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1 Introduction 

The Earth Overshoot Day demonstrates a calculated date on which humanity’s 

resource consumption for the current year exceeds Earth’s capacity to regenerate 

those resources in the same year. In 2018 this day was August 1st.[1] This fact 

demonstrates the massively growing demand for energy and resources. Global 

population growth requires environmental-friendly alternatives for conventional fossil 

fuel based energy sources as well as ecological solutions for everyday life and 

sustainable mobility. Therefore, research is focused on new advanced functional 

materials with unique optical and electronic properties.[2] Important components of this 

everyday life technology are semiconductors. They are used in a lot of devices of daily 

life such as computers, data storage media, cell phones, photovoltaics and to a greater 

extent in cars. More importantly, such materials have the ability to produce hydrogen 

and oxygen from water with the support of sunlight. This photocatalytic water splitting 

provides a renewable energy source without the use of coal-based raw materials and 

therefore does not produce any anthropogenic greenhouse gas emissions like CO2. 

Fortunately, water and solar energy resources are abundantly available on earth.[3, 4] 

Before irreversible damage in the environment occurs by a due to fossil fuel based 

economy, further research for earth-abundant semiconductors with electronic and 

optical properties as well as suited alternatives for commonly used materials is 

required. 

In the past 30 years nitrides attracted great interest. BN and Si3N4 are used for high-

performance applications due to their high level of hardness and temperature 

resistance. Besides these two often used nitrides, there are several other prominent 

representatives used as refractory materials, corrosion- and mechanical wear-resistant 

coatings, hard materials and magnets.[5] Chemical tuning of nitrides may be done by 

cation doping or exchange of the respective metal, but, the large diversity of 

compounds further increases by anion substitution. Conversely, anion substitution is 

less explored. This is a consequence of the high stability of metal-oxygen bonds and 

the bond energy of O2 and N2 (see Table 1) which in many cases required use of less 

straightforward and often more laborious synthesis methods.[6, 7] By exchange of 

anions e.g. nitrogen in pure oxygen compound properties become even more useful.[6] 
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Table 1. Properties of nitrogen and oxygen.[8] 

 N O 

Anion charge (z) -III -II 

Electronegativity 3.0 3.4 

Atomic polarizability/Å³ 1.10 0.80 

Electron affinity (A → Az-/kJ mol-1 1736 601 

Bond energy A–A (kJ mol-1) 941 499 

Ionic radii/A (for CN = IV) 1.46 1.38 

Coordination number (CN) II-VIII II-VIII 

Ionization energy (kJ/mol) 1402.3 1313.9 

 

One of the most abundant and well investigated substance classes are perovskites. 

Perovskites have been discovered by the Russian mineralogist G. Rose in mineral 

deposits in the Ural and are named after the Russian mineralogist 

C. L. A. von Petrovski. The general formula ABX3 represents ionic compounds, where 

A is usually a large cation, B is usually a smaller-sized cation and X is an anion.[9] 

 

 

Figure 1. a) Ideal perovskite structure of SrTiO3 with Ti4+ (black) in the centre b) 

TiO6 octahedral coordination (grey) c) perovskite super cell (2x2x2) with Sr2+ in the 

centre with cuboctahedral cage (pink) and TiO 6 octahedral coordination (grey) 

connected with an common face. [10]  
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One measure of the stability and distortion of perovskites is presented by the 

Goldschmidt tolerance factor. Goldschmidt suggested that the likelihood that a pair of 

ions would form a perovskite structure phase when 

 

𝑡 =  
(𝑟𝐴+ 𝑟𝐵)

(√2 (𝑟𝐵+𝑟𝑋 ))
 (Eq. 1) 

 

is, where t is called tolerance factor, rA is the ionic radius of the cuboctahedrally 

coordinated cation, rB is the radius of the octahedrally coordinated cation and rX is the 

radius of the anion.[11] For the ideal cubic structure there is a geometric value of t = 1. 

In fact, this structure is observed when 0.89 < t < 1.1. Distorted perovskites can be 

found, if 0.8 < t < 0.89, hexagonal perovskites in general possess values with t > 1, 

whereas values below t = 0.8 lead to the Illmenite-type. Apart from its simplicity, the 

tolerance factor has reasonable predictive power, especially for many oxides.[10, 12, 13] 

Still, perovskites are no pure ionic compounds and the result of the tolerance factor 

depends on the ionic radii. Therefore, the Goldschmidt tolerance factor is only a rough 

estimation.[9] 

The first nitride oxide* perovskites with the general formula ABO2–xN1+x were obtained 

by Marchand et al. in 1986.[14] After the first discovery, many different nitride oxide 

perovskite compounds were synthesized. Usually, ternary oxide precursors, which 

have been prepared from the binary oxides are used. This route is called hard 

chemistry approach. Another possibility, using a sol-gel process, is the so-called 

Pechini method. The starting materials are dissolved in citric acid and mixed. 

Afterwards, the precursor is dried, so that the organic matrix is burned. This yields a 

highly reactive precursor, which is subsequently heated in an ammonia stream. At 

temperatures above 500 °C ammonia dissociates into the reactive gases N2 and H2.[15] 

Interestingly, directly applying an equivalent mixture of nitrogen and hydrogen has no 

effect on oxides under the same conditions. In the Pechini method, additive salts are 

widely used as flux to promote the diffusion of the starting materials.[16] 

Numerous nitride oxide perovskites including alkaline earth metals (Ca, Sr, Ba) or 

lanthanides (e.g. La, Pr, Nd) in combination with transition metals (e.g. V, Nb, Ta, W) 

were discovered in recent years.[7, 17] Generally, these materials are synthesized at 

temperatures between 650 – 1050 °C in flowing ammonia. This so-called ammonolysis  

*: nitride oxide is correct according to IUPAC. In the following publications “oxonitride” or “oxynitride” was formerly used. 
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can easily be performed, though also has its limits. Regrinding of the starting materials, 

different flow rates and thermodynamic formation of stable residual side phases, just 

to mention a few difficulties, which lead to limited product yields. 

Sometimes oxygen can only partly be exchanged by nitrogen in ammonolysis gas flow 

reactions. SrMoO2.6N0.4 was obtained from SrMoO4 in flowing ammonia at 750 °C. 

Later the corresponding SrWO2N was successfully synthesized at 900 °C and a higher 

nitrogen amount was achieved for SrMoO2.5N0.5 by Fawcett et al.[18] Remarkably, in 

LaWO0.6N2.4, a significantly larger proportion of nitrogen can be incorporated by 

ammonolysis.[19] It is possible to partially substitute Ca2+ for La3+, resulting in solid 

solutions like Ca0.25La0.75TiO2.25N0.75.[20] 

The findings described above demonstrate that a whole series of nitride oxide 

perovskites have been displayed with the help of ammonolysis. However, this reaction 

path has some difficulties The synthesis at ambient pressures could sometimes be 

difficult because of the formation of thermodynamic stable side phases.[17] Therefore, 

new synthetic approaches were used applying increased pressure and innovative 

solution-based processes. The first high pressure synthesis of BaNbO2N using BaO, 

BaO2 and NbN was performed in 1995 by Troyanchuk et al. Remarkably, no gas was 

necessary for the synthesis at 1000°C and a pressure of 5 GPa.[21] However, the new 

nitride oxide perovskites RZrO2N (R = Pr, Nd, Sm) were synthesized via a direct solid-

state reaction of R2O3 with Zr2ON2 at 1200°C – 1500 °C under 2 – 3 GPa pressure 

using the multi-anvil technique.[22] 

In general, the morphology of the nitride oxide perovskite crystals obtained by high 

pressure techniques and ammonolysis is undefined and random. By using a KCl flux 

for the synthesis of BaTaO2N submicron-sized cube-like crystals were obtained[23] and 

rectangular crystals of Sr1–xBaxTaO2N were grown with the help of BaCN2 flux.[24]  

Further examples, where defined crystals are accessible are LaTaON2
[25] and 

LaTiO2N, synthesized by ammonolysis reactions.[26, 27] 

Despite the difficulties concerning the methods to obtain nitride oxide perovskite 

crystals nitride oxide perovskite crystals and films are of strong interest due to their 

special properties such as ferroelectricity and dielectricity. LaTiOxNy thin films were 

prepared by a reactive magnetron sputtering technique using reactive plasma and an 

oxide target.[28] SrMoO3-xNx has been fabricated by pulsed laser deposition of SrMoO4 

in hydrogen.[29] BaTaO2N thin films were grown by pulsed laser deposition using a 
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[100]-cut SrTiO3 substrate.[30] Thick films of nitride oxide perovskites (LaTiO2N, 

NbTiO2N, SrNbO2N and SrTaO2N) were synthesized by nitridation of single of the 

corresponding oxides with general composition ABO3.5 crystals in flowing ammonia. 

Another possibility is to use reactive magnetron sputtering of powdered La2Ti2O7 target 

under N2-rich plasma to synthesize LaTiO2N films.[31] Different thin film synthesis are 

modified molecular-beam epitaxy (MBE)[32] and plasma-assisted pulsed laser 

deposition (NPA-PLD).[33-35] A more recently developed explosion reaction type is an 

intense exothermic reaction between Ba(OH)2, NbCl5 and NaNH2 to produce BaNbO2N 

in seconds.[36] 

As illustrated above, many nitride oxide perovskites are only accessible by explorative 

reaction approaches. Besides many different synthesis methods, versatile properties 

of the nitride oxide perovskite family lead to tailor-made wide spectrum of applications. 

They have been reported as non-toxic pigments,[37] colossal magnetoresistive 

materials, [8, 38] high permittivity dielectrics[39-41] and photocatalysts.[8, 42, 43] 

The possibility to introduce nitrogen as a substitute for oxygen within the anionic 

network of perovskites allows a significant enrichment of possible perovskites. Metal 

nitride oxides are emerging materials that may exhibit properties of oxides and nitrides 

at the same time. For example, the introduction of nitrogen reduced the band gap of 

colorless oxygen compounds.[44] 

Nevertheless, the consequence of the high stability of the metal-oxygen bond is that 

the synthesis of anion-substitution compounds is elaborate and requires the use of less 

straightforward methods. All aforementioned synthesis routes have in common that the 

obtained films are only several micrometers thin and that substrates for successful 

growth are required. The accompanying lattice mismatch has many disadvantages. 

Powders synthesized by ammonolysis are microcrystalline and defined crystals are 

scarcely obtained. This demonstrates the importance of innovative explorative 

synthesis methods, which could enable access to novel functional nitride oxides and 

nitride compounds. 

Considering that, the ammonothermal method represents a highly promising technique 

in this field. It is derived from hydrothermal synthesis, but uses ammonia instead of 

water as reaction medium. Rather moderate temperatures in combination with high 

pressured ammonia provide suitable reaction conditions for many inorganic 

substances. Ammonia is often present in supercritical form, where distinct liquid and 
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gas phases do not exist. It is very similar to water in many respects, but it is less 

explored within research and commercial application fields due to the less 

straightforward handling. Ammonia is polar, protic, subject to autoprotolysis, has a low 

specific conductivity, but provides only small solubility for many inorganic compounds, 

which frequently yields poorly crystallized and amorphous solids. Solubility can be 

increased by pressurized supercritical ammonia due to higher permittivity and the 

deployment of mineralizers.[45] 

During the last decade, the ammonothermal approach attracted great attention. 

Several concepts of the hydrothermal can be adapted to the ammonothermal method, 

since both are solvothermal methods.[45, 46] This method includes temperature, 

pressure, mineralizer, chemical transport and crystal growth mechanism in a modified 

way for the synthesis of nitrides and nitride oxides. The ammonothermal method also 

gained great attention because of the lack of useful growth techniques of large GaN 

single crystals, however it is still a challenge.[47] For ammonothermal crystal growth, 

the nutrient polycrystalline GaN is dissolved in the presence of different mineralizers 

under the formation of well-soluble complex intermediate species.[48] Three different 

mineralizer classes (neutral, ammonobasic and -acidic) can be differentiated. 

Typically, alkali metal amides and ammonium halides are employed as mineralizers. 

An applied temperature gradient leads to convection of the intermediates inside the 

pressure vessel, which are transported to the growing seed crystal. The crystal growth 

is therefore achieved by dissolution and recrystallization based transport reactions. 

Intermediates have a major impact on solubilities, mass transport, growth rates, growth 

faces as well as predominant growth directions and are thus essential to elucidate and 

optimize crystal growth. The autoclave contains a baffle plate (Figure 2a) that regulates 

the mass transport (Figure 2b, 2c) and limits heat transfer between dissolution and 

growth zones. In that way, formation of defects is minimized by providing constant 

temperatures in seed zone (Figure 2c). Numerous parameters such as fluid 

temperature, pressure, autoclave and baffle geometry, fluid convection, type of nutrient 

and seeds, type and concentration of mineralizer as well as impurities lead to a very 

complex system for an effective crystal growth.[45, 49] 
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Figure 2. Schematic structure of the temperature gradient method (a) the 

temperature distribution in the autoclave without (b) and with baffles (c) with 

ΔT = 10 °C. [50]  

Baffle plates mounted in the autoclave are used to regulate mass and heat transport 

between dissolution and growth zones. Using  this method crystal growth can  be 

effectively controlled and additionally formation of defects is minimized by constant 

temperatures around the seed.[49] 

Although the ammonothermal synthesis is derived from the hydrothermal synthesis, it 

is much less explored. This fact can primarily be explained due to the history of 

ammonothermal synthesis. Since the 1950s Herbert Jacobs and its coworkers were 

focusing on the explorative synthesis of metal amides, imides and ammoniates.[45] In 

the last decade the main focus of the ammonothermal research has been based on 

the development of large GaN crystals, while the explorative synthesis of new 

compounds fell literally behind. In 2011 the Ammono-FOR research group was found 

by an interdisciplinary team of chemists, engineers and crystallographers of the 

Universities of Erlangen, Stuttgart and Munich. The aim of this group is to reestablish 

the ammonothermal technology as a powerful synthetic tool to investigate various 

nitrogen (and oxygen)-containing compounds in supercritical ammonia and the 

subsequent characterization in terms of typical solid-state methods.[51] Nowadays, 

commercially available autoclave systems barely provide the required parameters for 

the ammonothermal synthesis in supercritical ammonia. This challenging demand for 
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new autoclaves can be sufficiently supplied by the Ammono-FOR group itself to 

synthesize new and well crystalline nitride and nitride oxide materials and investigate 

crystallization processes in situ. With regard to previous findings and theoretical 

calculations in the field of these compounds, innumerable unprecedented nitride 

oxides materials still await their discovery. The aforementioned tolerance factor 

predicts many other compounds of the type ABO2–xN1+x which crystallize in the 

perovskite type.[12] In addition, there are nitrides with the perovskite[52] and delafossite 

structure[53] which are predicted. The complete substitution of oxygen against nitrogen 

will form pure nitride perovskites. Possible compounds are LaReN3, YReN3 and 

LaWN3. LaWN3 is a semiconductor and displays a large ferroelectric polarization.[52] 

Moreover, such materials are essential for the evolution of photocatalytical hydrogen 

production providing renewable energy sources without collateral formation of 

greenhouse gases. The increasing scarcity of industrially important elements like 

gallium or indium further demands the search for earth-abundant semiconductors with 

similar electronic and optical properties as well as suited alternatives for commonly 

used materials. Regarding this wide range of applications, the exploration of new 

functional materials is an important aspect in solid-state chemistry enabling 

development of innovative and novel devices that can promote a sustainable future. 

This thesis covers the evaluation of the required interacting parameters and 

customization of newly developed autoclave systems. The close cooperation with the 

Ammono-FOR group improved the design of the autoclave system to efficiently obtain 

access to multinary nitride (oxides). High pressure autoclaves are made of a nickel 

based superalloy deliver eminent chemical stability against supercritical ammonia in 

combination with corrosive mineralizers as well as a high yield and tensile strength at 

maximized process temperatures of up to 1100 K. Therefore, the potential of the 

ammonothermal synthesis has astonishingly promoted the formation of highly 

crystalline multinary nitrides and nitride oxides from supercritical ammonia solutions. 

Crucial steps for this goal were the systematic investigation of suitable reaction 

conditions (temperature and pressure), different mineralizer systems as well as highly 

reactive precursor species in combination with new liner-systems under 

ammonothermal reaction conditions. 
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By comparing hydrothermal and ammonothermal synthesis and its commercial 

application fields, the latter is far less explored. The oxide perovskite synthesis within 

the hydrothermal method is well established.[54, 55] 

Since, nitrogen and oxygen have similar chemical properties (see Table 1), the 

introduction of oxygen in nitride compounds and vice versa have particular 

difficulties.[56] The affinity of most elements for oxygen is higher than those of the 

corresponding nitrogen compounds. Besides that, the formation of oxides is 

problematic because the bond enthalpies are also higher and the formation of oxides 

is thus an important side reaction.[57] The ammonothermal approach for nitrides 

requires therefore the rigorous exclusion of oxygen and water. But, GaN[47] and InN[58] 

obtained by the ammonothermal synthesis for example often possess not negligible 

amounts of oxygen in their lattice.[59] Whereas, the formation of nitride oxide 

perovskites with the gas flow ammonolysis is easy to perform.[15] The dissociation is 

appreciable at temperatures higher than 500°C where many metal oxides significantly 

begin to react with NH3. The reaction follows the general equation: 

 

ABO3 + x NH3  ABO3–xNx + H2O + ½ H2 (Eq. 1) 

 

Any formation of the nitride oxides is supported by the dissociation of NH3 into N2 and 

H2 and the removal of water in the gas flow tube furnace (Eq. 1).[7] However, the 

ammonothermal approach of nitride oxides encounters challenges. The dissociation is 

predominant in the closed autoclave[60] during the ammonothermal synthesis, but the 

removal of water is not possible in this self-contained system. The use of oxygen 

containing starting materials is problematic, because of the above mentioned chemical 

behavior of oxygen and nitrogen. Watanabe though only used NaNH2 for the synthesis 

and stated that it was contaminated with NaOH to a considerable extent.[61] 

Consequently, the use of a certain amount of oxygen is necessary. By the use of a 

deficient amount of NaOH the formation of oxides is hampered and small amounts of 

residual phases can be extracted.[62-64] 

Facing these problems, the advantages of solution-based methods are low 

temperatures and the control of crystal size and shape by means of crystal growth. 

The ammonothermal synthesis of nitride oxide perovskites is built on this basis. At the 

moment, ammonothermal synthesis pools most efforts on the crystal growth of GaN, 
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and since the retiring of Jacobs, only a few studies focused on the ammonothermal 

studies of multinary nitride oxides were published. Since there is sparse information 

about solubility and crystallization behavior of inorganic compounds in supercritical 

ammonia, the demand for valuable information about the ammonothermal synthesis is 

important. The demand for high quality autoclave materials is a key requirement 

because supercritical fluids like ammonia in combination with added salts are highly 

corrosive. High temperature and high pressure impede the selection of autoclave 

material. From this technical point of view, the ammonothermal approach is quite 

challenging, as there are only a few heat resistant materials available and commercially 

autoclaves barely provide the required reaction parameters. As a result, the Ammono-

FOR research group, especially the Chair of Process technology and machinery at 

University of Erlangen-Nuremberg, developed own autoclave systems to investigate 

the holistic ammonothermal approach. Over the years the design was improved to 

efficiently obtain access to multinary nitride oxides and nitrides. Since first autoclaves 

only withstand 600 °C, new autoclaves had been needed to enhance the potential of 

the ammonothermal synthesis at elevated temperatures.[60] The above mentioned 

further development of autoclave systems expands the accessibility of novel 

compounds and the crystals growth of known nitride oxides.[62-64] 

On the basis of newly developed autoclaves and in close collaboration with other 

Ammono-FOR group members, this thesis deals with the synthesis and 

characterization of new nitride oxides by means of ammonothermal synthesis. This 

area of inorganic solid-state chemistry is in its infancy. As the ammonia gas flow 

ammonolysis reaction produces, in rare cases, crystals of nitride oxides, the 

ammonothermal approach provides a sophisticated method to grow μm-sized crystals 

with the targeted use of starting materials and mineralizers. 

This thesis starts with the ammonothermal synthesis of known compounds of the 

alkaline earth metals with the transition metals Nb and Ta resulting in Sr/BaNb/TaO2N 

and the 14N NMR investigation of the AM(O2N) with A = Ca, Sr, Ba, La and M = Nb, Ta 

was performed. Furthermore, the publication of LnTaON2 with Ln = La, Ce, Pr, Nd, Sm, 

Gd is demonstrated and the obtained products are investigated by typical solid-state 

methods. The attempted synthesis of the europium nitride oxide perovskite 

(EuTa(O,N)3) resulted in  the novel Ruddlesden-Popper phase Eu3Ta2N4O3. Another 

chapter is about the ammonothermal synthesis of the ATaN2 with A = Na, K ,Rb, Cs 

nitrides and their electronic and optical properties. The last part covers the 



Introduction 11 

 

ammonothermal synthesis of PrNb(N,O)3 and the mineralizer conditions in the system 

of PrTaN2O. 
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EAMO2N (EA = Sr, Ba, M = Nb, Ta) oxonitride perovskites crystals were obtained in 

custom-built high-pressure autoclaves with the ammonothermal approach. Cube like 

crystals of up to 10 µm were analyzed with PXRD, SEM, EDX, UV/VIS. Furthermore, 

solid-state 14N NMR measurements were performed on AM(O,N)3 with A = Ca, Sr, Ba, 

La; M = Nb, Ta). A single resonance was recorded for each compound at about 

270 ppm. 
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Abstract: Alkaline earth oxonitride perovskites EAMO2N (EA = Sr, Ba; M = Nb, Ta) 

were synthesized with the ammonothermal method at temperatures of 900 K and 

maximum pressures of up to 300 MPa in custom-built autoclaves starting from Nb or 

Ta and Sr or Ba metals. The reactions were performed under ammonobasic conditions 

using NaN3 and NaOH as mineralizers. Powder X-ray diffraction and Rietveld 

refinement were used to determine the crystal structures. The elemental composition 

and morphology of the obtained products were investigated by scanning electron 

microscopy and energy-dispersive X-ray spectroscopy. Crystals of 1 - 10 µm size were 

obtained. Optical band gap values were determined from UV/VIS measurements 

applying the Kubelka-Munk function with the Tauc method (Eg = 1.9 – 2.1 eV). In 

addition to that, ANb/Ta(O,N)3 with A = Ca, Sr, Ba, La were synthesized by 

ammonolysis reactions of the respective ternary oxide precursors. The products were 

investigated with 14N solid-state (MAS) NMR spectroscopy all showing a single 

resonance at about 270 ppm. 
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2.1 Introduction 

Oxonitrides with perovskite crystal structure are of considerable interest due to their 

materials properties and potential applications, e.g. as pigments,[1] photocatalysts,[2] 

dielectrics[3] or magnetic materials.[4] Typically, oxonitride perovskites are synthesized 

by nitridation in flowing NH3 (ammonolysis).[5] For this approach, binary and ternary 

oxide precursors or carbonates can be used for a broad range of different 

compositions.[6] However, in the last decade new synthetic approaches have been 

further developed such as thin layer synthesis,[7, 8] plasma-assisted pulsed laser 

deposition,[9] high-pressure synthesis,[10-12] reactive sputtering,[13] explosive reaction[14] 

and ammonothermal synthesis.[15-19] Comparing these methods, each of them has their 

specific advantages. The ammonolysis is easy to perform and uses abundant starting 

materials like oxides. However, the products are usually obtained as microcrystalline 

powders and color as well as morphology are significantly depending on reaction 

temperatures, flowing rates and mineralizers.[2, 20] Only by using carbodiimides SrCN2 

and BaCN2 as flux in ammonolysis reactions crystals of up to 1 µm length of Sr1–

xBaxTaO2N were obtained. These results underline the importance of the effect of a 

mineralizer or flux.[21, 22] Pulsed laser deposition for growth of thin films is challenging 

and product thickness of only several 100 nm or less is obtained. Apart from that, films 

possess high quality and crystallinity and atomically smooth surfaces that makes them 

suitable for the investigation of electronic properties.[23-25] High-pressure synthesis of 

oxonitride perovskites starting from R2O3 (R = Pr, Nd and Sm) with Zr2ON2 typically 

requires a multianvil setup yielding only small amounts of the product. Interestingly, for 

this approach no nitriding gas is required enabling new mixed-metal oxonitrides.[10] 

Very recently, a new reaction approach has been described by using reactive 

precursors Ba(OH)2, NbCl5 and NaNH2. BaNbO2N was obtained by explosion reaction 

within seconds.[14] Recently, the ammonothermal approach was used to synthesize 

oxonitride perovskites LnTaON2 with Ln = La,[15] Ce, Pr, Nd, Sm and Gd.[18] By 

reacting powdery metals in supercritical ammonia with NaN3 and NaOH as 

mineralizers in a high-pressure custom-built autoclave crystals with a cube-like habitus 

and sizes of several µm length were obtained. The benefits of the ammonothermal 

method[19] for crystal growth have recently been demonstrated for synthesis of nitrides 

ZnSiN2 and ZnGeN2,[26] CaGaSiN3,[27] Mg-IV-N2, Mn-IV-N2, Li-IV2-N3 (IV = Si, Ge)[28] 

and Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2).[29] 
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Besides the synthesis of oxonitride perovskites, there are still challenges in this 

particular research field. The two anions, O2- and N3- have nearly the same X-ray 

scattering factors, which makes them difficult to differentiate. In literature different 

types of anion ordering have been discussed ranging from full crystallographic ordering 

over partial ordering to complete disorder.[3, 30, 31] On the other hand, solid-state NMR 

of 14N (spin I = 1, natural abundance 99.63%) provides a promising approach for 

characterization of the local electronic environment of N3-, since the local symmetry of 

the nitrogen sites in oxonitride perovskites is sufficiently high to avoid the effects of 

quadrupolar interaction.[32-35] 

In this contribution, we report on synthesis of the oxonitride perovskites EAMO2N 

(EA = Sr, Ba; M = Nb, Ta) by the ammonothermal approach and their characterization 

by PXRD, SEM and UV/VIS measurements to estimate the optical band gaps. 

Furthermore, we synthesized AM(O,N)3 with A = Ca, Sr, Ba, La and M = Nb, Ta by 

ammonolysis reactions and measured 14N solid-state NMR spectra. 

2.2 Results and Discussion 

2.2.1 Synthesis 

The oxonitride perovskites with composition EAMO2N (EA = Sr, Ba; M = Nb, Ta) were 

obtained by ammonothermal synthesis using custom-built autoclaves made of the 

nickel-based superalloy Inconel 718.[18, 19] Experimental parameters have been 

carefully optimized in order to obtain phase pure, highly crystalline products and 

suppress the formation of side phases. Contrary to other ammonothermal reactions 

leading to oxonitride perovskites,[15, 16] our approach comes along without elaborate 

precursors (e.g. amides or arc melted alloys). 

The transition metals Nb and Ta were added in substoichiometric amount in order to 

suppress formation of undesired side products like NaNbN2, NaTaN2, NbH and TaH. 

However, in some of our reactions non-reacted Ta or TaH was found as side phases. 

We have used powdery metals Nb or Ta and Sr or Ba as starting materials and NaN3 

and NaOH as mineralizers.[18] NaOH is also the required oxygen source for the desired 

oxonitride perovskite. All of the starting materials were ground for better solubility, 

except for Sr and Ba, and subsequently placed in bottom sealed cylindrical Nb Ta 
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liners, respectively. These custom-built liners are an extra barrier to prevent the 

autoclave from corrosion and were used to facilitate isolation of the products from the 

autoclave. Under supercritical conditions, Sr and Ba are converted to the respective 

amides (Sr(NH2), Ba(NH2)2, Na2Sr3(NH2)8).[36-38] They decompose during the reaction 

and react with Nb / Ta. The nature of reaction intermediates which are relevant for the 

formation of oxonitride perovskites in supercritical ammonia are still a matter of 

debate.[18] 

Figure 1. Optical pictures of synthesized oxonitride perovskites  EAMO2N with 

EA  = Sr, Ba and M = Nb, Ta (all with magnification of 200x).  

NaEA-amides, which are well investigated,[39] may be assumed as intermediates for 

the reactions discussed in this contribution. According to previously investigated 

ammonothermal syntheses of nitrides, amide or amide imide intermediates could be 

formed after dissolution of the metals in supercritical ammonia. Gradual polymerization 

of these intermediates by condensation of NH3 and H2O due to partial substitution of 

amide by hydroxide and imide by oxide would yield the respective oxonitrides.[17, 40] 

Non-condensed octahedral anions, like NaM(O1–x,Nx)3–x with M = Nb, Ta may occur as 

well,[18] this seems likely because the same coordination also occurs in the formed 

oxonitride perovskites as well. For the hydrothermal synthesis of KTa1–xNbxO3 the 

oxide intermediate Na(Ta/Nb)O3–x has been discussed as well.[41, 42] 
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We assume a dissolution/precipitation process because of the well developed habitus 

(Fig. 3) of the obtained cube like crystals of the products. The reaction process could 

take place at the bottom of the Nb/Ta liner in a melt of the NaNH2/NaOH mineralizer. 

Druse-like agglomerations of the oxonitride perovskite crystals are found after the 

reaction and cracking of the liner. Furthermore, formation of an oxide precursor during 

the reaction may be possible. This intermediate could react to the desired oxonitride 

perovskite by nitridation in the presence of hydrogen resulting from dissociation of 

ammonia at high temperature and pressure within the autoclaves.[43, 44] 

The obtained product contained negligible side phases of NaNH2 and Sr/Ba(NH2)2. 

Residual mineralizers were removed easily by washing with water and EtOH. After 

washing with conc. HCl or aqua regia a single-phase product was obtained. The four 

products were successfully synthesized at temperatures of about 900 K and pressures 

up to 300 MPa. The autoclave was held for 80 h at the reaction temperature, but inner 

temperature of the reaction vessel might be lower due to temperature loss between 

furnace and inner wall of the autoclave. The pressure decreases over time because of 

hydrogen loss through the autoclave wall. The obtained products exhibit dark red 

(SrNbO2N), brown (BaNbO2N) and brick-red (Sr/BaTaO2N) colors (Fig. 1), 

respectively. PXRD investigations proved the formation of crystalline single phase 

products (Fig. 2). 

Still the Ca phases of the respective oxonitride perovskites could not be obtained which 

is maybe due to the lower solubility of Ca in supercritical ammonia.[45] By variation of 

the reaction parameters (temperature, reactive precursors) it might even be possible 

to successfully synthesize the Ca compounds as well. 

2.2.2 Crystal-structure analysis 

Crystal structures were analyzed and refined by powder X-ray diffraction (PXRD). 

Rietveld refinement (Fig. 2) was used to determine structural parameters, where 

literature known Wyckoff positions and atomic coordinates were used as starting 

values.[3] The crystallographic data are listed in table 2. The small peak widths of the 

reflections indicate highly crystalline products. In addition, no remarkable background 

was visible in the PXRD patterns, indicating the absence of amorphous phases. Due 
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to the nearly indistinguishable X-ray scattering factors of O and N there was no 

evidence for crystallographic ordering of oxide and nitride anions in the products. 

BaNbO2N and BaTaO2N have regular cubic structure (space group 𝑃𝑚3̅𝑚) and 

therefore is no evidence for octahedral tilting. The resulting demonination in the Glazer 

system is a0a0a0. By tilting of the octahedra in SrNbO2N and SrTaO2N a lower 

tetragonal symmetry (space group I4/mcm) is observed. This is expressed by the 

Glazer symbol a0a0c–.[46, 47] 

 

      2θ /° 

Figure 2. Rietveld refinements of SrNbO2N, SrTaO2N, BaNbO2N and BaTaO2N with 

experimental data (black lines, Cu-Kα1, 1.54056 Å), calculated patterns (red lines), 

difference plot (green lines) and positions of Bragg reflections (black bars).  

The lattice parameters and the corresponding volume of the unit cell are in very good 

agreement with values from literature.[3, 48] For BaNbO2N the cubic space group 𝑃𝑚3̅𝑚 

(no. 221) was used to refine literature known lattice parameters which correspond as 

well.[5] Interestingly, the niobium compounds have larger unit cells than the tantalum 

oxonitride perovskites (Sr-compound: for a = b = +0.4%, c = +0.33%, 

V = +1.04%; Ba-compound: a = b = c = +0.48%, V  +1.45% ) though the ionic 

radii for both Nb5+ and Ta5+ are nearly identical.[49] The reason for this unit cell 

enlargement could be the introduction of small concentrations of charge carriers into 
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the conduction band resulting in a partial reduction of Nb5+.[3] In general, the lattice 

parameters of the corresponding tantalum oxonitride perovskites are also in agreement 

with literature data.[3] 

The PXRD pattern of BaTaO2N compound shows small shoulders of the reflections on 

their low angle side (see Figure 2, BaTaO2N). These shoulders could be explained by 

a second phase of BaTaO2N with space group P4/mmm (no. 123),[50] where the 

reflections split by symmetry lowering. In addition to that, the combustion nitrogen 

analysis of our samples hint at nitrogen deficiency which would result in a phase width 

BaTaO2+xN1-x containing both Ta5+ and a certain amount of Ta4+. As a consequence, 

deviation from local symmetry would occur. It should be noted that during 

ammonothermal synthesis employing two mineralizers (NaOH and NaNH2) local 

concentration variations may be possible resulting in slight differences of oxygen and 

nitrogen contents of the products.[51] However, the true crystal structure of BaTaO2N is 

still controversially discussed in literature.[51-57] The local symmetry in the crystals could 

be broken and space group 𝑃𝑚3̅𝑚 used in our Rietveld refinement represents the 

statistically averaged structure.[53, 54] 

2.2.3 Electron microscopy 

SEM images of the products were recorded to illustrate the cube-like crystal shape 

(Fig. 3). This observation is similar to other reported oxonitride perovskites synthesized 

by the ammonothermal approach.[15-18] All four products in this contribution were 

synthesized under the same ammonothermal conditions, but there is no clear 

correlation or discernible trend between the starting materials and the resulting 

composition and their observed crystal sizes (1 - 10 µm). A reason for that could be a 

local supersaturation. There is only a few data in literature for the solubility of the 

alkaline earth metals and their respective amides in supercritical ammonia, however 

both metals were reported to show good solubility.[45] On the other hand, Sr(NH2)2 was 

reported to be less soluble than Ba(NH2)2.[58] Therefore, larger crystals should be 

formed for the Ba compounds, if formation of the respective amide correlates with the 

crystallization process. Table 1 summarizes the EDX-measurements of the crystals. 

Analysis of light elements by EDX is challenging. Due to that problem the oxygen 
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content is slightly increased. In general the percentage is in good agreement with the 

stoichiometric formula (1:1:2:1) for each oxonitride compound. 
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Table 1. SEM EDX measurements of EAMO2N with EA = Sr, Ba; M = Nb, Ta oxonitride perovskites 
of three crystals each in atom% and theoretical values in brackets. 

Sr Nb O N 

16.3 (20) 

 
18 (20) 46 (40) 19.7 (20) 

Ba    

21 (20) 

 
18.7 (20) 44.3 (40) 16 (20) 

Sr Ta   

18 (20) 

 
18.7 (20) 44.7 (40) 18.6 (20) 

Ba    

16.6 (20) 17.4 (20) 51.6 (40) 14.4 (20) 

 

Figure 3. SEM images of SrNbO 2N, BaNbO2N, SrTaO2N, BaTaO2N. Magnification of 

8000x. Scale applies for all four images. 

2.2.3.1 UV/VIS spectroscopy 

UV/VIS measurements were performed to determine the optical properties and band 

gap values of the products. The oxonitride perovskites were ground and mixed with 

BaSO4 (white standard). Diffuse reflectance was recorded and converted to absorption 

spectra with the Kubelka-Munk function.[59] By drawing a tangent (Fig. 4) at the 

inflection points optical band gap values were obtained (Tauc plot).[59] The measured 



Ammonothermal Synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) 
Perovskites and 14N Solid-State NMR Investigations of AM(O,N)3 
(A = Ca, Sr, Ba, La) 

27 

 
band gaps of the oxonitrides are: SrNbO2N (1.9 eV), BaNbO2N (2.0 eV), SrTaO2N 

(2.1 eV) and BaTaO2N (2.1 eV). The determined values are in good agreement with 

data from literature[3, 20, 60-66] which supports the accuracy of these measurements. 

However, small discrepancies of about 0.1 eV, compared to known band gap values 

of the four compounds, are attributed to different synthesis conditions due to the fact 

that the ammonothermal method was used instead of ammonolysis reactions.[2, 63, 67-

69] The small band gap difference could be attributed to the differing synthesis 

conditions as already known from literature where a sintering process turned the 

sample black and subsequent ammonolysis red again.[51] Deviation of the band gap 

may occur due to a changing nitrogen content.[2] Therefore, different impurity 

concentrations or varying degrees of ordering may result in a small deviation of the 

band gap and thus the color of the products. 

 

Figure 4. Tauc plots of Sr/BaNb/TaO2N. Estimated band gaps of SrNbO 2N (1.9 eV), 

BaNbO2N (2.0 eV), SrTaO2N (2.1 eV) BaTaO2N (2.1 eV). Insets show enlargement of 

the Tauc plots. 
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2.2.4 Solid-state 14N NMR (MAS) spectroscopy 

Because of its sensitivity to the local surroundings of the observed nuclei, nuclear 

magnetic resonance (NMR) spectroscopy is a useful complementary analytical 

technique for inorganic solids.[33, 35] In the context of oxonitrides, NMR of the nuclide 

14N (natural abundance 99.63%) has been shown to be helpful for structural 

characterization.[32, 34] In particular, the magnitude of the quadrupolar coupling of 14N 

(spin I = 1) can be evaluated to obtain information about the local symmetry of the 

nitride ions in the oxonitride perovskite structure, whereas the chemical shift provides 

information about the local electron density. In Fig. 5, 14N spectra of AM(O,N)3 with 

A = Ca, Sr, Ba, La and M = Nb, Ta are shown. They were recorded from samples made 

by ammonolysis reactions, because of the typically occurring metallic residual phases 

originating from the metallic liner used in the ammonothermal route and the quantity of 

the reaction product. All compounds show a single resonance at about 270 ppm (Fig. 

5) (referenced to NH4Cl, see Experimental Section). The spectra show no spinning 

side bands, which means that the quadrupolar interaction is absent, indicating high site 

symmetry for the nitride ions.[32] It has been noted before that the chemical shift of 

various perovskite oxonitrides is essentially insusceptible to the ionic radius and 

oxidation number of the cation.[34] Indeed, the NMR resonance positions of the eight 

compounds are practically identical within the error limits (Fig. 5), which is quite 

remarkable. One possible explanation is that the electron density at the N3– ions is 

sufficiently high to mask all external influences, so that the chemical shift of the 14N 

nucleus remains unaffected by cation substitution. However, this explanation for the 

invariance of the 14N chemical shift needs to be further substantiated by additional 

experiments and possibly quantum chemical calculations. 
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Figure 5. Solid-state NMR spectra of 14N for AM(O,N)3  with A = Ca, Sr, Ba, La and 

M = Nb, Ta recorded at a MAS rate of 10 kHz 

Comparison of the published space groups of the eight compounds (CaNbO2N: 

Pnma,[3] SrNbO2N: I4/mcm,[3] BaNbO2N: 𝑃𝑚3̅𝑚,[3] LaNbO2N: Pnma,[70] CaTaO2N: 

Pnma,[3] SrTaO2N: I4/mcm,[3] BaTaO2N: 𝑃𝑚3̅𝑚,[3] LaTaO2N: C2m,[30] Imma[71]) 

illustrates the differing crystallographic symmetry of the anion substructures. By 

lowering the symmetry from cubic over tetragonal to orthorhombic space groups there 

is no marked change of the 14N chemical shift of the signal (~270 ppm). Therefore, the 

coordination of nitrogen in all compounds seems to remain virtually unchanged in this 

rigid oxonitride perovskite family. Therefore, NMR results suggest nearly isotropic 

symmetry and similar electron density around N3- for all A (Ca, Sr, Ba, La) and M (Nb, 

Ta) although symmetry deviations have been predicted in literature for some 

compounds.[56, 71-74] 
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Table 1. Crystallographic data of EAMO2N (EA = Sr, Ba; M = Nb, Ta) obtained by Rietveld 
refinement. 

2.3 Conclusions 

In summary, we report about the successful synthesis of Sr/Ba-Nb/TaO2N oxonitride 

perovskites employing the ammonothermal approach in custom-built high-temperature 

autoclaves. In this ammonothermal route NaN3 and NaOH were used with Sr/Ba and 

Nb/Ta and placed in Nb/Ta liners inside the autoclave. With a temperature of 900 K 

the ammonia pressure rises up to a maximum value of 300 MPa. The oxonitride 

perovskites are crystalline and only little residual side phases occur. Amides could be 

Formula SrNbO2N BaNbO2N SrTaO2N BaTaO2N 

Crystal system Tetragonal Cubic Tetragonal Cubic 

Space group I4/mcm (no. 140) 𝑃𝑚3̅𝑚 (no. 221) I4/mcm (no.140) 𝑃𝑚3̅𝑚 (no. 221) 

Lattice Parameters / Å 
a = b = 5.7082(2) 

c = 8.0589(3) 
a = b = c = 4.1285(1) 

a = b = 5.6852(35) 

c = 8.0403(21) 
a = b = c = 4.1087(6) 

Cell volume / Å³ 262.588(17) 70.367(4) 259.870(323) 69.362(30) 

Formula units / cell 4 1 4 1 

Density / g cm³ 5.7302(4) 8.5961(6) 8.0404(100) 8.7208(38) 

T / K 293(2) 

Diffractometer STOE STADI P 

Radiation / A Cu-Kα1 (λ = 1.54056 Å) 

2θ range /° 5.0 ≤ 2θ ≤ 119.555 

Data points 7638 

Total number of reflections 63 22 63 22 

Refined parameters 25 22 46 33 

Background function Shifted Chebyshev 

R values 
Rp = 0.0738 

Rwp = 0.0973 

Rp = 0.09532 

Rwp = 0.1231 

Rp = 0.8377 

Rwp = 0.1118 

Rp = 0.1069 

Rwp = 0.1427 

Goodness of fit 0.922 0.924 0.887 1.093 
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eliminated by washing with water and ethanol. NbH and TaH arise from the liner which 

prevents the autoclave from corrosion. For the ammonothermal reaction of oxonitrides, 

some intermediates can be considered. It seems most likely that intermediates with 

amide, imide, and hydroxide groups are a reactive species in the reaction. A gradual 

decomposition leads to the formation of oxonitrides. With respect to the observed cubic 

habitus of the crystals we assume a solution-based crystallization mechanism. The 

obtained crystals show different sizes in the range 1-10 µm. Chemical composition 

determined by EDX corresponds with an atomic ratio 1:1:2:1 (EA:Nb/Ta:O:N with 

EA = Sr, Ba). UV/VIS measurements reveal the band gaps (1.9 – 2.1 eV) of these 

compounds. Therefore, the materials could be suitable for water splitting applications. 

Further materials property measurements are now planned for better understanding of 

such oxonitride perovskites. We believe that the ammonothermal approach could be 

further developed for bulk crystal growth of oxonitride perovskites. Although the 

crystals are only a few µm in size, initial experiments show that larger crystals are 

possible. By increasing temperature and pressure, the synthesis of new compounds 

seems possible because of the better solubility at elevated conditions. The smart use 

of reactive precursors could lead to other oxonitride perovskites as well. We could 

show that the ammonothermal approach is a powerful technique to synthesize new as 

well as known oxonitride perovskites with an increased crystal size compared to 

conventional methods. Further research to achieve the preparation of larger crystals 

without compositional change, like in thin films and the respective substrate, will lead 

to a better understanding of intrinsic properties and lead towards new applications for 

oxonitride perovskites. The crystals obtained by this method will allow studying 

dielectric properties in insulating samples and also carrier transport in conducting ones. 

Accordingly, the ammonothermal synthesis of oxonitride perovskite crystals is very 

promising for the discovery of novel and innovative next generation semiconductors. 

  



32 Ammonothermal Synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) 
Perovskites and 14N Solid-State NMR Investigations of AM(O,N)3 

(A = Ca, Sr, Ba, La) 

 

2.4 Experimental Section 

2.4.1 Autoclave set up 

For all manipulations an argon-filled glovebox (Unilab, MBraun, Garching, O2 < 1 ppm, 

H2O < 1 ppm) was used to avoid oxygen and water contamination. Therefore, all 

autoclaves (inner volume 11 mL) were loaded with starting materials and sealed in 

gloveboxes. Subsequently, the autoclaves were finally screwed with the required 

torque. For the condensation process a combined glass and steal vacuum line 

(≤ 0.1 Pa) was connected to the autoclaves via a peripheral equipment consisting of 

hand valve (SITEC), pressure transmitter (HBM P2VA1/5000 bar) and safety head with 

integrated bursting disc (SITEC) (Fig. 6) with a 3/8" high-pressure tubing connection. 

Ammonia (Air Liquide, 99.999%) was passed through upstreamed gas purification 

cartridges (Micro Torr, FT400-702FV, SAES Pure Gas Inc., San Luis Obispo, Ca, USA) 

via the line in the evacuated and cooled autoclave to provide a constant purity level of 

< 1 ppbV H2O, O2, CO2 and metals. 

Figure 6. Custom-built autoclave made from Inconel 718 with peripheral equipment. 
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Custom-built high-pressure autoclaves manufactured from nickel-based superalloys 

(Inconel 718) were used for the ammonothermal syntheses (Fig. 6). Further details of 

the autoclaves can be obtained from literature.[18, 19, 26-28, 75] 

2.4.2 Synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) 

Sr and Ba (both 1 mmol, Sigma-Aldrich, 99.99%), Ta (0.8 mmol Sigma-Aldrich, 99.9%, 

‑325 mesh), Nb (0.8 mmol, Sigmal-Aldrich, 99.8%, -325 mesh) NaN3 (7 mmol, Sigmal-

Aldrich, 99.5%) and NaOH (0.8 mmol, Grüssing, 99%) were placed in custom-built Nb 

or Ta liners (14 cm, Ø 0.6 cm, wall thickness: 0.05 cm), respectively. The Nb/Ta liners 

were vertically transferred into the autoclaves. To easily remove them after reaction a 

small Inconel 600 spring was placed under the liner in the reaction chamber of the 

autoclave. The autoclaves were closed under argon, evacuated and cooled with 

ethanol and liquid nitrogen to 200 K. Ammonia was condensed with overpressure 

(0.4 MPa) for 15 minutes with a regulator valve. As a result, about 5 mL liquid ammonia 

was condensed. After heating up to room temperature with a conventional hair dryer, 

the autoclave was transferred vertically into a custom built furnace (Loba, HTM Reetz, 

Berlin) and heated up to 900 K within three hours and held for 80 h at this temperature. 

The maximum pressure was 300 MPa. The autoclaves were cooled to room 

temperature by switching off the furnace. Products were subsequently washed with 

conc. HCl, H2O and ethanol and dried at air. SrNbO2N was obtained as dark red, 

BaNbO2N as brown, SrTaO2N and BaTaO2N as brick-red powders, respectively. 

CaNbO2N and CaTaO2N could not be obtained by this route. 

2.4.3 Synthesis of ANb/Ta(O,N)3 (with A = Ca, Sr, Ba, La) for 14N solid-state NMR 

measurements 

All products were synthesized by literature known synthetic procedures.[3, 5, 30, 76] 

Powdered ACO3 (A = Ca, Sr, Ba, La) (≥ 99%, Sigma-Aldrich; 99.9%, Sigma-Aldrich; 

≥ 99%, Sigma-Aldrich; 99%, Fluka) and Nb2O5 / Ta2O5 (99.9%, Fluka; 99%, Fluka) or 

synthesized ternary oxide precursors were ground in an agate mortar and heated in 

an alumina boat in a silica tube mounted in a horizontal tube furnace from 720-950 °C 

for different amounts of time (8-18 h) under flowing ammonia (Air Liquide, 99.999%, 

~50 mL / min). 
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2.4.4 Powder X-ray Diffraction 

The obtained products were ground to fine powder in an agate mortar and loaded into 

glass capillaries (0.1 mm, 0.01 mm wall thickness, Hilgenberg GmbH). XRD 

measurements were performed using a Stoe STADI P diffractometer. (Cu-Kα1, 

λ = 1.54056 Å, Ge(111) monochromator, Mythen 1K detector) in modified Debye-

Scherrer geometry. TOPAS-Academic Software was used for Rietveld refinement 

applying the fundamental parameters model with direct convolution of source emission 

profiles, axial instrument contributions, crystallite size and microstrain effects for the 

peak shape function.[77] Capillary absorption correction (inner diameter 0.08 mm) was 

performed with the calculated absorption coefficient. Further details on the crystal 

structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 

76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; email: 

crysdata@fiz-karlsruhe.de), on quoting the depository numbers CSD-434769 

(SrNbO2N), CSD-434770 (BaNbO2N), CSD-434768 (SrTaO2N), CSD-434767 

(BaTaO2N). 

2.4.5 Scanning electron microscopy (SEM / EDX) 

Crystal morphology and elemental distribution of the products were investigated using 

a FEI Helios G3 UC scanning electron microscope (SEM, field emission gun, 

acceleration voltage 30 KV). The products were placed on an adhesive carbon pad 

and subsequently coated with a conductive carbon film using a high-vacuum 

sputtercoater (BAL-TEC MED 020, Bal Tec AG). 

2.4.6 UV/VIS spectroscopy 

UV/VIS spectra were recorded by using a PerkinElmer Lambda 1050 spectrometer 

equipped with a 150 mm InGaAs integrating sphere. Diffuse reflectance spectra were 

collected with a Praying Mantis (Harrick) accessory and were referenced to BaSO4 

(Sigma-Aldrich, 99.99%) powder as white standard. 
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2.4.7 Solid-state MAS (magic-angle spinning) 14N NMR 

14N solid-state NMR spectra were recorded on a Bruker Avance-III 500 spectrometer. 

The sample was transferred into a ZrO2 rotor with an outer diameter of 4 mm, which 

was mounted in a commercial MAS probe (Bruker) and spun at a rotation frequency of 

10 kHz. An echo sequence[78] was used for spectra acquisition to avoid base line 

problems. All spectra were referenced to the secondary standard NH4Cl at 0 ppm, 

which is shifted by –342.4 ppm against the 14N resonance of liquid nitromethane.[79] 

2.4.8 Digital Microscope 

A digital microscope (VHX-5000, Keyence) was used to record pictures of obtained 

samples. All sample pictures were recorded with a magnification of 200 x. 
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Highly crystalline oxonitride perovskite (LnTaON2 Ln = La, Ce, Pr, Nd, Sm, Gd) were 

synthesized by the ammonothermal approach in custom built high-pressure autoclaves 

at relatively low temperatures between 870‒1070 K and pressures of up to 300 MPa. 

This more sophisticated route requires no precursor and results in cube like crystals 

up to 15 µm. 
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Abstract: The perovskite type oxonitridotantalates LnTaON2 with Ln = La, Ce, Pr, Nd, 

Sm and Gd were synthesized by the ammonothermal method employing custom-built 

autoclaves made of nickel-based superalloy. Metal powders were reacted with NaOH 

and NaN3 as mineralizers under supercritical conditions with purified ammonia at 

temperatures of 870–1070 K and pressures in the range 150–300 MPa. Crystal 

structures and the space groups were determined using powder X-ray diffraction and 

refined by the Rietveld method. The refined lattice parameters are for LaTaON2 

(a = 5.7156(1), b = 8.0675(1), c = 5.7465(1) Å, Rwp = 0.0471), CeTaON2 

(a = 5.6761(11), b = 8.0386(16), c = 5.7891(12) Å, Rwp = 0.1834), PrTaON2 

(a = 5.6920(1), b = 8.0197(1), c = 5.6804(1) Å, Rwp = 0.03495), NdTaON2 

(a = 5.6884(1), b = 8.0037(2) , c = 5.6554(1) Å, Rwp = 0.026), SmTaON2 

(a = 5.6827(1), b = 7.9656(2), c = 5.6103(1) Å, Rwp = 0.042), GdTaON2 

(a = 5.6160(10), b = 7.9359(12), c = 5.5962(10) Å, Rwp = 0.118). LaTaON2 crystallizes 

in space group Imma (no. 74) and the other compounds LnTaON2 with Ln = Pr, Nd, 

Sm, Gd in Pnma (no. 62). SEM measurements were performed to investigate the 

elemental composition and morphology of the oxonitride perovskites. The band gap 

values of the oxonitrides (LaTaON2: 1.8 eV, CeTaON2: 1.7 eV; PrTaON2: 1.9 eV, 

NdTaON2: 2.0 eV, SmTaON2: 2.0 eV, GdTaON2: 1.8 eV) were estimated using UV/VIS 

measurements and the Kubelka-Munk function. 
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3.1 Introduction 

Oxonitride perovskites have attracted great interest because of their various 

application fields,[1] for example as magnetic materials,[2] nontoxic pigments,[3] 

photocatalysts,[4] energy conversion and storage materials.[5] LaTaON2 for instance 

has been identified as a visible light absorbing pigment with extraordinary 

photocatalyst feature responding to visible light.[6] Some properties were discovered 

long after the first exploration of oxonitride perovskites by Jansen[3], Domen[7] and 

others. By the introduction of nitrogen into an oxidic compound the possibilities to tune 

their properties expand significantly. Oxonitrides may be synthesized by a number of 

reaction methods,[1, 5] including ammonolysis,[8] high-pressure syntheses[9] and 

ammonothermal approaches.[10] 

Oxonitrides with general formula AB(O,N)3 (A = Alkaline earth, B = Nb, Ta) were first 

synthesized by Marchand et al. in 1986.[11] Later (La, Nd, Gd)TaON2 were obtained 

and reported as cubic, whereas SmTaON2 as orthorhombic. Ternary oxides were used 

as starting materials, which were reacted with flowing ammonia at 1120–1270 K.[12] 

Subsequently, oxonitride perovskites were obtained using oxides and carbonates as 

starting materials. In order to enhance crystallinity of the products, NaCl or CaCl2 were 

added as flux.[3, 8] Further synthetic approaches for oxonitride perovskites were 

established using amorphous precursors, which were synthesized from oxides and 

nitrates in diluted nitric acid. Thereby, LaZrO2N, NdTiO2N and LaTiO2N were obtained 

in flowing ammonia at 1220–1580 K. One disadvantage of these reactions is attributed 

to frequent intermediate grinding.[13] The citrate route, as stated, for example, by 

Kikkawa for Ca1‒xEuxTa(O,N)3,[14] represents a less complex and therefore faster 

alternative. Thereby, a transition metal halide (TaCl5) was dissolved in anhydrous 

ethanol with an equimolar amount of citric acid as complexing agent. Generally, all 

ammonolysis reactions were performed at high temperatures of 970–1320 K,[15] and 

the type of the precursors was reported to be decisive. The precursor Ca2Nb2O7 was 

used for synthesis of CaNbO2N instead of CaCO3 and Nb2O5 in combination with salts 

as flux, which helped to minimize the formation of side phases like NbOxNy.[16] 

Another interesting approach uses a combination of high temperature and high 

pressure. Therefore, oxonitride perovskites like LnZrO2N (Ln = Pr, Nd, Sm) were 

obtained employing a direct solid-state reaction without a nitriding gas atmosphere. 

Ln2O3 and Zr2ON2 were used as starting materials, placed in a multianvil press 
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assembly and heated up to 1470–1770 K at a pressure of 2–3 GPa.[9] Besides, the 

hydrothermal approach is widely used for the preparation of oxide perovskites.[17] Due 

to higher dissociation energy of N2 compared to that of O2 and the lower bond energy 

of most elements to nitrogen as compared with bonds to O,[15, 18] formation of 

oxonitrides is unlikely under hydrothermal conditions. Instead, another approach has 

to be followed. Watanabe et al. used the ammonothermal method to prepare LaTaON2, 

starting from an arc-melted binary metal precursor in a sodium amide melt under 

supercritical ammonia in a high-pressure autoclave.[10] 

Syntheses of oxonitrides are quite challenging and often lead to mixtures of several 

phases and microcrystalline or amorphous powders. In order to improve crystallinity 

and also to facilitate syntheses, new approaches have to be developed. The 

ammonothermal method provides a well suited method to obtain oxonitride perovskites 

at relatively low temperatures compared to others routes without the need of an oxidic 

precursor. Generally, ammonothermal synthesis has been extensively used to 

manufacture GaN and AlN[19, 20]. First Jacobs et al. performed reactions in supercritical 

ammonia for synthesis of binary nitrides like Be3N2
[21] and later for ternary compounds, 

for instance, NaSi2N3.[22] Recently, new nitrides (CaGaSiN3,[23] ZnSiN2 and ZnGeN2)[24] 

became accessible by ammonothermal synthesis employing high-temperature stable, 

custom-built autoclaves. 

In this contribution, we report on a new and more sophisticated route for synthesis of 

oxonitride perovskites with composition LnTaON2 (Ln = La,[10] Ce, Pr, Nd, Sm, Gd). 

Crystal structures were solved and refined using powder X-ray diffraction and will be 

described in detail. Results of UV/VIS measurements are presented. SEM pictures 

reveal crystal size and morphology. 

3.2 Results and Discussion 

3.2.1 Synthesis 

The oxonitride perovskites with composition LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd) 

were obtained by an ammonothermal approach using custom-built autoclaves made 

of nickel-based superalloy.[23] LnTaON2 (Ln = La, Pr, Nd, Sm) were successfully 

synthesized at temperatures of about 870 K and pressures up to 300 MPa. Using these 
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reaction parameters, LnTaON2 with Ln = Ce or Gd could not be obtained. Instead, 

CeO2 and Gd2O3 were the main products, respectively. At higher reaction 

temperatures (1070 K) and pressures of 150 MPa CeTaON2 and GdTaON2 became 

accessible. The as-synthesized products are dark red (LnTaON2 with Ln = La, Pr, Nd, 

Sm, Gd) and ocher (CeTaON2), respectively, and turned out to be crystalline. The 

oxonitrides are chemically inert to concentrated HCl and aqua regia.[3] 

Metallic Ta and respective lanthanides as well as NaN3 and NaOH were used as 

starting materials. During synthesis, NaN3 decomposes thermally at 570 K[19] to Na 

which reacts with NH3 under formation of NaNH2. Residual Na-mineralizers were 

removed by washing with water. In supercritical ammonia the latter acts as mineralizer 

besides NaOH,[19] which was additionally used as oxygen source. Finely ground 

reaction mixtures were placed in Ta liners, which were transferred into the autoclave. 

Powdery reactants were used for better solubility in supercritical ammonia while Ta 

liners were employed in order to avoid corrosion of the autoclave steel. Previously 

reported syntheses[10] directly started from NaNH2, which is disadvantageous 

regarding its moisture sensitivity. 

There are several considerations of reaction intermediates, which might be relevant for 

the formation of oxonitride perovskites in supercritical ammonia. As mentioned above, 

NaN3 in ammonia forms NaNH2 during heating to 770 K. NaNH2 probably reacts with 

the lanthanide to intermediate species with assumed composition Na3Ln(NH2)6 or 

NaLn(NH2)4.
[25] Formation of Ln(NH2)3

[26] or intermediate species like Ta(OH)5NH3, as 

reported for TaF5(NH3)3.[27] Single octahedral anions Ta(O1-x,Nx)6
(7+6x)-, which forms 

NaTa(O1-xNx)3-x might as well be possible.[28] The latter is also known from 

hydrothermal syntheses, in which a dissolution–precipitation process forms cube-like 

crystals of oxide perovskites.[29] These intermediates decompose to reactive species 

at higher temperatures.[23] Furthermore, it is also possible that starting materials may 

be dissolved in a NaNH2 / NaOH melt at the bottom of the Ta liner,[22] resulting in druse 

like agglomerations. The formation of LnTaON2 via oxide perovskites is also possible 

due to the high supercritical NH3 pressure and the dissociation products N2 and H2 at 

the conditions in the autoclaves mentioned above. 

An arc-melting procedure,[10] as described for the synthesis of LaTaON2 to form a 

reactive precursor/alloy or an amorphous oxide, was not necessary to obtain nearly 

phase pure products. Purification of the samples was not necessary due to the growth 
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of crystals on the inside wall of the liner. Powder X-ray diffraction patterns show highly 

crystalline products which are phase pure or have only little amounts of side phases 

like NaTaN2 or Ln2O3. NaTaN2 as side phase was typically observed on the outside of 

the Ta liner forming orange to red crystals with sizes < 30 µm. This can be ascribed to 

the high amount of dissolved mineralizer in the system, which seems to be necessary 

for the formation of reactive intermediates. 

LnTaON2 with Ln = La, Pr, Nd, Sm and Gd was obtained nearly phase pure, whereas 

several side phases including CeO2 and other unidentifiable phases were found for 

CeTaON2 (see supplementary information, figure S2). Side phases may be due to 

lower solubility of Ce and therefore a possible explanation for yet unknown Ce(NH2)3. 

Another reason could be the electronic configuration of Ce because Ce+IV likely forms 

the stable oxide CeO2
[30] instead of the desired oxonitride perovskite CeTaON2 in 

supercritical ammonia with NaOH and NaN3. Thereby, Ce would be depleted in 

solution giving rise to formation of Ta/N sidephases. Another reason is the preferred 

formation of CeN, which is apparent in the PXRD (see supplementary information, 

figure S2). Besides, the oxonitride perovskites LnTaON2 of the heavier lanthanides 

Ln = Tb – Lu could not be obtained through ammonothermal synthesis route as yet. 

This can be explained by the lanthanide contraction, which leads to a decrease of the 

ionic radii to higher atomic numbers and thereby a destabilization of the perovskite 

structure.[31] 

The formability of oxonitride perovskites has been predicted on the basis of the 

tolerance and the octahedral factors. These parameters have been applied for 

generating structure maps that reveal the stability regions of perovskite structures. By 

this model the tantalum oxonitrides are not in the typical range of the tolerance factor 

of 0.827 – 1.042 and were therefore not assumed to be stable. According to this 

method the oxonitride perovskites LaTaON2 and PrTaON2 were predicted as stable, 

whereas NdTaON2 and SmTaON2 were expected to be unstable. No further lanthanide 

tantalum oxonitrides were examined by this method, but with respect to the lanthanide 

contraction they would be predicted unstable by this method.[31] The ammonothermal 

methods clearly demonstrate that these substances are accessible. 
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Figure 1. Powder X-ray diffraction of LnTaON2 (Ln = La, Pr, Nd, Sm, Gd). Normalized 

on the most intense reflection. NaTaN2  is marked with stars (*).  

3.2.2 Crystal Structure Analysis 

Crystal structures were analyzed and refined by powder X-ray diffraction (PXRD). 

Wyckoff positions and coordinates of orthorhombic space groups were used to refine 

parameters. According to the small peak widths, the products are very crystalline. 

Furthermore, no remarkable background is visible in the PXRD patterns. The 

refinement was conducted with different space groups for each product. The space 

group with the lowest Rwp values was chosen. The powder X-ray diffraction patterns 

are shown in Figure 1, crystallographic data are summarized in Table 1. Detailed 

results of the Rietveld refinements are given in the Supplementary Information. For the 

compound LaTaON2 the orthorhombic space group Imma and for LnTaON2 (Ln = Ce, 

Pr, Nd, Sm, Gd) the space group Pnma was chosen giving the best results. This is in 

agreement with recent neutron diffraction data from literature.[32] The refinement for 

LaTaON2 was also performed in the space group C2/m. The beta angle was still 90° 

within between the errors of the refinement. Therefore a monoclinic distortion could not 

be found.[33] Lattice parameters are in good agreement with the values reported 
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elsewhere[34] (Table 1). The shift of the reflections to higher 2θ values is obvious due 

to the decrease of the Ln3+ radii caused by the lanthanide contraction. 

3.2.3 Electron microscopy 

SEM images (Fig. 2) show morphologies of LnTaON2 with Ln = La, Ce, Pr, Nd, Sm and 

Gd similar to those reported for BaTaO2N,[35] LaTaON2,[10] LaNbON2,
[36] and 

LaTiO2N.[37] Ammonothermally synthesized crystals were obtained with diameters up 

to 15 µm. The atomic ratio of Ln (Ln = La, Ce, Pr, Nd, Sm, Gd), Ta, N and O was 

confirmed by energy dispersive X-ray spectroscopy. Several measurements were 

averaged to confirm the atomic ratio (see supplementary information Table S1‒S6). 

Figure 2. SEM images of crystalline oxonitrido perovskites with scale bar on the 

bottom right corner. All pictures were made with a magnification of 8000x. a) 

LaTaON2 , b) CeTaON2 , c) PrTaON2, d) NdTaON2, e) SmTaON2 , f) GdTaON2.  

Within the accuracy of the method, the measured atomic ratios correspond well to the 

stoichiometric formula LnTaON2. The good crystallinity is evident (Figure 2). According 

to the SEM pictures some oxonitride perovskites form larger crystals than others. A 

possible explanation could be that some of the compounds have a higher solubility in 

supercritical ammonia than others, since the reaction conditions (heating rate, 

duration, maximum pressure) were identical for all products in this investigation. 

The ammonothermal approach has frequently been used to grow crystals of different 

chemical and structural composition.[38] Ammonothermal synthesis of LaTaON2 and 
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LaNbON2 has been described in literature with crystal sizes up to 1 µm.[10, 36] 

Compared to the ammonothermal approach in the ammonolysis reaction carried out in 

flowing ammonia there are not many examples known for large cube like crystals.[35] 

Possibly, the crystal size of the products is affected by the NaNH2 / NaOH melt always 

found at the bottom of the autoclave forming agglomerates looking like druses. This 

assumption is supported by the observation of other authors that the ammonolysis 

reaction leads to better crystallinity with the use of flux.[35, 37] Another possible 

mechanism could be a dissolution-precipitation process as known from hydrothermal 

syntheses.[28, 29] The ammonothermal growth mechanism of oxonitride perovskite 

crystals has scarcely been investigated so far. 

3.2.4 UV/VIS 

UV/VIS measurements were used to determine the optical properties and band gap 

values of the products. Therefore, the obtained product was finely ground and mixed 

with BaSO4. The UV/VIS diffuse reflectance (R) spectra were measured and converted 

to absorption spectra using Kubelka-Munk function (F(R) = (1 - R)2 / 2R).[39]  

Subsequently, Tauc plots were employed to determine the optical band gap, by 

drawing a tangent at the inflection points.[40] The measured band gaps of the oxonitride 

perovskites are between 1.7–2.0 eV (LaTaON2: 1.8 eV, CeTaON2: 1.7 eV; PrTaON2: 

1.9 eV, NdTaON2: 2.0 eV, SmTaON2: 2.0 eV, GdTaON2: 1.8 eV). These values are 

similar to those of other oxonitridotantalate perovskites that have been reported in 

literature (LaTaON2: 1.93 – 2.07 eV,[6] CeTaON2: 1.9 eV[32] and PrTaON2: 2.0 eV).[32, 
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41] These small discrepancies can be ascribed to different approximation methods, 

different synthesis conditions, measuring methods, defect and impurity concentrations 

and to a varying degree of ordering. Band gap values determined by UV/VIS depend 

on the type of reaction and are altered by ammothermal synthesis.[42] In summary, this 

leads to a considerable under- or overestimation of the band gaps. The colors of the 

compounds giving on the other hand a good estimation of the band gap as well. All 

product products are red (LnTaON2 with La, Pr, Nd, Sm, Gd) or occer (CeTaON2).  

Figure 3. Tauc plots of crystalline oxonitride perovskites (LaTaON2,  CeTaON2 , 

PrTaON2 , NdTaON2 , SmTaON2, GdTaON2). 

However, the measured band gaps of the ammonothermally synthesized 

oxonitridotantalate perovskites are in the range as the other referred experimental 

band gaps. The features visible in the UV/VIS reflectance (Figure 4) measurements 

can be explained by f-f-transitions. LaTaON2 has no f-f-transition due to the empty f-
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shell of La. LnTaON2 (Ln = Pr, Nd, Sm) show common transitions in the visible to near 

infrared part of the spectra. A comparison of the optical absorption spectra of the 

presented oxonitridoperovskite series with the Dieke diagram,[43] results in the 

identification of spectroscopic transitions for PrTaON2 (1D2, 1G4, 3F4, 3F3, 3F2 ← 3H4), 

NdTaON2 (4G7/2, 4G5/2, 4F9/2, 4F7/2 4F5/2, 4F3/2, 4I15/2 ← 4I9/2) and SmTaON2 (4F3/2, 6F11/2, 

6F9/2, 6F7/2, 6F5/2, 6H15/2, 6F1/2, 6H13/2 ← 6H5/2) shown in Figure 4. 

 

 

Figure 4. UV/Vis measurements of LaTaON 2, CeTaON 2, PrTaON 2, NdTaON 2, SmTaON 2,  

GdTaON 2  with assignment of f–f transitions. 
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Table 1. Crystallographic data of LnTaON2 obtained by Rietveld refinement. 

3.3 Conclusion 

The oxonitridotantalate perovskites LnTaON2 with Ln = La, Ce, Pr, Nd, Sm and Gd 

were successfully synthesized by the ammonothermal approach in custom-built high-

temperature autoclaves. The oxonitride perovskites crystallize in space group Imma 

(for LaTaON2) or Pnma (for Ln = Ce, Pr, Nd, Sm, GdTaON2), respectively. This 

synthesis route uses pure metals instead of intermetallic arc melted precursors and 

NaN3 and NaOH as mineralizers placed in a tantalum liner. Rietveld refinement 

revealed phase purity or only little amounts of side phases like NaTaN2 besides the 

products. Nevertheless, the reactive intermediate is still unknown. Sodium 

amidolanthanides are eligible which decompose at higher temperatures. On the bottom 

of the tantalum liner an agglomerate of salt druses were formed. This suggests that a 

kind of a NaNH2 / NaOH salt melt reacts at the bottom where the product is formed or 

deposited through crystallization from solution. It is possible that in this melt ammonia, 

nitrogen and oxygen are soluble. 

Formula LaTaON2 CeTaO2N PrTaON2 NdTaON2 SmTaON2 GdTaON2 

Crystal system orthorhombic 

Space group Imma (74) Pnma (62) 

Lattice Parameters 
/ Å 

5.7156(1) 
8.0675(1) 
5.7465(1) 

5.6761(11) 
8.0386(16) 
5.7891(12) 

5.6920(1) 
8.0197(1) 
5.6804(1) 

5.6884(1) 
8.0037(2) 
5.6554(1) 

5.6827(1) 
7.9656(2) 
5.6103(1) 

5.6160(10) 
7.9359(13) 
5.5962(10) 

Cell volume / Å³ 264.964(7) 264.143(93) 259.310(7) 257.477(8) 253.955(8) 249.410(79) 

Formula units / cell 4 

Density / g cm³ 9.1215(2) 9.1802(32) 9.3717(2) 9.5244(3) 9.8165(3) 10.1789(32) 

T / K 293(2) 

Diffractometer STOE STADI P 

Radiation / A Mo-Kα1 (λ = 0.70930 Å) 

2θ range /° 2.0 ≤ 2θ ≤ 60.2 

Data points 3886 

Total number of 

reflections 

226 429 410 400 396 392 

Refined parameters 27 44 27 33 36 44 

Background 

function 

Shifted Chebyshev 

R values / % Rp = 2.96 

Rwp = 4.71 

Rp = 12.86 

Rwp = 18.36 

Rp = 2.21 

Rwp = 3.49 

Rp = 1.93 

Rwp = 2.60 

Rp = 3.12 

Rwp = 4.22 

Rp = 7.83 

Rwp = 11.86 

Goodness of fit 3.623 5.966 2.116 1.670 2.037 3.420 
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Interestingly, SEM pictures and PXRD pattern indicate (very) crystalline products. The 

crystals are up to 15 µm in length with sharp edges. This are by far the largest crystals 

of oxonitridotantalate perovskites LnTaON2 reported in literature. UV/VIS 

measurements reveal band gap values similar to already known compounds like 

LaTiO2N or BaNbO2N. With regard to the properties of crystals of oxonitridotantalate 

perovskites new applications in watersplitting and bulk crystals for semiconductor 

devices are possible. Therefore we believe that the ammonothermal approach for 

synthesis of oxonitride perovskites offers benefits for bulk crystals for electronic and 

semiconducting applications. 

In summary, we could show that the ammonothermal route is a powerful and useful 

method to synthesize oxonitride perovskites. Furthermore, better crystallinity and 

improved morphology of crystals can be achieved. Thus, the ammonothermal 

synthesis approach emerges as a powerful synthetic tool which is well suited for the 

preparation and crystal growth not only of binary GaN or AlN but for ternary and higher 

nitrides and oxonitrides as well. 

3.4 Experimental Section 

All manipulations were carried out in flame-dried Schlenk-type glassware connected to 

a vacuum line (≤ 0.1 Pa) or in Ar-filled glove boxes (Unilab, MBraun, Garching, 

O2 < 1 ppm, H2O < 1ppm) to rigorously exclude oxygen and moisture during 

preparation and syntheses. Ammonia (Air Liquide, 99.999%) was purified through a 

gas purification cartridge (Micro Torr MC400-702FV, SAES Pure Gas Inc. San Luis 

Obispo, Ca, USA) to obtain a purity level of < 1ppbV H2O, O2 and CO2. 

3.4.1 Ammonothermal Synthesis 

All syntheses were performed in supercritical ammonia with custom-built autoclaves 

made of nickel-based superalloy (718 Inconel, Haynes 282) sustaining a maximum 

pressure of 300 MPa at 870 K (LnTaON2 Ln = La, Pr, Nd, Sm) and 170 MPa at 1070 K 

(LnTaON2 Ln = Ce, Gd). The peripheral devices consist of the hand valve (SITEC), 

pressure transmitter (HBM P2VA1/5000bar) and a safety head with an integrated 

rupture disc (SITEC). To seal the autoclaves silver coated C-rings (GFD seals) made 

of Inconel 718 were used. The autoclaves were placed vertically in custom-built 
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furnaces (Loba, HTM Reetz) and connected to a pressure display unit (HBM). The 

pressure was recorded by an AD-converter connected to a PC. The signal was 

recorded as average values every 20 s. 

Ta (1 mmol, Sigma-Aldrich, -325 mesh, 99.9%) and rare earth elements (La, Ce, Pr 

(Sigma-Aldrich, 99.9%), Nd (smart-elements, 99.9%), Sm (selteneerden.de, 

99.999%), Gd (Sigma-Aldrich, 99.9%, 1 mmol) were powderized in a glove box, NaOH 

(Grüssing, 99%, 1 mmol,) and NaN3 (Sigma-Aldrich, 99.99%, 4 mmol) were crushed 

to a powder in an agate mortar and then placed in custom-built tantalum liners (WHS 

Sondermetalle) (length 140 mm, diameter 6 mm) which were placed vertically in the 

autoclaves. Purified ammonia was then condensed in the evacuated and cooled 

(193 K) autoclave with 0.1 MPa overpressure with a combined glass-steel-line. After 

warming up to room temperature the autoclave was placed in a vertical tube furnace. 

Subsequently, the autoclave was heated to the respective reaction temperature in 3 or 

6 h and kept at this temperature for 110 h. The pressure slowly decreased over time 

because of hydrogen loss of the autoclave. 

3.4.2 Powder X-ray Diffraction 

The powder XRD measurements were performed in glass capillaries (0.2 mm 

diameter, Hilgenberg GmbH) with a Stoe STADI P diffractometer (Mo-Kα1 radiation, 

Ge(111) monochromator, Mythen 1K detector) in modified Debye-Scherrer geometry. 

TOPAS package was used for Rietveld refinement.[44] 

Further details on the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein- Leopoldshafen, Germany 

(fax: +49–7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-

karlsruhe.de/request for deposited data.html), on quoting the depository number CSD-

433036, -433037, -433038, -433039, -433040, -433041 (LnTaON2 with Ln = La, Ce, 

Pr, Nd, Sm, Gd). 

3.4.3 UV/VIS Spectroscopy 

UV/VIS spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm InGaAs integrating sphere. Diffuse reflectance spectra were 
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collected with a Praying Mantis (Harrick) accessory and were referenced to BaSO4 

(Sigma-Aldrich, 99,99%) powder as white standard. 

3.4.4 SEM / EDX 

The atomic ratio was confirmed by energy-dispersive X-ray spectroscopy (EDX). SEM 

measurements were taken with a Dualbeam Helios Nanolab G3 UC (FEI) with X-Max 

80 SDD Detector (Oxford Instruments). The software AzTec was used for EDX analysis 

and pictures. 
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The first nitrogen rich Ruddlesden-Popper phase with mixed valence europium, 

namely Eu3Ta2N4O3 was synthesized under ammonothermal reaction conditions using 

custom-built high-pressure autoclaves. X-ray diffraction using microfocused 

synchrotron radiation and EDX analyses are consistent with crystal-chemical 

calculations with respect to EuII/III and N/O ordering. According to diffuse reflectance 

spectra, the band gap amounts to 0.6 eV. 
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Abstract: The mixed-valence europium tantalum nitride oxide EuIIEuIII

2Ta2N4O3 was 

synthesized with the ammonothermal approach in high-pressure custom-built 

autoclaves. The reaction was performed at 1070 K and a maximum pressure of 

170 MPa in an ammonobasic environment with NaN3 and NaOH as mineralizers. 

EuIIEuIII
2Ta2N4O3 was obtained as a black microcrystalline powder. Single-crystal 

synchrotron diffraction data revealed a Ruddlesden-Popper phase crystallizing in 

space group P42/mnm (no. 136) with a = 5.7278(1), c = 19.8149(5) Å and Z = 4. The 

crystallographic results from single-crystal diffraction data have been confirmed by 

powder diffraction and TEM measurements. Anion positions were assigned to O and 

N based on bond-valence (BVS), lattice energy (MAPLE) and charge distribution 

calculations (CHARDI). EuII and EuIII are crystallographically ordered. The band gap 

was estimated from UV/VIS measurements employing the Kubelka-Munk function to 

be 0.6 eV, which supports the black color and the mixed-valence of europium. 
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4.1 Introduction 

Since the pioneering work of Jacobs and Juza in the 1960s, the ammonothermal 

method has emerged as a versatile synthetic approach for a broad spectrum of 

compounds, e.g. amides, imides, nitrides, hydroxides and chalcogenides.[1-3] Despite 

this synthetic potential, synthesis in supercritical ammonia has been predominantly 

employed for crystal growth of GaN targeting appropriate substrate crystals for 

homoepitaxial growth of this important wide band gap semiconductor.[4] Recently, the 

ammonothermal approach has again been utilized for explorative synthetic solid-state 

chemistry of novel complex nitrides, e. g. CaGaSiN3, ZnSiN2, ZnGeN2, Zn2PN3 as well 

as nitride oxide perovskites such as LnTaN2O with Ln = La, Ce, Pr, Nd, Sm and Gd 

and EAMNO2 with EA = Sr, Ba and M = Nb, Ta.[3, 5-8] Novel materials with mixed anions 

such as nitride oxides came into research focus in the last decade. Oxygen and 

nitrogen have differences in polarizability, electronegativity and anion charge. Anion 

substitution further increases the diversity of applications of these materials. However, 

such substitutions are by far less investigated than e.g. cation doping. With the 

exchange of oxygen by nitrogen, these compounds gain more varied materials 

properties compared to analogous oxides. This variation is due to the change of 

covalence of the metal-nitrogen bond and also the energy changes of electronic levels. 

For example, in an insulating oxide the band gap typically decreases with nitride 

substitution and the optical absorption properties may change drastically from UV to 

the visible part of the spectrum. The nitride anion has a higher charge than oxides and 

may possibly allow higher oxidation states of the corresponding metal. This leads to 

versatile compounds with different properties compared to oxides.[9-11] 

An extensively investigated class of compounds are nitride oxide perovskites (formerly 

denominated oxynitrides), which exhibit intriguing features. In particular, different 

tantalum, niobium and titanium nitride oxide perovskites have suitable band gaps for 

photocatalytic water splitting.[12] Furthermore, these materials have been discussed as 

non-hazardous inorganic pigments.[13] The study of EuNbNO2 and EuTaNO2 was 

motivated by the possibility of discovering new multiferroic materials, in which 

ferromagnetic and ferroelectric polarizations are coupled.[14, 15] Combining EuII with 

spin of S = 7/2 and transition metals like Nb, Ta and W results in interesting properties 

like low-temperature ferromagnetism[16] and colossal magnetoresistance[17] in nitride 

oxide perovskites. 
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Some Eu-containing nitride oxide perovskites, such as Ca1‒xEuTa(N,O)3,[15] 

EuWN2−xO1+x (x = −0.16 – 0.46),[18] EuWN1.42O1.58
[19] and EuMNO2 (M = Nb, Ta)[14-16] 

can be synthesized by ammonolysis of oxide precursors, obtained by ceramic or citrate 

routes in flowing gaseous NH3 at elevated temperatures between 870 – 1173 K. At 

other temperatures, either decomposition of respective nitride oxides or no formation 

of these compounds was observed. For example, the formation of scheelite-type 

phases can be suppressed by thermal treatment.[19] Therefore, different temperatures, 

precursors and intermediate grinding steps have been necessary for successful 

synthesis of nitride oxide perovskites.[9] 

The unequivocal distinction of N and O atoms is difficult with X-ray diffraction due to 

their similar X-ray scattering factors. Marchand et al. suggested a cubic structure for 

EuTa(N,O)3.[20] However, the precise anion composition and details of the structure 

were not elucidated at that time. Europium can occur in oxidation states EuII and EuIII 

and therefore the N/O distribution is variable. The Eu valence state can be probed with 

different analytical techniques like Mößbauer spectroscopy and susceptibility 

measurements.[21] 

Perovskite-like compounds offer a wide variety of substitution possibilities for anions 

and cations. Thus, the combination of different structure types is possible. A well known 

structural variation of the perovskite structure type is represented by the Ruddlesden-

Popper phases A’2A(n-1)BnX(3n+1) with n = 1 – 3, consisting of a perovskite structure 

intergrown with NaCl-type oxide blocks.[22, 23] Structural and dimensional similarity 

between the two structures is a key requirement. The general structure of the n = 2 

Ruddlesden-Popper phases are double perovskite layers and an intergrowth of half a 

NaCl-type layer. The A cations are located in the large cuboctahedron sites in the 

perovskite layer. The A’ cations have a ninefold coordination and are situated at the 

boundary between perovskite and rocksalt-type layer.[24] 

While most research efforts concerning oxides have focused on modifications of the 

cation composition, a less-explored approach concerns the investigation of 

modifications of the anion composition in Ruddlesden-Popper phases. Accordingly, a 

number of oxides are known in this structure type and well examined.[25-27] From oxides 

to nitride oxides, the anionic substitution of oxygen by nitrogen causes an increase in 

covalency of the metal-ligand bonds, giving rise to a marked variation of the structural, 

optical and magnetic properties.[19] In recent years, some nitrogen-containing 
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representatives of the Ruddlesden-Popper phases, e.g. A2TaNO3 (A = Ca, Sr, Ba),[28, 

29] Sr2NbNO3–x (n = 1), Sr3Nb2N2O5–x (n = 2)[30-32] and Rb1+xCa2Nb3NxO10–x · yH2O 

(x = 0.7 – 0.8, y = 0.4 – 0.6)[33] have been reported and attracted significant 

attention.[34] DFT calculations revealed that layered structures like Sr2TaNO3 could 

exhibit promising photocatalytic activities.[35] As with the perovskites,[36] there are 

inverse representatives of Ruddlesden-Popper phases like Ca7(Li1−xFex)Te2N2
[37] and  

(A3n+1Nn−1O)Bin+1 with A = Sr, Ba and n = 1, 3.[38] However, these compounds have 

relatively low nitrogen content. 

Herein, we report on the ammonothermal synthesis of the new mixed-valence nitrogen-

rich Ruddlesden-Popper phase EuIIEuIII
2Ta2N4O3. 

4.2 Results and Discussion 

4.2.1 Synthesis 

EuIIEuIII
2Ta2N4O3 was synthesized by an ammonothermal approach using custom-built 

high-temperature autoclaves made of nickel-based superalloy.[3, 5-7] Metallic Ta and Eu 

were used as powders. Eu was rasped from compact pieces in a glovebox. NaN3 and 

NaOH were added as mineralizers and oxygen source, respectively. All starting 

materials were crushed to a powder and placed in a custom-built tantalum liner (length 

14 cm, Ø 6 mm), which subsequently was transferred vertically into the autoclave. 

Since side phases occur during ammonothermal synthesis of nitride oxide 

perovskites,[7] NaOH and Ta were used in substoichiometric amounts to reduce the 

formation of NaTaN2 and Eu2O3 and promote synthesis of soluble side phases like 

amides. The maximum reaction temperature of 1070 K and a maximum pressure of 

170 MPa resulted in a black crystalline product (Figure 1). The product was washed 

with aqua regia to remove potential residual side phases like NaNH2, NaOH and Eu2O3. 

In contrast, at lower temperatures of 870 K only NaEuO2 was obtained as large 

colorless crystals of up to 100 µm. Still, besides the Ruddlesden-Popper phase 

Eu3Ta2N4O3, the nitride oxide perovskite EuTa(N,O)3 (SI Figure 2) was obtained as a 

side phase. 

A possible intermediate is NaEuO2, since it occurs at the reaction temperature of 870 K 

with the above mentioned reaction conditions. Presumably, it decomposes at higher 
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temperatures and reacts to the desired product Eu3Ta2N4O3 in supercritical ammonia. 

Non-condensed octahedral anions Ta(Nx,O1–x)6
(7+6∙x)–, which react to NaTa(O1–xNx)3–x, 

might form as well.[39] However, the intermediates / reactive species are still a matter 

of debate.[7, 8, 40] Compared to other ammonothermal reactions with lanthanides and 

tantalum, only the Ruddlesden-Popper phase EuIIEuIII
2Ta2N4O3 (see crystal structure 

determination) could be synthesized. Despite the similar radii of Ta and Nb,[41] the 

analogous nitride oxide with Eu and Nb could not be obtained under similar conditions 

employing Nb-liners in the temperature range up to 1070 K. Our recent investigations 

have shown that stable inorganic compounds with wurtzite-type or perovskite-type 

structures are thermodynamically preferred reactions products in ammonothermal 

syntheses.[3, 7, 8] Unfortunately, we were not able to obtain the perovskite phase 

EuTa(N,O)3
[15, 20] in reasonable yield like it was possible in other studies on lanthanide 

tantalum perovskites (LnTaN2O with Ln = La, Ce, Pr, Nd, Sm, Gd).[7]  

Figure 1. Optical micrograph of the black crystalline product.  
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4.2.2 Crystal structure determination 

According to single crystal X-ray diffraction with microfocused synchrotron radiation, 

Eu3Ta2N4O3 crystallizes in tetragonal space group P42/mnm (no. 136). 

Crystallographic data are summarized in Table 1. Atomic coordinates and isotropic 

displacement parameters are given in Table 2. Bond lengths and angles are given in 

Table 3, anisotropic displacement parameters (ADPs) of Eu3Ta2N4O3 in Table SI 2. 

Table 1. Crystallographic data and structure refinement of Eu3Ta2N4O3. 

Formula mass / g ∙ mol−1 921.81 

Space group P42/mnm (no. 136) 

Lattice parameters / Å a = 5.7278(1), c = 19.8149(5) 

Cell volume / Å3 650.08(3) 

formula units per unit cell Z 4 

X-ray density / g · cm-1 9.419 

Linear absorption coefficient / cm-1 33.147 

F(000) 1548 

Crystal dimensions / µm3 2 x 3 x 5 

Radiation / Å 0.30996 (synchrotron, ESRF, ID11) 

Temperature / K 296 

Abs. correction semiempirical 

θ range / ° 1.61 – 13.78 

Measured reflections 6736 

Independent reflections 697 

Refined parameters 41 

GOF 1.195 

R indices (Fδ
2 ≥ 2σ(Fδ

2)) R1 = 0.0249, wR2 = 0.0564 

R indices (all data) R1 = 0.0254, wR2 = 0.0570 

min / max residual electron density / eÅ-3 2.892 / -4.715 
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Table 2. Atomic coordinates, equivalent isotropic displacement parameters, of Eu3Ta2N4O3 (all 
sites are fully occupied). 

Atom Wyckoff pos. x y z Ueq (in A2) 

Ta1 8j 0.26377(3) 0.26377(3) 0.09890(2) 0.00842(10) 

Eu2 4g 0.23507(5) 0.76493(5) 0 0.01066(13) 

Eu3 8j 0.27615(4) 0.27615(4) 0.31573(2) 0.00744(11) 

O1 4e 0 0 0.0918(2) 0.0116(7) 

O2 8j 0.1860(4) 0.1860(4) 0.20828(13) 0.0114(5) 

N3 4e 0 0 0.3707(2) 0.0088(7) 

N4 4f 0.2898(5) 0.2898(5) 0 0.0087(7) 

N5 8h 0 1/2 0.11167(15) 0.0082(5) 

Table 3. Bond lengths and selected angles in Eu3Ta2N4O3 with standard deviations in 
parentheses. 

 O1 O2 N3 N4 N5 

Eu2II 2.632(3) - - 2.738(3) / 3.024(3) 3.000(2) 

Eu3III 2.579(3) 2.252(3) / 

2.405(2) 

2.489(2) - 2.4941(2) 

Ta1 2.1213(4) 2.256(3) 2.0055(2) 1.9710(6) 2.0436(4) 

N3-Ta1-O1 

N5-Ta1-N5 

O2-Ta1-N4 

166.41(16) 

164.55(16) 

170.00(14) 

O1-Eu2-O1 

O1-Eu2-N5 

N4-Eu2-N5 

87.32(13) 

122.53(4) 

112.80(5) 

O2-Eu3-N5 

O2-Eu3-O1 

N3-Eu3-N5 

133.37(6) 

154.24(10) 

70.76(5) 

4.2.3 Powder X-ray diffraction and Rietveld analysis 

The products were analyzed by powder X-ray diffraction to determine the phase 

composition and identify side phases. (SI Figure 2). Wyckoff positions and atomic 

coordinates for Rietveld refinement were based on the structure model obtained from 

single-crystal X-ray data. The obtained crystallographic data are listed in SI Table 1. 
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4.2.4 TEM measurements 

Unit cell metrics were initially determined from SAED tilt series with a = 5.84 and c = 

20.1 Å (Figure 2), which indicated a new phase. Suitable single crystals for 

microfocused X-ray diffraction were prepared on TEM copper grids with continuous 

carbon support film. SI Fig. 1 shows the crystal used for data collection. 

Figure 2. SAED-tilt series with experimental (blue) and theoretical (red) angles 

between the zone axes (top). Corresponding simulations based on the structure 

model obtained from single crystal data (bottom).  

4.2.5 Crystal structure description 

EuIIEuIII
2Ta2N4O3 crystallizes in the SrTb2Fe2O7 (SrII ≙ EuII, TbIII ≙ EuIII, FeIII ≙ TaV, O-

II ≙ N-III / O-II) structure type[42] and corresponds to a Ruddlesden-Popper phase[22, 23] 

with general formula A´2A(n–1)BnX(3n+1) with n = 2; A´ = EuIII, A = EuII, B = TaV and X = N-

III / O-II. The structure, displayed in Figure 3, can be interpreted as an intergrowth of 

perovskite-type and rocksalt-type slabs. 
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Figure 3. Unit cell of Eu3Ta2N4O3 ( left) with Eu I I  green, Eu I I I  purple, Ta grey, O red 

and N blue. Distorted Ta(N,O) 6 octahedrons are highlighted in red; right:  with 

Eu I I(N,O)12  cuboctahedrons highlighted in green, Eu I I I(N,O)7 trigonal capped prism 

highlighted in purple, Ta(N,O)6 octahedrons highlighted in red, O red and N blue. 

Two distorted Ta(N,O)6 octahedrons (cf. angles in Table 3) are interconnected by 

common vertices to form double layers extending parallel (001). The coordination 

sphere of EuII(N,O)12 (Eu2: 4g) is a distorted cuboctahedron (cf. angles in Table 3). 

The cuboctahedrons are interconnected with common square faces and also form 

layers parallel (001). These are part of the Ta(N,O)6 double layer. Consecutive layers 

of cuboctahedrons are rotated by 180°. Coordination polyhedrons EuIII(N,O)7 (Eu3: 8j) 

are smaller and can be described as single-capped trigonal prisms. These prisms 

share common trapezium faces with EuII(N,O)12 (Eu2) cuboctahedrons and triangular 

faces of the Ta(N,O)6 octahedrons and form layers between layers of the EuII(N,O)12 

cuboctahedrons and Ta(N,O)6 octahedrons, respectively. Between two EuII(N,O)12 

layers, there is one layer of octahedrons missing. The coordination polyhedrons and 

the corresponding interatomic distances are displayed in Figure 4. Ta-N distances are 

1.970(6) – 2.0436(4) Å and Ta-O distances are 2.1413(4) – 2.256(3) Å (Table 3). 
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These values are in good agreement with known compounds such as TaNO,[43] 

Ta3N5,[44] Ta2O5
[45] and EuTa(N,O)3.[15] EuII has an ionic radius of 1.35 Å[41] and is 

coordinated by 12 anions forming a distorted cuboctahedron, similar to the nitride oxide 

perovskite EuTa(N,O)3,[15] whereas the smaller EuIII has a radius of 1.01 Å[41] and is 

coordinated by seven anions resulting in a single-capped trigonal prism, which is 

similar to the coordination of EuIII in Eu2O3.[41, 46] The distances between EuII and the 

associated 12 N/O ligands are between 2.632(3) – 3.024(3) Å. With exception of the 

longest distance of the cuboctahedron (3.342(1) Å), these values are in good 

agreement with literature.[15, 47, 48] The distances between the smaller EuIII and the 

seven anions are 2.252(3) – 2.579(3) Å and can be compared to the europium 

compounds Eu3O4
[48] and EuN.[49] The presence of two different valence states of 

europium in one compound has been reported e.g. for Eu2SiN3
[50] or Eu3F4S2.[51] 

Nevertheless, to the best of our knowledge, EuIIEuIII
2Ta2N4O3 is the first mixed-valence 

Ruddlesden-Popper phase with EuII/III. 

Figure 4. Coordination polyhedrons of TaV (Ta1), Eu I I (Eu2) and EuIII (Eu3) with 

interatomic distances in Å (error >0.001) of Ta1, Eu2 (Eu I I) and Eu3 (Eu I I I) to the 

respective anions. 

The corresponding tilt system for space group P42/mnm (no. 136) by Aleksandrov and 

Bartolome is (ϕ00)(0ϕ0)[52] and by Glazer (a−b0c0)(b0a−c0)[53, 54] for the Ruddlesden-

Popper phase EuIIEuIII
2Ta2N4O3. 
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4.2.6 Scanning electron microscopy and EDX 

EDX data confirm the composition of Eu3Ta2N4O3 (calculated values of the atomic 

composition in atom% in parenthesis): Eu: 23.3±2.1 (25), Ta: 18.0±1.3 (16.6), N: 

32.4±2.1 (33.4), O: 26.3±1.4 (25); see SI Table 3. Residual mineralizer was almost 

completely removed from the product by washing with aqua regia. SEM images of the 

purified product predominantly show platelets and, in addition, cube- and cuboid-like 

crystals (Figure 5). Based on the PXRD (SI Figure 2) and EDX results (SI Table 3), the 

platelets can be assigned to Eu3Ta2N4O3. The other crystals are attributed to 

EuTa(N,O)3.[15] Such a platelet morphology has not yet been observed in other 

ammonothermal reactions, but could be found in the ammonolysis product of 

LaTiNO2.[55, 56] The morphology of cuboid crystals were already observed in other 

ammonothermal reactions of nitride oxide perovskites.[7, 8, 40, 57, 58] SEM images show 

that there are more cuboid-shaped crystals in the centre of the liner and platelets were 

found almost exclusively at the bottom of the liner. This observation could be due to 

local concentration maxima during synthesis inside the autoclave. 

Figure 5. SEM images of different crystals from the ammonothermal synthesis at 

1070 K: a) an overview of the sample with different crystal morphologies (platelets 

in the centre of the image and cubes around them), b)  cube-shaped crystals of 

EuTa(N,O)3, c) platelets of Eu3Ta2N4O3  and d) cuboid crystals of EuTa(N,O)3 .  
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4.2.7 N/O assignment, BVS and MAPLE 

Due to the presence of heavy atoms, the N/O assignment is problematic. Still, the N/O 

assignment was indicated by R-values and displacement parameters. Assuming 

charge neutrality, BVS calculations[59, 60] were performed in order to reasonably assign 

sites to N or O and EuII or EuIII, respectively, despite their very similar X-ray scattering 

factors. On the basis of the assumed N/O distribution, the BVS of the cations and 

anions were determined (SI Table 4). This leads to a charge neutral formula, which is 

corroborated by EDX measurements, Madelung part of the lattice energy (MAPLE, 

Table 4) and CHARDI calculations (SI Table 5). MAPLE calculations confirm the 

electrostatic consistency of the crystal structure of EuIIEuIII
2Ta2N4O3. MAPLE values 

were calculated[61] for each ion type and for the entire structure. The sum formula was 

formally separated into the binary compounds Ta3N5,[44] TaNO,[62] EuO,[47] Eu2O3.[46] 

Compared to the sum of total MAPLE values, the deviation of total lattice energies of 

EuIIEuIII
2Ta2N4O3 is 0.6% (Table 4). The partial MAPLE value of Eu2II (1931 kJ/mol) 

(coordination by 12 anions) is significantly smaller than that of Eu3III (4388 kJ/mol) 

(coordination by 7 anions) according to the oxidation states Eu2II and Eu3III, and the 

larger distances of 2.6329 – 3.3417 Å to the corresponding 12 anions compared to 

2.2506 – 2.5783 Å to the 7 anions. All MAPLE values for N3 – N5 are in the range of 

4876 – 4937 kJ/mol. The O1 value (2421 kJ/mol) is larger compared to O2 

(2121 kJ/mol) (Table 4). The MAPLE calculations thus suggest that N and O are not 

significantly disordered. Charge distribution (CHARDI) calculations were performed 

with VESTA[63] (SI Table 5), following the theory of Hoppe et al.[63, 64] The CHARDI 

values for each cation are: TaV (Ta1) = 5.037, Eu2II = 1.915 and Eu3III = 3.006. 
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Table 4. Results of the MAPLE calculations for Eu3Ta2N4O3 with increment calculations and 
comparative values in parentheses in kJ/mol. 

MAPLE Values.[65-70] 

Ta1 Eu2II Eu3III O1 O2 N3 N4 N5 Eu3Ta2N4O3 

13181 1931 4388 2421 2121 4897 4876 4937 63367 

- (1700-

2100) 

(3500-5100 

(RE3+)) 

(2000-

2800) 

(2000-

2800) 

(4300-

6200) 

(4300-

6200) 

(4300-

6200) 

- 

MAPLE MAPLE 

Eu2O3 + EuO + Ta3N5 - TaNO EuIIEuIII
2Ta2N4O3 

13948 kJ/mol + 3775 kJ/mol + 66027 kJ/mol – 20774 kJ/mol 

= 62976 kJ/mol 

 

63367 kJ/mol 

Δ = −0.6% 

4.2.8 UV/VIS 

UV/VIS measurements reveal optical properties and band gap values of the product. 

After mixing with BaSO4, diffuse reflectance R spectra were measured and converted 

to absorption spectra using the Kubelka-Munk function F(R) = (1 − R)2 / 2R assuming 

a direct band gap.[71] Tauc plots determine the optical band gap (Figure 6) by a tangent 

at the inflection points.[72] The measured band gap is 0.6 eV. This value is significantly 

smaller than that of other LnTaN2O nitride oxide perovskites, which possess varying 

body-colors and have larger band gaps.[7] 

Figure 6. Tauc plot of Eu3Ta2N4O3 and diffuse reflectance measurements.  

The relative reflectance shows a broad maximum at about 690 nm, which can be 

explained by a superposition of 4f–4f transitions.[73] 
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The black color of the obtained product (Figure 1) is in good agreement with the 

corresponding band gap.[50] Although structural ordering of europium atoms with 

different oxidation states has been refined (see crystal structure description), a certain 

amount of charge delocalization with some polaron activity is assumed, as supported 

by the black color of Eu3Ta2N4O3.[51] Apparently, both EuII and EuIII ions occur 

simultaneously during synthesis in a reducing reaction atmosphere (see synthesis). 

4.3 Conclusions 

A new Ruddlesden-Popper phase (n = 2) EuIIEuIII
2Ta2N4O3 was obtained by 

ammonothermal synthesis. Single-crystal data recorded with microfocused 

synchrotron diffraction revealed the atomic structure and Rietveld refinements 

corroborate the results. EuIIEuIII
2Ta2N4O3 crystallizes in P42/mnm with lattice constants 

a = 5.7278(1) and c = 19.8149(5) Ǻ. Ta(N,O)6 octahedrons are connected via common 

vertices to double layers, where cuboctahedrally coordinated EuII is located within 

these layers. Between the layers, there are EuIII atoms, which have a capped trigonal 

prismatic coordination and are linked by common faces with the Ta(N,O)6 octahedrons. 

MAPLE, BVS and CHARDI calculations confirm electrostatic consistency. Nitrogen 

and oxygen could be tentatively assigned in single crystal structure refinements and 

their distribution was confirmed by the computational methods mentioned. 

EuIIEuIII
2Ta2N4O3 is the first mixed-valence europium-containing Ruddlesden-Popper 

phase. Through the use of TaV, which is highly charged, nitride anions can be 

incorporated into the compound. This principle should enable manifold substitution of 

Eu and Ta towards other new compounds. Thus, the ammonothermal method is most 

likely a promising approach to new perovskite-related materials. In addition, the 

synthesis of crystals in μm range shows that the solution based ammonothermal 

synthesis with supercritical ammonia is superior to other methods such as gas flow 

ammonolysis in terms of crystal growth. 

The ammonothermal synthesis of Eu3Ta2N4O3 shows that the intergrowth of a distorted 

NaCl-like slab in nitride oxide perovskites is possible despite the lower thermodynamic 

stability of nitrides. The further development of new explorative methods is imperative 

in order to synthesize larger single crystals for the investigation of physical properties 

of nitride oxides. 
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4.4 Experimental Section 

All manipulations were carried out in flame-dried Schlenk-type glassware connected to 

a vacuum line (≤ 0.1 Pa) or in Ar-filled gloveboxes (Unilab, MBraun, Garching, 

O2 < 1 ppm, H2O < 1 ppm) to rigorously exclude oxygen and moisture during 

preparation and syntheses. Ammonia (Air Liquide, 99.999%) was purified through a 

gas purification cartridge (Micro Torr MC400-702FV, SAES Pure Gas Inc. San Luis 

Obispo, Ca, USA) to obtain a purity level of < 1 ppbV H2O, O2 and CO2. 

4.4.1 Ammonothermal Synthesis 

All syntheses were performed in supercritical ammonia with custom-built autoclaves 

made of nickel based superalloy (Haynes 282) sustaining a maximum pressure of 

170 MPa at 1070 K.[74, 75] The peripheral devices consist of the hand valve (SITEC), 

pressure transmitter (HBM P2VA1/5000 bar) and a safety head with an integrated 

rupture disc (SITEC). To seal the autoclave, silver coated C-rings (GFD seals) made 

of Inconel 718 were used. The autoclaves were placed vertically in custom-built three-

zone furnaces (Loba, HTM Reetz) and connected to a pressure display unit (HBM). 

The pressure was recorded by an AD-converter. The signal was recorded with an 

average value of each 20 s. 

Ta (1 mmol, Sigma-Aldrich, -325 mesh, 99.9%) and Eu (smart-elements 99.9%), 

1 mmol) were powdered with a file in a glovebox, NaOH (0.8 mmol, Grüssing) and 

NaN3 (99.99% Sigma-Aldrich, 4 mmol) were crushed to a powder in an agate mortar 

and then placed in custom-built tantalum liners (WHS Sondermetalle; length 140 mm, 

diameter 6 mm), which were placed vertically in the autoclave and sealed in 

gloveboxes. Subsequently, the autoclaves were finally screwed. Purified ammonia was 

then condensed into the evacuated and cooled (193 K) autoclave with 1 bar 

overpressure with a combined glass-steel-line. After warming up to room temperature, 

the autoclave was placed vertically in a tube furnace. Subsequently, the autoclave was 

heated to the respective reaction temperature within 6 h and kept at this temperature 

for 110 h. The pressure slowly decreased over time because of hydrogen loss of the 

autoclave. Further details of the used autoclaves can be found in literature.[2, 3, 5-7, 36, 76-

84] 
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4.4.2 Single-Crystal X-ray Diffraction 

X-ray diffraction data of a Eu3Ta2N4O3 were obtained by microfocus synchrotron 

diffraction (beamline ID11, ESRF, Grenoble)[85] on a Huber diffractometer 

(λ = 0.30996 Å) with a FReLoN2K CCD detector.[86] A crystallite that had been pre-

characterized by TEM methods (see below) was used.[87] Integration and empirical 

absorption correction was done with CrysAlis Pro.[88] Incomplete absorption in the CCD 

phosphor was taken into account.[89] Solution and refinement of the structure was 

conducted with SHELX-2014.[90] Further details on the crystal structure analysis can 

be obtained from the Cambridge Crystallographic Data Centre on quoting the 

depository no. CCDC 1890993. The crystal structure was visualized with Diamond.[91] 

4.4.3 Powder X-ray Diffraction 

PXRD measurements were performed in glass capillaries (0.2 mm diameter, 

Hilgenberg GmbH) with a Stoe STADI P diffractometer (Mo-Kα1 radiation, Ge(111) 

monochromator, Mythen 1K detector) in modified Debye-Scherrer geometry. The 

TOPAS package was used for Rietveld refinement.[92] 

4.4.4 UV/VIS Spectroscopy 

UV/VIS spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm InGaAs integrating sphere. Diffuse reflectance spectra were 

collected with a Praying Mantis (Harrick) accessory and were referenced to BaSO4 

(Sigma-Aldrich, 99.99%) powder as white standard. 

4.4.5 SEM / EDX 

The atomic ratio of Eu3Ta2N4O3 was confirmed by energy-dispersive X-ray 

spectroscopy (EDX). SEM images were taken with a Dualbeam Helios Nanolab G3 UC 

(FEI) with X-Max 80 SDD Detector (Oxford Instruments). The software AzTec was 

used for EDX analysis. 
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4.4.6 TEM 

For sample preparation, crystals of Eu3Ta2N4O3 were ground in absolute ethanol and 

drop-cast on copper grids with holey carbon film (Plano GmbH, Germany). The grids 

were mounted on a double-tilt holder and transferred into a FEI Tecnai G2 20 S-TWIN. 

TEM images were recorded on a TVIPS camera (TemCam F216, Tietz). The 

microscope was operated at 200 kV accelerating voltage. For evaluation of the TEM 

data, the following software was used: Digital Micrograph (measurement of d-values 

from SAEDs), ProcessDiffraction7 (geometric calculations for SAED) and jEMS 

(SAED-Simulations).[87, 93-95] 
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Crystals of alkali nitridotantalates ATaN2 with A = Na, K, Rb, Cs with well developed 

shape were grown by ammonothermal syntheses at temperatures of up to 1070 K and 

an internal pressure of up to 170 MPa. The syntheses have been performed in custom-

built high-pressure autoclaves made of the nickel-based super alloy Haynes 282 

employing tantalum liners. 
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Abstract: Crystals of alkali nitridotantalates ATaN2 (A = Na, K, Rb, Cs) with well 

developed shape were grown from corresponding alkali amides or azides and 

elementary Ta in supercritical ammonia. The aforementioned alkali mineralizers 

provide an ammonobasic environment for crystal growth. Temperatures of up to 

1070 K resulted in an internal pressure of up to 170 MPa in high-pressure custom-built 

autoclaves. For successful crystal growth, a custom-built Ta liner was used as 

substrate. The obtained ATaN2 crystals vary in size depending on the used alkali metal 

(Na: 50 µm; K: 40 µm; Rb: 200 µm; Cs: 50 µm). In addition, a second temperature step 

at the decomposition temperature of the respective mineralizer is required for the 

successful synthesis of crystals, due to formation of intermediates at lower 

temperatures. The obtained products were examined by PXRD, SEM and UV-Vis 

spectroscopy. The electronic properties were investigated by DFT calculations. 
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5.1 Introduction 

Nitrides are one of the increasingly studied materials, due to their structural versatility 

along with promising electronic and optical properties, useful in a variety of 

applications.[1-3] While binary nitrides like Ta3N5 (an n-type semiconductor with d0 

configuration) are for example studied as favorable solar energy conversion materials, 

ternary nitrides have likewise shifted into the focus.[3] It has been demonstrated, that 

e.g. TaON is an effective photoanode under visible light irradiation.[4] However, 

multinary nitrides are still relatively unexplored.[3, 5] 

In view of the current technological requirements, significant and substantial 

developments in key applications like electronics have been made in a short time.[6] 

Whereas research on binary transition metal nitrides is mostly driven by technical and 

industrial interest, the investigation of ternary and higher nitrides primarily focuses on 

exploration with respect to the development of new synthetic strategies, the design of 

new materials and further investigation of materials properties.[7] Ternary 

nitridometalates, e.g. ATaN2 with A = alkali or transition metals have been synthesized 

but not yet further investigated.[8, 9] CuTaN2 for example is an interesting candidate for 

thin film photovoltaics. Analogous ternary nitrides CuNbN2 and AgTaN2 can be 

synthesized by ion exchange reactions and show promising optical and electronic 

properties, relevant for solar energy conversion applications.[10-12] 

Binary nitrides are accessible by conventional high-temperature solid-state methods, 

where oxide precursors are transformed into nitrides via reaction with reactive gases 

like ammonia or mixtures of H2/N2 (gas flow ammonolysis). The binary Ta+V nitride 

Ta3N5, for example, can thus be obtained by ammonolysis of Ta2O5.[13] Interestingly, 

the corresponding niobium compound “Nb3N5” is yet to be known,[14] whereas the 

existent Nb4N5 shows fair electronic conductivity with chemical stability and might 

serve as a desirable candidate for supercapacitors.[15] A common challenge in the 

synthesis of multinary nitrides lies within the high thermodynamic stability of the binary 

nitride phases. Hence, reactive nitrogen containing species like amides or azides are 

utilized with metals under extreme reducing conditions in order to prepare multinary 

nitridometalates. Employment of azides instead of amides e.g. in sealed ampules, 

provides metal, flux and mineralizer after decomposition without hydrogen as possible 

impurity. Excessive metal can be removed from the reaction products by extraction 

with liquid ammonia or sublimation.[6, 16] 
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Device applications and the efficiency of nitride semiconductors strongly depend on 

the crystal quality of the stacked layers grown by epitaxial growth on foreign substrates. 

Therefore, the development of new growth methods is nowadays one key issue in 

semiconductor chemistry, but still encounters challenges.[1] 

Hydrothermal synthesis has proven successful for single crystal growth of oxide 

materials.[17, 18] In close analogy ammonothermal synthesis, using a medium of liquid 

or supercritical ammonia, in autoclaves works against decomposition and towards 

crystallization of nitride materials unstable towards hydrolysis. Explorations of single 

crystal growth were conducted on some key representatives of important nitrides[1, 19, 

20] such as GaN,[1] InN[21] and more recently Grimm-Sommerfeld analogous wurtzite 

derivatives like ZnSiN2, ZnGeN2
[22] or Zn2PN3.[23] Consequently, the ammonothermal 

process could be identified as a suitable method for crystal growth and explorative 

synthesis. This re-established method provides a sophisticated approach to synthesize 

crystals with acceptable sizes and simultaneously high quality in terms of impurities, 

adhesions and imperfections.[1, 19, 24-26] 

However, in many cases it is still difficult to find the critical synthesis conditions to grow 

nitride crystals. The alkali nitridotantalates ATaN2 (A = Na, K, Rb, Cs) have only been 

obtained as microcrystalline powders so far.[9, 27] NaTaN2 and KaTaN2 are accessible 

in a tube furnace starting from sodium or potassium metal, respectively, and Ta3N5 

with flowing ammonia operating under normal pressure. This gas flow ammonolysis 

reaction can also be employed for the corresponding Nb containing compound 

NaNbN2.[16] The niobium compounds, NaNbN2 and CsNbN2, on the other hand, were 

synthesized as crystals by reaction at 1070 K in salt melts in high-pressure vessels 

starting from NbN and the respective amides.[28-30] Sodium compounds of 

corresponding niobium and tantalum nitrides can be further used to perform ion 

exchange reactions. Utilizing CuI, Na+ can be exchanged by Cu+ in NaTaN2 forming 

CuTaN2 crystallizing in the layered delafossite structure type.[8, 31] So far it was however 

not possible to obtain suitable single crystals from ion exchange reactions.[3, 5, 11, 31] 

As such until now no µm-sized crystals of ATaN2 with A = Na, K, Rb, Cs could be 

synthesized, neither in ammonolysis[16] nor under ammonothermal conditions.[9, 27] In 

the past, NaTaN2 occurred as residual side phase growing on the tantalum liner in the 

process of ammonobasic ammonothermal reactions utilizing NaN3 or NaNH2 as a 

mineralizer.[25] 
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In this contribution, we report on the first synthesis of crystals in the several tens to 

hundred µm range of alkali nitridotantalates (Na-, K-, Rb- and CsTaN2) by use of 

ammonothermal synthesis. Structural investigation of the ternary tantalum nitrides was 

performed by powder X‐ray diffraction methods, whereas the morphology was 

investigated by scanning electron microscopy (SEM). Furthermore, the optical and 

electronic properties of these compounds were examined by UV-Vis spectroscopy and 

DFT calculations. Our work showcases the principal feasibility to obtain crystals of 

ternary nitride materials of several tens of micrometers that may be advantageous for 

the investigation of fundamental materials properties. 

5.2 Experimental Section 

5.2.1 Synthesis 

Due to oxygen and moisture sensitivity of the starting materials all handlings were 

performed in an argon-filled glovebox (MBraun, Garching, Germany). Reactions were 

carried out in customized 11 mL autoclaves made of the nickel-based super alloy 

Haynes 282[1] with tantalum liners. Further details about the autoclaves can be found 

in literature.[1, 25] The autoclave was placed vertically in a tube furnace (HTM Reetz 

GmbH, Berlin, Germany) designed in order to heat it completely (without peripherical 

devices) and guarantee uniform heat distribution in the reaction chamber. Small 

temperature differences between the furnace and the inner reactor of the autoclave 

are expected due to heat loss between heat source and inner wall of the autoclave. 

The pressure was monitored using a digital pressure transmitter (P2VA1/5000 bar, 

HBM GmbH, Ismaning, Germany) and logged with a conventional computer. Gaseous 

ammonia (Air Liquide, 99.999%) used for the reaction was purified with a gas 

purification cartridge (MicroTorr MC400-702FV, SAES Pure Gas Inc., San Luis Obispo, 

Ca, USA) to obtain a low impurity level of <1 ppbV of H2O, O2 and CO2. The amount 

of ammonia condensed into the autoclave was determined using a flow meter (MASS-

STREAM D-6320-DR, Bronkhorst, Ruurlo, Netherlands). 

The following chemicals were used as delivered: NaN3 (Sigma-Aldrich, 99.9%), KN3 

(Sigma-Aldrich, 99.9%), RbNH2 (synthesized from Rb (Sigma-Aldrich 99.99%) in liquid 

ammonia),[14] CsN3 (Sigma-Aldrich, 99.99%), Ta (Sigma-Aldrich, -325 mesh, 99.9%). 

The starting materials were mixed and placed in the Ta-liner, which was then 



88 Ammonothermal Crystal Growth of ATaN2 with A = Na, K, Rb, Cs and their 
Optical and Electronic Properties 

 
transferred into the autoclave. The autoclave was shut in the glovebox. Subsequently, 

the autoclave screws were tightened with the required torque outside the glovebox. 

Then, the autoclave was evacuated, cooled and ammonia was condensed into the 

autoclave with a combined glass and steel vacuum line (≤ 0.1Pa). After heating to room 

temperature the autoclave was placed in a vertically orientated furnace, heated with 

different rates for each compound and maintained for several hours, reaching a 

maximum pressure of 170 MPa before the oven was cooled to room temperature by a 

final cooling step. (NaTaN2: 1.6 K/min  673 K, hold for 35 h, 1.6°K/min  1073 K, 

hold for 90 h, cool to RT; KTaN2: 2.2 K/min  673 K, hold for 20 h, 0.1 K/min  

1073 K, hold for 96 h, 0.1 K/min  RT; RbTaN2: 2.1 K/min  653 K, hold for 24 h, 

1.4 K/min  900 K, hold for 24 h, 0.4 K/min  RT; CsTaN2: 2 K/min  623 K, hold for 

48 h, 2.5 K/min  1073 K, hold for 48 h, 0.4 K/min  RT). The residual pressure after 

the reaction was drained through an oil bubbler. The products were analyzed by 

powder X-ray diffraction (PXRD), using a powder diffraction system STADI-P (Stoe & 

Cie) equipped with a Mythen 1K detector and Mo Kα1 radiation (λ = 0.71093 Å). 

Scanning electron microscopy (SEM) images were captured using a Dualbeam Helios 

Nanolab G3 UC (FEI) microscope with X-Max 80 SDD Detector (Oxford Instruments). 

The software AzTec was used for processing of pictures. Diffuse reflectance 

spectroscopy measurements were conducted using a Jasco V-650 UV-Vis 

spectrophotometer equipped with Czerny-Turner mount, photomultiplier tube detector 

and deuterium (190 – 350 nm) / halogen (330 – 900 nm) lamps as light sources. 

5.2.2 Computational Details 

Structural relaxations for ATaN2 (A = Na, K, Rb, Cs) were performed with the Vienna 

ab initio simulation package (Vasp)[32-35] until total energies were converged to 10–

7 eV/atom with total residual atomic forces below 1×10–2 eV/Å. The generalized 

gradient approximation (GGA) of Perdew, Burke and Ernzerhof[36, 37] was used to treat 

exchange correlation along with the projector-augmented-wave (PAW) method.[38, 39] 

Brillouin zone sampling was done on a Γ-centered k-mesh (NaTaN2: 16 x 18 x 4; 

KTaN2 10 x 6 x 5; RbTaN2: 10 x 6 x 5; CsTaN2: 6 x 6 x 6) produced from the method 

of Monkhorst and Pack.[40] 
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5.3 Results and Discussion 

5.3.1 Synthesis 

Variation of reaction conditions including different heating rates, second temperature 

steps for formation of intermediates, particularly alkali amides, and the amount of 

mineralizer were carried out to screen the optimum crystallization conditions. The best 

results for crystal growth of ternary alkali nitridotantalates were obtained using a molar 

ratio of Ta : alkali mineralizer of 1 : 7. Lower amounts of the mineralizer also resulted 

in the desired product, first recognizable by a coloration of the outside wall of the liner 

or on the liner substrate, but no recognizable growth of crystals was observed. Crystal 

growth was possibly unsuccessful due to lacking oversaturation of the medium or the 

lack of a necessary melt at the bottom inside of the liner. The crystal growth in melts is 

known from other solid-state reactions in ampules.[6, 16] Formation of NaTaN2 crystals 

was observed at the bottom inside the liner and those of KTaN2 on the liner wall. Thus, 

crystallization seems to depend on the respective alkali metal and consequently their 

solubility. In contrast, an even larger excess of the required mineralizer has no impact 

on crystal size and quantity of the desired product and merely increases residual 

amides. The reactions were conducted in two steps, owing to the preferential formation 

of amides at lower temperatures,[19] the significant decomposition of ammonia beyond 

850 K as well as the resulting reductive atmosphere.[41] A first necessary constant 

temperature step in the range of the decomposition temperature of the respective 

mineralizers was chosen. During a first holding phase, the mineralizer dissolves in 

liquid / supercritical ammonia. At elevated temperatures azides decompose to nitrogen 

(detectable by a pressure increase) and the respective metal, which subsequently 

forms the corresponding amide.[19] The reactive amides are less soluble than the 

azides in ammonia and could form a melt at the bottom of the liner, further reacting 

with Ta.[42] Apart from azide decomposition, nitrogen also results from decomposition 

of ammonia at elevated temperatures. It is likely that nitrogen could dissolve in this 

melt of the respective amides at the bottom of the liner in the autoclave.[6] Previous 

ammonothermal syntheses showed evidence of the presence of a melt at the bottom 

of the liner as well.[25, 26] We assume, that this melt could, to a certain degree, 

chemically corrode parts of the liner’s surface area and promote the crystallization 

process on the liner as a substrate. Initially, some amount of alkali mineralizer is 
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dissolved in the supercritical ammonia[43] and is available for reaction. After a second 

heating phase to the final temperature of 900 – 1070 K, formed intermediates, primarily 

alkali amides, gradually decompose to form the desired nitrides.[22] The crystal growth 

might also be supported by the higher reactivity of supercritical ammonia of 

ammonothermal synthesis compared to gas flow ammonolysis reactions due to the 

increased solubility and relative permittivity.[41, 43, 44] This may contribute to the fact that 

so far no crystals could be obtained from gas flow ammonolysis reactions. Another 

reason could be due to a missing solvent in such reaction systems. 

In a final cooling step, supersaturation of the solution takes place, leading to µm-sized 

crystals. On the one hand, the liner offers a barrier between the reaction and the 

autoclave wall to prevent corrosion and on the other hand, it provides a mandatory 

substrate for the growth of the desired products as crystals. The liner can easily be 

removed from the inside of the autoclave and the product can finally be extracted and 

collected. The products with body colors orange (NaTaN2), green (KTaN2), orange-

yellow (RbTaN2) and orange-yellow (CsTaN2) were extracted from the autoclave inside 

a glovebox. The obtained products are depicted in Figure 1. 
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5.3.2 Optical appearance, SEM measurements and Rietveld analysis 

 

Figure 1: Optical pictures of the synthesized alkali nitridotantalates (NaTaN 2  

orange, KTaN2  green, RbTaN2  orange-yellow, CsTaN2  yellow-green). 
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Figure 2. SEM images of the obtained crystals of ATaN2  (with A = Na, K, Rb, Cs) at  

1070 K with different scale bars.  

 

The resulting crystals exhibit well developed crystal faces (Figure 2). Unfortunately, all 

crystals are prone to strong intergrowth and twinning. NaTaN2 appears in form of fused 

hexagonal rods of up to 60 – 70 µm. K-, Rb- and CsTaN2 crystallize in octahedral 

shape of different sizes. For RbTaN2 the largest crystals were obtained with sizes up 

to 200 µm, whereas KTaN2 and CsTaN2 form crystals of about 50 – 60 µm. All crystals 

were found to grow on the inner wall of the liner. 
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Figure 3. Rietveld refinements of NaTaN 2 (R𝟑̅m, no. 166), KTaN2 , RbTaN2 (both Pbca, 

no. 61) and CsTaN2  (Fd𝟑̅m, no. 227) with experimental data (black lines Mo-Kα1, 

λ = 0.70930 Å), calculated patterns (red lines), difference plot (green lines) and 

positions of Bragg reflections (black bars). Reflection marked with asterisk (*) 

corresponds with TaH. 
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Crystal structures were analyzed and refined by powder X-ray diffraction (PXRD) data 

based on structural data reported in literature. NaTaN2 (R3̅m, no 166) crystallizes in 

the α-NaFeO2 structure type, KTaN2 and RbTaN2 (Pbca, no 61) crystallize in the 

KGaO2 structure type and CsTaN2 Fd3̅m (no 227) in the filled β-cristobalite type.[9] 

Lattice parameters, atomic coordinates and displacement parameters were refined by 

Rietveld methods (see supporting information, crystallographic information). The small 

peak widths in Rietveld refinements indicate highly crystalline product formation as 

evidenced by SEM analysis free from additional side phases as almost no remarkable 

amorphous background was present. The small increase in the background of CsTaN2 

is due to absorption. The powder X-ray diffraction patterns are shown in Figure 3, 

crystallographic data are summarized in Table 1. Lattice parameters are in good 

agreement with the values reported in literature.[9, 27] 
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Table 1. Crystallographic data of ATaN2 with A = Na, K, Ta, Cs obtained by Rietveld refinement. 

 NaTaN2 KTaN2 RbTaN2 CsTaN2 

Crystal system trigonal orthorhombic cubic 

Space group (no.) R3̅m (166) Pbca (61) Fd3̅m (227) 

a, b, c /Å a = 3.1300(3) 

c = 17.013(5) 

a = 5.8884(1) 

b = 11.866(3) 

c = 16.592(3) 

a = 6.0632(4) 

b = 12.006(7) 

c = 17.020(1) 

a = 8.7790(3) 

Cell volume /Å³ 144.34 (5) 1159.27(5) 1238.90(13) 676.61(8) 

Formula units per 

cell 

3 16 16 24 

Density /g·cm–3 8.005(3) 5.685(2) 6.314(7) 6.712 (7) 

Diffractometer STOE STADI P 

T /K 293(2) 

Radiation Mo-Kα1 (λ = 0.70930 Å) 

2θ range /° 2.0 ≤ 2θ ≤ 60.2 

Data points 3886 

Total number of 

reflections 

79 1766 1886 69 

Refined 

parameters 

53 44 37 23 

Background 

function 

Shifted Chebyshev 

R values RP = 0.0632 

Rwp = 0.0801 

RP = 0.0604 

Rwp = 0.0764 

RP = 0.0523 

Rwp = 0.0683 

RP = 0.0717 

Rwp = 0.09 

Goodness of fit 0.894 0.838 0.930 0.96 

5.3.3 UV/Vis measurements with Tauc plots 

Diffuse reflectance spectra of the thoroughly powderized samples were measured to 

investigate the optical properties of the materials. Pseudo-absorption spectra were 

calculated employing the Kubelka-Munk function.[45] The optical band gaps were 

determined using the Tauc method.[46] All compounds absorb in the visible spectral 

range (see Figure 4). These are the first band gap investigations of the ternary alkali 

metal nitridotantalates and therefore no comparable values or calculations are known 
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yet. The optical band gaps obtained from diffuse reflectance of the compounds are 

≈ 1.5 eV for NaTaN2, ≈ 2.5 eV for KTaN2, ≈ 2.5 eV for RbTaN2 and ≈ 2.2 eV for 

CsTaN2. The body colors of the compounds are in good agreement with the 

experimental UV-Vis measurements. NaTaN2 crystals show a morphology of inferior 

quality compared to the those of the other ternary nitrides. This could possibly lead to 

defects (see Figure 2) and contribute to a narrowing of the band gap. We assume the 

first step in the UV-Vis measurement of CsTaN2 stems from possible defects due to 

discontinuous crystal growth (significant differences in growth rates; see 

inhomogeneous crystal size fractions in Figures 1 and 2.). 

 

Figure 4. Tauc plots with estimation of indirect (NaTaN2) and direct band gaps (K-, 

Rb-, CsTaN2) for crystalline alkali tantalum nitrides.  

5.3.4 Electronic Structure 

In order to validate the experimentally determined band gaps of the compounds ATaN2 

(A = Na, K, Rb, Cs) we performed subsidiary DFT calculations. The resulting band 

structures are depicted in Figure 5. 
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Figure 5: Band structures for a) NaTaN2  (R𝟑̅m, no. 166), b) KTaN2 (Pbca , no. 61) c) 

RbTaN2 (Pbca , no. 61) d) CsTaN2 (Fd𝟑̅m, no. 227) along high symmetry directions in 

the first Brillouin zone.  

DFT reveals an indirect electronic band gap ((F(R)∙hν)1/2) for NaTaN2 (1.2 eV) and 

direct band gaps ((F(R)∙hν)2) in reasonable agreement, to the experimentally deduced 

band gaps by the chosen Kubelka Munk formalism[45, 46], with KTaN2 (2.6 eV), 

RbTaN2 (2.6 eV) and CsTaN2 (2.1 eV). Apart from the slight underestimation observed 

for NaTaN2 as often seen from standard DFT calculations, the chosen GGA-PBE 

functional appears sufficient for these types of small band gap semiconductors. It 

appears likely that, judging from the observed reddish color of the NaTaN2 crystallites, 

in comparison to DFT calculations, the optical transitions observed from experimental 

reflectance spectra show only direct electronic transitions at Γ equating to 1.8 eV. 
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5.4 Conclusion 

The alkali metal amides and azides were used in custom-built autoclaves in order to 

prepare ternary alkali metal nitridotantalates. The formed intermediates decompose at 

elevated temperatures resulting in the targeted alkali nitridotantalates ATaN2 (A = Na, 

K, Rb, Cs). The obtained crystals of several tens of micrometers were examined by 

PXRD, SEM, UV-Vis and DFT calculations in order to determine their optical and 

electronic properties. Thus, the presented study demonstrates that the 

ammonothermal approach is suitable for crystal growth of ternary nitrides, which were 

hitherto only available as powders. The crystal size of up to 200 µm is to our knowledge 

one of the largest sizes observed for ternary nitrides in ammonothermal synthesis so 

far. 

Although, research on nitrides has made a steady progress regarding structure 

property relationships in recent years, the synthesis of nitrides remains challenging.[7] 

Many precursors and products are usually unstable against air and moisture. 

Moreover, the synthesis of nitrides is experimentally complicated and often requires 

laborious explorative synthesis techniques.[6, 16] The ammonothermal approach 

provides an explorative way to synthesize nitridotantalates, metastable against 

decomposition into the binary nitrides and elements.[3, 5, 31] Therefore, only a few of 

these compounds obtained by the ammonothermal approach have been synthesized 

so far.[1, 22, 23, 47, 48] The presented results emphasize that many nitrides, which are 

already accessible by gas flow ammonolysis, can be synthesized as crystals with the 

ammonothermal method as a solution based method. One problem of this particular 

synthesis in a supercritical medium is the uncontrolled oversaturation of the solution 

during cooling which leads to the preferred formation of seeds and as a result mostly 

twinned crystals have been obtained. By in situ investigations, the dissolution 

temperature could be determined and optimized.[49] This will allow the determination of 

the optimum growing temperature to synthesize larger single crystals.[22] 

Besides the synthetic challenge, ternary nitrides are an exciting field of materials, which 

is relatively unexplored compared to binary nitrides. They are promising candidates for 

thin film photovoltaics because of their interesting optical properties.[31] CuTaN2 for 

example crystallizes in layered delafossite structure and has a strong absorption onset. 

Calculations indicate that the absorption coefficient is very large, what makes it suitable 

for solar energy conversion applications.[3] Our latest outcome should therefore 
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consequently be transferred to other ternary and multinary nitrides which are 

fundamental semiconductors, but could not previously be synthesized as crystals but 

only as microcrystalline powders. Furthermore, a number of ternary and multinary 

nitrides with promising properties are predicted by theoretical calculations.[5] The 

ammonothermal approach offers a sophisticated method that could expand the 

compositional space of nitride semiconductors in the future. 
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6 Ammonothermal Synthesis of PrNbN2O and Evaluation of the 

Mineralizer Conditions for PrTaN2O 

Nitride oxide perovskites are accessible by many different synthetic approaches.[1, 2] 

Besides, typical solid-state reactions like ammonolysis, the ammonothermal approach 

offers a solution-based method for crystals of nitride oxide perovskites and other 

related compounds.[3-5] 

 

6.1 Ammonothermal Synthesis of PrNbN2O 

6.1.1 Experimental 

Powdery metals Pr (Sigma-Aldrich, 99.9%, 1 mmol,) Nb (Sigma-Aldrich, 99.9%, 

0.8 mmol, -325 mesh) and NaN3 (Sigma-Aldrich, 99.99%, 7 mmol) NaOH (Grüssing, 

99%, 0.8 mmol,) used as mineralizer, were placed in a custom build Nb-liner (WHS 

Sondermetalle) inside the glove box. The liner was put inside the reaction chamber of 

a high-temperature autoclave. The autoclave was shut outside the glove box with the 

required torque, evacuated, cool and filled with 4 ml ammonia (Air Liquide, 5.0). The 

autoclave was heated up to room temperature with a conventional hair dryer and 

transferred vertically in a custom-build three zone furnace. The autoclave was heated 

up to 800°C in 6h. The internal maximum pressure was 1700 bar. After cooling down, 

the remained pressure was drained through an oil bubbler. The autoclave was opened 

and the product was collected. The product was washed with aqua regia and dried at 

60°C. A yellow / grey powder was obtained. 

6.1.2 Results and Discussion 

Powder X-ray diffraction indicates the presents of PrNb(N,O)3 besides Pr2O3. The 

Rietfeld refinement shows that 85.6% of the product contains PrNb(N,O)3 and 14.4% 

of Pr2O3 (Figure 1). PrNb(N,O)3 crystallizes in the orthorhombic space group Pnma 

(no. 62). The lattice parameters a = 5.7067(8), b = 8.0358(9) and c = 5.6884(7) are in 

good agreement with the literature.[6] The gas flow ammonolysis reaction of PrNbO4, 

originating from Pr6O11 and Nb2O5, was performed for 16h at 950°C. Since crystals are 
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rarely observed in ammonolysis reaction, it could be assumed that in this particular 

reaction no µm-range crystals could be observed. However, the ammonothermal 

approach is known, as a solution-based reaction, to synthesize crystals of up to 50µm 

sized crystals.[5] 

 

Figure 1: Powder x-ray diffraction with Rietfeld refinement of NC-A-140. Measure 

diffraction pattern (black) with Mo kα1 (λ = ) and difference line (green). Positions 

of Bragg reflections are depicted in black for PrNb(N,O) 3 and in blue for Pr2O3 .  

Cube-like crystals were observed in SEM measurements (Figure 2). The twinned and 

fused crystals have edge lengths of up to 10 µm. SEM with EDX measurements 

indicate a Pr : Nb distribution of 1 : 1 (see Table 1). The oxygen value is slightly 

increased due Pr2O3 and NaOH residual phases and the handling in the air. 

Furthermore, nitrogen and oxygen amounts are often deficient in these nitride oxide 

perovskites.[6] 
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Table 1: EDX measurements of PrNb(N,O)3. 

Pr Nb N O 

18.8 15.8 27.5 37.8 

24.3 20.6 35.1 20.0 

21.5 19.1 32.3 27.2 

14.4 13.4 30.6 40.4 

14.6 13.5 30.9 41.0 

13.5 11.5 27.9 47.1 

19.7 18.2 35.6 26.2 

13.6 13.4 39.4 33.5 

18.7 17.1 34.4 29.8 

15.4 14.5 33.6 36.5 

18.0 17.1 37.7 27.1 

19.1 16.3 38.4 26.2 

19.3 17.2 38.4 24.8 

17,8 16 34 32.1 Ø 

 
 

 

Figure 2: SEM picture of PrNb(N,O)3.  

 

10 µm 
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6.2 Evaluation of the mineralizer conditions for PrTaN2O 

6.2.1 Experimental Part 

In order to evaluate the crystal growth conditions of nitride oxide perovskites via the 

ammonothermal approach, different alkali mineralizer have been employed for the 

synthesis of PrTaN2O. Powdery metals of Ta (0.8 mmol) and Pr (1 mmol) with NaOH 

(0.8 mmol) and ANH2
[7] (7 mmol) with A = Li, Na, K, Rb and Cs were used. The 

respective amides were synthesized in liquid ammonia.[7] The starting materials were 

handled under argon in a glove box and transferred with a Ta-liner in an autoclave. 

The autoclave was shut, cooled and filled with ammonia (7 mL). Afterwards the 

autoclave was heated to 625°C within 3 h and this temperature was hold for 80 h. After 

cooling down, the product was collected and washed with aqua regia, water and 

ethanol. Finally, the obtained product was dried at air. 

6.2.2 Results and Discussion 

The alkaline mineralizers ANH2 with A = K, Na and Rb are suitable for the synthesis of 

PrTaN2O (Figure 2, 3 and 4) whereas Li- and CsNH2 did not lead to the desired nitride 

oxide perovskite. The ammonothermal synthesis with Li- and CsNH2 as mineralizers 

enabled to produce Pr2O3. It is possible, that the solubility of LiNH2 is too low compared 

to the other alkaline mineralizers.[8] 
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Figure 3. Powder diffractogram (Mo-Kα1, λ = 0.71073 Å) with Rietveld refinement of  

NC-A-110. Simulated powder diffractogram (red) compared to the measured (black) 

generate the difference plot (green) with marked reflections positions of 85.79 % 

PrTaON2 (black), 9.44 % KTaN2 (blue) and 4.77 % Ta0 .93H (brown). 

Though, only NaNH2 lead to the crystal growth of PrTaN2O. It seems, that only sodium 

azide respective amide used as mineralizer produces highly crystalline cube-like 

crystals of PrTaN2O (Figure 3 and 4). NaNH2 provides an essential mineralizer for the 

synthesis of nitride oxide perovskites crystals.[3, 4, 9-12] It is still unclear if a melt at the 

bottom of the liner provides a necessary medium for the crystal growth or if the reaction 

is solution-based and reactive intermediates decompose to the desired product. 

It is appropriate to repeat the described reactions with NaNH2 in combination with in-

situ measurements in order to adjust the perfect growth parameters like temperature 

and pressure.  
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Figure 4: Scanning electron microscope recording of PrTaN 2O cube-like crystals. 

  

4 µm 
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7 Conclusion and Outlook 

Conventional solid-state reactions containing oxygen and nitrogen as anions are often 

performed under high temperature and pressure.[1] In these reactions ammonia gas or 

mixtures of N2/H2 are typically used as nitriding agents. The obtained products are 

microcrystalline powders rather than crystals in the micrometer range because of the 

poor diffusion of starting materials in the reaction medium. The question raises how to 

overcome these synthetic challenges. That is why the development of new synthesis 

routes is a crucial step to achieve a synthetic breakthrough to obtain new compounds 

or crystals of known materials. In contrast to this, the solution-based ammonothermal 

synthesis provides a method at rather moderate temperatures and pressures.[2] 

Starting materials are dissolved in supercritical ammonia in order to enhance solubility 

of reactive intermediates and diffusion to synthesize crystals and novel inorganic 

substances. Hydrothermal synthesis has already demonstrated great potential of 

solution-based reactions in terms of crystal growth of e.g. oxides[3] and scalability in 

industrial level. Whereas, the ammonothermal synthesis is at its early stage in relation 

to the industrial hydrothermal synthesis of for example quartz.[4-6] The hydrothermal 

approach provides an elemental understanding of solvothermal methods, yet these 

findings cannot be equally transferred to the ammonothermal approach. The 

ammonothermal synthesis is largely used to synthesize GaN and several amide, 

imides and ammoniates. The explorative potential of the ammonothermal synthesis for 

multinary nitrides and nitride oxides is still relatively unexplored.[7] 

Comparing hydrothermal and ammonothermal synthesis, both approaches have their 

distinguished differences. One particular challenge of this thesis was the concurrent 

introduction of oxygen and nitrogen into inorganic compounds in supercritical 

ammonia. Nitrogen and oxygen have similarities in chemical behavior, but most 

elements have a larger affinity for oxygen because of their higher bond energy. That is 

why the formation of oxygen compounds under supercritical ammonia is an important 

side reaction.[8-10] This requires a strict control of the oxygen amount inside the 

autoclave to avoid the formation of oxides. Because of the moderate temperature 

during the synthesis the diffusion is only ensured by a solution based system. Based 

on the enormous variation possibilities concerning the starting materials, as well as the 

thermal treatment of the samples in supercritical ammonia in combination with the 
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inside pressure, the development of this approach might also enable the synthesis of 

further new nitride oxides. 

Prior to this thesis, a lot of nitride oxides were synthesized with many different solid-

state techniques, like the high-pressure multi anvil technique,[8] ammonolysis,[9, 10] 

explosive reaction[11] and MOCVD film techniques,[12-15] but only a few resulted in µm-

range crystals.[16, 17] This presented work aimed to synthesize crystals of several nitride 

oxide perovskites, related structures and nitrides. Moreover, the synthesis of a new 

compound related to the perovskite structure has been explored. Therefore the 

ammonothermal approach provides a powerful and sophisticated explorative synthetic 

tool for the synthesis of crystals and new compounds of nitride oxides. The mentioned 

materials possess band gaps of suitable size and location. They have promising optical 

properties for solar energy conversion like photocatalytic watersplitting and 

photovoltaics.[18-20] The challenge though is that most of these materials are at the 

infancy of their optical investigations and detailed experimental and theoretical 

information of crystals are still to be unexplored.[21] Based on the presented results in 

this thesis, further investigations of the obtained semiconductor crystals could be 

performed in order to examine defect concentrations and impurities as well as charge 

carrier mobilities, electron and hole lifetimes. Furthermore, solid solutions of alkaline 

earth and lanthanide transition metal nitride oxide perovskites will be of great interest 

as harmless pigments and the photocatalytic properties can be controlled by 

substitution[22] Some solid solutions are already examined but no bulk crystals could 

be obtained.[23, 24] In this regard, the perovskite structure provides a very versatile 

modular set and numerous opportunities to implement dopants in solid solutions 

illustrated by the general formula A1–xBxCO2–xNx with e.g. A and B = EA, Ln and 

C = TM. 

The ammonothermal synthesis of EAMO2N with EA = Sr, Ba and M = Nb and Ta was 

performed under supercritical ammonia employing EA and M metals, using NaN3 and 

NaOH as mineralizers. Commonly, the synthesis of alkaline earth nitride oxide 

perovskites requires flowing ammonia and several regrinding steps.[25] Unfortunately, 

the obtained products rarely contain µm-range crystals. Using the ammonothermal 

approach as a solution-based reaction method the obtained crystals were up to 10 µm. 

Therefore, conventional gas flow high-temperature ammonolysis is not applicable to 

obtain crystals. Apart from the synthetic challenge, EAMO2N compounds possess 

distinctive color features and could be used as inorganic harmless pigments.[26] Above 
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that, they have interesting band gap values for solar water splitting applications 

examined by UV/VIS measurements and subsequent employment of the Tauc 

method.[9, 27] 

LnTaON2 with Ln = La, Ce, Pr, Nd, Sm, Eu, Gd[28] was successfully obtained by the 

ammonothermal approach in order to employ powdery metals and above mentioned 

mineralizers. Some of the nitride oxide perovskites e.g. LnTaON2 with Ln = Nd, Sm, 

Eu, Gd are according to the Goldschmidt tolerance factor predicted to be unstable. The 

Goldschmidt tolerance factor and octahedral factors give a rough but reasonable 

estimation of the formability on the basis of radii.[29] But nitride oxide perovskites are 

do not have a complete ionic structure and consist covalent content.[30] The synthetic 

formability by means of the sophisticated ammonothermal approach impressively 

demostrates the limitations of this predictive model. Therefore, new compounds and 

solid solutions of nitride oxide perovskites could be forecasted. The investigated band 

gaps of the perovskite compounds are suitable for water splitting[31, 32] and have values 

between 1.9 – 2.1 eV. Above that, f-f transition of lanthanide perovskites were 

observed with UV/VIS measurements for the first time. These two publications clearly 

show the feasibility of nitride oxide perovskite crystals using the ammonothermal 

approach. Nevertheless, the size of the crystals could be improved by determination 

of optimized crystallization parameters like temperature, pressure and mineralizer. The 

obtained products sometimes have residual side phases like TaH because of the 

tantalum liners employed for the reaction. Because of these ferromagnetic side phases 

NMR spectroscopy is complicated. Gas flow ammonolysis was used for the products 

to investigate 14N solid-state NMR spectroscopy. Interestingly, all eight compounds 

have nearly the same shift of ~270 ppm. Apparently, these compounds have a very 

rigid network so that the exchange of cations do not influence the NMR shift of various 

nitride oxide perovskites and this is essentially insusceptible to the ionic radius and 

oxidation number of the cation. More compounds like EATM(O,N)3 with EA = Ca and 

Sr and TM = Ti, Mo, W could be examined. 

The mineralizer is necessary for different ammonothermal synthesis.[28, 33, 34] Still, the 

crucial role of the mineralizer is a matter of debate. It is unclear if the growth of crystals 

takes place in the melt of mineralizer or in the dissolved mineralizer of the solution 

medium inside the autoclave. First experiments in terms of mineralizers were done. By 

using suitable mineralizers in combination with reactive precursors like amorphous 

oxides obtained by the Pechini method, could notably lead to better growth rates and 
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exploration of new materials. The obtained crystals of nitride oxide perovskites were 

frequently found at the bottom of the liner in druse-like agglomerations.[28] This melt 

seems to be essential for the growth of µm-range crystals. First attempts of different 

mineralizers for the synthesis of PrTaON2 with alkaline azides (Na, K, Rb, Cs) showed 

that NaN3 provides the most appropriate mineralizer for crystals growth in form of cube-

like crystals for the same reaction conditions concerning temperature and pressure. 

Other mineralizers did not lead to the desired nitride oxide perovskite neither in form 

of microcrystalline powder nor in form of crystals. Further attempts in different synthetic 

conditions (temperature, pressure, heating and cooling rates) should be examined in 

order to elucidate suitable crystals growth conditions. In situ measurements will 

additionally help to determine the dissolution temperature of the product. One problem 

is that the obtained crystals of nitrides and nitride oxides are often fused and twinned. 

Furthermore the employed metal liner provides a surface with many seeds. The final 

cooling leads to leave the Ostwald-Miers area were a supersaturation of the solution 

takes places. Thus, a lot of seeds are formed and many small crystals are grown 

instead of few large ones.[35] 

The novel mixed-valence nitrogen-rich Ruddlesden-Popper phase Eu3Ta2N4O3 with 

n = 2 was discovered using Eu, Ta and ammonobasic mineralizers NaN3 and NaOH 

as starting materials. This is the first Ruddlesden-Popper phase employing the 

ammonothermal approach. Remarkably, Eu3Ta2N4O3 crystallizes in the SrTb2FeO7 

structure type and has two different europium cations. This mixed Eu valence 

(EuII/EuIII) is new for this structure type (SrTb2Fe2O7). The high oxidation state of TaV 

results in a high nitrogen content. Since the perovskite and related structures are very 

versatile and many different cations and anions can be substituted it seems likely that 

it could be possible to synthesize the analogue Nb compound in this system, as Nb 

and Ta are very similar in the chemical point of view. Additionally, EuII/EuIII could be 

substituted by alkaline earth metals and lanthanides because several of them have the 

same radii and similar chemical behavior.[36] By elimination of residual side phases in 

the ammonothermal reaction to Eu3Ta2N4O3 the examination of magnetic properties 

and reasonable Mößbauer spectroscopy could be enabled. 

Within this presented sesearch, the synthesis of crystals of ATaN2 with A = Na, K, Rb 

and Cs system was possible. For example RbTaN2 crystals of up to 200 µm were 

synthesized, which are the largest crystals of ternary nitrides synthesized with the 

ammonothermal method so far. The synthesis of the corresponding niobium 
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compounds was obtained by Jacobs and coworkers with sodium and cesium.[37, 38] The 

KNbN2 compound was only accessible in gas flow ammonolysis.[17] Further 

experiments in this particular research field seems promising because alkali 

mineralizers are well soluble in supercritical ammonia.[39] 

NaTaN2 crystallizes in the layered delafossite structure. Layered and channelized 

structures are typically suitable for ion exchange reactions. Ion exchange reactions of 

NaTaN2 with CuI were performed in flowing ammonia to obtain CuTaN2.[40] Therefore 

the ammonothermal approach seems appropiate. The synthesis of CuTaN2 crystals 

with the help of the ammonothermal synthesis could support the examination of 

electronic properties, yet only powders of CuTaN2 and CuNbN2 could be obtained. The 

ammonothermal synthesis of ternary nitrides is a promising research field, because 

these materials have suitable properties for solar energy conversion applications like 

photovoltaic and photoelectrochemical cells. In addition ternary and multinary nitrides 

are relatively unexplored. The ammonothermal approach therefore provides a vast 

opportunity for the discovery of new materials and expands the compositional space 

of latter. Through targeted synthesis in supercritical ammonia we estimate to obtain 

these as-yet unreported but thermodynamically stable compounds like ABN2 (A = Cu, 

Ag, Au; B = Ta, Nb, V) in the future.[41, 42] This thesis showcases the synthesis of 14 

different nitrides and nitride oxides crystal.[28, 33, 34, 43] 

The redevelopment of the ammonothermal method after Jacobs and coworkers 

requires new autoclave systems providing the necessary synthetic parameters e.g. 

temperature, pressure and resistivity against corrosive reaction materials. With the 

help of the Ammono-FOR group new holistic autoclave systems were developed. 

Using high-temperature autoclaves, new compounds were obtained and attainable 

crystal sizes were extensively increased. Solid-state synthesis with gas flow 

ammonolysis and other typical solid-state reactions reach their limits and are often 

laborious and complicated. The decomposition of ammonia to N2 and H2 can 

considerably suppressed by applying the solution-based ammonothermal approach. If 

limits can be shifted further to higher temperatures and pressures the decomposition 

can be hampered in order to enhance solubilities by increased permittivity.[44] As a 

consequence other concepts including internally heated capsule based systems have 

to be considered because of commercially limited available materials.[7, 45] 
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The stated results provide a first insight of the ammonothermal synthesis of nitride and 

nitride oxide crystals including new compounds. Future experiments should lead to a 

significant extension of compositional space of new compounds with huge potential of 

the explorative ammonothermal synthesis of novel semiconductors and still has to be 

exploited. Based on the gained knowledge further investigations like in situ Raman and 

UV/VIS spectroscopy should to be performed.[46, 47] By using in situ ultrasonic velocity 

measurements the concentration can be determined. Therefore, solubility 

measurements will help to contribute to a holistic picture of the ammonothermal 

method. This will lead to a better understanding of this method to develop more 

sophisticated growth techniques for nitride and nitride oxides. 

To summarize, this re-established explorative method is still relatively unexplored and 

the combined results will lead to a better understanding of a holistic picture besides 

innumerable novel compounds of functional nitride and nitride oxides crystals. 
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8 Summary 

This chapter provides a short overview of the publications in this thesis and additional 

details obtained from further experiments of the ammonothermal synthesis of 

PrNb(N,O)3 and the evaluation of alkali mineralizer system of PrTaN2O reactions. 

The ammonothermal synthesis represents a fundamental approach for the explorative 

solid-state chemistry providing new sophisticated perspectives for the discovery of 

novel nitrogen based compounds. The development of new high-temperature 

autoclaves along with the systematic exploration of different elemental compositions, 

mineralizers and precursors, besides different synthetic parameters, strongly enlarge 

the explorative nature of the ammonothermal method. Within this thesis, the 

ammonothermal method emerged as a powerful tool for the preparation of 17 different 

compounds of functional ternary and multinary nitride oxides and nitrides. Thus, reveal 

the great potential of this solution-based crystal growth method in future. The following 

summaries reveal an overview of the presented work. 

 

Figure 1: .Custom-built autoclave made from Inconel 718 with peripheral equipment.  
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8.1 Ammonothermal Synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) 

Perovskites and 14N Solid-State NMR Investigations of AM(O,N)3 

(A = Ca, Sr, Ba, La) 

N. Cordes, T. Bräuniger, W. Schnick 

Eur. J. Inorg. Chem. 2018, 2018, 5019–5026 

 

This chapter provides information 

about the ammonothermal 

synthesis of EAMO2N with EA = Sr, 

Ba and M = Nb, Ta. Employing 

metals in combination with basic 

mineralizers (NaN3, NaOH) in high-

pressure autoclaves, phase pure 

highly crystalline nitride oxide 

perovskites were synthesized. 

These compounds are suitable for 

the investigation of material properties. Band gaps of SrNbO2N (1.9 eV), BaNbO2N 

(2.0 eV), SrTaO2N (2.1 eV) and BaTaO2N (2.1 eV) were determined by diffuse 

reflectance spectroscopy (UV/VIS) using the Kubelka-Munk function and 

corresponding Tauc plots. SEM pictures reveal cube-like crystals of up to 10 µm edge 

length. Further 14N solid-state NMR investigations were performed on AM(O,N)3 

(A = Ca, Sr, Ba, La). Remarkably, all eight compounds show a single resonance at 

about 270 ppm. This is quite impressive because the electron density at the N3- ions 

seems sufficiently high to mask all external influences. The chemical shift remains 

unaffected by cation substitution in this rigid structure. 
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8.2 Ammonothermal Synthesis of Crystalline Oxonitride Perovskites 

LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd) 

N. Cordes, W. Schnick 

Chem. Eur. J. 2017, 23, 11410–11415 

 

 

This section of the thesis gives a holistic picture of the accessible lanthanide tantalum 

based nitride oxide perovskites. These compounds with the composition LnTaN2O with 

Ln = La, Ce, Pr, Nd, Sm and Gd were synthesized by the ammonothermal method 

using custom-built autoclaves. Metal powders were reacted with NaOH and NaN3 as 

mineralizers under supercritical conditions at 600 – 800°C at a maximum pressure of 

3000 bar. Crystal structures, space group and lattice parameters were determined by 

powder X-ray diffraction and the Rietveld method. Cube-like crystals with up to 15 µm 

edge length and defined morphology were observed with SEM measurements. 

Additional EDX measurements were performed in order to investigate the elemental 

composition. The band gap values of the nitride oxide perovskites of LaTaON2 (1.8 

eV), CeTaON2 (1.7 eV), PrTaON2 (1.9 eV), NdTaON2 (2.0 eV), SmTaON2 (2.0 eV), 

and GdTaON2 (1.8 eV) were estimated by using UV/VIS measurements and the 

Kubelka–Munk function. Furthermore, f-f transitions of Pr3+, Nd3+ and Sm3+ were 

observed for the first time in nitride oxide perovskites in the visible to near-infrared part 

of the spectra. 
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8.3 Ammonothermal Synthesis of the Mixed-Valence Nitrogen-Rich 

Europium Tantalum Ruddlesden-Popper Phase EuIIEuIII
2Ta2N4O3 

Niklas Cordes, Markus Nentwig, Lucien Eisenburger, Oliver Oeckler, Wolfgang 

Schnick 

Eur. J. Inorg. Chem. 2019, 2019, 2304–2311. 

 

The first nitrogen rich Ruddlesden-Popper 

phase with mixed valence europium, namely 

Eu3Ta2N4O3 was synthesized under 

ammonobasic ammonothermal reaction 

conditions using custom-built high-

temperature autoclaves. New developed 

high-temperature autoclaves used at a 

maximum temperature of 800 °C and 

1700 bar enable the synthesis of the 

perovskite structure type related layered 

structure. TEM measurements reveal first indications of the new compound 

Eu3Ta2N4O3 crystallizing in a tetragonal cell with a = 5.7278(1), c = 19.8149(5) Å. X-

ray diffraction using microfocused synchrotron radiation with subsequent crystal 

structure determination disclose the space group P42/mnm (no. 136) and EDX 

analyses are consistent with crystal-chemical calculations with respect to EuII/III and 

N/O ordering. Anion ordering was confirmed by MAPLE, BVS and CharDi calculations. 

According to diffuse reflectance spectra, the band gap amounts to 0.6 eV. SEM 

measurements demonstrate the advantages of the ammonothermal approach as a 

solution-based synthesis facilitate crystals of up to 50 µm. 
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8.4 Ammonothermal Crystal Growth of ATaN2 with A = Na, K, Rb, Cs and 

their Optical and Electronic Properties 

Niklas Cordes, Robin Niklaus, Wolfgang Schnick 

Cryst. Growth Des. 2019, 19, 3484-3490. 

 

For the synthesis of ATaN2 with 

A = Na, K, Rb, Cs, new developed 

high-temperature autoclaves were 

used. These autoclaves operate at 

800 °C and a maximum pressure of 

1700 bar. The ternary nitrides were 

synthesized from azides and 

tantalum powder in custom-built tantalum liners. A necessary second temperature step 

at the decomposition temperature of the respective mineralizer is required for the 

successful synthesis of crystals, due to formation of intermediates at lower 

temperatures. The employed liner prevents the autoclave from corrosion and presents 

a necessary substrate for the crystal growth of the mentioned ternary nitrides. The 

obtained nitride crystals were examined by powder X-ray diffraction and the Rietveld 

method. SEM and light microscope pictures were taken, revealing the hitherto largest 

ternary nitride crystals of up to 200 µm, but the obtained ATaN2 crystals vary in size 

depending on the used alkali metal. The resulting crystals exhibited well developed 

crystal faces. The optical properties were investigated by UV/VIS measurements. 

Diffuse reflectance measurements employing the Tauc method revealed the band 

gaps of ATaN2 with A = Na, K, Rb and Cs. Band gap values were supported by DFT-

calculations. 
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8.5 Ammonothermal Synthesis of PrNbN2O and Evaluation of the 

Mineralizer Conditions for PrTaN2O 

 

The presented results provide a new important part of the ammonothermal approach 

of nitride oxide perovskites. The crystal growth of niobium based nitride oxide 

perovskites is less explored than the tantalum compounds. The ammonothermal 

synthesis of PrNb(N,O)3 demonstrate a first prove of concept for the lanthanide 

niobium compounds. The general accessibility was demonstrated by powder X-ray 

diffraction and SEM measurements. 

The examination of the mineralizer system of PrTaN2O entails the importance of the 

further investigation of the specific mineralizer conditions of ammonothermal reactions. 

By using a different mineralizer at the same reaction conditions a specific screening of 

suitable growth conditions was evaluated. Although PrTaN2O nitride oxides could be 

obtained with potassium and sodium azides as mineralizers, only NaN3 led to the 

growth of rectangular crystals. 
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9 Appendix 

9.1 Supplementary information for the publication: Ammonothermal 

Synthesis of Crystalline Oxonitride Perovskites LnTaON2 (Ln = La, 

Ce, Pr, Nd, Sm, Gd) 

 

Published in:  Chem. Eur. J. 2017, 23, 11410–11415. 

Authors:  Niklas Cordes, Wolfgang Schnick 
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9.1.1 LaTaON2 

9.1.1.1 Rietveld Refinement 

 

Figure S1. Rietveld refinement of X-ray powder diffraction pattern of LaTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars). 

9.1.1.2 Electron microscopy analysis 

Table S1. 

 La Ta O N 

 18 17 22 43 
 20 20 19 41 
 17 18 26 39 
 21 19 23 37 

Average 19 18.5 22.5 40 

SEM measurements in atomic%. 
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9.1.2 CeTaON2 

9.1.2.1 Rietveld Refinement 

 

Figure S2. Rietveld refinement of X-ray powder diffraction pattern of CeTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars: CeTaON2 (45.8%), red bars: TaN0.83 

(33.6%), blue bars: Ta2N (1.7%), olive bars: CeN (9%), pink bars: NaTaN2 (9.9%)). 

9.1.2.2 Electron microscopy analysis 

Table S2. 

 Ce Ta O N 

 12 19 17 52 
 22 23 17 38 
 23 26 16 35 
 20 21 12 47 
 17 17 13 53 

Average 18.8 21.2 15 45 

SEM measurements in atomic%. 

  



130 Appendix 

 

9.1.3 PrTaON2 

9.1.3.1 Rietveld Refinement 

 

Figure S3. Rietveld refinement of X-ray powder diffraction pattern of PrTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars). 

9.1.3.2 Electron microscopy analysis 

Table S3. 

 Pr Ta O N 

 21 21 20 38 
 21 23 19 37 

Average 21 22 19.5 37.5 

SEM measurements in atomic%. 
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9.1.4 NdTaON2 

9.1.4.1 Rietveld Refinement 

 

Figure S4. Rietveld refinement of X-ray powder diffraction pattern of NdTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars: NdTaON2 (97.4%) and blue bars: Nd2O3 

(2.6%)). 

9.1.4.2 Electron microscopy analysis 

Table S4. 

 Nd Ta O N 

 17 19 23 41 
 17 20 24 39 
 16 19 28 37 

Average 16.66 19.34 25 39 

SEM measurements in atomic%. 
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9.1.5 SmTaON2 

9.1.5.1 Rietveld Refinement 

 

Figure S5. Rietveld refinement of X-ray powder diffraction pattern of SmTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars: SmTaON2 (91.5%) and blue bars: 

NaTaN2 (8.5%)). 

9.1.5.2 Electron microscopy analysis 

Table S5. 

 Sm Ta O N 

 18 20 22 40 
 20 23 22 35 
 17 19 22 42 

Average 18.3 20.7 22 39 

SEM measurements in atomic%. 
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9.1.6 GdTaON2 

9.1.6.1 Rietveld Refinement 

 

Figure S6. Rietveld refinement of X-ray powder diffraction pattern of GdTaON2 profile 

with experimental data (black line), calculated pattern (red line), difference (green line), 

and positions of Bragg reflections (black bars: GdTaON2 (85.2%), blue bars: NaTaN2 

(10.3%), pink bars: Gd2O3 4.5%). 

9.1.6.2 Electron microscopy analysis 

Table S6. 

 Gd Ta O N 

 16 15 21 48 
 26 29 10 35 
 27 28 13 32 
 19 20 17 44 
 20 21 19 40 

Average 21.6 22.6 16 39.8 

SEM measurements in atomic%. 
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9.2 Supplementary information for the publication: Ammonothermal 

Synthesis of the Mixed-Valence Nitrogen-Rich Europium Tantalum 

Ruddlesden-Popper Phase EuIIEuIII
2Ta2N4O3 

 

Published in:  Chem. Eur. J. 2019, 2019, 2304–2311. 

Authors: Niklas Cordes, Markus Nentwig, Lucien Eisenburger, Oliver 

Oeckler, Wolfgang Schnick  
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9.2.1 TEM-BF Image of EuIIEuIII
2Ta2N4O3 

 

SI Figure 1. TEM-BF image of the single crystal of Eu3Ta2N4O3 used for structure 
determination by synchrotron diffraction. 

9.2.2 Crystallographic data from the Rietveld refinement for Eu3Ta2N4O3. 

SI Table 1. Crystallographic data from the Rietveld refinement for Eu3Ta2N4O3. 

Formula Eu3Ta2N4O3 

Crystal system tetragonal 

Space group P42/mnm (no. 136) 

Lattice parameters [Å] a = 5.7125(3) 

c = 19.8621(13) 

Cell volume [Å³] 648.15(7) 

Formula units / cell 4 

Density [g · cm³] 9.4467(10) 

T [K] 293(2) 

Diffractometer STOE STADI P 

Radiation [Å] Mo-Kα1 (λ = 0.70930 Å) 

θ range [°] 2.0 ≤ 2θ ≤ 60.7 

Data points 3886 

Total number of reflections 577 

Refined parameters 45 

Background function Shifted Chebyshev 

R values [%] Rp = 0.0591 

Rwp = 0.0858 

RBragg = 0.0290 

Goodness of fit 3.566 
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9.2.3 Rietveld analysis 

 

SI Figure 2: Rietveld analysis (linear scale of rel. intensity) of Eu3Ta2N4O3 with 
experimental data (black line) with calculated pattern (red line), difference profile 
(green line) and markers for Bragg positions (Eu3Ta2N4O3 black (60.6 wt%), EuTaO2N 
(tetragonal) magenta (23.0 wt%), EuTaO2N (cubic) blue (15.8 wt%) and NaTaN2 red 
(0.6 wt%)). 

9.2.4 Anisotropic displacement parameters 

SI Table 2. Anisotropic displacement parameters (Uiy in Å2) of Eu3Ta2N4O3 (standard 
deviations in parentheses). 

Atom U11 U22 U33 U12 U13 U23 

Ta1 0.00883(13) 0.00883(13) 0.00681(18) 0.00118(5) 0.00134(4) 0.00134(4) 

Eu2 0.01115(15) 0.01115(15) 0.0088(3) 0.00120(8) 0 0 

Eu3 0.00833(14) 0.00833(14) 0.0049(2) 0.00020(7) -0.00009(6) -0.00009(6) 

O1 0.0132(11) 0.0132(11) 0.0099(18) -0.0022(14) 0 0 

O2 0.0128(8) 0.0128(8) 0.0081(14) -0.0015(12) -0.0001(6) -0.0001(6) 

N3 0.0079(10) 0.0079(10) 0.012(2) 0.0013(13) 0 0 

N4 0.0111(11) 0.0111(11) 0.003(2) -0.0026(14) 0 0 

N5 0.0087(13) 0.0092(13) 0.0059(16) 0.0016(10) 0 0 
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9.2.5 SEM-EDX point measurements 

SI Table 3. SEM-EDX point measurements of Eu3Ta2N4O3 (in atom%) with calculated 
values in parentheses and average with standard deviation. 

 

Eu (25) Ta (16.6) N (33.4) O (25)  

24.1 19.9 31.3 24.7  

19.8 15.7 34.9 29.6  

20.8 16.2 35.6 27.4  

20.7 17.5 34.4 27.4  

26.2 19.3 29.1 25.4  

22.7 17.3 32.9 27.1  

24.7 18.5 31.0 25.8  

25.9 19.1 29.6 25.4  

24.0 17.6 32.4 26.0  

22.8 18.1 33.9 25.2  

25.0 19.1 30.9 25.0  

23.3 

± 2.1 

18.0 

± 1.3 

32.4 

± 2.1 

26.3 

± 1.4 

Ø 

 

 

9.2.6 N/O assignment 

9.2.6.1 Bond valence sums 

SI Table 4: Bond valence sums of anions and cations. 
 

 O1 O2 N3 N4 N5 Ta1 Eu2 Eu3 

BVS 1.96 1.75 3.15 2.98 3.09 4.90 1.77 3.11 

Oxidation 

state 

-2 -2 -3 -3 -3 +5 +2 +3 
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9.2.6.2 CHARDI 

SI Table 5. CHARDI values calculated for each of the cations. With Δq as the fraction 
of the charge received by the ion, Q the total charge received by the ion, and q the 
formal charge (oxidation number). 
 

Cation/Atom site Δq Q q 

Ta1    

O1 0.660 -2.506 -2 

N5 0.910 -2.833 -3 

N4 1.106 -2.981 -3 

O2 0.404 -2.002 -2 

N5 0.910 -2.833 -3 

N3 1.011 -2.844 -3 

Ta1  5.037 5 

 
Cation/Atom site Δq Q q 

Eu2    

N4 0.258 -2.981 -3 

N3 0.034 -2.844 -3 

N3 0.034 -2.844 -3 

N5 0.135 -2.833 -3 

N5 0.135 -2.833 -3 

N4 0.258 -2.981 -3 

N4 0.127 -2.981 -3 

N5 0.135 -2.833 -3 

N5 0.135 -2.833 -3 

N4 0.127 -2.981 -3 

O1 0.311 -2.506 -2 

O1 0.311 -2.506 -2 

Eu2  1.915 2 
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Cation/Atom site Δq Q q 

Eu3    

N3 0.377 -2.844 -3 

N5 0.371 -2.833 -3 

O2 0.654 -2.002 -2 

O2 0.472 -2.002 -2 

N5 0.371 -2.833 -3 

O2 0.472 -2.002 -2 

O1 0.282 -2.506 -2 

Eu3  3.006 3 
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10 Publications 

The results complied in this thesis were published in scientific journals as detailed in 

the following list. The respective funding can be looked up in the publications 

themselves. The contributions of the following manuscripts are fully described below. 

 

 

10.1 List of Publications within this Thesis 

10.1.1 Ammonothermal Synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) 

Perovskites and 14N Solid-State NMR Investigations of AM(O,N)3 (A = Ca, 

Sr, Ba, La) 

N. Cordes, T. Bräuniger, W. Schnick 

published in: Eur. J. Inorg. Chem. 2018, 2018, 5019–5026 

 

In this contribution, the ammonothermal synthesis, structure elucidation from powder 

X-ray diffraction data and subsequent Rietveld refinements, diffuse reflectance 

spectroscopy with band gap determination, light microscope pictures, literature 

research, writing of the manuscript and sample preparation were carried out by Niklas 

Cordes. 14N solid-state NMR measurements was performed by Thomas Bräuniger. 

Graphical material was created by Niklas Cordes. Wolfgang Schnick directed and 

supervised the research project. All authors revised the manuscript. 
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10.1.2 Ammonothermal Synthesis of Crystalline Oxonitride Perovskites 

LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd) 

N. Cordes, W. Schnick 

published in: Chem. Eur. J. 2017, 23, 11410–11415 

 

For this manuscript, literature research and writing of the major parts was performed 

by Niklas Cordes. Sample synthesis by the ammonothermal approach and subsequent 

powder X-ray diffraction analysis with Rietveld refinement, UV Vis and IR 

measurements , spectroscopic transitions and band gap elucidation was carried out by 

Niklas Cordes, who also created the graphical material. Wolfgang Schnick directed 

and supervised the general work. Both authors revised the manuscript. 

 

 

10.1.3 Ammonothermal Synthesis of the Mixed-Valence Nitrogen-Rich Europium 

Tantalum Ruddlesden-Popper Phase EuIIEuIII
2Ta2N4O3 

Niklas Cordes, Markus Nentwig, Lucien Eisenburger, Oliver Oeckler, Wolfgang 

Schnick 

published in: Eur. J. Inorg. Chem. 2019, 2019, 2304–2311 

 

In this publication, preparation of the ammonothermal synthesis obtained material, 

powder X-ray diffraction analysis, Rietveld refinements, diffuse reflectance 

spectroscopy and subsequent band gap determination by the Tauc method was 

performed by Niklas Cordes. Structure elucidation by TEM measurements and sample 

preparation for microfocused synchrotron measurements was performed by Lucien 

Eisenburger. The synchrotron measurements were done by Markus Nentwig and 

Lucien Eisenburger under supervision of Oliver Oeckler. Structure elucidation was 

performed by Markus Nentwig and confirmed by Lucien Eisenburger and Oliver 

Oeckler. Grapfical material was created by Niklas Cordes and Lucien Eisenburger. The 

manuscript was written by Niklas Cordes in a leading role and supported by Lucien 



Publications 143 

 

Eisenburger and Markus Nentwig. Wolfgang Schnick directed and supervised the 

research project. All authors revised the manuscript. 

 

 

10.1.4 Ammonothermal Crystal Growth of ATaN2 with A = Na, K, Rb, Cs and their 

Optical and Electronic Properties 

Niklas Cordes, Robin Niklaus, Wolfgang Schnick 

published in: Cryst. Growth Des. 2019, 19, 484–3490. 

 

Development of the synthesis conditions, literature screening, writing of the main part 

of the manuscript, powder X-ray diffraction measurements with subsequent Rietveld 

refinements, spectroscopic measurements and band gap determination were carried 

out by Niklas Cordes. DFT calculations and evaluation of the results were performed 

by Robin Niklaus. Graphical material was created by Niklas Cordes and Robin Niklaus. 

Wolfgang Schnick directed and supervised this work. All three authors revised the 

manuscript. 
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10.2 Other publications 

A Quaternary Core-Shell Oxynitride Nanowire Photoanode Containing a Hole-

Extraction Gradient for Photoelectrochemical Water Oxidation 

Z. Ma, T. Thersleff, A. Görne, N. Cordes, Y. Liu, S. Jakobi, A. Rokicinska, A. Schichtl, 

R. Coridan, P. Kuśtrowski, W. Schnick, R. Dronskowski, A. Slabon 

ACS Appl. Mater. Interfaces 2019, 11, 19077–19086. 

 

Ammonothermal Synthesis of Alkali-Alkaline Earth Metal and Alkali-Rare Earth 

Metal Carbodiimides: K5–xMx(CN2)2+x(HCN2)1–x (M = Sr, Eu) and 

Na4.32Sr0.68(CN2)2.68(HCN2)0.32 

M. Mallmann, J. Häusler, N. Cordes, W. Schnick 

Z. Anorg. Allg. Chem. 2017, 643, 1956–1961. 

 

Passivation of PbS Quantum Dot Surface with L-glutathione in Solid-State 

Quantum-Dot-Sensitized Solar Cells 

A. N. Jumabekov, N. Cordes, T. D. Siegler, P. Docampo, A. Ivanova, K. Fominykh, D. 

D. Medina, L. M. Peter and T. Bein 

ACS Appl. Mater. Interfaces, 2016, 8, 4600–4607. 

 

Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with Ex Situ and 

In Situ Grown PbS Quantum Dots 

A. N. Jumabekov, T. D. Siegler, N. Cordes, D. D. Medina, D. Böhm, P. Garbus, S. 

Meroni, L. M. Peter and T. Bein 

J. Phys. Chem. C 2014, 118, 25853–25862. 
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Springer Series in Materials Science, unpublished. 

Ammonothermal Synthesis and Crystal Growth of Nitrides – Chemistry and 

Technology 

N. Cordes, M. Mallmann, W. Schnick 
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10.3 Contributions to Conferences, Seminars and Workshops 

Seminar Schnick Group, Munich, Germany 

03.12.2014 

Master Thesis – Synthese von binären und höheren (Oxo)Nitriden mit dem 

Ammonothermalverfahren (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

1. Workshop zur Ammonothermalsynthese von Nitriden, Hopferau, Germany 

19.02.2015 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Seminar Schnick Group, Munich, Germany 

29.04.2015 

Ammonothermal Syntheses in Supercritical NH3 (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Ammono-FOR researcher group meeting, Erlangen, Germany 

27.07.2015 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 
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Seminar Schnick Group, Munich, Germany 

03.01.2016 

Ammonothermal Syntheses in Supercritical NH3 (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

2. Obergurgl Seminar Festkörperchemie, Obergurgl, Austria 

26. – 29.01.2016 

Ammonothermalsynthese neuer Oxonitridoperowskite (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Ammono-FOR researcher group meeting, Stuttgart, Germany 

10.02.2016 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Seminar Schnick Group, Munich, Germany 

06.07.2016 

Ammonothermalsynthese (talk) 

Niklas Cordes, Wolfgang Schnick 
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Ammono-FOR researcher group meeting, Erlangen, Germany 

26.10.2016 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

2. Workshop zur Ammonothermalsynthese von Nitriden Hopferau, Germany 

14. – 15.02.2017  

Ammonothermal syntheses of multinary nitrides and oxonitride perovskites 

(talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Seminar Schnick Group, Munich, Germany 

17.05.2017 

Unbekanntes Flugobjekt (workshop) 

Niklas Cordes, Wolfgang Schnick 

 

 

Ammono-FOR researcher group meeting, Erlangen, Germany 

19.07.2017 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 
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Ammono-FOR researcher group meeting, Munich, Germany 

13.11.2017 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Seminar Schnick Group, Munich, Germany 

29.11.2017 

Die Würfel sind gefallen – Neues aus dem Autoklaven (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

3. Obergurgl Seminar Festkörperchemie, Obergurgl, Austria 

23. – 26.01.2018 

Ammonothermalsynthese von Oxonitridoperowskiten (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Ammono-FOR researcher group meeting, Stuttgart, Munich 

13.03.2018 

Ammonothermal synthesis of multinary nitrides and oxonitrides (talk) 

Niklas Cordes, Wolfgang Schnick 
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Seminar Schnick Group, Munich, Germany 

25.04.2018 

Brückenbau (workshop) 

Niklas Cordes 

 

 

47. Hirschegg-Seminar Festkörperchemie 2018, Hirschegg, Austria 

31.05. – 03.06.2018 

Ammonothermalsynthese, früher und heute (talk) 

Niklas Cordes, Markus Nentwig, Lucien Eisenburger, Oliver Oeckler, Wolfgang 

Schnick 

 

 

Seminar Schnick Group, Munich, Germany 

20.06.2018 

Ammonothermal Syntheses in Supercritical NH3 (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

Ammono-FOR researcher group meeting,Erlangen, Germany 

13.07.2018 

Synthesis of binary and higher (oxo)nitrides with the ammonothermal approach 

(talk) 

Niklas Cordes, Wolfgang Schnick 
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16. Mitteldeutsches Anorganiker-Nachwuchssymposium, Jena, Germany 

16.09 – 17.09.2018 

Kationen- und Anionen-Ausordnung in der Ruddlesden-Popper-Phase 

Eu2+Eu3+
2Ta2N4O3 (talk) 

Lucien Eisenburger, Niklas Cordes, Markus Nentwig, Juliane Stahl, Theresa Block, 

Rainer Pöttgen, Dirk Johrendt, Wolfgang Schnick, Oliver Oeckler 

 

 

Seminar Schnick Group, Munich, Germany 

12.12.2018 

Perowskite und andere Verbindungen aus dem Autoklaven – Auf die Größe 

kommt es an (talk) 

Niklas Cordes, Wolfgang Schnick 

 

 

4. Obergurgl Seminar Festkörperchemie, Obergurgl, Austria 

29.01.-01.02.2019 

Ammonothermalsynthese der Ruddlesden-Popper-Phase Eu3Ta2N4O3 (talk) 

Niklas Cordes, Markus Nentwig, Lucien Eisenburger, Oliver Oeckler, Wolfgang 

Schnick 

 

 

21st JCF Frühjahrssymposium and 2nd European Young Chemists' Meeting, Bremen, 

Germany 

20.03.-23.03.2019 

Ammonothermal Synthesis of Nitride Oxide Perovskites and Related Structures 

(poster) 

Niklas Cordes, Wolfgang Schnick 
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10.4 Deposited crystallographic information 

Crystallographic data (CIF) of investigated compounds were deposited at the 

Fachinformationszentrum (FIZ) Karlsruhe, 76344 Eggenstein-Leopoldshafen, 

Germany and are available on quoting the following CSD depository numbers. 

The following table provides the compounds and associated deposited CSD numbers 

listed in this thesis. 

 

Compound CSD number 

SrNbNO2 434769 

BaNbNO2 434770 

SrTaNO2 434768 

BaTaNO2 434767 

LaTaN2O 433036 

CeTaN2O 433037 

PrTaN2O 433038 

NdTaN2O 433039 

SmTaN2O 433040 

GdTaN2O 433041 

Eu3Ta2N4O3 1890993 (CCDC) 

NaTaN2 1915429 (CCDC) 

KTaN2 1915430 (CCDC) 

RbTaN2 1915431 (CCDC) 

CsTaN2 1915652 (CCDC) 
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