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Abstract 

Cytokinesis is the final step in cell division that is initiated by the formation of a cleavage 

furrow that partitions the contents of a single cell into two nascent daughter cells. The RhoA 

Guanine nucleotide exchange factor (GEF) Ect2 has been shown to be essential for the 

regulation of cleavage furrow formation, however how Ect2 is regulated in order to control 

proper cell division is incompletely understood. Current models propose an autoinhibitory 

mechanism by which the three N-terminal BRCT domains bind the C-terminal GEF domain of 

Ect2. It has not yet been tested whether the three BRCT domains act as one module or whether 

each BRCT domain has a distinct role during cytokinesis. Using structure-function studies in 

C. elegans and human cells we showed that the BRCT domains are required for spindle midzone 

localization and have distinct roles in regulating Ect2 localization and function. Our results 

demonstrate that each of the BRCT domains but not only BRCT1 as shown before contribute 

to midzone binding and enrichment at the equatorial plasma membrane. Importantly our data 

suggests that BRCT2 domain is the major inhibitory domain of human Ect2 and that deletion 

of BRCT2 leads to active RhoA dependent hypercontractility during mitosis. Furthermore, I 

found that phosphorylation of the linker region between the BRCT2 and the GEF domain of 

Ect2 is required to inhibit Ect2 GEF activity which is consistent with former findings that 

showed that phosphorylation is involved in Ect2 regulation. Moreover, with my work the 

function of BRCT0 and BRCT1 domain were characterized in C. elegans and I showed that 

BRCT0 and BRCT1 domains are important for embryonic viability and for cytokinesis. 

Moreover, I showed that BRCT0 is not required for cytokinesis in human cells but is essential 

in C. elegans whereas BRCT1 domain is required in both systems. 

Together my findings suggest that Ect2 BRCT domains in human cells do not act as one module 

but rather have separate roles during cytokinesis in localizing HsEct2 to the spindle midzone, 

the equatorial plasma membrane, and in regulating Ect2 activity in-vivo. My results are 

consistent with a model where Ect2 is regulated in a two-step process: Ect2 is phosphorylated 

in the linker region by mitotic kinases to keep it inactive until anaphase onset. In anaphase the 

BRCT2 domain is released from the GEF domain due to dephosphorylation of the linker region. 

Ect2 is then targeted to the plasma membrane and enriched at the equatorial plasma membrane 

via the N-terminal BRCT domains. Once Ect2 is at the plasma membrane it can activate RhoA 

to initiate contractile ring formation and cell division. 
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Zusammenfassung  

Zytokinese ist der letzte Schritt der Zellteilung, bei dem die Bestandteile einer einzelnen Zelle 

auf zwei neue Zellen aufgeteilt werden. Es wurde bereits gezeigt, dass das RhoA-GEF (Guanine 

nucleotide exchange factor) Ect2 essentiell für die Bildung der Teilungsfurche während der 

Zytokinese ist. Allerdings ist nicht klar, wie Ect2 während der Zellteilung reguliert wird, um 

die korrekte Bildung der Teilungsfurche zu gewährleisten. Eine aktuelle Hypothese besagt, dass 

Ect2 über einen auto-inhibitorischen Mechanismus reguliert wird, bei dem die N-terminalen 

BRCT-Domänen die katalytische GEF Domäne binden und inhibieren. Ob die drei BRCT-

Domänen als Einheit agieren, oder ob sie unabhängig voneinander, unterschiedliche 

Funktionen während der Zellteilung übernehmen wurde bisher nicht geklärt. Mit Hilfe von 

Struktur-Funktionsstudien in Caenorhabditis elegans und humanen Zellen konnte durch meine 

Arbeit gezeigt werden, dass die BRCT-Domänen unterschiedliche Aufgaben bezüglich 

Lokalisierung und Funktion von Ect2 haben. Meine Arbeit demonstriert, dass die BRCT0 

Domäne zwar während der Embryonalentwicklung in C. elegans benötigt wird, jedoch keine 

Funktion während der Zellteilung in humanen Zellen hat. Die BRCT1 Domäne hingegen ist 

sowohl in C. elegans also auch in Humanzellen für die Zytokinese essentiell. Darüber hinaus 

konnte gezeigt werden, dass das Entfernen der BRCT2-Domäne zu einer erhöhten und RhoA-

abhängigen Kontraktilität des Zellcortex führt was darauf hin deutet, dass die BRCT2-Domäne 

die GEF-Aktivität inhibiert. Zudem werden alle drei BRCT-Domänen für die Lokalisierung 

von Ect2 an der Zentralspindel benötigt, und nicht wie bisher vermutet nur die BRCT1-

Domäne. Weiterhin wurde gezeigt, dass alle drei BRCT-Domänen für die Anreicherung an der 

äquatorialen Plasmamembran benötigt werden, und dass Phosphorylierungen in der Region 

zwischen den BRCT und der GEF-Domäne (Linker-Region) wichtig sind, um die GEF-

Aktivität zu inhibieren. Dies ist konsistent mit früheren Erkenntnissen, dass 

Phosphorylierungen für die Regulierung von Ect2 wichtig sind. Zusammenfassend wurde 

gezeigt, dass die BRCT-Domänen von Ect2 nicht als Modul zusammenhängend agieren, 

sondern unterschiedliche Funktionen bezüglich der Lokalisierung und der Regulierung von 

Ect2 in der Zelle haben. Meine Ergebnisse sind im Einklang mit einer Hypothese, dass Ect2 

über zwei verschiedene Schritte reguliert ist: die Linker-Region von Ect2 wird während der 

G2/M Phase von mitotischen Kinasen phosphoryliert und Ect2 wird dabei in einem inaktiven 

Zustand gehalten. In der Anaphase wird die BRCT2-Domäne durch das Entfernen der 

Phosphorylierungen in der Linker-Region von der GEF-Domäne gelöst und Ect2 wird mit Hilfe 
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der Ect2 BRCT-Domänen am Zelläquator angereichert, um RhoA zu aktiveren und den 

kontraktilen Ring zu bilden. 
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1. Introduction 

1.1. Cytokinesis in animal cells 

Cytokinesis is the final step in cell division that partitions the contents of a single cell into 

two newly formed daughter cells (D’Avino, 2015). Precise regulation of cell division is 

required for proper tissue growth and defects in cytokinesis can lead to severe diseases such 

as cancer (Lacroix and Maddox, 2012). Indeed, failure in cytokinesis leads to polyploidy 

and generates genetic instability that can lead to oncogenic transformations (Ganem et al., 

2014). Thus, precise orchestration of cell division is of high importance and tightly 

controlled in eukaryotic cells. For successful cytokinesis, the chromatin and the 

cytoplasmic contents of the mother cell must be distributed between the newly formed 

daughter cells. In order to precisely achieve this, the division plane has to be set between 

the segregating chromosomes. During chromosome segregation, constriction of an 

actomyosin based structure called the contractile ring underneath the plasma membrane 

leads to the formation of a cleavage furrow that results in the formation of the two daughter 

cells (D’Avino, 2015) . Formation of the contractile ring is dependent on the activation of 

the small GTPase Ras homolog gene family member A (RhoA, RHO-1 in C. elegans) 

(Bement et al., 2006).   

Cytokinesis proceeds in three major steps: contractile ring formation, ring ingression and 

abscission. Moreover, cytokinesis is spatially controlled by a collaboration between the 

mitotic anaphase spindle and the cell cortex. After nuclear envelope break down (NEBD), 

the mitotic spindle is assembled and the spindle consists of i) astral microtubules that 

originate from the centrosomes and ii) the spindle midzone, an array of anti-parallel and 

overlapping microtubules between the segregating chromosomes which is also referred to 

as the central spindle (D’Avino, 2015; Green et al., 2012) (Fig. 1). 
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Fig. 1. Overview of cytokinesis. During anaphase, the constriction of the contractile ring 

leads to the formation of a cleavage furrow that partitions the contents of a single cell into 

two. In all animal cells cytokinesis is driven by the formation of the contractile ring whose 

position is determined by the mitotic spindle. The mitotic spindle induces the activation of 

the small GTPase RhoA at the equatorial plasma membrane. 

 

1.2. The mitotic spindle positions the contractile ring 

Multiple signals from the mitotic spindle determine the division plane between the 

segregating chromosomes and direct cleavage furrow formation to the equatorial cortex 

(D’Avino, 2015; Green et al., 2012). Already more than three decades ago, it was shown 

that the mitotic anaphase spindle plays a crucial role in positioning the cleavage furrow 

since replacement of the spindle in echinoderm eggs after cleavage furrow formation 

induced regression of the furrow and the formation of a new cleavage furrow at the site of 

the re-positioned spindle (Rappaport, 1985). Later on, it was shown that the mitotic spindle 

directs that activation of the small GTPase RhoA in the narrow equatorial zone and that 

active RhoA in turn is essential for the formation of the contractile ring and successful 

cytokinesis (Bement et al., 2006).   
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Different molecular signals from the mitotic spindle are thought to regulate contractile ring 

assembly and position. Several models have been proposed how positive and negative 

stimuli from the central spindle and astral microtubules orchestrate the precise localization 

of contractile ring proteins at the equatorial cortex during cytokinesis in order to induce 

cytokinetic furrow formation (Fig. 2). Two strong and opposing models have been initially 

suggested (Glotzer, 2005). The “astral stimulation model” proposed the concept that a 

specific population of astral microtubules that are in very close proximity to the equatorial 

cortex could stimulate furrow formation by directing factors or signals along the astral 

microtubules to the cortex. The opposing “astral relaxation model” however suggested that 

astral microtubules inhibit furrowing. The model predicts that higher abundance of astral 

microtubules at the cell poles leads to less contractility of the poles and lower quantities of 

astral microtubules at the cell equator allow furrowing and constriction of the membrane at 

the cell equator. Even though the two models were initially opposing each other, these days 

it is broadly concluded that both models can coexist and do not exclude each other, for 

example depending on different conditions like cell types or cell shapes (D’Avino, 2015).  

Over time it became more and more evident that not only astral microtubules are important 

for cleavage furrow formation but also the central spindle (Fig. 1) and based on several 

observations, it was suggested that the central spindle is the major signaling site of furrow 

induction. Many important cytokinesis factors such as the centralspindlin complex and 

Epithelial cell transforming sequence 2 (Ect2) are enriched at the central spindle which 

suggested that the central spindle microtubules are essential for furrow formation (Glotzer, 

2004). Centralspindlin is a conserved hetero-tetrameric complex that localizes to the 

spindle midzone during anaphase consisting of two types of proteins, the Mitotic Kinesin-

Like Protein 1 (MKLP1, ZEN-4 in C. elegans) and the Male-germ-cell Rac GTPase-

Activating Protein (MgcRacGAP, CYK-4 in C. elegans) (Mishima et al., 2002).  Ect2 is a 

Guanine nucleotide exchange factor (GEF) for Rho GTPases (Kim et al., 2005; Rossman 

et al., 2005; Tatsumoto et al., 1999).  

It has been shown that the RhoA activator Ect2 localizes and binds to MgcRacGAP in a 

phospho-dependent manner at the spindle midzone in Drosophila and human cells 

(Prokopenko et al., 1999; Su et al., 2011; Tatsumoto et al., 1999; Yüce et al., 2005). This 

suggested that the interaction is crucial for cytokinesis and it could lead to the transition of 

Ect2 to the plasma membrane where it activates RhoA. However, in Caenorhabditis 

elegans  (C. elegans) ECT-2 does not localize to the spindle midzone but only to the cell 
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cortex which already questioned this model (Chan and Nance, 2013; Motegi and Sugimoto, 

2006). In addition, another study published by Kotýnková et. al in 2016 showed that 

blocking the interaction of Ect2 and MgcRacGAP in human cells abolished Ect2 spindle 

midzone localization but did not interfere with successful furrowing and cytokinesis 

(Kotýnková et al., 2016). These findings already hinted that the suggested central spindle 

model requires revision and a new interpretation of results.  

Even though it was demonstrated that the central spindle plays an important role in 

regulating furrow positioning, more and more studies were arising that astral microtubules 

inhibit contractility at the cell poles (Bement et al., 2006; von Dassow, 2009; Murthy and 

Wadsworth, 2008). It has recently been shown that polar clearing of contractile ring 

proteins is an active process regulated by Aurora A kinase that must be activated by TPXL-

1 that concentrates on astral microtubules (Mangal et al., 2018).  

In summary, the precise mechanisms of how the mitotic spindle regulates contractile ring 

position is still not entirely understood. However, these two signaling pathways, i.e. 

stimulating cues from the central spindle and inhibiting signals from the cell poles are 

thought to ensure the establishment of a confined zone of active RhoA only at the cell 

equator and prevents formation of several cleavage sites (Bringmann and Hyman, 2005).  

Lastly it has been shown that there are ways to position the furrow independently of the 

spindle. The model arises from the examples of cells that show cortical contractility 

independent of the mitotic spindle, such as the pre-mitotic pseudocleavage formation in C. 

elegans 1-cell stage embryo or the metaphase furrow formation of syncytial cells during D. 

melanogaster development (Crest et al., 2012; Rose et al., 1995).   



18 

 

 

Fig. 2. Models of cleavage furrow positioning. Different models have been suggested 

how cues from the mitotic spindle regulate positioning of the cleavage furrow (reviewed in 

Mishima, 2016). In the astral stimulation model, positive cues from the astral microtubules 

stimulate cleavage furrow formation at the site of maximal stimulation at the cell cortex. In 

the polar relaxation model, astral microtubules induce relaxation of cortical contractility at 

the cell poles and thereby restrict the site of cleavage furrow ingression at the cell equator. 

In the central spindle model, positive stimulatory signals from the central spindle stimulate 

cleavage furrow formation at the adjacent plasma membrane and thereby define the site of 

constriction. Also, there is another model that describes cleavage furrow stimulation 

independent of the mitotic spindle but dependent on polarity cues (Mishima et al., 2016).   

 

1.3. RhoA GTPase and its role in contractile ring formation 

The formation of the contractile ring is essential for successful cytokinesis. The activation 

of the small GTPase RhoA is the key step in assembling the contractile ring (Bement et al., 

2006; Piekny et al., 2005).   

RhoA, like small GTPases in general, is a molecular switch that cycles between an inactive 

GDP-bound state and an active GTP-bound state. RhoA is part of the small Rho GTPase 

family which also includes Rac and Cdc42. Rho GTPases are involved in the regulation of 

the actin cytoskeleton during many cellular events, such as polarity establishment, cell 

migration, cell shape, adhesion, transcription and cytokinesis (D’Avino, 2015; Jordan and 

Canman, 2012).   
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Rho GTPases have an approximate size of around 20 kDa and harbor a classical GTPase 

domain and the C-terminus contains a CAAX motif (CAAX, C = cysteine, A = aliphatic 

and X = any amino acid) and a polybasic sequence (PBS). The CAAX site drives 

prenylation of Rho proteins at the endoplasmic reticulum (ER), that in turn adds a 

hydrophobic anchor that contributes to membrane binding (Hancock et al., 1990). The PBS 

motif is hypothesized to be important for plasma membrane association by binding of the 

positively charged amino acids to the negatively charges of the lipids within the plasma 

membrane (Heo et al., 2006).  

In both higher and lower eukaryotes such as yeast, sand dollar, Dictyostelium, Xenopus 

laevis Rho GTPases have been reported to play an essential role in the formation of the 

contractile ring during cell division (Drechsel et al., 1997; Kishi, 1993; Larochelle et al., 

1996; Mabuchi et al., 1993). In the budding yeast Saccharomyces cerevisiae the small 

GTPase Cdc42 is involved in bud site selection and Rho1 is important for contractile ring 

ingression (Casamayor, 2002). In C. elegans, RHO-1 (RhoA) regulates embryonic cell 

division and knock-down of RHO-1 by RNAi leads to inhibition of cytokinesis and in late 

stage to embryonic arrest (Jantsch-Plunger et al., 2000; Spencer et al., 2001). In vertebrates, 

there are two closely related Rho GTPases of RhoA, namely RhoB and RhoC. Genetic loss 

of RhoB leads to vascular growth defects in developing mice but does not result in mitotic 

defects (Liu et al., 2001). Genetic deletion of RhoC gene does not prevent cell proliferation 

but rather has a role in cell migration especially in metastasis of cancers (Hakem, 2005). In 

humans there are 22 different Rho proteins, however the major Rho GTPase involved in 

cytokinesis is RhoA (D’Avino, 2015). 

In several studies and different model systems it has been shown, that RhoA plays an 

essential role during cytokinesis (Drechsel et al., 1997; Kishi, 1993; Prokopenko et al., 

1999). Presence of RhoA or its orthologues are essential for successful cytokinesis and loss 

of function of RhoA prevents furrow formation in many different animal cells studied 

(Jordan and Canman, 2012). The RhoA protein and other orthologues of different species 

i.e. of C. elegans (RHO-1) localize to a narrow zone at the equatorial plasma membrane 

between the segregating chromosomes (Nishimura and Yonemura, 2006) and it has been 

shown that the accumulated pool of RhoA is indeed active RhoA (Bement et al., 2006).  

RhoA cycles between an GDP-bound inactive and GTP-bound active state (Haeusler et al., 

2003; Moon, 2003) and the flux between the two states is regulated by several classes of 
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proteins. GEFs are responsible for the exchange of GDP to GTP (Rossman et al., 2005). 

GTPase activating proteins (GAPs) promote intrinsic hydrolysis of GTP (Tcherkezian and 

Lamarche-Vane, 2007). Guanine nucleotide dissociation inhibitors (GDIs) stabilize the 

GDP-bound state of RhoA (Bement et al., 2006; Siderovski and Willard, 2005). Moreover, 

Mitotic-Phase GAP (MP-GAP, RGA-3/4 in C. elegans) was identified to be the major GAP 

of RhoA during cytokinesis (Zanin et al. 2013). In contrast, Epithelial cell transforming 

sequence 2 (Ect2; ECT-2 in C. elegans) is the major GEF for RhoA (Tatsumoto et al., 

1999). 

1.4. Contractile ring composition and molecular control of ring 

constriction  

Contractile ring assembly and constriction is crucial in order for cells to divide. The 

contractile ring consists of various components, most importantly filamentous actin (F-

actin), myosin II, septins, RhoA and the scaffolding protein anillin (Fig. 3B). The latter can 

bind RhoA, F-actin and myosin II in order to form a complex meshwork of constricting 

filaments (Piekny and Glotzer, 2008).  

 

Fig. 3. The RhoA signalling pathway during cytokinesis and composition of the 

contractile ring. (A) RhoA cycles between an inactive GDP-bound state and an active 

GTP-bound state. The major activator of RhoA is the GEF Ect2 and the major inactivator 

is M-Phase GAP (MP-GAP). Once RhoA is active, it induces F-actin polymerization via 

formins and myosin II contractility via Rho kinase. (B) Major components of the contractile 

ring include F-actin, myosin II, septin filemants, the scaffolding protein anillin and active 

RhoA ( 
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By immunohistochemical studies as well as in live-cell imaging, the small GTPase RhoA 

was shown to localize in a narrow-confined zone at the equatorial cortex before furrowing 

occurs in human cells and different model organisms (Bement et al., 2006; Takaishi et al., 

1995; Yonemura et al., 2004; Yoshizaki et al., 2003). The Rho flux model suggests that 

GEFs and GAPs regulate the activity of RhoA through the GTPase cycle resulting in a flux 

of RhoA defining a narrow zone of active RhoA. Additionally, microtubule asters arising 

from the centrosomes are inhibiting contractility at the cell poles (Bement et al., 2006). 

Later on, M-Phase GAP in human cells and RGA-3/4 in C. elegans were identified as the 

major GAPs inactivating RhoA (Schonegg and Hyman, 2007, Zanin et al. 2013). Inhibition 

of M-Phase GAP resulted in excessive RhoA activation during M-phase and leads to late 

cytokinesis failure and uncontrolled cortical protrusions (Zanin et al., 2013). Together these 

two mechanisms synergistically define the narrow zone of active RhoA in order to ensure 

correct positioning of the contractile ring at the equatorial cortex.  

Contractile ring formation is initiated by the small GTPase RhoA (Jordan and Canman, 

2012). When sister chromatids start to separate, RhoA is activated by its activator. RhoA 

initiates contractile ring formation by triggering two independent pathways: one pathway 

involves diaphanous-related formins which polymerize actin filaments with the help of 

profilin (Carlson et al., 1977, Haugwitz et al.. 1994, Severson, Baillie, and Bowerman 

2002). The second pathway is stimulated by the activation of non-muscle myosin II via 

Rho-kinase (D’Avino, 2015; Green et al., 2012) (Fig. 3). In detail, active RhoA activates 

formins and releases them from an autoinhibitory state which in turn polymerize linear 

actin filaments that are crucial for the contractile ring to form (Otomo et al., 2005; 

Watanabe et al., 1997). Another factor called profilin promotes together with the formins 

actin polymerization. Profilins bind actin monomers and are thought to contribute to actin 

polymerization by keeping pre-polymerized monomeric actin in a pre-active state for 

providing them to active formins in order to polymerize actin filaments (Evangelista et al., 

2002). Simultaneously RhoA activates the two serine-threonine kinases Rho-associated 

protein kinase (ROCK) thereby activating myosin II filament assembly. Then active 

myosin-II can bind F-actin and drives the contraction of the filaments resembling the 

sliding filament model of muscle contraction (D’Avino, 2015; Jordan and Canman, 2012). 

The scaffold protein anillin directly binds RhoA and the plasma membrane and also 

associates with the actomyosin meshwork which couples the contractile ring to the plasma 

membrane (A. J. Piekny and Glotzer 2008, D'Avino 2009, Piekny and Maddox 2010). 
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Moreover, it has been shown that anillin binds Ect2 (Frenette et al., 2012a). Constriction 

of the contractile ring then drives plasma membrane ingression that divides the mother cell 

into two newly formed daughter cells.  

1.5. Abscission as the last step of cytokinesis 

Once RhoA is active the contractile ring forms and constricts and thereby promotes 

ingression of the plasma membrane. After constriction, an intercellular bridge is formed 

between the two daughter cells and at its center the midbody assembles. The midbody was 

first discovered by Walther Flemming in the 19th century, it was later on described as an 

electron-dense material containing microtubules evolving between nascent daughter cells 

during cell division (Mullins, 1977).   

The midbody is the anchor point for the cleavage furrow and provides the molecular 

platform required for the assembly of the abscission machinery that is essential for the 

physical separation of the two newly formed daughter cells (Green et al., 2012). The 

cleavage furrow ingresses until a maximum diameter of 1-2µm and the formed midbody 

remains up to several hours until the abscission machinery is ready to divide the nascent 

daughter cells (Addi et al., 2018; Mierzwa and Gerlich, 2014). The midbody derives from 

the maturating spindle midzone and requires constriction of the plasma membrane (Hu et 

al., 2012; Kechad et al., 2012). During spindle midzone maturation in order to form the 

midbody, several contractile ring components, e.g. MKLP1, PRC1, anillin, septins, actin, 

myosin, RhoA and Ect2 are retained in the forming midbody structure (Gai et al., 2011; Hu 

et al., 2012; Kechad et al., 2012).   

For abscission to occur the midbody has to be reorganized. First, cytoskeletal components 

are removed, and F-actin fibers are disassembled. Central spindle proteins such as for 

example centralspindlin complex and anillin stay associated with the microtubules within 

the midbody but PRC1 stays at the microtubule overlapping region (Elia et al., 2012; Hu et 

al., 2012). Thereby the midbody is linked to the plasma membrane. Other contractile ring 

proteins such as RhoA and septins are localizing to a ring-like structure next to the midbody 

(Hu et al., 2012). It has been also shown that phosphoinositide lipids that are present at the 

equatorial cortex and associate with contractile ring components when the cleavage furrow 

constricts are also enriched at sites nearby the midbody structure (Dambournet et al., 2011; 

Emoto et al., 2005; Field et al., 2005). During reorganization of the midbody two new 
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contraction sites both adjacent to the midbody occur, leading to a bow-like appearance of 

the midbody and its adjacent contraction sites. After cleavage furrow ingression the actin 

filaments are removed, and the endosomal sorting complex required for transport III 

(ESCRT-III) localizes to the midbody promoting the ultimate scission of the daughter cells 

(Guizetti and Gerlich, 2012). In most cases the midbody structure is inherited by one of the 

two cells (Addi et al., 2018; Mierzwa and Gerlich, 2014).   

1.6. The GEF Ect2 and its role in cytokinesis 

Contractile ring formation depends on the activation of RhoA via the GEF Ect2. Ect2 was 

originally identified as a proto-oncogene in a screen for mitogenic signal transducers where 

a murine keratinocyte cDNA library was introduced into fibroblasts and cells that formed 

foci with altered morphology were isolated. Ect2 shows significant homology with the 

genes Bcr, Dbl and Cdc24 genes that were reported to be involved in the signaling pathway 

of Rho-like proteins. Furthermore, it was shown that Ect2 interacts with RhoA, RhoC, and 

Rac1 in-vitro (Miki et al., 1991). These results already suggested a crucial role of Ect2 in 

the regulation of small GTP binding Rho family proteins. In later studies, it was shown that 

Ect2 is a GEF for RhoA, Rac1 and Cdc42 which promotes the exchange of GDP to GTP 

(Tatsumoto et al. 1999). Ect2 is required for cleavage furrow formation during cytokinesis 

and absence of Ect2 leads to cytokinetic failure (Chalamalasetty et al., 2006; Jantsch-

Plunger et al., 2000; Tatsumoto et al., 1999). Another protein called NOP-1 was identified 

as playing a crucial role in the pseudocleavage furrow formation during polarity 

establishment and also mediates aster-induced furrowing in C. elegans (Tse et al., 2012).  

In-vivo studies revealed that the gene Ect2 is the orthologue of Pebble in Drosophila 

melanogaster and of let-21 (later on called ect-2) in C. elegans (Dechant and Glotzer 2003; 

Lehner 1992; Prokopenko, Saint, and Bellen 2000). In D. melanogaster and C. elegans 

similar phenotypic results were obtained suggesting that the role of Ect2 in regulating Rho 

family proteins during cell division is conserved (Canevascini et al. 2005; Glotzer 2005, 

Prokopenko et al. 2000).   

Ect2 consists of a catalytic DH-type GEF domain, a PH domain at the C-terminus and three 

BRCT domains at the N-terminus (Fig. 4A) and in 2014 the crystal structure of the BRCT 

domains was resolved (Zou et al., 2014). The GEF domain catalyzes the exchange of GDP 

to GTP in RhoA and thereby activates it (Tatsumoto et al. 1999). A linker region of about 
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120 amino acids connects the N-terminal BRCT domains with the C-terminal part of Ect2. 

The C-terminus harbors a poly-basic sequence (PBS) required for membrane binding in 

human cells but not in C. elegans (Motegi and Sugimoto, 2006; Su et al., 2011). In human 

cells Ect2 binds to the plasma membrane with the PH domain and the PBS and plasma 

membrane binding of Ect2 is essential for cytokinesis (Su et al., 2011). In C. elegans, it 

was shown that the C-terminus is required for membrane targeting (Chan and Nance, 2013).  

Ect2 localizes to the spindle midzone and the plasma membrane in human cells (Tatsumoto 

et al. 1999). Interestingly in Drosophila and C. elegans embryos the Ect2 orthologues 

localize exclusively to the plasma membrane and not to the spindle midzone (Motegi and 

Sugimoto 2006; Jenkins et al., 2006; Prokopenko et al. 1999) (Fig. 4B).  

It has been shown in-vitro that the BRCT domains bind the C-terminus including the GEF 

domain and thereby inhibit Ect2 activity (Kim et al., 2005; Saito et al., 2004). In addition, 

the mutation of W304R in BRCT2 domain cannot rescue multinucleation caused by 

depletion of endogenous HsEct2 other than expression of RNAi resistant HsEct2WT. This 

suggests that BRCT domains do not only have an inhibitory role for HsEct2 function but 

that they are also required for Ect2 function (Kim et al., 2005; Wolfe et al., 2009).  

BRCT domains are phosphopeptide binding motifs that interact with their binding partners 

upon phosphorylation (Manke, 2009). Mostly BRCT domains occur in tandem repeats of 

two. The triple BRCT domains of Ect2 are similar to the triple BRCT domains in the protein 

DNA topoisomerase 2-binding protein 1 (TopBP1) (Zou et al., 2014). However, the BRCT 

domains of Ect2 (as well as the ones of TopBP1) are very different from the canonical 

tandem BRCT domains in other proteins and could resemble a new class of BRCT domains. 

Therefore it is unclear how the Ect2 BRCT domains function and whether they bind 

phosphopeptides (Zou et al., 2014).  

Ect2 BRCT domains have shown to associate with centralspindlin which promotes 

activation and targeting of Ect2 to the spindle midzone (Wolfe et al. 2009, Burkard 2009). 

Next to the interaction of Ect2 with centralspindlin, it was shown that the Ect2 PH domain 

interacts with the anillin, a scaffold protein for the actomyosin network at the cell cortex. 

The interaction was suggested to stabilize central spindle microtubules and to cross link the 

central spindle with the cell cortex in order to position the contractile ring and to define a 

distinct zone of active RhoA that is activated by Ect2 (Frenette et al., 2012b). 
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Fig. 4. HsEct2 and CeECT-2 localize differently in the cell.  (A) Domain organization of 

Homo sapiens Ect2 (HsEct2) and C. elegans ECT-2 (CeECT-2). Both orthologues harbor 

three N-terminal BRCT domains, a DH-GEF domain which catalyzes the exchange of GDP 

to GTP in RhoA and a C-terminus containing a PH domain involved in plasma membrane 

binding.  HsEct2 harbors an additional polybasic sequence (PBS) at the C-terminus. (B) 

Localization of HsEct2 in human cells and of CeECT-2 in C. elegans during cell division. 

HsEct2 localizes to the spindle midzone and to the plasma membrane in human cells. In C. 

elegans, CeECT-2 exclusively localizes to the plasma membrane. Scale bar = 10 µM. 

 

1.7. Ect2 regulation by centralspindlin  

Another player in the signaling transduction cascade of contractile ring formation is the 

protein complex centralspindlin consisting of MKLP1 and MgcRacGAP (Mishima et al., 

2002).   

Centralspindlin recruits the GEF Ect2 to the spindle midzone by the binding of Ect2 to 

MgcRacGAP via its N-terminal BRCT domains (Nishimura and Yonemura, 2006; Yüce et 

al., 2005; Zhao and Fang, 2005).  

The current model predicts that MgcRacGAP is phosphorylated by Polo-like kinase 1 

(Plk1) and phosphorylation triggers the binding of BRCT domains to MgcRacGAP. Then, 

binding of the BRCT domains to MgcRacGAP releases Ect2 autoinhibition and thereby 

activates Ect2 GEF activity (Fig. 5A). Once recruited, Ect2 is activated and loaded onto the 
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adjacent plasma membrane where it in turn activates RhoA (Wolfe et al. 2009, Burkard 

2009). How active Ect2 translocates from the midzone to the membrane has yet not been 

clarified.  

A paper by Kotýnková et al. in 2016 challenged this model. The authors showed that neither 

the binding of MgcRacGAP to Ect2 nor Ect2 localization to the spindle midzone are 

required for successful cytokinesis and propose an activation of Ect2 independent of Ect2-

MgcRacGAP interaction (Fig. 5B). 

 

 

Fig. 5. Different models of Ect2 regulation during cytokinesis. (A) At anaphase onset, 

Plk1 phosphorylates spindle midzone localized MgcRacGAP, thereby creating a binding 

site for Ect2 N-terminal BRCT domains. Upon phosphorylation of MgcRacGAP by Plk1, 

Ect2 is recruited from the cytoplasm to the spindle midzone where it binds to MgcRacGAP. 

The Ect2 N-terminal BRCT domains are thereby released from inhibiting the GEF domain 

and active Ect2 then translocates from the spindle midzone to the plasma membrane by not 

yet identified mechanisms (Su et al., 2011), reviewed in (D’Avino, 2015). (B) Illustration 
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of the results by the study from Kotýnková et al., 2016. Two-point mutations in the BRCT1 

domain of Ect2 block the interaction with MgcRacGAP and abolish Ect2 localization to 

the spindle midzone. Even though mutant Ect2 does not localize to the spindle midzone 

cytokinesis is successful. This suggests that Ect2 localization to the spindle midzone is not 

crucial for Ect2 activation (Kotýnková et al., 2016). Their results challenge the hypothesis 

shown in (A) that Ect2 is activated at the spindle midzone by the interaction of 

MgcRacGAP and Ect2. 

 

The authors of Kotýnková et al., 2016 generated a stable, RNAi resistant cell line where 

they introduced two specific point mutations (T153A, K195M, called TK mutant) in the 

BRCT1 domain of Ect2. They state with biochemical assays the results from another study 

by Zou et al., 2014 that these point mutations abolish the interaction of Ect2 with 

MgcRacGAP (Zou et al., 2014). Then they performed live-imaging with the TK mutant in 

absence of endogenous Ect2. Ect2TK was not localizing to the spindle midzone, however 

cell division and cytokinesis was completely normal when compared to a cell line 

expressing Ect2WT in absence of endogenous Ect2. These results are consistent with other 

findings from the literature that spindle midzone localization of Ect2 is not important for 

cytokinesis. In C. elegans, CeECT-2 only localizes to the plasma membrane and not to the 

spindle midzone (Jenkins, 2006; Motegi and Sugimoto, 2006). Moreover, in human cells it 

was shown that displacement of endogenous HsEct2 from the spindle midzone by 

overexpression of transgenic N-terminal fragments does not interfere with cytokinesis 

(Chalamalasetty et al., 2006).  

Furthermore, the authors enquired the function of the PH- and PBS domain of Ect2 during 

cytokinesis. Deletion of PH-PBS domain has been shown to strongly interfere with 

successful cytokinesis (Su et al., 2011). To exclude artifacts caused by the big deletions, 

Kotýnková et al., 2016 generated an Ect2 fusion protein where the PH-PBS domain was 

replaced with a C1B membrane targeting domain derived from human Protein Kinase C 

(PKC). The Ect2-C1B protein was artificially forced to the plasma membrane upon addition 

of TPA to the culture medium. Localization of Ect2-C1B lacking the PH-PBS domains to 

the plasma membrane could rescue the cytokinetic failure caused by deletion of PH-PBS 

domains. Then they generated a fusion protein of the GEF domain tagged with the C1B 

domain to enquire whether localization of the GEF domain alone to the plasma membrane 

is sufficient to induce cytokinesis. They show that membrane localization of the GEF-C1B 

domain upon TPA treatment alone was not sufficient for successful cytokinesis.  
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Together these findings of Kotýnková et al., 2016 showed that successful cytokinesis 

requires Ect2 membrane localization via its PH-PBS domains but not spindle midzone 

localization via MgcRacGAP interaction. Furthermore, the findings show that the 

membrane-localized GEF domain without the N-terminal BRCT domains of Ect2 is not 

sufficient for cytokinesis. These results strongly suggest that Ect2 activity must be 

regulated via the N-terminal BRCT domains at the equatorial plasma membrane and raise 

the question whether BRCT domains have additional roles in regulating Ect2 activity 

independently of spindle midzone localization. However, if and how Ect2 activity is 

controlled at the plasma membrane to achieve orderly RhoA activation is currently 

unknown.  

Another study from Kim et al., 2005 that revealed that the N-terminal BRCT domains of 

Ect2 interact with the C-terminal GEF domain. They exchanged a highly conserved 

tryptophan for an arginine (W304R) in the BRCT2 domain that was suggested to be 

involved in the folding of the BRCT domain. Kim showed that the W304 mutation 

interferes with the interaction of the BRCT domains and the GEF domain. Furthermore, 

they showed that W304R mutations increased strongly the GEF activity of Ect2W304R in-

vitro (GEF assays). However, there was one study that showed that mutating this residue 

does not abolish the binding of BRCA1 and XRCC1 (= represents part of the sequence of 

BRCT0 domain discovered in 2014 by Zou et al.) (Taylor et al., 2004). These findings are 

not conclusive, moreover they lack in-vivo analysis that could answer the question whether 

the W304R mutation interferes with cytokinesis since there are several contradictory results 

on this conserved residue.  

1.8. Regulation of Ect2 by mitotic kinases 

Another possible mechanism by which Ect2 activity and localization is regulated could be 

through the mitotic kinases Cyclin-dependent kinase 1 and Plk1. The two major kinases 

Cdk1 and Plk1 have been suggested to phosphorylate Ect2 in-vitro and in-vivo (Niiya et al. 

2006; Suzuki et al. 2015; Wolfe et al. 2009, Hara 2009). Cdk1 and Plk1 are serine/ threonine 

kinases that are active during G2/M phase and that have multiple crucial functions during 

mitosis. 

Plk1 is a highly conserved eukaryotic serine/ threonine kinase and was first identified in 

Drosophila (Llamazares et al., 1991; Sunkel and Glover, 1988). It contains a polo-box 
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binding domain that serves as a phosphopeptide binding domain that recognizes 

serine/threonine consensus sites (Elia, 2003). Plk1 triggers metaphase to anaphase 

transition and is important for many mitotic events such as centrosome maturation and 

condensation, nucleic envelope breakdown and microtubule organization (Nigg et al., 

1996). In metaphase, Plk1 localizes to microtubules at the mitotic spindle and to the 

midbody during cytokinesis (Nigg et al., 1996). 

Cdk1 was first discovered in S. cerevisiae and is a highly conserved proline-directed serine/ 

threonine kinase phosphorylating preferentially serine/ threonine consensus sites (Hartwell 

et al., 1973; Rhind and Russell, 2012). Cdk1 interacts with cyclins to be activated in 

prophase/ prometaphase and the complex formed with Cyclin-B regulates many mitotic 

events such as chromosome condensation, nuclear envelope breakdown and spindle 

formation (Rhind and Russell, 2012; Suzuki et al., 2015). 

It has been shown that Ect2 N-terminus is highly phosphorylated during prophase and 

metaphase and phosphorylation of one site that was identified is the threonine residue 342 

in the linker region. Phosphorylation of T342 by Cdk1 prevents the interaction of Ect2 with 

centralspindlin complex (Yüce, Piekny, and Glotzer 2005). Therefore Yüce et al. speculate 

that when levels of Cdk1 decline after metaphase-anaphase transition Ect2 gets 

dephosphorylated and can associate with centralspindlin complex via its N-terminal BRCT 

domains. In addition, T342 was shown to be important for the catalytic activity of Ect2 and 

mutation of T342 (= T341 in Hara et al., 2009) was shown to decrease interaction of N-

terminal fragments with C-terminal fragments of Ect2. However, mutations of T341 did 

not interfere with cytokinesis, which questions the importance of this phosphorylation 

(Hara et al., 2006). In addition the mitotic kinase Plk1 phosphorylates the subunit of 

centralspindlin, MgcRacGAP and thereby generates a binding site for the BRCT domains 

of Ect2 (Burkard et al., 2009; Petronczki et al., 2007; Wolfe et al., 2009).  

Also it has been shown that Plk1 directly interacts with Ect2 in a phosphorylation 

dependent manner in-vitro (Niiya et al., 2006). A specific site in the linker region (T412) 

was shown to be phosphorylated by Cdk1 and prevention of phosphorylation by a 

phosphodeficient mutation (T412A) prevented Ect2 association with Plk1. Overexpression 

of Ect2WT and phosphomimetic Ect2T412D, but not phosphodeficient Ect2T412A, resulted in 

excessive membrane blebbing suggesting the phosphorylation of T412 promotes Ect2 

activation (Niiya et al., 2006). Both kinases have been suggested to play an important role 
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for the correct temporal activation of Ect2 during mitosis. It has been proposed that Cdk1 

primes Ect2 for subsequent Plk1 phosphorylation in order to regulate Ect2 function (Niiya 

et al., 2006). 

Moreover, Ect2 linker region was shown to include a nuclear localization signal and 

phosphorylation of the NLS in a Cdk1 dependent manner promotes export of Ect2 from the 

nucleus in prophase (Saito et al., 2004; Suzuki et al., 2015). Deletion of the linker region 

or mutations of the NLS site in the linker region were shown to be causing strong 

transforming activity of Ect2 (Saito et al., 2004) which hints at an important role of mitotic 

kinases phosphorylating the linker region and thereby regulating Ect2.  

Furthermore, not only the N-terminus has been shown to be phosphorylated by mitotic 

kinases but also the C-terminus of HsEct2 and T815 has been identified as a major site 

being phosphorylated by Cdk1 in-vitro and in-vivo (Dephoure et al., 2008; Niiya et al., 

2006). Moreover, it has been shown that phosphorylation of T815 in the PBS domain 

controls Ect2 membrane localization since the mutation of T815A targets Ect2 prematurely 

to the plasma membrane in metaphase (Su et al., 2011).  

1.9. Aims of the thesis 

The goal of my thesis is to understand the distinct roles of the three BRCT domains of Ect2 

during cytokinesis. I focused in particular on the function of the three BRCT domains in 

the temporal and spatial regulation of Ect2 using in-vivo structure-function studies in 

human tissue culture cells and the one-cell embryo of the small nematode C. elegans. Many 

studies have already been performed investigating the regulation of Ect2 (writing of Ect2 

here as a simplification for many different model organisms). So why was it important to 

study the function of the different BRCT domains?  

It has been shown by Kotýnková et al., that targeting only the Ect2 GEF domain to the cell 

cortex is not sufficient for successful cytokinesis suggesting that the N-terminal BRCT 

domains have a key role in regulating Ect2 function.  

Furthermore, initially only the BRCT1 and BRCT2 domain were identified and they were 

thought to function together as a classical tandem BRCT repeat. However, Zou et al. in 

2014 identified the BRCT0 domain and solved the crystal structure of the N-terminus 

containing all three BRCT domains. This revealed a very different arrangement of the three 

BRCT domains in Ect2 compared with classical tandem BRCT repeats (Zou et al., 2014). 
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Based on the organization of the three BRCT domains it is possible that each BRCT domain 

has a separate and distinct function during cytokinesis. Moreover, it was proposed that 

binding of Ect2 BRCT1 domain to MgcRacGAP at the spindle midzone is crucial for 

cytokinesis (Nishimura and Yonemura, 2006; Yüce et al., 2005; Zhao and Fang, 2005). 

Kotýnková et al., showed that spindle midzone localization of Ect2 is not crucial for its 

activity and function during cytokinesis. Since interaction of the BRCT1 domain with 

MgcRacGAP is not required for cytokinesis it raises the question whether the BRCT1 

domain has any role during cell division. To test the function of the BRCT0, BRCT1 and 

BRCT2 domains of Ect2 I generated several RNAi-resistant transgenes in which individual 

BRCT domains were deleted or substituted. The resulting cytokinetic phenotypes of the 

different transgenes were analyzed in the presence and absence of endogenous Ect2 protein 

in C. elegans and human tissue culture cells. 

Previous in-vitro studies showed that the N-terminal tandem BRCT-domains bind the GEF 

domain of Ect2 and serve as negative regulator of the Ect2 GEF activity. In early mitosis 

the BRCT domains bind the GEF domain thereby inhibiting its catalytic activity (Kim et 

al., 2005; Saito et al., 2003). Moreover, a paper by Chan and Nance 2013 showed in C. 

elegans that overexpression of ECT-2 variants without the BRCT domains results in a 

phenotype that resembles hyperactivation of RhoA (Chan and Nance, 2013; Zanin et al., 

2013).  

The findings however are mainly based on in-vitro studies and whether Ect2 is regulated 

by an autoinhibitory mechanism in-vivo has not yet been answered. During my studies I 

tried to answer this question by performing structure-function studies in C. elegans and 

human cells. My first aim was the deletion of all three BRCT domains in C. elegans and to 

test the hypothesis that ECT-2 BRCT domains autoinhibit the GEF domain. Only few 

experiments have been performed so far in C. elegans to answer the question of whether 

ECT-2 is regulated via an autoinhibition (Chan and Nance, 2013). To this end, a transgenic 

C. elegans strain and a transgenic cell line expressing an CeECT-2/ HsEct2 variant with all 

three BRCT domains deleted was generated and the cytokinetic phenotype was analyzed 

using DIC and confocal spinning disk microscopy.  

Moreover, it has been proposed that the N-terminal BRCT domains act as one tandem 

repeat to autoinhibit GEF function. Whether this is true has not yet been addressed. 

Therefore, I generated transgenic C. elegans strains and HeLa cell lines expressing CeECT-
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2/ HsEct2 variants with deletions of different BRCT domains and assessed the cytokinetic 

phenotype by DIC and confocal microscopy. Furthermore, I analyzed cytokinetic function 

by lethality assays and multinucleation assays and assayed cortical contractility in these 

worm strains and cell lines.  

Lastly the linker region between the N-terminal BRCT domains and the C-terminal GEF 

domain of Ect2 has been shown to be phosphorylated and involved in Ect2 regulation 

(Niiya et al., 2006; Saito et al., 2004; Suzuki et al., 2015). Therefore, I aimed to test whether 

the linker region is involved in regulating the activity of Ect2 during mitosis by exchanging 

all the serines/ threonines to alanines, blocking phosphorylation in this region.  
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2. Methods and materials 

2.1. Methods 

2.1.1. C. elegans techniques  

2.1.1.1. Maintenance of C. elegans worm strains 

C. elegans strains were maintained on agar plates containing nematode growth medium 

(NGM). A thin layer of the bacterial E. coli strain OP50 was seeded on NGM plates as a 

feeder host for the worms. The strain OP50 grows slower than normally E. coli because of 

an Uracil auxotrophy. A slow growth is desirable since it allows easier observation and 

handling of the worms under the microscope (Sulston and Brenner, 1974). Plates were kept 

at RT or at 4°C for longer storage. OP50 was seeded onto the NGM plates and kept at either 

room temperature (RT) or at 4°C for longer storage. Worms were passaged with a worm-

pick consisting of a metal holder fixed to a platinum wire. First the platinum wire was 

disinfected with a flame of an ethanol-burner. Next, a small drop of OP50 was picked up 

with the tip of the platinum wire and the worms were sucked into the drop of OP50 at the 

tip of the wire. The wire was flamed in between different passaging rounds in order to avoid 

cross-contaminations with other worm strains and infections with environmental bacteria 

or fungi. Worms were incubated at 15°C, 20°C or 25°C depending of the desired growth 

rate. A stereo-microscope was used to visualize the worms (Table 2). 

2.1.1.2. Freezing of C. elegans worm strains 

Every newly generated C. elegans strain was immediately frozen in order to avoid genome 

changes during maintenance of the worms and to exclude the risk that strains get lost due 

to unexpected threats by infections. Four non-contaminated medium NGM plates with 

starved worms containing mainly L1 larvae were washed off the plate with 3.5 ml M9 

buffer per plate and transferred to a 15 ml Falcon. Then the volume of the M9 buffer inside 

of the Falcon tube was measured and equal volume of 2x freezing medium was added. 

Worms were resuspended, equally distributed into 5 cryotubes and directly frozen at -80°C. 

The next day, one of the tubes was thawed and added onto 2 medium NGM plates and 

worms were tested for survival after the thawing process using a Stereo Microscope (Leica) 

to observe the movement of the worms with transmission light. 
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2.1.1.3. Generation of transgenic worm strains by MosSCI insertion 

The Mos1-mediated single-copy insertion (MosSCI) is a technique to stably introduce a 

gene of interest into the C. elegans genome at specifically flanked regions (Frøkjaer-Jensen 

et al., 2008). When microinjecting DNA into the C. elegans gonad, the DNA fragments 

mostly form extrachromosomal arrays and are not integrated into the genome. 

Extrachromosomal arrays are passed onto the next generation; however, the copy-number 

and expression of genes is highly variable and quantitative analysis requires a stable and 

equal gene expression (Mello et al., 1991). 

With the MosSCI method a Mos1 transposon is mobilized from its original site by excision 

through a transposase provided together with the injected plasmid. Excision of the Mos1 

transposon causes a double-strand break in the DNA and the gap is filled by the integration 

of the desired transgene. When injecting the plasmid containing the gene of interest (GOI) 

together with the transposase and other co-injection markers, extrachromosomal DNA 

arrays are formed that act as a template for the repair procedure of the double-strand break 

caused by the Mos1 transposon excision. The arrays contain chromosomal sequences 

homologous to each flanked region next to the Mos1 element and by homologous 

recombination the gene of interest is then inserted into the genome.  

2.1.1.4. Insertion of transgenes and validation of integration in C. elegans 

Plasmids containing the gene of interest were injected into the worm gonad by 

microinjection using an injection set-up consisting of a microscope (Nikon Eclipse Ti) 

coupled to a Micro-Injector (Femtojet Eppendorf). An injection mix containing the target 

plasmid at a concentration of 50 ng/µl, the transposase and several co-injection markers 

provided in a 3x pre-mixed “MosSCI mix” were prepared (Table 14). Before injection, the 

transfection mix was centrifuged at RT at maximum speed for 10 min. Young 

hermaphrodite worms were immobilized on injection-pads covered with mineral oil. The 

injection mix was loaded into a micro-needle mounted onto the injector and injection mix 

was injected into the gonad of the worms. Injected worms were singled onto medium size 

NGM plates and cultured at 25°C. After 7-10 days worms were starved, and progenies were 

analyzed for wild-type movers. Worms on different plates were checked for a potential 

integration by observing movement of the progenies of injected EG6699. First, worms that 

were moving fast and sigmoidal were easily distinguished from worms with the unc-119 
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phenotype. To check whether the GOI was stably integrated or wild-type phenotype was 

only caused by extrachromosomal arrays, worms were further analyzed under a 

fluorescence microscope (Leica, M205 FA) to check for co-injection markers that indicate 

presence of extrachromosomal arrays. Here, expression of mCherry, especially in the 

pharynx region, was checked. Per original plate showing wild-type movers, 10 worms 

without mCherry fluorescence were picked and singled onto small NGM plates. Worms 

were incubated at 25°C for fast growth. Adult offspring were then further analyzed to 

distinguish between heterozygous and homozygous integration of the transgene.  

2.1.1.5. Verification of homozygous insertion events in C. elegans 

When the transgene is integrated into the genome it can happen as a homozygous or a 

heterozygous event. However homozygous integrations are rare and mostly heterozygous 

worms are generated and homozygous worms occur in the subsequent generation (F1). For 

all experiments a homozygous integration of the transgene was required to guarantee 

similar expression levels for quantitative analysis. The unc-119 phenotype can be leveraged 

as a reporter for heterozygous integration. The GOI is stably inserted together with the unc-

119 transgene that rescues the uncoordinated movement of the worms lacking a part of the 

unc-119 gene (EG6699). If the integration is heterozygous, according to Mendelian 

segregation, 25% of the progeny loses the unc-119 transgene and therefore will show 

uncoordinated movement. From the original plate of the injected worm (F0), after testing 

for the absence of extrachromosomal arrays, 10 worms (F1) were picked and singled onto 

small NGM plates. If all F1 progeny shows the wild-type movement phenotype, these were 

cultured further. Subsequently, two plates were chosen, and 20 worms of each plate were 

singled and tested for GFP expression of the transgene by Fluorescence-microscopy using 

the Axioscope A1 (Zeiss). All of the 20 plates were screened for GFP expression and 10 

adult worms (F3) of each of the 20 different F2 plates were added into 5µl of M9 buffer 

within a multi-well plate that was covered with a glass cover-slip. GFP expression in the 

embryos and in the gonad was analyzed. When all F3 progeny of the 20 singled F2 

generation expressed GFP then worms were determined as homozygous and propagated as 

a new transgenic strain for freezing and analysis of the different transgenes. 
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2.1.1.6. Verification of GOI insertion by genotyping  

In addition, worms were tested for stable integration of the transgene using a PCR-based 

approach. Here, specifically designed primers were used that only work if the transgene is 

stably inserted into the genome (Table 7). Primers (AD325 and AD326, Froekjer-Jensen, 

2008) were designed to anneal in the genomic locus of chromosome II and within the unc-

119 transgene inserted together with the gene of interest. The PCR product can thus only 

be amplified if the transgene is stably integrated into chromosome II. Worms were lysed 

by a digest reaction where a single worm was put into 5 µl of digestion mix (Table 15). The 

digest was incubated at 65 °C for 1h. Afterwards, the lysate was used as a PCR template 

and a PCR with the specific primers was run with the worm lysate in a total volume of 25 

µl (Table 16). The PCR reaction was assembled on ice and run at specific thermocycling 

conditions (Table 16). Afterwards, PCR products were analyzed by agarose-gel 

electrophoresis (not shown). Expected size for stable integration was 1500bp. The correct 

size of integration was verified for all generated, transgenic C. elegans strains. 

2.1.1.7. Worm crosses 

For crossbreeding C. elegans strains in order to obtain a strain containing two desired 

genotypes from two genotypical different parents, a worm cross was set-up between 

hermaphrodites (young adults) and male individuals. Since males normally occur at low 

frequency, a common technique to obtain male individuals of the desired strain is to deplete 

HIM-8 by RNAi which causes defects in X-chromosome segregation (X0 and XX 

genotypes) and therefore results in high frequency of males. Hermaphrodites were injected 

with him-8 double stranded RNA. Young hermaphrodite worms were immobilized on 

injection-pads covered with mineral oil. The injection mix was loaded into a micro-needle 

mounted onto the injector and injection mix was injected into the gut of the worms. Around 

10 hermaphrodites were injected and put onto one medium NGM plate and cultured at 

25°C. After 7-10 days worms were starved, and progenies were analyzed for males under 

the stereomicroscope. Male worms can be easily distinguished from hermaphrodites by 

their thin body and a special tail that harbors a copulating apparatus. Once males are visible 

on the plate, young individuals were picked onto a new small NGM plate for clean-up from 

other small larvae that might be attached. After 10 minutes, 8 males of the desired strain 

were put together with 3 hermaphrodites of the other desired strain and cultures at 25°C 

over night (O/N). The next day, hermaphrodites were singled onto small NGM plates and 
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offspring (F1) was analyzed either with a fluorescence microscope (in case a fluorescent 

protein was used as a marker) or by PCR. In case F1 progeny successfully carries both 

desired alleles, 20x F1 individuals were singles onto small NGM plates and F2 generation 

was then analyzed as depicted in the chapters “Verification of homozygous insertion events 

in C. elegans” and “Verification of GOI insertion by genotyping” (in case of genotyping 

with the appropriate primers). Once a homozygous strain was obtained, it was right away 

frozen for long-term storage at -80°C (see “3.1.1.2. Freezing of C. elegans worm strains”). 

2.1.1.8. dsRNA production for the depletion of endogenous ECT-2 in C. elegans 

To deplete endogenous ECT-2 I generated dsRNA (#27) targeting specific region of the 3’ 

UTR of endogenous ECT-2. A region within the 3’ UTR of endogenous ECT-2 gene was 

amplified by PCR using the primers EZ589/EZ590 (Table 7). The primers EZ589/EZ590 

contain a T7 overhang that is required as a start point for transcription by the RNA 

polymerase. The amplified fragment was then later used for in-vitro transcription of the 

RNA targeting the 3’UTR of endogenous ECT-2. Expected size of the fragment was 547 

bp and both PCR amplification as well as dsRNA transcription were verified by agarose 

gel electrophoresis for correct fragment size. Next, I generated dsRNA by using the 

Ambion® MEGAscript® T7 In Vitro Transcription Kit. Every step was performed after 

cleaning the work-surfaces and pipettes with RNase ZAP (Ambion) in order to remove 

potential RNases that easily can degrade the generated dsRNA. Additionally, all steps were 

performed on ice, filter-tips and gloves were used all the time. In order to obtain sufficiently 

concentrated dsRNA, a larger PCR volume than usual was set-up (total 900 µl). DNA 

concentration was increased by purification of the whole PCR via one single spin-column. 

The DNA was then added together with the required reagents for the in-vitro transcription 

in one tube (Table 20). The transcription-mix was incubated at 37°C for 6h. A subsequent 

DNase digestion step to remove the template DNA was performed, by adding 8 µl DNase 

Turbo to the mix. The RNA was precipitated by a LiCl-precipitation step. 60µl of RNase 

free H2O and 60µl of LiCl was added to the mix, inverted several times and incubated at -

20°C for 1h. The dsRNA was then centrifuged at 4°C, max speed for 15 min. to pellet it. 

The pellet was washed with 70% ethanol and centrifuged under the same conditions. Pellet 

was air-dried for 20 min at RT and taken up in 120 µl 1x soaking buffer. Finally, the correct 

size of the dsRNA was determined by gel electrophoresis its concentration was measured 
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and determined as 150 ng/µl. The dsRNA was subsequently used for microinjections of C. 

elegans worms in order to deplete endogenous ECT-2.  

2.1.1.9. ect-2(RNAi), lethality tests and measurement of brood size in C. elegans strains 

Before performing lethality tests, both generated ect-2 dsRNA and the RNAi-resistant 

GFP-ECT-2 transgenes in transgenic worm strains were tested for functionality. DsRNA 

targeting endogenous ECT-2 was injected into young adult worms. Before injection, the 

dsRNA against endogenous 3’UTR of ect-2 was centrifuged at 4°C at maximum speed for 

10 min. Young hermaphrodite worms were immobilized on injection-pads covered with 

mineral oil. 0.5 µl of the RNA was loaded into a micro-needle attached to the injector and 

injected into the worms targeting the region right after the pharynx. Injected worms were 

transferred onto medium size NGM plates and cultured at 20°C. Worms were grown at 

20°C and singled 16-20h post injections, mother worms were sacrificed approximately 40-

48h post injections. Embryonic lethality and total brood size (counted all embryos and 

larvae) after ect-2(RNAi) was assayed approximately 72h post injections.  

2.1.1.10. gfp(RNAi) feeding approach to deplete the gfp::ect-2ΔBRCT0+1+2 transgene 

during strain generation 

In order to obtain a expressing GFP::ECT-2ΔBRCT0+1+2 strain more than 72 worms of MoSCI 

strain EG6699 were injected and only one transgenic strain with an integration of the 

transgene could be obtained. Normally, one integration per 20 injected worms is obtained 

and 1 integration per 72 worms represents a low frequency of integration. Since the number 

of positive integrations of the construct gfp::ect-2ΔBRCT0+1+2 resulted in this very low 

integration number we hypothesized that the expression of the transgene might lead to 

embryonic lethality and therefore no strains can be generated when the transgene is 

expresses. Therefore, the GFP-ceECT-2ΔBRCT0+1+2 transgene was silenced during strain 

generation by feeding injected worms with gfp(RNAi). Worms were directly put on 

gfp(RNAi) feeding plates after injection and grown until almost starved and then passaged 

onto new gfp(RNAi) feeding plates to constantly deplete the GFP-ECT-2 transgene in case 

it induces embryonic lethality. Then L4 worms were transferred from the gfp(RNAi) plate 

to normal plates and to allow expression of GFP-ceECT-2ΔBRCT0+1+2 was After 24h-72h 

expression was monitored by fluorescence-microscopy (Axioscope, Zeiss).   
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2.1.1.11. Live imaging of embryos in C. elegans by confocal spinning disk microscopy  

Imaging of C. elegans 1-cell stage embryos was performed using spinning-disk 

microscopy.  Adult hermaphrodite worms were put into 5 µl M9 buffer drop on a glass 

cover-slip with the help of a stereo-microscope. The adults were cut with a needle to extrude 

the embryos and the glass cover-slip was put upside-down onto an agarose-pad prepared 

from 2% agarose in H2O on a glass slide. Spinning disk confocal images of 1-cell stage 

embryos were acquired at 488 nm and 561 nm excitation on an Axio Observer D1 (Zeiss) 

coupled to an UltraViewVoX spinning disk unit (PerkinElmer) and 63x/1.4 plan-

apochromat oil objective. Image-stacks were acquired at a step-size of 2 µm  and 3-5 z-

planes were acquired. Images were taken in the TRANS channel, with the 488nm laser at 

10% laser-power (200ms exposure, 2x binning) for imaging the GFP-signal and with 

561nm laser at 30% laser power for imaging mkate2 signal (200ms of exposure, 2x 

binning). The microscope was controlled by the Volocity software (PerkinElmer).  

 

2.1.2. Tissue culture techniques 

2.1.2.1. Maintenance of HeLa FRT cell lines 

All procedures were performed under a sterile hood. Cells were grown in Dulbecco’s 

growth medium (DMEM) containing 10% FBS and 1% Penicillin/Streptomycin (P/S). 

Every 2-3 days when cells became 90% confluent cells were passaged to a new culture 

flask (T25). Cells were once washed with 5 ml sterile 1xPBS and PBS was quickly removed 

from the cells. Then 1ml 1x Trypsin/PBS was added to the cells and immediately removed. 

Cells were incubated at RT for 5 min, then resuspended in fresh medium and split in 1:8 

ratio to a new T25 flask.  

2.1.2.2. Freezing of HeLa FRT cell lines 

Cells were grown in a T75 cell culture flask until almost confluent. Cells were washed, 

trypsinized (see above) and resuspended with 10 ml of fresh medium. Cells were 

centrifuged at 700 x g for 5 minutes. In the mean-time, a 2x freezing media was prepared 

containing 20% DMSO, 50% FBS and 30% DMEM. After centrifugation, cells were 

resuspended with 2.5 ml of culture medium and 2.5 ml of freezing medium was added to 
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achieve a final concentration of 1x freezing medium. Cells were immediately frozen at -

80°C using a cryo-container ensuring gradual cooldown of the cell suspension. 

2.1.2.3. Generation of transgenic HeLa cell lines 

Transgenic HeLa FRT cell lines containing different hEct2 transgenes were generated by 

co-transfection of the GOI in a pcDNA5 vector together with the recombinase pOG44 that 

mediates the integration of the GOI. 150 000 cells/well were seeded in a 6-well plate one 

day prior to transfection and cultured at 5% CO2/37°C during the whole experiment. Cells 

were transfected with X-tremeGene9 transfection reagent according to the manufacturer’s 

protocol. Briefly, 1 µg total DNA (900 ng pOG44 and 100ng GOI) was transfected together 

with 3 µl or 6 µl transfection reagent/ well. Cells were incubated for 48h with transfection 

mix, then all wells were transferred and combined in a big cell culture flask (T75). The next 

day selection media (DMEM + 10% FBS + 1% Pen/Strep + 300 µg/ml Hygromycin) was 

applied to the transfected cells and a control of non-transfected cells was included. Every 

2-3 days selection media was changed. In a successful experiment, after 1.5-2 weeks all the 

control cells were dead and cell colonies that have emerged in the transfected lines were 

trypsinized and pooled into a small T25 flask. Cells were grown until almost confluent, 

then frozen and used for analysis of the transgenes with various assays.  

2.1.2.4. Depletion of endogenous Ect2 by RNAi in human cells 

One day prior to the experiment FRT Hela cells were trypsinized, resuspended in full 

medium and counted. In a 12-well plate, a total number of 70 000 cells/ well were plated 

on glass coverslips. Cells were incubated at 37°C, 5% CO2 O/N. Transfection of siRNA 

targeting BRCT2 domain of endogenous Ect2 (Thermofisher, silencer Select, 20 µM stock 

concentration) was performed using RNAi Max Transfection reagent. RNA was slowly 

thawed on ice; RNase ZAP spray was used to decontaminate surfaces and pipettes from 

RNase. Filter tips and gloves were used all the time, all steps to set-up the transfection mix 

were performed on ice. Media was aspirated from cells and replaced with pre-warmed fresh 

full medium containing 0.01 µg/ml tetracycline (1ml of medium+tetracycline was added to 

the well). Total volume per well at the end of transfection was 1200 µl (1ml of media+ 200 

µl of RNA containing transfection mix). The transfection mix containing siRNA and 

transfection reagent RNAi Max was set-up up by preparing two Eppendorf tubes A and B. 

In tube A, the stock solution of RNA was diluted to a final concentration of 30 nM/ well in 
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100 µl Opti-MEM serum-free medium. In tube B RNAi Max transfection reagent was 

diluted in Opti-MEM (5 µl RNAi Max/100 µl Opti-MEM/well). The tubes A and B were 

gently mixed by softly tapping with a finger. Then the content of tube A (diluted RNA) 

was added into tube B by carefully pipetting and slowly resuspending 1-2 times. The mix 

was incubated at RT for 5 min and 200 µl of mix was added to each well in a drop-wise 

manner. The transfection mix was incubated at 37°C, 5% CO2 for 48 h and subsequent 

analysis of Ect2 depleted cells was performed.  

2.1.2.5. Live Imaging in cells  

Localization of Ect2 mutants were assessed by live-cell imaging using spinning disk 

confocal microscopy. For live cell imaging experiments 50,000 cells were seeded in a 4-

well ibidi μ-Slide, at the same time induced with Tetracycline and incubated for 24-48 h at 

5% CO2, 37°C. Spinning disk confocal images were acquired at 488 nm (30% laser power, 

500ms exposure)  on a Nikon TiE microscope equipped with a Yokogawa CSU-W1 

spinning disk unit (50 μm pinhole size, 405/488/561/640 LD Quad dichroic mirror) and 

laser illumination by an Andor ALC600 laser-beam combiner (405nm/488 nm/561 nm/640 

nm). During imaging, cells were grown in CO2 – independent medium at 37°C 

supplemented with 10% FCS and 1% P/S. Images were captured with an Andor IXON 888 

Ultra EMCCD camera using a Nikon CFI Plan Apo Lambda 40X air and 100x oil-objective. 

The microscope was controlled via NIS-Elements (version 4.51.01). Over 1h, 3-5 z-planes 

with 2 µm step-size were acquired every 2 minutes.  

2.1.2.6. Analysis of expression levels of Ect2 transgenes by Live Imaging 

The expression levels of Ect2 transgenes in the different cell lines were determined in Fiji 

ImageJ on the acquired time-lapse images. For this purpose, the cytoplasmic value in 

metaphase in the first time-frame acquired was measured. Background signal outside the 

cell was measured and subtracted from the cytoplasmic value.  

2.1.2.7. Quantification methods of HsEct2 fluorescence intensities at the cell periphery 

and at the spindle midzone by Live Imaging  

Confocal images were acquired by live-cell imaging as described in 2.1.2.5. Z-stacks were 

acquired with 100x objective and a midplane image at the first furrow indentation was used 

for quantification. To measure HsEct2 fluorescence intensities in human cells a line 
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(width= 6 pixel) was drawn around the cell periphery in ImageJ starting and ending at the 

left pole and fluorescent intensities were recorded. Cytoplasmic values were measured in a 

box drawn in the cytoplasm and values were subtracted from the cortex and pole values. 

After the cytoplasmic HsEct2 fluorescence intensity was subtracted from each value, the 

mean polar fluorescent intensity (0-10%, 40-60%, 90-100% of the cell length) and the mean 

equatorial fluorescent intensity (20-30%, 70-80% of cell length) was calculated for each 

cell. Mean fluorescent intensities at the equatorial and polar cortex were then calculated 

using the data analysis software KNIME.  

To quantify the signal at the spindle midzone, a line scan was drawn underneath the upper 

equatorial membrane over the spindle midzone down to the lower equatorial membrane 

(length = 12 pixel) and the mean fluorescent intensity was calculated. Cytoplasmic 

background was measured in a box drawn in the cytoplasm and calculating the mean pixel 

intensitiy. The intensity values for spindle midzone were calculated as a ratio of spindle 

midzone/cytoplasmic values in Excel.  

2.1.2.8. Immunostainings in cells 

Sterile cover-slips (kept in 100% EtOH) were used and placed into 12-well plate, air-dried 

by putting them vertically at the wall of the well and left for 15 minutes until all the EtOH 

evaporated. After processing the cells in the according experiment (siRNA transfection, 

induction of transgenes, C3 application to inactivate RhoGTPases), cells were washed 2x 

with 1ml 1x PBS/ well and PBS was immediately aspirated to avoid detachment of the 

cells. Cells were fixed with ice-cold 100% MeOH at room temperature for 20 minutes. 

Methanol was removed and trashed in a correct container. Cells were washed 2x with 1x 

PBS at RT for 5 min/wash. Cells were permeabilized with 0.1% TritonX-1xPBS (1xPBST) 

at RT for 5 minutes. Cells were block with 4% BSA/PBST at RT for 1h. Then cover-slips 

were transferred into a moist chamber for the subsequent staining. 50µl/ cover-slip of 

diluted 1st Antibody was added on top of the cover-slip; anillin/tubulin antibody was 

diluted (1:2000/1:1000) in 4%BSA/PBST and incubated at 4°C O/N. First antibody was 

washed off by 3 wash steps with 1x PBS at RT for 5 minutes/wash. 2nd antibody was 

diluted 1:500 in 4%BSA/PBST and added with 50µl/reaction; here anti-rabbit (Anillin) or 

anti-mouse (Tubulin) labelled to different fluophores (FITC, TexasRed, Cy5, Cy3) was 

used and incubated at RT for 1h. 2nd antibody was washed 3x with PBST at RT for 5 

minutes/wash. The cover-slips were mounted upside down onto glass slides using mounting 
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medium+ Hoechst dye (1:100) was used (1µg/ml stock of Hoechst diluted 1:100 in 

mounting medium to achieve a working dilution of 0.1µg/ml). Mounted cover-slips were 

sealed with clear nail polish and stored at -20°C after drying (dry for 1h at RT).  

2.1.2.9. C3 Rho inhibitor experiments 

To inactivate RhoA in different cell lines, 150 000 cells were plated one day prior to 

experiment on glass cover-slips and induced with Tetracycline. Then C3 inhibitor at a 

concentration of 0.5 µg/ml was added to the cells for 6h and cells were fixed and stained 

for anillin and tubulin by immunohistochemistry (see protocol above for immunostainings). 

Images were captured with an Andor IXON 888 Ultra EMCCD camera using a Nikon CFI 

Plan Apo Lambda 100x oil-objective (laser 561nm, laser power 40%, 200ms exposure). 

The microscope was controlled via NIS-Elements (version 4.51.01).  

 

2.1.3. Molecular biology techniques 

2.1.3.1. Polymerase chain reaction for cloning by Gibson Assembly 

In order to generate desired DNA fragments that can be used for the cloning of a prospective 

plasmid, polymerase chain reaction (PCR) was used to amplify DNA from plasmid, cDNA 

and genomic DNA. Specific primers designed for Gibson assembly were used harboring a 

3’ end annealing to the template and 5’ overhang that is complementary to the prospective 

sequence. The used forward and reverse primers were designed to amplify fragments that 

have a 22 base pair overlap for later annealing and ligation during the Gibson reaction (see 

3.1.3.6).  The PCR reaction was assembled on ice and run at specific thermocycling 

conditions (Table 18). Afterwards, PCR products were analyzed by agarose-gel 

electrophoresis.  

2.1.3.2. Agarose gel electrophoresis for PCR products 

The correct size of PCR products was analyzed by agarose gel electrophoresis. Agarose 

gels of 0,8% agarose/1xTAE were poured and used for the separation of size with an 

electrophoresis system from Biorad. Gels were run at 120V for 20 min and subsequently 

analyzed by imaging with the ChemiDoc imaging station from Biorad.  
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2.1.3.3. Dpn1 digest of PCRs amplified from bacterial templates 

PCRs were digested with Dpn1 enzyme in case the template for amplification was from a 

bacterial origin (plasmid). Dpn1 only digests methylated DNA, so the original template 

will be digested, whereas the amplified fragments that are not methylated will be not 

affected by the enzyme. This ensures less background when using the fragments for cloning 

and subsequent transformation. 1 µl of Dpn1 enzyme was added per 50 µl PCR reaction. 

The PCR-Dpn1 Mix was well resuspended and incubated at 37°C for 1h. Afterwards PCR 

was cleaned-up by either gel purification or spin-column centrifugation.  

2.1.3.4. Purification of PCR products by spin-column  

In case the PCR products showed a single, specific band at the expected size, 200 µl of NTI 

buffer was added per 100 µl of PCR product (Macherey& Nagel, NucleoSpin Extraction 

kit). DNA was bound to a spin column by centrifugation of the gel suspension at 11 000g 

for 30s. Spin column was washed with 700 µl by centrifugation at 11 000g for 30s. The 

silica membrane of the spin column was dried by centrifuging at 11 000g for 2 min. DNA 

was eluted with 15-30 µl EB buffer by centrifugation at 11 000g for 1 min.  

2.1.3.5. Purification of PCR products by gel excision 

In case PCR products had several amplified fragments of different sizes, the band with the 

correct size was cut out from the gel and subsequently purified over a spin-column 

(Macherey& Nagel, NucleoSpin Extraction kit). After cutting the band by visualization by 

UV light (hands, eyes and skin protected by gloves, protection helmet and lab-coat), the 

gel piece was measured and per 100 µg gel 200 µl of NTI buffer was added. The gel piece 

was melted in a heating-block at 50°C for 5 min (vortexing several times in between). DNA 

was bound to a spin column by centrifugation of the gel suspension at 11 000g for 30s. Spin 

column was washed with 700 µl by centrifugation at 11 000g for 30s. The silica membrane 

of the spin column was dried by centrifuging at 11 000g for 2 min. DNA was eluted with 

15-30µl EB buffer by centrifugation at 11 000g for 1 min.  

2.1.3.6. Cloning by Gibson Assembly 

After cleaning the amplified, correct PCR fragments from salts and other components the 

PCR fragments were used for Gibson Assembly to clone a plasmid containing the desired 
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sequence. Gibson Assembly is a PCR-based approach to assemble multiple fragments of 

DNA into a single fragment. The technique uses sets of primers that are designed with 22bp 

overlapping ends in the mutated region. Amplified DNA fragments with blunt ends are 

added into a 100 µl Eppendorf tube together with a 2x Gibson Assembly Master Mix 

(NEB). The 2x Gibson Mix contains three different enzymes that facilitate the correct 

fusion of the different fragments. An exonuclease creates 3’ overhangs that are causing 

complimentary sites of the fragments to be combined and which can then anneal together. 

A DNA polymerase fills the gaps within the annealed fragments. The DNA ligase seals the 

created nicks in the assembled DNA (Gibson et al., 2009).   

First, PCRs were run with the specifically designed primers in order to generate the desired 

fragments for the Gibson Assembly (table 17). The correct sizes of the bands were checked 

on an agarose gel and afterwards eventually digested by Dpn1 and subsequently purified 

by either gel-extraction or spin-column purification (Macherey& Nagel, see protocol 

above). Then, the concentration of the purified DNA fragments was measured with a 

Nanodrop device and the right volumes for the Gibson Assembly were calculated (table 

18). The optimal reaction to successfully fuse different DNA fragments together is highly 

dependent on the equal molarities of the DNA fragments. In most cases, a 2-fragment 

Gibson Assembly was performed. The Gibson Mix containing all required enzymes, 

dNTPs and buffer was added to the DNA fragments on ice and the reaction was incubated 

at 50°C for 1h. Afterwards, 10 µl of the Gibson-Assembly mix was transformed into 100 

µl competent DH5alpha bacteria.  

2.1.3.7. Transformation in the competent E. coli strain DH5alpha 

After Gibson-Assembly reaction was performed, the Gibson Mix containing the desired, 

newly assembled plasmid, was transformed into competent DH5α cells. Cells were thawed 

on ice for 10 min, then 10 µl of the Gibson-Assembly Mix was added to 100 µl competent 

cells. The cells and Gibson-Mix was carefully mixed and incubated on ice for 20 min. 

Afterwards, a heat-shock was performed at 42°C for 45 seconds. The tube was put back to 

ice for 2 min. Afterwards 1 ml of LB medium was added to the cells and the cells were 

incubated at 37°C for 45 min. Cells were centrifuged at 4000g for 5 min and cells were 

resuspended in around 100µl of left-over supernatant of the LB medium. Cells were plated 

onto LB plates with carbenicillin and the plates were incubated at 37°C O/N. Grown 

colonies were then screened for correct plasmid.  
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2.1.3.8. DNA preparations by alkaline lysis 

After transformation, colonies on the LB-Agar plates containing carbenicillin which only 

allows growth of bacteria that successfully took up the mutated plasmid containing a 

carbenicillin resistance. Colonies were inoculated into 5ml of LB medium with 0.1 mg/ml 

carbenicillin and incubated at 200 rpm, 37°C/ON. The next morning, DNA was prepared 

by either alkaline lysis method. The O/N culture was equally distributed into two 2 ml 

Eppendorf tubes and bacteria were spun down at 4000 rpm for 10 min. Afterwards, one 

pellet was frozen for eventual DNA preparation with a “clean” method, e.g. by column 

preparation with a Qiagen Mini/Midi Kit to achieve high purity of the plasmids and 

subsequent usage. For screening, DNA preparations were performed with the alkaline lysis 

method since high purity of the DNA for screening purposes is not required. After 

centrifugation of the bacterial cells, 100 µl of Solution 1 was added to the cells and 

thoroughly mixed. 200 µl of Solution II was added and thoroughly mixed and incubated 

for 4 min at RT (do not exceed 5 min). 300 µl of solution III was added to the lysate and 

after inverting the tube several times, incubation step on ice was performed for 10 min. 

Afterwards, the content of the tubes was centrifuged at 4°C at max. speed for 10 min. 

Supernatant containing the DNA was transferred from the old tube to a new tube on ice 

containing ice-cold 100% ethanol. DNA was precipitated by ethanol and subsequently 

centrifuged at 4°C, max. speed for 10 min. After centrifugation, the supernatant with 100% 

ethanol was removed and the pellet was again washed with 70% ethanol as in the step 

before with 100% ethanol. The 70% ethanol was removed, pellet was air-dried for approx. 

15 min under a fume hood. The pellet was resolved in 50 µl TE buffer and DNA was used 

for genotyping of sequencing.  

2.1.3.9. DNA preparations by plasmid Mini Kit 

After successful identification of a clone carrying the target sequence the second pellet 

from the DNA preparation by alkaline lysis was used to prepare DNA with high purity. The 

high purity DNA was the subsequently used for Gibson Cloning, microinjection of C. 

elegans or transfection of FRT HeLa cells in order to generate stable worm strains or cell 

lines. For mini prep 250 µl of P1 1 was added to the cells and thoroughly mixed. 250 µl of 

P2 was added and thoroughly mixed and incubated for 4 min at RT (do not exceed 5 min). 

300 µl of P3 was added to the lysate and after inverting the tube several times, the content 

was centrifuged at 4°C at max. speed for 10 min. Supernatant containing the DNA was 
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transferred from the old tube to Qiagen spin column and subsequently centrifuged at RT, 

max. speed for 2 min. After centrifugation, the column was washed with 500 µL PB by 

centrifugation at max. speed for 2 min. After removing the wash-through, the column was 

air-dried by centrifugation at RT, max. speed for 3 min. 15-30 µl of Elution buffer was 

added to the spin column and incubated for 3-5 min. DNA was eluted into a new 1.5 ml 

Eppendorf tube by centrifuging at RT, max. speed for 3 min. DNA concentration was 

determined using a Nanodrop device.  

2.1.3.10. Sequencing of positive clones 

Generated plasmids were sequenced to ensure that the ORF of the different transgenes did 

not have any errors introduced by the cloning procedure. For this purpose, the in-house 

sequencing service of the faculty of biology was used. The protocol (Cycle, Clean and Run, 

BigDye v.3.1.) from the sequencing service was chosen and the pipetting scheme originates 

from the suggestions found on the website of the sequencing service. In brief, a reaction of 

7 µl total was set-up, containing the plasmid, a sequencing-primer and TE buffer (Table 

19). Primers were chosen around 100bp upstream of the location to be sequenced.  

2.1.3.11. Western Blot analysis in cells 

To evaluate the expression levels of transgenic HeLa cell lines and to estimate the depletion 

level after ect2(RNAi), 150 000 cells were seeded into 6-well plates 1 day prior to 

experiment. Cells were induced with Tetracycline (0.01 µg/ml) and eventually transfected 

with siRNA targeting endogenous Ect2. After 48h, cells were washed with PBS on ice and 

200 µl of 2x Lämmli buffer was added to the well. Lämmli buffer was moved around with 

a pipette-tip while cells were forming a viscous substance. The viscous cell suspension was 

transferred into a 1.5 ml Eppendorf tube stored on ice. Cells were boiled at 95°C for 5 min 

and lysates were cooled down to RT and centrifugated at max. speed for 5 min before 

loading onto the SDS gel.  

5-10 µl of the lysate was loaded onto an SDS gel containing 10.5 % acrylamide. Gel was 

run at 100V for 1h inside of a Running buffer within in plastic chamber of the Biorad 

Western Blot system in the lab. The SDS-gel was blotted onto a PVDF membrane, which 

was activated by 100% ethanol incubation for 1 minute, at 200mA/ membrane in blotting 

buffer containing 10% ethanol. Membranes were blocked with 5% milk/TBST and 

incubated with Ect2 antibody (SantaCruz, 1:1000 in 5% milk/TBST) at 4°C O/N. 
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Membranes were washed with TBST at RT 3x/5minutes wash. Secondary antibody was 

added (mouse-HRP 1:10000 in 5% milk/TBST) and incubated at RT for 1h. Subsequently 

membranes were washed 3x with TBST as before. Proteins on membranes were detected 

(ECL Prime solution, GE Healthcare) and visualized using the ChemiDoc device (Biorad). 

 

2.2. Materials  

Table 1. Buffers and solutions 

Buffer/Solution Composition 

1x TAE buffer  0.4 l 50x TAE buffer 

19.6 l ddH20 

50x TAE buffer * 484 g Tris base 

200 ml EDTA (0.5 M, pH 8.0) 

114.2 ml glacial acetic acid 

bring volume to 2000 ml with MilliQ H2O 

2x freezing buffer * 5.58 g NaCl  

6.8 g KH2PO4 

300 ml Glycerol 

0.56 ml NaOH to pH 6.0 

MilliQ H2O to 1 L 

Add 60 μL of 1M MgSO4to each 200 ml 

volume before use 

B broth * 

 

10 g Tryptone 

5 g NaCl 

1 L MilliQ H2O 

EB buffer * 10 mM Tris-HCl, pH 8.5 

LB Broth * 10 g Tryptone 

5 g Yeast extract 

10 g NaCl 

800 ml MilliQ H2O 

LB Agar 10 g Tryptone 

5 g Yeast extract 

10 g NaCl 

800 ml MilliQ H2O 

460 µl 10M NaOH 

15 g Agar 

M9 * 5.8 g Na2HPO4 

3.0 g KH2PO4 

0.5 g NaCl 

1.0g NH4Cl 

MilliQ H2O to 1 liter 

NGM Agar * 3 g NaCl 

2.5 g Bacto-Peptone 

20 g Agar 
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975 ml ddH2O 

1 ml CaCl2 (1M) 

1 ml MgSO4 (1M) 

1 ml Cholesterol in EtOH (5 mg/ml) 

25 ml KH2PO4 (1M, pH 6.0) 

NGM Agar plates * Plate size NGM volume [ml] 

Large 25-30 

Medium 15 

Small 5 

NGM Agar + IPTG NGM + 1 mM IPTG 

P1 * 

 

6.1g Tris 

3.7g EDTA-2H2O (pH 8.0) 

adjust volume to 1 l with HCl 

take 50 ml aliquot and add 50 μl RNase A 

(100 mg/μl) 

P2 * dissolve 8.0 g NaOH in 900 ml MilliQ H2O 

100 ml 10% SDS 

P3 * dissolve 294g CH3CO2K in 500ml MilliQ 

H2O 

bring pH to 5,5 with Acetic Acid 

adjust volume to 1 liter with MilliQ H2O 

Solution I * 9 ml 20% Glucose 

5 ml 1M Tris-HCl 

8 ml 0.25M EDTA 

adjust volume to 1 l with ddH2O 

take 100 μL aliquot and add 0.1μL RNase 

A 

Solution III * 29.5ml glacial acetic acid 

KOH pellets to pH 4.8 

MilliQ H2O to 100 ml 

TE buffer 10 mM Tris-HCl 

1 mM EDTA 

adjust pH to 8.0 with HCl 

adjust volume to 1 L with ddH2O 

TE buffer * 10 mM Tris-HCL 

1 mM EDTA 

adjust pH to 8.0 with HCl 

adjust volume to 1 L with ddH2O 

10x PBS 25.6 g Na2HPO4·7H2O  

80 g NaCl 

2 g KCl 

2 g KH2PO4.  

Adjust to 1 liter with ddH2O 

1x PBS 100 ml 10x PBS 

900 ml ddH2O 

1x PBST PBS + 0.1% Tween 

10x TBS 2 g KCl 

80 g NaCl 

30 g Tris-Base 

Adjust the pH to 7.4 with HCl 
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Adjust to 1 liter with ddH2O 

1x TBS 100 ml 10x TBS 

900 ml ddH2O 

1x TBST 1x TBS + 0.1% Tween 

4% Bovine Serum Albumin in PBS/0.1% 

Tween 

4 g BSA (dried) 

Adjust to 100 ml with 1x PBST 

5% Milk in TBS/0.1% Tween 5 g Milk powder 

Adjust to 100 ml with 1x TBST 

4x Resolving buffer 18.17 g Tris 

24 ml 1M HCl 

Adjust to 100 ml with ddH2O 

4x Stacking buffer  6 g Tris 

38.5 ml 1M HCl 

0.4 g SDS 

Adjust to pH 6.8 with HCl 

Adjust to 100 ml with ddH2O 

10% APS 1 g APS 

Adjust to 10 ml with ddH2O 

10x Running buffer 30.3 g Tris 

144 g Glycine 

Adjust to 1 liter with ddH2O 

1x Running buffer 100 ml 10x Running buffer 

10 ml 10% SDS 

Adjust to 1 liter with ddH2O 

Transfer buffer 100 ml 100% EtOH 

100 ml Running buffer 

Adjust to 1 liter with ddH2O 

50% Glycerol 50 ml 100% Glycerol 

Adjust to 100 ml with ddH2O 

Coomassie Staining Solution 100 ml 100% MeOH 

50 ml Glacial Acetic Acid 

0.5g Brilliant Blue 

Adjust to 500 ml with ddH2O 

 

Coomassie Destaining Solution 250 ml 100% Ethanol 

50 ml Glacial Acetic Acid 

Adjust to 500 ml with ddH2O 

2x Lämmli buffer 2x 2 ml 4x stacking buffer 

4 ml 10% SDS 

140 µl Beta-Mercaptoethanol 

4 ml 50% Glycerol 

100 µl Saturated Bromophenol blue 

solution 

10% SDS 10 g SDS 

Adjust to 100 ml with ddH2O 

* = generated by lab technicians 

Table 2. Technical equipment 
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Devices Supplier 

1.5 ml centrifuge tubes Sarstedt 

2 ml microcentrifuge tubes Sarstedt 

Cryo-tubes  Thermo Scientific 

15 ml Falcon tubes Nerbe plus 

50 ml Falcon tubes Nerbe plus 

PCR tubes  Nerbe plus 

PCR-tube 8 strips  Nerbe plus 

Plastic petri dish, 35x10 mm Greiner Bio One 

Plastic petri dish, 60x105 mm Sarstedt 

Cell culture flask T25 Greiner Bio One 

Cell culture flask T75 Greiner Bio One 

Cell culture multi-well plate 12-Well Greiner Bio One 

Cell culture multi-well plate 6-Well Greiner Bio One 

Serological Pipettes 5 ml Sarstedt 

Serological Pipettes 10 ml Sarstedt 

Pipette tips  Nerbe plus 

Filter pipette tips Nerbe plus 

Ethanol burner n.a. 

Cover slides 24x50mm/ 50x 50 mm Roth 

Centrifuge 5424R Eppendorf 

Centrifuge 5424D Eppendorf 

-80 °C freezer Thermo Scientific/ HFU T-series, Hera 

Freeze 

8 well slide Medco 

4 °C refrigerator Bosch 

37 °C shaker incubator New Brunswick 

Worm incubators  Binder 

37 °C incubator Heraeus 

250 ml Erlenmeyer flask Kimax 

-20 °C freezer Comfort 

Gel PowerPac HC, gel tray, lid and comb 

owl separation systems 

Biorad 

Glass pick with platinum wire Self-made 

Glass pipettes Brand 

Heating block  Labnet 

Gel/ Western Blot detection machine ChemiDoc™ XRS+ Biorad 

Immersion oil Zeiss 

Nikon Eclipse Ti (Injection station) Nikon 

Microinjector, FemtoJet (Injection station) Eppendorf 

Microwave LG 

Photometer Implen 

Thermal cycler, T100TM  Biorad 

P1000 pipette Gilson 

P200 pipette Gilson 

P20 pipette Gilson 

P2 pipette Gilson 

Pipette boy Integra 
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Neubauer Chamber Improved Carl Roth 

Nitrile gloves Meditrade 

Stereo Microscope SMZ745 Nikon 

Microscope Leica M80 Leica 

Microscope M55 Leica 

Microscope Axioscope A1 Zeiss 

Microscope (4D), Imager M2 Zeiss 

Microscope, M205 FA Leica 

Confocal spinning disk microscope, 

UltraviewVOX 

Perkin Elmer 

Camera UltraviewVOX, EMCCD Hamamatsu 

Confocal spinning disk, Nikon TiE 

microscope 

Nikon 

Camera (Spinning disk Nikon), Andor 

IXON 888 Ultra EMCCD 

Andor 

 

Table 3. Kits 

Kit name Supplier Ref. Number 

MAXIscript® T7 In Vitro 

Transcription Kit 

Ambion  AM1322 

 

MEGAscript® T7 

Transcription Kit 

Ambion  

 

AM1334 

NucleoSpin® Gel and PCR 

Clean-up Kit 

Macherey-Nagel  

 

740609.250 

PureLink® Quick Plasmid 

Miniprep Kit 

Invitrogen  

 

K2100-01 

Qiagen Plasmid Midi Kit Qiagen 12145 

Qiagen Plasmid Mini Kit Qiagen 12125 

QiaQuick Gel extraction Kit Qiagen 28706 

QiaPrep Spin Miniprep Kit Qiagen 27104 

Table 4. Drugs, Chemicals and Reagents 

Chemical, drugs and reagents Supplier 

10x Standard Taq buffer New England Biolabs 

5x HF buffer New England Biolabs 

6x EZ-Vision Amresco 

Gelred  Biotium 

10kb DNA ladder Invitrogen 

Acetic Acid Carl Roth 

Bacto-Peptone BD 

Bacto-Tryptone BD 

Yeast Extract Serva 

Blue loading dye Home-made 

Agar Carl Roth 

Agarose Carl Roth 

CaCl2 Carl Roth 

Carbenicillin (100 mg/ml) Applichem 
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Kanamycin Applichem 

CH3CO2K Carl Roth 

Cholesterol Sigma-Aldrich 

dNTPs Metabion 

DpnI NEB 

EDTA Carl Roth 

Ethanol Carl Roth 

Isopropanol Carl Roth 

Beta-Mercaptoethanol Carl Roth 

Glacial acetic acid Carl Roth 

Gelatin Carl Roth 

Glucose Carl Roth 

Glycerol Carl Roth 

SDS Carl Roth 

NaOH Pellets Carl Roth 

NaCl Carl Roth 

KCl Carl Roth 

Tris Base Carl Roth 

Tris-HCl Carl Roth 

HCl Carl Roth 

MgSO4  Carl Roth 

KH2PO4 Carl Roth 

Tween Carl Roth 

Triton-X100 Carl Roth 

Meliseptol Carl Roth 

Korsolex Basic MeinNutri 

Fetal bovine Serum  Biochrom 

Bovine Serum Albumin Sigma-Aldrich 

Milk powder ShopApotheke 

Penicillin/Streptomycin Biochrom 

Opti-MEM Reduced Serum Albumin Thermofisher Scientific 

Thymidine Sigma-Aldrich 

Tetracyline Hydrochloride Sigma-Aldrich 

MG-132 Merck Millipore 

Interferrin siRNA Transfection Reagent VWR 

Lipofectamine RNAi Max siRNA 

transfection reagent 

Thermofisher Scientific 

X-treme Gene 9 DNA Transfection 

Reagent 

Sigma-Aldrich 

 

Table 5. Antibodies 

Antibody Supplier Ref. No 

HsEct2 Santa Cruz sc-514750 

HsAnillin Home made by Sriyash 

Mangal 

n.a. 

Goat-anti-Rabbit-HRP Biorad 170-6515 

Goat-anti-Rabbit-HRP Biorad 170-6515 
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Beta-Tubulin Sigma-Aldrich T6199 

Actin Sigma-Aldrich A1978 

Rabbit-Texas Red Dianova 111-075-114 

Mouse-Texas Red Dianova 115-075-146 

Rabbit- FITC Dianova 111-095-144 

Mouse-FITC Dianova 115-095-146 

Rabbit-Cy3 Dianova 111-165-144 

 

Table 6. Enzymes and Enzyme Mixes 

Enzymes  Supplier 

2x Gibson Assembly Mix New England Biolabs 

DpnI New England Biolabs 

Proteinase K AppliChem 

Taq Polymerase Homemade 

Phusion Taq Polymerase New England Biolabs 

RNase A (100 mg/ml) New England Biolabs 

RNase ZAP Ambion 

10x Trypsin/EDTA Solution Biochrom 

 

Table 7. DNA Primers 

Name Sequence (5' -> 3') Usage 

EZ545 tcagacagagaatggtcgacagtaaaggagaag Gibson Cloning of transgenic 

mex-5:: GFP-CeECT-

2WT::tbb2 

EZ546 ctgtcgaccattctctgtctgaaacattcaattg 

 

Gibson Cloning of transgenic 

mex-5:: GFP-CeECT-

2WT::tbb2 

EZ547 ccgatatctgaatgcaagatcctttcaagcattc Gibson Cloning of transgenic 

mex-5:: GFP-CeECT-

2WT::tbb2 

EZ548 ggatcttgcattcagatatcggtgacacgatatg Gibson Cloning of transgenic 

mex-5:: GFP-CeECT-

2WT::tbb2 

EZ554 aattcccgggtgcgttcagtaatgctcaactcac 

 

Gibson Cloning of CeECT-2 

fragment aa 1-421 into pGEX 

EZ555 cgctcgagtcgtcagatatcggtgacacgata 

 

Gibson Cloning of CeECT-2 

fragment aa 1-421 into pGEX 

EZ556 ccgatatctgacgactcgagcggccgcatc 

 

Gibson Cloning of CeECT-2 

fragment aa 1-421 into pGEX 

EZ557 ttactgaacgcacccgggaattccggggat 

 

Gibson Cloning of CeECT-2 

fragment aa 1-421 into pGEX 

EZ558 aattcccgggtgctgaaaatagtgtattaacatccac Gibson Cloning of HsEct2 

EZ559 cgctcgagtcgtgctgactgctttgaaggaac Gibson Cloning of HsEct2 

EZ560 ctattttcagcacccgggaattccggggatc Gibson Cloning of HsEct2 

EZ561 ctattttcagcacccgggaattccggggatc Gibson Cloning of HsEct2 
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EZ589 taatacgactcactatagg aactccccgcacccgtgtaac 

 

Production of dsRNA against 

endogenous 3’ UTR of 

CeECT-2 

EZ590 taatacgactcactatagg 

aagtagggtgtaatttcatttgaac 

 

Production of small dsRNA 

against endogenous 3’ UTR of 

CeECT-2 

EZ609 GAGGTgtcgacccaactggcaaacttcacag Gibson Cloning of CeECT-

2ΔBRCT0+1+2 (AA 292-932) 

EZ61 ttgccagttgggtcgacACCTCCACCTCCTTTG Gibson Cloning of ceECT-

2ΔBRCT0+1+2 (AA 292-932) 

EZ653 tcgcagtagaggtcgacacctccacctcctttg Gibson Cloning of CeECT-

2ΔBRCT0 (AA 114-932) 

EZ654 gaggtgtcgacctctactgcgagcttatgaaag 

 

Gibson Cloning of CeECT-

2ΔBRCT0 (AA 114-932) 

EZ655 actttgctcttatgcaagatcctttcaagcattc Gibson Cloning of CeECT-

2BRCT1+2 without BRCT0 and 

Rest of CeECT-2 (AA 114-

293) 

EZ656 ggatcttgcataagagcaaagttatcctctatag Gibson Cloning of CeECT-

2BRCT1+2 without BRCT0 and 

Rest of CeECT-2 (AA 114-

293) 

EZ743 gaggtgtcgaccatagacttggcgtatttgaagg Gibson Cloning of CeECT-

2ΔBRCT0+1 without BRCT0+1 

domains (AA 187-932) 

EZ744 ccaagtctatggtcgacacctccacctcctttg Gibson Cloning of CeECT-

2ΔBRCT0+1 without BRCT0+1 

domains (AA 187-932) 

EZ822 ttttggtgatctgagctctggtaccctaggtg 

 

Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ823 accagagctcagatcaccaaaaacggaacg Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ824 cccttggagactttcgaagttttttagatgcac 

 

Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ825 aaacttcgaaagtctccaagggagaggaggac 

 

Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ826 ttgagacgtcgtcgacacctccacctccc 

 

Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ827 gaggtgtcgacgacgtctcaatgttgcaatc 

 

Gibson Cloning of transgenic 

GFP-CeECT-2WT::tbb2 under 

heat-shock promoter 

EZ828 ttgccagttgggtcgacacctccacctcccttg 

 

Gibson Cloning of transgenic 

GFP-CeECT-2ΔBRCT0+1+2::tbb2 

under heat-shock promoter 
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EZ829 agctctacaagggaggtggaggtgtcgacgacg 

 

Gibson Cloning of transgenic 

GFP-CeECT-2ΔBRCT0+1+2::tbb2 

under heat-shock promoter 

EZ830 cctccacctcccttgtagagctcgtccattcc 

 

Gibson Cloning of transgenic 

GFP-CeECT-2ΔBRCT0+1+2::tbb2 

under heat-shock promoter 

EZ831 agctctacaagggaggtggaggtgtcgaccc 

 

Gibson Cloning of transgenic 

GFP-CeECT-2ΔBRCT0+1+2::tbb2 

under heat-shock promoter 

EZ882 aggtagataagccaactggcaaacttcacag 

 

Gibson Cloning of CeECT-

2ΔBRCT2 (AA 1-205 and 294-

932) 

EZ883 tgccagttggcttatctacctgaaaattgg 

 

Gibson Cloning of CeECT-

2ΔBRCT2 (AA 1-205 and 294-

932) 

EZ595 cgctcgagtcgtagtactagattcatcatacttgtacaatac Gibson Cloning of HsEct2 

Amino Acids 1-150 

EZ596 atctagtactacgactcgagcggccgcatc Gibson Cloning of HsEct2 

Amino Acids 1-150 

EZ597 aattcccgggtagcttagtacagcgggttgaaac Gibson Cloning of HsEct2 

Amino Acids 640-790 

EZ598 cgctcgagtcgactgtccatatcttttgtatttacttc Gibson Cloning of HsEct2 

Amino Acids 640-790 

EZ599 atatggacagtcgactcgagcggccgcatc Gibson Cloning of HsEct2 

Amino Acids 640-790 

EZ600 tgtactaagctacccgggaattccggggatc Gibson Cloning of HsEct2 

Amino Acids 640-790 

EZ601 aattcccgggtccaacagagcaggcaaatgtg Gibson Cloning of HsEct2 

Amino Acids 730-883 

EZ602 cgctcgagtcgtcatatcaaatgagttgtagatctacttaac Gibson Cloning of HsEct2 

Amino Acids 730-883 

EZ603 atttgatatgacgactcgagcggccgcatc Gibson Cloning of HsEct2 

Amino Acids 730-883 

EZ604 gatccccggaattcccgggtccaacagagca Gibson Cloning of HsEct2 

Amino Acids 730-883 

EZ727 aactcatttgatatgagcggccgcgggcccgtttaaac 

 

Gibson Cloning of Neongreen-

Backbone 

EZ728 ttgctcaccatccgcggggcaggggtc 

 

Gibson Cloning of Neongreen-

Backbone 

EZ729 ctgccccgcggatggtgagcaagggcgagg 

 

Gibson Cloning of Neongreen-

fragment 

EZ730 tcagccatgctgccgctgcccttgtacagctcgtccatgc 

 

Gibson Cloning of Neongreen-

fragment 

EZ731 agggcagcggcagcatggctgaaaatagtgtattaacatc Gibson Cloning of Neongreen-

HsEct2WT 

EZ732 acttgccaccttgctgactgctttgaaggaac Amplification of HsEct2 

Amino Acids 1-421 

EZ733 agcagtcagcaaggtggcaagttgcaaaagag Amplification of HsEct2 

Amino Acids 1-421 
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EZ734 ggccgctcatatcaaatgagttgtagatctac Amplification of Amino Acids 

HsEct2 1-421 

EZ735 gggaaaggcggaatgagcaagatttctatgcagcagttgat 

 

Introduction of silent 

mutations for RNAi resistance 

in HsEct2WT 

EZ736 atcaactgctgcatagaaatcttgctcattccgcctttccc 

 

Introduction of silent 

mutations for RNAi resistance 

in HsEct2WT 

EZ737 ggaaaggaggaacgagcaagatttctatgcagcagttgatg 

 

Introduction of silent 

mutations for RNAi resistance 

in HsEct2WT 

EZ738 catcaactgctgcatagaaatcttgctcgttcctcctttcc 

 

Introduction of silent 

mutations for RNAi resistance 

in HsEct2WT 

EZ743 gaggtgtcgaccatagacttggcgtatttgaagg 

 

Gibson Cloning of 

HsEct2ΔBRCT0+1 (Amino Acids 

283-883) 

EZ744 ccaagtctatggtcgacacctccacctcctttg 

 

Gibson Cloning of 

HsEct2ΔBRCT0+1 (Amino Acids 

283-883) 

EZ745 gcggcagcccgttgtattgtacaagtatgatgaat 

 

Gibson Cloning of 

HsEct2ΔBRCT0(Amino Acids 

139-883) 

EZ746 gtacaatacaacgggctgccgctgcccttgtac 

 

Gibson Cloning of 

HsEct2ΔBRCT0 (AA 139-883) 

EZ747 cggcagccctccatttcaagattgtattttaag 

 

Gibson Cloning of 

HsEct2ΔBRCT0+1 (AA 238-883) 

EZ748 atcttgaaatggagggctgccgctgcccttgtac 

 

Gibson Cloning of 

HsEct2ΔBRCT0+1 (AA 238-883) 

EZ749 gcggcagcactcctgagctcaagaaatcagtg 

 

Gibson Cloning of 

HsEct2ΔBRCT0+1+2 (AA 328-

883) 

EZ750 ttgagctcaggagtgctgccgctgcccttgtac 

 

Gibson Cloning of 

hsEct2ΔBRCT0+1+2 (AA 328-

883) 

EZ943 agctcaggagtaactttaaattcatttctaaag 

 

Gibson Cloning of 

HsEct2ΔBRCT2 (AA 1-237 and 

328-883) 

EZ944 aatttaaagttactcctgagctcaagaaatc 

 

Gibson Cloning of 

HsEct2ΔBRCT2 (AA 1-237 and 

328-883) 

EZ971 gaagccagaacggatttataaagcttgggaaagg Gibson Cloning of 

HsEct2W211R  

EZ972 tttataaatccgttctggcttcataattggag Gibson Cloning of 

HsEct2W211R 

EZ973 tcaagcaagagcggttctggggaagcattcaaatgg Gibson Cloning of 

HsEct2W305R 

EZ974 ccccagaaccgctcttgcttgacaacataaag Gibson Cloning of 

HsEct2W305R 
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EZ975 ctatgctttgctggatttaggaaaaaagaag Gibson Cloning of HsEct2T153A 

EZ976 tcctaaatccagcaaagcatagtactagattc Gibson Cloning of HsEct2T153A 

EZ977 aaggagaaatgttcagggttgctgtgagtc Gibson Cloning of 

HsEct2K195M 

EZ978 gcaaccctgaacatttctccttgtgtacaatttgc Gibson Cloning of 

HsEct2K195M 

EZ979 tttcatgtcgcactcctgagctcaagaaatc Gibson Cloning of 

HsEct2ΔBRCT1+2 (AA 1-138 and 

328-883) 

EZ980 agctcaggagtgcgacatgaaaatggcaaag Gibson Cloning of 

HsEct2ΔBRCT1+2 (AA 1-138 and 

328-883) 

EZ981 tttcatgtcgccctccatttcaagattgtattttaag Gibson Cloning of 

HsEct2ΔBRCT1 (AA 1-138 and 

238-883) 

EZ982 tgaaatggagggcgacatgaaaatggcaaag Gibson Cloning of 

hsEct2ΔBRCT1 (AA 1-138 and 

238-883) 

EZ1040 ttcaagattgtgtactatgctttactggatttag 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1041 aagagaatgctcttgtaaccttttttgaagtc 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1042 aagcatagtacacaatcttgaaatggaggaac 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1043 aggttacaagagcattctctttctccaaaac 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1044 tgatgaatctaattttaagtttcctgggattttcag 

 

Gibson Cloning of 

HsEct2BRCT2-BRCT2 (AA 1-148 

+ 244-324 and 221-883) 

EZ1045 aaacttaaaattagattcatcatacttgtacaatac 

 

Gibson Cloning of 

HsEct2BRCT2-BRCT2 (AA 1-148 

+ 244-324 and 221-883) 

EZ1062 gtatttgccttattccgcctttcccaagc 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1063 aaaggcggaataaggcaaatactcctgagctcaagaaatc 

 

Gibson Cloning of 

HsEct2BRCT1-BRCT1 (AA 1-243 

+ 149-220 and 325-883) 

EZ1064 aaatcctgttcttcatataaatacatagtttc 

 

Gibson Cloning of 

HsEct2BRCT2-BRCT2 (AA 1-148 

+ 244-324 and 221-883) 

EZ1065 atttatatgaagaacaggatttctatgcagc 

 

Gibson Cloning of 

HsEct2BRCT2-BRCT2 (AA 1-148 

+ 244-324 and 221-883) 
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EZ1090 aaaaggcaaatgcacctgagctcaagaaagc 

 

Gibson Cloning of 

HsEct2LinkerAA 

EZ1091 acttgccacctagcagcctgctttgcaggaac Gibson Cloning of 

HsEct2LinkerAA 

EZ1092 agcaggctgctaggtggcaagttgcaaaagagc Gibson Cloning of 

HsEct2LinkerAA 

EZ1093 agctcaggtgcatttgccttttcatataaatac Gibson Cloning of 

HsEct2LinkerAA 

AD325 gacatttgagaatggcattga Genotyping of integration of 

transgene in generated C. 

elegans strains 

AD326 tttacaaggacttggataaattgg Genotyping of integration of 

transgene in generated C. 

elegans strains 

 

Table 8. Plasmids provided by the laboratory 

Plasmid Description 

pCFJ350  Vector for generating MosSCI of CeECT-2 transgenes into C. elegans  

pGEX-4T Vector for bacterial protein expression of  

CeECT-2 fragments for antibody production 

pcDNA-5  Vector for delivery of hsEct2 transgenes into FRT HeLa cells 

pCFJ601 Co-injection marker for generating MosSCI strains in C. elegans; 

Encodes Peft-3::transposase 

pMA122 Co-injection marker for generating MosSCI strains in C. elegans; 

Encodes Phsp::peel-1 

pGH8 Co-injection marker for generating MosSCI strains in C. elegans; 

Encodes prab-3::mcherry (pan-neuronal) 

pCFJ90 Co-injection marker for generating MosSCI strains in C. elegans; 

Encodes pmyo-2::mcherry (pharynx-muscle) 

pCFJ104 Co-injection marker for generating MosSCI strains in C. elegans; 

Encodes pmyo-3::mcherry (body-muscle) 

pEX-128 Vector for delivery of HsEct2 mutated linker region (T/S to A) by 

Eurofins for generating the construct HsEct2LinkerAA 

 

Table 9. Generated plasmids 

Plasmid Description 

pEZ151 mex-5-GFP-CeECT-2WT-tbb-2 in pCFJ350 

pEZ157 HsEct2WT in pGEX-4T  

pEZ158 HsEct21-421 in pGEX-4T 

pEZ161 mex-5-GFP-CeECT-2 ΔBRCT0+1+2 -tbb-2 in pCFJ350 

pEZ163 HsEct21-150 in pGEX-4T 

pEZ164 HsEct2640-790 in pGEX-4T 

pEZ168 mex-5-GFP-CeECT-2 ΔBRCT0 -tbb-2 in pCFJ350 

pEZ169 mex-5-GFP-CeECT-2 BRCT0+1+2 -tbb-2 in pCFJ350 

pEZ187 mex-5-GFP-CeECT-2 ΔBRCT0+1 -tbb-2 in pCFJ350 
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pEZ189 ** HsEct2WT in pcDNA5  

pEZ190 ** Neongreen-HsEct2WT in pcDNA5 

pEZ196 ** Neongreen-HsEct2WT with 2 silent mismatches for RNAi resistance 

in pcDNA5 

pEZ197 ** Neongreen-HsEct2WT with 4 silent mismatches for RNAi resistance 

in pcDNA5 

pEZ203 ** Neongreen-HsEct2ΔBRCT0+1 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ204 ** Neongreen-HsEct2ΔBRCT0+1+2 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ215  Hsp6-GFP-CeECT-2WT-tbb-2 in pCFJ350 

pEZ216 Hsp6-GFP-CeECT-2ΔBRCT0+1+2 -tbb-2 in pCFJ350 

pEZ227 *** Neongreen-HsEct2ΔBRCT0 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ232 *** Neongreen-HsEct2ΔBRCT2 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ237 mex-5-GFP-CeECT-2 ΔBRCT2 -tbb-2 in pCFJ350 

pEZ242 Neongreen-HsEct2ΔBRCT1 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ243 Neongreen-HsEct2ΔBRCT1+2 with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ244 Neongreen-HsEct2W211R with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ245 Neongreen-HsEct2W305R with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ246 Neongreen-HsEct2T153A with 4 silent mismatches for RNAi 

resistance in pcDNA5 

pEZ247 Neongreen-HsEct2T153A, K195M with 4 silent mismatches for RNAi 

resistancy in pcDNA5 

pEZ255 Neongreen-HsEct2BRCT1-BRCT1 with 4 silent mismatches for RNAi 

resistancy in pcDNA5 

pEZ256 Neongreen-HsEct2BRCT2-BRCT2 with 4 silent mismatches for RNAi 

resistancy in pcDNA5 

pEZ265 Neongreen-HsEct2LinkerAA with 4 silent mismatches for RNAi 

resistancy in pcDNA5 

** Plasmids were cloned by Pedro Barbosa  

*** Plasmids were cloned by Seren Baygun 

 

Table 10. Bacterial strains provided by the laboratory 

Bacterial strain Usage 

OP50 Uracil auxotroph, growth restricted on 

NGM plates. Maintenance of C. elegans 

DH5 alpha Transformation of DNA 

BL-21 Protein Expression 

 

Table 11. Received C. elegans strains 

Strain Genotype 
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EG6699  ttTi5605 II; unc-119(ed3) III 

N2 C. elegans wild type ancestral strain 

EZ141 Si78 [pAZ211(pCFJ151); mKate2:NMY2] IV 

 

Table 12. Generated C. elegans strains 

Per genotype, several worm strains all resulting from independent integration events were 

additionally generated as back-up strains frozen at -80°C. The strain used for experiments 

shown in the results part are indicated with “yes”. 

Name Genotype Used for the 

data shown in 

the results 

part 

EZ84 Si48[pEZ151; pmex-5::gfp:ect-2::tbb-2; cb- unc-

119(ed3)(+)]II 

 

EZ85 Si49[pEZ151; pmex-5::gfp:ect-2::tbb-2; cb-unc-

119(ed3)(+)]II 

Yes 

EZ90 Si59[pEZ151; pmex-5::gfp:ect-2::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ91 Si60[pEZ151; pmex-5::gfp:ect-2::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ92 Si61[pEZ151; pmex-5::gfp:ect-2::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ108 Si62[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

Yes 

EZ125 Si82[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

Yes 

EZ126 Si83[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

 

EZ127 Si84[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

 

EZ128 si85[pEZ168; pmex-5::gfp:ect-2ΔBRCT0::tbb-2; cb-unc-

119(ed3)(+)]II 

Yes 

EZ129 si86[pEZ168; pmex-5::gfp:ect-2ΔBRCT0::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ130 si87[pEZ168; pmex-5::gfp:ect-2ΔBRCT0::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ172 Si112[pEZ187; pmex-5::gfp:ect-2-ΔBRCT0+1::tbb-2; cb-

unc-119(ed3)(+)]II 

Yes 

EZ173 Si113[pEZ187; pmex-5::gfp:ect-2-ΔBRCT0+1::tbb-2; cb-

unc-119(ed3)(+)]II 

 

EZ210 Si147[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

Yes 

EZ211 Si148[pEZ161; pmex-5::gfp:ect-2ΔBRCT0+1+2::tbb-2; cb-

unc-119(ed3)(+)]II 

 

EZ228 Si78[pCFJ151; mKate2:NMY-2] IV;si85[pEZ168; pmex-

5::gfp:ect-2ΔBRCT0::tbb-2; cb-unc-119(ed3)(+)]II 
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EZ232 Si78[pCFJ151; mKate2:NMY-2] IV; si85[pEZ168; pmex-

5::gfp:ect-2ΔBRCT0::tbb-2; cb-unc-119(ed3)(+)]II 

Yes 

EZ241 si127[pEZ216; phsp-5::neongreen:ect-2ΔBRCT0+1+2::tbb-

2; cb-unc-119(ed3)(+)]II 

 

EZ243 si128[pEZ215; phsp-5::neongreen:ect-2-WT::tbb-2; cb-unc-

119(ed3)(+)]II 

Yes 

EZ244 si129[pEZ215; phsp-5::neongreen:ect-2-WT::tbb-2; cb-unc-

119(ed3)(+)]II 

 

EZ245 si130[pEZ216; phsp-5::neongreen:ect-2ΔBRCT0+1+2::tbb-

2; cb-unc-119(ed3)(+)]II 

Yes 

EZ260 Si78[pCFJ151; mKate2:NMY-2] IV;Si49[pEZ151; pmex-

5::gfp:ect-2::tbb-2; cb-unc-119(ed3)(+)]II 

Yes 

EZ261 Si78 [pCFJ151; mKate2:NMY-2] IV;Si113[pEZ187; pmex-

5::gfp:ect-2-deltaBRCT0+1::tbb-2; cb-unc-119(ed3)(+)]II 

 

 

Table 13. Generated cell lines 

Cell line Background Description Amino acid 

sequence of 

Ect2-

Transgene 

FRT HeLa Flp-In T-Rex No transgene insertion (Tighe, 

2004) 

None 

EZ69 **** HeLa Flp-In T-Rex Expression of HsEct2WT 1-883 

EZ70 **** HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT0 139-883 

EZ71 **** HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT0+1 238-883 

EZ72 **** HeLa Flp-In T-Rex Expression of HsEct2 

ΔBRCT0+1+2 

328-883 

EZ73 **** HeLa Flp-In T-Rex Expression of HsEct2 BRCT0+1+2 1-327 

EZ74 HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT2 1-237 and 328-

883 

EZ76 HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT1 1-138 and 238-

883 

EZ76.3 HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT1 ; 

subclone obtained by single-cell 

FACS sorting of EZ76; did not 

survive freezing/thawing process 

1-138 and 238-

883 

EZ76.5 HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT1; 

subclone obtained by single-cell 

FACS with Dr. Christoph 

Ziegenhain (Enard Group) sorting 

of EZ76; did not survive 

freezing/thawing process 

1-138 and 238-

883 

EZ77 HeLa Flp-In T-Rex Expression of HsEct2 ΔBRCT1+2 1-138 and 328-

883 

EZ78 HeLa Flp-In T-Rex Expression of HsEct2W211R 1-883, W211R 

EZ79 HeLa Flp-In T-Rex Expression of HsEct2W309R 1-883, W305R 
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EZ80 HeLa Flp-In T-Rex Expression of HsEct2T153A, 

K195M 

1-883, T153A, 

K195M 

EZ81 HeLa Flp-In T-Rex Expression of HsEct2 BRCT1-

BRCT1 

1-243, 149-

220 and 325-

883 

EZ82 HeLa Flp-In T-Rex Expression of HsEct2 BRCT2-

BRCT2 

1-148, 244-

324 and 221-

883 

EZ83 HeLa Flp-In T-Rex Expression of HsEct2 LinkerAA 1-883, 

exchange of 

serines/threoni

nes for alanine 

in sequence 

323-421 

**** = Cell lines generated by Seren Baygun 

Table 14. Components of the MosSCI Injection Mix 

Components  Volume 

3x MosSCI Mix: 

pCFJ601; Peft-3::transposase: 150 ng/ μL 

pMA122; Phsp::peel21 30 ng/ μL 

pGH8; Prab-3::mCherry (Pan-neuronal): 30 ng/ μL 

pCJF905; Pmyo-2::mCherry (pharynx muscle): 7.5 ng/μL 

pCJF1045 Pmyo23::mCherry (body5muscle): 15 ng/μL 

2 µl 

Target plasmid: 50 ng/μL X µl  

H2O 0-4 µl 

Total volume 6 µl 

Table 15. Digestion mix for worm lysis 

Component Volume 

Proteinase K 0.25 µl 

10x Standard Taq-Buffer 0.5 µl 

H2O 4.25 µl 

Total volume per reaction 5 µl 

 

Table 16. PCR pipetting scheme and cycler settings for genotyping and RNA 

generation 

Pipetting scheme 

Component Volume 

2x Taq-Master Mix 12.5 µl 

H2O  7.25 µl 

Primer 1 (100pmol/ µL) 0.125µl 

Primer 2 (100pmol/ µL)  0.125µl 

Worm lysate (table 15) 5 µl 

Total volume per reaction 25 µl 
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PCR cycler settings 

Step Temperature, Time 

Pre-heating the lid  105 °C, until lid is heated 

Denaturation of DNA 95 °C, 3 min 

Denaturation of DNA 95 °C, 30s 

Primer Annealing 52-65 °C, 30 s 

Elongation 68 °C, 1000 bp/ min, depending on the 

fragment-size 

Loop Repeat steps 3-5, 34x 

Final elongation step 68 °C, 5 min 

Cooling down 12 °C, until temperature is reached 

 

Table 17. Pipetting scheme and cycler settings of PCR for Gibson assembly 

Pipetting scheme 

Component Volume 

5x HF Phusion buffer (NEB) 10 µl 

H2O  33 µl 

Primer 1 (Xpmol/ µl) 0.25 µl 

Primer 2 (Xpmol/ µl) 0.25 µl 

dNTPs (2 mM) 5 µl 

Phusion (NEB) 0.5 µl 

Template (20ng/µl) 1 µl 

Total volume per reaction 50 µl 

 

PCR cycler settings 

Step Temperature, Time 

Pre-heating the lid  105 °C, until lid is heated 

Denaturation of DNA 98 °C, 30 s 

Denaturation of DNA 95 °C, 10s 

Primer Annealing 56 °C, 45 s 

Elongation 72 °C, 2000bp/ min, fragment-dependent 

Loop Repeat steps 3-5, 29x 

Final elongation step 72 °C, 5 min/ fragment < 5000bp; 10 min/ 

fragment > 5000bp 

Cooling down 12 °C, until temperature is reached 

 

Table 18. Pipetting scheme of Gibson Reaction 

Component Volume 

DNA fragment 1 (0.02- 0.5 pmol) X1 µl 

DNA fragment 2 (0.02- 0.5 pmol) X2 µl 

H2O  7.5 µl - (X1+X2) µl 

Gibson Assembly Master Mix (2x) 7.5 µl 

Total volume  15 µl 
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Table 19. Pipetting scheme of sequencing reaction according to the protocol “Cycle, 

Clean and Run BigDye v.3.1. from the LMU sequencing service 

Component Volume 

Plasmids, 150-300 ng total 1 µl 

Primer (100pmol/ µl, 1:20) 1 µl 

TE buffer  5 µl 

Total volume  7 µl 

 

Table 20. Pipetting scheme of the transcription mix 

Component Volume 

rNTPs (UTPs, ATPs, GTP, CTPs) 16 µl each (total 64 µl) 

10x T7 buffer 4 µl 

PCR product (1µg total DNA) 10 µl 

Enzyme Mix 4 µl 

Total  40 µl 
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3. Results 

During cytokinesis contractile ring formation depends on the activation of RhoA via the 

GEF Ect2. How Ect2 activity is controlled in-vivo to achieve orderly RhoA activation is 

not completely understood. To analyze Ect2 regulation in-vivo I performed structure-

function studies in C. elegans and human HeLa cells to study whether 1.) Ect2 is regulated 

by an autoinhibitory mechanism through the interaction of its N-terminal BRCT domains 

with the GEF domain and 2.) whether Ect2 BRCT domains have distinct roles in Ect2 

regulation.  

I started my work in the C. elegans system where I tested the function of the BRCT domains 

by deleting specific domains. First a genetic replacement system of endogenous and 

transgenic CeECT-2 transgenes was established which allowed me study CeECT-2 

transgenes in absence of endogenous CeECT-2. Then I analyzed the cytokinetic phenotype 

by transmission microscopy and the function of different CeECT-2 mutants in the presence 

and absence of endogenous CeECT-2 by measuring embryonic lethality and brood size. 

Moreover, CeECT-2 transgenes were tagged with a GFP for localization studies during cell 

division by confocal spinning disk microscopy. First, I deleted all three BRCT domains and 

analyzed the cytokinetic phenotype by transmission microscopy and the localization of 

CeECT-2 without the N-terminus by confocal microscopy. I also deleted BRCT0 and 

BRCT0+1 domain and studied the localization, function and cytokinetic phenotype in these 

mutants. Moreover, I used the contractility marker CeNMY-2 (non-muscle myosin II) and 

analyzed whether deletion of BRCT0 and BRCT0+1 lead to an increase in contractility.  

In C. elegans CeECT-2 exclusively localizes to the plasma membrane (Jenkins, 2006; 

Motegi and Sugimoto, 2006). In human cells HsEct2 localizes to the cell equator and 

additionally to the spindle midzone and specifically spindle midzone localization was 

thought to be important for activation of Ect2 at the cell equator (Nishimura and Yonemura, 

2006; Tatsumoto et al., 1999; Wolfe et al., 2009; Yüce et al., 2005). To study whether the 

different localizations are connected to differences in the regulation of CeECT-2 / HsEct2 

I also wanted to study HsEct2 structure function in human cells. Moreover, some of the 

important C. elegans mutants I could not test since the transgenes were silenced during 

strain generation, probably due to cytotoxicity. Therefore, I decided to continue my work 

entirely in the human system since some of the important transgenes I could not express in 

the C. elegans system, I could successfully express in human cells. 
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First, a similar molecular replacement system of HsEct2 was established in the human 

HeLa cell line which allowed me to study the HsEct2 transgenes in absence of endogenous 

HsEct2.  

Then I deleted or replaced specific BRCT domains alone or in combination to test the 

cytokinetic phenotype by transmission light microscopy, the function of the BRCT domains 

by estimating multinucleation and the localization of the different transgenes tagged with 

neongreen using confocal microscopy.  

Moreover, I measured contractility in the cell lines by quantifying membrane protrusions 

and analyzed whether anillin, a contractility marker in a highly contractile mutant is 

elevated.  

 

3.1. CeECT-2 BRCT0 and BRCT1 domains are not inhibiting GEF 

activity but are required for cytokinesis and viability  

3.1.1. Establishing a molecular replacement system for CeECT-2 in C. elegans 

To study CeECT-2 regulation in-vivo I established a genetic replacement system of 

endogenous and transgenic CeECT-2. CeECT-2 transgenes were integrated into a single, 

specific locus in the C. elegans genome and designed to be RNAi resistant against siRNA 

targeting endogenous CeECT-2.  

To establish the molecular replacement system, I used the Mos1-mediated Single Copy 

Insertion (MosSCI) technique to generate transgenic worm strains stably expressing 

different mutant CeECT-2 versions (Frøkjaer-Jensen et al., 2008). With the MosSCI system 

a gene of interest can be stably integrated into the genome of C. elegans as a single-copy. 

This allows quantitative analysis of transgenes using different read-outs, e.g. live-cell 

imaging.  

The MosSCI system uses the presence of a Mos1 transposon originating from D. 

melanogaster within the C. elegans genome in the strain EG6699. By micro-injection into 

the germline of this worm strain, a gene of interest can be stably integrated into a specific 

locus of the C. elegans genome and this insertion is mediated by the excision of the Mos1 

transposon. The Mos1 transposon is excised with the help of a transposase that causes a 
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double-strand break in the DNA that in turn is repaired by the gene of interest (Fig. 6A). 

Additionally, to the Mos1 transposon, the worm strain EG6699 carries the unc-119 allele 

ed3 that causes low brood size, immobility of the worms and defects in dauer larvae 

formation after starvation (Maduro and Pilgrim, 1995). The desired transgene to be inserted 

carries a functional unc-119 allele that can complement the defective unc-119 allele of 

EG6699. In case the transgene is stably integrated into the C. elegans genome the typical 

phenotypical defects are rescued and the worms can normally breed, crawl and form dauer 

larvae after starvation. 

The first goal was to generate a C. elegans strain that stably expressed transgenic, RNAi 

resistant CeECT-2WT that can rescue embryonic lethality, reduction of brood size and 

cytokinetic failure caused by depletion of endogenous CeECT-2 (Fig. 6A). RNAi resistance 

was achieved by exchange of the endogenous 3’UTR of CeECT-2 locus with the 3’UTR 

from the tbb-2 gene (Beta-Tubulin). It was previously shown that tbb-2 3’UTR and the 

mex-5 5’UTR drive constant and stable gene expression in the germline and early embryo 

(Merritt et al., 2008; Zeiser et al., 2011). Therefore, I replaced the endogenous UTRs with 

the tbb-2 3’ UTR and the mex-5 5’UTR and used the endogenous open reading frame (ORF) 

containing all exons and introns for constructing the rest of the CeECT-2WT transgene.  
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Fig. 6. RNAi resistant, transgenic GFP-CeECT-2WT rescues cytokinetic failure, 

lethality and brood size. (A) MosSCI method to obtain homozygous worm strains. 

Transgenic GFP-CeECT-2WT comprises a tbb-2 3´UTR that generates RNAi resistance to 

dsRNA targeting the endogenous 3´UTR of endogenous CeECT-2. (B) Transmission 

images of time-lapse movies showing the 1st cell division of control and transgenic 

CeECT-2WT C. elegans strains. Depletion of endogenous CeECT-2 leads to 100% 

cytokinetic failure in the control strain expressing only endogenous CeECT-2. The strain 

expressing transgenic CeECT-2WT can rescue cytokinetic failure. n= number of filmed 

embryos. (C) Depletion of endogenous CeECT-2 leads to 99% embryonic lethality and a 

strong reduction in brood size in the control strain. The strain expressing transgenic 

CeECT-2WT rescues embryonic lethality and brood size. n= number of total offspring 

analyzed (embryos+hatched larvae). Error bars represent standard deviation of the mean 

(SDM). Micrographs acquired with a spinning disk confocal microscope (UltraView VoX). 

Scale bars = 10µm.  
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CeECT-2 depletion by RNAi results in 100% cytokinesis failure, 99% embryonic lethality 

and a strong reduction of brood size as previously shown (Morita et al., 2005). Expression 

of RNAi resistant CeECT-2WT completely rescues cytokinesis failure, embryonic lethality 

and the reduction of brood size caused by depleting endogenous CeECT-2 (Fig. 6B and C). 

This suggests that the CeECT-2WT transgene is completely functional. 

3.1.2. Absence of CeECT-2 BRCT domains cause high sterility in C. elegans 

It has been previously shown by in-vitro studies that the N-terminus of HsEct2 binds the 

GEF domain and thereby inhibits the GEF activity of HsEct2 (Kim et al. 2005, Saito et al., 

2004). To test whether the BRCT domains inhibit GEF activity in-vivo I deleted all three 

BRCT domains (CeECT-2ΔBRCT0+1+2, Fig. 7). I generated several strains that integrated the 

CeECT-2ΔBRCT0+1+2 into the genome (verified by PCR analysis, not shown) but that did not 

express CeECT-2ΔBRCT0+1+2 presumably due to gene silencing (approach 1, Fig. 7A). 

Expression of CeECT-2ΔBRCT0+1+2 might be lethal since constitutive active CeECT-2 might 

cause cortical hypercontractility and cytokinesis failure. To overcome this problem, I 

followed 2 more approaches (approach 2 and 3, Fig. 7A) to generate a strain expressing 

CeECT-2ΔBRCT0+1+2 described in the following.  

With the second approach I depleted the gene product of GFP-CeECT-2ΔBRCT0+1+2 during 

strain generation. Depletion of the GFP-CeECT-2ΔBRCT0+1+2 protein was achieved by 

feeding bacteria producing dsRNA targeting GFP in the transgenic mRNA of GFP-CeECT-

2ΔBRCT0+1+2. Injected worms were maintained on feeding plates with bacteria producing 

dsRNA against GFP. After approximately 1.5-2 weeks when the worms started to starve, 

normally crawling offspring were screened for integration of the transgene and further kept 

on gfp(RNAi) plates. L4/ young adult worms were transferred onto normal feeder plates 

and after 20-24h offspring were analyzed for contractility of the cell cortex and were used 

for localization studies of GFP-CeECT-2ΔBRCT0+1+2 by confocal spinning disk microscopy. 

First, I studied whether expression of CeECT-2ΔBRCT0+1+2 leads to increased contractility in 

embryos (Fig. 7C). Inactivation of the major RHO-1 inhibitor RGA-3/4 leads to 

hyperactivation of RHO-1 which results in hypercontractility of the cell cortex (Schmutz 

et al., 2007; Schonegg et al., 2007). If the BRCT domains inhibit GEF activity of CeECT-

2 in-vivo, deletion of the BRCT domains should lead to a hyperactivation of CeECT-2 and 

subsequently RHO-1 and therefore to an increased contractility similar to embryos where 

RGA-3/4 is depleted (Fig. 7C). Expression of CeECT-2ΔBRCT0+1+2 does not cause 
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hypercontractility or cytokinesis failure in the presence of endogenous CeECT-2 (Fig. 7A). 

This data is based on the observation of one 1-cell stage embryo where I was able to film 

the first cell division, and which successfully completed the first division (Fig. 7C). 

Moreover, I was able to film two more embryos in later embryonic stages that obviously 

had successfully completed the first cell division (not shown), however whether these 

embryos did or did not show any contractility in the first cell division could not be analyzed. 

Then I analyzed the localization of CeECT-2ΔBRCT0+1+2 by confocal microscopy and I found 

that CeECT-2ΔBRCT0+1+2 localizes to the plasma membrane in one one-cell embryo (n=1, 

Fig. 7D), in two two-cell embryos (n=2, data not shown) and in two multicellular embryos 

(n=2, not shown). However due to high sterility of the worms when expressing CeECT-

2ΔBRCT0+1+2 the embryonic phenotype of this mutant could not be monitored in detail.  

Therefore, I followed a third approach with the goal to induce expression of CeECT-

2ΔBRCT0+1+2 with the heat shock promoter hsp-16.2 (Fig. 7A). A former paper showed that 

single-copy transgenes expression can be induced in the germline after heat shock at 33°C 

for 1h (Zeiser et al., 2011). I exchanged the mex-5 promoter of the transgenes CeECT-2WT 

and CeECT-2ΔBRCT0+1+2 for the heat shock promoter hsp-16.2 and stably integrated the 

transgenes into the genome using the MosSCI technique. I subjected adult hermaphrodites 

to 15-90 min of heat shock at 33°C to define the right time frame for inducing gene 

expression. Worms were directly analyzed for expression by fluorescence microscopy at 

20°C since high sterility of the worms was observed 2h after heat-shock. Both CeECT-2WT 

and CeECT-2ΔBRCT0+1+2 were successfully expressed in somatic cells and late stage 

embryos (Fig. 7E). However, expression in the gonad and in early embryos was not 

observed. One possibility could be that induced expression of CeECT-2ΔBRCT0+1+2 in early 

embryos and the gonad was below the detection level. Also, in the paper of Zeiser et 

al.,2011 they reported that germ line expression was very weak in comparison to somatic 

expression. Monitoring the expressing of CeECT-2ΔBRCT0+1+2 in late embryos confirmed 

the results I obtained using the gfp(RNAi) feeding approach. Heat-shock induced CeECT-

2ΔBRCT0+1+2 localized to the plasma membrane in late-stage embryos as observed before 

(Chan and Nance, 2013, Fig. 7E).  
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Fig. 7. Different experimental strategies to express GFP-CeECT-2ΔBRCT0+1+2 in the 

one-cell C. elegans embryo. (A) Overview of 3 different, independent approaches to study 

CeECT-2ΔBRCT0+1+2 in C. elegans. (B) Protein organization of CeECT-2WT and CeECT-

2ΔBRCT0+1+2. (C) Transmission light micrographs of dividing 1-cell stage embryos of the 

control strain with and without depletion of the RHO-1 GAP RGA-3/4 and the strain 

expressing CeECT-2ΔBRCT0+1+2 (approach 2). Depletion of the RGA-3/4 induces 

hypercontractility of the cortex since RHO-1 is not inactivated. One 1-cell embryo 

expressing CeECT-2ΔBRCT0+1+2 could be filmed during cytokinesis. Hypercontractility of 

the cell cortex was not observed and the embryo divided normally, however the embryo 

showed an enlarged polar body at the anterior. (D) Confocal spinning disk micrographs of 

an embryo expressing GFP-CeECT-2ΔBRCT0+1+2 (approach 2). CeECT-2ΔBRCT0+1+2 localizes 

to the plasma membrane in presence of endogenous CeECT-2. Micrographs acquired with 
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a spinning disk confocal microscope (UltraView VoX). (E) Wide-field fluorescence 

images of multi-stage embryos expressing CeECT-2WT and CeECT-2ΔBRCT0+1+2 under a 

heat-shock promotor (approach 3). CeECT-2WT and CeECT-2ΔBRCT0+1+2 both localize to the 

plasma membrane in multi-stage embryos. Micrographs acquired with an Axioscope A1 

Imager (Zeiss). n= number of imaged embryos. Scale bars= 10µm.  

 

Following three independent approaches (Fig. 7) to study whether CeECT-2WT is regulated 

by an inhibitory mechanism I could only monitor expression and localization of CeECT-

2ΔBRCT0+1+2 in a low number of early embryos in presence of endogenous CeECT-2. 

However, a pre-requisite for solid conclusions is a sufficient number of analyzed embryos. 

The difficulty to express and analyze CeECT-2ΔBRCT0+1+2 hints that CeECT-2 BRCT 

domains are important for embryogenesis and germ line function. Since the system did not 

allow studies in higher offspring numbers, I continued my work in the human HeLa FRT 

system to study whether Ect2 is regulated by an autoinhibitory mechanism in-vivo (see part 

3.2.).  

3.1.3. CeECT-2 BRCT0 and BRCT1 domains are required for embryonic viability 

and cytokinesis 

For a long time, it was thought that the BRCT1 and BRCT2 domains are a classical tandem 

BRCT domain, however it was shown that they have a very different structural 

configuration. Moreover, BRCT0 domain was only discovered by a study that analyzed the 

crystal structure of HsEct2 BRCT domains (Zou et al., 2014). Although it was shown that 

the deletion of all three BRCT domains increases CeECT-2 GEF activity in-vitro and 

prevents cleavage furrow ingression in-vivo when expressed transiently, the function of the 

individual BRCT domains has not been addressed (Kim et al., 2005; Su et al., 2011). To 

test the individual function of each BRCT domain in regulating CeECT-2 activity and 

localization in-vivo I generated transgenic strains where I deleted BRCT0 and BRCT0+1. 

In contrast to the CeECT-2ΔBRCT0+1+2, I was able to generate transgenic strains that express 

CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 and that produce normal number of offspring (Fig. 

8). After receiving the strains expressing CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 I analyzed 

the localization by confocal microscopy, cytokinetic failure by transmission microscopy 

and lethality by measuring embryonic lethality and brood size in these mutants. Transgenic 

CeECT-2WT localizes to the plasma membrane during cell division (Fig. 8B). CeECT-

2ΔBRCT0 and CeECT-2ΔBRCT0+1 localize to the plasma membrane similar as transgenic 
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CeECT-2WT (Fig. 8B). However, CeECT-2ΔBRCT0 signal was very low in the imaged 

embryos.  

 

Fig. 8. CeECT-2 BRCT0 and BRCT1 are not required for membrane localization. (A) 

Schematic representation of the protein domain organization of CeECT-2WT and the 

deletion constructs CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1. (B) Confocal micrographs 

showing a time lapse series of 1-cell stage embryos expressing CeECT-2WT, CeECT-

2ΔBRCT0 and CeECT-2ΔBRCT0+1 transgenes and localization of GFP-CeECT-2 transgenes in 

the presence of endogenous CeECT-2. n= number of imaged 1-cell stage embryos. CeECT-

2ΔBRCT0 and CeECT-2ΔBRCT0+1 both localize to the cell cortex, however the localization of 

CeECT-2ΔBRCT0 is quite low comparted to CeECT-2ΔBRCT0+1. Images acquired with Ultra 

View VoX microscope. Scale bar= 10 µm.  

 

Next, I tested whether the BRCT0 and BRCT1 are required for cytokinesis during 

embryonic development. The expression of CeECT-2ΔBRCT0 leads to 16% (n=13) 

cytokinesis failure in absence of endogenous CeECT-2 when cytokinesis is monitored after 

16-20h after the dsRNA was injected. The time frame of 16-20h of RNAi was chosen since 

the depletion levels were sufficient to induce an ect-2 phenotype in all control embryos (no 

furrow formation) and a decent number of offspring was still available to analyze since 

CeECT-2 depletion leads to high sterility in the worms. Deletion of BRCT0+1 leads to 0% 

(n=10) cytokinesis failure after 16-20h RNAi (Fig. 9A). However, when monitoring first 
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cytokinesis after longer RNAi (30-38h), 63% (n=11) cytokinesis failure in the 1-cell 

embryo was observed (Fig. 9B and Fig. 11B+C). These results suggest that BRCT0 and 

BRCT1 domain are required for cytokinesis. Moreover, I quantified the type of cytokinetic 

failure in embryos expressing CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 in the absence of 

endogenous CeECT-2. Whereas ect-2(RNAi) in control embryos abolished cleavage furrow 

formation, embryos expressing CeECT-2ΔBRCT0+1 formed a cleavage furrow which later 

regressed (Fig. 9B; regressing furrows in CeECT-2ΔBRCT0+1, n=5/11). Embryos expressing 

CeECT-2ΔBRCT0 showed 16% of regressing furrows after 16-20h of RNAi (Fig. 9A, 

regressing furrows in CeECT-2ΔBRCT0, n= 2/13). This indicates that CeECT-2ΔBRCT0 and 

CeECT-2ΔBRCT0+1 are still partially active and that BRCT0 and BRCT1 domains are rather 

required for later stages of cytokinesis, e.g. for the stability of the cleavage furrow or 

abscission.  

Next, I tested whether the BRCT0 and BRCT1 are required during embryonic development. 

Depletion of endogenous CeECT-2 leads to over 99% embryonic lethality in the control 

strain that only expressed endogenous CeECT-2 (n=275) (Fig. 9C). The expression of 

transgenic CeECT-2WT rescues embryonic lethality (0%, n= 1189). Deletion of BRCT0 

leads to 91% of embryonic lethality in absence of endogenous CeECT-2 (n=236). 

Expression of CeECT-2ΔBRCT0+1 cannot rescue the phenotype caused by depletion of 

endogenous CeECT-2 and absence of BRCT0 and BRCT1 domains leads to 85% 

embryonic lethality in absence of endogenous CeECT-2 (n=138). Moreover, absence of 

BRCT0 and BRCT1 domains lead to a drastic decrease of total brood size after depletion 

of endogenous CeECT-2 (Fig. 9C). These findings show that BRCT0 domain is required 

for embryonic viability and germ line function.  
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Fig. 9. CeECT-2 BRCT0 and BRCT1 domains are required for embryonic viability 

and cytokinesis. Time-lapse series of 1-cell stage embryos of the control strain and strains 

expressing different CeECT-2 transgenes. (A) Depletion of endogenous CeECT-2 leads to 

100% cytokinetic failure in the control, 0% in the strain expressing CeECT-2WT and 16% 

cytokinetic failure in the strain expressing CeECT-2ΔBRCT0 after 16-20h of RNAi. (B) In the 

strain expressing CeECT-2ΔBRCT0+1 63% of cytokinetic failure is observed after 33-36h of 

RNAi. n= number of imaged embryos. Images acquired with UltraView VOX microscope. 

Scale bars =10 µm. (C) Depletion of endogenous CeECT-2 leads to 99% embryonic 

lethality and a strong reduction in brood size in the control and the strains expressing 

CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1. n= number of total offspring (embryos+ hatched 

larvae). Error bars represent SDM. 
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One aim of my thesis was to study whether BRCT0 and BRCT1 inhibit the GEF domain. 

In presence and absence of endogenous CeECT-2, I did not observe increased contractility 

(Fig. 8B and 9A+B). Since I saw partial cytokinesis defects in embryos expressing CeECT-

2ΔBRCT0 and CeECT-2ΔBRCT0+1 in absence of endogenous CeECT-2 I wanted to analyze 

whether CeNMY-2 levels are increased in these strains. Therefore, I decided to use a more 

sensitive read-out to monitor whether deletion of BRCT0 and BRCT0+1 result in changes 

of CeECT-2 activity. I crossed mKate2-CeNMY-2 into the transgenic CeECT-2 strains and 

imaged the different mutants by confocal spinning disk microscopy (Fig. 10 and 11). I 

quantified the signal of mkate2-CeNMY-2 at the furrow tip when the furrow was half 

ingressed in the different strains in presence and absence of endogenous CeECT-2 (Fig. 

10B). In presence of endogenous CeECT-2 CeNMY-2 is significantly decreased in the 

strain expressing CeECT-2ΔBRCT0. Even though CeNMY-2 levels in the strain expressing 

CeECT-2ΔBRCT0+1 are not significantly decreased, the levels are lower than in WT.  
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Fig. 10. CeNMY-2 levels in CeECT-2ΔBRCT0 transgenic strains are decreased at the 

furrow tip. Confocal micrographs of 1-cell stage embryos expressing CeNMY-2 and 

CeECT-2 transgenes. (A) Time-lapse series of confocal live-cell imaging in control 

embryos expressing mkate-2-CeNMY-2 and GFP-CeECT-2 transgenes in presence of 

endogenous CeECT-2. (B) Kymographs of control embryos expressing mkate-2-CeNMY-

2 and GFP-CeECT-2 transgenes. Images acquired with a spinning disk confocal 

microscope (UltraView VoX). n= number of imaged embryos. Scale bars= 10µm. (C) 

Quantification of CeNMY-2 levels in CeECT-2 transgenic strains in presence of 

endogenous CeECT-2. At time when the furrow was ingressed by half, a 6px wide line was 

drawn along starting from the furrow tip to the outside of the embryo and background was 

measured by a drawing a square box in the cytoplasm. The first ten values measured were 

averaged and background noise was subtracted from the furrow signal. Images acquired 

with a spinning disk confocal microscope (UltraView VoX). n= number of imaged 

embryos. Scale bars= 10µm. Statistical significance tested by ANOVA, p< 0,05. Error bars 

represent standard error of the mean (SEM).  
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Next, I depleted endogenous CeECT-2 in embryos expressing CeECT-2WT, CeECT-

2ΔBRCT0 and CeECT-2ΔBRCT0+1 (Fig. 11) and measured CeNMY-2 levels at the furrow tip 

after 16-20h and 33-38h (Fig. 11C). In absence of endogenous CeECT-2, CeNMY-2 is 

significantly decreased after 16-20h RNAi. CeNMY-2 levels are also lower after 16-20h 

and 33-38h in CeECT-2ΔBRCT0+1 than in CeECT-2WT embryos, however the decrease is not 

statistically significant. This might be due to a lower sample number as compared to the 

quantification after 16-20h. Another reason could be the high variability of the signal in the 

embryos expressing CeECT-2WT and this variability might be due to technical fluctuations 

at the microscope since embryos were imaged in a time frame of about 6 months to achieve 

n=11 after 33-38h for each strain (high sterility of worms after depletion of endogenous 

CeECT-2 for more than 30h).  

In conclusion, these results suggest that deletion of BRCT0 and BRCT0+1 domain rather 

reduces than enhances the activity of CeECT-2. This finding would be consistent with a 

model in which BRCT0 and BRCT1 are required for full CeECT-2 activation.  

Next, I generated a construct where I deleted only the BRCT2 domain. Like the transgenes 

where the three BRCT domains were deleted at once, also this transgene successfully 

integrated into the genome (verified by PCR, not shown) but was silenced. Silencing of 

CeECT-2ΔBRCT0+1+2 and CeECT-2ΔBRCT2 transgenes suggest that the BRCT2 domain has a 

very important role in regulating CeECT-2 activity and that presumably deletion of BRCT2 

results in hyperactive CeECT-2 and therefore is cytotoxic. 
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Fig. 11. The BRCT0 domain promotes CeNMY-2 recruitment to the furrow in the 

absence of endogenous CeECT-2. Confocal micrographs of 1-cell stage embryos 

expressing CeNMY-2 and CeECT-2 transgenes in absence of endogenous CeECT-2. (A) 

Longer depletion (33-38h) of endogenous CeECT-2 in embryos expressing CeECT-2WT 

and CeECT-2ΔBRCT0+1. Embryos do not show increase of CeNMY-2 levels. (B) 

Kymographs of embryos expressing CeECT-2WT and CeECT-2ΔBRCT0+1. Embryos 

expressing CeECT-2WT show normal division but 63% of CeECT-2ΔBRCT0+1 show furrow 

ingression followed by regression after 33-38h of RNAi. Images acquired with a spinning 

disk confocal microscope (UltraView VoX). n= number of imaged embryos. Scale bars= 

10µm. (C) Quantification of CeNMY-2 levels in CeECT-2 transgenic strains in absence of 

endogenous CeECT-2. Depletion of endogenous CeECT-2 in embryos expressing CeECT-

2ΔBRCT0 leads to a decrease of CeNMY-2 levels in 16-20h conditions. Control embryos did 

not form a furrow since endogenous CeECT-2 was depleted. Therefore, no values for 

CeNMY-2 in the furrow tip could be measured. Statistical significance tested by ANOVA. 

p< 0,05. Error bars represent SEM.   
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3.1.4. Summary of results obtained in C. elegans 

In conclusion, my results show that BRCT domains are not required for membrane 

localization since CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 show plasma membrane 

localization like CeECT-2WT in presence and absence of endogenous CeECT-2. Moreover, 

I could reveal with my study that BRCT0+1 are not inhibiting ECT2 GEF activity since the 

mutants expressing CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 do not show increased levels of 

CeNMY-2 which suggests that BRCT0 and BRCT1 domains might promote full Ect2 

activation. Further I studied whether BRCT0 and BRCT1 domains are required for 

cytokinesis. My results show that BRCT0 and BRCT1 domain are partially required for 

cytokinesis since embryos expressing CeECT-2ΔBRCT0+1 in absence of endogenous CeECT-

2 fail cytokinesis. Importantly I could reveal that BRCT0+1+2 are important for embryonic 

development and germline function since expression of CeECT-2ΔBRCT0+1+2 causes high 

sterility of the worms in presence of endogenous CeECT-2. Moreover, deletion of BRCT0 

and BRCT1 domain results in high embryonic lethality and dramatic brood size reduction 

in absence of CeECT-2. Lastly my data suggests that BRCT2 might inhibit Ect2 GEF 

activity since strains expressing constructs without the BRCT2 domain could not be 

obtained.  

 

3.2 HsEct2 BRCT1 and BRCT2 domains are required for cytokinesis and 

inhibit GEF function in-vivo 

3.2.1.  Establishment of a molecular replacement system for the RhoA GEF HsEct2 

in human cells 

For successful cytokinesis, contractile ring formation is essential, and the formation of the 

contractile ring is dependent on the activation of the small GTPase RhoA by the GEF 

HsEct2. Other than in C. elegans, HsEct2 localizes to the spindle midzone in addition to 

the plasma membrane during cell division (Tatsumoto et al. 1999). To study whether the 

different localization of HsEct2 and CeECT-2 are related to different mechanisms of 

regulation, a similar genetic replacement system of endogenous and transgenic HsEct2 as 

in C. elegans was established in HeLa cells with the help of the students Seren Baygun and 

Pedro Barbosa Silva. In contrast to the C. elegans system, in the human HeLa system 

HsEct2 transgenes only contained exons and no introns.  
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In order to study HsEct2 regulation in-vivo, my first goal was to establish a molecular 

replacement system for HsEct2 using the HeLa Flp-In T-Rex system (for simplification, 

FRT HeLa system). In this molecular replacement system endogenous and transgenic 

HsEct2 can be exchanged by depleting endogenous HsEct2 by RNAi whereas the 

transgenic version is RNAi resistant and its expression can be induced by the addition of 

tetracycline to the culture media (Fig. 12).  

In this system different single-copy HsEct2 transgenes were integrated into a specific locus 

in the T-REx™ HeLa cell line that harbors FRT sites at a specific locus (Berens, 1994; Yao 

and Eriksson, 2002). The gene of interest is inserted by homologues recombination 

mediated by the co-expression of a recombinase that mediates the integration. Transcription 

of the integrated gene is blocked by a repressor that binds to a TetO2 site adjacent to the 

transgene. Tetracycline binds the repressor which in turn can no longer bind the TetO2 site 

and expression of the transgene is activated (Fig. 12).  

 

 

Fig. 12. Flp-In T-REx™ HeLa system to generate transgenic HsEct2 cell lines with 

single-copy insertions of the transgenes. The gene of interest (here HsEct2WT) is cloned 

into a vector containing an FRT site. To generate stably expressing cells the vector 

containing the HsEct2 gene is transfected together with a Flp recombinase that mediates 

the integration of the transgene into a specific locus. After insertion, gene expression of 

HsEct2WT is inhibited by the binding of a repressor to the TetO2 site near the integrated 

HsEct2 gene. To induce gene expression tetracycline is added to the culture medium that 

binds the repressor and thereby activates gene expression. 
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First, HsEct2 ORF was cloned by the student Pedro Barbosa Silva using human cDNA 

(donation by Dr. Christoph Ziegenhain from Prof. Enard Laboratory) and 4 point mutations 

were introduced in the BRCT1 domain that do not alter the amino acid sequence of HsEct2 

but lead to RNAi resistance against the siRNA targeting endogenous HsEct2 (Fig. 13B). 

Then the student Seren Baygun used the FRT HeLa system to generate a cell line that stably 

expressed HsEct2WT and tested whether the transgenic version of HsEct2WT is functional. 

Depletion of HsEct2 leads to high bi-and multinucleation in human cells (Kim et al., 2005, 

Su, Takaki, and Petronczki 2011). In the control cell line depletion of endogenous HsEct2 

leads to a high bi- and multinucleation (Fig. 13A+C). In the generated transgenic cell line 

expressing HsEct2WT bi- and multinucleation is not observed (Fig. 13B+C). This result 

showed that transgenic HsEct2WT is functional and the molecular replacement system of 

HsEct2WT can be used to study HsEct2 function in-vivo.  

After receiving the cell line stably expressing HsEct2WT transgene I analyzed the 

localization and expression of HsEct2WT (Fig. 13B). As previously published HsEct2WT 

(n=40) localizes to the nucleus in interphase and to the cytoplasm in metaphase after NEB. 

In anaphase, neongreen-HsEct2WT (n=40) localizes to the spindle midzone and is enriched 

at the equatorial plasma membrane (Fig. 13B) (Su, Takaki, and Petronczki 2011; Tatsumoto 

et al. 1999, Yüce et al., 2005). Depletion of endogenous HsEct2 by RNAi in the control 

and HsEct2WT cell line with and without the addition of tetracycline revealed by western 

blot analysis that most of endogenous HsEct2, running at ~ 120kDa, is depleted after 48h 

of RNAi but transgenic, RNAi resistant, neongreen-HsEct2WT, running at ~ 150kDa, is still 

expressed and that levels of endogenous and transgenic HsEct2WT are similar (Fig. 13D). 

In conclusion these results show that transgenic RNAi resistant HsEct2WT is functional and 

expressed at similar levels as endogenous HsEct2 and thus can be used for structure-

function studies.  
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Fig. 13. Transgenic, RNAi resistant HsEct2WT rescues cytokinesis defect after 

depletion of endogenous HsEct2. (A) Principle of the multinucleation assay to estimate 

cytokinesis failure in the different cell lines. Fluorescence micrographs of cells after 

fixation and immunostaining of tubulin and staining of DNA with Hoechst solution. Mono-

, bi- and multinucleated cells were counted. N= 2-3 independent experiments; n> 150 cells 

counted in total. Error bars are standard deviation of the mean. (B) Domain organization of 

HsEct2WT with 3 N-terminal BRCT domains, a DH-GEF domain and C-terminal domain 

comprising a PH, PBS and a CTD domain. The BRCT1 domain contains 4 point mutations 

that do not alter the amino-acid sequence but makes the HsEct2 transgenes RNAi resistant. 

During anaphase, neongreen-HsEct2WT localizes to the spindle midzone and to the 

equatorial plasma membrane and during metaphase to the cytoplasm. Scale bar = 10µm. 

(C) Percentage of mono-, bi-, and multinucleated control and HsEct2WT expressing cells 

with and without Ect2 RNAi. Depletion of endogenous HsEct2WT leads to a high bi- and 

multinucleation in the control but not in the cell line expressing transgenic, RNAi resistant 

neongreen-HsEct2WT. n> 150 cells counted in total. Error bars are standard deviation of the 

mean. (D) Western blot analysis of endogenous and transgenic neongreen-HsEct2WT with 
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and without depletion of endogenous HsEct2. Transgenic neongreen-HsEct2WT (~150kDa) 

is expressed upon tetracycline addition in presence and absence of endogenous HsEct2. 

Actin was plotted as a loading control.  

 

 

Fig. 14. Overview of generated transgenic HsEct2 cell lines. Transgenic cell lines harbor 

either N-terminal deletions, substitutions of different BRCT domains or single point 

mutations in the BRCT domains or linker region (indicated with black asterisks). All 

HsEct2 transgenes are single-copy insertions, RNAi resistant and can be induced by 

tetracycline.  

 

3.2.2. The BRCT0 domain contributes to spindle midzone localization and is not 

required for cytokinesis 

The BRCT0 domain of HsEct2 was first discovered when the crystal structure of HsEct2 

N-terminus was resolved in 2014 (Zou et al., 2014). The BRCT0 domain is the least 

conserved BRCT domain of HsEct2 and the most variable one among different species in 

evolution which also explains why there are different views on whether HsEct2 contains a 

tandem or a triple BRCT domain in the N-terminus (Zou et al. 2014). To test if BRCT0 is 

required for HsEct2 function and localization I deleted BRCT0 domain (Fig. 15). To make 

sure that the expression levels of HsEct2ΔBRCT0 were similar to HsEct2WT, protein 
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expression was analyzed by western blot analysis and quantified on confocal spinning disk 

images (Fig. 16). Western blot analysis showed that endogenous HsEct2WT and transgenic 

HsEct2ΔBRCT0 are expressed at similar levels (Fig. 16A). Cytoplasmic and background pixel 

intensities were measured by drawing a box in the cytoplasm and outside of the cell. 

Background signal was then subtracted from the cytoplasmic values (Fig. 16B). Western 

Blot analysis and imaging analysis revealed that the cell line expressing HsEct2ΔBRCT0 

comprises similar percentages of low, medium and high expressing cells (Fig. 16A+C).  

Then I analyzed the function of the HsEct2ΔBRCT0 in presence and absence of endogenous 

HsEct2 by measuring cytokinesis failure with multinucleation assays. Endogenous HsEct2 

was depleted by RNAi and cells were fixed and stained for tubulin and DNA, then the 

number of mono-, bi- and multinucleated cells was counted (Fig. 13A). Depletion of 

endogenous HsEct2 leads to high cytokinesis failure (79% of bi- and multinucleation) and 

expression of HsEct2ΔBRCT0, like HsEct2WT, fully rescues cytokinesis defects (Fig. 15C).  
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Fig. 15. BRCT0 domain is not required for cytokinesis. (A) Domain structure of 

HsEct2WT and HsEct2ΔBRCT0 transgenes. (B) Micrographs of live-cell imaging of dividing 

cells expressing neongreen-HsEct2WT and neongreen-HsEct2ΔBRCT0. HsEct2WT localizes to 

the spindle midzone and to the equatorial plasma membrane. Cells expressing Ect2ΔBRCT0 

show plasma membrane and reduced spindle midzone localization. (C) Depletion of 

endogenous HsEct2 in control cell line induces bi- and multinucleation (>79%). 

Transgenic, RNAi-resistant HsEct2WT and HsEct2ΔBRCT0 rescue cytokinesis failure in 

absence of endogenous HsEct2. n>150 cells of 2-3 independent experiments. Scale bar = 

10 µm. Error bars represent SDM.  
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Fig. 16. HsEct2 transgenes are expressed at similar levels. (A) Western blot analysis of 

HsEct2 cell lines expressing endogenous and neongreen-HsEct2WT, HsEct2ΔBRCT0, 

HsEct2ΔBRCT2, HsEct2ΔBRCT0+1 and HsEct2ΔBRCT0+1+2. Transgene expression was induced 

with tetracycline for 48h and cells were harvested for cell lysates. Proteins were separated 

by SDS-PAGE and detected by HsEct2, tubulin or actin antibody with western blot. 

Expected size of endogenous HsEct2 is 120kDa and size of neongreen-tag is 27kDa. 

Transgenic neongreen-HsEct2WT is expected to run at 150kDa, neongreen-HsEct2ΔBRCT0 

and neongreen-HsEct2ΔBRCT2 are expected at 120kDa, neongreen-HsEct2ΔBRCT0+1 at 

100kDa and HsEct2ΔBRCT0+1+2 at 80kDa. Tubulin and actin were plotted as a loading 

control. (B) Method of determining expression levels in images acquired with a 40x and 

100x objective during confocal live-cell imaging. Cytoplasmic pixel intensities were 

measured, and background signal was subtracted from the cytoplasmic values. (C) 

Expression levels of neongreen-HsEct2 cell lines determined on confocal images obtained 

by live-cell imaging with a 40x and 100x objective. A threshold for no, low, medium and 

high expression was set according to the objective used for imaging (Table 21). Numbers 

above columns indicate number of analyzed cells per cell line. n= number of imaged cells. 

Scale bar = 10µm 
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Table 21. Thresholds of fluorescent intensity levels used for the different categories of 

HsEct2 transgene expression in cell lines analyzed by confocal microscopy images. 

Definition expression levels: 16bit original images 

100x Objective   40x Objective 

No expression (-BG): 0-50 No expression (-BG): 0-10 

Low expression (-BG): 50- 500 Low expression (-BG): 10-250 

Medium expression (-BG): 500-1000 Medium expression (-BG): 250-500 

High expression (-BG): >1000 High expression (-BG): >500 

 

 

Next, I analyzed the localization of HsEct2ΔBRCT0 during mitosis by performing confocal 

live-cell imaging. In anaphase HsEct2ΔBRCT0 (n=19) localizes to the plasma membrane as 

HsEct2WT (Fig. 15B) but shows reduced spindle midzone localization. Since HsEct2ΔBRCT0 

localization differed from HsEct2WT I wanted to study in detail how the localization at the 

cell cortex and the spindle midzone changes when BRCT0 is deleted. Signal intensities at 

the cell cortex were measured by drawing a line around the cell cortex, starting and ending 

at the left cell pole in mid anaphase (Fig. 17A+B).  I measured the signal at the poles and 

at the equator and data was further processed by using the program KNIME (analysis done 

by doctoral student Sriyash Mangal). Moreover, I measured HsEct2 signal intensities at the 

spindle midzone by drawing a line from underneath the equatorial plasma membrane to the 

opposite site of the cell equator (Fig. 17A). The signal intensities of cells expressing 

HsEct2ΔBRCT0 are strongly reduced at the spindle midzone compared to HsEct2WT. 

Moreover, HsEct2ΔBRCT0 localizes to the equatorial plasma membrane and also to the cell 

poles whereas HsEct2WT only localizes to the cell equator (Fig. 17C). These results suggest 

that BRCT0 domain contributes to spindle midzone localization and, is required to enrich 

HsEct2 at the cell equator. 
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Fig. 17. BRCT0 domain contributes to spindle midzone localization, and is required 

to enrich HsEct2 at the cell equator. (A) Schematic of quantification methods of HsEct2 

fluorescence intensities at the cell equator, around the cell periphery and at the spindle 

midzone on confocal images acquired by live-cell imaging. Z-stacks were acquired with 

100x objective and a midplane image at the first furrow indentation was used for 
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quantification. A line (width= 6 pixel) was drawn around the cell periphery in ImageJ 

starting and ending at the left pole and fluorescent intensities were measured. Fluorescent 

intensities of HsEct2 were further analyzed at the cell poles and at the cell equator using 

the program KNIME. Cytoplasmic values were measured in a box drawn in the cytoplasm 

and values were subtracted from the cortex and pole values (dashed line in the plot). To 

quantify the signal at the spindle midzone, a line was drawn underneath the upper equatorial 

membrane over the spindle midzone down to the lower equatorial membrane and 

cytoplasmic background was measured in a box drawn in the cytoplasm. Mean intensity 

values for spindle midzone and cytoplasm were calculated (length = 12 pixel). (B) 

Representative line-scan of the HsEct2WT fluorescent intensity around the cell periphery in 

anaphase.  (C) HsEct2ΔBRCT0 is reduced on the spindle midzone and not enriched at the cell 

equator compared to HsEct2WT. Left panel: Fluorescence signal of HsEct2WT and 

HsEct2ΔBRCT0 at the spindle midzone (normalized ratio = midzone signal/ cytoplasmic 

signal). Right panel: Absolute fluorescence signal intensities of cell equator minus poles of 

HsEct2WT and HsEct2ΔBRCT0. Equatorial and polar fluorescent intensity was calculated for 

each cell. Dots are quantified cells. Dotted line = background signal. Statistics performed 

with student’s t-test. Error bars are Error bars are SDM. P-values are from student’s t-test, 

p< 0,001(**), and p< 0,0001(***). 

 

Next, I wanted to know whether BRCT0 domain inhibits HsEct2 GEF activity that leads to 

hyperactivation of HsEct2 that in turn leads to hyperactivation of RhoA. In the past it has 

been shown that hyperactive RhoA results in huge membrane protrusions (here called 

membrane blebbing) of the cell during mitosis (Zanin et al., 2013). An increase in GEF 

activity should result in hyper membrane blebbing as observed before (Zanin et al., 2013). 

I analyzed cortex contractility by measuring membrane blebbing of the different HsEct2 

transgenic cells lines by confocal live-imaging in presence of endogenous HsEct2 (Fig. 

18A). I quantified the percentage of membrane protrusions in all generated cell lines during 

metaphase and anaphase during live-imaging of the cells. If the protrusions of the cells 

were at least 1/3 of the size of the metaphase or anaphase cell, the protrusions were scored 

as strong blebbing and counted as “blebby” for the quantification (Fig. 18C). In cells 

expressing HsEct2ΔBRCT0 in metaphase no blebbing is observed (0%) as in HsEct2WT (0%). 

In anaphase membrane blebbing of HsEct2ΔBRCT0 is slightly reduced (5%) when compared 

to HsEct2WT (17%) (Fig. 18C). These results suggest that the BRCT0 domain does not 

inhibit Ect2 GEF activity.  
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Fig. 18. Absence of BRCT0 domain does not increase membrane blebbing during 

mitosis. (A) Schematic of the quantification of membrane protrusions and blebbing used 

in different cell lines. Confocal live-cell imaging was performed, and cells were analyzed 

for membrane protrusions in metaphase and anaphase using ImageJ. If the length of the 

membrane protrusions were at least 33% of the length of the cell, protrustions were 

classified as “membrane blebbing”. (B) Membrane blebbing during metaphase and 

anaphase in presence of endogenous HsEct2 in transgenic cell lines expressing HsEct2WT 

and HsEct2ΔBRCT0. Blebbing was determined by confocal live-cell imaging. In anaphase 

membrane blebbing is slightly reduced in cells expressing HsEct2ΔBRCT0. n= number of 

analyzed cells per cell line that expressed the HsEct2 transgenes. Red arrows indicating 

membrane blebbing in metaphase and anaphase. Scale bar = 10 µM. 
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In summary, these data suggest that BRCT0 is not inhibiting HsEct2 GEF activity and is 

not required for successfully cytokinesis. However, my data indicates that the BRCT0 

domain contributes to spindle midzone binding of Ect2 and is required to enrich HsEct2 at 

the cell equator.  

3.2.3. The BRCT1 domain is the major spindle midzone binding domain and is 

required for cytokinesis 

Previous studies have shown that HsEct2 and centralspindlin are required for RhoA 

accumulation at the cell equator and HsEct2 BRCT1 domain interacts with MgcRacGAP 

in a phospho-dependent manner (Nishimura and Yonemura, 2006; Yüce et al., 2005). This 

suggested that the interaction of MgcRacGAP and HsEct2 is essential for cytokinesis. 

Moreover it was previously shown that two point mutations in the BRCT1 (T153A, 

K195M, HsEct2T153,K195M) domain inhibit the interaction with MgcRacGAP and 

completely abolished HsEct2 localization to the spindle midzone (Kotýnková et al., 2016). 

Moreover Kotýnková et al. showed that HsEct2T153,K195M transgene rescues cytokinesis 

defects after depletion of endogenous HsEct2 suggesting that spindle midzone localization 

and MgcRacGAP binding is not essential for cytokinesis. To investigate whether the 

BRCT1 domain has any role during cytokinesis, I generated two transgenes where I deleted 

BRCT0+1 and BRCT1 domain (Fig. 19A). Expression of transgenic HsEct2ΔBRCT0+1 was 

analyzed by western blot analysis and image quantification on confocal spinning disk 

images (Fig. 16). Western blot analysis revealed similar expression levels of endogenous 

and transgenic HsEct2ΔBRCT0+1 (Fig. 16A). Image quantification of expression levels 

demonstrated that HsEct2ΔBRCT0+1 and HsEct2ΔBRCT1 were expressed at similar levels like 

HsEct2WT (Fig. 16C).  

Then I analyzed the localization of HsEct2ΔBRCT0+1 and HsEct2ΔBRCT1 transgenes in the 

presence of endogenous HsEct2. HsEct2ΔBRCT0+1 (n=41) and HsEct2ΔBRCT1 (n=27) are 

absent from the spindle midzone and only present on the plasma membrane (Fig. 19B).  

Next, I measured the fluorescence intensity of HsEct2ΔBRCT0+1 (n=41) at the cell equator 

and at the poles (Fig. 17 A+B) and cells expressing HsEct2ΔBRCT0+1 show that the signal at 

the cell equator and at the cell poles are equal (Fig. 20A). These results are consistent with 

previous models that interaction between the BRCT1 domain and MgcRacGAP targets 

HsEct2 to the spindle midzone and enriches HsEct2 at the equatorial membrane during 

anaphase (Wolfe et al., 2009; Yüce et al., 2005).  
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Since truncations of entire protein domains can alter the protein folding and lead to artifacts, 

I introduced a point mutation in BRCT1 domain (W211R) and another point mutation in 

BRCT2 domain (W305) that should disrupt the function of the BRCT domains. It was 

previously shown that mutating a highly conserved tryptophan in the BRCT2 domain 

(W305R) abolishes the intramolecular interaction of HsEct2 N-terminus with its C-

terminus (Kim et al., 2005). Dr. Esther Zanin identified the equivalent and conserved 

tryptophan in BRCT1 domain (W211) and so I generated a cell line expressing HsEct2W211R 

(Fig. 19A) and analyzed whether the exchange of tryptophan 211 (W211R) disrupts the 

function of the BRCT1 domain. Unfortunately, expression of the HsEct2W211R (n=5) 

transgene was very low and it localized mostly to the cytoplasm and therefore HsEct2W211R 

was not analyzed further (Fig. 19B).  

Previously it was shown that two point mutations in the BRCT1 domain (HsEct2T153A, 

K195M) which inhibit the interaction of HsEct2 with the centralspindlin component 

MgcRacGAP do not abrogate HsEct2 function (Kotýnková et al. 2016). To confirm these 

observations, I generated a stable cell line expression HsEct2T153A, K195M and indeed I found 

that the phenotype resulting from depletion of endogenous HsEct2 is largely rescued by 

HsEct2T153A, K195M (Fig. 19C). BRCT domains are often phosphopeptide binding motifs that 

interact with their binding partners upon phosphorylation (Manke, 2009). These point 

mutations abolish the interaction of HsEct2 and MgcRacGAP and prevent spindle midzone 

localization (Wolfe et al., 2009). In my hands, expression of HsEct2T153A, K195M (n=15) 

resulted in a reduced spindle midzone localization but did not entirely abolish spindle 

midzone localization in presence of endogenous HsEct2 (Fig. 19B). However, these results 

are preliminary and quantification for a solid conclusion is required in the future.  

Then I tested the function of HsEct2ΔBRCT0+1, HsEct2ΔBRCT1 and of HsEct2T153A, K195M after 

depleting endogenous HsEct2 in these cell lines. In presence of endogenous HsEct2, cell 

lines expressing HsEct2ΔBRCT0+1 (4%), HsEct2ΔBRCT1 (9%) and HsEct2T153A, K195M (4%) 

show very little bi- and multinucleated cells (Fig. 19C). In absence of endogenous HsEct2 

cell lines expressing HsEct2ΔBRCT0+1 (81%) and HsEct2ΔBRCT1 (69%), and HsEct2T153A, 

K195M (19%) shows increased bi- and multinucleated cells in absence of endogenous 

HsEct2. Since the cell line expressing HsEct2ΔBRCT1 showed little expression levels in 

interphase and mitotic cells, the cell line was sorted with fluorescence-activated cell 

scanning (FACS) with the help of Dr. Christoph Ziegenhain from Prof. Enard’s laboratory. 

This was done to exclude that the high percentage of bi- and multinucleation in 
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HsEct2ΔBRCT1 (69%) after depletion of endogenous HsEct2 did not result from low 

expression but from a non-functional HsEct2 version when BRCT1 domain is deleted. To 

identify a clone that expresses uniformly the HsEct2ΔBRCT1 transgene, 5x 96-well plates 

were FACS sorted each well containing one single cell (480 wells in total). I identified 5 

clones out of 480 that survived FACS sorting and 2 out of 5 clones expressed HsEct2ΔBRCT1 

in a similar amount than HsEct2WT. One of the two cell lines derived from HsEct2ΔBRCT1 by 

single-cell FACS sorting (HsEct2ΔBRCT1 (FACS)) was used to repeat the assay in presence and 

absence of endogenous HsEct2 and the assays confirmed the result obtained with the non-

FACS sorted HsEct2ΔBRCT1 cell line. Together these results suggest that the BRCT1 domain 

is essential for cytokinesis but binding of the BRCT1 domain to MgcRacGAP is not.  

Then cortex contractility was monitored by live-cell imaging by quantifying membrane 

blebbing in metaphase and anaphase. In metaphase, no (0%) blebbing was observed in 

HsEct2WT, HsEct2ΔBRCT0+1, HsEct2ΔBRCT1, and HsEct2T153A, K195M. In anaphase 

HsEct2ΔBRCT0+1 (29%), HsEct2ΔBRCT1 (46%), and HsEct2T153A, K195M (47%) showed elevated 

levels of membrane blebbing compared to HsEct2WT (17%). This suggests that BRCT1 

domain might be involved in the inhibition of HsEct2. However live-cell imaging 

experiments in absence of endogenous HsEct2 is required to prove whether BRCT1 domain 

is involved in HsEct2 inhibition. Unfortunately, RNAi depletion was not as efficient and 

therefore no live-cell imaging was performed in absence of endogenous HsEct2 (see 

discussion part).  

 



96 

 

 

Fig. 19. The BRCT1 domain is required for cytokinesis and deletion of BRCT1 

abolishes spindle midzone localization. (A) Domain structure of HsEct2WT, 

HsEct2ΔBRCT0+1, HsEct2ΔBRCT1, HsEct2W211R and HsEct2T153A, K195M transgenes. (B) 
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Micrographs of live-cell imaging in dividing cells expressing neongreen-HsEct2WT, 

neongreen-HsEct2ΔBRCT0+1, neongreen-HsEct2ΔBRCT1, neongreen-HsEct2W211R and 

neongreen-HsEct2T153A, K195M. HsEct2WT localizes to the spindle midzone and to the 

equatorial plasma membrane. In the absence of the BRCT1 domain spindle midzone 

localization is abolished and the protein is present on the plasma membrane but not 

enriched at the equatorial membrane. Scale bar = 10 µm. n= number of analyzed cells per 

cell line that expressed the HsEct2 transgenes. (C) Deletion of BRCT1 domain causes 

severe cytokinesis failure measured by multinucleation assay, n>150 cells of 2-3 

independent experiments (except HsEct2W211R because of low expression in the cell line).  

 

Fig. 20. BRCT1 domain is required to enrich HsEct2 at the equatorial membrane and 

deletion of BRCT1 induces mild membrane blebbing in anaphase. (A) Spindle midzone 

signal and signal of cell equator minus poles was measured as depicted in Figure 17A+B. 

HsEct2ΔBRCT0+1 is absent from the spindle midzone and is not enriched at the cell equator 

compared to HsEct2WT. Dots are quantified cells. Equatorial and polar fluorescent intensity 

was calculated for each cell. Dotted line = background signal. Statistics performed with 

student’s t-test. Error bars are SDM. P-values are from student’s t-test, p< 0,05(*), and p< 

0,0001(****). (B) Membrane blebbing during metaphase and anaphase in presence of 

endogenous HsEct2 in transgenic cell lines expressing HsEct2WT, HsEct2ΔBRCT0+1, 

HsEct2ΔBRCT1, HsEct2W211R and HsEct2T153A,K195M was quantified as described in Fig. 18A. 

Blebbing was determined by confocal live-cell imaging. In anaphase membrane blebbing 

is slightly increased in cells expressing HsEct2ΔBRCT0+1, HsEct2ΔBRCT1 and HsEct2T153A, 

K195M. n= number of analyzed cells per cell line that expressed the HsEct2 transgenes. 
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3.2.4. The BRCT2 domain is required for cytokinesis and inhibits GEF activity 

Next, I wanted to study whether BRCT2 domain is required for Ect2 activity and function. 

In the literature, mainly BRCT1 domain was mentioned and characterized, but what the 

specific role of BRCT2 domain is has not yet been analyzed. Therefore, I generated cell 

lines where I deleted the BRCT2 domain. To exclude that the observed phenotype is an 

artifact of deleting the entire BRCT2 domain, I also generated a cell line where I substituted 

the BRCT2 domain with BRCT1 domain instead of deleting BRCT2 domain. Additionally 

I introduced a specific point mutation (W305R) which was claimed to prevent folding of 

the BRCT2 domain and abolish the interaction of HsEct2 N-terminus with its C-terminus 

(Kim et al., 2005) (Fig. 16A). Moreover, I deleted all the three BRCT domains to analyze 

whether deletion of all the three BRCT domains results in an increased GEF activity and 

whether deletion of all three BRCT domains shows similar effects than deleting only 

BRCT2 domain.  

First, I measured expression levels of the different transgenic HsEct2 cell lines by western 

blot and fluorescent image quantification (Fig. 16). Western blot analysis revealed that 

HsEct2ΔBRCT0+1+2 and HsEct2ΔBRCT2 are expressed at similar levels as endogenous HsEct2. 

Imaging analysis showed a homogenous expression of low, medium and high expressing 

cells in the cell lines HsEct2ΔBRCT0+1+2, HsEct2ΔBRCT2 and HsEct2BRCT1, BRCT1 measured with 

either 40x or 100x objective. However, in the cell line expressing HsEct2W305R and 

HsEct2ΔBRCT1+2 expression levels were quite low in the analyzed cells.  

Then I analyzed the localization of HsEct2 in transgenic cell lines where BRCT2 domain 

is absent by confocal live cell imaging (Fig 21B). In cells expressing HsEct2ΔBRCT0+1+2 

(n=27) and HsEct2ΔBRCT1+2 (n=26) no spindle midzone localization can be observed as 

expected since BRCT1 domain is also missing (Fig. 21B). The cell line expressing 

HsEct2W305R shows a similar localization like HsEct2WT (Fig. 21B). To study whether 

BRCT2 contributes to spindle midzone localization I deleted or substituted BRCT2 with 

BRCT1 domain. Then I analyzed HsEct2ΔBRCT2 (n=40) and HsEct2BRCT1, BRCT1 (n=15) 

expressing cells and a weak spindle midzone and strong plasma membrane localization can 

be observed. Next, I quantified the signal around the cell cortex in cells expressing 

HsEct2ΔBRCT2 and at the spindle midzone as depicted in Figure 17A+B. Analysis revealed 

that indeed spindle midzone signal is reduced in comparison to HsEct2WT. Moreover, 
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HsEct2ΔBRCT2 is not enriched at the cell equator as in HsEct2WT but shows an equal 

distribution at the cell equator and at the poles (Fig. 22A). These results show that BRCT2 

domain contributes to spindle midzone localization and is required to enrich HsEct2 at the 

cell equator.  

Next, I tested the function of HsEct2ΔBRCT0+1+2, HsEct2ΔBRCT1+2, HsEct2ΔBRCT2, 

HsEct2W305R and HsEct2BRCT1, BRCT1 and measured mono-, bi- and multinucleation before 

and after depleting endogenous HsEct2 in these cell lines (Fig. 21C). In presence of 

endogenous HsEct2 cells expressing HsEct2ΔBRCT0+1+2 (3%), HsEct2ΔBRCT2 (11%), 

HsEct2ΔBRCT1+2 (6%) and HsEct2W305R (3%) show low numbers of bi- and multinucleation. 

After depletion of endogenous HsEct2 cells expressing HsEct2ΔBRCT0+1+2 (65%), 

HsEct2ΔBRCT2 (50%), HsEct2ΔBRCT1+2 (52%) and HsEct2W305R (25%) show an increased 

number of bi- and multinucleation but partially rescue cytokinesis failure since the controls 

without any transgene showed in the same experiments between 79-81% bi- and 

multinucleation. Interestingly HsEct2BRCT1-BRCT1 (70%) showed a higher percentage of bi- 

and multinucleation than HsEct2ΔBRCT2 (52%) suggesting that BRCT1 and BRCT2 domains 

have separate functions since HsEct2BRCT1-BRCT1 is not partially functional. The cell line 

expressing HsEct2W305R showed 25% bi- and multinucleation which suggests that 

HsEct2W305R is mainly functional. This is in contrast to previous results from Kim et al., 

2005 where it was reported that the mutation W304R in the BRCT2 domain (equivalent to 

my construct HsEct2W305R) abolished the interaction of the BRCT domains with the GEF 

domain and strongly increased the GEF activity of Ect2304R in-vitro (GEF assays). My 

results question the importance of the residue W305 regarding cytokinesis.  

Then I analyzed membrane blebbing in these cell lines (Fig. 22A). Deletion of BRCT1+2 

domains resulted in strong increase of blebbing in anaphase (62%). Strong blebbing was 

also observed when all the three BRCT domains were deleted (22% in metaphase and 89% 

in anaphase) and the same effect was observed when only BRCT2 domain is deleted alone 

(28% in metaphase and 88% in anaphase). Interestingly metaphase blebbing was only 

observed in the cell lines expressing HsEct2ΔBRCT0+1+2 (22%) and HsEct2ΔBRCT2 (28%) 

which could be indicative for a premature activation of HsEct2 in metaphase when BRCT2 

domain is deleted. Also, in cells expressing HsEct2BRCT1-BRCT1 strong membrane blebbing 

occurs during metaphase (62%) and anaphase (80%) (n=15). These results suggest that 

BRCT2 is the major inhibitory domain that inhibits HsEct2 GEF activity in metaphase and 

anaphase.  
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Fig. 21. BRCT2 domain is required for cytokinesis and contributes to spindle midzone 

localization. (A) Domain structure of HsEct2WT, HsEct2ΔBRCT0+1+2, HsEct2ΔBRCT1+2, 

HsEct2ΔBRCT2, HsEct2W305R and HsEct2BRCT1-BRCT1 transgenes. (B) Micrographs of live-cell 

imaging in dividing cells expressing neongreen-HsEct2WT, neongreen-HsEct2 ΔBRCT0+1+2, 

neongreen-HsEct2ΔBRCT1+2, neongreen-HsEct2W305R and neongreen-HsEct2BRCT1-BRCT1. 

Cells lacking BRCT2 domain show plasma membrane and reduced spindle midzone 

localization. Scale bar = 10 µm, n= number of imaged cells (C) Absence of BRCT2 domain 

causes increased cytokinesis failure measured by multinucleation assay, n>150 cells of 2-

3 independent experiments (except HsEct2ΔBRCT1+2 because of low expression in the cell 

line).  

 

 

Fig. 22. BRCT2 domain is required to enrich HsEct2 at the equatorial plasma 

membrane and absence of BRCT2 causes severe membrane blebbing. (A) The 

transgene lacking the BRCT2 domain shows reduced spindle midzone localization and 

HsEct2ΔBRCT2 is not enriched at the cell equator. Dots are quantified cells. Dotted line = 

background signal. Statistics performed with student’s t-test. Error bars are SDM. P-values 

are from student’s t-test, p< 0,05(*). (B) Membrane blebbing during metaphase and 
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anaphase in transgenic HsEct2 cell lines expressing HsEct2WT and HsEct2ΔBRCT0+1+2, 

HsEct2ΔBRCT1+2, HsEct2ΔBRCT2, HsEct2W305R and HsEct2BRCT1-BRCT1. In cells lacking 

BRCT2 domain blebbing is dramatically increased during cell division. During metaphase 

blebbing is severely increased in cells expressing HsEct2ΔBRCT0+1+2, HsEct2ΔBRCT2 and 

HsEct2BRCT1-BRCTT1. Blebbing was determined by confocal live-cell imaging. Scale bar = 

10 µm. n= number of analyzed cells per cell line that expressed the HsEct2 transgenes. 

 

3.2.5. Membrane blebbing in HsEct2ΔBRCT2 is caused by hyperactive Rho  

Since I saw a dramatic increase in membrane blebbing in the cell line expressing 

HsEct2ΔBRCT2 (22% in metaphase and 88% in anaphase, Fig. 21B, Fig. 22B and Fig. 23). I 

addressed the question whether increased membrane blebbing in the transgenic cell lines is 

caused by hyperactive RhoA. It has been previously shown that constitutive active RhoA 

leads to massive membrane protrusions (Zanin et al., 2013). Therefore, I wanted to test 

whether RhoA inhibition in the cell line expressing HsEct2 ΔBRCT2 can reduce membrane 

blebbing (Fig. 24).  

 In order to test this hypothesis, I inhibited Rho activity by applying the highly specific 

inhibitor for RhoGTPases C3 to the cells after induction of the transgenes with tetracycline. 

C3 Transferase from the bacterium Clostridium botulinum is an exoenzyme and very 

effectively blocks Rho activity. C3 Transferase is fused to a cell-penetrating component 

that helps the C3 enzyme to cross the plasma membrane. In the cytoplasm the cell-

penetrating moiety is removed, and the C3 Transferase inactivates RhoA, RhoB, and RhoC. 

The C3 Transferase is specific for RhoA/B/C and it does not inhibit Cdc42 or Rac1 

(Aktories et al., 1989; Wilde and Aktories, 2001).  

First, I tested whether C3 inhibitor efficiently inhibited RhoA by analyzing whether anillin 

is strongly reduced in the cleavage furrow in the control cell line during anaphase 

performing immunostainings in the cells. Anillin levels were drastically reduced which 

showed that the inhibitor effectively inhibited RhoA (Fig. 23A). Then I quantified 

membrane blebbing in the cells before and after C3 application by immunostainings (Fig. 

23B). As already observed in live-cell imaging in FRT control cells no blebbing was 

observed in metaphase and anaphase before and after C3 application (0% in metaphase and 

0% in anaphase). In HsEct2WT little membrane blebbing was observed during metaphase 

(9%) and anaphase (11%) and C3 application resulted in a slight reduction of membrane 

blebbing in metaphase (5%) and anaphase (0%). As in live-cell imaging analyzed before, 
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in the immunohistochemical assays cells expressing HsEct2ΔBRCT2 still showed strong 

blebbing during metaphase (32%) and anaphase (30%). Inhibition of RhoA in 

HsEct2ΔBRCT2 by C3 resulted in a strong reduction of membrane blebbing in both metaphase 

(15%) and anaphase (8%). Together these results support the hypothesis that the BRCT2 

domain is the major inhibitory domain of HsEct2 and suggest that deletion of BRCT2 

domain increases HsEct2 activity and thus of its downstream effector RhoA. 

 

Fig. 23. Blebbing in HsEct2ΔBRCT2 expressing cells is reduced upon RhoA inhibition.  

(A) Immunostainings of endogenous anillin in FRT control and HsEct2ΔBRCT2 cell lines 

before and after C3 application. Red arrows indicating membrane protrusions in cells 

expressing HsEct2ΔBRCT2 during metaphase and anaphase. Scale bar = 10µM (B) Membrane 

blebbing was quantified in all imaged cells of fixed samples and subsequent 

immunohistochemical stainings of anillin. Images were acquired with a spinning disk 

microscope. n= number of imaged cells. Number of independent experiments = 2.  

 

3.2.6. Deletion of BRCT2 domain results in increased anillin levels  

To further investigate whether deletion of BRCT2 domain results in hyperactivation of 

HsEct2 and its downstream effectors I analyzed anillin levels in HsEct2ΔBRCT2 cells and 

compared it to the control cell line. If HsEct2 is hyperactive after deleting the BRCT2 
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domain then RhoA and its downstream effectors, e.g. the scaffold protein anillin is expected 

to increase at the cell cortex.  

Cells were fixed and stained for anillin and tubulin by immunohistochemistry. Confocal 

images of cells in metaphase and anaphase were taken and anillin levels were quantified in 

metaphase cells by drawing a segmented line around the cell cortex and measuring the 

signal intensity at the cortex. A square box was drawn in the cytoplasm to measure the 

background signal. Image analysis was performed in Fiji ImageJ by subtracting the 

background values from the cortex values and summing up the total anillin signal of the 

cortex for each cell (Fig. 24A).  

 

 

Fig. 24. Cortical anillin levels are increased in metaphase when cells express 

HsEct2ΔBRCT2. (A) Method of quantification of cell size and cortical anillin levels. A line 

scan was drawn around the cell cortex in metaphase cells to measure the circumference of 

the cells and the pixel intensities of anillin at the cell cortex. (B) Metaphase cell size is 

reduced when cells express HsEct2ΔBRCT2. Dots are quantified cells. Lines and error bars 

are mean values and 95% confidence interval. Significance was tested by t-test. (C) Cortical 

anillin levels in metaphase were measured in the control cell line and the cell line 

expressing HsEct2ΔBRCT2. Some cells of HsEct2ΔBRCT2 show massive membrane blebbing 

(“Blebby”) and some do not show elevated membrane blebbing (“Not blebby”). (D) 
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Quantification of anillin levels in metaphase cells. Anillin levels are significantly increased 

when BRCT2 domain is deleted (p< 0,01). Dots are all quantified cells which were obtained 

from 2 independent experiments. Dotted line = background signal. Lines and error bars are 

mean values and 95% confidence intervals. Significance was tested using ANOVA. n= 

numbers of analyzed cells per cell line. Number of independent experiments=2. P< 0,05 

(*), P< 0,001 (**), and p< 0,0001 (****). 

No or very little anillin was present in FRT control cells (n=24) at the cell cortex during 

metaphase. In HsEct2ΔBRCT2 cells anillin levels are significantly elevated (p<0,01) when 

compared to control (Fig. 24C+D). Since only 30% of HsEct2ΔBRCT2 show membrane 

blebbing during metaphase (Fig. 24), I additionally compared anillin levels of only the 

“blebby” cells with the control. In the cells that do show metaphase blebbing there the 

increase of anillin is highly significant (p<0,0001) (Fig. 24D). To confirm that increased 

anillin levels in HsEct2ΔBRCT2 are not due to an artifact e.g. caused by increase cell size and 

thus increased amount of total anillin, I also compared cell sizes in both control and 

HsEct2ΔBRCT2 (Fig. 24A+B). Cell size is significantly decreased when BRCT2 domain is 

deleted. This might be caused by the massive protrusions that originate from the plasma 

membrane which decreased the size of the cell. This result confirms that anillin levels are 

elevated in cells when BRCT2 is deleted which is indicative of a hyperactive RhoA at the 

cell cortex. Together these results suggest that deletion of BRCT2 domain leads to 

constitutive active HsEct2.  

3.2.7. The linker region between the BRCT2 and GEF domain is involved in 

regulating HsEct2 function 

In a previous study it has been shown that deletion of the linker region strongly enhances 

the transforming activity of HsEct2 (Saito et al., 2004). In addition, it was shown by Yüce 

et al., 2005 that T342 phosphorylation within the linker region inhibits association with 

MgcRacGAP in metaphase and that T342A mutation which abolishes phosphorylation of 

this site allows a premature interaction of Ect2 N-terminus with MgcRacGAP in metaphase. 

Another study from Niiya et al., 2006 revealed T412 in the linker region as another in-vivo 

phospho-target (Niiya et al., 2006). They showed that T412 site is phosphorylated by Cdk1 

and is important for Ect2 function, since the phosphodeficient mutant T412A reduced GTP 

bound RhoA and lowered membrane blebbing when Ect2 WT was over-expressed. 

Moreover it was shown by Hara et al., 2006 that when T341 (= T342) is mutated to a phospo 

deficient mutant T341A, decreased interaction of N-terminal fragments with C-terminal 

fragments of Ect2 is observed; moreover a phospho-mimetic mutant increased the 
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interaction of the N-terminal with the C-terminal fragment which supported a model that 

phosphorylation of the linker region might be important for the catalytic activity of Ect2 

since an altered protein structure could inhibit the release of the DH domain from the N-

terminal part of Ect2. Another phospho-site was identified (T328) which has been shown 

to be phosphorylated by Protein kinase C (PKC) which induces Rac1 activation (Justilien 

and Fields, 2009) . However, T328 has not been implicated to be important for HsEct2 

function but rather in HsEct2 related transformation of non-small cell lung cancer cells 

(Justilien et al., 2017). Lastly, another study showed that the NLS sites in the linker region 

are not crucial for successful cytokinesis since mutation of these sites results in cytoplasmic 

HsEct2 but is dispensable for successful cytokinesis (Saito et al., 2003). All these studies 

hint that the linker region might play a role in the regulation of HsEct2. Therefore, I 

analyzed the linker region in detail and found that serines and threonines are enriched 

compared to the entire protein. In the linker region 21% of serines and 9% of threonines 

can be found vs. 10% of serines and 6% of threonines found in the entire protein (Fig. 25B).  

Next, I tested whether the linker region of HsEct2 is important for HsEct2 function and I 

mutated all serines and threonines to alanines in order to block phosphorylation in this 

region (Fig. 25A+B). By blocking phosphorylation, I wanted to test whether 

phosphorylation of this region is important for the regulation of HsEct2. In metaphase 

HsEct2LinkerAA (n=20) seems to localize to microtubules and to centrosomes, and slightly to 

the plasma membrane. In anaphase HsEct2LinkerAA localizes to the plasma membrane and 

to the spindle midzone (Fig. 25C). Cells expressing HsEct2 with the mutated linker region 

show increased membrane blebbing (7% in metaphase and 70% in anaphase, Fig. 25D). 

This suggests that the phosphorylation status of the linker in HsEct2 is also involved in the 

regulation of HsEct2 activity during anaphase.  
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Fig. 25. HsEct2 linker region is involved in inhibiting HsEct2 GEF activity. (A) 

Domain structure of HsEct2WT and HsEct2LinkerAA transgenes. (B) HsEct2 linker sequence 

indicated with serines (purple) and yellow (threonines). In the panel below all the serines 

and threonines and their exact positions in the protein are shown and which were mutated 

to alanines in HsEct2LinkerAA. (C) Micrographs of live-cell imaging in dividing cells 
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expressing neongreen-HsEct2WT and HsEct2LinkerAA (two different cells shown). 

HsEct2LinkerAA localize to centrosomes and to microtubules in metaphase, and to the spindle 

midzone and the entire cell cortex in anaphase. (D) Membrane blebbing during metaphase 

and anaphase in transgenic HsEct2 cell lines expressing HsEct2WT and HsEct2LinkerAA. In 

cells with mutated linker blebbing is dramatically increased during anaphase and slightly 

increased during metaphase. Blebbing was determined by confocal live-cell imaging. Scale 

bar = 10 µm. n= number of analyzed cells per cell line that expressed the HsEct2 transgenes. 

 

 

 

 3.2.8 Summary 

In conclusion I could show that the BRCT0 domain contributes to spindle midzone binding 

and is required for enriching HsEct2 at the cell equator. Surprisingly I found that the 

BRCT0 domain is not required for Ect2 function since deletion of BRCT0 does not result 

in increased bi- and multinucleation.  

Furthermore, my studies revealed that BRCT1 is the major spindle midzone binding 

domain since deletion of BRCT1 completely abolished spindle midzone binding. Similar 

to the BRCT0 domain, the BRCT1 domain is also required to enrich HsEct2 at the 

equatorial membrane. Next, I tested the function of BRCT1 and I could show that BRCT1 

domain is required for cytokinesis since deletion of BRCT1 results in high bi- and 

multinucleation. Moreover, BRCT1 is involved in the inhibition of HsEct2 since membrane 

blebbing is increased when BRCT1 domain is deleted.  

Furthermore, I analyzed the role of the BRCT2 domain during cytokinesis and I could show 

that BRCT2 contributes to spindle midzone binding of HsEct2 since deletion of BRCT2 

domain results in a reduction of spindle midzone localization and is required for 

cytokinesis. However, HsEct2 without the BRCT2 domain seems partially functional. 

Moreover, I could show that BRCT2 is the major inhibitory domain since expression of 

HsEct2ΔBRCT2 results in high membrane blebbing during metaphase and increased cortical 

anillin levels. Lastly, membrane blebbing in cells expressing HsEct2ΔBRCT2 is active RhoA 

dependent since it can be reduced by inhibition of RhoA by C3 Exoenzyme. 

Together my findings suggest that HsEct2 BRCT domains do not act in one module but 

rather have separate roles during cytokinesis in localizing HsEct2 to the spindle midzone, 

cell cortex, and in regulating HsEct2 activity in-vivo. 
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4. Discussion and outlook 

The aim of my thesis was to investigate the distinct roles of three BRCT domains in Ect2 

during cytokinesis. In particular I focused on the function of the BRCT domains in the 

temporal and spatial regulation of Ect2 activity using in-vivo structure-function studies in 

C. elegans and human cells. 

I started my work in C. elegans. The model system of C. elegans represented to me a very 

exciting tool to study CeECT-2 structure and function in-vivo, since establishing a 

molecular replacement system for endogenous and transgenic genes is easy and in-vivo 

analysis by live-imaging allows a straight forward and rapid insight into localization and 

function of specific transgenes. I generated a molecular replacement system of endogenous 

and transgenic CeECT-2 with single-copy insertions of the GFP-tagged, RNAi-resistant 

transgenes. In this system endogenous CeECT-2 could be depleted by RNAi and transgenic 

CeECT-2 is not affected at the same time, allowing me to study the transgene in absence 

of endogenous CeECT-2.  

In the past, a model was proposed that HsEct2 function is regulated by an autoinhibitory 

mechanism by binding of the three N-terminal BRCT domains to the GEF domain (Kim et 

al., 2005; Saito et al., 2004). However, this suggestion was mainly based on in-vitro data 

and biochemical studies in human cells and little was known before how CeECT-2 is 

regulated in C. elegans. To this date, it was known that CeECT-2 localizes to the anterior 

cortex in early embryos and is important for polarity establishment (Dechant and Glotzer, 

2003; Morita et al., 2005). Moreover, it has been shown that CeECT-2 is involved in 

cytokinesis and targets RHO-1 and Cdc42 (Canevascini et al., 2005; Chan and Nance, 

2013; Morita et al., 2005). Furthermore, it has been shown that overexpression of a 

construct where the N-terminal part of CeECT-2 was deleted in C. elegans resulted in bleb 

formation and resembled the phenotype of a constitutive RHO-1 version suggesting that 

the N-terminal part of CeECT-2 inhibits the GEF function (Chan and Nance, 2013). 

However, the defects when N-terminal domain is deleted were only analyzed in interphase 

and late stage embryos and in presence of endogenous CeECT-2. To exclude that the 

observed phenotype is resulting from overexpressed mutant CeECT-2, my aim was to test 

whether deletion of the N-terminal BRCT domains results in membrane blebbing during 

mitosis when the transgene is expressed at endogenous levels and in absence of endogenous 

CeECT-2. 
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To test whether BRCT domains regulate Ect2 activity in-vivo by an inhibitory mechanism, 

I generated transgenic worm strains without all the 3 BRCT domains (CeECT-2ΔBRCT0+1+2). 

I used different approaches to express CeECT-2ΔBRCT0+1+2, since the transgene was silenced 

probably due to cytotoxicity. By two independent approaches, I successfully expressed the 

transgene, however expression of CeECT-2ΔBRCT0+1+2 was accompanied with high sterility 

of the worms. Therefore, very low number of embryos could be analyzed, however I was 

able to analyze the localization and the cytokinetic phenotype in a few early embryos. In 

these embryos, CeECT-2ΔBRCT0+1+2 localized similar as CeECT-2WT to the cell cortex and 

expression of CeECT-2ΔBRCT0+1+2 did not result in hypercontractility of the cortex.  

Expression of CeECT-2ΔBRCT0+1+2 leads to an enlarged polar body in the 1-cell embryo and 

to high sterility of the worms. One possibility could be that expression of CeECT-

2ΔBRCT0+1+2 abolishes gonad generation and this might be due to proliferation defects that 

interfere with gonad growth. In the past it has been shown that CeECT-2 loss of function 

resulted in high sterility of the worms (Morita et al., 2005). Moreover, it has been shown 

that CeECT-2 loss of function resulted in developmental defects of the vulva and the 

authors showed that CeECT-2 activates Ras/MAPK signaling and suggested a cross-talk of 

CeECT-2 and Ras/MAPK signaling through RHO-1 (Canevascini et al., 2005). Moreover, 

it has been shown that Ras/MAPK pathway is involved in progression of oogenesis 

precursors in the pachytene stage of gonadal development and is important for maturation 

of oocytes (Church et al., 1995). Potentially, like in the vulval development, CeECT-2 and 

Ras/MAPK pathway could be linked in the process of oocyte production. A possible 

scenario could be that expression of CeECT-2ΔBRCT0+1+2 could lead to abnormalities in egg 

production due to proliferative issues of the oocyte-progenitors that produce the oocytes.  

In case GEF function is inhibited via binding of the N-terminal BRCT domains, deletion 

of the BRCT domains would result in a constitutive active version of CeECT-2. My 

preliminary data that expression of CeECT-2ΔBRCT0+1+2 does not induce hypercontractility 

suggests that Ect2 activity is not elevated when all the three BRCT domains are deleted. 

These preliminary data are not conclusive with the study of Chan and Nance, 2013 that 

showed that deletion of the N-terminal part of CeECT-2 results in membrane blebbing 

resembling a phenotype of hyperactive RhoA (Zanin et al., 2013). A reason for the different 

results could be the difference in experimental design. In the study of Chan and Nance, they 

use transient overexpression of CeECT-2ΔBRCT0+1+2 rather than using single-copy insertions 

of CeECT-2ΔBRCT0+1+2 transgene as in my study. Moreover, they only analyzed interphase 
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cells and did not analyze cells that are in mitosis as shown by my results. Another difference 

to the previous study of Chan and Nance 2013 is that I only deleted the N-terminal BRCT 

domains (CeECT-2ΔBRCT0+1+2) but did not delete the linker region between the BRCT 

domains and the GEF domain. The varying results between my study and the study of Chan 

and Nance could lie in the different protein structure and in the presence of the linker region 

in my study. In human cells, it has been already shown that deletion of the linker region 

translocates Ect2 from the nucleus to the cytoplasm in interphase which induces dramatic 

transforming activity of HsEct2 (Saito et al., 2004). Moreover, my data I obtained in human 

cells showing that blocking phosphorylation of the linker region in HsEct2 results in 

hypercontractility support this theory and strongly propose an involvement of the linker 

region in inhibiting HsEct2 activity. Based on my study and in accordance with the study 

of Chan and Nance 2013 CeECT-2 could be regulated both via the N-terminal BRCT 

domains and the linker region and both domains might be important for CeECT-2 activity. 

One scenario could be that the linker inhibits GEF activity by recruiting mitotic kinases 

that in turn phosphorylate and inactivate the GEF domain. So, the presence of linker in the 

CeECT-2ΔBRCT0+1+2 construct could have prevented hyperactivation even though the N-

terminal BRCT domains were deleted. Furthermore, my studies showed that CeECT-

2ΔBRCT0+1+2 localizes to the plasma membrane in early and late stage C. elegans embryos 

which confirms previous observations based on overexpression of CeECT-2ΔBRCT0+1+2 in 

late stage embryos with non-mitotic cells in interphase (Chan and Nance, 2013) (Fig. 7). 

Like in C. elegans CeECT-2 it has been shown in human cells that HsEct2ΔBRCT0+1+2 

localizes to the cell cortex but not to the spindle midzone (Su et al., 2011).   

A major deficiency in my data lies in the low number of embryos that could be analyzed 

in-vivo, due to high sterility of the worms. Moreover, due to the high sterility of the worms 

expressing CeECT-2ΔBRCT0+1+2, the experiments were very laborious and time-consuming 

to find embryos that could be imaged. Therefore, on the day where the few embryos were 

found that expressed CeECT-2ΔBRCT0+1+2, unfortunately no controls were imaged in 

parallel. Whether expression levels in CeEct2WT and CeEct2ΔBRCT0+1+2 are similar could not 

be compared. Therefore, the lack of hypercontractility in the embryos expressing CeECT-

2ΔBRCT0+1+2 could simply be due to the fact that the expression level was below 

physiological levels. However due to the small sample size additional studies need to be 

performed in the future to support this conclusion.  
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In the future one could test whether the linker is involved in CeECT-2 regulation by 

deleting the linker in addition of the BRCT domains and test whether the phenotype 

resembles the results obtained by Chan and Nance, 2013. Another opportunity to test 

whether the linker is involved in CeECT-2 regulation would be to only delete the linker 

region or mutate all putative phospho-sites as done in the human construct and then analyze 

the cytokinetic phenotype and localization in absence of endogenous CeECT-2.  

If it is true that expression of CeECT-2ΔBRCT0+1+2 does not cause hypercontractility, it is still 

unclear why expression of CeECT-2ΔBRCT0+1+2 then so strongly interfered with fertility of 

the worms and why the transgene was always silenced after integration into the genome. In 

the future one would need to measure and compare expression levels by e.g. Western Blot 

analysis or live-cell imaging and measuring CeECT-2ΔBRCT0+1+2 at the cortex and in the 

cytoplasm in control and CeECT-2ΔBRCT0+1+2 embryos. The pre-requisite for these 

experiments will be to find a way to overcome silencing of the transgene and the sterility 

of the worms to achieve a higher sample number. One possibility could be propagating 

CeECT-2ΔBRCT0+1+2 in males under a female promoter. It has been shown before that the 

promoter pie-1 is specific only to oocytes, which restricts expression of CeECT-2ΔBRCT0+1+2 

in sperm and has been used to generate transgenic C. elegans strains struggling with the 

expression of cytotoxic transgenes (Mello et al., 1996; Mitchell et al., 2014). Males 

carrying the CeECT-2ΔBRCT0+1+2 transgene could then be crossed to wild type 

hermaphrodites to generate heterozygous F1 offspring that expressed CeECT-2ΔBRCT0+1+2. 

One disadvantage of this approach would be that only heterozygous offspring can be 

generated carrying one CeECT-2WT allele and one CeECT-2ΔBRCT0+1+2 allele. However, if 

the hypothesis is true that CeECT-2 BRCT domains inhibit the GEF domain, also in 

heterozygous animals expression of CeECT-2ΔBRCT0+1+2 should result in hypercontractility. 

A big opportunity of this approach could be that enough offspring is generated for 

subsequent analysis by circumventing sterility of the worm caused by expression of 

CeECT-2ΔBRCT0+1+2 in the female gonad. 

Another major question of my project was to analyze whether each BRCT domain has a 

distinct role in regulating CeECT-2 function or whether the BRCT domains function as one 

module. In 2014 the crystal structure of HsEct2 BRCT domains was resolved by a study 

from Zou et al., 2014. The study revealed the presence of a third BRCT domain (BRCT0) 

close to the N-terminus of HsEct2. So far no one in the literature addressed the question 
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what the role of BRCT0 domain during cytokinesis is. Therefore, I was very excited about 

testing the localization and function of BRCT0 domain in-vivo.  

Therefore, I continued my study by deleting BRCT0 (CeECT-2ΔBRCT0) and BRCT0+1 

(CeECT-2ΔBRCT0+1). These transgenic versions of CeECT-2 localize to the plasma 

membrane similar as wild type CeECT-2 (Fig. 8). Depletion of endogenous CeECT-2 in 

these strains leads to over 90% embryonic lethality (Fig. 9). The expression of CeECT-

2ΔBRCT0 leads to 16% (n=13) cytokinesis failure in absence of endogenous CeECT-2 when 

cytokinesis is monitored after 16-20h after the dsRNA injected. Deletion of BRCT0+1 

leads to 91% of embryonic lethality and 0% (n=10) of cytokinesis failure after 16-20h 

RNAi. However, when monitoring first cytokinesis after longer RNAi (30-38h), 63% 

(n=11) of cytokinesis failure in the 1-cell embryo can be observed (Fig 9). Moreover 

BRCT0+1 domains are required for normal brood size since deletion of BRCT0 and 

BRCT1 domain results in dramatic decrease in the number of offspring (Fig. 9). It has been 

previously shown that expression of the ect-2(e1178) allele that harbored deletion of 

CeECT-2 BRCT1 domain resulted in high sterility and reduction of brood size (Morita et 

al., 2005). An explanation for the decreased brood size could be that deletion of BRCT0+1 

interferes with CeECT-2 function in the germ line and might disrupt gonad function.  

Furthermore, deletion of BRCT0 and BRCT0+1 domain result in embryonic lethality since 

worms expressing CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 in absence of endogenous 

CeECT-2 generate very few and dead embryos. It has been previously shown that 

generation of mice carrying a homozygous Ect2 null allele are embryonic lethal and die in 

the late blastocyst stage showing severe defects in growth (Cook et al., 2011). Immortalized 

mouse embryonic fibroblasts from these mouse lines showed that Ect2 loss-of-function 

resulted in severe defects of cell migration and cell proliferation. A reason why deletion of 

BRCT0 and BRCT0+1 domains cause embryonic lethality in C. elegans could be due to 

that BRCT0 and BRCT1 domains might impair cell migration in later embryonic stages 

and could play a role in polarity establishment of different embryonic tissues, e.g. by 

binding different factors that are expressed in later stages during embryogenesis. 

In control embryos no cleavage furrow is formed when endogenous CeECT-2 is depleted. 

In embryos expressing CeECT-2ΔBRCT0 a cleavage furrow is formed in the first place, and 

cytokinesis partially completes in the CeECT-2ΔBRCT0 and CeECT-2ΔBRCT0+1 expressing 

strains. This suggests that BRCT0+1 are mostly important when the cleavage furrow 
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ingresses. A possible scenario could be that BRCT domains have a role in stabilizing the 

actomyosin network in the furrow during ingression. One possibility could be that CeECT-

2 BRCT0+1 domains bind another factor in the cleavage furrow which further enhances 

the stability of the actomyosin network during ring ingression. 

Together these findings suggest that BRCT0 domain and BRCT1 domains are not 

important for membrane localization but are required for embryonic viability and cleavage 

furrow ingression and could hint at separate functions of CeECT-2 during cytokinesis and 

embryogenesis. 

Then I decided to monitor whether CeECT-2 activity changes when the BRCT0 and 

BRCT1 domains are deleted by using the contractility marker NMY-2. I quantified the 

signal of mkate2-NMY-2 at the furrow tip in the different strains in presence and absence 

of endogenous CeECT-2. Before and after depletion of endogenous Ect2 NMY-2 signal is 

decreased when BRCT0 was deleted (Fig. 10 and Fig. 11). These results suggest that 

BRCT0 domain promotes NMY-2 recruitment to the furrow. This finding is consistent with 

a model in which BRCT0 is required for full CeECT-2 activation by recruiting unknown 

factors to the furrow. Moreover, BRCT0 is only important for furrow ingression but not for 

formation since a cleavage furrow can be formed without delay. This suggests that BRCT0 

has a stabilizing function during furrow ingression. It has been shown that HsEct2 interacts 

with Anillin via its PH domain and thereby stabilizes actomyosin during ring ingression 

(Frenette et al., 2012b). One scenario could be that BRCT0 serves as a scaffold, so the PH 

domain can interact with Anillin and in turn enhance CeNMY-2 in the furrow during ring 

ingression. The reason that NMY-2 levels are decreased when BRCT0 is deleted even in 

presence of endogenous could be that CeECT-2ΔBRCT0 cannot so strongly interact with 

anillin via its PH domain. Another possibility might be that BRCT0 domain binds an 

unknown factor and activates it which then recruits anillin to the cleavage furrow. 

Expression of CeECT-2ΔBRCT0 might abolish the interaction with this factor and might 

cause the down-regulation of anillin even in presence of endogenous CeECT-2. In the 

future one could test whether anillin levels are decreased when CeECT-2ΔBRCT0 is expressed 

by analyzing expression of endogenous anillin levels by Western Blot or analyze 

expression and localization of a fluorescently tagged anillin transgene by live-cell imaging. 

Furthermore, one could substitute BRCT1 with BRCT0 domain and test whether embryos 

divide normally and whether the additional BRCT0 domain increases NMY-2 levels in the 

furrow tip. Moreover, NMY-2 levels were not significantly decreased when BRCT0+1 



 

115 

 

domains are deleted. However, the control data showed a huge fluctuation which might 

have caused the lack of significance in the statistical analysis. This might be due to technical 

reasons, e.g. decrease of laser power of the microscope (UltraViewVOX) over time. In the 

future, these experiments could be repeated in a shorter time-frame and with a newer 

confocal spinning disk microscope (Nikon Spinning disk microscope) to test whether these 

fluctuations can be reduced and to re-analyze whether NMY-2 is indeed decreased when 

BRCT0+1 domains are deleted. 

Finally, I wanted to address the function of the BRCT2 domain in C. elegans. 

Unfortunately, also this transgene was silenced like the CeECT-2ΔBRCT0+1+2 transgene (not 

shown). This suggests that BRCT2 domain has a very important role in regulating CeECT-

2 activity and that presumably deletion of BRCT2 results in hyperactive CeECT-2 and 

therefore is cytotoxic.  

The major goal of my thesis was to understand whether Ect2 BRCT domains have different 

roles and how each BRCT domain contributes to temporally and spatially regulating Ect2 

activity at the plasma membrane in-vivo. Since CeECT-2 and HsEct2 are localized very 

differently in the dividing cells, I wanted to study whether these differences in localization 

are connected to different ways of regulation. I used a system in human cancer cells (HeLa 

cells) where I could express all of the desired transgenes and study their localization and 

function in-vivo (Fig. 14). As in C. elegans several HsEct2 transgenes with a fluorescent 

tag were generated and designed to be RNAi resistance against siRNA targeting 

endogenous HsEct2. The transgenes were then integrated as a single copy in the same 

location of the genome and expression was induced with Tetracyline (Fig. 12 and Fig. 13).  

I deleted BRCT0 domain and studied the localization, function and cytokinetic phenotype 

in the cell line expressing HsEct2ΔBRCT0. As in HsEct2WT, HsEct2ΔBRCT0 localizes to the 

plasma membrane (Fig. 15). However, deletion of BRCT0 causes a strong reduction in the 

localization at the spindle midzone and results in equal distribution of HsEct2ΔBRCT0 at the 

cell equator and the cell poles (Fig. 17). This result shows that BRCT0 contributes to 

spindle midzone localization and is required to enrich HsEct2 at the cell equator. In 

contrast, in C. elegans CeECT-2 does not localize to the spindle midzone; however, 

deletion of BRCT0 domain does not alter the localization of CeECT-2 at the anterior cell 

cortex but CeECT-2ΔBRCT0 appears to be weaker at the cortex when compared to control 

(Fig. 8). Unfortunately, the weak signal of CeECT-2ΔBRCT0 made a solid quantification of 
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the fluorescence intensities at the cell cortex quite difficult. In summary, this shows that in 

both systems BRCT0 is involved in membrane targeting, in C. elegans to the anterior cortex 

and in human cells to the equatorial plasma membrane.  

Then I tested the function of HsEct2 BRCT0 domain and quantified the cytokinetic failure 

before and after depleting endogenous HsEct2. Cells expressing HsEct2ΔBRCT0 have no 

cytokinesis defects in presence and absence of endogenous HsEct2 (Fig. 15). My findings 

show that BRCT0 domain is not required for HsEct2 function but might play a role in 

targeting and enriching HsEct2 at the cell equator. However, cytokinesis is successful 

despite the fact that HsEct2ΔBRCT0 is not enriched at the equatorial plasma membrane. This 

suggests that enrichment at the cell equator is dispensable for HsEct2 function. These data 

are consistent with the C. elegans data where I could show that deletion of BRCT0 results 

in mainly successful cytokinesis after depletion of endogenous CeECT-2 (84% success). 

Moreover, in C. elegans BRCT0 domain is not required for cytokinesis but important for 

viability (Fig. 9). These results are quite surprising since BRCT0 domain is conserved 

among C. elegans and human cells and one would expect that the conservation results from 

an important function of this domain during cytokinesis. One possibility could be that 

BRCT0 has a role besides cytokinesis during tissue development in C. elegans, e.g. in 

polarity establishment. To further proof that BRCT0 domain has no function in HeLa cells, 

in the future one could over-express BRCT0 domain besides endogenous HsEct2 and test 

whether overexpression affects the cytokinetic phenotype of the cells.  

Lastly, I analyzed membrane blebbing by live-cell imaging in cells expressing 

HsEct2ΔBRCT0 and showed that deletion of BRCT0 domain does not increase membrane 

blebbing in-vivo and blebbing is slightly reduced which could be a hint for decreased 

contractility (Fig.18). This is in accordance of the C. elegans data where I showed that 

deletion of BRCT0 results in decrease of Myosin II levels in the furrow tip which represents 

a read-out for decreased contractility in this worm strain. These data are consistent with a 

model where BRCT0 has a positive regulatory function during cytokinesis. Probably 

BRCT0 simply promotes GEF activity itself by various means. Another possibility could 

be that BRCT0 binds an unknown factor that enhances contractility during ring ingression. 

A possible factor could be anillin. In the future, one could test whether cortical anillin levels 

are decreased when BRCT0 domain is deleted. Lastly one could analyze BRCT0 by a 

whole-genome proteomic approach with IPs and mass-spectrometry and identify potential 

binding partners of BRCT0 domain.  
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Next, I generated transgenic cell lines where I deleted BRCT0+1 and BRCT1 domain to 

test how Ect2 activity is controlled by BRCT1 (Fig. 19). Former studies showed that when 

all three BRCT domains are deleted, as well as when specific point mutations are 

introduced at T153 and K195, spindle midzone localization is abolished (Chalamalasetty 

et al., 2006; Su et al., 2011). Whether the BRCT0 or BRCT2 domains in addition to BRCT1 

domain are involved in spindle midzone and cortical localization has not yet been 

addressed. HsEct2ΔBRCT0+1 and HsEct2ΔBRCT1 do not localize to the spindle midzone (Fig. 

19 and Fig. 20). HsEct2ΔBRCT0+1 evenly distributes over the entire cell cortex, other than in 

HsEct2WT that localizes to the spindle midzone and concentrates at the cell equator (Fig. 

20). These data validate the results from Kotýnková et al., 2016 that BRCT1 domain is the 

major spindle midzone binding domain. Moreover, my data shows that BRCT1 is not only 

important for spindle midzone localization but is required to enrich HsEct2 at the cell 

equator. It has been shown that BRCT1 domains binds to MgcRacGAP at the spindle 

midzone (Tatsumoto et al. 1999; Su, Takaki, and Petronczki 2011; Yüce et al., 2005). The 

reason why midzone binding is lost might be the fact that HsEct2ΔBRCT0+1 can no longer 

bind to MgcRacGAP at the spindle midzone. Since HsEct2ΔBRCT0+1 does no longer localize 

to the spindle midzone this might be the reason why HsEct2ΔBRCT0+1 is not enriched at the 

cell equator but localizes all around the cortex. It has been shown that the interaction of 

HsEct2 and MgcRacGAP is not required for successful cytokinesis. One possible scenario 

could be that the interaction of HsEct2 and MgcRacGAP is not required for successful 

cytokinesis, but it is required for the enrichment of HsEct2 at the equatorial cortex. 

Cytokinesis is mainly successful even though HsEct2ΔBRCT0+1 is not enriched at the 

equatorial plasma membrane in presence of endogenous HsEct2. However, expression of 

HsEct2ΔBRCT0+1 resulted in around 75% of multinucleation in absence of endogenous 

HsEct2. This suggests that equatorial enrichment is not important for HsEct2 function since 

expression of HsEct2ΔBRCT0 also localized all around the cell cortex but did not result in 

increased multincuelation in absence of endogenous HsEct2. However, these data are 

showing localization and cytokinesis of HsEct2ΔBRCT0+1 in presence of endogenous HsEct2 

and function in presence and absence of endogenous HsEct2. In the future one could 

analyze localization in absence of endogenous HsEct2 to analyze whether HsEct2ΔBRCT0+1 

still localizes to the membrane since localization could be very different when endogenous 

HsEct2 is depleted. A reason for this could be that endogenous HsEct2 and transgenic 

HsEct2WT bind to each other. A prerequisite for these experiments is that a broad depletion 

of endogenous HsEct2 must be achieved. According to my Western Blots showing 
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expression levels of endogenous HsEct2 depletion levels were very good. However, in my 

experiments, endogenous Ect2 RNA levels could only be depleted by 79%, in contrast to 

different studies using the same siRNA oligo which published higher depletion levels (up 

to 100% percent). Moreover, it has been published that depletion of Ect2 caused complete 

abolishment of a cytokinetic furrow in almost 100% of analyzed cells (Kim et al., 2005; 

Yüce et al., 2005). However, no higher depletion levels could be achieved in my 

experiments and cells showed lower percentage of a “no-furrow formation” phenotype as 

previously published which suggested that the depletion of endogenous Ect2 is not fully 

penetrant. I undertook different attempts to increase the depletion level that implied titration 

of cell number, RNA concentration, different transfection reagents and different time 

points. One reason why the depletion levels were so variable from the published results 

could be different cell culture conditions, e.g. different cell maintenance media, cell culture 

flasks with different coatings that could have increased cell adhesion and supported cell 

division even though endogenous HsEct2 was depleted. Another reason could be technical 

issues of used devices, e.g. incubators. In the future, another Ect2 siRNA oligo that has 

been used in more recent studies could be tested whether it increases Ect2(RNAi) depletion 

levels (Kotýnková et al., 2016; Su et al., 2011). This implies that generated transgenic 

HsEct2 constructs have to be re-cloned to introduce a new RNAi resistant allele in the 

BRCT2 domain, so the transgenes will be resistant to endogenous HsEct2 depletion by the 

different siRNA oligo. In my constructs, the used siRNA oligo targeted BRCT1 domain 

and therefore RNAi resistance is carried in the same region of BRCT1 domain. 

In the past it has been shown that deletion of the GEF domain, the PH domain and the PBS 

domain increase bi- and multinucleation in human cells (Su et al., 2011). Whether deletion 

of the BRCT domains increase multinucleation has not yet been answered. Moreover, it 

has not yet been addressed how cytokinesis is affected when single BRCT domains are 

deleted. Therefore, I tested the function of BRCT1 domain and counted mono-, bi- and 

multinucleation in the cells in presence and absence of endogenous HsEct2. Expression of 

HsEct2ΔBRCT1 strongly increases bi-and multinucleation in absence of endogenous HsEct2 

(Fig. 19). This shows that BRCT1 domain is required for cytokinesis. This data is also 

consistent with the C. elegans data where I showed that deletion of BRCT1 domain 

interferes with cytokinesis in 63% of embryos (Fig. 9). These data strongly support the 

hypothesis that BRCT1 domain is crucial for Ect2 function among different animal species 

like C. elegans and human cells.  
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Moreover, I analyzed contractility of cells expressing Ect2 transgenes without BRCT1 

domain. In the past, it has been shown that hyperactive RhoA results in increased 

membrane blebbing (Zanin et al., 2013). Cells expressing HsEct2ΔBRCT0+1 and 

HsEct2ΔBRCT1 exhibit mild increase in membrane protrusions during anaphase but not 

during metaphase (Fig. 20). A reason for the difference in membrane blebbing could be 

that HsEct2ΔBRCT0+1 is still inactive in metaphase and gets activated in anaphase. Another 

possibility would be that HsEct2ΔBRCT0+1 might be mildly hyperactive in metaphase but is 

not localized to the plasma membrane in metaphase, therefore there is no membrane 

blebbing. The blebbing in anaphase might be due to amino acids that are deleted in the 

HsEct2ΔBRCT0+1 mutant, e.g. T153 and K195. In the mutant expressing HsEct2T153A, K195M 

that has been shown to abolish spindle midzone binding show a mild increase in membrane 

blebbing as well. HsEct2T153A, K195 supposedly only disrupt HsEct2 and MgcRacGAP 

interaction, so it is quite surprising that it induces membrane blebbing. A possible 

explanation could be that localization of HsEct2 is not important for successful cytokinesis 

but probably to capture HsEct2 at the spindle midzone in an “inactive” state until HsEct2 

then translocates to the plasma membrane. Another scenario could be that HsEct2T153, K195 

are important not only for MgcRacGAP binding but are important amino acids that regulate 

BRCT1 binding to the GEF domain and thereby controlling Ect2 activity. In the future one 

has to test whether absence of BRCT1 domain results in membrane blebbing in absence of 

endogenous Ect2 since the cytokinetic phenotype in the mutants might be very different 

when endogenous Ect2 is depleted. Moreover, one could analyze whether anillin levels are 

increased at the cell poles since it has been shown that HsEct2 binds to anillin and 

HsEct2ΔBRCT0+1 is equally distributed at the equator and at the cell poles in absence of 

endogenous HsEct2. Probably HsEct2ΔBRCT0+1 is more active and this could cause increase 

in anillin levels at the cell poles. Therefore, one could expect that also anillin is shifted 

from the cell equator and localizes all around the cell cortex to test whether this interferes 

with furrow formation. To distinguish whether HsEct2ΔBRCT0+1 only localizes anillin to the 

cell poles because of binding to it or by increased activity of HsEct2ΔBRCT0+1 a possible 

experiment would be to inhibit RhoA in these cells and analyze whether Anillin levels are 

decreasing at the cell poles. If anillin localization at the cell poles is independent of an 

increased activity of HsEct2ΔBRCT0+1, anillin levels should not be decreased at the poles 

when RhoA is inactivated.  
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The next question I addressed was what the role of BRCT2 domain is during cytokinesis. 

In the literature this question has yet not been addressed and very little is known about the 

specific role of BRCT2 domain. I generated different transgenic cell lines where I deleted 

BRCT2, BRCT1+2 and all three BRCT domains. Deletion of BRCT2 leads to a strong 

reduction of HsEct2ΔBRCT2 at the spindle midzone similar to HsEct2ΔBRCT0 (Fig. 21). 

Moreover, cells expressing HsEct2ΔBRCT2 show plasma membrane localization around the 

cell periphery, in contrast to HsEct2WT that is enriched at the cell equator and at the spindle 

midzone (Fig. 22). As expected HsEct2ΔBRCT1+2 and HsEct2ΔBRCT0+1+2 do not localize to the 

spindle midzone as expected, due to the absence of BRCT1 domain (Fig. 21). Also, they 

show cortical localization similar to the cells expressing HsEct2ΔBRCT2. These data suggest 

that BRCT2 contributes to spindle midzone localization and is required to enrich HsEct2 

to the cell equator. In the literature, it has been suggested that Ect2 BRCT1 domain binds 

MgcRacGAP that was phosphorylated before by Plk1 (Burkard et al., 2009; Petronczki et 

al., 2007; Wolfe et al., 2009). Moreover Kotýnková et al., 2016 suggested that T153 and 

K195 within the BRCT1 domain are important for MgcRacGAP interaction and it has not 

been clarified whether other BRCT domains are also involved in spindle midzone 

localization. My data reveals that not only BRCT1 domain is important, but also BRCT2 

(and BRCT0 domain as discussed before) are involved in spindle midzone localization. 

Moreover, it has been suggested that Ect2 PH domain is involved in plasma membrane 

targeting, but it has not yet been suggested that BRCT2 domain is involved in spindle 

midzone binding nor in equatorial plasma membrane targeting. Surprisingly, when spindle 

midzone localization is reduced, equatorial membrane enrichment is lost and Ect2 localizes 

around the entire cell cortex. Therefore, it seems quite likely that the BRCT domains first 

target Ect2 to the spindle midzone so it can be loaded and enriched at the equatorial plasma 

membrane. However, the study of Kotýnková et al. in 2016 showed that neither the binding 

of Ect2 to MgcRacGAP nor spindle midzone localization is crucial for the success of 

cytokinesis. Therefore, spindle midzone binding of Ect2 must have a different function than 

Ect2 activation. One possibility could be that BRCT2 together with BRCT1 domain targets 

Ect2 to the spindle midzone where Ect2 binds to MgcRacGAP to concentrate it at the 

spindle midzone, so it can be later more easily enriched at the equatorial plasma membrane. 

Another scenario would be that by binding of Ect2 to MgcRacGAP at the spindle midzone, 

Ect2 is captured in a specific site to prevent premature membrane targeting before anaphase 

starts. A further possibility would be that Ect2 is concentrated at the spindle midzone and 

captured there for creating a concentrated pool of Ect2 for subsequent activation by mitotic 
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kinases. Another scenario could be that Ect2 PH domain is masked by BRCT2 domain in 

an inactive state, so it cannot translocate to the plasma membrane. When Ect2 gets active, 

BRCT2 domain is no longer masking the PH domain and Ect2 can then translocate to the 

equatorial plasma membrane.  

Next, I studied whether BRCT2 domain is required for cytokinesis and I quantified 

cytokinetic failure in the cell line expressing the HsEct2ΔBRCT2 transgene in presence and 

absence of endogenous HsEct2 (Fig. 21). With my data I could demonstrate that cells 

expressing HsEct2ΔBRCT2 show increased bi- and multinucleation but can partially rescue 

the cytokinesis defect caused by absence of endogenous Ect2 (Fig. 21). Together these data 

suggest that BRCT2 domain is required for cytokinesis. The data is consistent with former 

findings that suggested that BRCT1 and BRCT2 domains inhibit GEF activity (Kim et al., 

2005; Saito et al., 2004; Yüce et al., 2005) and my data validate the former results that show 

that BRCT1 and BRCT2 domains are required for cytokinesis. In cell lines expressing 

HsEct2ΔBRCT1+2 and HsEct2ΔBRCT0+1+2 depletion of endogenous HsEct2 cytokinetic failure 

is higher than when deleting only BRCT2 domain which suggests HsEct2ΔBRCT2 is partial 

functional. Surprisingly cells that express HsEct2 where BRCT2 domain was substituted 

with BRCT1 domain (HsEct2ΔBRCT1+BRCT1) the multinucleation is higher than in cells 

expressing HsEct2ΔBRCT2 which shows that HsEct2BRCT1-BRCT1 is not partially functional. A 

reason why HsEct2ΔBRCT2 transgene could be partially functional could be that BRCT2 is 

mostly important for the inhibition of the GEF domain but cells can cope to a certain extent 

with an increase of Ect2 activity. If BRCT2 is not deleted but replaced, the additional 

BRCT1 domain in the HsEct2ΔBRCT1+BRCT1 cells could sterically inhibit the other BRCT1 

domain and important factors such as MgcRacGAP could not bind to BRCT1 domain. 

Another scenario could be that the presence of the second BRCT1 domain additionally 

enhances Ect2 activity by recruiting unknown factors that enhance contractility of the cells. 

One caveat of the data is that the transgenes could not be stable and are degraded in absence 

of endogenous Ect2. Thus, in the future the presence of the transgenes should be analyzed 

in absence of endogenous Ect2, e.g. by live-cell imaging and western blot analysis to ensure 

trasnsgenes are stable in absence of endogenous Ect2.  

Furthermore, cells expressing HsEct2 transgenes without BRCT2 domain showed massive 

membrane blebbing during cytokinesis and membrane blebbing already occurred during 

metaphase (Fig. 22 and Fig. 23). Importantly membrane blebbing in HsEct2ΔBRCT2 was as 

strong as in cells HsEct2ΔBRCT0+1+2 and a cell line where I substituted BRCT2 domain with 



122 

 

BRCT1 domain (Fig. 22). Since it has been shown in the past that hyperactivation of RhoA 

results in increased membrane protrusions (Zanin et al., 2013), I was interested whether the 

large protrusions resulted from hyperactive RhoA. Therefore, I used anillin levels as a read-

out for active RhoA and I could show that in cells expressing HsEct2ΔBRCT2 anillin levels 

are increased at the plasma membrane which suggests that RhoA is hyperactivated in these 

cells (Fig. 24). Finally, I tested whether inhibition of RhoA by a specific inhibitor for 

RhoGTPases (C3 Inhibitor) can reduce membrane blebbing in cells expressing 

HsEct2ΔBRCT2. Indeed, inactivation of RhoA reduces membrane blebbing in the cells 

expressing HsEct2ΔBRCT2 (Fig. 23). These data are consistent with former findings that Ect2 

BRCT domains inhibit the GEF domain. My data further revealed that it is mainly BRCT2 

domain that inhibits GEF function. Moreover, these data show that Ect2 BRCT domains 

do not act as one module but have distinct roles regarding the regulation of Ect2. However, 

the presented data was generated in presence of endogenous Ect2 since depletion of 

endogenous Ect2 was not fully penetrant after many approaches to increase the knock-

down efficiency. Phenotypes might change after endogenous Ect2 is depleted since 

transgenes could bind to endogenous Ect2 and transgenes could localize very differently in 

absence of endogenous Ect2. Therefore, it is a prerequisite for the future to establish RNAi 

conditions that allow analyzing cytokinetic phenotypes of the transgenes in absence of 

endogenous Ect2. 

It has been proposed that the linker region between the N-terminal BRCT2 domain and the 

DH domain is important for HsEct2 regulation (Hara et al., 2006; Niiya et al., 2006; Saito 

et al., 2004; Yüce et al., 2005). It has been shown by a study from Saito et al., 2004, that 

deletion of the entire linker region leads to a high increase in transforming activity of 

HsEct2. The authors showed that HsEct2 without the linker localizes in cytoplasm and not 

in the nucleus in interphase and claimed that this is due to two nuclear localization signals 

within the linker region that are lost due to deletion of the entire region. Moreover, they 

claimed that due to loss of the two NLS sites, HsEct2 without the linker is delocalized from 

the nucleus to the cytoplasm where it can activate RhoA.  

To study whether the linker region of HsEct2 is involved in regulating activity of HsEct2, 

the linker region was analyzed, and I found that serines and threonines are strongly enriched 

in this region compared to the rest of the protein (Fig.25B). Since serines and threonines 

are major phospho-targets of specific kinases, such as the mitotic kinases Cdk1 and Plk1, 

the high content of serines and threonines suggested that the linker might harbor a 
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regulatory function of HsEct2. Therefore, I generated a cell line where I substituted all 

serines and threonines with alanines to test whether phosphorylation of these sites is 

important for HsEct2 function (Fig. 25B). HsEct2LinkerAA strongly localizes to the plasma 

membrane and to microtubules (Fig. 25C). Importantly HsEct2LinkerAA localizes to the 

plasma membrane already in metaphase and also to microtubules before the spindle 

midzone is established (Fig. 25C). Surprisingly, exchange of serines/threonines to alanines 

led to a dramatic increase of HsEct2LinkerAA activity measured by quantifying membrane 

blebbing, similar to the phenotype of cells expressing HsEct2ΔBRCT2 (Fig. 25D). 
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Fig. 26. BRCT domains are not required for plasma membrane targeting in C. 

elegans, but for equatorial enrichment in human cells. Summary of CeECT-2 and 

HsEct2 localization studies in C. elegans and human cells. In C. elegans, deletion of 

BRCT0, BRCT0+1 and BRCT0+1+2 domains do not affect cortical localization of CeECT-

2. In human cells, deletion of BRCT0 and BRCT2 domains results in reduced spindle 

midzone binding and localization of the transgenes all around the cell periphery. Deletion 

of BRCT1 domain abolishes spindle midzone localization completely. Mutation of the 

linker region also affects equatorial plasma membrane targeting and enriches HsEct2 at the 

centrosomes and spindle midzone microtubules.  
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These data suggest a role of the linker in the localization and regulating the activity of 

HsEct2. In the study of Saito et al., 2004, the authors argue that two NLS sites in the linker 

region are important for the correct localization of HsEct2 in the nucleus before NEB and 

deletion of these two NLS sites by deleting the linker leads to a premature release of HsEct2 

into the cytoplasm and to a premature activity. In contrast to the deletion construct from 

Saito et al., 2004, in my HsEct2LinkerAA construct I did not delete any amino acid and 

importantly, I kept the NLS sites in the linker region. It has been shown by another study 

that anillin is regulated by Ran via its NLS site in the C-terminus and its Rho-binding 

domain (RBD) by an autoinhibitory mechanism (Beaudet et al., 2017). The model they 

propose is that the NLS in the C-terminus of anillin is masked and binding of RhoA-GTP 

to anillin RBD releases the NLS and anillin translocates to the cell cortex where it binds to 

specific importins. A possibility how Ect2 linker could be involved in regulating Ect2 

activity is through its NLS sites that could be masked, e.g. by BRCT2 domain when Ect2 

is inactive. When Ect2 is activated by release of BRCT2 domain from the GEF domain, the 

NLS site could target Ect2 to the plasma membrane where it binds to specific importins. 

However, this possible scenario does not explain why HsEct2LinkerAA shows increased 

activity. Another possibility could be that phosphorylations in the linker region recruit an 

unknown factor to Ect2 that binds the linker and thereby masks the NLS site. In cells 

expressing HsEct2LinkerAA phosphorylations of the linker are absent which exposes the NLS 

site, therefore NLS binds to importins and Ect2 translocate to the cell cortex. This raises 

the question whether importins are involved in the regulation of Ect2 and one could test in 

the future whether Ect2 and importins co-localize at the cell equator or analyze by Co-IP 

studies whether Ect2 linker region binds to importins in mitosis.   

The more likely explanation is that Ect2 activity is regulated through phosphorylations of 

specific sites in the linker. In the past it has been shown that Cdk1 phosphorylates HsEct2 

at threonine 342 and prevents the association with MgcRacGAP in metaphase (Yüce et al., 

2005). Moreover, it is thought that Cdk1 primes Ect2 at a specific site (threonine 412) for 

subsequent association with Plk1 (Niiya et al., 2006). It has been shown that a 

phosphodeficient mutant (T412A) abolished the interaction of Plk1 and Ect2 which leads 

to a reduced accumulation of GTP-bound RhoA. This showed that phosphorylation of T412 

is important for the catalytic activity of Ect2. In my study T412 was also part of the serines 

and threonines that were exchanged with an alanine to block phosphorylation. However, in 

my generated linker mutant HsEct2LinkerAA, activity seems to be increased and not reduced 
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since expression leads to massive membrane protrusions similar to the phenotype when 

RhoA is constitutively active. One possibility how mutation of serines and threonines 

within the linker region could affect Ect2 activity is that in normal physiological conditions, 

phosphorylation of these sites by e.g. Cdk1 keeps HsEct2 in an inactive state after NEB 

and before anaphase onset. When Cdk1 activity declines at metaphase/anaphase transition 

and phosphorylations are removed, which could lead to a conformational change in the 

linker region of HsEct2. The conformational change then could open the structure of the 

N-terminal domain and release the GEF domain so RhoA can then be activated. A caveat 

of the data is that expression levels in cells expressing HsEct2LinkerAA were not measured 

since these were the last experiments before finishing the study. So, the differences in 

localization and membrane blebbing could be due to varying expression levels. In the future 

it has to be tested whether HsEct2LinkerAA is functional by performing multinucleation 

assays in presence and absence of endogenous Ect2. One could also test whether mutation 

of the NLS changes the localization and activity of Ect2. In addition, one could analyze the 

different mutated phospho-sites in clusters to determine which region and sites are causing 

the observed phenotypes. Eventually one would aim to identify single amino acids that are 

important for regulation of Ect2 activity in the linker region. Moreover, the cytokinetic 

phenotype of HsEct2LinkerAA has to be determined also in absence of endogenous Ect2. One 

could also test whether shifting the NLS site to another part of the protein, e.g. the C-

terminus changes Ect2 activity and localization to test whether the specific position of the 

NLS site in the linker is important for the phenotype. This could answer the question 

whether NLS site is masked by another domain, e.g. BRCT2 domain.   

In conclusion my results suggest that HsEct2 is regulated via an inhibitory two-step 

process: the BRCT2 domain mainly binds the GEF domain in-vivo. Additionally, 

phosphorylation of the linker region by e.g. Cdk1 helps to keep HsEct2 in an inactive state. 

At anaphase onset when Cdk1 is inactivated HsEct2 gets dephosphorylated and undergoes 

a conformational change the BRCT2 domain unbinds from the GEF domain so RhoA can 

be activated and the contractile ring can assemble. It has been shown that Ect2 is targeted 

to the plasma membrane via its PH domain (Su et al., 2011) and a speculative scenario 

could be that Ect2 is enriched at the equatorial plasma membrane by either its BRCT 

domains, or by the binding of the BRCT domains to a yet unknown factor that is localized 

to the cell equator. A potential candidate would be the scaffold protein anillin that localizes 

to the equatorial plasma membrane and which is a crucial protein of the contractile ring 



 

127 

 

that interacts with many different components of the contractile ring, such as Ect2, RhoA 

and Myosin II. This proposed mechanism is consistent with the current model proposed by 

Kotýnková et al., 2016 which showed neither spindle midzone localization nor 

MgcRacGAP interaction is important for regulating HsEct2 activity in-vivo. My study adds 

to the current model and revealed that mainly BRCT2 domain is the inhibitory domain of 

Ect2. Moreover, my data added Ect2 linker region as another regulatory region during 

mitosis that has not yet been implied by the past studies and suggests that Ect2 activation 

is controlled at multiple levels.  
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Fig. 27. Model of HsEct2 activity regulation. (A) HsEct2 activity is regulated by the 

binding of HsEct2 BRCT1 and BRCT2 domain to the GEF domain. BRCT2 domain is the 

major inhibiting domain of the GEF domain. Deletion of BRCT0 slightly decreases HsEct2 

activity, deletion of BRCT0+1 slightly increases HsEct2 activity. When BRCT2 domain is 

deleted, HsEct2 hyperactive. Mutation of the linker region also results in hyperactivity. (B) 

Model of HsEct2 regulation. In metaphase, binding of BRCT2 domain to the GEF domain 

and phosphorylation of the linker region keeps HsEct2 in an inactive state. At metaphase 

to anaphase transition when Cdk1 levels decline and the linker is dephosphorylated, HsEct2 

gets active. HsEct2 is targeted to the plasma membrane via its PH-PBS domain and 

enriched at the equatorial plasma membrane by the binding of the BRCT domains to a yet 

unknown factor that is localized to the cell equator. Another possibility could be that the 

BRCT domains themselves could contribute to enrich Ect2 at the equatorial plasma 

membrane by targeting the Ect2 to the spindle midzone. 
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