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1. Einleitung

Die Wachstumshormon (GH)-„Insulin-ähnliche Wachstumsfaktoren“ (IGF)-Achse spielt eine

sehr wichtige Rolle in der postnatalen Entwicklung des Skelettes, seiner Erhaltung und

seinem Umbau sowie beim altersabhängigen Knochenverlust (Johansson et al. 1994, Ohlsson

1998, Mohan und Baylink 1999, Rosen 2000, Yakar et Rosen 2003). IGFs werden außer an

ihrem Hauptsyntheseort, der Leber auch von den Osteoblasten produziert (Mohan et Baylink

1991, 1996, Jones et Clemmons 1995) und regulieren den Knochenstoffwechsel sowohl als

endokrine wie auch als parakrine / autokrine Mediatoren (McCarthy et Centrella 2001). IGF-I

aktiviert den Knochenumbau und übt einen sehr starken mitogenen und anabolen Effekt auf

die Osteoblasten aus. So konnte gezeigt werden, dass eine Hemmung der IGF-I-Wirkung die

Proliferationsrate der Osteoblasten um 50% reduziert (Mohan et al. 1993). In vivo steigert

eine GH-Überexpression den IGF-I-Serumspiegel (Wolf et al. 1993, Höflich et al. 2001,

Eckstein et al. 2002) und führt dadurch zu phänotypischen Veränderungen, die eine

unterschiedlich starke Ausprägung sowohl an den einzelnen Knochen (Wolf et al. 1991 a,b)

als auch am kortikalen bzw. am trabekulären Kompartiment zeigen (Graichen et al. 1999,

Eckstein et al. 2002).

Da der größte Teil von IGF-I nicht in freier Form sondern gebunden an IGF-

Bindungsproteine (IGFBPs) zirkuliert (Jones et Clemmons 1995), bestimmen die IGFBPs

entscheidend die Konzentration von IGF-I am Wirkort und seinen Effekt auf den

Knochenaufbau. IGFBPs können aber auch direkte Wirkung auf Zielzellen haben und wurden

daher als Multifunktionsproteine charakterisiert (Mohan und Baylink 2000). Bisher wurden

sechs verschiedene IGFBPs (IGFBP-1 bis –6) beschrieben, welche von Chondrozyten und

Osteoblasten synthetisiert werden (Shimasaki et Ling 1991, Olney et al. 1992, Wang et al.

1995, De los Rios et Hill 1999). Sie modulieren das Zusammenspiel zwischen GH und IGF

(Jones and Clemmons 1995), beeinflussen die Bioverfügbarkeit von IGF und vermitteln und

regeln dessen Effekte in verschiedenen Geweben (Rajaram et al. 1997, Schneider et al. 2000,

Wolf et al. 2000). IGFBPs beeinflussen den Knochenmetabolismus sowohl indirekt, indem sie

IGF-I binden und dadurch eine Aktivierung des IGF-I-Rezeptors verhindern (Rosen et al.

1994), als auch direkt durch Bindung an ihre eigenen Rezeptoren (Feyen et al. 1991, Mohan

et al. 1995).
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Die biologische Aktivität von IGF-I wird durch IGFBP-3 und IGFBP-5 verstärkt,

während IGFBP-4 und IGFBP-2 als potente Inhibitoren der IGF-Wirkung charakterisiert

wurden (Mohan 1993, Mc Carthy et al. 1994, Rajaram et al. 1997, Miyakoshi et al. 1999).

IGFBP-2 ist eines der wichtigsten Bindungsproteine und übt eine antiproliferative

Wirkung auf Zellen aus. Eine gesteigerte Konzentration konnte im Serum von Mäusen mit

einem im Vergleich zum durchschnittlichen Gewicht einer 8 Wochen alten Maus zu niedrigen

Körpergewicht gemessen werden (Höflich et al. 1998a). An IGFBP-2-Knock-out-Mäusen

konnten allerdings nur geringe Veränderungen festgestellt werden (Gosiewsa et al. 1994).

Um die Bedeutung von IGFBP-2 und seine Wechselwirkung mit dem

Wachstumshormon genauer zu erforschen, generierten Höflich et al. IGFBP-2-transgene

(2001 a) und GH/IGFBP-2-doppel-transgene-Mäuse (2001 b). Letztere weisen hohe GH- und

hohe IGFBP-2-Serumspiegel auf. Die Tiere mit einer systemischen IGFBP-2-Überexpression

weisen ein deutlich reduziertes Körpergewicht postnatal auf, sowol in An- wie auch in

Abwesenheit von GH/IGF-I-Überschuss (Höflich et al. 1999, 2001). Dies weist darauf hin,

dass die erhöhte IGFBP-2-Konzentration bei den kleinen Tieren kein Epiphänomen darstellt,

sondern dass es sich bei IGFBP-2 tatsächlich um einen wichtigen negativen Regulator des

Wachstums handelt.

Die Bedeutung von IGFBP-2 bei altersabhängigen Veränderungen des Knochens

wurde in mehreren klinischen Studien untersucht. Kim et al. (1996) fanden bei Frauen, die

nach der Menopause an Osteoporose litten, eine signifikant erhöhte IGFBP-2-Konzentration

und eine negative Korrelation mit der Knochendichte. Diese Beobachtungen wurden auch

durch Sugimoto et al (1997) bestätigt. Einen signifikanten Zusammenhang mit der Zahl der

vorhandenen Wirbelkörperfrakturen konnten letztere Autoren allerdings nicht nachgeweisen.

In anderen Studien konnte jedoch kein signifikanter Unterschied zwischen der IGFBP-2-

Konzentration jüngerer (< 60 Jahre) Patientinnen mit postmenopausaler Osteoporose und

derjenigen bei gesunden Frauen (pre- oder postmenopausal) feststellt werden (Nasu et al.

1997, Kim et al. 1999).

Dass sich die IGFBP-2-Konzentration umgekehrt proportional zur Knochendichte

verhält, konnte im Zusammenhang mit der renalen Osteopathie nachgewiesen werden, einem

Krankheitsprozess, der sich infolge zunehmender Niereninsuffizienz einstellt und mit einem

Anstieg des IGFBP-2-Serumspiegels einhergeht. Histologische Untersuchungen bestätigten

eine positive Korrelation zwischen dem IGFBP-2-Serumspiegel und Serumparametern des
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Knochenabbaus, sog. „Bmc-Marker“ (Jehle et al. 2000). Hieraus ergab sich die Frage, ob

IGFBP-2 im Pathomechanismus der Osteoporose eine kausale Rolle spielt oder nicht?

Bisher liegt keine Studie vor, in welcher ein Effekt von IGFBP-2-Überexpression auf

den Knochenmetabolismus in vivo charakterisiert wurde. Das Ziel der vorliegenden Studie

war daher die Untersuchung skelettaler Veränderungen einer IGFBP-2-Überexpression im

transgenen Mausmodell, sowohl in der Ab- als auch Anwesenheit von GH-Überexpression.

Um Doppel-transgenen Mäuse zu generieren, wurden GH-transgene mit den IGFBP-2-

transgenen Mäusen gekreuzt (Höflich et al. 2001), und die Auswirkungen der GH- und

IGFBP-Co-Überexpression auf die Knochengröße, -masse und –dichte zu bestimmen.
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2. Allgemeine Grundlagen und Literaturübersicht

2.1.  Die Achse des Wachstumshormons und der Insulin-ähnlichen Wachstumsfaktoren

Untersuchungen in Knochenzellkulturen und in vivo haben gezeigt, dass die Wachstums-

faktoren eine bedeutende regulatorische Funktion im Knochenstoffwechsel ausüben (Liu et

LeRoith 1999, Jehle et al. 2000, Kopchick et Andry 2000). Eine außerordentlich wichtige

Rolle in der postnatalen Entwicklung, dem Erhalt und dem altersabhängigen Verlust des

Skelettes sowie bei Osteoporose spielt die Achse des Wachstumshormons (GH) und der

Insulin-ähnlichen Wachstumsfaktoren (IGF) (Johansson et al. 1992, Ohlsson et al. 1998,

2000, Beamer et al. 2000). In der vorliegenden Arbeit sollen zunächst die Funktionen der

beiden Hauptakteure (GH und IGF-I) in der Achse sowie die entsprechenden

Regelmechanismen dargestellt werden. Anschließend werden die einzelnen Faktoren mit

Schwerpunkt auf ihre Rolle im Metabolismus des Knochens beschrieben.

GH

(Adenohypophyse)

Östrogen / Androgen       (1) (2a)  (2b)

Parathormon, Cortisol direkt systemisches        lokales

Alter, Lebensstil     IGF-I          IGF-I

    (Leber)          (Osteoblasten)

GH - Rezeptor

OSTEO-/ CHONDROBLASTEN

Abb.1: Die GH/IGF-Achse und ihr Einfluss auf Osteo- und Chondroblasten (Daten aus Ohlsson

et al. 1998)

wirken
modulierend

 GH wirkt direkt über seinen Rezeptor

 GH wirkt indirekt über systemisches bzw. lokales IGF-I
(     ) Syntheseort
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Stress, Schlaf, körperliche Anstrengung
+

Hypothalamus
Somatostatin

GHRH
  

Adeno-
Hypophyse

GH

Zirkulation

GH

Zeit

Ziel-   
Gewebe

      Leber Muskel Fettgewebe Knochen

Abb.2: GH: Sekretion und Wirkprinzipien (Zeichnung aus Kopchick und Andry 2000)

GH ist ein Hormon, das in den somatotropen Zellen des Hypophysenvorderlappens

synthetisiert wird. Seine Wirkungen auf den Knochen werden zum einen durch direkte

Interaktion mit den Wachstumshormon-Rezeptoren (GHR) auf den Osteoblasten vermittelt

(Ohlsson et al.1998, 2000), (Abb. 1.1, Abb. 3.2). Diese reagieren auf einen GH-Reiz hin mit

erhöhter Proliferation sowie mit einer Erhöhung ihrer metabolischen Aktivität. Dies äußert

IGF-I
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sich in einem deutlichen Anstieg der Parameter des Knochenaufbaus im Serum wie z.B. der

knochenspezifischen alkalischen Phosphatase (B-ALP), Osteocalcin und in einer gesteigerten

Expression von Kollagen Typ I (Kassem et al. 1993). Zum anderen induziert GH die Synthese

von IGF-I in der Leber, welches seinerseits als ein endokriner Faktor das Zellwachstum, die

Zelldifferenzierung und den Zellstoffwechsel (Stewart et al. 1996) sowohl während der

intrauterinen Entwicklung als auch in der Zeit des postnatalen Wachstums (Liu et al. 1993,

Woods et al. 1996) fördert (Abb.1, Teil 2a; Abb.3.1). Dieser Weg ist in der Literatur als die

sog. „Somatomedin-Hypothese“ bekannt (Rosen et al. 1994, Ohlsson et al. 1998, 2000). Wie

erwartet wiesen GH-transgene Mäuse erheblich höhere IGF-I-Serumspiegel auf als die

Kontrolltiere (Wolf et al. 1993, Höflich et al. 2001, Eckstein et al. 2002). „IGF-I-Knock-out

(KO)-Mäuse“, bei denen das IGF-I-Gen unterdrückt wird, wiesen bei normaler bis erhöhter

GH-Sekretion eine signifikant verminderte Körpergröße auf (um 35% bei der Geburt, um

65% im Erwachsenenalter), die auch nach einer 6-wöchigen Therapie mit GH keine

Veränderungen zeigte (Liu und Le Roith 1999). Diese Beobachtungen sprechen dafür, dass

der Einfluss von GH auf die Körpergröße hauptsächlich durch IGF-I-Produktion vermittelt

wird. Dies entspräche der sog. „Somatomedin-Hypothese“.

Diese Hypothese wurde ergänzt („Erweiterte Somatomedin-Hypothese“), als Isaksson

et al. (1982) zeigten, dass eine direkte GH-Injektion in die Tibia von Ratten die gewebseigene

IGF-I-Produktion anregt und dadurch das Längenwachstum der Knochen stimuliert (Ohlsson

et al. 1998). Dies deutet darauf hin, dass das lokal synthetisierte IGF-I neben systemisch

zirkulierendem IGF-I eine wichtige Rolle für die Vermittlung der GH-Wirkung spielt (Abb.1,

Teil 2b; Abb.3.2).

Durch drei verschiedene Feedback-Mechanismen wird die GH/IGF-Achse im

Gleichgewicht gehalten, siehe Abb.3:

1) Klassischer negativer Feedback-Mechanismus: Entsprechend der

„Somatomedin-Hypothese“ stimuliert GH die IGF-I-Synthese in der Leber.

Dieses zirkulierende IGF-I hemmt die GH-Sekretion aus der Adenohypophyse.

2) Modifizierter klassischer negativer Feedback-Mechanismus: Neben dem

o.g. Prozess stimuliert GH die lokale IGF-I-Synthese im Knochen. Dieses IGF-
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I aus den nicht hepatischen Quellen verstärkt die inhibitorische Funktion des

IGF-I aus der Leber.

3) Periphere negative Schleife: Das unter GH-Einfluss produzierte IGF-I im

Knochen hemmt die lokale Wirkung von GH durch Abnahme der Rezeptor

(GHR)-Moleküle.

Hypophyse
          1

GH
Leber

   IGF-I

Knochen

         2
Hypophyse

GH
Leber

   IGF-I
IGF-I

Knochen

                                  3
Hypophyse

GH
Leber

   IGF-I
IGF-I

Knochen
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Abb.3: Schematische Darstellung des Regelkreises zwischen GH, IGF-I und dem Knochen
(Zeichnung aus Ohlsson et al. 1998)
Eine Störung dieser Regelkreise, durch pathologische Prozesse oder therapeutisches

Eingreifen, führt zu einer Gleichgewichtsverschiebung im Knochenmetabolismus zugunsten

von Formation oder Resorption und somit zu veränderten Knocheneigenschaften.

In den folgenden Kapiteln wird die Rolle der einzelnen Komponente des GH-IGF-IGFBP-

Systems für den Knochenmetabolismus vorgestellt.

2.2. Wachstumshormon (GH) und Knochen

Ein Überschuss an GH, z. B. verursacht durch einen Hypophysentumor, führt zur

Akromegalie, die sich durch eine Verdickung der Kortikalis, eine Verbreiterung der

terminalen Phalangen und eine Vergrößerung von Kinn und Nase sowie von Eingeweiden

äußert. Die Untersuchungen des Knochenmineralgehalts (BMC) und der –dichte bei Patienten

mit Akromegalie ergaben jedoch keine einheitlichen Ergebnisse (Ohlssen et al. 1998). Da bei

manchen Erkrankten ein erhöhter Knochenumsatz festgestellt werden konnte, wurde die

Akromegalie als eine mögliche Ursache der Osteoporose betrachtet. Neuere Studien zeigen

jedoch, dass Patienten bei denen zwar die Akromegalie aber noch kein Hypogonadismus

feststellbar ist, eine normale oder sogar erhöhte Knochenmasse aufweisen (Jockenhovel et al.

1996, Lesse et al. 1998). Bei der Interpretation dieser Ergebnisse muss berücksichtigt werden,

dass die Hypophyse auch andere endokrine Systeme, die den Knochenstoffwechsel stark

beeinflussen, wie denen der Geschlechts-, Steroid- und Schilddrüsenhormone reguliert (Lesse

et al. 1998).

Um den Effekt einer supraphysiologisch hohen GH-Serumkonzentration auf

verschiedene Organsysteme in vivo untersuchen zu können, wurden GH-transgene Mäuse mit

diversen Promotorsystemen, z.B. Metallothionein (MT) oder Phosphoenolcarboxykinase

(PEPCK) generiert (Brem et al. 1989). Hierdurch wurden GH-Spiegel erreicht, die um ein

Vielfaches über der Norm lagen (Wolf et al. 1993). Die GH-transgenen Mäuse unter der

Kontrolle eines MT-Promotors entwickelten eine dysproportionale Größenzunahme der

Knochen (Wolf et al 1991 a, b). Am Femur zeigte sich eine mäßige Zunahme der

Knochenlänge und der –breite, während am Radius die Zunahme überproportional zur

Körpergröße und zum Körpergewicht war. In mechanischen Kompressionstests wurden an
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den kaudalen Wirbelkörpern von GH-trangenen Mäusen signifikant höhere Werte für die

maximale Tragfähigkeit (Bruchlast) und die axiale Steifigkeit beobachtet (Steinke et al.

1999). Neuere Untersuchungen ergaben einen wesentlich höheren absoluten, aber einen

vergleichbaren relativen Knochenmineralgehalt (Anteil am Gesamtkörpergewicht) bei

männlichen und weiblichen GH-transgenen Mäusen im Vergleich zu den Kontrolltieren

(Lochmüller et al. 1999, Eckstein et al. 2002 a). Am Femur war die Zunahme des BMC

ebenfalls proportional zum Anstieg des Körpergewichts, während unterschiedliche Effekte

zwischen den beiden Geschlechtern auf die Größe des Femurs nachgewiesen wurden

(Eckstein et al. 2002 a). Bei beiden Geschlechtern wurde allerdings eine reduzierte

Knochendichte (g / cm_) nachgewiesen. Der Effekt des GH auf die Knochenstruktur bei den

GH-transgenen Tieren scheint wesentlich von der Interaktion mit den männlichen und den

weiblichen Geschlechtshormonen abzuhängen (Sandstedt et al. 1994).

Vergleicht man die einzelnen Knochenkompartimente miteinander, so betrifft die o.g.

Zunahme des Knochenmineralgehaltes bei Mäusen v.a. die Kortikalis, während der

trabekuläre Knochen kaum Veränderungen zeigt (Slootweg 1993). Die selektive Zunahme der

Kortikalis konnte ebenso bei alten Ratten mit normaler GH-Sekretion nachgewiesen werden

(Andreassen et al. 1995). Diese Ergebnisse legen nahe, dass GH einen stärkeren anabolen

Effekt auf das kortikale als auf das trabekuläre Knochenkompartiment ausübt.

Ein Mangel an GH führt sowohl beim Menschen als auch beim Tier zu einem

reduzierten Längenwachstum der Knochen, zu einer Verminderung des BMC und zu einem

gesteigerten Frakturrisiko (Ohlsson et al. 2000, Beamer et al. 2000). Abhängig vom

Zeitpunkt, zu dem der Mangel einsetzt, kommt es zur Ausprägung verschiedener

Krankheitsbilder (Ohlsson et al. 1998). Ein Defizit an GH im Kindesalter hat eine relative

Osteopenie und eine verzögerte Skelettentwicklung (Ohlsson et al. 1998), beim Erwachsenen

dagegen eine Osteoporose zur Folge (Degerblad et al. 1995). Eine Substitution von GH führt

bei Patient(inn)en mit GH-Defizienz zu einer Zunahme des Knochenaufbaus und damit zu

einer Erhöhung von Knochenmasse und -dichte, so dass der Substitution mit dem Hormon bei

der adulten GH-Defizienz klinisch eine wichtige Rolle zukommt (Ohlsson et al. 1998).



                                                                                                                                                    1414

2.3. Insulin ähnliche Wachstumsfaktoren (IGF) und Knochen

IGF-I und -II spielen sowohl als lokale als auch systemische Faktoren eine wichtige Rolle bei

der Bildung von trabekulärem und kortikalem Knochen. Sie stimulieren die Proliferation und

die Differenzierung von Chondrozyten und Osteoblasten in der Epiphysenfuge (McCarthy et

al. 1989) (Abb.4).

IGF-I / IGF-II (aus Leber, Knochen,...)

Typ-2-IGF-Rezeptor

Typ-1-IGF-Rezeptor

Längen-
Zunahme

Reife, differenzierte
Osteoblasten

Breiten
Zunahme

- ALP _
- Oseoblastenproliferation _
- Dichte _

Abb. 4: IGF-Wirkprinzipien und Effekte (Daten aus McCarthy et al. 1989, Miyakoshi et al. 1999)

Lokal appliziertes IGF-I steigert sowohl in vitro als auch in vivo die ALP-Aktivität,

die Bildung des Kollagens Typ-I in den Osteoblasten und die lokale Knochenformation

(Chihara und Sugimoto 1997). Eine systemische Gabe von IGF-I führt zu einem gesteigerten

Knochenaufbau, sowohl im trabekulären als auch im kortikalen Kompartiment und zu einem

signifikanten Anstieg der biochemischen Marker der Osteoblastenfunktion (Ghiron et al.

1995, Miyakoshi et al. 1999) (Abb.4). Diese Daten belegen den anabolen Effekt sowohl von

lokalen als auch von systemischen IGF-I auf den Knochen.

Eine Blockade der IGF-I- und der IGF-II-Wirkung in vitro reduzierte die Zellteilung

im Knochen um 50% (Mohan 1993). Sowohl im Mausmodell als auch bei Menschen, bei

denen ein IGF-I-Gendefekt vorlag, wurden eine deutliche Verzögerung des Knochenaufbaus

Kollagensynthese _
Aufbau der Matrix _
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(Liu et al. 1993), eine starke Reduktion der Aktivität der ALP (Whyte 1994) und eine

signifikant erniedrigte Knochendichte gefunden (Woods et al. 1996).

IGF-I-Knockout (KO)-Mäuse zeigten eine signifikante Reduktion des Körpergewichts

im Vergleich zu den gleichaltrigen, normalen Mäusen (Liu und Le Roith 1999, Bikle et al.

2001). Die kortikale Dicke der proximalen Tibia war um 17 % reduziert. Das trabekuläre

Knochenvolumen (BV / TV) der Tibia war dagegen bei den männlichen Tieren um 23 % und

bei den weiblichen Tieren um 88 % erhöht. Dies kam durch die dichtere Anordnung und die

höhere Anzahl der Trabekel zustande. An den Wirbelkörpern konnten keine ähnlichen

Veränderungen festgestellt werden. Daraus folgerten Bikle et al. (2001), dass ein Mangel an

IGF-I zwar zu einem kleineren, aber auch zu einem „kompakteren“ Knochen führt.

Kasukawa et al. (2003) stellten eine signifikante Verlangsamung des enchondralen

Ossifikationsprozesses und einen starken Anstieg der Resorption sowohl des enchondralen als

auch des perichondralen Knochens in der Tibia von IGF-I-KO-Mäusen fest. Zhang et al.

(2002) generierten Mäuse, bei denen der IGF-I-Rezeptor am Osteoblasten selektiv

ausgeschaltet wurde. Diese erreichten eine altersentsprechende Körpergröße und ein

altersentsprechendes Körpergewicht, wiesen aber im Gegensatz zu den Ergebnissen von Bikle

et al. (2001) eine starke Abnahme des trabekulären Knochenvolumens (BV / TV), der

Trabekelzahl und der Mineralisierungsrate des Osteoids. Der Vergleich zwischen den IGF-I-

KO-, den IGF-II-KO und den GH-KO-Mäusen ergab die deutlichste Reduktion der Länge, der

Größe und der Dichte des Femurs bei den IGF-I-KO-Tieren (Mohan et al. 2003). Der IGF-I-

Mangel führte bei diesen Mäusen zum völligen Ausbleiben des perichondralen

Knochenwachstums während der Pubertät. Dies spricht ebenfalls für eine verminderte

Knochenformationsrate beim Fehlen von IGF-I (Abb.5). Daraus wird ersichtlich, dass eine

Abnahme der IGF-I-Konzentration im Serum zu einer Hemmung der Knochenformation und

damit zu einem Ungleichgewicht zugunsten der Resorption führt. Dies äußert sich in einer

reduzierten Knochengröße beim wachsenden Skelett sowie in Entstehung von

minderwertigen, brüchigen Knochen beim erwachsenen Skelett.

_ Zellteilung _ (50%)

IGF-I/-II _ ALP- Aktivität _ Osteoblasten
_ Knochenaufbau _ Proliferation
_ Knochendichte _ _
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Abb. 5: Knochenmetabolismus beim Fehlen von IGF-I-/-II (Daten aus Liu et al. 1993, Whyte

1994, Woods et al. 1996)

Entsprechend den o.g. Beobachtungen wurden erniedrigte Plasmaspiegel von IGF-I

bei Osteoporosepatientinnen nach der Menopause gemessen (Wuster et al. 1993, Kim et al.

1996, Sugimoto et al. 1997, Nasu et al. 1997). Die genauen Ursachen für diese Reduktion des

IGF-I-Spiegels und ihre Rolle für die Pathogenese der postmenopausalen Osteoporose sind

bisher unklar. Zum einen könnte dies mit einer Abnahme der GH-Sekretion, zum anderen mit

einer gonadalen Fehlfunktion und der dadurch reduzierten Östrogenkonzentration

zusammenhängen (Abb.6). Bei jungen Mäusen, bei denen die gonadale Funktion noch intakt

war, hemmte IGF-I die Knochenresorption (Jonsson et al 1996). Bei den Frauen in der

Postmenopause, bei denen bereits ein Östrogendeffizit herrschte, führte eine kurzzeitige Gabe

von IGF-I sogar zu einem gesteigerten Knochenabbau (Ghiron et al. 1995). Dies spricht für

die essentiele Rolle des Östrogens in der Vermittlung anaboler IGF-I-Effekte.

• GH-Sekretion _ Osteocalcin_
• Östrogen_ _ ALP_

_ Knochendichte_
   (Schenkelhals)

Frakturrisiko

Abb. 6: IGF-Konzentration vs. Osteoporose (Daten aus Liu und Le Roith 1999 Sugimoto et al.
1997)

Im Bezug auf die Osteoporose eignet sich IGF-I unter anderem, um den Schweregrad

der Erkrankung und insbesondere das Risiko einer Schenkelhalsfraktur abzuschätzen

(Nakaoka et al. 2001). Es hat einen hohen Voraussagewert für die Konzentration von

Osteocalcin und ALP sowie für die Knochendichte am Schenkelhals und kann als ein

unabhängiger Marker für den BMC angesehen werden (Boonen et al. 1996). Der positive

Zusammenhang zwischen der IGF-I-Konzentration im Serum und der Knochendichte besteht

auch beim Gesunden (Johansson et al. 1994).

IGF-
Konz



                                                                                                                                                    1717

Tabelle 1: Übersicht der Untersuchungen der IGF-I-Konzentrationen im Zusammenhang mit

Osteoporose

Autor Johansson

1994

Ghiron

1995

Jonsson

1996

Kim

1996

Boonen

1996

Nasu

1997

Sugimoto

1997

Nakaoka

2001

Statement

Über

IGF-I

Beim
Gesunden:

Positive
Korrelation
mit Dichte

Kurzzeitige
Gabe
steigert den
Abbau

Hemmt die
Resorption

Postmeno

Pausal
IGF-I _

Unabh.
Marker

für BMC

Voraussage
über:

OSC, ALP,
Dichte

Postmeno

Pausal:

IGF-I _

Postmeno

Pausal:

IGF-I _

Schätzwert
für:

Schweregr
ad der
Ostoporose

Frakturrisi
ko

Die vorausgehenden Ausführungen belegen den Zusammenhang zwischen der GH-IGF-

Achse und dem Knochenmetabolismus. Sie sprechen für eine enge Korrelation zwischen der

Konzentration einzelner Akteure in dieser Achse und pathologischer Prozesse im Knochen,

die mit einer Störung in diesem System einhergehen.
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2.4. IGF-Bindungsproteine (IGFBPs)

Die GH/IGF-Achse und ihre Wirkung auf den Knochenmetabolismus wird durch sechs

verschiedene IGFBPs (IGFBP-1 bis –6) moduliert. IGFBPs sind strukturell verwandte

Proteine, die IGF mit hoher Affinität binden und somit seine Wirkung auf den Knochen

sowohl verstärken als auch hemmen können (Jones et Clemmons 1995). Mohan und Baylink

(2000) zeigten, dass die Bedeutung der IGFBPs weit über ihre traditionelle Funktion als

Bindungsproteine für IGF-I hinausgeht. Über eigene spezifische Oberflächenrezeptoren

vermitteln IGFBPs ihre Effekte auf verschiedene Zielzellen und wirken somit selbst als

Wachstumsfaktoren. Dieser Mechanismus ist unabhängig von der Anwesenheit von IGF-I-

Rezeptoren. Weitere „IGF-I-unabhängige“ Effekte üben IGFBPs durch Induktion der

Gentranskription aus, wenn sie zum Zellkern transportiert werden. IGFBPs stellen somit

außergewöhnliche multifunktionelle Moleküle dar, deren Funktion von einem einfachen

Bindungspartner bis zu einem selbständigen, IGF-I-unabhängigen Wachstumsfaktor reicht

(Mohan et Baylink 2000). Da in dieser Studie besonderes Interesse IGFBP-2 gilt, werden

zunächst andere für den Knochen wichtige IGFBPs (IGFBP-3, -4 und –5) und anschließend

gesondert IGFBP-2 vorgestellt.

IGFBP-3

IGFBP-3 ist das bisher am besten untersuchte BP. Es verstärkt die IGF-Aktivität, wenn es an

die zellulären Oberflächenstrukturen (Rezeptoren, Ankerproteine, etc.) gebunden ist (Conover

1992) (Abb.7 a). Als ein frei gelöstes Molekül im Serum hemmt es diese (Baxter et al. 1998)

(Abb.7 b). Über einen oberflächen-gebundenen Rezeptor mit Serinkinase-Aktivität übt

IGFBP-3 auch IGF-I-unabhängige Effekte aus (Werner et LeRoith 1997, Martin et Baxter

1999).

IGFBP-3 spielt auch eine wichtige Rolle bei der Entstehung einer Osteoporose.

Wuster et al. (1993) wiesen nach, dass eine positive Korrelation zwischen der Knochendichte

und der IGFBP-3-Konzentration im Serum der postmenopausalen Frauen mit Osteoporose

besteht. Dies konnte durch andere Studien bestätigt werden (Sugimoto et al. 1997, Kim et al.

1999, Boonen et al. 1999, Gillberg et al. 2002). Der stärkste Zusammenhang zwischen der
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Knochendichte und der IGFBP-3-Konzentration im Serum wurde am Radius, welcher zu über

90% aus kortikalem Knochen besteht, nachgewiesen (Boonen et al. 1999). Daher scheint

IGFBP-3 genauso wie GH wichtiger für die Regulation des kortikalen als des trabekulären

Knochens zu sein.

-IGF-I- Aktivität _
-freies (50kDa) IGF-I _

Knochenformation

Abb. 7a: IGFBP-3, gebunden an die zellulären Oberflächenstrukturen, z. B an IGFBP-3-Rezeptor
(Daten aus Conover 1992)

IGF-Aktivität

Kn.formation

Zielort (Knochen)

Abb. 7b: IGFBP-3 in löslicher Form, z.B. im Gefäßlumen (Daten aus Baxter et al. 1998)

Legende: - IGFBP-3-Rezeptor - IGFBP-3

- IGF-I-Rezeptor - IGF-I

Erniedrigte IGFBP-3-Werte wurden bei Patientinnen mit postmenopausaler Osteoporose (Typ

I) gemessen (Kim et al. 1996, Sugimoto et al. 1997, Boonen et al. 1999). Eine Reduktion des

IGFBP-3-Spiegels konnte auch bei anderen Patienten mit verminderter Knochendichte

festgestellt werden, so z.B. bei Männern mit idiopathischer Osteoporose (TypII) (Johansson et

al. 1997) und bei den Patienten mit Anorexia nervosa (Hotta et al. 2000). Es scheint, dass

diese Abnahme der IGFBP-3-Konzentration nicht nur mit einer Verminderung der

Knochendichte einhergeht, sondern auch mit einem erhöhten Frakturrisiko (Abb. 8). Bei

Patientinnen mit einer Fraktur konnte im Vergleich zu denen ohne eine Fraktur eine

Osteo
blast

IGFBP
-3 Osteo

blast

IGFBP
-3

Gefäß

Osteo
blast

IGFBP
-3

IGF-I

IGF-
Rez

IGF-I
IGF-I

Gefäß

IGF-I IGFBP-3

Osteo
blast

IGFBP
-3

IGF-
Rez

IGF-I IGFBP-3

IGFBP
-3

IGFBP
-3

IGF-
Rez

IGF-IIGF-
Rez
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signifikante Abnahme der IGFBP-3- sowie der IGF-I-Konzentration nachgewiesen werden

(Sugimoto et al. 1997). Die Ergebnisse legen eine Rolle von IGFBP-3 für die

Aufrechterhaltung des Gleichgewichts zwischen Knochen-

formation und –resorption sowie einen Zusammenhang zwischen der IGFBP-3-Konzentration

und Osteoporose nahe. Im Gegensatz dazu konnten jedoch Nasu et al. (1997) keine Reduktion

des IGFBP-3-Spiegels bei den postmenopausalen Frauen feststellen.

OSTEOPOROSE ·Dichte

  Typ I und II, ·Frakturrisiko

  Anorexia nervosa

Abb.8: Veränderungen der IGFBP-3-Konzentration bei Osteoporose und deren Folgen

(Daten aus Sugimoto et al. 1997)

IGFBP-4

Der Effekt von IGFBP-4 auf die IGF-I-Wirkung hängt davon ab, ob es lokal oder systemisch

wirkt. Miyakoshi et al. (1999) zeigten, dass IGFBP-4 die Aktivitätszunahme von ALP,

hervorgerufen durch eine lokale IGF-I-Applikation am Os parietale, vollständig unterbinden

kann (Abb. 9). Dieser inhibitorische Effekt, der auch in vitro gezeigt werden konnte (Mohan

et Baylink 1996, van Kleffens et al. 1998, Baxter et al. 1998), wird vermutlich durch eine

kompetitive Hemmung des IGF-Rezeptors vermittelt.

+ ALP-Anstieg

+ Ø ALP-
+ Anstieg

frei

Abb. 9: Lokal gegebenes IGFBP-4 hemmt den durch IGF-I bedingten Anstieg der ALP durch

kompetitive Hemmung des IGF-I-Rezeptors (Daten aus Miyakoshi et al. 1999)

Im Gegensatz dazu wurden durch systemische Gabe von IGFBP-4 (Abb.10, A) die Parameter

der Knochenformation im gleichen Maße wie durch IGF-I allein (Abb.10, B) oder durch

IGFBP-4

IGFBP-4

Osteo
blast IGF-I

Osteo
blast IGF-I

Osteo
blast IGF-I

Osteo
blast

IGF-I

IGFBP
-3
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beide Proteine zusammen (Abb.10, C) gesteigert. Dies überrascht, da IGFBP-4 die IGF-

Effekte unter In-vitro-Bedingungen in allen Studien reduzierte (Mohan et Baylink 1996, van

Kleffens et al. 1998, Baxter et al. 1998). Dieser anabole Effekt von IGFBP-4 lässt sich durch

verschiedene Ansätze erklären. Einerseits senkt IGFBP-4 die Menge an freiem IGF-I,

wodurch die Sekretion von GH gesteigert wird, welches direkt oder indirekt den Knochen-

aufbau stimulieren kann (Thoren et al. 1998), (Abb.10, C1). Andererseits wird durch die IGF-

abhängigen IGFBP-4-spezifischen Proteasen IGF-I von der 150 kDa-Form in die 50 kDa-

Form gespalten. Da dieser kleine Komplex die endotheliale Barriere leichter passieren kann,

wird dadurch die Bioverfügbarkeit und die Aktivität von IGF-I im Zielgewebe erhöht

(Abb.10, C2). Eine Injektion von IGFBP-4 bewirkt genau diese Konzentrationsverschiebung

zugunsten der 50 kDa-Form (Miyakoshi et al. 1999). Dieser Mechanismus scheint

wahrscheinlicher, da bei den Protease-resistenten-transgenen Mäusen nach Gabe von IGFBP-

4 kein Anstieg des Osteocalcins oder der ALP-Aktivität beobachtet werden konnte

(Miyakoshi et al. 2001). Somit könnte auch eine Abnahme der Proteasenaktivität zum

verstärkten Knochenabbau beitragen.

A) + + ALP-Anstieg

B) + ALP-Anstieg

C) + + ALP-Anstieg

C 1) +

Konz. Konz.
Steigt an nimmt ab

ALP-Anstieg

GH-Sekretion
steigt an

Osteo
blast IGFBP-4

IGF-I

Osteo
blast

IGF-I IGFBP-4

IGFBP-4 IGF-I IGF-I
IGFBP-4

IGF-IIGF-I

Osteo
blast
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C 2)
150kDa           Spezifische

Gefäßlumen Protease 50kDa
+

50kDa

Abb. 10: Systemische Zugabe von IGFBP-4 steigert die Aktivität der ALP, allein (A) und mit IGF-

I zusammen (C) (C1, C2: Erklärungsansätze);

(Daten aus Thoren et al. 1998, Miyakoshi et al. 1999, 2001)

IGFBP-5

Der Effekt von IGFBP-5 auf die IGF-Wirkungen hängt von seiner Konzentration ab. Unter

physiologischen Bedingungen potenziert IGFBP-5 in vitro und in vivo die

wachstumstimulierende Wirkung der IGFs (Richman et al. 1999). Durch Bindung an

verschiedene Bestandteile der extrazellulären Matrix verliert es jedoch seine Fähigkeit, IGF

zu binden und steigert dadurch die Konzentration an freiem IGF im Serum (Jones et al. 1993).

Dies führt zu einer dosisabhängigen Zunahme der ALP-Aktivität und der Osteocalcin-

konzentration bzw. der Knochenformation (Richman et al. 1999). Dabei wird die periostale

Knochenformation selektiv stimuliert, während der trabekuläre Knochen keine Verände-

rungen zeigt (Bauss et al. 2001).

Im Gegensatz zu diesem anabolen Effekt zeigten Devlin et al. (2002), dass eine

Überexpression von IGFBP-5 bei der Maus zu einer Reduktion der ALP-Aktivität um mehr

als 50 %, zu einer Reduktion der Knochendichte des gesamten Skeletts, des Femurs und des

Wirbelsäule zwischen 14 und 27% und zu einer Verminderung des trabekulären

Volumenanteils (BV / TV) führte. Untersuchungen an Osteoblastenzellkultur untermauerten

diese In-Vivo-Beobachtungen (Richman et al. 1999). Die o.g. Ergebnisse sprechen dafür, dass

im Gegensatz zu der ursprünglichen Meinung, IGFBP-5 in supraphysiologischer

Konzentration die Osteoblastenfunktion in vivo und in vitro hemmt.

IGF-I
IGFBP-4

IGF-I

IGFBP-4

IGF-I

Endothel
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Ähnlich wie bei IGFBP-3 wurden bei den Patienten mit Osteoporose Typ II, einem

Prozess, bei dem die Resorption erhöht und die Formation vermindert ist, erniedrigte IGFBP-

5-Serumspiegel gemessen (Boonen et al. 1999). Demzufolge scheint für den Erhalt der

Knochensubstanz im Alter der anabole Effekt von IGFBP-5 wichtig zu sein.

Die verschiedenen, z.T gegensätzlichen Effekte der IGFBPs, verdeutlichen die

Komplexität und die Empfindlichkeit des GH-IGF-IGFBP-Systems sowie die Wichtigkeit

eines Gleichgewichts zwischen den einzelnen Faktoren für die Aufrechterhaltung eines

normalen Knochenmetabolismus. Gleichzeitig werden dadurch die multiplen Ansätze für

präventive und therapeutische Eingriffe in dieses System aufgezeigt, die zukünftig erforscht

werden müssen.

Da in der vorliegenden Studie besonderes Interesse dem IGFBP-2 und seiner

Bedeutung für den Knochenstoffwechsel und für die Pathogenese der Osteoporose gilt, wird

dieses nun detailiert dargestellt.

IGFBP-2

IGFBP-2 wiest die zweithöchste Konzentration aller IGFBPs im Serum auf und bindet IGF-II

mit höherer Affinität als IGF-I (Clemmons et al. 1991, Michell et al. 1997). Seine

Konzentration korreliert negativ mit dem Ernährungsstatus (Hotta et al. 2000), negativ mit der

GH-, IGF- und IGFBP-3-Konzentration sowie positiv mit dem Lebensalter (Donahue et al.

1990, Kim et al. 1996). Erhöhte Werte von IGFBP-2 wurden bei Prozessen gemessen, die mit

einer verminderten anabolen bzw. gesteigerten katabolen Aktivität einhergehen, z.B. nach

dem Fasten, beim chronischen Nierenversagen (Jehle et al. 2000) bzw. bei manchen

Leukämie-formen (Blum et al. 1993).

IGFBP-2 übt eine wachstumshemmende Wirkung aus. Hohe IGFBP-2-Serumspiegel

führten bei nicht-transgenen Schweinen zu einer signifikanten Reduktion der

Kollagensynthese (Gosiewska et al. 1994). Bei nicht-transgenen Mäusen waren hohe IGFBP-

2-Konzentrationen mit einem im Vergleich zum Altersdurchschnitt zu niedrigen

Körpergewicht assoziiert (Höflich et al. 1998a). Eine Ausschaltung des IGFBP-2-Gens hat

allerdings kaum phänotypische Veränderungen zur Folge (Gosiewska et al. 1994).
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Um die hemmende Wirkung von IGFBP-2 in vivo untersuchen zu können, wurden

IGFBP-2- und GH-IGFBP-2-doppel-transgene Mäuse generiert. Beide zeigten signifikant

erhöhte IGFBP-2-Spiegel (4- bis 9-fach) Der hemmende Effekt von IGFBP-2 auf das

Körpergewicht zeigte sich sowohl in An- als auch in Abwesenheit von GH/IGF-I-Überschuss

(Höflich et al. 1999, 2001). Als Ursache für diesen wachstumshemmenden Effekt von

IGFBP-2 wurden bisher in der Literatur drei mögliche Mechanismen diskutiert (Abb. 11):

1) IGFBP-2 konkurriert mit den direkten Effekten von GH

2) IGFBP-2 hemmt die durch IGF-I vermittelten Wirkungen von GH

3) IGFBP-2 hemmt das Wachstum unabhängig von GH u./o. von IGF-I durch einen

bisher unbekannten Mechanismus

Dass der hemmende Effekt von IGFBP-2 über eine Antagonisierung direkter GH-

Wirkungen und nicht über IGF-I vermittelt wird (s.o. 1), sprechen die Befunde an der Leber

von IGF-transgenen Mäusen. Die Leber ist das einzige Organ, welches bei diesen Tieren trotz

einer dreifach erhöhten IGF-I-Konzentration keine Größenzunahme zeigte (Mathews et al.

1988).

GH

IGFBP-2 1) System. IGF-I  Lokales IGF-I
(Leber) (Knochen)

2) 2)

GH-Rezeptor Typ-1-Rezeptor Typ-1-Rezeptor
3) unbekannt

Abb. 11: Wachstumshemmende Mechanismen von IGFBP-2 (Daten aus Mathews et al.

1988, Hadsell et al. 1996)

Andererseits spricht ein Vergleich zwischen IGF-I-transgenen Hasen und den „des(1-

3)IGF-I“-transgenen Mäusen dafür, dass die inhibitorische Wirkung von IGFBP-2 auf das

Wachstum über einen IGF-I-abhängigen Mechanismus abläuft (Hadsell et al. 1996) (s.o. 2).

OSTEOBLASTEN
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„Des(1-3)IGF-I“ entsteht aus intaktem IGF-I durch proteolytische Abspaltung von drei N-

telminalen Resten. Es hat eine wesentlich geringere Affinität zu IGFBPs und dadurch eine 10-

bis 50-fach stärkere Wirkung als intaktes IGF-I (Yamamoto und Murphy 1995). Obwohl bei

beiden Tierarten hohe IGFBP-2-Konzentrationen in der Milch gemessen wurden,

entwickelten nur „des(1-3)IGF-I“-transgene Mäuse morphologische Alterationen an der

Mamma (Wolf et al. 1997, Hadsell et al. 1996). Dies ergibt sich daraus, dass IGFBP-2 „des(1-

3)IGF-I“ mit einer wesentlich niedrigeren Affinität als IGF-I bindet und somit seine Effekte

kaum hemmt. Diese Beobachtungen sprechen für eine Inhibition der GH-Effekte durch eine

Komplexbildung zwischen IGFBP-2 und IGF-I (s.o. 2).

Am doppel-transgenen Mausmodell konnte gezeigt werden, dass IGFBP-2 in

Anwesenheit erhöhter GH- bzw. IGF-I-Spiegel eine stärkere Hemmung auf das Körper-

wachstum ausübt als bei normaler GH/IGF-I-Konzentration. Dies spricht für eine additive

Wirkung beider Hemmechanismen von IGFBP-2 (Höflich et al. 2001).

Kim et al. (1996) fanden bei 14 an Osteoporose erkrankten Frauen einen signifikant

erhöhten relativen IGFBP-2-Anteil (IGFBP-2 im Verhältnis zur Gesamtmenge der IGFBPs)

und eine negative Korrelation mit der mittels DXA gemessenen Knochendichte. Sugimoto et

al. (1997) fanden bei 165 Frauen im Alter von 43 bis 88 Jahren eine negative Korrelation

zwischen IGFBP-2 und IGF-I im Serum sowie zwischen IGFBP-2 und der Knochendichte. Es

konnte allerdings kein Zusammenhang zwischen der Frakturhäufigkeit und der IGFBP-2-

Konzentration festgestellt werden, da diese keine Differenz zwischen Frauen mit und ohne

Fraktur aufwies (Sugimoto et al. 1997). Eine negative Korrelation zwischen der IGFBP-2-

Konzentration und der Knochendichte konnte, wie oben bereits erwähnt auch bei renaler

Osteopathie nachgewiesen werden (Jehle et al. 2000). Sie stellt einen Krankheitsprozess dar,

der mit einem Anstieg des IGFBP-2-Serumspiegels sowie zunehmendem Knochenverlust

einhergeht (Jehle et al. 2000). Die o.g. Befunde legen nahe, dass IGFBP-2 einen hemmenden

Effekt auf den Knochen ausübt, und dass IGFBP-2 eine wichtige Rolle bei der Entstehung

einer Osteoporose spielt. Im Gegensatz dazu konnten Nasu et al. (1997) und Kim et al. (1999)

bei Frauen mit und ohne Osteoporose nach der Menopause jedoch keinen signifikanten

Unterschied zwischen der IGFBP-2-Konzentration feststellen. Auch bei Männern mit

Osteoporose (Typ II) konnte keine erhöhte IGFBP-2-Konzentration festgestellt werden

(Johansson et al. 1997). Vielmehr wurden erhöhte IGFBP-2- und IGF-II-Serumspiegel im
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Zusammenhang mit gesteigerter Knochenformation bei Patienten mit Hepatitis-C-assoziierter

Osteosklerose gemessen. De los Rios und Hill (1999) zeigten, dass exogenes IGFBP-2 einen

biphasischen Effekt auf die DNS-Synthese in den Chondrozyten von Ratten ausübt. Einerseits

verstärkt IGFBP-2 in sehr niedriger Konzentration (< 1 nM) die Wirkung von IGF-II,

während es in höheren Konzentrationen die Effekte von IGF-II hemmt.

Conover et al. (2002) zeigten in vivo, dass durch die Behandlung mit einem Komplex

aus IGF-II und IGFBP-2 die Abnahme der Knochendichte bei diffuser Osteoporose verzögert

und beim Gesunden sogar die Knochenformation gesteigert werden kann. Dieser anabole

Effekt betraf insbesondere den subkortikalen und trabekulären Knochen. Dies widerspricht

der Annahme, dass der Anstieg der IGFBP-2-Konzentration in einem kausalen Zusammen-

hang mit der Osteoporose steht.

Tabelle 2: IGFBP-2-Konzentrationsveränderungen im Zusammenhang mit Osteoporose

Autor Kim

1996

Sugimoto

1997

Johansson

1997

Nasu

1997

Kim

1999

Conover

2002

Statement Postmenop.

Osteoporose:

- IGFBP-2 _

- Negative
Korrel.

 mit d. Dichte

Postmenop.

Osteoporose:

- IGFBP-2 _

- Negative
Korrel.

  mit d. Dichte

- Kein erhöhtes
Frakturrisiko

Senile

Osteoporose:

- Kein
IGFBP-2-
Anstieg

Postmenop.

Osteoporose:

- Kein
IGFBP-2-
Anstieg

Postmenop.

Osteoporose:

- Kein
IGFBP-2-
Anstieg

Diffuse

Osteoporose:

- IGFBP-2+IGF-II-

Substitution_

Knochenformation

stimuliert
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3. Aufgabenstellung und wissenschaftliche Fragen

Wie aus den vorhergehenden Ausführungen ersichtlich, wird die IGF-Aktivität nicht nur

durch GH und die Expression des IGF-Polypeptids selbst, sondern auch durch den Typ und

die lokale Konzentration der IGFBPs beeinflusst (Baxter 2000).

Der hemmende Effekt von IGFBP-2 auf den Knochen sowie seine kausale Wirkung

(Dichteabnahme bei der Osteoporose) werden derzeit in der Literatur kontrovers diskutiert.

Aus diesem Grund wurden in der vorliegenden Studie die Effekte von IGFBP-2-

Überexpression auf die Knochengröße (Länge und Volumen), Knochenmineralgehalt (BMC),

Knochendichte sowie die strukturellen Eigenschaften des trabekulären und kortikalen

Knochenkompartimentes analysiert. Um die Effekte von IGFBP-2 sowohl in An- als auch in

Abwesenheit von GH/IGF-I-Überschuss charakterisieren zu können, wurden GH/IGFBP-2-

doppel-transgene Mäuse (Höflich et al. 1999, 2001) untersucht. Mit Hilfe dieses Mausmodells

sollten folgende Hypothesen geprüft werden:

1) IGFBP-2-transgene Mäuse zeigen im Vergleich zu den Kontrolltieren eine

reduzierte Knochengröße sowie geringere BMC- und Knochendichte-Werte

2) Die anabolen Effekte von GH auf den Knochen werden durch erhöhte IGFBP-

2-Spiegel reduziert oder sogar vollständig gehemmt

3) Die Wirkung einer systemisch hohen IGFBP-2-Konzentration ist, so wie bei

GH (Wolf et al. 1991 a,b, Eckstein et al. 2002), von der skelettalen

Lokalisation und vom Knochenkompartiment (trabekulär / kortikal) abhängig.
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4. Material und Methode

4.1. Material

In dieser Studie wurden 43 männliche Mäuse im Alter von 4 Monaten untersucht, davon 14

Kontrollen, 7 IGFBP-2-transgene, 12 GH-transgene und 10 GH/IGFBP-2-doppel-transgene

Tiere. Bevor Kopf, Haut und innere Organe entfernt wurden, wurde das Körpergewicht mit

einer Hochpräzisionswaage (Mettler PM 100, Mettler, Giessen) und die Nasen-Rumpf-Länge

mit einem elektronischen Kalipper bestimmt. Anschließend wurden die Karkassen mit der

bereits erwähnten Hochpräzisionswaage gewogen. Die Tiere wurden bei –20° C aufbewahrt.

GH-transgene Mäuse (PEPCK-Promotor) weisen im Vergleich zu Kontrolltieren eine 10-

fache GH-(Wolf et al. 1993) und eine zwei- bis dreifache IGF-I-Konzentration im Serum auf.

Die IGFBP-2-transgenen Mäuse wurden durch eine pronukeäre Mikroinjektion eines

Expressionsvektors, der die komplementäre (c) DNS von IGFBP-2 einer Maus enthielt (Dr. S.

Drop, Rotterdam, NL) und eines Zytomegalie-Virus (CMV)-Promotors, zuständig für die

Transkriptionskontrolle, generiert (Höflich et al. 1998 a, 2001). Die IGFBP-2-Serumspiegel

waren bei den IGFBP-2-transgenen Tieren sowohl mit (Höflich et al. 2001) als auch ohne

(Höflich et al. 1999) GH-Überexpression ca. 3 bis 9 Mal höher als bei den Kontrollmäusen.

Die Konzentrationen von IGF-I und IGF-II waren bei IGFBP-2-transgenen Tieren jedoch

unverändert. Die Doppel-transgenen Mäuse entstammen der Paarung einer weiblichen

hemizygoten CMV-IGFBP-2-transgenen Maus mit einer männlichen hemizygoten PEPCK-

bGH-transgenen Maus. Der GH-Serumspiegel wurde durch die IGFBP-2-Überexpression

nicht beeinflusst und lag wie bei den GH-transgenen Tieren bei 2 µg/ml. Die IGFBP-2-

Serumkonzentration erreichte das gleiche Niveau wie bei den IGFBP-2-transgenen Mäusen.

4.2. Morphologische Untersuchungen und DXA-Analysen an IGFBP-2-transgenen

Mäusen

Für die Messungen des Knochenmineralgehalts der Karkassen benutzten wir ein Zweienergie-

Röntgen-Absorptiometrie (DXA)-Gerät der Firma Sabre, Nordland/Stratec (Pforzheim) mit

einem 12x15 cm großen Messfeld (Abb. 12). Dieses ist speziell für die Untersuchungen an

kleinen Tieren angepasst.
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Abb. 12: DXA-Gerät mit dem die Messungen des BMC vorgenommen wurden

Der Scanner besteht aus einer 50x150 µm Röntgenröhre (Beschleunigungs-spannung 60 kV,

Anodenstromstärke 250 µA), deren emittiertes Spektrum durch K-Kanten Filterung (250 µm

Sn) in zwei Energiegipfel bei 28 keV und 48 keV aufgeteilt wird, wodurch eine effektive

Unterscheidung zwischen Knochen und Weichteil auf Basis der Schwächungs-unterschiede

ermöglicht wird. Zum Ausgleich der stärkeren Schwächung der niederener-getischen

Strahlung durch das Körpergewebe beträgt das Intensitätsverhältnis 2:1 (niedriger

Energiebereich : hoher Energiebereich). Die Strahlung wird nach Durchdringen der Teile von

2 Kadmium-Tellurid-Detektoren registriert (Lochmüller et al. 2001). Mit dieser Technik

wurde der absolute (BMC in g) und der relative Knochenmineralgehalt der Karkassen (BMC /

Karkassengewicht), der absolute und der relative Fettanteil sowie die Weichteilmasse

gemessen. Auf eine Auswertung des sog. BMD (g/cm_) wurde verzichtet, da diese Werte

aufgrund der unterschiedlichen Knochengrößen nicht vergleichbar sind. Die Mäuse wurden

vor den Messungen aufgetaut und danach mit abduzieren Extremitäten auf dem Rücken

liegend auf dem Messfeld positioniert. Zuerst wurde ein Übersichtsbild (Scout-View) erstellt

und das Messfeld festgelegt (Abb. 13). Wir bestimmten BMC sowie die Karkassenmasse

(BMC+Weichteil+Fett) (Abb. 13). Das mit der DXA bestimmte Karkassengewicht wurde mit

der auf einer Laborwaage bestimmten Masse (s.o.) verglichen. Für die darauf folgenden

Messungen wurde eine Geschwindigkeit von 20 mm/s und eine Auflösung von 0,5 x 0,5 mm_

gewählt.
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Abb. 13: DXA: Scan einer ganzen Maus

Um die potenziell unterschiedlichen Auswirkungen von GH und IGFBP-2 auf

verschiedene Skelettregionen zu überprüfen, wurden im Anschluss an die Ganzkörper-

messungen den Mäusen einzelne Knochen entnommen und vermessen (Abb. 14). Am linken

Bein wurde das Femur im Hüftgelenk luxiert, der Bandapparat durchtrennt und die Weichteile

entfernt. Danach wurde die Tibia frei präpariert, indem die Bänder des Knie- und des oberen

Sprunggelenkes durchschnitten wurden. Anschließend wurde das gesamte Muskelgewebe von

den Knochen entfernt. Das gleiche Verfahren wurde auch an der linken oberen Extremität

angewendet, um den Humerus freizulegen. Schließlich wurde die Wirbelsäule am

thorakolumbalen und am lumbosakralen Übergang abgesetzt, um die Lendenwirbelkörper

(LWK 1-6) zu isolieren. Für die Lagerung wurden die Präparate in mit 0,9-prozentige NaCl-

Lösung getränkte Gaze eingewickelt und in beschriftete Filmdosen bei –77°C in einem

Gefrierschrank aufbewahrt.

Für die Bestimmung des Mineralgehaltes der einzelnen Knochen (Femur, Tibia,

Humerus, Lendenwirbelkörper) mit der DXA-Technik wurde ein Scout-View erstellt, dann

das Messfeld eingestellt und anschließend die Messung bei einer Scangeschwindigkeit von 1

mm/s und einer Auflösung von 0,1 x 0,1 mm_ (Messfeld 2,5 x 2,5 cm) durchgeführt (Abb.

14). Während der Messung wurden die Präparate in einem Plexiglas-Gefäß mit 0,9%-iger

NaCl-Lösung, parallel zum Boden positioniert gehalten. Das Femur, die Tibia, der Humerus

und die LWS einer Maus wurden in einem Messdurchgang analysiert (Abb. 14). Für die

Auswertung wurde dann jedem Knochen eine Region of Interest (ROI) zugeordnet. Die so
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erhaltenen Meßregionen wurden anschließend mit der installierten Software analysiert. Der

Vorgang nahm ca. 1 Stunde pro Maus in Anspruch.

Abb. 14: DXA: Scan von Femur, Tibia, Humerus, LWS

Die Knochenlänge wurde mit einem elektronischen Kalipper gemessen. Um die

volumetrische Knochendichte berechnen zu können, bestimmten wir das Volumen der

einzelnen Knochen nach dem Archimedes-Prinzip (Abb. 15). Dafür wurde eine Glaspipette

mit Wasser gefüllt und luftdicht verschlossen. Danach wurde sie von außen getrocknet und

mit dem zu messenden Knochen auf eine Hochpräzisionswaage gewogen. Anschließend

wurde die Pipette entleert, der Knochen eingebracht, das System erneut mit Wasser gefüllt,

mit einem Stöpsel abgedichtet und das Gewicht bestimmt. Aus der Differenz beider

Messungen konnte dann das Knochenvolumen berechnet werden (spezifisches Gewicht von

Wasser 1 g/cm_). Der Quotient aus dem in der DXA gemessenen BMC und diesem Wert

ergab die apparente volumetrische Knochendichte [D = BMC (g) / Vol. (cm_)]. Das Volumen

der LWS konnte nicht bestimmt werden, da eine vollständige Entfernung der Weichteile nicht

möglich war.
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H2O +    Wiegen
Masse I

Masse I - Masse = Knochenmasse

   Wiegen

Masse 2

Abb. 15: Bestimmung des Volumens nach dem Archimedes Prinzip

4.3.  pQCT- Analyse

Um strukturelle Unterschiede der Knochen und insbesondere Kompartiment-spezifische

Unterschiede (kortikal, trabekulär) bestimmen zu können, wurden Messungen der Femora und

der LWS mit einem speziell an die Maus angepassten Translations-Rotations-

Computertomographie (XCT-Research–M)-Gerät der Fa. Stratec Medizintechnik (Pforzheim)

mit 12 Detektoren durchgeführt (Schmidt et al. 2003), (Abb. 16). Mit diesem Gerät können im

Einzelschnitt-Mode im Winkel von 1° Abschwächungsprofile gewonnen werden

(Beschleunigungsspannung 50  ± 2 kV, Anodenstrom < 0,3 mA, Brennfleckdurchmesser <

0,05 x 0,05 mm; mittlere Röntgenenergie 38 ± 2 keV; Breite des Energiegipfels 19 ± 1 keV).

Die Schichtdicke betrug dabei 500 µm und die Auflösung 100 µm. Auf Basis einer gefilterten

Rückprojektion wurden Querschnittsbilder des Knochens berechnet (Eckstein et al. 2002b,

Schmidt et al. 2003).

Die Knochen wurden für ca. 15 Min. in 0,9 %iger NaCl- Lsg. liegend im Vakuum

entlüftet und unter der Flüssigkeitsoberfläche in eine Spritze eingebracht, um Lufteinschlüsse

zu vermeiden. Die den Femur und Kochsalzlösung enthaltende Insulinspritze wurde so im

H2O
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Gerät positioniert, dass die Kondylen aus dem Gerät heraus zeigten und der Femurkopf zuerst

hineingeschoben wurde (Abb. 17).

Abb. 16: pQCT-Gerät;

Abb. 17: Position der Spritze im pQCT-Gerät
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An der distalen Metaphyse wurden insgesamt drei Messungen durchgeführt, jeweils bei 15 %,

17.5 % und 20 %-Knochenlänge. Diese Messungen erfolgten proximal der Epyphysenfuge,

welche eine wesentlich höhere Dichte aufweist als die Metaphyse. Um die genauen

Schnittlokalisationen zu erhalten, wurde der Knochen im Scout-View-Bild durch 21 Linien,

die erste bei 0% (Femurkondylen), die letzte bei 100% (Kopfende) unterteilt, wodurch eine

Liniendistanz von 5% erreicht werden konnte. Nach der Identifikation der 15%- und 20%-

Schnitte wurde in der Mitte noch eine zusätzliche Linie (~17.5%) eingebracht. Nur diese drei

und der Schnitt in der Schaftmitte (~50%) wurden im Messgang analysiert (Abb. 18). Die

pQCT-Messungen des Femurs wurden insgesamt zwei Mal durchgeführt.

                          

Abb. 18: pQCT: Messung des Femurs: links: Schnitt in der Metaphyse; rechts: Schnitt in der

Diaphyse

Die longitudinale Achse der LWS wurde senkrecht zum Strahlengang ausgerichtet (Schmidt

et al. 2003). Um die Position während der ganzen Messung konstant zu halten, wurde ein

Silikonfaden am Spritzenkolben befestigt, der dann durch den Spinalkanal gezogen wurde.

Das Fadenende ragte danach aus der Spritze heraus und konnte so mit einem Stopsel unter

Spannung gehalten werden. Die 2 ml Spritze wurde so im Gerät befestigt, dass die

Dornfortsätze nach unten zeigten. Nachdem im Scout-View die einzelnen Wirbelkörper

voneinander abgegrenzt wurden, wurde die erste Messlinie an den unteren Rand eines

Wirbelkörpers gelegt. Dann wurde die Zahl der Linien auf drei erhöht und die dritte bis zum

Unterrand des folgenden Wirbelkörpers geschoben. Die mittlere (~2.) Linie kam dadurch
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genau in der Mitte des zu analysierenden Wirbels zu liegen. Anschließend wurden

Querschnittsbilder nur aus der Mitte der Lendenwirbelkörper 2-4 erhoben (Abb. 19).

Anschließend wurden die Bilder mit Hilfe einer vom Hersteller bereitgestellten

Software analysiert. Bei der distalen Femurmetaphyse und den Wirbelkörpern wurden die

Knochenquerschnittsfläche (Ø A), der BMC im Schnittbild (in mg/mm) und die

Knochendichte (mg/cm_), entsprechend dem Quotienten aus BMC und Ø A bestimmt.

Abb. 19: pQCT: Querschnitt eines Wirbelkörpers

Zur Differenzierung von trabekulären und (sub)kortikalen Kompartiment wurden zwei

verschiedene Algorithmen verwendet:

a) Peelmode 2

Die Unterscheidung zwischen trabekulärem und kortikalem Knochen erfolgt an Hand eines

konstanten Schwellenwertes von 600 mg/ml. Alle Pixel, deren Dichte < 600 mg/cm_ beträgt,

werden dabei dem trabelulären Kompartiment und alle Pixel mit einer Dichte > 600 mg/cm_

dem kortikalen Kompartiment zugerechnet. Dabei muss beachtet werden, dass der

prozentuale Anteil der trabekulären bzw. der kortikalen Fläche in Abhängigkeit von der

Dichteverteilung im Schnittbild variieren kann.

b) Peelmode 20

Die Unterscheidung zwischen trabekulärem und kortikalem Knochen erfolgt an Hand von

einem konstanten prozentuellen Flächenanteil. Dabei werden 40% der

Gesamtquerschnittsfläche mit der niedrigsten Dichte im Peelmode 2 dem trabekulären und
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60% der Gesamtquerschnittsfläche mit den höchsten Dichtewerten dem kortikalen

Knochenkompartiment zugerechnet.

Für die kortikale und trabekuläre Dichte wurden aus den drei Messlokalisationen am Femur

und aus den Analysen der Lendenwirbelkörpern 2-4 in der Wirbelsäule jeweils die

Durchschnittswerte berechnet.

An den kortikalen Messlokalisationen wurde für die Separierung vom Markraum ein

Grenzwert von 710 mg/cm_ gewählt. Hier wurden die Daten für die Gesamtquerschnittsfläche

(Ø A), die absolute und die relative kortikale Fläche (CRT A) (kortikale Fläche /

Querschnittsfläche in %), der kortikale Knochenmineralgehalt (CRT CNT) und die kortikale

Dichte (CRT DEN) (Dichte gemittelt über die kortikale Fläche) ermittelt. Weiterhin wurden

geometrische Parameter des Knochens bestimmt: Kortikale Dicke (mm), definiert als der

mittlere Abstand zwischen dem äußeren und dem inneren Rand der kortikalen Schicht;

Polares (I polar), minimales und maximales Flächenträgheitsmoment, welches in

Abhängigkeit von der Belastungsart und -richtung die jeweilige Biege- und

Torsionssteifigkeit des Knochens angibt; Und polares Widerstandsmoment, definiert als der

Quotient aus dem Trägheitsmoment und dem Außendurchmesser. Diese Parameter weisen

eine hohe Korrelation mit der biomechanischen Festigkeit des Knochens auf (Ferretti 1998).

4.4. Statistische Auswertung

Die Mittelwerte, die Standardabweichungen und die absoluten Differenzen zwischen den

einzelnen Gruppen wurden in Excel berechnet und anschließend im Rahmen einer

Varianzanlyse (ANOVA) mittels Statview 4.5-Software (Abacus Concepts, Berkely, CA) auf

signifikante Unterschiede geprüft. Insgesamt wurden vier paarweise Vergleiche durchgeführt

(IGFBP-2-transgene vs. Kontrollen; GH-transgene vs. Kontrollen; Doppel-transgene vs.

Kontrollen und Doppel-transgene- vs. GH-transgenen Mäusen). In Anbetracht der

mehrfachen Testung wurden Signifikanzniveaus bei p < 0,05 (Einzeltest) sowie bei p < 0.125

und bei p < 0.0025 gesetzt, um ein globales Signifikanzniveau von 5% bzw. 1% einzuhalten.
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5. Ergebnisse

5.1.  Skelettale Veränderungen an IGFBP-2 transgenen Mäusen

Das Körpergewicht (Abb. 20), die Nasen-Rumpf-Länge sowie die Knochenlänge und das

Knochenvolumen von Femur, Tibia und Humerus waren an IGFBP-2-transgenen Mäusen im

Vergleich zu den Kontrolltieren vermindert (Tab. 1, 2). Der BMC der Karkassen (Abb. 21),

des Femurs (Abb. 22) und der Tibia war signifikant erniedrigt. Keine signifikante Reduktion

konnte dagegen bei den Messungen des Humerus und der Wirbelkörper (Abb. 23) festgestellt

werden (Tab. 1, 2). Der relative Karkassen-BMC und der relative Fettanteil (+44%) zeigten

eine tendenzielle Zunahme, ohne allerdings Signifikanz zu erreichen. Die pQCT-Analyse im

Bereich der Femurmetaphyse ergab keine signifikanten Veränderungen für den BMC und die

subkortikale Dichte, allerdings eine signifikante Abnahme der Querschnittsfläche (Abb. 24),

(Tab. 3, 4) und einen signifikanten Anstieg an trabekulärer Dichte. An den Wirbelkörpern

konnten für alle Messparameter kaum Unterschiede zu den Kontrolltieren festgestellt werden.

Der BMC und die kortikale Fläche in der Schaftmitte des Femurs zeigten eine

signifikante Verminderung gegenüber Kontrollen, die deutlicher ausgeprägt war als an der

Femurmetaphyse (Tab. 3, 4). Die relative kortikale Fläche (% des Gesamtquerschnittsfläche)

war gegenüber Kontrolltieren unverändert. Die Werte für die geometrischen

Knocheneigenschaften bei den IGFBP-2 transgenen Mäusen wiesen eine signifikante

Reduktion auf (Tab. 3, 4).
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Abb. 20: Karkassengewicht für unterschiedliche Untersuchungsgruppen
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Abb. 21: Karkasse: Knochenmineralgehalt (BMC) für unterschiedliche Untersuchungsgruppen
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Abb. 22: Femur: Knochnemineralgehalt mittels DXA für unterschiedliche

Untersuchungsgruppen

Kontrollen GH- transgen BP2- transgen GH/BP2-transgen

Abb. 23: Wirbelkörper: Knochnemineralgehalt mittels DXA für unterschiedliche
Untersuchungsgruppen

54

419

61

750 99

328

93

563

***
***

0

200

400

600

800

1000

2,6

23,1

5

43,4 1,4

19,6

3,8

30,8

0

10
20
30

40
50

60

5,4

44,1

21

***

95,1 4,8

41,9

***
12

67,4

0
20

60
80

100
120
140
160

40

B
M

C
 (

m
g)

B
M

C
 (

m
g)

B
M

C
 (

m
g)



                                                                                                                                                    3939

Kontrollen

GH- tra
nsgen

BP2- tr
ansgen

GH/BP2-tra
nsgen

***

Abb. 24: Femur: Gesamt-Querschnittsfläche im pQCT für unterschiedliche
Untersuchungsgruppen
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Abb.25: Wirbelkörper: Gesamt-Querschnittsfläche im pQCT für unterschiedliche
Untersuchungsgruppen
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Abb. 26: Femur: Gesamtdichte im pQCT für unterschiedliche Untersuchungsgruppen
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Abb. 27: Wirbelkörper: Gesamtdichte im pQCT für unterschiedliche Untersuchungsgruppen

5.2.  Skelettale Veränderungen an GH-transgenen Mäusen

Das Körpergewicht (Abb. 20), die Nasen-Rumpf-Länge, der BMC der Karkassen (Abb. 21)

sowie die Knochenlänge, das Knochenvolumen und der BMC von Femur (Abb. 22), Tibia

und Humerus (Tab. 1, 2) waren bei GH-transgenen Mäusen gegenüber den Kontrollen

signifikant (p<0,01) erhöht (Abb. 20, 21, 22). Insgesamt konnte ein stärkerer Effekt der GH-

Überexpression auf den BMC an den Lendenwirbelkörpern (Abb. 23) als an Femur (Abb. 22),

Tibia oder Humerus nachgewiesen werden. Der relative Karkassen-Mineralgehalt (%

Körpergewicht) sowie die Zusammensetzung der Karkassen (%Weichteile, %Fett) zeigten

keine signifikanten Veränderungen (Tab. 1, 2). Der BMC und die Querschnittsfläche (Abb.

24, 25) (pQCT) der Femurmetaphyse, der Diaphyse sowie der Wirbelkörper waren signifikant

gegenüber den Kontrollen erhöht (Tab. 3, 4). Der Gewinn war am deutlichsten an den

Wirbelkörpern ausgeprägt (Tab. 3). Die Messungen der mittleren Knochendichte im Bereich

der Femurmetaphyse ergaben einen niedrigeren Wert bei den GH-transgenen als bei den

Kontrollmäusen (Abb. 26). Dies konnte insbesondere auf einen signifikanten Verlust im

subkortikalen Bereich zurückgeführt werden (Tab. 3, 4). Die Dichte in den Wirbelkörpern

zeigte dagegen eher eine tendenzielle Zunahme v.a. für den trabekulären Knochen (Tab. 3, 4;

Abb. 27). Ein Zugewinn an relativer kortikaler Fläche konnte am Femurschaft nicht

festgestellt werden. Die Werte für die geometrischen Knocheneigenschaften bei den GH-

transgenen Mäusen wiesen im Vergleich zu den Kontrolltieren eine signifikante Erhöhung auf

(Tab. 3, 4).
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5.3.  Skelettale Veränderungen an Doppel-transgenen Mäusen

Die sowohl GH- wie auch IGFBP-2-transgenen Tiere zeigten im Vergleich zu den Kontrollen

eine signifikante Zunahme des Körpergewichtes (Abb. 20), der Nasen-Schwanz-Länge, der

Knochenlänge und des Knochenvolumenens des Femurs, der Tibia und des Humerus (Tab. 1,

2). Der absolute (Abb. 21) und relative Karkassen-BMC sowie der relative Fettanteil waren

ebenfalls gegenüber den Kontrollen signifikant erhöht. Außer für Tibia konnte für alle

Knochen eine signifikante BMC-Erhöhung verzeichnet werden (Tab. 2). Weiterhin konnte im

pQCT eine signifikante Zunahme des BMC und der Querschnittsfläche an der

Femurmetaphyse (Abb. 24) festgestellt werden (Tab. 3, 4). Die Erhöhung der

Querschnittsfläche war stärker als die BMC-Erhöhung ausgeprägt, so dass sich eine

signifikant geringere Dichte ergab (Abb. 26). Dieser Effekt betraf nur das subkortikale

Kompartiment, während die trabekuläre Dichte unverändert war. In den Wirbelkörpern

dagegen entsprach die BMC- der Querschnittsflächen-Zunahme (Abb. 25), wodurch kaum

Differenzen (Abb. 27) sowohl für die trabekuläre als auch für die subkortikale Dichte

festgestellt werden konnten (Tab. 3, 4). An der Femurdiaphyse konnten für die

Gesamtquerschnittsfläche, den kortikalen BMC, die kortikale Fläche und die kortikale Dicke

nur geringe Unterschiede zu den Kontrollen festgestellt werden (Tab. 3, 4). Die Werte für die

geometrischen Knocheneigenschaften bei den Doppel-transgenen Mäusen wiesen im

Vergleich zu den Kontrolltieren ebenfalls keine deutlichen Differenzen auf. Hier wurden die

anabolen Effekte der GH-Überexpression durch IGFBP-2 fast vollständig kompensiert.

Verglichen mit den GH-transgenen Tieren wiesen die Doppel-transgenen Mäuse eine

signifikante Reduktion des Körpergewichts und der Nasen-Schwanz-Länge auf (Tab. 1, 2).

Die Knochenlänge war ebenfalls signifikant vermindert. Am Femur konnte eine signifikante

Volumenabnahme festgestellt werden. Dies konnte an der Tibia und am Humerus nicht

bestätigt werden (Tab. 1, 2). Der absolute Karkassen-BMC war signifikant niedriger als bei

den GH-transgenen Tieren (Abb. 21), der relative BMC dagegen höher (Tab. 1, 2). Alle

Knochen zeigten eine signifikante BMC-Abnahme. Die pQCT-Analyse ergab einen

erniedrigten BMC und eine geringere Querschnittsfläche (Abb. 24) als bei den GH-transgenen

Mäusen, allerdings keine Veränderung der Dichte (Abb. 26), (Tab. 3, 4). An den

Wirbelkörpern konnten im pQCT ähnliche Veränderungen der o.g. Parameter wie am Femur

festgestellt werden (Abb. 25, 27). Der kortikale BMC, die kortikale Fläche wie auch die
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geometrischen Parameter an der Femurdiaphyse wiesen eine signifikante Reduktion auf,

während die relative kortikale Fläche im Vergleich zur alleinigen GH-Überexpression gleich

blieb (Tab. 3, 4).
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Tabelle 1: Allgemeine morphologische und DXA-Messungen in Kontrollen, Wachstumshormon-

(GH), IGFBP-2-, and Doppel-transgenen Mäusen; Mittelwerte und Standardab-
weichungen.

                                                          Kon                  GH                   IGFBP-2          Doppel 

Körpergewicht (g) 35,2 ± 3,1 65,1 ± 5,2 30,8 ± 3,0 54,5 ± 6,0

Nase-Rumpf- Länge (cm)                10.3 ± 0.2        13.1 ± 0.4        9.8 ± 0.2          12.0 ± 0.6

Knochen Femur 16,4 ± 0,4 19,5 ± 0,3 15,9 ± 0,4 18,1 ± 0,5

Länge Tibia 19,0 ± 0,2 22,2 ± 0,5 18,7 ± 0,2 20,9 ± 0,7

(mm)                 Humerus                 12,6 ± 0,3        15,2 ± 0,4        12,3 ± 0,2        14,0 ± 0,9

Knochen Femur 69,1 ± 10 124 ± 23 53,4 ± 9,0 96,0 ± 14

Volumen Tibia 52,5 ± 0,8 95,4 ± 18 34,9 ± 8,5 90,8 ± 18

(mm3)                Humerus                 30,9 ± 7,36      59,1 ± 8,3        18,1 ± 4,5        50,4 ± 12

DXA Karkasse % Fett 22,0 ± 8,3 25,7 ± 9,9 31,7 ± 17,8 31,3 ± 11,1

% Weichteile 73,7 ± 8,5 69,5 ± 10,3 63,6 ± 19,1 62,9 ± 11,8

BMC (mg) 419 ± 54 750 ± 61 328 ± 99 563 ± 93

                          % BMC                  4,29 ± 0,36      4,28 ± 0,6        4,69 ± 1,4        5,71 ± 0,80

DXA Femur BMC (mg) 23,1 ± 2,6 43,4 ± 5 19,6 ± 1,4 30,8 ± 3,8

                          Dichte (mg/ml)       338 ± 48          364 ± 94          372 ± 46          324 ± 36

DXA Tibia BMC (mg) 19,4 ± 3,2 30,8 ± 4,2 15,4 ± 1,0 21,0 ± 3,0

                          Dichte (mg/ml)       372 ± 57          340 ± 114        464 ± 110        235 ± 37

DXA Humerus BMC (mg) 9,42 ± 1,9 15,5 ± 3,9 8,29 ± 1,3 12,8 ± 2,8

                          Dichte (mg/ml)       317 ± 83          323 ± 102        469 ± 88          264 ± 73

DXA Wirbel      BMC (mg)              44,1 ± 5,4        95,1 ± 21         41,9 ± 4,8        67,4 ± 12

DXA = Zweienergie - Röntgenabsorptiometrie; BMC = Knochenmineralgehalt (in mg) in

DXA
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Tabelle 2: Allgemeine morphologische und DXA-Messungen in Kontrollen,

Wachstumshormon-(GH), IGFBP-2-, and Doppel-transgenen Mäusen ; prozentuale

Unterschiede zwischen den Gruppen

GH IGFBP-2 Doppel Doppel
                                                         vs. Kon            vs. Kon            vs. Kon            vs. GH  

Körpergewicht (g) +85%*** -13%*** +55%*** -16%***

Nasen-Rumpf-Länge (cm)               +27%***         -5%***            +18%***         -8%***

Knochen Femur +19%*** -3%** +10%*** -7%***

Länge Tibia +17%*** -2%** +10%*** -6%***

(mm)                 Humerus                 +21%***         -2%*                +12%**           -8%***

Knochen Femur +80%*** -23%** +39%*** -23%**

Volumen Tibia +82%*** -34%*** +73%*** -5%

(mm3)                Humerus                 +91%***         -41%***          +63%***         -15%

DXA Karkasse % Fett +17% +44% +43%* +22%

% Weichteile -5,8% -14% -15%* -9%

BMC (mg) +79%*** -22%* +34%*** -25%***

                          % BMC                  +12%*             +9%                 +33%***         +18%**

DXA Femur BMC (mg) +88%*** -15%*** +33%*** -29%***

                          Dichte (mg/ml)       +8%                 +10%               -4%                  -11%    

DXA Tibia BMC (mg) +59%*** -21%** +8% -32%***

                          Dichte (mg/ml)       -8%*                +25%*             -37%***          -31%***

DXA Humerus BMC (mg) +96%*** -12% +37%** -30%***

                          Dichte (mg/ml)       +2%                 +48%**           -17%                -18%*  

DXA Wirbel      BMC (mg)              +116%***       -5%                  +53%***         -29%***

BMC = Knochenmineralgewicht (in mg) in DXA-Scan;

* p < 0.05 im Einzeltest; ** p < 0.05 auf dem Gesamtniveau [< 0.125 im Einzeltest];

*** p < 0.01 auf dem Gesamtniveau [< 0.0025 im Einzeltest]
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Tabelle 3: pQCT-Messungen in Kontrollen, Wachstumshormon- (GH), IGFBP-2-, und Doppel-

transgenen Mäusen; Mittelwerte und Standardabweichungen

                                                         Kon                  GH                   IGFBP-2          Doppel

Femur Mineralgehalt (mg/mm)1,88 ± 0,16 2,87 ± 0,30 1,74 ± 0,11 2,47 ± 0,36

Meta- Ø A (mm2) 4,07 ± 0,27 6,88 ± 0,77 3,47 ± 0,32 5,88 ± 0,81

physe         Dichte (mg/ml)               461 ± 35          421 ± 43          506 ± 22          415 ± 23

% Trab. Fläche 600 60,7 ± 4,4 70,9 ± 9,5 55,8 ± 3,5 64,4 ± 2,7

Trab. Dichte 600 226 ± 46 240 ± 22 266 ± 23 248 ± 37

SC Dichte 600 803 ± 31 763 ± 35 804 ± 18 735 ± 31

Trab. Dichte 40% 141 ± 52 170 ± 20 199 ± 23 167 ± 31

                  SC Dichte 40%               680 ± 47          578 ± 34          714 ± 40          594 ± 33

Femur Ø A (mm2) 2,47 ± 0,16 3,23 ± 0,55 1,89 ± 0,28 2,45 ± 0,38

Schaft Crt Mineralgehalt (mg/mm)1,45 ± 0,09 1,86 ± 0,13 1,13 ± 0,09 1,45 ± 0,20

% Crt. Fläche (%) 46,4 ± 3,6 47,2 ± 8,2 47,4 ± 4,3 48,1 ± 9,4

Crt. Dicke 237 ± 10 263 ± 13 212 ± 7 241 ± 17

I polar (mm4) 67,6 ± 8,3 119 ± 23 38,7 ± 11 65,9 ± 20

RPd (mm3) 6,36 ± 0,61 9,88 ± 1,2 4,21 ± 0,71 5,00 ± 5,6

I Minimum (mm4) 20,7 ± 2,5 37,1 ± 13 11,5 ± 3,1 22,4 ± 6,7

                  I Maximum (mm4)         44,2 ± 4,8        67,0 ± 26         26,0 ± 7,8        40,9 ± 13

Wirbel Mineralgehalt (mg/mm)0,70 ± 0,09 1,21 ± 0,16 0,693±0,08 1,06 ± 0,10

L2-4 Ø A (mm2) 1,61 ± 0,16 2,69 ±0,30 1,62 ± 0,17 2,42 ± 0,17

                  Dichte (mg/ml)               433 ± 23          449 ± 31          427 ± 24          445 ± 24

% Trab. Fläche 600 55,7 ± 11 60,2 ± 3,4 53,1 ± 11 61,6 ± 4,1

Trab. Dichte 600 334 ± 41 377 ± 29 300 ± 52 367 ± 31

SC. Dichte 600 546 ± 38 555 ± 48 555 ± 27 568 ± 31

Trab. Dichte 40% 282 ± 31 304 ± 38 258 ± 58 287 ± 38

                  SC. Dichte 40%              534 ± 35          545 ± 34          541 ± 20          550 ± 23

L2-4 = Lendenwirbelkörper 2-4, Ø A = Querschnittsfläche, trab. = trabekulär; SC =

subkortikal; 600 (in mg/ml) = Trennschwelle zwischen trabekulärem und kortikalem Knochen

mit Peelmode 2, 40%: im Peelmode 2 wurden 40% der Ø A mit der niedrigsten Dichte dem

trabekulären Knochen zugerechnet; I = Trägheitsmoment; Rpd = dichte-gewichteter

Widerstandsmoment.
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Table 4: pQCT-Messungen in Kontrollen, Wachstumshormon- (GH), IGFBP-2- , und Doppel-

transgenen Mäusen; Unterschiede zwischen den Gruppen: Prozente und Signifikanzen

GH IGFBP-2 Doppel Doppel
                                                         vs. Kon            vs. Kon            vs. Kon            vs. GH  

Femur Mineralgehalt (mg/mm)+53%*** -7% +31%*** -14%*

Meta- Ø A (mm2) +69%*** -15%*** +44%*** -15%*

physe         Dichte (mg/ml)               -9%**              +10%**           -10%***          -2%      

% Trab. Fläche 600 +17%***  -8%* +6%** -9%*

Trab. Dichte 600 +6% +18%* +10% +4%

SC Dichte 600 -5%**   0%  -8%*** -4%

Trab. Dichte 40% +21% +42%** +18% -2%

                  SC Dichte 40%               -15%***          +5%                 -13%***          +3%     

Femur Ø A (mm2) +30%*** -24%*** -1% -24%***

Schaft Cort. Mineralgehalt (mg/mm)+28%*** -22%***  0% -22%***

% Crt Fläche (%) +2% +2% +4% +2%

Crt. Dicke +11%*** -11%*** +2% -8%**

I polar (mm4) +76%*** -43%*** -3% -45%***

RPd (mm3) +55%*** -34%***  0% -35%***

I Minimum (mm4) +79%*** -45%*** +8% -40%***

                  I Maximum (mm4)         +52%***         -41%***          -8%                  -39%***

Wirbel Mineralgehalt (mg/mm)+72%*** -1% +51%*** -12%

Säule Ø A (mm2) +66%***  0% +50%*** -10%**

L2-L4        Dichte (mg/ml)               +4%                 -1%                  +3%                 -1%      

% Trab. Fläche 600 +8% -5% +11% +2%

Trab. Dichte 600 +13%* -10% +10% -3%

SC. Dichte 600 +2% +2% +4% +2%

Trab. Dichte 40% +8% -8% +2% -6%

                  SC. Dichte 40%              +2%                 +1%                 +3%                 +1%     

* p < * 0.05 im Einzeltest; ** p < 0.05 auf dem Gesamtniveau [< 0.125 im Einzeltest];

*** p < 0.01 auf dem Gesamtniveau [< 0.0025 im Einzeltest]; andere Abkürzungen wie in der

Tabelle 3
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6. Diskussion

In der vorliegenden Studie sollten die Effekte einer IGFBP-2-Überexpression auf das Skelett

in An- und Abwesenheit von GH-Überexpression charakterisiert werden. Insbesondere sollte

untersucht werden, ob 1) IGFBP-2-Überexpression zu einer Reduktion der Knochenlänge, des

Knochenvolumens, des BMC und der Knochendichte führt. Darüber hinaus sollte überprüft

werden, ob 2) die anabolen GH-Effekte auf den Knochen durch erhöhte IGFBP-2-Spiegel

reduziert oder sogar vollständig gehemmt werden, und ob 3) die Wirkung einer hohen

systemischen IGFBP-2-Konzentration auf die Knochenstrukturen von der skelettalen

Lokalisation und vom Knochenkompartiment (trabekulär / kortikal) abhängig ist.

6.1.  Methodikdiskussion

6.1.1. Transgene Mausmodelle

Mit Hilfe von transgenen Tiermodellen lassen sich die Effekte verschiedener Gene und ihrer

Produkte auf den Knochenstoffwechsel in vivo untersuchen. Durch pronukeäre

Mikroinjektion können gewünschte Gene (z.B. GH, IGF, IGFBP-2 etc.) fremder Spezies in

die befruchtete Eizelle integriert und der Kontrolle eines unabhängigen Promotors unterstellt

werden. GH-transgene Tiere zeigen eine sehr hohe endogene Produktion des Wachstums-

hormons, ohne dass sich hieraus immunologische Probleme wie bei der externen Gabe des

Proteins ergeben. In der vorliegenden Studie wurden die Auswirkungen alleiniger IGFBP-2-

und GH-Überexpression sowie der gemeinsamen Koexpression untersucht.

6.1.2. Zweienergie - Röntgenabsorptiometrie (DXA)

Die DXA wird für die nicht-invasiven Untersuchungen des Knochenmineralgehaltes (BMC)

und der Körperzusammensetzung verwendet. Die ermittelten Werte für BMC und Fettanteil

wurden an der Maus im Vergleich zu chemischen Analysen und der Mikro-CT-Technik

validiert (Eckstein et al. 2002 a, b). Bereits frühere Untersuchungen zeigten einen hohen

Zusammenhang zwischen DXA und Veraschungsanalysen (Jilka et al. 1996, Klein et al. 1998,
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Nagy et Clair 2000). Die absoluten Werte für den BMC werden mittels DXA signifikant

unterschätzt (4% für den BMC des Schädels und 35% für den BMC des

Gesamtkörpergewichts) (Eckstein et al. 2002 b). Es besteht jedoch ein hoher linearer

Zusammenhang zwischen DXA- und Aschegewicht bzw. Kalziumgehalt. Der Schätzfehler

liegt für den Schädel der Maus bei 6,1% (r=0,98) und für den Gesamtkörper bei 5,7%

(r=0,98) (Eckstein et al 2002 b). Die Analysen einzelner Knochen (ex situ) ergaben ebenfalls

eine Unterschätzung der absoluten Ergebnisse mittels DXA. Die Abweichungen reichten

zwischen –49% und –7%. Allerdings konnte auch hier ein hoher linearer Zusammenhang

festgestellt werden, mit einem Schätzfehler von 5,7% und einem Korrelationskoeffizient von

0,996 (Eckstein et al. 2002 b). Der Schätzfehler (SEE) betrug für die Tibia 6,2% (r=0,994),

für das Femur 3,8% (r=0,998) und für die Wirbelkörper 5,3% (r=0,995). Die Präzision

(Reproduzierbarkeit) der DXA-Messung an den einzelnen Knochen schwankte bei Tibia

zwischen 1,4% und 5,7%, am Femur zwischen 0,1% und 4,2% und an der Wirbelsäule

zwischen 0,7% und 8,6% (Eckstein et al. 2002 b).

Insgesamt fällt auf, dass sich die prozentuale Unterschätzung des BMC umgekehrt

proportional zum absoluten Gewicht verhält. Für dieses Problem existieren zwei

Erklärungsansätze. Nagy et Clair (2000) behaupteten, dass außer Knochen auch andere

Gewebe einen relevanten Gehalt an mineralisierten Substanzen enthalten, DXA aber nur die

im Knochen enthaltenen Mineralien misst. Dadurch könnte der Mineralgehalt des

Gesamtkörpers unterschätzt werden. Da aber auch der Mineralgehalt einzelner Knochen

(Weichteile entfernt) unterschätzt wird, gehen wir davon aus, dass mittels DXA kleine

Knochen und der Mineralgehalt in dünnen Knochenregionen nicht erfasst werden (Eckstein et

al. 2002a,b). Es ist jedoch keine absolute Übereinstimmung der Werte, sondern ein hoher

linearer Zusammenhang zwischen DXA und Aschgewicht erforderlich, um prozentuale

Unterschiede zwischen den Gruppen zuverlässig zu ermitteln (Eckstein et al. 2002b). Diese

Bedingungen sind, wie die oben genannten Ergebnisse zeigen, für die DXA der Maus mit

dem verwendeten System erfüllt. Als Nachteil der DXA ist anzumerken, dass keine getrennte

Messung des trabekulären und kortikalen Kompartimentes möglich ist, keine Informationen

zur volumetrischen Knochendichte (g/cm_) gewonnen werden können, und keine

strukturellen Messungen geometrischer Knocheneigenschaften vorgenommen werden

können. Derartige Messungen sind jedoch mit dem peripheren Computertomographen

(pQCT) durchführbar (s. Kap. 6.3.3.)
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6.1.3. Periphere quantitative Computertomographie (pQCT)

Das pQCT stellt eine ideale Ergänzungsmethode zur DXA dar. Die mittels pQCT bestimmten

Werte wurden zur Validierung mit denen aus dem µCT verglichen (Eckstein et al. 2002a).

Der Schätzfehler betrug 15% für die trabekuläre Dichte im pQCT vs. trabekuläre Fraktion am

Knochenvolumen im µCT (r=0,96), 1,4% für Gesamtquerschnittsfläche (r=0,99), 2,4% für die

kortikale Fläche (r=0,99) und 4,2% für die kortikale Dicke (r=0,95) (Eckstein et al. 2002 a,b).

Die Validität der pQCT für die Messungen am Mausskelett wurde durch den Vergleich mit

Werten aus der µCT und histologischen Untersuchungen ermittelt (Schmidt et al. 2003). Die

Korrelation zwischen der Dichte im pQCT und dem in den histomorphometrischen

Untersuchungen bestimmten Knochenvolumenanteils (BV / TV) betrug r = 0,79 (Tibia,

Femur und Wirbelsäule). Mit dem Knochenvolumenanteil in der µCT (Femur) zeigte sie eine

Korrelation von r = 0,94. An der Diaphyse wurde die höchste Genauigkeit für das Femur

bestimmt, mit einer Korrelation zum µCT von r > 0,77. Was die Präzision

(Reproduzierbarkeit) der Messungen angeht, so wurde bei den Einzelknochen (Tibia, Femur,

Wirbelsäule) unter Ex-situ-Bedingungen die höchste Präzision an der distalen

Femurmetaphyse festgestellt (CV < 1% für die Knochendichte und < 2% für die Fläche). Die

Präzision der In-vivo-Messungen betrug für die Knochendichte am distalen Femur 2,3 – 5,1

% und für die absolute und relative kortikale Fläche an der Tibia jeweils 3,1 % und 2,2 %

(Schmidt et al. 2003). Diese Ergebnisse zeigen, dass mit dem pQCT die Knochen einer Maus

mit einer befriedigenden Genauigkeit und Präzision charakterisiert werden können.

6.2.  Ergebnisdiskussion

Eckstein et al. (2002a) zeigten, dass bei den Metallothionein (MT)-bGH-transgenen Mäusen

der Knochenmineralgehalt (BMC) proportional zum Körpergewicht zunimmt. In der

vorliegenden Studie führte die GH-Überexpression jedoch zu einem überproportionalen

Anstieg von BMC im Vergleich zum Körpergewicht. Hierdurch wurde die Balance zwischen

diesen beiden Faktoren durch GH zugunsten der Knochenmasse verschoben. Eine Erklärung

für die unterschiedlichen Befunde in beiden Studien kann man zum derzeitigen Zeitpunkt

nicht geben.
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Die Effekte der GH-Überexpression sind an verschiedenen Knochen unterschiedlich

stark, mit der Folge eines disproportionalen skelettalen Gigantismus (Wolf et al. 1991 a,b).

Die Knochenlängen bzw. –volumina von Femur, Tibia und Humerus waren in der

vorliegenden Studie unter GH-Überexpression in unterschiedlichem Ausmaß vergrößert.

Rosen et al. (1995) berichteten, dass eine Behandlung mit GH und IGF-I an den Ratten

zu einer Zunahme von BMC und der Knochengröße, aber zu einer Abnahme der

Knochendichte führt. Auch in unserer Studie wurde an GH-transgenen Mäusen eine

signifikante Dichteverminderung in der Femurmetaphyse gemessen. Diese war v. a. auf eine

überproportionale Vergrößerung der Querschnittsfläche im Vergleich zu BMC

zurückzuführen. Bereits früher wurde gezeigt, dass GH insbesondere bei männlichen Mäusen

zu einer starken Zunahme des Knochendurchmessers führt (Tseng et al. 1996, Eckstein et al.

2002a). Die Dichteabnahme betraf v. a. das subkortikale Kompartiment, während das

trabekuläre unverändert blieb, trotz einer signifikanten Vergrößerung der trabekulären Fläche.

Am Femurschaft führte die GH-Überexpression zu einem signifikanten Zuwachs des

absoluten kortikalen Mineralgehalts und der Gesamtquerschnittsfläche, ohne einer

Veränderung der prozentualen kortikalen Fläche. Geometrische Knochenparameter wie die

kortikale Dicke, das Flächenträgheits- sowie das dichte-gewichtete Widerstandsmoment

nahmen signifikant zu. Tseng et al. (1996) beobachteten, dass am Femur von Mäusen mit

einer osteoblasten-spezifischen (lokalen) GH-Überexpression (Osteocalcin-Promotor) eine

signifikante Zunahme der Knochengröße, insbesondere der Querschnittsfläche, nicht von

einer proportionalen Zunahme der Biegefestigkeit begleitet wurde. In der genannten Studie

wies der kortikale Knochen an der Diaphyse deutlich schlechtere mechanischen

Eigenschaften auf und histomorphometrische Untersuchungen ergaben eine erhöhte Porosität.

Die Ergebnisse dieser Studie konnten nicht direkt mit unseren verglichen werden, da es sich

einmal um mechanische Testung und andermal um pQCT-Messungen handelt.

Sandstedt et al. (1994) berichteten, dass bei MT-bGH-transgenen Mäusen die

männlichen Gonaden unabhängig von GH das Wachstum der Wirbelsäule in der Pubertät

stimulieren und das Wachstum der Tibia bei den erwachsenen Tieren hemmen. In unserer

Studie wurde eine signifikante Zunahme der Fläche und proportional dazu des BMC

gemessen, so dass die Dichte unverändert blieb. An der Tibia waren Länge, Volumen und

BMC signifikant erhöht, die apparente Dichte allerdings vermindert. Da die hierbei
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untersuchten Mäuse 4 Monate alt und damit adult waren, lassen die Ergebnisse nur einen

eingeschränkten Vergleich zu.

Mit den oben beschriebenen Methoden konnten wir bei den IGFBP-2-transgenen

Mäusen sowohl mit als auch ohne GH-Überexpression eine Reduktion der Knochengröße und

–masse, aber nicht der Dichte feststellen. Wie bei GH (Wolf et al. 1991 a,b, Eckstein et al.

2002a, b) sind die IGFBP-2-Effekte teilweise von der Skelettregion und vom

Knochenkompartiment abhängig. GH übt den stärksten anabolen Effekt auf die Wirbelkörper

aus (+116%), während IGFBP-2 gerade hier die geringsten Veränderungen des BMC (-5%)

hervorruft. IGFBP-2 erreicht sein Wirkmaßmaximum an der Tibia (-21%), wo GH die

kleinste BMC-Zunahme (+59%) bewirkte. Insgesamt konnte ein stärkerer inhibitorischer

Effekt von IGFBP-2 auf die Knochengröße als auf die Knochenmasse festgestellt werden.

Dies spiegelte sich in einer Zunahme der apparenten Knochendichte von Tibia und Humerus

wieder.

Wie bereits erwähnt variieren GH- und IGFBP-2-Effekte zwischen den

Knochenkompartimenten. Die BMC-Reduktion durch IGFBP-2 war am deutlichsten im

kortikalen Bereich (Femurschaft) ausgeprägt, während die GH-Überexpression die stärkste

BMC-Zunahme an der Metaphyse bedingte. Entgegen den Erwartungen führte die IGFBP-2-

Überexpression zu einer Erhöhung und nicht zu einer Erniedrigung der trabekulären Dichte in

der Femurmetaphyse. An den Wirbelkörpern wurden keine Veränderungen festgestellt.

IGFBP-2-Überexpression reduziert die Zunahme der Knochengröße und – masse bei

gleichzeitiger GH-Überexpression. Das inhibitorische Potential von IGFBP-2 auf den

anabolen Effekt von GH ist allerdings nicht überall gleich stark. So zeigte sich, dass IGFBP-2

die aufbauenden Effekte von GH an der Diaphyse vollständig antagonisieren kann, dass an

der Metaphyse und den Wirbelkörpern diese hemmende Wirkung jedoch wesentlich geringer

ausgeprägt ist. Die Ergebnisse der vorliegenden Studie legen damit eine stärkere Reduktion

des perichondralen Knochenwachstums als des Knochenlängenwachstums durch IGFBP-2

nahe. Im Gegensatz dazu konnte keine signifikante Reduktion der Knochendichte durch

IGFBP-2-Überexpression (in An- oder Abwesenheit von GH-Überexpression) festgestellt

werden.
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6.3.  Limitationen und abschließende Interpretation

Eine Einschränkung der vorliegenden Studie ist, dass nur männliche Tiere und keine

weiblichen Tiere untersucht wurden. Ein Vergleich zwischen beiden Geschlechtern ist

Gegenstand einer weiterführenden Untersuchung. Auch wurden anschließend erwachsene

Mäuse untersucht, aber keine Tiere im späten embryonalen oder frühen postnatalen

Entwicklungsstadium, so dass auf Knochenwachstumsprozesse nur annähernd

zurückgeschlossen werden kann.

Unabhängig von den genannten Einschränkungen zeigt diese Studie deutlich, dass

IGFBP-2 ein potenter negativer Regulator des (Knochen-) wachstums in vivo ist. Daraus lässt

sich ableiten, dass die hohe Konzentration von IGFBP-2, welche bei kleinen Tieren gemessen

wurde, kein Epiphänomen darstellt, sondern dass IGFBP-2 vielmehr einen wichtigen Faktor

für die Wachstumsregulation darstellt.

In mehreren klinischen Studien wurde IGFBP-2 eine wichtige Rolle für den

gesteigerten Knochenverlust bei der Osteoporose zugeschrieben. Diesem pathologischen

Prozess liegt ein Ungleichgewicht zwischen der Knochenformation und der

Knochenresorption zugrunde. Die Befunde der klinischen Studien sind jedoch

widersprüchlich. Während manche Autoren eine negative Korrelation zwischen IGFBP-2-

Konzentration und Knochendichte berichten (Kim et Lee 1996, Sugimoto et al. 1997),

konnten andere keinen signifikanten Unterschied der IGFBP-2-Konzentration zwischen

Frauen mit postmenopausaler Osteoporose (Typ I) und gesunden Frauen pre- oder

postmenopausal (Nasu et al 1997, Kim et al. 1999) feststellen. Ebenso konnte bei Männern

mit idiopathischer Osteoporose im Vergleich mit den gesunden Probanden kein Anstieg des

IGFBP-2-Spiegels nachgewiesen werden (Johansson et al. 1997).

In unserer Studie war der prozentuale Anteil des Knochens an der Gesamtmasse bei

den IGFBP-2-transgenen Mäusen leicht erhöht und die Knochendichte eher gesteigert als

vermindert. Demzufolge bietet die vorliegende Studie keinen Anhalt dafür, dass IGFBP-2 am

Knochenverlust bei der Osteoporose und an einem erhöhten Frakturrisiko ursächlich beteiligt

ist. Da die skelettalen Veränderungen bei den IGFBP-2-transgenen Mäusen proportional zu

denen des Körpergewichts waren, überschreiten die mechanischen Lasten, die auf den

Knochen einwirken, seine mechanische Kompetenz bei diesen Tieren nicht. Weiterhin sollte
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beim Vergleich berücksichtigt werden, dass im klinischen Alltag die Messungen von BMD

beim Menschen mittels DXA (in g/cm_) erfolgen. Die so gewonnen Werte werden durch die

Knochengröße beeinflusst. So werden bei kleineren Personen, die auch entsprechend kleinere

Knochen haben, niedrigere Werte für BMD gemessen (Lochmüller et al. 2000).

Die Ergebnisse der Studien am Menschen und der an der Maus scheinen im

Widerspruch zueinander zu stehen. Einerseits könnte IGFBP-2 beim älteren Menschen eine

andere Wirkung als bei der adulten Maus auf das Skelett ausüben. Die Betrachtung der

IGFBP-3-Konzentration im Alter könnte jedoch eine weitere Erklärung für diese klinischen

Beobachtungen liefern. Aus mehreren Studien geht hervor, dass IGFBP-3 mit der

Knochendichte positiv korreliert und dass seine Konzentration bei Osteoporosepatienten

vermindert ist (Wuster et al. 1993, Kim et Lee 1996, Sugimoto et al. 1997, Johansson et al.

1997, Kim et al. 1999, Boonen et al. 1999). Normalerweise wird IGFBP-3 im Zellinneren

prozessiert und an der -oberfläche exprimiert. Dabei verstärkt es die Aktivität von IGF-I, v.a.

auf der Rezeptorebene (Conover 1992, Oh et al. 1993). Die nach der Menopause beobachtete

Abnahme der IGF-I- und der IGFBP-3-Konzentration könnte für die verminderte IGF-I-

Verfügbarkeit im Knochen verantwortlich sein und dadurch die Osteoblastenfunktion und die

Knochenformation beeinträchtigen. Ergebnisse anderer Studien lassen darauf schließen, dass

IGFBP-3 an einen auf den Osteoblasten lokalisierten, spezifischen IGFBP-3-Rezeptor bindet

und die Zellproliferation auf diesem Weg direkt beeinflusst (Oh et al. 1993). Demzufolge

würde eine Abnahme des IGFBP-3-Spiegels unabhängig von IGF-I zu einer Reduktion der

Knochenformation führen. Insgesamt könnte die Abnahme aller anabolischen Komponenten

des IGF-Systems (IGF-I, IGF-II, IGFBP-3 und –5) im Alter (Typ II-Osteoporose) (Boonen et

al. 1999) eine verminderte Knochenformation nach sich ziehen und dadurch das

pathologische Ungleichgewicht zwischen Knochenauf- und –abbau mitverursachen. Die

Abnahme der anabolen IGF-Faktoren wird v.a. durch im Alter häufig anzutreffende

Unterernährung und den daraus resultierenden Proteinmangel ausgelöst. Ein Zusammenhang

zwischen den Komponenten des IGF-Systems und dem Ernährungszustand wurde bereits im

Kapitel 2 beschrieben. Es ist bekannt, dass die IGFBP-2-Konzentration mit zunehmendem

IGFBP-3-Mangel kompensatorisch ansteigt (Zapf et al. 1990), um als ein zusätzlicher IGF-

Carrier zu dienen. Aufgrund dessen könnte der in manchen Studien beobachtete Anstieg der

IGFBP-2-Konzentration bei der Osteoporose eher auf einen inversen Zusammenhang
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zwischen den Komponenten der GH-IGF-I-IGFBP-3-Achse und IGFBP-2 (Sugimoto et al.

1997) als auf eine direkte, kausale Funktion von IGFBP-2 zurückgeführt werden. Die

Ergebnisse der vorliegenden Studie an IGFBP-2-transgenen Mäusen unterstützen diese

Hypothese.
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7. Schlußfolgerungen

1) IGFBP-2-transgene Mäuse weisen eine deutliche Verminderung der Knochengröße,

d.h. der Länge, des Volumens und insbesondere der Querschnittsfläche, sowie von

BMC, nicht aber der Knochendichte auf. Dies zeigte sich sowohl mit als auch ohne

gleichzeitige GH-Überexpression. Hieraus geht hervor, dass IGFBP-2 einerseits das

Knochenwachstum negativ reguliert, dass aber andererseits erhöhte IGFBP-2-Spiegel

in keinem kausalen Zusammenhang mit einer Abnahme der Knochendichte stehen.

Diese Effekte zeigen sich sowohl bei normalen als auch bei supraphysiologischen GH-

Konzentrationen.

2) IGFBP-2 reduziert signifikant den anabolen Effekt von GH auf die Knochengröße,

den Mineralgehalt und die Querschnittsfläche in der Metaphyse des Femurs und in den

Wirbelkörpern. An der Diaphyse zeigte sich sogar eine vollständige Aufhebung der

GH-Wirkung, so dass die Doppel-transgenen Mäuse in diesem Messbereich kaum

Unterschiede zu den Kontrolltieren zeigen. Die Ergebnisse zeigen, dass die anabolen

Effekte der GH-Überexpression durch IGFBP-2 abhängig von der Lokalisation

deutlich (metaphysär) oder sogar vollständig antagonisiert (kortikal) werden kann.

3) Die Wirkung einer systemisch hohen IGFBP-2-Konzentration ist von der Lokalisation

und vom Knochenkompartiment abhängig. Der schwächste Effekt auf BMC wurde in

der Wirbelsäule, der stärkste in der Tibia gemessen. Die deutlichste Abnahme von

BMC und der Größe wurde im kortikalen Knochen beobachtet. Wir vermuten daher,

dass IGFBP-2 zu einer stärkeren Reduktion des perichondralen Knochenwachstums

als des Knochenlängenwachstums führt.
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8. Zusammenfassung

Das Insulin-ähnliche-Wachstumsfaktor-Bindungsprotein (IGFBP)-2 wird als ein negativer

Regulator des Knochenwachstums diskutiert. Ziel der vorliegenden Studie war die

Untersuchung skelettaler Veränderungen einer IGFBP-2-Überexpression im transgenen

Mausmodell sowohl in der Ab- als auch Anwesenheit von Wachstumshormon (GH)-

Überexpression.

Es wurden 43 männliche Mäuse im Alter von vier Monaten untersucht (7 IGFBP-2-,

12 GH-, 10 GH/IGFBP-2-doppel-transgene Mäuse und 14 Kontrollen). Der Knochen-

mineralgehalt (BMC) des Gesamtskeletts sowie einzelner Knochen wurde mittels

Zweienergie-Röntgenabsorptiometrie (DXA) bestimmt. Für die Untersuchungen von

trabekulärem bzw. kortikalem Kompartiment sowie geometrischen Eigenschaften des

kortikalen Knochens wurde die periphere quantitative Computertomographie (pQCT)

eingesetzt.

IGFBP-2-Überexpression führte zu einer signifikanten Abnahme des Körpergewichts,

der Knochengröße (Länge und Volumen), des Knochenmineralgehaltes (BMC), der

Querschnittsfläche sowie geometrischer Knocheneigenschaften. Dies wurde sowohl in An- als

auch in Abwesenheit von GH-Überschuss nachgewiesen. Die wachstumshemmende Wirkung

von IGFBP-2 war jedoch von der skelettalen Lokalisation und vom Knochenkompartiment

abhängig. Dies zeigte sich insbesondere bei gleichzeitiger GH-Überexpression. In der

Metaphyse und in den Wirbelkörpern reduzierte IGFBP-2 die anabole Wirkung von GH. An

der Diaphyse konnten bei den Doppel-transgenen Mäusen kaum Unterschiede zu den

Kontrolltieren festgestellt werden. Im kortikalen Bereich wurde der anabole Effekt von GH

durch die gleichzeitige IGFBP-2-Überexpression vollständig gehemmt. Anders als erwartet

konnte bei den IGFBP-2-transgenen Mäusen keine Reduktion der Knochendichte am Femur

oder den Wirbelkörpern nachgewiesen werden. Vielmehr führte die IGFBP-2-Überexpression

bei diesen Mäusen zu einer höheren Dichte in der Metaphyse als bei den Kontrolltieren.

Aus den Ergebnissen geht hervor, dass IGFBP-2 ein potenter negativer Regulator des

(Knochen-) wachstums in vivo ist, dass erhöhte IGFBP-2-Serumspiegel aber nicht zu einer

Reduktion der Knochendichte führen. IGFBP-2 übt damit einen negativen Effekt auf die

Knochengröße und auf den Mineralgehalt, nicht aber auf die Dichte des Knochens aus.
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