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ASL   anticodon stem loop 

ATP  adenosine triphosphate 

A-site  Aminoacyl-site on ribosome 
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G  guanine 

GAC  GTPase associated center 
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IF  initiation factor 
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mRNA messenger RNA 
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ms  millisecond 

NTD  N-terminal domain 
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PTC  peptidyl transferase center 

P-site  Peptidyl-site on ribosome  

P-tRNA P-site tRNA 

RSH  RelA/ SpoT homologue 
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RC  ribosome complex 

RF  release factor 

RIS  ribosome intersubunit 

RMF  ribosome modulation factor 

RNA  ribonucleic acid 

RRF  ribosome release factor 

RRM  RNA recognition motif 
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SD  Shine-Dalgarno 

SRL  sarcin ricin loop 

SSU  small subunit 

T  thymine 

TGS  threonyl-tRNA synthetase, GTPase, and SpoT 

tRNA  transfer RNA 

TS  transition state 

U  uracil 

XDR  extensively drug resistant 
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Summary 
 

The ribosome is the machinery concerned with the translation of the genetic 

information, present in the form of mRNA, into proteins. Translation is a multistep process; 

starting with initiation, followed by elongation and termination, and ending with ribosome 

recycling to prepare for a new round of translation. In each step, a group of factors are involved 

to ensure catalysis, speed, and high fidelity of the translated protein. Therefore, translation is 

not just a major target for the antibiotics and antimicrobials, but also a target for various 

environmental stimuli. One such environmental stimulus is nutrient limitation, which causes 

the bacterium to induce a stringent response to help the cells cope with such harsh conditions. 

It is well-known that the stringent response is mediated by the action of RSH (RelA/ SpoT 

homologue) proteins. Using cryo-EM, we show the binding of RelA in an elongated 

conformation on the ribosome, while being wrapped under the deacylated-tRNA. This in turn 

stabilizes the tRNA in a distorted conformation known as A/R-tRNA. The structure also 

illustrates the detailed interactions between RelA and the ribosome including the interaction 

between the deacylated-tRNA and the TGS (Threonyl tRNA synthetase, GTPase, and SpoT) 

domain of RelA which is crucial for sensing starvation conditions. The second cryo-EM 

structure represents the first structure of a bifunctional Rel protein bound to the ribosome 

showing the high similarity between both the bifunctional Rel and the monofunctional RelA 

in their binding site to the ribosome. The third study focuses on the mechanism of ribosome 

hibernation in Gram-positive bacteria via long HPF (hibernation promoting factor) during the 

transition into the stationary phase. A cryo-EM structure reveals the mechanism by which 

LHPF binds to the ribosome and induces ribosome dimerization to form 100S. LHPF-NTD 

(N-terminal domain) is connected to the LHPF-CTD (C-terminal domain) via a flexible linker 

which allows the NTD binding between the head and the body on the 30S, whereas the CTD 

binds on the solvent side of the 30S. The CTD of one LHPF molecule interacts with that of the 

second LHPF molecule on the neighboring ribosome. Thus the CTD plays an important role 

in stabilizing the 100S formation, while the NTD binding site overlaps with the tRNAs binding 

site resulting in an inactively translating ribosomes. Inactive ribosomes during stationary phase 

represent an energy saving mode of bacterial cells during stress conditions. 
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1. Introduction 
 

1.1.  Protein synthesis in prokaryotes 
 

Genetic information is stored in the form of deoxyribonucleic acid (DNA), this is then 

transferred into ribonucleic acid (RNA) via transcription. RNA is used as a template for the 

production of protein via the process of protein translation. This whole process is known as 

the central dogma of molecular biology that has been characterized in all living organisms by 

Crick (Crick 1970). The process of protein synthesis (translation) is catalyzed by the action of 

ribosomes. The ribosome (also known as the protein factory) is a large ribonucleoprotein 

molecule found in all kingdoms of life. It is composed of two subunits that are made up of 

both rRNA (ribosomal RNA) and proteins (Figure 1A). The prokaryotic ribosome as a whole 

is called the 70S ribosome; this consists of two subunits, the small 30S subunit and the large 

50S subunit. These numbers refer to the sedimentation coefficient in Svedberg units. The small 

subunit contains the entry site for the messenger RNA (mRNA) and is responsible for 

decoding, while peptide bond formation occurs on the large subunit. Decoding and peptide 

bond formation require the action of transfer RNAs (tRNAs). Three tRNA binding sites are 

shared between both ribosomal subunits (Figure 1B), the A- (aminoacyl), P- (peptidyl), and E-

(exit) sites. The aminoacylated tRNA binds to the A-site and the tRNA carrying the peptidyl 

chain binds to the P-site, while the deacylated tRNA exits the ribosome through the E-site. 

Three rRNAs are distributed among the 70S; the 16S rRNA is located in the 30S while the 23S 

and the 5S rRNAs are found in the 50S. In E. coli, the small subunit is composed of 21 

ribosomal proteins (S1-S21) while the large subunit contains 33. Unlike the catalytic function 

exerted by the rRNA, the ribosomal proteins are rather crucial for the folding of the rRNA in 

the catalytically active conformation, in addition to their role in maintaining translation fidelity 

(Ban et al. 2000; Schluenzen et al. 2000; Wimberly et al. 2000) reviewed in (Melnikov et al. 

2012; Ramakrishnan 2002; Williamson 2009).  
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Figure 1. Structure of E. coli 70S ribosome. (A) Solvent side view of the 70S ribosome showing its main 

features including head, neck, shoulder, body, platform, and spur. Light blue and dark blue colors resemble 16S 

rRNA and proteins, respectively. While grey and magenta are used for 23S rRNA and proteins, respectively and 

the 5S rRNA is shown in purple. (B) Top view of the intact 70S presenting the shared binding sites for the A-, P-

, and E-tRNAs on both ribosomal subunits. CP (Central Protuberance) and ASF (A-site Finger) are also presented 

on the 50S. This figure is adapted from (Schuwirth et al. 2005) with permission. 

 

1.2. Translation 
 

Translation, the last step in gene expression following transcription, involves the 

conversion of the nucleotide information in the mRNA into an amino acid sequence that folds 

into a protein. This process involves four distinct steps: initiation, elongation, termination, and 

recycling. Although significant differences are observed in the detailed mechanism of each 

event between eukaryotes and prokaryotes, many aspects are highly conserved. 

 

1.2.1. Initiation 
 

Translation initiation is an essential and rate limiting step (Ray and Pearson 1975) and 

reviewed in (Jacques and Dreyfus 1990). In bacterial cells, the initiation step could occur at 

the same time as the transcription (co-transcriptionally), via the interaction of the RNA 

polymerase (RNAP) and the ribosome (Kohler et al. 2017; Landick, Carey, and Yanofsky 

1985; Proshkin et al. 2010). In order for the initiation process to occur, a pre-initiation complex 

is required as an intermediate. This involves the 30S, the initiator fMet (formylmethionine)-

tRNAfMet, and three initiation factors (IF1, IF2 and IF3), which are found in comparable 

amounts to the ribosome. Although prokaryotes contain different types of mRNA, those 
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containing the Shine Dalgarno (SD) are usually the most highly expressed and also most 

extensively studied. The matching of Shine-Dalgarno (SD) sequence (an 8-10 nucleotide (nt) 

sequence upstream of the start codon) mRNA the variable element to the 

anti-  end of the 16S rRNA, leads to 30SPIC (pre-

initiation complex) conversion into 30SIC (initiation complex). Once the 30SIC is formed, the 

50S ribosomal subunit is recruited and attaches to the small subunit forming the 70S initiation 

complex (70SIC) (Shine and Dalgarno 1974; Hui and De 1987; Simonetti et al. 2008; Jacob, 

Santer, and Dahlberg 1987).  

The formation of the 70SIC requires several pre-initiation steps; one of which is the 

binding of the initiation factor 3 (IF3) to the 30S of the bacterial ribosome to prevent premature 

re-association with the 50S. IF3 has been shown to bind to the 30S platform with the NTD, 

while the CTD approaches the P- site (Hussain et al. 2016).  Next the initiation factor IF2, a 

GTPase), binds to the 30S of the ribosome recruiting the fMet-

tRNAfMet. Unlike the elongator aminoacyl-tRNAs, the fMet-tRNAfMet enters the P-site 

directly, disregarding the A-site. Structural studies show the role of the IF2 in distinguishing 

the initiator fMet-tRNAfMet from the elongator using domain IV (also known as C2 domain). 

This recognition takes place via the interaction between Domain IV and the CCA-  of fMet-

tRNAfMet in a similar manner to that used between EF-Tu and elongator tRNA. (Hussain et al. 

2016; Caban et al. 2017; Sprink et al. 2016).  

The last and smallest of the initiation factors, initiation factor 1 (IF1), encoded by the 

infA gene, binds in a cleft between the 530 loop, the nucleotide bases A1492 and A1493 in 

helix 44 (H44) of the 16S rRNA and ribosomal protein S12 (Cummings et al. 1991; Moazed 

et al. 1995; Carter et al. 2001; Boelens and Gualerzi 2002). This is located at the A site of the 

-tRNA (aa-tRNA) binds 

during elongation (Boelens and Gualerzi 2002). By occupying this location, IF1 may prevent 

the premature binding of aa-tRNAs. Another function of the IF1 is to strengthen the binding 

of IF2 to the 30S complex (30S-IF2), since the ejection of this factor during the 70SIC 

assemble is assumed to lower the affinity of the 30S-IF2 complex. A similar relation is 

observed for the IF2 and the 30S-IF1, which could mean that they are conformationally 

mediated (Stringer, Sarkar, and Maitra 1977; Celano, Pawlik, and Gualerzi 1988; Zucker and 

Hershey 1986). 
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Although, the recruitment of the initiation factors to the 30S does not follow a specific 

order, a kinetically preferred sequence does exist where IF3 and IF2 bind first, followed by 

IF1 and lastly the fMet-tRNAfMet (Milon et al. 2012). As observed, the three initiation factors 

(IF1, IF2 and IF3) play several vital roles in the translation initiation process, in order to fulfil 

the formation of the 70SIC. Such as the interaction between the fMet-tRNAfMet and mRNA, 

ensuring correct codon-anticodon interaction and correct placement of the mRNA start codon 

(AUG) in the P-site on the 30S (Nakagawa et al. 2010; Yusupova et al. 2001). 30S initiation 

complex formation upon codon-anticodon recognition is then followed by recruitment of the 

large ribosomal subunit (50S) via the action of IF2 forming the 70SIC (consisting of the 70S 

with fMet-tRNAfMet in the P-site interacting with the AUG on the mRNA) (Sprink et al. 2016). 

 

1.2.2. Elongation 
 

The elongation step in translation is a rapid and accurate process. The incorporation of 

amino acid during translation is dependent on both codon and growth condition. This means 

that under optimal growth conditions, the elongation step in E. coli may take as little as 50 

milliseconds (ms) to complete (rate of approximately 17-20 amino acids/second) (Pedersen 

1984; Kruger et al. 1998). The steps involved in the elongation cycle require the addition of 

amino acids to the polypeptide chain. This starts off with an empty A-site and the peptidyl-

tRNA carrying the fMet-tRNAfMet. Elongation is composed of three steps, decoding, peptide 

bond formation and translocation.  

Decoding 
Decoding involves the newly incoming aa-tRNA anticodon being checked for a match 

with the mRNA codon in the A-site. It involves the delivery of the next amino acid in a ternary 

complex to the empty A-site; this is a rapid process with a rate of around 20 amino acids/second 

(Liang et al. 2000). This stable ternary complex consists of a GTPase called the elongation 

factor Tu (EF-Tu), an aminoacyl-tRNA (aa-tRNA) and a guanosine-5´-triphosphate (GTP) 

(Schmeing and Ramakrishnan 2009; Fischer et al. 2015). 

The initial binding of the ternary complex to the ribosome is not codon specific, but is 

assisted with the interaction of the EF-Tu to the flexible C-terminal domains of the ribosomal 

protein L7/L12. On E. coli ribosomes, the L12 exists as two dimers (4 copies) bound to L10 

via their N-terminal domains (NTD). The importance of the L12 for the EF-Tu ribosome 
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binding and for GTP hydrolysis has been shown in extraction/complementation experiments. 

Furthermore, specific mutations in the L12 C-terminal domain (CTD) affect the binding of the 

EF-Tu-GTP-aa-tRNA, ternary complex, to the ribosome (Kothe et al. 2004; Diaconu et al. 

2005; Rodnina et al. 1996; Blanchard, Gonzalez, et al. 2004). This step is reversible and is 

considered as the first proofreading step, since it ensures the dissociation of the ternary 

complex upon sensing codon-anticodon mismatch. Scanning of the different ternary 

complexes by the ribosome occurs with a rate of 1-2 millisecond/aa-tRNA (Diaconu et al. 

2005). It is noteworthy, that only cognate and near cognate aa- tRNA complexes are recruited 

by the ribosome while non-cognate ones do not even bind to the ribosome (Figure 2A) (Pape, 

Wintermeyer, and Rodnina 1999).  

Initial codon-anticodon recognition results in rearrangements of A1492, A1493, and 

G530 of the rRNA, such that the first two bases flip-out of helix 44. Their rearrangement leads 

to interactions with the first two positions of the codon-anticodon helix. In addition, the highly 

conserved G530 interacts with the second base pair as a result of changing to the anti-

conformation. The induced interactions between the first base pair and A1492, and the second 

base pair with both A1493 and G530 permit Watson-Crick base pairing within the first two 

bases, but might allow wobbling of the third. The stabilized interactions and the derived energy 

would induce the 30S shoulder movement toward the ternary complex known as domain 

closure, in the case of cognate aa-tRNA interaction (Figure 2B). While in the case of near 

cognate tRNA, the destabilized interactions result in dissociation of the tRNA off of the 

ribosome (Ogle et al. 2001; Ogle et al. 2002; Nissen et al. 2001). A recent study by Loveland 

has shed light into the discrimination between cognate and near cognate ternary complexes at 

the decoding center. The recognition of cognate codon- anticodon interaction induces the 

stabilization of the essential decoding center nucleotides G530, A1492, and A1493. This 

stabilization in turn favors the 30S domain closure and hence activation of EF-Tu and GTP 

hydrolysis in case of cognate tRNA, but not in near cognate one (Figure 2B, C) (Loveland et 

al. 2017).  

EF-Tu is composed of three domains (domain I-III) with GTP binding site being in 

domain I, while domain II localizes next to the 30S shoulder upon binding to the ribosome. A 

series of conformational changes occur within EF-Tu following cognate tRNA recognition. 

This accurately positions EF-Tu for GTP hydrolysis activation via the action of sarcin-ricin 

loop (SRL), also known as the GTPase activating center (Wool, Gluck, and Endo 1992; 

Schmeing and Ramakrishnan 2009). SRL is responsible for rearranging His84 (E. coli 
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numbering) into the GTPase center and positions the water molecule to attack the GTP -

phosphate leading to GTP hydrolysis (Wallin, Kamerlin, and Aqvist 2013; Adamczyk and 

Warshel 2011; Aqvist and Kamerlin 2015). Mutational analysis has shown the role of His84 

by converting it to alanine; which resulted to a dramatic decrease in the GTP hydrolysis rate 

(Daviter, Wieden, and Rodnina 2003; Voorhees and Ramakrishnan 2013; Voorhees et al. 

2010; Maracci et al. 2014). Following inorganic phosphate release, EF-Tu-GDP dissociates of 

the ribosome as a result of the weakened interactions with the SRL and the tRNA (Rodnina et 

al. 2017).  

 

 

Figure 2. Mechanism of initial aminoacyl-tRNA selection and conformational changes during decoding. 

(A) Schematic representation of the structural mechanism during the initial aminoacyl-tRNA recruitment (TC 

stands for ternary complex). Equilibrium shifts for cognate and non-cognate TC are represented in green and blue 

arrows, respectively. (B) Cryo-EM representation of the decoding process during cognate and near-cognate TC. 

The first column in panel (B) shows the schematic diagrams of the codon-anticodon interaction. Column 2- 4 

represent the different codon recognition steps and the changes within the decoding center essential nucleotides 

A1492, A1493, and G530 till the docking of the EF-Tu onto the SRL. Panel (B) is provided by Loveland (Rodnina 

2018) based on a previously published structure (Loveland et al. 2017) and modified with permission. While 

Panel (A) is reproduced from the latter with permission. 
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During decoding, the aa-tRNA is held in the A/T conformation in which the D-stem and 

the anticodon stem are distorted. This conformation allows for the interaction of the anticodon 

with the mRNA, on the 30S A-site and with the EF-Tu on the 50S. Mutations at the distorted 

sites of the aa-tRNA have a negative effect on GTP hydrolysis. Thus the importance of such a 

conformation has been shown for the interaction with EF-Tu and stabilization of His84 in the 

required conformation for catalyzing GTP hydrolysis (Schmeing et al. 2009; Loveland et al. 

2017; Valle et al. 2002; Stark et al. 1997). The last step in decoding, following GTP hydrolysis, 

involves the accommodation of the A/T-tRNA into the A/A-tRNA state. This requires the 

relaxation of both the tRNA body and the acceptor stem, so that the CCA-  

of the tRNA) moves into the PTC (peptidyl transferase center) (Sanbonmatsu, Joseph, and 

Tung 2005). Hence, tRNA accommodation is the second proofreading step during decoding to 

avoid incorporation of wrong amino acids into the peptide chain via sensing and increasing the 

dissociation rate of the tRNAs with low accommodation rates. This is based on the observation 

that near cognate tRNA, which escapes the codon-anticodon scanning step has a slower 

accommodation rates compares to cognate tRNA (Gromadski and Rodnina 2004; Rodnina et 

al. 2017). The completion of decoding, marked with successful tRNA accommodation, signals 

the continuation into the peptide bond formation step. 

Peptide Bond Formation 
Peptide bond formation occurs in the catalytic site located within domain V of the large 

ribosomal subunit called the peptidyl transferase center (PTC) (Hansen et al. 2002; Nissen et 

al. 2000; Schlünzen et al. 2001; Ban et al. 2000). This site has been shown via crystal structures 

to be comprised entirely of closely packed rRNA with L16 (archaea/eukaryotes) and L27 

(bacteria) being the closest protein to the PTC, at a distance of 8-16 Å, supporting the idea that 

the ribosome is a ribozyme (Polikanov, Steitz, and Innis 2014; Maguire et al. 2005). The 

sequence of the rRNA within the PTC has been shown to have a high degree of conservation. 

Even though the mechanism of peptide bond formation is highly conserved in all organisms, 

it is still presumed that the interacting groups within the PTC might be differently arranged 

among species, (Noller and al. 1981; Gutell et al. 1985; Harms et al. 2001; Ban et al. 2000). 

The nascent peptide chain is linked via an ester bond, using its peptide carbonyl carbon, to the 

 peptidyl-tRNA. Peptide bond formation requires the nucleophilic 

attack of the aa-tRNA, -amino group on the peptide carbonyl carbon of the 

P-tRNA (Figure 3A). This leads to breakage of the ester bond which is linking the nascent 
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peptide chain to the P-tRNA and peptide bond formation with the aa-tRNA (Figure 3B). The 

resulting peptide chain is one amino acid longer following peptide bond formation (Rodnina 

2018; Rodnina, Beringer, and Wintermeyer 2007). 

Figure 3. The chemical structure of peptide bond formation. (A) Pre-peptide bond formation between Phe-
tRNAPhe and fMet-tRNAi

Met. (B) Post-peptide bond formation with the fMet-Phe-tRNAPhe in the A- site and 
tRNAi

Met in the P- site. This figure is modified from (Polikanov, Steitz, and Innis 2014) with permission. 

 

The CCA- end of the fully accommodated A- and P-tRNAs base pair with nucleotides 

of the A- and P-loops on the 50S, respectively. Thus binding of the aa-tRNA in the A-site 

induces a conformational change in the PTC nucleotides U2506, G2583, U2584, and A2585. 

Such changes assist in positioning the P-site ester linkage for nucleophilic attack. Whereas, in 

the absence of the A-tRNA, these nucleotides are oriented to prevent premature nascent chain 

cleavage via the protection of the ester bond from water access (Voorhees et al. 2009; 

Schmeing, Huang, Kitchen, et al. 2005; Schmeing, Huang, Strobel, et al. 2005). Mutational 

studies of the conserved nucleotides U2584 and U2585 (E. coli numbering), located within 

domain V, have decreased cell response to many peptidyl transferase inhibitors. These 

observations support the role played by the highly conserved nucleotides within domain V in 

the peptidyl transferase catalytic activity including A2451, U2506, U2585, C2452 and A2602 

(Noller 1991; Garrett and Rodriguez-Fonseca 1996). 

Kinetic analysis experiments indicate that the isolated 50S subunit has similar catalytic 

activity and can synthesize peptide bonds as rapidly as the 70S ribosome. However, in order 

to maintain the active conformation of the peptidyl transferase center, the full-length tRNA in 

the P-site is important (Wohlgemuth, Beringer, and Rodnina 2006). The ribosome, as 

compared to model substrates in solution, enhances the rate of peptide bond formation by at 

least 6 orders of magnitude (Sievers et al. 2004). Another characteristic of the ribosome is its 

ability to utilize most amino acid combinations without additional auxiliary factors to make 
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peptides. One exception is the synthesis of poly-Pro stretches (Peil et al. 2013; Woolstenhulme 

et al. 2013). 

A variety of mechanisms are employed by enzymes in order to increase their rate of 

reactions. Examples of these could be the correct positioning of the substrates, transition state 

stabilization or chemical catalysis (Narlikar and Herschlag 1997; Sharma et al. 2005). 

However, the catalysis process performed by the ribosome, unlike protein enzymes which 

provide pKa values at neutral pH, is mainly entropic in nature (i.e. does not involve chemical 

catalysis). This means that processes facilitated by the ribosome to achieve the peptide bond 

formation rate enhancement, such as the ordering of the water molecules, rRNA and tRNA 

positioning and electrostatic shielding, is based on lowering the entropy of activation via 

conformational changes at the active site (Sievers et al. 2004; Youngman et al. 2004).  

The acid-base concept was the first mechanism proposed to account for the peptide bond 

formation. The hypothesis evolves around the N3 of the residue A2486 (A2451 in E. coli) and 

its proximity to the attacking amino group where a proton is extracted. Thus, facilitating the 

formation of the tetrahedral intermediate, suggesting its function as a general acid base during 

peptide bond formation (Nissen et al. 2000). However, the mechanism has been shown to be 

incorrect by subsequent experiments, which showed peptidyl transferase activity was not 

significantly changed with mutations at position 2486 and other proximal sites (Polacek et al. 

2001; Thompson et al. 2001). Furthermore, higher resolution of the structure has shown that 

the oxyanion may not be near this base (Hansen et al. 2002). Lastly, by using a range of pH to 

measure the reaction rate no change was observed, arguing against the general acid-base 

catalysis due to its independence of pH. It rather seems that A2451 plays a role in stabilization 

of the structure than chemical catalysis (Beringer et al. 2005; Bieling et al. 2006). 

There are currently two models, although disagreeing on the exact pathway; they 

describe the movement of the three protons in the active site during peptide bond formation in 

the rate limiting transition state. The first model involves a nucleophilic attack on the P-site 

ester bond by the A- -OH of the P-site tRNA residue A76. This 

process is referred to as an intra-reactant proton shuttling and shows significant catalytic effect 

and favorable energetics. This was discovered by crystal structures of both A- and P- site 

substrates bound separately to the 50S subunit (Hansen et al. 2002). The positioning of the 

-OH group (the peptidyl- -amino 

nucleophile, this facilitates peptide bond formation. Furthermore, the hydroxyl group acts as a 

-amin -OH group of A76. This model suggests 
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-amino 

group present on the -OH group of the A76 (Figure 4B left 

panel). This in turn, donates the proton by an adjacent water molecule to the carbonyl oxygen 

of the P-t -OH) (Kuhlenkoetter, Wintermeyer, and Rodnina 2011; Wallin and Aqvist 

2010). T

group and then donated elsewhere, as dictated by the hydroxyl pKa. The water molecule was 

observed previously by crystallographic data, which showed a moiety via electron density that 

-OH group. Further evidence has shown that this moiety is a water 

molecule and not a metal ion (Schmeing, Huang, Kitchen, et al. 2005).  

-OH in the peptidyl transferase was considered for decades 

(Hecht, Kozarich, and Schmidt 1974; Quiggle et al. 1981), where they found that the peptidyl 

transferase in the P-site was inactive when Phe-tRNAPhe -deoxy A76 residue 

(Hecht, Kozarich, and Schmidt 1974) -

deoxy (Dorner et al. 2003) -fluoro A76 were inactive or showed a decreased catalytic rate 

by at least six orders of magnitude, when full-length tRNAs are used in both sites (Weinger et 

al. 2004). This could be due to the repositioning of either the nucleophile amine group or the 

carbonyl carbon. Although the proton shuttle has less optimal stereochemistry than the other 

model, it is the only mechanism that is in line with the observed pH-rate profile and KSIE 

(kinetic solvent isotope effect) analysis (Kazemi et al. 2018). 

Recently, an alternative model known as proton wire model (Figure 4B, right panel), 

which differs considerably from the previous, was suggested based on the pre-attack and post-

catalysis complexes of a 2.6 Å resolution crystal structure of a Thermus thermophilus (Tth) 

70S ribosome binding to a full-length tRNA. In this model, three ordered water molecules 

(W1-3) are trapped within the PTC (Figure 4A). A cavity formed by the 23S rRNA residues 

-site tRNA, holds 

the W1. According to the structure of the pre-attack complexes, the W1 is not likely to be 

exchanged during catalysis, due to its tight coordination caused by strong hydrogen bonds with 

-phosphate oxygen of residue A78 of the A-site tRNA as well as the N6 amino group of 

A2602 and the N terminus of the L27 (Polikanov, Steitz, and Innis 2014). W2 and W3 were 

previously observed in the Haloarcula marismortui (Hma) 50S subunits buried deep within 

the PTC (Schmeing, Huang, Kitchen, et al. 2005; Schmeing et al. 2002) - -N and 

N3 atoms of the A76 P- -OH of C2063, form hydrogen bonds with 

the W3. Unlike the Hma 50S-subunit complexes, which shows two water molecules present at 
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the PTC and active site accessibility to the bulk solvent, the Tth 70S complex shows how all 

three water molecules interact with the ribosome and its tRNA substrates. Furthermore, the 

PTC does not allow any further accessibility to solvent molecules.  

Figure 4. The proposed mechanisms of peptide bond formation. (A) Electron density maps of the decoding 

center showing the positions of the three water molecules W1-W3 pre and post peptide bond formation according 

to the proton wire model using cryo-EM. This is reproduced from (Polikanov, Steitz, and Innis 2014) with 

permission. (B) Chemical structure representing the proton transfer pattern during peptide bond formation 

according to the proton shuttle model on the left and the proton wire on the right. The figure is provided by 

Loveland (Rodnina 2018) based on previously published structures from (Polikanov, Steitz, and Innis 2014; 

Kuhlenkoetter, Wintermeyer, and Rodnina 2011) and modified with permission. 

 

One of the benefits of the proton wire is that it is the first model that incorporates the 

possible role of ribosomal protein L27 in the process of peptide bond formation; this was first 

described by Voorhees (Voorhees et al. 2009) who showed two Tth crystallized structures 3.6 

Å and 3.5 Å resolution respectively, with an A-site tRNA whose CCA tail resides within the 

PTC. The localization of the N-terminal tail of L27 was found to be between the CCA-  end 
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of the A- and P-tRNAs. An interesting observation is that the L27 is absent in some organisms, 

the archaea for example contain no homolog of the L27, instead a protein called L10e (uL16) 

replaces it. This protein, even though it is disordered by the Hma 50S subunit structure (Ban 

et al. 2000), contains an internal loop that extends toward the 70S ribosome PTC region with 

bound full-length tRNA substrates. This was confirmed with a cryo-EM model of the 

eukaryotic L10e homolog (RPL10) using a wheat germ ribosome complex with a P-site tRNA 

(Armache et al. 2010). However, further studies will need to be performed in order to confirm 

whether this archaea protein has a comparable role as the L27. 

The formation of a negative charge on the W1 is facilitated by the presence of a basic 

- -

phosphate oxygen of the residue A76 A-site in its immediate vicinity. The -OH of the A76 

ribose P- -OH of the A2451 form the proton wire. This proton wire allows the 

transfer of a concerted proton towards the W1 from the nucleophile, resulting in a negatively 

charged tetrahedral intermediate (T-). Furthermore, the adjoining W2 might provide a proton 

yielding a neutral intermediate (T0). This in turn would trap or retain the structure within the 

closed pocket containing the W1 and W2, due to the lack of groups suitable to propagate proton 

transfer. One attractive possibility is that the involvement of the proton wire, via the positive 

charge contained within the W1 pocket, to break down the negatively charged intermediate 

(T-). This can be achieved by the formation of the hydronium ion formed from the proton 

transfer between W1 to W3 resulting in the hydrolysis breakdown of the intermediate to yield 

a deacylated tRNA in the P-site and the peptidyl-tRNA in the A-site (Polikanov, Steitz, and 

Innis 2014).  

The L27 comes into play where its N-terminal delays the proton loss from the W1 to the 

bulk solvent, thus allowing the W3 to undergo protonation first. The deletion of the N terminus 

hinders the rates of intermediate structure formation and in turn, its conversion to its products. 

Another role of the L27 is the formation of a shielded system for the W2 water molecule and 

the proton wire allowing for the exchange of a proton to occur only with the 2-OH of the A76 

ribose P-site and the bulk solvent. This shield is formed by the conserved length of the N-

terminal extension. An indication of a closed PTC would be the lack of pH sensitivity for 

peptide bond formation (Polikanov, Steitz, and Innis 2014). According to the role of L27, one 

can easily see how shortening the conserved region by a couple (three or more) of residues 

affects protein synthesis. However, arguments against this model have stated that no effect on 

peptide bond formation has been observed after the deletion of the L27. Also, the absence of 
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the L27 was shown not to alter the pH dependence on the peptidyl transfer (Maracci, 

Wohlgemuth, and Rodnina 2015). Further investigations are required to reveal the role played 

by L27 during the peptidyl transferase reaction.  

Regarding the proton wire and the proton shuttle models, it is noteworthy to mention 

that in many of structural studies used to study the mechanism of peptide bond formation, 

tRNA analogs lacking the full tRNA body have been used. Thus the exact substrate positioning 

and the detailed proton transfer explained here might or might not reflect the exact detailed 

mechanism of peptide bond formation inside the cell under native conditions. The idea of 

peptide bond catalysis inside the PTC via two alternative mechanisms cannot be excluded. 

Translocation 
Translocation is the end of the elongation cycle of protein synthesis. A deacylated-tRNA 

is left in the P-site after the transfer of the nascent peptide chain from the P- to A-site tRNA, 

thus a change in acylation states during peptide bond formation. During translocation, this 

deacylated-tRNA, coupled to the mRNA movement by one codon is then transferred to the E-

site of the ribosome, while the peptidyl-tRNA is transferred to the P-site from the A-site. These 

general changes in positions with respect to the ribosome places the next mRNA codon in the 

A site (Rodnina et al. 1997). The ribosome plays an integral part in the process of translocation, 

by providing the environment and actively participating in the process. This involves the 

rearrangement of the macromolecules of the ribosomal subunits to allow for tRNA movement 

(Spirin 1969). Ribosomes were thought to originally have only two tRNAs binding sites, the 

A- (aminoacyl) and P- (peptidyl) site. However, this changed after Nierhaus discovered the E- 

(exit) site, giving way to the three-site model (Rheinberger, Sternbach, and Nierhaus 1981). 

These three sites are shared by both the small and large ribosomal subunits. The small subunit 

is bound by the mRNA and the tRNA anticodon stem-loop (ASL), while, the large subunit is 

bound by the tRNA acceptor ends; where base pairs are formed between C74 and C75 in the 

CCA end of the P-site tRNA and G2252 and G2251, respectively, in the P-loop of the 23S 

rRNA. The G2553 in the A-loop pairs with the C75 of the A-site tRNA (Selmer et al. 2006; 

Samaha, Green, and Noller 1995; Kim and Green 1999). 

The 30S subunit P- and A-sites are occupied by the anticodons of the two tRNAs in the 

pre-translocation classical state. The SSU, relative to the LSU, starts to rotate 

(foreground), while maintaining the 50S subunit (background) fixed. Since the CCW rotation 

corresponds with the direction of translocation, we refer to it as forward movement (Frank and 
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Agrawal 2000; Gao et al. 2003; Valle et al. 2003). Hybrid states are formed when the CCW 

rotation causes the A- and P-tRNAs CCA-  end movement from their classical states on the 

50S, with the P/E tRNA state formed first. This is then followed by the A/P state. The 

anticodon ends of the peptidyl- and deacylated- tRNAs remain bound to the A- and P-sites of 

the SSU, respectively (Fischer et al. 2010). SmFRET (single molecule fluorescence resonance 

energy transfer) experiments have shown the spontaneity and reversibility of both the hybrid 

state formation and the CCW rotation, solely driven by thermal energy (Cornish et al. 2008; 

Blanchard, Kim, et al. 2004; Munro et al. 2007). Ribosome rotation and the movement of the 

SSU head and body domains have been shown to occur very rapidly (microsecond time scale) 

via molecular dynamics simulations. Another process that occurs concomitantly with the 

rotation of the 30S is the movement of the dynamic uL1 stalk from an open to closed formation 

toward the P-site tRNA (Bock et al. 2013; Munro et al. 2010). This allows for the interaction 

and stabilization of the newly deacylated P-site tRNA by the L1 stalk throughout translocation, 

as the P/E hybrid state is formed (Fei et al. 2008). A fluctuation of the ribosome between the 

hybrid rotated L1 open and the classical non-rotated L1 closed state is the result of the absence 

of the prokaryotic GTPase elongation factor (EF-G). Even though translocation can take place 

in the absence of EF-G, GTP hydrolysis is prevented and the translocation process is very slow 

(reduced by ~40-50 fold) without EF-G (Semenkov et al. 1992; Moazed and Noller 1989). 

Thus, EF-G plays two distinct roles in different phases of protein synthesis, the other being 

during the elongation phase. 

EF-G is a GTPase consisting of 5 domains, with domain 1 comprising the G domain, 

which catalysis GTP hydrolysis. EF-G interacts with the intersubunit cleft on the A-site side 

(Figure 5B, right panel), binding to the 50S ribosome via the G domain (Aevarsson et al. 1994; 

Czworkowski et al. 1994). The activity of the GTPase by the EF-G is very low intrinsically, 

however this increases by several magnitudes upon binding of the EF-G·GTP to the ribosome 

via the isolated L7/12. Furthermore, indication of the importance of the L7/12 is observed 

when a decrease in GTPase activity occurs upon its depletion (Rodnina et al. 1997; 

Savelsbergh et al. 2000). Thus, although EF-Tu or EF-G may bind to the ribosome, GTP 

hydrolysis activity is reduced and Pi release is strongly inhibited  upon L7/12 stalk depletion 

(Mohr, Wintermeyer, and Rodnina 2002). This stalk, present on the large ribosomal subunit, 

forms part of the binding site of EF-G. EF-G shows structural similarity to the EF-Tu, tRNA 

and GTP complex, with the anticodon stem-loop of tRNA mimicked by domain IV (Figure 5) 

(Nissen et al. 1995; Czworkowski et al. 1994). Structural studies, together with smFRET and 

ensemble kinetics have shown that EF-G, when present at high concentrations, binds reversibly 
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to both the rotated-hybrid and non-classical state of the ribosome at a rate of >500s-1 

(Belardinelli et al. 2016; Katunin et al. 2002). EF-G moves from a compact to a more extended 

conformation, with the extended formation being adopted when bound to the ribosome 

regardless of the translocation ribosome state (Salsi et al. 2015). Furthermore, the CCW 

rotation on non-rotated complexes is accelerated with EF-G, as well as blocking the reverse 

transitions leading to the stabilization of the rotated state. This results in a conversion of the 

translocating ribosomes to the rotated-hybrid state with a very short lifetime (Lin et al. 2015; 

Sharma et al. 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Similarity between EF-Tu and EF-G. (A) Crystal structure of EF-Tu-tRNA-GDPNP and EF-G 

highlights the high structural similarity between both factors and the mimicry between EF-G domain IV and 

tRNA. This panel is reformed by (Ramakrishnan 2002) based on studies from (Nissen et al. 1995; Aevarsson et 

al. 1994; Czworkowski et al. 1994). (B) Cryo-EM structures showing the overall binding of EF-Tu (red)-tRNA 

(purple) on the left and EF-G (red) on the right to the ribosome, expressing the similarity not only structurally but 

also in their binding modes. This is combined from (Gao et al. 2009; Schmeing et al. 2009) with permission. 
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Restriction in movement and increase in the physical hurdles for the tRNAs due to the 

two tRNA interaction with the ribosome, accounts for the unspontaneity of tRNA translocation 

on the 30S. Beside the previously described CCW rotation of the 30S, following GTP 

hydrolysis and prior to the inorganic phosphate release (Pi), the 30S head domain encounters 

a special type of movement known as head swiveling (Bock et al. 2013). The unlocking 

mechanism is the process in which the uncoupling of the head and body of the SSU occurs, 

leading to ribosome unlocking. This is caused by the SSU head remaining in the forward-

swiveled state, whereas the SSU body rotates backward toward the non-rotated state (CW). 

The unlocking of the ribosome occurs when the decoding region may open sufficiently 

allowing the uncoupling of the tRNAs from the interactions with the ribosome that holds the 

mRNA and tRNA anticodons in the A- and P- site, respectively. Weakened interactions 

between the 30S and the tRNA occur due to these conformational changes, facilitating the 

motions of the tRNA during translocation (Guo and Noller 2012; Wasserman et al. 2016). The 

movement of the SSU body domain in comparison with the position of the SSU head domain 

leads to displacement of the tRNA ASL position on the body compared to the head domains 

of the SSU, resulting in the formation of intrasubunit hybrid states (Ramrath et al. 2013; Zhou 

et al. 2014; Ratje et al. 2010). Following ribosomal unlocking, the SSU head and body return 

back to their original positions, leading to the tRNAs adopting their canonical post 

translocation position in the P- and E- sites (classical P/P and E/E states). This leaves the 

ribosome in a non-rotated classical state with the mRNA and tRNA fully translocated, after a 

multi-step process. Structural information as well as ensemble and single-molecule kinetic 

studies distinguish at least eight distinct steps (Ramrath et al. 2013; Zhou et al. 2014).  

The inorganic phosphate, Pi, is released by EF-G during the hydrolysis of GTP. 

Deacylated-tRNA leaves the ribosomal E-site at a rate of 14s-1. EF-G is dissociated from the 

ribosome when the SSU head and body continue to move backwards; this is a relatively slow 

reaction 4 s 1 and completes the re-locking of the ribosome, leading to the classical post state 

(Belardinelli et al. 2016; Katunin et al. 2002). Neither GTP hydrolysis nor EF-G release is 

required for reverse movement of the 30S. EF-G plays an important role in the disruption of 

interaction between the SSU and tRNA by promoting conformational rearrangement in the 

SSU leading to rapid tRNA translocation. Furthermore, EF-G is required to maintain forward 

movement of the tRNAs (i.e. from the A to the P- site for the peptidyl-tRNA and from the P- 

to the E-sites for the deacylated-tRNA). A repositioning process occurs for EF-G, where it 

moves from its pre-translocation position (~ 20 Å from the A site) to its post-translocation 

position (domain 4 extending into the A-site). This has been shown through two structures, 
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one being a cryo-EM structure of ribosome complexes of E. coli with EF-G and the other being 

the tRNA in the hybrid P/E state bound to EF-G with a GTP analog at 2.9 Å, in an X-ray 

crystallography of T. thermophilus (Ratje et al. 2010; Tourigny et al. 2013). The insertion of 

the extended domain 4 of EF-G into the 30S A-site may function in the prevention of the 

backward movement of the tRNA by closing the A-site. This could mean that EF-G takes part 

in a dual motor function, where it maintains the bias of tRNA-mRNA movement 

(unidirectional movement) and the other in coupling GTP hydrolysis to ribosome unlocking 

(Wilson and Noller 1998; Ramrath et al. 2013; Rodnina et al. 1997). 

One of the most important, yet least understood aspects is the coupling of the tRNA 

movement with the mRNA movement. If such a process fails, an out-of-frame stop codon due 

to the shift in the translational reading frame leads to untimely termination (Noller et al. 2002). 

The release of the tRNA from the E-site of the ribosome in the POST state marks the end of 

the elongation cycle. In conclusion, the ribosome is now in the POST state, relocked with an 

empty E- and A-sites, the latter exposing the next mRNA codon, which is decoded by the next 

ternary complex with the cognate aminoacyl-tRNA in the A site.  

 

1.2.3. Termination 
 

The coding sequence ends when a stop codon enters the A-site, indicating the 

termination of the elongation cycle. The termination cycle involves three main steps: stop 

codon recognition, ester bond hydrolysis of the peptidyl-tRNA, and finally the dissociation of 

the release factors (RFs). The first two steps are performed by the RF1 and RF2. Prokaryotes 

contain three stop codons that are known as amber (UAG) ochre (UAA) and opal (UGA) 

(Brenner, Stretton, and Kaplan 1965; Brenner et al. 1967). When one of these codons is 

encountered by the ribosome, termination occurs; in bacteria, such as E. coli, these are 

recognized by termination or release factors, RF1 (encoded by the gene prfA), which reads 

UAG/UAA, and RF2 (encoded by the gene prfB) reads UGA/UAA (Caskey et al. 1984; Weiss, 

Murphy, and Gallant 1984; Scolnick et al. 1968). These release factors consist of 4 domains, 

with their locations on the ribosome revealed by structural studies. Domain 1 consists of a 

three helix bundle close to the GTPase-associated center (GAC) on the 50S and the 30S head. 

Domain 2 also carries specific tripeptide motifs known as PVT (ProValThr) and SPF 

(SerProPhe) for RF1 and RF2, respectively, within a loop . 

Domain 3, involved in catalyzing peptide hydrolysis, connects the GGQ (GlyGlyGln) loop to 
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the PTC via its long extending helix 7. Domain 2 and 4 bring the PVT/SPF close to the DC 

(decoding center) on the small subunit via co-folding into a compact superdomain, allowing 

for stop-codon recognition. Highly conserved tripeptide motifs, PVT and SPF, have been 

discovered in RF1 and RF2 respectively, via high resolution crystal structure (Korostelev et 

al. 2008; Weixlbaumer et al. 2008; Vestergaard et al. 2001; Santos et al. 2013). These motifs 

recognize the stop codon in the DC of the small ribosomal subunit.  

Stop Codon Recognition 
The recognition of the stop codon, unlike the sense codons, is independent of tRNAs. 

Stop codon recognition, during termination, takes place by class 1 RFs. However, the question 

that arose is whether this recognition is due to direct communication between the RFs and the 

stop codon or indirectly via stop codon, RF complex, and the nucleotides of the 16S and 23S 

rRNA. Furthermore, stop codon specificities are changed by swapping of PVT/SPF motifs 

between RF1 and RF2 (Ito, Uno, and Nakamura 2000). This supported the hypothesis, where 

the recognition of the stop codon in mRNA is performed by the RF mimicking an anticodon 

in the tRNA. Indeed, RF1 and RF2 have been shown, via translation termination 70S complex 

cryo-EM and 6  X-ray studies, to bind to the ribosomal A-site with their conserved motifs 

positioned to interact with the stop codons (Klaholz et al. 2003; Rawat et al. 2003; Rawat et 

al. 2006). Exciting insights into stop codon recognition were discovered from higher resolution 

crystal structures of the Thermus thermophilus 70S termination complexes. A 3.0-3.6 Å 

resolution of the three stop codons, with the 4 possible functional ribosome complexes with 

RF1/RF2 was obtained (Korostelev et al. 2008; Weixlbaumer et al. 2008; Laurberg et al. 2008; 

Korostelev et al. 2010). It was observed that the threonine in the conserved motif PVT for RF1 

and serine in the SPF motif for RF2 do participate in codon recognition. 

the RF1 or RF2 recognizes the first amino acid, 

uracil, of all three stop codons. This resembles the Watson-Crick A:U base pairing interaction. 

The reading of a U at the first base (U1) is restricted by the backbone element present at the 

N- of an A at the second position (A2) of the 

codon is restricted by the threonine of the PVT motif in RF1. A H-bond is donated to the 

oxygen 4 (O4) -hydroxyl group of Thr186 (Thr190 in E. coli) of RF1 position 

between U1 and A2 in the stop codon; due to this reason, a H-bond can only be accepted from 

A2 defining the specificity of RF1 for A2. However, Ser206 (Ser205 in E. coli) of RF2 can 

accept and donate H-bond from either adenine or guanine at position 2 of the stop codon, as it 

does not interact with U1. RF1 can read both A and G at position 3 due to a rotation of the 
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conserved side chain amide of a Gln residue. The Hoogsteen edge of the third stop codon 

nucleotide is examined by a universally conserved C-terminal threonine in both RF1 and RF2. 

A hydrogen bond is donated to the purine ring of A3 or G3 by the hydroxyl group side chain, 

while a hydrogen bond is accepted from the amino group of A3. While in RF2 the hydrophobic 

Val residue restricts the 3rd position of the stop codon to an A (Laurberg et al. 2008; 

Korostelev et al. 2010; Korostelev et al. 2008). 

Due to crystal structures of the RF complexes, it was proposed that other amino acids 

within other regions of the release factors were involved in stop-codon recognition. One of 

which is the hydrogen bond formation between the reading head of domain 2 of either release 

factors and mRNA nucleotides (Ito, Uno, and Nakamura 1998; Petry et al. 2005). Another set 

of interactions involved the universally conserved 16S rRNA nucleotides (G530, A1492 and 

A1493 E. coli numbering) at the decoding center undergoing conformational changes. Upon 

stop codon recognition A1493 remains stacked within helix 44, while G530 and A1492 flip 

out. This stacking of A1493 is important for allowing RF binding via steric clash prevention 

with domain 2, different from A1493 conformation in case of recognizing cognate tRNA (Ogle 

et al. 2001; Korostelev et al. 2008; Weixlbaumer et al. 2008; Laurberg et al. 2008; Korostelev 

et al. 2010). The coordination of the stop codon recognition with the peptidyl-tRNA hydrolysis 

is performed by the changes observed in the aforementioned nucleotides, as they participate in 

the stabilization of the catalytically active conformation of the release factor. The GGQ motif, 

which has been suggested to be located on the surface of protein globule, might play an 

essential functional role in class 1 RFs, rather than maintenance of the spatial structure. This 

reason was concluded from sequence alignments of class 1 RFs that has shown that this motif 

is in a loop conformation and is strictly conserved in the three kingdoms of life (Frolova et al. 

1999). Ester bond hydrolysis of the peptidyl-tRNA is triggered by the GGQ motif of the class 

I RFs following stop codon recognition.  

It was assumed that the peptidyl transferase center (PTC) of the ribosomal 50S subunit 

catalyzed the hydrolytic reaction through contact with the GGQ motif. However, via E. coli 

RF2 crystal structures, the distance of the SPF motif and the GGQ motif was found to be 23 

Å, which is different from the distance that separated the CCA end in a tRNA and the 

 (Vestergaard et al. 2001; Klaholz et al. 2003). Thus, the existing dogma was 

thought to be false as the SPF interaction with the stop codon and the GGQ with PTC cannot 

occur at the same time, since they are expected to interact with the ribosome at areas far from 

each other. However evidence supporting this model was obtained from cryo-EM structures 
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of the E. coli ribosome with RF2 and 70S-RF1 complex (Klaholz et al. 2003; Rawat et al. 

2006; Rawat et al. 2003). It was observed that, compared to the crystal structure, the RF2 

adopts an open extended conformation on the ribosome (Figure 6B). The PTC interacts with 

the GGQ containing domain of the RF2, while the SPF loop is situated close to the mRNA 

(Klaholz et al. 2003). A crystal structure of the T. thermophilus 70S-RF1 and 70S-RF2 

complexes with a deacetylated tRNA has confirmed the concept of connecting the decoding 

center and PTC via RF2 mimicking a tRNA molecule in the A-site (Figure 6A) (Petry et al. 

2005). 

Figure 6. Structure of RF2 on/off the ribosome. (A) Overview of RF2 binding on the ribosome. The different 
colors within RF2 represent the different domains. (B) Alignment of the RF2 off the ribosome obtained from 
crystal structure (Zoldak et al. 2007) with the RF2 on the ribosome, illustrating the conformational changes that 
RF2 undergoes upon binding to the ribosome as indicated by arrows. The loop connecting domain 3 with 2 and 
4 is shown in red to signify high flexibility. This figure is adapted from (Weixlbaumer et al. 2008) with agreement.  

 

Peptide Hydrolysis 
Thermus thermophilus crystal structures have indicated that the NH group of Gln230 

backbone in the GGQ motif is held by the G228 and G229 in the GGQ motif within hydrogen 

bonding distance to the 3-OH of A76 of P-tRNA in the PTC. However, the side chain is 

oriented away from the ester bond. Thus, the G228 or G229 mutations show a severe decrease 

in hydrolytic activity (Laurberg et al. 2008; Jin et al. 2010). The H-bonding permits the entry 

of water into the catalytic site of the PTC, formed by the interaction between A2602 

(nucleotide A2602 is buried in a pocket formed by RF2) of the 23 rRNA and the GGQ motif. 

The reaction is expected to proceed through a tetrahedral intermediate that breaks down to 

form the free peptide and deacylated-tRNA (Jin et al. 2010). There are two mechanisms 

explaining the proton transfer for the hydrolysis to take place. The first mechanism indicates 

that the transition state (TS) of the RF2-dependent hydrolysis reaction involves only one 
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proton at a time. This mechanism argues against the second mechanism of a concerted proton 

shuttle in the TS of the hydrolysis reaction, which would require at least two protons being 

transferred simultaneously (in similar manner to that of peptide bond formation) 

(Kuhlenkoetter, Wintermeyer, and Rodnina 2011; Indrisiunaite et al. 2015).  

Beside the Gln230 NH group role in catalysis of the hydrolysis reaction, it is shown to 

be important for stabilizing the TS intermediate as well as the deacylated-tRNA product. This 

stabilization takes place via H-bonding between the formed oxyanion during TS and the 3-OH 

of the deacylated-tRNA. In order to confirm this, a mutation was performed converting the 

glutamine 230 to proline, hence eliminating the NH group. The RF1 catalysis effect was 

abolished with this mutation, explaining the detrimental effect from such a deletion. Shaw and 

Green proposed, based on mutational studies on Gln230 to Ser, Ala or Gly that observed a 

170-fold increase in the reaction rate using hydroxylamine as nucleophile, that the glutamine 

side chain excludes nucleophiles bulkier than water (Shaw and Green 2007). Modifying the 

Gln230 side chain, as observed during post-translation, by the addition of a methyl group is 

proposed to increase the rate of peptide release due to the methyl group occupying the 

hydrophobic portion of the glutamine binding site; however this remains to be addressed 

(Dincbas-Renqvist et al. 2000; Trobro and Aqvist 2009). 

Factors Recycling 
The RF3 (class II RF) promotes recycling of the RF1 and RF2 from the ribosome. This 

protein is encoded by the prfC gene in E. coli (Mikuni et al. 1994) and is the 4th GTPase 

involved in the translation cycle. Biochemical studies in 1997 by Freistroffer has found that 

the recycling scheme of Goldstein and Caskey to be favoured as compared to the suggested 

ternary complex formed by RF3, GTP and RF1/RF2; this is mainly due to similarities of RF3 

to EF-Tu (Freistroffer et al. 1997; Goldstein and Caskey 1970; Zhouravleva et al. 1995). To 

date, the only function of RF3 during termination is the recycling of the class I RFs. The 

ribosome dependent GTPase activities are believed to be due to the G domains of these GTPase 

interacting with the ribosome at the conserved site near the sarcin-ricin loop (SRL) (Allen et 

al. 2005; Stark et al. 1997; La Teana, Gualerzi, and Dahlberg 2001).  

The mechanism of the recycling process performed by the RF3 on the class I RFs is 

controversial. The first model supports GDP-GTP exchange upon entering of the RF3-GDP to 

the ribosome. Following peptide release, RF3-GDP binds to the ribosome in combination with 

RF1/2 and deacylated-tRNA in the P-site. Upon binding to the ribosome, RF3 is activated 

leading to the formation of a more stable complex of RF3 after GDP is released from the 
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complex. This drives the exchange of the GDP for GTP which promotes RF1/2 recycle 

followed by GTP hydrolysis and dissociation of RF3. This model is based on affinity studies 

from Zavialov, suggesting that RF3 favors GDP over GTP binding and the prerequisite of 

peptide hydrolysis (Zavialov, Buckingham, and Ehrenberg 2001; Zavialov et al. 2002). Further 

support for this exchange model was provided by the structural study of the complex RF1- 

apo-RF3 on the E. coli ribosome (Pallesen et al. 2013).   

Cryo-EM and crystal structures of the E. coli and T. thermophilus ribosomes bound to 

the E. coli RF3, revealed the conformational changes that take place in the ribosome and RF3 

as they move from one state to the other to facilitate RF1/2 recycling (Gao, Zhou, et al. 2007; 

Jin, Kelley, and Ramakrishnan 2011). However, these studies only represent RF3 bound to the 

ribosome in the absence of RF1/2. Recently, a cryo-EM structure of the RF1-RF3 on the 

ribosome, presented by (Graf et al. 2018), elucidated the mechanism of the RF3 mediating the 

RF1 recycling process. In contrast to the RF1/2, RF3 was found to trigger the rotation of the 

30S by approximately 6-10° with respect to the 50S (Figure 7A-C). Beside the changes within 

the 30S, the GAC on the 50S also undergoes conformational changes, in addition to the inward 

movement of the L1 stalk (Figure 7D-F) (Gao, Zhou, et al. 2007; Klaholz, Myasnikov, and 

Van Heel 2004). As a consequence of these reorientations, the interactions between RF1/2 and 

the ribosome are disturbed (destabilized) leading to their dissociation off the ribosome. Finally 

the deacylated P-tRNA moves to the hybrid P/E state (Gao, Zhou, et al. 2007). The idea of 

RF1/2 release due to direct interaction with RF3 on the ribosome, as suggested by (Pallesen et 

al. 2013), is now questionable due to the distance between both factors, as shown by (Graf et 

al. 2018). An indirect action of RF3 via induction of the 30S rotation seems to be a more 

favorable mechanism (Graf et al. 2018; Jin, Kelley, and Ramakrishnan 2011; Gao, Zhou, et al. 

2007). It is worth mentioning that the conformational changes occurring during this model is 

similar to those occurring during translocation upon EF-G binding. Thus, a general mechanism 

for the action of the RF3 during termination and EF-G during translocation, which involves 

the ribosomal ratcheting movement, might be considered (Klaholz, Myasnikov, and Van Heel 

2004; Gao, Zhou, et al. 2007). 

In contrast to the first model, a second model has been suggested based on the affinity 

measurements of RF3 to GDP and GTP. These measurements disfavor the binding of RF3 to 

the ribosome in the GDP form, showing only a 10-fold difference in the affinity of RF3 to 

GDP over GTP. This 10-fold difference is further minimized due to the presence of GTP in 

excess over GDP.  Thus it is presumed that RF3 is mainly found in the GTP bound form in the 
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cell. RF3-GTP complex binds to the ribosome either in the pre- or the post termination states 

(i.e. before or after the peptidyl chain hydrolysis); however RF3-GTP binding to the ribosome 

is more stable with deacylated-tRNA. RF3 then induces ratcheting of the ribosome and the 

dissociation of RF1/2. Domain I of RF3 then communicates with the SRL on the 50S, 

promoting GTP hydrolysis followed by RF3-GDP release off the ribosome (Koutmou et al. 

2014; Peske et al. 2014). Important steps during the termination, including the dissociation of 

RF3, have not been captured structurally. Furthermore, coming to an exact, unified model for 

the termination process requires more investigations. The end product of termination is a 

ribosome with a P/E deacylated-tRNA and an mRNA in the 30S. Dissociation of the mRNA 

and the tRNA from the ribosome, as well as the ribosomal subunits is a pre-requisite for the 

redirection of the translational cycle from post-termination to pre-initiation.  

Figure 7. RF3 induced conformational changes within the ribosome. (A)-(C) Conformational rearrangements 

within the 30S upon binding of RF3 in comparison with 30S of RC (A), RF1-RC (B), RF2-RC (C). Arrows 

indicate the 30S ratchet motion. (D)-(F) Conformational changes of L1 stalk and the GAC (GTPase- associated 

center) on the 50S compared to the 50S of RC (D), RF1-RC (E), RF2-RC (F). For this comparison, density maps 

for RF1-RC and RF2-RC published by (Rawat et al. 2006; Rawat et al. 2003) have been used by (Gao, Zhou, et 

al. 2007)  in addition to RF3-RC map from the latter. RC stands for ribosome complex. This figure is reproduced 

with permission from the concerned journals. 
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1.2.4. Recycling 
 

For the start of a new round of mRNA translation, following protein synthesis 

termination, recycling of bacterial ribosomes is a pre-requisite. Recycling, being the final step 

of protein synthesis, is simply the channel (pipe) which links the termination of protein 

synthesis to the initiation of a new cycle of polypeptide synthesis. The post-termination 

complex (PoTC) containing the ribosome, mRNA, and deacylated hybrid P/E-tRNA is the 

product of termination and is also the substrate for recycling. Three proteins are known to 

catalyze the disassembly of the PoTC for the purpose of reuse. A universally conserved factor 

present in bacteria (20 kDa in E. coli) able to catalyze the conversion of polysomes to 

monosomes is called the Ribosome Recycling Factor (RRF) (Hirashima and Kaji 1970; 

Subramanian and Davis 1973). This factor, bound to ribosomal A-site overlapping class I RFs, 

was found to be lethal to E. coli if not present via the deletion of the gene encoding it (frr) 

(Janosi, Shimizu, and Kaji 1994). The second protein is EF-G, which is required for the activity 

of the RRF and lastly the initiation factor 3 (IF3) originally called DF (dissociation factor) 

(Subramanian, Davis, and Beller 1969; Subramanian, Ron, and Davis 1968). In vitro kinetic 

experiments calculate the ribosome recycling rate of 5 sec 1; this is compatible with the 

recycling rate of ribosomes within the rapidly growing E. coli (Borg, Pavlov, and Ehrenberg 

2016).  

Although, RRF and EF-G may bind to the ribosome independently of the other, binding 

of the RRF to the PTC before the binding of EF-G is important for efficient ribosome recycling. 

On the other side, the absence of RRF during EF-G GTP binding leads to non-productive GTP 

hydrolysis while the subunits remain attached (Seo et al. 2004; Savelsbergh, Rodnina, and 

Wintermeyer 2009; Borg, Pavlov, and Ehrenberg 2016). The RRF crystal structure shows a 

three stranded - - 

domains are highly conserved (Kim, Min, and Suh 2000). A similar construction was observed 

for both the crystal and solution structures of the RRF as compared to other species (Selmer et 

al. 1999; Yoshida et al. 2001; Saikrishnan et al. 2005). However, the interdomain angle which 

consists of a flexible hinge that connects both domains was the major difference amongst the 

structures (Nakano et al. 2003). The flexibility of the RRF is increased due to the presence of 

these hinges.  A range of rotation of domain II was observed for the RRF when NMR (Yoshida 

et al. 2003), molecular dynamic simulations and solution structures were performed (Yoshida 

et al. 2001). These hinges were found to be highly important for RRF function in vivo after 

performing mutational experiments of the hinge region (Toyoda et al. 2000).  
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Furthermore, the RRF domain I has been suggested to be a structural and functional 

mimic of the tRNA after a crystallographic structure showed prominent similarity to the 

anticodon stem of the tRNA molecule (Selmer et al. 1999). This suggests subunits dissociation 

as a result of its translocation through the ribosome by the action of EF-G. This misconception 

of tRNA mimicry del) (Hirokawa, Kiel, 

Muto, Selmer, et al. 2002; Hirokawa, Kiel, Muto, Kawai, et al. 2002; Kiel et al. 2003). The 

proposal was that the RRF binds to the ribosomal A-site in the post-termination state in a 

similar manner to the A-tRNA, this causes the translocation of the RRF into the P-site via 

attracting EF-G. Then, the deacylated-tRNA is rapidly detached following its transfer to the 

E-site. After the RRF and EF-G are also dissociated, the absence of tRNA in the P-site causes 

destabilization and release of the mRNA. Subsequently, IF3 causes ribosome splitting. Thus, 

in this model, RRF and EF-G are rather concerned with the removal of the deacylated-tRNA 

and mRNA while neglecting their role in ribosomal splitting.  

Further studies, via hydroxyl radical probing (Lancaster et al. 2002) and cryo-EM 

reconstructions (Agrawal et al. 2004) of RRF-70S ribosome complexes, have ruled out this 

translocation like model, since the RRF binds in a position that obliquely transverses the A- 

and P-tRNAs in the 50S. In other words, the RRF does not bind similar to any tRNA in any 

way. RRF interacts with two intersubunit bridges, B3 (helix 71) and B2a (helix 69 of 23S 

rRNA) within the 50S ribosomal subunit. The location of the RRF would be incompatible, 

causing a clash between domain I of the RRF and the P-site tRNA. A more satisfactory model 

would involve the RRF binding to the ribosome, stabilizing it in the fully rotated state while 

containing a deacylated P/E-tRNA. EF-G is then recruited and binds in a similar way during 

translocation. Cryo-EM and X-ray studies of the 50S bound concomitantly to RRF and EF-G 

(Gao et al. 2005; Gao, Zavialov, et al. 2007; Wilson et al. 2005) plus mutational analysis (Ito 

et al. 2002), indicate that both factors are interacting upon binding to the ribosome. 

Communication between both proteins is thought to be driven by the release of Pi following 

GTP hydrolysis. 

The interaction between EF-G and RRF, involves certain subunits present in domain III 

of EF-G and the RRF hinge region, as well as residues in domain II of the RRF and domain 

IV of EF-G. The deletion of H69 of bridge 2a destabilizes subunit interaction considerably, 

thus preventing the units from being held together (Ali et al. 2006). Movement of domain II 

RRF destabilizes the interactions between subunits due to the displacement of H69 and other 

bridges, resulting in the promotion of disassembly of the post-termination complex into 
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subunits. The movement would be precluded with fusidic acid (FA) bound to EF-G, where FA 

would strongly inhibit ribosome disassembly (Savelsbergh, Rodnina, and Wintermeyer 2009). 

This is consistent with an EF-G function involved in ribosome disassembly where GTP 

hydrolysis causes the release of Pi, which allows EF-G to act as a molecular motor and cause 

subunit dissociation. Extensive kinetic experiments, smFRET study (Prabhakar et al. 2017) 

and time resolved cryo-EM (Fu et al. 2016) have supported a model that suggests that EF-G 

inducing GTP hydrolysis and ribosome splitting into subunits is the result of the subsequent 

delay of Pi release. Henceforth, the mRNA and tRNA are still attached to the 30S and IF3 

promotes the dissociation of tRNA.  

Unlike the sequence of events proposed in the previous model, recently, an alternative 

model has been proposed based on studies that involve long mRNA such that the SD is not in 

the vicinity of the stop codon, expressing the normal situation after termination (Fu et al. 2016). 

This model suggests a novel and unexpected function of the EF-G which would be the 

hydrolysis of GTP, thus promoting mRNA release, followed by tRNA dissociation and lastly 

subunit splitting. Future experiments are required to clarify the effect of the expected SD-aSD 

interaction on stabilizing the mRNA binding on the 30S, thus influencing the sequence of 

tRNA, mRNA release and subunits splitting.  

 

1.3. Stringent Response (SR) 
 

For survival and adaptation, bacteria have evolved a large number of sensory systems 

to respond to the different environmental and host changes; examples of these environmental 

changes include nutrient deprivation, oxidative stress, heat shock, or exposure to 

antimicrobials etc. The aforementioned threats play a significant role on bacterial survival and 

as such the bacteria have developed several ways to encounter and adapt to such stress. 

Nutrient starvation is a typical example for a bacterial stress, which occurs during its entry to 

stationary phase. Henceforth, a stringent response is induced (Cashel et al. 1996) to help the 

bacteria adapt and survive harsh conditions.  

This stress response is mediated by the formation of the secondary messenger guanosine 

pentaphosphate (pppGpp) or guanosine tetraphosphate (ppGpp), also referred to as alarmones, 

via the transfer of the pyrophosphate moiety from ATP to the 3´of GTP or GDP, respectively 

(Figure 8B). The alarmones were first observed in starved E. coli cells, using 2D thin layer 
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chromatography (Cashel and Gallant 1969); back then they were given the name ´magic spots´ 

as their biological role was still unrevealed. Under normal conditions, basal level of (p)ppGpp 

regulates the bacterial physiology in terms of growth rate (Potrykus et al. 2011) and general 

metabolism (Kriel et al. 2012; Gaca et al. 2013). However, upon exposure to stress, there is a 

rapid increase of (p)ppGpp to the millimolar level (Irving and Corrigan 2018; Starosta et al. 

2014). Subsequently, (p)ppGpp exerts its function on diverse cellular processes including 

transcription, translation as well as replication (Figure 8C).  

Rymer and coworkers (Rymer et al. 2012) solved the crystal structure of S. aureus 

DnaG, an RNA polymerase that catalyzes DNA replication via synthesis of RNA primers 

(Kitani et al. 1985; Rowen and Kornberg 1978), where they revealed how (p)ppGpp restricts 

p)ppGpp has a diverse 

impact on transcription, where one of its function includes blocking the ribosome biosynthesis 

machinery, while on the other hand upregulating amino acid biosynthesis (Dennis and Nomura 

1974; Dennis, Ehrenberg, and Bremer 2004; Potrykus and Cashel 2008; Cashel et al. 1996; 

Magnusson, Farewell, and Nystrom 2005; Nystrom 2004; Zhou and Jin 1998). In Gram 

negative bacteria, such as E. coli, this effect of (p)ppGpp on transcription results from the 

direct interaction between the nucleotide and RNAP (RNA polymerase) (Barker, Gaal, and 

Gourse 2001; Barker et al. 2001; Srivatsan and Wang 2008; Haugen, Ross, and Gourse 2008). 

However, in Gram positive bacteria, like B. subtilis, the nucleotide tends to modify 

transcription via lowering the cellular GTP level required to induce transcription of the 

ribosomal machinery genes (Krasny and Gourse 2004; Kriel et al. 2012; Kasai et al. 2006; 

Krasny et al. 2008). Using ITC (Isothermal Titration Calorimetry) and cryo-EM, the alarmone 

was shown to directly bind to the initiation and elongation factors (IF2 and EF-G, 

respectively); hence, influencing the translation cycle, in E. coli, along with ribosome 

maturation via interacting with ObgE (ribosome assembly factor) (Feng et al. 2014; Mitkevich 

et al. 2010). All these cellular processes are modified in a way to direct the vast quantities of 

energy to general metabolism, rather than ribosome biosynthesis, thus helping the bacteria to 

adapt to stress conditions (Scott et al. 2010).  
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Figure 8. Production and metabolism of (p)ppGpp during stringent response. (A) Schematic diagram 

representing the induction of (p)ppGpp via SpoT/RelA in response to different stresses. This panel has been 

extracted from (Dalebroux and Swanson 2012) with permission. (B) Chemical structure of (p)ppGpp with the 

absent phosphates in case of ppGpp and pGpp labelled in green and green/yellow, respectively. (C) Schematic 

diagram showing the different substrates of (p)ppGpp formation including ATP, GTP; GDP, GMP in blue, red, 

green , and yellow, respectively. In addition, it shows the main cellular processes targeted by the alarmone, 

(p)ppGpp. PPi stands for the pyrophosphate moiety. Panels (B) and (C) are adjusted from (Steinchen and Bange 

2016) with permission. 

 

The synthesis of (p)ppGpp is catalyzed and regulated by the enzyme family RelA/SpoT 

homologue (RSH) (Figure 8A) (Potrykus and Cashel 2008; Jishage et al. 2002). Beside their 

major role in synthesizing the alarmone, they are also capable of hydrolysis and thus, RSH 

enzymes are distributed into three classes based on their catalytic activity. The first class 

includes the long RSH, which contain either RelA (monofunctional) along with SpoT 

(bifunctional) or Rel alone (bifunctional). In spite of the presence of both synthetase and 

hydrolase domains in the monofunctional RelA, only the synthetase is active whereas the 

hydrolysis takes place via the SpoT. Bacteria present within the category o

proteobacteria, are examples of bacteria carrying both RelA and SpoT proteins. However, the 
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majority of bacteria encode for the bifunctional Rel, allowing both synthesis and hydrolysis of 

the alarmone (Figure 9). In addition to the bifunctional Rel, some bacterial clades respond to 

stress signals using a second class of RSH enzymes named the small alarmone synthetases 

(SAS) which contain only the synthetase domain. SAS proteins, such as RelP and RelQ, have 

been detected in B. subtilis (Nanamiya et al. 2008) and S. aureus (Geiger et al. 2014), while 

RelV in Vibrio cholera (Das et al. 2009). Eukaryotes on the other hand, except for plant and 

algae, lack the equivalent of (p)ppGpp synthetase, while metazoan is found to have a third class 

of RSH family only responsible for the alarmone hydrolysis SAH annotated as small alarmone 

hydrolase (Sun et al. 2010). 

Figure 9. Distribution of SpoT, RelA and Rel proteins in bacteria along with the domain architecture. The 

domains abbreviations; alarmone hydrolysis (HD), alarmone synthesis (SYNTH), TGS (ThrRS, GTPase, SpoT), 

conserved cysteine (CC), and ACT (aspartokinase, chorismate, mutase and TyrA). The dashed SYNTH domain 

in SpoT is to signify weak activity while the crossed HD in RelA represents absence of activity. Arrows signify 

the duplication of Rel into RelA and SpoT. This figure is adapted from (Hauryliuk et al. 2015) with permission.  

 

In addition to the hydrolysis activity by the RSH, (p)ppGpp is also hydrolyzed to 

GTP/GDP and pyrophosphate by the action of the highly conserved Nudix hydrolase, 

consequently preventing the toxic increase in cellular (p)ppGpp levels. These enzymes, Nudix 

hydrolases, are known as non-RSH enzymes since they are not structurally related to the RSH 

(McLennan 2013; Ooga et al. 2009). The regulation between hydrolysis and synthesis is 

important for controlling the alarmone level and avoiding ineffective generation and 

degradation of (p)ppGpp. The alarm required for Rel/RelA to initiate the synthesis of the 

alarmone, is the accumulation of deacylated-tRNA that takes place upon amino acid 

deprivation (Haseltine and Block 1973). Such conditions occur during bacterial transition to 

the stationary phase and also during the usage of antimicrobials that prevent tRNA acylation 

by the host. In contrast to RelA/Rel, SpoT synthetase activity is rather essential in cases of 
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fatty acid, carbon, phosphate, or iron limitations as well as oxidative stress (Figure 8A) 

(Seyfzadeh, Keener, and Nomura 1993; Vinella et al. 2005; Xiao et al. 1991).  

Despite the diversity in response among bacterial species to different stresses, the 

stringent response orchestrated by RSH proteins resulting in (p)ppGpp formation is highly 

conserved among bacteria, plant and algae (Atkinson, Tenson, and Hauryliuk 2011). Not to 

mention, the myriad number of factors regulated by the alarmone resulting in long living cells 

with a slow growth phenotype. It is this slow growth, caused by the stringent response that 

allows bacteria to become insusceptible to antimicrobial treatment, since antibiotics are known 

to target active cellular processes during rapid growth. Therefore, alarmone producing cells 

have been linked to increasing antibiotic resistance, virulence, persistence and host invasion 

(Dalebroux et al. 2010). Examples verifying this hypothesis include; M. tuberculosis utilizing 

the stringent response as a defense mechanism against the host immune system. M. 

tuberculosis can survive for many years in harsh conditions inside a granuloma for the right 

conditions to be available, in order to switch from the latent to the active phase at which the 

host starts suffering the symptoms (Primm et al. 2000; Dahl et al. 2003). Another example is 

MRSA (Methicillin resistant Staphylococcus aureus), that attacks different body parts and 

confers resistance to many antibiotics. Experimental studies of these resistant strains have 

presented a relation between increased levels of (p)ppGpp resulting from point mutations in 

RelA and the increased resistance toward several antibiotics (Gao et al. 2010). 

Correspondingly this clarifies the severe phenotype exhibited by bacterial cells that are unable 

to generate (p)ppGpp. Given the worldwide antibiotic resistance crisis and the high demand 

for new antibiotic targets, in addition to the absence of (p)ppGpp synthetase counterpart in 

human, the RSH enzymes along with the alarmone could be possible targets for the design of 

new antibiotics. Up to now, only one ppGpp analogue, named Relacin has been designed and 

tested in vitro, where it has been shown to have an inhibition effect on RSH synthetic activity 

(Wexselblatt et al. 2013; Wexselblatt et al. 2012). 

The detailed sequence of the RSH mediated SR events, as well as the mechanism by 

which RSH proteins modulate the alarmone level by switching between hydrolysis and 

synthesis activities has been controversial. The first debate is about the binding sequence of 

RelA and uncharged tRNA to the ribosome. Wendrich and coworkers (Wendrich et al. 2002) 

proposed a model in which the cognate deacylated-tRNA binds first to the ribosomal A-site, 

upon amino acid deprivation, followed by RelA binding to the stalled ribosomal complexes. 

This model contradicts an earlier mechanism where, RelA was designated the function of EF-
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Tu, where it brought the deacylated-tRNA to the ribosome (Richter 1976). The second debate 

is concerned with the presence of (p)ppGpp synthesis off or on the ribosome. Where, the first 

model, called the hopping model, theorizes that RelA is hopping between the stalled ribosomal 

complexes along with the cognate uncharged tRNA and synthesizes the alarmone while on the 

ribosome and being inactive off the ribosome (Li et al. 2016). Another model supports that 

RelA is activated upon recognizing the deacylated-tRNA on the idling ribosome, this is then 

dissociated from the ribosome and followed by synthesis of (p)ppGpp off the ribosome 

(English et al. 2011).  

Owing to the huge improvements achieved in the field of molecular imaging, the ability 

to reveal some events of the SR regulated by RelA/Rel has been made possible. Crystal 

structure of bifunctional truncated Rel, from Streptococcus equisimilis Relseq at 2.1 Å, showed 

two different conformations representing the structural rearrangements underlying the switch 

of Rel between hydrolysis and synthesis activities (Hogg et al. 2004). A second, more recent, 

crystal structure of Mycobacterium tuberculosis Rel-NTD (N-terminal domain) at 3.7 Å 

showed, for the first time, the dimer status of Rel-NTD (Singal et al. 2017). However, these 

crystal structures are lacking insights of the Rel activity on the ribosome as well as the Rel-

CTD (C-terminal domain) thought to be responsible for regulating the NTD catalytic activity. 

Ten years after the crystal structure, the first cryo-EM structure of E. coli RelA bound to T. 

thermophilus ribosome at 10.8 Å was reported (Agirrezabala et al. 2013). In spite of the low 

resolution, it was possible to notice that RelA shares the binding site of ribosomal GTPases on 

the ribosome in addition, to a distorted deacylated-tRNA, similar to that observed in the case 

of EF-Tu binding with the CCA end approaching RelA. It has been suggested to be the method 

followed by RelA in order to sense the acylation/deacylation state of tRNA. Nevertheless, the 

detailed interaction between RelA, the ribosome and tRNA was missing due to the limited 

resolution of the map.  

This was followed up by three cryo-EM studies at high resolution (Arenz et al. 2016; 

Brown et al. 2016; Loveland et al. 2016), such that more of the interactions between the RelA 

and the ribosome, as well as RelA and tRNA became visible. These structures revealed the 

domain architecture of full length monofunctional RelA with the NTD harboring both 

synthetase and hydrolase subdomains and the CTD comprising of 4 subdomains; TGS 

(threonyl tRNA synthetase, GTPase, and SpoT), AH linker (alpha helical linker), RIS/ZFD 

(ribosomal intersubunit/zinc finger domain), and ACT/RRM (aspartate kinase, chorimate 

mutase and tyrA/RNA recognition motif). The three structures have proposed that RelA binds 
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to the ribosome in an extended conformation, wrapped around the previously observed tRNA. 

The tRNA is attached to both the A-site on the 30S and RelA, thus annotating it as A/R-tRNA. 

Recently, biochemical investigations by Winther and coworkers (Winther, Roghanian, and 

Gerdes 2018) have strengthened the previously suggested model where the RelA binds to the 

deacylated-tRNA off the ribosome and then bind together to the ribosome in a manner similar 

to that of the EF-Tu. An approach describing (p)ppGpp synthesis by RelA on the ribosome, as 

a result of an interaction between RelA and SRL on the large ribosomal subunit, has been 

newly proposed. A combination of cryo-EM and crystallization experiments has been 

performed to study the bifunctional Rel from Bacillus subtilis on the ribosome. The cryo-EM 

structure has shown that bifunctional Rel binds to the ribosome analogous to that of 

monofunctional RelA. Whereas the crystal structure of Rel RIS-ACT -ACT), the 

longest part of the protein resolved so far off the ribosome, reveals the structural 

rearrangements responsible for the auto inhibition exerted by CTD on the synthetase domain 

in absence of the ribosome, keeping the Rel in the hydrolysis mode. Such autoinhibition effect 

is released upon switching from the closed conformation off the ribosome to the elongated one 

on the ribosome upon deacylated-tRNA recognition. The crystal structure has also determined 

the interactions between the NTD of one Rel molecule and the TGS-AH of the other, resulting 

in the formation of a symmetrical Rel homodimer. The rearrangements accompanied by the 

homodimer formation play an important role in modulating the protein hydrolysis activity over 

the synthesis one. 

 

1.4. Hibernating 100S Ribosomes 
 

In addition to the previously introduced stringent response, another bacterial survival 

tactic during stress is ribosome hibernation. Despite the fact that both strategies follow 

different pathways, they both share the same aim of adaptation during stress. Ribosome 

hibernation is characterized by the entrance of a high percentage of the ribosomes into a 

translationally inactive state (Tissières et al. 1959). This state prevents wasting of unnecessary 

energy, like the huge amount of energy consumed for ribosome biogenesis and protein 

translation, during unfavorable environmental conditions. This phenomenon is shown to be 

considerably different among species.  

Ribosome hibernation, in part of gamma-proteobacteria including E. coli, is regulated 

via the action of two proteins, named RMF (ribosome modulation factor) (Wada et al. 1995; 
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Wada et al. 1990; Yoshida et al. 2002) and HPF (hibernation promoting factor) (Figure 10A) 

(Maki, Yoshida, and Wada 2000). These two factors play essential roles during ribosome 

hibernation where the RMF leads to formation of immature 70S dimer (90S), while, HPF is 

only important for stabilizing the 90S into the mature 100S form (Ueta et al. 2005; Ueta et al. 

2008; Maki, Yoshida, and Wada 2000). In vitro studies show that cells expressing HPF whilst 

lacking RMF fail to form the 100S (Ueta et al. 2008). A second mechanism of hibernation, 

which opposes the 100S formation in gamma-proteobacteria, has been detected to be regulated 

via a third factor called RaiA (ribosome associated inhibitor A), also referred to as pY and YfiA. 

Unlike RMF and HPF, which block translational activity and result in the 100S formation, YfiA 

leads to idling 70S ribosomes (Figure 10B) (Ueta et al. 2005; Agafonov, Kolb, and Spirin 2001; 

Maki, Yoshida, and Wada 2000). It is noteworthy to mention that few bacteria do not possess 

the genes for either RMF or HPF, however have the gene for the HPF homologue YfiA only 

reviewed in (Yoshida and Wada 2014). 

 

 

 

 

 

 

 

 

Figure 10. Ribosome hibernation by two different pathways in Gram-negative bacteria. (A) Schematic 

illustration of ribosome hibernation by RMF and short HPF in a two-step mechanism which leads to ribosome 

dimerization into the 100S. (B) Representation of a second mechanism involved in ribosome hibernation via the 

stabilizing 70S ribosome using RaiA in a single step. This figure is obtained from (Prossliner et al. 2018) based 

on permission. 

 

Ribosome hibernation present in the majority of bacteria, other than gamma-

proteobacteria, like Bacillus subtilis is regulated by a long form of HPF (LHPF); double the 

size of that expressed by gamma-proteobacteria. Long HPF alone is sufficient to block 

translation on a large proportion of ribosomes and induces 100S formation. Bacteria belonging 
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to this category do not have the gene encoding for YfiA and thus lack the second mechanism 

of hibernation via 70S that is detected in gamma-proteobacteria (Ueta et al. 2013; Ueta, Wada, 

and Wada 2010; Tagami et al. 2012; Puri et al. 2014; Akanuma et al. 2016; Kline et al. 2015). 

In addition to prokaryotes, a LHPF homologue is also present in chloroplasts of plants (plastid 

specific ribosomal protein 1, PSRP1) (Sharma et al. 2010; Sharma et al. 2007). Biochemical 

investigations assign PSRP1 the function of YfiA due to its inability to form the 100S upon its 

addition E. coli ribosomes; they rather maintained the 70S ribosomes (Sharma et al. 2010). 

Furthermore, the phenomenon of ribosome dimerization has been noticed in eukaryotes. 

Starved cancer cells had shown dimerization of the 80S leading to 110S but the factor 

regulating this process is still to be elucidated (Krokowski et al. 2011). 

RMF-mediated 100S formation occurs during the transition from the exponential to the 

stationary phase with the concomitant appearance of the rmf mRNA (Shcherbakova, 

Nakayama, and Shimamoto 2015; Ueta et al. 2005; Wada et al. 1990). While that mediated by 

long HPF starts to appear already during the exponential phase (Ueta et al. 2013; Ueta, Wada, 

and Wada 2010; Kline et al. 2015). Moreover, the hibernation factors are being regulated by 

several mechanisms, such as the induction of secondary messengers by various stress signals 

leading to the transcription level changes. Among these stress signals, is amino acid starvation, 

which stimulates the stringent response catalyzing the formation of (p)ppGpp (second 

messenger) leading to the upregulation of rmf mRNA transcription (Izutsu, Wada, and Wada 

2001). (p)ppGpp is also found to be responsible for inducing YfiA and HPF, with the latter 

being moderately under the control of quorum sensing inducer AI-2 (autoinducer-2) (DeLisa 

et al. 2001). The secondary messenger cAMP, produced during glucose deprivation, performs 

two functions one of which includes the induction of rmf transcription (Shimada, Yoshida, and 

Ishihama 2013), although to a lesser extent than (p)ppGpp, while the second one includes the 

induction of the long HPF in L. lactis in response to glucose deprivation (Figure 11) (Breuner 

et al. 2016). In addition to the secondary messengers, different sigma factors are also among 

the regulatory mechanisms (Bonocora et al. 2015). The RMF level is quickly reduced 

accompanied with 100S disappearance within one minute upon transferring the cells to 

renewed medium (Aiso et al. 2005). 

Despite the presence of different factors mediating hibernation among different species, 

between the short HPF and the NTD of LHPF as well as NTD of YfiA. Negative stain electron 

microscopy studies performed in 2002 have shown, for the first time, the 100S structure from 
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E. coli at the stationary phase (Yoshida et al. 2002). The structure showed that the interaction 

between the two 70S monomers takes place via the 30S subunit leading to the 50S-30S-30S-

50S conformation. Eight years later, Kato and coworkers managed to get a cryo-EM structure 

of 100S, which ratified the previously observed 50S-30S-30S-50S conformation and even 

detected three ribosomal proteins that are involved in the interface between the 30S (Kato et 

al. 2010). However the density for the hibernation factors could not be detected in this 

structure, owing to the low map resolution at 18 Å. The same results have been reached using 

cryo-electron tomography of 100S from E. coli, both in vitro as well as within the intact E. 

coli cells (Ortiz et al. 2010). In 2012, Polikanov and colleagues (Polikanov, Blaha, and Steitz 

2012) have determined three crystal structures of T. thermophilus 70S bound to E. coli HPF, 

RMF, and YfiA at high resolution. This study suggested the binding site for RMF to be near 

the anti-Shine Dalgarno area, while the HPF and YfiA were shown to overlap with the binding 

site of the tRNA and mRNA between the head and the body of the 30S. During the years 2017-

2018, five different high resolution cryo-EM structures were published, studying the LHPF 

mediated 100S from different species including B. subtilis, L. lactis, S. aureus and T. 

thermophilus (Beckert et al. 2017; Flygaard et al. 2018; Franken et al. 2017; Khusainov et al. 

2017; Matzov et al. 2017). These structures have shed light, for the first time, on the 

mechanism by which the 100S forms within these bacteria, as well as the role played by the 

LHPF in bringing both 70S monomers together and inhibiting protein synthesis as a response 

to stress. In addition to these five structures, a sixth cryo-EM structure with relatively high 

resolution has presented the 100S formation in E. coli and also discussed the mechanistic 

differences between Gram-positive and Gram-negative bacteria in forming the 100S (Beckert 

et al. 2018). 
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Figure 11. Different signaling pathways activating the ribosome hibernation factors in Gram-

negative bacteria. Schematic representation of the different signals which activate various hibernating 

factors. AI-2 stands for autoinducer-2 and cAMP-CRP stands for cyclic AMP-cAMP receptor protein. 

Blunt headed arrows represent inhibition. This figure is adapted from (Yoshida and Wada 2014) with 

permission. 

 

1.5. Antibiotics 
 

The term antibiotic originates from the Greek origin of anti= against while biotic= life. 

It is commonly used to describe substances that fight against bacteria. The first antibiotic, 

penicillin, was discovered 90 years ago in London by Alexander Fleming. It was isolated from 

the growing fungus on Staphylococcus agar plates that was surrounded by a bacteria free zone 

caused by the antibacterial action of penicillin (Fleming 2001). Antibiotics are classified into 

bacteriostatics that hinder bacterial growth and bacteriocidals which kill bacteria. Both 

mechanisms take place by targeting various vital processes in the bacteria for instance, 

inhibition of DNA, RNA, protein synthesis as well as cell wall synthesis. This leads to 

antibiotic categorization based on the targeted bacterial process reviewed in (Kohanski, 

Dwyer, and Collins 2010). Following the discovery of penicillin, a myriad of antibiotics have 

been developed.  

Before the release of penicillin into the market, the first resistance against it had already 

been detected reviewed by (Hede 2014). Despite the wide range of mechanisms of antibiotics, 

antibiotic resistance is fast growing making it global threat. Methicillin resistant 

Staphylococcus aureus and Vancomycin resistant S. aureus are bacterial strains that exhibit 

resistance against multiple drugs thus considered to be multidrug-resistant strains (MDR). Due 

to the increase antibiotic resistance, two more classes of strains have been detected. One is 

known as the pan-drug resistant (PDR) strains, which are resistant to all antibiotics or in other 

words untreatable. The other class of bacterial strains fall into extensively drug resistant (XDR) 

group, which show resistance to the first line therapy drugs and at least to one of the three 

other line of therapeutic agents. Strains of P. aeruginosa and M. tuberculosis have been found 

to belong to the PDR and XDR, respectively (Magiorakos et al. 2012; Falagas and 

Karageorgopoulos 2008; Falagas, Koletsi, and Bliziotis 2006). 

Several pathways have been encountered by bacteria in developing resistance against a 

broad spectrum of antibiotics. Those pathways are comprised of conformational changes in 
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the antibiotic binding target (Bussiere et al. 1998), decreased uptake of the antibiotic (Delcour 

2009), the transport of antibiotic outside of the cell via efflux pumps (Levy 1992), as well as 

enzymatic digestion of the therapeutic agent (Philippon, Labia, and Jacoby 1989). The high 

rise of resistant strains, like MDR, PDR and XDR, has led to a vast increase in the health care 

costs and mortality rate (Klevens et al. 2007). This has led to the urgent demand for studying 

new pathways applied by bacteria as a defense mechanism against antibiotic treatment in order 

to identify new drug targets as well as improve the selectivity of the existing ones. 

 

1.5.1. VmlR 
 

The ABC (ATP-binding cassette) protein family is highly conserved among the three 

kingdoms of life (Davidson et al. 2008). Members of the ABC proteins are distributed into 

eight subfamilies nominated as ABC A-H. ABC proteins share a common domain architecture 

consisting of two transmembrane domains (TMD) and two nucleotide binding domains 

(NBD), also known as ATP binding domains (ABD). Proteins from the subfamilies ABCF and 

ABCE are an exception to this classical domain architecture, since they contain a fused NBD 

connected via a linker and lack the TMDs (Dean, Rzhetsky, and Allikmets 2001; Kerr 2004). 

The development of antibiotic resistance is a biological process mediated by the action of 

proteins in the ABCF subfamily known as the ARE (Antibiotic REsistance) ABCF class. One 

of the significances of this process is that bacterial cells protect themselves against antibiotics 

produced by neighboring bacterial cells (Peschke et al. 1995). ARE ABCF proteins are further 

classified into subclasses depending on the antibiotics they develop resistance against. For 

instance, Msr develops resistance to macrolides and streptogramin B whereas Vga and Vml 

exhibit resistance to streptogramin A and lincosamides. Despite the resistance conferred to a 

broad range of antibiotics controlled by ARE ABCF proteins, they still do not confer resistance 

against 30S binding antibiotics (Dunkle et al. 2010; Schwarz et al. 2016). 

In addition, the detailed mechanism for ABCF mediated antibiotic resistance was still 

unknown, until recently. It has been long hypothesized that these proteins enable resistance 

via transporting the antibiotic out of the cell (antibiotic efflux) (Ross et al. 1990). Later, 

sequence analyses have shown that ARE ABCF proteins share a high similarity to ABC 

proteins that function in regulating translation. Cryo-EM study of EttA (energy dependent 

translational throttle A, previously reported as YjjK), an E. coli ABCF protein that functions 

as translational regulator according to the energy intracellular levels, has shown that EttA-EQ2 
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(mutation of the E129 and E432 glutamates into glutamine yielding an ATP non-hydrolyzing 

protein) is bound to the ribosomal E-site, in close proximity to the PTC (Chen et al. 2014). 

Crystal structure of EttA at 2.4 Å (Boel et al. 2014) in combination to the cryo-EM study have 

assigned EttA the function of a translation regulator for the 70S initiation complex to progress 

into the elongation cycle by sensing the cellular ATP level.  

Based on the EttA structural analysis and the high similarity with Vga(A), mutational 

studies by the Lenart group on Vga(A) have provided more evidence to a previously suggested 

mechanism of ABCF protein in developing resistance (Lenart et al. 2015). This mechanism 

emphasizes, for the first time, a ribosomal protection approach of the protein by disturbing the 

antibiotic inhibition effect on the translational machinery. This has been further supported via 

in vitro studies by Sharkey and colleagues (Sharkey, Edwards, and O'Neill 2016), where they 

have shown an increased rescue of antibiotic stalled ribosomes by successive addition of 

ABCF purified proteins from E. coli into S. aureus system. In the same study, binding assays 

have shown the prevention of lincomycin binding to S. aureus 70S and even replacement of 

already bound lincomycin with Lsa(A), an ARE ABCF protein which is known to develop 

resistance against lincomycin. More recently two cryo-EM structures focusing on the 

mechanism of ARE ABCF protein in conferring resistance toward various antibiotics have 

been published. The first structure (Su et al. 2018) reported was of MsrE from Pseudomonas 

aeruginosa binding to T. thermophilus 70S at 3.6 Å, whereas the second (Crowe-McAuliffe et 

al. 2018) was of B. subtilis 70S bound to VmlR at 3.5 Å. Both studies have shown that ARE 

ABCF protein bind to the E-site, with the linker extending to the PTC, thus competing with 

the drug for the same binding site of the drug target by inducing conformational changes. This 

releases the antibiotic from the ribosome and translation continues. 

2. Objectives of these Studies 

 

Structure of E. coli RelA and B. subtilis Rel (Publication 1/Unpublished 

manuscript 2). 

RelA is a member of the RSH family. The RSH family is an important regulator of the 

stringent response in bacteria, with the RelA being responsible for stimulating such a response 

upon starvation, thus allowing the bacteria to cope with stressful conditions. This response is 

linked to pathogenicity in bacteria including virulence, persistence and antibiotic resistance. 

The focus of these studies is to determine the binding of RelA/Rel on the ribosome with the 
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aim of exploring the RelA/Rel mediated stringent response. For the bifunctional Rel protein, 

the regulatory signal responsible for the switch from the hydrolysis to the synthesis of the 

alarmone was also investigated. Collectively, these studies might open the way for a new class 

of antimicrobials targeting RelA/Rel and coping with the increased antibiotic resistance 

problem. 

 

Structure of B. subtilis LHPF (Publication 3). 

Upon transition to stationary phase, a large portion of the ribosomes in Gram-positive 

bacteria enter a state of hibernation where they become translationally inactive. This is 

accompanied by the dimerization of the 70S ribosomes forming the 100S. The 100S is assumed 

to protect the ribosomes during stress from degradation, as well as easy return to the translating 

pool following stress removal. Thus, this mechanism helps the bacteria to resist antimicrobial 

treatments that are considered a stress signal. There has been no available structure for the 

LHPF binding to the ribosome and thus this publication aims to provide structural insight into 

the mechanism of LHPF-mediated 100S formation.  

 

Structure of B. subtilis VmlR (Publication 4). 

VmlR is one of the members of the antibiotic resistance ABCF subfamily, which confers 

resistance to a range of peptidyltransferase inhibitors. The detailed mechanism by which VmlR 

confers resistance is of great interest in the field of drug design, especially with the increased 

need for the development of new antibiotics. The mechanism by which ABCF proteins confer 

resistance has been controversial due to the lack of structural studies concerning the ABCF 

proteins. Therefore, this study aims to investigate the acquired antibiotic resistance due to 

VmlR. 
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3. Cumulative Thesis: Publications Summary 

 

3.1. Publication 1: The stringent factor RelA adopts an open 

conformation on the ribosome to stimulate ppGpp synthesis 
Stefan Arenz, Maha Abdelshahid, Daniel Sohmen, Roshani Payoe, Agata L. Starosta, Otto 
Berninghausen, Vasili Hauryliuk, Roland Beckmann, and Daniel N. Wilson. 2016.  
Nucleic Acids Res, 44: 6471-81. 
 

The stringent response has been studied in bacteria since a long time because it is a 

crucial mechanism that evolved to help bacteria to communicate with the external 

environment. One of the unfavorable environmental changes to which the bacterium must 

adjust its cellular metabolism in order to adapt is nutrient deprivation (Cashel and Gallant 

1969). This adaptation requires the synthesis of (p)ppGpp mediated by RelA/SpoT homologue 

proteins on the ribosome. The SR is highly conserved among bacteria concomitant with its 

linkage to various bacterial characteristics, including persistence, virulence and antibiotic 

resistance (Atkinson, Tenson, and Hauryliuk 2011). This coincides with the absence of a 

counterpart system in eukaryotes, which together makes it a good candidate for designing 

antimicrobials that target the main players in the SR. However, the absence of high-resolution 

structural information as well as the controversial mechanisms of how exactly the RelA 

mediates the stringent response via (p)ppGpp, makes it challenging to design antimicrobials 

targeting it. A crystal structure of the bifunctional Rel from Streptococcus equislimilis has been 

reported by Hogg and coworkers. Nevertheless, the structure lacked the CTD which has an 

important regulatory function on the protein action (Hogg et al. 2004). The ribosome is an 

important activator of the Rel/RelA protein; nonetheless the structure has been representing 

the Rel-NTD in absence of the ribosome. An 11 Å cryo-EM structure of the monofunctional 

RelA on T. thermophilus ribosome could only show a general view of RelA approaching a 

distorted form of A-tRNA that shares some features with A/T-rRNA (Agirrezabala et al. 2013). 

The detailed interactions between RelA and the ribosome, along with the domain architecture 

of the CTD, were not reliably interpreted at such low resolution owing to the protein flexibility. 

In this publication, we managed to generate a complex of E. coli RelA bound to E. coli 70S 

using the ErmCL_S10K (erythromycin resistance leader peptide) disome approach. The 

complex was then applied to a cryo-EM, followed by single particle reconstruction. Even 

though the local resolution of RelA was ranging from 4 to over 10 Å compared to average 

resolution of 3.7 Å, the interactions of RelA subdomains with the ribosomal RNA and protein 
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was noticeable. The RelA is wrapped around an unusual form of A-tRNA in an elongated 

conformation on the ribosome through an alpha helical linker in the CTD. This distorted tRNA 

has been given the name A/R-tRNA since it binds to the A-site on the 30S, while on the 50S 

it interacts with RelA. The alpha helical linker is preceded by TGS (Threonyl-tRNA 

synthetase, GTPase, and SpoT), the first subdomain in the CTD, which senses the deacylation 

status of the tRNA by means of interacting with the CCA-  end of the A/R-tRNA. The last 

two subdomains in the CTD are called CC and ACT, named after the conserved cysteine and 

Aspartokinase, Chorismate mutase and TyrA, respectively. They are located in the intersubunit 

cavity of the ribosome, with the ACT interacting with the 50S only, while the CC subdomain 

bridges the 50S with the 30S via interacting with helix 38 and S19. In contrast to the CTD, 

that shows several interactions with the ribosome, the NTD is rather flexible and protrudes 

toward the A-site intersubunit solvent toward the 30S spur. The cryo-EM structure has enabled 

us to provide a model where RelA binding to the ribosome facilitates the release of RelA CTD 

auto-inhibition on the synthetase activity resulting in increased intracellular (p)ppGpp levels.   

 

3.2. Publication 2: Stringent response control by bifunctional RelA 

enzyme in the presence and absence of the ribosome 
Patrick Pausch, Maha Abdelshahid, Wieland Steinchen, Heinrich Schäfer, Fabio Lino Gratani, Sven-
Andreas Freibert,  
Unpublished 
 

In contrast to monofunctional RelA that possess an active synthetase domain and an 

inactive hydrolase domain (pseudo hydrolase) compensated for by SpoT, Gram-positive 

bacteria like B. subtilis have a bifunctional Rel that is responsible for both hydrolysis and 

synthesis of (p)ppGpp (Atkinson, Tenson, and Hauryliuk 2011). In current publications the 

signal that regulates the exchange between hydrolysis and synthesis modes of Rel is missing. 

This publication presents not only the first cryo-EM structure of bifunctional Rel on the 

ribosome, but also the first crystal structure that comprises subdomains from the CTD and 

NTD and not just the NTD like that proposed in Relseq in the absence of the ribosome. The 

cryo-EM complex of B. subtilis Rel bound to the 70S ribosome has been obtained using the 

disome approach of ErmDL_R8K. It has been observed that the bifunctional Rel shares a 

similar binding site and interactions with the ribosome as that of the monofunctional RelA. 

This result excludes any special interaction between the ribosome and Rel as being responsible 

for activating -ACT, off the 

ribosome, reveals a symmetric homodimer formed via interaction between the NTD of one 
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molecule and the TGS-AH subdomains of the corresponding molecule. Further proof for the 

homodimer formation has been detected using size exclusion chromatography. The 

conformation obtained in the crystal structure, when compared to that of the Relseq, is clear 

that it best fits the same structural rearrangements as that of the Hydrolase ON/ Synthetase 

OFF state. Based on these results, it has become possible to assign the conformational changes 

that result in the stabilization of the hydrolysis active site over the synthetase one and vice 

versa. The alignment of the Rel bound ribosome to the free Rel has revealed the readjustments 

that Rel undergoes during these two different states. In addition to the interactions between 

both molecules that are necessary for the homodimer, an interaction between the NTD and 

TGS within the same Rel molecule (in cis) has been described. The cis interaction is exhibiting 

the inhibition effect of CTD on the synthetic activity. In order to assess the important residues 

responsible for the auto inhibition effect of CTD, different Rel-CTD truncations as well as 

point mutations within the cis interface between TGS and NTD has been tested using Rel 

activity studies both in vivo and in vitro. Both, the structural and biochemical investigations 

have reinforced the following model; the homodimer Rel prevents the binding of deacylated-

tRNA and hence the homodimer is hydrolytically active. Nonetheless upon accumulation of 

deacylated-tRNA, the homodimer dissociates and deacylated-tRNA binds to Rel bringing it to 

the idling ribosome and stabilizing the extended conformation of Rel on the ribosome. This in 

turn removes the CTD auto-inhibition effect and permits the synthetic activity of the alarmone. 

 

3.3. Publication 3: Structure of the Bacillus subtilis hibernating 100S 

ribosome reveals the basis for 70S dimerization 
Bertrand Beckert, Maha Abdelshahid, Heinrich Schafer, WIeland Steinchen, Stefan Arenz, Otto 

2017.  
EMBO J, 36: 2061-72. 
 

Similar to animal dormancy, characterized by a state of inactivation and lowered 

metabolic rate, bacterial ribosomes undergo a hibernation state in response to various stresses. 

An ideal example of stress is nutrient limitation, which controls bacterial growth leading to the 

transition from exponential to stationary phase. This induces bacterial conserved stringent 

response which in turn elevates the alarmone secondary messenger (p)ppGpp (Izutsu, Wada, 

and Wada 2001). On the other hand, other forms of stress include glucose deprivation, which 

leads to increased cellular cAMP levels (Shimada, Yoshida, and Ishihama 2013). Both 

(p)ppGpp and cAMP play similar roles in upregulating transcription of different genes 
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involved in hibernation. Three different states have been identified in Gram-negative bacteria, 

such as E. coli (gamma-proteobacteria), actively translating 70S, inactively translating 70S, 

mediated by the action of YfiA, and 70S dimers known as 100S, mediated by the action of 

RMF and short HPF (Maki, Yoshida, and Wada 2000; Ueta et al. 2008; Ueta et al. 2005). 

However, in Gram-positive bacteria, YfiA is absent leaving only the translating 70S and the 

inactive 100S, mediated by long HPF homologue (Ueta et al. 2013; Ueta, Wada, and Wada 

2010; Tagami et al. 2012). The 100S formation is the bacterial self-defense mechanism 

activated in cases of environmental changes; it aims to set priorities for energy consumption, 

helping the bacteria to survive such conditions and to easily get back to the translation pool 

upon stress removal. Understanding the mechanism of 100S formation is of great importance, 

since it is strongly related to the increasing public health emergency of antibiotic resistance. 

Most of the biochemical and structural studies have been performed on E. coli cells, while the 

mechanism of 100S formation in Gram-positive bacteria harboring the LHPF homologue has 

been lacking. The cryo-EM study of the 100S from B. subtilis, natively purified from S12 

extract, was performed with an average resolution of 3.8 Å. The structure revealed, for the first 

time, the LHPF binding site on the 100S, with the LHPF-NTD located on the channel between 

the head and the body of the 30S. The NTD is connected via a seemingly long linker, reaching 

the Shine Dalgarno helix, where the CTD is dimerized with that of the second molecule at the 

back of the 30S. Translational blockade is shown to be due to the interference of the NTD with 

the binding site of the mRNA and anticodon stem loop tRNA. This is consistent with the 

absence of both the tRNA and mRNA. The linker is also assumed to be interfering with the 

formation of a SD-aSD helix resembling the role of RMF in E. coli, however due to the highly 

flexible linker clear structural evidence was lacking. The CTD, on the other side, has been 

assigned the role of stabilizing the 100S formation through interactions between the CTD and 

the 70S monomer as well as between the two CTDs. This dimerization is essential for bringing 

both 70S monomers in close proximity, which results in further interactions between the 

ribosomal proteins on one ribosome and the rRNA on the facing ribosome; this strengthens the 

100S dimer further. 
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3.4. Publication 4: Structural basis for antibiotic resistance mediated by 

the Bacillus subtilis ABCF ATPase VmlR 
Caillan Crowe-McAuliffe, Michael Graf, Paul Huter, Hiraku Takada, Maha 
Victoriia Murina, Gemma C. Atkinson, Vasili Hauryliuk, and Daniel N. Wilson. 2018.  
Proc Natl Acad Sci U S A, 115: 8978-83. 
 

The bacterium applies several strategies to confer resistance against current antibiotics. 

ABC (ATP-binding cassette) superfamily proteins are composed of two ABC domains and 

two transmembrane domains (TMD). They are known to use ATP for the efflux of antibiotics 

out of the cell. However, proteins of the ABCF subfamily are lacking the TMDs (Davidson et 

al. 2008; Dean, Rzhetsky, and Allikmets 2001; Kerr 2004). VmlR is one of the members of 

the antibiotic resistance ABCF subfamily which confers resistance to a range of antibiotics 

including Virginamycin M, Lincomycin and Streptogramin A. The detailed mechanism by 

which VmlR confers resistance is of great interest in the field of drug design, especially with 

the increased need for the development of new antibiotics. The only structural studies available 

are from a non-ARE ABCF protein called EttA, which functions as a translation regulator 

dependent on the cellular ATP level (Chen et al. 2014; Boel et al. 2014). Here we present a 

cryo-EM structure of B. subtilis VmlR-EQ2 bound to the 70S ribosome at 3.5 Å (Crowe-

McAuliffe et al. 2018). The structure reveals the binding mode of VmlR in the ribosomal E-

site with the linker extending toward the PTC stabilizing the L1 stalk in an open conformation. 

The structure also shows the C-terminal extension (CTE) comprised of two alpha helices and 

its involvement in creating the interaction between VmlR and the small subunit. Such 

interactions stabilize the P-tRNA in a noncanonical conformation referred to as P/V-tRNA 

through the induction of small subunit rotation. Both the conformational changes occurring in 

the PTC, along with the noncanonical conformation of the P-tRNA, work together to facilitate 

the drug falling off the ribosome. The study reveals the mechanism of action of VmlR as a 

ribosomal protection protein by overlapping with the drug binding site as well as inducing 

conformational changes destabilizing the binding of the drug. 
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4. Discussion  
 

4.1. Publication 1: The stringent factor RelA adopts an open 

conformation on the ribosome to stimulate ppGpp synthesis 

Publication 2: Stringent response control by bifunctional RelA 

enzyme in the presence and absence of the ribosome 
 

Rel/RelA belong to the RSH proteins and are the main players in the bacterial stringent 

response. In the case of Rel, they play a role in catalyzing the formation, as well as degradation, 

of the alarmone (p)ppGpp (Atkinson, Tenson, and Hauryliuk 2011; Cashel and Gallant 1969). 

The alarmone then targets various cellular compartments in order to switch cellular 

metabolism toward saving energy and surviving unfavourable conditions like nutrient 

deprivation. The stringent response is one of the mechanisms by which bacteria becomes more 

invasive and persistent. Furthermore, the SR is linked to the increasing threat of antibiotic 

resistance, which gives rise to untreatable bacteria that could eventually lead to serious 

diseases and even death. This has been the drive to study the approach by which RelA catalyzes 

the alarmone production on the ribosome, as well as studying the regulation of the contrasting 

effects of Rel concerning both production and degradation of the alarmone.  

Concerning RelA (monofunctional), three high resolution cryo-EM structures of RelA 

associated to the ribosome have been published (Brown et al. 2016; Arenz et al. 2016; 

Loveland et al. 2016). The three structures were detected using RelA and 70S ribosomes 

purified from the most commonly studied organism, E. coli. The first structure was reported 

by Brown and coworkers at 3 Å overall resolution. The complex has been prepared in vitro 

using an excess of deacylated-tRNAPhe to mimic the nutrient starvation condition. RelA 

substrates have also been provided using GDP, along with the non-hydrolysable ATP form 

named AMPCPP, in order to block RelA on the ribosome. Paromomycin has been used to 

stabilize the mRNA-tRNA interaction at the A-site. The main challenge in studying RelA is 

the protein susceptibility to precipitation, as well as its flexibility. The data was then processed 

using Relion. 3D classification was applied on ribosomal particles with an A-site tRNA 

occupancy. This has resulted in two classes of ribosomes having RelA and A-site tRNA, but 

differ in the 30S conformation.  

To enhance RelA resolution and isolate different conformations, focused classification 

on separate domains has been performed. The structure revealed that RelA exhibits an 

elongated conformation on the ribosome with an uncharged tRNA binding to the ribosomal A-



 

54 
 

site. However, this was not in the classical accommodated state, but in a distorted 

conformation. The conformation of this A-tRNA is similar to that observed in case of A/T-

tRNA (Schmeing et al. 2009), but still distorted. It has been given the name A/R-tRNA, 

representing tRNA binding to the A-site on the 30S and CCA end approaching the RelA. The 

NTD, harboring both synthetase and hydrolase domains, has shown the highest flexibility 

among RelA domains. This is due to its position between the SRL and the 30S spur, which are 

flexible ribosomal elements, as well as its extension toward the solvent with low ribosomal 

interactions. This study has shown that the CCA-  end of the A/R-tRNA interacts with the 

TGS domain of RelA via stacking interactions and H-bonding. Which then drives the contact 

been proposed as a mechanism of activation of RelA upon recognizing the uncharged tRNA, 

which would not be the case with charged tRNA due to steric clash.  

Several studies have shown a link between uL11 and (p)ppGpp synthesis where 

synthesis is impaired in case of a mutated uL11 (Yang and Ishiguro 2001; Wendrich et al. 

2002). This leads to the expectation that RelA might be interacting with uL11. However, this 

sort of interaction was not detected in the structure. The CTD showed the most extensive 

interaction with the ribosome, which was detected in detail for the first time in this publication. 

The TGS is followed by a poorly resolved linker that is wrapped around the A/R-tRNA 

connecting the TGS to the ZFD (also referred to as RIS). The ZFD is in contact with H38 of 

the 23S rRNA, known as the A-site finger. The ZFD is followed by RRM motif (also referred 

to as ACT) which folds back to interact with the ribosomal protein uL16.  

The second structure from Arenz and colleagues (Arenz et al. 2016) was prepared in a 

similar manner to that used by the Brown group, in which the purified RelA was incubated 

with the purified ribosomes in the presence of non-hydrolysable ATP and GDP, as well as 

cognate deacylated-tRNALys. In this case, no paromomycin has been added, and the ribosomes 

were purified using the disome construct ErmCL-S10K in the presence of the macrolide 

erythromycin in order to create the idling ribosomes. The data has been processed using 

SPIDER software and has led to 13% of ribosomes showing A/R-tRNA, P-tRNA and RelA 

-tRNA and RelA was lower, ranging 

from 4 -10 Å.   

The main features of RelA binding to the ribosome are in agreement with that observed 

in the first structure from Brown et al 2016. RelA binds in the elongated conformation with 

the TGS  helical domains being wrapped around the distorted A-tRNA (A/R-tRNA). The 
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NTD is protruding toward the ribosome periphery at the A site intersubunit space, which is 

unlike any of the translation factors binding sites. The NTD shows the lowest resolved domain 

among RelA, owing to its high flexibility and low ribosomal contact. On the other hand, the 

CTD is responsible for the most interactions with the ribosome. In both structures, it is believed 

that RelA activation takes place independent of the NTD catalytic domain interactions with 

the risbosome. This is a consequence of the lack of prominent and stable contact between the 

NTD and the 30S spur in both cryo-EM, except for few classes in Brown study. This has 

supported a model of RelA activation where synthesis is derived from the removal of the auto-

inhibition effect upon binding to the ribosome in the elongated conformation, rather than direct 

activation of the synthetase domain via interaction between NTD and the ribosome.  

The role of the TGS subdomain in detecting the tRNA acylation/deacylation state is 

agreed upon. In the first structure, it w

adenosine in the uncharged tRNA. But the resolution in our study (Arenz study) was not high 

enough to confirm a detailed recognition mechanism of tRNA by TGS. The link between the 

TGS and the last two subdomains of the CTD has not been well resolved, which probably 

reflected it s flexibility. This could be the result of binding to the flexibly distorted A/R-tRNA 

element. Preceding the ACT, another subdomain referred to as CC (cysteine conserved) 

subdomain was not modelled. This CC subdomains is referred to as ZFD in the previous 

structure, for which a de novo model was built. The CC subdomain shows interactions with 

both the small and large ribosomal subunits, while the ACT subdomain contacts only the large 

ribosomal subunit, in addition to the A/R-tRNA elbow. 

The third publication was presented by Loveland (Loveland et al. 2016). Unlike the two 

previous studies, the complex within this study has been assembled in absence of substrate 

nucleotides. FREALIGN was applied on the dataset for single particle reconstruction and 

resulted in three structures (II-IV) with different rearrangements in the RelA, A/R-tRNA and 

the 30S; Where structure I is lacking any density for A-tRNA. Similar to the structure by 

Brown, no interaction between L11 and RelA has been detected, but rather an interaction 

between L11 and A/R-tRNA. Such interaction could result in directing the deacylated-tRNA 

in order to activate RelA, elucidating why mutated L11 ribosomes have defected (p)ppGpp 

synthesis.  

In the Loveland study, a class of ribosomes (structure I) that does not contain the 

uncharged A-site tRNA but still has a density for RIS and ACT subdomains was detected. 

Such a population where RelA is present on the ribosome in absence of the A/R-tRNA was 
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not identified in the other two studies. This observation could be due to the preparation method 

of the complex, which was lacking RelA substrates. This state of RelA-CTD binding in 

absence of A-site tRNA could resemble an intermediate state that was not noticed when the 

substrates were provided, which would rather derive the alarmone synthesis followed by rapid 

dissociation of RelA from the ribosome.  

The difference in complex assembly has not only resulted in a population of RelA 

binding in absence of the A/R-tRNA, but also in the continual rearrangements of the uncharged 

tRNA along with the decoding center on the 30S. This is from structure II to structure III, and 

further until structure IV where the tRNA resides in the A-site on the 30S accompanied by 

domain closure on the 30S subunit. Thus, structure IV has been suggested to resemble the 

conformation that is required for RelA activation. This is in agreement with the results that 

show the failure of RelA activation using near cognate tRNA, as is the case in structures II-III. 

These tRNA rearrangements might be happening faster in the presence of RelA substrates, and 

thus were only notable in the Loveland study in the absence of RelA substrates. Both Arenz 

and Brown structures adopt the model in which deacylated-tRNA forms a complex with RelA 

prior to ribosomal binding. But the Loveland study does not exclude RelA binding to the 

ribosome in absence of deacylated-tRNA owing to the subpopulation that has a binding RelA-

CTD with ribosomes lacking deacylated-tRNA.  

The structural studies of the monofunctional E. coli RelA represents a great step in 

unrevealing the binding site of RelA on the ribosome and the interaction partners of the 

ribosomal RNAs and proteins as well as tRNA. This, in turn, increases the understanding of 

the SR mechanism. However, many questions regarding the sequence of RelA binding on the 

ribosome still need to be answered. One main question is whether RelA recognizes the 

deacylated tRNA on or off the ribosome. Only recently, a publication (Winther, Roghanian, 

and Gerdes 2018) has shown that RelA recognizes the tRNA off the ribosome, while upon 

binding to the ribosome, it becomes activated. This is in line with the binding nature of RelA, 

which is wrapped around the A/R-tRNA. Therefore, it is presumed that the binding of RelA-

deacylated-tRNA complex to the ribosome would extend RelA in a more relaxed form. Thus, 

it seems structurally more favored for the RelA to wrap around the tRNA of the ribosome than 

snaking under the A/R-tRNA which is already bound to the ribosome. The biochemical data 

has also shown that the CTD is important for ribosomal binding, but not essential for RelA 

binding to the tRNA. 
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The three structures have suggested a model for RelA, but they still show some 

differences. It is clear that upon accumulation of cognate deacylated-tRNA, RelA-uncharged-

A-tRNA-stalled-ribosome complex is formed. The uncharged tRNA undergoes 

rearrangements to reach an accommodation on the 30S A-site, which is accompanied by the 

extension of RelA. This results in the elimination of the auto-inhibition effect of the CTD, as 

well as a possible interaction between the NTD with the spur. Then, finally, (p)ppGpp 

synthesis takes place.  

Regarding the bifunctional Rel, so far only one cryo-EM structure of bifunctional Rel 

from B. subtilis on the ribosome is available. This structure has been obtained from a complex 

assembled in a similar manner to that mentioned before in Arenz study (Arenz et al. 2016) of 

E. coli RelA with the change of the ErmCL-S10K with the ErmDL-R8K. This change of 

constructs has been due to the failure of disome formation using the ErmCL-S10K with 

ribosomes from B. subtilis. The data has been processed using the RELION software package 

and has resulted in a 10.3% population that contained A-site tRNA and Rel which is very 

similar to the 13% that was obtained for the E. coli RelA study. The resolution of the ribosome 

core reached 3.8 Å, but the local resolution of the Rel and the A/R-tRNA was again worse. 

The poor resolution on the factor again suggest considerable protein flexibility on the 

ribosome.  

The cryo-EM structure of B. subtilis Rel on the ribosome shows that bifunctional Rel 

binds in an analogous manner to the ribosome as the monofunctional RelA. A high 

conservation of the RSH proteins regulating SR was observed, but it simply excludes the 

involvement of the ribosome in regulating the bifunctional Rel activity. A crystal structure of 

B. subtilis -ACT off the ribosome has also been detected. The crystal structure has 

revealed, for the first time a homodimer conformation via the TGS-AH of one monomer and 

the NTD of the other. The Rel conformation in the homodimer state has been assessed using 

the crystal structure by Hogg (Hogg et al. 2004) to be in the hydrolysis ON / synthesis OFF 

condition. In addition a trans-interaction is required for the homodimer stabilization. Whereas 

the in cis interaction between the TGS-AH and the synthetase domain of the same monomer 

is found to be involved in protein regulation. The CTD auto-inhibition effect has always been 

postulated, however the important residues, as well as the detailed interactions between the 

CTD and NTD that lead to such an effect, has not been detected before.  

The detailed rearrangements occurring in the catalytic sites of the hydrolase and the 

synthetase domains that favor one or the other are now revealed. Such rearrangements have 
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been studied using the superimposition tool of the crystal structure of B. subtilis Rel and the 

available crystal structure of Relseq. Biochemical experiments assessing the hydrolytic and 

synthetic activity of successively truncated Rel domains show that the TGS and the AH 

domains are essential for maintaining hydrolysis over synthesis action, both in vivo and in 

vitro.  

For the first time it was shown, that the alignment of the crystal structure off the 

ribosome, with that of the cryo-EM on the ribosome has provided insights into the 

rearrangements acquired upon Rel binding to the ribosome. The main changes are taking place 

20 in AH 

subdomain. In addition to the large shifts going on the TGS, as well as 

subdomain, which is bent in case of binding to deacylated-tRNA to stabilize the wrapping 

conformation seen on the ribosome, compared to a straight conformation off the ribosome. 

for the homodimer formation, where it enters the cleft 

formed by the synthetase and hydrolase subdomains in the NTD. 

From the studied structures plus the biochemical investigations, a model of Rel mediated 

SR was proposed. This model suggests that in absence of stress, Rel forms a homodimer with 

hydrolysis of the alarmone to prevent cell growth inhibition. Whereas upon amino acid 

starvation and deacylated-tRNA accumulation, Rel is switched from the homodimer to the 

monomer, followed by association with the deacylated-tRNA and together bind to the idling 

ribosome. This binding stabilizes the detected elongated conformation of Rel, which removes 

the auto-inhibition effect of the CTD (TGS-AH) on the synthetic domain. This leads to RelA 

activation and alarmone synthesis, in the case of RelA where the hydrolase subdomain is 

inactive. 

Even though the structural studies and the biochemistry have uncovered a lot about 

Rel/RelA mediated SR, there is still many things unknown. Different snapshots of a high 

resolution Rel/RelA on the ribosome is still required for enhanced insight into the NTD, which 

was disordered in all the structures published so far. Such a disorder makes it difficult to assess 

if there is an interaction between Rel/RelA and the 30S spur as well as SRL or not, since this 

might play a role in the protein regulation. Another important aspect is whether the synthesis 

of (p)ppGpp continues after the protein dissociation from the ribosome, or is it just restricted 

to the ribosome. Since the Rel homodimer has been designated to be hydrolytically active, so 

whether the monofunctional RelA with the pseudo hydrolase undergoes such 

homodimerization or not, is still a question to be addressed. 
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4.2. Publication 3: Structure of the Bacillus subtilis hibernating 100S 

ribosome reveals the basis for 70S dimerization 
 

Among the adaptation mechanisms of bacterial cells in response to environmental 

changes is ribosome hibernation. Ribosome hibernation is characterized, mainly, by the 

inhibition of protein synthesis on a large percentage of the ribosomes in the translating pool in 

order to save energy consumption under stress conditions. In addition, this hibernating state 

also protects the ribosomes. Thus, upon removal of the stress factor, the ribosomes quickly 

return to the translating pool and become translationally active. Hibernating ribosomes are 

induced by RMF and short HPF in a subclass of gamma-proteobacteria including E. coli (Maki, 

Yoshida, and Wada 2000; Wada et al. 1990; Yoshida et al. 2002). Both factors are required 

for the dimerization of the 70S leading to the formation of 100S. An antagonistic action is 

exerted by YfiA (also called pY or RaiA), which stabilizes the 70S by inhibiting translation 

(Maki, Yoshida, and Wada 2000). However, Gram-positive bacteria only have a long HPF 

homologue, which plays the role of both RMF and short HPF in forming 100S and blocking 

translation (Ueta et al. 2013; Ueta, Wada, and Wada 2010). Such inter-species variations could 

play an important part in developing new antimicrobial agents, as well as enhancing the already 

existi be of great benefit in overcoming antibiotic 

resistance. 

Five cryo-EM structures have revealed the mechanism underlying the 100S formation 

in different Gram-positive bacteria mediated by the LHPF (Beckert et al. 2017; Flygaard et al. 

2018; Franken et al. 2017; Khusainov et al. 2017; Matzov et al. 2017). Beckert and coworkers 

(Beckert et al. 2017) have presented the structure of the 100S isolated from B. subtilis, grown 

until the late exponential phase. The structure shows that the rearrangement of the 100S in 

Gram-positive bacteria has a side-to-side interaction between the small subunits, differing 

from the back-to-back interaction observed in E. coli (Kato et al. 2010). In addition, the 30S 

subunits are in a non-rotated conformation, in contrast with the swiveled 30S head proposed 

in E. coli. The binding site of the long HPF-NTD was detected on the 30S at 3.5-5 Å, 

overlapping the mRNA as well as A- and P-tRNAs anticodons, which elucidates its role in 

inhibiting translation and explains the absence of tRNAs in the detected 100S structure. The 

NTD is followed by a 34 amino acid long linker, which connects the NTD to the CTD. Even 

though the linker was not well resolved due to its high flexibility, the first few amino acids 

following the NTD suggest that the linker might be going down the same path as the mRNA. 

The linker extends to reach the back of the small subunit, where the CTD is located, then the 
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CTD dimerizes with the second CTD molecule of the second 70S monomer. It has been noticed 

that CTD plays an important role in dimerizing the 70S monomers, mainly via contacting 

ribosomal proteins S2 and S18 beside the interaction between S2 of 70S and h26 of the 16S 

rRNA of the twin 70S. The dimerization role exerted by long HPF-CTD has been observed 

biochemically, where L. lactis CTD along with short HPF induced the 100S formation in E. 

coli ribosomes (Puri et al. 2014).  

Despite the sequence similarity between RMF and LHPF-CTD, which accordingly led 

to the proposal that they might share the same function. The structure rather shows that they 

do not share the same ribosomal binding site, and that the CTD does not interfere with the SD 

helix formation as shown for RMF. On the other hand, the linker is assumed to be replacing 

the role of RMF in Gram-positive bacteria due to its probable binding site which interrupts the 

Shine Dalgarno helix formation. However, the absence of the linker density, owing to the high 

flexibility, made it challenging to validate such a function. The T. thermophilus 100S structure 

has provided this evidence since Flygaard and colleagues have successfully resolved most of 

the linker spreading into the mRNA to the Shine Dalgarno helix location at the 30S back 

(Flygaard et al. 2018). Moreover, biochemical assays were performed by Beckert and 

coworkers (Beckert et al. 2017) on the linker to show its essentiality in ribosomal binding and 

100S formation, both length and sequence wise.  

Regardless of the conservation of the LHPF mediated 100S mechanisms in Gram-

positive bacteria, the structural studies illustrate species-specific variations. For instance in B. 

subtilis (Beckert et al. 2017), L. lactis (Franken et al. 2017) and S. aureus (Khusainov et al. 

2017; Matzov et al. 2017), the HPF-CTD dimerization brings the two small subunits into 

contact, leading to an interaction between ribosomal proteins uS2 and bS18 on the opposing 

monomers, as well as creating surface interface between uS2 and h26 of the 16S rRNA. 

However, in T. thermophilus (Flygaard et al. 2018) the interaction between h26 and uS2 is lost 

due to the short length of h26. In addition, the contact between h40 and HPF-CTD observed 

in S. aureus is absent from Thermus, albeit the length of h40 is comparable to that in other 

species. Furthermore, ribosomal rotations have been observed in cases of S. aureus and L. 

lactis, resulting in closed and open conformations in terms of the space between the two small 

subunits. This in turn displays different intra-species interaction patterns in the 30S-30S 

interface. Thus, the key drive for dimerization is the interaction between the two CTDs via 

hydrophobic, and with stacking interactions. 
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A recent cryo-EM structure of the 100S isolated from E. coli cells at the stationary phase 

has presented the counterpart mechanism of hibernation from Gram-negative bacteria (Beckert 

et al. 2018). The structure reveals the binding site of RMF to be alternately allocated from the 

previously proposed crystal structure of T. thermophilus bound to E. coli factors (Polikanov, 

Blaha, and Steitz 2012). RMF is found to be binding in the area of the Shine Dalgarno helix, 

thus disrupting translation initiation, while the previously noted RMF location in the crystal 

structure has been shown to be occupied by the inactive compact conformation of protein S21 

which is absent in T. thermophilus. This could be due to the fact that the crystal structure was 

performed using a heterologous system; that is to say Thermus ribosomes bound to E. coli 

factors knowing that Thermus 100S is mediated by long HPF homologue. The density 

corresponding for the short HPF has been identified on the 30S at the channel between the 

head and the body, interfering with the mRNA, anticodon stem loops of the tRNAs, as well as 

initiation factors. This concerted action of RMF mediated 90S followed by maturation into 

100S via HPF binding leads to the final product of inactively translating 100S. It is remarkable 

that short HPF (SHPF) shares sequence similarity and overlapping binding sites with the 100S 

antagonistic factor, YfiA. Its binding is analogous to SHPF in addition to an extending CTD, 

which sterically hinders not only SHPF but also RMF binding, thus inhibiting protein 

translation on 70S. 

The combined biochemical and structural studies on hibernating ribosomes from Gram-

positive bacteria suggests a mechanistic outline for the 100S formation. Cell exposure to 

environmental stresses induce the secondary messengers level including (p)ppGpp and cAMP. 

These messengers then maintain the cell homeostasis during harsh conditions via stress 

response up-regulation. Among the up-regulated genes is the long HPF forming a dimer in 

solution, as shown experimentally using size exclusion chromatography. The dimerized HPF 

binds to the 70S, and owing to the length and flexibility of the linker, the second 70S is 

recruited forming the 100S. The LHPF-NTD share sequence homology, hence the binding site 

with SHPF and YfiA followed by the linker passing down the mRNA channel connecting to 

the CTD on the 30S back. The NTD and the linker collectively block translation via interfering 

with initiation factors and the Shine Dalgarno helix, respectively, whereas the CTD works on 

stabilizing the dimerization via developing interactions between the 30S-30S interface. 

In spite of the intensive structural studies performed on the 100S, several issues are still 

not addressed. The physiological role of the 100S is still controversial and not well understood. 

Different studies have related the 100S formation to persistence, virulence, easy recovery, as 
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well as protection against degradation. A recent study has shed light on GTPase HflX as an 

inducer of 100S dissociation (Basu and Yap 2017), however the deletion did not dramatically 

increase the disome fraction. This, in turn, suggests the presence of other pathways that still 

remain to be unraveled. Another important question is the exact step in the translation process 

at which the hibernation factors bind and induce 100S formation. This question has been raised 

as a result of the detection of LHPF bound 30S in exponentially growing S. aureus cells. 

Further biochemical and structural studies need to be applied in order to provide an answer to 

the still uncovered areas in the mechanism of ribosome hibernation in bacteria. This could in 

turn result into a great improvement in the field of producing antimicrobials, in addition to 

overcoming the increasing problem of developing persistence and antibiotic resistance.       

 

4.3. Publication 4: Structural basis for antibiotic resistance mediated 

by the Bacillus subtilis ABCF ATPase VmlR 
ABCF proteins represent a subfamily of the highly distributed ABC superfamily. In 

contrast to the majority of the proteins belonging to the ABC subfamilies that are composed 

of two ATP binding cassettes (ABC) in addition to two transmembrane domains (TMD), the 

ABCF proteins are lacking the TMDs. ARE ABCF are a subclass of the ABCF proteins which 

play an important role in developing resistance toward different antibiotics. They have been 

detected in disease causing bacteria together with bacteria producing antibiotics. Concomitant 

with the increasing demand for new antibiotics, studying bacterial mechanisms involved in 

conferring antibiotic resistance are becoming of great interest. 

Two cryo-EM structures focusing on the mode of action of ARE ABCF proteins have 

been recently published. Su and coworkers (Su et al. 2018) have studied the cryo-EM structure 

of P. aeruginosa MsrE, an ARE ABCF protein known to confer resistance to macrolides and 

streptogramin B, in complex with T. thermophilus ribosomes using nonhydrolyzable ATP 

(AMP-PNP) at a resolution of 3.6 Å. The second cryo-EM by Crowe-McAuliffe (Crowe-

McAuliffe et al. 2018) has reported the structure of B. subtilis VmlR-EQ2, an ARE ABCF 

protein which develops resistance to Streptogramin A, lincosamides and pleuromutilins, using 

B. subtilis 70S stalled in presence of telithromycin and ATP at 3.5 Å.  

Both structures are in agreement with the binding mode, for both MsrE and VmlR, 

where they bind on the ribosomal E-site with the linker domain being extended toward the 

PTC. These structures have solved the long controversy about the mechanism underlying the 

resistance by AREs as well as disapproving the old hypothesis (Ross et al. 1990), that favors 
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the efflux of the antibiotics by ARE as they were mistaken for the function of the ABC 

transporters. But, this hypothesis has always been questionable due to the absence of TMDs in 

the ARE subfamily. These studies suggest that resistance takes place via displacing the bound 

drug on the ribosome by inducing conformational changes, rather than antibiotic efflux. The 

rearrangements taking place could also explain the prevention of antibiotic rebinding 

following their fall off the ribosome. 

The VmlR-EQ2 mutant replaces the E129 and E432 glutamates into glutamine, this 

yields a protein incapable of hydrolyzing ATP. This is based on the assumption that ATP 

hydrolysis is a pre-requisite for the dissociation of the VmlR off the ribosome, in a similar 

fashion to the non ARE ABCF protein EttA, and thus can stabilize the protein binding on the 

ribosome for a relatively longer time. This is in a way similar to the usage of a non-

hydrolysable ATP form used for the MsrE structure. Both structures have further suggested 

the importance of ATP hydrolysis in recycling the ARE ABCF protein. Moreover, the MsrE-

EQ2 mutant has shown a reduced resistance profile that highlights the ATP hydrolysis 

significance in mediating resistance. 

The structural studies have also shed light on an important aspect regarding the different 

antibiotic resistance profiles exhibited by the different AREs. Different contacts with the PTC 

have been detected for VmlR in comparison with MsrE, owing to the differences in the length 

and sequence of the linker domain of both proteins. The linker has been shown to be very 

crucial in determining the resistance profiles, where mutations in the Vga(A) linker has led to 

changes in the antibiotic resistance conferred by the protein. Last but not least the structure of 

VmlR complex has an extra density for the C- terminal extension (CTE) following the second 

nucleotide binding domain which has been shown to reside on the 30S in the Shine Dalgarno- 

anti Shine Dalgarno cavity. The CTE, although being absent in MsrE, has shown to be 

functionally essential for conferring resistance in VmlR. Despite of the high conservation 

among ARE ABCF subfamily, they still have enough differences enough to mediate resistance 

against different antibiotic spectrum. Thus, more structural studies are required to cover the 

different mode of actions of ARE proteins in conferring resistance toward different antibiotics.  
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Many Gram-positive pathogenic bacteria employ ribosomal pro-

tection proteins (RPPs) to confer resistance to clinically important

antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance

to lincomycin (Lnc) and the streptogramin A (SA) antibiotic

virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) pro-

tein of the F type, which, like other antibiotic resistance (ARE)

ABCF proteins, is thought to bind to antibiotic-stalled ribosomes

and promote dissociation of the drug from its binding site. To in-

vestigate the molecular mechanism by which VmlR confers antibi-

otic resistance, we have determined a cryo-electron microscopy

(cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2

mutant in complex with a B. subtilis ErmDL-stalled ribosomal com-

plex (SRC). The structure reveals that VmlR binds within the E site

of the ribosome, with the antibiotic resistance domain (ARD)

reaching into the peptidyltransferase center (PTC) of the ribosome

and a C-terminal extension (CTE) making contact with the small

subunit (SSU). To access the PTC, VmlR induces a conformational

change in the P-site tRNA, shifting the acceptor arm out of the PTC

and relocating the CCA end of the P-site tRNA toward the A site.

Together with microbiological analyses, our study indicates that

VmlR allosterically dissociates the drug from its ribosomal binding

site and exhibits specificity to dislodge VgM, Lnc, and the pleuro-

mutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid

(Lnz), nor the macrolide erythromycin (Ery).

ABC ATPase | cryo-EM | ribosome | antibiotic resistance | VmlR

The ribosome is one of the major targets in the cell for anti-
biotics, including many clinically important antibiotic classes,

for example the streptogramins, lincosamides, pleuromutilins,
and macrolides (reviewed in refs. 1 and 2). However, the ever-
increasing emergence of multidrug resistant bacteria is rendering
our current antibiotic arsenal obsolete. Therefore, it is important to
understand the mechanisms that bacteria employ to obtain antibi-
otic resistance to develop improved antimicrobial agents to
overcome these mechanisms. Two important antibiotic resistance
strategies employed by bacteria include antibiotic efflux and ribo-
some protection, both of which can be mediated by members of the
large family of ATP-binding cassette (ABC) proteins. ABC proteins
involved in drug efflux include membrane-bound transporters that
use energy to pump the antibiotic out of the cell. By contrast, ABC
proteins of the subclass F (ABCF) do not contain transmembrane
domains to anchor them to the membrane and instead confer re-
sistance by binding to the ribosome and chasing the antibiotic from
its binding site (reviewed in ref. 3).
Antibiotic resistance (ARE) ABCF proteins are widespread in

Gram-positive bacteria but also found in some Gram-negative
bacteria (3, 4). ARE-ABCF proteins can be chromosomally and/
or plasmid-encoded and are found in many clinically relevant
pathogenic bacteria, including Staphylococcus aureus, Entero-
coccus faecalis, Listeria monocytogenes, and Escherichia coli (3,
4). To date, all ARE-ABCF proteins confer resistance to anti-
biotics that bind to the large ribosomal subunit (LSU), either at
the peptidyl-transferase center (PTC) or adjacent to the PTC in
the ribosomal exit tunnel. ARE-ABCF proteins can be divided

into distinct classes on the basis of their resistance profiles (3, 4).
For example, the Vga/Lsa/Sal/Vml class confers resistance to
streptogramin A (SA) antibiotics, lincosamides, and sometimes
pleuromutilins, whereas the Msr class confers resistance to
streptogramin B (SB) antibiotics, macrolides, and sometimes
ketolides. In Enterococci, the ARE-ABCF OptrA has been
reported to confer resistance to oxazolidinones and chloram-
phenicols (5). Several studies have demonstrated that ARE-
ABCFs are RPPs that confer resistance by displacing the drug
from its binding site on the ribosome (6, 7), analogous to the
displacement of tetracycline from the ribosome mediated by the
RPPs TetM/TetO (8).
ARE-ABCF proteins comprise two ABC nucleotide-binding

domains (NBD1 and NBD2) that are separated by a helical
linker and, depending on the species, may have an additional
“Arm” subdomain inserted within NBD1 as well as a C-terminal
extension (CTE) (4). The ATPase activity of ARE-ABCF pro-
teins is essential for their function since mutations of the cata-
lytic glutamate in NBD1 or NBD2 lead to a loss of the ability of
VgaA to confer resistance to VgM (6, 9). Consistently, the in-
hibition of ribosomal transpeptidation (transfer of fMet from the
P-site tRNA to puromycin) that results from the presence of Lnc
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is relieved by VgaA, but not the catalytically inactive VgaA-EQ2
mutant (4). Similarly, transpeptidation was restored by VgaA in
the presence of ATP, but not ADP or nonhydrolysable ATP
analogs (4).
ARE-ABCFs are closely related to energy-dependent trans-

lational throttle A (EttA), an ABCF protein that binds within the
ribosomal E site to regulate translation in response to energy
levels in the cell (10, 11). A recent cryo-electron microscopy
(cryo-EM) structure of the Pseudomonas aeruginosa ARE-ABCF
MsrE bound to the Thermus thermophilus 70S ribosome revealed
that MsrE, like EttA, binds in the E site and has an extended
interdomain linker that reaches toward the PTC of the ribosome
(7). Large variations in sequence and length are observed within
the interdomain linker between different classes of ARE-ABCFs
(SI Appendix, Fig. S1), and mutations within a loop at the tip of
the interdomain linker can alter the antibiotic specificity of the
ARE-ABCF proteins (6, 7, 12, 13). Furthermore, VgaA variants
where the interdomain linker is truncated cannot restore the
ribosomal transpeptidation in the presence of lincomycin (4).
While the MsrE-70S structure provides insight into how the Msr
class confers resistance to macrolide antibiotics (7), structural
insight into how the Vga/Lsa/Sal/Vml class confers resistance to
PTC-targeting antibiotics has been lacking.
Here, we have determined a cryo-EM structure of Bacillus

subtilis VmlR bound to a stalled ribosome complex (SRC) at 3.5-Å
resolution, revealing that VmlR, like EttA and MsrE, binds
within the E site of the ribosome. The interdomain linker of
VmlR accesses the PTC of the ribosome by inducing a non-
canonical conformation of the P-site tRNA where the acceptor
arm is disengaged from the PTC and the CCA end is shifted
toward the A site. While the interdomain linker of VmlR directly
encroaches the binding site of PTC-targeting antibiotics, we
observe specificity in the VmlR resistance profile, such that
VmlR confers resistance to VgM, Lnc, and Tia, but not to Cam,
Lnz, or Ery. We also identify a VmlR-F237A variant that exhibits
altered specificity, conferring resistance to Lnc and Tia, but not
to VgM. Our combined structural and mutagenesis analyses
suggest that VmlR dislodges VgM, Lnc, and Tia using an indirect
allosteric, rather than a direct steric, mechanism of action.

Results

Generation of a B. subtilis VmlR–70S Ribosome Complex. Initially, we
in vitro-reconstituted complexes between wild-type VmlR (pre-
viously called ExpZ) and tight-coupled B. subtilis 70S ribosomes
in the presence of the nonhydrolysable ATP analog ADPNP.
Despite observing binding in pelleting assays, no density for
VmlR was observed in low-resolution cryo-EM reconstructions,
suggesting that the VmlR–ribosome interaction was not stable. A
previous study employed an ATPase-deficient form of EttA
(EttA-EQ2) to trap and visualize the factor in the ATP form on
the ribosome using cryo-EM (11). Therefore, we generated an
equivalent ATPase-deficient VmlR-EQ2 variant where Glu129
in NBD1 and Glu432 in NBD2 were mutated to Gln129 and
Gln432, respectively. A low-resolution cryo-EM reconstruction
of the VmlR–EQ2–70S complex revealed density for VmlR in
the E site of the 70S ribosomes bearing a tRNA in the P site.
Unfortunately, this represented a small percentage of the pop-
ulation, as the P-site tRNAs were only present as contaminants
that remained bound to the tight-coupled ribosomes despite the
purification process. To increase the ribosomal occupancy of the
P-site tRNAs, and thus promote binding of VmlR, we replaced
70S ribosomes with stalled ribosome complexes (SRCs), as used
previously to visualize RelA (14) and TetM (15) on the ribo-
some. To generate the SRCs, translation of an ErmDL stalling
peptide in the presence of the ketolide telithromycin was carried
out, leading to ribosomes stalled with a short seven-amino acid
peptidyl-tRNA decoding the seventh codon of the mRNA (16).
In contrast to our previous studies, we performed translation in
the E. coli PURE system using B. subtilis rather than E. coli 70S
ribosomes (17), thus enabling a homogeneous B. subtilis VmlR-
EQ2-SRC to be generated. Since VmlR does not confer

resistance to the macrolide class of antibiotics (18), we ratio-
nalized that using the ErmDL-SRC may also contribute to
trapping VmlR on the ribosome. We did not attempt to generate
Lnc or VgM SRCs as substrates for VmlR binding, since our past
experience in forming TetM-SRC revealed that the presence of
the drug (in this case, tetracycline) only generated additional
sample heterogeneity due to competition for binding between
TetM and tetracycline (19).

Cryo-EM Structure of a B. subtilis VmlR-EQ2-SRC. Cryo-EM data for
the B. subtilis VmlR-EQ2-SRC was collected on a Titan Krios
transmission electron microscope (TEM) with a Falcon III direct
electron detector (DED) and processed with RELION 2.1 (20).
After 2D classification, a total of 159,722 ribosomal particles
were sorted into two major populations, both of which contained
a P-site tRNA but differed with respect to the presence (18–
21%, 28,972–33,392) or absence (43%, 68,652 particles) of
VmlR-EQ2 (Fig. 1 and SI Appendix, Fig. S2A). The cryo-EM
maps of the VmlR-EQ2-SRC (Fig. 1A) and P-tRNA-SRC
could be refined to yield final average resolutions of 3.5 Å and
3.1 Å, respectively (SI Appendix, Fig. S2 B–D). Molecular models
for the B. subtilis 70S ribosome were based on a previous model
of a B. subtilis MifM-SRC (21), which could be improved to in-
clude side chains for the proteins of the SSU due to the better
resolution (SI Appendix, Table S1). The VmlR model was ini-
tially based on a homology model generated using the crystal
structure of EttA (10) as a template (Fig. 1B). The density for
the C-terminal extension (CTE) that is absent in EttA and MsrE
was modeled as two α-helices connected by a short linker to the
NBD2 (Fig. 1B), which is consistent with secondary structure
predictions; however, the quality of the density map only per-
mitted the backbone to be traced. By contrast, the interdomain
linker between NBD1 and NBD2, which we refer to as the an-
tibiotic resistance domain (ARD), was well-resolved and could
be modeled de novo (SI Appendix, Fig. S2E), presumably be-
cause the ARD is sandwiched between the 23S rRNA of the
LSU and the acceptor arm of the P-site tRNA (Fig. 1A). Clear
density was observed for two molecules of ATP bound within the
active sites formed by NBD1 and NBD2 (Fig. 1C), in agreement
with the ability of the VmlR-EQ2 to bind, but not hydrolyze,
ATP. Consistently, previous studies have shown that EQ muta-
tions in either NBD lead to a loss in the ability of VgaA to confer
resistance to VgM (9). NBD1 and NBD2 of VmlR-EQ2 adopt a
closed conformation on the ribosome, similar to that observed
for the ABC multidrug resistance protein 1 (MRP1) (22) as well
as the modeled ATP conformation of EttA (10, 11), but distinct
from the open conformation observed for the free state of ABCE1
(23) (SI Appendix, Fig. S3 A–C).

Binding Site of VmlR on the 70S Ribosome.VmlR binds within the E
site of the 70S ribosome (Fig. 1A), analogously to EttA (11) (SI
Appendix, Fig. S3 D–F). The NBD1 of VmlR directly contacts
and stabilizes an open conformation of the L1 stalk (Fig. 2A),
which is similar but distinct from that observed in the presence of
EttA due to the EttA “Arm” being absent in VmlR (SI Appendix,
Fig. S2 D–F). NBD1 of VmlR also establishes interactions with
H68 of the 23S rRNA as well as ribosomal protein bL33 (Fig. 2 A
and B). The ARD, linking NBD1 and NBD2, comprises two long
α-helices that span from the E site across the interface of the
LSU inserting the ARD loop into the PTC (Fig. 2 A and B).
Helix α2 of the ARD runs parallel to H74-H75 and forms mul-
tiple contacts with the backbone of nucleotides within these
helices, whereas helix α1 interacts predominantly with the ac-
ceptor arm of the P-site tRNA (Fig. 2A). The elbow region of the
P-site tRNA is contacted by NBD2, which establishes additional
interactions with ribosomal protein uL5 of the LSU (Fig. 2 A and
B) and h41-42 of the 16S rRNA located within the head of the
SSU (Fig. 2C). The CTE of VmlR, which has no equivalent in
EttA, extends from NBD2 where a short linker guides the CTE
between a cleft created by ribosomal proteins uS7 and uS11 on
the SSU head and positions the two CTE α-helices into the
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Shine–Dalgarno (SD)–anti-SD cavity located on the SSU plat-
form (Fig. 2C). This interaction is likely to be important for
VmlR function since a VmlR variant lacking the CTE loses its
ability to confer antibiotic resistance (SI Appendix, Fig. S4 A–D),
as observed previously for VgaA (9).

VmlR Stabilizes a Noncanonical P/V-tRNA Conformation. Binding of
VmlR to the ribosome and accommodation of the ARD at the
PTC of the LSU requires the P-site tRNA to be displaced from
its canonical position and adopt a noncanonical state, which we
term the P/V-tRNA (Fig. 3A). The ARD of VmlR is 27 amino
acids longer than the equivalent region in EttA (Fig. 3 A–C),
explaining why binding of EttA does not affect the conformation
of the P-site tRNA, nor encroach on the PTC (Fig. 3B). Com-
pared with the canonical P-site tRNA position, the elbow region

of the P/V-tRNA is shifted by ∼10 Å away from the PTC toward
the E site and is likely to be stabilized via interactions with the
NBD2 of VmlR (Fig. 3C). As a consequence, the CCA end of
the P/V-tRNA is redirected by 37 Å into the A site, where it
overlaps with the binding site of the acceptor arm of a canonical
A-site tRNA, but not with an A/T-tRNA state (Fig. 3D). This
suggests that the VmlR-stabilized P/V-tRNA would allow de-
livery of aminoacyl-tRNA to the ribosome by EF-Tu but prevent
the subsequent accommodation at the A site of the PTC. It
should be noted that the density for the CCA end of the P/V-
tRNA was poorly resolved and the nascent chain was not ob-
served (SI Appendix, Fig. S5A), indicative of high flexibility and
consistent with local resolution calculations (SI Appendix, Fig.
S5B). Although we cannot exclude that the nascent chain was
hydrolyzed by VmlR, we do not believe this is likely since the

Fig. 1. Structure of VmlR–ribosome complex. (A) Cryo-EM map with isolated densities for VmlR (orange), P/V-tRNA (pale green), small subunit (SSU, yellow),
and large subunit (LSU, gray). (B) Electron density (gray mesh) with molecular model for VmlR, colored according to domains as represented in the schematic
(Bottom Right): nucleotide binding domain 1 (NBD1, cyan), antibiotic-resistance domain (ARD, orange), nucleotide binding domain 2 (NBD2, blue), and
C-terminal extension (CTE, green). (C) Molecular model for NBD1 (cyan) and NBD2 (blue) of VmlR with isolated electron density (gray mesh) for the modeled
ATP nucleotides (sticks).

Fig. 2. Interaction of VmlR with the ribosome. (A–C) Inset and zoom showing VmlR (orange) interaction P/V-tRNA (green) and components of the large
subunit (LSU, gray); 23S rRNA helices H68, H74-H75; and H89 (gray) and ribosomal proteins uL1 (magenta), uL5 (red), and bL33 (cyan) (A and B) and com-
ponents of the small subunit (SSU, yellow), including 16S rRNA helices h41-42 and ribosomal proteins uS7 (blue) and uS11 (green) (C).
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related VgaA has no detectable peptidyl-tRNA hydrolysis
activity (4).
By contrast, the canonical P-site tRNA was well-resolved in the

cryo-EM map of the P-tRNA-SRC and the nascent chain could
be visualized extending down the ribosomal tunnel toward the
telithromycin-binding site (SI Appendix, Fig. S5 E and F). Therefore,
binding of VmlR to the ribosome can disengage the P-site tRNA
from the PTC despite the presence of the oligopeptidyl-tRNA.
Compared with the P-tRNA-SRC, binding of VmlR induces a 3.4°
rotation of the SSU body and 4.1° swivel of the SSU head (SI Ap-
pendix, Fig. S5 G and H), which may also contribute to destabilizing
the P-site tRNA. Displacement of the P-site tRNA from the PTC by
the ARD of VmlR leads to a rearrangement in 23S rRNA nucle-
otide A2602 (E. coli numbering is used for rRNA nucleotides) (Fig.
3 E and F). In the VmlR-SRC, the nucleobase of A2602 stacks upon
Trp223 within helix α1 of the ARD of VmlR and forms potential
hydrogen bond interactions with U2593 (Fig. 3E). By contrast, the
VmlR position of A2602 is flipped by 180° compared with the ca-
nonical A2602 that interacts with the CCA end of the P-site tRNA
(Fig. 3F). Therefore, in addition to stabilizing VmlR on the ribo-
some, flipping of A2602 may also be necessary to clear the way for
the transition from the P to the P/V-tRNA state.

VmlR and Resistance to PTC-Targeting Antibiotics. At the PTC, the
binding position of helix α1 of the ARD of VmlR overlaps that of
the CCA end of a P-site tRNA, whereas the ARD loop and

specifically Phe237 extends into the A-site pocket where the
aminoacyl moiety of the A-site tRNA normally resides (Fig. 4 A
and B). The A-site pocket is also the binding site of PTC-
targeting antibiotics, such as VgM, Lnc, Tia, Cam, and Lnz,
whereas SB antibiotics, such as VgS, and macrolides, such as Ery,
bind deeper within the ribosomal tunnel (Fig. 4 B–D). While
VmlR has been shown to confer resistance to VgM and Lnc, but
not to VgS or the macrolides Ery, oleandomycin, and spiramycin
(18), the effect on other PTC-targeting antibiotics remains un-
known. To test this, we monitored growth of a wild-type (WT) B.
subtilis strain containing VmlR as well as a B. subtilis strain where
the vmlR gene was inactivated (ΔvmlR), in the presence of in-
creasing concentrations of the relevant antibiotics. Growth was
also monitored for a ΔvmlR strain that was complemented by
inserting the vmlR gene into the thrC locus under the control of
an IPTG-inducible promoter. In agreement with previous find-
ings (18), VmlR conferred resistance to VgM and Lnc, but not to
Ery (Fig. 4E and SI Appendix, Fig. S4 A–C). In addition, we
could also demonstrate that VmlR conferred resistance to
Tia, as expected based on the steric overlap between Phe237
of VmlR and the drug, but surprisingly not to Cam or Lnz,
which also sterically overlap with VmlR (Fig. 4E and SI Ap-
pendix, Fig. S4 C–E).
This observation, coupled with the incomplete conservation of

Phe237 (SI Appendix, Fig. S1), led us to generate VmlR variants
where Phe237 was mutated to Ala (VmlR-F237A) or Val
(VmlR-F237V). Growth experiments revealed that the VmlR-
F237V retained a WT-like activity profile, conferring resistance
to VgM, Lnc, and Tia, but not Ery, Cam, and Lnz (Fig. 4E and SI
Appendix, Fig. S6). By contrast, the VmlR-F237A variant dis-
played altered specificity, conferring resistance to Lnc and Tia,
but not to VgM (Fig. 4E and SI Appendix, Fig. S6). The retention
of resistance activity of the VmlR-F237V variant suggested that
VmlR does not employ direct steric interference to dislodge
the drug from the binding site at the PTC, but rather an in-
direct allosteric mechanism. This prompted us to analyze
whether the binding of VmlR induced any specific conforma-
tional changes within PTC nucleotides that could mediate
dissociation of antibiotics from the ribosome. Comparing the
PTC conformation in the VmlR-SRC with structures of ribo-
somes bound with VgM (24), Lnc (25), and Tia (26) revealed
the most significant difference for U2585, which is stacked
upon by Tyr240 of VmlR, thereby preventing other confor-
mations being adopted that interact with the drugs (Fig. 4 F–H
and SI Appendix, Fig. S7 F–I). In addition, shifted conforma-
tions were also observed for U2506 and A2062 that may be
influenced indirectly by VmlR binding (Fig. 4 F–H and SI
Appendix, Fig. S7 F–K).

Discussion

Together with the available literature and the insights gained
from the VmlR-EQ2-SRC structure, we present a model for the
mechanism of action of VmlR (Fig. 5) and discuss how it relates
to other ARE-ABCF proteins. First, our structure revealed that
VmlR recognizes and binds to antibiotic-stalled ribosomes with
vacant E sites (Fig. 5 A and B). We envisage two main scenarios
when this can occur during translation, namely, directly following
initiation when the E site is free and only an initiator fMet-tRNA
is bound in the P site, or subsequent to E-tRNA release from a
posttranslocation state during elongation (27). Although a pre-
translocational state also has a free E site, we do not believe this
is a substrate for VmlR since the relevant PTC-targeting anti-
biotics prevent A-site tRNA binding and, thereby, block the
pretranslocation state from forming. The VmlR-EQ2-SRC
structure suggests that VmlR binds to antibiotic-stalled ribo-
somes in the ATP conformation with the NBDs adopting a
closed conformation (Fig. 5B). Binding of VmlR, which is fa-
cilitated by important CTE–30S interactions, induces a slight
rotation of the SSU relative to the LSU and disengages the P-site
tRNA from the PTC, leading to stabilization of a noncanonical
P/V-tRNA state (Fig. 5B). The VmlR-EQ2-SRC structure

Fig. 3. Comparison of VmlR and EttA on the ribosome. (A–C) Relative po-
sition of VmlR (orange) and P/V-tRNA (green) (A), EttA (blue, PDB ID code
3J5S) (11) and P-tRNA (cyan) (B), and superimposition of A and B (C). (D)
Comparison of P/V-tRNA (green), P-tRNA (cyan), A-tRNA (brown) (39), and
A/T-tRNA (pink, PDB ID code 4V5G) (40). (E ) Stacking interaction (indicated
by black lines) of Trp223 of VmlR (orange) with 23S rRNA nucleotide A2602
(gray), which forms hydrogen bonds (dashed lines) with U2593. (F ) Con-
formation of VmlR bound conformation of A2602 (gray) compared with
the A2602 (slate) conformation in the pretranslocation state conformation
(39) with P-tRNA (cyan) and A-tRNA (data not shown).
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revealed that VmlR could even disengage short oligopeptidyl-
tRNAs from the PTC, although it remains unclear whether
longer peptidyl-tRNA will be refractory to the action of VmlR or
other ARE-ABCFs. By inducing a P/V-tRNA state, the ARD of
VmlR can access the PTC of the ribosome where it indirectly
dislodges the PTC-targeting antibiotics from their binding sites
(Fig. 5B). This presumably occurs because VmlR induces allo-
steric conformational changes within PTC nucleotides that
comprise the drug-binding site; however, the transition of the P-
tRNA to the P/V-tRNA may also contribute to drug dissociation.
Surprisingly, our results suggest that VmlR can promote disso-
ciation of some PTC inhibitors, such as VgM, Lnc, and Tia, but

not others, such as Cam and Lnz. While we also observe some
conformational differences between the PTC bond with VmlR or
Cam/Lnz (SI Appendix, Fig. S7 J and K), we note that Cam and
Lnz display strong nascent chain-dependent stalling (28), which
may preclude VmlR from acting on these stalled complexes, but
this needs to be investigated further.
Transpeptidation experiments in the presence and absence of

VgaA/Lsa and Lnc indicate that ATP hydrolysis is critical for
recycling of ARE-ABCFs (4), suggesting that VmlR-ADP is the
low-affinity form that dissociates from the ribosome following
drug release (Fig. 5B). Moreover, since processive trans-
peptidation reactions require VmlR-ADP release, the observed

Fig. 4. Interaction of VmlR at the peptidyltransferase center. Overview of VmlR (orange) and P/V-tRNA (green) on the ribosome (SSU, yellow; LSU, gray) (A)
with transverse section of the LSU to reveal the nascent polypeptide exit tunnel (NPET) with VmlR (orange) superimposed (B–D) against A-site tRNA (brown)
and P-site tRNA (cyan) from a pretranslocation state (39) and chloramphenicol (Cam, pink, PDB ID code 4V7U) (41) (B); virginiamycin M (VgM, green) and S
(VgS, white) (PDB ID code 1YIT) (24) and linezolid (Lnz, cyan, PDB ID code 3DLL) (42) (C); lincomycin (Lnc, salmon, PDB ID code 5HKV) (25), tiamulin (Tia, purple,
PDB ID code 1XBP) (26), and erythromycin (Ery, tan, PDB ID code 4V7U) (41) (D). (E) Summary of antibiotic resistance conferred by WT VmlR as well as VmlR
variants F237A and F237V complementing a ΔvmlR strain of B. subtilis (see also SI Appendix, Fig. S6 A–F). (F–H) The conformation of selected 23S rRNA
nucleotides (gray sticks) at the PTC in the presence of VmlR (orange) superimposed with with different nucleotide (cyan) conformations (indicated by red
arrows) when virginiamycin M (VgM, green, PDB ID code 1YIT) (24) (F), lincomycin (Lnc, pink, PDB ID code 5HKV) (25) (G), and tiamulin (Tia, purple, PDB ID
code 1XBP) (26) (H) are bound to the ribosome.

Fig. 5. Model for ribosome protection by VmlR. (A) Antibiotic-stalled ribosomes with a peptidyl-tRNA in the P site are recognized by the ABCF ATPase VmlR,
which binds to the E site of the ribosome with a closed ATP-bound conformation. (B) Binding of VmlR induces a shifted P/V-tRNA conformation in the ri-
bosome allowing the ARD of VmlR to access the peptidyl-transferase center (PTC) and dislodge the drug from its binding. (C) Hydrolysis of ATP to ADP leads to
dissociation of VmlR from the ribosome, which may allow the peptidyl-tRNA to accommodate back on the ribosome with the nascent chain inserting into the
NPET and translation to continue. In B and C, the dashes line extending from the P/V-tRNA represents a flexible nascent chain.
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transpeptidation in the presence of ATP (4) indicates that the
P/V-tRNA can reaccommodate at the P site of the PTC (Fig. 5C).
The transpeptidation experiments were performed with fMet-
tRNA (4), thus it is still unclear whether reaccommodation at
the PTC can occur with longer peptidyl-tRNAs.
Before submission of this manuscript, a cryo-EM structure was

reported of P. aeruginosaMsrE in complex with a T. thermophilus
70S ribosome bearing a deacylated tRNAfMet in the P site (7). At
the time of revision, the cryo-EM map and model were still
unavailable, therefore a comparison can only be made based on
the publication figures, which are in good overall agreement with
the structure and interpretation of the B. subtilis VmlR-EQ2-
SRC reported here. The two main differences appear to be that
(i) MsrE lacks the CTE and therefore also lacks the associated
SSU interactions that are available for VmlR, and (ii) the ARD
loop differs in sequence and length between MsrE and VmlR (SI
Appendix, Fig. S1) and therefore the interactions at the PTC are
likewise distinct. While the ARD loop of MsrE is longer and
reaches to the macrolide binding site (7), the VmlR loop is
shorter and approaches only the PTC-targeting antibiotics, which
is consistent with the respective antibiotic resistance profiles of
these proteins.

Materials and Methods
The B. subtilis VmlR-EQ2-SRC was generated by incubating recombinant B.

subtilis VmlR-EQ2 protein in the presence of ATP with B. subtilis ErmDL-SRC,
which were essentially prepared as described (29, 30). Cryo-EM data collec-
tion was performed on a Titan Krios 300 kV TEM equipped with a Falcon III
DED (FEI). Images of individual ribosome particles were aligned using

MotionCor2 (31) and then particles were selected automatically using
Gautomatch (https://www.mrc-lmb.cam.ac.uk/kzhang/). All images were pro-
cessed using RELION 2.1 (20). Final reconstructions were corrected for the
modulation transfer function and sharpened by applying a negative B factor
estimated by RELION 2.1 (20). The average resolution of reconstructions was
determined using the “gold-standard” criterion (FSC0.143) (32). ResMap was
used for local resolution estimation (33), and the final volumes were locally
filtered using SPHIRE (34). Molecular models were fitted and adjusted using
Coot (35) and refined in Phenix (36). Model validation was carried out using
the MolProbity server (37), and the final model statistics are presented in SI

Appendix, Table S1. All figures were generated using PyMOL (Schrödinger,
LLC) and/or Chimera (38). Further details can be found in the SI Appendix,
Material and Methods. The cryo-EM maps and models for the VmlR- and
P-tRNA-SRC are deposited in the EMDatabank (EMD-0177 and EMD-0176)
and RCSB Protein Data Bank (6HA8 and 6HA1), respectively.
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MATERIALS AND METHODS 

 

Protein expression and purification 

VmlR-EQ2 in pET21b was synthesized by Eurofins. The resulting sequence encoded for 
a protein identical to GenBank record WP_003234144.1, except for the presence of an N-
terminal hexahistidine tag and with glutamates 129 and 432 mutated to glutamines. E. 

coli BL21 (DE3) was used for protein expression. An 800 mL culture was grown at 37°C 
to OD600 ~0.5, and protein expression was induced 1 mM IPTG for 5 h at 22°C. Cells 
were harvested at 8,000 × g for 10 min at 4°C. All subsequent steps were performed at 
4°C or on ice. The pellet was washed with 50 mM sodium-phosphate (pH 8.0), 300 mM 
NaCl, and stored at −80°C. The pellet was thawed and resuspended in 30 mL buffer A 
(20 mM HEPES/KOH [pH 7.8], 200 mM NH4Ac, 10 mM Mg(OAc)2, 5 mM 2-
mercaptoethanol) with 300 mM NaCl, protease inhibitor cocktail (Complete ultra EDTA-
free, Roche), and 0.2 µL DNase I (Thermo). Cells were lysed with three passages through 
an EmulsiFlex-C3 cell homogeniser (AVESTIN, Inc, Ottawa, Canada) and the lysate was 
centrifuged at 15,000 × g for 10 min. Tween 20 was added to a concentration of 0.01% 
and the supernatant was applied to 0.5 mL pre-washed cobalt resin (TALON, Clontech). 
After binding for 90 min with gentle agitation, the resin was washed with 150 mL wash 
buffer (buffer A with 300 mM NaCl, 10 mM imidazole, and 5 mM 2-mercaptoethanol). 
Protein was eluted in 1 mL fractions with buffer A with 300 mM imidazole. Elution 
fractions 1-4 were centrifuged at 21,000 × g for 10 min, the supernatants pooled, and the 
resulting fraction purified by gel filtration over a HiPrep 16/600 75 pg column (GE 
Healthcare). The buffer used for gel filtration was buffer A supplemented with 0.5 mM 
EDTA. Elution fractions were centrifuged at 21,000 × g for 10 min, concentrated in a 
centrifugal concentrator (Ultra 4, 10 kDa MWCO, Amicon) and aliquots of the 
supernatant were snap-frozen in liquid N2 and stored at -80°C. 
 

Generation and purification of ErmDL-SRC 

The ErmDL-SRC was generated based on the disome approach, as previously described 
(1, 2). The 2XermDL construct contained a T7 promoter followed by a strong ribosome 
binding site (RBS) spaced by 7 nucleotides (nts) to the ATG start codon of the first 
ermDL cistron. A linker of 22 nts separated the stop codon of the first ermDL cistron and 
the start codon of the second ermDL cistron. The linker also comprised the strong RBS 7 
nts upstream of the ATG start codon of the second ermDL cistron, enabling initiation of 
translation independent from the first ermDL cistron. With the exception of an R8K 
mutation, each ermDL cistron encoded amino acids 1-14 corresponding to the ErmDL 
leader peptide (Entry code P62188) present on the macrolide resistance plasmid pE194. 
The complete sequence of 2XermDL construct is: 5′-
TAATACGACTCACTATAGGGAGTTTTATAAGGAGGAAAAAATATGACACACTC
AATGAGACTTAAGTTCCCAACTTTGAACCAGTAAAGTTTTATAAGGAGGAAA
AAATATGACACACTCAATGAGACTTAAGTTCCCAACTTTGAACCAGTAA-3′  
(T7 promoter, italics; RBS, bold; ErmDL ORF, shaded grey with CTT codon in P-site of 
stalled ribosome shown in bold; annealing site for complementary DNA oligonucleotide, 
underlined). 

In vitro translation of the ermDL construct was performed using purified Bacillus 

subtilis 70S and the PURExpress delta ribosome Kit (NEB). Translation reactions were 
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analyzed on sucrose density gradients (10-55% sucrose in buffer containing 50 mM 
HEPES-KOH, pH 7.4, 100  mM KOAc, 25  mM Mg(OAc)2, 6 mM β -mercaptoethanol, 
100 µM telithromycin and 1x Complete EDTA-free Protease Inhibitor cocktail (Roche)) 
by centrifugation at 154,693 × g (SW-40 Ti, Beckman Coulter) for 3 h at 4°C. For 
ErmDL-SRC purification, disome fractions were collected using a Gradient Station 
(Biocomp) with an Econo UV Monitor (Biorad) and a FC203B Fraction Collector 
(Gilson). Purified ErmDL-SRC disomes were concentrated by centrifugation at 88,760 × 
g for 4 h at 4°C (TLA120.2 rotor, Beckman Coulter). To obtain monosomes of the 
ErmDL-SRC, a short DNA oligonucleotide (5′-ttcctccttataaaact-3′, Metabion) was 
annealed to the linker between the ermDL cistrons, generating a DNA-RNA hybrid that 
could be cleaved by RNase H (NEB) treatment in buffer A at 25°C for 1 h. After 
cleavage of the disomes, ErmDL-SRC monosomes were again purified and concentrated 
by centrifugation at 88,760 × g for 4 h at 4°C (TLA120.2 rotor, Beckman Coulter). 
 

Grid preparation 

Samples containing 2.5 pmol ErmDL-SRC, 12.5 pmol VmlR-EQ2, 100 µM ATP, 10 µM 
telithromycin were prepared in 20 µL of buffer B (20 mM HEPES/KOH [pH 7.8], 100 
mM NH4Ac, 10 mM Mg(OAc)2, 5 mM 2-mercaptoethanol). N-dodecyl β -D-maltoside 
was added to a final concentration of 0.1 % (v/v). (The final reaction contained 0.035% 
DMSO from the telithromycin stock). Reactions were incubated for 15 min at 22°C and 
then held at 4°C as samples were applied to 2 nm precoated Quantifoil R3/3 holey-
carbon-supported grids and vitrified using a Vitrobot Mark IV (FEI, Netherlands). 
 

Data collection and Processing 
Images were collected with a Titan Krios TEM equipped with a Falcon III direct electron 
detector (FEI, Netherlands) at 300 kV using a pixel size of 1.061 Å and an under-defocus 
range of −0.8 to −1.6 µm. Micrographs were recorded as 39 frames, each with a dose of 
1.425 e-/Å2. Micrographs were aligned and dose-weighted with MotionCor2 (3) and the 
CTF of every micrograph was determined using GCTF (4). Template-free particle 
picking was performed using Gautomatch (http://www.mrc-lmb.cam.ac.uk/kzhang/) 
resulting in 286,701 particles. Manual inspection of thrice-decimated particle after 2D 
classification resulted in 159,722 particles that were further used for 3D-refinement using 
an E. coli ribosome filtered to 70 Å as an initial reference. The resulting volume was used 
as a reference for 3D classification yielding four different classes. The class containing 
VmlR and P-tRNA was subjected to focused sorting, using a spherical mask 
encompassing the P- and E-sites. Volumes of interest were then refined using 
undecimated particles. Final reconstructions were corrected for the modulation transfer 
function and sharpened by applying a negative B-factor estimated by RELION-2.1 (5). 
The average resolution of reconstructions was determined using the “gold-standard” 
criterion (FSC = 0.143) (6). ResMap was used for local resolution estimation (7). The 
final volumes were locally filtered using SPHIRE (8). 
 
Modelling 

A homology model of VmlR was created using the deposited structure of ABCF protein 
EttA (PDB ID 3J5S) (9) as a template for SWISS-MODELLER (10). The homology 
model was fitted into density with UCSF Chimera (11) using the command ‘fit in map’, 
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and manually adjusted with Coot (12). The well-resolved ARD helices could be modelled 
de novo, while residues 486–547 of the CTE of VmlR were modelled as polyalanine. The 
model of the B. subtilis 70S ribosome was derived from PDB ID 3J9W (13). For the less 
well resolved L1 protein, a homology model was created based on the E. coli L1 protein 
(PDB ID 5AFI) (14) using SWISS-MODELLER (10). The resulting model was rigid 
body fitted into the cryo-EM density using UCSF Chimera (11). ATP molecules and the 

E. coli Leu-tRNA were obtained from PDB ID 6BHU (15) and PDB ID 4WSM (16), 
respectively, and subjected to refinement as necessary. The atomic coordinates were 
refined using phenix.real_space refine (17) with restraints obtained by 
phenix.secondary_structure_restraints (17). Statistics for the model were obtained using 
Molprobity (18). 
 
Figure preparation 

Figures showing atomic models and electron densities were generated using either UCSF 
Chimera (11) or PyMol Molecular Graphic Systems (Schrödinger) and assembled with 
Adobe Illustrator. Growth curves were prepared with Igor Pro. 
 

Construction of B. subtilis strains 

Strain VHB5 [trpC2 ΔvmlR] was constructed using the marker-free deletion technique 
(19) with wild type B. subtilis strain 168. First, three linear ≈500 nt-long DNA fragments 
were amplified by PCR using genomic DNA as a template: one located upstream of the 
vmlR ORF (primers VmlR-A-F and VmlR-A-R; see Table S2 for sequences), one 
downstream of the vmlR ORF (primers VmlR-B-F and VmlR-B-R) and one within the 
vmlR ORF (primers VmlR-C-F and VmlR-C-R). Second, the TMO310 mazF cassette was 
amplified by PCR using primers chpA-R and pAPNC-F. The cassette contains i) the 
mazF toxin ORF under the control of an IPTG-inducible promoter (Pspac), ii) the lacI 
ORF for expression of Lac repressor controlling the Pspac, and iii) the spectinomycin 
resistance marker (spc). All four PCR products described above were used 
simultaneously as the template for PCR amplification using primers VmlR-A-F and 
VmlR-C-R. The resultant long PCR fragment was used to transform the B. subtilis strain 
168. vmlR deletion mutants were selected by spectinomycin resistance, followed by a 
second selection step on IPTG plates to identify marker-less vmlR deletion mutants 
lacking the mazF toxin ORF, yielding the VHB5 strain. 

To construct the VHB44 [trpC2 ΔvmlR thrC::Physpnak-vmlR kmR] strain untagged 
VmlR under the control of an IPTG-inducible Phy-spank promotor, a PCR product 
encoding vmlR was PCR-amplified from the VHp62 plasmid (pAPNC-vmlR-HTF) using 
the primers PhyvmlR_F and PhyvmlR_R. The second PCR fragment encoding a 
kanamycin-resistance marker, a polylinker downstream of the Phy-spank promoter and 
the lac repressor ORF – all inserted in the middle of the thrC gene – was PCR-amplified 
from pHT009 plasmid using primers pHT002_F and pHT002_R. The two fragments were 
ligated using the NEBuilder HiFi DNA Assembly master mix (New England BioLabs, 
Ipswich, MA) yielding the pHT009-vmlR plasmid which was used to transform the 
VHB5 [trpC2 ΔvmlR] strain. Selection for kanamycin resistance yielded the desired 
VHB44 strain.  

A QuikChange Multi Site-Directed Mutagenesis Kit (Agilent Technologies) was 
used to mutate the vmlR gene expressed from the pHT009-vmlR plasmid. Sequences of 
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the primers used to generate plasmids pHT009-vmlRF237A (F237A), pHT009-
vmlRF237V (F237V), and pHT009-vmlRΔCTE (491STOPx2) are provided in the Table 

S2. To generate pHT009-vmlRΔCTE, two consecutive stop codons (TGATAA) were 
introduced after codon 491 (GAA). VHB5 [trpC2 ΔvmlR] strain was transformed with 
the plasmids listed above yielding upon selection for kanamycin resistance strains [trpC2 
ΔvmlR thrC::Physpnak-vmlRF237A kmR], VHB89 [trpC2 ΔvmlR thrC::Physpnak-vmlRF237V 

kmR], and VHB88 [trpC2 ΔvmlR thrC::Physpnak-vmlRΔCTE kmR]. 
 

Antibiotic sensitivity testing 

B. subtilis strains were pre-grown on LB plates either supplemented with 1 mM IPTG 
(VHB44 strain) or lacking the inducer (wt 168 and VHB5 strains) overnight at 30˚C. 

Fresh individual colonies were used to inoculate filtered LB medium in the presence and 

absence of 1 mM IPTG, and OD600 adjusted to 0.01. The cultures were seeded on a 100-

well honeycomb plate (Oy Growth Curves AB Ltd, Helsinki, Finland), and plates 

incubated in a Bioscreen C (Labsystems, Helsinki, Finland) at 37°C with continuous 

medium shaking. After 90 min (OD600 ≈ 0.1), antibiotics were added and growth was 

followed for an additional 6 hours. 

 

Sequence alignments 

To compare the sequence of the ARD domain among VmlR orthologs and other ABCF 

AREs, we generated a multiple sequence alignment using MAFFT v7.164b (20). VmlR-

like proteins in the ARE2 family of ABCFs were retrieved from the ABCF database (21); 

VgaALC, LsaA, SalA, MsrE and OptrA were downloaded from The Comprehensive 

Antibiotic Resistance Database (CARD) (22), and EttA from Uniprot (23).  
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Figure S1. Sequence alignment of selected ARE-ABCF proteins. VmlR, a selection of uncharacterized proteins closely related to 

vmlR, as well as other AREs with known specificities, were aligned with MAFFT as described in the methods. A portion of an alignment 

spanning the interdomain linker region was selected for analysis. Helices 1 and 2 and Phe237 from Bacillus subtilis VmlR are 

indicated. Accession identifiers for sequences from top to bottom: Bacillus subtilis VmlR (Uniprot P39115), Bacillus infantis NRRL B-

14911 (NCBI YP_008607708.1), Bacillus macauensis ZFHKF-1 (NCBI WP_007203347.1), Planococcus antarcticus DSM 14505 

(NCBI WP_006828374.1), Bacillus cereus m1293 (NCBI WP_000675965.1), Bacillus atrophaeus 1942 (NCBI YP_003971957.1), 

Bacillus bogoriensis ATCC BAA-922 (NCBI WP_026673438.1), VgaALC [Staphylococcus haemolyticus] (CARD gb|ABH10964.1), 

MsrE [Escherichia coli] (CARD gb|YP_724476.1), LsaA [Enterococcus faecalis] (CARD gb|AAT46077.1), SalA [Staphylococcus 

sciuri subsp. sciuri] (CARD gb|AGN74946), OptrA [Enterococcus faecalis] (CARD gb|AKA86814)
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Figure S2. Processing of the cryo-EM data of VmlR-ribosome complex. (A) 
Following 2D classification, 159,722 ribosomal particles were subjected to 3D 
classification, sorting the particles into four distinct classes, with one defined population 
containing VmlR and P/V-tRNA (20.9%, 33,392 particles), a population with sub-
stoichiometric P-tRNA and two poorly resolved subpopulations that were discarded (red). 
Focused sorting was implemented yielding three classes, one bearing P-tRNA only 
(60.2%, 68,652 particles), one vacant 70S class (14.5%, 16,504 particles) and a defined 
population containing VmlR and P/V-tRNA (25.4%, 28,972 particles). (B-C) Fourier 
Shell Correlation (FSC0.143; green) of the (B) VmlR-SRC (green) and (C) P-tRNA-SRC 
(red), with the resolution at FSC=0.143 indicated with a dashed line (D) FSCaverage 
(orange) and self and cross-validated correlations FSCwork (red) and FSCtest (green), 
respectively, shown for VmlR-70S complex. (E) Isolated density of VmlR from the cryo-
EM map of the VmlR-ribosome complex colored according to local resolution. (F) 
Overview and (G) transverse section of the cryo-EM map of the VmlR-SRC colored 
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according to local resolution. (H-I) Isolated density of (H) P/V-tRNA from the VmlR-
SRC and (I) P-tRNA from the P-tRNA-SRC colored according to local resolution. (A) 
Following 2D classification, 159,722 ribosomal particles were subjected to 3D 
classification, sorting the particles into four distinct classes, with one defined population 
containing VmlR and P/V-tRNA (20.9%, 33,392 particles), a population with sub-
stoichiometric P-tRNA and two poorly resolved subpopulations that were discarded (red). 
Focused sorting was implemented yielding three classes, one bearing P-tRNA only 
(60.2%, 68,652 particles), one vacant 70S class (14.5%, 16,504 particles) and a defined 
population containing VmlR and P/V-tRNA (25.4%, 28,972 particles). (B-C) Fourier 
Shell Correlation (FSC0.143; green) of the (B) VmlR-SRC (green) and (C) P-tRNA-SRC 
(red), with the resolution at FSC=0.143 indicated with a dashed line (D) FSCaverage 
(orange) and self and cross-validated correlations FSCwork (red) and FSCtest (green), 
respectively, shown for VmlR-70S complex. (E) Isolated density of VmlR from the cryo-
EM map of the VmlR-ribosome complex colored according to local resolution. (F) 
Overview and (G) transverse section of the cryo-EM map of the VmlR-SRC colored 
according to local resolution. (H-I) Isolated density of (H) P/V-tRNA from the VmlR-
SRC and (I) P-tRNA from the P-tRNA-SRC colored according to local resolution. 
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Figure S3. Conformation of the VmlR NBDs with respect to other ABC proteins. (A-

C) Alignment (based on NBD1) of the closed conformation ABC domains of VmlR 
(orange) with (A) the closed conformations of multi-drug transporter MRP1 (red, PDB 
ID 6BHU) (15), (B) EttA (blue, PDB ID 3J5S) (9) as well as (C) the open conformation 
observed for ABCE1 (green, PDB ID 5LL6) (24). (D-F) Comparison of the binding site 
of VmlR (D) and EttA (E) on the ribosome. (F) Superimposition of ribosome-bound 
VmlR (orange) and EttA (blue) from (D) and (E), respectively. 
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Figure S4. Antibiotic resistance conferred by VmlR and VmlRΔCTE in vivo. (A-F) 
Growth curves of wild-type B. subtilis, vmlR-knockout (ΔvmlR) alone, and 
complemented by wildtype VmlR (ΔvmlR + vmlR) VmlR-ΔCTE grown in the presence 
of increasing concentrations of (A) virginiamycin M1 (VgM), (B) lincomycin (Lnc), (C) 
erythromycin (Ery), (D) tiamulin (Tia), (E) chloramphenicol (Cam) and (F) linezolid 
(Lnz). Cells were diluted to an OD600 value of 0.01 and grown in LB (with IPTG for the 
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complemented cells) at 37°C with shaking. After 90 minutes antibiotics were added at the 
indicated concentrations (dashed line) and growth was measured for a further 6 h. 
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Figure S5. VmlR induces a P/V-site tRNA and subunit rotation. (A) Isolated cryo-EM 
electron density (grey mesh) for the P/V-tRNA (model in green sticks) from the VmlR-
EQ2-SRC. (B) Isolated cryo-EM electron density for the P/V-tRNA, as in (A), but 
coloured according to local resolution. (C) Isolated cryo-EM electron density (grey mesh) 
for the P-tRNA (model in cyan sticks) and ErmDL nascent chain (NC model in cyan 
sticks) from the P-tRNA-SRC. (D) Isolated cryo-EM electron density for the P-tRNA, as 
in (C), but colored according to local resolution. (E) Superimposition of P/V-tRNA 
(green ribbon) and ErmBL nascent chain (cyan) with P-tRNA (cyan ribbon). In (A-E), 
the binding site of telithromycin (Tel) is shown for reference. (F) Isolated cryo-EM 
electron density (grey mesh) for telithromycin (Tel, khaki sticks) from the P-tRNA-SRC, 
with cladinose, lactone ring and pyridine heterocycle indicated. (G-H) Alignment based 
on the LSU (grey) of the structures of the VmlR-EQ2-SRC (SSU, yellow) and P-tRNA-
SRC (blue) revealing a (G) 4.1° swivel of the SSU head and (H) 3.4° rotation of the SSU 
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body. (I) Illustration of movement of the SSU between the VmlR-EQ2-SRC and P-
tRNA-SRC. The length and color of the lines correspond to the degree of movement 
between each phosphate group in of the SSU between the VmlR-EQ2-SRC and P-tRNA-
SRC structures. The view is the same as in (H). 
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Figure S6. Antibiotic resistance conferred by VmlR variants in vivo. (A-F) Growth 
curves of vmlR-knockout (ΔvmlR) complemented by wildtype VmlR (ΔvmlR + vmlR, 
same panels as in Figure S4), or VmlR variants VmlR-F237A or VmlR-F237V grown in 
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the presence of increasing concentrations of (A) virginiamycin M1 (VgM), (B) 
lincomycin (Lnc), (C) erythromycin (Ery), (D) tiamulin (Tia), (E) chloramphenicol 
(Cam) and (F) linezolid (Lnz). Cells were diluted to an OD600 value of 0.01 and grown in 
LB (with IPTG for the complemented cells) at 37°C with shaking. After 90 minutes 
antibiotics were added at the indicated concentrations (dashed line) and growth was 
measured for a further 6 h. 
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Figure S7. Conformation of the PTC in the presence of VmlR and antibiotics. (A-E) 
Zoom showing steric clash between Phe237 of VmlR with (A) virginiamycin M (VgM, 
green), (B) lincomycin (Lnc, salmon), (C) tiamulin (Tia, purple), (D) chloramphenicol 
(Cam, pink) and (E) linezolid (Lnz, cyan). (F) The conformation of selected 23S rRNA 
nucleotides (grey sticks) at the PTC in the presence of VmlR (orange). Tyr240 within the 
ARD of VmlR stacks upon U2585. (G-K) Superimposition of (F) with 23S rRNA 
nucleotides (cyan) that comprise the binding site of (G) virginiamycin M (VgM, green, 
PDB ID 1YIT) (25), (H) lincomycin (Lin, pink, PDB ID 5HKV) (26) and (I) tiamulin 
(Tia, purple, PDB ID 1XBP) (27), (J) chloramphenicol (Cam, pink, PDB ID 4V7U) (28), 
and (K) linezolid (Lnz, cyan, PDB ID 3DLL) (29). Conformational differences of 23S 
rRNA nucleotides between VmlR and antibiotic structures are highlighted with red 
arrows. Note that for (B) lincomycin (Lin, pink, PDB ID 5HKV) (26), the nucleobase of 
U2585 is not present in the model. 
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Table S1. Cryo-EM data collection, refinement and validation statistics 

 VmlR-SRC 
(EMD ID EMD-0177, PDB 
6HA8) 

P-tRNA-SRC 
(EMD ID EMD-0176, PDB 
6HA1) 

Data collection   
Microscope 
Camera 
Magnification 
Voltage (kV) 
Electron dose (e /Å2) 
Defocus range ( m) 
Pixel size (Å) 
Initial particles (no.) 
Final particles (no.) 

FEI Titan Krios 
Falcon III 
131,951 
300 
55.5 
-0.8 to -1.6 
1.061 
159,722 
33,392 

FEI Titan Krios 
Falcon III 
131,951 
300 
55.5 
-0.8 to -1.6 
1.061 
159,722 
68,652 

   
Model composition 

Nonhydrogen atoms 
Protein residues 
RNA bases 
 

Refinement 

 
146,414 
6,053 
4,610 
 

 
140,834 
5,300 
4,622 
 

Average resolution (Å) 
Map CC (around atoms) 

3.5 
0.77 

3.1 
0.79 

Map CC (whole unit cell) 
Map sharpening B factor 
( 2) 

0.75 
-88.20 

0.79 
-88.14 

R.m.s. deviations   
    Bond lengths (Å) 0.010 0.007 
    Bond angles ( ) 
 
Validation 
MolProbity score 
 
 
Clashscore 
 
 
Poor rotamers (%) 
 
Ramachandran plot 
Favored (%) 
Allowed (%) 
Disallowed (%) 

1.3 
 
 
1.96 (100th percentile 
for structures 3.50Å ± 0.25Å) 
 
7.68 (80th percentile 

) 
 
0.87% 
 
 
90.36 % 
9.15 % 
0.49 % 

1.1 
 
 
1.92 (100th percentile 
for structures 3.10Å ± 0.25Å) 
 
7.12 (98th percentile 

2.85Å) 
 
0.90% 
 
 
90.67 % 
8.77 % 
0.56 % 
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Table S2. Primers used for construction of B. subtilis strains 
VmlR-A-F CATATGAAATACCGCAAAACAAG 
VmlR-A-R CAATGCCGCTTGAACTTTCTCCC-CCATATCCCTCGCTTTAAAGGGAG 
VmlR-B-F GGGAGAAAGTTCAAGCGGCATTG 
VmlR-B-R GCTTGAGTCAATTCCGCTGTCGCATAACGTCAGGAACTTGGACG 
VmlR-C-F CAAAATTAACGTACTGATTGGGTAGGATCCGCGGCTTGAGGATCAGACGCT

GATTG 
VmlR-C-R CTGTCCCAGAATGATGTTCAGTAATG 
chpA-R CGCGGATCCTACCCAATCAGTACGTTAATTTTG 
pAPNC-F CGACAGCGGAATTGACTCAAGC 
PhyvmlR_F CGGATAACAATTAAGCTTAGTCGACGAAGGAGAGAGCGATAATGGCCGGC

AAAGAGATCGTAACA 
PhyvmlR_R GTTTCCACCGAATTAGCTTGCATGCTTAGTCTTTTTTGTCTTGATGATCCAGC

TCTTTTATTC 
pHT002_R GTCGACTAAGCTTAATTGTTATCCGCTCACAATTACACACATTATGCC 
pHT002_F GCATGCAAGCTAATTCGGTGGAAACGAGGTCATC 
F237A CTCAATCGACGAAAAAGGAAGGGGCTAAAGAATATCACCGGGTAAAAG 
F237V TCGACGAAAAAGGAAGGGGTTAAAGAATATCACCGGG 
491STOPx2 CAGTTAAACGACGTTCCTTCAGAATGATAAGAGCGGGAGGAGC 
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Abstract &#!

 

The stringent response enables metabolic adaptation of bacteria upon 

environmental changes and to stress conditions. RelA/SpoT Homologue 

(RSH)-type enzymes produce and degrade the pleiotropically acting second 

messenger nucleotides (p)ppGpp. Bifunctional Rel enzymes synthesize '$!

(p)ppGpp in the context of ribosomes stalled by deacyl-tRNA and degrade 

(p)ppGpp in their absence. Here we show by cryo-EM that the C-terminal 

domain (CTD) of Rel interacts with the ribosome to enable (p)ppGpp synthesis 

by its catalytic N-terminal domain (NTD). In the absence of the ribosome, Rel 

forms a symmetric homodimer through contacts of its NTD and the deacyl-'#!

tRNA binding site of its CTD. Our study shows how the relative orientation of 

CTD and NTD controls the reciprocal activities of (p)ppGpp-synthesis and -

hydrolysis. Relative domain arrangement of Rel is tightly controlled by 

homodimerization, deacyl-tRNA and the ribosome. Thus, our study provides an 

in-depth molecular view on the Rel/RelA-dependent mechanism of the #$!

stringent response.  
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Metabolic adaptation upon alteration of environmental conditions, emerging cellular 

stress and nutrient limitation is essential for the fitness of living organisms. Most (#!

bacteria and the chloroplasts of plants employ the stringent response (SR) in order to 

adjust transcription, translation and metabolic pathways for control over growth and 

cell proliferation, but also pathogenicity1,2. At the heart of the SR, RelA/SpoT 

Homologue (RSH)-type proteins sense stress and control the cellular levels of the 

pleiotropically acting second messenger alarmones (p)ppGpp1,2.  )$!

Nutrient limitation (i.e. amino acid starvation) is sensed by the RSH-type proteins 

Rel/RelA recognizing uncharged tRNAs in context of translationally stalled ribosome 

complexes (SRCs) to synthesize (p)ppGpp3–5. Rel/RelA is a multi-domain protein that 

can be divided into N-terminal and C-terminal domains (NTD and CTD, respectively) 

(Fig. 1a). The NTD consists of the hydrolase (Hyd) subdomain, which degrades )#!

(p)ppGpp to GTP/GDP and pyrophosphate (PPi) in the absence of stress, and the 

synthetase (Syn) subdomain that catalyzes (p)ppGpp synthesis by transfer of PPi 

from ATP to the 3’-OH ribose of GTP/GDP when stalled ribosomes and uncharged 

tRNAs are sensed5–7. The CTD comprises four subdomains, the TGS (ThrRS, 

GTPase and SpoT), AH (Alpha Helical), RIS (Ribosome Inter-Subunit) and ACT *$!

(Aspartate kinase, Chorismate mutase, TyrA) (Fig. 1a). The enzymatic activities of 

the NTD are regulated by the CTD such that in the absence of the ribosome, the 

CTD inhibits (p)ppGpp synthesis by the NTD8–11 and this autoinhibition is relieved in 

the presence of the ribosome4,5,12–15. Noteworthy, the Hyd subdomain is inactive in 

RelA, but functional in Rel proteins, hence RelA is referred to as monofunctional and *#!

Rel is classified as a bifunctional long RSH-type protein (Fig. 1a). Bifunctional Rel 

proteins are widely conserved in Gram-positive bacteria of the phylum Firmicutes, 

such as the model organism Bacillus subtilis, but also pathogenic representatives, 

such as Mycobacterium tuberculosis, Listeria monocytogenes and Staphylococcus 

aureus. In Gram-negative bacteria, such as Escherichia coli and Vibrio cholera, a +$!

second long RSH-type protein, the bifunctional protein SpoT, complements 

monofunctional RelA16. In contrast to Rel/RelA, SpoT does not interact with 

ribosomes, but was shown to be responsive to fatty acid biosynthesis stress via TGS-

mediated interaction with the acyl-carrier protein ACP17. Noteworthy, SpoT has also 

been implied to be regulated by depletion of the 6S RNA18 and it has been shown +#!

that hydrolysis activity is suppressed in the presence of deacyl-tRNAs19.  



! '!

Structural data for long RSH-type proteins is available for the monofunctional E. coli 

RelA on the ribosome13–15 and for the NTDs of the bifunctional Streptococcus 

dysgalactiae and M. tuberculosis Rel proteins20,21. Three cryo-EM studies of E. coli 

RelA bound to the ribosome in the presence of deacyl-tRNA recently revealed that "$$!

RelA adopts an elongated ‘open’ conformation to stimulate alarmone production by 

disrupting the autoinhibitory interaction of the CTD with the NTD13–15. In this extended 

conformation, RelA recognizes the uncharged CCA 3′-end of the A/R-tRNA (30S A-

site/RelA-bound) via the TGS subdomain and positions the NTD near the 30S spur 

for alarmone production. The TGS is C-terminally followed by the AH subdomain, "$#!

which wraps around the A/R-tRNA and connects to the 50S and 30S bridging RIS 

domain. The extreme C-terminal ACT subdomain folds back towards the A/R-tRNA 

and is buried in a cavity within the 50S subunit, formed by the A-site finger, helix 89, 

L16 and the P-site tRNA13–15. Exactly how RelA is capable of entering the ribosome 

to associate in this intricate conformation is unclear, but recent data suggests that ""$!

RelA associates with the ribosome as a preformed RelA•deacyl-tRNA complex22. 

Upon dissociation from the ribosome and deacyl-tRNA, Rel was suggested to fall 

back in an inhibited NTD-CTD approximated ‘closed’ conformation23, which might 

also involve oligomerization of Rel8,24. The crystal structure of NTD of S. dysgalactiae 

Rel revealed that it can adopt two conformations, namely, the Syn ‘ON’ / Hyd ‘OFF’ ""#!

state and the Syn ‘OFF’ / Hyd ‘ON’ state for either alarmone synthesis, or 

breakdown, respectively20. Based on these conformations, a reciprocal regulation of 

the antagonistic catalytic activities has been proposed that might involve a ligand-

induced signal transmission between the Syn and Hyd active sites20. However, an 

evaluation of this proposal is difficult because no structural data have visualized how "%$!

the CTD could regulate the bifunctional activity of the NTD in the absence of the 

ribosome. Moreover, no structural information of a bifunctional Rel protein in the 

context of a stalled ribosome is available.  

Therefore, we set out to obtain a comprehensive structural and functional 

characterization of the bifunctional Rel protein from B. subtilis to dissect its regulation "%#!

in the presence and the absence of the ribosome.   
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Results 

 

Cryo-EM structure of the B. subtilis Rel•stalled ribosomal complex 

To ascertain whether B. subtilis Rel protein binds to the ribosome analogously to the 

bifunctional E. coli RelA protein, we assembled and analyzed a B. subtilis Rel•stalled "&#!

ribosomal complex (Rel•SRC) using single particle cryo-EM, similarly to that 

described previously for the E. coli RelA•SRC14. The B. subtilis SRC was obtained 

using a disome purification protocol based on a dicistronic mRNA encoding an R8K 

variant of the ErmDL stalling leader peptide (Supplementary Fig. 1). The B. subtilis 

Rel•SRCs were formed by incubating the B. subtilis ErmDL-R8K•SRC with deacyl "'$!

tRNALys and purified recombinant B. subtilis Rel protein in the presence of GDP and 

the non-hydrolysable ATP analogue  α, β-methylene-ATP. The cryo-EM data for the 

B. subtilis Rel•SRC were collected on a Titan Krios with a Falcon II direct electron 

detector. From a total of 650,054 ribosomal particles, 3D classification revealed a 

diverse array of ribosome subpopulations containing only P-tRNA (8.9%), E-tRNA "'#!

(12.5%), both P- and E-tRNAs (25.3%), as well as A- and P-tRNAs with (33.4%) and 

without (9.1%) E-tRNA (Supplementary Fig. 2). Despite this vast heterogeneity, it 

was also possible to obtain a small subpopulation (10.3%) that contained P- and E-

tRNAs, as well as A/R-tRNA and Rel bound within the ribosomal A-site 

(Supplementary Fig. 2). This subpopulation could be further refined to yield a final "#$!

cryo-EM map of the B. subtilis Rel•SRC (Fig. 1b) with an average resolution of 4.5 Å 

(Supplementary Fig. 3a) and local resolution reaching to 3.8 Å within the core of the 

ribosome (Supplementary Fig. 3b,c). Local resolution calculations for the A/R-tRNA 

and Rel ranged from 5-7 Å (Supplementary Fig. 3d,e), consistent with the high 

flexibility of the A/R-tRNA and Rel within the ribosomal binding site, as observed "##!

previously for the E. coli RelA•ribosome complexes13–15. The resolution allowed an 

unambiguous rigid body fit of homology models for the B. subtilis Rel TGS, RIS and 

ACT subdomains to the cryo-EM density, together with the A/R-tRNA 

(Supplementary Fig. 3). The density for the AH linker connecting the TGS and RIS 

of B. subtilis Rel was relatively well-resolved and most consistent with the "($!

conformation observed in the E. coli RelA model from Loveland et al., 201613 

(Supplementary Fig. 3). The overall conformation of B. subtilis Rel and the A/R-

tRNA on the B. subtilis 70S ribosome is analogous to that observed previously for the 



! (!

E. coli RelA•ribosome complexes13–15. (Figure 1c,d). Also the individual domains of 

B. subtilis Rel appear to establish a similar set of contacts with the ribosome, such "(#!

that the TGS interacts with the CCA-end of the deacyl A/R-tRNA and with h5/h15 of 

the small subunit, the ACT interacts with H38, L16 and H43 of the large subunit, and 

the RIS bridges both subunits by interaction with H38 and S19 (Supplementary Fig. 

4). The NTD was poorly ordered in the B. subtilis Rel•SRC, but additional density 

could be seen when the map was filtered to 12 Å in a similar but distinct position to ")$!

that observed previous for the E. coli RelA•ribosome complexes13–15 

(Supplementary Fig. 5). Hence, (p)ppGpp synthesis might be triggered by 

detraction of the inhibitory CTD from the NTD upon ribosome contact, which was also 

suggested for the EcRelA protein14,15. Taken together, our structural analysis 

suggests that the regulation of bi- and monofunctional RSH-type proteins, Rel and ")#!

RelA, by the SRC seems very similar. 

 

Crystal structure of B. subtilis Rel∆RIS-ACT 

To understand how the CTD regulates the NTD in the absence of the ribosome, we 

determined the crystal structure of Rel in the absence of the ribosome. Because "*$!

crystallization of full-length Rel was unsuccessful, we employed a C-terminally 

truncated Rel lacking the RIS and ACT subdomains. Both the RIS and ACT 

subdomains were previously shown to be dispensable for regulating Rel activity in 

absence of the ribosome11. The protein was purified by Ni-ion affinity and size 

exclusion chromatography (SEC). On SEC, Rel∆RIS-CT migrated with an apparent "*#!

molecular weight (MW) of a homodimer, when compared to MW standards and the 

Rel-NTD (Fig. 2a and Supplementary Fig. 7). The crystal structure of BsRel∆RIS-

CT was determined by molecular replacement using the structure of SdRel-NTD 

(PDB 1VJ720, chain B) and refined to a resolution of 3.95 Å (Table 1). The resolution 

was sufficient to enable the secondary structure elements of the Syn, Hyd, TGS and "+$!

AH subdomains of Rel to be unambiguously placed with high confidence into the 

electron density map (Supplementary Fig. 6a,b). The structure shows a nucleotide-

free Rel in an elongated conformation in which the TGS contacts the Syn subdomain 

via an interface involving α-helix 14 and β-strands 7/8 of the Syn and TGS, 

respectively (Fig. 2b). Further inspection of the crystal packing showed that a Rel "+#!

homodimer, as suggested by SEC (Fig. 2a), is formed across the crystallographic 

two-fold axis (Fig. 2c and Supplementary Fig. 6a,b). Within the symmetric Rel 



! )!

homodimer, each monomer contacts the other through interactions between the 

TGS-AH subdomains and the NTD (Fig. 2c,d). The loop connecting helices α17 and 

α18 of the TGS of one monomer interacts with the loop connecting helix α12 and %$$!

strand β3 of the Syn of the other, and vice versa (Fig. 2e). Helices α19 and α20 of 

the AH subdomain of one monomer binds into an extended surface cavity formed by 

helices α1/α3 of the Hyd and helix α15 and the sheet β3/4 of the Syn of the other 

(hereafter referred to as: NTD-cleft), and vice versa (Fig. 2e). It is important to note 

that the N-terminus of Rel interacts with the α-helical bundle (AHb) of the AH %$#!

subdomain. Taken together, our structure of the Rel homodimer shows that the CTDs 

of each monomer are involved in stabilizing the homodimer via the NTDs in the 

absence of the ribosome. Of note; the Rel homodimer would not allow binding of 

deacyl-tRNA, because the deacyl-tRNA binding site is masked by the opposing 

monomer (Fig. 2d).  %"$!

  

Rel forms a homodimer 

Our structure of the Rel homodimer shows that the NTD interacts with the TGS-AH 

subdomains. Indeed, an in vitro pull-down assay employing an N-terminally GST-

tagged NTD shows its ability to interact with the TGS-AH (Fig. 3a). The NTD-CTD %"#!

interaction is highly salt-sensitive, consistent with the structure showing that this 

interaction is mainly comprised of polar contacts (Fig. 2d). Moreover, our GST pull-

down assay shows that the presence of the ATP and GTP substrates, as well as the 

product pppGpp, have no impact on the NTD-CTD interaction (Supplementary Fig. 

8). To quantify the interaction strength between the two Rel monomers within the %%$!

homodimer, we employed Bio Layer Interferometry (BLI) allowing the determination 

of the dissociation constant (KD) and the contributing kon and koff values (Fig 3b and 

Supplementary Fig. 9 and Supplementary Tab. 2). Full-length Rel and Rel∆RIS-

CT interacted with biologically relevant dissociation constants (KD) of ≈ 10.6 ± 0.2 µM 

and ≈ 4.9 ± 0.01 µM, respectively, which suggested that the ACT and RIS domains %%#!

are not required for homodimerization. No relevant self-interaction of TGS-AH 

subdomain was observed (i.e. KD of ≈ 129 ± 7 µM), suggesting that that the TGS-AH 

does not interact in solution. Although our analysis suggested a self-interaction of the 

NTD with a KD of ≈ 43.1 ± 3.3 µM, comparison of the kon (≈ 7.5 ± 0.5 M-1s-1) and koff 

(3.2x10-4 ± 7.5x10-6 s-1) showed that any NTD homodimer formed is extremely short %&$!

lived. The structure of the Rel homodimer also suggested that the NTD should be 
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capable of interacting with the TGS-AH, firstly, via the TGS in cis, and, secondly, via 

the TGS-AH in trans. Indeed, analysis of the interaction between the NTD and TGS-

AH revealed two KDs in the low µM-range (KD1 ≈ 4.8 ± 0.1 µM and KD2 ≈ 10.7 ± 0.2 

µM) and a stoichiometry of one NTD to two TGS-AH. %&#!

To test our predictions in vivo, we also performed Bacterial two-Hybrid (B2H) 

assays. Again, self-interaction was observed for the full-length Rel and Rel∆RIS-CT, 

whereas self-interaction was not observed for the TGS-AH domain (Fig. 3c). In 

contrast to our SEC (Fig.2a), the Rel structure (Fig. 2b-e) and the BLI results (Fig. 

3c), we also observed self-interaction for the NTD in the B2H assay. It might be that %'$!

the B2H-tags (i.e. T25 and T18) change the koff observed in the BLI, and thus enable 

a longer lifespan of a NTD homodimer sufficient to activate the reporter. Whether 

factors exist that stabilize a putative NTD homodimer in the cellular context is 

therefore possible, but requires further investigation. Taken together, our 

experiments show that Rel forms a symmetric homodimer stabilized through %'#!

extensive interactions between the NTD and CTD of both monomers.  

 

Ribosome-dependent domain reorganization of Rel  

Next, we wanted to understand the conformational differences between the structure 

of Rel associated with the ribosome compared to its free homodimeric form. %#$!

Structural comparison of the two states showed that the TGS and AH subdomains 

are rotated by ~90° and shifted by up to ~125 Å (AH bundle) and ~50 Å (TGS) (Fig. 

4). The comparison further revealed that rearrangement of α-helix 7 and α-helix 16 

that connect the NTD and CTD, hereafter called joint helices, is accompanied by the 

association of the TGS at α-helix 14 of the Syn subdomain (Fig. 4). Moreover, α-%##!

helix 20 (α20) of the AH subdomain is straighter in the Rel homodimer than in the 

ribosome-bound Rel. The bending of α20 in the ribosome-bound state seems to be 

induced by the A/R-tRNA, and would be antagonistic for Rel homodimer formation 

(Fig. 4). Therefore, straightening of α20 in the absence of the SRC should allow 

accommodation of the AH domain at the NTD-cleft for homodimer formation (Fig. %($!

2c). Taken together, our structural comparison of Rel in the presence and absence of 

the SRC shows that the CTD undergoes major conformational rearrangements 

relative to the NTD. 

 

 %(#!
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Repression of the synthetase in the Rel homodimer 

To delineate conformational changes upon TGS and AH association to the NTD, we 

superimposed the Rel homodimer structure with the NTD of the ribosome-bound 

EcRelA13 and to the bifunctional SdRel-NTD20 in the Hyd ’OFF’ / Syn ’ON’ (PDB %)$!

1VJ7; chain A) and Hyd ’ON’ / Syn-’OFF’ (PDB 1VJ7; chain B) states. 

Superimposition of the NTDs according to the central three α-helical bundle (C3HB; 

α8-α10), which is situated between the Syn and Hyd domains and does not 

rearrange upon ribosome release, revealed that our structure adopts a conformation 

matching the Hyd ’ON’ / Syn ‘OFF’ state described for the isolated SdRel-NTD (Fig. %)#!

5). This observation is supported by the root mean square deviation (r.m.s.d.) values 

for the NTDs compared to BsRel-NTD, showing that the closest matching structure is 

SdRel-NTD chain B in the Hyd ’ON’ / Syn ‘OFF’ configuration (r.m.s.d.s: SdRel-NTD 

chain A: 1.107; SdRel-NTD chain B: 0.649; EcRelA-NTD: 1.065) 

Association of the TGS and AH to helix α14 and the central mixed β-sheet (mβs) of %*$!

the Syn domain leads to an orchestrated movement of α14, α15 and the mβs along 

the helix α12, resulting in displacement of the catalytic loop and helix α13, which are 

essential for magnesium binding and association of ATP for PPi transfer to 

GTP/GDP20 (Fig. 5). Interestingly, helix α11 that connects the Syn core to the C3HB 

was previously suggested not to undergo a conformational rearrangement during the %*#!

activity switch20. The reasoning for this proposal was that helix α11 seemed to be 

locked via its covalent and van der Waals association to helix α10 of the C3HB20. 

However, in our structure, helices α11 and α13 follow the displacement of helix α12, 

which as a consequence reorganizes and restricts the active site (Fig. 5). 

Association of CTD and NTD also results in reorganization of the joint helices, which %+$!

leads to insertion of the loop connecting α16 and TGS (lid-loop) into the Syn active 

site (Figs. 4 and 5). Both rearrangements should render the Syn domain inactive and 

prevent (p)ppGpp synthesis in absence of the ribosome.  

 

Activation of the hydrolase in the Rel homodimer %+#!

Juxtaposed to the Syn, the Hyd domain is stabilized through interactions of the N-

terminus of Rel and the AH′ domain of the dimer partner (see above, Fig. 5). AH 

association to the N-terminus and helix α1 leads to relocation of helix α1 towards the 

center of the structure, stabilizing the Hyd domain by placement of helices α2-α5 in a 
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comparable configuration to that observed in the hydrolase ‘ON’ state described by &$$!

Hogg et al.20 (Fig. 5). Helices α3 and α4 harbor the catalytic motifs critical for the 

coordination of the manganese cofactor, substrate-binding and catalysis2,20. Based 

on the structure of the SdRel-NTD20, hydrolase activation was previously suggested 

to involve stabilization of the loop connecting helices α8 and α9, which is also 

stabilized in our structure as evident by the pronounced electron density for the loop &$#!

(Supplementary Fig. 6c). Furthermore, the joint helix α7 is relocated from a helix α6 

proximal position, as observed in the SdRel Hyd ‘OFF’ state20, towards helix α9 (Fig. 

5). The linker connecting α6 and α7 is in turn stabilized in proximity to the active 

center. Coordinated movement of the joint helices α7 and α16 in concert with the 

association of the TGS and AH might therefore enable the synchronized regulation of &"$!

the opposing synthetase and hydrolase activities of the NTD. 

 

The TGS/Syn interface and the joint helices are the critical determinants of Rel 

regulation 

To ascertain that the critical CTD elements that regulate Rel in the absence of the &"#!

ribosome reside within TGS and AH domain, we successively truncated Rel domain-

wise from its C-terminus and assayed its pppGpp synthetase and hydrolase activities 

using our previously described HPLC-based assay25 (Fig. 6a,b). As expected, full-

length Rel showed a low pppGpp synthetic and a strong pppGpp hydrolytic activity 

(Fig. 6b), showing that Rel is in the Syn ‘OFF’ / Hyd ‘ON’ state when not bound to the &%$!

ribosome. This situation did not change with the successive truncation of the ACT, 

RIS and the α-helical bundle of the AH subdomain (AHb) (Fig. 6b). Moreover, 

deletion of the AHb-interacting N-terminal residues, alanine 2 to threonine 8, also did 

not affect the activities. However, when the AH (∆AH-CT) and especially AH and 

TGS (NTD) subdomains were removed, we observed inhibition of the pppGpp &%#!

hydrolytic activity and concomitant stimulation of the pppGpp synthetic activity. These 

findings illustrate that the TGS and AH domains are critical for maintaining the Syn 

‘OFF’ / Hyd ‘ON’ state of Rel, and their removal leads to an inversion into the Syn 

‘ON’ / Hyd ‘OFF’ state.    

Next, we analyzed the impact of the lid-loop on Rel activity by mutating the lid-&&$!

loop glutamate 380 and phenylalanine 381 and into alanine (E380A/F381A). This Rel 

variant exhibited a mild increase in pppGpp synthesis and decrease in pppGpp 

hydrolysis compared to the full length Rel (Fig. 6b). By contrast, when we varied 
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arginine 125 and methionine 127 within the joint helix α7 (R125A/M127A), we 

observed the opposite effect with a pronounced repression of hydrolase and &&#!

activation of synthetase activities, respectively (Fig. 6b). These results demonstrate 

the importance of the joint helix for synchronizing the synthetase and hydrolase 

activities of Rel.  

To analyze the impact of the interface formed by the AH domain and the NTD-

cleft in trans, we introduced charge-reversing mutations E65R, F330R, E334R alone &'$!

as well as in combination (E65R/F330R/E334R). In our GST pull-down assay, these 

GST-immobilized NTD variants displayed a loss of interaction with a TGS-AH domain 

fragment (Fig. 6c). However, neither the single amino acid variants, nor the 

combination, affected regulation of Rel (Fig. 6b). By contrast, when we exchanged 

residues Y279 or G283 that reside in the interface connecting the Syn and TGS in &'#!

cis, we could not only detect a loss of NTD/TGS-AH interaction in our GST pull-down 

assay (Fig. 6c), but both variants also showed a pronounced loss of pppGpp 

hydrolytic activity (Fig. 6b). While the synthetase activity of the G283E mutant was 

strongly stimulated, the Y279E variant was incapable of synthesizing (p)ppGpp, likely 

due to a destabilized Syn subdomain (Fig. 6b). Taken together, our data show that &#$!

the TGS subdomain primarily regulates the NTD activities in cis, and the joint helices 

α7 and α16 synchronize the reciprocal activities within the NTD. The in trans 

interaction of the AH subdomain with the NTD cleft is important for homodimer 

stability, however, apparently not important for the regulation of activity.  

 &##!

In vivo dissection of Rel 

To substantiate our structural and biochemical findings, we evaluated our Rel 

variants in vivo using the cell growth-reducing property of (p)ppGpp1,2 and a B. 

subtilis strain lacking all (p)ppGpp synthetases and hydrolases (named: (p)ppGpp0 

(BHS_214)). We then introduced the rel mutants in trans into the amy locus under &($!

the control of an IPTG inducible promoter. IPTG-induced production and growth 

analysis revealed that the rel knockout can be functionally complemented by rel in 

trans, as well as by Rel lacking the 8 N-terminal residues (∆N8) or lacking the RIS 

and ACT subdomains (∆RIS-CT) (Fig. 7a). By contrast, we observed a prominent 

reduction in growth (lack of complementation) when we further truncated Rel by &(#!

removing the AH and TGS subdomains (∆AH and NTD in Fig. 7a), which is in 

excellent agreement with the in vitro assays (Fig. 6b). Similarly, the Rel-
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R125E/M127E (joint helix α7), Y279E and G283E variants (TGS/Syn interface in cis) 

also showed severe growth defects consistent with a deregulated NTD as observed 

in the in vitro experiments (Fig. 7a and 6b). Moreover, the E380A/F381A as well as &)$!

E65R, F330R, E334R and their combination (E65R/F330R/E334R) did not show 

growth inhibition, in line with our biochemical assays (Figs. 7a and 6b).   

We further assessed the Rel variant production as well as the presence of 

(p)ppGpp by indirectly monitoring the production levels of the ribosome hibernation 

promoting factor (HPF, previously called YvyD), the synthesis of which correlates &)#!

with the cellular (p)ppGpp concentration26,27 (Fig. 7b). Western blotting revealed that 

all complementing Rel variants were synthesized at levels comparable to the wildtype 

(Fig. 7b). In addition, the production of HPF was strongly induced when CTD 

truncations of Rel involve the AH and TGS, as well as for R125E/M127E, Y279E and 

G283E Rel variants (Fig. 7b), consistent with an elevated intracellular (p)ppGpp &*$!

level. Interestingly, the Y279E variant appeared to synthesize (p)ppGpp in vivo (Fig. 

7b), but was deficient in (p)ppGpp synthesis in vitro (Fig. 6b). A possible explanation 

might be that the Syn fold is stabilized within context of the intracellular environment. 

In conclusion, the results suggest that the critical regulative elements mainly reside 

within the TGS and joint helices (α7, α16) and are in agreement with the growth &*#!

phenotypes (Fig 7a) and in vitro data (Fig. 6b). 

 

 

Discussion 

 &+$!

Ribosome interaction of mono- and bifunctional RelA/Rel enzymes  

During the SR, the (p)ppGpp synthetase activities of the monofunctional RelA as well 

as of the bifunctional Rel are activated through their association to ribosomes stalled 

by uncharged tRNAs in the ribosomal A-site. Consistent with the high (39%) 

sequence identity between the bifunctional B. subtilis Rel and monofunctional E. coli &+#!

RelA proteins, we also observed a high similarity between the structure of the 

bifunctional B. subtilis Rel•SRC determined here and previous structures of 

monofunctional E. coli RelA•SRCs13–15. Importantly, we observed that on the 

ribosome, the bifunctional B. subtilis Rel protein also adopts an open conformation 

where the conserved CTD interacts with the A/R-tRNA as well as components of the '$$!

small and large ribosomal subunits, analogously to those observed between the 
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ribosome and the monofunctional E. coli RelA13–15. Therefore, our findings suggest 

that the ribosome-dependent activation of the Syn activity of bifunctional Rel proteins 

utilizes an analogous mechanism to that observed for monofunctional RelA proteins, 

namely, by adopting an open conformation on the ribosome to relieve the '$#!

autoinhibition of the CTD on the NTD. 

One major difference between Rel and RelA is that the Rel protein contains a 

functional Hyd domain whereas RelA has an inactive ‘pseudo’ Hyd domain. 

Therefore, ribosome binding in the case of bifunctional Rel proteins leads not only to 

stimulation of the synthetase activity, but also inactivation of the Hyd domain. In the '"$!

structure of the B. subtilis Rel•SRC determined here, the NTD exhibited a high 

degree of flexibility, suggesting no obvious stabilizing interactions existing with the 

ribosome (Supplementary Fig. 5). Therefore, we favour a model whereby activation 

of Syn allosterically inactivates the Hyd20, rather than inactivation of the Hyd via 

additional interactions with components of the ribosome. In this regard, we note that '"#!

the sarcin-ricin loop (SRL) of the ribosome, which is involved in activation of the 

GTPase activity of translation factors such as EF-Tu and EF-G, has been cross-

linked to the NTD of RelA22. This observation led to the suggestion that the SRL may 

be involved in activation of (p)ppGpp synthesis of RelA22. However, our structure 

does not support any stable interaction between the NTD and the SRL and, '%$!

moreover, α-sarcin, a toxin which cleaves and inactivates the SRL, was recently 

reported to have no effect on the ribosome-stimulated (p)ppGpp synthesis of RelA28. 

Taken together, we propose that the Syn activity of the bifunctional Rel proteins is 

activated by adopting an open conformation on the ribosome, as observed also for 

monofunctional RelA proteins13–15, and the Hyd subdomain is inactivated '%#!

allosterically. 

 

Rel forms a homodimer in the absence of the ribosome 

Our structural and functional analysis of Rel shows that the protein forms a 

symmetric homodimer. The homodimer interface is established between the NTD of '&$!

one monomer and the TGS-AH domains of the other, and vice versa (Fig. 1c,d). One 

consequence of the homodimer structure is that in the full-length Rel protein the 

ACT/RIS domains of one monomer come into close proximity to the N-terminus of 

the other monomer, and vice versa (Fig. 8). A previously observed decrease in 

fluorescence resonance energy transfer (FRET) between the NTD and CTD of Rel '&#!
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upon tRNA addition is in agreement with the homodimer architecture of our 

structure23. Although an isolated ACT subdomain structure suggested a role in 

homodimerization (PDB-ID: 2KO1), our structure clearly shows that the ACT 

subdomains cannot self-interact in the context of the full-length homodimer. 

Truncation of the ACT (and RIS) subdomains did not weaken the affinity of the ''$!

monomers for each other in our BLI experiments, supporting the idea that 

homodimerization is independent of the RIS/ACT domains. Taken together, our Rel 

structure, in vitro and in vivo analysis have revealed for the first time how an NTD-

CTD interaction mediates homodimer formation.  

 ''#!

Regulation of Rel in the cellular context 

Our crystal structure shows that the TGS-AH subdomains form in trans interactions 

with the NTD across the homodimer interface. Moreover, the TGS subdomain forms 

in cis contacts with the Syn subdomain of the NTD. Our functional analysis shows 

that the in trans contacts are essential for homodimer formation, but seem to play no '#$!

major role on the regulation of the catalytic activities of the NTD. In the context of the 

homodimer, the NTD is in a Hyd ’ON’ / Syn ’OFF’ configuration as previously 

postulated by Hilgenfeld and coworkers from the structure of an isolated SdNTD20. 

Based on the SdNTD structures, the authors suggested that the C3HB couples the 

Hyd and Syn subdomains via the catalytic elements to reciprocally regulate their '##!

activities20. Our Rel crystal structure, supported by our functional studies, now shows 

that previously unrecognized elements, namely the ‘joint helices’, transmit the relative 

orientation of the TGS as part of the CTD to the NTD, and thereby regulates the 

reciprocal enzymatic activities of Rel. This in cis interaction of the TGS-Syn 

subdomains is crucial for this regulation, as supported by our in vitro and in vivo '($!

experiments.  

Interestingly, the TGS-AH/NTD in trans interaction does not contribute to the 

regulation of the enzymatic activities, raising the question as to the biological function 

of this interface and the dimerization of Rel. The symmetric arrangement of the Rel 

homodimer and the accompanying in trans interactions lead to a masking of the '(#!

tRNA binding site at the TGS-AH domain by the NTD. This observation suggests that 

homodimerization might modulate interaction of Rel with deacyl-tRNA. Following this 

idea, binding of deacyl-tRNA would then compete with homodimerization, and 

eventually lead to dissolution of the Rel homodimer. In our model, binding of the 
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deacyl-tRNA would have no impact on the Hyd ’ON’ / Syn ’OFF’ configuration, which ')$!

solely relies on the TGS/Syn interaction in cis. Thereby, Rel could be prevented from 

futile (p)ppGpp synthesis in the absence of the ribosome. This idea is supported by 

the observation that RelA is not activated by association to deacyl-tRNA, but requires 

the presence of both, the ribosome and the deacyl-tRNA4. Hence, the hypothetical 

deacyl-tRNA induced dimer dissociation results in a Rel•deacyl-tRNA complex ')#!

‘primed’ for future interaction with a ribosome, which displays a matching A-site 

codon. Indeed, recently E. coli RelA was shown to require the association of deacyl-

tRNA prior to its interaction with the ribosome22. 

In summary, we propose the following model for the regulation of Rel (Fig. 8): 

In the absence of stress, translating ribosomes are provided with aa-tRNAs by EF-'*$!

Tu•aa-tRNA•GTP ternary complexes for protein biosynthesis and Rel resides in a 

homodimeric Hyd ‘ON’ / Syn ‘OFF’ state to degrade (p)ppGpp (Fig. 8, left). Upon 

accumulation of deacyl-tRNAs (indicative for amino acid starvation), the Rel 

homodimer dissociates and binds deacyl tRNA to form Rel•deacyl-tRNA complexes, 

which are ‘primed’ for binding to cognate ribosomes (Fig. 8, middle). Upon '*#!

recognition of a cognate ribosome, the preformed Rel•deacyl-tRNA complex 

associates to the SRC and switches into the Syn ‘ON’ and Hyd ‘OFF’ state for  

(p)ppGpp synthesis (Fig. 8, right).  

 

 '+$!

Methods 

 

Cloning, expression, and purification for heterologous production of Rel 

B. subtilis rel gene fragments were amplified by PCR from B. subtilis 168 genomic 

DNA and cloned into pET24d (Novagen) between the NcoI and BamHI sites to '+#!

generate expression constructs (see table M1, M2 for primers and plasmids). 

Mutagenesis of rel was performed via overlap extension PCR and subsequent 

cloning as described above. The rel-Hyd-Syn fragment sequence was subcloned 

from pET24d into pGAT (N-terminal GST) using NcoI and XhoI, or amplified by PCR 

from full-length mutant genes for cloning into pGAT. Constructs were transformed in #$$!

E. coli BL21(DE3) (Novagen) for overexpression. Cells were inoculated into two liters 

of LB medium, supplemented with 25 g lactose, ampicillin (100 mg/l) or kanamycin 
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(50 mg/l) depending on the selection marker and incubated at 30 °C over night under 

rigorous shaking (180 revolutions per minute (rpm)). Cells were harvested by 

centrifugation (3,500 x g, 20 min, 4 °C) and resuspended in 20 ml lysis buffer (20 mM #$#!

HEPES-NaOH, pH 8.0, 500 mM NaCl, 40 mM imidazole) before lysis in a M-110L 

Microfluidizer (Microfluidics). The lysate was cleared at 47,850 x g for 20 min at 4 °C 

and the supernatant was applied onto two pre-equilibrated 1 ml HisTrap FF columns 

(GE Healthcare) for Ni-NTA affinity chromatography. After a wash step with 15 

column volumes (CV) of lysis buffer, proteins were eluted with three CV of elution #"$!

buffer (20 mM HEPES-NaOH, pH 8.0, 500 mM NaCl, 500 mM imidazole). Proteins 

were concentrated to 1 ml and further purified by size exclusion chromatography 

using a HiLoad 16/600 Superdex 200 column (GE Healthcare) equilibrated in size 

exclusion buffer (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl). For the purification 

of Rel variants used for the enzymatic activity assay, buffers were supplemented with #"#!

an additional amount of 500 mM NaCl and 5% glycerol. The main peak fractions 

were concentrated and concentrations were determined by measuring the 

absorbance at 280 nm (wavelength) using a NanoDrop Lite Spectrophotometer. 

Proteins were flash frozen in liquid nitrogen and stored at -80 °C up to two weeks.  

 #%$!

Purification of B. subtilis 70S ribosomes 

The B. subtilis 70S ribosomes were prepared following a procedure described in 29, 

with some modifications. Cells (B. subtilis strain 168) were grown overnight in LB 

(Luria-Bertani) liquid medium using baffled flasks at 37°C with shaking (220 rpm). A 

volume of 6L of LB medium was inoculated at a 1:100 dilution with an overnight #%#!

culture and cells were grown to an OD600 of 1.5. Cells were harvested by 

centrifugation at 5000 × g for 15 min at 4°C (Sorvall, SLC 6000 rotor) and the cell 

pellet was resuspended in buffer A (20 mM HEPES (pH 7.4), 30 mM NH4Cl, 10 mM 

Mg(OAc)2, 6 mM β-mercaptoethanol and 1x Complete EDTA-free Protease Inhibitor 

cocktail (Roche)). Cells were then disrupted using the microfluidizer (Microfluidics), #&$!

followed by centrifugation at 30,000 × g for 30 min at 4°C to remove cellular debris 

(Sorvall, SS-34 rotor). The supernatant was then centrifuged at 151,457 × g (Type 45 

Ti, Beckman Coulter) for 4.5 h at 4°C. The crude ribosome pellet was resuspended in 

5 mL of cold buffer A and loaded onto a 10-50% sucrose gradient (total of 100 

A260/ml per tube) followed by centrifugation at 89,454 ×g using an SW28 rotor #&#!

(Beckman Coulter) for 4 h at 4°C. The fractions corresponding to the 70S ribosomes 
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were collected using a Gradient Station (Biocomp) with an Econo UV Monitor 

(Biorad) and a FC203B Fraction Collector (Gilson). The collected fractions were then 

pooled together and the 70S ribosomes pelleted at 92,159 × g for 2.5 h at 4°C using 

a TLA-110 rotor (Beckman Coulter). The 70S pellet was re-suspended in buffer A #'$!

followed by concentration determination and then aliquots were snap-frozen in liquid 

nitrogen and stored at -80°C. 

 

Generation and purification of the B. subtilis SRC 

The B. subtilis stalled ribosome complex (SRC) was generated based on the disome #'#!

approach similar to that used previously for the E. coli RelA•SRC14 (Supplementary 

Fig. 1). However, the 2XermCL construct used for the E. coli RelA•SRC did not work 

efficiently with B. subtilis ribosomes (data not shown) and was therefore replaced by 

a construct based on the ErmDL leader peptide (Uniprot entry code P62188) derived 

from the macrolide resistance plasmid pE194. The ermDL sequences used in the ##$!

2XermDL construct were modified from the original sequence by substitution of the 

8th codon CGT (Arg) with AAG (Lys). The 2XermDL construct was then synthesized 

(Eurofins, Germany) such that it contained a T7 promoter followed by a strong 

ribosome binding site (RBS) spaced by seven nucleotides to the ATG (AUG start 

codon) of the first ermDL_R8K cistron. A linker of 22 nts separated the stop codon of ###!

the first ermDL_R8K cistron and the start codon of the second ermDL_R8K cistron. 

The linker also comprised the strong RBS seven nucleotides upstream of the ATG 

start codon of the second ermDL_R8K cistron, enabling initiation of translation 

independent from the first ermDL_R8K cistron. The complete sequence of 

2XermDL_R8K construct is:  #($!

5′-

TAATACGACTCACTATAGGGAGTTTTATAAGGAGGAAAAAATATGACACACTCAA

TGAGACTTAAGTTCCCAACTTTGAACCAGTAAAGTTTTATAAGGAGGAAAAAATA

TGACACACTCAATGAGACTTAAGTTCCCAACTTTGAACCAGTAA-3′  

(T7 promoter, italics; RBS, bold; ErmDL ORF, underlined with CTT codon in P-site of #(#!

stalled ribosome shown in bold; Annealing site for complementary DNA 

oligonucleotide, underlined). In vitro translation of the ermDL_R8K construct was 

performed using 12 µg of ermDL_R8K PCR product, 100 µM telithromycin dissolved 

in DMSO (0.3% final DMSO concentration) as well as 600 pmoles of purified 

B. subtilis 70S ribosomes in 250 µL reaction of the PURExpress delta ribosome kit #)$!



! "*!

(NEB). Translation reactions were analyzed on sucrose density gradients (10-55% 

sucrose in buffer A (50  mM HEPES-KOH, pH 7.4, 100 mM KOAc, 25 mM Mg(OAc)2, 

6 mM β-mercaptoethanol, 100 µM telithromycin and 1x Complete EDTA-free 

Protease Inhibitor cocktail (Roche)) by centrifugation at 154,693 × g (SW40 rotor, 

Beckman Coulter) for 3 h at 4°C. For ErmDL_R8K•70S complex purification, disome #)#!

fractions were collected using a Gradient Station (Biocomp) with an Econo UV 

Monitor (Biorad) and a FC203B Fraction Collector (Gilson). Purified ErmDL_R8K 

disomes were concentrated by centrifugation at 88,760 × g for 4 h at 4°C (TLA120.2 

rotor, Beckman Coulter). To obtain monosomes of the ErmDL_R8K•70S complex, a 

short DNA oligonucleotide (5′-ttcctccttataaaact-3′, Metabion) was annealed to the #*$!

linker between the ermDL_R8K cistrons, generating a DNA-RNA hybrid that could be 

cleaved by RNase H (NEB) treatment in buffer A at 25°C for 1 h. After cleavage of 

the disomes, ErmDL_R8K•70S complex monosomes were again purified and 

concentrated by centrifugation at 88,760 × g for 4 h at 4°C (TLA120.2 rotor, Beckman 

Coulter). #*#!

 

Generation of the B. subtilis Rel•SRC 

The B. subtilis Rel•SRC was assembled similarly to that used previously for the 

E. coli RelA•SRC14 (Supplementary Fig. 1). The B. subtilis Rel•SRC was formed 

using a final concentration of 0.125 µM ErmDL_R8K•70S complex monosomes, #+$!

0.625 µM B. subtilis Rel (N-terminal His6-tag), 0.625 µM tRNALys (Sigma-Aldrich), 

500 µM α, β-methylene-ATP (Sigma-Aldrich), 500 µM GDP and 10 µM telithromycin. 

All components were pre-dissolved in buffer A and the reaction was incubated at 

37°C for 20 min. 

 #+#!

Cryo-electron microscopy and single particle reconstruction 

A total of 5 A260/ml of the B. subtilis Rel•SRC was applied to 2 nm pre-coated 

Quantifoil R3/3 holey carbon supported grids and vitrified using a Vitrobot Mark IV 

(FEI, Netherlands). Data collection was performed using EM-TOOLS (TVIPS GmbH) 

on a Titan Krios transmission electron microscope equipped with a Falcon II direct ($$!

electron detector (FEI) at 300 kV at a pixel size of 1.084 Å and a defocus range of 

0.7-2.2 µm. Ten frames (dose per frame of 2.4 e−/Å2) were aligned using Motion 

Correction software30. Power-spectra, defocus values and astigmatism were 
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determined with CTFIND4 software31. Micrographs showing Thon rings beyond 4  Å 

were manually inspected for good areas and power-spectra quality. Automatic ($#!

particle picking was performed on 4,411 micrographs using Gautomatch 

(http://www.mrc-lmb.cam.ac.uk/kzhang/) and E. coli 70S as a template14. 2-

dimensional class averaging was performed to exclude non-ribosomal particles and 

then single particles were processed using RELION 2.132. 650,054 particles were first 

subjected to 3D refinement using B. subtilis 70S ribosome as reference structure33. ("$!

This was followed by 3D classification using RELION into 10 classes with 6 distinct 

subpopulations (Supplementary Fig. 2). Only subpopulation 1 (67,047 particles) had 

stoichiometric density for Rel and was further refined to yield a final reconstruction 

with an average resolution (at 0.143 FSC) of 4.5 Å (Supplementary Fig. 3a) with 

local resolution reaching to 3.8 Å (Supplementary Fig. 3b-c) within the core of the ("#!

ribosomal subunits. The other subpopulations 2-6 did not contain density for Rel, but 

rather had various combinations of A-, P- and E-site tRNAs (Supplementary Fig. 2). 

!

Molecular model of the B. subtilis Rel•SRC 

Homology models of the B. subtilis Rel TGS, RIS and ACT subdomains were (%$!

generated using Swiss-model34 and could be unambiguously rigid body-fitted using 

UCSF Chimera35  into the electron density of the cryo-EM map of the B. subtilis 

Rel•SRC (Supplementary Fig. 3d-i). The homology model for the TGS, ACT, and 

RIS subdomains of B. subtilis Rel were based on E. coli RelA•70S complex (PDB ID 

5IQR15). TGS (residues 390-469), RIS (residues 585-655) and ACT (residues 656-(%#!

731) correlated with E. coli template model residues 404-505, 594-662, 663-744 

respectively. In order to yield the best fit, each domain was fitted individually as a 

rigid body into the locally filtered density of the B. subtilis Rel•SRC (Supplementary 

Fig. 3d-i). The homology model for the AH subdomain of B. subtilis Rel was based 

on the AH subdomain from the E. coli RelA in the E. coli RelA•70S complex (PDB ID (&$!

5KPX13) (Supplementary Fig. 3h). The models for A/R-tRNA, P-tRNA and E-tRNA 

were taken from the E. coli RelA•70S complex (PDB ID 5IQR15) and also fitted as 

rigid-bodies into the cryo-EM map of the B. subtilis Rel•SRC complex 

(Supplementary Fig. 3e). The models for the B. subtilis ribosomal subunits were 

based on the PDB IDs 3J9W33 and 6HA136. (&#!
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Crystallization, data collection, and structure determination 

Purified BsRel∆RIS-CT was concentrated to an absorbance at 280 nm of 20 AU 

(NanoDrop Lite Spectrophotometer), corresponding to an estimated concentration of 

22.2 mg/ml, and subjected to crystallization by sitting drop vapor-diffusion at 20 °C. ('$!

Tetragonal bipyramidal crystals grew within one day in drops containing 1 µl 

BsRel∆RIS-CT and 1 µl crystallization buffer (1 M Lithium chloride, 0.1 M Bicine pH 

9.0, 10% PEG6000 (w/v), final pH 9.0). Crystals were transferred into crystallization 

buffer containing 20% (v/v) glycerol as cryo-protectant, subsequently flash frozen and 

stored in liquid nitrogen. Diffraction data was collected at beamline ID29 of the ('#!

European Synchrotron Radiation Facility (ESRF), Grenoble, France37. Data was 

processed with the XDS program package for data reduction38. Merging and scaling 

was performed using the AIMLESS program as implemented in the CCP4 package39. 

The BsRel∆RIS-CT dataset was solved by molecular replacement using the SdRel-

NTD crystal structure (PDB-ID: 1VJ720, chain B) via the CCP4 implemented program (#$!

Phaser40. Coot41 in combination with Refmac5 (CCP4 package) and phenix.refine 

(PHENIX package) was used for iterative model building and refinement42. Figures 

were prepared in PyMol. 

 

Crystallographic and cryo-EM data availability (##!

Cryo-EM maps have been deposited in the EMDB under accession codes XXX and 

XXX. Coordinates for the crystal structure of BsRel have been deposited at the PDB 

under the accession code 6HJ9. 

 

GST pull-down (($!

50 µl Glutathione Sepharose 4B beads (GE Healthcare) were washed with 1 ml 

binding buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl). The beads were 

resuspended in 500 µl binding buffer and 4 nmol GST-NTD protein was added for the 

coupling reaction to the beads for 20 min at 4 °C on a turning wheel. Beads were 

washed twice with 1 ml binding buffer. After discarding of the binding buffer, 1 ml pull ((#!

down buffer (50 mM Tris-HCl, pH 8.0, 5 mM MgCl2, 100 mM NaCl) was added to the 

beads. For the GST pull down in dependence of the NaCl concentration, pull down 

buffers with 500 mM, 300 mM, 200 mM and 100 mM NaCl were used. For the GST 

pull down in dependence of the presence of nucleotides, the buffer contained 50 mM 

Tris-HCl, pH 8.0, 5 mM MgCl2, 100 mM NaCl and nucleotides (ATP, GTP and/or ()$!



! %"!

pppGpp) each at a concentration of 1 mM. Subsequently, 8 nmol of the TGS-AH 

fragment was added and the beads were incubated for 20 min at 4 °C on a turning 

wheel to allow for complex formation. Beads were washed three times with the 

respective pull down buffer and proteins were eluted in 50 µl elution buffer (20 mM 

GSH, 50 mM Tris-NaOH, pH 8.0, 500 mM NaCl) for 3 min at 20 °C. Finally, beads ()#!

were pelleted in a tabletop centrifuge at 17300 x g for 3 min at 20° C and 15 µl of the 

eluate was analyzed on SDS-PAGE (15 % PAA). Band intensity was quantified by 

ImageJ43. 

 

Bacterial two-hybrid assay (*$!

Full-length and truncated versions of B. subtilis rel were subcloned from 

pET24d_His-Bsrel into BamHI digested plasmids, pUT18C and pKT25 (Euromedex) 

by Gibson assembly using oligonucleotides listed in Table M3. Bacterial two-hybrid 

experiments were performed as described previously44. Briefly, for each interaction 

experiment, E. coli BTH101 (containing a RelA mutation) was co-transformed with (*#!

two plasmids (pUT18C and pKT25 derivatives) selected on LB agar plates 

supplemented with 50 µg/ml kanamycin and 100 µg/ml ampicillin. Each interaction 

measurement is based on analyses of 6 independently isolated colonies from freshly 

transformed cells. Clones were inoculated in LB containing 5 mM IPTG and grown at 

30 °C overnight in a 24-well plate. OD600 was determined and 200 µl of each culture (+$!

transferred to 800 µl of Z-buffer (8 g of Na2HPO4 x 12H2O, 3.125 g of NaH2PO4 x 

H2O, 0.375 g of KCl, 0.123 g of MgSO4 x 7H2O dissolved in 500 ml distilled water, 

adjusted to pH 7, 1.35 ml β-mercaptoethanol is freshly added). 1 drop of 0.01% SDS 

and 2 drops of chloroform were added and 50 µl of the upper phase transferred to 

150 µl of Z-buffer in a 96-well plate. For each sample 40 µl of ortho-Nitrophenyl-β-(+#!

galactosidase (ONPG, 4 mg/ml final concentration) was added and A420 measured in 

30 intervals using microtiter plate reader Infinite M200 Pro (Tecan). The relative β-

galactosidase activity for each sample was determined by (OD420 at time t2 - OD420 at 

time t1)/ t2 – t1 (sec)/OD600. The time points t2 and t1 were chosen from the linear 

part of the kinetic. )$$!

 

Analytical size exclusion 

Proteins were purified by Ni-NTA and size exclusion chromatography, as described 

above. Due to the co-precipitation of Rel with cellular RNA species during protein 
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purification which might affect the migration behavior of Rel on SEC, we employed )$#!

the H420E Rel∆RIS-CT variant in the analytical SEC that does not interact and 

therefore do not co-precipitate with tRNA, as also recently observed for the EcRelA 

H432E variant22. Analytical size exclusion chromatography was performed using a 

Superdex 200 Increase 10/300 GL column (GE Healthcare) pre-equilibrated in size 

exclusion buffer (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 5% glycerol). The )"$!

calculated apparent molecular weights were derived from the calibration curve 

obtained from the Gel Filtration Calibration Kit (LMW, HMW; GE life sciences) 

according to the manufacturers protocol.  

 

Bio Layer Interferometry )"#!

The Rel-H420E protein and its truncation variants were purified as described above. 

All binding steps were performed in 20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 

200 µM MnCl2 on an Octet K2 System (Pall ForteBio). Ligand proteins were 

biotinylated using EZ-Link Sulfo-NHS-Biotin (Thermo Scientific #21217 LOT 

TD261836). The respective protein was incubated with a 2-fold molar excess of EZ-)%$!

Link for 20 min. Subsequently, the protein was desalted using a Zeba Spin Column 

(Thermo Scientific #89882 LOT TA262955). The biotinylated proteins were 

immobilized on Super Streptavidin (SSA) Biosensors (Pall ForteBio) by preparing 

200 µl of a 50 µM solution in a black 96-well plate (Greiner) and a loading step for 

900 s followed by a washing step for 30 s. The analyte was titrated form 30 µM to )%#!

3.75 µM in a 1:1 dilution series in 200 µl final volume. Measurements were repeated 

at least twice for each of the four concentrations. Association and dissociation was 

both measured for 600 s (except for delta_RIS-CT both was measured for 900 s). 

Baseline was recorded prior and after association/dissociation for 120 s in 20 mM 

HEPES-NaOH, pH 7.5, 500 mM NaCl, 200 µM MnCl2. For each measurement a )&$!

reference was recorded omitting the analyte in solution. For KD determination, the 

reference curves were subtracted from the sample curves. Subsequently, the binding 

and dissociation curves were fit to standard 1:1, 2:1 or 1:2 global binding models 

using the Pall ForteBio analysis software (specified in Supplementary Figure 9).  

 )&#!

Alarmone preparation, and Rel activity assay 

pppGpp was produced as described previously45. All Rel-H420E variants were 

purified as described above. Assays for pppGpp hydrolytic and synthetic activity of 
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Rel were carried out in 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM MnCl2 and 10 

mM MgCl2. 5 µM of Rel or its variants (see table M2) were incubated at 37°C in )'$!

presence of 1 mM of pppGpp for 10 min (hydrolysis) or 1 mM ATP and 1 mM GTP for 

60 min (synthesis). The reactions were stopped by adding two volume parts of 

chloroform followed by thorough mixing for 15 seconds subsequent incubation at 

95°C for 15 seconds and flash-freezing in liquid nitrogen. While thawing, the samples 

were centrifuged (17300 x g, 30 min, 4°C) and the aqueous phase analyzed by )'#!

HPLC on an Agilent 1100 Series system (Agilent technologies) equipped with a C18 

column (EC 250/4.6 Nucleodur HTec 3 µM; Macherey-Nagel). Nucleotides were 

eluted isocratically with a buffer containing 50 mM KH2PO4, 50 mM K2HPO4, 10 mM 

TPAB (tetrapentylammonium bromide) and 25% (v/v) acetonitrile and detected at 260 

nm wavelength in agreement with standards. pppGpp hydrolytic activity of Rel was )#$!

estimated by quantification of pppGpp. pppGpp synthetic activity of Rel was 

estimated by quantification of AMP released equimolar to the alarmone pppGpp 

during the reaction. All measurements were performed in duplicates. 

 

Cloning, strain construction, and B. subtilis growth assay )##!

ywaCE154V and yjbME139V mutations were introduced markerless into B. subtilis 168 

cells by successive transformation and recombination of plasmids pMAD-ywaCE154V 

and pMAD-yjbME139V prior to transformation of rel constructs46,47, yielding strain 

BHS_204. The rel gene was amplified from B. subtilis 168 genomic DNA and cloned 

into pDR11148 using the SalI and SphI restriction sites. Mutagenesis of rel was )($!

performed via overlap extension PCR and subsequent cloning as described above. 

Rel variants bearing the H77A, D78A or E324V mutation were first cloned in pMAD 

and subsequently amplified and cloned into pDR111. To generate pDR111-relH77A 

D78A E324V, a C-terminal fragment carrying E324V was amplified using primers 44, 63 

and used as a megaprimer in a second reaction with primer 42 with relH77A D78A as )(#!

template. The resulting plasmids (for primers and plasmids see table M3-5) were 

linearized by digestion with ScaI and transformed into naturally competent BHS204 

(ywaC
E154V yjbM

E139V) cells. Transformants were selected on 100 µg/ml spectinomycin and 

checked for loss of α-amylase activity. The resulting strains were subsequently 

transformed with a PCR-amplified fragment encoding ∆relA::erm12 and selected on 1 ))$!

µg/ml erythromycin, 25 µg/ml lincomycin to generate the pppGpp0 strain background. 

PCR and DNA sequencing confirmed the identity of the generated plasmids and 
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strains. Strains were grown in synthetic medium49 supplemented with 0.5 % 

casamino acids  (CAA) at 37 °C with orbital shaking at 200 rpm. At OD600 of 0.3, the 

medium was supplemented with 1 mM IPTG. After 30 min, cells were harvested by ))#!

centrifugation at 3680 xg for 5 min. Cells were resuspended in buffer TE (10 mM 

TRIS-HCl pH 8.0, 1 mM EDTA) and disrupted by sonication. 8 µg total cleared 

protein extract was analysed by SDS-PAGE and western blotting according. 

Polyclonal antibodies raised against BsHpf (Pineda Antibody Service), BsRelA-NTD 

(1-387) or rabbit IgG conjugated with HRP (Carl Roth, Karlsruhe, Germany) were )*$!

used in 5000-fold dilutions. Signals were detected using a ChemoStar imaging 

system (Intas, Göttingen, Germany). 

For the growth assay on agar plates, stationary-phase cultures were adjusted to an 

OD600 of 1.0  and serially diluted in 0.9 % NaCl. 5 µl cell suspension was spotted on 

LB agar plates with or without 1 mM IPTG. Plates were incubated at 37 °C over night )*#!

(18 h). 

 

Table M1 | Primers used for cloning of heterologous expression vectors  

ID Name sequence (5′-3′) 

0 Bsrel-BamHI-rev TAATGGATCCTTAGTTCATGACGCGGCGCAC 

1 Bsrel-NcoI-for TTAACCATGGCGAACGAACAAGTATTG 

2 Bsrel-H6-BamHI-rev TAATGGATCCTTAATGGTGATGGTGATGGTGGTTCATGACGCG

GCGCAC 

3 Bsrel-H6-NcoI-for TTAACCATGGGCCACCATCACCATCACCATAACGAACAAGTAT

TG 

4 Bsrel-H6-392-NcoI-for TTAACCATGGGCCACCATCACCATCACCATGACATGGTGTATG

TCTTTAC 

5 Bsrel-647-H6-BamHI-rev TAATGGATCCTTAGTGATGGTGATGGTGATGTTCCCACTCTAC

CGGG 

6 Bsrel-556-H6-BamHI-rev TAATGGATCCTTAATGGTGATGGTGATGGTGCTTTCTCTCTTTT

TCTG 

7 Bsrel-556-BamHI-rev TAATGGATCCTTACTTTCTCTCTTTTTCTG 

8 Bsrel-495-H6-BamHI-rev TAATGGATCCTTAATGGTGATGGTGATGGTGCTCACGGCCTTT

TTCGAC 

9 Bsrel-455-H6-BamHI-rev TAATGGATCCTTAATGGTGATGGTGATGGTGCTTAGAGGTGAG

AATTTC 

10 Bsrel-387-H6-BamHI-rev TAATGGATCCTTAATGGTGATGGTGATGGTGTGCATCTGTCGA

TTC 

11 Bsrel-387-BamHI-rev TAATGGATCCTTATGCATCTGTCGATTC 
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12 Bsrel-9-NcoI-for TTAACCATGGCCGAGCAAGTTATAG 

13 Bsrel-R125A-M127A-for GCGGAAAATCATGCCAAAGCGTTTGTCGCTATG 

14 Bsrel-R125A-M127A-rev CATAGCGACAAACGCTTTGGCATGATTTTCCGC 

15 Bsrel-R125E-M127E-for GCGGAAAATCATGAGAAAGAGTTTGTCGCTATG 

16 Bsrel-R125E-M127E-rev CATAGCGACAAACTCTTTCTCATGATTTTCCGC 

17 Bsrel-H420E-for CTTACCGGATTGAATCTGAAATCGGC 

18 Bsrel-H420E-rev GCCGATTTCAGATTCAATCCGGTAAG 

19 Bsrel-E380A-F381A-for GATGCAGAAGCAGCTATGGAATCGC 

20 Bsrel-E380A-F381A-rev GCGATTCCATAGCTGCTTCTGCATC 

21 Bsrel-E65R-for CGTTGATCTTCGTATGGACCCTTC 

22 Bsrel-E65R-rev GAAGGGTCCATACGAAGATCAACG 

23 Bsrel-F330R-for GATCCGCACCCGTGAAATGCATG 

24 Bsrel-F330R-rev CATGCATTTCACGGGTGCGGATC 

25 Bsrel-E334R-for GAAATGCATCGTATAGCGGAATAC 

26 Bsrel-E334R-rev GTATTCCGCTATACGATGCATTTC 

27 Bsrel-G283E-for CGCGGTGCTTGAAATCATTCACAC 

28 Bsrel-G283E-rev GTGTGAATGATTTCAAGCACCGCG 

29 Bsrel-Y279E-for CATAAAGGACTGCGAAGCGGTGCTTGGC 

30 Bsrel-Y279E-rev GCCAAGCACCGCTTCGCAGTCCTTTATG 

31 Bsrel-387-XhoI-rev TAATCTCGAGTTAAATTTTGAGCGATTCC 

 

Table M2 | Heterologous expression vectors  )+$!

plasmid cloning primers product purpose source 

pET24d_His-BsRel 3, 0 BsRel-His6-1-743 Cryo-EM this work 

pET24d_BsRel-

∆RIS-CT 

1, 6 BsRel-1-556-His6 crystalliza

tion 

this work 

pET24d_BsRel-

NTD 

2, 11 BsRel-His6-1-387 cloning this work 

pGAT_BsRel-NTD subcloned GST-BsRel-His6-1-387 pull-down this work 

pET24d_BsRel-

TGS-AH 

4, 7 BsRel-His6-392-556 pull-down this work 

pET24d_BsRel 1, 2 BsRel-1-743-H420E-His6 in vitro this work 

pET24d_BsRel-

∆ACT 

1, 5, 17, 18 BsRel-1-647-H420E-His6 in vitro this work 

pET24d_BsRel-

∆RIS-CT 

1, 6, 17, 18 BsRel-1-556-H420E-His6 in vitro this work 

pET24d_BsRel-

∆AHb-CT 

1, 8, 17, 18 BsRel-1-495-H420E-His6 in vitro this work 

pET24d_BsRel-

∆AH-CT 

1, 9, 17, 18 BsRel-1-455-H420E-His6 in vitro this work 
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pET24d_BsRel-

NTD 

1, 10 BsRel-1-387-His6 in vitro this work 

pET24d_BsRel-

∆N8 

12, 2, 17, 18 BsRel-9-743-H420E-His6 in vitro this work 

pET24d_BsRel- 

R125A-M127A 

1, 2, 13, 14, 17, 18 BsRel-1-743-

R125A/M127A/H420E-His6 

in vitro this work 

pET24d_BsRel- 

R125E-M127E 

1, 2, 15, 16, 17, 18 BsRel-1-743-

R125E/M127E/H420E-His6 

in vitro this work 

pET24d_BsRel- 

E380A-F381A 

1, 2, 19, 20, 17, 18 BsRel-1-743-

E380A/F381A/H420E-His6 

in vitro this work 

pET24d_BsRel-

E65R 

1, 2, 21, 22, 17, 18 BsRel-1-743-E65R/H420E-

His6 

in vitro this work 

pET24d_BsRel-

F330R 

1, 2, 23, 24, 17, 18 BsRel-1-743-

E380A/F381A/H420E-His6 

in vitro this work 

pET24d_BsRel-

E334R 

1, 2, 25, 26, 17, 18 BsRel-1-743-

F330R/H420E-His6 

in vitro this work 

pET24d_BsRel-

E65R-F330R-

E334R 

1, 2, 21-26, 17, 18 BsRel-1-743-

E65R/F330R/E334R/H420

E-His6 

in vitro this work 

pET24d_BsRel-

Y279E 

1, 2, 29, 30, 17, 18 BsRel-1-743-Y279E 

/H420E-His6 

in vitro this work 

pET24d_BsRel-

G283E 

1, 2, 27, 28, 17, 18 BsRel-1-743-G283E 

/H420E-His6 

in vitro this work 

pGAT_BsRel-NTD-

E65R 

2, 31, ampl. from 

pET24d_BsRel-E65R 

GST-BsRel-His6-1-387- 

E65R 

pull-down this work 

pGAT_BsRel-NTD- 

F330R 

2, 31, ampl. from 

pET24d_BsRel-F330R 

GST-BsRel-His6-1-387- 

F330R 

pull-down this work 

pGAT_BsRel-NTD- 

E334R 

2, 31, ampl. from 

pET24d_BsRel-E334R 

GST-BsRel-His6-1-387- 

E334R 

pull-down this work 

pGAT_BsRel-NTD- 

E65R-F330R-

E334R 

2, 31, ampl. from 

pET24d_BsRel-E65R-

F330R-E334R 

GST-BsRel-His6-1-387- 

E65R-F330R-E334R 

pull-down this work 

pGAT_BsRel-NTD- 

Y279E 

2, 31, ampl. from 

pET24d_BsRel-Y279E 

GST-BsRel-His6-1-387- 

Y279E 

pull-down this work 

pGAT_BsRel-NTD- 

G283E 

2, 31, ampl. from 

pET24d_BsRel-G283E 

GST-BsRel-His6-1-387- 

G283E 

pull-down this work 

 

Table M3 | Primers used for cloning of bacterial two-hybrid vectors  

ID Name sequence (5′-3′) 

32 Bsrel- pUT18c-for tgcaggtcgactctagagATGGCGAACGAACAAGTATTGAC 
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33 Bsrel- pUT18c-rev tcgagctcggtacccgggTTAGTTCATGACGCGGCGC 

34 Bsrel- pKT25-for gcagggtcgactctagagATGGCGAACGAACAAGTATTGAC 

35 Bsrel- pKT25-rev gttacttaggtacccgggTTAGTTCATGACGCGGCGC 

36 Bsrel-NTD-pUT18c-rev  tcgagctcggtacccgggTTAAATTTTGAGCGATTCCA 

37 Bsrel-NTD-pKT25-rev  gttacttaggtacccgggTTAAATTTTGAGCGATTCCA 

38 Bsrel-NTD-TGS-AH-

pUT18c-rev 

tcgagctcggtacccgggTTACTTTCTCTCTTTTTCTGTTAGGCG 

39 Bsrel-NTD-TGS-AH-

pKT25-rev  

gttacttaggtacccgggTTACTTTCTCTCTTTTTCTGTTAGGCG 

40 Bsrel-TGS-AH-pUT18c-

for 

tgcaggtcgactctagagGACATGGTGTATGTCTTTACGCC 

41 Bsrel-TGS-AH-pKT25-for gcagggtcgactctagagGACATGGTGTATGTCTTTACGCC 

 

Table M4 | Bacterial two-hybrid vectors  

plasmid primers insert purpose source 

pCG774 

(pUT18C) 

32, 33 BsRel Bacterial two-

hybrid 

this work 

pCG775 

(pKT25) 

34, 35 BsRel Bacterial two-

hybrid 

this work 

pCG776 

(pUT18C) 

32, 36 BsRel(1-387) Bacterial two-

hybrid 

this work 

pCG777 

(pKT25) 

34, 37 BsRel(1-387) Bacterial two-

hybrid 

this work 

pCG778 

(pUT18C) 

32, 38 BsRel(1-556) Bacterial two-

hybrid 

this work 

pCG779 

(pKT25) 

34, 39 BsRel(1-556) Bacterial two-

hybrid 

this work 

pCG780 

(pUT18C) 

40, 38 BsRel(392-556) Bacterial two-

hybrid 

this work 

pCG781 

(pKT25) 

41, 39 BsRel(392-556) Bacterial two-

hybrid 

this work 

 )+#!

Table M5 | Primers used for cloning of B. subtilis vectors  

ID Name sequence (5′-3′) 

42 SalI_SD_Bsrel_for ACGCGTCGACTTGGGGGATGTATGATGGCGAACGAACAAGTA

TTG 

43 SalI_SD2_Bsrel_for ACGCGTCGACAGGATGGTGCTGAATATGGCGAACGAACAAGT

ATTG 

44 SphI_Bsrel_rev ACATGCATGCTTAGTTCATGACGCGGCGCAC 
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45 SalI_SD2_Bsrel_∆N8 ACGCGTCGACAGGATGGTGCTGAATATGGCCGAGCAAGTTAT

AGATAAAGCAC 

46 sphI_Bsrel_∆RIS-CT ACATGCATGCTTACTTTCTCTCTTTTTCTGTTAGGC 

47 sphI_Bsrel_∆AH-CT ACATGCATGCTTACTTAGAGGTGAGAATTTCAACG 

48 sphI_Bsrel_∆TGS-CT ACATGCATGCTTAAATTTTGAGCGATTCCATAAATTC 

49 rel_R125E-M127E_for CAGGCGGAAAATCATGAAAAAGAATTTGTCGCTATGGCTC 

50 rel_R125E-M127E_rev GAGCCATAGCGACAAATTCTTTTTCATGATTTTCCGCCTG 

51 Bsrel_E380A-F381A_for CGACAGATGCAGAAGCAGCAATGGAATCGCTCA 

52 Bsrel_E380A-F381A_rev TGAGCGATTCCATTGCTGCTTCTGCATCTGTCG 

53 BsyjbM-flk1-EcoRI-F TTAAGAATTCCCGCCCTGTAAATCTTATTT 

54 BsyjbM -flk1-R TCCCATTGTTTGTCATCCATCATACATCCCCCAATTCCGA 

55 BsyjbM -flk2-F AAGGAAGCGAGCAACAATAGGTAAAGGGGAAGAAGAGCA 

56 BsyjbM -flk2-NcoI-R AATTCCATGGGTGCTGCCTGATGGAGTTGA 

57 BsyjbM -E139V-F GAAAAGCATGTTCTCGTAGTAATACAGATCCGTACAC 

58 BsyjbM -E139V-R GTGTACGGATCTGTATTACTACGAGAACATGCTTTTC 

59 BsywaC -EcoRI-F TTAAGAATTCATGGATTTATCTGTAACAC 

60 BsywaC +fla-NcoI-R TTAACCATGGAATCCAGCCGTACGGCTGC 

61 BsywaC -E154V-F GTCAAAGCAGTAATTC 

62 BsywaC -E154V-R GAATTACTGCTTTGAC 

63 BsRelA-F330R-E334R-F ATCCGCACCCGTGAAATGCATCGTATAGCGGAATAC 

64 BsRelA-F330R-E334R-R GTATTCCGCTATACGATGCATTTCACGGGTGCGGAT 

 

Table M6 | Primers used for sequencing of B. subtilis vectors and strains 

ID Name sequence (5′-3′) 

65 rel_up_for GTGTGCTGTCTGTTGTGAGC 

66 rel_do_rev CAAAACGGCAAAACTGCTCG 

67 ywaC_seq GAACCTTGCAGCAGACAGGG 

68 ywaC_do_rev CTATGACGCCAAACCTGTCG 

69 ywaC_up_for TTGCCTATGGATCCAGATCGC 

70 yjbM_up_for CTGATACCTCTGAAAGCTGC 

71 yjbM_do_rev CCTTATTGTAGGCTGTGCTG 

72 yjbM_seq GCAAACTATGGAGAAGAAATGG 

73 Pspacseq GTTGACTTTATCTACAAGGTGTGGC 

74 lacI_rev CGGCATACTCTGCGACATCG 

75 rel_intra_seq TACGATTTGTTGGCTGTCCG 

 

Table M7 | B. subtilis strains  *$$!

strain detail genotype source 

B. subtilis wildtype trpC2 Spizizen, 
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168 195846 

BHS_204 ywaC, yjbM inactive trpC2 ywaC(E154V) yjbM(E139V) this work 

BHS_214 (p)ppGpp0, rel knockout trpC2 ywaC(E154V) yjbM(E139V) rel::erm this work 

BHS_624 (p)ppGpp0, rel knockout, 

rel dead-Syn expression 

trpC2 amyE::Phy-rel E324V spec  

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_625 (p)ppGpp0, rel knockout, 

rel dead-Hyd expression 

trpC2 amyE::Phy-rel H77A D78A spec  

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_752 (p)ppGpp0, rel knockout, 

rel dead-Syn+Hyd 

expression 

trpC2 amyE::Phy-rel H77A D78A E324V 

spec  ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_923 (p)ppGpp0, rel knockout, 

rel complementation 

trpC2 amyE::Phy-rel spec ywaC(E154V) 

yjbM(E139V) rel::erm 

this work 

BHS_924 (p)ppGpp0, rel knockout, 

rel∆N8 expression 

trpC2 amyE::Phy-rel 9-734 spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_926 (p)ppGpp0, rel knockout, 

rel∆RIS-CT expression 

trpC2 amyE::Phy-rel 1-556 spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_928 (p)ppGpp0, rel knockout, 

rel∆AH-CT expression 

trpC2 amyE::Phy-rel 1-455 spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_929 (p)ppGpp0, rel knockout, 

relNTDexpression 

trpC2 amyE::Phy-rel 1-387 spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_930 (p)ppGpp0, rel knockout, 

rel-R125E/M127E 

expression  

trpC2 amyE::Phy-rel R125E M127E spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_931 (p)ppGpp0, rel knockout, 

rel-E380A/F381A 

expression 

trpC2 amyE::Phy-rel E380A F381A spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_979 (p)ppGpp0, rel knockout, 

rel-E65R expression 

trpC2 amyE::Phy-rel E65R spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_980 (p)ppGpp0, rel knockout, 

rel-Y279E expression 

trpC2 amyE::Phy-rel Y279E spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_981 (p)ppGpp0, rel knockout, 

rel-G283 expression 

trpC2 amyE::Phy-rel G283 spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_982 (p)ppGpp0, rel knockout, 

rel-F330R expression 

trpC2 amyE::Phy-rel F330R spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_983 (p)ppGpp0, rel knockout, 

rel-E334R expression 

trpC2 amyE::Phy-rel E334R spec 

ywaC(E154V) yjbM(E139V) rel::erm 

this work 

BHS_985 (p)ppGpp0, rel knockout, 

rel-E65R F330R E334R 

expression 

trpC2 amyE::Phy-rel E65R F330R E334R 

spec ywaC(E154V) yjbM(E139V) rel::erm 

this work 
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Table M8 | B. subtilis vectors  

plasmid Cloning primers source 

pDR111-rel 43, 44 this work 

pDR111-rel∆N8 44, 45 this work 

pDR111-rel∆RIS-CT 1-556 43, 46 this work 

pDR111-rel∆AH-CT 1-469 43, 47 this work 

pDR111-relNTD 1-387 43, 48 this work 

pDR111-rel R125E M127E  43, 44, 49, 50 this work 

pDR111-rel E380A F381A 43, 44, 51, 52 this work 

pDR111-rel E65R 43, 44, 21, 22 this work 

pDR111-rel F330R 43, 44, 23, 24 this work 

pDR111-rel E334R 43, 44, 25, 26 this work 

pDR111-rel E65R F330R E334R 43, 44, 21, 22, 63, 64 this work 

pDR111-rel Y279E  43, 44, 29, 30 this work 

pDR111-rel G283E 43, 44, 27, 28 this work 

pDR111-rel E380A 43, 44 this work 

pDR111-rel E324V 52, 44 this work 

pDR111-rel  H77A D78A 42, 44 this work 

pDR111-rel  H77A D78A E324V 42, 44 this work 

pMAD-ywaCE154V 59 - 62 this work 

pMAD-yjbME139V 53 - 58 this work 
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Table 1: Crystallographic table Rel∆RIS-CT 
 
Data collection  

         Space group P 43 21 2 

         Cell dimensions  

         a, b, c (Å) 130.152 

 130.152 

 157.621 

         α, β, γ (°) 90.00 

 90.00 

 90.00 

         Energy (Å) 0.979 

         Resolution (Å) 46.82  - 3.95 

 (4.09  - 3.95) 

         No. unique reflections 12293 (1147) 

         Redundancy 14.2 (13.2) 

         Completeness (%) 99.28 (93.74) 

         I / σI 10.04 (1.13) 

         Rmerge 0.156 (1.890) 

         Rpim 0.043 (0.528) 

         CC(1/2) 0.996 (0.492) 

Refinement  

         Reflections  12293 (1138) 

         Reflections (Rfree) 1206 (94) 

         Rwork 26.01 

         Rfree 27.25 

         No. atoms 4369 

             Macromolecule 4368 

             Ligand 1 

             Water 0 

         R.m.s deviations  

             Bond lengths (Å) 0.004 

             Bond angles (°) 0.93 

         Ramachandran (%)  

             Preferred 95.1 

             Allowed 4.9 

             Outliers 0.00 

         Rotamer outliers (%) 0.84 

*Statistics for the highest-resolution shell are 

shown in parentheses. 
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Figure 1 | Cryo-EM structure of the B. subtilis Rel•SRC. a, Domain architecture of 

BsRel and EcRelA. The domains of BsRel are colored coded blue (Hyd), green 

(Syn), orange (TGS), red (AH), pink (RIS) and light blue (ACT). Boundaries of Rel +*$!

truncations employed in this study are indicated. EcRelA is shown grey below. b, 

Cryo-EM structure of the BsRel•SRC. The 50S (grey) and 30S (beige) and BsRel 

(coloring as in panel a) are shown in cartoon representation. The dot-framed 

transparent region indicates the estimated configuration of the NTD. The A/R-tRNA 

(green), P-tRNA (yellow) and E-tRNA (purple) are shown in sphere representation. c, +*#!

isolated view on the BsRel•A/R-tRNA conformation on the ribosome and d, 

comparison to the conformation observed for EcRel•A/R-tRNA on the ribosome13 

(grey). 
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Figure 2 | Crystal structure of B. subtilis Rel∆RIS-CT. a, Analytical SEC of 

Rel∆RIS-CT (blue) and Rel-NTD (green). The corresponding SDS-PAGEs are shown ++#!

adjacent to the respective peaks. b, Crystal structure of Rel∆RIS-CT (cartoon 

representation). Color-coding of the individual domains as in Fig 1a. c, Rel∆RIS-CT 

homodimer. The symmetry mate Rel∆RIS-CT is shown in charged surface 

representation. d, Superimposition of the Rel∆RIS-CT (blue cartoon) TGS domain 

with the TGS (orange cartoon) bound to the A/R-tRNA (green backbone), as "$$$!

observed at the ribosome. The symmetry mate dimer partner Rel∆RIS-CT is shown 

in a grey surface representation. e, close-up view of the in trans TGS-AH/NTD 

interface in two, 180° rotated, views. 
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Figure 3 | Homodimerization of Rel. a, GST pull-down assaying the salt-dependent 

interaction of the GST-NTD and the TGS-AH. b, Bio Layer Interferometry of Rel 

variants. The color code is as in Fig. 1a. Only interactions with a KD < 50 µM are 

shown. Data, fit and detailed interaction parameters are given in Supplementary Tab. "$"#!

2 and Supplementary Fig. 9. c, Bacterial two-hybrid assay of different Rel variants. 

The signal is given in miller units. Error bars indicate standard deviation of six 

independent biological replicates.  
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Figure 4 | Conformational dynamics of Rel. a, Shown is the ribosome free 

conformation of BsRel (colored cartoon; this study) aligned via the NTD to ribosome-

bound state of EcRelA (grey cartoon; PDB-ID: 5KPV13). Arrows indicate observed "$'$!

rearrangements of the TGS and AH domains. The rearrangement of the AH domain 

and the joint helices is emphasized in the framed panels. 
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Figure 5 | NTD of BsRel is in the Hyd ‘ON’ and Syn ‘OFF’ state. Superimposition "$'#!

of BsRel∆RIS-CT (colored cartoon representation; this study) and the NTDs (beige 

cartoon representation) of EcRelA (upper panel; PDB-ID: 5KPV13) and SdRel (chain 

A (middle) and chain B (lower panel)) according to the C3HB in two 90° rotated 

views; PDB-ID 1VJ720). The symmetry mate dimer partner of BsRel∆RIS-CT is 

shown in a grey cartoon representation. Arrows indicate observed structural "$#$!

rearrangements in the NTD. 
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Figure 6 | In vitro dissection of Rel regulation. a, Crystal structure of Rel "$##!

indicating the analyzed truncation and amino acid substitution variants. b, in vitro 

pppGpp synthesis (upper panel) and hydrolysis (lower panel) activity of Rel variants. 

Error bars indicate standard deviations derived from two individual measurements. c, 

GST pull-down assaying the interaction of wildtype and NTD variants with the TGS-
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AH. Left: relative interaction strengths compared to WT-NTD, as derived from four "$($!

individual experiments and by TGS-AH band intensity quantification with the ImageJ 

program. Error bars indicate standard deviations. Right: Representative SDS-Page of 

the pull-down assay. 
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Figure 7 | In vivo dissection of Rel regulation. a, In vivo growth assay of rel-

mutant expressing B. subtilis pppGpp0 strains. “cat. dead” refers to variants of Rel in 

which Syn (E324V), Hyd (H77A/D78A) or both were catalytically inactivated. The 

produced Rel variants are indicated above. Upper panel: IPTG induced rel-mutant 

expression. Lower panel: Control without IPTG induction. Growth reduction is "$*$!

indicative of high levels of (p)ppGpp. b, Western blots assaying the production of Rel 

variants (upper panels, α-Rel) and the (p)ppGpp induced production of the ribosome 

hibernation factor HPF (lower panels, α-HPF).  
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Figure 8 | Model of Rel regulation. During relaxed conditions, i.e. high availability of "$+#!

amino acids and low abundance of deacyl-tRNAs, Rel resides in a homodimeric Hyd 

‘ON’ / Syn ‘OFF’ state (left). Upon reception of uncharged tRNAs, the Rel•deacyl-

tRNA complex is formed to recognize the SRC but remains in the Hyd ‘ON’ / Syn 

‘OFF’ state (middle). Stringent conditions (amino acid starvation) result in an increase 

of uncharged tRNAs, priming Rel for interaction with translationally stalled ribosomes ""$$!

that present a matching A-site codon. Accommodation of the CTD in the SRC leads 

to the activity switch in the NTD for alarmone production and SR signaling (right).  

 
 



! "!

Supplementary Data 

 

Stringent response control by a bifunctional RelA enzyme in the presence and 

absence of the ribosome 

 

Patrick Pausch1, Maha Abdelshahid2, Wieland Steinchen1, Heinrich Schäfer3, Fabio 

Lino Gratani4, Sven-Andreas Freibert5, Christiane Wolz4, Kürşad Turgay3*, Daniel N. 

Wilson2,* and Gert Bange1,* 

 
1 Center for Synthetic Microbiology & Dep. Of Chemistry, Hans-Meerwein-Strasse, 

C07, Philipps-University Marburg, Marburg, Germany 
2
! Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, 

Germany. 
3 University of Hannover, Institute for Microbiology, Herrenhäuser Strasse 2, 

Hannover, Germany 
4
!Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 

Tübingen, Germany 
5 Center for Synthetic Microbiology & Institute für Cytobiology und Cytopathology, 

Philipps-University Marburg, Marburg, Germany    

 

*Correspondence: Gert.Bange@synmikro.uni-marburg.de, 

Daniel.Wilson@chemie.uni-hamburg.de and Turgay@ifmb.uni-hannover.de 

 

   

 

 

 

 

 

 

 

 

 

 

 



! #!

 

 

 

 

 

 

 

 

 

Supplementary Figure 1 | Generation of a B. subtilis Rel•70S ribosome 

complex. a, The bicistronic 2XermDL_R8K mRNA was translated in the presence of 

100 µM telithromycin (TEL) in order to generate, b, disomes of the ErmDL_R8K 

stalled ribosomal complex (SRC). c, ErmDL_R8K•SRC disomes were converted to 

monosomes by antisense DNA-mediated RNase H cleavage, as shown by sucrose 

density gradient centrifugation and negative stain electron microscopy (EM). d, The 

A-site tRNA deficient ErmDL_R8K•SRCs were used as substrate for, e, Rel binding 

in the presence of deacylated tRNALys, GDP and α, β-methylene-ATP to generate the 

RelA-SRC. 
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Supplementary Figure 2 | In silico sorting scheme of the cryo-EM dataset of the 

Rel•70S complex. After removal of non-aligning and edge particles from the dataset, 

3D classification yielded six distinct subpopulations. The first subpopulation (10.3%; 

67,047 particles) contained stoichiometric density for Rel, A/R-tRNA, P-tRNA and E-

tRNA and was therefore further refined to obtain a cryo-EM map of the Rel•SRC. The 

remaining datasets had no density for Rel but contained different combinations of A-, 

P- and E-tRNAs: Subpopulation two (25.3%; 164,400 particles) contained P-tRNA 

and E-tRNA, whereas subpopulation three (9.1%; 59,100 particles) contained A-

tRNA and P-tRNA. Subpopulation four (12.5%; 81,200 particles) contained only E-

tRNA, whereas subpopulation five (33.4%; 217,000 particles) contained A-, P- and E-

tRNAs. Subpopulation six (8.9%; 57,800 particles) contained only A-tRNA. 
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Supplementary Figure 3 | Resolution of the cryo-EM reconstruction of the 

Rel•70S complex. a, Fourier-shell correlation (FSC) curve of the refined final map, 

indicating the average resolution of the cryo-EM map of the Rel•70S complex at FSC 

0.143 is 4.5 Å. b, Overview and, c, transverse section of the cryo-EM map of the Rel-

70S complex colored according to the local resolution. d-e, Cryo-EM density for the 

Rel and A/R-tRNA, d, colored according to local resolution and, e, as mesh with fitted 

models. f-I, Cryo-EM density (mesh) with fitted models for, f: RIS (pink), g: ACT 

(salmon), h: AH (magenta) and, i: TGS (purple) subdomains of RelA. 
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Supplementary Figure 4 | Interactions of B. subtilis Rel with the ribosome and 

A/R-tRNA. a, Interaction of RIS (pink) domain of Rel with 23S rRNA helix H38 (grey) 

of large subunit and uS19 (blue) of small subunit. b, Interaction of ACT (salmon) 

domain of Rel with 23S rRNA H38 (grey) and H43 (orange), uL16 (cyan) of the large 

subunit as well as the D-loop of the A/R tRNA (olive). c, The TGS (purple) domain of 

Rel appears to interact with the 16S rRNA helices h5 and h15 of the small subunit, as 

well as the deacylated CCA-end of the A/R-tRNA (olive). 
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Supplementary Figure 5 | Comparison of NTD of B. subtilis Rel and E. coli 

RelA. a-b, Overview of the cryo-EM map of the B. subtilis Rel•70S complex. a, 

filtered according to local resolution and, b, with isolated cryo-EM density for 

B. subtilis Rel-NTD filtered to 12 Å. c-e, Comparison of B. subtilis Rel NTD from (b) 

with: c, E. coli RelA-NTD (blue, EMD-4001), d, E. coli RelA-NTD (pink, EMD-8282), 

and e, both E. coli RelA-NTD (blue, EMD-4001) and E. coli RelA-NTD (pink, EMD-

8282). In c-e, the density for the E. coli RelA-NTD was filtered to 12 Å. In a-e, the 

30S (yellow) and 50S subunit (grey) as well as P-tRNA (cyan), A/R-tRNA (green) and 

B. subtilis Rel (purple) are shown for reference.  
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Supplementary Table 1 | Cryo-EM data collection and model refinement 

statistics 

 

Data Collection and Refinement  

Particles 59,987 
Pixel size (Å) 1.084 

Defocus range (µm) 0.7-2.2 
Voltage (kV) 300 

Electron dose (e-/Å2) 28 

Model Composition  

Protein residues 6002 

RNA bases 4803 

Refinement  

Resolution (Å) 4.5 
Map sharpening B factor (Å2) -164 

Box size 360x360x360 

Validation Proteins  
Poor rotamers (%) 0.92 
Ramachandran outliers (%)           1.95 

Ramachandran favored (%) 91.77 
Bad backbone bonds (%) 0.01 

Bad backbone angles (%) 0.08 

Validation RNA  

Correct sugar puckers (%) 98.46 

Good backbone conformations (%) 76.11 

Bad bonds (%) 0.02 

Bad angles (%) 0.03 

Scores  

MolProbity score 2.12 (69th percentile) 
Clash score, all atoms 13.19 (57th percentile) 

! !

!

!

!

!

!

!

!

!

!

!

!

!



! )!

!

!

Supplementary Figure 6 | Rel∆RIS-CT electron density maps. a, b and c: refined 

2Fo-Fc map at 1.1 σ (blue mesh, right panels) and Fo-Fc map at 4 σ (green mesh 

indicates positive density, red mesh indicates negative density; right panels) 

illustrating the observed electron density around the highlighted framed regions (left 

panels). The structure of Rel∆RIS-CT is shown in the left panels in a cartoon 

representation and colored according to the main text figures (blue Hyd, green Syn, 

orange TGS and red AH). a, crystal packing contacts are highlighted by the framed 

regions that specify the identity of the contacted domains. 
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Supplementary Figure 7 | Analytical size-exclusion chromatography. a, SEC 

profile measured at 280 nm wavelength (Superdex 200, 10/300 GL) of Rel∆RIS-CT 

(blue) and Rel-NTD (green). b, calculated molecular weight and oligomerization state 

according to the calibration standard (c and d). c, calibration standard 

chromatograms of Ferritin (F), Aldolase (Ald), Conalbumin (C), Ovalbulmin (O), Carb. 

anh. (CA), RNase A (R), Aprotinin (Apr). 
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Supplementary Figure 8 | GST-pulldown in the presence of nucleotides. Shown 

is the SDS-PAGE of the GST pull-down (GST-NTD vs. TGS-AH) in dependence of 

the presence of nucleotides. The elution fractions were loaded according to the 

scheme shown above. 
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Supplementary Table 2 | Bio Layer Interferometry interaction parameters 

ligand analyte KD1 

(µM) 

kon1 (M
-

1
s

-1
) 

Koff1 (s
-1

) KD2 (µM) kon2 (M
-1

s
-1

) Koff2 (s
-1

) 

Full length Full length 10.6 
± 0.2 

28.2 
± 0.5 

3x10-4  

± 4.2x10-6 
82.3 
± 5.2 

755.2 
± 43.3 

6.2x10-2  

± 1.6x10-3 

∆RIS-CT ∆RIS-CT 4.9 
± 0.01 

114.3  
± 0.2 

5.64x10-4  

± 1.32x10-6 
- - - 

TGS-AH TGS-AH 129  
± 7 

106  
± 39.1 

0.14  
± 6x10-3 

- 9.7x10-4 

± 1.6x10-5 
9.2x10-4  

± 2.5x10-3 

NTD NTD 43.1  
± 0.3 

7.5  
± 0.5 

3.2x10-4  

± 7.5x10-6 
799.2 
± 279.2 

93.9  
± 32.7 

7.5x10-2  

± 2.5x10-3 

TGS-AH NTD 4.8  
± 0.1  

98.4 
± 0.3 

4.7x10-4  

± 4.7x10-6 
10.7  
± 0.2 

1.5x103 

± 2.4x101 
1.6x10-2  

± 2.0x10-4 
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 Supplementary Figure 9 | Bio Layer Interferometry. Experimental data (black) 

and respective fittings (red) of the four titration steps for each protein couple. Only 

association and dissociation steps (divided by green dashed line) are shown. Table 

contains steady state analyses and used fitting parameters.  
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Structure of the Bacillus subtilis hibernating 100S

ribosome reveals the basis for 70S dimerization
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Abstract

Under stress conditions, such as nutrient deprivation, bacteria

enter into a hibernation stage, which is characterized by the

appearance of 100S ribosomal particles. In Escherichia coli, dimer-

ization of 70S ribosomes into 100S requires the action of the ribo-

some modulation factor (RMF) and the hibernation-promoting

factor (HPF). Most other bacteria lack RMF and instead contain a

long form HPF (LHPF), which is necessary and sufficient for 100S

formation. While some structural information exists as to how RMF

and HPF mediate formation of E. coli 100S (Ec100S), structural

insight into 100S formation by LHPF has so far been lacking. Here

we present a cryo-EM structure of the Bacillus subtilis hibernating

100S (Bs100S), revealing that the C-terminal domain (CTD) of the

LHPF occupies a site on the 30S platform distinct from RMF. More-

over, unlike RMF, the BsHPF-CTD is directly involved in forming the

dimer interface, thereby illustrating the divergent mechanisms by

which 100S formation is mediated in the majority of bacteria that

contain LHPF, compared to some c-proteobacteria, such as E. coli.
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Introduction

The translational activity of the bacterial cell is able to respond

rapidly to a variety of environmental cues. This is exemplified by the

decrease in translational activity observed in bacteria entering into

stationary growth phase due to stress conditions, such as nutrient

deprivation. Under such circumstances, the decrease in translational

activity is correlated with the appearance of 100S particles, which

arise due to the dimerization of 70S ribosomes (Wada et al, 1990),

reviewed by Yoshida and Wada (2014). In E. coli, 100S formation

requires the presence of the ribosome modulation factor (RMF) and

the hibernation-promoting factor (HPF, previously referred to as

YhbH; Yamagishi et al, 1993; Wada et al, 1995; Maki et al, 2000;

Ueta et al, 2005, 2008). Stationary phase E. coli cells also express a

homolog of HPF (Fig 1A), termed YfiA (also referred to as pY or

RaiA), which binds and inactivates 70S ribosomes (Agafonov &

Spirin, 2004; Vila-Sanjurjo et al, 2004), and is antagonistic to RMF

and HPF action by preventing 100S formation (Maki et al, 2000;

Ueta et al, 2005). The hibernation state (Yoshida et al, 2002)

appears to be important for bacterial survival since inactivation of

the rmf gene leads to loss of viability in stationary phase cells

(Yamagishi et al, 1993; Wada et al, 2000; Shcherbakova et al, 2015)

as well as increased sensitivity to osmotic (Garay-Arroyo et al, 2000),

heat (Niven, 2004), and acid stress (El-Sharoud & Niven, 2007).

Phylogenetic analyses have revealed that the presence of RMF and

HPF is restricted to a subset of c-proteobacteria, including E. coli,

whereas the majority of other bacteria lack both RMF and YfiA, and

instead contain a long form of HPF (LHPF; Fig 1A; Ueta et al, 2008,

2013; Yoshida & Wada, 2014). LHPFs comprise an N-terminal domain

(NTD) homologous to the short form HPF (SHPF) and a unique

C-terminal domain (CTD; Fig 1A), which was proposed to have weak

homology with RMF (Ueta et al, 2010). LHPFs have been shown to be

necessary and sufficient for 100S formation in a variety of different

bacteria, including Staphylococcus aureus (Ueta et al, 2010, 2013; Basu

& Yap, 2016), Lactobacillus paracasei, Thermus thermophilus (Ueta

et al, 2010, 2013), Lactococcus lactis (Puri et al, 2014), and B. subtilis

(Tagami et al, 2012; Akanuma et al, 2016). Unlike E. coli SHPF-100S

(Ec100S), low levels of LHPF-containing 100S are also observed in

exponentially growing cells (Ueta et al, 2010, 2013; Akanuma et al,

2016). Proteomics studies indicate that expression levels of BsLHPF

increase under conditions of nutrient deprivation, but also in response

to antibiotics, heat, salt, and ethanol stress (Drzewiecki et al, 1998;
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Reiss et al, 2012; Tagami et al, 2012). In Listeria monocytogenes, LHPF

is necessary for tolerance of bacteria to aminoglycoside antibiotics

during stationary phase (McKay & Portnoy, 2015) and for optimal

fitness and pathogenesis (Kline et al, 2015).

Cryo-EM and cryo-electron tomography (cryo-ET) structures of the

Ec100S have revealed that the 70S monomers interact with each other

via the back of the 30S subunits (Kato et al, 2010; Ortiz et al, 2010),

consistent with earlier negative stain images (Wada, 1998; Yoshida

et al, 2002). Unfortunately, the low resolution (18–38 Å) of these

structures was insufficient to resolve the binding positions of the RMF

and SHPF proteins within the Ec100S (Kato et al, 2010; Ortiz et al,

2010). However, structures of E. coli SHPF and RMF were subsequently

determined on the T. thermophilus 70S ribosome by X-ray crystallogra-

phy (Polikanov et al, 2012), providing insight into how SHPF and RMF

dimerize 70S ribosomes and inactivate translation in c-proteobacteria.

To date, there is, however, little structural information available as to

how LHPFs interact with 70S ribosomes to mediate 100S formation in

the majority of bacteria other than E. coli and its close relatives.

Here we present a cryo-EM structure of the B. subtilis 100S particle

(Bs100S) revealing the binding site for the BsHPF (also referred to as

YvyD). The BsHPF-NTD binds in a position overlapping the mRNA,

A- and P-tRNAs, analogous to YfiA, SHPF, and the NTD of the LHPF

from spinach chloroplasts (Vila-Sanjurjo et al, 2004; Sharma et al,

2007, 2010; Polikanov et al, 2012; Graf et al, 2016; Bieri et al, 2017),

indicating how LHPFs inhibit translation (Ueta et al, 2013; Basu &

Yap, 2016). Unexpectedly, we observe that the BsHPF-CTD forms a

homodimer with the CTD of the BsHPF from the second 70S ribosome,

thus providing a structural basis for LHPF-mediated 100S formation.

Our findings reveal that 100S formation mediated by RMF and HPF in

c-proteobacteria, such as E. coli, is mechanistically unrelated to 100S

formation mediated by LHPF in the majority of other bacteria.

Results

Cryo-EM structure of Bs100S

Bs100S ribosomal particles were isolated from lysates of late

exponential phase cells using sucrose density gradient

centrifugation (Fig EV1A, see Materials and Methods). Negative

stain electron microscopy images of the isolated Bs100S revealed

the characteristic dimer arrangement of 70S monomers interact-

ing via their 30S subunits (Fig EV1B), as observed previously for

B. subtilis (Tagami et al, 2012), Lactococcus lactis (Puri et al,

2014), but distinct from Ec100S (Wada, 1998; Yoshida et al,

2002; Kato et al, 2010). The presence of the BsHPF (YvyD) in

the Bs100S was further confirmed using mass spectrometry. The

LHPF-containing 100S particles were then subjected to single

particle cryo-EM analysis (see Materials and Methods). Process-

ing of the Bs100S was performed by aligning the 70S ribosomes

within each 100S to a vacant 70S reference. The box size was

maintained large enough so that the majority of the small 30S

subunit of the second 70S ribosome in the dimer would also be

represented during the reconstruction. The initial reconstructions

revealed significant flexibility in the 100S, which was indicated

by a stable aligned ribosome (70S-A) with a blurred density for

the second 70S ribosome (70S-B). By implementing in silico sort-

ing procedures, we were able to obtain a subpopulation of 100S

particles with better-defined density for the 70S-B ribosome

(Fig EV2). Subsequent refinement yielded a cryo-EM reconstruc-

tion of the Bs70S-30S subcomplex (Fig 1B and C) with an aver-

age resolution of 3.8 Å (Fig EV3A–D and Table EV1). Local

resolution calculations indicate that the resolution for the 70S-A

monomer ranges in the core between 3.5 and 5.0 Å, whereas, as

expected, the resolution for 70S-B is worse, ranging between 5.0

and 10 Å (Fig EV3B and C). The cryo-EM map was fitted with

the molecular model of the B. subtilis 70S ribosome (Sohmen

et al, 2015), revealing that the 70S-A monomer adopts a classic

non-rotated state, as observed previously (Sohmen et al, 2015).

Moreover, the swivel of head observed when E. coli SHPF and

RMF bind to T. thermophilus 70S ribosomes (Polikanov et al,

2012) is not observed in the Bs100S, indicating that dimerization

of B. subtilis 70S ribosomes, unlike E. coli, does not require head

movement. After fitting of the 70S models, two unassigned

densities remained, one located within the intersubunit space of

the 70S-A ribosome and a second located on the back of the 30S

platform at the interface of the 70S-A and 70S-B ribosomes

(Fig 1B and C).

A B C

Figure 1. Cryo-EM reconstruction of the Bs70S-30S subcomplex.

A Schematic representation of the domain structure of Escherichia coli short form HPF (SHPF), RMF, and YfiA (C-terminal extension in yellow) compared to Bacillus

subtilis long form HPF (LHPF) harboring an N-terminal (NTD, green) and C-terminal domains (CTD, red).

B, C Two views of the cryo-EM map of the Bs70S-30S subcomplex, with separated densities for the 30S-A (yellow), 50S-A (gray), 30S-B (orange), and additional densities

in green and red.
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Binding site of the BsHPF-NTD on the small 30S subunit

The additional map density within the intersubunit space located

between the head and body of the 30S subunit was assigned to the

N-terminal domain of BsHPF (BsHPF-NTD; Fig 2A). This was based

on the high sequence similarity of the BsHPF-NTD with E. coli YfiA

and HPF (Fig EV1C), both of which were shown to bind to this

region of the ribosome (Vila-Sanjurjo et al, 2004; Polikanov et al,

2012). The local resolution of the BsHPF-NTD ranged between 3.5

and 5.0 Å (Fig EV3F–G), enabling an unambiguous fit of the homol-

ogy model to the density (Fig 2B). Aligning the E. coli SHPF-70S

structure (Polikanov et al, 2012) to the 70S-A ribosome in the

Bs100S based on the 16S rRNA revealed the expected similarity in

their binding positions (Fig 2C). As noted previously for E. coli YfiA

and HPF (Vila-Sanjurjo et al, 2004; Polikanov et al, 2012) and for

the NTD of the LHPF from Spinach chloroplast (Sharma et al, 2007,

2010; Graf et al, 2016; Bieri et al, 2017), the binding position of

BsHPF-NTD overlaps with the mRNA and anticodon-stem loop

regions of tRNAs bound in the ribosomal A- and P-sites (Fig 2D),

thus explaining the observed inhibitory effect by LHPFs when added

to in vitro translation assays (Ueta et al, 2013; Basu & Yap, 2016).

The BsHPF-NTD is connected by a 34 aa linker to the CTD (Fig 1A).

Map density for the linker region was not observed in the cryo-EM

map of the Bs100S, indicating that it is highly flexible. An exception

is the 5–6 aa stretch of the linker region that directly follows the

terminal a-helix of the BsHPF-NTD (Fig 2B). Map density for this

N-terminal part of the linker passes, analogous to mRNA, through

the opening created by the b-hairpin of ribosomal protein S7 and

helix h23 of the 16S rRNA, and extends in the general direction of

the platform cavity at the back of the 30S subunit (Fig EV4).

BsHPF-CTD is present as a dimer on the small 30S subunit

Given the general direction of the linker, we assigned the additional

density located on the back of the 30S platform to the BsHPF-CTD

(Fig 3A and B). It was possible to generate a homology model for

the BsHPF-CTD based on the deposited crystal structure of the

LHPF-CTD from a closely related Firmicute, Clostridium aceto-

butylicum (PDB ID 3KA5; Fig EV1D). Curiously, the C. aceto-

butylicum LHPF-CTD is present as a dimer in the crystal, and it was

possible to make an unambiguous rigid body fit of the homology

model of the BsHPF-CTD dimer into the unassigned map density of

the cryo-EM map (Fig 3C). We note that while the structurally

conserved L. monocytogenes HPF-CTD (PDB ID 3K2T) appears as a

monomer in the asymmetric unit, the homodimer forms across the

crystallographic twofold symmetry. This suggests that the LHPF-

CTDs are not only dimeric on the ribosome, but are likely to be

dimeric in solution. To investigate this further, we performed size-

exclusion chromatography (SEC) on the recombinantly expressed

and purified wild-type BsHPF and BsHPF variants (see Materials and

Methods). Analysis of the full-length BsHPF and the BsHPF-CTD

revealed that they have apparent molecular masses of 56 and

14 kDa, respectively, rather than the expected 23 kDa and 8 kDa

(Fig 3D–G), indeed suggesting that both proteins are dimeric in

solution as well as on the ribosome. The apparent migration behav-

ior of BsHPF on SEC reflects the elongated shape of the dimer as

also seen in our cryo-EM structure of the Bs100S. Based on the

structures of the dimeric C. acetobutylicum and L. monocytogenes

LHPF-CTD, we rationalized that the highly conserved Phe160 in the

BsHPF-CTD is critical for dimerization (Fig 3H). Phe160 is present

within the very hydrophobic dimer interface where it forms stacking

interactions with Phe160 of the second monomer (Fig 3H). We

predicted that a mutation of Phe160 to Glu (F160E) would disrupt

the dimer interface via introduction of a negative charge into the

hydrophobic environment. To test this, we also subjected the full-

length BsHPF-F160E protein to SEC (Fig 3D and E), revealing that

the protein eluted with an apparent molecular mass of 40 kDa,

smaller than the 56 kDa observed for the wild-type BsHPF (Fig 3G).

Although 40 kDa is larger than the expected size of 22.8 kDa, we

believe this is due to retardation of the NTD and subsequent linker.

Indeed, a BsHPF variant lacking the CTD (BsHPF-NTD) eluted with

an apparent molecular mass of 28 kDa (rather than the expected

13.1 kDa; Fig 3G). This observation is in good agreement with

structural information on the NTDs of other hibernation factors

showing a non-globular shape (Polikanov et al, 2012). Our conclu-

sions based on SEC were also confirmed using static light scattering

(SLS), revealing the full-length BsHPF had an absolute molecular

mass of 42.8 � 0.9 kDa, corresponding with a dimer (46 kDa),

whereas the mass of the BsHPF-F160E variant (28 � 2.1 kDa) was

more consistent with a monomer (22.8 kDa; Fig 3G). Taken

together, our biochemical data clearly show that BsHPF forms a

homodimer in solution that is mediated via its CTD.

Dimerization of 70S ribosomes via the BsHPF-CTD

While the limited resolution of the BsHPF-CTD (Fig EV3H and I)

does not allow a detailed analysis of the contacts with the ribosomal

components to be made, the fitted model nevertheless enables a

general description of the interaction mode (Fig 4A). The BsHPF-

CTD appears to interact exclusively with ribosomal proteins S2 and

A B

C

D

Figure 2. Interaction of the BsHPF-NTD with the ribosome.

A Interface view of cryo-EM map of the 30S-A (yellow) from the Bs70S-30S

subcomplex with separated BsHPF-NTD density (green).

B Map density (gray mesh) with model of BsHPF-NTD (green).

C, D Comparison of BsHPF-NTD (green) with (C) Escherichia coli SHPF (EcHPF,

blue; Polikanov et al, 2012), and (D) mRNA (yellow surface), A- (cyan),

P- (gray), and E-tRNAs (orange; Jenner et al, 2011).
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S18 and does not establish contact with the 16S rRNA. Importantly,

each BsHPF-CTD monomer contacts S2 from the 70S to which the

corresponding BsHPF-NTD is bound, whereas the interaction with

the N-terminal extension of S18 is from the second 70S ribosome

(Fig 4A). The 100S dimer is also stabilized by direct interactions

between the 70S-A and 70S-B monomers (Fig 4A and B). In addition

to the contacts established between the N-terminal helix of S2 and

the N-terminal extension of S18, the N-terminal b-hairpin and proxi-

mal region of the a2-helix of S2 establish a large interaction surface

with the stem-loop of helix h26 of the 16S rRNA of the second 70S

(Fig 4B). Thus, the dimerization of the HPF-CTDs stabilizes and

facilitates direct interaction between the 70S-A and 70S-B monomers

in the Bs100S. Our findings highlight the importance of the BsHPF-

CTD for 70S dimerization, and therefore 100S formation, which is in

complete agreement with biochemical studies demonstrating that

truncation of the CTD from LHPF leads to loss of 100S formation

(Puri et al, 2014; Basu & Yap, 2016). Moreover, it was reported that

the CTD of the LHPF from Lactococcus lactis can dimerize E. coli

70S ribosomes, but only when acting in concert with the SHPF from

E. coli (Puri et al, 2014). This observation supports to some extent

the previous assertion that the HPF-CTD functions analogously to

RMF; an assertion that was partly based on proposed sequence

homology between HPF-CTD and RMF (Ueta et al, 2010). However,

comparison of the structures of BsHPF-CTD with that of RMF on the

ribosome (Polikanov et al, 2012) reveals that there is no structural

similarity in terms of the protein fold and, despite both binding at

the platform region at the back of the 30S subunit, there is no over-

lap in their binding sites on the ribosome (Fig 4C). The binding

position of RMF was suggested to inhibit translation by sterically

preventing formation of the Shine-Dalgarno-helix (SD-helix)

between the 50 end of the mRNA and the 30 end of the 16S rRNA

(Polikanov et al, 2012). In contrast, the HPF-CTD does not overlap

with the SD-helix (Fig 4D), although we cannot exclude the possibil-

ity that the flexible linker of BsHPF traverses the RMF binding site

since it was not visualized in the cryo-EM map.

Importance of the linker–CTD for 100S formation

To assess the importance of the linker and CTD of BsHPF for 100S

formation in vivo, we generated a B. subtilis 168 strain where the

yvyD gene was inactivated (∆BsHPF), as confirmed by Western

blotting using antibodies specific to BsHPF (Fig 5A). We then re-

introduced the wild-type yvyD gene, as well as yvyD variants, into

the amyE locus and monitored the IPTG-induced expression of the

BsHPFs (Fig 5A). To investigate the importance of the linker

between the NTD and CTD of BsHPF, we generated ∆BsHPF

strains expressing BsHPF deletion variants lacking 10 aa (BsHPF-

L∆10AA, lacking residues 110–119) or 20 aa (BsHPF-L∆20AA,

lacking residues 105–124) from the central region of the linker

(Fig 5A). In addition, we generated a BsHPF variant bearing the

F160E mutation in the CTD (BsHPF-F160E), which interferes with

homodimerization (Fig 3G). Western blotting of cell extracts from

stationary phase bacteria indicated that all BsHPF variants inserted

into the amyE locus were expressed in the presence of IPTG at

similar levels to wild-type BsHPF observed in the parental Bs168

strain (Fig 5A). Pelleting experiments indicated that full-length

BsHPF co-migrated with the ribosome fraction as expected, as did

the BsHPF-L∆10AA variant (Fig 5B). In contrast, the BsHPF-L∆20AA

A

D E

F

H

G

B

C

Figure 3. Binding site of dimeric LHPF-CTD on the Bs70S-30S

subcomplex.

A Cryo-EM map of the 30S-A (yellow) from the Bs70S-30S subcomplex with

separated LHPF-CTD density (red).

B, C Density (gray mesh) with fitted model of dimeric LHPF-CTD with

monomers from 70S-A and 70S-B colored red and blue, respectively.

D Gel-filtration profiles of full-length BsHPF (blue), BsHPF-F160E (yellow),

BsHPF-NTD (green), and BsHPF-CTD (red). Arrows indicate the molecular

mass in kDa of the size standard.

E Standard curve with estimated molecular masses for full-length BsHPF

(blue), BsHPF-F160E (yellow), BsHPF-NTD (green), and BsHPF-CTD (red).

Arrows indicate the molecular mass in kDa of the size standard.

F Coomassie-stained SDS–PAGE of the peak fractions containing BsHPF or

its variants.

G Table summarizing the actual and apparent molecular mass of proteins

in (D-F). Size-exclusion chromatography (SEC) and static light scattering

(SLS) determined the apparent and absolute MWs, respectively.

“Stoichiometry” indicates whether BsHPF and its variants exist as mono-

or homodimer.

H Homology model of the BsHPF-CTD homodimer illustrating the position

of Phe160 (F160) at the dimer interface.
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and BsHPF-F160E variants had significantly reduced association

with the ribosomal pellets (Fig 5B), suggesting that the deletion

of 20 aa within the linker or preventing homodimerization via

the CTD disrupts the interaction of BsHPF with the ribosome.

This is consistent with previous studies using S. aureus

LHPF where C-terminal truncations of 42 aa (∆CTD) and 90 aa

(∆linker–CTD) led to progressive loss in ribosome binding (Basu &

Yap, 2016).

We next employed sucrose density gradient centrifugation to

monitor the formation of 100S ribosomes using the different

Bs168 strains (Fig 5C–G). As controls, the wild-type Bs168 strain

was harvested during exponential phase, where a large 70S peak

and lots of polysomes were observed, but little or no 100S were

evident (Fig 5C). In contrast, a short heat treatment of the wild-

type cells led to a complete loss of polysomes and the appear-

ance of a prominent 100S peak (Fig 5C), as observed previously

for B. subtilis (Akanuma et al, 2016). Formation of 100S was

never observed in the ∆BsHPF strain (Fig 5C) regardless of the

stress conditions tested, in agreement with the strict dependence

on BsHPF for 70S dimerization (Akanuma et al, 2016). However,

when the yvyD gene was reintroduced into the amyE locus of

the ∆BsHPF strain, 100S formation (and loss of polysomes) was

observed, but only when BsHPF expression was induced by the

presence of IPTG (Fig 5D). No significant increase in the 100S

peak, nor reduction in polysomes, was observed when

expression of the BsHPF-L∆20AA variant was induced (Fig 5E),

consistent with the lack of ribosome binding (Fig 5B). Surpris-

ingly, similar results were obtained for BsHPF-L∆10AA (Fig 5F),

suggesting that although the BsHPF-L∆10AA can still bind to the

ribosome (Fig 5B), it is impaired in 100S formation. BsHPF vari-

ants where the 10 aa or 20 aa were substituted (rather than

deleted) by glycine-serine (GS) repeats, creating BsHPF-(GS)5 or

BsHPF-(GS)10, respectively, also led to both a reduction in ribo-

some binding and 100S formation (Fig EV4C–E), suggesting that

the sequence and not just the length of the linker is critical for

BsHPF activity. Lastly, we also monitored 100S formation in the

Bs168 strain expressing the BsHPF-F160E variant. As expected,

no increase in the 100S peak or decrease in the polysome peaks

was observed upon BsHPF-F160E induction (Fig 5G), indicating

that BsHPF-CTD homodimerization is necessary for 100S forma-

tion.

Further support for the loss of activity of the BsHPF-L∆20AA

and BsHPF-F160E variants comes from growth assays. Compared

to the wild-type Bs168 strain, the ∆BsHPF strain exhibits a lag

phase when stationary phase cells are diluted into fresh media

(Fig 5H), as reported previously (Akanuma et al, 2016). The lag

phenotype can be restored by expression of wild-type BsHPF,

but not by BsHPF-L∆20AA and BsHPF-F160E variants (Fig 5H).

Curiously, the BsHPF-L∆10AA variant also rescued the growth

phenotype (Fig 5H), suggesting that ribosome binding rather than

A B C

D

Figure 4. Dimerization interface of the Bs70S-30S subcomplex.

A, B Distinct views of the dimer interface between 30S-A (yellow) with BsHPF-CTD-A (red) and 30S-B (gray, darker yellow with dashed line in zoomed panel) with

BsHPF-CTD-B (blue). Ribosomal proteins S2 (cyan), S18 (purple), and 16S rRNA are shown only, and the surface outline of the 30S subunit is included schematically

for reference.

C, D Binding site of BsHPF-NTD (green) and dimeric BsHPF-CTD (red, blue) relative to (C) RMF (orange; Polikanov et al, 2012) and (D) SD–anti-SD helix (yellow-purple

surface; Sohmen et al, 2015). The dashed line indicates the linker and is shown only to illustrate that the 34 amino acids are more than sufficient to connect the

NTD and CTD; however, no density for the linker was observed, suggesting it does not adopt a defined conformation on the ribosome.
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Figure 5. Monitoring 100S formation in vivo for BsHPF variants.

A Western blot using antibodies raised against BsHPF to assess the levels of BsHPF in cell extracts of wild-type Bs168 (wt), ∆BsHPF, and ∆BsHPF strains expressing

either wild-type BsHPF or BsHPF-L∆20AA, BsHPF-L∆10AA, BsHPF-F160E variants.

B Coomassie (above) and Western blot of cell extracts (CE) and ribosome pelleted fractions (R) of the wild-type Bs168 (wt) strain or the ∆BsHPF strains expressing

either wild-type BsHPF, BsHPF-L∆10AA, BsHPF-L∆20AA, and BsHPF-F160E.

C Sucrose gradient profiles of cell extracts from the wild-type Bs168 (wt) strain in exponential phase (blue) or heat stressed (red), compared with the extract from the

Bs168 ∆BsHPF strain (dashed line).

D–G Sucrose gradient profiles of cell extracts from the (D) Bs168 ∆BsHPF amyE::BsHPF strain, (E) Bs168 ∆BsHPF amyE::BsHPF-L∆20AA strain, (F) Bs168 ∆BsHPF amyE::

BsHPF-L∆10AA strain, and (G) Bs168 ∆BsHPF amyE::BsHPF-F160E strain in the absence (I�) or presence (I+) of IPTG. The dashed line of the Bs168 ∆BsHPF strain

from (C) is shown for reference.

H Growth curves illustrating the recovery from stationary phase of the wild-type Bs168 (wt), ∆BsHPF, and ∆BsHPF strains expressing either wild-type BsHPF or

BsHPF-L∆20AA, BsHPF-L∆10AA, BsHPF-F160E variants.

Source data are available online for this figure.
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100S formation may be important for efficient stationary phase

recovery.

Distinct arrangement of 70S monomers in the Bs100S

In order to obtain a reconstruction of the complete Bs100S particle

to compare with previous Ec100S reconstructions, we also repro-

cessed the cryo-EM data using a larger box size that completely

encompassed both 70S monomers (Fig EV2). Despite the inherent

flexibility between the 70S monomers, we were able to obtain a

reconstruction of the Bs100S (Fig 6A) with an average resolution

of 6.2 Å (Fig EV5A–C). The relative orientation of the 70S-A and

70S-B monomers within the Bs100S was related by a 180° rota-

tional symmetry with the axis of rotation centered on the dimeric

BsHPF-CTD (Fig EV5D). As expected, we observed additional

density for the HPF-NTD within the intersubunit space and for the

HPF-CTD at the back of the 30S subunit (Fig EV5E and F).

Comparison of the Bs100S with the previous cryo-EM and cryo-ET

reconstructions of the Ec100S (Fig 6B) revealed a dramatically dif-

ferent monomer arrangement (Fig 6C). While Ec100S dimerization

involves a “back-to-back” interaction of the 30S subunits of each

70S monomers, Bs100S dimerization involves a more “side-to-side”

(platform-to-platform) interaction of the 30S subunits. In the

Ec100S, dimerization is proposed to be stabilized by contacts

between S2 on one 70S with the cavity formed by S3/S4/S5 on the

other (Kato et al, 2010), which may be facilitated by a swivel

movement of the head of the 30S subunit that was observed upon

RMF binding (Polikanov et al, 2012). In contrast, the head position

of the Bs100S is identical to that observed in the classic post-

translocational state ribosome (Sohmen et al, 2015) and, unlike

RMF, the BsHPF-CTD directly comprises part of the dimerization

interface. The spatial orientation of the 70S monomers in the

Bs100S (Fig 6A) could be considered intermediate between that

observed in the Ec100S (Fig 6B; Kato et al, 2010) and the orienta-

tion observed in the cryo-ET reconstructions of E. coli polysomes

(Fig 6D; Brandt et al, 2009).

Discussion

The appearance of hibernating 100S ribosomes is a near universal

response of bacteria to adapt to a variety of stress conditions, in

particular nutrient limitation (Ueta et al, 2013; Yoshida & Wada,

2014). Under these circumstances, bacteria employ second messen-

ger signaling molecules, such as (p)ppGpp and cyclic AMP (cAMP),

to reprogram the cellular activity network, down-regulating genes

associated with translation and up-regulating stress response and

amino acid biogenesis pathways (Hauryliuk et al, 2015; Steinchen &

Bange, 2016). In E. coli, transcription of rmf, the gene encoding

RMF, is up-regulated by (p)ppGpp when amino acids become

limiting (Izutsu et al, 2001) and by cAMP upon carbon starvation

(Shimada et al, 2013). Transcription of yvyD, the gene encoding

BsLHPF, is under the control of the sigma factors rH and rB

(Drzewiecki et al, 1998; Tam le et al, 2006; Akanuma et al, 2016),

and up-regulated by the presence of the alarmone (p)ppGpp

(Eymann et al, 2001; Tagami et al, 2012; Shimada et al, 2013;

Fig 7A). Similarly, in the cyanobacterium Synechococcus elongatus,

LHPF is also up-regulated by (p)ppGpp to enable dark adaptation

(Hood et al, 2016).

The up-regulation of LHPF leads to increased 100S formation,

indicating that LHPF competes effectively with translation factors,

as evidenced by LHPF inhibition of in vitro translation systems

(Ueta et al, 2013; Basu & Yap, 2016). Since we observed that

BsHPF is dimeric in solution, we favor a model whereby dimeric

BsHPF interacts independently with two 70S ribosomes (Fig 7B).

In this model, we propose that BsHPF utilizes the free NTDs and

long linker to initially bring 70S ribosomes into close proximity,

and then further stabilizes the 70S dimer using the BsHPF-CTD

ribosome interface (Fig 7B). However, we cannot exclude that at

a fraction of BsHPF resides as a monomer in vivo, and these

BsHPF monomers bind separately to the 70S ribosome, such that

100S formation could then occur concomitantly with BsHPF-CTD

homodimerization. Moreover, it remains unclear how hibernating

100S ribosomes exactly provide protection against stress. What is

A B C D

Figure 6. Spatial organization of Bs100S, Ec100S, and polysomes.

A–D Comparison of the 70S-A and 70S-B monomer arrangement in (A) Bs100S, compared with (B, C) Ec100S (Ortiz et al, 2010) and (D) Escherichia coli polysomes

(Brandt et al, 2009). The 30S-A (yellow), 30S-B (orange), 50S (gray), BsHPF-NTD (green), and BsHPF-CTD (red) are colored for reference, and schematics of the Ec100S

are presented in (C) and (D) for ease of comparison.
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clear however is that in the absence of 100S, 70S ribosomes are

slowly degraded leading to early cell death, suggesting that hiber-

nating 100S are less susceptible to degradation by RNases

(Fukuchi et al, 1995; Wada, 1998; Niven, 2004; Shcherbakova

et al, 2015; Akanuma et al, 2016). Because 100S formation does

not significantly alter the large rRNA surface exposed to RNases,

we believe LHPF binding and 100S formation may interfere with a

specific ribosome degradation pathway, rather than preventing

non-specific RNase action on ribosomes. The identification of

BsHPF variant, such as the BsHPF-L∆10AA, which binds to the

ribosome but does not promote 100S formation, may allow the

contribution of these activities to ribosome protection to be

dissected further.

In E. coli, disassembly of 100S is rapid and occurs within

1 min upon transfer to fresh medium, suggesting that an active

mechanism exists to remove EcHPF and RMF from the ribosome

(Wada, 1998; Aiso et al, 2005). In contrast, Bs100S are more

stable than Ec100S (Ueta et al, 2013) and upon transfer to fresh

media significant dissociation of Bs100S was only observed after

120 min, where LHPF protein levels were also significantly

decreased (Akanuma et al, 2016). Nevertheless, recycling factors,

such as IF3, RRF, and EF-G, which have been reported to

remove LHPF (PSRP-1) from Spinach chloroplast ribosomes

(Sharma et al, 2010), might also be involved in BsHPF release

and 100S dissociation (Fig 7C–E).

In conclusion, the high conservation of the LHPF proteins

suggests that most, if not all, LHPF proteins are present as dimers in

the cell, with the implication that the majority of bacteria are likely

to utilize an identical mechanism to induce 100S formation as we

have described here for B. subtilis (Fig 7).

Materials and Methods

Cloning of BsHPF and BsHPF variants for protein purification

The yvyD gene encoding BsHPF was amplified from B. subtilis PY79

genomic DNA by polymerase chain reaction using Phusion High-

Fidelity DNA Polymerase (NEB) according to the manufacturer’s

manual. The forward primer encoded a hexa-histidine tag in-frame

with the DNA sequence of yvyD. The fragment was cloned via NcoI/

XhoI restriction sites into a modified pGAT2-vector incorporating a

GST-tag N-terminal of His6-BsHPF. BsHPF-CTD (amino acids 130–

189 of BsHPF), BsHPF-NTD (amino acids 1–104 of BsHPF), and

BsHPF(F160E) containing an N-terminal hexa-histidine tag were

amplified by PCR as described above and cloned via NcoI/XhoI

restriction sites into pET24d(+) vector (Novagen). Mutations within

BsHPF were introduced by overlapping PCR.

Protein production and purification for SEC and SLS

Escherichia coli BL21(DE3) cells (NEB) carrying the expression

plasmid were grown in lysogeny broth (LB) medium supple-

mented with ampicillin (100 lg/ml) or kanamycin (50 lg/ml) and

D(+)-lactose-monohydrate (12.5 g/l) for 16 h at 30°C under rigor-

ous shaking (180 rpm). The cells were harvested (3,500 × g,

20 min, 4°C), resuspended in lysis buffer (20 mM HEPES-KOH,

pH 8.0, 20 mM KCl, 20 mM MgCl2, 500 mM NaCl, 40 mM imida-

zole) and lysed using a M-110L Microfluidizer (Microfluidics).

After centrifugation (47,850 × g, 20 min, 4°C), the clear super-

natant was loaded on a HisTrap HP 1 ml column (GE Healthcare)

equilibrated with 15 column volumes (CV) of lysis buffer. After

A

B C

E

D

Figure 7. Model for BsHPF-induced 100S formation.

A Stress conditions, such as nutrient deprivation, lead to elevated levels of (p)ppGpp, which up-regulates expression of the LHPF (NTD, green; CTD, red). The LHPF-CTD

can interact to form homodimers in solution and therefore may also be present as dimers in the cell.

B The long linker of the dimeric LHPF enables the LHPF-NTD to interact with two independent 70S ribosomes and by bringing them in to close proximity stabilizes

the 70S dimers, forming 100S.

C–E Following removal of the stress conditions, BsHPF levels decline leading to (C) dissociation of 100S into 70S ribosomes and (D) eventually ribosome splitting into

30S and 50S subunits, or (E) alternatively directly in 30S and 50S subunits.
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washing with 15 CV of lysis buffer, the protein was eluted with 5

CV of elution buffer (lysis buffer containing 500 mM imidazole).

The GST-tag was removed from BsHPF variants by incubation

with 100 U of bovine thrombin (Merck Millipore) for 2 h at 20°C.

After dilution with 12 volume parts of lysis buffer without

imidazole, BsHPF variants were resubjected to Ni-NTA affinity

chromatography as described above and the elution fraction

containing BsHPF were collected. BsHPF and BsHPF variants

were then concentrated using an Amicon Ultracel-10K or 3K,

respectively (Merck Millipore), and applied to size-exclusion

chromatography (HiLoad 26/600 Superdex 75 pg, GE Healthcare)

equilibrated in SEC buffer (20 mM HEPES-KOH, pH 8.0, 20 mM

KCl, 20 mM MgCl2, 500 mM NH4Cl). Protein-containing fractions

were pooled and concentrated to ~500 lM as determined by a

spectrophotometer (NanoDrop Lite, Thermo Scientific).

Analysis of oligomerization states of BsHPF variants by SEC

and SLS

The apparent molecular weight was analyzed by size-exclusion

chromatography using a HiLoad 26/600 Superdex 75 pg column

(GE Healthcare) equilibrated in SEC buffer. A standard curve for

molecular mass determination was obtained using BSA (66.5 kDa),

ovalbumin (chicken, 44.3 kDa), myoglobin (horse, 17 kDa), and

vitamin B12 (1.35 kDa). The absolute molecular weight was

determined by static light scattering (SLS) with a DelsaMax CORE

(Beckmann Coulter) according to the manufacturer’s instructions.

Cloning of BsHPF and BsHPF variants for in vivo studies

Full-length yvyD was amplified from genomic DNA by PCR as

described above with the forward primer encoding the strong ribo-

somal binding site of the gsiB gene (AGGAGGAATTCAAA) and

cloned via SalI/SphI restriction sites into the pDR111 plasmid (Ben-

Yehuda et al, 2003). The BsHPF-LD10AA, BsHPF-LD20AA, and

BsHPF-F160E mutation were introduced by overlap extension PCR

and cloned via SalI/SphI restriction sites as described above. The

resulting plasmids were linearized by digestion with ScaI and trans-

formed into naturally competent B. subtilis cells. Proper integration

into the amyE locus was checked by growing selected transformants

on LB-Agar containing 1% starch overnight and staining the plates

with a solution of 0.5% (w/v) iodine, 1% (w/v) potassium iodine.

Strains and oligonucleotides used in this study are presented in

Tables EV2 and EV3.

Western blotting of BsHPF variants

Strains expressing HPF variants in trans were grown in LB

medium supplemented with 1 mM IPTG with rigorous shaking to

until the mid-exponential phase (OD600 of ~0.8), harvested by

centrifugation at 11,000 × g, 4°C for 5 min, washed once in TE

buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0), and disrupted by

sonication three times for 30 s on ice in TE buffer supplemented

with 1 mM PMSF. The soluble protein was cleared from cell

debris by centrifugation at 11,000 × g, 4°C for 5 min. 10 lg of

the protein extract (as determined by the Bradford assay) was

analyzed by SDS–PAGE and Western Blotting onto a nitrocellulose

membrane. As controls, equally treated samples from a stationary

phase overnight culture of B. subtilis wild-type or Dhpf cells were

loaded. The BsHPF protein was detected using a polyclonal anti-

body raised against BsHPF (Pineda Antibody Service) and a poly-

clonal Goat anti-Rabbit IgG alkaline Phosphatase conjugated

antibody (Antikörper Online). Western blotting using an antibody

against the malate dehydrogenase (MDH) was used as a loading

control. The ECF reagent (GE Healthcare) was used as a substrate

according to the manufacturer’s manual, and chemifluorescent

signals were detected using a cooled CCD camera in a ChemiBIS

4.2 Bioimaging system (DNR).

Binding assay for BsHPF variants with pelleted ribosomes

Bacillus subtilis cells were grown in 200-ml LB medium supple-

mented with 1 mM IPTG with rigorous shaking (200 rpm) to the

mid-exponential phase (OD600 ~0.8) and harvested by centrifugation

at 15,300 × g, 10 min, 4°C. Ribosomes were pelleted as described in

(Schmalisch et al, 2002). Briefly, cells were washed once in buffer A

(20 mM Tris–HCl, 100 mM NH4Cl, 10 mM MgCl2, 10 mM 2-mercap-

toethanol, pH 7.5), resuspended in 3 ml of the same buffer with

1 mM PMSF and disrupted in a French Pressure Cell three times at

1,000 psi. The lysate was cleared from cell debris by centrifugation

for 30 min at 29,953 × g, 4°C (SW55-Ti, Beckman Coulter), layered

on top of a 8 ml 1.1 M sucrose cushion in buffer A, and centrifuged

for 16 h at 119,307 × g, 4°C (SW40-Ti, Beckman Coulter). The cell

pellet was washed three times in buffer A and resuspended in buffer

B (20 mM Tris–HCl, 100 mM NH4Cl, 6 mM MgCl2, 2 mM DTT).

The suspension was centrifuged at 10,000 × g, 10 min, 4°C, and the

supernatant containing the ribosomes was collected. 10 lg of the

total soluble protein (“CE”, as determined by the Bradford assay)

and an equal volume of the ribosome suspension (“R”) was

subjected to 15% SDS–PAGE and subsequent stained with

Coomassie using standard procedures or Western blotting as

described above.

Growth recovery from stationary phase

Precultures of B. subtilis cells were grown in 5-ml LB medium

supplemented with 0.5 mM IPTG at 37°C for 18 h, to ensure the cells

reached the stationary growth phase. The cultures were then diluted

to an OD600 of 0.05 into 20-ml fresh LB medium and grown at 37°C

with rigorous shaking. The cell growth was monitored by determin-

ing the optical density at 600 nm (OD600) at regular intervals.

Sucrose density gradient centrifugation analysis

Analysis of 100S formation was performed as described previously

for B. subtilis (Akanuma et al, 2016). Briefly, 50-ml LB medium was

inoculated at a 1:100 dilution with an overnight culture. Expression

was induced using 1 mM IPTG at an OD600 of 0.4. Cells were

harvested at the stationary phase by centrifugation at 4,000 × g for

10 min at 4°C (Hettich Rotanta 46R) and the cell pellet re-suspended

in buffer C (50 mM HEPES-KOH, pH7.4, 100 mM KOAc, 25 mM Mg

(OAc)2, 6 mM b-mercaptoethanol). Cells were lysed using the soni-

fier three times, with each cycle consisting of 30 s at 30% power

followed by centrifugation at 16,000 × g for 15 min at 4°C to

remove cellular debris. A total OD260 of 10 of the cleared lysate was

loaded onto sucrose density gradients (10–60% sucrose in buffer C)

ª 2017 The Authors The EMBO Journal Vol 36 | No 14 | 2017

Bertrand Beckert et al Structure of the Bacillus 100S ribosome The EMBO Journal

2069

Published online: May 3, 2017 



by centrifugation at 154,693 × g (SW-40 Ti, Beckman Coulter) for

3 h at 4°C and then analyzed using a Gradient Station (Biocomp)

with an Econo UV Monitor (Bio-Rad) and a FC203B Fraction Collec-

tor (Gilson).

Preparation of Bacillus subtilis S12 extract

Bacillus subtilis S12 extract was prepared as described (Sohmen

et al, 2015). Briefly, an “INFORCE HT minifors” bench top

fermenter was used to grow B. subtilis strain 168 cells to an OD600

4.5 in 2× YPTG medium (16 g/l peptone, 10 g/l yeast extract, 5 g/l

NaCl, 22 mM NaH2PO4, 40 mM Na2HPO4, 19.8 g/l glucose (sterile

filtered)), with extra glucose feeding at 37°C while maintaining a pH

7.0 and oxygen level (60%). After collecting cells at 5,000 × g at

4°C for 15 min, they were washed 3× in cold Buffer A (10 mM Tris–

acetate (pH 8.2), 14 mM magnesium acetate, 60 mM potassium

glutamate, 1 mM dithiothreitol, and 6 mM b-mercaptoethanol).

Cells were then snap-frozen in liquid nitrogen and stored at �80°C.

15 g of cells was thawed on ice, resuspended in 10 ml of cold buffer

B (buffer A missing b-mercaptoethanol), and lysed 3× at 15,000 psi

in an “microfluidics model 110I lab homogenizer”. The lysate was

cleared at 12,000 × g and 4°C for 10 min and incubated in a water

bath for 30 min at 37°C. The cell extract was aliquoted, snap-frozen,

and stored at �80°C. Extracts were analyzed on sucrose density

gradients (10–50% sucrose in buffer C), by centrifugation at

89,454 × g (SW-28, Beckman Coulter) for 4 h at 4°C. For 100S puri-

fication, 100S fractions were collected using a Gradient Station (Bio-

comp) with an Econo UV Monitor (Bio-Rad) and a FC203B Fraction

Collector (Gilson). Purified 100S ribosomes were concentrated by

centrifugation at 92,159 × g for 2.5 h at 4°C (TLA110 rotor,

Beckman Coulter).

Negative stain electron microscopy

Ribosomal particles were diluted in buffer C to a final concentration

of 0.2 OD260/ml. A 3.5 ll sample was applied onto a carbon-coated

grid. After 30 s, the grids were washed with distilled water and then

stained with 2% aqueous uranyl acetate for 15 s. The remaining

liquid was removed by touching the grid with filter paper. Micro-

graphs were taken using a Morgagni transmission electron micro-

scope (FEI).

Cryo-electron microscopy and single particle reconstruction

A total of 4 OD260/ml Bs100S sample were applied to 2 nm pre-

coated Quantifoil R3/3 holey carbon-supported grids and vitrified

using Vitrobot Mark IV (FEI Company). Data collection was

performed using EM-TOOLS (TVIPS GmbH) on a Titan Krios trans-

mission electron microscope equipped with a Falcon II direct elec-

tron detector (FEI Company) at 300 kV at a pixel size of 1.084 Å

and a defocus range of 0.7–2.2 lm. Ten frames (dose per frame of

2.5 e�/Å) were aligned using Motion Correction Software (Li et al,

2013). Power-spectra, defocus values, and astigmatism were then

determined using CTFFIND4 software (Rohou & Grigorieff, 2015).

Micrographs showing Thon rings beyond 3.5 Å were manually

inspected for a good areas and power-spectra quality. Automatic

particle picking was then performed using SIGNATURE (Chen &

Grigorieff, 2007), and single particles were windowed out in small

box able to contain a 70S ribosome together with the majority of the

small 30S subunit of the neighboring 70S ribosome. The particles

were then further processed using FREALIGN (Grigorieff, 2007).

The 253,905 particles were first subjected to an extensive 3D classi-

fication (Fig EV2A and B), and the selected 24,546 Bs100S particles

of class 8 were then subjected to refinement using 30S-70S mask

resulting in a final reconstruction of 3.8 Å (0.143 FSC) average reso-

lution (Figs EV2C and EV3). Local resolution was finally calculated

using ResMap (Kucukelbir et al, 2014). For the processing of the

complete Bs100S, the coordinates of the selected 24,546 particles

were carefully re-inspected in order to remove particles that were

within close proximity of another particle, so as not to include parti-

cles twice in the final reconstruction; 5,511 particles were identified

and removed from class 8, and the rest of particles were windowed

out using a larger box size that encompassed two 70S ribosomes

(Fig EV2D). The remaining 19,335 particles were then realigned and

refined, resulting in a final reconstruction with an average resolu-

tion of 6.2 Å (0.143 FSC; Fig EV5A–C).

Molecular modeling, refinement, and validation

The molecular model for the ribosomal proteins and rRNA of the

70S ribosome of the Bs100S was based on the molecular model

from the recent cryo-EM reconstruction of the B. subtilis 70S ribo-

some (PDB ID 3JW9; Sohmen et al, 2015). The molecular model

was fitted as a rigid body into the cryo-EM density maps using

UCSF Chimera (Pettersen et al, 2004). For BsHPF-NTD domain, a

homology model was generated using HHPred (Soding et al,

2005) based on the HPF protein template from E. coli (PDB ID

4V8H; Polikanov et al, 2012; Fig EV1C). Molecular models were

fitted and adjusted by using COOT (Emsley & Cowtan, 2004) and

refined in Phenix using phenix.real_space_refine (Adams et al,

2010). Model over-fitting was evaluated through its refinement

against one cryo-EM half map as described previously (Brown

et al, 2015). FSC curves were calculated between the resulting

model and the half map used for refinement, as well as between

the resulting model and the other half map for cross-validation

(Fig EV3E). The final refinement statistics were determined using

MolProbity (Chen et al, 2010) and are provided in Table EV1. For

BsHPF-CTD domain, a homology model was generated using

HHPred based on the template from C. acetobutylicum (PDB ID

3KA5; Fig EV1D). The molecular model was rigid body fitted

using UCSF Chimera (Pettersen et al, 2004).

Figure preparation

Figures showing map densities and atomic models were generated

using UCSF Chimera (Pettersen et al, 2004).

Accession numbers

The cryo-EM map of the Bs70S-30S subcomplex and the complete

Bs100S have been deposited in the EMDB with the accession codes

EMD-3656 and EMD-3664, respectively. Atomic coordinates have

been deposited in the Protein Data Bank with accession code PDB

ID 5NJT.

Expanded View for this article is available online.
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Note added in proof

The recent cryo-EM structure of the Staphylococcus aureus 100S determined

by Khusainov et al (2017) reveals that the mechanism of 70S dimerization

mediated by the S. aureus long-form HPF appears to be similar to that

observed here for Bacillus subtilis.
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Expanded View Figures

A

C

D

B

Figure EV1. Isolation of Bacillus subtilis 100S and sequence alignments of BsHPF with EcHPF-NTD and CaCTD.

A Sucrose density gradient profile of B. subtilis extract from late log phase cells, with 30S, 50S, 70S, 100S, and polysome peaks indicated.

B Negative stain electron microscopy images of purified Bs100S from (A), with selected 70S dimers circled in yellow.

C PROMALS3D (Pei et al, 2008) sequence alignment of BsHPF-NTD with Escherichia coli HPF (PDB 4V8H)(Polikanov et al, 2012) that was used to generate the homology

model for BsHPF-NTD.

D PROMALS3D (Pei et al, 2008) sequence alignment of BsHPF-CTD with Clostridium acetobutylicum HPF-CTD (CaCTD; PDB ID 3KA5) that was used to generate the

homology model for BsHPF-CTD.

Data information: In (C) and (D), fully conserved residues are indicated with “9” and are bold in the Consensus_aa, whereas similar residues are indicated with a “+”.

Consensus_ss indicates b-sheet (e) and helical (h) regions.
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A

B

C

Figure EV2. In silico sorting and refinement scheme for the Bs70S-30S subcomplex and complete Bs100S.

A–C 253,905 particles were sorted into 10 classes. Class 8 had the most defined density for the 70S-B and was taken for further refinement using (B) a box size that

includes the 70S-A ribosome and the 30S part of the 70S-B, and (C) a larger box size that encompasses both the 70S-A and 70S-B ribosomes.
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Figure EV3. Resolution of 70S-A in the Bs70S-30S subcomplex.

A Overview of the Bs70S-30S subcomplex with 30S-A (yellow), 50S-A (gray), and 30S-B (orange), as well as BsHPF-NTD (green) and BsHPF-CTD (red).

B, C Overview (B) and transverse section (C) of the Bs70S-30S subcomplex colored according to the local resolution, as calculated using ResMap (Kucukelbir et al, 2014).

D Fourier-shell correlation curve of the refined cryo-EM map, indicating the average resolution of 70S-A in the Bs70S-30S subcomplex is 3.8 Å.

E Fit of models to maps. FSC curves calculated between the refined model and the final map (black), with the self- and cross-validated correlations in orange and

red, respectively. Information beyond 4 Å was not used during refinement and preserved for validation.

F–I Map density for the (F, G) BsHPF-NTD and (H, I) BsHPF-CTD, which are (F, H) colored according to the local resolution, as calculated using ResMap (see Materials

and Methods), or (G, I) shown as a gray mesh with molecular models (G) for BsHPF-NTD (green) or (I) BsHPF-CTD for 70S-A (red) and 70S-B (blue), using the same

respective view as in (F, H).
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B
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D E

Figure EV4. BsHPF linker region approaches the 30S platform cavity.

A Overview of the 30S cavity region showing BsHPF-NTD (green) and BsHPF-CTD (red) and 30S (yellow), except S2 (cyan), S7 (blue), and S18 (purple).

B Zoom of (A), showing map density (gray mesh) for the N-terminal part of the linker region of BsHPF (green) as well as for the 3
0 end of the 16S rRNA.

C Coomassie (upper panel) and Western blot of cell extracts (CE) and ribosome pelleted fractions (R) of the wild-type Bs168 (wt) strain or the ∆BsHPF strains

expressing either wild-type BsHPF, BsHPF-(GS)5, or BsHPF-(GS)10.

D, E Sucrose gradient profiles of cell extracts from the (D) Bs168 ∆BsHPF amyE::BsHPF-(GS)5 strain and (E) Bs168 ∆BsHPF amyE::BsHPF-(GS)10 strain, in the absence (I�)

or presence (I+) of IPTG.
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Figure EV5. Resolution of the complete dimeric Bs100S.

A Fourier-shell correlation curve of the refined cryo-EM map, indicating the average resolution of 70S-A, 70S-B, and the complete Bs100S is 5.3, 6.9 and 6.2 Å,

respectively.

B, C Cryo-EM map of the dimeric Bs100S colored according to local resolution showing (B) overview and (C) transverse section of the complete 100S disome.

D The 70S-A and 70S-B monomers in the Bs100S are related by rotational symmetry of ~180°.

E, F Cryo-EM map of the (E) dimeric Bs100S with 30S-A (yellow), 30S-B (orange) and 50S (gray), and (F) transverse section of (E) highlighting the densities for the

BsHPF-NTD (green) and BsHPF-CTD (red).
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Table EV1 Cryo-EM data collection and model refinement statistics 

Data Collection and Refinement  

Particles 25,516 
Pixel size (Å) 1.084 
Defocus range (µm) 0.7-2.2 
Voltage (kV) 300 
Electron dose (e-/Å2) 24 

Model Composition  

Protein residues 6480 
RNA bases 4642 

Refinement  
Resolution (Å) 3.8 
Map sharpening B factor (Å2) -95.95 
Box size 450x450x450 
Map CC (whole Unit Cell) 0.47 
Map CC (around atoms) 0.75 

Validation Proteins  
Poor rotamers (%) 1.42 
Ramachandran outliers (%) 0.26 
Ramachandran favored (%) 85.36 
Bad backbone bonds (%) 0.04 
Bad backbone angles (%) 0.15 

Validation RNA  

Correct sugar puckers (%) 98.25 
Good backbone conformations (%) 70.72 
Bad bonds (%) 0.00 
Bad angles (%) 0.04 

Scores  
MolProbity score 2.22 (63th percentile) 
Clash score, all atoms 8.26 (81th percentile) 

 



Table EV2 Oligonucleotides  

Name  

(relevant 

features) 

 

P146_yvyD_f

or (SalI, RBS) 

ACGCGTCGACAGGAGGAATTCAAAATGAACTATAACATCA

GAGGAG 

P147_yvyD_re

v (SphI) 

ACAGCATGCTTATTCAGTCGGTTCAATTAAGC 

P475_ 

L 10AA_for 

GCTCTCCAAAATATTTATTGGCGGTTCAGGATGACATAGA 

P476_ 

L 10AA_rev 
TCTATGTCATCCTGAACCGC CAATAAATATTTTGGAGAGC 

P477_ 

L 0AA_for 
AATTCCGTGAGCAGGGCTCT ATAGAAGAGGAGGAGAGCTTG 

P478_ 

L 20AA_rev 
CAAGCTCTCCTCCTCTTCTATAGAGCCCTGCTCACGGAATT 

P480_F160E_f

or 
ATGCTCGGCCATAAT GAA TTTGTTTTCACAAATGCGGAAAC 

P481_F160E_r

ev 
ATTTGTGAAAACAAA TTC ATTATGGCCGAGCATATTCATTTG 

 



Table EV3 Strains used in this work  

Strain Relevant characteristics Source 

168 trpC2 1-BGSC: 1A1 

BKD1 trpC2 lys-  (Drzewiecki et al, 1998) 

BHS008  this work 

BHS399 amyE::Phyperspank-  this work 

BHS607 amyE::Phyperspank- -124) 

spec HPF::kan 

this work 

BHS613 amyE::Phyperspank- -194) 

 

this work 

BHS617 amyE::Phyperspank-HPF (F160E) spec 

HPF::kan 

this work 

1-BGSC: Bacillus Genetic Stock Center, Columbus, Ohio, USA. 
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ABSTRACT

Under stress conditions, such as nutrient starvation,
deacylated tRNAs bound within the ribosomal A-site
are recognized by the stringent factor RelA, which
converts ATP and GTP/GDP to (p)ppGpp. The sig-
naling molecules (p)ppGpp globally rewire the cellu-
lar transcriptional program and general metabolism,
leading to stress adaptation. Despite the additional
importance of the stringent response for regula-
tion of bacterial virulence, antibiotic resistance and
persistence, structural insight into how the ribo-
some and deacylated-tRNA stimulate RelA-mediated
(p)ppGpp has been lacking. Here, we present a cryo-
EM structure of RelA in complex with the Escherichia
coli 70S ribosome with an average resolution of 3.7
Å and local resolution of 4 to >10 Å for RelA. The
structure reveals that RelA adopts a unique ‘open’
conformation, where the C-terminal domain (CTD) is
intertwined around an A/T-like tRNA within the in-
tersubunit cavity of the ribosome and the N-terminal
domain (NTD) extends into the solvent. We propose
that the open conformation of RelA on the ribosome
relieves the autoinhibitory effect of the CTD on the
NTD, thus leading to stimulation of (p)ppGpp synthe-
sis by RelA.

INTRODUCTION

The stringent response (SR) is a central bacterial adap-
tation mechanism. In response to various environmental

stimuli, the RelA/SpoT Homologue (RSH) proteins mod-
ulate the intracellular concentration of the alarmone nu-
cleotides guanosine tetraphosphate (ppGpp) and guano-
sine pentaphosphate (pppGpp), commonly referred to as
(p)ppGpp (1–3). Production of (p)ppGpp mediates global
rewiring of the cellular transcriptional program and general
metabolism, leading to stress adaptation. The SR has been
shown to play an important role in regulation of bacterial
virulence (4), survival during host invasion (5), as well as
antibiotic resistance (6) and persistence (7). Together with
the absence of a cytoplasmic (p)ppGpp-mediated SR sys-
tem in eukaryotes, this makes the RSH enzymes involved in
(p)ppGpp metabolism promising new targets for drug de-
velopment (3,8,9).

Historically, investigations of the SR were focused on the
� -proteobacterium Escherichia coli. In E. coli, the SR is or-
chestrated by two multi-domain long form RSH enzymes:
RelA (10) and SpoT (11). The activity of the two proteins
is regulated by different sets of stress signals. SpoT has a
strong (p)ppGpp hydrolytic activity and a weak (p)ppGpp
synthesis activity (12–14). By contrast, RelA has no hy-
drolytic activity, but possesses a strong ribosome-dependent
(p)ppGpp synthetic activity that is activated by amino acid
starvation via sensing of deacylated tRNA in the riboso-
mal A-site (15–17). It has also been shown that there is an-
other activator of RelA, namely its product ppGpp (18).
There are conflicting models for the mechanism of action of
RelA. Biochemical studies suggested that (p)ppGpp synthe-
sis causes RelA to ‘hop’ between ribosomes to sample the
translational status of the cell (16). Subsequent live cell sin-
gle molecule tracking experiments suggested that while acti-
vation of RelA by starved ribosomes induces RelA dissoci-
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ation, RelA can performmultiple rounds of catalysis off the
ribosome (19). This is hard to reconcile with recent live cell
single molecule tracking experiments suggesting that under
starvation conditions RelA remains bound to the ribosome
and synthesis multiple rounds of (p)ppGpp synthesis (20).

Sequence analysis (2) and biochemical studies (21–23)
suggest that RelA has a two domain architecture: An N-
terminal domain (NTD) bearing hydrolase (HD) and syn-
thetase (SYNTH) subdomains, the structure of which is
available from the Gram-positive bacterium Streptococcus
dysgalactiae subsp. equisimilis Rel protein (24). To date,
there is no atomic structure of the RelA C-terminal domain
(CTD), however, sequence homology suggests the presence
of a TGS (Thr-RS, GTPase and SpoT) motif followed by a
helical linker region connected to the C-terminal conserved
cysteine (CC) and Aspartokinase, Chorismate mutase and
TyrA (ACT) subdomains (2). Although the precise function
of these subdomains is unclear, the CTD is critical for ri-
bosome binding (25) as well as autoinhibition of the syn-
thetase activity of RelA in the absence of the ribosome (21–
23,26). Structural insights into the RSH interaction with
the ribosome come from a cryo-electron microscopy (EM)
structure ofE. coliRelAbound to theThermus thermophilus
70S ribosome programmed with tRNAf

Met in the P-site and
tRNAPhe in the A-site (25). The structure reveals that on the
ribosome RelA interacts with a distorted A/T-tRNA (25),
similar but distinct from the A/T-tRNA observed on the ri-
bosome in the presence of EF-Tu (27–29). The limited res-
olution (∼11 Å) and conformation flexibility of the bound
RelA, however, precluded assignment of theNTDandCTD
(25).

Here, we present a cryo-EM structure of E. coli RelA
in complex with a translating ribosome stalled with a
deacylated-tRNA in the A-site, with an average resolution
of 3.7 Å and local resolution of 4 to >10 Å for RelA. The
structure reveals that the HD and SYNTH domains within
the NTD of RelA are highly flexible and protrude into the
solvent where no contact with the ribosome is apparent. In
contrast, the CTD of RelA adopts an open conformation
on the ribosome that stabilizes an A/T-like conformation
of the deacylated tRNA in the A-site, which we term the
A/R-tRNA state. The TGS domain of RelA interacts with
the CCA-end, suggesting its involvement in discriminat-
ing deacylated- from aminoacylated-tRNAs. A long helical
linker region extends from the TGS domain, wraps around
the A/R-tRNA and positions the CC and ACT domains
deeper within the intersubunit cavity, where they interact
with H38 of the 23S rRNA. Overall, the structure enables
a model to be proposed for how the open conformation of
the CTD of RelA on the ribosome leads to stimulation of
the (p)ppGpp activity of the NTD.

MATERIALS AND METHODS

Generation and purification of ErmCL S10K-SRC

The RelA-stalled ribosomal complex (SRC) was generated
based on the disome approach (Figure 1A-D), aspreviously
described (30). The 2XermCL construct was modified
by mutation of codon 10 AGC (Ser) to AAG (Lys) and
synthesized (Eurofins, Martinsried, Germany) such that it
contained a T7 promoter followed by a strong ribosome

binding site (RBS) spaced by 7 nucleotides (nts) to the
ATG start codon of the first ermCL S10K cistron. A
linker of 22 nts separated the stop codon of the first
ermCL S10K cistron and the start codon of the second
ermCL S10K cistron. The linker also comprised the strong
RBS 7 nts upstream of the ATG start codon of the second
ermCL S10K cistron, enabling initiation of translation
independent from the first ermCL S10K cistron. With the
exception of the S10K mutation, each ermCL S10K cistron
encoded amino acids 1–19 corresponding to the ErmCL
leader peptide (Genbank accession number V01278)
present on the macrolide resistance plasmid pE194 (31,32).
The complete sequence of 2XermCL S10K construct is:
5’-TAATACGACTCACTATAGGGAGTTTTATAAG
GAGGAAAAAATATGGGCATTTTTAGTATTTTTGT
AATCAAGACAGTTCATTATCAACCAAACAAAA
AATAAAGTTTTATAAGGAGGAAAAAATATGGG
CATTTTTAGTATTTTTGTAATCAAGACAGTTCAT
TATCAACCAAACAAAAAATAA-3’ (T7 promoter, ital-
ics; RBS, bold; ErmCL ORF, underlined with ATC codon
in P-site of stalled ribosome shown in bold; Annealing
site for complementary DNA oligonucleotide, underlined).
In vitro translation of the ermCL S10K construct was
performed using the Rapid Translation System RTS 100
E. coli HY Kit (5PRIME). Translation reactions were
analyzed on sucrose density gradients (10%-55% sucrose
in buffer A, containing 50 mM HEPES-KOH, pH7.4, 100
mMKOAc, 25 mMMg(OAc)2, 6 mM �-mercaptoethanol,
10 �Merythromycin and 1x Complete EDTA-free Protease
Inhibitor cocktail (Roche)) by centrifugation at 154 693
× g (SW-40 Ti, Beckman Coulter) for 3 h at 4◦C. For
ErmCL S10K-SRC purification, disome fractions were
collected using a Gradient Station (Biocomp) with an
Econo UV Monitor (Biorad) and a FC203B Fraction
Collector (Gilson). Purified ErmCL S10K-SRC disomes
were concentrated by centrifugation at 88 760 × g for 4
h at 4◦C (TLA120.2 rotor, Beckman Coulter). To obtain
monosomes of the ErmCL S10K-SRC, a short DNA
oligonucleotide (5′-ttcctccttataaaact-3′, Metabion) was
annealed to the linker between the ermCL S10K cistrons,
generating a DNA–RNA hybrid that could be cleaved by
RNaseH (NEB) treatment in buffer A at 25◦C for 1 h. After
cleavage of the disomes, ErmCL S10K-SRC monosomes
were again purified and concentrated by centrifugation
at 88 760 × g for 4 h at 4◦C (TLA120.2 rotor, Beckman
Coulter).

Expression and purification of RelA

RelA (Gene ID: 947244) was cloned into pET46LIC vec-
tor with an N-terminal hexahistidine tag (His6) for pu-
rification and detection purposes. An enterokinase cleav-
age site (bold) connects the His6 tag (underlined) to the
RelA (MAHHHHHHVDDDDKM). The RelA plasmid
was chemically transformed into E. coli BL21 (DE3) com-
petent cells. A volume of 4L LB medium was inoculated
at a 1:100 dilution with an overnight culture. RelA expres-
sion was induced by addition of 1 mM Isopropyl �-D-1-
thiogalactopyranoside (IPTG) at OD600 = 0.5 for 1 h at
30◦C. Cells were harvested by centrifugation at 5000 × g
for 10 min at 4◦C (Sorvall, SLC 6000 rotor) and the cell
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pellet was re-suspended using lysis buffer (300 mM NaCl,
50 mM NaH2PO4, 5 mM imidazole and 1 mM PMSF, pH
8.0). Cells were lysed using the microfluidizer (Microflu-
idics), followed by centrifugation at 38 724 × g for 30 min
at 4◦C to remove cellular debris (Sorvall, SS-34 rotor). The
cleared lysate was then incubated at 4◦C for 20 min with
1.6 ml of Ni-NTA slurry pre-equilibrated with lysis buffer.
The lysate–Ni-NTA mixture was centrifuged at 500 × g for
1 min after which the beads were washed four times with
10 ml of washing buffer (300 mMNaCl, 50 mMNaH2PO4

and 10 mM imidazole, pH8.0). Elution of RelA was car-
ried out using 1 ml of elution buffer (300 mM NaCl, 50
mM NaH2PO4, 250 mM imidazole and 1 mM PMSF, pH
8.0). Eluted RelA was further purified by gel-filtration (Su-
perdex 200 10/300 GL; pre-equilibrated in buffer B (50 mM
HEPES, 100 mM KCl, 200 mM NaCl, 10 mM MgCl2, 5
mM �-mercaptoethanol, 2% glycerol and 1 mMPMSF, pH
7.8). Subsequently, purified RelA protein was concentrated
via centrifugation through AmiconUltra-0.5 ml centrifugal
filters (30K,MerckMillipore). The activity of theRelA pro-
tein was confirmed using the ribosome-dependent ppGpp
synthesis assay (Supplementary Figure S1) pasting.

ppGpp synthesis assay

The assays were performed as described in (18) with mi-
nor modifications. Ribosomal complexes were formed
using heat activated vacant E. coli 70S ribosomes
(0.5 �M) programmed with synthetic MF-mRNA 5′-
GGCAAGGAGGUAAAAAUGUUCAAA-3′ (Sigma
Aldrich) (1 �M), 0.3 mM 3H-GDP, 1 mMATP, deacylated
tRNAf

Met and tRNAPhe (Chemical Block Ltd.) (1.5 �M
each) (25 mMHEPES-KOH pH 7.5, 15 mMMg(OAc)2, 95
mM KCl, 5 mM NH4Cl, 0.5 mM CaCl2, 8 mM putrescine
and 1 mM spermidine) (33). 3H-ppGpp was separated
from 3H-GDP on TLC (PEI cellulose, Macherey-Nagel) in
0.5 M KH2PO4 pH 3.5. UV shadowing of TLC with non-
radioactive nucleotides was used to identify the 3H-GDP
and 3H-ppGpp spots, the TLC plate was cut and 3H-GDP
and 3H-ppGpp fragments of the plate were subjected to
scintillation counting individually (Supplementary Figure
S1).

Generation of the RelA-SRC using the ErmCL S10K-SRC

The RelA-SRC complex was assembled using a final con-
centration of 0.125 �M ErmCL S10K-SRC, 0.625 �M
RelA, 0.625 �M tRNALys (Sigma-Aldrich), 500 �M �, �-
methylene-ATP (Sigma-Aldrich), 500 �MGDP and 10 �M
erythromycin. All components were pre-dissolved in buffer
A (as mentioned before but excluding Ery and 1x Complete
EDTA-free Protease Inhibitor cocktail). The binding reac-
tion (RelA-SRC sample) was incubated at 37◦C for 20 min.

Negative-stain electron microscopy

Ribosomal particles were diluted in buffer A to a final con-
centration of 0.5 A260/ml. One drop of each sample was
deposited on a carbon-coated grid. After 30 s, grids were
washed with distilled water and then stained with 2% aque-
ous uranyl acetate for 15 s. The remaining liquid was re-
moved by touching the grid with filter paper. Micrographs

were taken using a Morgagni transmission electron micro-
scope (FEI), 80 kV, wide angle 1K CCD at direct magnifi-
cations of 72K.

Cryo-electron microscopy and single particle reconstruction

A total of 4 A260/ml monosomes of the RelA-SRC sam-
ple were applied to 2 nm pre-coated Quantifoil R3/3 ho-
ley carbon supported grids and vitrified using a Vitrobot
Mark IV (FEI Company). Data collection was performed
using EM-TOOLS (TVIPS GmbH) on a Titan Krios trans-
mission electron microscope equipped with a Falcon II di-
rect electron detector (FEI Company) at 300 kV at a pixel
size of 1.084 Å and a defocus range of 0.7–2.2 �m. Ten
frames (dose per frame of 2.5 e−/Å2) were aligned using
Motion Correction software (34) and then processed us-
ing a frequency-limited refinement protocol that helps pre-
vent overfitting (35), specifically by truncation of high fre-
quencies (in this case, at 8 Å). As reported and expected
(35), we find that using this processing regime the 0.143
FSC value provides a good indicator for the true average
resolution of the map. Additionally, the local resolution of
the map was calculated using ResMap (36). Power-spectra,
defocus values, astigmatism and estimation of micrograph
resolution were determined using the CTFFIND4 software
(37). Micrographs showing Thon rings beyond 3.5 Å reso-
lution were further manually inspected for good areas and
power-spectra quality. Data were processed using the SPI-
DER software package (38), in combination with an auto-
mated workflow as described previously (39). After initial,
automated particle selection based on the programSIGNA-
TURE (40), initial alignment was performed with 197 090
particles using E. coli 70S ribosome as a reference struc-
ture (41). The data set could be sorted into four homoge-
neous subpopulations using an incremental K-means-like
method of unsupervised 3D sorting (42) (Supplementary
Figure S2): The ligand-bound subpopulation (24 749 par-
ticles; 13%) was defined by the presence of stoichiometric
densities for P-tRNA, A/R-tRNA and RelA and could be
refined to an average resolution of 3.7 Å (0.143 FSC) and a
local resolution extending to 3.5 Å for the core of the 30S
and 50S subunit as computed using ResMap (36) (Supple-
mentary Figure S3). The final map of the RelA-SRC was
Butterworth-filtered to 4 Å resolution.

Molecular modeling and map-docking procedures

The molecular model of the RelA-SRC was based on the
ErmCL-TetM-SRC structure (PDB3J9Y, (43)), which was
in turn based on an E. coli ribosome model from (29). The
L11 stalk, 30S head domain, H38 and the L1 stalk were fit-
ted as individual rigid bodies into the RelA-SRC map and
subsequently manually adjusted and refined in Coot (44).
Homology models of the RelA domains TGS (PDB2EKI)
and ACT (PDB2KO1) were generated using HHPred (45)
andModeller (46) and could be unambiguously rigid body-
fitted into the RelA-SRC cryo-EM density (Supplemen-
tary Figure S3). The homology model for the RelA HD-
SYNTH domain was based on PDB1VJ7 (24) and fitted
into the 12 Å filtered density. In order to yield the best fit,
the HD was rotated slightly with respect to the SYNTH.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

-a
b
s
tra

c
t/4

4
/1

3
/6

4
7
1
/2

4
5
7
6
0
5
 b

y
 B

ib
lio

th
e
k
s
s
y
s
te

m
 U

n
iv

e
rs

itä
t H

a
m

b
u
rg

 u
s
e
r o

n
 1

4
 M

a
y
 2

0
1
9



6474 Nucleic Acids Research, 2016, Vol. 44, No. 13

Figure 1. Generation of a RelA-stalled ribosome complex. (A) The bicistronic 2XermCL S10K mRNA was translated in the presence of 10 �M ery-
thromycin (ERY) in order to generate (B) ErmCL-S10K SRC disomes. (C) ErmCL S10K-SRC disomes were converted to monosomes by antisense DNA-
mediated RNase H cleavage, as shown by sucrose density gradient centrifugation and negative stain electron microscopy (EM). (D) A-tRNA deficient
ErmCL S10K-SRCs were used as substrate for (E) RelA binding in the presence of deacylated tRNALys, GDP and �, �-methylene-ATP.

The molecular model for the A/R-tRNA was based on the
A/T tRNA of a crystal structure of EF-Tu-bound ribo-
somes (PDB2WRN, (27)), which was rigid body-fitted into
the density. The CCA-end of the A/R-tRNA was tenta-
tively adjusted in Coot (44) to illustrate its rough position-
ing within the TGS domain of RelA. Alignment of the EF-
Tu structure (PDB5AFI) was performed in Chimera on the
basis of the 23S rRNA, and has an rmsd of 0.64 with the
23S rRNA of the RelA structure.

Figure preparation

All figures showing electron densities and atomic models
were generated using UCSF Chimera (47).

RESULTS

Generation of a RelA-stalled ribosome complex

The RelA-ribosome complex was generated in vitro by ad-
dition of purified RelA protein to SRCs. As in our pre-
vious studies (30,41,43), the SRCs were obtained using
a dicistronic 2Xerm-mRNA encoding two identical Erm-
stalling leader peptides (Figure 1A). In vitro translation of
the 2Xerm mRNA in the presence of the macrolide an-
tibiotic erythromycin generates disomes, where two ribo-
somes are stalled on the same mRNA (Figure 1B). The
disomes were then separated from non-translating 70S ri-
bosomes using sucrose gradients (Figure 1B). For struc-
tural analysis, the disomes were converted back to mono-
somes by annealing of an antisense DNA oligonucleotide
to the linker region between the two erm cistrons (Figure
1C). We first used this disome approach to determine cryo-
EM structures of ErmBL-SRCs, revealing that the sample
contained a large population of ribosomes bearing A- and
P-tRNAs (30) and was thus unsuitable for binding of lig-
ands to the A-site. In contrast, our more recent structure

of the ErmCL-SRC contained a single homogenous popu-
lation of ribosomes with the ErmCL-peptidyl-tRNA (with
codon 9 of the mRNA) in the P-site and a free A-site (41)
(Figure 1D), which is thus suitable for determination of
ErmCL-SRC structures with A-site bound ligands, as ex-
emplified by the ribosome protection protein TetM (43).
In the case of the RelA-SRC, we used a variant form of
the ErmCL-SRC, termed ErmCL S10K, where the A-site
codon was mutated from AGC (Ser) to AAG (Lys) (Fig-
ure 1A). In agreement with previous studies (48,49), muta-
tion of the Ser10 codon, which would be in the A-site of
an erythromycin-stalled ErmCL-SRC (41,49), did not no-
ticeably affect the stalling efficiency, and resulted in dis-
ome formation in the presence of erythromycin (Figure 1B).
The reason for using the ErmCL S10K construct rather
than the wild type ErmCL was simply that, unlike deacy-
lated tRNASer, deacylated tRNALys is commercially avail-
able. RelA-SRCs were therefore formed by incubating the
ErmCL S10K-SRC with deacylated tRNALys and purified
recombinant E. coliRelA protein (that was shown to be ac-
tive in ppGpp synthesis, Supplementary Figure S1). Syn-
thesis of ppGpp by RelA has been proposed to lead to dis-
sociation of RelA from the ribosome (16), thus we gener-
ated the RelA-SRCs in the presence of GDP and the non-
hydrolysable ATP analogue �, �-methylene-ATP (Figure
1E).

Cryo-EM structure of the RelA-SRC

Cryo-EM data were collected on a Titan Krios transmis-
sion electron microscope with a Falcon II direct electron
detector. From a total of 197 090 ribosomal particles, in
silico sorting revealed a large mixture of ribosome popu-
lations containing either P-tRNA only (11%), A- and P-
tRNAs without an E-tRNA (18%), or fully accommodated
A-, P- and E-tRNAs (58%). Despite this heterogeneity, we
were able to sort for a small population (24 749 particles,
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Figure 2. Novel binding site for RelA on the ribosome. (A and B) Overview of the cryo-EM reconstruction of the RelA-SRC filtered to (A) 4 Å and (B) 12
Å resolution showing 30S subunit (yellow), 50S subunit (grey), P-tRNA (cyan), A/R-tRNA (blue) and RelA (red). (C) Overview of EF-Tu-bound E. coli
70S ribosomes with P-tRNA (cyan), A/T-tRNA (green) and EF-Tu (orange) (29). (D) Isolated cryo-electron density with fitted model for the A/R-tRNA
(blue). (E and F) Comparison of (E) H43 and H44 of the 23S rRNA and (F) A/R-tRNA of RelA-SRC (blue) and A/T-tRNA of EF-Tu-70S (green) (29).

13%) that contained a P-tRNA, but also the presence of
A/R-tRNA and RelA bound within the ribosomal A-site
(Supplementary Figure S2). The large heterogeneity of the
data set was similar to that observed previously for the com-
plex of E. coli RelA with the T. thermophilus 70S ribosome,
where the RelA-containing ribosomes represented 15% of
the total population (25). The RelA-containing ribosomes,
which we term the RelA-SRC (Figure 1E), could be further
refined to final average resolution of 3.7 Å (Fourier shell
correlation (FSC) cut-off of 0.143, Supplementary Figure
S3A). Although the average and local resolution calcula-
tions indicate that the majority of the core of the ribosome
is 4.0 Å or better, the resolution of theA/R-tRNAandRelA
ranged from 4 Å to >10 Å (Supplementary Figure S3B and
C), indicating high flexibility of the A/R-tRNA and RelA
within the ribosomal binding site, as observed previously
(25).

Novel binding site for RelA on the ribosome

In the RelA-SRC, RelA is bound in the A-site of the ri-
bosome and interacts with a tRNA that has adopted an
A/T-tRNA-like conformation (Figure 2A and B), similar
but distinct to that observed during decoding when the EF-
Tu delivers the aminoacyl-tRNA to the A-site of the ribo-
some (27–29) (Figure 2C). Since we observed no subpopula-

tions of ribosomes bearing A/T-like tRNA conformations
in the absence of RelA but rather only fully accommodated
A-tRNAs (Supplementary Figure S2), we reason that this
state requires RelA for stabilization and therefore we refer
to this binding state of the deacylated tRNA as the A/R-
tRNA conformation. Within the limits of the resolution,
the anticodon stem loop of the A/R-tRNA in the RelA-
SRC appears to be similar to that observed during decod-
ing with EF-Tu (29) (Figure 2D–F). Interaction of the an-
ticodon stem-loop of the A/R-tRNA with the codon of the
mRNA is not unexpected in the RelA-SRC, since the stim-
ulation of ribosome-dependent RelA-mediated (p)ppGpp
synthesis requires the deacylated tRNA to be cognate to the
codon in the A-site (15). In contrast, the most prominent
differences between the A/R-tRNA and A/T-tRNA states
are in the placement of the elbow and acceptor arm of the
tRNA, including the CCA-end, which are shifted by ∼10 Å
with respect to one another (Figure 2E and F). Accordingly,
the stalk base (H43/H44 of the 23S rRNA) is also shifted
by ∼4-6 Å between the RelA and EF-Tu structures (Figure
2E).

Stabilization of anA/R-tRNA state byRelAwas also ob-
served in the previous cryo-EM reconstruction of the RelA-
70S complex (25). In this reconstruction, density assigned
to RelA was observed to interact with A/R-tRNA using
the external surface of the acceptor arm, whereas no den-
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Figure 3. RelA adopts an extended conformation on the ribosome. (A) Schematic showing the domain organization of E. coli RelA with HD (magenta),
SYNTH (pink), TGS (green), HELICAL (blue), CC (yellow) and ACT (orange) subdomains. (B) Overview of RelA-SRC with subdomains colored ac-
cording to (A) and A/R-tRNA (light blue). (C and D) Complementary views showing isolated electron density of RelA with fitted homology models for
TGS (green, PDB2EKI) and ACT (orange, PDB2KO1) subdomains, as well as model poly-Alanine helices fitted to the helical linker region (blue) and
density for CC colored in yellow. (E–G) As (B–D) with 12 Å filtered maps and additional fitted homology models for HD (magenta) and SYNTH (pink)
based on PDB1VJ7 (24).

sity was reported to extend into the intersubunit region of
the ribosome (25). In contrast, at higher resolution addi-
tional density is observed in the RelA-SRC for RelA that
extends from the CCA-end of the A/R-tRNA into the in-
tersubunit region, namely, passing between the small sub-
unit and acceptor arm of the tRNA toward the large ribo-
somal subunit and occupying the space between the elbow
of the A/R-tRNA and the intersubunit bridge contact be-
tween the head (hd) of the small subunit and central pro-
tuberance (cp) of the large subunit (Figure 2A). When the
cryo-EM map for the RelA-SRC was filtered to 12 Å, addi-
tionally density for RelA was also observed extending out
of the A-site of the ribosome into the solvent (Figure 2B),
indicating the extreme flexibility of this region of RelA. To
our knowledge, the extended binding site for RelA observed
within the A-site intersubunit crevice of the RelA-SRC is
distinct from any other translation factor binding sites so
far visualized on the ribosome.

RelA adopts an extended conformation on the ribosome

Although de novomodel building for RelAwas not possible,
and despite the absence of a crystal structure for the CTD
of RelA, the resolution and density features of the RelA-
SRCmap enabled homologymodels for distinct parts of the
E. coli RelA to be fitted unambiguously (Figure 3A–D). In
particular, homology models were generated and fitted for
the TGS and ACT domains located in the CTD of RelA
based on nuclear magnetic resonance (NMR) spectroscopy
structures ofHomo sapiensGTP-binding protein1 TGS do-
main (PDB2EKI) and of the ACT domain from theChloro-
bium tepidum GTP pyrophosphokinase (PDB2KO1), re-
spectively (Figure 3B–D and Supplementary Figure S3D–

G). Additionally, we could identify five tubular densities
that we assigned to the five predicted �-helices (Supplemen-
tary Figure S4) present in the helical linker region that con-
nects the TGS with the CC/ACT subdomains (Figure 3B–
D). The poor density for the connections between the he-
lices does not allow us to unambiguously assign the order
of the helices, nor the directionality, and therefore polyala-
nine helices were fitted as placeholders. Moreover, it was
not possible to generate a suitable homology model for the
CC domain and therefore this domain was left unmodelled
(Figure 3B–D). Ourmodel for the CTDofRelA reveals that
the TGS domain interacts with the CCA-end of the A/R-
tRNA, whereas the helical linker wraps around the accep-
tor arm, positioning the ACT domain to interact with the
elbow region of the A/R-tRNA (Figure 3B–D).

Additionally, a homology model could be generated for
theHDand SYNTHdomains comprising theNTDofRelA
based on the X-ray structure of the S. dysgalactiae Rel pro-
tein (24). Despite the low resolution of the NTD in the
RelA-SRC, the distinct features of the density allowed an
good fit (cross-correlation coefficient of 0.82) of the helical
bundle of HD domain and the long extended helices within
the SYNTH domain (Figure 3E–G). Moreover, only this
orientation allows the C-terminal end of the SYNTH do-
main to be oriented toward the TGS domain of the CTD of
RelA. Overall, our model for RelA suggests that the NTD
of RelA does not form any stable interactions with the ribo-
some, with the SYNTH domain extending toward but not
contacting the spur (helix 6 of the 16S rRNA) of the small
subunit (Figure 3E), whereas in contrast the CTD of RelA
snakes through the intersubunit space establishing, in ad-
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Figure 4. Interactions of RelA with the ribosome and A/R-tRNA. (A) Cryo-electron density of the CC subdomain of RelA (yellow) suggests interaction
with the �-sheet of r-protein S19 (blue) and the minor groove of H38 in the 23S rRNA (grey). (B) Interaction of the C-terminal RelA ACT domain with
Arg59 of r-protein L16 (blue) as well as 23S rRNA residues A896 of H38 and the tip of H43. (C) The �4-strand of the TGS domain of RelA (green)
approaches the minor groove of h5 of the 16S rRNA, where residues in the vicinity of Ile448 (light green) appear to interact with the base-pair formed by
nucleotides A55 and U368 (yellow), which are flipped-out of helices h5 and h15, respectively. (D) Tentative placement of the A/R-tRNA CCA-end (blue)
shows vicinity of C74 of the A/R-tRNA with His432 located at the kink in �-helix �1, whereas C75 and A76 enter into a pocket formed by the �1–�2
hairpin and �5-strand of TGS (green).

dition to the A/R-tRNA, interactions with both the small
and large ribosomal subunits (Figure 3B).

Interactions of the RelA CTD with the ribosome and A/R-
tRNA

The most extensive interactions between RelA and the ri-
bosome are between the ACT and CC subdomains (Fig-
ure 4A and B). The electron density for the CC domain in-
dicates that it contacts components of both the small and
large ribosomal subunit, namely, via interaction with the
minor groove near the tip of H38 and by contacting the �-
sheet of ribosomal protein S19 (Figure 4A). In contrast, the
ACT domain contacts only components of the large sub-
unit; specifically, the proximal end of�-helix�2 contacts the
tip ofH43 of the 23S rRNA,whereas the�-sheet of theACT
domain clearly interacts with A896, which is flipped out of
H38 (Figure 4B), as it is in the unbound and vacant 70S
structures. Interaction is also observed between the vicinity
of Arg59 of ribosomal protein L16 and the terminal end of
the �-sheet of the ACT domain (Figure 4B). In addition,

�-helix �1 of the ACT domain contacts the elbow region of
theA/R-tRNAand�-helixH5 of the helical linker of RelA.
The TGS domain of RelA contains one �-helix �1 and

four �-strands �1–�4 (Supplementary Figure S4). The �4-
strand of the TGS domain of RelA approaches the minor
groove of helix 5 (h5 of the 16S rRNA) of the small subunit,
where residues in the vicinity of Ile448 appear to interact
with the base-pair formed by nucleotides A55 and U368,
which are flipped-out of helices h5 and h15, respectively
(Figure 4C), as they are in the unbound and vacant 70S
structures. The other contacts of the TGS domain are with
the CCA-end of the A/R-tRNA (Figure 4D), which adopts
a distinct conformation from the A/T-tRNA (Figure 2E
and F). Unfortunately, the density does not allow the nu-
cleotides to be unambiguously modelled and therefore only
a general description of the interactions can be provided:
C74 of the A/R-tRNA is in the vicinity of His432 located
at the kink in �-helix �1, whereas C75 and A76 enter into
a pocket formed by the �1–�2 hairpin and �5-strand (Fig-
ure 4D). This interaction area of the CCA-end encompasses
one of the most highly conserved regions of RelA, including
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Figure 5. Model for RelA action during the stringent response. (A and B) Under optimal conditions, aminoacyl-tRNAs (aa-tRNAs) are delivered by
EF-Tu (orange) to the A-site of the ribosome (green pathway). (C–G) Under starvation conditions (yellow pathway), the interaction of RelA (red) with
deacylated A/R-tRNA at the A-site of the ribosome leads to the conversion of RelA from a ‘closed’ to an ‘open’ conformation and thereby stimulating
high levels of (p)ppGpp synthesis. For more details, please refer to the text.

His432 in �-helix �1, Phe409-Pro411 in the �1–�2 hairpin
and Val461-Ile463 in the �5-strand (Supplementary Figure
S5). Although higher resolution will be required to ascer-
tain exactly how these highly conserved amino acids dis-
criminate between deacylated and aminoacylated tRNAs,
our structure provides evidence indicating that the TGS do-
main of RelA is directly involved in this monitoring activity.

DISCUSSION

Based on our structural results, together with the available
biochemical results from the literature, we present a model
for the ribosome-dependent stimulation of RelA-mediated
(p)ppGpp synthesis (Figure 5A–G): Under optimal growth
conditions, aminoacylated tRNAs are delivered to the ri-
bosome in a ternary complex with EF-Tu and GTP (Fig-
ure 5A and B). In contrast, under environmental conditions
that evoke the stringent response, such as amino acid star-
vation, the levels of aminoacylated-tRNAs decrease leading
to a concomitant accumulation of deacylated or uncharged
tRNAs (50). The absence of aminoacylated tRNAs for the
codon displayed in theA-site leads to ribosome stalling dur-
ing translation elongation (Figure 5C). Although the deacy-
lated tRNAs are not bound byEF-Tu or delivered byEF-Tu
to the ribosome, it is possible for deacylated tRNAs to bind
non-enzymatically to the A-site of the ribosome (Figure
5C). RelA has been proposed to recognize the deacylated
tRNA bound in the A-site and catalyze (p)ppGpp synthesis
(15–17). However, given the complex intertwined nature of

the interaction between RelA and A/R-tRNA observed in
our RelA-SRC structure, as well as the apparent lack of the
A/R-tRNA conformation of the deacylated tRNA in the
absence ofRelA, we favor an alternative hypothesis whereby
RelA and deacylated tRNA bind to the ribosome as a pre-
formed complex (Figure 5D and E). Indeed, RelA has been
shown to interact with deacylated tRNA (but not aminoa-
cylated tRNA) in the absence of the ribosome (26,51,52)
(Figure 5E).

Biochemical and genetic evidence suggests that in the
absence of the ribosome and deacylated tRNA, RelA ex-
ists in an autoinhibited state that produces only low levels
of (p)ppGpp (1,3). Specifically, it has been shown that the
CTD of RelA is responsible for the observed autoinhibition
(21–23,26), leading to the hypothesis that the autoinhibition
results from direct interaction between the CTD and NTD
of RelA (23), which we term here the ‘closed’ conformation
(Figure 5F). While interaction of deacylated tRNA with
the CTD of RelA in the absence of the ribosome promotes
a slight increase in (p)ppGpp synthesis activity (26,51,52)
(Figure 5E), full activity requires the additional presence of
the ribosome (15–17,53,54) (Figure 5D).

The structure of RelA-SRC provides a rationale for this
increased activity, namely, that the ribosome and A/R-
tRNA stabilize an ‘open’ conformation of RelA, which re-
lieves the inhibitory interaction that the CTD imparts on
the NTD, and thereby allows the uninhibited NTD to effi-
ciently catalyze the synthesis of (p)ppGpp fromGTP/GDP
and ATP (Figure 5D). This model is consistent with the
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observation that deletion of the CTD of RelA prevents in-
teraction of RelA with the ribosome (25) and allows the
NTD to synthesize (p)ppGpp in a ribosome-independent
manner (21,26,55). Moreover, the RelA-SRC structure in-
dicates that the TGS domain of RelA directly contacts the
3′-end of the deacylated tRNA (Figure 4D), explaining how
RelA can monitor and distinguish the aminoacylation state
of the A-tRNA (56). It should be noted that ppGpp it-
self dramatically stimulates the ribosome-dependent RelA-
mediated synthesis of itself (18), presumably by acting al-
losterically through a second, as yet undetermined, bind-
ing site on the factor, similar to the allosteric regulation
of pppGpp observed recently for the small alarmone syn-
thetase 1 (SAS1) RelQ from Bacillus subtilis (57) and Ente-
rococcus faecalis (58).

While it is easy in our model to envisage how multiple
rounds of (p)ppGpp synthesis by RelA could occur on the
ribosome, as reported recently (20), we cannot exclude al-
ternative models where (p)ppGpp synthesis leads to disso-
ciation of RelA from the ribosome (16,19). Moreover, it re-
mains unclear as to the order and timing of release of RelA
and deacylated-tRNA from the ribosome following synthe-
sis of (p)ppGpp (59), with one report suggested (p)ppGpp
synthesis leads to release of deacylated-tRNAbut notRelA,
whereas another observed release of RelA, but not deacy-
lated tRNA upon (p)ppGpp synthesis (16). From a struc-
tural viewpoint, it is hard to envisage how the intertwined
CTD of RelA could dissociate from the ribosome without
prior or concomitant dissociation of the deacylated A/R-
tRNA. As mentioned, RelA has been shown to interact
with deacylated tRNA in the absence of the ribosome and
that this interaction occurs with the CTD and promotes
a slight increase in (p)ppGpp synthesis activity (26,51,52).
Consistently, fluorescence resonance energy transfer exper-
iments indicate that the distance between the NTD and
CTD of RelA increases upon binding of deacylated tRNA
(60). This suggests to us that following dissociation from
the ribosome, but still in the presence of deacylated tRNA,
RelA can adopt a ‘semi-open’ conformation that can re-
tain (p)ppGpp synthesis activity for an extended period of
time (Figure 5G), consistent with the interpretation of sin-
gle molecule experiments examining RelA action in living
cells (19). Nevertheless, RelA has low affinity for deacy-
lated tRNA in the absence of the ribosome (51), suggest-
ing that either the RelA-tRNA complex becomes stabilized
by rebinding to the ribosome and stimulating higher levels
of (p)ppGpp synthesis, or the RelA-tRNA complex disas-
sembles, allowing RelA to adopt the less active closed con-
formation (Figure 5F). It seems probable that the former
pathway of rebinding would be favoured under conditions
of starvation where a high ratio of deacylated tRNAs over
aminoacylated tRNAs exists in the cell. In contrast, the lat-
ter pathway of disassembly would be favored as the nutri-
ent deprivation is alleviated and the ratio is reversed, such
that the increased intracellular levels of charged aminoacyl-
tRNA promote A-site binding and thereby allows transla-
tion to resume (Figure 5B).

ACCESSION NUMBERS

The coordinates and cryo-EM map for the RelA-SRC have
been deposited in the Protein Data Bank and EM Data-
Bank under accession codes 5L3P and EMD-4001, respec-
tively.

NOTE ADDED IN PROOF

During production of our work, a cryo-EMreconstruction
of aE. coliRelA-70S complexwas published byRamakrish-
nan and coworkers (61). Our findings are in perfect agree-
ment with their results and lead to the same conclusion: The
ribosome and A/R-tRNA stabilize an ‘open’ conformation
of RelA, which relieves the inhibitory interaction that the
CTD imparts on the NTD, and thereby allows the uninhib-
ited NTD to efficiently catalyze the synthesis of (p)ppGpp
from GTP/GDP and ATP.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure S1 Activity of E. coli RelA to synthesize ppGpp. Cognate deacylated tRNA strongly 

activates ppGpp synthesis by RelA. Time courses of 3H-ppGpp synthesis by RelA in the presence 

(filled circles) or absence (empty circles) of 1.5 µM deacylated tRNAPhe. In both cases the reaction 

mixture contained 0.5 µM 70S programmed with 1 µM MF-mRNA and 1.5 µM tRNAf
Met, 100 nM RelA, 

100 µM ppGpp, 0.3 mM 3H-GDP and 1 mM ATP. Results are shown as mean values of 3 replicates 

and error bars indicate standard error of the mean. 
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Figure S2: In silico sorting scheme of the RelA-SRC cryo-EM dataset. After removal of non-

aligning and edge particles, sorting of the dataset yielded four homogenous sub-datasets. The first 

(58%; 116,800 particles) contained stoichiometric density for A-, P- and E-tRNAs, the second (18%; 

37,629 particles) contained stoichiometric density for A- and P-tRNAs, the third (11%; 21,985 

particles) contained stoichiometric density for P-tRNA and the fourth sub-dataset (13%; 24,749 

particles) contained stoichiometric density for RelA, A/R-tRNA and P-tRNA (RelA-SRC). 



! %!

 

Figure S3: Resolution of the cryo-EM reconstruction of the RelA-SRC. (A) Fourier-shell 

correlation curve of the refined final map, indicating the average resolution of the RelA-SRC is 3.7 Å. 

(B,C) (B) Overview and (C) slice through of the RelA-SRC colored according to the local resolution as 

calculated using ResMap (1). (D,E) Different views showing the rigid body-fitted homology model of 

the TGS subdomain of RelA (green, PDB2EKI) into the cryo-EM density (grey mesh). (F,G) Different 

views showing the rigid body-fitted homology model of the ACT subdomain of RelA (orange, 

PDB2KO1) into the cryo-EM density (grey mesh). 
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Figure S4: Secondary structure prediction for subdomains of E. coli RelA. The amino acid (AA) 

sequence of E. coli RelA with the HD (magenta), SYNTH (pink), TGS (green), HELICAL (blue), CC 

(gold) and ACT (orange) subdomains is shown together with secondary structure predictions for α-

helices and β-strands (2D) based on PSIPRED (2). The secondary structures predictions for TGS and 

ACT domains were adjusted based on homology models generated from HHPred (3) and Modeller 

(4). 
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Figure S5: Weblogo plots showing conservation for TGS, CC and ACT subdomains of E. coli 

RelA. The amino acid number for E. coli RelA subdomains is shown on the x-axis and the figure was 

generated using the Weblogo server (5). 
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