
Weak gravitational lensing as a probe
of large-scale structure
and galaxy formation

Malin Nicole Renneby

München 2019





Weak gravitational lensing as a probe
of large-scale structure
and galaxy formation

Malin Nicole Renneby

Dissertation
an der Fakultät für Physik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Malin Nicole Renneby

aus Göteborg

München, den 23 Januar 2019



“By Endurance We Conquer.”
– Family motto of Sir Ernest Shackleton, Irish polar explorer 1874-1922.

Erstgutachter: Prof. Dr. Andreas Burkert
Zweitgutachter: Prof. Dr. Volker Springel
Tag der mündlichen Prüfung: 1 März 2019



Contents

1 Introduction 1
1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Statistical properties of cosmic structure formation . . . . . . . . . . . . . . . . 2

1.2.1 Background solution - geometry and dynamics . . . . . . . . . . . . . . . 2
1.2.2 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Perturbations and the Zel’dovich approximation . . . . . . . . . . . . . . 7
1.2.4 Halo formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Halo profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.6 Press-Schechter and excursion sets . . . . . . . . . . . . . . . . . . . . . 11

1.3 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Galaxy-galaxy lensing (GGL) . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Galaxy clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Cosmological and large-scale structure constraints . . . . . . . . . . . . . . . . . 23
1.6 The galaxy-halo connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 AGN feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Modelling techniques 29
2.1 Empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 N-body simulations: Gravity-only . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Halo finders and merger trees . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Millennium and Millennium-II . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Semi-analytical models (SAMs) . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Hydrodynamical simulations: Including gas physics . . . . . . . . . . . . . . . . 34
2.3.1 Eagle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Illustris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 IllustrisTNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Cosmological rescaling 39
3.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Determining the rescaling coefficients . . . . . . . . . . . . . . . . . . . 40
3.4.2 Rescaled concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Concentration-mass-redshift relation . . . . . . . . . . . . . . . . . . . . 42

3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



vi CONTENTS

3.5.2 Halo samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3 Halo density and weak-lensing profiles . . . . . . . . . . . . . . . . . . . 45

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Halo mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.2 3D density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.3 Weak lensing profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.4 Concentration-mass relations . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.5 Concentration corrected profiles . . . . . . . . . . . . . . . . . . . . . . 55
3.6.6 Correcting individual halo profiles . . . . . . . . . . . . . . . . . . . . . . 57
3.6.7 Halo outskirts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.1 Comparison to other approaches and further improvements . . . . . . . . 62
3.7.2 Predicting the concentration bias as a function of cosmology . . . . . . . 63
3.7.3 Baryonic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.4 Large scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.5 Mass estimation forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 Impact of radial binning and field residual variances for ∆Σ profiles . . . . . . . 68
3.10 Results for (0.80, 0.40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.11 Matched halo results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.12 Einasto concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13 Splashback mass correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.14 Cosmological contour plots for the rescaling parameters . . . . . . . . . . . . . . 79
3.15 Biases for a rescaled Millennium simulation to WMAP and Planck cosmologies . 81

4 Joint 2-pt statistics constraints on galaxy formation 83
4.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Modified galaxy formation models . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Impact of cosmology, rescaling and hydrodynamics . . . . . . . . . . . . . . . . 88
4.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7.1 KiDS+GAMA: Stellar mass . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7.2 KiDS+GAMA: Group environment . . . . . . . . . . . . . . . . . . . . . 93
4.7.3 SDSS: LBGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7.4 SDSS: Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7.5 SDSS: Colour bimodality . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8.1 SMFs and abundance corrections for the SAMs . . . . . . . . . . . . . . 94
4.8.2 Stellar mass selection: KiDS+GAMA . . . . . . . . . . . . . . . . . . . . 98
4.8.3 Abundance and stellar mass error impacts . . . . . . . . . . . . . . . . . 99
4.8.4 Cosmological impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8.5 Baryonic impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8.6 Stellar mass selection - SDSS colour . . . . . . . . . . . . . . . . . . . . 105
4.8.7 LBG lensing signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.8.8 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS vii

4.9 Group criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.12 Mixing limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.13 Abundance correction residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.14 LBG central fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.15 Stellar-mass only lensing predictions on TNG100 . . . . . . . . . . . . . . . . . . 131
4.16 Dust extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.17 SMFs and red fractions for our best fit model . . . . . . . . . . . . . . . . . . . 135

5 Baryonic effects 137
5.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Baryonic correction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6.1 KiDS+GAMA: stellar mass only . . . . . . . . . . . . . . . . . . . . . . 143
5.6.2 KiDS+GAMA: Lensing signals for group membership . . . . . . . . . . . 148
5.6.3 Red and blue lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.4 Quantified baryonic impact . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.5 Redshift evolution for mock clusters and groups . . . . . . . . . . . . . . 159

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.9 30 pkpc lensing predictions for Eagle . . . . . . . . . . . . . . . . . . . . . . . . 165

6 Summary and outlook 167
6.1 One simulation to fit them all . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 The future for joint constraint analyses . . . . . . . . . . . . . . . . . . . . . . . 167
6.3 On the effects of baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



viii CONTENTS



List of Figures

1.1 Cosmological rescaling in an excursion set framework . . . . . . . . . . . . . . 14
1.2 Illustration of weak gravitational lensing. . . . . . . . . . . . . . . . . . . . . 17
1.3 Tangential shear around matter distributions. . . . . . . . . . . . . . . . . . . 19
1.4 Cosmological constraints from weak lensing observations. . . . . . . . . . . . 24
1.5 Stellar-to-halo mass relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Ways of modelling the galaxy-halo relation. . . . . . . . . . . . . . . . . . . . 29
2.2 Physical information fields in the IllustrisTNG suite. . . . . . . . . . . . . . . 37

3.1 Cumulative halo mass function . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Relaxed halo fractions in the direct and rescaled simulations. . . . . . . . . . 47
3.3 Fractional difference in the mass of matched haloes identified in direct and

rescaled simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 3D comoving matter density profiles ρ(r) for all haloes in direct and rescaled

simulations of the Ωm = 0.25, σ8 = 0.60 cosmology. . . . . . . . . . . . . . . . 48
3.5 Fractional differences in the 3D density profiles of haloes in the direct and

rescaled simulation snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Differential excess surface mass density profiles ∆Σ(r) for stacks of haloes in

the direct and rescaled simulations. . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Fractional differences between the true mean mass of haloes in our simulations,

M sim.
200m, and that inferred from their ∆Σ profiles, M lens

200m. . . . . . . . . . . . . 51
3.8 The concentration-mass relation of haloes in rescaled and direct simulations. . 53
3.9 The impact of unrelaxed haloes in the concentration-mass relation. . . . . . . 54
3.10 The difference in concentrations measured in the direct and rescaled simula-

tions, ∆c(direct−rescaled), as a function halo mass at z = 0. . . . . . . . . . . . . 54
3.11 Same as Fig. 3.5 but after correcting the inner profiles of rescaled haloes. . . 55
3.12 Same as Fig. 3.6 but after correcting the inner profiles of rescaled haloes. . . 55
3.13 Same as Fig. 3.10 but after applying our corrections in Eq. (3.6.1) and Eq. (3.6.2)

to the rescaled profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14 Effect of the density field correction on the NFW estimated concentration dis-

tribution for individual matched haloes in the direct and rescaled simulation
with (0.40, 0.70). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.15 Comparison between direct and rescaled profiles and their radial derivatives
for matched haloes for (0.25, 0.60). . . . . . . . . . . . . . . . . . . . . . . . . 59

3.16 Measured differences in the location of the steepest slope of the density field for
matched haloes w.r.t. to the Diemer et al. (2017) model, for the 75th percentile. 60



x LIST OF FIGURES

3.17 Measured density field outer profile bias for matched haloes vs. the predicted
∆rsp/r200m bias using the model in Diemer et al. (2017). . . . . . . . . . . . . 61

3.18 Profiles for matched haloes for (0.25, 0.60) for M200m ∈ [1013, 1013.1)h−1M�
in the direct simulation with different corrections applied. . . . . . . . . . . . 62

3.19 Expected bias in the concentration of rescaled haloes based on the L16 model. 63
3.20 Expected bias in the concentration of rescaled haloes at z = 0 as a function of

the value of Ωm and σ8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.21 χ2-parabolae for rescaled ∆Σ profiles fitted to a direct ∆Σ profile for a stack

of galaxy group-size haloes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.22 Residuals from three different mass bins’ ∆Σ profiles for (0.25, 0.60). . . . . . 68
3.23 Mass bias for matched haloes in the (0.80, 0.40) simulation. . . . . . . . . . . 69
3.24 ∆Σ profiles for (0.80, 0.40) with the fiducial predictions in panel I and post-

concentration correction in panel II. . . . . . . . . . . . . . . . . . . . . . . . 69
3.25 NFW c(M)-relations for (0.80, 0.40) for all haloes and with different relaxation

cuts enforced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.26 Matched halo density field residuals from 64 log-equidistant radial bins. . . . 71
3.27 Difference in concentration estimated from density profiles for matched haloes. 71
3.28 Concentration difference for matched haloes quantified with 3D NFW profiles,

pre- and post-correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.29 Concentration-mass relations for Einasto fits with α = 0.18 for direct and

rescaled simulations w.r.t. the L16 model predictions. . . . . . . . . . . . . . 75
3.30 Einasto c(M)-relations for (0.80, 0.40) for all haloes and with different relax-

ation cuts enforced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.31 The measured differences for Einasto concentrations with α = 0.18 and rs and

ρs free. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.32 Einasto estimated concentrations for matched haloes in the direct and rescaled

simulation with M200m > 1012.7 h−1M� for haloes in the direct simulation. . . 76
3.33 Einasto estimated concentrations for matched haloes in the direct and rescaled

simulation with M200m > 1012.5 h−1M� for haloes in the direct simulation. . . 77
3.34 Effective mass correction with the NFW density field correction before and

after the concentrations are corrected. . . . . . . . . . . . . . . . . . . . . . . 78
3.35 Halo mass function before and after the mass correction. . . . . . . . . . . . . 78
3.36 Predicted offset in splashback radius for matched haloes in a direct and rescaled

fiducial simulation with WMAP1 parameters from the Diemer et al. (2017)
model (75th percentile). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.37 The length scale parameter α and the time scale parameter z∗ as a function of
∆Ωm and ∆σ8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.38 Concentration bias at z = 0 and at higher redshifts for a rescaled WMAP1
simulation to plausible cosmological models. . . . . . . . . . . . . . . . . . . . 81

4.1 The stellar mass function at z = 0.11 for the H15 model run on top of the
rescaled MR and MRII runs as well as the gravity only runs of the TNG100
and TNG300 compared to hydrodynamical results from the baryonic runs for
TNG100 and TNG300 and the SDSS fit from Li & White (2009). . . . . . . . 89

4.2 Host halo mass distributions at z = 0.1 for central (left panels) and satellite
galaxies (right panels), respectively, for three different stellar mass bins. . . . 90



LIST OF FIGURES xi

4.3 Spread in rest-frame g − r colours with dust corrections for H15 and TNG300
with and without resolution corrections. . . . . . . . . . . . . . . . . . . . . . 94

4.4 Stellar mass functions at z = 0.11 for the H15 and G11 fiducial models and
model derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Abundance corrections and how they impact the SMF. . . . . . . . . . . . . . 95
4.6 Lensing signals for galaxies selected according to stellar mass at z = 0.31

compared to measurements from van Uitert et al. (2016). . . . . . . . . . . . 97
4.7 Similarly as Fig. 4.6 but for models with varying strength of the AGN feedback,

compared to the two fiducial models. . . . . . . . . . . . . . . . . . . . . . . . 100
4.8 Satellite fractions for the mass bins in the van Uitert et al. (2016) comparison

for the different SAMs and the TNG suite. . . . . . . . . . . . . . . . . . . . . 101
4.9 Lensing profiles from SAMs with varying εreheat. . . . . . . . . . . . . . . . . 101
4.10 Abundance corrected lensing signals with respect to the fiducial signals and

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.11 Impact of Gaussian errors on the stellar masses for the lensing profiles for the

H15 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.12 Residuals for the H15 model run on top of the fiducial Millennium run w.r.t.

the rescaled simulation at z = 0.31. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.13 Measurements for the TNG300 at z = 0.30 for the full physics run compared to

observations with the resolution correction from Pillepich et al. (2018b) applied
for the selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.14 Residuals for TNG300 at z = 0.30 between the full physics run and the dark
matter only run for matched centrals, here with the resolution correction from
Pillepich et al. (2018b) applied for the selection. . . . . . . . . . . . . . . . . . 105

4.15 Lensing predictions for red and blue galaxies in SDSS using the Zu & Man-
delbaum (2016) datasets and iHODs compared to the different SAMs and the
TNG300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.16 Similar to in Fig. 4.15, but with the most extreme SAMs shown. . . . . . . . 107
4.17 Lensing predictions for all main SDSS red and blue galaxies with the same

colour cut as for the LBGs without orphan galaxies. . . . . . . . . . . . . . . 108
4.18 Lensing profiles from the TNG300 for blue and red galaxies in SDSS with the

matched and total signal highlighted. . . . . . . . . . . . . . . . . . . . . . . . 108
4.19 Predicted GGL signals compared to observations from SDSS LBGs with data

from Wang et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.20 Similarly as Fig. 4.19 but for LBGs separated according to colour and compared

to the Mandelbaum et al. (2016) observations. . . . . . . . . . . . . . . . . . . 111
4.21 LBG lensing signal from the TNG300 with resolution corrected stellar masses

compared to measurements from Wang et al. (2016). . . . . . . . . . . . . . . 114
4.22 Same as Fig. 4.21 but for the signal split into red (panel I) and blue (panel

II) LBGs from the TNG300 with resolution corrected stellar masses and dust
extinction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.23 Clustering predictions for galaxies in the best fit 0.1 kAGN model (panel I) and
for galaxies in the 0.1 εreheat model (panel II) w.r.t. SDSS observations from
G11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.24 Clustering predictions for all galaxies in two different stellar mass bins. . . . . 116
4.25 Clustering predictions for red and blue galaxies in two different stellar mass bins.117



xii LIST OF FIGURES

4.26 Same as Fig. 4.25 for galaxies in an intermediate stellar mass bin and with the
most extreme SAM models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.27 Host halo masses for central galaxies in a given stellar mass bin for the Velliscig
et al. (2017) selection for different SAMs. . . . . . . . . . . . . . . . . . . . . 121

4.28 The satellite fraction dependency ofM lim
∗ for the H15 model run on the rescaled

Millennium simulation normalised to the measured GAMA values. . . . . . . 122
4.29 GGL signals for central galaxies w.r.t. data from Velliscig et al. (2017). . . . 123
4.30 Same as Fig. 4.29 for satellite galaxies w.r.t. data from Velliscig et al. (2017). 124
4.31 Joint GGL signals for central and satellite galaxies w.r.t. data from Velliscig

et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.32 Abundance corrections residuals for the H15 and G11 model. . . . . . . . . . 129
4.33 Fraction of centrals which are also classified as LBGs (panels I-II) and central

purity for the LBG sample for different mock catalogues (panels III-IV). . . . 130
4.34 Lensing predictions from the H15 model run on the gravity-only TNG100. . . 131
4.35 Clustering residuals for red galaxies for the G11 and the H15 models with and

without dust extinction for the Zu & Mandelbaum (2016) observational criteria.132
4.36 The impact of dust extinction on the colour selection on ∆Σ profiles for the Zu

& Mandelbaum (2016) observational criteria with the Eq. (4.7.1) colour cut,
assuming the same colour and stellar mass cuts. . . . . . . . . . . . . . . . . . 132

4.37 Dust extinction errors for the colour selection with the Eq. (4.7.2) cut for LBG
∆Σ profiles for the Mandelbaum et al. (2016) observations with the same model
and red and blue separation as in Fig. 4.36. . . . . . . . . . . . . . . . . . . . 133

4.38 SMFs at different redshifts from our best fit (0.5αdyn, 0.2 kAGN) model. . . . 136
4.39 Red fractions with dust extinction at different redshifts from our best fit

(0.5αdyn, 0.2 kAGN) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Lensing predictions from the different simulations w.r.t. observations from van
Uitert et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Satellite fractions for the different hydrodynamical simulations depending on
the stellar mass bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Lensing predictions from the Eagle simulation with bound masses compared to
van Uitert et al. (2016) observations. . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Analogously as in Fig. 5.3 for the Illustris simulation (panel I) with 30 pkpc
masses (there are no major differences for bound masses, except for the most
massive bins) and for TNG100 (panel II). . . . . . . . . . . . . . . . . . . . . 145

5.5 Baryonic effects on the full lensing profiles from the Illustris simulation using
all matched subhaloes with 30 pkpc aperture masses. . . . . . . . . . . . . . . 146

5.6 Same as in Fig. 5.5 but for TNG100. . . . . . . . . . . . . . . . . . . . . . . . 147
5.7 Similarly as Fig. 5.5 for TNG300. . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.8 Comparison of lensing predictions from the different hydrodynamical simula-

tions and the Velliscig et al. (2017) measurements for the satellite lensing signal
for a given stellar mass bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.9 Lensing predictions for the different simulations compared to observations from
Velliscig et al. (2017) for central galaxies for a given stellar mass bin. . . . . . 150

5.10 Predicted lensing signals for 30 pkpc aperture masses from Illustris, TNG100
and TNG300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



LIST OF FIGURES xiii

5.11 The effect of baryons on matched subhaloes in the joint signal from Velliscig
et al. (2017) for Illustris, TNG100 and TNG300 with 30 pkpc stellar masses. 153

5.12 Baryonic effects on the central galaxy signals for the Velliscig et al. (2017)
comparison for Illustris, TNG100 and TNG300. . . . . . . . . . . . . . . . . . 153

5.13 The predicted lensing signals from the TNG300 for red (first column) and blue
galaxies (second column) at z = 0 compared to measurements from SDSS-
DR7 for the all main sample using a 0.1(g − r) = 0.8 colour cut with the dust
extinction model from Nelson et al. (2018b). . . . . . . . . . . . . . . . . . . . 155

5.14 Gas fractions inside r500c vs. M500c for TNG300. . . . . . . . . . . . . . . . . 157
5.15 Gas fractions (including wind cells) for stacked TNG300 cluster haloes for a

range of redshifts compared to the BCM model. . . . . . . . . . . . . . . . . . 157
5.16 Gas fractions for stacked TNG300 group-class haloes, similar to Fig. 5.15, at

z = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.17 Comparisons between the component-wise TNG300 stacked full physics profiles

at z = 0.02 and the BCM model predictions. . . . . . . . . . . . . . . . . . . 159
5.18 Comparisons between the TNG300 stacked full physics profiles and the BCM

model predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.19 Lagrangian displacements between initial and final positions for stacked group-

scale haloes at z = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.20 Baryonic effects on galaxy cluster profiles from z = 1.1 to z = 0.02. . . . . . . 161
5.21 Redshift evolution of the gas and stellar components of the ∆Σ profiles, with

respect to the dark matter component (lower panel). . . . . . . . . . . . . . . 162
5.22 Comparison between the dark matter components in the full physics and dark

matter only runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.23 Baryonic effects on galaxy group profiles from z = 1.1 to z = 0.02. . . . . . . 163
5.24 Redshift evolution of the gas and stellar components of the ∆Σ profiles for the

group lenses w.r.t. the full signal. . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.25 Satellite fractions for the different hydrodynamical simulations for the bound

mass definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.26 Lensing predictions from the Eagle simulation with 30 pkpc aperture stellar

masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



xiv LIST OF FIGURES



List of Tables

3.1 Simulation configurations (fiducial cosmology in the first row) with their values
of Ωm and σ8 listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Total and median maximum deviation between the direct and rescaled simula-
tion for density and ∆Σ profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Maximal disagreements in mass between the direct and rescaled profiles . . . 67

4.1 The fiducial SAM model parameters. Note that G11 has a different implemen-
tation of the AGN feedback, neglecting the normalisation with H(z). . . . . . 87

4.2 The different SAM configurations compared in this Chapter, derivatives of the
H15 model. ’fid’ refers to the values in the H15 model. . . . . . . . . . . . . . 87

4.3 The best fit models according to stellar mass only lensing without and with
abundance corrected masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 The satellite and orphan fractions for red and blue galaxies separated according
to Eq. (4.7.2) for a given stellar mass bin. . . . . . . . . . . . . . . . . . . . . 107

4.5 The best fit models according to stellar mass only lensing without and with
abundance corrected masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 The best fit models according to galaxy clustering. . . . . . . . . . . . . . . . 115
4.7 Velliscig et al. (2017) comparison simulation sample properties (LG = L-Galaxies

15, E = Eagle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.8 Average host halo masses, 3D distances between the satellite galaxies and the

central galaxy in each FOF group in units of h−1 Mpc and number counts for
H15 on the gravity only TNG100. . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.9 The same properties as in Table 4.8 for G11 on TNG100-DM. . . . . . . . . . 120
4.10 Equivalent as Table 4.8 but for H15 with 2αdyn and 2 kAGN on TNG100-DM. 120
4.11 Same properties as in Table 4.8 for H15 with 0.5αdyn and 0.5 kAGN on TNG100-

DM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.12 Table 4.8 for our best fit 0.5αdyn and 0.2 kAGN model on TNG100-DM. . . . 121
4.13 The best fit models according to red and blue clustering without dust. . . . . 134
4.14 The best fit models according to red and blue LBG lensing without dust. . . 135

5.1 Halo statistics for Illustris for the Velliscig et al. (2017) comparison. . . . . . 148
5.2 Halo statistics for TNG100 for the Velliscig et al. (2017) comparison. . . . . . 148
5.3 Halo statistics for TNG300 for the Velliscig et al. (2017) comparison. . . . . . 149
5.4 Fitted NFW parameters for central red and blue galaxies with 10.7 < logM∗ [M�] <

11.0 compared to their matches in the dark matter-only run of the TNG300. . 156
5.5 Average 3D distance between the satellite galaxies and the central galaxy in

each FOF group in units of h−1 Mpc for 30 pkpc stellar masses for Eagle. . . 165



xvi LIST OF TABLES



Zusammenfassung

Die Untersuchung der Beziehung zwischen Galaxien und der umgebenden Halos aus dunkler
Materie ist ein fundamentaler Bestandteil für das Verständnis der Entwicklung der großräu-
migen Struktur des Universums. In dieser Arbeit untersuchen wir, wie der Galaxie-Galaxie-
Gravitationslinseneffekt, die Verzerrung der Bilder von Hintergrundgalaxien nahe ausgewähl-
ter Galaxien im Vordergrund, beim Verständnis des Zusammenhangs zwischen sichtbarer
und dunkler Materie helfen kann. Einerseits erlaubt der Gravitationslinseneffekt eine direkte
Abschätzung der Masse innerhalb eines gegebenen Radius für verschiedene nach ihren Ei-
genschaften (z.B. Sternenmasse oder Farbe) ausgewählte Galaxien. Andererseits beschreibt
die Galaxien-Galaxien-Häufung die räumliche Verteilung von Galaxien und erlaubt, in Ver-
bindung mit der Korrelation der Galaxien und der sie beherbegenden Halos, kosmologische
Parameter zu bestimmen.

Diese Dissertation ist in drei Teile gegliedert, in der sich jeder Teil mit je einer von drei offe-
nen Problemen des Galaxie-Galaxie-Gravitationslinseneffekts beschäftigt, um sich als konkur-
renzfähige Methode zur Bestimmung kosmologischer Parameter für derzeitige und zukünftige
großskalige Himmelsdurchmusterungen zu behaupten. In Kapitel 3 (Renneby et al., 2018)
untersuchen wir wie ein kosmologischer Reskalierungsalgorithmus, welcher schnell und ko-
steneffizient Partikel- und Haloverteilungen einer kosmologischen Mehrkörpersimulation in
eine andere Simulation mit anderen kosmologischen Parametern überführt, angepasst werden
kann, um präzise Massenprofile durch den Galaxie-Galaxie Gravitationslinseneffekt hervorzu-
sagen und etwaige verursachte Fehler abzuschätzen. Das darauffolgende Kapitel 4 (Renneby
et al., prepa) befasst sich mit Vorhersagen für semi-analytische Modelle der Galaxieentste-
hung (SAMs) und hydrodynamische Simulatione. In Kapitel 5 (Renneby et al., prepb) werden
schliesslich die wichtigsten systematischen Einflüsse für die Masseprofile durch den Galaxie-
Galaxie Gravitationslinseneffekt, baryonische Prozesse, mithilfe einer Vielzahl hydrodynami-
scher Simulationen untersucht.

Die wichtigsten Ergebnisse sind: In Kapitel 3 erbringen wir den Nachweis, dass eine kos-
mologische Mehrkörpersimulation mit gegebenen kosmologischen Parametern (Ωm, σ8) ver-
wendet werden kann, um Masseprofile zentraler Galaxien ohne Beschränkung der gewählten
Hintergrundkosmologie durch zwei Biasparameter für die Halokonzentration ∆c und der Po-
sitionen der Halo-Brandungsradien ∆rsp nachzubilden. Diese beiden Parameter können gut
durch die Konzentration-Masse-Rotverschiebung-Relationen, die in Ludlow et al. (2016) prä-
sentiert werden, und der Brandungsradius-Masse-Rotverschiebung-Relationen, die in Diemer
et al. (2017) präsentiert werden, vorausgesagt werden.

Weiterhin zeigen wir, dass die Beobachtungen der räumichen Galaxienkorrelation und
des Gravitationslinseneffekts in Kapitel 4 ein einheitliches Bild für Rückwirkungsmodelle lie-
fern. Die Ergebnisse für die hydrodynamischen IllustrisTNG Simulationen stimmen dabei mit
den derzeitigen Messungen der KiDS+GAMA-Himmelsdurchmusterungen, wie auch für eine
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Auswahl von Galaxien in SDSS, sowohl lokal hellster Galaxien (LBGs) und solcher, die nur
nach ihrer stellaren Masse ausgewählten wurden, überein. Beobachtungen des Gravitations-
linseneffekts um LBG und der Galaxienkorrelation liefern in Verbindung mit dem Münchner
SAM L-Galaxies Modell implizieren eine schwächere Radiomodus-AGN-Rückwirkung und
eine geringere dynamische Reibungszeitskala für Galaxieverschmelzungen gegenüber dem neu-
sten Model von Henriques et al. (2015). Dieser Vergleich zeigt gleichzeitig die Probleme der
beiden Modellierungssystemen auf, z.B. für das Signal durch rote Galaxien mittlerer Mas-
se unter 1011M�, für welche Beobachtungen niedrigere Massen der beherbergenden Halos
sternentstehungsgeminderter Galaxien nahelegen. Dies zeigt die Notwendigkeit für verbesser-
te umgebungsabhängige Mechanismen für Sternentstehungsminderung und Verschmelzung in
Galaxiengruppen und Galaxienhaufen auf.

In Übereinstimmung mit der Literatur (z.B. Leauthaud et al., 2017) finden wir, dass
baryonische Effekte zu einer Reduzierung der Masseprofile um 10-20 Prozent im Bereich
0.1 < r

[
h−1 Mpc

]
< 1 führt. Weiterhin zeigen wir, dass dieses Verhalten auf eine Vielzahl

von Galaxien verschiedener stellarer Masse zutrifft, sowie für zentrale Galaxien in Galaxie-
gruppen. Trotz verschiedener Beschreibungen der Galaxieentstehung erzeugen die Eagle und
IllustrisTNG Simulationen ähnliche Profile des schwachen Gravitationslinseneffekts, die kon-
sistent mit den beobachteten sind. Der erhebliche Gasausstoß durch die Implementierung der
AGN-Rückwirkung in den Illustris Simulation führen zu einer Reduktion der Massenprofile
bis zu einem extremen Radius von r ∼ 5 − 6h−1 Mpc, wohingegen dieser bei den Nachfol-
gersimulationen IllustrisTNG etwa r ∼ 1− 2h−1 Mpc betrug. Diese Radien sind grösstenteils
unabhängig von der stellaren Masse der gewählten Galaxieklasse. Jedoch existiert eine etwas
größerer Effekt für Halos von Galaxiegruppen, in welchen die AGN-Rückwirkung am effi-
zientesten ist und nur eine geringe zeitliche Entwicklung bis zu einer Rotverschiebung von
z = 1 eintritt. Wir versuchen diesen Effekt mithilfe des baryonischen Korrekturmodells von
Schneider & Teyssier (2015) und der IllustrisTNG300 Simulation für Halos von Galaxiegrup-
pen und Galaxiehaufen zu parametrisieren. Wir stellen fest, dass das Modell die wichtigsten
Deformationscharakteristika abbildet, jedoch sind weitergehende Arbeiten notwendig um die
Massenprofile in rein gravitativen Simulationen zu korrigieren.



Abstract

The study of the relation between galaxies and their surrounding haloes of dark matter is a
fundamental component to understand the evolution of the large-scale structure of the Uni-
verse. In this thesis, we investigate how galaxy-galaxy lensing, the distortion of the shapes
of background galaxies around selected foreground lens galaxies, can help to elucidate this
interplay together with complementary galaxy clustering measurements. Galaxy-galaxy lens-
ing, on one hand, provides a direct estimate of the mass inside a given aperture and also
its distribution, which allows for connecting certain classes of galaxies, chosen according to
properties such as stellar mass and colour, to the mass and shape of the encompassing dark
host structures. Galaxy clustering, on the other hand, describes the spatial distribution of
galaxies and the combination of the two probes can be used to jointly constrain the cosmo-
logical parameters for the matter fraction Ωm and the amplitude of the matter fluctuations
σ8.

This thesis is split into three parts addressing three outstanding challenges each for small-
scale galaxy-galaxy lensing to act as a competitive probe for current and future large-scale
structure surveys. In Chapter 3 (Renneby et al., 2018), we investigate how a cosmological
rescaling algorithm, which fast and cost-efficiently maps particle and halo distributions from
one N -body simulation to another one with a different set of cosmological parameters, can be
adapted to accurately predict galaxy-galaxy lensing profiles and quantify the induced errors.
The subsequent Chapter 4 (Renneby et al., prepa) deals with verifying that both lensing and
clustering probes yield consistent predictions in semi-analytical models of galaxy formation
(SAMs) and hydrodynamical simulations. To conclude in Chapter 5 (Renneby et al., prepb),
we examine the main systematic effect on lensing profiles, namely the imprint of baryonic
processes, using a range of hydrodynamical simulations.

The major findings are the following: In Chapter 3 we establish that an N -body simula-
tion with a set of parameters (Ωm, σ8) can be used to emulate the lensing profiles for central
galaxies with no further restriction in a different background cosmology with two principal
biases in halo concentrations ∆c and the positions of the halo splashback radii ∆rsp. These bi-
ases can be predicted well with the concentration-mass-redshift relations presented in Ludlow
et al. (2016) and the splashback radius-mass-redshift relations from Diemer et al. (2017).

To continue, we discover that lensing and clustering observations in Chapter 4 point
towards a consistent picture for the feedback prescriptions. The hydrodynamical IllustrisTNG
simulation suite is in agreement with current constraints from the KiDS+GAMA surveys for
stellar mass only selected samples as well as locally brightest galaxies (LBGs) in SDSS. For
the Munich SAM L-Galaxies, constraints from LBG lensing and general clustering demand
a weaker radio-mode AGN feedback and shorter dynamical friction merger time than the
default setup in the latest model from Henriques et al. (2015). Still, this comparison also
highlights difficulties in the two modelling frameworks to accurately predict the signal for



xx Abstract

intermediate mass red galaxies below < 1011M�, where the observations suggest lower host
halo masses for quenched satellite galaxies. This calls for improved environmental quenching
and merging mechanisms in galaxy groups and clusters.

Finally, we retrieve a similar baryonic imprint as previously established in the literature
for specific lens samples (e.g. Leauthaud et al., 2017) with suppressions of 10 − 20 % for
0.1 < r

[
h−1 Mpc

]
< 1 and show that it is generalisable to a large range of stellar masses

and for central galaxies in groups. Despite their different galaxy formation recipes, the Ea-
gle and IllustrisTNG simulations produce similar lensing profile descriptions consistent with
observations. The considerable gas ejection of the AGN feedback implementation in the
Illustris simulation puts it at the extreme end in terms of the extent of the suppression
up to r ∼ 5 − 6h−1 Mpc whereas its successor IllustrisTNG achieves mass convergence at
r ∼ 1 − 2h−1 Mpc. These radii are largely independent of the stellar mass of the samples,
with a slightly larger impact for group class haloes where the AGN feedback is most efficient,
and there is little redshift evolution to z = 1. We attempt to parameterise the effect using the
baryonic correction model of Schneider & Teyssier (2015) for group and cluster-size haloes in
the TNG300 simulation. We find that the model captures the main deformation features but
that further work is required for it to properly adjust the gravity-only mass profiles.

Keywords: gravitational lensing: weak – galaxies: evolution – galaxies: haloes – cosmology:
theory – methods: numerical



Chapter 1 Introduction

1.1 Prologue

At the smallest nodes of the cosmic web, galaxies sit as luminous beacons tracing the encom-
passing structures of dark matter. Their immediate matter field overdensity surroundings
are known as dark matter haloes which are on average ellipsoidal in shape and co-evolve
with the galaxies across time. Investigating this rich relation with statistical 1-pt, 2-pt and
higher order correlations can help us to understand galaxy formation as well as constraining
cosmological parameters governing the overall growth of structure and matter and energy
content of the Universe. However, at these small scales, linear perturbation theory breaks
down and thus numerical and empirical tools must be used in the modelling of the relationship
between different galaxy and host halo properties, such as stellar mass or star formation rate
with respect to halo mass and shape. This thesis focuses on how gravitational weak lensing,
with a special emphasis on the subcategory of galaxy-galaxy lensing (GGL), the bending of
light rays due to spacetime perturbations by objects along the line-of-sight, can act as a suit-
able probe capturing the “dark-luminous” cross-correlations of the cosmic web together with
complementary measurements of the clustering of galaxies, the “luminous-luminous” corre-
lations. Jointly, these two probes can constrain the cosmological parameters governing the
matter fraction Ωm and the amplitude of the matter fluctuations σ8. For this joint parameter
combination, there is currently a small tension between early Universe (cosmic microwave
background) and late Universe probes (weak lensing) for the standard ΛCDM cosmological
model, which might signify new fundamental physics. This stresses the urgent need for a bet-
ter theoretical understanding of the signal; especially in the small-scale regime which offers
the best signal-to-noise ratios.

The thesis follows a theoretical approach where numerical predictions are compared to
measurements from observational surveys. Three main areas are covered: (i) how a rescaling
algorithm can map the lensing signal produced by different N−body simulations of cold dark
matter using different cosmological parameters to one-another in Chapter 3, (ii) how lensing
and clustering working in tandem can rule out certain models of galaxy formation based on
the implementation of feedback processes in Chapter 4, and (iii) how galactic baryons modify
the signal in hydrodynamical simulations and how to deform the signal in dark matter only
runs to compensate for this effect in Chapter 5. We list the main numerical simulations used
in this work and the concepts behind them in Chapter 2.

In this Chapter, we introduce the basic phenomenology of cosmic structure formation
focusing on haloes and galaxies respectively and the statistical probes used to examine it. In
addition, the Chapter serves to put the results of this thesis into a more general perspective.
We start by reviewing the standard cosmological model (Section 1.2.1) and then move on to
correlation functions (Section 1.2.2) and the large-scale structure (Section 1.2.3). Then we
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detail the basic steps of halo formation (Section 1.2.4), describe the most used halo profiles
(Section 1.2.5) and express the process in the excursion set framework as well as provide
an interpretation of the cosmological rescaling algorithm studied in this thesis in the same
language (Section 1.2.6). Consecutively we introduce the two main observables in this thesis;
weak gravitational lensing (Section 1.3) (and specifically GGL in Section 1.3.1) and galaxy
clustering (Section 1.4). We proceed by highlighting their cosmological constraining power
(Section 1.5) and how they can inform on the galaxy-halo connection (Section 1.6). To
conclude, we give a brief overview of the feedback process which impedes star formation at
the massive end (Section 1.7).

1.2 Statistical properties of cosmic structure formation

In the framework of general relativity (Einstein, 1915), the presence of matter induces gravi-
tational perturbations through the field equations

Gµν = 8πG/c4Tµν , (1.2.1)

where Gµν is the Einstein tensor (curvature), G the gravitational constant, c the speed of
light and Tµν the stress-energy tensor (matter-energy).

1.2.1 Background solution - geometry and dynamics

In this thesis we investigate if the standard cosmological model together with state-of-the art
recipes to populate the resulting structures with galaxies can produce realistic weak lensing
and galaxy clustering observations. This Section details its main ingredients and is based
on Baumann (2018); Weinberg (2008); Padmanabhan (2010); Mo et al. (2010) and extensive
details can be found in most standard textbooks on cosmology. For the spacetime geometry,
the background solution for a homogeneous, isotropic, expanding Universe has the Friedmann-
Robertson-Lemaître-Walker (FLRW) metric to define distances

ds2 def= gµνdXµdXν = −c2dt2 + a(t)2γijdxidxj , (1.2.2)

where ds2 is the invariant line element, gµν the metric, Xµ = (t, xi) with t as the time
coordinate and xi the comoving spatial coordinates, γij the spatial metric and a(t) the scale
factor. Physical coordinates are given as xiphys = a(t)xi and we define the Hubble parameter
H as the normalised time derivative H = ȧ/a. We can split the spatial line element dl2 =
γijdxidxj into a radial and an angular component dl2 = dχ2 + f2

K(χ)dω2 where χ is the
comoving radial distance and fK(χ) the comoving angular-diameter distance

fK(χ) =





K−1/2 sin(K1/2χ), K > 0 (spherical)
χ, K = 0 (flat)
(−K)−1/2 sinh

[
(−K)1/2χ

]
, K < 0 (hyperbolical)

(1.2.3)

for different spatial curvature K. Photons travel along geodesics. Their 4-momentum Pµ

satisfies

Pα
dPµ
dXα

= −ΓµαβP
αP β, (1.2.4)
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where Γµαβ are the Christoffel symbols

Γµαβ
def= 1

2g
µν (∂αgβν + ∂βgαν − ∂νgαβ) . (1.2.5)

Homogeneity implies that ∂iPµ vanishes in Eq. (1.2.4) for a photon on a radial trajectory
which leaves the zero:th component. Since the energy E def= P 0, the µ = 0 part tells us that

E
dE
dt = − ȧ

a
p2, p2 = a2(t)γijP iP j , (1.2.6)

and with the four-component of the momentum satisfying E2−p2 = m2, where m is the mass
of the particle, p ∼ a−1 both for massive and massless particles. The wavelength of light λ in
a quantum mechanical description is inversely proportional to the momentum λ = h/p with
h as Planck’s constant. As the momentum decays as a−1, λ scales as a leading to a redshift
z of the wave,

z
def= λ0 − λ1

λ1
, (1.2.7)

with λ1 as the original wavelength emitted at time t1 and λ0 the wavelength observed at time
t0. Setting a(t0) = 1 yields

z + 1 = 1
a(t1) . (1.2.8)

For sources nearby we can expand the denominator a(t1) ≈ a(t0)[1 +H0(t1− t0) + . . .]. H0
def=

ȧ(t0)/a(t0) is the Hubble constant which is measured in units of H0
def= 100h kms−1Mpc−1

with h ≈ 0.68 from cosmic microwave background (CMB) temperature and lensing data from
the Planck satellite (Planck Collaboration, 2016a, 2018). We will henceforth use h for the
Hubble constant throughout this thesis. There is still some tension in the value of the Hubble
constant between these early-time measurements and observations using late-time Cepheid1
calibrated supernovae Type Ia distance ladders and strong gravitational lensing time delays
(Riess et al., 2016; Bonvin et al., 2017), which some authors claim to be of the order of 3.8σ
(Riess et al., 2018). This motivates some flexibility in the modelling scheme and new probes
such as multi-messenger gravitational waves observations could provide tighter constraints in
the future (Abbott et al., 2017b).

We can now give an expression for the comoving distance χ in Eq. (1.2.3) between us and
an astronomical object at z

χ =
∫ t0

t1

dt′
a(t′) =

∫ z

0

dz′
H(z′) . (1.2.9)

Hubble-Lemaître’s law gives that galaxies move with 3-velocity v = H0d as a part of the
Hubble flow with d as the proper distance. Inside groups and clusters, the velocities can
deviate from this base value from peculiar velocities vpec, causing a Doppler shift which can
be translated as a shift in redshift zpec

1 + zpec =
√

1 + vpec/c

1− vpec/c
, (1.2.10)

and the observed redshift zobs is then

1 + zobs = (1 + zpec) (1 + zH) , (1.2.11)
1A class of variable stars.
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with zH as the cosmological redshift.
Homogeneity and isotropy constrain the elements of the stress-energy tensor Tµν . Isotropy

dictates that the mean value of any 3-vector should vanish, i.e. that Ti0 = T0j = 0, and
isotropy around a point x = 0 forces the mean value of any 3-tensor Tij to be proportional
to δij and the 3-metric gij = a(t)2δij at x = 0 where δij is the Kronecker delta. Since this
is a proportionality between two 3-tensors it must remain invariant under arbitrary spatial
coordinate transformations. Homogeneity in turn demands that the proportionality constant
can only be a function of time. Thus, the stress-energy tensor takes the form of a perfect
fluid with respect to an observer with relative 4-velocity2 Uµ,

Tµν = gµαTαν = −
(
ρ(t) + P (t)

c2

)
UµUν + P (t)δµν , (1.2.12)

where ρ is the density and P the pressure in the rest-frame of the fluid. The conservation
equation ∇µTµν = 0 gives for the energy density at index ν = 0, that

ρ̇+ 3 ȧ
a

(
ρ+ P

c2

)
= 0, (1.2.13)

which can easily be solved with an equation-of-state P = P (ρ) = wc2ρ with a solution
ρ ∝ a−3−3w. This implies that the cold matter density for which |P | � ρ, i.e. w = P = 0,
evolves as ρ ∝ a−3. This applies to baryonic (ordinary) matter and cold dark matter (CDM).
This latter type of matter interacts only gravitationally and we can infer its existence from
gravitational lensing (e.g. Brainerd et al., 1996; Bacon et al., 2000), baryonic acoustic oscilla-
tions (e.g. Eisenstein et al., 2005), the CMB (e.g. Hinshaw et al., 2013; Planck Collaboration,
2016a) and galactic rotation curves (e.g Rubin et al., 1980). The solution w = 1/3 applies
for relativistic matter, i.e. photons and neutrinos at early times and those energy densities
decay as ρ ∝ a−4. This thesis focus on the late time Universe where those terms are less
important and we neglect the impact of massive neutrinos. One can also construct a solution
for w = 1, i.e. with negative pressure P = −c2ρ, which gives a constant density, a cosmo-
logical constant3 Λ. This term is known as dark energy and was first observationally inferred
from supernovae type Ia measurements where the luminosities at z ≈ 0.5 were fainter than
allowed in a matter-dominated Universe, but instead this suggested a flat Universe with an
accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999). Solving Eq. (1.2.1) with
Eq. (1.2.12) at this background level yields the Friedmann equations:

H2 = 8πG
3 ρ− cK

a2 , (1.2.14)
ä

a
= −4πG

3 (ρ+ 3P ). (1.2.15)

We can define a critical density ρcrit(t) and density parameter Ω(t) as

ρcrit(t)
def= 3H2(t)

8πG , Ω(t) def= ρ

ρcrit
, (1.2.16)

2The 4-velocity for a locally comoving observer in the inertial Cartesian frame is simply Uµ = (1, 0, 0, 0).
3This term can also be added to the righthand side of the field equations Eq. (1.2.1) as −Λgµν which does

not alter the conservation equation since ∇µgµν = 0. Modifying the righthand side of the field equations is
standard in modified gravity. In this thesis we only deal with standard ΛCDM cosmologies.
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which allows us to rewrite the first Friedmann equation at t = 0 as

H2 = H2
0

(
Ωma

−3 + Ωra
−4 + ΩKa

−2 + ΩΛ
)
, (1.2.17)

for the different energy density components with ΩK
def= −Kc/(H2

0 ). From the CMB tem-
perature, polarisation, lensing and additional baryonic acoustic oscillation data it has been
established that |ΩK | ≈ 0 (Planck Collaboration, 2016a), specifically from the position of the
first peak in the angular CMB power spectra telling us that the geometry of the Universe is
flat. The matter fraction can be separated into the two components Ωm = Ωb + Ωcdm where
the total matter density and the baryonic matter density can be inferred from the peaks in
the CMB power spectra (Planck Collaboration, 2016a).

The different scalings of the different density components implies that they were the
dominant components of the Universe at certain epochs (radiation, matter and dark energy).
As we are treating the late-time Universe we are primarily interested in the two latter eras.

This summarises the current cosmological standard model, flat ΛCDM, i.e. the solution
for a spatially flat Universe governed by the Einstein field equations with an FLRW metric
with a stress-energy tensor for ordinary matter, radiation and a so-far unknown cold dark
matter component and a cosmological constant of unknown origin.

1.2.2 Correlation functions
In this Section we provide the mathematical foundations of the statistical treatment of struc-
ture formation, i.e. how we extract information about the cosmic web. In later Sections
we relate these expressions to lensing and clustering correlation functions. This introduction
is primarily based on the following references Lim (2012); Baldauf (2018); Bartelmann &
Schneider (2001).

Consider a scalar field φ(x), φ : U ⊆ Rd →M, x 7→ φ(x). The spaceM is either R or C
here. Assume that there exists a suitable measure on the ensemble of field configurations {φ}
and that they obey a functional probability distribution P [φ(x)]. We define the expectation
value to obtain the functional of a specific field configuration φ(x), F [φ (x)], as

〈F [φ (x)]〉 def=
∫
F [φ (x)]P [φ (x)] Dφ , (1.2.18)

where the integral is performed over the set of all possible field configurations. Here, func-
tionals of certain interest are n−point correlation functions, which can be expressed as
〈φ(x0)φ(x1) . . . φ(xn)〉. If the mapping φ is to C, it may be convenient to reformulate the
expression by complex-conjugating some of the field configuration terms. Moreover, we are
interested in the case where φ is a random field. A random field is a generalisation of a
stochastic process, which given a parameter set T is a collection of random variables φ(t)
with t ∈ T , in the sense that the underlying parameter space can consist of n−dimensional
vectors where T is of dimension d, i.e. each element of {φ} is a realisation of the random field.
A subset of interest of these fields are the homogeneous random fields. Such fields are defined
over the whole of Rd whose mean functions are constant and whose covariances only depend
on the distance x−x′, i.e. the field φ(x) is statistically indistinguishable from φ(x+x′), i.e.
translational invariant. If the covariances only depend on the Euclidean distance |x− x′|,
these are known as isotropic. Should the random field satisfy the latter criteria in the ab-
sence of stationarity, one would name this property rotational invariance. We can write the
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two-point correlation function for a homogeneous random field as

〈φ∗(xi)φ(xj)〉 = ξφ∗iφj (xi − xj) , (1.2.19)

with ξφ (x) def= 〈φ(x)φ(0)〉 valid for φ : Rd → Cn, x 7→ φ(x). If the field is isotropic as well,
the righthand side simplifies to ξφ∗iφj (|xi − xj |). We can compute the Fourier transform of
this correlation function with the definition f : Rd →M withM = R or C as

f(k) def=
∫
f(x) e−ik·x ddx, f(x) def= 1

(2π)d
∫
f(k) eik·x ddk, (1.2.20)

leading to

〈φ∗(ki)φ(kj)〉 =
∫

eiki·xi
(∫

e−ikj ·xj 〈φ∗(xi)φ(xj)〉 ddxj
)
ddxi

=
∫

e−i(kj−ki)·xi ξ̂φ∗iφj (kj) d
dxi = (2π)dδd (kj − ki ) ξ̂φ∗iφj (kj),

(1.2.21)

with δd (kj − ki) as the d-dimensional Dirac delta function and ξ̂φ∗iφj (k) def= P (k) as the
power spectrum.

In an astrophysical and cosmological context, the two-point function for matter density
fluctuations with ρ = ρ̄+ δρ = ρ̄(1 + δ) can be defined according to

〈ρ (xi) ρ (xj)〉 = ρ̄2 〈(1 + δ (xi)) (1 + δ (xj))〉 = ρ̄2 (1 + 〈δ (xi) δ (xj)〉) =

ρ̄2
(
1 + ξδiδj (xi − xj)

)
,

(1.2.22)

where we have used that the mean of the density fluctuations, 〈δ (x)〉, is zero.
In the early Universe, as viewed from the surface of the CMB (Planck Collaboration,

2016b), the statistical properties of the matter field could be well described by a homogeneous
and rotational invariant Gaussian random field, i.e. that any linear combinations of the
random field is Gaussian and that the joint probability distribution is a multivariate Gaussian
for a number of linear combinations of the random variables. Around the mean of zero, the
Gaussian probability density function is even under parity which means that all odd n-point
correlation functions vanish and it is possible to use Wick’s theorem to rewrite all even n-
point correlation functions in terms of the sum of all possible two-point correlation functions,
meaning that the Gaussian random field is fully characterisable by its power spectrum. In this
thesis we work in a late-time epoch where the assumption of Gaussianity for the matter field
is no longer valid, but we will still use two-point correlation functions as main characterisers.

An ansatz for the linear power spectrum of matter density fluctuations is

P (k, z = 0) = T 2(k)Akns , (1.2.23)

assuming the primordial power spectrum can be captured by an amplitude A and spectral
tilt ns. Inflationary models predict a value of ns close to 1 (e.g. Mukhanov & Chibisov,
1981), i.e. that the power spectrum is nearly scale-invariant. For the rescaling algorithm in
this thesis, we study a subset of cosmologies with scale-invariant linear power spectra but
nothing per se restricts the algorithm to such configurations. We will measure the power
spectrum amplitude in terms of the parameter σ8 explained in Section 1.2.6. T (k) is known
as the transfer function which defines a map between the evolution of the density contrast at
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scale k compared to the superhorizon case at an arbitrary large scale k = 0 (e.g. Eisenstein
& Hu, 1998). In the radiation dominated era, subhorizon4 perturbations were frozen and
superhorizon perturbations grew as δ ∝ a2, until they entered the horizon due to the expansion
of the Universe, leading to a difference in growth as a function of scale k encapsulated in T (k).

We have to introduce a few additional tools before we can generalise these results to the
statistical observables of a cosmological survey. Firstly, we are working on finite domains
where homogeneity and isotropy are not directly applicable. The latter symmetry can be
approximately satisfied on scales smaller than the domain size and if we restrict the consid-
eration to fields with periodic boundary conditions, one can obtain translation invariance.
Secondly, in a cosmological survey we measure correlations between the projected fields and
not the full 3D information. These two quantities can be related to one another through the
Limber approximation (Limber, 1953). For an isotropic and homogeneous random field with
two-point correlation function ξij (|ri − rj |) with r = (x, χ) where χ is the coordinate along
the line-of-sight projection this approximation reads

∫ ∫
G(χ1, χ2)ξij (|ri − rj |) dχ1 dχ2 ≈

∫ ∫
G(χ1, χ2)ξij (|xi − xj |) δd(χi − χj) dχ1 dχ2 ,

(1.2.24)
with

ξij (x) =
∫
ξij

(√
x2 + χ2

)
dχ . (1.2.25)

This approximation is valid if the function G(χ1, χ2) only varies weakly with χ1 and χ2 on
scales where the correlation has dominant contributions which is the case in this thesis. We
will primarily explore projected cross-correlations between the matter and the galaxy fields
(gravitational lensing) and auto-correlations of the galaxy field (galaxy clustering).

1.2.3 Perturbations and the Zel’dovich approximation

Having introduced the mathematical toolset to describe structure formation, we now proceed
by discussing the evolution of matter density perturbations and how they yield the large-scale
structure of the Universe. Broadly, this Section draws heavily from the following books and
reviews: Dodelson (2003); Mo et al. (2010); Kilbinger (2015).

We can introduce first-order scalar perturbations to the FLRW metric induced by matter
perturbations. In the Newtonian gauge, the perturbations can be expressed using solely the
diagonal elements of the metric. The line element then takes the form

ds2 = −
(

1 + 2Ψ
c2

)
c2dt2 + a2(t)

(
1− 2Φ

c2

)
dl2, (1.2.26)

where Ψ and Φ are the Bardeen potentials and they satisfy Ψ/c2, Φ/c2 � 1. In the absence
of anisotropic stress, which is true in the standard cosmological paradigm5, Φ = Ψ. This
assumption can be tested by combining weak gravitational lensing (which as we shall see is

4Perturbations on scales smaller (greater) than the Hubble radius are known as subhorizon (superhorizon).
During inflation, superhorizon perturbations were in causal contact.

5This equality can be computed using the trace-free part of the stress-energy tensor. Baryons and dark
matter can be described as perfect fluids and the photonic anisotropic stress component only starts to appear
during the matter-dominated epoch when the corresponding energy density is subdominant. The only source
of note are free-streaming neutrinos, which are expected to have a small impact.
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sensitive to the combination Φ + Ψ which describe the path of photons) and galaxy cluster-
ing observations (since the gravitational acceleration of non-relativistic particles, i.e. galaxy
components, is solely determined by Ψ) where deviations could point towards modifications
of gravity (e.g. Weinberg et al., 2013; Reyes et al., 2010; Leonard et al., 2015). This is one
of the reasons why it is interesting to compute the joint predictions for these probes as is
done in this thesis. We will primarily concern ourselves with subhorizon perturbations whose
evolution can be described in a purely Newtonian formalism. In the matter-dominated era,
perturbations are sourced through the Poisson equation (the 00:th component of the field
equations) as

Φk = −3
2H

2Ωma
2 δk
k2 , (1.2.27)

where δk are the amplitude of the fluctuations and k their wave modes6. These fluctuations
occur around the mean density ρ̄, i.e. δ = (ρ − ρ̄)/ρ̄ and can be shown to evolve as (e.g.
Peebles, 1993)

δ̈ + 2H(t)δ̇ − 4πGρδ = 0. (1.2.28)

The evolution can be decomposed into a growing and a decaying mode, where we neglect the
latter as surviving perturbations observed today come from the growing mode. Eq. (1.2.28)
expressed in terms of the linear growth factor D(t)

D̈ + 2HḊ − 3
2H

2
0 Ωm(1 + z)3D = 0, (1.2.29)

and matter perturbations evolve as δ(x, t1) = D(t1)/D(t0)δ(x, t0) for t1 > t0 where one
typically normalises the linear growth such that D(t0) = 0. We can write an analogous
expression for the power spectrum since the linear growth affects all perturbations independent
of position and thus all their wave modes equally. This means that the density field, as
well as the gravitational acceleration and the peculiar velocities, have a self-similar time
evolution. Can we describe how the particles themselves move as the perturbations evolve?
To first order in Lagrangian perturbation theory7, the result is captured by the Zel’dovich
approximation (Zel’Dovich, 1970), where one computes an initial displacement field for the
particles, considered as individual fluid elements, and then assume that they will continue to
move in this direction. In physical coordinates, this can be expressed as (Peacock, 2003)

x(t) = a(t)q + b(t)Ψ(q), (1.2.30)

where b(t) is a function which scales the initial displacement Ψ(q) where q is the initial
comoving position (Lagrangian position) and x the final position at t (Eulerian position).
This field can be computed from the gradient of the potential Ψ(q) = ∇Φ(q). Linearising
the density relation yields δ = −b/a∇ ·Ψ which means that the ratio b(t)/a(t) = D(t), i.e.
that

x(t) = a(t) (q +D(t)Ψ(q)) , (1.2.31)
6At linear order all k are decoupled from one another.
7We can write Eq. (1.2.30) as x = q + Ψ(q, t) with Ψ = Ψ(1) + Ψ(2) + . . . with Ψ(1) as the Zel’dovich

approximation (White, 2014).
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where the approximation was suggested to be valid for extrapolations of structure growth
into the regime δ ∼ 1 where displacements no longer are small8. We will use this expression
for the cosmological rescaling algorithm to modify the large-scale perturbations to account
for residual differences in the power spectrum between the target and rescaled cosmologies.

1.2.4 Halo formation
This Section details how dark matter haloes form from matter perturbations in the nonlinear
regime. We consider the classical Einstein-de Sitter solution, then point out the steps to
generalise the relation and conclude by introducing the basic principles of Press-Schechter
theory and excursion sets. This Section draws inspiration from Shi (2017); Mo et al. (2010).
Consider the classical spherical collapse model in an Einstein-de Sitter universe (Ωm = 1)
(Gunn & Gott, 1972; Lahav et al., 1991), for a spherically symmetric overdense shell with
initial amplitude ∆i = (Mi − M̄i)/M̄i within a radius Ri of where M̄i = (4π/3)ρ̄R3

i . As the
shell expands, it encloses the same mass unless different shells start to cross. In this universe
without a cosmological constant, the radius R evolves according to the Newtonian potential

R̈ = −GMi

R2 , (1.2.32)

which can be readily integrated to

Ṙ2 = 2GMi

R
−K, (1.2.33)

with curvature K = 8πGρ(ti)R2∆i set by the initial conditions. Setting K = 0 is equivalent
to computing the Hubble expansion for the Einstein-de Sitter universe itself, for which we
can integrate the equation once more to arrive at:

REdS = 1
2(GMi)1/3(6t)2/3, (1.2.34)

from which we realise that R→∞ as t→∞. ForK > 0, i.e. for an initial matter overdensity,
the equation has a solution

R(θ) = GMi

K
(1− cos θ), (1.2.35)

t(θ) = GMi

K3/2 (θ − sin θ), (1.2.36)

from initial times t = 0 and R = 0. At θ = π, R reaches its maximum Rmax = GMi/K
at time tmax = πGMiK

3/2, which is known as the turnaround time marking the transition
between the weakly non-linear and non-linear regimes, and the structure collapses again at
θ = 2π for tcoll. = 2tmax. If we compare the radial solution for the whole universe and the one
for the overdensity at tmax we find

ρmax
ρ̄

= R3
EdS(tmax)
R3
max

=
(3π

4

)2
≈ 5.55, (1.2.37)

i.e. the sphere is 5.55 denser than the average density of the universe. Of course, it is
physically implausible for the sphere to collapse fully due to imperfections in the symmetry

8At this point mode coupling becomes important.
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coming from gradient instabilities which appear as soon as shell-crossing occurs. Instead a
virialised nonlinear structure supported by its velocity dispersion is formed at Rvir following
the virial theorem T = U/2 where T is the kinetic and U the potential energy. That is

T = U(Rvir)
2 = − GM

2Rvir
= U(Rmax) = − GM

2Rmax
, (1.2.38)

which means that Rvir = 1/2Rmax at which Eq. (1.2.37) reads

ρvir
ρ̄

= R3
EdS(tcoll.)
R3
vir

= 18π2 ≈ 178, (1.2.39)

which is the origin of the density threshold ∆ = 200 in common halo definitions. Using linear
theory, this threshold corresponds to δc(tcoll.) ≈ 1.686. For a more realistic, flat universe with
a cosmological constant Λ > 0, one has to modify Eq. (1.2.32) by adding a term +Λ/3R to
the lefthand side and the whole derivation can easily be modified to account for it (Lahav
et al., 1991; Lacey & Cole, 1993). This has the net effect of slightly increasing ∆ which can
be approximated as (Bryan & Norman, 1998)

∆ ≈ 18π2 + 82x− 39x2

Ωm(tvir.)
, x = Ωm(tvir.)− 1. (1.2.40)

The new spherical collapse threshold can be approximated by the following expression with
1 % accuracy (Mo et al., 2010)

δc(tcoll.) ≈ 1.686 (Ωm(tcoll.))0.0055 , (1.2.41)
which implies a very weak scaling with the background cosmology. It is not true in general
that perturbations grow with perfect spherical symmetry. More realistic models consider
ellipsoidal collapse (e.g. Bond & Myers, 1996; Sheth et al., 2001). The first structures to
form are sheet-like pancakes (collapse along the first, shortest ellipsoidal axis), then filaments
(collapse along the second axis) and lastly virialised dark matter haloes (third axis). Together
they constitute the cosmic web.

Going beyond this simple setup analytically is a daunting task and that is why halo forma-
tion is studied numerically using gravity-only N−body simulations (see Section 2.2). These
simulations allow us to track the entire history of a halo and identify the initial Lagrangian
patch in the initial conditions corresponding to a proto-halo. These smaller regions gradu-
ally collapse and merge with each other to form larger haloes. A general feature of ΛCDM
universes is that they predict structures on multiple scales. Within a virialised halo, addi-
tional density peaks corresponding to bound substructures can be present. These are known
as subhaloes. Linking the evolution of these subhaloes across cosmic time in a cosmological
simulation allows the construction of merger trees.

1.2.5 Halo profiles
We measure the spatial cross-correlation between the halo and matter fields in our simulations
to obtain mass profiles in 3D and 2D. In 3D, we consider spherically averaged radial matter
density profiles for haloes as a function of halo mass. As a model for comoving matter density
profiles of haloes, we consider the NFW profile (Navarro et al., 1996, 1997):

ρNFW(r) = ρcrit(z)δc
(r/rs)(1 + r/rs)2 . (1.2.42)



1.2 Statistical properties of cosmic structure formation 11

Here, δc denotes the characteristic density of the halo, rs its scale radius, and ρcrit(z) the
comoving critical density at halo redshift z. For a spatially flat universe with cold dark
matter (CDM) and a cosmological constant Λ, ρcrit(z) = 3H2

0 (8πG)−1E(z)2(1 + z)−3, where
G is the gravitational constant, and E(z)2 = Ωm(1 + z)3 + (1− Ωm).

For a given overdensity threshold ∆, one may define the halo radius r∆c as the radius at
which the mean interior density is ∆×ρcrit(z). The halo concentration c∆c is then defined by
c∆c = r∆c/rs with the associated halo mass M∆c = ∆(4/3)πr3

∆cρcrit(z) and the characteristic
density δc

δc = ∆
3

c3
∆c

ln(1 + c∆c)− c∆c/(1 + c∆c)
. (1.2.43)

We also consider as halo radius r∆m, at which the halo’s mean interior density is ∆ times
the cosmic mean. The associated halo concentration c∆m = r∆m/rs, and the halo mass
M∆m = ∆(4/3)πr3

∆mΩmρcrit(0).
In addition, we also model the density field with Einasto profiles (Einasto, 1965):

ρEinasto(r) = ρs exp
(
− 2
α

[(
r

rs

)α
− 1

])
, (1.2.44)

where α denotes a profile shape parameter, rs the scale radius, and ρs is a density normalisa-
tion parameter. The shape parameter is connected to the local average density in the initial
field, encompassing the peak curvature (Gao et al., 2008; Ludlow & Angulo, 2017). Following
L16, we fix α = 0.18.

1.2.6 Press-Schechter and excursion sets

We would like to describe how many haloes are formed given a certain cosmology and how
they can be related to the evolution of density fluctuations, given the threshold of collapse
presented in the previous Section. This Section mainly traces the following references: Musso
(2016); Desjacques et al. (2018). We will also sketch an interpretation of the cosmological
rescaling algorithm of Angulo & White (2010), which we extend in this thesis in Chapter 3,
in this light.

The number of haloes at a given mass can be computed from the halo mass function
(HMF) which can be written as

dn = n(M) dM , (1.2.45)

with dn being the distribution of haloes with masses M ± dM /2.
Suppose that we would like to find an analytic expression for Eq. (1.2.45) based on the

formation model of cosmic structures from the evolution of the density field. We can filter
the density fluctuations δ(x) with x = x(t), so that we neglect fluctuations below a certain
radial scale R∗, by convolving the field with a filter function WR∗ ,

δ(x; r∗) =
∫
δ(x′)WR∗(x− x′) d3x′ . (1.2.46)

A popular choice is a spherical top-hat function,

Wr∗(x− x′) =
{

1, |x− x′| < r∗,

0.
(1.2.47)
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Enclosed within this (Lagrangian) radius R∗ is a mass M = 4π/3 · ρ̄mR3
∗, with ρ̄m as the

mean density of the universe at a certain redshift. We can measure the amplitude of the
power spectrum convolved with a spherical top-hat function as the variance of the spectrum
given by

s(z) = σ2
M (z) = σ2

R∗(z) = 1
2π2

∫
k2Pm(k, z)Ŵ2

R∗(k) dk , (1.2.48)

which depends on redshift which can be factored out as

σ2(R, z) = D2(z)
∫ ∞

0

1
4πk

2P (k, 0)W2(kR) dk

= D2(z)σ2(R, 0).
(1.2.49)

The special case with a spherical top-hat function with radius R = 8h−1 Mpc yields the
cosmological parameter σ8. The RMS of the fluctuations in galaxy numbers within such
spheres has been found to be close to unity (e.g. Davis & Peebles, 1983; White et al., 1993)
and this is why it is conventional to measure the amplitude of the density fluctuations using
this normalisation. For a power spectrum P (k) ∝ kn, the variance scales as σ2(R) ∝ R−(n+3),
which allows us to write (Mo et al., 2010)

σ2(R, t) =
(

M

M∗(t)

)−(n+3)/3
, (1.2.50)

where
M∗(t) ∝ (D(t))6/(n+3). (1.2.51)

The spectral index n is greater than > −3 for all length scales for cold dark matter (and for
baryons on scales greater than the Jeans length, see Section 1.6). This means that structures
form bottom-up, i.e. smaller structures gradually grow to form larger ones.

With these definitions, we outline the principles of excursion sets9 (e.g. Bond et al., 1991;
Lacey & Cole, 1993). Each position xi has an associated matter overdensity, δR(xi) on the
smoothing scale given by R, whose stochastic trajectory over the different smoothing scales
we follow. The overdensity field δ is then the ensemble of all trajectories. Haloes form from
(i) the largest patches whose initial mean density evolved linearly to the present exceeds the
threshold of spherical collapse δc with radius R. We can scale this threshold with the linear
growth rate as δc/D(z) to acquire the threshold at higher redshift. Since the barrier height
shrinks with 1/D(z) the barrier is the lowest at z = 0 and is higher for higher redshifts.
(ii) The smoothing scales are ordered10 in such a way that δ(R′) > δ(R) for R′ < R, which
translates to an axis of 1/R vs. δR. As σ is a monotonic function of 1/R, they are equivalent
variables. This setup is illustrated in Fig. 1.1 for the linear density field, which follows a
stochastic trajectory for the different smoothing scales measured at two points xi and xj .
The first up-crossing of the barrier marks the halo formation. Since xi crosses at a larger
radius, the corresponding halo is more massive.

We would like to find a function11 f(s), which describes this barrier crossing yielding the
HMF through

dn
dM = ρ̄

M

ds
dMf(s). (1.2.52)

9Also known as extended Press-Schechter theory.
10This circumvents the cloud-in-cloud problem (e.g. Peacock & Heavens, 1990).
11Equivalently f(R) or f(M).
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Press and Schechter (Press & Schechter, 1974) constructed a mass function

fPS (σm) =
√

2
π

δc
σm

e−
1
2

(
δc
σm

)2
(1.2.53)

which corresponds to any crossing of the barrier and had to be normalised by hand by a
factor of two to reconcile it with observations. This fudge factor comes from that underdense
regions at scale R could be embedded in overdense regions at R′ > R, which is known as the
cloud-in-cloud problem (e.g. Peacock & Heavens, 1990), i.e. the crossing at any radii. Semi-
analytical extensions of this formula have attained a better agreement with observational
data. A popular choice is the Sheth-Tormen (Sheth & Tormen, 1999) halo mass function.

We will now discuss the concept of cosmological rescaling (Angulo & White, 2010). Sup-
pose that we would like to match the growth history and variance of the linear matter power
spectrum between two different simulations. This could be expressed as the minimisation of
the integral

δ2
rms

(
α, z′

)
= 1

lnR1 − lnR2

∫ R2

R1

[
1− σ

(
α−1R, z′

)

σ′ (R, zfin)

]2 dR
R

, (1.2.54)

between two smoothing scales R1 and R2 which are dilated by a length scale factor α.
In this language, varying σ8 translates to varying the smoothing radii 1/R, since the

matter field on average is smoother on large scales and less smooth on smaller scales. Varying
Ωm induces a variation in the growth rate, which for a flat ΛCDM cosmology depends on
Ωm and z, which causes a variation of the barrier height. Finding the rescaling parameters
α and z′∗ is equivalent to evaluating the variance of the ensemble of trajectories between two
smoothing lengths 1/R2 and 1/R1 for different barrier heights which constrains δ and its
derivative dδ/dR or equivalently dδ/dσ. Alternatively, we can consider the scenario with a
fixed barrier δcrit. over all redshifts, switch variables to σ on the x-axis and rescale σ according
to Eq. (1.2.49) with the linear growth rate. Then, finding the rescaling parameters correspond
to adjusting a range of scales between 1/R2 and 1/R1 with α in the fiducial cosmology and
progressively sweep smaller and larger scales with D(z). Trajectories with a less steep initial
slope dδ/dR at large radii will then eventually cross the barrier at smaller scales (higher
redshifts) with a steep slope. The first setup is slightly preferable intuitively as the variations
in σ8 and Ωm are confined to separate axes.

The steepness of the derivative dδ/dR at the barrier first-crossing determines the concen-
tration of the haloes (e.g. Lacey & Cole, 1993), as the time derivative of the mass accretion
Ṁ is inversely proportional to the derivative.

Varying the redshift z∗ in the target cosmology imposes a constraint on the growth rate,
which helps to better constrain the derivative dδ/dR. δ and its derivative dδ/dR form a
system of differential equations which determine f(R), at the first crossing of the barrier of the
trajectories (Bond et al., 1991; Musso & Sheth, 2012) with correlated steps. However, to make
it work properly, one must introduce an additional correlation between density trajectories of
positions xi, xj which are close in real space, which can be done by appropriately rescaling
the Press-Schechter mass function (Sheth & Tormen, 1999) or by imposing a peak constraint
(Paranjape & Sheth, 2012; Paranjape et al., 2013) from peak theory (Bardeen et al., 1986)
as well as introduce scatter in the barrier height, for instance as δcrit. → δcrit. + βσ with
β as a log-normal distributed random variable to account for a worse agreement at low
masses, since such haloes do not exclusively form around peaks in the initial overdensity
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Figure 1.1: Here, we illustrate cosmological rescaling in an excursion set framework with the barrier
threshold for halo formation on the y-axis and corresponding smoothing radii on the x-axis. In this
simplified picture, rescaling can be imagined as the minimisation of the ensemble of density trajectories
between certain smoothing radii, given by the halo masses one would like to study. Varying the
smoothing scale through the length rescaling parameter α changes the interval on the x-axis and
variation of the redshift parameter z∗ translates to different halo formation thresholds.

field. Still, the nature of β is not completely clear, although it has recently been related to
tidal shear forces in the initial density field (Castorina et al., 2016), and the peak constraint
alone cannot properly account for the actual ellipticities of protohaloes (Ludlow & Porciani,
2011; Hahn & Paranjape, 2014). By rescaling a simulation we implicitly assume that these
correlations evolve in a similar manner in the fiducial and the target cosmology from similar
initial conditions. We continue this argument in Chapter 3, where we show what rescaling
implies for the internal structure of dark matter haloes.

The final tuning of the algorithm involves computing the Lagrangian displacements of
the particles using the Zel’dovich approximation (see Section 1.2.3) to compensate for resid-
ual differences in the linear power spectrum, which can be computed easily, see Chapter 3.
Practically, one computes the smoothing scale RNL which corresponds12 to σ′(RNL, z

∗) = 1.
All modes that are larger than this scale lies in the linear regime, and can then be adjusted
through the approximation which can be expressed as

qi = x−D(z)Sk(q; α−1Rnl) (1.2.55)

for the displacement field S computed according to the following low-pass filter which allows
for the separation of the long modes.

D(z)Sk(q; α−1Rnl) =
{
D(z)Sk(q), |k| < α/RNL,

0, |k| > α/RNL.
(1.2.56)

Afterwards, these modes are added back in when they have been scaled by the square-root of
the target-to-fiducial ratio of the linear power spectrum as

D′(z′)S′(q; Rnl) =




αD(z)

[
P ′(k)

α3P (αk)

]1/2
Sαk(q), |k| < 1/RNL,

0, |k| > 1/RNL.
(1.2.57)

12Or by picking something slightly more conservative like σ′ = 0.7.



1.3 Gravitational lensing 15

We use this additional correction in Chapter 3 for one of our extreme cosmologies and show
that it has negligible impact for the measured small-scale halo profiles as all particles are
moved jointly.

1.3 Gravitational lensing
We now continue by reviewing the basic principles of gravitational lensing with a focus on
weak gravitational lensing which is the main observable in this thesis. This Section gener-
ally charts the following reviews and references Bartelmann & Schneider (2001); Schneider
(2003); Kilbinger (2015). Photons travel along null geodesics, i.e. ds = 0, which means that
Eq. (1.2.26) with Φ = Ψ tells us that at first order

t = 1
c

∫ (
1− 2Φ

c2

)
dxphys, (1.3.1)

with n = 1− 2Φ/c2 as an effective refractive index in the neighbourhood of the perturbation.
We can apply Fermat’s principle δt = 0 (e.g. Schneider, 1985; Blandford & Narayan, 1986)
to arrive at the Euler-Lagrange equations for this index, i.e. the geodesic equation for the
transverse motion. Integrating these equations along the light path gives a relation for the
local deflection angle α between the received and emitted light rays as

α = − 2
c2

∫
∇⊥Φ dxphys, (1.3.2)

where the gradient is taken perpendicular to the light path. This equation has to be gener-
alised for cosmological applications. For a potential Φ located at comoving distance χ′ from
an observer the deflection reads dα = −2/c2∇⊥Φ(x, χ′)dχ′ in the comoving frame. Given
two neighbouring geodesics in an FLRW universe, their unperturbed transverse separation
x0 for an observer at comoving distance χ would be proportional to the comoving angular
distance fK(χ) in Eq. (1.2.3) for a small angle θ (e.g. Schneider et al., 1992; Seitz et al., 1994)

x0 = fK(χ)θ, (1.3.3)

which means that the differential displacement of the source at χ as seen from the deflecting
potential at χ′ is dx = fK(χ− χ′)dα and the total deflection for the observer is obtained by
integrating this quantity along the line-of-sight, i.e. along χ′ from χ to 0, that is

x(χ) = fK(χ)θ − 2
c2

∫ χ

0
fK(χ− χ′) [∇⊥Φ(x(θ, χ′), χ′)−∇⊥Φ0(χ′)

]
dχ′, (1.3.4)

where Φ0 denotes the potential along a second undeflected light ray. If we let β denote the
un-lensed observed angle for the observer, i.e. β = x/fK(χ), Eq. (1.3.4) gives the difference
between the apparent angle θ and the deflection angle α in the lens equation β = θ−α with

α = 2
c2

∫ χ

0

fK(χ− χ′)
fK(χ)

[∇⊥Φ(x(θ, χ′), χ′)−∇⊥Φ0(x(χ′)
]
dχ′, (1.3.5)

This equation can be simplified by replacing x in the integral with its 0:th order solution in
Eq. (1.3.3) which is possible under the assumption that the change in the comoving separa-
tion due to deflection between the actual light rays is small w.r.t. comoving separation of
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unperturbed rays. This is known as the Born approximation and allows one to replace the
difference between the perpendicular potential gradients with the perpendicular gradient of
the difference between the two potentials, i.e. that we compute the potential gradient along
the unperturbed ray. Computing the potential difference is thus equivalent to adding a term
which depends on χ′ only, which means that we can rename the difference ∆Φ = Φ. More-
over, we can construct a linearised mapping between the source and image plane through the
Jacobian A = ∂β/∂θ, i.e.

Aij = δij −
2
c2

∫ χ

0

fK(χ− χ′)fK(χ′)
fK(χ)

∂2

∂xi∂xj
Φ(fK(χ′)θ, χ′) dχ′, (1.3.6)

where the second term can be considered as a gradient of a 2D lensing potential ψ

ψ
def= 2

c2

∫ χ

0

fK(χ− χ′)fK(χ′)
fK(χ) Φ(fK(χ′)θ, χ′)dχ′, (1.3.7)

which allows us to parameterise the matrix A as

A =
(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
, (1.3.8)

with the scalar convergence κ = 1/2∇2ψ and the spin-2 shear γ = γ1 + iγ2 with components
γ1 = 1/2(∂1∂1 − ∂2∂2)ψ and γ2 = ∂1∂2ψ with κ, |γ| � 1 in the case of weak gravitational
lensing. In this limit the mapping between the source and image plane is one-to-one. We
can distinguish between different cases of weak lensing depending on the objects involved;
lensing of the large-scale structure of the Universe by itself is known as cosmic shear and
lensing of background galaxies by specific foreground galaxies is called galaxy-galaxy lensing
(e.g. Brainerd et al., 1996; Fischer et al., 2000), which is the subject of this thesis. Cosmic
shear, first detected by Bacon et al. (2000); Kaiser et al. (2000); Van Waerbeke et al. (2000);
Wittman et al. (2000), can be used solely (e.g. Heymans et al., 2013; Hildebrandt et al., 2017;
Hikage et al., 2018) or in combination with galaxy-galaxy lensing and galaxy clustering to
constrain cosmological parameters (Joudaki et al., 2018; van Uitert et al., 2018; Abbott et al.,
2017a) in so-called 3× 2-pt correlation function measurements.

The inverse determinant of A describes a magnification of the sources. Extracting (1−κ)
from Eq. (1.3.8) which only affects the size, one discovers that the shape distortion of the
sources can be captured by the reduced shear gi = γi/(1− κ) which can be described by the
shear to first order. As the scatter in galaxy shapes is smaller than the scatter in sizes, we
are primarily interested in this quantity to extract information about gravitational potential
perturbations along the line-of-sight, see Fig. 1.2. In the case of perfect circular sources,
Eq. (1.3.8) with the reduced shear tells us that one could obtain a direct estimate of the
reduced shear through the axis ratio b/a = (1 − |g|)/(1 + |g|). In the real Universe, sources
also have intrinsic ellipticities of the same order as the shear which mean that we have
to extract the lensing effect statistically by local averaging under the assumption that the
intrinsic ellipticities are randomly oriented. If I(θ) describes the brightness distribution of
an image on the sky, its centre is given by

θ̄ =
∫
q(I(θ))θ d2θ∫
q(I(θ))d2θ

. (1.3.9)
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Figure 1.2: Weak gravitational lensing of background galaxies by two foreground dark matter over-
densities (dashed lines) with the associated curved spacetime illustrated as a warped grid. The observed
images of the galaxies (lower panel) are more elliptical than the fiducial shapes (upper panel). Credit:
American Physical Society/Alan Stonebraker with galaxy images from STScI/AURA, NASA, ESA,
and the Hubble Heritage Team (Heymans, 2015).

with q as a weight function. The second order brightness moments can then be computed as

Qij =
∫
q(I(θ))

(
θi − θ̄i

) (
θj − θ̄j

)
d2θ

∫
q(I(θ))d2θ

. (1.3.10)

Analogously, we can define such second order moments for the un-lensed source

Q
(s)
ij =

∫
q
(
I(s)(β)

) (
βi − β̄i

) (
βj − β̄j

)
d2β

∫
q
(
I(s)(β)

)
d2β

, (1.3.11)

where d2β = detA d2θ and β − β̄ = A
(
θ − θ̄

)
gives that

Q(s) = AQAT = AQA, (1.3.12)

with A = A(θ). Defining two complex ellipticities ζ and ε which can easily be converted into
one another

ζ
def= Q11 −Q22 + 2iQ12

Q11 +Q22
, ε

def= Q11 −Q22 + 2iQ12
Q11 +Q22 + 2(Q11Q22 −Q2

12)1/2 , (1.3.13)

gives the transformation rules

ζ(s) = ζ − 2g + g2ζ∗

1 + |g|2 − 2Re [gζ∗] , ε
(s) =





1−g∗ε
ε−g , |g| 6 1,
ε∗−g∗
1−gε∗ , |g| ≥ 1.

(1.3.14)

The assumption of random orientation then means
〈
ζ(s)

〉
=
〈
ε(s)
〉

= 0, (1.3.15)

which yields (Schramm & Kayser, 1995; Seitz & Schneider, 1997)
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〈ε〉 =
{
g, |g| 6 1
1/g∗, |g| ≥ 1,

(1.3.16)

which means that each image ellipticity is an unbiased estimator of the shear field with noise

σε =
√〈

ε(s)ε(s)
∗
〉
, (1.3.17)

which can be mitigated by averaging over N images to arrive at a signal-to-noise ratio ∼
γN1/2/σε above unity. The keys to successful weak lensing measurements are thus a high
number density of background galaxies, a large survey area and good shape measurements.
An effective number density neff can be expressed as (Chang et al., 2013)

neff = 1
A

∑

i

σ2
ε

σ2
ε + σ2

m, i
, (1.3.18)

where the sum goes over all background galaxies i in survey area A with σm, i as the shape
measurement error for galaxy i. Variations thereof are used to define the effective number
densities in the different weak lensing surveys, depending on the shape measurement pipeline,
allowed redshifts and masking used. For the current wide-field lensing surveys13 such as the
Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) the number reads 11 arcmin−2

(Heymans et al., 2012), for the source catalogue from the Sloan Digital Sky Survey (SDSS)
used in this thesis 1.2 arcmin−2 (Reyes et al., 2012), for the sources in the Kilo-Degree Survey
(KiDS) also featured in this thesis 5.98 arcmin−2 (Kuijken et al., 2015), for the Dark Energy
Survey (DES) Y5 10 arcmin−2 (The Dark Energy Survey Collaboration, 2005) and lastly
for the Hyper Suprime-Cam SSP Survey (HSC) 21.8 arcmin−2 (Mandelbaum et al., 2018b),
the best in the current generation. In the next decade the corresponding numbers will be
26 arcmin−2 for the ground-based Large Synoptic Survey Telescope (LSST) (Ivezić et al.,
2008) with expected increase of ∼ 20 % due to improved modelling (Chang et al., 2013), > 30
arcmin−2 for the Euclid satellite (Laureijs et al., 2011), and 45 arcmin−2 for the Wide Field
Infrared Survey Telescope (WFIRST) satellite (Spergel et al., 2015).

We will not discuss challenges in measuring the shear nor estimating the photometric
redshift (photo-z) distributions of background and lens galaxies and direct the interested
reader towards (e.g. Kuijken et al., 2015; Hildebrandt et al., 2017; Zuntz et al., 2018; Hoyle
et al., 2018; Mandelbaum, 2018) for these most pertinent subjects for observational weak
lensing. Recently, it was proposed that biases in the calibration of the photo-z could drive
the congruence in cosmological parameters derived from cosmic shear measurements in DES
and HSC (Hildebrandt et al., 2018) with CMB observations, mitigating the tension, see
Section 1.5.

13For instance CFHTLens only covers ∼ 154deg2, whereas KiDS will cover ∼ 1500deg2 and DES
∼ 5000deg2. KiDS (Kuijken et al., 2015; Hildebrandt et al., 2017) offers a slightly better seeing than DES
(Troxel & DES Collaboration, 2018; Abbott et al., 2018) (∼ 0.7′′ vs. ∼ 0.9′′ median r-band point spread
function full width at half maximum, PSF FWHM), which determines how accurately galaxy shapes can be
measured, making the two surveys comparable at this point in time. The point spread function is the response
of an imagining system to a point source. HSC will cover ∼ 1400deg2 and also has excellent seeing (∼ 0.6′′
median i-band PSF FWHM) which together with its high background source density makes it the best lens-
ing survey of this generation (Mandelbaum et al., 2018a), although DES will provide the best low redshift
cosmological constraints thanks to its large area.



1.3 Gravitational lensing 19

Figure 1.3: Tangential shear of the ellipticity of background source galaxies around foreground matter
overdensities, i.e. haloes, (left panel) and underdensities, i.e. voids, (right panel).

The assumption of random orientation breaks down in the presence of intrinsic alignments
(IA) of galaxy ellipticity orientations (e.g. Hirata & Seljak, 2004; Troxel & Ishak, 2015). These
are caused by correlations between the intrinsic ellipticities and the matter field. For instance,
luminous red galaxies have been found to preferentially align towards overdense regions, which
is the opposite of the shear signal (see Fig. 1.3) which would induce an artificially low signal
(e.g. Okumura et al., 2009). The term which is present for galaxy-galaxy lensing is known as
the gravitational-intrinsic (GI) term. In the case of galaxy-galaxy lensing, errors in photo-z
calculations can mistakenly classify satellite galaxies physically associated with the lens as
background sources (e.g. Hirata et al., 2004; Mandelbaum et al., 2005; Blazek et al., 2012),
resulting in an IA contamination14. In the worst case scenario, this term has been estimated
to be at most ≈ 10 % for r = 0.1 − 10h−1 Mpc which is below or around the best current
statistical uncertainty for the signal, but with conservative photo-z cuts and reasonable IA
modelling it may lie on the order of 1−2 % (Blazek et al., 2012), suggesting that it will not be
an insurmountable problem for future surveys. Using currently available data, Blazek et al.
(2012); Chisari et al. (2014) find an IA signal consistent with zero. Galaxy-galaxy lensing can
also be used to calibrate the GI term for cosmic shear measurements (Blazek et al., 2012). In
this thesis we neglect the modelling of such effects as we measure the lensing signal from the
shearing of the matter field itself. IA effects are further moderated in the observational signal
we use for comparison with spectroscopic redshifts of the lenses and an enforced separation
between the redshifts for the peaks of the photometric redshift distributions and these lens
redshifts (e.g. Mandelbaum et al., 2005; Dvornik et al., 2017).

1.3.1 Galaxy-galaxy lensing (GGL)

In this Section we discuss galaxy-galaxy lensing (GGL), i.e. the weak gravitational lensing
scenario where background galaxies are lensed by individual foreground galaxies where the
signal is inferred from stacking, which is the main observational probe of this thesis. Since
its first detection by Brainerd et al. (1996), GGL has become well understood in terms
of statistical and systematic uncertainties. Recent GGL observations report signal-to-noise
ratios ∼ 120 (Viola et al., 2015). The available data will increase substantially from ongoing
and upcoming surveys such as the DES, KiDS, HSC, LSST, and the Euclid mission. This
creates new challenges for GGL theoretical modelling. This Section is primarily based on
Marian et al. (2015); Kilbinger (2015) following earlier theory work in Miralda-Escudé (1991);
Squires & Kaiser (1996).

14GI correlations could also be present among the background source galaxies but they disappear in a stacked
signal.
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We first express the convergence κ as a projected matter overdensity by substituting the
matter overdensity from the Poisson equation Eq. (1.2.27) into the lensing potential Eq. (1.3.7)
while adding an extra derivative ∂2/∂2χ along the line-of-sight, which approximately cancels
out in the integration leading to

κ(θ, χ) = 3H2
0 Ωm

2c2

∫ χ

0

1
a(χ′)

fK(χ− χ′)fK(χ′)
fK(χ) δ(fK(χ′)θ, χ′) dχ′. (1.3.19)

We start to show that the constituents of the lensing Jacobian matrix in Eq. (1.3.8) for a
circular aperture C with radius θ and border ∂C around a matter overdensity can be reduced
to an expression for the tangential shear component. Consider the average convergence κ
inside this aperture

〈κ(6 θ)〉C = 1
πθ2

∫

|θ′|6θ
κ(θ′) d2θ′ = 2

θ2

∫ θ

0
θ′ dθ′

( 1
2π

∫ 2π

0
κ(θ′, φ) dφ

)

= 2
θ2

∫ θ

0
θ′
〈
κ(θ′)

〉
∂C dθ′ .

(1.3.20)

Since
κ(θ′, φ) = 1

2
(
∂2
θ′ + ∂2

φ

)
ψ(θ′, φ), γt(θ′, φ) =

(
∂2
θ′ − ∂2

φ

)
ψ

γ×(θ′, φ) = ∂θ′∂φψ(θ′, φ),
(1.3.21)

in the interior of C with γt and γ× being the tangential and the cross-component of the shear
respectively as illustrated in Fig. 1.3, we can reformulate the expression as

〈κ(6 θ)〉C = 1
θ2

∫ θ

0
θ′ dθ′

( 1
2π

∫ 2π

0

(
∂2
θ′ + ∂2

φ

)
ψ(θ′, φ) dφ

)
. (1.3.22)

Using the divergence theorem15, we can immediately eliminate the term with ∂2
φψ and partial

integration followed by a consecutive application of the divergence theorem on the remaining
θ′ integral, leads us to deduce that

〈κ(6 θ)〉C = 1
2πθ

∫ 2π

0
∂θψ(θ, φ) dφ . (1.3.23)

Now, multiply this equation with θ and differentiate with respect to θ to acquire the derivative
with respect to the radius,

∂

∂θ
[θ 〈κ(6 θ)〉C ] = 1

2π

∫ 2π

0
∂θ∂θψ(θ, φ) dφ Eq. (1.3.21)= 〈κ(θ)〉∂C − 〈γt(θ)〉∂C , (1.3.24)

with θ′ → θ in Eq. (1.3.21). Likewise, we can perform the same differentiation using the last
integral expression in Eq. (1.3.20), yielding

∂

∂θ
[θ 〈κ(6 θ)〉C ] = −〈κ(6 θ)〉C + 2 〈κ(θ)〉∂C , (1.3.25)

which allows us to write the averaged tangential shear on the edge of the circle as

〈γt(θ)〉∂C = 〈κ(6 θ)〉C − 〈κ(θ)〉∂C , (1.3.26)
15The equivalence principle guarantees that boundary terms involving ψ and ∂θψ do not contribute.
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which tells us that the tangential shear of background galaxies is a direct measure of the
projected mass inside the aperture minus a boundary term. Consider a single lens at angular
diameter distance D. For such a setup, we can approximate Eq. (1.3.19) by

κ(θ) ≈ 4πG
c2

DlDls
Ds

∫ D+δD/2

D−δD/2
ρ̄δ(Dθ, D) dD , (1.3.27)

with Ds as the angular diameter distance to the source and Dls the distance between the
source and the lens. The prefactor can be combined into a critical surface mass density
Σ−1
crit

def= 4πG/c2DlDls/Ds which means that the equation reads κ(θ) = Σ(θ)/Σcrit. and we
can define a differential surface mass density ∆Σ as

∆Σ(θ) def= Σcrit 〈γt(θ)〉 = Σ(6 θ)− Σ(θ), (1.3.28)

which is our primary observable in this thesis (e.g. Miralda-Escudé, 1991; Squires & Kaiser,
1996; Wilson et al., 2001). Now, if we consider a background source galaxy distribution p(zs),
a foreground lens at redshift zl imprints a tangential shear as

〈γt〉 (θ) =
∫ ∞

0
p(zs)Σ−1

crit(zl, zs)∆Σ(θ) dzs , (1.3.29)

from which we can define an effective critical density as

Σ−1
crit = 4πG

c2 Dl

∫ ∞

zl+δ
p(zs)

Dls
Ds

dzs , (1.3.30)

to once again arrive at Eq. (1.3.28). We have shifted the integral to only consider background
galaxies distinct from the lens. This expression is suitable for the observational surveys quoted
in this thesis, SDSS and the Galaxy And Mass Assembly (GAMA) survey (Driver et al., 2011)
with KiDS background galaxies where the lenses have spectroscopic redshifts and the sources
photometric. Analogously, we can define a similar expression for the case where the lenses
as well have photometric redshift distributions suitable for surveys such as CFHTLenS, DES
and HSC. Observationally, the azimuthal symmetry mitigates errors associated with shape
measurements from PSF uncertainties. The mean cross-component 〈γ×〉 illustrated in Fig. 1.3
violates parity and is thus expected to vanish if we stack the signal from foreground galaxies
and their surrounding haloes which suppresses potential halo triaxiality contributions. One
could also consider stacking the signal around voids to obtain the opposite result which has
traditionally been quite challenging until recently with a claim of a 4.4σ detection (Sánchez
et al., 2017) but new promising hybrid approaches consider underdense and overdense lines-
of-sights as proxies (Gruen et al., 2016; Friedrich & DES Collaboration, 2018; Gruen & DES
Collaboration, 2018). Another often used null test for observational systematics is to compute
the signal around random points in the foreground sample and around objects such as stars
where the tangential shear also should be zero.

As analytical models, we consider NFW lenses (Wright & Brainerd, 2000; Baltz et al.,
2009). The lensing expressions are acquired by integrating the NFW density profile Eq. (1.2.42)
along the line-of-sight. Expressed in terms of the dimensionless ratio x = r/rs, the projected
surface mass density at a radius x is then acquired through16

Σ(x) = 2rs
∫ ∞

0
ρNFW(

√
l2 + x2)dl, (1.3.31)

16We ignore differences between halo density and overdensity profiles, since these do not affect the differential
excess surface mass density ∆Σ.



22 1. Introduction

whereas ∆Σ is given by Eq. (1.3.28). We restrict the comparison to scales . the halo virial
radii and leave modelling of the large scales for future studies. We do not model the lenses
with Einasto profiles as those are similar to NFW lenses (Retana-Montenegro et al., 2012;
Sereno et al., 2016).

The lensing signal is different for central, which reside in the centre of the host halo, and
satellite galaxies. We denote the central galaxy lensing signal as ∆Σcent, taken to be the
same as the halo signal, and ∆Σsat as the satellite signal. The joint central-satellite signal is
calculated as

∆Σjoint = fsat(1− fred)∆Σblue
sat + (1− fsat)(1− fred)∆Σblue

cent

+ fsatfred∆Σred
sat + (1− fsat)fred∆Σred

cent,
(1.3.32)

where fsat is the satellite fraction for a given stellar mass bin and fred the fraction of red
galaxies in that bin. The central signal is effectually the lensing of the host haloes, whereas the
satellite signal features a central sharpening from the presence of the subhalo which decreases
radially until the contribution from the central host halo kicks in as a central bump. The
radial distance between these two features reflects the average projected distance between the
satellites and their centrals.

1.4 Galaxy clustering

Having detailed the principles behind galaxy-galaxy lensing, we now proceed with a few notes
on the complementary galaxy clustering signal and how we measure it in this thesis.

Under the assumption of statistical isotropy, the spatial two-point correlation functions

ξgi(|r − r′|) =
〈
δg(r)δi(r′)

〉
, (1.4.1)

with i= g for the galaxy field with itself (galaxy clustering) and i=m for the galaxy field with
the matter field (galaxy-galaxy lensing) can be inferred from their projections following the
arguments in Section 1.2.2, integrated along the line-of-sight dl,

ωp(r) =
∫ ∞

−∞
ξgg
(√

r2 + l2
)
dl, (1.4.2)

Σ(r) = ρ̄

∫ ∞

−∞

(
1 + ξgm

(√
r2 + l2

))
dl, (1.4.3)

with ρ̄ as the average matter density, evaluated at the projected radius r with ωp(r) as
the projected clustering correlation function and Σ(r) as the projected surface mass density.
Observationally, this clustering correlation function was first measured by Baugh et al. (1996),
but it really took off around the turn of the millennium with the advent of the Two-degree
Field Galaxy Redshift Survey (2dFGRS; Colless et al., 2001) and SDSS (York et al., 2000).
Its theoretical potential to constrain the galaxy-halo relation was first discussed in Peebles
(1980) and explicitly as a means to constrain halo masses in Bardeen et al. (1986); Mo &
White (1996) due to the strong dependence of the signal on the host mass; although other
more complicated secondary dependencies might also play a role (e.g. Jenkins et al., 1998),
known as assembly bias, see Chapter 2. This is the reason why we are interested in examining
the signal in semi-analytical models of galaxy formation and hydrodynamical simulations.
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In this thesis in Chapter 4, we estimate the autocorrelation function ξ̂gg(r) using pair
counts according to the standard definition as

ξ̂gg(r) = V

〈Ngal〉2 V (r)
Ngal(r)− 1, (1.4.4)

where Ngal is the total number of galaxies in the snapshot, V the total volume, and V (r) and
Ngal(r) the volume and number of galaxies per cylindrical shell with radius r around each
galaxy. Effectually, the integration for ωp(r) in Eq. (1.4.2) is carried out to a maximal distance
lπmax to account for the uncertainty in determining galaxy redshifts. We set lπmax = 60h−1 Mpc
following Zu & Mandelbaum (2016). However, this choice primarily affects the clustering 2-
halo term. For the lensing signal we integrate along the entire line-of-sight.

1.5 Cosmological and large-scale structure constraints
In this Section we discuss how galaxy-galaxy lensing can be used to constrain four large-scale
structure parameters Ωm, σ8 (cosmological) and bg, r(ζ) (astrophysical).

As implied by Eq. (1.3.19), GGL is sensitive to a combination of the matter fraction Ωm
and amplitude of the fluctuations σ8. Galaxies are biased tracers of the underlying matter
field which on large scales can be described by a constant bg, the galaxy bias17, which depends
on the mass of the host haloes, in front of the density field perturbations in Eq. (1.2.22). Thus
large-scale galaxy clustering features an expression b2gPm(k) where Pm(k) is the matter power
spectrum and large-scale gravitational lensing bgrPm(k), with r as (Seljak, 2000; Guzik &
Seljak, 2001)

rgm(ζ) = ζgm√
ζggζmm

, (1.5.1)

with ζ = ξ or ξ̂ depending on whether we are working in real or in Fourier space as the cross-
correlation coefficient between the matter and galaxy field. In Fourier space this parameter
captures the stochasticity between the clustering of matter and clustering of galaxies. If we
are working in a region where r ≈ 1 or have a robust prediction for its scale dependence the
two probes can be combined to constrain (Baldauf et al., 2010; Mandelbaum et al., 2013)

ρ̄2
m
ζ2
gm
ζgg

= ρ̄2
mr

2
(ζ)ζmm, (1.5.2)

which on large scales is a product of Ωmσ8 and has a slightly more elaborate dependence Ωγ
mσ8

with γ ∼ 0.6 with some nonlinear contribution (e.g. Mandelbaum et al., 2013; Wibking et al.,
2018). This joint large scale GGL+clustering setup has been used in the current cosmological
analyses (Abbott et al., 2017a; van Uitert et al., 2018; Joudaki et al., 2018), see the left panel
in Fig. 1.4 for the results from DES, but future surveys and their smaller error bars calls for
sophisticated modelling of r(ζ) and bg. At sufficiently large scales, perturbation theory can be
used as in Baldauf et al. (2010); Mandelbaum et al. (2013), but on smaller scales one needs to
consider the actual population mechanisms of haloes, such as through halo occupation models
(e.g. Yoo et al., 2006; van den Bosch et al., 2013) or semi-analytical models (Simon & Hilbert,
2018). Observational measurements (e.g. Dvornik et al., 2018) can also be used to validate

17In general bg(k) which can be written as a perturbative expansion (e.g. Desjacques et al., 2018) with
nonlinear and stochastic terms appearing on small scales.
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Figure 1.4: Cosmological constraints from weak lensing measurements, from cosmic shear and galaxy-
galaxy-lensing with galaxy clustering (left panel) from DES (Abbott et al., 2017a) and constraints from
cosmic shear from KiDS including infrared data from the VIKING18 survey together with previous
survey results from KiDS, DES and HSC (right panel) (Hildebrandt et al., 2018).

these models and thus inform on the statistical relationship between the luminous and dark
matter fields.

However, these joint probe analyses do not necessitate a combination of GGL+clustering
using the same scales. It is also possible to use small-scale lensing information (Seljak et al.,
2005; Yoo & Seljak, 2012) to constrain the mean mass of the haloes as Mh is sensitive to
Ωmh

2 and then jointly minimise a data vector with (Mh, Ωm, σ8) together with large-scale
clustering (Seljak et al., 2005; Yoo & Seljak, 2012), but that also requires recipes on how to
populate haloes. In this thesis we do not make any cosmological parameter forecasts, but
rather tests these halo occupation recipes for semi-analytical models and hydrodynamical
simulations. This is a necessary step to (i) understand how to include the small-scale high
signal-to-noise GGL term in these analyses using self-consisted modelling, (ii) push the large-
scale lensing signal into the 1-to-2 halo transition regime with a comprehensive treatment of
the baryonic feedback.

As shown in Fig. 1.4, the current cosmological constraints on the joint (Ωm, σ8) parameter
combination from GGL+clustering measurements (γt × w) are comparable to those from
cosmic shear. Yet, the analysis has been restricted to scales > 8h−1 Mpc (clustering) and
> 12h−1 Mpc (galaxy-galaxy lensing) due to the difficulties to model the nonlinear scales,
showing the need of the small-scale analyses performed in this thesis, which will enable us to
include such high signal-to-noise signals, enabling tighter constraints than for cosmic shear.
As galaxy-galaxy lensing typically (i) has a larger amplitude, (ii) is less sensitive to photo-
z uncertainties since the measurement is carried out around specific foreground lenses, (iii)
possesses azimuthal symmetry which can be used to mitigate shear measurements errors, (iv)
is less prone to systematics such as IA, than cosmic shear, accurate small-scale modelling will
bring about a bright future for cosmologists.

18The VISTA Kilo-Degree Infrared Galaxy Survey (see e.g. Wright et al., 2018).
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In the right panel of Fig. 1.4, we illustrate the current best constraints on these cosmo-
logical parameters from cosmic shear from the different surveys previously introduced in this
chapter. It is a remarkable feat that all of them arrive at the same conclusion, favouring
a combination which is lower than the early Universe constraints from the Planck satellite
(Planck Collaboration, 2016a, 2018) from the CMB by about ∼ 2.3σ. If this tension persists,
it would signal a deviation from the flat ΛCDM model and thus new, exciting physics.

1.6 The galaxy-halo connection

Ending the previous Section on such a positive note, it is now time to start to discuss the
challenges of small-scale modelling, i.e. how we populate haloes with galaxies, and how 2-pt
correlation functions can be used to inform on these choices. This is known as the galaxy-halo
connection. We outline the mechanisms behind the collapse and growth of baryonic structures,
gas cooling as a prerequisite for star formation and how star formation is regulated through
feedback processes to reproduce the observed stellar-to-halo mass relation. More details on
the feedback from supermassive blackholes are covered in the subsequent Section.

Inside their host dark matter systems, galaxies are surrounded by a hot gas halo, might
feature a cool gas disk19 and a stellar component which can be decomposed into a disk and a
bulge component. For elliptical galaxies there is little to no cool gas left to feed star formation
and their morphology is featureless. Galaxies show many correlations between their global
properties and such correlations are called scaling relations. The fundamental principles of
galaxy formation have been throughly examined in the literature (e.g. White & Rees, 1978;
White & Frenk, 1991; Blumenthal et al., 1984) and Mo et al. (2010) and simulations are able
to reproduce a range of observables (see e.g. Somerville & Davé, 2015; Naab & Ostriker, 2017,
for recent reviews and outstanding theoretical challenges). Major uncertainties still surround
the implementation of the feedback processes due to the complex interplay between different
effects, which is what we investigate in Chapter 4 using GGL and clustering.

Apart from gravity, baryons also experience pressure forces. This means that they can be
stabilised against gravitational collapse. If we use the fluid equations (Euler, Poisson and the
continuity equations) for the perturbations, one arrives at the following dispersion relation
where cs is the speed of sound,

ω2 = k2c2
s

a2 − 4πGρ̄. (1.6.1)

This defines a characteristic Jeans length λJ
def= 2πa/kJ = cs

√
π/(ρ̄G) and for ω2 < 0. Before

recombination, the epoch where electrons and protons first became bound to form neutral
hydrogen atoms, cs ≈ c/

√
3. If we define a corresponding Jeans mass MJ within a sphere of

radius λJ/2, MJ ≈ 1017M� which is much larger than the mass of a galaxy; i.e. only pertur-
bations of the size of a supercluster could grow prior to recombination. After recombination,
the sound speed can be approximated as (Mo et al., 2010)

cs =
(

5kBT
3mp

)1/2

, (1.6.2)

19Except in the case of old massive elliptical galaxies.
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with kB as the Boltzmann constant and mp as the proton mass, which leads to an MJ ∼
106M� which is of the same order as a globular cluster. This means that baryons only
collapse on subgalactic scales after recombination, i.e. that they fall into the growing dark
matter haloes. In the halo, gas is stabilised by thermal motion.

As the gas falls into the halo it experiences shock heating at the halo boundary, increas-
ing the entropy. A priori the resulting gas temperature T , which can be computed from
the virial theorem, is too high to support star formation, which means that there has to be
some cooling mechanisms. The gas can get rid of the extra energy via radiative exchanges,
such as Bremsstrahlung, collisional ionisation followed by recombination and collisional ex-
citation followed by radiative de-excitation, where the dominant mode is determined by the
gas temperature. The first is most efficient for T ' 107 K when the gas is fully ionised. For
104 < T < 107 K, the second mechanism is the most important as atoms can decay into their
ground-state and electrons can recombine with ions. Below 104 K cooling manifests itself as
collisional excitation and de-excitation of heavy elements (metals) and molecular cooling. As
the gas cools it loses pressure support and will gradually be supported by angular momen-
tum. If the cooling time is short with respect to the dynamical time, gas can accrete directly
onto the proto-galaxy in a so-called cold mode accretion (e.g. White & Frenk, 1991; Birnboim
& Dekel, 2003). This primarily happens if the gas flows in along dense filamentary struc-
tures (Kereš et al., 2005). If the cooling time is longer, a pressure-supported hot gas halo in
pseudo-hydrostatic equilibrium may form where the gas gradually cools known as hot mode
accretion. Accretion can also happen through galaxy mergers, which allows the creation of
larger galaxies than otherwise allowed. Such events are typically associated with increased
star formation rates, known as starbursts. In addition mergers can feed the central galactic
supermassive black holes (SMBHs), which should exist in all spheroidal galaxies with strong
observational evidence (see e.g. Fabian, 2012), which might trigger morphological changes.
In this thesis we will study the impact of dynamical friction and how it sets the timescale of
galaxy mergers.

Star formation is initiated as soon as gas has collapsed into giant molecular clouds where
densities are sufficient to ignite nuclear fusion. Prior to that the gas has become self-
gravitating until it eventually collapses under its own gravity which yields a runaway process
in the absence of efficient cooling. As the density increases, the cooling becomes more effi-
cient. This is still an area of active research (see e.g. Kennicutt & Evans, 2012, for a recent
review with focus on the Milky Way).

What is the peak efficiency of star formation and how does it translate to the galaxy-halo
connection? Already the first models of galaxy formation pinpointed the need for feedback
processes to prevent all cooled gas from forming stars known as the “overcooling problem”
(White & Rees, 1978; Dekel & Silk, 1986; White & Frenk, 1991), with a proposed solution that
supernovae could eject gas. Currently, there is a consensus that several different processes
connected with massive stars and supernovae contribute to drive gas out of galaxies through
large-scale winds and to reduce the efficiency of star formation, such as photo-heating, photo-
ionisation and winds (see e.g. Hopkins et al., 2012), although the modelling implementations
differ.

Using empirical relations to model the galaxy-halo connection, which we briefly discuss
in Chapter 2, one can establish a stellar-to-halo mass relation for central galaxies which is
illustrated in Fig. 1.5 at z = 0.1. The ratio between the stellar and halo mass is the greatest
for haloes with ∼ 1012 h−1M� (Milky Way size haloes) and recedes towards lower and higher
halo masses. At the low mass end, feedback from supernovae and stellar winds impede the
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Figure 1.5: Constraints on the stellar-to-halo mass relation for central galaxies from abundance
matching (AM), empirical modelling (EM) and conditional stellar mass functions (CSMFs), where
more details are provided in Chapter 2. We see that galaxy formation reaches its maximum efficiency
for halo masses ∼ 1012 h−1 M� (Milky Way size haloes). Credit: Peter Behroozi (Behroozi et al.,
2018).

formation of stars. Moreover, at the very low mass end, reionization also plays a role as low
mass haloes are unable to retain their gas around z ∼ 6 (see e.g. Bullock et al., 2000).

If one moves on to higher masses, it is believed that feedback from the central SMBHs,
from active galactic nuclei (AGN), have had a significant effect20 on the formation history of
the galaxy (Silk & Rees, 1998; Croton et al., 2006). This is thought to be reflected in the
observed tight scaling relations between the mass of the SMBH and the bulge mass in low
redshift galaxies (e.g. McConnell & Ma, 2013). Indeed, simulations without any sort of AGN
feedback or other quenching mechanisms produced inverted colour-magnitude diagrams, i.e.
more massive galaxies where more likely to be blue and star forming (e.g. Gabor et al., 2011)
inconsistent with observations. We will discuss this feedback process in more detail in the
next Section.

So far, we have mostly detailed the star formation quenching scenarios for central galaxies.
The situation for satellites is slightly different, where they are influenced by the environment
of their host haloes (see e.g. Peng et al., 2012, for observational evidence in SDSS). There are
several possible mechanisms to decrease the star formation, such as galaxy harassment, tidal
and ram-pressure stripping and strangulation (see descriptions in Mo et al., 2010). In the
first case, the galaxy morphology and mass content of a satellite are affected by multiple high
speed encounters with other galaxies in a group or cluster. Not only high speed encounters
can remove outer material from a satellite; this can also happen in a static configuration
which is known as tidal stripping. In high mass clusters, the satellite can experience a drag
when traversing the intercluster medium which can remove its cold gas, which fuels the star
formation, and this is known as ram-pressure stripping. In the SAM from Henriques et al.

20The energy required to grow these massive objects exceeds the binding energy of the host galaxy (Silk &
Rees, 1998).



28 1. Introduction

(2015), this effect is restricted to haloesMh > 1014 h−1M�. Strangulation implies a depletion
of the gas reservoir surrounding the satellite due to tides or ram-pressure, which leads to a
slow decrease in star formation. We will not discuss these processes further, but the results of
Chapter 4 indicate that the implementation of these quenching mechanisms in state-of-the-
art models require more elaboration to match lensing observations from red satellite galaxies.
According to the models, they preferentially reside in high mass haloes, whereas the data
suggest otherwise.

1.7 AGN feedback

Feedback from active galactic nuclei (AGN) is generated through the interplay of the energy
and radiation from the accretion of material onto the central SMBHs, and the surrounding
gas in the host galaxies (see e.g. Fabian, 2012; Kormendy & Ho, 2013, for recent reviews with
focus on observational signatures and galactic co-evolution, respectively).

The clearest observational evidence comes from brightest cluster galaxies in cool core
galaxy clusters, which without energy input through kinetic feedback would be even more
massive and experience giant starbursts.

It is still unclear how the presence of AGNs affects the hosts where multiple effects might
be present during galaxy evolution (see e.g. Benson, 2010); they likely heat the gas radiatively
in the atmosphere of galaxies preventing the gas to cool. In addition, winds driven by radiation
from the broad line region surrounding the black hole, which lies outside the accretion disk,
may induce mechanical feedback on the galaxy itself. Moreover, the black hole might produce
highly collimated energetic jets in the low accretion state, which can reach far out in the halo.

Two modes of this feedback have been identified, which are separated according to the
energy outflow close to the black hole (Fabian, 2012). The first is known as the radiative or
quasar mode which was or is active in a typical bulge when the black hole was or is accreting
close to the Eddington limit21. Its main effect is to move cold gas around. The second mode
is known as radio or maintenance mode, which typically takes over when the galaxy has a hot
gas halo and/or is at the centre of a group or cluster and the accreting black hole produces
highly energetic jets. At the current epoch it tends to be present at lower Eddington fractions,
in more massive galaxies and in the presence of hot gas.

From the perspective of a computational astrophysicist there are several different ways
to implement the feedback (see e.g. Di Matteo et al., 2005; Springel et al., 2005a). In this
thesis we are primarily interested in the radio-mode, as the Munich SAM from Henriques
et al. (2015) associates the quasar mode with blackhole growth and the radio-mode with the
quenching of star formation. For the hydrodynamical simulations we analyse in Chapter 5,
we check if there is a better agreement for the predicted lensing mass profiles for massive
galaxies in the IllustrisTNG simulation which has an updated, more realistic AGN feedback
model with respect to the fiducial Illustris simulation, see the subsequent Chapter 2.

21The maximum luminosity an object can achieve as long as there is equilibrium between the radiative and
gravitational forces.



Chapter 2 Modelling techniques

In this Chapter we detail the techniques and the simulations1 used in this thesis for computing
lensing and clustering predictions. Modelling the signals at small scales beyond the validity
limit of perturbation theory require empirical or computational physics techniques. Empirical
schemes, such as halo occupation distribution models and (sub)-halo abundance matching
described in Section 2.1, are easier to implement and not as computationally costly. Semi-
analytical models (SAMs) and hydrodynamical simulations are examples of the latter, detailed
in Section 2.2.3 and Section 2.3, respectively, where subhaloes are populated with galaxies
in a self-consistent manner using forward physical modelling. We illustrate these different
assignment schemes for the galaxy-halo relation and what is included in each of them in
Fig. 2.1 from the recent review by Wechsler & Tinker (2018). In Chapter 4, we will compare
predictions from HODs, SAMs and hydrodynamical simulations, but the thesis is primarily
directed towards improving and examining the two later methods, which have not been used
in cosmological parameter analysis pipelines before.

Figure 2.1: Different approaches of modelling the connection between the dark cosmic web (left
panel) and the observed distribution of galaxies (right panel) listed according to increased modelling
complexity with their key assumptions. Credit: Risa Wechsler/Jeremy Tinker from the Annual Review
of Astronomy and Astrophysics (Wechsler & Tinker, 2018).

1We describe the simulations used to test the cosmological rescaling algorithm separately in Chapter 3.
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The Universe which we observe is a static, singular representation where we perceive
the evolution by comparing measurements from different redshifts. Performing numerical
simulations for cosmological volumes allows us to gain insights into the fast forward action
of the physical processes forming galaxies and their interaction with the cosmic web, by
varying the model setups and the initial conditions. On cosmological scales, gravity is the
dominant force and this describes the success in replicating observations, such as the spatial
distribution of galaxies (e.g. Springel et al., 2005b), by the combination of N -body simulations
with SAMs or other assignment recipes. It was not until recently that simulations with full
hydrodynamical schemes could be run in cosmological volumes (e.g. Vogelsberger et al., 2014a;
Dubois et al., 2014; Schaye et al., 2015; Khandai et al., 2015; Pillepich et al., 2018a). The joint
analysis of the two is required to capture the small-scale astrophysical behaviour extended
to gigaparsec volumes to emulate the statistics of the next generation of large-scale structure
surveys.

2.1 Empirical models

Two of the most widely-used frameworks to interpret GGL measurements are halo-occupation
distribution (HOD) models (e.g. Peacock & Smith, 2000; Seljak, 2000; Berlind & Weinberg,
2002; Cooray & Sheth, 2002; Leauthaud et al., 2011, 2012; Zu & Mandelbaum, 2015, 2016)
and (sub-)halo abundance matching (SHAM) techniques (Kravtsov et al., 2004; Tasitsiomi
et al., 2004; Vale & Ostriker, 2006; Conroy et al., 2006; Conroy & Wechsler, 2009; Moster
et al., 2010; Behroozi et al., 2010). HODs give the probability distribution of galaxies passing
some criteria, such as a stellar mass cut, conditioned on a property, such as the mass, of the
host haloes. Classical SHAMs work under the assumption that the most luminous/massive
galaxies should reside in the most massive (sub-)haloes, which creates a one-to-one mapping
with some scatter that has to be characterised (see e.g. Behroozi et al., 2010). The proxy for
the host halo mass could also be other galaxy properties besides stellar mass, and the halo
property could also be something else besides mass.

Recent advances have allowed construction of HODs using additional secondary properties
such as halo concentration (e.g. decorated HODs, Hearin et al., 2016) as well as boosting
their statistical input by consistently accounting for the incompleteness of stellar mass selected
samples (e.g. integrated HODs, iHODs, Zu & Mandelbaum, 2015, 2016). However, in general
these approaches have trouble to include many secondary parameters and lack the connection
between these and the governing physical processes. In addition, there may be aspects poorly
understood for certain galaxy samples (Leauthaud et al., 2017). This might be a product of
shortcomings of and/or simplifications in these models. For instance, effects such as assem-
bly bias2, the non-gravitational physics induced by baryons, and the overall dependence on
cosmological parameters are difficult to incorporate accurately. Similarly, SHAMs have been
improved to act on composite proxies (e.g. Lehmann et al., 2017), which both feature halo
mass and concentration, to characterise the dependence. We will analyse iHODs in Chapter 4
but not discuss the other two cases further and instead focus on how these issues could be
circumvented through the use of SAMs and hydrodynamical simulations.

2The dependency of halo clustering at fixed halo mass on other secondary halo properties such as concen-
tration or formation time (e.g. Gao & White, 2007).



2.2 N-body simulations: Gravity-only 31

2.2 N-body simulations: Gravity-only

The backbone of modern galaxy formation models, N -body simulations deal with solving the
collisionless Poisson-Vlasov equation in Newtonian gravity for N point particles representing
cold dark matter (e.g. Bertschinger, 1998; Bagla, 2005; Kuhlen et al., 2012). From the first
simulation of the Coma cluster with 300 particles (Peebles, 1970), state-of-the art codes are
now able to take the first steps at modelling trillions of particles (e.g. Habib et al., 2013; Potter
et al., 2017). Initial conditions are typically set a certain time after the end of inflation using
that structure evolution during first ∼ 100 million years is still in the quasi-linear regime and
can thus be subject to an analytical treatment (Zaldarriaga & Seljak, 2000; Lewis & Bridle,
2002; Lewis, 2013). The equations are solved in a comoving frame, usually with periodic
boundary conditions, where the expansion rate of the frame is governed by the Friedmann
equations in Eq. (1.2.14), although the gravity solvers are Newtonian owing to the negligible
impact of relativistic corrections.

Computations are carried out using particle-based, mesh-based or hybrid schemes. A
popular particle-based approach is the tree-code (Barnes & Hut, 1986), where the force from
remote groups of particles is approximated by multipole moments of the mass distribution
of their trees. If we turn to particle mesh (PM)-based algorithms, the method is to compute
the potential through Fourier transforms of the gridded density field at the coarsest level, as
the Poisson equation has a simple form in Fourier space, and then propagate the effect to
the refined levels using a multi-level relaxation scheme. The mesh is often adaptively refined
in high-density regions to provide additional resolution. The positions of the particles then
evolve along potential gradients (Hockney & Eastwood, 1988). Both frameworks are able to
reduce the O(N2) complexity of the problem to a computation with an O(N logN) scaling3,
although for the PM-based methods N refers to the number of grid cells which typically is
set as 23 times the number of particles (Kuhlen et al., 2012). Time-wise, PM is considerably
faster and automatically accounts for periodic replicas of the volume, whereas particle-based
schemes have to resort to less convenient optimisations such as Ewald summation (Hernquist
et al., 1991). In tree codes forces can be represented down to a force softening length ε, which
is introduced to avoid unphysical hard scatterings between particles as they are tracers of
the continuous density field (Dyer & Ip, 1993), typically implemented through a Plummer
(Plummer, 1911) or cubic spline kernel. For PM-based methods, the resolution is determined
by the cell size of the most refined grid.

It is possible to combine the two frameworks into hybrid tree-PM codes, such as Gadget
and its successors (Springel et al., 2001a; Springel, 2005), where trees are used to compute
short range interactions and a PM for long range forces. These are the codes primarily used
for the simulations analysed in this thesis.

2.2.1 Halo finders and merger trees

To identify dark matter structures among the particles, different halo finders can be used
on-the-fly (see e.g. Knebe et al., 2011; Muldrew et al., 2011; Onions et al., 2012; Knebe et al.,
2013, for reviews and comparisons). This is the first step to construct merger trees between
structures in different snapshots of the simulations which can be used by semi-analytical

3There are also additional improvements for particle-based methods which can achieve O(N) scalings such
as the Fast Multipole Method (FMM) (Greengard & Rokhlin, 1987), where the force computation is restricted
to a couple of tree nodes.
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models in post-processing. Substructures were first resolved in N -body simulations twenty
years ago (e.g. Ghigna et al., 1998; Klypin et al., 1999) and at present, there exists & 30
different approaches to identify them, but principally they follow the baseline setup of the
first two finders, either through location of spherical overdensities (SO) (Press & Schechter,
1974) or through friends-of-friends (FOF) algorithms (Davis et al., 1985). Generalisations of
the former aim to identify peaks in the density field with various methods whereas the latter
types connect and link particles by proximity, in physical 3D space (e.g. Subfind, Springel
et al., 2001b) or in 6D phase-space (e.g. Rockstar, Behroozi et al., 2013a). For the FOF
finders, the main hosts are generally identified by particle proximity, but the identification
of substructure can differ. Phase-space methods utilise that the velocity distributions of the
host and the subhalo often deviate from one another, which allow them to better localise
central substructures close to the host and also subhaloes with fewer particles (Knebe et al.,
2011). For the 16 different finders in Knebe et al. (2011), the halo mass function at z = 0
differed by ± 10 %, but this agreement does not necessary apply to higher redshifts (e.g.
Klypin et al., 2011). On small scales, the subhalo mass function can be used to discriminate
between different models of dark matter (see e.g. Bullock & Boylan-Kolchin, 2017, for a
review on small-scale challenges to ΛCDM), as warm dark matter predict significantly fewer
substructures (e.g. Knebe et al., 2008; Lovell et al., 2014), although the counts are also
influenced by baryonic physics (e.g. Despali & Vegetti, 2017). Still, as substructure finders
differ in their proficiency to track objects, they are also susceptible to deficiencies in temporal
and spatial resolution (see e.g. Moore et al., 1998; Klypin et al., 1999; Ghigna et al., 2000),
with some authors attributing ∼ 80 % of substructure disruption to numerical artefacts (van
den Bosch, 2017) with insufficient force resolution heralded as the main suspect (e.g. van den
Bosch et al., 2018).

Having established these structures, one would like to track their evolution through cosmic
time with merger trees. The first semi-analytical constructors (e.g. Cole et al., 1994; Kauff-
mann et al., 1993; Somerville & Primack, 1999) used statistical methods based on excursion
sets (Lacey & Cole, 1993) with later editions including empirical corrections to be consis-
tent with simulations (e.g. Parkinson et al., 2008). If one wants to build the trees directly
from the snapshots, there are a couple of caveats such as the aforementioned difficulties in
finding haloes as well as the unique identification of progenitors as particles in some halo at
a given time may end up in other haloes at later times. It has been shown that different
tree algorithms produce different results when run on the same simulation (Srisawat et al.,
2013). That study also highlights that a successful merger tree algorithm when paired with
an accurate halo classifier should keep track of particle ids, be able to handle the temporary
disappearance of subhaloes during multiple snapshots due to for instance transits through
the host centre and be able to handle and smooth out large, temporary fluctuations in halo
mass.

The disruption and loss of subhaloes due to poor resolution translate to fewer satellite
galaxies, which can bias clustering measurements. In semi-analytical models, this is compen-
sated through the presence of orphan galaxies (e.g. Springel et al., 2001b; Gao et al., 2004;
Guo et al., 2010; Frenk & White, 2012) which continue to exist after the disruption of their
host substructures, which are tracked by the most bound particle id of their former hosts.
In this thesis we investigate how modifications of the merger criteria for these galaxies affect
clustering and lensing measurements. Orphan galaxies can amount to 10−30 % of all galaxies
in a given snapshot (Pujol et al., 2017), which means that their treatment is crucial, and they
primarily reside in massive host haloes (Knebe et al., 2015), which has implications for the
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lensing signal as we shall see in Chapter 4.
For all simulations used in this thesis, subhaloes are identified using Subfind (Springel

et al., 2001b) in each FOF group constructed through a halo finder (Davis et al., 1985). For
the merger trees for the galaxy formation models, subhaloes with more than twenty bound
particles are linked uniquely to descendants in the subsequent snapshots following Springel
et al. (2005b) using LHaloTree, where the details is described in the supplementary material
to that publication. The same approach is applied to construct the merger trees in the dark
matter-only runs of the IllustrisTNG suite which we use in this study.

2.2.2 Millennium and Millennium-II

We continue to list the specifications of the main simulations used in this thesis. The Millen-
nium (MR) (Springel et al., 2005b) and Millennium-II (MRII) (Boylan-Kolchin et al., 2009)
are cold dark matter-only simulations performed using Gadget-2 and Gadget-3 (Springel,
2005), respectively, with 21603 particles with masses 8.61×108 h−1M� and 6.88×106 h−1M�,
respectively, with a WMAP1 cosmology {Ωm,Ωb, σ8, ns, h} = {0.25, 0.045, 0.90, 1.0, 0.73}
(Spergel et al., 2003) with box lengths 500h−1 Mpc and 100h−1 Mpc. The Plummer-equivalent
softening lengths ε are 5h−1 kpc and 1h−1 kpc, respectively. We primarily use rescaled ver-
sions of these simulations with a Planck 2014 cosmology (Planck Collaboration, 2014) using
the techniques of Angulo & White (2010); Angulo & Hilbert (2015) with {Ωm,Ωb, σ8, ns, h} =
{0.315, 0.049, 0.826, 0.961, 0.673} and box lengths 480.279h−1 Mpc and 96.0558h−1 Mpc and
particle masses 9.61 × 108 h−1M� (MRscPlanck) and 7.69 × 106 h−1M� (MRIIscPlanck).
Some galaxy formation models as well as the merger trees and halo catalogues are accessible
through the Virgo Millennium database (Lemson & Virgo Consortium, 2006).

2.2.3 Semi-analytical models (SAMs)

Together with these gravity-only simulations, one can produce realistic galaxy populations by
employing semi-analytical models (SAMs) of galaxy formation (White & Frenk, 1991; Kauff-
mann et al., 1999; Springel et al., 2001b; Bower et al., 2006; De Lucia & Blaizot, 2007; Guo
et al., 2011; Henriques et al., 2013, 2015). In this approach, halo merger trees extracted from
N -body simulations are populated with galaxies whose physical processes (see e.g. Benson,
2010; Knebe et al., 2015, for lists of the different physical processes that are implemented in
different SAMs), such as cooling, star formation, and feedback, are tracked by a set of coupled
differential equations. This allows for self-consistent and physically-motivated predictions for
the galaxy population and the respective dark matter, which can then be used to compute
the expected weak lensing signal for various lens galaxy samples (e.g. Hayashi & White, 2008;
Hilbert et al., 2009; Hilbert & White, 2010; Pastor Mira et al., 2011; Saghiha et al., 2012;
Gillis et al., 2013; Schrabback et al., 2015; Wang et al., 2016; Saghiha et al., 2017). SAMs
run on top of the merger trees of dark matter-only simulations, and can quickly and cost
efficiently produce predictions for galaxy populations in the volumes required for the new
surveys. Still, they do not feature a full description of the baryonic physics so the associative
effects on the lensing halo profiles have to be calibrated using hydrodynamical simulations
which are typically run in smaller volumes. This calibration calls for similar halo occupation
distributions in the two frameworks, i.e. that the same types of galaxies populate the same
haloes. We describe in details the mechanisms for satellite galaxy mergers and radio-mode
AGN feedback in Section 4.4.
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2.3 Hydrodynamical simulations: Including gas physics
There is a consensus on how to achieve high-quality results for collisionless dynamics; namely
through an accurate gravitational force calculation and time integration, which both can
be consistently verified, and with sufficiently many particles for a faithful description of the
system and to resolve smaller scales. The situation is more complicated if one seeks to model
gas physics (e.g. Springel, 2010a,b; Vogelsberger et al., 2012) due to the relative increased
complexity of the hydrodynamical fluid equations. In addition, magnetic and radiation fields
demand attention in order to produce realistic populations of galaxies, stars etc. Still, the
hydrodynamical scheme cannot be extended to arbitrary small scales, which means that one
has to use different subgrid physics prescriptions to track star formation, the evolution of
the interstellar medium and so forth. Most codes use either Lagrangian smoothed particle
hydrodynamics (SPH) (Gingold & Monaghan, 1977; Lucy, 1977; Monaghan, 1992) which was
used in the first hydrodynamical simulations (Efstathiou & Eastwood, 1981; Evrard, 1988;
Hernquist & Katz, 1989) or Eulerian mesh-based methods (e.g. Stone & Norman, 1992; Cen
& Ostriker, 1992) which may feature adaptive mesh refinement (AMR) (Berger & Colella,
1989). Examples of modern common variants of the former include Gadget-2 (Springel,
2005), which may feature improvements to deal with mixing of fluids (see e.g. Hopkins et al.,
2014; Schaller et al., 2015b; Schaye et al., 2015), and the latter Ramses (Teyssier, 2002).

SPH codes are relatively simple to implement and are able to conserve energy, linear and
angular momentum, mass and entropy (in the absence of artificial viscosity) simultaneously
(Springel, 2010a). Moreover, due to their Lagrangian nature they track the mass flow and
provide additional resolution elements in high density regions, which is suitable for the treat-
ment of merging galaxies or clusters. The drawbacks are that they are less proficient at deal-
ing with shocks, shears and large temperature gradients which appear in some astrophysical
problems; some fluid instabilities are suppressed under certain conditions (e.g. Agertz et al.,
2007), and the standard implementation cannot properly treat subsonic turbulence (Bauer
& Springel, 2012), which occurs in haloes, nor the mixing of phases (e.g. Springel, 2010a).
To address the fluid instability suppression issue, the Eagle simulation (Schaye et al., 2015),
which is studied in this thesis, uses a modified version of Gadget-3 based on the conservative
pressure-entropy formulation of SPH by Hopkins (2013), which is better at treating surface
instabilities compared to classical SPH, and also features some other improvements. Yet, as
discussed in Schaller et al. (2015b), the differences between this hydrodynamical scheme and
the fiducial Gadget-3, which uses entropy-conserving SPH, for cosmological observables are
subdominant to reasonable variations of the subgrid physics.

AMR methods do better in this regard, specifically in shock and in mixing problems as
the mixing is done intrinsically by averaging the evolved Riemann solutions over the scale of
the grid cells at the end of each time step, but can be affected by grid artefacts and numerical
diffusion (e.g. Naab & Ostriker, 2017). Particularly, they are sensitive to bulk velocities, which
is problematic as galaxies can move with great speed with respect to one another which are
typically an order of magnitude larger than the sound speed of the interstellar medium one
seeks to trace (e.g. Springel, 2010b), since the truncation errors of Eulerian codes depend on
the relative velocity with respect to the grid (e.g. Tasker et al., 2008; Wadsley et al., 2008).
Moreover, typical Poisson mesh-based solvers have been shown to provide insufficient force
resolution and to produce too few low mass haloes (O’Shea et al., 2005; Heitmann et al.,
2008).

New hybrid-methods, such as the moving mesh-code AREPO (Springel, 2010b), attempts
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to combine the best of both worlds. Here, the space around particles are subdivided with
a Voronoi tessellation and the Riemann problem is solved across all cell faces to obtain
the force on the particle. As these particles move, the mesh is re-generated and in this
way it is able to trace the mass flow like a Lagrangian code while retaining the benefits of
Eulerian schemes in treating contact discontinuities, surface instabilities and shocks, and this
without the need for artificial viscosity (which is added in SPH codes to improve the handling
of shocks and instabilities). The code still suffers from numerical diffusion, but is able to
outperform traditional SPH for mixing problems with high convergence rates (e.g. Sijacki
et al., 2012). For the global state of baryons in the simulations, AREPO has been found to
cool out more gas than Gadget which affects the late star formation rate of galaxies and
also morphologically produce more disk-like structures (Vogelsberger et al., 2012). Due to
the complicated topology inherent to the Voronoi tessellation, the code can have difficulties
in being massively parallelised for high resolution implementations in very large box sizes,
but it is still the basis for the largest, best-resolved hydrodynamical simulation as of yet,
the IllustrisTNG TNG300 box (e.g. Pillepich et al., 2018b), for which we analyse lensing and
clustering results in this thesis.

We continue by listing the three hydrodynamical simulations which we use for our lensing
and clustering studies below.

2.3.1 Eagle

Eagle is a hydrodynamical simulation (Schaye et al., 2015; Crain et al., 2015) carried out
with a modified version of the SPH code Gadget-3, in a (100Mpc)3 comoving volume
with cosmological parameters {Ωm,Ωb, σ8, ns, h} = {0.307, 0.04825, 0.8288, 0.9611, 0.6777}
from the Planck 2014 cosmology (Planck Collaboration, 2014). Baryons and dark matter
are represented by 2 × 15043 particles with initial mass mb = 1.2 × 106M� (baryons) and
mdm = 9.75 × 106M� (dark matter), respectively, and the softening length is ε = 2.66 kpc.
The recipes for the AGN feedback4 are described in Booth & Schaye (2009); Schaye et al.
(2015). Model parameters were tuned such that the local SMF and the observed distribu-
tion of galaxy sizes were matched (Schaye et al., 2015). The public data releases of the halo
catalogues and particle data are detailed in McAlpine et al. (2016); The EAGLE team (2017).

2.3.2 Illustris

Illustris is a hydrodynamical simulation suite (Vogelsberger et al., 2014a,b; Genel et al., 2014;
Sijacki et al., 2015) performed with the moving mesh-code AREPO (Springel, 2010b) with
the galaxy formation recipes described in Vogelsberger et al. (2013); Torrey et al. (2014) in
a cubic comoving (75h−1 Mpc)3 volume with a WMAP9 cosmology (Hinshaw et al., 2013),
{Ωm,Ωb, σ8, ns, h} = {0.2726, 0.0456, 0.809, 0.963, 0.704}. The highest resolution run fea-
tures 2 × 18203 resolution elements with Voronoi gas cell masses mb = 1.26 × 106M� and
dark matter particle masses mdm = 4.41× 106 h−1M�, with softening lengths εgas = 0.71 kpc
and εdm = 1.42 kpc. For the gravity-only run (Illustris-Dark), the particle masses are
mdm = 5.29× 106 h−1M�. In the low accretion state of the supermassive black holes (radio-
mode AGN feedback), hot bubbles are randomly placed around the black hole and the thermal

4Eagle does not distinguish between radio and quasar mode for the AGN feedback, but has a joint stochastic
thermal mode.
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energy injected is directly proportional to the black hole mass growth through thermal cou-
pling and radiative efficiency in the radio mode (Sijacki et al., 2007). This implementation of
the AGN feedback is disfavoured5 by the low gas fractions in galaxy groups and clusters with
respect to observations and the too high stellar masses of central galaxies (Genel et al., 2014).
Thus, it was replaced in the following IllustrisTNG suite. The parameters in the model were
tuned to reproduce the local SMF and the history of the cosmic star formation rate density.
The public data release is described in Nelson et al. (2015).

2.3.3 IllustrisTNG
IllustrisTNG is the follow-up project of the Illustris simulation suite which also has been
run with the moving mesh-code AREPO. With respect to Illustris, it comes with an up-
dated galaxy formation model (Weinberger et al., 2017; Pillepich et al., 2018a), assuming a
Planck 2016 cosmology {Ωm,Ωb, σ8, ns, h} = {0.3089, 0.0486, 0.8159, 0.9667, 0.6774} (Planck
Collaboration, 2016a). For the lensing signals, the chief amelioration is a new AGN feedback
model for the low accretion state (Weinberger et al., 2017), which sets the stellar-to-halo mass
ratio. Box lengths and particle numbers are 75h−1 Mpc with 2 × 18203 particles (TNG100,
with the same phases as Illustris in the initial conditions, which enables object-by-object
comparisons with the different accessible physical information fields illustrated in Fig. 2.2)
and 205h−1 Mpc with 2 × 25003 particles (TNG300) for the highest resolution runs. Par-
ticle masses are mb = 9.44 × 105 h−1M� and mdm = 5.06 × 106 h−1M� (TNG100) and
mb = 7.44 × 106 h−1M� and mdm = 3.98 × 107 h−1M� (TNG300). For the gravity-only
runs, the corresponding particle masses are mdm = 6.00 × 106 h−1M� (TNG100-DM) and
mdm = 4.73×107 h−1M� (TNG300-DM). The maximum softening lengths are ε = 0.5h−1 kpc
(TNG100) and ε = 1.0h−1 kpc (TNG300) for the dark matter and stars, with a minimum
adaptive gas cell softening of 184pc (TNG100) and 370 pc (TNG300). Results for the stellar
and halo mass functions, galaxy colours, clustering and matter power spectra, magnetic fields
and chemical evolution have been presented in Pillepich et al. (2018b); Nelson et al. (2018b);
Springel et al. (2018); Marinacci et al. (2018); Naiman et al. (2018), respectively. Details on
the latest public data release are published in Nelson et al. (2018a).

5To reduce star formation in the centrals would require a higher feedback efficiency and thus expel more
gas, which is not a viable solution.
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Figure 2.2: A few of the different physical information fields accessible in the IllustrisTNG suite.
From top to bottom the following is shown for the same ∼ 110×14×37Mpc sub-volume of the highest
resolution run of the TNG100 at z = 0: dark matter density, gas density, gas velocity field, stellar
mass density, gas temperature, gas-phase metallicity, shock mach number, magnetic field strength,
and X-ray luminosity. Credit: Dylan Nelson and the IllustrisTNG collaboration from Nelson et al.
(2018a).
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Chapter 3 Cosmological rescaling

3.1 Prologue

This Chapter appears in Monthly Notices of the Royal Astronomical Society as Renneby et al.
(2018) which we reprint here with minor modifications. The first author (me) conducted the
work in this analysis with advice from Dr. Stefan Hilbert and Prof. Raúl E. Angulo, PhD.

3.2 Abstract

We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a
cosmology-rescaling algorithm for N -body simulations. We extend the rescaling method of
Angulo &White (2010) and Angulo & Hilbert (2015) to improve its performance for predicting
the inner structure of dark matter haloes by using models for the concentration-mass-redshift
relation based on excursion set theory. The accuracy is tested with numerical simulations
carried out with different cosmological parameters. We find that predictions for median
density profiles are more accurate than ∼ 5 % for haloes with masses of 1012.0−1014.5h−1M�
for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0].
At larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ∼ 20 %, due to inaccurate
modelling of the cosmological and redshift dependence of the splashback radius. For feasible
changes in cosmology allowed by current data, the residuals decrease to . 2 % up to scales
twice the virial radius. We illustrate the usefulness of the method by estimating the mean
halo mass of a mock galaxy group sample. We find that the algorithm’s accuracy is sufficient
for current data. Improvements in the algorithm, particularly in the modelling of baryons,
are likely required for interpreting future (dark energy task force stage IV) experiments.

3.3 Introduction

The computationally cost of carrying out numerical simulations over many different cosmo-
logical parameters is currently prohibitively expensive. A way to alleviate this challenge is
to carry out a small number of high-quality simulations which could then be manipulated to
mimic different background cosmologies. This idea was originally brought forth by Angulo
& White (2010), henceforth AW10. Their method is to rescale the time and length units
such that the variance of the linear matter field in the rescaled fiducial and target simulations
match over a range of scales relevant for halo formation. In Angulo & Hilbert (2015), here-
after AH15, an additional requirement on a matched linear growth history was introduced,
which improved the accuracy of predictions for shear correlations functions.

Despite the improvements, the rescaling method still produced noticeable biases in the
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internal structure of dark matter haloes, owing to different formation times in the fiducial and
target cosmologies. In this Chapter, we propose an enhancement to the original algorithm by
taking advantage of recent theory developments in predicting the concentration-mass-redshift
relation of dark matter haloes by Ludlow et al. (2016), henceforth L16. We then investigate if
the updated rescaling algorithm can capture the small and intermediate scales of the cosmic
web interpretable by galaxy-galaxy lensing.

This Chapter is organised as follows: In Section 3.4, we recap the key ingredients of our
rescaling algorithm. Details on the simulations, halo samples, and summary statistics for
testing the algorithm are described in Section 3.5. We present the results using the original
as well as our updated scaling predictions in Section 3.6. We discuss our results and their
implications, e.g. for the estimation of lens masses and predictions for concentration biases,
in Section 5.7. We summarise our main findings in Section 5.8.

3.4 Theory
In this section we present the main aspects of our scaling algorithm. We briefly recap the
AW10 and AH15 algorithm in Section 3.4.1. In Section 3.4.2 we define halo concentrations
from the profiles in Section 1.2.5 and how they transform under rescaling. In Section 3.4.3,
we summarise the model of L16, which will be employed later in the Chapter. Throughout
the Chapter we use comoving coordinates and densities.

3.4.1 Determining the rescaling coefficients
For the details of the rescaling algorithm, we refer to Section 1.2.6. Here we note that it
determines a length rescaling factor α and a redshift z∗ in the fiducial cosmology to match
to a redshift z′∗ in the target cosmology based on (i) the difference in the variance σ of the
linear matter field between two smoothing lengths determined by the range of halo masses one
would like to emulate and (ii) the difference in growth history. Letting primed symbols denote
quantities in the target cosmology, comoving positions x and simulation particle masses mp
in the fiducial simulation are rescaled as

x [Mpc/h] 7→ x′ [Mpc/h′
]

= αx [Mpc/h] , (3.4.1)

mp [M�/h] 7→ m′p
[
M�/h

′] = α3 Ω′m
Ωm

h′
2

h2 mp [M�/h]

= βmmp [M�/h] .
(3.4.2)

Here, Ωm denotes the cosmic mean matter density (in units of the critical density) and H0 =
100h km/s/Mpc is the Hubble constant. The comoving matter density ρm then transforms
as:

ρm 7→ ρ′m = α−3βmρm. (3.4.3)
The simulation box length and redshift change to:

L→ L′ = αL, (3.4.4)
z → z′, z 6 z∗, z

′ 6 z′∗, (3.4.5)

where higher redshifts are acquired through the linear growth factor relation,

D′(z′) = D(z)/D(z∗) ·D′(z′∗). (3.4.6)
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The growth constraint from AH15 is implemented through a comparison of a range of scale
factors a around the value a∗ in the (unscaled) fiducial cosmology corresponding to the best
redshift fit z∗ of the target simulation at z = 0 for a range of proposed scaling options (α, z∗)
with the growth history1 of the target simulation. In AW10, the last step of the algorithm
involves a large-scale structure correction to account for the differences in the primordial
linear power spectrum between the fiducial and target cosmologies, which amounts to moving
the particles with respect to one another to reach a better agreement with the positions in the
target simulation. Since this analysis focuses on the non-linear regime where this correction
translates to an almost uniform displacement, we neglect this correction. As the snapshot
output of an N -body simulation usually is discrete in time, the closest match to (α, z∗) is
selected.

The chief advantage of the algorithm is that all quantities are calculated in the linear
regime, wherein we either have explicit predictions or adequate fits for a range of different
cosmologies. This allows for a fast evaluation (6 5 s on a contemporary laptop).

3.4.2 Rescaled concentrations
The halo scale radii rs transform under rescaling as rs 7→ r′s = αrs. NFW halo radii r∆m,
masses M∆m, and concentrations c∆m based on halo overdensities relative to the cosmic
mean density also follow simple transformation rules: r∆m 7→ r′∆m = αr∆m, M∆m 7→M ′∆m =
βmr∆m, and c∆m 7→ c′∆m = c∆m.

The rescaling transformation laws for NFW profile quantities based on overdensities rel-
ative to the critical density are more involved. Applying Eq. (3.4.3) to the NFW profile
definition Eq. (1.2.42), we find for the characteristic densities:

δ′cρ
′
crit(z′) = Ω′m

Ωm

(
H ′0
H0

)2
δcρcrit(z). (3.4.7)

Thus, the concentration c∆c transforms as

c∆c 7→ c′∆c, (3.4.8)

with c′∆c given by the (numerical) solution to

δ′c(c′∆c) = Ω′m
Ωm

(1 + z′)3

(1 + z)3
E(z)2

E′(z′)2 δc(c∆c). (3.4.9)

The halo mass M∆c then transforms according to

M∆c 7→M ′∆c = βcM∆c, (3.4.10)

with

βc =
(
c′∆c
c∆c

)3
· α3 ·

(
H ′0
H0

)2 E(z′)2

E(z)2
(1 + z)3

(1 + z′)3 , (3.4.11)

and c′∆c as the numerical solution to Eq. (3.4.9). As a range of c∆c values could correspond
to a given M∆c, this means that the rank order of M∆c is not invariant under rescaling.

1The best relative weight on emulating the variance vs. the growth for a given observable is still an open
question.
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One may also use

M∆m =
(
c∆m
c∆c

)3 Ωm(1 + z)3

E(z)2 M∆c, (3.4.12)

to first convert M∆c to M∆m, then rescale M∆m to M ′∆m, and then convert back to M ′∆c. We
show how to rescale Einasto concentrations in Section 3.12.

3.4.3 Concentration-mass-redshift relation
We focus on what excursion sets (Press & Schechter, 1974; Bond et al., 1991) predict for
the concentration of haloes (Lacey & Cole, 1993). One approach for CDM has been to tie
the concentration to the mass accretion history of the halo (e.g. Ludlow et al., 2014; Correa
et al., 2015). However, this is not suitable for warm dark matter (WDM) models where the
concentration-mass relation is non-monotonic despite the different accretion histories of low
and high mass haloes. Revisiting the original NFW argument (Navarro et al., 1996, 1997), it
was proposed that the characteristic density of the halo δc is an imprint of the critical density
of the Universe at an appropriate collapse redshift, when progenitors exceeding a fraction f
of the final virial halo mass constituted half of this mass. L16 argued that choosing the mean
density 〈ρs〉 inside the scale radius rs to be proportional to the critical density of the Universe
at the collapse redshift (instead of δc) and letting the mass inside the scale radius Ms define
the characteristic collapsed mass (instead of the virial mass) yields a better agreement for
CDM and WDM. This relation then takes the form

Ms = 4π
3 r3

s 〈ρs〉 = 4π
3 r3

s · C · ρcrit(zs), (3.4.13)

where C is a proportionality constant and zs the collapse redshift. According to excursion
sets (Lacey & Cole, 1993), the collapsed mass fraction is given by

Ms(f, z)
M∆c

= erfc
(

δsc(zs)− δsc(z0)√
2 ·
√
σ2 (fM∆c)− σ2 (M∆c)

)
, (3.4.14)

where M∆c is the final mass at z0, σ2(M) the variance of the linear density field on scales
equivalent to the mass M , and δsc(z) a linear barrier height δsc(z) = δsc(z0)/D(z), where the
linear growth is normalised such that D(z0) = 1, and the linear density threshold satisfies
δsc(z0) = δsc(z = 0) ≈ 1.686 corresponding to spherical collapse at redshift z = 0. Combining
this with Eq. (3.4.13) and an assumed density profile, this system of three equations yields
numerical fits for the c(M, z)-relation. The best-fits for the two constants were determined2
to be f = 0.02 and C = 650. We neglect the mild cosmological and redshift dependences of
δsc(z0) in this study.

In L16 this relation was found to fit the median c(M, z)-relation estimated with Einasto
profiles for relaxed haloes (see Section 3.5.2) for the same simulations that we are using
in this Chapter (see Section 3.5.1) with the M∆c mass definition with ∆ = 200. We thus
calculate the c(M, z)-relation with Eq. (3.4.13) and Eq. (3.4.14), assuming an NFW profile
Eq. (1.2.42), with z0 = z∗ and z′∗ in the fiducial and target simulations, respectively, then
adapt the relations for M∆m and c∆m.

2To achieve internal consistency for a spherical collapse model, C = 400 would have been the preferred
value, but C = 650 produced better fits. This inconsistency primarily affects high mass haloes, which are rare
in our simulations. Moreover, we limit the possible length scale factors to α ∈ [0.5, 2] in Eq. (3.4.1). For the
cosmological parameters in this study, this ensures that βmM∆m remains in the range of validity.
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Ωm σ8 L
[
h−1 Mpc

]
mp

[
108h−1 M�

]
z∗

0.25 0.90 250.0 8.61 -
0.15 1.00 373.3 17.2 0.32
0.25 0.60 205.3 4.77 0.56
0.29 0.81 224.4 7.22 0.06
0.40 0.70 176.4 4.84 0
0.80 0.40 88.2 1.21 0

Table 3.1: Simulation configurations (fiducial cosmology in the first row) with their values of Ωm
and σ8 listed. The scale factors α from Eq. (3.4.4) are obtained by dividing the box lengths L with
the first column entry. The softening lengths are set as α × ls for the direct simulations with α = 1
for the fiducial run. The particle masses m′p are calculated using Eq. (3.4.2). The rescaling redshifts
z∗ of the fiducial cosmology’s snapshots are listed in the last column.

3.5 Methodology

In this section we present details of our adopted methodology to test the performance of
the scaling algorithm. In Section 3.5.1, we describe our fiducial simulation along with five
others carried out adopting significantly different cosmologies. We discuss the construction of
halo samples in Section 3.5.2. In Section 3.5.3, we define the differential excess surface mass
density profiles and provide details about how to measure them, as well as halo concentrations
in our simulations.

3.5.1 Numerical simulations

This study is conducted with several N -body simulations employing GADGET-2 (Springel,
2005) with 10803 particles which we have previously described in Section 2.2. The fiducial
simulation spans a (250h−1 Mpc)3 comoving volume, uses a softening length of ls = 5h−1 kpc,
and has particle masses mp = 8.61 × 108h−1M�. It assumes a flat ΛCDM cosmology with
a cosmological constant energy density parameter ΩΛ = 1 − Ωm = 0.75, a matter density
parameter Ωm = Ωcdm + Ωb = 0.25, baryon density parameter Ωb = 0.045, Hubble constant
H0 = 100h km s−1 Mpc−1 with h = 0.73, matter power spectrum normalisation σ8 = 0.90,
and spectral index ns = 1. The cosmological parameters and force and mass resolution are
identical to those of the Millennium simulation (Springel et al., 2005b), see Section 2.2.2.

We rescale the fiducial simulation to cosmologies with different values for Ωm and σ8. We
then compare these rescaled simulations to simulations carried out directly assuming the tar-
get cosmologies. These ‘direct’ and ‘rescaled’ simulations have initial conditions with identical
phases. The softening lengths, box sizes, and particle masses in these direct simulations have
been chosen to match those in the rescaled simulations. Details are provided in Table 3.1 (the
other configurations and parameters are the same as in the fiducial run).

Though the rescaling algorithm captures non-linear structure evolution, it cannot arbi-
trarily adapt to different growth histories. As dark energy becomes more important at lower
redshifts, the growth and expansion histories of different ΛCDM cosmologies deviate in dif-
ferent manners from an Einstein-de-Sitter evolution. Thus, we expect the inaccuracy of the
scaling to grow with cosmic time. For this reason, we focus on structures at redshift z = 0 to
obtain a conservative estimate on the accuracy of the scaling method. Finally, note that the
rescaling parameters (α, z∗) are identified following AW10 and AH15 for scales corresponding
to halo masses in the range 108 − 1015 h−1M�.
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3.5.2 Halo samples

Haloes in the simulations are first identified using a friends-of-friends (FOF) algorithm (Davis
et al., 1985) with a linking length of 0.2 times the mean particle separation. The FOF haloes
are then processed with SUBFIND (Springel et al., 2001b), employing the same settings as
for the MXXL simulation (Angulo et al., 2012), to identify self-bound structures, possibly
returning a main subhalo and further self-bound subhaloes.

We will mostly consider halo samples defined by their (rescaled) M200m mass. However,
in some cases we will also consider halo samples that only include matched haloes in direct-
rescaled pairs of simulations. Following AW10, we identify as match candidate for each halo
in the direct simulation the halo in the rescaled simulation with the most particles with ids
matching those of the direct simulation’s halo. We repeat the process with the simulations’
roles swapped, and consider a haloes matched if they are each others match candidates.

Note that the most accurate rescaling approach would be to transform individual simula-
tion particles and then re-run the group finding algorithm. However, this is computationally
expensive, and similarly accurate results can be obtained by directly rescaling the halo cat-
alogue, as shown by Ruiz et al. (2011) (see also Mead & Peacock, 2014a,b), which is the
procedure we adopt here; we rescale the position and mass of each snapshot particle but keep
the fiducial halo catalogue and rescale it accordingly.

Unrelaxed haloes are poorly described by NFW profiles, and their best fit concentrations
tend to be lower than those of relaxed systems (Neto et al., 2007). To test for this in our
results, in some cases we will consider samples of haloes that satisfy two criteria. The first
criterion is based on the offset between the centre-of-mass rCM and the gravitational potential
minimum rpot relative to the halo radius r200 (Thomas et al., 2001; Macciò et al., 2007;
Neto et al., 2007) doff = |rpot − rCM| /r200. We consider haloes relaxed if doff < 0.1. The
second criterion is a substructure threshold (Neto et al., 2007; Ludlow et al., 2012), fsub =
Msub/M200 < 0.1, where Msub is the mass of all bound particles in the subhaloes apart from
the main halo identified by the substructure finder.

These criteria lead to similar results as imposing the doff cut and a dynamical age cri-
terion, t50 > 1.25 tcross (Jiang & van den Bosch, 2016; Ludlow et al., 2016) curtailing the
allowed accretion of the main progenitor w.r.t. its crossing time tcross = 2 r200/V200, as they
exclude recent mergers of structures with similar mass.3 With the M200m mass definition4,
the geometric cuts on fsub and doff are trivially invariant under the rescaling mapping5. This
invariance does not hold for other dynamical relaxation criteria such as bounds on the virial
ratio6 η = 2K/|U | (e.g. Cole & Lacey, 1996) or the spin parameter7 λ (e.g. Bett et al., 2007).

3However, a dynamical timescale cut also discriminates against haloes at maximum contraction following
a massive merger, which are still present in our subsample.

4Given βc in Eq. (3.4.11), the cuts w.r.t. M200c are not rescaling invariant. Since the measured concentra-
tions are influenced by these cuts (Neto et al., 2007), a recursive rescaling fitting scheme is required to find
the passing haloes in the target cosmology.

5provided we ignore implicit relations, e.g. redshift evolution which affects fsub (e.g. van den Bosch et al.,
2005)

6If the simulation’s softening length ls 7→ αs and αvel ≈ α for the velocities whose transform is given in
AW10 then η 7→ η′ ' Ωm/Ω′m(H0/H

′
0)2η with the potential U given in Springel et al. (2005b). Since U and T

have different transform prefactors, mapping λ 7→ λ′ is non-trivial.
7In AW10, λ was comparable for the haloes in the direct and rescaled simulation snapshots, hinting at similar

internal dynamical states, whereas the halo concentrations estimated from velocities displayed a systematic
bias.
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3.5.3 Halo density and weak-lensing profiles

We measure the spatial cross-correlation between the halo and matter fields in our simulations
to obtain mass profiles in 3D and 2D. In 3D, we consider spherically averaged radial matter
density profiles for haloes as a function of halo mass. As analytic approximations to these
profiles we consider NFW profiles Eq. (1.2.42) and Einasto profiles Eq. (1.2.44).

Operationally, we compute 3D radial halo profiles ρ and projected radial profiles Σ by
binning all particles in spherical and cylindrical shells, respectively, around the recorded halo
centres given by the positions of their most bound particles. To moderate triaxiality (e.g. Jing
& Suto, 2002) and other deviations from azimuthal symmetry, we project the cylinders along
the three principal simulation box axes and let the mean signal describe the halo sample,
effectively tripling our sample size. For the rescaled simulation, the profiles are computed
after applying the adequate rescaling to ensure matching bin boundaries.

In order to assess the errors due to the limited volume, we bootstrap resample (e.g. Efron,
1979) the haloes in each mass bin with 100 realisations to estimate the variance. For ∆Σ we
calculate 100 realisations per axis.

We consider halo samples selected by mass with 0.1 dex width above 1012 h−1M� to
approximately 1014.5 h−1M� where we record twenty haloes per bin. For the halo mass
function we show the result in 0.05 dex bins. For the 3D profiles, we follow Neto et al. (2007),
where the matter density profiles were estimated using 32 log-equidistant bins between r200c
and log10(r/r200c) = −2.5 where we replace r200c with r200m. To suppress the impact of
outliers on the 3D profile fits, we use the median particle count per spherical shell as input,
unless otherwise specified. We then minimise the difference in ln ρ between the measured
median profile and the analytic profile to determine the best fit parameters. We also present
concentration estimates for individual haloes from the separate particle counts. To investigate
the transition regime between the 1-halo and 2-halo terms, we bin the particles in 64 log-
equidistant bins for 0.05 r200m < r < 5 r200m.

GGL profiles for each mass-selected halo sample are obtained through Eq. (??), with
the projected profiles computed by binning the particles in 40 log-equidistant bins in the
30h−1 kpc − 3h−1 Mpc range. The average GGL profiles are fitted by analytical profiles
Eq. (1.3.31) minimising

χ2 =
Nr∑

i=1
r2
i [∆Σdata(ri)−∆ΣNFW(ri; r200m, c200m)]2 , (3.5.1)

w.r.t. r200m and c200m. The radial weights ∝ r2 are observationally motivated, as the shape
noise error on the signal scales with the number density of background galaxies, which is
proportional to the area of the projected cylinder assuming a constant source density. In
observations, masking and blending of background galaxies by foreground galaxies becomes a
major systematic as one approaches the central galaxy (Viola et al., 2015), which motivates
the lower cutoff.

3.6 Results
In this section we quantify the performance of the scaling algorithm and present alternatives
to further improve it. We first focus on the halo mass functions (Section 3.6.1), the 3D density
profiles (Section 3.6.2), and the differential excess surface mass density profiles (Section 3.6.3)
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Figure 3.1: Cumulative halo mass function at z = 0 (in 0.05 dex bins) for simulations with different
values for (Ωm, σ8) as indicated by the legend. For each cosmology, we display results for direct and
rescaled simulations. The fractional differences between these two cases are shown in the bottom panel
where solid lines mark ± 10 %.

for the original algorithm. The accuracy of the rescaling for the concentration-mass relation is
quantified and compared to the theoretical prediction of L16 in Section 3.6.4. In Section 3.6.5
we use this model to correct the rescaled profiles and show the resulting improvements. At-
tempts at further ameliorations for the halo outskirts based on models for the position of
the splashback radius are discussed in Section 3.6.7. We will focus on representative cases
using one of the cosmologies studied where the others manifest similar trends and primarily
report on the findings for (0.80, 0.40) in Section 3.10 as these parameters strongly deviate
from current observational constraints.

3.6.1 Halo mass function

One of the most basic quantities predicted by simulations is the halo mass function. The
cumulative halo mass function (HMF) N(> M) defines the number of haloes above a certain
mass M per comoving volume. In AW10, the number densities were properly matched with
a bias of order . 10%. To avoid numerical artefacts, we only compare HMFs for haloes with
(rescaled) masses exceeding 1012 h−1M� (i.e. objects resolved with > 1000 particles).

In Fig. 3.1, we show N(> M) for all haloes in the direct and rescaled cosmologies with
the fractional difference in the bottom panel. In numbers, there are 100 154, 28 427, 47 519,
33 123 and 8 325 haloes with M200m > 1012 h−1M� in the direct simulations (listed according
to increasing Ωm), and 97 232, 28 145, 46 620, 32 888 and 8 999 haloes in the rescaled snapshots.
As seen in Fig. 3.1, the error in the number counts is in the range ± 10 % for all simulations
except for (0.80, 0.40) and for masses < 1014 h−1M�. At higher masses, Poisson noise is
significant. In addition, these clusters are the last structures to have collapsed and thus are
most sensitive to changes in the growth rate governed by the background cosmology. Since we
opt for a minimisation scheme covering a large range of halo masses, the rescaling parameters
are not necessarily the best ones for cluster-size haloes. This could then bias the predicted
masses. The best matches are found for the (0.29, 0.81) and (0.40, 0.70) cosmologies, with
fractional differences . 3 %. Overall, this performance is similar to that stated in AW10.
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Figure 3.2: Difference in the fraction of relaxed haloes between the direct and rescaled simulations
per 0.1 dex mass bin with the doff + fsub cuts enforced (the results are similar if only the doff cut is
applied).

Trends for passing the relaxation cuts are similar in the direct and rescaled simulations,
with cuts more effective at the high mass end, and peak passing rates between 54 and 73% for
the 1012.0−1012.1h−1M� mass bin. As Fig. 3.2 illustrates, there are however some differences
between the direct and rescaled simulation in the fraction of haloes per mass bin which satisfy
the relaxation criteria. For (0.15, 1.00) and (0.25, 0.60), fewer haloes per mass bin survive the
cuts, which may indicate a possible redshift dependence of the cut efficiency, as the rescaled
signals come from fiducial snapshots at higher redshifts. This implies that we do not only
have a slight scatter in the number of haloes but also in the properties of the haloes which
pass the relaxation cuts.

Almost all haloes (∼ 99 %) with M200m ≥ 1012h−1M� in the direct simulations have
matches in the rescaled simulation (and the few non-matches have no significant impact on
the profile statistics considered here). However, properties of matching haloes are usually
not identical. The fractional difference in recorded M200m between the matched haloes in
the direct simulation and their matched rescaled counterparts is shown in Fig. 3.3. Both a
scatter and a systematic trend with mass and cosmology are discernible. For example, haloes
in the rescaled simulation tend to be less massive than their counterparts for (0.15, 1.00).
These trends are in part responsible for differences in the halo profiles between the direct and
rescaled simulations discussed in the following sections.

3.6.2 3D density profiles

In Fig. 3.4 we plot the median density profiles for five mass bins in the (0.25, 0.60) cosmology
in 40 log-equidistant bins between 0.03 − 3h−1 Mpc. The halo profiles in the direct and
rescaled simulations display remarkable agreement, with differences of at most 20 % over two
orders of magnitude in density and scale. The differences likely reflect different mass accretion
histories and formation times for the direct and rescaled haloes. They are characterised by
two features: (i) an underestimation (overestimation) of the density near the halo centre, and
(ii) an overestimation (underestimation) of the density near the transition scale between the
1-halo and 2-halo terms for the (0.15, 1.00), (0.25, 0.60) and (0.29, 0.81) cosmologies, with



48 3. Cosmological rescaling

-0.40

-0.20

0.00

0.20

0.40

(0.15, 1.00)

Mean relation per 0.1 dex bin
Median relation per 0.1 dex bin

(0.25, 0.60)

1012 1013 1014

-0.40

-0.20

0.00

0.20

0.40

(0.29, 0.81)

1012 1013 1014

(0.40, 0.70)

1−
M

r 20
0m
/M

d 20
0m

M200m [h−1M�]

Figure 3.3: Fractional difference in the mass of matched haloes identified in direct and rescaled
simulations. Each panel shows results for a different combination of Ωm and σ8 indicated in the
legend. Contours enclose 68% and 95% of the distributions, and symbols mark the mean and median
values per mass bin.

101

102

103

104

ρ
(r

)/
ρ̄

m

(0.25, 0.60) 1012.0 − 1012.1 h−1M�

1012.5 − 1012.6 h−1M�

1013.0 − 1013.1 h−1M�

1013.5 − 1013.6 h−1M�

1014.0 − 1014.1 h−1M�

10−1 100
r [h−1 Mpc]

-0.30
-0.15
0.00
0.15

1−
ρ

r/
ρ

d

Direct simulation
Rescaled simulation
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the opposite signs for (0.40, 0.70) and (0.80, 0.40).
Fig. 3.5 shows the fractional difference for four of our test simulations for haloes in four to

six mass bins, where more than twenty haloes have been recorded in the direct and rescaled
simulations. The magnitude (though not always the sign) of the differences is similar to that
for the (0.25, 0.60) cosmology. From approx. 0.3 to 3 r200m, the rescaled profiles have an
outer bias with the opposite sign to the inner (r . 0.3 r200m) profile bias, until they reach
better agreement at larger scales (r > 3 r200m). This suggests that the simulations have a
similar halo bias. Fewer haloes in the higher mass bins lead to a larger scatter, predominantly
in the outskirts where the active evolution takes place. Performing the same tests with just
haloes passing the relaxation cuts or matched haloes yield similar results as for the whole
population, indicating that the biases are universal features. We show the corresponding
fractional differences for matched haloes only in Section 3.11.

3.6.3 Weak lensing profiles

As shown in Fig. 3.6, the small differences in the 3D density profiles propagate to small
differences in the weak lensing profiles. The best agreement between the profiles of the
rescaled and direct simulations is reached for (0.29, 0.81). The other cosmologies show larger
differences, in particular in the inner profiles. In contrast, the outer profile bias is barely
discernible except for the low mass bins for (0.25, 0.60), implying that it is washed out by
taking the mean and calculating the projection. If we increase the mass bin width to 0.2 dex
and recompute the profiles, the outer profile bias almost completely vanishes in 2D but it is
still discernible in 3D for median profiles. The transition regime scatter does not necessarily
dampen at larger scales8. For the total maximum and median values of the residuals below
r200m, we refer to Table 3.2.

As for the 3D density profiles, we find negligible differences between all haloes and all
8We calculated the large scale ∆Σ for (0.29, 0.81) for the same mass bins for 3− 30h−1 Mpc and there are

small differences at the level of the scatter over this range.
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Figure 3.6: Differential excess surface mass density profiles ∆Σ(r) for stacks of haloes in the direct
and rescaled simulations. Different colours indicate the different halo mass bins displayed whereas
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NFW profiles are indicated by dotted lines. The results for the (0.80, 0.40) cosmology are presented
in Section 3.10.
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shows results from the direct and rescaled simulations for all haloes and only for those relaxed according
to two different criteria. The coloured regions mark the 68 % and 95 % percentiles, estimated from the
bootstrap resample.

matched haloes. However, the scatter in the 2-halo transition regime is dampened, and the
inner and outer profile biases are accentuated, especially for (0.29, 0.81). In addition, there
are no conspicuous differences between the profiles for all haloes, for those which pass the doff
relaxation cut and for those which pass both doff + fsub relaxation cuts.

Fig. 3.6 also illustrates that the ∆Σ profiles for r . r200m are well described by NFW
lens profiles. We fit the measured mean profiles by minimising Eq. (4.6.1) with both c200m
and r200m as free parameters. Fig. 3.7 shows the relative difference between the mean M200m
recorded by the halo finder and the value fitted from the ∆Σ profiles. For the simulations
with rescaled fiducial snapshots close to z = 0, the rescaled and direct simulation mass biases
have similar amplitudes and show a similar evolution in mass with additional scatter at the
high mass end. Introducing relaxation cuts shifts the amplitude consistently in the direct
and rescaled simulation towards zero and for some high mass bins the bias changes signs,
presumably due to scatter. The results with only the doff cut enforced are similar to the ones
where both cuts are imposed.

The negative bias for low mass haloes, particularly for (0.15, 1.00), is likely due to a lack
of spatial resolution, which causes the measured lensing profiles to fall below the analytic
profiles in the innermost regions. Moreover, for (0.15, 1.00) and (0.25, 0.60), there is a visible
systematic offset between fit masses of the rescaled and direct simulations, which is preserved
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with the introduction of cuts. Small but significant cosmology-dependent deviations from
the analytic NFW lens profiles even for relaxed haloes might cause this offset. This requires
further investigation in future work.

3.6.4 Concentration-mass relations

In Fig. 3.8, we compare the values of the concentration parameter from the 3D and 2D NFW
fits to the predictions of the model described in Section 3.4.2. At the low mass end, the finite
force resolution of the simulations affects the inner halo profiles and thus the concentrations
estimates noticeably, in particular for (0.15, 1.00) due to its larger softening scale. The
vertical dotted lines in Fig. 3.8 and 3.9 mark the halo mass above which the scale radius
exceeds rs > 6 ls for the theory predictions, and thus the concentrations estimates are less
affected by the finite force resolution.

In 3D, the model fails to predict the concentration-mass relation within the statistical
errors for the general population. Additional cuts remove the tension, as Fig. 3.9 shows for
(0.15, 1.00). For low mass haloes, the Einasto fits favour higher c-values than the NFW fits
(see Section 3.12) and have the best agreement with the L16 model with the cuts enforced
(which is encouraging since the model is supposed to match such relations). We are able
to reach a complete agreement with the model with the cuts enforced with the Einasto
parameterisation for all cosmologies where we use snapshots close to z = 0 in the fiducial
run.

Yet, the model cannot describe the measured rescaled c(M)-relation for (0.25, 0.60). This
is caused by a failure to model the signal at z = 0.56 in the fiducial cosmology. We have also
computed the unscaled M200c concentration-mass relations for median Einasto c(M, z) rela-
tions with the corresponding cuts implemented9, which yield the highest available concentra-
tions per mass bin. Even in this case, the model predicts higher than observed concentrations.
This could be due to the neglect of the redshift evolution of the collapse threshold.

In 2D, the model fits the measured values well at high masses, particularly for the relaxed
subpopulations. Due to limited resolution, we cannot discern the expected monotonous c(M)-
relation in 2D below ≈ 1012.7 h−1M� for (0.15, 1.00). This effect is present in the low mass
bins for (0.25, 0.60) as well. The relations in 2D and 3D mainly differ due to different binning
choices; in 3D we follow the approach in L16 whereas we opt for an observation conforming
choice in 2D. Fewer bins in the inner projected regions of the stacked haloes combined with
the down-weighting of these bins result in less sensitivity to the concentration, which explains
the flat relations for low mass haloes. On the other hand, the masses are still determined well
which is reflected in the small horizontal error bars.

As Fig. 3.10 illustrates, the difference in concentration ∆c between the direct and rescaled
simulations is approximately constant for haloes in the mass range 1012 − 1014 h−1M�, and
moreover roughly consistent with the model predictions. The deviation for (0.25, 0.60) results
in a discrepancy between the model and the measured difference relation, but for (0.29, 0.81),
(0.40, 0.70) and partly for (0.15, 1.00) at the high mass end, there is consistency both in 3D
and for the lensing profiles. For low mass haloes, resolution effects and the relatively higher
amplitude of the (not modelled) 2-halo term obscure the results. At the high mass end, the
low number of haloes cause a larger scatter.

9Since M∆m > M∆c generally holds, the cuts are more conservative with a M∆c mass definition as neither
the centre-of-mass, the position of the most bound particle nor the mass contained in substructure are altered
for the same halo.
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Figure 3.8: The concentration-mass relation of haloes in rescaled and direct simulations. Concentra-
tions were estimated from NFW fits with the halo mass as a free parameter. The left and right plots
show results from employing 3D density profiles and ∆Σ, respectively, and each sub-panel focuses on
a different cosmology. Dotted and dashed lines show the predictions of the model by L16. Symbols
mark the mean relations, and shaded regions show the 68 % and 95 % of the distribution at a fixed
mass. Horizontal error bars indicate the spread in the fitted M200m masses. The vertical dotted lines
denote the mass limit below which the finite force resolution affects the concentration estimates. Note
that the disagreement between the model and the measurements originates mostly from unrelaxed
haloes (cf. Fig. 3.9). For an analogous plot using concentrations obtained with Einasto profiles, see
Section 3.12.
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Figure 3.11: Same as Fig. 3.5 but after correcting the inner profiles of rescaled haloes.
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Figure 3.12: Same as Fig. 3.6 but after correcting the inner profiles of rescaled haloes.

The constant ∆c relations hold for the relaxed populations as well, especially for ∆Σ,
though the variance increases. The small changes for the 3D density profiles are quantified
by comparing ∆crelaxed/∆call haloes for haloes with 1012 − 1014 h−1M� masses and record
the median differences in the mass bins where we have more than twenty haloes for each
imposed cut. This produces variations of the order of 5 % but there are no consistent trends
present for both the NFW and Einasto parameterisations. This means that whereas the L16
model fails to accurately predict the concentration-mass relations for halo samples containing
both relaxed and unrelaxed systems, it can predict the difference in this relation between
two simulations for such a mixed population very well both for 3D density and ∆Σ profiles.
Hence, it is suitable for modern surveys.

3.6.5 Concentration corrected profiles

Motivated by the good agreement in Fig. 3.10, we correct the rescaled profiles by multiplying
the measured values with the ratio between the fitted profile to the rescaled simulation data
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Residuals: ρ(r), 30h−1 kpc < r < r200m ∆Σ(r), 30h−1 kpc < r < r200m
Pre-correction Post-correction Pre-correction Post-correction

Simulation Halo mass range Max Median Max Median Max Median Max Median
(0.15, 1.00) 1012.0 − 1014.8h−1 M� 35 % 22 % −17 % −9.1 % 39 % 30 % 10 % 5.2 %
(0.25, 0.60) 1012.0 − 1014.2h−1 M� 25 % 15 % −17 % −7.4 % 36 % 18 % 19 % 7.3 %
(0.29, 0.81) 1012.0 − 1014.5h−1 M� 16 % 2.5 % −16 % 1.3 % 6.1 % 2.4 % 5.1 % −1.0 %
(0.40, 0.70) 1012.0 − 1014.4h−1 M� 25 % 7.4 % −18 % 3.6 % −26 % −9.6 % −15 % −2.1 %
(0.80, 0.40) 1012.0 − 1013.8h−1 M� 43 % 22 % 11 % 6.5 % −42 % −29 % 13 % −4.3 %

Table 3.2: Total and median maximum deviation between the direct and rescaled simulation, 1 −
ρr/ρd and 1−∆Σr/∆Σd, for 3D median and for 2D mean profiles per mass bin for radial bins in the
given range before and after the concentration correction.
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Figure 3.13: Same as Fig. 3.10 but after applying our corrections in Eq. (3.6.1) and Eq. (3.6.2) to
the rescaled profiles. The concentration bias for the corrected profiles is reduced considerably.
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and a modified profile with the concentration bias from the model, ∆c(r200m):

ρ′(r) 7→ ρNFW (r, c+ ∆c (r200m) , r200m)
ρNFW (r, c, r200m) ρ′(r), (3.6.1)

∆Σ′(r) 7→ ∆ΣNFW (r, c+ ∆c (r200m) , r200m)
∆ΣNFW (r, c, r200m) ∆Σ′(r), (3.6.2)

for all radii r . r200m. We will refer to these correction factors as γ(ri). The Einasto correction
is calculated in the same manner (see Section 3.12). Since ∆c(M) only weakly depends on
M , there are no significant differences between using the fitted M200m or halo finder value.

Correcting the profiles up to 3h−1 Mpc does not significantly affect the lensing signal, but
jeopardises the agreement for the 2-halo term in 3D (see Fig. 3.18). We find that restricting
the correction to r < 1.8 r200m reduces differences in the 1-to-2-halo transition region without
compromising the agreement on larger scales.

The concentration correction could be additive instead of multiplicative. This gives a
slightly better performance on scales r > r200m, since the field differences are small, but this
correction also induces a small bias and should thus be applied below a cutoff radius. The
multiplicative correction preserves the shape of the residual throughout the transition regime
slightly better. Otherwise, we have checked that there are no significant differences between
the two for all halo mass bins and cosmologies with NFW or Einasto parametrizations for
matched haloes, in bootstrapped stacks or individually. Both largely preserve the width and
shape of the ∆c distribution around the median or the mean concentration, with no obvious
advantages, and yield ∆c = 0 if we correct the rescaled profiles with the measured direct
concentrations.

The residuals for the corrected 3D density profiles are shown in Fig. 3.11 and for the
corrected ∆Σ profiles in Fig. 3.12. The maximum and median pre- and post-correction
profile differences are listed in Table 3.2 for the 40 radial bins setup. Typically, the largest
differences occur in the most or second most massive halo mass bin. In most cases, the
correction reduces the differences by factors of two to five. For (0.25, 0.60), both the residual
profiles and residual concentration differences indicate that a larger concentration correction
than predicted by the L16 model could improve the agreement between direct and rescaled
profiles.

However, when comparing the measured halo concentrations pre- and post-correction, we
find significant improvement in the concentration mismatch between rescaled and direct sim-
ulations for all considered cosmologies, as Fig. 3.13 illustrates for all haloes (see Section 3.11
for the result for matched populations).

3.6.6 Correcting individual halo profiles

We also examine how the correction in Eq. (3.6.1) affect the concentrations from 3D profile fits
to individual haloes. The joint distribution of concentrations for haloes above 1012.5 h−1M� in
the (0.40, 0.70)-simulation and their rescaled counterparts is shown in Fig. 3.14. Applying the
concentration correction translates the distribution towards the diagonal in a similar manner
for high and low concentration haloes. This is a consequence of the modest mass evolution
of the concentration bias for the cosmologies in this study. However, the correction cannot
account for a slight tilt between the two simulations, with low-c (high-c) haloes having higher
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Figure 3.14: Effect of the density field correction on the NFW estimated concentration distribution
for individual matched haloes in the direct and rescaled simulation with (0.40, 0.70) where the haloes
in the direct simulation have M200m > 1012.5 h−1 M�. For smoother contours, the distributions have
been convolved with a Gaussian filter with σ = 1.

(lower) concentrations in the direct simulation than in the rescaled simulation.10

The tilt is stronger for cosmologies with ∆Ωm > 0 away from the fiducial simulation with a
clockwise tilt relative to the diagonal (see Section 3.11). For (0.15, 1.00) and (0.25, 0.60), there
is a slight counter-clockwise tilt. The results are robust to changes in the fitting scheme.11
We have checked that there are negligible differences for all cosmologies between the c(M)
relations computed from the median profiles and the median c(M) relations from fits to
individual haloes, and that the tilt in the distributions persist when one corrects the individual
halo concentrations with the median measured relations.

The tilt in the joint distribution is also present for halo samples selected in narrower mass
ranges. The asymmetry is partly washed out in the results for the median profiles, as both
high c and low c haloes contribute to the effective density field per mass bin. However, this
secondary rescaling concentration bias could influence analyses where the halo population is
split into different concentration samples at fixed mass, such as assembly bias studies. Further
studies with larger simulation volumes are required to accurately quantify this effect.

10This tilt persists when relaxation cuts are enforced, regardless of whether r200m is fixed or a free parameter,
and is also present with Einasto parameterisations (Section 3.12).

11For all profile fits we use the Levenberg-Marquardt algorithm with (c = 4, r200m = r200m, sim.) as a starting
point. We have checked that the results are insensitive to the starting point choice for physically viable
parameter values. In addition we have computed the parameters with the limited-memory BFGS algorithm
with bounds c ∈ [1, 30] and r200 ∈ [0.5 r200m, sim., 2 r200m, sim.] and obtain consistent results.
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Figure 3.15: Comparison between direct and rescaled profiles and their radial derivatives for matched
haloes for (0.25, 0.60) for three mass bins. The concentration bias is visible as an amplitude offset
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at the halo boundaries. This shift is visible in the radial derivatives of the field (computed with a
fourth-order Savitzky-Golay filter with a window length of 15 bins) in the lower panel as well, where
there are offsets in the positions of the steepest slope between the direct and rescaled profiles.

3.6.7 Halo outskirts

The concentration correction does not fully account for differences in the halo outskirts, as it
focuses on rearranging material within the halo. Subsequent outer corrections could redefine
the halo boundary and potentially improve agreement in the halo mass function. Fig. 3.15
highlights that the profile bias in the inner halo regions is mostly an amplitude offset, whereas
the bias in the halo outskirts is rather a radial offset. Hence, correcting the rescaled profiles
by shifting them radially in the outskirts can mitigate the outer profile bias.

In Fig. 3.16, we plot the measured differences in the location of the steepest slope of the
density field for matched haloes. We adjust the position of the rescaled profile’s steepest slope
with r

(d)
200m/r

(r)
200m to account for the mismatch in halo mass between the matched samples,

which has a minor impact on the result. We compare these differences to the expected offset
between the splashback radii rsp, the apocentre of the first orbit of accreted material (e.g.
Diemer & Kravtsov, 2014; Adhikari et al., 2014; More et al., 2015; Shi, 2016; Mansfield et al.,
2017; Diemer et al., 2017), between the direct and rescaled profiles ∆rsp = r

(d)
sp − r(r)

sp . This
radius has been proposed as an alternative, more realistic halo boundary instead of the virial
radius, and it may coincide better with the radius at which gas is shock-heated and where
in-falling substructures can be stripped of their host subhaloes (e.g. Wechsler & Tinker, 2018).
There are claims of detections of the splashback radius in observational data (e.g. More et al.,
2016; Baxter et al., 2017; Chang & DES Collaboration, 2018) using projected number density
and weak lensing profiles of galaxy clusters. However, these observables are sensitive to the
shortcomings of the cluster building algorithm in correctly identifying cluster members in
projection, which can bias the result and induce false detections (Busch & White, 2017). In
our study, we only focus on rescaling effects on the splashback radii from simulated 3D density
profiles and leave the propagation of these errors to projected lensing profiles with realistic
cluster finder algorithms for future work.
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Figure 3.16: Measured differences in the location of the steepest slope of the density field for matched
haloes w.r.t. to the Diemer et al. (2017) model, for the 75th percentile. Error regions for 95 % and
68 % are computed from resampled medians from stacks of matched haloes in the direct and rescaled
simulation snapshots.

We apply the recent fit provided in Diemer et al. (2017) to simulation results in Diemer
(2017) to predict the median splashback radius as a function of halo mass and cosmology.
This model has been fitted by tracing billions of particle orbits in haloes spanning from
typical cluster to dwarf galaxy host masses in different cosmological simulations up to z = 8.
Percentiles correspond to the fraction of the first apocenters of the particle orbits contained
inside a given radius. Particles which were contained in a subhalo with mass exceeding 1%
of the host halo mass at infall are excluded to minimise bias from dynamical friction. In
accordance with previous studies (e.g. Diemer & Kravtsov, 2014; More et al., 2015), the
relation between the halo accretion rate Γ and the ratios rsp/r200m and Msp/M200m is found
to be well described by a functional form Xsp = A + Be−Γ/C where Xsp is either ratio and
A, B and C are free parameters where B and C depend on the matter fraction Ωm and
halo peak height ν = δc/(D(z)σ(Mh)) with Mh as the halo mass. In addition, the median
accretion rate Γ(ν, z) can be well captured by a parameterisation Γ = A′ν+B′ν3/2, where A′
and B′ are polynomials in z. We use this expression for the median accretion rate to compute
the radii.12 The measurements trace the model prediction, except for (0.80, 0.40) where the
scatter is driven by poor statistics due to the small box size.

We also compute the radial shifts that minimise the largest relative difference between
the direct and rescaled outer density profiles. Between 0.4 < r/r200m < 2.0, we locate the
maximum of the 1 − ρr(r)/ρd(r) residual defining r = rmax and then shift the interpolated
rescaled profile radially to find the radius rmin that minimises 1 − ρr(rmin)/ρd(rmax). The
resulting shifts rmax − rmin are shown in Fig. 3.17 for matched haloes with the r(d)200m/r

(r)
200m

correction. This shift is almost constant for haloes, all and matched, with M200m between
1012 − 1014 h−1M�. For higher masses the result is obscured by scatter. The predicted

12As we are probing the median 3D density profiles, we opt for the 75th percentile of the model which was
found to best match the median profiles in More et al. (2015), especially at the high mass end. The splashback
radius rescales as rsp 7→ αrsp and the predicted position r(r)

sp is hence given as the fitted solution in the fiducial
simulation at the fiducial redshift with β−1

m M200m determining the peak height and r200m.
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Figure 3.17: Measured density field outer profile bias for matched haloes vs. the predicted
∆rsp/r200m bias using the model in Diemer et al. (2017).

splashback bias do not exactly match the required shifts to remove the radial bias13, but
they show similar relative amplitudes, signs and weak mass dependence. A splashback radius
model may thus provide a good starting point for further improvements of the rescaled profiles
and halo masses (an initial attempt to correct the masses is presented in Section 3.13).

As Fig. 3.18 illustrates the outer profile bias vanishes, if we shift the rescaled density
field values radially by r 7→ rmin/rmax × r or r 7→ r −∆r with ∆r = rmax − rmin. Whereas
the multiplicative correction performs better in the halo centre, the additive correction has
a better large scale behaviour. To combine the radial shift correction with the concentration
correction, we modulate each by a sigmoid function to restrict their actions to their intended
radial range:

ρ 7→ ρ′ = ρ(r − ζ(r)) + ξ(r), ζ(r) = 1
1 + e−k0(r−r0) ∆r,

ξ(r) = 1
1 + e−k1(r0−r)

· (ρ′NFW − ρNFW
)
,

(3.6.3)

where r0 marks the transition scale, k0 and k1 control the sharpness of the onsets of the
corrections, and the concentration correction is evaluated at the unshifted radius. Fitting
these parameters, r0 in the vicinity of r200m seems preferred, but all parameters vary with
mass and cosmology when fitting the rescaled simulation to the direct simulation. In Fig. 3.18
we plot one possible solution with (r0, k0, k1) as (r200m, 9.2, 16.4), where ∆c is obtained from
the L16 model and ∆r is measured. Future investigations are required to find the best set of
parameters.

13Moreover, typically rmax ≈ 1.3 r200m, which does not coincide with the predicted position of the splashback
radius for all masses and cosmologies.
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Figure 3.18: Profiles for matched haloes for (0.25, 0.60) for M200m ∈ [1013, 1013.1)h−1 M� in
the direct simulation with different corrections applied (see the text for more detailed descriptions).
Although not perfect, the concentration correction ’× γ(ri)’ mitigates the residual in the centre and
the shifts remove the outer profile bias. These two corrections can be combined with sigmoids.

3.7 Discussion
The rescaling predictions for the halo matter and lensing profiles are reasonably accurate even
before applying the concentration correction. Partly, this is due to the matched initial con-
ditions. This ensures similar peak heights, proto-halo regions, environments, and tidal fields,
which leads to similar growth histories, as the growing density perturbations subsequently
cross the collapse threshold.

After our additional correction, the predictions become accurate at the 5 % level. In this
section, we discuss the expected cosmology dependence of the corrections (Section 3.7.2), the
method’s accuracy in light of the expected impact of baryons (Section 5.6.4) and large-scale
corrections (Section 3.7.4), as well its application for lensing mass estimations (Section 3.7.5).

3.7.1 Comparison to other approaches and further improvements

Our approach differs from the setup in Mead & Peacock (2014a) since it is a nonlocal op-
eration on the density profiles built from the full 3D and 2D rescaled particle distributions
whereas their method involve shifting the halo particle positions. They work with a subset of
particles randomly sampled from the fiducial distribution to fill up the predicted density pro-
file where information from the tidal tensor helps to account for the asphericity (this produces
better agreement in halo morphology but does not take substructure into account which is
problematic for satellite galaxies). It is not evident how much this sampling scheme differs
from a refined method working on the actual 3D distribution of particles within the halo. A
possible way to implement our algorithm as a localised, discrete mapping is to perform a local
measurement of the spherically binned density field around each halo, use the correction to
find the closest NFW/Einasto profile and shift the particles between the shells accordingly
till some convergence criteria has been met. Preferably, this should prioritise displacements
between adjacent shells. One could also account for the shape of the tidal tensor, compute
Penna-Dines surfaces for accretion responses (cf. Mansfield et al., 2017) and extract addi-
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Figure 3.19: Expected bias in the concentration of rescaled haloes based on the L16 model, evaluated
as the median bias for haloes with 1012 < M200m/(M� h−1) < 1014, as a function of redshift.

tional phase-space information to preserve the halo shape, composition, stream structure and
extension.

3.7.2 Predicting the concentration bias as a function of cosmology

Due to the few simulations in our study, we cannot put strong constraints on a model-
independent fitting function for the concentration bias. All cosmologies, with the exception
of (0.25, 0.60), trace the Ωm− σ8 degeneracy favoured by weak lensing, which means that we
have few constraints perpendicular to this line. We thus use the L16 model to predict the
rescaled concentration bias for cosmologies and redshifts where we do not have access to a
corresponding direct simulation.

Firstly, we investigate the redshift evolution in the cosmologies already covered. We
use the linear growth factor relation in Eq. (3.4.6) to calculate the redshifts in the fiducial
simulation which correspond to the higher redshifts in the direct simulation. We plot the
median concentration bias for haloes with M200m in 1012 − 1014 h−1M� as a function of
redshift from z = 0 to z = 2 in the direct simulation in Fig. 3.19. Overall the difference in
concentration decreases with redshift and there is a turnover point for all cosmologies expect
(0.29, 0.81) where the bias changes sign. This is a consequence of the rescaling parameters
being determined by the locally matched growth history. Yet, caution must taken as we have
already seen that the model prediction works less well at higher redshifts in Fig. 3.10. To bring
about a better agreement with the measurements, the model could be modified to feature a
slight redshift dependence which either decreases C and/or raises f since these changes lower
the amplitude of the c(M)−relation.

In Fig. 3.20, we plot the expected median ∆c bias for haloes with masses M200m in
1012−1014 h−1M� when rescaling the Millennium simulation (Springel et al., 2005b) to match
target cosmologies with different Ωm and σ8 at z = 0, with the target matter power spectra
generated by CAMB (Lewis et al., 2000) combined with linear growth factors (e.g. Hamilton,
2001) assuming a constant baryon fraction Ωbaryons/Ωm. The corresponding contours for the
rescaling parameters (α, z∗) are shown in Section 3.14. Rescaling to a lower σ8 at fixed Ωm
or a lower Ωm with a higher σ8 induces a positive ∆c, whereas raising Ωm and lowering σ8
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Figure 3.20: Expected bias in the concentration of rescaled haloes at z = 0 as a function of the
value of Ωm and σ8. Our assumed fiducial cosmology is Ωm = 0.25 and σ8 = 0.90 (marked by the
white cross). The white diamonds mark the test simulations cosmologies employed in this Chapter.

will produce negative ∆c.
If one relaxes the growth history constraint to permit matches in the future, negative

redshifts14 represent the preferred solutions for the ∆Ωm > 0, ∆σ8 > 0 quadrant. Such
solutions yield ∆c < 0. If we instead restrict our redshift range to z∗ & −0.8, the concentration
bias becomes positive again as we move further away from the degeneracy plane. The contours
for the predicted ∆rsp-bias (see Section 3.14) partly trace the ∆c contours with the opposite
sign over most of the plane except in the ∆Ωm > 0, ∆σ8 > 0 quadrant.

The concentration bias is a smooth function of cosmology, i.e. small changes in the
cosmological parameters produce small concentration offsets. A set of well-placed simulations
could thus be used together with rescaling to efficiently cover a large region of parameter
space accurately.

Lastly, we discuss rescaling to emulate a WMAP7 cosmology (Komatsu et al., 2011)
and Planck (2014) cosmology (Planck Collaboration, 2014) at z = 0 using the Millennium
simulation with SAMs in Guo et al. (2013a) with the AW10 weighting scheme and in Henriques
et al. (2015) with the AH15 scheme, respectively. The corresponding (z∗, α) are (0.28, 1.04)
and (0.12, 0.96), respectively, which produce ∆c(M) relations with shallow slopes with median
biases ∆c = 0.88 (∆cmin = 0.77, ∆cmax = 0.97) and ∆c = 0.06 (∆cmin = 0.03, ∆cmax = 0.06)
for M200m between 1012 − 1014 h−1M�. This means that the concentration bias for haloes in
Henriques et al. (2015) is almost negligible. We plot these relations in Section 3.15 with the
predicted redshift evolutions, where the biases also are reduced at earlier times. Hence, we
can predict the bias of the measured lensing signal around central SAM galaxies in rescaled
simulation snapshots.

3.7.3 Baryonic effects

Our method currently does not account for effects baryonic processes have on halo profiles.
The impact of baryonic processes on the matter distribution has been investigated in simula-

14An existing N -body simulation can cheaply be evolved into the future (see e.g. Angulo & Hilbert, 2015).
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tions (e.g. by van Daalen et al., 2014; Velliscig et al., 2014; Schaller et al., 2015a; Leauthaud
et al., 2017; Mummery et al., 2017). Baryon physics affects the matter clustering by ∼ 10%
on scales . 1Mpc. The impact on ∆Σ is similar. By matching the haloes in Illustris with
their counterparts in a dark matter-only run, the baryonic physics has been found to suppress
∆Σ by ∼ 20% from r & 0.4h−1 Mpc to r 6 4h−1 Mpc (Leauthaud et al., 2017).

Even for cosmologies far from the fiducial cosmology, the rescaling predictions without
the concentration corrections are at most off by 40% in the innermost radial bins, and the
disagreement decreases to ∼ 10 % at r ≈ 1h−1 Mpc. The concentration correction substan-
tially improves agreement in the inner region. Moreover, the discrepancies are much smaller
for cosmologies closer to the fiducial cosmology. This means that the bias induced by rescal-
ing is subdominant to the baryonic feedback effects below 1h−1 Mpc, except for extreme
cosmologies.

3.7.4 Large scales

Here, we do not attempt any corrections at very large scales. We have computed the difference
between the matter power spectrum in the weakly nonlinear to the nonlinear regime for
(0.15, 1.00) with and without the large-scale displacement field correction from AW10 and it
was found to be negligible. The large-scale halo-matter correlations do not differ significantly
between the rescaled and direct simulations for the halo masses we are investigating in 3D.
There appears at most a small offset with surrounding scatter. The connection and coupling
between this offset and the detected mass bias, as well as the proper response of the large-scale
correlations to the rescaling transform are topics for future studies. In halo models of GGL
(e.g. Oguri & Takada, 2011), the large-scale lensing signal (2-halo term) is directly related
to the projected linear power spectrum. It should thus be straightforward to compute its
response to rescaling. Moreover, the proposed recipe in AW10 to correct the displacement
field using the Zel’dovich approximation (Zel’Dovich, 1970) should improve the agreement.

For the linear regime, there already exist fast, accurate large-scale structure solvers, e.g.
COLA (Tassev et al., 2013, 2015) and FastPM (Feng et al., 2016). Thus, corrections for
exclusive large-scale analyses using the rescaling approach are of limited practical importance.
However, the benefits of rescaling the small scales become manifest when successfully coupled
to such a large-scale solver, as a wide range of cosmologies can be explored on multiple
refinement levels.

3.7.5 Mass estimation forecasts

One application for galaxy-galaxy lensing is halo mass estimation for a selected foreground
galaxy sample. We thus examine how the residual statistical and systematic differences in the
profiles translate to errors in the measured masses. For simplicity, we focus on the (0.29, 0.81)
cosmology, and we choose a series of mass-selected samples in the direct simulation: haloes
in mass bins of 0.05 dex or 0.1 dex centred on slightly different masses with bin borders
shifted with 0.005 dex w.r.t. one another around 1012.5 h−1M� (i.e. massive galaxy haloes)
or 1013.5 h−1M� (galaxy group haloes). The mean ∆Σ profiles for these bins constitute our
mock weak lensing observations.

If we fit NFW profiles to these mock lensing observations, we obtain mass estimates that
are approx. 5 to 10 % below the true mean halo masses as recorded by the halo finder (see
Fig 3.7). We should be able to bypass this bias if we employ the rescaled simulation’s stacked
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Figure 3.21: χ2-parabolae for rescaled ∆Σ profiles fitted to a direct ∆Σ profile for a stack of galaxy
group-size haloes with mean M200m marked by the vertical dashed line according to Eq. (3.7.1). The
minimum determines the best fit rescaled profile, and the corresponding simulation mass the best
fit mass. The concentration correction shifts the parabola to be more symmetric around the direct
simulation’s mean mass, reducing the difference to the best-fit rescaled mass.

profiles (which should be ‘biased’ in the same way) as model predictions (instead of analytic
NFW profiles) to estimate the mean mass of our mock halo sample. This however requires
that the rescaled halo profiles are close enough to the true halo profiles (i.e. the direct
simulation’s profiles in this exercise), since a mismatch, e.g., in concentration of ∆c = 1
causes an error ∼ 5 % in the inferred masses (e.g. Applegate et al., 2016; Schrabback et al.,
2018). For the considered example, the concentration mismatches are already small before
the correction (∆c ∼ 0.30 and ∆c ∼ 0.15), and vanish after the correction. Thus, mass errors
due to concentration mismatches are well below 1 % here (this is not necessarily the case for
rescaling to the other, more extreme cosmologies).

To fit the rescaled mean profiles (our predictions) to the direct profiles (our mock data),
we minimise the figure-of-merit

χ2 =
Nr∑

i

r2
i [∆Σdirect(ri)−∆Σrescaled(ri)]2 , (3.7.1)

for radial bins 0.05 < ri/r200m < 0.8. Fig. 3.21 illustrates how the figure of merit changes
when the mean profile of haloes in the direct simulation in a bin with width 0.1 dex centred on
1013.5 h−1M� is fit with rescaled mean profiles of mass bins with the same width but varying
mean mass. The concentration correction shifts the χ2-parabola to be more symmetric around
the direct simulation’s mean mass.

The results from the different sweeps are listed in Table 3.3. For smaller halo samples,
the χ2-parabolae feature considerable scatter which cause larger errors for the best-fit mass.
As the number of haloes grow, the χ2-parabolae become smoother and the errors on the
best-fit masses decrease. This behaviour is in line with previous work (Becker & Kravtsov,
2011; Hoekstra et al., 2011) where the relative error on the mass was found to be ∼ 30 %
per system for group haloes (and around 20% for more massive systems). For example, this
yields a relative mass error of ∼ 0.01 for stacks of ∼ 1000 haloes, and ∼ 0.001 for ∼ 10 000
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Mass range Bin size Max error (multi-axial) Max error (axial) Corrected max error (multi-axial) Corrected max error (axial)
Group 0.10 dex -3.2% -4.0% -1.1% 2.5%
Group 0.05 dex -6.0% -9.4% -4.8% -7.2%
Galactic 0.10 dex -2.4% -3.6% 0.2% -1.3%
Galactic 0.05 dex -2.4% -4.8% 1.2% -3.5%

Table 3.3: Maximal disagreements in mass between the direct and rescaled profiles for the different
sweep ranges and bin widths. ‘Group’ refers to the 1013.45− 1013.55 h−1M� mass range and ‘Galactic’
to the 1012.45−1012.55 h−1M� mass range, respectively. The errors listed are the maximal discrepancies
1 −M (r)

200m/M
(d)
200m for each of the approximately twenty direct profiles in each sweep range and with

‘Corrected’ the concentration correction has been applied to the rescaled profiles in Eq. (3.7.1). ‘Axial’
refers to the largest error for halo profiles compared along a sole projection axis and ‘Multi-axial’ the
largest errors for the average profiles along the three spatial axes.

haloes.
For future dark energy task force stage IV surveys, such as Euclid, statistical errors on

mass estimations from ∆Σ profiles are expected to shrink substantially compared to current
surveys. We can acquire a rough estimation by scaling corresponding values from CFHTLenS
(Velander et al., 2014), which has a similar depth but a smaller survey area of 150 deg2, to
an area of 15 000deg2 for Euclid (Laureijs et al., 2011; Amendola et al., 2013). A hundred
times larger survey area roughly translates to a reduction of the statistical errors by a factor
of ten. As example, we consider the sample L7 of 344 lenses in Velander et al. (2014) with
absolute r-band magnitudes in the range [−24.0, −23.5], average redshift z̄ = 0.3, fraction of
blue galaxies fblue = 0.03. The mean halo mass of these lenses estimated from CFHTLenS is
1013.51 h−1M� with a quoted 20 % error. The statistical error for Euclid would shrink to 2 %.
This suggests that our proposed method is accurate enough for current halo weak lensing
data, and moreover may be viable for much larger future surveys, once baryonic effects on
halo profiles have been properly accounted for.

3.8 Conclusions

We have demonstrated the prowess of a refined rescaling algorithm with growth history con-
straints in predicting halo 3D and GGL profiles. Residual differences in the inner profiles have
been parametrised as concentration biases that can be predicted using linear theory combined
with excursion sets. Differences in the profile outskirts can be expressed in terms of a shift
in the splashback radius. This enables us to correct the profiles and improve the method’s
accuracy. This represents an important step towards the reusability of N -body simulations
for cosmic structure analyses.

The algorithm’s accuracy is satisfactory for current GGL data. However, small remaining
discrepancies in the halo profile outskirts and for the lens mass estimates may require further
treatment depending on the application. Further studies could clarify, which of these discrep-
ancies are due to systematic biases, and which are due to scatter in, e.g., halo shapes and
line-of-sight structure. With possibly improved corrections capturing biases not addressed so
far and large N -body simulations to minimise statistical errors, the method may be made
suitable for analysing future large (dark energy task force stage IV) surveys.
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Figure 3.22: Residuals from three different mass bins’ ∆Σ profiles for (0.25, 0.60) in the rescaled
simulation w.r.t. the direct simulation in panel I and the residuals from concentration corrected profiles
for in panel II.

3.9 Impact of radial binning and field residual variances for ∆Σ
profiles

The measured differences between direct and rescaled halo profiles presented in Section 3.6
could depend on the radial binning. To investigate the impact of the bin width, we compute
∆Σ profiles with twice as many bins. For ∆Σ, the new values for (0.15, 1.00) are 41 %
and 32 % (pre-correction) and 15 % and 7.0 % (post-correction), which represent the largest
differences owing to the lower resolution of this simulation. For (0.29, 0.81), the differences
increase to 7.0 % and 2.6% (pre-correction) and 6.1 % and −1.2 % (post-correction) which
implies an increase with 1 % for the total maxima and less than 1 % for the median maximum
values. For (0.25, 0.60) and (0.40, 0.70), the resulting changes are below or maximally 1%.
The same is true for (0.80, 0.40), though the median maximum deviation changes signs to
−4.2 % post-correction.

Concerning the cosmic variances of these residuals, we plot the residuals from the boot-
strapped profiles for (0.25, 0.60) using all haloes in three mass bins in Fig. 3.22, before and
after applying concentration correction (the results are qualitatively the same for the other
simulations). For galaxy and galaxy group class haloes, the spread in the differences in the in-
ner regions are quite narrow and they widen as one approaches the 1-halo to 2-halo transition
regime. For cluster size haloes, there is a larger variance in the inner regions which is both
driven by poor statistics and the impact of unrelaxed systems. This is reflected in the spread
in concentrations. Overall, the correction preserves the variance with slightly larger error
bars for cluster mass haloes as the haloes are not necessarily matched in each bootstrapped
stack w.r.t. one another.

3.10 Results for (0.80, 0.40)

The almost Einstein-de Sitter cosmology represents our most extreme sample, and its cosmo-
logical parameters deviate strongly from what is favoured by observations. The masses differ
substantially between the matched haloes in the direct and rescaled simulation, see Fig. 3.23,
with haloes in the rescaled simulation on average more massive. In Fig. 3.24 panel I, we
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show the measured ∆Σ profiles together with the fitted NFW lens profiles and in panel II
the profiles post-correction. Due to the small volume of the simulation as listed in Table 3.1,
we do not have any mass bins beyond 1014 h−1M� with more than twenty haloes in both the
direct and rescaled snapshot. Since the amplitude of the 2-halo term is directly proportional
to the matter fraction of the Universe, its influence kicks in at smaller scales than for the
other simulations. The inner profile bias is negative and can be quantified as ∆c ≈ −2 as
seen in Figs. 3.10 and 3.25 where we plot the 3D density profile NFW c(M)-relations. The
Einasto c(M)-relations, see Fig. 3.30, perform slightly better at the low mass end w.r.t. the
L16 predictions.

3.11 Matched halo results
In Fig. 3.26 we show the fractional differences in the median density profiles between matched
haloes in the direct and rescaled simulations binned according to the mass in the direct run for
all test cosmologies. The error regions are calculated from comparing the median differences
between the same bootstrapped matched haloes in the direct and rescaled simulations. With
respect to the differences shown in Fig. 3.5, the two biases are slightly more discernible, espe-
cially the outer profile bias and the (small) concentration bias for (0.29, 0.81). Re-sampling
the matched population for each mass bin yields similar results. For all cosmologies and mass
bins the profile bias changes signs at ≈ 0.3− 0.4 r/r200m which was also observed previously
for all haloes. The median ∆c-biases for these matched haloes are illustrated in Fig. 3.27
where the error regions are computed from bootstrap resamples of the same matched haloes
in the direct and rescaled simulations.

In Fig. 3.28 we plot the individual concentration relations in the direct and rescaled simu-
lation for all cosmologies except for (0.40, 0.70) which was already shown in Fig. 3.14 with the
same setup. We only correct the profiles if the fitted c+ ∆c > 0. This chiefly affects massive
haloes in the (0.80, 0.40) simulation and it has a negligible impact on the shape of the con-
tours. The concentration correction induces a translation towards the diagonal but rotations
are required for (0.15, 1.00) and (0.80, 0.40) to bring about agreement. Slight rotational ad-
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median results well.
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justments might improve the concordance for (0.25, 0.60) and (0.29, 0.81). For (0.25, 0.60), a
larger translation correction is required. Imposing relaxation cuts and demanding that haloes
pass them in both simulations does not affect the tilt of the distributions, but removes low
concentration haloes as expected.



3.11 Matched halo results 73

2 4 6 8 10 12 14 16
crescaled

2

4

6

8

10

12

14

16

c d
ire

ct

(0.15, 1.00)

Initial
Corrected

2 4 6 8 10 12 14 16
crescaled

2

4

6

8

10

12

14

16

c d
ire

ct

(0.25, 0.60)

Initial
Corrected

2 4 6 8 10 12 14 16
crescaled

2

4

6

8

10

12

14

16

c d
ire

ct

(0.29, 0.81)

Initial
Corrected

2 4 6 8 10 12 14 16
crescaled

2

4

6

8

10

12

14

16

c d
ire

ct

(0.80, 0.40)

Initial
Corrected
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3.12 Einasto concentrations

In Figs. 3.29 and 3.30 we plot the measured c(M)-relations and relaxation cut impacts for
an Einasto parametrisation of the density field, and in Fig. 3.31 the corresponding ∆c biases.
To compute the rescaling mappings we rephrase the density profile in Eq. (1.2.44) in terms
of the average density 〈ρEinasto〉 (r) for the enclosed mass M(< r):

〈ρEinasto〉 (r) = M(< r)
4π/3 r3 = ∆

y3
γ(3/α; 2/α(yc∆)α)
γ(3/α; 2/αcα∆) ρcrit(z0), (3.12.1)

where y = r/r∆ and γ(a; b) is the lower incomplete gamma function, readily replace the NFW
density profile in Eq. (3.6.1) and calculate the correction accordingly. Evaluating Eq. (3.12.1)
at the scale radius, the concentration w.r.t. the mean density c∆m is then the solution to

c3
∆m

γ(3/α; 2/αcα∆m) = c3
∆c

γ(3/α; 2/αcα∆c)
E(z)2

Ωm(1 + z)3 . (3.12.2)

The masses are rescaled in the same manner as in Section 3.4.2 and the resulting c(M)-
relations with α = 0.18 and ∆ = 200 differ negligibly from the NFW curves.

With relaxation cuts enforced, the measured Einasto c(M)-relations are close to the L16
model predictions, as Fig. 3.30 shows. Overall the the model predictions better match mea-
sured relations for Einasto profiles (see Fig. 3.29) than for NFW profiles (see Fig. 3.8). While
the concentration biases are similar to those measured for the NFW relations in Fig. 3.10,
we have a slightly larger bias for (0.15, 1.00) and (0.25, 0.60), and for the low mass bins for
(0.40, 0.70) in Fig. 3.31. Since the masses are fixed, the small horizontal scatter stems from
the different median M200m masses of the bootstrap samples. These values do not deviate
significantly from one another until the sparsely populated high mass end for some cosmolo-
gies.

Fig. 3.32 shows the Einasto estimated concentration distribution for individual haloes pre-
and post-correction for (0.15, 1.00). Compared to the NFW distributions, the Einasto fits
favour higher concentrations for low mass haloes which is seen for the median c(M)−relations
in Fig. 3.29 and also in the shift of the distributions between Fig. 3.32 and the (0.15, 1.00)
panel in Fig. 3.28. In addition, the slightly larger mismatch between the L16 model prediction
and the measured median concentration relations for (0.15, 1.00) is visible as an offset between
the diagonal and the centre of the densest contour in Fig. 3.32 (cf. Figs. 3.28, 3.27 and 3.10).
A larger spread of concentrations is also possible, which can be noted by comparing the
contours for (0.40, 0.70) in Fig. 3.14 (NFW) to those in Fig. 3.33 (Einasto). Still, the tilt
is preserved by the two parameterisations for all cosmologies. The results in general are
qualitatively quite similar.
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Figure 3.29: Concentration-mass relations for Einasto fits with α = 0.18 for direct and rescaled
simulations w.r.t. the L16 model predictions.

1012 1013 1014

M200m [h−1M�]

4

6

8

10

12

14

c

(0.80, 0.40)

Model (direct)
Model (rescaled)
All haloes (direct)
All haloes (rescaled)

doff cut (direct)
doff cut (rescaled)
doff + fsub cut (direct)
doff + fsub cut (rescaled)

Figure 3.30: Einasto c(M)-relations for (0.80, 0.40) for all haloes and with different relaxation cuts
enforced. The corresponding NFW relations are similar though the Einasto measurements correspond
better to the theory values at the low mass end.
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Figure 3.32: Einasto estimated concentrations for matched haloes in the direct and rescaled simula-
tion with M200m > 1012.7 h−1 M� for haloes in the direct simulation.
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Figure 3.33: Einasto estimated concentrations for matched haloes in the direct and rescaled simula-
tion with M200m > 1012.5 h−1 M� for haloes in the direct simulation.

3.13 Splashback mass correction
The outer profile correction can be used to build a naïve mass correction, if we redefine
the M200m masses in the rescaled simulation as masses within the perturbed r′200m, which is
set such that r(d)sp /r

(d)
200m = r

(r)
sp /r′200m. Assuming that the density field just beyond r200m is

dominated by the 1-halo term which is well captured by an NFW profile, one could extend
the integration to r′200m = (1 + δ)r200m where 1 + δ = 1/(1 + ∆rsp). This simplifies to the
following expression for the mass correction:

M eff.
200m

M200m
= 1− 1/(1 + c/(1 + ∆rsp))− ln (1 + c/(1 + ∆rsp))

1− 1/(1 + c)− ln (1 + c) , (3.13.1)

where c = c(M), and ∆rsp could be predicted with the L16 and Diemer et al. (2017) model fits,
respectively. The weak mass evolution of this correction factor for the different cosmologies is
plotted in Fig. 3.34 for the uncorrected and corrected rescaled density field. The concentration
correction affects the relation marginally. Due to the mismatch between the detected outer
profile bias for (0.15, 1.00), (0.25, 0.60) and (0.40, 0.70) and the model prediction in Fig. 3.17,
as well as the mismatch between the L16 model and the measured c(M)-relations, the cor-
rection is too large. This is reflected in the cumulative halo mass function in Fig. 3.35 for
matched haloes pre- and post-mass correction, where the agreement is worse. For (0.15, 1.00)
and (0.80, 0.40), however, the bias changes signs at the low mass end, and for (0.80, 0.40),
the situation improves somewhat at the low mass end.

We can interpret these results in light of the discrepancies in mass between the matched
direct and rescaled haloes in Fig. 3.3, where the median relations for these two simulations
are off (see appendix 3.10 for (0.80, 0.40)) and the mass correction shifts these median levels
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in the right direction. Still, there is a mass evolution of the discrepancy between the direct
and rescaled haloes which must be modelled by a more elaborate correction. For the other
simulations, this tilt dominates over the wrong offset level, and for (0.29, 0.81) there is a very
small predicted shift.

3.14 Cosmological contour plots for the rescaling parameters

In Fig. 3.36 the predicted offsets computed with the Diemer et al. (2017) model in the position
of the splashback radius w.r.t. r200m for matched halo samples in different target cosmologies
is shown. In large sections of the parameter plane, ∆rsp/r200m has the opposite sign as
∆c although this is not necessarily true for small changes from the fiducial run nor for the
∆Ωm > 0, ∆σ8 > 0 quadrant. We plot the (α, z∗) pairs to emulate these different cosmologies
in Fig. 3.37. They are smooth functions depending on ∆Ωm and ∆σ8 to the fiducial cosmology.
Shrinking the simulation box is preferable to emulate a cosmology with a higher matter
fraction, and expanding the box for lower matter fractions. Similarly intuitively, going to a
higher redshift in the fiducial simulation could be used to match a cosmology with a lower σ8,
i.e. with a lower amplitude of the fluctuations of the matter field. This puts the Millennium
simulation in a suitable position for rescaling as the WMAP1 σ8 = 0.9 is comparably high to
the current best fit matter power spectrum amplitudes.
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Figure 3.36: Predicted offset in splashback radius for matched haloes in a direct and rescaled fiducial
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3.15 Biases for a rescaled Millennium simulation to WMAP and
Planck cosmologies

In Fig. 3.38, we illustrate the predicted concentration biases for the Millennium simulation
(Springel et al., 2005b) with its WMAP1 parameters (Spergel et al., 2003) rescaled to a
range of cosmologies (WMAP3, WMAP5, WMAP7, WMAP9, Planck 2014) (Spergel et al.,
2007; Komatsu et al., 2009, 2011; Hinshaw et al., 2013; Planck Collaboration, 2014) at z = 0
according to the parameters in Henriques et al. (2015) and Guo et al. (2013a). For the
cosmologies where there is a mass evolution of the concentration bias in Fig. 3.38, the slope
decreases at higher redshift. The predicted concentration bias for haloes with a Millennium
simulation rescaled to Planck 2014 with the parameters in Henriques et al. (2015) is very
small and decreases for higher redshifts, which is fortuitous for future lensing analyses.
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Chapter 4 Joint 2-pt statistics constraints on galaxy
formation

4.1 Prologue

This Chapter will shortly be published in Monthly Notices of the Royal Astronomical Society,
to which we rescind all copyrights, as Renneby et al. (prepa). As for the division of labor,
the first author (me) conducted the work in this analysis with advice from Dr. Stefan Hilbert
and Bruno Henriques, PhD, and Prof. Raúl E. Angulo, PhD, as well as Dylan Nelson, PhD,
and Dr. Mark Vogelsberger. The final publication will have additional contributions from
Prof. Dr. Volker Springel and Prof. Lars Hernquist, PhD, and a slightly modified structure.

4.2 Abstract

We compare predictions for galaxy-galaxy lensing profiles and galaxy clustering from the latest
public version of the Munich semi-analytical model of galaxy formation and the IllustrisTNG
suite with observational measurements from the KiDS+GAMA equatorial overlap and SDSS.
Using four different selection functions for the lens samples (stellar mass, stellar mass and
group membership, stellar mass and isolation criteria, stellar mass and colour) we find that
this version of the SAM is disfavoured by current data for stellar masses M∗ > 1011M�. By
decreasing the time which dictates how fast satellite galaxies merge with their centrals as well
as reducing the AGN accretion efficiency in radio-mode in the SAM, we are able to mitigate
the discrepancies and obtain a better agreement both for the lensing and the corresponding
clustering signal. We use the lens signals from the GAMA group catalogue presented in
Velliscig et al. (2017) as a test sample and show that the new model is consistent with the
observed signal for central galaxies. However, this modification induces a slight deviation for
the galaxy clustering signal for low mass galaxies away from previous observational constraints
from SDSS. This suggests that a refined quenching model for satellite galaxies in galaxy
groups is required. In addition, such modifications produce discrepancies in the stellar mass
function at the high mass end, but these are subdominant to the current allowed errors. We
show the implications of an insufficient dust model for the lensing and clustering signals for
samples selected according to colour and stellar mass as well as abundance corrections for
our results. Turning to the hydrodynamical simulation, the IllustrisTNG produces excellent
lensing predictions, both for stellar-mass only, superior to the SAM, and LBG samples, equally
well as the SAM. With added dust corrections to the colours it matches the SDSS clustering
signal well for red low mass galaxies. We find that both the SAMs and the IllustrisTNG fail
to reproduce the lensing signal for intermediate mass red galaxies below < 1011M�, caused
by difficulties to match the satellite signals, highlighting the need for further developments.
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4.3 Introduction
Thanks to the fast implementation of semi-analytical models, see Section 2.2.3, it is possible
to explore the parameter space of the underlying physical models using Monte Carlo Markov
chains (MCMC) (Henriques et al., 2009, 2013, 2015) with observational constraints such as
the stellar mass function (SMF) and red fraction of galaxies (fred) (1-pt functions). In van
Daalen et al. (2016) it was shown that the introduction of galaxy clustering constraints (2-
pt functions) in the sampling gave additional insights into the formation physics. In this
Chapter, we explore how the latest version of the Munich semi-analytical model L-Galaxies
(Henriques et al., 2015), henceforth H15, for a Planck 2014 cosmology (Planck Collaboration,
2014) and a set of derivative models close to the fiducial run fare with respect to current
lensing and clustering observations with different selection functions. In Wang et al. (2016)
this model was found to overpredict the lensing signal around Sloan Digital Sky Survey
(SDSS)-Planck 2013 locally brightest galaxies, LBGs, (Planck Collaboration, 2013; Anderson
et al., 2015). By enforcing a stellar mass correction based on abundance matching to SDSS via
the fitting function in Li & White (2009), a better agreement was reached. The version with
the smallest necessary abundance correction was the Guo et al. (2011) model, henceforth
G11, adapted for the Planck 2014 cosmology, owing to the MCMC tuning to low redshift
observations. This model also passed a more stringent test in Mandelbaum et al. (2016) with
a separation of the lensing signal for red and blue LBGs. Still, due to the low redshift tuning,
this version has difficulties to produce predictions for future deep surveys, for instance the
Hyper Suprime-Cam SSP Survey (HSC) (Aihara et al., 2018) and the Euclid mission, where
the signal will be measured for lens systems beyond z = 1. In addition, it does not feature
later developments to improve the modelling of low mass galaxies, where H15 has reduced the
over-abundance of 8.0 < logM∗/M� < 9.5 systems at z > 1 as well as the excessive fraction
of red dwarf galaxies at low redshift. Hence, we investigate if moderate changes to the free
parameters governing the stellar-to-halo mass relation as well as the fraction of satellites in
H15 can be chosen to better fit local lensing observations while retaining the agreement at
higher redshifts.

We also compare these predictions with results from the IllustrisTNG suite, described in
Section 2.3.3, which are a set of state-of-the-art hydrodynamical simulations. Primarily we
use the TNG300 simulation which has a box length of 205h−1 Mpc which allows for similar
statistics as for the SAMs run on large gravity-only simulations.

We focus on selections based on stellar mass, joint stellar mass and colour and joint
stellar mass and isolation/group membership criteria. The latter is especially important for
upcoming group and cluster finders, where lensing can be used to validate models of feedback
from active galactic nuclei (AGN) (e.g. McCarthy et al., 2010; Viola et al., 2015). Colour
bimodality can inform on quenching mechanisms for star formation and their relations to
the host halo mass (e.g. Zu & Mandelbaum, 2016; Mandelbaum et al., 2016). With respect
to Wang et al. (2016); Mandelbaum et al. (2016), we also go beyond the locally brightest
galaxies to the full galaxy distribution and include constraints on the satellite fractions which
sets us on a path to modify the merger criteria. Moreover, we discuss the incorporation
of observationally motivated errors on the stellar masses, abundance corrections and colour
definitions.

The purpose of this study is thus two-fold, (i) Investigate if L-Galaxies fits current
observational constraints from galaxy-galaxy lensing and galaxy clustering. (ii) Examine if
modest changes to a few model parameters can bring about a better agreement. (iii) Assess
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the agreement of the IllustrisTNG hydrodynamical simulation with observations and explore
interesting differences with respect to the SAM.

For lensing, we consider a deeper field from the equatorial overlap of the Kilo-Degree and
Galaxy And Mass Assembly (KiDS+GAMA) surveys (Liske et al., 2015; Kuijken et al., 2015)
with data from van Uitert et al. (2016) and Velliscig et al. (2017) and a shallow field (SDSS-
DR7) (Wang et al., 2016; Mandelbaum et al., 2016; Zu & Mandelbaum, 2016) to illustrate
how different surveys and redshifts affect the lens sample. We also compare predictions
from HOD models from Zu & Mandelbaum (iHODS, 2016) and hydrodynamical simulations
(IllustrisTNG, Weinberger et al., 2017; Pillepich et al., 2018a) to illustrate how well the
different frameworks with increasing granular level of model sophistication can capture the
signal. For the SAM, we use the LBG and stellar mass only sample to constrain the model
parameters and then use the group lens samples from Velliscig et al. (2017) as test cases for
the new models.

This Chapter is organised as follows: We review the physical recipes of the feedback pro-
cesses in the SAM and compare the stellar mass functions in Section 4.4 and Section 4.5,
respectively, and present our methodology in Section 4.6. We previously detailed our simu-
lations in Chapter 2, with the Millennium suite described in Section 2.2.2 and IllustrisTNG
in Section 2.3.3. The different datasets we use to gauge the performance of the models, as
well as their colour distributions, are given in Section 4.7. In Section 4.8, we show our results
for the modified galaxy formation models for the stellar mass functions (Section 4.8.1), stel-
lar mass selected lenses (Section 4.8.2) followed by the implications of various systematics,
stellar mass and colour selection (Section 4.8.6), LBGs (Section 4.8.7) and galaxy clustering
(Section 4.8.8). Finally, we conclude with computing the predictions for a few of our models
for the KiDS+GAMA group lens sample in Section 4.9.

4.4 Modified galaxy formation models

We modify the existing H15 model1 by changing the values of three parameters, kAGN, εreheat
and αdyn, governing the stellar-to-halo mass relation and the satellite fraction. Here we review
the parts of the model where those parameters occur.

From the peak of star formation efficiency for Milky Way class galaxies, the lower mass
end is impeded by supernovae (SN) and galactic wind feedback and the high mass end by
AGN feedback (see abundance matching results in e.g. Moster et al., 2010; Behroozi et al.,
2010). Hence, these two processes are a natural starting point for modifications. Since the
lensing signal for H15 in Wang et al. (2016) was too high, it means that one could lower
each or both efficiencies for these processes to increase the stellar-to-halo mass ratio for the
galaxies. In H15, AGN feedback is implemented with a radio mode accretion model (Croton
et al., 2006) normalised to the expansion rate of the Universe,

ṀBH = kAGN

(
Mhot

1011M�

)(
MBH

108M�

)
, (4.4.1)

with ṀBH as the accretion rate, kAGN as a free parameter which regulates the efficiency, Mhot
andMBH the masses of the hot gas halo and the supermassive black hole (SMBH), respectively.
This accretion then impedes the cooling flow onto the cold disc as it is accompanied by

1Public release available at: http://galformod.mpa-garching.mpg.de/public/LGalaxies/index.html.

http://galformod.mpa-garching.mpg.de/public/LGalaxies/index.html
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relativistic jets which deposits additional energy into the hot gas halo. With respect to
previous versions of the model, kAGN is assumed to be fixed across all redshifts.

For SN feedback, H15 has two chief efficiencies, where one adjusts the fraction of energy
available for long-term alterations of the thermodynamic state of the gas components of
the galaxy. The other sets the fraction of this energy for the reheating of cold gas and the
subsequent injection into the hot gas atmosphere. For the latter, the mass of cold gas reheated
due to star formation ∆Mreheat is set to be proportional to the amount of stars formed (see
e.g. Martin, 1999)

∆Mreheat = εdiscMdisc, (4.4.2)

where Mdisc is the mass of stars in the galaxy disc and εdisc is

εdisc = εreheat

(
0.5 +

(
Vmax
Vreheat

)−β)
, (4.4.3)

where εreheat is the efficiency, Vmax the maximum circular velocity and Vreheat and β parameters
determining the normalisation and slope of the feedback, respectively. In this study we keep
these two parameters fixed to the fiducial H15 values.

Another way to increase the stellar masses is to modify processes governing the merging
of systems. In SAMs, the subhaloes of satellite galaxies can be disrupted and the satellite
shortly lives on as an orphan galaxy before falling into the central galaxy due to dynamical
friction. The time between disruption and accretion, tfriction, is fixed by a merging clock
following Binney & Tremaine (1987) as

tfriction = αdyn
V200cr

2
sat

GMsat ln(1 +Msat/M200c)
, (4.4.4)

where Msat as the total mass of the satellite, rsat the radius of the satellite orbit, M200c and
V200c the mass and circular velocity of the friends-of-friends host halo, G the gravitational
constant and αdyn a merger time multiplier. This value was set to αdyn = 2.4 by De Lucia &
Blaizot (2007) to conform with the bright end of the luminosity function at z = 0. This choice
was later found to be consistent with direct numerical simulation inferences (Boylan-Kolchin
et al., 2008; De Lucia et al., 2010). Intuitively decreasing αdyn lowers fsat and boosts the
stellar mass of central galaxies which dominate the high mass end of the SMF as mergers are
associated with starbursts. However, a short merger timescale implies that one overall ends
up with fewer massive systems. Hence, one can decrease the efficiency of the feedback process
to increase this number, which means that these two simultaneous modifications produce
indistinguishable SMFs.

We list the fiducial values of these parameters in Table 4.1 and the derivative values
in Table 4.2. In the G11 version of the model, αdyn has a slightly lower value and in van
Daalen et al. (2016), a 40% to 50% lower value was required to match clustering observations.
Hence we are focusing on derivative models with a lower αdyn and lower kAGN than in the
fiducial H15 model. H15 also found that boosting Vreheat was necessary for a better clustering
agreement. In the H15 this value is already fixed to a much higher value so we just modify
the normalisation. With respect to observations, this SN mass loading factor was found to
be a bit large in H15 and this motivates the decrease.
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Model kAGN εreheat αdyn.
G11 1.5× 10−3 6.5 2.0
H15 5.3× 10−3 2.6 2.5

Table 4.1: The fiducial SAM model parameters. Note that G11 has a different implementation of
the AGN feedback, neglecting the normalisation with H(z).

kAGN/kfid.AGN εreheat/ε
fid.
reheat αdyn./α

fid
dyn.

0.1 1 1
1 0.1 1
1 1 0.1

0.1 1 0.1
0.1 1 0.1
0.5 1 0.1
0.1 1 0.3
0.2 1 0.3
0.3 1 0.3
0.1 1 0.4
0.2 1 0.4
0.3 1 0.4
0.1 1 0.5
0.2 1 0.5
0.3 1 0.5
0.4 1 0.5
0.5 1 0.5
0.5 0.5 0.5
0.5 1.5 0.5

Table 4.2: The different SAM configurations compared in this Chapter, derivatives of the H15 model.
’fid’ refers to the values in the H15 model.
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4.5 Impact of cosmology, rescaling and hydrodynamics
Apart from differences in galaxy formation, the galaxy-galaxy lensing and clustering signals
are also influenced by cosmological parameters. To illustrate this we also compute the SAM
predictions for lensing for the fiducial H15 model in a WMAP1 cosmology, which has a lower
matter fraction Ωm and greater σ8 than the Planck 2014 cosmology. The difference between
these two cosmologies should lie in the most extreme allowed range for flat ΛCDM universes.
In Renneby et al. (2018) it was shown that the rescaling concentration bias for the lensing
signal around centrals was negligible for a rescaled Millennium simulation (MR) to a Planck
2014 cosmology, which means that we mainly refrain from comparisons to direct simulations
with different cosmological parameters as already carried out in Wang et al. (2016). We have
run the SAMs on the gravity only versions of IllustrisTNG, (Weinberger et al., 2017; Pillepich
et al., 2018a), for the TNG100 and TNG300 boxes. In these simulations, the background
cosmology, Planck 2016 (Planck Collaboration, 2016a), is close to the assumed Planck 2014
cosmology, which means that the model parameters chosen should be fairly optimal. We find
consistent results with the models run on the rescaled Millennium simulation, see Section 4.15,
also for mixed lens samples.

We have compared the halo mass functions, which are what the rescaling algorithm is set
out to match, for the central galaxies for the H15 model run on top of the rescaled MR and
Millennium-II (MRII) runs as well as the gravity only runs of the TNG100 and TNG300 and
note negligible differences. This however, does not necessarily translate to a good agreement
in the SMFs, as illustrated in Fig. 4.1, for the rescaled MRII whose SMF deviates from the
TNG100 results above 1010.2 h−2M�. Hence, we only plot results for that simulation below
this transition mass. We attribute this mass bias to small number statistics and potential
biases in how the SAM assigns galaxies to the rescaled merger trees. Because of this issue,
and in order to conform with the number of objects in the Velliscig et al. (2017) study, we
carry out the group lensing comparison with the SAM derivatives run on the merger trees of
the gravity-only TNG100 simulation.

Compared to the full physics TNG SMFs, the SAM predictions are lower beyond the knee,
as seen in Fig. 4.1. As those curves also are consistent with observations, it means that we
have room to modify the SMF with a similar amount. Here we have enforced the resolution
correction from Pillepich et al. (2018b) for the TNG300, called the rTNG300, and we work
with 30 pkpc (physical kpc) aperture masses. In this Chapter, we will refer to the rTNG300
as TNG300 unless explicitly specified in plots where we compare predictions from the two.

As we have seen, running a semi-analytical model on top of dark matter merger trees does
not necessary result in the same population of galaxies as in a full hydrodynamical treatment.
We can also illustrate it as a shift in host halo masses. In Fig. 4.2 we show the host halo
mass distributions for M200c for central and satellite galaxies for three different stellar mass
bins using the IllustrisTNG simulation suite compared with the L-Galaxies SAM model.
For the TNG300 stellar masses we have applied a resolution correction scheme (Pillepich
et al., 2018b) to make them conform with the TNG100 stellar masses. Whereas the satellite
host halo mass distribution is similar for all models, stellar masses and simulation volumes,
L-Galaxies preferentially populate high mass haloes with centrals, which can be seen in the
extended lognormal tail. We will investigate this discrepancy in this Chapter.
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Figure 4.1: The stellar mass function at z = 0.11 for the H15 model run on top of the rescaled MR and
MRII runs as well as the gravity only runs of the TNG100 and TNG300 compared to hydrodynamical
results from the baryonic runs for TNG100 and TNG300 and the SDSS fit from Li & White (2009). We
note that the SMFs for the SAM on top of TNG100 and TNG300 results are similar to the rescaled
MR, whereas the rescaled MRII starts to deviate from the TNG100 above 1010.2 h−2 M�. These
simulations have comparable size and similar cosmologies which leads us to deduce that the rescaling
for this simulation volume is accurate up to this transition mass. The hydrodynamical TNG curves
lie above the SAM curves above the knee of the SMF.



90 4. Joint 2-pt statistics constraints on galaxy formation

1012 1013 1014 1015

M200c [h−1M�]

10−2

10−1

100

p(
M

20
0c

)

LG-15-TNG100-DM
LG-15-TNG300-DM
TNG100
TNG300

1012 1013 1014 1015

M200c [h−1M�]

10−2

1012 1013 1014 1015

M200c [h−1M�]

10−4

10−3

10−2

10−1

p(
M

20
0c

)

LG-15-TNG100-DM
LG-15-TNG300-DM
TNG100
TNG300

1012 1013 1014 1015

M200c [h−1M�]

10−3

10−2

1012 1013 1014 1015

M200c [h−1M�]

10−3

10−2

10−1

p(
M

20
0c

)

LG-15-TNG100-DM
LG-15-TNG300-DM
TNG100
TNG300

1012 1013 1014 1015

M200c [h−1M�]

10−3

10−2

10−1

Figure 4.2: Host halo mass distributions at z = 0.1 for central (left panels) and satellite galaxies
(right panels), respectively, for logM∗ = 9, 10, 11 ± 0.1dex

[
h−2 M�

]
. For low stellar masses the

central host halo distribution is narrowly concentrated with a lognormal tail whereas the distribution
is Gaussian for high stellar masses. In the hydrodynamical runs we measure stellar masses in 30 pkpc
apertures, which is the standard choice for SAM and observational comparisons.
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4.6 Methodology

For the van Uitert et al. (2016) comparison, we measure the signal2 at z = 0.31 in the rescaled
MR and MRII runs. We also show the corresponding predictions from the TNG300 simulation
at z = 0.30.

We select the mock LBGs following Wang et al. (2016); Mandelbaum et al. (2016) by
matching the observational criteria as defined by Planck Collaboration (2013). We define a
cylinder with radius 1Mpc in physical coordinates spanning ± 1000 km/s in redshift around
each galaxy and if the galaxy has the brightest absolute r−band magnitude with dust ex-
tinction it is considered an LBG. We project the full particle distribution of the box along
each spatial axis to maximise the statistical signal with all LBG candidates per axis, which
not necessarily are the same. Since there is only a slight redshift evolution of the satellite
fraction at low redshifts, we use a single snapshot with the closest z to mock the observational
selection. In the SAM the stellar mass is given as the combined mass in stars in the bulge
and disk. We neglect the intracluster light (ICL) component which primarily affects the high
mass end. In addition, we assume that the stellar masses given by the model correspond
to the observed stellar masses, although we quantify errors induced on the lensing profiles
by observational misclassification by convolving the model masses with a Gaussian in logM∗
with width 0.08 × (1 + z) following H15. We refer to H15 for a motivation of this choice in
an observational context. At z = 0.11 this only has a minor impact on the result, but as
we move to higher redshifts this becomes important. As only a few percent of the simulated
galaxies satisfy the LBG criteria, we use the rescaled MR run and TNG300 to compute the
predictions. In this Chapter we use the z = 0. snapshot for the TNG300 to boost the statis-
tical signal and the z = 0.11 snapshot for the MR run, but we have checked that there are
negligible differences at such low redshifts.

At the high mass end, completion rates for LBGs exceed 90 % for central galaxies, i.e. the
fraction of central galaxies which are also LBGs, but less luminous red galaxies are excluded
to a higher extent than blue centrals since red centrals live in denser and thus more clustered
environments, see Section 4.14, although this effect is of the order of 5− 10 %.

Galaxies in the SAMs are classified as centrals, satellites or orphans in their host haloes
depending on whether their associated subhaloes are central, satellite or stripped. In Illus-
trisTNG there are only central and satellite subhalo hosts. We use the simulation specific h
values to convert between stellar masses. We are primarily interested in looking at predictions
from the largest boxes, which limit the lowest allowed stellar masses due to resolution effects.
Hence we consider only galaxies withM∗ > 109.39 h−2M� in accordance with Henriques et al.
(2017). This limits the stellar mass only clustering data from Henriques et al. (2017) to
masses above M∗ > 109.50 h−2M�, which in total amounts to four bins.

All distances quoted are in comoving units, except for the LBG selection cylinder with a
radius in physical Mpc.

The separation of galaxies into red and blue can be affected by the dust model used, espe-
cially while considering dusty star-forming galaxies. This in turn can influence the predicted
clustering and lensing signals. To illustrate this we perform the analysis with and without
dust extinction for the derivative H15 models as well as the IllustrisTNG suite. The main

2For the low stellar mass bins, the median redshift is closer to z = 0.18, but we have performed the same
analysis at z = 0.11 for a few of the models and note negligible differences. Hence we use the same snapshot
for all mass bins.
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difference in the dust treatment between the G11 and H15 versions is a stronger scaling with
redshift in the latter for the extinction by the interstellar medium in galactic discs3. This
should have a minor impact on the result since we only probe colours at z = 0.11.

For the IllustrisTNG, we use model C from Nelson et al. (2018b), which we refer to for
the technical details, with resolved dust attenuation following the simulated distribution of
neutral gas and metals. This model depends on the viewing angle and we use the median
magnitudes of the twelve angles provided. For the uncorrected colours we sum the magnitudes
of the individual bound star particles per subhalo. Colours are assigned using the Bruzual &
Charlot (2003) stellar synthesis models assuming a Chabrier IMF.

We quantify the best models through a figure-of-merit:

χ2 = 1
N

∑

i

1
σ2 (ξmodel(r)− ξdata(r))2 , (4.6.1)

where i goes over all overlapping data points N where we linearly interpolate the model
between the bins and σ is the reported variance of the observations. For the clustering
data points without error bars, we use conservative ±15 % estimates for the variance which
correspond to the smallest quoted errors. Theoretical error bars for the lensing are computed
using a hundred bootstrap samplings of the signal with replacements with the 95% percentiles
shown.

For the galaxy clustering signal we measure the signal in 40 log-equidistant bins between
20h−1 kpc and 20h−1 Mpc and for the lensing 40 log-equidistant bins between 20h−1 kpc
and 2h−1 Mpc (KiDS+GAMA) and 30h−1 kpc and 3h−1 Mpc (SDSS-DR7). Hence we probe
the 1-halo and 2-halo terms for the clustering and mainly the 1-halo term for galaxy-galaxy
lensing.

For the galaxy group lensing sample from Velliscig et al. (2017), we show predictions from
the different SAMs run on the TNG100 at z = 0.18. We have also carried out the same
analysis at z = 0.18 and z = 0.11 for the fiducial H15 model using the rescaled Millennium
simulation. The corresponding results for the full physics TNG100 and TNG300 runs appear
in Chapter 5 on baryonic effects. In the SAMs we introduce a minimal stellar mass M lim

∗
following Velliscig et al. (2017) from which we start counting group members. This mass is
set such that the satellite fraction for galaxies in the GAMA fields is matched for a given stellar
mass bin. Increasing this mass leads to an almost monotonous increase in fsat, depending
on the sample size, as the number of group central galaxies decreases whereas the number of
satellite galaxies is almost constant for a given stellar mass bin.

4.7 Data
In this Section we list the different lensing and clustering datasets used in this study and in
Section 4.7.5 we define our colour cuts.

4.7.1 KiDS+GAMA: Stellar mass

We compare the predicted lensing signals to observational results from the KiDS shear cat-
alogues and GAMA foreground lens sample in the equatorial regions (field G09, G12 and

3The total dust model is separated into an ISM treatment and one for the molecular birth clouds of stars
following De Lucia & Blaizot (2007).
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G15) using the published data in van Uitert et al. (2016) for the partly overlapping region
(75.1 deg2) with an effective source density of 5.98 arcmin−2 (Kuijken et al., 2015). For the
sample, we consider all galaxies which satisfy the stellar mass criteria (based on the stellar
mass information in Taylor et al. (2011)). Error bars incorporate the effect of cosmic variance.

4.7.2 KiDS+GAMA: Group environment

We make use of observations presented in Velliscig et al. (2017) which were compared to
the Eagle hydrodynamical simulation with satisfactory agreement. This study considered
measurements which satisfy the stellar mass criteria and are constituents of galaxy groups
with at least five members (NFOF > 5) from the GAMA group catalogue G3Cv7 (Robotham
et al., 2011). Galaxies in this group catalogue are linked via friends-of-friends based on
their line-of-sight and projected distances and the catalogue has been calibrated against the
Millennium simulation with SAMs (Bower et al., 2006). For groups with more than five
members, galaxies are reliably classified as centrals/satellites above the completeness limit of
GAMA which is ∼ log(M∗/M�) = 8. The field overlap is 180 deg2.

4.7.3 SDSS: LBGs

For LBGs, we use the lensing measurements in Wang et al. (2016) (all) and in Mandelbaum
et al. (2016) (red and blue). The source catalogue is described in Reyes et al. (2012) and the
effective source density is 1.2 arcmin−2. The colour cut is described in Section 4.7.5.

4.7.4 SDSS: Clustering

For the stellar mass only clustering, we use the observations from G11, which have appeared
for comparisons with H15 in Henriques et al. (2017) and with TNG100 and TNG300 in
Springel et al. (2018).

4.7.5 SDSS: Colour bimodality

We use the SDSS DR7 (Abazajian et al., 2009) lens and clustering sample from Zu & Man-
delbaum (2016) as well as the all main SDSS lensing sample from Mandelbaum et al. (2016).
We address the difficulties in mocking the former sample in Section 4.12.

Red and blue galaxies are separated according to the following 0.1(g−r) colour (with filter
magnitudes computed in rest-frame wavebands blueshifted to z = 0.1),

0.1(g − r)cut = 0.8
( logM∗

10.5

)0.6
. (4.7.1)

For the SDSS LBGs in Mandelbaum et al. (2016), we separate red and blue according to

0.1(g − r)cut = 0.8. (4.7.2)

We first K-correct our magnitudes and convert this cut into a separation for magnitudes in
rest-frame wavebands at z = 0 using the empirical filter conversion formulae by Blanton &
Roweis (2007). Transformed to the 0(g − r) filters, this cut is similar as the one used by
Springel et al. (2018) and Henriques et al. (2017) and it reasonably follows the depth of the
green valley in L-Galaxies as well as in TNG300, see Fig. 4.3 where we show the colour
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Figure 4.3: Spread in rest-frame g − r colours with dust corrections for H15 and TNG300 with and
without resolution corrections. H15 has a flatter red sequence and an additional locus at low stellar
masses close to the separation cut. The resolution correction shifts the colour distribution towards the
blue for low stellar masses for TNG300.

distribution with dust corrections. We see negligible differences in the colour distributions at
the high mass end between the 0(g − r) colours with and without dust extinction added, but
there is a shift for low mass galaxies around 109.5 h−2M� with blue galaxies being misclassified
as red which leads to a slight blurring of the green valley. In SDSS (Schawinski et al., 2014;
Nelson et al., 2018b), the effect of dust mostly translates to a shift in the green valley. The
Pillepich et al. (2018b) stellar mass resolution correction for the TNG300 does not take into
account the differences in the colour distributions between the TNG100 and TNG300, which
primarily affects galaxies with 9.0 < logM∗ [M�] < 10.5 in the range of stellar masses we
are probing. This means that the red sequence is shifted into the blue by about 0.1 mag for
9.5 < logM∗ [M�] < 10.0, and a slightly smaller shift for higher masses. We note that the
fiducial colour distributions for the TNG100 and TNG300 trace each other well.

4.8 Results

In this Section we list our results for the different datasets, starting with the SMFs and the
predictions for the different galaxy-galaxy lensing datasets, followed by the galaxy clustering
results and lastly by the galaxy group lensing test case.

4.8.1 SMFs and abundance corrections for the SAMs

The nineteen free parameters in L-Galaxies has been calibrated against the stellar mass
function (SMF) at z = 0, 0.4, 1, 2, 3 and red fraction of galaxies z = 0, 0.4, 1, 2. Hence the
parameters chosen do not necessarily best match the SMF for low redshifts. We quantify the
deviation from the local SMF by computing the necessary stellar mass correction to bring
about agreement in abundances with the Li & White (2009) fitting formula for SDSS following
Wang et al. (2016). In Fig. 4.4 we start by showing the obtained SMFs at z = 0.11 compared
to the fitting function in Li & White (2009) for a few of the different kAGN SAMs at fixed
αdyn and the two fiducial models, as well as the effect of the most extreme parameter choices
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Figure 4.4: Stellar mass functions at z = 0.11 for the H15 and G11 fiducial models and model
derivatives with different strength of the AGN feedback (panel I). The (0.5αdyn,0.5 kAGN) model
traces the fiducial H15 solution and the different AGN feedback strengths become noticeable above
the knee of the SMF. In panel II with illustrate the same situation with the fiducial models compared
to the three most extreme parameter choices. Similarly as for the TNG100 and TNG300, the weak
feedback models 0.1 kAGN and 0.1 εreheat predict an excessive number of galaxies beyond the knee of
the SMF. The 0.1αdyn model on the other hand has very few massive galaxies and the change of the
SMF is opposite to the direction allowed by observations, leading us to discard this solution.
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Figure 4.5: Abundance corrections for models with the same αdyn, but different kAGN.
The (0.5αdyn, 0.5 kAGN) model is almost degenerate with the fiducial H15 model, and the
(0.5αdyn, 0.4 kAGN) and (0.5αdyn, 0.3 kAGN) solutions have the smallest correction factors around
the turnover point of the SMF at 1011M�. Panel II is analogous to panel I but for models with the
same kAGN and αdyn but different εreheat compared to the fiducial choices. Simultaneously decreasing
kAGN and εreheat produces a smoother transition around the knee than solely decreasing the AGN
feedback efficiency.
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Stellar mass lensing Fiducial Abundance corrected

First 0.1 kAGN H15

Second (0.5αdyn, 0.1 kAGN) 0.1 εreheat

Third (0.4αdyn, 0.1 kAGN) (0.5αdyn, 0.5 kAGN, 0.5 εreheat)

Table 4.3: The best fit models according to stellar mass only lensing without and with abundance
corrected masses. Lensing prefers models with weaker AGN feedback and the H15 does a good job
once the stellar masses have been altered to comply with SDSS abundances.

from Table 4.2 in panel II. Here we have not convolved the masses with the observational
error estimate but this has a minor effect below 1011.2 h−2M� and only affects the massive
end. We observe that the SMF of the (0.5αdyn, 0.5 kAGN) model closely resembles the H15
result, indicating that reducing the dynamical friction time while simultaneously reducing the
AGN efficiency indeed trace a degeneracy. The more extreme AGN feedback choices produce
deviations away from the fitting function starting at 1010.4 h−2M�. Yet, measurements of
the stellar masses at the high mass end are highly uncertain due to difficulties in properly
integrating the sizes of the galaxies, as well as accounting for the ICL, and flux corrections
can modify these masses by 0.3 dex (D’Souza et al., 2015). Hence, we determine that these
modifications are allowed by the observational constraints. The 0.1 εreheat and 0.1 kAGN models
lie on the extreme end of what is allowed whereas the 0.1αdyn model is ruled out. Compared
to the TNG suite predictions in Fig. 4.1, these model derivatives look more similar to those
results above 1010.2 h−2M�.

The abundance corrections are illustrated in Fig. 4.5 with the mass correction in dex
on the y−axis for a given stellar mass on the x−axis. All derivative models of H15 has
a positive correction for low stellar masses whereas it is negative for the G11 model with
approximately the same magnitude. These two models have a similar correction for stellar
masses around 1011M�. The model with reduced αdyn and AGN feedback efficiency kAGN,
(0.5αdyn, 0.5 kAGN), needs a very similar correction as H15 as seen in Fig. 4.5. At fixed αdyn,
altering kAGN has the net effect of gradually decreasing the correction for high stellar masses,
but the effect is small for dwarf galaxies with a congruence towards the fiducial solution. As
we shall see in the following sections, the (0.5αdyn, 0.2 kAGN) model will give the best LBG
and clustering results, and we see that it comes with a small correction. Fixing kAGN and
changing αdyn gradually offsets the solution similarly across the whole range of stellar masses,
although the effect is slightly larger around 1010.5M�. Lastly, varying the SN feedback in
panel II of Fig. 4.5 produces concave and convex curves around the fiducial valued εreheat
model, with a congruence at 1010M�. The extreme solutions with 10% of the fiducial H15
values for the AGN feedback and SN feedback are similar to the low kAGN solutions, where
the 0.1 εreheat model lacks the plateau feature around 1011.25M� which the 0.1 kAGN and H15
have. The 0.1αdyn solution is ruled out and remains positive across the whole mass range.
If lensing does not offer any additional constraining power w.r.t. the stellar mass function,
changing the stellar masses in the samples to conform with the SMF will bring the signal into
agreement.
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Figure 4.6: Lensing signals for galaxies selected according to stellar mass at z = 0.31 compared to
measurements from van Uitert et al. (2016). Predictions from the G11 model exceed the H15 model
for the lowest mass bin and for mass bins M∗ > 1010.79 h−2 M�. From this mass onwards, the two
extreme SAMs with 0.1 kAGN and 0.1 εreheat have the best performance.
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4.8.2 Stellar mass selection: KiDS+GAMA

If we only select galaxies by stellar mass for the overlapping KiDS+GAMA fields at z = 0.31
for the van Uitert et al. (2016) observations, the SAMs, both the H15 and G11 models, predict
an excessive signal around all galaxies for masses M∗ > 1010.79 h−2M�. This is apparent in
Figs. 4.6 and 4.7, where we illustrate the fiducial model predictions together with the results
for the extreme models (Fig. 4.6) and the models with fixed 0.5αdyn and different strength
of the AGN feedback (Fig. 4.7). The H15 predicts a lower lensing signal than G11 from this
mass onwards. For the least massive bins, the G11 model yields a smaller signal in the centre,
but more pronounced central bumps owing to its high satellite fractions, see Fig. 4.8. Such
a signal is disfavoured by the observations, leading us to conclude that the H15 model has
the best fiducial performance. This shift in preference could both be attributed to the higher
satellite fractions as well as the shift to z = 0.31 since the H15 model has a better agreement
with the observed SMFs across a wider redshift range.

In the lowest mass bin we have roughly 1 million galaxies in the fiducial H15 model and
its derivatives and ∼ 1.5 million for the G11 model, which means that we are analysing a very
general average. For these low masses, all models perform approximately equally well, but
the more extreme choices with low supernovae and/or low AGN efficiency are able to capture
the signal across the whole mass range. As visible in Fig. 4.6, these two extremes produce
equivalent predictions for M∗ > 1010.89 h−2M�, but at lower masses the 0.1 kAGN model
suggests a lower lensing signal from r ∼ 100h−1 kpc outwards for 10.59 < logM∗

[
h−1M�

]
<

10.89 and starting already at the centre for lower mass bins. This difference could be driven
by the stronger relative strength of the AGN feedback modification for the SMF and also the
higher satellite fraction of the 0.1 εreheat model as shown in Fig. 4.8. The satellite fraction for
this model is higher as the lower SN feedback boosts star formation in centrals and satellites
alike, whereas the AGN feedback modification mainly concerns the centrals4.

In Fig. 4.7 we show the effect of gradually lowering the AGN feedback efficiency. At
the high mass end, predictions for the (0.5αdyn, 0.1 kAGN) model are similar to the 0.1 kAGN
results. It is the favoured solution from M∗ > 1010.79 h−2M� upwards, and the intermediate
models do better for the 9.89 < logM∗

[
h−1M�

]
< 10.24 and 10.59 < logM∗

[
h−1M�

]
<

10.79 mass bins. Decreasing the feedback efficiency lowers the signal step-by-step, except for
the least massive bin where there are only small differences between the models, which we
could also infer from the convergence of the abundance corrections in Fig. 4.5. We also plot
the results for the H15 model run on MRII to investigate simulation volume and resolution
effects for the two least massive bins. These curves lie slightly above the MR results which
we attribute to smaller statistics. Thanks to the increased resolution, there are fewer orphan
galaxies in this simulation, and thus the mismatch with the observations should partly be
attributed to the general treatment of the satellites in this mass range. In Section 4.15,
we see that this statement is supported by the model run on the TNG100, where we also
predict excessive signals for the massive stellar mass bins, demanding model modifications.
As suggested by Fig. 4.6, we can lower either or both of the AGN or supernovae efficiencies to
obtain a better agreement with data. In Fig. 4.9, we show the result for moderate changes in

4Observationally, the accretion or quasar mode of AGN feedback is more prominent among in-falling satel-
lites into a massive cluster environment than for the centrals themselves, which can be attributed to mechanisms
such as ram-pressure stripping preventing accretion onto the centrals (e.g. Gordon et al., 2018). There are
no to minor differences for low mass groups. However, the radio-mode feedback is mainly restricted to the
centrals.
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εreheat, where simultaneously lowering kAGN and εreheat and αdyn help to mitigate the tension
with observations. This model performs well except in the two most massive stellar mass
bins, and as shown in Fig. 4.5 comes with a smaller discrepancy for the SMF at the high mass
end than models with lower kAGN only. For small variations in αdyn while kAGN is fixed, the
resulting lensing profiles only change marginally.

However, these signals feature degenerate effects from the host halo masses and the satellite
fractions fsat, which encumbers the modelling interpretations. Still, the discrepancies shown
are too large to be a product of these factors alone for the SAMs. In Fig. 4.8 we show
the predicted satellite fractions for the different mass bins and they lie within the allowed
range from the lensing observations and trace the GAMA group NFOF > 2 results well.
Intuitively, the satellite fractions are lower for the models with low αdyn as satellite galaxies
merge faster. Most models trace a degenerate solution close to the fiducial H15 model and
the G11 model predicts more low mass satellites. Although the two extreme feedback models
0.1 kAGN and 0.1 εreheat predict similar lensing signals in Fig. 4.6, especially at the high mass
end, the 0.1 εreheat model predicts more satellites. We shall see in Section 4.8.8 that this
affects the clustering signal at z = 0.11. The resolution corrected TNG300 satellite fractions
are excessive around the knee of the SMF, where there is a corresponding excess in the stellar
mass function. If we switch the selection to the fiducial simulation without the correction,
the satellite fractions trace the TNG100 solution.

In Table 4.3, we list the SAMs which perform best according to the mean figure-of-
merit from all lensing mass bins with and without abundance corrected stellar masses. The
lensing data favour a low AGN feedback, with a preference for the fiducial dynamical friction
parameter or large fractions of it. If we perform the same test post-abundance corrections,
the fiducial H15 model comes out on top followed by the low SN feedback efficiency models.
Hence, while these models also come with large abundance corrections, the result does not
change much. It is interesting that the corrected H15 profiles lie closer to the data than the
corrected and (uncorrected) G11 model predictions.

4.8.3 Abundance and stellar mass error impacts

As we already saw in Section 4.8.1, the predicted abundances from the SAMs differ from
the observed SMF at z = 0.11. If we account for these deviations, how much are the lensing
profiles altered? InWang et al. (2016), such corrections were able to reconcile the discrepancies
for the H15 model for LBG lenses. In this section we investigate if these modifications are
potent enough to mitigate the large deviations observed in Fig. 4.6 for a more general lens
sample. Since we do not have a fitting function for the SMF at z = 0.31, we perform the
corrections and measurements for the z = 0.11 sample and we assume that the GAMA SMF
is similar to the SDSS SMF which has been shown to be the case (e.g. Weigel et al., 2016).
The result for the H15 model is illustrated in Fig. 4.10. While the correction serve to mitigate
the tension, it is not enough to solve it. Intuitively, we observe the opposite effect for the
extreme models in e.g. Fig. 4.6, where the abundance correction serves to bring the profiles
away from the data points as seen in panel II of Fig. 4.10 for the best fit 0.1 kAGN model.
This serves to caution that a well-matched SMF does not necessary imply observationally
consistent lensing profiles and vice versa.

In addition, we convolve the stellar masses with a Gaussian in logM∗. We have performed
this comparison at z = 0.31 and z = 0.11 and note that the effect is slightly more pronounced
at the higher redshift due to the redshift dependence of the convolution. In Fig. 4.11, we show
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Figure 4.7: Similarly as Fig. 4.6 but for models with varying strength of the AGN feedback, compared
to the two fiducial models. Here we have also included the MRII predictions from H15 for the two
least massive bins. As hinted by the shape of the SMF in Fig. 4.1, the lensing signals for the rescaled
MR and MRII simulations compare to one another below 1010.2 h−2 M�. Except for the two least
massive bins where the effect is not apparent, the data favours a SAM with a weaker AGN feedback,
also with shorter merger times, with a gradual decrease of the signal as the feedback efficiency drops.
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Figure 4.8: Satellite fractions for the mass bins in the van Uitert et al. (2016) comparison for the
different SAMs and the TNG suite.
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Figure 4.9: Lensing profiles from SAMs with varying εreheat. As implied by the results in Fig. 4.6,
the data can equally well be accommodated by a weaker SN feedback together with a weaker AGN
feedback.
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Figure 4.10: In panel I, we show the abundance corrected lensing signals for the H15 model with
respect to the fiducial predictions. While the correction shifts the profiles in the right direction, it
is not sufficient to fully reconcile the tension. Lensing predictions from the best-fit 0.1 kAGN model,
with and without corrections, are displayed in panel II. Here the stellar mass correction worsens the
agreement with data.
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Figure 4.11: Impact of Gaussian errors on the stellar masses for the lensing profiles for the H15
model. We see that the stellar mass errors do not influence the low mass signal, but can lower the high
mass signal for the 1010.89−1011.04 h−2 M� mass bin by 15−20 %. The effect is roughly homogeneous
across the whole radial range with a slightly smaller effect in the centres.
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Figure 4.12: Residuals for the H15 model run on top of the fiducial Millennium run w.r.t. the
rescaled simulation at z = 0.31. The signal is suppressed by approximately 10 % with the largest
differences recorded around the knee of the SMF.

the result for the H15 model and find that the effect is negligible for the low mass signal, but
can amount to ∼ 15 % at the high mass end, peaking at the knee of the SMF. The impact
is model specific, with ∼ 5 % effects for the 0.1 εreheat and 0.1 kAGN derivatives, whereas the
result for the G11 model is similar to H15. These errors lower the lensing signal as abundant
lower stellar mass galaxies, generally residing in less massive host haloes, are upscattered to
a more massive bin. As we shall see in the coming subsections, this effect is of the same order
of magnitude as the abundance correction, cosmological and baryonic impacts. Alone, it is
not enough to explain the discrepancy. Moreover, the observational error bars should already
account for these stellar mass errors, which means that this is a conservative estimate.

4.8.4 Cosmological impact

We also plot the predictions for H15 run on top of the unscaled Millennium simulation. We
see in Fig. 4.12 that the predictions are slightly lower by about ∼ 10 % than for the Planck
cosmology but not sufficient to explain the observational difference. This suppression has a
flat evolution with radius for the highest mass bins which are central dominated, whereas
there is a difference for the satellite population which dominates the lowest mass bins. The
largest effect is recorded around the knee of the SMF, which is to be expected since it is most
subject to calibration. A more fair comparison from the perspective of the galaxy formation
model, would be with a retuning of a few model parameters to account for this change, which
leads us to conclude that the results in Fig. 4.12 are upper conservative estimates of the
cosmological impact. In Wang et al. (2016), predictions from the G11 model were compared
across three different cosmologies (WMAP1, WMAP7 and Planck 2014) for LBG profiles
and the WMAP1 curves were notably higher for the two most massive bins w.r.t. the other
cosmologies, which means that one cannot draw a general conclusion on the sign of the impact
as a function of background cosmology for all formation models.
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Figure 4.13: Measurements for the TNG300 at z = 0.30 for the full physics run compared to
observations with the resolution correction from Pillepich et al. (2018b) applied for the selection.
If one computes the same profiles using bound masses, the amplitude of the two lowest mass bins
increases and the two highest mass bins drops with smaller effects in between. The TNG300 is able
to reach comparable agreement with the data as the SAMs with better performance than the fiducial
G11 and H15 models at the high mass end.

4.8.5 Baryonic impact

In Fig. 4.13, we show the predictions from the TNG300 simulation at z = 0.30 with respect
to the van Uitert et al. (2016) observations. Compared to the two fiducial SAM models, the
curves do not persistently lie above the data points, with a similar excellent performance as
the 0.1 kAGN model in panel II of Fig. 4.10 for the most massive stellar mass bins, and the
results are overall more consistent across the whole stellar mass range.

By matching subhaloes in the baryonic runs with their dark matter only counterparts with
their particle ids, we can obtain an estimate of the impact of baryonic feedback processes on
the profiles. This works particularly well for central galaxies and we will use this matched
central galaxy signal to estimate the baryonic deformation of the profiles here using the
TNG300 simulation. The result for the central galaxies satisfying the stellar mass criteria
of van Uitert et al. (2016) is given in Fig. 4.14. As already found in the literature (e.g.
Schaller et al., 2015a; Leauthaud et al., 2017), the baryons enhance the profiles close to the
central galaxy due to the presence of additional cooling from the stellar component and the
associated adiabatic contraction of the dark matter, a suppression from r ∼ 100h−1 kpc
to r ∼ 1h−1 Mpc and then convergence at larger scales since the same projected mass is
contained inside the aperture. This is what we observe in Fig. 4.14 where the suppression
increases with increasing stellar mass till M∗ > 1010.6 h−2M� and is self-similar for the four
subsequent mass bins with deviations for the most massive bin. Note that the satellite fraction
is high for the lower stellar mass bins which means that the baryonic effect measured here is
not a good proxy for the observational signal. The maximum suppression amounts to ∼ 15 %
attained at r ∼ 200h−1 kpc and the central enhancement is roughly ∼ 20 − 40 % depending
on the stellar mass and radial bin. Except for the two least massive bins, a good convergence
is reached at r ∼ 2 − 3h−1 Mpc with the dark matter-only run. However, these effects are
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Figure 4.14: Residuals for TNG300 at z = 0.30 between the full physics run and the dark matter
only run for matched centrals, here with the resolution correction from Pillepich et al. (2018b) applied
for the selection. The result using bound stellar masses differs negligibly, except for the most massive
bin where the central enhancement is ∼ 5 % lower than what is plotted here. The baryonic imprint
is characterised by three features; a central enhancement, an intermediate scale suppression and a
residual enhancement/suppression around r ∼ 1h−1 Mpc, depending on the stellar mass of the bin.

smaller than the measured deviations for the SAMs in e.g. Fig. 4.7, implying that a better
assignment scheme between galaxies and subhaloes is required.

4.8.6 Stellar mass selection - SDSS colour

In this section we show a few comparisons between the lensing signal separated according to
colour and observations from SDSS, with the Zu & Mandelbaum (2016) imposed and without
for all main SDSS galaxies Mandelbaum et al. (2016). For low mass galaxies, the SAMs and
the TNG300 outperform the iHODs slightly for red galaxies, see Fig. 4.15, whereas the predic-
tions for the blue signal is comparable, although the SAMs and the TNG300 suggest a steeper
central profile. Weakening the AGN feedback has the net effect of increasing the amplitude
of the central bump on scales r ∼ 700h−1 kpc, which means that the red lensing signal can be
used to constrain this combination, although it is sensitive to the colour assignment scheme
and dust corrections as we describe in Section 4.16.

Switching to a higher mass bin around the knee of the SMF in Fig. 4.16, here with the
extreme models shown, we find that the SAMs and the TNG300 systematically overpredict
the red lensing signal for M∗ . 1011.2M� for the all main sample. We note that the data
points for the Zu & Mandelbaum (2016) sample lie slightly lower beyond the knee of the
SMF which induces a tension with our best fit models. For more massive bins for the all
main sample, the weak feedback models and the TNG300 are once again in agreement with
observations, reflecting the results in Section 4.8.2. This statement holds true for all SAMs
and none of the model variations listed in Table 4.2 produce acceptable solutions for this
intermediate mass range. However, this can be caused by problems matching the stellar
masses in SDSS and enforcing the proper colour separation, as we compare to Fig. 4.6 for the
M∗-only sample from KiDS+GAMA where both the 0.1 kAGN and the 0.1 εreheat models are
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Figure 4.15: Lensing predictions for red and blue galaxies with 9.4 < logM∗
[
h−2 M�

]
< 9.8 in

SDSS using the Zu & Mandelbaum (2016) datasets and iHODs compared to the different SAMs and
the TNG300. For this mass range, the predictions for the red lensing signal from the SAMs and
TNG300 are in slightly better agreement with the data than the iHODs, whereas there are no major
differences for the blue signal.
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Figure 4.16: Same as in Fig. 4.15, but for galaxies with 10.2 < logM∗
[
h−2 M�

]
< 10.6 and with

the most extreme SAMs shown. Here, the iHODs agree with observations for the red lensing signal
whereas all SAMs and the TNG300 predict excessive signals. For the blue galaxies, the G11 and the
0.1 kAGN model produces the best results, especially for scales around r ∼ 1h−1 Mpc.

Model f redsat fbluesat f redorphan fblueorphan
G11 0.36 0.18 0.11 0.00
H15 0.38 0.24 0.12 0.01

0.1 εreheat 0.40 0.31 0.14 0.02
0.1 kAGN 0.47 0.19 0.15 0.00
0.1αdyn 0.28 0.32 0.03 0.01

Table 4.4: The satellite and orphan fractions for red and blue galaxies separated according to
Eq. (4.7.2) for galaxies with 10.7 < M∗ [M�] < 11.0. Similarly as for the TNG300 in Fig. 4.8,
the 0.1 kAGN model predicts an excessive satellite fraction, which can be culled by reducing αdyn.
Removing the red orphan galaxies reduces the overall satellite fractions by about 10 %, except for the
0.1αdyn model which do not have that many orphans.

able to match the lensing signal at the high mass end. With respect to the quoted satellite
fractions for the samples listed in Zu & Mandelbaum (2015), the two fiducial SAMs are only
a few percent off5. In addition, the average host halo masses only differ by about 0.1 dex.
These differences are too small to drive the large biases we observe.

An alternative explanation is offered in Figs. 4.17 and 4.18, where we plot the predicted
signals from the SAMs and the TNG300 without orphan galaxies and without unmatched
subhaloes, respectively, w.r.t. lensing observations from the all main SDSS-DR7 with the
same colour cut as for the LBGs. As implied by the illustrated cuts in Fig. 4.3 and the
arguments brought forth in Section 4.12, there are only minor differences between these
observations and those of Zu & Mandelbaum (2016). By removing the orphan galaxies, the

5For the 10.2 < logM∗
[
h−2 M�

]
< 10.6, the quoted fsat = 0.37 ± 0.02 and we measure fsat = 0.33

and fsat = 0.34 for the G11 and H15 models. The reported average host halo mass is 〈logMh〉 =
12.15(+0.03)(−0.04)

[
h−1 M�

]
and we record 12.16 and 12.29, respectively. In Zu & Mandelbaum (2016),

a red fraction fred = 0.71 for this mass bin is given, whereas we note fred = 0.87 and fred = 0.77. Hence, we
have more red galaxies but for the H15 model the difference should be negligible.
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Figure 4.17: Lensing predictions for all main SDSS red and blue galaxies with the same colour cut
as for the LBGs without orphan galaxies. If we consider the whole signal from SDSS there little to
no tension w.r.t. the Zu & Mandelbaum (2016) dataset for this mass range. Removing the orphan
galaxies produce a better agreement for the red lensing signal with the new and old satellite fractions
listed in Table 4.4.
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Figure 4.18: Lensing profiles from the TNG300 for blue and red galaxies in SDSS with the matched
and total signal highlighted. If we restrict ourselves to matched subhaloes, the tension with respect to
the red lensing signal drops. The red satellite fraction also drops from fsat = 0.51 to 0.35 with a central
galaxy matching rate of 0.999 (red). The blue satellite lensing fraction also drops a corresponding
amount from 0.52 to 0.35 with a similar matching rate 0.999, but the effect on the lensing signal is
much more modest.
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tension between the SAMs and the data points is reduced and the corresponding satellite
fraction drops, see the listed values in Table 4.4, except for the 0.1αdyn model which have
only a few orphans. If we just examine the orphan galaxy signal, we find that it is similar to
a massive central term as the orphans reside close to the halo centres. At lower masses the
large abundance of low mass haloes hosting central galaxies offsets the imprint of this signal
and produces an agreement with observations.

In Section 4.16, we show conservative estimates on much the dust extinction affects the
signal amplitude for the two fiducial SAMs for the Zu & Mandelbaum (2016) selection func-
tion. At the high mass end for M∗ > 1011 h−2M� for the G11 model there are only small
differences for the red signal with and without dust whereas the dusty red signal is suppressed
for all masses for H15 with at most ∼ 15 % for the 10.6 < logM∗

[
h−2M�

]
< 11.0 mass bin,

closely followed by the effects for the 10.2 < logM∗
[
h−2M�

]
< 10.6 mass bin. Not surpris-

ingly, the dust correction thus work in the opposite direction to reconcile the tension for the
red lensing signal. For the blue signal, the dust extinction boosts the predictions by about
a factor of 2 and 1.5 for the most massive bins where there are many red galaxies and few
blue, with smaller effects for lower masses. For low mass systems below 1010.2 h−2M� in the
H15 model, there is a suppression for the central bump by about ∼ 15 % in the dust extinct
signal. We attribute this effect to dusty blue galaxies residing in less massive haloes, which
are able to keep more dust than their massive counterparts (e.g. Bekki, 2013), and thus a
lower central signal.

In Fig. 4.18, we highlight a corresponding effect for the TNG300 for the same observations
where we remove all subhaloes which lack a match in the gravity-only run and compare the
lensing signal to the full physics predictions. If we restrict ourselves to matched substructures,
a much better agreement with data is reached. We note that the satellite fractions are
comparable for the red and blue signals, implying that the colour of a satellite galaxy is not a
good predictor for the likelihood of its host substructure to still be present in the dark matter-
only run. Restricting the signal to matched substructures has thus the effect of reducing the
satellite fraction by a similar amount for the blue and the red signal, although the impact on
the red lensing signal is more considerable as the amplitude of the central host halo term drops
for the satellite signal. This can be caused by substructures merging and getting disrupted
more quickly in more massive host haloes, where galaxies on average are redder, which are
excluded by the matching criterium. If we look at more massive red galaxies, the TNG300 is
in agreement with observations for M∗ > 1011.4 [M�], also for scales around r ∼ 1h−1Mpc.
For these masses the signal is dominated by centrals, which we are well-matched as we shall
see in the following Section.

4.8.7 LBG lensing signals

By limiting our selection to LBGs, the predicted lensing signals drop and are more compatible
with the data for all models. In Figs. 4.19 and 4.20, we show the results for an assorted model
collection with M∗ and M∗ + (g − r) selection functions, respectively. By selecting according
to stellar mass only we have ∼ 300 000 galaxies in the least massive bin per axis for the SAMs
run on the rescaled MR and a couple of hundred systems in the TNG300. Contrary to Wang
et al. (2016), we find that the predictions from the H15 model tend to agree better with
observations than the G11 curves, especially for M∗ > 1011.2M�, as seen in panels II-IV in
Fig. 4.19. This tension can origin from small number statistics from the few systems at the
massive end of the SMF and from the fact that we are using only one snapshot instead of a
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Figure 4.19: Predicted GGL signals compared to observations from SDSS LBGs with data from
Wang et al. (2016). In panel I and panel II (top), we show the effect of changing the strength of kAGN,
where the effect is modest to none for intermediate masses and where it starts to have an effect on high
mass systems. In general the fiducial H15 model produces equivalent predictions as the G11 model,
with better performance at the high mass end from M∗ > 1011.4M�. We are also able to produce
reasonable agreements by reducing εreheat and kAGN at the same time as illustrated in panel III. The
predictions from the extreme models are ruled out by the LBG signal at the high mass end, as shown
in panel IV. In the two last panels, we show the two models with the lowest figure-of-merits and we
discern that they are in excellent agreement with observations.
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Figure 4.20: Similarly as Fig. 4.19 but for LBGs separated according to colour and compared to the
Mandelbaum et al. (2016) observations. In the first two panels, we show how low kAGN values act
to reduce the host halo bimodality (panel I) where the effect becomes more apparent as we increase
the stellar masses (panel II). There is little to no effect on the corresponding blue signal. We also
observe that the H15 model predicts a stronger bimodality than G11. In the two subsequent panels,
we explicitly show the predictions for the H15 for all mass bins for red (panel III) and blue (panel
IV) LBGs. The predicted signal for red galaxies is excessive for masses 1011 M�, but the abundance
correction mitigates the tension and the signal for blue galaxies conform with observations. In the
bottom row we plot the predictions for the best fit models for red and blue LBGs, respectively, for
comparison. The biggest improvement can be discerned for the signal around massive red LBGs.
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LBG lensing (fiducial) All Red Blue

First (0.5αdyn., 0.2 kAGN) (0.5αdyn., 0.5 kAGN, 0.5 εreheat) (0.3αdyn., 0.1 kAGN)

Second (0.1αdyn., 0.1 kAGN) (0.5αdyn., 0.2 kAGN) (0.5αdyn., 0.1 kAGN)

Third (0.4αdyn., 0.2 kAGN) (0.4αdyn., 0.2 kAGN) (0.4αdyn., 0.1 kAGN)

LBG lensing (abundance) All Red Blue

First H15 0.1 εreheat (0.5 kAGN, 0.5αdyn, 1.5 εreheat)

Second (0.5 kAGN, 0.5αdyn, 0.5 εreheat) H15 (0.5 kAGN, 0.5αdyn)

Third 0.1 εreheat (0.5 kAGN, 0.5αdyn, 0.5 εreheat) H15

Table 4.5: The best fit models according to stellar mass only lensing without and with abundance
corrected masses. For the total LBG signal, the (0.5αdyn., 0.2 kAGN) model is the best and it also
does reasonably well for the red signal. Performing the analysis with abundance corrections favours
the H15 and (0.5 kAGN, 0.5αdyn, 0.5 εreheat) models.

mock lightcone. Still, we are able to reproduce their results by running the H15 model with
the G11 parameter inputs which corresponds to the fixed model (not listed in Table 4.2), but
not exactly the version published in G11.

For intermediate stellar masses, fixing αdyn and playing with kAGN has no to little effect
on the profiles, see panel I in Fig. 4.19, except for the transition regime between the 1-
halo and 2-halo terms where a weaker kAGN yields a lower signal. Still, the variance of the
observations is quite large for these scales for low stellar masses. If we move to higher stellar
masses beyond the knee, the different feedback prescriptions start to have an effect as visible
in panel II in Fig. 4.19, where the (0.5αdyn, 0.1 kAGN) model produces a too low prediction.
These differences are driven by the different physical recipes and not by differences in the
contamination from satellites and orphan galaxies as discerned from the central purity of the
signals presented in Section 4.14. The situation is similar if we split the sample into red and
blue lenses.

For the stellar mass only selection, setting kAGN = 0.1 kfid.AGN and 0.1 εreheat, solves the
tension for group scale lenses, although the produced signals are too low for M∗ > 1011M�
systems, see panel IV of Figs. 4.19. For intermediate and high masses, simultaneously reducing
kAGN and εreheat improves the agreement as see in panel III, although there is still tension
for LBGs with M∗ < 1011M�. Hence, this model class is disfavoured by these lensing
observations as we use all stellar mass bins to construct our model ranking.

In Table 4.5, we list the best ranked models for the LBG sample with and without abun-
dance matching stellar mass corrections. Similarly as for theM∗-only sample, the lensing data
prefer a low AGN feedback efficiency, although here the intermediate (0.5αdyn., 0.2 kAGN)
model is the best. We deem that this shift is caused by the investigation of the signals
from centrals only, where the (0.5αdyn., 0.2 kAGN) model produces fewer galaxies, but they
are also more isolated due to the shorter merger timescale. On second place, we find the
(0.1αdyn., 0.1 kAGN) model, which also has more isolated centrals due to the low αdyn., where
the signal is too high beyond 1010.79 h−2M� for the stellar mass only selection. This is also
true for the previous model. For the van Uitert et al. (2016) comparison these two models
are ranked seven and six, respectively. The result post-abundance corrections is similar to
the whole stellar mass comparison with the fiducial H15 model with the best performance
followed by the low SN feedback efficiencies. We show the results for the two best models in
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panels V-VI in Fig. 4.19 where it is difficult to distinguish between them, although the latter
comes with larger abundance corrections.

Separating the signal into red and blue according to Eq. (4.7.2) for the Mandelbaum et al.
(2016) dataset comparison, the 0.1 kAGN and 0.1 εreheat solutions are again ruled out by the
signal from systems with M∗ > 1011.2M�, which constitute the bulk of the whole signal for
this mass range. We plot the result for a few of the SAMs in Fig. 4.20, where we observe
that weakening the AGN feedback efficiency reduces the host halo bimodality as the red LBG
lensing signal drops in panel I. In addition, we note that the H15 model in general predicts
a stronger bimodality than the G11 model, and that the former is not plagued by a tension
with data for the blue LBG lensing signal at the high mass end, see panel II. In addition, this
holds true for the red signal but to a smaller extent, also apparent in this panel. Similarly as
for the total signal, the (0.5αdyn., 0.2 kAGN) model does a good job. In panels III-IV, we plot
the results for the H15 model with and without abundance corrections. We note a mild excess
in the red signal starting at ∼ 1011M�, but the correction bring the signal into agreement for
intermediate mass systems. The blue LBG lensing predictions appear to more or less concur
with the observational data in panel IV.

Also in Table 4.5 we list the best fit models for red and blue LBGs with and without
abundance corrected masses. The (0.5αdyn., 0.5 kAGN, 0.5 εreheat) model now nabs the first
place, followed by the (0.5αdyn., 0.2 kAGN) model, where the improved agreement originates
from the two most massive bins, although it is hard to perceive by visual inspection. For
the total LBG signal, this model finishes on fourth place, so there is reasonable concordance.
Again, post-abundance corrections the 0.1 εreheat and the fiducial H15 do well. If we switch
to the blue signal, we see a shift in preference towards models with short αdyn. and weak
kAGN, with the biggest gains on scales r ∼ 400h−1 kpc and outwards for stellar masses
M∗ > 1010.7M� w.r.t. the (0.5αdyn., 0.2 kAGN) model, which is the sixth best. Still, the
uncertainties in this signal region are quite large, and there are only a few blue LBGs in this
mass range, meaning that we have more confidence in the red signal.

In Section 4.16, we illustrate how removing the dust correction on the colours impact the
lensing signal for the two fiducial models with the LBG selection6. Compared to the previous
figure-of-merits, we note no major shifts by removing the dust extinction, except for the blue
lensing signal post-abundance corrections, and the signals are suppressed (boosted) by about
∼ 10 % for the two fiducial models for red (blue) LBG lensing for the two fiducial models
depending on the mass bin as shown in Section 4.16.

In the last two panels (V-VI) in Fig. 4.20, we show the two best fit predictions for our top
SAM models for the red and blue LBG lensing, respectively, with excellent agreement with
data.

Moving on to the hydrodynamical predictions, we plot in Figs. 4.21 and 4.22 the LBG
lensing predictions for all, red and blue LBGs from the TNG300 with the resolution correction
enforced. Similarly, as in Fig. 4.13, this mass choice induces a drop in the signal from the least
massive bins and increases the most massive signals from the fiducial bound mass predictions,
but both cases are in agreement with observations. We see that this statement holds for red
and blue galaxies in Fig. 4.22, where we do not plot the most massive blue signal due to poor
statistics. If we do not enforce the resolution correction, the predicted signals for the two
most massive bins for red galaxies are too high. The effect of baryons is mostly noticeable in

6Note that we still select the LBGs according to their r−band magnitude with dust extinction. This should
have a negligible impact on the results.
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Figure 4.21: LBG lensing signal from the TNG300 with resolution corrected stellar masses compared
to measurements fromWang et al. (2016). The central signal is a bit low for the 1011 < M∗ [M�] < 11.2
mass bin and slightly excessive for the most massive bin, but overall the agreement is excellent.
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Figure 4.22: Same as Fig. 4.21 but for the signal split into red (panel I) and blue (panel II) LBGs
from the TNG300 with resolution corrected stellar masses and dust extinction compared to measure-
ments from Mandelbaum et al. (2016). The simulation predictions are in good agreement with the
observations.
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Figure 4.23: Clustering predictions for galaxies in the best fit 0.1 kAGN model (panel I) and for
galaxies in the 0.1 εreheat model (panel II) w.r.t. SDSS observations from G11. By comparing the two,
we realise that the data favours a weaker AGN feedback and not weaker SN feedback.

Clustering (fiducial) All Red Blue

First 0.1 kAGN (0.3αdyn, 0.2 kAGN) (0.3αdyn, 0.1 kAGN)

Second (0.5αdyn, 0.2 kAGN) (0.4αdyn, 0.2 kAGN) (0.4αdyn, 0.1 kAGN)

Third (0.5αdyn, 0.1 kAGN) (0.5αdyn, 0.3 kAGN) (0.5αdyn, 0.1 kAGN)

Table 4.6: The best fit models according to galaxy clustering. Our best LBG lensing model
(0.5αdyn, 0.2 kAGN) is a runner up on the fourth place for the red clustering.

the innermost bin due to the presence of the stellar term, which produce an excessive signal
for the two most massive bins for the total and red LBG signal compared to the SAMs, but
otherwise the result conforms well with what we previously shown. The least massive red
predictions are slightly low with respect to the data, but this could be partly caused by the
shift in the colour distribution illustrated in Fig. 4.3 induced by the resolution correction.
Still, they are within the error bars of the data points. With respect to our best fit LBG
SAM (0.5αdyn., 0.2 kAGN) which slightly under-predict the most massive red LBG lensing
signal, it is moderately increased for the TNG300 as seen in Fig. 4.21 and panel I of Fig. 4.22.
We thus conclude that the TNG suite is not only able to reproduce stellar mass only signals
with a higher precision than the SAMs but is also equally good at producing predictions for
LBGs.

4.8.8 Clustering

Having determined the best fit models from lensing only, we also examine whether these
models hold up with respect to galaxy clustering observations to produce accurate joint 2-pt
statistics predictions necessary for the next generation of large-scale structure surveys. Here,
we do not change the stellar masses to match abundances but only focus on the baseline
model predictions.

For the stellar mass only clustering, we determine the best fit models through Eq. (4.6.1)
by the mean values for all four clustering bins with the results given in Table 4.6. We find that
both 2-pt statistics point towards a consistent picture with the lowest, best fit values reached
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Figure 4.24: Clustering predictions for all galaxies with 9.5 < logM∗
[
h−2 M�

]
< 10.0 (panel I)

and 10.0 < logM∗
[
h−2 M�

]
< 10.5 (panel II), respectively. There is little to no difference between

predictions from the derivative H15 models with different kAGN in this mass range, although they
predict a slightly lower clustering signal than the fiducial model, in tension with the observations. In
panel II one starts to notice deviations between the different kAGN models for the clustering 1-halo
term.

for the weak AGN feedback models. In Table 4.6 we see that the best agreement is reached
for the 0.1 kAGN model, plotted in Fig. 4.23, which also gave the best stellar mass only lensing
predictions in Table 4.3 and that the (0.5αdyn, 0.2 kAGN) is number two, which was the best
for LBG stellar mass only lensing in Table 4.5. The latter model predictions are very similar
to the former and thus we refrain from showing them. In the case of lensing, both all and for
LBGs only, it was not apparent at the high mass end whether the weak AGN feedback models
or the weak SN feedback models were to prefer, but if we compare the results in Fig. 4.23, we
recognise that the 0.1 εreheat model is disfavoured by the massive clustering signals. However,
it produces a better prediction for the least massive 9.5 < logM∗

[
h−2M�

]
< 10.0 bin, where

we see in Fig. 4.24 that there is a tradeoff in accuracy by reducing the strength of the AGN
feedback. We note that the signals for the fiducial H15 model are slightly higher than reported
in Henriques et al. (2017), and this could be due to the imposed limits on the line-of-sight
integration suppressing the spurious clustering contribution.

In Fig. 4.24, we show results for the models with reduced αdyn and kAGN for the two
lowest mass bins compared to H15 and G11 as well as the TNG300 with and without reso-
lution corrections. As previously mentioned, reducing the strength of the AGN feedback and
shortening the dynamical friction timescale produces a discrepancy in panel I of Fig. 4.24,
but helps to mitigate the tension for the subsequent mass bin. This issue is a topic for further
improvements. The G11 model produces excessive clustering signals in both cases, whereas
the resolution corrected TNG300 model and the H15 model do well for the lowest mass bin.

We compare the projected red and blue clustering signal to SDSS DR7 data from Zu &
Mandelbaum (2016) in Figs. 4.25 and 4.26. We focus on these low masses as it where the
different model prescriptions are most apparent. For the fixed αdyn models with varying kAGN,
there are only small differences in the predictions for all low mass systems, see Fig. 4.24, but
the differences between the H15 and G11 models are substantial due to the overproduction
of red galaxies in the G11 model which are more clustered. For low mass systems, the AGN
feedback strength has a significant effect on the amplitude of the 1-halo term for red galaxies
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Figure 4.25: Clustering predictions for red and blue galaxies with 9.4 < logM∗
[
h−2 M�

]
< 9.8

(panel I) and 10.2 < logM∗
[
h−2 M�

]
< 10.6 (panel II) with dust extinction. Whereas there is little

change in the blue signal between the models, reducing kAGN boosts the 1-halo term for red galaxies
in panel I. As suggested by Fig. 4.24, the different kAGN models start to deviate from one another for
blue galaxies from this mass bin in panel II onwards.

as seen in Fig. 4.25 in panel I. The TNG300 results are tangential to the lowest feedback model
predictions, although the signal drops towards the centre. For higher masses, the effect is not
as noticeable as shown in panel II of Fig. 4.25 which is representative for higher stellar masses
as well. As we show in Section 4.16, the effect of the dust model on the red clustering signal
can amount to ∼ 40 % for low mass systems, meaning that it is premature to use the results
in Fig. 4.25 to constrain the AGN feedback strength.

Fixing the AGN feedback and varying αdyn changes the offset of the predictions w.r.t. the
fiducial model, although it is most easily noticeable for systems with M∗ < 1010 h−2M�. For
the extreme solutions, the 0.1 εreheat model predictions are very similar to the H15 model for
M∗ < 1011 h−2M� and it is only in the most massive bin differences become significant. The
largest effects are present for the 0.1 kAGN model for stellar massesM∗ > 1010 h−2M� and the
0.1αdyn model lowers the clustering below 0.1h−1Mpc and gives it a slight boost on larger
scales. For the different SN feedback models, there is only a small difference in the offset
for the 1-halo term for masses M∗ < 1010.5 h−2M� and the (0.5 kAGN, 0.5αdyn, 1.5 εreheat) is
degenerate with the fiducial model for 0.1 < r

[
h−1Mpc

]
< 1 for 10.5 < logM∗

[
h−2M�

]
<

11.0. Differences are most noticeable beyond M∗ > 1011 h−2M�.
Again in Table 4.6 we highlight the best models for red and blue clustering. If we compare

the two, the red clustering favours a longer αdyn and both prefer weaker AGN feedback. Our
best model for the LBG lensing finishes on fourth place for the red clustering although the
top three is dominated by its close siblings in parameter space. It is interesting to note that
the top blue clustering models in Table 4.6 closely resemble the top models in Table 4.5 for
blue LBG lenses. If we neglect dust extinction, our best fit lensing model is also the best blue
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Figure 4.26: Same as Fig. 4.25 for galaxies with 9.8 < logM∗
[
h−2 M�

]
< 10.2 and with the extreme

SAM models. Here we also compare the clustering predictions for the TNG300 with and without
resolution corrections with dust extinction.

clustering model as shown in Section 4.16.
In Fig. 4.26, we also illustrate how the Pillepich et al. (2018b) resolution correction to-

gether with dust extinction affects the predicted clustering signal for red and blue galaxies
in the TNG300. As previously reported in Springel et al. (2018), there was a tension for the
predicted clustering signal for red galaxies with 9.5 < logM∗

[
h−2M�

]
< 10.0 without dust

extinction w.r.t. SDSS observations. If we use dust corrected colours the signal decreases and
the tension is mitigated as discerned in Fig. 4.26 as less clustered blue galaxies are classified as
blue. The changes in the amplitude due to dust extinction is strongest in this low mass range
since there are only a few red galaxies present and there is a rapid transition between red
and blue. Still, if we apply the additional resolution correction, the tension is re-introduced
as the red sequence is artificially shifted into the blue, leaving the most clustered galaxies. If
we restrict ourselves to the stellar mass only clustering, we see in panel I of Fig. 4.24 that
the resolution correction brings about a better agreement with the observations, whereas the
opposite is true in panel II. As hinted by the different satellite fraction at the knee of the
SMF in Fig. 4.8, the resolution correction induces a similarly large tension for galaxies with
10.5 < logM∗

[
h−2M�

]
< 11 w.r.t. data, as the one highlighted in Springel et al. (2018).

Hence, whereas this correction brings about a slightly better lensing signal, the corresponding
clustering signal does not necessarily improve. Further work has to be undertaken to clarify
which corrections are necessary for which observable and to quantify the magnitude of the
induced biases.

We also show results for our extreme SAMs in Fig. 4.26, where we spot a clear tension
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between the 0.1 εreheat model and the observations. This is the reason the low SN feedback
models do not feature among our best. However, if we consider a scenario without dust ex-
tinction with the best fit models presented in Section 4.16, the (0.5αdyn., 0.5 kAGN, 0.5 εreheat)
model claims the top spot. The 0.1 kAGN model is not as extreme as the resolution corrected
TNG300 in Fig. 4.26 for red galaxies, which holds true for more massive systems, and it
traces the (0.5αdyn, 0.1 kAGN) solution for the least massive bin. As for the 0.1αdyn model,
it produces an excessive blue clustering signal, although it is in agreement with data for the
least massive bin, and a too low red signal.

As shown in previous studies (e.g. Henriques et al., 2017; Springel et al., 2018), SAMs
and hydrodynamical simulations in cosmological volumes are able to produce very accurate
clustering predictions and it is nice to see the concordance between the iHODs and these two
other frameworks.

4.9 Group criteria

In this comparison, we are using our constrained measurements from the LBG and clustering
samples to produce predictions to be tested against an independent survey, in this case the
KiDS+GAMA equatorial overlap for galaxy groups. Here we focus on a few models from Ta-
ble 4.2, and especially our best fit (0.5αdyn, 0.2 kAGN) model run on the gravity-only TNG100.
We also list the corresponding host halo masses and other properties for the rescaled MR to
show that they are consistent across simulation volumes.

Compared to the quoted values in Velliscig et al. (2017) listed in Table 4.7 for the hydro-
dynamical Eagle simulation (Schaye et al., 2015; Crain et al., 2015), we see that the limiting
stellar masses M lim

∗ are quite different in the SAMs and this also applies to the host halo
masses in Tables 4.8, 4.9, 4.10, 4.11, 4.12 to satisfy the fsat criteria. By comparing the values
in Table 4.7 and 4.8, we observe that they are consistent with one another, although the
rescaled MR has better statistics. In general, a more massive stellar mass bin requires a
higher M lim

∗ for the group membership criteria, although this is not necessarily true for the
derivative H15 models from 1010.9M�, cf. Table 4.11. One may argue that the results are
dependent on the value M lim

∗ . It is true that fsat only evolves slowly with an increased M lim
∗

for the lowest group mass bins due to the large number of satellites, see Fig. 4.28, which allows
for a larger range of viable M lim

∗ . We discern in Fig. 4.28 that the average host halo mass
for centrals is robust to moderate variations of M lim

∗ with only ± 0.1 dex changes. Fixing the
host halo mass distribution for the most massive bins is given a higher priority due to the

M∗[log10 M�] d̄LG d̄E Mcen., LG
200c M sat., LG

200c Mcen., E
200c M sat., E

200c NLG
gal NE

gal M lim, LG
∗ M lim, E

∗ fsat
10.3− 10.6 0.686 0.590 13.19 13.61 12.29 13.78 95 467 354 9.98 9.46 0.98
10.6− 10.9 0.728 0.725 13.45 13.74 12.75 13.92 60 289 150 10.22 9.91 0.95
10.9− 11.2 0.763 0.902 13.64 13.83 12.96 13.97 26 387 68 10.26 9.96 0.81
11.2− 11.5 0.859 1.151 13.89 14.08 13.22 14.02 6 698 22 10.36 10.33 0.50
11.5− 11.8 0.976 1.877 14.05 14.30 13.52 14.07 1 908 29 9.86 - 0.21

Table 4.7: Velliscig et al. (2017) comparison simulation sample properties (LG = L-Galaxies 15, E
= Eagle) with all mean halo masses M200c of the samples (host FOF groups) in units of log10 h

−1 M�
and all stellar masses in units of log10 M�. The satellite fractions fsat match the ones in the GAMA
group catalogue. d̄ is the average 3D distance between the satellite galaxies and their centrals and
Ngal the total number of galaxies.
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M∗[log10 M�] d̄LG M cen., LG
200c M sat., LG

200c NLG
gal M lim, LG

∗ [log10 M�]
10.3− 10.6 0.732 13.12 13.80 400 9.87
10.6− 10.9 0.757 13.23 13.83 324 10.13
10.9− 11.2 0.937 13.60 13.92 157 10.39
11.2− 11.5 0.766 13.93 14.08 24 10.75
11.5− 11.8 0.818 13.80 14.31 6 -

Table 4.8: Average host halo masses, 3D distances between the satellite galaxies and the central galaxy
in each FOF group in units of h−1 Mpc and number counts for H15 on the gravity only TNG100. If
we compare these values with those quoted in Table 4.7, they are consistent with one another. For the
average satellite distances, the H15 predicts more coherent values across the whole mass range w.r.t.
Eagle.

M∗[log10 M�] d̄LG M cen., LG
200c M sat., LG

200c NLG
gal M lim, LG

∗ [log10 M�]
10.3− 10.6 0.691 13.01 13.78 683 10.03
10.6− 10.9 0.753 13.41 13.84 417 10.35
10.9− 11.2 0.887 13.58 13.91 185 10.43
11.2− 11.5 0.855 13.82 14.13 26 10.65
11.5− 11.8 - 13.91 - 4 -

Table 4.9: The same properties as in Table 4.8 for G11 on TNG100-DM. The values are very similar
to those of H15 listed in Table 4.8, which means that we do not expect large differences in the lensing
signal.

M∗[log10 M�] d̄LG M cen., LG
200c M sat., LG

200c NLG
gal M lim, LG

∗ [log10 M�]
10.3− 10.6 0.772 13.20 13.82 417 10.09
10.6− 10.9 0.830 13.59 13.88 319 10.45
10.9− 11.2 0.801 13.55 14.02 88 10.52
11.2− 11.5 0.375 14.01 14.11 12 10.83
11.5− 11.8 1.192 14.10 14.35 4 -

Table 4.10: Equivalent as Table 4.8 but for H15 with 2αdyn and 2 kAGN on TNG100-DM. We note
that mean host halo masses for the two most massive bins are higher than for the fiducial H15 model
listed in Table 4.8.

M∗[log10 M�] d̄LG M cen., LG
200c M sat., LG

200c NLG
gal M lim, LG

∗ [log10 M�]
10.3− 10.6 0.751 13.13 13.81 355 9.83
10.6− 10.9 0.789 13.46 13.88 247 10.27
10.9− 11.2 0.818 13.39 13.82 253 9.60
11.2− 11.5 1.312 13.70 14.03 39 10.56
11.5− 11.8 0.635 13.64 14.18 13 -

Table 4.11: Same properties as in Table 4.8 for H15 with 0.5αdyn and 0.5 kAGN on TNG100-DM.
Here the host halo masses for the centrals from the third bin onwards are reduced w.r.t. the fiducial
setup.
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M∗[log10 M�] d̄LG M cen., LG
200c M sat., LG

200c NLG
gal M lim, LG

∗ [log10 M�]
10.3− 10.6 0.751 13.08 13.80 345 9.83
10.6− 10.9 0.759 12.97 13.87 238 10.24
10.9− 11.2 0.808 13.16 13.79 275 9.49
11.2− 11.5 0.964 13.52 13.87 108 9.95
11.5− 11.8 0.925 13.48 14.13 46 -

Table 4.12: Table 4.8 for our best fit 0.5αdyn and 0.2 kAGN model on TNG100-DM. Compared with
Table 4.11, the central host halo masses are reduced further and we have more galaxies in the two
most massive bins. There is little to no effect on the average host halo masses for the satellites.

1012 1013 1014 1015

H15
(0.5αdyn., 0.2 kAGN)

1012 1013 1014 1015

H15
(0.5αdyn., 0.5 kAGN)

1012 1013 1014 1015

H15
(2αdyn., 2 kAGN)

M∗ = 1010.9 − 1011.2M�

p(
M

20
0c

)

M200c [h−1M�]

Figure 4.27: Host halo masses for central galaxies in the 10.9 < logM∗ [M�] < 11.2 mass bin
for the Velliscig et al. (2017) selection, for (0.2 kAGN, 0.5αdyn), (0.5 kAGN, 0.5αdyn), the fiducial H15
model and (2 kAGN, 2αdyn) run on TNG100-DM. Reducing the dynamical friction parameter as well
as the AGN feedback efficiency brings about a better agreement with the observational constraints, as
already indicated by the LBG lensing.
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Figure 4.28: The satellite fraction dependency of M lim
∗ for the H15 model run on the rescaled

Millennium simulation normalised to the measured GAMA values, see Table 4.7, and the average host
halo masses for centrals in logM� with quoted values at 50, 75, 100, 125, 150 % of the best fit mass.
For the low stellar mass bins, there is only a slowly evolving relation with increasing M lim

∗ whereas
larger deviations from the best fit values are produced for the more massive bins, suggesting stronger
constraints.

increasing strength of the matching fsat constraint.
We perceive that the host halo masses for the lowest mass bin differ by about 1 dex between

Eagle and the SAMs, but if we look at the predicted lensing signal for central galaxies in
Fig. 4.29 in panel I, we discern that the SAMs are still consistent with observations. The low
host halo masses for the least massive bins hold across the examined SAM parameter range in
this examination. For the central signal in Fig. 4.29, all models are in agreement with data,
especially below 1010.9M�. If we start to modify the SAMs to achieve a better agreement,
changing αdyn and kAGN as seen in Tables 4.10, 4.11 and 4.12, can affect the signal and average
host halo masses. If we reduce αdyn and kAGN we are able to obtain more consistent values
with the central galaxy signals for 10.6 < logM∗ [M�] < 11.5. This is especially notable
for stellar masses exceeding 1010.9M� where we illustrate the shift in the host halo mass
distribution in Fig. 4.27 compared to that of the reference H15 model. Increasing αdyn and
kAGN produces a similar SMF, but causes a shift in the host halo mass distribution away from
the observational data points. The best fit LBG model (0.5αdyn, 0.2 kAGN) give the lowest
mass distribution and the best central lensing signal for 10.6 < logM∗ [M�] < 11.5. When
it comes to the satellite signal, however, the model does not do equally well as the fiducial
models for 10.9 < logM∗ [M�] < 11.5 as illustrated in panels II-III in Fig. 4.30. This error
then propagates into the joint signal as seen in panels III-V in Fig. 4.31. Hence, while it is
the best model for LBG lensing and for most of the central galaxy signals in Velliscig et al.
(2017), it still needs refinements to conform with the satellite lensing signal. In conclusion,
we see that our best constraint model (0.5αdyn, 0.2 kAGN) conforms reasonably well with the
new dataset for centrals, validating our approach.

If we consider the two fiducial models H15 and G11, they give similar predictions, espe-
cially for the satellite lensing signals in Fig. 4.30. For the central galaxies, the G11 model
predicts a lower signal for the 10.3 < logM∗ [M�] < 10.6 and is greater by an almost equal
amount for 10.6 < logM∗ [M�] < 10.9 and the two are equal for 10.9 < logM∗ [M�] < 11.2



4.9 Group criteria 123

10−1 100

r [h−1 Mpc]

101

102

103

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1010.3 − 1010.6M�, central

H15
G11
(2αdyn., 2 kAGN)

(0.5αdyn., 0.5 kAGN)
(0.5αdyn., 0.2 kAGN)
Velliscig+17

10−1 100

r [h−1 Mpc]

101

102

103

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1010.6 − 1010.9M�, central

H15
G11
(2αdyn., 2 kAGN)

(0.5αdyn., 0.5 kAGN)
(0.5αdyn., 0.2 kAGN)
Velliscig+17

10−1 100

r [h−1 Mpc]

101

102

103

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1010.9 − 1011.2M�, central

H15
G11
(2αdyn., 2 kAGN)

(0.5αdyn., 0.5 kAGN)
(0.5αdyn., 0.2 kAGN)
Velliscig+17

10−1 100

r [h−1 Mpc]

101

102

103

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1011.2 − 1011.5M�, central

H15
G11
(2αdyn., 2 kAGN)

(0.5αdyn., 0.5 kAGN)
(0.5αdyn., 0.2 kAGN)
Velliscig+17

10−1 100

r [h−1 Mpc]

101

102

103

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1011.5 − 1011.8M�, central

H15
G11
(2αdyn., 2 kAGN)

(0.5αdyn., 0.5 kAGN)
(0.5αdyn., 0.2 kAGN)
Velliscig+17

Figure 4.29: GGL signals for central galaxies w.r.t. data from Velliscig et al. (2017). We see that
the best fit (0.5αdyn, 0.2 kAGN) model produces accurate predictions across the whole mass range,
particularly evident in panels II-IV, although the signal around 1h−1 Mpc in panel V for the most
massive bin is somewhat low. For this bin the best agreement is reached for the (2αdyn, 2,kAGN)
model, but we attribute the tension to small number statistics.
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Figure 4.30: Same as Fig. 4.29 for satellite galaxies w.r.t. data from Velliscig et al. (2017). We
have omitted the most massive bin as one of our models lack satellite galaxies for those stellar
masses. For the two least massive bins in panels I-II, all models produce accurate predictions and
the (2αdyn, 2 kAGN), the H15 and G11 yield the best results for the two subsequent bins in panels
III-IV, especially on scales r ∼ 1h−1 Mpc around and beyond the central bump. The low signal for
the (0.5αdyn, 0.2 kAGN) model for these bins suggests that we should have more satellites in massive
host haloes. We only have six galaxies in panel IV for the (2αdyn, 2 kAGN) model which causes the
large scatter.
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Figure 4.31: Joint GGL signals for central and satellite galaxies w.r.t. data from Velliscig et al.
(2017). Here we see that the matched satellite fractions ensure an agreement with observations,
compared to the van Uitert et al. (2016) comparison. Originating from their problems to match the
large scale (r ∼ 1h−1 Mpc) satellite lensing signal and the most massive central signal in panel V of
Fig. 4.29, the (0.5αdyn, 0.5 kAGN) and (0.5αdyn, 0.2 kAGN) models do not conform well with the joint
signal data points for the three most massive bins in panels III-V in this radial range.
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and 11.5 < logM∗ [M�] < 11.8. Thus this dataset cannot be used to discriminate them
against each other.

Compared to the stellar mass only selection, we are able to conform to the joint and
satellite lensing measurements in Figs. 4.30 and 4.31 with all SAM models in the comparison,
highlighting the need for isolation and group membership information from future surveys.
We also obtain better agreement for the satellite lensing signal than Eagle, which had a
suppressed amplitude of the central bump. They argued that this was caused by the small
simulation volume, but as we see for the SAMs on the TNG100 this does not necessarily have
to be an issue, although we have very few galaxies in our most massive bins. If we compare the
lensing signal for the H15 model run on the rescaled MR, we find that the signal amplitude
is slightly higher due to the presence of more massive haloes, specifically for the 10.6 <
logM∗ [M�] < 10.9, 10.9 < logM∗ [M�] < 11.2 and the 11.5 < logM∗ [M�] < 11.8 bins (the
rescaled MR actually gives a slightly lower lensing signal for the 11.2 < logM∗ [M�] < 11.5
bin). For the satellite lensing signal the central bumps are less prominent due to the large
statistics and spread in the average distances between the satellites and their centrals, which
induces a smoothing between the central subhalo lensing signal and its host central. We have
to wait for larger observational datasets to see if this applies to such surveys.

We show the corresponding IllustrisTNG predictions in Chapter 5 for this dataset.

4.10 Discussion

We have carried out a comparison between different SAMs as well as the IllustrisTNG for
different galaxy-galaxy lensing and galaxy clustering datasets and found satisfactory agree-
ment across several of them. The greatest challenge seems to be the proper modelling of
the red satellite lensing signals as seen in Section 4.8.6, where we cannot reach a sufficient
conformance even for extreme model parameter variations. This will probably require major
work on the quenching of satellite galaxies. Traditionally, a way to boost the galaxy cluster-
ing has been to populate massive galaxies with more satellite galaxies and we see that this
has alarming consequences for the lensing. For intermediate stellar masses, the TNG300 has
the same issues as the SAMs highlighting that including baryonic physics do not solve the
tension. If we compare to the iHODs from Mandelbaum et al. (2016), they have no trouble
getting the red lensing signal right, although we are able to produce equally well or slightly
superior predictions at the extreme low mass end. We have also checked the halo occupation
distributions for our SAMs compared to those shown in Zu & Mandelbaum (2015) for the
iHOD setup for stellar masses at logM∗ = 10 ± 0.1 [M�] and logM∗ = 11 ± 0.1 [M�], and
we find an adequate agreement for the central galaxies, but for satellites the distribution have
tails of the order of 0.5 dex towards lower and higher masses. If we remove the orphans these
two tails disappear, and it is mostly the massive tail which dominates the lensing signal.
Hence, we deduce that the satellite treatment much be improved.

Our best fit (0.5αdyn, 0.2 kAGN) model does a good job in producing predictions for the
Velliscig et al. (2017) central galaxy signals. In Section 4.17, we show its SMF up to z = 3
and its predicted red galaxy fractions with respect to the fiducial H15 model. As already
pointed out in Section 4.8.1, the SMF is slightly too high above the knee at z = 0.11 and this
also applies to z = 1 but given the large uncertainties this is still consistent. We are thus
able to retain the good agreement to the SMF to z = 4, meaning that this simplified study is
compatible with the fiducial MCMC constraints used to tune H15. This bodes well for SAMs
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to produce predictions for future deep lensing surveys such as HSC, given the possibility to
introduce isolation and group membership criteria. Yet, if we examine the red fractions, we
see that the new model shifts the distribution away from the observational data points. Still,
the division is very sensitive to the actual shape of the colour distribution, especially for
stellar masses between 9.5 < logM∗

[
h−2M�

]
< 10.5 where the transition between blue and

red is rapid. Thus, we do not put equal weight on matching the colour cuts. For z = 3 we
are in excellent agreement with H15. Future endeavours should focus on the incorporation
of these lensing constraints into the MCMC chains themselves for the model selection, but
as we have shown, the modification of a few pertinent parameters is sufficient to produce an
acceptable improvement.

In Wang et al. (2016) it was argued that abundance corrections could be used to bring
the signal into agreement. We also find that this is the case, but the effects are the largest at
the high mass end where the uncertainties are considerable. Thus it should not be a method
of choice, even though the SMF agreement at low redshift can be compromised by including
higher redshift constraints in the MCMC analysis. Moreover, as pointed out in Section 4.8.7,
we have difficulties to achieve the exquisite agreement for the LBG lensing signal for the G11
model when we run the SAM with the proper model switch, but are in perfect agreement when
we run it as the H15 model with G11 parameters. This model combination also outperforms
the others for a few of the datasets we have considered, highlighting the need to explore the
parameter space further. Still, the agreement with the SMF for z > 1 is poor which makes
us discard this model.

Finally, while modifying the free parameters of the SAM can lead to better predicted
power, it is not necessarily true that the underlying physical model is sound. In addition,
the approaching the era of precision cosmology requires a more profound understanding of
systematic effects such as the influence of baryons. With the baryonic feedback prescriptions
offered by the TNG300 detailed in Section 5.6.4, we comprehend that we are still safe from
their impact for the current datasets by restricting the analyses to scales r > 30h−1 kpc
to avoid the impact of the stellar term. Still, future progress should be directed towards
understanding the amplitude and scope of the suppression on intermediate radial scales,
which is specifically important for group scale systems where the effect of the AGN feedback
is the strongest. We will show and quantify the deformation effects for the IllustrisTNG and
the Illustris suite in Chapter 5.

Further developments could also to be made to include additional 2-pt statistics in the
analysis, such as cosmic shear which has been shown to offer interesting galaxy formation
constraints (e.g. Foreman et al., 2016).

4.11 Conclusions

In this Chapter we have shown predictions from different semi-analytical models of galaxy
formation and hydrodynamical simulations for various observational datasets and we have
found two major biases related to the satellite fractions (for the SAMs) and red satellite
lensing signal (for the SAMs and the IllustrisTNG). To remedy the former, one can adjust
the merger times and AGN feedback parameters of the SAMs to bring about agreement at the
high mass end. For the latter, major work is required to model the stripped subhalo satellite
lensing signal in both hydrodynamical simulations as well as in SAMs.

By combining lensing data across different stellar masses and by adding clustering in-
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formation, we arrive at a few viable parameter combinations for the central galaxy signal
which we have verified to also be consistent with the external group membership datasets
from Velliscig et al. (2017). Our best fit model suggests a weaker AGN feedback and shorter
dynamical friction merger time multiplier than the fiducial H15 model, and it retains the
good agreement with the SMF at z = 0 up to z = 3, making it suitable for future lensing
and clustering surveys. Thus we conclude that joint 2-pt statistics analyses are interesting,
promising approaches to constrain galaxy formation.
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4.12 Mixing limit

The samples in Zu & Mandelbaum (2016) and Zu & Mandelbaum (2015) are approximately
volume complete until an imposed limit in stellar mass Mmix

∗ which gives the maximum
redshift a galaxy with a given stellar mass could be observed at as

zmix
max =

[
log(Mmix

∗ /h−2M�)− 8.0
5.4

]1./0.33

+ 0.025. (4.12.1)

This sensitivity function can be incorporated into differential comoving volume element dV (z),
which can be used to set the relative weight of the different simulation snapshots for each
stellar mass bin i. Such a setup effectively down-weights the contribution from the highest
redshift snapshots. Below the mass limit Mmix

∗ , the sensitivity is considered to be full and we
use the ordinary differential comoving volume element to define that volume. Each individual
stellar mass lensing sample is thus constructed from the list of available snapshots with
individual weights set by their fractional contribution to the total comoving volume, and
since we have different bin borders

ωred, blue
ij =


∑

j

Vij



−1 ∫ zmix

max

zmin
dVij(z), (4.12.2)

where j marks the available snapshots. We have checked that there are negligible differences
in the host halo masses for centrals and satellites for samples defined using this technique
with respect to using a single snapshot at z = 0.11 to define the sample, although the satellite
fraction changes on the order of ∼ 1 % for the H15 model. Hence, we use the z = 0.11
snapshot for our mocks.

4.13 Abundance correction residuals
In Fig. 4.32, we show the residuals for the corrected profiles. Since the high mass signal is
dominated by centrals, the abundance correction results in a homogeneous shift of the signal
with radius, whereas the impact on the low mass satellite signal is more extreme with a
suppression (H15) and boost (G11), respectively.
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Figure 4.32: In panel I, we show the abundance corrections residuals for the H15 model. While the
correction is almost homogeneous across all radii at high masses due to the central signal dominance,
the effect is different for the low mass signal with a stronger suppression of the satellite lensing signal
visible in the centre. In panel II we show the corrections for the G11 model. The trend for the low
mass signal is inverted here, with a boost of the satellite lensing term. Although the G11 correction
for the SMF is slightly smaller than for H15, the impact on the lensing signal is comparable.

4.14 LBG central fractions
In Fig. 4.33, we show the fraction of central galaxies in a few of the SAMs with the G11 and the
H15 models as well as the different kAGN models with fixed αdyn = 0.5 which are classified as
LBGs for all galaxies and separated according to colour in panels I-II. For intermediate mass
galaxies, we are only able to capture 50 %− 60 % of the centrals with the isolation criterium,
but for higher masses above 1011.5M� > 10, > 90 % of the centrals are LBGs. If we separate
the signal into red and blue, virtually all blue massive galaxies are LBGs whereas some of the
red massive galaxies are excluded, owing to them residing in more clustered environments.
Also for less massive systems the discrepancy is apparent; at 1010.4M� only ∼ 40 % of the
red centrals are LBGs compared to ∼ 60 %− 70 % of the blue centrals. There is only a small
variation depending on the galaxy formation model, although the massive red central galaxies
in the G11 model are more likely to pass the criterium. It is not obvious from the massive
clustering signal for G11 for red galaxies why this is the case.

We turn the argument around in panels III-IV, quantifying how many of the LBGs which
are actually central galaxies, determining the purity of the sample. This peaks for the lowest
mass bins, with ∼ 95 % of the LBGs being centrals independent of model and colour, which
gradually drops to 85 %− 90 % around 1011M� and then increases anew for red galaxies. We
see that reducing the strength of the AGN feedback yields slightly more central LBGs and
that all derivative H15 models lie above the fiducial curve. Verifying the picture shown in the
previous plots, the G11 LBGs are slightly more likely to be centrals than the LBGs from H15.
Looking at the colour separation in panel IV, the weak AGN feedback models produce LBGs
which are less likely to be centrals for the most massive bin for blue galaxies, and the result
for red galaxies is similar to the curves in panel III, i.e. elevated w.r.t. the fiducial model.
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Figure 4.33: Fraction of centrals which are also classified as LBGs (panels I-II) and central purity
for the LBG sample for different mock catalogues (panels III-IV). The fraction increases with stellar
mass and the G11 LBGs are most likely to be centrals. In panel II we split the result for red and
blue galaxies. As central blue galaxies, in general, reside in less clustered environments they are more
likely to be LBGs than their red counterparts. For the G11 model, the most massive red centrals are
as likely as the blue galaxies to be LBGs. Switching to the purity of the sample in panels III-IV, the
G11 lenses are 2-5% more central than in the H15 model, but the difference is too small to influence
the signal dramatically. There is only a large difference in the most massive bin, but here the two
models yield similar predictions. Lenses from the derivative models with different kAGN strength are
equally pure. Panel IV shows the result for red and blue LBGs. Up to M∗ = 1011 M� there are only
small differences between the different model predictions with a large scatter at the high mass end for
the blue LBGs produced by the poor statistics.
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Figure 4.34: Lensing predictions from the H15 model run on the gravity-only TNG100. Similarly
as for the MR simulation, the high stellar mass lensing signal is significantly over-predicted with this
SAM.

In Fig. 4.34, we illustrate the predictions for the H15 model run on top of the direct
Planck16 cosmology of the gravity-only TNG100 for the van Uitert et al. (2016) dataset. The
result is very similar to the MR result in Fig. 4.6, although the variance is larger at the high
mass end due to the small volume, which means that we can neglect any rescaling biases also
for mixed central and satellite samples.

4.16 Dust extinction
Fig. 4.25 suggests that one could use the coloured clustering signal to determine the strength
of the AGN feedback efficiency. However, this is sensitive to the model for dust extinction
used, see Fig. 4.35. In this plot we provide a conservative upper limit of the dust impact on the
clustering signal, given that we do not modify the colour cut. For stellar masses < 11h−2M�,
there is a clear smooth suppression of the signal for red galaxies, as more dusty star-forming
blue galaxies which are on average less clustered are counted as red. This primarily affects
the 1-halo term and the effect can amount to 30− 40 % whereas the effect for the 2-halo term
is ∼ 10 − 20 % depending on the galaxy formation model. This effect is greater for the G11
model due to its many low mass red galaxies, and it is greater for lower masses since most
galaxies in that range are blue. For blue galaxies the situation is less clear; we observe a mild
suppression for the two lowest mass bins for the H15 model, but the result at higher masses
contains a lot of scatter.

If we switch to the lensing predictions for the G11 and H15 models, we illustrate the
residuals with and without dust extinction in Figs. 4.36 and 4.37 for all galaxies using the Zu &
Mandelbaum (2016) selection and colour separation and for LBGs according to Mandelbaum
et al. (2016), respectively. By comparing the effect with the results in Section 5.6.4, we
see that the dust model can change the predictions by as much as the presence of baryons,
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Figure 4.35: Clustering residuals for red galaxies for the G11 and the H15 models with and without
dust extinction for the Zu & Mandelbaum (2016) observational criteria. Including dust suppresses the
clustering signal with 30 − 40 % for the lowest mass bins for the 1-halo term. At higher masses, this
effect goes towards unity with a lot of scatter.
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Figure 4.36: The impact of dust extinction on the colour selection on ∆Σ profiles for the Zu &
Mandelbaum (2016) observational criteria with the Eq. (4.7.1) colour cut, assuming the same colour
and stellar mass cuts. Predictions from the G11 model (left panels) and the H15 model (right panels)
with the signal for red (top) and blue galaxies (bottom) are susceptible to the implemented dust model
to a similar degree as the cosmological and baryonic effects. For the most massive red galaxies, the
profiles for the G11 model are enhanced in the dust extinction case, whereas the H15 profiles are
suppressed at all masses.
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Figure 4.37: Dust extinction errors for the colour selection with the Eq. (4.7.2) cut for LBG ∆Σ
profiles for the Mandelbaum et al. (2016) observations with the same model and red and blue separation
as in Fig. 4.36. With respect to those results, the two models now showcase a similar behaviour. We
only illustrate results below r ∼ 0.7h−1 Mpc to avoid the scatter in the 1-halo to 2-halo transition
regime.
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Clustering (without dust) Red Blue

First (0.5αdyn., 0.5 kAGN, 0.5 εreheat) (0.5αdyn., 0.2 kAGN)

Second (0.3αdyn., 0.3 kAGN) 0.1 kAGN

Third 0.1 εreheat H15

Table 4.13: The best fit models according to red and blue clustering without dust.

especially for 10.6 < logM∗
[
h−2M�

]
< 11.0 blue galaxies and 11.0 < logM∗ [M�] < 15.0

blue LBGs. The effect is more prominent in this mass range as there are only a few massive
blue galaxies, and those susceptible to the dust extinction implementation live in low mass
haloes which have retained more of the dust. These low mass objects are then shifted into
the red, but as there are relatively many red galaxies, the impact on the red lensing signal
is modest. The boost for the blue signal is more apparent in the G11 model, but we see the
same qualitative trends for H15. For massive red galaxies, there are only small differences
between the signal with and without dust extinction for the G11 model whereas there is still
a ∼ 3 % for the H15 model.

Examining the results for LBGs in Fig. 4.37 which we show up to r ∼ 0.7h−1 Mpc, one
sees that similar trends are reproduced, although the effect is smoother across the radial range
since the signal is central dominated. There is a mild increase in the dust modelling impact
as we move to larger scales away from the galaxy centres, which can amount to as much as
∼ 15 % for the H15 model for 11 < logM∗ [M�] < 11.2 red LBGs and around 10 % in the
centres.

We also present the figure-of-merit rankings for the lensing and clustering predictions
where we have neglected dust extinctions in Table 4.13 for red and blue clustering and in
Table 4.14 for red and blue LBG lenses, respectively. Analogously as for the case with
dust extinction, the two colours do not agree on a single model, but we note that the
(0.5αdyn., 0.5 kAGN, 0.5 εreheat) fits best for red clustering and also red LBG lensing as seen
in Table 4.14. This model is still the best if we account for abundance corrections to the
masses. The second best (0.1αdyn., 0.1 kAGN) model for the total LBG lensing signal now
finishes on second place. The listings in Table 4.14 for blue LBG lensing without dust is
similar to the ranking of the models for blue galaxy clustering with dust in Table 4.6. As for
the LBG lensing for all galaxies and red galaxies only with abundance corrected masses, the
H15 model does a good job for the red lensing LBG signal without dust extinction and with
abundance corrected masses, but it is overtaken by the G11 model for blue LBGs without
dust and with abundance corrected masses.
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LBG lensing (without dust, fiducial) Red Blue

First (0.5αdyn., 0.5 kAGN, 0.5 εreheat) (0.3αdyn., 0.1 kAGN)

Second (0.1αdyn., 0.1 kAGN) (0.4αdyn., 0.1 kAGN)

Third (0.3αdyn., 0.1 kAGN) (0.1αdyn., 0.1 kAGN)

LBG lensing (without dust, abundance) Red Blue

First (0.5 kAGN, 0.5αdyn, 0.5 εreheat) (0.5 kAGN, 0.1αdyn)

Second H15 G11

Third 0.1 εreheat 0.1αdyn.

Table 4.14: The best fit models according to red and blue LBG lensing without dust.

4.17 SMFs and red fractions for our best fit model
In Fig. 4.38, we show the predicted SMFs with respect to the observational constraints used
in the MCMC analysis in the H15 paper for our best fit (0.5αdyn, 0.2 kAGN) model compared
to the fiducial H15 results. We see that we are able to retain the good SMF agreement7 of
the H15 model at higher redshifts, showing that the parameter choices are valid. The curve
at z = 3 also lies above the H15 prediction for low mass systems and not only above the knee
of the SMF as seen at z = 0 and z = 1. Still, we do not have observations for this mass range
and the small tension is well within the quoted error bars of the other measurements.

We move on to the red fraction of galaxies in Fig. 4.39. At z = 0, this corresponds to
a split in g − r with dust extinction and for the higher redshift bins we refer the reader to
H15 for the exact definition. We see that the (0.5αdyn, 0.2 kAGN) model produces fewer red
galaxies than the fiducial H15, moving away from the observational constraints. Yet, this is
not a dramatic shift and could be accommodated by changing the colour cut. Still, we have
already seen that the (0.5αdyn, 0.2 kAGN) model not finishes first for the red LBG lensing and
red clustering, which could be a related effect to the colour distribution being slightly off.

7Apart from the observables quoted here, we have also checked that no new discrepancies arise for the star
formation rates and the bulge mass-black hole mass relations.
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Figure 4.38: SMFs at different redshifts from our best fit (0.5αdyn, 0.2 kAGN) model compared to
the H15 model and the galaxy formation model from Guo et al. (2013b) on the MR run rescaled to
a WMAP7 cosmology (Komatsu et al., 2011). We see the largest differences at z = 0. and at z = 1
beyond the knee at the high mass end, but we are still in agreement with observations.

9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ed

F
ra

ct
io

n

Observations used in MCMC

z=0.0

9 10 11

z=0.4

9 10 11

z=1.0

9 10 11

z=2.0

9 10 11

z=3.0

Guo2013a - WMAP7

Henriques2015 - PLANCK1

(0.5αdyn., 0.2 kAGN)-PLANCK1

log10(M∗[h−2M�])log10(M∗[h−2M�])log10(M∗[h−2M�])log10(M∗[h−2M�])log10(M∗[h−2M�])

Figure 4.39: Red fractions with dust extinction at different redshifts with stellar masses in
logM∗

[
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]
on the x-axis from our best fit (0.5αdyn, 0.2 kAGN) model compared to the H15

model and the Guo et al. (2013b) model. The new red fractions deviate from the MCMC constraints,
but we also have to take into account the shift of the colour distribution and the quoted uncertainties
are still quite large.



Chapter 5 Baryonic effects

5.1 Prologue

The results from this Chapter will shortly be published in Monthly Notices of the Royal
Astronomical Society, to which we rescind all copyrights, within Renneby et al. (prepb). The
first author (me) conducted the work in this analysis with advice from Dr. Stefan Hilbert,
but the final publication will feature additional contributions from other co-authors not listed
here.

5.2 Abstract

We use the Illustris, IllustrisTNG and Eagle simulation suites to predict galaxy-galaxy lensing
profiles for various lens samples adapted for observational data from KiDS+GAMA and SDSS-
DR7. We examine selections based on stellar mass only, the separation of the signal according
to colour, and group membership. We find that the IllustrisTNG and Eagle produce accurate
predictions for the observations, although they cannot capture the most massive central galaxy
group signals. By matching the subhaloes with their counterparts in the gravity only runs
we investigate the impact of baryonic physics on the 1-halo term as well as on the transition
regime between the 1-halo and 2-halo terms. Mass convergence between the two runs is
achieved at r ∼ 5 − 6h−1 Mpc for Illustris and at r ∼ 1 − 2h−1 Mpc for IllustrisTNG,
reflecting the different strength of the AGN feedback. The baryonic imprint on central galaxies
and central dominated samples can be captured by a smooth function with small scatter,
dependent on the feedback prescriptions. For satellite dominated samples, the suppression
around r ∼ 1h−1 Mpc has more scatter due to the differences in the projected distance
to the central subhalo and host halo mass between the two runs. We examine whether
this well-behaved central signal can be encapsulated by a semi-analytical prescription using
the parameterisation of Schneider & Teyssier (2015) for galaxy groups and clusters in the
TNG300. The parameterisation is able to capture the general trends but further tuning is
required for it to serve as a basis for profile-by-profile deformation. The differences in the
predictions between Illustris and TNG100 are of the same order as between TNG100 and
TNG300, although the two volumes display similar trends. To conclude, we produce mock
signals for HSC galaxy groups and clusters and investigate the impact of baryons on the signal
from z = 1.1 to today. We find that the stellar parameterisation is more important for higher
redshifts, affecting the innermost radial bins in a lensing survey, and also setting the scale
where the baryonic suppression takes hold. However we note no major developments for the
halo outskirts, meaning that one should keep the same conservative radial cuts for the new
deeper surveys if one wants to mitigate the impact of baryons.
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5.3 Introduction
As we enter the era of precision cosmology, significant gains in information extraction can
be achieved by including smaller scales from 2-pt statistics measurements in the analysis
pipelines, which offer better signal-to-noise ratios. Still, the tradeoff is that one has to pay
more attention to systematics from astrophysical and nonlinear processes, as one leaves the
validity regime of perturbative treatments. The latter can be modelled using numerical N -
body simulations together with e.g. SAMs, see Section 2.2.3, or as a basis for pure emulators
for the matter power spectrum (e.g. Heitmann et al., 2014; Lawrence et al., 2017), but the for-
mer requires hydrodynamical simulations where the implementation of the baryonic feedback
processes can differ. So far cosmological analyses have taken a conservative approach, either
excluding these scales completely (e.g. Abbott et al., 2017a) to ensure that survey statistical
errors exceed systematics from nonlinear effects (Krause et al., 2017), or attempting to cap-
ture the main trends using simplified fitting formula (e.g. Mead et al., 2015, 2016) calibrated
against hydrodynamical simulations (e.g. van Daalen et al., 2011) to mock the amplitude of
the baryonic feedback (e.g. van Uitert et al., 2018; Joudaki et al., 2018). To push deeper into
the nonlinear regime requires more elaborate recipes.

It is well known that baryons affect the power spectrum starting at k ∼ 1hMpc−1, where
the less dense gas distribution with respect to dark matter suppresses structure compared to
gravity-only simulations. At k ≈ 10hMpc−1 the additional cooling due to the presence of
baryons produces an enhanced matter clustering signal up to the halo centres (e.g. Jing et al.,
2006; Rudd et al., 2008; Semboloni et al., 2011). These effects propagate into uncertainties on
the weak lensing signal, i.e. for the galaxy-matter cross-correlations. They also influence the
galaxy clustering, i.e. the autocorrelation of the galaxy field, and both of these effects have
been investigated in the literature in terms of amplitude changes of cross-power spectra (e.g.
Semboloni et al., 2013; van Daalen et al., 2014; Mohammed et al., 2014; Schneider & Teyssier,
2015; Harnois-Déraps et al., 2015; Osato et al., 2015; Schneider et al., 2018) for cosmological
surveys. Finally, they can also affect the shape of the halo mass function (e.g. Bocquet et al.,
2016) inducing errors for cosmological constraints from cluster counts.

We can also investigate the effect for the real-space correlation functions by examining the
deformations of the lensing profiles, previously briefly performed in Leauthaud et al. (2017).
To avoid projection effects, more studies have been carried out on 3D density profiles (e.g.
Duffy et al., 2010; Schaller et al., 2015a; Dutton et al., 2016; Peirani et al., 2017; Mummery
et al., 2017; Lovell et al., 2018; Chua et al., 2018; Wang et al., 2018). Specific focus has been
directed towards galaxy clusters (e.g. Henson et al., 2017; Shirasaki et al., 2018) although the
chief directives have been to classify biases for concentration and mass estimates.

So far, these analyses have focused on one or a small set of simulations to measure the ef-
fects, though recent advances have allowed baryonic deformations from different cosmological
hydrodynamical simulations to be quantified in terms of parameterised principal components
for matter and lensing power spectra (e.g. Zentner et al., 2013; Eifler et al., 2015; Kitching
et al., 2016; Mohammed & Gnedin, 2018; Huang et al., 2018). Comparisons for the baryonic
impact on the matter power spectrum have been carried out by Chisari et al. (2018); Springel
et al. (2018) and for the galaxy clustering 1-halo term in Artale et al. (2017).

In this Chapter, we would like to extend the enquiry to predictions for galaxy-galaxy
lensing profiles using the Eagle (Schaye et al., 2015; Crain et al., 2015), Illustris (Vogels-
berger et al., 2014a,b; Genel et al., 2014) and IllustrisTNG (Weinberger et al., 2017; Pillepich
et al., 2018a) for observational criteria from the Kilo-Degree and Galaxy And Mass Assembly
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(KiDS+GAMA) surveys (Liske et al., 2015; Kuijken et al., 2015) presented in van Uitert
et al. (2016); Velliscig et al. (2017) for GAMA lenses selected by stellar mass and stellar mass
and group membership, respectively. By comparing the lensing signal with the predictions
from the corresponding objects in the gravity-only runs, we are able to extend the 3D density
profile deformations to projected profiles, which are what we observe in the real Universe.
These two selection functions represent the simplest classes for future surveys and the most
interesting for galaxy groups and clusters, which can inform on the strength and deformation
properties of the feedback from active galactic nuclei (AGN) (e.g. McCarthy et al., 2010; Viola
et al., 2015). We restrict ourselves to evaluations using the highest resolution runs of Illustris
and the two large simulation boxes from the IllustrisTNG suite, TNG100 and TNG300.

Moreover, we are interested in the differences in the imprint for additional classification
criteria, such as colour. It has already been established that the other great systematic
plaguing weak lensing analyses, namely intrinsic alignments, is different for red and blue
galaxies modelled through different couplings to the tidal field (e.g. Hirata et al., 2007). In
addition, some lensing surveys such as the Dark Energy Survey (DES) currently restrict their
galaxy-galaxy lensing observations to red galaxies due to uncertainties in photometric redshifts
for blue galaxies (Prat & DES Collaboration, 2018). This calls for an investigation on how
the baryonic deformation of host haloes differ between red and blue galaxies, which can affect
the observed host halo bimodality (e.g. Mandelbaum et al., 2016; Zu & Mandelbaum, 2016),
which we examine using the TNG300 with mocks for SDSS-DR7 (Abazajian et al., 2009).

In addition, new and upcoming large-scale structure surveys such as the Hyper Suprime-
Cam SSP Survey (HSC) (Aihara et al., 2018), the Euclid satellite (Laureijs et al., 2011) and
the Large Synoptic Survey Telescope (LSST) (Ivezić et al., 2008) will allow us to probe the
galaxy-galaxy lensing out to systems with z ' 1, allowing us to constrain the galaxy-halo
relation over cosmic time. Baryonic effects do not necessarily take the same form at these
different redshifts. Observationally, AGN activity is assumed to peak around cosmic noon at
z = 2 (e.g. Hopkins et al., 2007). Although there is a significant build-up of supermassive
black holes between z = 1 and z = 0, which are traced by the AGN, this is simultaneously
accompanied by an increase in star formation rate and thus stellar mass (e.g. Shankar et al.,
2009) and a corresponding increase in halo mass, where the deeper potential wells are better
at retaining gas, which have led previous studies (e.g. Schneider & Teyssier, 2015), henceforth
ST15, to neglect redshift evolution in their parameterisation. Here we quantify the baryonic
impact on group and cluster-scale host haloes in the TNG300 up to z = 1.1 appropriate
for the new surveys and attempt to express it with the ST15 model. This is crucial for
the next generation of surveys which will span volumes inaccessible by current cosmological
hydrodynamical simulations, where parameterised forms could be incorporated in a suitable
SAM framework.

The aim of this Chapter is thus to answer the following questions: (i) Can hydrodynamical
simulations produce accurate galaxy-galaxy lensing predictions for the 1-halo term? (ii) How
large are the effects of baryons on galaxy-galaxy lensing profiles, and at which scales? (iii) Is
there a difference in the ejected radius of gas due to the strength of the AGN feedback? (iv)
Is there a redshift evolution of the effects? (v) Can we adapt profiles for gravity-only runs
with semi-analytical models of galaxy formation to mimic hydrodynamics for future surveys?

This Chapter is organised as follows: In Section 5.4 we describe the baryonic correction
model which we use to modify the gravity-only profiles and in Section 5.5 our methodology.
We previously described our simulations in 2.3. We present our results starting with the stellar
mass only selection at z = 0.31 in Section 5.6.1, the group lenses at z = 0.18 in Section 5.6.2
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and the colour lenses at z = 0.11 in Section 5.6.3. Next we proceed to modify the gravity-
only 3D profiles in Section 5.6.4 and compare them with their full physics counterparts, and
conclude with producing mock group and cluster lensing predictions for HSC in Section 5.6.5.

5.4 Baryonic correction model

The baryonic correction model (BCM) proposed in ST15 features a hot gas component in hy-
drostatic equilibrium, ejected gas from feedback processes, a central galaxy stellar component
and adiabatically relaxed dark matter. These form a density profile

ρBCM(r) = frdmyrdm(r) + fcgal(Mh)ycgal(r)
+ fbgas(Mh)ybgas(r) + fegas(Mh)yegas(r) + ρ̄bg,

(5.4.1)

with ρ̄bg as a constant background term of non-collapsed matter which has the same amplitude
in the gravity only and the full physics runs, with Mh as the total halo mass. The different
components yχ satisfy

Yχ(r) = 4π
∫ r

0
r′

2
yχ
(
r′
)
dr′, Yχ(r =∞) = Mh. (5.4.2)

The fiducial density profile ρ(r) is captured by a truncated NFW profile (Navarro et al., 1996,
1997) for x = r/rs with rs as the scale radius

ρNFW(x) = ρ0
x(1 + x)2

1
(1 + (x/τ)2)2 , (5.4.3)

to ensure mass conservation with truncation radius τ = 8c with the halo concentration c =
r200c/rs plus the background term. This profile can be integrated analytically (Baltz et al.,
2009), which allows us to convert halo masses from catalogued M200c values to total Mh
through

Mh = M200c ×
mNFW(∞, τ)
mNFW(c, τ) , (5.4.4)

with
mNFW(x, τ) = τ2

2 (τ2 + 1)3×
[
τ2
(
τ2 − 3

)
ln τ

2(x+ 1)2

τ2 + x2 + τ
(
6τ2 − 2

)
tan−1 x

τ
+

x
(−2τ6 + τ4(1− 3x)x+ 2τ2 (−x2 + x+ 1

)
+ x2 + x

)

(x+ 1) (τ2 + x2)

]
,

(5.4.5)

which requires an estimate of the halo concentration. We wish to examine whether

ρ(r)→ ρ′(r) = ρN -body + (ρBCM(r)− ρNFW(r)− ρ̄bg) , (5.4.6)

can be a reasonable proxy1 of the density profiles measured in the full physics run, where we
assume that the large scale 2-halo term is the same in the two runs.

1The BCM model gives a recipe on how to move particles around between the different shells whereas we
interpolate the new profile values and adjust the density amplitude of each shell accordingly.
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Recently, an updated simplified BCM model was introduced in Schneider et al. (2018).
We have checked that the shape of the gas profiles differs negligible in the two approaches,
although the updated model features a joint profile for the bound and ejected gas with a
degeneracy for the amplitude of the inner profile for the ejection radius and bound gas slope
index. The BCM profile is constructed to account for the intermediate scale suppression
of the profiles due to gas ejection and the small-scale enhancement due to presence of the
stellar component. For the suppression of the power spectrum this can be captured by a
fitting function with three free parameters, Mc, the mass scale of the clusters below which
the suppression happens, ηb, a dimensionless quantity which relates the radius of the ejected
gas and the virial radius, and ks, the scale below which the stellar component enhances the
spectrum. In the fiducial setup these are assumed to be redshift independent, but Chisari et al.
(2018) found an anti-correlation of the best-fit values for ηb and ks for 0 < z < 1 whereas
Mc was found to be mostly constant. Intuitively this makes sense as the AGN feedback
enters maintenance mode and manifests little evolution at this stage whereas subhaloes with
higher concentration gradually grow more massive and gas cannot be ejected as far due to the
deepening potential wells. If we switch to the profiles themselves, Mc and the normalisation
of the slope2 β are set by fitting the hot bound gas fractions inside r500c,

fbgas(Mh) = Ωb/Ωm
1 + (Mc/Mh)β , (5.4.7)

where Ωb and Ωm are the baryon and total matter fraction, respectively. The bound gas
profile ybgas(x) assumes hydrostatic equilibrium as well as a polytropic form for the gas
pressure P = Tρ ∝ ργ (Komatsu & Seljak, 2001; Suto et al., 1998; Martizzi et al., 2013)
leading to

ybgas(x) = y0

[ ln(1 + x)
x

]Γeff.

, Γeff. = 1
Γ− 1 (5.4.8)

with the polytropic index Γ (Komatsu & Seljak, 2001) set such that the slope of the NFW
profile is matched at r = r200/

√
5, capturing that the gas in the outskirts acts as a collisionless

fluid,
Γ = 1 + ((1 + xeq) ln(1 + xeq)− xeq)

((1 + 3xeq) ln(1 + xeq) , xeq = c√
5
. (5.4.9)

The gas ejection parameter η is set by equating the fraction of ejected gas,

fegas(Mh) = Ωb/Ωm − fbgas(Mh)− fcgal(Mh), (5.4.10)

with the integrated Maxwell-Boltzmann distribution for gas particles receiving kicks from the
AGN from the ejected gas profile

yegas(r) = Mh
(2πr2

ej)3/2 exp
[
− r2

2r2
ej

]
, (5.4.11)

which determines the ejection radius rej as the numerical solution to

1.0− Erf
[
ηresc.√

2rrej

]
+
√

2
π

ηresc.
rej

exp
[
−η

2r2
esc.

2r2
ej

]
= Ωm

Ωb
fegas(Mh), (5.4.12)

2This parameter has a negligible impact on the power spectrum suppression for moderate variations of Mc

around its fiducial best-fit value so it is ignored in such analyses.
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where the escape radius is estimated as resc. ∼ 0.5
√

∆200r200c where the typical time-scale is
half the Hubble time. The uncertainty of both these radii are then encapsulated in η. We
can fix η by computing the gas fractions within different radial shells from the halo centre up
to a few r200c for galaxy clusters where rej. is of the order of r200c.

The shape of the dark matter component in the baryonic run differs from that in the
dark matter only run due to the cooling from the presence of baryons which yield a central
adiabatic contraction (Blumenthal et al., 1986) and a back-reaction in the halo outskirts due
to missing gas. These two effects (Gnedin et al., 2004; Abadi et al., 2010; Teyssier et al.,
2011) can be captured by a displacement of the initial positions ri to final positions rf given
by

rf
ri
− 1 = a

(
Mi

Mf
− 1

)
, a = 0.68, (5.4.13)

with masses
Mi = MNFW(ri)
Mf = frdm(Mh)MNFW(ri) + fcgal(Mh)Ycgal(rf )

+ fbgas(Mh)Ybgas(rf ) + fegas(Mh)Yegas(rf ).
(5.4.14)

The stellar component is assumed to follow a power law in the centre and to drop exponentially
beyond twice the half-light radius, estimated as R1/2 = 0.015 r200c (Mohammed et al., 2014)

ycgal(r) = Mh
4π3/2R1/2r2 exp


−

(
r

2R1/2

)2

 , (5.4.15)

and the total stellar fraction fcgal(Mh) is set by abundance matching techniques using the
model in Kravtsov et al. (2018) based on fits in Behroozi et al. (2013b). This profile, however,
does not account for the stellar components of the satellites in the halo and intra-cluster light,
and might be too steep. The stellar density profile for central galaxies in hydrodynamical
simulations (Remus et al., 2017) has previously been successfully described by Einasto profiles
(Einasto, 1965), which we fit as

ycgal(r) = y−2 exp
[ 2
α

((
r

r−2

)α
− 1

)]
, (5.4.16)

where we set the characteristic radius as r−2 = R1/2. This allows for a shallower continuation
to larger scales. We also fit a simpler power law ycgal(r) = Arb to allow for an even flatter
evolution. Nevertheless, the stellar term is only the third most massive component in the
outskirts of the halo which means that its contribution to the total profile is almost negligible.

5.5 Methodology

For the hydrodynamical simulations we consider both the bound mass in substructure and con-
tained in 30 pkpc (physical kpc) apertures, where the former was used for the KiDS+GAMA
and Eagle comparison in Velliscig et al. (2017). This latter stellar mass is the preferred choice
to equate predictions from SAMs and hydrodynamical simulations (Guo et al., 2016; Mitchell
et al., 2018) as well as with observational data for the stellar mass function (e.g. Pillepich
et al., 2018b). For low mass galaxies, this aperture covers all bound star particles.
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We project the full particle distribution along each spatial axis and compute the differential
excess surface mass density profiles for each individual lens in 40 log-equidistant cylindrical
shells for projected radii which we later stack. This object-by-object lensing enables us to
find each corresponding system in the gravity-only runs using the particle ids. To examine
the validity of the BCM parameterisation, we switch to 3D density profiles where we also
consider the whole adjacent particle distribution to each halo.

Conforming to Velliscig et al. (2017), we use a single simulation snapshot for each set
of predictions, corresponding to z = 0.30 for the van Uitert et al. (2016) datasets, z =
0.18 − 0.19 for the Velliscig et al. (2017) observations and z = 0 for SDSS-DR7. For the
redshift evolution and the BCM model parameterisation, we have measured the lensing signal
for eleven snapshots equally spread between z = 1.1 and z = 0.02. We show results for six of
them, where the intermediate redshift results lie as interpolating curves between them.

The underlying cosmologies for the different hydrodynamical simulations differ slightly,
and this propagates into discrepancies for the halo and stellar mass functions, but we expect
these small deviations to have negligible impact for the comparison at hand as the different
feedback prescriptions dominate.

5.6 Results

5.6.1 KiDS+GAMA: stellar mass only
In Fig. 5.1, we show the predictions from our simulations for two stellar mass bins, which
are representative of the adjacent bins, for the comparison with the van Uitert et al. (2016)
datasets. Here we show the result for the bound mass definition, as we find that the predictions
for the Eagle simulation differ substantially between the two mass definitions at the high
mass end, see Section 5.9, perhaps because the apertures are not optimally defined for the
massive end. We also show the predictions for all mass bins for Eagle (Fig. 5.3) and Illustris
and TNG100 (Fig. 5.4). All simulations produce results which do not deviate far from the
observations, although the Illustris simulation lies a bit too low starting at approximately
1010.59 h−2M�. Eagle and TNG100/TNG300 yield equivalent signals, despite their different
galaxy formation recipes, and their superiority to Illustris is most apparent at the high mass
end. This is partly a result of a well-matched stellar-to-halo mass relation for Eagle (Schaye
et al., 2015; Matthee et al., 2017) and IllustrisTNG (Pillepich et al., 2018b) to abundance
matching and more refined empirical model results (e.g. Moster et al., 2013; Behroozi et al.,
2013b; Rodríguez-Puebla et al., 2017; Moster et al., 2018), but nevertheless heralds a landmark
concordance. This is remarkable as the models also differ in the predicted satellite fractions,
which we show in Fig. 5.2 with the corresponding plot for the bound mass definition in
Section 5.9. Until 1010.5 h−2M� the curves for TNG100 and the SAM trace one another with
Illustris and TNG300 giving a lower and higher ratio, respectively. At the high mass end, all
models predict fewer satellites, in line with the observational constraints from KiDS+GAMA
in van Uitert et al. (2016), but the exact numbers differ. Since the 2σ error regions are quite
broad for the NFOF > 2 GAMA group sample in van Uitert et al. (2016), the observationally
inferred satellite fractions cannot be used to distinguish between the different simulations,
and it is hard to tell from the lensing signals which model is preferable.

The fact that TNG100 and TNG300 produce different predictions in panel II of Fig. 5.1,
where the trend starts at M∗ ∼ 1010.24 h−2M�, indicates that it is not straightforward to
conclude that certain galaxy formation recipes are successful in describing the lensing signal



144 5. Baryonic effects

100

101

102

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 109.39 − 109.89 h−2M�,

LG-H15
Illustris
Illustris (m)
TNG100
TNG100 (m)

TNG300
TNG300 (m)
Eagle
van Uitert+16

10−1 100

r [h−1 Mpc]

0.80

1.00

1.20

∆
Σ a

ll/
∆

Σ d
m

101

102

∆
Σ(
r)

[ h
M
�

pc
−

2 ]

M∗ = 1010.79 − 1010.89 h−2M�,

LG-H15
Illustris
Illustris (m)
TNG100
TNG100 (m)

TNG300
TNG300 (m)
Eagle
van Uitert+16

10−1 100

r [h−1 Mpc]

1.00

1.50

∆
Σ a

ll/
∆

Σ d
m

Figure 5.1: Lensing predictions from the different simulations w.r.t. observations from van Uitert
et al. (2016). For Illustris and IllustrisTNG (TNG100 and TNG300) we plot the signals from the
full physics run (blue) and for those subhaloes in the full physics run which have matches in the
gravity-only run (red) with the residuals plotted in the lower panel. We can see significant departures
between the matched and full physics signals, most apparent at scales r ∼ 100h−1 kpc for Illustris
and already from r ∼ 20h−1 kpc for the TNG suite. The Illustris simulation is the best choice for
the halo outskirts, whereas all the other simulations do equal well on intermediate scales and in the
halo centres. In panel II we show the result for galaxies with 10.79 < logM∗

[
h−2 M�

]
< 10.89.

We see that the Illustris simulation has the best performance for the innermost radial bins, with the
TNG100 is most successful in the outskirts. In the lower panel, we observe a shift in the enhancement
of the profiles between Illustris (largest), TNG100 and TNG300 (smallest) and the baryonic imprint
for TNG100 and TNG300 converges around r ∼ 0.5h−1 Mpc.

1010 1011

M∗ [h−2M�]

0.00

0.10

0.20

0.30

0.40

0.50

f s
at

LG-H15
Illustris
TNG100

TNG300
Eagle

Figure 5.2: Satellite fractions for the different hydrodynamical simulations depending on the stellar
mass bin. All simulations produce values in line with the observational uncertainties quoted in van
Uitert et al. (2016). The TNG100 and TNG300 do not agree on the satellite fractions, although the
tension is alleviated for M∗ < 1010.2 h−2 M� using the bound mass definition in Section 5.9.
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Figure 5.3: Lensing predictions from the Eagle simulation with bound masses compared to van Uitert
et al. (2016) observations.
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Figure 5.4: Analogously as in Fig. 5.3 for the Illustris simulation (panel I) with 30 pkpc masses
(there are no major differences for bound masses, except for the most massive bins) and for TNG100
(panel II). The most significant improvements for the latter includes a boost of the satellite central
bump, visible for the low mass bins, and a larger signal for the high mass end of the SMF.
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Figure 5.5: Baryonic effects on the full lensing profiles from the Illustris simulation using all matched
subhaloes with 30 pkpc aperture masses. Panel II is similar but now only for matched centrals,
extending the radial range to 5h−1 Mpc. Here, at the largest scales, we start to see a mass convergence
between the two runs.

without volume comparisons. Running a model in a larger volume primarily affects the
magnitude of the central bump of the signal, as more massive haloes are included in the large
box. It so happens that the baryonic impact for the TNG100 and TNG300 coincide in the
halo centres as seen in the lower panel in panel I of Fig. 5.1. If we compare the residuals in
Figs. 5.6 and Figs. 5.7 using the 30 pkpc apertures, we already see small differences in this
low mass bin. This extends to the lower panel of panel II in Fig. 5.1, where the difference in
the baryonic impact for the stellar term is similar between Illustris and the TNG100, as to
the difference between TNG100 and TNG300.

We show the residuals for the whole matched samples in Figs. 5.5 (Illustris), 5.6 (TNG100)
and 5.7 (TNG300). In Fig. 5.5, we also provide the signal for matched centrals for Illustris to
r ∼ 5h−1 Mpc. We discern that the maximum suppression of about ∼ 20 % persists between
the two selections. Compared to TNG100 and TNG300, we do not see any peak in the
suppression for intermediate stellar masses obtained for the 10.79 < logM∗

[
h−2M�

]
< 10.89

(TNG100) and 10.89 < logM∗
[
h−2M�

]
< 11.04 (TNG300) mass bins, but the maximum

impact is reached for the most massive stellar mass bin. Mass convergence between the two
runs is attained around r ∼ 5 − 6h−1 Mpc, far beyond the average virial radii of the host
halo masses. One could argue that convergence is reached slightly earlier for the low mass
bins, but the scatter in 1-halo-to-2-halo transition regime makes it hard to draw any definite
conclusions. As already found for the power spectra (Chisari et al., 2018; Springel et al., 2018),
the different simulations predict different baryonic imprints, both for the stellar enhancement
and intermediate scale suppression in terms of amplitude and shape. Illustris predicts the
highest stellar term, with a boost of the signal by a factor of two for the most massive stellar
mass bin, followed by the TNG100 and lastly TNG300, where more massive hosts contribute to
a slightly deeper suppression and also a smaller enhancement in the centre. For TNG100 and
TNG300, convergence is already assured around r ∼ 1−2h−1 Mpc. The baryonic suppression
of the signal lies in the range of ∼ 15−20 % for Illustris from r = 0.1−1h−1 Mpc, ∼ 10−15 %
for TNG100 for r = 0.1− 0.4h−1 Mpc and ∼ 15 % for TNG300 for r = 0.1− 0.4h−1 Mpc.

If we compare the residuals for the matched centrals to the whole matched joint sample,
there are only minor differences for the TNG300 with a slightly wider suppression for the
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Figure 5.6: Same as in Fig. 5.5 but for TNG100. The stellar enhancement is not as pronounced as
for Illustris and scatter from the satellite displacements produce enhancements for the low mass bins
on intermediate radial scales.
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Figure 5.7: Similarly as Fig. 5.5 for TNG300. For the most massive bin, the TNG100 in Fig. 5.6
predicts a stronger stellar imprint, but otherwise there is little difference, except for the least massive
bins where the intermediate scale boost in the signal is shifted to larger radii.
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M∗[log10 M�] d̄allI d̄I-Dark d̄matched
I d̄matched

I-Dark Mcen., I
200c M sat., I

200c Mcen., I-Dark
200c M sat., I-Dark

200c N I
gal M lim

∗ [log10 M�]
10.3− 10.6 0.661 0.729 0.760 0.729 12.15 13.52 12.10 13.59 406 (282) 9.34
10.6− 10.9 0.728 0.866 0.926 0.871 12.56 13.57 12.67 13.66 280 (186) 9.68
10.9− 11.2 0.680 0.785 0.835 0.784 12.71 13.56 12.83 13.65 213 (148) 9.69
11.2− 11.5 0.882 1.115 1.084 1.119 12.94 13.72 13.09 13.78 157 (130) 9.62
11.5− 11.8 1.498 1.279 1.594 1.172 13.30 13.74 13.41 13.79 80 (78)

Table 5.1: Host halo masses M200c for central and satellite galaxies in units of h−1 M� for the full
physics runs and the gravity-only runs (dark), average 3D distance d between the satellite galaxies
and the central galaxy in each FOF group in units of h−1 Mpc and for matched subhaloes, number
of objects Ngal for 30 pkpc stellar masses for Illustris with the corresponding gravity-only numbers in
parentheses. In the last column, we list the limiting stellar masses from which we start counting group
members.

M∗[log10 M�] d̄allI d̄I-Dark d̄matched
I d̄matched

I-Dark Mcen., I
200c M sat., I

200c Mcen., I-Dark
200c M sat., I-Dark

200c N I
gal M lim

∗ [log10 M�]
10.3− 10.6 0.510 0.695 0.639 0.696 12.43 13.67 12.23 13.64 600 (365) 9.06
10.6− 10.9 0.660 0.813 0.781 0.815 12.69 13.74 12.65 13.71 395 (284) 9.62
10.9− 11.2 0.720 0.955 0.889 0.948 13.11 13.80 13.13 13.81 188 (137) 10.03
11.2− 11.5 1.078 1.266 1.171 1.182 13.33 13.93 13.36 13.92 84 (75) 10.09
11.5− 11.8 1.111 1.258 1.111 1.142 13.57 14.08 13.58 14.02 41 (41)

Table 5.2: Same as in Table 5.1 but for the TNG100 simulation. Due to the increased efficiency of
the new AGN feedback model to quench star formation, we end up with roughly half as many galaxies
as Illustris at the massive end of the stellar mass function seen in the last rows.

centrals exceeding r > 1h−1 Mpc and also a radial shift in the low mass signal boost from
0.5h−1 Mpc (joint) to 1 − 2h−1 Mpc (central). At the high mass end there are only small
changes since the signal is central-dominated. The radial shift also occurs for the TNG100,
albeit from 0.2− 0.3h−1 Mpc to 1− 2h−1 Mpc, implying that low mass galaxies are slightly
more clustered in the full physics runs. Here, we also observe that the suppression is wider for
the centrals up to similar radial scales as TNG300, but also that the central enhancement is
lowered by 3− 4 % with respect to the joint signal for the intermediate stellar mass bins. To
conclude, we also see the same trends for Illustris with a wider, smoother suppression beyond
r > 2h−1 Mpc in Fig. 5.5 where the depth of the suppression is governed by the stellar mass,
and correspondingly the average host halo mass, of the bin.

5.6.2 KiDS+GAMA: Lensing signals for group membership

Having investigated a stellar mass only selection, we now move on the lensing signals for
members in galaxy groups for the Velliscig et al. (2017) comparison. We do not show results
for the Eagle simulation as they were already published in Velliscig et al. (2017), and we are
able to reproduce their results by projecting the entire simulation particle volume across the
three spatial axes, whereas they restricted their analysis to particles in a projected sphere
around each lens. Hence, the line-of-sight contribution is not significant, unless percent-level
precision is required.

In Tables 5.1, 5.2 and 5.3 we list the host halo masses, limiting M∗ values for group
membership and average 3D distances between the satellite galaxies and their centrals in the
full physics run. Compared to the full physics run, we end up with fewer subhaloes in the
dark matter only run, starting with 50% to ∼ 2/3 of the number counts, which gradually
increases to an almost 100% matching rate for the most massive stellar mass bin. We note
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M∗[log10 M�] d̄allI d̄I-Dark d̄matched
I d̄matched

I-Dark Mcen., I
200c M sat., I

200c Mcen., I-Dark
200c M sat., I-Dark

200c N I
gal M lim

∗ [log10 M�]
10.3− 10.6 0.541 0.726 0.657 0.725 12.20 13.78 12.06 13.78 15875 (9205) 9.04
10.6− 10.9 0.577 0.798 0.735 0.798 12.57 13.86 12.57 13.85 14064 (8306) 9.60
10.9− 11.2 0.545 0.857 0.805 0.854 12.86 13.93 12.91 13.92 8970 (4767) 9.77
11.2− 11.5 0.749 1.207 1.112 1.195 13.29 14.10 13.32 14.03 2368 (1713) 10.32
11.5− 11.8 1.131 2.242 1.562 2.073 13.69 14.30 13.70 14.26 786 (731)

Table 5.3: Analogously as Table 5.1 for the TNG300 simulation with the resolution correction of
Pillepich et al. (2018b). Compared to the less voluminous TNG100, central galaxies tend to live in
less massive host haloes by about 0.1− 0.2 dex for the least massive bins, whereas satellites reside in
more massive haloes with 0.1− 0.2dex. For the two lowest mass bins, the limiting stellar masses are
comparable but they differ for the two subsequent ones.

that the matching rate for the TNG300 is artificially low at the high mass end due to the
resolution correction which renders less massive galaxies more massive, and that the numbers
are more consistent with the TNG100 if we switch to the bound mass definition. Concerning
halo masses, central M200c in the least massive stellar mass bin for all simulations are lower
in the gravity-only run, but this does not pertain in the more massive bins, where there are
only small differences between the gravity-only and full physics M200c masses. For Illustris,
reflecting the large scale mass convergence in Fig. 5.5, the average full physics host halo
masses are lower by ∼ 0.1 dex compared to the gravity-only run.

Regarding the average 3D distances between the satellites and their centrals, the TNG100
and TNG300 do not paint a consistent picture with differences which could be as large as
0.3h−1 Mpc for the 11.2 < logM∗ [M�] < 11.5 mass bin. In Illustris and TNG100 (as well as in
Eagle not listed here), there is a clear trend where more massive satellites reside further away
from their centrals, where we instead note a dip for the 10.9 < logM∗ [M�] < 11.2 mass bin
for the TNG300 with the resolution correction (for bound masses it has the same behaviour as
the others, although there are still residual differences w.r.t. TNG100). In the third column,
we list the distances in the gravity-only run for all satellite subhaloes, and in column five we
restrict the selection to the matched subhaloes which are satellites in both runs. There are
no major differences between them, except that distances are slightly greater for the most
massive bin if we consider all dark objects. Compared to their matched counterparts in the
full physics run, the dark satellites reside further away from their centrals, and the matched
subhaloes in the full physics run are on average further away than the satellites selected
without matching conditions. This makes sense as satellites close to their host centrals are
more likely to be disrupted. Baryons affect the orbital structure of haloes significantly (e.g.
Valluri et al., 2010; Zhu et al., 2017), and subhaloes are more likely to be disrupted if they
have a high number of pericentric passages (e.g. Nadler et al., 2018). Compared to gravity-
only runs, full physics simulations predict fewer surviving low-mass substructures (e.g. Wetzel
et al., 2016; Zhu et al., 2016; Garrison-Kimmel et al., 2017) due to, for instance, increased
tidal disruption and reionization, but here we consider subhaloes which are still present in the
full physics run, and since the matching is not complete due to mergers we end up with fewer
matched systems in the gravity-only run. The central distances for the matched subhaloes
agree reasonably well between the two runs, allowing us to probe baryonic effects also for the
satellite lensing signal, but this subsample is biased with respect to the full satellite sample.

We see in Fig. 5.8 that the innermost small-scale satellite signals for Illustris and Il-
lustrisTNG agree between the whole full physics and matched full physics selections to
r ∼ 40− 50h−1 kpc where the convergence is attained to r ∼ 30− 40h−1 kpc for the 10.3 <
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Figure 5.8: Comparison of lensing predictions from the different hydrodynamical simulations and the
Velliscig et al. (2017) measurements for the satellite lensing signal for 10.6 < logM∗ [M�] < 10.9 using
bound masses. We note significant departures between the matched and total full physics signals in the
amplitude and location of the central bump. All of the simulations converge to a similar solution in the
centre, but the Illustris and TNG100 simulations have the best performance in the region between the
centre and the central bump, where Eagle is the only simulation to accurately capture the amplitude.
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Figure 5.9: Lensing predictions for the different simulations compared to observations from Velliscig
et al. (2017) for central galaxies with 10.6 < logM∗ [M�] < 10.9 using the bound mass definition.
All simulations give comparable results. In panel II we show the same for stellar masses in the
11.2 < logM∗ [M�] < 11.5 mass range. Across the radial range covered, the TNG100 and TNG300
give different results with amplitude differences of the same order of magnitude as between TNG100
and Illustris which have different galaxy formation models. These differences are slightly alleviated in
Fig. 5.10 where we show the predictions after the resolution correction, where we now have excellent
agreements for this mass end (there are still residual differences for other mass bins).
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logM∗ [M�] < 10.6 mass bin and exceeds slightly beyond 100h−1 kpc for M∗ > 1011.2M�.
The divergence is caused by the relative displacement of the whole full physics sample of
satellites, where the central bump is further away for the matched subsample, but also that
the amplitude is higher reflecting a higher host M200c in the full physics run. This is ex-
pected as subhaloes in more massive hosts are more likely to have merged, thus reducing
the average host halo masses in the matched signal. Mass convergence is once again reached
at r ∼ 1 − 2h−1 Mpc for Illustris and slightly larger projected radii for TNG100 and yet
further out for TNG300. Although we have not fitted NFW profiles, we can see that the
satellite lensing signal is more concentrated than the corresponding central signal, reflecting
previous results (e.g. Moliné et al., 2017) for the concentration-mass relation for subhaloes.
Deviations from NFW profiles due to tidal stripping are yet too small to be detected obser-
vationally (e.g. Sifón et al., 2018). Still, this is not easily discerned in Fig. 5.10 due to the
impact of baryons with the contraction due to presence of the stellar term. As the satellite
subhaloes are relatively less massive, the central baryonic enhancement continues to larger
radii. Concerning the amplitude of the the central bump it is best captured by Eagle, followed
closely by the TNG300, where an even better concordance can be seen in Fig. 5.10 for the
resolution-corrected TNG300 signal with 30 pkpc aperture masses.

In Fig. 5.9, we compare the predictions for centrals for two stellar mass bins between
the different hydro-runs, where the lower mass bin results in panel I extends to the least
massive bin, and the more massive bin in panel II for stellar masses M∗ > 1010.9M�. Illustris
displays some scatter between the full physics and matched full physics signals in panel I for
the bootstrap resample, but otherwise the two signals agree for all simulations due to the
high matching rates for centrals. This bodes well for a unified parameterisation for central
galaxies. At the low stellar mass end, the models predict different host halo masses but the
error bars are large enough so that all of them are consistent with data. Similarly as seen for
the van Uitert et al. (2016) comparison previously, the Illustris predict too low signals across
the whole stellar mass range (more easily distinguished in Fig. 5.10), whereas Eagle and the
TNG300, and partly TNG100, give consistent results with one another. The deficiency at the
high mass end forM∗ > 1011.2M� on scales r & 0.4h−1 Mpc visible in panel II of Fig. 5.9 can
partly be reconciled by switching to 30 pkpc masses for the TNG100 and TNG300, but it still
persists as seen in the panels of Fig. 5.10 with the central signals. As it is robust to volume
variations, this suggests that the average halo masses for the simulations at the high mass end
should be higher. If we compare the host halo masses to those predicted by SAMs, which are
consistent with the observations in this radial range as explored previously in Chapter 4, the
masses for IllustrisTNG are too low by about 0.2− 0.3dex for the 11.2 < logM∗ [M�] < 11.5
mass bin and by about 0.3 − 0.4 dex for the 11.5 < logM∗ [M�] < 11.8 bin. We do not see
this discrepancy for the stellar mass only selection for the van Uitert et al. (2016) datasets as
those samples also have the central bump from the satellite lensing signals offsetting the joint
signal in this mass range, which we can observe in predictions for the joint central-satellite
signal from the TNG300 in Fig. 5.10.

To ease the comparisons between Illustris, TNG100 and TNG300, we show the stacked
predictions for all mass bins in Fig. 5.10. With the resolution correction, we obtain a better
agreement between the different TNG volumes for the central signal, large scale satellite signal
around r ∼ 1h−1 Mpc and the joint signal. Especially we recognise a very good agreement
for the TNG300 predictions for the large scale satellite signal for all stellar masses, which
propagates into concordance for the joint signal in the last column. As expected the statistical
errors are comparable for Illustris and TNG100, whereas the TNG300 curves are smoother
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Figure 5.10: Predicted lensing signals for 30 pkpc aperture masses from Illustris (first row), TNG100
(middle row) and TNG300 (last row) compared to observations for galaxy group members from Velliscig
et al. (2017) for centrals (first column), satellites (middle column) and the joint combined signal (last
column).
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Figure 5.11: The effect of baryons on matched subhaloes in the joint signal from Velliscig et al. (2017)
for Illustris (left), TNG100 (middle) and TNG300 (right) with 30 pkpc stellar masses. Although we
are more likely to retain central galaxies as matches, the three lowest bins are dominated by satellites
which causes a large spread in the effect due to the mismatched positions in the two runs.
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Figure 5.12: Baryonic effects on the central galaxy signals for the Velliscig et al. (2017) comparison
for Illustris (left), TNG100 (middle) and TNG300 (right). Here the scatter in the 1-halo to 2-halo
transition regime is substantial for the least massive bins for Illustris and TNG100 and thus they are
not shown.

due to larger volume. As already apparent in Fig. 5.8, there are only small differences between
the Illustris and TNG100 for the small-scale satellite lensing signal. We attribute the drop for
M∗ < 1011.2M� for the TNG300 in Fig. 5.10 to a miss-calibration of the resolution correction
as all simulations are consistent in Fig. 5.8, including Eagle. The biggest improvement can
be distinguished for the central signal and the central bump for the satellite signal for the
TNG100 with respect to Illustris, reflecting the improved recipe for the radio-mode AGN
feedback, yielding a higher stellar-to-halo mass ratio for the centrals and more satellites in
massive hosts.

For the baryonic deformations, we show the impact on the matched joint signal in Fig. 5.11
and for matched centrals in Fig. 5.12. The residuals for the low mass centrals in Illustris
and TNG100 diverge in the 1-halo to 2-halo transition regime due to poor statistics and
presence of more massive structures which can cause negative lensing signals and this limits
the comparison to the more massive bins. This divergence partly manifests itself in the low
mass central residuals for the TNG300 given in panel III of Fig. 5.12 which have a drastically
different form than the curves for the other mass bins, but the results for this stellar mass bin
also suffers from the resolution correction. If we compute the same quantity for the bound
masses, the scatter in the transition regime subsides slightly and the model predicts a mild
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suppression of the lensing signal to 60h−1 kpc.
Comparing the imprint for the joint signal in Fig. 5.11 and Figs. 5.5, 5.6 and 5.7, there

is now a larger scatter from 0.1h−1 Mpc owing to the large satellite fractions of the group
samples, which still persist once the matching rate has been taken into account. From M∗ >
1010.9M� onwards the result is similar for the two selection functions. The peaks of the
scatter for the low mass bins lie slightly closer to the halo centres for TNG100 and TNG300
compared to Illustris, reflecting the larger average distances between the satellites and their
centrals listed in Tables 5.1, 5.2 and 5.3. Analogously as for the whole sample, Illustris predicts
the largest central enhancement and this also applies for the central signals in Fig. 5.12,
whereas the TNG300 has the smallest due to the prevalence of more massive host haloes.
Similarly as seen in Figs. 5.6 and 5.7 for the TNG100 and TNG300, as we also spot here
for central Illustris galaxies in Fig. 5.12, there is a trend with smaller suppressions for low
mass centrals, with maximum suppression for the 10.9 < logM∗ [M�] < 11.2 mass bin for
TNG300 (and Illustris due to the plotting constraint) and for 10.6 < logM∗ [M�] < 10.9
and then subsequently less suppression towards the massive end of the SMF. We attribute
this effect to the AGN feedback being most efficient at deforming haloes at this intermediate
mass range of M200c ∼ 1013 h−1M�. This is also visible for the large scale deformation
in panel III for the TNG300 where the mass suppression continues beyond r ∼ 2h−1 Mpc
for the 10.6 < logM∗ [M�] < 10.9 mass bin and where convergence already comes around
r ∼ 1h−1 Mpc for the 11.5 < logM∗ [M�] < 11.8 bin. For the TNG100, convergence is
attained around r ∼ 1h−1 Mpc for all mass bins and the maximum suppression lies around
5−10 % for the most massive bins. As we have already seen, the suppression is greater in the
TNG300, reaching approximately ∼ 15 % at its maximum, and for Illustris around ∼ 20 %
continuing past r > 2h−1 Mpc.

5.6.3 Red and blue lenses

If we examine the lensing signals for red and blue galaxies using the TNG300 in Fig. 5.13
compared to observations from SDSS-DR7, we see that simulation manages to capture the
most massive red lensing signal and predicts an excessive blue signal for the most massive
bin, which we attribute to poor statistics. In general, the simulation produces excessive
central bumps for the satellite signals visible around r ∼ 0.7h−1 Mpc. In the two lower
panels, we restrict the comparisons to centrals and show the baryonic imprint for the two
samples. We discover that the suppression for red centrals is larger than for blue centrals,
which have more pronounced stellar terms. By fitting NFW profiles (Navarro et al., 1996,
1997) to the lensing signal (Wright & Brainerd, 2000) for 0.1 < r

[
h−1 Mpc

]
< 1.0 for centrals

in the 10.7 < logM∗ [M�] < 11.0 mass bin, we are able to translate this difference into
a bias in the observed host halo bimodality. Using observationally motivated 1/r2 weights
and assuming a lens redshift of z = 0.11, we find the best-fit parameter values in Table 5.4.
Baryons cause a shift of almost 0.1 dex in the best fit host halo mass for the red sample,
and while we still observe a host halo bimodality with red galaxies residing in more massive
haloes by a factor of ∼ 1.40, it is reduced by ∼ 25 % from the gravity-only run where the
red-to-blue mass ratio is ∼ 1.64. For the fitted masses for red galaxies, the suppression is
∼ 15 % for 10.4 < logM∗ [M�] < 11.4, after which the effect decreases and vanishes for the
most massive centrals with 11.6 < logM∗ [M�] < 15.0. Baryonic effects also influence the
measured concentrations c, with a shift of ∆c ∼ 1 for red systems with 10.7 < logM∗ [M�] <
11.6, whereas there are only small differences for blue galaxies with decreases of the order of
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Figure 5.13: The predicted lensing signals from the TNG300 for red (first column) and blue galaxies
(second column) at z = 0 compared to measurements from SDSS-DR7 for the all main sample using a
0.1(g − r) = 0.8 colour cut with the dust extinction model from Nelson et al. (2018b). We realise that
the impact of baryons, given in the bottom row panels, is different for red and blue central galaxies
where the lowest 10.0 < logM∗ < 10.4 mass bin for red centrals comes with a large scatter due to the
large spread in host halo masses.
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Fitted parameter Full physics Gravity-only

logM200c
[
h−1 M�

]
(red) 12.30 12.37

logM200c
[
h−1 M�

]
(blue) 12.15 12.16

Concentration (red) 5.76 6.95

Concentration (blue) 6.21 6.11

Table 5.4: Fitted NFW parameters for central red and blue galaxies with 10.7 < logM∗ [M�] < 11.0
compared to their matches in the dark matter-only run of the TNG300.

∆c ∼ 0.3−0.4. In Table 5.4, the host haloes are actually less concentrated in the gravity-only
run but we consider this a coincidence additionally susceptible to the reassignment of stellar
masses from the Pillepich et al. (2018b) resolution correction, where effects are prominent
at the knee of the stellar mass function. The observed decrease in concentration in the full
physics run conforms to previous findings in the literature for 3D density profiles (e.g. Duffy
et al., 2010; Mummery et al., 2017). For this mass range, red central galaxies in the baryonic
run reside in less concentrated host haloes in the full physics run than blue galaxies, but these
correspond to more concentrated haloes in the dark matter only run. It is well-known that
concentration correlates with formation time (e.g. Navarro et al., 1997; Gao & White, 2007),
with older haloes on average being more concentrated which would host older3 galaxies which
on average are redder. However, in the full physics run, feedback processes, whose effects
appear to be irreversible (e.g. Zhu et al., 2017), have had more time to change the appearance
of these older haloes, thus lowering their concentrations with respect to the subhaloes hosting
younger blue systems.

5.6.4 Quantified baryonic impact

We plot fbgas vs. M500c in Fig. 5.14 for TNG300 to arrive at the best fits for Eq. (5.4.7)
for the bound gas fractions. Similar to other hydrodynamical simulations (e.g. Horizon-
AGN Chisari et al., 2018), the gas fractions inside r500c are generally too high w.r.t X-ray
observations. However, if one introduces a hydrostatic mass bias to account for non-thermal
pressure components violating the assumption of hydrostatic equilibrium, observational halo
masses could be biased high by about ∼ 10 % (Eckert et al., 2018; Ettori et al., 2018).
Moreover, lensing mass estimates indicate up to ∼ 40 % lower masses (Lieu et al., 2016),
albeit subject to large errors. Hence, the discrepancy between the best fit models and the
fiducial ST15 model should be taken with a grain of salt. We use the simulation best fit
parameters subsequently in the analysis.

In Figs. 5.15 and 5.16 we compare the predicted gas fractions from the BCM model with
those measured for stacked halo profiles from TNG300. The models are able to capture the
overall shape of the gas fractions but have difficulties to match the inner slope and position of
the turnover point, switching to the ejected gas profile. With respect to the power spectrum
measurements, these profiles indicate only a mild evolution of η with redshift for TNG300.
These profiles are in tension with the measurements presented in Battaglia et al. (2013) which
were used for comparisons in Schneider & Teyssier (2015). If we increase the radius from which

3Colour can of course also be influenced by metallicity, as stars with higher metallicities are redder (e.g.
Mo et al., 2010).
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Figure 5.14: Gas fractions inside r500c vs. M500c for TNG300 for stacked systems in 0.1 dex bins
for a range of redshifts with the best fit models of Eq. (5.4.7) plotted on top compared to the fiducial
ST15 model in black fitted to observations. The best fit pairs (Mc, β) have a linear redshift evolution
(for Mc linear in logM) spanning approximately β ∈ [0.65, 0.95] and logMc ∈ [13.1, 13.4] for M200c
masses with decreasing redshift.
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Figure 5.15: Gas fractions (including wind cells) for stacked TNG300 haloes with 1014 <
M200c

[
h−1 M�

]
< 1014.2 for a range of redshifts compared to the BCM model with different η param-

eters with the cosmic baryon fraction as a dotted line. The slight redshift evolution is captured from
the bound gas parameters β and Mc. At large scales ∼ 10 r200c we do not arrive at a convergence with
the model since we measure an excess 0.5− 0.6 % residual contribution from stars.
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Figure 5.16: Gas fractions for stacked TNG300 haloes with 1013.5 < M200c
[
h−1 M�

]
< 1013.7 as in

Fig. 5.15 at z = 0.02. While we are unable to obtain a good fit for the central region, η = 0.3 and
η = 0.4 provide the best fits in the outskirts. The shape is generally more poorly captured than for
galaxy clusters.

the bound gas profile starts to trace the NFW profile to c/
√

2 we obtain a better fit in the
inner region below the turnover point but are unable to match the amplitude at the turnover
point. In Fig. 5.16 we see that this problem extends and is aggravated in group scale systems.
If we switch to the halo profiles themselves, in Figs. 5.17 and 5.18, for stacked cluster haloes at
z = 0.02, we find that the dark matter component is well matched on intermediate scales but
is too contracted in the centre and slightly too expanded in the halo outskirts. This excessive
contraction is caused by the excessive stellar component in the centre. The underlying issue
could be that galaxies in the TNG300 at the high mass end of the SMF form too few stars
which was already established in Pillepich et al. (2018b). A better match on intermediate
scales is obtained by fitting an Einasto profile to r ∼ 0.2h−1 Mpc with best fit α ∼ 0.2 and
from r ∼ 0.2h−1 Mpc to r ∼ 1h−1 Mpc with α ∼ 0.08 or with a simple power law ∼ r−2.6 for
the whole range to 1h−1 Mpc. If we switch to the gas profiles, the amplitude is overpredicted
to ∼ 0.2 r200c but the shapes are overall consistent with the measured values. As expected, the
different η values only impact the outer gas profile from about 0.4 r200c with a mismatch in the
amplitude between 1−2 r200c otherwise suggesting a low value η = 0.3 to be preferential. The
situation is similar for group-scale systems although the gas profile excess up to ∼ 0.2 r200c
is even larger implied by Fig. 5.16. If we consider the total density profile computed from
Eq. (5.4.6) w.r.t. the full physics profile taking into account the Lagrangian displacements
in Fig. 5.19, the small but crude model mismatches impedes a complete agreement with the
fractional differences shown in the lower panel of Fig. 5.18. In the centre, both the stellar
and DM components are too high, which leads to an excess of the order of ∼ 50 % compared
to the mild suppression from using the gravity-only profiles as a model. We are able to
attain a better agreement on scales ∼ 100h−1 kpc and at the halo outskirts the gas and dark
matter densities are too high w.r.t. the measurements leading to a worse agreement for all
model η values. To conclude, the BCM model is capable to capture the overall trends in
the differences between the profile components in the dark matter and full physics run, but
refined recipes and fits are needed to obtain a better agreement at the profile level (it may
already be sufficient for a power spectrum treatment) for the TNG suite. The fact that the
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Figure 5.17: Comparisons between the component-wise TNG300 stacked full physics profiles for
1014.0 < M200c

[
h−1 M�

]
< 1014.2 haloes at z = 0.02 and the BCM model predictions. The stellar

profile is not well matched, suggesting that an incorporation of the satellite contribution and ICL is
necessary. From r ∼ r200c the 2-halo term takes on, which we model with the fiducial N−body result.

impact of the different η choices linger to around 3− 4 r200c might suggest that the model is
more suitable for simulations with stronger AGN feedback for gas ejection such as Illustris as
seen in Fig. 5.5.

5.6.5 Redshift evolution for mock clusters and groups

It is interesting to quantify the baryonic effects for clusters selected in upcoming deep surveys
such as HSC and Euclid. Neglecting the details of the cluster finding algorithm and assuming
that clusters can be reliably selected, we plot the redshift evolution of the baryonic imprint
for FOF groups withM200m > 1014 h−1M� in Fig. 5.20 from z = 1.1 to today in the TNG300.
At z = 1.1 20 clusters initially satisfy the criteria, 96 at z = 0.5 and 252 at z = 0.02. The poor
statistics at high redshift are reflected as oscillations in the signals in Figs. 5.20 and 5.22. The
inner region is dominated by the stellar component, which as discerned in Fig. 5.21, is fairly
constant with redshift whereas the dark matter and gas components of the signal grow. For
a galaxy-galaxy lensing analysis at z = 1.1, failure to accurately model the stellar component
excludes all radial bins below 100h−1 kpc, whereas this is only a problem below 50h−1 kpc at
low redshift. At high redshift, there is almost no suppression of the baryonic profiles between
100h−1 kpc and 1h−1 Mpc. The gas component almost perfectly traces the dark matter part.
If we compare the dark matter component in the full physics and dark matter only run, the
haloes in the latter simulation are more massive and less concentrated as seen in Fig. 5.22.
This is especially important at higher redshift.

We can perform the same analysis using group-scale lenses, seen in Figs. 5.23 and 5.24.
Here we have better statistics with 205 groups passing the criteria at z = 1.1, 557 at z = 0.5
and 872 at z = 0.02. For the baryonic imprint, the contribution from the stellar component
is not as prominent at high z as for the cluster lenses, ∼ 50 % instead of ∼ 100 %, and the
contribution almost vanishes at z = 0.02. Instead there is a smooth suppression of the profiles
between 100h−1 kpc and 1h−1 Mpc at z = 1.1 and ∼ 30h−1 kpc and 1h−1 Mpc at z = 0.02,
which gradually deepens at lower z. If one looks at the baryonic components, the stellar
part is slightly larger at higher z and also the gas mass profiles in the inner regions with a
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Figure 5.18: Comparisons between the TNG300 stacked full physics profiles and the BCM model
predictions. The largest discrepancy lies in the central stellar term whereas the BCM model added
to the gravity-only profiles according to Eq. (5.4.6) are able to yield an improved agreement on scales
∼ 100h−1 kpc with respect to the unmodified profiles (dot-dashed line). At the halo outskirts around
the splashback radius, the gas component is generally too large with respect to the fiducial N−body
results.
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Figure 5.19: Lagrangian displacements between initial and final positions for stacked 1014.0 <
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Figure 5.20: Baryonic effects on galaxy cluster profiles from z = 1.1 to z = 0.02. The relative
enhancement in the inner region of the baryonic profiles (’all’), as seen in the lower panel, decreases
at lower redshift due to the growth of the dark matter component. There is a slight enhancement at
r = 1h−1 Mpc which starts at ∼ 500h−1 kpc for the baryonic profiles due to the ejection of gas which
is more pronounced at higher redshift due to the shallower potential wells.

transition point at 100h−1 kpc from which on the lower z gas profiles are more massive to
1h−1 Mpc. This trend is not present for clusters in Fig. 5.21. The transition scale at which
the gas component starts to constitute more of the total signal than the stellar component is
roughly the same for clusters and massive groups at ∼ 200h−1 kpc.
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Figure 5.21: Redshift evolution of the gas and stellar components of the ∆Σ profiles, with respect
to the dark matter component (lower panel). The gas profiles grow with decreasing redshift, but their
contribution to the overall signal remains constant due to the simultaneous growth of the dark matter
component.
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Figure 5.22: Comparison between the dark matter components in the full physics and dark matter
only runs. The dark matter only signal is roughly 1.2 times higher than the ∆Σ in the full physics
run.
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Figure 5.23: Baryonic effects on galaxy group profiles from z = 1.1 to z = 0.02. The relative
enhancement in the inner region of the baryonic profiles (’all’) is lower than for the cluster size lenses
at high redshift seen in Fig. 5.20. There is also no enhancement at r = 1h−1 Mpc for the group lens
profiles.
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lenses w.r.t. the full signal. The relative enhancement in the inner region of the baryonic profiles
(’all’), as seen in the lower panel, decreases at lower redshift due to the growth of the dark matter
component. The gas profile reservoir in the inner region is slightly larger at higher redshifts which is
gradually converted to stars.
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5.7 Discussion

In this Chapter we have chiefly compared the baryonic imprint in the Illustris and IllustrisTNG
simulations. We will shortly do the same for Eagle where most of the particle and halo
catalogue data is public. Moreover, it would be interesting to extend the analysis to other
hydrodynamical simulations such as MassiveBlack-II (Khandai et al., 2015) and Horizon-AGN
(Dubois et al., 2014), as well as BAHAMAS (McCarthy et al., 2017) going down in resolution4
for a comparable volume as the TNG300, for a comparable parameterisation framework as in
Huang et al. (2018).

We have seen that baryonic effects can suppress the lensing profiles by as much as 20 % for
certain stellar mass ranges in the Illustris simulation and mass convergences at r ∼ 5h−1 Mpc.
This agrees with previous results using the same simulation for a BOSS CMASS emulated
sample with matched number densities published by Leauthaud et al. (2017). Compared to
the impact on the matter power spectra in Springel et al. (2018), the suppression deformations
of the lensing profiles are slightly smaller with 10− 15 % instead of 20 %, proving that these
are not comparable probes.

Regarding the parameterisation, we find that the gas profiles from the TNG300 differ from
those published in Battaglia et al. (2013), which can partly explain the mismatch of the ST15
model. Further developments should focus on characterising the stellar term as well as the
radial scale of the gas ejection, which is too large for the TNG suite.

5.8 Conclusions

We have measured and characterised the imprint of baryonic physics on galaxy-galaxy lensing
profiles, and found suppressions on the small-scale signal at r ∼ 0.1h−1 Mpc of the maximum
order of ∼ 20 % (Illustris) and 10− 15 % (IllustrisTNG). Eagle, TNG100 and TNG300 are all
able to produce accurate profiles in the observational comparisons, although the red satellite
lensing signal for the TNG300 is alleviated. The maximum radial scale of the suppression also
varies between the different simulations, up to maximally r ∼ 5− 6h−1 Mpc for the Illustris
simulation, largely independent of stellar mass. Future surveys should use these scales as
conservative limits.

In addition, we find differences in the baryonic suppressions between red and blue galaxies,
reflecting the fact that feedback processes have had more time to shape the host haloes of
the former. This discrepancy has implications for the mass, as well as the concentration,
measurements of the host haloes. Further studies are required to quantify how different
feedback processes sets the scale of the suppression of the bimodality.

While the ST15 model represents a step in the right direction towards artificial baryonic
modifications, it is not sophisticated enough to capture the features of group and cluster scale
systems in the TNG300 between z = 1.1 and z = 0.
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Figure 5.25: Satellite fractions for the different hydrodynamical simulations for the bound mass
definition. With respect to Fig. 5.2 for the 30 pkpc apertures, the results for the TNG100 and
TNG300 simulations agree better with this mass definition.

M∗[log10 M�] d̄Eagle M cen., E
200c M sat., E

200c NE
gal M lim, E

∗ [log10 M�]
10.3− 10.6 0.593 12.43 13.79 352 9.60
10.6− 10.9 0.818 12.98 13.95 146 10.03
10.9− 11.2 0.813 13.37 14.11 36 10.40
11.2− 11.5 1.505 13.85 14.04 22 10.48
11.5− 11.8 - 14.10 - 4 -

Table 5.5: Average 3D distance between the satellite galaxies and the central galaxy in each FOF
group in units of h−1 Mpc for 30 pkpc stellar masses for Eagle.

5.9 30 pkpc lensing predictions for Eagle

In this Chapter, we have found that the lensing predictions differ slightly depending on
the stellar mass definition used. This also affects the satellite fractions, where we plot the
corresponding satellite fractions in Fig. 5.25. Here the predictions for the TNG100 and the
TNG300 agree at the low mass end, but for higher stellar masses the TNG300 gives relatively
fewer satellites due to the prevalence of more massive host haloes and the deficiency in star
formation produces fewer massive satellites. The result for Eagle is smoother than for the 30
pkpc mass definition beyond the knee of the SMF, reflecting a healthier model.

We present the lensing predictions for the 30 pkpc mass definition for Eagle in Fig. 5.26,
corresponding to the same choice as for Illustris, TNG100 and TNG300 already shown in
Section 5.6.1. For M∗ > 1010.79 h−2M�, the curves start to deviate from the observational
data points with particularly excessive signals for the three most massive stellar mass bins.
These large differences persist if we switch to the group lens sample. We give the most general
statistics in Table 5.5 for the host halo masses, central distances and limiting stellar masses for

4In BAHAMAS the softening length ε = 4h−1 kpc in physical coordinates for z 6 3 and is fixed in comoving
coordinates at higher redshifts for a comoving box length L = 400h−1 Mpc following cosmo-OWLS (Le Brun
et al., 2014).
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Figure 5.26: Lensing predictions from the Eagle simulation with 30 pkpc aperture stellar masses.
Compared to the bound mass result, the predictions for M∗ > 1010.79 h−2 M� are elevated and do not
conform to the observational data points.

the group criteria. Compared to the TNG100 values listed in Table 5.2, the host halo masses
for the centrals for the two most massive bins are elevated with 0.5 dex and the number of
galaxies have dropped by a factor of four for the three most massive bins.
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In this thesis we have investigated various aspects of the modelling of small-scale galaxy-galaxy
lensing. We have increased the complexity from gravity-only simulations of dark matter, with
focus on host haloes, to include realistic galaxy populations from semi-analytical models of
galaxy formation (SAMs) for the N -body simulations to finally compare these results to
cosmological simulations using full hydrodynamical schemes. In addition, we have probed the
effects from very small dwarf galaxies to galaxy cluster size objects, over a range of redshifts
to match mock observations for future lensing surveys, giving our results a large dynamic
range. In this Chapter we summarise and provide an outlook on how the main results in this
thesis can be extended into future projects.

6.1 One simulation to fit them all
In Chapter 3 we found that the rescaled lensing and 3D density profiles could well approximate
the results in direct simulations with biases which we can quantify with the semi-analytical
fitting formulae from Ludlow et al. (2016) and Diemer et al. (2017). The correlations between
these biases offer an intriguing setup to potentially explore the 1-halo to 2-halo transition
region, which is notoriously difficult to treat analytically, through characterisations of the
deeply nonlinear regime. Moreover, these relations can be used as further constraints in the
optimisation of the rescaling parameters. Further studies should focus on treating the signal
from satellite galaxies with the same success1 and quantify errors for supplementary probes;
such as galaxy clustering. In addition, parametrisable fits for new physics such as modified
gravity signatures and massive neutrinos could extend the lifecycle for a given cosmological
N -body simulation. Naturally this also applies for baryonic corrections, but here different
hydrodynamical simulations should be used to probe the range of possible deformations given
certain feedback implementations for realistic fits.

The results are also applicable for potential rescaling of the small-scale features of the
next generation of N -body simulations with box lengths L ∼ 2h−1 Gpc and particle numbers
∼ 1012, which are currently in production.

6.2 The future for joint constraint analyses
In Chapter 4 we explored if SAMs and the IllustrisTNG suite were able to produce consis-
tent lensing and clustering predictions with respect to observational constraints. This is a

1Still, the consistency between the stellar mass-only lensing profiles which features both central and satellite
galaxies in the rescaled Millennium to a Planck 2014 cosmology and the gravity-only TNG100 using a Planck
2016 cosmology in Chapter 4 for the Henriques et al. (2015) SAM suggests that such examinations may prove
superfluous.
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crucial step for these models to be competitive frameworks to populate (sub)-haloes with
galaxies for the cosmological parameter extraction from the next generation of large-scale
structure surveys. As already highlighted, the increased modelling complexity pays off in the
supplementary observables and correlations which are given simultaneously. We found that
the IllustrisTNG produced excellent predictions for both probes, except for the intermediate
mass red lensing signal. This was traced back to galaxies residing in unmatched subhaloes
preferentially in massive hosts. In the SAMs, the same effect was found for the lensing of
(red) orphan galaxies in massive hosts and if we switched to a higher resolution simulation,
the trend was still there for the corresponding satellite galaxies. For the integrated HODs
from Zu & Mandelbaum (2016), this problem did not arise. It would be interesting to extend
this analysis to the other HOD models mentioned in Section 2.1, as well as SHAMs, to see if
this is a generic feature of empirical modelling.

We rephrased this discrepancy as a shift in the host halo mass distributions for satellite
galaxies in the SAMs compared to the stellar-mass only HOD curves in Zu & Mandelbaum
(2015). This points towards necessary modifications of environmental quenching mechanisms
in massive hosts to remove these problematic satellites, or to boost the populations in less
massive hosts, in both physical modelling frameworks. Recently it was pointed out (Bahé
et al., 2019) that complete galaxy disruption in massive groups is rare and that it is probably
mostly due to gravitational forces and not baryonic processes, which could play a role for the
similarity of the results in the different simulations.

Moreover, the accuracy in predicting the red galaxy clustering signal was significantly
affected by the dust model and resolution correction enforced. We investigated the dust
correction explicitly for the latest Munich SAM and found impacts of the order of ∼ 40 % for
the red clustering signal, which acts to serve as a cautionary tale that its constraining power
requires further studies.

Returning to the lensing predictions, the latest Munich SAM from Henriques et al. (2015)
required further tuning in order to be consistent with SDSS LBG lensing and stellar mass
only lensing from KiDS+GAMA, as well as general galaxy clustering observations from SDSS.
This motivated a decrease in the strength of the radio-mode AGN feedback as well as a
shorter merger time for the orphan galaxies. Differences in the clustering signal of massive
galaxies pointed to the AGN feedback implementation as the main cause, since the supernovae
feedback affect centrals as well as satellites whereas the AGN feedback mostly affects centrals.
Using a complementary group lensing dataset from KiDS+GAMA, we verified that the found
new parameters also produce satisfactory lensing predictions for central galaxies superior to
the fiducial results. In addition, they retained the excellent agreement with the stellar mass
function up to redshift z = 3. This nice property ensures that the new improved model
is suitable for modelling group and cluster lensing profiles for future deep surveys such as
HSC and LSST. However, the agreement for the matched fraction satellite lensing signal was
compromised, especially aboveM∗ > 1010.9M� where the host halo masses were too low. This
also points towards the need for a more careful treatment of the satellites, with a potentially
stronger dependency on the host halo mass in setting the merger time clock.

Overall, both the IllustrisTNG and L-Galaxies can predict the lensing and clustering
signals sufficiently well for them to be used, potentially in combination with HODs, in cos-
mological parameter analyses pipelines.
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6.3 On the effects of baryons
In Chapter 5, we examined the deformations of lensing mass profiles due to the presence of
baryons in the Illustris and IllustrisTNG suites. This is still an open area of research and the
results should be complemented by measurements in additional hydrodynamical simulations
to cover a wider range of feedback prescriptions. For current cosmological analyses, which use
large-scale galaxy-galaxy lensing, the most interesting area is the suppressions in the 1-halo
to 2-halo transition regime due to AGN feedback for groups and clusters. Here, Illustris and
IllustrisTNG gave different answers on how a conservative sample selection has to be designed
to mitigate the effect of baryons. In the TNG suite, removing scales below r ∼ 1− 2h−1 Mpc
was sufficient to obtain accurate mass profiles, whereas the suppression extended to r ∼
5− 6h−1 Mpc in the fiducial Illustris simulation. A way to move forward would be to include
different parameterised baryonic fitting formulae, such as modified versions of the BCM from
Schneider & Teyssier (2015), and different radial cuts to explore the impact on the constraints
of the cosmological parameters. Since the overall lensing predictions are more consistent with
observations in the TNG suite than in Illustris, it is probable that r ∼ 1 − 2h−1 Mpc is a
more realistic extent, but there might be an additional covert host halo mass dependency
included. Hence, caution must be taken and complementary measurements from e.g. Eagle
are advisable. However, the BCM also preferred a similar extent as Illustris, stressing the
urgent need for a better connection between AGN activity and particle ejection.

On smaller scales, the fitting formula preferred a more prominent stellar term than what
the TNG300 suggested. This could partly be related to the deficiency in star formation in
this simulation highlighted in Pillepich et al. (2018b). Still, for halo mass measurements with
down-weighted inner radial bins which is the standard case in GGL, this deficiency should be
of limited importance.

We also found that baryonic imprint is different for red and blue galaxies, and the impli-
cations for halo and galaxy assembly bias (see e.g. Zentner et al., 2014) signatures should be
studied further. It would be interesting to use other large hydrodynamical simulations such
as cosmo-OWLs (Le Brun et al., 2014) and BAHAMAS (McCarthy et al., 2017) to probe the
effects where one has different physics implementations, although extra consideration must
be devoted to resolution convergence.

In conclusion, this study has opened the door to many interesting future endeavours which
will enrich the field in the years to come.
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