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Zusammenfassung

Diese Dissertation widmet sich der Untersuchung der Symmetrie in Theorien

für Spin-2-Felder. Insbesondere beschäftigen wir uns mit der Frage, ob die

vollständig nichtlinearen Theorien für masselose und massive Spin-2-Teilchen,

nämlich die Allgemeine Relativitäts- und die bimetrische Gravitationstheo-

rie, aus der Formulierung der reinen Eichtheorie abgeleitet werden können.

Darüber hinaus untersuchen wir die diskreten Symmetrien, die in einer Theo-

rie mit mehr als einer Metrik auftreten können, wenn wir eine Metrik wählen,

um die Dynamik der Raumzeit zu beschreiben, während alle anderen exakt

auf gleicher Augenhöhe behandelt werden.

Zu diesem Zweck betrachten wir die Chern–Simons-Theorie in fünf Dimensio-

nen, die mit der Anti-de-Sitter-Gruppe AdS4+1 = SO(4, 2) ausgestattet wird.

Mit der Tatsache, dass diese Gruppe isomorph zur konformen Gruppe in vier

Dimensionen, C3+1, ist, drücken wir die Theorie in der Basis für die konforme

Algebra aus. Die Eichfelder, die den Translationen Pa und speziellen konfor-

men Transformationen Ka entsprechen, jeweils bezeichnet durch ea und ıa,

werden dann nach der Implementierung mehrerer dimensionaler Reduktions-

schema als zwei Vierbeine interpretiert. Auf der vierdimensionalen Ebene

finden wir für verschiedene Schemen, die die Chern–Simons-Theorie auf eine

Generalisierung der Allgemeinen Relativitäts- und der konformen Gravita-

tionstheorie erster Ordnung reduziert. Darüber hinaus führen wir eine dop-

pelte Chern–Simons-Theorie in fünf Dimensionen mit der Symmetriegruppe

SO(4, 2)×SO(4, 2) ein. Wir brechen die Symmetrie runter auf SO(3, 1)×SO(2)

und gelangen nach einer dimensionalen Reduktion zu einer Verallgemeinerung

der vierdimensionalen bimetrischen Gravitationstheorie. In allen Fällen disku-

tieren wir die Restsymmetrie der Wirkungen auf der vierdimensionalen Ebene.
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ii ZUSAMMENFASSUNG

Wir betrachten auch eine geisterfreie Multigravitationstheorie mit der physika-

lischen Metrik gµν und den Satellitenmetriken f
(p)
µν , wobei p = 1, . . . , N . Dazu

erforschen wir die diskrete Symmetrie, die entsteht, wenn der Austausch zwis-

chen den Satellitenmetriken die Wirkung invariant verlässt und auch wenn

beide Quadratwurzeln ±
√
g−1f (p) in der Wirkung zum gleichen Interaktions-

potenzial zwischen den physikalischen und den Satellitenmetriken führen. Die

entstehende globale Symmetriegruppe ist isomorph zu SN × (Z2)N . Darüber

hinaus analysieren wir das Massenspektrum der Theorie mit der diskreten

Symmetrie. Wir konzentrieren uns dann auf den trimetrischen Fall, da sich der

multimetrische Fall ähnlich verhält und nicht zu einer neuen Phänomenologie

führt. Das masselose Spin-2-Feld Gµν vermittelt die weitreichende Gravita-

tionskraft der Raumzeit, auf der die massiven Spin-2-Felder Mµν und χµν

propagieren. Mit störungstheoretischen Mitteln analysieren wir die Vertices

der Theorie im Hinblick auf die Spin-2-Felder. Wir finden, dass das Spin-2-

Teilchen mit der kleineren Masse, χµν , stabil ist und insbesondere nicht in

masselose Gravitons zerfallen kann. Wir postulieren, dass dieses Spin-2-Feld

einen Bestandteil der Dunklen Materie darstellen kann.



Summary

This thesis is devoted to the investigation of the symmetry in theories for

spin-2 fields. In particular, we address the question whether the fully non-

linear theories for massless and massive spin-2 particles —namely standard

general relativity and bimetric gravity, can be obtained from a pure gauge

theory formulation. Furthermore, we explore the discrete symmetries that can

arise in a theory for many metrics, when we choose one metric to describe the

dynamics of spacetime while keeping all others exactly on an equal footing.

To this end, we consider the Chern–Simons gauge theory in five dimensions

valued in the anti-de Sitter group AdS4+1 = SO(4, 2). Using the fact that

this group is isomorphic to the conformal group in four dimensions, C3+1, we

express the theory in the basis for the conformal algebra. The gauge fields cor-

responding to the translations Pa and special conformal transformations Ka,

denoted by ea and ıa respectively, are then interpreted as two vierbeine after

implementing several dimensional reduction schemes. At the four dimensional

level we find for different schemes that the Chern–Simons theory reduces to a

generalisation of standard general relativity and first-order conformal gravity.

Moreover, we introduce a doubled Chern–Simons theory in five dimensions

with symmetry group SO(4, 2) × SO(4, 2). We break down the symmetry to

SO(3, 1) × SO(2) and after a dimensional reduction, we recover a generalisa-

tion of 4-dimensional bimetric gravity. In all cases, we discuss the residual

symmetry of the actions at the 4-dimensional level.

We also consider a ghost-free multigravity theory with the physical metric

gµν and the satellite metrics f
(p)
µν where p = 1, . . . , N . For this, we explore

the discrete symmetry that arises when the interchange between the satellite
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iv SUMMARY

metrics leaves the action invariant and also when both square roots ±
√
g−1f (p)

in the action lead to the same interaction potential between the physical and

the satellite metrics. The global symmetry group that arises is isomorphic to

SN × (Z2)N . Moreover, we analyse the mass spectrum of the theory with the

discrete symmetry. We focus then in the trimetric case since the multimetric

case behaves similarly and does not lead to new phenomenology. The massless

spin-2 mode Gµν mediates the long-range gravitational force of the spacetime

on which the massive spin-2 modes Mµν and χµν propagate. By computing the

perturbative expansion, we analyse the vertices of the theory in terms of the

spin-2 modes. We find that the spin-2 particle with the smaller mass, χµν , is

stable and in particular, it cannot decay into massless gravitons. We postulate

that this spin-2 field can be a component of dark matter.
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Amparo, Dieguito, Jacinta, Estela, Álvaro, Diego, la Ita, t́ıa Norma, t́ıa Maŕıa,
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N. L. Gonzalez Albornoz, D. Lüst, S. Salgado, A. Schmidt-May

Journal of High Energy Physics

Jan 2018: Dark matter scenarios with multiple spin-2 fields [2]

N. L. Gonzalez Albornoz, A. Schmidt-May, M. von Strauss

Journal of Cosmology and Astroparticle Physics

Apr 2016: Generalized Galilean algebras and Newtonian gravity [3]
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Notation and conventions

In this thesis we repeatedly use the covariant index notation for tensors and

connections defined in (p+ q)-, (p+ q+ 1)- and (p+ q+ 2)-dimensional spaces.

The following type of letters are used for indices of (pseudo)-tensors and con-

nections under diffeomorphisms:

µ, ν, . . . = 1, . . . , p+ q ,

m, n, . . . = 1, . . . , p+ q + 1 ,

M,N, . . . = 1, . . . , p+ q + 2 ,

while for the indices of (pseudo)-tensors and connections under local Lorentz,

(anti)-de Sitter and conformal transformations we use

a, b, . . . = 1, . . . , p+ q ,

A,B, . . . = 1, . . . , p+ q + 1 ,

I, J, . . . = 1, . . . , p+ q + 2 ,

respectively. The following table summarizes the symmetry groups mentioned

in this manuscript:

Name Symbol Group Killing metric (p+ q = 3 + 1)

Poincaré Pp+q ISO(p, q)

Lorentz Lp+q SO(p, q) ηab = diag(+,+,+,−)

translations Tp+q T(p, q) (abelian)

anti-de Sitter AdSp+q SO(p, q + 1) ηAB = diag(+,+,+,−,−)

de Sitter dSp+q SO(p+ 1, q) ηAB = diag(+,+,+,−,+)

Conformal Cp+q SO(p+ 1, q + 1) ηIJ = diag(+,+,+,−,∓,±)
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Chapter 1

Introduction

In this chapter we review the main aspects of the Lagrangian formulation of

Einstein’s general relativity and the actions for the first-order formalism of

gravity. We then discuss the importance of symmetries in physical theories

and motivate a gauge formulation for gravity. Next, some issues of general

relativity are mentioned to motivate the generalisation of general relativity

and the quest for modified gravity theories. We then present the generalisa-

tion of gravity to higher orders in the curvature and to arbitrary dimensions

and we discuss its connection to Chern–Simons theory. The main aspects of

the Lagrangian formulation of spin-2 field theory are presented afterwards and

finally, we discuss how spin-2 field theory can be connected with other gauge

formulations of gravity and whether the dark matter ingredient can be a mas-

sive spin-2 field. At the end of this chapter we present an item-list with the

contents of this manuscript.

1.1 Standard general relativity

The main role of theoretical physics is to describe the motion of particles,

fields and systems in terms of their energy and momentum. Standard general

relativity is the theory for the motion of spacetime. The field equations for

spacetime in absence of matter are known as the Einstein equations [4, 5] in

1



2 1. Introduction

vacuum

Rµν − 1
2
gµνR = 0 . (1.1)

Here gµν(x) is the metric tensor of the manifold spacetime and it allows us to

define distances and angles on it. We also have the Ricci tensor Rµν and the

scalar curvature R, both expresable in terms of the Riemann tensor Rµ
νλρ (see

§ A.1 for the definitions), which describes the curvature of the manifold. The

Riemann tensor depends directly on the Levi-Civita connection Γ and its first

derivatives. Furthermore, Γ depends on the metric and on its first derivatives.

Thus, the Einstein equations are second-order partial differential equations for

the metric. The corresponding action for the Einstein equations is known as

the Einstein–Hilbert action [6]. It has the metric as covariant dynamical field

or the vielbein one-form ea(x) when we use the language of differential forms.

In D = p+ q dimensions the action is given by

SEH[g] =

∫
dDx

√
|g| gµνRµν(g) , (1.2a)

SEH[e] = 1
(D−2)!

∫
εa1...aD R

a1a2(e) ∧ ea3 ∧ · · · ∧ eaD , (1.2b)

respectively for the metric gµν or the vielbein form ea = eaµdxµ where gµν(e) =

eaµe
b
νηab, with ηab being a diagonal Minkowski metric with p entries +1 and q

entries−1 and also where Rab(e) is defined in eq. (A.9). The actions above lead

to the same dynamics, however, the tensor gµν has D(D + 1)/2 independent

fields while eaµ has D2. The action (1.2b) has the extra symmetry of local

Lorentz transformations e′a = Λa
b(θ

ab) eb where θab = −θba are D(D − 1)/2

parameters. The number of fields of SEH[e] minus the Lorentz symmetries

gives the true numbers of fields as in SEH[g].

Besides distances and angles, parallelism is another geometrical concept that

tells us how we transport a tangent vector along a curve on the manifold. To

define this mathematically we need a connection, an object that in principle

does not depend on the metric. The first-order formalism of standard gen-

eral relativity consists in considering independently connection and metric. In

the tensor language one considers an independent connection Γµνλ and in the

differential forms language one considers the so-called spin connection ωαβµ

defined through

Γρµν(ω, e) = e ρ
a ∂µe

a
ν + e ρ

a ω
a
bµe

b
ν . (1.3)
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This equality is the bridge between the tensors and forms language and it is

known as the vielbein postulate because one cannot prove it but one has to

include it as axiom. In the first order formalism the actions

SEP[Γ, g] =

∫
dDx

√
|g| gµνRµν(Γ) , (1.4a)

SEC[ω, e] = 1
(D−2)!

∫
εa1...aDR

a1a2(ω) ∧ ea3 ∧ · · · ∧ eaD , (1.4b)

are known as the Einstein–Palatini [7] and Einstein–Cartan [8–13] respectively.

For the Einstein–Palatini theory, the equation of motion for Γ implies that the

connection Γ is the Levi-Civita connection, therefore by integrating Γ out one

recovers Einstein–Hilbert theory. For the Einstein–Cartan theory, the equation

of motion for ω and the vielbein postulate imply that the connection Γ is the

Levi-Civita connection. A further generalisation of the Einstein–Cartan theory

is given by the action introduced by Plebanski, for which the fundamental field

that carries geometry is the set of two-forms Bab = ea ∧ eb [14].

All the theories above consider in addition that the metric is covariantly con-

stant. This means that, given a connection Γ, then its related covariant deriva-

tive acting on the metric vanishes, i.e. ∇Γ
µ gνλ = 0, where the action of the

covariant derivative ∇Γ
µ on an arbitrary range-2 tensor Vµν is defined in eq.

(A.3a). This equation is called the compatibility condition and it demands

that the metric has to be covariantly constant, i.e. from a point P , its compo-

nents must not vary when transported along curves arriving to point Q. The

compatibility condition is generally assumed since it implications are directly

measurable: if we have two cubes of the same volume —notice that in order

to measure their volumes we have to have used a metric— at P , they should

have the same volume at Q.

As we explain in § 1.3, standard general relativity, although highly success-

fully supported by local tests and explaining numerous phenomena, fails when

applied in quantum contexts or when compared to the predictions of quan-

tum field theory. This motivates the search for modified or generalised gravity

theories. As described in detail in § 1.5, in this dissertation we study both

generalisations and modifications of standard general relativity.
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1.2 Symmetries

One of the powerful aspects of physics is the capability to describe motion. Let

us consider a sphere in a room, hanging by a thread from the ceiling. We can

make the sphere rotate and that will be for sure a motion that we will be able

to describe; in this case with classical mechanics. If we turn the lights off, then

we make rotate the sphere and then we turn the lights on again, nobody will

be able to say what was the motion suffered by the sphere, because throughout

the motion the sphere is undistinguishable. The system has a symmetry and it

prevents us to know information about its motion. As we already mentioned,

to describe the motion of a system in terms of its momentum and energy is one

of the main tasks in theoretical physics, but symmetry, apparently, prevents

us to do it. We will see, however, that systems with symmetry are generically

easier to describe.

In deterministic terms, one says that any motion in nature can be associated

with a particular Lagrangian function L(φ). This Lagrangian will eventually

have some symmetries under the redefinition φ → φ′ such that L(φ′) looks

exactly as L(φ). The Lagrangian that describes the geometry of the 2-sphere:

L(x, y, z) = x2 + y2 + z2 has the symmetry

(x, y, z)T −→ (x′, y′, z′)T = R(θx, θy, θz)(x, y, z)T , (1.5)

with R(θx, θy, θz) being a 3-parameter matrix in SO(3) and where T denotes

the transpose. The geometric interpretation of this invariance is that, however

we rotate the sphere, we will always see the same sphere.

Since along the direction of a symmetry it occurs always the same physics, we

do not need to extend a coordinate in that direction to describe what happens.

The equations of motion do not have to be integrated in that redundant co-

ordinate and therefore, the calculations are significantly simpler. Identifying

the symmetries of a physical system is thus relevant and being able to do it

is connected with the mathematical structure of the system itself: when we

have already considered all the sufficient coordinates to describe the system

by implementing all the symmetries, the number of coordinates is precisily

its number of degrees of freedom. A crucial insight in the mathematics of
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symmetries was made by Noether [15], who realized that for every symmetry

that we can find in a physical system, there is then for a certain variable a

conservation law. In a next level of abstraction: it is not only that we find

symmetries in physical systems but also in physical theories themselves. For

example, the Einstein–Hilbert Lagrangian is invariant under the general co-

ordinate transformation xµ → x′µ, as long as x′µ depends smootly on the old

set of coordinates xµ and as this transformation is invertible. This invariance

relates to the conservation of the stress-energy tensor. Another well-known

examples are Newtonian and relativistic theory of mechanics. For those cases

the homogeneity of space and time is related to the conservation of momentum

and energy respectively.

A particular mathematical treatment for the symmetries of an action is the

so-called gauge formulation. A gauge theory is a physical theory for which

the action is invariant under some field transformations Aµ → A′µ, which can

be derived from the symmetry rules of a certain Lie group1. For example,

quantum electrodynamics is invariant under the field transformations induced

by the Lie group U(1). The field content of a quantized gauge theory is made up

by gauge bosons. The standard model of particle physics is invariant under the

action of the Lie group U(1)×SU(2)×SU(3) and the gauge bosons correspond

to the photon γ, the bosons W± and Z0 and the gluons λi, i = 1, . . . , 8. Both

mentioned theories have an action that can be expressed as a Yang–Mills action

SYM[A] =

∫
〈F , ?F 〉 (1.6)

valued in the respective Lie groups. Here F = F a
µ dxµ⊗Ta is the field strength

associated with the gauge field A and 〈Ta,Tb〉 is the Killing metric of the Lie

group. The usual 4-dimensional Einstein theory for gravity is, however, a

theory that cannot be formulated as Yang–Mills gauge theory. We discuss

more about this fact in § 1.3. Since gravity à la Einstein is not renormalizable

and given that the gauge formulation of theory seems to be the key for its

renormalization, we would like to formulate gravity as a gauge theory. It turns

out though, that (2n+ 1)-dimensional gravity with cosmological constant plus

1In this manuscript, when there is no possible ambiguity, we refer indistinctly to the Lie
algebra of a Lie group and to the Lie group itself. This we do in a context where the relevant
meaning is the symmetry of a gauge theory. If we are studying the commutation relations
we refer to the symmetry as the Lie algebra.
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higher-order curvature terms can be formulated as the Chern–Simons action

SCS[A] =

∫
Q(2n+1)(A) (1.7)

for the group SO(2n, 2). Here Q(5) is the Chern–Simons form of order 5 [16].

Against what one could have expected, 4-dimensional standard general relativ-

ity is not invariant under the gauge transformations induced by the Poincaré

group (see § 4.1 for a detailed explanation as well as ref. [17]) and, therefore, we

ask ourselves if it can be formulated a pure gauge theory in the same spirit as

the Yang–Mills approach for the standard model. In this thesis, we deal with

the formulation of 5-dimensional geometries as Chern–Simons actions and we

study their connection with gravitational fields.

1.3 Issues with gravity

In the current state of theoretical and experimental physics research there are

many problems that suggest that we should consider a more generalised theory

of gravity. Some of those are: the cosmological constant problem, the nature

of dark matter, why inflation happened, how to formulate quantum gravity.

Also, given that the fundamental interaction of the standard model can be

formulated as a Yang–Mills gauge theory, the pure gauge formulation of gravity

has been object of study in the last decades, although without success. Up to

the community knowledge, 4-dimensional standard general relativity cannot

be formulated as the gauge theory for some Lie group (see e.g. refs. [17, 18]).

Furthermore, the search for modified gravity theories, i.e. generalised gravity

theories satisfying the correspondence principle by leading to standard general

relativity at some limit and that pass the small scale local tests of it has

been an active subject of research in the last century in order to solve this

queries: examples of modified gravity theories are massive gravity à la Fierz–

Pauli [19], f(R) gravity [20], Horndeski’s theory (which generalises many other

scalar-geometry interactions theories) [21], modified Newtonian dynamics [22],

massive gravity à la de Rham–Gabadadze–Tolley [23,24] and bimetric gravity

[25], among others (see refs. [26–30] for detailed reviews).
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To understand more: in the case of massive gravity it could be that the new

parameter of the theory, i.e. the mass of the graviton mg, adds desirable

effects and that it solves the problem for dark matter. Other example; in

the case of quantum gravity one main problem of the attempts to construct

a quantum theory for the spacetime is that quantum Einstein gravity is not

renormalizable when doing perturbation theory [31]. One might then have

the hope that a quantum modified gravity was indeed renormalizable. As it

occurs in the standard model, the gauge formulation à la Lie of the current

and successful quantum theories of particle physics seems to be the key for

their renormalizability and thus, formulating Einstein —or modified— gravity

as a pure gauge theory has been subject of study since Witten formulated the

3-dimensional version of the Einstein–Cartan Lagrangian as a Chern–Simons

3-form valued in the 3-dimensional version of the Poincaré group [32].

A Chern–Simons form valued in Lie group is gauge invariant under the action

of the group by definition [17]. This makes Chern–Simons theories attractive:

their pure gauge invariance. The exterior derivative of a Chern–Simons form

is by definition proportional to the trace of a polinomial of the two-form cur-

vature F and therefore they are only Chern–Simons forms of odd order. One

particular complication of this fact is that we cannot formulate the action of

a 4-dimensional theory as the integral of some Chern–Simons form and, up to

now, there is no consistent formulation of the 4-dimensional Einstein–Cartan

theory with or without cosmological constant as a gauge theory —and that

includes any attempt to formulate it as a Yang–Mills theory action. In other

words, we do not know a set of gauge transformations δω,e induced by a Lie

group, such that

δω,e

∫
εabcdR

ab(ω) ∧ ec ∧ ed = 0 . (1.8)

Motivated by this, we can ask ourselves whether the solutions space of 4-

dimensional gravity is a subset of a higher dimensional theory that can be

formulated as a pure gauge theory. In this thesis we positively answer this

question by showing that there is a 5-dimensional Chern–Simons theory on

which we can restrict fields to get generalisations of standard general relativity

as well as modified gravity theories.
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1.4 Lanczos–Lovelock & Chern–Simons

Einstein–Hilbert (and Einstein–Cartan) theory in D-dimensions has an asso-

ciated action which is linear in the Lorentz curvature Rab and the rest is a

factor of D − 2 times the vielbein. Both ingredients are contracted with the

invariant tensor of the Lorentz algebra SO(p, q), the Levi-Civita pseudo-tensor.

Lanczos–Lovelock theory is the generalisation of the Einstein–Hilbert (and of

Einstein–Cartan) theory formulated as the most general polynomial in Rab

and ea contracted with the Levi-Civita pseudo-tensor [33–35]. For example, in

p + q = 2 + 1 dimensions one uses the invariant tensor εabc to construct the

polynomial

SLL[ω, e] =

∫
εabc

(
a11R

ab(ω) ∧ ec + a03 e
a ∧ eb ∧ ec

)
. (1.9)

Here amn are parameters going with the term of m order in Rab and n order in

ea. The term corresponding to a03 is the action for the cosmological constant

in 3 dimensions and, in D dimensions, it corresponds to the term of order D

in the vielbein. In 4 dimensions the Lanczos–Lovelock action reads

SLL[ω, e] =

∫
εabcd

(
a20R

ab ∧Rcd

+ a12R
ab ∧ ec ∧ ed + a04 e

a ∧ eb ∧ ec ∧ ed
)
. (1.10)

This action contains also the cuadratic term in the curvature which is known as

the Gauss–Bonnet term and it is topological by means of the Stokes’ theorem,

since it can be always expressed as a boundary term.

In odd dimensions p + q = 2n + 1 something highly remarkable happens: for

a special choice of the coefficients amn, the Lanczos–Lovelock theory can be

then formulated as a Chern–Simons action (see eq. (1.7)) valued in the AdS

group in 2n+ 1 dimensions, AdS2n+1 ' SO(2n, 2) [35]. The gauge connection

is denoted asA = 1
2
ωABJAB = 1

2
ωabJab+e

aPa, respectively in the bases {JAB}
and {Jab,Pa}. The commutation rules of the AdS generators are specified in

eq. (2.17). To make the Lanczos–Lovelock and the Chern–Simons theories

coincide, one identifies ωa,p+q+1 with the vielbein ea and ωab with the spin

connection. For example, in three dimensions the action is the one obtained
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by Witten which is the action of eq. (1.9) with a11 = 1 and a03 = Λ/3. In 5

dimensions one has

SCS[ω, e] =

∫
εabcde

(
Rab(ω) ∧Rcd(ω) ∧ ee

− 2
3`2
Rab(ω) ∧ ec ∧ ed ∧ ee + 1

5`4
ea ∧ eb ∧ ec ∧ ed ∧ ee

)
. (1.11)

The latter and the generalisation to any odd dimension was first obtained

by Chamseddine [36]. The 5-dimensional Chern–Simons theory for the gauge

group SO(4, 2) has many interesting properties. In refs. [37, 38] it was found

that the number of degrees of freedom of the theory depends on the location

in phase space and the same occurs when one goes to the generalisation us-

ing p-form gauge connections instead of the usual one-form [39]. In ref. [40]

the holographic description of this Chern–Simons theory, as well as its Weyl

anomaly, were derived: this is, by computing the vacuum expectation value of

the trace of the stress-energy tensor for the conformal field theory by means

of holography. They detected that only the type-A anomaly emerges and not

the type-B2, which is rather an unusual behavior.

In the AdS algebra (2.17) we have non-commutative translations Pa and there-

fore the gauge theory differs from a Poincaré gauge formulation. This kind of

theories are attractive considering that the Poincaré invariance P2n+1 is ob-

tained from the AdS invariance, at the level of the algebra and the action by

means of an Inönü-Wigner contraction [42–44]. Using this fact, one can prove

that the (2n+ 1)-dimensional Chern–Simons Poincaré invariant gauge theory

becomes [45]

S = an1

∫
εa1...a2n R

a1a2(ω) ∧ · · · ∧Ra2n−1a2n(ω) ∧ ee . (1.12)

Although this action is non-linear in the curvature it leads to first-order dif-

ferential equations for the spin connection and the vielbein. It differs however

from the Einstein–Cartan action and the question is, whether there is a possible

way to formulate standard general relativity as a gauge theory for the Poincaré

or a more general Lie group. Up to now, it is has been not possible to formu-

late 4-dimensional standard general relativity —or a modified 4-dimensional

standard general relativity theory— as a gauge theory for the Poincaré group

2This classification of conformal anomalies was first suggested in ref. [41].
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and, even worse, the Einstein–Cartan action itself is not invariant under the

gauge transformations induced by the Poincaré group when the gauge connec-

tion is chosen as A = 1
2
ωabJab + eaPa, for commutative translations Pa (see §

4.1.2).

Furthermore, we can ask ourselves whether it is in general possible to formulate

a 4-dimensional spin-2 field theory in a pure gauge formalism. In ref. [46] there

was an insight to formulate 5-dimensional gravity for the natural generalisation

of Chern–Simons actions, namely via transgressions actions [16] —basically

the difference of two Chern–Simons actions which share the symmetry gauge

group— for which they study solutions that consider a reference geometry

associated with the presence of the extra Chern–Simons action.

In this thesis we gauge the 4-dimensional conformal group —with to gauge

meaning to express a gauge connection and its associated gauge transforma-

tions in the basis of the Lie algebra associated with the Lie group associated

with a gauge symmetry— using a certain parametrized conformal algebra

C3+1(M,γ) ' SO(4, 2) , (1.13)

where M is a matrix in the two-dimensional general linear group over C and

γ is a real or pure-imaginary parameter. In this particular basis we define

a gauge connection containing two one-form vielbeine and we construct an

invariant action under the gauge transformations induced by the group of eq.

(1.13) and where the Lagrangian is formulated as a Chern–Simons form. We

study the double vielbein field content of the theory and the relation between

this theory to bimetric and further spin-2 field theories for gravity.

1.5 Spin-2 fields

In the last decades, physical theories including massive spin-2 fields have be-

come subject of attention in particle physics and cosmology [26, 30]. Spin-2

particles with mass are a natural extension of the standard model-general rela-

tivity description: the standard model contains massless and massive particles

from spin-0 to spin-1 and general relativity describes a massless spin-2 mode.
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The first attempt for a linear massive spin-2 field theory was made by Fierz

and Pauli [19] confronting, however, bad behaviors when taking the mass of

the spin-2 mode to be zero and also ghost instabilities when going to the non-

linear level. The problem was solved in the past two decades when a set of

theories was proven to be free of ghost instabilities at any order in the per-

turbative expansion [23, 24, 47–51]. This set of theories are fully non-linear

massive gravity and bimetric gravity. Both contain a massive mode that cou-

ples to standard model matter thus it mediates gravitational interactions. The

mass of the spin-2 field is constrained to be small since the gravitational force

is long-ranged.

The fully non-linear massive gravity action consists of a dynamical tensor field

gµν with its own Einstein–Hilbert-like term. In addition, it has a second (fixed)

reference metric fµν , which is non-dynamical but it appears interacting with

gµν in the potential (see § 3.4 for further details). This theory has, however, a

lack of consistent cosmological solutions and one had to go further with spin-2

interactions theory. It was realized that if one adds the Einstein–Hilbert-

like term for fµν to the action one does not reintroduces ghosts [25, 50] and

that cosmological solutions are better behaved [52]. This results in a bimetric

theory for gravity, describing nonlinear interactions of massless and massive

spin-2 fields and their couplings to standard model matter [53].

Conformal gravity as pursued by Weyl [54, 55] and formulated by Bach [56]

consists of an action for 4-dimensional gravity that is invariant under rescalings

of the metric (see § (4.2) for further details). Since it is a theory for the metric

of the spacetime, conformal gravity can be seen as spin-2 field theory. Connec-

tions between bimetric gravity have been studied e.g. in ref. [57]. Moreover,

conformal gravity has the feature that it can be formulated through an aux-

iliary action containing a second dynamical vielbein field. By integrating out

the extra vielbein one gets the original conformal gravity action. The auxiliary

action is also invariant under Weyl rescalings. In ref. [1] we pointed out that

conformal gravity can be obtained from first-order bimetric gravity by restrict-

ing both spin connections to be equal and related to a certain combination of

the vielbeine through the vielbein postulate.
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1.5.1 Chern–Simons and spin-2 fields

In this dissertation we study the well-known 5-dimensional Chern–Simons

gauge theory for the group SO(4, 2). Its interpretation as a 5-dimensional

gravity theory has been carried out, e.g., in refs. [18, 36, 58]. Inspired by the

connections between Lanczos–Lovelock and Chern–Simons theory, we investi-

gate the possibility of deriving a 4-dimensional spin-2 field theory from a pure

gauge formulation in five dimensions. This setup would involve a dimensional

reduction or truncation from the gauge theory. Kaluza–Klein-like reductions

of Chern–Simons actions have been carried out in refs. [59,60] and also, other

types of dimensional reductions were proposed in refs. [61–66]. To our pur-

pose, we present several unexplored dimensional reduction schemes that reveal

relations between 5-dimensional Chern–Simons and 4-dimensional spin-2 theo-

ries, including general relativity and generalisations of conformal and bimetric

gravity.

To be more precise, we explore these relations which have the following origin:

the 5-dimensional AdS group AdS4+1 ' SO(4, 2) is generated by the AdS

rotations JAB and AdS translations TA with A,B = 1, . . . , 5. This group

is isomorphic to the 4-dimensional conformal group C3+1 which is generated

by Lorentz rotations Jab, translations Pa, conformal transformations Ka and

dilations D where a, b = 1, . . . , 4. Once we have performed the dimensional

reduction, the generators Jab will induce the appearence of the 4-dimensional

spin connection and Pa together with Ka will give rise to two vierbein fields.

Hence, in general we do not arrive at 4-dimensional general relativity but

theories with two spin-2 fields.

For this aim we analyse the gauge algebra SO(4, 2) in different bases, all of

them parametrized by the matrix M and the parameter γ, as mentioned at

the end of § 1.4. In that way we identify the isomorphism to the algebra

C3+1. Although the 5-dimensional Chern–Simons actions written in different

bases are all related by linear field transformations, the dimensional reduc-

tion schemes we use are basis-dependent and thus they lead to inequivalent

4-dimensional theories. As a general behavior, the truncation process breaks

down the gauge symmetry to the Lorentz group SO(3, 1), which is the sym-

metry of the local Lorentz transformations. We recover with in this form the
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following 4-dimensional spin-2 field theories.

First, we carry out a simple dimensional reduction after having taken the

Inönü–Wigner contraction that leads SO(4, 2) to ISO(3, 2) or ISO(4, 1). We

obtain the Einstein–Cartan theory in four dimensions plus an action which

involves a torsional Lorentz-breaking term. This term can be removed by

restricting a field at the 5-dimensional Chern–Simons level or considering the

case where the torsion is equal to zero. Second, without having taken Inönü–

Wigner limit, a similar truncation of the Chern–Simons action gives first-order

formulation of 4-dimensional conformal gravity. From a different setup, this

action was first obtained by Kaku, Townsend and van Nieuwenhuizen in ref.

[67] and, as well as conformal gravity à la Weyl, it has Weyl dilation invariance.

Our procedure explains how this gauge symmetry originates from the SO(1, 1)

symmetry present in the commutation relations of the gauge algebra (a rotation

of the generators that leaves the commutation relations invariant). We refer

to this symmetry as the Weyl rotation invariance (see § 4.3.2), because it acts

on the vierbein fields as a continuous rotation in the same spirit of a Weyl

dilation (see § 4.2 for more information about Weyl dilations).

Furthermore, we consider a dimensional reduction scheme that introduces one

warp functions for each vierbein. After integrating along the warp direction

the Chern–Simons action leads to an with a set of free parameters, distinctly

to the previous case. This result corresponds to a generalisation of conformal

gravity in the Cartan formalism. By last, we consider two copies of the Chern–

Simons action which has a SO(4, 2)×SO(4, 2) gauge symmetry. By making the

field content interdependent the gauge symmetry breaks to SO(3, 1)× SO(2).

We then dimensionally reduce this theory to obtain a generalised bimetric

theory with additional derivative terms. These novel kinetic terms can be

removed through a fields restriction at the 5-dimensional level. In that case

one obtains the bimetric gravity à la Hinterbichler and Rosen in the Cartan

formalism. The latter procedure breaks the gauge symmetry to SO(3, 1). The

generalised bimetric theory contains free parameters that can be chosen such

that we recover another bimetric theory for which the Weyl rotation invariance

typical of first-order conformal gravity is present.
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1.5.2 Dark matter and spin-2 fields

By solving the mass eigenvalue problem for bimetric gravity one can calculate

precisely what the field content is of such a theory. It turns out that there

is one massless spin-2 mode Gµν and one massive spin-2 mode Mµν , whose

mass can be expressed in terms of the interaction parameters of the potential

[25]. The massless mode can mediate a long-range gravitational force and this

makes the constraints on the spin-2 mass less restrictive. The gravitational

interactions of general relativity can be obtained in bimetric theory with the

same precision for any value of the mass of the massive mode [68–71]. The

way to achieve this is by decreasing the coupling between the Mµν field and

the stress-energy tensor T µν and, remarkably, this leaves the coupling between

the massive and massless modes with the same strength. In this way the

massive mode continues gravitating with the same strength as the fields of the

standard model. The 3-metric case —so-called, trimetric gravity— contains

one massless mode Gµν and two massive modes: Mµν and a lighter one, χµν .

With the mentioned facts we could think that a vestige amount of spin-2

massive particles act as dark matter. The evidence of dark matter comes from

astrophysical and cosmological measurements; the component of dark matter

has only been observed through its interaction with gravity. If we assume that

dark matter emerged as the result of a production mechanism one should then

explain —at least at the classical level— how the massive modes are stable

when interacting with the massless modes or whether the massive modes can

decay in the massless modes, since the weak interactions of the dark matter

particle shows its stability to the present time. Different approaches for dark

matter that do not assume it to be made up of a certain particle are, among

others, modified Newtonian dynamics [22, 72] and primordial black holes [73].

The attempts to produce or detect the dark matter particle have not been

successful [74, 75]. This suggests that such a particle is heavy and therefore

difficult to produce or that its interaction with baryonic matter particles is

extremely weak.

In refs. [76, 77] a theoretical construction for massive spin-2 dark matter was

suggested and later analysed in refs. [71, 78] (see also [79]). It was found that

bimetric gravity gives a framework for dark matter made up of spin-2 particles
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with a mass of the order of TeV. The observed amount of dark matter in the

Universe can be explained by through the production mechanism called “freeze-

in” (see ref. [80] for a review on that production mechanism). In principle,

the daughter products of the spin-2 particle could be detected indirectly in

experiments.

In ref. [81] it was pointed out that strong spin-2 self-interactions could possibly

affect the production mechanism when allowing thermalization of the dark

sector and this would constraint the dark matter particle mass could be of the

order of 1 MeV. Unfortunately, bimetric theory proposes a dark matter particle

candidate in which the interactions with baryonic matter are too small to be

detected. It has been then, up to now, not possible to produce massive spin-2

fields in particle accelerators.

In this thesis we explore multimetric interactions that generalise bimetric the-

ory bringing the possibility to make have invariance under discrete symmetry

groups. We suggest that the maximal global symmetry in multimetric theories

with (N+1) metrics is SN×(Z2)N . Furthermore, we study the mass spectrum

for this discrete invariance and we also calculate the cubic interaction vertices

for the special case of trimetric theory, i.e. N = 2. It turns out that this

case, in the same way of bimetric gravity, has a parameter α that regulates

the deviations from general relativity. In particular, we analyse the parameter

region α < 1. In this case the deviations from general relativity are small with

large mass range. The massive spin-2 mode with greater mass, Mµν , has a

similar behavior as the massive mode of the bigravity case: it neither decays

into Gµν nor into the lighter mode χµν . Moreover, it couples very weakly to

the standard model fields. The lighter spin-2 mode has new features: it does

not couples to matter and it does not decay into other spin-2 particles. Since

it is a stable massive field we postulate it as a dark matter component. We

discuss then the new parameter regions brought by the trimetric scenario.
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1.6 Structure of this thesis

In this thesis we address the questions i) whether it is possible to obtain 4-

dimensional spin-2 field theories from the 5-dimensional Chern–Simons theory

for the SO(4, 2) gauge group and ii) whether it is possible to describe the dark

matter using maximal discrete symmetric multimetric models. To this end,

this thesis is structured as follows:

• Chapter § 2 is devoted to a mathematical prelude. Here we study several

topics of Lie algebras and their uses in gauge theory. In particular, we

formally present the symmetry algebras used in this thesis and we review

the Inönü–Wigner contractions. Also, we study the algebra SO(4, 2) in

different bases and we discuss the method of expansion of Lie algebras.

By last, we discuss the machinery of Lie algebra-valued differential forms

and Chern–Simons forms.

• Chapter § 3 constitutes a review of the ghost-free spin-2 field theories,

namely massive and bimetric gravity. Also, we present some results of

ref. [2]: the study of the mass spectrum for a multimetric theory for

spin-2 fields, in the special case of maximal global discrete symmetry of

the multimetric action.

• In chapter § 4 we discuss the fact that 4-dimensional gravity is not in-

variant under the gauge transformations induced by the Poincaré group,

which motivates the gauge formulation of a modified gravity theory. Also,

we study some aspects of conformal gravity in its first- and second-order

formulation.

• In chapter § 5 we present the results obtained in ref. [1]. Here we compute

the Chern–Simons theory for the gauge group SO(4, 2) in convinient

bases in order to apply several dimensional reduction schemes. We obtain

generalisations of Einstein, conformal and bimetric gravity.

• Chapter § 6 is devoted to some results of ref. [2]. Here we analyse the

perturbative expansion of trimetric gravity with maximal global discrete

symmetry. The generalisation to N satellite metrics is also discussed.
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We conclude that the massive mode χµν is completely stable and we

suggest that it can be the component of dark matter.

• In chapter § 7 we present a conclusion for the aims that are pursued in

this thesis.
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Chapter 2

Symmetries

The concept of symmetry is something that we use over and over again in

this manuscript. We devote this chapter –a mathematical prelude– to the

explanation of different tools related to the description and use of symmetries

in physics. In particular, we discuss some important symmetry groups in

physics and we review the Inönü–Wigner contractions and the expansion of

Lie algebras. Also, we present the algebra SO(4, 2) in different bases and

we review the properties of differential forms defined on a principal bundle

together with the mathematical aspects of Chern–Simons theory.

2.1 Symmetry scenarios

2.1.1 Minkowski space

The (p+ q)-dimensional Minkowski spaceMp+q is defined through the metric

tensor ds2 = ηµν dxµ ⊗ dxν , with µ, ν = 1, . . . , p + q and where η is a matrix

with p times the entry +1 and q times the entry −1 in the diagonal and zeros

out of it. If the diagonalized metric of a manifold has only positive entries,

one says that the space is Euclidean if the entries of the metric are constant.

If one or more of the entries are negative, then one says that the space is

pseudo-Euclidean or Lorentzian.

19
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We address, in the following, the problem of finding all the Killing vector fields

of Mp+q. For a given metric tensor, the equations that determine the Killing

vectors of the manifold are

∇µξν +∇νξµ = 0 , (2.1)

which is the so-called Killing equation. Here ~ξ = ξµ∂µ is the Killing vector

field. Since the Killing equation is symmetric in the lower indices, we can find

at most (p+q)(p+q+1)/2 linearly independent Killing vector fields. Also, for a

Levi-Civita connection it is possible to show that ∇µ∇ν ξλ = Rρ
λνµξρ [82]. Due

to the fact that for the Minkowski space the metric is constant, the covariant

derivative is simply the partial derivative and the Riemann tensor is equal to

zero. The equations that determine the Killing vectors are then given by

∂µξν + ∂νξµ = 0 , (2.2a)

∂µ∂νξλ = 0 . (2.2b)

From eq. (2.2b) we see that ξµ = Cµνx
ν +Cµ, where Cµν and Cµ are constants.

By plugging in this solution back in eq. (2.2a), we see that Cµν = −Cνµ and

therefore Cµν has (p+ q)(p+ q − 1)/2 linearly independent entries. The p+ q

quantities Cµ are linearly independent. In this way, the expression for a general

Killing vector on Mp+q is

~ξ = 1
2
Cµν (xν∂µ − xµ∂ν) + Cµ∂µ . (2.3)

The tensor xµ∂ν − xν∂µ is anti-symmetric hence it corresponds to (p+ q)(p+

q − 1)/2 linearly independent vector fields. Together with the fields ∂µ they

are
(p+ q)(p+ q − 1)

2
+ (p+ q) =

(p+ q)(p+ q + 1)

2
(2.4)

vectors, which coincide with the maximum number of possible independent

Killing vectors that a (p+ q)-dimensional manifold could have. We have found

all the Killing vector fields of Mp+q and we denote them as

Jµν = xµ∂ν − xν∂µ , (2.5a)

Pµ = ∂µ . (2.5b)
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2.1.2 Isometry group

It is well-known that all the linearly independent Killing vectors defined on a

manifold make up a basis for a Lie algebra [16], which is called the Lie algebra

of the isometry group of the manifold. In our case, the algebra of the isometry

group for Mp+q is called the inhomogeneous special orthogonal algebra in

p+ q dimensions ISO(p, q) = span {Jµν , Pµ}, or simply the (p+ q)-dimensional

Poincaré algebra, also denoted by Pp+q .

At this point it is important to clarify that since we use the Poincaré algebra

as well as its subalgebras or its extensions as gauge group in this thesis, we

change the notation of its generators to emphasize that they are part of the

basis of a principal bundle with elements M = Ma
µ dxµ⊗Ta. Thus from now

we denote the generators of the algebra as

Jµν −→ Jab , (2.6a)

Pµ −→ Pa , (2.6b)

with a, b = 1, . . . , p+ q.

2.1.2.1 Commutation relations

It is straightforward to compute the commutation relations. First, we find

[Jab,Jcd] = f ef
ab,cd Jef , (2.7)

with structure constants

f ef
ab,cd = −1

2

(
ηacδ

ef
bd + ηbdδ

ef
ac − ηbcδ

ef
ad − ηadδ

ef
bc

)
. (2.8)

This shows that the generators Jab make up a basis for a subalgebra by them-

selves. This algebra is called the special orthogonal algebra in p+q dimensions

SO(p, q) = span {Jab} or simply the (p + q)-dimensional Lorentz algebra, also

denoted by Lp+q. The structure constants make up the components of a tensor
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Lorentz transformations and they satisfy the anti-symmetry relations

f ef
ab,cd = −f ef

cd,ab = −f ef
ba,cd = −f ef

ab,dc = −f fe
ab,cd . (2.9)

Furthermore it holds that [Pa,Pb] = 0, which also shows that the generators Pa

make up a basis for an abelian subalgebra. This is the algebra of translations

in p+q dimensions T(p, q), also denoted as Tp+q. It is then just left to compute

how Jab and Pa commute. One gets

[Jab,Pc] = f d
ab,c Pd , (2.10)

with

f d
ab,c = −

(
ηacδ

d
b − ηbcδda

)
. (2.11)

satisfying that f d
ab,c = −f d

ba,c . Since the generators Jab do not commute with

Pa, we conclude that the Lie algebra ISO(p, q) is the semidirect sum of the

algebras SO(p, q) and T(p, q).

For purposes of computation it is relevant to note that the structure constants

mentioned above satisfy the following identities.

1. Let Gab and Hab be anti-symmetric symbols. We have

f ef
ab,cd GabHcd = −2ηac

(
GaeHcf −GafHce

)
. (2.12)

Furthermore, for Iab anti-symmetric one gets that

f ef
ab,cd GabHcdIef = 4Ga

cH
cbIef . (2.13)

2. Let Ja be some arbitrary symbol. One gets that

f d
ab,c G

abJ c = 2Gd
aJ

a . (2.14)
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2.1.3 Symmetry scenarios

Besides the Poincaré and Lorentz symmetries, other special orthogonal groups

and similar structures appear in gravity and quantum field theory. The (p+q)-

dimensional anti-de Sitter (de Sitter) spacetime is a solution of the Einstein

equations with negative (positive) cosmological constant for which the Killing

vectors satisfy the algebra AdSp+q = SO(p, q + 1) (dSp+q = SO(p+ 1, q)).

The conformal Killing vectors of the Minkowski space is the set of vectors
~ξ = ξµ∂µ that instead of satisfying eq. (2.1), satisfy ∇µξν +∇νξµ = κ gµν for

gµν = ηµν , with κ being a constant. They satisfy the commutation relations

of the algebra SO(p + 1, q + 1), also symbolized as Cp+q, which is called the

conformal algebra in p+ q dimensions.

2.2 Inönü–Wigner contraction

Inönü–Wigner contractions [42] are a non-invertible process that abelianize

some algebra sectors. To explain this, let us suppose we have an algebra

expanded by the elements J1 and J2 and that they satisfy the commutation

relations [J1, J2] = J1. Let us then introduce a parameter by writing J̄2 = λJ2.

The commutation relations for J1 and J̄2 are now
[
J1, J̄2

]
= λJ1. The algebra

expanded by J1 and J̄2 is then abelian in the contraction limit λ→ 0. Formally

we are making the dilation-like change of basis of the form(
J̄1

J̄2

)
=

(
1 0

0 λ

)(
J1

J2

)
, (2.15)

in the sense that we are rescaling a generator. We observe that the determinant

of the matrix of the change of basis is zero in the contraction limit, meaning

that once we contract the algebra, we cannot go back. A well-known appli-

cation of Inönü–Wigner contractions is that the contraction of the Poincaré

algebra leads us to the Galileo algebra for the limit 1/c → 0 [83]. We discuss

this in detail in § 2.2.2.
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2.2.1 From (anti)-de Sitter to Poincaré

By means of an Inönü–Wigner contraction it is possible to exhibit a limit

process through which we can find the Poincaré algebra ISO(p, q) from both

the anti-de Sitter and de Sitter algebra SO(p, q + 1) and SO(p + 1, q) [43].

To see this, consider the Lorentz algebra SO(p, q) (eq. (2.7)) and write p =

P , q = Q + 1 and p = P + 1, q = Q. The commutation relations read

[JAB,JCD] = f EF
AB,CD JEF , with A,B = 1, . . . , P + Q + 1, where now the

ηAB inside f EF
AB,CD has P times the entry +1 or (Q+ 1) times the entry −1

and (P + 1) times the entry +1 and Q times the entry −1 respectively. This

means, those are the commutation relations for SO(P,Q+ 1) or SO(P + 1, Q),

respectively. A short way to distinguish whether we are talking about AdSP+Q

or dSP+Q is to refer to the component η(P+Q+1)(P+Q+1) = ∓1, respectively.

Since JAB is anti-symmetric, its number of linearly independent components

is (P +Q)(P +Q+ 1)/2. We split the components as

(P +Q)(P +Q+ 1)

2
=

(P +Q)(P +Q− 1)

2
+ (P +Q) (2.16)

by making the change of basis JAB = (Jab,Ja(P+Q+1) = Ta). Notice that

this basis expressed the generators in a covariant way, now for tensors under

SO(P,Q) transformations. The commutation relations for AdSP+Q or dSP+Q

read

[Jab,Jcd] = f ef
ab,cd Jef , (2.17a)

[Jab,Tc] = f d
ab,c Td , (2.17b)

[Ta,Tb] = −Jab , (2.17c)

for η(P+Q+1)(P+Q+1) = ∓1, respectively. The generators Ta are commonly

called (anti)-de Sitter boosts. To carry out with the limit process we make the

change of basis Ta → γ Ta, where γ is a real parameter. The commutation

relations affected by this redefinition are

[Ta,Tb] = − 1
γ2
Jab . (2.18)

In the limit γ →∞ the commutation relation of eq. (2.18) abelianizes and we
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recover exactly the commutation relations for the Poincaré algebra PP+Q =

ISO(P,Q). Remarkably, this happens for both algebras SO(P,Q + 1) and

SO(P + 1, Q).

2.2.2 From Poincaré to Galileo

The group of Galileo is defined as the set of transformations that leave Newto-

nian dynamics invariant i.e., Galilean transformations together with spatial ro-

tations, spatial translations and time translations. Starting from the Poincaré

algebra it is possible to obtain the algebra of the group of Galileo through

an Inönü–Wigner contraction (see for example ref. [83]). Let us consider the

Poincaré algebra Pp+q. One decomposes the basis as

Jab = (Jij,Ji(p+q) = Ki) , (2.19a)

Pa = (Pi,P(p+q) = H) , (2.19b)

and the commutation relations read

[Jij,Jkı] = f mn
ij,kı Jmn , (2.20a)

[Jij,Kk] = f ı
ij,k Kı , (2.20b)

[Jij,Pk] = f ı
ij,k Pı , (2.20c)

[Jij,H ] = 0 , (2.20d)

[Ki,Kj] = Jij , (2.20e)

[Ki,Pj] = −δijH , (2.20f)

[Ki,H ] = −Pi , (2.20g)

[Pi,Pj] = 0 , (2.20h)

[Pi,H ] = 0 . (2.20i)

We introduce the parameter c through the rescalings Ki → cKi and H →
1/cH . The commutation relations that are affected by this redefinition are

[Ki,Kj] = 1
c2
Jij , (2.21a)

[Ki,Pj] = − 1
c2
δijH , (2.21b)
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and taking the limit c→∞ we get

[Ki,Kj] = 0 , (2.22a)

[Ki,Pj] = 0 . (2.22b)

This is the algebra of the group of Galileo, whereKi is the generator of Galilean

transformations and Jij, Pi and H are the generators of spatial rotations, spa-

tial translations and time translations respectively. Using dimensional analysis

we might be tempted interpret the parameter c as the speed of light, how-

ever, the previous analysis holds not only for c, but for any function f(c) in

Ki → f(c)Ki and H → 1/f(c)H that satisfies f(c) → ∞ as the parameter

c→∞.

The fact that we can get the Galilean symmetry from the Poincaré algebra by

means of an Inönü–Wigner contraction limit can be used to study the newto-

nian limit of a relativistic theory. For example, in ref. [18] an expansion (see §
2.4) of the 5-dimensional Poincaré algebra was introduced and the correspond-

ing Chern–Simons gravity theory was computed. Then in ref. [3] we computed

the newtonian limit of the gravity theory by gauging the Inönü–Wigner con-

tracted Lie algebra.

2.3 Parametrized conformal algebra

Conformal field theories in (p − 1) + q dimensions were shown to have the

same dynamical content as a gravity theory in AdS in p+ q dimensions. One

remarkable example for this is the AdS/CFT correspondence [84]. This can

be understood at the level of symmetries because of the fact that

Cp+q ' AdS(p+1)+q ' SO(p+ 1, q + 1) . (2.23)

Further evidence that motivated AdS/CFT correspondence lies in the fact that

the 3-dimensional Chern–Simons gravity gauge theory AdS group induces a

Wess–Zumino model on the boundary [85]. Actions with this particular feature

can be written as a Wess–Zumino–Witten action.
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In this section, we start from the special orthogonal algebra of SO(4, 2) and

make a change to new bases introducing parameters in the same spirit as

Weyl rotations (see § 4.3.2) and Inönü–Wigner contractions. This is to show

an isomorphism to the conformal algebra C3+1. The parameter-dependant

algebra is symbolized as C3+1(M,γ) as discussed at the end of § 1.4. As we see

in § 5, when calculating the 5-dimensional Chern–Simons action in the basis

of C3+1(M,γ), the action exhibits curvature terms plus a potential involving

all the possible interaction terms between the two vielbeine components ea

and ıa living on a 5-dimensional manifold. This setup motivates a subsequent

dimensional reduction in order to obtain 4-dimensional massive spin-2 field

theories.

2.3.1 Bases of the algebra

In the following we decompose the generators JIJ of SO(4, 2) in many ways,

with the aim to write the commutation relations, first with covariant indices

in five dimensions, and then in four dimensions. We arrive at a basis with

covariant Lorentz indices that exhibits the isomorphism between SO(4, 2) and

the four dimensional conformal group.

2.3.1.1 6-covariant basis

We begin from the basis with antisymmetric generators {JIJ}, with I, J, . . . =

1, . . . , 6. Notice that the generators are expressed in a covariant manner, i.e.,

the make up the component of a tensor under SO(4, 2) transformations. As

discussed in § 2.1.2.1, in this basis the commutation relations are [JIJ ,JKL] =

f MN
IJ,KL JMN , with ηIJ = diag(+,+,+,−,−η, η) for η = ±1.

We refer to the basis {JIJ} as the 6-covariant basis, since the generators JIJ

transform as a tensor under “Lorentz transformations” in 4 + 2 dimensions.

The invariant tensor of the Euler class reads

〈JIJ ,JKL,JMN〉 = εIJKLMN . (2.24)
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By knowing the commutation relations together with the invariant tensors of a

certain Lie group, we have the essential components to compute Chern–Simons

theory (see § 5).

2.3.1.2 5-covariant basis

In the following, we expand the indices to get the commutation relations of

SO(4, 2) in a 5-covariant basis, i.e., a basis for which the generators since

transform as a tensor under “Lorentz transformations” in 5 dimensions. For

that end, we consider separately the generators JAB and JA6 ≡ γ TA with

A,B, . . . = 1, . . . , 5, with γ being a real or pure-imaginary parameter. Ac-

cording to our discussion of § 2.2, the parameter γ plays the role of an Inönü–

Wigner limit controller: we use it to perform a contraction in the context of

gravitational theories in § 5.

The commutation relations read in terms of the 5-covariant generators as fol-

lows

[JAB,JCD] = f EF
AB,CD JEF , (2.25a)

[JAB,TC ] = f D
AB,C TD , (2.25b)

[TA,TB] = − η
γ2
JAB , (2.25c)

with ηAB = diag(+,+,+,−,−η) with η = ±1. For this choice of basis the

non-trivial invariant tensor of the Euler class read

〈JAB,JCD,TE〉 = γ−1 εABCDE . (2.26)

In the same spirit of obtaining the Poincaré algebra from both (anti)-de Sitter

algebras (see § 2.2.1), the commutation relations of eq. (2.25) show us that

the contraction limit γ → ∞ turns the algebra into ISO(3, 2) or ISO(4, 1) for

η = ±1, respectively.
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2.3.1.3 4-covariant basis

In order to go further with the decomposition, let us consider the generators

Jab, Ja5 ≡ Ba, Ta, T5 ≡ D. In the same spirit as above, they make up a

4-covariant basis with local Lorentz indices. The commutation relations of

SO(4, 2) in this basis are

[Jab,Jcd] = f ef
ab,cd Jef , (2.27a)

[Jab,Bc] = f d
ab,c Bd , (2.27b)

[Jab,Tc] = f d
ab,c Td , (2.27c)

[Jab,D] = 0 , (2.27d)

[Ba,Bb] = η Jab , (2.27e)

[Ba,Tb] = −ηabD , (2.27f)

[Ba,D] = −η Ta , (2.27g)

[Ta,Tb] = −ηγ−2Jab , (2.27h)

[Ta,D] = −ηγ−2Ba . (2.27i)

The gauge transformations associated with the SO(4, 2) symmetry in this par-

ticular basis are given in § 2.6.2. We observe in this basis that under SO(1, 1)

rotations of the vector (Ba, γT a), i.e.(
Ba

γT a

)
−→

(
coshφ sinhφ

sinhφ coshφ

)(
Ba

γT a

)
, (2.28)

the algebra remains invariant. For γ2 < 0, the invariance group is SO(2).

2.3.1.4 4-covariant canonical basis and parametrized conformal al-

gebra

In the 4-covariant basis one still cannot see the isomorphism between SO(4, 2)

and the conformal algebra. To this end, we perform the following linear trans-

formation on the generators Ba and Ta. Let us define the generators Pa and
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Ka as (
Pa

Ka

)
= M

(
Ba

γTa

)
=

(
a bγ−1

c dγ−1

)(
Ba

γTa

)
, (2.29)

where M is a matrix in GL(2,C) with a, b, c, and d in C. The commutation

relations for this new basis are then given by

[Jab,Jcd] = f ef
ab,cd Jef , (2.30a)

[Jab,Pc] = f d
ab,c Pd , (2.30b)

[Jab,Kc] = f d
ab,c Kd , (2.30c)

[Jab,D] = 0 , (2.30d)

[Pa,Pb] = η
(
a2 − b2γ−2

)
Jab , (2.30e)

[Pa,Kb] = − detM ηabD + η
(
ac− bdγ−2

)
Jab , (2.30f)

[Pa,D] = η
detM

[(
ac− bdγ−2

)
Pa −

(
a2 − b2γ−2

)
Ka

]
, (2.30g)

[Ka,Kb] = η
(
c2 − d2γ−2

)
Jab , (2.30h)

[Ka,D] = η
detM

[(
c2 − d2γ−2

)
Pa −

(
ac− bdγ−2

)
Ka

]
. (2.30i)

This basis represents the most general way to re-define translations and spe-

cial conformal transformations. Therefore, we refer to it as the 4-covariant

canonical basis. The gauge transformation induced by the group SO(4, 2) are

discussed in § 2.6.2. In the following we discuss special cases for the matrix

M .

2.3.2 Parameter choices

In the following, we single out two particular cases for the parameters a, b, c, d

and γ. This leads to different commutation relations, although corresponding

to the same algebra SO(4, 2). Of the set of all possible choices we exclude those

that imply detM = 0 because otherwise, we would not be able to find back

the generator Ta and Ba from Pa and Ka through an inverse transformation.
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2.3.2.1 Conformal basis

The purpose of introducing the 4-covariant canonical basis is to assign the

vielbein components ea and ıa as gauge fields for the generators Pa and Ka

(see § 5.1.4). To connect this construction with bimetric theory we should

expect ea and ıa to appear with equal status. Therefore we treat Pa and Ka

on the same footing as well. Both spaces span {Pa} and span {Ka} appear

symmetrically in the subspaces structure SO(4, 2). Let us study the case when

each one is an Abelian subalgebra. This occurs for

a2 − b2γ−2 = 0 , (2.31a)

c2 − d2γ−2 = 0 . (2.31b)

We should notice that the transpose matrix MT can be constructed with the

column vectors
(
a
b/γ

)
and

(
c
d/γ

)
. In the special case of eq. (2.31), these two

vectors have zero-norm with respect to the Killing metric of SO(1, 1), namely

η = diag(1,−1).

The solutions for eq. (2.31) are given by i) b(a) = ±aγ, d(c) = ±cγ or ii)

b(a) = ±aγ, d(a) = ∓cγ. By choosing the coefficients as in case i) we get

detM = 0, thus we neglect this case. For case ii) we get that detM = ∓2ac,

which is, in general, different from zero. The commutators of the algebra of

(2.30) that are affected by the parameters choice ii) are in this case

[Pa,Pb] = 0 , (2.32a)

[Pa,Kb] = ±2ac (γηabD ± ηJab) , (2.32b)

[Pa,D] = ∓ηγ−1Pa , (2.32c)

[Ka,Kb] = 0 , (2.32d)

[Ka,D] = ±ηγ−1Ka . (2.32e)

We can see that in this case the commutation relations of SO(4, 2) take the

usual form of the conformal algebra used in conformal field theory. This hap-

pens exactly when γ = ac = 1. Thus, we refer to the basis defined by this

choice of parameters as the conformal basis. Note that the algebra of Poincaré
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in four dimensions makes up a subalgebra:

P3+1 ' span {Jab,Pa} ' span {Jab,Ka} . (2.33)

2.3.2.2 Orthogonal basis

There exists a second special case motivated by the geometric interpretation

of the matrix M . If one demands the vectors
(
a
b/γ

)
and

(
c
d/γ

)
to be orthogonal

with respect to the Killing metric of SO(1, 1), we are then requiring that

ac− bdγ−2 = 0 . (2.34)

We call the basis defined by this choice the orthogonal basis. The solutions

for eq. (2.31) are given by i) b(a) = ±iaγ, d(c) = ±icγ or ii) b(a) = ±aγ,

d(a) = ∓cγ. Again the first case implies that M is singular and we rule it out.

For ii), we have detM = ∓2iac so, in this case, the matrix M is, in general,

non-singular. The commutation relations read

[Pa,Pb] = 2a2η Jab , (2.35a)

[Pa,Kb] = ±2iac ηabD , (2.35b)

[Pa,D] = ∓ iaη
c
Ka , (2.35c)

[Ka,Kb] = 2c2η Jab , (2.35d)

[Ka,D] = ± icη
a
Pa , (2.35e)

while the rest remain the same. The gauge transformations induced by SO(4, 2),

written in the orthogonal basis, are discussed in § 2.6.2.

2.4 Expansion of Lie algebras

In ref. [86], a mathematical tool to obtain families of Lie algebras starting

from a particular Lie algebra g was introduced. In this section we present

that formalism and, before going to the mathematics, we motivate on how this

procedure works.
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2.4.1 Motivation: SO(4) from SO(3)

Consider the commutation relations of the algebra SO(3) (eq. (2.7) for p = 3

and q = 0). Making the change of basis Ja = i
2
εabc Jbc the commutation

relations read [Ja,Jb] = εabc Jc. Let us also consider the cyclic group of order

two, Z2 = {λ0, λ1}, whose multiplication rule is defined by the Cayley table

Z2 λ0 λ1

λ0 λ0 λ1

λ1 λ1 λ0

Let us define then (still in a heuristic way) the vector space spanned by the

direct product between the sets {λ0, λ1} and the basis of SO(3), {Ja}. This is

the space span {λα ⊗ Ja}, with α = 0, 1, and we denote it as Z2 × SO(3). We

symbolize the elements of its basis as J(a,α) ≡ λα⊗Ja. Moreover, let us define

the internal operation

[
J(a,α),J(b,β)

]
= λαλβ ⊗ εabc Jc . (2.36)

Using the multiplication rule of Z2, one finds the following commutation rela-

tions:

[
J(a,0),J(b,0)

]
= εabc J(c,0) , (2.37a)[

J(a,0),J(b,1)

]
= εabc J(c,1) , (2.37b)[

J(a,1),J(b,1)

]
= εabc J(c,0) . (2.37c)

We rename J(a,0) = La and J(a,1) = Ka, and we find the commutation relations

of the SO(4) algebra and, therefore, SO(4) ' Z2 × SO(3).

This procedure was shown to generalise into the following theorem: let S =

{λα}, with α = 0, . . . , N − 1, be a finite set equipped with an internal asso-

ciative and commutative multiplication rule, i.e. a discrete abelian semigroup

and let g = span {Ta} be a Lie algebra, with a = 1, . . . , dim g and commuta-

tion relations [Ta,Tb] = C c
ab Tc. The space S× g = span

{
T(a,α) ≡ λα ⊗ Ta

}



34 2. Symmetries

together with the internal operation

[
T(a,α),T(b,β)

]
= C c

ab T(c,γ) (2.38)

is a Lie algebra of dimension N dim g, with λγ = λαλβ [86]. In the same

reference, the authors proved further theorems for particular cases, depending

on the finite semigroup internal structure and on the subspaces structure of

the starting Lie algebra. We studied extensively the particular case when the

semigroup is a cyclic group with an even number of elements in ref. [87].

As mentioned at the end of § 2.2, ref. [18] introduced an expansion of the

Poincaré algebra with the aim of obtaining a 5-dimensional Chern–Simons

theory. This algebra was called the B-algebra and it has the peculiarity that its

associated Chern–Simons gravity in five dimensions satisfy the correspondence

principle: one obtains the solely 5-dimensional Einstein–Cartan Lagrangian in

a certain smooth limit of the parameters of the theory.

2.5 Differential forms

In Riemannian geometry, the rule for the commutativity between a k-form ψ

and a ı-form ζ is given by ψ ∧ ζ = (−1)kıζ ∧ ψ. If k is an odd number, then

it follows from the commutativity rule that ψ ∧ ψ = 0. Since a differential

form on a principal bundle is written in terms of the generators of the Lie

algebra, i.e. M = Ma
µ dxµ ⊗ Ta, the commutativity of such forms must also

take into account the commutativity rule of the algebra. One defines then

how differential forms on a principal bundle should commute through a Lie

commutator in terms of the wedge product. Let M be a manifold and G be a

Lie group. On the principal bundle (M,G) we define the commutator between

forms as

[M ,N ] = M ∧N − (−1)mnN ∧M , (2.39)

where M and N are m- and n-forms respectively and [ , ] stands for the

Lie commutator of the Lie algebra g of the Lie group G, i.e., it acts on the

generators Ta. An important fact is that if M is an odd form, then the ex-

pression M ∧M ≡ 1
2

[M ,M ] is in general not equal to zero, because now the
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commutativity is subject to the commutation relations of the group. Fur-

thermore, we also have a Leibniz rule for the exterior derivative d acting

on forms defined on a principal bundle. In Riemannian geometry, we have

d (ψ ∧ ζ) = dψ ∧ ζ + (−1)kψ ∧ dζ. Using this formula, one can prove that in

the case of principal bundles we get

d (M ∧N ) = dM ∧N + (−1)mM ∧ dN . (2.40)

As in Riemannian geometry, once we have a connection we can define a co-

variant derivative with respect to that connection. The generalisation is done

for the exterior derivative; now we need an exterior covariant derivative. The

exterior covariant derivative of a form M with respect to a connection A is

defined as

DM = dM + [A,M ] . (2.41)

To avoid confusion, we specify sometimes the connection A in the covariant

derivative as D = DA. In the case of a local scalar, i.e. a differential form that

does not have indices for the algebra: ψ = ψ, we define in the same spirit as

for a Riemaniann scalar that Dψ = dψ.

The two-form curvature is the differential form associated with a particular

field strength tensor, generally in the context of arbitrary Lie groups and not

only in abelian theories like electrodynamics, where the field strength tensor

is defined solely as derivatives of the fields. The two-form curvatures with

respect to the connection A is defined as

F = dA+ 1
2

[A,A] . (2.42)

Here we will also sometimes write the specific connection for a curvature as

F = FA or for some remarkable curvatures, e.g. the one associated with

the group SO(p, q) using the spin connection ω = 1
2
ωabJab, we use the nota-

tion Fω = R(ω). For an element of the Lie group U(ε), where ε = ΛaTa

is the zero-form gauge parameter and Λa are the parameters of the trans-

formation, the variation of a connection A under the gauge transformation

A′ = U−1(ε)AU(ε) can be written as

δA = DAε . (2.43)



36 2. Symmetries

In the following we present some useful differential forms identities on principal

bundles. Let A be a connection on a principal bundle and let M and N be

m- and n-forms respectively on the principal bundle.

1. One can find a kind of ”antisymmetry” for the commutator

[M ,N ] = −(−1)mn [N ,M ] . (2.44)

2. The product of the algebra also satisfies a Leibniz rule

d [M ,N ] = [dM ,N ] + (−1)m [M , dN ] . (2.45)

Then we find a Leibniz rule for the product of the algebra, which means

that in general for every principal bundle, the map d is a derivation [83]

of the Lie algebra g.

3. We have a Leibniz rule for the exterior covariant derivative

D (M ∧N ) = DM ∧N + (−1)mM ∧DN . (2.46)

4. A significant property is the Bianchi identity in the context of principal

bundles:

DF = 0 . (2.47)

5. We have an expression for the second exterior covariant derivative in

terms of the curvature and the commutator:

D2M = [F ,M ] . (2.48)

6. The variation of the two-form curvature under gauge transformations

can be expressed in two useful ways:

δF = D δA , (2.49)

and since δA = Dε, using eq. (2.48) we find

δF = [F , ε] . (2.50)
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Eq. (2.49) is useful for the calculation of the equations of motion for an

action written in terms of connection and curvature. On the other hand,

eq. (2.50) is useful for the analysis of gauge invariance of such an action.

2.5.1 Connection separated in subspaces

A well-known result of differential geometry is that a connection Γ does not

transform as a tensor under diffeomorphisms. This implies that there can be

a frame of reference where Γ̄ λ
µν 6= 0 while Γ λ

µν = 0. This can be directly seen

from the inhomogeneity of its transformation law

Γ̄µνλ =
∂x̄µ

∂xρ
∂xσ

∂x̄ν
∂xτ

∂x̄λ
Γρστ +

∂x̄µ

∂xκ
∂2xκ

∂xν∂xλ
. (2.51)

This situation seems to be strange but in fact it has an analogue in nature: in

the non-relativistic limit of general relativity one identifies the metric gµν with

the gravitational potential ζ. The analogue of the gravitational force ∼ ~∇ζ
are then the Christoffel symbols Γ λ

µν ∼ ∂gµν . A frame of reference where

the Christoffel symbol vanishes could be the classic example of the free-falling

elevator, from where we cannot measure the effects of gravity. For a general

connection we have the following properties: a connection plus a tensor trans-

forms as a connection again, a connection minus another connection transform

as a tensor, and a times a connection plus b times another connection trans-

forms as a connection if a + b = 1. We can therefore define a new connection

starting from an old one by adding a tensor, or starting from a times an old

one and adding b times another one.

This kind of objects exist in gauge theory as well. One can construct gauge

connections as the sum of a connection A and a one-form G. Let us consider

the case when the connection is A+G. In this case A is a connection valued

in some subspace V0 of the algebra g = V0 ⊕ V1 and G is a one-form valued in

V1. One example of this is the well-known gauge connection in gauge theories

for gravity

ω + e = 1
2
ωabJab + eaPa , (2.52)

where ωab is the one-form spin connection defined on V0 and ea is the one-

form vielbein defined on V1. Here Jab and Pa are the generators of Poincaré
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or (A)dS algebras. V0 corresponds to the Lorentz subalgebra and V1 to the

vectorial subspace of commutative and non-commutative translations when g is

Poincaré or (A)dS respectively. It is important to notice that the connectionA

defines a gauge theory by itself. One example of this is that any gauge theory,

for a gauge group containing the Lorentz group, will be Lorentz invariant.

In the general case, such a split of the total connection satisfies the following

properties:

1. The exterior covariant derivative splits as

DA+GM = DAM + [G,M ] . (2.53)

2. The two-form curvature splits as

FA+G = FA + 1
2

[G,G] + DAG . (2.54)

3. Since A+G is a connection, the Bianchi identity is also satisfied for it,

i.e.

DA+GFA+G = 0 . (2.55)

One can verify this explicitly by using eqs. (2.53) and (2.54).

4. For the total curvature FA + DAG one finds

δFA + δDAG = DAδA+ [G, δA] + DAδG . (2.56)

2.6 Gauge theory for the conformal group

In the following we present the gauge theory formalism for a general base space

M , and for the particular case of the group G = SO(4, 2). This means that

we show how the curvature and the gauge transformations look for a given

connection in some basis of the algebra of the gauge group. To this end, we

use all the bases of the special orthogonal group presented in § 2.3.1.
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2.6.1 Connections and curvatures

The connection for the group SO(p, q) is usually chosen as a spin-like connec-

tion ωab in the basis Jab. For SO(4, 2) one writes ω6 = 1
2
ωIJJIJ in the 6-

covariant basis. We refer to this connection as the conformal spin connection.

Its associated field strength Fω6 coincides exactly with the Cartan curvature

for the special orthogonal group, and in this basis it is given by

Fω6 = R6(ω6) = 1
2
RIJ

6 (ω6)JIJ = 1
2

(
dωIJ + ωIK ∧ ωKJ

)
JIJ . (2.57)

We call RIJ
6 (ω6) the conformal curvature. In the 5-covariant basis the gauge

connection ω6 decomposes in the 5-covariant basis as

ω6 = 1
2
ωIJJIJ = 1

2
ωABJAB + uATA = ω5 + u5 , (2.58)

where uA is the gauge field for the gauge symmetry generators TA, and ωAB is

the so-called anti-de Sitter (de Sitter) spin connection for η = ±1 respectively.

In § 2.5.1 we saw how the curvature of a gauge theory looks like when we split

the connection as the sum of a connection plus a tensor. Using eq. (2.54) we

see that, in the 5-covariant basis, the field strength reads

Fω5+u5 = R5(ω5) + 1
2

[u5,u5] + Dω5u5 ,

= 1
2

(
RAB

5 (ω5)− η
γ2
uA ∧ uB

)
JAB + Dω5u

A TA , (2.59)

where

R5(ω5) = 1
2
RAB(ω5)JAB = 1

2

(
dωAB + ωAC ∧ ωCB

)
JAB (2.60)

is called the (anti)-de Sitter curvature and Dω5u
A = duA+ωAB∧uB, which can

be seen as the torsion of the fünfbein uA in the Cartan formalism. Moreover,

in the 4-covariant basis we denote the connection as

ω6 = ω4 + s+ u4 + µ = 1
2
ωabJab + saBa + uaTa + µD , (2.61)

i.e., ω5 = ω4 +s and u5 = u4 +µ. Here ω4 is the Lorentz spin connection and

we simbolize it simply as ω4 = ω. Also, we denote u4 = u. The field strength
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in the 4-covariant basis is computed using eq. (2.54). We get

Fω+s+u+µ = R(ω) + Ds+ Du+ Dµ

+ 1
2

[s, s] + [s,u] + [s,µ] + 1
2

[u,u] + [u,µ] + 1
2

[µ,µ] , (2.62)

where

R(ω) = 1
2
Rab(ω)Jab = 1

2

(
dωab + ωac ∧ ωcb

)
Jab (2.63)

is the Lorentz curvature with respect to the Lorentz spin connection ωab and

Dua = dua + ωab ∧ ub , (2.64a)

Dsa = dsa + ωab ∧ sb , (2.64b)

Dµ = dµ , (2.64c)

where we have symbolized the covariant derivative with respect to ω as Dω = D.

The notation that we use to denote the gauge connection in the 4-covariant

canonical basis is

ω6 = ω + e+ ı+ µ = 1
2
ωabJab + eaPa + ıaKa + µD . (2.65)

The components of the fields ea and ıa will be interpreted as vierbein after the

dimensional reduction of a 5-dimensional Chern–Simons gravity theory in § 5.

Comparing this with eq. (2.61), it is straightforward to derive the relations

sa = sa(e, ı) and ua = ua(e, ı) using the change of basis from the 4-covariant

to the 4-covariant canonical basis (eq. (2.29)). We obtain

sa = a ea + c ia , (2.66a)

ua = b ea + d ia . (2.66b)

2.6.2 Gauge transformations

In the following, we show the gauge transformations induced by the special

orthogonal group SO(4, 2) in different covariant bases that we use in § 5 with

the aim of discussing the symmetries of gravitational theories. This gauge

transformation emerge according to the infinitesimal law of transformation for



Gauge theory for the conformal group 41

the gauge connection δA = Dε. Here ε = 1
2
εIJJIJ is the zero-form gauge

parameter, so that exp(ε) is an element of the group SO(4, 2).

2.6.2.1 4-covariant basis

For the 4-covariant basis we symbolize the parameters of the corresponding

subspaces as

ε = 1
2
θabJab + βaBa + τaTa + λD . (2.67)

Using the commutation relations of eq. (2.27), one finds the gauge transfor-

mations

1
2
δωab = 1

2
Dθab + η s[a ∧ βb] − γ−2u[a ∧ τ b] , (2.68a)

δsa = Dβa − θab ∧ sb + ηγ−2
(
τa ∧ µ− ua ∧ λ

)
, (2.68b)

δua = Dτa − θab ∧ ub + η
(
βa ∧ µ− sa ∧ λ

)
, (2.68c)

δµ = dλ− ηab
(
s(a ∧ τ b) − β(a ∧ ub)

)
. (2.68d)

Since one recovers the Poincaré symmetries ISO(3, 2) or ISO(4, 1) (for η =

±1, respectively) from SO(4, 2) by means of the Inönü–Wigner limit γ → ∞,

we can easily calculate the 5-dimensional Poincaré transformations in the 4-

covariant basis from in eq. (2.68). We get

1
2
δωab = 1

2
Dθab + η s[a ∧ βb] , (2.69a)

δsa = Dβa − θab ∧ sb , (2.69b)

δua = Dτa − θab ∧ ub + η
(
βa ∧ µ− sa ∧ λ

)
, (2.69c)

δµ = dλ− ηab
(
s(a ∧ τ b) − β(a ∧ ub)

)
. (2.69d)

2.6.2.2 4-covariant canonical basis

We denote the transformations parameters in the 4-covariant canonical basis

as

ε = θ + ρ+ b+ λ = 1
2
θabJab + ρaPa + baKa + λD . (2.70)
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In this basis, the gauge transformations read

1
2
δωab = 1

2
Dθab + η

(
a2 − b2γ−2

)
e[a ∧ ρb]

− η
(
ac− bdγ−2

) (
ρ[a ∧ ıb]

− e[a ∧ bb]
)

+ η
(
c2 − d2γ−2

)
ı[a ∧ bb] , (2.71a)

δea = Dρa − θab ∧ eb

− η
detM

[(
ac− bdγ−2

)(
ρa ∧ µ− ea ∧ λ

)
+
(
c2 − d2γ−2

)(
ba ∧ µ− ıa ∧ λ

)]
, (2.71b)

δıa = Dba − θab ∧ ıb

+ η
detM

[(
a2 − b2γ−2

)(
ρa ∧ µ− ea ∧ λ

)
+
(
ac− bdγ−2

)(
ba ∧ µ− ıa ∧ λ

)]
, (2.71c)

δµ = dλ− detM ηab

(
e(a ∧ bb) − ρ(a ∧ ıb)

)
. (2.71d)

Note that if the linear transformation M is the identity, one recovers the gauge

transformations (cf. eq. (2.69)). For M leading to the orthogonal basis (see §
2.3.2.2), the gauge transformations are given by

1
2
δωab = 1

2
Dθab + 2a2η e[a ∧ ρb] + 2c2η ı[a ∧ bb] , (2.72a)

δea = Dρa − θab ∧ eb ∓ iaη
c

(
ba ∧ µ− ıa ∧ λ

)
, (2.72b)

δ`a = Dba − θab ∧ ıb ± i cη
a

(
ρa ∧ µ− ea ∧ λ

)
, (2.72c)

δµ = dλ± 2iac ηab

(
e(a ∧ bb) − ρ(a ∧ ıb)

)
. (2.72d)

2.7 Chern–Simons forms

On principal bundles, one can define certain polynomials in A and F that sat-

isfy the remarkable property that, no matter which symmetry group, they are

invariant under the transformations of eq. (2.43). A well-known example are

the Chern–Simons and transgression forms. Let us consider two connections
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A and Ā. A transgression form is defined as the (2r − 1)-form

Q(2r−1)(A, Ā) = r

∫ 1

0

dt
〈
Ft, . . . ,Ft,A− Ā

〉
g
, (2.73)

where Ft is the curvature associated with the interpolating connection At

defined as At(A, Ā) = Ā + t
(
A− Ā

)
and 〈 , . . . , 〉g is an invariant tensors

of order r of the algebra g of the group G. For the differential form in eq.

(2.73), we have δQ(2r−1)(A, Ā) = 0 under the gauge transformation defined as

δA = δĀ = Dε.

Since in physics we have theories with their actions and corresponding sym-

metries, we can ask ourselves whether a transgression form can be used as

an action. The program for that would be i) to choose a gauge group, ii)

to identify its algebra and invariant tensors, iii) to gauge it by constructing

the connection and field strength valued in the algebra, iv) to calculate the

transgression and v) to propose that

S[A, Ā] =

∫
Q(2r−1)(A, Ā) (2.74)

is an action. It seems to be a good idea because the action will be automatically

invariant under the gauge group. Gravitational theories have been constructed

as transgression actions in refs. [46, 88, 89]. When we choose that Ā = 0, we

recover the Chern–Simons form of order r

Q(2r−1)(A, 0) = Q(2r−1)(A) = r

∫ 1

0

dt 〈Ft, . . . ,Ft,A〉g . (2.75)

Given that Ā is a connection, then the equation Ā = 0 is not invariant under

a gauge transformation, and therefore the Chern–Simons form is not as well.

However, one can prove that the variation of the Chern–Simons form under

the gauge transformation of eq. (2.43) is equal to an exact form, i.e. to an

exterior derivative of some differential r−1 form. Thus they would correspond

to boundary terms under an integral by means of the Stokes theorem. This

makes that the Chern–Simons actions

S[A] =

∫
Q(2r−1)(A) (2.76)
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are invariant under gauge transformations δA = Dεmodulo boundary terms or

quasi-invariant. Since in this dissertation we do not make an extensive analysis

with boundary terms, we will not distinguish between the terms invariant and

quasi-invariant unless there is ambiguity in the context.

As a consequence of the extended Cartan homotopy formula from ref. [90], we

have a triangle identity for a transgression forms in the form

Q(2r−1)(A, Ā) = Q(2r−1)(A, Ã) +Q(2r−1)(Ã, Ā) + dB , (2.77)

which means that we can write down a general transgression form in terms

of two transgression forms with an intermediate connection Ã, plus an exact

term where B is a 2r− 2 form. We can explore in the following what happens

to a transgression action when we use the triangle identity of eq. (2.77). For

the case Ã = 0, which can be true only locally but with the invariance not

being spoiled, we find that∫
Q(2r−1)(A, Ā) =

∫
Q(2r−1)(A)−

∫
Q(2r−1)(Ā) , (2.78)

which means that the transgression action can be written as the difference of

similar Chern–Simons actions but for different connections, modulo boundary

terms.

Now that we know more about the machinery of transgression forms, we can to

say something more about when they are used to construct gauge theories in

physics. In general, there are two issues related with transgression theories. i)

If the Chern–Simons action for A is well defined and with any luck it describes

successfully something that we observe in nature, then the kinetic term of the

Chern–Simons action for Ā will have the opposite sign in front of it and this

could be the origin for ghosts in the transgression theory. ii) One has moreover

to deal with the fact that we have two connections and its interpretation. The

latter does not sound so bad if we remember bimetric gravity in the first-order

formalism. In that case we have two vielbeine and two corresponding spin

connections.

In § 5.1.5 we will work with an analogue of transgression action avoiding the

problem of the ghost in the theory, but paying the price that we have to break
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down the gauge symmetry of the action to a residual gauge symmetry. In

particular, we will start with a double conformal symmetry SO(4, 2)×SO(4, 2)

and then break it down to SO(3, 1)×SO(2). We will dimensionally reduce this

theory to study its relation with first-order bimetric gravity.
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Chapter 3

Spin-2 fields

In this chapter we review the theories for spin-2 fields. Although the original

works were presented in the language of tensors and in four dimensions, we

present it in differential forms and for arbitrary dimensions. Their equivalence

with the theories in the language of differential forms and their extension to

higher dimensions was established by Hinterbichler and Rosen in ref. [91].

Moreover, in the last section of this chapter, we present some of the results of

ref. [2], where the mass spectrum for tri- and multimetric gravity with maximal

global discrete symmetry was obtained. Since it is more convenient when

studying mass eigenstates, we present results in that section in the language

of tensors rather than in differential forms.

3.1 Einstein

Let us consider Einstein’s theory of gravitation. Shall there be a fundamental

particle which deals with interactions at quantum level, namely the graviton,

its propagation on spacetime itself should be governed by the linear Einstein

equations at the classical limit. To linearize the Einstein equations (see eq.

(1.1)) one says that the dynamical degrees of freedom of the spacetime, namely

the metric gµν(x), are part of the perturbation metric hµν(x) propagating on

47
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a Minkowski background ηµν such that

gµν(x) = ηµν + ε hµν(x) , (3.1)

where ε is the parameter of the perturbation expansion. At second order in ε

the Einstein equations read � λρ
µν hλρ = 0, where � λρ

µν is the non-linear sec-

ond order differential operator on Minkowski spacetime defined, for a general

background, in eq. (A.11) and it is known as the Lichnerowicz operator. The

Taylor expansion of Einstein–Hilbert Lagrangian in powers of ε takes the form

SEH[g] =

∫
dDx

(
L(0)

EH(h) + εL(1)
EH(h) + ε2 L(2)

EH(h) +O(ε3)
)
. (3.2)

From the structure of the Riemann tensor as well as from the Christoffel sym-

bols we see that L(0)
EH(h) = 0 and therefore, there is not an extra contributions

to the cosmological constant coming from this expansion.

Any of the terms L(n)
EH(h), with n = 1, 2, . . ., will always include spacetime

derivatives of hµν . As we can see indeed from the linear Einstein equations,

there is no a mass term for the graviton. In § 3.2 we will discuss what happens

to the linear Einstein theory if we add by hand a mass term. The under-

standing of linear Einstein theory is fundamental to describe its connection

with Newton’s theory for gravity [92] as well as for the description of gravita-

tional waves [93]. See also [94] for a historical review on the mathematics of

gravitational waves.

3.2 Fierz–Pauli

The first attempt for massive gravity was made by Fierz and Pauli [19], who

added a self-interacting massive term to the Einstein linear theory. Fierz–Pauli

theory is dictated by the Lagrangian defined as L(2)
EH(h) + LFP(h) where

LFP(h) = −m2
(

(ηµνhµν)
2 − hµνhµν

)
, (3.3)

where m is in this context supposed to be the mass of the graviton m = mg

and it is called the Fierz–Pauli mass, often symbolized as m = mFP. Notice
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that ηµνhµν is sometimes referred in the literature as the trace of the matrix

hµν , which has been then calculated by raising and lowering indices with the

Minkowski metric. The equations of motion for Fierz–Pauli theory read

� λρ
µν hλρ + 1

2
m2
(
hλληµν − hµν

)
= 0 . (3.4)

It was noticed later by van Dam, Veltman and Zakharov [95,96] that the light

bending predicted by general relativity [5] differs from the one predicted by

the Fierz–Pauli theory in the limit m → 0. This phenomenon is known as

the van Dam–Veltman–Zakharov discontinuity in the literature. For the sake

of clarity, notice that in Einstein’s theory one does not use a perturbation of

the Minkowski metric to calculate the light bending, but on a Schwarzschild

background. Also, one considers that the light-like particle goes by the source

to a much larger distance than the Schwarzschild radius rS = 2GM/c2, where

M is the mass of the star.

Vainshtein observed that the van Dam–Veltman–Zakharov discontinuity ap-

pears as a result of working at linear level, i.e., for non-linear generalisations

of the Fierz–Pauli theory considering O(ε3) terms, it turns out that, below the

so-called Vainshtein radius

rV = `P

(
m3

PM

m4
g

) 1
5

, (3.5)

non-linear corrections are indeed relevant and the theory predicts the same as

general relativity. However, above this radius the linear approximation is valid

and therefore the deviations produced by the graviton mass become relevant

for a larger scale [97], which might yield detectable deviations from general

relativity predictions .

The recent observations of gravitational waves set up the lower limit for the

Compton length of the graviton to be λC,g > 1016 m (see refs. [98,99]), therefore

there is an upper bound for the graviton mass given by mg ≈ 2×10−59 kg. Eq.

(3.5) gives then for M = M� a Vainshtein radius of rV,� ≈ 4 × 1013 m, which

is approximately where the termination shock beyond the solar system begins.

Local tests of general relativity remain therefore valid even if the graviton had

a non-zero mass.
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Although the theory of a massive graviton seemed to be saved by the argu-

ment of Vainshtain, some time later it was observed that at higher orders

in ε the theory propagates the so-called Boulware-Deser ghost [100]. More

specifically, any higher-order extension of Fierz–Pauli theory would introduce

a ghost scalar. At the linear level this ghost mode is removed by the term

−m2(ηµνhµν)
2 in the Lagrangian of eq. (3.3). This result was deeply accepted

for the scientific community and it froze the research towards a theory for the

massive graviton almost for forty years.

3.3 De Rham–Gabadadze–Tolley

To the rescue of the general idea of a massive graviton, in the year 2010 a major

breakthrough was made by De Rham, Gabadadze and Tolley who constructed a

massive gravity theory at any order, i.e. when ε in gµν is not necessarily small

(see refs. [23, 24]). This was made by introducing a special self-interaction

potential for the metric gµν which curiously can be seen as the most general

scalar defined between contractions of gµν and a reference Minkowski metric

ηµν .

The theory was successfully proven to be free of ghosts propagation in ref. [48].

To present their action we go to the vielbein formalism through gµν = eaµe
b
ν ηab

and ηµν = δaµδ
b
ν ηab. In terms of the one-form vielbeine defined by ea = eaµdxµ

and dxa = δaµdxµ the de Rham–Gabadadze–Tolley action reads

SdRGT[e] =

∫
εa1...aD R

a1a2(e) ∧ ea3 ∧ . . . ∧ eaD

+
∑D

i=0 βi

∫
εa1...aD e

a1 ∧ . . . ∧ eai ∧ dxai+1 ∧ . . . ∧ dxaD . (3.6)

Here the quantities βi are arbitrary parameters and for any of their values the

theory is ghost-free. Moreover, in terms of this parameters we can express the

cosmological constant Λ = Λ(βi) and the mass of the graviton m = m(βi) at

the linear level. The action above represents a non-linear completion of the

Fierz–Pauli theory. At the linear level it describes the propagation of a massive

graviton.
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3.4 General reference metric

In § 3.2 we discussed that it is important to know which metric raises the

indices of hµν in order to define its trace ıµµ. In that case the metric that

raises the index is the Minkowski metric ηµν . If one goes further to a general

reference metric ηµν → fµν , then we have two metrics and one has to indicate

carefully which one is used to raise and lower indices.

Massive gravity à la de Rham–Gabadadze–Tolley for a general metric, i.e., the

generalised theory where the Minkowski metric is now a non-dynamical general

reference metric fµν was introduced in ref. [47]. One defines further a second

dynamical vielbein as ıa = ıaµdxµ, which corresponds to do the generalisation

δaµ → ıaµ. The massive gravity theory reads

SgdRGT[e] =

∫
εa1...aD R

a1a2(e) ∧ ea3 ∧ . . . ∧ eaD

+
∑D

i=0 βi

∫
εa1...aD e

a1 ∧ . . . ∧ eai ∧ ıai+1 ∧ . . . ∧ ıaD . (3.7)

The action above represents a non-linear completion of the Fierz–Pauli theory

when fµν = ηµν and it was proven to be ghost-free in ref. [49]. The reader

might wonder why the new field ıa does not appear as a functional dependence

of the action SgdRGT[e]. Notice that the general reference vielbein ıa is not a

dynamical field, which means that there is not an equation of motion associated

with it. The action SgdRGT[e, ı], i.e., the action defined by the right-handed

side of (3.7) when ıa is considered as a dynamical field, is equivalent to the

Einstein–Hilbert theory on-shell, that is, when one integrates ıa out.

3.5 Hassan–Rosen

Some solutions needed for cosmology are absent in the framework of massive

gravity à la de Rham–Gabadadze–Tolley. For instances, the open Friedmann–

Lemâıtre–Robertson–Walker solution, describing an expanding Universe in the

context of general relativity, is not present in massive gravity for a Minkowski

reference metric [101]. When going to the generalised theory for an arbitrary
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reference metric, the solutions open, flat and closed Friedmann–Lemâıtre–

Robertson–Walker exist, however, they are unstable and therefore they cannot

describe the Universe as we observe it [102].

It was then necessary to go further with the massive spin-2 field interactions.

It was realized that, around a generic background gµν , the general reference

metric can be expressed in function of the curvature of gµν [57,103–106]. One

can think about the complete theory of interaction between two dynamical

metrics gµν and fµν , whose kinetic terms lead second-order differential equa-

tions, taking into account not re-introducing the Boulware–Deser ghost. One

completes the de Rham–Gabadadze–Tolley action with the Einstein–Hilbert

like kinetic term as

SHR[e, ı] =

∫
εa1...aD R

a1a2(e) ∧ ea3 ∧ . . . ∧ eaD

+ αD−2

∫
εa1...aD R

a1a2(ı) ∧ ıa3 ∧ . . . ∧ ıaD

+
∑D

i=0 βi

∫
εa1...aD e

a1 ∧ . . . ∧ eai ∧ ıai+1 ∧ . . . ∧ ıaD , (3.8)

where again, unlike de Rham–Gabadadze–Tolley gravity, ıa is now a dynam-

ical field with its own corresponding Einstein–Hilbert-like kinetic term and

its own equation of motion. Also, α is parameter of the theory that can be

understood as the ratio of the Planck masses for both Einstein–Hilbert terms,

after normalizing the action with a global constant. Hassan and Rosen first

proposed such a bimetric theory in ref. [25] in the language of tensors and it

was proven to be ghost-free at any order in ref. [50]. In the action (3.8) the

abbreviation “HR” stands for Hinterbichler and Rosen though, the first who

expressed it in differential forms [91]. In this case, cosmological solutions are

better behaved [52] and emerging instabilities can be considered as belonging

to the early Universe era [70].

The true equivalence between the Hassan–Rosen and the Hinterbichler–Rosen

actions is established as follows, which by the way, is analogous to the equiva-

lence between the Einstein–Hilbert action written in tensors and in differential

forms as discussed in § 1.1: the Hinterbichler–Rosen theory under the symme-

try condition

ea[µı
b
ν]ηab = 0 (3.9)
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becomes the Hassan–Rossen action for the fields gµν = eaµe
b
ν ηab and fµν =

ıaµı
b
ν ηab. Moreover, the equality (3.9) follows from the equations of motion

(see refs. [91, 107, 108]) and therefore the Hassan–Rosen tensorial gravity can

be seen as an integrated out version of Hinterbichler–Rosen tetrad gravity. If

there is no possible ambiguity we will use then the abbreviation “HR” for both

Hassan–Rosen and Hinterbichler–Rosen actions.

Up to now, we have discussed only the action for the behavior of the fields

without introducing a Lagrangian for matter. In general relativity the La-

grangian matter is assumed to have the dependence Lmatter = Lmatter(g, φ)

such that the stress-energy tensor is defined as

Tµν = − 2√
|g|
δ(
√
|g|Lmatter)

δgµν
, (3.10)

and where φ represents collectively any standard model field. On the other

hand, it turns out in bimetric gravity that the entire theory, i.e. including an

action for matter, admits only a matter coupling to one of the metrics because,

otherwise, dangerous ghost instabilities appear [109,110]. Thus, the action for

bimetric gravity coupled to matter takes the form

S[g, f, φ] = SHR[g, f ] + Smatter[g, φ] . (3.11)

This result generalises as well for ghost-free multimetric gravity theories: the

matter coupling is allowed only to one metric, in order that the action does

not lead to ghost instabilities.

3.5.1 Metric formulation

In secs. § 3.5.2 and § 3.7.2 we show some features of spin-2 field theory at

the level of solutions. At that point it becomes more natural to work in

the language of tensors rather than in differential forms. In the following we

present the action for bimetric gravity as it was formulated by Hassan and

Rosen in ref. [25], although we write it here for arbitrary dimensions. The



54 3. Spin-2 fields

Hassan–Rosen action is given by

SHR[g, f ] =

∫
dDx

√
|g|
(
R(g) + αD−2

√
|g−1f |R(f)

)
+
∑D

i=0 βi

∫
dDx

√
|g|Pi(

√
g−1f) , (3.12)

where |M | denotes the determinant of a matrix M and Pi(M) is the symmetric

polynomial of i-order for a matrix M , which is defined as

Pi(M) = δµ1...µiν1...νi
Mν1

µ1
· · ·Mνi

µi
, (3.13)

and also where the matrix
√
g−1f should be understood as a matrix function

such that (√
g−1f

√
g−1f

)
µ
ν = gµλfλν . (3.14)

This particular form for the interaction potential ensures the absence of the

Boulware–Deser instability. The β’s, however, can assume any value and the

theory will still be healthy. Different values for the β’s lead to rather different

phenomenological predictions. We emphasize that this potential, although

cumbersome in the tensors formalism because of the appearance of the square-

root matrix in calculations, is just the most general interaction that one can

write between two vielbeine as it can be seen in a more natural way in eq.

(3.8). A useful notation for the potential that we use later on is

V (g, f ; βi) =
D∑
n=0

βiPi(
√
g−1f) . (3.15)

The equations of motion for the action (3.12) are given by

EOM(gµν) : Gµν(g) +M2 Vµν(g, f ; βi) = 0 , (3.16a)

EOM(fµν) : Gµν(f) + α2−DM2 Vµν(f, g; βD−i) = 0 , (3.16b)

where Gµν(g) is the Einstein tensor associated with the metric gµν and

Vµν(g, f ; βi) = − 2√
|g|
∂(
√
|g|V (g, f ; βi))

∂gµν
. (3.17)
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3.5.2 Mass spectrum

In general, exact solutions in bimetric gravity are difficult to calculate. There

is, however, one certain solution to the equations of motion of particular inter-

est because it allows to calculate straightforwardly the mass spectrum of the

theory. This solution, which we denote as gµν = ḡµν and fµν = f̄µν , is when

both metrics are Einstein metrics, i.e., Rµν(ḡ) ∝ ḡµν and Rµν(f̄) ∝ f̄µν . The

equations of motion imply that f̄µν ∝ ḡµν . We consider the case when that

proportionality constant is positive and we denote it as

f̄µν = c2ḡµν . (3.18)

This solution tells us that the manifold defined by ḡµν is Einstein-like. On that

manifold as a background we define perturbations as

gµν = ḡµν + ε h(g)
µν , (3.19a)

fµν = c2ḡµν + ε h(f)
µν . (3.19b)

At second order in ε the equations of motion read

�̄ λρ
µν Gλρ = 0 , (3.20a)

�̄ λρ
µν Mλρ + 1

2
m2
(
Mλ

λḡµν −Mµν

)
= 0 , (3.20b)

where �̄ λρ
µν is the Lichnerowicz operator on the background ḡµν and where,

from the old two metric perturbations we defined two linear combinations as

Gµν = h(g)
µν + α2h(f)

µν , (3.21a)

Mµν = −
(
c2h(g)

µν − h(f)
µν

)
. (3.21b)

Also, m2 = (β1 + 2β2 + β3)/α2. From our discussion of Einstein linear the-

ory and Fierz–Pauli theory (secs. (3.1) and (3.2) respectively) we see that

eqs. (3.20a) and (3.20b) describe one massless and one massive mode denoted

by Gµν and Mµν respectively, both propagating on the maximally symmetric

background ḡµν . This mass spectrum was first derived in ref. [53].
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3.5.3 First-order formulation

We want to go now to the first-order formalism of bimetric gravity, i.e., to in-

troduce two connections that are independent of the metric or, similarly, two

spin connections that are independent of the vielbeine. In the tetrad approach,

the first-order formulation is straightforward: one has to introduce a spin con-

nection for each vielbein and then to use two copies of the vielbein postulate.

Doing this, the action for bimetric gravity1 in the first-order formalism is given

by

SHR[ω, σ, e, ı] =

∫
εabcdR

ab(ω) ∧ ec ∧ ed

+ α2

∫
εabcdR

ab(σ) ∧ ıc ∧ ıd

+
∑4

i=0 βi

∫
εa1...a4 e

a1 ∧ . . . ∧ eai ∧ ıai+1 ∧ . . . ∧ ıa4 . (3.22)

When using the equations of motion for the spin connections ωab and σab

and additionally the two vielbein postulates for the connections Γ(ω, e) and

Γ(σ, ı), as we did in eq. (1.3), the latter become then Levi-Civita connections

respectively for the metrics gµν(e) and fµν(ı). Therefore, the Einstein–Cartan

kinetic terms become then Einstein–Hilbert terms when integrating out the

spin connections.

A special bimetric model, the so-called partial massless gravity, was studied

in ref. [111]. The motivation for this model starts at the linear level, in Fierz–

Pauli theory defined on de Sitter spacetime. In the particular case that the

Fierz–Pauli mass is related to the cosmological constant as m2 = 2Λ/3, a

local gauge symmetry for the perturbation hµν(x) emerges. Here the origin

of the mass of the graviton is due to the curvature of the de Sitter space and

one refers to the graviton as something “partially massless”. This relation

between the mass of the graviton and the cosmological constant is known as

the Higuchi bound [112]. A remarkable fact is that from bimetric gravity,

for the de Sitter background solution one can also define a particular theory,

i.e., set of particular β’s, for which the same gauge symmetry arises for the

perturbation Mµν(x) as discussed in § 3.5.2. This happens when β1 = β3 = 0

1For simplicity, we will work in D = 4 until the end of this chapter.
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for the parameters in eq. (3.22) and in addition when

β0 = 1
2α2β2 , (3.23a)

β4 = 1
2
α2 β2 . (3.23b)

The particular bimetric model for this choice of β’s is known as partially mass-

less gravity. The Cartan formalism for the action takes the form

SPM[ω, σ, e, ı] =

∫
εabcdR

ab(ω) ∧ ec ∧ ed

+ α2

∫
εabcdR

ab(σ) ∧ ıc ∧ ıd

−M2

∫
εabcd

(
ea ∧ eb + α2ıa ∧ ıb

)
∧
(
ec ∧ ed + α2ıc ∧ ıd

)
, (3.24)

where we defined the mass parameter M through M2 = −β2/(2α
2). This

particular model shows a particular similitude with conformal gravity: by

setting both spin connections to be equal σabµ(ω) = ωabµ and making the

“Wick rotation” α → iα, we then get the action for conformal gravity in the

first-order formalism (see ref. [67] and § 4.3 for more details). Here we notice

that the ghost of conformal gravity appears when making α pure imaginary,

since this introduces the wrong minus sign multiplying the kinetic term.

In ref. [113] a 4-dimensional gauge theory was constructed for the Wick rotated

conformal symmetry SO(5, 1). The gauge theory describes spin-2 fields inter-

acting with a vector field. Interestingly, the interaction potential for the spin-2

fields has the same form as in eq. (3.24), although the different kinetic term and

the potential for the vector field gives a residual symmetry SO(3, 1)× SO(2).

Whether this SO(5, 1)-invariant theory has ghost instabilities or not is an open

question.

As we will discuss in § 5, the 5-dimensional Chern–Simons construction for the

conformal group SO(4, 2) can be related to first-order conformal gravity under

some dimensional reduction scheme and, in a similar way, the doubled Chern–

Simons construction for the SO(4, 2) × SO(4, 2) can be related to bimetric

gravity.
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3.6 Hinterbichler–Rosen

In this section we present the generalisation of bimetric gravity to a many-

interacting-metrics theory; the so-called multimetric gravity. Also, we discuss

the particular case of maximal discrete global symmetry of the multimetric

model, as we proposed in ref. [2], together with its implications in the propor-

tional background solutions and in the mass eigenvalue problem.

Whether the generalisation of general relativity to N non-interacting metrics

is consistent was investigated in ref. [114], to find out indeed, that such a

theory is inconsistent unless N = 1. Hinterbichler and Rosen first developed

then a set of theories for N interacting vielbeine [91]. However, it was later

realized that only those theories whose vielbeine interact pair-wisely through

the bimetric potential are free of ghost instabilities [115]. Furthermore, loop

interactions, i.e., when a vielbein interacts only with a next one and this latter

in addition with a next one and so on until closing the circle, also lead to in-

consistent theories (see refs. [91,116–118]). Those consistent theories were first

formulated by Hinterbichler and Rosen using the language of differential forms

for N vielbeine ea(p), with p = 1, . . . , N . Their equivalent theories in tensors

is established when a generalised symmetry condition (ea(p))[µ|(e
b
(q))|ν]ηab = 0 is

considered as a constraint (see eq. (3.9) for the bimetric case).

The generalisation from two to N dynamical interacting vielbeine is not diffi-

cult to guess if we consider only pairwise interactions, i.e., separated interaction

terms each one exclusively between two vielbeine. One writes down an action

with all the possible pairwise combinations between the vielbeine, exactly as in

the gdRGT action. It turns out, however, that only some combinations in the

potential make up a theory that does not propagate ghosts, as we previously

mentioned. For example, in the case N = 4, the only two possible potentials

are depicted in figures 3.1 and 3.2. For the star graph the vielbeine interacting

only with one vielbein are called the satellite vielbeine.

An example of a ghost-free theory of N = 12 vielbeine interacting pair-wisely

is depicted in figure 3.3. A generalisation to non-pairwise interactions that

lead to theories free of ghosts propagation has been studied in ref. [108]: this

new theory emerges for a pairwise multimetric theory in the star layout when
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Figure 3.1: The ghost-free star graph for N = 4. The vielbeine ea(2), e
a
(3) and

ea(4) interact each one solely with ea(1).

Figure 3.2: The ghost-free chain graph for N = 4. The vielbein ea(1) interacts
only with ea(2), e

a
(2) interacts only with ea(1) and ea(3), e

a
(3) interacts only with ea(2)

and, by last, ea(4) and ea(4) interacts only with ea(3).
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Figure 3.3: An example of a ghost-free 12-metric theory. Several combinations
of the star and chain graphs are included, however no loop can be present
otherwise one introduces a ghost.

integrating the central vielbein out. The interaction term is made up of the

determinant of the sum of all satellite vielbeine.

3.7 Models with discrete symmetry

In this section we present our results of ref. [2] where we address the � we

develop in detail the multimetric theory in the case of maximal global discrete

symmetry. We go then to the proportional backgrounds solution and then we

perform the analysis of the mass eigenvalue problem. For simplicity we work

out the latter only with three metrics, i.e., we study trimetric gravity case. The

results, however, generalise to N spin-2 fields in a natural way, as discussed in

section § 6.1.4.

3.7.1 Maximal discrete global symmetry

From the Hinterbichler–Rosen action we can see that 4-dimensional multi-

metric gravity has N − 1 α-parameters from the kinetic terms plus 5(N − 1)

β-parameters from the interaction potential. Moreover, we have a global con-

stant in the action that eventually couples to a matter action. Different en-

ergy regimes can be then achieved by a multimetric gravity theory, therefore

it would be useful to have a rule that relates parameters in a way we end up

with a particular class of desired models. In this section we claim for maximal



Models with discrete symmetry 61

global discrete symmetries in the multimetric action. In particular, we look for

theories with invariance under interchange of the highest number of metrics

and, also, theories such that we have the same dynamics for both matrices

±
√
g−1f .

3.7.1.1 Interchange symmetry SN

Invariance under the interchange of the highest possible number of metrics in

a graph is present in the star graph. The action associated with the star graph

of one central metric gµν and N satellite metrics f (p) has the form

S[g, f (p)] =

∫
d4x

√
|g|
(
R(g) +

∑N
p=1α

2
(p)

√
|g−1f (p)|R(f (p))

)
− 2m2

∑N
p=1

∫
d4x

√
|g|V (g, f (p); β

(p)
i ) . (3.25)

From this point, we choose gµν to be the only (indeed the only allowed) metric

that couples to matter.

We claim for invariance of the action under the SN transformations:

f (p)
µν ←→ f (q)

µν , ∀ p, q = 1, . . . , N , (3.26)

which restricts the β-parameters in eq. (3.25). We see that, after doing the

rescaling of the satellite metrics as f
(p)
µν → f̃

(p)
µν = α−2

(p)f
(i)
µν , the sum of Einstein–

Hilbert terms is symmetric under (3.26). From eq. (3.13) it can be easily seen

that the symmetric polinomial in the bimetric potential satisfies Pi(λM) =

λiPi(M), where λ is a real function and, therefore, the potential becomes

invariant when one demands that

β
(p)
i

αi(p)
=
β

(q)
i

αi(q)
, ∀ p, q = 1, . . . , N . (3.27)

Here, the letter i of the denominators represent a power and they should not

be confused with labels, as they are for the β-parameters in the numerators.

From the symmetry condition of eq. (3.27) we can write

β
(p)
i = αi(p)βi , ∀ p = 1, . . . , N , (3.28)
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for some set of parameters βi. Thus, we are left now only with five free inter-

action parameters.

3.7.1.2 Reflection symmetry (Z2)N

There is another discrete symmetry that we can claim for the N satellite

metrics. We know that the potential depends on the matrices
√
g−1f (p). From

the bimetric case, eq. (3.14), we see that both ±
√
g−1f (p) satisfy the same

definition. One can impose that√
g−1f (p) −→ −

√
g−1f (p) ∀ p = 1, . . . , N , (3.29)

leaves the potential invariant in order to get rid of such ambiguity. To see how

the presence of the symmetry above constraints the parameters, it is easier to

go to the vielbein language. The square-root matrix in terms of constrained

vielbeine eaµ and (ıa(p))µ with gµν = ηabe
a
µe
b
ν and fµν = ηab(ı

a
(p))µ(ıb(p))ν reads

(√
g−1f (p)

)µ
ν

= e µ
b (ıb(p))ν . (3.30)

For each one-form vielbein ıa(p) associated with f
(p)
µν , we consider then the trans-

formations

ıa(p) −→ −ıa(p) , ea −→ ea . (3.31)

This leaves all the metrics gµν and f
(p)
µν invariant and changes the square-roots

matrices as in eq. (3.29). The Einstein–Hilbert terms do not change since they

all depend quadratically on the one-form vielbein. Moreover, the symmetric

polinomials in the potential transform as

Pi(−
√
g−1f (p)) −→ (−1)iPi(

√
g−1f (p)) . (3.32)

From this we conclude that the potential will be invariant under (3.29) only if

β
(p)
1 = β

(p)
3 = 0 ∀ p = 1, . . . , N . (3.33)
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3.7.1.3 Maximally symmetric action

Both conditions in eqs. (3.27) and (3.33) together lead us to an action for

multimetric gravity with global SN × (Z2)N symmetry. The action results

S[g, f (p)] =

∫
d4x

√
|g|
(
R(g) +

∑N
p=1α

2
(p)

√
|g−1f (p)|R(f (p))

)
− 2m2

∑N
p=1

∫
d4x

√
|g|V (g, f (p);αi(p)βi) , (3.34)

where βi ≡ β
(p)
i /αi(p). The potentials have now the form

√
|g|V (g, f (p);αi(p)βi) = β0

√
|g|

+ α2
(p)β2

√
|g|P2(

√
g−1f (p)) + α4

(p)β4

√
|f (p)| , (3.35)

with P2 defined in eq. (3.13). To our knowledge there is no further global

symmetries that can be imposed for the multimetric action (3.34). We observe

that the parameters β0 and β4 are cosmological constant contributions while

β2 parametrizes the interaction between the center- and satellite-metrics.

3.7.2 Mass spectrum

In this section we review the mass spectrum of trimetric theory derived in [119],

generalising the bimetric results of ref. [53] (see also § 3.5.2). At the end of

the section we demand the maximal discrete global symmetry of the action,

that we discussed in § 3.7.1.

The action for trimetric gravity is given by

S[g, f, k] = m2
g

∫
d4x

√
|g|
(
R(g) + α2

(f)

√
g−1f R(f) + α2

(k)

√
g−1k R(k)

)
− 2M2

∫
d4x

√
|g|
(
V (g, f ; β

(f)
i ) + V (g, k; β

(k)
i )
)
, (3.36)

where the interaction potentials V are defined in eq. (3.15). Here we have

introduced the mass scale M for the entire potential as well as the global

Planck mass mg that normalizes the Einstein–Hilbert term for the metric gµν .
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The solution gµν = ḡµν , fµν = f̄µν and kµν = k̄µν for proportional backgrounds

is obtained through the ansatz

fµν = c2
(f)gµν , (3.37a)

kµν = c2
(k)gµν , (3.37b)

with c(f) and c(k) being constants, in complete analogy to eq. (3.18). For this

ansatz, the equations of motion become

EOM(g) : Gµν(ḡ) +
(
Λ(β

(f)
i , c(f)) + Λ(β

(k)
i , c(k))

)
ḡµν = 0 , (3.38a)

EOM(f) : Gµν(f̄) + Λ̃(β
(f)
i , c(f), α(f)) ḡµν = 0 , (3.38b)

EOM(k) : Gµν(k̄) + Λ̃(β
(k)
i , c(k), α(k)) ḡµν = 0 , (3.38c)

where

Λ(β
(p)
i , c(p)) = m2

(
β

(p)
0 + 3c(p)β

(p)
1 + 3c2

(p)β
(p)
2 + c3

(p)β
(p)
3

)
, (3.39a)

Λ̃(β
(p)
i , c(p), α(p)) = m2

α2
(p)
c2
(p)

(
c(p)β

(p)
1 + 3c2

(p)β
(p)
2 + 3c3

(p)β
(p)
3 + c4

(p)β
(p)
4

)
, (3.39b)

with p = 1, 2. Furthermore, since the Einstein tensor is invariant under con-

stant rescalings of the metric, one finds the following conditions for the pro-

portional background solution

Λ(β
(f)
i , c(f)) + Λ(β

(k)
i , c(k)) = Λ̃(β

(f)
i , c(f), α(f)) = Λ̃(β

(k)
i , c(k), α(k)) . (3.40)

These determine the proportionality constants c(f) and c(k) in terms of the

parameters of the theory.

3.7.2.1 Maximal global discrete symmetry

When the interchange symmetry S2, as discussed in § 3.7.1.1, is present in the

action then eq. (3.27) holds and

α2
(f)c

2
(f) = α2

(k)c
2
(k) , (3.41)
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solves the condition2 Λ̃(β
(f)
i , c(f), α(f)) = Λ̃(β

(k)
i , c(k), α(k)). From now on, since

all cosmological constant contributions in eq. (3.38) are equal, we will simply

refer to them by the symbol Λ.

Following the standard procedure for the analysis of the mass spectrum, we

derive the equations of motion for perturbations around the proportional back-

grounds

gµν = ḡµν + h(g)
µν , (3.42a)

fµν = c2
(f) ḡµν + h(f)

µν , (3.42b)

kµν = c2
(k) ḡµν + h(k)

µν . (3.42c)

The linearized equations of motion are not diagonal for the fluctuations above

and thus they are not the mass eigenstates of the theory. After diagonalizing

them, one finds that, for interaction parameters satisfying conditions of eqs.

(3.27) and (3.33) —therefore we have S2 × (Z2)2 ' (Z2)3 invariance of the

action—, the eigenstates of the mass matrix assume the form

Gµν =
mP

(
h

(g)
µν + α2

(f) h
(f)
µν + α2

(k)h
(g)
µν

)
1 + α2

(f)c
2
(f) + α2

(k)c
2
(k)

, (3.43a)

Mµν = −
mP

(
(α2

(f)c
2
(f) + α2

(k)c
2
(k))h

(g)
µν − α2

(f) h
(f)
µν − α2

(k) h
(k)
µν

)
(1 + α2

(f)c
2
(f) + α2

(k)c
2
(k))
√
α2

(f)c
2
(f) + α2

(k)c
2
(k)

, (3.43b)

χµν = −
mP α(f)α(h)

(
c(k)
c(f)

h
(f)
µν − c(f)

c(k)
h

(k)
µν

)
√

(1 + α2
(f)c

2
(f) + α2

(k)c
2
(k))(α

2
(f)c

2
(f) + α2

(k)c
2
(k))

, (3.43c)

where we defined the Planck mass as

m2
P = m2

g(1 + α2
(f)c

2
(f) + α2

(k)c
2
(k)) . (3.44)

By calculating the linearized equations of motion in terms of the fluctuations

defined in eq. (3.43), we see that the they have the following corresponding

2However, if we do not demand (3.33), there may exist other solutions.
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squared Fierz–Pauli masses:

m2
G = 0 , (3.45a)

m2
M = A(1 + α2

(f)c
2
(f) + α2

(k)c
2
(k))m

2 , (3.45b)

m2
χ = Am2 , (3.45c)

with A = 2β
(f)
2 /α2

(f) = 2β
(k)
2 /α2

(k). Those masses correspond to the eigenvalues

of the matrix that has to be diagonalized, such that the linear equations of mo-

tion decouple in a way that exhibits the massless and the two mass eigenstates

Gµν , Mµν and χµν respectively. By using the background condition (3.41), the

fluctuations, i.e., the mass eigenstates, can be expressed as

Gµν =
mP

1 + α2

(
h(g)
µν + α2

(f) h
(f)
µν + α2

(k) h
(k)
µν

)
, (3.46a)

Mµν = − mP

α(1 + α2)

(
α2 h(g)

µν − α2
(f) h

(f)
µν − α2

(k) h
(k)
µν

)
, (3.46b)

χµν = − mP

α
√

1 + α2

(
α2

(f) h
(f)
µν − α2

(k) h
(k)
µν

)
, (3.46c)

where we defined the new parameter α through

α2 = α2
(f)c

2
(f) + α2

(k)c
2
(k) = 2α2

(f)c
2
(f) = 2α2

(k)c
2
(k) . (3.47)

The inverse relations are

h(g)
µν =

1

mP

(
Gµν − αMµν

)
, (3.48a)

h(f)
µν =

α

2mPα2
(f)

(
αGµν +Mµν −

√
1 + α2 χµν

)
, (3.48b)

h(k)
µν =

α

2mPα2
(k)

(
αGµν +Mµν +

√
1 + α2 χµν

)
. (3.48c)

3.7.2.2 Enters dark matter

We present the action for trimetric gravity up to cubic terms in terms of the

mass eigenstates in § B.3. There are some immediate implications for the

phenomenology of trimetric gravity. The massive mode χµν is a spin-2 field

that does not interact directly with the matter sector since, as discussed below

eq. (3.10) for the bimetric case, the action for matter only includes couplings
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with gµν but χµν does not depend on the fluctuation h
(g)
µν , as seen from eq.

(3.46c). This can be seen from the inverse relation (3.48a): adding the matter

action S[g, φ] to the trimetric action of eq. (3.36) the coupling to matter in

the quadratic action has the form

h(g)
µν T

µν =
1

mP

(
Gµν − αMµν

)
T µν . (3.49)

Here the stress-energy tensor is considered to be the source of small perturba-

tions on the background ḡµν . Any matter coupling involving χµν is forbidden

by the maximal global discrete symmetries. In addition, we see from eq. (3.45)

that the mass of the massive mode Mµν is larger than the mass of χµν , with

a factor of
√

1 + α2. The massive graviton χµν is therefore prevented to decay

into standard model particles and other massive spin-2 modes.

In § 6.1 we prove that χµν does not decay either into massless gravitons and

therefore that the massive gravitons χµν are entirely stable. The heavier spin-2

particle Mµν can decay into two lighter spin-2 particles ones χµν , i.e. M → χχ

provided that mM > 2mχ. Since m2
M = (1+α2)m2

χ we must have α >
√

3. The

decay of the heavier mode into one massive particle χµν and a finite number

of massless gravitons Gµν , i.e. M → G · · ·Gχ, is not allowed again by the

discrete symmetries, as explained in § 6.1.3. We therefore postulate the field

χµν as the component of dark matter. In § 6.1.4 we carry out the generalisation

of these results to N satellite-metric and maximal global discrete symmetry

SN × (Z2)N .
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Chapter 4

Gauge theories for gravity

This chapter is devoted to the discussion of gauge formulations of gravity. In

particular, we review the fact that the Einstein–Cartan action in four dimen-

sions is not invariant under the gauge transformations induced by the Poincaré

group. Moreover, we review the idea of Weyl on gauge theory, which led to the

development of conformal gravity by Bach. By last, we review the theory from

the first-order formulation point of view —namely, when the spin connection

is independent of the vielbein.

4.1 Poincaré (non)-invariance of gravity

In this section we discuss the gauge invariance of standard general relativity

under the Poincaré group. Namely, we study the invariance of the Einstein–

Cartan Lagrangian under the local Poincaré transformations generated by Jab

and Pa when the gauge fields are ωab and ea correspondingly. To show what

happens with the invariance in different dimensions, we analyse the cases D =

2 + 1 and D = 3 + 1. In turns out that the (2+1)-dimensional action is indeed

invariant but the (3+1)-dimensional one is not. This is due to the fact that the

(3+1)-dimensional Einstein–Cartan Lagrangian is not linear in the vierbein,

not as the (2 + 1)-dimensional Lagrangian which is linear in the dreibein.
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4.1.1 Invariance of (2 + 1)-dimensional gravity

As discussed in § 1.4, according to the Lanczos–Lovelock generalisation of

standard general relativity, the Einstein–Cartan action in 2+1 dimensions is

given by

SEC[ω, e] =

∫
εabcR

ab(ω) ∧ ec , (4.1)

where a, b = 1, . . . , p+ q = 2+1. The variation with respect to the fields reads

δω,eSEH[ω, e] =

∫
εabc

(
δRab(ω) ∧ ec +Rab(ω) ∧ δec

)
. (4.2)

Having started the analysis of § 2.3.1 from the (2 + 1)-dimensional special

orthogonal algebra SO(2, 2) instead of SO(4, 2), we see that the (2 + 1)-

dimensional Poincaré algebra span {Jab,Pa} is a subalgebra of SO(2, 2) (see

eq. (2.30) for a2 − b2γ−2 = 0).

Thus one can easily determine the Poincaré gauge transformation for the

dreibein using the eq. (2.71b) for ba = λ = 0. We get that δea = Dρa−θab∧ea.
Furthermore, from eq. (2.50) for the particular case of the Lorentz curvature

F = R(ω) and zero-form parameter ε = θ we have the following identity:

δRab(ω) = −θac ∧Rcb(ω) + θbc ∧Rca(ω) . (4.3)

Plugging in the variations for the vielbein and curvature into eq. (4.2) we get

δω,eSEC[ω, e] =

∫
εabc

(
− θad ∧Rdb(ω) ∧ ec

+ θbd ∧Rda(ω) ∧ ec +Rab(ω) ∧Dρc −Rab(ω) ∧ θcd ∧ ed
)
. (4.4)

Since εabc is an invariant tensor for the (2 + 1)-dimensional Lorentz algebra

SO(2, 1) we have that Dεabc = 0. Furthermore, from the Bianchi identity1

DRab(ω) = 0, we note that∫
M

εabcR
ab(ω) ∧Dρc =

∫
∂M

εabcR
ab(ω) ∧ ρc . (4.5)

1Note that this identity arises in the context of gauge theory, as one can see from eq.
(2.47) for the Lorentz group and Lorentz curvature F = R(ω).
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Neglecting this boundary term, the variation of the action reads then

δω,eSEC[ω, e] = −
∫ (

εdbcθ
d
a + εadcθ

d
b + εabdθ

d
c

)
∧Rab(ω) ∧ ec , (4.6)

thus using the identity of eq. (A.12) we obtain δω,eSEH2+1 = 0. The 3-

dimensional Einstein–Cartan theory is therefore Poincaré invariant.

4.1.2 Non-invariance of (3 + 1)-dimensional gravity

The Einstein–Cartan action in 3 + 1 dimensions is given by

SEC[ω, e] =

∫
εabcdR

ab(ω) ∧ ec ∧ ed . (4.7)

Analogously as in § 4.1.1, the variation of this action with respect to the spin

connection and the vierbein is

δω,eSEC[ω, e] = 2

∫
εabcdR

ab ∧ ec ∧Dρd . (4.8)

With the aim of integrating by parts let us note that

D
(
εabcdR

ab ∧ ec ∧ ρd
)

= εabcdR
ab ∧ T c ∧ ρd − εabcdRab(ω) ∧ ec ∧Dρd , (4.9)

where we defined the torsion as T a(ω, e) = Dωe
a; exactly as in the Cartan

formalism. Neglecting the boundary term we find

δω,eSEC[ω, e] = 2

∫
εabcdR

ab(ω) ∧ T c(ω, e) ∧ ρd , (4.10)

from where we see that the Einstein–Cartan action in four dimensions is ex-

plicitly non-invariant under the Poincaré group. This action is indeed locally

Lorentz invariant because it is a contraction of (pseudo)-tensors, i.e. it is a

Lorentz scalar. We see this fact explicitly from eq. (4.10) when ρa = 0, since

in that case a Poincaré transformation becomes a Lorentz transformations.

The Cartan formalism considers independent spin connection and vielbein. A

priori one does not assume a null torsion because the equation T a(ω, e) =

Dea = dea + ωab ∧ ec = 0 would relate both independent fields, i.e. we would
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have an equation of the type ωab = ωab(e). This would modify the degrees of

freedom of the theory. Moreover, we cannot just impose T a(ω, e) = 0 as a con-

straint because this equation is not invariant under gauge transformations. To

see this, consider eqs. (2.56) and (2.50) for the case of the (3 + 1)-dimensional

Poincaré group with connection A + G = ω + e and zero-form gauge pa-

rameter ε + π = θ + ρ. Projecting out for the Pa generators we get that

δT a = −Rab ∧ ρb showing that, as long as we have Poincaré translations the

torsion will generally change under gauge transformations.

By varying the Einstein–Cartan action with respect to ωab one finds that the

equation of motion directly implies that T a(ω, e) = 0. Although the vierbein ea

is not a dynamical field as ωab —since the Lagrangian does not have derivatives

of it and thus there is not a kinetic for it— the torsion being equals to zero

makes it again dynamical. From eq. (4.10) we see that the action is invariant

on-shell. This can be problematic when quantizing the theory because in the

path integral formulation one wants to add every possible configuration and

not only those for which the equation of motion are satisfied.

4.2 Conformal gravity

Gravity à la Einstein has a peculiar symmetry: its action is invariant under

diffeomorphisms. Furthermore, written in the vielbein language, we find local

Lorentz transformations (for more details see § 1.1). Local Lorentz transfor-

mations can be understood as a gauge symmetry because they are induced

by the Lie group SO(3, 1) and because this is not a change of coordinates

but a change of the fields themselves in the form ea → e′a. The concept of

gauge symmetry was introduced by Weyl in ref. [54, 55] in an attempt of for-

mulating a gravity theory that was invariant under the local transformation

gµν(x)→ φ2(x)gµν(x); the 4-dimensional Einstein–Hilbert action is not invari-

ant under rescalings of the metric. This transformation has the name of Weyl

dilation, Weyl transformation or conformal transformation in the Riemmanian

sense —and not in the sense of the conformal transformations induced by the

conformal group SO(4, 2), which however, has spacetime dilations xµ → λxµ
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as a subgroup of transformations2.

Weyl invariance has become object of study given that string theory has to

have scale invariance to be consistent: the Polyakov action has this symmetry.

When quantizing the Polyakov action, the physical observables should not

depend on the choice of the worldsheet metric hαβ and thus, the mentioned

action should have enough local continuous symmetries such that one is able

to get rid of those degrees of freedom. Weyl invariance allows us to do this.

Further evidence relates Weyl invariance with the origin of mass [120].

An action for 4-dimensional gravity satisfying Weyl invariance was formulated

by Bach in ref. [56]. This action is called the Weyl action and it is given by

SW[g] =

∫
d4x

√
|g|CµνλρCµνλρ , (4.11)

where Cµνλρ is the Weyl tensor defined in eq. (A.8). This theory is known as

conformal or Weyl gravity and it is fully invariant under Weyl transformations.

This 4-dimensional theory has a remarkable property: due to fact that, in

D = 4, the integral of the Gauss–Bonnet term can be expressed as boundary

term, the action of eq. (4.11) can be brought to the simple form

SCG[g] =

∫
d4x

√
|g|
(
Rµν(g)Rµν(g)− 1

3
R(g)2

)
. (4.12)

In this thesis we refer to this particular form of the action as conformal gravity

in the second-order formalism. Written in this form, the action still has Weyl

invariance.

4.2.1 Einstein-dilaton system

A usual redefinition of the Weyl rescaling is through the exponential function

as φ(x) = eΩ(x). It is straightforward to compute that the transformation law of

2Here it is important to note that, Weyl dilations and spacetime dilations are transfor-
mations of different nature. However, when using the conformal group as the symmetry
group for a gauge theory with two vielbeine, a Weyl rotation of the vielbeine δea ∼ λıa and
δıa ∼ λea (cf. eqs. (2.71b) and (2.71c) and see § 4.3.2 for more information about Weyl
rotations) is induced by the symmetry generator D, which is the conformal Killing vector
associated with the dilation xµ → λxµ.
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the Ricci scalar under Weyl rescalings of the metric is given, in D dimensions,

by

R(e2Ωg) = e−2Ω
(
R(g)− 2(D − 1)gµν∇µ∇νΩ

− (D − 1)(D − 2)gµν∇µΩ∇νΩ
)
. (4.13)

This formula immediately motivates to write down an action for gravity that

includes a scalar field counteracting the Weyl transformation such that the

entire theory is Weyl invariant. By introducing the field Φ as

SED[g,Φ] =

∫
dDx

√
|g|Φ−D

(
Φ2R(g)+(D−1)(D−2)gµν∇µΦ∇νΦ

)
, (4.14)

we get the so-called Einstein-dilaton system, a scalar-tensor gravitational the-

ory with invariance under the gauge transformations

gµν(x) −→ φ2(x) gµν(x) , (4.15a)

Φ(x) −→ φ(x) Φ(x) . (4.15b)

The Einstein-dilaton system is an active subject of study since the classical

models for inflation are mostly dilaton-based (see ref. [121] for a detailed re-

view) and also since the dilaton is within the field content of (quantum) string

theory (see e.g. ref. [122]).

4.3 First-order conformal gravity

In this section we study the action for conformal gravity in the first-order

formalism. This action was first obtained in ref. [67] as a 4-dimensional gauge

theory for the conformal group. Let us consider the following action for the

two one-form vielbeine ea and ıa in four dimensions:

S[e, ı] =

∫
εabcd

(
Rab(e+ αı) ∧

[
ec ∧ ed − α2ıc ∧ ıd

]
+ η

2

[
ea ∧ eb − α2ıa ∧ ıb

]
∧
[
ec ∧ ed − α2ıc ∧ ıd

])
, (4.16)
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where ωab = ωab(e + αı) is the spin connection related to the Levi-Civita

connection as in eq. (1.3) but for the linear combination of two vierbeine

ea+α ıa. The metric gµν related to the Levi-Civita connection Γ(g) is obtained

as g = (e+ αı)Tη(e+ αı). Let us define

Ea = ea + αıa , (4.17a)

Ia = ea − αıa. (4.17b)

The metric of the above mentioned Levi-Civita connection can be written as

gµν = Ea
µE

b
νηab. Let us also define the tensor Sµν = Ea

µI
b
νηab. In terms of

those quantities the action of eq. (4.16) can then be written as

S[g, S] =

∫
d4x

√
|g|
(
SµµR(g)

− 2SµνRµν(g)− 2m2
[
(Sµµ)2 − SµνSµν

])
. (4.18)

We aim in the following to integrate the field Sµν out. Its equation of motion

is given by
1

4m2

(
R(g)gµν − 2Rµν(g)

)
= Sρρgµν − Sµν , (4.19)

which is an algebraic equation for Sµν . The general solution is

Sµν = 1
2m2

(
Rµν(g)− 1

6
R(g)gµν

)
, (4.20)

and by plugging in this into the action of eq. (4.18), we finally obtain the

action for conformal gravity of eq. (4.12). This action is invariant under the

rescaling gµν(x)→ φ(x)2gµν (or in the vielbein language, ea(x)→ φ(x) ea(x)),

i.e., Weyl transformations. We have seen then, that conformal gravity has an

equivalent auxiliary action given by eq. (4.16).

4.3.1 First-order conformal gravity

Let us discuss, how it would be possible to go to the first-order formalism of

conformal gravity. From the above discussion, one could think that doing

ωab = ωab(E) −→ arbitrary ωab , (4.21)
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renders an equivalent first-order formulation. In this case, and also using the

new vielbeine defined in eq. (4.17), we obtain

S[ω,E, I] =

∫
εabcd

(
Rab(ω) ∧ Eb ∧ Id −m2Ea ∧ Eb ∧ Ic ∧ Id

)
, (4.22)

However, it is straightforward to see that the spin connection ωab(E) is not a

solution to the equations of motion of the action of eq. (4.22) and therefore,

one cannot obtain the action of eq. (4.16) back from it. This occurs as well

for ωab(I), because of the symmetry Ea ↔ Ia of the action.

The action of eq. (4.22) was obtained in ref. [67] as a 4-dimensional gauge

theory for the conformal group. It is invariant under conformal transformations

only if the spin connection is related to the Levi-Civita connection through the

vielbein postulate ωab = ωab(E) and adding a correction term, which drops out

from the final action when an auxiliary field is integrated out: the resulting

action the conformal gravity of eq. (4.12). For completeness: the action of

first-order conformal gravity in terms of the vielbeine ea and ıa is given by

S[ω, e, ı] =

∫
εabcd

(
Rab(ω) ∧

[
ec ∧ ed − α2ıc ∧ ıd

]
+ η

2

[
ea ∧ eb − α2ıa ∧ ıb

]
∧
[
ec ∧ ed − α2ıc ∧ ıd

])
. (4.23)

4.3.2 Weyl rotations

A new symmetry emerges when going to an arbitrary spin connection: the

action of eq. (4.23) is invariant under the SO(1, 1) rotation of the vector

defined as (
e′a(x)

ı′a(x)

)
=

(
coshφ(x) sinhφ(x)

sinhφ(x) coshφ(x)

)(
ea(x)

ıa(x)

)
. (4.24)

In the same spirit of a Weyl dilation ea(x) → φ(x) ea(x) (see § 4.2), we refer

to this rotation as a Weyl rotation. An infinitesimal Weyl rotation is given by

δea(x) = φ(x) ıa(x) , (4.25a)
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δıa(x) = φ(x) ea(x) . (4.25b)

The set of Weyl rotations makes up a subgroup of the conformal group. This

can be easily seen from eq. (2.72) with θab = ρa = ba = 0 with the partic-

ular choice of parameters c = ±iaη. For this choice, a subset of conformal

transformations coincide with the transformations in eq. (4.25).
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Chapter 5

Conformal Chern–Simons

theory

This chapter is devoted to present the results that we obtained in ref. [1].

We discuss the 5-dimensional Chern–Simons theory for the orthogonal group

SO(4, 2) and we express the gauge fields in all the covariant bases discussed

in § 2.3. One vierbein can be identified as a subset of the components of the

fünfbein and a second vierbein can be identified as a subset of the components

of the 5-dimensional spin connection. We show how one can perform a dimen-

sional reduction in the 5-dimensional theory getting in the end 4-dimensional

Einstein–Cartan theory. Also, in a similar setup, we perform a dimensional

reduction to get 4-dimensional first-order conformal gravity. We construct

then a doubled Chern–Simons theory and we break the gauge symmetry as

SO(4, 2) × SO(4, 2) → Lorentz × Dilation. In this case we have two vielbeine

and two spin connections and the dimensional reduced theory coincides with

the first-order version of bimetric gravity. In all the mentioned cases we discuss

in which conditions the dimensional reduction can be seen as a gauge-fixing

using the gauge redundancy of the Chern–Simons theory.
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5.1 The action

We consider the Chern–Simons theory defined by a Chern–Simons form Q(5)

integrated on a 5-dimensional manifold M5. The mathematical details of a

Chern–Simons theory were discussed in § 2.7. According to eq. (2.75) for a

5-order form (r = 3), after integrating the parameter t in along the interval

[0, 1], the Chern–Simons action takes the form

SCS[A] =

∫
M5

〈
F ∧ F ∧A

− 1
2
F ∧A ∧A ∧A+ 1

10
A ∧A ∧A ∧A ∧A

〉
, (5.1)

In the following we exhibit this action explicitly valued in the gauge algebra

G = SO(4, 2) choosing the different covariant bases discussed in § 2.3.1.

5.1.1 6-covariant basis

As discussed in the mathematical prelude (§ 2.6.1), in this basis the gauge

connection takes the formA = ω6 = 1
2
ωIJJIJ . The object ωIJ can be seen as a

spin connection since that one can associate it the curvature form F = R6(ω6)

with components RIJ
6 (ω6) = dωIJ + ωIK ∧ ωKJ . This curvature satisfies

dQ(5)(ω6) = 〈R6(ω6),R6(ω6),R6(ω6)〉 , (5.2a)

= 1
8
εIJKLMNR

IJ
6 (ω6) ∧RKL

6 (ω6) ∧RMN
6 (ω6) . (5.2b)

where we have used the invariant tensor of SO(4, 2) of the Euler class (eq.

(2.24)).

5.1.2 5-covariant basis

In the following we express the Chern–Simons action of eq. (5.1) in the 5-

covariant of the orthogonal algebra SO(4, 2) discussed in § 2.3.1. In this

case the gauge connection splits according to the subspaces decomposition

of SO(4, 2) = V0 ⊕ V1 where V0 is the AdS or dS subalgebra (generated by
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JAB) and V1 is the subspace of 5-dimensional non-commutative translations,

TA. Namely the connection splits as in eq. (2.58).

The aim now is to write the action of eq. (5.1) in terms of 5-covariant objects.

For this we use the subspace separation method of ref. [90]. The method

consists in finding a subspace decomposition for the vectorial space SO(4, 2),

for example SO(4, 2) = V0 ⊕ V1 such that we can use the triangle formula of

eq. (2.77) to write the Chern–Simons form. In our case A is the connection

valued in the trivial subspace V0 ⊕ V1, Ã is the connection valued in a non-

trivial subspace V0 or V1 and Ā = 0 is the (local) connection valued in the

trivial subspace which contain the neutral element. For the calculation it is

convenient to choose V0 as the non-trivial subspace, which means that the

connections, with which we are working out, are

A = ω5 + u5 , (5.3a)

Ã = ω5 , (5.3b)

Ā = 0 . (5.3c)

We put then this connections back into eq. (2.77) to calculate the Chern–

Simons form Q(5)(A, 0) = Q(5)(A). Looking the invariant tensors of the al-

gebra expressed in the 5-covariant basis (eq. (2.26)) we see that Q(5)(Ã, Ā)

is zero, thus the only contribution to the Chern–Simons action is given by

Q(5)(A, Ã). A straightforward calculation of this transgression form results in

the action

SCS[ω5, u5] = 1
4

∫
M5

εABCDE

(
RAB

5 (ω5) ∧RCD
5 (ω5) ∧ uE

− 2η
3γ2
RAB

5 (ω5) ∧ uC ∧ uD ∧ uE + 1
5γ4
uA ∧ uB ∧ uC ∧ uD ∧ uE

)
. (5.4)

This action corresponds to the 5-dimensional Chern–Simons gravity for the

gauge group AdS4+1 = SO(4, 2), where uA is the fünfbein form. The first term

is the dimensionally continued Gauss–Bonnet term, however it is not topolog-

ical as its even-dimensional versions. The second and the third terms are the

5-dimensional Einstein–Cartan and cosmological constants actions written in

differential forms respectively. The action of eq. (5.4) was proposed as gravity

theory in five and any odd dimensions in ref. [36].



82 5. Conformal Chern–Simons theory

In ref. [35] it was proven that, imposing to the (2n+ 1)-dimensional Lanczos–

Lovelock theory to have the maximum possible number of degrees of freedom,

the coefficients of the Lanczos–Lovelock Lagrangian are such that the La-

grangian becomes the Chern–Simons form for the gauge group AdS2n+1 =

SO(2n + 1, 2). The action of eq. (5.4) is therefore a particular case of the

5-dimensional Lanczos–Lovelock theory.

5.1.3 4-covariant basis

In the following, we decompose the indices into the 4-covariant basis as dis-

cussed in § 2.3.1. The connection splits further up in the 4-covariant basis as

described by eq. (2.61). Using this, we obtain the action

SCS[ω, s, u, µ] = 1
4

∫
M5

εabcd

(
Rab(ω) ∧Rcd(ω)

+ 2η Rab(ω) ∧ sc ∧ sd − 2η
γ2
Rab(ω) ∧ uc ∧ ud

+ sa ∧ sb ∧ sc ∧ sd − 2
γ2
sa ∧ sb ∧ uc ∧ ud + 1

γ4
ua ∧ ub ∧ uc ∧ ud

)
∧ µ

−
∫
M5

εabcd

(
Rab(ω) ∧ T c(ω, s) + η T a(ω, s) ∧ sb ∧ sc

− η
3γ2

T a(ω, s) ∧ ub ∧ uc
)
∧ ud . (5.5)

We observe that neglecting µ and forgetting the coordinate dependence of the

fields ωab, sa and ua then the first integral becomes similar to the first-order

conformal gravity action (see § 4.3). This gives us an insight on how to perform

a dimensional reduction to get such gravity action. Furthermore, doing ua = 0

we get an action similar to the one of the Einstein–Cartan theory. Again,

still with the task of integrating along the Σ to get the actual theory. In §
5.2.1 we will study two different dimensional reduction schemes for which the

action of eq. (5.5) becomes related to Einstein–Cartan and conformal gravity,

respectively.
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5.1.4 4-covariant canonical basis

In this basis, the gauge connection ω6 splits as described in § 2.6.1. Via the re-

defintion of eq. (2.66) we compute the Chern–Simons action in the 4-covariant

canonical basis. It reads

SCS[ω, e, ı, µ] = 1
4

∫
M5

εabcdR
ab(ω) ∧Rcd(ω) ∧ µ

+ η
2

∫
M5

εabcd

(
ARab(ω) ∧ ec ∧ ed + 2BRab(ω) ∧ ec ∧ ıd

+ C Rab(ω) ∧ ıc ∧ ıd
)
∧ µ

+ 1
4

∫
M5

εabcd

(
A2 ea ∧ eb ∧ ec ∧ ed + 4AB ea ∧ eb ∧ ec ∧ ıd

+ 2(AC + 2B2) ea ∧ eb ∧ ıc ∧ ıd + 4BC ea ∧ ıb ∧ ıc ∧ ıd

+ C2 ıa ∧ ıb ∧ ıc ∧ ıd
)
∧ µ

−
∫
M5

εabcdR
ab(ω) ∧

(
ab T c(ω, e) ∧ ed + ad T c(ω, e) ∧ ıd

+ bc T c(ω, ı) ∧ ed + cd T c(ω, ı) ∧ ıd
)

− η
∫
M5

εabcd

(
a T a(ω, e) + c T a(ω, ı)

)
∧
(
b
(
A+ 2

3
b2γ−2

)
eb ∧ ec ∧ ed

+
(
d
(
A+ 2

3
b2γ−2

)
+ 2b

(
B + 2

3
bdγ−2

))
eb ∧ ec ∧ ıd

+
(
b
(
C + 2

3
d2γ−2

)
+ 2d

(
B + 2

3
bdγ−2

))
eb ∧ ıc ∧ ıd

+ d
(
C + 2

3
d2γ−2

)
ıb ∧ ıc ∧ ıd

)
, (5.6)

where we have defined the parameter combinations

A = a2 − b2γ−2 , (5.7a)

B = ac− bdγ−2 , (5.7b)

C = c2 − d2γ−2 . (5.7c)

This is the 5-dimensional Chern–Simons action which is invariant under the

parametrized conformal group SO(4, 2) ' C3+1(M,γ), i.e., under the gauge

transformations defined in eq. (2.71).

The first integral of the action in eq. (5.6) is similar to the Gauss–Bonnet
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boundary term (cf. eq. (A.10)), however the integrand is wedge µ and ωab has

components and dependence in the fifth dimension, namely,

ωab = ωabm(X) dXm , (5.8)

with Xm = (Xµ = xµ, X5 = w). This term is therefore not a boundary term

as it happens with the pure 4-dimensional Gauss–Bonnet term. The same

behavior is seen in the second and third integrals: the second integral has

terms similar to the Einstein–Cartan actions for the vielbein ea and ıa plus

and additional kinetic term. Remarkably, the third integral has all possible

combinations between both vielbeine, similarly as in potential of 4-dimensional

bimetric gravity (cf. eq. (3.22)). The action cannot be truly bimetric-like,

though, because it has only a single spin connection. In § 5.1.5 we formulate

a doubled Chern–Simons to solve this problem. The rest of the terms involve

Lagrangian densities proportional to the torsions of the vielbein components

ea and ıa.

In the following we discuss the two special cases for the general action of eq.

(5.6), which are given by the conformal and the orthogonal bases, i.e. when i)

A = C = 0 and ii) B = 0 respectively.

5.1.4.1 Conformal basis

By choosing the parameters of the matrix M as in eq. (2.31), the action of eq.

(5.6) takes the simpler form:

SCS[ω, e, ı, µ] = 1
4

∫
M5

εabcd

(
Rab(ω) ∧Rcd(ω)

+ 8acη Rab(ω) ∧ ec ∧ ıd + 16a2c2 ea ∧ eb ∧ ıc ∧ ıd
)
∧ µ

+ γ Storsion[ω, e, ı] . (5.9)

Here Storsion is the action defined in eq. (B.11). These terms include the

torsions of the vielbein components ea and ıa. We note that non-torsional part

of the action is similar to the action for first-order conformal gravity (cf. eq.

(4.22)), including also the term that is similar to the Gauss–Bonnet boundary

term. The torsional terms are required in order that the theory has the SO(4, 2)
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gauge invariance. Notice that that part of the action is proportional to the

parameter γ, therefore we can get rid of the torsional terms by taking the limit

γ → 0. This limit, however, makes algebra ill-defined since the commutation

relations (see eq. (2.32)) diverge and, therefore, they cannot lead to well-

defined gauge transformations.

5.1.4.2 Orthogonal basis

Choosing the parameters of the matrix M that lead to the orthogonal basis,

i.e., such that they satisfy eq. (2.34), the action of eq. (5.6) takes the form

SCS[ω, e, ı, µ] = 1
4

∫
M5

εabcd

(
Rab(ω) ∧Rcd(ω)

+ 4a2η Rab(ω) ∧ ec ∧ ed + 4c2η Rab(ω) ∧ ıc ∧ ıd

+ 4a4 ea ∧ eb ∧ ec ∧ ed + 8a2c2 ea ∧ eb ∧ ıc ∧ ıd

+ 4c4 ıa ∧ ıb ∧ ıc ∧ ıd
)
∧ µ

+ γ S ′torsion[ω, e, ı] . (5.10)

The torsional part is S ′torsion is defined in eq. (B.12) and, again, it is propor-

tional to γ. Here we have made the “Wick rotation” γ → iγ, such that the

action remains real. This re-definition of γ changes the SO(1, 1) symmetry of

the gauge algebra to SO(2), and now we have γ2 > 0.

The family of algebras C3+1(M,γ), for every value of the parameters, are

isomorphic. Therefore, all the gauge theory actions defined by gauging1 this

algebras will be related by means of linear transformations M1, M2, and so

on2.

1Again, with “to gauge an algebra” meaning to construct the Chern–Simons gauge theory
valued in the algebra.

2Even in the ill-behaved limit γ → 0, it remarkably happens that the non-torsional parts
of the actions of eqs. (5.9) and (5.10) are related by the following vielbein re-definition:
making

ea → 1√
2

(
ea + i ca ı

a
)
,

ıa → 1√
2

(
a
c e

a − iıa
)
,

in eq. (5.9) we get eq. (5.10).
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According to the discussion above, we have a family of equivalent actions writ-

ten in different bases. This equivalance, however is broken by the dimensional

reduction schemes that we present in § 5.2. Hence, the 4-dimensional theories

that can be derived from the 5-dimensional Chern–Simons theory for different

choices of M will not be indistinguishable.

5.1.5 Doubled Chern–Simons theory

Let us focus on the problem of introducing a second spin connection; this is to

see how the Chern–Simons theory can describe a theory for two spin connec-

tions and two vielbeine to pursue a gauge formulation of bimetric gravity. As

we already mentioned in § 2.7, by doing this by means of a transgression form,

we are then introducing a ghost in the theory, given that the Einstein–Cartan

kinetic terms for different spin connections and vielbein have opposite signs.

Motivated by the fact that the potential of the action for conformal gravity,

namely the action of eq. (4.23), has a similar form as partial massless gravity

(see eq. (3.24)) and, given that one single Chern–Simons action has similar po-

tential to conformal gravity, we construct a doubled conformal Chern–Simons

geometry as the action

SDCS[ω, ω̃, e, ẽ, ı, ı̃, µ, µ̃] = SCS[ω, e, ı, µ] + SCS[ω̃, ẽ, ı̃, µ̃] . (5.11)

Here each Chern–Simons action on the right-hand side is the action of eq.

(5.6) for fields with and without tildes. Since each one has a gauge symmetry

corresponding to the conformal group, i.e. eq. (2.71) with and without tildes

on fields and gauge parameters, then the symmetry of the doubled Chern–

Simons action is SO(4, 2) × SO(4, 2). We can visualize this doubled gauge

theory as a two control knobs which can be gauged or calibrated separately.

In order to compare this theory to a bimetric construction we study the

breaking-symmetry case when ẽa = ea and ı̃a = ıa. Both Chern–Simons ac-

tions in eq. (5.11) have now interdependent fields, therefore gauging one of the

Chern–Simons action will necessarily gauge the other action. We can visualize

this double gauge theory with interdependent fields as the same control knobs
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of above but connected with a tape. The action for this special case is

SDCS[ω, ω̃, e, ı, µ, µ̃] = SCS[ω, e, ı, µ] + SCS[ω̃, e, ı, µ̃] . (5.12)

The gauge transformations of the group SO(4, 2) × SO(4, 2) break down to

those eq. (2.71) with and without tildes and putting ẽa = ea and ı̃a = ıa

everywhere. After imposing these last equalities, the mentioned field transfor-

mations become consistent only under the conditions

Dωρ
a − θab ∧ eb −

ηC
detM

(ba ∧ µ− ıa ∧ λ)

= Dω̃ρ̃
a − θ̃ab ∧ eb −

ηC
detM

(b̃a ∧ µ̃− ıa ∧ λ̃) , (5.13a)

Dωb
a − θab ∧ ıb + ηA

detM
(ρa ∧ µ− ea ∧ λ)

= Dω̃ b̃
a − θ̃ab ∧ ıb + ηA

detM
(ρ̃a ∧ µ̃− ea ∧ λ̃) . (5.13b)

Now, we look for the general solution to the system of equations above, such

that the gauge fields are not related by differential equations, since we do not

want to modify the number of fields. The solution for the parameters of the

system of equations above which neglects all cases that relate gauge fields in

differential equations is given by

θ̃ab = θab , (5.14a)

ρ̃a = ρa = 0 , (5.14b)

b̃a = ba = 0 , (5.14c)

λ̃ = λ , (5.14d)

thus for the interdependent fields case the symmetry of the doubled Chern–

Simons gauge theory becomes Lorentz × Dilation. Inserting the equalities

(5.14a)-(5.14d) back into the gauge transformations of SO(4, 2)× SO(4, 2) for

the interdependent fields case, namely eq. (2.71) with and without tildes and

putting ẽa = ea and ı̃a = ıa everywhere, we get the following set of field

transformations:

δωab = Dωθ
ab , (5.15)

δω̃ab = Dω̃θ
ab , (5.16)

δea = −θab ∧ eb + η
detM

(
B ea + C ıa

)
∧ λ , (5.17)
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δıa = −θab ∧ ıb −
η

detM

(
Aea +B ıa

)
∧ λ , (5.18)

δµ = dλ , (5.19)

δµ̃ = dλ . (5.20)

These are the Lorentz×Dilation transformations that leave the doubled Chern–

Simons action of eq. (5.12) invariant. The explicit form of the doubled Chern–

Simons action will not be discussed in this section since it is basically two copies

of the SO(4, 2) Chern–Simons action. The relevant result comes after imposing

a dimensional reduction scheme, which we present in § 5.2.3.

5.2 Dimensional reductions

In this section we analyse various different dimensional reduction schemes that

we can impose to the Chern–Simons gauge theory. We decompose the 5-

dimensional manifold as M5 = M4 nΣ, where M4 is a 4-dimensional manifold,

Σ is the 1-dimensional curve that symbolizes the dimensional reduction domain

and n denotes the semi-direct product of manifolds. Given that the theory

enjoys a huge symmetry, i.e., SO(4, 2), in some cases the equations that define

the dimensional reduction can be seen as a gauge-fixing.

5.2.1 4-covariant basis

5.2.1.1 Einstein–Cartan gravity

Let us consider the case of the 5-dimensional Chern–Simons theory written in

the 4-covariant basis in the limit γ →∞. This breaks the symmetry SO(4, 2)

down to the 5-dimensional Poincaré groups ISO(3, 2) or ISO(4, 1) (respectively

for η = ±1), as discussed in § 2.2.1. The action of eq. (5.5) becomes

SCS[ω, s, u, µ] = 1
4

∫
M5

εabcd

(
Rab(ω) ∧Rcd(ω)

+ 2η Rab(ω) ∧ sc ∧ sd + sa ∧ sb ∧ sc ∧ sd
)
∧ µ
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−
∫
M5

εabcd

(
Rab(ω) + η sa ∧ sb

)
∧ T c(ω, s) ∧ ud . (5.21)

This is the Chern–Simons action that is invariant under the 5-dimensional

Poincaré group, namely the under the gauge transformations of eq. (2.69).

Dimensional reduction scheme. We restrict the fields A = Am(X)dXm

in the 5-dimensional action of eq. (5.21) as

ωabm(X) dXm = ωabµ(x) dxµ =: ω̄ab(x) , (5.22a)

sam(X) dXm = saµ(x) dxµ =: s̄a(x) , (5.22b)

uam(X) dXm = uam(w) dXm =: ūa(w) , (5.22c)

µm(X) dXm = µm(w) dXm =: µ̄(w) . (5.22d)

Here the bars are used to point out that this choice corresponds to a field setup

that breaks the 5-dimensional Poincaré symmetry.

Interpretation as gauge-fixing. This field configuration can be seen as a

gauge-fixing for a subset of all possible field configurations of the entire Chern–

Simons theory. To see this, let us recall the field transformations of the 5-

dimensional Poincaré group (eq. (2.69)). According to them, the most general

gauge connection Ā′ that can be obtained from the gauge-fixed connection Ā

is

1
2
ω̄′abµ(x,w) = 1

2
ω̄abµ(x) + 1

2
D̄µθ

ab(x,w) + η s̄[a
µ(x)βb](x,w) (5.23a)

1
2
ω̄′ab5(x,w) = 1

2
∂wθ

ab(x,w) , (5.23b)

s̄′aµ(x,w) = s̄aµ(x) + D̄µβ
a(x,w)− θab(x,w)s̄bµ(x) (5.23c)

s̄′a5(x,w) = ∂wβ
a(x,w) , (5.23d)

ū′aµ(x,w) = ūaµ(w) + D̄µτ
a(x,w)− θab(x,w)ūbµ(w)

+ η βa(x,w)µ̄µ(w)− η s̄aµ(x)λ(x,w) , (5.23e)

ū′a5(x,w) = ūa5(w) + ∂wτ
a(x,w)

− θab(x,w)ūb5(w) + η βa(x,w)µ̄5(w) , (5.23f)

µ̄′µ(x,w) = µ̄µ(w) + ∂µλ(x,w)− ηab s̄(a
µ(x)τ b)(x,w)

+ ηab β
(a(x,w) ∧ ūb)µ(w) , (5.23g)
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µ̄′5(x,w) = µ̄5(w) + ∂5λ(x,w) + ηab β
(a(x,w) ∧ ūb)5(w) . (5.23h)

where D̄µ is the 4-dimensional covariant derivative with respect to the 4-

dimensional spin connection ω̄abµ(x). At the 5-dimensional level, from all pos-

sible fields let us focus only on those that can split functionally as F (x,w) =

F (x) +G(w), F (x,w) = F (x)G(w), F (x,w) = ∂5G(x,w), etc., as suggested in

eq. (5.23). This is a smaller subset of all possible functions delivered by the

Chern–Simons theory, since after imposing the gauge-fixing we can get back at

most the gauge connection Ā′. The most general gauge connection that we can

obtain via a gauge transformation is such that it belongs to the space of func-

tions defined by eq. (5.23). As we will see in the following, the 4-dimensional

effective action contains a set of general fields that are not forced to have a

special form.

To complete the analysis, we have to answer in which conditions it is possible

to construct a gauge connection Ā′. Let us take look the field content of the

reduced theory. Table 5.1 shows field content for the Chern–Simons theory and

after the dimensional reduction. The number of fields of the general Chern–

Generator Before DR After DR Parameter
Jab ωabm(X) (30) ω̄abµ(x) (24) θab(X) (6)

Ba sam(X) (20) s̄aµ(x) (16) βa(X) (4)

Ta uam(X) (20) ūam(w) (20) τa(X) (4)
D µm(X) (5) µ̄m(w) (5) λ(X) (1)

Total 75 65 15

Table 5.1: Field content for the Chern–Simons theory and after the dimensional
reduction scheme of eq. (5.22). Here “DR” stands for dimensional reduction.

Simons theory is 30 + 20 + 20 + 5 = 75 and the number of fields after fixing

the gauge by means of eq. (5.22) is 24 + 16 + 20 + 5 = 65. From eq. (5.23)

we see that the 6 + 4 + 4 + 1 = 15 group parameters restore the connection.

Therefore, assuming that we can solve eq. (5.23) for θab, βa, τa and λ, we can

find a new connection Ā′ from the gauge-fixed connection Ā.

By last, we analyse how the gauge symmetry is reduced by imposing the di-

mensional reduction scheme of eq. (5.22). For this, we analyse what are the

conditions on the gauge parameters so that Ā′ satisfies the same gauge that
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the gauge-fixed connection Ā. That occurs when

1
2
ω̄′abµ(x) = 1

2
ω̄abµ(x) + 1

2
D̄µθ

ab(x,w) + η s̄[a
µ(x)βb](x,w) , (5.24)

0 = 1
2
∂wθ

ab(x,w) , (5.25)

s̄′aµ(x) = s̄aµ(x) + D̄µβ
a(x,w)− θab(x,w)s̄bµ(x) , (5.26)

0 = ∂wβ
a(x,w) , (5.27)

ū′aµ(w) = ūaµ(w) + D̄µτ
a(x,w)− θab(x,w)ūbµ(w)

+ η
(
βa(x,w)µ̄µ(w)− s̄aµ(x)λ(x,w)

)
, (5.28)

ū′a5(w) = ūa5(w) + ∂wτ
a(x,w)

− θab(x,w)ūb5(w) + η βa(x,w)µ̄5(w) , (5.29)

µ̄′µ(w) = µ̄µ(w) + ∂µλ(x,w) (5.30)

− ηab
(
s̄(a

µ(x)τ b)(x,w)− β(a(x,w) ∧ ūb)µ(w)
)
, (5.31)

µ̄′5(w) = µ̄5(w) + ∂5λ(x,w) + ηab β
(a(x,w) ∧ ūb)5(w) . (5.32)

This is fulfilled only if θab = βa = τa = λ = 0, which means that the gauge is

completely fixed and we do not have any remaining gauge symmetry; we lost

even local Lorentz invariance. In this sense, the dimensional reduction breaks

the entire 5-dimensional Poincaré symmetry. As we see below, by plugging in

the dimensional reduction scheme into the Chern–Simons action, the theory

reduces to the 4-dimensional Lorentz-invariant Einstein–Cartan action plus as

Lorentz-breaking term.

Reduced action. For the field components as in eq. (5.22), Rab(ω̄) becomes

the Lorentz curvature, s̄a becomes the vierbein and T a(ω̄, s̄) = Dω̄s̄ becomes

the torsion of the 4-dimensional Cartan formalism. The action of eq. (5.21)

gives

S̄[ω̄, s̄, ū, µ̄] = η
`2

∫
Σ

µ̄

∫
M4

εabcd

(
η
2
Rab(ω̄) ∧Rcd(ω̄)

+Rab(ω̄) ∧ s̄c ∧ s̄d + η
`2
s̄a ∧ s̄b ∧ s̄c ∧ s̄d

)
+
√

2
`

∫
Σ

ūa
∫
M4

εabcd

(
Rbc(ω̄) + 2η

`2
s̄b ∧ s̄c

)
∧ T d(ω̄, s̄) . (5.33)
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Here we rescaled the vierbein as s̄a → (
√

2/`)s̄a, where ` is a constant. To

integrate along Σ we define the constants κ =
∫

Σ
µ̄ and φa =

∫
Σ
ūa. We get

then the following 4-dimensional action:

S̄[ω̄, s̄] = κη
`2

∫
M4

εabcd

(
Rab(ω̄) ∧ s̄c ∧ s̄d + η

`2
s̄a ∧ s̄b ∧ s̄c ∧ s̄d

)
+
√

2
`
φa
∫
M4

εabcd

(
Rbc(ω̄) + 2η

`2
s̄b ∧ s̄c

)
∧ T̄ d(ω̄, s̄) , (5.34)

where we have omitted the Gauss–Bonnet boundary term by means of the

Stokes theorem. This action corresponds to the first-order 4-dimensional Eins-

tein–Cartan action plus negative or positive cosmological constant respectively

for η = ±1 plus terms involving torsion.

The presence of the constants φa breaks the local Lorentz symmetry, since the

only constant vector that is local Lorentz invariant is (0, 0, 0, 0)T. Therefore,

the way to recover 4-dimensional local Lorentz invariance is by imposing φa =

0, which further restricts the gauge fields to satisfy
∫

Σ
ūa = 0. In this case we

recover precisely the Einstein–Cartan action. Note, however, that defining a

new Planck mass through m2
P = κη/`2, we have in the large-` limit that

S̄[ω̄, s̄]
∣∣
`→∞ = m2

P

∫
M4

εabcdR
ab(ω̄) ∧ s̄c ∧ s̄d , (5.35)

which is again the Einstein–Cartan action.

5.2.1.2 First-order conformal gravity

To go further with the analysis for different dimensional reductions, we consider

again the SO(4, 2) invariant action of eq. (5.5), without having taken any limit

for γ. Also, we consider the following slightly different scheme:

ωabm(X) dXm = ωabµ(x) dxµ =: ω̄ab(x) , (5.36a)

sam(X) dXm = saµ(x) dxµ =: s̄a(x) , (5.36b)

uam(X) dXm = uaµ(x) dxµ =: ūa(x) , (5.36c)

µm(X) dXm = µ5(w) dw =: µ̄(w) . (5.36d)
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The semi-direct product manifold M5 = M4 n Σ becomes the direct product

manifold M5 = M4 × Σ given that the components of the fünfbein sAm(X)

satisfy sa5 = s5
µ = 0. The same is valid for uAm(X). Which one of those

vielbeine shall correspond to the metric of the spacetime gµν in an effective

action remains as matter of interpretation, as we do as well in bimetric theory:

here one declares which metric is going to be the one that rises and lowers

indices.

In the same way as the dimensional reduction scheme of § 5.2.1.1, the scheme

of eq. (5.36) can be seen as a gauge-fixing under similar conditions. In this

case, however, the gauge is not completely fixed by the scheme: one still has

the free parameters θab = θab(x) while necessarily βa = τa = λ = 0. Putting

this values of parameters into the gauge transformations of eq. (2.68) one sees

that residual gauge corresponds to 4-dimensional local Lorentz transformations

SO(3, 1).

The restriction of eq. (5.36d) makes that any other 5-component of the fields,

e.g. sa5 drops out from the action since dw ∧ dw = 0. This also implies that

all other appearing indices will be D = 4 spacetime indices. The action of eq.

(5.5) becomes

S̄[ω̄, s̄, ū, µ̄] = η
2

∫
Σ

µ̄

∫
M4

εabcd

(
η
2
Rab(ω̄) ∧Rcd(ω̄)

+Rab(ω̄) ∧
[
s̄c ∧ s̄d − 1

γ2
ūc ∧ ūd

]
+ η

2

[
s̄a ∧ s̄b − 1

γ2
ūa ∧ ūb

]
∧
[
s̄c ∧ s̄d − 1

γ2
ūc ∧ ūd

])
. (5.37)

Furthermore, defining the constant κ =
∫

Σ
µ̄ to integrate along Σ, the 4-

dimensional action reads

S̄[ω̄, s̄, ū] = κη
2

∫
M4

εabcd

(
Rab(ω̄) ∧

[
s̄c ∧ s̄d − 1

γ2
ūc ∧ ūd

]
+ η

2

[
s̄a ∧ s̄b − 1

γ2
ūa ∧ ūb

]
∧
[
s̄c ∧ s̄d − 1

γ2
ūc ∧ ūd

])
, (5.38)

where we omitted the Gauss–Bonnet boundary term. Remarkably, the Weyl

rotation of the vector
(
ua

γsa

)
leaves the action invariant, which is a consequence

of the SO(1, 1) symmetry of the SO(4, 2) algebra (cf. eq. (2.28)). The action

of eq. (5.38) is the action for first-order conformal gravity (see eq. (4.23)) first
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obtained in ref. [67].

5.2.2 4-covariant canonical basis

5.2.2.1 Generalized first-order conformal gravity

As discussed in § 5.1.4.2 one can relate the 5-dimensional theories by linear

field redefinitions, therefore they are all equivalent. In this section we present a

dimensional reduction scheme that breaks this equivalence because the scheme

basis-dependent. Namely, we restrict the fields as

ωabm(X) dXm = ωabµ(x) dxµ + ωab5(x,w) dw =: ω̄ab(x) + ωab5(x,w) dw ,

(5.39a)

eam(X) dXm = e(w) eaµ(x) dxµ + ea5(x,w) dw =: e(w) ēa(x) + ea5(x,w) dw ,

(5.39b)

ıam(X) dXm = ı(w) ıaµ(x) dxµ + ıa5(x,w) dw =: ı(w) ı̄a(x) + ıa5(x,w) dw ,

(5.39c)

µm(X) dXm = µ5(w) dw =: µ̄(w) . (5.39d)

Here e = e(w) and ı = ı(w) are two arbitrary functions defined on the dimen-

sional reduction domain Σ. They can be interpreted in the following way. A

warped geometry has the general form for the metric

ds2 = f(w)gµν(x)dxµdxν + g(w)dw2 . (5.40)

Thus our warped functions define a warped spacetime3 in the directionX5 = w.

The scheme of eq. (5.39) is not the same for linear combinations of the 5-

dimensional fields ea and ıa. This means, a linear combination qa = aea + bıa

cannot be written in the form qa = q(w) q̄a(x) + qa5(x,w) dw but it will read

qa = ae(w) ēa(x) + bı(w) ı̄a(x) + qa5(x,w) dw. Our scheme requires then a

particular choice of basis for the gauge algebra. We choose in the following

the orthogonal basis, movivated by the feature that the potential in the action

looks similar to the one of bimetric gravity and also by the fact that the

3The authors ref. [64] studied effective spacetimes starting from the theories with warped
geometry in the context Chern–Simons theory.
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torsional part goes away when putting γ = 0.

As in the previous cases, the dimensional reduction scheme can be also seen

as a gauge-fixing. Two possibilities arise for residual gauge symmetry. Those

are: i) a transformation with θab = θab(x) which is 4-dimensional local Lorentz

symmetry. In this case, the functions e(w) and ı(w) are not constrained. We

have also that ii) θab = θab(x) and λ = λ(w) corresponding to 4-dimensional

local Lorentz symmetry together with Weyl dilations in the warping direction.

For this case, the functions e(w) and ı(w) are constrained to be proportional.

We study from now only the case i), since the integration along Σ of indepen-

dent functions e(w) and ı(w) will lead to a greater number of free parameters

that allow us to study different sectors of the theory. In this scheme the action

of. eq. (5.10) for γ = 0 becomes

S̄[ω̄, ē, ı̄, µ̄] = a2η

∫
Σ

e2µ̄

∫
M4

εabcdR
ab(ω̄) ∧ ēc ∧ ēd

+ c2η

∫
Σ

ı2µ̄

∫
M4

εabcdR
ab(ω̄) ∧ ı̄c ∧ ı̄d

+ a4

∫
Σ

e4µ̄

∫
M4

εabcd ē
a ∧ ēb ∧ ēc ∧ ēd

+ 2a2c2

∫
Σ

e2ı2µ̄

∫
M4

εabcd ē
a ∧ ēb ∧ ı̄c ∧ ı̄d

+ c4

∫
Σ

ı4µ̄

∫
M4

εabcd ı̄
a ∧ ı̄b ∧ ı̄c ∧ ı̄d . (5.41)

Here es and ıs, with s = 1, 2, 4, are powers of the warping function and they

should not be confused with vielbein components.

It is necessary to emphasize that, since we are in the limit γ → 0, the

C3+1(M,γ) algebra is not well-defined and formally, the theory is not a gauge-

formulated anymore. Nevertheless, as one can see from the commutation rela-

tions of the algebra, the Lorentz subalgebra is unaffected by this limit and thus

there should be still a residual local Lorentz invariance. To integrate along the

domain Σ, we define the constants

pst =

∫
Σ

dw es(w)ıt(w)µ5(w) . (5.42)
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With this, the 4-dimensional theory becomes

S̄[ω̄, ē, ı̄] =

∫
M4

εabcd

(
a2ηp20R

ab(ω̄) ∧ ēc ∧ ēd

+ c2ηp02R
ab(ω̄) ∧ ı̄c ∧ ı̄d + a4p40 ē

a ∧ ēb ∧ ēc ∧ ēd

+ 2a2c2p22 ē
a ∧ ēb ∧ ı̄c ∧ ı̄d + c4p04 ı̄

a ∧ ı̄b ∧ ı̄c ∧ ı̄d
)
. (5.43)

We observe that, as expected, the theory has residual local Lorentz invariance.

Also, we see that this action contains all terms of the first-order conformal

gravity action (cf. eq. (4.23)). The appendix B.1 is devoted to show that the

constants pst are arbitrary, meaning that they do not depend functionally on

each other4. For the special choice

p40 = p2
20 , (5.44a)

p22 = p20p02 , (5.44b)

p04 = p2
02 , (5.44c)

by performing the field redefinition

a′Ea = a
√
ηp20 ē

a + ic
√
ηp02 ı̄

a , (5.45a)

c′Ia = a
√
ηp20 ē

a − ic
√
ηp02 ı̄

a , (5.45b)

the action takes the form of first-order conformal gravity, as in § 5.2.1.2. For

general parameters pst, the action of eq. (5.43) represents a generalisation of

first-order conformal gravity. Notice that this generalisation does have the

usual Weyl rotation invariance SO(1, 1).

5.2.3 Doubled Lorentz-Dilation Chern–Simons

5.2.3.1 Generalized first-order bimetric gravity

In the following we carry out a dimensional reduction of the doubled Chern–

Simons theory introduced in § 5.1.5. To this end, we restrict the fields ωab,

4This is, however, from the 4-dimensional point of view. At the 5-dimensional level, any
restriction of the parameters pst restricts fields in the 5-dimensional theory.
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µ, ea and ia as in eq. (5.39) and also analogously for ω̃ab and µ̃. The action

becomes

S + S̃ = η

∫
M4

εabcd

(
a2p20R

ab(ω̄) ∧ ēc ∧ ēd + c2p02R
ab(ω̄) ∧ ı̄c ∧ ı̄d

+ a2p̃20R
ab(¯̃ω) ∧ ēc ∧ ēd + c2p̃02R

ab(¯̃ω) ∧ ı̄c ∧ ı̄d
)

+

∫
M4

εabcd

(
a4(p40 + p̃40) ēa ∧ ēb ∧ ēc ∧ ēd + 2a2c2(p22 + p̃22) ēa ∧ ēb ∧ ı̄c ∧ ı̄d

+ c4(p04 + p̃04) ı̄a ∧ ı̄b ∧ ı̄c ∧ ı̄d
)

+ γS̄torsion . (5.46)

Here the bar on the actions is to point out that we performed a dimensional

reduction. Also, we have defined the constants

p̃st =

∫
Σ

dw es(w)ıt(w)µ̃5(w) . (5.47)

Analogously as in § 5.2.2, the dimensional reduction scheme can be seen as

gauge-fixing for which the entire symmetry breaks down to SO(3, 1). Since

the parameters pst and p̃st are arbitrary (see § B.1), the reduced action in eq.

(5.46) represents a generalisation of 4-dimensional first-order bimetric gravity

for β1 = β3 = 0 (cf. eq. (3.22)). For the case γ → 0 we find the two following

relevant cases:

First-order bimetric gravity. The potential in eq. (5.46) coincides with

the one of bimetric theory for the special case of β1 = β3 = 0. By choosing

p20 = 1/a2 , (5.48a)

p02 = 0 , (5.48b)

p̃20 = 0 , (5.48c)

we eliminate the mixed kinetic term. In this case the action of (5.46) reads

S + S̃ = η

∫
M4

εabcd

(
Rab(ω̄) ∧ ēc ∧ ēd + c2p̃02R

ab(¯̃ω) ∧ ı̄c ∧ ı̄d
)

+

∫
M4

εabcd

(
a4(p40 + p̃40) ēa ∧ ēb ∧ ēc ∧ ēd + 2a2c2(p22 + p̃22) ēa ∧ ēb ∧ ı̄c ∧ ı̄d

+ c4(p04 + p̃04) ı̄a ∧ ı̄b ∧ ı̄c ∧ ı̄d
)
, (5.49)
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which is ghost-free bimetric gravity in the first-order formulation with β1 =

β3 = 0 (cf. eq. (3.22)). This action has the residual local Lorentz symmetry,

as expected. Whether the more general action of eq. (5.46) propagates the

Boulware-Deser ghost remains as an open question. Moreover, the special

model of eq. (3.24), i.e., partial massless gravity, corresponds to the choice

p40 + p̃40 = −M2/a4 , (5.50a)

p22 + p̃22 = −M2p̃02/a
2 , (5.50b)

p04 + p̃04 = −M2p̃2
02 , (5.50c)

p̃20 = 0 , (5.50d)

p02 = 0 , (5.50e)

where we also identify the constants c = α of both actions.

Weyl rotation invariant model. In § 4.3 we mentioned that the Weyl

rotation symmetry of the action for first-order conformal gravity can be also

realized as a subgroup of the conformal group SO(4, 2). Remarkably, there

exists a choice for the parameters pst that gives back this symmetry to the

general case of eq. (5.46). Namely, by choosing the parameters as

p40 + p̃40 = p2
20 , (5.51a)

p22 + p̃22 = p20p̃02 , (5.51b)

p04 + p̃04 = p̃2
02 , (5.51c)

p02 = p̃02 , (5.51d)

p̃20 = p20 , (5.51e)

the action of eq. (5.46) becomes

S = η

∫
M4

εabcd

([
Rab(ω̄) +Rab(¯̃ω)

]
∧
[
a2p20 ē

c ∧ ēd + c2p̃02 ı̄
c ∧ ı̄d

]
+
[
a2p20 ē

a ∧ ēb + c2p̃02 ı̄
a ∧ ı̄b

]
∧
[
a2p20 ē

c ∧ ēd + c2p̃02 ı̄
c ∧ ı̄d

])
, (5.52)

which is invariant under SO(1, 1) (or SO(2), depending on the sign of p20p̃02)

Weyl rotation. The action of eq. (5.52) differs, however, first-order conformal

gravity since the curvatures depend on two independent spin connections. This
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model does not coincide with first-order ghost-free bimetric gravity either, due

to the different structure of the kinetic terms.
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Chapter 6

Dark matter in multimetric

gravity

This chapter is devoted to some of our results of ref. [2]. We start with com-

puting the full perturbative action of trimetric gravity with maximal discrete

symmetry, up to cubic order in fluctuations. The generalisation to multimet-

ric gravity in the star graph with N satellite metrics and maximal discrete

symmetry is also discussed, showing the same behavior of the trimetric case

and not leading to new phenomenology. We focus then on the trimetric case,

where we show that certain features of the theory that occur up to cubic order

hold to all orders. In particular, the heaviest massive spin-2 field Mµν neither

decays into massless gravitons Gµν nor into lighter modes χµν and its coupling

to matter is very small. The lighter mode does not interact with matter and

it does not decay into Gµν or Mµν . Given that the lighter mode does not have

any decay channel, it is stable and we suggest that it can be the component

of dark matter.

6.1 Perturbative expansion of the action

In this section we discuss the trimetric gravity action (eq. (3.36)) with max-

imal discrete symmetry in the perturbative expansion, in terms of the mass

101
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eigenstates Gµν , Mµν and χµν . The original metric fluctuations h
(g)
µν , h

(f)
µν and

h
(k)
µν are expressed in terms of the mass eigenstates in eq. (3.48). By plugging

in these expressions in the trimetric gravity action we are able to compute all

possible interaction vertices between the mass eigenstates to all orders. We

restrict the parameters of the theory to satisfy eqs. (3.27) and (3.33) in order

that the theory has maximal discrete symmetry.

We see from eqs. (3.48) and (3.47) that, if α < 1, the higher-order vertices of

Mµν and χµν are suppressed by factors of 1/(mPα). This occurs as well in the

bimetric case where α is defined as the ratio of the constants multiplying the

Einstein–Hilbert terms in the bimetric action [71].

6.1.1 Nonlinear massless field

Let us consider the original metrics gµν , fµν and kµν in terms of the original

fluctuations (eq. (3.42)). Using the relations between the original fluctuations

and the eigenstates, for the maximal discrete symmetric case (eq. (3.48)), we

can write

gµν = γµν −
α

mP

Mµν , (6.1a)

fµν =
α2

2α2
(f)

γµν +
α

2α2
(f)mP

(
Mµν −

√
1 + α2 χµν

)
, (6.1b)

kµν =
α2

2α2
(k)

γµν +
α

2α2
(k)mP

(
Mµν +

√
1 + α2 χµν

)
, (6.1c)

where we have defined γµν = ḡµν + 1
mP
Gµν . We see that the quantities γµν take

the role of a background metric for linear combinations of the fluctuations Mµν

and χµν . Furthermore, for the case of no perturbations around the background

γµν , i.e. Mµν = χµν = 0, the trimetric gravity action for gµν , fµν and kµν of

eq. (6.1) reads

S[g, f, k]
∣∣∣
M=χ=0

= m2
P

∫
d4x

√
|γ| (R(γ)− 2Λ) , (6.2)
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which is the Einstein–Hilbert action for the background metric γµν with the

cosmological constant term1. The action above represents the dynamics for

a general perturbation Gµν 6= 0 at any perturbative order. Therefore, we in-

terpret the fluctuation Gµν as a massless field that mediates the long-ranged

gravitational force on the spacetime defined by metric γµν , on which the mas-

sive spin-2 modes Mµν and χµν propagate.

6.1.2 Linear massive fluctuations

In the following we study the vertices that are linear in the massive modes. To

the end, analyse the Lagrangian for trimetric gravity (eq. (3.36)) up to linear

order in the massive modes Mµν and χµν as perturbations around γµν , which

keeps all orders of the massless eigenstate Gµν (as discussed in § 6.1.1).

6.1.2.1 Contribution of the Einstein–Hilbert terms

The Taylor expansion of the the Einstein–Hilbert terms in the trimetric La-

grangian, up to first-order in metric perturbations is given by2

m2
g

(
δ(
√
|g|R(g))

δgµν

∣∣∣∣
g=γ

δgµν + α2
(f)

δ(
√
|f |R(f))

δfµν

∣∣∣∣
f/c2=γ

δfµν + α2
(k)

δ(
√
|k|R(k))

δkµν

∣∣∣∣
k/c2=γ

δkµν

)
,

= m2
g

(
δ(
√
|g|R(g))

δgµν

∣∣∣∣
g=γ

h(g)
µν + α2

(f)

δ(
√
|g|R(g))

δgµν

∣∣∣∣
g=γ

h(f)
µν + α2

(k)

δ(
√
|g|R(g))

δgµν

∣∣∣∣
g=γ

h(k)
µν

)
,

= m2
g

δ(
√
|g|R(g))

δgµν

∣∣∣∣
g=γ

(
h(g)
µν + α2

(f) h
(f)
µν + α2

(k) h
(k)
µν

)
,

=
m2
g

mP

δ
√
|g|R(g)

δgµν

∣∣∣∣
g=γ

[(
α2
(f)
c2
(f)

α
+

α2
(h)
c2
(h)

α
− α

)
Mµν

+
√

1+α2

α

(
α2

(h)c
2
(h) − α2

(f)c
2
(f)

)
χµν

]
,

= 0 , (6.3)

1The constant Λ is defined in the context of trimetric gravity in the first paragraph of §
3.7.2.1.

2We use the short notation fµν/c
2
(f) → f/c2 and kµν/c

2
(k) → k/c2.
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where in the last line we have used the relations between α, α(h) and α(f) of

eq. (3.47), provided by the discrete symmetries. This implies, that no vertices

that are linear in the massive modes arise from the Einstein–Hilbert terms, in

the case of maximal discrete symmetry.

6.1.2.2 Contribution of the trimetric potential

In the following we perform a Taylor expansion of the interaction potential up

to first order around the proportional backgrounds:[√
|g|
(
V (g, f ; β

(f)
i ) + V (g, k; β

(k)
i )
)]

f/c2=k/c2=g=γ

=
δ(
√
|g|V )

δχρσ

∣∣∣∣
f/c2=k/c2=g=γ

δχρσ +
δ(
√
|g|V )

δMρσ

∣∣∣∣
f/c2=k/c2=g=γ

δMρσ ,

=

[
δ(
√
|g|V (g,f ;β

(f)
i ))

δfµν
δfµν

δχρσ
+

δ(
√
|g|V (g,k;β

(k)
i ))

δkµν
δkµν

δχρσ

]
f/c2=k/c2=g=γ

δχρσ

+

[
δ(
√
|g|V )

δgµν
δgµν

δMρσ
+

δ(
√
|g|V (g,f ;β

(f)
i ))

δfµν
δfµν

δMρσ
+

δ(
√
|g|V (g,k;β

(k)
i ))

δkµν
δkµν

δMρσ

]
f/c2=k/c2=g=γ

δMρσ ,

=
√

1+α2

2αM2 Λ̃(β
(f)
i , c(f), α(f))

(
α2

(k)c
2
(k) − α2

(f)c
2
(f)

)√
|γ| γρσδχρσ

+ 1
2M2 Λ̃(β

(k)
i , c(k), α(k))

(
α2
(f)
c2
(f)

α
+

α2
(k)
c2
(k)

α
− α

)√
|γ| γρσδMρσ ,

= 0 . (6.4)

Here we used eqs. (3.40) and (6.1), as well as (3.47) to conclude the last line.

Hence, also the potential does not contribute with linear term in the massive

modes.

Considering also the results of § 6.1.2.1, we conclude that trimetric gravity

with maximal discrete symmetry does not have any vertex that is linear in the

massive modes Mµν and χµν around the background γµν .

6.1.3 Cubic vertices

We continue then with the Taylor expansion of the trimetric gravity Lagrangian

up to cubic order in the massive modes. Given that the calculation is rather
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GGG 1,Λ GMM 1,Λ,m2
M MMχ 0

GGM 0 Gχχ 1,Λ,m2
χ Mχχ 1

α
· (1,Λ,m2

M ,m
2
χ)

GGχ 0 MMM 1−α2

α
· (1,Λ,m2

M) χχχ 0

Table 6.1: Factors of the cubic Lagrangian for trimetric gravity with maximal
global discrete symmetry (cf. eq. (B.22)). Here we have omitted all numerical
factors and any dimensionless constant but α. Also, all terms are divided by
mP.

long, the detailed procedure is summarized in § B.3. Table 6.1 shows the

factors of the cubic interaction vertices.

We see from table 6.1 that the cubic self-interaction terms of the massless mode

Gµν are the same as in general relativity. This is in agreement the result of §
6.1.1, where we calculated the perturbative expansion to all orders. Also, we

see that there are no cubic vertices that are linear in the massive modes Mµν

nor χµν , which is in agreement with our discussion of § 6.1.2. The calculation

of the cubic terms confirms that there are no vertices of the type GGM and

GGχ and thus the massive gravitons cannot decay into massless gravitons.

The Lagrangian up to cubic order does not contain any term with odd powers

of χµν which is due to the discrete symmetry. In fact, this extends to any

order in the perturbative expansion. To see this, consider the interchange

symmetry α2
(f) fµν ↔ α2

(k) kµν . This transformation leaves the entire trimetric

action invariant, however the eigenstates transform as

Gµν → Gµν , (6.5a)

Mµν →Mµν , (6.5b)

χµν → −χµν , (6.5c)

as it can be seen directly from eq. (3.46). Thus, any term containing an

odd power of χµν must be absent, otherwise it would spoil the invariance of

the action. As a consequence of this, the decay M → G · · ·Gχ, i.e., for an

arbitrary number of massless gravitons, is not allowed, because that would

require a vertex that is linear in χµν . Said in other words, a decay of the

heaviest mode into the lightest mode plus massless gravitons is not allowed.

Remarkably, the cubic vertices that are quadratic in the massive fields (GMM



106 6. Dark matter in multimetric gravity

and Gχχ) do not depend on the parameter α. This is important since, treat-

ing the massive fields as matter, they are contained in an expression for the

gravitational stress-energy tensor, which is expected to be independent of α

according to the Noether stress-energy tensor defined for the quadratic action

in flat space [123].

6.1.4 Generalization to multiple fields

In the following we proceed with the generalisation of the trimetric model

with maximal discrete symmetry for N satellite metrics. The mass spectrum

for most general ghost-free multimetric theory is quite cumbersome due to the

large amount of parameters. The case for the star graph (eq. (3.25)) was

worked out in ref. [119]. Similarly as studied in § 3.7.2 and § 6.1, the mass

eigenstates are linear combinations of the metric fluctuations h
(g)
µν and h

(p)
µν

around a maximally symmetric background solution. Here p = 1, . . . , N labels

the fluctuation for the satellite metric f
(p)
µν . Furthermore, the eigenmodes are

always such that there is one single massless mode Gµν , one massive mode

Mµν with mass mM and N − 1 modes χ
(r)
µν with masses m(r) < mM , where

r = 1, . . . , N − 1.

Following the results of ref. [119], it is straightforward to calculate the mass

spectrum for the multimetric action with N satellite metrics (eq. (3.34)),

now including maximal discrete symmetry. For the proportional background

solution f
(p)
µν = c2

(p)gµν , the mass spectrum assumes the form

Gµν = mP

1+α2

(
h(g)
µν +

∑N
p=1α

2
(p)h

(p)
µν

)
, (6.6a)

Mµν = − mP

α(1+α2)

(
α2h(g)

µν −
N∑
p=1

α2
(p)f

(p)
µν

)
, (6.6b)

χ(r)
µν = mP

α
√

1+α2

(
α2

(r)h
(r)
µν − α2

(r+1)h
(r+1)
µν

)
, (6.6c)

where i = 1, . . . , N − 1 and α2 =
∑N

p=1 α
2
(p)c

2
(p) and mP =

√
1 + α2mg. We

recognize the same behavior as in the trimetric case: the massive states δχ
(r)
µν

do not depend on the fluctuation of h
(g)
µν . Hence, this massive modes do not

couple to matter (cf. eq. (3.11)). On the other hand, the massive mode Mµν
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still depends on h
(g)
µν .

The masses of the eigenmodes satisfy

m(r) = m(s) =
mM√
1 + α2

, (6.7)

for all values r, s = 1, . . . , N − 1. Exactly as in the trimetric case, solving eq.

(6.6) for h
(g)
µν gives

h(g)
µν = 1

mP
(Gµν − αMµν) . (6.8)

The result in the trimetric theory, that χµν does not couple to matter gener-

alises for the (N −1) massive spin-2 particles corresponding to the modes χ
(r)
µν .

Moreover, as we can see from eq. (6.7) they have equal masses and are lighter

than Mµν . This forbids Mµν to decay into other massive spin-2 particles. Other

channels for higher order vertices are again are not allowed by means of the

discrete symmetries, which again forbid vertices that are linear in the modes

χ
(r)
µν . By last, generalising the discussion in § 6.1.2 shows that χ

(r)
µν cannot

decay into massless modes Gµν . The novel structure of the trimetric theory

lays on the fact that we have a new, completely stable, massive spin-2 field.

The deviations from general relativity are then controlled by α and M . Now,

in the multimetric case we have the same behavior as in the trimetric case: α

and M control deviations and we have a bunch of lighter massive spin-2 fields

with equal masses. Therefore, we do expect fundamentally new phenomena

for N > 2 and hence we focus on the trimetric case in the following.

6.2 Lighter mode as component of dark mat-

ter

6.2.1 Assumptions

As we saw in § 6.1, due to the discrete symmetries, the massive mode χµν is

stable because it does not couple to matter (standard model fields) and because
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it neither decays into massive spin-2 fields Mµν , nor massless gravitons3 Gµν .

We assume that the discrete symmetries of the trimetric Lagrangian are stable

under quantum corrections. Note that there is no obvious symmetry giving

rise to the vanishing coupling of fµν and kµν to the stress-energy tensor. This

problem is still not solved in bi- and multi-metric gravity theory.

Moreover, we make an assumption on the parameter α. This is a dimensionless

quantity that parameterizes the interaction strengths of massive spin-2 modes.

Since α and M control deviations from general relativity, demanding that

α � 1 ensures that these deviations are small for a large range of spin-2

masses. This motivates us to focus on values α < 1.

6.2.2 Dark matter

Taking the assumptions of § 6.2.1 into account, the fact that the lightest mode

χµν is completely stable motivates us to consider it as a possible dark matter

candidate.

For α < 1, the masses of the spin-2 particles are of the same order, i.e.,

mM ' mχ. Also, Mµν cannot decay into χµν since 2µχ > µM . We take

βf2 = α2
hβ

h
2 /α

2
f ≈ 1. This assumption is without loss of generality since the

scale of the β2 can always be absorbed into M (cf. the potential of trimetric

gravity, eq. (3.36)). In that case we have

mM ' mχ 'M . (6.9)

In this case, the heaviest mode can still decay into standard model fields and

its matter coupling —as in bimetric theory— is controlled by the (weak) factor

α/mP (see eq. (6.8)).

In the context of bimetric gravity, ref. [71] argued that Mµν makes up (part

of) the observed dark matter density. The non-observation of dark matter

particles in particle accelerator sets the constraint 10−15 . α . 10−12 and M '
1 − 100 TeV. The trimetric theory, however, enlarges the parameter scenario:

3This fact occurs even without the discrete symmetries.
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we can require that Mµν does not contribute to the observed amount of dark

matter because it has decayed into standard model particles since the end of

inflation. For that case, we recover reversed stability constraint

α2/3mM > 0.13 GeV , (6.10)

introduced in ref. [71]. Fixing the spin-2 mass mM gives us then a further

bound for α.
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Chapter 7

Conclusions

In this dissertation we studied several mathematical tools that gave us an

understanding on Lie algebras and Chern–Simons gauge theory. Furthermore,

we analysed the current theories of massive spin-2 fields and the problems in

the gauge formulation of gravitational theory. It was possible to conclude that,

from the 5-dimensional Chern–Simons gauge theory for the group SO(4, 2), we

can obtain the following theories in the following senses:

• Einstein–Cartan theory: after taking the Inönü–Wigner contraction

limit that reduces the symmetry from SO(4, 2) to ISO(3, 2) or ISO(4, 1),

we performed a simple dimensional reduction that led the Chern–Simons

action to the Einstein–Cartan theory in four dimensions plus a Lorentz-

breaking term involving torsion. This extra term could be removed by

restricting a field in the 5-dimensional action or by taking a critical limit

of the parameter `.

• First-order conformal gravity: without having taken the Inönü–

Wigner contraction limit, a similar dimensional reduction scheme as

above led us to a first-order version of conformal gravity (studied by

Kaku et al in ref. [67]). We concluded that the Weyl rotation symme-

try of the 4-dimensional action does not arise from a subalgebra of the

original gauge algebra SO(4, 2), which is broken to SO(3, 1) by the dimen-

sional reduction. Instead, we observed that the Weyl rotation symmetry
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originates from the SO(1, 1) symmetry of the gauge algebra, i.e., a rota-

tion of the generators that leaves the commutation relations invariant.

• Generalized first-order conformal gravity: a dimensional reduction

scheme that introduces two warp functions was considered. This was

made in a particular basis of the algebra. We could conclude that in a

different basis, the same dimensional reduction is not possible, and there-

fore, we broke the similarity between all Chern–Simons theories written

in different bases of SO(4, 2). Integrating along the warp direction led the

Chern–Simons action to a generalisation of first-order conformal gravity.

This theory contains standard first-order conformal gravity as in ref. [67]

for a particular choice of parameters.

• Generalized first-order bimetric theory: we considered a doubled

Chern–Simons action in D = 5 with symmetry group SO(4, 2)×SO(4, 2).

We observed that making the fields interdependent in a certain way,

breaks the gauge symmetry to SO(3, 1) × SO(2). After a dimensional

reduction we obtained an action that can be seen as a generalised bi-

metric theory involving a new type of kinetic interaction. For a certain

choice of the parameters we obtained standard bimetric theory à la Has-

san and Rosen in the first-order formalism. We also discussed another

choice of parameters which recovers the Weyl rotation symmetry typical

of first-order conformal gravity.

Furthermore, for the multimetric gravity theory:

• We concluded that the maximal global discrete symmetry in (N + 1)-

metric theories is SN × (Z2)N . Also, we presented the corresponding

action invariant under this extra symmetry. Moreover, we analysed the

mass spectrum for the maximal global discrete symmetry. This showed

that the multimetric theory does not bring new phenomenology for N >

2, thus we focused mainly in the trimetric case. The trimetric case turned

out to contain one massless graviton Gµν , the massive graviton Mµν and

a lighter massive graviton χµν , in agreement with the general results of

ref. [119].
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• Some features of the perturbative action with maximal global discrete

symmetry were studied. For this, we computed all cubic interaction ver-

tices in terms of the mass eigenstates. We found that the trimetric theory

with maximal global discrete symmetry is a nontrivial generalisation of

the bimetric case. This is mainly due to the existence of a lighter massive

mode.

• We concluded that the heaviest spin-2 field Mµν is neither allowed to

decay into massless gravitons nor into lighter spin-2 fields. This is due to

the discrete symmetries. Moreover, we saw that Mµν couples to standard

model matter very weakly. On the other hand, the lighter massive field

does not interact with matter and it is not allowed to decay into other

spin-2 particles either. Therefore, χµν was shown to be completely stable

and we postulated it as the ingredient of dark matter by discussing the

parameter regions for α and the mass scale M .
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Appendix A

Formulae in geometry

A.1 Differential geometry and tensors

We start defining a derivative of the vector components Vµ as

∇µVν = ∂µVν − ΓρµνVρ , (A.1)

where Γ is an arbitrary connection and ∇µ is called the covariant derivative.

Assuming that, for a scalar ∇µφ = ∂µφ and also that ∇µ satisfy the Leibniz

rule, one obtains

∇µV
ν = ∂µV

ν + ΓνµρV
ρ . (A.2)

One can prove then that the covariant derivative on the tensor is

∇µVνρ = ∂µVνρ − ΓσµνVσρ − ΓσµρVνσ , (A.3a)

∇µV
νρ = ∂µV

νρ + ΓνµσV
σρ + ΓρµσV

νσ . (A.3b)

The commutator between two covariant derivatives is given by

[∇µ,∇ν ]Vρ = −Rσ
ρµνVσ − T σµν∇σVρ , (A.4)
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where

Rσ
ρµν(Γ) = ∂µΓσνρ − ∂νΓσµρ + ΓσµτΓ

τ
νρ − ΓσντΓ

τ
µρ , (A.5a)

T σµν(Γ) = Γσµν − Γσνµ , (A.5b)

are the Riemann and Torsion tensors respectively. They satisfy

Rσ
ρµν = −Rσ

ρνµ , (A.6a)

T σµν = −T σνµ . (A.6b)

Curvatures. In terms of the Riemann tensor one can define the following

quantities, that we use repeatedly use in this thesis: we have the Ricci tensor

Rµν = Rλ
µλν , the Ricci scalar R = gµνRλ

µλν , the Einstein tensor Gµν = Rµν −
1
2
gµνR, the Gauss–Bonnet density

G = R2 − 4RµνRµν +RµνρσRµνρσ , (A.7)

the Weyl tensor

Cµνλρ = Rµνλρ + 1
D−2

(
Rµρgνλ −Rµλgνρ +Rνλgµρ −Rνρgµλ

)
+ 1

(D−1)(D−2)
R
(
gµλgνρ − gµρgνλ

)
, (A.8)

where D = p + q, and by last, we have the Lorentz curvature in terms of the

vielbein matrix eaµ

Rab(e) = 1
2
eaµe

b
ν R

µν
λρ(g(e)) dxλ ∧ dxρ , (A.9)

with gµν = eaµe
b
ν ηab.

Gauss–Bonnet density. It is straight forward to show that∫
M4

εabcdR
ab(ω) ∧Rcd(ω) ∝

∫
M4

d4xG , (A.10)

where G is the Gauss–Bonnet density, provided that vielbein postulate (eq.

(1.3)) holds.
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Lichnerowicz operator. The expression for the Lichnerowicz operator de-

fined in a curve spacetimes with metric gµν is given by

� λρ
µν = −1

2

(
δρµδ

σ
ν∇2 + gρσ∇µ∇ν − δρµ∇σ∇ν

− δρν∇σ∇µ − gµνgρσ∇2 + gµν∇ρ∇σ
)
. (A.11)

Here ∇µ is the covariant derivative for the Levi-Civita connection of gµν and

∇2 = gµν∇µ∇ν .

Levi-Civita symbol. Let Aab be an anti-symmetric symbol, the generalised

Levi-Civita symbol satisfies:

p+q∑
ı=1

εa1···aı−1baı+1···ap+qA
b
aı = 0 . (A.12)
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Appendix B

Further calculations and

expressions

B.1 Proof for arbitrariness of the p’s and p̃’s

In this section we show that the constants pst and p̃st are arbitrary. For this we

assume that the curve Σ is such that we can always find a chart of coordinate

w and open interval (w0, w1) so that the integrals are not trivial. According to

our discussion in § 5.1.1, the Chern–Simons theories that we constructed are

such that Σ is homeomorphic to an interval.

Let us begin defining the functions

pst(w) =

∫ w

w0

dw′ es(w′)ıt(w′)µ5(w′) , (B.1a)

p̃st(w) =

∫ w

w0

dw′ es(w′)ıt(w′)µ̃5(w′) . (B.1b)

Clearly we have that

pst(w1) = pst , (B.2a)

p̃st(w1) = p̃st , (B.2b)

pst(w0) = 0 , (B.2c)
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p̃st(w0) = 0 . (B.2d)

Using the fundamental theorem of calculus we observe that the derivatives of

the functions p’s are given by

dpst
dw

(w) = es(w)ıt(w)µ5(w) , (B.3a)

dp̃st
dw

(w) = es(w)ıt(w)µ̃5(w) . (B.3b)

From this we see that

µ̃5(w)
dpst
dw

(w) = µ5(w)
dp̃st
dw

(w) , (B.4)

and using the product rule for derivatives we find

d

dw

(
µ̃5(w)pst(w)− µ5(w)p̃st(w)

)
=

dµ̃5

dw
(w)pst(w)− dµ5

dw
(w)p̃st(w) . (B.5)

Evaluating at w = w0 and w = w1 we find

d

dw

(
µ̃5(w)pst(w)− µ5(w)p̃st(w)

)∣∣∣∣
w=w0

= 0 , (B.6a)

d

dw

(
µ̃5(w)(pst(w)− pst)− µ5(w)(p̃st(w)− p̃st)

)∣∣∣∣
w=w1

= 0 , (B.6b)

respectively. Here we can think about functions whose derivatives vanish at

w = w0 and w = w1 respectively. The simplest function would be some power

q > 1 of w − w0 and r > 1 of w − w1. We then have

µ̃5(w)pst(w)− µ5(w)p̃st(w) = ast(w − w0)qst , (B.7a)

µ̃5(w)(pst(w)− pst)− µ5(w)(p̃st(w)− p̃st) = bst(w − w1)rst , (B.7b)

where qst, rst > 1 and ast and bst are constants. One could also consider more

sophisticated functions whose derivatives vanish at w0 and w1, however their

Taylor expansion would contain ast(w − w0)qst and bst(w − w1)rst respectively

as a term and therefore this latter function is just a special case with less free

parameters (which are enough to make the proof). Eqs. (B.7a) and (B.7b)

imply

µ̃5(w)pst − µ5(w)p̃st = ast(w − w0)qst − bst(w − w1)rst . (B.8)
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Evaluating this expression at w = w0 and w = w1 we get

µ̃5(w0)pst − µ5(w0)p̃st = −bst(w0 − w1)rst , (B.9a)

µ̃5(w1)pst − µ5(w1)p̃st = ast(w1 − w0)qst , (B.9b)

respectively. By last, we can solve for p’s and p̃’s to get

pst =
µ5(w0)ast(w1 − w0)qst + µ5(w1)bst(w0 − w1)rst

µ5(w0)µ̃5(w1)− µ̃5(w0)µ5(w1)
, (B.10a)

p̃st =
µ̃5(w0)ast(w1 − w0)qst + µ̃5(w1)bst(w0 − w1)rst

µ5(w0)µ̃5(w1)− µ̃5(w0)µ5(w1)
. (B.10b)

From this expressions we see that the p’s and the p̃’s are always proportional to

the constants ast and bst respectively. Since ast and bst are arbitrary constants

only subject to define the vanishing-first-derivative functions of eqs. (B.7a)

and (B.7b), then the p’s and the p̃’s are completely arbitrary and they can be

used as free parameters of a theory.

B.2 Chern–Simons action in components

B.2.1 Conformal basis

The torsion terms in the conformal basis in eq. (5.9) are given by

Storsion[ω, e, h] = ∓
∫
M5

εabcdR
ab(ω) ∧

(
a2 T c(ω, e) ∧ ed

− ac T c(ω, e) ∧ hd + ac T c(ω, h) ∧ ed − c2 T c(ω, h) ∧ hd
)

∓ 2η

3

∫
M5

εabcd

(
a T a(ω, e) + c T a(ω, h)

)
∧
(
a3 eb ∧ ec ∧ ed

+ 3a2c eb ∧ ec ∧ hd − 3ac2 eb ∧ hc ∧ hd − c3 hb ∧ hc ∧ hd
)
, (B.11)

for the algebraic solutions of A = C = 0 given by b = ±aγ and d = ∓cγ
respectively.
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B.2.2 Orthogonal basis

In the orthogonal basis, i.e. for b = ±iaγ and d = ∓icγ, the torsion terms of

eq. (5.10) are

S ′torsion[ω, e, h] = ∓i
∫
M5

εabcdR
ab(ω) ∧

(
a2 T c(ω, e) ∧ ed

− ac T c(ω, e) ∧ hd + ac T c(ω, h) ∧ ed − c2 T c(ω, h) ∧ hd
)

± i4η
3

∫
M5

εabcd

(
a T a(ω, e) + c T a(ω, h)

)
∧
(
a3 eb ∧ ec ∧ ed

− c3 hb ∧ hc ∧ hd
)
. (B.12)

B.3 Quadratic action and cubic vertices

B.3.1 Useful definitions

In the following we introduce some useful definitions. Here we omit we bar on

the background metric to simplify the notation.

Einstein gravity. Let us first define the bilinear operator

K(2)
µν (h, `) = ∇µhρσ∇ν`

ρσ −∇µh∇ν`+∇ρhρµ∇ν`

+∇νhµρ∇ρ`−∇ρhµν∇ρ`+∇ρh
ρσ∇σ`µν − 2∇µh

ρσ∇σ`νρ

+∇µh∇ρ`ρν +∇ρhµν∇σ`ρσ − 2∇ρhµσ∇ν`
ρσ − 2∇ρhµσ∇σ`νρ

+ 2∇ρhµσ∇ρ`
σ
ν +∇ρh∇ν`µρ −∇ρh∇ρ`µν , (B.13)

where ∇µ is the covariant derivative with respect to the Levi-Civita connection

associated with gµν . Moreover, let us define

C(1)
µν (h) = 2hµν − gµνh , (B.14a)

P (1)
µν (h) = hµν − gµνh , (B.14b)
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and

C(2)
µν (h) = 8hµρh

ρ
ν − 4hhµν − 2gµνhρσh

ρσ + gµνh
2 , (B.15a)

P (2)
µν (h) = 4hµρh

ρ
ν − 4hhµν − gµνhρσhρσ + gµνh

2 , (B.15b)

Q(2)
µν (h) = 4hµρh

ρ
ν − 3hhµν − 2gµνhρσh

ρσ + gµνh
2 . (B.15c)

In terms of this operators, the Einstein–Hilbert Lagrangian with cosmological

constant up to cubic order in perturbations reads

L(3)
EH(h) =

√
|g|
(
− 1

12
gµνK(2)

µν (h, h) + 1
4mP

[
hµν − 1

6
h gµν

]
K(2)
µν (h, h)

+ 2Λm2
P + Λ

4
hµνC(1)

µν (h)− Λ
12mP

hµνC(2)
µν [h]

)
. (B.16)

The first line corresponds to the kinetic terms and the second line to the self-

interactions term up to cubic order.

Multimetric gravity. We use eq. (3.39) to express β0 and β4 in terms of

α, Λ and β2 as Λ using,

β0 = 1
2

(
Λ
M2 − 3α2β2

)
, (B.17a)

β4 = 2
α2

(
Λ
M2 − 3β2

)
. (B.17b)

Furthermore, we recall the expression for the masses of the massive modes.

For maximal discrete symmetry they are

m2
χ = 2β2M

2 , (B.18a)

m2
M = 2(1 + α2)β2M

2 . (B.18b)

Those expressions are used in the following to replace dependence on β2.

B.3.2 Trimetric action expanded to cubic order

In the following we calculate the cuadratic and cubic terms of the trimetric

action of eq. (3.36) in terms of the mass eigenstates. We write the Lagrangian
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on the form,

LTM = L(0)
TM + L(1)

TM + L(2)
TM + L(3)

TM + . . . , (B.19)

First, one finds

L(0)
TM = 2Λm2

P

√
|g| , (B.20a)

L(1)
TM = 0 . (B.20b)

Furthermore, the quadratic Lagrangian reads

1√
|g|
L(2)

TM = − 1
12
gµνK(2)

µν (G,G)− 1
12
gµνK(2)

µν (M,M)− 1
12
gµνK(2)

µν (χ, χ)

+ Λ
4
GµνC(1)

µν (G) + Λ
4
MµνC(1)

µν (M) + Λ
4
χµνC(1)

µν (χ)

− m2
M

4
MµνP (1)

µν (M)− m2
χ

4
χµνP (1)

µν (χ) . (B.21)

We see that the first line contains the Fierz–Pauli kinetic terms for spin-2

fields. The second line contains the quadratic self-interaction terms that arise

due to the interaction with the maximally symmetric background while the

third line contains the self-interactions terms that give rise to masses of the

eigenstates. The cubic interaction terms are given by

mP√
|g|
L(3)

TM = 1
4

(
Gµν − 1

6
Gρ

ρg
µν
)(
K(2)
µν (G,G) +K(2)

µν (M,M) +K(2)
µν (χ, χ)

)
+ 1

2

(
Mµν − 1

6
Mρ

ρ g
µν
)(
K(2)
µν (G,M) + 1

2α
K(2)
µν (χ, χ) + 1−α2

2α
K(2)
µν (M,M)

)
+ 1

2

(
χµν − 1

6
χρρ g

µν
)(
K(2)
µν (G,χ) + 1

α
K(2)
µν (M,χ)

)
− Λ

12
Gµν

(
C(2)
µν (G) + 3C(2)

µν (M) + 3C(2)
µν (χ)

)
− Λ

12α
Mµν

(
(1− α2)C(2)

µν (M) + 3C(2)
µν (χ)

)
− 1

4
Gµν

(
m2
MP

(2)
µν (M) +m2

χP
(2)
µν (χ)

)
− (1−α2)

8α
m2
M MµνP (2)

µν (M)

+ 1
4α
Mµν

(
m2
χP

(2)
µν (χ) +

m2
M

2
Q(2)
µν (χ)

)
, (B.22)

where we introduced the trace with respect to the background metric as Aρρ =

gµνAµν .
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[102] A. De Felice, A. E. Gümrükcüoǧlu, C. Lin, and S. Mukohyama, “On the

cosmology of massive gravity,” Class. Quant. Grav., vol. 30, p. 184004,

2013.

[103] L. Bernard, C. Deffayet, and M. von Strauss, “Consistent massive gravi-

ton on arbitrary backgrounds,” Phys. Rev., vol. D91, no. 10, p. 104013,

2015.

[104] L. Bernard, C. Deffayet, and M. von Strauss, “Massive graviton on arbi-

trary background: derivation, syzygies, applications,” JCAP, vol. 1506,

p. 038, 2015.

[105] L. Bernard, C. Deffayet, A. Schmidt-May, and M. von Strauss, “Linear

spin-2 fields in most general backgrounds,” Phys. Rev., vol. D93, no. 8,

p. 084020, 2016.



134 BIBLIOGRAPHY

[106] C. Mazuet and M. S. Volkov, “Massive gravitons in arbitrary space-

times,” Phys. Rev., vol. D96, no. 12, p. 124023, 2017.

[107] S. Deser, M. Grisaru, and H. Pendleton, “Lectures on elementary par-

ticles and quantum field theory, volume 2,” Cambridge, Massachusetts,

USA: The MIT Press, p. 510, 1971.

[108] S. F. Hassan and A. Schmidt-May, “Interactions of multiple spin-2 fields

beyond pairwise couplings,” arXiv preprint, 2018.

[109] Y. Yamashita, A. De Felice, and T. Tanaka, “Appearance of Boulware–

Deser ghost in bigravity with doubly coupled matter,” Int. J. Mod. Phys.,

vol. D23, p. 1443003, 2014.

[110] C. de Rham, L. Heisenberg, and R. H. Ribeiro, “On couplings to matter

in massive (bi-)gravity,” Class. Quant. Grav., vol. 32, p. 035022, 2015.

[111] S. F. Hassan, A. Schmidt-May, and M. von Strauss, “On Partially Mass-

less Bimetric Gravity,” Phys. Lett., vol. B726, pp. 834–838, 2013.

[112] A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter

Space-time,” Nucl. Phys., vol. B282, pp. 397–436, 1987.

[113] L. Apolo and S. F. Hassan, “Non-linear partially massless symmetry

in an SO(1, 5) continuation of conformal gravity,” Class. Quant. Grav.,

vol. 34, no. 10, p. 105005, 2017.

[114] N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux, “Inconsis-

tency of interacting, multigraviton theories,” Nucl. Phys., vol. B597,

pp. 127–171, 2001.

[115] C. de Rham and A. J. Tolley, “Vielbein to the rescue? Breaking the

symmetric vielbein condition in massive gravity and multigravity,” Phys.

Rev., vol. D92, no. 2, p. 024024, 2015.

[116] S. F. Hassan, A. Schmidt-May, and M. von Strauss, “Metric Formulation

of Ghost-Free Multivielbein Theory,” arXiv preprint arXiv:1204.5202,

2012.

[117] K. Nomura and J. Soda, “When is Multimetric Gravity Ghost-free?,”

Phys. Rev., vol. D86, p. 084052, 2012.



BIBLIOGRAPHY 135

[118] J. H. C. Scargill, J. Noller, and P. G. Ferreira, “Cycles of interactions in

multi-gravity theories,” JHEP, vol. 12, p. 160, 2014.

[119] O. Baldacchino and A. Schmidt-May, “Structures in multiple spin-2 in-

teractions,” J. Phys., vol. A50, no. 17, p. 175401, 2017.

[120] A. R. Gover, A. Shaukat, and A. Waldron, “Weyl Invariance and the

Origins of Mass,” Phys. Lett., vol. B675, pp. 93–97, 2009.

[121] D. Baumann, “Inflation,” in Physics of the large and the small, TASI 09,

proceedings of the Theoretical Advanced Study Institute in Elementary

Particle Physics, Boulder, Colorado, USA, 1-26 June 2009, pp. 523–686,

2011.

[122] R. Blumenhagen, D. Lüst, and S. Theisen, Basic concepts of string

theory. Theoretical and Mathematical Physics, Heidelberg, Germany:

Springer, 2013.

[123] M. Leclerc, “Canonical and gravitational stress-energy tensors,” Int. J.

Mod. Phys., vol. D15, pp. 959–990, 2006.






	Zusammenfassung
	Summary
	Acknowledgements
	Curriculum vitae
	Notation and conventions
	Contents
	Introduction
	Standard general relativity
	Symmetries
	Issues with gravity
	Lanczos?Lovelock & Chern?Simons
	Spin-2 fields
	Chern?Simons and spin-2 fields
	Dark matter and spin-2 fields

	Structure of this thesis

	Symmetries
	Symmetry scenarios
	Minkowski space
	Isometry group
	Commutation relations

	Symmetry scenarios

	In?n??Wigner contraction
	From (anti)-de Sitter to Poincar?
	From Poincar? to Galileo

	Parametrized conformal algebra
	Bases of the algebra
	6-covariant basis
	5-covariant basis
	4-covariant basis
	4-covariant canonical basis and parametrized conformal algebra

	Parameter choices
	Conformal basis
	Orthogonal basis


	Expansion of Lie algebras
	Motivation: SO(4) from SO(3)

	Differential forms
	Connection separated in subspaces

	Gauge theory for the conformal group
	Connections and curvatures
	Gauge transformations
	4-covariant basis
	4-covariant canonical basis


	Chern?Simons forms

	Spin-2 fields
	Einstein
	Fierz?Pauli
	De Rham?Gabadadze?Tolley
	General reference metric
	Hassan?Rosen
	Metric formulation
	Mass spectrum
	First-order formulation

	Hinterbichler?Rosen
	Models with discrete symmetry
	Maximal discrete global symmetry
	Interchange symmetry SN
	Reflection symmetry (Z2)N
	Maximally symmetric action

	Mass spectrum
	Maximal global discrete symmetry
	Enters dark matter



	Gauge theories for gravity
	Poincar? (non)-invariance of gravity
	Invariance of (2+1)-dimensional gravity
	Non-invariance of (3+1)-dimensional gravity

	Conformal gravity
	Einstein-dilaton system

	First-order conformal gravity
	First-order conformal gravity
	Weyl rotations


	Conformal Chern?Simons theory
	The action
	6-covariant basis
	5-covariant basis
	4-covariant basis
	4-covariant canonical basis
	Conformal basis
	Orthogonal basis

	Doubled Chern?Simons theory

	Dimensional reductions
	4-covariant basis
	Einstein?Cartan gravity
	First-order conformal gravity

	4-covariant canonical basis
	Generalized first-order conformal gravity

	Doubled Lorentz-Dilation Chern?Simons
	Generalized first-order bimetric gravity



	Dark matter in multimetric gravity
	Perturbative expansion of the action
	Nonlinear massless field
	Linear massive fluctuations
	Contribution of the Einstein?Hilbert terms
	Contribution of the trimetric potential

	Cubic vertices
	Generalization to multiple fields

	Lighter mode as component of dark matter
	Assumptions
	Dark matter


	Conclusions
	Formulae in geometry
	Differential geometry and tensors

	Further calculations and expressions
	Proof for arbitrariness of the p's and 's
	Chern?Simons action in components
	Conformal basis
	Orthogonal basis

	Quadratic action and cubic vertices
	Useful definitions
	Trimetric action expanded to cubic order


	Bibliography

