p|~! im Unendlichen ab, was wiederum bedeutet, dass die Kerne
am Ursprung eine |z|~2-Singularitit haben. Wegen der komplexen Analytizitit fallen sie fiir
grofle Abstinde wegen des Paley—Wiener-Satzes exponentiell ab. Diese Heuristik wiirde auf
die Abschitzung

—M|z—y|

W\X(Uﬁ) —x(y)|

D6 @5l (2, 9)| =[x, 85 — (2, 9)| < A
fithren, wobei M > 0 durch die komplexe Analytizitét von ¢; bestimmt ist. Wir beginnen mit
der Untersuchung der ersten Komponente &g = ¢ ® 1¢2 der T-Transformation.

Lemma 4.4.2. Es gibt Konstanten A >0 und 0 < a < 1, sodass

e_ala:'

[(¢o — 1)(z)] < AW fiir x € R3.

Dariiberhinaus ist ¢g — 1 € C(R?\ {0}).

Beweis. Der exponentielle Abfall rithrt von der komplexen Analytizitét von ¢o(|p|) — 1 fiir
alle [p| € {z € C: |¥(z)| < 1}, wie wir gleich sehen werden. Da wir diesen Abfall nur fiir
grofie |x| beweisen wollen, betrachten wir nur |z| > 1. Wir fassen die Fouriertransformation
von ¢o(|p|) — 1 als oszillierendes Integral auf (siehe beispielsweise [168, Kapitel VI, §1.4]
und Anhang - Sei dazu y € S(R?) eine radiale und positive Funktion im Fourierraum
mit x(0) = 1 und ¢ > 0. Dann erhiilt man mit ¢(p) := ¢o(p) — 1 und der Tatsache, dass
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x(ep)pd(p) sin(p|z|) eine gerade Funktion in p € R ist, zunichst

oL A 00 .
lim | e (p)x(elpl) dp = ] o lim | x(ep)pe(p) sin(pla|) dp
E—> R3 IE‘ 0
=gl X(ep)pé(p)|z|sin(plz]) dp
A - . § /
\x|2 ;1_{% { po(p)x(ep) COS(P|QUM_OO + /R(IJWP)X(&I?)) cos(p|z|) dp (4.13)
A

lim [ X (ep) - po(p) +x(6p)(p¢3(p))’} cos(plz|) dp

‘xP e—0
_ ‘;j /R (B () cos(pla]) dp

Hierbei haben wir ausgenutzt, dass wir den Limes ¢ — 0 in das Integral ziehen durften,
da beide Integrale separat majorisiert konvergieren. Um dies fiir den ersten Summanden der
dritten Zeile von (4.13]) zu sehen, integrieren wir nochmals partiell und erhalten

|| 3 {ex/(ep)pé(p) sin(plz|)|>_ — /R [ X" (ep)pd(p) +€x’(s—:p)(p¢3(p))’] Sin(p|33|)dp}.
(4.14)

Der Randterm verschwindet, da x € S. Der zweite Summand kann durch die Abschétzung
|p(p)| < Alp|~! und die Substitution p +— e~!p durch

2 " 7 in(olz "
€ /Rx (ep)po(p) sin(p| I)dpée/R!X (p)| dp < Ae

abgeschétzt werden, was fiir ¢ — 0 verschwindet. Der letzte Summand in (4.14)) ist bis auf die
Tatsache, dass x(ep) cos(p|z|) durch |z|~1x/(ep) sin(p|z|) ersetzt wird, von der gleichen Form
wie der zweite Summand in der dritten Zeile in (4.13]). Diesen werden wir nun behandeln.
Wir bemerken, dass
2
- p 1
(pe(p)) = - + +1-1

2
@2+ 2\ + VP11 (VP

sich wie V2 — 14 O(p?) bei p = 0 und wie 1/(8|p|?) + O(|p|~?) fiir [p| — oo verhilt. Daher
ist (po(p))’ eine integrierbare Majorante des Integranden

ex'(ep)
E4

Damit verschwindet fiir ¢ — O auch der dritte Summand in und man erhdlt die be-
hauptete rechte Seite in

Da (pp) (p) eine analytlsche Fortsetzung auf den Streifen {z € C : |¥(z)| < 1} hat und
die Schranke |(p@) (p)| < A(1 + R(p))~2 gleichmiBig in |I(p)| < 1 erfiillt, folgt mit dem
Paley—Wiener-Satz (siehe beispielsweise [143 Theorem IX.14]) die Abschitzung

030)) [x@p) cos(pla]) + sin(prmn] |

/R(pﬁf;)/(p) cos(p|z|) < Ae—alz]
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fiir alle 0 < a < 1. Dies folgt im Wesentlichen aus einer Kontur-Integration {iber ein Rechteck
der Breite 2R und Hoéhe a < 1 in den komplexen Zahlen, dem Cauchyschen Integralsatz und
dem abschliefenden Grenziibergang R — oo, siehe auch [169, Kapitel 4, Theorem 2.1] und

Abbildung

Im p

Re p

Abbildung 4.1: Konturintegral iiber (p)’(p)
Die Glattheit und die |z|~2-Singularitéit sind Konsequenzen aus [168, Kapitel VI, §4, Propo-
sition 1], welche wir verwenden diirfen, ¢o(p) — 1 ein Symbol der Ordnung —1 ist. O

Mit diesen Schranken und Lemma ist das Lokalisierungspotential der ersten Kom-
ponente der T-Transformation somit durch

—alz—z|g—aly—z| P p p
LY ::/d/de v’f—fHﬂ—f’zx.w
r (¥) R3 Y R3 ® |z — 2|2y — 2|? (2) |x (R) X (R) X (R) X (R) (4.15)
gegeben. Dieses schitzen wir in Abschnitt fiur V € r~'L*>® durch

LW () < AR?0(3R — |a|) + Ao R3¢~ **1/30(jz| — 3R)
ab, siehe auch (A.39)).

Als Néchstes bestimmen wir das Lokalisierungspotential der zweiten Komponente ®1(p) =
é1(|p))h(p) der T-Transformation. Mit der Gleichheit

pl = VP2 +1—1=1/(e(p) + 1)(e(p) — 1)
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erhilt man

V2 n :\/6(10)7_1'0"17: e(p)—lo-p _ o-p |
A ep) Il e /(e + Dlel) — 1)  elp)(e(p) +1)

(4.16)

Mit §(p) := [e(p)(e(p) + 1)]*/? und Missbrauch der Notation von §(p) als Faltungsoperator
mit Kern g(x), ist die Wirkung des Kommutators auf f € L?(R3 : C?)

V21, X]f(2) = % [9(p) (V0D (@) + 3(0) (V) (@) = X(@)3(p) (V) ()]
= j/RS dy g(x —y) (V)W) f(y) + (x(y) = x(@))(V ) ()]

= j/RS dy {9z —y)(VX)®)f(y) (4.17)
—[(Vyg(xz —v)(x(y) — x(z)) + 9(z —y)(VX)(W)] f(v)}
-z /Rg dy (Vyg(x —y))(x(z) — x())f(y) -

i

Bei der partiellen Integration im dritten Schritt haben wir verwendet, dass f im Unendlichen
verschwindet. Daher ist

o-p
e(p)(e(p) +1)
Mit Lemma, ist das Lokalisierungspotential der zweiten Komponente der 7-Transforma-

tion

@)= [ v [ a2 V) Vagta = 21900 =l [ (5) = (3) ] (5) - x (%)
(4.18)

x| (2,y) = —io - (Vyg(z —y)(x(z) — x(y)) -

Wir bestimmen nun wie in Lemma den Abfall sowie die Singularitéten von g(z) und
Vyg(z).

Lemma 4.4.3. Sei §(p) = [e(p)(e(p) + 1)]71/2. Dann gelten die folgenden Schranken.
1. Es gibt Konstanten A > 0 und 0 < a < 1, sodass

e_a‘xl

lg(x)] < A fiir v € R®.

|22

2. FEs gibt Konstanten A > 0 und 0 < a < 1, sodass

efa“ﬂ

Vg(z)] < A fiir z € R3.

jzf?

Dariiberhinaus sind g, Vg € C*(R3\ {0}).
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Beweis. (1) §(p) hat dieselben Analytizitiitseigenschaften wie ¢(p) = ¢o(p) — 1 und fillt im
Unendlichen ebenfalls wie [p|~! ab. Die Behauptung folgt daher wie in Lemma aus dem
Paley—~Wiener-Satz und der Tatsache, dass g(p) ein Symbol der Ordnung —1 ist.

(2) Fiir den Beweis des exponentiellen Abfalls sei wieder |z| > 1. Mit der gleichen Strategie
wie in Lemma ist die als oszillierendes Integral aufgefasste Fouriertransformation fiir
e >0, r:=|z| und e, := x/|z| gleich

e—0

v tiny [ dp @ gp)x(elpl) = 0 I / dp x(ep)pi(p) sin(pr) e,
(4.19)
= 9,r~"lim [ dp x(ep)pg(p)sin(pr) e,

e—0 R

Nach zwei partiellen Integrationen ist die rechte Seite von (4.19)

— 0pr 3 lim {/R x(ep)pg(p )8 sin(pr) dp]

e—0

= 0yl | (&P () cos(or) %, + [ (x(eppa(p) ysin(or) | e

=0yt | (e i), | (x(ephpate)) snior) o ..
wobei die Randterme wegen x € S verschwinden. Da |pg(p)| < 1 fiir alle p € R und x € S,
erhélt man

/|g2 "(ep)pg(p )Sln(pr)|dp—€/ IX"(p) - (p/€)g(p/e)sin(e™ pr)|dp<€/ X'(p)ldp < Ae

nach der Substitution p — p/e. Insbesondere zeigt dies, dass |x”(p)| eine integrierbare Majo-
rante von X" (p)(p/e)g(p/e)sin(e~1pr) ist. Andererseits konvergiert wegen |(pg(p))'| < A(1 +
p)7% und x € S,

/R ex'(ep)(pg(p))' sin(pr) dp

majorisiert (mit der integrierbaren Majoranten A(1 + |p|)~2) gegen Null fiir € — 0.
Da schlieflich |(pg(p))”| < A(1+ |p|)~? gilt, folgt aus dem Satz der majorisierten Konver-
genz, dass die rechte Seite von (4.19)) fiir £ — 0 gegen

o /R (p3(p))" sin(pr) dpe,

(4.20)
= (3 [ sitor)dp = [ i) costor) dp) e,
konvergiert. Da sowohl (pg(p))” als auch p(pg(p))” analytische Fortsetzungen auf die Menge
{z € C: |S(z)| < 1} haben und gleichmifig in |J(p)| < 1 durch eine Konstante mal (1 +
R(p))~? beschrinkt sind, folgt aus dem Paley—Wiener-Satz wieder, dass die rechte Seite von
durch el fiir ein 0 < @ < 1 und || > 1 beschrénkt ist.
Die Glattheit und die |z|~3-Singularitit folgen ebenfalls aus [168, Kapitel VI, §4, Behaup-
tung 1], welche wir verwenden diirfen, da pg(p) ein Symbol nullter Ordnung ist. Alternativ
kann man auch Behauptung 2 aus ebenjenem Abschnitt verwenden. O
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Wir machen an dieser Stelle eine Bemerkung zum exponentiellen Abfall der Kerne der ®;.
Tatséichlich erwartet man wegen des Paley—Wiener-Satzes, dass die Kerne wie e~/#l abfallen.
Der Grund hierfiir ist, dass die ¢; auf ganz C\ {4} holomorph sind. Dies wiirde man vermut-
lich mit einer geschickteren Anwendung des Cauchyschen Integralsatzes entlang der Kurven
I'; beziehungsweise I'y in Abbildung [£.4] sehen.

Im p

Abbildung 4.2: Konturintegral iiber F'(p)

Des Weiteren heben wir an dieser Stelle die Tatsache hervor, dass die Integralkerne der
®; im masselosen Fall keinen exponentiellen Abfall haben. In diesem Fall sind <I>(()0) = 1¢2 und
(I)go) (p) = o - p/|p| = h(p) der Helizititsoperator, das heifit es gibt nur ein Lokalisierungs-
potential der zweiten Komponente der masselosen T-Transformation. In [88 Proposition 6]

zeigten Hoever und Siedentop

1 o-(xr—y ..
(b 1N@) =~z [ T nle) —x) )y fin e PR C) (@21
fiir Lipschitz-stetige und kompakt getragene Funktionen y. In [I30, Lemma 3.2.1] wurde fiir
m > 0 der Integralkern des regularisierten Helizitétsoperators

hn(p) 1= ——

VR rm

von Morozov bestimmt. Es gilt die folgende Aussage.



4.4 Kommutatoren mit der 7-Transformation 47

Lemma 4.4.4. Seien m > 0 und f € L*(R? : C?). Dann gilt

o- m2 e — uDe - (4 —
(Jzﬁpmﬂﬁ (@) = 5o Iy / Kol |xzi)y|2( 9 1y dy (4.22)

R3\By(¢)

mit der um den Ursprung zentrierten Kugel By(e) mit Radius € > 0. Dariiberhinaus gilt fir
eine Lipschitz-stetige und kompakt getragene Funktion x

g - m? m|lr —y|)o - (x —
( \/Iﬁpqﬁ’xl f) (@) =55 o Kalrm ‘xgi’)yp ( y)(x(w)—x(y))f(y)dy-

Wie in [88, Proposition 6] ist die e-Regularisierung im zweiten Teil der Aussage dieses
Lemmas wegen der Lipschitz-Stetigkeit von x nicht mehr nétig. Damit ist der regularisierte
Doppelkommutator fiir f = (f1, f2)” und f* = (f1, f2)

(f5 [Poms XIV X, hanl f)
4

— Zr‘l/dz V(z)/dxdyf*(x)

Ko(m|x — z|)o - (z — 2)

2 (x(z) — x(2)) (4.23)

|z — 2|

Insbesondere stellt man fiir m — 0 den Integralkern von [h, x]V[x, k] wieder her und fiir
f € L?>(R3 : C?) und Lipschitz-stetiges x gilt die Konvergenz [k, X|f — [h, x]f in L?, siche
auch den Beweis von [88, Proposition 6.

Aus den Schranken fiir die modifizierte Bessel-Funktion Ky(mr) (fir festes m > 0) [137,
Formel 9.6.9 und 9.7.2], ndmlich

Ko(mr) ~ 2(mr)™2  fiir r — 0

T efmr

Ewmfr

und Lemma [£.4.3]ist andererseits ersichtlich, dass das asymptotische Verhalten des Kerns von
|®1(x)| am Ursprung und im Unendlichen (bis auf das Gewicht des exponentiellen Abfalls)
aquivalent zu dem von |Ka(m|z|)|/|z| ist, wenn m < a, wobei a das Gewicht des exponentiellen
Abfalls von |®;(x)| bezeichnet. Insbesondere gibt es ein A, > 0, sodass

Ky(mr) ~ fiir r — oo

|®1(r)| < Agr  Ko(ar) fiir alle > 0. (4.24)

Das Vorgehen zur Beschrinkung des Lokalisierungspotentials von [®1, xg]V [xg, ®1] (mit
0 <V e€r'L*® und yxg(z) = x(z/R)) ist daher wie folgt. In Anhang schitzen wir
das Lokalisierungspotential von [hm,, Xr]V [XR, hm] mit dem regularisierten Helizitétsopera-
tor hy, fiir die Lokalisierungsfunktion yz und V(z) = |z|~! ab. Fiir m — 0 ist der Fehler
durch R™'F(|z|/R)6(3 — |z|/R) beschrénkt (sieche auch (A.25)), wobei F héchstens logarith-
mische Singularitdten der Form hat und sonst stetig und beschrinkt ist. Das Lokali-
sierungspotential von [®1, xr]V [xr, P1] kann wegen und |V (2)| < ||V |lso|z| ™t durch
das von [hm, xr|V [XR, hm]| abgeschitzt werden, siehe . Zusammen mit dem Lokalisie-
rungspotential [®g, xr]V [xr, Po] der ersten Komponente zeigen wir, dass der gesamte
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Lokalisierungsfehler mit einem 0 < a < 1 durch

Lp(x) := A [RlF (‘g) + RQ] 0(3R — |z|)
+ A3(R24+ R "+ R 41+ RY?)e *®Y9(3R — |z|)
—|—A3(R_3 —|—R_3/2 —|—R_1/2 +R1/2)e—a\x|/20(|x| —R)

(4.25)

beschrénkt ist, wobei die A; (mit j = 1,2, 3) von a abhéngen. Dabei hat F(|z|/R) logarith-
mische Singularitéiten bei |x| = R und |z| = 2R und ist sonst beschrénkt. Die Singularitéten
sind von der Form (|A.26)) und mit der Daubechies-Ungleichung behandelbar.

4.5 Beweis von Behauptung [4 fiir v < yp

In (£.6) haben wir bereits gesehen, dass fiir alle normierten ¢ € H/2(R3V : (C4N) N /\l],vzlﬁ
die untere Schranke

Ex[Y] > —Trrams.cay [As(|Do| — ¢ = Vra) Ay ] — AgZ% — Dlpy"]

gilt, wobei Vg x = Z|z|™! — pr * | - |7} + AUz war. Wir wenden nun die unitére ®.-Trans-
formation (siehe (4.3))) an und folgen der Strategie Sgrensens, indem wir den transformierten
Einteilchen-Operator E.(p) — ¢? — T.(Vg,\) mittels der y; aus in drei radiale Regionen
lokalisieren. Wir erhalten

— Trpzge.c2y (Ee(p) — & = Te(Vroa)) _ +o(Z7/3)

3
> = Trremecey (i (Be(p) — & — AR *x1 — AR} *xax—(¢))x; — Te(x;Vroaxs)) _ »
j=1
(4.26)

wobei R; 2y1 und R; *x2x— (c-) Lokalisierungsfehler der kinetischen Energie E.(p) sind, siehe
auch . Insbesondere war x— die charakteristische Funktion der am Ursprung zentrierten
Kugel B0(2R ) mit Radius 2R;. Fiir j = 1,2 Vernachla551gen wir das nicht-negative mittlere
Feld pr *|-|~! und erhalten so eine untere Schranke von . Um den Operator vollsténdig
lokalisieren zu konnen, miissen wir noch die T—Transformation mit den x; vertauschen. Wie
wir zu Beginn von Abschnitt gesehen haben, ist

Z (fa (I)ijVXj(I)mf)

m=0,1

< [+ X PV emxif) + (L4 ), [ @ x5V X, Pl £)]
m=0,1

(4.27)

fir V>0, j € {1,2,3} und alle € € (0,1). In unserer konkreten Situation ist V' = Z/|z| +
MUz — (pr * |- |71 (2)x3(x). Wir erinnern daran, dass R = Z~° und R, = Z ! mit 11/30 <
t < s < 2/3 sind. Somit gilt in der dufleren Region

1 1
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einerseits wegen des Newtonschen Satzes fiir x ¢ supp g722 und andererseits wegen der Grofle
des Trigers von 9722 fiir x € supp g%, siehe auch (3.9) und die anschlieende Diskussion. Daher
ist P
1
(- rm o7 ) valo) = g+ 03 (ha(o) 2 0,

das heiflt (pr * |- |71)(z)x3(7) < Z/|z|. Wegen der Annahmen A > 0 und 0 < U € 7~ 1L ist
daher 7 7

0< =+ AUz = (pr* |- |7 (@)xs(z) < AT

|z x|

Die Lokalisierungspotentiale Lg(x) ([4.25) von [®,, x;]V [xj, @] wurden fiir V € r~1L> in
Abschnitt und Anhang berechnet, siehe (4.25)) fiir das endgiiltige Lokalisierungspo-
tential. Damit und mit R, 2y1 < ¢x1 kann die rechte Seite von (4.26)) nach unten durch

—Tr [Xl <Ec(p) — Ac? — ((1 +e)T. (| | + )\UZ> + 26712 (Lg, + LRa)(x)>> Xl]
~ 1 [ (Bt) - @ = (0407 (£ 02) + 2+ L) + (@) ]|

()

—Tr [Xg (EC( ) — 2 — ((1 +e)Te(Vra) + 267162(LRZ- + LRG))) Xg]_ — o(Z%)

abgeschiitzt werden. Die Idee ist es nun, die 7-Transformation nur in der inneren Region zu
behalten. Sie ist notwendig, um die Singularitdt des Coulomb-Potentials ,,aufzuweichen “ und
Kopplungskonstanten v > 2/7 behandeln zu kénnen. In den anderen beiden Regionen spielt
die Singularitit keine Rolle mehr, weshalb die 7-Transformation hier vernachldssigbar sein
sollte und wir dem Beweis des letzten Kapitels folgen kénnen sollten.

Im Folgenden quantifizieren wir diese Intuition. Der Einfachheit halber geben wir die
Formeln fiir die auf der Lingenskala ¢~! reskalierten 7-Transformationen wieder. Mit der

Definition der x; aus (4.7c|) zeigen wir in Anhang
—(Xof; Ti(U)X2f) > —A(Xaf, 2|~ Xaf) fiir alle 0 < U(x) < |z|~", siche Lemma

o |(0if, (J2™ = Tillz[")%5 )| < A(R;28j0 + R;28;3)| f|13, siehe Lemma [A.2.2 und

o |(f,(U—-Ti(U))f)| < AM]|f|]3 fiir Lipschitz-stetige Potentiale U mit Lipschitz-Kon-
stante M, siche Lemma,

In der mittleren Region (j = 2) verwenden wir Lemma um T1(c 2Uz(x/c) + ~|z|~h)
durch eine Konstante mal |z|~! in der quadratischen Form zu ersetzen. In der dufleren Re-
gion (j = 3) folgt aus Lemma [A.2.2] dass der Fehler, der bei der Ersetzung von 71 (v/|z|)
durch ~/|x| entsteht, von der GréBenordnung R, 2 = o(Z 2/3) ist. Nach Summation iiber alle
Teilchen trigt dieser Fehler also nur mit o(Z"/ 3) bei.

Schliefllich verwenden wir in der dufleren Region noch Lemma um den Fehler zu
kontrollieren, der bei der Ersetzung von T; (¢ 2Uz(x/c) + ¢ 2pr(x/c)) durch ¢ 2Uy(z/c) +
¢ 2pr(x/c) entsteht. Die Lipschitz-Konstante von ¢ 2Uz(z/c) = ¢ 2Z*3U(Z'/3x/c) ist von
der GréBenordnung O(Z~2+t4/3-2/3) = ©(Z~4/3). Multipliziert man diesen Fehler noch mit
der Teilchenzahl, ist der Fehler von der Ordnung (9( Z~1/3), also insbesondere o(Z/3).

Die Lipschitz Konstante des mittleren Feldes ¢=2g% x p Lt x| |~ 1(:U /c) ist von der Ordnung
¢ 2ZYPR7Y also fiir R = Z7° mit s < 2/3 von der Ordnung o(Z 1), da ||pLF # |- |7 eo <
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AZ*3. Multipliziert man dies noch mit der Teilchenzahl, folgt, dass dieser Fehler von der
Ordnung o(Z°) und damit immer noch akzeptabel ist. Definiert man R = c¢R, x ;¥ = pLFx|-| 7
und erinnert sich an die Skalierungsrelation xL¥(y) = Z4/3xT¥(Z/3y), so sieht man in der

Tat
x/c—
V/92 </Ry> XlTF(Zl/sy) dy‘

xr — _
V/g2 (Ry> XiF(vZ2723y) dy‘
< AgZ T HHABTBRIVRIT = A 2R = 0(27Y)

¢V (gR *XFF) (x/c)] = AR Z72H4/3

— AR73272+4/373

In der zweiten Gleichheit haben wir y — y/c skaliert und in der letzten Abschétzung
x—y _ ~ x—y -
‘V/f ( 5 ) Xit(vZ ) dy’ <SRN Nl / ‘(VgQ) ( = ) ‘ dy < AgR™'T?

verwendet. Somit erhalten wir die untere Schranke

EY] > — Tr [x1 (Belp) — A® — (1 + )T (Z]z| ™ + AUz) — 2e '*(Lg, + Lr,)) x1] _
—Tr [XQ (Ec(p) — - (AZ|95|_1 + AR;ZX_(C-) + 25_102(LR,~ + LRG))) Xg]i
—Tr [x3 (Be(p) — & — (L +&)Vror + 267 '*(Lg, + Lr,))) x3]_ — D[p"] — o(Z3).

Wie im letzten Kapitel untersuchen wir im Folgenden die drei Regionen einzeln genauer. In der
inneren und der mittleren Region arbeiten wir mit dem auf der Lingenskala ¢! reskalierten
Operator.

4.5.1 Energie in der inneren Region

Wir zeigen, dass der Beitrag von

- 1+¢ A _ -
—Tr I:Xl (\/ -A+1—-A-T (’Y(|x) + 07(1 + €)UZ (i)) — 2¢ 1(LRi + LRG)(.%')) X1:|
von der GroBenordnung o(Z'/3) ist. Hierbei ist X1(x) = 61 (|z|/R;), siehe (&.7d).

Tix [I75, Theorem 1] (siehe auch Balinsky und Evans [4, Lemma 2.4]) zeigte, dass die Dif-
ferenz des massiven und des masselosen Brown—Ravenhall-Operators zu einem beschrankten
Operator fortgesetzt werden kann, das heif3t es gilt

I(V=A5FT=1-Ti(vlal ™) = (V=2 - O (yla[ ) < A

gleichméBig in v € (0, vp]. Hierbei bezeichnet ’7'1(0) die unitére Transformation des masselosen
Brown—Ravenhall-Operators. Fiir skalare Potentiale V' ist sie als
1 o-p..o-p
TOW) = - <V ® 1c2 + V)
! 2 pl Il
definiert. Mit V3 (z) = ¢ 2A\(1 +¢)Uz(x/c) und Va(z) = 25_1(LR¢ (z)+Lp (x)) + A geniigt es
daher (mit dem gleichen Argument wie in Abschnitt die Summe der negativen Eigenwerte
von

|z

veE- 0 (D) S m) - s
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abzuschétzen.

Dazu verwenden wir eine Modifikation der Hardy—Lieb—Thirring-Ungleichung fiir den
Brown-Ravenhall-Operator (Frank [62] Theorem 5.1]). Diese besagt, dass es fiir Potentia-
le V auf R3 mit Werten in den hermiteschen 4 x 4-Matrizen eine Konstante A > 0 gibt,
sodass

Ty [m 70 <73 n v)] <A [ TV ds.
_ R3

|z|
Wir zeigen

Lemma 4.5.1. Seien Vi und Va skalar- und reellwertige Funktionen. Dann gibt es eine Kon-
stante A > 0, sodass

e [V=A -7 (1) - hv) - v <4 [ it + vt

]

Beweis. Wie im Beweis von [62, Theorem 5.1] gibt es fiir alle ¢ € (0,1/2) eine Konstante
K; > 0, sodass

V=A = T (ypla| ™) > K (=AY — ' = Hy fiir alle £> 0,

siehe [62, Formel (5.3)]. Damit kann die Zahl der negativen Eigenwerte unterhalb —7 < 0
nach oben durch

V(BT () - v

|z
1 1
<N (—T, 3 (Ho ® 1c2 — 2T1(V1)) + B} (Ho —2V3) ® 1<C2)

< N(—T, Hy® 12 — 271(‘/1)) + N(—T, (HO — 2‘/2) ® 1@2)
=N (—T, (I)o((H() — 2V1) & 1@2)(1)0 + (191((H0 — 2V1) & 1@2)(1)1) + 2N(—T, Hy — 2‘/2)
<AN(—1,Hy —2V1) +2N(—1,Hy — 2V3)

abgeschatzt werden. Hierbei haben wir verwendet, dass fiir selbstadjungierte, nach unten
halbbeschrénkte Operatoren A und B wegen des Variationsprinzips N(—7, (4 + B)/2) <
N(—7,A)+ N (-7, B) gilt sowie ®3 + ®? = 1 und die Tatsache, dass Hy ® 1¢2 mit &y und &,
kommutiert. Die Behauptung folgt dann wie in [62], indem man ¢ = (o7)~! fiir ein zum Schluf}
zu optimierendes o € (0,1) (in Abhéngigkeit von ¢) wihlt, und die Cwikel-Lieb—Rosenbljum-
Schranke [147, 113, 28] fiir N(—7, Hp — 2V7) und N(—7, Hy — 2V5) mit

N(=7,Hy = 2Vj) = N(0,(=A)' = K; ' (om) ") (2V) — (1 - o)7))

verwendet. Man erhélt

N (—T,\/E_Tlm) ('ﬁ) R _‘/2)

< Ay(or)-30-20/2) [/
R

3

Vi(x) — (1= 0)7‘)% dx + / (Va(z) — (1 — o)1) 2 da

3 R3
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Wendet man nun ,,Liebs Formel“ [IT3] an, sprich, multipliziert beide Seiten mit 7!~ = 1,
integriert iiber 7 und optimiert in o und ¢ € (3/8,1/2), erhilt man das gewiinschte Ergebnis,
namlich

Tr [m -7 (WB) - Ti(V1) — V2] )

]

3

o] 3 3
< Ay dr r3(1-20)/(2t) [/3(‘/1(9;) —(1—0)7)2 da + /S(VQ(x) —(1—0o)7)2 da
0 R R

< A/ (Vi(@)! + Va(a)t) da.

R3

Anwenden des Lemmas zeigt, dass die Ruheenergie des Elektrons
/ 1Ydz = AR} = o(Z'/3)
|z|<R;
beitrdagt. Das Test-Potential tragt mit
Z4(2+4/3)/ U(671Z1/3x)4 dr < A||U”241272/3
R3

und das Lokalisierungspotential mit

et / Ly (z)'dx < 54/LR_(1})4 dz

T T

|z|<R;

< ARt / F(lal/ ) da

|| <3R;
+ Ape™? (R[Q YRRV 414 Ril/2)4e_4aﬁi / d
j2/<8R,
P (RE BB RP) [ e

|z|>2R;
< A
zum Fehler bei. Dieser Fehler ist kleiner als der der Ruheenergie des Elektrons, wenn ¢ als

hinreichend kleine negative Potenz von Z gewéhlt wird. Mit derselben Rechnung folgt, dass
der grofite Beitrag von L von der GréBenordnung e4R; < 5_4R;1 ist. Mit der Wahl € =

[Z~1/249] und der Definition von R; ist der Fehler dieser Region wieder von der Gréfenordnung
o(Z/3).
4.5.2 Energie in der mittleren Region

In dieser Region kann das volle Coulomb-Potential mit beliebiger Kopplungskonstante -« mit
der Daubechies-Ungleichung kontrolliert werden. Fiir A > 0 betrachten wir

~Tr [%e (Ba(p) — 1= A (Ja ! + 67" (L, (@) + Ly,)) — Ax-Ri*) %o
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In Abschnitt hatten wir gesehen, dass die Beitrage des Coulomb-Potentials und R;2X—
mit der Daubechies-Ungleichung durch

/ (2= + 2| ) do < BY? = o(2V/%)
Ri<|z|<Rq

abgeschitzt werden konnten. Schliellich miissen noch die Beitrége der Lokalisierungsfehler
L R und L I bestimmt werden, sprich

Lo e @ L @)+ g (0 + Ly (0] o
Ri<|z|<Ra

Der groBite Beitrag kommt hierbei vom ersten Summanden des A;-Terms in (4.25)) zur Potenz
5/2. Dieser ist wegen der Definition von R, = cR, = ¢Z~! mit ¢t > 11/30 und mit der Wahl
e = [Z71/?40] durch

5/2
(ERG)_E]/Q/ F (m) dr S 5_5/2]%3/2 _ O(Z157/480) _ 0(21/3)
Ri<|z|<Rq R,

beschréinkt. Die anderen Fehler sind entweder exponentiell klein oder durch =%/ ZR;2 be-
schréankt.

4.5.3 Die Thomas—Fermi-Region

Wir erinnern nochmals daran, dass R = Z % und R, = Z % mit 11/30 < t < s < 2/3
definiert wurden. Um das verbleibende Lokalisierungspotential der Kommutatoren mit der
T-Transformation und den Fehler Uz — Uy mit Uy := Uz * g%, der von der Phasenraumlo-
kalisierung kommt, zu kontrollieren, borgen wir uns etwas (¢ = [Z~1/2%0] und 0 < &5 < 1/2)
kinetische Energie. Dann betrachten wir den Ausdruck

Z

T <><3 [(1 e e (Elp) - ) — (1+¢) <m L |1‘ + AUZ> " g%] X3> - DY

e Ty <>~<3 [El(p) —1- 572(LRi(x) + LRQ)} 5(3)

—eaTr (x3 [Be(p) — & — &5 'MNUz = Up)] x3) _

(4.28)

wobei wir, wie in Abschnitt lz|7xs = | - |7 % g% (2)x3(x) verwendet haben, siehe auch
und die anschlieflende Diskussion. Wie in den beiden letzten Regionen wird das Lokali-
sierungspotential in der zweiten Zeile mit Hilfe der Daubechies-Ungleichung abgeschéitzt. Da
R, > Ry, trigt fiir hinreichend groBes Z lediglich der As-Term aus von Ly bei, das
heifit der Lokalisierungsfehler féllt exponentiell in Z ab. Der grofite Fehler von Ly = verhilt
sich wie in der mittleren Region wie

[ [P RSPRl R e SR AP (ol (R do S e R = o211
Ra<[2|<3Ra

fiir e = [Z7Y/2%] und R, = cR, = ¢Z " mit ¢ > 11/30.
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In Lemma wurde bereits gezeigt, dass
— Tr(xs[e2(Be(p) — ) = MUz — Ug)lxs) -

A\ 7/3 5/2 A\ 4/3 2 4
> —Aex || 2 U - g5 s+1/3*UH5/2 ey ZP|U = g5+ U

€2

Damit und dp = (27)3dp schiitzen wir (4.28) mit denselben Schritten wie in Abschnitt
durch

- / %1—6—@xaﬂg—8)—a+f)Qj—p?#,ﬂmw+M&m0}dmm— [oz"]

R,
MZTG

4
A A o2 Z7/3 U— U 5/2 i Z4/3 U — 2 U 4 Z7/3
o |(2) 200 g 01+ (L) 200 g3 = U] o2

nach unten ab. Man verfihrt dann wieder wie im Beweis von Sgrensen beziehungsweise Ab-
schnitt indem zunéchst der Integrationsbereich angepasst und anschliefend mit dem semi-
klassischen, nicht-relativistischen Phasenraumintegral verglichen wird. Man erhélt schliefilich

2

5A[¢]2/[(1652)];(1+6)<Z

lq|

JLF |T|<q>+wz<q>)] dpdq — DIPT]

5 4
AN? 1 5 A 4 7
e | (2) B0 = s U1+ () 200 = B U | = 02
g2 2 g2
2 Z 1
— 15 - (G- ¥+ i@+ 0w2@) | v da- D2
(1+¢)5/2 / {pQ <Z 1 >]
G S N I e Q)+ U dp d
<(1_€_62)3/2 >~ \Jql Py |_|(q) z(9) || dpdg
A\ 2 s
7 =2 4 7
—der | (2) 20 = s U1+ (2) 20 = U - o250

Mit der Wahl & = [Z~1/240] und

1 ||U_g%—s+1/3 *U||5/2 1/3468
£9 = ~ max L ZTHON — (2%, 6 (0,1/3)
4 {1+ ‘|U_g%—s+l/3 >|<U||5/2

gilt (14 €)%/2(1 —e —e5)73/2 —1 < A(e + £3). Daraus ist ersichtlich, dass alle Fehler von der
Ordnung o(Z7/?) sind und man erhélt schlieBlich

ol 2= [ 5= (-t e s+ 3020)| o da— DIET) - o7,

was Behauptung |4.2.2| zeigt.



Kapitel 5

Die starke Scott-Vermutung fiir
Chandrasekhar-Atome

Dieses Kapitel beruht auf einer Zusammenarbeit mit Rupert L. Frank, Heinz Siedentop und
Barry Simon. Hinzugefiigte Bemerkung vor der Drucklegung: Die Darstellung der Ergebnisse
dieses Kapitels folgt einem internen vorldufigen Arbeitsmanuskript der Autoren dieser Zusam-
menarbeit. Die endgiiltige Version ist zwischenzeitlich, also seit Einreichung der Dissertation
und vor Drucklegung, als Preprint im ArXiv [67] unter wesentlicher Verbesserung sowohl der
Darstellung als auch der Ergebnisse erschienen.

Wir betrachten die auf der Lingenskala ¢! reskalierte Einteilchendichte eines Grund-
zustands des Vielteilchen-Chandrasekhar-Operators und zeigen, dass sie gegen die Summe
der Quadrate der Eigenfunktionen des relativistischen Einteilchen-Wasserstoff-Operators im
Grenzwert grofler Teilchenzahlen konvergiert. Der Beweis beruht auf dem Argument der li-
nearen Antwort, einer Verallgemeinerung des Feynman—Hellmann-Satzes sowie einer neuen
Aquivalenz von Sobolew-Normen, die durch Potenzen von v/—A beziehungsweise v/ —A —v/|z|
erzeugt werden, sieche auch Kapitel

Die Resultate dieses Kapitels bestétigen die von Lieb [I15] geduferte starke Scott- Vermu-
tung und zeigen insbesondere, dass kernnahe Elektronen relativistische Korrekturen erzeugen.

Das Kapitel beginnt mit der Definition des vorliegenden Systems und der Formulierung der
Hauptresultate. Im Anschlufl werden die Ergebnisse interpretiert und mit denen des nicht-
relativistischen Falls von Iantchenko u. a. [95] verglichen. Danach wird die Strategie des
Beweises genauer erldutert.

5.1 Einfithrung, Definitionen und Resultate

Unser System besteht aus einem am Ursprung fixierten Kern der Ladung Z, welcher mit
N Elektronen, die ¢ Spin-Freiheitsgrade haben, iiber das Coulomb-Potential wechselwirkt.
Dariiberhinaus beriicksichtigen wir die Coulombischen Wechselwirkungen zwischen den Elek-
tronen untereinander. Das System wird durch den Chandrasekhar-Operator beschrieben. Er
ist in atomaren Einheiten durch die Friedrichs-Erweiterung im fermionischen Vielteilchen-
Hilbertraum /\,J/V:1 L?(R3 : CY) der zu

N

Z (\/ —2A, +cA -2 -

v=1

Z 1
>+ Z |z — @y

| V| 1<v<u<sN
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gehdrenden quadratischen Form auf A’ C2°(R3 : C9) definiert. Wir konzentrieren uns im
Folgenden auf den Fall N = Z und ¢ = 1. Die quadratische Form ist genau dann nach
unten beschrinkt, wenn Z/c =: v < 2/7 (Kato [101, Kapitel 5, Gleichung (5.33)]). Fiir
v < 2/7 ist der quadratische Formbereich H'/2(R3N) N /\]VVZI(L2(R3)). Wir bezeichnen die
erhaltene Friedrichssche Erweiterung mit Cz. Bekanntermaflen ist inf spec(C) ein Eigenwert
von Cz (Lewis et al [112] und Vugalter und Zhislin [I85]). Dieser kann entartet sein und
wir bezeichnen mit 1, ...,%¥)s eine Basis des zugehorigen Eigenraums. Wir bezeichnen die
zugehorige Grundzustandsdichtematrix mit

M
d=" wultu) (Wl
pn=1

wobei w, > 0 Gewichte sind, die die Normierungsbedingung ZLWZI wy, = 1 erfiillen. Die
zugehorige Einteilchendichte ist dann

M
= Ngwu /RS<N1) [, 29, ...; 2N )|*day...dey  fiir © € R,

Wir bezeichnen mit Yp,,, £ € No, m = —/, ..., Kugelflichenfunktionen, die in L?(S?)
normiert sind [126, Formel (B.93)]. Sei weiter

M

fiir r € R+

2
Yvﬂm( )1,0#(7"&} 1?2,...,51/‘]\/) dw d.’EQ...dﬂSN
S2

2

pe.d(r)

die radiale Grundzustandsdichte im ¢-ten Drehimpulskanal. Wegen der Vollsténdigkeitsrelation
der Yo, gilt 72 [oo pa(rw) dw = >",(20 4 1)pga(r).

Unser Resultat betrifft die Grundzustandsdichte auf Abstéinden der GréSenordnung Z !
zum Kern. Es ist bekannt, dass Elektronen auf dieser Lingenskala zur Scott-Korrektur der
Thomas—Fermi-Approximation der Grundzustandsenergie von Cyz beitragen, siche Solovej u.
a. [162] und Frank u. a. [69]. Wie in diesen Arbeiten spielt der auf der Liingenskala ¢!
reskalierte, relativistische Wasserstoff-Operator

Cl = V—A+1-1- ﬁ in L?(R®)
T

eine fundamentale Rolle. Wegen der sphérischen Symmetrie kann man den Operator in Dre-
himpulskanéle zerlegen, was auf die radialen Operatoren

> (l+1 .
C’f::\/—dﬂ—}- (1" )+1—1 " in L*(R, dr)

fithrt. Wir betonen, dass wir uns von nun an, es sei denn, etwas anderes wird explizit bemerkt,
mit L2(R,) immer auf L?(R,,dr) beziehen, sprich das Maf ist dr und nicht 72dr. Weiter
betonen wir, dass die Eigenwerte von Cf nicht entartet und von m unabhingig sind, weshalb
wir einen Index m unterdriicken. Wenn @DTIL{ ¢, (mit n € Ng) die normierten Eigenfunktionen

von CEH bezeichnen, definieren wir die zugehorige wasserstoffartige Dichte im Kanal ¢ durch

ol ()= [l ). (5.1)
n=0
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Die gesamte Dichte ist dann durch

P 1= g (20 )l ()
£=0

gegeben.

Unser erstes Resultat stellt sicher, dass die reskalierten Grundzustandsdichten p, 4 und
pa auf der Lingenskala Z~! gegen etwas Endliches konvergieren. Genauer gesagt zeigen wir,
dass die wasserstoffartigen Dichten fiir alle » € Ry endlich sind. Um dieses und die folgenden
Hauptresultate préazise zu formulieren, fithren wir die Abbildung

[0,1] — [0,2/7]

o ®(0) :=(1—o0)tan % (5:2)

ein. Die Funktion erfiillt ®(0) = 0, lim,—; ®(0) = 2/7 und ist auf [0,1] streng monoton.
Daher gibt es ein eindeutiges o € [0, 1], sodass ®(o,) = 7.

Satz 5.1.1 (Existenz von pf und pf). Seien v € (0,2/7), £ € Ny und 1/2 < s < min{3/2 —
0+,3/4}. Dann erfillen die wasserstoffartigen Dichten pf und pf die Abschitzungen

2 t+ 2
1 4s—1
+ (f + 2) 1{r><e+1/2>2}]

1 o
— N @20+ 1)p(r) < Agy (P 4+ 21/2)

47r
=0

2s—1 4s—1
—4s T T
pi(r) < Ay (€+1/2)7" <€+1> Locopy + <1) Lirlcr<(er )2y

und

Die Test-Funktionen, fiir welche die starke Scott- Vermutung Wahr ist, sind in den Funktio-
nenriumen g und K, s enthalten. Diese werden in ) und (5.26)) in den Abschnltten
bemehungswelse [.4) definiert. In diesen Abschnitten Werden wir elmge Inklusmnselgenscha ten
(siehe (]E und Lemma sowie Spur- und Sobolew-Ungleichungen (siche Behauptungen
[5.3.10 und [5.4.6)) zeigen.

Um eine ungefidhre Vorstellung von diesen Klassen zu bekommen, bemerken wir an dieser
Stelle lediglich, dass kompakt getragene Funktionen, die durch ein Vielfaches des Coulomb-
Potentials beschriankt oder integrierbar sind, in diesen Klassen enthalten sind.

Wir erinnern schlieflich daran, dass der Raum aller kompakt getragenen LP-Funktionen
mit Lfomp bezeichnet wird. Damit sind wir in der Lage, die Hauptresultate dieses Kapitels,
sprich die Konvergenz der reskalierten Grundzustandsdichten, zu formulieren.

Satz 5.1.2 (Konvergenz in einem festen Drehimpulskanal). Seien v € (0,2/7), ¢y € Ny,
1/2 < s’ < s <min{3/2 — 04,1}, ¢' € [0,25' — 1] und € € [0,25 — 1]. Sei U = Uy + Uy mit
U er1L® U, € ICg?g) und |Us|?* € ’CS),)&" Dann gilt fiir Z,c — oo mit fixiertem Z/c =~

comp’
)

i [ St 0 0= [ U0 i
0

Z—00 0
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Satz 5.1.3 (Konvergenz in allen Drehimpulskanilen). Seien v € (0,2/7), 1/2 < s’ < s <
min{3/2—o0,,3/4}, 0' € [4(s—5'),2s' —1], 6 € [0,25 — 1] und € € [0,2s —1]. Sei U = Uy + U>
eine Funktion auf (0,00) mit Uy € r*nggmp, Us € Kse und |Us|* € Ky o N Ks 5. Dann gilt
fiir Z,c — oo mit fixiertem Z/c =~y

lim ¢ Bpglc a)U(x) do = / o (2)U (x) de .
Z—00 JR3 R3
Wir bemerken, dass das Intervall [4(s—s'),2s’'—1]  § nicht leer ist, das heifit 4s+1 < 65/,
falls ' > 2/3. Ist ansonsten 1/2 < s’ < 2/3, muss zusitzlich s < (6s' — 1)/4 verlangt werden,
was bereits s < 3/4 sicher stellt.

Folgendes kann zu den Hauptergebnissen dieses Kapitels zu bemerkt werden.

(1) Wie wir in der Einfiihrung erwdhnt haben, sind diese Ergebnisse die relativistischen
Analoga zur starken Scott-Vermutung, die von Iantchenko u. a. [95] bewiesen wurde. Wir
diskutieren an dieser Stelle einige Ahnlichkeiten und Unterschiede der Sitze [5.1.2 und [5.1.3)|
mit den Resultaten aus [95]. Beide Resultate zeigen die Konvergenz der Grundzustandsdich-
ten auf der Lingenskala Z~! gegen die entsprechenden wasserstoffartigen Dichten in einem
gewissen schwachen Sinne. Auf der einen Seite konnen unsere Test-Funktionen eine Coulomb-
Singularitit am Ursprung haben (sogar Riemann-Singularititen, wie sin(1/r)r~! sind er-
laubt). Diese sind in der Arbeit von Iantchenko u. a. nicht abgedeckt. In Anbetracht der
allgemeinen Natur relativistischer Coulomb-Systeme ist dieses Ergebnis optimal, da stérkere
Singularitdten nicht von der kinetischen Energie kompensiert werden kénnen. Naturgemésf ist
dies im nicht-relativistischen Fall anders. Iantchenko u. a. konnten dagegen zeigen, dass die
reskalierte Grundzustandsdichte punktweise gegen die wasserstoffartige Dichte konvergiert,
das heifit Delta-Funktionen sind als Test-Funktionen erlaubt. Dies ist im relativistischen Fall,
insbesondere am Ursprung, nicht unbedingt erwartbar, da die Eigenfunktionen singulér sein
konnen. Anhand der Eigenfunktionen des Coulomb—-Dirac-Operators kann dies explizit gese-
hen werden, wobei die Singularitidt am Ursprung von der Kopplungskonstanten ~ abhéngt,
siehe auch [10] oder [I72, Formel (8.266)].

(2) Die wasserstoffartige Dichte ist im relativistischen Fall deutlich weniger untersucht als
im nicht-relativistischen Fall. Im nicht-relativistischen Fall zeigten Heilmann und Lieb [86],
dass die wasserstoffartige Dichte am Ursprung endlich ist, monoton in r fallt und sich fiir
r — oo wie r3/2/(v/27%) + o(r~3/?) verhilt. Zusammen mit der starken Scott-Vermutung
zeigt dies insbesondere, dass es einen gewissen ,glatten® Ubergang zwischen der quantenme-
chanischen Lingenskala Z~1 und der semiklassischen Lingenskala Z—1/3 gibt, da die (reska-
lierte) Thomas-Fermi-Dichte gerade wie 7—3/2 am Ursprung divergiert. (Man erinnere sich
an die Skalierungsrelation pL¥ (z) = Z2pT¥(Z'/32)). Fiir das hier vorliegende relativistische
Modell nach Chandrasekhar kénnen wir immerhin zeigen, dass pl! (siehe (5.I)) wegen der
Sétze [5.2.2] und [5.2.3] im niichsten Abschnitt, beziehungsweise Behauptungen [5.3.3] und [5.3.4]
in Abschnitt fast iiberall endlich ist. Dariiberhinaus ist die potentielle Energie, sprich
das Integral gegen r—!, in jedem Kanal endlich, siche Bemerkung |5.3.5 Satz [5.1.1]ist aller-
dings etwas préziser und weckt insbesondere etwas Hoffnung, was die Asymptotik fiir grofie
Absténde zum Kern angeht. Das Resultat sagt zum Einen, dass pf und p! fiir alle r € R
endlich sind und liefert zum Anderen die punktweise obere Schranke

pf(r) < Ayr_3/2 fiir r — o0

(Eine analoge Schranke im nicht-relativistischen Fall kann mit sehr dhnlichen Argumenten
hergeleitet werden, siche Anhang fiir weitere Details.) Obwohl eine entsprechende untere



5.1 Einfiihrung, Definitionen und Resultate 59

Schranke fehlt und die implizite Konstante A, wahrscheinlich alles andere als optimal ist,
deutet dieses Ergebnis bereits an, dass p’ ein dhnliches asymptotisches Verhalten wie die
nicht-relativistische Dichte fiir groie Abstinde zum Kern haben kann. Dies ist auch zu erwar-
ten, da sich lediglich die kernnéchsten Elektronen, deren Geschwindigkeiten ein substantieller
Bruchteil der Lichtgeschwindigkeit sind, relativistisch verhalten sollten, wohingegen sich die
kernfernen Elektronen (bereits auf der Lingenskala Z ~1/3_ wie wir in den Kapiteln [2| bis
gesehen hatten) nicht-relativistisch verhalten.

Wie wir bereits im vorigen Punkt angedeutet haben, ist es offen, die Singularitit von
p und pf: o am Ursprung zu bestimmen. Sie sollte, wie im Coulomb-Dirac-Modell, von
der Kopplungskonstanten v abhéngen. Schliefilich wére es wiinschenswert, Aussagen iiber
die Monotonie von pf machen zu kénnen. Man kénnte, wie im nicht-relativistischen Fall,
erwarten, dass p’ ebenfalls monoton fllt.

(3) Der Beweis von Satz beruht wieder auf dem Argument der linearen Antwort und
verlduft analog zu den Beweisen von Lieb und Simon [119], Baumgartner [8] (welcher Grif-
fiths Lemma [78], siehe auch [I59, Theorem 1.27], verwendet) sowie Iantchenko u. a. [95]: wir
differenzieren beziiglich der Kopplungskonstanten A einer Stérung U im ¢-ten Drehimpulska-
nal des Chandrasekhar-Operators. Die Ableitung, sprich die ,,Antwort“, ist gerade die gegen
U integrierte Grundzustandsdichte. Um Satz zu beweisen, vertauscht man die Summe
iiber die Drehimpulse mit der Ableitung, um das Resultat fiir einen fixen Drehimpulskanal
anwenden zu kénnen, sprich Satz Dass diese beiden Grenzwerte miteinander vertauscht
werden diirfen, folgt aus dem Weierstraflischen Majorantenkriterium mit einer Majoranten,
die gleichméfig in A und Z in £ summierbar ist, siche auch Behauptung [5.4.3

Formal ist die Strategie (um die Notation einfach zu halten, hier fiir die gesamte Dichte)
wie folgt: Zunéchst schreiben wir die gemittelte, reskalierte Grundzustandsdichte als

<C’Z - <CZ - )\gCZU(C‘l’V‘))) d] .

Ist beispielsweise A > 0, so kann die rechte Seite mit dem Variationsprinzip von oben (mit
der Konvention, dass der Negativteil positiv ist, sprich A_ = —Ax(_s0)(A4)) durch

1
73 _
/Rg ¢ pallal () (|]) dr = 5 T

1
ETI‘

Z
(cz - )\ZCQU(C|xV|)> —(Cy)-

v=1

abgeschitzt werden. Andererseits suggeriert die Scott-Korrektur, dass die Differenz dieser
Grundzustandsenergien fiir ein festes A im Grenzwert grofler Teilchenzahlen Z gegen die Spek-
tralverschiebung zwischen dem gestérten und dem ungestorten relativistischen Wasserstoft-
Operator mit Kopplungskonstante v konvergiert. In diesem Grenzwert erhélt man

1 H H

X Tr[(ny - AU)— - (C*y )—] )
wobei C’f den relativistischen Einteilchen-Wasserstoff-Operator auf der Lingenskala ¢! be-

zeichnet. An dieser Stelle miissen wir den Limes A — 0 durchfiihren. Im Geiste von Hellmann
und Feynman erwarten wir, dass der Grenzwert gerade

S = (€ == [ (al)Uel) da
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ist, wobei d den Grundzustand von C’f bezeichnet. Wire das untere Ende des wesent-
lichen Spektrums nicht Null, wire das Resultat wohlbekannt und folgte aus gewohnlicher
Storungstheorie. Jedoch trifft dies nicht auf den Wasserstoff-Operator zu, weshalb wir gezwun-
gen sind, eine Regularisierungsprozedur durchzufiithren. Eine der Bedingungen fiir die Existenz
der Ableitung ist, dass die Stérung auf dem Kern des ungestérten Operators verschwindet.
Dies ist insbesondere dann wahr, wenn Null kein Eigenwert des ungestorten Operators ist.
Die grofite technische Schwierigkeit besteht somit darin, zu rechtfertigen, dass die Ableitung
der Summe der negativen Eigenwerte existiert und durch den behaupteten Ausdruck gegeben
ist. Dies gestaltet sich am schwierigsten im nullten Drehimpulskanal fiir Kopplungen v > 1/2
wegen des Mangels einer Drehimpulsbarriere.

(4) In Abschnitt zeigen wir, dass es (neben der Bedingung, dass die Storung auf dem
Kern des ungestorten Operators verschwindet) geniigt zu zeigen, dass eine gewisse ,relative
Spurklasse-Bedingung“ sowie weitere damit verbundene, wohlbegriindete technische Annah-
men erfiillt sind, um die Summe der negativen Eigenwerte ableiten zu diirfen. Die relative
Spurklasse-Bedingung bedeutet, dass der Operator (CfT + M)~*U(CH + M)~ fiir ein hinrei-
chend grofies M > — inf spec C}/! (und damit fiir alle hinreichend grofen M > — inf spec C{T)
und s > 1/2 ein Operator der Spurklasse ist. Die Bedingung s > 1/2 ist ausschlaggebend, da
(1+ k)=t ¢ LY R, dr). Fiir £ > 1 sind die Operatoren (C; + M)(CH + M)~1 (wobei Cy nur
die kinetische Energie im ¢-ten Kanal meint) fiir alle v < 3/2 wegen der Hardy-Ungleichung
beschrankt. Wegen der Operatormonotonie positiver Wurzeln reduziert sich die Verifikation
der Spurklasse-Bedingung daher darauf zu zeigen, dass (Cy+ M)~*U(Cy+ M )~* in der Spur-
klasse ist, was relativ unkompliziert ist. Fiir £ = 0 ist die Situation etwas delikater, da die
Operatoren nur fiir v < 1/2 beschrénkt sind. An dieser Stelle machen wir Gebrauch von den
Resultaten aus Kapitel |7, welche besagen, dass fiir festes v < 2/m, die Normen, die durch die
Operatoren (|p| —v/|z|)* und |p|* (in L*(R3) und daher insbesondere fiir £ = 0) erzeugt wer-
den, dquivalent zueinander sind, wenn s € (1/2,3/2—0,) (wobei 0., € [0, 1] nach definiert
wurde). Genau an dieser Stelle braucht man die Einschrinkung an die Kopplungskonstante
v <2/m.

Der Rest des Kapitels ist wie folgt gegliedert. Im néchsten Abschnitt bestimmen wir
die Ableitung der Summe iiber die negativen Eigenwerte eines linearen Operators A — AB
beziiglich \. Dies ist, wie eben angesprochen, eines der hauptséchlichen technischen Werkzeu-
ge in diesem Kapitel. In Abschnitt zeigen wir, dass die Bedingungen der verallgemeinerten
Feynman-Hellmann-Sétze von Test-Funktionen, fiir welche die starke Scott-Vermutung gel-
ten soll, erfiillt werden. In Abschnitt leiten wir eine Majorante her (Behauptung ,
welche uns erlauben wird, das Weierstralische Majorantenkriterium anzuwenden. Dies ist
entscheidend fiir den Beweis von Satz um die Summe iiber die Drehimpulse mit den
Grenzprozessen limy_,glimy_,o, zu vertauschen. Dariiberhinaus werden wir in diesem Ab-
schnitt auch Satz zeigen, da der Beweis sehr dhnlich zu dem von Behauptung
verlauft. Im letzten Abschnitt setzen wir schliellich alle Teile zusammen und beweisen die

beiden Konvergenzresultate, Satz und Satz

5.2 Differenzierbarkeit der Summe negativer Eigenwerte

Im Folgenden beweisen wir verallgemeinerte Feynman-Hellmann-Theoreme. Wir beginnen
mit der Formulierung eines Satzes mit ,natiirlichen“ Annahmen an die Operator-Stérung.
Im Anschlufl werden wir dieses Theorem unter sanfteren Annahmen an die Stérung verallge-
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meinern. Diese Verallgemeinerungen werden wir schliefllich anwenden, um die starke Scott-
Vermutung in einem festen Drehimpulskanal zu beweisen.

Im Folgenden schreiben wir A_ = —Ax(_s0)(A), das heifit der Negativteil einer Gréie
ist positiv.

5.2.1 Differenzierbarkeit unter einer Spurklasse-Bedingung

Satz 5.2.1. Sei A ein selbstadjungierter Operator, sodass A— ein Spurklasse-Operator ist. Sei
B ein nicht-negativer Operator und relativ Form-Spurklasse-beschrinkt beziiglich A, das heifst
es gibt eine hinreichend grofe Zahl M > |inf spec(A)|, sodass (A + M)~Y2B(A+ M)~1/2 in
der Spurklasse ist. Dann erfiillen die einseitigen Ableitungen von

A= S(A) :=Tr(A—- AB)_
die Relationen
Tr BY(—00,0)(A) = D7S(0) < DT5(0) = Tr Bx(—o0,0)(4) -
Insbesondere ist S bei A = 0 genau dann differenzierbar, wenn Blgera = 0.

Bemerkungen. (1) Aus der relativen Spurklasse-Beschrénktheit folgt, dass die rechte Seite
der Behauptung endlich ist. Sei dazu P = X(_q](A), dann folgt aus der Zyklizitét der Spur

Tr BP = Tr (P(A + M)) ((A +M)V2B(A + M)*l/Q) < o0,

da P(A + M) beschrinkt ist.
(2) Aus dem Variationsprinzip folgt, dass S konvex ist. Seien dazu ¢t € [0,1] und A, Ay € R,
dann gilt

S((l — t))\l + t)\g) = TI‘[(l — t)(A — )\13) + t(A — )\QB)],
< (1= ) Te(A— M B)_ +tTr(A — 2B)_ = (1 —)S(\) + £S(Aa) -

Daraus folgt, dass die links- und rechtsseitigen Ableitungen von S tatséichlich existieren, siehe
beispielsweise [159, Theorem 1.26].

(3) Wenn die untere Grenze des wesentlichen Spektrums echt positiv ist, ist das Resultat
wohlbekannt und folgt aus dem klassischen Satz von Feynman—Hellmann (fiir jeden einzelnen
Eigenwert und damit auch fiir die Summe {iiber alle Eigenwerte). Dieses Resultat wird auch
im Beweis verwendet. Der Punkt ist, dass man die Summe der negativen Eigenwerte auch
dann ableiten darf, wenn die untere Grenze des wesentlichen Spektrums Null ist, sprich, in
dem Fall, in welchem gewo6hnliche Stérungstheorie nicht (direkt) anwendbar ist.

Beweis. Schritt 1. Die Idee ist es, den Hauptsatz der Differential- und Integralrechnung an-
zuwenden. Wir behaupten, dass fiir alle A € R der Operator (A — AB)_ in der Spurklasse ist
und, dass S(A) := Tr(A — AB)_ die Gleichheit

S(A) = S(0) = /0 PO dx

mit

T(\) := Tr BX(_s0.0)(A — AB)
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erfiillt.

Per Voraussetzung ist S(0) < oo. Da B relativ Form-Spurklasse-beschrinkt beziiglich
A ist, ist B insbesondere infinitesimal Form-beschriankt beziiglich A, siehe [144], Seite 369].
Daraus folgt insbesondere, dass (A — AB + M)~'/2(A + M)'/? fiir alle A € R beschrinkt
ist, wenn M hinreichend grofi gewéhlt wird. Damit und mit dem gleichen Argument wie in
der ersten Bemerkung zur Endlichkeit von Tr By (_o0)(A) folgt, dass B auch relativ Form-
Spurklasse-beschriankt beziiglich (A — AB + M) ist. Daher ist T'(\) fiir alle A € R endlich.
Insbesondere folgt daraus, dass das Integral fOA T(X)dXN endlich ist.

Um zu zeigen, dass (A — AB)_ ein Operator der Spurklasse ist und die behauptete Formel
fiir S(\) gilt, regularisieren wir S(A) und 7'(\). Dazu fithren wir fiir u € (—00,0) N p(A) die
Funktionen

Su(A) =Tr(A—=AB —p)- und T,(A) = Tr BX(—oou) (A — AB)

ein. Hierbei bezeichnet p(A) die Resolventenmenge von A. Da B insbesondere relativ kompakt
ist und inf oegs(A) > 0, hat A — AB nur endlich viele Eigenwerte unterhalb der Schwelle
p < 0. Aus dem Feynman-Hellmann-Satz folgt, dass die Funktion A — S, ()) fur alle A € R,
fur die pp ¢ op(A — AB) ist, differenzierbar ist und die Ableitung durch 7),(\) gegeben ist.
Die Bedingung p ¢ o0,(A — AB) ist wegen des Birman-Schwinger-Prinzips &quivalent zur
Bedingung 1/\ ¢ o(B'/?(A — ;1)~'BY?). Da B relativ Form-kompakt beziiglich A ist, ist
der Birman—Schwinger-Operator kompakt. Daraus folgt aber wiederum, dass die Bedingung
1/\ ¢ o(BY?(A — u)~'B'/?) auf dem Komplement einer diskreten Menge wahr ist. Daher
gilt fiir jedes A € R

A
S,(\) = S,(0) + /0 T, (N)dN .

Wir lassen nun g 0 gehen. Da p +— S,,(0), beziehungsweise p +— T, (\’), nicht-fallend mit
endlichem Grenzwert S(0), beziechungsweise endlichem und integrierbaren Grenzwert T'(\'),
sind, folgt aus dem Satz der monotonen Konvergenz, dass auch der Grenzwert lim,, »9 S, (\) =
S(A) endlich ist und die behauptete Gleichheit erfiillt.

Schritt 2. Wir behaupten, dass

limsup T'(A) < Tr Bx(—o0,0](A)
ANO0

und
Iminf T (\) > Tr By,(_ A).
1)\/‘10 ( ) = LI BX( 00,0)( )

Aus diesen Ungleichungen und Schritt 1 folgt
Tt B(oopy(4) < D™S(0) < D*S(0) < Tr Bx(—neg)(A). (5.3)

Fiir € > 0 definieren wir die ,,ausgeschmierten“ charakteristischen Funktionen

1 fiir a € (—00,0] 1 fir a € (—o0, —¢]
ff@)=<{1—-a/e firael0,g und  fZ(a) =% —a/e fiir a € [—¢,0]
0 fiir o € [e,00) 0 fir a € [0, 00)

Offenbar ist f= < X(—co,0) < fo und daher

TrBf (A—AB) <T(\) < Tt Bf} (A— \B). (5.4)
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Wir behaupten, dass fiir alle € > 0

lim Tr BfF(A—AB) =Tr Bf(A) (5.5)
—
und

limsup Tr Bf:H(A) = Tr BX(—o0,0)(4) lim\%lf Tr Bf (A) = Tr BX(—0,0)(A) (5.6)
e\ 0 €
gelten. Sobald wir diese Grenzwerte gezeigt haben, kénnen wir zuerst A — 0 und dann € \ 0
in (5.4)) gehen lassen, woraus die Behauptung dieses Schritts folgt.
Um (5.5 zu zeigen, schreiben wir

TrBfE(A—AB) = TrCK(\)g=(A — AB)K()\)*,

wobei C' = (A+ M)~ YV2B(A+ M)™/2 K(\) = (A+ M)Y/2(A = AB + M)~'/? und g*(a) =
(a+ M) f*(a). Da A— AB im Norm-Resolventen-Sinne fiir A — 0 gegen A konvergiert (nach
[142] Theorem VIIL.25]) und die g stetig sind, konvergiert g= (A — AB) — g=(A) in Norm,
siehe [142, Theorem VIII.20]. Dariiberhinaus konvergiert K(\)* stark gegen die Identitét,
denn fiir ¢ € ran((A + M)"Y2) und ¢ = (A + M)Y2¢p € H (dem zugrunde liegenden
Hilbertraum) ist

(A= 2B+ M) 2 = (A a4+ M) -
- H((A—AB+M)‘1/2—(A+M)‘1/2)1,Z)H 0. '

Diese Konvergenz gilt, da A— AB insbesondere im starken Resolventen-Sinne gegen A konver-
giert. Aus [142, Theorem VIII.20] folgt, dass jede stetige und beschriankte Funktion f(A—AB)
stark gegen f(A) konvergiert. W&hlt man M = 1 + |infspec(A — AB)| fiir A > 0 und
M =1+ |inf spec(A)] fiir A < 0 sowie § als ausgegliittete Heaviside-Funktion und

fla) = (a+M)"26(a - (1 - M))
folgt (5.7). Fiir allgemeines ¢ € H sei ¢n, 1= X(—oo,n)(A)p € D(A). Dann ist

lim lim H((A CAB A+ M)V2 (A4 M)A+ M)l/chnH —0,
A—0n—o0

wobei wir die Grenzwerte vertauscht haben, was erlaubt ist, da ||K(\)*| gleichméfig in A

beschriankt ist, da B infinitesimal Form-beschrankt beziiglich A ist.

Seinun C = ) ¢, |tn) (Y| die Singuldrwertzerlegung von C. Mit der Zyklizitdt der Spur,
der Norm-Konvergenz g (A — AB) — g (A) und der starken (und insbesondere schwachen)
Operator-Konvergenz K(\)* — 1, erhalten wir schlieflich mit dem Satz der majorisierten
Konvergenz (da K (\) und g=(A—\B) gleichmiBig in A beschriinkt sind und C' ein Spurklasse-
Operator ist)

lim Tr(CK(M)gz (A~ AB)K(A)")

= 1im 3 e+ (KO 4, 02 (A = AB)K (V) 4)

=D caltn, 02 (A)gn) = Tr(Cy (4)) = Tr BfF(A).
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Dies zeigt die Konvergenz ([5.5]).
Um (5.6]) zu zeigen, schreiben wir dhnlich

Te(BfZ(A)) =/Rg§[(a)d (ch(wn,E(awn))

mit derselben Singuldrwertzerlegung C' = > Cn|¢n><¢n\ wie eben und dem Spektralmafl
dE von A. Wir bemerken, dass die Funktionen gt beziehungsweise g- auf dem Triger von
dE beschrinkt sind und fiir ¢ N\, 0 punktweise gegen (a + M)x(—cc,0(@), beziehungsweise
(@ + M)X(—o0,0)(c) konvergieren. Da d ), cn(vn, E(a)iy,) ein endliches Maf ist, folgt aus

dem Satz der majorisierten Konvergenz

h\IJn Tr BfF(A) = /R(Oz—i-M) (—o0,0] (@ (Z cn(Yn, E )) =Tr BX(~o0,0)(4) ,

beziehungsweise

il\rlr(l)TrBfE_(A) = /R(OJ—F M) ooO) (Z Cn wm )) = TrBX(—qu)(A) .

Dies zeigt und damit die Behauptung dieses Schritts.

Schritt 3. Wir zeigen nun, dass die linke Ungleichung in tatsdchlich eine Gleichheit
ist. Wegen des Variationsprinzips sind die im ersten Schritt definierten Funktionen S,, konvex
und konvergieren fiir p * 0 punktweise gegen S. Daraus folgt mit [159, Theorem 1.27]

D™S(0) <1 fD™S
(0) < liminf D75,,(0).

Aus gewdhnlicher Stérungstheorie (sprich, wegen des Feynman—Hellmann-Satzes) ist bekannt,
dass
D™5,(0) =1T,(0).

Aus monotoner Konvergenz folgt

lim 7,(0) = Tr Bx(—s0.0)(4),
Iy 7,(0) = Tr B (e (4)

woraus schliefllich D~S(0) < Tr Bx(—«,0)(A) folgt.
Schritt 4. Schlieflich zeigen wir, dass die rechte Ungleichung in (5.3|) ebenfalls eine Gleich-
heit ist. Wir kiirzen wieder P := x(_,0)(A) ab. Wegen des Variationsprinzips ist

—Tr(A—AB)_- <Tr(A—-AB)P

Dabher ist
S(\) = S(0) > ATr BP
und deshalb S0 500
D*5(0) = lim ();() > Tr BP

wie behauptet. ]
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5.2.2 Eine Verallgemeinerung

Die Bedingung, dass B relativ Form-Spurklasse-beschréinkt beziiglich A ist, ist fiir unsere
Anwendung zu stark, in der wir A = C’f und B = U wéahlen werden. Wegen Katos Unglei-
chung geniigt es die relative Spurklasse-Bedingung beziiglich C; zu verifizieren. Allerdings ist
(Cy +1)"2U(Cy 4 1)71/2 im Allgemeinen kein Spurklasse-Operator, da Jo (k4 1)1 dk im
Unendlichen logarithmisch divergiert, siehe insbesondere den Beweis von Behauptung [5.3.10
spater.

In diesem Unterabschnitt stellen wir daher zwei Verallgemeinerungen von Satz vor,
in der die relative Spurklasse-Bedingung etwas abgemildert wird. Wir verlangen lediglich, dass
B relativ Form-Spurklasse-beschrinkt beziiglich (A + M)?* fiir ein s € (1/2, 1] ist. Dabei kann
s beliebig nahe an 1/2 sein. Allerdings benétigen wir dann noch die weitere Annahme, dass
die Operatoren (A + M)® und (A — AB 4+ M)?® vergleichbar sind. Diese Eigenschaft kann oft
eher schwer verifiziert werden, weshalb wir im Anschlufl eine weitere Verallgemeinerung von
Satz [5.2.1] vorstellen. Hier muss der Operator B® durch eine kleinere Potenz des Operators
(A+M)*" (mit 1/2 < s’ < s) kontrolliert werden kénnen. In Anwendungen ist diese Annahme
mit Hilfe klassischer Sobolew-Ungleichungen deutlich leichter verifizierbar.

Satz 5.2.2. Sei A ein selbstadjungierter Operator, sodass A_ ein Spurklasse-Operator ist. Sei
B > 0 ein beziiglich A relativ Form-beschrinkter Operator. Angenommen, es gibt 1/2 < s < 1,
sodass fiir eine hinreichend groffe Zahl M > 0 sowohl

(A+ M) *B(A+M)™* ein Spurklasse-Operator ist, (5.8)
als auch
limsup ||(A+ M)*(A—AB+ M)™*|| < o0 (5.9)
A—0

gilt. Dann sind die Aussagen in Satz wahr.
Wir bezeichnen mit || - ||; die Spurnorm.

Beweis. Wir folgen den Schritten im Beweis von Satz Zu Beginn des ersten Schritts
mussten wir zeigen, dass T'(\) = Tr Bx(_,0)(A — AB) endlich und gleichméflig beschrénkt
fir A in einer Umgebung von Null ist. Dies folgt aus

limsup ||(A—AB+ M) *B(A—AB+M)™*||, < o0 (5.10)
A—0

und der Tatsache, dass (A—AB+M)?X(_u 0)(A—AB) (fiir hinreichend kleine A) gleichmiBig
in A beschrankt ist. Die Endlichkeit von (5.10)) folgt wiederum aus den Bedingungen ([5.8]) und

(5-9)-

Im ersten Schritt mussten wir auflerdem zeigen, dass jedes gegebene pu € (—o0,0) N p(A)
kein Eigenwert von A — AB fiir alle A € R in einer Umgebung um Null, abseits einer diskreten
Menge, ist. Wir verifizieren dies nun unter den aktuellen Bedingungen. Dazu bemerken wir
zunéchst, dass die Differenz der gestorten und ungestorten Resolvente durch

(A=AB+ M) —(A+ M) ' = (A= AB+M)""DONEWN)(A+ M)"'Ts
ausgedriickt werden kann, wobei

D(A) = (A= AB+ M) "*(A+ M)*
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und
EAN) =XA+M)°B(A+M)*.

Wegen Voraussetzung ist D(A) beschrankt und wegen Voraussetzung ist E(\) ein
Spurklasse-Operator. Da s < 1, folgt daraus, dass (A—AB+M)~!—(A+M)~! ein Spurklasse-
Operator ist und somit insbesondere kompakt ist. Aus dem Satz von Weyl folgt daher, dass
das negative Spektrum von A — AB diskret ist. Da B relativ Form-beschrinkt beziiglich A
ist, ist A — AB eine analytische Familie vom Typ (B) [101, Kapitel Sieben, Theorem 4.8].
Somit kénnen die Eigenwerte von A — AB zumindest lokal als analytische Funktionen von A
beschrieben werden. Da p per Voraussetzung kein Eigenwert von A ist, kann es somit lediglich
eine diskrete Menge von \’s nahe Null geben, sodass i ein Eigenwert von A — AB ist. Dies
war aber gerade die Behauptung.

Wir kommen nun zum zweiten Schritt. Dort mussten wir zeigen. Wir schreiben
wieder

TrBff(A—AB) = TrCK(\)gX (A — AB)K(\)*,

wobei jetzt C = (A+ M) *B(A+ M)~ K(\) = (A+ M)*(A— B+ M)~* und gF(a) =
(a + M)? fF(a) sind. Aus dem gleichen Grund wie zuvor konvergiert g=(A — AB) gegen
g£(A) in Norm. Die starke Konvergenz K()\)* — 1 folgt ebenfalls wie zuvor (zuniichst gilt
die Konvergenz nur auf Elementen in ran(A 4+ M)~®) mit der Bemerkung, dass K (\)* wegen
der Bedingung gleichméfig in A beschréankt ist fiir A nahe Null. Daher konvergiert
auch K(\)gZ (A — AB)K(\)* — gZ(A) wie zuvor im schwachen Operator-Sinne. Da per
Voraussetzung C ein Operator der Spurklasse ist, folgt wieder .

Die Schritte 3 und 4 bleiben schliefflich unverdndert. Dies schliefit den Beweis von Satz
19.2.2) 0

Wir kommen nun zur zweiten Verallgemeinerung von Satz [5.2.1}

Satz 5.2.3. Sei A ein selbstadjungierter Operator, sodass A_ in der Spurklasse ist und B ein
nicht-negativer Operator. Angenommen, es gibt Zahlen max{1/2,s'} < s < 1, sodass fiir ein
M > 0 die Bedingung (5.8) (mit demselben s) erfiillt ist und eine Konstante a > 0, sodass

B* < a(A+ M)*¥ (5.11)
gilt. Dann sind die Aussagen in Satz wahr.

Die Annahme s’ < s ist fiir unseren Beweis entscheidend (zumindest fiir ein Vorzeichen
von A). Allerdings wissen wir nicht, ob sie auch notwendig fiir den Satz ist.

Wir bemerken, dass mit der Holder- und der Young-Ungleichung impliziert, dass B
infinitesimal Form-beschrinkt beziiglich A ist. Dies sieht man beispielsweise wie folgt. Ist du
ein normiertes, nicht-negatives Maf}, dann gilt

S,

/x%’ du(z) < (/gﬂ du(x)>s (/ du(g;))lss, .

Daher gibt es mit dem Spektralsatz fiir alle k € (0,1) ein M,; > 0, sodass

(1, BE) < a(th, (A + M)¥' 1) < a(th, (A+ M)*$)5 < w1, (A + M=)

Insbesondere folgt daraus, dass A — AB im Sinne quadratischer Formen fiir alle A € R defi-
nierbar ist.
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Wir werden Satz aus Satz folgern, indem wir zeigen, dass Bedingung (5.11)) die
Bedingung (5.9) impliziert. An dieser Stelle ist s’ < s entscheidend. Wir formulieren dieses

Argument als separates Lemma, dessen Aussage und Beweis von Neidhardt und Zagrebnov
[134] inspiriert sind.

Lemma 5.2.4. Sei A ein selbstadjungierter Operator mit inf spec A > 0 und sei B ein Ope-
rator, welcher B > 0 oder B < 0 erfillt. Angenommen, es gibt Zahlen max{1/2,5} < a <1,
sodass

I1B]*AF|| < oo

gilt. Falls es eine Konstante C' gibt, die nur von o und 3 abhdingt, die M > C|||B|*A=#||}/(a=5)
erfillt, dann gelten die Ungleichungen

%(A-i— M)** < (A+ B+ M)** <2(A+ M)*.

Die Konstanten 1/2 und 2 koénnen durch beliebige Konstanten 1 — e und 1+ ¢ mit € > 0
auf Kosten der Konstanten C' ersetzt werden, welche dann von € abhédngen wird.
Dieses Lemma impliziert sofort Satz

Beweis von Satz[5.2.3. Wir verifizieren die Annahmen in Satz [5.2.2] mit Hilfe von Lemma
wobei A durch A + M sowie B durch —\B ersetzt werden und o = s sowie § = s’
gesetzt werden. Das Anwenden des Lemmas zeigt, dass (5.9 durch (5.11]) impliziert wird. [

Bevor wir zum Beweis von Lemma kommen, bemerken wir, dass das Lemma zur
Verifikation von (5.9) im intuitiv schwierigeren Fall A > 0 tatséchlich nicht nétig ist. Wir
zeigen direkt

Lemma 5.2.5. Sei A ein nach unten beschrinkter, selbstadjungierter Operator, B ein nicht-
negativer Operator und M > |infspec A|. Angenommen, es gibt a > 0 und s € [1/2,1],

sodass B* < a(A + M)?*. Dann gilt fir alle M > ‘infspec (A - (228—1a)_1/(28) B)‘ und
0 <A< (22a)
(A+M)25 < (1 _ 225—1a)\25)_1 225—1(/1— )\B_i_M)QS'

Insbesondere folgt daraus, dass die behauptete Formel fiir DTS(0) aus Satz unter
der (erwartbaren und schwicheren) Bedingung B < a(A + M)? gilt.

Beweis. Aus Operatorkonvexitiit von z — x?¢ mit 2s € [1,2] (siehe beispielsweise Bhatia [L1]
Theorem V.2.9 und Theorem V.2.10]) folgt

(A+ M)* = (A+ M — AB + AB)* < 2*7! ((A — AB + M)* + \**B*)
S 223—1(A — )R + M)Zs + 225—1a>\23(A+ M)Qs )

Fiir A < (225*1a)71/(28) folgt daraus
(A+M)2s S (1 o 223—1a)\2s)*1 223—1(A —\B + M)Qs’

was behauptet war. ]
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Wir vermuten, dass fiir hinreichend kleines A < 0 und ansonsten gleichen Voraussetzungen,
dieses Lemma immer noch wahr ist.
Wir stellen nun den Beweis von Lemma [5.2.4] vor.

Beweis von Lemma [5.2.4. Schritt 1. Wir zeigen, dass es unter den zusitzlichen Bedingungen

|[Bl*A7| <1 (5.12)
und
A+B>0, (5.13)
einen Operator S gibt, sodass
(A+B) *=(1-85)A"“. (5.14)

Zudem erfiillt die Operatornorm von S die Schranke

s <o L [IBIrAT B AT O
©Wlnfspec )TE 1 BjA

Um dies zu zeigen, definieren wir fiir ¢ > 0 die verallgemeinerten Birman—Schwinger-Opera-

toren
Y(t):=(A+t) % BI(A+ t)‘““"‘ )

Wir werden in Kiirze zeigen, dass Bedingung ((5.12)) die Invertierbarkeit der Operatoren 1 +
Y (t) impliziert. Akzeptiert man dies fiir den Moment, sieht man, dass fiir ¢ > 0

(A+B+t) ' =(A+t) ' F A+ YA 1Y) HA+1),

wobei das obere Vorzeichen gewéhlt wird, wenn B > 0 und das untere Vorzeichen gew&hlt
wird, wenn B < 0. Im Folgenden verwenden wir, dass fiir alle Zahlen A > 0 die Gleichheit

h™ = ca/ (h+t)" %" *dt mit co = 7 ' sin(ra)
0

mit o < 1 gilt. Aus dem Spektralsatz und der obigen Beobachtung zur Differenz von (A +
t)™t —(A+ B +1t)~! folgt

A — (A4 B) ™™ =¢, /OO (A+t) ' —(A+B+t) )t >dt
0
= +cq /OO(A + )Y () (1Y () N A+ ) dt.
0

Somit gilt (5.14) mit dem Operator S (durch Anwenden von A® von rechts auf beiden Seiten
der letzten Gleichung), der durch

S = tey / (A4 8"V (1) (1 £ Y(8) "1 (1 4 tA~1) 242 gt (5.15)
0
definiert ist. Offenbar ist

IS]| < ca /OOO |+ oA+ vy |a£yen e a. (5.16)
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Wir beschrinken nun die drei Terme des Integranden separat. Zunéchst ist

[Y @)1 < A +8)IBI || - 1Bl (A + )71+
< [ ABI| - 1Bl AT
(0% —Q 1/«
<||BleAa=e| .

Im ersten Schritt haben wir (mit ¢ > 0)
|BI*(A+t)7%|B|* < |B|*A7**|B|*

verwendet. Im letzten Schritt haben wir | B|?* < ||| B|*A~%|| A%“ sowie die Operatormonotonie
von z +— x(17)/® mit 1/2 < a < 1 verwendet. Wegen Annahme (5.12)) ist also ||V (¢)]| < 1,
weshalb 1 + Y (¢) invertierbar ist mit

Ja ey <a- oD < (1-[iBrea]’e)”

Als Nichstes beschranken wir in dhnlicher Weise

|ca+ ooy <|ja+ose

X H(A_i_t)—l—koz‘Byl—aH

<oy

. ||A71+a|B|17aH

< [imeat] s ace-e

SchlieBlich ist
H(A + t)_l"'ﬁH < (infspec A+ )7

Setzt man diese Schranken in ([5.16) ein, folgt

— — 1-a)/a o
1S < ¢ [1Bl*A=P|| - |[1Bl*A— "~/ / dt
S L [BRAe o t(infspec A+ 1)) 7
a A— ap—a|l-a)/a
_ oW L BleAA| B A
@8 (inf spec A)a—5 1 — ||| BloA—a|/* '

Wir betonen, dass die Voraussetzung 8 < « an dieser Stelle entscheidend ist, damit das
Integral konvergiert. Dies zeigt die Behauptung in Schritt 1.

Schritt 2. Die Aussage des Lemmas wird folgen, indem wir Schritt 1 anwenden, wobei A
durch A 4+ M (mit einer hinreichend grofien Konstante M) ersetzt wird.

Wir bemerken zunéchst

H\B\"(A—l—M)_BH < HyB\aA—BH < 0. (5.17)

Dariiberhinaus behaupten wir die Giiltigkeit der Schranke

a =B
H|B|a(A+M)—aH < 0(2) H’B‘ A H .

T (5.18)
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In der Tat erhélt man mit dem Spektralsatz

e < e 4 = e (s ) a0
o \?
- H'BWA*BH szﬁ (A+ M), (5.19)

was ([5.18) zeigt.
Aus (5.18) folgt, dass Bedingung (5.12)) des ersten Schritts (mit A+ M anstatt A) erfiillt

ist, wenn
>1/(a—/3)

Y

M> <C’f)ﬁ HB\‘“A‘/BH

was wir im Folgenden annehmen. Ungleichung (5.19)), zusammen mit Operatormonotonie von
z +— /(%) (mit o > 1/2), impliziert im Fall B < 0 die Form-Ungleichung

0(2) 1/«
-\ era 755 | A
B> |B|“A op ( :
Daraus folgt
0(2) 1/a
a -8 a,B
A+M+B>|1- H|B|A HMH (A+M)>0.

Dies zeigt, dass die Bedingung ((5.13)) in Schritt 1 (mit A+ M anstatt A) erfiillt ist. Fiir B > 0
ist ([5.13]) trivialerweise erfiillt.
Wendet man das Ergebnis aus Schritt 1 an, findet man

(A+M+B)™=(1-Sy)(A+M)™*=(A+M)"*(1-S}),
wobei Sy wie in (5.15) (mit A + M anstatt A) definiert ist und die Schranke
(1-a)/« a
o ()" pmeae

(0% a’ﬁ
151l < 37a NG 1
1= (C2)) " 1Bl a2 M~a=p/a

erfiillt. Daher gibt es eine Konstante C', die nur von « und 3 abhéngt, sodass

1Sull <1 — falls M > C H|B|QA—/3H1/(”5) .

1

\/57

Dal-— 1/\/5 < V2 —1, folgt daraus
(A+ B+ M)™2 = (A+ M)~ (1 - Si)(1 — Sy)(A+ M)~

11— Su*(A+ M)~

(1+ 1Suml)*(A+ p)—>

2(A+ M)72,

ININ A
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Dariiberhinaus ist
(A+ M) =(A+B+M)" 1 -S;) '~ Sy) " (A+B+ M)
2
< H(l - SM)”H (A+ B+ M) 2

< (1= [[Sml)*(A+ B+ M)~
<2(A+ B+ M)*.

Dies schlie3t den Beweis dieses Lemmas. O

5.3 Test-Funktionen und Resultate fiir festen Drehimpuls

In diesem Abschnitt wenden wir die Sétze [5.2.2] und [5.2.3] an. Dabei spielt A die Rolle des
Chandrasekhar-Operators CZH , wohingegen B die Rolle der Stérung U iibernehmen wird. Satz
wird fiir die Behandlung der Coulomb-Singularitét und Satz fiir die Behandlung
des ICS’?—Teils des Potentials verwendet. Unser Ziel ist es, die Annahmen der jeweiligen Sétze
zu verifizieren.

Wir fithren die Notation

\/ 2 0+1)
pe = +

Cdr? r2
Cg::\/pi—l-l—l

ein und erinnern an die Definition von

cl =c, - T in L*(Ry,dr),
T
wobei vy € (0,2/7) eine feste Konstante ist. Dariiberhinaus bezeichnet pf die Summe der
Quadrate der normierten Eigenfunktionen von C, siehe (5.1)). Wir erinnern an einige grund-
legende Eigenschaften von C’f .

Lemma 5.3.1. Seien ¢ € Ny und v < 2/, dann ist C’f von unten beschrinkt und es gilt
Tr(CH)_ < oo. Ist v < 2/m, dann ist Null kein Eigenwert von CH.

Beweis. Dle untere BeSChrénktheit folgt aus
Ce 2 Pe 1 2 Po 1 2 1 ;
T T

wobei die letzte Ungleichung aus Katos Ungleichung [101] Kapitel Fiinf, Formel (5.33)] folgt.
Die Endlichkeit von Tr(C)_ wurde in [69, Lemma 1] gezeigt. Die Tatsache, dass Null kein
Figenwert von C’EH ist, wurde von Herbst in [87, Theorem 2.3] gezeigt. O

Im néchsten Unterabschnitt fahren wir mit der Definition der Klasse der Test-Funktionen
ICi?g, fiir die die Scott-Vermutung fiir festes ¢ gilt, fort. Nach der Definition geben wir einige
konkrete Beispiele von Funktionen in dieser Klasse und nennen die Hauptergebnisse dieses
Abschnitts. Diese werden dann im letzten Unterabschnitt bewiesen.
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5.3.1 Test-Funktionen fiir festen Drehimpuls
Die Test-Funktionen, fiir die Satz gilt, sind fiir s > 1/2 und 0 € [0,2s — 1] in

KO i= (W € LLo(Ry) : W] 0 < 00}

(0)
,Cs,(s

W sup R [/R<T>2S_1|W(r)|dr+/oo]W( )]dr]
= ey T
’dg R>1/2 0o ‘R R

enthalten. Wir schrinken uns hier und im Folgenden auf den Bereich § < 2s — 1 ein, da

(5.20)

nicht einmal die charakteristische Funktion auf einem festen Intervall fiir 6 > 2s — 1 in ICiog
enthalten ist.

(0)

Wir bemerken folgende einfache, aber niitzliche Inklusionseigenschaften fiir &C; 5, ndmlich

K5 k) fir1/2<s' < sund e 0,25 1] (5.21)
Diese folgt aus der Definition von /Cgog und (r/R)* 1 <py < (T/R)Qsl_ll{,.SR}. Das bedeu-
tet, je kleiner s ist, desto glatter muss die Funktion am Ursprung sein.

Wir stellen einfache Beispiele von Funktionen vor, die in ngog enthalten sind.

Beispiel 5.3.2. Beispiele von Funktionen W € Kgog sind

o 7 1L>([0, p]) fiir ein p > 0 mit s > 1/2 und § € [0,2s — 1]. Modulo einer Konstanten,
ist die Norm ist durch max{p°, p’log p} - ||[rW||sc beschriinkt.

o LY Ry, r0dr) fiir alle s > 1/2 mit § € [0,2s — 1].

Die erste Behauptung ist offensichtlich. Um die zweite zu sehen, verwenden wir § < 2s—1
sowie r < R im ersten Summanden und R < r im zweiten Summanden der Definition und
erhalten

R 25s—1—0 k) 00
5 T r 5
R(H)T(R) Wold+ [ RIW@< W -

5.3.2 Ergebnisse fiir festen Drehimpuls

Wir kommen nun zu den zwei wichtigsten Behauptungen dieses Abschnitts. Sie sind unbedingt
notig, um die lineare Antwort zu berechnen und spielen daher eine entscheidende Rolle im
Beweis der Konvergenzresultate.

Behauptung 5.3.3. Seien v € (0,2/7), { € Ng, 1/2 < ' < s < min{3/2 — 0,,1}, ¢’ €
(0,28 — 1] und € € [0,2s — 1]. Sei 0 < U € /cg?g mit U* € ’CS),)&' Dann ist die Abbildung
A Te(Cf — XU)- bei A = 0 differenzierbar mit Ableitung [ pg (r)U(r) dr.

Behauptung 5.3.4. Seien v € (0,2/7), £ € Ng und 0 < U € v~ 1LE, (R,). Dann ist die

comp

Abbildung X — Tr(CH — AU)_ bei A = 0 differenzierbar mit Ableitung [~ pf! (r)U (r) dr.

Wir bemerken Folgendes zur Endlichkeit von pf .
Bemerkungen 5.3.5.
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1. Wir betonen, dass es Teil der Aussage ist, dass das Integral fooo U(r) pfl (r) dr fir Funk-
tionen U, die die Bedingungen der Behauptung erfiillen, endlich ist. Wir werden jedoch
spéter einen direkteren Beweis dieser Tatsache geben, siche Behauptung [5.4.8

2. Behauptung impliziert insbesondere fiir jedes feste R < oo, dass

R H

/ Per) dr < oo, falls v < 2/7.
0 T

Es gilt jedoch noch mehr — die potentielle Energie in jedem festen Kanal, sprich obiges

Integral mit R = oo ist endlich. Diese Tatsache beruht auf Lemma und kann

ohne die Maschinerie des letzten Abschnitts zu verwenden, hergeleitet werden. Dazu

verwendet man die normierten Eigenfunktionen !, von C’f als Test-Funktionen fiir

n,l

ein v € (,2/7]. Dann folgt aus dem Variationsprinzip fiir jedes N € N die Ungleichung
N v y
> (s (Vi e 1-1-D)utt) 2 - (o e 1)
n=0 _

Da die rechte Seite endlich ist, gilt

> ( e T¢5€> s > (Wf,e, (\/P? +1- 1) wﬁf)
n=0 n=0

1 /
—l—,Tr(\/p?—i-l—l—ry)
Y r)_

Da die Eigenwerte negativ sind, gilt weiter

<1/’£I,éa <\/P§ +1- 1> Tpf{{e> <7y <T/nga 11/17?,@)

fiir alle n < N. Setzt man dies in die obige Gleichung ein und erinnert sich daran, dass
v >, folgt

N 1 ’y/
> (ot b)) < 00— (e -1 7)

n=0
Die Behauptung folgt dann im Grenzwert N — oo.

Im Folgenden leiten wir die Behauptungen und aus den abstrakten Sétzen des
vorigen Abschnitts her. Der Rest dieses Abschnitts befasst sich daher mit der Verifikation der
Annahmen dieser Sétze.

5.3.3 Beweis von Behauptung

Wir nehmen folgendes Resultat aus Kapitel |7 vorweg. Es besagt, dass es ein s > 1/2 gibt
(welches von der festen Kopplungskonstanten v < 2/7 abhéingt), sodass die durch |p|® und
(|p| — y\az|_1)5 erzeugten Normen dquivalent zueinander sind. Wir erinnern daran, dass o, €

[0, 1] nach (5.2)) definiert wurde.
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Lemma 5.3.6 (Satz [7.1.1). Seien v € (0,2/7] und s € (0,1]. Dann gibt es ein As, < 00,
sodass

2s
v s .
(W-2) s a0z,

Falls auflerdem s < 3/2 — o ist, dann gibt es ein as~ > 0, sodass

2s
(rp\—v) > analpP®  in LX(RY).

Bemerkung 5.3.7. Tatséchlich kann die erste Ungleichung fiir jedes v < 2/m und die zweite
Ungleichung fiir jedes v < 1/2 direkt hergeleitet werden. In diesen Féllen gelten die Unglei-
chungen des Lemmas sogar fiir s = 1 und implizieren wegen Operatormonotonie positiver
Waurzeln die Ungleichungen fiir s < 1. Wegen der Hardy-Ungleichung sind

'(|p| - ”) f‘ < Mol 1+ [l A1] < 1+ 24) 1ol 7]

]

und

] (rp\ - ,Z‘) f\ > plf ] = el £ = (L = 29) [l £ -

Der Punkt von Lemma ist, dass beliebige Kopplungskonstanten v < 2/m behandelt
werden konnen, wenn man die Potenz s = 1 (was ,, Operator-Ungleichungen* entspricht)
verkleinert, aber immer noch iiber 1/2 behélt (was , Form-Ungleichungen“ entspricht).

Aus Lemma folgern wir

Korollar 5.3.8. Seiy € (0,2/n]. Falls 0 < s < min{3/2 — 0,1} und M > — infspec C¥,
dann sind

(CHE+M)"(Co+M)*  und  (CH+M) (Co+M)™®

gleichmdfig in £ beschrdnkt.

Beweis. Da 0 > y/p?+1—1—p, > —1 ist, folgt aus dem Satz von Kato-Rellich, dass
(CH + M)_1 (pe—vr~t+ M) und (CHf + M) (pg —yr~' + M)f1 beschrinkt sind. Wegen
Operatormonotonie von z — x° und der Annahme s < 1 sind damit auch die Operatoren
(CZH + M) o (pg —yr 4+ ]\4)S und (Cf + M)S (pg —qr~t ¢ M) ~% beschrinkt. Es geniigt
daher zu zeigen, dass (py —vr~'+ M) ™" (pe+ M)* und (pe —yr~' + M)’ (pe + M)~° be-
schrankt sind. Mit Lemma und der Annahme an s folgt
. B _ 0% 2s
(pe + M)QS < 2(25 1)+ (p?s + MQS) < 2(25 1+ <a5,»1y <p£ - ;) —+ M25> )

Der Operator auf der rechten Seite ist, modulo einer Konstanten, durch (p, — yr~—! + M)?®

beschriankt. Dies zeigt, dass (pg —yr 4+ M ) "% (pg + M)® beschrinkt ist. Der Beweis der
Beschranktheit von (pg —yr 4 M )S (pe + M)™? verlduft analog. d

Die folgenden Aussagen zeigen, dass unser Raum der Test-Funktionen ngog (siehe (5.20))
in natiirlicher Weise in diesem Problem auftaucht.
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Lemma 5.3.9. Sei M > 0 eine feste Konstante und s € (1/2,1]. Dann gilt fir alle r > 0
und v >1/2

> krJ, (kr)? [ Py 2s—1
dk < A - 1 r<v +1 r>v .
/0 (VIR +1—1+M)z = M () tosa 1oz

Wir verschieben diese Rechnung in Anhang Der Parameter R > 1/2 in der Defini-
tion der Klasse ICS)(; ist gerade v, welches die Rolle von ¢ + 1/2 einnimmt. Wir zeigen nun,

dass Funktionen in /Cgog relative Spurklassen- und Form-Ungleichungen beziiglich (Cy + M)?*

erfiillen. Dazu erinnern wir zunéchst an die Fourier-Bessel- (oder Hankel-) Transformation ®,,
welche durch

(Bof) (k) :==1i* / Oo(kr)l/QJgH so(kr)f(r)dr fiir alle £ € Ny
0

definiert ist (siehe beispielsweise Messiah [126, Formel (B.105)]). Es ist bekannt, dass fiir jedes
¢ € Ny der Operator ®, auf L?(R,) unitér ist und p% diagonalisiert. Das bedeutet, dass fiir
jedes f aus dem Definitionsbereich des Operators gilt

(®epp f) (k) = K*(@ef) (k).
Im Folgenden bezeichnet || - ||2 die Hilbert—Schmidt-Norm.

Behauptung 5.3.10. Seien M >0, s € (1/2,1], 6 € [0,2s — 1], £ € Ny und 0 < W € ICgO(S).
Dann gilt

[W2(Co+ M)™*|13 < As (£ +1/2)7°|W| (5.22)

(0)
K:s,(s
und insbesondere

W < Agm(C+1/2)°[W | o) (Co+ M) . (5.23)

(0)
’Cs,é

Per Dualitédt kann aus dieser Behauptung eine Sobolew-Ungleichung gewonnen werden,
siche Anhang

Beweis. Mit der Fourier—Bessel-Transformation und Lemma [5.3.9] erh&lt man

o0 o0 k’T’Jg 1/2(kT)2
W1/26'15+M52:/ err/ dk -
H ( ) HQ 0 () 0 (\/m—l—i-M)Qs
< Ag (04 1/2)—5||W||,C(Og :
Die Form-Ungleichung folgt unmittelbar aus der Spur-Ungleichung. O

Kombiniert man Korollar und Behauptung [5.3.10] sicht man, dass man die vori-
gen Spur- und Form-Ungleichungen auch beziiglich des relativistischen Wasserstoff-Operators
formulieren kann.
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Behauptung 5.3.11. Seien M > —infspecCH, v € (0,2/7), 1/2 < s < min{3/2 — oy, 1},
0€[0,2s—1], £ e Ng und 0 < W € ICLEO&). Dann gilt

IWY2(C + M) |3 < Ay + 1/2)_5||W||,C§o§ : (5.24)

Insbesondere gilt

W < Ay s (E+1/2)° [W| o (CFF + M) (5.25)

(0)
ICS,5
Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung[5.5.3 Wir wenden Satz mit A =CH, B=U und s > 1/2 mit
s < min{3/2 — 04,1} an. Die Potenz 1/2 < s’ < s kann beliebig klein sein.

Wir verifizieren nun die Bedingungen von Satz Die Annahmen, die Cf betreffen,
folgen aus Lemma Insbesondere impliziert die Tatsache, dass Null kein Eigenwert von
Cf ist, dass die links- und rechtsseitigen Ableitungen bei A = 0 iibereinstimmen.

Die Bedingung, dass (Cf1 + M)~*U(CH + M)~ ein Spurklasse-Operator fiir ein M >
— inf spec Cf ist, folgt aus Behauptung mit U € ng?E).

Schliefilich folgt die Ungleichung U?* < a(CH + M )2 fiir 1 /2 < s’ < s aus der Annahme

U% ¢ ICS]’)(;, und ([5.25). Insbesondere ist U relativ Form-beschréinkt beziiglich C}7 mit beliebig
kleiner Form-Schranke. O

5.3.4 Beweis von Behauptung

Um Behauptung zu zeigen, bendtigen wir eine Verallgemeinerung des zweiten Teils von
Lemma die wir ebenfalls aus Kapitel [7| vorwegnehmen.

Lemma 5.3.12 (Satz[7.4.1). Sei 0 < s < 1. Fiir jedes v > 0 gibt es ein as . > 0, sodass,
wenn s < 3/2 — o, dann gilt fir alle 0 < U(x) < +'/|z|

2s
Y .
<m—mﬁiﬁ > agq |l in LA(RY).

/

Auferdem gibt es fiir jedes 0 < v < 2/m — v ein Wy

dann gilt fir alle 0 < U(z) < ~'/|z|

, >0, sodass, wenn s < 3/2 — 04y,

2s

Y .

(115 -0) zaq P @),
Wie im Beweis von Korollar folgern wir

Korollar 5.3.13. Seien v € (0,2/7), £ € Ny und 0 < U € v 'L>®(R,). Falls 0 < s <

min{3/2 — 0., 1} sowie M > —infspec C}! sind, gilt

lim sup H(Cf - AU + M)_s (Cf + M)SH < 00.
A—=0

Beweis. Der Beweis verlduft analog zu dem von Korollar Wir ersetzen als Erstes

(CH - XU+ M) ~% durch (p; —v/r — AU + M)~*, wenden dann Lemma [5.3.12 an und ver-

fahren mit dem Parameter M wie im Beweis von Korollar [5.3.8, Bei der Anwendung von
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Lemma unterscheiden wir zwischen A < 0 und A > 0. Im ersten Fall folgt die behaupte-
te Schranke sofort. Im zweiten Fall wihlen wir 7' > 0 so, dass s < 3/2 — 044. Dann konnen
wir fiir jedes 0 < A < +'/||rU||o die Ungleichung aus Lemma anwenden. Wir beto-
nen, dass die Konstante dieser Ungleichung nicht von A abhéngt. Dies zeigt die behauptete
Schranke. O

Beweis von Behauptung [5.5.4, Wir wenden Satz mit A=Cfl, B=U € r 'L, und
1/2 < s <min{3/2 — 0,,1} an.

Die Annahmen, die Cf betreffen, haben wir bereits im Beweis von Behauptung [5.3.3
nachgewiesen. Die Tatsache, dass U relativ Form-beschrédnkt beziiglich C’f ist, folgt aus der
Kato-Ungleichung.

Die Bedingung, dass der Operator (C{' + M) U (CH + M) ein Spurklasse-Operator
ist, folgt aus Behauptung und U € ICg?E) fir s € (1/2,1] und € € [0,2s — 1].

Die Bedingung, dass (CH + M)" (CH — AU + M)™° gleichméfig fiir A nahe Null be-
schrinkt ist, folgt aus den Korollaren [5.3.8] und [5.3.13] Dies schliefit den Beweis. O

5.4 Kontrolle grofler Drehimpulse

5.4.1 Neue Klasse von Funktionen und eine Majorante

Die Funktionen, fiir welche Satz gelten, sind fiir s > 1/2 und ¢ € [0, 2s — 1] in der Klasse

ICS,6 = {W € L110c<R+> : HWHICS,é < OO}

/oR ()" werlar+ /:2 (7)) wole o

R / S W) dr}

R2

Wik, = sup R
R>1/2

enthalten.
Wir geben wieder einfache Beispiele von Funktionen, die zu K 5 gehdren.

Beispiel 5.4.1. Beispiele von Funktionen W € K, 5 sind

o 7 1L>([0, p]) fiir ein p > 0 mit s > 1/2 und & € [0,2s — 1]. Die Norm ist durch eine
Konstante mal

max{pé/Q t pf/2H+2s-1/2(q +log p), p° +p(5/2+2571/27p5} W oo
beschrénkt.
o LYRy,r0dr) N LY (R, r*~ 140 dr) fiir jedes s > 1/2 mit § € [0,2s — 1].
Die erste Behauptung folgt wieder aus einer direkten Rechnung. Fiir die zweite Behaup-

tung schéitzen wir den zweiten Summanden in der Definition ([5.26]) durch den dritten Sum-
manden ab, verwenden d < 2s — 1 und r < R im ersten Summanden und R < r im letzten
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Summanden. Wir erhalten schlie3lich

Ré/OR (B (%) e >\dr+/ RE=E\11 (1)) dr

R 0
g/ |W(r)|r5dr+/ W (r) s~ 140 dr
0 R

< IWle e, rsary + IW L, ras—1+6 ar) -
Funktionen in Ky 5 erfiillen ebenfalls einige niitzliche Inklusionseigenschaften.

Lemma 5.4.2. Seien 1/2 < s’ < s und 6 € [0,2s — 1]. Dann erfillt die Klasse Kss5 die
folgenden Inklusionseigenschaften.

1. Ist W € Ky 5 mit 6 € [0,2s" — 1] kompakt getragen mit supp (W) = [0, p] fiir ein p > 0,
dann ist W € Ky mit [|[Wlli, , < (1+ p*C=)|[W ||k, ,.

2. Es gilt Ks5 C /Ci?(g.

Wie fiir die IC( ) Klasse bedeutet das, dass Funktionen in K5 glatter am Ursprung sein

miissen, je klemer 3 ist. Dariiberhinaus miissen Funktionen in Ky s schneller im Unendlichen
(0)
S

abfallen als solche in C_ 5.

Beweis. Die erste Eigenschaft folgt aus den Beobachtungen

(r/R* "pepy < (r/R)* Mgy,
(T/R)4(S_S,)1{RSTSPSR2} < p2(s—5/)’
R4(s—s’)1{R2Sp} < p2(s—s’)

und der Definition (5.26]).

Fiir die zweite Eigenschaft verwendet man (R/r)45—11{R§,,§R2} < 1{r<r<pg2y und R74s <
2451 quf dem Gebiet r > R? > 1/4. O

Die folgende entscheidende Behauptung wird es uns erlauben, das Weierstrafische Ma-

jorantenkriterium anzuwenden, um Satz mehr oder weniger direkt aus Satz zZu
folgern.

Behauptung 5.4.3. Seien 0 < v < 2/7, 0 < V(r) < ~/r, A € R, 1/2 < ¢ < s < 3/4,
€ [0,2s — 1], 6 € [0,2s — 1] und &' € [4(s — §'),28" — 1]. Sei weiterhin U = Uy + Us eine
reellwertige Funktion auf (0,00) mit Uy € r*L%, (Ry) und Us < 0 oder Us > 0, sodass

comp

Us € Ks e und |Us|* € Ky 5 N Ky 5. Sei schlieflich

s s s 1/(2s)
ai= (Asa, (1= 2/m) 202 i, s + A2 NOR i, )

wobei A ¢ die universelle Konstante C' aus Lemma a~ die Konstante aus Behauptung
und Asq, die Konstante aus (5.29) sind. Falls A

. I—7 —1}
Al < min , QL 5.27
< mind (527)
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erfiillt, gibt es eine Konstante A, < oo und ein L, € N, sodass fiir alle N > ¢ > L, die
Abschitzung

Te(Cp =V = NU)— = Te(Cp — V)= < Ay AU |lic, (0 + 1/2)457¢
gilt.

Wir machen einige Bemerkungen zu dieser Aussage.
Bemerkungen 5.4.4.

1. Diese Aussage ist ausschlaggebend, um Satz [5.1.3] zu zeigen, da sie uns erlaubt die
Summation iiber ¢ mit dem Grenzwert A — 0 zu vertauschen, um schliefSlich die Scott-
Vermutung fiir festes ¢ (Satz anzuwenden. Wir bemerken dabei, dass die Schranke
linear in A ist und uns daher erlaubt abzuleiten.

In der konkreten Situation spéter wird V' entweder «/r oder ein abgeschirmtes Thomas—
Fermi-Potential sein. Damit ||Uy||x,. endlich ist, muss ¢ < 2s — 1 sein, siche Beispiel
5.4.1] Um also die Abschéitzung
A2+ D) [Te(Cr =V = M) = Tr(Ce — V)] =0 ((£+1/2)71)
zu erhalten, miissen wir 2s — 1 > ¢ > 2 — 4s verlangen, das heifit s > 1/2 und ¢ > 0.
2. Die Bedingungen |Us|** € Kss C ICS))(;, und Uy € Ky C ICS,Q (wegen der zweiten
Inklusionseigenschaft aus Lemma [5.4.2)) zeigen, dass Behauptung fiir solche Us

anwendbar ist. Um im nullten Drehimpulskanal fiir v > 1/2 ableiten zu diirfen brauchen
wir spéter die zusétzliche Einschréinkung s < 3/2 — o,,.

3. Die Spurklasse-Bedingung deutet nur an, wie singuldr U beim Ursprung sein darf. Sie
sagt nichts dariiber aus, wie langsam die Funktion im Unendlichen abfallt. Wir sind
auf dieses Phénomen bereits bei festem Drehimpuls gestoen. Wir konnten Satz
nicht verwenden, um beispielsweise die Endlichkeit der potentiellen Energie in jedem
festen Kanal zu beweisen, da wir keine Kontrolle iiber den langreichweitigen Teil des
Coulomb-Potentials hatten.

4. Die Bedingung, dass U, eine definite Funktion ist, ist wahrscheinlich technischer Natur
und kommt daher, dass wir Lemma [5.2.4] anwenden wollen, wobei B = AUs und A =
(Cy+a(f+1/2)~2). In der konkreten Anwendung spéter, sprich im Beweis von Satz
ist dies jedoch kein groBer Verlust, da der Beweis des Satzes ohnehin (wegen Linearitét)
auf den Fall, fiir welchen U nicht-negativ und entweder U; oder U, ist, zuriickgefiihrt
wird, siehe auch Unterabschnitt

5.4.2 Beweis von Behauptung
Die folgenden drei Aussagen motivieren die Definition der Klasse KCg 5.

Lemma 5.4.5. Seien a > 0 und s € (1/2,3/4]. Dann gilt fir jedes r > 0 und v > 1/2 die
Abschitzung

/°° dk krJ, (kr)?
0 (VE2+1—1+av—2)2s
S AS a

| [(7")2811{’“9“r (5)" tpmrny + 0 sy |

1% 1%
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Der Beweis dieser Abschiatzung kann ebenfalls in Anhang nachgeschlagen werden.

Der Parameter R > 1/2 in der Definition von K5 ist gerade v, was wiederum die Rolle
von £+ 1/2 einnimmt. Wir zeigen nun, dass Funktionen in der K 5-Klasse relative Spur- und
Form-Ungleichungen beziiglich (Cy + a(¢ + 1/2)72)* erfiillen.

Behauptung 5.4.6. Seien a >0, s € (1/2,3/4], 6 € [0,2s — 1], £ € Ng und 0 < W € K, 5.
Dann gilt

[W2(Cp + a(t+1/2)72) 0|3 < Asa(€+1/2)°|W ]|k, , (5.28)
und insbesondere
W < Ago(+1/2) 70 Wik, ,(Co + a(t +1/2)7%)%. (5.29)

Auch aus dieser Ungleichung kann per Dualitét eine Sobolew-Ungleichung gewonnen wer-
den, siehe wieder Anhang [D.3]

Beweis. Mit der Fourier-Bessel-Transformation und Lemma folgt wieder
IWY2(Ce+ a(€ +1/2)7%) 7|13

_ [~ > kr T2 (kr)?
a /0 ar W(T)/o " (Vk2+1—-14a(l+1/2)72)%

< A(0+1/2) 7 Wi, -

Die Form-Ungleichung ist eine unmittelbare Konsequenz aus der Spur-Ungleichung. O

Fir V < «/r und geeignete Potentiale U zeigen wir, dass infspec(Cy — V — \U) >
—a, (€ +1/2)72, falls || hinreichend klein ist. Dies rithrt im Wesentlichen vom Verhalten der
kinetischen Energie fiir kleine Impulse her und wird fiir den Beweis von Behauptung [5.4.3
wesentlich sein. Fiir A = 0 wurde dies bereits von Frank u. a. [70, Theorem 2.2] gezeigt.

Behauptung 5.4.7. Seien { e N, 0 <y <2/m, 0 < V(r) <~/r, A€ R, s € (1/2,3/4], § €
0,25 — 1] und U = Uy + Uy eine reellwertige Funktion auf (0,00), sodass Uy € r~ L33, (Ry)
und |U2|?® € Ks5. Dann gibt es eine Konstante a, > 0, sodass

Co—V =AU > —a,(L+1/2)72

fiir alle \ gilt, die

. 1—7 _9s s —1/(2s)
A <min L (g (0 2/m) 20, )}

erfiillen, wobei As . die Konstante aus (5.29) ist.

Beweis. Wir benutzen, dass, wenn ¢ > 1, dann ist p; — k/r > 0 fiir alle kK < 7/2 (siehe
beispielsweise [6, Lemma 2.2.3 und Theorem 2.2.4]). Insbesondere ist also C; — x/r fir alle
¢>1 und k < 7/2 von unten beschrénkt. Mit v + A||rU;||co < 1, dem Variationsprinzip und
den Argumenten des Beweises von [70, Theorem 2.2] gilt somit die Abschitzung

(2/m)Cp— (V + AUL) > —(2/7)a (£ + 1/2)72
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fir alle £ € N mit einem hinreichend grofien a, > 0. Andererseits haben wir wegen ([5.29) die
Schranke

As,a s - s —2)\2s
Us|* < WIIIU# i, 5 (€ +1/2)70(1 = 2/m)*(Cy + ay (€ +1/2)72)%.

Die Behauptung folgt dann aus der Operatormonotonie von Potenzen zwischen Null und
Fins. O

Damit kommen wir zum
Beweis von Behauptung[5.4.5 Mit dem Variationsprinzip haben wir
Sg\ = Te(Cp—V = AU)- —Tr(Cy—V)_ < )\Tr(d&,\U) ,

wobei dy » die orthogonale Projektion auf den negativen Spektralraum von C;, — V — AU
bezeichnet. Definiert man

A:=di\(Co—V =AU + ay)®

B = (C[ -V -XU + ae)fS(Ce + az)s
C .= (Cg + ag)fsU(Cg + ag)fs ,

so gilt
Sen < ATr ABCB*A*.
Wir wéhlen a
W12

fur ein hinreichend grofies a > a. (mit a, aus der unteren Schranke aus Behauptung [5.4.7)
und betonen, dass a moglicherweise von « abhéngt, aber unabhéngig von ¢ und A ist. Da dy »
auf den negativen Spektralraum von Cp, — V' — AU projiziert, folgt aus Behauptung die
Schranke || Al|? < a®$(£ + 1/2)7%5.
Wir widmen uns nun dem Operator B und zeigen ||B|| < A, 5. Dazu schreiben wir B =

B1 B, wobei

By :=(Cy—V =AU +ay) °(Cy =V = AUy + ag)®

By = (Cg -V -XU; + ag)fs(Ce + az)s .

Wir schétzen als Erstes ||Bz|| ab, indem wir
(Co+ap)* < A(Cp—V — NUp + ap)?

zeigen und dann die Operatormonotonie der Abbildung x +— 2z° mit s € (0, 1] verwenden. Mit
der Hardy-Ungleichung

2 [e’)
<f,Mf> _ /0 DTV 2 ar < (7.02)

r2 r2

und dem Satz von Plancherel, sprich

B 1
[(pe + a¢)(Co +ag) Y| < o +
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erhalten wir

(Ce—V — AUy + ag) f]]

> [1= 04 W Uile) (= + 5y + S+ 17272 | I+ anl.

Wéhlt man a > a hinreichend grof, sieht man, dass
1(Ce =V = AUL + ag) fI| = Ay[[(Ce + ag) f]] (5.30)
fiir alle £ > L., gilt, wobei L, durch die Ungleichung

1 N 1 N a/8
V2a 2L +1  (L,+1/2)2

definiert ist (wir erinnern an v+ |A|||rU1|loo < 1). Aus (5.30) und der Operatormonotonie von
x +— ® mit s € (0, 1] folgt dann

<1 (5.31)

(Co+ag)® < A(Cyp—V — AUy +ap)*

fur alle £ > L, und X € R, welche (5.27)) erfiillen. Wir schétzen nun || B:|| ab. Mit Lemma
(welches voraussetzt, dass AUz eine definite Funktion ist), erhalten wir

(Co =V = AUL + ag/2 + CLg/Q)QS <2(Cy =V = AUL + ag/2 — AUs + ag/2)25 ,
wenn wir die Ungleichung
INU[*(Co =V = NV +a1/2)7 || < Ay (/2 (5.32)
= A5 (a/2)" (0 +1/2)¢") |
fiir ein 1/2 < s’ < s zeigen kénnen. Mit Operatormonotonie (da s’ < s) und (5.29)) haben wir
|Ua** < Ao, (€4 1/2) 7 |||[U2*|| 7,57 (Ce + a0)*
< Ay 5 (L+1/2) |0 |55 (Co = V = AUL + )

Daher ist die linke Seite von (5.32)) durch
1/2 1\ s . e
A2 N JNT2I25 g 50+ 1/2) 7512

beschrénkt. Wegen der Einschrinkung an A und ¢’ > 4(s—s') ist die rechte Seite durch
den gewiinschten Ausdruck (£ + 1/2)%(*' %) beschriinkt. Dies zeigt und damit auch die
Schranke ||B|| < Ay, welche gleichméBig in A und £ ist.

Schliellich berechnen wir die Spurnorm von C. Mit der Cauchy—Schwarz-Ungleichung fiir
Spurideale [158, Theorem 2.8] und Behauptung ist ||C||1 nach oben durch

2
1€ < | IU12(Ce+ a0) ™| < AvallU k... (0 + 1/2) ¢

beschrénkt. Kombiniert man die Schranken fiir ||A||?, || B||? und ||C||1, erhilt man schlieflich
sex < Ay MUk, (€ +1/2)757,

was behauptet war. ]
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5.4.3 Beweis von Satz zur Existenz von pf

Die Strategie fiir den Beweis von Satz ist sehr &hnlich zu der von Behauptung [5.4.3
Da die Sitze des Abschnitts [5.2] insbesondere die Behauptungen und [5.3:4], bereits
die Endlichkeit der Dichten punktweise fast {iberall fiir alle £ < L, und ein gewisses, festes
L, = O(1) garantieren, miissen wir lediglich die grolen Drehimpulse kontrollieren.

Bevor wir zum Beweis von Satz kommen, beginnen wir mit einer Aufwirmiibung.
Wir zeigen, ohne die Maschinerie des Abschnitts [5.2] in Anspruch zu nehmen, direkt die
Endlichkeit von pf und p! punktweise fast iiberall.

Behauptung 5.4.8. Seien v € (0,2/7) und ¢ € Ng. Falls 1/2 < s < min{3/2 — 0,3/4},

e € (0,25 — 1], WO ¢ ICg?E) und W € K., dann gibt es Konstanten Ay und As~ > 0,
sodass

o
| A WO ar < A WOl wnd [ W (el de < AWl

Beweis. Es bezeichne dy die orthogonale Projektion auf den negativen Spektralraum von
Cy — 7y/r. Dann ist

/ P (r)W (r) dr = Trd,W = Tr ABCB* A*,
0

wobel nun

A= dg(Cg — 'y/r + ag)s
B = (Cp— /1 +ag)*(Cy+ ap)*
C:=(Co+a) *W(Cr+ap)™*°

sind, wobei a; = a,(¢ + 1/2)7? mit einem hinreichend grofen a, > 0, welches nicht von
¢ abhingt. Wegen [70, Theorem 2.2] gilt zunichst wieder die gewohnliche Schranke ||A| <
as~(0 +1/2)7%. Wie im Beweis von Behauptung ist |Cll1 < Asy(€+1/2)7%||W|k,..-
Die gleichméBige Beschréanktheit von || B|| in £ wurde fiir v < 2/7, hinreichend grofles a, und
alle £ > L., im Beweis von Behauptung [5.4.3| gezeigt (dort war es ||Bal|). Dabei erfiillte die
feste Zahl L., die Ungleichung . Fiir £ < L., spielt die GleichméBigkeit der Abschitzung
von ||B|| in ¢ keine Rolle, da wir es hier nur mit einer festen und endlichen Zahl von Drehim-
pulskanélen zu tun haben. In diesem Fall schétzen wir

| Bl < [|B1||| B2|||| Bs|
ab, wobei
By = (Co+ ag)’(pe + ag)™®

By = (pr+ae)’(pe —v/r +ar)™®

By := (pe —v/r + ae)*(Co—y/r + ag) "
Mit dem Satz von Plancherel ist || B < A; fiir alle £ € No. Mit Lemma, gilt fiir festes
v<2/m

2s
(e a0 < 23D ) <2270 () (e 2)" )
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falls 1/2 < s < min{3/2—0,, 1}. Hierbei ist a, 5 die Konstante aus Lemma|5.3.6| Der Operator
auf der rechten Seite ist klarerweise durch eine Konstante mal (py — /7 + a;)?® beschrinkt.
Somit ist auch || Ba|| < A 4 fiir alle £ € Ng. Um die Endlichkeit von || Bs|| zu zeigen, verwenden
wir, dass die Differenz y/p? + 1 — 1 — |p| beschrinkt ist. Daher gibt es ein A > 0, sodass

I(pe — /7 + ag)(Co —v/r +ag) || < 14 ||(pe — Co)(Co — /1 + ag) |
<A(C+1/2)% < AL

Verwendet man dann die Operatormonotonie der Abbildung x +— z° mit s € (0,1] und
kombiniert die Schranken fiir By, Bo und Bs, erhilt man schlieflich

Bl < Asy -
Kombiniert man nun die Schranken fiir A, B und C, erhélt man
I 20+ 1 —4s—¢
[ @W () do = S gy < AWZ (20 +1)(C+1/2) W ..
=0

Die rechte Seite ist summierbar, falls 2s — 1 > ¢ > 2 — 4s, sprich s > 1/2 und € > 0.
Das obige Argument fithrt auch auf den direkteren Beweis der Endlichkeit von pf . Mit

w0 ¢ Kg?g erhilt man
o0
| A WO ar = Traw® < (e 127 WO .

was aus der obigen Beweisfithrung mit den Operatoren
A:=do(Cyp —v/r+ M)*
= (Co—v/r+ M) (Co+ M)?
= (Co+ M) WO(Cy + M)~
folgt, wobei M > — infspec Cf eine Konstante der Ordnung O(1) ist. O

Mit dieser Vorbereitung kommen wir zum

Beweis von Satz[5.1.1. Wir setzen U = 4, (der radialen Delta-Funktion bei » € R) in den
obigen Uberlegungen und schreiben, wie zuvor,

pH (r) = Trdys, = Tr ABCB* A*
mit

A=dy(Cp —v/r + ag)’®
B = (Cp—v/r + ae)*(Cr + ar)®
= (Co+ag) *6,(Co+ap)™?,
ar = ay(f 4+ 1/2)7% und einem hinreichend grofen a, > 0, welches nicht von ¢ abhiingt.

Zunichst haben wir wieder die gewdhnliche Schranke ||A| < as~(¢ + 1/2)7% wegen [70,
Theorem 2.2]. Die Spur von C ist gerade (Cy + ag)~2*(r,7), da der Kern (Cy + ag)~2%(r,r’)
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wegen der Sobolew-Einbettung (mit 2s > d = 1) eine stetige Funktion in beiden Variablen
ist. Die Diagonale wurde bereits in Lemma durch

2s—1 4s—1
_9s r T
(Cetar) ™ (r,r) < Asa, (M) Lircerty + (“%) Liriar<ieriyy

1 4s5—1
+ (“2) Lir>(e+1/2)2)

abgeschitzt. Die Endlichkeit von || B|| wurde im Beweis von Behauptung gezeigt. Kom-
biniert man die Schranken fiir A, B und C, erhélt man

pH(r) = Trdys,

2s—1 4s—1
—4s r r
< Asq(0+1/2) <€+%> Li<eriy + (“é) Lot 1<r<@e+1)2)

1 4s—1
+ (6 + 2> 1{7‘>(€+1/2)2}] .

Insbesondere ist die mit 2/ + 1 multiplizierte Seite fiir s > 1/2 summierbar und man erhélt

1 o0
b (20 + 1)k (r) < A, (r274 4 11/2).
=0

5.5 Beweis der Konvergenzresultate

5.5.1 Beweis von Satz (fester Drehimpuls)

Wir behaupten als Erstes, dass es geniigt den Satz fiir nicht- negatlve Funktionen U, die
entweder in r_chomp(R+) oder in ICgE) mit U?* € IC(,J,, 1/2 < ¢ <'s <min{3/2 — 0,1},
e €1[0,2s — 1] und ¢’ € [0,2s" — 1] enthalten sind.

Tatséchlich sind (U1)4, (U1)—, (U2)+ und (Uz)— vier Funktionen mit den benétigten
Eigenschaften. Da die Behauptung von Satz linear in U ist, geniigt es, diese fiir jede
einzelne dieser vier Funktionen separat zu zeigen.

Wir nehmen daher von nun an an, dass U > 0 entweder in 7~ L35, (Ry) oder in Ing) mit

U% ¢ IC(,)(S, mit 1/2 < s’ < s < min{3/2— o0+, 1} enthalten ist. Wir definieren die orthogonale
PrOJektlon II, auf den ¢-ten Drehimpulskanal durch

l
I, := Z |Y€,m><Y€,m|

m=—/

sowie den geeignet gestorten Chandrasekhar-Operator

N N
Czr=Cz =AY AU(clx, )y, in [\ L*(R?).
v=1 v=1
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Hierbei wirkt die Projektion Il , als IIy, beziiglich dem v-ten Teilchen. Da U 25 ¢ ICS))(;/,

ist U2 < a(CH + M)? fir 1/2 < ' < s wegen (5.25)). Insbesondere ist U infinitesimal
Form-beschrénkt beziiglich Cf (siehe auch die Diskussion zwischen Satz und Lemma
, weshalb Uz ) im Sinne quadratischer Formen fiir alle A € R definiert werden kann. Ist
U ¢ r‘nggmp(R+), dann kann Cy , fiir alle A in einer Umgebung von Null (welche unabhéingig
von Z ist) mittels Katos Ungleichung definiert werden.

Wir erinnern daran, dass d ein Grundzustand des Vielteilchen-Operators C'z war und

bemerken die Gleichheit
260 + 1) / ¢ ppy.a(cir)U(r)dr = ¢ *Tr(d(Cz — Cz)). (5.33)
0

Wir schétzen im Folgenden die rechte Seite nach oben ab. Dazu definieren wir

Co(v) =V —c2A+c* = —v in L*(R?)

fiir selbstadjungierte Operatoren v in L?(R®), die Form-beschrinkt beziiglich |p| mit Form-
Schranke < ¢ sind. Wir erinnern daran, dass wir mit pEF den eindeutigen Minimierer des
Thomas-Fermi-Funktionals eines neutralen Atoms mit Grundzustandsenergie ETY¥(Z) be-
zeichnen (Lieb und Simon [I19, Theorem II.20]). Wir erinnern aufilerdem an den Radius
RLF(x) des Austauschlochs bei z € R3, der durch

1
pz" (W) dy =5
lz—y|<RIF (x)
definiert ist und setzen -
TF Pz (v)
X7 (x):= / dy .
Z ( ) |ZL‘ — y|

|lz—y|>R7" (x)

Schliefllich definieren wir fiir Spurklasse-Operatoren A die Spur im ¢-ten Drehimpulskanal
durch
TrpA := TrI1,AIl, .

Wir reduzieren nun das Vielteilchen-Problem auf ein Einteilchen-Problem und schétzen dazu
als Erstes TrdCz \ von unten durch Terme, die nur Einteilchen-Operatoren beinhalten, ab.

Lemma 5.5.1. Fiir alle A in einer Umgebung von Null und alle N> L < Z gilt

L—1
TrCzpd > =Y TryCo(Z]a| ™ + AU (c|x|)Tg, ) -
£=0

Z
=3 T Ca(Z]a] ™t + AU (elal)T, — XEF)- — D[]
(=L

Beweis. Die Korrelationsungleichung von Mancas u. a. [123] liefert zunéchst

7
S > S\ IF @) - DY
v=1

v<p oy —@u|
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Wenn dV) die Einteilchendichtematrix von d bezeichnet, folgt aus der Nicht-Negativitit und
der sphirischen Symmetrie von x 1Y (z)

L-1

TrCyzad > — Z Tr, d(l)Cc(Z]x\*l + /\c2U(c]:1;\)Hgo)
=0

= TredDCo(Z]a| ™ = X" (z) + AU (ela| )y, ) — D[p}"]
{=L

fiir jedes L < Z. Da der Absolutbetrag der Energie monoton féllt, wenn ¢ wichst (siehe auch
Behauptung , kann der letzte Ausdruck weiter nach unten abgeschitzt werden, indem
man dV) durch eine Einteilchendichtematrix ersetzt, die so definiert ist, dass alle Kanile
¢ < L vollstindig besetzt sind. Da es ohnehin nie mehr als Z besetzte Drehimpulskanéle
gibt, kann die zweite Summe sicherlich bei Z abgeschnitten werden. Die Anwendung des
Variationsprinzips zeigt schliefflich die behauptete Schranke. O

Als Néchstes erinnern wir an einige Resultate aus [69], welche das asymptotische Verhal-
ten der Grundzustandsenergie von Cyz betreffen. Frank u. a. zeigten in [69, Theorem 1 und
Theorem 2], dass die Spektralverschiebung zwischen den wasserstoffartigen Schrodinger- und
Chandrasekhar-Operatoren

2

el g) Gg)] e

|z 2 |z

fiir alle v < 2/m endlich ist. Insbesondere gilt fiir alle v < (2/7)r~! und ¢ € Ny

Trg{(\/zﬂi—l—l—l—v)_—(p;—v)} §a<€+;>2. (5.35)

Das heifit dass die mit dem Entartungsfaktor 2/ + 1 multiplizierte Spektralverschiebung in
jedem Drehimpulskanal immer noch summierbar ist.

Lemma 5.5.2. Es gilt
1
inf spec Cy = E™(Z) + <4 - 5(7)) VARNOIVAULDD (5.36)

Wenn dariberhinaus L = [Z'/°] ist, gilt auferdem

L—1 Z
=Y TrCe(Zla| ) =D TrCe(Zlz| ™t = xZ5)- — Dlpz"]
=0 (=L
> E™(Z) + (i — 3(7)) Z% — konst Z17/%4 (5.37)

Beweis. Die erste Behauptung ist [69, Theorem 1]. Die Zweite folgt aus der Kombination der
Ersten, der nicht-relativistischen Scott-Korrektur (siehe auch [70, Proposition 4.1]),
sowie . Wie Frank u. a. spéter in [70] bemerkten, ist es unabdingbar, die Summe iiber ¢
auch im nicht-relativistischen Fall (bei Z) abzuschneiden. Dies liegt daran, dass das mittlere
Feld Z/|z| — x&F (x) nur wie Z/|z| im Unendlichen abfiillt, weshalb die Summe der negativen
Figenwerte iiber alle Kanile divergiert. O
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Mit diesen Vorbereitungen beginnen wir mit dem Hauptteil des Beweises von Satz [5.1.2]
Aus (5.36) und (5.37) folgt fiirr L = [Z'/9] die Ungleichung

1
Tr Czd = infspecCy = E™(Z) + <4 — 8(7)) Z% + konst Z47/%

L-1 Z
< = 3 TrCulZlal ) = Y TreColZla| ™ = x3F)- - DI
{=0 (=L

+ konst Z47/24

Kombiniert man dies mit der Schranke aus Lemma erhilt man

L—1
TI‘(CZ — CZ)\)d < Z (TI"ECC(Z|$|71 + )\C2U(C‘$|)H40)_ — TI“gCC(Z|:E|71)_)
/=0

Z
+ ) (TreCel(Zz ™ + AU(clz )Ty, — x5F)-
(=L
—TrCo(Z)a| ™" = x35)-)

-+ konst Z47/24

Offensichtlich verschwindet die Differenz der Spuren nur dann nicht, wenn ¢ = ¢y. Fiir hin-
reichend grofles Z wird irgendwann L = [Z1/] > {,. Fiir solche Z vereinfacht sich daher der
letzte Ausdruck zu

Tr(Cy — Czx)d < TryyCo( Z|z| ™' + AU (clz])) - — Trg, Ce(Z|x| 1) -
+ konst Z47/%4
= ¢ (Trgy, Cr(y|z] " + AU (J2]))— = Treo Cr(v]2] 1) -
+konst Z_1/24>

= 02(260 +1) <Tr (Cg — /\U), — Tr (Céif), + konst Z71/24> .

Hierbei haben wir verwendet, dass die Operatoren Cg und Cg —AU nicht von m € {—{y, —lo+
1,...,00—1, 4y} abhéngen, weshalb die Spur Try, den Entartungsfaktor 2{y+ 1 gibt. Setzt man
diese Schranke in ([5.33)) ein und ldsst Z — oo gehen, erhélt man

limsup)\/ ¢ pgo.alc”tr)U(r)dr < Tr (Cg -~ AU)_—Tr (Cg)_ .
Z—00 0

Daraus folgt

lim sup/ ¢ pgo.ale”tr)U(r)dr < A1 (Tr (C’g ~\U)_ —Tr (Cg)_)
0

Z—00

fiir A > 0, beziehungsweise

Z—00

lim inf /OO ¢ ppg.alc U (r)dr > 271 (Tr (Cg —\U)_—Tr (Cg)_)
0
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fir A < 0. Jetzt konnen wir A — 0 gehen lassen. Gemé&fl der Behauptungen bezie-
hungsweise konvergieren die rechten Seiten der letzten beiden Ungleichungen gegen
0 pg(T)U(T’) dr. Dies zeigt, dass [~ ¢ ?pgy.a(c™1r)U(r) dr einen Grenzwert fiir Z — oo hat
und dieser gerade durch den behaupteten Ausdruck gegeben ist. Die schliefit den Beweis des

Satzes.

5.5.2 Beweis von Satz (alle Drehimpulse)

Wir wissen bereits, dass die starke Scott-Vermutung in jedem festen Drehimpulskanal — also
fur alle Kanéle ¢ < L, fiir ein beliebiges, festes L, = O(1) — und gewisse Test-Funktionen
wahr ist. Die Summierung iiber £ = 0, ..., L, stellt daher kein Problem dar. Um die Vermutung
allerdings fiir die gesamte Dichte zu beweisen — das heif3t wir summieren iiber alle ¢ € Ny —
miissen wir wissen, ob man die Summierung tiber ¢ (fiir £ > L) mit den Grenzwerten A — 0
und Z — oo vertauschen kann. An dieser Stelle kommt die Majorante aus Behauptung [5.4.3
zum Einsatz. Wir erinnern daran, dass U als sphérisch symmetrisch vorausgesetzt war, wes-
halb wir den gestorten Operator wieder in Drehimpulskaniile zerlegen kénnen. Wir erinnern
und definieren dann fiir L' € N die Operatoren

Z 1
CZ:Z<\/—C2AV+C4—02— )+ Z TTEE—
=1 || 1<v<u<N |2y — 2]
N L’ N
L
Cyhi=Cz =AY _ AU(ca)) Y Ty,  in A\ L*R?)
v=1 lo=L v=1

Mit denselben Argumenten wie im vorigen Unterabschnitt kénnen wir annehmen, dass U > 0
entweder in r~'L (Ry) oder in Ky mit U* € Ky5 N Ky 5 enthalten und sphérisch
symmetrisch ist. Wir erinnern daran, dass die Parameter die Schranken 1/2 < s < s <
min{3/2 — 0,,3/4}, ' € [4(s — §'),2s' — 1], § € [0,2s — 1] und € € [0,2s — 1] erfiillen.
Dariiberhinaus erinnern wir an die Inklusionseigenschaft s 5 C /Cg?g aus Lemma/|5.4.2] welche
sicherstellt, dass Satz sprich, die starke Scott-Vermutung in jedem einzelnen Drehim-
pulskanal, fiir solche Test-Funktionen wahr ist. Wir wihlen L. aus Behauptung das

heiit L. erfiillt die Ungleichung (5.31)).
Wie in (5.33)) ist

L' 0
A @2+ 1) / ppalc U dr = 2 TH(d(C7 — CLY)). (5.38)
lo=L~ 0

Wir erinnern an die Reihenfolge limy ,glimyz_ o limy/_, o, der durchzufiihrenden Grenzwer-
te. Unser erstes Ziel besteht darin, den Grenzwert Z — oo mit dem Grenzwert L' — oo
zu vertauschen, um das Vielteilchen-Problem wieder auf ein effektives Einteilchen-Problem
zu reduzieren, welches nur noch wasserstoffartige Operatoren involviert. Im Anschlufl ver-
tauschen wir noch die Grenzwerte A — 0 und L' — oo, um Satz sprich die starke
Scott-Vermutung fiir festen Drehimpuls, anzuwenden. Die Vertauschung dieser Grenzwerte
ist gerechtfertigt, sobald wir das Weierstra3sche Majorantenkriterium mit der Majoranten
aus Behauptung [5.4.3| anwenden kénnen.
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Wir verwenden wie vorher Lemma [5.5.1] und [5.5.2] und erhalten die Abschiitzung

2 Tr(d(Cy — CFY))

L—1 L
6_22 Tr, C. z ’—i—)\CQU clx]) Z 11, —Tr,C, (, ‘>
=0 B

lo=L-

v 4 TF 2 c 4 TF
+c Z Tr, C. m—xz + AU (c|z]) Z Iy, | —TrCe H_XZ
(=L £0=L»y -

+ konst Z- 1

Reskaliert man noch = — x /¢, so sieht man, dass (5.38) nach oben durch
> (TreCr (el + AU (J2]) = Tre Cr(afal ™)) (€ = L)O(L — 1 = OO(L' ~ 0)
£=0

+ 37 (T € (2l ™ = A (@/e) + AU (a])) (5.39)
=0
—Tre Cr(ylz| ™! — ¢ x5 (z/c))-) 0(€ — L)O(Z — )0(L' — ¢)

+ konst Z~ U2

beschrénkt ist. Hier haben wir bereits antizipiert, dass die zweite Summe fiir I = [Z/°] immer
bei L und nicht bei L, = O(1) beginnt. Wegen Behauptung [5.4.3|sind beide Summanden fiir
hinreichend kleines ||, ein 1/2 < s < min{3/2 — o, 3/4} und e € [0,2s — 1] nach oben durch

AS77AHU||’CS,E (g + 1/2)_45_8 (540)

beschrankt. Nachdem man beide Seiten von durch X geteilt sowie den Entartungsfaktor
(2¢ 4+ 1) von Try nicht vergessen hat, siecht man, dass die Majorante gleichméfig in A und Z
summierbar in ¢ ist, wenn s und ¢ die Bedingungen aus dem Satz erfiillen. Fiir Z — oo
verschwindet daher die zweite Summe in , da sie durch L4762 beschrinkt ist. Damit
erhalten wir fiir A > 0

L )
limsup lim Z(%—i— 1)/ ¢ ppa(cr)U(r) dr
Z—y00 L’—)oogiL 0
-
L/
. — H H
ﬁﬁinoog ) 20+ 17 (Te (G = a0)_ =T (CF)_)
=Ly

beziehungsweise fiir A < 0

L 00
liminf 1i 20+1 -3 -
iminf lim Z( 0+ )/0 ¢ ppa(c  r)U(r)dr
=L,
L/
. -1 H H
> lim 3020+ DA (T (G - w0)_ - T (Cf) ) -
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Mit dem Weierstrafischen Majorantenkriterium und der mit (2¢+ 1)/\ multiplizierten Majo-
ranten aus kann man schliefllich die Grenzwerte lim inf\\ o, falls A > 0, beziehungsweise
limsupy », falls A < 0, mit der Summe iiber ¢ (genauer gesagt mit dem Limes L' — o0) ver-
tauschen. Gemé#B der Behauptungen [5.3.3 und [5.3.4] sprich der starken Scott-Vermutung fiir
festes ¢ (welche wegen der Inklusionseigenschaften aus Lemma anwendbar sind), kon-
vergieren die rechten Seiten der letzten beiden Abschéitzungen gegen

L/

Z(%—I—l)/oopf(r)U(r)dr fir A — 0.
=L, 0

Léasst man nun L’ — oo gehen, erhélt man (zusammen mit den ersten L, — 1 Summanden)

lim ¢ 3pg(c a)U(|z]) dz = lim Z(2E+1)/ ¢ ppalcr)U(r) dr
Z—00 JR3 Z_)mgzo 0

RS OOHr r)dr = H(2)U(|z]) da
_;(%“)/o pH (rU(r) d /R3p (@)U(|]) d ,

was den Beweis von Satz [5.1.3] schlief3t.
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Kapitel 6

Die starke Scott-Vermutung fiir
Furry-Atome

Das Ziel dieses Kapitels ist die Verallgemeinerung der starken Scott-Vermutung auf das
Furry-Modell. Der Beweis beruht wieder auf dem Argument der linearen Antwort und den
verallgemeinerten Feynman—Hellmann-Sétzen des letzten Kapitels. Die Schwierigkeit besteht
darin, die Bedingungen dieser Sétze nachzuweisen. Dazu zeigen wir, dass die Normen, die
durch Potenzen des Furry-Operators mit Kopplungen v < 1 erzeugt werden, zu denen, die
durch Potenzen des Chandrasekhar-Operators mit Kopplungen x, < 2/7 erzeugt werden,
dquivalent sind, wobei Kk, = /1 — y2 cot(m/1 — 72/2). Diese Aquivalenz erlaubt es, relative
Spur- und Form-Ungleichungen beziiglich des Furry-Operators auf entsprechende Ungleichun-
gen beziiglich des Chandrasekhar-Operators zuriickzufiihren, um damit die Bedingungen der
Feynman-Hellmann-Sétze zu verifizieren.

6.1 Einfiihrung, Definitionen und Resultate

Unser System besteht aus einem am Ursprung fixierten Kern mit Kernladung Z sowie N = Z
Elektronen, die durch den Dirac-Operator beschrieben werden. Der unprojizierte Einteilchen-
Operator, welcher ein Elektron im Feld einer Punktladung Z beschreibt, ist in atomaren
Einheiten durch

Z
DY = —ica -V + 6 - Tl in L?(R3 : C%) (6.1)

gegeben. Hierbei bezeichnet ¢ wieder die Lichtgeschwindigkeit. Der obere Index H hebt die
wasserstoffartige Natur dieses Operators hervor. Des Weiteren sind

o 0 o . 1@2 0
O‘_<a 0>’ 5‘( 0 —1@)’

und o = (01,09,03) die drei Pauli-Matrizen in der Standard-Darstellung. Unter Skalieren
x +— x/c ist DY unitir dquivalent zu

c? [—ia V45— Z"‘] =: C2D$, (6.2)
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wobei v := Z/c. Nenciu [135] zeigte, dass fo , zuerst auf S(R? : C*) definiert, eine ausgezeich-

nete selbstadjungierte Erweiterung besitzt, wenn v € (—1,1). Der Definitionsbereich dieser
Realisierung beinhaltet H'(R? : C*) und der Formbereich ist H'/2(R3 : C*). Insbesondere
sind potentielle und kinetische Energie getrennt voneinander endlich [149] [183] 106], sprich

(p, DI) = (o, (i V + B)Y) — (i, 7]z "e))

fiir p € HY/2(R? : C*) und ¢ € dom(Df ). Unter Missbrauch der Notation unterscheiden wir
im Folgenden nicht mehr zwischen dem urspriinglichen Operator und seiner Erweiterung.

Wie wir in der Einleitung bereits bemerkt haben, ist die Tatsache, dass ein Teilchen sowohl
positive, als auch negative Energie besitzen kann, fragwiirdig. In Kapitel | haben wir die Pro-
jektion des Vielteilchen-Operators auf den positiven Spektralraum des freien Dirac-Operators
untersucht, was auf den Brown—Ravenhall-Operator fithrte. Im vorigen Kapitel sahen wir,
dass sich das Vielteilchen-Problem auf der Lingenskala Z~! im Grenzwert Z — oo auf ein
effektives Einteilchen-Problem, welches lediglich wasserstoffartige Operatoren involviert, re-
duziert. Um die Scott-Vermutung auch fiir den Vielteilchen-Dirac-Operator zu untersuchen,
erscheint es daher sinnvoll, zunéichst die Projektion dieses Operators auf den positiven Spek-
tralraum des Coulomb-Dirac-Operators zu betrachten, was auf den Furry-Operator fiihrt.
Der zugrunde liegende Einteilchen-Hilbertraum ist in diesem Fall

97 = Az (LR : CY) = 1(g o) (DE)(LA(RP : CY)).

Entsprechend definiert man die Projektion A, fiir den reskalierten Operator Df und bezeich-
net den entsprechenden Hilbertraum mit §),. Mit Nencius obigem Resultat ist

Az(S(R? : CY) € HY?(R? : C?)

und dicht in $z.
Der Vielteilchen-Furry-Operator wird mit

N N

Dz:=» (D -+ > _ in /\ 9z (6.3)

=1 1<v<pu<N |2 — 2]

bezeichnet. Eine allgemeine Grundzustandsdichtematrix d von Dy in /\f/\;1 $Hz kann als

M
d=" walt) Wyl (6.4)

pn=1

geschrieben werden. Hierbei bilden die v, € /\]VV:1 $Hz eine Orthonormalbasis fiir den Grund-
zustands-Eigenraum und w,, sind nicht-negative Gewichte, die nyzl wy, = 1 erfiillen. Dies
spiegelt die Tatsache wider, dass ein fermionischer Grundzustand entartet sein kann. Wir
bezeichnen die dazugehdorige (iiber den Spin gemittelte) Einteilchendichte mit

M 4
pd(.%') = Nzwﬂ Z /RS(Nl) ]wu(ac,a;xg,ag; ...;xN,UN)’2dI‘2...de . (6.5)

p=1  002,..on=1
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Wegen der vorliegenden sphérischen Symmetrie ist es sinnvoll — analog zur Drehimpuls-
kanalzerlegung fiir sphiirisch symmetrische Operatoren in L2(R3 : C) — eine Partialwellen-
zerlegung durchzufiihren (siehe [6, Abschnitt 2.1.1] und Anhang [C]). Demnach besitzt jedes
f € L3(R3 : C*) die Darstellung

=2 2 ZZM% gem< > c@® @ @ﬁjzm, z€R?,

CeNo L<jmptim=—j + €eNo L <j=p-1 m=—j

wobei [ e . € L?(R4,dr) und <I>jE .. € L?(S* : C*) sphérische Dirac-Spinoren sind, die eine
Orthonormalbasis von L?(S? : (C4) bllden das heifit insbesondere (P

+
j£m7(1)" m >L2(SQ.C4) =
000051 0mme . Des Weiteren sind $);, := @fn__] $jem und Il g, und I, bezeichnen die
orthogonalen Projektionen auf §); ¢, beziehungsweise ;.. Fiir einen Spurklasse-Operator A

in L2(R? : C*) bezeichnet
J J
Tl"jj(A) = TI"(HjJAHjJ) = Z TI"(Hj}&mAHj’g’m) = Z TI‘jy&m(A

m=—j m=—j

die Spur im Kanal (j,¢) beziehungsweise (j,¢,m). Fiir die explizite Darstellung der (I)me
und weitere Details verweisen wir auf Anhang [Cl Fiir » € Ry definieren wir die radiale
Grundzustandsdichte p;¢q im Kanal (j,¢) (mit £ € No, 1/2 < j=04+1/2, 2/ = (x2,...,xzN) €
R33N und o’ = (o9,...,on) € {1,...,4}¥~1) durch

Nr?
27 +

p]',&d(r) = 1 Z /]RS(Nl) dx’ [TTL2(§2zc4)(Hj7g71d)](7“; 1‘/, O'/; T l‘,, 0‘/) .

Hierbei meint II;,; die Projektion auf $);, beziiglich des ersten Teilchens, das heifit 11,4
wirkt als II;, beziiglich des ersten Teilchens. Man kann diese Gleichheit auch expliziter
schreiben, mdem man ¢ (z;2',0') € CHN-1 als die Sammlung {¢(x, 032/, 0')}4_, fiir fes-
tes o’ € {1, <., 4}V =1 definiert. Dann ist

PJZd 2]—|—l Z ZZM”Z/S(N 1)

=—j £ p=1

2
e (@5 (@) dulrs a0 e

(6.6)

wobei das Skalarprodukt in C* nur beziiglich der ersten vier Komponenten von zﬁu ZU ver-
stehen ist. Wir bemerken an dieser Stelle, dass die Spektralprojektion A, mit der Parti-
alwellenzerlegung kommutiert, sprich 1L, ,,,A, = A,IL;,,. Dies ist beispielsweise aus der
Partialwellenzerlegung von Df (welcher die $); ¢, invariant lasst) ersichtlich, siche auch [6),
Abschnitte 2.1.1 und 2.1.2]. Weiter bezeichnet man die radiale Dichte im Drehimpulskanal ¢
fiir r € R4 mit

pea(r) = Z (27 + 1)pjealr) -

Unser Hauptresultat betrifft die Grundzustandsdichte auf Absténden der GroBenordnung
Z~! zum Kern. Handrek und Siedentop [S0] zeigten, dass Elektronen auf dieser Lingenskala
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zur Scott-Korrektur der Thomas—Fermi-Approximation der Grundzustandsenergie des Ope-
rators ( /\V 1Az)Dz( /\ 1 Az) beitragen. Wie in dieser Arbeit spielt auch hier der reskalierte
Coulomb—Dirac- Operator

Ay(DH = 1)A, = Ay(a - p+ B — % —1)A, in L3(R®:CY)

eine fundamentale Rolle. Wir betonen, dass die Eigenfunktionen und Eigenwerte von AW(Dg —
1)A, explizit bekannt sind (siehe beispielsweise das klassische Lehrbuch von Bethe [10] oder
Thaller [I72, Formel (8.265) und (8.266)]). Es bezeichne 1pnﬂm (mit n € Np, £ € Ng, 1/2 <
j=£+1/2und m € {—j,...,j}) die normierte Eigenfunktion des Operators

Hj,ﬁ,mAv(DH -

T — 1A in LP(R?: C) (6.7)

mit dazugehdrigem Eigenwert e, , j ¢, welcher unabhéngig von der Azimuthal-Quantenzahl m
ist. Die Eigenfunktionen sind von der Form

H.
wﬁ{j,z,m(w)zzw ®5y (/1)

= ]

wobei die Funktionen (1&7{{ MF(T) € L?(Ry) ebenfalls unabhingig von m sind.

Wir definieren dann die radiale wasserstoffartige Dichte im Kanal (j,¢) (mit ¢ € Np,
1/2<j=0+£1/2) als

Pe(r ZZI i) (6.8)

n=0 =+

Dementsprechend ist die wasserstoffartige Dichte im Kanal ¢ durch

pr(r) == > (25 + Dpf(r)

1 1
1<j=exl

und die gesamte wasserstoffartige Dichte durch

1 (o]
H/ N ._ H
pr(r) = W%Pe (r)

gegeben.

Unser erstes Resultat stellt sicher, dass die reskalierten Grundzustandsdichten py 4 und pgq
auf der Lingenskala Z~! konvergieren. Genauer gesagt zeigen wir, dass die wasserstoffartigen
Dichten fiir alle » € Ry endlich sind. Um dieses und die folgenden Hauptresultate prézise zu
formulieren, erinnern wir an den Raum L%on, der kompakt getragenen LP-Funktionen und
fithren die Abbildungen

[0,1] — [0,2/7]

'yr—>\If(fy):\/1—'y2cot(g 1—’y2>
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und

[0,1] — [0,2/7]
o ®(0) :=(1-0) tan%

ein. Beide Funktionen sind auf [0, 1] streng monoton steigend. Zudem erfiillen sie ¥(0) = 0,
lim,_; ¥(vy) = 2/7, ®(0) = 0 und lim,—; ®(0) = 2/7. Dariiberhinaus ist ¥ konvex und ¢
konkav. Daher gibt es genau ein x € [0,2/7], sodass ¥(y) = s, und genau ein o, € [0, 1],
sodass ®(o,) = k. Fiithrt man diese beiden Relationen zusammen, erkennt man, dass es ein
eindeutiges o, € [0, 1] gibt, sodass

v (®(0y)) = 7. (6.9)
Durch Vergleichen der linken und rechten Seite dieser Gleichung, welche als

(1 —-o0y)tan <207> = \/ﬁcot( \/1—7>

umgeschrieben werden kann, findet man mit dem Ansatz 1 — 2 = (1 — 0,,)?, dass
oy =1—+1—7~2 (6.10)

die eindeutige Losung von ist. Insbesondere gelten g = 0 und o1 = 1 und o, ist streng
monoton steigend auf [0, 1]. Mit diesen Vorbereitungen formulieren wir

Satz 6.1.1 (Existenz von pl! und p?). Seien 0 <y < 1, £ € Ny und 1/2 < s < min{3/2 —
0~,3/4}. Dann erfillen die wasserstoffartigen Dichten pf und pf

2s—1 4s—1
H 1—4s r r
pr(r) < Asy(£+1/2) <€~|— %> Lo<ersy + (5 + %) Lierl<r<er )2y

1 4s—1
+ <€ + 2) 1{rz(e+1/2>2}]

sowte
4 sz <A5’Y 2= 4s+r1/2)‘
T

Die Test-Funktionen, fiir welche die starke Scott-Vermutung wahr ist, gehtren zu den aus

)

Kapitel |5| bekannten Funktionenrdumen IC( und Ky 5. Wir erinnern an die Definitionen

0
K = (W € Liye(Ry) : Wil < o0}

Wi # G ol [T .
= sup — T 7“—1—/ r r]
K R>1/2 o ‘R R
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und

Kssi={W € Li,((Ry) : |[W|lk,, < oo}

[ G wonas [T () e

LR / S W) dr}

R2

Wik, ; := sup R’
R>1/2

fir s >1/2 und § € [0,2s — 1].

Wir erinnern daran, dass r~ 1L

comp (R+)-Funktionen sowohl in ICg?g, als auch in Ky ;5 fiir

s>1/2und § € [0,2s— 1] liegen. Des Weiteren sind L' (R, 7 dr) C /cgog und LY (R, 7% dr)N
LYRy, 74~ 149 dr) C Ky 5, wenn s > 1/2 und § € [0,2s — 1].
Wir erinnern an die grundlegenden Inklusionseigenschaften.

Lemma 6.1.2. Seien 1/2 < s’ < s und § € [0,2s — 1]. Dann erfiillen die Rdume ICS(? und
Kss die folgenden Inklusionseigenschaften.

1. Es gilt ICL(S,E{)& - ICSB, falls § € [0,25" —1].

2. Ist W € Ky 5 mit § € [0,28" — 1] kompakt getragen mit supp (W) = [0, p| fiir ein p > 0,
dann W € K5 mit Wik, , < 1+ p*=) Wik, -

3. Es gilt K55 C ICE(B.

Dies bedeutet, dass die Funktionen glatter am Ursprung sein miissen, je kleiner s ist.
Dariiberhinaus miissen Funktionen aus K, 5 schneller im Unendlichen abfallen als Funktionen
aus ICLE?&).

Wir sind nun in der Lage, die Hauptresultate dieses Kapitels, sprich die Konvergenz der
reskalierten Grundzustandsdichten, zu formulieren.

Satz 6.1.3 (Konvergenz in einem festen Drehimpulskanal). Seien 0 < v < 1, £y € Ny,
1/2 < ¢ < s <min{3/2 —o0,,1}, & € (0,28 — 1] und ¢ € [0,2s — 1]. Sei U = Uy + Uy mit
Uy er 1L® Us € ICg?E) und |Us|?® € IC(O)(;,. Dann gilt fir Z,c — oo mit fizierten Z/c =~

comp’ s’

o0

o0

lim ¢ 3pgg.alc”tr)U(r) dr —/ pg(T)U(T) dr.
Z—00 0 0

Satz 6.1.4 (Konvergenz in allen Drehimpulskanélen). Seien 0 < v < 1, 1/2 < & < s <

min{3/2 —o0,,3/4}, 0' € [4(s—5'),2¢' —1], 6 € [0,25s — 1] und € € [0,2s —1]. Sei U = U + Us

eine Funktion auf (0,00) mit Uy € r 1L, Uz € Ky und [Uz* € Ky 5 N Ky 5. Dann gilt

fiir Z,c — oo mit fizierten Z/c =~y

lim c_3pd(c_1:c)U(1:)dx:/ P (2)U (z) de .
Z—00 JR3 R3

Folgendes ist zu den Hauptergebnissen dieses Kapitels zu bemerken.
(1) Bereits im nicht-relativistischen Fall wurde von Iantchenko u. a. nach [95, Theorem
2] bemerkt, dass es nicht notwendig ist, eine Folge von Grundzustandsdichtematrizen zu
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betrachten. Stattdessen kénnte man auch eine Folge von Zusténden dz in /\5:1 7 verwenden,
die lediglich approximierende Grundzustéande sind, das heifit sie erfiillen

L Tr(Dydy) - Eq(2)

=0.
Z—00 VA

Hierbei bezeichnet Eq(Z) den tiefsten Punkt im Spektrum von Dy in /\f:1 9z, welcher kein

Eigenwert sein muss. Beispielsweise ist im nicht-relativistischen Fall bekannt, dass der tiefste
Punkt des Spektrums des Vielteilchen-Operators kein Eigenwert ist, wenn N > 27.

(2) Der Beweis der Konvergenzresultate erfolgt wieder mit dem Argument der linearen
Antwort und verlduft analog zum Beweis des letzten Kapitels. Wir zeigen zunéchst, dass die
Differenz der Erwartungswerte des geeignet gestorten und ungestorten Vielteilchen-Hamilton-
Operators im ungestorten Grundzustand fiir Z — oo gegen die Spektralverschiebung zwischen
den entsprechend gestorten und ungestorten wasserstoffartigen Einteilchen-Operatoren kon-
vergiert. Dann verwenden wir die verallgemeinerten Feynman—Hellmann-Sétze des letzten
Kapitels, um die Summe der negativen Figenwerte des gestorten Wasserstoff-Operators abzu-
leiten. Die Schwierigkeit in der Anwendung dieser Sétze besteht darin, die Voraussetzungen,
wie beispielsweise die relative Spurklasse-Bedingung, nachzuweisen. Im Kanal (7, £) muss man
beispielsweise zeigen, dass

(I, 6m Ay (U @ 1) AT 00) V2 (T g Ay (D = 1 4+ M)ALTL ) ~°

fiir ein M > |inf spec(HM’mAy(Df —1)A\IL; 0,,)| und s > 1/2 ein Hilbert-Schmidt-Operator
ist. Die Bedingung s > 1/2 ist, wie im Fall des Chandrasekhar-Operators, entscheidend,
da (1 +k)~! ¢ LY (R,,dr). Die ,Idee“ ist es, die relative Spurklasse-Bedingung beziiglich
des Furry-Operators auf die Spurklasse-Bedingung beziiglich des Chandrasekhar-Operators
zuriickfithren, da diese bereits im letzten Kapitel fiir Funktionen aus den Klassen Kg?(s) und Ky 5
nachgewiesen wurde. Die grofite technische Hiirde, die wir hier nehmen miissen, ist zu zeigen,
dass die Chandrasekhar- und Furry-Operatoren miteinander vergleichbar sind. In Korollar
des néchsten Kapitels zeigen wir, dass die von |p|® ® 1¢a und |ac - p — v/|x||® erzeugten
Normen fiir festes v < 1 in L?(R3 : C*) (und daher in jedem Kanal (3, £)) #quivalent zueinan-
der sind, wenn 1/2 < s < 3/2 — 0., wobei o € [0,1] in definiert wurde. Man erinnere
sich dazu auch an Lemma [5.3.6] des letzten Kapitels. Auf diesem Ergebnis aufbauend, zeigen
wir in Korollar M dass die Operatoren A ((|p| + M)* ® 1¢a)A, und (Av(Dg + M)A,)*
vergleichbar sind. Dies ist eines der wichtigsten Werkzeuge in diesem Kapitel.

(3) Es erscheint plausibel, die eben besprochene Maschinerie zu umgehen und die Konver-
genzresultate viel direkter zu zeigen. Wir erinnern daran, dass die Eigenwerte des Coulomb—
Dirac-Operators explizit bekannt sind (Sommerfeld [164], Gordon [75] und Darwin [30]). Wire
es moglich, eine Schranke wie

1L g Ay (U @ Lea) Ay g < a1 g Ay (DI = )AL 4 (6.13)

fiir geeignete (nicht-negative, sphirisch symmetrische) Funktionen U zu zeigen, so wiirde diese
Ungleichung die Schranke

eﬂ/’n?j?e70 — 677n’j’€?)\
A

S A eynje0

implizieren, wobei e, j¢x die negativen Eigenwerte von Hj7g7mA,y(D$ — AU — )AL g,
bezeichnen. Insbesondere ist die rechte Seite in n € Ny summierbar. Fiir festes ¢ € Ny
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und 1/2 < j = £+ 1/2 wiirde diese Ungleichung die Vertauschung des Grenzwerts A — 0
mit der Summe iiber n erlauben, um im Anschluff das gewohnliche Feynman—Hellmann-
Theorem anzuwenden. Diese Hoffnung wird durch die Arbeit von Iantchenko u. a. [95] im
nicht-relativistischen Fall gendhrt. Mit Hilfe ihres Lemmas 2 zeigten sie zunéchst punktweise
Konvergenz der Radialdichten, indem sie U(r) = §(r — a) fiir ein festes a > 0 ansetzten. Mit
der Poincaré-Ungleichung konnten sie | f(a)|? < 4am~!||f'||3 abschiitzen, was es ihnen erlaubte
eine zu dghnliche Schranke an die Eigenwerte des gestorten Operators zu formulieren.
Sie verfuhren dann wie eben geschildert, um die Summe der negativen Eigenwerte nach A ab-
zuleiten. Fiir weitere Details verweisen wir auf ihre Beweise von [05, Lemma 2 und Theorem
1].

(4) Wie im letzten Kapitel, zeigen wir, dass die wasserstoffartige Dichte p fiir alle r € R
endlich ist und erhalten ebenfalls die punktweise obere Schranke

pf(r) < Awr_3/2 fiir r — o0

Obwohl die Eigenfunktionen des Coulomb—Dirac-Operators explizit bekannt sind, ist es im-
mer noch ein offenes Problem, sowohl das exakte asymptotische Verhalten fiir r — oo zu
bestimmen, als auch die Monotonie von pf zu zeigen.

Notation

Wir werden oft Funktionen des Furry-Operators AWD,IY"' A, (oder seiner Projektion auf £;,,)
mit Funktionen von Operatoren S ® 1¢a in L%(R3? : C*) (oder ihrer Projektionen auf $;,,)
vergleichen. Hierbei ist S typischerweise ein nach unten beschrinkter, sphéirisch symmetri-
scher, skalarer Operator wie v/—A — ~/|x|, oder eine nicht-negative, sphirisch symmetrische,
skalarwertige Funktion, wie die Test-Funktion U. Um die Notation einfach zu halten, werden
wir allerdings den Zusatz 1¢s4 unterdriicken, falls dies unmittelbar aus dem Kontext hervor-
geht.

6.2 Anwendung der Feynman—Hellmann-Sitze im Furry-Bild
— fester Drehimpuls

Die beiden wichtigsten technischen Werkzeuge fiir die Durchfithrung des Arguments der li-
nearen Antwort wurden bereits im letzten Kapitel eingefiihrt, siehe die Satze und
Der Vollsténdigkeit halber wiederholen wir diese hier kurz. Coulombische Singularitéten wer-
den mit dem ersten, und Kg?g—Funktionen mit dem zweiten Satz behandelt. Im Folgenden
schreiben wir wieder A_ = —AX(_ ), das heifit der Negativteil ist positiv definiert.

Behauptung 6.2.1. Sei A ein selbstadjungierter Operator, sodass A_ in der Spurklasse
ist. Sei B > 0 ein beziiglich A relativ Form-beschrinkter Operator. Angenommen, es gibt
1/2 < s <1, sodass fiir eine hinreichend grofie Zahl M > 0 sowohl

(A4+ M) °B(A+ M)™® in der Spurklasse ist (6.14)
sowie

limsup ||(A+ M)*(A—=AB + M)®|| < o0 (6.15)
A—0
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gilt. Dann erfiillen die einseitigen Ableitungen von
A= S(A) :=Tr(A—\B)_
die Relationen
Tr B (—00,0)(A) = D7S(0) < DTS(0) = Tr Bx(—o0,0)(4) -
Insbesondere ist S bei A = 0 genau dann differenzierbar, wenn Blgera = 0.

Behauptung 6.2.2. Sei A ein selbstadjungierter Operator, sodass A_ in der Spurklasse ist
und B ein nicht-negativer Operator. Angenommen, es gibt Zahlen max{s’;1/2} < s < 1,
sodass fiir ein M > 0 die Bedingung (mit demselben s) erfillt ist und eine Konstante
a > 0, sodass

B* < a(A+ M)* (6.16)

gilt. Dann sind die Aussagen in Behauptung wahr.

Wir erinnern nochmals daran, dass die Bedingungen der Behauptungen garantieren, dass
die rechtsseitige Ableitung endlich ist. Des Weiteren stimmen die links- und rechtsseitigen
Ableitungen iiberein, wenn Null kein Eigenwert von A ist.

In der Anwendung wird A der Furry-Operator IL; ¢, A, (Df/{ — 1)A,II; ¢ 1 sein, wohinge-
gen B = II; ¢ Ay (U ® 1¢a)A, 1155, die Rolle der Test-Funktion iibernimmt. Wir erinnern
zunichst an einige grundlegende Eigenschaften von A7D$ A,

Lemma 6.2.3. Seien { € Ny, 1/2 < j = £+ 1/2 und v € (0,1). Dann ist AyDIA, von
unten beschrinkt und TrM(AV(Df — 1)A,)- < oo. Dariiberhinaus ist Null kein Figenwert

von AW(Df —1A,.

Beweis. Per Definition von A, ist A7D$ A, von unten beschrankt.
Die Endlichkeit von TrM(AW(DiI —1)A,)_ folgt beispielsweise aus der expliziten Formel
der Eigenwerte (Sommerfeld [164], Gordon [75] und Darwin [30])

1/2

72

2
(n+14+e-G+H+VGFIRPZ ) +72
Alternativ folgt sie, fiir £ > 1, aus dem Min-Max-Prinzip fiir Operatoren mit Spektralliicken

(Griesemer u. a. [70]), welches

Tij (A (DY

—1.

eymge= [ 1—

— 1)Ay)= < Trjo(Ao(DIF — 1)Ag) -

mit Ag := 1(g0) (e - p+ 3) impliziert sowie [70, Theorem 2.1], welches wiederum besagt, dass
die rechte Seite endlich ist. Man bemerkt, dass das Min-Max-Prinzip [76, Theorem 1] auf
Drehimpulskaniile eingeschréinkte Dirac-Operatoren mit radialen Potentialen, die Coulomb-
Singularitdten besitzen, anwendbar ist. Wegen ¢ > 1 und der Hardy-Ungleichung sind auch
Kopplungskonstanten v € (0, 1) behandelbar. Fiir mehr Details verweisen wir auf die Diskus-
sion nach [80, Formel (29)].

Die Tatsache, dass Null kein Eigenwert von AW(Dg — 1)A, ist, wird im Buch von Thal-
ler [I71l Corollary 4.22] oder Balinsky und Evans [6] Theorem 3.1.4] bewiesen. Obwohl die
Aussage dort nur fiir v < v/3/2 gemacht wird, setzt sie sich auf das Intervall [v/3/2,1) fort,
da der Beweis lediglich von der Giiltigkeit eines Virial-Satzes abhéngt. Dieser wurde jedoch
auch fiir Coulomb-Dirac-Operatoren von Kalf [100] fiir Kopplungen |v| < 1 gezeigt. O
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Die folgenden Behauptungen zeigen die Anwendbarkeit der Behauptungen und
Sie sind entscheidend, um die lineare Antwort zu berechnen und spielen daher eine zentrale
Rolle beim Beweis der Konvergenzresultate.

Behauptung 6.2.4. Seien v € (0,1), 1/2 < s’ < s <min{3/2 — 0,1}, ¢’ € [0,25' — 1] und
e € 0,25 1] Seien 0 < U € K\ mit U* € K%, € € No und 1/2 < j = ££1/2 und
m € {—j,....,7}. Dann ist die Abbildung

A= Trjgm(Ay (D = AU @ 1ea — 1)A)—
bei A = 0 differenzierbar mit Ableitung [;° pfg(r)U(r) dr.

Behauptung 6.2.5. Seien y € (0,1), 0<U € r 'L, ,(Ry), L€ Ng und 1/2 < j=(+1/2
und m € {—j,...,j}. Dann ist die Abbildung

A Trjl,m(A'y(Df — AU ®1ca —1)A,)—
bei X = 0 differenzierbar mit Ableitung [;° pfe(r)U(r) dr.

Wir bemerken Folgendes zur Endlichkeit von pfz beziehungsweise plf (r) = 3 1gjmpt] (25+
1)pfly(r).

Bemerkungen 6.2.6. Wie im letzten Kapitel, ist es Teil der Behauptungen, dass das Integral

o pE(r)U(r)dr fiir die Test-Funktionen aus den obigen Behauptungen endlich ist. Wir geben
spater wieder einen direkteren Beweis dieser Tatsache (Behauptung , der nicht auf der
Maschinerie der Behauptungen [6.2.2] und [6.2.1] beruht.

Des Weiteren kann wieder sehr direkt gezeigt werden, dass die potentielle Energie im
Kanal ¢ endlich ist, was aus einer expliziten Rechnung von Burke und Grant [I7] folgt. Sie
bestimmten den Erwartungswert des Coulomb-Potentials fiir die Eigenfunktionen 1/15{ jlm:
Darauf aufbauend zeigten Handrek und Siedentop in [80, Lemma 2], dass es fiir gegebenes
70 € (0,1) eine Konstante a-, gibt, sodass fiir allen € Ng, j >1/2, 0 =j+1/2, m = —j,...,j
und v € (0,7] die Ungleichung

2

H v H Gy
A L H. < __ Tl
</¢)n7]7€7m7 |1‘| ’I’L7_]7£,m> - (n + E + 1)2

gilt. Offensichtlich ist die rechte Seite in n € Ng, m = —j,...,j und 1/2 < j = ¢ +1/2
summierbar.

Wir zeigen die Behauptungen [6.2.4 und [6.2.5) mit Hilfe der Behauptungen [6.2.2] beziehungs-
weise [6.2.1] Der Rest dieses Abschnitts befasst sich daher mit der Verifikation der Annahmen
dieser Sétze. Dazu reduzieren wir das Problem zunéchst auf den Chandrasekhar-Operator
und verwenden dann die Resultate des letzten Kapitels.

In diesem und dem ni#chsten Abschnitt werden wir oft die Davis—Sherman-Ungleichung
[32, [33] (siehe auch [I8, Theorem 4.19]) verwenden. Sie besagt, dass fiir alle operatorkonvexen
Funktionen f und alle orthogonalen Projektionen P die Form-Ungleichung

Pf(PAP)P < Pf(A)P
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fir alle selbstadjungierten Operatoren A in einem Hilbertraum H gilt. Ist dariiberhinaus
f(0) =0, so vereinfacht sich die Ungleichung zu

f(PAP) < Pf(A)P. (6.17)
Tatséichlich gilt mit P =1 — P
f(PAP) = Pf(PAP)P + Pf(PAP)P,

da P mit PAP und daher jeder Funktion f (PAP) kommutiert. Andererseits gilt wegen des
Spektralsatzes Pf(T)P = Pf(PTP)P fiir jeden selbstadjungierten Operator T, der mit P
beziehungsweise P vertauscht. Daher erhilt man mit T'= PAP

Pf(PAP)P = Pf(PPAPP)P = Pf(0)P

und die rechte Seite verschwindet, wenn f(0) = 0. Typischerweise ist die Situation so, dass
A>0und f(z) = 2% mit s € [1/2,1].

6.2.1 Vergleich der Chandrasekhar- und Furry-Operatoren

Wir bezeichnen den masselosen Coulomb-Dirac-Operator mit

0._ o T2(R3 L 4
Dy = —ia-V — m in L*(R”: C*).
Wir nehmen folgendes Resultat (Korollar [7.1.8) aus Kapitel [7| vorweg. Es besagt, dass es
ein s > 1/2 gibt (welches von der festen Kopplungskonstanten v < 1 abhéngt), sodass die
durch [p|* und |DYJ* erzeugten Normen &quivalent sind. Wir erinnern an die Relation 0., =

1 — /1 —~2, siehe (6.10).

Lemma 6.2.7. Seien v € (0,1) und s € (0,1]. Dann gibt es eine Konstante A, < 00, sodass
D02 < Ay lp2 @ 1cs in LA(R® : CY)

und, falls zusdtzlich s < 3/2 — 0., dann gibt es eine Konstante as, > 0, sodass
IDY** > asqlp|** ® 1ea  in L*(R® : C*).

Bemerkung 6.2.8. Die erste Schranke ist eine unmittelbare Konsequenz aus der Hardy-Un-
gleichung und der Operatormonotonie von x +— z® mit 0 < s < 1. Die zweite Schranke folgt
aus Lemma [5.3.6] (siche auch Satz [7.1.1] des néchsten Kapitels) und einer Beobachtung von
Morozov und Miiller [I32]. Fiir s = 1 zeigen Sie in Lemma IV .4, dass (DO) nach unten durch
eine Konstante mal (|p| — K /|2|)? ® 1¢s abgeschitzt werden kann. Andererseits besagt ihr
Lemma IV.5, dass auf dem orthogonalen Komplement dieses Kanals (DO) tatséchlich durch
eine Konstante mal |p|? ® 1¢a abgeschiitzt werden kann. Dies kann Wlederum (wie zuvor mit
der Hardy-Ungleichung) weiter von unten durch (|p| — x/|z])?> ® Lca abgeschiitzt werden,
wobei k= ¥(y) (siehe die Diskussion vor (6.10)). Die zweite Abschiitzung in Lemma
wiirde daher sofort fiir alle £ > 1 und v < 1 beziehungsweise fiir £ = 0 und s, < 1/2 (wegen der
Hardy-Ungleichung), sprich v < v/3/2 aus der Operatormonotonie von x ~ z* mit 0 < s < 1
folgen. Der Punkt von Lemma [6.2.7]ist, dass beliebige Kopplungskonstanten v < 1 behandelt
werden konnen, wenn man die Potenz s = 1 (was ,,Operator-Ungleichungen® entspricht)
verkleinert, aber immer noch iiber 1/2 behilt (was ,,Form-Ungleichungen“ entspricht).
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Aus Lemma folgern wir folgendes wichtige

Korollar 6.2.9. Seien v € (0,1) und M > |inf spec(A7D5)| = 0. Falls 0 < s < min{3/2 —
oy,1}, dann gilt

s 2max{a;}, 1} 925
Ay (lpl + M) A, < A (A, (DI + M)A,)™ . (6.18)

Ist 0 < s <1, dann gilt zudem
(A (DH + M)A < g (Ip] + M) A,
Beweis. Wir beginnen mit der ersten Ungleichung und bemerken zuné&chst, dass
(DHY2 > (1 - 4%)| DO
nach dem Beweis von [132, Corollary 1.2] gilt. Da A, DA, = AW\DﬂAW und A, DI A, =
(AyDHA.)? (wegen des Spektralsatzes), erhilt man mit der Operatormonotonie von x — z*

mit s € (0,1]

Ay(IDIP* + M)Ay < (1= 9*) A (IDY* + M)A,
< 2U=2)+ (1 — A2)s (AW(D,IY{ T M)AW)ZS _

Es geniigt daher
Ay (Ipl + MY? A, < 227D max{1,az 1 }A, (DO + M)A, (6.19)
zu zeigen. Mit Lemma und der Annahme an s gilt
(|p’ + M)Zs < 2(2571)+ (|p’23 + MQS) < 2(2371)_;_ (a;’lﬂDg‘Qs +M2$) ]

Die rechte Seite ist durch 221+ max{1, agl (|D9/|25 + M?3) beschrinkt, was (6.19) zeigt.
Um die zweite Behauptung zu zeigen, verwenden wir wieder AWDf = A7|D§{ |, um

2s S— s s
(A (DI + M)A,) ™ < 27D+ A (A, |DHA)® + M) A,
_ 2(28_1)+A'y (‘D’i;{’% + M2s) A'y

zu folgern. Mit der Hardy-Ungleichung und (- p + 3)? = p? + 1 erhilt man

2

IDHP? = (DF)2 <2 (p? + 1+ =) < ay(Jp* +1) < anry(p| + M)
E

Daraus folgt mit Operatormonotonie positiver Wurzeln und der vorigen Schranke
2
(AW(D'IVLI + M)A,) "< am Ay (Ipl + M)* Ay,

was den Beweis schlief3t. O
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Wir fiithren die folgenden nicht-radialen Operatoren

pe =110 (V-2 @ Lca)[Lj g m
Coi=Tom (V-AFT—1) @ 1ea) g in LX(R®: CY)

sowie die entsprechenden radialen Operatoren

)y > 0(l+1)

Py = \/_dr2 T (6.20)
r ?  L(f+1) T2

c! ._\/—dﬂ+ﬂ+1—1 in LX(R, : C, dr) (6.21)

ein und bemerken, dass die Schranken aus Korollar in jedem einzelnen Raum $; ¢,
gelten. Wir erinnern daran, dass jedes Element f € $; ¢ ,, von der Form

flx) =) lal 7 (lal) @5, (e |])
+

ist, wobei f* € L?(Ry) und &%

J.m?

C?-Vektoren (}/Z,mfl/% Yo ma1/2:0, 0) beziehungsweise (0, 0, Yo tm—1/2; Y2j4,m+1/2) sind. So-

bis auf (j,¢, m)-abhéingige Normierungskonstanten, die

wohl D$ , als auch |p| ® 1¢s lassen die Rdume $); ¢, invariant, das heifit sie kommutieren mit
der Projektion IL;  ,,, denn fiir f € $; ., N HY?(R3:C*) und g € 10 m N HY2(R3 : CY)
sind

(f, (1] © 1ea)g) emscny = ((F, 08 07 2,0y + <f_apég)—eg_>L2(R+:(C))5jj/5f€’5mw

und (mit k50 = j(j + 1) — £(£ + 1) 4 1/4, siehe auch [6, Formel (2.1.43)])

+ 1-2 _d _ Rt +
(f, D g) r2ms.cay = << ; ) ; ( d R irl Ay > < ?7 >>L2(R+;C2)5jj'5£e'5mmf-

dr r

Diese Tatsache und der Spektralsatz zeigen, dass die Projektion von (6.18)) auf $); /., sprich
L0 Ay (o] + M)A TL g < @5 1L g (A (DY 4 M)AS) T g (6.22)
dquivalent ist zu

Ay (W e (19| + ML m)* Ay < (T g Ay (D5 + M)A T ) > (6.23)

6.2.2 Beweis von Behauptung [6.2.4

Wir erinnern an die Spur- und Form-Ungleichungen aus Behauptung [5.3.10] die fiir die Klasse
Kiog galten. In diesem Kapitel wurden sie beztiglich Potenzen von Cér) + M formuliert. Wegen

des Satzes von Plancherel kann man sie aber genauso gut durch Potenzen von py) + M aus-
driicken. Hier werden wir sie allerdings beziiglich des nicht-radialen Operators py formulieren.
Im Folgenden bezeichnen ||-||; und ||-||2 die Spur- beziehungsweise die Hilbert—Schmidt-Norm
im jeweiligen Hilbertraum, also entweder L?(R? : C*) oder L?(R, : C,dr).
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Behauptung 6.2.10. Seien M >0, s € (1/2,1], § € [0,2s — 1], £ € Ny, 1/2 < j=(+£1/2
und 0 < W € IC;O(?. Dann gilt

(Lm0 (W @ Lea)TL )2 (pe + ML ) |5 < Asnr(£+1/2)7 5HWH,C<0 (6.24)
und insbesondere
IL g0 (W @ 1ea) L g < Agar(€+1/2) 70| W o (pe + MTL; gm) . (6.25)

Beweis. Es geniigt (6.24]) zu zeigen, da die Form-Ungleichung unmittelbar aus der Spur-
Ungleichung folgt. Da IL; ;,, mit p, + MII;, kommutiert und $); ., invariant unter |p| ist,
gilt zunéchst

(pe + MILj 40) T 0 n WL g (D + ML g ) ~°
=115 0. (pe + ML g ) 1L 0 n WL 0 (D0 + ML g )15 0.
=1L 0.m(|p| + M) "°TL 0, WL g (|| + M) ™10 0,
= W em(lpl + M)W (|p| + M) *ILj gm -

Bezeichnet {(f,F, f, ) }nen eine Orthonormalbasis in L?(R, : C?), kann die linke Seite von
(6.24]) mit der Abkiirzung Ay := (pgr) + M)_SW(pgr) + M)~* durch

Trjem[((lp + M)78W(|P\ +M)7°) ® Lea)
= Z ( no pé ) M)fsW(pér) + M) ) emy)

s B8+ MY WS+ M) ) 2w,
< Trrom,.c2)((Ae+ Azj¢) ® 1¢2)
= 2| W2 + M)+ (W), + M)
abgeschéitzt werden. Kombiniert man dies mit Behauptung[5.3.10| des letzten Kapitels, sprich
W27 + M) 713 < Asar(E+1/2)7 [ Wl

und bemerkt, dass (£+1/2)(2j—¢+1/2)~! < 3fiir 1/2 < j = ¢41/2, folgt die Behauptung. [

Kombiniert man Korollar in jedem Kanal (j,¢,m) (sprich (6.23])) und Behauptung
6.2.10, erhédlt man eine Verallgemeinerung der Ungleichungen (6.24]) und (6.25)) beziiglich des
Furry-Operators.

Behauptung 6.2.11. Seien M > \infspec(Hj%mAva?Aij,g,m)], v e (0,1), 1/2 < s <
min{3/2 — 4,1}, 6 € (0,25 — 1], L€ Np, 1/2< j =L +1/2 und 0 < W € K°). Dann gilt

(XL 0.0 (W @ L)L ) 2 Ay (T g Ay (DE + M)ALTL ) =513

_ 6.26
< Ay om(C+1/2)7° W (6:20)

K%
und insbesondere
j0mAy (W @ 1) Ay T

. 6.27
< A (€4 1/2) 7 |W o) (LA (DS M)A T 0)° (6.27)
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Da AJIL; ¢ = 10 0 Ay, ist die linke Seite von (6.26)) dquivalent zu
(L Ay (W @ L) Ay TLj )2 (1L g Ay (DT 4 M)A ) 513 -
Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung[6.2.4, Wir wenden Behauptung mit 1/2 < s’ < s <min{3/2 —
oy, 1},

A =1L g mAy (DI = )AL, und

B = Hj,é,mAv(U & 1@4)A7Hj,g7m >0
an. Dazu verifizieren wir die Annahmen von Behauptung [6.2.2] Die Annahmen, die den un-
gestorten Operator IL; ¢, A (D,JYLI —1)A,I1 ¢, betreffen, folgen aus Lemma Insbesondere

stimmen die links- und rechtsseitigen Ableitungen bei A = 0 iiberein, da Null kein Eigenwert

von Aﬂ,(Df —1)A, ist.

Fiir M’ > 1 ist die Hilbert-Schmidt-Norm
(0, . A (U @ L) AT )2 (T g Ay (DI = 14 M) ALTT ) ™

wegen Behauptung 6.2.11{mit M := M’ — 1 > 0 endlich, da U € Kg?g).
Schliellich verifizieren wir

(I 0m Ay (U @ 1) AgTL )% < a(ILj g Ay (DE + M)A )% (6.28)

fir ein 1/2 < s’ < s. Man bemerkt, dass diese Form-Ungleichung wieder impliziert, dass
L 0 m Ay (U @ Lca) A\ IL 4 4, infinitesimal Form-beschrénkt beziiglich Hjj’mA,yDiIAij,g’m ist.
Um ([6.28) zu zeigen, verwenden wir die Davis—Sherman-Ungleichung (6.17) mit f(z) = x2¢
und erhalten

(Hjl,mAv(U ® 1C4)AVHJ,ﬁ,m)28 < Hj,&mA'y(U ® 1C4)25Avnj7€7m :

Die linke Seite von (6.28)) ist somit wegen (6.27) durch eine Konstante mal (IL; ¢, A (D +
M )AWHj,g,m)QS/ beschrinkt, da U%* € ’CS))&/‘ Dies schlieit den Beweis von Behauptung |6.2.4

6.2.3 Beweis von Behauptung
Die grofite Schwierigkeit in der Anwendung von Behauptung besteht darin ((6.15)), sprich

limsup || (Ay (DX + M)A,)” (Ay(DF =AU + M)A,) " || < o0 (6.29)
A—0

fiir 0 < U(z) < ||rU||co|®|™ und ein 1/2 < s < min{3/2 — 0,1} (in jedem Drehimpulskanal)
nachzuweisen. Wir zeigen zunichst, dass A,Y(Dg — AU + M)A, fiir hinreichend kleines ||
invertierbar ist.

Lemma 6.2.12. Seien 0 < v < 1, U € 7 'L®(R.), M > 0 und A\ € R so, dass |\ <
2/(mAy||rUl|sc) (wobei A die Konstante aus (6.18) mit s = 1/2 ist). Dann gilt

inf spec (AV(DE — AU + M)A,) >0. (6.30)
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Beweis. Aus Katos Ungleichung und Korollar mit s = 1/2 folgt
Ay (DF =AU + M)A, > A, (DF 4+ M)A, — N[[rU]| A fe 1A,
> Ay (D + M)A = ZlrU oA (] + M)A,
> (1= SUrUlloe Ay ) A (DY + M)A = (1= ZrUlsoAy A MA, >0,
was ((6.30) zeigt. O
Die Abschitzung ist dquivalent zu

limsup || (A, (DL + M)A,)° (A, (D = XU + M)A ol < aysullell

A—0

fiir eine Konstante a5 p7 > 0 und alle ¢ € §,. Setzt man v := (Ay(fo - AU + M)AW) e
£, ist dies dquivalent zur Form-Ungleichung

(Ay(DH + M)A < a2 5y (A(DF = XU + M)A, (6.31)
fiir alle A in einer offenen Umgebung von Null und einer von A unabhéngigen Konstanten

a~,s,p- Wir zeigen diese Ungleichung im folgenden

Lemma 6.2.13. Seien 0 < v < 1,0 < U(r) € r1L>®, 1/2 < s < min{3/2 — 05,1} und
M > |inf spec(A,DI)| = 0. Falls A € R

1 2 2 2
Al < min , ) < ) ,
A {(248‘1As,7)1/<28>\lrUHoo Ao 0" \ 7y T 0T

1
s 2
24-1/5(1 + M*Q)Ai,/7 <1 +4 (7 + i — ) )

1

TA1/2,5

erfillt, wobei A,~ die Konstante aus (6.18) ist, dann gibt es eine Konstante a sy > 0,
sodass

(A (DF 4+ M)AL)* < aygar (A (DF = AU + M)A,)™ .

Beweis. Wir haben bereits in gesehen, dass Ay(Df — AU + M)A, > 0, wenn X die
Bedingung des Lemmas erfiillt. Wir unterscheiden nun zwischen A < 0 und A > 0 und
beginnen mit dem Fall A > 0. Aus Operatorkonvexitiit von x — 22 mit s € [1/2,1] und der
Davis—Sherman-Ungleichung folgt

(A (DF + M)A)™ = (A,(DF = AU + M + \U)A,)*
< 2271 (AL (DH — AU + M)A,)™ + 2257122 (A, UA,)* (6.32)
< 2271 (A (DH — AU + M)A,)™ + 225 NBAUA, .
Da U(z) < ||rU||so|m|71, folgt aus der Hardy-Ungleichung

U? < A|rU|3(Ipl + M)
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Mit Operatormonotonie von x +— z® mit s € [0, 1] und Korollar erhilt man dann
2s s 2s 2s S 2s H 2s
AUP A, < EYrUI5A (Ip] + M)* Ay < 471U Ay (A(D5 + M)A,)™

wobei A, die Konstante aus (6.18) ist. Setzt man diese Abschétzung in (6.32)) ein, erhalt

man
(A (DI 4+ M)AL)™ < 22571 (1 — 2% LA [T |2A%) 71 (AL (D = AU + M)A,

was die Aussage fiir A > 0 zeigt.
Falls A < 0, definieren wir p:= —A > 0 und ¢ := \/ € (0,1). Wegen Operatorkonvexitét
ist

2s
(AW(D’I}:I + M)A,)
1 2s
= [(1 — )Ay (DX + pU + M)A, + €A, <D5 - TEuU + M> Av]

b (6.33)
<2271 =) (A(DI + pU + M)A,

1 2s
+ 225712 <AV <D$ - S U + M> A7> :

Hierbei haben wir verwendet, dass beide Operatoren wegen und der Bedingung an
A = —pu (die Kopplungskonstante der Stérung im zweiten Summanden ist O(, /) fiir klei-
ne ) nicht-negativ sind, weshalb wir die Operatorkonvexitéit verwenden durften. Der erste
Summand auf der rechten Seite ist bereits der gewiinschte Ausdruck. Im Folgenden schéitzen
wir den zweiten Summanden durch

2 F(u) - (A, (DX + M)A,

ab und zeigen, dass F'(u) gleichméfig in p beschrinkt ist. Die Behauptung folgt dann wie im
Fall A > 0, indem man diesen Term auf die linke Seite von ([6.33]) bringt und beide Seiten der
Ungleichung durch (1 —&%||F||) teilt (was erlaubt ist, wenn e klein genug ist). Zunichst ist

wegen A, DI = AﬂDf | und (6.17))
1—¢ 2s 1—¢ 2s
<A7 <D§f— . MU+M> An,> <A, (\ny - MU+M> A, .
Mit (a-p+8)2 =p?> +1, U(x) < ||rU||so|z| ! und der Hardy-Ungleichung schiitzen wir dann
1—¢ 2
<1D5| - — MU+M>

1—¢ 2 _
34(1p\2+M2+1+ <v+€uHrUHoo> |z| 2)

1— 2
<41+ M) <<1 w4 (v + U ) P +M2)

1—c¢ 2
<4(1+ M) (1 w4 (v + U ) (1p| + M2
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ab. Zieht man die s-te Wurzel aus diesem Ausdruck und wendet Korollar an, erhilt man

s— —2\s l1—¢ 2\°
Fp) =241+ M 2)*A,, (1 +4 <v+ €,u||7“U||oo> )

2 \2\’
comsaara (1o 2 )
A2,

was den Beweis beschliefit. O

Beweis von Behauptung[6.2.5, Wir wenden Behauptung [6.2.1 mit s < min{3/2 — 0., 1},

A =114y (DY = 1)A, 1T und

an. Die Bedingungen an A, (Df —1)A, wurden bereits im Beweis von Behauptung nach-
gewiesen. Die Tatsache, dass II; ¢ Ay (U ® 1ca)A, 1154, relativ Form-beschrénkt beziiglich
HM’mAW(D,IY{ — )AL, ¢, ist, folgt aus Katos Ungleichung und Korollar (siehe auch
(6.30) in jedem Kanal (4, ¢, m).

Fiir M > 0 ist die Hilbert—Schmidt-Norm

(W 0m A (U © Lea)AyTLy ) /2 (T g A (D A+ M)A L ) |2

wegen Behauptung [6.2.11| endlich, da U € Kg?s).
SchlieBlich ist auch Annahme (6.15)), konkret (6.29)) bezichungsweise

2
(H]yzamA’Y(D"];I + M)A'Yvazvm)QS S A7757M (vazva'Y(Df - )\U + M)A’ynjvevm) ’

fiir A in einer offenen Umgebung von Null wegen Lemma [6.2.13| erfiillt, da das Lemma insbe-
sondere in jedem einzelnen Kanal (7,4, m) gilt. O

6.3 Kontrolle grofler Drehimpulse

Um die Notation moglichst einfach zu halten, unterdriicken wir ®1¢4, sofern dies aus dem
Kontext ersichtlich ist. Dariiberhinaus bezeichnen wir den freien, massiven Dirac-Operator
mit D = o - p+ f und erinnern an die Notation Tr; ¢, (A) = Tr(Il; ¢ mAll;e ) fiir einen
Spurklasse-Operator A in L?(R? : C*).

Die folgende Behauptung wird es uns — wie im letzten Kapitel — erlauben, das Weierstraf3-
sche Majorantenkriterium anzuwenden, um Satz aus Satz zu folgern.

Behauptung 6.3.1. Seien 0 < v < 1,0 < V(r) < vy/r, A € R, 1/2 < ¢ < s < 3/4,
€ [0,2s — 1], 6 € [0,2s — 1] und &' € [4(s — §'),28' — 1]. Sei weiterhin U = Uy + Us eine
reellwertige Funktion auf (0,00) mit Uy € roip® (Ry) und Uy < 0 oder Uy > 0, sodass

comp

Us € Ksc und |Ua|? € Ky s NKss. Falls |\ die Schranke

. 3 1 s s —1/(2s
|M<mm{meusgwuukéy,
(6.34)

s —1
(=) [Irth s + AP0
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erfiillt, wobei A ¢ die universelle Konstante C, welche in Lemma auftaucht, bezeichnet
und As o, die Konstante in (6.36) bezeichnet, dann gibt es ein A, < oo und ein L, € N,
sodass fir alle N> 0> L, 1/2<j=0+£1/2 und m € {—j,...,j} die Abschitzung

Trjom(Ay(D =V =AU = 1)Ay) - — Trjpm(A (D =V —1)A,) -
< Ay AU, o (€+1/2) 707
gilt.

6.3.1 Beweis von Behauptung [6.3.1

Wir beginnen die zu Behauptung [5.3.10| analogen Spur- und Form-Ungleichungen beziiglich
Cr+ a(l + 1/2)"°I1; ¢ m zu formulieren. Wir erinnern daran, dass diese nétig waren, um
Funktionen aus den Klassen K 5 kontrollieren zu kénnen. Die folgende Behauptung folgt aus
Behauptung genau wie Behauptung [6.2.10| aus Behauptung folgte.

Behauptung 6.3.2. Seien a >0, 6 € [0,2s — 1], s € (1/2,3/4], L € Ny, 1/2 < j=0+1/2
und 0 < W € Ky 5. Dann gilt

(LWL ) 2 (Co + @€+ 1/2) T 0m) I3 < Aa(€+1/2)°[W i, (6.35)
und insbesondere

I 0 WL g < Asal Wik, , (0 +1 /2)70(Cp+ all +1/2) 7L 4,)% . (6.36)

Fiir den Beweis von Behauptung kontrollieren wir wieder Dirac-Operatoren durch
entsprechende skalare Operatoren. Dazu brauchen wir unter anderem

Lemma 6.3.3. Seien a > 0 und £ € Ny so, dass 1 > a(¢ +1/2)72. Dann gilt

(@ p+B-T+all+1/2)72)2> (VP2 +1-1+a(l+1/2)72)?2,
Beweis. Die Aussage ist dquivalent zur Ungleichung

P+1+1—a(l+1/2)2)2 -2 —al+1/2)")(a-p+ B)
>p? 414+ (1—all+1/2)72)2 =21 —all+1/2)"2)V/p> + 1.
Dal>a(l+1/2)2und a-p+ S <l|a-p+ | =+/p?+1, folgt die Behauptung. O
Fiir V' < «/r und geeignete Potentiale U zeigen wir, dass es ein a, > 0 gibt, sodass
inf spec (I pmAy (D =V = AU — 1)AIL 0) > —as (€ +1/2)72,

falls |A| klein genug ist. Dies folgt im Wesentlichen aus der ¢-Abhéngigkeit der Eigenwerte
des Coulomb-Dirac-Operators beziehungsweise dem Verhalten von |IL; ¢, DIL; 4 | fiir kleine
Impulse. Genauer gesagt kann man anhand der exakten Ausdriicke der Eigenwerte [164, 30, [75]
sehen, dass es ein a, > 0 gibt, sodass

L 0. Ay (D — 1) ALTL g > =y (€4 1/2)72 (6.37)

fiir alle ¢ € Ny und 1/2 < j < ¢4 1/2. Tatséchlich zeigten Handrek und Siedentop in [80,
Corollary 1], dass die Abweichung zwischen den Eigenwerten des Dirac- und des Schrodinger-
Operators im Kanal (j,¢) mit £ € N und 1/2 < j = £ £+ 1/2 durch eine Konstante mal
¥4/[€ (n+ £)3] (mit n € N) beschrinkt ist. Wir erinnern nochmals daran, dass die Eigenwerte
des sphérisch symmetrischen Operators unabhéingig von m € {—j, ..., j} sind.
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Behauptung 6.3.4. Seien £ € Ny, 1/2 < j=/0+1/2,0<~v<1,0<V(r) <v/r, A € R,

€ (1/2,3/4], 6 € [0,2s — 1], U(r) = Uy + Uz eine reellwertige Funktion auf (0,00) mit
Uy € r1L®(Ry) und |Us|* € Ks5. Dann gibt es eine Konstante a, > a, und ein Ly € N,
sodass fir alle N> (> L,

L oAy (D — 1=V = NU)AIL g > —ay (04 1/2)72

gilt, sofern |\| die Schranke

5,ay

s s 28
A< (=) [l + AL T2 ] (6.38)

erfiillt, wobei As ., die Konstante aus (6.36)) ist.

Beweis. Zunéchst gilt wegen der Schranke (6.37)) fiir den tiefsten Eigenwert des Coulomb—
Dirac-Operators im Kanal (j,¢) die Abschitzung

I 0y (D = V = D)AYIL > 11 A (DI —

= DA > —ay (04 1/2)77

Als Niichstes bemerkt man, dass die Hardy-Ungleichung (zunichst in L?(R; ) — man erinnere

sich auch an die Definition ([6.20))
0+1/2)2 CLl+1)+1/4 .
(0525 = [T R ar < . 00)0)

r

sowie (mit dem Satz von Plancherel ebenfalls zuniichst in L?(R,))

1B + ay (€ +1/2)72)(CF) + ay (€ +1/2)72) 7
b /2 1 N

- V24, +2+2\/§(e+1/2)

auch in $; ¢, gelten. Dies folgt mit denselben Argumenten wie im Beweis von Behauptung

62.10] (mit f(2) = Y. |~ 5 (12 )E,,, (2/]2]) € Hm und ag = ay (€ + 1/2)72), denn

(fs (pe + ae) " T g || 2T g (pe + a0) " f) r2moco
= (5@ +a) 200 +a) T ) ey

— ) 12y () e (6.39)
+(f, (pzj_g +ag)r (pgj_g +ag) f >L2(R+)
<(4+1/2)72 4+ (25 —£+1/2)7"2 < 10(0 +1/2) 2
und
(f, (Cr+ ae)*l(m +a0)*(Cr+ ae) ™' ) r2msico
= {((C + ag) o + a2 + a)) ) 2wy
(7, <c§j>_£ +a0) N p5), + an)(CYL + a) T ) ey (6.40)

+-+

(e NCTRY
“\ V2a, 20 2V2(0+1/2)
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Mit der Dreiecksungleichung, Lemma [6.3.3] (in jedem Kanal (j,¢,m) und fiir alle ¢ > L, >
\/G~ — 1/2) und den obigen Schranken erhdlt man fiir f = IL;,, f (und der Tatsache, dass
Dﬁl den Raum $);,, invariant ldsst und mit A kommutiert),

ITL0m A (DY =1+ ay (04 1/2) ) Ay L g f |
= 1D = /lal = 1+ ay (£ +1/2)72)A f]
2 [|(D = 1+ ay (£ +1/2) ) A fll = lllz[ A, £

1 1 a _
> [1—W10< T%+%+l+,/§”(€+l/2) 2)

1 1 a _
> [1—W10< T%+%+l+,/§”(€+l/2> 2)

Die letzte Ungleichung gilt (wegen A, < 1) fiir alle N > ¢ > L., falls a, hinreichend grof8
gewéhlt wird und L, € N die Ungleichung

V10 <(2a7)_§ + (2L, + 1)+ \/g(LW + 1/2)—2> <1 (6.42)
erfiillt. Damit ist fiir alle £ > L,
(Ay(Co+ ay(£+1/2) 2T 4,m)A,)”
< (1=79)"2 (A (DI = 14 ay (04 1/2) )AL 0m) "

Aus dieser Ungleichung, der Positivitédt von Hj’g,mAW(Dg — 1+ ay(0+1/2)"2) A, fiir
hinreichend groBes a, (wegen (6.37)) und der Operatormonotonie der Quadratwurzel folgt

Ay(Co4 ay (0 +1/2) 2T p.m) Ay
<(1- y)*lnj,z,mAW(Df —1+ay(l+1/2)" A pm (6.43)
< (=)' pmAy (D =V =14 ay (£ +1/2) AT 41, -

Andererseits folgt aus der Hardy-Ungleichung (6.39) und dem Satz von Plancherel (6.40) die
Giiltigkeit der Ungleichung

L 0 UL 0 < [P0 oo (Cr + any (€4 1/2) 211 0.1m)
fir alle N > ¢ > L.,,. Dariiberhinaus folgt aus (6.36)
’Hj,ﬁ,mUQHj,Z,m‘QS < AS,aw || ‘U2’28H1Cs,5 (Z + 1/2)76(05 + a7(€ + 1/2)72Hj,€,m)28 .

1(Ce+ as(€+1/2)72) A4 |

1A45(Ce + ay (€ +1/2)7) Ay £

(6.41)

Wegen Operatormonotonie von x — x® mit s € (0, 1] folgt daraus

T UL g < [|yrU1||oo + ALG9)| yU2|28||}C/Sf§S)} (Co+ ay(C+1/2) T, 4,) .

5,0y

Kombiniert man diese Schranke mit (6.43) unter der Voraussetzung (6.38) an A, erhilt man
schliefllich

I gmAy(D =V =1+ a,(¢ + 1/2)_2)A7Hj,€,m
Z (1 - ’Y)A’Y(CZ + a,\/(f + 1/2)72Hj,f,m)A'y Z Hj,é,mA'yAUAij,&m )
was die Behauptung zeigt. O
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Mit diesen Vorbereitungen kommen wir zum

Beweis von Behauptung[6.53.1, Wegen des Variationsprinzips ist (fiir jedes 1/2 < j =£+1/2)

Siexn i =Trem(Ay(D =V =AU = 1)Ay) - —Trj (A (D =V —1)A,) -
< A Tr(dj,ﬁ,)\nj,ﬁ,mA'yUA'ij,Z,m) )

wobei d; ¢\ die orthogonale Projektion auf den negativen Spektralbereich von II; s, Ay (D —
V =AU —1)A,11; ¢, bezeichnet. Wir erinnern nochmals daran, dass die negativen Eigenwerte
dieses Operators nicht von m abhéngen, weshalb wir keinen Index m schreiben. Definiert man

A= 3,0 (Hj,é,mA'y(D -V -XU-1+ ag)A,ijj’m)s
B = (Hjj’mAfy(D -V -XU-1+ CLZ)A,ijjjm)is A.Y(Cg + agﬂj’&m)s
C:= (Cg + aeﬂjj’m)78Hj’g,mUHj7g7m(Ce + agﬂj’g’m)fs ,

so gilt
sjex < ATr ABCB*A*.
Wir wéahlen
a
RN UESVEIE

fir ein hinreichend groBes a > a, (aus der unteren Schranke in Behauptung [6.3.4) und
betonen, dass a zwar von v abhéngen kann, aber unabhéngig von £ und A gew#hlt wird. Weiter
bemerken wir, dass wegen Behauptung|6.3.4/IL; ¢, Ay (D =V =AU —14a¢) A, 11 0, > 0ist. Da
d; ¢ x auf den negativen Spektralraum von I,y Ay (D —V — AU — 1)A, 11, 4, projiziert, folgt
aus Behauptung dass ||A||* < a®$(¢+1/2)7* fiir alle N 5 ¢ > L., und einem hinreichend
groflem L., welches erfiillt (wobei a, durch a ersetzt werden muss). Dariiberhinaus ist
(wie im Beweis von Behauptung 1C][1 < As o, IU|lx,.. (€ +1/2)7¢, was unmittelbar aus
Behauptung folgt.

Wir widmen uns nun dem Operator B und zeigen, dass |B|| < A;,. Dazu schreiben wir

B = BlBQ, wobei

Bl = (Hj’g,mA-y(D —-V-XU-1+ CLg)A,ij’g,m)is
(Hj,g,mAW(D —V-AU; -1+ ag)AWHj’g,m)s
By = (Hj,é,mAw(D —V-AU; -1+ ag)A»YHj7g7m)_s AW(CK + agHj7g,m)8 .

Wir schétzen || Bz|| ab, indem wir zuerst die Form-Ungleichung
A (Cot agllypm) Ay < Ay (W pnAy (D =V = AU = 1+ ag) As T m)?

zeigen und im Anschlu§ die Operatormonotonie von z — z° mit s € (0, 1] sowie die folgende
Ungleichung von Frank [63, Formel (2.7)], welche eng mit verwandt ist, verwenden. Ist
T > 0 ein linearer Operator mit trivialem Kern, P eine orthogonale Projektion und f eine
operatormonotone Funktion, dann gilt

Pf(T)P < Pf(PTP)P.
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Falls f(0) = 0, vereinfacht sich die rechte Seite zu f(PTP) (siehe auch die Diskussion nach
(6:17)). In unserem Fall sind T' = (Cy + a¢ll; 1m)%, P = Ay, f(z) = 2° und 0 < s < 1. Somit
lautet die Ungleichung

Ay (Co+ agljpm) Ay < Ay (A5 (Co + aelLjom)*Ay)" A,

(6.44)
= (Ay(Ce + arlljgm)®As)" .
Mit der Dreiecksungleichung und A, < 1 schétzen wir zunéchst fiir f = IL; ¢, f
[ emAy(D = /r+5/r =V = AUL = 1+ ag) A ILj o | (6.45)

> [|A (DY =1+ a)) Ay fll = 2y + AlllrUnlloo) 2]~ A £
ab. Da A, mit Dg — 1+ ay vertauscht, folgt aus Lemmam
IA(DS =1+ ag) Ay fll = (DY = 1+ ar) A f|

> [I(D =1+ ag) Ay f | =l Ay £l (6.46)
> [I(Ce + agllem) Ay fIl = Al = A5 ]

wie im Beweis von (6.41]). Kombiniert man (6.45)) und (6.46) mit der Hardy-Ungleichung
(16.39)

Hj,é,m’x|72nj,€,m < 10(6 + 1/2)72(274 + aZHj,Z,m)2
sowie dem Satz von Plancherel (/6.40))

_ 1 1 v/ ap
I1; C I, W< —— -4 M2
H(pf—i_ae g,f,m)( g—i—CLz J»eﬂn) H — m+2+2\/§7

erhilt man
HHJ‘,&mAv(D —V-A1 -1+ GK)AWHj,K,me

> [1= VI + MUl (i + g+ 017272 1o+ a1

Wa&hlt man a > a, hinreichend grof, folgt
ML em Ay (D =V = AU = 1+ ag) AT 0 fI| 2 A5 [[(Ce + ar) Ay ] (6.47)
fir alle N> ¢ > L., wobei L, durch die Ungleichung

33
V10
bestimmt ist. Verwendet man (6.47)), die Operatormonotonie von x — z* mit s € (0, 1] (wegen

Behauptung |6.3.4] ist auch A (D;, — V — AUy — 1 4 ag)A, nicht-negativ) und (6.44)), erhalt
man schlief$lich

<(2a)—§ + (2L, + 1) \/g(Lv + 1/2)—2> <1 (6.48)

Ay (Cp+ gl g0) Ay < Ay (T g Ay (D =V = AUy — 1+ ag) A TL .0 ) >

fur alle £ > L, und A € R, welche (6.34) erfiillen. Dies zeigt || Bz| < oco.
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Wir schiéitzen nun ||B;| ab. Wegen Lemma (welches voraussetzt, dass der Operator
ML ¢ Ay U2 AJIL 4, definit ist) gilt
(I emAy (D =V = AUy — 1+ ag/2 + ag/2)ATT n) >

< 2(WpmAy(D =V = AUt — 1+ ag/2 — NUs + ag/2) A1 0,0n) %

sofern man zeigen kann, dass
AT g, Ay Uz A T | (T g Ay (D = V = MUY = 1+ ag/2) A1)~ || (6.49)
< A (a/2) 7 (04 1/2)%0) |

fiir ein 1/2 < ¢’ < s gilt. Wie in der Abschiitzung von ||Bz|| verwenden wir (6.47]), Operator-
monotonie positiver Wurzeln und (6.44)) und erhalten zunéchst

1+ et ) Ay (WA (D = V = AU = 1+ /DA, L 00) ™ || € Ay (6:50)
Wegen ((6.17)) und (6.36) ist
’)‘Hj,&mAvU2A7Hj,€,m‘28 < ’)‘PSAWHL&m’UZPSHJ‘,@MAW
< Agy AP+ 1/2) |02 ke, 50 Ay (Cr + aelTpm)* Ay
Dabher ist die linke Seite von ([6.49)) durch
1/2 st
AL IO e, o €+ 1/2) 7772

beschrinkt. Wegen der Bedingung an A und 0’ > 4(s—s’) ist dies durch den gewiinschten
Ausdruck (£+1/2)26'~5) beschrinkt. Dies zeigt und damit die Abschétzung || B|| < As,
welche gleichméfig in A und £ ist.

Kombiniert man die Schranken fiir || A2, | B||?> und ||C||1, erhilt man schlieflich

sjen < Ay AUk, (€+1/2)747F fiiralle 1/2 < j=¢4£1/2.

6.3.2 Beweis von Satz zur Existenz von p!

Die Strategie fiir den Beweis von Satz ist sehr dhnlich zu der von Behauptung [6.3.1
Da die Behauptungen [6.2.2f und [6.2.1| (insbesondere Behauptungen [6.2.4] und [6.2.5)) bereits
die Endlichkeit der Dichten fast iberall fiir alle £ < L. (mit einem festen L, = O(1)) zeigen,
miissen wir lediglich die groflen Drehimpulskanéle kontrollieren.

Bevor wir zum Beweis von Satz kommen, beginnen wir mit einer Aufwiarmiibung,
welche zeigt, dass die Dichten pf und p punktweise fast iiberall endlich sind. Wir betonen,
dass die Beweise nicht auf der Maschinerie der Behauptungen [6.2.1] und [6.2.2] beruhen.

Behauptung 6.3.5 (Existenz von pl! und p). Seien v € (0,1) und ¢ € Ny. Falls 1/2 <
s < min{3/2 — 0.,3/4}, e € 0,25 — 1], W ¢ ICg?a) und W € Ks¢, dann gibt es Konstanten
Ag~ o und Ag 4 > 0, sodass

| A WO ar < A WOl wnd [ W (el de < AWl
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Beweis. Es bezeichne d;, die orthogonale Projektion auf den negativen Spektralraum von
11 0m Ay (DE — 1) A TL g, mit 1/2 < j =££1/2 und m € {—j, ..., j}. Dann ist

/ pil(rYW (r)dr = Trd; W = Tr ABCB*A*
0

wobel nun

A= j,E(Hj!,mAw(D$ =1+ ap) A IL g )"

B = (Hj%mA-y(D,IY{ -1+ ag)A-ij,g,m)isAfy(Cg + agﬂj’g’m)s

C = (Co + aelljem) " jemWILiem(Cr + arlljem) ™
mit ap = ay(¢ + 1/2)72 und einem hinreichend grofien, von ¢ unabhingigen a, > 0 sind.
Zuniichst gilt wegen der Abschiitzung (6.37)) die iibliche Schranke ||A| < as~ (¢ + 1/2)7%.
Als Niéchstes ist, wie im Beweis von Behauptung 1C][1 < As (€ +1/2)7%||W]|k,.. Die
gleichméfige Beschrianktheit von ||B|| in ¢ wurde fiir v < 1, hinreichend groles a., und alle
¢ > L., im Beweis von Behauptung [6.3.1] gezeigt (dort war es || Bz||). Dabei erfiillte die geste
Zahl L, > \/a—1/2 die Ungleichungen ((6.42) und (/6.48)). Fiir £ < L., spielt die Gleichmé&Bigkeit
der Abschétzung von || B|| in ¢ keine Rolle, da wir es hier nur mit einer festen und endlichen
Zahl von Drehimpulskanélen zu tun haben. In diesem Fall schitzen wir

Bl < [| B[l Bzl Bs
ab, wobei
By = (Co+ aelljm)® (pe + arlljom) ™"
By == (pe + afﬂjl,m)sAv(HJ}l,mAv(DiI + ag) Ay 1L g m) ™"
Bs = (I pm Ay (DX + ag) A1 000 ) S (T 0 i Ay (DI — 1 4 ag) AJIT ) 5
Mit dem Satz von Plancherel ist zunéchst | Bi|| < A in jedem Kanal. Wegen Korollar

beziehungsweise (6.23) gilt fiir festes v < 1 und 1/2 < s < min{3/2 — 04,1} die Schranke
| B2|| < A fiir alle £ € Ng. Schlieflich folgt aus (6.37) die Abschatzung

(W em Ay (DY =1+ ag + )AL 0m) (T 0. A (DS = 14 ag) Ay T000) 1|
<1+A(C+1/2)* <AL .
Aus der Operatormonotonie von x — z° mit s € (0,1] und der Kombination der Schranken

fiir By, Bo und Bg folgt schlieflich
Bl < Asy -

Aus der Kombination der Schranken fiir A, B und C folgt somit
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und die rechte Seite ist summierbar, falls 2s — 1 > e > 2 — 4s, sprich s > 1/2 und £ > 0.
Mit diesen Argumenten kann man auch direkt die Endlichkeit der Dichte pf fast iiberall

zeigen. Fiir w0 ¢ K§?2 erhalt man

[ Ow O = S @) T WO < A 12l
3<y=l+y

was aus den obigen Argumenten mit den Operatoren

A= djvg(nj,g,mAw(Df — 14+ M)A g )°
B = (Hj7g,mAV(Df — 1+ M)ATL g) 5Ay (Cp 4+ ML g1)°
C = (Cy+ ML g1) "*TL; g W OTL 4 1 (Cp + M1 4 ) ~°

folgt, wobei M > 1 eine Konstante der Ordnung O(1) ist. O

Damit kommen wir zum Beweis der punktweisen oberen Schranken fiir die wasserstoffar-
tigen Dichten.

Beweis von Satz[G.1.1. Wir setzen U = §, ® 1¢a (der radialen Delta-Funktion bei r € R.) in
den obigen Uberlegungen und schreiben, wie zuvor,

pll(r)=" > @i+ 1)Trdje(6, @1cs) = Y (2j+1) Tr ABCB* A",

wobei

A= dj (L0 m Ay (DY =1+ ag) Ay TL g )
B = (Hjl,m/\v(Df -1+ W)Avnj,f,m)_sA')’(Ce T aKHj’é’m)s
C =110 (Co + arlljgm) * (6, ® 1a)(Co + arllypm) "o m

mit ap = a, (¢ +1/2)72 und einem hinreichend grofien, von ¢ unabhéngigen a., > 0. Zunichst
gilt wegen (6.37) die gewdhnliche Schranke || A|| < a5 (¢+1/2)7*%. Die Spur von C kann wie in

Behauptung[6.2.10{durch 2(C’ér) +ag) 725 (r, 7“)—1—2(05;)_@—1—614)725(7’, r) abgeschéitzt werden. Hier
haben wieder verwendet, dass der Kern (Cér) + ag)72%(r,r’) wegen der Sobolew-Einbettung
(mit 2s > d = 1) eine stetige Funktion in beiden Variablen ist. Die Diagonale wurde bereits

in [5.4.5] durch

2s—1 4s5—1
(r) —2s r r
(Cp7 +ag) >(rr) < Aga, (H;) Lo<ory + (H) Lt i<r<er )y

4s—1
+ (5 + 2) 1{r2(f+1/2)2}]

abgeschitzt. Eine analoge Rechnung zeigt, dass, modulo einer f-unabhiingigen Konstante,

diese Schranke auch fiir (C’é;le +ap)725(r,r) gilt, da 2j — ¢ = £+ 1 mit 1/2 < j = £+ 1/2 ist.
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Die Endlichkeit von ||B| wurde im Beweis von Behauptung [6.3.5 gezeigt. Kombiniert man
die Schranken fiir A, B und C, erhilt man

prr) =Y (2 +1)Trd;d,
3 <j=tE;

2s—1 4s5—1
—4s T T
< Ay (0+1/2)1 <€+1> Locory + <g+1> L tarcer )2y
2

2
1 4s—1
+ <E+ 2) 1{T>(€+1/2)2}] .

Insbesondere ist die rechte Seite fiir s > 1/2 summierbar und man erhélt

1
245 1/2
r? = ;_0 P sy (T +r/e).

6.4 Beweis der Konvergenzresultate

Der Beweis von Satz verlduft vollig analog zu dem von Satz des letzten Kapitels,
weshalb wir ihn hier nicht nochmals wiederholen werden. Die wichtigsten Werkzeuge fiir
den Beweis sind die starke Scott-Vermutung in jedem Drehimpulskanal (Satz und die
Majorante aus Behauptung welche es erlaubt, die Summierung iiber ¢ € Ny mit den
Grenzwerten A — 0 und Z — oo zu vertauschen.

Wir konzentrieren uns von nun an auf den Beweis von Satz sprich der starken
Scott-Vermutung in einem festen Drehimpulskanal.
Wie im letzten Kapitel geniigt es (aufgrund der Linearitéit der Aussage iiber U), den Satz

fiir nicht-negatives U, welches entweder zu r nggmp (R4), oder zu ng 3 mit U2 IC(, )5, gehort.
Wir erinnern daran, dass die Parameter die Ungleichungen 1/2 < s’ < s < min{3 / 2 —o0,,1},
e €[0,2s — 1] und & € [0,2s" — 1] erfiillen. Wir definieren als Erstes den gestorten Coulomb—

Dirac-Operator

N N
1 1
2 . . .
Dz y:=Dy— )\VE_l c“Ul(clzy|)Ljy 0, in V/_\lﬁz mit 3 <jo=4 £ 7"

Hierbei wirkt ILj, 4, . als IL;, 4, beziiglich des v-ten Teilchens. Da U?* € ICS,])J/, ist

!

(Hﬂ,mAWUAWHj,Z,m)% < Q(Hj,&mAv(D'lyq + M)AWHJ,E,m)QS

fir 1/2 < s’ < s wegen (6.17), sprich (IL; ¢, AyUAIL;g,0)% < 1L 0y AU AL 44, und
(6.27). Siehe dazu auch den Beweis von Behauptung (6.2.4] sowie . Insbesondere ist U
daher infinitesimal Form-beschrinkt beziiglich HﬂymAﬁ,Df AL ¢, Weshalb Dz y im Sinne
quadratischer Formen fiir alle A € R definiert werden kann. Ist U € r—nggmp(R+), so kann

Dz \ mittels Katos Ungleichung und Korollar fiir alle A in einer offenen Umgebung von
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Null, welche nicht von Z abhiingt, definiert werden (siehe auch (6.30])). Mit der Definition

von pjq ¢5,d(r) ist
A(270 + 1) / cfgpjolo,d(cflr)(](r) dr = ¢ 2 Tr(d(Dz — Dz))) , (6.51)
0

wobei wir daran erinnern, dass d ein Grundzustand von Dy in /\fj\;1 9z war. Wir schitzen
nun die rechte Seite dieser Gleichung nach oben ab. Fiir selbstadjungierte Operatoren v in
L*(R3 : C%), die Form-beschréinkt beziiglich |p| mit Formschranke < (C,Y.) ¢ sind (mit
C, und Y, aus [132, Formeln (1.2), (1.4)], siehe auch [132, Formel (1.6)], welche gerade
|DH| > Cffﬁ,\p] besagt), definieren wir

Z
DC(Z/\:L“|+U):fica-v+c2ﬁfmfv in 9Hz.

Wir erinnern daran, dass p¥ der eindeutige Minimierer des Thomas—Fermi-Funktionals fiir
ein neutrales Atom ist, dessen Grundzustandsenergie mit E1TF(Z) bezeichnet wird. Wir erin-
nern auBerdem an den Radius R}¥(z) des Austauschlochs bei x € R?, der durch

1
pz (y)dy =5
|lz—y|<RTF (x)
definiert ist und setzen TF( )
TF Pz \Y
Xz (x):= / dy .
7 (@) |z —y]

le—y[>REF ()

Der Bequemlichkeit halber fithren wir U,(z) := ¢2U(cz) ein und schétzen als Erstes TrdDy »
nach unten durch eine Summe von Einteilchen-Operatoren ab. Wir erinnern daran, dass
Trjo(A) = Tr(I; (AIL; ) fiir Spurklasse-Operatoren A in L*(R? : C*) war.

Lemma 6.4.1. Fiir alle A in einer Umgebung von Null und alle N> L < Z gilt

L1
Z
TI‘(DZ,)\d) > — Z Z Trj’E[(AZDC(m + /\Ucho,Eo + CQ)Az)_]
(=0 1<jpel
Z Z
=2 D Trel(AzDel( = X3" + MUl +¢*)Az)-] = Dlp7"].
K:L%S]‘ o411

Beweis. Die Korrelationsungleichung von Mancas u. a. [123] liefert zunéchst

> _%|ZZX ) = Dlpz"].

1<v<pu<”z
Wenn dV) die Einteilchendichtematrix von d in )z bezeichnet, folgt aus der Nicht-Negativitét
sowie der sphirischen Symmetrie von y L (z)

|z

L—-1
Z
Tr(Dzpd) > > Z Trj,g[az“)(AZDC(m + AUIL, 4, + *)Ag)]

1 1
305 =041

7z
+Z >0 TrieldV(AzDe( = X+ AUellyo o +*)A2)] = DIp")
(=L %Sj:é:l:%
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fiir alle L < Z. Da der Absolutbetrag der Energie monoton féllt, wenn ¢ wichst (siehe auch
Behauptung , kann der letzte Ausdruck weiter nach unten abgeschitzt werden, indem
man dV) durch eine Einteilchendichtematrix ersetzt, die so definiert ist, dass alle Kaniile ¢ < L
vollstdndig besetzt sind. Da es ohnehin nie mehr als Z besetzte Drehimpulskanéle gibt, kann
die zweite Summe sicherlich bei Z abgeschnitten werden. Anwenden des Variationsprinzips
zeigt schlieflich die behauptete Schranke. O

Wir erinnern nun an die Resultate von Handrek und Siedentop [80], welche die asym-
ptotische Entwicklung der Grundzustandsenergie von Dy in /\f,V:1 )z betreffen. Die Autoren
zeigten in [80, Theorem 1]

Tr(Dyd) = E™F(Z) + @ — 5(7)> Z2 4+ O0(ZY?Y fiir Z — oo

mit der endlichen Spektralverschiebung

1 o0 oo
s ==> > T (A(DF-1)A) —(2j+1) Z2n+z (6.52)
7o L<j=et1/2 n=1
Lemma 6.4.2. Es gilt
1
Tr(Dyd) = E™(2) + (2 — 5(7)) ARNOIVAUEDD (6.53)

Ist dariiberhinaus L = [Z'/°], dann gilt auferdem

L-1 7
DY Trj,z[(AZDc(m +A)Az)]
=0 %S]:f:l:l
Z
A
-2 Trj,e[(AZDc(m — x5+ A)Az) ] - D[pL) (6.54)
=L i<j=r+1

Beweis. Die erste Aussage ist gerade [80, Theorem 1]. Sei nun dz, die Einteilchendichtema-
trix in $)z, sodass

Z
Y Y Tl Dl = E + A2 = DU o+ Pz

Sei weiter Az = 1(0) (Dg + X}F), wobei wir bemerken, dass IL; Az, = Az, IL; , wegen
der sphirischen Symmetrie von x 4" gilt. Da ||xL¥|| < AZ*/3 und Trdz, < Z (wir erinnern,
dass die linke Seite von (6.54]) eine untere Schranke an Tr Dzd ist und Trd = Z), folgt aus
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[80, Lemma 3] und dem Variationsprinzip

Tr[D.(— z

’JZ‘| XZ +c )dZ,x]

A
2 Tr[<AZ7XDC(m

Z
Z
Z - Z Z Tr] £ AZ7X (|.T| - X}F + CZ)AZJ()—] - AZS/g :

(=L Ll<j—y41l

- XEF + CQ)AZ,XMZ,X] - ACQ%HXEF”ZO Trdzy

M \

Mit dem Min-Max-Prinzip fiir Operatoren mit Spektralliicken [76] kann die rechte Seite (wie
in der Herleitung von [80, Formel (29)]) weiter nach unten durch

Z
Z
-2 2 Tfj,E[(AoDc(m —XZ" + ) A)-] - AZ
=L 1<j=0+1

abgeschiitzt werden. Hierbei bezeichnet Ay = 1(g o)(ca - p + c2) die Projektion auf das
Brown-Ravenhall-Bild. Daher ist die linke Seite von (6.54]) durch

L-1 7
- > Trj,e[(Ach(m +A)Ay) ]

=0 1<j=p+1
Z
A
S22 TudeDel —xE" + o) ] - DIpl] - 477
=L 1<j=0+1

nach unten beschrénkt (vergleiche auch mit [80, Formel (33)]). Kombiniert man dies mit der
nicht-relativistischen Scott-Korrektur [70, Proposition 4.1] (siehe auch [80, Formel (36)]) und
(6.52)), folgt die zweite Aussage des Lemmas. O

Kombiniert man (6.53) und (6.54), erhilt man mit L = [Z1/9]

L-1

Z
TrDzd <= Y Trjl(AzDe(= + ¢

FRESLOS
=0 L<j=pxl

Z
Z
=2 > Trd(AzDel(iy = X3" + *)Az)-] - DIpi] + AZT
=L J<j=t+;

Setzt man dies und die Abschatzung aus Lemma in (6.51)) ein, erhélt man
Tr(Dyz — Dy )y)d

A
< <Trjo7€0 [(AZDC(H

A
n (Tm,eo (DL~ 3

A
- Trjolo [(AZDc(m -

7
+ AUe + )M z) -] = Trjo 4o [(AzDo(= + ¢

2 A1) (L~ )

+ AU + *)Az)_]

XA+ C2)Az)]> 0(fy — L) + konst Z*7/%4
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wobei f(n) = 1, falls n > 0 und 6(n) = 0, falls n < 0. Wir bemerken, dass sich die Spuren
immer gegenseitig ausloschten, es sei denn sowohl ¢ = ¢; als auch j = jg.

Fiir hinreichend grofies Z ist immer L = [Z/%] > {,. Skaliert man z — z/c, vereinfacht
sich der letzte Ausdruck zu

Tr(Dz — Dy )d
Z 2 Z 2
< Trjo,fo[(AZDC(m + AU + ¢ )Az)-] = Trjolo[(AZDC(m +c)Az)-])
+ konst Z47/%4

= (T[4, D1+ 0 + )] = Tr 1[4, D1 L+ 14,)-)

+konst Z_1/24>

= 2(2jo + 1) (Tjoymo (A (DE = AU = 1) Ay)_ = Ty ty.mo (A (DI = 1) A,)

+konst Z_1/24)

fiir beliebiges mg € {—jo, ..., jo}. Der Entartungsfaktor (2jo+1) der letzten Ungleichung riihrt
von der Tatsache, dass die Eigenwerte der Operatoren 1L, ) mo Ay (Df — AU — 1) Ay IT5g 05me
und ILj; g5 mo Ay (Df — 1) AT 60.me nicht von m € {—jo, ..., jo} abhéngen. Setzt man diese
Schranke in (6.51)) ein, teilt durch A und ldsst Z — oo gehen, erhélt man

lim sup / Cfgpjo,zo,d(cilT)U(T)dT
0

Z—00

<! <T1"j0,éo,m0 (A'y (D,IY{ — AU — 1) A’Y>_ — Trj 00,mo (A7 (D,Iy{ — 1) A,y)_> ,
falls A > 0 und

liminf/ C_gpjo,eo,d(c_lT)U(T)dT
0

Z—00

> At <T1“j0,€0,m0 (A’Y (Df — AU - 1) A’Y)f — Trjg 09,mo (A'Y (D’er{ o 1) AV)*) ’

falls A < 0. Wir lassen nun A — 0 gehen. Wegen der Behauptungen [6.2.4] und [6.2.5] konver-
gieren die rechten Seiten der letzten beiden Ungleichungen gegen i pg £, (MU(r) dr. Multi-
plikation beider Seiten mit (2jp + 1) und Summierung iiber 1/2 < jo = £y + 1/2 zeigt, dass
fooo ¢ 3pge.a(cr) dr fiir Z — oo einen Grenzwert hat und dieser gerade durch den behaup-
teten Ausdruck gegeben ist. Dies schliefit den Beweis von Satz[6.1.3
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Kapitel 7

Aquivalenz von Sobolew-Normen
fiir verallgemeinerte
Hardy-Operatoren in L?

Dieses Kapitel beruht auf der gemeinsamen Arbeit [66] mit Rupert L. Frank und Heinz
Siedentop. Die Ergebnisse dieses Kapitels sowie deren Darstellung und Beweise stimmen mit
denen, die in [66] erarbeitet wurden, iiberein. Die Einleitung ist leicht abgewandelt und es wird
ein kurzer, erginzender Uberblick iiber Ergebnisse im Zusammenhang mit Hardy-Operatoren
gegeben.

7.1 Einleitung und Hauptresultat

Wir beginnen mit einem kurzen Uberblick iiber einige Ergebnisse, die im Zusammenhang mit
Hardy-Operatoren stehen. Im Anschlufl beschreiben wir unsere Situation und das Hauptresul-
tat dieses Kapitels. Dariiberhinaus geben wir einige unmittelbare Konsequenzen beziehungs-
weise Anwendungen des Resultats.

Im Folgenden schreiben wir X <Y fiir nicht-negative Groen X und Y, wann immer es
eine Konstante A > 0 gibt, sodass X < A-Y. Um gegebenenfalls Abhéngigkeiten von A von
einem Parameter r zu kennzeichnen, schreiben wir X <, Y. Dariiberhinaus meint X ~ Y,
dass Y < X <Y. In diesem Fall sagen wir, dass X zu Y dquivalent ist. Schlieflich verwenden
wir die Notation

X AY :=min{X,Y} und X VY :=max{X,Y}.

7.1.1 Uberblick iiber Hardy-Operatoren
Die klassische Hardy-Ungleichung [82, Formel (4)]

[e'e} F K K [e'e)

@ x k—1 @
mit F(z) = [F f(t)dt und £ > 1 ist eine der am lingsten bekannte Ungleichung, die die
gewichtete L"-Norm einer abfallenden Funktion mit ihrem Gradienten in Relation bringt.
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Fiir kK = 2 ist diese Ungleichung auch als quantenmechanisches Unschérfeprinzip bekannt,
siehe beispielsweise [143], p. 169]. In drei Dimensionen besagt sie

9 1 ’1/1(35”2
/RS|W| 24/R3 EE

Als quadratische Form-Ungleichung kann dies als —A > |z|~2/4 geschrieben werden, wodurch
die Verbindung zur (fiir Physiker) gebréuchlichen Formulierung o207 > 1/4 offensichtlich
wird, wobei o, beziehungsweise o, die Standardabweichung fiir den Ort beziehungsweise den
Impuls bezeichnen.

Die Ungleichung ist zudem von fundamentaler Wichtigkeit in vielen Fragen der harmoni-
schen Analysis, den partiellen Differentialgleichungen und der Spektraltheorie.

Die Ungleichung wurde von Herbst [87] fiir den fraktionalen Laplace-Operator verallge-

meinert. Fiir 0 < a < d besagt sie

2 2

> Mo fiir alle f € C>°(RY) (7.1)

a/2 ‘
o

2l /2]

L2(R4)

mit einer positiven Konstanten Hg . Wir verwenden hier und im Folgenden die Notation
pl = v-A.

Die optimale, sprich grofit-mogliche, Konstante auf der rechten Seite wurde in [87, Theorem
2.5] zu

~2°T((d + a)/4)?

- T((d—a)/4)?

bestimmt. Im Spezialfall « = 2 war die Konstante natiirlich bereits lange vorher bekannt.
Auch der andere physikalisch relevante Fall d = 3 und o = 1 war bekannt. Man spricht dann
von Katos Ungleichung [101 Kapitel 5, Gleichung (5.33)]. Fiir alternative Herleitungen der
Ungleichung mit scharfer Konstante verweisen wir auf [108] [184], (64, [68].

Setzt man

/Hd,oz

_2°T((d + a)/4)?
I'((d—a)/4)? ~

so folgt aus der Hardy-Ungleichung mit scharfer Konstanten, dass der Hardy-Operator

ay = —Hgo =

Loo = |p|*+alzx|™ in LQ(Rd)

nicht-negativ fiir alle @ > a, ist. Genauer gesagt ist £, o als die Friedrichs-Erweiterung der
entsprechenden quadratischen Form auf C°(R?) definiert.

Zahlreiche Variationen dieser Ungleichung wurden bereits untersucht. Ekholm und Frank
[43] untersuchten beispielsweise Storungen des klassischen Hardy-Operators (v = 2) in d > 3
Dimensionen. Sie zeigten fiir alle v > 0 und r > 0 die Hardy—Lieb—Thirring-Ungleichung

Tr (|D APt a2 - v)” < A%d,r/ Vi ()5 2| da.

Frank u. a. [64] verallgemeinerten die Idee und betrachteten Stérungen von L, , mit 0 <
a < min{2,d} und d > 2. Sie erhielten eine Schranke an die Zahl der negativen Eigenwerte
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unterhalb einer fixierten negativen Schwelle des gestorten Operators, die mit der semiklas-
sisch vorhergesagten Schranke fiir den ungestérten Hardy-Operator tibereinstimmt. Mit dieser
Schranke erhielten sie analog

Tr (1D — A]° + a. 2| - V) < A%d@/ Vo (@) +E do
R4

fiir alle v > 0 und allen magnetischen Vektorpotentialen A € L2 (R? : RY).

loc

Yafaev [I84] bestimmte die scharfe Konstante C,, ¢ in Hardy-Rellich-Ungleichungen
2

z| | f(x) — =18 22| dx @
L@ = 3 @)@ o] de<Caa [ 6

181<[254]

~ 2
f)| d.

wobei f die Fourier-Transformation von f bezeichnet.

In einem ganz anderen Zusammenhang, dem Problem der Uberschussladung von Atomen,
zeigte Lieb [I16] in drei Dimensionen die Form-Ungleichung |p||z| + |z||p| > 0, indem er das
Problem auf die Ungleichung |p|?|z| + |x||p|* > 0 zuriickfiihrte, welche tatsichlich #quivalent
zum quantenmechanischen Unschérfeprinzip ist. Im selben Kontext zeigten Handrek und
Siedentop [79] die Positivitdt von |p||z| + |z||p| in zwei Dimensionen. Chen und Siedentop
[21] verallgemeinerten diese Uberlegungen und zeigten die Positivitit des Jordan-Produkts
Japd = 5(|p|?|z|® + |z|°|p|*). Hierbei sind a und b positive Konstanten. Im Fall b = d — a
reduziert sich dies auf die {ibliche Hardy-Ungleichung fiir den fraktionalen Laplace-Operator
(siche Gleichung (5)), ndmlich

b I (4a) b
Japa 2 |2 [Ip\“ —2¢ ( s L R
’ r (5

Da Hardy-Operatoren nur eine einzige Langenskala besitzen, ist es nicht erwartbar, dass
die Operatoren fiir beliebig negative Kopplungskonstanten nach unten beschriankt sind.

Es stellt sich jedoch natiirlich die Frage, ob die Operatoren mit beziehungsweise ohne
Hardy-Potential in gewissen Sinnen dquivalent zueinander sind.

Im Falle des Schrédinger-Operators auf LP(R?) fanden Killip u. a. [102], dass die Sobolew-
Normen, die durch Potenzen von —A beziehungsweise —A + a|z|~2 erzeugt werden, unter
gewissen Bedingungen an p und die Kopplungskonstante a, tatsichlich dquivalent zueinan-
der sind [102, Theorem 1.2]. Das Ziel dieses Kapitels ist es, diese Aquivalenz auch fiir die
Operatoren L, o in L?(R%) zu zeigen.

7.1.2 Definitionen, Hauptresultat und Anwendungen

Fiir a > a4 und s > 0 tauchen die Normen

Jeias

L2(R4)

in vielen Anwendungen in natiirlicher Art und Weise auf. Da der Operator fiir allgemeines
s € (0,2] (insbesondere s ¢ {1,2}) jedoch nur schwer Hand zu haben ist, ist es unerlésslich,
die Verbindung der obigen Normen mit denen des Operators wenn a = 0 ist, sprich

H\pl‘“”f‘

I

L2(R9)
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zu verstehen. Beispielsweise hatten wir in den Kapiteln [5] und [6] gesehen, dass gewisse Spur-
und Form-Ungleichungen beziiglich Potenzen s/2 des Operators L, 1 verifiziert werden muss-
ten, um die verallgemeinerten Feynman—Hellmann-Theoreme anwenden zu diirfen. Insbeson-
dere mussten wir Potenzen s > 1 untersuchen, um mogliche Probleme am Ursprung zu kon-
trollieren.

Mit der Hardy-Ungleichung sieht man leicht ein, dass die Normen fiir s € (0,1] und alle
a > a4 Aquivalent sind, siehe auch Bemerkung Natiirlich folgt durch ,Quadrieren der
Operatoren“ (siehe Bemerkung die Aquivalenz auch fiir s = 2 und, wegen Operatormo-

notonie positiver Wurzeln, auch fiir alle s < 2. Allerdings gilt die Aquivalenz dann nur unter
/2
6

)

der Einschrankung a > —H(li . Die natiirliche Vermutung ist, dass man zwischen s = 1 und
s = 2 interpolieren kénnen sollte. Damit meinen wir, dass es fiir alle a > a4 ein s, 4, gibt,
sodass die Normen fiir alle 0 < s < 54 4, dquivalent sind.

Fir o« = 2 wurde ein solches Ergebnis erst kiirzlich von Killip u. a. [102] bewiesen.
Tatséchlich behandeln die Autoren das allgemeinere Problem, bei dem die L?-Normen durch
LP-Normen ersetzt werden, wobei p in einem von a und d abhéngigen Intervall liegt.

Das Hauptresultat dieses Kapitels ist die Verallgemeinerung der Resultate von [102] fiir
den Fall 0 < a« < 2 A d und p = 2. Der Fall p # 2 gestaltet sich schwieriger und wird im
letzten Kapitel diskutiert.

Definitionen und Resultat

Fiir die exakte Formulierung unseres Hauptresultats verwenden wir fiir 0 < a < d die folgende
Parametrisierung der Kopplungskonstante a durch die Potenz des formalen Grundzustands
von L, q, siche auch [64, Proposition 4.1] sowie den Beweis dieser Behauptung. Wir definieren

U, a(o) = -2

falls o € (—a, (d — ) /2] \ {0} (7.2)

und ¥, 4(0) = 0. Nach [64, Lemma 3.2] und [99, Seite 8] ist die Funktion o — ¥, 4(0) stetig
und streng monoton fallend auf (—«, (d — «)/2] und es gelten

o —a ’

d—
lim ¥, q4(0) =00 und U, 4 < 5 a> = Q4.

Daraus folgt, dass wir fiir alle a € [as, 00)
§:=_(a) (7.3)

definieren kénnen. Wir bemerken an dieser Stelle den Gegensatz zum Fall a = 2. Fir a = 2
ist dg(a) = (d—2)/2 — [(d —2)> +4a])'/?/2 (S fiir Schrédinger), das heift dg(a) — —oo, wenn
a — 00.

Mit diesen Vorbereitungen kénnen wir das Hauptergebnis dieses Kapitels formulieren.

Satz 7.1.1 (Aquivalenz von Sobolew-Normen). Seien o € (0,2 A d), a € [as,00), § durch

(7.3) definiert und s € (0,2].
1. Ist as/2 + 6 < d/2, dann gilt

11p1%2 £l 2Ry Sdacass 1L2af 2@y fiir alle f € C(R?). (7.4)
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2. Ist as/2 < d/2, dann gilt
1£2 0 fllr2 ey Sdacas D12 flr2aey  fiir alle f € CZRY). (7.5)

Wir bemerken, dass das Intervall fiir s in ([7.5)) scharf ist, was gesehen werden kann,
indem man eine am Ursprung konstante Schwartz-Funktion in die Ungleichung einsetzt. Des
Weiteren werden die Schranken an die Parameter fiir o = 2 aus [102] wiederhergestellt.
Bemerkung 7.1.2. Der entscheidende Punkt des Satzes ist, dass er Potenzen s > 1 (soweit

nicht a = a, im Falle (7.4])) erlaubt. Fiir s < 1 kann das Resultat direkter eingesehen werden.
Aus der Hardy-Ungleichung ((7.1)) folgen fiir a > a. die Form-Ungleichungen

<1 — a) Ip|* < Loa < Ip|*, falls a <0, Ip|* < Loa < <1 + a) lp|*, fallsa >0,
a O

*

und wegen Operatormonotonie positiver Wurzeln auch

S

S
(1= 2) Il < Lo <o, s <0, i < o0 < (142 ) bl falls a0
a ) ’ A«

*

mit 0 < s < 1. Dies zeigt (7.4)) und (7.5)) fir 0 < s < 1.

Bemerkung 7.1.3. Ein weiterer entscheidender Punkt dieses Satzes ist, dass der volle Bereich
a > a, und o < 2Ad abdeckt wird. Tatséchlich gibt es fiir s = 2 und @ < d/2 einen einfacheren
Beweis von ([7.5)) und, unter einer weiteren Einschriankung an a, einen einfacheren Beweis von

(7.4). Mit (7.1) folgt zunéchst
a a —-1/2 «a
1o f L p2uay < MBI Fllaay + ol Nl aggey < (14 1alMg 302 ) 11P1 S 2aay

was ([7.5]) fiir @ < d/2 und s = 2 zeigt. Aus der Operatormonotonie positiver Wurzeln folgt

die Behauptung insbesondere fiir alle s < 2 und o < d/2.

. s . . . 1/2
Um unsere zweite Behauptung prézise zu formulieren, definieren wir a.. := —H d/2 . (was

fiir & < d/2 wohldefiniert ist). Das zu a.. gehorige 0, ist nach gerade 0, = d/2 . «, das
heifit @, > a, wegen 0. < (d—a)/2 und der Monotonie der Abbildung . Wir behaupten,
dass fiir |a|] < |asw| die Ungleichung fiir alle s < 2 gilt. Um dies zu zeigen, geniigt es
wieder (wegen Operatormonotonie positiver Wurzeln), die Behauptung fiir s = 2 zu zeigen.
In diesem Fall folgt aus der Dreiecks- und der Hardy-Ungleichung

1L lpagmay = NP1 Flpaqay = lal Iel® fll oy > (1= lalHg 3 ) 1111l ey

was behauptet wurde.

Beweisstrategie

Aus (7.4) und der Hardy-Ungleichung ([7.1]) folgt sofort eine Hardy-Ungleichung fiir Potenzen

von L .

Behauptung 7.1.4 (Verallgemeinerte Hardy-Ungleichung). Seien o € (0, min{2,d}), a €
[ax, +00), und & durch (7.3)) definiert. Dann gilt fir alle 0 < as/2 < min{(d — 20)/2,d}

22 fll2 Samas

Falls umgekehrt 0 < as/2 < min{d — 20, d} und obige Abschitzung gilt, dann ist auch as/2 <
(d—26)/2.

£s/2

a,a

fiir alle f € C2(RY). (7.6)

’2
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Tatséchlich ist die Strategie des Beweises gerade umgekehrt. Wir werden nicht aus
Satz folgern. Stattdessen ist eine wichtige Zutat fiir den Beweis von Satz und
wir werden diese daher zuerst zeigen. Fine weitere Zutat fiir den Beweis des Hauptresultats
ist die folgende umgekehrte Hardy-Ungleichung. Diese gibt eine untere Schranke an die Norm
von |z|~*/2 f welche durch die Differenz (LZ/ a- ||/ 2) f ausgedriickt wird. Solche Unglei-
chungen scheinen — selbst fiir @ = 2 — bisher unbekannt gewesen zu sein. Fiir o = 2 kénnten
sie vermutlich ebenfalls mit unserer Beweisstrategie fiir die punktweisen Abschéitzungen der
Differenz der Warmeleitungskerne der Hardy-Operatoren gewonnen werden.

Behauptung 7.1.5 (Umgekehrte Hardy-Ungleichung fiir Differenzen). Seien a € (0,2 A d)
und a € [ay, +00). Dann gilt fir alle s € (0,2]

[ (222 = 017) 1], S

!a:\‘“”f”g fiir alle f € CZ(RY).

Bevor wir fortfahren, zeigen wir, dass Satz eine unmittelbare Konsequenz der Be-
hauptungen [7.1.4] und [7.1.5] ist.

Beweis von Satz[7.1.1 Falls as/2 < (d — 2§)/2, erhalten wir mit Hilfe der Behauptungen
‘7.1.5lund [7.1.4

Linf )

ez vy,
S NLEaf Nl @ey + Nzl =22

SNLE afll L2 (ray -

113 2y < | o

Dies zeigt (1) des Satzes. Wir bemerken, dass die Annahme as/2 < d in Behauptung [7.1.4
automatisch aus s < 2 und a < d folgt.

Falls as/2 < d/2, argumentieren wir dhnlich, verwenden dieses mal aber die Hardy-Un-
gleichung ([7.1)) (mit as, anstatt «) anstatt Behauptung Dies zeigt (2) des Satzes. [

Wir haben damit den Beweis von Satz auf den der Behauptungen [7.1.4 und [7.1.5]
zuriickgefiihrt. Wir illustrieren nun ihre Beweise. Sie beruhen — wie die im Fall o = 2 in [102]
— sehr stark auf beidseitigen punktweisen Schranken fiir den Warmeleitungskern von L, 4.
Diese wurden erst kiirzlich von Bogdan u. a. [I5] fiir 0 > @ > a,. und Jakubowski und Wang
[99] sowie Cho u. a. [24] fiir a > 0 bewiesen.

Im ersten Schritt verwenden wir die Schranken an e *#e_ um punktweise Schranken an

den Riesz-Kern L, 5/? herzuleiten.

Satz 7.1.6 (Riesz-Kerne der verallgemeinerten Hardy-Operatoren). Seien o € (0,2 A d),
a € [ax,00) und 6 durch (7.3) definiert. Sei ferner 0 < as/2 < min{d,d — 2§}. Dann gilt

-6
L7522, y) ~a z—y|*2 e <1 A 2] A 1y > . (7.7
a,x ( ) QA58 ’ ’ |x _ Z/| ‘.%' _ y‘ )

Eine Anwendung dieses Satzes ist beispielsweise der Beweis von Behauptung
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Beweis von Behauptung [7.1.7). Offensichtlich ist (7.6) #quivalent zur L2?-Beschréinktheit des

Operators |x\_“s/2£;3/2. Mittels der oberen Schranke aus Satz folgt dies aus der L2-
Beschrianktheit des Operators mit dem Integralkern

-4
‘x|—a§|x o y|o¢§—d <1 A |x’ A ‘y’ ) )
[z =yl [z -yl

Diese wiederum folgt unmittelbar mittels eines Schur-Tests. Da dasselbe Argument bereits
in [I02, Proposition 3.2] (mit s anstatt as/2 und o anstatt §) durchgefiihrt wurde und wir
dhnliche Schur-Tests spéiter nochmals durchfithren werden, unterlassen wir hier die Details.
Die Tatsache, dass die Ungleichung fir as/2 > (d —26)/2 im Allgemeinen falsch
ist, folgt aus der unteren Schranke aus Satz mit demselben Gegenbeispiel wie in [102,
Proposition 3.2]. O

Diese Schranken reduzieren den Beweis von Behauptung auf den von Satz [7.1.6]
welchen wir in Abschnitt geben.

Wir fahren nun mit der Strategie des Beweises fort. Wahrend die Beweise von Behauptung
und Satz die punktweisen Schranken von e~“=c verwenden, benstigen wir gute
punktweise Schranken an die Differenz der Wirmeleitungskerne von L, o und |p|®, um den Be-
weis von Behauptung [7.1.5| zu schlieflen. Diese Schranken werden in Abschnitt und insbe-
sondere in Lemmal[7.3.T] diskutiert. Wir betonen an dieser Stelle, dass die Wirmeleitungskerne
fir & < 2 keinen auBerdiagonalen Gaufischen Abfall haben (wie im Fall o = 2). Tatséichlich
fallen die Kerne lediglich algebraisch ab, was die Herleitung der punktweisen Schranken an
den Riesz-Kern und die Differenz der Warmeleitungskerne erheblich erschwert.

Anwendungen

Wir schlieflen die Einleitung mit einigen Anwendungen des Hauptresultats, Satz Die
unmittelbarste Anwendung ist der Beweis einer Sobolew-Ungleichung fiir den Operator L, .
Diese folgt sofort aus Satz und der iiblichen Sobolew-Ungleichung.

Korollar 7.1.7. Seien a € (0,2 A\ d), a € [as,0) und sei 6 durch (7.3|) definiert. Dann gilt
fir alle s € (0,2] mit as/2 < min{(d — 26)/2,d/2}

L2.f fiir alle f € CX(RY). (7.8)

<
||f||LdEis (RY) ~d,oa,s

L2(R4)

Fiir weitere Sobolew-Ungleichungen, die £, , involvieren, verweisen wir auf Anhang

In [65] zeigten Frank u. a. die erstaunliche Tatsache, dass Cwikel-Lieb-Rosenbljum-
und Lieb—Thirring-Ungleichungen aus Sobolew-Ungleichungen hergeleitet werden kénnen. Die
Herleitung der schwierigeren Hardy—Lieb—Thirring-Ungleichungen wiirde daher (zumindest
fiir subkritische Kopplungskonstanten) aus ihrer Arbeit und Satz folgen.

Als Néchstes verallgemeinern wir das Hauptresultat auch auf den masselosen Coulomb—
Dirac-Operator

DW:4wV—é]mLM@ﬂ%

mit 0 < v < 1in der Nenciu- [I35] beziehungsweise Esteban-Loss-Realisierung [47] (sieche auch
die Diskussion in Abschnitt iiber die erlaubten Kopplungskonstanten und ihr Verhéltnis
mit selbstadjungierten Realisierungen). Der fundamentale Unterschied zum Herbst-Operator
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ist, dass DY nicht von unten beschrankt ist. Nichtsdestotrotz kénnen wir, auf den Ergebnis-
sen von Morozov und Miiller [I32] aufbauend, analoge Schranken fiir |D¥| wie in Satz
herleiten.

Korollar 7.1.8. Seien v € (0,1] und s € (0, 2].
1. Falls zusdtzlich s <1+ 2v/1 —v2, dann gilt

p1> fll 2 Sus 11D¥(2 fll2 fiir alle f € C*(R*: CY). (7.9)
2. Es gilt

DY |2 fllzz Svs Wlpl2 flle fiir alle f € CE(R®: CY). (7.10)

Beweis. Wir beginnen mit dem Beweis des einfacheren zweiten Teils, welcher auch ohne unser
Hauptresultat bewiesen werden kann. Die Idee ist die Gleiche wie in Bemerkung Wir
erinnern zuniichst an die Gleichheit (—icx - V)2 = —A ® 1¢a. Mittels der Cauchy—Schwarz-
und der Hardy-Ungleichung mit d =3 und a = 2 ist

(DV)? < A, (-A) ® ¢
Wegen Operatormonotonie der Wurzel erhalten wir (wie in Bemerkung|7.1.2)) fiiralle0 < ¢ < 1
D"Pt < AL © 1.

Dies zeigt mit s = 2¢.
Wir kommen nun zum schwierigeren Teil des Beweises des Korollars. In [132] zeigten
Morozov und Miiller
(D")? > A, (La1)? @ 1¢a

a:—\/l—u2cot<g\/1—y2> , falls v < 1, a:—g, falls v =1,

siehe auch [132, Lemma I1.5, Lemma III.1 und Abschnitt IV]. Obwohl die Autoren die Schran-
ke nicht explizit formulieren, kann sie direkt aus ihren Resultaten gefolgert werden. Die auf
den nullten Drehimpulskanal eingeschriinkte Schranke ist zu ihrem Lemma IV.4 dquivalent,
wohingegen ihr Lemma IV.5 besagt, dass (D¥)? auf dem orthogonalen Komplement dieses
Kanals tatséchlich durch eine Konstante mal —A ® 1¢4 nach unten abgeschétzt werden kann.
Wie zuvor, kann —A ® 1¢4 mit der Hardy-Ungleichung weiter nach unten durch (£41)? ® 1¢a
abgeschitzt werden. Mit der Operatormonotonie positiver Wurzeln erhalten wir daher fiir alle
0<t<l

mit

DY > AL L2 @ 1ca
Die Beobachtung a = ¥; 3(1 — V1 — v?) und Satz mit s = 2¢ implizieren dann (7.9). O

Die hauptsichliche Motivation fiir Satz ist natiirlich der Beweis der starken Scott-
Vermutung fiir den Chandrasekhar- und den Furry-Operator, siehe Kapitel 5] und [6] Hier
miissen wir gewisse Form- und Spur-Ungleichungen beziiglich des Chandrasekhar- bezie-
hungsweise des Furry-Operators zeigen. Diese lassen sich mit unserem Resultat sofort auf
die entsprechenden Ungleichungen beziiglich v/—A zuriickfithren, welche deutlich leichter zu
beweisen sind.
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7.2 Wairmeleitungs- und Riesz-Kerne

Wir beweisen in diesem Abschnitt Satz Dazu erinnern wir an die kiirzlich von Bogdan u.
a. [I5] (fur a < 0) und Jakubowski und Wang [99] sowie Cho u. a. [24] (fiir @ > 0) bewiesenen
beidseitigen punktweisen Schranken fiir den Wérmeleitungskern von £, fiir a > a,. Fiir
a = 0 wurden die Schranken bereits von Blumenthal und Getoor [12] gezeigt. Im Spezialfall
a = 0 und a = 1 zeigt eine explizite Rechnung, dass der Warmeleitungskern gerade der
Poisson-Kern ist, siehe auch [170, Theorem 1.14].

Satz 7.2.1 (Wirmeleitungskerne verallgemeinerter Hardy-Operatoren). Seien a € (0,2 A d),
a > a, und sei 0 durch (7.3) definiert. Dann erfillt der Wirmeleitungskern von Lq o fir alle
z,y € R und t > 0 die beidseitigen Schranken

0 0
tl/a tl/a t1+d/a
e—tﬁa,a (.CC, y) ~ |1V 1V — t—d/a IN—|. (7.11)
|| [yl o —y|"

Fiir ¢ > 0 kann man auch das Maximumprinzip der Warmeleitungsgleichung bezie-
hungsweise die Trotter-Formel verwenden, um die folgende, simplere Schranke zu erhalten.
Diese ist interessanterweise ausreichend, um die Differenz der gestérten und ungestorten
Wirmeleitungskerne abzuschétzen (Lemma und damit die umgekehrte Hardy-Unglei-
chung (Behauptung [7.1.5)) zu zeigen.

Lemma 7.2.2. Seien o € (0,2Ad) und a € (0,00). Dann erfillt der Wirmeleitungskern von
Lo fiir alle x,y € R? und t > 0 die Schranke

0 < e haa(z,y) <e Pz, y). (7.12)

Alternativ folgt das Lemma auch aus der Duhamel-Formel (siehe spéter auch (7.16]))

1
— o — —(1— o — —
e~ IP1Y _ o= Lasa :a/ e~ (=8P | g magm5Lana g
0

La.o ghenfalls auch direkt aus der

und der Positivitdt der Warmeleitungskerne (welche fiir e~
Trotter-Formel folgt).

Kombiniert man diese Schranke mit der aus Satz fir a = 0, erhélt man

d
AL < d/a tlJr /o
0<e (r,y) St IN——ro |-
|z =yl

Aus den Schranken an den Wérmeleitungskern kénnen wir sofort die behaupteten Schran-
ken an den Riesz-Kern herleiten.

Beweis von Satz[7.1.6. Mit dem Spektralsatz kann der Riesz-Kern durch

—s 1 R o9 dt
Lol = g [ e @) 2 G (713)
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dargestellt werden. Setzt man die beidseitigen Schranken fiir e *$@e aus Satz ein und
skaliert ¢ — |x — y|“t, sieht man, dass die rechte Seite von ([7.13]) zu

00 s tl/oz J tl/a J tl-l—d/a dt
) U ) e )
x Tr —
0 y y ) ) (7.14)
oo J— —
=|z —y!agd/ dt t3 (1 At*gfl) (1 v y'ti> <1 v y'ti>
0 || vl

dquivalent ist. Da L, s/ z(m, y) symmetrisch in 2 und y ist, kénnen wir ohne Beschréinkung der
Allgemeinheit |z| < |y| annehmen. Daher miissen wir nur noch zeigen, dass das Integral auf
der rechten Seite von (7.14)) fir |z| < |y| zu

(ngtl)”
1A
[z —y

dquivalent ist. Dazu unterscheiden wir zwischen den Féllen |z — y| < 4|z| und |z — y| > 4|z|.

Fall |z — y| < 4]z|. In diesem Fall ist |y| < |z| + | — y| < 5|z| und daher
[z =yl S |zl ~ [yl

Daher ist das Integral in ((7.14) zu

o0 s d 1,1 25
/ dt t2 (1/\t—a—1> (1\/)\— tE>
0

dquivalent, wobei A := |z|/|z —y| > 1/4. Wir miissen nun zeigen, dass dieses zu 1 dquivalent
ist. Wir haben

P R 20
/ dt t3 (1 A t%*l) (1 Vv xlté) _ /
0 0

da A > 1/4 und da das Integral wegen der Annahme s/2 < d/« konvergiert. Andererseits gilt
wieder wegen A\ > 1/4 und as/2 < d

A% s d
dt t2 (1 /\t*rl) ~1,

o0 S 26 o0 S
/ dt t3 (1 A t*gfl) (1 v )r%) - / dt t3 (1 A t*gfl) A20%

oo
< / dt 5 AT IR ATl <1

[

Das Integral konvergierte wegen der Annahme s/2 + 2§/a < d/a. Dies zeigt die behauptete
obere Schranke. Da das Integral von A% bis Unendlich nicht-negativ ist, folgt die behauptete
untere Schranke auch aus dem vorigen Integral von Null bis A%, welches echt positiv ist.

Fall |x — y| > 4|z|. In diesem Fall ist sowohl |z — y| < |z| + |y| < 2|y|, als auch |y| <
2| + |z — y| < 2|z — y|, weshalb auch

lz| < ly| ~ |z —y|.

Dabher ist das Integral in (7.14)) zu

S 5 5
/ dt t2 (1 At*gfl) (1 v/\*lti) (1 vti)
0
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dquivalent, wobei A := |z|/|z — y| < 1/4. Wir zeigen nun, dass dieses zu A9 dquivalent ist.
Wegen A <1/4 und § > —a ist

! s _d_q 1,1 4 1\9 ! s._§5,9 -5
dt 5 (1At 4 )(1\//\ ta) (1vw) — | dtesaOte oA

und unter Verwendung von s/2 + 2§/a < d/a ist
& s é 4 > s
/ dt 3 <1 /\t—%—l) (1 v/\—lti) (1 \/ti) :/ dt t576 A Oata ~ AT,
1 1

Andererseits ist (mit § > —a, was insbesondere as/2 + o+ § > 0 zur Folge hat)

AT s s AT so
/ dt t3 (1 A t_g_l) (1 v A—lté> (1 v t%) - / dt t5 ~ AT < A0
0 0

Dies zeigt die behauptete obere Schranke. Da auflerdem das letzte Integral nicht-negativ ist,
erhalten wir auch die behauptete untere Schranke. Damit ist der Satz bewiesen. ]

7.3 Differenz der Wiarmeleitungskerne

In diesem Abschnitt beweisen wir Behauptung Der Schliifiel hierfiir sind moglichst gute
Schranken an die Differenz der Wérmeleitungskerne von £, o und |p|®, das heifit

K (x,y) = e W (2,y) — e7 oo (a,y).

Die Schranken an die individuellen Wérmeleitungskerne e *PI% (z, ) und e*a (z, i) wurden
im letzten Abschnitt diskutiert. Das folgende Lemma besagt, dass es bei der Differenz der
Kerne effektive Ausloschungen in den Regionen (|x| V |y|)® > ¢ und |z| ~ |y| gibt. Es ist
interessant zu beobachten, dass die beidseitigen Schranken fiir e @« nur fiir a < 0 benétigt
werden. Fiir a > 0 reicht das Maximumprinzip (Lemma fiir die Zwecke dieses Abschnitts
aus.

Wir formulieren die Differenz der Kerne mit Hilfe der Funktionen

5 . t2/a 4 t tl/a
Ly (@,9) 5= L(apvpyhe<nt ™ B +1{(|x\v|y|)azt}W ”m

und

1-4 144
(0% t @ t a
M (z,y) = 1{(I:cIVIy\)a2t}1{%|a;|g|y\§2\x|}(m Ayl)e <1 A = y|d+a) :

Mit dem Positiv-Teil 04 := max{d,0} (sprich 64 = 0, wenn ¢ > 0 und J; = 4, wenn
a < 0) zeigen wir

Lemma 7.3.1 (Differenz der Kerne). Seien o € (0,2 d), a € [ax,00) und sei 6 durch ([7.3)
definiert. Dann gilt fir alle z,y € R und t > 0

« 01,5 @
| (2, y)| S Ly (2, y) + M (2,y) - (7.15)
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Beweis. Wegen der Symmetrie in x und y geniigt es |x| < |y| zu betrachten. Durch Skalieren
sieht man weiter ein, dass es geniigt, ¢ = 1 zu untersuchen, weshalb wir von nun an den Index
t bei den Funktionen K, Lfﬁ und M{* vernachléssigen.

Falls a > 0 (sprich ¢ < 0), kombinieren wir das Maximumprinzip (Lemma und die
Schranke aus Satz fiir a = 0 und erhalten

0< K(z,y) <e P(z,9) ~ 1Az —y[ 4.

Dies zeigt die Schranke K (z,y) < L*°(x,y), falls |y| < 1 (durch Beschrinken des Minimums
durch 1), oder, im Fall |y| > 1 und |z| < |y|/2 (durch Beschrénken des Minimums durch
|z —y|~ 0 S fyl74).

Falls a < 0 (sprich § > 0), kombinieren wir wieder das Maximumprinzip und Satz [7.2.1]
Dann folgt

0< —K(z,y) < e e (a,y) S (1v1al7) (1v1n170) (1Al —y*) .

Dies zeigt die Schranke —K®(z,y) < L*°(x,v), falls |y| < 1 (da dann das Produkt der ersten
beiden Faktoren auf der rechten Seite kleiner oder gleich (|z||y|)~0 ist), oder, falls |y| < 1
und |z| < |y|/2 (da dann der kleinere der ersten beiden Faktoren gleich 1 ist und der dritte
Faktor, also 1 A |z — y|~4~®, durch |y|~9=% abgeschiitzt werden kann).

Wir kénnen daher von nun annehmen, dass |y| > 1 und |z|/2 < |y| < 2|z|. Mit der
Duhamel-Formel ist

1
J— — [e3 — —
a/ ds e~ (=3Pl |z| "% sLaa
0

1 1
_ ol / ds e*IPI” (|| —ayg—5Laa _ o—lpl® Slpl | | g —5Laa
e se p|* + alx|~)e e ds e*PI|p|“e
0 0 (7.16)

1 1
— (&7 @ _ — [e% o
— _e 7l / ds elPl* 9 e=5Lae _ oIpl / ds 0,e°IPl% = 5La.0
0 0
| a _|p| _

Falls a > 0, verwenden wir Lemma und Satz (mit a = 0) und schlieflen, dass

1 1+ 2 144
1— «@ «@
()<K°‘(ac,y),§/ ds/ dz |z|_a3_g(1—s)_g 1/\% 1/\8701Jr .
0 JRd |z — 27 ly — 27

Falls a < 0, verwenden wir Satz und schlieflen, dass

1 144

1— «

0< —K%=x,y) < / ds/ dz s_g(l — s)_g 2|7 1A %
0 R — 2|

|z

s S 144
Sa Sa S «
X |14+ — 14+ — IN—mF—
1 é d
( !M)( Z\)< ly — 2| +°“)
1 144
_ 1— o
5/ ds/ dzs_g(l—s)_g]z] @ 1/\%
0 R |z — 2|

s 144
Sa S @
X1+ — IN———F—— .
19 d
( M)( ly — 2| +a>
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Die zweite Ungleichung riihrt von der Tatsache her, dass sl/e <1<yl
Es verbleibt somit

_ (1-— S)H* s sita
/dS/RddZ S 041—8) ‘Z| a(l/\ ’d—l—a 1+W 1/\W (717)

zu beschrénken. Dazu zerlegen wir die z-Integration in zwei Teile und beginnen mit der Region
|z| > |x|/2. In diesem Fall schétzen wir

27 S el und se <1<y S 2] S 2

ab. Wir schétzen (7.17) in dieser Region ab, indem wir diese Schranken anwenden und die
z-Integration auf ganz R? fortsetzen. Das Integral ist dann durch eine Konstante mal

1 1 1 — g)i+e 1+4
’{L‘|O‘/ dS/ dz 875(1—8)7g (1/\(‘3382)|d+a> (1/\‘y82’d+a
R? - -
S \x!a/ ds/Rd dz e” (=9I (1 2)e5IPI% (2 4)

— [ ds e P (z,y)
ma/
1
< o |—d—a — «
S (LA ke =gl ) = 2r(ay)

beschrénkt. Hierbei haben wir zum einen Satz [7.2.1| zwei mal (mit @ = 0) und zum anderen

die Halbgruppen-Eigenschaft verwendet.
Schliefilich miissen wir noch ([7.17)) in der Region |z| < |z|/2 abschitzen. Wir beschrénken

o+

1 S a 1
de o ——— |1+
| |4 | |.’E—Z|d+a ’2‘54_ |y—Z’d+a
z|<35lx

1 séi
<+ —a o
S Jefialydra / S T

|2|< 3l

1 d— St d—a—6
~ 7|m|d+a|y|d+a (|:c| Y+ s |zt +>

| n
~ 2|y dra i

wobel wir im vorletzten Schritt o + d+ < d (was aus § < (d — «)/2 und a < d folgt) und im
letzten Schritt wieder s/® < 1 < |y| < || verwendet haben. Setzt man dieses Ergebnis in

(7.17) ein, erhalten wir

) 14d o+ 1+4
_d _d o (1-5)"a s stta
/(; dSS a(]_—g) a / dZ |Z| (1/\‘sz|d+a> 1+ |Z|6+ (1A|yz‘d+0‘>

|21<3 2|

M 1ds 5(1—s) ~ 2| < 1 L015+($ ),
~ Jgldtalydre J, |z[draly|dta ~ [y[dre = Y
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wobei wir im vorletzten Schritt wieder 1 < |y| < |z| verwendet haben. Dies zeigt die behaup-
tete Schranke an die Differenz der Warmeleitungskerne. O

Wir verwenden diese Schranken, um den Beweis des Hauptresultats zZu schlieﬁen denn es
verbleibt nur noch die umgekehrte Hardy-Ungleichung (Behauptung [7 zu zeigen. Dazu
verwenden wir (siehe beispielsweise [72] und [161, Theorem 0.3.1])

Lemma 7.3.2 ((Gewichteter) Schur-Test). Seien (X, du) und (Y, dv) messbare Riume und
sei w(x,y) eine auf X XY messbare Funktion. Angenommen, K(x,y) : X x Y — C erfillt

sup/ w(z,y)?r |K(z,y)|dv(y) = A1 < 00
Y

zeX

und

_ 1
sup [ w(e,) 7 K ()] du(e) = 42 < o0
yeY J X

fiir ein 1 < p < oo beziehungsweise 1 < p < oo, falls w(x,y) = 1. Dann ist der durch

:/meﬂww@
Y

definierte Operator von LP(Y,dv) nach LP(X,du) beschrinkt. Insbesondere gilt

11
1T fller(x,an) < AT AS N fllLe(v,av) -
Damit kommen wir zum

Beweis von Behauptung [7.1.5, Fiir s = 2 ist die Behauptung trivial, weshalb wir von nun an
0 < s < 2 voraussetzen. Wegen der Gleichheit

|Gt -y =1
.

erhalten wir durch Anwenden des Spektralsatzes und Skalieren

(e =) £ =g |5 P (0 =1) £ (e < 1) )
= _I‘(—ls/Z) /Oooit 1—5/2 (e—tlp|°‘ _ e—tﬁa,a) ¥

__ b [Tt .
= I‘(—s/2)/0 ot /Rddth(,y)f(y)-

Mit Hilfe von Lemma schéitzen wir

H(LS/Q |p|as/2 fH ‘/Rdd?// *t_ﬁLaé*(way)\yIO‘%g(y)

e Lo [T i i o)

ab, wobei wir die Abkiirzung g(y) := |y|~*/?|f(y)| verwendet haben. Das Ziel ist es, beide
Terme auf der rechten Seite von ((7.18)) durch eine Konstante mal ||g||2 zu beschréanken.

2

(7.18)
2
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Wir beginnen mit dem ersten Term und berechnen

dt _ s 5 _ dt g_d725+
|5 R ) = el T
0
(J[VIyl)
3
+ / a3 ! 1v tle N7
e Ve Y R

t<(Je| vy«

é
N 1 <\1’| v Iy!> !
(Jel v [yl = \z[ Ayl

Hierbei haben wir s/2 + (d — 204)/a > 0 (was aus § < (d — «)/2 folgt) verwendet. Daher ist

‘ Lo [ s waiiow)| <) [ a (|x,v1|y|)d(:jX§:)6+g<y>

Fiir alle 04 < 5 <d— 94+ (so ein f existiert, da 6 < (d — «)/2 < d/2) ist

3 6
SUp/dx(lyly o (T () <
yeRd JR =[] (2] v [y)* \ | Ayl re |27 (|2 vV 1)T \ 2] A 1

Mit einem gewichteten Schur-Test (Lemma [7.3.2]) kénnen wir daher schlielen, dass

1 a <I$\ . ’y|>5+ 9(y)

y
a7 (| Vv IyD)® Nz Ayl

Dies zeigt, dass der erste Term in ([7.18)) die behauptete Schranke erfiillt.
Wir betrachten nun den zweiten Term in ([7.18). Da auf dem Triger des Kerns |z| ~ |y
ist, haben wir

|[av [ S esspeaZaw)| | [La [~ 5 aatali Zowm).

Dies ersetzt den urspriinglichen Kern durch einen symmetrischen Kern, weshalb nur ein ein-
ziger (statt zwei) Schur-Test durchgefithrt werden muss. Wir erhalten

sup [ do [ ME ) el

yeRd

d d

dt s tl_z ‘[,‘1+E s

=8 d -tz 1A T
y;@ / v / t (\;p| A |y|)a ( ’:E _ y|d+0‘ (|5UH3/’)

slyl<lz|<2ly|  t<(lz[VIyD)*

s dt s tta
< sup |y| 2z ® / dx / Sst=a (1A T |
y€ER4 t |l‘ - y|

slyl<lzl<2lyl  t=(2lyD*

S

2

2

S llgllz -
2

Nun vertauschen wir die Reihenfolge der Integrationen und fiihren zunéichst das xz-Integral
aus. Wir beschrénken

A+ s 4
/ dr | 1A 7d+ S / dr | 1A 7{[4— ~ta.
|z —y7 R |z —y7

1
5 |yI<lz|<2ly|
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Daher ist das obige Supremum durch eine Konstante mal

s dt S
sup |y[2 / —t 2t~ (7.19)
yGRd t
1<yl

beschrankt. Daher zeigt der Schur-Test, dass

Lo [~ e aali) Fow)| < ok,

womit die Behauptung gezeigt ist. O

7.4 Eine Verallgemeinerung

Wir schliefen das Kapitel mit einer leichten Verallgemeinerung des Hauptresultats, welche
beim Beweis der starken Scott-Vermutung eine wichtige Rolle spielt. Es stellt sich heraus,
dass das Resultat auch fiir Operatoren |p|® + V gilt, wobei V eine Funktion auf R? ist, die

(7.20)

erfiillt. Hierbei ist ax < a < a < co. Wir zeigen

Satz 7.4.1. Seien o € (0,2 d), ax <a < a < oo und sei § = (a) durch (7.3) definiert. Sei
€ (0,2].

1. Falls as/2+ 6 < d/2, dann gilt fir olle V, die erfiillen
11612 Fl 2y Saaas (21 + V)2 fll 2@y fir alle f € CERY).  (721)
2. Falls as/2 < d/2, dann gilt fiir alle V, die erfiillen
1P + V)2 fll 2y Sacas 11212 Flia@ey  fir alle f € CERT). (7.22)

Wir betonen, dass § beziiglich a¢ und nicht beziiglich a definiert ist. Interessanterweise
héngen die Konstanten in Satz nicht von a ab. Mit einem Approximationsargument
lie3e sich daher die Klasse der erlaubten Potentiale V' vermutlich noch vergréfiern.

Der Beweis von Satz folgt unmittelbar aus den folgenden beiden Behauptungen in
demselben Stil, wie Satz aus den Behauptungen [7.1.4] und [7.1.5] folgte.

Behauptung 7.4.2. Seien a € (0,2Ad), ax < a < a < oo und 6 durch (7.3)) definiert. Dann
gilt fiir alle 0 < as/2 < min{(d — 28)/2,d} und alle V', die (7.20)) erfiillen

212 fll2 Sa.aas

(Ip|* + V)S/sz2 fiir alle f € C=(RY).

Beweis. Wegen des Maximumprinzips gilt fiir alle z,y € R? und t > 0

0 < et V) (g ) < e7tFac (g, y) (7.23)
und daher, mit dem Analogon von , auch

(Ip* + V)™ (,y) < L3 ().

Dies zeigt, dass die oberen Schranken in Satz auch fiir den Operator (|p|®+V)~%/2 giiltig
sind. Die Behauptung folgt nun im gleichen Stil wie Behauptung O
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Behauptung 7.4.3. Seien a € (0,2 d), ax <a < a < oo und s € (0,2]. Dann gilt fir alle

V, die (7.20)) erfiillen

[ (ot + V72 = 13172 1] S

|ar;|_o‘s/2!}"H2 fiir alle f € C2(RY).
Beweis. Fiir s = 2 ist die Aussage trivial, weshalb wir von nun an s € (0,2) annehmen. Sei
K (x,y) = e W (a,y) — e P (2, y).
Wegen des Maximumprinzips gilt fir alle z,y € R% und ¢t > 0
P (@,y) — e e (@, y) < K (2.y) < e P (2, y) — oo (a,y).

Da ¢ =¥, L(a) <6, folgt aus Lemma [7.3.1| mit @ und & die Abschéitzung

e a,b a,d. a a,d o
|K{ (2, y)| S Ly (w,y) + Ly " (2, y) + M (w,y) S Ly (2,y) + M (2,y)

Mit dieser Schranke folgt die Behauptung mit den gleichen Schritten wie im Beweis von
Behauptung [7.1.5 O



142 7. Hardy-Operatoren und Sobolew-Normen in L?




Kapitel 8

Aquivalenz von Sobolew-Normen
fiir verallgemeinerte
Hardy-Operatoren in L”

8.1 Einleitung und Hauptresultat

Das Ziel dieses Kapitels ist die Verallgemeinerung des Hauptresultats iiber die Aquivalenz
von Sobolew-Normen verallgemeinerter Hardy-Operatoren L, = |p|® + a|z|~® von L?*(R?)
(Satz auf LP(R?). Hierbei liegt p in einem Intervall, welches von a,as und d abhiingt.
Einerseits ist diese Verallgemeinerung von reinem mathematischen Interesse motiviert. An-
dererseits konnte die gewonnene Aquivalenz der Sobolew-Normen (sowie andere Werkzeuge,
die im Zusammenhang mit harmonischer Analysis stehen und in diesem Kapitel erarbeitet
werden) fiir die Untersuchung nicht-linearer partieller Differentialgleichungen, die £, o invol-
vieren, hilfreich sein, um Probleme auf den Operator |p|* ohne Potential zu reduzieren. Fiir
a = 2 wurde das entsprechende Ergebnis beispielsweise von Killip u. a. [104], [103] verwendet,
um die Wohlgestelltheit der energiekritischen, nicht-linearen Schrédinger-Gleichung in d = 3
mit Hardy-Potential
(10 — Lao)u = |ul*u

oder die Schwelle zwischen Streuung und Explosion nach endlicher Zeit der fokussierenden,
kubischen, nicht-linearen Schréodinger-Gleichung mit Hardy-Potential

(10 — Lag)u = —|ul?u

zu untersuchen.
Um unsere Resultate prézise zu formulieren, definieren wir fiir 0 < oo < 2 A d wieder

U (o) = —2° falls o € (—a, (d — a)/2] \ {0}

und ¥, 4(0) = 0. Nach [64, Lemma 3.2] und [99, Seite 8] ist die Funktion o — ¥, 4(0) stetig
und streng monoton fallend in (—a, (d — ) /2] und es gelten

d—
lim ¥, (0) =0 und Ve d < a> = a,
oc——a ’ ’ 2



144 8. Hardy-Operatoren und Sobolew-Normen in L?

mit der kritischen Kopplungskonstanten

2°T((d + a)/4)?
I'((d—a)/4)?

Ay =

Konsequenterweise definieren wir wieder fiir alle a € [a,, 00)
§:=V_(a). (8.1)

Unser Hauptresultat basiert auf der Annahme, dass man wenigstens ein Mikhlin-Mul-
tiplikator-Theorem fiir £, , beweisen kann, siehe Satz Anschaulich gesprochen sind
Spektralmultiplikator-Theoreme, wie Mikhlin- oder Hérmander-Multiplikator-Theoreme, die
Analoga zum Spektralsatz im Hilbertraum L?. BekanntermaBen folgt aus dem Spektralsatz
insbesondere, dass messbare und beschriinkte Funktionen selbstadjungierter Operatoren L2-
beschriankt sind. Die entsprechende Aussage in LP, sprich, dass Funktionen selbstadjungierter
Operatoren, welche zuvor auf L? definiert sind, auch LP-beschrinkt (mit 1 < p < oo) sind,
benotigt im Allgemeinen deutlich stérkere Regularitéitsbedingungen an die Funktion (auch
Multiplikator genannt). Im Falle eines Mikhlin-Multiplikator-Satzes [127] verlangt man, dass
der Multiplikator m mindestens s mal stetig differenzierbar ist und die Mikhlin-Bedingung

INm(\)| <51 fiiralle j = 0,...,5
erfiillt. Bei einem Hdrmander-Multiplikator-Theorem [90] muss der Multiplikator F' dagegen
gleichméfig in lokalen Sobolew-Réumen liegen. Damit meinen wir, dass F' € Hj (R) fiir ein
hinreichend grofles s > 0 sein muss und fiir ein 0 # ¢ € C°(R) die Hérmander-Bedingung

sup [[o(-) F' (L) || s < 00
t>0

erfiillt sein muss. Die Verbindung zur Mikhlin-Bedingung wird offenbar, wenn man in der
Hoérmander-Bedingung eine Variablensubstitution durchfiihrt, was darauf fithrt, dass wenigs-
tens
> supt HH A (/) F()]3 < oo
0<j<ls) 77

erfiillt ist. Insbesondere folgt daraus, dass Funktionen, die die Mikhlin-Bedingung erfiillen,
auch die Hormander-Bedingung erfiillen. Sowohl fiir Mikhlin- als auch fiir Hérmander-Mul-
tiplikator-Theoreme ist s > d/2 eine hinreichende Bedingung fiir die LP-Beschrianktheit von
Fouriermultiplikatoren fiir 1 < p < oo, siehe auch [166, Kapitel IV, §3, Theorem 3] und [90].

In diesem Kapitel und in Anhang [D] untersuchen wir die LP-Beschréinktheit von Spektral-
multiplikatoren von L, o, welche in Satz fiir Mikhlin-Multiplikatoren und in Satz
fir Hormander-Multiplikatoren behandelt werden. Obwohl es fiir unsere Anwendung keine
direkte Rolle spielt (da wir o < d voraussetzen), bemerken wir aulerdem, dass Hebisch [85]
Theorem 3.8] bereits ein Hormander-Multiplikator-Theorem fiir [p|® + V' mit nicht-negativem
Potential V' zeigte, wenn d = 1 und a > d = 1. Dieses wird in Satz wiederholt und im
AnschluB ein etwas gestraffterer Beweis gegeben. Die neue Beobachtung ist, dass der Beweis
tatsichlich ein Multiplikator-Theorem fiir alle d € N und a € (0, 2) liefert, wenn die Funktion
zusiétzlich kompakt getragen und hinreichend regulér ist (Behauptung . Wir erldutern
in diesem Zusammenhang auflerdem, woher die Einschrankungen an d und o kommen und
weshalb die Argumente wahrscheinlich nicht fiur [p|* + V' verwendet werden konnen, wenn V'
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einen Negativ-Teil hat. Wir bemerken schliefllich, dass vor Kurzem Chen u. a. [22] Abschnitt
5.3] (siehe auch ihr Theorem 3.1 und Corollary 3.2) mit vollig unterschiedlichen Techniken
das gleiche Resultat zeigten. Zudem zeigen die Autoren Hormander-Multiplikator-Theoreme
unter sehr viel allgemeineren Bedingungen an den zugrunde liegenden Operator. IThre Argu-
mente basieren dabei nicht auf Abschéitzungen, die den Warmeleitungskern involvieren. Thr
Ergebnis fiir [p|* + V ist dabei lediglich eins von vielen Korollaren.

Die Argumente fiir die Beweise der Spektralmultiplikator-Satze sind durch die von Killip

a. [102] fir a < 0 beziehungsweise Hebisch [84) B3] [85] fiir @ > 0 inspiriert. Im Folgenden
meinen gestrichene Indizes immer die dualen Holder-Indizes, sprich p~'+p'~! = 1. Der Beweis
des Mikhlin-Multiplikator-Theorems fiir £,, mit a < 0 beruht auf folgender technischen
Annahme, die im Wesentlichen den Wellenpropagator cos(7/Lq,q) betrifft, wie wir spéater
sehen werden.

Annahme 8.1.1. Seien d € N, o € (0,2 A d), a € [a4,0), 0 durch (8.1) definiert und
q € (d/(d—9),2). Dann gilt folgende Behauptung:

Sei f € LI(RY) und R? = FUQ eine Calderdn—Zygmund-Zerlegung beziiglich | |7 € L'(R?)
auf der Hohe h?; das heifft FNQ =0 und Q = J,, Qr, wobei {Qr}i eine Familie dyadischer

Wiirfel mit Durchmesser 2ry, ist, deren Innere disjunkt sind und die Ungleichungen

@l <y |

erfillen. Sei f = g + b, wobei g auf jedem Wiirfel Qi konstant ist, |g(x)| < h fiir fast alle
z € R, b(z) =Y, br = > f(7)xg, () und fQ bp(z)dx = 0. Seien ferner

£ [2]) -

Angenommen, m : [0,00) — C ist beschrankt und messbar und erfillt

f(x)|9dz < 2YQk| wund |f(x)| < h fast dberall auf (U Qr)°
k

17m(\)| S; A fir alle §j € {0,1,...,jo} -

Seien a(X) == m(\) (1 —exp (—rgA?))", 22 3 R > i und ¢ € CZ(R) so, dass supp (p) C
[—1/29/2,1/20/2), o(7) =1 fiir |7| < 1/4*/* und

1 . T
< /2 v pa/2 AT
Pr(N) = RYPG(R2N) = /e o () dr.

Definiert man

ar(\) = (ax@r)(\) =71 /000 cos(AT)a(T)e (ﬁ) dr,

dann gibt es ein 8 > 0, sodass

i\ .
larbillzs reae.u<om S (55) 7 el

gilt.
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Bislang konnten wir ein Multiplikator-Theorem fiir £, o nur fiir
e den Wirmeleitungskern e “a« und alle a > a, (Lemma [8.3.2) und
e a >0 (Satz und Behauptung fiir ein Hormander-Multiplikator-Theorem)

zeigen. Die Giiltigkeit unseres Hauptresultats héngt entscheidend von Abschitzungen an
Littlewood—Paley-Funktionen (kurz (LP)-Funktionen, auch ,square functions®), Satz
ab. Diese beruhen allerdings darauf, dass der Multiplikator

o N N k
me(A) = Y en - (A NO/2) =S¢ HA/NT? (1 L o (@ D)ON /2)2)
Ne2z

fir 2N 5 2k > s > 0 und eine Folge {ex} mit Rademacher-Verteilung, LP-beschrinkt ist.
Dies ist — im Rahmen dieses Kapitels — der Hauptgrund fiir die Wichtigkeit der Spektralmul-
tiplikator-Sétze.

Mit dieser Einfithrung formulieren wir nun unser Hauptresultat iiber die Aquivalenz der
LP-Sobolew-Normen des verallgemeinerten Hardy-Operators L, .

Satz 8.1.2 (Aquivalenz von Sobolew-Normen in LP(R?)). Seiend € N, 0 < a < 2Ad, a > ax,
0 durch (8.1) definiert und s € (0,2]. Sei aufferdem Annahme wahr, falls s € (0,2).

1. Falls 1 < p < oo die Ungleichungen as/2+ 6 < d/p < min{d,d — 0} erfillt, gilt
1P Flloqety Sapas 1£2afllioa fiir alle f € C2(RY).

2. Falls max{as/2,0} < d/p < min{d,d — §} (was bereits 1 < p < oo sicherstellt), gilt
13 afllnmsy Sapens P13 Flismay fiir alle £ € CZ(R).

Der Grund, weshalb wir fiir s = 2 auf die Annahme [8.1.1] verzichten kénnen, ist dass wir
in diesem Fall keine Littlewood—Paley-Theorie und damit auch kein Spektralmultiplikator-
Theorem benétigen. Stattdessen konnen wir direkt die gewohnliche und die verallgemeinerte
Hardy-Ungleichung (Lemma und Behauptung [8.1.4) wie im Beweis von Satz des
letzten Kapitels verwenden.

Fiir s < 2 verlduft der Beweis dhnlich zu dem in L?(R?) des vorigen Kapitels. Dort war es
entscheidend, dass man eine verallgemeinerte Hardy-Ungleichung und umgekehrte Hardy-Un-
gleichungen fiir die Differenz EZ,/ 3 - |p|°‘5/ 2 zeigen konnte. In diesem Kapitel verallgemeinern
wir diese beiden Ungleichungen auf LP. Wir erinnern an die Standard Hardy-Ungleichung
in LP (siehe beispielsweise Herbst [87, Theorem 2.5] auch fiir die optimale Konstante in der
Ungleichung).

Lemma 8.1.3 (Hardy-Ungleichung). Seien o € (0,2 Ad) und p € (1,00). Dann gilt fir alle
s>0 mitas/2 <d/p

< 27043/2 F((d/p - CYS/Q)/Q)F(d/(Qp/))
< I'((d/p + as/2)/2)I'(d/(2p))

Wir formulieren nun die verallgemeinerte Hardy-Ungleichung in LP, welche wie im vorigen
Kapitel mit Hilfe des Riesz-Kerns von £, , hergeleitet werden kann.

2]~/ £, Ip|**/2f|l, fir alle f € CZ(RY).
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Behauptung 8.1.4 (Verallgemeinerte Hardy-Ungleichung). Seien 1 < p < oo, a € (0,2Ad),
a € [ay, +00), 0 durch (8.1)) definiert und as/2 € (0,d). Dann gilt fiir alle s > 0 mit as/246 <
dip<d—6

212 flp Sa.aasp 1Ly fiir alle f € COR?). (8.2)
Falls umgekehrt as/2 € (0,min{d,d — 20}) und obige Abschitzung wahr ist, dann ist auch
as/2+d<d/p<d—§é.

Beweis. Die Aussage ist dquivalent zur LP-Beschrinktheit des Operators |2z|~**/2L, 52 Wir
erinnern an die punktweisen Schranken an den Riesz-Kern von £, , (Satz|7.1.6)), sprich

-6
5_5/2(x,y) ~g T — y|a§—d <1 A ’JZ‘ A |y‘ ) ]
s | o=l "oy

Die Aussage folgt also aus der LP-Beschrianktheit des Operators mit dem Integralkern, der
durch obigen Kern, multipliziert mit \x!’o‘s/ 2 gegeben ist. Dies wird mit Hilfe eines Schur-
Tests bewiesen. Da dasselbe Argument bereits in [I02], Proposition 3.2] (mit s anstatt as/2
und o anstatt §) ausgefiihrt wurde und wir dhnliche Schur-Tests bereits im vorigen Kapitel
durchgefiihrt haben und spéter nochmals durchfithren werden, unterlassen wir hier die Details.

Die Tatsache, dass fir d/p < as/2+ 0 oder d/p > d — 6 im Allgemeinen falsch ist,
folgt aus der unteren Schranke an den Riesz-Kern mit Hilfe derselben Gegenbeispiele wie in
[102, Proposition 3.2]. O

Wir bemerken wieder, dass, obwohl diese Ungleichung eine entscheidende Zutat fiir den
Beweis von Satz ist, diese auch direkt aus ihm folgt (wenn Annahme verifiziert
werden kann).

Da wir in L” keinen Spektralsatz fiir £, o haben, werden wir Funktionen (in unserem Fall
die Funktion ¢ — t*) von L, mit Hilfe von Satz durch (LP)-Funktionen ausdriicken.
Neben den iiblichen Littlewood—Paley-Projektionen, die im Wesentlichen Test-Funktionen
(umgangssprachlich ,,Buckel-Funktionen“) sind, werden wir weitere Projektionen mit Hilfe
der Warmeleitungskerne definieren. Der Grund hierfiir ist offensichtlich — wir haben gute
punktweise Schranken an den Kern selbst sowie die Differenz zwischen den gestorten und
ungestorten Kernen, siche Lemma Die Konstruktion von auf Halbgruppen basierenden
Littlewood—Paley-Theorien wird beispielsweise ausfiihrlich in Stein [167] behandelt.

Trotz der guten Schranken an diese Differenz ist a priori nicht klar, ob die Projektionen
selbst und die Differenz LP-beschrinkt sind. Hinreichend hierfiir wire die Giiltigkeit eines
Multiplikator-Satzes fiir £, . Wie wir eingangs bereits bemerkt haben, ist ein solcher Satz
nur unter gewissen Voraussetzungen an den Multiplikator verifizierbar. Bislang waren wir nur
in der Lage die LP-Beschranktheit des Warmeleitungskerns fiir alle a > a, (siche Lemma|8.3.2))
sowie ein Hormander-Multiplikator-Theorem fiir alle a > 0 (siehe Satz und Behauptung
zu zeigen. Fiir a < 0 geniigt dies allerdings (im Gegensatz zu a > 0) noch nicht, um
Abschétzungen an die (LP)-Funktionen, Satz zu beweisen. Nichtsdestotrotz konnen wir
immerhin Bernstein-Abschétzungen (Lemma , und Entwicklungen von LP-Funktionen
(Lemma zeigen, wenn die Littlewood—Paley-Projektionen durch den Warmeleitungskern
ausgedriickt werden. Diese Werkzeuge sind beispielsweise in der Untersuchung partieller Diffe-
rentialgleichungen unverzichtbar, da sie es erlauben, Probleme auf bestimmten Léngenskalen
separat zu untersuchen, um anschliefend alles wieder zusammenzusetzen.

Mit dieser Motivation fiir Littlewood—Paley-Theorie formulieren wir die durch (LP)-Funk-
tionen ausgedriickte, umgekehrte Hardy-Ungleichung.
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Behauptung 8.1.5 (Umgekehrte Hardy-Ungleichung in LP). Seien o € (0,2 A d), a > as,
0 durch (8.1) definiert, p € (1,00), wenn a > 0 und p € (d/(d — 0),d/d), wenn a < 0. Seien
weiter s € (0,2) und

Py = e Faa/N® _ o=Laa/(NY/2%) - pa.— PR fiir N € 22,

Dann gilt
1/2 1/2

S nepgr | [ e )| Saa Il
Ne2z Ne2Z
p
fiir alle f € C(RY).

Bevor wir zur Formulierung des Mikhlin-Multiplikator-Satzes kommen, erinnern wir noch-
mals an die beidseitigen punktweisen Schranken an den Warmeleitungskern von £, . von
Bogdan u. a. [I5] fiir @ < 0 und Cho u. a. [24] oder Jakubowski und Wang [99] fiir a > 0.

Satz 8.1.6 (Wirmeleitungskerne verallgemeinerter Hardy-Operatoren). Seien o € (0,2 Ad),
a > a, und 6 durch (8.1) definiert. Dann erfillt der Wirmeleitungskern von L o fir alle
z,y € R und t > 0 die beidseitigen Schranken

) )
B 1/ 1/ B tltd/a
(§ tLa,o (.’1}', y) ~ (1 V ’x|> (1 V W t d/a 1A W .

Fiir a > 0 folgt aus dem Maximumprinzip fiir die Warmeleitungsgleichung und der Schran-
ke aus Satz fiir a = 0 wieder die simplere Schranke

o< eft[:ava (IE, y) < tid/a 1A ﬂ
- ~ |z — y|*te

fir ¢t >0 und a € (0,2 A d).

8.2 Ein Mikhlin-Multiplikator-Theorem fiir £, ,

Das Ziel dieses Abschnitts ist es, ein Mikhlin-Multiplikator-Theorem fiir £, o zu zeigen. Dies
ist die entscheidende Zutat fiir den Beweis der LP-Beschrinktheit von Littlewood—Paley-
Projektionen und von Abschétzungen an (LP)-Funktionen, um damit das Hauptresultat dieses
Kapitels zu zeigen.

Der Beweis verlduft sehr dhnlich zu dem von Killip u. a. [I02, Theorem 4.1] (siehe auch
[105], [166, Kapitel 11, §2-3] und [39]).

Der Hauptunterschied (und auch die groBte Schwierigkeit) zwischen den Beweisen der
Séitze fiir L4 und fiir —A + a|z| =2 ist, dass der Wellenpropagator cos(74/Lq ) keinen kom-
pakten distributionellen Trager hat, wenn « # 2. Damit meinen wir, dass

U supp (cos(7v/La.a)dy) C By(cR) fiir alle y € R? und ein ¢ > 0

TSRO‘/z
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im Allgemeinen falsch ist. Der Grund hierfiir ist, dass der zugehotrige Wiarmeleitungskern
keine Davies—Gaffney- Abschitzungen

(e e fr, )l S e fillallfoll i alle > 0

erfiillt. Hierbei sind f; und fs kompakt getragen und r der kleinste Abstand zwischen ihren
Trégern. Wir verweisen auf Coulhon und Sikora [27, Theorem 3.4] fiir eine detailliertere
Abhandlung iiber diesen Zusammenhang.

Bevor wir zur Formulierung des Satzes kommen, bemerken wir, dass Multiplikator-Satze
fiir eine grofle Bandbreite abstrakter Operatoren auf abstrakten Rdumen bewiesen wurden.
Allerdings beruhen diese meistens auf der Annahme, dass der zugehoérige Warmeleitungskern
punktweise Gaufsche Schranken [84, [41 23] oder sogenannte verallgemeinerte Gaufische
Abschétzungen [13] erfiillt. Der Kern kann sogar lokale Singularitéiten besitzen, wie beispiels-
weise der von —A+-a|z| 2. Fiir einen Uberblick iiber Multiplikator-Sitze verweisen auf Duong
u. a. [40] und die dort enthaltenen Referenzen.

Satz 8.2.1. Seien o € (0,2 d), 0 < ¢ < a,

([ [2]) o 2) ]

a > ax sowie m : [0,00) = C eine beschrinkte und messbare Funktion, die
1Pm(\)| S; A fiir alle j € {0,1, ..., jo}

erfillt. Falls Annahme wahr ist, lisst sich m(\/La,q), zundchst dber den Spektralsatz in
L2 definiert, eindeutig von einem LP(RY)NL2(RY) zu einem LP-beschrinkten Operator fiir alle
1 <p < oo, falls a > 0 beziehungsweise fir alle ro < p < r{ :=d/d, falls a <0, fortsetzen.

Wir erinnern daran, dass ry Ly 7"6_1 = 1. Nach dem Beweis stellen wir ein Beispiel vor,
welches die Optimalitit des Intervalls 79 < p < rj fiir @ < 0 zeigt. Insbesondere ist der
Wirmeleitungskern e £=e auf LP unbeschrinkt fiir alle p, die nicht in diesem Intervall ent-
halten sind. Wir bemerken auflerdem, dass die Zahl der hier verlangten Ableitungen sehr
wahrscheinlich nicht optimal ist, doch dies spielt hier nicht die Hauptrolle.

Beweis. Falls a > 0, folgt die Aussage aus dem Hormander-Multiplikator-Satz bezie-
hungsweise Behauptung Wir betrachten daher im Folgenden nur noch den Fall a < 0.

Wegen des Spektralsatzes in L? ist der Operator T := m(y/Lq.o) auf L2(R?) beschrinkt.
Wegen der Dualitét der LP-Rdume und dem Marcinkiewicz-Interpolationssatz (sieche beispiels-
weise [I66, Anhang B]) geniigt es zu zeigen, dass T schwach L7(R?) beschrinkt ist fiir alle
ro < ¢ < 2, das heifit

Ha [T f(x)] > h} SR ST fiir alle A > 0. (8.3)

Neben der Tschebyscheff-Ungleichung ist die entscheidende Idee eine Calderén—Zygmund-
Zerlegung [166], Kapitel I, §3, Theorem 4] von |f|¢9 € L' auf der Hohe h?. Dies liefert eine
Zerlegung R = FUQ, wobei FNQ =0, Q = Ure; Qr und {Qy}x eine Familie dyadischer
Wiirfel mit Durchmesser 2ry, ist, deren Innere disjunkt sind. Weiter ist per Konstruktion

0] < 1/Q F@)7dz < 29Qy] und |f(z)] < h fast dberall auf (| Qu)°.  (8.4)

ha Jo, :
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Daraus ergeben sich die Abschétzungen

| 1#@)do S 1 flliaion|@nl? S hiQi st [ (r@)rd, (5.5)

Qk Qk

wobei wir in der ersten Abschitzung die Holder-Ungleichung und in den letzten beiden
Abschétzungen die definierende Eigenschaft der dyadischen Wiirfel, sprich , verwendet
haben.

Wir zerlegen nun f = g + b und definieren

o(a) = {f<x>, fiir = € (U, Qk)°

, 8.6
Qx| ™1 ka f(x)dx, fiir z € Qy (86)

das heifit g ist auf jedem Wiirfel Q konstant. Insbesondere ist |g(x)| < h fiir fast alle 2 € R?
wegen (8.4) und (8.5). Mit dieser Wahl ist

b(x) = Zbk(m) = Zf(x)XQk () und
k k

br(x)dx =0 fiir jeden Wiirfel Qy .
Qk

In unserer Situation ist es natiirlich, die Oszillationen der by durch die Halbgruppe e*wiva

auszudriicken. Dazu definiert man p := jo/3 = [4/a]+[d/(2a)] und zerlegt weiter by, = gi + by,
wobei

by, := (1 — e "k EFaa)ip, (8.7a)
und
I
gi = [1 = (1= o TRy = 30 i Eney (8.7h)
v=1

Die Zahl p wird nur bei den~Abschétzungen, die by, betreffen, eine Rolle spielen.
Da f =g+ > 9k + > bk, kann die linke Seite von ({8.3) durch

{z [T f (@) > B} S {ITgl > h/3Y + {IT Y gkl > h/3} + [{IT D byl > h/3}]
k k
abgeschiitzt werden. Mit der Tschebyscheff-Ungleichung, der L2-Beschrinktheit von T, (8.6)
zusammen mit ¢ < 2 und |g(x)| < h ist der Beitrag von g akzeptabel, denn
{ITgl > h/3} S 2Tyl S B2 Nlglls S B~ llalld < RO £1 -

Als Néchstes bestimmen wir den Beitrag, der von den g kommt. Verwendet man wieder die
Tschebyscheff-Ungleichung und die L2-Beschriinktheit von 7', kann man zunsichst

1T gel > h/3H ST Y gull3 S B720) - anll3 (8.8)
k k k
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abschétzen. Mit Hilfe der Schranken an den Wérmeleitungskern aus Satz kann die rechte
Seite weiter durch

2
=573 (g e OrEH ) )

2 v,V kWl
1)
Su > / dz |by(x <1v> (8.9)
TE>TY ‘ ’

) TZ+Q
<[ (10 ) (1n T )
/Qg ly] ( |z — y!d“‘)

abgeschétzt werden. Hierbei haben wir die Symmetrie in & und ¢ verwendet, weshalb man
nur die Doppelsumme ZT}cZ”'Z betrachten muss. Zusétzlich haben wir das Maximumprinzip
verwendet, um den —v/rf-Term zu vernachldssigen. Aus diesem Grund reicht es auch aus
nur den v = 1-Term des Warmeleitungskerns zu betrachten. Dariiberhinaus haben wir die
endlichen Summen {iber v und v/ ausgefiihrt. Um fortzufahren, fixieren wir zunéchst & und
T € Qi und betrachten zwei Félle fiir die Summe iiber r,. Im ersten Fall betrachten wir nur
die Wiirfel @y, deren Schnitt mit einer am Ursprung zentrierten Kugel mit Radius r nicht
leer ist, das heifit QN By(ry) # (). Dies impliziert insbesondere Q, C By(2ry), da ry < ri und
die Wiirfel dyadisch sind. In diesem Fall miissen wir uns nur um

7”6
3 / dy 5 o)

£:QeCBo(2ry) Qe

kiimmern. Um diesen Beitrag zu kontrollieren, wenden wir zunéchst die Hélder-Ungleichung
(sowohl in £ als auch in y) an und verwenden dann ({8.4), um

>

—k \bz( )
£:Q¢CBo(2ry) | |

. 1/q 1/q
.
Y /dy’“q,a > /dy |be(y)| (8.10)

QB2 " 1Yl 1:QCBo(2ry) ” Ot

1/q

4 4 4

<rf S hQd|  Srfrih=hrf
2:QeCBo(2ry,)

zu erhalten, wobei wir y — 1y skaliert haben. Hier war es entscheidend, dass ¢’ < d/é.
Fir die Wiirfel @y, deren Schnitt mit der am Ursprung zentrierten Kugel mit Radius

schon leer ist, brauchen wir nur
d+a
| a1 N ) 1)
ngﬂBo Tk) 0 QZ ‘

T,CCHO‘
< dy (1A —"T ) by
> [ (1 e

Lrp<r
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zu kontrollieren. Setzt man 1 = |Qg|™! [, Q dy’ ein und verwendet die Dreiecksungleichung, um

z—yP<(z—yl+ly—yD? <2(lz —y* +4r}) fiir alle y,y' € Q,

abzuschétzen und fiihrt dann das Integral iiber y aus, so kann dieser Term weiter durch

el e J
> 0 dy' | 1A i | S (8.11)
Lrp<ry, Qe (% ‘:L' — y’|2 — 47“,%) 2

kontrolliert werden. Hierbei haben wir wieder (8.5) verwendet, um Q™! ||b/]|; < h zu be-
schrinken. Dariiberhinaus haben wir das Integral {iber 0y durch eine Konstante mal rg ab-
geschiitzt und die Summe >, . 74 nach oben durch r¢ beschriinkt.

Setzt man (8.10) und (8.11)) zuriick in ein, folgt

2 5
,
‘ng ShZ/ <1\/|;|> bk (2)| d
L 9 Y Qk
r N 1/q 1/q
<h / (1 v ’“) da / by ()|? ds
_Zk: Qk |z zk: Qk

r 1/q
<h Zrcm] £l S R2I£)12,
L &k

wobei wir wieder zuerst die Hélder-Ungleichung und dann (wie in Abschétzung )
verwendet haben, zusammen mit ¢/¢' +1 = ¢ und 1 — q/¢’ = 2 — ¢. Blickt man auf die
Abschitzungen (8.8)) zuriick, zeigt dies, dass der Beitrag der gj akzeptabel ist.

SchlieBlich fokussieren wir uns auf den ,schlechten® Teil by. Sei Q. der 2v/d skalierte
Wiirfel von Qg, das heifit der kleinste konzentrische Wiirfel, der eine Kugel mit Radius 2r
beinhaltet. Wegen

{ T by
k
folgt aus der Tschebyscheff-Ungleichung und (8.4) die Abschétzung

(el

Um den Beweis zu schlieflen, geniigt es

SR
3

TZBk
k

>Z}§L}JQ;U J:G]Rd\LjJQ;T:

DHER Y 1Tk ]| 11 wergr)
j k

SEYFIE+ BT IOk o) -
k

||T5k||L1(Rd\Q;) < B b (8.12)
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zu zeigen. Dazu unterteilen wir R4\ Q; weiter in dyadische Anuli der Form R < d(z, Q) < 2R,
wobei 1, < R € 2%, Wir zeigen dann die folgende entscheidende Abschitzung (vergleiche auch
mit [102, Formel (4.11)])

) r(7) lbwll, - (8.13)

HTB’“ L2(d(z,Qr)>R) S (R

Aus dieser Abschitzung und (8.5)) schlieflen wir (8.12)), da

78], ey = 2 75

LY(R<d(z,Q))<2R)

<3 Rt b‘

- ng Iz s (8.14)
4 TR\ —d(3-% 7 - .

sy At ()" =) Joull, < i ol < 1 el

Die letzte Summe konvergiert, da auy > d/q" € (9,d/2), was wahr ist, da ap > 4+ d/2 — 2«
und o < 2 A d.

Um (8.13)) zu zeigen, schreiben wir

Th0@) = [ [m(VEan)1 e R )] o ghouty)

k

Sei nun a(A) := m(A)(1 — e ") (wobei wir A2 mit L.« identifizieren), welche wir auf ganz
R als gerade Funktion fortsetzen. Die Abfall-Bedingungen an &7m(\) implizieren

a(N)| S IATTA AN i alle 0 < § < jo. (8.15)

Sei nun ¢ € C°(R) so, dass supp (¢) C [—1/2a/2, 1/2‘3‘/2]7 (1) =1 fiir |7] < 1/404/2 und

1 . T
- /2 v pa/2 AT
SOR()\) R (R )\) 2 /e ( a/2) dr.

Da sowohl a, als auch ¢ gerade Funktionen sind, ist

ar(\) == (a* gr)(\) = 7! /O ~ cos(Ar)a(r) (ﬁ) dr .

Im Gegensatz zum klassischen Hardy-Operator (sprich @ = 2), hat der Wellenpropagator
cos(T+/Lq,a) von Lg o keinen kompakten distributionellen Tréger, da der Wiarmeleitungskern
keine Davies-Gaffney-Abschétzung erfiillt (Coulhon und Sikora [27, Theorem 3.4]). Wire das
der Fall, dann wire

supp (a1(v/La,)dy) € ) supp (cos(y/72Laa)dy) € {z € R : |y — 2| < R/2},

T<(R/2)*/?
da o(7/RY?) auf {7 : |7| < (R/2)*/?} getragen ist. Das bedeutet aber

llar(v/La.a)bell 1 wergz) = 0
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und die linke Seite von (8.12)) wiirde verschwinden. Da der Wellenpropagator jedoch keinen
kompakten distributionellen Trager hat, muss zudem

"e\P d/q
losbill o reaeny<emy S () 7™ bl (8.16)

fiir ein B > 0 erfiillt sein. Dies ist gerade die Aussage von Annahme [8.1.1
Fiir den Rest des Beweises konzentrieren wir uns auf den verbleibenden Teil des Multipli-
kators a, ndmlich

@) = ar(3) ~a(h) = [1a(6) — alN)pr(r - 0)dp.
Falls |\| < R=%/2, verwenden wir und den schnellen Abfall von ¢ und erhalten
[ aen(n~ 0)d8| (A S (1PN R
sowie
'/ameQ—em4fﬂlA@ﬁMD%qMRM%2#. (8.17)
Daher ist
laa(N)] S (L ATEIADZ(IARY2) 24 falls |A] < R™/2, (8.18)

Fiir [A\| > R~/ entwickeln wir a(f) in einer Taylor-Reihe bis zur Ordnung jo — 1 und
definieren

a0 = P, T s AU TP
a(0) — a(\) = Pj,(6) + £(6), wobei Pj,(0) = ) (0 —N\)

— 0!
und & den Fehler bezeichnet, welchen wir mittels (8.15) durch
o2 0 — A A
EO)] < la(0)] + [a(W)] + [P (0)] S (1 AT 2N , falls [0 =2 >3
(mit 24 < jo), beziehungsweise
. : a/2\ o [0 — AP A
£(0)] < Ha(”) ey 19 M S AT . falls -2 <5

abschétzen.
Fiir alle £ > 1 gilt

[ © =N oro - Nds = (o' ¢r) (0) =0,
Daher tragt Pj,(6) nicht zur as()) definierenden Faltung bei, weshalb

LZICVIIS / EO)I@r(A = 0)[d0 < (LA TN R fiwe [\ > B2 (8.19)
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Kombiniert man (8.18) und (8.19) mit R > ry, schliefen wir, dass

1A T‘;:/Q‘)\’ 2u—jg

2p
laa(N)| < <W> (1+ R)\2)™2

0 Jjo—2n
< (7%)&“/ oy e—t/Rae—tv@’
R o \R“ t
wobei wir (1 +z)7* = [t le7*(142) d¢t fiir s > 0 verwendet haben. Damit und mit dem
Spektralsatz sowie anschlieender Anwendung der Minkowski-Ungleichung, erhalten wir

£\ 2 dt

rp\op [ %
—t/R® || \~tLa,a at
fostv el < () [ () T el w20
Um (8.13) zu zeigen, beweisen wir
d
o= Emeby|, < ¢ 3 (¢ + 1) [|bg], - (8.21)
Mit dieser Abschitzung konnen wir (8.20]) weiter durch

la2(y/Zara )b 2(eet
j d d
< (IFk 2 v - ke
N <R) R “ kuHLq/O (Ra> <1+ Re) °© ;

ap __g(1_1
< ()" &0 o
fur alle R > rj, beschrénken. Hierbei haben wir (jo—2u)/2—d/(2a) > 0 verwendet. Abgesehen
vom Beweis von (8.21)) schliefit das den Beweis von (8.13)) und damit auch den Beweis des
Satzes.

Mit Hilfe der Schranken an den Warmeleitungskern aus Satz reduziert sich der Beweis
von (8.21)) darauf, die Abschitzung

e\ Y s d

e e «@ d _a

1V — 1V — IAN———— | be(y)|| St 2a(t+rp)ed ||brll, (8.22)
/Rd ( I$\> ( |y|> ( ]:Uy]dJra) F 1

2

Ol

-

zu zeigen. Um diese Schranke zu beweisen, unterscheiden wir die vier Félle
o [af, [yl <tV
o [x| <tV fy| >t
o |z >t/ |y| <t/ und
o [a], [yl > t1/e.

Die Schranken in den ersten drei Féllen werden spéter im Beweis der Bernstein-Ungleichungen
in groferer Allgemeinheit bewiesen werden, siehe (8.24]). Die Schranke ist durch (man ersetze
N¢ durch ¢!, ¢ durch 2 und p durch q)

1

_d(1_1 _dd
G o, = ),
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gegeben. Der letzte Fall, sprich |z|, [y| > t/®, fiihrt auf die behauptete rj-Abhéingigkeit. Mit
der Minkowski- und der Hélder-Ungleichung erhélt man

A+ A+
LA —— | b(y)d 5/ b Y —
/ ) 5 [l (18

ly|>t™

2
2

a a4
Stea|[bglly S tzary [|bgll, -

Dies schlieit den Beweis des Mikhlin-Multiplikator-Theorems fiir £, 4. O]
Bemerkung 8.2.2. (1) Wir schlieBen den Beweis mit der Bemerkung, dass das Intervall der
erlaubten p tatsiichlich optimal ist, selbst, wenn man [#9m(\)| <; |A| 77 fiir alle j > 0 annimmt.
Wegen Selbstadjungiertheit und Dualitét geniigt es, das Fehlschlagen fiir p > d/é mit § > 0
zu zeigen. Sei dazu beispielsweise m()\) := e und ¢ € C2°(R%) in der Einheitskugel By(1)
getragen, sodass ¢(x) = 1 fiir |x| < 1/2. Aus der unteren Schranke an den Wirmeleitungskern
folgt dann fir |z| <1

= e_ﬁa’“ x x_5 =0 71 m_5
(Vo)) =Sl 2 el [yl (10 s ) 2 e

ly|<1/2

ist, wobei wir die untere Schranke des Warmeleitungskerns aus Satz verwendet haben.
Somit ist m(y/Laa)p & LP(R?) fiir alle p > d/6.
(2) Neben der L2-Beschrinktheit, die im Wesentlichen aus Bedingungen der Art

sup / dy |K(z,9)| < 1
]Rd

T

folgt, ist eine Glattheitsbedingung der Form

sup / |[K(x —y) — K(x — z)|dx < o0, (8.23)
y,2€R? J |z —y[>2|y—2|

welche fiir die schwache L9-Beschranktheit benttigt wird, um mit Interpolation die LP-
Beschrianktheit singuldrer Integraloperatoren zu folgern, entscheidend (siehe beispielsweise
[56, 166, 186, 84, B9]). Wir bemerken, dass diese Bedingung beispielsweise erfiillt ist, wenn
K auflerhalb des Ursprungs stetig differenzierbar ist und |VK(z)| < ||~ ! gilt. Der we-
sentliche Inhalt dieser Aussage ist, dass K 1 in L' auBlerhalb des Tréigers von ¢ ist, wobei
1) eine beliebige kompakt getragene Funktion ist, deren Mittelwert Null ist. Insbesondere ist

(vergleiche mit (8.12)))

(K x¢)(z)|dx < co.

d(z,supp 9)>2diam (supp ¥)

Die Glattheitsbedingung entspricht dann der Wahl ¢(w) = §(w — y) — 0(w — 2).

Im Beweis haben wir gesehen, dass die grofite Schwierigkeit darin besteht, den ,,schlech-
ten Teil“ by der Calderén—Zygmund-Zerlegung zu kontrollieren. Obwohl by im Vergleich zur
fixierten Hohe h beliebig grof sein kann, oszilliert die Funktion, ihr Tréger ist vergleichsweise
klein und besitzt eine konkrete Struktur. Mit dieser Struktur meinen wir Ungleichungen wie
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(8.4) und (8.5)), die von der Hohe der Calderén—Zygmund-Zerlegung abhéngen. Fefferman [50,
Theorem 2’ und 3] beobachtete bereits, dass es sinnvoll ist, by an den in Frage stehenden Kern
anzupassen. Im euklidischen Fall wére beispielsweise

¥ = (1 — exp(=r|p|*))dy

eine kanonische Wahl, da ¢ ,moralisch“ auf der Kugel {|z — y| < r} getragen ist und ver-
schwindenden Mittelwert hat, sprich [ = 0. Natiirlich ist diese Aussage iiber den Triiger
sehr vage, selbst, wenn o = 2. In jedem Fall motivieren diese Uberlegungen die Wahl der b,
sprich .
(3) Die Idee, Schranken des Wirmeleitungskerns zu verwenden, um Multiplikator-Sétze fiir
Schrodinger-Operatoren —A + V' herzuleiten, geht zumindest auf Hebisch [84] zuriick. Er be-
wies einen Hormander-Multiplikator-Satz fiir beliebige Potentiale V' > 0 unter Verwendung
des Maximumprinzips und der expliziten Schranken des Wirmeleitungskerns von —A. Hier
ist es entscheidend, dass der Kern exponentiell schnell abfillt.

Spéter gelang es ihm Multiplikator-Séatze fiir Operatoren zu zeigen, deren Warmeleitungs-
kerne nicht mehr exponentiell abfallen, aber eine gewisse Holder-Bedingung erfiillen.

Konkret bewies er folgende Aussage. Ist A ein nicht-negativer, selbstadjungierter Operator
und es existieren positive Zahlen ¢, b, m, sodass fiir alle ¢ > 0 die Schranken

sup / le= Az, y)|(1 4+ 7Y™z — y|)¢dz < oo,
yeR?

sup td/m/ le”t(z,y)?dz < oo und
yERd

e ) — e )l de Sy 5l il y, 2 € R
R4

wahr sind, dann erfiillt A ein Hérmander-Multiplikator-Theorem [85, Theorem 3.1]. Das heif}t

fur F € H; .(R) mit
1 1
5 > 2ld/(2)] [d <1 + > + 1} + 5
2 & 2

und einem 0 # ¢ € C°(R), sodass sup, ||¢F (t-)||ms < 0o, ist F(A) schwach L!-beschrinkt
und LP-beschrinkt fiir alle p € (1,00). In Anhang zeigen wir, aufbauend auf diesem Satz,
wie man einen Hérmander-Multiplikator-Satz (siehe Satz und Behauptung fiir
Lo mit a > 0 zeigen kann. Dazu zeigen wir zuerst, dass [p|* in R? mit o € (0,2 A d) die
obigen drei Bedingungen erfiillt. Im Anschlufl verwenden wir Stoérungstheorie in Form der
Duhamel-Formel , um den Fall @ > 0 zu behandeln. Die punktweisen Schranken fiir
exp(—Lq,q)(z,y) mit a > 0 sind entscheidend, um den Beweis zu schliefen.

In Lemma des néichsten Abschnitts zeigen wir die LP-Beschrianktheit des Warmelei-
tungskerns fiir alle a > a, ohne auf ein abstraktes Multiplikator-Theorem zuriickgreifen zu
miissen. Diese folgt im Wesentlichen direkt aus den Schranken des Kerns exp(—tLgq)(,y).

8.3 Littlewood—Paley-Theorie

In diesem Abschnitt definieren wir zwei Familien von Littlewood—Paley-Projektionen und ver-
wenden den Spektralmultiplikator-Satz, um ihre LP-Beschréanktheit zu folgern. Dariiberhinaus
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beweisen wir Bernstein-Abschétzungen, eine durch Eigenfunktionen von £, , ausgedriickte
Zerlegung der Eins in LP(R?) sowie die entscheidenden Abschiitzungen an (LP)-Funktionen.
Letztere ersetzen den im letzten Kapitel oft verwendeten Spektralsatz, um die LP-Normen von
| p|0‘5/ 2fund CZ/ 3 f auszudriicken und miteinander vergleichen zu kénnen. Im Allgemeinen sind
(LP)-Funktionen niitzlich, um beispielsweise die Orthogonalitit von Fouriertransformationen
— beziehungsweise hier Entwicklungen von Funktionen durch Eigenfunktionen von £, — in
LP oder anderen Funktionenrdumen auszudriicken und zu quantifizieren.

Definition 8.3.1 (Littlewood—-Paley-Projektionen). Sei @ : [0,00) — [0, 1] eine glatte, kom-
pakt getragene Funktion, sodass

PN =1fir0<A<1 und ®(\) =0 fir A>2.
Fiir dyadische Zahlen N € 2% definieren wir
Ddy(N) = <I>(/\/N°‘/2) und Uy (A) = Py () — Pua(N) € C°(Ry).

Offenbar bildet {¥ ()} ycoz eine Zerlegung der Eins fiir A € R;. Wir definieren die gew6hn-
lichen Littlewood—Paley-Projektionen durch

Py :=VUn(\/Lon) und Pg:= P][\),’a.

Daneben definieren wir eine weitere Familie von Littlewood—Paley-Projektionen durch den
Wairmeleitungskern, ndmlich

P]‘\lf’a P e—»ca,a/Na _ e_ﬁa,a/(Na/Tl) und P]% — P](\]/ja .

Als Niéchstes leiten wir Bernstein-Ungleichungen fiir diese Projektionen her. Diese sind
besonders niitzlich, wenn der Spektralparameter A lokalisiert ist, da niedrige Lebesgue-Inte-
grierbarkeit auf Kosten gewisser Potenzen von N zu hoher Lebesgue-Integrierbarkeit verbes-
sert werden kann. Fiir kleine Energien sind diese ,, Kosten “ tatséchlich niitzlich und verbessern
die Ungleichung.

Lemma 8.3.2 (Bernstein-Abschétzungen). Sei 1 < p < ¢ < oo, wenn a > 0 beziehungsweise
d/(d—9d) <p<q<d/s, falls 0 > a > ax. Dann gelten die folgenden Aussagen.

(1) Die Projektionen Py® und, wenn Annahme |8.1.1| erfillt ist, Py® sind auf LP(R?) be-
schrdnkt.

(2) Falls Annahme erfiillt ist, gilt ||(Lao/N®)2 N fllp ~ ”Pj(\lfapr, das heifst

NP fllp ~ 1€2 0Py fllp
fiir alle f € C2(RY) und alle s € R. )
(3) Die Projektionen Py® und, wenn Annahme erfillt ist, Py® sind von LP nach L1
11
beschrdnkt mit Norm (’)(Nd(P q>)

Beweis. Die erste Behauptung fiir ]5]‘\1,’0‘ folgt aus Satz Fiir Py* folgt sie auch direkt
aus der dritten Behauptung mit p = q. Die zweite Behauptung folgt ebenfalls unmittelbar
aus Satz 8211
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Wir zeigen nun die dritte Behauptung. Man bemerkt zunéchst, dass 15]‘\1,’0‘ mit Satz
als Produkt von LP-beschrénkten Multiplikatoren geschrieben werden kann. Fiir € (p, q) ist
in der Tat

1PN fllze < lle™ /N | ey pajefome/N" PRebea/N | 1 prfle™ /N Loy 1o £]| o

< NU/p=1/r1/r=1/a) ) £l 1y

Daher geniigt es, die Behauptung fiir e £ao/N® zu zeigen. Fiir a > 0 geniigt es wegen des

Maximumprinzips, die L? — L%-Norm von e~ PI"/N® zu bestimmen. Mit der der Substitution
x + N~12 und der Youngschen Ungleichung mit r» = (14 1/q — 1/p)~! > 1 gilt

—a—d 1_1

- . N (54
oo/ fly S NULA T I 5 NG 51
]

Fiir 0 > a > a, verwenden wir die Schranken an e %@ aus Satz und schitzen

o)

N1 4 N1 4 N—a—d
() L () (s v a q

ab. Um die rechte Seite weiter zu beschrinken, unterscheiden wir zwischen vier Fillen.

(8.24)
<N

Fall 1: [z| < N1, |y| < N L

Mit der Holder-Ungleichung, d/(d — ¢) < p < ¢ < d/é sowie 0 < (d — «)/2, kann die rechte
Seite von (8.24]) durch

N2 |70 / R

ly|<N-—1 La(le|<N-1) (8.25a)
1

<N —5‘ ’ —5‘ < niG-4)

v el N7 1S 11y
abgeschitzt werden, wobei wir (x,y) — (N 'z, N~ly) skaliert haben.
Fall 2: |z| < N7L, |y| > N~L.
Die rechte Seite von (8.24)) kann wieder mit der Holder-Ungleichung durch

3 B N—a—d
N B e e IR

SNd—a Hm—(s‘

N—a—d
1IN ——
( [y|dte )

dfi-1
<N (P 4)
Li(|z|<N-1) o HfHP ~ Hpr

abgeschéitzt werden.
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Fall 3: |z| > N7}, |y < N~
Mit der Minkowski- und der Hoélder-Ungleichung kann (8.24)) durch

Ao 5 (1A Nt d
Y| = g |f(W)| dy

y|<N-1
N—a—d
d—s -5
it (1 )| I~
q

beschrankt werden.

g (8.25¢)

1

)IIfIIpSNd(p D7l

L' (ly|<N—1

Fall 4: |z| > N71, |y| > N~L

Wie im Fall @ > 0 verwenden wir die Young-Ungleichung, um den letzten Beitrag auf der

rechten Seite von (8.24) durch

B N—a—d
N / (1/\d+a> |f(y)] dy
Rd |z —y| q (8.25d)
<N N < NG-7)
SN 1AW 1fll, S N\ a2 fl,
abzuschétzen, wobei wir 1 + 1/¢g = 1/r 4+ 1/p verwendet haben. O

Aus der LP-Beschrinktheit der (LP)-Projektionen folgt unmittelbar die folgende Entwick-
lung von LP-Funktionen.

Lemma 8.3.3 (Entwicklung der Identitit). Sei 1 < p < oo, falls a > 0 und d/(d —96) <p <
d/5, falls a € [ax,0). Dann gilt fir alle f € LP(RY)

flo)= > [P fl(@)

Ne2Z

und, falls Annahme erfillt ist, auferdem
fla) =) [Py fl(=)

Ne2Z
als Elemente aus LP(R?). Insbesondere konvergieren die Summen in LP(R?).

Beweis. Die Konvergenz in L? folgt aus dem Spektralsatz und der Tatsache, dass Null kein
Eigenwert von L, 4 ist (siehe auch [64, Proposition 4.1]) und ist aus der Gleichheit

2

IED IR FED DoV IRENCHIeY

Ne2Z Ne2Z

ersichtlich. Hierbei bezeichnet dE., , das Spektralmaf von £, o. Wire Null ein Eigenwert mit
zugehoriger Eigenfunktion f, wire die rechte Seite der Gleichheit in der Aussage des Lemmas
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Null (was aus den Definitionen von Py und 15]‘\1,’0‘ ersichtlich ist), wohingegen die linke Seite
von Null verschieden ist.

Fiir p # 2 garantieren Lemma beziehungsweise Satz dass Partialsummen fiir
alle p in der Behauptung LP-beschrankt sind. Wegen Dichtheit von C¢° in LP, geniigt es
daher die Konvergenz fiir f € Cgo(Rd) zu zeigen. Fiir solche f folgt die Konvergenz in LP
aus der Konvergenz in L? und der Beschrinktheit in LP fiir alle erlaubten p mit der Holder-
Ungleichung. O

Satz 8.3.4 (Abschitzungen der (LP)-Funktionen). Fiziere s > 0 und sei 1 < p < oo, falls
a>0undd/(d—0) <p<d/d, falls a € [as,0). Sei k € N so, dass 2k > s. Falls Annahme

erfillt ist, gilt

[N

> |werepge |

Neg2Z

~|

ﬁéapr ~ X et :
Nea?
p p
fiir alle f € C(RY).

Wir bemerken, dass die Funktion A — e /N — e=A*/(N®/2%) (welche Py definiert)
nur zur zweiten Ordnung bei A = 0 verschwindet. Die Einschriankung 2k > s garantiert,
dass N/ L., 3/ 2 (Pﬁ;o‘)k tatsdchlich ein Mikhlin-Multiplikator ist. Da wir die Abschitzungen
jedoch nur fiir s € (0,2) bendtigen, kénnen wir spiter ohne Beschrinkung & = 1 wéhlen.

Der Beweis verlduft mit Hilfe des Mikhlin-Multiplikator-Satzes fiir £, , wie in [166], Kapitel
IV, §5] im euklidischen Fall mit nur geringfiigigen Modifikationen, siehe auch [105, Theorem
4.3].

Beweis. Fir g = EZ/O%f geniigt es

1/2
- - . 2
lglly ~ 15(9)llp,  wobei S(g) i= | D [N*/2Py" L5/
Ne2Z
beziehungsweise
1/2
2
lolly ~ 15()llp, wobei S(g) := | 3 [N2*/2(Pg) o)
Ne2Z

zu zeigen. Wir bemerken zunéchst, dass g tatséchlich in LP ist. Um dies zu sehen, fithren wir

Peyy = On(y/Eaa) wnd Pl =1 PLG

ein und bemerken, dass diese Operatoren wegen Satz LP-beschrinkt sind. Schreibt man
dann

g = L2PE0f+ L2 P (Lh o)

und verwendet nochmals Satz sieht man, dass g € LP(RY).
Wir zeigen nun [[S(g)||, < [lgllp. Dazu beobachten wir zuerst, dass

Nas/2(P]c\L[,a)k£;’a;/2 =m (\/E/Nam) mit m(A) = Aiseik/\Q (1 - ei(zafl))‘Q)k (826)
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gilt und m(\) die Bedingungen aus Satz erfiillt. Insbesondere gilt die Abschétzung
INOTm(N)| <; A2k=se=FX* fiir alle j € Np. Sei nun €y eine Folge statistisch unabhéngiger und
identisch verteilter Zufallsvariablen mit P(ey = +1) = 1/2 fiir alle N € 2%, sprich ey ist eine
Folge mit Rademacher-Verteilung. Dann erfiillt der Multiplikator

me(A) = Y enm(A/N°/?)
Ne2Z

IM&m(N)] <; 1 gleichméBig in der Wahl der Vorzeichen {ex} C {£1}. Die Summierbarkeit
beruht dabei auf der Einschrénkung 2k > s. Mit der Chintschin-Ungleichung (E bezeichnet
den Erwartungswert)

I o) ey ~ [ B S enan (o)l o
N N

(siehe beispielsweise [166, Kapitel IV, §5, Formel (44) und Anhang D]), der Identifikation
gy = m(y/Lan/N?)g, dem Satz von Fubini und Satz erhalten wir

L 1@ @p ds~ [ B{ltmg)@)l} do=Elmgl < ol

das heiBt [|S(g)llp < ll9llp-
Die umgekehrte Ungleichung ||g[, < [|S(g)l|, folgt aus der gerade bewiesenen Ungleichung
mittels Dualitét. Dazu definieren wir
—1

m(A) = [ D m(A/N?)?

Ne2Z

mit demselben m(\) wie in (8.26]). Man stellt wieder fest, dass m(\) die Bedingungen aus Satz
erfiillt und daher einen LP-beschrinkten Operator definiert. Mit der Cauchy—Schwarz-
Ungleichung in N, der LP-Beschrénktheit von S und m erhélt man

@ml =3 <g7m (VZaa/N*) 0 (V/Eam) h)
=| 2 (1 (VEua/N2) g (VEaa/ N2 ) i (Vo) 1)

IN

(8.8 (7 (VEaa) b)) < US@I, [ (VEan) B , < IS, 2l

fiir alle h € LP (R?). Dies zeigt ||gll, < [|S(g)|lp- Die Aquivalenz ||g|l, ~ [|S(g)||, wird analog
bewiesen. O

8.4 Beweis von Behauptung und Satz

Ein Schliissel zum Beweis von Behauptung [8:1.5] sind punktweise Schranken an die Differenz
der Wérmeleitungskerne von [p|* und L, o, sprich

K (z,y) = e P (2, y) — e7han(a,y).
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Neben den individuellen Schranken an die Kerne haben wir im letzten Kapitel punktweise
Schranken an Ki*(x,y) hergeleitet und durch die Funktionen

Lz, y) =1 Y it S A PRV
Wabvyh<t ™ | T M=t Tar v e \ 1Y Tl ATl

und

a2 A+e
« —
My (z,y) = 1{(|sc|V|y\)‘*2t}1{%|x|§|y\§2lw|}(m A Jy|)> (1 A |z — y,d+a>
ausgedriickt. Wir hatten gesehen, dass es effektive Ausléschungen in den Regionen (|z| V
ly|)* >t und |z| ~ |y| gab. Wir erinnern an

Lemma 8.4.1. Seien a € (0,2 Ad), a € [as,o0) und sei § durch (8.1)) definiert. Dann gilt
fiir alle z,y € R und t > 0

,0
K7 ()| S L7 () + M7 (2,y) -

Der Beweis von Behauptung [8.1.5] verlduft analog wie im letzten Kapitel mittels Schur-
Tests und den Schranken von Lemma [R.4.1]

Beweis von Behauptung[8.1.5. Mit der Dreiecksungleichung im Folgenraum ¢? und der ¢! —
(?-Einbettung schitzen wir

1/2 1/2
DINEPRRIP) - X INTRYSP
Ne2Z Ne2Z
1/2
<|I[ 3 In%E (g - Py / dy 3 NFIKS (o, 9)] ()]
Ne2Z Ne2Z » (8 27)
S| [ X v |5 \|| “il'
R Ne2Z | »
as as | |f(y
| [ [ X N g% | L
R4 Neaz \y|2 »

ab. Daher geniigt es zu zeigen, dass die rechte Seite durch H ]m|_°‘5/2pr fiir alle f € C(RY)

beschrinkt ist. Um die Notation zu vereinfachen, definieren wir g(x) = |z|~*/2|f(z)).
Wir verwenden, wie im L2-Fall, Schur-Tests, um die Behauptung zu zeigen. Wir beginnen
mit dem ersten Summanden und berechnen

[ _
> OONTLY (wyy) = (2lly) ™0 ) NET R

Ne2Z N<(Jz|v]y))—t

ws  N—© N-1 \%
+ Ny N <1 v >
2 (] v Jy[)d+e | Ayl

N> (lz[v]y))~!

B e 1 |V |y \
~ (allyl) (] v Jyl)—oe/2- 425 4 . (
(el o E+ \ [l A ly]
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Hier haben wir as/2 + d — 25, > 0 verwendet, was aus 6 < (d — «)/2 folgt. Wir bemerken,
dass die beiden Summanden gleich sind, da
2l Vil _ 1
zllyl =l Ayl

Daher ist

" 26, —d
[ oy
Rd

dy S NELO (gl g(y) s\
/Rd > NELY (el

Ne2Z

p
p

Fir alle (p Vp/)or < B < (p Ap')(d — 1) (solche 8 existieren, da d — 2§ > « > 0 und
d/(d—d4) <p,p <d/és) haben wir

26, —d 264 —d
ap [ ao ()P Qi p VIR,
R4 R4

2} (el e

<@

und analog (wegen der Symmetrie des Integralkerns in x und y)

5 204 —d 1 264 —d
ap [ ay ()7 GV BPt vt
Rd Rd

z€RY | (lllyl)o+ ‘Z,5++§

Mit Hilfe eines gewichteten Schur-Tests folgt daraus

(e v Jy])25
Lot e

was zeigt, dass der erste Term in (8.27) die behauptete Schranke erfiillt.
Der zweite Term in (8.27)) wird wie im Beweis von Behauptung mit Hilfe eines
ungewichteten Schur-Tests behandelt. Insbesondere wird das letzte Integral (7.19),

as dt S as dt as
sup |y[2 ™ / — 72~ sup [y / S tr o~

yGRd t yeRd
t<(2[y)> t>(2ly))~!

S llgll
p

durch die Summe

as _ Qs _

sup |y| 2 ¢ E N2 %~1
d

yer 225N>(2lyl)~!

ersetzt. Dies zeigt die behauptete Ungleichung. O

Wir zeigen nun, dass Satz unmittelbar aus Behauptungen [8.1.4] und [8.1.5[ sowie der
Littlewood—Paley-Theorie des letzten Abschnitts folgt.

Beweis von Satz[8.1.2. Wir nehmen im Folgenden immer 1 < p < oo an. Fiir s € (0,2) folgt
die Behauptung

1Pl fllp Sdpas 1£3aflp
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durch Anwenden von Satz [8.3.4] (was 0, < d/p < d — §, benétigt), der Dreiecksungleichung,
Behauptung [8.1.4] (was as/2 + 6 < d/p < d —  benétigt) und Behauptung [8.1.5( (was wieder
04+ < d/p < d—d4 benétigt), denn

1/2
P12 fllp ~ ||| D IN*2 PR 17
Ne2Z
p
1/2
< Z |Na$/2P](\zf’af|2
Ne2Z
p
1/2 1/2
H S e - X e
Ne2Z Ne2Z
S |ezze| + [laimoe2r| s |z
’ p p ’ p

Wir bemerken, dass die Annahme «as/2 < d in Behauptung automatisch aus s < 2 und
a < d folgt.
Die andere Ungleichung, sprich

] s
1£d.afllp Sapas P12 fllp

wird analog bewiesen, verwendet aber Lemma (was as/2 < d/p benétigt), anstatt
Behauptung Die andere Schranken an p, sprich 4 < d/p < d — §; werden wieder fiir
die Abschitzungen der (LP)-Funktionen (Satz|8.3.4)) und die umgekehrte Hardy-Ungleichung

(Behauptung [8.1.5)) benotigt.
Fir s = 2 wird die obige Littlewood—Paley-Theorie nicht benétigt. Die Ungleichung

Laafllp S lllpI*fllp folgt aus der Dreiecksungleichung und der gewohnlichen Hardy-Un-
gleichung, Lemma [8.1.3] Die andere Ungleichung folgt aus

”|p’af”p < |[(Ip|* = ﬁa,a)pr + Hﬁa,apr = ”|x’_af‘|p + Hﬁa,apr

und der verallgemeinerten Hardy-Ungleichung, Behauptung [3.1.4 O

8.5 Eine Verallgemeinerung

Wie im letzten Kapitel ist es moglich, Satz auf Operatoren |p|® + V' zu verallgemeinern,
wobei V eine Funktion auf R? ist, die den Schranken

=< V()< — (8.28)

mit a, < a < a < oo geniigt. Wir zeigen folgenden

Satz 8.5.1. Seien a € (0,2 A d), ax < a < a < o0, 06 = 6(a) durch (8.1) definiert und
€ (0,2]. Sei weiterhin Annahme erfillt, wenn s € (0,2).
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1. Falls 1 < p < oo die Ungleichungen as/2 4+ 6 < d/p < min{d,d — 8} erfillt, dann gilt
fiir alle V', die (8.28]) erfiillen

D122 F || Loty Sasanans 1(D1* + V)2 f |l oay  fiir alle f € CE(RY). (8.29)

2. Falls max{as/2,0} < d/p < min{d,d — 0} (was bereits 1 < p < oo sicherstellt), dann
gilt fiir alle V', die (8.28) erfillen

(D™ + V)2 £l o (ray Sd.aass 11012 f |l oqay  fiir alle f € CE(RY) . (8.30)

Wir betonen nochmals, dass § beziiglich a und nicht beziiglich @ definiert ist und die
Konstanten des Satzes nicht von a abhéngen.

Der Beweis von Satz fiir s < 2 folgt unmittelbar aus den folgenden beiden Behaup-
tungen und den Abschétzungen der (LP)-Funktionen (Satz im selben Stil, wie Satz
aus den Behauptungen und und den Abschétzungen an die (LP)-Funktionen
folgte. Fiir s = 2 werden lediglich die gewthnliche und die folgende verallgemeinerte Hardy-
Ungleichung sowie die Dreiecksungleichung benétigt.

Behauptung 8.5.2. Seien a € (0,2Ad), p € (1,00), ax < a < a < oo, 6 durch (8.1) definiert
und as/2 € (0,d). Dann gilt fir alle s >0 mit as/2+6 < d/p < d—6 und alle V, die (8.28)
erfillen

27 Flp Saaas I(p1* + V)2 fll,  fir alle f € CZ(RT).
Beweis. Mit dem Maximumprinzip gilt fiir alle z,y € R und ¢ > 0
0 < e PV (g, y) < emtee(a,y). (8:31)

Wegen des Spektralsatzes gilt

1 o0 dt
—s/2 _ —tLa,a s/22%
Lol (x,y) T(s/2) /0 e (z,y)t ;

und entsprechend fiir (|p|® + V)~%/2(z,y). Daraus folgt die Ungleichung

(Ip|* + V)~ (,y) < L33 (,y),

was zeigt, dass die oberen Schranken fiir 5;3/2 (z,y) (Satz|7.1.6) auch fiir (|p|*+V)~5/? gelten.
Die Behauptung folgt dann im selben Stil wie Behauptung [8:1.4] 0

Behauptung 8.5.3. Seien a € (0,2Ad), ax < a < a < 00, 0 durch (8.1) definiert, p € (1, 00),
wenn a >0 und p € (d/(d—6),d/d), wenn a < 0. Seien weiter s € (0,2) und

p]‘\?a = e~ (PI"TVI/N® _ o= (pI*+V)/(N*/2%) = pa . p](\’;a fiir N € 2%.
Dann gilt fiir alle V, die (8.28) erfiillen

1/2 1/2

V,
D INUERRFP) = | X0 NP Saaas
Ne2Z Ne2Z

2= |
p
p

fiir alle f € C°(RY).
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Beweis. Sei .
P (z,y) == e P (2, y) — e 1PV (2 )

Wegen des Maximumprinzips gilt fir alle z,y € R? und ¢t > 0
e (2, y) — e (2, y) < K (2,y) < e (,y) — e Foe(a,y).

Daher impliziert Lemma mit a und a, dass die entsprechende Aussage auch fiir f(f‘
anstatt K;* gilt. Hierbei haben wir verwendet, dass ) , was durch mit a anstatt a definiert
ist, die Ungleichung § < § erfiillt. Mit Hilfe des Analogons von Lemma folgt der Beweis
dieser Behauptung im gleichen Stil wie der von Behauptung [8.1.5)

O
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Kapitel 9

Offene Fragen

Wir formulieren schliefflich einige offene Fragen, die im Zusammenhang mit den Ergebnissen
dieser Arbeit stehen. Wir beginnen mit einigen Wiinschen und Vermutungen, die die hier
behandelten physikalischen Modelle betreffen.

Fragen beziiglich der behandelten physikalischen Modelle

e In Kapitel [ wurde die schwache Konvergenz der Einteilchendichte eines Grundzustands
gegen die wasserstoffartige Thomas—Fermi-Dichte gezeigt. Fiir Kopplungskonstanten
v < 2/7 konnten wir die erwartete schwache Konvergenz in den semiklassischen LP-
Réumen mit p = 5/2,4 zeigen. Fiir v € (2/m,2/(7/2+ 2/7)) gelang uns dies nur, wenn
die Test-Funktionen zusétzlich punktweise durch ein Vielfaches des Coulomb-Potentials
beschréinkt und Lipschitz-stetig waren. Zudem konnten wir v = 2/(7/2 + 2/7) nicht
behandeln. Es wire daher wiinschenswert, diese beiden technischen Einschrankungen
umgehen zu kénnen.

e Die starke Scott-Vermutung konnte fiir das Furry-Modell deshalb relativ direkt ge-
zeigt werden, da das effektive Einteilchen-Problem durch den Wasserstoff-Operator be-
schrieben wird und die Projektion im Furry-Bild gerade mit diesem kommutiert. Im
Brown—Ravenhall-Modell ist eine direkte Verallgemeinerung der Methoden aus dem
Furry-Modell nicht erwartbar, da Kommutatoren mit der freien Projektion auftreten
und kontrolliert werden miissen.

e Die wasserstoffartige Dichte p’(z), sprich die Summe der Betragsquadrate der Eigen-
funktionen der hier behandelten relativistischen Operatoren, wurde bisher nicht im De-
tail studiert. Dies steht im starken Gegensatz zur nicht-relativistischen Dichte, die von
Heilmann und Lieb [86] eingehend untersucht wurde. Wie wir bereits erwihnt haben,
zeigten die Autoren, dass die Dichte punktweise endlich ist, monoton fillt und sich fiir
¢ = 2 und groBe Kernabstiinde asymptotisch wie 2r=3/2/(v/212) 4 o(r—3/2) verhilt.
Insbesondere ist die Dichte am Ursprung endlich und sie erfiillt nach der Arbeit von
Rakowsky und Siedentop [140] (mit m = 1 und der starken Scott-Vermutung fiir nicht-
relativistische Atome [95]) die punktweise obere Schranke

s

P < 55

[
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9. Offene Fragen

Fiir die Chandrasekhar- und Furry-Operatoren konnten wir zwar immerhin zeigen, dass
pH fiir grofe Kernabstinde nach oben durch eine implizite Konstante mal 7~3/2 be-
schrankt ist. Jedoch fehlt erstens die scharfe Konstante und zweitens eine entsprechende
untere Schranke, um ein Ergebnis iiber die Asymptotik der Dichte fiir r — oo zu formu-
lieren. Da Elektronen, die sich weit weg vom Kern befinden, keine relativistischen Effekte
mehr ,spiiren® sollten, vermuten wir, dass die Asymptotik der relativistischen Dichte
mit der der nicht-relativistischen Dichte {ibereinstimmt. Dies wiirde nochmals unter-
streichen, dass die Thomas—Fermi-Theorie den Grofiteil der Elektronen des Vielteilchen-
Systems korrekt beschreibt, da die Thomas-Fermi-Dichte am Ursprung gerade wie r—3/2
divergiert. Wir erinnern an das Skalierungsverhalten pZ (z) = Z3pX_ (Zz) der Dichte
des Wasserstoffatoms mit Kernladung Z und pL¥ (z) = Z%pT¥(Z'/3x). SchlieBlich ver-
bleibt die Bestimmung des Monotonieverhaltens sowie der Singularitdt am Ursprung.
Insbesondere sollte letztere von der Kopplungskonstanten v abhéngen, was bereits an
den explizit bekannten Eigenfunktionen des Coulomb-Dirac-Operators ersichtlich ist,
siehe beispielsweise Bethe [I0]. Am Ursprung verhalten sich die Eigenfunktionen im
Kanal j = 1/2 wie rV!1=7°~1,

Der Beweis der obigen Eigenschaften im nicht-relativistischen Fall beruhte sehr stark auf
den Eigenschaften der explizit bekannten Eigenfunktionen, welche fiir die hier bespro-
chenen relativistischen Modelle nur fiir den Coulomb—Dirac-Operator im Furry-Bild be-
kannt sind. Diese beinhalten allerdings hypergeometrische konfluente Funktionen, sind
also nur sehr schwer zu handhaben. Nichtsdestotrotz konnte eine WKB-Untersuchung
mit dem semiklassischen Parameter 1/c etwas Licht ins Dunkel bringen. Diese Hoffnung
wird bereits durch Bethe [10, Seite 316] geweckt. Er beobachtete, dass die relativisti-
schen Eigenfunktionen wieder in die nicht-relativistischen Eigenfunktionen iibergehen,
wenn man ¢ — oo fiir festes Z gehen ldsst. Eine detailliertere Abhandlung iiber den
nicht-relativistischen Grenzwert von Dirac-Operatoren kann in [I71), Kapitel 6] und den
dort enthaltenen Referenzen gefunden werden.

In der Einleitung haben wir kurz das Mittlemansche Prinzip zur Herleitung relati-
vistischer Hamilton-Operatoren aus QED-Hamilton-Operatoren angesprochen. Dieses
Prinzip sollte zur prizisesten Vorhersage der Grundzustandsenergie schwerer (Z > 1)
Atome fiithren. Wir verweisen auf [129, Abschnitt II] fiir eine detaillierte Beschreibung
dieses nichtlinearen Variationsprinzips. Sehr grob gesagt, schlug Mittleman vor, dass
man zunéchst den tiefsten Eigenwert eines (mit einer noch frei wihlbaren Projek-
tion) projizierten Vielteilchen-Dirac-Operators finden sollte. Im Anschlufl sollte man
diesen Eigenwert iiber alle ,erlaubten® Projektionen maximieren. Die Projektion, die
den hochsten Eigenwert liefert, bestimmt demnach den , physikalisch relevantesten “
Hamilton-Operator.

Eine erste natiirliche Frage, die man an diesem Punkt stellen muss, ist, iiber welche
Projektionen man {iberhaupt variieren soll. Man sollte sicherlich solche ausschlieflen,
welche ganz oder teilweise auf den negativen Teil des Spektrums (den , Dirac-See) des
Dirac-Operators projizieren.

Weiterhin kann man folgende zwei Vermutungen duflern, welche die asymptotische Ent-
wicklung der Grundzustandsenergie des Vielteilchen-Operators im Grenzwert grofier
Teilchenzahlen beziehungsweise Kernladungen betreffen.

(1) Aufgrund der Intuition, dass der grofite Beitrag von kernfernen, ,langsamen* Elek-
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tronen auf der Langenskala Z —1/3 erzeugt wird, kénnte man erwarten, dass die fithrende

Ordnung der Grundzustandsenergie fiir alle ,,erlaubten“ Projektionen wieder durch die
Thomas—Fermi-Energie gegeben ist.

(2) Des Weiteren sollte die Z2-Korrektur im Furry-Bild am hochsten sein, da diese nur
durch das effektive Einteilchen-Problem, welches nur Wasserstoff-Operatoren beinhaltet,
erzeugt wird. Diese Intuition stiitzt sich auf das Variationsprinzip fiir Operatoren mit
Spektralliicken [77, 131], welches die hochsten Eigenwerte des Coulomb—Dirac-Operators
liefert, wenn beziiglich des Furry-Bilds projiziert wird. Dies ist auch das zu Grunde lie-
gende Argument von Schwinger fiir die Herleitung der relativistischen Scott-Korrektur
[150].

Diese beiden Vermutungen sind bis heute ungekliart und stellen interessante mathema-
tische beziehungsweise physikalische Probleme dar.

Offene mathematische Fragestellungen

e Wie wir in Kapitel |8 erwiihnt haben (und in Anhang erortern werden), ist es offen
einen Mikhlin- oder Hérmander-Multiplikator-Satz fir |p|* 4+ V fiir V> 0, wenn d > 2
oder d =1 und a < 1 sind, zu zeigen. Eine weitere eng damit verwandte Frage ist die
LP-Beschranktheit der zugehorigen Maximalfunktion

sup [F'(¢(|p|* + V)|
t>0

sowie der Summierbarkeit von Entwicklungen von Funktionen in Eigenfunktionen von
[p|* + V, das heifit, ob

lin P(1(|pl” +V))f =

punktweise fast tiberall oder in LP gilt, wenn F' hinreichend glatt ist und F'(0) = 1
erfiillt. Fiir F(A) = (1 —\)] mit v = y(d,«) > 0 fiihrt dies auf die Frage der Bochner—
Riesz-Summierbarkeit.

SchlieBlich stellt sich im gleichen Kontext die Frage an die kleinste Zahl der benétigten
Ableitungen an den Multiplikator damit dieser LP-beschrankt ist. Im Schrodinger-Fall
—A+V mit V > 0 ist beispielsweise bekannt, dass diese Zahl mindestens d/2 sein muss
(Hebisch [84]). Des Weiteren gilt Bochner—Riesz—Summierbarkeit, wenn v > (d — 1)/2.

e In Kapitel |§| konnten wir kein Mikhlin-Multiplikator-Theorem fir £, o = [p|* + a|z|~®
mit a < 0 zeigen, da der Wellenpropagator cos(71/Lq ) keinen kompakten distributio-
nellen Trager hat. Insbesondere war es offen eine Abschétzung der Art ||T'bg|| LIRAQ;) S

h1=4||bg ||, zu zeigen, wobei {Qr} eine Familie dyadischer Wiirfel (mit relativ konkre-
ter Struktur) war, die aus einer Calderén—Zygmund-Zerlegung hervorging und by auf
Q1. getragene Funktionen waren. Die ()} waren dilatierte Versionen der Q3. Mit Stones
Formel

cos(Tv/Laa) = i, lim - cos(TVA) (Laa — A +ie)) ™ = ((Law — (A — i) 1) dA

2m eN\0 Jg

konnte es moglich sein hinreichend gute punktweise Schranken des Wellenpropagators
zu erhalten und damit die gewiinschte Abschitzung zu zeigen.
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9. Offene Fragen

e Es wire wiinschenswert, die Aquivalenz der Sobolew-Normen auch fiir den Coulomb—

Dirac-Operator mit durch punktweise beschrianktem Coulomb-Potential zu beweisen.
Konkret erwarten wir, dass Satz auf diesen Fall verallgemeinerbar ist. Mit der
Definition von o, aus (6.10) formulieren wir folgende

Vermutung 9.0.1. Seien 0 < s < 1 und 0 < v < 1. Fiir alle v/ > 0 gibt es ein
as~ > 0, sodass, wenn s+ o, < 3/2, dann ist fir alle 0 < U(z) < +'/|z|

2 :
‘Dg +U| > a0 || @ 1ea in L?(R3 : C*)

und fir alle 0 <~' <1 -+ gibt es ein a
gilt fir alle 0 < U(x) <+'/|x|

vy > 0, sodass, wenn s+ 04y < 3/2, dann

2 .
DY~ U > d,, pI**®1ca  in L*(R*: CY).

Die Behauptung folgt sofort, wenn
— U =+'/|x|, oder
— (> 1mit v+ < 3/2.

Der erste Fall ist offensichtlich, denn es ist Dg FU = Dg Sty und man kann direkt
Lemma [6.2.7|anwenden. Im zweiten Fall folgt die Aussage aus der Dreiecksungleichung,
der Hardy-Ungleichung

2 )
(125 =[S B e ar < (1),

und der Operatormonotonie von x + x° fiir 0 < s < 1, denn fiir f € (£;0)" ist

03 F V)12 WAF = G+l 71> (1= 2505 ) W

Fiir £ = 0 und allgemeine U sollten die Argumente von Morozov und Miiller [132]
verwendet werden kénnen, um (Dg:I:U)2 > Gy (Dg n 7,)2 zu zeigen. Anschliefend wiirde
man wieder Lemma [6.2.7] verwenden.

Diese Vermutung erscheint , universeller“ als Lemma [6.2.13] denn dort mussten wir
eine Kleinheitsbedingungen an +/ stellen, die nur indirekt etwas mit der Aquivalenz der
Sobolew-Normen aus Kapitel [7] zu tun hatte.



Anhang A

Anhang zur semiklassischen Dichte
im Brown—Ravenhall-Modell

A.1 Kommutator mit den 7-Transformationen

Im Folgenden betrachten wir das durch den Operator [®;, xg]V[xr, ®;] erzeugte Lokalisie-
rungspotential mit V' = |z|~! und der Lokalisierungsfunktion xz(x) = x(x/R) mit x aus
im masselosen und massiven Fall. Wir beginnen mit der schwierigeren, zweiten Komponente
der T-Transformation.

Nach Lemma und Lemma ist das durch den Operator [®1, xr]V xR, ®1] er-
zeugte Lokalisierungspotential durch

o—ale—2|g—alz—y|

@ =4[ dy [ dz T V() xa)al) —xa()| (4D

mit einem a € (0, 1) beschrénkt.

Im masselosen Fall ist dagegen ¢; = 1 fiir j € {0,1}, das heifit man muss lediglich das
durch [h, xr|V [XR, h| erzeugte Potential betrachten, wobei h = o-p/|p| der Helizitétsoperator
ist. Um den Lokalisierungsfehler in diesem Fall zu bestimmen, berechnen wir zunéchst das
Lokalisierungspotential, das durch [k, Xg]V[XR, hm] erzeugt wird, wobei h,, := o - p/(p? +
m?)1/2 fiir ein m > 0 den regularisierten Helizitétsoperator bezeichnet. Dieses lisst sich nach

(4.23)) und Lemma durch

K — z|)K: —
L(z) := Am* dy/ dz 2(m |z — 2] K(m |2 — y])
R3 R3 |z — z[ |z — ¥

V(2)Ixr(®) — xr(2)|IXR(Y) — XR(2)]
(A.2)

abschétzen. Wir erinnern nochmals an das asymptotische Verhalten von K (siehe [137, Formel
9.6.9 und 9.7.2]), namlich

Ko(mr) ~2(mr)™2 firr —0,

T e—mr

2 /mr

fiir festes m > 0. Daraus folgt, dass es ein A, > 0 gibt, sodass

Ko(mr) ~ fiir r — oo

|1 (r)| < Agr ' Ky(ar) fiir alle r > 0.
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Dies zeigt, dass das von [®1, xr]V[xg, ®1] erzeugte Lokalisierungspotential durch das
von [hpm, XR]V [XR, hm] erzeugte Potential beschrinkt werden kann, wenn m € (0, a] nicht zu
grof} ist. Wir untersuchen daher im Folgenden lediglich fiir ein festes m > 0. Lésst man
m — 0 gehen, erhilt man eine obere Schranke fiir das Lokalisierungspotential der masselosen
T-Transformation.

A.1.1 Das y-Integral

Wir beginnen mit der Berechnung des y-Integrals. Hierbei untersuchen wir verschiedene Re-
gionen, siche dazu Abbildung

z

1 x(y) 0
VI VII
2R;
1-x(2) | x(y) —x(2) | —x(2)
\Ys v 11
R
x(y)—1 1
0
11 I
R 2R y

Abbildung A.1: y-z-Gitter

Sind beispielsweise sowohl |y| < R, als auch |z| < R, so ist das Integral identisch Null. Fiir
die Region |y|, |z|] € [R,2R] verwenden wir den Mittelwertsatz sowie die Lipschitz-Stetigkeit
von y und schitzen die Differenz durch M R™! ab, wobei M = || Vx||o-

Fiir die Regionen, in welcher der Abstand |y — z| > ||y| — |z|| > R ist, verwenden wir die
exponentielle Asymptotik K (|y — z|) < Ae~1¥=2I|y — 2|~1/2. In den Regionen, in welchen der
Abstand |y — z| Null werden kann (beispielsweise, wenn R < |z| < 2R und 2R < |y| < 3R
sind), verwenden wir stattdessen Ko(|ly — 2|) < Aly — 2|~2. Fiir Region I verwenden wir
beispielsweise die exponentielle Asymptotik, wohingegen, wenn wir in Region II die Félle
2R < |y| < 3R und |y| > 3R unterscheiden, wir in ersterem die r~2-Asymptotik von Ka(r)
verwenden. Wir definieren

Ka(mly — z])

I =m?
R3 ly — 2|

IXr(y) — xr(2)| dz. (A.3)
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I: |z] <R, |y| >2R.

exp (—m\/r2 + |2)* = 2r 2| u>

—ml|y—z| 0o 1
I < Am?/? / eM:Am?’/z/ drrz/ du 5
ly — 2| / 2R -1 (r2 + |2])° — 2r |2 u)3/4

ly|>2R
(r+|z))2 -m\/u
—Am3/2|z| 1/ dr r due 37i
2R (r—|z))? u
< Am3/2 |4~ Ood 2 gy e Ml
< Am?/ = |z . TT[(T—HZ\) —(r—1z]) } : (r — 232

—mr

= Am3/2/ dr [TQ + |:<:]2 + 2r ]z@ S =7
2R—|z| 3/

< Am?/? </OO /267" dr + R? /OO p3/2g—mr dr) < Ay + AyRY?m1/2e—mE
0 R
(A.4)
Sobald wir die Integration iiber z ausfithren, werden wir sehen, dass der zweite Term fiir
m — 0 verschwindet.

IT: R <|z| <2R, |y| > 2R. Wir unterscheiden zwei Fille.
1. 2R < |y| < 3R.

3R 1
I<A / dy ]y—z\_?’:A/ dr r2/ du (r? +z|* = 2r |z|u) /2
2R<y<3R 2 !
3R 2
_ 1 1 5R (A.5a)
=A ! d — = Al 1+ ———
o () = A (1 )

c(-mfe-5)

2. |y| > 3R. Man erhélt wie in Region I
I < Ap+ AyRV2m1 2 mBR=IED < 4] 4 Ay RY2 /28 (A.5D)

sprich einen konstanten Term sowie einen Term, der fiir m — 0 verschwindenden wird.

ITL: |2| < R, R < |y| <2R.
2R 1 9 2R 7.2 1 1
I< Am2_2/ dr 7“2/ du (r® +|z|? = 2r 2| u)~%/? = A/ dr < — >
R -1 R rlzf \r—1z]  r+z]

2R
r 12|
= A dr ——— < A(1-1 11— —
/R TP = < "g( R))

IV: R < |z2| < 2R, R < |y| < 2R. Um diese Fehler kiimmern wir uns, wenn wir zur
z-Integration kommen.

(A.6)
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V: R<|z| <2R, |y| <R.

R 1
I<A / dy |y — =73 :A/ dr 7“2/ du (r® +|2|* — 2r |z|u) 32
0 -1

ly|<R
R R 2
1 1
:A/ drr( - >:A|z|1/ drhﬁA(l—log(M—l>
o el N[zl =7 lz[+r o |zP-r R
(A.7)
VI: |z| > 2R, |y| < R. Diese Region wird dhnlich wie I behandelt.
3 emlyl 2/ R ) 1 ) 9 3
I < Am2e Ml / ~dy = Am®/ e_mz|/ dr r em’"/ du (r* +|z|" — 2r|z|u) "1
ly — 2|2 0 -1
lyI<R
R
= Am3/2e_mz||z|_1/ dr re™" (\/|z| +r—+/]z| — r)
0
el (—2 +e™R(2 —2mR + m2R2))
<A - ;
= m3/2[2[3/2
(A.8)

Hierbei haben wir /]2 +r — \/]z[ — 7 < Ar|z|~/2 abgeschiitzt. Fiir m — 0 verhilt sich die
rechte Seite wie R3m3/2|z|3/2,

VII: |z| > 2R, R < |y| <2R. Wir unterscheiden wieder zwei Fille.

1. 2R < |z| < 3R.

d 2R 1
I<A / L 3:A/ drr2/ du (r? + |2|* — 2r |z| u)~3/?
ly — 2| R -1
R<|y|<2R
2R 1 1 2R 2
R 2l \ |zl =7 2+ R PP

IN

8 <‘|§“°g <1 - GR I |z\>>) = <1 s @f'z - 1))
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2. |z| > 3R. Wir gehen analog wie in Region I vor.

s o—mly—2| s (2Rt exp (—m\/TQ + |22 — 2r|z]u>
I < Am>2 / dy—Am2/ drr/ du

ENE - 2 2 _ H
R<|y|<2R ly — 2|2 R 1 (r? + |2[> — 2r|z|u)a
2R (\zl-l—r)2 my/u
— AmP2 |
Am Z| / dT‘ ’I"/l u3/4
» y e—mllzl=")
< AmP/ 2| /R dr v [(Je 4 )" = (el =) e
4 ”7/ﬂ%kk 2= amd [ e e =2
— Am T+ |z r=Am LN "
R (—r)3/? |2|-2R ri/?
m(]2~R) 122
< Am2/ r%m 24 W e "dr
m(|z]—2R)

< Oodr /26T 4 m?|e]” Oodr e " <A+ A ml/2|z|1/2
o m2(J2] = 2R)¥2 Jo S

(A.9b)

A.1.2 Das z-Integral

Als Niichstes integrieren wir die Ergebnisse der y-Integration noch iiber z mit V(z) = |z| 1.
Ahnlich wie eben untersuchen wir die verschiedenen Regionen separat.

I: || > R, |z| <R, |y| >2R. Es verbleibt

“m Ko(m|z — 2z
[A] + ARV ?m1/%¢ R]m2/dz V(Z)M IXr(z) — xRr(2)] (A.10)
abzuschéatzen.
1. R<|z| <2R.

[Al + A2R1/2m1/2e_mR]_1L(x) < A/R dr T/l 5 du
0 1 (r2+ |z|” = 2r 2| uw)3/2

1 R 1 1 1 R T
=Alz|” / dr < - > = Alz|” / dr —5—— (A.11a)
0 lz[ =7 Jz[+7 0 |z|” —r?
BRI R R?
= AR! =—AR ' —1 —~ )=R'F R
wl e |r°g( w2> (l=l/8)

Fiir |z| N\ R verhélt sich F(|z|/R) wie log(2|x|/R — 2), hat also nur eine logarithmische
Divergenz, ist aber sonst stetig. Daher kann F(|z|/R) in die Daubechies-Ungleichung
eingesetzt werden.
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2. |z| > 2R.

(—m\/r2 + |z]? — 2r|1:]u>

(r2 + |z|? — 2r\m|u)%
R ms (R
< Am3/2\x]_1/ dr [\/\xl +r—+/|z| - r} e~mllzl=r) < 42 dr re~m(7l=m)
0

2l% Jo

R 1 exp
[A1 + AgR%m%e_mR]_lL(:p) < Am? / dr 7“/ du
0 -1

. el [1 + emB(mR — 1)]

|gj|2 m1/2

m

0| Ml

=A

(A.11D)

In fithrender Ordnung verhilt sich dieser Fehler wie m?, verschwindet also im Grenz-

wert m — 0. Man sieht, dass der A3 RY2m!/2e=™_Term fiir m — 0 somit nicht zum
Lokalisierungsfehler beitrigt. Andererseits verschwindet der Fehler fiir festes m > 0
exponentiell schnell, wenn R — oo.

IL(i): R < |2| < 2R, 2R < |y| < 3R.

1. |z| < R.

s [ as e s (1o 10 (2- )

R<[2|<2R

2R !
—af, (- 5) [
= Alz|™ /}:Rdr (T —1|x o +1|x!> (1 ~log (2 B %»

- o S o+ (5 (o) 3 (im))|
= R™'F(|z|/R),

wobei Lis den Dilogarithmus

bezeichnet [I37, Formel 27.7.1]. Wir zeigen am Beispiel des Summanden (r—|z|)~! log(2—
r/R) wie dieser zu Stande kommt. Den anderen Summanden erhilt man analog. Durch
Skalieren r — Rr ist ersichtlich, dass es geniigt, R = 1 zu betrachten. Mit der Definition
von Lig(z) sowie w:=2 — |z| € [1,2], (w—1)/w € [0,1/2] und 1 — (w — 1)/w = 1/w €
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[1/2,1] erhélt man

2 - w _ 1 _
B / log(2 — 1) dr — _/ log(w — r) dr — _/ log(w(1 — 1)) dr
1 r—= ‘l’| w—1 r (w=1)/w r
w—1 . o fw—1
= log(w) - log <> + Lia(1) — Lio <>

— log(w) - log (“’w1> +Lis(1)

w—1 1
— [ Lin(1) =1 — ] -1 — | — Lis(1
e (52) e (2) )
= Lio(1/w) = Lia(1/(2 — |z]))
wobei wir Eulers Reflexionsformel (beziehungsweise die Abel-Identitét [I])
Lia(2) 4+ Liz(1 — 2) = Lia(1) — log(z) log(1 — 2)

fir z € [1/2,1] mit z = (w — 1)/w in der vorletzten Gleichheit verwendet haben.

Der erste Summand in der vorletzten Gleichheit von verhélt sich bei |z| =
wie log(2R/(3(R — |x]))), divergiert also logarithmisch und ist sonst stetig. Der zweite
Summand ist hingegen eine beschrénkte Funktion, die bei |z| = R maximal wird und
dort den Wert (72 — 6Liz(1/3))/6 ~ 1,28 annimmt. Insbesondere verhilt sich die rechte
Seite wie R~ fiir |z| N\, 0.

2. R < |z| <2R. Mit dem Mittelwertsatz erhilt man

L(z) < AR™! / dz 2| Mo — 2|7 <1 ~log <2 - ED)

R<[|2|<2R
2R
:AR_l/ drr|l—log(2— . / du
. ( ( R)) 172+ [z]? = 2rfzfu (A.12D)
( )?
( )?

= AR Ya| /:R dr log ( :+ £ ) (1=t (2-7))

[ () -8

Tatséchlich kann der erste Summand der rechten Seite wieder explizit berechnet werden
und ist gerade

4R 2R 4R?% — |z|?
AR™! 210 [ ————— — 1 log(1— ——— log [ ——= 1 .
L \( Og(zR—\xr )*Og( R+\xy>>+°g<|xyz_mﬂ

Der Ausdruck in eckigen Klammern ist bei |z| ~ 1,6R maximal und durch ca. 2,8
beschriinkt. Dies kann auch direkt gesehen werden, da log((r+1)2(r —1)~2) integrierbar
ist und daher das Integral eine auf [1, 2] beschréinkte, stetige Funktion von |x|/R ergibt.
Analog verhélt es sich mit dem zweiten Summanden, da auch das Produkt mit log(2 —
r|x|/R) fiir jedes |z| € [R,2R] integrierbar ist.

||
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3. 2R < |z| < 3R.

s [ de b e s (1o 10 (2- )

R<|2|<2R

2R 1 du
= A/ dr r/ 1-log (2— —
R (e (2- ) (72 + 22 — 2r 2] u)?/2
2R

et [ (s ) (e (2 7))

R
— Al ™! RQR erL_r2 (1 ~log (2 - %))

o B [ o eoR Lol o 1oy (2R DR )
= AR mrKlﬂ"‘m log (22 |D+lg<@R+mmR—hw>>

(1 (=) 7 (ze1m))|

=R 'F(|z|/R)

(A.12¢)

Hierbei hat F(|z|/R) eine logarithmische Singularitét bei || = 2R und ist ansonsten
stetig. Nach Wood [182] Formel (11.3)] verhalt sich Liz(1/(2 — |z|/R)) (beziehungsweise
Lig(1/(2 — |z|/R)) + Lia(1/(2 + |z|/R))) dort wie log?(|z|/R — 2).

4. |z| > 3R.
L(z) < Am>/? / dz |z — z]_3/2 oMl (1 —log <2 - ‘g))
R<|z|<2R
2mR r
< Am~Y2R32emlzl dr re” (1 — log (2 — —))
mR mR
<A |:m71/2R73/267m|z| (1 _2mR 2mRe2mR) i m3/2R1/262mRefm|z|}
(A.12d)
Hierbei haben wir
2mR r
—mV2R73/2e—mla] / dr re” log (2 — —)
mR mR
2mR
< _9oml/2 R—1/2x2mR —mlz| dr log <2 _ L) — om3/2 R1/22mR g—mlz|
- mR mR

abgeschitzt. Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwin-
det er fiir festes m > 0 exponentiell schnell, wenn R — oo (da || > 3R).

Der Punkt dieser Rechnungen ist, dass die rechte Seite hochstens quadratische logarith-
mische Singularitéten bei || = R und |z| = 2R haben kann (welche immer noch integrierbar
sind, selbst wenn sie zu hoheren Potenzen genommen werden), da zusétzliche Faktoren wie
log(2 — r/R) integrierbar sind. Wir werden daher von nun an dhnliche Rechnungen (die noch
in den Regionen III, V und VII vorkommen) nicht mehr explizit ausfiithren, sondern nur auf
die logarithmischen Singularitéten in |z| hinweisen.
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IL.(ii): R < |z| < 2R, |y| > 3R. Es verbleibt

“m Ko(ml|zx — 2z
[Au+ AR e R WVMQL_d“mmwmwn (A.13)
R<|2|<2R
abzuschéitzen.
1. |z| < R.
[A1 + A RV2m12e ™R~ L(2) < A Ls
|z| |z — 2|
R<|2|<2R
2R 1 2R 1 1
:A/ drr/ 2du :A|x_1/ dr< — )
(r2 + |x]” — 27 |z| u)3/2 R r—lz|  r+ |z
2R
4 R (2R — |z|)(R + |z]) .
A/ = AR™! g< = R 'F(|z|/R),
R o 8\ (R ) 2 + J2) (la1/£)

(A.14a)

wobei sich F'(|z|/R) bei |z| = R wie log(2R/(3(R — |x|))) verhilt, also logarithmisch di-
vergiert und sonst stetig ist. Insbesondere ist die rechte Seite (modulo einer Konstanten)
durch R™! beschriinkt, wenn |z| \, 0.

2. R<|z| <2R.
[A] + ARV2m1/2e=m B =1 L(2) < AR} LQ
|2l [z — 2|

R<|z|<2R

2R 1 2R 2
= AR_I/ dr r/ 2du = AR™! |x|_1/ dr log (W)
R 124 |z)? = 2r x| u R (|z] =)
2R/|x|
< AR_I/ dr log ((r +1)° > AR™!

R/z| (r—1)2
(A.14D)
3. 2R < |z| < 3R.
1/2, 1/2 —mRj—1 dz
[A] + AR m! e ™ L(z) < A —_
2|z — 2/
R<|z|<2R
2R 1
SA/ dr r/ du (r? + |z|* = 2r |z| u) =3/
R ~1 (A.14c)

2R 2R
—alel ™ [ Car (e ) A
e T TE ) A E

a1 B o 2R|z| .
‘AR]¢d1g<l @R !ﬂXR+!D> REF(al/R),

wobei sich F(|z|/R) bei |z| = 2R wie log(4/(3(|x| — 2R))) verhélt, also logarithmisch
divergiert und ansonsten stetig ist.
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4. |z| > 3R.

[A1 + ARV 2! 2em BT L (2) < Am®/2 / dz |2~ Ya — 2|32 mle—2]

R<|2|<2R

< Am3/2R—3/2e—m\m| / dz |Z|—lem\z| < Am1/2R—1/2 (e2mR _ emR) e—m|a:|

R<|2|<2R
(A.14d)

Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwindet er fiir festes
m > 0 exponentiell schnell, wenn R — oc.

III: |z| < R, R <|y| <2R. Wir miissen nur noch

m? / dz V(2 |x ECZ‘ &) (1 —log (1 - |ZR’>> (A.15)

|z|<R
betrachten.

1. R<|z| <2R.

L(z) < A / dz |2| 7o — 2|77 (1 ~log ( - |ZR’>>

l2[<R

B A/OR‘” r(1-tos (1- 7)) / du (2 + [af? = 2rfafu) /2

:A|x|-1/ORdr (ml_r - mlﬂ) (1-10x(1- 1))

_ A\x]_lf drr s (1 =108 (1= 1)) = B Fal/ ).

wobei F(|z|/R) eine logarithmische Singularitét bei |x| = R hat und ansonsten stetig

(A.16a)

ist.
2. || > 2R.
—m|z—2z| |Z’
L <A3/2/e 1-log(1-2))d
(z) < Am 2|l — 2|32 ©8 R))“
|2|<R
< —1/2 p—3/2_,—mjz| r(1 .
< Am R™/%e ; dr re <1 log (1 mR))

<A [m—1/2R—3/2e—m\m| (1- omR | mRemR) + m3/2R1/26mRe—m|z|}

Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwindet er fiir festes
m > 0 exponentiell schnell, wenn R — co.
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IV: R < |z|] < 2R, R < |y| < 2R. In allen kommenden Integralen skalieren wir (y,z) —
R(y, z). Wir betrachten zunéchst das Hilfsintegral (mit den reskalierten Goflen 1 < |y| < 2
und 1 < [z] < 2)

dy 2 5 1 du
=A
/ ly— 2 /1 drr / 2+ 22— 2r[2]u
1<]y|<2 (A.17)
2
— Az / dr 7 [log((r + |2))2) — log((r — |2))2)] < Al2| ™,
1

wobei wir in der letzten Ungleichung die Tatsache verwendet haben, dass log((r —|z[)?) immer
noch integrierbar ist.

1. |z| < R.
-3
L(z) < AR™! / dz |2|7! ‘% — z’ / dy |y — 2|2
1<|z|<2 1<ly|<2
-3 2 1 1 1
< AR™! / dz |z\_2‘£—z‘ :AR_I/ dr -
R v r(el/R) \p— b 2y,
1<]2|<2 R R
2 2 2 2
_ dr 1 R 4R* — |z| _
= AR™! = AR — — " ) =R'F R
| e a2 8 <4<R2 - !xP)) (lal/B)

(A.18a)

Fiir |z] — 0ist F(|z|/R) < 3/8 und fiir |x| — R verhélt sich F'(|x|/R) wie log(3R/8((R—
|z]))), hat also eine logarithmische Divergenz.

2. R < |z| < 2R. Wir verwenden zwei mal den Mittelwertsatz sowie zweimal (A.17) und

erhalten
-2
L(z) < ARS—374 / dz |2 ’% - z‘ / dy |y — 272
1<[2/<2 1<[yl<2
S i (A.18b)
< AR™! / dz |E -2 AR < AR
R |z
1<[2|<2
3. 2R < |z| < 3R. Mit dem Hilfsintegral (A.17) ist
-3
L(z) < AR7! / dz |z ‘% - z‘ / dy |y — 2|72
1<]2]<2 1<yl<2
-3 2 1 1 1
< AR™! / dz \z|72‘£—z‘ :AR_I/ dr -
R ey \E T,

1<]2[<2 R R

R (? dr R? 2R|x|
AR 'R [ T AR g <1 n >

el Ju g2 |z[? (lz] = 2R)(R + |z|)
= R™'F(|z|/R),

(A.18c)
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wobei F(|z|/R) lediglich eine logarithmische Singularitidt bei || = 2R hat, sich dort
wie log(4R/(3(]x| — 2R))) verhilt und ansonsten stetig ist.

4. |z| > 3R.

L(z) < Am3/2 R6—3-2—3 / dz |z]_1\% - z\_%e_m|x_RZ| / dy |y — 2|72

1<|2|<2 1<]y|<2
< Am3/2R1/2€—m|m| / dz |Z‘—2€mR|z\ _ Aml/QRl/Q(GZmR N emR)e—m|az\
1<]z]<2

(A.18d)

Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwindet er fiir festes
m > 0 exponentiell schnell, wenn R — oo.

V: R < |z| <2R, |y| < R. Es verbleibt
Ko(m|z — 2 z
w [ v P ) - xate) (1 ~ log ('R' - 1)) (A.19)

R<|z|<2R
zu betrachten.

1. |z| <R.

L(z) < A / dz 2| Yz — 2|3 <1 — log <|;| - 1))

R<|2|<2R

< A/RQR dr 1 (1 ~log (% - 1)) /11 du (r? + [zf* = 2r || w) =2 (A.20a)
= Alz| ™ /;Rdr <r —1!96\ T Jrlfx\) (1 o (% ) 1)>

_ A/R2R(r2iir’x‘2) (1108 (%~ 1)) = BF(al/ ).

wobei F'(|z|/R) bei |z| = R logarithmisch divergiert und ansonsten stetig ist. Insbeson-
dere verhilt sich die rechte Seite wie R~ fiir |z| N\, 0.

2. R <|z| < 2R. Mit dem Mittelwertsatz erhdlt man

L(z) < AR / dz 2] Yo — 2|2 (1 ~log (‘;' - 1))

R<|2|<2R
= AR /RQR dr r (1 — log (; 1)> /11 du (r? +|z* — 2r|z|u) "} (A.200)
AR ! /: dr log <E:f }i:;) (1-108 (£~ 1))
= AR™! /}j:lx dr log <H> (1 —1lo (Z’;" - >> < AR'.

Dieses Integral ist &hnlich zu dem in Region II.(i).(2).
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3. 2R < |z| < 3R. Analog zu (1) erhalten wir hier

s < apl [Car (- ) (e (1))

= Alz| ™ /RZR dr W%r? (1 —log (% — 1)) =R 'F(|z|/R),

(A.20c)

wobei F(|z|/R) bei |z| = 2R eine logarithmische Singularitét hat und ansonsten stetig
ist.

4. |z| > 3R.

Liz) < Am¥PRPem [ st e (1108;(';'1))
R<|2|<2R (A.20d)

<A [ml/QR—l/Q (esz _ emR) o—mlzl | m3/2R1/262mRe—m\z|}

Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwindet er fiir festes
m > 0 exponentiell schnell, wenn R — oc.

VI: |z| > 2R, |y| < R. Es verbleibt

K —
m2 [~2 4+ e™R(2 — 2mR + m*R2)| / dz V()] Se-mlal K2lmle = 21)

|2[>2R

‘.TJ—Z‘ |XR('%') _XR(Z)‘

_3

<m3R™2 [-2+4 ™2 - 2mR + m?R?))

/ dz V(z)e_m|z|W|XR($) — XRr(2)|
|z|>2R

(A.21)

zu betrachten.

1. |z] < R.

L(z) < AR™2 [-2+ ¢™®(2 — 2mR + m*R?)] / dz 2| o — 2| 2o mIElemmlz—2l
|z|>2R
< AR3 [—2 + ™R (2 — 2mR + mQRQ)} ™l / dz |z]_le_2m‘z|
|z|>2R

= AR3m72(1 + 4mR) [2 + e™F(2 — 2mR + m?R?)] e~ M Eeml]
(A.22a)
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2. R<|z| <2R und 2R < |z| < 3R.

-2+ e™(2 — 2mR + mQRQ)] - L(x)

< Am~3/2R73/2 / dz |2) 7 o — 2| Be Al

2R<|2|<3R
3R 1
= Am_3/2R_3/2/ dr re_mr/ du (r* + |z|* - 2r|1:|u)_3/2
2R -1
3R
= Am PR [ dr( L >emr (A.22b)
2R r—lz| 1+ |zl
3R dr
< Am—3/2R—3/2e—2mR/
or (1% —|2]?)
_ _3/2 _ R 2R|z|
— A 3/2R 3/2 QmR‘R 171 <1+ >
" ‘ o] 5\ T @R (2GR + [2])

_ Am73/2R73/2e72mR . R*lF(‘$|/R) ’

wobei F(|z|/R) bei |z| = 2R lediglich eine logarithmische Singularitéit hat, sich dort
wie log(4R/(10R — 5|x|)) verhilt und ansonsten stetig ist.

3. R<|z| <2Rund |z| > 3R.
L(z) < ART3? [-2 + ¢™F(2 — 2mR + m?R?)] / dz 2| M — 2| 8/2e Izl gmmla—]
|z|>3R

< AR [-2 4 emR(2 — 2mR + m*R?)] eIl / dz |z|"te=2mll
|2|>3R
= Am 2R3 [-2+ e™(2 — 2mR + mQRQ)] e O E(1 4 6mR)e™!!
(A.22¢)

Die Fehler in dieser Region verschwinden im Grenzwert m — 0. Andererseits verschwinden
sie fiir festes m > 0 exponentiell schnell, wenn R — oo.

VIL(i): 2R < |2| < 3R, R < |y| < 2R.
1. |z| <R.

—m|z—2z|
3/2 e e (F
L(z) < Am / dz|z”$ —pP (1 log (QR 1
2R<|2|<3R

< AmP/2R3/2emll /;R dr re” ™" <1 —log (é — 1))

<A (m1/2R*1/2 4 m3/2R1/2> om(|z|—2R)

(A.23a)

Dieser Fehler verschwindet im Grenzwert m — 0. Andererseits verschwindet er fiir festes
m > 0 exponentiell schnell, wenn R — co.
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2. R<|z| <2R.

L(z)< A / dz]z\_1|x—z\_3<1—log<;’%— ))

2R<|2|<3R

3R 1 d

—af e (e (5 1)) [ ERRF I (A.23b)
3R

_A|x_1/23 u <r—1\x| _rJrl\x|>( 1Og(QR 1>>

:ALZR%( ~log (5=~ 1)) = RF(a|/R),

wobei F(|z|/R) bei |z| = 2R eine logarithmische Singularitét hat und ansonsten stetig
ist.

VIL.(ii): |z| < 2R, |z| > 3R, R <|y| < 2R.

—m|z—2z|

L(z) < Am3/? / dz ———

(1+/mlz])
372
12|>3R ol = 21"

~ . exp (—m 2 4 |z]* — 2r |z u>
= Am3/2/ dr r(1+ \/mfr)/ du
3R

-1 (r2 4 |z|? — 2r 2| u)3/4

32 -1 [ (rlz))?  g—myva
= Am>/* |z| / dr (1+ \/mr)/ du i (A.24)
3R (—lah? U

—m(r—|z|)

SAmg/z/oodrre 1+

T P TREAE

:Amz/ dr (Tm71+|$])(1+m)f3ﬁ
m(3R—|z|)

< Am dr rV2(1+ r)e™ < Am (1 + (mR)_1/2) e mE
mR

Diese Region gibt also keinen Beitrag fiir m — 0. Andererseits verschwindet der Fehler fiir
fixes m > 0 exponentiell schnell, wenn R — oo.

Fiir m — 0, das heifit im masselosen Fall, erhélt man somit von den Regionen I, II.(i)/d),
IL.(ii) I11/b), IV/d), V/d), VI, VIL.(i)/a) und VII.(ii) keinen Beitrag zum Lokalisierungsfehler.
Der Beitrag setzt sich folglich nur noch aus der Summe der restlichen Terme zusammen und
ist von der Form

R7'F(|lz|/R)O(3 — |z|/R), (A.25)

wobei F'(|z|/R) lediglich logarithmische Divergenzen bei |z| = R und |z| = 2R hat. Diese
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sind von der Form

{— log <1 - "”R|> — log? <1 - ’;')] O(R — |z|)

[ (1) = (1= 5)

—log (2 — ’Z’) — log? <2 — ’;)] 0(2R — |z|)0(|z| — R)
+ _— log (' 2 > log? (' 2 2)] 0(3R — |z|)0(|z| — 2R) .

Die Terme stammen von folgenden Integralen:

e Der erste Summand kam von IL.(i).(1), IL(ii).(1), IV.(1) und V.(1),

(A.26)

der zweite Summand von V.(1),

der dritte Summand von I.(1) und IIL.(1),

, VIL(1).(2)

der sechste Summand von VIL.(i).(2),

der siebte Summand von II.(ii).(3), I1.(i).(3), IV.(3), V.(3) und
der achte Summand von II.(ii).(3) und V.(3).

der fiinfte Summand von VI.(2

u
der vierte Summand von III.(1),
)
(

Andererseits erhélt man fiir festes m > 0 folgende ,,neue* Fehler im massiven Fall fiir das
Lokalisierungspotential von [hp,, Xg]|2| " [X &, hm] beziehungsweise [®1, xr]|z| " [xr, P1].

I: |z| <R, |yl > 2R, |z| > R.

1/2 p1/2,,—mR o R |z]?
1+ Am'/2R" 2 } R arloe (g ) PR 1ehe(e] - B)

(A.27)
L e R~ 1) - 28

|
m

+A|x|3/2

II.(i): 2R <|y| < 3R, R < |z| < 2R.

[m_l/QR_g’/Qe_m‘x'(l — ™Mt o Re? ™) 4 m?’/QRl/QeQmRe_m‘xq 0(|x| — 3R) (A.28)

IL.(ii): |y| > 3R, R < |z| < 2R.
ml/2R1/2g—mR R (2R — |z[)(R + |=|) iz
1+ Am R e {R Tl <<R—|m|><2R+|x|>>"(R =1
+R™ 1¢9(2R —|z])0(]z| — R)

LR, (@R-a)B ) o
wr g((R_m)(zRHx,))wsR £)6 (2| — 2R)

+m1/2R—1/2(esz _ emR>e—m\x|9(’x‘ _ 3R)]

(A.29)
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ITI: R < |y| <2R, |z| < R.

m~V2RT32emmlEl(1 — emB i Re™ Y 4 32 RY2emBElZD | g(|2| — 2R) (A.30)

IV: R < |y| <2R ,R < |z| < 2R.

m2RY2(2mE _ emBye~mlzlg (12| — 3R) (A.31)

V: |yl <R, R<|z| <2R.

[ml/QR—1/2(e2mR o emR)e—m\ﬂ + m3/2R1/2€2mRe—m|m|:| 9(|LE| o 3R) (A32)

VI: [y] < R, |2| > 2R.

m2R73(1+ mR) [-2+ e™F(2 — 2mR + m?R?)] e~ EemIZlg(R — |z])

33 _ R 2R|x|
+ |m 2R72 [-2+ ™2 — 2mR + m*R?)| e ?™ER™! — log <1+ >
| } o GR=Te)GR+ 1)
+m 2R7*(1 4+ 6mR) [-2 + ™2 — 2mR + m*R?)] e—ﬁmRemlxl} 0(2R — |z|)0(|z| — R)
(A.33)
VIL.(i): R < |y| < 2R, 2R < |z| < 3R.
(ml/QR—l/Q + m3/2R1/2)em(|x|—2R)9(R o ’:ED (A.34)

VIL(ii): R < |y| < 2R, || > 3R.

m(1 + (mR)~Y2)e™™R9(2R — |z) (A.35)
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Insgesamt ist der neue Fehler die Summe folgender Terme:

(R — |x|){R_1/2e_mR.R og <(2R— !x\)(RHx\))

|| (R — |z[)(2R + [z|)
+m2R73(1 + mR)[-2 4 ¢™(2 — 2mR + m?R?)|e~1mEemie] (A.36a)
Jr(m1/2R—1/2 i m3/2R1/2)em(\x|—2R)}
0(2R — |z|)m(1 + (mR)~1/2)emBR-I2) (A.36D)
_ 1 [R |22
1/2 p1/2 .—mR 1
0(2R — |z])0(|xz| — R) {Qm 12R1/2e R Lx log (W_Rg) + 1]
_ _ _ R 2R|z|
+m 32 R732[_2 4 B (2 — 2mR + m2R?)|e ?ER 1" Jog <1—|— )
| ( ) g (R« BR~ o)

+m2R73(1 4+ 6mR)[-2 + ¢™(2 — 2mR + m2R2)]e_6mRem‘x|}
(A.36¢)

03K — |2])0(|z| — 2R) {(1 + m/2R12emRY. R—1|f| og <E;R__|lﬁ|()2(gi :i I;) } (A.36d)

e~ 217l (1 4 emB(mR — 1))

m

9(’1" — 2R) { [1 + Am1/2R1/2eimR:| . |x’73/2

+R3 2211 — emB L Re™E 4 m? RzemR)} e 5ol
. (A.36e)
< _ 1/2pl/2,—mR| ™M . _mR _

< 6(|z| 2R){[1+Am R €M R = 1))

+R32(e™F — 14+ mR+ m2R2)} ezl
9(’$| _ BR) { [1 + Am1/2R1/2eme: ef%”\ﬂ(e%nl% _ emR)ml/QRfl/Z

—|—m_1/2R_3/2(1 _ 2mR 2mRe2mR)e—sz\x| i m3/2R1/2e2mRe—QTm|ac|} o~ Blal

< 0(|z| — 3R) { [1 + Am1/2R1/2e*mR— (1-— e*mR)ml/QBfl/2

_I_m—1/2R—3/2(1 _ 2mR 2mRe2mR)e_2R i m3/2R1/2)} o= Blal
(A.36f)
Bei den beiden letzten Fehlern haben wir alle negativen Potenzen von |z| durch die untere
Grenze (also entweder 2R oder 3R) abgeschétzt. Die letzte verbleibende x-Abhéngigkeit steckt
somit in e~™#1/2 fiir |z| > 2R, beziehungsweise e~™*I/3 fiir |2| > 3R. Alles in allem kann der

Lokalisierungsfehler fiir festes m > 0 und nichtnegative Potentiale, die durch |z|~! beschrinkt
sind, durch eine m-abhéngige Konstante mal

LY (x) < AART'F ('g) 0(3R — |z|)

+ AQ(RiZ =+ Ril + R*1/2 + 1 + R1/2)e*mR6(3R . ’.’L‘D (A37)

—|—A3(R_3/2+R_1/2+R1/2)e_m|$|/20(|x\ —R)

abgeschéitzt werden. Hierbei hat F(|z|/R) logarithmische Singularitdten bei || = R und
|z| = 2R und ist sonst stetig und beschrénkt. Die Singularititen sind von der Form (A.26).
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A.1.3 Lokalisierungspotential der ersten Komponente der 7-Transforma-
tion

Schliellich bestimmen wir noch das Lokalisierungspotential fiir die erste Komponente der 7 -
Transformation mit V(z) = |z|~!. Mit den punktweisen Schranken aus Lemma fiir den
Integralkern von ¢y — 1, konnen wir das Lokalisierungspotential (4.15)), sprich

7m\xfz\efm|yfz| T P P
W= [ i [ e (&) @Ik (R) -+ (2)
R (-T) R3 Y R3 Z|3§‘—Z‘2|z||y_z‘2 X R X R X R X R
fiir festes m > 0 abschitzen. Wir unterscheiden dieses mal nur zwei Fille, || < 3R und
|z| > 3R. In beiden Fillen verwenden wir fiir die Differenz |xr(y) — xr(z)| die Lipschitz-
Stetigkeit von x. Fiir die Differenz |y r(z) — xr(2)| verwenden wir die Lipschitz-Stetigkeit nur

fiir || < 3R. Das Integral iiber y gibt wegen der Translationsinvarianz einfach eine Konstante,
das heifit wir miissen nur noch

—m|z—2z| —m|z—z|
L9(x) < AR2 ( dz— °

0(3R—|z)+R/ dz
R3 |Z|’$—Z| R3

x| — 3R A.
behandeln.

Wir beginnen mit der inneren Region |z| < 3R. Zunéchst bestimmen wir hier das Integral
iiber den Winkel mit r = |z| zu

du =
N N T mrlal

/1 exp(—m\/|ac|2 + 12 — 2r|z|u) B e—mllzl=r| _ o—m(|z[+r)

Hierbei haben wir — in dieser Reihenfolge — die Substitutionen u + u/(r|z|), u + u + (|z|? +
72)/2, u + —u/2 und u — u? verwendet. Damit ist fiir |x| < 3R

ng) (x) < AmlRQ\az|1/ dr {emex'*T‘ — e~mllal+r)
0

= Am™2R7?|z|7! [1 - e_m‘xl} .

Die |x|~!-Singularitit wird dabei gerade vom letzten Faktor in eckigen Klammern neutrali-
siert, weshalb die Daubechies-Ungleichung verwendet werden kann. Insbesondere ist Lg) (x) <
Am~1R72 fiir |z| < 3R.

Fiir |x| > 3R erhalten wir nur einen Beitrag, wenn |z| < 2R ist. Wir miissen daher nur
noch

—m|z—z|
AR™! dzS—_9(jz| — 3R
| tpptel =2
|2|<2R

bestimmen. Mit denselben Substitutionen fiir das Winkelintegral wie eben erhélt man mit
r =z

1 |z|+r e—mu 1 00 a—mu 1 e~ (lz]-7)

2] Jigj—r |zl Jigj—r  u mrlz| o] =
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Mit |z| —r > R und den darauf folgenden Substitutionen r — r + |z| und r — —r erhalten
wir fiir [z| > 3R

|| —mr 0 —mr
ng)(:n) < Am_lR_1x|_1/ dr ° < Am_lR_1|x_1/ ¢ dr
|z|—2R r lz]—2rR T
—m(|z|]—2R) R
e
< AR < Am—QR—37e2mR—m|:c\ )
m?|z|(|z] - 2R) ]

Der Lokalisierungsfehler fiir die erste Komponente des Spinors belduft sich also auf eine Kon-
stante mal

LW (z) < Am™?R72[z| "1 (1 — e *NH(3R — |2]) + Am2R3|f|e2mlee(yx| — 3R)
< Am™'R720(3R — |z|) + Am 2R3 ™I=1/39(|2| — 3R).
(A.39)

A.2 Vergleich der verdrehten und unverdrehten Potentiale

Wir schitzen V' — T1(V) in der mittleren und der dufleren Region ab. Hierbei ist V' > 0
entweder das Coulomb-Potential, das mittlere Feld, oder das Test-Potential. Wir bemerken
zunéichst die Gleichheit

TV) =V =3 (@ve, -V eiv'?)
§=0,1
_ Z (V1/2<I>j[V1/27¢>j]+[¢>j,V1/2]<I>jV1/2+[‘I)J"Vlm][vlm’(bﬂ) (A.40)
§=0,1

=D _[2;.V];.

7=0,1

Des Weiteren erinnern wir an die punktweisen Schranken der Kerne von &5 — 1 und ®; aus
Lemma und Lemma namlich

—alz|
e
by —1 <A—7>5-
und
(b Ae_a"ajl
< A
010 < A

fiir gewisse A >0 und 0 < a < 1.
Wir schétzen zunéichst die Differenz des verdrehten und unverdrehten Coulomb-Potentials
ab und beginnen mit einer Abschétzung, die in der mittleren Region verwendet wird.

Lemma A.2.1. Seien 0 < U < |z|7!, o wie in (&.7d) und fo := Xof fir f € L*(R3 : C?).
Dann ist

—(f2, Ti(U) f2) = = A(fa, x|~ f2)
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Beweis. Wegen —(f2, T1(U) f2) > —(f2, Ti(|z|~1) fo) miissen wir nur noch zeigen, dass

(s ()™ = Tilel ™) £2)]
=7 (o, (27305012l 75, ;) + (@5, |o] =312l % + [y, 2l ~3]lJe] 73, @,]) £2) |

7=0,1

durch eine Konstante mal (fa,|z|™! f2) abgeschitzt werden kann. Aus der Cauchy—Schwarz-
Ungleichung und der Tatsache, dass ®; ein durch Eins beschrénkter Operator ist, sprich

(o bl 205010l 772, @1 12) | < el 2 Fall - 0,1 ~/2, @512
< (fo,lal ™ f2) + (o, [, e 7201272, @1 f2)
folgt, dass man nur noch
(s [ 2]~ [l =2, @) )| < Alfos ol M fo), G € {01}

zeigen muss. Mit [®g, V] = [®g — 1, V], der Cauchy—Schwarz-Ungleichung (wie im Beweis von
Lemma [4.4.1)) und den punktweisen Schranken der Lemmata [4.4.2] und {4.4.3| reduziert sich
dies auf die Behauptung (mit 0 < a < 1)

e—alz—2| e—aly—2|
dz / dy
/RS [ — 2 ) Ty =2

Ri<|y|<Ra
fiir |z| € [R;, Rq) (was wir von nun an voraussetzen). Die | - |~3-Singularitiit der Integrale ist
wegen der Differenz der Potentiale integrierbar. Wir beschrianken zunéchst das y-Integral und
beginnen mit der Region |y| € [|2]/2,2|z|]. Nach Skalieren von y — |z|y erhélt man

L2
< 27r\z|_2/ dr r?
1/2

2
= 27r\z|1/2/ drr
1/2

1 1
212 |z|1/2

1 1
RGN

< Alz|7t (A41)

e_a"y_zl

dy
ly — 2|3
|| /2<|y|<2||

1 1
"2 2t

1 1‘ /1 du
rl/2 -1 (r24+1- 2ru)%

1 1 1 1
rl/2 |’I“—1‘ r+1

< Alz|7V2,
(A.42a)
Ist |y| < |z|/2, so ist
e—aly—z 1 1 e—alzl/2 ~
d — < A————0(|z| — 2R; A.42b
[ e | = A -2 S
Ri<[y|<|z|/2
und, wenn |y| > 2|z| ist, dann
e-aly—2 | 1 1 e—alyl/2
d - < Alz|71/2 / dy ———
[ o | < 4 WP
2/2|<|y|<Ra 2z|<|y|<Ra (A.42c)

< Alz| V2l Jog (;Tz ) O(Ry — 2|2|).
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Insgesamt ist also

o—aly—=
dy
/ ly — 2|3

Ri<|y|<Ra

1 1

V72 [z

< Alz|"1? [e—a|z|/2 (9(|Z| —2R;) + log (;TZ ) O(R, — 2|z\)) +1

Wir untersuchen nun die drei Regionen |z| > 2|z|, |z| < |z[/2 und |z|/2 < |z] < 2|z|. In
der ersten Region ist |z — z| > |z|/2 und man schéitzt die linke Seite von (A.41]) weiter durch

—alz|/2 —aly—z | 1 1
€ €
]a:\l/2/ dz ——— / dy -
|2[>2]z| |23 ) ly — 2 |[y[t/2 |2[Y/2
Rz§|y‘§Ra
< A|xy—1/2—3—1/2/ dz | (14108 [ 22 ) 6(R, —202)) | +oalel?
j21>21al 2|2

< AR |x| " e="/2(1 4 log(Ra/Ry)

ab. Die rechte Seite fillt exponentiell schnell in Z ab und ist insbesondere durch eine Konstante
mal |z|~! beschrinkt.

In der zweiten Region ist |x — z| > |z|/2 und die linke Seite von (A.41)) kann durch

o—alel/2 / a—aly—2]
d: & dy
/|z<|x/2 | |3|2[1/2 ) ly — 2

Ri<|y|<Ra

gAewl/2|x\3/ 2|71 {7272 [ 1+ 1og =i O(Ry —2|2|) | +1
J2/<[al /2 22

< Alz| e /2(1 4 10g R,)

1 1

ly['/? [z

abgeschitzt werden. Die rechte Seite fillt also ebenfalls exponentiell schnell in Z ab und

ist insbesondere durch eine Konstante mal |x|~! beschrinkt. SchlieBlich schitzen wir fiir
2| € [l=[/2, 2]

1

p 1 1 / J e—aly==2l| 1 1
z — y _
|z — 23 |[z|V/2 |2|V/2] i ly — 2 [|[y|/2 |2|/?
|| /2< 2| <2]x| Ri<|y|<R,
1 1 1 R _
<A dz |- —3 lealz <1+log (2 a)e(Ra—zyz\)> +1
P A ( C A LRk B
R 1 1 1
< A2 [e=alol2 (1 4100 [ o)) 11 / d -
AR e ) ) o= B
|z|/2<] 2| <2]x]
< Alz|™!

ab. Hierbei haben wir den exponentiellen Abfall in |z| > R; und (A.42a)) in der letzten
Abschitzung verwendet. O
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Folgende Abschéitzung ist fiir die Bestimmung des Fehlers in der dufleren Region hinrei-
chend.

Lemma A.2.2. Seien Yo und X3 wie in ([£.7d) sowie fo := Xof und f3 := Xx3f fir f € L*>(R3 :
C?). Dann sind

|(for (|21 = Ta(ll =) f2)| < AR?|| o
|(fss (|27 = Tilll =) fa)l < AR S
Beweis. Wir zeigen die Rechnung nur fiir y3. Die Rechnung fiir Yo kann auf die fiir xs

zuriickgefiihrt werden. Wir verwenden die Darstellung |z|~* — 73 (|z|7!) = > i=0 Azt @519
aus der dritten Gleichheit in (A.40)). Fiir j € {0,1} ist

D 10 @5l @50F5) < MIfsllz Y el ™, @51 5]l -

j=0,1 7=0,1

Mit den punktweisen Schranken der Lemmata und und der Cauchy—Schwarz-
Ungleichung (wie im Beweis von LemmalA.2.1]) kann der zweite Teil des Produkts kontrolliert
werden. Wir erhalten fiir j = 0,1 mit 0 < a < 1 und ||z| — |z|| < |z — Z|

e—ale—=2 | 1 1 e~aly—=l | 1 1
Il 0505208 < [ dx|f3(rr)!2/ 0z et T
P2 = s g |z —zP |2l |2l SR, lv—2P |yl 2|

—alzx—2z| —aly—=z| o

R3 |z — 2] IxHZI ly|>Ra ly — 2[3|y|

—a|a: 2| e—a\y—z|
<Ry /da:]f3 /dz“/ Cdy .
[z — 2|2 Jiy>r, Y — 2l

Wir unterscheiden nun zwischen |z| < R,/2 und |z| > R,/2 und beginnen mit |z| < R,/2. In
dieser Region schéitzen wir das y-Integral durch eine Konstante ab, indem wir den Integra-
tionsbereich auf R? vergrofern. Gleichzeitig ist wegen |z| > Rq, |z — 2| > |z| — |2 > |z|/2.
Damit verbleibt

- —alz|/2 . .
AR / dz | f3(x)|? / dz T < ARG e /2| fy 2
R? sl<Bas2 T[22

und die rechte Seite ist fiir hinreichend grofies Z sicherlich durch R 22, f3H2 beschrénkt.
Fiir |z| > R,/2 schiitzen wir den |z|~2-Faktor im z-Integral durch R,? ab und fiihren die
y- und z-Integrationen iiber ganz R? durch. Zusammengefasst ist also

=", @51 /3115 < ARG f3113
was die Behauptung zeigt. O

Die Differenz der verdrehten und unverdrehten Test-Potentiale und mittleren Felder wird
schliefllich mit folgender Abschétzung behandelt.

Lemma A.2.3. Sei U > 0 Lipschitz-stetig mit Lipschitz-Konstante M. Dann ist

|(f. (U= Ti(U))f)| < AMI|fII3



196 A. Anhang zur semiklassischen Dichte im Brown—Ravenhall-Modell

Beweis. Wir verwenden wieder die Darstellung U — T1(U) = >_,_[U, ®;]®; aus der dritten
Gleichheit in (A.40). Fir j € {0,1} ist

|(f5 @50, @51 0)] < [1F 112010, 5] l2-

Mit den punktweisen Schranken der Lemmata und und der Cauchy—Schwarz-
Ungleichung kann der zweite Teil des Produkts kontrolliert werden. Wir erhalten mit a € (0, 1)

7a|:1: 2| 7a|y 2|
w2115 < 4, [ delf@P [ = =gl - [ dy = lv ) - U

—alz—z| —aly—=z
< AaMQ/ dxyfu)r?/ iz / ay < < A ).
R3 R3 R3

|z — 2 ly — 2

A.3 Pseudo-Differential- und singulire Integral-Operatoren

Wir geben hier einen kurzen Uberblick iiber Pseudo-Differentialoperatoren und ihre wichtigs-
ten Eigenschaften, die wir fiir die Untersuchung der 7-Transformation benétigen. Dieser hilt
sich sehr stark an [168, Kapitel VI, §1-4].

Definition A.3.1. Seien m € R und d € N. Dann ist S™ der Vektorraum aller Funktionen
a = a(x,p) € C® (R4 x RY), die

0705 a(w,p)| < Aas(1+ [p)™ 1
fiir alle Multiindizes o und § erfiillen. Elemente aus S™ heiflen Symbole m-ter Ordnung.

Formal definiert ein Symbol a einen Pseudo-Differentialoperatoren Ty, der Funktionen f
auf

TH)@ = [ ale.p)f @)y

abbildet, wobei f die Fourier-Transformation von f bezeichnet. Die ®; aus (4.2) sind bei-
spielsweise translationsinvariante Operatoren, das heifit sie wirken als Multiplikatoren im
Fourierraum, sprich

(@;)(p) = ®;(p) f(p).

Eine alternative Schreibweise der Wirkung von Ty ist als wiederholtes Integral

— / / a(z,p)e™ ™) f(y)dy dp .

Dieses Integral konvergiert jedoch nicht notwendigerweise, selbst wenn f € S. Zur Re-
gularisierung des Integrals fiihrt man x € C°(R? x R?) mit x(0,0) = 1 ein und setzt
as(x,p) = x(ex,ep)a(x,p). Wenn a € S™, dann ist auch a. € S™, gleichmifig in € € (0, 1].
AuBlerdem konvergiert lim._,o7,.f = Tof in S, wann immer f € S, siche [168, Kapitel VI,
§1.3]. Daher ist

(T, = hm//as x,ple zp(x y)f(y)dydp.
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Pseudo-Differentialoperatoren lassen sich auch als singulire Integrale auffassen. Wir schreiben

(Tu)@) = [ Ko 2)f (e = 2)ds (A.43)
R

mit folgendem Verstandnis. Fiir jedes x ist k(x,-) eine Distribution, deren Fourier-Transfor-

mation die Funktion a(z,-) ist. Formal ist dies die Identitét

a(z,p) = /]Rd k(x,2)e P dz .

Das heifit, (A.43) kann als Faltung der Distribution k(z, z) mit der Funktion f € S, ausgewer-
tet am Punkt z, aufgefasst werden. Nach [I68, Proposition 1] ist k(z, z) € C®(R? x R?\ {0})

und es gilt
0702k (w, 2)| < Aaplz~ TN 220

fiir alle Multiindizes «, 8 und alle N > 0, sodass d + m + |a] + N > 0 erfiillt ist. Das
bedeutet, dass die Distribution k(z,-) mit einer Funktion iibereinstimmt, die sehr schnell im
Unendlichen abfillt.
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Anhang B

Anhang zur starken

Scott-Vermutung im
Chandrasekhar-Modell

B.1 Beweise der Lemmata [5.3.9 und [5.4.5

In diesem Abschnitt berechnen wir Integrale mit Bessel-Funktionen. Wir erinnern an die
beiden zu beweisenden Behauptungen.

Lemma B.1.1. (1) Sei M > 0 eine feste Konstante und s € (1/2,1]. Dann gilt fir aller >0
und v >1/2

o0 krJ,(kr)? r\2s—1
< — .
/0 " (VEZ+1—1+4M)2 ~ Asmr (y) Lr<y #1020
(2) Seien a > 0 und s € (1/2,3/4]. Dann gilt fir jedes r > 0 und v > 1/2 die Abschitzung

/OO i /7457“J,,(l<:7“)2
0 (\/m — 1+ av—2)32s

< Agq [(Z)QH <y + (5)48_1 Livcr<ry + V48_11{r2v2}] :

Beweis von Lemma[5.3.9. Wir beginnen mit dem Fall s < 1 und erinnern dazu an punktweise
Schranken fiir |.J,(z)| fiir v > 1 (siehe beispielsweise [26, Lemma 3.2]). Es gilt

1 3
|1, (z)|? < konst — fir0<z< o und
v

1 3
|J,(z)|* < konst — fiir z > 37
x

Mit diesen Schranken gentigt es

3V/(27‘) o0
1

2 / dk b T / dk
VE2+1—14 M)2s VE2+1—14 M)?s
0

3v/(2r)

(B.1)
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abzuschétzen. Der Nenner der Integranden besitzt zwei Langenskalen. Fiir & 2> 1 wird der
Nenner am besten durch k%¢ approximiert, wohingegen er fiir & < 1 am besten durch M?$
angenahert wird.

Wegen 1/2 < s < 1 ist fiir » < v durch eine Konstante mal

1 v/r
[u—Q / krdk +v2 / k' dk + / Jem 2 dk] 1<)
0 1 /7
r r N 25—2 25—1 2s5—1
<z ()7 4) O e <4 () s

beschrinkt.
Ist andererseits r > v, so wird (B.1)) durch eine Konstante mal

v/r 1 0o
[Vz/ kr dk + / dk + / k2 dk] 1{r>zx} < Ag |:1 + 1+ Y + 1:| 1{r>u} < Asl{r>y}
0 v/r 1 N r r - N

beschrénkt.
Fiir v € [1/2, 1] verwenden wir die Abschitzungen ¢|.J,(¢)|> < Amin{1, 72"} (siehe [137,
Formel 9.1.7 und 9.2.1]) und k% +1 < Ap(VE2 + 1 — 1+ M)? und erhalten (fiir alle r € Ry)

1/r o0
/ i kr;f i _A 741+2u/ l+2v—2s dk+/ E25 dk §Asr25_1,
(k +1 0 1/r

beziehungsweise fiir r > 1

1/r k1+21/ 00 dk 1 dk oo dk
plt / dk —5—— + / T e S / I / (i
0 (B2 +1) Sy (2415 7 Jo (B2+1)5  Jo (B2+1)°

Schlielich behandeln wir den Fall s = 1. Mit [37, Formel 10.22.69] ist

krJ,( s ) 1),.
/ dk a1 + 1 = r?Jy(zr)Hl(, ) (ir)
wobei H." die erste Hankel-Funktion bezeichnet. Mit [137, Formel 9.6.3 und 9.6.4] kann die

rechte Seite durch die modifizierten Bessel-Funktionen I, und K, ausgedriickt werden und
man erhélt

krJ, (kr)?
/(; dk T—H = TK,/(T)IV(T) . (BQ)
Mit der punktweisen Schranke (siehe beispielsweise Iantchenko u. a. [95, p. 185])

9 "
KV(VLL’)IV(VI') < W fir alle v >

N =

ist insbesondere (mit = = r/v)

krJ, (kr)? r
—— 7 < — .
/0 dk k}2 ] < A (Vl{rgl,} + 1{,,2”}>
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Beweis von Lemma[5.4.5 Wie im Beweis von Lemma verwenden wir fiir v > 1 die
Schranken von Cordoba [26, Lemma 3.2] an |J,(z)|. Es geniigt daher die Summe

3v/(2r) L 00 )
2 / dk r + / dk B.3
) (VK2 +1—1+av=2)2s o (VE2+1—1+av—2)32s (B-3)
3v/(2r

abzuschétzen. In diesem Fall besitzt der Nenner der Integranden drei Léngenskalen. Fiir
k > 1 approximiert man den Nenner wieder mit k?*. In der Ubergangsregion v~ < k < 1
approximiert man vkZ +1 — 1 ~ k?/2, das heiit der Nenner wird durch k* angenihert.
SchlieBlich wird der Nenner im Bereich & < v~ am besten durch a?*v~%¢ approximiert.

Wir beschrianken nun den zweiten Summanden von . Ist v/r <1, unterscheiden wir
zwischen den Fillen v=! < v/r (sprich v < r < v?) und v/r < v~ (sprich 7 > v?). Im ersten
Fall erhdlt man

1

/ k4 dk + / K2 dE | 1<pc,2)
1

/r

~ 4, <(£)43_1 + 1> Lperem < A (D) s

und im zweiten Fall

-1

v 1 00
[1/48/ dk +/ dk k™% +/ dk k_QS] Loy S AV s,y
v/r vt 1 h B

Falls v/r > 1, muss nur der Bereich k& > 1 untersucht werden. Man erhilt

7dk F 210, = A, (92571 Teu) -

v/r
Wir widmen uns nun dem ersten Summanden von (B.3)). Ist v/r < 1, unterscheidet man
wieder zwischen v~ < v/r (sprich v < r < v?) und v/r < v=! (sprich » > v?). Im ersten
Fall integriert man und erhélt

1 v/r
L‘Q+4sr / k dk + ﬂ’"/ e dk] Ly<r<i?y
0 vt o

r

dsd 4s5—1
< Agrv 1{u§r§1/2} < As (;) I{VSTSVQ} :

Hierbei haben wir o1
T T 4s—
< (7) p2—4s < 5—8s
V474s — \v —

abgeschiitzt, was wahr ist, da (mit 1/2 < s < 3/4) r?74% < 12745 < 1578 ist. Im zweiten Fall
erhélt man

v/r
V—2+4S,r/ dkk 1{7’2112} S ASV4ST_11{7»21/2}
0

< Asl/4s_21{r21,2} < ASV4S_11{TZI/2} .
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Falls v/r > 1 ist, fiihrt die Integration auf

v
V72+4sr /
0
14 T

< Ag [7"1/45_4 +v P ()228] i<y < As (;)2871 Lir<uy -

—1

1 v/r
kdk+v?r / K'Y dk 4 v / ke dk] 1<
v-1 1 B

r

Hier haben wir verwendet, dass der zweite Summand in der letzten Abschitzung wegen v >
1/2 durch r?*=1y=25 < 2(r/v)?*~! und der erste Summand (mit s < 3/4) durch

T 'S 25—1
T3 < (7)
1% 14

beschrénkt ist.
Fiir v € [1/2,1] verwenden wir wieder die Schranken t|.J,(t)]> < Amin{1,#'72} und
k2 +1< Au(VE? +1 -1+ 4a)? und erhalten (fiir alle 7 € R.)

o0 krJ, o (kr)? 1/r o0
/ dk r 21/2( 7“) <A T1+2u/ Elt2v—2s dk+/ k=25 dk SASTQS_l,
0 (k2 +1)* 0 1/r

beziehungsweise, falls r > 1,

1/r k1+21/ 00 dk 1 dk 0o dk
142v dk _|_/ < / _— —|—/ — =A..
o [ G e 17 = Jy B TSy Gy

O]

B.2 Einfacher Beweis fiir eine obere Schranke fiir die nicht-
relativistische Wasserstoffdichte

Wie wir in der Einleitung bemerkt haben, zeigten Heilmann und Lieb [86], dass die nicht-
relativistische Dichte fiir r — oo sich asymptotisch wie 7=3/2/(v/272) 4 o(r=3/2) verhiilt.
Ihr Beweis beruhte sehr stark auf den genauen Eigenschaften und Asymptotiken der explizit
bekannten Wasserstoffeigenfunktionen. Es ist allerdings moglich, mit den einfachen Methoden
des Beweises von wenigstens eine entsprechende obere Schranke mit nicht-expliziter
Konstante zu zeigen.

Da im Folgenden keine relativistischen Operatoren auftauchen, missbrauchen wir die No-
tation und bezeichnen mit pf und p die nicht-relativistischen wasserstoffartigen Dichten.
Wir bezeichnen die orthogonale Projektion auf den negativen Spektralraum von p% /2—=1/r
wieder mit d; und schreiben

pH(r) = Trdys, = Tr ABCB*A*,
wobei

= dg(p}/2 = 1/r + ag)'/?
pe/2 =1/ +a0) 2 (p} /2 + ar)'?

A
B
C = (/2 + ag)"V%6,(p? /2 + ay)~V/?

= (
= (
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mit a, > | inf spec(p?/2—1/r)|. Wegen der expliziten Formel der nicht-relativistischen Wasser-
stoffeigenwerte, welche durch —1/(2(n + £+ 1)?) gegeben sind (fiir einen Spin-Freiheitsgrad),
setzen wir ay = a(¢ + 1/2)~2 mit einer hinreichend grofien Konstanten a > 0, welche un-
abhéngig von £ ist.

Zunichst haben wir die iibliche Schranke ||A|| < a(¢+1/2)~2. Die Spur von C ist gerade die
Diagonale (p7/2+ag) ! (r,r), da der Kern (p3/2+ag) ! (r,r’") (wegen der Sobolew-Ungleichung
mit 2 > d = 1) eine stetige Funktion in beiden Variablen ist. Die Diagonale wurde bereits in

B2 m

> krJy (kr)? 2ar 2ar
2 1 _ +1/2 B
(pf/2 + (lg) (h T) - /0 dk k‘2/2 + a(g n 1/2)_2 - 27"Kg+1/2 !+ 1/2 I€+1/2 + 1/2
r r (0 +1/2)?
R ey ek

bestimmt. Die Operatornorm von B ist endlich, da

2 2 2
pp 1 _1im 1 &_2
+ap = <2+ae +2 5 + ay

und die rechte Seite von unten durch (p?/2+a,)/2 beschrinkt ist, wenn a > 0 so grof§ gew#hlt
wird, dass auch p?/2 —2/r + a; > 0 ist.
Kombiniert man die Schranken fiir A, B und C, erhilt man

_ T
pi' (r) = Trdgd, < A(+1/2)72 [Wl{rS(Z—HMV} + £+ 1/2)1{7'2@—1—1/2)2}] :

Die mit 241 multiplizierte rechte Seite ist immer noch summierbar und man erhélt schliefSlich

Z2£+ r) < Aqr'/?.
=0
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Anhang C

Anhang zur starken
Scott-Vermutung im Furry-Modell

Partialwellenzerlegung

Die folgende Zusammenfassung stammt aus dem Anhang von [80], siche auch [0, Abschnitt
2.1.1].

Seien Yy ,,, die Kugelflichenfunktionen auf der Einheitssphére S?, welche die Normierungs-
bedingung fSQ |Yem|? dw = 1 erfiillen. Hierbei bezeichnet dw das gewshnliche Flichenmaf auf
S%. Fiir |m| > £ setzt man Yy, = 0. Fiir die Menge der erlaubten Indizes Z := {(¢,j,m) : £ €
No,1/2<j=¢+1/2,m = —j,...,j}, definiert man sphirische Pauli-Spinoren durch

JERY, ) (w
5 Yim-4 () falls j = £ + 4

Jibm T ]_m+1Y

“V 25+2 ém—l(w)
+m+1

]2;12 }/Zm-f— ( )

fallsjzﬁ—%.

Die € ¢ bilden eine Orthonormalbasis von L*(S? : C?) fiir (¢,7,m) € Z. Zudem sind sie
die gemeinsamen Eigenfunktionen der Operatoren L?, J? (mit dem gesamten Drehimpuls
J =L+ S, sprich der Summe von Bahndrehimpuls und Spin) und J3 jeweils mit Eigenwerten

£(£4+1), j(74+1) und m. Der Unterraum 5’) , der zum gemeinsamen Eigenraum des gesamten
Drehimpulses J und des Bahndrehlmpulses L gehort, ist durch

55t = span{z = ol F(12)Qem(@/[2]) : £ € LX(R4)}
gegeben. Dies fithrt auf die orthogonale Zerlegung
2y _ 0 ._ (0)
=D D %= D New
£eNp %Sj:&l:% (£,4,m)eT

des Hilbertraums der Zweier-Spinoren.
Der Hilbertraum L?(R3 : C*) wird mit Hilfe der sphdrischen Dirac-Spinoren

+ J— ZQJ’E’m - J— 0
Prtm = ( 0 > wd - Piem = ( —25—m )
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zerlegt. Die @f&m bilden eine Orthonormalbasis von L?(S? : C*) fiir (¢,j,m) € Z und es gilt

analog
PR =P P 90= P Hiem:

ZGNO %S]:f:t% (&jvm)ez’-
wobel nun

A(EDD

||

@, (/lal) : £+ 1 € L?(Rn} |

Die orthogonale Projektion auf diese Rdume wird mit II; , beziehungsweise 11, 4 ,,, bezeichnet.
Man bemerkt, dass die (I)]ie . keine Eigenfunktionen von L? mehr sind.



Anhang D

Anhang zu Hardy-Operatoren und
Sobolew-Normen in L”

Im ersten Abschnitt geben wir einen gestraffteren Beweis fiir ein Hérmander-Multiplikator-
Theorem fiir [p|*+V mit V' > 0 wieder, welches zuerst von Hebisch [85, Theorem 3.8] bewiesen
wurde. Im Anschluff beweisen wir einen Hérmander-Multiplikator-Satz fir |p|® + a|z|~* mit
a > 0, welcher auf dem abstrakten Spektralmultiplikator-Satz [85, Theorem 3.1] beruht. Im
letzten Abschnitt zeigen wir einige interessante Hardy—Sobolew-Ungleichungen.

D.1 Ein Hoérmander-Multiplikator-Theorem fiir |p|* + V

In [84] gelang es Hebisch ein Hormander-Multiplikator-Theorem fiir —A + V in L*(R%) zu
beweisen, wenn V' > 0. (Genauer gesagt meinen wir mit —A + V' den selbstadjungierten
Operator in L%(R?), den man durch die Friedrichs-Erweiterung der zugehérigen quadrati-
schen Form erhilt, die zunichst auf C2°(RY) definiert ist.) Der Beweis beruht wesentlich auf
Schranken an den Warmeleitungskern exp(A — V) (z, y), welcher mit der Trotter-Formel nach
oben durch exp(A)(x,y) abgeschitzt werden kann.

Natiirlich kann die Trotter-Formel auch fiir exp(—(|p|® + V)) mit o € (0,2) und V' > 0
verwendet werden. Wie wir bereits in Kapitel |8 gesehen haben, ist es allerdings bei wei-
tem nicht klar, ob man mit den Schranken an e~ PI iiberhaupt ein Mikhlin-Multiplikator-
Theorem fiir |p|® + V beweisen kann. Der Grund hierfiir war, dass der Wirmeleitungskern
lediglich algebraisch abfillt, was es erschwerte, den Beitrag des ,,schlechten Teils* der Cal-
derén—Zygmund-Zerlegung zu kontrollieren, siehe insbesondere . (Wir machen bereits
jetzt auf die Schranke (D.7a]) aufmerksam, welche der Schranke (8.12)) stark dhnelt, allerdings
relativ einfach bewiesen werden kann.) Tatséichlich gelang es Hebisch in [85, Theorem 3.8]
auch ein Hormander-Multiplikator-Theorem fiir |p|® + V' zu zeigen, zumindest, wenn d = 1
und o > 1 sind. Andernfalls muss eine zusitzliche Annahme erfiillt sein, damit der Beweis
(welcher wieder auf einer Calderén—Zygmund-Zerlegung beruht) funktioniert. Das Ziel dieses
Abschnitts ist es, seinen Beweis zu straffen und herauszustellen, woher die Einschrinkungen
an d und a kommen. Die neue Beobachtung ist, dass der Beweis tatsdchlich ein Multiplikator-
Theorem fiir alle d € N und « € (0, 2) liefert, wenn der Multiplikator kompakt getragen und
hinreichend regulér ist, siehe Behauptung

In diesem Abschnitt werden wir haufig die folgende Notation verwenden, welche es erlaubt
Integralkerne von Funktionen F'(|p|® + V') quantitativ zu behandeln.
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Sei wy(x,y) = (1 + |z — y|)® fiir ein b € R. Dann definiert man fiir eine messbare, kom-
plexwertige Funktion K (x,%) auf R? x R? die b-te Schur-Norm

151y = max {sup [ 1K) lonto) dysup [ 1Ko plon(e)dof . (D)

Man bemerkt, dass K einen LP-beschrinkten (1 < p < oo) Integraloperator definiert, falls
IK|lo < oo, was aus Youngs Ungleichung fiir Integraloperatoren folgt (siche beispielsweise
[161, Theorem 0.3.1]).

Unter der folgenden technischen Annahme an punktweise Schranken von kompakt getra-
genen, glatten Funktionen des Operators ¢ (|p|® + V') (die durch den Spektralsatz definiert
sind) ist es moglich, ein Hormander-Multiplikator-Theorem zu zeigen.

Annahme D.1.1. Seien
e d=1und o € (0,1], oder
e de N\ {1} und o € (0,2),

dann gilt folgende Aussage.
Sei 1) € C®(R) mit supp ¢ C [-1,1] und ¥(z) = 1 fir x € [0,27%2] und definiere
V() = (29 )\) fiir k € Z. Dann gibt es ein e > 0, sodass fiir alle 0 < ¢ < d-+¢ die Schranke

[Un(Ipl® + V) (2, y)| < A2~ 1+ 27 e —y))~° (D.2)
fiir alle z,y € RY gilt.

Tatséchlich ist es moglich, unter der schwécheren Bedingung ¢ < « zu zeigen, siehe
Lemma Es wird spéter ersichtlich sein, dass die Annahme wesentlich ist, um eine
bekannte Eigenschaft des Hardy—Littlewoodschen Maximaloperators ausnutzen zu konnen.
Um sie zu verwenden, muss die punktweise Schranke an 1 (|p|* + V) wenigstens fiir ein
¢ > d gelten, siehe . Aus diesem Grund kénnen wir auch den Fall d = 1 und o > 1
ohne weitere Annahmen behandeln. In diesem Fall wurde das Multiplikator-Theorem auch
kiirzlich von Chen u. a. [22] (allerdings mit vollig anderen Methoden) bewiesen.

Wir formulieren nun

Satz D.1.2. Seien a € (0,2), 0<b<b<by < a,

s :=s(d,b,b, k) = max{b+d/2,b— b+ K} (D.3)

K = k(d, by, b) = 2[B+d/2/ GBI (b 4+ d/2)(1 4 1/(bo — b)) + 1) . (D.4)

Sei zudem Annahme erfillt. Ist fire >0, 0 # ¢ € CX(R4) der Multiplikator F' eine
messbare und beschrinkte Funktion, sodass

SUp () (E) | reas0 2y < 00 (D-5)

gilt, dann ist F(|p|*+V) schwach L' — L'-beschrdnkt und LP-beschrinkt fiir alle 1 < p < oo.
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In einem ersten Schritt reduzieren wir den Beweis auf die Verifikation von punktweisen
Schranken und Schranken an die Schur-Normen von F'(|p|*+V'). Wir verwenden fiir den Rest
dieses Abschnitts die Abkiirzung H,, := [p|* + V.

Beweis von Satz[D1.2. Wegen ||F || < oo ist zunichst F(H,) wegen des Spektralsatzes L2-
beschriankt. Die LP-Beschrinktheit folgt aus dem Interpolationssatz von Marcinkiewicz und
der Dualit#t der LP-Riume, wenn man zeigen kann, dass F(H,) schwach L' — L!-beschrinkt
ist. Dazu fithrt man eine Calderén-Zygmund-Zerlegung von f € L'(R?) auf der Hohe A durch.
Nach dieser Zerlegung gibt es Mengen F und 2 = J, Q;, wobei {Q;} eine Familie disjunkter
dyadischer Wiirfel ist, sodass R? = FUQ und F N = . Insbesondere ist | f(z)| < A fiir fast
alle x € F. Wir definieren k; = [logy(diam Q;)] und zerlegen f = g+, b;, wobei supp b; C Q;
und f, g, b; sowie Q; die Schranken

slsx [misyel  Yled s I/

erfiillen. Als Nichstes definieren wir 0 < ¢ € C®(R) mit supp ¢ C [27%,2%?] so, dass
> okez ©(29%)\) = 1 fiir alle A > 0. Sei dariiberhinaus 0 < ¢» € C>°(R) so, dass supp 1 C [~1,1]
mit ¥(\) = 1 fiir A € [0,27°/2]. SchlieBlich definiert man

Fr(N) = o2 NF(A) und  ¢p(A) = 9(2°%)).

Wenn j < k, dann ist 15 F; = 0 (einerseits ist A < 27°% und andererseits A > 27%~%) und
somit y(Ha)Fj(Ha) = 0. Andererseits ist p(Ha)Fj(Ha) = Fj(Ha), wenn j > k. Damit
zerlegt man

o)f = ZF )bi + F(Ha)g

=3 | D Fi(Ha)bi + > Fi(Ha)bi | + F(Ha)g

i J<k; J>k;

=33 Fi(Ha)bi + > Fj(Ha) vk, (Ha)bi —ZFk Ho)bi + F(Ha)g
i j<k; i,j

= Z Z Fj(Ha)bi (Z wk b + g) - Z Fkl (,Hoz)wkI (Hoz)bz .
i j<k; i

Wir schiitzen nun die schwache L'-Norm dieses Ausdrucks ab. Es bezeichne Q7 die kon-
zentrische Kugel um @; mit dem gleichen Mittelpunkt wie @; und Radius 2diam(Q);) so-
wie S := |J; Q. Damit kénnen die schwachen L'-Normen der drei Summanden auf der
rechten Seite der letzten Ungleichung mittels der Tschebyscheff-Ungleichung, der Schranke
> 1Qil S1If]l1/A und der L2-Beschrinktheit beschriinkter Funktionen von H, durch

o | S E @] > FH <181+ 5 [ 130 S (B (Hab)(a)] da

1 j<k; 1 j<k;

sib i/ 130 3 s (Hab) @)

(D.6a)
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{: (Zwk b+g>|> 2 SAT QHZW o)bi + g3
SA (AHf!h -+ Zwk a)bi H2>

(D.6b)

und
{z: |ZFk Ha)bi| > }1<A 1||ZFk Ui, (Ha)billr (D.6c)

abgeschétzt werden. Der Satz ist also bewiesen, wenn man

[ NCICRIEITED S 073

i j<k;

HZwk 2)bill3 S Alflh (D.7b)

sowie
I3 (Fr ) ()bl € 3 103l < 11711 (D.7¢)
verifizieren kann. O

Im Folgenden verifizieren wir (D.7al) bis (D.7c). Wir beginnen mit (D.7a) und (D.7d)),
welche, im Gegensatz zu (D.7b)), die Annahme nicht benotigen.

Um und (D.7d) zu zeigen, zeigen wir, dass ||[F(Hqa)l|p endlich ist, wenn F kom-
pakt getragen und hinreichend regulér ist (siche Behauptung . Die wesentliche Idee
zur Beschrinkung von ||F(H,)||p ist, dass man F(H,) durch den bereits gut bekannten
Wirmeleitungskern e~*e ausdriickt. Dazu definiert man K () := F(—logu)u~"! und ent-
wickelt K(p) = > ,.cz K(n)e™* in einer Fourier-Reihe. Somit ist F(Hq) = K (e He)e He,
weshalb nur noch [|e™®P(=Ha)e=Ha||, beschriinkt werden muss. Dazu schiitzen wir im Fol-
genden [le Ha ||, [|eeP(=Ha) ||, sowie || eP(—Ha)e=Ha||, ab.

Lemma D.1.3. Sei a € (0,2) und V > 0. Dann gilt fir alle t > 0 und by < o

sup / le™ e (2, )| (1 +t V2 -y dz < 0 und (D.8a)
yER4
sup /@ / le= o (2, 9)|? dz < 00 (D.8b)
yERd

Beweis. Da V' > 0, folgt aus der Trotter-Formel, dass es geniigt und (D.8b)) zu zeigen,
wobei e M (z,y) durch e P (z,y) ersetzt wird. Des Weiteren folgt aus der Substitution
x — 11/, dass es ausreicht den Fall t = 1 zu betrachten.

Wegen
1 1

= yldte T (1 + [z — y[)dta

1A
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ist fiir alle y € RY das Integral

1 —y|)bo
[ e,
i (14 [z —y|)4+e
endlich, falls by < «. Dies zeigt .

Aus dem Satz von Plancherel folgt andererseits

/ le P (2, )| da ~ / e 2P dp = konst
R4 R4
was die Endlichkeit der linken Seite von (D.8b)) zeigt. O

Aus Lemma erhélt man mit [85, Theorem 2.1] Schranken an die Schur-Normen von
einexp(—Ha) welche wir in dem folgenden Hilfssatz zusammenfassen.

Lemma D.1.4. Seien o € (0,2), 0 < b<by<aundn €R. Dann gibt es ein A > 0, welches
nur von by, b,d und ||e” "=, abhingt, sodass

inexp(—Ha)

e <AL+ )" (D.9)

gilt, wobei r = ri(d, by, B) = 2C+4/2/CoDI(b 1 d/2) (1 + 1/ (bo — ) +1).
Mit Hilfe dieser Schranke erhélt man (&hnlich wie in [83] Theorem 3.1])

Lemma D.1.5. Seien o € (0,2), 0<b< b<by< a, n € R, k wie in Lemma sowie
s =8(d,b,b,k) = max{b+d/2,b— b+ K} aus (D.3)). Dann ist

Heinexp(fﬂa)efﬂaub Sbo,l;,d (1 + ’TLDS ) (DlO)

Beweis. Fiir K(z,y) = e e (x,y) zerlegen wir fiir ein beliebiges £ > 0 (welches zum Schluf
gewihlt wird)

[ e m) @ laend= | [+ [ IR @) de.
R
z—y|<l  Jz—y|=L
Das erste Integral beschrianken wir mit der Cauchy—Schwarz-Ungleichung, der Unitaritét von
e™K (das heiBt ||| ;22 = 1) und (D.8b) durch

/ (€™ K) (z, y)|wp(@,y) do < (1 + 02| e™ K| 12, (1))
lz—y|<e

<@+ 0K 2
wobei By (f) die um y zentrierte Kugel mit Radius ¢ bezeichnet. Fiir das zweite Integral
verwenden wir die Submultiplikativitat von wy, und und erhalten
(™ K) (@, y)|wy (2, y)w, (2, y) da
lz—y|=¢

< (L4 0" e Ky < (1+ 0" lle™ 511K by S (140" (1 + |n)"|IK |y,
Wihlt man ¢ = |n| folgt (D.10)). O
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Die beiden letzten Lemmata zeigen, dass die Endlichkeit von nur sehr niedrigen Schur-
Normen dem langsamen, algebraischen Abfall von exp(—H,)(x,y) fiir groBe Abstéinde |z — y|
geschuldet sind.

Die folgende Behauptung erlaubt es, Schur-Normen von kompakt getragenen, hinreichend
reguldren Funktionen von H, zu kontrollieren. Diese Schranken sind wesentlich fiir die Veri-

fikation von (D.7al) und (D.7d).

Behauptung D.1.6. Seien ae (0,2),0<b<b<b <a,s:=s(dbbr) aus (D.3),
k = k(d,bo,b) aus und ¢ > 0. Falls F € H*t(H/2(R) mit supp F C [n,€] und
—00 <N <€ <0, dann qgilt

IE(Ho)llo S 1] grs+1er/2 - (D.11)
Ist weiter G € H5HH)/2(R), dann gilt auch
IG ™)y S NGllgmr ey (D.12)
Beweis. Wir definieren die Funktion K()\) := A~'F(—log \), welche
1K || e+ aver/2 SUF || ggeraverre und supp K C ™% e

erfiillt. Als Néchstes entwickeln wir K(\) = >, K(n)e™, wobei K (n) die Fourier-Koeffizi-
enten von K bezeichnen. Daher ist

F(Ho) = K(e™ = K(n)emoPHale—Ha
und mit (D.10) und der Cauchy—Schwarz-Ungleichung erhélt man

IE(Ha)llo S Y~ 1K ()1 + [n])®

1/2 1/2
< (Z |K(n)]*(1+ Inl)QS“*a) <Z(1 + Inl)_H)

n

S K gsrarare SN gsrarorz -

Dies zeigt m

Ahnlich beweist man m Aus Lemma [D.1.3 m folgt, dass es eine Konstante A>0
gibt, sodass |le="e| ;2_,12 < A, das heifit spec(e” ") C [~ A, A]. Somit hingt G(e~*=) nicht
von den Werten von G auflerhalb des Intervalls [—A,A] ab. Setzt man H = ¢G, wobei
¢ € CX([—24,24]) mit ¢ = 1 auf [~A, A], so gilt G(e ") = H(e "=). Entwickelt man
nun wieder H(e ) =" H (n)eimexp(= Ho) in einer Fourierreihe, erhélt man mit (D.9) und
Cauchy—Schwarz

1H (™) lp < Z [H (n)[le™ PRy 3 HH )|+ 1) S N H | esaeaye
n

S HGHH"H-(H-E)/? ,

was ([D.12)) zeigt. O

Mit Hilfe von Dilatationen erhalten wir
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Korollar D.1.7. Seiena € (0,2),0<b<b<by < a,s:=s(db,b k) aus (D.3), ¢ € C*(R)
mit supp @ C [27%,2%2], Fr(\) := @(2°*\)F(\) und F aus Satz|D.1.4. Dann gilt

sup / |Fr(Ha) (2, 9)[(1+ 27"z — y))’ dy S (Y F ™) goraraz S 1. (D.13)
z€eR

Bevor wir diese Aussage zeigen, verifizieren wir die Bedingungen ([D.7a)) und (D.7c]).

Beweis von (D.7a) und (D-7d). Fiir y € Q; und x € (Q})° gilt |z — y| 2 2%. Damit und mit
Korollar erhalten wir fiir ein beliebiges 0 < b < «

/ |(F(Ha)bi) ()| dz < |[bil1 sup/ | Fj(Ha) (0, y)|2°07He) - 27007 dy
(@Q7)° yeQ: J(Qr)e

< 2GR b, sup / Fy(He) (2 9)|(1 + 2792 — )0 da
yeQ;
|z —y|>2"i

< 20759 lby |1 sup / |EFj(Ha) (@, 9)| (L + 27|z — y)" de
yeRd R4

S 22078 by

Summiert man diese Abschitzung iiber alle j < k;, erhélt man

> |(Fj(Ha)bi) (@)l da S Y 22079 il |1 S [lballa
j<h; 7 (@D° i<hi
was gerade (D.7al) ist.

Der Beweis von (D.7c) ist noch simpler. Da Fj und 1 die Bedingungen von Korollar
erfiillen, folgt

1(Feton) M)l 1ot = | (Fetr) Ha)llo S NeF 2% ) || gsrareelltoll gsraran ST,

wobei jetzt s = s(d, 0,0, k) aus (D.3)) ist. Dies impliziert Bedingung (D.7¢)), denn

| Z(Fkﬂﬁki)(ﬂa)bz‘\h < Z | (Fre; ok, ) (Ha) lolbill1 S N fll1 -

Wir ergénzen nun den

Beweis von Korollar[D.1.7. Wir definieren Dilatationen §; durch &z := tz fiir € R? und
8¢ f := f o6, das heiBt (6;f)(z) = f(tx) fiir Funktionen f auf RY. Dann gilt

Ok HaGy—t = Ook |p|*Go—r + 0or Vg—i = 27F(|p|™ + 2°%V 0 0i) =: 2% (H,),,

wobei (Hq )k = |p|* + 20"“[/ 0 Ogi, das heift Ho = 2701 (Ha)i0qr. Definiert man Fj, :=
F}, 0 69—ak, sprich Fx()\) = Fj,(2%*)), erhilt man

Fy(Ha) = 52*’“}?‘1@((%&)”52’9 :
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Wir behaupten nun
Fr(Ho)(z,y) = 27 M E (Ha)r) (27 %2, 27Fy) . (D.14)

Dies ist ersichtlich, wenn man das innere Produkt der beiden Operatoren, die durch die
obigen Integralkerne definiert sind, mit Funktionen f € L?(R%) nimmt. Mit der Beobachtung
(g, 09r f) = 2754 (64— g, f) erhalten wir

(f Fe(Ha) £) = (£, O Fr((Ha)i)0e £) = 274 (650 £, Fa (Mo )00 )
P / F (@) Fe(Ha)i) (2%, 27 ) £ (y) dly

Wenden wir und Behauptung mit der kompakt getragenen und hinreichend
reguliiren Funktion Fj,(\) = @(A)F(2-**)) und dem Operator (Ha )i = |p|* + 2°*V 0 dy an
(wir erinnern daran, dass im Beweis dieser Behauptung lediglich der Wirmeleitungskern mit
V = 0 eine Rolle spielte), erhalten wir mit der Substitution y ~— 2"y,

sup/w DI+ 27z — g d
reR4

~ s / Fl(Ha)i) @ )l (1 + o = y))*d
TER?
SN Ekll gsrarare = 9P ) garaversa
und die rechte Seite ist wegen der Annahme von Satz gleichmiig in o und & beschrinkt.
O

Der Beweis von (D.7b)) beruht auf exzellenten punktweisen Schranken von | (Hea)(x, y)|-
An diesem Punkt kommt Annahme ins Spiel. Ungliicklicherweise sind wir nur in der
Lage, sie fiir ¢ < a zu verifizieren, da der Warmeleitungskern lediglich algebraisch abfillt.

Behauptung D.1.8. Seien a € (0,2), v € C°(R) mit supp ¢ C [—1,1] und ¢(z) = 1 fir
x € (0,272, Sei weiter Y (\) = ¥(2°*N). Dann gilt fir alle 0 < ¢ < «

[ (Ha) (2, y)| S 275 (1 +27F |z —y|)~°
fiir alle z,y € R%.

Beweis. Wir schreiben ¢g(Ha) = (¥0(Ha)e'e)e e und bemerken, dass die Funktion F(\) :=
Yo(N)e* die Bedingungen von Behauptung erfiillt. Fiir £ = 0 impliziert Behauptung
dann fiir alle 0 < ¢ < a (mit der Submultiplikativitidt von w,)

(weles )0 (o) ()] < \ [ olHa)e?) (@2l 2) €7 (el v) d
< [0 (Ha)e™ [l sup 7" (2)(1 + [])° < 1,
reR4

also die gewiinschte Schranke. Fiir k # 0 verwendet man die Dilatationsmethoden aus Korollar

mit dem Multiplikator
Fi(\) = g (0™ = (275N F(2°%))
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(anstatt Fj(\) := ©(2°*A)F()\)), woraus die Endlichkeit von
20k, —k c
sup [ (0 (Ha)e?™ ) (a,0) (1427 = 3l)"dy < [P gecrvors
z€eR

und mit dem obigem Argument die behauptete Schranke von |9y (He)(z,y)| folgt. O

Obwohl sup, e~ PI” (2)(1 + |z|)¢ sogar fiir alle ¢ < d + « endlich ist, folgen aus dem Beweis
keine besseren punktweise Schranken an |¢(Ha)(z,y)|. Andererseits ist die Endlichkeit der
Schur-Norm ||t (He )]s fiir b < « ein Indiz, dass bessere Schranken plausibel sind, insbeson-
dere solche, die wir in Annahme postulieren.

Um fortzufahren, nehmen wir im Folgenden an, dass Annahme erfiillt ist, das heif}t,
es gibt ein € > 0, sodass fiir alle c < d + ¢

[k (Ha) (2, y)| S 27M(1 + 27 |z —y)) ™ (D.15)

gilt. Wir erinnern, dass die Annahme im Fall d = 1 und a > 1 wegen Behauptung [D.1.8 auto-
matisch erfiillt ist. Wir bemerken an dieser Stelle, dass diese Schranke, zusammen mit Korollar

ebenfalls (D.7d|) (wofiir wir ||(vFk)(Ha)llpi—rt S 1 zeigen mussten) impliziert.
In jedem Fall erlaubt uns (D.15]) eine bekannte Eigenschaft des Hardy—Littlewoodschen

Maximaloperators auszunutzen (siche (D.17)), welche wesentlich fiir die Verifikation von
(D.7H), sprich || 32; ¢, (Ha)bill3 < All £l ist.

Beweis von (D.7b)). Es bezeichne yy den Mittelpunkt eines fixierten dyadischen Wiirfels Q;.
Falls y € @Q;, dann folgt aus der Dreiecksungleichung und |y — yo| < 2% fiir y € Q;

L+ 275z =y <1+ 275 (ly —yol + |2 —pol) ST+ 27w —go| fiir & € RY.

Wiederholt man das Argument nochmals, erhélt man auch die umgekehrte Schranke, zusam-
mengefasst also

1+2 e —y|~ 1+ 27"z —yo| firz €R? ye€Q;. (D-16)

Mit dieser Abschétzung, (D.15) sowie [ |b;| < A|Q;l, erhiilt man

W, (Ha)bi(2)] < / 2Rd(1 1 27Ri |z — y)~C|bi(y)| dy

SANQi2MH L+ 27w — o) S A [ 2R 427 | — y[)Cdy
Qi

=AML+ 278 )T xg ) (@) -
Fiir ein beliebiges h € L2(R?) gilt
(R, 27 ML 275 ] )7 xg)| = 127F L+ 278 )% h,xQ))| S (Mh, xq,),  (D.17)
wobei M den (zentrierten) Hardy—Littlewoodschen Maximaloperator bezeichnet und wir

sup |(¢e * f) ()] S (M f)(x)

e>0

fir f € LP(RY) (mit 1 < p < oco) und einen glittenden Kern ¢.(z) = e~%¢(x/¢), welcher
eine radial abfallende, integrierbare Majorante besitzt, verwendet haben (siehe beispielsweise
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[166], Kapitel 111, §3, Theorem 2]). Da M insbesondere L2-beschrinkt ist (siehe beispielsweise
[166, Kapitel I, §1, Theorem 1]), erhiilt man zusammen mit den Eigenschaften der Calderén—
Zygmund-Zerlegung

(h Zm b)| S (Mh ZAXQZ ) < ||h||2|AZXQ1HQ
S Rll2 - M 1Ql S Hikllz - V/AIf]l -

Dies schliefit den Beweis von ([D.7b|) und damit den Beweis von Satz unter der Voraus-
setzung, dass Annahme erfiillt ist. O

Wir bemerken schliefilich, dass dieser Beweis immerhin ein Hérmander-Multiplikator-
Theorem fiir kompakt getragene Funktionen liefert.

Behauptung D.1.9. Seien o € (0,2), 0<b<b<by < a und s = s(d,b,b,x) aus (D.3). Ist
fire >0,0# p € CX(Ry), der Multiplikator F' eine messbare, kompakt getragene Funktion,
sodass

sup ||90F(t‘)”Hs+(1+s>/2(R) <0

t>0

gilt, dann ist F(Ha) schwach L' — L'-beschrdnkt und LP-beschrinkt fiir alle 1 < p < oo.

Beweis. Wie im Beweis von Satz geniigt es zu zeigen, dass F(H,) schwach L'-beschrinkt
ist. Dazu fiihrt man dieselbe Calder6n—Zygmund-Zerlegung durch, weshalb es geniigt, (D.7a))

bis zu zeigen. Wir haben bereits gesehen, dass und auch fiir Funktionen
F' gilt, die nicht kompakt getragen sind. Es verbleibt wieder nachzuweisen. Da nun
aber F' kompakt getragen ist, kann die linke Seite von direkter abgeschétzt werden.
Wir erinnern an die gewiinschte Ungleichung

{: <Z¢k a)bi +g> | > }I SATHIflh (D.18)
Wie zuvor folgt aus der L?-Beschrinktheit beschrinkter Funktionen von #H, zunichst

A _ _
{z: [F(Ha)gl > SH S A lgllz < A7 £l

Andererseits folgt aus Behauptung (welche nun anwendbar ist, da F' kompakt getragen
und hinreichend glatt ist) und Korollar

o 1) 3, (] > }|<AIZ||F o, (Ha )byl
< XHF G 3 o (M ||0||b||1<)\IZ|\5||1<)\1HfH1

Dies schlie3t den Beweis. O
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D.2 Ein Hérmander-Multiplikator-Theorem fiir £,, mit a > 0

In [85, Theorem 3.1] werden hinreichende Bedingungen fiir die Giiltigkeit eines Hérmander-
Multiplikator-Theorems gegeben, falls der zugehorige Warmeleitungskern lediglich algebraisch
abfiillt. Neben den Eigenschaften aus Lemma muss der Kern eine Holder-Bedingung

erfiillen. Wir zitieren

Satz D.2.1 (Hebisch [85]). Sei A ein nicht-negativer, selbstadjungierter Operator auf L?(RY).
Angenommen, es gibt positive Zahlen c,b,m, sodass fir alle t > 0 die Schranken

sup le=t (2, y)|(1 4+ 7Y™z — y|)dz < o0,
yERd Rd

sup td/m/ le™ ™z, y) > dz < oo
yERd Rd

sowte
[ @) — e a2l de Sy~ firaltey,z e R (D.19)

wahr sind. Sei F' € HY (R) mit

s > 2ld/(2)] [d <1 + 1> + 1} 41
2 c 2

und fiir ein 0 # ¢ € CX(Ry) gilt supyq |[|eF(t)||gs < oo. Dann ist F(A) schwach L'-
beschrinkt und LP-beschrinkt fir alle p € (1,00).

Der Beweis dieses Satzes verlduft #hnlich zu dem von Zo [I86] (siehe auch [83, Ab-
schnitt 4-6]) und beruht stark auf der Regularitdt und der Endlichkeit von Schur-Normen
des Wirmeleitungskerns. Aus diesem Grund wird auch die obige Maschinerie, die von Schur-
Normen anderer Funktionen von £, o abhéngt, nicht benétigt. Insbesondere wird das Problem
des langsamen Abfalls der |94 (Lq,q)(z,y)| umgangen. Da a > 0 (und damit 6 < 0), reduziert
sich die Verifikation der ersten beiden Schranken auf die, die den freien Warmeleitungskern
e~ !PI* involvieren. Dies sind gerade die Schranken aus Lemma das heifit es sind m = «
und 0 < ¢ < « in den obigen Annahmen. Die Verifikation der dritten Bedingung stellt
sich als schwieriger heraus, da wir nur Schranken mit nicht expliziten Konstanten an den
Wirmeleitungskern besitzen. Das heift, jede mdogliche Ausléschung der e %@ geht durch eine
Abschéatzung verloren. Nichtsdestoweniger ist es moglich die Bedingung zunéichst fiir a = 0 zu
bestitigen. Im Anschlufl verwenden wir Stérungstheorie in Form der Duhamel-Formel
sowie die regularisierende Eigenschaft von e %< fiir kleine |z| und |y|, um die Bedingung
auch fiir a > 0 nachzuweisen. Wir beginnen mit dem Fall a = 0.

Behauptung D.2.2. Seien d € N und « € (0,2). Dann gilt (D.19) fir A = |p|*, m = a und
beliebiges b € (0, 1].

Beweis. Nach Verschieben von & — z + z und der darauffolgenden Substitution z — /g
ist ersichtlich, dass es ausreicht

J.

e P (2,0) — e IPI" (g, w)‘ dz < Jwl? (D.20)
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fiir ein b > 0 zu zeigen, wobei w = t~Y/%(y — z). Da e PI"(z) wegen integrierbar
ist, geniigt es, den Fall |w| < 1/2 zu untersuchen. Dazu zerlegen wir das Integral iiber z
bei |x| = 3|w| und betrachten zuerst || < 3|w|. Da der Wérmeleitungskern nach Satz
gleichm#fig in x beschrinkt ist, folgt aus der Dreiecksungleichung

/ ’eflp‘a(:c,O) — e*|p‘a(x,w)) dr <2 / ‘e*|p|a(a:,0)’ dz < Jw|?.
|| <3|wl| |z <4Jw|

Fiir |z| > 3|w| verwenden wir den Mittelwertsatz, um die linke Seite von (D.20|) durch

|w| / dx |Vx/ ePTeIPI dp|
R4

|| >2]w]

abzuschétzen. Im Folgenden zeigen wir, dass das Integral iiber || > 2|w| gleichméBig in |w|
beschréinkt ist. Mit der Fourier—Bessel-Transformation (siehe beispielsweise Stein und Weiss
[170, Kapitel IV, Theorem 3.3]) und der Rekursionsbeziehung fiir Ableitungen der Bessel-
Funktionen [137, Formel 9.1.30]

d

£(z_”Jl,(z)) =—2"YJy41(2) firz>0,reR, (D.21)

erhélt man fiir r = |z

‘V/ 0P P dp‘ -
Rd

0, / ke ™ (k) ~Um22 7y gy o (k) dk:‘
0 (D.22)

/ ke ™ (kr) =42 74 (r) dk‘ .
0

Wir zerlegen nun das Integral iiber x ein weiteres mal bei |z| = 2 und zeigen zuerst, dass die
rechte Seite von (D.22) fiir |x| > 2 integrierbar ist. Um dies zu sehen, integrieren wir partiell,
verwenden wieder (D.21]) und erhalten

/0 ke ™ (k) =2 14 (kr) dk = —r ™ /O e M K40y, [ (kr) =2 0491 (kr)| dk

o

=r! / e MR (d — ak®) - (kr)' Y2 T g0 (kr) dE .
0

Wegen des e *"-Faktors existiert das Integral iiber k fiir groie k. Allerdings miissen wir wegen

des Verhaltens des Integranden bei kleinen k£ Vorsicht walten lassen. Integriert man noch n—1

mal partiell, sieht man, dass die rechte Seite der letzten Formel gleich

plmd/2=n / K2 g (k) Y aje ™ K1 dk
0 i
=0 (D.23)

n

=r¢ /0 (k) 270 o (k) >~ aje ™ k9™ dk
=0

ist, wobei a; = aj(d,a) € R und die k’*-Faktoren vom Ableiten von e *" kommen. Der
Randterm der partiellen Integrationen bei k = co verschwindet wegen des e **-Faktors. Wir
erklédren gleich, wieso auch der Randterm bei k = 0 verschwindet.
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Wir unterscheiden zwischen ungeraden und geraden d. Ist d gerade, wéhlen wir n = d/2,
womit der j-te Summand der rechten Seite von (D.23) (mit (D.21) und J_,,(2) = (—=1)"Jn(z)
fiir m € N, siehe [137, Formel 9.1.5]) gleich ist zu

a;r—? / (kr)Jo(kr)ki®e ™ " dk = —a;r—4! / O ((kr)J_1(kr))kI%e " dk
0 0
= —a;r %! / k™t krJi(kr) (ajk?® — akiot) e dk,
0

wobei der Randterm der partiellen Integration bei & = 0 quadratisch verschwunden ist. Mit
der Schranke |.J;(2)| < min{z, 2~ /2} (siehe [I37, Formel 9.1.7 und 9.2.1]), kann der Absolut-
betrag der rechten Seite der letzten Formel durch eine Konstante mal

—1

r—d (/ kr.(k;ja+kja+a)e_ka dk:+/ (kr)—l/Q(kja+kja+a)e_ka dk:)
0

r—1

abgeschiitzt werden. Der zweite Summand ist durch eine Konstante mal r—%~1/2_ wohingegen

der erste Summand durch r—9-1=j@ 4 p=d=1-(+Da pegchrinkt ist. Damit ist der Beitrag
gerader d fiir |z| = r > 2 in R? integrierbar. Fiir n = d/2 — 1 ist der Integrand von (D.23))

(kr)2Jy (kr) Z a;k7% " = —rk?0(Jo(kr)) Z a;kie "
=0 =0

das heiffit die Randterme der partiellen Integrationen verschwanden mindestens quadratisch.
Ist d dagegen ungerade, wéhlen wir n = (d + 1)/2 und verwenden [37, Formel 10.16.1],

das heifit J_ o(kr) = 2/ (kr) =12 cos(kr). Damit wird (D.23) zu

2 [ e = :
= k E K dk
\/;r /0 e " cos(kr) » aj

i=0
n

S rd/e|’“|ae“”dk+\/2rd1 /OOTCOS(kT)ZGjekakjadk.
V2T R Q 0 j=1

Das erste Integral iiber k ist gerade der Warmeleitungskern e_‘ma(r) in einer Dimension,
welcher nach Satz wie 717 abfillt. Integriert man den zweiten Summanden noch
einmal partiell, erhélt man

2 _4av X gt jata—1y,—k
—1/ = j kot — qlote kr)dk .
\/;r jEZl aj/o (Ja o )e " sin(kr)

Dies zeigt, dass sowohl das Integral iiber k als auch das darauffolgende Integral iiber {z € R% :
|z| > 2} existieren. Mit [37, Formel 10.16.1]) ist der Integrand von (D.23)) fiir n = (d — 1)/2
gerade

n n
kr sin(kr) Z a;kie™ " = —(0), cos(kr)) Z a;kiotle™
j=0 j=0
woraus ersichtlich ist, dass die Randterme der partiellen Integrationen bei £ = 0 mindestens
linear verschwinden.



220 D. Anhang zu Hardy-Operatoren und Sobolew-Normen in L?

Fiihrt man die beiden Fille zusammen, folgt

lw| / |v/ ePTe I dp| dz < |w) .
Rd
|z|>2

Schliefilich schétzen wir (D.22)) fiir 2|w| < |z| < 2 mit den Schranken [I37, Formel 9.1.60 und
9.2.1] an | Jy2(2)| fiir d > 1 ab, sprich |Jy(2)| < min{1, 27*/2}. Mit diesen Schranken ist die
rechte Seite von (D.22)) durch eine Konstante mal

1 e o]
/ ke " (kr) =42 d + / ke (kr) = dk
0 r—1
beschrankt. Der zweite Summand ist wegen (kr)(lfd)/Ql{kZTfl} < 1 gleichméfig in r be-

schriinkt. Andererseits ist der erste Summand durch eine Konstante mal r1~%2 beschrinkt.
Dies zeigt, dass das Integral iiber 2|w| < |z| < 2 gleichméBig in |w| existiert und daher auch

die Schranke
i / v / PP dp| da < Jul
Rd

2w|<|z|<2

gilt. O

Durch Anwenden von Stérungstheorie kann dieses Resultat auf £, , mit a > 0 verallge-
meinert werden.

Behauptung D.2.3. Seien d € N, a > 0, o € (0,2 A d) und ¢ € (0,a). Dann gilt das
Hormander-Multiplikator-Theorem fiir Loo in RY mit

s > 2l4/(20)] [d <1+1> +1} + L
2 c 2

Wir betonen, dass die punktweisen Schranken an exp(—tLq ) (x, y) (mit § < 0) fiir den Be-
weis entscheidend sind, in dem Sinn, dass der Kern bei kleinen |z| und |y| ,regularisierender “
wirkt. Es ist dabei jedoch nicht zwingend notwendig, dass die exakte Relation zwischen
der Kopplungskonstante und § besteht. Der Grund dafiir ist, dass es nicht auf die Grofe
der Kopplungskonstante, sondern nur auf das Potential (beziehungsweise die Singularitit)
ankommt.

Beweis. Es geniigt, die Bedingungen in [85, Theorem 3.1] zu verifizieren. Die ersten beiden
Annahmen sind gerade die Aussagen aus Lemma welche direkt aus der Trotter-Formel
und den Eigenschaften von exp(—|p|®) folgen. Daher muss nur noch die Holder-Bedingung
nachgewiesen werden. Wie in Behauptung folgt aus der Substitution z — ¢t'/%z
und der L' — L'-Beschrinktheit von e£=, dass es ausreicht, die Abschitzung

/ e o (2, w) — e e (2, y)| do S Jw -yl (D.24)
R4
fiir |lw —y| <1/2 und ein b > 0 zu zeigen. Mit der Duhamel-Formel ((7.16])

1
e Faa (g, w) = e P (2, w) — a/ ds/ dz e= 079 e (g 2) 2|~ IPI" (2, w)
0 R4
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und der Dreiecksungleichung ist die linke Seite von (D.24)) durch
/ P (@, w) — e 1P (2, y)‘ dx
R4

1
+ a/ dx / ds/ dz e~ (1= (g 2)|z| (e_sma(z,w) - e_s|pa(z,y)>‘
R4 0 R4

beschriankt. Die Behauptung fiir den ersten Summanden wurde bereits in Behauptung
fiir alle b € (0, 1] gezeigt. Fiir v € (0,1) und |z| > |w — y|” kann der zweite Summand mit
Hilfe des Maximumprinzips, [ps dz exp(—(1 — s)Lao) (2, 2) S 1,

e IPI% (2) > e75IPI% () fiir alle || < |y| und s >0

(siehe beispielsweise [12, Formel (5.1)] oder [14], Seite 13]), der Formel fiir den Riesz-Kern von
[Pl

) = [ ) ds = SEm S e

(siehe beispielsweise [166, Kapitel V, §1.1]) und [91, Theorem 4.5.10] (mit 1 < p < oo und
0<d—-d+a—d/p<1,dasheifit a —1 < d/p < aund |2|7* € LP(|z| > |w — y|7) fiir
p € (d/a, o0]) durch

1
/ds/ de e~ (175 aa (g, 2) / dz |z|™¢
0 Rd

|22 |w—y|7

< / dz |z]a/ ds <e*‘s|p‘a(z,w) — efs‘p|a(z,y))
0

|2[=|w—y[Y

e IPI" (2, w) — eI (2, )

X (Lgja—wl<lz—yl} = L{lz—w|>|z—yl})

_ T'((d=a)/2) —a
_rd/22af‘(a/2)l‘ |/ | dz I2]

‘d—d-i-oe—d/p H‘

|Z _ w|—d+a _ |z - y|—d+a‘

(ap—d)

_ 1—y
Sda [0 —y 2|7 o (2> jw—y) = Alw —y| P

abgeschitzt werden. Somit verbleibt der Fall |z| < |w — y|? mit obigem v < 1. Wie im Beweis
von Behauptung erwarten wir in dieser Region keine weiteren Ausloschungen mehr.
Daher geniigt es (mit der Dreiecksungleichung) die Beitrige von e =PI (z, w) beziehungsweise
e_s‘ma(z,y) separat zu untersuchen. Wegen Symmetrie reicht es, nur den Summanden mit
e~*IPI* (2, w) zu behandeln. Wir untersuchen nun genauer das Verhalten fiir s < |w — »|* und
|z —w| S |w —y|® mit 0 < & < . Einerseits berechnet man fiir s > |w — y|** und beliebiges
|z — w| (unter Verwendung des Maximumprinzips, Ausfithrung der Integration iiber x und
Verwendung von exp(—s|p|®)(z,w) < s~4®)

1
/ ds / dz 2|7 IP1" (2, w)
— «E
M oyl

1
< Jw — y[7d=e) ds s~ < Jw — y|0—ENd=e) |

lw—yl|*e
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Andererseits fithrt die Verwendung des Maximumprinzips und das Ausfiihren der Integration
iiber z fiir das Raum-Zeit-Gebiet |z — w| > |w — y|® und s € (0,1) auf

|z—w| 1

/ dz |2| 7%z — w| 747 / ds s+ / dz |z|7¢ / ds s~/
|2]<|w—y| 0 |2[<|w—y[7 |z—w|®
|z—w[>|w—y|® |z—w[>|w—y|®
S [ a0,

|2]<|w—y|
lz—w|=|w—yl|*

Somit verbleibt das Raum-Zeit-Gebiet |z — w| < |w — y|® und s < |w — y|*® mit € < 7. An
dieser Stelle verwenden wir die entscheidenden Schranken fiir den Wéarmeleitungskern mit
a > 0 aus Satz Verwendet man 1 — s > konst (fiir s < |w —y|** <27%), 0 € (—a,0),
verschiebt © — x + z und wendet die Holder-Ungleichung an, erhélt man

-y _at/e)? _ar/e\’
/ dw/ ds / dz |z|¢ 1\/& 1\/&
R4 0 | || |2

z|<|w—y|"
|z—w|<|w—y|®

x (1 — )~ <1 A (1_8)1+d/a> e~ IPI% (2, w)

d [w—y|*e 1+d/a
,S/ 7xd / dz ]z\_o‘_‘s/ ds s~ [1p 2
ra (1 + [z])dte 0 |2 — w|dte

|2 <|w—y["
|z—w|<|w—y|®

< / dz 2|77z — w|~9Fe

|z|<Jw—y|7
|z—w|<|Jw—yl|®
1/p 1/p

< / Bl / 2 — w| @ gy

z[<lw—y|7 z—w|<|w—y|*

< |w — y| @ @tOP/p |y gy (d=(d=e)pDe/p" gy y|7(%_a_5)+5<‘“_%) .

Die letzten beiden letzten Integrale konvergieren, da p < d/(a+6) und p’ < d/(d — «), sprich
p € (d/a,d/(a + §)). Dieses Intervall ist nicht leer, da § < 0. Dariiberhinaus ist ersichtlich,
dass der Exponent v(d/p — a — §) + e(a — d/p) positiv ist, was den Beweis von Behauptung

[D-2.3] schlief3t. O

Hiitten wir das Maximumprinzip fiir e~ (1=%)£a. (z, 2) im Raum-Zeit-Gebiet |z| < |w —y]7,
|z —w| < |w—ylf und s < |w — y|* mit 0 < € < v < 1 verwendet, hitten wir

lw—y|** N
/ ds / dz 2|7 IP1" (2, w)
0

2| <w—y[
lz—w|<|w—y|*®
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integrieren miissen. Dieser Ausdruck kann allerdings nur durch das Integral

dz |27z — w| 74t

|2 <|w—y|
lz—w|<|w—yl®

abgeschétzt werden, welches logarithmisch divergiert. Alternativ kénnte man die Hardy-—
Littlewood-Sobolew-Ungleichung

1117l S Wl

mit 1+ 1/q = 1/p + a/d anwenden, wobei in unserer Situation ¢ = oo, p = d/(d — o) und
f=e*PI*(2)8(Jw — y|¢ — |2|) sind. Dies wiirde

dz 2|71 (2, w)

2| <|w—y|7
|z—w|<|w—yl®
(d—a)/d
s d/(d—c) .
< < g~
~ / ((Sz/a + |x|2)(d+a)/2> dr ~ S

z|<|lw—y|*

zeigen, das heifit das darauffolgende Integral iiber s wiirde ebenfalls logarithmisch divergieren.

Stand der Dinge und Awusblick

Wir fassen unsere Resultate zusammen. Der Hauptgrund, weshalb wir ein Hérmander-Multi-
plikator-Theorem fiir |p|* + V nur fiir d = 1 und « > 1 erhalten, sind schlechte punktweise
Schranken fiir kompakt getragenen Funktionen von |p|® 4+ V' beziehungsweise die Tatsache,
dass es nicht offensichtlich ist, dass diese Funktionen radial abfallende, integrierbare Majo-
ranten besitzen. Die schlechten Schranken sind wiederum der Tatsache geschuldet, dass die
Schur-Norm [[e~(PI*+V) ||, nur dann endlich ist, wenn b < «, was wiederum aus dem langsamen
Abfall des freien Warmeleitungskerns folgt. Andererseits liefert Dziubanski einen Hoffnungs-
schimmer in diese verzwickte Situation. In [42] betrachtete er eine mit Dilatationen ausge-
stattete, nilpotente Lie-Gruppe N homogener Dimension ¢ sowie ,,Glowackis Distribution “

[73], die durch
Pf = lim / WQ(Q:) dz

e—0
|z|>e
definiert ist. Hierbei bezeichnet |z| die homogene Norm, dz das rechts-invariante Haar-Maf} auf
N und Q # 0 ist eine positive, symmetrische und glatte Funktion auf A"\ {0}, die homogen
vom Grad 0 ist. Fiir ' = R? und Q(z) = 1 ist P gerade v/—A. Die durch P erzeugte
Halbgruppe in L?(N') wurde von Glowacki [73] untersucht. Dziubanski verallgemeinerte seine
Uberlegungen und betrachtete die durch PV (N € N) erzeugte Halbgruppe, die als

et = /OO exp(—tAN)dE(\) f
0
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geschrieben werden kann, wobei dF das Spektralmafl von P bezeichnet. Das Hauptresultat
. o . . N
seiner Arbeit ist eine punktweise Schranke an den Wirmeleitungskern e *" . Fiir alle N > ¢

zeigte er
e P (2) <y YN (147N |g|)me N

Diese Abschitzung sowie die Ideen von Hulanicki und Stein [61, Seiten 208-215] erlaubten es
ihm durch geschickte Iteration ein Mikhlin-Multiplikator-Theorem fiir P zu beweisen. Insbe-
sondere erhilt er die optimale Bedingung an die Regularitit des Multiplikators.

Obwohl aus der Trotter-Formel die Abschitzung e HIPI+V)(z ) < e~ tPl(z,5) folgt, ist
nicht klar, ob auch eine Abschétzung der Art e_t(‘pHV)N(:c,y) S e_t‘pw(m,y) wahr ist. Of-
fensichtlich wére diese hinreichend, um Dziubanskis Iterationsmethode anzuwenden und ein
Multiplikator-Theorem auch fiir [p|+V zu zeigen. Die Verallgemeinerung dieser Ideen fiir |p|®
beziehungsweise |p|* + V (a # 1) ist ein weiteres offenes Problem.

Selbst wenn die Ideen von Hebisch und Dziubanski Multiplikator-Theoreme fiir |p|* + V'
und alle d € N und « € (0, 2) liefern sollten, ist es bei weitem nicht klar, ob diese auch dann
anwendbar sind, wenn das Potential einen Negativ-Teil hat. Der Grund dafiir ist, dass die
obigen Methoden stark auf der Endlichkeit von gewissen || - ||,-Normen beruhen. Die Gewich-
te wy konnen allerdings nicht die Singularitdten des Warmeleitungskerns im Falle negativer
Potentiale kompensieren. Damit meinen wir, dass bereits einfache Abschitzungen, wie bei-
spielsweise

sup / |e_£“"’(x,y)|2 dr < oo,

yGRd R4
oder die Ausloschungseigenschaft der Warmeleitungskerne von L, fiir @ < 0 niemals erfiillt
sein koénnen. Ein Ausweg aus diesem Dilemma kénnten ,,gewichtete || - ||,-Normen* im Geiste
von Milman und Semenov [128], wie

1\7° 1\7°
wp (1v ) [ Gl (1v ) e
AT 2]

sein. Allerdings bringt auch diese Idee mindestens zwei Schwierigkeiten mit sich. Erstens
ist es unklar, ob Hebischs Formalismus mit diesen gewichteten Normen wieder zu einem
Spektralmultiplikator-Theorem fiihrt. Andererseits wird dadurch die Klasse der untersuchba-
ren Operatoren stark eingeschrénkt, da eine ausgezeichnete Kenntnis des zugehorigen Warme-
leitungskerns vorausgesetzt wird. Diese Kenntnis héngt wiederum stark vom Grundzustand
des untersuchten Operators ab, siche auch die Beweise von [128, Theorem A, Theorem B, wel-
che beispielsweise zur Herleitung von Schranken an exp(—(—A + a|z|72)) verwendet werden
konnen (siehe auch [128, Theorem 1, Theorem 2, Corollary 3]).

D.3 Hardy—-Sobolew-Ungleichungen

In diesem Abschnitt beweisen wir einige (gewichtete) Hardy—Sobolew-Ungleichungen. Die
ersten Resultate sind unmittelbare Konsequenzen aus den Form-Ungleichungen aus Kapitel
und der Aquivalenz der Sobolew-Normen in L? und gelten nur fiir d = 3 und @ = 1 in
festen Drehimpulskanilen. Wir betonen nochmals, dass diese Ungleichungen in L?(R.,dr)
formuliert sind. Sie lassen sich vermutlich mit &hnlichen Rechnungen auf beliebige d € N und
a € (0,2 A d) verallgemeinern. Die letzten beiden Resultate gelten fiir £, in L?(R%) mit
beliebigem « € (0,2 A d) und beruhen auf den Techniken aus Kapitel
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Wir beginnen mit gewichteten Hardy-Sobolew—Ungleichungen fiir |p| 4+ a|z|™! in L?(R3)
mit a < 0 und erinnern an die Notation

d? (e+1)
Pe = \/_d7’2+(7’2) m LQ(R+7d7“)

sowie die Abkiirzung Cy = \/p% + 1 — 1. Per Dualitét folgt aus Behauptung [5.3.10

Lemma D.3.1. Seien M >0, { € Ny und s € (1/2,1]. Dann gilt fir f € C°(Ry)
-1

2s—1
r s
sup (K) Lperrsy Flpmenny | O < Aandll(Cot M) F3.

2

Beweis. Dies folgt aus der Unitaritdt der Fourier—Bessel-Transformation, sprich

Fr) = /O°° VErJoga o (kr)(@cf)(B)(VE2 +1 -1+ M)* "

(Wk2+1—-1+ M)s
der Cauchy—Schwarz-Ungleichung und Lemma [5.3.9 O

Kombiniert man dieses Ergebnis mit dem Satz von Plancherel, sprich
1(Ce+ M)*(pe + M)™°|| < as,m

und der Aquivalenz der Sobolew-Normen fiir |p|4a|z| ™" in L?(R3) (Lemma und Korollar
5.3.8) welche anwendbar sind, wenn s zusétzlich eingeschréankt wird), erhilt man

Lemma D.3.2. Seien M >0, £ € Ny, a > —2/7m und 1/2 < s < min{3/2 — 6,1} mit § aus
(7.3). Dann gilt fir f € C°(R4)

-1

2s—1
r 2 -1 2
sup (5 n %> Locory F ooy | 0P < Asmll(pe + al|™ + M) ff5.

Wir bemerken schlieflich, dass wir per Dualitdt aus Behauptung [5.3.10] auch die folgende
gewichtete Sobolew-Ungleichung erhalten.

Lemma D.3.3. Seien a >0, ¢ € Ny und s € (1/2,3/4]. Dann gilt fir f € C(R4)

2s—1 4s—1
T T
su —_— 1 + | —F 1
T,ZIS <g+ %) {r<t+3} <€+ ;) {3 <r<(¢+3)%}

1 4s5—1 -1 )
< Asall(Co+alt+1/2)72)° f13.

Wir kommen nun zu den ungewichteten Hardy—Sobolew-Ungleichungen und beginnen mit
einer Aufwirmiibung.
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Lemma D.3.4. Seien 2s > d/a und a > 0, dann gilt
1l ey < Lo+ D" Fll oy fiir alle f € C2(RY)

Beweis. Mit Dunfords und Pettis Ungleichung fiir Integraloperatoren [I77, Abschnitt 46.2]
(sieche auch [29] Corollary 2.14]) und wegen der Selbstadjungiertheit von £, , geniigt es,

sup [ dy| (Lot 1) ()] = sup (Lo + 1) (0) < o
z€Rd JR4 r€R4
nachzuweisen. Mit dem Spektralsatz, dem Maximumprinzip und 2s > d/«a erhilt man
[e.e] o0 d
(Lo + 1)z, ) = / dt 12 te M Faat (g 2) < / dt t* 1mae™t < 00,
I'(2s) 0 0
O
Das folgende Resultat zeigt, dass fir d > 3 und 2s > 1/a der Operator (L,q + 1)7°
im nullten Drehimpulskanal von L?(R?) nach L> beschriinkt ist. Dieses Resultat kommt

im Wesentlichen durch sphérische Ausmittelungen beziehungsweise Glattungen durch eine
Integration iiber S4~! zustande.

Lemma D.3.5. Seien d > 3, a € (0,2) und a > a. so, dass 6 < min{(d —1)/2,(d — «)/2}
mit § aus (7.3). Ist 2s > 1/a, dann gilt

I 192 f ey < Aads 1(Lasa + 1)°fll 2gay  fiir alle radialen f € C*(RY).

Wir bemerken, dass die Einschrankung 2as < d — 29 hier nicht nétig ist, da wir hier nicht
die Aquivalenz der Sobolew-Normen von Potenzen der Operatoren |p|® und Lq,o verwenden.
Diese obere Schranke an s garantierte die (fiir den Beweis der Aquivalenz wesentliche) verall-
gemeinerte Hardy-Ungleichung, Behauptung Die Schranke 0 < (d — «)/2 stellt sicher,
dass Potenzen des Operators £, , mit Hilfe des Spektralsatzes und des Warmeleitungskerns
definiert werden kénnen.

Beweis. Wir zeigen die Aussage wieder mit Hilfe der obigen Ungleichung fiir Integralopera-
toren und definieren dazu

K(r,r') = / (Loo+1)7%(rw,r'v)dw fiir alle v € S41,
Sd—1
wobei wir bemerken, dass der Kern (£, +1)"*(x, y) nur von |z|, |y| und dem Winkel zwischen

a1 :
x = rw und y = r'v abhingt. Fiir g(r) :=r 2 f(r) mit || f[lp2e) = VIS gl L2y ar) = 1
~ — da—1
haben wir mit K (r,r’") = T%K(T 'z | |z| = r und allen v € S%1

2| D2 ((Lao + 1) 0|22~ g) ()
= / / r(d_l)m(ﬁaﬂ + 1) %(ry, r’w)r’(d_l)/2g(r’) dwdr’ = / f((r, g(r’) dr'.
0 Jsd-1 0

Es geniigt daher zu zeigen, dass fiir alle v € S%!

sup/ dr’ )
>0

K(r
= suprd- / dw/ dw'’ / dr'r’ N (Lo + 1) 75 (rw, V) (Lo +1)7° (r'v,r0)
Sd—1

r>0

—suprdl/ dr'r’dilK(r,r')K(r’,r)

r>0
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endlich ist. Die Behauptung folgt insbesondere, wenn der Mittelwert des letzten Integrals iiber
v € S 1 endlich ist, also wenn

(S T Y e / dw/ du' (Lao+1)7% (rw, ') < oo
>0 §d—1 §d—1

Um dies zu verifizieren, verwenden wir nochmals den Spektralsatz,

t—d/oc LA t1+d/a N t
x| e | (g2fe y g)2) 50

und die Tatsache, dass auch e~**e<(z, ) nur von |z|, |y| und dem Winkel zwischen = und y
abhingt. Es reicht daher aus

i1 9] o1 751/(1 2 T t(SiIl 0)d—2
sup / dt e 't {1V — / de e
>0 0 T 0 (t2/0 4 272 — 272 cos ) 2

) o 25 rl 1— 2y 42
=sup rzas_l/ dt e 1" ¢ (1 Y tl/o‘> / du 1w > dita
>0 0 -1 (e 2-2u) 2

(D.25)

zu untersuchen. Fiir t — oo féllt das Winkel-Integral wie = ab, wohingegen es sich fiir

t — 0 wie 171/ verhilt. Dies ist aus
— =3 d—3
e [ a0
u pry
S (Plep2o20) e S e (g 2y
- -3
2% 2 du (152%) 2 < dt_l_a
a ~O
tite Jo #2014 2u)%

ersichtlich, wobei wir u — u + 1 verschoben, u — —u gespiegelt, den Integrationsbereich auf
[0,00) vergréBert und schlieBlich u — t2/®u skaliert haben. Daher ist die rechte Seite von

(D-25) durch

20s—1 ! tre,2s—1—1 205—1 [ tre 254280 _dta
sup | re*” / dt e 7T e 4 pfsT / R A (D.26)
r>0 0 1

beschrankt. Skaliert man ¢ — r~%¢ im ersten Summanden und integriert anschliefend tiber ¢
von 0 bis oo, sieht man, dass er wegen 2as > 1 durch eine Konstante beschrénkt ist.

Wir betrachten nun den zweiten Summanden. Fiir » — oo féllt er offensichtlich exponen-
tiell schnell ab. Wir untersuchen nun das Verhalten fiir » — 0. Fiir 2as 42 = d ist der zweite
Summand von gerade 72*~1T(0, 7%) mit der unvollstéindigen I'-Funktion I'(0,7%) (sie-
he [34, Formel 6.5.3]). Dieser Ausdruck verhiilt sich fiir 7 — 0 in jedem Fall wie —r?*~1logr,
ist also in diesem Grenzwert endlich, da 2as > 1. Falls 2as + 2§ # d schétzen wir den zweiten
Summanden von durch eine Konstante mal

0(20us + 26 — d)rd=1=2 /oo dt el TR T 4+ 0(d — 2as — 26)r2s~1 /Oo % et 2t R4
ro 1

= dt

d

> dt
< 0Q2as+26 — d)rdl%/ eftt28+273*g +0(d —2as — 25)7’20‘371 / n t25+2(76*5
1

0
<A (Td71726 +7,2a571)
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ab, wobei 6(z) die Heaviside-Funktion mit der Konvention #(0) = 0 bezeichnet. Im Fall
2as + 20 > d haben wir die Substitution ¢ — r~*¢ durchgefiithrt. Da § < (d — 1)/2 und
2as > 1, ist dieser Ausdruck ebenfalls endlich fiir » — 0. O

Wir schliefen mit folgenden Bemerkungen.
(1) Wegen Dualitét ist die L? — L*°-Beschréinktheit der Resolventen dquivalent zur L' — L2-
Beschrénktheit.
(2) Das Lemma zeigt, dass L?(R, dr)-Potentiale relativ beschrinkt beziiglich £, o mit a > 1
im nullten Drehimpulskanal sind, selbst wenn a = a,.
(3) Schliefllich wire es interessant

(1= o) [(Laa + 1)~ = (Ip|* + 1)_8]HL‘1(R‘1)—>LT(R‘1) < o0

fiir gewisse ¢ und r zu zeigen, wobei Ily die Projektion auf den nullten Drehimpulskanal meint.
Damit wire es moglich, Sobolew-Einbettungen und L? — L*-Schranken im orthogonalen
Komplement des nullten Drehimpulskanals fiir £, aus den entsprechenden Ergebnissen fiir
|p|* herzuleiten.
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