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“ 
I shall endeavour still further to prosecute this inquiry,  

an inquiry I trust not merely speculative,  
but of sufficient moment to inspire the pleasing hope  

of its becoming essentially beneficial to mankind. 

 
Edward Jenner (1749-1823)  
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1. Introduction 

1.1. Biogenesis and function of miRNAs 

More than 25 years ago, first observations of the small RNA lin-4 were made in 

C. elegans. Much to the surprise of the researchers around Lee RC in the Ambros 

group, the RNA was not coding for any protein. Furthermore, the authors even found 

that lin-4 performed transcriptional regulation on another gene, lin-14 by suppressing 

its expression via complementary antisense RNA interaction1. While those findings 

were received with high interest in the early 1990’s, the magnitude and importance for 

today’s biology were not clear at that time. It was not until the early 2000’s that those 

small, non-coding RNAs were regarded as their own class of regulatory RNAs and due 

to their size of around 22 nucleotides were termed microRNAs (miRNAs)2. Today, it is 

generally understood that miRNAs are involved in multiple cellular processes in plants 

as well as animals 3,4.  

  

Figure 1 – Biogenesis and function of miRNAs 

a) Adapted from Lodish et al. and Gebert et al. 4,5, miRNAs undergo extensive processing, shortening 
the length of the primary transcript from step to step. b) Adapted from Peter et al.6, the complex multi-
layered network of miRNA based translational regulation 

 

In short, the biogenesis of miRNAs is based on the nuclear transcription of miRNA 

genes by RNA polymerase II, resulting in the primary transcripts, pri-miRNAs. This 

RNA segments are often polycistronic units and can contain multiple miRNA hairpin 

structures. A protein complex, consisting of the RNAse III endonuclease Drosha, as 



1. Introduction    

Dissertation - Bojan Ljepoja | 2 |  

well as the microprocessor complex subunit DGCR8, is able to recognize the hairpin-

motifs and generates 60-70 nt stem-loop structures, the pre-miRNA.  

After those stem-loops are transported to the cytosol, facilitated by Ran-GTP and 

Exportin, further processing is applied: The protein complex, consisting of Dicer, a 

RNAse III endonuclease, and the RNA-binding co-factor TRBP, cleaves the pre-

miRNA. The resulting RNA of 22 nt length is the mature miRNA, a duplex consisting of 

the miRNA and its complementary strand, often referred to as miRNA* (“star-strand”). 

The miRNA*, or sometimes also called “passenger strand”, undergoes RNA 

degradation, as the thermodynamically favored single stranded miRNA is loaded into 

the RISC (Figure 1a) 4,5. 

With the Argonaut proteins (Ago), the miRNA-RISC recognizes target mRNAs based 

on sequence complementarity of the “seed region”, located in the 3’ UTR of the mRNA. 

Thus, miRNA regulation of protein expression is based on anti-sense matching of only 

about eight bases, nucleotides two to seven of the miRNA’s 5’ end, to the mRNA seed 

region. While a perfect match of bases is common in plants3, it is highly uncommon in 

animals. The partial matching of only about seven or even six bases can cause 

translational repression, following different thermodynamic rules of anti-sense binding, 

like e.g. “Wobble hypothesis” 7. 

Altogether, miRNAs have added a new level of complexity to translational regulation 

of protein expression: While one miRNA can target multiple mRNAs, one single mRNA 

can also be the target of many different miRNAs 6 (Figure 1b). 

Since the first studies of Lee et al., more than 80,000 publications with the search term 

“miRNA” were registered in NCBIs database Pubmed.gov 

(https://www.ncbi.nlm.nih.gov) until early 2019, showing the vast increase of interest 

and therefore knowledge in this field. 

 

1.2. miRNAs in breast cancer 

Breast cancer is one of the leading causes of cancer deaths worldwide 8. According to 

the American cancer association, in 2018 more than 260,000 women were estimated 

to be newly diagnosed with breast cancer, and almost 41,000 deaths will have  

occurred 9. MiRNAs play a major role in the development and persistence of breast 

cancer 10,11. While breast cancers are a group of highly heterogeneous tumors, often 

classified by their status of hormone receptors 12,13, miRNAs seem to play an 

https://www.ncbi.nlm.nih.gov/
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ubiquitous role, either as tumor suppressor or promotor, so called oncomiRs 14. While 

tumor suppressing miRNAs are often shown to inhibit processes like epithelial to 

mesenchymal transition, uncontrolled proliferation or de-toxifying processes, 

oncomiRs are regarded as the contrary and often amplify proliferation, metastasis and 

enable avoidance of apoptosis 15. 

The following chapters of this thesis will focus on two prominent miRNAs, miRNA-27a 

(miR-27a) and miRNA-200c (miR-200c) both with contrary roles on the first sight.  

MiRNA-200c and the miR-200c family, are some of the most investigated miRNAs 

today and seem to be among the most effective miRNAs suppressing tumor growth 

and metastasis. In chapter 3 the loss of miR-200c, induced by a genomic knock-out 

(KO) in epithelial breast cancer cells, was described by analysis of the proteome. Novel 

potential targets were identified, and the cellular phenotype of the KO cell line was 

characterized. In chapter 4, the focus was placed on migratory targets found in the 

previous proteome analysis and are further investigated, by utilizing novel cell line 

constructs and 1D migration assays. 

The first part of this work, however, focuses on miRNA-27a (miR-27a). While this 

miRNA is often regarded as a potent oncomiR, in our study in chapter 2 we found a 

positive correlation of high miR-27a expression and the beneficial survival in a 

subgroup of patients with luminal A breast cancer undergoing anti-estrogen therapies, 

as well as a potential molecular mechanism for this observation.  

 

1.2.1. MiRNA-27a – an oncomir with ambivalence in breast cancer 

MiR-27a is investigated in multiple indications and disease states. It has been shown 

that this miRNA can exhibit strong influence in metabolic settings 16, especially 

cholesterol homeostasis and arteriosclerosis 17, as well as in neurodegenerative 

disorders 18 and differentiation of benign cells, like myoblasts 19. Of interest, miR-27a 

was also shown to regulate endothelial differentiation in breast cancer stem-like cells 

20, and also correlate to the metastatic burden of the patients, i.e. miR-27a was 

increased in more aggressively spreading tumors 21. Based on this and similar findings 

in oncological settings, miR-27a can be regarded as a tumor promoting oncomiR, due 

to its ability to increase cancer progression and as well as resistance to 

chemotherapeutic agents 22-24.  
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In “2. MiRNA-27a Sensitizes Breast Cancer Cells To Treatment With Selective 

Estrogen Receptor Modulators” we suggest that expression of miR-27a could also be 

utilized as biomarker of functional estrogen receptor expression in luminal A breast 

cancer. Thus, identifying miR-27a a potential predictor for the response of anti-

estrogen therapies in patients, not in objection to its role as oncomiR 25.  

 

1.2.2. Tumor suppressing effects of miRNA-200c in breast cancer 

The miR-200 family consists of five members: miR-200a, miR-200b, miR-200c, 

miR-141 and miR-429. While the whole family shares common sequence elements as 

well as functions, described in more detail in chapter 3.2, the most investigated 

representative of this family is miR-200c.  

 

Figure 2 – miRNA-200c as “watchdog of cancer progression” 

Adapted from Mutlu et al. 26 

 

In general, miR-200c is regarded as an effective tumor suppressor and sometimes 

even discussed as “watchdog of cancer progression” 26, due to its many inhibiting 

effects in cancer progression. Previous work in our group, conducted by Kopp et al., 

investigated the effect of miR-200c upregulation in sensitizing breast cancer cells to 

anthracyclines. It was shown that the increased efficacy of the doxorubicin treatment 

was facilitated by the decreased expression of TRKB and BMI1 27. In another study, 

the inhibition of the oncogene KRAS by miR-200c expression, showed a direct anti-
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proliferative effect on triple negative MDA-MB-231 breast cancer cells 28. While all 

those findings were made by utilizing miRNA-precursor or mimic based 

overexpression, novel developments in gene editing opened new experimental 

perspectives. Therewith, we generated a TALENs based genomic knock-out 29,30 in the 

miR-200c high expressing MCF7 breast cancer cells. This long-term stable approach 

allowed for a broad screen of changes in the proteome, resulting in many putative, but 

previously unrelated targets, which could be influenced by miR-200c, as discussed in 

3.4. 

The generated knock-out cell line, as well as modified MDA-MB-231 cells, were utilized 

to further investigate the possible effects of miR-200c on epithelial to mesenchymal 

transition or closely related processes. Novel targets from 3.3.4 were analyzed for their 

role in migration and cellular organization, as described in more detail in chapter 4. 

1.3. Aim of the thesis 

In this thesis, the effect of two different miRNAs, miR-200c and miR-27a, in breast 

cancer was to be evaluated. Both miRNAs have known roles in disease, development 

of tissues and have previously been found to have multiple effects in cancer. 

With the focus on breast cancer, the profile of both miRNAs was to be evaluated and 

novel functions investigated. For a comprehensive approach, different stably modified 

breast cancer cell line models had to be generated, either as knock-out constructs. 

Causing depletion of the miRNA, or as inducible overexpression constructs, gaining 

full time- and dose control on the expression of miRNAs. 

With these novel perspectives on the function of both miRNAs, their potential use as 

either biomarker or even therapeutic was to be discussed. 
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2. MiRNA-27a Sensitizes Breast Cancer Cells To Treatment With 

Selective Estrogen Receptor Modulators 

 

The following sections are directly adapted from the original publication, which was 

finally published as Ljepoja et al., Breast. 2019 Feb;43:31-38.  

Sections may have been moved for consistency 

 

MiRNA-27a Sensitizes Breast Cancer Cells To Treatment With Selective 

Estrogen Receptor Modulators 

Bojan Ljepoja1, Jonathan García-Roman1, Ann-Katrin Sommer1, Ernst Wagner1, 

Andreas Roidl1*, Breast. 2019 Feb;43:31-38 

1Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-

Universität München, Munich, Germany 

 

Contributions: 

 

BL performed the experiments and wrote the manuscript. JGR performed the analysis 

of transcription factor and ERE-binding sites. AS generated the TAM6 cells. EW 

provided conceptual advice. AR conceived the study and wrote the manuscript. All 

authors commented on the manuscript and conclusions of this work. 



2. MiRNA-27a sensitizes breast cancer cells to SERMs  

Dissertation - Bojan Ljepoja | 7 |  

2.1. Abstract 

Background: MicroRNA-27a (miR-27a) is a small non-coding RNA, shown to play a 

role in multiple cancers, including the regulation of ERα expression in breast cancer. 

Most ERα positive tumors are treated with Selective Estrogen Receptor Modulators 

(SERMs) and thus the role of miR-27a expression in response to SERM treatment is 

of interest. 

Methods: Tamoxifen resistant cells were generated by molecular evolution with six 

cycles of tamoxifen treatment. MCF7 and T47D luminal A breast cancer cell lines were 

either treated with miR-27a mimics, or ER-signaling was modulated ectopically. The 

changes were analyzed with RT-qPCR, western blot and transcriptional activity ERE-

reporter assays. Moreover, response to SERM treatments (tamoxifen, endoxifen and 

toremifen) was investigated by viability and apoptosis measurements. An in silico 

analysis of survival data from the METABRIC study was performed in order to assess 

the prognostic value of miR-27a for response to SERM treatment. 

Results: Tamoxifen-resistant cells showed decreased expression of ERα and miR-

27a. The overexpression of miR-27a increased the levels of ERα, while modulation of 

ERα decreased miR-27a expression. High miR-27a expression increased the 

sensitivity of MCF7 and T47D cells to SERM treatments and re-sensitized the cells to 

tamoxifen. Patient survival of luminal A breast cancer patients that underwent 

endocrine therapies was better in groups with high miR-27a expression. 

Conclusion: MiR-27a sensitized luminal A breast cancer cells to SERM treatments 

based on a positive feedback loop with ERα. An increased overall-survival of ER-

positive breast cancer patients that underwent endocrine treatments and displayed 

high miR-27a levels was found. 
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2.2. Introduction 

Breast cancer is one of the leading causes of cancer deaths worldwide8. The group of 

breast cancers is highly heterogeneous in its prevalence, short- as well as long-term 

mortality. Therefore, the tumors are characterized and clustered according to different 

characteristics. The most common approach is based on determination of receptor 

expression, like the estrogen- and progesterone receptor (ER and PR) or HER2. While 

luminal A breast cancer, with positive expression of ER and PR, are the most prevalent 

tumors, they are also considered least harmful, as they tend to be less aggressive and 

in general well treatable with endocrine therapies, like estrogen receptor modulators 

(SERMs)12,13. 

Nevertheless, the ATLAS trial showed that therapies with anti-endocrine agents, e.g. 

the SERM tamoxifen (TAM), should be considered for a full treatment period of at least 

5 years, ideally even 10 years and longer for best effects 31. Still, previous reports 

suggest that as much as 40% of all ER-positive breast cancers treated with adjuvant 

tamoxifen undergo relapse, with eventually fatal outcomes 32. It is unclear whether this 

poor response is based on initial (ab initio) resistance to the therapies or due to 

acquired (de novo) resistance. 

Moreover, different side effects of SERMs, like increased risk for cervical carcinoma or 

osteoporosis, becloud their positive effects. In order to attenuate long-term adverse 

effects of SERM treatments, the ESMO guidelines suggest a switch of treatment to a 

newer class of drugs, i.e. selective estrogen receptor down regulators (SERDs) like 

fulvestrant. SERDs are often considered in long term second line treatments (after 5 

years or more). Also transitions to aromatase-inhibitors like anastrozol are made 33. 

While some of these approaches may circumvent adverse effects and resistance, the 

survival of luminal A breast cancer patients is declining over time, indicating that the 

current treatment approaches for luminal A tumors cannot be considered optimal for 

all luminal A tumors, in regard of their long-term outcome 31. 

Thus, there is a practical need for further diversification of breast cancer in general and 

especially for ER-positive tumors. Additional sub-classifications of breast cancer 

tumors were suggested, e.g. the screening for GATA3 mutations 34-36. While multiple 

protein-markers are already considered during the treatment of triple negative breast 

cancer (TNBC)37, the main reference point for endocrine treatments is ER 

expression38. Additional surrogate markers could be used to identify high risk 

populations, which would profit from switches from standard therapies to suitable 
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chemotherapies already from the onset of the treatment, as is already part of the 

ESMO guidelines for patients with high tumor burden 13.  

MicroRNAs (miRNA) are small non-coding RNAs which are important in transcriptional 

and translational regulation of cellular processes, making them promising prognostic 

markers. As the detection in tissue, as well as in blood samples, is getting easier, 

alterations in expression levels could be used to assess aggressiveness of tumors and 

in certain cases even predict treatment response 39. A miRNA of special interest is 

miR-27a, which was shown to play a role in multiple metabolic processes and different 

cancer types. In general, miR-27a is considered tumor promoting, i.e. increasing 

cancer progression and resistance to chemotherapeutic agents, as observed in 

different cancer types including breast cancer cells 22-24. Therefore miR-27a is 

considered a potent oncomiR, whose high expression is unfavorable for patients’ 

survival in many settings, like osteosarcoma and gastric cancer 40,41. Previous studies 

suggest that miR-27a is regulating the ERα expression indirectly via ZBTB10 and the 

sp-protein family42, hence the role of miR-27a in ER-positive breast cancers is of 

interest. 

Our findings, while not objecting miR-27a’s tumor promoting effects, suggests that high 

expression of miR-27a may serve as an indicator of functional ER-expression in 

luminal A breast cancer and could therefore act as a positive marker for SERM 

response in vitro, resulting in a survival benefit as observed in vivo. 

 

2.3. Results 

2.3.1. Induction of tamoxifen resistance leads to repression of ERα and 

miRNA-27a expression 

In order to induce resistance to tamoxifen, MCF7 cells were treated with tamoxifen for 

six cycles each followed by recovery phases, as described previously43. 

The resulting resistant MCF7 cells, labeled TAM6, showed an increasing IC50 of 

approximately 1.5-fold (Figure 3 a). As loss of ERα expression is common in acquired 

resistance to tamoxifen, an analysis of ERα expression changes was performed. The 

resistant TAM6 cells showed significantly decreased levels of ESR1 mRNA (Figure 3b) 

as well as decreased ERα protein expression (Figure 3c). The transcriptional activity 

of ERα was assessed via an ERE (estrogen-receptor-response element) luciferase 
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reporter assay which indicated a significant loss of relative signaling of about 40% in 

the TAM6 cells (p < 0.05) compared to wildtype MCF7 (Figure 3d). Interestingly, the 

resistant TAM6 cells showed also a decreased expression of miR-27a (Figure 3e). 

 

Figure 3 - Induction of tamoxifen resistance leads to repression of ERα and miR-27a expression  

a) A Molecular Evolution Assay of 6 cycles tamoxifen (TAM) treatment resulted in resistant MCF7 cells, 
the TAM6 cells, with increased resistance to 20µM TAM (p < 0.001) as well as an increased IC50 value. 
b) ESR1 mRNA levels are significantly decreased by approximately 50% in the resistant cells, as shown 
by RT-qPCR (p < 0.05), c) as well as western-blot for protein levels, GAPDH was used as housekeeper. 
d) The relative luciferase signal of the ERE-reporter is significantly decreased in the resistant cells (p < 
0.05). e) Expression of miR-27a is decreased to 50% in the the resistant TAM6 cells compared to MCF7 
wildtype (p < 0.05). 

2.3.2. The interplay of miRNA-27a and ERα in a positive feedback loop 

To investigate whether miR-27a’s is able to regulate the expression of ERα, basal 

miRNA expression was analyzed in two Luminal A breast cancer cell lines, T47D and 

MCF7. Both cell lines showed expression of miR-27a. In MCF7 the miR-27a levels 

were six times higher than in T47D cells (Figure 4a). Nevertheless, ectopic 

overexpression of miR-27a showed a further increase of ERα mRNA (ESR1) in MCF7 

and T47D of 20% to 50%, respectively (Figure 4b), and a 1.3 and 2-fold increase in 

protein levels (Figure 4c). The ERE-reporter assay revealed a 40-50% increase in 

luciferase signal, indicating increased transcriptional activity of ERα (Figure 4d). These 

findings were supported by an immunofluorescence staining (Figure 4e), which 

showed that upon stimulation with estradiol the ERα localization into the nucleus is 

stronger after miR-27a overexpression compared to controls.  
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Of note, also the reintroduction of miR-27a into the low-expressing tamoxifen resistant 

TAM6 cells reactivated ERα expression and signaling as shown by a significantly 

increased ERE-luc signal of more than 50% compared to controls (p < 0.05, Figure 4f). 

 

Figure 4 - The effect of miR-27a on ER-alpha signaling in luminal A breast cancer  

a) Expression of miR-27a in the two luminal A breast cancer cell lines, MCF7 and T47D. b) 
Overexpression of miR-27a significantly increased expression of ESR1 mRNA in MCF7 and T47D (p < 
0.01), b) ERα protein, as well as c) luciferase signal of the ERE-reporter compared to scrambled control 
(p < 0.05). e) Immunofluorescence staining of ERα and DAPI showed increased localization of ERα to 
the nucleus in miR-27a overexpressing cells which were stimulated with estradiol (ES). f) Re-expression 
of miR-27a in TAM6 cells significantly increased the relative luciferase signal of the ERE-reporter 
compared to scrambled control (p < 0.05). 

 

To investigate a possible regulation of miR-27a expression by ERα activity, MCF7 cells 

were depleted of estrogen stimulation in estradiol- and phenol red free media or 

stimulated with estradiol for 48 h. The miR-27a expression was analyzed and as shown 

in Figure 5a, after the depletion of estrogen stimulation, the miR-27a expression was 

significantly decreased (p < 0.001) compared to control. Additionally, stimulation with 

estradiol showed a slight but not significant increase of miR-27a in MCF7 cells.  
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To further investigate the correlation, a stable MCF7 cell line with inducible expression 

of a short hairpin inhibitor of ERα mRNA, MCF7 shER, was generated. Upon induction 

with doxycycline for 48 h, the cells showed decreasing ERα protein of one third 

compared to uninduced control (Figure 5b). Long-term depletion of ERα by induction 

of the shER for 29 days compared to a scrambled hairpin control, showed a stable 

effect of 20% reduction of ESR1 mRNA (Figure 5c). Importantly, the ERα knock-down 

resulted also in a highly significant decrease in miR-27a expression of 30%  

(Figure 5d). These findings indicate a mutual influence of miR-27a and ERα expression 

in a positive feedback loop. Thus, a genomic analysis of the miR-27a locus was 

performed, investigating possible regulation mechanisms based on ERα transcriptional 

effects. Two different modes of transcriptional regulation were considered: Direct 

regulation of ERα via binding to known ERE structures located upstream of the miR-

27a locus, or indirect influence by predicted binding of other transcription factors, which 

are known to be regulated by ERα. Figure 5e shows the possible bindings and 

interactions in the promotor (-500/-1 bp) and the enhancer region (-30,000/-1 bp) of 

miR-27a: Two putative ERE sites were found, one in the proximal promotor with a 

match of 11/13 bases to the consensus sequence, and one in the distant enhancer 

with 12/13 matching bases. Additionally, a site for JUN in the promotor, as well as the 

co-transcription factors of ERα AP-2αA and C/EBPβ in the enhancer, were predicted 

with high stringency44,45. This analysis indicated a high probability of transcriptional 

regulation of miR-27a by ERα, consolidating the hypothesis of an important function of 

both miR-27a and ERα in the development of resistance to tamoxifen treatment.  
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Figure 5 - The effect of ERα signaling on miR-27a expression  

a) MCF7 cells that were depleted of estrogen-stimulation, showed significantly decreased expression of 
miR-27a (p < 0.001). b) Induction of shER-expressing MCF7 cells with 5µg/ml doxycycline for 48h 
decreased protein levels of ERα 30%. c) Long-term induction of shER for 4 and 29 days, significantly 
decreased ESR1 mRNA (p < 0.01), as well as d) the expression of miR-27a. e) Schematic overview of 
the promotor and enhancer region of the miR-27a locus. An analysis of possible transcription-factor 
interactions revealed three interaction partners of ERα, possibly controlling miR-27a transcription. 

 

2.3.3. Overexpression of miRNA-27a induces sensitivity towards SERM 

treatment in vitro 

While formation of resistance to tamoxifen is correlated to loss of miR-27a, the reverse 

setting of miR-27a overexpression in luminal A cell lines was of interest. In order to 

analyze the sensitivity towards the treatment, MCF7 and T47D were transfected with 

miR-27a mimics and subsequently treated with different SERMs: Tamoxifen, its active 

metabolite endoxifen as well as toremifene. As shown in Figure 6a-c, miR-27a 

sensitized MCF7 cells to all tested SERM treatments. To investigate whether the 

changes in viability induced by tamoxifen, as determined by ATP-content, were not 

only based on changes in metabolic activity, an annexin V assay was performed to 

determine ratios of induced cell death. Viability is regarded as the percentage of cells 

with negative annexin as well as propidium iodide stainings. In line with the ATP-

measurements, MCF7 with an overexpression of miR-27a showed increased 

sensitivity towards tamoxifen treatment (Figure 6d) 

Replication of this experiment with another luminal A cell line, T47D, showed similar 

results for tamoxifen, endoxifen and toremifen compared to controls (Figure 6e-g). Also 
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the rescue of miR-27a expression in the tamoxifen resistant and miR-27a-low TAM6 

cells re-sensitized the cells towards tamoxifen treatment, as seen by a significant 

decrease in viability after the treatments, compared to control (Figure 6h). Further 

validation with the annexin V assay showed that these effects are based on apoptosis 

and cell death, rather than diminished metabolism (Figure 6i). 

Together, these data showed a sensitizing effect of miR-27a to SERM treatments in 

both tested luminal A cell lines, as well as a re-sensitizing effect in tamoxifen resistant 

cells. 

 

Figure 6 - Effect of miR-27a overexpression on resistance to SERMs 

MCF7 cells with miR-27a overexpression showed significantly increased sensitivity towards treatments 
with the different SERMs as shown as viability measurement by ATP content, compared to scrambled 
control (Ctrl): a) 16µM tamoxifen (TAM), b) 12.5µM endoxifen (Endo) and c) 30µM toremifen. d) An 
annexin V-FITC assay of TAM treated MCF7 cells showed a decreased number of viable cells after miR-
27a overexpression. T47D cells with overexpression of miR-27a with e) 12.5µM TAM, f) 10µM Endo, g) 
22.5µM TOR showed significantly decreased viability, compared to scramble control. h) The resistant 
TAM6 cells were significantly re-sensitized to TAM treatment by overexpression of miR-27a shown as 
viability by ATP content, i) as also by Annexin measurements. All experiments were compared and 
normalized to a scrambled control transfection (** p < 0.01, *** p < 0.001, ****p < 0.0001) 
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2.3.4. MiRNA-27a is a putative prognostic marker for endocrine therapies in 

metastatic ER+ breast cancer  

As validation of the in vitro results, the impact of miR-27a expression on the survival of 

patients with ER-positive tumors which underwent endocrine treatment was evaluated. 

An analysis of patient data derived from the METABRIC cohort was performed utilizing 

the tool “miR power” (http://www.kmplot.com) by Lanczky et al. 46. In this analysis, 

patients were grouped according to their ER expression, as determined by 

immunohistochemistry and their status of node invasion. Patient groups with ER-

positive tumors were narrowed down to the cohort which underwent endocrine 

treatment exclusively, while no further limitations were set in groups with ER-negative 

tumors in regard of the therapy. 

As shown in Figure 7, patients with ER-positive tumors and high miR-27a expression 

had beneficial overall survival (OS) of about 20 months and a lower risk of events, 

compared to the low expressing group (N=726, HR 0.87 (0.6-1.08), p=0.15; not 

significant). The corresponding Kaplan-Meier curves show the biggest difference 

between the two groups during 100-150 months of follow up, corresponding to the 

usual follow-up care for breast cancer patients. In contrast, ER-negative breast cancer 

patients with high miR-27a expression were at approximately one third higher risk and 

had a 1.5 years lower median OS than the low expressing cohort (N=266, HR 1.33 

(0.84-2.09), p=0.22). Further differentiation of the ER-positive group to a subgroup 

which is determined as luminal A, the relative risk additionally decreased to 0.61 (0.39-

0.94) with p=0.025 (see supplemental Figure S3). 

By further differentiation of the dataset, patients with more aggressive luminal A cancer 

were investigated. Those groups were constricted to subgroups with positive lymph 

node status, indicating a higher metastatic ability of the tumor and higher tumor burden 

of the patients. In this setting, the data showed highly significant difference in the 

ER-positive group towards a beneficial effect of high miR-27a in the OS. Patients with 

low miR-27a expression had an approximately 50 months shorter survival, therefore 

decreasing the risk in the high miR-27a to 0.65 (0.47-0.9; p=0.0083). Likewise, the 

comparison in ER-negative patients showed the reverse picture: High miR-27a 

expression lead to a significant decrease in OS of about 50 months with a two-fold 

increased relative risk (HR 2.02, (1.09-0.023), p=0.023). Here, in the luminal A 

subgroup (see supplemental Figure S3) high miR-27a lead to significantly increased 

OS of about 40 months and 0.51 (0.31-0.85) relative risk (p=0.0083). Similar results 
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were seen in another cohort of luminal A patients with early breast cancer, which 

underwent tamoxifen treatment, as analyzed with the MIRUMIR tool 47 (supplementary 

Figure S4). 

These findings showed that miR-27a expression was high in aggressive tumors and 

was detrimental for patients with ER-negative breast cancer, but in the setting of ER-

positive tumors that were treated with endocrine therapies high miR-27a levels were 

an indication for a good response to the treatment and increased survival rates. 

 

Figure 7 - Clinical data shows potential of miR-27a as prognostic marker for endocrine therapies 

ER+ and ER+ metastatic breast cancer 
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2.4. Discussion 

While luminal A breast cancer is regarded as the one subtype with best prognosis and 

well established treatment options, current epidemiologic data suggest a need for 

better follow-up care of the disease, as evidently mortality of these patients is 

increasing after 5 years31. Different approaches are made to counteract bad long-term 

outcomes. Often SERM treatments are prolonged for a time of up to 10 years and 

longer or switched for different treatments with drugs of other therapeutic classes, 

usually aromatase inhibitors 31,48. Many of these approaches are associated to the 

same adverse effects as SERM treatment, i.e. cardiovascular disease and the 

substantially increased risk of secondary cancers like endometrial carcinoma 49. 

Hence, physicians are inclined to often discontinue therapies early to balance these 

risks. Still, the number of relapsing patients with therapy resistant tumors is high and 

therefore there is an urgent need for personalized treatment options to maximize 

efficacy of therapies while decreasing the adverse effects. MiRNAs are a class of 

potential markers, which show fine-tuned expression patterns in tissues, as well as 

offer the possibility to analyze their expression directly from blood samples as 

circulating miRNAs39. 

MiR-27 plays an ambivalent role in cancer. On the one hand, it is known to increase 

proliferation and metastasis in patients22, in some cases even assumed to regulate 

chemoresistance 50. This aspect makes it an interesting marker for numerous cancer 

types, like colon and esophageal cancer and also certain types of breast cancer, in 

order to adjust treatments and therapy regimes accordingly 22,23,50. In the analysis of 

the METABRIC datasets, two cohorts of patients with ER-negative tumors, which 

consequently did not receive endocrine treatments, showed significantly worse 

outcomes for patients with high miR-27a expression. This result is in line with the 

discussed role of miR-27a as oncomir, inducing negative effects on patient survival. 

On the other hand, the in silico analysis of both the METABRIC and MIRUMIR datasets 

revealed that miR-27a expression is a predictor of beneficial breast cancer patient 

survival, in a defined subgroup of ER-positive tumors treated with endocrine agents. 

Multiple explanations can be considered for this ambivalence. First, due to the positive 

bidirectional feedback loop between miR-27a and ERα, the miR-27a expression may 

function as a surrogate marker for the ERα expression. MiR-27a was described to 

upregulate ERα expression, as observed in the current study and was previously 

reported, based on miR-27a inhibition of ZBTB10 and resulting increase of the 
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expression of the sp-protein family42. In this case, higher levels of ERα, based on 

increased miR-27a expression, could increase the susceptibility for SERMs and 

therefore improve the eradication of the tumor. While an increase of drug targets is 

often discussed as resistance mechanism, different studies suggest that SERM 

antitumor effects are based not only on inhibition of the estrogen signaling, but 

additionally on induction of maspin or of oxidative stress, which result of interaction 

with the receptor 51,52. Therefore, an increased number of SERM targets could correlate 

with the induced damage in the tumor. 

Additionally, our data showed that stimulation with or the deprivation of estradiol, as 

well as a direct knock-down of ERα, showed identically directed impact on miR-27a 

expression, as was also reported in a genomic expression study previously 53. The in 

silico analysis of the promotor and enhancer region revealed multiple potential sites of 

transcriptional regulation of miR-27a via ERα, e.g. by direct translational effects based 

on EREs or upregulated transcription factor activity downstream of the ER-signaling 

pathway, like JUN. 

Thus, high miR-27a levels may act as surrogate read-out for a high ERα translational 

activity in the tumor, likely with crucial cancer promoting effects due to ERα’s role in 

cell cycle and proliferation54. This could explain the higher impact on cancer cell 

survival resulting from ERα inhibition.  

Both of these discussed mechanisms do not contradict miR-27a’s role as oncomiR, as 

increase of ER-activity leads to higher proliferation and metabolic activity in the cells54.  

In fact, the in vitro viability data suggest that treatments with tamoxifen and toremifen 

are significantly more effective in eradicating these potentially more aggressive tumors, 

underlined by the finding that the beneficial prognostic effect of miR-27a is highest for 

ER-positive tumors which spread to lymph nodes. 

Besides acting as predictor for an enhanced response to SERM treatments, the 

observed loss of miR-27a may also function as indicator of resistance to the therapy, 

as observed in the TAM6 cells. Treatment with TAM for six rounds in the course of 

multiple weeks, caused the formation of a considerable resistance, accompanied by 

the loss of miR-27a, as was also demonstrated by Ye et al 55, showing increased miR-

27a expression after generation of TAM resistant cells.  

Many mechanisms are discussed for resistance development to tamoxifen. One 

obvious effect which may account for up to 17-28% of acquired resistance56, may be 

the loss of ERα, rendering the cancer cells independent of estrogen, based on CpG 
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island methylation of the ER-promotor57. As no analysis of methylation patterns was 

performed on the TAM6 cells, it is possible that partial methylation of the ESR1 

promotor occurred and therefore affected changes in ERα and miR-27a expression.  

In addition, the occurrence of mutations of the ER-gene were reported, which are not 

influencing the ERα expression, but were observed to have no estrogen mediated 

translational activity while appearing as ER-positive in immunohistological stainings 58. 

In this case, miR-27a may be a valuable indicator of functional ERα expression, as ER-

positive tumors with low miR-27a expression might inherit a less functional ERα 

translational activity and thus decreased response to SERMs.  

Taken together, miR-27a expression correlates with functional ERα expression and 

may therefore act as surrogate read-out for a frequent resistance mechanism. 

MiRNA screening can play an important part in improving patient outcomes by enabling 

tailored treatments and personalized medicines for cancer. A screening of different 

miRNAs, including miR-27a in blood plasma of breast cancer patients was performed 

previously 59. In the study of Jurkovicova et al. miR-27a was shown to be one of the 

modified miRNAs in the analysis of plasma samples from the patients. The data 

indicates that miR-27a expression may be used as marker for invasive breast cancers 

or carcinomas in situ. Further studies need to be conducted to prove whether miR-27a 

expression is a prognostic marker for therapeutic response also in blood plasma. 

Taken together, our data suggests and encourages further studies of miR-27a as 

marker for SERM response in the clinics. Patients with ER-positive tumors with high 

miR-27a expression currently already receive suitable treatment with adjuvant 

tamoxifen, if treated according to the guidelines13. However, patients in the same 

setting with miR-27a low tumors may display resistance to the treatment, either initially 

or due to acquired resistance in the long-term. These patients would benefit most of 

an analysis of miR-27a levels. 
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2.5. Material and methods 

Reagents 

Puromycin dihydrochloride (cat. P8833), Tamoxifen (cat. T5648), Endoxifen (cat. 

E8284), Toremifen (cat. T7204) and Estradiol (E1024) were obtained from Sigma-

Aldrich.  

Cell culture 

MCF7 were acquired from cell line service (Eppelheim, Germany), grown at 37 °C and 

5 % CO2 in high glucose DMEM (Sigma) supplemented with 10 % fetal calf serum (FCS 

/ Gibco). TAM6 as resistant clone were generated from parental MCF7 by six rounds 

of treatment with tamoxifen as described before43 and cultured like MCF7. T47D were 

acquired from ATCC, grown at 37 °C and 5% CO2 in RPMI-media (Sigma).  All cells 

were routinely tested and confirmed as mycoplasm free. 

Overexpression of miR-27a 

Overexpression experiments were performed by transfection of a miR-27a mimic 

(miRIDIAN Human hsa-miR-27a 3p, Dharmacon) and miRIDIAN Mimic Negative 

Control #1 (Dharmacon) with K2 transfection reagent (Biontex, Germany) according to 

the manufacturer’s protocol. Cells were seeded in 6-well plates to 80% confluence 

depending on the experiment kept in 6-well or seeded 24 h after transfection for 

following experiments. 

miRNA quantitative RT-PCR 

Approximately 600,000 cells were harvested and total RNA isolated from cells using 

Total RNA Kit, peqGOLD (VWR). cDNA synthesis was carried out by a microRNA 

specific reverse transcription and detection with the qScript microRNA cDNA Synthesis 

Kit and PerfeCta SYBR Green SuperMix (Quanta Biosciences) with RT-PCR detection 

on a LightCycler 480 (Roche). The expression of miR-27a was normalized to miR-191, 

using the 2-∆CT or 2-∆∆CT method. The primers used for analysis were for miR-27a: 

GCCGTTCACAGTGGCTAAG and for miR-191: GCGCAACGGAATCCCAAAAG 

mRNA quantitative RT-PCR 
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RNA was extracted utilizing the Total RNA Kit, peqGOLD (VWR) as by manufacturer’s 

instructions. Translation to cDNA was performed utilizing the qScript cDNA synthesis 

kit (Quanta Bioscience) as by manufacturer’s protocol.  

Analysis of expression was performed with the Lightcycler 480 (Roche) and the 

Universal Probe Library (Roche) with following probe and primer (forward/reverse) 

combinations: 

ESR1 Fwd:ATCCACCTGATGGCCAAG Rev:GCTCCATGCCTTTGTTACTCA; Probe #17  

GAPDH Fwd: TCCACTGGCGTCTTCACC Rev:GGCAGAGATGATGACCCTTTT; Probe #45 

The expression of ESR1 was normalized to GAPDH, using the 2-∆CT or 2-∆∆CT 

method.  

ER-signaling via ERE-luc reporter 

3X ERE TATA luc was a gift from Donald McDonnell (Addgene plasmid # 11354). 

Transfection was performed in 6-well with cells grown to 80% confluence with K2 

transfection reagent (Biontex, Germany) according to the manufacturer’s instructions. 

After 24 h cells were seeded in 96-well plates and luc-measurements were performed 

as described previously28. 

Generation and stimulation of TRIPZ-shER MCF7 

MCF7 cells were transducted with a 2nd generation lentiviral system generated with the 

plasmids pCMV-dR8.2 dvpr and pCMV-VSV-G, which were a gift from Bob Weinberg 

(Addgene plasmid # 8454 and #8455) and a doxycycline-inducible TRIPZ-shER 

construct, which was a gift from Yunus Luqmani, Kuwait. For control, cells were 

transducted with a scramble hairpin, the TRIPZ-shCtrl construct (ThermoFisher). 

Western blot analysis and immunofluorescence  

Cells were cultured in a 6 well plate for 48h after transfection / stimulation, lysis, gel 

and blotting were performed as described previously27, with the following primary 

antibodies: Estrogen Receptor-α (sc-543), Actin (sc-1616, Santa Cruz) and GAPDH 

(14C10, Cell Signaling). Immunofluorescence stainings were performed as described 

previously60, -ES cells were cultured for the time of the experiment in phenol-red-free 

media with 10% charcoal stripped FCS (F6765 , Sigma), +ES cells were stimulated 

with 3,6 µM estradiol for 1h before fixation. 

Analysis of transcription factors in promoter regions of found genes 
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For the analysis of the promoter region of the miR-27a locus, the sequence was 

retrieved from the RefSeq-Database (https://www.ncbi.nlm.nih.gov/refseq/ as of 

January 2018) in order to identify the +1 position. Assuming the +1 position as starting 

site of transcription, 500 nucleotides upstream were defined as the proximal promoter. 

The enhancer region was defined as the genomic sequence 30,000 base pairs 

upstream of the +144. Then, for analysis of possible promoter sequences, ALGGEN61 

software was used, the analysis was performed with the highest stringency. Analysis 

of ERE-sites were performed by manual alignments of the consensus sequence and 

known variances that were previously discussed62. 

Treatment with SERMs and relative viability assays 

Stock solutions of TAM, ENDO and TOR were prepared in DMSO with a concentration 

of 20mM. Dilutions were prepared freshly in according media, controls contained 

appropriate amounts of DMSO. Treatments were performed 48 h after stimulation / 

transfection for 48 h. Relative viability as ATP-content was assessed by Celltiter-Glo 

(Promega) according to manufacturer’s instructions. 

Annexin V assay 

The cells were cultured and treated as described above. Samples were harvested, and 

analyzed with the Annexin V-FiTC Apoptosis Detection Kit Plus (BioVision) according 

to the manufacturer’s protocol. Measurement was performed using CyAn ADP 

Flowcytometer (Dako Cytomation / Beckmann) and FlowJo 7.6.5. (TreeStar). 

In silico analysis of patient data 

Patient survival data, treatment information and expression of ERα / miR-27a was 

acquired from the database of kmplot software (http://www.kmplot.com46). Analysis for 

miR-27a was based on data from the METABRIC study (syn1688369)35. 

Statistical analysis  

Results are expressed as the mean ± SD of at least three replicas, if not stated 

otherwise. All experiments were conducted three times independently, one 

representative example is depicted. Software GraphPad Prism v6 and SigmaPlot 11 

were utilized for the analysis of the data.  

Data availability 
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3. A proteomic analysis of an in vitro knock-out of miRNA-200c 

The following sections are directly adapted from the original publication, which was 

finally published as Ljepoja et al., Sci Rep. 2018 May 2;8(1):6927. 
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3.1. Abstract 

Loss of miR-200c is correlated to advanced cancer-subtypes due to increased EMT 

and decreased treatment efficacy by chemotherapeutics. As miRNAs regulate a 

multitude of targets, the analysis of differentially expressed proteins upon a genomic 

knock-out (KO) is of interest. In this study, we generated a TALENs KO of miR-200c 

in MCF7 breast cancer cells, excluded its compensation by family-members and 

evaluated the impact on the proteome by analyzing three individual KO-clones. We 

identified 26 key proteins and a variety of enrichments in metabolic and cytoskeletal 

pathways. In six of these targets (AGR2, FLNA/B, ALDH7A1, SCIN, GSTM3) the 

differential expression was additionally detected at mRNA level. Together, these 

alterations in protein abundance accounted for the observed biological phenotypes, 

i.e. increased migration and chemoresistance and altered metabolism, found in the 

miR-200c-KO clones. These findings provide novel insights into miR-200c and pave 

the way for further studies 
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3.2. Introduction 

MicroRNAs (miRNAs) are short non-coding RNAs which are known to regulate protein 

expression at the translational level via base pairing to mRNA or by induction of mRNA 

decay26,63. Since their discovery, miRNAs have had a tremendous impact on our 

understanding of physiology and pathophysiology, leading to ever increasing efforts to 

discover miRNA genes, their function and targets1,64. MiRNAs are important for a broad 

spectrum of biological processes, such as embryonic development, immune 

differentiation, metabolism and cardiac function65-68. On the other hand, their aberrant 

expression is involved in a vast number of diseases, such as diabetes and 

cancer65,69,70. Therefore, miRNAs are promising tools as biomarkers or therapeutic 

agents71.  

An important group of miRNAs in the context of cancer research is the miR-200 family, 

consisting of miR-200a, miR-200b, miR-200c, miR-141 and miR-429. Many family 

members are known to play a role in a large variety of biological processes like 

Epithelial to Mesenchymal Transition (EMT), cell invasion, proliferation, metastasis, 

apoptosis, autophagy, and therapy resistance in several cancer types26,72-76. MiR-200c 

is the most prominent member in tumorigenesis, as its role in several hallmarks of 

cancer, such as EMT, chemoresistance, migration and stemness26,77, was already 

described. Although the involvement of miR-200c in these processes was 

demonstrated, many underlying mechanisms and players remain unknown26, 

especially in controversially discussed processes like chemoresistance or 

proliferation26-28,78,79. 

In our previous work, we were able to show the involvement of miR-200c in sensitizing 

breast cancer cells to doxorubicin, via regulating BMI1 and TRKB27 as well as the direct 

interaction of miR-200c with the mRNA of the prominent oncogene KRAS28. 

The vast majority of the studies analyzing the biology of miR-200c utilizes short-term 

inhibition approaches making use of LNAs or antagomirs, but omitting the impact of 

miR-200c depletion in the long-term27,80,81. The latter reflects the loss of miR-200c 

expression in a tumor, as is frequently observed in the clinics82,83. Thus, analyzing the 

knock-out (KO) of miR-200c leads to novel insights into miR-200c’s role in advanced 

breast cancer.  

With current genome editing tools like TALENs (Transcription Activator-Like Effector 

Nucleases) and CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic 

Repeats)30,84 a revolution in many fields of gene research was initiated. While both 
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tools have different properties and demand different strategies, they also equally 

harbor high potential for research of non-coding genes, like miRNAs. TALEN are fusion 

proteins that induce a double strand break in the DNA, but have to be designed as 

pair, specifically targeting the desired genomic site. The nuclease-activity will cause a 

double strand break (DSB) which can be repaired on the hand by error prone Non-

Homologous End Joining (NHEJR), in most cases leading to an indel formation and 

thus to the knock-out of the gene. On the other hand Homologous Recombination (HR) 

results in successful repair of the DSB30,85.  

CRISPR-Cas9 is based on the nuclease-activity of Cas9, but the targeting is initiated 

by short-guiding RNAs (sgRNA) and is limited to genomic sites with a protospacer 

adjacent motif (PAM). CRISPR approaches usually lead to a double strand break and 

only one sgRNA needs to be designed29,84,86. 

In this study, we utilized TALENs for a genetic KO of miR-200c, due to its flexibility to 

target any genomic sequence. This approach allowed us to develop a long-term in vitro 

model of miR-200c depletion (KO) in MCF7 breast cancer cells. With a subsequent 

proteomic analysis, we were able to gain novel insights to changes in the proteome, 

i.e. differentially expressed proteins, resulting from the absence of only 22 non-coding 

basepairs of the miR-200c. 
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3.3. Results 

3.3.1. A miRNA-200c knock-out - strategy and validation 

To generate the miR-200c KO, we chose to genetically disrupt the drosha processing 

site. Generally two options for genomic editing were available – CRISPR/Cas9 and 

TALENs. While a PAM-sequence was present in the drosha processing site, suitable 

sgRNAs were designed with the CRISPR-design tool87 but resulted in 60-75 

off-targets, amongst them 6-9 in coding regions. Utilizing a Cas9-Nickase would result 

in lower off-targets, but it was not possible to design a pair inducing a site-specific 

mutation within the limited number of base-pairs of the drosha-site. Therefore, we 

chose a pair of TALENs to disrupt miR-200c 3p gene expression by targeting the 

flanking regions of the drosha processing site as described previously88. Eventually we 

sought to induce a double strand break in the vicinity of the drosha processing site 

(Figure 8a). MCF7 cells were chosen as model for an epithelial breast cancer cell line 

with high miR-200c expression27. A single cell dilution was performed, and clones were 

selected to sequence indel formation at the genomic locus of the miR-200c drosha site. 

Three of the monoclonal cell lines, namely M1, M2 and M3 showed deletions in both 

alleles of the miR-200c gene which were located in vicinity of the drosha processing 

site (i.e. homozygous KO of miR-200c). One clone (MCtrl) showed a heterozygous 

mutation (Figure 8b). 

A qPCR-measurement of miR-200c expression of M1, M2 and M3, confirmed the 

knock-out of the miR-200c gene (Figure 8c). The heterozygous mutations in MCtrl had 

no significant effect on the miR-200c expression, as levels were comparable to MCF7 

wild-type (p>0.05). Therefore, besides wild-type MCF7, MCtrl was considered as 

additional control for further analysis. 
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Figure 8 - miR-200c genetic TALEN target sequences and knock-out confirmation.  

a) The miR-200c gene is located at chromosome 12p13, TALENs were designed to target miR-200c 3p 
drosha processing site. b) Genomic DNA was extracted from MCtrl and M1, M2 and M3 clones, 
afterwards the miR-200c gene was amplified by PCR to perform sequencing of the miR-200c loci; MCtrl 
shows a heterozygous mutation while M1, M2 and M3 show various indels in proximity of the miR-200c 
3p drosha processing site on both alleles. c) MCF7, MCtrl, M1, M2 and M3 miR-200c expression levels 
were analyzed by quantitative RT-PCR. Expression of miRNAs is shown as mean of three independent 
experiments ± SD .ns: no statistical difference, p>0.05, one-way ANOVA post hoc Bonferroni. 

3.3.2. Unchanged expression of miR-200 family members 

To investigate possible compensation effects of the knock out, we analyzed the 

expression levels of the other miR-200c family members. The genomic loci are 

comprised of two genomic clusters, one located at chromosome 1p36 including miR-

200a, miR-200b and miR-429, and chromosome 12p13 containing miR-200c and miR-

14126. MiR-200c shares the same seed region with miRs 200b and 429 (Figure 9a).  

Subsequently, a qPCR analysis of the expression of all family members was 

performed. 

This data showed that miR-200c is the family member with highest expression in 

MCF7. Further analysis revealed that no family member was compensating for the loss 

of miR-200c by an increase of expression and no general upregulation of all family 

members was observed (p>0.05) compared to the control group (MCF7 and MCtrl).  

Of note, also the expression levels of miR-141 remained similar, i.e. not influenced by 

the KO of miR-200c, despite the localization in the same polycistronic unit (Figure 9b). 
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The knock-out of a miRNA is fundamentally different to its short term inhibition, giving 

the cells more time to compensate the loss of miR-200c. Therefore, late compensatory 

mechanisms were ruled out by re-evaluation of the expression of miR-200c family 

members at a late cell passage number. Compared to earlier passages, the data 

showed no remarkable changes in the different clones over time (p=0.896, Figure 9c). 

The slight increase of miR-141 is not significant. 

 

Figure 9 - Expression of miR-200 family members among the KO clones.  

a) The miR-200 family is distributed on two chromosomes; miR-200b, miR-200a and miR-429 are 
located on chromosome 1p36.33 and miR-200c and miR-141 are located on chromosome 12p13.31. 
miRs with the same seed region are colored in tones of orange or blue respectively. b) MCF7, MCtrl, 
M1, M2 and M3 were analyzed for miR-200c, miR-141, miR-200a, miR-200b and miR-429 relative 
expression levels by quantitative RT-PCR. c) Cells from passage 10 and passage 23 were compared 
regarding their miR-200c, miR-141, miR-200a, miR-200b and miR-429 relative expression levels via 
quantitative RT-PCR. Expression of miRNAs is shown as mean ± SD of three independent replicas. ns 
means no statistical difference, p>0.05, three way ANOVA post hoc Bonferroni. 
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3.3.3. Proteomic analysis of three individual KO clones results in 26 novel 

targets 

To evaluate the effect of the miR-200c KO on a wide range of proteins, a proteomic 

approach was chosen ( 

Figure 10a):  

All clones (M1, M2, M3, MCtrl), as well as wild-type MCF7 cells were harvested in three 

replicas (A/B/C), and subsequently, proteomic data analysis was performed, resulting 

in a set of 1736 identified proteins. For the following analysis, we chose to narrow the 

set down to proteins that were identified in every single measurement.  

This filtering resulted in a subset of 675 proteins. On this subset, a principal component 

analysis (PCA) was performed to investigate the similarity of the clones and replicas.  

Figure 10b shows a general trend of grouping of the replicas (with exception of MCtrl C) 

as well as a closer relation between the KO-clones M1, M2 and M3 and the controls 

MCF7 and MCtrl, respectively. A similar behavior is seen in a cluster analysis, as 

shown in the Supplement S 1. For statistical evaluation of differentially expressed 

proteins a Volcano plot analysis was performed ( 

Figure 10c), comparing the expression of the KO-clones M1, M2 and M3 (KO) to the 

controls MCF7 and MCtrl (Ctrl). This analysis revealed nine proteins with significant 

changes in regulation as shown in Table 1. 

To investigate effects on single-clone level, a further T-test with the same parameters 

was performed, comparing each KO-Clone (M1, M2 or M3) to the grouped controls 

(e.g. M1 vs. MCtrl and MCF7). The analysis revealed 17 significant hits, as shown in 

Figure S2 and summarized in Table 2. Here, M2 is pointed out as most diverse from 

the controls with 14 proteins being differentially expressed, while the two other clones 

show only statistical difference in one or six proteins for M1 and M3, respectively 

(Supplement S 2). 

Next, to further analyze targets which may have had changes in expression in 

response to the miR-200c KO but have not been detected in the previous analysis, we 

searched for proteins that were not detected in the KO-group, but were found in the 

control-group (found at least 3 times in Ctrl, not at all in the KO). These proteins were 

termed “OFF”. Vice versa, “ON” proteins display no expression in the control-group but 

are expressed in the KO-group (at least 5 times in KO, but not in Ctrl). Table 3 lists the 

three targets gaining expression after knock-out (ON) and the two proteins losing 

expression (OFF). 
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The 26 targets shown in Table 1, 2 and 3 were grouped according to their main function 

as stated by the Uniprot-Database89. As shown in  

Figure 10d, more than half of the proteins are found in migratory processes and 

metabolism (45% and 17% respectively), while other functions are detoxification (10%) 

and apoptosis (11%), with remaining 17% of proteins, with no known function. 
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Table 1 - Targets with significant difference between both groups – M1 and M2 and M3 vs MCF7 

and MCtrl 

 

  

Protein Gene p-Value fold change Expression Function 

Anterior gradient protein 2 

homolog 
AGR2 6.36x10-3 0.59 down Migration 

Filamin-A FLNA 4.32x10-5 1.31 up Migration 

Filamin-B FLNB 1.20x10-5 1.41 up Migration 

Glutathione S-transferase 

Mu 3 
GSTM3 1.43x10-5 3.54 up De-Tox 

Pyridoxal kinase PDXK 2.27 x10-3 0.53 down Metabolism 

4F2 cell-surface antigen 

heavy chain 
SLC3A2 1.25 x10-4 2.00 up Apoptosis 

Spectrin alpha chain, non-

erythrocytic 1 
SPTAN1 3.26 x10-4 0.73 down Migration 

Tropomyosin alpha-1 chain TPM1 3.74 x10-3 1.93 up Migration 

UDP-glucose 6-

dehydrogenase 
UGDH 7.10 x10-3 0.39 down Migration 
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Table 2 - Targets with significant difference between control and at least one clone: M1 or M2 or 

M3 vs. MCF7 and MCtrl 

Protein names Gene p-Value fold increase Expression Function 

Anterior gradient protein 2 

homolog 
AGR2 

M2 vs Ctrl M2 vs Ctrl 
down Migration 

2.82 x10-4 0.397 

Alpha-aminoadipic 

semialdehyde 

dehydrogenase 

ALDH7A1 
M2 vs Ctrl M2 vs Ctrl 

up De-tox 
4.69 x10-4 1.96 

Carbonic anhydrase 2 CA2 
M2 vs Ctrl M2 vs Ctrl 

down Unknown 
4.07 x10-3 0.361 

Src substrate cortactin CTTN;EMS1 
M2 vs Ctrl M2 vs Ctrl 

down Migration 
4.67 x10-4 0.743 

Aspartate aminotransferase GOT2 
M3 vs Ctrl M3 vs Ctrl 

down Metabolism 
1.38 x10-4 0.556 

Glutathione S-transferase 

Mu 3 
GSTM3 

M1 vs Ctrl M1 vs Ctrl 

up De-tox 

6.03 x10-5 2.48 

M2 vs Ctrl M2 vs Ctrl 

1.50 x10-7 6.17 

M3 vs Ctrl M3 vs Ctrl 

1.21 x10-5 2.91 

Heat shock protein HSP 90-

alpha 
HSP90AA1 

M2 vs Ctrl M2 vs Ctrl 
up Metabolism 

4.64 x10-4 1.39 

D-3-phosphoglycerate 

dehydrogenase 
PHGDH 

M2 vs Ctrl M2 vs Ctrl 
up Metabolism 

6.57x10-3 1.89 

Kynureninase KYNU 
M2 vs Ctrl M2 vs Ctrl 

up Metabolism 
1. x10-3 1.61 

DNA replication licensing 

factor MCM4 
MCM4 

M2 vs Ctrl M2 vs Ctrl 
down De-tox 

2.12 x10-4 0.761 

Ras-related protein Rab-14 RAB14 
M2 vs Ctrl M2 vs Ctrl 

down Migration 
1.23 x10-5 0.595 

SH3 domain-binding glutamic 

acid-rich-like protein 
SH3BGRL 

M3 vs Ctrl M3 vs Ctrl 
up Migration 

4.01 x10-5 1.85 

4F2 cell-surface antigen 

heavy chain 
SLC3A2 

M2 vs Ctrl M2 vs Ctrl 

up Apoptosis 
7.09 x10-6 2.91 

M3 vs Ctrl M3 vs Ctrl 

6.42 x10-4 1.71 

Triosephosphate isomerase TPI1 
M3 vs Ct M3 vs Ctrl 

down Metabolism 
7.95x10-5 0.69 

Tropomyosin alpha-1 chain TPM1 
M2 vs Ctrl M2 vs Ctrl 

up Migration 
4.76 x10-3 2.71 

UDP-glucose 

6-dehydrogenase 
UGDH 

M2 vs Ctrl M2 vs Ctrl 

down Migration 
3.67 x10-6 0.155 

M3 vs Ctrl M3 vs Ctrl 

3.28 x10-3 0.533 

Tryptophan-tRNA ligase WARS 
M2 vs Ctrl M2 vs Ctrl 

up De-tox 
1.20 x10-3 1.58 
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Table 3 - Targets detected in just one of the groups: M1 and M2 and M3 OR MCF7 and MCtrl 

Protein Gene Expression Function 

N-acetylserotonin O-

methyltransferase-like protein 
ASMTL ON Unknown 

Serine/threonine-protein 

phosphatase PP1-gamma 

catalytic subunit 

PPP1CC OFF Unknown 

Apoptosis-associated speck-like 

protein containing a CARD 
PYCARD OFF Apoptosis 

Regulator of microtubule dynamics 

protein 1 
RMDN1 ON Migration 

Adseverin SCIN ON Migration 

 
 

 

Figure 10 - Proteomic analysis of three different KO clones (next page) 

a) Schematic overview of the experimental procedure to generate three different clones. Each clone 
was measured in independent replicas b) Principal component analysis of the measurements, KOs are 
shown in red, Ctrls in blue c) Volcano plot analysis of grouped controls: (MCF7 WT A/B/C and MCtrl 
A/B/C) vs. (M1 A/B/C and M2 A/B/C and M3 A/B/C), N=675 with 250 randomizations, FDR 0.05 and S0 
of 0.1 d) Percentage of main functional pathways of targets in Tables 1, 2 and 3, as derived from the 
Uniprot-Database e) Analysis for possible seed-interaction of miR-200c with the targets of Tables 1,2 
and 3 and further analysis of not-directly regulated targets for binding of transcription factors with 
predicted miR-200c regulation, see also Supplemental Table S 3: f) Validation of mRNA expression with 
grouped statistical analysis (M1 and M2 and M3 vs MCF7 WT and MCtrl, N= 9 (KO) / 6 (Ctrl)) for the 
anterior gradient protein 2 homolog, aldehyde dehydrogenase 7 family member A1, filamin A and B, 
glutathione S-transferase M3 and adseverin, *p<0.05 ***p<0.001 **** p< 0.0001 
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3.3.4. Analysis of targets for miRNA-200c regulation 

To evaluate whether the targets are directly regulated by miR-200c, the genes were 

analyzed for binding sites with the TargetScan database. One fifth of the proteins 

harbor a potential targeting site (8mer or 7mer-m8/A1 seed-region match) in their 

3'UTR. For the remaining 21 genes, a possible promotor binding site of miR-200c 

regulated transcription factors was investigated. This analysis revealed that 62 % of 

the genes without binding site may be indirectly regulated by miR-200c: The promotor 

region of these genes contains at least one putative binding site for a transcription 

factor which is potentially regulated by miR-200c ( 

Figure 10e and Supplemental Table S 3). 

Further, we measured whether the differential protein-levels resulted from changes of 

the mRNA levels. Therefore, we compared mRNA levels of the single clones to their 

proteomic data each each (see Supplement S 3). For six targets alterations n protein 

abundance were reflected at the mRNA level ( 

Figure 10f).  

AGR2, the anterior gradient protein 2 homolog, was found to be statistically significant 

differentially expressed in the proteomic analysis in Table1. The mRNA expression 

correlates with the protein expression from the proteomic approach and the grouped 

analysis, i.e. M1 and M2 and M3 vs MCF7 WT and MCtrl, showed an almost four-fold 

increase with a highly significant difference between KO and Ctrls respectively 

(p<0.0001). Furthermore, aldehyde dehydrogenase 7 family member A1, ALDH7A1’s 

protein expression changed significantly in a part of the clones, but on mRNA it shows 

highly significant (p<0.0001) increased expression of 43%. Additionally, Filamins FLNA 

and FLNB were found to be significantly changed on protein level (Table 1). Again, on 

mRNA level both filamins show a significant (p=0.0004 / p=0.0003) increase of 44% 

and 59% in FLNA and FLNB respectively. Glutathione S-transferase Mu3 shows an 

increase in the mRNA expression compared to the controls (p=0.138). SCIN, adseverin 

protein from the “ON” target list (Table 3), also showed a four-fold increase in the KO 

compared to the controls (p=0.0004). Taken together in these six cases, the mRNA-

measurements are indicating a regulation of these targets on mRNA level.  
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3.3.5. The KO of miRNA-200c results in changes in cellular processes and 

pathways 

For a broader analysis of changes in biological processes and pathways, the original 

dataset was filtered for proteins that appeared at least three times in at least one group 

(i.e. three times in KO or Ctrl), this resulted in a new subset of 1243 proteins. Missing 

values were replaced by the imputation algorithm of Perseus. After a two tailed t-test 

comparing KO to Ctrl, all proteins with p<0.05 were analyzed with the DAVID functional 

gene annotation tool90,91 with the GoTerm BP (Biological Processes) database (N=118, 

Figure 11a). 

The majority of functional annotations was categorized to BP1 cellular process (92), 

metabolic processes (72) and cellular component biogenesis (26). A detailed view on 

the processes is showing the top most frequent sub-classifications according to the 

number of attributed genes in GoTerm BP FAT. Prominent processes involve 

intracellular transport, translation and oxidation reduction as well as macromolecular 

complex assembly and subunit organization. These findings indicate a broad influence 

of miR-200c on essential processes.  

Moreover, a Gene-Set Enrichment Analysis of the whole dataset after imputation 

(N=1243) was performed against GO and KEGG databases. The global Enrichment 

Score (ES) histogram revealed that miR-200c knock-out resulted mainly in the 

inactivation of pathways, as shown by an accumulation of negative ES (Figure 11b). 

For depicting exemplary pathways, we chose KEGG pathway annotations. Enriched 

pathways (Supplemental Table S 1) contain mainly metabolic processes like oxidative 

phosphorylation citrate cycle and glycolysis, or cytoskeletal organsiation as shown in 

changes in focal adhesion (Figure 11c). Negative pathway enrichment was observed 

in adherens junctions and tight junctions, regulation of actin skeleton as well as other 

metabolic pathways like purine metabolism and decrease in the cell cycle (Figure 11d 

and Supplemental Table S 1). Heatmap analysis of the GSEA (Supplement S 4 and 

Supplement S 5) show a high occurrence of table 1 and 2 targets in all these pathways.  

Taken together, the GSEA findings indicate an increase in metabolic pathways, which 

also may increase de-toxification in the cells as well as numerous de-regulations in 

cell-cell contacts and cytoskeletal organization, which may lead to increased 

metastatic potential. 
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Figure 11 - Bioinformatic analysis of the proteomic dataset  

a) Targets for DAVID 6.7 analysis with the GOterm BP database were chosen from whole dataset for 
every protein with p<0.05 after student’s t-test KO vs Ctrl b) Distribution of ES Scores in a GSEA of KO 
vs Ctrl with Gene Ontology (c5.all.v5.2) and KEGG (c2.cp.kegg.v5.2) reference database c) GSEA 
Enrichment-Plot analysis of the whole dataset shows two exemplary KEGG pathways. Oxidative 
phosphorylation and focal adhesion showing overexpression while d) cell cycle and regulation of actin 
cytoskeleton are being down regulated 
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3.3.6. Biological assays reveal the impact of miRNA-200c KO on EMT, 

chemoresistance and metabolism 

To confirm the biological relevance of the data, different in vitro assays were performed 

utilizing the clonal cell lines (KOs and MCtrl). The metabolic activity was assessed by 

measuring NAPD(H)-turnover via MTT assay over the course of 72h. All clones 

showed a significantly higher turnover (***p<0.001 for M1 and **p<0.01 for M2 

and M3), either due to increased metabolic activity or higher proliferation (Figure 12a). 

The effect of change of resistance to chemotherapeutics was analyzed by treating the 

cells with doxorubicin (DXR) analyzing relative viability via the Celltiter-Glo assay 

(Figure 12b). The strongest effect was observed in M2, which was almost 4-times 

higher than MCtrl. Still, also all other clones show a highly significantly increased 

viability and therefore higher resistance to chemotherapeutics (p<0.0001). 

Previously described de-regulations in cell-cell contacts and cytoskeleton were 

analyzed by investigation of colony-formation abilities as well as of the migratory 

potential. A significant increased colony area (p<0.05) after seven days was observed 

in the KO cells (Figure 12c and supplemental figure S7). The live imaging experiment 

with single cell tracking (20h, N=30), as shown in Figure 12d, indicates that the 

KO cells show a tendency of migrating further and faster than Ctrl, with the differences 

between M2 and M3 to Ctrl being statistically significant (p<0.05) and M1 to Ctrl highly 

significant (p<0.0001) (additional information in Supplement S 6). While these results 

indicate EMT, well-known mechanisms, like activation of ZEB1/2 or Vimentin were not 

detected and E-cadherin levels were not changed (Supplement S 8).  



3. A proteomic analysis of an in vitro knock-out of miRNA-200c  

Dissertation - Bojan Ljepoja | 41 |  

 

Figure 12 – Biological data to validate predicted phenotype 

a) Analysis of relative increase of metabolic activity via MTT-Assay, normalized to each starting point , 
***p<0.001 for M1 and **p<0.01 for M2 and M3 compared to MCtrl, N=4, two-way ANOVA with Dunnett’s 
multiple comparison b) Treatment with 1 µM doxorubicine for 48h and analysis of viability as by CTG 
assay , N=6, ****p<0.0001 compared to Ctrl, two-way ANOVA with Bonferroni’s multiple comparison) c) 
Analysis of colony forming abilities via the clonogenic assay shows a significantly higher colony area in 
the KOs after seven days of incubation, student’s t-test, p<0.05, N=3/9, images in Supplement S 7d) 
Single cell tracking measurement for evaluation of migratory potential, displayed as accumulative 
distance after 20 h, N=30, ****p<0.0001, *p<0.05 compared to MCtrl, one-way ANOVA with Dunnett’s 
multiple comparison after outlier test, velocity displayed in S6). 

 

 

Figure 13 - Summary of important pathways and biological phenotypes, with targets from Tables 

1-3 matched to the known functions 
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Taken together, our results show that miR-200c plays a crucial role in cancer 

progression, by modulating the protein expression leading to a change of fundamental 

physiological properties, i.e. increasing metabolism and proliferation, the induction of 

EMT and enabling cell migration as well as increasing chemoresistance (Figure 13). 

  



3. A proteomic analysis of an in vitro knock-out of miRNA-200c  

Dissertation - Bojan Ljepoja | 43 |  

3.4. Discussion 

Recent publications on the role of miR-200c in cancer progression and metastasis28,74 

point towards a multilayered and complex interplay92, also involving other numerous 

pathways like angiogenesis and therapy resistance72,93. These facts emphasize the 

need to utilize more comprehensive tools like genomics and proteomics, as key to 

generate novel insights. With the genomic knock-out, followed by proteome analysis, 

we chose two state-of-the-art techniques to investigate new modes of action of 

miR-200c. 

While knock-outs of protein coding genes are quite common, the genetic disruption of 

non-coding regulatory RNAs is still rarely reported. CRISPR/Cas9 is probably the most 

frequently utilized genome-editing technology at this time, nevertheless this tool’s main 

disadvantage lies in the tendency to off-target cleavage29,84. Also, the need of a 

PAM-sequence may impede certain knock-out strategies, especially when site-specific 

mutations are necessary. While different modifications were performed to enhance 

Cas9’s specificity, like the conversion to the Cas9n nickase-mutant or rational design 

of the nuclease87,94, TALENs offer high specificity from the beginning, as was also 

demonstrated by successful use in a first human patient95. Therefore, in our experiment 

we chose to utilize TALENs, allowing us to specifically target the miRNA’s drosha 

processing site30,88. The genetic disruption in the drosha site minimizes the risk of 

inducing a mutation in the seed region, which could lead to the generation of a new, 

artificial miRNA with unpredictable off-targets. Kim et al. provided the pre-designed 

TALENs-plasmids, and previously showed that a mutations of the drosha processing 

site leads to a decrease in miR-expression. Further, the group was able to verify the 

KO-strategy for miR-200c by demonstrating effects of the miR-200c KO in the 

Her2-positive SK-BR-3 cell line, like an increase of the miRNA’s seed-targets via a 

motif enrichment analysis and decreased proliferation88. 

In our work, we were able to generate mutations in both alleles of miR-200c in three 

independent clones, namely M1, M2 and M3, as well as one clone with a heterozygous 

mutation, i.e. MCtrl. As miR-200c family members share most of their sequence and 

were reported to have similar functions72,73, and as the knock-out of a gene can induce 

compensation effects96, it was necessary to analyze the expression of the family 

members after the knock-out of miR-200c. The measurements emphasize the general 

importance of miR-200c among its family members in this cell line, as the levels are 

about 20-fold higher than the average miR-200c-family members. No significant 
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transcriptional compensation of any other family member was observed. In MCtrl the 

compensation of the loss of one-allele could be based on a higher transcription rate of 

the polycistronic unit, which would result in higher levels of miR-141. However, the 

observed increase in miR-141 expression is not significantly higher and does not 

correlate with the increase needed for the compensation of the loss of one allele of 

miR-200c needed. These findings together suggest a different compensatory 

mechanism in MCtrl, like inhibited degradation or changes in the miRNA processing of 

miRNA-200c. Still, it is not clear whether the basal expression levels of miR-200b and 

miR-429, which share the same seed region as miR-200c, could suffice for the 

regulation of certain targets and pathways. 

Only few miRNA-knock-outs, especially with TALENs, were described before97 98, but 

the subsequent target analysis has been mainly based on genomic approaches. The 

protein expression profile analysis therefore may reveal important novel information 

about the regulation network of miRNA-200c. In the proteomic approach, three 

knock-out clones were analyzed and compared to both: the wild-type cells as well as 

MCtrl with a heterozygous mutation. The later was chosen, as the expression level of 

miR-200c was not significantly changed, and the clone went through the same 

procedures as the miR-200c KOs. Therefore, it served as an appropriate control, to 

rule out expression changes based solely on selection and introduction of TALENs 

proteins. 

The PCA underlines the similarity of MCtrl to the wild type, prompting us to regard both 

as control groups. Moreover, a clustering analysis shows a close correlation between 

the replicas, as well as a tendency towards grouping the KO clones close together. 

This indicates that the knock-out of miR-200c does not lead to dramatic changes in the 

proteome, but to a surgical change in key elements and pathways, which are important 

for tumorigenesis. 

For a comprehensive overview of changed expression patterns, we utilized two 

independent bioinformatic methods. While the DAVID analysis is based on p-value 

pre-filtered set of proteins, analyzing gene ontology annotations on a broad level, the 

GSEA-Tool generates results due to a list-walk enrichment scoring analysis. Both 

analyses showed similar results, while used for a different purpose. One aim was to 

investigate pathways that are attributed to miR-200c expression and are involved in 

previously described physiological processes in cancer, like change in metabolic 

processes, EMT99,100 and resistance to chemotherapeutics27. The DAVID Analysis 
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enabled a global understanding of process-changes attributed to a small set of 

differentially regulated proteins, revealing changes in metabolism and cellular 

organization in general. With the GSEA, we were able to analyze certain crucial 

pathways in cancer in detail, revealing changes in cancer progression and metastasis. 

This is shown by enrichments in pathways increasing metabolic activity, loss of cell 

cycle regulation and actin cytoskeleton as well as cell-cell contacts. These findings, 

based on changes of protein expression were successfully correlated to phenotypes 

of the cells after the KO. After eradication of miR-200c expression, the cells showed 

increased migration, which could be attributed to changes in focal adhesion and 

cellular interaction. Also, increased NADP(H) turnover, as measurement of 

proliferation and metabolic activity is observed in the KO clones, which may also 

contribute to the increased resistance to doxorubicine treatment. The latter can also 

be caused by an increase of detoxification and the evasion of apoptosis.  

While we do see changes in pathways and targets involved in cell motility and 

morphology as well as a changed phenotype towards more migratory cells, common 

EMT markers like vimentin were not found and E-cadherin expression was unchanged. 

Epithelial MCF7 cells express low levels of ZEB1/2, as was confirmed previously101. 

Our data suggests that the miR-200c KO as such does not lead to an activation of 

ZEB1/2 and eventually to a decrease of E-cadherin. This may be due to the poised 

chromatin structures102 and not due to a persistent down-regulation via miR-200c. Our 

data suggests that miR-200c has additional effects on the cytoskeletal organization 

besides the ZEB1/2 axis, as was also proposed before 103. 

In more detail, the analysis of 675 proteins showed significant differential expression 

in 21 proteins in total, nine of those to a high extend in all three biological replicas. 

None of the obtained targets shown in Tables 1-3 was published to be regulated by 

miR-200c before. Comparing a list of confirmed miR-200c targets72 to our whole 

proteomics dataset, we found only 1 of 37 to be present, i.e. PRDX2. This protein 

displayed no significant differential expression in our analysis. The lack of prominent 

miR-200c targets in our tables may be based on different cell line models, as well as 

different analytical and experimental approaches used in the studies. Our proteomic 

approach as method does not allow gathering information of the whole proteome. Still, 

in this case the analysis of protein expression compared to a transcriptomic method 

may be beneficial, due to mainly translational changes which are expected after a 

miRNA KO. Nevertheless, on the basis of our data, it cannot be excluded that certain 
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family members may facilitate the regulation of certain proteins, without changing their 

own expression. Even low expression of miRNAs may be enough to regulate 

translation, especially for low abundant proteins which often cannot be detected 

appropriately in proteomics approaches. 

The regulatory mechanisms of miR200c seems to be different in our model cell line 

MCF7. MCF7 cells show high expression of miR-200c and as miRNA-inhibition is not 

very common this cell line model is not frequently used in miR-200c research. 

Consequently, most published miR-200c targets were unraveled in other cellular 

systems. Additionally, the KO of an inhibitor leads to different results than the 

addition/overexpression of it, which was performed in the majority of the published 

studies. In a KO only physiologically direct targets and corresponding downstream 

effects become obvious while other inhibitory mechanisms (e.g. DNA methylation) are 

not affected in our settings and thus these potential miR-targets display no altered 

expression.  

Moreover, we were analyzing a KO which is a longterm effect and might display 

different changes than those observed in transient overexpression or inhibition models. 

Transient experiments additionally may lack compensatory mechanisms. 

While transient inhibition of miR-200c has revealed several functions in breast cancer, 

the long-term disruption of the gene may be more similar to the setting in a tumor. 

Of note, it was shown that miR-200c expression can be lost due to locus methylation, 

leading to more aggressive breast cancer phenotypes104. With our approach we were 

able to discover novel targets which are truly governed by miR-200c in MCF7 cells and 

might play crucial roles in normal cellular settings. 

Based on the information from the GO-Database, these targets were allocated to their 

main biological function: Most of the proteins play a role in cellular processes involving 

the cytoskeleton, metabolism and detoxification. This supports previous studies of 

miR-200c’s function in EMT, proliferation and chemoresistance27,28,99,100, while 

additionally revealing yet unknown miR-200c downstream proteins.  

Our findings were affirmed by validation of changes on mRNA level by RT-qPCR on a 

set of six novel miR-200c targets (namely FLNA, FLNB, AGR2, SCIN, GSTM3 and 

ALHD7A1), originating from different data-mining methods and pathways.  

Filamins A and B (FLNA, FLNB. Further, filamins can cause cell migration and 

invasion, by mediation of HGF/c-MET signaling as shown in hepatocytes105, as well as 

via the interplay with Cyclin D in highly metastatic human MDA-MB-231 cells106, which 
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lack the expression of miR-200c27. Notably, also in a set of miR-200c low triple negative 

breast cancers (including MDA-MB-231) it was reported that filamin A107 knock-down 

leads to increased chemosensitivity to docetaxel.  

Different proteins may contribute to enrichments in metabolic and cellular processes, 

like the Anterior Gradient Protein 2 Homolog (AGR2). AGR2 has been shown to play 

a critical role in numerous cancers and other diseases108, but especially in breast 

cancer, a high AGR2 expression shows negative effects on survival of tamoxifen 

treated patients109. After overexpression in vitro, increased proliferation and drug 

resistance to cisplatin was shown in A375 cell line110 and even a apoptotic bystander 

effect of cancer cells on normal cells was shown111. These findings suggest an 

influence of AGR2 on drug resistance and breast cancer progression and as the 

miR-200c knock-out significantly increases its expression, miR-200c may be an 

important regulatory system for AGR2 expression. GSTM3, glutathione S-transferase 

Mu3 is a member of the glutathione transferase superfamily, which are known to play 

an important role in different processes of detoxification, likely also of 

chemotherapeutic drugs112. Recent publications show that inhibiting glutathione 

transferases may overcome resistance to platin-based DNA damaging drugs113. 

Furthermore, Adseverin, the Calcium-Dependent Actin Severing and Capping Protein 

(SCIN), has been shown to have effects on different cancers. While no observations 

in breast cancer were reported, previous data show that a silencing of SCIN leads to a 

decrease in proliferation of A549 and H1299 lung carcinoma cells114. SCIN was also 

described as a driver in metastasis and outcome marker in patients with gastric 

cancer115, as well as its role in mediation of cisplatin resistance in bladder cancer 

cells116. All these findings correlate with effects observed in loss-of-miR-200c 

scenarios, which according to our data leads to an increase in SCIN. 

Aldehyde dehydrogenases are a family of proteins oxidating aldehydes to carboxylic 

acids in NADP(H) dependent manner. Due to xenobiotics, reactive oxygen species 

(ROS) accumulate, finally leading to oxidative stress. Brocker et al. suggest ALDH7A1 

may play an important role in the defense of the cell against oxidative stress and its 

cytotoxicity117. As the cytotoxic effect of doxorubicin and similar drugs is in parts 

accounted to reactive oxygen species (ROS) and oxidative stress118,119, the loss of 

miR-200c may cause the increase of ALHD7A1, leading to an increase in resistance 

to these therapeutics. 
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In this study, we combined a miRNA knock-out with a proteome analysis to investigate 

long-term effects, analogues to the loss of miR-200c during tumor progression in 

patients. Thereby, we were able to confirm known mechanisms of miR-200c, as shown 

by enrichment and pathway analysis. Moreover, we unraveled a set of novel target 

candidates involved in those mechanisms and were able to confirm the predicted 

effects by biological assays. Our data further emphasizes the role of miR-200c in 

tumorigenesis and underscores its potential as biomarker as well as putative 

therapeutic agent for miRNA-based therapies. 

3.5. Materials and methods 

Reagents 

Puromycin dihydrochloride and Doxorubicine hydrochloride were obtained from Sigma-Aldrich 

(cat. P8833, D1515).  

Cell culture 

MCF7 cells stably expressing eGFP were generated in our lab. The parental cells were 

acquired from cell line service (Eppelheim, Germany), grown at 37 °C and 5 % CO2 in 

high glucose DMEM (Sigma) supplemented with 10 % fetal calf serum (FCS / Gibco), 

as well as the miR-200c KO clones M1, M2, M3 and MCtrl. All cells were routinely 

tested and confirmed as mycoplasm free. 

 

miR-200c knock-out 

Analysis for putative CRISPR-Targets was performed via the CRISPR-Design Tool 

from Feng Zhang’s lab (http://crispr.mit.edu, last target review: 18th of January, 2017) 

120.The TALENs pair was acquired from the TALENs Library of the Seoul National 

University (http://cge.ibs.re.kr/html/cge_en/)88, the binding sequences for left and right 

TALENs are: CTAATACTGCCGGGTAATGA, TCCCTGTGTCAGCAACATCCA – 

respectively, the target sequence is TGGAGGCCCCTG. In order to develop a stable 

miR-200c KO in MCF7 cells, 600,000 cells per well were seeded in a 6 well plate and 

transfected on the following day with 3µg DNA (equimolar ratio of two TALENs and a 

reporter plasmid containing a puromycin resistance cassette and red fluorescence 

protein (RFP)) using K2 Transfection System (Biontex) according to the manufacturers 

http://crispr.mit.edu/
http://cge.ibs.re.kr/html/cge_en/
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protocol. Two days post transfection, the cells were selected with 1 µg/ml of puromycin 

for two weeks, followed by single cell dilution to obtain monoclonal cultures. 

DNA was extracted using Phenol-Chloroform (both Sigma), and analyzed by the T7-

Surveyor assay (NEB). In mutation-positive clones, a sequencing of the miR-200c 

gene locus was performed. Three homozygous miR-200c KO clones were acquired, 

called M1, M2 and M3. The reporter-plasmid (SBI cat. MIR-KO-200cHR-1), comprises 

a puromycin and RFP reporter.  

 

Sequencing 

DNA was extracted from MCF7 miR-200c KO cells using the standard protocol 

(phenol-chloroform). Approximately 500ng of DNA were used to amplify the miR-200c 

gene using the following primers:  

Forward CTCGAGGCTCACCAGGAAGTGTCCCC 

Reverse ACGCGTCCTTGTGCAACGCTCTCAGC. 

The PCR product was purified by a PCR purification Kit (Qiagen Cat. 28104) and 

finally 50 – 100 ng of purified PCR product was sequenced (GATC Biotech AG). 

 

miRNA quantitative RT-PCR 

Approximately 600,000 cells of each clone were harvested and total RNA isolated from 

cells using miRCURY RNA Isolation Kit (Exiqon). cDNA synthesis was carried out by 

a microRNA specific reverse transcription and detection with the qScript microRNA 

cDNA Synthesis Kit and PerfeCta SYBR Green SuperMix (Quanta Biosciences) with 

RT-PCR detection on a LightCycler 480 (Roche). The expression of miR-200 family 

members (miR-141, miR-200a, miR-200b, miR-200c) was normalized to miR-191121, 

using the 2-∆CT or 2-∆∆CT method. The following list contains the primers used for 

analysis of miRNAs:  

miR200c: GCGTAATACTGCCGGGTAAT;  

miR-191: GCGCAACGGAATCCCAAAAG;  

miR-141:GCGTAACACTGTCTGGTAAAGA; 

miR-200a: GAGTAACACTGTCTGGTAACGA; 

miR-200b:GCGTAATACTGCCTGGTAATGA; 

miR-429: GAGTAATACTGTCTGGTAAAACC  
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Sample preparation for proteomic analysis 

Protein was extracted from approximately 6x106 cells using lysis buffer containing 8 M 

urea and 400 mM NH4HCO3. Briefly, cells were washed three times with cold PBS, 

treated with lysis buffer and harvested using cell scrapper. Lysates were concentrated 

with QIA-shredder mini spin column (Qiagen, Germany) following manufacturer’s 

instruction. Protein quantifications were performed using BCA Protein Assay Kit 

(Thermo Fisher Scientific). 20 µg of protein were prepared for disulfide bond reduction 

by adding 45 mM of dithioerythritol (DTE), and incubated for 30 min at room 

temperature. Alkylation of cysteines was performed by adding 0.1M iodocetamide, 

followed by 30 min incubation at room temperature in the dark. Water was added to a 

concentration of 1M urea. 400 ng sequencing grade modified porcine trypsin 

(Promega, Madison, WI, USA) was added for overnight incubation at 37 oC. 

Afterwards, samples were purified using C18 spin columns (Pierce, Thermo Scientific, 

IL, USA) complying manufacturer’s instruction. Resulting supernatants were combined 

and freeze-drying was performed. Peptide samples were stored at -20 °C prior to LC-

MS/MS.  

 

Proteomic LC-MS/MS analysis 

Samples were diluted in 0.1 % formic acid. Nano-LC separation was done with a nano-

liquid chromatography system (EASY-nLC 1000, Thermo Scientific, USA)). 2.5 µg of 

peptide samples were loaded onto a trap column (PepMap100 C18, 75 µm x 2 cm, 3 

µm particles, Thermo Scientific) and separated at a flow rate of 200 nl/min by an 

analytical reversed phase column (PepMap RSLC C18, 75 µm x 50 cm, 2 µm particles, 

Thermo Scientific) using a 260 min gradient from 5 % B to 25 % B (solvent A: 0.1 % 

formic acid; solvent B: CH3CN/0.1 % formic acid) followed by a 60 min gradient from 

25 % to 50 % B. Tandem mass spectrometry was performed with an Orbitrap XL mass 

spectrometer (Thermo Scientific, USA). MS and MS/MS spectra were acquired using 

cycles of one MS scan (mass range m/z 300-2000) and five subsequent data 

dependent CID MS/MS scans (dynamic exclusion activated; collision energy: 35%). 
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Analysis of proteomic data and bioinformatics processing 

All data were processed with MaxQuant and analyzed in Perseus  

(version 1.5.3.2)122-124 at an FDR of 1 % for the peptide and protein level. In Perseus, 

following operations were performed: Transformation (log2) and removal of possible 

contaminants and false positive identifications from the reversed database. For relative 

quantification, only those proteins were considered that showed valid LFQ-values in all 

three replicas in all samples. No imputation was performed. 

In addition, proteins were considered “ON” when at least 5 valid values were found in 

M1, M2 and M3, and no value in the control. Proteins were considered “OFF” when at 

least 3 valid values were found in MCtrl and MCF7 and not at all in the KO group. 

For pathway analysis, the whole data set was re-analyzed: After transformation and 

removal of contaminants and false positives, data was filtered for proteins found at 

least 3 times in one of the groups KO or Ctrl. The whole dataset was analyzed by the 

Gene Set Enrichment tool (GSEA, version 3.0 beta2)91, following the originators’ 

instructions. For analysis with DAVID Bioinformatics 6.790, proteins were chosen which 

showed p<0.05 in a two-tailed student’s t-test, comparing Ctrl to KO group. 

 

Analysis of miR-200c binding in genes of target proteins 

For the analysis of a potential miR-200c binding in the found genes, the Targetscan 

7.1 database125 was used. 

 

Analysis of transcription factors in promoter regions of found genes 

For the analysis of the promoter region, each gene’s sequence was retrieved from the 

RefSeq-Database (https://www.ncbi.nlm.nih.gov/refseq/ as of April 2017) in order to 

identify the +1 position. Assuming the +1 position as starting site of transcription, 500 

nucleotides upstream were defined as the proximal promoter. Then, for analysis of 

proximal promoters, PhysBinder61 software was used, the analysis was performed with 

the highest stringency. The resulting transcription factors were evaluated for miR-200c 

and family binding with Targetscan 7.1 125.  
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qPCR validation of mRNA expression 

RNA was extracted utilizing the Total RNA Kit, peqGOLD (VWR) as by manufacturer’s 

instructions. Translation to cDNA was performed utilizing the qScript cDNA synthesis 

kit (Quanta Bioscience) as by manufacturer’s protocol. 

Analysis of expression was performed with the Lightcycler 480 (Roche) and the 

Universal Probe Library (Roche) with following probe and primer (forward/reverse) 

combinations: 

AGR2, Probe 47, GGTGGGTGAGGAAATCCAG / GTAGGAGAGGGCCACAAGG 

ALDH7A1, Probe 7, CACTCAGGTGGGAAAACAGG / AATGGCATTGTTTCCTCCAA 

FLNA, Probe 32, TCGCTCTCAGGAACAGCA / TTAATTAAAGTCGCAGGCACCTA 

FLNB, Probe 21, CGGACTTCGTGGTAGAATCC / TGAGAGGGGCCTTCAATG 

GSTM3, Probe 85, CCAATGGCTGGATGTGAAAT / TCCAGGAGGTAGGGCAGAT 

SCIN, Probe 19, TTTCAAAGGCGGTCTGAAAT / CAGGTCGTTCGTAAGAACATGA 

 

Measurements of metabolic activity 

All clones were seeded triplicates in a concentration of 5000 cells / well in four identical 

96-well plates. The cells were treated with 10µl of 5 mg/ml MTT (Sigma Aldrich) at the 

timepoints 0h (about 2h after seeding) and 24h, 48h and 72h later respectively. The 

plates were incubated for 2h at 37°C and stored at -80°C over night. Afterwards100µl 

DMSO (Sigma Aldrich) were added and incubated for 37°C for 30mins, while shaking. 

Measurements were performed with the Spark 10M (TECAN). 

 

Live cell imaging and 2D migration 

Live Cell Imaging was performed using a Nikon Eclipse Ti Inverted Microscope (Nikon, 

Düsseldorf, Germany). Cells were kept under constant 37°C, 5% CO2 and 80% 

humidity by the heating and incubation system from Ibidi (Martinsried, Germany). 

Imaging was performed with the 10x phase contrast objective. For the 2D migration 

experiments 8-well slides (Ibidi, Martinsried, Germany) were coated with 50 µg/ml 

fibronectin for 1 h, afterwards cells were seeded in a density of 25x103/well, and were 

allowed to attach to the coated surface for 2 h. Cell Displacement was imaged every 

10 min over 20 h in all settings. For analysis of movement, single cells were tracked 

manually using ImageJ Manual Tracking Plugin. Acquired trajectories in 2D were 
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further analyzed for mean velocity using Ibidi Chemotaxis and migration tool, 

afterwards an outlier-analysis was performed by the Identify outliers tool of Prism 

GaphPad. 

 

Clonogenic assay 

1000 cells were seeded in a 6-well plate (TPP, Switzerland), and grown for 7 days, 

fixed and stained with paraformaldehyde (PFA) containing crystal violet (Sigma). 

Survival colony were analysed by ImageJ ColonyArea 

 

Doxorubicine resistance 

All clones were seeded in a concentration of 5000 cells per well in 96 well plates. 24h 

after seeding, cells were treated with 1 µM Doxorubicine for 48h (Sigma Aldrich, stock 

10mM in DMSO). Analysis of viability was performed via Celltiter-Glo assay (Promega) 

and normalized to DMSO control. 

 

Statistical analysis  

Results are expressed as the mean ± SD of at least three biological replicas, if not 

stated otherwise. Software GraphPad Prism v6 and SigmaPlot 11 were utilized for the 

analysis of the data. For analysis of miR-200c expression (only one variable and more 

than two groups), the One Way Analysis of Variance test was used, followed by the 

two tailed Bonferroni´s multiple comparison test, with DF = 4. For analysis of all family 

members (two variables and more than two groups per variable), the Two Way 

Analysis of Variance test was used, followed by two tailed Bonferroni´s multiple 

comparison test with DF = 16. For analysis of family expression between early and late 

passage (three variables and more than two groups per variable) we used the Three 

Way Analysis of Variance test, followed by two tailed Bonferroni´s multiple comparison 

test, with DF = 12  

 

Data availability 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request.  
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3.6. Supplemental information 

 

Supplement S 1 

Clustering analysis of the measurements after vertical and horizontal z-score normalization 

Supplement S 2 

Venn-diagramm with results of the vulcano blot analysis of M1 or M2 or M3 vs (MCF7 and MCtrl) each 
N=675 with 250 randomizations, FDR 0.05 and S0 of 0.1 as shown in Table 2 
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Supplement S 3 

Detailed results of  
Figure 10F, with mRNA measurements compared to the protein expression data for each clone 
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Supplement S 4 

Heatmaps corresponding to the Enrichment blots in Figure 11c 

 

 

Supplement S 5 

Heatmaps corresponding to the Enrichment blots in Figure 11d  

  

 



3. A proteomic analysis of an in vitro knock-out of miRNA-200c  

Dissertation - Bojan Ljepoja | 57 |  

 

Supplement S 6 

Evaluation of migration data in Figure 12b (N=30, *p<0.05, one-way ANOVA with post-hoc Bonferroni’s 
multiple comparison) 

 

 

Supplement S 7 

Clonogenic assay – imaging of colonies, as evaluated in the pooled analysis in Figure 12d 

Supplement S 8 

qPCR measurements of E-Cadherin mRNA levels in Ctrl vs KOs shows no significant difference 

 
  



3. A proteomic analysis of an in vitro knock-out of miRNA-200c  

Dissertation - Bojan Ljepoja | 58 |  

Supplemental Table S 1 15 / 32 gene sets are enriched in phenotype KO 

NAME SIZE ES NES NOM p-val FDR q-val FWER p-
val RANK AT 

MAX LEADING EDGE 
KEGG_PARKINSONS_DISEASE 34 0.46907002 15.940.783 0.009861933 0.24380365 0.214 345 tags=50%, list=28%, signal=67% 
KEGG_OXIDATIVE_PHOSPHORYLATION 33 0.48710477 15.471.032 0.018480493 0.17806831 0.293 345 tags=52%, list=28%, signal=70% 
KEGG_ALZHEIMERS_DISEASE 35 0.420356 14.566.842 0.046 0.24040706 0.479 292 tags=40%, list=24%, signal=51% 
KEGG_CITRATE_CYCLE_TCA_CYCLE 20 0.4615872 13.821.458 0.12048193 0.29699662 0.648 132 tags=30%, list=11%, signal=33% 
KEGG_HUNTINGTONS_DISEASE 43 0.36943752 13.720.317 0.03508772 0.2523027 0.664 292 tags=42%, list=24%, signal=53% 
KEGG_GLUTATHIONE_METABOLISM 15 0.44105875 13.544.401 0.08317215 0.23395455 0.703 78 tags=27%, list=6%, signal=28% 
KEGG_MAPK_SIGNALING_PATHWAY 16 0.4151188 13.413.316 0.10453649 0.22068681 0.734 136 tags=25%, list=11%, signal=28% 
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 20 0.44356683 13.299.485 0.15369262 0.20533033 0.744 263 tags=40%, list=21%, signal=50% 
KEGG_CARDIAC_MUSCLE_CONTRACTION 17 0.46564567 12.798.785 0.18257262 0.23733874 0.82 292 tags=53%, list=24%, signal=68% 
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 15 0.42715377 12.191.079 0.24395162 0.285524 0.892 308 tags=47%, list=25%, signal=61% 
KEGG_PYRUVATE_METABOLISM 15 0.49441242 11.757.169 0.28846154 0.31522772 0.919 122 tags=33%, list=10%, signal=37% 
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 23 0.39739954 11.214.875 0.33840305 0.35995352 0.95 200 tags=30%, list=16%, signal=36% 
KEGG_FOCAL_ADHESION 24 0.30988422 10.625.255 0.36055776 0.41783723 0.972 277 tags=29%, list=22%, signal=37% 
KEGG_LYSOSOME 17 0.24309203 0.69935 0.9089184 0.94843 1.0 162 tags=18%, list=13%, signal=20% 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 17 0.19984435 0.660395 0.934236 0.92140806 1.0 195 tags=18%, list=16%, signal=21% 

 

Supplemental Table S 2 17 / 32 gene sets are upregulated in phenotype 

NAME SIZE ES NES NOM p-val FDR q-val FWER p-
val RANK AT 

MAX LEADING EDGE 
KEGG_CELL_CYCLE 22 -0.51119137 -16.219.078 0.035643563 0.19916053 0.172 348 tags=55%, list=28%, 

signal=75% 
KEGG_RIBOSOME 68 -0.31785846 -14.187.368 0.016746411 0.49701187 0.529 392 tags=41%, list=32%, 

signal=57% 
KEGG_ENDOCYTOSIS 20 -0.40655762 -13.007.351 0.12331407 0.70801485 0.78 193 tags=30%, list=16%, 

signal=35% 
KEGG_PURINE_METABOLISM 23 -0.36597934 -11.775.029 0.24390244 0.9449636 0.925 14 tags=13%, list=1%, 

signal=13% 
KEGG_PROTEASOME 34 -0.30099234 -11.316.409 0.29045644 0.9364207 0.95 457 tags=53%, list=37%, 

signal=82% 
KEGG_ADHERENS_JUNCTION 15 -0.35883263 -11.289.837 0.28879312 0.78668696 0.95 338 tags=53%, list=27%, 

signal=73% 
KEGG_TIGHT_JUNCTION 20 -0.3472254 -10.904.311 0.3391473 0.7903667 0.964 294 tags=40%, list=24%, 

signal=52% 
KEGG_OOCYTE_MEIOSIS 19 -0.3068673 -0.99786586 0.49278352 0.9669546 0.988 440 tags=58%, list=36%, 

signal=89% 
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 16 -0.319742 -0.979242 0.4989059 0.909404 0.991 251 tags=31%, list=20%, 

signal=39% 
KEGG_INSULIN_SIGNALING_PATHWAY 17 -0.29883376 -0.95862424 0.51827955 0.8756116 0.994 256 tags=35%, list=21%, 

signal=44% 
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 36 -0.24238425 -0.9287425 0.6079295 0.8686062 0.998 275 tags=31%, list=22%, 

signal=38% 
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 22 -0.28710213 -0.9233835 0.595092 0.8081302 0.998 514 tags=55%, list=42%, 

signal=92% 
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 17 -0.29578927 -0.90542006 0.5875831 0.7824528 0.999 440 tags=59%, list=36%, 

signal=90% 
KEGG_SPLICEOSOME 58 -0.22438549 -0.8703807 0.6956522 0.7967216 0.999 364 tags=38%, list=29%, 

signal=51% 
KEGG_PATHWAYS_IN_CANCER 27 -0.22919808 -0.7894147 0.8729839 0.8798361 0.999 338 tags=41%, list=27%, 

signal=55% 
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 16 -0.24920684 -0.7617598 0.872 0.8646141 1.0 218 tags=25%, list=18%, 

signal=30% 
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 16 -0.28722718 -0.7255098 0.8017058 0.8583328 1.0 362 tags=44%, list=29%, 

signal=61% 
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Supplemental Table S 3 Overview of predicted transcription-factor binding sites 
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4.1. Abstract 

Cancer progression and metastases are frequently related to changes of cell motility. 

Amongst others, the microRNA-200c (miR-200c) was shown to maintain the epithelial 

state of cells and to hamper migration. Here, we describe two miR-200c inducible 

breast cancer cell lines, derived from miR-200c knock-out MCF7 cells as well as from 

the miR-200c-negative MDA-MB-231 cells and report on the emerging phenotypic 

effects after miR-200s induction. miRNA-200c expression appears to cause. The 

induction of miR-200c expression seems to effect a rapid reduction of cell motility, as 

determined by 1D microlane migration assays. Sustained expression of miR200c leads 

to a changed morphology and reveals a novel mechanism by which miR-200c 

interferes with cytoskeletal components. We find that filamin A expression is 

attenuated by miRNA-200c induced downregulation of the transcription factors c-Jun 

and MRTF/SRF.This potentially novel pathway that is independent of the prominent 

ZEB axis could lead to a broader understanding of the role that miR200c plays in 

cancer metastasis.  
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4.2. Introduction 

Metastasis, i.e. the nesting of tumor cells in adjacent tissues and even distant organs, 

is one of the most malicious aspects of cancer, causing nine out of ten cancer  

deaths 126. While primary tumors often can be treated well, the uncontrollable spread 

of cancer cells remains a major challenge in most clinical settings. One prevalent 

example for risks of metastatic cancers are tumors of the breast, which show a clear 

association between metastasis and survival of patients 127,128. While the primary 

breast carcinomas show rather good resectability due to their location, the cancer often 

has reached distant organs before the primary tumor was detected. Progress in 

understanding the disease has been made by identifying certain subtypes of breast 

tumor cells which inherit particularly high metastatic potentials 129. However, current 

studies show a rise in incidence of metastatic breast cancer 130. Therefore, still more 

and deeper insights into the key regulators of migratory and metastatic processes are 

needed. 

Epithelial to mesenchymal transition (EMT) is often regarded as one of the most 

important steps in the initiation of migration and thus the onset of invasion and 

metastasis of tumors 131-133. While EMT can be influenced by multiple cellular 

processes, RNA interference by microRNAs (miRNAs) was shown to be a direct and 

important regulatory mechanism 63.  

In general, miRNAs are small, non-coding RNAs, influencing the translation of multiple 

fundamental cellular processes like metabolism, proliferation and cellular organization. 

Even small changes in miRNA expression patterns can have tremendous impact on 

the cell fate and can prompt towards various malignancies or even be the root cause 

of those 65,69,70. One miRNA family with important implications in cancer is the miR-200 

family, consisting of miR-200a, miR-200b, miR-141, miR-429 and miR-200c. While all 

members have demonstrated effects in the regulation of cancer processes, miR-200c 

is the family member which unifies well investigated associations in the most important 

cancer pathways, like the inhibition of chemoresistance27,134,135, regulation of metabolic 

activity28,67,72 and also in epithelial-to-mesenchymal transition (EMT) and thus 

potentially cancer cell metastasis 26,27,72,74,92,99.  

MiR-200c’s role in the regulation of EMT is based on its stabilizing effect on the 

expression of E-cadherin by preventing the inhibition of E-cadherin by ZEB1 and ZEB2 

(Zinc finger E-box-binding homeobox members1 and 2). Previous studies have shown 

that the introduction or re-expression of miR-200c in vitro reverses the mesenchymal 
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phenotype of cancer cells, i.e. leading to EMT reversion, termed MET (mesenchymal 

to epithelial transition) 74,99.  

Although EMT may be one of the main pathways of metastasis induced by the loss of 

miR-200c, the metastatic capabilities of tumor cells also rely on multiple other 

mechanisms. Interestingly, miR-200c was shown to influence other migratory 

pathways, for example by regulation of fibronectin secretion and moesin expression or 

by targeting the SRF-regulating proteins FHOD1 and PPM1F 26,100,103.  

To further investigate the function of miR-200c as regulator of both, ZEB-dependent 

as well as independent mechanisms, we generated a genomic knock-out (KO) of 

miR-200c in MCF7 breast cancer cells in our previous work 136. The resulting KO 

phenotype showed increased migration, even of the epithelial and usually 

low-migrating MCF7 cells. A pooled proteomic analysis revealed a number of common 

differentially regulated proteins, half of which are attributed to the regulation of 

migratory processes. From this set of proteins, novel players were chosen for further 

investigation. One protein of particular interest was Filamin A, a member of the filamins 

protein family that are known building blocks of the cytoskeleton and involved in many 

cellular and migratory processes 137. Filamins, and especially filamin A, function as 

important actin filament crosslinkers, thereby facilitating actin-actin interactions, but 

also actin-connections to membrane bound proteins and intracellular signaling 

macromolecules 137,138 and previous studies described the role of filamin A in the 

regulation of cell migration 139. However, a systematic study of miRNA-200 mediated 

expression of filamin A and concomitant changes in migration has not yet been carried 

out. 

In this study, we generated two different inducible miR-200c breast cancer cell line 

models, derived from mesenchymal MDA-MB-231 cells or the miR-200c knock-out of 

the epithelial MCF7 cells, respectively. By doxycycline induction, we investigated the 

effect of increased miR-200c expression on morphological changes and motility. We 

used a micro-pattern based 1D migration assay, as described previously by Schreiber 

et al. 140 to get a multiparameter quantification of cell motility. We also found strong 

indications of a regulatory network of miR-200c and FLNA in both breast carcinoma 

models. This pathway, which is independent of the ZEB-expression of the cells, may 

point towards an important further function of miR-200c in impeding cancer metastasis. 
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4.3. Results 

4.3.1. The migratory potential of MDA-MB-231 cells decreases after 

miRNA-200c induction 

To investigate the effect of miRNA-200c induction on the metastatic potential of cells, 

we performed an in-depth analysis of single cell migration.  

Therefore, the miR-200c non-expressing, highly migratory MDA-MB-231 cell line28 was 

chosen for stable transduction with a TET-off construct containing either miR-200c or 

a scrambled control, resulting in the MDA-MB-231 TRIPZ-200c or MDA-MB-231 

TRIPZ-Ctrl cells. Treatment with doxycycline for 48 h showed a reliable and easy 

controllable induction of miR-200c expression as well as of an RFP reporter tag  

(Figure 14a, b). 

 

Figure 14 Inducible miR-200c construct with RFP reporter  

(a) Description of the inducible pTRIPZ-200c construct (b) and verification of functional transduction in 

MDA-MB-231 cells by induction of the RFP reporter tag by 5 µg / ml doxycycline for 48 h. (c) Expression 

analysis by RT-qPCR of miRNA-200c after induction with 5µg / ml doxycycline after 48 h. 

 

Using these cell lines we perform an multi-parameter analysis of motility by studying 

1D migration on ring-shaped micro-lanes. Compared to other common migratory 

assays, the real time tracking of the 1D migration allows to analyze high numbers of 
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cells and to assess a migratory fingerprint, i.e. cell velocity, cell persistence, cell resting 

times, cell run times and the run fraction, at the single cell and population level. 

For this purpose, cells were seeded on arrays of fibronectin-coated ring micropatterns 

and were observed using time-lapse microscopy (Figure 15 a, b). We found that the 

1D cell motion is divided into distinct run states, where cells move persistently in one 

direction, and rest states with no or random wiggling motion140 (Figure 15c). This two 

state analysis results in characteristic parameters quantifying cell motility (Figure 2d). 

By discriminating between run and rest states we make sure that the velocity is only 

evaluated when cells are actually migrating (𝑣run). Furthermore, we analyze the typical 

lifetime of run and rest states 𝜏run and 𝜏rest, which are exponentially distributed. This 

allows distinguishing between the stability of the run state, given by 𝜏run and the ability 

of cells to establish polarization indicated by 𝜏rest. For a comprehensive overview of 

the different motility parameters, spider-plots were generated (Figure 15e, f). As 

expected, the doxycycline induction in the MDA MB-231 TRIPZ-Ctrl cells showed no 

significant effects compared to the uninduced cells, while miR-200c induction distinctly 

changed the migratory behavior of the cells. The run velocity and the typical duration 

of a run state were significantly decreased whereas the typical duration of a rest state 

was increasing. The strongest effect was observable in the fraction of time that cells 

spent in the run state, 𝑃run, which decreased by a factor of three. Thus, induction of 

miR-200c expression affects the polarization of cells leading to longer rest states and 

a decreased persistence of the run states. To show that the decrease of persistence 

of the cell motion was also visible without the division into run and rest states we 

evaluated the persistence path q, which is given by the effective maximum 

displacement of a cell divided by the actual length of the trajectory, as described in 

Maiuri et al. 141. The described effects are visualized in a sample of a Ctrl vs a miR-200c 

induced cell, as shown in the supplemental movie 1 (SM1). On single cell level, a broad 

distribution of run velocities and a huge variance in the fraction of time spent in the run 

state was observed (Figure 15g). With increasing miR-200c expression, the distribution 

narrowed, and the average velocity was decreasing as well as the time cells spent in 

run states. Furthermore, the fraction of cells that remained in the rest states for the 

time of the whole experiment increased by almost a factor of three.  

Taken together, our data show that the induced miR-200c expression resulted in a 

reduced motility in all five migratory parameters and, hence, an overall decreased 

migratory potential. The observed process must be independent of the well 
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investigated miR-200c and ZEB1/2 induced EMT mechanisms 99; due to the fact that 

MDA-MB-231 cells are not expressing E-cadherin 101,142,143.Our findings therefore 

suggest a novel mode of miR-200c acting on migration. 

 

 

Figure 15 - miR-200c induction decreases migration of MDA-MB-231 cells as shown in the 1D 

migration assay (description next page) 
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(a) Phase contrast images of a MDA-MB 231 cell migrating on a ring shaped micro-lane. The ring is 
coated with fibronectin (edges marked in white) the surrounding is passivated with PEG. The scale bar 
is 20 µm. (b) Array of ring shaped micro lanes. Only rings that are occupied by one single cell are 
evaluated. (ring diameter 150 µm) (c) Angular position of one exemplary cell over time with classification 
into run and rest states. (d) Drawing of a cell track. Cell motion can be separated in run states with 
ballistic motion and rest states with random motion. The characteristic duration of run and rest states 
τ_run  ,τ_rest as well as the velocity in the run state v_run are evaluated. (e, f) Multi-parameter analysis 
of cell motility of cell populations. Motility of cells is measured 48h after induction with 5 µg / ml 
doxycycline (red). For MDA-MB-231 TRPZ-200c cells (f) a clear reduction of cell motility can be seen in 
all of the 5 parameters compared to no induction (grey). For MDA-MB-231 TRPZ-Ctrl cells (h) no big 
effects on motility are observed with adding doxycycline. N is the number of cells analyzed. (g) Single 
cell analysis of P_run  and v_run for the data shown in e, f) where each dot represents a single cell. One 
cell population is spread over a large range of velocities and fraction of time in the run state. Induction 
of miR 200c is causing a shift to slower velocities and less time spent in the rest state. (error bars in g 
and h indicate standard errors exept for τ_run  ,τ_rest where it’s CI of 99% of the fit)  
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4.3.2. MiRNA-200c induction changes the 3D morphology  

As a decrease in migration often correlates with changes of the cytoskeleton, we 

investigated how miR-200c affects the cellular morphology. Hence, 

immunofluorescence imaging and analysis of the cellular shape was performed. Figure 

16a shows a comparison of the actin-structure of MDA-MB-231 with either the Ctrl or 

the miR-200c construct stimulated with doxycycline for 72 h. While the TRIPZ-Ctrl cells 

maintained their mesenchymal, spindle-like shape, the miR-200c induction changed 

the cellular profile towards rounder, uniformly dilated cells as seen in the significant 

difference of the ratio of widest vs. longest spread of the cell. The three-dimensional 

shape of the cells was investigated by taking z stacks of confocal images of actin and 

filamin. Figure 16b and c show the 3D images with color coding for hight. In line with 

the previous results, the TRIPZ-Ctrl cells retained their spindle-like structure, after 72h 

and 168h of doxycycline stimulation. The miR-200c induction caused a gradual 

transition towards rounder and morphologically flatter cells over time, eventually 

resulting in evenly flat “pancake” like shape. For better visualization, these effects are 

presented in a 3D rendering animation of the stacks, shown in the supplemental 

movies (SM2 Ctrl and SM3 miR-200c). These results together show a strong effect of 

miR-200c induction on the cellular shape. 
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Figure 16 - Overexpression of miR-200c induced fast morphological changes in MDA-MB-231 

cells 

(a) Fluorescence staining of the cytoskeleton by Phalloidin (red) and nuclei (blue) in MDA-MB-231 
decreased spindle-like phenotype after induction miR-200c, as shown by significant changes in the 
shape factors (N= 30; error bars are SD; *** p > 0.001). (b,c) Renderings of stacked immunofluorescence 
images of MDA-MB-231 showed decreased mesenchymal shape in 3D after induction of miR-200c for 
(b) 72 h as well as (c) further increased effects after 168 h compared to included controls. (d) Distribution 
of filamin A in a central cross section after induction with miR-200c for 72 h and 168 h as compared to 
induced control  
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4.3.3. Changed expression of FLNA is observed after a miRNA-200c knock-

out and overexpression 

A proteomic analysis of a genomic knock out (KO) of miR-200c in MCF7 breast cancer 

cells was previously reported by our group 136. There, we showed that more than 50% 

of all differentially expressed proteins were affiliated to migratory processes (Figure 

17a). Out of these proteins, filamin A was one of the prominent and promising targets 

and therefore chosen for further analysis in this study. To study the biological effect of 

miR-200c on FLNA the inducible MDA-MB-231 TRIPZ-200c or TRIPZ-Ctrl cells were 

utilized. In line with studies of the MCF7-200c-KO cells the inverse effects regarding 

filamin A expression were observed after induction of miR-200c. Here, the mRNA 

levels of FLNA decreased to 30% and protein expression to 40% compared to 

doxycycline stimulated TRIPZ-Ctrl cells (Figure 17b, c). Additionally, an 

immunofluorescence staining of filamin A was performed in both cell line models. i.e 

the MCF7-200c-KO and the MDA-MB-231 TRIPZ-200c. The KO of miR-200c in MCF7 

resulted in increased cellular expression of filamin A (Figure 17d), while induction of 

miR-200c in MDA-MB-231 TRIPZ-200c cells resulted in decreased filamin A protein 

expression (Figure 17e). Taken together, miR-200c expression showed an indirect 

proportional relation to filamin A protein as well as mRNA in two complementary breast 

cancer cell line models.  

 
 
Figure 17 miR-200c regulates migration associated genes such as filamin A (next page) 

(a) A proteomic analysis of a TALENs knock-out (KO) of miR-200c in MCF7 cells revealed a set of 
proteins with differential expression, of which 50% are involved in migratory processes and are shown 
in the table. (RT qPCR showed that after adding 5 µg / ml doxycycline for 48 h the expression of FLNA 
mRNA (b) as well as filamin A protein(c)(normalized to tubulin) decreased significantly in MDA-MB 231 
TRIPZ 200c cells. (d) Immunofluorescence staining of filamin A (green) and DAPI (blue) in MCF7 Ctrl 
and KO 200c showed significantly increased relative intensity of filamin A, in contrast to (e) the MDA-
MB-231 cells which showed a strong decrease in filamin A intensity after induction of miR-200c (all N=3; 
error bars indicate standard deviation SD; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p > 0.0001)  
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4.3.4. MiRNA-200c is regulating FLNA expression via JUN and MRTF-SRF 

To further investigate the mechanism of miR-200c dependent regulation of FLNA, a 

rescue of miR-200c expression in the MCF7-200c-KO cells was performed, by stably 

introducing the inducible TRIPZ-200c plasmid. As expected, the induction successfully 

re-expressed miR-200c and consequently decreased FLNA mRNA (Figure 18a, b). 

As no miR-200c binding site was predicted in silico in the FLNA 3’UTR, other regulatory 

mechanisms were investigated. First, a promotor analysis was performed, in order to 

determine transcription factors (TFs) which are potentially regulating FLNA expression 

and contain an in silico predicted miR-200c binding-site (Figure 18c). Four of those 

TFs were identified by RT-qPCR screening after miR-200c induction in MDA-MB-231 

cells (Supplement S 9), but a reproducible decrease in expression of these TF was 

solely detected for JUN (Figure 18d). This result was confirmed in the miR-200c 

inducible MCF7 KO cells (Figure 18e).  

To investigate the effect of JUN on FLNA expression, a siRNA knockdown of JUN was 

performed in wild type MDA-MB-231 as well as in MCF7 cells and compared to 

scrambled control siRNA. In both cases, the reduction of JUN mRNA also decreased 

FLNA mRNA expression (Figure 18f, g), with stronger relative effects in MCF7 cells 

than in MDA-MB-231. 

Thus, we suggest JUN as a direct target of miR-200c and as putative regulator of FLNA 

expression. 

Another possibility of miR-200c regulating FLNA is via SRF and MRTF. It was shown 

previously that miR-200c regulates SRF and MRTF103, and also a regulation of FLNA 

by SRF was predicted in previous studies 144. Thus, we tested the hypothesis that miR-

200c is able to regulate FLNA via the MRTF/SRF axis by transiently introducing 

pgl4.34, a luciferase reporter for MRTF-dependent SRF activation, into both miR-200c 

inducible cellular systems. Here, a decrease in luciferase signal upon miR-200c 

expression was observed in both, MDA-MB-231 and MCF7 cells, compared to their 

respective doxycycline treated controls (Figure 18h, i). These results suggest a 

regulatory relation between miR-200c and FLNA based on the two different 

mechanisms, i.e. via transcriptional repression of filamin A through reduced JUN and 

the regulation by MRTF/SRF (Figure 18j). 
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Figure 18 - Filamin A is regulated by miR-200c by repression of JUN as well as SRF-MRTF (next 

page) 

(a) After introduction of the TRIPZ-200c construct into MCF7 200c KO cells, miR-200c was re-expressed 
by 48 h of DOX induction and showed (b) significantly decreased FLNA expression. (c) In silico analysis 
of the FLNA promotor revealed 6 transcription factors which have a potential miR-200c binding site. (d) 
The expression of JUN was significantly decreased 48 h after induction of miR-200c in MDA-MB-231 as 
well as (e) re-expression in MCF7 compared to the respective TRIPZ-Ctrl cell line. (f, g) Decreased 
expression of FLNA was verified in MDA-MB-231 and MCF7 after transient transfection with siRNA 
against JUN (siJUN), compared to scrambled siRNA control  (h, i) Induction of miR-200c for 48 h 
decreased the luciferase signal of a MRT-SRF reporter construct in MDA-MB-231 TRIPZ-200c as well 
as MCF7 TRIPZ-200c compared to their respective TRIPZ-Ctrl. (j) An alternative mechanism of miR-
200c regulation of FLNA is based on reducing the MRT dependent SRF activation as well as the 
transcription factor jun. (all N=3; error bars are SD; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p > 0.0001) 



4. Inducible miR-200c decreases motility of breast cancer cells and reduces filamin A  

Dissertation - Bojan Ljepoja | 74 |  

 
 

  



4. Inducible miR-200c decreases motility of breast cancer cells and reduces filamin A  

Dissertation - Bojan Ljepoja | 75 |  

4.4. Discussion 

miR-200c is a well-established player in different types of cancer, often described as 

guardian over multiple cancer promoting pathways like metabolic activity and 

proliferation28,67,72, resistance to chemotherapeutics 27,134,135 , and inhibition of 

migration and EMT 26,72,74,92,99.  

In different clinical studies the miR-200c expression correlated with decreasing spread 

of tumors and better treatability of some cancers, as shown in different studies for 

patients with breast cancer26,77,82. In the current literature, miR-200c’s effect on 

metastasis is mainly attributed to the process of EMT, based on preventing ZEB1/2 

mediated inhibition of E-cadherin expression and thereby inhibiting the transition of 

epithelial cells to the mesenchymal phenotype74,99,104. Still, miRNA-200c has shown 

effects on migration of cell lines, which do not express the genetic axis of 

ZEB-mediated E-cadherin regulation. One issue in the investigation of additional 

migratory effects of miR-200c lies in distinguishing novel functions from effects based 

on the prominent ZEB/E-cadherin axis. Therefore, our approach has based on the 

utilization of two different breast cancer cell lines (MCF7 and MDA-MB-231) which, due 

to epigenetic predispositions101,142,143, ensure absence of ZEB/E-cadherin based 

effects. Proteomic analysis of a genomic miR-200c KO in MCF7, a high miR-200c 

expressing epithelial cell line28 emphasized the importance of miR-200c in migratory 

processes 136. 

In this study, we show the influence of miR-200c on migration based on two “gain of 

function” cell line models. First, mesenchymal and migratory MDA-MB-231 cells, which 

lack expression of miR-200c as well as E-cadherin, were transduced with a doxycycline 

inducible miR-200c expression construct (TRIPZ-200c). This approach ensured to 

minimize negative effects of transfections on the one hand, and on the other hand 

allowed for the efficient expression of miR-200c on a long-term scale, rendering the 

observation of slower processes in cellular remodeling possible. Furthermore, with the 

same construct, an inducible rescue of the miR-200c expression was performed in the 

MCF7 miR-200c KO cells. 

The induction of miR-200c caused evident changes in the morphology of MDA-MB-231 

cells, resulting in extensive remodeling of the cellular architecture as observed already 

after three days and even further increased after seven days. The resulting flat 

“pancake” shaped cells appeared to have highly decreased cellular stiffness as well as 

a lack of distinctive polarization that is commonly seen in spindle-like cells. Similar 
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observations of morphological or “spreading defects” were reported after a FLNA 

knock-down and were attributed to a deficiency in actin-crosslinking 139,145. 

In contrast to the rather slow full EMT, the effects on speed and run-times of the cells 

were observed already 48 h hours after miR-200c induction, indicating a direct 

connection of this axis to the cellular motility. The long-term stimulation showed a 

change in modality which may be similar to EMT, but a complete transition to an 

epithelial “cobblestone” phenotype was not observed, possibly due to the lack of 

development of cellular adhesions by E-cadherin. 

Furthermore, the 1D migration assay revealed decreased motility after miR-200c 

expression by showing changes of all measured parameters the decreased migratory 

capabilities of miR-200c high expressing cells show to be not based mainly on the 

absolute velocity, but more on the cells’ inability of polarizing and retaining polarization, 

as seen by the higher number of cells in temporary rest states or being completely 

immobile. 

Our previously published proteomic analysis of a genomic miR-200c KO in MCF7 

disclosed multiple changes in the expression of regulators of migratory processes, of 

which the effect on filamins A was most prominent 136. Filamin A is supposed to affect 

cell motility based on multiple pathways, like the induction of changes in the structure 

and stiffness of the cell as direct building block in the system145 or shifts in intracellular 

signaling146 and resulting in alteration of different mechanisms important for migration, 

like the actin-treadmill and formation of focal adhesions147,148 38. This important role of 

filamin A as a capable regulator of cellular migration makes it interesting to investigate 

how miR-200c regulates filamin A. Especially as we found that induced miR-200c 

expression resulted in decreased expression of FLNA in both cell systems. 

The investigation of the underlying mechanism of FLNA suppression was performed 

with two in silico analyses: The first was not yielding any predicted binding site of 

miR-200c in the FLNA 3’ UTR, while the other resulted in six potential miR-200c 

controlled transcription factors. Of the transcription factors, only JUN showed constant 

repression to miR-200c expression, which is in line with previous studies that identified 

JUN as potential miR-200c target 149. JUN expression is necessary for the formation 

of the AP-1 complex together with c-Fos. Previously, the AP-1 complex was shown to 

promote tumorigenesis, cancer progression and also regulating cell morphology and 

migration 150-152. Our experiments verified JUN promoting FLNA transcription as well 

as inhibition of JUN by miR-200c’s, resulting in decreased FLNA expression.  
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A recent study by Jurmeister et al. indicated one further possible regulatory 

mechanism. They found that miR-200c was inhibiting the MRTF dependent activation 

of SRF103. SRF is a known transcription factor of multiple immediate early genes, 

including c-fos153, and therefore an important regulator of cell growth, differentiation 

and also migration154,155 FLNA was previously144 identified as a target of SRF. 

Consistently a decreased MRTF-dependent SRF activation was observed after 

miR-200c induction, indicating an additional axis of miR-200c based regulation of 

FLNA expression. Furthermore, increased c-Fos expression due to SRF stimulation 

may also promote the additionally observed JUN-based axis, by providing additional 

partners for the assembly of the AP-1 complex. Further, FLNA was shown to promote 

the activity of SRF 156 which may further increase the investigated effects due to this 

positive feedback loop. 

Our data reveal a potential novel route of miR-200c regulating migration, independent 

of ZEB1/2. The inhibition of cytoskeletal components via miR-200c, like filamin A as 

shown here, support the role of miR-200c in maintaining the epithelial state and 

inhibiting metastasis as possibly important in a wider variety of cancer cells. 
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4.5. Materials and methods 

Puromycin dihydrochloride and doxorubicin hydrochloride were obtained from Sigma 

(cat. P8833, D1515).  

 

The MCF7 miR-200c KO cells were grown at 37 °C and 5 % CO2 in high glucose DMEM 

(Sigma) supplemented with 10 % fetal calf serum (FCS / Gibco). MDA-MB-231 cells 

were cultured at 37 °C and 0 % CO2 in L15 (Sigma) containing supplemented with 10 

% fetal calf serum (FCS / Gibco). All derived cells, i.e. MDA-MB-231 TRIPZ200c and 

Ctrl, as well as MDA-MB-231 GFP were cultured same as the parental cells. All cells 

were routinely tested and confirmed as mycoplasm free. 

The miR-200c KO via TALENs was performed as described previously136. 

 

As backbone for the TRIPZ-200c construct, the TRIPZ lentiviral inducible shRNA 

control plasmid (TRIPZ-Ctrl, Thermo Fisher Scientific, #RHS4743) was used. MiR-

200c plus 125 bp upstream and downstream flanking genomic sequences, including 

XhoI and MluI restriction sites was amplified by PCR with the following primers:  

Fwd: CTCGAGGCTCACCAGGAAGTGTCCCC  

Rev: ACGCGTCCTTGTGCAACGCTCTCAGC.  

After the construct was verified by sequencing (GATC Biotech AG), MDA-MB-231 and 

MCF7 200c KO cells were transducted with the TRIPZ-200c and TRIPZ-Ctrl utilizing a 

2nd generation lentiviral system generated with the plasmids pCMV-dR8.2 dvpr and 

pCMV-VSV-G, which were a gift from Bob Weinberg (Addgene plasmid # 8454 and 

#8455). After transduction and 48 h selection with 5 µg/ml puromycin, a single cell 

dilution was performed to generate the monoclonal TRIPZ cell lines MDA-MB-231 

TRIPZ-Ctrl, MDA-MB-231 TRIPZ-200c and MCF7 200c KO TRIPZ-200c. 

Stimulation of the cells with doxycycline was performed in a concentration of 5 µg/ml 

in the respective medium for 48 h for mRNA analysis or 72 h for protein analysis. 

Medium was replaced with fresh, doxycycline containing medium every 48h to 

compensate for doxycycline degradation. 

qPCR of miRNA was performed as described previously136, in short: 600,000 cells 

were harvested and total RNA isolated from cells using miRCURY RNA Isolation Kit 

(Exiqon). cDNA synthesis was carried out by a miRNA specific reverse transcription 



4. Inducible miR-200c decreases motility of breast cancer cells and reduces filamin A  

Dissertation - Bojan Ljepoja | 79 |  

and detection with the qScript microRNA cDNA Synthesis Kit and PerfeCta SYBR 

Green SuperMix (Quanta Biosciences) with RT-PCR detection on a LightCycler 480 

(Roche). The expression of miR-200c was normalized to miR-191121, using the 2-∆CT 

or 2-∆∆CT method.  

The following list contains the primers used for analysis of miRNAs:  

miR200c: GCGTAATACTGCCGGGTAAT; miR-191: GCGCAACGGAATCCCAAAAG;  

 

Cells were cultured in a 6 well plate for 72h after stimulation with doxycycline. Lysis, 

gel and blotting were performed as described previously27. For the detection, the 

primary antibodies for filamin A (Thermo Fisher, MA5-11705) and tubulin (Sigma, T 

9026) were used and diluted by manufacturer’s instructions. For secondary antibody 

detection, ALEXA FLUOR PLUS 800 (Thermo Fisher, A32730) were used, imaged 

with the Odyssey Fa and analyzed and quantified by Image Studio Software (LiCor). 

 

The transcription factor binding sites were published previously136 

 

RNA extraction was performed via the Total RNA Kit, peqGOLD (VWR) as by 

manufacturer’s instructions. The cDNA synthesis was performed using the qScript 

cDNA synthesis kit (Quanta Bioscience) as by manufacturer’s protocol. 

Analysis of expression was performed with the Lightcycler 480 (Roche) and the 

Universal Probe Library (Roche) with following probe and primer (forward/reverse) 

combinations, all results were normalized to GAPDH as housekeeper: 

FLNA, Probe 32, TCGCTCTCAGGAACAGCA / TTAATTAAAGTCGCAGGCACCTA 

JUN, Probe 19, CCAAAGGATAGTGCGATGTTT / CTGTCCCTCTCCACTGCAAC 

GAPDH, Probe 45, TCCACTGGCGTCTTCACC / GGCAGAGATGATGACCCTTTT 

KLF4, Probe 83, TGACTTTGGGGTTCAGGTG / GTGGAGAAAGATGGGAGCAG 

EGR1, Probe 22, AGCCCTACGAGCACCTGAC / GGTTTGGCTGGGGTAACTG 

FOSL2, Probe 70, ACGCCGAGTCCTACTCCA / TGAGCCAGGCATATCTACC 

 

Confocal images and 3D stacks were acquired using a Leica TCS SP8 SMD 

microscope equipped with a 40x HC PL APO oil objective. Pinhole size was adjusted 
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to 1.0 airy units and sequential scanning was performed at 400 Hz. 405nm, 488nm and 

561nm laser lines were used for excitation. 

 

For immunofluorescence staining, cells were fixed for 10 min with 4% EM grade 

formaldehyde. After 5 min washing with PBS, samples were permeabilized for 10 min 

with 0.5% TX-100 in PBS. Unspecific binding was blocked by 30 min incubation with 

5% BSA (Sigma) at RT. Cells were then incubated overnight (4 °C) with the primary 

antibody for filamin A diluted according to the manufacturer’s instructions (1:400, 

Thermo Fisher, MA5-11705). After 3 x 10 min washing with PBS, samples were 

incubated with secondary antibodies (1:500, AF488 goat-anti-mouse AB_2534069), 

rhodamine phalloidin (1:300, Sigma-Aldrich) and DAPI (0.5 µg/ml, Sigma-Aldrich) for 

1 hour at RT, washed again 3 x 10 min with PBS. All stainings were performed in 

ibiTreat 8 well µ-slides (ibidi GmbH) coated with fibronectin (Corning). Total 

fluorescence intensities and nuclear shape factors were quantified using ImageJ v1.52. 

Z-plane scaled 3D stacks were rendered using the Leica LAS X software platform.  

 

For the knockdown of JUN, a siRNA was used and compared to a negative control 

(Silencer Select, Thermo Fisher, assay s7659 and control 4390843). Cells were 

transfected with the K2 transfection reagent (Biontex) according to the manufacturer’s 

recommendations. 

 

For analysis of SRF/MRTF signaling, the pgl4.34 Plasmid (Promega, 9PIE135) was 

used. Transfection was performed in 6-well with cells grown to 80% confluence with 

K2 transfection reagent (Biontex, Germany) according to the manufacturer’s 

instructions, into cells stimulated with 5µg/ml doxycycline for 24h. Luciferase 

measurement was performed 24h after transfection, as described previously28. 

 

Detailed description of production of the stamps and measurements are published in 

Schreiber et al. 140 and further described in the supplemental methods.  

The motility parameters are defined as: 

𝒗𝐫𝐮𝐧: The run velocity is defined as the mean over the tangential velocity for time points  

when cells are in the run state 𝑣𝑟𝑢𝑛 = 〈|𝑣𝑡𝑎𝑛𝑔|〉.  
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𝝉𝐫𝐮𝐧 , 𝝉𝐫𝐞𝐬𝐭: To evaluate the persistence times of run and rest states 𝜏run and 𝜏rest, the 

survival function 𝑆(𝑡) = P(𝑇 > 𝑡) is calculated. 𝜏run and 𝜏rest are determined by fitting 

log(𝑆(𝑡)) by the function 𝑓(𝑡) = −
1

𝜏
 𝑡 + 𝑐 evaluated at 𝑡 ∈  [2; 16 ]ℎ. Very small times 

are excluded because defiations from an exponential behavior are observed here. To 

reduce the effects of the limited time window, only states that start at least 16 h before 

the end of the corresponding cell track are evaluated, while the fitting range for 𝑆(𝑡) 

ends at 16 h. The error range given is the 99% confidence interval for the fit. 

 𝑷𝐫𝐮𝐧: The fraction of time cells spend in the run state is defined as the time cells are 

in the run state divided by the total time of the trajectories. 

q: The persistence parameter q is defined as the maximum distance between two 

points of a cell trajectory divided by the total path length of the trajectory. This is 

averaged over all cells 𝑞 = 〈
max(𝜑)−min(𝜑)

∑ |𝜑𝑖|𝑖
〉  

 

Results are expressed as the mean ± SD of at least three biological replicas and 

analyzed using a two-sided student’s t-test, if not stated otherwise. Software GraphPad 

Prism v6 and SigmaPlot 11 were utilized for the analysis of the data. 

 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request.  
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4.6. Supplements 

4.6.1. Supplemental methods 

Micropatterning / 1D Migration 

Production of stamps: 

To a master for stamp preparation, silicon wafers were coated with TI Prime adhesion 

promoter and AZ40XT (MicroChemicals) photo-resist. Desired areas were exposed to 

UV light using laser direct imaging (Protolaser LDI, LPKF). The photoresist was then 

developed (AZ 826 MIF, MicroChemicals) and silanized (Trichloro(1H,1H,2H,2H-

perfluoro-octyl)silane, Sigma-Aldrich). To create the stamp, polydimethylsiloxane 

(PDMS) monomer and crosslinker (DC 184 elastomer kit, Dow Corning) were mixed in 

a 10:1 ratio, poured onto the stamp master, degassed in a desiccator, and cured 

overnight at 50°C. 

Microcontact printing: 

Microcontact printing was used to produce fibronectin-coated ring-shaped lanes. 

PDMS stamps were treated with UV light (PSD-UV, novascan) for 5 min. Then the 

stamps were incubated for 45 min in a solution containing 40 µg/ml fibronectin (Yo 

proteins) and 10 µg/ml fibronectin labeled with Alexa Fluor 647 (Alexa Fluor NHS Ester, 

Thermo Fisher Scientific) dissolved in ultrapure water. Next, stamps were washed with 

ultrapure water, dried and placed on a petri dish (µ-Dish, Ibidi) which had been 

activated with UV light for 15 min. A droplet of a 2 mg/ml poly-L-lysine-grafted 

polyethylene glycol (PLL-PEG) (2 kDa PEG chains, SuSoS) solution (dissolved in a 

solution of 10 mM HEPES and 150 mM NaCl was placed at the edge of the stamps 

and drawn into the spaces between surface and stamp by capillary action. Stamps 

were removed and a glass coverslip was placed on the dish surface to ensure complete 

coverage of the surface with PEG solution. After a 30-min incubation, the coverslip was 

removed, and the surface was washed three times with phosphate-buffered saline 

(PBS) and stored in PBS until cells were seeded. 

Cell Culture 

MDA-MB-231 breast cancer cells were cultured in L15 medium (sigma aldrich) 

containing 10% TET system approved fetal calf serum (FCS) (Clontech). Cells were 

incubated at 37°C in a humidified atmosphere. For cell motility measurements, cells 

were cultured in medium containing 0 or 5 µg/ml Doxycycline for 44h. Then, about 

10,000 cells were seeded per dish (µ-Dish, Ibidi). After 3 h, cell medium was replaced 
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with fresh medium containing 25 nM Hoechst 33342 dye (Invitrogen) and 

measurements were started within 1 hour.  

Time-Lapse Microscopy 

Scanning time-lapse measurements were performed using an automated inverted 

microscope (Nikon Ti) equipped with a 10x objective, a LED lamp (Spectra X, 

lumencor) and a sCMOS camera (pco.edge 4.2, pco). Cells were maintained at 37°C 

and a humidified atmosphere using a heating chamber (okolab). Phase-contrast and 

fluorescent images were automatically acquired every 10 min. 

Cell Tracking 

Cell tracking was performed using the image-processing software ImageJ. Isolated 

cells confined in the ring-shaped lanes were identified by eye. Fluorescence images of 

the nuclei were preprocessed by applying a bandpass filter and a threshold for 

fluorescence intensity, and the centers of mass of the stained nuclei were identified. 

Cell tracking was stopped in the case of cell division or when cells spanned over the 

middle part of the ring pattern. Cell tracks shorter than 20 h, as well as tracks of dying 

or non-moving cells were excluded from further analysis.  

Data Analysis 

Two-state analysis of tracks: 

Track analysis was performed in MATLAB (Mathworks). A circle was fitted to cell 

position data to find the center of the ring-shaped lane. Switching to polar coordinates, 

the tangential component of the cell velocity was evaluated as), where indicates the 

azimuthal cell position at time i and R indicates the mean radius of the micropattern (R 

= 65 µm). To distinguish run from rest states, a iterative change-point analysis in 

combination with a classification of cell dynamics in the time intervals between change-

points was applied. Change-points were identified when they exceeded a confidence 

level for the existence of change-points that was calculated via bootstrap analysis of 

the cumulative sum of the angular velocity. For all intervals between change points this 

was repeated until no more change-points were found. The resulting intervals were 

classified into run and rest states by analyzing the mean square displacement. Details 

are published in Schreiber et al.[cite] 

The run velocity is defined as the mean over the tangential velocity for time points 

when cells are in the run state .  

To evaluate the persistence times of run and rest states and the survival function  is 

calculated. and are determined by fitting  by the function  evaluated at . Very small 
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times are excluded because deviations from an exponential behavior are observed 

here. To reduce the effects of the limited time window, only states that start at least 16 

h before the end of the corresponding cell track are evaluated, while the fitting range 

for ends at 16 h. The error range given is the 99% confidence interval for the fit. 

The fraction of time cells spend in the run state is defined as the time cells are in the 

run state divided by the total time of the trajectories. 

q: The persistence parameter q is defined as the maximum distance between two 

points of a cell trajectory divided by the total path length of the trajectory. This is 

averaged over all cells   

 

4.6.2. Supplemental figures 

 

Supplement S 9  

Analysis of different potential transcription factors for FLNA was performed after miR-200c induction. 
The graphs show the RT-qPCR results at different time points, with no consistent effect for any factor 
but JUN 
 

4.6.3. Supplemental movies 

The supplemental movies be viewed at in the online version of the publication or on 
https://www.cup.lmu.de/pb/aks/ewagner/projects/  

https://www.cup.lmu.de/pb/aks/ewagner/projects/
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5. Summary  

In this work, novel functions of the two prominent miRNAs, miR-200c and miR-27a 

were unraveled. 

In the first part, our findings in chapter 2 revealed a novel role of the oncomir miR-27a 

in breast cancer. In the current literature, a high expression of miR-27a indicated more 

aggressive and metastatic tumors157. This is inline with the retrospective analysis 

shown in chapter 2.3.4. Still, in our analysis, by taking clinical settings into account, as 

well as molecular properties of the tumor cells (e.g. the receptor status), we uncovered 

a novel and ambivalent role of miR-27a as prognostic tumor marker.  

The high expression of this oncomiR showed to be beneficial for a certain, miR-27a 

high expressing subgroup of estrogen receptor positive patients – but only if they 

underwent endocrine treatments. Or, conversely stated, patients with estrogen 

receptor positive phenotypes but low tumoral miR-27a levels, may not receive an 

optimal treatment with regular endocrine therapies. Although a therapeutic use of 

miR-27a would most likely not meet a favorable risk-benefit profile, the analysis of the 

miR-27a expression status could support the treating physician in the selection of a 

better and thus personalized therapies.  

The second part of this work is focusing on miR-200c in breast cancer, which is one of 

the most important tumor suppressing miRNAs. Most previous studies were based on 

the artificial overexpression of the miRNA or on in vivo correlations. Therefore, it is 

possible that the unnatural surplus of this miRNA, acting as inhibitor, could lead to 

observations that are not relevant in the regular biological setting, as also discussed in 

chapter 3.4. Thus, a removal of miR-200c of an otherwise unmodified cellular breast 

cancer cell system, was chosen to illuminate another perspective, revealing novel roles 

and validating previous findings. For this reason, genomic knock-outs of miR-200c 

were conducted in the miR-200c high expressing MCF7 breast cancer cell line and 

were followed by a comprehensive proteomic screen, as described in chapter 3. With 

this means, a group of novel putative miR-200c targets were found. Interestingly, a 

major proportion of these potential target proteins did not contain any miR-200c binding 

sites, indicating that the effects were based on indirect mechanisms, like subtle 

changes in pathways upstream of the found proteins. 

Consequently, the role of miR-200c in the regulation of one of these targets, the 

important cytoskeletal protein filamin A, was investigated in chapter 4. MiR-200c is 

known to inhibit progression of EMT by targeting ZEB1/2, resulting in an increase of 
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E-cadherin expression and therefore impede the transition. By our choice of 

appropriate cell models for these experiments, this particular mode of influence was 

excluded due to genetic predisposition of the cell lines, each respectively not 

expressing one of those key proteins. Thus, additionally to the “loss of function” 

knock-out model, an inducible overexpression of miR-200c was generated in an 

elsewise miR-200c-null cell line. Experiments conducted with these cell line models 

showed a strong effect of miR-200c induction on the migration of the cell lines, as well 

as a distinctive cellular remodeling after long-term induction of the miRNA. Filamin A 

was regarded as a potential key protein in those processes and a regulatory pathway 

of miR-200c on filamin A was indicated, based on targeting the transcriptional 

regulators JUN and SRF. 

These novel regulatory networks that are indicated, may indicate the potential impact 

of miR-200c in a broad variety of breast cancer cells. All in all, contrary to miR-27a, 

miR-200c could have the potential to act as tumor suppressing agent. 

Our studies altogether showed the potential of miRNAs as therapeutics and 

biomarkers, enabling physicians to better determine the characteristics of the tumor.  

MiRNA signatures of breast cancer patients could be routinely measured in clinical 

practice, and miR-27a could be one important indicator in helping to choose the most 

promising therapeutic regimes.  

For tumor suppressing miRNAs like miR-200c, one promising route of miRNA 

(or siRNA) delivery may lay in mimicking this intrinsic trafficking, by packaging miRNAs 

in artificial exosomes, in poly- or lipoplex formulations 158 or in future applications 

“reprogramming” of patient-derived exosomes159,160. 

Therefore, even more than 25 years after the discovery 1, miRNA research remains a 

field of high interest and ever rising clinical relevance. Due to standardized, fast and 

cheap genomic screening technologies, the utilization of clinical miRNA screenings for 

tumor classification and thus improved and personalized treatments are as close as 

never before, and miR-27a and miR-200c may hold an important role in the future. 
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6. Appendix 

6.1. Abbreviations 

AGO Argonaute 

ATCC American Type Culture Collection 

CDNA Complementary DNA 

CT Cycle of threshold 

DAPI 4',6-diamidino-2-phenylindole 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DOX Doxycycline 

DXR Doxorubicin 

EDTA Ethylenediamine tetraacetic acid 

ELISA Enzyme linked immunosorbent assay 

EMT Epithelial-mesenchymal transition 

ENDO Endoxifen 

ER +/- Estrogen receptor positive / negative 

FCS Fetal calf serum 

FDR False discovery rate 

FUL Fulvestrant 

HSA Homo sapiens 

HR +/- Hormone receptor positive / negative 

IF Immunofluorescence 

IHC   Immunohistochemistry 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KO Knock-out 

LNA Locked nucleic acid 

LSM Laser scanning microscopy 

MET Mesenchymal-epithelial transition 
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MIRNA MicroRNA 

MMU Mus musculus 

MRNA MessengerRNA 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NET Buffer containing NaCl, EDTA and Tris-HCl 

PBS Phosphate buffered saline 

POLYA Polyadenylation 

RISC RNA-induced silencing complex 

RLUC Renilla luciferase reporter plasmid 

RNA Ribonucleic acid 

RNAI RNA interference 

RT-PCR Reverse transcription - polymerase chain reaction 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate - polyacrylamide gel 

SEM Standard error of the mean 

SIRNA Small interfering RNA 

SLP Stem loop primer 

TAM Tamoxifen 

TOR Toremifen 

TRISHCL Tris(hydroxymethyl)aminomethane hydrochloride 

UTR Untranslated region 

W:W Weight to weight ratio 

WB Western blot 
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6.2. Genes and proteins 

AGR2 
Anterior gradient protein 2 homolog 

AKT Protein kinase B (PKB) 

ALDH7A1 Alpha-aminoadipic semialdehyde dehydrogenase 

BCL2 B-cell lymphoma 2 

BMI1 Polycomb ring finger oncogene 

CA2 Carbonic anhydrase 2 

CDK4/6 Cyclin-dependent kinase 4/6 

CTTN;EMS1 Src substrate cortactin 

DGCR8 Di George syndrome critical region 8 (= Pasha in D. melanogaster) 

E2F1 Transcription factor E2F1 

EGFP Enhanced green fluorescent protein 

EGFR Epidermal growth factor receptor 

ERBB Epidermal growth factor receptor family 

ESR1 Estrogen receptor alpha 

FN1 Fibronectin 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GOT2 Aspartate aminotransferase 

GSTM3 Glutathione S-transferase Mu 3 

HER2 Human epidermal growth factor receptor 2 

HSP90AA1 Heat shock protein HSP 90-alpha 

JUN Jun proto-oncogene 

KRAS Kirsten rat sarcoma viral oncogene homolog 

KYNU Kynureninase 

LIN-14 Protein lin-14 (C. elegans) 

LIN-4 MicroRNA lin-4 (C. elegans) 

MAPK Mitogen-activated protein kinases 

MCM4 DNA replication licensing factor MCM4 

MEKK1 Mitogen-activated protein kinase kinase kinase 1 

MSN Moesin 
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MYC V-myc avian myelocytomatosis viral oncogene homolog 

NFΚB Protein complex, nuclear factor kappa-light-chain-enhancer  

of activated B cells P53 Tumor protein p53 

PHGDH D-3-phosphoglycerate dehydrogenase 

PI3K Phosphatidylinositide 3-kinases 

PKC Protein kinase C 

POL II RNA polymerase II 

PPM1F Protein phosphatase 1F 

PTEN Phosphatase and tensin homolog 

RAB14 Ras-related protein Rab-14 

SH3BGRL SH3 domain-binding glutamic acid-rich-like protein 

SLC3A2 4F2 cell-surface antigen heavy chain 

SRF Serum response factor (c-fos serum response element-binding 

transcription factor) TNFΑ Tumor necrosis factor alpha 

TPI1 Triosephosphate isomerase 

TRBP Transactivation response element RNA-binding protein 

TPM1 Tropomyosin alpha-1 chain 

TRKB Neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) 

TUBB3 Tubulin, beta 3 class III 

UGDH UDP-glucose 6-dehydrogenase 

WARS Tryptophan-tRNA ligase 

WNT Wingless-type MMTV integration site family 

ZEB1/2 Zinc finger E-box binding homeobox 1/2 (TCF8/SIP1) 
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