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Summary 

Introduction 

Helicopter emergency medical services (HEMS) play an increasingly important role in many countries’ emer-

gency medical care systems. However, whether HEMS provides additional benefit over conventional ground 

services depends on many factors, including mission safety. In this thesis, results from a study investigating 

different potential hazards to flight safety in HEMS are reported. 

Methods 

Data on participating active HEMS pilots working for one of five operators in four European countries were 

collected in 2015/16 from three sources: (a) flight simulator performance ratings, (b) aeromedical examinations 

records from the preceding 10 years, and (c) questionnaires completed by the pilots. Medical fitness and psycho-

logical fitness were related to potential hazard factors using different analytic approaches. 

Results 

On the whole, the longitudinal development of the cardiometabolic risk marker profile of pilots aged 60 and over 

at the end of follow-up was more favorable than that of younger pilots (with large unexplained interindividual 

differences in risk marker levels). Perceived rewards at work, perceived predictability of work, and physiological 

dysregulation were selected as the most powerful predictors of simulator performance by a machine learning 

method from a large array of candidate predictors. Further yet unpublished results include analyses of the rela-

tion of pilot age to flight simulator performance and to physiological dysregulation, and of the work stress-strain 

profile of HEMS pilots. 

Conclusions 

The results suggest the presence of a healthy worker survivor effect, calling into question the empirical basis of 

existing European legislation which bans pilots aged 60 and over from conducting single-pilot commercial air 

transport operations. Application of machine learning methods may open new avenues for identifying flight 

safety hazard factors. Finally, the results point to the importance of occupational stressors and resources for 

HEMS flight safety. 
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Zusammenfassung 

Einleitung 

Helikopter-Rettungsdienste (helicopter emergency medical services; HEMS) werden in der notfallmedizinischen 

Versorgung immer wichtiger. Der Zusatznutzen von HEMS im Vergleich zu bodengebundenen Rettungsdiensten 

ist jedoch von vielen Faktoren abhängig, so auch der Einsatzsicherheit. In dieser Dissertationsschrift werden 

Ergebnisse einer Studie über potentielle Risiken für die Flugsicherheit bei HEMS berichtet. 

Methoden 

Über die teilnehmenden, bei einem von fünf Rettungsdiensten aus vier Ländern arbeitenden aktiven HEMS-

Piloten wurden 2015/16 Daten aus drei Quellen erhoben: (a) Flugsimulatorleistungsbewertungen, (b) Befunde 

von fliegerärztlichen Untersuchungen der vergangenen 10 Jahre, und (c) von den Piloten ausgefüllte Fragebögen. 

Medizinische und psychologische Fitness wurden anhand verschiedener analytischer Methoden zu potentiellen 

Risikofaktoren in Bezug gesetzt. 

Ergebnisse 

Die längsschnittliche Entwicklung des kardiometabolen Risikomarkerprofils von Piloten, die zum Ende des 

Follow-Up 60 Jahre oder älter waren, war insgesamt betrachtet günstiger als bei jüngeren Piloten (bei großen 

unerklärten interindividuellen Unterschieden in den Ausprägungen der Risikomarker). Wahrgenommene arbeits-

bezogene Belohnung und Vorhersagbarkeit der Arbeitsanforderungen sowie physiologische Dysregulation wur-

den von einem maschinellen Lernverfahren als die leistungsstärksten Prädiktoren aus einer großen Menge von 

Kandidatenprädiktoren ausgewählt. Weitere, noch unpublizierte Ergebnisse umfassen Analysen des Zusammen-

hangs des Pilotenalters mit Simulatorleistung und mit physiologischer Dysregulation, sowie des arbeitsbezoge-

nen Belastungs-Beanspruchungs-Profils der HEMS-Piloten. 

Schlussfolgerungen 

Die Ergebnisse deuten auf einen „Healthy Worker Survivor“-Effekt hin, was die empirische Basis bestehender 

europäischer Gesetzgebung in Frage stellt, welche gewerblichen Luftverkehrsbetrieb durch Einzelpiloten über 60 

Jahren verbietet. Die Anwendung maschineller Lernverfahren könnte neue Wege eröffnen, um flugsicherheitsge-

fährdende Faktoren zu identifizieren. Außerdem weisen die Ergebnisse auf die Wichtigkeit arbeitsbezogener 

Stressoren und Ressourcen für die Flugsicherheit von HEMS hin. 
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1. Introduction 

1.1 Utility of helicopter emergency medical services 

The importance of helicopter emergency medical services (HEMS) for the transportation of crit-

ically ill or injured patients has increased significantly over the previous decades. For instance, in 

Germany there were about 20,000 to 30,000 missions per year in the 1980s; by the end of the 2000s, 

this figure had increased to approximately 100,000 missions per year (Hinkelbein, Schwalbe, Neu-

haus, Wetsch, & Genzwürker, 2011). Providing life support measures and professional medical care as 

soon as possible (within the so-called “golden hour”; Cowley, Mergner, Fisher, Jones, & Trump, 

1979; Newgard et al., 2010) to patients who suffered severe trauma, burns, cardiovascular events, or 

other critical conditions was arguably the main motivation for the establishment of HEMS in many 

developed countries since about the 1970s. Further driving factors included positive experiences with 

aeromedical use of helicopters in the military, rising numbers of automobile traffic accidents, and the 

possibility to reach patients in otherwise inaccessible terrain (Galvagno et al., 2015; Kessler, 2015). 

At the same time, the use of HEMS has not been, and still is not, without controversy. Already 

in the early seventies, the United States National Highway Traffic Safety Administration advised 

against federal funding of HEMS due to an unfavorable cost-to-benefit ratio (US Department of 

Transportation, 1972). Compared to ground ambulance services, HEMS is often considerably more 

expensive, e.g. due to higher vehicle, personnel, or transportation costs (Brazier, Nicholl, & Snooks, 

1996; de Wing, Curry, Stephenson, Palmieri, & Greenhalgh, 2000). Moreover, determining whether 

HEMS use is appropriate given the limited available information at the time of an emergency call is 

notoriously difficult for the dispatcher, and often leads to overtriage; for example, on average between 

60 and 70% of trauma patients transported by HEMS from the scene to a hospital were subsequently 

found to have sustained only minor injuries according to one meta-analysis (Bledsoe, Wesley, Eck-

stein, Dunn, & O'Keefe, 2006), and 11% of all missions carried out by the largest German civilian 

HEMS operator in 2016 were to no avail since the patient was not present any more at the scene upon 
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arrival of the helicopter (ADAC Luftrettung, 2017). Finally, a number of studies did not find any sur-

vival improvement in HEMS-transported patients compared to ground transport (Bledsoe, 2003). 

Yet, according to a recent systematic review of trauma survival in HEMS versus ground 

transport which was conducted according to Cochrane Collaboration standards (Galvagno et al., 

2015), in a large majority of studies, there were positive and often significant effects of HEMS 

transport on survival after adjustment for differences in patient characteristics, most importantly injury 

severity. This suggests that despite overtriage, HEMS patients are on average more severely injured 

and particularly in these cases, HEMS can play an important role in an integrated trauma system 

(Doucet et al., 2013). The overall very large heterogeneity in the findings of empirical studies on 

HEMS benefits, costs, and cost-effectiveness (Butler, Anwar, & Willett, 2010; Galvagno et al., 2015; 

Taylor et al., 2010) is not surprising given the many (interdependent) factors and circumstances in-

volved which may differ between HEMS systems or even HEMS units within a system, such as pre-

vailing geography and population density (Kessler, 2015), geographical distribution of HEMS units 

(Branas et al., 2005; Brown, Rosengart, Billiar, Peitzman, & Sperry, 2017), differences in crew con-

figuration, available medical equipment and expertise (Butler et al., 2010; Rasmussen, Røislien, & 

Sollid, 2018), integration of HEMS into the overarching emergency medical services system (Bledsoe, 

2003; Habib et al., 2014; Kessler, 2015), quality of technical equipment, availability of appropriately 

trained flight personnel, and acceptance of HEMS by the local population (Ringburg et al., 2009). 

1.2 Flight safety and hazard factors in HEMS 

Given, then, that the utility of HEMS crucially depends on system design and the overall bal-

ance of such contributing factors, there is a continuing need to optimize aspects of the system while 

considering the tradeoffs which may be involved in this process. One particular aspect which has fea-

tured in the discussion about HEMS since its inception is flight safety. Less than one year after its 

introduction as the first civilian emergency medical helicopter in Germany, Christoph 1 crashed on 17 

August 1971 due to obstacle strike by the tail rotor on approach of the landing site, killing one occu-

pant and severely injuring two (“Unglücke der Luftrettung”, 2010). More recently, in an accident in 

the Apennine Mountains in Italy on 24 January 2017 which exemplifies several typical features of 
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fatal HEMS crashes (see below), an air rescue helicopter collided with the mountainside, instantly 

killing all six occupants of the aircraft (Aerossurance, 2018). 

Case reports such as these are further supported by accident statistics relating the number of ac-

cidents or casualties to exposure, i.e. hours of flight or number of missions. On average, 5.6 accidents 

per 100,000 flight hours occurred between 1998 and 2007 in the US, with an average yearly fatality 

rate of 113 per 100,000 crewmembers. In Germany, the accident rate was found to be 4.6 per 100,000 

missions, and a corresponding estimate for the United Kingdom is 5.0 accidents per 100,000 missions 

(all rates with respect to the comparison period 1998 – 2007, as calculated by the author based on data 

from Blumen, 2009, Hinkelbein et al., 2011, and Chesters, Grieve, & Hodgetts, 2014). These are ra-

ther high rates relative to other types of commercial air transport; in fact, at least in the US in 2007, 

HEMS crewmembers had among the highest fatality rates in a comparison of several high-risk occupa-

tions, including for example police officers, power-line installers, aircraft pilots in general, and log-

ging workers (Blumen, 2009). 

Several factors contribute to an increased accident risk of HEMS flights. Unlike in most other 

types of aviation, operations may need to be conducted in congested, uneven, featureless, or otherwise 

difficult terrain with an increased risk of terrain collision or obstacle strike (Blumen & UCAN Safety 

Committee, 2002; Rodenberg, Blumen, & Thomas, 2014). The pilots are also exposed to a unique 

array of physical and psychosocial stressors during their work, including, for example, vibration, pos-

tural and thermal stress; long work hours and shift work; emotionally demanding patient encounters; 

the necessity to conduct a complex, high-stakes task under time pressure; or the need for quick deci-

sion-making in situations where relevant information may be lacking (Carchietti, Valent, Cecchi, & 

Rammer, 2011; Hickman & Mehrer, 2001; Radstaak, Geurts, Beckers, Brosschot, & Kompier, 2014). 

Not least due to their inherent urgency, HEMS missions may also carry a higher risk of unplanned 

adverse weather encounters (Blumen & UCAN Safety Committee, 2002; Butler, 2014; Connell & 

Reynard, 1995), one of the most prominent causes of fatal HEMS accidents (Baker et al., 2006; Blu-

men & UCAN Safety Committee, 2002). 

In the aforementioned accident in Italy, for example, the investigation report concluded that the 

pilot may have perceived a sense of urgency because of delays in the loading of the patient and be-
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cause several prior missions had to be canceled due to bad weather. This may have contributed his 

continuing the flight according to Visual Flight Rules (VFR) despite poor visibility resulting from fog 

and the featureless, snowy surroundings, which apparently led to disorientation and ultimately, colli-

sion in the mountainous terrain. The pilot’s decision to remain in VFR flight might also have been 

influenced by a sense of (over)confidence since he was very familiar with the local area and by the 

fact that he had had only limited recent instrument flight practice (despite formally fulfilling instru-

ment flight training requirements) (Aerossurance, 2018; Agenzia Nazionale per la Sicurezza del Volo, 

2018). 

In general, in the literature on aviation accident contributory factors, a consistent finding has 

been that a large majority (from 60 to over 80%) of accidents involve pilot errors and mistakes (e.g., in 

decision-making, memory, or sensorimotor performance), whereas machine failure nowadays is rather 

rare (Bledsoe & Smith, 2004; Dambier & Hinkelbein, 2006; Martinussen & Hunter, 2010). However, 

according to current human factors theories which take a systemic perspective of accident causation, 

pilot error should be mainly regarded as a proximal cause that can be, and often is, influenced by more 

distal contextual factors such as inadequate oversight of aircraft operators or stressful working condi-

tions (Reason, 2000; von Thaden, Wiegmann, & Shappell, 2006). Again with respect to the example 

case from Italy, given that the base was located in a mountainous area with increased risk of inadvert-

ent entry into instrument meteorological conditions (IMC), the accident might have been prevented 

had the pilot been given additional instrument flight training by the operator, and/or had the base been 

equipped with one of the several terrain awareness and warning system (TAWS)-fitted helicopters 

available to the operator at the time (Aerossurance, 2018; Agenzia Nazionale per la Sicurezza del Vo-

lo, 2018). 

1.3 The role of pilot age and the “Age 60 Rule” 

While contextual and organizational factors contributing to aircraft accidents have received at-

tention only more recently, the significance of pilot age for flight safety has been a controversial issue 

in the aviation sector for decades (Aerospace Medical Association, 2004). On the population level, 

there is a clear association of older age with declines in cognitive (Salthouse, 2004), psychomotor (Era 
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et al., 2011), and sensory (Swenor, Ramulu, Willis, Friedman, & Lin, 2013) function, as well as an 

increase in the risk of onset of medical conditions in general (Barnett et al., 2012) and also specifically 

of conditions with a potential for sudden incapacitation, such as myocardial infarction, stroke, or epi-

lepsy (Hauser, Annegers, & Kurland, 1993; Mozaffarian et al., 2015). These well-known facts seem to 

give plausible reason for concern about older-age professional pilots, considering the high job de-

mands placed on them and the potentially disastrous consequences of their failure to perform ade-

quately or of in-cockpit sudden incapacitation. Attention to the issue is further magnified by the ongo-

ing population aging in many countries across the globe (United Nations Department of Economic and 

Social Affairs Population Division, 2015). 

The aforementioned concerns were cited in justification of the “Age 60 Rule” imposed by the 

US Federal Aviation Administration (FAA) in 1959, which forbade pilots aged 60 and over to engage 

in air carrier operations (Federal Aviation Administration, 1959). Variants of this original Age 60 Rule 

have since been introduced, and at times modified, by different regulatory authorities. For example, 

the International Civil Aviation Organization (ICAO) of the United Nations introduced an age limit of 

60 for the pilot-in-command (PIC) in international commercial air transport as a recommendation in 

1963, and changed this to a mandatory standard in 1972. In 2006, the ICAO rule was relaxed to allow 

one pilot to be up to 64 years old in a two-pilot setting where the co-pilot is less than 60 years old (Ev-

ans, 2011), and since 2014, both pilots of a multi-pilot flight may be up to 64; however, the age limit 

for single-pilot operations is still 59. 

Change histories such as these attest to the controversial nature of the Age 60 Rule(s), which 

opponents have criticized as ageist and politically motivated (DuBois, 2005; Wilkening, 2002). In-

stead of a general age limit, flight safety could be protected by additional or more refined medical, 

psychological, and job performance testing procedures to identify pilots who are affected by age-

related pathology and performance decline (Stuck, van Gorp, Josephson, Morgenstern, & Beck, 1992). 

This line of reasoning is (implicitly or explicitly) based on the notion of “biological age” (as opposed 

to chronological age) which is assumed to differ between individuals of the same age – what is collo-

quially referred to as “aging poorly/well”. Indeed, this concept is arguably a cornerstone of gerontolo-

gy, although a notoriously elusive one, and many attempts have been and are being made in this disci-
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pline to measure it (Fried et al., 2001; Lowsky, Olshansky, Bhattacharya, & Goldman, 2014; Rowe & 

Kahn, 1997). 

Although the Age 60 Rule’s opponents’ argument is at least implicitly based on the concept of 

biological age(ing), it has apparently not been directly applied in the field of aerospace medicine so 

far. However, professional pilots do have to pass a strict selection and training procedure to obtain 

initial licensing, and undergo regular proficiency and medical fitness checks to maintain the license 

(Evans, Evans, & Harper, 2016; Martinussen, 2017). This not only suggests that they are healthier than 

the general population, which is confirmed by their considerably lower morbidity and mortality rates 

with respect to a whole range of illnesses (Hammer et al., 2014; Linnersjö, Brodin, Andersson, Al-

fredsson, & Hammar, 2011). It may in fact be the case that older age pilots have an especially good 

health status and performance record since they managed to pass recurrent testing despite their age – a 

process known as “healthy worker survivor effect” (Arrighi & Hertz-Picciotto, 1994). Moreover, older 

pilots’ greater on-the-job experience and the associated increase in implicit and explicit domain-

specific knowledge and skills may further mitigate or even outweigh any age-related sensorimotor or 

cognitive performance declines (Salthouse, 2012). This likely explains why no clear association be-

tween pilot age and performance was found in literature reviews (Aerospace Medical Association, 

2004; Hardy & Parasuraman, 1997). 

Finally, the age limit of 60 years is rather arbitrarily chosen; for example, in the general popula-

tion, cardiometabolic risk indicators (Hardy, Lawlor, & Kuh, 2015) and cardiovascular mortality 

(Mikkola, Gissler, Merikukka, Tuomikoski, & Ylikorkala, 2013; Vaidya, Becker, Bittner, Mathias, & 

Ouyang, 2011) start to increase notably well before the age of 60, and no threshold effect around age 

60 is visible which would empirically justify this limit as opposed to, say, 55 or 65 years. 

Despite these arguments, the Age 60 Rule was made European Union law through European 

Union Regulation 1178/2011, point FCL.065 of Annex I, which required at least one pilot in commer-

cial air transport operations to be less than 60 years old. While this mimicked the corresponding re-

quirement of the now-defunct Joint Aviation Authorities (JAA; predecessor organization of the Euro-

pean Aviation Safety Agency, EASA), JAA regulations were binding only for cross-country flights, 

thereby allowing for some flexibility regarding pilots’ age within national airspaces. For example, 
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according to §127 LuftPersV (Verordnung über Luftfahrtpersonal), holders of a German license were 

allowed to fly single-pilot operations until the age of 65 years, as long as they remained within Ger-

man territory. Based on the rationale to establish a harmonized regulatory framework across European 

countries, such national exceptions were invalidated by EU Regulation 1178/2011. 

Although the legislative change hardly affected aviation operations where multi-pilot crews are 

routinely employed (most notably airline transport), it poses a significant problem to European HEMS 

operators since HEMS flights are often operated by a single pilot due to space and takeoff weight limi-

tations. HEMS operators have therefore expressed concern over the resulting loss of highly experi-

enced personnel (Poguntke, 2012). Recruitment and training of new HEMS pilots is a lengthy process 

due to demanding entry requirements, and currently several operators rely on temporary exemptions 

from the Age 60 Rule for their affected pilots. Besides the potential adverse effect of EU Regulation 

1178/2011 on HEMS operations, it may – depending on the retirement rules of the respective country 

– also put aging HEMS pilots into a precarious personal situation since grounding due to the rule is 

often not covered by loss-of-license insurances, and since only limited alternative employment oppor-

tunities are available (e.g., working as a flight instructor). 

1.4 Overview of the “Age 60” project 

1.4.1 Study objectives 

In response to EU Regulation 1178/2011, a German HEMS operator contacted the Institute and 

Clinic for Occupational, Social, and Environmental Medicine at the University Hospital of LMU Mu-

nich with a request to evaluate the validity of the scientific rationale of FCL.065. This led to an initial 

“Age 60” study on the relation of HEMS pilots’ age to their medical and cognitive fitness which was 

conducted by researchers of the institute in cooperation with one Austrian and two German HEMS 

operators in 2012/13. 

To address limitations of this initial study raised by EASA (including small sample sizes, par-

ticularly for pilots aged 60 and over, lack of medical data of HEMS pilots, and uncertain generalizabil-

ity of results stemming only from German and Austrian pilots to the European context), an extension 

study, funded by the European HEMS & Air Ambulance Committee e.V. (EHAC) was carried out in 
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2015/16 in cooperation with the three HEMS operators who had already participated in the initial 

study plus one Czech and one Polish operator. The data collected in the course of this extended Age 

60 Study form the basis of the present thesis. The main objective of the study was to determine if and 

how the current age limit according to FCL.065 can be raised without a significant increase in the 

associated risk. 

1.4.2 Study design and results 

The initial Age 60 Study was designed according to a multi-method approach to investigate the 

relation between pilot age and cognitive/medical fitness from different complementary perspectives. 

Design and results of these different study tiers can be summarized very briefly as follows: 

1. A systematic review of literature on professional pilot age and incapacitation found that in-

flight incapacitation is a very rare event (occurring at a rate of 0.19–0.45 per 10
6
 flight hours), 

and that incapacitation does increase with age; however, only one in-flight incapacitation 

study actually included pilots aged 60 and over, and found no such event in this group; also, 

no data on HEMS pilots were available (Huster, Müller, Prohn, Nowak, & Herbig, 2014) 

2. According to a quasi-experimental investigation of HEMS pilot performance in managing two 

malfunction scenarios enacted in a helicopter flight simulator, performance showed either no 

or a curvilinear U-shaped relationship with age, such that younger and older pilots performed 

better than middle-aged pilots 

3. Ratings by flight examiners from actual check flights (“line checks”) regarding several aspects 

of a pilot’s flight competence (e.g., proper pre-flight briefing, working through check lists and 

procedures, communication behavior during the flight, execution of flight patterns) available 

for 91 pilots did not reveal any association with age 

4. An analysis of 1,770 liability damage cases resulting from operations carried out by 257 pilots 

of the three operators between 2007 and 2011 found a small ageing-related (=longitudinal) ef-

fect such that the number of damage cases increased over time in younger, but not in older pi-

lots (Müller et al., 2014) 

Thus, on the whole, there was little evidence from the initial Age 60 study that safety is compromised 

in HEMS operations with older pilots, although as mentioned in the previous section some study limi-
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tations remained. The extension study aimed to complement the findings of the initial study, and 

thereby address its limitations, by collecting data from three distinct sources: 

1. Additional HEMS pilot flight simulator performance ratings collected during pilots’ train-

ing/check flight sessions, replicating the design of the initial study for data pooling; in the 

course of the simulator session, information on pilots’ experience of the session was collected 

by a short questionnaire as in the initial study; a newly added longer questionnaire on the pi-

lots’ working conditions in general inquired about work-related physical and psychological 

stressors, as well as physical and psychological symptoms of strain 

2. Pilots’ aeromedical examination records covering the previous 10 years, requested from aero-

medical examiners (AMEs) and/or aeromedical centers (AeMCs); professional pilots need to 

undergo such examinations every 6 months if they are either 60 years and over or 40 years and 

over and conduct single-pilot operations (every 12 months otherwise).  

3. Anonymized longitudinal staff records from the participating operators, including information 

on the employed pilots’ age and their involvement in liability damages; for pooling with the 

corresponding data from the initial study 

HEMS pilots of the five operators with an upcoming simulator flight session during the study 

data collection period (September 2015 to October 2016) at one of two training sites in Hangelar, 

Germany, and Warsaw, Poland, were identified by the operators, and were asked for participation 

either directly during the training session by a research team member or a flight instructor, or prior to 

the session via the employer’s internal communication channels. In the recruitment of participants, 

priority was given to older-age pilots (55 and over). Additionally, a small number of pilots who did 

not attend a training session at the two sites during the data collection period were asked for participa-

tion (medical study part and working conditions questionnaire only). The pilots could separately indi-

cate their consent to participate in the flight simulator and/or the medical study part. In the latter case, 

the pilots were additionally asked to release their AMEs/AeMCs from their duty of non-disclosure. 

Signed release forms with a request for transfer of aeromedical examination documents were then 

mailed to all specified physicians/centers. 
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Simulator performance, questionnaire, and aeromedical records data were collected in personal, 

i.e. non-anonymous, form to allow data linkage. This procedure had been explicitly prespecified in the 

study protocol, which had been approved by the Ethics Committee at LMU’s Faculty of Medicine 

(Project No. 466-15) prior to data collection. The participant flow for the study parts involving per-

sonal data is shown in Figure 1. All participants were male; this was because the operators’ pilot work-

forces consisted virtually exclusively of men at the time of data collection. The medical data, obtained 

from 24 distinct sources, included records from a total of 977 aeromedical examinations conducted 

between 2004 and 2016 (133 from pilots aged 60 and over at the time of their last available examina-

tion), with considerable variation between pilots in follow-up time (average 8.52 years, range: 0-12, 

median: 9.59) and between sources in the volume of documents per examination. 

Anonymized liability damages records were collected directly from the HEMS operators with-

out any involvement of pilots. Upon pooling with the data available from the initial Age 60 Study, 

data from 353 pilots (22 of which were 60 and over at the end of follow-up) covering a total of 1,592 

pilot-years between 2007 and 2015, during which 1,853 incidents were recorded, were available for an 

updated liability damages analysis. 

A comprehensive study report was submitted to EHAC in December of 2016 and then forward-

ed further to EASA. The results informed a continuing stakeholder dialogue on possible reforms of 

FCL.065 and other regulatory provisions pertinent to the pilot age issue, e.g. regarding operational 

safeguards. For example, the findings were presented and discussed at the 10
th

 EASA Rotorcraft Sym-

posium (December 2016) and at a March 2017 workshop on the Age 60 Rule organized by the Austri-

an civil aviation authority; both events included representatives of HEMS operators and regulatory 

agencies as well as researchers from different European countries. In the remainder of this section, 

study results which are scheduled to be published in scientific journals, but which are not submitted as 

part of the thesis are further described. The publications included in the present thesis are described in 

the next section. 
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Figure 1. Participant flow. Number of participants aged ≥60 in parentheses (for extended Age 60 

Study, based on age as of 31 December 2015 – actual age during data collection may differ some-

what). *Unknown if request for participation by HEMS operator / instructor was actually made. 

†Participants where all 3 types of data are available. ‡Simulator data collected both in initial and in 

extended Age 60 Study.  

Asked to 
participate: 143 (18) 
Of which age unknown: 19 

Declined: 20 (0) 
Of which age unknown: 5 

No response: 34 (2) 
Of which age unknown: 14 

Possibly 
asked: 14 (0) * 

Of which age unknown: 4 

Agreed to 
participate: 89 (16) 

No participa- 
tion: 68 (2) 

Of which age unknown: 23 

Medical data: 
66 (11) 

Working conditions 
data: 72 (12) 

Simulator 
data: 72 (12) 

All data types: 
51 (8)† 

No medical data: 23 (5) 
Declined 12 (2) 
No records received from AME / AeMC 10 (3) 
No data collected 1 (0) 

No working conditions data: 17 (4) 
Declined 1 (0) 
No data collected (e.g. no participation 
in simulator study) 11 (4) 
Questionnaire not sent back 4 (0) 
Data lost during transfer 1 (0) 

No simulator data: 17 (4) 
Declined 1 (0) 
Not possible (e.g. instructor, wrong 
helicopter type) 8 (3) 
No data collected (e.g. check flight 
after data collection period) 7 (1) 
Data lost during transfer 1 (0) 

Repeated 
simulator data: 8 (1)‡ 

Pooled simulator 

data: 160 (19) 

Simulator data from 
first Age 60 study: 

96 (8) 

Targeted for 
participation: 157 (18) 

Of which age unknown: 23 
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Analyses of simulator performance ratings for the pooled sample of 160 German, Austrian, 

Polish, and Czech HEMS pilots (manuscript currently in preparation) broadly confirmed the findings 

of the initial Age 60 Study: Either no or inverse U-shaped effects of age were apparent for the two 

study scenarios. Overall, the results suggest that the required sensory, psychomotor, and cognitive 

capabilities of HEMS pilots near the critical age threshold of 60 years do not appear to be affected in a 

relevant degree by their age and in fact may be superior to those of some of their middle-aged col-

leagues. Possible explanations for these findings are their greater domain task experience (Aherne, 

Zhang, & Newman, 2016) and a healthy worker survivor effect (Arrighi & Hertz-Picciotto, 1994) due 

to the required recurrent medical and performance testing to maintain the pilot license. Moreover, 

similar to the simulator data, the analysis of the pooled liability damages data also confirmed the re-

sults of the initial Age 60 Study: although overall incidents increased over time, this increase tends to 

be lower in older pilots. 

Further evidence for a healthy worker survivor effect was obtained in the medical study part by 

an analysis of the association of pilot age with an index of physiological dysregulation constructed 

from 18 biomarkers (submitted to International Archives of Occupational and Environmental Health; 

currently under review). The rationale for this analysis is grounded in recent biogerontological re-

search which found that (a) indices of biological age(ing) or physiological dysregulation derived from 

multiple biomarkers predict mortality, morbidity, and physical and cognitive impairment (Arbeev et 

al., 2018; Belsky et al., 2015; Seeman, McEwen, Rowe, & Singer, 2001), and (b) the exact choice of 

biomarkers used to construct such indices is not decisive, provided that a sufficient number of markers 

and organ systems is sampled (Cohen et al., 2015; Rockwood & Mitnitski, 2007; Seplaki, Goldman, 

Glei, & Weinstein, 2005). Thus, the 18 biomarkers used were chosen based on their association with 

morbidity and mortality (as determined by literature review), their availability in the received aero-

medical examination records, and such that a broad range of organ systems were represented (e.g., 

cardiovascular system: systolic blood pressure; metabolic system: fasting plasma glucose; immune 

system: white blood cell count). Although longitudinally, an increase in physiological dysregulation 

scores was observable over an average follow-up time of 7.9 years, cross-sectionally there was an 

inverse U-shaped relationship between age and dysregulation in 52 HEMS pilots, such that dysregula-
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tion was estimated to be highest around 45 to 50 years. Assuming that our dysregulation index cap-

tures risk of onset of overt pathology (Milot et al., 2014), its cross-sectional decrease after age 50 

again suggests a selection process such that pilots where pathology begins to manifest do not pass 

medical recertification or leave the profession voluntarily. Overall, the findings from the simulation 

and the dysregulation analyses therefore suggest that the rationale of the Age 60 Rule may be flawed 

as it does not consider such selection effects. 

As discussed previously, HEMS pilots’ work is demanding and involves a potentially large 

number of stressors at work, such as time pressure, decision-making under uncertainty, and witnessing 

human suffering. Especially in combination with organizational stressors like lack of management 

support or contradictory work demands, these conditions can lead to psychological strain responses 

such as reduced well-being, job satisfaction and motivation, or even manifest psychological disorder 

(Humphrey, Nahrgang, & Morgeson, 2007; Stansfeld & Candy, 2006). Such strain responses are in 

turn negatively associated with performance and safety at work (Judge, Thoresen, Bono, & Patton, 

2001; Nahrgang, Morgeson, & Hofmann, 2011). The prevalence of work stressors in HEMS pilots, as 

well as their relation to psychological strain, is therefore an important but so far hardly investigated 

aspect of flight safety in HEMS. In an analysis of the responses to the working conditions question-

naire of 72 HEMS pilots from the extended Age 60 Study (submitted to Air Medical Journal; currently 

under revision), we found that overall the pilots reported a quite favorable profile of work stressors 

(e.g., role conflict or work pace) and resources (e.g., social support, procedural justice), both when 

compared to the general working population and to airline pilots (based on data taken from literature). 

However, in those pilots who reported the presence of work-family conflict or perceived procedural 

injustice, the encounter of emotionally disturbing situations, and a lack of role clarity at work, notably 

reduced levels of well-being and energy were observable. The results may be helpful in the implemen-

tation of measures to promote pilot mental health (Aerospace Medical Association, 2016) in the con-

text of HEMS; for example, the great pride and dedication which the HEMS pilots invest into their 

occupation (as a resource, but also as a precondition for perceived organizational injustices) should be 

taken into account as well as the need to discuss emotionally burdensome events such as failed rescue 

missions. 
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1.5 Thesis publications 

1.5.1 Thesis objectives 

The present thesis is inextricably linked to the extended Age 60 Study project, and therefore one 

of the thesis objectives was to evaluate the significance of the 60 years threshold, as stipulated in 

FCL.065, to flight safety in HEMS. However, the focus of the thesis is not only on regulatory issues 

but also more generally on evaluating the significance of different aspects of flight safety in HEMS. 

Finally, the thesis also aimed to apply novel methods in the field of aviation safety to explore 

possibilities of expanding the toolbox available to researchers in the field. 

1.5.2 Summary of original publications included in this thesis 

One major focus of concern regarding medical fitness of older-age pilots which has repeatedly 

been emphasized by Age 60 Rule proponents (also in the recent discussion around FCL.065) is the 

risk of sudden in-cockpit incapacitation due to major cardiovascular events such as myocardial infarc-

tion or stroke. The increase in general population cardiovascular mortality and morbidity rates associ-

ated with age has been cited in support of this argument. However, as previously discussed, the cardi-

ovascular risk of professional pilots is considerably lower than that of the general population; age-

specific figures for absolute risk of cardiovascular events in professional pilots’ are rare, and absent 

for HEMS pilots specifically. In Publication 1, which is based on the aeromedical records data, we 

therefore longitudinally investigated age-related change of six markers of cardiometabolic risk (systol-

ic blood pressure, electrocardiogram QTc interval, body mass index, total serum cholesterol, high-

density lipoprotein cholesterol, fasting blood glucose), and of fatal cardiovascular event risk as esti-

mated by an established scoring algorithm (SCORE), in 66 HEMS pilots over an average follow-up 

period of 8.5 years, and compared these changes between those pilots aged 60 and over and those less 

than 60 years at the end of follow-up (termed “older pilots” and “younger pilots”, respectively). Over-

all, the pilots’ risk of a fatal cardiovascular event within six months was estimated between 0 and 

0.3%, and increased notably with age. However, the relative increase in risk scores over time was fast-

er in the younger, compared with the older pilots, and increases in BMI and fasting glucose observed 

during follow-up in the younger pilots significantly decelerated in the older pilots; also, the lipid pro-
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file improved over time in the older pilots, whereas it did not change appreciably in the younger pilots. 

Although two markers of cardiac risk tended to increase more strongly in the older pilots, these differ-

ences did not reach statistical significance. Finally, large proportions of the variation in risk markers 

were attributable to unobserved time-stable interindividual differences, rather than to the observed 

variables. In summary, the data do not give much empirical support to a general age threshold of 60 

years regarding cardiovascular fitness of HEMS pilot. A short-term solution to balance staffing needs 

of HEMS operators (and therefore adequate HEMS coverage) and safeguards against cardiovascular 

risks might be to conduct a coronary artery calcium (CAC) scan at age 60 to guide the decision wheth-

er a pilot may continue flying single-pilot, as this method captures cumulative effects of degenerative 

and pathological vascular processes and has a very high negative predictive value. In the long term, 

individualized risk scoring using an appropriately calibrated prediction algorithm should be systemati-

cally applied well before age 60. 

In Publication 2, a wider perspective is taken with respect to factors affecting flight safety in 

HEMS. As illustrated in section 1.2 with the example case from Italy, accidents in aviation are best 

understood as resulting from an unfavorable constellation of circumstances both at the level of the 

pilot (e.g., fatigue, medical and psychological fitness), proximal circumstances (e.g., weather condi-

tions, workplace stress), and the wider organizational and regulatory environment (e.g., inadequate 

oversight). This complexity and the resulting wealth of potential data sources which may be utilized to 

identify hazard and protective factors calls for an application of novel analytic methods that can han-

dle large numbers of predictors (even when sample size is relatively small, as is likely the case with 

small target populations such as HEMS pilots), and that do not impose restrictive model assumptions, 

such as linearity of effects. In particular, data mining and machine learning approaches, which have 

become popular recently mainly due to increases in available computational power, may be leveraged 

in the field of aviation safety. We explored the utility of Random Forests, a supervised machine learn-

ing method based on decision trees, by selecting the most powerful predictors of simulator flight per-

formance in 51 HEMS pilots where data from all sources – performance ratings, aeromedical data and 

questionnaires – were available. The overall set of candidate predictors consisted of 54 variables in-

cluding medical risk markers, physical and psychosocial work stress and strain indicators, pilots’ sub-
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jective experience of the simulator session, and general pilot and simulator characteristics. Five pre-

dictors were selected by the method as predicting performance above chance level: Perceived rewards 

at work, perceived predictability of work demands, physiological dysregulation, alanine aminotrans-

ferase, and simulator type. The direction of effects was theoretically plausible; for example, higher 

perceived rewards were associated with higher performance, whereas higher dysregulation was associ-

ated with lower performance. Although these results are of an explorative nature, they demonstrate the 

potential of the Random Forest method for aviation safety studies. For example, the method could be 

applied to information from accident investigation databases to identify factors associated with acci-

dent lethality, or to analyze effects of operational conditions (e.g., timing of missions, weather, geo-

graphical location) on mission safety parameters based on HEMS providers’ administrative data. 

1.5.3 Contribution of thesis author to included publications 

For both included publications, I had primary responsibility for data collection, data manage-

ment & quality control, data analysis, and drafting of the manuscript. I also assisted in the formulation 

of the extended Age 60 Study’s overall design, as outlined previously. 
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ABSTRACT 

Background 

Old-age limits are imposed in some occupations in an effort to ensure public safety. In aviation, the 

“Age 60 Rule” limits permissible flight operations conducted by pilots aged 60 and over. Using a 

retrospective cohort design, we assessed this rule’s validity by comparing age-related change rates of 

cardiometabolic incapacitation risk markers in European helicopter emergency medical service 

(HEMS) pilots near age 60 with those in younger pilots. 

Methods 

Individual clinical, laboratory, and electrocardiogram (ECG)-based risk markers and an overall 

cardiovascular event risk score were determined from aeromedical examination records of 66 German, 

Austrian, Polish, and Czech HEMS pilots (average follow-up 8.52 years). Risk marker change rates 

were assessed using linear mixed models and generalized additive models. 

Results 

Body mass index increases over time were slower in pilots near age 60 compared to younger pilots, 

and fasting glucose levels increased only in the latter. Whereas the lipid profile remained unchanged in 

the latter, it improved in the former. An ECG-based arrhythmia risk marker increased in younger 

pilots, which persisted in the older pilots. Six-month risk of a fatal cardiovascular event (in or out of 

cockpit) was estimated between 0 and 0.3%. Between 41 and 95% of risk marker variability was due 

to unexplained time-stable between-person differences. 

Conclusions 

The cardiometabolic risk marker profile of HEMS pilots appears to improve over time in pilots near 

age 60, compared to younger pilots. Given large stable interindividual differences, we recommend 

individualized risk assessment of HEMS pilots near age 60 instead of general grounding. 

KEYWORDS 

Cardiovascular risk; Flight safety; Government regulation  
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1. INTRODUCTION 

1.1. Background 

1.1.1. Occupational old-age limits as a regulatory risk management strategy 

Workforce aging associated with the general global trend towards older populations
(1)

 has led to an 

intensified focus on the capabilities, performance, and safety of older workers, particularly in those 

whose occupational activities directly involve the safety and well-being of third parties (e.g., 

passengers, patients, or the community).
(2–4)

 A customary regulatory approach towards limiting public 

safety risks associated with a potential age-related performance decline has been the imposition of 

early mandatory retirement ages for certain occupations,
1
 such as professional pilots, air traffic 

controllers, policemen, firefighters, public officials, or technical supervisory personnel.
(5,11,12)

 For 

example, in the United States, retirement is mandated at 57 years for federal law enforcement officers, 

firefighters, or nuclear materials couriers, and at 56 years for air traffic controllers (5 U.S. Code § 

8335). In Germany, retirement ages for federal police officers and air traffic controllers are 62 

(BPolBG § 5) and 55 (based on a collective labor contract), respectively. 

Aviation is an occupational field where the topic of mandatory retirement has featured prominently 

since decades, as evidenced by the history of the “Age 60 Rule”.
(13,14)

 First introduced in 1959 by the 

United States Federal Aviation Administration, it prohibited air carrier operations by pilots aged 60 

and over, and was subsequently adopted (in modified form) in other countries and also by the 

International Civil Aviation Organization (ICAO). Ever since its adoption, the rule has been the cause 

of controversy, being criticized as ageist and inequitable.
(7)

 Given continuing improvements in health 

status and cognitive capacities of successive generations of older adults,
(15)

 the wide variability in 

health and functioning between individuals of a given cohort,
(16,17)

 and absent or inconsistent 

associations between pilot age and actual flight performance,
(13)

 it has frequently been argued that 

                                                     
1
 It should be noted that political and economic considerations, such as the defense of advantageous early 

retirement schemes, labor market access of the younger generation, or company profitability, have also played a 

prominent role in the establishment and maintenance of mandatory retirement rules both in the public and private 

sector.
(5)

 Thus, both between and within involved entities such as authorities, industry, and employees, one may 

find subgroups opposing or supporting age-based mandatory retirement.
(6,7)

 The ambivalence of this issue is 

mirrored in the larger-scope societal disputes about the requirement (privilege) to continue working (retire) at old 

ages
(8–10)
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general age limits for professional pilots should be replaced by fitness- and performance-based testing 

focused on risks related to aging.
(18,19)

 

Although general age limits for professional pilots have been relaxed in recent years in response to 

such criticism, recent regulatory decisions illustrate that authorities still consider such limits to be 

necessary. For example, since 2014, ICAO standards permit multi-pilot international commercial air 

transport flights with pilots up to age 65 (Amendment 172 to Annex 1 of the Chicago Convention), 

and the same holds within the European Union (Commission Regulation 1178/2011, as amended by 

Commission Regulation 2015/445; since 2015). However, in both cases, the age limit of 60 is upheld 

for single-pilot operations. Consistent with this prescription, an analysis of the legal situation in 

Germany and Norway concluded that single-pilot operations constitute a case where mandatory 

retirement provisions may justifiably prevail over existing anti-discrimination law.
(5)

 

One concern which is raised frequently in this context is that medical-cause sudden incapacitation 

occurring in a solo pilot during flight cannot be compensated by a second pilot, thereby amplifying the 

risk potential of age-related health deficits, in particular cardiovascular events such as myocardial 

infarction or stroke.
(6,20,21)

 Although the argument seems plausible at first glance due to the well-

established age-related increase of cardiometabolic risk in the general population,
(22)

 the choice of the 

age threshold is essentially arbitrary – at the population level, cardiometabolic risk markers
(23)

 and 

cardiovascular mortality
(24)

 start to increase well before age 60; for example, the 2015 Global Burden 

of Disease study estimated the annual cardiovascular mortality in the United States at 71, 124, 194, 

and 287 per 100,000 persons at ages 45–49, 50–54, 55–59, and 60–64, respectively.
(24)

 Furthermore, 

applicability of findings in the general population might be restricted for professional pilots, who are 

tightly monitored and display a markedly lower cardiovascular morbidity and mortality, with age-

standardized mortality ratios relative to the general population usually at or below 0.5.
(25,26)

 The only 

available systematic review on age and medical-cause incapacitation in professional pilots indicated an 

age-related increase; however, only one of the reviewed studies included active pilots aged 60 and 

over, and found no adverse events in this group.
(27)
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1.1.2. European helicopter emergency medical services and the “Age 60 Rule” 

Prior to European Union Commission Regulation 1178/2011, the Age 60 Rule for single-pilot 

operations was legally binding only for cross-border flights within Europe, but now applies to all 

commercial air transport flights. This has especially affected European helicopter emergency medical 

services (HEMS) operators, since HEMS flights are often operated by a single pilot due to space and 

takeoff weight limitations. The regulation has therefore been criticized by HEMS operators, who have 

expressed concern over the loss of highly experienced personnel and the endangerment of 

comprehensive HEMS coverage in Europe.
(28)

 Recruitment and training of new HEMS pilots is a 

lengthy process due to demanding entry requirements, and currently several operators rely on 

temporary exemptions from the Age 60 Rule for their affected pilots. Besides the potential adverse 

effect of the Age 60 Rule on HEMS operations, it may – depending on the retirement rules of the 

respective country – also put aging HEMS pilots into a precarious personal situation since grounding 

due to the rule is often not covered by loss-of-license insurances, with limited alternative employment 

opportunities (e.g., working as a flight instructor). 

Although HEMS pilots are held to the same standards of medical fitness as other professional pilots, 

they are subjected to a unique array of occupational demands and stressors including vibration, noise, 

thermal and postural stress, shift work, long working hours, unpredictable mission schedules, and 

emotionally demanding emergency patient encounters.
(29–33)

 They are required to conduct a complex 

high-stakes task under time pressure and potentially adverse environmental conditions.
(34)

 The accident 

rate in HEMS flights is also relatively high compared to other types of commercial air transport, with 

an average accident rate of 5.6 per 100,000 flight hours and an average yearly fatality rate of 113 per 

100,000 crewmembers between 1998 and 2007 in the United States (authors’ own calculation based 

on data from I. Blumen
(35)

). In Germany, the accident rate in the same time span was found to be 4.6 

per 100,000 missions (authors’ own calculation based on data from J. Hinkelbein et al.
(36)

). The degree 

to which age-related medical-cause sudden incapacitation risk plays a role in these figures is, however, 

unknown. 
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1.2. Study objective 

In an effort to further evaluate the empirical basis of the Age 60 Rule, we therefore aimed to assess 

age-related longitudinal change rates of common individual cardiometabolic risk markers, that is, 

systolic blood pressure (SBP), serum total cholesterol (TC), serum high-density lipoprotein cholesterol 

(HDLC), fasting glucose, body mass index (BMI), and heart rate-corrected electrocardiogram (ECG) 

Q-wave – T-wave interval (QTc interval), as well as an established summary score of overall 

cardiovascular risk, over approximately ten years in European HEMS pilots. Elevated SBP and TC 

and decreased HDLC are associated with the development of atherosclerotic cardiovascular disease.
(37)

 

Elevated fasting glucose and BMI are associated with the development of type 2 diabetes mellitus and 

thereby indirectly (though likely also directly) with cardiovascular disease.
(38,39)

 A prolonged QTc 

interval is predictive of cardiac arrhythmia and sudden death.
(40)

 Cardiovascular event occurrence is 

strongly related to common risk factors such as smoking and blood pressure in professional pilots (as 

in the general population).
(41)

 Investigating cardiometabolic risk markers therefore offers a feasible 

way to study the incapacitation risk in the small and healthy population of active HEMS pilots. In the 

analysis, we focus on comparing the direction and magnitude of risk marker change rates between 

pilots approaching the critical age threshold of 60 years and the remaining pilots. 

2. METHODS 

2.1. Study design and setting 

In this retrospective cohort study we analyzed mandatory aeromedical examination records of active 

HEMS pilots employed in 2015/2016 with one of five air rescue organizations (two based in Germany 

and one each in Austria, Poland, and the Czech Republic) operating about two thirds of all HEMS 

bases in these countries. Examination records were requested from physicians or medical centers 

which the consenting pilots had visited for medical certification during the ten-year period prior to 

study participation.
(42)

 Examinations include personal and family history, tobacco, alcohol and 

medication use, a clinical inspection, and a number of basic clinical measurements (e.g., 

anthropometrics, blood pressure, hemoglobin). Intermittently, further examinations such as resting 
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ECG are required. Further procedures can be requested as deemed necessary by the examiner. This 

often includes laboratory markers related to cardiovascular risk (e.g., blood lipids), although there is 

currently no regulatory prescription for a periodic measurement of these markers. 

Participant recruitment took place within the overarching framework of a study on age and flight 

safety which also investigated pilot simulator performance and flight incidents.
(43)

 The study had been 

approved by the Ethics Committee at the Medical Faculty of LMU Munich (Project No. 466-15), and 

written informed consent had been obtained from all study participants, prior to data collection. 

2.2. Participant selection 

During the data collection period from September 2015 to October 2016, active HEMS pilots from the 

five air rescue organizations completing a check or training flight session at training sites in Hangelar, 

Germany, or Warsaw, Poland, were either personally approached for participation by a research team 

member or a flight training instructor of the respective organization, or were contacted via their 

organization’s internal communication channels. Recruitment was consecutive with an additional 

effort to oversample pilots near or above age 60 by identifying and contacting these pilots in advance. 

Pilots who agreed to participate in the medical study part were asked to provide names and addresses 

of the physicians and medical centers, and release them from their non-disclosure duty concerning 

aeromedical examination records from the relevant period of time. 

2.3. Data collection & processing 

Signed release forms with a request for transfer of full aeromedical examination documents were 

mailed to all specified physicians/centers, and a reminder letter was sent after four weeks. If the 

reminder also did not elicit a response, we made at least one more contact attempt via telephone or 

email. We received documents from 23 physicians/centers, dated between April 2004 and July 2016. 

Documents were partly in electronic and partly in paper form and can be categorized into the 

following main classes: (a) standardized examination application and report forms according to 

European regulations, (b) laboratory measurements, (c) printouts of examination procedures (e.g., 

ECG), and (d) other medical examiner report forms or questionnaires (e.g., from military). They were 
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in Czech, Polish, or German language but were either in a known standardized format or used standard 

medical terminology. 

All documents were searched for information concerning the variables of interest (see next section). 

Data entry was conducted according to a coding manual developed after a review of the received 

documents prior to data entry and continuously revised during the data entry process. Both manual and 

algorithmic quality control of entered data (plausibility and consistency checks) was conducted. 

2.4. Analysis variables 

2.4.1. Exposure variables 

We calculated age at examination as time from date of birth to examination date. For this purpose, we 

grouped all documents into half-year periods (“examinations”) from January to June and July to 

December, based on the actual dates of the corresponding examination procedures, and then assigned 

to each document the average date of the set of all documents within its respective half-year 

(“examination date”). This allowed the matching of examination procedures in close temporal 

proximity while maintaining a reasonable degree of temporal resolution. Time since first available 

assessment was determined as the difference between age at current examination and age at first 

available outcome assessment. We further classified each pilot as either “older” (aged 60 and over at 

last available examination) or “younger” (all remaining). 

2.4.2. Confounding and auxiliary variables 

Based on the pilot’s country of birth, we defined region of Europe as “East Europe” (Czech Republic, 

Poland) or “West Europe” (Austria, Germany). Smoking status was defined as a binary variable where 

the pilot was classified as “current smoker” if in any document of a given examination, any indication 

of smoking was made. We logically imputed smoking status for examinations without smoking status 

information by assigning the value of the temporally closest examination with available information. 

Current use of blood pressure- and of lipid-lowering drugs were defined as binary variables, and coded 

and imputed in an analogous manner as described for smoking status. 
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2.4.3. Outcome variables 

Resting SBP and BMI information was obtained from physician report forms. BMI was re-calculated 

from height and weight information whenever possible. Serum TC and HDLC as well as fasting 

plasma glucose measurements were abstracted from laboratory reports. QTc interval was calculated 

from uncorrected QT interval and RR interval (=inverse heart rate) information on ECG printouts 

wherever possible, using Bazett’s formula (𝑄𝑇𝑐(𝑚𝑠) =
𝑄𝑇(𝑚𝑠)

√𝑅𝑅(𝑠)
); otherwise, QTc values as provided 

on the documents were used. If several measurements of a biomarker had been taken over the six-

month period of a given examination, we used their arithmetic mean. Fatal cardiovascular event risk 

within the next six months was estimated using the SCORE (Systematic Coronary Risk Evaluation) 

equation
(44)

 based on sex, region of Europe, age, smoking status, systolic blood pressure, and total 

cholesterol. Using a six-month period instead of the customary ten-year period gives a more accurate 

picture of the absolute risk of a fatal cardiovascular event in between HEMS pilots’ aeromedical 

examinations. 

2.5. Statistical Analysis 

2.5.1. Descriptive analyses 

We calculated descriptive statistics for the first and last available assessment of each outcome variable 

as well as the average follow-up time between these assessments (follow-up time varied both between 

outcomes and pilots), stratified by region of Europe and age category. 

2.5.2. Main analyses 

For each outcome variable, we fitted a linear mixed model (LMM)
(45)

 including a random intercept and 

fixed effects for region of Europe, age at first available outcome assessment, and time since first 

available assessment, to account for age and aging effects. SCORE risk was log-transformed prior to 

analysis to normalize its strongly skewed distribution, but results are presented in the natural scale 

(thereby assuming multiplicative covariate effects). Models of SBP and cholesterol additionally 

included, respectively, current blood pressure-lowering and lipid-lowering drug use as covariates. The 

SCORE risk model included a variable indicating current use of either of these two drug types. To test 
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if any differences exist in the aging-related change rate of outcomes between HEMS pilots near the 

critical age of 60 and younger pilots, we allowed the slope of time since first available assessment to 

differ between “younger” and “older” pilots by including an interaction term between the binary age 

indicator and time. To maximize model parsimony, we did not include the age category main effect, 

assuming that any baseline age effects were accounted for by the continuous variable “age at first 

available assessment”. In order to assess the degree of unexplained heterogeneity between pilots 

relative to what can be explained by pilot age(ing), we compared change in Akaike’s Information 

Criterion (AIC) upon adding the fixed effects to the model after the random intercept to the 

corresponding change upon adding the random intercept after the fixed effects. We also calculated 

intraclass correlation coefficients (ICC), which quantify the degree to which variation is due to time-

stable differences between persons rather than intraindividual change.
(46)

 Finally, to give an overall 

impression of age-related change in predicted cardiovascular risk across the age range, we used a 

generalized additive model
(47)

 to nonlinearly regress SCORE 6-month risk on age at examination 

separately in East and West European HEMS pilots, allowing for pilot-specific random intercepts. 

2.5.3. Sensitivity analyses 

To explore differences between East and West European HEMS pilots in the aging-related changes, 

we refitted all LMMs separately for these two pilot groups. We also repeated all LMM analyses 

including smoking status as a covariate. 

2.5.4. Software 

All analyses were carried out using R (version 3.3.2).
(48)

 We used the packages nlme and mgcv, 

respectively, for linear mixed model and generalized additive model analyses. 

3. RESULTS 

3.1. Description of participants 

Of 155 HEMS pilots targeted for participation, 75 (48.4%) agreed to participate. We obtained medical 

records for 66 of these (see Figure 1), 10 of whom had passed the age of 60 at their last available 

examination. The number of examinations available for each pilot ranged from 1 to 22 (mean: 14.8), 
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with an average follow-up duration of 8.52 years (full details are provided in Supplementary Table 

SI). In general, follow-up was longer for East European compared to West European pilots, and the 

proportion of pilots aged 60 and over at the last available examination was much larger in the latter. 

Tables I and II give a descriptive impression of aging-related changes in auxiliary variables and risk 

marker levels, respectively. 

3.2. Main results 

The results of the LMM analyses are summarized in Table III. With regards to the main comparison of 

interest, that is, the difference in risk marker developments over follow-up time between “younger” 

and “older” pilots, the following pattern emerges: SBP changes little over time in younger pilots but 

appears to increase faster in the older pilots, although this finding is affected by large estimation 

uncertainty. QTc increases with aging in the younger pilots, and this increase appears to persist in the 

older pilots, although again with large estimation uncertainty. Developments in the remaining risk 

markers are in favor of the older pilots, as indicated by significant interaction effects: The aging-

related increase in BMI and fasting glucose observable in younger pilots is notably reduced in older 

pilots, and their lipid profile improves over time, whereas it stays unchanged in the younger group. 

This improvement in cardiometabolic risk marker profile also impacts upon the SCORE risk 

development. Although it clearly increases with age – unsurprisingly, since SCORE risk values are 

deterministically calculated from age (and other risk markers) –, risk is estimated to increase by a 

factor of 1.09 per year in the older pilots, as opposed to 1.17 in the group of younger pilots. That is, 

the aging-related relative risk increase in older pilots is approximately half of that in younger pilots. 

ICCs reveal considerable time-stable differences between pilots in cardiometabolic risk markers 

(Table IV); 41% (fasting glucose) to 95% (BMI) of their variation is estimated to be due to 

unexplained between-pilot heterogeneity. In fact, accounting for unobserved time-stable pilot 

characteristics generally leads to much larger improvements in AIC model fit than age, aging, region, 

and medication taken together. 

SCORE risks of fatal cardiovascular events within the next six months, as estimated by the generalized 

additive model, are shown in Figure 2 to give an impression of the overall relation between age and 



2. Publication 1: Age(ing) and cardiometabolic risk in HEMS 31 

 

cardiovascular risk. Depending on age and region and under the assumption of no current blood 

pressure or lipid lowering drug use, risks are between 0 and 0.3%. Compared to SCORE risks of 

hypothetical individuals of the same age and region with an ideal modifiable risk factor profile (non-

smoker, SBP 120 mmHg, TC 4 mmol/l) as a lower bound, estimated risks for HEMS pilots across the 

age range are about 50-100% larger. Since Poland and Czech Republic are classified as “high-risk” 

countries with a high cardiovascular mortality base rate, SCORE risk estimates are much higher for 

pilots from these countries, compared to German and Austrian pilots. 

3.3. Results of sensitivity analyses 

Including smoking as a covariate in the LMMs did not appreciably change the results presented in the 

previous section (Supplementary Table SII). Linear mixed models stratified by region suggest that 

SBP and QTc may particularly increase in older West European pilots (see Supplementary Table SIII). 

The favorable changes in BMI, HDLC, and fasting glucose are more pronounced in West, compared to 

East European older pilots, whereas the opposite is true for the favorable changes in TC. Given the 

fact that SCORE risk is partly determined by SBP and TC, these patterns may explain that the 

deceleration in relative SCORE risk increase in older pilots reported above is primarily present in the 

East European pilots in the stratified analysis. However, these results should be considered with great 

caution due to the, in part, extremely small sample sizes (see Supplementary Table SI). 

4. LIMITATIONS 

A major limitation of our study is its small sample size and the associated large estimation uncertainty, 

especially regarding the critical group of pilots aged 60 and over. This is partly due to the very 

existence of the Age 60 Rule itself, which makes it very hard to find active professional pilots aged 60 

and over in the already small population of HEMS pilots. Data collection was further complicated by 

multiple stages of sample attrition: Several pilots did not respond to or declined our request for 

participation. The sensitive nature of the information involved, which is highly relevant to the pilots’ 

livelihood (continued certification of aeromedical fitness), likely is an important factor in this regard. 

Data then had to be obtained from many different centers and physicians, where again a sizable 

proportion (15 out of 38) did not respond. Moreover, the volume of received records strongly varied 
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between sources; generally, aeromedical centers sent more extensive records. Data for East European 

pilots mainly came from such centers, whereas the data source for West European pilots were 

predominantly small private practices, explaining the follow-up time differences present in our data. 

In contrast, the number of active East European HEMS pilots aged 60 and over available to the study 

was much lower than initially expected, leading to disparate age distributions in East and West 

European pilots. Therefore, it was difficult to properly separate aging effects in East and West 

European pilots. In Europe, there is a persistent positive West-East gradient in cardiovascular disease 

burden,
(49,50)

 but it is unclear to which degree this gradient also applies to professional pilots. Our 

stratified analyses suggested that the differences in risk marker developments between older and 

younger HEMS pilots were not homogeneous between the East and West European subgroups, 

although the small sample sizes involved prohibit more detailed or confident statements. 

Finally, there was no possibility for us to confirm the validity of the findings documented in the 

examination records. The records came from different sources employing different procedures, 

materials, and documentation routines. Although we analyzed only well-established, easy-to-measure 

outcomes, it is possible that variation in measurement and documentation quality decreased the 

reliability of our results;
(51)

 it is, however, not apparent that this would systematically bias the central 

comparison (aging-related change in markers in younger vs. older pilots). 

5. DISCUSSION 

In this longitudinal study, we investigated age-related changes in cardiometabolic risk markers among 

male European HEMS pilots to assess the validity of the “Age 60 Rule” in civil aviation regulations, 

which is – in the debate surrounding the rule – often justified on grounds of a possibly greater 

incapacitation risk in older pilots. We found that overall, compared to younger pilots, the development 

of the risk marker profile does not appear worse in pilots near age 60. In these older pilots, we 

observed a notable deceleration of aging-related BMI, fasting glucose, and cardiovascular risk score 

increases, and an improvement in lipid profile (total and HDL cholesterol) over time. Although 

affected by high estimation uncertainty, there was a tendency for systolic blood pressure to increase 

more rapidly over time in older pilots, and aging-related QTc interval increases already evident in the 
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younger group appeared to persist. Large proportions of risk marker level variation were attributable 

to unexplained time-stable interindividual differences, rather than to observed variables. Fatal 

cardiovascular event risk within 6 months was estimated between 0 and 0.3%. 

For several cardiometabolic risk factors (SBP, TC, fasting glucose, BMI), general population surveys 

have found an age-related increase in early and middle adulthood, which at some point in late 

adulthood appears to flatten or even reverse. In the case of TC and BMI, this may be as early as age 

50-55, whereas it appears to occur later in the other risk factors, especially SBP.
(52,53)

 The changes in 

developments seen in the older pilots in our sample may therefore simply reflect these trends. On the 

other hand, given that abnormal cardiovascular risk factor levels during aeromedical examinations 

usually lead to further diagnostic measures and in some cases to license revocations or restrictions 

(particularly, a requirement to fly multi-pilot only), a “healthy worker survivor” selection process
(25,54)

 

may also contribute to the beneficial changes observed in the older pilots. 

Regardless of the reason for the observed age-related risk marker developments, they translate into a 

slowed increase in cardiovascular event risk. This is reflected in the slowed aging-related relative 

increase of the SCORE risk in the older HEMS pilots. Current European guidelines recommend the 

use of SCORE at ages 40-65,
(37)

 which corresponds closely to the age range of interest here. Note that 

the deceleration is with regard to relative risk. In terms of absolute risk differences, the increase is 

larger in the older, compared to the younger pilots. However, the same is true when comparing, for 

example, a 40-year old to a 50-year old pilot; this argument therefore does not per se justify an age 

threshold of 60. 

Another noteworthy aspect is the difference in estimated cardiovascular risk between West and East 

European pilots due to the classification of Poland and the Czech Republic as “high-risk” countries in 

current guidelines
(37)

 because of their higher baseline levels of cardiovascular mortality. Whether this 

baseline difference also applies in the population of professional pilots is unknown. Furthermore, 

mortality differences between countries may not translate to corresponding differences in disease 

incidence, as case fatality rates may differ. A recently published cardiovascular risk score estimating 

fatal and nonfatal event risk calibrated to current baseline event rates in different countries suggests 
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that 10-year event incidence in non-diabetic men aged 40-65 may actually be fairly similar in the four 

countries represented in our sample.
(55)

 

Overall incidence is a more relevant outcome concerning flight safety than fatal event incidence, 

which underestimates the expected number of pilot incapacitations. On the other hand, available 

cardiovascular risk scores are calibrated to the general population, where incidence is higher than in 

professional pilots,
(25,56)

 so that these biases tend to cancel each other out.
(57)

 We chose SCORE as it 

allowed estimation of six-month risks instead of the usual ten-year risks, thus giving a more realistic 

approximation of the actual risk of cardiovascular incapacitation during the certificate validity period. 

The predicted risks, ranging between 0 and 0.3%, refer to in- and out of cockpit-time; the probability 

of an in-flight incapacitation event is correspondingly lower and additionally depends on the 

proportion of time spent flying. 

For example, for a high-risk pilot (6-month predicted risk of 0.3%) flying on average 200 hours per 

half-year, the likelihood of an in-flight cardiovascular incapacitation during this half-year period 

would be estimated in-between 0.01 and 0.02%, given that a half-year approximately has 4,400 hours 

and assuming a constant hazard rate. More generally, in pilots with this risk level (which is at the very 

high end of our sample), the event rate would be 0.07 per 100,000 flight hours. Compared with the 

overall reported HEMS accident rates, for example 5.6 per 100,000 flight hours in the United 

States,
(35)

 or 4.6 per 100,000 missions in Germany,
(36)

 this seems to be a very minor factor; indeed, 

discussion of medical conditions as causes or contributory factors is virtually absent in reports on 

human factors issues in HEMS and commercial aviation accidents, and often do not feature at all in 

the included listings of causes (although it is hard to ascertain whether medical aspects may be 

subsumed under the listed categories).
2,(34,59)

 

Nevertheless, there is a strong sentiment among the public and regulators to take measures to control 

accident risk due to medical-cause pilot incapacitation – perhaps not least due to cognitive heuristics 

assigning a greater weight to abrupt, dramatic and seemingly uncontrollable events such as 

                                                     
2
 Also, where in-flight medical-cause incapacitations actually occur, most of the underlying conditions appear to 

be unrelated to aging (e.g., gastroenteritis, sinus conditions or headache).
(58)
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cardiovascular in-flight incapacitations than to, say, the much more common scenario of inadvertent 

flight into poor weather followed by spatial disorientation or loss of aircraft control.
(60)

 

The issue of risk perception in aircraft accident causes that is mirrored in this sentiment had already 

been noted by Mason in 1974: “passengers have far less to fear from disease as a cause of aircraft 

accidents than might be supposed from the publicity which attend [sic] the subject”.
(61)

 In the case of 

older professional pilots, such biases might be amplified by old-age stereotypes which still appear to 

be prevalent in the occupational context despite recent anti-discrimination efforts.
(62)

 At the same time, 

beneficial effects of flight experience on accident risk
(63,64)

 and the healthy worker survivor selection 

phenomenon appear to receive less attention. In our view, the most transparent, rational and fair way 

to resolve this issue would be to explicitly set levels of acceptable risk. The question of what level of 

risk is acceptable is, however, a normative problem. The weighting of the involved goods, such as 

flight safety and emergency response efficiency may be informed, but cannot be solved, by empirical 

findings alone. 

The outcomes we studied are only surrogate endpoints for actual cardiovascular events. However, the 

rarity of these events in professional pilots makes their investigation challenging, even more so in the 

rather small subgroup of HEMS pilots. In 2004, 22 of 16,145 United Kingdom professional pilots 

(0.14%) suffered an incapacitating cardiovascular event or sudden death.
(65)

 As of 2013, there were 

about 350 HEMS bases in Europe.
(66)

 Assuming – very liberally – an average of six pilots per base, 

that is, about 2,100 active European HEMS pilots, 2.94 cardiovascular incapacitations would be 

expected to occur within one year. Moreover, no reports of actual HEMS accidents caused by pilot 

cardiovascular incapacitation appear to exist. Thus, investigating actual cardiovascular events in 

HEMS pilots would require a larger multinational effort (e.g., in the form of a case-control study). 

Within the scope of the present work, longitudinally assessing surrogate outcomes in the form of risk 

markers was therefore the only feasible option. Cardiovascular risk factors and scores were shown to 

be related to 5-year event incidence in professional pilots.
(41)

 In the long run, the establishment of a 

cross-country harmonized database of aeromedical findings appears to be the only way to enable 

systematic investigations of incapacitating events in the small but healthy group of professional pilots. 
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6. CONCLUSION 

To summarize, we found no indication of a worsening cardiometabolic risk marker profile in West and 

East European male HEMS pilots as they approached the age threshold for single-pilot commercial air 

transport operations of 60 years currently prescribed in the European Union (and other jurisdictions) 

compared to younger pilots. Our results therefore give no empirical support to the “Age 60 Rule”, in 

line with the majority of earlier investigations of this long-discussed rule.
(13)

 On the other hand, age 

clearly is a powerful predictor of cardiovascular events as it subsumes inexorable degenerative 

processes and cumulative exposures to risk factors like dyslipidemia.
(67)

 The large time-stable 

interindividual variability in risk markers we found implies large differences in accumulated 

cardiovascular burden. To balance continued provision of comprehensive HEMS and optimal flight 

safety, we would therefore suggest as a short-term solution a one-off coronary artery calcium (CAC) 

scan at age 60 to guide the decision whether a pilot may continue flying single-pilot,
(68)

 as this method 

captures cumulative effects of degenerative and pathological vascular processes and has a very high 

negative predictive value.
(69–71)

 In the long term, to avoid unnecessary costs, radiation burden, and 

reduce false-positive findings, individualized risk scoring using an appropriately calibrated
(72)

 

prediction algorithm should be systematically applied well before age 60. Classical risk factor 

assessments should be considered longitudinally in terms of progression and accumulated burden, and, 

where appropriate, combined with modern diagnostic methods such as CAC. A longitudinal approach 

would be helpful in guiding preventive efforts and avoiding a single critical examination procedure 

which may result in a sudden forced grounding and which by itself acts as a job stressor that may 

threaten pilots’ well-being, motivation, and flight safety.
(73)

 

As others before us,
(18,19)

 we thus recommend to eventually replace the general age threshold of 60 by 

a more individualized risk assessment with cardiovascular risk as only one (and likely a minor) aspect. 

Pilots already regularly need to undergo proficiency testing (and in some cases additionally line 

checks) to examine flight competency, and these could be modified and standardized for the specific 

case of the aging pilot to focus on cognitive and psychomotor capabilities known to decline on average 

with age, such as time sharing,
(74)

 memory,
(75)

 and performance speed.
(76)

 However, the development of 

ecologically valid, standardized, and practicable performance testing procedures is likely to be a 
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complex and resource-intensive endeavor. Specialized neuropsychological test batteries such as 

CogScreen-AE
(77)

 may offer a feasible alternative, although in interpreting the results, it should be kept 

in mind that these might not fully capture the potentially beneficial effects older pilots’ experience on 

actual flight performance.
(78)

 Also, note that any type of performance testing for the purpose of 

selection will ultimately face the same issues of cutoff arbitrariness and sensitivity-specificity tradeoff 

as do cardiovascular risk scores, age, or any other pilot characteristics, for that matter. Independently 

of individual performance testing, a comprehensive risk management approach should also consider 

modifications of the operational environment to minimize accident risk (see, e.g., reference 
(34)

 for the 

case of HEMS). 

Given the minor role of medical-cause sudden incapacitation in actual flight accidents, as well as the 

sensitivity-specificity-tradeoff noted above, one may even ask whether efforts invested into 

cardiovascular risk prediction in asymptomatic pilots were not better spent looking into the root causes 

of the more common accident scenarios, or focusing on actual flight performance and operational 

environment. Such a fundamental reorientation of risk management practice would, however, likely 

require a major shift in public thinking about risk. In the meantime, the development of a transparent, 

evidence-based cardiovascular risk assessment procedure, coupled with clearly defined acceptable risk 

levels, is a practicable solution that is less arbitrary than general age thresholds. The knowledge base 

and know-how acquired in the process could also prove beneficial to other occupational fields facing 

potential public safety risks associated with workforce aging. 
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TABLES 

Table I. Descriptives for binary variables and mean age at first and last available assessment for pilots with ≥2 assessments of the respective variable, by region of Europe and 

pilot age 

 East
a
 West

a
 Total 

Younger
b
 Older

b
 Total Younger

b
 Older

b
 Total Younger

b
 Older

b
 Total 

n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ n % Age̅̅ ̅̅ ̅ 

Smoking First 11 0.28 39.6 1 0.50 53.0 12 0.29 40.2 1 0.07 46.2 1 0.14 55.8 2 0.09 49.3 12 0.22 41.4 2 0.22 55.1 14 0.22 43.3 

Last 12 0.30 48.5 0 0.00 62.1 12 0.29 49.2 1 0.07 54.1 0 0.00 61.1 1 0.05 56.3 13 0.24 50.0 0 0.00 61.3 13 0.20 51.6 

BP lowering 

drugs 

First 1 0.03 41.6 0 0.00 53.0 1 0.02 42.2 1 0.07 46.2 0 0.00 55.8 1 0.05 49.3 2 0.04 42.9 0 0.00 55.1 2 0.03 44.6 

Last 4 0.10 49.1 1 0.50 62.3 5 0.12 49.7 3 0.20 54.1 1 0.14 61.1 4 0.18 56.3 7 0.13 50.5 2 0.22 61.3 9 0.14 52.0 

Lipid lowering 

drugs 

First 1 0.03 41.6 0 0.00 53.0 1 0.02 42.2 0 0.00 46.2 0 0.00 55.8 0 0.00 49.3 1 0.02 42.9 0 0.00 55.1 1 0.02 44.6 

Last 4 0.10 49.1 0 0.00 62.3 4 0.10 49.7 1 0.07 54.1 0 0.00 61.1 1 0.05 56.3 5 0.09 50.5 0 0.00 61.3 5 0.08 52.0 

BP: Blood pressure. Age̅̅ ̅̅ ̅: Mean age. 
a
“East”/“West”: Czech Republic, Poland/Germany, Austria. 

b
“Younger”/“Older”: Aged <60/≥60 yrs. at last available examination. 
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Table II. Descriptives for quantitative variables and mean age at first and last available assessment for pilots with ≥2 assessments of the respective variable, by region of Europe and pilot age 

 East
a
 West

a
 Total 

Younger
b
 Older

b
 Total Younger

b
 Older

b
 Total Younger

b
 Older

b
 Total 

M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ M SD Age̅̅ ̅̅ ̅ 

SBP [mmHg] First 128 11 39.7 138 4 53.0 128 11 40.3 130 11 46.8 123 11 55.8 128 11 49.6 128 11 41.7 126 12 55.1 128 11 43.6 

Last 131 13 48.5 134 6 62.3 131 12 49.2 129 10 53.7 126 15 61.1 128 11 55.9 131 12 50.0 128 14 61.3 130 12 51.6 

QTc [ms] First 393 15 38.6 375 --- 52.7 392 15 39.1 406 28 46.9 406 5 56.5 406 24 49.3 397 21 41.3 400 15 55.7 397 20 43.0 

Last 403 23 46.7 422 --- 63.2 404 23 47.4 406 18 55.1 415 17 60.8 408 18 56.5 404 21 49.4 416 15 61.3 406 21 50.8 

BMI [kg/m²] First 26.4 3.3 39.6 29.5 4 53.4 26.6 3.4 40.3 25.8 3 46.6 27.8 2.5 55.8 26.4 2.9 49.4 26.3 3.2 41.7 28.2 2.7 55.2 26.5 3.2 43.6 

Last 27.4 3.4 48.7 30 2.8 62.3 27.6 3.4 49.4 26.3 3.5 53.7 27.6 2.6 61.1 26.7 3.3 55.9 27.1 3.4 50.2 28.1 2.7 61.3 27.3 3.4 51.7 

TC [mmol/l] First 5.3 1.1 40.3 5.5 0.8 53.5 5.3 1.1 41.0 5.7 0.7 46.8 4.7 0.5 54.2 5.4 0.7 48.7 5.4 1.0 41.8 5.0 0.7 54.0 5.4 1.0 43.1 

Last 5.2 0.9 48.5 5.3 0.5 62.3 5.2 0.8 49.1 5.5 0.8 52.9 4.8 0.5 60.2 5.4 0.8 54.7 5.3 0.8 49.5 4.9 0.5 60.9 5.2 0.8 50.7 

HDLC [mmol/l] First 1.4 0.2 40.8 1.8 --- 53.2 1.4 0.3 41.2 1.4 0.4 46.3 1.5 0.3 55.7 1.4 0.4 48.3 1.4 0.3 42.1 1.6 0.3 55.0 1.4 0.3 43.2 

Last 1.4 0.4 47.4 2.0 --- 61.5 1.4 0.4 47.8 1.3 0.3 52.3 1.8 0.2 61.1 1.4 0.4 54.2 1.4 0.3 48.6 1.9 0.2 61.2 1.4 0.4 49.6 

Glu [mmol/l] First 5.3 0.5 40.5 5.3 0.1 53.5 5.3 0.5 41.1 4.8 1.1 47.6 5.4 0.7 54.0 4.9 1.0 49.3 5.2 0.7 42.0 5.3 0.5 53.8 5.2 0.7 43.3 

Last 5.3 0.4 48.3 5.7 1.0 62.3 5.3 0.5 48.9 4.7 1.0 52.2 4.8 0.4 60.2 4.7 0.9 54.3 5.2 0.6 49.1 5.1 0.7 60.9 5.2 0.6 50.3 

SCORE 

(6 months) [%]c 

First 0.03 0.04 40.4 0.1 0.02 53.5 0.03 0.04 41.0 0.02 0.02 47.0 0.04 0.03 55.5 0.03 0.02 49.3 0.03 0.04 41.8 0.06 0.03 54.8 0.03 0.04 43.2 

Last 0.07 0.07 48.5 0.2 0.02 62.3 0.08 0.07 49.1 0.05 0.02 53.5 0.07 0.04 58.9 0.05 0.03 54.9 0.07 0.06 49.6 0.11 0.07 60.1 0.07 0.06 50.7 

M: Mean. SD: Standard deviation. Age̅̅ ̅̅ ̅: Mean age. SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: 

Fasting glucose. SCORE: Systematic Coronary Risk Evaluation. ---: One individual only, standard deviation not estimable. a“East”/“West”: Czech Republic, Poland/Germany, Austria. b“Younger”/“Older”: Aged 

<60/≥60 yrs. at last available examination. cProbability to suffer a fatal cardiovascular event within 6 months as estimated by the SCORE algorithm. 
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Table III. Linear mixed model coefficients for cardiometabolic risk factors and fatal cardiovascular disease risk prediction in HEMS pilots. 

 SBP [mmHg] QTc [ms] BMI [kg/m²] TC [mmol/l] HDLC [mmol/l] Glu [mmol/l] SCORE (6 m.) [%]a,b 

Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI 

Interceptc  126.6 122.7, 130.6 402.2 393.1, 411.3 25.3 23.7, 26.9 5.29 4.87, 5.71 1.25 1.08, 1.41 4.7 4.45, 4.95 0.004 0.003, 0.005 

East Europeand  3.48 -1.05, 8.00 -10.37 -21.58, 0.83 1.28 -0.63, 3.19 0.01 -0.46, 0.47 0.19h 0.01, 0.38 0.45h 0.18, 0.72 2.78h 2.14, 3.62 

Relevant 

medicatione 

 -0.70 -3.92, 2.53 --- --- --- --- -1.35h -1.60, -1.10 -0.06 -0.16, 0.05 --- --- 0.73h 0.66, 0.81 

Age at first 

available assess-

ment [yrs.]f 

 0.01 -0.25, 0.27 0.36 -0.26, 0.98 0.09 -0.02, 0.19 0.02 -0.01, 0.04 0.02h 0.00, 0.03 0.02h 0.00, 0.03 1.19h 1.18, 1.21 

Time since first 

available assess-

ment [yrs.] 

Youngerg 0.05 -0.14, 0.24 1.2h 0.75, 1.69 0.12h 0.10, 0.14 -0.01 -0.02, 0.01 -0.01 -0.01, 0.00 0.02h 0.00, 0.03 1.17h 1.16, 1.18 

Olderg 0.21 -0.38, 0.79 1.34 -0.48, 3.15 0.03 -0.04, 0.08 -0.07h -0.13, -0.02 0.04h 0.01, 0.06 -0.03 -0.07, 0.01 1.09h 1.05, 1.12 

Differenceg 0.16 -0.45, 0.76 0.12 -1.75, 1.98 -0.10h -0.16, -0.04 -0.07h -0.12, -0.01 0.04h 0.01, 0.07 -0.05h -0.09, -0.01 0.93h 0.90, 0.95 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: 

Systematic Coronary Risk Evaluation. CI: Confidence interval. aProbability to suffer a fatal cardiovascular event within 6 months as estimated by the SCORE algorithm. bCoefficients are multi-

plicative for this outcome (vs. additive for all others). c40-yr. old West European not currently using relevant medication, at first available assessment. dPilot from Czech Republic or Poland (vs. 

Germany or Austria). eSBP: Blood-pressure lowering drugs, TC, HDLC: Lipid-lowering drugs, SCORE: Either type of drug. fCentered at 40 years. g“Younger”/“Older”: Time effect for pilots 

aged <60/≥60 yrs. at last available examination, “Difference”: Difference between these effects. h95% CI for covariate effect does not include null value (1 for SCORE, 0 for all other outcomes). 
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Table IV. Linear mixed model measures of unexplained heterogeneity for cardiometabolic risk factors and fatal cardiovascular disease risk prediction in 

HEMS pilots. 

 SBP 

[mmHg] 

QTc 

[ms] 

BMI 

[kg/m²] 

TC 

[mmol/l] 

HDLC 

[mmol/l] 

Glu 

[mmol/l] 

SCORE (6 m.) 

[%]
a
 

ΔAIC
b
 All fixed effects added 

to random intercept 

+6.0 -26.6 -158.0 -100.4 -12.3 -12.0 -899.7 

 Random intercept added 

to all fixed effects 

-301.7 -126.1 -2,184.8 -385.4 -357.6 -136.9 -372.9 

ICC [%]  44.8 45.5 94.8 61.9 68.8 40.5 68.3 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein 

cholesterol. Glu: Fasting glucose. SCORE: Systematic Coronary Risk Evaluation. AIC: Akaike’s Information Criterion. ICC: Intraclass coefficient. 

a
Probability to suffer a fatal cardiovascular event within 6 months as estimated by the SCORE algorithm. 

b
Based on maximum likelihood estimation. 
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FIGURES 

 

Fig. 1. Study participation by age and region of origin. 
a
“East”/“West”: Czech Republic, 

Poland/Germany, Austria 

  

Medical data 

obtained: 66 (977) 

 East West  
< 40 4 (33) 1 (2) 
40 – 49 14 (181) 2 (15) 
50 – 59 22 (392) 13 (221) 
≥ 60 2 (38) 8 (95)  

Age as of last available examination 
No. of examinations in parentheses 

No medical data obtained: 89 

  

Declined participation 32 

No response 47 

No records received 

from physician / center 9 

No data collected 1 

Targeted for 

participation: 155 

 East
a

 West
a

  
Unknown 6 17 
< 40 6 3 
40 – 49 20 4 
50 – 59 34 49 
≥ 60 4 12  

Age as of 31 Dec 2015 
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Fig. 2. SCORE risk of fatal cardiovascular event within six months, by age. Solid lines: GAM 

estimates (with 95% pointwise confidence intervals) for East European (Polish, Czech; dark shade) 

and West European (Austrian, German; light shade) pilots not currently using blood pressure or lipid 

lowering drugs. Dashed/dotted line: SCORE risk of man from same country with ideal modifiable 

cardiovascular risk profile (SBP 120 mmHg, TC 4 mmol/l, nonsmoker). Actual data points in 

background as dots with interpolating lines between measurements in same individual. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table SI. Number of subjects, number of observations, and average follow-up duration by region of Europe, and pilot age 

 Easta Westa Total 

Youngerb Olderb Total Younger Older Total Younger Older Total 

Smoking ≥1 available 
assessmentsc 

Avg. FU 8.94 9.13 8.95 7.86 4.63 6.74 8.65 5.53 8.17 

# Obs. 573 33 606 221 74 295 794 107 901 

# Subj. 40 2 42 15 8 23 55 10 65 

≥2 available 

assessmentsc 

Avg. FU 8.94 9.13 8.95 7.86 5.29 7.04 8.65 6.15 8.29 

# Obs. 573 33 606 221 73 294 794 106 900 

# Subj. 40 2 42 15 7 22 55 9 64 

Blood 

pressure 

lowering 
drugs 

≥1 available 

assessments 

Avg. FU 7.26 9.38 7.36 7.86 4.63 6.74 7.42 5.58 7.14 

# Obs. 483 35 518 221 75 296 704 110 814 

# Subj. 40 2 42 15 8 23 55 10 65 

≥2 available 

assessments 

Avg. FU 7.45 9.38 7.54 7.86 5.29 7.04 7.56 6.20 7.37 

# Obs. 482 35 517 221 74 295 703 109 812 

# Subj. 39 2 41 15 7 22 54 9 63 

Lipid 
lowering 

drugs 

≥1 available 
assessments 

Avg. FU 7.26 9.38 7.36 7.86 4.63 6.74 7.42 5.58 7.14 

# Obs. 483 35 518 221 75 296 704 110 814 

# Subj. 40 2 42 15 8 23 55 10 65 

≥2 available 

assessments 

Avg. FU 7.45 9.38 7.54 7.86 5.29 7.04 7.56 6.20 7.37 

# Obs. 482 35 517 221 74 295 703 109 812 

# Subj. 39 2 41 15 7 22 54 9 63 

SBP ≥1 available 

assessments 

Avg. FU 8.84 9.38 8.87 6.82 4.63 6.09 8.26 5.58 7.86 

# Obs. 574 35 609 196 67 263 770 102 872 

# Subj. 40 2 42 16 8 24 56 10 66 

≥2 available 

assessments 

Avg. FU 8.84 9.38 8.87 6.82 5.29 6.36 8.26 6.20 7.98 

# Obs. 574 35 609 196 66 262 770 101 871 

# Subj. 40 2 42 16 7 23 56 9 65 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: 

Systematic Coronary Risk Evaluation. FU: Follow-up in years. a“East”/“West”: Czech Republic, Poland/Germany, Austria. b“Younger”/“Older”: Aged <60/≥60 yrs. at last available 

examination. cAll pilots with at least one/two available assessment(s) of respective outcome.  
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Supplementary Table SI. Number of subjects, number of observations, and average follow-up duration by region of Europe, and pilot age 

 Easta Westa Total 

Youngerb Olderb Total Younger Older Total Younger Older Total 

QTc ≥1 available 
assessmentsc 

Avg. FU 8.19 10.48 8.27 7.49 2.48 5.74 7.95 3.48 7.17 

# Obs. 265 15 280 153 33 186 418 48 466 

# Subj. 25 1 26 13 7 20 38 8 46 

≥2 available 

assessmentsc 

Avg. FU 8.19 10.48 8.27 8.12 4.34 7.17 8.16 5.57 7.85 

# Obs. 265 15 280 152 30 182 417 45 462 

# Subj. 25 1 26 12 4 16 37 5 42 

BMI ≥1 available 

assessments 

Avg. FU 9.08 8.89 9.07 7.04 4.63 6.24 8.49 5.48 8.02 

# Obs. 562 33 595 201 75 276 763 108 871 

# Subj. 39 2 41 16 8 24 55 10 65 

≥2 available 

assessments 

Avg. FU 9.08 8.89 9.07 7.04 5.29 6.51 8.49 6.09 8.15 

# Obs. 562 33 595 201 74 275 763 107 870 

# Subj. 39 2 41 16 7 23 55 9 64 

TC ≥1 available 

assessments 

Avg. FU 8.15 8.88 8.18 5.64 3.39 4.85 7.53 4.61 7.11 

# Obs. 481 24 505 124 36 160 605 60 665 

# Subj. 40 2 42 13 7 20 53 9 62 

≥2 available 

assessments 

Avg. FU 8.15 8.88 8.18 6.11 5.93 6.07 7.68 6.91 7.60 

# Obs. 481 24 505 123 33 156 604 57 661 

# Subj. 40 2 42 12 4 16 52 6 58 

HDLC ≥1 available 

assessments 

Avg. FU 6.23 8.30 6.28 5.50 2.34 4.33 6.05 3.09 5.63 

# Obs. 302 8 310 114 26 140 416 34 450 

# Subj. 37 1 38 12 7 19 49 8 57 

≥2 available 

assessments 

Avg. FU 6.58 8.30 6.63 5.99 5.46 5.88 6.44 6.17 6.42 

# Obs. 300 8 308 113 22 135 413 30 443 

# Subj. 35 1 36 11 3 14 46 4 50 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: 

Systematic Coronary Risk Evaluation. FU: Follow-up in years. a“East”/“West”: Czech Republic, Poland/Germany, Austria. b“Younger”/“Older”: Aged <60/≥60 yrs. at last available 

examination. cAll pilots with at least one/two available assessment(s) of respective outcome.  
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Supplementary Table SI. Number of subjects, number of observations, and average follow-up duration by region of Europe, and pilot age 

 Easta Westa Total 

Youngerb Olderb Total Younger Older Total Younger Older Total 

Glu ≥1 available 
assessmentsc 

Avg. FU 7.76 8.88 7.82 3.86 3.09 3.57 6.81 4.25 6.40 

# Obs. 419 24 443 59 46 105 478 70 548 

# Subj. 40 2 42 13 8 21 53 10 63 

≥2 available 

assessmentsc 

Avg. FU 7.76 8.88 7.82 4.57 6.17 5.00 7.07 7.08 7.07 

# Obs. 419 24 443 57 42 99 476 66 542 

# Subj. 40 2 42 11 4 15 51 6 57 

SCORE ≥1 available 

assessments 

Avg. FU 8.12 8.88 8.16 5.49 1.97 4.26 7.48 3.50 6.90 

# Obs. 477 24 501 118 26 144 595 50 645 

# Subj. 40 2 42 13 7 20 53 9 62 

≥2 available 

assessments 

Avg. FU 8.12 8.88 8.16 6.49 3.44 5.68 7.77 5.26 7.51 

# Obs. 477 24 501 116 23 139 593 47 640 

# Subj. 40 2 42 11 4 15 51 6 57 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: 

Systematic Coronary Risk Evaluation. FU: Follow-up in years. a“East”/“West”: Czech Republic, Poland/Germany, Austria. b“Younger”/“Older”: Aged <60/≥60 yrs. at last available 

examination. cAll pilots with at least one/two available assessment(s) of respective outcome.  
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Supplementary Table SII. Linear mixed model coefficients for cardiometabolic risk factors and fatal cardiovascular disease risk prediction in HEMS pilots, including current smoking status as 

covariate. 

 SBP [mmHg] QTc [ms] BMI [kg/m²] TC [mmol/l] HDLC [mmol/l] Glu [mmol/l] SCORE (6 m.) [%]a,b 

Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI 

Interceptc  126.6 122.7, 130.6 402.3 393.1, 411.4 25.3 23.7, 26.9 5.30 4.87, 5.72 1.24 1.08, 1.41 4.70 4.45, 4.95 0.004 0.003, 0.005 

East Europeand  3.62 -0.94, 8.178 -10.31 -21.56, 0.95 1.33 -0.59, 3.24 -0.03 -0.51, 0.44 0.21h 0.03, 0.39 0.46h 0.18, 0.74 2.27h 1.80, 2.87 

Smoking  -0.54 -3.15, 2.08 -0.63 -8.39, 7.14 -0.25 -0.52, 0.03 0.16 -0.09, 0.40 -0.07 -0.16, 0.02 -0.05 -0.23, 0.14 2.13h 1.91, 2.38 

Relevant 

medicatione 

 -0.74 -3.98, 2.50 --- --- --- --- -1.34h -1.59, -1.08 -0.07 -0.17, 0.04 --- --- 0.79h 0.72, 0.86 

Age at first 

available assess-

ment [yrs.]f 

 0.02 -0.24, 0.28 0.36 -0.26, 0.98 0.09 -0.02, 0.20 0.01 -0.01, 0.04 0.02h 0.01, 0.03 0.02h 0.00, 0.03 1.18h 1.17, 1.20 

Time since first 

available assess-

ment [yrs.] 

Youngerg 0.05 -0.14, 0.24 1.22h 0.74, 1.69 0.12h 0.11, 0.14 -0.01 -0.02, 0.01 -0.01 -0.01, 0.00 0.02h 0.00, 0.03 1.17h 1.16, 1.17 

Olderg 0.19 -0.40, 0.78 1.33 -0.50, 3.15 0.02 -0.04, 0.08 -0.07h -0.12, -0.01 0.03h 0.01, 0.06 -0.03 -0.07, 0.01 1.10h 1.07, 1.13 

Differenceg 0.14 -0.47, 0.75 0.11 -1.76, 1.97 -0.11h -0.17, -0.04 -0.06h -0.12, -0.01 0.04h 0.01, 0.07 -0.05h -0.09, -0.01 0.94h 0.91, 0.97 

SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: 

Systematic Coronary Risk Evaluation. CI: Confidence interval. aProbability to suffer a fatal cardiovascular event within 6 months as estimated by the SCORE algorithm. bCoefficients are multi-

plicative for this outcome (vs. additive for all others). c40-yr. old West European not currently using relevant medication, at first available assessment. dPilot from Czech Republic or Poland (vs. 

Germany or Austria). eSBP: Blood-pressure lowering drugs, TC, HDLC: Lipid-lowering drugs, SCORE: Either type of drug. fCentered at 40 years. g“Younger”/“Older”: Time effect for pilots 

aged <60/≥60 yrs. at last available examination, “Difference”: Difference between these effects. h95% CI for covariate effect does not include null value (1 for SCORE, 0 for all other outcomes). 
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Supplementary Table SIII. Linear mixed model regression coefficients for cardiometabolic risk factors and fatal cardiovascular disease risk prediction in HEMS pilots, stratified by region of 

origin. 

 SBP [mmHg] QTc [ms] BMI [kg/m²] TC [mmol/l] HDLC [mmol/l] Glu [mmol/l] SCORE (6 m.) [%]
a
 

Interceptb  Eastc 129.9 390.4 26.6 5.32 1.45 5.12 0.011 

Westc 127.1 410.8 25.6 5.71 1.17 4.94 0.007 

Relevant 

medicationd 

 East -1.456 --- --- -1.452 -0.095 --- 0.663 

West 1.913 --- --- -0.862 0.037 --- 1.014 

Age at first available 

assessment [yrs.]e 

 East 0.020 0.655 0.095 0.034 0.012 0.019 1.214 

West -0.045 -0.289 0.060 -0.038 0.022 0.004 1.131 

Time since first 

available assessment 

[yrs.] 

Youngerf East 0.129 1.595 0.112 -0.012 -0.004 0.022 1.181 

West -0.248 0.478 0.153 0.018 -0.010 -0.024 1.136 

Olderf East -0.278 1.480 0.134 -0.106 0.010 0.012 1.068 

West 0.774 1.007 -0.049 -0.021 0.058 -0.083 1.124 

Differencef East -0.406 -0.115 0.022 -0.094 0.014 -0.011 0.904 

West 1.022 0.529 -0.202 -0.039 0.068 -0.059 0.990 

Note: Confidence intervals not included because of very small sample sizes (compare Web Appendix Table 1). SBP: Systolic blood pressure. QTc: Corrected QT interval duration. BMI: Body 

mass index. TC: Total cholesterol. HDLC: High-density lipoprotein cholesterol. Glu: Fasting glucose. SCORE: Systematic Coronary Risk Evaluation. CI: Confidence interval. AIC: Akaike’s 

Information Criterion. ICC: Intraclass coefficient. aProbability to suffer a fatal cardiovascular event within 6 months as estimated by the SCORE algorithm. Coefficients are multiplicative for this 

outcome (vs. additive for all others). b40-yr. old not currently using any relevant medication, at first available assessment. c“East”/“West”: Czech Republic, Poland/Germany, Austria. dSBP: 

Blood-pressure lowering drugs, TC, HDLC: Lipid-lowering drugs, SCORE: Either type of drug. eCentered at 40 years. f“Younger”/“Older”: Time effect for pilots aged <60/≥60 yrs. at last 

available examination, “Difference”: Difference between these effects. 
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Abstract 

INTRODUCTION: Different aspects of the aviation system, such as pilot’s fitness, 

supervision, and working conditions, interact to produce or protect against flight safety 

hazards. Machine learning methods such as Random Forests may help identify system 

characteristics with the potential to affect flight safety from the large number of candidate 

predictors that results when multiple system levels are considered simultaneously. 

METHODS: Fifty-four pilot-related and occupational candidate predictors of simulator flight 

performance in two malfunction scenarios completed by 51 male European helicopter 

emergency medical services pilots were derived from pilots’ self-report questionnaires and 

aeromedical examination records. In a cross-sectional explorative analysis, the Random 

Forest method was used to screen for informative predictors. Predictors scoring above the 

critical threshold for the conditional permutation variable importance (VI) statistic were 

selected. RESULTS: In five predictors, the VI statistic averaged across 2,000 Random Forest 

runs exceeded the selection threshold: Higher perceived rewards (VI=0.0691) and 

predictability (VI=0.0501) at work were associated with higher performance scores, and 

higher physiological dysregulation (VI=0.0495) and alanine aminotransferase (VI=0.0224) 

with lower scores. Performance also differed between the simulators at the two training sites 

(VI=0.0298). DISCUSSION: Random Forests may usefully complement previously applied 

methods for the identification of human factors safety hazards. The identified performance 

predictors suggest further areas with potential for safety improvements. 

 

Keywords: Flight safety; Machine Learning; Helicopter pilots; Human factors; Flight 

simulator 
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Introduction 

Improving aviation safety has become an increasingly challenging task since most 

easily recognizable hazards, such as technological deficiencies, have been reduced 

significantly over the last decades and the remaining ones are often of a latent or insidious 

nature. Current human factors models of accident causation such as the popular “Swiss 

cheese” model
16

 therefore take a systemic perspective acknowledging hazards related to both 

the aircraft operators themselves and their organizational environment. 

Nevertheless, in empirical studies of aircraft accident causes based on such a systemic 

perspective, there is usually a notable gradient in the frequency of identified contributory 

factors across the system levels, with unsafe operator acts being identified most often and 

organizational influences least often
17

. It seems likely that the absence of organizational, 

supervisory, and working condition-related factors is at least in part due to the reliance on 

accident investigation board reports, which vary in scope and may investigate more distal 

conditions surrounding an accident only in the most severe cases
27

. Further complicating the 

issue, information on the relevant comparison group (i.e., pilots that did not experience an 

accident or incident) is usually not available or only in aggregated form in report-based 

retrospective studies. 

These issues can be addressed through prospective studies, which however introduce 

different methodological problems. Aviation safety-related prospective studies can only use 

proxy outcomes such as line check ratings or simulator performance, and are often based on 

small samples, which is problematic given the large number of potentially interacting 

hazardous and protective factors operating at different system levels. Isolating the 

independent contribution of individual system characteristics to risk is difficult when samples 

are small relative to the number of characteristics; conventional techniques such as univariate 

pre-screening of candidate predictors or multiple regression-based stepwise variable selection 
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are problematic since they do not consider the effects of discarded predictors and may result 

in upwardly biased effect estimates
7
. They furthermore generally assume linear additive 

relationships between predictors and outcome. 

Several alternative procedures have been proposed to solve the problem of selecting 

influential predictors
28

. One approach which has recently gained popularity is based on 

Random Forests, a machine learning technique which is appropriate for situations when the 

number of predictors is large relative to the sample size, avoids overfitting, and automatically 

takes into account interactions between predictors, while also generating a measure of 

predictor importance which can be used for variable selection
23

. It is therefore well-suited for 

application to the aviation hazard identification problem outlined above, and its capability for 

predictor identification has, to the best of our knowledge, so far not yet been utilized in the 

aviation safety field. 

In this cross-sectional explorative study, we therefore apply the Random Forest 

method in order to identify potential aviation safety hazards by selecting the most powerful 

predictors of simulator flight performance in a sample of professional helicopter pilots from a 

deliberately broad set of predictors covering both personal and occupational human factors 

safety aspects. The predictors are derived from pilot questionnaire self-reports and 

aeromedical fitness examination records, and performance is assessed through flight instructor 

ratings of the pilots’ handling of two naturalistic system malfunction scenarios. Our aim is to 

evaluate, in an aviation safety context, whether the Random Forest method is producing 

meaningfully interpretable results when the number of predictors is large relative to the 

sample size. 
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Methods 

Subjects 

The analysis reported herein is based on data from a study on age and flight safety in 

helicopter emergency medical services (HEMS). Active HEMS pilots employed by one of 

five air rescue operators (two based in Germany and one each in Austria, Poland, and the 

Czech Republic) who completed a simulator flight during the data collection period from 

September 2015 to October 2016 at training sites in Warsaw, Poland (Polish operator) or in 

Hangelar, Germany (all other operators) were asked to participate. Although study 

participation was open to both genders, the operators’ HEMS pilot workforces consisted 

almost exclusively of men at the time of recruitment, resulting in a male-only sample. The 

study had been approved by the Ethics Committee at Munich University’s Faculty of 

Medicine (Project No. 466-15), and written informed consent had been obtained from all 

study subjects, prior to data collection. Subjects were able to separately indicate their consent 

to the collection of simulator performance data and of aeromedical examination record data. 

Materials and Procedure 

We collected data from the three distinct sources: (1) standardized ratings of simulator 

flight performance in two malfunction scenarios made by training instructors, (2) self-report 

questionnaires from participating pilots, and (3) records of the participating pilots’ statutory 

aeromedical examinations. 

Subjects completed a simulator flight for training or testing purposes as mandated by 

their employer or the responsible regulatory authority in order to maintain currency of their 

helicopter type rating or of operating procedures, including emergency procedures. Each 

session consisted of a pre-flight briefing of the pilot by the flight instructor, the actual 

simulator flight, and a short post-flight debriefing. At Hangelar, the flights were conducted in 

motion-capable full flight simulators. A non-motion-capable flight training device was used in 
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Warsaw. At both sites, the simulators corresponded to the helicopter types flown by the pilots 

during their actual duty and could simulate different geographies including urban structures 

and weather conditions. 

Embedded in this regular training/check flight, which was independent of the study, 

the responsible flight instructor – who had previously been briefed by a member of the 

research team – deployed two study malfunction scenarios, which together took about ten 

minutes to complete, and rated the pilot’s responses according to a standardized rating sheet. 

Several experienced HEMS pilots had been consulted prior to data collection in order to select 

relevant scenarios and to develop the corresponding rating scheme. 

The first scenario, “Transmission oil system malfunction”, was designed to assess the 

pilot’s vigilance and situational awareness. It involved the timely detection of a gauge 

indicating helicopter transmission oil status moving slowly towards a critical value, and 

terminated as soon as the pilot detected the problem or the critical value was reached. More 

specifically, the malfunction concerned a gradual decrease in transmission oil pressure in the 

Hangelar simulators, and a gradual increase in transmission oil temperature in the Warsaw 

simulator, since the oil pressure decrease scenario could not be implemented in the latter 

simulator. The respective gauges were located next to each other at similar positions within 

the flight instrument panel in all simulators, and the corresponding malfunctions are 

comparable in terms of their implications for flight safety. We therefore assumed the tasks to 

have similar properties in terms of their demands to situational awareness. However, the time 

from initiation of malfunction to hitting the critical value, which was defined as the first 

occurrence of an additional optical or acoustic warning signal by the system, was 

approximately twice as long in the Hangelar simulator, compared to the Warsaw simulator 

(170 vs. 84 sec). Recognition of the malfunction by the pilot ahead of the critical value was 
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rewarded with two points (same weight as an “important” sub-task of the second scenario 

described below). 

The “Tail rotor drive failure” scenario constituted a complex emergency situation 

which required the pilot to bring the aircraft safely to the ground via a so-called autorotation 

procedure. Instructors rated performance of nine subtasks which involved situational 

awareness, decision-making, knowledge of procedures, spatial orientation, and psychomotor 

control, for a maximum of twelve points. Proper completion of subtasks yielded one or two 

points, based on their importance to the successful completion of the entire procedure. 

Fifteen simulator flights were concurrently rated by two instructors, with good 

interrater agreement over a total of 141 binary decisions (subtask ratings), Cohen’s κ = .91 

(94.3% concordant decisions). 

In the briefing parts of the session, pilots were asked to fill in short questionnaires 

inquiring about flight experience and current self-rated health (pre-flight briefing), and about 

subjectively experienced strain and simulator sickness during the flight as well as risk-seeking 

propensity (post-flight debriefing). Additionally, the pilots were handed over a longer 

questionnaire covering working conditions, subjective experiences at work, and general sense 

of well-being, which they were asked to fill in and send back over the course of the next few 

days. Wherever possible, questionnaire scales and items had been taken from published, 

psychometrically validated instruments such as the Copenhagen Psychosocial Questionnaire. 

They were included based on their relevance regarding health, work performance and 

safety
14,20

. 

Consenting pilots were also asked to provide details of the aeromedical examiners and 

centers they had visited during the preceding ten years, and release them from their non-

disclosure duty. We mailed requests for transfer of full aeromedical examination documents 

to all specified physicians/centers, and sent a reminder letter after four weeks. If the reminder 
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also did not elicit a response, we made at least one more contact attempt via telephone or 

email. We received digitalized or paper documents dated between April 2004 and July 2016 

from 23 physicians/centers (61% of 38 contacted). All documents were searched for 

information concerning quantitative clinical measurements of any kind, as well as smoking 

and medication. Entry of the corresponding data was conducted according to a coding manual 

developed after an initial review of the received documents and continuously revised during 

the data entry process. 

Statistical Analysis 

Our main outcome variable, simulator performance, was calculated as the sum of 

instructor ratings for the two study scenarios (ranging theoretically between a minimum of 0 

and a maximum of 14 attainable points). The predictor variables were based on the self-report 

questionnaires and aeromedical examination findings. Questionnaire-based variables were 

calculated as scale means or sum scores, or (in the case of single-item measures) the 

untransformed item scores. We selected individual medical risk markers for analysis based on 

their availability in the aeromedical examination findings data and on their association with 

health status and incapacitation risk of a pilot. Moreover, we included as predictors two 

composite indices based on the individual risk markers: Risk of a fatal cardiovascular event 

within six months according to the SCORE algorithm
5
, and a “physiological dysregulation 

index” based on the gerontological concept of “biological aging”
4
, which can be viewed as a 

subclinical trajectory towards frailty and disease due to insidious functional decline in 

multiple organ systems
13

. Both cardiovascular event risk scores such as SCORE and 

physiological dysregulation indices have been found to be associated with cognitive 

decline
2,9

. 

Our dysregulation index is based on all available measurements of 18 health risk-

related biomarkers of cardiovascular, metabolic, liver, kidney, immune, hematologic, and 
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ocular function as well as hearing level. For each biomarker, a subject’s probability to have a 

biomarker reading within an “unhealthy” range (e.g., systolic blood pressure >140 mmHg) 

was estimated based on the longitudinal individual-specific distribution of biomarker readings 

using a linear mixed model. The dysregulation score is the sum of these probabilities (thus 

ranging theoretically between 0 and 18) and can be understood as a pilot’s expected number 

of biomarker readings outside the healthy range (see Auxiliary Appendix A for 

methodological details). 

Finally, we also included simulator type as a predictor because of the aforementioned 

differences in the transmission oil failure scenario and in motion capability. Only variables 

where less than one third of subjects had missing data were used for the analysis. In total, this 

resulted in a set of 54 predictors which can be categorized as psychosocial and physical work 

stressors (including protective factors such as social support), psychosocial and physical strain 

symptoms, other aspects of working conditions (e.g., working hours), medical risk markers, 

subjective experience of the pilot during the simulator training session, and general pilot 

characteristics (Table I; see Auxiliary Appendix B for further details). For all medical risk 

markers except physiological dysregulation (which was based on the complete longitudinal 

information available), we used only the latest available assessment in the simulator 

performance prediction. 

Table I also shows the number of missing data points per predictor. To impute missing 

values, we used the R implementation of the missForest algorithm
21

, which iteratively applies 

the Random Forest method (described below). In order to account for uncertainty in the 

imputation estimate, we created a total of 20 imputed datasets and compared or aggregated 

analysis results across these datasets where appropriate. 

After the imputation step, we applied Random Forests for simulator performance 

prediction and variable selection. Random Forest is a supervised machine learning method 
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consisting of an ensemble of decision trees which attempt to predict the outcome by defining, 

based on predictor values, groups that are homogeneous with respect to the outcome. In 

Random Forests, many such trees are “grown” on random sub-samples of the study subjects 

and predictor variables, and the single trees’ predictions are averaged to produce the Forest’s 

prediction. Since each component tree is trained only on a random subsample, the remaining 

(“out-of-bag”) cases can be conveniently used as an “external” validation set for the 

prediction quality of this particular tree. Prediction errors for the out-of-bag cases can again 

be averaged across all trees to yield a measure of prediction accuracy which is less affected by 

overfitting. Furthermore, and particularly important in the present context, Random Forests 

are also able to produce a measure of relative importance in the prediction of the outcome for 

each individual predictor variable even when the number of predictors is larger than the 

sample size (which is not possible with conventional regression modelling techniques). In this 

way, relevant predictors can be identified. The importance of a predictor is calculated as the 

difference in out-of-bag prediction accuracy between a Random Forest grown on the original 

input data and that of another forest which is identical in parameterization and input data 

except that the values of the predictor have been randomly permuted, reducing its predictive 

capacity to chance level
23

. We used a modification of this variable importance measure 

(termed “conditional permutation importance”) which accounts for intercorrelations among 

predictors (analogous to the mutual adjustment of covariate effects in a multiple regression)
22

. 

For each of the 20 imputed datasets, we fitted 100 Random Forests and calculated the 

mean variable importance across the resultant 2,000 Forests for each predictor variable, to 

obtain an estimate which is less affected by the random variation inherent in the Random 

Forest procedure. We then selected those variables for further inspection whose mean variable 

importance exceeded the absolute value of the minimum mean variable importance among all 

variables. This selection criterion was suggested as an improvement over the z-score metric 
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commonly used for Random Forest variable selection
23

. Note that conventionally reported 

statistics such as p values or confidence intervals are not directly applicable to Random 

Forests, although the described selection criterion can be considered an analogue to a p-value-

based statistical significance threshold such as p < .05. 

We also examined the stability of the importance assigned to a variable by inspecting 

how strongly the variable’s position in the importance ranking varied between the 2,000 

Random Forest fits. To visualize the relationship between the selected predictors and the 

outcome, we present partial dependence plots
10

, which display the effect of a predictor across 

its value range averaged over all other predictor value combinations occurring in the sample 

(i.e., the estimated marginal effect of the predictor). 

All statistical analyses reported subsequently were done using the R statistical 

software, version 3.3.1. 

Results 

Figure 1 shows the study subject flow. Unavailability of simulator data was mostly 

due to a mismatch of pilots’ training session schedules with the data collection period, 

whereas nonresponse by physicians/centers from whom examination records had been 

requested was the main reason for unavailability of aeromedical data. The analysis sample 

consisted of 51 male pilots with all data types available, 15 (29%) from the Western European 

countries (Germany, Austria) and 36 (71%) from the Eastern European countries (Poland, 

Czech Republic); see Table I for descriptives. Simulator performance scores were 

concentrated at the upper end of the scale and slightly left-skewed (range: 7–14, median: 12, 

skewness: -0.39). For some of the medical predictors, there was a considerable time lag 

between their assessment and the simulator training session. 

Mean variable importances of the 54 predictor variables ranged from -0.0196 to 

0.0691. Five variables had a higher mean importance score than the selection threshold of 



3. Publication 2: Helicopter simulator performance prediction 69 

0.0196 (see Section “Statistical Analysis”): The reward subscale of the Effort-Reward-

Imbalance inventory
18

 measuring perceived rewards at work, the predictability of work 

demands score
26

, the physiological dysregulation score, simulator type, and the last available 

measurement of alanine amino-transferase, a marker of liver pathology (Table II; see 

Auxiliary Appendix C for details on all predictors). There is a notable drop in mean variable 

importance from the selected to the unselected variables. Perceived rewards clearly stands out 

as having the highest predictive power, followed by perceived predictability and 

dysregulation and, after another distinct drop in variable importance, by simulator type and 

alanine aminotransferase. The importance rankings were fairly stable across Random Forest 

fits for the reward, predictability, and physiological dysregulation variables. Rankings were 

more unstable for simulator type and in particular for alanine aminotransferase. 

The estimated marginal effects of the selected variables are illustrated in Figure 2. 

Even in those variables which have the strongest association to simulator performance in the 

sample, the effects on performance are all quite small and on the order of 0.1 to 0.2 

performance score points (where one performance score point roughly corresponds to one 

mistake in the simulator scenarios). In other words, simulator performance is, on the whole, 

poorly predicted by the set of 54 variables considered. Still, the direction of effects is 

generally plausible in the selected variables: Performance was better in those who perceived 

their work as more rewarding and work demands as more predictable, and worse in those with 

higher physiological dysregulation scores and alanine aminotransferase levels. Several 

possible explanations come to mind (e.g., differences in simulator handling characteristics, in 

the transmission oil malfunction scenario, or in the response tendencies of the involved 

instructors) regarding the effect of simulator type. However, since this variable was included 

for technical reasons (i.e., adjustment for simulator idiosyncrasies), rather than theoretical 

reasons, we will not discuss it any further. 
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The predicted effects in the quantitative variables were not linear but rather stepwise. 

Note that for the working conditions variables, the threshold values (~12 for the Reward 

Subscale and ~3 for the Predictability scale) correspond to the theoretical scale means, that is, 

performance was predicted to be better in those who, on the whole, agreed to statements such 

as “I receive the respect I deserve from my superiors”, and/or indicated that all in all, daily job 

demands could be predicted to a large extent. The threshold effect in the physiological 

dysregulation score can be interpreted such that pilots who are in an excellent overall state of 

health according to the biomarkers used for the dysregulation score (i.e., all biomarker levels 

are well within the healthy range) are predicted to perform better than those who tend to have 

levels near or beyond the limits of the healthy range in at least one of the biomarkers. 

Although the alanine aminotransferase effect is harder to interpret, it is noteworthy that the 

threshold value after which performance decreases (~40 U/l) falls into the upper end of male 

population reference range limits (e.g., 
15

). 

Discussion 

In this cross-sectional explorative study, we applied the Random Forest machine 

learning method for the selection of the most influential predictors of HEMS pilot 

performance in two simulated in-flight failure scenarios from a set of predictors which 

covered personal and occupational human factors aspects potentially relevant to flight safety 

and which was larger than the sample size. Although the predictors on the whole explained 

rather little of the variation in simulator flight performance, five of them (perceived rewards at 

work, perceived predictability of work demands, physiological dysregulation, alanine 

aminotransferase, and simulator type) explained more than would be expected by chance 

alone. Their effects appeared to be stepwise rather than linear, and their direction was mostly 

consistent with theoretical expectations. 
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To the best of our knowledge, this is the first application of the Random Forest method 

to identify potential human factors safety issues. Many analyses use conventional bivariate or 

multiple regression methods
3,25

. These “classical” methods have good statistical properties 

when their assumptions are met (which notably includes the rather restrictive assumption of 

linear effects), and are well-suited for confirmatory analyses investigating the effects of a 

smaller number of predictors of interest. In contrast, machine learning methods appear to be 

better suited for explorative analyses where vast amounts of information on potential 

predictors is available and little is known about the functional relationship between the 

predictors and the outcome. 

Analysis of natural-language documents are a prototypical example of a high-

dimensional input problems; in aviation safety, machine learning methods are becoming 

increasingly popular for text mining of accident/incident report narratives. Often, 

unsupervised learning methods are applied to cluster occurrence reports and subsequently 

identify common underlying themes, such as cigarette smoking by passengers
24

. While these 

approaches are very flexible and can accommodate data which is otherwise difficult to 

process, they are able to identify only those factors mentioned in the reports, which tend to be 

proximal factors
27

. Furthermore, human factors hazards such as “confusion” are often hard to 

isolate for text mining algorithms since their description mostly lacks highly distinctive 

signaling words which characterize the more technical issues
24

. Our analysis may be located 

somewhere in between the two extremes of linear modelling of selected features and 

indiscriminate text mining, in that it allows a certain preselection of features, including those 

which are usually not considered in occurrence reports such as organizational stressors, but 

does not impose restrictive assumptions on the relationship between predictors and outcome. 

Of the five selected informative predictors, two measured aspects of psychosocial 

work stress. This kind of stress is known to affect safety at work
14

. Young
29

 reviewed the 
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effects of life stress (including work stress) on pilot performance and suggested that life stress 

might undermine performance by increasing fatigue (through reduced sleep quantity and 

quality as well as emotional exhaustion), decreasing motivation to perform (e.g., skipping 

“unimportant” tasks such as checklist procedures), worsening interpersonal relations and 

communication with colleagues, and increasing intrusive and distractive worrying. With 

regards to the most predictive of our variables, perceived rewards at work
18

, reduced 

motivation may be a plausible contributing factor
11

. On the other hand, the second selected 

work stressor
26

 assesses the degree to which the pilot perceives his work environment to be 

predictable. This may be related to instances of disrupted action regulation (“hindrance 

stressors”) during work; repeated experience of disrupted action regulation might lead to a 

more passive style of coping with work demands
12

. 

The concept of physiological dysregulation as an overall loss of an organism’s 

capacity to maintain homeostasis has recently received increased interest in gerontology to 

explain differences in the “healthiness” of aging between individuals
2,13

. Physiological 

dysregulation was found to be associated with cognitive decline and reduced psychomotor 

performance already at age 38
2
, but analyses of the relation between dysregulation and work 

performance or safety are lacking so far. Especially in safety-critical jobs such as piloting, the 

use of physiological dysregulation indices appears to be an interesting concept for early 

detection of  health-related risks at a subclinical stage
19

. Given the existing framework of 

aeromedical examinations in professional pilots, more systematic investigations of the effects 

of physiological dysregulation on flight performance might be implemented with 

comparatively little effort. 

The second selected medical predictor, alanine aminotransferase, is a marker related to 

liver cell necrosis used in the diagnosis of liver conditions including alcoholic or nonalcoholic 

fatty liver disease. This result may evoke associations of a possible role of alcohol use
6
, but 
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clearly the exploratory nature of our findings, especially regarding this predictor which was 

quite unstable across Random Forest fits in terms of predictive power, prohibits any such 

speculations given the sensitive nature of the topic; however, for purposes of replication and 

confirmation, this marker might be included in future investigations of the relation between 

pilot health and performance. 

Among the limitations to this study, the most immediately apparent is the small 

sample size, which highlights a drawback of our approach compared to, for example, the use 

of occurrence reports: Collecting a range of data sources, each with its own mechanisms of 

sample attrition, from an inherently small population (HEMS pilots) will almost inevitably 

lead to a small sample size. On the other hand, it should be kept in mind that our approach 

was motivated precisely by the question of whether it is possible to obtain interpretable results 

when the number of potential predictors is large relative to the sample size, a situation which 

is not uncommon in human factors aviation safety studies that are not purely based on 

retrospective review of occurrence reports or administrative records. 

Moreover, as is the case with explorative research in general, there is also a threat of 

false-positive findings due to many simultaneously assessed associations. It should be noted, 

however, that the directions of the selected variables’ effects appear to be generally plausible 

and that there is a relatively clear separation between the selected variables and unselected 

variables in terms of the variable importance scores. The logic behind the chosen selection 

threshold also seems to imply some protection against capitalization on chance since the 

absolute value of the minimum observed variable importance score should be expected to 

increase with the number of noise predictor variables involved (whose variable importance 

should vary randomly around zero). Finally, in the light of the tradeoff between type I and 

type II errors in statistical decision-making, it has been suggested that there should be a focus 
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on minimizing the latter error in aviation safety research due to the potentially grave 

implications of false-negative findings
8
. 

With regards to the aeromedical data, there was additionally the problem of a time lag 

between the last available assessment and the simulator session, which was very large (2-2.5 

years) in some of the biomarkers, including alanine aminotransferase which had been selected 

as an informative predictor by the Random Forest procedure. According to a linear mixed 

model analyses of time-stability of biomarker levels we conducted earlier, between 44 and 95 

percent of the total variation in biomarker levels across average follow-ups of 5.2 to 8.2 years 

were due to differences in pilot averages across time, indicating considerable stability of 

interindividual differences in the biomarkers (for alanine aminotransferase specifically, the 

respective figures were 70 percent and 5.2 years). One might therefore assume that 

differences at the time of last available assessment carried over to the simulator session to 

some extent. 

Finally, in contrast to occurrence report studies, our outcome of simulator flight 

performance can be viewed only as a proxy to the actual outcome of interest. Thus, in order to 

achieve an optimal ecological validity, we consulted extensively with experienced HEMS 

pilots and flight instructors in the selection of malfunction scenarios as well as in devising the 

scoring procedure. 

To conclude, we identified three well-interpretable predictors of HEMS pilot simulator 

flight performance (two occupational stressors and an index of physiological dysregulation) 

from a broad array of candidates by exploiting the capability of the Random Forest machine 

learning method to select important predictors even when their number is large relative to the 

sample size. The predictors were taken from different sources (self-report, medical 

examinations) and covered different aspects of potential relevance to the error chain as 

outlined in modern systemic human factors safety approaches. Although our study is 
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explorative in nature which precludes confident statements about concrete measures to 

improve safety in HEMS, the results do suggest that the effect of working conditions and their 

perception by the pilots deserve further scrutiny. For example, the role of work stressors on 

HEMS pilots’ subjective well-being might be investigated; well-being and mental health of 

professional pilots have received considerable attention recently
1
, but data for HEMS pilots 

are lacking. The physiological dysregulation construct is an intriguing potential tool for early 

recognition of latent pathology in professional pilots. While our dysregulation index was of a 

somewhat ad-hoc nature constrained by data availability, the utility of current measures of 

dysregulation derived from theoretical considerations
2,13

 for screening, prevention and 

selection purposes in aeromedical examinations might be further investigated. Finally, our 

study showcases the potential of the Random Forest method in the field of aviation human 

factors. For example, it could be applied to appropriately quantified information from 

accident investigation databases to identify factors associated with accident lethality. 

However, abundant data are also collected in everyday aviation operations, and with some 

effort invested into database normalization, information about the effect of operative 

conditions (e.g. timing of missions, weather, geographical location) on mission safety 

parameters may be quantitatively analyzed by individual HEMS operators using Random 

Forests. In a more ambitious approach, a framework for a common harmonized database 

which might include organizational, operational, administrative, and even aeromedical 

information could be established between operators or also between different aviation sectors. 

With such a large-scale database, the full potential of machine learning methods, which are 

designed to handle large amounts of information, could be brought to bear. Careful 

consideration would need to be given to feasibility (e.g. due to data comparability, data 

protection, and confidentiality issues) with this approach. In any case, the presented use of the 

Random Forest method may be a fruitful addition to existing risk analysis tools, helping 
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operators to think “outside the box” in their efforts to identify additional flight safety 

measures. 
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Tables 

Table I. Analysis variable sources and descriptives (mean / SD for quantitative variables, n / % for binary yes/no variables in italics) 

Variable 

category 

Variable # of items / 

scale range 

Source # missing Mean (SD) / 

n (%) 

Assessment-

simulator lag* 

Outcome Simulator performance 10 / 0–14 Rating by flight instructor 0 11.4 (2.1) - 

Psychosocial 

work stressors 

Emotional demands 2 / 1–5 Pilot self-report (questionnaire) 0 2.3 (0.6) - 

Social support 4 / 1–5 Pilot self-report (questionnaire) 0 3.4 (0.9) - 

Work pace 2 / 1–5 Pilot self-report (questionnaire) 0 3.3 (0.7) - 

Work predictability 3 / 1–5 Pilot self-report (questionnaire) 0 3.0 (0.8) - 

Role clarity 3 / 1–5 Pilot self-report (questionnaire) 0 4.7 (0.4) - 

Role conflict 4 / 1–5 Pilot self-report (questionnaire) 0 1.8 (0.6) - 

Autonomy 3 / 1–5 Pilot self-report (questionnaire) 0 3.1 (0.7) - 

Supervisor Feedback 3 / 1–5 Pilot self-report (questionnaire) 0 3.0 (1.1) - 

Procedural Justice 4 / 1–5 Pilot self-report (questionnaire) 0 3.9 (0.8) - 

Effort at work 2 / 2–8 Pilot self-report (questionnaire) 0 4.7 (1.6) - 

Reward at work 5 / 5–20 Pilot self-report (questionnaire) 0 13.9 (2.2) - 

Physical work 

stressors 

Physical demands, general 10 / 1–5 Pilot self-report (questionnaire) 0 3.2 (0.6) - 

Physical demands, headgear 4 / 1–5 Pilot self-report (questionnaire) 0 2.5 (0.9) - 

Psychosocial 

strain 

Irritation 6 / 1–7 Pilot self-report (questionnaire) 0 2.2 (0.7) - 

Work engagement 9 / 0–6 Pilot self-report (questionnaire) 0 4.8 (0.8) - 

Detachment from work 4 / 1–5 Pilot self-report (questionnaire) 0 3.2 (0.8) - 

Subjective well-being 5 / 0–25 Pilot self-report (questionnaire) 0 19.0 (3.5) - 

Energy / Fatigue 4 / 4–20 Pilot self-report (questionnaire) 0 17.2 (2.0) - 

Physical strain # of body regions with pain† 13 / 0–13 Pilot self-report (questionnaire) 2 1.0 (1.7) - 

Other work-

related factors 

Work hours per month - Pilot self-report (questionnaire) 3 169 (27) - 

Vacation days per year - Pilot self-report (questionnaire) 1 24.8 (7.7) - 

Day shift duty? - Pilot self-report 

(questionnaire) 

2 48 (0.98) - 

Night shift duty? - Pilot self-report 

(questionnaire) 

2 32 (0.65) - 

24 hour stand-by shift duty? - Pilot self-report 

(questionnaire) 

4 5 (0.11) - 

Other shift type duty? - Pilot self-report 

(questionnaire) 

3 3 (0.06) - 

Any limit on flight time? - Pilot self-report 

(questionnaire) 

9 37 (0.88) - 

Medical risk 

markers‡ 

Smoking? - Aeromedical records 1 10 (0.20) 94 

Any medication? - Aeromedical records 1 9 (0.18) 89 

Systolic blood pressure [mmHg] - Aeromedical records 0 130 (13) 92 

Resting heart rate [bpm] - Aeromedical records 0 67.8 (8.7) 92 

ECG QTc interval [ms] - Aeromedical records 15 406 (21) 91 

Body mass index [kg/m²] - Aeromedical records 1 27.1 (3.3) 89 

Total cholesterol [mmol/l] - Aeromedical records 3 5.3 (0.8) 102 

HDL cholesterol [mmol/l] - Aeromedical records 8 1.5 (0.3) 349 

Triglycerides [mmol/l] - Aeromedical records 11 1.5 (0.7) 302 

Fasting glucose [mmol/l] - Aeromedical records 3 5.3 (0.6) 127 

Alanine aminotransferase [U/l] - Aeromedical records 14 37.1 (22.7) 712 

Aspartate aminotransferase [U/l] - Aeromedical records 14 28.2 (9.9) 712 

Serum creatinine [μmol/l] - Aeromedical records 8 91.6 (14.3) 886 

White blood cell count [10³/μl] - Aeromedical records 2 6.5 (1.7) 101 

Hemoglobin [g/dl] - Aeromedical records 2 15.3 (1.0) 101 

Red blood cell distribution width [%] - Aeromedical records 4 13.0 (0.6) 101 

Intraocular pressure [mmHg] - Aeromedical records 9 15.2 (2.4) 213 

Hearing level at 3,000 Hz [dB HL] - Aeromedical records 4 16.6 (9.6) 268 

SCORE 6-month-risk [%] - Aeromedical records 3 0.07 (0.07) 102 

Physiological dysregulation§ - Aeromedical records ¶ 1.4 (0.9) - 

Experience 

during simulator 

training session 

Self-rated health 1 / 1–5 Pilot self-report (questionnaire) 0 3.6 (0.9) - 

Task load during flight 5 / 0–100 Pilot self-report (questionnaire) 0 49.0 (16.0) - 

Simulator sickness 1 / 0–100 Pilot self-report (questionnaire) 0 14.4 (22.6) - 

General pilot 

characteristics 

Age [years] - - 0 51.7 (8.2) - 

# of real flight hours - Pilot self-report (questionnaire) 0 5340 (3513) - 

# of simulator flight hours - Pilot self-report (questionnaire) 1 187 (411) - 

Risk seeking 4 / 1–5 Pilot self-report (questionnaire) 0 1.4 (0.4) - 

Other Full flight simulator?** - - 0 23 (0.45) - 

Note. *Median time from risk marker variable assessment to simulator session in days. †Number of body regions (e.g., neck, lower back; 13 

overall) where subject reported "occasional" or "frequent" pain. ‡As assessed at last available aeromedical examination (except physiological 

dysregulation). §Index derived from 18 health-risk associated biomarkers (see Auxiliary Appendix A). ¶Individual index component 

variables had been imputed before computation of index. Overall number of component variable missing values: 139 (=15.1% of 18*51 data 

points). **No = Flight training device. 
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Table II. Summary of variable importance characteristics of variables selected by Random Forest procedure (in 

italics) and of first three variables below selection criterion 

 Mean variable 

importance 

Variable importance rank order* 

M SD Lowest Highest 

Reward subscale (ERI) 0.0691 1.42 0.72 6 1 

Predictability of work demands scale 0.0501 2.55 1.17 16 1 

Physiological dysregulation score 0.0495 2.61 1.18 14 1 

Simulator type 0.0298 4.49 2.24 44 1 

Last available ALT measurement 0.0224 6.40 5.19 54 1 

Last available serum creatinine measurement 0.0113 9.66 6.03 47 2 

Work hours per month 0.0099 10.66 6.79 48 2 

Simulator sickness 0.0097 10.52 6.71 53 3 

Note. Statistics calculated across 2,000 Random Forest fits (100 in each of 20 imputed datasets). Selection 

criterion: Mean variable importance greater than absolute value of minimum mean variable importance 

(-0.0196). ERI: Effort-Reward-Imbalance scale. ALT: Alanine aminotransferase. *Ranks (including mean ranks) 

coded such that lower values denote higher ranks (highest: 1
st
 rank; lowest: 54

th
 rank). 
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Figures 

 

Figure 1. Study subject flow from recruitment to analysis stage. 

 

Participation agreement 

obtained: 67 (46%)

No participation agreement

obtained: 80

No response to participation request 47

Declined participation 33

... in both study parts 20

... in medical study part 12

... in simulator study part 1

Targeted for

participation: 147

Included in analysis: 51 (76%)

Data unavailable

No simulator performance rating 8

No questionnaire data 2

No aeromedical records 6
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Figure 2. Partial dependence plots of flight simulator performance versus predictors selected by Random Forest procedure (predictor value ranges as present 

in the sample). Black line/dots: Prediction averaged across 2,000 Random Forest fits. Gray lines/dots: Prediction of randomly selected individual fits to 

illustrate variability across fits. Note that the y-axes display only a small fraction of the outcome variable’s theoretical range (0-14). ERI-Reward: Effort-

Reward-Imbalance Reward Subscale. FFS: Full flight simulator. FTD: Flight training device. ALT: Alanine aminotransferase. 
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Auxiliary Appendix A: Methodological Details of Physiological Dysregulation Index 

Variable 

 

Our physiological dysregulation index variable is based on all available measurements of the 

18 biomarkers listed in Table A.I. The measurements were taken from the records of a total of 

977 aeromedical examinations, conducted in the years from 2004 to 2016, that were available 

for 66 HEMS pilots. Of these, 51 with additional questionnaire and simulator rating data 

constitute the sample of the present study; records of 747 examinations are available for them. 

Since not all of the 18 markers had been measured in each examination, the total number of 

available measurements varies by marker (Table A.I). 16 of the 18 markers were also used as 

predictors on their own in the analysis (see main text). The remaining two were not used as 

the number of pilots with missing data was too large (≥33% of the sample, see Table A.I). 

In the first step, we fitted for each biomarker an empty random intercept linear mixed model 

with the biomarker (log-transformed if necessary to better approximate normality) as the 

outcome and pilot as the grouping variable, i.e. 

𝑦𝑖𝑡
(𝑘)

= 𝛽(𝑘) + 𝛾𝑖
(𝑘)

+ 𝜀𝑖𝑡
(𝑘)

 

with 𝜀𝑖𝑡
(𝑘)

~𝑁 (0, 𝜎(𝑘)2) , 𝛾𝑖
(𝑘)

~𝑁 (0, 𝜏(𝑘)
2
), and where 𝑘 indexes the biomarker, 𝑖 the pilot, 

and 𝑡 the measurement occasion, and all within-pilot error terms 𝜀 and between-pilot error 

terms 𝛾 are assumed pairwise independent. For each combination of pilot 𝑖 and biomarker 𝑘 

where at least one measurement of 𝑘 was available, we stored the pilot’s estimated average 

biomarker reading across all measurements, �̅�𝑖
(𝑘) = �̂�(𝑘) + �̂�𝑖

(𝑘)
, and for each 𝑘 we stored the 

estimated pooled within-pilot standard deviation of 𝑘, that is, �̂�(𝑘) (all available 

measurements of 𝑘 in the 66 pilots were used for this purpose). 

Based on a review of literature and of clinical laboratory manuals, we determined upper and 

lower cutoffs 𝑐𝑢 and 𝑐𝑙 for each biomarker defining “healthy ranges” (Table A.I). Using the 

pilot averages �̅�𝑖
(𝑘)

 and pooled standard deviation �̂�(𝑘), we then calculated for each biomarker 

the estimated probability of a given pilot to have a biomarker reading outside the respective 

healthy range (e.g., systolic blood pressure >140 mmHg), assuming a normal distribution 

around the pilot average, i.e., 

𝑃 (𝑦
𝑖𝑡′
(𝑘) |𝛾𝑖

(𝑘) > 𝑐𝑢 ∪ 𝑦
𝑖𝑡′
(𝑘)| 𝛾𝑖

(𝑘) < 𝑐𝑙) 

with 𝑦
𝑖𝑡′
(𝑘)

|𝛾𝑖
(𝑘)~𝑁(𝛽(𝑘) + 𝛾𝑖

(𝑘)
, 𝜎(𝑘)2), and where 𝑡′ denotes a new measurement occasion. At 

this stage, a probability score was available for a given biomarker in all pilots where at least 

one measurement of that marker was available. We then applied the missForest imputation 

procedure as described in the main text to impute the missing probability scores (a total of 

139=15.1% out of 18*51 data points), and finally summed the probabilities across all 18 

biomarkers for each pilot to obtain the physiological dysregulation score, which can thus be 

interpreted as the pilot’s expected number of biomarker readings outside the healthy range if 

one were to obtain measurements for all 18 markers in that pilot.  
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Table A.I. Details on individual biomarkers contributing to dysregulation score 

Subsystem Biomarker Cutoffs # of available 
measurements* 

# of pilots with no 
available measurements* 

Cardiovascular Systolic blood pressure > 140 mmHg 647 0 
 Resting heart rate > 80 bpm 665 0 

 T axis deviation > 60° 350 19 

 QTc interval > 450 ms 381 15 

Metabolic Body mass index > 30 kg/m² 648 1 
 Serum total cholesterol > 6.21 mmol/l 498 3 

 Serum HDL cholesterol < 1.03 mmol/l 292 8 

 Serum triglycerides > 2.26 mmol/l 285 11 

 Fasting plasma glucose > 6.1 mmol/l 440 3 
Liver Alanine aminotransferase > 60 U/l 200 14 

 Aspartate aminotransferase > 60 U/l 203 14 

 γ-glutamyltransferase > 60 U/l 148 22 

Kidneys Creatinine > 115 μmol/l 230 8 
Immune White blood cell count < 3.5 or > 10.5 * 10³/μl 625 2 

Blood Hemoglobin < 13.5 or > 18.0 g/dl 633 2 

 RBC distribution width > 15 % 537 4 

Eyes Intraocular pressure > 21 mmHg 329 9 
Ears Hearing level at 3,000 Hz > 25 dB HL 208 4 

Note. QTc: Heart-rate corrected QT interval. HDL: High-density lipoprotein. RBC: Red blood cell. *In sample of pilots used 
in present study (N=51) 
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Auxiliary Appendix B: Analysis Variable Details 

 
Table B.I. Description, sample items, and literature sources for individual analysis variables (binary yes/no variables in italics) 

Variable category Variable (inventory / scale name) [unit] Brief description Ref. 

Outcome Overall performance Pilot’s handling of malfunction scenarios “Transmission oil malfunction” and “Tail rotor drive failure” during simulator training flight (see main 

text) 

- 

Psychosocial 

work stressors 

Emotional demands (COPSOQ II) Requirement to deal with emotionally complex/difficult situations/interactions during work 25 

Social support (COPSOQ I) Work-related support received by colleagues and superiors 18 

Work pace (COPSOQ II) Tempo at which work tasks need to be conducted 25 

Work predictability Degree to which day-to-day work tasks and events are perceived as expectable 34 

Role clarity (COPSOQ II) Degree to which one’s responsibilities at the job are known and understood 25 

Role conflict (COPSOQ II) Inconsistency of different demands or responsibilities at the job 25 

Autonomy (TAA-KH-S) Latitude at the job with regards to job contents, decision-making, and methods of carrying out one’s work 9 

Supervisor Feedback (TAA-KH-S) Explicit information received by supervisor about one’s work behavior, performance, and results 9 

Procedural Justice Degree to which one is given the chance to appropriately participate in organizational decision-making 17 

Effort at work (ERI) Perceived demandingness of work / personal effort required at work 32 

Reward at work (ERI) Perceived gratifying aspects of work, e.g. recognition, monetary rewards 32 

Physical work 

stressors 

Physical demands, general Mechanical stresses imposed in general by work or working conditions, e.g. through heavy loads, repetitive movements or prolonged awkward 

stances 

14 

Physical demands, headgear Mechanical stresses imposed specifically by headgear worn during work 36 

Psychosocial 

strain 

Irritation (Irritation Scale) Subclinical state of persistent irritability and rumination resulting from chronic discrepancies between one’s (work) situation and personal goals 22 

Work engagement (UWES-9) Degree of enthusiasm about / involvement in one’s job. Defined as the opposite of burnout. 31 

Detachment from work (REQ) Ability/willingness to mentally disengage from work during leisure time, to not occupy oneself with work-related issues at home 33 

Subjective well-being (WHO-5) General sense of positive mood and vitality (not specifically with respect to work situations) 35 

Energy / Fatigue (WHOQOL-100) Everyday level of energy (not specifically with respect to work situations) 40 

Physical strain # of body regions with pain Number of body regions out of a total of 13 (e.g., neck, lower back) where subject reported "occasional" or "frequent" pain 19 

Other work-

related factors 

Work hours per month Average number of actual work hours per month 38 

Vacation days per year Average number of actual days of vacation taken per year 8 

Day shift duty? Working day shifts? 38 

Night shift duty? Working night shifts? 38 

24 hour stand-by shift duty? Working 24 hour stand-by shifts? 38 

Other shift type duty? Working other types of shifts? 38 

Any limit on flight time? Does any flight time limit per shift exist? 38 

Medical risk 

markers 

Smoking? Smoking status, as reported by pilot at its most recent available assessment 1 

Any medication? Medication use, as reported by pilot at its most recent available assessment 4 

Systolic blood pressure [mm Hg] Systolic blood pressure, as measured at its most recent available assessment. Associated with cardiovascular morbidity and cognitive decline. 26 

Resting heart rate [beats per minute] Resting heart rate, as measured at most recent available assessment. Associated with cardiorespiratory (un)fitness and cardiovascular morbidity. 15 

ECG QTc interval [msec] Heart-rate corrected duration between onset of QRS complex to end of T wave in electrocardiogram, as measured at its most recent available 

assessment. Marker of myocardial repolarization abnormality. 

28 

Body mass index [kg/m²] Body mass index as measured at its most recent available assessment. Associated with cardiorespiratory (un)fitness, diabetes, and cardiovascular 

morbidity. 

7 

Total cholesterol [mmol/l] Serum total cholesterol concentration as measured at its most recent available assessment. Marker of lipid metabolism, associated with 

cardiovascular morbidity. 

27 

HDL cholesterol [mmol/l] Serum high-density lipoprotein cholesterol concentration as measured at its most recent available assessment. Marker of lipid metabolism. Low 

levels are associated with cardiovascular morbidity and diabetes. 

27 

Triglycerides [mmol/l] Serum triglyceride concentration as measured at its most recent available assessment. Marker of lipid metabolism, associated with diabetes. 11 

Fasting glucose [mmol/l] Plasma fasting glucose concentration as measured at its most recent available assessment. Marker of glucose metabolism, associated with diabetes. 11 
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Table B.I. Description, sample items, and literature sources for individual analysis variables (binary yes/no variables in italics) 

Variable category Variable (inventory / scale name) [unit] Brief description Ref. 

Alanine aminotransferase [Enzyme units 

(U)/l] 

Alanine aminotransferase activity as measured at its most recent available assessment. Marker of liver cell necrosis. May indicate liver conditions 

including alcoholic or nonalcoholic fatty liver disease. 

3 

Aspartate aminotransferase [Enzyme 

units (U)/l] 

Aspartate aminotransferase activity as measured at its most recent available assessment. Marker of liver cell necrosis. May indicate liver conditions 

including alcoholic or nonalcoholic fatty liver disease. 

3 

Serum creatinine [μmol/l] Serum creatinine concentration as measured at its most recent available assessment. Marker of kidney function (higher levels may be due to reduced 

renal clearance). 

39 

White blood cell count [10³/μl] White blood cell count as measured at its most recent available assessment. Marker of immune system activity. 24 

Hemoglobin [g/dl] Hemoglobin concentration as measured at its most recent available assessment. Low levels (anemia) lead to increased fatigability and reduced 

aerobic capacity. They may also be associated with reduced cognitive function. 

29 

Red blood cell distribution width [%] Coefficient of variation of volume of red blood cells, as measured at its most recent available assessment. Marker of perturbation in red blood cell 

maturation. Higher values often result from anemia, but may also be indicative of chronic inflammatory processes. 

23 

Intraocular pressure [mm Hg] Pressure inside the vitreous body of the eyes (averaged across both eyes), as measured at its most recent available assessment. High levels increase 

the risk for development of glaucoma. 

20 

Hearing level at 3,000 Hz [dB Hearing 

Level] 

Pure tone audiometry hearing level at 3,000 Hz (averaged across both ears). 37 

SCORE 6-month-risk [%] Estimated probability to suffer a fatal cardiovascular event (e.g., myocardial infarction, stroke, sudden cardiac death) within the next 6 months. 

Estimation equation is derived from prospective cohorts of 11 European countries and is based on an individual’s sex, age, country of origin, 

smoking status, systolic blood pressure, and total cholesterol level. 

6 

Physiological dysregulation Index of subclinical state of multi-organ functional decline. See main text and Auxiliary Appendix A. 2,5,30 

Experience during 

simulator training 

session 

Self-rated health Subjectively experienced health status at the day of the simulator training session 21 

Task load during flight (NASA-TLX) Subjectively experienced workload during simulator training flight (one item pertaining to one’s own performance removed from the original scale) 13 

Simulator sickness Degree of motion sickness induced during simulator flight 16 

General pilot 

characteristics 

Age [years] Age at time of simulator training session 12 

# of real flight hours Number of flight hours in real aircraft at time of simulator training session 12 

# of simulator flight hours Number of flight hours in simulated aircraft at time of simulator training session 12 

Risk seeking (Self-control scale) General tendency towards “adventuresome” behaviors and to enjoy risky activities 10 

Other Full flight simulator? Simulator training flight in (motion capable) full flight simulator, vs. (motion incapable) flight training device. See main text. - 

Note. COPSOQ I/II: Copenhagen Psychosocial Questionnaire, Version 1/2. TAA-KH-S: Tätigkeits- und Arbeitsanalyseverfahren für das Krankenhaus, Selbstbeobachtungsversion [Activity and work analysis procedure 

for hospitals, self-report version]. ERI: Effort-Reward-Imbalance scale. UWES-9: Utrecht Work Engagement Scale, 9 item version. REQ: Recovery Experience Questionnaire. WHO-5: World Health Organization 5-

item well-being index. WHOQOL-100: World Health Organization Quality of Life inventory, 100 item version. ECG: Electrocardiogram. HDL: High-density lipoprotein. SCORE: Systematic Coronary Risk 

Evaluation. NASA-TLX: National Aeronautics and Space Administration Task Load Index. 
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Auxiliary Appendix C: Additional Random Forest Variable Importance Output 

 

 
Figure C.1. Variable importance scores (averaged across 2,000 Random Forest fits) for all 54 

predictor variables. Variables are binary if label ends with “?”, and quantitative otherwise. 

Red dotted line: Decision criterion for variable selection (absolute value of minimum mean 

variable importance). 
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Table C.I. Summary statistics for variable importance scores aggregated across 2,000 Random Forest fits 

Variable Untransformed variable importance Rank-transformed variable importance (1 = highest, 54 = lowest) 

Mean SD Min 1st Q Median 3rd Q Max Mean SD Min 1st Q Median 3rd Q Max 

Reward at work 0.069 0.016 0.020 0.058 0.069 0.080 0.120 1.4 0.7 6.0 2.0 1.0 1.0 1.0 

Work predictability 0.050 0.015 0.003 0.039 0.050 0.060 0.116 2.6 1.2 16.0 3.0 2.0 2.0 1.0 

Physiological dysregulation 0.050 0.015 0.003 0.039 0.048 0.060 0.113 2.6 1.2 14.0 3.0 3.0 2.0 1.0 

Full flight simulator? 0.030 0.011 -0.008 0.023 0.030 0.037 0.068 4.5 2.2 44.0 5.0 4.0 4.0 1.0 

Alanine aminotransferase 0.022 0.013 -0.025 0.014 0.022 0.031 0.070 6.4 5.2 54.0 7.0 5.0 4.0 1.0 
Serum creatinine 0.011 0.008 -0.010 0.006 0.011 0.016 0.050 9.7 6.0 47.0 11.0 8.0 6.0 2.0 

Work hours per month 0.010 0.008 -0.015 0.005 0.010 0.015 0.048 10.7 6.8 48.0 12.0 9.0 7.0 2.0 

Simulator sickness 0.010 0.008 -0.016 0.004 0.009 0.015 0.043 10.5 6.7 53.0 12.0 9.0 7.0 3.0 

Detachment from work 0.009 0.008 -0.017 0.004 0.009 0.014 0.040 11.6 8.2 50.0 12.0 9.0 7.0 3.0 
Total cholesterol 0.006 0.009 -0.025 0.000 0.006 0.011 0.035 15.4 11.4 54.0 19.0 11.0 8.0 3.0 

Role clarity 0.001 0.008 -0.026 -0.004 0.002 0.007 0.026 21.0 13.2 54.0 31.0 15.0 10.0 3.0 

Hearing level at 3,000 Hz 0.001 0.009 -0.033 -0.005 0.001 0.007 0.030 22.8 14.6 54.0 34.0 17.0 10.0 4.0 

Any medication? 0.000 0.004 -0.014 -0.002 0.000 0.003 0.014 21.3 8.9 50.0 28.0 20.0 14.0 6.0 
24 hour stand-by shift duty? 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.1 2.5 29.5 21.5 20.0 18.5 13.0 

Day shift duty? 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.1 2.5 29.5 21.5 20.0 18.5 13.0 

Any limit on flight time? 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.1 2.5 29.5 21.5 20.0 18.5 13.0 

Other shift type duty? 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.1 2.5 29.5 21.5 20.0 18.5 13.0 
Red blood cell distribution width 0.000 0.007 -0.026 -0.005 0.000 0.004 0.021 23.4 12.9 54.0 33.0 20.0 12.0 4.0 

Smoking? 0.000 0.001 -0.005 -0.001 0.000 0.000 0.004 21.7 4.4 39.0 25.0 22.0 18.0 11.0 

White blood cell count -0.001 0.010 -0.036 -0.007 -0.001 0.006 0.030 25.4 15.4 54.0 39.0 23.0 11.0 3.0 

HDL cholesterol -0.001 0.004 -0.020 -0.004 -0.001 0.002 0.014 23.8 9.9 53.0 31.0 24.0 15.0 6.0 
Role conflict -0.001 0.007 -0.025 -0.006 -0.001 0.003 0.023 25.5 13.1 54.0 36.0 25.0 13.0 4.0 

SCORE 6-month-risk -0.002 0.005 -0.021 -0.005 -0.002 0.001 0.015 26.1 10.6 54.0 34.0 26.0 17.0 5.0 

Aspartate aminotransferase -0.002 0.009 -0.033 -0.008 -0.002 0.003 0.027 27.4 14.8 54.0 40.0 27.0 13.0 2.0 

Body mass index -0.002 0.008 -0.033 -0.007 -0.002 0.003 0.031 27.2 14.3 54.0 39.0 26.5 13.0 4.0 
Vacation days per year -0.002 0.005 -0.020 -0.005 -0.002 0.001 0.015 27.2 10.5 53.0 35.0 27.0 17.0 5.0 

Procedural justice -0.003 0.005 -0.023 -0.006 -0.003 0.000 0.016 28.4 11.6 54.0 37.0 29.0 18.0 5.0 

Self-rated health -0.005 0.005 -0.028 -0.008 -0.004 -0.001 0.012 31.7 11.4 54.0 40.0 32.0 24.0 6.0 

Emotional demands -0.005 0.004 -0.027 -0.007 -0.004 -0.002 0.007 32.4 9.5 54.0 39.0 32.0 26.0 9.0 
Social support -0.005 0.007 -0.030 -0.009 -0.005 0.000 0.018 31.9 13.5 54.0 44.0 33.0 21.0 5.0 

Task load during flight -0.005 0.006 -0.029 -0.008 -0.004 -0.001 0.014 32.2 11.6 54.0 41.0 33.0 24.0 5.0 

Physical demands, headgear -0.005 0.007 -0.032 -0.009 -0.005 0.000 0.021 32.0 13.7 54.0 43.3 33.0 19.0 5.0 

Autonomy -0.005 0.005 -0.029 -0.008 -0.004 -0.002 0.009 32.7 10.6 54.0 41.0 33.0 26.0 8.0 
Energy / Fatigue -0.005 0.005 -0.027 -0.008 -0.005 -0.002 0.008 33.3 10.8 54.0 42.0 33.0 26.0 10.0 

Night shift duty? -0.006 0.005 -0.024 -0.009 -0.005 -0.002 0.009 34.3 10.4 54.0 42.3 35.0 27.0 7.0 

Risk seeking -0.006 0.006 -0.035 -0.009 -0.005 -0.002 0.013 34.3 11.4 54.0 43.0 35.0 27.0 6.0 

Intraocular pressure -0.006 0.005 -0.027 -0.009 -0.006 -0.003 0.004 35.5 9.7 54.0 43.0 36.0 29.0 9.0 
Fasting glucose -0.007 0.006 -0.029 -0.011 -0.006 -0.002 0.014 35.5 12.0 54.0 46.0 37.0 27.0 7.0 

ECG QTc interval -0.007 0.006 -0.030 -0.011 -0.006 -0.002 0.014 35.9 11.7 54.0 45.0 37.0 28.0 6.0 

Hemoglobin -0.007 0.006 -0.032 -0.011 -0.007 -0.003 0.013 36.1 11.8 54.0 46.0 38.0 28.0 7.0 
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Table C.I. Summary statistics for variable importance scores aggregated across 2,000 Random Forest fits 

Variable Untransformed variable importance Rank-transformed variable importance (1 = highest, 54 = lowest) 

Mean SD Min 1st Q Median 3rd Q Max Mean SD Min 1st Q Median 3rd Q Max 

Work pace -0.007 0.006 -0.030 -0.011 -0.007 -0.003 0.008 36.4 11.3 54.0 46.0 38.0 29.0 7.0 

# of body regions with pain -0.008 0.006 -0.038 -0.011 -0.007 -0.004 0.007 37.7 10.4 54.0 46.0 39.0 31.0 9.0 

Triglycerides -0.008 0.006 -0.030 -0.011 -0.007 -0.003 0.010 37.5 11.1 54.0 47.0 39.0 30.0 9.0 

# of real flight hours -0.008 0.006 -0.037 -0.012 -0.008 -0.004 0.008 39.3 9.8 54.0 47.0 41.0 33.0 9.0 

Physical demands, general -0.008 0.007 -0.033 -0.013 -0.008 -0.004 0.009 38.9 11.3 54.0 48.0 41.0 32.0 8.0 
Age -0.009 0.006 -0.036 -0.013 -0.009 -0.005 0.010 40.2 10.4 54.0 49.0 42.0 33.0 8.0 

Systolic blood pressure -0.009 0.006 -0.037 -0.013 -0.009 -0.005 0.007 40.7 9.4 54.0 48.0 42.0 34.0 10.0 

Effort at work -0.009 0.006 -0.038 -0.013 -0.009 -0.005 0.006 40.9 9.6 54.0 49.0 43.0 35.0 9.0 

Resting heart rate -0.009 0.006 -0.036 -0.013 -0.009 -0.005 0.008 40.7 10.2 54.0 49.0 43.0 34.0 9.0 
Subjective well-being -0.010 0.006 -0.031 -0.013 -0.009 -0.006 0.006 41.4 9.4 54.0 49.0 43.5 36.0 9.0 

Irritation -0.010 0.006 -0.039 -0.014 -0.009 -0.005 0.008 41.3 9.9 54.0 49.3 43.0 35.0 9.0 

Supervisor Feedback -0.010 0.006 -0.036 -0.014 -0.010 -0.006 0.004 42.5 8.6 54.0 50.0 44.0 37.0 11.0 

Work engagement -0.011 0.007 -0.044 -0.016 -0.011 -0.007 0.005 43.6 9.3 54.0 51.0 46.0 38.0 10.0 
# of simulator flight hours -0.020 0.010 -0.056 -0.026 -0.019 -0.013 0.011 49.5 7.7 54.0 54.0 53.0 49.0 7.0 

Note. Binary variables in italics. Q: Quartile. 
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4. Conclusions and outlook 

When considering the results both of publication 1 submitted with this thesis, and of the as yet 

unpublished extended Age 60 Study results, one major conclusion is that the findings, based on 

different analytic approaches and data sources, consistently suggest the presence of a healthy worker 

survivor effect such that pilots in the oldest age group tend to show a more favorable, or at the very 

least comparably good, medical and psychological fitness profile as do middle-aged pilots. This calls 

into question the empirical basis of existing European legislation which bans pilots aged 60 and over 

from conducting single-pilot commercial air transport operations. In light of further developments in 

intelligent aircraft systems, single pilot operations in general are likely to become more prevalent and 

are an active field of research, including safety systems for automated detection and handling of pilot 

incapacitation (Vu, Lachter, Battiste, & Strybel, 2018). 

Nevertheless, despite the study results being convergent and consistent with previous research 

(Aerospace Medical Association, 2004; Kay et al., 1994) as regards the arbitrariness of the age 

threshold of 60 years, further evidence will likely be demanded by European regulators in the course 

of the rulemaking process. One feasible avenue is to utilize the already established, very large airline 

pilot cohorts for whom cause-specific morbidity and mortality data are collected (Hammer et al., 2014; 

Linnersjö et al., 2011). A more ambitious approach, as suggested in publication 1, would be to 

establish a cross-country harmonized database of aeromedical findings, which could for example be 

used to re-calibrate (Blaha, 2016) existing cardiovascular risk scores to the pilot population or even to 

subpopulations such as HEMS pilots, or to construct new risk scores (not necessarily only regarding 

cardiovascular events as the outcome of interest, but also e.g. flight accidents or incidents) based on 

insights from the emerging field of prediction modelling (Moons, Kengne, Grobbee et al., 2012; 

Moons, Kengne, Woodward et al., 2012). Nonlinear modelling techniques, such as those applied in 

publication 1, play an important role in modern prediction models and would be an especially 

important consideration with regard to the effect of pilot age, since the empirical justifiability of 

decision thresholds like “age 60” strongly depends on the existence of corresponding threshold effects. 
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However, as also evidenced by the findings reported in publication 2, which identified two 

occupational stressors as significant predictors of simulator flight performance, and the analysis of 

stress and strain experienced by the HEMS pilots described in section 1.4.2, it is important to keep in 

mind the bigger picture, of which pilot age (let alone medical-cause sudden incapacitation) is only one 

aspect. Operational conditions are often of greater significance to flight safety than individual pilot 

characteristics. Machine learning methods are a promising approach to optimize this system layer, for 

example concerning prediction of weather characteristics (Williams, 2014) or automated recognition 

of high cognitive load situations in the cockpit (Harrivel et al., 2017). Going one step further, there are 

current efforts to establish intelligent systems as autonomous, co-pilot-like actors (“human-autonomy 

teaming”; Vu, Lachter, Battiste, & Strybel, 2018). Yet, even as visions of completely autonomous 

aircraft abound, it is quite likely (and probably for most, also desirable) that HEMS flights will 

continue to be operated by human pilots for a long time. The role of organizational factors and 

adequate working conditions, as emphasized by work design theory (Glaser, Seubert, Hornung, & 

Herbig, 2015; Humphrey et al., 2007) should therefore be given at least equal attention as 

technological solutions in future studies of flight safety in HEMS. 
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