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Zusammenfassung

In dieser Arbeit identifizieren und untersuchen wir verschiedene universelle Quan-
tenphänomene, die insbesondere, aber bei Weitem nicht ausschließlich, relevant
für Gravitation sind.

Im ersten Teil beschäftigen wir uns mit der Frage, wie lange ein generisches
Quantensystem als klassisch angenähert werden kann. Wir benutzen ein Skalar-
feld mit Selbstwechselwirkung als prototypisches Model, um mögliche Skalierun-
gen der Quantenbruchzeit tq zu diskutieren, nach der die klassische Beschreibung
zusammenbricht. Anschließend wenden wir diese Analyse auf das hypothetische
QCD-Axion an. Unser Ergebnis ist, dass die Näherung als klassisch oszillierendes
Skalarfeld extrem genau ist. Als Nächstes untersuchen wir de Sitter. Dabei ist
unser Ansatz, die klassische Metrik als Multigraviton-Zustand, der auf Minkowski-
Vakuum definiert ist, auszulösen. Auf der einen Seite schafft es dieses zusam-
mengesetzte Bild von de Sitter, alle bekannten (semi-)klassischen Eigenschaften
zu reproduzieren. Auf der anderen Seite führt es zu einem Zusammenbruch der
Beschreibung durch eine klassische Metrik nach der Zeitskala tq = 1/(GNH

3),
wobei GN die Gravitationskonstante ist und H der Hubble-Parameter. Dieses Re-
sultat zieht wichtige Einschränkungen für inflationäre Szenarien nach sich. Auf-
grund von Anzeichen, dass Quantenbrechen im Spezialfall von de Sitter zu einer
Inkonsistenz führt, formulieren wir außerdem die Quantenbruchschranke. Sie be-
sagt, dass jede konsistente Theorie einen quasi-de Sitter-Zustand verlassen muss,
bevor Quantenbruch eintreten kann. Folgen dieses Kriteriums sind, dass Selb-
streproduktion in Inflation unmöglich ist sowie dass die heute beobachtete dunkle
Energie nicht konstant sein kann, sondern sich langsam mit der Zeit verändern
muss. Zudem hat die Quantenbruchschranke weitreichende Folgen hinsichtlich
Physik jenseits des Standard Modells, da sie jede Erweiterung mit einer spontan
gebrochenen diskreten Symmetrie ausschließt sowie die Axion-Lösung zum starken
CP-Problem unausweichlich macht.

Im zweiten Teil untersuchen wir, wie ein Quantensystem effizient Information
speichern kann. Wir zeigen auf, dass generische bosonische Systeme mit schwacher
und attraktiver Wechselwirkung Zustände besitzen, die wegen emergenter nahezu
masseloser Freiheitsgrade eine starke erhöhte Speicherfähigkeit aufweisen. Dies ist
von großer Bedeutung sowohl für das Speichern von Quanteninformation unter
Laborbedingungen als auch für die Simulation anderer Systeme mit erhöhter Spe-
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icherfähigkeit, wie z.B. Schwarzer Löcher, de Sitter und neuronaler Netze. Wir
untersuchen eine vereinfachte Version eines attraktiven Bosegases mit Dirichlet-
Randbedingungen in einer Dimension als prototypisches Beispiel. Schließlich gehen
wir näher auf des Phänomen der Speicherbürde ein, dessen Kern ist, dass gespe-
icherte Information generischer Weise eine Rückreaktion auf das System ausübt
und es auf diese Weise an seinen Anfangszustand bindet. Für Schwarze Löcher
und de Sitter entspricht dies der Beschreibung von Quantenbruch aus der Perspek-
tive von Quanteninformation.

Die herausragende Bedeutung nahezu masseloser Freiheitsgrade führt uns zum
dritten Teil, der sich mit Infrarotphysik beschäftigt. Bisher existieren zwei Meth-
oden, um mit Infrarotdivergenzen umzugehen, die in Theorien mit masselosen
Teilchen wie QED und Gravitation auftreten: die Inklusion weicher Emission und
das Verkleiden asymptotischer Zustände. Unser erstes Ziel ist es, einen kom-
binierten Formalismus zu entwickeln, der diese beiden Ansätze vereinheitlicht.
Seine entscheidende Stärke ist, dass er im Gegensatz zu seinen Vorgängern zu einer
sinnvollen Dichtematrix des Endzustands führt, d.h. er ist in der Lage, die kleine
aber nichtverschwindende Menge an Dekohärenz zu beschreiben, die sich durch
die Spur über unbeobachtete weiche Strahlung ergibt. Hinsichtlich Schwarzer
Löcher zeigen wir auf, dass infrarote Strahlung nicht die führende Ordnung der
Entropie erfassen kann, sondern nur einen logarithmischen Bruchteil. Wegen der
Verbindung des Theorems über weiche Gravitonen mit der BMS-Gruppe asymp-
totischer Symmetrien untersuchen wir außerdem das Verhältnis von Supertransla-
tionen und der Information eines Schwarzen Loches. Unser Ergebnis ist, dass die
erstgenannten natürlicher Weise zur Buchhaltung genutzt werden können, aber
dass sie nicht prädiktiv oder einschränkend wirken.



Abstract

This thesis seeks to identify and investigate various universal quantum phenomena
that are particularly, albeit by far not exclusively, relevant for gravity.

In the first part, we study the question of how long a generic quantum system
can be approximated as classical. Using a prototypical model of a self-interacting
scalar field, we discuss possible scalings of the quantum break-time tq, after which
the classical description breaks down. Subsequently, we apply this analysis to
the hypothetical QCD axion. We conclude that the approximation as classically
oscillating scalar field is extremely accurate. Next we turn to de Sitter. Our
approach is to resolve the classical metric as a multi-graviton state defined on
top of Minkowski vacuum. On the one hand, this composite picture of de Sitter
is able to reproduce all known (semi)classical properties. On the other hand,
it leads a breakdown of the description in terms of a classical metric after the
timescale tq = 1/(GNH

3), where GN and H correspond to Newton’s constant and
the Hubble scale, respectively. This finding results in important restrictions on
inflationary scenarios. Furthermore, indications that quantum breaking results in
an inconsistency in the special case of de Sitter lead us to formulate the quantum
breaking bound. It requires that any consistent theory must exit a quasi-de Sitter
state before quantum breaking can take place. This criterion rules out the regime
of self-reproduction for inflation and moreover it implies that the present dark
energy cannot be constant but must slowly evolve in time. Additionally, it has
far-reaching consequences for physics beyond the Standard Model by ruling out
any extensions with a spontaneously-broken discrete symmetry and by making the
axion solution to the strong CP problem mandatory.

In the second part, we investigate how a quantum system can efficiently store
information. We point out that generic bosonic systems with weak and attractive
interaction possess states that exhibit a sharply enhanced memory capacity due to
emergent nearly-gapless degrees of freedom. This has important implications both
for the storage of quantum information under laboratory conditions and for simu-
lating other systems of enhanced memory capacity, such as black holes, de Sitter
and neural networks. As a prototypical example, we study a simplified version
of an attractive Bose gas with Dirichlet boundary conditions in one dimension.
Finally, we elaborate on the phenomenon of memory burden, the essence of which
is that stored information generically backreacts on the system and tends to tie it
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to its initial state. For black holes and de Sitter, this amounts to the description
of quantum breaking from the perspective of quantum information.

The crucial importance of nearly-gapless degrees of freedom leads us to the
third part, which revolves around infrared physics. So far, two methods exist to
deal with infrared divergences that occur in gapless theories such as QED and
gravity: the inclusion of soft emission and the dressing of asymptotic states. Our
first goal is to develop a combined formalism that unifies these two approaches.
Its crucial strength is that unlike its predecessors, it leads to a sensible density
matrix of the final state, i.e. it is able to describe the small but nonzero amount
of decoherence that arises due to tracing over unobserved soft radiation. With
regard to black holes, we conclude that infrared radiation can only account for a
subleading logarithmic part of the entropy. Motivated by the relationship of the
soft graviton theorem and the BMS group of asymptotic symmetries, we moreover
investigate the connection of supertranslations and black hole information. We
conclude that the former can be naturally used as a bookkeeping tool, but that
they have no predictive or constraining power.
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Chapter 1

Introduction

1.1 High Energy Physics after Planck, LHC and
LIGO

1.1.1 Challenges
Physics has seen great progress in the 21st century. A spectacular success consisted
in the first direct detection of gravitational waves [11] more than 100 years after
they were predicted [12]. Equally important was the discovery of a new parti-
cle at the LHC [13, 14] that appears to be the Standard Model Higgs boson, as
it was predicted more than 50 years ago [15–17]. If this expectation turns out
to be true, this would mark the completion of the Standard Model. Finally, the
unprecedented precision with which the Planck-mission has observed the cosmic
microwave background has greatly advanced our understanding of the early Uni-
verse [18, 19]. In particular, its results are fully consistent with the paradigm of
inflation [20]. Nevertheless, outstanding challenges remain, of which we shall name
a few important examples.

• First evidence for dark matter was found more than 80 years ago [21], but
its microscopic nature is still unclear.

• Likewise, the mechanism behind the accelerated expansion of today’s Uni-
verse, which was discovered in 1998 [22,23], needs to be determined. Promi-
nent candidates include a very small but nonzero cosmological constant and
a dynamical quintessence field.

• Despite the discovery of a candidate for the Higgs boson, the LHC has defied
many theorists’ expectations since so far it has found no compelling evidence
for any physics beyond the Standard Model (see e.g. [24]).

• While the Planck results are in line with the paradigm of inflation, a great
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challenge consists in selecting a concrete scenario among the plethora of
proposed models.

• Finally, it remains to be elucidated how the black holes, the mergers of
which lead to detectable gravitational waves, were created in the cosmological
evolution.

We shall try to extract common themes from the above questions. Needless to
say, such an attempt is a matter of interpretation and highly subjective.

The Importance of de Sitter. By definition, inflation corresponds to a
quasi-de Sitter state, i.e. a cosmological solution that is sourced by an almost-
constant vacuum energy. Likewise, the observation of the accelerated expansion
of the present Universe implies that it starts to be dominated by vacuum energy.
Therefore, it is of great importance to study de Sitter.

The Reality of Black Holes. In the past, black holes have often been the
arena of theoretical gedankenexperiments. Probably the most prominent example
consists in the debate about black hole information [25, 26], to which we shall
turn in the subsequent section 1.3.1. Since the observation of black hole mergers,
however, understanding their dynamical properties has become even more relevant,
also with regard to observations.

Minimalistic Models. One could try to interpret all finding to which we
referred above in a minimalistic approach, in which the simplest possible theories
are selected. For example, the scenario in which dark matter corresponds to a
noninteracting scalar field is still viable (see e.g. [27]).1 Moreover, the LHC has
found no degrees of freedom beyond the Standard Model. Finally, simple single-
field inflation is still able to explain all Planck-data. The inflaton could even be a
particle of the Standard Model, as it is the case in Higgs inflation [30].

1.1.2 New Perspectives
The goal of the present work is to investigate if progress on the above-mentioned
challenges can be made by viewing them from new perspectives that we shall
propose.

Limitations of Classical Physics. Mathematically, both black holes and de
Sitter correspond to solutions of classical gravity that are derived in the absence of
quantum effects. We know, however, that any fundamental description of Nature
has to include quantum phenomena. Therefore, it is crucial to investigate the lim-
itations of classical physics, i.e. to study how far it can take us and at what point
it breaks down. We will show that quantum effects can become more important

1One can argue that it would be even more minimalistic if dark matter were explained by
right-handed neutrinos since the latter are required in any case due to the observation of neutrino
oscillations. This scenario is e.g. realized in the νMSM [28,29].
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than one would naively expect. In particular, they can be relevant for macroscop-
ically large objects. Apart from implications for the challenges mentioned above,
this observation is moreover crucial for the question of black hole information. Fi-
nally, also for the study of dark matter it is important to determine if the classical
approximation is valid or if quantum effects need to be taken into account.

The Importance of Quantum Information for Gravity. Once we con-
clude that the classical approximation of black holes and de Sitter tends to break
down due to quantum effects, a very natural follow-up question is what the classical
description is replaced by. Whereas it is very hard to find a complete answer, we
shall show that quantum information can play a crucial role. In short, the reason
is that any microscopic description of black holes or de Sitter has to account for
the huge Bekenstein-Hawking [31] or Gibbons-Hawking entropy [32], respectively.
Therefore, we will develop a picture that is completely independent of geometry
by viewing the gravitational systems from a perspective of information storage.
Such an approach can have important observational implications. For example,
it leads to inflationary observables that are sensitive to more than the last 60 e-
foldings. Moreover, it is conceivable that black hole evaporation slows down due
to their high capacity of information storage. If this is true, it would alleviate
constraints on small primordial black holes as dark matter candidates (see e.g. [33]
for a review).

Consistency Issue of the Cosmological Constant. Finally, the study
of how long the description of de Sitter in terms of a classical metric is valid will
reveal signs of a fundamental conflict. Whereas the cosmological constant is an
unchangeable parameter of the theory, quantum effects gradually lead to a com-
plete deviation from de Sitter. This is an indication that de Sitter is inconsistent
on the quantum level. Interestingly, this phenomenon is an effect of infrared quan-
tum gravity, i.e. it is fully independent of the UV-completion of gravity. If the
cosmological constant indeed leads to an inconsistency, then any consistent theory
must exit a quasi-de Sitter state before quantum effects start to dominate. This
implies that the present dark energy cannot be constant but must slowly evolve
in time and moreover it leads to important restrictions on inflationary scenarios.
Additionally, the inconsistency of a metastable de Sitter vacuum would rule out
many well-motivated extensions of the Standard Model. The more involved a
model is, the more likely it becomes that an inconsistent de Sitter vacuum exists
somewhere in phase space. In this way, a fundamental problem of de Sitter in its
infrared quantum description could provide a reason why minimalistic theories are
observed in experiment.

The purpose of this thesis is to elaborate on the above approaches. Before
we come to original work, we shall use the remainder of this chapter to review
important results upon which our studies are based.
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1.2 Conventions
First, we introduce the conventions used in the following. Throughout, we will set
c = kB = 1, but we keep ~ explicit unless states otherwise. The metric signature
is (+,−,−,−). In order to simplify notations, we will omit numerical prefactors
in large parts of chapters 1, 2 and 3. Therefore, except for chapter 4, the symbol
“≈” stands for equality up to a numerical prefactor.

We denote Newton’s constant by GN . Correspondingly, the Planck mass is
Mp =

√
~/GN and the Planck length is LP =

√
~GN .

1.3 Quantumness on Macroscopic Scales
As said, any fundamental description of Nature has to include quantum effects.
Nevertheless, the classical approximation is extremely accurate in almost all con-
texts. In fact, it works so well that quantum physics was not even discovered
until the 20th century. It appears that the reason why quantum phenomena are
so hard to observe is that they are solely relevant on microscopically small scales,
i.e. when only a relatively small number of quanta is involved. As systems become
macroscopically large, it seems that the importance of quantum effects diminishes.
However, this does not always need to be the case, so it is very interesting to look
for large systems which nevertheless cannot be descried classically. In this regard,
systems that are stationary or static on the classical level are especially relevant.
For those, quantum effects will always be the dominant source of time evolution,
no matter how long it takes until they become important.

1.3.1 Black Holes
The Puzzle of Black Hole Information

One such class of systems that are static in the classical approximation are black
holes. Moreover, they are particularly interesting because of the long-standing
debate on what has become known as “information paradox” [26], which is a
suspected violation of unitarity by black holes. As we shall elaborate on, how-
ever, there is no paradox, so we will use the terminology “puzzle of black hole
information”. In short, the upshot will be that the assumption that a black hole
of macroscopic size can always be described classically leads to a contradiction.
Therefore, it follows by consistency that the classical description must break down
on macroscopic scales. Based on earlier suggestions [34–36], this idea that a black
hole is a macroscopic quantum object was first put forward in [37].

We will begin by introducing the relevant quantities. The geometry of a black
hole of mass M is described by the Schwarzschild radius

rg ≈MGN . (1.1)
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The dimensions of the quantities are [rg] = (time), [M ] = (energy) and [GN ] =
(time)/(energy). Furthermore, a black hole possesses the Bekenstein-Hawking
entropy [31]

S ≈
r2
g

~GN

. (1.2)

In its simplest form, it arises from requiring that whenever energy is added to a
black hole, the entropy of the black hole must increase in such a way that the
entropy of the whole Universe is conserved.

In the classical theory, black holes have two remarkable properties. First, they
form an event horizon, i.e. nothing can ever escape them. Secondly, they possess
no hair (see e.g. [38] for a review), i.e. all black holes of the same mass have
are described by the same metric outside the horizon.2 Hawking has famously
shown [25], however, that the first property changes once quantum effects are
taken into account. For the following discussion it is crucial to note that he works
in the semiclassical limit, i.e. quantum fields are studied on top of a fixed classical
metric. Therefore, by construction, no backreaction on the black hole is taken into
account.

In this limit, Hawking has derived that black holes emit quanta the energies of
which are distributed thermally with the characteristic energy ~r−1

g . The rate of
this particle production is

Γ ≈ r−1
g . (1.3)

Moreover, the produced particles are in a completely mixed quantum state. Most
importantly, since his calculation is only sensitive to the classical black hole metric,
all black holes of the same mass emit exactly the same spectrum of particles.
Finally, we emphasize that this process of Hawking particle production is a vacuum
process, i.e. it is based on the observation that the vacuum for one observer appears
as an excited state to another observer.

Additionally, we remark that the semiclassical calculation of black hole evap-
oration is independent of the UV-completion of gravity. The latter is expected
to become relevant when the curvature exceeds the scale Mp, i.e. on microscopic
distances that are smaller than the Planck length Lp. In contrast, Hawking’s cal-
culation only relies on properties of the black hole near the horizon. Since the
curvature there is set by the scale r−1

g , it is small for black hole of large mass, i.e.
with M �Mp. Only for black holes of small masses of the order of Mp, effects of
strong gravity become important and Hawking’s result can no longer apply.

The fact that in Hawking’s computation all black holes of the same mass emit
exactly the same spectrum of particles immediately leads to the the puzzle of
black hole information. In order to illustrate it, we can perform the following
gedankenexperiment. We prepare different initial states in such a way that they

2We assume a vanishing electric charge and angular momentum since they are inessential for
our discussion.
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(a) In the classical limit (1.4), there is no emission.

(b) In the semiclassical limit (1.5), Hawking’s calculation of particle production is exact.
Since the mass of the black hole is infinite, however, the black hole does not shrink.

(c) In the fully quantum picture, in which both GN and ~ are finite, the black hole
evaporates and can disappear, but Hawking’s calculation is no longer exact.

Figure 1.1: Evolution of a black hole in the classical and semiclassical limit as well
as in the fully quantum picture. In each case, the initial, intermediate and final
state are displayed from left to right. Only in the fully quantum picture, black
hole hair becomes visible.

all collapse to black holes of the same mass M . Subsequently, we wait until
they evaporate. By unitarity, we know that the evaporation products must be
different in correspondence to the different initial states. However, this appears
to contradict Hawking’s computation, in which the evaporation products are the
same for all black holes of a given mass and any other information about the initial
state is lost. We shall show, however, that a paradox can only appear as a result
of an inconsistent use of limits. We will study the three relevant cases, which are
depicted in Fig. 1.1. The following discussion closely follows [34–37].

Classical Limit. First, we can take the classical limit,

~→ 0 . (1.4)

In this approximation, the classical no-hair-theorem applies, i.e. different initial
states indeed form black holes that are indistinguishable for an outside observer.
However, this is not a problem since the black holes cannot evaporate in the absence
of quantum effects. Therefore, it is consistent to attribute the information about
the initial state to the interior of the black hole. We note that the Bekenstein-
Hawking entropy (1.2) diverges in the classical limit, i.e. the amount of information
contained in a classical black hole is infinite.3

3This reflects the fact that in a classical theory, infinitesimally small differences between initial
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Semiclassical Limit. As already mentioned, the crucial point is that Hawk-
ing’s calculation [25] is performed on top of a fixed classical metric, i.e. it does
not take into account any backreaction on the black hole. Therefore, it is only
exact in the limit in which the backreaction vanishes. This can be achieved by
taking the black hole mass to infinity because then the production of Hawking
quanta of finite mass indeed has no effect on the black hole. As the geometry and
therefore the Schwarzschild radius have to be kept fixed, we arrive at the following
double-scaling limit:

M →∞ , GN → 0 , rg fixed . (1.5)

It is important to note that ~ is kept finite. For this reason, the scaling (1.5) rep-
resents the semiclassical limit, in which the geometry is kept fixed while quantum
effects are nonvanishing. In the semiclassical limit, there is no paradox, either.
The evaporation products are indeed featureless, i.e. identical for all black holes of
the same mass, but the black holes never shrink due to evaporation because of their
infinite mass. Thus, just as in the classical limit, it is consistent to attribute the
information about the initial state to the interior of the black hole. We note that
as in the classical limit, the entropy of the black hole diverges in the semiclassical
limit.

Fully Quantum Picture. Finally, we turn to the fully quantum picture, in
which both GN and ~ are finite. Correspondingly, also the black hole mass is finite
so that black holes can indeed shrink due to evaporation. If Hawking’s calculation
were still able to describe black hole evaporation in this case, this would lead to a
paradox. Namely, then all black holes that have formed from different initial states
would lead to the same evaporation products, thereby contradicting unitarity.4

Fortunately, Hawking’s calculation, which is performed in the limit of infinite
entropy S, is no longer exact for a black hole of finite mass but only represents
an approximation. In the most naive estimate, one would expect that corrections
appear that scale as 1/S.5 Already this simplest possible guess indicates that at
the latest after on the order of S quanta have evaporated, the corrections should
become important. This corresponds to the timescale

tq ≈ Srg , (1.6)

states are still resolvable. Therefore, there are infinitely many ways to form a black hole of a
given mass.

4We note that even if Hawking’s calculation were applicable throughout the whole evaporation
process of a black hole of finite mass, it would still not be able to describe very small black holes
close to the Planck mass Mp, for which the curvature on the black hole horizon becomes large.
Therefore, no statements can be made about the final stages of evaporation. However, since at
that point the mass of the black hole is arbitrarily smaller than it was at the beginning, this
uncertainty bears no relevance for the question of unitarity.

5One can even arrive at this conclusion using semiclassical arguments about the backreaction
of evaporation [39].
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after which the semiclassical description would no longer be trustable. As we
shall sketch below, more accurate and involved arguments indeed also yield this
result. Following [40], we will refer to tq as the quantum break-time. It will play a
prominent role throughout this thesis.

Even beyond the semiclassical limit, energy conservation still has to be ful-
filled. To the extent that evaporation takes place, the mass of the black hole must
diminish. Because Hawking quanta carry an energy of order ~r−1

g , the quantum
break-time (1.6) corresponds to the timescale when the mass of the black hole
has diminished significantly. Since Hawking’s calculation is performed in the limit
of vanishing backreaction, it is clear that there is no reason any more to assume
that a black hole still admits a description in terms of a classical metric once the
backreaction has becomes important.6

A breakdown of the semiclassical description after the timescale (1.6) may
sound surprising at first. The reason is that after losing on the order of half its
mass, an initially large black hole is still a macroscopic object, rg � Lp. Thus, the
curvature on the horizon is still expected to be small so that UV-effects of quan-
tum gravity cannot be important. From this perspective, there is no reason why
Hawking’s calculation should no longer be applicable. The crucial point, however,
is that the breakdown of the semiclassical description after the timescale (1.6) is
not related to effects of large curvature, which take place on small scales. In-
stead, it occurs on a macroscopic scale due to a strong backreaction from quantum
processes.

We can also formulate the puzzle of black hole information in terms of the
purity of states. If one forms a black hole from a pure state, unitarity dictates
that the final state of evaporation also has to be pure. In contrast, the emitted
quanta in Hawking’s computation are in a completely mixed state. During the
initial stages of evaporation, however, the emission of quanta in a mixed state does
not contradict a unitary evolution since one can imagine that the whole quantum
state, i.e. black hole and evaporation products, is in a pure state, but a mixed state
for the emission products is obtained after tracing over the black hole. As Page
has shown [42], this has to change at the latest after half evaporation, when the
Hilbert space of the black hole and the Hilbert space of emitted quanta are of the
same size. At this point, the emitted quanta need to purify and information has to
be released. Thus, the timescale (1.6) also indicates the point when information
has to be released at the latest. In this context, the timescale rgS/2, which is
analogous to Eq. (1.6), is called Page’s time.

We can go one step further and use the above observation concerning the re-
lease of information to invert the argument about the validity of a semiclassical
description of the black hole. Namely, unitarity implies that after half evapora-

6As early as in 1980, Page noted the importance of this fact that backreaction already leads
to a significant deviation from the semiclassical description when the black hole is still macro-
scopically big [41].
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tion, the total state of all evaporation products needs differ significantly from a
completely mixed state. Therefore, a sizable departure from the result of the semi-
classical computation has to occur at the latest after the corresponding timescale
(1.6). The minimal strength of this deviation is determined by the requirement
that it can lead to a significant purification.

Loosely speaking, a paradox arises when we know “too much”, i.e. when we
possess two pieces of information that contradict each other. As we have seen,
however, the opposite situation is realized in a black hole. When the backreaction
due to evaporation has become significant after the timescale (1.6), we know close
to nothing about what the black hole has evolved into. In particular, there is
no reason any more to assume that it can still even approximately be described
by any classical geometry, let alone the metric of a black hole. Except for the
fact that the mass has to diminish due to evaporation, it is not even clear if the
black hole shrinks in any geometric sense. Likewise, it is completely uncertain
how the process of evaporation changes during the evolution of a black hole. After
the quantum break-time (1.6), it is equally conceivable that it might slow down,
leading to an almost stable object, or speed up, causing a kind of explosion.

Quantum N-Portrait

As we have seen, the release of information, i.e. deviations from thermality, can
only be observed in the fully quantum picture, where both ~ and GN are finite. Of
course, it is very hard to make quantitative predictions beyond the semiclassical
limit. To tackle this problem, Dvali and Gomez have proposed the quantum N-
portrait [34], which they developed further in [35–37, 40, 43, 44]. Since we will
often refer to it throughout this thesis, we will briefly review this corpuscular
view of black holes. The key idea is to regard a black hole as an excited multi-
graviton state defined on top of Minkowski vacuum. This means that geometry is
no longer fundamental but only arises as expectation value of the quantum state
of constituent gravitons. Correspondingly, any interaction with the black hole and
the time evolution of the black hole arise due to scattering of or with the gravitons
of which the black hole is composed.

A strong motivation for this emergent picture of black holes comes from the
fact that they can be formed with the help of excitations in flat space. It is clear
that one can prepare an initial quantum state on top of Minkowski vacuum in such
a way that it subsequently forms a black hole. Although it may be very hard to
compute this process explicitly, the mere existence of such a unitary description
of collapse suffices for our argument. By evolving the initial state, it leads to a
quantum description of the final state, i.e. the black hole, on top of Minkowski.
This shows that it must in principle be possible to view a black hole as excited
state defined in flat space.

In the quantum N-portrait of a black hole, the wavelength of its constituents
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is set by the scale rg of the classical geometry, i.e. they have the energy

mg = ~r−1
g , (1.7)

where we use the unusual symbol mg for an easier comparison with later discus-
sions. In order to reproduce the classical energy M of the black hole, the number
of gravitons must be7

N =
r−2
g

GN~
. (1.8)

We note that this number is identical to the Bekenstein-Hawking entropy (1.2),
but this is a coincidence at this point. Because of the universality of gravitational
coupling, the interaction strength between two individual gravitons of energy ~r−1

g

is given by
αg = ~GNr

−2
g , (1.9)

where we consider 4-point interaction for concreteness. We note that αg is mi-
nuscule for a large black hole, M � Mp. However, the collective coupling, i.e.
the strength with which an individual soft graviton couples to the collection of all
others, is strong:

λg = αgN = 1 . (1.10)
Thus, the constituents of the black hole differ significantly from free gravitons.
Finally, we can investigate the classical limit (1.4) and the semiclassical limit (1.5)
in this approach. As is evident from Eqs. (1.8) and (1.9), both lead to a diverging
number of particles and a vanishing coupling:

N →∞ , αg → 0 , λg fixed . (1.11)

Therefore, it is clear why the (semi)classical limit corresponds to a vanishing back-
reaction. A state of infinite particle number cannot be changed by any process
that only involves a finite number of quanta.

Now we can turn to Hawking particle production in the quantum N-portrait.
There, it is no longer a vacuum process, but it arises as a result of ordinary
scattering. For example, two of the N soft gravitons that make up the black hole
can scatter and thereby produce a free graviton, i.e. one that is not part of the black
hole state. This process is depicted in Fig. 1.2. We can estimate its rate. Since
two gravitational 3-point interactions are involved, the amplitude scales as the
gravitational coupling αg (see Eq. (1.9)) and consequently the rate must contain
a factor of α2

g. However, this would only be the rate for the scattering of two
fixed gravitons. In the state of N gravitons, it gets enhanced by the possibilities
of choosing two out of the N gravitons,

(
N
2

)
≈ N2. Finally, the only quantity that

can give the rate its dimensionality of [Γ] = (1/time) is r−1
g . In total, we obtain

Γ ≈ r−1
g +O(1/N) , (1.12)

7As we can absorb numerical prefactors in redefinitions of N and αg, we use exact equalities.
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Deviations from Classical Results

Hawking

N{ } N−1

6

Figure 1.2: Hawking particle production as rescattering of gravitons: Two of the
N gravitons interact and thereby produce a Hawking quantum. (This figure was
adopted from [35].)

where we used that λg = αgN = 1. As indicated, this estimate receives corrections
that scale as 1/N . In particular, they arise due to the fact that the number of
gravitons in the final state of the black hole is different than in the initial one.
Thus, the 1/N -corrections encode the backreaction of particle production on the
black hole.

The derivation of the rate (1.12) achieves two goals. First, it is able to repro-
duce Hawking’s rate (1.3) in the semiclassical limit N → ∞. Secondly, however,
it also gives a handle on computing particle production for finite ~ and GN .8 In
this case, corrections arise that scale as 1/N . As explained before, we expect on
general grounds that such deviations occur beyond the semiclassical limit. That
we obtain those corrections is good news since those can lead to the deviations
from a featureless thermal evaporation that are required for unitarity. Moreover,
we can estimate the timescale of validity of the semiclassical description. Since
the process of Hawking particle production now is an ordinary scattering process,
which backreacts on the quantum state of the black hole, it leads to a signifi-
cant deviation from the initial state as soon as on the order of N gravitons have
experienced it. This gives the timescale

tq ≈ Nrg , (1.13)

which is in full accordance with the previous simple estimate (1.6) of the quantum
break-time.

Finally, the quantum N-portrait also provides us with a very natural perspec-
tive on black hole formation. We can consider a scattering process of two hard
gravitons. In such a case, a black hole can form if the center-of-mass energy is
super-Planckian. Once the black hole is viewed as an object composed of N soft

8What makes quantitative computations difficult is the fact that the collective coupling is
strong, λg = 1. For this reason, tree-level processes in which a large number of gravitons of the
initial state scatter are not suppressed. Still, an explicit S-matrix computation (for the case of
black hole formation) has e.g. been performed in [45].
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gravitons, one expects that black hole formation should be understandable as pro-
cess of 2 → N -scattering. It was shown in [45] that this is actually the case.9 (A
related calculation can be found in [49].)

1.3.2 De Sitter
Semiclassical Properties

Apart from black holes, another object that is stationary in the classical approx-
imation is de Sitter space, i.e. the vacuum solution of Einstein’s equations in the
presence of a positive cosmological constant Λ. We will discuss that it exhibits
many similarities to the case of black holes but also crucial differences. The ge-
ometry of de Sitter is described by the Hubble radius

RH ≈
√

1
Λ , (1.14)

where the respective dimensions are [Λ] = 1/(time)2 and [RH ] = (time). In the
classical theory, the spacetime possesses an energy density

ε ≈ Λ
GN

. (1.15)

Analogously to the Bekenstein-Hawking entropy of black holes, de Sitter is char-
acterized by the Gibbons-Hawking entropy [32]

S ≈ 1
~GNΛ . (1.16)

Also particle production by a black hole has a counterpart in de Sitter, namely
Gibbons-Hawking particle production [32]. Again, it will be crucial for our dis-
cussion that this phenomenon was derived in the semiclassical limit, i.e. when
quantum fields are studied on top of a fixed classical metric. As before, this means
that no backreaction on de Sitter space is taken into account. In this limit, Gib-
bons and Hawking have derived that an observer in de Sitter will see a thermal
spectrum of particles with characteristic energy ~R−1

H . The rate of this particle
production is

Γ ≈ R−1
H . (1.17)

As in the black hole case, this phenomenon arises as a vacuum process in the
semiclassical limit.

Again we shall discuss the three relevant limits. As always, the classical limit
corresponds to ~→ 0. In this case, the Gibbons-Hawking entropy (1.16) diverges

9This calculation is moreover related to the idea that gravity self-completes by classicalization
[46–48], i.e. that it manages to self-consistently avoid a strong coupling regime by distributing
large energies among many soft quanta.
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and the process of particle production shuts off. For the computation of Gibbons-
Hawking radiation, the semiclassical limit is relevant, in which the energy density
of the spacetime is taken to be infinite while the geometry is kept fixed. From Eqs.
(1.14) and (1.15), it is evident that this corresponds to

GN → 0 , RH =
√

1
Λ fixed . (1.18)

In analogy to the semiclassical limit (1.5) for a black hole, the gravitational cou-
pling goes to zero while ~ stays finite. Again the entropy (1.15) diverges. In this
limit, it is consistent to consider quantum effects that do not backreact on the
classical metric.

Finally, we discuss the fully quantum picture, in which both ~ and GN and
consequently also S are finite. Since Gibbons-Hawking particle production was
computed in the limit of infinite S, one could naively expect that as for black holes,
corrections appear that scale as 1/S. Since those become important at the latest
after on the order of S quanta have been produced, the simplest possible guess for
the timescale after which the semiclassical description is no longer trustable is

tq ≈ SRH . (1.19)

A detailed study of this quantum break-time of de Sitter will be performed in this
thesis. As we shall sketch shortly, it will turn out that the estimate (1.19) is indeed
justified, in agreement with the previous result in [44].

As for the black hole, the only statement that we expect to remain exact beyond
the semiclassical limit is energy conservation. Thus, to the extent that particles
are produced, the energy associated to de Sitter has to decrease. Beyond that,
it is completely unclear what de Sitter evolves into after the timescale (1.19). In
particular, there is no reason any more to assume that it can still even approxi-
mately be described by any classical metric. So the most likely scenario is that
the de Sitter radius neither increases nor decreases but simply ceases to exist as
a geometric notion. Likewise, particle production might equally well speed up or
slow down after quantum breaking.

Finally, we want to mention a crucial difference between black holes and de
Sitter. The mass M of a black hole is a parameter of a solution. Thus, in one
and the same theory of gravity, multiple black hole solutions corresponding to
different masses can exist. For this reason, it is at least in principle conceivable
that even though a full classical description of a black hole ceases to be valid after
the quantum break-time, it still shrinks in an appropriate sense due to evaporation.
In contrast, the cosmological constant is a parameter of the theory. Thus, there
is only one single de Sitter solution in a given theory. For this reason, one cannot
imagine how the backreaction due to particle production could even approximately
be described as a decreasing cosmological constant. As already noted in [44, 50],
this conflict between the fixed parameter Λ of the theory and the time evolution
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due to quantum effects indicates that quantum breaking could represent a more
severe problem in the special case of de Sitter. Section 2.5 of the present thesis
will be devoted to the discussion of this point.

Fully Quantum Picture

Next, we turn to de Sitter beyond the semiclassical limit, i.e. when both ~ and
GN are finite. As suggested in [44] (based on early ideas in [34]), it is possible
to develop a fully quantum picture of de Sitter in great analogy to the quantum
N-portrait for black holes. In this corpuscular approach, on which parts of this
thesis will be based, de Sitter is also viewed as a composite state of many soft
gravitons. We will briefly review it.

The first question that arises is what vacuum those gravitons are defined on.
Namely, de Sitter is traditionally regarded as a fundamental vacuum of gravity.
However, this point of view leads to well-known problems. In particular, the lack
of a global time makes it impossible to define an S-matrix. This creates a big
challenge since the S-matrix formulation is crucial for quantum gravity and string
theory. In order to circumvent these problems, Dvali and Gomez have proposed
a different point of view [44], in which Minkowski is regarded as the only true
S-matrix vacuum. As soon as de Sitter is treated as an excited state on top of the
Minkowski vacuum, it can profit from the well-defined S-matrix in flat space.

Another motivation for this emergent picture of de Sitter comes from inflation.
After reheating, we expect no obstruction in describing the Universe as a collection
of particles defined on top of Minkowski vacuum. Then we can make an analogous
argument as we did for black holes in section 1.3.1. As long as reheating can
in principle be described as a unitary evolution, then also the Universe before
reheating, i.e. the quasi-de Sitter state of inflation, must possess a description as
quantum state defined on Minkowski vacuum.

Once we view de Sitter as emergent, we can proceed in analogy to the black
hole case. First, the wavelength of the constituent gravitons is set by the scale RH

of the classical geometry, i.e. their energy is

mg = ~R−1
H . (1.20)

The next requirement is to reproduce the classical energy density (1.15) associ-
ated to the cosmological constant. To this end, one has to choose the number of
gravitons per Hubble patch as

N = 1
~GNΛ . (1.21)

As in the black hole case, this number coincides with the entropy (1.16) of de Sitter,
but again no fundamental reason is apparent to us why this should have to be the



1.3 Quantumness on Macroscopic Scales 15

case. The strength of the gravitational coupling among individual constituent
gravitons is set by their energy:

αg = ~GNΛ . (1.22)

Whereas this number is generically very small, the collective coupling, i.e. the
strength with which an individual graviton interacts with the collection of all
others, yields

λg = αgN = 1 . (1.23)
In full analogy to the quantum N-portrait of black holes, the collective interaction
is strong and therefore the constituent gravitons of de Sitter have to differ signif-
icantly from free gravitons. Finally, we can again investigate the classical limit
(1.4) and the semiclassical limit (1.18) in this picture. According to Eqs. (1.21)
and (1.22), both correspond to an infinite number of particles and a vanishing
coupling:

N →∞ , αg → 0 , λg fixed . (1.24)
As is evident from Eq. (1.11), this is fully analogous to the black hole case. Any
quantum process that only involves a finite number of particles cannot backreact
on the quantum state of de Sitter in the (semi)classical limit.

Next, we turn to Gibbons-Hawking particle production in this composite pic-
ture of de Sitter. As for black holes, it no longer corresponds to a vacuum process,
but it arises as a result of ordinary scattering. Like before, we can for example
consider the case when two of the N constituent gravitons of de Sitter scatter and
thereby produce a free graviton. Fig. (1.2) can equally describe this process. Also
the estimate of the rate is fully analogous to the case of Hawking particle pro-
duction. Because two 3-point interactions of gravitons are involved, the amplitude
must contain a single power of αg and consequently the rate scales as α2

g. Moreover,
it is enhanced by a factor of

(
N
2

)
∼ N2 due to the possibilities of choosing the two

gravitons that scatter. Since only RH can give the rate its correct dimensionality,
we get in total

Γ ≈ R−1
H +O(1/N) , (1.25)

where we used that λg = αgN = 1. Backreaction, i.e. the fact that the final
state of the constituent gravitons is different from the initial one, again leads to
corrections that scale as 1/N .

On the one hand, the rate (1.25) reproduces the result (1.17) of Gibbons and
Hawking in the semiclassical limit N → ∞. On the other hand, however, it can
be used to obtain an estimate for the quantum break-time of de Sitter. Namely,
a significant deviation from the initial state of the constituent gravitons occurs as
soon as a sizable fraction of them has experienced the scattering process depicted
in Fig. 1.2. This leads to the timescale

tq ≈ NRH , (1.26)
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which agrees with the previous simple estimate (1.19) of the quantum break-time
of de Sitter.

1.4 Entropy Under the Microscope
Typically, geometry is regarded as the primary characteristic of gravitational sys-
tems. This is the case not only on the classical level but e.g. also in the fully
quantum pictures of black holes [34] and de Sitter [44] that we have just reviewed.
Also there the primary goal is to give a quantum resolution of the geometry.

In the following, we shall suggest an alternative point of view on these systems,
which is completely independent of their geometry. Based on early ideas [34], this
line of thought was pioneered in [36] and further developed in [51–53] using the
example of black holes. The starting point is that both black holes and de Sitter
share a remarkable property, namely they satisfy the Bekenstein bound [54] on
information storage capacity.10 This means that among all systems of a given size,
black holes and de Sitter can record the most information, where their storage
capacity is measured by the Bekenstein-Hawking entropy (1.2) and the Gibbons-
Hawking entropy (1.16), respectively. Whereas it is very difficult to give a complete
microscopic description of these gravitational systems, a necessary condition that
any such theory must fulfill is that it gives an explanation of the entropy. Therefore,
we shall suggest to view their maximal capacity of memory storage as key property
of black holes and de Sitter.

For this reason, we focus on the question how a generic quantum system can
achieve a high capacity of information storage. We will largely follow the argu-
ments presented in [34, 36, 51–53]. To account for a large entropy S, which could
e.g. represent the black hole entropy (1.2) or the de Sitter entropy (1.16), a system
must possess an exponentially large number of microstates,

# microstates = eS . (1.27)

A very natural way to achieve this is through a big number of lowly-occupied
modes that scales as

# modes ∼ S , (1.28)

where we used that S distinguishable modes with a maximal occupation of d yield
Sd different states.

The crucial point is that the states (1.27) can only count as microstates if they
are nearly-degenerate in energy. Thus, the energy difference between the state in
which all of the modes are occupied and the one in which none are must be small.
For example, one can require that it is smaller than some fundamental energy gap

10We note that up to the numerical prefactor, the Bekenstein bound coincides with the previ-
ously discovered limit on information storage capacity by Bremermann [55].
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Etypical of the system in question. In this case, the energy gap of a single mode
must satisfy11

∆E . Etypical

S
, (1.30)

where Etypical = ~r−1
g for black holes and Etypical = ~R−1

H for de Sitter. The
property (1.30) is remarkable as the resulting energy gaps are arbitrarily smaller
than the typical level spacing of the system, provided the entropy is large enough.
In summary, we conclude that systems of enhanced memory storage, such as black
holes and de Sitter, must possess a large number (1.28) of modes that have an
extremely small energy gap (1.30). In other words, a big entropy necessarily
requires the existence of many nearly-gapless modes.

This observation has two important implications. First, it promises to provide
a new way of studying black holes and de Sitter. Since nearly-gapless modes play
a crucial role for them, one can look for such nearly-gapless excitations in other
systems, which are easier to study both theoretically and experimentally. If this
search is successful, one could use those prototype systems to draw conclusions
about information storage and processing in the gravitational systems, which are
much harder to analyze. Secondly, one can also invert the argument. We know
that black holes and de Sitter exhibit a sharply enhanced capacity of information
storage. Thus, if we manage to understand how they achieve this property, one
can try to imitate their mechanism in order to build devices that can efficiently
store quantum information under laboratory conditions, i.e. one could attempt to
construct “black-hole-like” storers of quantum information.

1.5 Infrared Physics
As we have seen, the large and in fact maximal entropy of black holes and de Sitter
requires the existence of a large number of extremely soft modes. Moreover, we
know that there is no mass gap in gravity. Because of these two facts, it is very
natural to ask if infrared physics, which deals with the infrared divergences that
arise in gapless theories, could help to shed light on how black holes and de Sitter
store and process information, as was e.g. suggested in [56] for the case of black
holes.

11If we assume that the nearly-gapless modes can have both positive and negative energies, it
is also possible to adopt the weaker criterion

∆E . Etypical√
S

. (1.29)

In this case, not all but most states still fit in the elementary gap Etypical. This suffices to obtain
the scaling (1.27) of the number of microstates. For the following discussions, the difference
between the criteria (1.30) and (1.29) will be inessential.
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The key observation of infrared physics is that in a gapless theory, any small
amount of energy suffices to produce an arbitrarily large number of quanta. That
this fact has important implications was already realized in the thirties [57] and
further studied in the sixties [58, 59]. As a first step, we can consider a generic
scattering process in which no soft quanta are emitted. When we compute the
amplitude for such a process, we generically find that it vanishes because of diver-
gent loop corrections. This fact is known as “infrared divergence”. It is crucial to
note, however, that it does not represent a problem of the theory. Instead, it is
a physical result: The probability that no soft modes are emitted in a nontrivial
scattering process is zero.

Next, one can include soft quanta in the final state. The number of soft quanta
can be arbitrarily large but the total energy contained in them must be small.
Then computation shows that the sum over all such final states that include soft
quanta gives an infinite contribution. However, when combined with the vanishing
contribution due to loop corrections, a finite total rate is obtained [57–59]. Thus,
all divergent contributions cancel self-consistently. Moreover, it turns out that
the tree level result, which includes neither loops nor soft emission, is a good
approximation and infrared physics only gives a small correction to the total rate.

This result could sound like the end of the story, but it is not. Shortly af-
ter Weinberg’s computation [59], a different approach to infrared divergences was
suggested, in which no soft emission was considered. Instead, charged asymp-
totic states were modified by adding to each of them, i.e. to both final and initial
states, a carefully chosen coherent state of soft photons [60–65]. The physical
justification for this modification of asymptotic states is that in a theory with
long-range interactions, approximate eigenstates of the asymptotic Hamiltonian
can only be formed if the above-mentioned dressing by soft photons is included.
Even though the procedure is very different, the combination of all dressing factors
approximately results in the same contribution as the one from soft emission and
therefore yields a finite total rate.

This finding immediately leads to the puzzle why two seemingly very different
procedures should generically yield the same result. Additionally, it is unclear
why not both soft emission and soft dressing should be included at the same time.
Doing so would lead to a total rate that is infinite and therefore clearly unphysical.

This tension between soft emission and soft dressing has recently been height-
ened by the study of the density matrix of the final state of scattering. Its diagonal
contains the well-known rates, but the off-diagonal elements encode information
about the coherence of the final state. This is generically an interesting question
since one expects that the tracing over unobserved soft radiation leads to a small
but nonzero amount of decoherence. It was found, however, that solely consider-
ing soft emission or solely including soft dressing can only lead to full decoherence
or full coherence, respectively [66, 67].12 Therefore, the relationship of soft emis-

12It was proposed in [67] that one should also perform a trace over soft dressing. In this case,
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sion and soft dressing constitutes an interesting subject of study, which we shall
investigate thoroughly in this thesis.

Finally, the question of coherence of the final state leads back to the study
of black hole information. Namely, if unobserved soft radiation could lead to a
sizable amount of decoherence, then this could be connected to the fact that the
result of Hawking’s calculation is a mixed state. In this proposal [56], the complete
final state, which includes both hard quanta and soft radiation, would be pure and
a mixed state would only arise due to tracing over unobserved soft modes. Of
course, such an explanation would be very surprising since soft emission occurs in
any process of gravity or QED whereas the information puzzle is specific to black
holes. Nevertheless, this shows that it is important to clarify the relationship
of infrared divergences and quantum coherence, which is one of the goals of this
thesis.

1.6 Outline
The outline of this thesis is as follows. In chapter 2, we study the question of
quantum breaking, i.e. of how long a given system can be approximated as clas-
sical. We use simple scaling arguments and the analysis of a prototypical self-
interacting scalar field to draw conclusions about quantum breaking in generic
systems. Subsequently, we investigate two concrete examples. For hypothetical
cosmic axions of QCD, we show that the classical approximation of today’s axion
field is extremely accurate. Next, we study quantum breaking in de Sitter. First,
we construct a concrete model for the corpuscular picture of de Sitter reviewed
in 1.3.2, in which the spacetime is resolved as excited multi-graviton state on top
of Minkowski vacuum. We show that our model is able to reproduce all known
classical and semiclassical properties of de Sitter. Moreover, it allows us to explic-
itly compute the quantum break-time, after which the description in terms of a
classical metric ceases to be valid. Our result is in full agreement with Eq. (1.26).
Additionally, we study implications of quantum breaking for the dark energy in
today’s Universe and for inflationary scenarios. Whereas the discussion up to this
point is independent of the question if quantum breaking is a sign of a fundamental
inconsistency of de Sitter, we finally discuss some of the important consequences
that arise if a consistent theory must not allow for de Sitter quantum breaking.
In particular, this makes the existence of a QCD axion mandatory and excludes
the self-reproduction regime in inflation as well as any extension of the Standard
Model with a spontaneously-broken discrete symmetry.

In chapter 3, our goal is to study gravitational systems from the perspec-
tive of quantum information. First, we investigate more generic, i.e. potentially

also soft dressing would lead to full decoherence. We will argue in section 4.3.1, however, that
both the physical justification and the mathematical soundness of such a trace is questionable.
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nongravitational, bosonic systems and show that nearly-gapless modes and there-
fore states of sharply enhanced memory capacity are a common phenomenon in
them, provided weak and attractive interactions exist. We discuss the underlying
mechanism, which we shall call assisted gaplessness, that leads to the emergence
of nearly-gapless modes and provide an analytic procedure for finding them, to
which we refer as c-number method. Moreover, the fact that simple nongravita-
tional systems already feature states of enhanced information storing capabilities
opens up an exciting perspective of simulating other systems of enhanced mem-
ory capacity, such as black holes and neural networks, in table-top experiments.
Subsequently, we demonstrate assisted gaplessness and the c-number method on
a concrete prototype model of three interacting bosonic degrees of freedom. We
conclude the chapter by studying the phenomenon of memory burden, the essence
of which is that a large amount of stored information generically backreacts on
the system and prevents it from evolving. This observation leads us back to grav-
ity. For both de Sitter and black holes, memory burden turns out to describe the
information-theoretic aspect of quantum breaking.

We turn to infrared physics in chapter 4. First, we review known results and
comment on the relationship of the soft photon/graviton theorem and charge con-
servation. Subsequently, we propose a new approach to deal with infrared diver-
gences, which we shall call combined formalism. Its purpose is to resolve the tension
between the emission of soft radiation and the dressing of asymptotic states by
providing a unified description of the two phenomena. Unlike previous approaches,
the combined formalism leads to a sensible density matrix that is able to describe
the small but nonzero amount of decoherence that arises due to the emission of
unobserved soft modes. Finally, we study the implications of infrared physics for
black holes. First, we show that the emission of soft radiation can only account
for a subleading fraction of the black hole entropy and therefore cannot play a key
role for resolving the puzzle of black hole information. Secondly, the connection of
the soft photon theorem and the asymptotic symmetries of gravity at null infinity,
namely the BMS group [68–70], leads us to study the relationship of BMS symme-
tries and black hole hair. Our result is that those asymptotic symmetries can be
used as a bookkeeper of black hole information, but that they have no predictive
or constraining power.

Finally, we conclude in chapter 5 by summarizing our findings and relating them
to the challenges introduced in 1.1.1. Moreover, we point out future directions of
research.



Chapter 2

Quantum Breaking

This chapter is devoted to the study of quantum breaking. Originally introduced
in [40], this is the question of how long a given system can be approximated as
classical. The corresponding timescale, after which the quantum evolution deviates
from the classical description, is the quantum break-time.

First, we show in section 2.1 that simple scaling arguments already tightly
constrain what the quantum break-time must generically depend on.

Next, we analyze a prototypical example of a self-interacting scalar field in
section 2.2. Following the study of quantum breaking in various regimes, we try
to draw conclusions for generic systems.

Subsequently, we study the hypothetical QCD axion in section 2.3. Since it
is possible to describe those axions as self-interacting scalar field, we can directly
apply the results of the preceding section to infer that the approximation of today’s
axion field as classical is extremely accurate. Moreover, we critically examine
contrary claims made in [71] by emphasizing the distinction between classical and
quantum interactions.

In section 2.4, we turn to the investigation of quantum breaking in de Sitter.
First, we resolve the classical metric as expectation value of a multi-graviton state
defined on top of Minkowski vacuum, thereby providing a concrete model for the
corpuscular picture [44] of de Sitter reviewed in 1.3.2. This construction allows
us to explicitly compute the quantum break-time, after which the spacetime can
no longer be described by a classical metric. The result is in full agreement with
previous findings [44]. Finally, we study implications for the dark energy in today’s
Universe and for inflationary scenarios. Corresponding restrictions arise because
observations show no deviation from the description in terms of a classical metric.

In the last section 2.5, we discuss if the consequences of quantum breaking
could be even more severe in the special case of de Sitter. Namely, it was suggested
in [44,50] that it could be a sign of a fundamental inconsistency of the spacetime.
Therefore, we analyze some of the important constraints that arise if de Sitter
quantum breaking indeed must not happen in a consistent theory. In particular,
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this rules out the self-reproduction regime in inflation, makes the axion solution
to the strong CP problem mandatory and excludes any extension of the Standard
Model with a spontaneously-broken discrete symmetry.

This chapter is based on the papers [1, 7–9], which are joint work with Gia
Dvali and Cesar Gomez, as well as the paper [3], which is joint work with Gia
Dvali.1 To a large extent, this chapter is an ad verbatim reproduction of these
publications. Section 2.2 uses material from both [1] and [3]. Sections 2.1 and 2.3
follow [3]. Section 2.4 follows [1], where section 2.4.6 additionally uses material
from [7]. Section 2.5 follows [1], [7], [8] and [9]. Appendix A.1, which belongs to
this chapter, follows [1].

2.1 General ~-Scaling of Timescales
Before computing the quantum break-time in specific models, we will discuss some
general features of classicality that are based on scaling properties. A key charac-
teristic of any quantum field-theoretic system is the strength of interaction between
its quanta, which can be parameterized by a dimensionless quantity α. In the quan-
tum language, α controls the magnitude of scattering amplitudes. Typically, it is
convenient to use 2 → 2-scattering as a reference point. Of course, the system
may possess more than one type of interaction, and correspondingly more than
one type of α. However, for purposes of this discussion, a single α is sufficient.

We can always normalize fields in such a way that α � 1 corresponds to a
weak-coupling domain, in which a perturbative expansion in powers of α can be
performed. Correspondingly, α > 1 describes a strong coupling regime, for which
perturbation theory in α breaks down. Throughout we shall restrict ourselves to
systems with weak coupling. Even for α � 1, however, the system can become
strongly interacting in a collective sense. This can happen if the system is put in
a state in which the occupation number of interacting quanta N is large enough.
In that case, the strength of interaction is determined by the collective coupling

λ ≡ αN . (2.1)

The regimes of interest can be then split according to whether it is weak (λ < 1),
strong (λ > 1) or critical (λ = 1).

We remark that in the case of an extended system, N refers to the number
of particles with which a given particle can interact efficiently. In the case of
a constant particle density, a natural choice therefore is to consider the typical
wavelength λ ∼ ~/E of a particle as characteristic size of the volume, where E
is its typical energy. This is the reason why we restrict ourselves to one Hubble
patch in the corpuscular picture of de Sitter, which we reviewed in section 1.3.2.
Equivalently, it is also possible to consider an arbitrary volume, but then α needs

1Important aspects of [1] were moreover published in the proceedings [72].
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to be chosen in such a way that it describes the average interaction strength of
a pair of particles. If an interaction is short-range, it correspondingly leads to a
small value of α.

We can draw important conclusion by studying how the various quantities scale
when we take the classical limit, ~→ 0, while keeping all the classically-measurable
expectation values fixed, i.e. all the parameters in the classical Lagrangian are kept
finite. In particular, the collective coupling λ is a classical quantity since it char-
acterizes the strength of classical nonlinearities. Therefore, it is independent of ~
and stays finite in the classical limit. Since the quantum coupling vanishes, α→ 0,
for ~ → 0, this implies that in the classical limit we have N → ∞. Therefore,
states which behave approximately-classically are characterized by a large occupa-
tion number of quanta N . This is in full accordance with our discussion of black
holes and de Sitter in section 1.3.

Keeping in mind that we are at large N , small α and some fixed λ, we can now
perform some dimensional analysis. We assume that the system is well-described
classically at some initial time t = 0 and we wish to estimate how long it will
take for the classical description to break down. Obviously, this timescale must
satisfy the scaling property of becoming infinite in the classical limit ~→ 0. Then
assuming a simple analytic dependence, the quantum break-time should scale to
leading order as

tq ≈ (fixed classical quantity)×Nβ = (fixed classical quantity)× α−β , (2.2)

where β > 0 is an integer and we used that λ = αN is a fixed constant. Already
for β = 1, this timescale is huge for macroscopically-occupied weakly-interacting
systems.

For completeness, we want to point out that there is another possible functional
dependence which fulfills a simple scaling behavior in the classical limit and which
requires special attention:

tq ≈ (fixed classical quantity)× ln(N) = (fixed classical quantity)× ln(α−1) .
(2.3)

Such a scaling cannot be excluded on the basis of general dimensional analysis. In
fact, it was explicitly shown in [40] that it does take place, but under the following
conditions:
1) the system must be in an overcritical state, i.e. in a state with λ > 1; and
2) the system in this state must exhibit a classical instability, i.e. a Lyapunov
exponent which is independent of ~.
Under such conditions, the quantum break-time was found to be given by

tq ≈ Ω−1 × ln(N) , (2.4)

where Ω is the Lyapunov exponent. In section 2.2.4, we will review the system
studied in [40] that can exhibit such a short quantum break-time.
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2.2 A Basic Example

2.2.1 Classical Solution
Nonlinearities

Next, we investigate quantum breaking in an explicit example of a scalar field φ
in 3 + 1 dimensions. First, we study it on the classical level where its Lagrangian
is

L = 1
2∂µφ∂

µφ− 1
2m̄

2φ2 + 1
4! ᾱφ

4 . (2.5)

Here m̄ is the classical frequency and ᾱ represents a classical coupling constant.
We put a bar on these quantities to distinguish them from their quantum coun-
terparts, which we shall discuss shortly. In the classical theory, the dimensions
of the parameters are [m̄−1] = (time) and [ᾱ] = (time) × (energy) whereas the
dimensionality of the field is [φ] =

√
(energy)/(time) . The equation of motion

reads
(�+ m̄2)φ− 1

6 ᾱφ
3 = 0 . (2.6)

In the free case, i.e. for ᾱ = 0, a solution is given by

φ0(t) = A cos(m̄t) , (2.7)

where A is the amplitude and we specialized to the spatially homogeneous case.
Our first goal is to study the full classical solution and in particular to determine

how long it can be approximated by the free solution (2.7). To this end, we compute
the first anharmonic correction φ1 to (2.7) in a series expansion in powers of ᾱ.
Plugging in the split

φ = φ0 + ᾱφ1 (2.8)
in (2.6), we obtain the equation of a driven harmonic oscillator:

(∂2
t + m̄2)φ1 = A3

6 cos3(m̄t) . (2.9)

Using the identity cos3(x) = (cos(3x) + 3 cos(x)) /4, it is easy to check that

φ1 = A
A2

192m̄2 (cos(m̄t)− cos(3m̄t) + 12m̄t sin(m̄t)) (2.10)

is the solution for the initial conditions φ1(0) = ∂tφ1(0) = 0. One could repeat
this procedure to iteratively find the full classical solution.

For us, however, only the leading deviation from the free solution will be im-
portant. It is caused by the resonant term ∝ (m̄t) and can be neglected as long
as

ᾱ
A2

m̄2 m̄t� 1 . (2.11)



2.2 A Basic Example 25

This leads to the timescale
tcl ≈ m̄−1 m̄

2

ᾱA2 . (2.12)

We will refer to it as classical break-time since it determines the point where
the approximation in terms of the free solution (2.7) ceases to be valid. The
nonlinear corrections that cause this breakdown correspond to an expansion in the
dimensionless quantity

λ ≡ ᾱ
A2

m̄2 , (2.13)

which determines the strength of classical interactions. It will become clear shortly
that as notation indicates, λ indeed corresponds to the collective coupling in the
quantum theory, as defined in Eq. (2.1). For our conclusions, it will be important
that corrections which scale as λ are classical and therefore cannot lead to quan-
tum breaking. Correspondingly, we emphasize that the classical break-time has a
fundamentally different meaning than the quantum break-time.

Classical Versus Quantum Break-Time

The next step will be to find a quantum description of the classical solution. In
doing so, the presence of classical nonlinearities leads to an immediate difficulty.
This is the problem of identifying the Fock space of creation and annihilation
operators ĉ†, ĉ in which the coherent quantum state describing the given classical
solution can be defined. If for a given solution nonlinear interactions are important,
in general its quantum constituents ĉ†, ĉ differ from the quantum constituents
ĉ†free, ĉfree which describe the (almost) free waves obtained by solving the classical
equations of motions in the same system, but in a weak field limit. The obvious
reason for this difference is that in nonlinear waves, interactions are important and
the would-be free particles are off-shell. Correspondingly, the dispersion relation
of the modes ĉ†, ĉ is in general very different from the one of ĉ†free, ĉfree. In other
words, ĉ†free creates a free quantum whereas ĉ† creates one which interacts with the
other background constituents.

Ideally, one would choose the operators ĉ†, ĉ that take into account all non-
linear interactions in such a way that a coherent state formed out of them leads
to the correct classical expectation value for all times, as long as one neglects
quantum interactions, i.e. sets ~ = 0. For a generic classical solution, however,
it is impossible to find such operators. To overcome this problem, our strategy
is to approximate the classical solution by the free solution and correspondingly
to replace ĉ†, ĉ by ĉ†free, ĉfree. This is only possible on timescales that are shorter
than the classical break-time tcl. Within the validity of this approximation, we
will be able to compute quantum effects that lead to a deviation from the classical
solution.

The crucial question is what we can learn from this analysis based on the free
classical solution about quantum breaking in the full nonlinear case. Clearly, we
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will not be able to draw conclusions about the precise way in which quantum
effects lead to deviations from the classical description since we have changed the
classical solution. It is important to note, however, that our approximation is
purely classical: We replace the exact classical solution by a different classical
function. For the approximate function, we find an exact quantum-corpuscular
resolution in terms of ĉ†free, ĉfree. When the description of the classical solution in
terms of ĉ†free, ĉfree breaks down, this only happens because the approximation of
the exact solution on the classical level stops being valid. Thus, we only neglect
classical nonlinearities. It is reasonable to expect that taking those into account
would not change the overall strength of quantum effects, i.e. the rate at which
the classical solution deteriorates. Since the timescale of quantum breaking is only
sensitive to the magnitude of quantum effects but not to their precise nature, we
will be able to estimate the quantum break-time. We will elaborate on this point
in section 2.2.5.

2.2.2 Deviations from the Classical Evolution
A Quantum Picture of the Classical Solution

Now we are ready to give a quantum description of the field φ. To this end,
we need to switch to the relevant quantum quantities. The classical frequency
m̄ determines the mass of the quantum particles and the classical coupling ᾱ
determines the dimensionless quantum coupling:

m = ~m̄ , α = ~ᾱ . (2.14)

We note that the relevant powers of ~ can be inferred from dimensional analysis.
Because of the importance of the scaling with ~, we will continue to keep it explicit.
The quantum Lagrangian that corresponds to the theory (2.5) is

L̂ = 1
2∂µφ̂∂

µφ̂− 1
2~2m

2φ̂2 + 1
4!~αφ̂

4 . (2.15)

Our overall goal is to investigate corrections which lead to a departure of the
true quantum evolution from the classical solution. To this end, the next step is to
understand the classical solution as expectation value in an underlying quantum
state. As explained, we will neglect interactions in doing so, ᾱ = 0. In that
case, we can expand the full Heisenberg operator φ̂ in creation and annihilation
operators:2

φ̂ =
∑

#»
k

√√√√ ~
2V ω #»

k

(
ĉ #»
k e
−ikx + ĉ†#»

k
eikx

)
, (2.16)

2We use sums instead of integrals to emphasize that any physical process happens in a finite
volume. Correspondingly, we employ dimensionless operators ĉ†#»

k
, ĉ #»

k . This convention also
makes it easier to take the nonrelativistic limit. If one considers the idealization of infinite space
in order to facilitate computations, this leads to

∑
#»
k → V/(2π~)3 ∫ d3 #»

k .
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where V is the volume, kx ≡ ω #»
k t − ~−1 #»

k #»x and ω #»
k = ~−1

√
m2 + | #»k |2 . The

creation and annihilation operators satisfy the standard commutation relations,

[ĉ #»
k , ĉ #»

k ′ ] = [ĉ†#»
k
, ĉ†#»

k ′
] = 0 , [ĉ #»

k , ĉ
†
#»
k ′

] = δ #»
k ,

#»
k ′ . (2.17)

Next, we need to fix the quantum state |N〉 of the scalar field φ̂. It has to fulfill
the requirement that the expectation value over it yields the classical harmonic
oscillator solution φ0(t) of equation (2.7). Since φ0(t) is translation invariant, we
can only use quanta of zero momentum. In this momentum mode, the simplest
state that yields the classical solution is a coherent state:

|N〉 ≡ e− 1
2N+

√
N ĉ†0 |0〉 = e− 1

2N
∞∑
n=0

N
n
2

√
n!
|n〉 , with (2.18)

N = V
mA2

2~2 . (2.19)

In this formula, |n〉 = (ĉ†#»0 )n(n!)− 1
2 |0〉 are normalized number eigenstates of n

quanta with zero momentum. Because of Eq. (2.16), it is easy to see that the state
|N〉 indeed yields the correct expectation value, i.e. the oscillating solution (2.7):

〈N | φ̂ |N〉 = A cos(m̄t) , (2.20)

where we used that ĉ #»0 |N〉 =
√
N |N〉. Thus, the requirement (2.20) to reproduce

the classical expectation value fixes the mean occupation number N of the coherent
state.

We conclude that from the point of view of the noninteracting quantum theory
(i.e. for α = 0), the oscillating classical field φ0(t) is a coherent state of zero-
momentum quanta of mean occupation number density

n = m̄A2

2~ . (2.21)

In order to obtain a typical total particle number, we need to choose a volume. As
explained in section 2.1, it is natural to use the wavelength of particles as reference
scale since this corresponds to the distance on which a given particle can interact
efficiently. This leads to V = m̄−3 and we obtain

N = ~−1 A
2

2m̄2 . (2.22)

As already discussed in section 2.1, we observe that N scales as ~−1. This means
that it becomes infinite in the classical limit ~→ 0.

Furthermore, we want to study the energy of the coherently oscillating solution
(2.7). There are two ways to evaluate it. First, we can compute it on the classical
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level, i.e. by plugging the solution in the Hamiltonian derived from the classical
Lagrangian (2.5). For α = 0, we obtain the energy density

ρ = m̄2A2

2 . (2.23)

On the quantum level, there is a second way to determine ρ. Since the coherent
state |N〉 has a number density n and each quantum carries an energy m, the
energy density must be

ρ = mn . (2.24)

As is evident from Eq. (2.21), this yields the same result. The energy density
of the classical solution φ0(t) and of the quantum state |N〉 match. We remark
that Eq. (2.24) can also be used to derive the occupation number of the coherent
state from classical quantities: Given the energy density ρ and the frequency m̄,
it determines the number density of the quantum state as n = ρ/(~m̄).

Finally, we conclude that λ has acquired a twofold meaning. First, it controls
the strength of classical nonlinearities, as is apparent from Eq. (2.13). Secondly,
it follows from expression (2.22) for N that it corresponds to collective coupling
of the quantum theory, λ = αN , in accordance with Eq. (2.1). Thus, classical
nonlinearities translate to the quantum theory as collective interactions. We will
elaborate on this point in section 2.2.3.

Construction of the Coherent State

For the sake of completeness, we will outline two procedures to construct the
coherent state (2.18). The first one is to look for a state which maximizes the
classical expectation value, i.e. ∣∣∣〈N |φ̂|N〉∣∣∣

〈N |N〉
. (2.25)

This condition amounts to realizing the classical result with a minimal quantum
input. As shown in [73], this procedure leads to (2.18). Essentially, the reason is
that coherent states are eigenstates of the annihilation operator.

A second justification for the use of coherent states would be to follow [74].
There, the idea is to consider a shift of the state φ = 0, which corresponds to the
classical vacuum, to a different value φ = A. In the limit m̄ → 0, such a shift
φ→ φ+ A by a constant A would correspond to a symmetry. The corresponding
shift-generator Q̂, which would represent a conserved charge for m̄ → 0, has the
form:

Q̂(t) =
∫

d3 #»x ∂tφ̂ = −iq
(
e−im̄tĉ #»0 − eim̄tĉ†#»0

)
, (2.26)
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Deviations from Classical Results

Axion Four

N { k2 = (2m, − #»k )

k1 = (2m,
#»k )

} N ′ = N−4

8

Figure 2.1: Four φ̂-particles of the coherent state annihilate into two free particles
with nonzero momenta. Their 4-momenta are denoted by k1 and k2.

with q =
√

mV
2 . Using this generator, we can obtain the coherent state |N〉 by

shifting the vacuum state |0〉 corresponding to φ = 0:

|N〉 := exp
{
−iAQ̂(t = 0)/~

}
|0〉 = exp

{√
N
(
ĉ #»0 − ĉ

†
#»0

)}
|0〉 , (2.27)

with
√
N = Aq/~, i.e. N = A2mV

2~2 as in (2.19). Note that our states must be
time-independent since we are working in the Heisenberg picture. Thus, we have
evaluated the charge operator at a fixed time. We could have introduced a constant
phase in this way, but for simplicity we set it to 0. Using the Baker-Campbell-
Hausdorff formula, we finally obtain (2.18).

Leading Quantum Process

Now we can come to our main goal, namely the computation of the quantum break-
time, which is the timescale when the expectation value of the quantum field will
no longer match the classical solution. Because we approximated the classical
solution by neglecting classical nonlinearities, we cannot make a statement about
what the resulting (“departed”) state will be. Nevertheless, we can estimate the
time scale tq on which the coherent state approximation and therefore the classical
description break down. The implications of our approximations will be further
discussed in section 2.2.5.

We are interested in the leading process that is not captured by the classical
solution. Generically, the dominant contribution would come from scattering due
to four-point coupling. However, in the approximation in which the initial and final
particles are treated as free, the rate is suppressed due to momentum conservation:
Since both initial and final particles carry vanishing momentum, the phase space
for such a process is zero.

Therefore, the lowest order nonvanishing process involves the participation of
six φ̂-particles. For instance, four particles of the coherent state can annihilate
into two particles with nonzero momenta, as is depicted in Fig. 2.1. The final
state of such a process can be a tensor product of two one-particles states of
4-momenta k1 = (E1,

#»

k 1) and k2 = (E2,
#»

k 2) with a coherent state |N −∆N〉
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of zero momentum particles of reduced mean occupation number N − ∆N . We
will not fix ∆N for now but discuss its meaning shortly. By energy-momentum
conservation, we have #»

k1 = − #»

k2 and E1 = E2 = 2m. The tree-level amplitude
A for the transition |N〉 → |N −∆N〉 | #»k1〉 |

#»

k2〉 comes from a process with one
internal propagator:

A ≈ α2 〈N −∆N | 〈 #»

k1| 〈
#»

k2| (ĉ†#»
k1
ĉ†#»
k2
ĉ0ĉ0ĉ0ĉ0) |N〉 ≈ α2N2e−∆N2

8N , (2.28)

where the factor e−∆N2
8N is due to the overlap of coherent states with different mean

occupation number.
For large N , we can approximate it as e−∆N2

8N ≈ 1−∆N2/(8N). Thus, as long as
∆N2 � N , different choices of the final coherent state lead to the same amplitude,
up to 1/N -corrections. This is due to the fact that a coherent state is not a particle
number eigenstate, i.e. coherent states with different mean occupation numbers
have a nonzero overlap even without any interaction. Our goal is not to consider
this non-Hamiltonian effect. Instead, we want to focus on how the coherent state
evolves due to interaction of coherent state constituents. Therefore, it is most
natural to consider the process which would also be possible if we were to replace
the coherent background states by number eigenstates. This leads to ∆N = 4.
Moreover, this choice of ∆N conserves the expectation value of the energy in the
limit of vanishing interaction energy. In any case, the precise value of ∆N does
not matter for our conclusions.

Since we are only interested in the leading contribution to the rate of the
scattering process, we will neglect the 1/N -correction that is sensitive to ∆N from
now on. Then we obtain

Γ4→2 ≈ m̄(αN)4 = m̄λ4 , (2.29)

where we used the collective coupling λ as defined in (2.1). Note that the classical
frequency m̄ appears, which leads to the correct dimensionality [Γ−1

4→2] = (time).
The rate (2.29) determines how fast the coherent state loses its constituents and
de-classicalizes.

We point out that one can estimate the rate (2.29) without an explicit S-
matrix computation. Namely, we know that the amplitude consists of two 4-point
couplings. Thus, it must scale as α2 and therefore the rate contains α4. However,
this would describe a process in which four fixed particles scatter. Because of the
degeneracy in the initial state, there are

(
N
4

)
possibilities to select the four particles

that scatter. This leads to an enhancement factor of
(
N
4

)
≈ N4. Finally, the only

quantity that has the correct dimensionality 1/(time) of a rate is m̄. Putting
together these ingredients, we get a rate Γ4→2 ≈ m̄α4N4, in full accordance with
Eq. (2.29).

Finally, we remark that for tree-level multi-particle amplitudes with a large
enough number of external legs, perturbation theory is expected to break down
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due to a factorial growth of the diagrams. This breakdown will not affect our con-
clusions because nonperturbative arguments indicate that multi-particle quantum
processes – e.g. ones in which the coherent state loses order-one fraction of its
constituents during one oscillation time – must be exponentially suppressed. This
suppression can be explicitly seen by adopting the results of [45], where analogous
multi-particle amplitudes have been computed for gravitons. For reading out the
exponential suppression, the spin of the particle is inessential. Hence, we can safely
conclude that the leading-order process which leads to de-classicalization of the
spatially-homogeneous time-dependent field has the rate (2.29).

Quantum Break-Time

So far, we have computed the timescale Γ−1
4→2 during which 4 constituents of the

coherent state experience rescattering. However, this is not yet the quantum
break-time. A significant deviation from the classical solution only occurs once
a significant fraction of the particles in the coherent state has undergone such a
process. Since the mean occupation number in the coherent state is N , quantum
rescattering is able to give a significant departure from the coherent state only
after a sufficiently large fraction of particles, i.e. of the order of N , experience
rescattering. This process takes the time

tq, 4→2 ≈ NΓ−1
4→2 = m̄−1 1

λ3α
. (2.30)

We can verify that tq, 4→2 is indeed a quantum timescale. Whereas m̄ and λ are
classical, i.e. independent of ~, the quantum coupling scales as α ∼ ~. Therefore,
we have tq, 4→2 ∼ ~−1 and the quantum break-time becomes infinite in the classical
limit ~→ 0, as it should. Furthermore, we remark that the result (2.30) is in full
accordance with the generic scaling-argument in section 2.1, which led to Eq. (2.2).

The Classical and Semiclassical Limit

We can investigate the meaning of the classical and semiclassical limit, which we
have introduced in section 1.3. In the classical limit ~ → 0, all quantum effects
vanish. This leads to an infinite quantum break-time, as we have just discussed.

Quantum breaking can also be avoided in the semiclassical limit. As we have
shown using the examples of black holes (Eq. (1.5)) and de Sitter (Eq. (1.18)),
its key idea is to make the energy of the classical solution infinite while keeping
the collective coupling fixed. In this way, any backreaction can be avoided. In
the present case, it follows from Eqs. (2.13) and (2.23) that the semiclassical limit
corresponds to taking

A→∞ , ᾱ→ 0 , ᾱA2 fixed . (2.31)

Thus, we consider a vanishing classical coupling and an infinite classical amplitude
while keeping ~ finite.
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Deviations from Classical Results

Axion Two

N {
k2

k1

} N ′ = N−2
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Figure 2.2: Two φ̂-particles of the coherent state annihilate into two particles that
are not in the coherent state. Their 4-momenta are denoted by k1 and k2. Because
of phase space suppression, this process only becomes possible if the constituents
of the coherent state have nonzero momenta or if the interaction potential gives a
contribution to the asymptotic energies.

Both the classical limit ~ → 0 and the semiclassical limit (2.31) imply on the
quantum level that

N →∞ , α→ 0 , λ fixed , (2.32)

as is evident from Eqs. (2.13), (2.14) and (2.22). This is in full accordance with the
analogous limits in the case of black holes (Eq. (1.11)) and de Sitter (Eq. (1.24)).
Thus, we uncover a universal mechanism. The (semi)classical limit corresponds to
avoiding backreaction by making the number of particles infinite. Correspondingly,
α→ 0 leads to a diverging quantum break-time.

2.2.3 Other Scattering Processes
Quantum Break-Time due to 2→ 2-Scattering

So far, we have considered 4→ 2-scattering as the leading quantum process. The
reason was that 2→ 2-scattering is kinematically forbidden in the approximation
that initial and final particles are free. In reality, however, the interaction potential
gives a small contribution to the asymptotic energy of the particles. This makes
the process of 2→ 2-scattering possible. Moreover, this process becomes relevant
for generic initial states, in which particles in the coherent state have nonzero
momenta. Therefore, we give an estimate of the quantum break-time due to 2→ 2-
scattering.

First, we compute the rate of this process, which is displayed in Fig. 2.2. We
will give an upper bound on the rate by assuming that the momenta are comparable
to m, i.e. we ignore any phase space suppression. In that case, we get

Γ2→2 ≈ m̄λ2 . (2.33)

The corresponding quantum break-time is given by

tq, 2→2 ≈ NΓ−1
2→2 = m̄−1 1

λα
. (2.34)
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In the undercritical regime λ < 1, this timescale is shorter than the quantum break-
time (2.30) due to 4 → 2-scattering. Still it also scales as tq, 2→2 ∼ α−1 ∼ ~−1.
Thus, it is a quantum timescale and compatible with the scaling relation (2.2).
Moreover, we conclude that the collective coupling λ controls which process gives
the dominant contribution to quantum breaking.

Using the classical break-time (2.12), we can rewrite Eq. (2.34) as

tq, 2→2 = tcl
α
. (2.35)

This shows that even the lower bound on the quantum break-time is larger than the
timescale of classical nonlinearities by the big factor 1/α. This observation that
quantum effects always grow more slowly than classical ones will be important
later.

Role of Decay

Furthermore, we would like to investigate quantum breaking due to particle decay.
To this end, we shall enlarge the theory (2.15) by introducing a coupling of φ̂ to a
new particle species ψ̂ to which φ̂ can decay. The Lagrangian becomes

L̂ = 1
2∂µφ̂∂

µφ̂− 1
2~2m

2φ̂2 + 1
4!~αφ̂

4 + i ˆ̄ψγµ∂µψ̂ −
√
α φ̂ ˆ̄ψψ̂ . (2.36)

We take ψ̂ to be a massless fermion, although the spin and the mass are unimpor-
tant for this consideration as long as the new particle is light enough to allow for
a decay of φ̂. In order to make a clear comparison, we have chosen the coupling
to fermions to be of the same strength as the bosonic self-coupling. In this way,
the amplitudes of both 2→ 2 scatterings, φ̂+ φ̂→ φ̂+ φ̂ and φ̂+ φ̂→ ψ̂ + ψ̂, are
controlled by the same coupling α.

The decay rate for the production of a pair of ψ̂-quanta is given by

Γdecay ≈ m̄αN . (2.37)

The corresponding macroscopic timescale, after which on the order of N quanta
of the initial coherent state have experienced this decay process, is

tdecay ≈ m̄−1 1
α
. (2.38)

As in the processes considered before, this timescale is quantum, tdecay ∼ ~−1,
because of the scaling with 1/α. Comparing Eq. (2.38) with the quantum break-
time (2.34) due to 2 → 2-scattering of φ̂-quanta, we conclude that decay is the
dominant quantum process in the regime λ < 1. Nevertheless, the corresponding
timescale is still longer than tcl = m̄−1/λ, as it should.
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The role of decay is special since it does not affect the coherence of the state of
φ̂-quanta. The reason is that the part of the interaction Hamiltonian responsible
for a two-body decay of φ̂-quanta only contains the annihilation operator ĉ #»

k of φ̂-
quanta and the creation operators for ψ̂-particles. The coherent state |N〉, however,
is an eigenstate of ĉ #»

k and hence unchanged under its action. Thus, the final state
of a pure decay process is still maximally classical. Correspondingly, the evolution
can be described by a seemingly classical equation with an additional friction term:

φ̈+ t−1
decayφ̇+ m̄2φ− 1

6 ᾱφ
3 = 0 . (2.39)

It is crucial to note, however, that Eq. (2.39) is in fact not classical since tdecay
depends on ~.

This shows that decay represents a border case of quantum breaking. On the
one hand, the final state of decay still admits a classical description. On the other
hand, the transition to this final state can only be described by a quantum process.
A classical observer is completely blind to it. Finally, we remark that the theory
(2.36) will eventually also violate coherence. This happens due to rescattering
events of the produced ψ̂-particles since the corresponding interaction term also
contains creation operators of φ̂-particles.

Quantum Picture of Classical Processes

We have discussed that the interaction rate gets enhanced by a highly occupied
initial state, e.g. in Eq. (2.33) for the case of 2→ 2-scattering. A natural question
to ask is if it is possible to further enhance the rate if also the final state is highly
occupied. Sticking to the example of 2 → 2-scatting, we see that the rate gets
indeed enhanced by a factor of N if one of the modes in the final state is also
highly occupied:3

Γenhanced ≈ m̄λ2N . (2.40)
Correspondingly, the timescale after which on the order of N particles have expe-
rienced such a process is much shorter:

tcollective ≈ NΓ−1
enhanced = m̄−1 1

λ2 . (2.41)

The crucial point, however, is that this result is independent of ~. Instead, tcollective
only depends on the classical quantities m̄ and λ. Thus, this process is not quan-
tum, but we have discovered how classical nonlinearities can be described in the
quantum language. Obviously, such an interaction cannot lead to quantum break-
ing.

3One can wonder why we do not consider a process in which both modes in the final state are
highly occupied. The reason is that in such a case, the rate of a process in which initial and final
states are exchanged are the same to leading order so that these interactions effectively cancel
(see e.g. also [75]).
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2.2.4 Nonrelativistic Model
Fast Quantum Breaking

As we have already discussed in section 2.1, it was demonstrated in [40] that a
simple system of cold bosons can exhibit a remarkably short quantum break-time
in the regime in which the boson gas is overcritical and unstable. In that case,
this timescale is determined by the Lyapunov exponent of the classical instability,
which the system exhibits in this regime.

In this section, we review the corresponding results from [40]. The system
studied there, which was previously analyzed in [76], consists of nonrelativistic
bosons of mass m, which are contained in a periodic d-dimensional box of radii
R and exhibit a simple attractive interaction. The Hamiltonian has the following
form:

Ĥ =
∫

dd #»x ψ̂†
−~2∆

2m ψ̂ − g

2

∫
dd #»x |ψ̂|4 , (2.42)

where the parameter g > 0 controls the strength of the attractive interaction among
the bosons. The corresponding dimensionless coupling is

α = 4gmR2

~2V
, (2.43)

where V = (2πR)d is the d-dimensional volume. Note that up to the choice of
boundary conditions, the system (2.42) is the nonrelativistic limit of the model
(2.15) in the case d = 3.

We can represent ψ̂ as a classical mean field and the quantum fluctuations,
ψ̂ = ψcl + δ̂ψq, where ψcl satisfies the Gross-Pitaevskii equation [77,78]:

i~∂tψcl =
(
− ~

2

2m∆− g|ψcl|2
)
ψcl = µψcl . (2.44)

The parameter µ is the chemical potential, which plays the role of a Lagrange
multiplier for imposing the constraint

∫
dd #»x |ψcl|2 = N . We shall focus on the

homogeneous solution,
|ψcl|2 = −µ

g
= N

V
. (2.45)

It represents a mean field description of the quantum state in which only the
zero-momentum mode is macroscopically occupied. This solution exists for all
nonzero values of the parameters. However, beyond a certain critical point it
becomes unstable and the system undergoes a quantum phase transition. In the
overcritical regime, the instability of the homogeneous solution manifests itself as
Lyapunov exponent which is independent of ~.

In order to investigate stability, we go to momentum space:

ψ̂ =
∑

#»
l

1√
V

ei
#»
l
R

#»x â #»
l . (2.46)
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Here #»

l is the d-dimensional wave-number vector, which determines the momentum
as #»

k = ~ #»

l /R. The operators â†#»
l
, â #»

l are the creation and annihilation operators
of bosons of momentum-number vector #»

l and satisfy the usual algebra: [â #»
l , â
†
#»

l′
] =

δ #»
l

#»

l′ and all other commutators zero. Then the Bogoliubov-de Gennes frequencies
are given by [79]:

~ω #»
l = | #»l | ~

2

2mR2

√
| #»l |2 − λ . (2.47)

They are controlled by the collective coupling λ = αN . All modes with | #»l |2 < λ
become imaginary. Thus, instability sets in for λ > 1, and the number of unstable
l-modes depends on the magnitude of the criticality parameter λ. In the regime
in which only the | #»l | = 1-mode is unstable, the explicit numerical analysis of [40]
shows that the quantum break-time scales as

tq, fast ≈ ω−1
#»1 ln(N) . (2.48)

By increasing λ, one can destabilize higher and higher momentum modes and
correspondingly make the Lyapunov exponents large. Finally, we note that ω #»

l are
classical quantities because m/~ is classical and represents a zero mode oscillation
frequency of an underlying classical field, whose quanta are the bosons in question.
Thus, an important message which we take from the results of [40] recounted above
is: The quantum break-time can be shortened in the overcritical regime, provided
that the initial state exhibits a classical instability, i.e. an instability characterized
by an ~-independent Lyapunov exponent.

However, the following clarification is in order. The expression (2.47) creates
the impression that we can make the quantum break-time arbitrarily short time if
the system is sufficiently overcritical, i.e. if we increase the collective coupling λ,
e.g. by keeping all the other parameters fixed and increasing the occupation number
of zero-momentum quanta. However, one has to be very careful with this limiting
case. Although it is legitimate to take the limit λ→∞ in the nonrelativistic model
given by the Hamiltonian (2.42), an underlying fundamental relativistic quantum
field theory may go out of the validity. For example, in the case of cold bosons,
one reason is that they can only be described by the Hamiltonian (2.42) as long
as the gas is sufficiently dilute.

No Quantum Breaking4

It is also very interesting to study the model (2.42) in the undercritical regime
λ < 1. In that case, it is possible to investigate the model analytically, where we
will confine ourselves to d = 1. We will follow the analysis of [40]. First, we go to

4Here some material from appendix B.2 of [5] was used.
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momentum space by using Eq. (2.46):

Ĥ = ~2

2mR2

[ ∞∑
l=−∞

l2â†l âl −
α

4

∞∑
l,m,n=−∞

â†l â
†
mân+lâm−n

]
. (2.49)

Then we use the Bogoliubov approximation [79], â0 →
√
N , to focus on states in

which only the 0-mode is occupied. We obtain

Ĥ = ~2

2mR2

[∑
l 6=0

(
l2 − λ

2

)
â†l âl −

1
4λ

∑
l 6=0

(â†l â
†
−l + âlâ−l)

]
. (2.50)

Now we perform the Bogoliubov transformation

âl = ulb̂l + v∗l b̂
†
−l , (2.51)

where we choose

u2
l = 1

2

(
1 +

l2 − λ
2

εl

)
, v2

l = 1
2

(
l2 − λ

2
εl
− 1

)
. (2.52)

This gives the diagonalized Hamiltonian

Ĥ = ~2

2mR2

∑
l 6=0

εlb̂
†
l b̂l , εl =

√
l2(l2 − λ) . (2.53)

Obviously, the Bogoliubov transformation is only well-defined in the undercritical
regime λ < 1. Moreover, since the Bogoliubov approximation neglects corrections
that scale as 1/N , it already breaks down close to the critical point, i.e. for λ / 1.5
Nevertheless, the Bogoliubov energies agree with the previous result (2.47) both
in the undercritical and in the overcritical regime: ~ωl = ~2/(2mR2)εl.

In this model, we can study quantum breaking by analyzing the number of
depleted particles Nd in the ground state |0b〉 of the Bogoliubov modes:

Nd =
∑
k 6=0
〈0b| â†l âl |0b〉 =

∑
l 6=0

v2
l . (2.54)

In the regime λ� 1, we get
Nd = π4λ2

720 , (2.55)

which is smaller than 1. Clearly, this shows that for λ � 1 significant depletion
never happens, Nd � N , i.e. there is no quantum breaking. We note that the
dominant contribution to depletion is due to the lowest-lying modes l = ±1.
Thus, the absence of quantum breaking is connected to the fact that the phase
space for depletion is very small, i.e. only a few modes are accessible. For this
reason, we expect that in a generic quantum field-theoretic system, in which many
different momentum modes are accessible, quantum breaking also takes place in
the undercritical regime.

5We remark that the Bogoliubov approximation can be made arbitrarily precise in the double-
scaling limit (3.20), which we shall introduce and discuss in section 3.1.4.
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2.2.5 Summary
We will summarize what we have learned about quantum breaking. The first
question is about the validity of our approximations. Namely, we have seen (see e.g.
Eq. (2.35)) that the quantum break-time tq is generically bigger than its classical
counterpart tcl. Since the linear approximation of the classical solution, on which
we base our computation of quantum effects, already breaks down on the timescale
of the classical break-time, one is immediately led to wonder whether one can make
any statement at all about the quantum break-time of the full nonlinear system.

The answer is positive and the reason is that we determine the quantum break-
time in a two-step process. First, we only study the system on timescales shorter
than tcl. In this regime, we can reliably compute quantum effects. The second step
is to assume that the overall strength of quantum interactions, i.e. the rate at which
the classical approximation deteriorates, stays approximately constant even after
tcl. Since quantum breaking is only sensitive to the magnitude of quantum effects
but not their precise nature, this allows us to obtain the quantum break-time by
extrapolation.

The reason that we expect this procedure to work is that our approximation
solely happens on the classical level. In order to promote our linear approximation
to the full solution, the only missing ingredient are classical nonlinearities. Thus,
one would have to change the Fock basis by performing an appropriate Bogoliubov
transformation and to use the coherent state description in terms of interacting
quanta ĉ†, ĉ instead of free ones ĉ†free, ĉfree. In this way, we could increase the
classical break-time. The key point is that doing so can solely lead to classical
corrections, which only depend on λ. In contrast, the strength of quantum effects
that lead to a gradual departure from the classical evolution is still given by the
quantum coupling α. Therefore, the timescale on which these quantum effects
become important is of the same order of magnitude as in our linear model.

This fully resonates with our reasoning in section 2.1, which was solely based
on scaling arguments. Since the quantum break-time that corresponds to the
leading quantum effect must scale as ~−1, it still needs to contain a factor of 1/α
in the fully nonlinear theory. By taking into account classical nonlinearities, only
corrections that depend on λ may arise. Thus, we can represent the quantum
break-time generically as

tq ≈
tcl
α
, (2.56)

where the classical timescale tcl may be sensitive to classical nonlinearities, i.e. to
λ. As already stressed, the key point is that the quantum break-time is generically
long due to the small quantum coupling α.

We must remark that in principle systems can exist for which the estimate
(2.56) of the quantum break-time fails. However, this can only happen if the
overall strength of quantum effects is drastically changed during the nonlinear
evolution of a system. Whereas such a behavior seems very hard to achieve in
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general, we have seen in the explicit model (2.42) that quantum breaking may not
take place at all. As explained there, we believe that this behavior is caused by
the lack of phase space, i.e. the absence of different accessible momentum modes.
Therefore, we expect quantum breaking to take place in the relativistic model
(2.15). In any case, studying quantum breaking in more detail in such a system
constitutes an interesting topic of future research.

Whereas we can obtain the timescale of quantum breaking by extrapolation,
it is important to note that we are unable to make a statement about the precise
characteristics of quantum effects within our approximation: Since the classical
solution already deviates from the full nonlinear theory in our linearized model,
we cannot predict in what way the true quantum evolution deviates from the
classical description.

Finally, we emphasize that all considerations above pertain to the undercritical
regime, i.e. to a collective coupling λ < 1. In the opposite case, λ > 1, we
have reproduced the result (2.48) of [40] that quantum breaking can become fast,
provided a classical instability exists.

2.3 Application to Cosmic Axions

2.3.1 Importance of a Classical Description of Dark Matter
Axions

Next, we study quantum breaking in a concrete system, namely cosmic axions.
The axion [80, 81] is a well-known hypothetical particle which is predicted by
the Peccei-Quinn (PQ) solution [82] to the strong CP problem. It is a pseudo-
Goldstone boson of spontaneously-broken global chiral PQ symmetry. The explicit
breaking of this symmetry by the chiral anomaly through nonperturbative QCD
effects results in a nonzero mass of the axion. One of the beauties of axion physics
is that its low energy dynamics is extremely constrained due to the Goldstone
nature and the power of anomaly. The mass ma and the decay constant fa of the
axion field are related via a nonperturbative scale ΛQCD: ma = ~Λ2

QCD/fa. Note
that in any theory in which the sole source of the PQ symmetry breaking is the
QCD anomaly, the scale ΛQCD is entirely determined by the nonperturbative QCD
sector and the low-energy parameters of the Standard Model (such as the Yukawa
coupling constants of quarks) and is insensitive to the precise embedding of the
axion into a high energy theory, i.e. low energy axion physics is insensitive with
respect to UV-completion.

Phenomenological constraints put a lower bound on the scale fa approximately
around 109 GeV (see e.g. [83–85]). This speaks in favor of so-called invisible axion
models [86–89], in which the PQ symmetry can be broken at a very high scale
around fa & 109 GeV. Such a weak coupling implies that the axion is essentially
stable on cosmological scales. This fact makes the axion a very interesting dark
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matter candidate. In this scenario, the role of dark matter energy is played by the
energy of coherent oscillations of the axion field. Of course, the current energy of
the axion field depends on the cosmological epoch of the onset of axion oscillations
as well as on its initial amplitude Ain. Some conservative estimates are based on the
assumptions that the axion oscillations first started in the epoch of thermal phase
transition of QCD and with the maximal initial amplitude Ain ≈ fa. This gives the
famous cosmological upper bound: fa . 1012 GeV [90–92]. We must notice that
there exist loopholes [93] which soften this upper bound and allow for much higher
values of fa. For the present study, however, this change is unimportant and we
can safely assume fa to be below its conservative upper bound, fa . 1012 GeV.

The search for the dark matter axion has been an active field of research since no
signs of it have been found so far (see e.g. [94–100] for current experimental efforts).
Several of the proposed experiments heavily rely on the approximation of the gas of
axions by a coherently oscillating classical scalar field a(t). There has been a recent
discussion of the axion field on the quantum level (see e.g. [71,101–103]). Although
the main motivation there was astrophysical, it was also suggested that quantum
effects can significantly correct the classical description of axions. Obviously, it is
important to clarify this issue both from a fundamental as well as an experimental
point of view. In doing so, we will not discuss the astrophysical consequences
proposed in [71, 101–103]. Instead, we will only be concerned with the general
question if the classical description as oscillating scalar field is valid for axions.

Therefore, we will calculate a lower bound on the quantum break-time of the
cosmic axion field, i.e. the minimal required timescale before the true quantum
evolution of a multi-axion quantum state can depart from its classical mean field
description. To this end, we will show that axions can effectively be described by
the Lagrangian (2.15). Therefore, after identifying the appropriate parameters,
we can simply use the result (2.30) and (2.34) derived before. It will turn out
that if for some initial time the approximation of an axion gas by a classical
field is good, it remains good – with an extraordinary accuracy – for timescales
exceeding the current age of the Universe by many orders of magnitude. Hence,
experimental searches relying on the classical field approximation are safe for all
practical purposes.

2.3.2 Axion Properties

General Properties

First, we have to specify the theory by which axions can be described. In order to
determine their quantum break-time, however, the precise form of their potential,
which we denote by V (a/fa), is not so important. For our analysis, it suffices to
assume that it is a periodic function of a/fa. Only later, for concreteness, we shall
use a specific form which is widely used in the literature. In general, the energy
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density of a time-dependent classical axion field a(t) is given by

ρa = 1
2 ȧ

2 + V (a/fa) . (2.57)

So far, all quantities are classical and in accordance with our previous discussions,
the fields and parameters in (2.57) have the following dimensions: [a] = [fa] =√

(energy)/(time) and [V ] = (energy)/(time)3.
Of course, for a generic nonsingular function V (a/fa), the exact form of a(t) can

be very complicated and the oscillation period tosc can have a nontrivial dependence
on the amplitude. However, as long as the axion field does not reach the maxima
of the potential during its oscillations, the order of magnitude of tosc is given by
the inverse curvature of potential V (a) at its minimum, about which the axion
oscillates. Without loss of generality, we can set the minimum to be at a = 0.
Then, t−2

osc ≈
∂2V (a)
∂2a
|a=0 ≡ m̄2

a, where m̄a represents the classical frequency of small
oscillations (with infinitesimal amplitude).

In the cosmological environment, the coherent oscillations of a homogeneous
axion field are described by an equation similar to a damped anharmonic oscillator:

ä+ γȧ+ ∂V (a)
∂a

= 0 , (2.58)

where the friction term γ predominantly comes from the Hubble damping, γ ' 3H,
due to the expansion of the Universe. The contribution from the axion decay is
negligible. Note that for γ � m̄a, which is the case for most of the situations of
our interest, we can still identify certain important properties of the time evolution
a(t) without actually knowing the explicit forms of the functions V (a) and a(t).
The usual trick to achieve this is to first rewrite equation (2.58) in the following
form:

ρ̇a = −γȧ2 . (2.59)
Next we can average this expression over a timescale of order m̄−1

a , on which the
variation of γ is negligible and it can be treated as constant. Moreover, if the
axion oscillation amplitude is smaller than fa, nonlinearities are not important
and oscillations are dominated by the mass term. In such a case, the average
values over a period of oscillation of the kinetic and potential energies of the axion
field are equal and each carry half of the total energy density, 1

2 ȧ
2 = V (a) = 1

2ρa, so
that we can replace ȧ2 on the r.h.s. of (2.59) by ρa. Finally, applying the resulting
average expression for the evolution on timescales longer than the Hubble time
γ−1 � m̄−1

a , we get the following equation describing the time evolution of the
axion energy density:

ρ̇a = −γ ρa , (2.60)
where we drop the bar from now on. This can be easily integrated to give

ρa(t) = ρa(tin) exp
(
−
∫ t

tin
γ(t′) dt′

)
, (2.61)
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where tin is some initial time. Taking into account that γ = 3H, we immediately
get the well-known result that the axion energy density dilutes as the inverse-cube
of the cosmological scale factor, i.e. redshifts just like dust.

Correspondingly, we can use the temperature of the microwave background
radiation in the Universe as a useful clock for keeping track of the axion energy
density. Thus, we represent the evolution of the axion energy density in the fol-
lowing frequently-used form:

ρa(T ) = ρa(Tin)T
3

T 3
in
. (2.62)

The fact that the classical axion energy density redshifts as dust nicely matches
the quantum intuition according to which the time-dependent classical axion field
represents a mean field description of a quantum gas of cold bosons.

In the language of the oscillating classical field a(t), this means that due to
Hubble damping, the amplitude of the axion field reduces as

A(t) = Ain
T 3/2

T
3/2
in

. (2.63)

Since the initial amplitude Ain is bounded as Ain . fa because of the periodicity
of the potential, we conclude that in the cosmological environment, the amplitude
quickly satisfies

A� fa , (2.64)
i.e. oscillations are small due to Hubble damping.

In section 2.3.4, we will show that the friction term, which reduces the density of
axions, does not affect the validity of the classical description: The axion evolution
is still well-described by a classical solution of damped oscillations. We shall
therefore structure our analysis in the following way. First, we will ignore the
contribution from the friction term and develop a coherent-state picture of the
axion in the absence of dilution. In this setup, we identify the effects which lead to
a quantum break-time of the axion field. We show that the timescale is enormous.
We shall later take into account the underlying quantum effects which lead to
friction in the classical theory and show that the original assumption that they do
not contribute to quantum-breaking is consistent at the fundamental level.

Fundamental Parameters

For concreteness, we model the axion potential by the following widely-considered
form

V (a/fa) = Λ4
QCD(1− cos(a/fa)) , (2.65)

where the scale ΛQCD that is set by QCD and quark masses has dimensionality
[Λ4

QCD] = (energy)/(time)3. A crucial simplification occurs because the amplitude
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of oscillations is small due to Hubble damping, i.e. we have a/fa � 1. Corre-
spondingly, we can expand the axion potential. To leading order, we obtain a
Lagrangian of the form (2.5):

L = 1
2∂µa∂

µa− 1
2m̄

2
aa

2 + 1
4! ᾱaa

4 . (2.66)

For the axion, the classical parameters are given as

m̄a =
Λ2
QCD

fa
, ᾱa =

Λ4
QCD

f 4
a

. (2.67)

Thus, we can directly apply the whole analysis of section 2.2 to the case of cosmic
axions.

First, we turn to classical nonlinearities. They are controlled by the collective
coupling

λa = A2

f 2
a

, (2.68)

where we plugged in the axion parameters in Eq. (2.13). Thus, the smallness (2.64)
of oscillations implies that the collective coupling of axions is small:

λa � 1 . (2.69)

This undercriticality of cosmic axions, which we shall further discuss in section
2.3.5, will be important for our conclusions since it prevents the axions from enter-
ing a regime in which fast quantum breaking could take place. Moreover, since the
axion field can be well approximated by the free classical solution (2.7), it follows
that its energy density is given by

ρa =
A2Λ4

QCD

2f 2
a

, (2.70)

in accordance with Eq. (2.23) discussed before.
On the quantum level, we conclude that the mass ma and the dimensionless

coupling αa are given as before by

ma = ~m̄a , αa = ~ᾱa . (2.71)

Consequently, the occupation number in the reference volume V = m̄−3
a is

N = ~−1 f 2
aA

2

2Λ4
QCD

, (2.72)

as is evident from Eq. (2.22). This matches the energy density (2.70).
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2.3.3 Quantum Break-Time
Having determined the three fundamental parameters of the axion field – the mass
ma and coupling αa of the quantum theory as well as the state-dependent value of
λa – we can apply our previous analysis of quantum breaking, i.e. we simply need
to plug in the values for the axion field in the formulas for the quantum break-time
derived before. We will set ~ = 1 for the remainder of the discussion of axions.

First, we consider the process of 4 → 2-scattering depicted in Fig. 2.1.6 This
is the leading process in the limit of small axion momenta. Its rate is given by

Γ ≈ ma

(
Ttoday
Tin

)12
, (2.73)

where we used the collective coupling (2.68) of the axions as well as the dependence
(2.63) of the amplitude on the temperature. When we take Tin ≈ 100MeV as the
temperature of the QCD phase transition and also conservatively assume Ain ≈ fa,
we get for today’s axion field:

Γtoday ∼ ma 10−144 . (2.74)

Thus, the characteristic rescattering time required for a single scattering process,
i.e. for reducing the coherence of today’s axion field by a factor of order 1/N ,
already exceeds the age of the Universe by many orders of magnitude.

As we have discussed, quantum breaking can only occur once a significant
number of the order of N scattering processes has taken place. The corresponding
timescale is given by tq ≈ Γ−1N , which yields Eq. (2.30):

tq ≈ m−1
a

1
αaλ3

a

= m−1
a

f 8
a

m2
aA

6 . (2.75)

We see that the quantum break-time increases as A−6. Now we can evaluate it
at different epochs. First, we consider it at the onset of oscillations assuming the
initial amplitude to be maximal: Ain = fa. For example, taking the axion mass
ma ≈ 10−5 eV, which implies fa ≈ 1012 GeV, we get tq ≈ 1042 s. Even in this crude
estimate, in which we ignore Hubble dilution, the quantum break-time exceeds the
current age of the Universe by a factor of approximately 1025.

In order to estimate the quantum break-time (2.75) for the present epoch, we
can express it in the form

tq ≈ m−1
a

f 8
am

4
a

ρ3
a

, (2.76)

6In Fig. 2.1, the process of 4 → 2-scattering arises due to the exchange of a virtual axion.
We remark that instead, it can also come from taking into account the six-point interaction of
axions, which follows from keeping the next order in the axion potential (2.65). Both processes
lead to a rate of the same order of magnitude.
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where we plugged in the energy density (2.70). Using the energy density of dark
matter, ρa ≈ (10−3 eV)4, we obtain tq ≈ 10174 s, which exceeds the current age
of the Universe by a factor of approximately 10157. Thus, the coherent state
approximation for describing the axion field in the present epoch is extremely
accurate.

Effect of Nonzero Axion Momenta

So far, we have only considered 2 → 4-scattering. In reality, since the classical
axion field in the Universe is a distribution over different wavelengths, the 2→ 2-
rescatterings can also contribute to decoherence. They are displayed in Fig. 2.2.
As we have discussed, the process of 2→ 2-scattering moreover becomes possible
even in the absence of axion momenta because the axion potential gives a small
contribution to the asymptotic energy of the particles. The corresponding rate
(2.33) gives for the cosmic axions:

Γ2→2 ≈ ma
A4

f 4
a

. (2.77)

For today’s axion density, we get Γ2→2 ≈ ma T
6
today/T

6
in ≈ ma 10−72, which is again

minuscule.
As is evident from Eq. (2.34), the corresponding quantum break-time is given

by

tq, 2→2 ≈ m−1
a

f 4
a

m2
aA

2 = m−1
a

f 4
a

ρa
. (2.78)

Evaluating this expression at the onset of oscillations with maximal amplitude
A ≈ fa, we get the same result as for the 4 → 2-scattering: tq, 2→2 ≈ 1042 s.
On the other hand, if we evaluate the quantum break-time for the current epoch,
in which the axion energy density is taken to be the dark matter density, we
get tq, 2→2 ≈ 1086 s, which exceeds the current age of the Universe by a factor of
approximately 1069. Thus, the inclusion of 2→ 2-scattering due to the distribution
of coherent state axions over different momenta does not change our conclusion
that the coherent state description for dark matter axions is extremely accurate.

2.3.4 Validity of Our Simplifications
In order to conclude our argument, we wish to point out that the simplifying
assumptions which we have made in our estimates do not significantly change the
result. For example, one could wonder whether particle production, which takes
place in an expanding universe, could have any significant effect. In particular, one
might be worried about produced free axions, which could scatter off the coherent
axion state and lead to decoherence. However, this does not happen since not
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enough particles are produced: Because of γ = 3H � ma, particle production is
exponentially suppressed by the Boltzmann factor exp(−ma/H).

A similar argument holds for the effect of the QCD phase transition, which leads
to a change of the axion mass. The corresponding transition time tQCD, which is of
order of the Hubble time around the QCD-temperature, tQCD ≈Mp/Λ2

QCD, is much
longer than the axion Compton wavelength: tQCD � m−1

a . Therefore, ṁa � m2
a,

i.e. the transition is adiabatic. Consequently, the quantum creation of free axions
due to the time dependence of the mass is suppressed by exp(−m2

a/ṁa) and there
are not enough produced particles to have a significant effect on the coherence of
the axion state.

Of course, axions also interact gravitationally. Considering gravitational in-
teraction in the rescattering process amounts to replacing αa by the gravitational
coupling strength

αg = GNm
2
a , (2.79)

where GN is Newton’s constant. So this is equivalent to replacing fa by the Planck
mass Mp = 1/

√
GN . Hence it is obvious that unless the axion decay constant is

trans-Planckian, the gravitational interaction among axions is much weaker than
the interaction due to QCD and therefore does not affect the quantum break-time.
We remark that the analysis of a gravitationally self-interacting scalar field will be
performed in the analysis of de Sitter in section 2.4.

Finally, we turn to the dilution of the axion number density. In a cosmological
context, this dilution originates from the Hubble expansion as well as the decay of
axions into some lighter particle species, e.g. photons. For realistic values of the
axion mass, the decay is a subdominant process. Therefore, we focus on the effect
of Hubble friction. Since it describes a classical process, namely the dilution of
gas in the background of an expanding universe, we intuitively expect that it does
not lead to quantum decoherence.

Our goal, however, is to make this statement more precise. Thus, we generalize
Lagrangian (2.66):

L̂ = a
3

2
(
∂µâ∂

µâ−m2
aâ

2
)
, (2.80)

where a is the scale factor and indices are now raised and lowered with the flat
Friedmann-Robertson-Walker-metric, gµν = diag (1,−a2,−a2,−a2). We do not
consider self-interaction of the axion since our present goal is only to investigate
possible decoherence due to Hubble friction. The canonically conjugate momentum
Π̂a = a3∂0â gives the Hamiltonian

Ĥ = Π̂2
a

2a3 + a
3

2
(
(a #»

∂ â)2 +m2
aâ

2
)
. (2.81)

Specializing to a spatially homogeneous field, the Heisenberg equation of motion
is

¨̂a+ γ ˙̂a+m2
aâ = 0 , (2.82)
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since γ = 3H = 3ȧ/a. As the Heisenberg equation is linear, we can apply the
Ehrenfest-theorem, i.e, we can take its expectation value to conclude that for any
quantum state, the expectation value of the time-evolved quantum operator is
equal to the classical solution given by (2.58). Thus, the fact that friction is a
linear term suffices to show that it cannot destroy classicality.

For completeness, we will nevertheless explicitly study the quantum time evo-
lution, where we use the calculation of [104]. The former paper contains a deriva-
tion of the following eigenvalue equation for an initially coherent state |N〉 in the
Schrödinger picture:(

eimat cosh(γt2 ) ĉ #»0 + eimat sinh(γt2 ) ĉ†#»0
)
|N(t)〉 =

√
N |N(t)〉 , (2.83)

where the creation and annihilation operators ĉ†#»0 , ĉ #»0 are still defined by the mode
expansion (2.16) (at t = 0). In order to make the formulas more transparent, we
wrote down the solution only to leading order in γ/ma and neglected γ̇/(maγ). As
explained above, both simplifications are reasonable in a cosmological context. In
this limit, (2.83) shows that |N(t)〉 is a squeezed coherent state with real squeezing
parameter s = γt/2. The uncertainty is no longer equally distributed,

∆a ∝ e−γt/2 , ∆Π ∝ eγt/2 , (2.84)

but still minimal.7 Thus, |N(t)〉 continues to be maximally classical. Including
higher terms in γ/ma does not change these conclusions significantly.8 This means
that also in the presence of classical Hubble friction, the classical description of
the free axion field remains valid indefinitely. It does not lead to a quantum
break-time.

2.3.5 Undercriticality of Cosmic Axions
As we have discussed in section 2.2.4, quantum breaking can be greatly enhanced
in the overcritical domain λ > 1, provided a classical instability exists. Obviously,
cosmic dark matter axions cannot enter such a regime since they are undercritical.

7The emerging physical picture has a straightforward interpretation. In terms of the physical
field ∂0â, we have

∆a = ∆∂0a ∝ e−γt/2 . (2.85)

From this point of view, |N(t)〉 is therefore still coherent. Time evolution only reduces the
overall uncertainty in physical space. This is in accordance with the commutation relations[
â(t, #»x ), Π̂a(t, #»y )

]
= iδ( #»x − #»y ), which read in physical space

[â(t, #»x ), ∂0â(t, #»y )] = ia−3δ( #»x − #»y ) . (2.86)

This means that uncertainty is conformally conserved but dilutes with the physical volume.
8In this case, the state |N(t)〉 is no longer exactly squeezed at all times, but the deviation of

∆a∆Π from 1 vanishes periodically and is bounded by a constant which scales as γ2/m2
a.
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In order to obtain a quantitative estimate, we can represent the collective coupling
as

λa = ρa
f 2
am

2
a

, (2.87)

which follows from (2.68) when we express the amplitude A in terms of the energy
density (2.70). Using the present energy density of dark matter, we get λa = 10−44,
which is minuscule.

Nevertheless, it is instructive to discuss what an overcritical regime would
imply for cosmic axions. First, we consider the truncated theory (2.66). The
potential has a minimum at a = 0, a maximum at a2

cr = 6m2
a/αa = 6f 2

a and is
unbounded from below for larger values of a. Thus, the critical value is given by
λa = 6, i.e. the instability sets in for A2 > 6f 2

a . Overcriticality of the axion gas
would imply that the amplitude of oscillations A exceeds acr and the classical field
acl(t) grows unbounded. This classical growth is accompanied by an instability of
modes with momenta | #»k | <

√
αa
2 acl(t)2 −m2

a so that finally all the modes become
unstable. Of course, in such a situation the quantum breaking can be efficient, but
it is also meaningless since in this regime the truncated model no longer describes
physics of the axion gas correctly. The truncation is only meaningful as long as
the amplitude of oscillations does not exceed acr. So the short quantum breaking
in a would-be overcritical regime of axion gas is unphysical and is an artifact of
an invalid description.

Let us now go to the full axion model with periodic potential (2.65).9 We can
make the axion overcritical, i.e. achieve λa = A2/f 2

a � 1, by assuming a high
number density of zero momentum axions. Since ρa = λaΛ4

QCD, this implies in the
classical language that we are looking for a time-dependent solution with energy
density ρa � Λ4

QCD. In this regime, the solution, up to corrections O(Λ4
QCD/ρa),

has the form:
acl(t) =

√
2ρa t . (2.88)

This solution has an obvious physical meaning. Since the energy of the axion field
exceeds the height of the axion potential, the evolution is the one of a free field
with a constant energy density. Let us examine the stability of this solution. The
momentum modes of the linearized perturbations around it satisfy the following
equation:

ä #»
k (t) +

(
~−2 #»

k 2 + m̄2
a cos

(√
2λa m̄at

))
a #»
k (t) = 0 , (2.89)

where we have used the collective coupling in the form of Eq. (2.87). Introducing
a new variable y ≡

√
λa
2 m̄at, we can rewrite (2.89) in the form

∂2
ya #»

k (y) +
(
B + 2

λa
cos(2y)

)
a #»
k (y) = 0 , (2.90)

9Naturally, in doing so, we ignore a possible backreaction from the axion field on QCD dy-
namics.
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Figure 2.3: Behavior of the solution of (2.90) for fixed t and B when the collective
coupling λa changes. The maximal value of a #»

k |(
√
λa/2 m̄at)| in the interval 20 ≤

m̄at ≤ 25 is plotted. The values for B are 0.85 (purple), 0.95 (red), 1.05 (orange,
dashed) and 1.15 (blue, dashed). The closer B is to the critical value 1, the stronger
the instability is and the longer it persists. In each case, the instability disappears
for big λa.

where B ≡ 2 #»

k 2/(λam2
a).

This is the Mathieu equation, which is known to exhibit instability bands
around certain values of B [105]. However, it is important to remember that we
work in the approximation ρa � Λ4

QCD, which is equivalent to a large collective
coupling: λa � 1. Therefore, the term ∝ cos(2y) responsible for generating the
instability is suppressed. For this reason, the instability bands get narrower as λa
increases so that the phase space for the production of the corresponding modes
is suppressed.10

Additionally, we study the scaling of the timescale of instability. To this end,
we investigate how an unstable solution a #»

k (
√
λa/2 m̄at) of (2.90) changes at a

fixed t when we increase λa. In doing so, we change #»

k in order to keep B fixed
near an unstable value. Numerical analysis shows that the timescale of instability
for a given mode indeed becomes longer as the collective coupling λa increases,
i.e. the instability disappears for λa →∞. This is not surprising since Eq. (2.90)
becomes the equation of a free particle in this limit. The result for the dominant
instability around B = 1 is displayed in Fig. 2.3. Therefore, we conclude that the
increase of stability caused by the narrowing of the instability bands outweighs the
reduction of the break-time due to the scaling t ∝ y/

√
λa . In summary, this shows

that once the full axion potential is taken into account, the quantum break-time
cannot be made arbitrarily short even in the overcritical regime.

As a final remark, we note that ȧ cannot be arbitrarily large due to the fact
10In this regime, the most relevant instability is the lowest-lying one around B = 1, i.e. for

modes with #»

k 2 ∼= λam
2
a/2.
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that it backreacts on the Peccei-Quinn field. In particular, there is an absolute
bound on ȧ given by ȧ ≈ f 2

a because at this point, the backreaction from the axion
field on the vacuum expectation value of the modulus of the Peccei-Quinn field,
ΦPQ ≡ faeia/fa , becomes order one and the axion decay constant fa changes. This
must be taken into account. So the simple description in terms of a pseudo-scalar
a with a periodic potential breaks down and one has to consider the full theory.
For the collective coupling of the axion gas, this restriction translates as the bound
λ < α−1

a .
In conclusion, in the overcritical domain the quantum break-time can in princi-

ple be made shorter at the expense of Lyapunov instabilities along the lines of the
mechanism of [40]. However, this domain is irrelevant for the cosmic axion field
because of the following reasons. First, this regime cannot be reached within the
validity of axion effective field theory model (2.66), due to backreaction. Secondly,
the would-be overcritical domain – in which potentially a fast quantum breaking
could occur – is way outside of the realistic parameter space of dark matter axions
in our Universe since as explained, the present energy density of dark matter im-
plies a tiny collective coupling. Of course, this does not exclude the possibility that
fast quantum breaking can occur for axions that are in special highly localized con-
figurations. However, this can only happen if two conditions are simultaneously
fulfilled: There must be an extreme overdensity to reach λa & 1 in some small
subregion and moreover the configuration must be classically unstable.

2.3.6 Relationship to Other Work

We conclude by discussing in more detail the relationship of our work to the
results presented in [71,101–103]. Also there, the classical axion field is resolved as
a multi-particle quantum state. Subsequently, the authors investigate the axionic
self-interaction. They do so by calculating the process of 2→ 2-scattering, which
we also considered. In full agreement with our result, they obtain the quantum
break-time (2.78) (see Γs, which is defined before equation (8) of [71]). Therefore,
they also conclude that the timescale of this process vastly exceeds the age of
our Universe and does not play any role for current observations. They proceed,
however, to study processes of 2 → 2-scattering in which also the final state is
macroscopically occupied. In accordance with our discussion in section 2.2.3, they
obtain the enhanced rate (2.40) and correspondingly the shorter timescale (2.41):

tcollective ≈ m̄−1
a

1
λ2
a

, (2.91)

where we restored factors of ~ for the present discussion. At the onset of oscilla-
tions, it can indeed be short: tcollective ≈ m̄−1

a . They argue that this process leads to
Bose-Einstein condensation of the axions, i.e. they increasingly occupy the mode
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of zero momentum.11
We are, however, not interested in implications of this process. Our key point

is that tcollective is a classical quantity that only depends on the collective coupling
λa = αaN . As discussed in section 2.2.3, it corresponds to the timescale of classical
nonlinearities. Thus, even if tcollective is short, it does not jeopardize the classical
description of the axion field or lead to a quantum break-time. This agrees with
the discussion in reference [75], which is cited in [71]. Also there, it is noted
that the process of condensation corresponds to a classical interaction of different
momentum modes and can be described as scattering of classical waves.12

As a second step, [71,101–103] contains the study of gravitational self-interaction
of the axions. Whereas we concluded in section 2.3.4 that it is a subdominant ef-
fect in comparison to the axionic self-interaction, it is argued in [71,101–103] that
gravitational self-interaction becomes strong at late times. But as for the axionic
self-interaction, the key point is that short timescales only appear when classi-
cal processes are considered, i.e. ones in which also the final state of scattering
is macroscopically occupied.13 As before, we do not want to make a statement
about the potential significance of these classical effects.14 For us, it is only im-
portant that whatever the effect is, it can be described as classical gravitational
self-interaction. A quantum treatment is not necessary. In particular, there is no
reason why classical simulations of dark matter evolution should fail.

Finally, we want to make a brief remark about the classicality of coherent states,
which is relevant beyond the application to axions. In [107], it is claimed that
coherent states fail to reproduce a classical evolution even when their occupation
number N is infinite. We want to point out that this observation is only an
artifact of an unphysical limit. Namely, the authors of [107] take N → ∞ while
keeping the coupling α fixed. This does not correspond to the classical limit but

11Our approach is even more radical with respect to the distribution in momentum space. We
already start with a fully condensed state in which all axions are in the mode of zero momentum.

12That condensation can be described classically was also discussed more recently in [106].
13We can explicitly conclude this from equation (11) of [71] when we write the timescale of

gravitational interaction as
tcollective, g = m̄−1

a

1
αgN

. (2.92)

Since N scales like ~−1 and the gravitational coupling strength (2.79) is given as αg = ~GNm̄2
a,

we conclude that tcollective, g is independent of ~, i.e. classical.
14We would be surprised, however, if the classical gravitational self-interaction were strong. If

we look at e.g. the cross section in equation (3.30) of [101],

σg = G2
Nm

2
a

δv4 , (2.93)

where δv is the spread of speed of the axions, we note that it only diverges as a result of the
forward scatting pole δv → 0. It is not clear how this leads to a physical effect. Moreover, if any
effect due to gravity exists, it is not evident to us why it should only occur for axions and not
also for other potential forms of light dark matter.
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to an infinite amplitude of oscillations: A → ∞. As is clear from Eq. (2.1), this
limit N →∞ with fixed coupling α corresponds to an infinite collective coupling:
λ→∞, i.e. to an infinite overcriticality. When we write the quantum break-time
due to 2→ 2-scattering (2.34) as

tq ≈ m̄−1 1
α2N

, (2.94)

we see that the limit of infinite amplitude implies that tq ∼ 1/N .15 This is the
scaling also observed in [107] (see Fig. 2 there). In particular, the instabilities
developed in the artificial limit λ→∞ are irrelevant for axion physics since as we
have shown in section 2.3.5, this domain is not applicable for the realistic axion
field, which is safely subcritical: λa � 1.

As discussed in section 2.1, one obtains the correct form of the classical limit
by taking ~ → 0. In this case, we have N → ∞ while the collective coupling αN
stays fixed. Since this implies that α ∼ 1/N , equation (2.94) leads to the scaling
tq ∼ N . Thus, the classical description stays valid indefinitely in the classical limit
N →∞.

2.4 Application to de Sitter
So far, we have studied quantum breaking for a simple self-interacting scalar field
in section 2.2. Moreover, we have shown in section 2.3 that this analysis has
immediate implications for cosmic axions. In the present section, we turn to a more
involved system by investigating quantum breaking in de Sitter. As for the scalar
field, we proceed in two steps. First, we have to find a quantum description of the
classical solution. Secondly, we determine the quantum break-time by studying
quantum effects that are not captured by the classical solution. The first step
turns out to be more complicated in the case of de Sitter whereas the second one
is largely analogous to the scalar field example.

2.4.1 A Quantum Description of the de Sitter Metric
In the introduction 1.3.2, we have reviewed the quantum picture of de Sitter pro-
posed in [44]. In this approach, de Sitter does not correspond to a fundamental
vacuum, but it is obtained as expectation value of an excited state that is defined
on top of Minkowski vacuum.16 Since Minkowski has a well-defined S-matrix, one
of the main advantages of such a construction is that all problems that arise due to
the lack of an S-matrix in de Sitter can be avoided. Our first goal is to make the
above quantum picture of de Sitter more explicit, i.e. to find a concrete quantum

15See [108] for a suggestion to extend the validity of the classical solution in the overcritical
regime by averaging over a set of random initial conditions.

16More studies of this corpuscular picture of de Sitter can be found in [109–111].
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theory for the constituent gravitons that is able to reproduce the classical metric
description. Thus, we take a constructive approach towards the idea to regard
de Sitter as a multi-graviton state on top of Minkowski by showing that this can
indeed by achieved in a suitable approximation.

Since we are not able to give a quantum description of the full nonlinear solu-
tion, we will proceed as for the scalar field by linearizing the classical equations of
motion. However, even the linearized solution still does not admit a straightfor-
ward quantum description. Therefore, we will replace the cosmological constant
source of the linear theory by a graviton mass in such a way that both theories –
the one with the cosmological constant and the one with the graviton mass – have
the same solution. In this deformed theory, we will give a quantum description of
the linearized classical solution. In determining these classical solutions, we will
largely follow [112].17

Linearizing the Classical Solution

First we work on the classical level and linearize the Einstein equations on top of
the Minkowski metric ηµν :

εαβµν h̃αβ = −2Ληµν , (2.95)

with the linearized Einstein tensor defined as εαβµν h̃αβ ≡ �h̃µν−ηµν�h̃−∂µ∂αh̃αν−
∂ν∂

αh̃αµ + ∂µ∂ν h̃+ ηµν∂
α∂βh̃αβ. The gauge symmetry is,

h̃µν → h̃µν + ∂µξν + ∂νξµ , (2.96)

where ξν is a gauge-transformation parameter. In de Donder gauge, ∂µh̃µν = 1
2∂ν h̃,

the equation takes the following form:

�
(
h̃µν −

1
2ηµν h̃

)
= −2Ληµν . (2.97)

Here h̃µν is dimensionless and denotes a small departure from the Minkowski metric
caused by the presence of a constant source Λ. In the full nonlinear de Sitter
solution, Λ would correspond to the de Sitter Hubble parameter, Λ = 3H2. It
determines the curvature radius RH = H−1, as already stated in Eq. (1.14).

It is very important not to confuse h̃µν with the linear metric perturbation on
top of a de Sitter metric: h̃µν is a short-time approximation of the de Sitter metric
itself, not a fluctuation on top of it.

17Note that we corrected minor numerical factors as compared to [112].
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Following the results of [112], the equations of motion (2.97) are solved by

h̃00 =Λt2 , (2.98a)

h̃0i =− 2
3Λtxi , (2.98b)

h̃ij =− Λt2δij −
Λ
3 εij , (2.98c)

where εij = xixj for i 6= j and 0 otherwise. Still following [112], we apply a
diffeomorphism to obtain

ds2 = dt2 −
(

1 + 1
3Λt2

)
δijdxidxj −

1
3Λxixjdxidxj , (2.99)

which is an approximation of a de Sitter Universe in closed Friedmann-Robertson-
Walker slicing:

ds2 = dt2 − cosh2
(√

Λ/3 t
)( dr2

1− Λr2/3 + r2dΩ2
)
. (2.100)

To first order in the Λt2- and Λr2-expansion, it is clear that (2.100) reproduces
(2.99). We conclude that our approximation of weak gravity is valid as long as
t� Λ− 1

2 and x� Λ− 1
2 . This yields the classical break-time

t
(0)
cl ≈ Λ− 1

2 . (2.101)

It is instructive to confront expression (2.101) for the classical break-time of
de Sitter with its counterpart (2.12) for the self-interacting scalar field. The clas-
sical oscillations of the scalar field are defined by three parameters: frequency m̄,
amplitude A and the strength of classical nonlinear interaction ᾱ. We can de-
fine the corresponding parameters for the classical de Sitter space at short times.
The characteristic frequency is defined by the Hubble scale, m̄g =

√
Λ . Secondly,

the amplitude of the canonically normalized graviton field beyond which nonlin-
earities become crucial is given by the inverse square root of Newton’s constant,
Ag = 1/

√
GN . Finally, the strength of gravitational nonlinearities in de Sitter is

defined by ᾱg = ΛGN . Replacing in the expression for the classical break-time
of the anharmonic scalar field (2.12) the parameters m̄, A and ᾱ by their grav-
itational counterparts m̄g, Ag and ᾱg, we get exactly expression (2.101), which
we had obtained by comparing the metrics (2.99) and (2.100). Despite the fact
that the anharmonic scalar field and de Sitter are very different systems, their
classical break-times obey the universal relation (2.12). The difference is that in
gravity, unlike in the scalar field case, only two out of the three parameters are in-
dependent. Correspondingly, we do not have the flexibility of making the classical
break-time longer than 1/

√
Λ .
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Mapping the Cosmological Constant on a Graviton Mass

Our subsequent task is to provide a quantum-corpuscular description of (2.98) in
form of a coherent state. To this end, we slightly deform the linearized theory by
promoting it into a similar theory, which has exactly the same metric description
for the relevant timescales, but for which the coherent state description is much
more straightforward. The choice of deformation for the linear theory is unique.
It is given by the only existing ghost-free linear theory of a spin-2 field beyond
linearized Einstein gravity: Pauli-Fierz theory of massive spin-2 [113]. We denote
the graviton mass by mg. Because we are still in a classical theory, however, only
the graviton frequency m̄g = mg/~ is relevant. We will use the terms frequency
and mass interchangeably although we keep ~ explicit for now.

But what are the reasons for adding a mass? First, as observed in [112],
this deformation leads to a solution which reproduces the de Sitter metric for
times t � m̄−1

g = 1/
√

Λ even in the absence of the cosmological constant term.
For short timescales, the graviton mass consequently has the same effect as the
cosmological term. This means that for short timescales, observers coupled to such
a gravitational field cannot tell whether they live in a de Sitter metric of Einstein
theory or in a coherently oscillating field of a massive Fierz-Pauli graviton on top
of a flat Minkowski vacuum. Since we want to map the cosmological constant to
a graviton mass, we already expect at this point that

m̄g ≈
√

Λ . (2.102)

We will elaborate on this relation later but keep m̄g arbitrary for now.
Secondly, such a deformation allows for a simple coherent state interpretation

of the de Sitter metric: It is much more straightforward to describe a coherently-
oscillating free massive spin-2 field as coherent state than its massless counterpart
sourced by a cosmological term.

In addition, it matches the physical intuition that if de Sitter space allows for
a sensible corpuscular resolution in form of a coherent state, the constituents must
have frequencies given by the Hubble parameter since this is the only scale of the
classical geometry. Thus, these constituents can be viewed as some sort of off-shell
gravitons of nonzero frequencies set by H. The mass term is the simplest term
which provides such an effective off-shell dispersion relation. Thus, for a sufficiently
short time-interval, t � tcl, we can think of the gravitons of the massless theory
which are put off-shell by nonlinearities as on-shell massive gravitons of a free
theory. This mapping allows for a coherent state interpretation of the de Sitter
metric for sufficiently small times. Although the approximation breaks down after
tcl, it suffices to “fish out” the 1/N -quantum effects which lead to a departure from
the classical solution.

We therefore modify our theory by adding a graviton frequency m̄g and remov-
ing the cosmological constant source. To linear order, the massive graviton, which
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we shall denote as hµν , obeys:

εαβµνhαβ + m̄2
g(hµν − ηµνh) = 0 , (2.103)

with the linearized Einstein tensor given as above. Additionally, it must satisfy
the Fierz-Pauli constraint

∂µ(hµν − ηµνh) = 0 , (2.104)

which shows that it propagates five degrees of freedom. Following [112,114], these
degrees of freedom can be split according to irreducible massless representations
of the Poincaré group into three different helicity components: helicity-2 h̃µν ,
helicity-1 Aµ and helicity-0 χ:

hµν = h̃µν + 1
m̄g

(∂µAν + ∂νAµ) + 1
6ηµνχ+ 1

3
∂µ∂ν
m̄2
g

χ . (2.105)

This decomposition is unique in the sense that in this basis, the kinetic mixing
among different helicities is absent and in the limit m̄g → 0, the field hµν “disin-
tegrates” into three independent massless representations of the Poincaré group:
spin-2, spin-1 and spin-0. Note that the gauge redundancy (2.96) of the massless
theory is not lost. The gauge shift (2.96) is compensated by a corresponding shift
of Aµ,

Aµ → Aµ − m̄gξµ . (2.106)
Hence, Aµ acts as Stückelberg-field, i.e. we can continue enjoying the gauge free-
dom for fixing the gauge of the h̃µν-component. This is particularly useful, since
following [114], we can integrate out the additional helicities and write down an
effective equation for h̃µν .

This equation in de Donder gauge, ∂µh̃µν = 1
2∂ν h̃, is a massive wave equation:

(�+ m̄2
g)
(
h̃µν −

1
2ηµν h̃

)
= 0 . (2.107)

One solution is given by

h̃00 =− 2Λ
m̄2
g

cos(m̄gt) , (2.108a)

h̃0i =−2Λ
3m̄g

sin(m̄gt)xi , (2.108b)

h̃ij = 2Λ
m̄2
g

cos(m̄gt)δij −
Λ
3 cos(m̄gt)εij , (2.108c)

where the additional helicity-0 part assumes the following form:

χ = −h̃ = 8Λ
m̄2
g

cos(m̄gt) . (2.109)
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This formula is a manifestation of the fact that χ and h̃ are not independent
but mix through the mass term and undergo simultaneous coherent oscillations.
Correspondingly, the oscillating classical field represents a coherent state composed
out of quanta which reside both in χ and h̃.

For t� m̄−1
g , the oscillating solution (2.108) of the massive theory without any

cosmological constant fully reproduces – up to an additive constant – the de Sitter
solution (2.98) of the massless theory with a cosmological constant as source:

h̃(m̄g 6=0, Λ=0)
µν = h̃(m̄g=0, Λ6=0)

µν − ηµν
2Λ
m̄2
g

. (2.110)

Due to the normalization of the amplitude 2Λ/m̄2
g, this relation holds irrespective of

the graviton mass.18 Obviously, the classical break-time after which the oscillating
field no longer approximates the massless solution (2.98) is

tcl ≈ m̄−1
g . (2.111)

Finally, we choose m̄g such that the classical break-times of linearized solutions
in the two theories are the same: In nonlinear massless gravity, the classical break-
time is reached when the variation of the dimensionless metric h̃µν becomes of order
one. This is equivalent to the statement that the linearized approximation breaks
down when the canonically-normalized field h̃µν becomes of order of the Planck
mass Mp. Applying the same criterion to the oscillating solution of the linearized
massive theory, we must set

m̄g =
√

Λ . (2.112)

With this choice, the classical break-times in the two theories match: the timescale
(2.101) of the breakdown – due to classical nonlinearities – of the linearized de
Sitter solution (2.98) of a massless Einstein theory and the timescale (2.111) of
the breakdown of the same solution (2.108) – due to the mass term – in the linear
Pauli-Fierz massive theory. This means that the classical nonlinearities in Einstein
gravity and the mass term in the free Pauli-Fierz theory are doing the same job of
putting the solution (2.98) out of business. Of course, this argument would allow
for a constant prefactor in Eq. (2.112). It will become apparent in section 2.4.1
why it has to be 1. We will adopt the choice (2.112) from now on.

We conclude that we have accomplished our first goal of finding an appropriate
approximation to the exact classical solution. Its classical break-time is

tcl ≈ Λ− 1
2 . (2.113)

18We note, however, that the massive solution (2.108) diverges in the limitmg → 0. This shows
why it is not convenient to use a free massless field for the quantum description of linearized de
Sitter.
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Thus, for short timescales t < tcl, the graviton mass fully replaces the effect of the
cosmological term. This fact shall allow us to give a well-defined coherent state
representation of de Sitter space during that time span.

We would like to stress that although we borrow the setup of [112], we do not
use its approach of killing (i.e. de-gravitating) the cosmological constant by means
of the graviton mass. Instead, we manufacture the de Sitter metric by replacing
the cosmological constant by a graviton mass.

In this respect, the idea of our simple model is also reminiscent of the idea of
self-acceleration [115] in which a de Sitter-like solution is achieved without the cos-
mological constant source, due to modification of the graviton dispersion relation.
More recently, such solutions were obtained [116–118] in the theory of massive
gravity of [119]. Since our focus is not on a modification of Einstein theory but
rather the creation of a simple setup which allows for a composite interpretation
of the de Sitter metric, the graviton mass is merely a computational device which
replaces the effect of nonlinearities. In other words, we map the interacting off-
shell massless gravitons onto free massive ones. Hence, we shall not be concerned
with nonlinear completions of the massive theory.19

The Basic Classical Model

Let us summarize the basic model we shall be working with in the following: We
replace the linearized massless theory of an Einstein graviton h̃µν coupled to a
cosmological constant source Λ,

LE = 1
16π

(
1
2 h̃

µνεαβµν h̃αβ + 2√
GN

h̃Λ + 16π
√
GN h̃µνT

µν(Ψ) + . . .

)
, (2.114)

by a linear theory of a Fierz-Pauli graviton of mass m̄g =
√

Λ :

LFP = 1
16π

(1
2h

µνεαβµνhαβ + 1
2Λ(hµνhµν − h2) + 16π

√
GN h̃µνT

µν(Ψ) + . . .
)
.

(2.115)

This is the theory on which we will base our analysis. It is crucial to note that it
does not include a cosmological constant. Instead, it only contains the Fierz-Pauli
mass term (hµνhµν − h2).

Again, by no means should one think that the cosmological term gives the
graviton a fundamental mass. This is not the case as it is obvious already from
counting the number of degrees of freedom. We use the fact that the Einsteinian
spin-2 helicity component h̃µν of the Fierz-Pauli massive graviton without cos-
mological term has the same form as it would have in a massless theory with
cosmological constant.

19It could nevertheless be an interesting independent project to extend our quantum analysis
to a full nonlinear massive theory of the type [119].
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In both Lagrangians, we moved to canonically normalized classical fields by di-
viding by

√
GN . Therefore, both hµν and h̃µν as well as the Aµ- and χ-components

of hµν have dimensionality of
√

(energy)/(time) . Correspondingly, the helicity de-
composition of hµν continues to have the form given by (2.105). T µν(Ψ) denotes
the energy momentum tensor of all modes Ψ which do not belong to the mode-
decomposition of the background de Sitter solution, i.e. the quanta which in the
quantum picture are not part of the coherent state description of the de Sitter
metric. We only keep the lowest order dependence of T µν(Ψ) on the fields.

For definiteness, we assume that T µν is the stress-energy tensor of some exter-
nal particles and does not contain a graviton part. Including hµν into T µν would
result in nonlinear self-interactions of hµν , which would contribute to both classical
and quantum break-times. Since our approach is to replace the effect of the self-
coupling by an effective graviton mass, we will not include gravitons in T µν(Ψ).
In addition to that, it is convenient to couple gravity exclusively to external parti-
cles with initial occupation number equal to zero because such particles manifest
themselves only via quantum processes and this is precisely what we are after.

Moreover, we couple T µν(Ψ) only to the Einstein spin-2 helicity component h̃µν
in the Lagrangian (2.115). The reason why we do not couple the χ-component to
external sources is that we want the external particles Ψ to experience – in the
classical limit and during the timescale of validity of (2.108) – “life” in an effective
de Sitter metric.20 As explained above, the solution (2.108) for the helicity-2 part
h̃µν alone suffices for that since it is equivalent to the de Sitter solution (2.98) of
a linearized massless theory for t < tcl.

Finally, we further split the helicity-2 component h̃µν according to the sym-
metries of the Poincaré group. The scalar part, on which we shall focus in the
following, corresponds to the trace of the helicity-2 component h̃µν :21

h̃sµν =−
√

16π φ ηµν , where (2.116)

φ = 1√
4πGN

cos(mgt) . (2.117)

From Eq. (2.109) it is clear that φ also describes χ:

χ = 8
√

4π φ . (2.118)

Thus, the field φ represents the scalar degree of freedom which simultaneously
resides both in the trace of the helicity-2 component h̃µν and in the helicity-0
component χ.

In the following, we restrict ourselves to the scalar part (2.116) and disregard
the off-diagonal elements of h̃µν . Doing so can be regarded as a last deformation

20Notice that the coupling of the helicity-1 component Aµ to Tµν automatically vanishes due
to the conservation of the source: ∂µTµν = 0.

21The numerical prefactor was chosen to cancel the factor of 1/(16π) in the Lagrangian (2.115).
This choice, however, is arbitrary.
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of the theory. We will show that despite its great simplicity, this model of the
scalar component of the graviton suffices to capture all essential properties of de
Sitter.22 In summary, we consider the effective theory

L = 1
2∂µφ∂

µφ− 1
2m̄

2
gφ

2 +
√
GN φT

µ
µ (Ψ) , (2.119)

where we absorbed a factor of
√

16π in a redefinition of the energy-momentum
tensor Tµν(Ψ). The classical frequency is given by

m̄g =
√

Λ . (2.120)

Moreover, the amplitude that corresponds to the solution (2.117) is

Ag = 1√
4πGN

. (2.121)

Finally, we remark that obtaining φ as in (2.117) is only possible with a particular
choice of gauge. We selected it for simplicity: It enables us to study linearized de
Sitter in terms of only one scalar degree of freedom. We have this gauge freedom
at our disposal since the Lagrangian (2.115) is manifestly gauge-invariant. Had we
chosen a different gauge, the analysis would generically become more complicated
as a single scalar degree of freedom would no longer suffice to describe the de Sitter
metric.

The Quantum State of de Sitter

Having given an effective model of de Sitter in terms of the scalar field φ, it
is straightforward to describe it on the quantum level. We can proceed in full
analogy to the prototypical theory studied in section 2.2.2. The results that we
find in our concrete model will completely match the generic scaling relations of
the corpuscular approach to de Sitter, which we reviewed in section 1.3.2. First,
the classical frequency m̄g determines the mass of the field as

mg = ~
√

Λ , (2.122)

as is required in the Fierz-Pauli theory (2.115).23 This agrees with Eq. (1.20).

22In contrast, numerical prefactors, in which we are not interested, might change due to this
deformation.

23We note that the limit mg → 0 was used in [74] to obtain a coherent state description
of Minkowski space in terms of zero energy gravitons. This connection makes a fundamental
difference between the two spacetimes evident: The quantum constituents of de Sitter must
carry nonzero energies.
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Next we can construct the coherent state |N〉 of gravitons as in Eq. (2.18),
where the mode operators are defined in terms of the expansion (2.16).24 Then
the mean number of gravitons in a volume V turns out to be

N = V m̄g

8π~GN

, (2.123)

where we plugged in the amplitude (2.121) in Eq. (2.19). In one Hubble volume,
V ∼ Λ−3/2, we get

N = 1
~GNΛ (2.124)

gravitons, in accordance with Eq. (1.21).25
At this point, we can also analyze the energy of de Sitter. In our quantum de-

scription, its expectation value per volume V is given by a product of the graviton
rest mass and their average occupation number in a coherent state:

E = mgN . (2.125)

Taking into account Eq. (2.123), we conclude that the quantum description indeed
yields the correct classical energy (1.15).26 The matching of energy is also the
reason why the numerical coefficient of the graviton mass has to be 1 in Eq.
(2.112).

Finally, we can estimate the quantum coupling of the coherent state gravitons.
Despite the fact that the classical solution was obtained in the approximation of
ignoring the self-coupling of gravitons, the strength of their coupling is universally
fixed by general covariance. To first nonlinear order, the graviton self-coupling
can be estimated by taking into account the coupling of gravitons to their own
energy-momentum tensor Tµν(h̃) evaluated to bilinear order in h̃. Even without
presenting the explicit long expression for Tµν(h̃), it is clear that for coherent state
gravitons of energy mg, the strength of the effective four-point coupling is given
by

αg = ~m̄2
gGN , (2.126)

in accordance with Eq. (1.22). Taking into account formula (2.124) for the number
of gravitons per Hubble patch, we conclude as in Eq. (1.23) that the collective

24This means that we define the quantum state of h̃µν by defining a quantum state for each
symmetry component. Subsequently, we can view the full graviton state |Nh̃〉 as tensor product
of them: |Nh̃〉 = |N〉 ⊗i |0hi〉, where |0hi〉 are the vacua for the other components.

25Note that in any case we need to work with volumes V . Λ−3/2 for the validity of our
first-order approximation.

26We remark that we deal with two different notions of energy. The classical energy is associ-
ated to the source Λ. The energy of the massive gravitons originates from the gravitational field.
We could compare this to the situation for a shell of mass M and radius R: In that case, M is
the energy of the source whereas M2GN/(2R) is the energy of the gravitational field.



62 2. Quantum Breaking

coupling λg = αgN is strong:

λg = 1. (2.127)

This fact immediately demonstrates the consistency between Eqs. (2.101), (2.111)
and (2.113) for the classical break-time of de Sitter and the general formula (2.12):
The classical break-time is equal to the de Sitter Hubble radius because the col-
lective coupling λg is of order one. Finally, we remark that we will not consider
the self-coupling of gravitons in the following but solely focus on interactions with
external particles.

Summary of Approach

We can summarize our approach. On the mathematical level, we consider a theory
of free massive gravity, in which we fix a coherent state of N gravitons at some
initial time. After that, it evolves according to its free time evolution. During
the whole regime of validity of the first order approximation, i.e. for t < tcl (see
(2.113)), the expectation value over this state reproduces the classical de Sitter
solution of a massless theory.

Consequently, the following physical picture emerges: At the fundamental level,
we deal with a theory of massless gravity with the constant source Λ. It leads to
the formation of a multi-particle state which represents a quantum description of
the de Sitter metric. The characteristic features of this state are:
1) the gravitons are off-shell due to the collective coupling;27 and
2) the strength of this collective interaction is critical: αgN = 1.

Thus, this state is not accessible within the standard perturbation theory, i.e. by
expansion in operators â†free, âfree of free massless gravitons.28 However, following
[44], we propose that it is possible to “integrate out” the effect of the cosmological
constant source as well as of collective interaction and replace it by an effective
graviton mass. In other words, for a short time we can model the effect of collective
interaction – putting massless gravitons off-shell – by means of a mass term in a
free theory. Hence, we can approximate the interacting massless gravitons by free
massive gravitons, described by the Fock space of â†, â.

The first evidence which supports the validity of such a modeling is that the
state of free massive gravitons reproduces the correct classical expectation value.
Of course, this argument does not suffice, since one can realize a given expecta-
tion value in a multitude of ways. Therefore, we will collect further evidence by
demonstrating that our framework is constructed such that it automatically repro-
duces all semiclassical results in de Sitter. We shall accomplish this by coupling

27This off-shellness is real in the sense that a detector would measure a particle of nonzero
energy and zero momentum.

28For reasons that will become apparent shortly, we denote creation and annihilation operators
by â†, â from now on.
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the “constituent” gravitons of the coherent state to external quantum particles via
the universal gravitational coupling and studying quantum processes due to this
interaction.29 After making sure that these quantum processes correctly account
for the known phenomena, we use the example of particle production to show that
they also lead to an inevitable deviation from the description in terms of a classical
metric and correspondingly a finite quantum break-time of de Sitter space.

2.4.2 Uncovering the Quantum Origin of Classical Evolu-
tion

The Semiclassical Limit in the Coherent State Picture

At this point, we have obtained a consistent coherent state description of linearized
de Sitter, which – for a short enough time interval – reproduces the classical metric
(2.98) as expectation value of the graviton field. The resolution of the background
metric in form of a quantum state allows us to achieve the following goals:
1) to understand standard classical and semiclassical processes – such as the prop-
agation of a probe particle in a background metric and particle creation by a
time-dependent classical metric – in the language of underlying fully quantum dy-
namics; and
2) to identify new corrections originating from this quantum dynamics which the
standard semiclassical treatment is unable to capture.

In this section, we shall deal with the first point. We will focus on the semiclas-
sical description, in which all fields other than the background metric are treated
as quantum, and establish how it emerges as limiting case of our quantum descrip-
tion. From this semiclassical picture it is trivial to obtain the classical limit, in
which only classical fields exist. Our starting point is the quantized version of the
Lagrangian (2.119). After taking into account the coupling to an external field Ψ̂,
it reads

L̂ = 1
2
(
∂µφ̂∂

µφ̂−m2
gφ̂

2 + ∂µΨ̂∂µΨ̂−m2
ΨΨ̂2

)
+ φ̂

Mp

T̂ µµ (Ψ̂) . (2.128)

For simplicity, we chose Ψ̂ as a scalar field of mass mΨ. Its stress-energy tensor
is T̂ µν(Ψ̂) ≡ −

√
16π

(
∂µΨ̂∂νΨ̂− 1

2∂
αΨ̂∂αΨ̂ηµν + 1

2m
2
ΨΨ̂2ηµν

)
, where we use the

unconventional normalization −
√

16π in order to simplify notations. Moreover,
we set ~ = 1 from now on. Correspondingly, we switch to the Planck mass Mp =
1/
√
GN .
In general, the semiclassical treatment corresponds to quantizing weak field

excitations on top of a fixed classical background metric, i.e. ignoring any backre-
action to the metric from the creation and propagation of quantum particles. In

29In marked difference to other theories, the choice of coupling is unique. This might explain
why the corpuscular approach is particularly suited for gravity.
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our model, this amounts to quantizing the Ψ̂-field in an effective de Sitter space-
time created by the classical φ-field. Thus, we can derive the standard semiclassical
evolution of a probe particle Ψ̂ in the background classical metric by the effective
Lagrangian

L̂(eff)
Ψ̂ = 1

2
(
∂µΨ̂∂µΨ̂−m2

ΨΨ̂2
)

+ φcl
Mp

T̂ µµ (Ψ̂) , (2.129)

which can be obtained from (2.128) when we replace the quantum field φ̂ by the
classical solution, φ̂ → φcl. Here φcl is given by (2.117). In such a treatment, the
only relevant asymptotic quantum states are the initial states |iΨ〉 and the final
states |fΨ〉 of the Ψ̂-field since the background metric is a c-number.

As discussed in the section 1.3.2, treating φcl as a fixed classical background is
only consistent in the semiclassical limit (1.18):

Λ = fixed , Mp →∞ . (2.130)

In that case, any backreaction from the dynamics of Ψ̂ can be ignored and we can
treat φcl as an eternal classical background. As already stated in Eq. (1.24), the
semiclassical limit implies for the fully quantum picture of de Sitter that

Λ = m2 = fixed , N →∞ , (2.131)

which is evident from Eq. (2.124). The absence of backreaction is therefore
achieved by considering an infinite mean occupation number of gravitons. It is
important to note that we keep ~ fixed in both limits.

As we have seen, the replacement φ̂ → φcl suffices to obtain the semiclassical
limit. However, we are asking for more. In our theory, this approximation must
emerge as a result of fully quantum interactions between the metric-quanta and
external particles Ψ̂. This means that we would like to understand this replacement
not as an external prescription, but as a result of taking the limit (2.131) in the
full quantum evolution.

In order to achieve this, let us first describe the evolution of a Ψ̂-field in the
effective semiclassical theory (2.129) in the language of an S-matrix evolution op-
erator. The nontrivial quantum evolution is due to the last term, which represents
the off-diagonal part of the Hamiltonian density:

Ĥ(eff)
int (x) = φcl

Mp

T̂ µµ (Ψ̂) . (2.132)

We can derive the quantum evolution in a weak-field perturbation theory in the
expansion parameter φcl/Mp � 1. To first order in this expansion, we define the
effective S-matrix evolution operator

Ŝ(eff) = −i
∫

d4xT
{
Ĥ(eff)

int (x)
}
. (2.133)



2.4 Application to de Sitter 65

The quantum evolution of Ψ̂ is then described by the matrix elements between
different initial and final states:

A = 〈fΨ|Ŝ(eff)|iΨ〉 . (2.134)

Of course, since the effective Hamiltonian is explicitly time-dependent, the evo-
lution described by the effective S-matrix is in general nonunitary. This leads
to subtleties in defining the relevant initial and final S-matrix states on such a
time-dependent background. This complication is completely standard and is a
consequence of taking the zero backreaction limit.

Our immediate goal is not to enter in these well-known issues, but rather to
understand the effective semiclassical evolution as the limit of the underlying fully
quantum one. For this it is enough to recall that the coherent state |N〉 is defined
in such a way that it reproduces the classical metric in form of the expectation
value:

φcl = 〈N |φ̂|N〉 . (2.135)

Consequently, the effective semiclassical S-matrix operator can be written as

〈fΨ|Ŝ(eff)|iΨ〉 = (〈fΨ| ⊗ 〈N |) Ŝ (|N〉 ⊗ |iΨ〉) , (2.136)

where Ŝ is the full quantum S-matrix evolution operator

Ŝ = −i
∫

d4xT
{
Ĥint(x)

}
(2.137)

defined by the full quantum interaction Hamiltonian

Ĥint(x) = φ̂

Mp

T̂ µµ (Ψ̂) . (2.138)

This means that the initial state in the fully quantum picture does not only consist
of the external particles |iΨ〉. Instead, we use the coherent state (describing de
Sitter) with external particles on top of it: |N〉 ⊗ |iΨ〉. Likewise, the final state is
|N〉 ⊗ |fΨ〉.

Of course, the true quantum evolution inevitably implies transitions to final
graviton states |N ′〉 which differ from the initial coherent state |N〉 and in general
are not even coherent. Such transitions are not equivalent to simply replacing the
graviton field by its expectation value and lead to departures from semiclassical-
ity. Therefore, Eq. (2.136) makes the quantum meaning of the semiclassical limit
apparent: It corresponds to setting |N ′〉 = |N〉, i.e. ignoring any backreaction to
the graviton state. Thus, the semiclassical S-matrix elements, which reproduce
the motion of an external Ψ̂-particle in the classical metric, are the subset of fully
quantum S-matrix elements in which the quantum field φ̂ is taken in the same
initial and final state |N〉.
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Notice that this selection of matrix elements is automatic in the limit (2.131),
due to standard properties of coherent states. This is true since the overlap of
coherent states yields the factor

〈N + ∆N |N〉 = exp
(
−∆N2

8N

)
, (2.139)

which was already used in Eq. (2.28). We conclude that 〈N + ∆N |N〉 ≈ 〈N |N〉 =
1 for N → ∞. In that case, we can set |N ′〉 ≈ |N〉. This consistently explains
why this limit corresponds to a zero backreaction. A similar argument holds for
transitions from the initial coherent state to noncoherent ones.

Finally, we note that establishing the connection between the semiclassical and
the quantum S-matrix evolutions sheds new light on the standard difficulties of
defining in- and out-states of the semiclassical S-matrix in a time-dependent exter-
nal metric, such as de Sitter. The reason is the eternal nature of the background
metric. As we have seen, in the quantum language this eternity translates to the
approximation in which the initial and final states of gravitons can be taken as the
same undisturbed coherent state |N〉. But for finite N , this approximation is good
only for a finite time: For finite N , the coherent state cannot be eternal. As we
shall see, precisely because of backreaction to it, the coherent state has a charac-
teristic lifetime, which defines the quantum break-time of the system. This time
scales as N . Consequently, the coherent state can be treated as truly eternal only
in the limit (2.131), i.e. for infinite N and zero coupling. This makes the whole
story self-consistent, at least at the level of the approximate toy model which we
possess. Despite its simplicity, this model allows us to capture the key essence of
the semiclassical problem as well as of its quantum resolution. In short, we do not
need to worry about defining final S-matrix states on top of de Sitter in the light
of the fact that the coherent state |N〉 itself has a finite lifetime. Still, an effective
S-matrix evolution can be applied as a valid approximation for processes which
happen on timescales shorter than this lifetime.

Redshift as Induced Graviton Emission

We have established the connection between the semiclassical and fully quantum
S-matrix descriptions. Before turning to concrete examples, we will switch to a
different convention for the mode operators. Instead of the dimensionless ĉ†#»

k
, ĉ #»

k ,
we use

â #»
k :=

√
V

(2π)3 ĉ
#»
k . (2.140)

Correspondingly, the commutation relations (2.17) become

[â #»
k , â #»

k ′ ] = [â†#»
k
, â†#»

k ′
] = 0 , [â #»

k , â
†
#»
k ′

] = δ(3)( #»

k − #»

k ′) , (2.141)
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and the mode expansion of the field reads

φ̂ =
∫

d3 #»

k
1√

2(2π)3ω #»
k

(
â #»
k e
−ikx + â†#»

k
eikx

)
. (2.142)

Further discussions of the connection of discrete and continuous momentum vari-
ables can be found in appendix A of [73].

As a first concrete example, we will discuss the redshift which a probe parti-
cle experiences in a classical de Sitter metric. Even though redshift can also be
described classically, we will study it in the semiclassical S-matrix description, in
which this process corresponds to an initial state |iΨ〉 = b̂†#»p |0〉 of 4-momentum
p = (p0,

#»p ) that has a higher energy than the final state |fΨ〉 = b̂†#»p ′ |0〉 of 4-
momentum p′ = (p′0, #»p ′). Here we denote the creation operators of Ψ̂ by b̂†#»p . The
corresponding amplitude is

A = 〈0|b̂ #»p ′Ŝ
(eff)b̂†#»p |0〉 . (2.143)

A complication arises since the external particle does not propagate on a Minkowski
background, but in a time-dependent de Sitter metric so that true noninteracting
out-states, which would be required for the S-matrix calculation, do not exist.30
This problem does not concern us since it only pertains to the semiclassical treat-
ment. What we are only interested in is mapping the fully quantum calculation
to the semiclassical one.

By the correspondence (2.136) we discussed before, the fully quantum ampli-
tude is

A = 〈N ′|b̂ #»p ′Ŝb̂
†
#»p |N〉 . (2.144)

For the purpose of later generalization, we kept |N ′〉 arbitrary, but we will soon
specialize to |N ′〉 = |N〉. Plugging in the full S-matrix operator (2.137), we obtain

A = K(p, p′)
∫

d4x e−i(p−p′)x 〈N ′|φ̂|N〉 , (2.145)

where the gravitational field solely appears in 〈N ′|φ̂|N〉 and the kinematical factor
K(p, p′) only depends on the external particles. We do not need its explicit form
in the present discussion but write it down for the purpose of later use:

K(p, p′) = i

√
16π
Mp

ζΨ(p)ζΨ(p′)
(
p · p′ − 2m2

Ψ

)
, (2.146)

30As the de Sitter metric is only invariant under spatial but not under time translations,
solely the momentum of the external particle is conserved, unlike its energy. This means that
the dispersion relation of a Ψ̂-particle is not Poincaré-invariant but depends on time because
also asymptotically, it never stops interacting with the effective background metric. Therefore,
noninteracting asymptotic states do not exist. A strategy to overcome this difficulty could be
to approximate the initial and final dispersion relations as different but constant. Since the
time-dependent change of the dispersion relation scales with the Hubble energy mg, we expect
this to be possible if we restrict ourselves to p0, p

′
0 � mg.
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Deviations from Classical Results

Redshift as Stimulated Emission of a Graviton

N {
p = (E , #»p ) p′ = (E−mg , #»p )

} N ′ = N+1

5

Figure 2.4: Redshift as stimulated graviton emission: An external particle of initial
4-momentum p deposits a graviton in the background state of N gravitons. The
final 4-momentum of the external particle is p′.

with the abbreviation ζΨ(p) = ((2π)32p0)−1/2.
As already discussed, we see explicitly that we can achieve the semiclassical

limit φ̂→ φcl by setting |N ′〉 = |N〉. Plugging this in as well as the mode expansion
(2.142), we obtain

A = (2π)4
√2mg

K(p, p′)δ(3)( #»p − #»p ′)δ(−p0 + p′0 +mg)
√
N

V
+ δ(−p0 + p′0 −mg)

√
N

V

 . (2.147)

This formula makes the quantum dynamics of this process transparent. The
external particle emits (contribution∝ δ(−p0+p′0+mg)) or absorbs (contribution∝
δ(−p0+p′0−mg)) a background graviton. The emission of a graviton, during which
the external particle loses energy, corresponds to redshift whereas the absorption
of a graviton leads to an increased energy, i.e. blueshift.31 In the case of redshift,
we furthermore observe that we deal with a process of induced emission which
is enhanced by the N already existing gravitons. In the fully quantum S-matrix
language, redshift therefore corresponds to the induced emission of a graviton, as
already suggested in [44]. We depict this process in Fig. 2.4.

It is important to note that the final 4-momentum of the emitted graviton
is completely fixed in this process of induced emission. Therefore, also the 4-
momentum of the external particle is uniquely determined.32 In this way, our fully
quantum computation is able to reproduce the classical redshift.

As already discussed, we deal with a process of induced emission, which is
enhanced by the N already existing gravitons. Consequently, we can obtain the
amplitude Aspont of spontaneous emission in the de Sitter background by removing
this enhancement: Aspont = A/

√
N . This relation is particularly interesting in

31From our perspective of short timescales, these two processes are indistinguishable. We
expect that the boundary conditions of the expanding de Sitter branch select redshift.

32Namely, we have p′ = (p0−mg,
#»p ). This shows that the dispersion relation of the Ψ̂-particle

has to change, as we already pointed out.
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the semiclassical limit (2.131), which corresponds to N =∞. Since the amplitude
A of redshift is finite, we conclude that the coherent state representation of the
geometry produces the classical redshift although the amplitude of spontaneous
emission Aspont is zero in this limit. This is the essential difference between red-
shift and standard loss of energy by gravitational radiation.33 In the corpuscular
resolution of de Sitter, the classical process of redshift is therefore fully analogous
to a phenomenon of a nonvanishing stimulated emission with zero spontaneous
emission. This phenomenon takes place due to the representation of the graviton
background as coherent graviton state whose mean occupation number is infinite
in the semiclassical limit (2.131).

Heuristically, the process of redshift is analogous to the transitions between
energy levels in an atom. In this picture, the initial “atom” Ψ̂ emits a graviton
under the influence of a coherent state gravitational “radiation” and gets deexcited
to a lower energy state Ψ̂′. Clearly, the mass of the atom has to change in the
course of this process. The difference between the atom in a radiation field and a
particle in de Sitter is that the atom possesses different energy levels even without
radiation whereas there are no energy levels for a particle in Minkowski.34

Dilution of Gas as Conversion Process

To conclude this section, we want to briefly point to another process, namely the
dilution of a gas of massive neutral particles in a de Sitter background, which
at the classical level is described by a coherently oscillating real scalar field with
Hubble friction term:35

Ψ̈ +
√

3Λ Ψ̇ + m2
ΨΨ = 0 . (2.148)

We restrict ourselves to the regime where the gas only leads to a small perturbation
of the pure de Sitter metric. In the standard classical treatment, one would at-
tribute the dilution to the Hubble damping given by (2.148) (see also the discussion
in 2.3.4).

In our fully quantum treatment, a different picture emerges. Just like the
de Sitter metric, also the gas has a quantum description as coherent state of
Ψ̂-particles. The coupling of Ψ̂ to gravity makes possible a process of induced
decay, which is depicted in Fig. 2.5. For simplicity, we restricted ourselves to
mΨ = nmg/2, with n integer. In that case, two Ψ̂-particles can annihilate into
n gravitons. In this manner, the mean number of Ψ̂-particles and therefore the
density of the gas decreases. The classical condition that the gas only leads to a

33Of course, as all other processes in our picture, the classical redshift is corrected by quantum
1/N -effects.

34This means that the particle is analogous to an atom with degenerate energy levels which
only split in the presence of external radiation.

35Note that in the presence of a chemical potential, the story is a bit more involved and will
not be considered here.
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Deviations from Classical Results

Gas dilution

N {
p1 = p2= (n mg /2,

#»0 ) }n} N ′ = N+n

4

Figure 2.5: Dilution of gas as conversion of the gas particles: Two gas particles
of 4-momentum p1 and p2, which are at rest, annihilate into n gravitons. In this
process, both the graviton and the gas state are coherent.

small perturbation from pure de Sitter amounts to a small backreaction on the
quantum level, i.e. to the condition that the change of the graviton state |N〉 is
negligible. This is the case if mΨNΨ � mgN , where NΨ is the mean occupation
number of the coherent Ψ̂-state. In summary, at the quantum level, the dilution
of gas is caused by a real conversion process between Ψ̂- and φ̂-quanta.

2.4.3 Gibbons-Hawking Particle Production as Decay of
the de Sitter State

Fully Quantum S-Matrix Calculation

Next, we study the process of Gibbons-Hawking particle production. In doing so,
our goal is twofold. As in the previous section, we first want to explicitly discuss
how the standard semiclassical treatment can be obtained as limiting case of our
fully quantum description. Secondly, we shall discuss what new quantum effects
arise if no semiclassical limit is taken. Those lead to a finite quantum break-time
of de Sitter.

How Gibbons-Hawking particle production arises in the semiclassical limit, in
which quantum fields are studied on top of the undisturbed classical metric back-
ground, was already reviewed in section 1.3.2. In this picture, particle production
arises as a vacuum process: Since the vacua of quantum fields depend on time in
the evolving de Sitter metric, their early-time vacuum contains particles from the
point of view of a late-time observer. As already emphasized several times, the
crucial point is that by construction, there is no backreaction in the semiclassical
limit, i.e. particle production does not change the classical de Sitter metric.

In our fully quantum description of the de Sitter metric, particle production
emerges as a Hamiltonian process of scattering and decay of the gravitons which
compose the coherent state. Once we take into account the coupling of gravitons to
other species and to each other, inevitably quantum processes emerge in which part
of the coherent state gravitons gets converted into free quanta (both in gravitons
and in other species). The final states of these decay and scattering processes
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Deviations from Classical Results

Particle Production as Graviton Decay

N{
p = (mg /2, #»p )

p′ = (mg /2, − #»p )

} N−1

1

Figure 2.6: Particle production as graviton decay: One of the N initial gravitons
decays and produces 2 external particles of 4-momentum p and p′.

correspond to the Gibbons-Hawking quanta, which arise in the usual semiclassical
treatment.

We remark that in this context, “free” quanta are those with dispersion rela-
tions of particles propagating on top of a classical de Sitter background. As we are
working to linear order in the de Sitter metric, the free quanta will have dispersion
relations of Minkowski quanta to the leading order, with the de Sitter metric being
a small correction. Due to the limitations of our approach, it only makes sense to
take into account leading-order effects.

For illustrating the point, we limit ourselves to studying decay processes of
background gravitons into external particle species. Due to the universality of
graviton coupling, the process of graviton production has a similar rate. The sim-
plest process contributing to particle production via decay is given by a transition
from the initial state |N〉 to a final state which contains two particles other than
gravitons. It is depicted in Fig. 2.6. The corresponding amplitude is determined
by the one of redshift (2.145), after the substitution p→ −p (where now both and
p and p′ correspond to outgoing external particles):

A = 〈N ′|b̂ #»p b̂ #»p ′Ŝ|N〉 = K(−p, p′)
∫

d4x ei(p+p
′)x 〈N ′|φ̂|N〉 . (2.149)

As already explained in the previous section, the crucial novelty of our approach
is that it uncovers the existence of quantum processes in which the final state |N ′〉
of background gravitons is different from the initial one |N〉. These processes
correspond to 1/N -corrections and therefore are fundamentally invisible in the
semiclassical picture which in our framework is reproduced in the limit N → ∞.
In particular, the final state |N ′〉 obtained as a result of particle production in
the quantum theory does not even have to be a coherent state. This deviation
from coherence causes a gradual departure from classicality and eventually leads
to quantum breaking.

However, for the case of de Sitter even the transitions among coherent states
with different occupation numbers are sufficient for capturing the departure from
the classical evolution since classically de Sitter is an eternal state and simply
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cannot change. Any quantum process which changes the characteristics of de Sitter
space marks a fundamentally new phenomenon not visible in the semiclassical
theory. Therefore, for illustrating this point we shall consider transitions to a
coherent state, but with different mean occupation number N ′ 6= N . As explained
in section 2.2.2, it is most natural to consider a process in which the expectation
value of the energy is conserved. Since we consider the decay of a particle, this
leads to ∆N = N ′ − N = −1. In any case, the precise value of ∆N does not
matter for our conclusions.

Using ∆N � N , we obtain the matrix element:

〈N ′|φ̂|N〉 = 1√
2mgV

(
eimgt
√
N ′ + e−imgt

√
N
)(

1− ∆N2

8N

)
, (2.150)

where the 1/N -correction comes from the overlap of different coherent states. It
vanishes in the semiclassical limit. The S-matrix element subsequently becomes:

A = (2π)4√
2mgV

K(−p, p′)δ(3)( #»p + #»p ′)
(

1− ∆N2

8N

)
(
δ(p0 + p′0 −mg)

√
N ′ + δ(p0 + p′0 +mg)

√
N
)
. (2.151)

After the substitution p→ −p, the matrix element reduces to the result (2.147) for
redshift in the limit N ′ = N , as it should. The amplitude of particle production
consists of two parts. The first one describes a process where a graviton leaves the
bound state and the second one corresponds to adding a graviton to the bound
state. In contrast to the case of redshift, the second process cannot occur because
of energy conservation so that the term will be dropped.

As is derived in appendix A.1.1, the rate of particle production is

Γ =
2
√

m2
g

4 −m
2
Ψ N

M2
pm

2
g

(
m2
g

2 +m2
Ψ

)2 (
1− ∆N2 − 4∆N

4N

)
. (2.152)

We observe that particle production to first order only takes place for light parti-
cles, mΨ < mg/2, as we expect it. In order to simplify the discussion, we specialize
to massless external particles (mΨ = 0):

Γ =
Nm3

g

4M2
p

(1− ∆N2 − 4∆N
4N ) = Λ2V

32π (1− ∆N2 − 4∆N
4N ) . (2.153)

For dimensional reasons, this result does not come as a surprise. The rate must
be proportional to the volume V . Since particle production can also be derived in
the semiclassical treatment, i.e. in the limit Mp →∞, the Planck mass should not
appear so that we can only use Λ to obtain the correct mass dimension.
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Deviations from Classical Results

Multi-Graviton decay

N { n { p′ = (n mg /2,− #»p )

p = (n mg /2, #»p )

} N ′ = N−n

3

Figure 2.7: Leading-order process for the production of particles with high total
energy E � mg. At least n > E/mg of the initial N gravitons have to decay to
produce the two external particles of 4-momentum p and p′.

Glimpses of Gibbons-Hawking Temperature

Before we proceed to our main result, the quantum break-time, we want to check
to what extent our approach is consistent with the semiclassical result. To this
end, we estimate the power of produced particles. As a pair of produced particles
has the energy ~

√
Λ , our quantum result for the decay rate (2.153) leads to

Pq ≈ ~Λ , (2.154)

where we restored powers of ~ for a moment. As it should, particle production
vanishes in the classical limit ~ → 0 but is finite in the semiclassical limit Mp →
∞. The power (2.154) matches the semiclassical treatment, in which the Hubble
horizon radiates like a black body of temperature T ≈ ~

√
Λ because the Stefan-

Boltzmann law yields the emitted power P ≈ T 4A, where A ≈ Λ−1 is the area of
the horizon.

Having concluded that the total power of produced particles is of the right order
of magnitude, we investigate the distribution of produced particles. To first order,
they are not distributed thermally, but all have the same energy mg/2. As soon as
one goes to higher orders so that more than one background graviton participate
in the scattering process, this δ-distribution will be smeared out. Furthermore, we
expect at least qualitatively that the resulting distribution is thermal.

For example, one of the key features of the Gibbons-Hawking thermal spectrum
is the Boltzmann suppression of the production rate of particles of energy E higher
than the de Sitter Hubble parameter

√
Λ :

Γ ∝ e−E/
√

Λ . (2.155)

Our quantum description of de Sitter space gives a very interesting microscopic
explanation of this suppression. The production of particles is a Hamiltonian
process in which the background coherent state gravitons get converted into free
quanta. Since the frequencies of background gravitons are given by mg =

√
Λ ,

the production of states with energies E � mg requires the annihilation of n
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background gravitons, with n > E/mg. The leading-order contribution to this
process is schematically expressed in Fig. 2.7, which depicts the annihilation of n
gravitons into a pair of Ψ-quanta with total energy E = nmg. The probability of
such a process is highly suppressed due to the participation of a large number of
soft gravitons in it: Each soft vertex contributes a factor α = 1/N to the rate.

For estimating this suppression, we can directly use the results of [45], where
multi-graviton transition amplitudes have been calculated (see [49] for a related
discussion). Accounting for the fact that there are

(
N
n

)
possibilities to choose the

n annihilating gravitons, we obtain the rate:

Γ ∝
( 1
N

)n
n!
(
N

n

)
. (2.156)

Using Stirling’s formula twice, which is valid for N � 1 and N − n� 1, we get

Γ ∝ e−n
(

N

N − n

)N−n
. (2.157)

Before we discuss the exponential suppression, we analyze the additional factor(
N

N−n

)N−n
. Defining l = N/(N −n), we can rewrite it as lN/l. It is 1 for l = 1 and

l → ∞.36 Its maximum is at l = e and gives eN/e. At this point, the rate is still
exponentially suppressed:

Γmax ∝ e−
e−2
e−1n . (2.158)

Thus, we conclude that

Γ ∝ e−c(n)n , (2.159)

with c(n) ≈ 1 and c(N) = 1. Since we have n = E/mg and mg =
√

Λ , the
above expression reproduces the exponential suppression of the Boltzmann factor
(2.155) for the thermal bath. For n = N , this correspondence even becomes exact.
It is remarkable that the analysis of multi-graviton scattering suffices to obtain a
thermal behavior.

Having studied produced particles of high energies, we note that smearing
out of the energy spectrum also takes place on the infrared side. Indeed, we
can produce arbitrarily soft quanta in processes of decays or annihilations of the
background gravitons by redistributing the rest of the energy among the remaining
background gravitons in form of a recoil. For example, one of the background
gravitons can decay into a pair of Ψ̂-particles of energy E � mg while transferring
the energy difference ∆E = mg−E to the remaining N−1 gravitons. The process

36The approximation (2.157) is no longer valid for l→∞, i.e. n = N , but we can directly read
off from (2.156) that the additional factor is one: Γ ∝ e−N .
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Deviations from Classical Results

Recoil

N {
p = (E , #»p )

p′ = (E ′, #»p ′)

} N ′ = N−1

2

Figure 2.8: Higher order process of particle production, in which the produced par-
ticles recoil against all remaining gravitons. In particular, this allows for produced
particles of low energies E,E ′ � mg/2.

is schematically depicted in Fig. 2.8. Unlike the case of E � mg, the processes
with E � mg are not exponentially suppressed.

It would not be very informative to give a more precise estimate of processes
with the production of deep-infrared quanta of energy E � mg since the wave-
length of such particles exceeds the size of the de Sitter Hubble patch and thus
the timescale of validity of our model. So in the discussion of very low energy
particle production, we will be satisfied with qualitative arguments, which clearly
show that – even ignoring classical nonlinearities and formally extrapolating our
model for longer times – the production of very soft modes is possible due to
multi-graviton processes.

We thus see that by taking into account multi-graviton contributions to particle
production, the δ-distribution gets smeared out. Its peak is still at E ≈ mg, but
the region E � mg is exponentially suppressed by a factor that is strikingly
similar to a thermal Boltzmann suppression factor (2.155). It is remarkable that
the thermal-like distribution of the produced particles can arise in the microscopic
theory as a result of the structure of soft multi-graviton amplitudes without any
need of the notion of temperature.

In summary, we have managed to reproduce essentially all key short-distance
features of Gibbons-Hawking particle production, i.e. those features that deal with
timescales within the validity of our approximation. We have achieved all this
within a simplest framework in which the classical part of de Sitter is mapped on
a coherent state of gravitons of a linear theory. The quantum effects of de Sitter
– such as Gibbons-Hawking radiation – result from quantum interactions of these
gravitons. Of course, we do not expect that this simple theory can quantitatively
capture all the properties of de Sitter, but it already took us surprisingly far.

Consistency Check: Gauge Invariance

As a final consistency check, we consider a brief example of how the rate of particle
production transforms under gauge transformations. To this end, we study the first
order of the transformation from conformal time t to physical time t′: dt = a(t)dt′,



76 2. Quantum Breaking

where a(t) ∝ cosh(
√

Λ/3 t) is the scale factor. Since a(0) = 1, we expect this not
to have any influence on the decay rate in the semiclassical treatment. Our goal
is to show how this gauge invariance arises in our framework. Since the leading
order of the gauge transformation changes the metric as g′00 − g00 ∝ Λt2, our first
order perturbation generalizes to

h̃′00 =c h̃00 , (2.160)

where c = 1 yields the untransformed value.37 For the quantum description in
terms of interacting gravitons, c 6= 1 means that we have to introduce two different
scalar function for h00 and the spatial diagonal perturbations.

Generalizing our calculation of the first order matrix element, we observe that
only the kinematical factor (2.146) changes:

K′(−p, p′) = i

√
16π
Mp

ζΨ(p)ζΨ(p′)(
−(−1

2c+ 3
2)p0p

′
0 + (1

2c+ 1
2) #»p #»p ′ − (1

2c+ 3
2)m2

Ψ

)
. (2.161)

Plugging in the kinematics of a decay, we conclude that the kinematical factor and
thus also the rate are indeed gauge-invariant:38

|K′(−p, p′)|2 =
(
m2
g

2 +m2
Ψ

)2

. (2.162)

2.4.4 Quantum Break-Time
As we have explained in section 2.2.3, a decay process leads to a fully coherent
final state, as long as rescattering events of the produced quanta are not taken into
account. Nevertheless, it causes quantum breaking since the transition process is
quantum, i.e. it is invisible in the classical theory. This point becomes particularly
clear in the case of de Sitter. Even if hypothetically we were allowed to maintain

37This corresponds to the infinitesimal transformation ξµ ∝ δµ0 cΛt3. It destroys de Donder
gauge, but the resulting metric still is a solution of the ungauged equations of motion.

38This result also determines how the decay rate changes under rescaling of the spatial com-
ponents,

h̃′11 =h̃′22 = h̃′33 = b h̃11 .

Since we have shown that a change of h00 has no effect, the spatial transformation is equivalent
to a rescaling of all perturbations, h̃′µν = b h̃µν . This can be absorbed by the redefinition

Λ′ = bΛ .

Both in the classical and the quantum description, all results will change according to a modified
cosmological constant.
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only processes which preserve the coherence of the state of background gravitons,
this would still lead to a quantum evolution which has no counterpart in the
semiclassical picture: Semiclassically, de Sitter is an eternal state with no clock.
Therefore, even a “clean” transition between the two different coherent states |N〉
and |N ′〉 gives an intrinsically quantum evolution of the state which cannot be
matched by anything in the classical theory.

Notwithstanding the above, we expect that coherence of the graviton state
is not preserved after tq. The reason is that the collective interaction is strong,
αgN = 1. Therefore, a higher-order process such as 2 → 2-interaction, which
is depicted in Fig. 1.2, has the same rate as decay. This is evident from Eq.
(1.25). Even in our model, which does not include self-interaction of gravitons,
the exchange by virtual Ψ̂-particles will lead to their rescattering and subsequent
decoherence, albeit on a longer timescale.

In summary, we have found a crucial difference to the semiclassical treatment:
In our quantum description of de Sitter, the backreaction of particle production on
the spacetime leads to a change of the coherent state |N〉 into |N ′〉, which is either
a different coherent state or a decohered one. On the order of one background
graviton leaves the coherent state each Hubble time, due to decay into free quanta
or due to rescattering.

After a macroscopic number of gravitons ∆N of the order of N has decayed, the
resulting quantum state |N −∆N〉 can no longer – even approximately – reproduce
the initial de Sitter metric. Consequently, we obtain the quantum break-time

tq ≈ Γ−1N = N√
Λ
. (2.163)

Rewriting in terms of more conventional parameters, we get

tq ≈
M2

p

Λ3/2 . (2.164)

As discussed in section 2.2.5, this timescale is physically meaningful even though
tq > tcl. The reason for this is that tcl could be increased by a better choice of
operators â†, â, which take into account classical nonlinear interactions. But for
any choice of operators, the decoherence mechanism will continue to work and lead
to a significant deviation from the classical solution after tq. Thus, at the latest
after the timescale (2.164), the classical description of de Sitter breaks down. This
quantum break-time constitutes the main result of the present section.

Since the timescale (2.164) fully agrees with the earlier result (1.26) of [44],
which we reviewed in section 1.3.2, we want to comment on the relationship of
the two approaches. In [44], a model-independent perspective was adopted, i.e. no
concrete theory of the constituent gravitons of de Sitter was provided. Instead,
generic scaling relations were derived that any model of de Sitter has to fulfill.
The fact that such general arguments already suffice to determine the quantum
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break-time is a great strength of this approach. This universality of the quantum
break-time matches the fact that the result (2.164) fulfills the universal dependence
(2.56), in which the quantum break-time is set by 1/α. This is true since the
classical timescale is tcl ≈ H−1 (in turn, this follows from λg = 1) and the quantum
coupling is αg = 1/N .

In contrast, we have employed the explicit model (2.115) in the present work.
In this way, we have managed to confirm the generic predictions of [44] in a con-
crete scenario. Thus, it is the combination of the general argument of [44] and
the results in the explicit model (2.115) that make the prediction (2.164) of the
quantum break-time especially robust. In particular, it is important to emphasize
that the quantum break-time is not tied to the specific scenario (2.115) and its
shortcomings, but we expect it to hold in a more generic setting because of the
general scaling arguments.

Relationship to Other Work on de Sitter

There are manifold studies of the backreaction of particle production on de Sitter.
In particular, it was proposed that due to energy conservation, the vacuum energy
should decrease [120,121].39 In contrast to our approach, however, the assumption
was made that this process can still be described by a classical metric, i.e. by an
effectively decreasing cosmological constant. In this picture, the cosmological con-
stant would dynamically relax to zero.40 There is, however, no reason to assume
that the gravitational state of reduced energy can still be described by a classical
metric. In the case of black holes, precisely this assumption would lead to the
information paradox. Whereas the question of information is less clear for de Sit-
ter,41 the proposal of a decreasing cosmological constant is much more problematic
than that of a shrinking black hole mass. As also discussed in section 1.3.2, the
reason is that unlike in the black hole case, the source Λ is a fixed and eternal
parameter of the theory and therefore can never change. Consequently, we will
not follow the idea of an evolving cosmological constant.

The timescale (2.164) also appears in a second independent line of research,
in which de Sitter is treated as a fixed background metric. The central question
is how long perturbation theory can be valid on top of this classical metric. Ex-
ploiting analogies to the black hole case, it was put forward in [129] and shortly
afterwards made more explicit in [130] that this also leads to Eq. (2.164), i.e. a
perturbative expansion on a de Sitter background ceases to be valid after this time-
scale. Numerous calculations in various different setups have since confirmed this

39This idea bears similarities to the instability of de Sitter space put forward in [122–124].
40An explicit realization of this approach can e.g. be found in [125–127], where Eq. (2.164)

acquires the meaning of the timescale on which the cosmological constant changes significantly.
41Nevertheless, the timescale (2.164) can also be derived from considerations of information in

de Sitter [128].
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finding. Examples include [131–133] and [134] summarizes more recent results.42
It is important to emphasize, however, that all the above findings only point to
a breakdown of perturbation theory. This does not exclude the possibility that a
resummation or a nonperturbative calculation could successfully be performed on
top of the de Sitter metric.

In contrast, we come to a much more dramatic conclusion in our corpuscular
picture of de Sitter. The whole notion of a metric ceases to be valid after the
quantum break-time (2.164). This breakdown is fundamental and no calculation
performed on top of a classical metric can overcome it. For us, the breakdown
of perturbation theory on top of the fixed metric therefore gives an indication of
quantum breaking, but its implication are more severe than can become visible in
a semiclassical study. Not only perturbation theory breaks down but the whole
classical metric.

Emergent Nature of de Sitter Symmetry and Breaking Thereof

We would like to briefly comment on symmetry properties of the 1/N -effects which
lead to a quantum break-time of de Sitter. Obviously, since these effects cause a
departure from the semiclassical evolution, they are obliged not to respect the de
Sitter invariance.

The above fact is fully consistent with our quantum approach. In the stan-
dard treatment of gravitational backgrounds, spacetimes with different values of
the cosmological constant are considered as different vacua. The corresponding
symmetries of such classical backgrounds are thus viewed as vacuum symmetries.
The novelty of our picture is to treat the de Sitter state associated to a certain
value of the cosmological constant as a particular quantum state constructed in a
Fock space with a unique fundamental Minkowski vacuum. In our approach, de
Sitter therefore is an excited multi-particle state.

Once we “demote” de Sitter from the rank of a vacuum into an ordinary co-
herent state, its symmetry acquires the meaning of an emergent symmetry: It is
not a symmetry of the vacuum, but a symmetry of an expectation value over a
particular state. In such a situation, an arbitrary process which affects the expec-
tation value is expected to violate this emergent symmetry. This is exactly what
is achieved by 1/N -effects which change the de Sitter coherent state and lead to a
finite quantum break-time.

Relationship to Black Holes

As we have explained in section 1.3, the break-time (2.164) of de Sitter and the
break-time (1.13) of black holes are analogous in the sense that they correspond to
the timescale after which backreaction of particle production becomes significant.

42An interesting connection of this breakdown of perturbation theory in de Sitter and asymp-
totic symmetries, which are the subject of section 4.4.2, was established in [135].
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In both cases, the description in terms of a classical metric ceases to be valid at
this point. For black holes, the timescale (1.6) corresponds to the half lifetime and
it is moreover known as Page’s time [42] in the context of the puzzle of black hole
information.

Whereas the breakdown of the classical description takes place in the whole
volume for de Sitter, we should distinguish between the exterior and the interior
region for black holes. The latter are asymptotically flat, i.e. the influence of the
localized black hole on the spacetime far away from the horizon is always small.
Therefore, a classical geometry should continue to exist even after quantum break-
ing. Only near the horizon and in the interior of the black hole, the description in
terms of a classical metric breaks down completely.

It would be very interesting to study this phenomenon of quantum breaking
in more detail by generalizing the present study of de Sitter to the black hole
case. This means that one would have to find an explicit implementation of the
quantum N-portrait of black holes [34], which we reviewed in section 1.3.1.43 If
such a quantum model can be found that is able to reproduce the classical mean
field description for initial times, this would allow for an explicit computation of
the quantum break-time along the lines presented here.

Bound on Number of Particle Species

It is known [150–152] that semiclassical black hole physics puts a strict upper
bound on the number of particle species Nsp in terms of the gravity cutoff scale
L∗:

Nsp <
L2
∗

L2
P

. (2.165)

That is, the fundamental cutoff length of gravity L∗, in the presence of species,
is no longer given by the Planck length LP , but becomes larger and is given by
L∗ = LP

√
Nsp . This bound originates from the fact that the rate of Hawking

radiation is proportional to Nsp. Consequently, the evaporation of black holes
of size smaller than LP

√
Nsp cannot be thermal – even approximately – due to

a very strong backreaction from the decay. Thus, black holes beyond this size
are in conflict with basic properties of Hawking radiation and cannot be treated
semiclassically. Therefore, the scale L∗ marks the boundary of applicability of
semiclassical Einstein gravity. This results in the bound (2.165).

It is interesting to study the effect of the number of species on the de Sitter
quantum break-time. So we assume in our simple model that the graviton is
coupled to a large number of particle species Ψ̂j, j = 1, 2, . . . ,Nsp. The presence
of more species opens up more channels for Gibbons-Hawking particle production

43Further work on the corpuscular picture of black holes can be found in [35–37,40,43–45,136–
149].
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so that the rate increases by a factor of Nsp. Correspondingly, the quantum break-
times becomes shorter and Eq. (2.164) takes the form:

tq ≈
1√
Λ

(
1
Nsp

M2
p

Λ

)
. (2.166)

This relation reveals a very interesting new meaning of the black hole bound on
species (2.165) in the context of de Sitter. Namely, when the number of species
exceeds the critical value

Ncr ≈
M2

p

Λ , (2.167)

the quantum break-time becomes shorter than the Hubble time 1/
√

Λ . At the
same time, the de Sitter radius RH becomes shorter than the gravity cutoff length
L∗.

Moreover, notice that Ncr = N . Thus, the maximal number of particle species
allowed in any theory which can provide a de Sitter metric as a trustable classical
solution cannot exceed the mean occupation number of the de Sitter coherent state.
If we violate this bound, everything goes wrong: The quantum break-time of de
Sitter becomes shorter than the Hubble time and the de Sitter radius becomes
shorter than the quantum gravity cutoff.

We see that, first, there is a nice consistency between the bounds derived from
very different considerations: Two seemingly different requirements – namely that
the de Sitter radius on the one hand and the quantum break-time on the other
hand should not exceed the gravity cutoff – lead to the same conclusion. Secondly,
the corpuscular picture of de Sitter gives a very transparent meaning to the species
bound: With too many particle species available, the constituent gravitons would
decay so rapidly that de Sitter would not last even for a time equal to its radius.
Of course, this would make no sense. The theory protects itself from entering such
a nonsense regime, which would require the classical de Sitter space to have a
curvature radius shorter than the quantum gravity length L∗, which is impossible.

2.4.5 Implications for the Cosmological Constant
The concept of quantum breaking provides a new perspective on the cosmological
constant problem. Because we know from experience that the present Universe can
be described classically, we conclude that quantum breaking has not yet happened.
Since any patch with a given value of the Hubble parameter H =

√
Λ can be

described classically at most during the time tq ≈ (H−1/Nsp)(M2
p/H

2) (see Eq.
(2.166)), this puts an upper bound on the dark energy in our Universe in the case
that it is explained by a cosmological constant. The older our Universe is and the
more species it contains, the lower this bound becomes.

First, we can study quantum breaking for the observed value of the cosmological
constant

√
Λ = 10−42 GeV. Currently, the phenomenologically acceptable number
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of hidden sector species is bounded by Nsp ≈ 1032 because a larger number of
species would lower the gravity cutoff below the TeV-scale, which is excluded
by current collider data [150–152]. Assuming this number, the observed value
of the cosmological term would saturate the quantum break-time bound if our
Universe were approximately 10100 years old. This age should not be confused
with the Hubble time or the Hubble radius. It pertains to the entire duration of
the classically describable history of our patch.

We can also apply the constraint in the other direction: Knowing the classical
age of a given universe and the number of species, we can deduce an upper bound
on Λ. For the present age tu of our Universe, we obtain Hmax ≈ (M2

p/tu)1/3 =
10−1 GeV, where we set Nsp = 1 to obtain a more robust bound. This means that
the energy density associated to the cosmological constant, ρ ≈ H2M2

p , can be at
most 10−40 of the Planckian energy density.44 On the one hand, we cannot explain
why the cosmological constant is as small as it is. On the other hand, however,
the cosmological constant has to be small for consistency.

2.4.6 Implications for Inflation
Bound on Inflaton Potential

Next we apply our results to inflation [20] and especially its slow-roll version [153].
Since the quantum break-time becomes shorter for higher values of the Hubble
scale (see e.g. Eq. (2.164)), it is very interesting to study quantum breaking dur-
ing inflation when the corresponding Hubble parameter was much higher than it
is today.45 All predictions that we can derive from inflation are based on the semi-
classical treatment (see e.g. [155] for a review), in which the notion of a classical
metric is meaningful. Thus, an inflationary scenario is only predictive if it avoids
quantum breaking. This condition and several of its consequences, to will we shall
turn shortly, were already discussed in [44]. Moreover, since all results derived in
the semiclassical limit appear to agree with observations, it is very unlikely that
an inflationary scenario that undergoes quantum breaking can be viable. For this
reason, we arrive at the requirement of avoiding quantum breaking:

tesc . tq . (2.168)

The quantum break-time must be longer than the time it takes for the system to
escape from the quasi-de Sitter state, i.e. longer than the total duration of inflation.

In inflation, generically several degrees of freedom with different interactions
exist. Then tq is the shortest timescale before any subsystem quantum breaks.

44Including Nsp ≈ 1032 would lead to Hmax ≈ 10−12 GeV and an energy density of at most
10−62 of the Planckian value.

45More studies of corpuscular inflation can be found in [110,111,154].
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Therefore, we can represent the quantum break-time as

tq ≈ H−1 1
α>

, (2.169)

where we used the general relation (2.56) for the quantum break-time. Here α> is
the strongest interaction that exists in the system and we roughly approximated
the classical timescale as tcl ≈ H−1. Since the number N of e-foldings determines
the during of inflation as tesc = H−1N , condition (2.168) leads to a maximal
number of e-foldings given by

Nmax ≈
1
α>

. (2.170)

Thus, the stronger the coupling is in the system, the more severe the requirement
(2.168) of avoiding quantum breaking becomes.

Because gravitational interaction always exists, a model-independent upper
bound on the quantum break-time is given by the break-time (2.166) due to pure
gravity:

tq < H−1 M2
p

NspH2 . (2.171)

Note that we obtain this relation when we plug the effective gravitational coupling
αg = NspH

2/M2
p in the general formula (2.169). This leads to the absolute upper

bound on the number of e-foldings:46

Nmax <
1
Nsp

M2
p

H2 , (2.172)

which must hold in any inflationary scenario.
The condition (2.168) of avoiding quantum breaking can be translated as a

constraint on the inflaton potential V (ψ), where ψ is the inflaton. Namely, the
change of the potential ∆V over some time ∆t ≈ tq must satisfy |∆V | & V .
Approximating ∆V ∼ V ′ψ̇∆t and assuming that slow roll is satisfied, ψ̇ ∼ −V ′/H,
we get ∆V ∼ −V ′2∆t/H. Plugging in Eq. (2.169), we arrive at the following
bound:

Mp|V ′|
V

&
√
α> . (2.173)

Again, we observe that the constraint becomes more stringent as the coupling α>
increases. If the coupling is stronger, the quantum break-time gets shorter and
the system needs to move faster to avoid it.

46In [44] it was also suggested that inflaton-graviton scattering could lead to a second bound
Nmax = (Mp/H)4/3. However, here we adopt the model-independent gravitational bound
(2.172). Furthermore, as discussed in section 2.4.4, we note that bounds on the number of
e-foldings analogous to Eq. (2.172) have been derived earlier in numerous semiclassical studies
of perturbation theories on top of a fixed de Sitter metric. The earliest examples (without the
consideration of the species effect) can be found in [129,130].
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Additionally, we note that the bound (2.173) has the form conjectured in [156].
For us, however, the r.h.s. is not a fixed constant but can depend on ψ and V .
Therefore, it does not need to be of order 1 but can be much smaller. For example
if the strongest coupling is gravitational, we get √αg =

√
NspH/Mp. We will

elaborate on the connection to [156] in section 2.5.1, as was already done in [157]
shortly after [156] appeared.47

Finally, we emphasize that so far, our discussion of inflation is independent
of whether or not quantum breaking in de Sitter leads to an inconsistency. We
will discuss this question in section 2.5. Instead, our only requirement is that a
semiclassical description of inflation exists since otherwise it is not a predictive
scenario. Thus far, we therefore only require that quantum breaking must not
take place in the Hubble patch that we observe. Consequently, eternal inflation
[158,159] is not yet excluded at this point.

Inflationary Observables48

On the one hand, quantum breaking can constrain inflationary models. On the
other hand, it can lead to new observables for those scenarios that are not excluded.
In the semiclassical picture of inflation, only data from the last 60 e-foldings is
accessible. All preexisting information is erased. As already explained in [44], the
situation is different in the corpuscular picture of de Sitter. The reason is that the
1/N -effects, which lead to a deviation from the classical metric description, cannot
be washed out. Therefore, they provide a quantum clock that encodes information
about the total duration of inflation. In this way, the perturbations produced at
different epochs are no longer identical and the age of de Sitter becomes a physical
observable.

It is important to note that this difference is unrelated to the standard time
variation of the Hubble parameter due to a classical slow-roll of the inflaton. In-
stead, it comes from the fact that the de Sitter background ages due to its quantum
decay. In other words, the backreaction that is measured by 1/N -effects violates
the de Sitter invariance in the same way as the evaporation of water from a fi-
nite volume tank violates the time-translation invariance. Even if the rate of the
process is constant, the water level in the tank changes and this is an observable
effect. Determining how these new effects that contain information about the to-
tal duration of inflation can be measured constitutes an interesting topic of future
research. What is clear, however, is that the effects are stronger if inflation lasted
longer. Therefore, those scenarios that are maximally close to quantum breaking
are the most interesting.

47We note that the bound (2.173) is stronger than the one presented in [157] by a factor of
1/√α> .

48The following paragraphs use material from [10].
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2.5 Implications of Quantum Inconsistency of de
Sitter

As we have explained, quantum breaking is about the breakdown of an approx-
imation. After the quantum break-time, the true quantum evolution deviates
significantly from the classical solution. In order to describe the system after this
point, one has to take into account quantum effects.

In the special case of de Sitter, there are indications that the consequences
of quantum breaking could be much more severe. Namely, it could lead to an
inconsistency [44, 50]. The argument goes as follows [50]: What sets de Sitter
apart from all other gravitational solutions is the fact that its source is intrinsically
classical, namely a parameter of the theory. For this reason, quantum effects in
the state of de Sitter cannot be matched by any evolution of the cosmological
constant. Whereas the gravitational field inevitably departs from de Sitter, the
cosmological constant is eternally tied to it. This conflict indicates that de Sitter
is inconsistent on the quantum level.

We emphasize that for other systems, quantum breaking cannot lead to an
inconsistency because also the source of the gravitational solution possesses an
underlying quantum description. Therefore, quantum effects in the gravitational
field can be matched consistently by quantum effects of the source.

Moreover, we must stress that the question if de Sitter quantum breaking is in-
consistent remains open and constitutes an interesting topic of future research. If it
does not lead to an inconsistency, this would mean that some exotic future-eternal
state exists past the quantum break-time, the mean field description of which no
longer matches any reasonable classical metric solution of general relativity. Such
a scenario was termed as quantum eternity in [44].

In the following, we will not further discuss whether de Sitter quantum breaking
is inconsistent. Instead, our goal is to explore some of the implications that arise
if quantum breaking indeed leads to an inconsistency for the special situation of
de Sitter. In that case, it must not happen in any consistent theory. Therefore,
whenever there is a positive energy density, a degree of freedom must exist that
relaxes it on a timescale tesc that is shorter than the quantum break-time:

tesc . tq . (2.174)

This condition, which we shall call de Sitter quantum breaking bound, looks iden-
tical to the one discussed previously in Eq. (2.168), but now it acquires a different
meaning. It is no longer about the existence of a (semi)classical description and
therefore about predictivity. Instead, it concerns the fundamental consistency of
a theory, completely unrelated to the breakdown of any computation techniques
or classical approximation.

As already discussed in [44, 50], an immediate consequence of the de Sitter
quantum breaking bound is that the currently observed dark energy cannot be
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constant but must change in time. Namely, a degree of freedom must exist that
drives our Universe towards Minkowski vacuum within a time that is shorter than
tq. However, this represents an extremely mild restriction. The reason is that for
the current phase, the quantum break-time from gravity is enormous, tq ∼ 10132 y
(see section 2.4.5).49 Nevertheless, this point of view promotes the cosmological
constant problem from a question of naturalness to an issue of consistency.

2.5.1 Exclusion of Self-Reproduction in Inflation
Bounds on the Potential

In the case of inflation, the quantum breaking bound can lead to more severe
restrictions. For slow roll, we have already investigated the implications of condi-
tion (2.174). It leads to the bound (2.173) on the first derivative of the inflaton
potential.

Next, we can consider extrema.50 First, we study the case in which the ex-
tremum is unstable – it can either be a local maximum or a tachyonic direction
around a saddle point with a negative curvature – and additionally the curvature
|V ′′| is much larger than the Hubble parameter H2 = V/M2

p . Then the field leaves
the neighborhood on a timescale tesc ≈ |V ′′|−1/2, which is much shorter than the
Hubble time H−1. Therefore, the system has no chance to suffer from de Sitter
quantum breaking.

In the opposite case, in which the curvature is small, |V ′′| � H2, the sign
of V ′′ plays no role. The field behaves as effectively-massless and experiences a
random walk with variation δψ ∼ H per Hubble volume per Hubble time. These
quantum excursions lead to a self-reproduction of the de Sitter phase [158, 159].
Whereas inflation ends in some Hubble patches, there always exists a Hubble patch
in which the field would stay on top of the hill longer than the quantum break-
time (2.166). However, the de Sitter quantum breaking bound (2.174) demands
that quantum breaking must not happen at all in a consistent theory, i.e. not in
any Hubble patch. Therefore, eternal inflation violates the consistency condition
(2.174). Avoidance of this violation implies the following bound:

V ′′ . −V/M2
p . (2.175)

In summary, it follows from the de Sitter quantum breaking bound that either
the first derivative is sufficiently big (Eq. (2.173)) or that the second derivative is
sufficiently negative:

Mp|V ′|
V

&
√
α> ∨ V ′′ . −V/M2

p . (2.176)

49In the presence of the maximal number of species, Nsp ≈ 1032, the quantum break-time can
be shortened to tq ≈ 10100 y but is still huge.

50Our study of extrema was motivated by the refined de Sitter swampland conjecture [160],
which we shall discuss shortly.
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We remark that this condition leaves enough room for inflationary model build-
ing. Whereas situations that necessarily lead to eternal inflation are excluded, as
is e.g. the case for topological inflation [161, 162], other scenarios require closer
scrutiny in order to make sure that they avoid quantum breaking. For example,
hilltop inflation [163], in which inflation occurs near a maximum, is not necessarily
incompatible with the de Sitter quantum breaking bound.

Relationship to de Sitter Swampland Conjecture

It is also very interesting to study inflation in string theory because it has gener-
ically proven difficult to construct compactifications that contain such quasi-de
Sitter states, as was already apparent since the early models of inflation driven by
D-branes [164,165]. Recently, the swampland program has spurred renewed inter-
est in the consistency of de Sitter in string theory. The term swampland, which
was coined in [166], refers to the space of consistent low-energy effective field theo-
ries that nevertheless cannot be completed into a string theory of quantum gravity
in the ultraviolet.51 Regarding quasi-de Sitter states, the conjecture has recently
been put forward that an inflaton potential must satisfy the following conditions
in order to avoid the swampland [156,160]:52

Mp|V ′|
V

& c1 ∨ V ′′ . −c2V/M
2
p , (2.177)

where c1 and c2 are numbers of order 1.
This conjecture motivated us to express the de Sitter quantum breaking bound

in the form (2.176). Our work is based on [157], where the relationship of quantum
breaking and the constraint [156] on the first derivative of the inflation potential
was already discussed. When we compare the conditions (2.176) and (2.177), we
note that the constraint on the second derivative is identical. Thus, both exclude
eternal inflation. In contrast, the bound on the first derivative due to quantum
breaking is in general milder since √α> can be much smaller than 1. There-
fore, quantum breaking does not generically exclude slow-roll inflation whereas
the swampland conjecture (2.177) does, at least in the simplest scenarios.53

As an outlook, we can try to establish a more direct connection between the
quantum breaking bound and the de Sitter swampland conjecture in string theory.
If indeed quantum breaking leads to an inconsistency for de Sitter, then string

51A current review of the swampland program, including the de Sitter swampland conjecture
on which we focus in the following, can be found in [167].

52First [156], only the part of the conjecture concerning the first derivative was proposed.
Later [160], following the suggestions of [168] and [169], the conjecture was weakened by adding
the condition concerning the second derivative. Some further exemplary discussions of the de
Sitter swampland conjecture can be found in [170–180].

53A first discussion of this and other cosmological implications of the swampland conjecture
can be found in [170].
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theory as a consistent theory of quantum gravity must never allow for a state that
experiences de Sitter quantum breaking. In this picture, the de Sitter swampland
conjecture can be regarded as a consequence of the quantum breaking bound.
String theory is obliged to escape a quasi-de Sitter state in order to avoid quantum
breaking.

We can illustrate how string theory appears to respect the quantum breaking
bound by considering a simple realization of an unstable extremum. Following
the setup proposed in [164, 165], we study a D3- and an anti-D3-brane in a 10-
dimensional space on which 6 extra dimensions have been compactified. We choose
their characteristic radii R to be much larger than the string length Ls and we shall
assume that the D3- and anti-D3 brane are separated by a distance S that is much
smaller than R. Moreover, the branes are aligned with 4 noncompact dimensions.
In this situation, the branes fall towards each other due to a force that is mediated
by the tree-level exchange of closed strings. In the regime S � Ls, this process
was considered in [164,165] with the goal of constructing slow-roll inflation.

For the present discussion, however, we will only be interested in the situation
S ≈ Ls. As soon as the branes are that close to each other, an open string mode
becomes tachyonic. A complete form of its potential is unknown, but it suffices
for our considerations that the mass of the tachyon is given as m2 ≈ −L−2

s . Since
the energy density of the brane scales as L−4

s /gs, we arrive at the escape time
tesc ≈ Ls ln(g−1

s ). We can also estimate the quantum break-time of the system.
Using the general relation (2.56) with tcl ≈ Ls, we obtain tq ≈ Ls/g

2
s . We conclude

that in the regime in which the string theory is weakly coupled, the escape time
is much shorter than the quantum break-time, i.e. the bound (2.174) is satisfied.

We can equivalently derive this result from a 4-dimensional point of view.
There the Hubble scale is

H2 ≈ L−4
s

gsM2
p

= L−2
s

gs
(R/Ls)6 = −V ′′ gs

(R/Ls)6 , (2.178)

where we expressed the 4-dimensional Planck mass in terms of its 10-dimensional
counterpart, M2

p = M8
10R

6, and we moreover used that M8
10 = L−8

s /g2
s . As gs � 1

and Ls � R, it immediately follows that the bound (2.175) is satisfied. This shows
that de Sitter quantum breaking does not take place.

2.5.2 Exclusion of de Sitter Vacua
The most immediate consequence of the de Sitter quantum breaking bound (2.176)
is that a consistent theory must not possess any stable or metastable vacuum with a
positive energy density. This exclusion of de Sitter vacua is particularly interesting
since the same requirement also follows from the swampland conjecture (2.177).
Therefore, one can choose either the quantum breaking bound or the de Sitter
swampland conjecture as starting point for the following arguments.
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Thus, any theory that in principle allows for a de Sitter vacuum can be ruled
out. It is important to stress that it is inessential if these vacua are actually
populated, e.g. as a result of cosmological evolution. If vacua with a positive
energy density lead to an inconsistency, the mere fact that the theory possesses
such vacua rules it out. This leads to important constraints on model building.

Necessity of the QCD Axion

First, we study the strong CP problem of QCD. Usually, it is posed as a naturalness
question: Why, among all possible θ-vacua, do we live in the one in which QCD
is CP-conserving to an extraordinary accuracy? However, if de Sitter vacua are
excluded, the strong CP problem turns into a matter of consistency. The reason
is that, as we shall show shortly, most θ-vacua possess a positive vacuum energy
density and therefore correspond to de Sitter. The only way out is to render the
θ-angle unphysical. Consequently, the axion solution to the strong CP problem
arises as a mandatory consistency requirement, independently of any naturalness
considerations or even a fine-tuning.

We will prove this statement by contradiction, i.e. we will assume that there
is no axion in QCD and show that this leads to an inconsistency. If no axion
is present, QCD contains distinct vacua that can be labeled by the θ-parameter
[181, 182]. Those θ-vacua possess different energies and it follows from the Vafa-
Witten theorem [183] that a global minimum of the energy is achieved for θ = 0.
Although the exact energy dependence is not known for large values θ ∼= π, it is
clear that the maximal energy density is set by the QCD scale Λ4

QCD ≈ (100MeV)4,
where we ignore a mild suppression by the quark masses.

Now we can combine this knowledge with two experimental facts. First, we
know that the value of θ in the vacuum that we live in is close to zero, θ . 10−10.
Secondly, we use the observation that the density of dark energy is very small,
ε . (10−3 eV)4, and in particular negligible as compared to the QCD scale ΛQCD.54
Notice that our present argument is independent of the cosmological constant
problem. It is inessential for us why the vacuum energy is as small as it is, but we
simply use the fact that whatever the reason is, it leads to the observed value.

The above findings imply that we live very close to the θ-vacuum with the
smallest energy. Therefore, other vacua exist that have a larger value of θ and
correspondingly a higher energy density of up to (100MeV)4. Whatever the mech-
anism is that relaxes the small vacuum energy in the present Universe to zero, its
effect on vacua with energy densities of (100MeV)4 is negligible. Consequently,
we can safely conclude that the vacua with higher values of θ correspond to de
Sitter. However, such states are inconsistent by the quantum breaking bound. By
contradiction, this proves that an axion must exist that renders θ unphysical.55

54As explained in the beginning of section 2.5, the quantum breaking bound implies that the
present vacuum energy cannot be constant but must slowly relax to zero.

55Note that any degree of freedom that relaxes θ is effectively an axion, regardless of whether
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Of course, each θ-vacuum belongs to a different superselection-sector, i.e. no
transitions among them are possible. As explained above, however, this is inessen-
tial for our argument. According to the de Sitter breaking bound, a consistent
theory must not possess a de Sitter vacuum, even if this state is not realized in
our Universe. The mere fact that the theory in principle allows for de Sitter states
rules it out. Moreover, it is crucial to note that the role of θ is special in the sense
that unlike other parameters of the Standard Model, it specifies the choice of a
vacuum in one and the same theory, rather than a choice of a theory. Therefore,
if the Standard Model develops de Sitter vacua for some values of its parameters,
this only rules out those values but not the whole theory.56

Finally, it is important to study whether de Sitter quantum breaking can still
happen once the axion is introduced. In this case, the points θ 6= 0 are no longer
vacua but relax to the state θ = 0. The corresponding relaxation time is set by
the inverse axion mass, tesc ≈ m−1

a ≈ fa/Λ2
QCD. Now we consider the state with

energy density ε ≈ Λ4
QCD because it would have the shortest quantum break-time

given by tq ≈ M5
p/Λ6

QCD. Representing it as tq ≈ tescM
5
p/(Λ4

QCDfa), we obtain
tq ≈ 1076 tesc even for fa ≈ Mp. Therefore, de Sitter quantum breaking cannot
happen and the bound (2.174) is fulfilled.

After relaxation, the axion field continues to perform damped oscillations. We
have studied quantum breaking for this model in section 2.3 and concluded that the
classical approximation is extremely accurate. But even if quantum breaking were
to happen for cosmic axions, this would not lead to an inconsistency. Instead, it
would merely mark the point when quantum effects have to be taken into account.

Exclusion of Spontaneously-Broken Discrete Symmetries

Next, we shall show that if de Sitter vacua are inconsistent, this rules out any
extension of the Standard Model with a spontaneously-broken discrete symme-
try, provided the phase transition happens after inflation.57 This conclusion holds
both for exact and for approximate symmetries. In short, the argument is the
following: If the symmetry is exact, the scenario is ruled out because of the well-
known domain wall problem [186]. However, if the symmetry is only approximate
so that domain walls can be avoided, this leads to de Sitter vacua, which are also
excluded. Thus, the domain wall problem and the de Sitter quantum breaking
problem complement each other in theories with low-scale spontaneously-broken
discrete symmetries. This rules out many well-motivated extensions of the Stan-
dard Model.

it is elementary or composite.
56Of course, extensions of the Standard Model exist in which other parameters, e.g. the Higgs

mass, can be promoted to parameters of vacuum superselection and be relaxed dynamically (see
e.g. [184,185]). Our de Sitter bound then would become applicable to such models.

57Discrete symmetries with a very small scale below about 1 MeV are not excluded, as we shall
discuss shortly.
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First, we review the well-known cosmological domain wall problem [186], which
occurs in the presence of spontaneously-broken discrete symmetries. Its key point
is that the domain walls, which are formed during the phase transition of spon-
taneous symmetry breaking, possess an energy density that redshifts as ε ∼ 1/a,
where a is the scale factor. This means that their energy dilutes more slowly
than that of matter or radiation. If domain walls existed, they would therefore
quickly come to dominate the Universe, in contradiction with observations. One
way to avoid this conclusion is to consider a case in which the domain walls are
formed sufficiently late due to a very small scale v of symmetry breaking. From
CMB-measurements, one can deduce the bound v . 0.9 MeV [187,188].

If the scale of symmetry breaking is bigger than this bound, there are essentially
two ways to avoid the cosmological domain wall problem. The first one is to
assume that the phase transition took place before inflation since in this case the
exponential expansion stretches domain walls to superhorizon sizes. However, this
solution is only viable if the symmetry breaking scale is sufficiently high. The
second approach to tackle the domain wall problem is to introduce a soft explicit
breaking of the discrete symmetry, thereby making the domain walls unstable. If
this bias is strong enough, the domain walls decay before they start to dominate
the Universe.58

Our goal is to show that the quantum breaking bound rules out the second
solution since it would necessarily imply the existence of a metastable de Sitter
vacuum. We begin by estimating how strong the explicit breaking has to be in order
to avoid the domain wall problem. Although generalizations to higher discrete
symmetries are straightforward, we consider the case of Z2 for concreteness. We
assume that a scalar field ψ̂ spontaneously breaks the symmetry by its vacuum
expectation value (VEV), 〈ψ̂〉 = ±v. During the phase transition, domain walls
that separate the two vacua ±v are formed by the Kibble mechanism [190, 191].
Unless very small couplings are involved, the tension of the domain walls is of
order σ ≈ v3. This corresponds to the force Ftension ≈ σRH that stabilizes the
domain wall, where RH is the Hubble radius. Now we introduce a small split β
of the energy densities of the vacua. It leads to a pressure force Fpress ≈ βR2

H

that destabilizes the domain walls. If Fpress & Ftension, the pressure takes over and
forces the domain walls to disappear [192]. This leads to the bound β > σ/RH ,
where RH is the Hubble radius at the latest during nucleosynthesis.

Now we can proceed as in the case of axions. Thus, we assume that a discrete
symmetry with a bias of β exists and then show that this leads to a contradiction.
The key point is that after the decay of domain walls induced by the bias β, only
the lowest-lying vacuum persists. In particular, this would be the vacuum that we
live in. Since we know from experiments that the energy density in the present
Universe is nonnegative, this means that another vacuum would exist with an

58For instance, an explicit breaking of sufficient strength can come from Planck-scale sup-
pressed operators [189].
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energy density of at least β. This vacuum corresponds to de Sitter and would
thereby contradict the quantum breaking bound. Consequently, the soft breaking
of the discrete symmetry is excluded.

Of course, the inconsistent de Sitter vacuum would not be populated as a
result of a realistic cosmological evolution. But as for the case of axions, this is
inessential for our argument.59 The mere fact that theory in principle possesses
an inconsistent de Sitter state rules it out.

Moreover, we remark that we cannot exclude that it is possible to evade the
quantum breaking bound by making the bias β time-dependent in such a way that
it goes to zero after the domain walls have decayed. We will not consider this
possibility for two reasons. First, it appears that a model that can realize this idea
would be rather involved. Secondly, the explicit breaking terms are expected to
generate an energy splitting through quantum corrections. In order to avoid this,
severe fine-tuning would be required.

In summary, the quantum breaking bound rules out a large class of phenomeno-
logically-viable extensions of the Standard Model in which a discrete symmetry is
spontaneously broken after inflation. An incomplete list of such models includes:

NMSSM. This is an extension of a Minimal Supersymmetric Standard Model
by a gauge singlet superfield. The VEV of this superfield spontaneously breaks a
discrete Z3 symmetry and generates a µ-term in the superpotential. The VEV is
around the weak scale and unless inflation happens at very low scales, the domain
wall problem follows. The standard solution is to assume a small explicit breaking
of the Z3 symmetry (see e.g. [193] and references therein). However, our analysis
shows that such a solution implies the existence of a local de Sitter minimum and
is therefore excluded by the quantum breaking bound.

Spontaneous CP Breaking. Another important example is a theory with
spontaneous breaking of CP symmetry. This is achieved by an extension of the
Standard Model either by a second doublet [194] or a singlet [195]. In both cases,
there is a spontaneously-broken discrete symmetry around the weak scale and
domain walls result. Again, an attempt to eliminate them by an explicit breaking
leads to the creation of a local de Sitter minimum and is excluded.

Constraints on Peccei-Quinn Models. Exactly by the same reason as
above, we exclude the versions of the Peccei-Quinn model with post-inflationary
phase transitions and with a nontrivial discrete symmetry. Of course, there are
versions of the theory free of domain walls that are fully compatible with the
quantum breaking bound.

Gaugino Condensate in Super-Yang-Mills. It is known that the gaugino
condensate in SU(N) gives rise to domain walls due to spontaneous breaking of
a discrete ZN symmetry [196]. This is important because the gaugino condensate

59In fact, the argument is even stronger for the case of discrete symmetries. Whereas θ-vacua
correspond to superselection sectors, a very small but nonzero probability exists that all Hubble
patches that lead to the currently observed Universe happen to be in the false vacuum.
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is a commonly accepted source for hidden sector supersymmetry breaking in su-
pergravity theories [197]. If the phase transition with gaugino condensation takes
place after inflation, the walls must be eliminated by an explicit breaking of the
ZN -symmetry. As we have explained, this results in the existence of unacceptable
de Sitter minima, which are excluded by our criterion. Hence, we obtain the cos-
mological requirement that gauginos must condense before the end of inflation. In
the simplest version (in which the gaugino sector is not directly coupled to the in-
flaton) this would translate as a lower bound on the scale of gaugino condensation,
i.e. it must be above the reheating temperature.

As a final remark, we point out that an alternative solution to the domain
wall problem exists for some scenarios [198, 199]. It is based on the idea of sym-
metry nonrestoration [200–202]. This mechanism is compatible with a discrete
symmetry that is not explicitly broken but exact. The reason is that the sym-
metry is not restored at high temperature and therefore the domain walls never
form. As shown in [198, 199], however, such a nonrestoration requires a very spe-
cial choice of parameters. Whereas it can work in some models, such as the ones
with spontaneously-broken CP and Peccei-Quinn symmetries, it is incompatible
with renormalizable supersymmetric theories [203]. Therefore, it cannot eliminate
domain walls in NMSSM.
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Chapter 3

Storage of Quantum Information

One conclusion of the previous chapter is that the classical description of de Sitter
and black holes can cease to be valid on macroscopically big scales. An immediate
question that follows is how these systems can be described on the quantum level.
The goal of the present chapter is to show that quantum information can play a
crucial role.

First, we are more general and study generic, i.e. potentially nongravitational,
bosonic systems in section 3.1. Building on the models and concepts of [204,205],
we work out a general mechanism by which nearly-gapless modes and correspond-
ingly states of enhanced memory capacity can emerge. This phenomenon, which
we shall call assisted gaplessness, can occur in any bosonic system, provided it
possesses weak and attractive interactions. Moreover, we develop an analytic pro-
cedure for finding such nearly-gapless modes. We refer to it as c-number method
and it is a generalization of the approach that was used in [51] to study a spe-
cific model. The fact that assisted gaplessness occurs in generic bosonic systems
naturally leads to the idea that it could also be operative in black holes and de
Sitter and be responsible for their large entropies. This approach, the essence of
which was first suggested in [36], leads to the exciting possibility of using table-top
experiments to simulate the storage and processing of information in gravitational
systems. Similarly, such studies could contribute to understanding other systems
of enhanced memory capacity, such as neural networks [204,205].

In section 3.2, we turn to a concrete prototype system that we obtain as trun-
cation of an attractive Bose gas in a one-dimensional box with Dirichlet boundary
conditions. We first employ the c-number method to find states of enhanced mem-
ory capacity and then confirm their existence by numerical analysis.

In section 3.3, we study the phenomenon of memory burden, which was first
described in [206]. Its essence is that a large amount of information tends to
backreact on the system and thereby ties it to its initial state. After studying a
prototype system, we discuss implications for black holes and de Sitter.

This chapter is based on the paper [5], which is joint work with Gia Dvali and
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Marco Michel, as well as the paper [10], which is joint work with Gia Dvali, Lukas
Eisemann and Marco Michel. To a large extent, this chapter is an ad verbatim
reproduction of these publications. Sections 3.1 and 3.2 as well as appendix A.2,
which pertains to the present chapter, follow [5]. Parts of [5], in particular the
aspects presented in section 3.2, were reported independently by Marco Michel
in his master’s thesis [207]. Figs. 3.2, 3.3, 3.4, 3.5 and 3.6 are based on earlier
versions presented in [207]. Section 3.3 follows [10].

3.1 Enhanced Memory Capacity in Attractive
Cold Bosons

3.1.1 Storage of Information in Gapless Modes
We shall consider a completely generic quantum system. We can fully characterize
it by its degrees of freedom and by the rules of the interactions among them. Each
degree of freedom corresponds to a particular oscillatory mode of the system.
In quantum field theory, such modes are described as quantum oscillators that
can exist in various excited states. The level of excitation of a mode k in a
given state |nk〉 can be conveniently described by an occupation number nk of the
corresponding quantum oscillator, with the usual creation/annihilation operators
b̂†k, b̂k and the number operator n̂k = b̂†kb̂k (where k = 0, 1, . . . , K). At this point,
k is a generic label. In the concrete models that we study in the following, it will
denote the dimensionless wave number. We shall limit ourselves to bosonic degrees
of freedom, which satisfy the standard canonical commutation relations:

[b̂j, b̂†k] = δjk , [b̂j, b̂k] = [b̂†j, b̂
†
k] = 0 . (3.1)

One of the most important characteristics of a system is the energy level-spacing
between states of different occupation numbers, i.e. |nk〉 and |nk ± 1〉, which we
shall denote by Ek.

We will view quantum states from a perspective of quantum information theory.
When a degree of freedom can choose among d different possible states |nk〉 with
nk = 0, 1, . . . , d − 1, it represents a qudit. Then information can be stored in the
set of dK+1 basic states |n0, n1, . . .〉 and each basic state corresponds to a distinct
pattern. In this setting, the energy cost of information storage and read-out is
set by Ek, i.e. for a pattern |n0, n1, . . .〉, it is given as En0,n1,... = ∑

k Eknk. This
means that the transition between patterns in which the occupation numbers differ
significantly is in general expected to be costly.

This situation changes in systems that possess nearly-gapless modes. The
latter term requires some quantification. Under a nearly-gapless mode we mean a
mode for which the minimal excitation energy Ek is much smaller than the typical
energy gap Etypical, expected for the system of a given size. For instance, for a
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nonrelativistic particle of mass m trapped in a box of size L, one would expect
the energy gap between the ground state and the first excited state to be set by
the inverse size of the box, Etypical ≈ ~2/(2mL2). The goal of this chapter is to
show that systems with nearly-gapless modes have a greatly enhanced capability of
information storage. Namely, based on the characteristics described in [204, 205],
we can identify the following three key properties, on which we will elaborate in
the following:

1. The density of patterns that can be stored within a given energy gap is
exponentially enhanced.

2. The decoherence time of recorded information increases significantly.

3. The stored patterns can be rearranged under the influence of very soft ex-
ternal stimuli.

Enhanced Entropy

Clearly, two states that only differ in the occupation numbers of nearly-gapless
modes are almost degenerate in energy. Thus, if we imagine that a subset of N
modes is nearly-gapless and that the maximal occupation number of each of those
modes is d, then dN patterns fit within a small energy gap. This constitutes the first
property of enhanced information storage, namely the fact that a large number
of patterns almost possess the same energy. Correspondingly, we can define an
entropy as the logarithm of the number of such nearly-degenerate states:

Entropy = N ln(d) . (3.2)

We note that this formula matches our discussion of the entropy of black holes and
de Sitter in section 1.4. As stated in Eq. (1.28), on the order of N nearly-gapless
modes are required in order to give a microscopic explanation of an entropy N .

Long Decoherence Time

Apart from a low energy cost, systems that feature gapless modes possess a second
property that makes them ideal information storers. Namely, gaplessness of a given
mode b̂k implies that the disturbance from other modes is small since otherwise
the gaplessness would be destroyed. This suppression of interaction is either due
to a relatively high energy gap of the other modes or due to a very weak coupling
to them (or both). In both cases, the time evolution into the other modes is small.
Therefore, gaplessness implies a long information storage time.1

This point can be illustrated in very general terms on an example with one
additional mode ĉ that can correspond to another mode of the system or to an

1For a particular model, this property was already discussed in [51].
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environment. We assume that in the absence of the mode ĉ, the nearly-gapless
mode b̂k would be close to an eigenmode of the Hamiltonian, i.e. it corresponds
to a degree of freedom obtained after an approximate diagonalization procedure.
How this can be achieved will become apparent in section 3.1.4. In this situation,
the relevant part of the Hamiltonian can be written in the following 2× 2 form:

Ĥ =
(
b̂†k ĉ†

)(Ek g
2

g
2 Ec

)(
b̂k
ĉ

)
, (3.3)

where Ec is the gap of the other mode and g is the coupling constant. In order not
to disturb the nearly-vanishing gap Ek, g must satisfy g �

√
EkEc , i.e. g must be

sufficiently small in order to maintain the level-splitting. This implies that either
the time evolution will be strongly suppressed due to the large level-splitting (in
the regime of Ec � Ek) or the evolution timescale will be set by

tcoh ≈ ~/Ek (3.4)

and thus will be long (in the regime of Ec ≈ Ek). In both cases, we have an effective
protection of the stored information. In other words, the information contained in
a gapless mode b̂k is maintained either due to the suppression of the amplitude of
oscillations or due to a very long timescale of this transition.

Soft External Stimuli

Finally, the third property that makes systems with nearly-gapless modes ideal
storers of information is the fact that information contained in those modes can
be recorded and read out using soft external stimuli. This point, which was al-
ready discussed in [204], is of particular interest with regard to the experimental
realization of such systems. As before, we will focus on a single nearly-gapless
mode b̂k. Following [53], the essential features of the coupling to an external field
can be captured by the Hamiltonian (3.3), where now ĉ could correspond to a
mode of the photon field in an experimental setup.

We can start with no excitations in the nearly-gapless mode and a coherent
state of the external field:

|Φ(t = 0)〉 = |0〉bk ⊗ |γ〉c , (3.5)

where γ parametrizes the occupation of the external coherent state. Straightfor-
ward calculation gives [53]:

〈Φ(t)| ĉ†ĉ |Φ(t)〉 = γ2
(

1− g2

δ2
g

sin2
(
δgt

2

))
, (3.6)

where we defined
δg =

√
(Ec − Ek)2 + g2 . (3.7)
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Thus, the coupling to the nearly-gapless mode leads to a fluctuating occupation
of the external field. The amplitude becomes appreciable for Ec ≈ Ek, i.e. when
the external mode is as soft as the nearly-gapless mode. As already discussed,
this implies that the coupling has to be small, g / Ek, in order not to disturb the
gaplessness of the mode b̂k.

In this situation, the occupation number of the nearly-gapless mode evolves in
time as,

〈Φ(t)| b̂†kb̂k |Φ(t)〉 = γ2 g
2

δ2
g

sin2
(
δgt

2

)
. (3.8)

This means that we can use soft excitations of an external field to bring the nearly-
gapless mode to a desired state. Correspondingly, information can be read out from
soft ĉ-quanta that are emitted due to the deexcitement of the b̂k-mode. In this
way, soft radiation could be used to store and retrieve quantum information.

Furthermore, we remark that Eqs. (3.6) and (3.8) also show why soft external
radiation is sensitive to the existence of nearly-gapless modes. If none are present,
the lightest mode has a much bigger gap, i.e. Ek � Ec. In that case, the ampli-
tude of fluctuations gets suppressed as (g/Ek)2. This means that soft radiation
stops interacting with the system. Thus, nearly-gapless modes exist whenever soft
radiation, the energy Eγ of which is much smaller than the typical energy of the
system, i.e. Eγ � Etypical, experiences a significant interaction.

The energy efficiency of the information storage within the gapless mode goes
hand in hand with the difficulty of the read-out of information. Since the gap is
small, the different information patterns are barely discriminable and the read-out
time is correspondingly very long. Thus, if we would like to design a device that
could read out the information on a timescale shorter than the inverse gap, such a
reader must necessarily disturb the gap. In such a case, the reading device can be
included in an effective Hamiltonian in form of a time-dependent interaction term
that is switched on externally when needed. With regard to black holes, however,
this challenge in reading out the recored information turns out to be good news
as such a delay would naturally explain why the quantum information stored in
them cannot be resolved for a very long time. We will elaborate on this point in
section 3.1.3.

3.1.2 Assisted Gaplessness
In view of the importance of nearly-gapless modes for information storage, we
need to understand what physical mechanisms can allow a finite size system to
deliver such modes. We shall focus on a mechanism schematized in [204, 205],
which can be referred to as the phenomenon of assisted gaplessness. It represents a
generalization of the original idea [36] of information storage in gapless modes that
emerge in certain quantum critical states of attractive bosons. The key principle of
the assisted gaplessness mechanism is easy to summarize. If the interaction energy
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among the degrees of freedom of a system is negative, a high excitation of some
of those modes lowers the excitation energy thresholds for the others. In this way,
these highly excited degrees of freedom play the role of master modes that assist
others in becoming easily-excitable. When the occupation numbers of the master
modes reach certain critical levels, the assisted modes become nearly-gapless. At
this point, a state of enhanced memory storage capacity is attained.

In order to understand the essence of the phenomenon, following [204,205], we
consider an exemplary situation in which a mode n̂0, which is typically the one
with the smallest kinetic energy E0, can be highly occupied and has the following
negative-energy coupling with a set of K modes:

Ĥ =
K∑
k=1

εk(1− αn̂0)n̂k + ε0n̂0 + . . . . (3.9)

In this way, n̂0 becomes the master mode. Its interaction energy with each mode
n̂k is proportional to the threshold energy εk of the latter modes via an universal
proportionality constant α. Due to the negative sign, such a connection is exci-
tatory, i.e. it is energetically favorable to simultaneously excite the inter-coupled
modes.

Thus, on states in which the occupation number of the master mode is 〈n̂0〉 =
N0, the effective gap for other modes is lowered as,

Ek = εk(1− λ) , (3.10)

where we introduced the collective coupling

λ := αN0 . (3.11)

We note that this formula is in full accordance with Eq. (2.1), which was impor-
tant for our study of quantum breaking. Thus, we see that the master mode n̂0
assists the rest of the modes in becoming more easily excitable. Accordingly, once
the occupation number of the master mode reaches a critical value N0 = α−1 cor-
responding to λ = 1, the assisted modes n̂k become gapless. The corresponding
excitation energy as a function of λ is plotted in Fig. 3.1a. Note that small devi-
ations δN0 ∼ 1 of the occupation number N0 from the critical value result in the
generation of an effective gap of order Ek ∼ εkα. Correspondingly, the smaller α is,
the less sensitive the gap becomes to small fluctuations of the occupation number
N0 around its critical value. Therefore, we will focus on cases with small α and
large N0.

In the model (3.9), all states of the form |N0, n1, ...nK〉, where nk 6=0 can take
different possible values from 0 to d − 1, possess the same energy. In accordance
with our previous discussion in section 3.1.1, we see that gapless modes lead to an
exponential number of information patterns that are degenerate in energy. The
resulting density of states as function of the collective coupling λ is plotted in Fig.
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λ

ℰk

nstates

1

(a) Effective energy gap Ek (as de-
fined in Eq. (3.10)) in blue and den-
sity of states nstates ∼ 1/Ek in red.
In the limit of infinite particle num-
ber, the energy gap shrinks to zero
at the critical point λ = 1 and con-
sequently the density of states di-
verges there.

λ

tcoh

1

(b) Decoherence time (according to
Eq. (3.4)) of a typical state. In the
limit of infinite particle number, it
diverges at the critical point λ = 1.

Figure 3.1: Schematic plots of the behavior of a system of attractive bosons such
as (3.9) in the vicinity of a critical point with nearly-gapless modes that arise due
to assisted gaplessness.

3.1a. Since the neighborhood in the Fock space with a large number of states
that fit within a narrow energy gap is characterized by the same macroscopic
parameter, i.e. a macroscopically large occupation number N0 of the n̂0-mode,
we can say for sufficiently small d that the states |N0, n1, ...nK〉 for all possible
values of nk 6=0 are macroscopically-indistinguishable. Hence, they form a set of
microstates belonging to the same macrostate. In this sense, Eq. (3.2) acquires
the meaning of a microstate entropy, i.e. it is the logarithm of the number of such
nearly-degenerate microstates, where K = N in this case.

An important point of our analysis is that we do not introduce a gapless mode
by hand but discover that such modes emerge even if the system is confined within
a box of finite size. This is a highly nontrivial phenomenon that requires a crit-
ical balance between the coupling and the occupation number. In this way, the
decoherence time of quantum information stored in a gapless mode can be made
arbitrarily long, even for fixed values of the size of the box and ~ (see Fig. 3.1b).

Already the study of the prototype system suggests that the phenomenon of
assisted gaplessness is generic. It will become evident in section 3.1.4 that this is
indeed the case: The only requirements for assisted gaplessness to take place in a
bosonic system are a weak attractive interaction and a high occupation number of
some of the modes. Therefore, as explained in [204], we expect that gapless modes,
which lead to states of high memory storage capacity, are a generic phenomenon
in these systems. Only the details, such as the exact number of the emergent
gapless modes and the corresponding microstate entropy, depend on the symmetry
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structure and other details of the Hamiltonian.
However, we must stress that among all the states of a system, the subset in

which gapless modes occur is small. Whereas some states of enhanced memory
capacity exist in bosonic systems with weak and attractive interactions, those
states are very rare as compared to the total number of states in the Hilbert
space. Therefore, it can be a hard task to identify those states.

Lastly, we can compare our effect of assisted gaplessness to the well-known
phenomenon of appearance of gapless excitations in the form of Goldstone bosons.
The latter modes emerge as a result of a phase transition with the spontaneous
breaking of a global symmetry. The crucial difference is that Goldstone modes
consistently exist in a domain past the critical phase. This is not the case for
assisted gaplessness. Our gapless modes only exist at the critical point and they
appear due to a cancellation between the positive kinetic energy and the negative
collective interaction energy with a certain highly-occupied master mode. In gen-
eral, it is therefore hard to interpret the appearance of our gapless modes in terms
of a Goldstone phenomenon of spontaneous breaking of any global symmetry.2
This difference is what in particular makes the phenomenon of assisted gapless-
ness interesting since there is no a priori symmetry reason for the emergence of
any gapless modes. This said, however, once assisted gaplessness takes place, the
number of such modes can be highly enhanced by unbroken symmetries of the
critical state, such as spherical symmetry [208].

3.1.3 Simulating Black Holes and Others in the Laboratory
Assisted Gaplessness in Black Holes

As we have seen, the phenomenon of assisted gaplessness appears to be generic in
bosonic systems with weak and attractive interactions. Since gravity exhibits pre-
cisely these properties, the important question arises if the same mechanism could
also be operative in black holes and thereby represent the key to a microscopic
explanation of the Bekenstein-Hawking entropy (1.2). In this picture, assisted gap-
lessness would deliver the required S nearly-gapless modes (see Eq. (1.28)). If this
is true, one can shed light on black holes, for which the lack of nonperturbative
techniques prevents computations beyond the semiclassical limit, by looking for
analogous properties in systems that are much easier to solve.

We note that this point of view is a priori independent of the quantum N-
portrait of black holes, which we reviewed in section 1.3.1. Namely, as explained
in section 1.4, any quantum description of a black hole must provide a microscopic
explanation of the entropy and therefore contain on the order of S nearly-gapless
modes. However, the idea that assisted gapless takes place in a black hole becomes

2We note, however, that for the model (2.42), to which we will turn in appendix A.2.1, the
critical mode due to assisted gaplessness was mapped on a pseudo-Goldstone mode of a sigma
model [51].
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particularly plausible in the quantum N-portrait. The reason is that in this picture,
the black hole is composed of a large number of soft gravitons. The corresponding
highly-occupied mode represents a prime candidate for the master mode which is
required for assisted gaplessness. We will make this point more explicit in section
3.3.3.

The question if a universal phenomenon, which also takes place in simpler
nongravitational systems, could be operative in black holes was first investigated
in [34, 36], where a system of attractive bosons in a box of dimensionality D ≥ 1
with periodic boundary conditions was studied.3 It was noticed that the critical
state of enhanced memory capacity in this simple system exhibits some similarities
to certain universal scaling properties satisfied by analogous parameters for black
holes. Therefore, it was hypothesized in [34, 36] that the emergence of gapless
qudits responsible for nearly-degenerate microstates of a black hole in its bare
essence is the same phenomenon as the appearance of gapless qudits around the
quantum critical point in the system of attractive bosons.

This point of view is strengthened by the fact that it is difficult to read out
information that is stored in nearly-gapless modes. As discussed in section 3.1.1,
the read-out time is set by the inverse of the small gap (see also Eq. (3.4)). There-
fore, as long as the gap is not disturbed by turning on additional couplings to an
environment, it takes a very long time to resolve the information stored in the
nearly-gapless modes. This could contribute to answering the long-standing ques-
tion why the quantum information stored in black hole modes cannot be resolved
for a very long time. The answer would be that information is unreadable because
it is stored in nearly-gapless modes (see e.g. [53]).

Finally, the idea that assisted gaplessness takes place in black holes receives fur-
ther support from the model of [208] (see [205] for its neural network realization),
which describes a nonrelativistic bosonic quantum field living on a D-dimensional
sphere and experiencing a momentum-dependent attractive self-interaction. This
model comes closest to imitating the black hole information properties. Namely, it
exhibits a one parameter family of critical states labeled by the occupation number
N of the lowest momentum mode. In each state, a set of gapless modes emerges.
The remarkable thing is that the number of these gapless modes scales as the area
of a D − 1-dimensional sphere. This means that the resulting microstate entropy
obeys an area law, similar to Bekenstein entropy of a black hole. Therefore, the
emergent gapless modes represent holographic degrees of freedom and the model
gives an explicit microscopic realization of the idea of holography, which is usu-
ally considered to be an exclusive property of gravitational systems, such as black
holes [209, 210] or AdS-spaces [211, 212]. These findings give a strong motivation
for further studying the proposed mechanism of emergence of gapless modes at
criticality in systems of bosons with “gravity-like” attractive interactions.

3A simple example of this sort, which has been explicitly solved, is given by the system (2.42).
It is the model that we use in appendix A.2.1 to demonstrate our c-number method.
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Mapping on Neural Networks

On top of its connection to black holes, we shall show that the phenomenon of
assisted gaplessness has a direct application to quantum neural networks along
the lines of [204, 205]. The key ingredients of any neural network are on the one
hand the neurons and on the other hand the synaptic connections among them.
Following [204,205], it is possible to describe them by an effective Hamiltonian in
which the neural excitations are the degrees of freedom. The threshold excitations
correspond to kinetic energies and the synaptic connections translate as interaction
terms. In this description, the time evolution of the excitations is generated by
the effective Hamiltonian. In particular, this framework enables us to study the
energetics of information storage. This is the aspect we shall focus on. So we will
not study any specific algorithm, but our goal is to investigate the energy cost of
recording and reading out information.

The synaptic connections can be either excitatory or inhibitory, i.e. an exci-
tation of a given neuron k can either decrease or increase the probability of the
excitation of another neuron j. In the effective Hamiltonian description of the
network, the excitatory and inhibitory nature of the connections can be given an
energetic meaning. This meaning is defined by the sign of the interaction energy
of two or more simultaneously excited neurons. The negative and the positive
signs of the interaction energy respectively translate as excitatory and inhibitory
connections in an energetic sense. Below, we shall denote the parameter that sets
the characteristic strength of these interactions by the same constant α as we have
used for the system of bosons.

As noticed in [204, 205], a neural network defined in this way in the case of
negative (i.e. attractive and therefore “gravity-like”) synaptic connections exhibits
the phenomenon of assisted gaplessness with sharply enhanced memory storage
capacity. For describing the idea, it suffices to consider the simple Hamiltonian
(3.9) and to think of it as representing a quantum neural network. Thus, we
consider a network for which the synaptic connection energy of a set of inter-
connected neurons is negative. This means that the excitation of a given neuron
lowers the threshold for the excitation of all the other neurons from this set, i.e.
for the ones that are connected to the former neuron by negative energy couplings.
If we normalize the characteristic step of the excitation to unity, then exciting a
neuron to a level N , in general, lowers the threshold for the others by the amount
∼ αN . Thus, at the critical point αN = 1, gapless modes emerge and we can store
a large number of patterns within a very narrow energy gap.

More concretely, it was shown in [205] that such a neural network is isomor-
phic to the physical system of a bosonic quantum field. In this correspondence, the
neural degrees of freedom are identified with the momentum modes of the field,
whereas the synaptic connections correspond to the couplings among the different
momentum modes. This mapping allows to give a unified description of the phe-
nomena of enhanced memory storage capacity in neural networks and in systems
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with cold bosons. Thus, the connection to neural networks also contributes to the
relevance of investigating assisted gaplessness.

Experimental Realization

The facts that the phenomenon of assisted gaplessness is generic in bosonic sys-
tems with weak attractive interactions and that it already takes place in simple
systems such as (3.9) give a natural hope that it could be experimentally stud-
ied under laboratory conditions. For example, such an observation of emerging
gapless modes could be achieved in systems with cold atoms (see e.g. [213, 214]).
Such experiments, which have never been performed previously, could serve two
purposes.

First, as already suggested in [36, 51–53], they promise to be relevant for the
practical storage of quantum information. Namely, assisted gaplessness could en-
able the construction of devices that can store quantum information at a low
energy cost and over an extended period of time. Such an application would have
manifold importance, e.g. in the context of quantum computing.

The second purpose of the experimental observation of assisted gaplessness is
that it could provide a framework to understand and simulate other systems of
enhanced memory storage capacity. This gives an interesting prospect of study-
ing in table-top quantum experiments the key mechanism of information storage
in such seemingly-remote systems as black holes and quantum brain neural net-
works. Such simulations could both verify the proposed phenomenon of assisted
gaplessness and check how far the similarity with black hole information processing
goes.

For the case of black holes, a very concrete effect that one could check would be
how the timescale of information storage near criticality scales withN0, which plays
the role of a macroscopic parameter analogous to the black hole mass. Another
interesting question concerns the scrambling and release of information: When an
excitation is added to a system of enhanced memory capacity, how fast does it
get entangled with the rest of the system and how long does it take to read it out
afterwards? Obviously, the main focus is on understanding generic features of en-
hanced information storage and by no means on imitating intrinsically geometrical
properties of black holes.

3.1.4 The C-Number Method
So far, we have highlighted the relevance of nearly-gapless modes that arise due to
the phenomenon of assisted gaplessness. In this light, a very important task is to
find a method that enables the search for states with gapless modes in a systematic
way in a theory of bosonic modes with a generic interaction Hamiltonian. We will
do so in the following. Our method relies on the Bogoliubov approximation, in
which mode operators are replaced by their expectation values [79]. In this way,
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we transform the Hamiltonian in its Bogoliubov counterpart, which only depends
on c-numbers. We will show that it suffices to look for flat directions in this
Bogoliubov Hamiltonian to conclude that gapless modes exist in the spectrum
of the full quantum system. This allows us to replace the difficult problem of
diagonalization of the Hamiltonian by a much simpler task of extremizing a c-
number function.

This approach, which we shall call c-number method, is a generalization of the
one used in [51], where it was shown for a specific model that the appearance
of a gapless mode at the critical point can be deduced from the minimization of
a nonlinear sigma-model obtained by replacing the Hamiltonian by a c-number
function. Apart from its practical application, the c-number method also serves a
second purpose. The fact that any flat direction in the Bogoliubov Hamiltonian
already implies a gapless mode supports the reasoning of [204] that the emergence
of gapless modes, which leads to states of high memory storage capacity, is rather
generic, provided the interacting degrees of freedom of a system are bosonic and
that some of the interaction energies are negative.

Procedure

We consider a set of K + 1 bosonic quantum modes described by the creation and
annihilation operators â†k, âk (where k = 0, 1, . . . , K), which satisfy the standard
canonical commutation relations

[âj, â†k] = δjk , [âj, âk] = [â†j, â
†
k] = 0 . (3.12)

We call the modes âk instead of b̂k since unlike before, the Hamiltonian is not
required to be approximately diagonal in the âk-modes. For later convenience, we
introduce the notation

#̂»a = (â1, . . . , âK) , #̂»a
†

= (â†1, . . . , â†K) , (3.13)

where no distinction will be made between a vector and its transpose. The reason
for singling out one of the modes, in our notation â0, will become apparent shortly.
We assume that the dynamics of the system is governed by a generic Hamiltonian,

Ĥ = Ĥ( #̂»a
†
, #̂»a , â†0, â0) . (3.14)

A priori, we do not have to put any restriction on it, i.e. we expect our method
to work when (3.14) depends on all possible normal-ordered interactions of the
modes. But the concrete application of the c-number method will be sensitive to
the symmetries of the Hamiltonian. The reason is that any symmetry also leads to
a gapless transformation.4 However, we do not want to consider those but solely
focus on the ones that arise due to a collective attractive interaction.

4The simplest example is the Hamiltonian of a noninteracting mode,

Ĥ = â†â , (3.15)
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For the sake of simplicity, we will not consider the case of generic symmetries,
but focus on a special case of particular physical importance. We assume that the
Hamiltonian only possesses one symmetry, namely a global U(1)-symmetry due to
particle number conservation. So the generic Hamiltonian reads

Ĥ =
K∑
k=0

εkâ
†
kâk +

K∑
k,j,m,n=0

α
(4)
kjmnâ

†
kâ
†
j âmân (3.16)

+
K∑

k,j,m,n,o,p=0
α

(6)
kjmnopâ

†
kâ
†
j â
†
mânâoâp

+
K∑

k,j,m,n,o,p,q,r=0
α

(8)
kjmnopqrâ

†
kâ
†
j â
†
mâ
†
nâoâpâqâr + . . . ,

where εk, α(4)
kjmn, α

(6)
kjmnop, α

(8)
kjmnopqr, . . . are some parameters. We shall assume

that the full Hamiltonian is bounded from below, but some interaction terms can
be negative so that the energy landscape is nontrivial. We are interested in the
phenomenon of assisted gaplessness, i.e. we would like to identify states around
which a high occupation of some modes assists other in becoming gapless. As
explained, the nearly-gapless modes will lead to a neighborhood in the Fock space
where a large number of states fits within a narrow energy gap. This causes the
enhanced memory capacity in which we are interested.

Finding such critical states requires a diagonalization of the Hamiltonian, which
in general is computationally a very hard task. Our goal is to show that under
certain conditions, the diagonalization procedure can be substituted by a much
simpler approach of finding an extremum of a c-number function. To this end,
we perform the Bogoliubov approximation [79], i.e. we replace the creation and
annihilation operators by c-numbers,

#̂»a → #»a , #̂»a
†
→ #»a ∗ , (3.17a)

â0 →

√√√√N − K∑
k=1
|ak|2 , â†0 →

√√√√N − K∑
k=1
|ak|2 , (3.17b)

where ak are complex numbers and we introduced the abbreviation

#»a = (a1, . . . , aK) , #»a ∗ = (a∗1, . . . , a∗K) . (3.18)

Note that we have replaced K + 1 quantum modes by only K complex variables.
The reason is particle number conservation, as will become apparent in the proof
of our method. Because of it, the sum of the moduli are fixed and moreover we

which possesses a global U(1)-symmetry, â → eiϕâ, due to particle number conservation. So
the states |Ψ(â)〉 and |Ψ(eiϕâ)〉 have the same expectation values of the energy, but this is not
connected to attractive interaction.
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have to fix a global phase. Furthermore, note that particle number conservation
as in (3.17b) shows that the complex numbers scale as ai ∼

√
N . In summary, we

obtain the replacement

Ĥ( #̂»a
†
, #̂»a , â†0, â0)→ Hbog( #»a , #»a ∗) , (3.19)

whereHbog( #»a , #»a ∗) is an algebraic c-number function, which depends onK complex
variables.

We expect that the error in the Bogoliubov approximation scales as 1/N . Thus,
we can make it arbitrarily small if the particle number is large enough. Since we
want to keep the collective coupling fixed, the relevant limit is

N →∞ , α(i) → 0 , with λ(i) ≡ α(i)N i/2−1 = const. , (3.20)

where we suppressed the indices of the coupling constants. We note that we
obtain the collective coupling λ = αN for the special case of 4-point interaction,
in accordance with Eq. (3.11). Moreover, it is important to emphasize the the
double-scaling limit (3.20) is identical to the (semi)classical limit as discussed in
Eq. (2.32). In this limit, the c-number method for finding gapless modes will be
exact. For finite N , corrections appear that scale as a power of 1/N . Thus, as
already mentioned before, we will throughout be interested in the regime of large
N and correspondingly small α.

Before we can come to the main statement of this section, we introduce the
notion of a critical point of the Bogoliubov Hamiltonian Hbog. It is defined as a
value #»a ◦ such that the first derivative vanishes,

∂Hbog

∂ #»a

∣∣∣∣∣
#»a= #»a ◦

= 0 , (3.21)

and moreover the determinant of the second derivative matrix is zero,

detM
∣∣∣∣

#»a= #»a ◦

= 0 , whereM≡
(
B∗ A
AT B

)
. (3.22)

Here the matrices A and B denote Akj ≡ ∂2Hbog
∂a∗
k
∂aj

and Bkj ≡ ∂2Hbog
∂ak∂aj

, which implies
BT = B and A† = A. So we deal with a stationary inflection point of the function
Hbog( #»a , #»a ∗), i.e. a point at which the curvature vanishes in some directions. Our
goal is to prove the following implication.

Theorem: If the c-number function Hbog possesses a critical point (in the
above sense), this implies – in the full quantum theory – the existence of a state
with emergent gapless modes, and correspondingly, with an enhanced microstate
entropy.5 To put it shortly, any critical point is a point of an enhanced memory
storage capacity.

5Note that example (3.9) is a special case in which all K modes become gapless. In general,
conditions (3.21) and (3.22) only imply at least one gapless mode.



3.1 Enhanced Memory Capacity in Attractive Cold Bosons 109

Proof

In order to prove this, we will follow the known procedure for determining the
spectrum of quantum fluctuations around a given state. Namely we consider the
expectation value of the Hamiltonian in an arbitrary state, for which only the
expectation value of the particle number is fixed:

N =
K∑
k=0
〈â†kâk〉 . (3.23)

In the following, expectation values will always refer to such a state. As explained,
we moreover want to fix a global phase to exclude the gapless direction that arises
due to the corresponding symmetry. Up to 1/N -corrections, we therefore obtain

〈â0〉 ≈ 〈â†0〉 ≈

√√√√N − K∑
k=1
〈â†kâk〉 . (3.24)

In this way, we can make particle number conservation manifest and obtain a
Hamiltonian that only depends on K modes.

Next, we shift the remaining K mode operators by the constants corresponding
to the above-discussed stationary inflection point of the c-number function Hbog,

#̂»a → #»a ◦ + #̂»α , #̂»a
†
→ #»a ∗◦ + #̂»α

†
. (3.25)

Obviously, the operators α̂†k, α̂k satisfy commutation relations analogous to (3.12).
So the replacement (3.25) is always possible and exact, not only as an equation
for the expectation values. But of course, the Hamiltonian is not diagonal in the
new modes α̂†k, α̂k.

Now we want to expand the theory around a state in which the expectation
values of the original âk-modes are given as 〈â†kâk〉 = |a◦,k|2. Thus, we write down
the effective Hamiltonian in which we keep terms up to second order in the α̂k-
modes. Since #»a ◦ extremizes the c-number function Hbog, terms linear in α̂k-modes
are absent from the Hamiltonian. Moreover, the c-numbers scale as ak ∼

√
N

whereas the α̂k are independent of N . Thus, each additional factor of α̂k leads to
a suppression by 1/

√
N . So in the limit (3.20) of large N , the second-order term

dominates and the effective Hamiltonian takes the following form:

〈Ĥ〉 = H0 + 〈 #̂»α
†
A #̂»α〉 + 1

2

(
〈 #̂»αB #̂»α〉 + 〈 #̂»α

†
B∗ #̂»α

†
〉
)
, (3.26)

where the constant H0 ≡ Hbog( #»a ◦,
#»a ∗◦) denotes the value of the c-number func-

tion at the extremal point. Up to this irrelevant constant, we can rewrite the
Hamiltonian in block-matrix form:

〈Ĥ〉 = 1
2 〈
(

#̂»α
†

#̂»α
)(B∗ A
AT B

) #̂»α
†

#̂»α

〉+ const. (3.27)
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Now we can bring the Hamiltonian into a canonical diagonal form by perform-
ing the following Bogoliubov transformation: #̂»α

†

#̂»α

 = T

 #̂»

b
†

#̂»

b

 , with T =
(
V ∗ U
U∗ V

)
, (3.28)

or equivalently,
α̂k = U∗kj b̂

†
j + Vkj b̂j , (3.29)

where U and V are the transformation matrices and b̂†j, b̂j are the new modes that
form a diagonal canonical basis. The canonical commutation relations imply the
conditions:

V V † − U∗UT = 1 , V U † − U∗V T = 0 . (3.30)
As always, we choose the matrices U and V such that off-diagonal terms, of the
type b̂j b̂k and b̂†j b̂

†
k, are absent from the Hamiltonian. This implies that U, V satisfy

U †ATV ∗ + V †AU∗ + V †B∗V ∗ + U †BU∗ = 0 . (3.31)
In this way, we bring the Hamiltonian to the form

〈Ĥ〉 = 〈b̂†kEkj b̂j〉 + const. , (3.32)

where the matrix E is given by

E ≡ U †ATU + V †AV + V †B∗U + U †BV . (3.33)

Note that the conditions (3.30) and (3.31) allow the multiplication of U and V by
an arbitrary unitary matrix. Therefore, without loss of generality, we can set the
Hermitian matrix E to be diagonal.

Now, due to the fact that the modulus of the determinant of the matrix T is 1,
the condition detM = 0 is equivalent to the condition det E = 0.6 Thus, among
the degrees of freedom described by the operators b̂†k, b̂k, there exist gapless modes.
Moreover, the number of zero eigenvalues of the two matrices is the same since
multiplication by regular matrices does not change the dimension of the kernel of a
matrix. So the number of gapless modes is given by the number of zero eigenvalues
of the matrixM, i.e. by the number of independent flat directions at the critical
point of the c-number function Hbog.

This conclusion is exact in the limit (3.20) of infinite N . In this case, the
gap collapses to zero and the different quantum states that correspond to the

6Following [215], we can infer the determinant of the matrix T from the relation

T J T † = J , (3.34)

where J = diag(1,−1) and 1 is a unit matrix of dimension K. The equality (3.34) in turn is a
consequence of the Bogoliubov conditions (3.30).
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different occupation numbers of the gapless modes become exactly degenerate. So
the system can store an unlimited amount of information within an arbitrarily
small energy gap. Note that the fact that we only make a statement about the
expectation value of the Bogoliubov Hamiltonian in (3.32) is not a restriction since
it suffices for us to find states with degenerate expectation values of the energy.

For finite N , corrections appear which scale as a power of 1/N . They come
from higher-order terms in the effective Hamiltonian (3.26) and from corrections
to relation (3.24). So in this case, the modes will only be nearly-gapless, with a
gap that scales as a power of 1/N . Also the critical value #»a ◦ will receive 1/N -
corrections. However, one can make all these corrections arbitrarily small if one
chooses N large enough. So also for finite N , the information stored in the various
states of the #̂»

b -modes is energy cost-efficient. In summary, we conclude that
the critical point of the c-number function Hbog corresponds to the appearance
of nearly-gapless modes in the full quantum theory. Each nearly-gapless mode
corresponds to a zero eigenvalue of the second derivative matrixM.

We remark that our c-number method is conceptually similar to the study of
the Gross-Pitaevskii equation [77, 78], which we employed in section 2.2.4. The
latter corresponds to working in position space and expanding the field operator
ψ̂ around its classical value: ψ̂ = ψcl + δψ̂. In this approach, one can identify
gapless modes by studying the spectrum of quantum fluctuations δψ̂. Our c-
number method can be viewed as momentum space analogue of this technique.
Namely, we first go to momentum space by expanding ψ̂ in mode operators â.
Then we proceed analogously to the Gross-Pitaevskii method by expanding mode
operators around their classical values: #̂»a = #»a ◦ + #̂»α .

Coherent State Basis

Finally, we note that an alternative proof of the enhanced memory capacity around
the stationary inflection point of Hbog consists of moving to the basis of coherent
states, as opposed to number eigenstates. We recall that coherent states | #»a 〉 are
the eigenstates of the destruction operators, i.e. for all modes we have âk | #»a 〉 =
ak | #»a 〉, where ak are complex eigenvalues. Obviously, coherent states satisfy |ak|2 =
〈 #»a | n̂k | #»a 〉. It is clear that taking an expectation value of the Hamiltonian (3.16)
over a coherent state | #»a 〉 simply amounts to the Bogoliubov approximation (3.17),
i.e. to replacing the operators by c-numbers, âk → ak. Therefore, we have the
relation

〈 #»a | Ĥ | #»a 〉 = Hbog . (3.35)

This means that coherent states explicitly realize the replacement (3.19). Since this
procedure is exact also for finite N , it gives immediate meaning to the Bogoliubov
Hamiltonian from the perspective of the full quantum system.

In particular, this construction is relevant when the Bogoliubov Hamiltonian
possesses a stationary inflection point #»a ◦. If in this case the eigenvector with
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vanishing eigenvalue is given by #»

δa, then we can consider the state | #»a ◦ + ε
#»

δa〉. For
small values of ε, it fulfills

〈 #»a ◦ + ε
#»

δa| Ĥ | #»a ◦ + ε
#»

δa〉 = 〈 #»a ◦| Ĥ | #»a ◦〉 . (3.36)

Thus, we have obtained a family | #»a ◦ + ε
#»

δa〉 of quantum states with nearly de-
generate expectation value of the energy. Information stored in them therefore
occupies a narrow gap.

For quantifying the information storage capacity, we must take into account
that coherent states do not form a orthonormal basis and that only coherent states
with large enough differences in ak are nearly orthogonal. Indeed, the scalar prod-
uct of two coherent states | #»a 〉 and | #»a ′〉 is

| 〈 #»a | #»a ′〉 |2 = e−
∑

k
|ak−a′k|

2
. (3.37)

Because of this, although the coherent state parameter can take continuous values,
only sufficiently distant states, which satisfy

∑
k

|ak − a′k|2 � 1 , (3.38)

contribute into the memory-capacity count. Therefore, the information storage
capacity in the coherent state basis is the same as in the basis of number eigenstates
of the Bogoliubov modes.7 However, the usefulness of the coherent state basis
lies in the ability of taking a smooth classical limit. This is convenient for the
generalization of the enhanced memory storage phenomenon to classical systems,
such as e.g. classical neural networks [204].

For an exemplary step-by-step application of the c-number method, we refer
the reader to appendix A.2.1. There we use it to study the system (2.42), which
we have already review in section 2.2.4 from the perspective of quantum breaking.
For this system, a complete analytic treatment is possible. This means that on
the one hand, all equations resulting from the c-number method can be solved
easily and on the other hand, the Bogoliubov transformation can be carried out
explicitly. It is therefore a good starting point to both familiarize oneself with the
method and to check its validity on a concrete example.

7Relation (3.38) implies that coherent states can be counted as different as soon as |nk − n′k| �√
nk , where nk = |ak|2 and n′k = |a′k|2. So there are on the order of √nk different possible

expectation values of the particle number. In addition, however, there is the freedom of choosing
a phase ϕk. Taking into account the uncertainty, ∆nk∆ϕk & 1, this gives √nk different phases
for each modulus nk. In sum, this gives nk different states, the same result as in the basis of
number eigenstates.
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3.2 Prototype Model: 3-Mode System

3.2.1 Introduction of Bose Gas with Dirichlet Boundary
Conditions

Choice of System

In order to demonstrate the c-number for finding critical states of enhanced mem-
ory, we apply it to a concrete prototype system. We consider a gas of cold bosons
that experience a simple attractive contact interaction and are placed in a one-
dimensional box with Dirichlet boundary conditions. Therefore, it is similar to
the system studied previously in [36, 76], some aspects of which we have already
discussed in section 2.2.4. The only difference is that in the latter model periodic
boundary conditions were used. In the present system with Dirichlet boundary
conditions, we moreover truncate the tower of momentum modes to three and thus
end up with three interacting bosonic quantum modes with a specific Hamiltonian.
Despite the expected simplicity of this 3-mode system, we shall discover that it
exhibits a rich variety of quantum phases. The nature of quantum phase transi-
tions is qualitatively different from the analogous system with periodic boundary
conditions.

Since the three modes are bosonic, each of them can be in many different states
labeled by its occupation number. Thus, from a quantum information point of
view, they represent three qudits. The attractive interaction translates as negative
interaction energy between different modes. Correspondingly, the system satisfies
the conditions discussed above for the emergence of a nearly-gapless mode and for
reaching the critical states of enhanced memory capacity. Our goal is to show that
there is indeed a critical value of the coupling at which such a mode emerges. We
will first identify it with our analytic method and then confirm its existence by
numerical analysis.

In the light of models of the type [208], which are easy to access analytically
and which have a much closer connection with black hole entropy, the reader may
wonder why we do not focus on those as opposed to the one-dimensional case with
nonperiodic boundary conditions. There are two reasons for this. The first one
is presumed experimental simplicity. It should be easier to realize a simple con-
tact interaction, as opposed to the momentum-dependent one considered in [208].
Moreover, the prototype models studied so far only used periodic boundary condi-
tions. For an experimental realization, however, it is important to determine how
sensitive the phenomenon of emergence of gapless modes is to boundary condi-
tions. In particular, nonperiodic boundary conditions may also be easier to attain
in an experimental setting. Needless to say, we are aware of the extraordinary
difficulties in performing such experiments. Therefore, what we present is not a
concrete experimental proposal. In particular, we do not discuss any of the prob-
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lems that arise due to an imperfect isolation from the environment.8 Nevertheless,
we hope that the study of our prototype model can contribute to the experimental
realization of a system that shares the key properties of our prototype model, in
particular the emergence of gapless modes.

The second reason for the choice of our prototype model is that the nonperiodic
and nonderivative case is harder to analyze analytically, and therefore it represents
a better test of the c-number method. To put it shortly, we trade a simpler-solvable
model with a higher entropy for a harder-analyzable one with a smaller entropy
due to the idea that the latter model promises more experimental simplicity and
a tougher theoretical test of our method. The price we pay for this choice is that
our system only produces a single gapless mode at the critical point. Nevertheless,
it suffices to illustrate the key qualitative point of assisted gaplessness in a simple
setup with potential experimental prospects.

Truncated Hamiltonian

The Hamiltonian of our prototype model, the one-dimensional Bose gas in a box,
is given by

Ĥ =
∫ L

0
dz
[ ~2

2m∂zψ̂
†∂zψ̂ −

~2

2m
π2α

L
ψ̂†ψ̂†ψ̂ψ̂

]
. (3.39)

Here α is a dimensionless, positive coupling constant describing the attractive four-
point interaction of the atoms and L is the size of the system. Up to the choice
of boundary conditions, the system (3.39) is identical to the periodic model (2.42)
studied in the context of quantum breaking, where we identify L = 2πR. Unlike
before, we impose Dirichlet boundary conditions so that the free eigenfunctions
now read

ψ̂ =
√

2
L

∞∑
k=1

âk sin
(
kπz

L

)
. (3.40)

Going to momentum space, we then obtain

Ĥ full =4π2~2

2mL2

[ ∞∑
k=1

k2

4 â
†
kâk −

α

8

∞∑
k,l,m=1

[
(â†kâ

†
l âmâk+l−m + 2â†kâ

†
l âmâk−l+m)

− 2(â†l+m+kâ
†
l âmâk + â†kâ

†
l âmâk+l+m)

]]
. (3.41)

Both analytically and numerically, however, it is difficult to obtain explicit solu-
tions of the full Hamiltonian (3.41). Therefore, we will truncate the system to

8We could try to understand the disturbance effects due to the environment as a fluctuation
δN of the particle number. Since we expect it to grow slowly with the total number N of bosons,
it is clear that the relative disturbance δN/N shrinks when we increase N . This suggests that
choosing a large number of bosons, which is required in any case for decreasing the gap of the
light modes, could also help to suppress disturbance effects from the environment.
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the lowest three modes, k ≤ 3. This is the smallest number of modes for which
the nonperiodic system behaves qualitatively differently from its analogue with
periodic boundary conditions. Explicitly, we obtain after truncation:

Ĥ = 1
4

3∑
k=1

k2â†kâk −
α

8

[
3â† 2

1 â
2
1 + 8â†1â†2â1â2 + 2â† 2

1 â
2
2 + 2â† 2

2 â
2
1

+ 8â†1â†3â1â3 + 2â† 2
1 â

2
3 + 2â† 2

3 â
2
1 − 2â† 2

1 â1â3 − 2â†1â†3â2
1

+ 4â†1â†2â2â3 + 4â†2â†3â1â2 + 2â†1â†3â2
2 + 2â† 2

2 â1â3

+ 3â† 2
2 â

2
2 + 8â†2â†3â2â3 + 2â† 2

2 â
2
3 + 2â† 2

3 â
2
2 + 3â† 2

3 â
2
3

]
. (3.42)

This Hamiltonian defines the prototype system that we shall study in the following.
For convenience, we set L = 2π and ~ = 2m = 1 from now on. Our subsequent
task is to understand the phase portrait of the Hamiltonian (3.42) with the aim of
identifying an emergent gapless mode that leads to enhanced entropy states with
long decoherence time and large information storage capacity.

To prepare the application of our analytic method, we now perform the Bogoli-
ubov approximation. Clearly, since the conditions (3.21) and (3.22), which define
critical points of the Bogoliubov Hamiltonian, allow for a reparametrization of the
complex variables contained in #»a and #»a ∗, we can use a different parametrization
defined by9

â1 →
√
N(1− x) cos(θ) , â2 →

√
Nx ei∆2 , â3 →

√
N(1− x) sin(θ)ei∆3 .

(3.43)
As it should be, this substitution already incorporates particle number conserva-
tion, i.e. we replace three modes by only two complex numbers, or equivalently
two moduli and two phases. Here 0 ≤ x ≤ 1 is the relative occupation of the
2-mode and 0 ≤ θ ≤ π/2 characterizes how the remaining atoms are distributed
among the 1- and 3-mode. Moreover, ∆2 and ∆3 are relative phases. The Bogoli-
ubov Hamiltonian, which we obtain after plugging in the replacements (3.43) in
the Hamiltonian (3.42), reads:

Hbog

N
= 1

4
(
1 + 3x+ 8(1− x) sin2(θ)

)
− λ

8

[
sin2(2θ)(1− x)2

(1
2 + cos(2∆3)

)
+ 3 + 2x− 2x2 + 4x(1− x)

(
cos(2∆2) cos2(θ) + cos(2∆2 − 2∆3) sin2(θ)

)
+ 2 sin(2θ)(1− x)

(
x cos(2∆2 −∆3) + cos(∆3)

(
2x− (1− x) cos2(θ)

)) ]
.

(3.44)
9The equivalence of the vanishing of the second derivatives in #»a and x is nontrivial and only

holds if there are no unoccupied modes, ak 6= 0. Schematically, the reason is that ∂Hbog
∂a = a

∂Hbog
∂x

and therefore ∂2Hbog
∂2a = a2 ∂2Hbog

∂2x + ∂Hbog
∂x .
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Figure 3.2: Relative occupation numbers of the ground state of the Bogoliubov
Hamiltonian as functions of λ. The 1-mode is displayed in blue, the 2-mode in or-
ange and the 3-mode in purple. There is a discontinuous change in the occupation
numbers at λgs ≈ 3.5.

Analysis of the Ground State

As a preparatory exercise, we analyze the ground state of the Hamiltonian (3.42).
We can do so by finding the global minimum of the Bogoliubov Hamiltonian (3.44).
It is evident that the choices ∆2 = 0 as well as ∆3 = 0 or ∆3 = π are preferred
since they minimize each term separately.10 It is straightforward to minimize
the energy with respect to ∆3 and the remaining two continuous parameters x
and θ numerically.11 The resulting occupation numbers of the ground state as
functions of the collective coupling λ are displayed in Fig. 3.2. We observe that
the occupation numbers change discontinuously at the critical point λgs ∼= 3.5,
where the subscript gs stands for ground state.

In order to understand this behavior better, we plot the Bogoliubov Hamilto-
nian as a function of x and θ for the critical value λ = 3.5 in Fig. 3.3. Since we
observe two disconnected, degenerate minima, we can explain the discontinuous
change of the occupation numbers as transition between the two minima. To an-
alyze how the second minimum develops, we marginalize over θ and ∆3, i.e. we
only fix x and minimize the energy with respect to the remaining parameters θ
and ∆3. Fig. 3.4 shows the result for different values of λ. We conclude that a
local minimum exists at x = 0 for all values of λ and that another local minimum
at x = xmin(λ) 6= 0 starts to exist for λ > λlm, where

λlm ∼= 1.8 . (3.45)

Here the subscript lm stands for light mode since we observe that the critical point
10This follow from the last line of the Hamiltonian (3.44). For 3n2 > n1, ∆3 = 0 is preferred

and otherwise ∆3 = π.
11All numerical computations in this work are performed with the help of Mathematica [216].
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Figure 3.3: Bogoliubov energy (rescaled by the inverse particle number) for λ = 3.5
as a function of x and θ. The red surface is the region where ∆3 = π minimizes
the energy and in the orange surface, ∆3 = 0 is preferred. We observe two discon-
nected, degenerate minima, one for x = 0 (green point) and one for x 6= 0 (blue
point).

λlm corresponds to a stationary inflection point and will therefore be crucial for
our discussion of the gapless mode in the next section. With regard to the ground
state, we can conclude for now that λgs corresponds to the point where the second
minimum becomes energetically favorable.

Thus, we expect from the analytic analysis that the ground state changes dis-
continuously at the critical point λgs ∼= 3.5, i.e. that there is a first-order phase
transition. We can check that this indeed happens in the quantum Hamiltonian for
finite N . To this end, we diagonalize it numerically to find the true ground state.
When we plot the expectation values of the occupation numbers of the ground
state as functions of λ, the result is indistinguishable from Fig. 3.2 above already
for N & 100. We therefore confirm that there is a critical point at λgs, at which
the ground state of the system changes discontinuously.

This represents a marked difference to the periodic system, where the ground
state changes continuously, i.e. a second-order phase transition takes place [36,76].
Because of the continuity of the transition, higher modes only get occupied slowly
in that case so that one can describe the full system solely in terms of the lowest
three modes. This makes it easy to obtain numerical results for the periodic
system. As we have seen, however, the occupation numbers change discontinuously
for Dirichlet boundary conditions. Therefore, the truncation to three modes is no
longer justified already near the critical point. For this reason, the full system
(3.41) does not necessarily need to exhibit the behavior which we observe for the
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Figure 3.4: Minimal value of the Bogoliubov Hamiltonian (rescaled by the inverse
particle number) subject to the constraint that the relative occupation of the 2-
mode is x. At λlm ∼= 1.8, a stationary inflection point signals the appearance of
a second minimum and at λgs ∼= 3.5, this second minimum becomes energetically
favorable.
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truncated Hamiltonian (3.42).

3.2.2 Critical Point with Gapless Mode
Application of C-Number Method

We proceed to perform a detailed analysis of the point λ = λlm. Our goal is to
show that it features a light mode and correspondingly an increased density of
states, i.e. that the phenomenon of assisted gaplessness takes place at this point.
First, we will do so using the analytic c-number method developed in section
3.1.4. As explained there, it allows us to forgo the involved analysis of the full
spectrum. Instead, we are only faced with the much simpler task of showing
that the Bogoliubov Hamiltonian, which solely depends on two complex variables,
possesses a stationary inflection point.

Since we already expect from Fig. 3.4 that a stationary inflection point appears
at λ = λlm, it remains to confirm that this is the case. To this end, we first study
the first derivative of the Bogoliubov Hamiltonian. Setting it to zero yields four
equations, which we can solve for the four Bogoliubov parameters x, θ, ∆2 and
∆3. We observe that the latter two parameters behave as in the second minimum,
∆2 = ∆3 = 0. Only the derivatives with respect to x and θ, which are displayed
in equation (A.7) in appendix A.2.2, yield nontrivial conditions. As we expect
from the previous analysis, solutions, i.e. local extrema, only exist for λ > λlm,
which we determine as λlm = 1.792. Next, we compute the matrix M of second
derivatives, which is displayed in equation (A.8). At the local minima, we plug in
the above determined values of the Bogoliubov parameters and then compute its
determinant. We display the result in Fig. 3.5a as a function of λ. We confirm
that it vanishes as λ approaches λlm from above. Therefore, λ = λlm corresponds
to a stationary inflection point in the Bogoliubov Hamiltonian and it follows from
our c-number method that a nearly-gapless mode and consequently an increased
degeneracy of states exists in the full spectrum.

In order to confirm this finding, and also to make a more quantitative state-
ment, we explicitly perform the Bogoliubov transformation to obtain the full quan-
tum spectrum in the limit N → ∞. As explained in section 3.1.4, the first step
is to replace â1/â

†
1 →

√
N − â†2â2 − â†3â3 in the full Hamiltonian (3.42) to ensure

that we only consider fluctuations that respect particle number conservation. Then
we expand to second order around the point defined by the Bogoliubov approxi-
mation (3.43). We display the result in appendix A.2.2 in equations (A.10) and
(A.11). As before, we subsequently look for pairs (x, θ) where the linear term
(A.10) vanishes and stable fluctuations exist. We obtain the same values as above.
At those points, we calculate numerically the Bogoliubov transformation for the
corresponding quadratic Hamiltonian using the method described in [215, 217].
The so obtained diagonal matrix contains the excitation energies associated to the
Bogoliubov modes. The smallest energy gap as a function of λ is shown in Fig.
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Figure 3.5: Excitation energy as a function of λ for N →∞ derived in two different
methods. In both cases, we observe a gapless excitation at λlm ∼= 1.792. Stable
excitations only exist for λ ≥ λlm. As is clear from the Hamiltonian (3.41), the
energy unit is 4π2~2

2mL2 .

3.5b. As expected, the result is in accordance with the previous one displayed in
Fig. 3.5a. Thus, this analysis confirms that a gapless mode exists at λlm in the
limit N →∞. For finite N , we therefore expect that a nearly-gapless mode, whose
energy is suppressed as a power of 1/N , appears close to λlm.

The critical state, around which the gapless modes emerge, is not the ground-
state of the system. Nevertheless, the present analysis also shows that it is stable.
This follows from the fact that the gaps of all modes are positive and large in
the relevant regime λ ≥ λlm, except for one almost flat direction (see Fig. 3.5b).
This conclusion will be corroborated by the numerical analysis since it will not
show any sign of decay, either. Of course, in order to perform any experimental
analysis of the system, it has to be coupled to additional external modes. Such
a coupling could destabilize the system, provided it is strong enough. But as we
have discussed in section 3.1.1, any interaction to an external field has to be weak
anyhow in order not to disturb the gaplessness of the Bogoliubov mode. We expect
that the weakness of the external influence also ensures a sufficient stability of the
critical state, although the matter has to be studied on a case by case basis for
potential experimental setups.

Slow Mode in Full Spectrum

Our goal is to confirm the existence of a light mode in the spectrum of the quantum
system for finite N . To this end, we will use the fact that modes with a small
energy gap E evolve on the long timescale ~/E (see Eq. (3.4)). When we consider
a state close to a critical point of enhanced memory storage, we therefore expect
the appearance of large timescales in its time evolution. So we will prove the
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existence of a light mode by showing that quantum states with a drastically slower
time evolution exist there.12 As discussed in section 3.1.1, we expect such states to
have an experimental signature in the form of absorption lines of low frequency.13

The timescale of evolution also determines how long a state can store informa-
tion. We can imagine that we experimentally prepare a state in such a way that
we can choose its components in a certain basis. Then it is possible to encode
information in these components. If we measure the state before it has evolved
significantly, we can directly read out the components and therefore the stored
information. In contrast, if the state has already evolved, it is practically impos-
sible to retrieve the information since this would require precise knowledge of the
dynamics of the systems, in particular of its energy levels. In a narrow sense, the
timescale of evolution therefore determines a decoherence time. It is the time after
which the subset of nearly-gapless modes has been decohered by the rest of the
system.

Practically, we need to come up with a procedure to single out a quantum state,
for which we then analyze its time evolution. For λ = λlm, this quantum state
should correspond to the stationary inflection point of the Bogoliubov Hamilto-
nian. In order to make a comparative statement, we moreover need to determine
analogous quantum states at different values of λ. We will achieve this by con-
structing a method to associate a quantum state |Φinf〉 to the inflection point of the
Bogoliubov Hamiltonian. This inflection point exists for all λ & 1 but is stationary
only for λ = λlm.

Our approach to determine |Φinf〉 is to define a subspace of states close to the
inflection point and then to select among those the state of minimal energy. On the
one hand, this subspace should not be too big in order to be sensitive to properties
of the stationary inflection point at λ = λlm. On the other hand, the subspace
cannot be too small since otherwise the energy of the state that we obtain by
minimization is too high. Of course, there is no unique way to determine this
subspace and therefore no unique quantum state |Φinf〉, but it suffices for us to
come up with a method to find some quantum state with drastically slower time
evolution. In particular, we expect that there are many different such quantum
states corresponding to different occupation numbers of the light mode.

Concretely, we will construct the subspace using two conditions, which we
derive from properties of the inflection point xinf(λ) of the Bogoliubov Hamiltonian.
First, we only consider quantum states |Φinf〉 for which the expectation value of the
relative occupation of the 2-mode, n2(t) := 〈Φinf| â†2(t)â2(t) |Φinf〉 /N , is equal to

12For the periodic system, it was shown explicitly that the time evolution is significantly slower
at the critical point [51].

13We remark that it does not suffice to look for eigenstates in the spectrum whose energies
only differ by a small value ∆E. The reason is that even when eigenstates have a similar energy,
the transition between them can nevertheless be a suppressed higher-order process, i.e. it can be
very hard to transit from one to the other. In this case, no light mode exists and a soft external
stimulus cannot induce the transition.
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xinf(λ). Secondly, we restrict the basis used to form the quantum state |Φinf〉, where
– as in all numerical computations – we use number eigenstates of total occupation
number N as basis. Namely, we determine from the Bogoliubov Hamiltonian all
relative occupation numbers at the inflection point. Then we choose upper bounds
δni on the spread of the different modes, i.e, we only consider basis elements for
which the relative occupation numbers deviate by at most δni from the values
determined from the Bogoliubov Hamiltonian. With the guideline that modes with
bigger relative occupation should have a bigger spread, we empirically determine
δn1 = 0.4, δn2 = 0.375 and δn3 = 0.225 to be a good choice.14

Once we have determined the state |Φinf〉, we study its time evolution. In doing
so, we use the full quantum Hamiltonian and therefore also the full basis. We show
the result for N = 60 for exemplary values of λ in Fig. 3.6, where we plotted n2(t).
Clearly, drastically lower frequencies dominate around λ = λlm. In order to make
a quantitative estimate about the coherence time as a function of the collective
coupling λ, we extract a typical frequency from the time evolution of |Φinf〉. To this
end, we use a discrete Fourier transformation with respect to the nmax frequencies
f1, 2f1, . . . , nmaxf1 to obtain the Fourier coefficients c1, c2, . . . , cnmax . With their
help, we can define the mean frequency as

f̄ := f1

∑nmax
i=1 i|ci|2∑nmax
i=1 |ci|2

. (3.46)

As explained, the timescale of evolution can be interpreted as decoherence time,
namely as the timescale after which the subset of nearly-gapless modes has been
decohered by the other modes. In this sense, we get:

tcoh = 1
f̄
. (3.47)

For f1 = 1/3000 and nmax = 12000, we show tcoh as a function of λ in Fig. 3.7.15
We observe that it increases distinctly around λ ∼= 2.083.

The fact that for N = 60 a state with drastically slower time evolution appears
at λ(60)

lm
∼= 2.083 is consistent with λlm ∼= 1.792 since we expect that as in the

periodic system, the critical value λ(N)
lm of the collective coupling at finiteN receives

1/N -corrections:16
λ

(N)
lm = λlm + a ·N−b, (3.48)

14We compared the results obtained in this truncation with the ones derived using the full
basis. For N ≤ 50, we observed that their qualitative behavior, which we shall discuss in a
moment, is identical whereas this no longer seems to be the case for higher N . However, the
only important point for us is to come up with some recipe to find the slowly evolving states.

15We checked that different choices of f1 and nmax lead to the same result. Therefore, cutting
off low and high frequencies, which is required in a numerical treatment, has no influence on our
findings.

16In contrast, note that we do not expect tcoh to diverge for infinite N because |Φinf〉 generically
contains an admixture of nongapless modes.
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Figure 3.6: Time evolution of the quantum state |Φinf〉, which corresponds to the
inflection point of the Bogoliubov Hamiltonian. The value of n2(t) is plotted for
N = 60. We observe that lower frequencies dominate around λ ∼= 2.083.
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Figure 3.7: Estimate of the decoherence time tcoh associated to |Φinf〉 as a function
of λ for N = 60. We observe that it increases distinctly around λ ∼= 2.083.

where a > 0 and b > 0 are two undetermined parameters. To confirm that this is
the case, we repeated the above analysis of the decoherence time as a function of
λ for N between 40 and 90. This determines critical values λ(N)

lm as the values of
λ for which time evolution is the slowest at a given N . Subsequently, we fit the
function (3.48) to the result and thereby determine a = 3.56 and b = 0.61. We
note that b is close to 2/3, which was the result in the periodic system [76]. As is
evident from Fig. 3.8, the numerically determined values λ(N)

lm are well described by
the fitted function (3.48). This is a clear indication that the slowed time evolution
we found is due to the nearly-gapless Bogoliubov mode that we predict from the
analytic treatment. So in summary, we observe the appearance of a nearly-gapless
mode around λ = λlm also for finite N .

As a final remark, we discuss the critical state |Φinf〉 for N = 60 and λ = 2.083
in position space. Its particle density is given by

ρ(z) ≡ 〈Φinf| |ψ̂|2 |Φinf〉 = 1
π

3∑
k,l=1
〈Φinf| â†kâl |Φinf〉 sin

(
kz

2

)
sin

(
lz

2

)
. (3.49)

We display it in Fig. 3.9, where we also illustrate what the gapless mode looks like
in position space. To this end, we fix the critical value of the collective coupling,
λ = 2.083, but slightly vary the value of x used in the minimization procedure
that determines the quantum state: xi = xinf(λ) + δxi. This determines a family
of quantum states |Φinf, i〉, where |Φinf, i〉 is a state of minimal energy subject to the
constraint that its relative occupation of the 2-mode is xi. Their particles densities
are also shown in Fig. 3.9.
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Figure 3.8: Critical value λ(N)
lm as a function of particle number N . The positions

obtained from numerical simulations are plotted in blue. The fitted function (3.48)
is shown in red.
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Figure 3.9: Variations of the critical state at λ = 2.083 for N = 60 in position
space. The relative particle density ρ/N is plotted. The green line corresponds to
the critical state |Φinf〉 itself and the adjacent lines are variations of it, which we
obtained by slightly changing the value of x used in the minimization procedure
that determines the quantum state: xi = xinf(λ) + δxi. The values of δxi are
indicated in the plot.
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1 2

3

Figure 3.10: Representation of the Hamiltonian (3.42) as neural network. The
three neurons are displayed as circles and diamonds represent interaction terms.
The number of lines to a diamond indicates how many mode operators of the
corresponding neuron participate in the interaction.

3.2.3 Neural Network Analogue

Mapping

Using the dictionary developed in section 3.1.3, we shall represent the system
(3.42) as a neural network. Namely, it is fully isomorphic to a quantum neural
network with three neurons in which the excitations of neurons are described by
the momentum modes â†k, âk and the synaptic connections between the neurons are
described by the interaction terms in (3.42).17 Fig. 3.10 shows the representation
of Hamiltonian (3.42) as neural network.

To make a closer contact with the neural network language, it is useful to
rewrite the Hamiltonian as

Ĥ =
3∑

k=1
εkâ
†
kâk −

3∑
k,j=1

â†kŴkj âj , (3.50)

where εk = 1
4k

2 are the threshold excitation energies of the neurons and Ŵkj is a

17We remark that this system only represents a part of a neural network that can be used for
actual memory storage. In a realistic situation, one needs a first device to input information,
a second one to store it and a third one to retrieve it. However, our system solely realizes the
second part. So we only study situations in which no input or output operations take place.
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Hermitian 3× 3 matrix operator of synaptic connections. Its elements are:

Ŵ11 = 3α
8 â†1â1 , (3.51a)

Ŵ22 = 3α
8 â†2â2 , (3.51b)

Ŵ33 = 3α
8 â†3â3 , (3.51c)

Ŵ12 = α

8

(
4â†2â1 + 2â†1â2 + 4

3 â
†
2â3 + â†3â2

)
, (3.51d)

Ŵ13 = α

8

(
4â†3â1 + 2â†1â3 + 4

3 â
†
2â2 − 2â†1â1

)
, (3.51e)

Ŵ23 = α

8

(
4â†3â2 + 2â†2â3 + 4

3 â
†
1â2 + â†2â1

)
. (3.51f)

Now we can directly apply all our results to the above neural network. We shall
all the time assume the regime of very weak synaptic connections, i.e. we assume
α � 1. In this situation, we study the memory storage capacity of the network
for various values of the total excitation level N .

First, we examine the memory storage capacity of the neural network around
a state in which the total excitation level is well below the critical level, N � 1/α.
In such a regime, the negative energy of synaptic connections is negligible and does
not contribute to lowering the energy gap. Note that the ability of the synaptic
connection energy to lower the gap of neurons is parameterized by the strength
of the collective coupling λ = αN , which is very weak in the considered regime,
N � 1/α.

Correspondingly, in such a regime the energy difference between different num-
ber eigenstates |N − n2 − n3, n2, n3〉 and |N − n′2 − n′3, n′2, n′3〉 mostly comes from
the first threshold energy term in the network Hamiltonian (3.50) and is very large

Eλ�1 = 1
4 (3(n′2 − n2) + 8(n′3 − n3)) +O(λ) . (3.52)

Hence, the patterns stored in such states occupy a very large energy gap. For
example, in order to redial a pattern stored in the state |N, 0, 0〉 into the state
|N − 1, 1, 0〉, we need to overcome an energy gap E ' 3/4, i.e. an external stimulus
that is needed for the redial of information |N, 0, 0〉 → |N − 1, 1, 0〉 has to have an
energy of order ∼ 3/4.

Now we increase the total excitation level N . With this increase, the contribu-
tion of the negative synaptic connection energy gradually lowers the gap between
some neighboring states. The gap attains the smallest value when the total exci-
tation level N reaches the critical point. As discussed above, this happens when
αN = λlm. At this point, a state becomes available around which a gapless ex-
citation emerges. This means that for a certain relative distribution of excitation
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levels, the gap between the set of patterns collapses to

Eλ=λlm ≈
1
Nβ

, (3.53)

where β is a positive constant. By taking the double scaling limit (3.20), we can
make the gap arbitrarily narrow. In this situation, the storage of patterns in such
states becomes energetically cheap.

So far, we have described a quantum neural network. We can move to a classical
neural network by using the coherent state basis and replacing the Hamiltonian
operator by its expectation value over the coherent states. In this way, we obtain a
classical neural network described by the c-number energy function Hbog( #»a , #»a ∗).

Enhanced Pattern Storage

When discussing the storage of patterns in a neural network, we must introduce the
notion of the pattern vector. In general, this vector is different from the quantum
state vector of the system and may contain less information. This is determined by
those characteristics of the state to which an external reading device is sensitive.
Indeed, when the underlying quantum state characterizing the system is given by a
coherent state, which is labeled by three complex numbers |a1, a2, a3〉, the storage
of a pattern and therefore the pattern vector is determined by the combinations
of these numbers to which the reader is sensitive. If the reader is sensitive to
the full quantum information, i.e. to the phases as well as to the absolute values
of aj, then the pattern vector can be identical to the quantum-state vector. If
instead the reader is only sensitive to the absolute values, the pattern vector can
be correspondingly chosen in the form (|a1|, |a2|, |a3|). Since we do not specify any
external reading device, we shall keep the definition of the pattern vector flexible.

We can explicitly write down the pattern vector for our concrete system (3.50).
First, we discuss the case in which the reader is sensitive to the full quantum infor-
mation. Using the notations (3.43), the pattern vector can then be parameterized
as a1

a2
a3

 =
√
N


√

1− x cos(θ)√
x ei∆2

√
1− x sin(θ)ei∆3

 , (3.54)

where as before 0 ≤ x ≤ 1. If in contrast the reader is only sensitive to the absolute
values, we can effectively describe this situation by neglecting the phases in (3.54),
∆2 = ∆3 = 0

As before, we can discuss states of enhanced memory capacity. Thereby, the
role of the negative synaptic connection energy in creating such a state is the same
since, up to 1/N -corrections, the energy expectation value is identical in a number
eigenstate and in a coherent state. So for λ � 1, when the synaptic connection
term is negligible and the energy of the network is given by the threshold excitation
energy, we obtain the energy gap (3.52). When we remember that due to the
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properties of coherent states only patterns with large parameter differences that
satisfy (3.38) count as distinct patterns, we conclude that the energy difference for
distinguishable patterns is given by the threshold excitation energy and therefore
necessarily large, E & 1. This situation changes dramatically in the critical state,
where a stationary inflection point appears in the energy function Hbog( #»a , #»a ∗).
Because of the corresponding flat direction, the energy difference between distinct
patterns collapses to zero, as is evident from (3.53). Hence the system can store
different patterns within an arbitrarily narrow energy gap.

In order to attain such a critical state of enhanced memory storage, one has to
proceed as follows when one is given the system (3.50) with some small coupling
α � 1. First, one needs to go to a total excitation level of N = λlm/α ∼= 1.8/α.
Then one has to distribute those excitations so that the expectation values in the
three neurons approximately match the stationary inflection point of the Bogoli-
ubov Hamiltonian. This means one has to choose 〈â†2â2〉 = xinfN ∼= 0.32N as well
as 〈â†1â1〉 = (1 − xinf) cos2(θinf)N ∼= 0.67N and 〈â†3â3〉 = (1 − xinf) sin2(θinf)N ∼=
0.01N . Around such a state, an increased number of patterns exists in a small
energy gap, provided N is big enough.

One can also repeat this procedure for different, i.e. noncritical, values of λ.
Then one finds that the energy gap is not small, E & 1. Determining in this way
the minimal energy for pattern storage as a function of λ, one reproduces Fig.
3.5b. Of course, it is important to note that this plot is only valid in the limit
of infinite N . For finite N , corrections appear that scale as a power of 1/N . In
particular, the critical value of λ, at which the enhanced memory storage takes
place, deviates slightly from λlm. In Fig. 3.8, this critical value of λ is shown for
some exemplary finite excitation levels N .

A small energy gap has a direct implication on the longevity of states, i.e. on
the timescale tcoh on which excitation levels of the neurons start to change. As
is exemplified in Fig. 3.6, this timescale is short, tcoh ≈ 1, for states away from
the critical point (Fig. 3.6a and 3.6c). In contrast, it is long, tcoh � 1, for critical
states (Fig. 3.6b). If one investigates this timescale of evolution for different values
of λ, this leads to Fig. 3.7. We observe that states that evolve significantly more
slowly appear at the critical point.

The mechanism for memory storage, which is based on assisted gaplessness, can
be summarized as follows. In the presence of excitatory synaptic connections, we
increase the total excitation level to a point at which a flat direction appears in the
energy landscape. On this plateau, there exists a large number of distinct states
within a small energy gap. Those states are, however, very close, so typically one
would expect that they mix very quickly and information gets washed out. But
the key point is that we can distinguish them because they evolve very slowly.
Thus, if we read out a state on a timescale smaller than its timescale of evolution,
we will encounter it precisely as we have put it in the system.

To conclude this section, we have seen that a simple system of cold bosons
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truncated only to three modes effectively describes a neural network of remarkable
complexity. Most importantly, once excited to a critical level, it forms states of
sharply enhanced memory capacity in which a large number of patterns can be
stored within an arbitrarily very narrow energy gap. This behavior also persists
when taking the classical limit of the neural network. The above connection opens
up the possibility of simulating enhanced memory capacity neural networks in
laboratory experiments with cold bosons.

3.3 Memory Burden

3.3.1 General Mechanism
We have shown how assisted gaplessness leads to states with great capabilities of
quantum information storage. In this section, we shall discuss that such systems
of sharply enhanced memory storage capacity are subjected to a universal phe-
nomenon ofmemory burden [206]. Its essence is that stored information generically
backreacts on the systems and ties it to its initial state. In order to demonstrate
how this comes about, we will again turn to the prototype model (3.9):

Ĥ =
(

1− n̂0

N

)
K∑
k=1

εkn̂k + ε0n̂0 + . . . , (3.55)

where we expressed the small attractive coupling α in terms of a large parameter
N , i.e. α = 1/N . We recall that n̂0 is the master mode and that the quantities εk
represent the threshold excitation energies in the absence of interactions. Although
the precise form of the spectrum is unimportant, it is usual for quantum field
theoretic systems that the number of modes increases with εk. We have ignored
the interactions among the n̂k-modes, but their addition is trivial and changes
nothing in the essence of the phenomenon (see [204–206,208]).

As is clear from Eq. (3.10), the effective energy gap functions for the model
(3.55) read

Ek = εk

(
1− n0

N

)
. (3.56)

In the following, we shall denote expectation values by the same symbols as opera-
tors but without hats, i.e. in this case n0 = 〈n̂0〉. In accordance with our previous
analysis of the model (3.9), the energy gaps are large and therefore the memory
storage capacity is poor around the vacuum, n0 = 0. However, a nonzero expecta-
tion value of the master mode n0 lowers the effective energy thresholds and they
collapse to zero for a critical value n0 = N . At this point, the modes n̂k can
therefore be excited at zero or very little energy cost. Thus, an exponentially large
number of information patterns can be stored in the orthogonal microstates that
represent different number eigenstates of the n̂k-modes,

|pattern〉n ≡ |n1, n2, . . . , nK〉 . (3.57)
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Following [206], we shall call the corresponding Fock space the memory space.
Its dimensionality scales exponentially with K and leads to the entropy (3.2).
Moreover, we will refer to the n̂k-s as memory modes.

We can discover the memory burden effect when we introduce a second type
of degrees of freedom, to which the n̂k-modes can decay. We denote their creation
and annihilation operators by ĉ†k, ĉk, where k = 0, 1, 2, . . . , K, and correspondingly
the new number operator is m̂k = ĉ†kĉk. The b̂- and ĉ-sectors commute with
each other and also the ĉ-sector satisfies the usual algebra, [ĉj, ĉ†k] = δjk and
[ĉj, ĉk] = [ĉ†j, ĉ

†
k] = 0. We shall introduce the simplest possible interaction that

allows the particle number transfer between the two sectors, but other choices do
not affect the outcome. Thus, we consider the following Hamiltonian:

Ĥ =
(

1− n̂0

N

)
K∑
k=1

εkn̂k + ε0n̂0 +
K∑
k=0

εkm̂k + 1
2N

K∑
k=0

εk(b̂†kĉk + ĉ†kb̂k) . (3.58)

As will become evident, the choice of the last coefficient is motivated by the analogy
to de Sitter and black holes.

Our goal is to study how the memory pattern influences the decay of the n̂0-
mode into m̂0. Namely, although the states |n1, . . . , nK〉 are nearly-degenerate
in energy, they exert different backreactions on the master mode n̂0 for different
values nk 6=0. This backreaction is measured by a quantity to that we shall refer as
memory burden [206]. A general definition of it is:

µ ≡
K∑
k=1

nk
∂Ek
∂n0

. (3.59)

For the particular case of (3.56), this gives

µ ≡ −εpat
N

, (3.60)

where εpat = ∑K
k=1 εknk represents the would-be cost of the pattern in the state

n0 = 0, i.e. εpat is an unactualized energy cost. It is important not to confuse this
quantity with an actual energy cost of the pattern Epat = 〈Ĥ〉.

Now we study the time evolution of the system, where we use the initial state

|in〉 = |N, n1, . . . , nK〉n ⊗ |0, 0, ..., 0〉m . (3.61)

The resulting occupation numbers as functions of time are given by [206]

m0(t) = NA sin2
(
t

τ

)
,

n0(t) = N −m0(t) , (3.62)

where A ≡ 1/(1+
(
Nµ
ε0

)2
) and τ ≡ 2N

ε0

√
A . These findings already suffice to capture

the essence of the memory burden effect since the time evolutions for small and
large values of µ are very different. The critical value is set by |µ| ≈ ε0/N .
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First, we investigate the case |µ| � ε0/N . Then we have A ' 1, i.e.

n0(t) ' N
(

1− sin2
(
tε0
2N

))
. (3.63)

Thus, the occupation number of the master mode almost fully diminishes after the
time t ' πN/ε0. As both the n̂k 6=0- and m̂k 6=0-modes are unoccupied, the system
behaves as if they did not exist and effectively reduces to the two modes n̂0 and
m̂0. In contrast, in the case |µ| � ε0/N , the master mode only loses the following
small fraction of its initial occupation number:

δn0

n0
= ε20
N2µ2 =

(
ε0
εpat

)2

. (3.64)

We conclude that the system is stabilized against the decay by the burden of its
own memory.

The physics behind this phenomenon is very transparent. Any decay process
that changes the value of n0 takes the system away from the critical state of
enhanced memory capacity. As a result, the n̂k 6=0-modes are no longer gapless
and the stored memory pattern becomes very expensive. Indeed, a decrease of the
master mode by δn0 = N − n0 increases the actual energy cost of the pattern by
δEpat = δn0|µ|. Thus, the fact that the stored quantum information becomes very
expensive if n0 changes creates a memory burden that backreacts on the decay
process and tries to shut it down.

One could wonder whether it is possible to avoid memory burden by offloading
the expensive pattern into the m̂k 6=0-sector together with the emitted m̂0-particles.
However, this does not work due to an enormous energy splitting between the n̂k-
modes and their m̂k-partners. We recall that the later modes are “normal”. This
is clear from the explicit form of time evolutions, which for initial times takes the
form,

mk(t) '
nk
N2 sin2

(
tεk
2

)
,

nk(t) = nk −mk(t) . (3.65)

This shows that the pattern stored in n̂k-modes gets imprinted into the corre-
sponding m̂k-modes with 1/N2-suppressed coefficients:

|pattern〉m = | n1

N2 , . . . ,
nK
N2 〉m

. (3.66)

We note that we deal with an intrinsically quantum effect due to finite N .
Having explained the essence of the memory burden phenomenon, it is impor-

tant to study if a system can delay or even avoid the effect. Above all, this depends
on two aspects. The first one is the form of the functional dependence of µ on the
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control parameter n0 in the vicinity of a given enhanced memory state n0 = N .
The second one is whether the memory enhancement takes place for some other
values n0 = N ′.

In the model (3.55), we assumed a simple linear dependence of Ek on n0. How-
ever, the dependence may be nonlinear. For example, we can take

Ĥ =
(

1− n̂0

N

)p K∑
k=1

εkn̂k + . . . , (3.67)

with p > 1. According to (3.59), the memory burden correspondingly depends on
the departure δn0 from the critical state as

µ = −p
(
δn0

N

)p−1
εpat
N

. (3.68)

We see that for a nonlinear dependence of Ek on n0, the memory burden becomes a
higher order effect in δn0/N and the backreaction is delayed. Equating the burden
(3.68) to the critical value µ = −ε0/N , we get an upper bound on δn0 above which
the backreaction from the memory burden cannot be ignored:

δn0 =
(

ε0
pεpat

)1/(p−1)

N . (3.69)

Since any nontrivial pattern satisfies εpat > ε0, the absolute upper bound is δn0 ≈
N . Thus, at the latest after its naive half-decay time,

tM ≈ Nε−1
0 , (3.70)

the memory burden stabilizes the system, unless the memory pattern is offloaded
beforehand.

As already discussed at length in [206], such offloading is possible if the system
possesses another state of enhanced memory capacity, i.e. if for a different value
n0 = N

′ , a different set of modes n̂′
k′

becomes gapless. This can be modeled by
the following Hamiltonian:

Ĥ =
(

1− n̂0

N

)p K∑
k=1

εkn̂k +
(

1− n̂0

N ′

)p K′∑
k′=1

ε
′

k′ n̂
′

k′ + . . . , (3.71)

where N ′ < N and “. . .” includes mixing with the ĉ-sector analogous to the terms
in (3.58). In the theory (3.71), a new set of memory modes n̂′

k′
becomes gapless

after changing n0 by δn0 = N − N ′ . At the same time, the old ones n̂k acquire
nonzero gaps given by Ek = εk

(
1−N ′/N

)p
.

As soon as other sets of gapless modes exist, the system can avoid the memory
burden by offloading the pattern from n̂k-modes into n̂′

k′
-ones. For the efficiency
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of such a process, the mixing between b̂0- and ĉ0-modes should be larger than 1/N .
Whether or not a full rewriting of a pattern from n̂k-modes into n̂′

k′
-ones can be

realized in a concrete system constitutes an interesting subject of future research.
If such an offloading is possible, we remark that during this process the pattern
becomes scrambled, i.e. the modes n̂′

k′
become entangled with each other in the

new state [206].
But even if such a continuous rewriting from one set of nearly-gapless modes to

another one is possible, there are indications that the system will stabilize after a
certain time. The reason is that generically the occupation of the initial pattern is∑K
k=1 nk

∼= Kd/2, where d is the maximal occupation per n̂k-mode and we assumed
an equal probability for all quantum states. Therefore, if there are less n̂′

k′
-modes

than n̂k-ones, which is usually the case since the system becomes less energetic,
then offloading will stop as soon as the number of modes in the next level is too
small. Therefore, the memory burden will stabilize the system at the latest when
the number of nearly-gapless modes has reached

KM ≈ K , (3.72)

i.e. when the entropy has decreased by a sizable fraction, e.g. by half.
In summary, a system can handle memory burden in two ways.

1. If p is sufficiently large, the memory burden can be postponed until δn0
becomes large. During this time, the pattern can stay encoded in the n̂k-
modes.

2. Another option is that the memory burden gets eased by a continuous of-
floading of the pattern into other sets of modes, which become nearly-gapless
for a smaller occupation number N ′ of the master mode n̂0. But also in this
case, the system will stabilize at the latest when the number of accessible
nearly-gapless modes has decreased by a significant fraction.

Finally, it is important to understand that the memory burden effect does not
reduce to a statement that a system likes to be in a state of high entropy, although
the two effects are related. The entropy is a property of a macrostate whereas mem-
ory burden is a property of a particular microstate from a given macro-ensemble,
a priori unrelated to the number of fellow members in the ensemble. However,
by simple combinatorics it is clear that for a system of microstate entropy S, the
number of empty patterns is exponentially suppressed [206].

3.3.2 Application to de Sitter
We have described a universal phenomenon of memory burden, which appears
to be generic in systems of enhanced memory storage capacity. As explained in
section 1.4, de Sitter must be a prominent member of the above category because
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of its Gibbons-Hawking entropy [32]. Since the modes that carry this information
possess a gap that is much smaller than the smallest gap of any free mode (see
Eq. (1.30)), it seems unavoidable that the nearly-gapless modes arise due to an
interaction, i.e. that assisted gaplessness is at work. Just as in the case of a black
hole, this resonates with the fact that gravity is bosonic and features attractive
interactions.

If assisted gaplessness is operative in de Sitter, this means that the Gibbons-
Hawking S entropy is attained because a certain control parameter n0 assumes a
critical value N . Whatever the precise origin of n0 is, we know that classically
the value of this control parameter is set by Λ, which is a fixed parameter of the
theory. However, the quantum evolution caused by Gibbons-Hawking evaporation
must lead to a change of n0 and thus to a subsequent departure from the enhanced
memory state. This results in a memory burden effect which becomes strong after
a certain critical time. It is important to note that for this conclusion, we do not
need to know the precise origin of the degrees of freedom that are responsible for
the Gibbons-Hawking entropy. The mere fact that they exist suffices.

First, we will consider the case in which no offloading of information to other
levels takes place. We will explain shortly why rewriting can play no significant
role for de Sitter. Then it is reasonable to assume that the critical time after which
memory burden sets in must be bounded from above by the time during which
the total energy radiated away via Gibbons-Hawking quanta becomes comparable
to the energy of the entire Hubble patch. As is evident from Eq. (1.15), the latter
is given by EdS ≈ SH, where H is the Hubble scale. Because each Hawking
quantum carries an energy of order H, the effect gets strong at the latest after the
total number of emitted quanta becomes on the order of S:

tdSM ≈ SH−1 , (3.73)

in agreement with Eq. (3.70). We set ~ = 1 from now. The timescale (3.73), after
which memory burden has to set in at the latest, is the same as the quantum break-
time of de Sitter (2.164) derived before. We will comment on the connection to
quantum breaking shortly. We emphasize that at this point, we have not made any
extra assumption that ties the control parameter n0 to the energy of the system.
Our statement merely is that when a memory-storing device loses half of its mass,
then typically also the control parameter n0 changes significantly. Therefore, it is
pushed out of the original state of enhanced memory capacity. For this reason, we
expect that the above qualitative picture is rather insensitive to the details of the
microscopic theory.

Next, we will make the description of memory storage in de Sitter more quan-
titative by mapping it onto the model (3.55). In doing so, we will assume that
the mode n̂0 carries a significant part of the de Sitter energy. On the one hand,
we make this assumption for simplicity. On the other hand, it is motivated by
the connection to the corpuscular picture [44] of de Sitter, which we reviewed in
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section 1.3.2 and further developed in section 2.4. Namely, it is very natural to
identify the master mode n̂0 with the soft graviton mode of wavelength RH and
occupation number N ≈ S (see Eq. (2.124)). Still, the following discussion will be
largely insensitive to this identification.

In the mapping onto the model (3.55), the first step is to set ε0 = H in order to
match the energy of the emitted Gibbons-Hawking quanta. To obtain the correct
rate, we must moreover choose N = S for the critical occupation number of the
control mode. In this way, the state loses its total energy EdS ≈ SH after on the
order of S quanta have been emitted. Finally, we need to reproduce the Gibbons-
Hawking entropy. This determines the number of nearly-gapless modes n̂k as
K = S. Having expressed all relevant quantities in terms of the Hubble scale H
and the Gibbons-Hawking entropy S, we conclude that Eq. (3.70) reproduces the
timescale (3.73), after which Gibbons-Hawking decay has to get stabilized because
of memory burden. We emphasize that so far, our conclusions still do not rely
on any assumption about the microscopic structure of de Sitter other than the
requirement that it can describe the Gibbons-Hawking entropy.

Even without speculating where the critical modes n̂k come from, we can still
gain some more valuable information. For example, these modes can be labeled
by quantum numbers that are symmetries of the de Sitter space in the classical
limit. In order to have a level degeneracy S, these modes must belong to very high
angular harmonics, which leads to the estimate εk ∼

√
S ε0. Of course, this scaling

also fully matches the holographic counting [209,210] naively applied to de Sitter,
which implies the existence of S Planck wavelength qubits. We can thus estimate
that the typical unactualized energy of a memory pattern carried by a de Sitter
patch is equal to εpat ∼ S3/2ε0 ≈ EdS

√
S . This scaling reveals how incredibly

efficient de Sitter’s memory storage is. A pattern that with naive counting would
exceed the energy of the entire de Sitter patch by a factor of

√
S is stored at the

same cost as the empty pattern. Of course, this is nothing more than restating the
fact that an enormous microstate degeneracy must underlie the Gibbons-Hawking
entropy.

Next, we turn to the question why rewriting cannot efficiently ease the mem-
ory burden in de Sitter. The reason is that the critical number N is set by the
cosmological constant Λ. Consequently, it represents a fixed parameter of the the-
ory. So even if de Sitter possesses information storing minima for other values of
n0 = N ′ 6= N , their energy must be an increasing function of |N − N ′|. We can
illustrate this with the help of the following Hamiltonian:

Ĥ =
(

1− n̂0

N

)p K∑
k=1

εkn̂k +
((

1− n̂0

N ′

)p
+
(

1− n̂0

N

)q) K′∑
k′=1

ε
′

k′ n̂
′

k′ + . . . , (3.74)

where q > 0. The resulting energy landscape is plotted in Fig. 3.11.
Even if two sets of modes n̂′

k′
and n̂k could carry an identical pattern, n′

k′
= nk,

its energy costs in the state n0 = N ′ exceeds the one in the state n0 = N by the
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Figure 3.11: Highly schematic plots (for even values of p) of the energy thresholds
of the memory modes in a theory with cosmological constant. Only around a single
value of n0, gapless modes emerge.

amount Epat = (1− n0/N)q εpat. So even if de Sitter keeps copying the pattern
from one set of modes into another one, the memory burden increases steadily.
Since we do not fully specify the microscopic theory of de Sitter, we cannot say
what p and q are. However, a universal constraint on the parameters is that in the
limit N →∞, only a single macrostate of enhanced memory capacity must exist.
This is necessary for matching the semiclassical description of de Sitter. Under
these circumstances, it is clear that the memory burden should set in at the latest
for δn0 ≈ N , again reproducing Eq. (3.73). After this point, it strongly backreacts
on the decay process.

It is important to note that the phenomenon of memory burden in de Sitter
is purely quantum. In the (semi)classical limit (1.24), which implies N →∞, the
information-carrying modes become exactly gapless and therefore the time it takes
to resolve them diverges. Accordingly, the timescale (3.73) after which memory
burden starts to backreact becomes infinite. Since memory burden is inaccessible
in the (semi)classical limit, any classical metric description of de Sitter has to
break down once the backreaction due to memory burden becomes significant.
Therefore, we have rediscovered the phenomenon of de Sitter quantum breaking,
which we have discussed in section 2.4, in the language of quantum information.

Finally, we turn to implications for inflation, where the information stored in
the nearly-gapless modes – we shall call itM-pattern – can have crucial phenomeno-
logical implications. Since the M-pattern is purely quantum, the (semi)classical
evolution cannot affect it. Therefore, it cannot be erased by slow-roll inflation so
that it represents a cumulative quantum effect that is sensitive to the whole history
of the Universe and not only the last 60 e-foldings. Therefore, the M-pattern is
fully analogous to the 1/N -effects discussed in section 2.4.6.

Both effects are easier to observe if inflation lasted longer. In particular, the
M-pattern has the strongest influence if the end of inflation is maximally close to



138 3. Storage of Quantum Information

quantum breaking.18 The reason is that the M-pattern represents quantum hair
stored in degrees of freedom that initially are essentially gapless. Therefore, it is
not surprising that due to quantum uncertainty, a very long time is required for
decoding a pattern of such a narrow energy gap. This means that the situation with
the M-pattern is exactly opposite to other forms of preexisting information which
are readily eliminated by a de Sitter phase. This creates the exciting prospect to
search for imprints of the primordial M-pattern in observational data. Answering
the question how to detect it requires a separate investigation.

3.3.3 Application to Black Holes
In great analogy to de Sitter, black holes possess an enhanced information storage
capacity due to their Bekenstein-Hawking entropy (1.2). Therefore, they are also
subjected to the phenomenon of memory burden. As for de Sitter, we can make
the generic argument that at the latest after a black hole has lost half of its mass,
the backreaction due to memory burden becomes strong:

tbhM ≈ Srg , (3.75)

where we recall that rg = M/M2
p corresponds to the Schwarzschild radius and M

is the black hole mass. Note that this formula holds irrespective of whether or not
rewriting takes place in a black hole. If it does not, it is due to Eq. (3.70). If it
does, it follows from Eq. (3.72) and the fact that after losing half its mass, the
black hole has lost more than half its entropy. So as for de Sitter, the backreaction
due to memory burden sets in at the latest after its naive half lifetime.

We can make this argument without assuming that the control parameter n0
represents the black hole mass. When we add this assumption, it is straightforward
to map a black hole on the model (3.55), which leads to the identifications ε0 = r−1

g ,
N = S as well as K = S. Clearly, both Eq. (3.70) and (3.72) support the bound
(3.75). Moreover, the resulting microscopic picture of the black hole fully resonates
with the quantum N-portrait, which we outlined in section 1.3.1. In this picture,
the black hole consists of N ≈ S soft gravitons of wavelength rg.

Additionally, the relationship to quantum breaking is full analogous to the de
Sitter case. Since memory burden is a fully quantum phenomenon, this means
that any (semi)classical description has to break down once it sets in. Therefore,
it is not surprising that the quantum break-time (1.13) of a black hole is given by
the timescale (3.75). At this point, the black hole either gets stabilized or it has
to start releasing information, in accordance with Page’s argument [42].

18This is independent of the question if quantum breaking in de Sitter leads to an inconsis-
tency. As explained in section 2.4.6, any inflationary scenario that experiences quantum breaking
is highly disfavored since the semiclassical description of the late inflationary epoch shows no
conflict with observations.
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Figure 3.12: Highly schematic plots (for even values of p) of the energy thresh-
olds of the memory modes for the case of black holes. Multiple minima exist,
corresponding to different possible black hole masses.

However, there is one crucial difference between black holes and de Sitter.
Whereas a theory with cosmological constant only allows for a single de Sitter state,
one and the same theory features a multitude of different black hole solutions.
Correspondingly, numerous sets of modes n̂k, n̂

′

k′
, . . ., which become gapless at

different points, must exist. In this energy landscape, which is plotted in Fig.
3.12, rewriting of a pattern between different sets of modes can play a crucial role
for black hole evolution, as was suggested in [206]. In particular, it can lead to the
scrambling of information.
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Chapter 4

Infrared Physics and Information

In the previous chapter, we concluded that nearly-gapless modes play a crucial
role for the storage of information. For a long time, it has also been known that
understanding the behavior of soft modes is important for the study of scattering
processes in gapless theories.1 Therefore, we will investigate in this chapter if there
is a connection between these two subject areas.

We begin in section 4.1 by reviewing known results in infrared physics. The
starting point is the long-known finding that in gapless theories, soft loops lead
to vanishing amplitudes for any nontrivial scattering process [57]. There are two
procedures to deal with theses so-called infrared divergences and to obtain nonzero
rates: the inclusive formalism [57–59], in which the emission of soft modes is taken
into account, and the dressed formalism [60–65], in which all charged asymptotic
states are dressed with soft modes. During the review of these approaches, we
also comment on the relationship of the soft photon/graviton theorem and charge
conservation [218], which has recently received renewed attention in a different
context [219].

In section 4.2, we propose a physical criterion to distinguish between soft emis-
sion and soft dressing. It enables us to develop a new approach to deal with
infrared divergences, which is able to simultaneously describe both the emission
of soft radiation and the dressing by soft modes. In this combined formalism, we
obtain the same finite rates that the two preexisting procedures yield.

In section 4.3, we go one step further by studying the density matrix of the
final state. Its diagonal contains the known rates but the off-diagonal elements
encode information about the coherence of the final state. Our study is motivated
by the recent finding that the inclusive and dressed formalisms can only lead to full
coherence or full decoherence [66, 67]. In contrast, an important strength of the
combined formalism is that it leads to a small but nonzero amount of decoherence,
as we expect it to occur due to the emission of unobserved soft radiation.

1In this context, any mode with an energy that is much smaller than the characteristic energy
of the process is soft.



142 4. Infrared Physics and Information

In section 4.4, we come to implications of infrared physics for black holes. First,
we examine the recent suggestion that the emission of infrared radiation could
account for the whole information of a black hole [56]. However, our findings imply
that this is not the case, but that it only leads to a subleading correction. Secondly,
we study the relationship of asymptotic symmetries of gravity at null infinity,
namely the BMS group [68–70], and black holes. We are motivated by the recently
discussed connection of the soft graviton theorem and BMS transformations [220]
and in particular by the suggestion that asymptotic symmetries could assume the
role of classical black hole hair [221–224]. In contrast, we show that they cannot
lead to observable features, but that they only represent a bookkeeping tool.

This chapter is based on the paper [2], which is joint work with Cesar Gomez,
as well as the papers [4, 6], which are joint work with Cesar Gomez and Raoul
Letschka. To a large extent, this chapter is an ad verbatim reproduction of these
publications. Sections 4.1, 4.2 and 4.3 follow [6], where section 4.3 additionally
uses material from [4]. Section 4.4 and appendix A.3, which pertains to the present
chapter, follow [2].

4.1 Review of Infrared Physics

4.1.1 Tree Level Processes: Soft Theorem
We will begin by studying tree level processes, which are free of infrared diver-
gences. As a first step, we review the derivation of the soft photon/graviton
theorem [58,59,218]. Since the situation is fully analogous in gravity and in QED,
we will confine ourselves to QED for calculations and only comment on gravity.
We consider an arbitrary scattering process α → β, where initial and final states
may contain both charged particles and photons. Our goal is to investigate what
happens when we add a soft photon in the final state: α→ β+γ1. The additional
soft photon can be emitted from any electron line. It turns out, however, that
only the emission from external legs is relevant since only such a process leads to
a divergent contribution. We will call such photons IR-modes.

In contrast, soft photons that are emitted from internal lines are non-IR-modes.
The comparison between IR-modes and non-IR-modes is displayed in Fig. 4.1.
Throughout we will not consider non-IR-modes. So the term soft will always refer
to soft IR-modes.

As a first step, we study the emission of a soft photon from a fixed external leg
with momentum p. For concreteness, we take it to be ingoing. We assume that
the process α → β is described by the amplitude Sα, β = . . .Γ(p; q)up, where up
is the spinor of the ingoing electron on which we focus and Γ(p; q) is an arbitrary
vertex function. The rest of the diagram, indicated by the dots, is not essential for
our considerations. Then the amplitude S(l), p

α, β
#»
k
that includes the emission of the

soft photon of momentum #»

k and polarization l from the electron with momentum
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α

β
γ1

(a) IR-mode

α

β

γ1

(b) Non-IR-mode

Figure 4.1: Comparison of IR-radiation and non-IR radiation. A mode γ1 is IR if
it is emitted from an external line.

p is

S
(l), p
α, β

#»
k

= . . .Γ(p− k; q) /p− /k +m

(p− k)2 −m2 + iε
e

/ε?#»k ,l√
2(2π)3| #»k |

up . (4.1)

Apart from the additional electron propagator and an additional vertex, this am-
plitude also contains the polarization vector εµ#»

k ,l
of the photon as well as the

normalization 1/
√

2(2π)3| #»k | of the final photon. The star denotes complex con-
jugation. Since the momentum of the photon is small, the electron propagator is
almost on-shell. We can extract the leading singularity,

/p− /k +m

(p− k)2 −m2 + iε
/ε?#»k ,lup =

2p · ε?#»
k ,l
− /k/ε?#»k ,l

(p− k)2 −m2 + iε
up ∼=

p · ε?#»
k ,l

−p · k
up , (4.2)

where we used the Dirac equation in the first equality and focused on the leading
singularity for small | #»k | in the second step. Then the diagram gives

S
(l), p
α, β

#»
k

=
p · ε?#»

k ,l

−p · k
e√

2(2π)3| #»k |
Sα, β , (4.3)

where we used that Γ(p − k; q) ∼= Γ(p; q) to leading order for small | #»k |. The
important observation at this point is that the contribution of the soft photon
factorizes from the rest of the diagram. Additionally, it only depends on properties
of the external electron but not on any other details of the process.

We can repeat the same procedure for all external legs so that we obtain the
amplitude S(l)

α, β
#»
k
for the emission of a soft photon:

S
(l)
α, β

#»
k

| #»k |→0
'
F (l)
α, β( #»

k )
| #»k |1/2

Sα, β , (4.4)
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where we introduced the notation

F (l)
α, β( #»

k ) =
∑
n∈α, β

enηn√
2(2π)3

pn · ε?l, #»
k

pn · k
. (4.5)

Here en is the charge of the nth particle and pn is its momentum. The sum
includes all incoming and outgoing charged particles. Moreover, ηn = +1 or −1
for an outgoing or incoming charged particle, respectively. The reason for the sign
difference is that emission from an incoming particle takes away momentum from
the electron propagator whereas emission from an outgoing one adds momentum.
Analogously, one can consider the absorption of a soft photon. The same argument
as above yields

Sα #»
k , β

| #»k |→0
'
−F (l)?

α, β( #»

k )
| #»k |1/2

Sα, β , (4.6)

i.e. up to a sign and complex conjugation, absorption and emission give the same
contribution.

In gravity, a fully analogous argument gives the same relation (4.4), but now
the soft factor is

F (l)
α, β( #»

k ) =
∑
n∈α, β

√
8πGN ηn√
2(2π)3

pµnp
ν
nε

?
l,

#»
k µν

pn · k
, (4.7)

where εl, #»
k µν corresponds to the polarization tensor of a graviton.

4.1.2 Charge Conservation
The meaning of the soft photon/graviton theorem is manifold. A very interesting
early application [218] was to derive charge conservation from it. To this end, only
one additional ingredient is needed, namely Lorentz invariance. In a pure S-matrix
formulation, one can show that Lorentz invariance implies that any amplitude must
be invariant under the shift [218],

εµ
l,

#»
k
→ εµ

l,
#»
k

+ λl(
#»

k )kµ , (4.8)

where λl(
#»

k ) is an arbitrary function. We will not repeat the argument of [218],
but simply note that invariance under (4.8) can also be derived as a straightfor-
ward consequence of gauge invariance, i.e. the decoupling of longitudinal photons.
Of course, the latter argument is less powerful since it requires a Lagrangian de-
scription of the system. Now we can plug the shift (4.8) into the soft factor (4.5).
Invariance then implies that

λ?l (
#»

k )
∑
n∈α, β

enηn = 0 , (4.9)
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i.e. that the total incoming charge must be equal to the total outgoing charge.
In this way, one can derive charge conservation in a pure S-matrix formulation.
In gravity, the same argument yields the equality of inertial and gravitational
mass [218].

Comment on New Conservation Laws

Recently, it has been proposed that previously unknown symmetries exist in QED
and gravity [219,225–231]. These argument were based on considerations of asymp-
totic symmetries, in particular the BMS-group [68–70] in gravity. We will further
discuss aspects of these asymptotic symmetries in section 4.4.2. Already now,
however, we want to point out that the proposed symmetries do not contain more
information than the soft theorems themselves. Since absorption and emission of
soft photons give analogous contributions, we can rewrite the soft theorem as

lim
| #»k |→0

〈β|âkŜ − Ŝâ†k|α〉 =
F (l)
α, β( #»

k ) + F (l)?
α, β( #»

k )
| #»k |1/2

〈β|Ŝ|α〉 . (4.10)

Moreover, we can define the operator Q̂ as

Q̂ =
∫

d3 #»

k f( #»

k )
∑
l

â†
l,

#»
k
−
∫

d3 #»p ρ̂( #»p )
 p · (εl, #»

k + ε?
l,

#»
k

)√
2(2π)3| #»k | p · k

 , (4.11)

where an arbitrary function f( #»

k ) parametrizes the integration over different pos-
sible momenta #»

k of the soft photon, and

ρ̂( #»p ) = e
∑
s

(
b̂†s, #»p b̂s, #»p − d̂†s, #»p d̂s, #»p

)
(4.12)

is the charge density operator for electrons and positrons, with b̂†s, #»p /d̂
†
s, #»p the cre-

ation operators for an electron/positron of spin s and momentum #»p . Up to a
derivative with respect to angles and transformation into position space, this op-
erator appears to be equivalent to the charges considered in [219,225–231]. There,
the first term is dubbed soft charge and the second one hard charge. Now we can
write (4.10) as

〈β| Q̂†Ŝ − ŜQ̂ |α〉 = 0 . (4.13)

In this way, we reproduce the Ward identities of [219, 225–231]. However, this is
simply a formal rewriting of the soft theorem. It does not contain more information
than the fact that soft photons decouple, i.e. that the amplitude for emission or
absorption of a soft photon only depends on initial and final charged states but
not on any other properties of the process.
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One might be tempted to promote equation (4.13) to an operator identity since
in that case, Q̂ would correspond to a nontrivial conserved charge, i.e. imply a new
conservation law. However, it is easy to show that in general

Q̂†Ŝ − ŜQ̂ 6= 0 . (4.14)

We can verify the former equation by contradiction. Assuming Q̂†Ŝ − ŜQ̂ = 0, it
would follow that 〈β| Q̂ |β〉 = 〈α| Ŝ†Q̂Ŝ |α〉 = 〈α| Q̂† |α〉. Plugging in the definition
(4.11) and using the fact that the asymptotic states |α〉 and |β〉 do not contain
soft photons, we would deduce for arbitrary #»

k and arbitrary polarization that

F (l)
α, β( #»

k ) + F (l)?
α, β( #»

k ) = 0 . (4.15)

However, this equality is only fulfilled when F (l)
α, β( #»

k ) = 0. Since this condition
will be of further importance, we will briefly stop to analyze it. Using the integral
(4.23), which we shall discuss shortly, it is easy to show that it holds if and only
if the charge of the initial state |α〉 and the charge of the final state |β〉 match at
each angle [66]. When the latter condition is fulfilled, we shall call the two states
equivalent, |α〉 ≈ |β〉. This condition is slightly weaker than the equality of two
states since, for example, a positron and an electron at exactly the same angle
are equivalent but not equal to a state without charged particles. However, such
states form a set of measure zero of all possible states. Therefore, we can call a
scattering process with equivalent initial and final states trivial. In summary, we
conclude that F (l)

α, β( #»

k ) = 0 only holds when |α〉 ≈ |β〉. As this is not true in any
nontrivial scattering process, it follows by contradiction that in general we have
(4.14). In particular, we have that

Q̂†Ŝ − ŜQ̂ = 0 ⇔ α ≈ β . (4.16)

The operator Q̂ only corresponds to a conserved charge for processes of trivial
forward scattering.

Finally, we want to remark that the well-known decoupling of soft photons
and gravitons can be interpreted as a symmetry. We refer the reader to [232–236]
for the argument, the physical upshot of which can be summarized as follows:
We consider an arbitrary scattering process with initial state |α〉 and final state
|β〉. Now we add a soft mode of momentum #»

k to the initial state: â†#»
k
|α〉. In this

situation, there always exists a finite energy scale – which depends on the process in
question – below which the soft excitation decouples. Thus, if we choose the energy
of the soft mode below this energy scale, it cannot interact with the other particles
and the final state simply is â†#»

k
|β〉. In this sense, the well-known decoupling of

soft gravitons and photons can be interpreted as symmetry of a scattering process.
However, this symmetry bears no relevance beyond the decoupling of soft modes.
In particular, this phenomenon cannot account for the information of a black hole
(see section 4.4.1).
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4.1.3 Loop Corrections: Infrared Divergences
So far, we have discussed the soft theorem for tree level processes. Its real power,
however, only comes into play once we include loop corrections, for they lead
to infrared divergences. Therefore, we will again consider the arbitrary process
α → β but now study loop corrections in order to review the results of [57–59].
As before, we are solely interested in divergent contributions. It turns out that
they only come from loops among external legs. Moreover, only the soft part of
the integration over the loop momentum matters, i.e. we only integrate loops up
to a cut-off scale Λ that cannot exceed the typical energy scale of the process, e.g.
the center-of-mass energy.

As a first step, we compute the contribution of one soft loop. Initially, we
consider the loop between two fixed external legs with momenta p1 and p2. We
get

S1 loop pp′
α, β =

∫ Λ

λ
d4k . . .Γ1(p1 − η1k; q1) /p1 − η1/k +m

(p1 − η1k)2 −m2 + iε
e1γ

µup1

· Γ2(p2 + η2k; q2) /p2 + η2/k +m

(p2 + η2k)2 −m2 + iε
e2γ

νup2

· −iηµν
(2π)4(k2 − iε) , (4.17)

where we introduced an IR-regulator λ that will be set to zero in the end. Moreover,
η1 and η2 account for the fact that the electrons may be outgoing or ingoing.
Approximating the two electron propagators in the soft limit as in (4.2), this gives

S1 loop pp′
α, β = Sα, βe1e2

∫ Λ

λ
d4k

pµ1
−η1p1 · k + iε

pν2
η2p2 · k + iε

−iηµν
(2π)4(k2 − iε) . (4.18)

As for the case of emission, the important point is that the contribution of the
soft part of the loop integral factorizes. Since only the first term in 1/(k2 − iε) =
iπδ(k2) + PV 1/k2 gives a divergent contribution,2 we arrive at

S1 loop pp′
α, β = Sα, β

−e1e2

2(2π)3

∫ Λ

λ

d3 #»

k

| #»k |
η1η2 p1 · p2

p1 · k p2 · k
. (4.19)

Next we sum over all possible soft loops between external legs,

S1 loop
α, β = Sα, β

1
2

∫ Λ

λ

d3 #»

k

| #»k |
−1

2(2π)3

∑
n,m∈α, β

ηnηmenem pn · pm
pn · k pm · k

, (4.20)

where the additional factor of 1/2 accounts for the fact that each loop is counted
twice in the sum. Since ∑l ε

µ
#»
k ,l
εν#»
k ,l

= ηµν , we observe that we can write the result

2Here PV denotes the principal value.
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in terms of the soft factor (4.5), which we encountered in the soft photon theorem:

S1 loop
α, β = Sα, β

−1
2

∫ Λ

λ

d3 #»

k

| #»k |
∑
l

∣∣∣F (l)
α, β( #»

k )
∣∣∣2 . (4.21)

The radial integral is straightforward,∫ Λ

λ

d3 #»

k

| #»k |
∑
l

|F (l)
α, β( #»

k )|2 = Bα, β ln Λ
λ
, (4.22)

and the angular part gives

Bα, β = 1
2(2π)3

∑
n,m∈α, β

∫
d2Ω ηnηmenem pn · pm

pn · k̂ pm · k̂

=− 1
8π2

∑
n,m∈α, β

ηnηmenemβ
−1
nm ln

(
1 + βnm
1− βnm

)
, (4.23)

where k̂ indicates the normalized photon vector and βnm is the relative velocity:

βnm =
(

1− m2
nm

2
m

(pn · pm)2

)1/2

. (4.24)

Clearly, Bα, β is nonnegative. Moreover, as already discussed at the end of section
4.1.2, it is zero only if initial and final state are equivalent, i.e. when their charge
matches at each angle. Finally, we obtain:

S1 loop
α, β = Sα, β

−1
2 Bα, β ln Λ

λ
. (4.25)

In the limit when the regulator vanishes, λ → 0, we get S1 loop
α, β → −∞ for any

nontrivial scattering process. This means that perturbation theory breaks down
and we have to resum all orders in the coupling.

Whereas this task is not doable in general, it turns out that the resummation
can be performed for soft loops. The reason is that in the soft limit, the factoriza-
tion of soft loops persists to higher orders. For example, for two loops with soft
momenta #»

k 1 and #»

k 2, one observes [59]:
1

η1p1 · k1 + iε
· 1
η1p1 · (k1 + k2) + iε

+ 1
η1p1 · k2 + iε

· 1
η1p1 · (k2 + k1) + iε

= 1
η1p1 · k1 + iε

· 1
η1p1 · k2 + iε

. (4.26)

Generalizing this formula inductively to higher orders, we conclude that the con-
tribution of exactly n soft loops is

Sn loop
α, β = Sα, β

(
−1

2Bα, β ln Λ
λ

)n
n! , (4.27)
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where the factor 1/n! accounts for the overcounting of permutations of the soft
loops. Therefore, we can resum the contribution of soft loops to all orders:

Sloop
α, β = Sα, β

(
λ

Λ

)Bα, β/2
. (4.28)

When we send λ → 0, we observe that the amplitude for any nontrivial scatter-
ing process, in which α 6≈ β, vanishes. This is the famous infrared divergence.3
However, it is important to point out that this does not hint towards a problem of
the theory. Rather, it is a physical result. It states that no nontrivial scattering
process can take place without the emission of soft photons.

In gravity, we obtain a formula analogous to (4.28), but now the exponent is
given by

Bα, β = GN

2π
∑

n,m∈α, β
ηnηmmnmm

1 + β2
nm

βnm(1− β2
nm)1/2 ln

(
1 + βnm
1− βnm

)
, (4.29)

where mn is the mass of the nth particle.

4.1.4 Taking Emission into Account: Inclusive Formalism
The most straightforward way to interpret the missing photons is in terms of soft
bremsstrahlung [57–59]. Then – as just said – the vanishing of any nontrivial am-
plitude due to soft loops indicates that no momentum transfer can happen without
the emission of soft photons. Therefore, it is natural to include the emission of
any photon state whose total energy is below some small scale ε, which we can
identify as resolution scale of a detector in an experimental setup. Since this yields
an inclusive rate, we can call this approach inclusive formalism. We compute:

Γemission
α, β =

∑
n

1
n!

 n∏
i=1

∫ ε

λ
d3 #»

k i
∑
li

 θ(ε− n∑
j=1
| #»k j|)

∣∣∣(〈0| âl1, #»
k1
. . . âln,

# »
kn
⊗ 〈β|

)
Ŝ |α〉

∣∣∣2 ,
(4.30)

where n sums over the number of emitted soft photons. Using the soft theorem
(4.4), it is straightforward to conclude that

Γemission
α, β =

∑
n

1
n!

 n∏
i=1

∫ ε

λ

d3 #»

k i

| #»k i|
∑
li

|F (li)
α, β( #»

k i)|2
 θ(ε− n∑

j=1
| #»k j|) |Sα, β|2 . (4.31)

The same integral appears as in the computation of soft loops. Using the result
(4.22), we obtain

Γemission
α, β =

(
ε

λ

)Bα, β
f(Bα, β) |Sα, β|2 . (4.32)

3Since the amplitude vanishes, one may wonder why the terminology “divergence” is used.
The reason probably is that before resummation, each order of perturbation theory diverges.
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The additional function f(Bα, β) is due to energy conservation, which is encoded
in the θ-function [58,59]:

f(x) = e−γx
Γ(1 + x) . (4.33)

Here γ is Euler’s constant and Γ is the gamma function. For small x, it can be
approximated as

f(x) = 1− π2

12x
2 . (4.34)

Therefore, its effect is subleading in this regime. For large x, it scales as

f(x) ∼ 1
x! . (4.35)

In this parameter range, it leads to a sizable suppression but no definite statement
about the rate can be made due to lack of knowledge about |Sα, β|2 [58].

Now we can combine the contributions (4.28) due to soft loops and (4.32) from
soft emission to obtain

Γinclusive, tot
α, β =

(
ε

Λ

)Bα, β
f(Bα, β) |Sα, β|2 . (4.36)

The IR-regulator λ has dropped out so Γinclusive
α, β is IR-finite. This is the well-

known central result of IR-physics [57–59]: Taking into account soft emission leads
to an IR-finite rate. Moreover, the dependence of the rate (4.36) on the resolu-
tion scale is sensible. It vanishes in the limit of zero resolution, ε → 0, because
then no bremsstrahlung can be emitted. Moreover, it can reproduce the spec-
trum of classical bremsstrahlung. To first order in α, the differential rate scales
as dΓinclusive, tot

α, β /dε ∝ B/ε. Consequently, the emitted energy per frequency is
constant, as we expect it from the classical calculation.

4.1.5 Modifying Asymptotic States: Dressed Formalism
Soon after Weinberg finished his seminal work on the inclusive formalism, a differ-
ent take on infrared divergences was proposed by Chung [60]. His goal was to avoid
the inclusion of radiation but to modify the asymptotic charged states by dressing
them with soft photons in such a way that IR-finite amplitudes can be obtained.
In what follows, we call this approach dressed formalism. We will first focus on the
computation, i.e. simply assume an appropriate dressing of the asymptotic states
but not motivate it. Afterwards, we will derive the modification of the asymptotic
states from first principles.

In order to determine an appropriate dressing of charged states, we start from
the observation that we can split the soft factor F (l)

α, β( #»

k ) in a part that depends
only on the initial state and in another one that depends only on the final state:

F (l)
α, β( #»

k ) = F (l)
β ( #»

k )−F (l)
α ( #»

k ) , (4.37)
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where accordingly

F (l)
α ( #»

k ) =
∑
n∈α

en√
2(2π)3

pn · ε?l, #»
k

pn · k
, (4.38)

and F (l)
β ( #»

k ) is defined analogously. Using these functions, we introduce the coher-
ent state

|D(α)〉rλ := exp
{
−1

2Bα ln r

λ

}
exp


∫ r

λ

d3 #»

k√
| #»k |

∑
l

F (l)
α (

#»

k) â†
l,

#»
k

 |0〉 . (4.39)

Here r is a nonzero regulator needed for the definition of the coherent state. Inves-
tigating its physical meaning will be crucial in the following discussions. Therefore,
we explicitly indicated the borders of integration in |D(α)〉rλ. The state (4.39) is
normalized, i.e.

∫ r
λ

d3 #»
k
| #»k |

∑
l
|F (l)

α ( #»

k )|2 = Bα ln r
λ
, which leads to

Bα = 1
2(2π)3

∑
n,m∈α

∫
d2Ω enem pn · pm

pn · k̂ pm · k̂
. (4.40)

Already at this point, it becomes apparent that the factor Bα ln r
λ
in the normal-

ization of the coherent state, and equivalently the expectation value of the particle
number, diverge for λ→ 0. We will postpone the discussion of how the state can
nevertheless be well-defined to section 4.1.6.

As explained, our goal is to show that including the dressing (4.39) leads to an
IR-finite amplitude [60]. The starting point is to modify the asymptotic charged
states by replacing

|α〉 → |α〉〉rλ := |α〉 ⊗ |D(α)〉rλ , (4.41)

i.e. to add to an asymptotic state |α〉 a specific cloud of soft photons – defined by
the factor F (l)

α ( #»

k ) connected to emission or absorption. To leading order in the
coupling, the additional soft photons in the asymptotic states give three divergent
contributions to a generic amplitude Sα, β. The first one arises when the final
dressing states absorb photons that were emitted from external lines. It gives

S1em
α, β = 〈β|

∫ r

λ

d3 #»

k√
| #»k |

∑
l

F (l)?
α ( #»

k ) âl, #»
k

 Ŝ |α〉 =
∫ r

λ

d3 #»

k

| #»k |
F (l)?
α ( #»

k )F (l)
α, β( #»

k )Sα, β ,

(4.42)
where we used the soft theorem in the last step. Analogously, the absorption of a
photon from the dressing of the initial state yields

S1abs
α, β = −

∫ r

λ

d3 #»

k

| #»k |
F (l)
β ( #»

k )F (l)?
α, β( #»

k )Sα, β . (4.43)
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When we sum these two contributions, the factors F (l)
α ( #»

k ) and F (l)?
β ( #»

k ) combine
to form F (l)

α, β( #»

k ) and we obtain4

S1em
α, β + S1abs

α, β =
∫ r

λ

d3 #»

k

| #»k |

∣∣∣F (l)
α, β( #»

k )
∣∣∣2 Sα, β = Bα, β ln r

λ
Sα, β , (4.44)

where we used Eq. (4.22) in the last step. We get an analogous contribution as
from emission (see Eq. (4.32)), up to an additional factor of 2 after squaring in
the rate.

Fortunately, there is a third contribution due to the overlap of coherent states.
Since we will need the corresponding computation shortly, we will calculate it to
all orders and only specialize to the first order in the end. We get

r
λ〈D(α)|D(β)〉rλ = e

− 1
2

∫ r
λ

d3 #»
k
| #»k |

∑
l

|F(l)
α ( #»

k )|2+|F(l)
β

( #»
k )|2

· 〈0| e
∫ r
λ

d3 #»
k√
| #»k |

∑
l

F(l)?
α ( #»

k )âl, #»
k

e
∫ r
λ

d3 #»
k√
| #»k |

∑
l

F(l)
β

( #»
k )â†

l,
#»
k |0〉

= e
− 1

2

∫ r
λ

d3 #»
k
| #»k |

∑
l

∣∣∣F(l)
α, β

( #»
k )
∣∣∣2

=
(
λ

r

)Bα, β/2
. (4.45)

To first order, this gives

S1overlap
α, β = −1

2Bα, β ln r

λ
Sα, β . (4.46)

Summing all three contributions, we end up with

S1dressed
α, β = S1em

α, β + S1abs
α, β + S1overlap

α, β = 1
2Bα, β ln r

λ
Sα, β . (4.47)

As before, this argument persists to all orders in the coupling and we get [60]

Sdressed
α, β =

(
r

λ

)Bα, β/2
Sα, β . (4.48)

Combining with the loop contribution (4.28), we arrive at the final result

Sdressed, tot
α, β =

(
r

Λ

)Bα, β/2
Sα, β . (4.49)

Thus, we get an IR-finite amplitude.
4Note that

∑
l F

(l)?
α ( #»

k )F (l)
β ( #»

k ) is real.
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Moreover, if we identify r = ε, we also obtain the same IR-finite rate (4.36) that
we obtained in the inclusive formalism, up to a subleading deviation due to the
absence of the f(Bα, β)-function, which encodes energy conservation. It is natural
to expect that the dressed formalism does not incorporate energy conservation
since it is symmetric by construction: Initial and final states are dressed in an
analogous manner. Unlike the inclusive formalism, the dressed formalism therefore
cannot describe how charged particles lose energy due to soft radiation.

The present result is puzzling mainly for two reasons. First, it remains to be
justified why charged particles should be dressed as in (4.41). Secondly, it is not
clear why these different procedures, i.e. inclusion of soft emission and dressing
of asymptotic states, can both cancel IR-divergences. In particular, there is no
reason why the soft photon dressing should be sensitive to the resolution scale, i.e.
why one would identify r = ε. In the remainder of this section, we will answer the
first question by showing how the long-range dynamics of a gapless theory such
as QED imply that asymptotic states should be dressed as in (4.41). In section
4.2, we will come to the second question. It will turn out that generically both
dressing and radiation should be present in a scattering process and that indeed r
should not be identified with ε.

4.1.6 Introduction to von Neumann Spaces
Before we can study dressed states in more detail, we have to give a brief review of
how the Fock space can be constructed and what complications arise in a gapless
theory. In particular, we want to understand how states with an infinite particle
number, such as the coherent state (4.39), can be defined. Our starting point are
the Hilbert spaces in each momentum mode #»

k . We are given well-defined Hilbert
spaces H #»

k , which feature inner products 〈 , 〉 #»
k and creation and annihilation op-

erators â†
l,

#»
k
, âl, #»

k that fulfill canonical commutation relations:
[
âl, #»

k , â
†
l′,

#»
k

]
∼ δll′ ,

[
âl, #»

k , âl′, #»
k

]
=
[
â†
l,

#»
k
, â†

l′,
#»
k

]
= 0 . (4.50)

We already included the polarization l since we will later be interested in photons.
The problem lies in defining the tensor product ⊗ #»

k H #»
k of the infinitely many

Hilbert spaces corresponding to all possible momenta #»

k .
For this task we can rely on the seminal work by von Neumann [237], who

defined the spaceHVN ⊂
⊗

#»
k H #»

k . It consists of elements for which a scalar product
can be defined. For |ϕ〉 , |Ψ〉 ∈ HVN, i.e. |ϕ〉 = ⊗ #»

k |ϕ〉 #»
k and |Ψ〉 = ⊗ #»

k |Ψ〉 #»
k , it is

given as
〈ϕ|Ψ〉 :=

∏
#»
k

〈ϕ #»
k |Ψ #»

k 〉 #»
k . (4.51)

It is clear from this definition that the von Neumann space is very big. In partic-
ular, it contains any product of states that are normalizable in the individual H #»

k ,
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i.e. |ϕ〉 = ⊗ #»
k |ϕ〉 #»

k such that 〈ϕ #»
k |ϕ #»

k 〉 #»
k = 1 for all #»

k . W.l.o.g. we will assume
normalized states from now on.

This scalar product defines an equivalence relation in the von Neumann space
given by

|ϕ〉 ∼ |Ψ〉 :⇔
∑

#»
k

∣∣∣〈ϕ #»
k |Ψ #»

k 〉 #»
k − 1

∣∣∣ convergent. (4.52)

The significance of this equivalence relation lies in the fact that elements from
different equivalence classes are orthogonal,

|ϕ〉 � |Ψ〉 ⇒ 〈ϕ|Ψ〉 = 0 . (4.53)

Therefore, the equivalence classes constitute mutually disjoint subspaces in the
von Neumann space. The physical implications of this construction were derived in
[238]. First of all, a special role is played by the equivalence class of |0〉 := ⊗ #»

k |0〉 #»
k ,

which we denote by [0]. In it, one has the standard representation of canonical
commutation relations:[

âl, #»
k , â

†
l′,

#»

k′

]
= δ(3)( #»

k − #»

k ′)δll′ ,
[
âl, #»

k , âl′, #»

k′

]
=
[
â†
l,

#»
k
, â†

l′,
#»

k′

]
= 0 . (4.54)

Then we can define the particle number operator as

N̂ :=
∑
#»
k ,l

â†#»
k ,l
â #»
k ,l , (4.55)

i.e. 〈ϕ|N̂ |ϕ〉 is finite for each ϕ ∈ [0]. Therefore, this equivalence class alone
represents the whole Fock space.

One can also understand the other equivalence classes in terms of particle
number [238]. Two states are in the same equivalence class if and only if their
difference in particle number is finite,

|ϕ〉 ∼ |Ψ〉 ⇔ 〈ϕ|N̂ |ϕ〉 − 〈Ψ|N̂ |Ψ〉 <∞ , (4.56)

where it is understood that the subtraction is performed before the sum over the
momentum modes. Since one can moreover show that each equivalence class is iso-
morphic to the Fock space, it follows that the von Neumann space can be thought
of as infinite product of Fock spaces with unitarily inequivalent representations of
the commutation relations in each subspace. So in each equivalence class [α], we
have:[

â
[α]
l,

#»
k
, â

[α]†
l′,

#»

k′

]
= δ(3)( #»

k − #»

k ′)δll′ ,
[
â

[α]
l,

#»
k
, â

[α]
l′,

#»

k′

]
=
[
â

[α]†
l,

#»
k
, â

[α]†
l′,

#»

k′

]
= 0 . (4.57)

This immediately raises the question which subspace of HVN is physically relevant.
A reasonable requirement for any state to be physical is that it has finite energy.
Whenever a theory has a mass gap, the Fock space – defined by the requirement of
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finite particle number – is the only equivalence class with finite energy and therefore
contains all physically relevant states. So it makes sense to restrict oneself to the
Fock space.

However, the situation is drastically different in a gapless theory. Then there
can be states that contain an infinite amount of zero modes but nevertheless carry
finite energy. Therefore, there are distinct equivalence classes with finite energy
and there is no reason to restrict oneself to only one of them. In a gapless theory,
states of different equivalence classes are therefore physically sensible. In fact, as
we shall discuss, the S-matrix generically enforces the transition between different
equivalence classes so that it is impossible to restrict oneself to a single equivalence
class in an interacting system. The fact that states in different equivalence classes
are – by definition – orthogonal will be important in the following.

4.1.7 Dressing from Asymptotic Dynamics
With the tools of von Neumann spaces at our disposal, our next goal is to sketch
the derivation [61–65] of why asymptotic states should be dressed as in (4.41).
This gives the justification of Chung’s calculation [60]. In an S-matrix calculation,
asymptotic states must be approximate eigenstates of the Hamiltonian in the limit
of large separation. In a theory without long-range forces, in which interaction falls
off fast with separation, this leads to eigenstates of the free Hamiltonian. However,
the crucial observation is that in a gapless theory, asymptotic dynamics cannot
be approximated by the free Hamiltonian, but the leading order of the interaction
term has to be taken into account as well [65]. It is given by5

Ŵ (t)rλ = exp

 1√
2(2π)3

∫ r

λ

d3 #»

k√
| #»k |

∑
l

∫
d3 #»p ρ̂( #»p )

(
p · ε?

l,
#»
k

p · k
â†
l,

#»
k
ei
pk
p0
t − h.c.

) ,

(4.58)
where ρ̂( #»p ) is the charge density operator (4.12) of electrons and positrons. We
can define asymptotic states by applying Ŵ (t)rλ to a bare state |α〉 of electrons
and positrons [65],

|α〉〉rλ := Ŵ (tobs)rλ |α〉 , (4.59)
where tobs is a so far arbitrary reference time. We keep it finite for now, but
following [60, 65], we will set it to zero for the computation. The reason we can
do so is that the final result only depends on the divergent zero-mode part of the
dressing state whereas the phase controlled by tobs only changes the finite part of
nonzero modes.6

5We omit the Coulomb phase both in the definition of the asymptotic state and in the S-
matrix since it will not matter for our discussion.

6Strictly speaking, one can even by more general and choose an arbitrary state in the equiv-
alence class [α] [65]. But since only the zero-mode part of dressing matters, we can adopt the
choice (4.59) of [60, 65]. We will further comment on this freedom in choosing a dressing state
in section 4.2.3.



156 4. Infrared Physics and Information

Clearly, definition (4.59) also depends on r and is nontrivial only for r nonzero.
However, there is little discussion of its physical meaning in the standard liter-
ature on infrared physics. Typically, the identification r = ε is assumed for the
simple reason that in such a case the rates in the inclusive and in the dressed
formalism match approximately. In contrast, we will argue that the two scales are
in general different. While we will discuss this point in more detail when we turn
to the density matrix of the final state in section 4.3, we briefly comment on the
interpretation of r already now. If one wants to interpret |α〉〉rλ as initial or final
state of scattering, it is most natural to think of tobs as the timescale after which
the state will be measured. Once tobs is fixed, r is no longer independent. The
reason is the fact, noted in [65], that the phases wash out if ktobs is sufficiently big,
i.e. limt�k−1 exp (ikpt/p0) /pk ≈ 0. Therefore, all modes with k > t−1

obs effectively
disappear and do not contribute to the asymptotic dynamics any more:

Ŵ (tobs)rλ ≈ Ŵ (tobs)
t−1
obs
λ . (4.60)

Thus, if we only want to consider the physical modes, we have to set

r = t−1
obs , (4.61)

i.e. we can identify r with the timescale tobs after which the final state is measured.
The choice (4.61) can also be justified from a more physical point of view. Namely
it is crucial for the photons in the dressing state that they decouple. Since a photon
of energy r needs a timescale of r−1 to interact, it only makes sense to consider
r < t−1

obs.
Before we investigate the dressed states more closely, we want to mention that

the S-matrix is not modified in the dressed formalism [65]. The reason is that in
the limit of infinite time, relation (4.60) becomes

lim
t→∞

Ŵ (t) = 1 , (4.62)

which follows from limt→±∞ exp (ikpt/p0) /pk = ±iπδ(kp). For this reason, asymp-
totic dynamics do not contribute to the S-matrix but only modify the asymptotic
states. Setting tobs = 0, we get the asymptotic state (4.59):

|α〉〉rλ = |α〉 ⊗ |D(α)〉rλ , (4.63)

where we plugged in Eq. (4.58). In this way, we recover the dressing state |D(α)〉rλ,
which we already introduced in Eq. (4.39). So the justification for considering
dressed asymptotic states lies in taking into account the long-range interaction of
asymptotic dynamics. Once this is properly done, Chung’s computation shows
that we obtain IR-finite amplitudes.

When we investigate the particle number of the dressing state,
r
λ〈D(α)|N̂ |D(α)〉rλ = Bα ln r

λ
, (4.64)
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it becomes evident that it contains an infinite number of zero-energy photons in
the limit λ→ 0. Thus, although the states possess the finite energy Bαr, they are
not in the equivalence class [0], i.e. in the Fock space. This is the reason why they
can only be defined in the bigger von Neumann space. Note that varying r does
not change the equivalence class but only alters the energy of the dressing state.
So the equivalence class only depends on the zero-momentum part of F (l)

α ( #»

k ). In
order to decide whether different dressing states are in different equivalence classes,
we recall Eq. (4.45):

r
λ〈D(α)|D(β)〉rλ =

(
λ

r

)Bα, β/2
. (4.65)

As we have discussed at the end of section 4.1.2, Bα, β = 0 only if |α〉 ≈ |β〉,
i.e. if their charges match anglewise. If this is not the case, |D(α)〉rλ and |D(β)〉rλ
have vanishing overlap for λ→ 0 and therefore are in different equivalence classes.
Thus, there is a different equivalence class for each charge distribution on the
sphere. We can parametrize the equivalence classes as [α] in terms of the charged
states |α〉.

4.1.8 Collinear Divergences
As a side remark, we note that an interesting question is what happens when one
sends the mass of some of the hard particles to zero. In gravity, this situation
is not special, i.e. the kinematical factor Bα, β (Eq. (4.29)) stays finite.7 This is
related to the fact that gravitational radiation is quadrupolar. In QED, however,
the situation is drastically different. In the limit of a small electron mass m, it
follows from (4.23) that the exponent Bα, β scales as

Bα, β ∼ − lnm, (4.66)

i.e. it becomes infinite for massless electrons. The only exception are processes of
trivial scattering, in which initial and final state are equivalent. Thus, it is clear
from (4.36) that the rate of any nontrivial scattering process vanishes.

As a consequence, one could try to consider a wider class of processes such
that a nonvanishing total rate can be obtained. This was achieved in [241], where
– on top of all soft emission processes – a special class of emission and absorption
processes was considered, namely the emission and absorption of collinear photons
of arbitrary energy. Taking into account both emission and absorption is moreover
required for Lorentz covariance: Unlike in the soft theorem (4.4), a single amplitude
of a particular emission process violates Lorentz invariance in the collinear limit.
However, it is doubtful whether it makes sense to consider absorption processes
since the origin of the absorbed photons of arbitrary energy is unclear.

7The explicit expression for Bα, β in the massless limit was derived in [49,239,240].



158 4. Infrared Physics and Information

4.2 Combined Formalism

As we have explained, one can obtain IR-finite rates by either employing the
dressed or the inclusive formalism. In the inclusive formalism, one leaves the
initial state unchanged but adds soft radiation to the final state. In contrast, the
dressed formalism corresponds to modifying initial and final states in an analogous
manner by dressing them with a cloud of soft photons. Those soft photons are
inseparably tied to the charged states, so they do not correspond to radiation
but to a redefinition of asymptotic electrons and positrons. We shall make this
statement explicit shortly.

Since both formalisms yield – up to subleading corrections – the same rate,
the question arises if they are equivalent. This would come as a big surprise since
the requirements of the two formalisms – emission of bremsstrahlung versus well-
defined asymptotic states – are very different. Both requirements are, however,
very reasonable and should be fulfilled. Therefore, we shall argue that both dress-
ing and soft radiation should be present in a generic process. Thus, the goal of
this section is to present a concrete formalism that interpolates between the inclu-
sive and the dressed formalism and makes the distinction between radiation and
dressing explicit. We shall call it combined formalism and we derive it from first
principles by applying the S-matrix, as operator in HVN, to the dressed initial
state |α〉〉rλ. This will lead to a final state that consists both of dressed charged
particles |β〉〉rλ and of additional soft bremsstrahlung radiation.

Not surprisingly, it will turn out that also in the combined formalism, one
obtains the same IR-finite rate as in the two known formalisms. This finding
immediately raises the question about the relevance of our construction. However,
one can go one step further than the rate and investigate the density matrix of
the final state. Obviously, its diagonal contains the known IR-finite rates. So the
task consists in determining the IR-limit of the off-diagonal pieces of the density
matrix. These elements encode the information about the quantum coherence of
the final state. We will show that only in the combined formalism, physically
reasonable off-diagonal elements can be obtained. We will study this question in
section 4.3.

4.2.1 Equivalence Classes as Radiative Vacua

In gapless theories, we have seen that nontrivial asymptotic dynamics lead to
dressing states (4.39), which – in the limit λ → 0 – no longer belong to the Fock
space because of an infinite number of zero-energy photons. However, as explained
in section 4.1.6, each equivalence class of the von Neumann space is isomorphic
to the Fock space. In particular, there is a representation of the commutation
relations (4.57) in each of them [238]. We can formally relate those to the Fock
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space operators (4.54) via:

â
[α]
l,

#»
k

= Ŵ (0)âl, #»
k Ŵ

†(0) . (4.67)

For finite λ, this representation is unitarily equivalent whereas it is not for λ→ 0.
From the perspective of the operators â[α]

l,
#»
k
, the corresponding dressing state is a

vacuum:
â

[α]
l,

#»
k
|α〉〉rλ = 0 . (4.68)

Thus, â[α]†
l,

#»
k
represents excitations on top of the vacuum of the equivalence class [α],

i.e. â[α]†
l,

#»
k

corresponds to radiation on top of the dressing state defined by |D(α)〉.
This shows explicitly that there is no radiation in the dressed formalism.

For | #»k | > r, we have
â

[α]
l,

#»
k

= âl, #»
k , (4.69)

i.e. photons of energy above r are insensitive to the dressing and can be treated as
if they were defined in the Fock space. As the subsequent calculations will confirm,
only those photons constitute physical radiation. In contrast, photons of smaller
energy solely occur in the dressing states but do not exhibit dynamics of their own.
This is in line with the well-known decoupling of soft photons [232–236, 242, 243].
We remark that this is also consistent with the identification r = t−1

obs (see Eq.
(4.61)). Namely we expect that on the timescale tobs, the softest radiation photons
that can be produced have an energy t−1

obs, so all photons of smaller energy are
decoupled.8

For our argument, however, the precise identification of the scale r is inessential.
The only important point is that r splits the Hilbert space of photons in two parts.
Photons below r are part of the dressing. Those are symmetric, i.e. initial and
final states are analogously dressed. Moreover, the dressing of the initial state is
only sensitive to the initial state, but not to the final states and likewise for the
final state. Since the dressing states contain an infinite amount of photons, they
are not in the Fock space, but can only be defined in the larger von Neumann
space. In contrast, photons above r are part of radiation. They are asymmetric
since we can prepare an initial state without radiation, i.e. radiation only occurs
in the final state but not in the initial state. In turn, it will become clear that it
is sensitive to both the initial and the final state. In particular, it depends on the
difference of initial and final state, i.e. on the transfer momentum. The radiation
state contains a finite number of photons and is well-defined in the Fock space.
Thus, physical radiation is completely independent of the problems arising due to
an infinite number of photons.

8That t−1
obs should correspond to an effective IR-cutoff for physical radiation was also proposed

in [244–246].
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Radiation is characterized by a second scale ε, which we can identify with the
detector resolution. It is crucial to note that the scales r and ε are in general inde-
pendent since they contain different physical information. The energy r describes
the timescale after which the state is observed. In contrast, the scale ε corresponds
to the resolution scale of the particular device used to measure the final state. As
explained, the only requirement is that r < ε. In fact, it will turn out that r � ε
is needed for a well-defined separation of dressing and radiation. In this limit, the
energy carried by the dressing states is negligible. So all energy is carried by the
radiation state whereas the only significant contribution to the number of photons
comes from the dressing. In total, we obtain the following hierarchy of scales:

λ < r < ε < Λ , (4.70)

where Λ is the energy scale of the whole process, e.g. the center-of-mass energy. In
the existing literature, the scales λ, ε and Λ are well-known. However, there is no
additional scale r. The reason is that – as we will show – all rates are independent
of r. So the introduction of the scale r, which separates dressing from radiation,
is unnecessary if one is solely interested in rates. In contrast, it will turn out that
the final density matrix does depend on r. The reason is that unlike the rate, the
density matrix is sensitive to the timescale after which it is measured. Therefore,
we have to keep the scale r in order to derive an IR-finite density matrix.

Introducing the new scale r amounts to interpolating between the well-known
dressed and inclusive formalisms. We can consider the two limiting cases. For
r = ε, there is no radiation, but all photons are attributed to dressing. This leads
to Chung’s calculation [60], but corresponds to the unsatisfactory situation that
there is no soft emission and that the resolution scale ε appears in the dressing
of the initial state. The opposite limiting case is to set r = λ. Then there is no
dressing, in particular the initial state is bare, but the final state contains photons
of arbitrarily low energies. This leads to the calculations by Yennie, Frautschi and
Suura [58] as well as Weinberg [59]. However, this construction lacks well-defined
asymptotic states. For these reasons, we will work in the combined formalism
that realizes the general hierarchy (4.70). We will demonstrate that doing so leads
to the well-known IR-finite rates, but additionally it will allow us to obtain a
well-defined density matrix of the final state.

4.2.2 Calculation of Final State
We consider a generic scattering process. In order to determine the final state, we
need two ingredients: a well-defined initial state and the S-matrix of QED. Having
defined the initial state (4.63), it remains to apply the S-matrix to it: Ŝ |α〉〉rλ. The
first step it to insert an identity that is decomposed as a tensor product of three
factors. The first one, which we shall denote by D and which will correspond
to dressing, consists of all possible photon states composed of quanta with an
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energy below r. Analogously, the second one, which we shall call γ and which will
represent soft radiation, contains all possible photon states in which each photon
has an energy above r but below ε. Finally, the third factor β is composed of
all remaining states, i.e. photons with energy above ε and all other excitations, in
particular charged particles. We obtain:

Ŝ |α〉〉rλ =
∑
D

(λ<ED<r)

∑
γ

(r<Eγ<ε)

∑
β

(ε<Eβ)

(
|β〉 ⊗ |γ〉 ⊗ |D〉

)(
〈D| ⊗ 〈γ| ⊗ 〈β|

)
Ŝ |α〉〉rλ .

(4.71)
We will first turn to the sum over D. From Chung’s computation [60] we know

that
(
〈D(β)| ⊗ 〈γ| ⊗ 〈β|

)
Ŝ |α〉〉rλ 6= 0, i.e. when we take the appropriate dressing

|D(β)〉 of the final state |β〉, we obtain an IR-finite amplitude. (From the point
of view of this computation, |γ〉 is a hard state.) This implies that any state |D〉
that belongs to a different equivalence class than |D(β)〉 has zero overlap with
Ŝ |α〉〉rλ. In other words, the state in the mode #»

k = 0, in which the number of
photons is infinite, is fixed. In the identity, one would nevertheless have to perform
independent sums over photons in the modes 0 < | #»k | < r.9 However, if we take r
small enough, those modes do not change the result of Ŝ |α〉〉rλ and we can proceed
as for Eq. (4.59) and fix them by the state |D(β)〉. For r � ε, we therefore obtain

∑
D

(λ<ED<r)

|D〉 〈D| ' |D(β)〉 〈D(β)| . (4.72)

This means that the dressing is not independent but fixed by the hard state |β〉.
In [60], the same approximation is used, i.e. the modes 0 < | #»k | < r are not treated
as independent.

In contrast, we will not neglect any states in the sum over radiation. As
explained, the definition of a radiation photon generically depends on the radiative
vacuum on top of which it is defined. However, it follows from (4.67) that this
distinction is inessential for photons of energy greater than r and we can treat
them as if they were defined in the usual Fock space. Writing out the sum over
radiation explicitly gives

∑
γ

(r<Eγ<ε)

|γ〉 〈γ| =
∑
n

1
n!

 n∏
i=1

∫ ε

r
d3 #»

k i
∑
li

(â†
l1,

#»
k 1
. . . â†

ln,
#»
k n
|0〉

)(
〈0| âl1, #»

k 1
. . . âln,

#»
k n

)
,

(4.73)

9In other words, as is discussed in [65], one can replace F (l)
α ( #»

k ) by F (l)
α ( #»

k )ϕ( #»

k ), where ϕ( #»

k )
is an arbitrary function that fulfills ϕ( #»

k ) = 1 in a neighborhood of #»

k = 0. Then neglecting the
sum over modes 0 < | #»k | < r corresponds to setting ϕ( #»

k ) = 1 everywhere.
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where 1/n! comes from the normalization of the photon states. We will not resolve
the third sum over hard modes β. In total, we obtain

Ŝ |α〉〉rλ =
∑
β

∑
n

1
n!

 n∏
i=1

∫ ε

r
d3 #»

k i
∑
li

( |β〉〉rλ ⊗ |γn〉)( 〈γn| ⊗ r
λ〈〈β|

)
Ŝ |α〉〉rλ ,

(4.74)
where we introduced the notation |γn〉 = â†

l1,
#»
k 1
. . . â†

ln,
#»
k n
|0〉.

Now we can use the fact that the soft photon theorem (4.4) holds in an arbi-
trary process to obtain

(
〈γn|⊗ r

λ〈〈β|
)
Ŝ |α〉〉rλ = r

λ〈〈β|Ŝ |α〉〉rλ
∏n
i=1F

(li)
α, β( #»

k i)/
√
| #»k i| ,

where the soft factor F (li)
α, β( #»

k i) is displayed in Eq. (4.5). Moreover, it follows from
Chung’s result (4.49), which arises from combing the contributions of soft loops
and of the dressing states, that

r
λ〈〈β|Ŝ |α〉〉

r
λ =

(
r

λ

)Bα, β/2
Sα, β . (4.75)

So we obtain

Ŝ |α〉〉rλ =
∑
β

(
r

Λ

)Bα, β/2
Sα, β |β〉〉rλ ⊗

∑
n

1
n!

 n∏
i=1

∫ ε

r

d3 #»

k i√
| #»k i|

∑
li

F (li)
α, β( #»

k i)â†li, #»
k i

 |0〉 .
(4.76)

We can resum this final photon state:

Ŝ |α〉〉rλ =
∑
β

(
ε

Λ

)Bα, β/2
Sα, β (|β〉〉rλ ⊗ |γ(α, β)〉εr) , (4.77)

where

|γ(α, β)〉εr =
(
r

ε

)Bα, β/2
e
∫ ε
r

d #»
k√
| #»k |

∑
l

F(l)
α,β

( #»
k ) â†

l,
#»
k |0〉 (4.78)

is a normalized coherent radiation state and we used the integral (4.22) to compute
the norm.

Formula (4.77) makes the physics of the process very transparent. Both in
the initial and in the final state, charged particles are dressed, as is required for
well-defined asymptotic states. The dressings consist of photons of energy below r
and only depend on their respective state. This means that the dressing |D(α)〉rλ
of the initial state only depends on |α〉 and the dressing |D(β)〉rλ of the final state
only depends on |β〉. On top of the dressing, the final state (but not the initial
state) also contains radiation. The radiation |γ(α, β)〉εr is made up of photons of
energy above r and depends both on the initial and on the final state of the hard
electrons, and in particular on the momentum transfer between them.

As we have explained, a difficulty that arises from IR-physics – which also
seemingly leads to full decoherence – comes from the fact that the dressing states
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are no longer in the Fock space due to the infinite number of zero-energy photons.
For this reason, those states can only be defined in the much larger von Neumann
space, which is isomorphic to an infinite product of Fock spaces. In our approach,
we manage to separate this difficulty from the physical radiation. Namely only
the dressing states |D(α)〉rλ and |D(β)〉rλ contain an infinite number of photons,
but these state do not correspond to physical radiation. Instead, they are part
of the definition of asymptotic states. On top of the radiative vacuum defined
by |D(β)〉rλ, the radiation state |γ(α, β)〉εr exists. Since it only contains a finite
number of photons of energies above r, it can be treated as if they were part of
the usual Fock space. Solely the radiation is measurable and for r � ε, only it
carries a significant energy.

We can check that the amplitude (4.77) indeed gives the correct rate. To this
end, we need to sum over all possible soft radiation in the final state, i.e. over all
radiation states in which the sum of all photon energies is below ε. For r � ε, we
get

Γα, β =
∑
n

1
n!

 n∏
i=1

∫ ε

r
d3 #»

k i
∑
li

 θ(ε− n∑
j=1
| #»k j|)

∣∣∣(〈0| âl1, #»
k1
. . . âln,

# »
kn
⊗ r

λ〈〈β|
)
Ŝ |α〉〉rλ

∣∣∣2

=
(
r

Λ

)Bα, β ∑
n

1
n!

 n∏
i=1

∫ ε

r

d3 #»

k i

| #»k i|
∑
li

|F (li)
α, β( #»

k i)|2
 θ(ε− n∑

j=1
| #»k j|) |Sα, β|2

=
(
ε

Λ

)Bα, β
f(Bα, β) |Sα, β|2 , (4.79)

where f(Bα, β) was defined in Eq. (4.33). This is the well-known result (4.36)
in the inclusive formalism [58, 59]. If we neglect the function f(Bα, β), which is
possible for weak coupling, the rate (4.79) is also identical to the result (4.49) in
the dressed formalism [60]. In particular, it is clear that the answer that we obtain
is IR-finite since the regulator λ has dropped out. It is important to note that
we never required IR-finiteness. It simply arises as a consequence of applying the
S-matrix to a well-defined initial state.

Moreover, we observe that the rate (4.79) is also independent of the scale r.
As we have discussed, our approach interpolates between the dressed formalism,
which corresponds to r = ε, and the inclusive formalism, which we obtain for
r = λ.10 The fact that our result is independent of r implies that not only dressed
and inclusive formalism yield – except for f(Bα, β) – the same rate, but that this
is also true for the interpolation between them.

As a side remark, we will for a moment take the limit r = λ, in which the dress-
ings vanish and we obtain the inclusive formalism. Then formula (4.77) becomes

10Sending ε → r for fixed r corresponds to a situation in which no soft emission takes place.
When we work with well-defined, i.e. dressed states, the rate of such a process is suppressed by
the possibly small factor (r/Λ)Bα, β but nonvanishing.
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Ŝ |α〉 =
∑
β

(
ε

Λ

)Bα, β/2
Sα, β (|β〉 ⊗ |γ(α, β)〉ελ) , (4.80)

where the electron states are not dressed. This leads to the IR-finite amplitude:

( ελ〈γ(α, β)| ⊗ 〈β|) Ŝ |α〉 =
(
ε

Λ

)Bα, β/2
Sα, β . (4.81)

So if we use as final state the correct state of radiation |γ(α, β)〉ελ, which depends
both on initial and final electrons, we get an IR-finite amplitude in the inclusive
formalism. However, the price to pay is that on the one hand, we are not able to
obtain the factor f(Bα, β) that encodes energy conservation and that on the other
hand the radiation state |γ(α, β)〉ελ contains an infinite number of zero-energy
photons and is no longer part of the Fock space. Nevertheless, it is a physically
sensible state since it only contains a finite energy.

4.2.3 Large Gauge Transformations and Dressing
Another interesting question is how gauge transformations εµ

l,
#»
k
→ εµ

l,
#»
k

+ λl(
#»

k )kµ,
which were already introduced in (4.8), act on dressed states. Since dressing is
determined by photons with | #»k | < r, only large gauge transformations, for which
λl(

#»

k ) has support for | #»k | < r, act nontrivially. With the definition λ̃l(
#»

k ) =
λl(

#»

k )∑n∈α en/
√

2(2π)3 , those lead to the transformed dressed state

|α̃〉〉rλ = exp

−1
2

∫ r

λ

d3 #»

k

| #»k |
∑
l

∣∣∣F (l)
α ( #»

k ) + λ̃?l (
#»

k )
∣∣∣2


exp


∫ r

λ

d3 #»

k√
| #»k |

∑
l

(
F (l)
α ( #»

k ) + λ̃?l (
#»

k )
)
â†
l,

#»
k

 |α〉 . (4.82)

Thus, dressing states are not invariant under gauge transformations [61–65].11
Since the number of photons only changes by a finite amount, the equiva-

lence class to which the dressing state belongs and consequently also the cancel-
lation of IR-divergences are left invariant. Instead, gauge transformations merely
correspond to choosing a different representative of the equivalence class, i.e. to
modifying the choice (4.59). However, the amplitude is not invariant under this
transformation,

r
λ〈〈β|Ŝ |α̃〉〉

r
λ = r

λ〈〈β|Ŝ |α〉〉
r
λ

1− 1
2

∫ r

λ

d3 #»

k

| #»k |
∑
l

∣∣∣λ̃l( #»

k )
∣∣∣2
 , (4.83)

11In contrast, the radiation state (4.78) is manifestly gauge-invariant.
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where we restricted ourselves to the leading order in λ̃l(
#»

k ). This effect is weak
for sufficiently small r λ̃l(

#»

k ) but generically nonzero. In order to restore full in-
variance, one has to apply the same shift (4.8) to both initial and final states:12
r

λ〈〈β̃|Ŝ |α̃〉〉rλ = r
λ〈〈β|Ŝ |α〉〉rλ. This shows that dressing states do not exhibit dy-

namics of their own, but that – in line with our previous discussion – the physical
meaning of dressing is to decouple photons of energy below r.

In our combined formalism, which includes both dressing and radiation, there
is an interesting interpretation of the gauge transformed dressing state (4.82). Up
to an inessential phase factor, it can be written as

|α̃〉〉rλ ∼ exp

−1
2

∫ r

λ

d3 #»

k

| #»k |
∑
l

∣∣∣λ̃l( #»

k )
∣∣∣2
 exp


∫ r

λ

d3 #»

k√
| #»k |

∑
l

λ̃?l (
#»

k ) â[α]†
l,

#»
k

 |α〉〉rλ ,
(4.84)

where â[α]†
l,

#»
k

is defined in Eq. (4.67). It becomes evident that large gauge transfor-
mations correspond to adding photons that are not defined in the Fock space, but
according to the representation of the commutation relations in the equivalence
class [α].

4.3 Reduced Density Matrix

4.3.1 Well-Defined Tracing
So far, we have proposed a combined formalism, which can simultaneously describe
dressing and radiation. In doing so, we have introduced a new energy scale r which
separates dressing from radiation. We have shown that the rates are independent
of r, i.e. we obtain the same IR-finite results as in the two known formalisms. In
this section, we want to go one step further and investigate the density matrix of
the final state. This is particularly interesting since it turns out to be sensitive
to r. For a particular simplified setup, the density matrix in the presence of soft
bremsstrahlung was already studied some time ago. In a framework of real time
evolution [244–246], which goes beyond the S-matrix description, the result was
that tracing over unresolvable soft radiation leads to some loss of coherence. But
for realistic timescales, the decoherence is generically small. As it should be, it
does not spoil the interference properties that we observe in Nature.

However, it was also derived in [244–246] how coherence depends on the time-
scale tobs, after which the final state is observed: Albeit slowly, it decreases as
the timescale increases. In the limit of infinite time, one obtains full decoherence.

12This is evident in the computations because all results solely depend on the difference
F (l)
α, β( #»

k ). Therefore, it is possible to describe the same physical process with dressings that
are shifted by a common function, F (l)

α ( #»

k )→ F (l)
α ( #»

k ) + C( #»

k ) and F (l)
β ( #»

k )→ F (l)
β ( #»

k ) + C( #»

k ).
Such modifications of the dressing states have recently been considered in [247,248].
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Since this is precisely the limit on which the definition of the S-matrix is based, it
is immediately evident that it might be difficult to derive the density matrix in the
S-matrix formalism. In the inclusive formalism, this expectation turns out to be
fulfilled. Tracing over soft radiation, which is required for IR-finiteness, leads to
full decoherence [245,246]. In an independent line of research, this finding has re-
cently received renewed interest in the context of a generic scattering process [66].
However, if it were not possible to improve this result, this would mean that the
S-matrix is in principle unable to describe any interference phenomena in QED.
This finding is a clear indication that the inclusive formalism is insufficient for
describing the density matrix of the final scattering state.

In the dressed formalism, the opposite situation is realized. The reason is that
the dressing photons are part of the definition of the asymptotic states and are
independent of the scattering process. Therefore, there is no reason to trace over
them. In fact, it is not even clear how to define the trace in the von Neumann
space since it would amount to squeezing the infinite von Neumann subspaces into
a single Fock space. This means that there is no tracing and no decoherence in
the dressed formalism.13 Also this finding is unsatisfactory since one expects some
decoherence due to the emission of unresolvable soft bremsstrahlung.

Our goal is to show that the situation improves in the combined formalism that
we propose. Since in this case the final state consists both of dressing (defined by
the scale r) and of soft radiation (defined by the scale ε), we have at our disposal a
well-defined notion of trace: We have to trace over radiation but not over dressing.
In this way, we avoid full decoherence. Moreover, comparison with the results
of [244–246] allows us to confirm that the scale r is set by the timescale after
which the final state is observed, r = t−1

obs.
Before tracing, the density matrix of the final state (4.77) reads

ρ̂full = Ŝ |α〉〉rλ
r
λ〈〈α|Ŝ

=
∑
β,β′

(
ε

Λ

)Bα, β+Bα, β′
2

Sα, βS
∗
α, β′ (|β〉〉rλ ⊗ |γ(α, β)〉εr)

(
ε
r〈γ(α, β′)| ⊗ r

λ〈〈β
′|
)
.

(4.85)

Using an arbitrary basis {|γ〉}γ of radiation, i.e. in the space of photons with

13The density matrix of the final state has also recently been studied in [67, 249], where the
scales of radiation and dressing were identified, r = ε, and a tracing over dressing states was
performed. Since states in different equivalence classes are orthogonal, a similar result as in the
inclusive formalism, i.e. a fully decohered density matrix of the final state, was obtained. As
explained, however, both the mathematical soundness and the physical meaning of tracing over
dressing states are unclear to us.



4.3 Reduced Density Matrix 167

energies above r but below ε, the trace is

ρ̂red =
∑
γ

θ(Eγ − ε)
∑
β,β′

(
ε

Λ

)Bα, β+Bα, β′
2

Sα, βS
∗
α, β′ |β〉〉rλ

r
λ〈〈β| 〈γ|γ(α, β)〉εr

ε
r〈γ(α, β′)|γ〉 ,

(4.86)

where as in the computation of the rate, we imposed that the total energy Eγ
in radiation is at most ε. If we neglect energy conservation for a moment, the
computation becomes particularly transparent:

ρ̂red ∼=
∑
β,β′

(
ε

Λ

)Bα, β+Bα, β′
2

Sα, βS
∗
α, β′

ε
r〈γ(α, β′)|γ(α, β)〉εr |β〉〉rλ

r
λ〈〈β| . (4.87)

Thus, we only have to compute the overlap of coherent radiation states:

ε
r〈γ(α, β′)|γ(α, β)〉εr = e

− 1
2

∫ ε
r

d3 #»
k
| #»k |

∑
l

|F(l)
α, β

( #»
k )|2+|F(l)

α, β′ (
#»
k )|2

· 〈0| e
∫ ε
r

d3 #»
k√
| #»k |

∑
l

F(l)∗
α,β′ (

#»
k ) âl, #»

k

e
∫ ε
r

d3 #»
k√
| #»k |

∑
l

F(l)
α,β

( #»
k ) â†

l,
#»
k |0〉

= e
− 1

2

∫ ε
r

d3 #»
k
| #»k |

∑
l

∣∣∣F(l)
α, β

( #»
k )−F(l)

α, β′ (
#»
k )
∣∣∣2

= e
− 1

2

∫ ε
r

d3 #»
k
| #»k |

∑
l

∣∣∣F(l)
β, β′ (

#»
k )
∣∣∣2

=
(
r

ε

)Bβ, β′/2
, (4.88)

where the kinematical factor for a hypothetical process β → β′ appeared. In total,
we obtain the element of the reduced density matrix,

ρredββ′ =
(
ε

Λ

)Bα, β+Bα, β′
2

(
r

ε

)Bβ, β′
2

Sα, βS
∗
α, β′ , (4.89)

where it is understood that indices refer to dressed states. Clearly, this result is
IR-finite. Had we taken into account energy conservation, we would have gotten
the result (which is a generalization of the computation in [66]):

ρredββ′ =
(
ε

Λ

)Bα, β+Bα, β′
2

(
r

ε

)Bβ, β′
2

f
(
Bα, β +Bα, β′ −Bβ, β′

2

)
Sα, βS

∗
α, β′ . (4.90)

As it should be, we observe that the diagonal terms reproduce the well-known
rates (4.79), i.e. ρredββ = Γα, β.

Finally, we can use the matrix element (4.90) to further justify our choice
(4.61) of r. In a framework of real time evolution, it was derived in [244–246] for
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a particular simplified setup that the off-diagonal elements of the density matrix
scale as (1/tobs)Bβ, β′/2, where tobs is the timescale after which the final state is
measured. Comparing this with (4.90), we conclude that the identification r ∼ t−1

obs
was indeed justified. In this way, we obtain the same behavior as in [244–246]: The
longer we wait before we measure the final state, the smaller we have to choose r
and the more the off-diagonal elements of the density matrix get suppressed. We
note, however, that our combined formalism does not rely on the identification
(4.61) and holds for general r.

4.3.2 Generalization to Superposition as Initial State
As suggested in [249], it is interesting to study a situation in which the initial state
|ψ〉 is not a momentum eigenstate,

|ψ〉〉rλ =
∑
α

f (ψ)
α |α〉〉rλ , (4.91)

where ∑α |f (ψ)
α |2 = 1 and we used the linearity of the definition (4.59) of dressing.

Generalizing the above calculations, we get

ρredβ,β′ =
∑
α,α′

f (ψ)
α f

(ψ)∗
α′

(
ε

Λ

)Bα, β+Bα′, β′
2

(
r

ε

)Bα, β+Bα′, β′
2 −Bα, β, α′, β′

· f (Bα, β, α′, β′)Sα, βS∗α′, β′ , (4.92)

where

Bα, β, α′, β′ = 1
2(2π)3

∑
n∈α, β
m∈α′, β′

∫
d2Ω ηnηmenem pn · pm

pn · k̂ pm · k̂
. (4.93)

The density matrix (4.92) applies to the most general case and thereby constitutes
the main result of this section.

Clearly, this density matrix avoids full decoherence. In order to further analyze
our result, we can decompose the sums:

Bα, β, α′, β′ = Bα, β′ +Bα′, β −Bα, α′ −Bβ, β′

2 . (4.94)

This shows that if there is only one momentum eigenstate in the initial state,
f (ψ)
α = δα0

α , the general density matrix (4.92) reduces to the result (4.90) obtained
before. It is moreover interesting to analyze the rates that we obtain:

ρredβ,β =
∑
α,α′

f (ψ)
α f

(ψ)∗
α′

(
ε

Λ

)Bα, β+Bα′, β
2

(
r

ε

)Bα,α′
2

f
(
Bα, β +Bα′, β −Bα, α′

2

)
Sα, βS

∗
α′,β .

(4.95)
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The f(B)-function is subleading since it we can approximate it as f(B) ∼ 1 −
B2 for small B (see Eq. (4.34)) and additionally it is insensitive to the ratio
r/ε. Therefore, we can focus on the other two IR-factors, (ε/Λ)(Bα, β+Bα′, β)/2 and
(r/ε)Bα, α′/2. Clearly, both are always smaller than 1. In the case of constructive
interference, they therefore always lead to a suppression of the rate. For destructive
interference, however, they can work in both directions, i.e. they can also serve to
diminish suppressing contributions and thereby increase the rate. The r-dependent
contribution (r/ε)Bα, α′/2 is particularly interesting since it does not factorize, i.e.
it cannot be absorbed in a redefinition of Sα, β. These findings also hold for the
off-diagonal elements. It is straightforward to show that the exponent of the r-
dependent term in Eq. (4.92) is positive [249], so it also leads to a factor smaller
than 1. As before, this means that it leads to a suppression of off-diagonal elements
if there is constructive interference. In particular, this is always the case when the
initial state is only a single momentum eigenstate. In contrast, it can cause both
suppression and enhancement for destructive interference.

4.3.3 Estimate of Amount of Decoherence
At this point, it is important to estimate the amount of decoherence and the
corresponding loss of information that arises due to tracing over soft modes. To
this end, we compute the entanglement entropy of hard and soft modes. It is
defined as the von Neumann entropy of the density matrix ρred obtained after
tracing over soft radiation. For giving an upper bound, it turns out that it is
useful to investigate what off-diagonal elements would be needed to obtain a pure
density matrix. Thus, we assume that we are given a density matrix |Ψ〉〉rλ

r
λ〈〈Ψ|

defined by a state
|Ψ〉〉rλ =

∑
β

aβ |β〉〉rλ , (4.96)

which fulfills |aβ|2 = ρredβ,β but can have arbitrary phases. This means that ρpure
and ρred have the same diagonal and therefore describe the same rates. Now we
can parameterize the deviation from purity as the quotient of the actual element
of the reduced density matrix (4.92) and the element required for purity:

c
(Ψ)
β, β′ =

ρredβ,β′

aβa∗β′
. (4.97)

So the deviations of the c(Ψ)
β, β′ from 1 determine the decoherence and full coherence

corresponds to c(Ψ)
β, β′ = 1.

In the following, our goal is to give an upper bound on the von Neumann
entropy Ssoft = −Tr ρ(α), red ln ρ(α), red in terms of c(Ψ)

β, β′ . To this end, we use the
following argument: If all off-diagonal element were zero, the maximal entropy
would be given by Smax = ln dH , where dH is the dimension of the hard Hilbert
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space. This maximal entropy would be reached if all final hard states were equally
probable, i.e. all diagonal elements were equal. For our estimate, we will therefore
restrict ourselves to a density matrix in which all diagonal elements are equal. Such
a density matrix is pure if all elements, i.e. also the off-diagonal ones, are equal.
In order to derive the upper bound on the entropy, we can consequently define
∆max := maxβ, β′ |1− c(Ψ)

β, β′| and then multiply the off-diagonal elements of the pure
density matrix, in which all entries are equal, by the function c := 1−∆max.14 In
this setup, the eigenvalues of the density matrix are15

e1 = 1 + (dH − 1)c
dH

and ei = 1− c
dH

for i ∈ [2, dH ] . (4.98)

To leading order in ∆max, this gives the bound

Ssoft < ∆max ln
(
dH

∆max

)
. (4.99)

As expected, we obtain Ssoft = 0, i.e. purity, for ∆max = 0. Full decoherence can
only be obtained in the limit ∆max = 1. For small ∆max, we obtain the simple
bound on the relative entropy

Ssoft

Smax
. max

β, β′
|1− c(Ψ)

β, β′ | . (4.100)

As expected, deviations of the c(Ψ)
β, β′ from 1 determine decoherence.

To derive a concrete bound on the entanglement entropy, we have to choose aβ.
As said, the absolute value is fixed by the requirement |aβ|2 = ρredβ,β. To obtain a
bound that is maximally sharp, we therefore have to set the phases such that c(Ψ)

β, β′

is minimal. In the explicit computation of c(Ψ)
β, β′ , it turns out that a good choice

is16

aβ =
∑
α,α′

f (ψ)
α f

(ψ)∗
α′

(
ε

Λ

)Bα, β+Bα′, β
2

(
r

ε

)Bα,α′
2

f
(
Bα, β +Bα′, β −Bα, α′

2

)
Sα, βS

∗
α′, β

1/2

· exp
i arg

∑
α

f (ψ)
α

(
ε

Λ

)Bα, β
2
Sα, β

 . (4.101)

14At this point, one can wonder why we could not use c := 1 + ∆max instead. The reason is
that any c > 1 would lead to an unphysical density matrix with negative eigenvalues. Note that
is it nonetheless not excluded that some c(Ψ)

β, β′ are bigger than 1.
15These are the eigenvalues of a quadratic matrix of dimension dH that has 1/dH on the

diagonal and c/dH on all off-diagonal elements. A linearly independent set of eigenvectors vi is
given by the entries (v1)k = 1 and (vi)k = δk1 − δki for i ∈ [2, dH ].

16The absolute value is fixed by rate (4.95). The phase is chosen such that it reproduces the
density matrix (4.92) in the limit r → ε and f(B)→ 1.
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Now we evaluate (4.100) in the regime of weak coupling where all kinematical
factors become small, B � 1. Then we can expand the exponential and the f(B)-
functions. In the regime r � ε, in which we work throughout, the contribution
of the f(B)-functions is, as already explained, subleading and we will ignore it.
Then we obtain to leading order
Ssoft

Smax
. ln ε

r
max
β, β′

1
2

·

∣∣∣∣∣∣
∑
α,α′ f

(ψ)
α f

(ψ)∗
α′

(
ε
Λ

)Bα, β+Bα′, β′
2 Sα, βS

∗
α′, β′ (Bα, β +Bα′, β′ − 2Bα, β, α′, β′)(∑

α f
(ψ)
α

(
ε
Λ

)Bα, β
2 Sα, β

)∑
α f

(ψ)∗
α

(
ε
Λ

)Bα, β′
2 S∗α, β′



−
∑
α,α′ f

(ψ)
α f

(ψ)∗
α′

(
ε
Λ

)Bα, β+Bα′, β
2 Sα, βS

∗
α′, βBα, α′

2
∣∣∣∣∣∑α f

(ψ)
α

(
ε
Λ

)Bα, β
2 Sα, β

∣∣∣∣∣
2

−
∑
α,α′ f

(ψ)
α f

(ψ)∗
α′

(
ε
Λ

)Bα, β′+Bα′, β′
2 Sα, β′S

∗
α′, β′Bα, α′

2

∣∣∣∣∣∣∑α f
(ψ)
α

(
ε
Λ

)Bα, β′
2 Sα, β′

∣∣∣∣∣∣
2

∣∣∣∣∣∣ . (4.102)

Already at this point, the physical properties of this result become evident. First,
decoherence depends logarithmically on the ratio ε/r. This means that it gets big
if the resolution gets worse, i.e. ε increases, or if one waits longer before measuring
the final state, i.e. r decreases. In the limit of the best achievable resolution,
ε = r, there is no decoherence.17 Moreover, we observe that the bound on the
entanglement entropy scales with the kinematical factors B, i.e. becomes small for
small B-factors.18 Since they are proportional to e2 and the momentum transfer,
we conclude that decoherence scales with the coupling. Finally, it also depends on
the kinematics of the scattering process. In the case in which the initial state is a
single momentum eigenstates, this dependence becomes particularly transparent:

Ssoft

Smax
. ln ε

r
max
β,β′

Bβ, β′

2 . (4.103)

17Our derivation of the density matrix (4.92) relies on r � ε and is no longer valid in the limit
r = ε, which corresponds to the dressed formalism. However, it is easy to rederive the density
matrix in this case and one obtains (4.92) but without the r-dependent factor and without the
f(B)-function. Therefore, the bound (4.102) also holds for r = ε and shows that there is no
decoherence in this limit.

18An exception could occur in the case of fully destructive interference, i.e. when one of the
denominators in Eq. (4.102) vanishes. However, as long as only a small fraction of the entries of
the density matrix goes to zero, it is clear that the amount of decoherence is still small. In that
case, one would have to employ a more sophisticated bound than the one that we use here.
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Since the kinematical factor Bβ, β′ depends on the angle between the electrons in β
and β′, we conclude that decoherence scales with the angle between different final
states, i.e. it gets bigger for bigger angles. This means that decoherence increases
for final states whose bremsstrahlung is macroscopically different.

4.3.4 Implications for Optical Theorem
In this section, we briefly discuss how infrared divergences in the optical theorem
and infrared divergences in the density matrix are related. To this end, we show
that the off-diagonal elements of the optical theorem are generically related to
the off-diagonal elements of a density matrix. Therefore, infrared divergences can
lead to a vanishing off-diagonal element in the optical theorem if and only if the
off-diagonal element of the density matrix vanishes as well.

In general, the optical theorem – as a straightforward consequence of unitarity
– relates the imaginary part of the amplitude for the process β → β′ to the sum
of the product of two amplitudes with arbitrary intermediate state,

− i
(
r
λ〈〈β|Ŝnt |β′〉〉rλ −

(
r
λ〈〈β

′|Ŝnt |β〉〉rλ
)?)

=
∑
γ

(r<Eγ<ε)

∑
α

(ε<Eα)

r
λ〈〈β|Ŝnt

(
|α〉〉rλ ⊗ |γ〉

) (
r
λ〈〈β

′|Ŝnt
(
|α〉〉rλ ⊗ |γ〉

))?
, (4.104)

where we have decomposed a complete set of states as a tensor product of hard
states |α〉〉rλ and radiation |γ〉.19 Here Ŝnt denotes the nontrivial part of the S-
matrix: Ŝ = 1 + iŜnt. We will drop the subscript since the distinction between Ŝnt
and Ŝ will be inessential for our consideration.

Now we can use that the absorption and the emission of soft photons lead to
analogous contributions (see Eq. (4.6)). Since we have Bα, β = Bβ, α and moreover
all soft correction factors are real, we conclude that we can write the r.h.s. of the
optical theorem in terms of the matrix elements ρred, (α)

β,β′ of the reduced density
matrix defined in Eq. (4.86):

−i
(
r
λ〈〈β|Ŝnt |β′〉〉rλ −

(
r
λ〈〈β

′|Ŝnt |β〉〉rλ
)?)

=
∑
α

ρ
red, (α)
β,β′ . (4.105)

While from the perspective of the optical theorem, |α〉〉rλ is an intermediate state,
it takes the role of the initial state for the density matrix. For this reason, we
explicitly indicated the initial state in the notation ρ

red, (α)
β,β′ . In summary, the

(off-)diagonal elements of the optical theorem are related to the (off-)diagonal
elements of the density matrix.

This enables us to check if the IR-behavior of the two sides of the equation
match. First, we consider the limit r → 0, which corresponds to the inclusive

19According to the decomposition (4.74), we do not independently sum over photons of energy
smaller than r since they are already contained in the dressing of the hard states.
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formalism. In this case, we know that the off-diagonal elements of the density
matrix vanish whereas only the diagonal entries are finite. Indeed, this matches
the behavior of the l.h.s. of the optical theorem. Namely, it is important to notice
that we did not include radiation in the states |β〉〉rλ and |β′〉〉rλ. Therefore, in the
limit of the inclusive formalism, off-diagonal element with |β〉〉rλ 6≈ |β′〉〉rλ vanish
because of soft loops. Only diagonal entries are finite.

In this opposite limit r → ε of the dressed formalism, the off-diagonal entries of
the density matrix are maximal. Again, this matches the behavior of the l.h.s. of
the optical theorem since individual amplitudes without radiation are maximized
by taking r → ε.

Finally, we remark that one can obtain nonvanishing off-diagonal elements of
the optical theorem also in the inclusive formalism. As usual, one has to include
radiation in the process β → β′. The resulting IR-finite optical theorem can
moreover be used to define an effective IR-finite density matrix in the inclusive
formalism. We will, however, not reproduce this construction, which we have
developed in [4], because the combined formalism provides us with a first-principle
derivation of the density matrix.

4.4 Implications for Black Holes

4.4.1 Information in Soft Modes
Next, we come to a very interesting connection of infrared physics and black hole
information. As is the case in any nontrivial process in gravity, the gravitons
emitted during Hawking evaporation are expected to be accompanied by soft IR-
modes. Since the energy of Hawking quanta is ~r−1

g , a mode can be called soft in
this context if its energy is much smaller than ~r−1

g .
It is very interesting to investigate how much information the soft modes that

accompany the Hawking quanta carry. In particular, the very interesting proposal
was made [56] that those could carry all information of the black hole. In this
picture, which we already briefly introduced in section 1.5, one would observe a
completely mixed final state if one does not resolve the soft modes. However, once
all soft modes are measured, a pure state would be obtained. Thus, soft modes
alone would suffice to purify Hawking radiation.

The goal of this section is to critically examine the proposal [56] and to investi-
gate how much information is contained in soft IR-modes. First, we will investigate
the number of IR-modes that are produced in the process of Hawking evaporation.
Those set the maximal amount of information that the soft sector can carry. Sec-
ondly, we will apply the results of section 4.3.3, in which we estimated the amount
of entanglement between hard particles and soft modes. In both cases, the conclu-
sion will be that soft modes only give a subleading contribution to the black hole
entropy.
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In order to make a quantitative statement about the contribution of soft modes
to Hawking evaporation, we do not require an explicit S-matrix computation of
this process. This may seem surprising at first, but this fact is due to the power of
infrared physics. Namely, the corresponding contributions are only sensitive to the
asymptotic states. Even if we do not know the diagram, the knowledge of initial
and final states suffices to compute the contribution of infrared modes. We will
first do so for the emission of a single Hawking quantum.

Thus, we consider as initial state a black hole at rest, i.e. its 4-momentum
is pbh = (M,

#»0 ). In the final state, we have a massless Hawking quantum with
pH = (r−1

g , r−1
g

#»e ), where #»e is an arbitrary unit vector and we have momentarily set
~ = 1. Correspondingly, the final state of the black hole is p′bh = (M−r−1

g ,−r−1
g

#»e ).
This asymptotic data alone suffices to compute the infrared exponent Bα, β. To
leading order in r−1

g /Mp, a straightforward calculation of Eq. (4.29) gives

Bα, β ≈
r−2
g

M2
p

. (4.106)

This is the coupling strength that we expect in a process with momentum transfer
r−1
g . In terms of N = M2/M2

p , we get

Bα, β ≈
1
N
. (4.107)

Number of Soft Modes

First, we want to study the number of produced IR-modes. To this end, only
physical radiation matters. We begin by determining its relevant energy scales.
Since we deal with a process of black hole evaporation, the scale r, which separate
dressing from radiation, is given by the lifetime tb-h ≈ Nrg of the black hole. Thus
we get

r ≈
r−1
g

N
. (4.108)

This implies that the best achievable resolution is

εbest ≈
r−1
g

N
. (4.109)

However, the resolution cannot be too bad, either. To be able to observe Hawking
evaporation, we need at least

εworst ≈ r−1
g . (4.110)

Next, we recall the computation (4.31) of soft emission. The exponential
eBα, β ln ε

λ arises from a resummation of emission processes with different numbers
of soft photons in the final state. Specifically, the nth summand of the exponential
series comes from the emission of n IR-modes. Therefore, we can estimate the
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number of soft modes from the term which gives the biggest contribution in the
series. We get20

nunressoft ∼ Bα, β ln ε

λ
. (4.111)

If no soft gravitons are measured, the number of unresolved soft modes scales
logarithmically with the infrared resolution scale ε.

Now we can investigate how many more soft gravitons we can resolve when we
lower the energy scale of resolution from ε1 to ε2:

nressoft ∼ Bα, β ln ε1
ε2
. (4.112)

Plugging in the worst possible resolution (4.110) and the best achievable resolution
(4.109) in the process of black hole evaporation as well as Eq. (4.107), we get

nressoft .
1
N

lnN . (4.113)

Thus, after the black hole has evaporated by emitting N Hawking quanta, the
maximal entropy contained in the soft IR-modes is

Ssoft . lnN . (4.114)

Independently of the question whether IR-modes are strongly entangled with the
Hawking quanta, this shows that they cannot account for the whole entropy of
the black hole but could only give a logarithmic correction. Of course, this leaves
open the possibility that non-IR soft modes could account for the bulk of black
hole information. However, since they are independent of IR-divergences and
accompanying dressing tools, the results of infrared physics do not constrain them.

Entanglement of Soft and Hard Modes

As a second independent argument, we can apply the entropy bound (4.103) de-
rived previously. Plugging in as before ε ≈ r−1

g , r ≈ r−1
g /N and Bα, β ≈ 1/N as

well as Smax = N , we get
Ssoft . lnN , (4.115)

which is in full accordance with the previous argument based on the number of
soft modes. We conclude that soft modes give at most a logarithmic correction to
the black hole entropy.

20Strictly speaking, this formula is only valid in the inclusive formalism, i.e. the limit r → λ.
In the general case of the combined formalism, one would effectively have to replace λ by r. Since
the final answer is independent of λ, however, this does not change our conclusions.
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4.4.2 BMS Symmetries and Memory Effect
The asymptotic symmetry group of gravity at null infinity, the BMS group, has
been known since the sixties [68–70]. It was discovered during the study of gravita-
tional waves. When a gauge appropriate for this investigation was constructed, it
was realized that a full gauge fixing is not possible. Instead, an infinite-dimensional
group of residual gauge transformations remains. Together with the Lorentz group,
those so-called supertranslations form the BMS group.

Recently, it was suggested that those symmetries can have important implica-
tions for the puzzle of black hole information. There are two related but distinct
lines of argument. First, it is possible to establish an equivalence of BMS transfor-
mations and the soft graviton theorem [220].21 From this starting point one can
investigate what contribution soft gravitons give to the black hole entropy. This
has been the subject of the previous section 4.4.1.

Secondly, however, one can try to exploit the relationship of BMS transforma-
tions and the gravitational memory effect. The latter is the well-known fact [250]
that a gravitational wave that passes through results in a permanent displacement
of test particles. The new discovery consists in the observation [221] that this
memory effect directly corresponds to a supertranslation, i.e. the metrics before
and after the wave passes through differ by a supertranslation.

This fact promises to be very interesting from the perspective of black hole
physics. We can imagine the following gedankenexperiment. One starts with a
black hole of mass M and injects radiation with a total energy µ and with an
angular distribution of energy Fin. This results in a black hole of mass M + µ.
Moreover, as we have discussed in section 1.3.1, the black hole must be sensitive to
other characteristics of the injected radiation, provided no classical or semiclassical
limit is taken: In order to preserve unitarity, the final state of the black hole
therefore also has to depend on Fin. If a different angular distribution of energy
Fin, i with the same total energy µ is used, the final state of the black hole must
also be different.

The question that we will investigate is if any traces of the characteristics of
these black holes are still accessible in the (semi)classical limit. We know that the
classical black hole metrics corresponding to different Fin, i must fulfill the no hair
theorem. Thus, they are related by diffeomorphisms outside the horizon. Now
the interesting connection to BMS symmetries is as follows: Because of the grav-
itational memory effect, we know that each angular distribution of energy Fin, i
is related to a supertranslation, which we denote by T i. The latter is a diffeo-
morphism, i.e. precisely corresponds to the only kind of classically allowed hair.
This leads to the proposal [221–224] that supertranslations could be a candidate

21Additionally, it has also been discussed to what extent BMS transformations lead to new
symmetries. We have briefly discussed this question in section 4.1.2. Partly based on [232–236],
we have argued that they bear no physical relevance beyond the well-known decoupling of soft
gravitons.
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for classical black hole hair. The goal of the present section is to investigate this
approach, which has received widespread attention (see e.g. [74, 251–262]). Our
conclusion will be that supertranslations can act as a natural bookkeeping tool in
the process of black hole formation and evaporation, but that they do not consti-
tute physical hair which could be measured outside the horizon.

Recap of BMS-Gauge and Memory Effect

We first recap some properties of BMS-gauge, which is defined by the four gauge
conditions [68–70]

g11 = g1A = 0 , det gAB = r2 sin2 θ , (4.116)

where A,B, . . . = 2, 3. Typically, BMS-gauge is used to study a spacetime asymp-
totically, i.e. for r → ∞, but it is possible to extend the metric to the bulk by
imposing the conditions (4.116) to all orders in 1/r. In a typical situation, however,
a metric in BMS-gauge does not cover the whole spacetime.

Such a metric in BMS-gauge exists both in retarded time u, which is suited to
describe outgoing radiation, and in advanced time v, which is suited to describe
incoming radiation. The matching between these two metrics will be crucial for
our treatment. Explicitly, an asymptotically flat metric in retarded time takes the
form [68–70]:

ds2 =
(
−1 + m+

B

r
+O(r−2)

)
du2 −

(
2 +O(r−2)

)
dudr (4.117)

+ r2
(
γAB + C+

ABr
−1 +O(r−2)

)
dxAdxB +O(r−2)dxAdu , (4.118)

where the metric on the sphere has to fulfill the requirement det gAB = r2 sin2 θ.
Here m+

B is the Bondi mass, γAB the standard metric on the sphere and

C+
AB =

(
2DADB − γABD2

)
C+ (4.119)

is determined by the supertranslation field C+, where DA is the covariant deriva-
tive on the sphere. It is helpful to expand the supertranslation field in spherical
harmonics. Then the mode l = 0 represents a time shift and the mode l = 1
corresponds to spatial translations. Therefore, all modes with l ≥ 2 define proper
supertranslations. Metrics with different values of C+ are connected via asymp-
totic diffeomorphisms, i.e. the choice of the supertranslation field constitutes a
residual gauge freedom of BMS-gauge. These diffeomorphisms are the famous
supertranslations. Therefore, we can define a supertranslation T+ in the group
BMS+ at future null infinity by the change it induces in the supertranslation
field:

T+ := ∆C+ . (4.120)
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In order to analyze the effect of supertranslations, we will need the constraint
equation G00 = 8πGNT00, the leading order of which reads in BMS-gauge:

∂um
+
B = 1

4GN

D2(D2 + 2)∂uC+ −Fout , (4.121)

where
Fout = 1

8(∂uC+
AB)(∂uC+AB) + 4π lim

r→∞
(r2Tuu) (4.122)

is the total incoming null energy, composed of gravitational waves (first summand)
and other forms of gravitating energy (second summand).

Advanced Coordinates

The situation in advanced coordinates is very similar. The metric takes the form

ds2 =
(
−1 + m−B

r
+O(r−2)

)
dv2 +

(
2 +O(r−2)

)
dvdr (4.123)

+ r2
(
γAB + C−ABr

−1 +O(r−2)
)

dxAdxB +O(r−2)dxAdv , (4.124)

where the supertranslation field in advanced coordinates and the supertranslations
of the group BMS− at past null infinity are defined as in (4.119) and (4.120). The
constraint equation becomes

∂um
−
B = 1

4GN

D2(D2 + 2)∂uC− + Fin , (4.125)

where Fin is the incoming energy, in analogy to (4.122).

Measurement of the Supertranslation Field: Memory Effect

As already discussed, one can change the value of the supertranslation field by a
diffeomorphism. Therefore, it follows by general covariance that the absolute value
of the supertranslation field cannot have any experimental relevance. However,
since it corresponds to physical outgoing or ingoing radiation, the difference of the
supertranslation field at different times does have experimental implications: It
describes the memory effect caused by the radiation, i.e. a permanent displacement
of test masses after the radiation has passed [221,250,263].

We will restrict ourselves to a simple situation in which we start with some
stationary metric g1

µν and we finish in a different stationary metric g2
µν . In between,

there is a radiation epoch, i.e. Fin/out only has support during this time span.
Asymptotically on J ±, the process defines a nonstationary metric interpolating
between g1

µν and g2
µν which should be a solution to the Einstein equations.
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Since Birkhoff’s theorem implies that we can set ∂Am±B = 0 in a stationary
metric, we can single out the zero-mode from (4.121) by integrating over the sphere:

µ+ = −
∫

du
∫

d2ΩFout

4π , (4.126)

where we first consider retarded time and µ+ = m+
B, 2 −m+

B, 1 is the total change
of Bondi mass due to the radiation epoch. This formula shows explicitly that
the Bondi mass m+

B is monotonically decreasing, i.e. it measures the energy which
has not yet left the bulk. Defining the emitted energy with nontrivial angular
distribution as ∆F̃out :=

∫
duFout − µ+, the constraint (4.121) becomes

0 = 1
4GN

D2(D2 + 2)T+ −∆F̃out . (4.127)

Thus, angular features in the outgoing radiation induces a supertranslation T+ =
∆C+. Note that it is independent of the total emitted energy µ+.

In advanced coordinates, we get from the constraint (4.125):

µ− =
∫

dv
∫

d2ΩFin

4π . (4.128)

The advanced Bondi mass m−B is monotonically increasing, i.e. it measures the
energy which has already entered the bulk. Defining ∆F̃in :=

∫
dvFin − µ−, the

constraint (4.125) becomes

0 = 1
4GN

D2(D2 + 2)T− + ∆F̃in . (4.129)

This formula implies that an advanced supertranslation T− tracks angular features
in the incoming radiation.

Goldstone Supertranslations

Our goal is to investigate black hole hair, i.e. characteristics of a black hole beyond
its mass and other ADM-conserved quantities. Therefore, we will be interested in
systems that have the same energy. For this reason, we will consider the following
two-step scattering process. First, we inject a wave with total energy µ and an
angular distribution Fin. Then we wait till the system has returned the same
amount of energy µ and record its angular distribution Fout.22 While such systems
are of course special, we will see that black holes can be one of them. This is a zero-
energy process in the sense that the total energy of the system does not change.
Thus, this process, which is depicted in figure 4.2, constitutes a transformation
between degenerate systems and therefore defines hair.

22We restrict ourselves for now to pure gravitational radiation, which propagates along null
geodesics. Therefore, all emitted energy is bound to reach future null infinity J +.
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M

M

Figure 4.2: A Goldstone supertranslation on a generic system of mass M . Radi-
ation with angular distribution Fin is injected in such a way that radiation with
angular distribution Fout is returned. Since

∫
dv

∫
d2ΩFin =

∫
du d2ΩFout, the to-

tal energy of the system remains unchanged. Here Fin can be described in terms
of the supertranslation T− and Fout in terms of T+.

As far as we reduce ourselves to gravitational radiation, we can generically
describe this process in terms of two supertranslations: At J −, T− is determined
by the angular distribution ∆F̃in of incoming energy according to the constraint
(4.129) and at J +, T+ follows from the angular distribution ∆F̃out of outgoing
energy via the constraint (4.127). Thus, the whole process is associated to an
element (T−, T+) in the product group BMS− ⊗ BMS+. It describes a zero-
energy transition which interpolates between two spacetimes of the same total
energy.

It is crucial to note that for an asymptotic observer, T− and T+ are indepen-
dent. Whereas one is free to choose T− by preparing an appropriate incoming
radiation, T+ is sensitive to the properties of the system in the bulk. In other
words, T+ is a response of the system which does not only depend on the ingoing
radiation, parameterized by T−, but also on the state of the system and its partic-
ular dynamics, which are not entirely visible asymptotically. In particular, there
is no reason why (T−, T+) should be in any subgroup of BMS− ⊗BMS+.

Coordinate Matching

In order to compare ingoing and outgoing radiation, i.e. T− and T+, we need to
relate the supertranslation field C− in advanced coordinates to the supertranslation
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field C+ in retarded coordinates. Namely, we assume that we are given a classical
spacetime whose asymptotic behavior is fully known to us. Then it is possible
to describe this spacetime both in advanced and retarded BMS-gauge. Given an
advanced coordinate system gvµν , we want to know if there is a unique retarded
coordinate system guµν we can associate to it. If we have such a mapping, it
determines the relation of the advanced supertranslation field C−, defined as the
r1 part of gvAB, and the retarded supertranslation field C+, defined as the r1 part
of guAB.

Given gvµν , we therefore have to find a diffeomorphism D such that guµν :=
D(gvµν) is in retarded BMS-gauge. Then we can read off from guµν the C+ associated
to C−. However, we could have instead considered the diffeomorphism D′ = T+ ◦
D, where T+ is a supertranslation diffeomorphism in retarded coordinates. Also
D′ transforms the metric in advanced BMS-gauge to a metric in retarded BMS-
coordinates. Clearly, if T+ is a nontrivial supertranslation, the supertranslation
field in the resulting metric differs from the one in gu. From this consideration it is
obvious that the matching between the advanced and the retarded supertranslation
field is in general not unique.

The only hope we could have is that there is a natural way to identify C− and
C+. In a static situation, a natural prescription is to require that the spatial part
of the two metrics matches, i.e.

guAB = gvAB . (4.130)

As is shown explicitly in appendix A.3.1 for the example of the Schwarzschild
metric, we can achieve this by identifying C+(θ, ϕ) = −C−(θ, ϕ), as also proposed
in [257]. Up to a sign, we match the supertranslation field anglewise. Consequently,
the same matching holds for the supertranslations:

T+(θ, ϕ) = −T−(θ, ϕ) . (4.131)

There are several reasons why the coordinate matching (4.131) is natural. First
of all, the prescription (4.130) comes from a simple intuition. For an observer
in a static spacetime who lives on a sphere of fixed radius, the description of
the sphere should be the same independently of the choice of time coordinate.
More generically, it is possible to require that the action of advanced and retarded
supertranslations is the same in the bulk. This was done in [257,258] for the cases
of Schwarzschild and Minkowski.

Moreover, we can consider a detector at big radius which is sensitive to grav-
itational memory. Then we investigate a process of back scattering, in which the
angular distributions of incoming and outgoing energy are identical at each angle.
This corresponds to a wall in the bulk which reflects the wave without further
modifying it. In this case, the memory effect the ingoing wave causes, param-
eterized by T−, is exactly canceled by the memory effect of the outgoing wave,
parameterized by T+, so that there is no overall memory effect after the process.
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In that case, if we match T− and T+ at each angle as in (4.131), it is possible to
simply describe the overall memory effect as T− + T+.

However, it is crucial to stress that the coordinate matching (4.131) does not
have any constraining power on the physical process. It does not predict outgo-
ing from ingoing radiation, but only shows how one and the same setup can be
described in different coordinates. This is also evident from figure 4.2. The match-
ing condition at i0 only relates the absolute values of the supertranslation fields.
In contrast, processes of nonzero energy solely determine a change of the super-
translation field, as is clear from equations (4.127) and (4.129). Thus, radiation of
nonzero energy is independent of the coordinate matching.

4.4.3 Study of BMS Hair
Planetary Hair

In order to make the ideas presented above concrete, we first discuss an exemplary
system without horizon, which we shall call planet for concreteness. We start from
a spherically symmetric nongravitational source Tµν , which sources a spherically
symmetric spacetime gµν with ADM-mass M . In such a spacetime, we want to
realize a Goldstone supertranslation, i.e. we send in a wave with total energy µ and
angular distribution ∆F̃in in such a way that after some time, the planet emits
a wave of the same energy µ but with a possibly different angular distribution
∆F̃out. Of course, only a special class of planets behaves in that way.

We explicitly construct such spacetimes in appendix A.3.2, to which we refer
the reader for details of the calculation. First, we consider the incoming wave. As
discussed, the angular distribution ∆F̃in of injected energy determines an advanced
supertranslation T−. As derived in equation (A.25), we can use it to describe the
change of the metric due to the injected radiation:

δgvµν = τv0, v1(v)s−(r)
(
Lξv(T−)g

v
µν + 2µGN

r
δ0
µδ

0
ν

)
, (4.132)

where Lξv(T−)g
v
µν is an infinitesimal supertranslation which changes the supertrans-

lation field by a small amount T−. Whereas the asymptotic supertranslation T−
only depends on the leading part of the incoming energy, it is crucial to note
that the transformation (4.132) is also sensitive to a careful choice of the sublead-
ing components of the incoming wave.23 Only with a particular choice, the wave
acts as a diffeomorphism not only asymptotically but also in the bulk outside the
planet.

We observe that the effect of the wave is twofold. First, it adds the total mass
µ to the planet and secondly, it supertranslates the metric by T−. However, these

23Subleading terms are the 1/r3-term in T00 and the whole T0A in (A.26). If one does not insist
that the wave acts as a supertranslation also in the bulk, one is free to choose the coefficient of
one of the two terms. The other one is determined by energy conservation: T ;µ

µν = 0.
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effects are localized both in space and time. The function τv0, v1(v) describes the
smooth interpolation between gvµν and gvµν + δgvµν , i.e. we have τv0, v1(v < v0) = 0
and τv0, v1(v > v1) = 1. The function s−(r) describes the absorption of the wave,
namely absorption takes place whenever s− ′(r) < 0. There is no absorption outside
the planet, i.e. s−(r > R) = 1, where R is the radius of the planet, and the wave
is fully absorbed before it reaches the center, s−(r = 0) = 0. It will be crucial to
note that the transformation s−(r)Lξv(T−)g

v
µν only acts as a diffeomorphism when

s−
′(r) = 0.
Moreover, the transformation (4.132) shows that we focus on planets which

have a second very special property aside from the fact that they emit as much
energy as they receive: Namely there is no transport of energy between different
angles. This means that the mass of the planet does not redistribute after ab-
sorption (the same will be true after emission). The fact that this assumption is
unnatural and not true for generic systems will contribute to our conclusions.

As a second step, we consider the emission of a wave by the planet. Of course,
the properties of the emitted wave depend on the internal dynamics of the source
Tµν . It is crucial to note we cannot resolve them in our purely gravitational
treatment, i.e. we cannot predict what wave will be emitted. From the point of view
of gravity, any emission process is possible as long as it respects energy-momentum-
conservation. However, we can study the effect of a given emitted wave. As derived
in equation (A.31), it can be described in terms of the supertranslation T+ induced
by the angular distribution ∆F̃out of outgoing energy:

δguµν = τu0, u1(u)s+(r)
(
Lξu(T+)g

u
µν −

2µGN

r
δ0
µδ

0
ν

)
. (4.133)

As for the case of absorption, the emission has two effects: It decreases the total
mass by µ and it supertranslates the metric by T+. Moreover, it is localized in
space and time in an analogous manner.

We want to compare the planet before and after the Goldstone supertranslation,
i.e. we are interested in the combined effect of the transformations (4.132) and
(4.133). To this end, we have to specify a mapping between the advanced and
retarded supertranslations. As explained in section 4.4.2, we employ the anglewise
matching (4.131). Thus, we obtain the static final state of the planet:

δgtotµν = θ(r −R)Lξu(T+−T−)gµν

+ θ(R− r)
(
s+(r)Lξu(T+)gµν − s−(r)Lξu(T−)gµν

)
. (4.134)

We get a planet which has the same ADM-mass but a different angular distribution
of mass. This is clear from the fact that the transformation (4.134) acts as a
diffeomorphism only outside the planet.

Since we used in our computation a planet with the special property that its
angular distribution of energy is frozen, we can read off the distribution from the
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difference of energy distributions of the injected and emitted wave. In this case,
T− − T+ encodes all information about the angular energy distribution of the
planet in the bulk.24 However, this is no longer true for generic systems which
exhibit nontrivial dynamics after absorption and emission. In that case, T− and
T+ merely encode the initial state. Only with full knowledge of the theory which
governs the internal dynamics of the planet, we can infer the state of the planet
at a later time from the asymptotic data T− and T+.

The Role of Supertranslations

In summary, we obtain the following key properties of a Goldstone supertrans-
lation in the case of a planet: Outside the planet, it acts as a diffeomorphism.
In particular, it does not change its ADM-mass. In contrast, it does not act as a
diffeomorphism inside the planet where absorption takes place. Therefore, it is not
a trivial global diffeomorphism but changes the spacetime physically. Thus, the
Goldstone supertranslation encodes differences in the angular distribution among
matter configurations degenerate with respect to the ADM-conserved quantities.

It is crucial to discuss the role of supertranslations in this process:

• For an asymptotic observer, (T−, T+) can be used as label for the angular
features of ingoing and outgoing radiation.

• An asymptotic observer, however, cannot infer T+ from T−. This is only
possible with knowledge of internal dynamics of the planet.

• Thus, (T−, T+) is a bookkeeping tool but without detailed information about
the interior, it does not have predictive power.

As we shall discuss in a moment, the same conclusions hold in the black hole case.
The only difference is that the internal dynamics leading to emission are fully quan-
tum mechanical for a black hole. This will mean that in any classical description,
supertranslation cannot constrain or even predict black hole evaporation.

Hidden Angular Features

Finally, we discuss the transformation (4.134) when we do not have access to
(T−, T+), i.e. when we do not record ingoing and outgoing radiation but only

24For the planet with frozen energy distribution, there is also a very literal way in which one
can interpret the quantity T− − T+: One can imagine a gedankenexperiment where a source of
light is located in the interior of the planet after the Goldstone supertranslation and we collect
the light rays on the sky. The light sent from this common center point determines in this way a
section at infinity described by the supertranslation field T− − T+. Thus, the different redshift
effects due to the inhomogeneities of the planet matter distribution define a supertranslated
section in the sky as the one for which light rays originate from a common spacetime point. This
is reminiscent of Penrose’s concept of “good sections” [264].
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compare the initial and final state of the planet. In that case, the planet possesses
an interesting property, namely a special kind of no-hair-theorem. Concretely, we
take the perspective of an observer who has no access to the interior of the planet
and discuss the difference between two planets which have the same mass but a dif-
ferent angular mass distribution. As we have observed, the transformation (4.134)
acts as a diffeomorphism outside the planet. Therefore, an outside observer can-
not distinguish the two following cases when he is given a supertranslated outside
metric. First, it could be the result of the transformation (4.134), where the planet
was physically changed due to a Goldstone supertranslation. Secondly, however,
one can also obtain the supertranslated metric by acting on the initial planet with
a global diffeomorphism. In this case, clearly, the planet does not change. Thus,
also for a planet, an outside observer is not able to resolve angular features. In
order to decide whether two asymptotic metrics differing by a supertranslation
describe two different distributions of matter or the same distribution of matter
in different coordinates, one needs access to the whole spacetime, i.e. the interior
of the source.

We conclude that generic gravitational systems possess physical angular fea-
tures which are inaccessible for an outside observer. This is an indication that the
microstates of a black hole have a nontrivial projection on angular features. The
only difference is that while the restriction to outside measurements was artificial
in the case of the planet, an outside observer has in principle no access to the
interior of a black hole. As we will discuss in the next section, he can therefore
never decide whether a supertranslated metric corresponds to a physical change
of the matter inside the black hole or to a global and therefore meaningless diffeo-
morphism. This is the reason for the classical no-hair theorem of a black hole and
why we assign an entropy to the black hole and not to the planet.

4.4.4 Black Hole Quantum Hair
Supertranslations as Bookkeeping Device

Now we are ready to discuss the system of our interest, namely black holes. Since
absorption and emission are of different nature in that case, we will discuss them
separately. For absorption, we can proceed in full analogy to the planet and inject
a wave with total energy µ and arbitrary angular distribution ∆F̃in. By Birkhoff’s
theorem, the spacetime outside the black hole is the same as for the planet so that
the wave behaves identically. As in the case of the planet, the wave cannot be
absorbed outside the horizon and acts as a diffeomorphism everywhere outside the
black hole and also on the horizon.

For the planet, we observed that the knowledge of injected energy alone does
not suffice to predict what radiation the planet emits. Instead, this can only be
done with knowledge of the interior dynamics of the planet. Those, however, can
be described classically in the case of the planet. For the black hole, the situation
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is even worse. Not only do we not have access to any interior dynamics, but these
dynamics are also fully quantum. It is impossible to describe them even with full
classical knowledge of the interior of the black hole.

Before we elaborate on this point, we first show how it is possible to use su-
pertranslations as bookkeeping device for black hole evaporation. Unlike for the
case of the planet, this is a nontrivial question since the evaporation products are
generic quantum states. In order to define an associated supertranslation, we shall
proceed as follows. We consider an ensemble of quantum-mechanically identical
black holes of mass M .25 For each black hole, we wait until it has emitted exactly
one Hawking quantum. We only record their angular features, i.e. the deviation
from an isotropic emission. This means that we assume that the microstates of
the black hole have a nontrivial projection on angular features of the evaporation
products. Thus, we record the Hawking quanta using a filter for angular fea-
tures, where we use one for each spherical mode (l,m). This defines a probability
distribution for the angular features of the ensemble:

P (l,m) . (4.135)

Obviously, the probability distribution (4.135) only contains a part of the quantum-
mechanically available information. However, we will only focus on it since it can
be described in terms of classical supertranslations. At this point, it is crucial
to point out that the probability distribution (4.135) does not originate from a
mixed state but as a result of an ordinary quantum measurement. Thus, unlike
in a description in terms of a mixed state, it is not associated to any fundamental
loss of information.

Since we need to recover a featureless emission in the semiclassical limit, it
follows that

P (0, 0) = 1− δ , (4.136)
where δ → 0 in the semiclassical limit. This means that only a fraction δ of the
emitted quanta carries features. For l ≥ 2, we consequently get

P (l,m) = δAl,m , (4.137)

where ∑∞l=2
∑m=l
m=−lAl,m = 1. The information contained in the P (l,m) is purely

quantum mechanical. At the semiclassical level, we have that P (l,m) = δl0 and in
the classical limit, we have no emission at all.

Using the quantum probability distribution (4.135), we can associate to every
Hawking quantum an average energy flux:

Fout = ~r−1
g

∞∑
l=0

m=l∑
m=−l

P (l,m)Yl,m , (4.138)

25Experimentally, we can realize this by preparing identical quantum states in such a way that
they collapse and form black holes.
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M

Figure 4.3: A Goldstone supertranslation on a black hole of mass M . First, it
absorbs radiation with angular distribution Fin and then it evaporates radiation
with angular distribution Fout. Since

∫
dv

∫
d2ΩFin =

∫
du d2ΩFout, the total

energy of the black hole remains unchanged. Here Fin can be described in terms
of the supertranslation T− and Fout in terms of T+.

where Yl,m are the standard spherical harmonics. Just like for the case of the
planet, where we considered a classical process of emission, we can use the flux
(4.138) to define a classical supertranslation T+. Of course, this is only possible as
long as ~ 6= 0 since the energy flux is zero otherwise. When we record the quantum-
mechanically emitted energy Fout, we can proceed in analogy to the planet and
use the supertranslation fields T− and T+ to track the evolution of the black hole.
Concretely, in order to perform a Goldstone supertranslation, we first inject an
energy µ and then we wait until nH = µ/(~r−1

g ) quanta have evaporated, as is
depicted in figure 4.3. Then we end up with a black hole of the same mass as
before the process. Of course, the sensitivity of the final state on the initial state
is suppressed by µ/M , but unitarity dictates that the dependence is never trivial.

Insufficiency of Supertranslation Hair

However, it is impossible to predict T+ solely from the knowledge of T−. The
reason is that the wave that we inject acts as a diffeomorphism outside the hori-
zon and also on the horizon. Therefore, the geometry outside the black hole is
unaltered after the wave has passed. Since the semiclassical Hawking calculation
is only sensitive to the geometry on the horizon and outside the black hole, its
result cannot change as a result of a supertranslation diffeomorphism. Therefore,
additional knowledge about the interior is required to predict T+.

We can make this argument more concrete by taking the perspective of an
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observer who lives in a Schwarzschild metric supertranslated by T−. The observer
has no record of how the black hole was formed and is only allowed to make
experiments outside the horizon. Her goal is to determine the microstate of the
black hole. More specifically, she wants to know if the black hole is in the bald
microstate, whose evaporation products are featureless and in particular perfectly
isotropic, or in a nontrivial microstate, whose evaporation products carry some
angular features. By our definition of microstate, one way to do so is to wait till
the black hole has evaporated and to determine the properties of the evaporation
products.

The question we are asking is if there is another way to determine the microstate
of a black hole. The answer is negative, for the following reason: When an outside
observer finds herself in a black hole metric with supertranslation field T−, this
can happen because of two very distinct reason. Firstly, it could be the result
of injecting a wave with a nontrivial angular distribution of energy into a black
hole. In that case, the black hole is in a nontrivial microstate and T− indeed
characterizes the microstate.

However, there is a second way in which we can obtain a supertranslated
Schwarzschild metric. Namely, we can consider a featureless microstate, whose
evaporation products are isotropic, and apply a supertranslation diffeomorphism
to this setup. In this way, we do not change the physical state of the black hole but
only describe it in a different metric. Thus, T− can also correspond to a featureless
microstate described in different coordinates.

Without access to the evaporation products, the only way to distinguish those
two cases – injection of wave with angular features versus global diffeomorphism
– is to enter the black hole. There, the wave acts nontrivially, i.e. not as a diffeo-
morphism, whereas the global diffeomorphism still does. Since the same exterior
metric can correspond to both a trivial and a nontrivial microstate, the metric
alone cannot suffice to predict the evaporation products. From the outside, it is
therefore impossible to distinguish classical supertranslation hair and global dif-
feomorphisms.

In summary, as in the case of a planet, we can use (T−, T+) as a natural
bookkeeping device for the black hole to track the angular features of ingoing and
outgoing radiation. However, knowing T− does not suffice to predict T+, i.e. an
observer outside the black hole cannot infer T+ from T−. This is only possible
with a microscopic model of the interior dynamics of the black hole, which is
inaccessible in any (semi)classical limit.

Generalization to Evaporation

Having discussed how we can implant hair on a black hole with a Goldstone su-
pertranslation, it is trivially to consider the case of pure evaporation. We obtain
it if we just leave out the first part of the Goldstone supertranslation, namely the
injection of a wave. Therefore, it suffices to consider J + as screen, where the
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constraint (4.127) determines the retarded supertranslation field T+ in terms of
the angular distribution ∆F̃out. In that case, the metric outside the black hole
changes according to (4.133):

δguµν = τu0, u1(u)
(
Lξu(T+)g

u
µν −

2µGN

r
δ0
µδ

0
ν

)
. (4.139)

This equation shows that the backreaction splits in two parts. First, energy con-
servation dictates that the mass of the black hole is reduced by the total emitted
energy µ =

∫
du

∫
d2ΩFout. This part of the backreaction is undebatable but does

not suffice to ensure unitarity of the process. Fortunately, Fout contains more
information than just the emitted energy, namely the supertranslation T+. Con-
sequently, we obtain the backreacted black hole not only by reducing its mass
but by supertranslating it by T+. In this way, supertranslations can be used as
bookkeeping device for emission.

4.4.5 Relationship to Black Hole N-Portrait
So far, we have not specified the magnitude of deviations from a thermal evapo-
ration. We can estimate them by requiring that we reproduce Page’s time [42] in
our approach. In its most basic formulation, which we have already introduced in
section 1.3.1, Page’s time is a direct consequence of describing the black hole evap-
oration in a Hilbert space of fixed dimension. In brief, if we keep the dimension
of the full Hilbert space, which describes at any time both the black hole and the
emitted radiation, fixed and equal to 2N , then at t = tP , which corresponds to the
half lifetime, i.e. the evaporation of ∼ N/2 quanta, there is no place to continue
increasing the entanglement between the radiation and the black hole internal de-
grees of freedom. At this time, entanglement starts to decrease and information
starts to be delivered.

Since Page’s time corresponds to the timescale for the emission of the order
of N quanta, we first consider an ensemble of N identical quantum mechanical
black holes and for each of them, we record the first emitted quantum. For a
measurement on a single black hole, the standard deviation is

σ1 ∼ O(1) (4.140)

since the quanta are distributed isotropically to leading order. However, when we
average over N measurements, the standard deviation decreases as

σN ∼
1√
N

. (4.141)

Features become visible as soon as their strength gets bigger than the uncertainty
of the measurement. After Page’s time we can therefore resolve features with the
relative amplitude

δ ∼ 1√
N

. (4.142)
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In the formulation of the probability distribution (4.136), this means that after
O(N) measurement, those features becomes visible which are only carried by a
fraction 1/

√
N of the quanta.

So far, we have only considered one emission for N identical black holes. If
we consider instead O(N) emissions of a single black hole, the difference is that
the probability distribution for each emission step is generically different. This
is true because of the backreaction of the previously emitted quanta. However,
the argument in terms of the resolution stays the same, i.e. after Page’s time, we
can still resolve those features which are only carried by a fraction δ ∼ 1/

√
N

of quanta. Thus, unitarity requires that features must exist the relative strength
of which is at least given by (4.142). This finding resonates with the black hole
N -portrait [34] since it predicts the existence of deviations from thermality that
scale as a power of 1/N .



Chapter 5

Future Perspectives

5.1 Summary
We shall summarize our findings. First, we discuss each chapter separately and
then we try to draw overall conclusions.

5.1.1 Quantum Breaking
In the first chapter, we studied the question of quantum breaking. To begin with,
we pointed out that it is useful to characterize a generic system in terms of two
universal parameters, the (leading) quantum coupling, which scales as α ∼ ~, and
the occupation number of the state, which scales as N ∼ ~−1. The product of
those two determines a third important quantity, namely the collective coupling
λ = αN ∼ ~0. Already from their dependence on ~, it is evident that α and
λ describe fundamentally different phenomena. Whereas α fixes the strength of
quantum processes, λ determines the importance of classical nonlinearities. This
distinction enables us to draw conclusions about quantum breaking by studying
the classical limit ~→ 0. Since the quantum break-time has to become infinite in
this limit, the corresponding timescale must scale as tq ∼ 1/α. This observation
culminates in the generic relation (2.56).

As a first concrete example, we studied a prototype model of a self-interacting
scalar field. In an approximation which neglects classical nonlinearities, we com-
puted the quantum break-time due to various scattering processes and concluded
that its lower bound, Eq. (2.34), fully agrees with the generic dependence (2.56).
Moreover, we showed how classical nonlinearities can be described in the S-matrix
language. Namely, they correspond to processes in which the occupation num-
bers of both initial and final states are macroscopic, i.e. scale as N . Finally, we
reviewed findings of [40], where it was shown that the self-interacting scalar also
exhibits a special regime of fast quantum breaking, tq ∼ ln(1/α). This can only
happen, however, if the collective coupling is overcritical, λ & 1, and the system
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additionally possesses a classical instability.
A straightforward application of the results for the self-interacting scalar field

is the study of quantum breaking in cosmic QCD axions. We concluded that their
quantum break-time is larger than the age of the Universe by many orders of
magnitude so that approximating them as classical is fully justified. Moreover, we
commented on contrary claims made in [71,101–103], in particular by emphasizing
the distinction between classical and quantum timescales. The result that cosmic
axions can be described accurately as classically-oscillating field is of particular
importance for experimental axion searches.

Next, we turned to gravity by studying de Sitter. Following [44], the first step
was to give a quantum resolution of the classical metric, i.e. to understand de
Sitter as a multi-graviton state defined on Minkowski vacuum. A key motivation
for adopting this picture instead of viewing de Sitter as a fundamental vacuum
consists in the well-known problem that no S-matrix exists in the latter case. We
showed that our corpuscular picture of de Sitter is able to reproduce all its known
classical and semiclassical properties, such as redshift and Gibbons-Hawking par-
ticle production, as ordinary S-matrix processes of scattering and decay. Once a
quantum resolution of the spacetime is given, a finite quantum break-time emerges.
As displayed in Eq. (2.164), the result is that the description in terms of a classical
metric breaks down at the latest after tq ≈ 1/(~GNΛ3/2), in agreement with the
findings of [44]. Since the gravitational coupling is α = ~GNΛ, we see that de
Sitter obeys the general relation (2.56), which states that the quantum break-time
scales as 1/α.

For both inflation and the present dark energy correspond to quasi-de Sitter
states, the fact that we see no signs of deviations from the classical metric de-
scription in both cases has important consequences. For the present Universe, it
implies that the cosmological constant could not have been too big since otherwise
quantum breaking would have happened on a timescale shorter than the age of the
Universe. Although this argument cannot explain why today’s dark energy is as
small as it is, it leads to a new perspective on the cosmological constant problem.
For the early Universe, the requirement that no observable quantum breaking takes
place leads to a model-dependent upper bound on the total duration of inflation.

Finally, we discussed if quantum breaking is a sign of a fundamental incon-
sistency of de Sitter. As explained in [44, 50], the reason that this could be an
issue is that the cosmological constant Λ, which sources the spacetime, represents
a fixed parameter of the theory. Whereas Λ is eternally tied to de Sitter, quan-
tum effects cause a complete deviation from it after tq. If this conflict indeed
implies that quantum breaking leads to an inconsistency in the special case of de
Sitter, this results in the quantum breaking bound. It requires that any consistent
theory must exit a quasi-de Sitter state on a timescale that is shorter than the
quantum break-time. This criterion bears similarities to the de Sitter swampland
conjecture [156, 160] in string theory, but unlike the latter, it is not in conflict
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with slow-roll inflation. Instead, it only rules out the regime of self-reproduction.
Moreover, it implies that the present dark energy cannot be constant but must
slowly evolve in time. Finally, an immediate consequence of the quantum breaking
bound (or equivalently the de Sitter swampland conjecture) is that any metastable
de Sitter vacuum is excluded. This has important implications for physics beyond
the Standard Model. It rules out any model with a spontaneously-broken discrete
symmetry and it makes the axion solution to the strong CP problem mandatory.

5.1.2 Storage of Quantum Information

In the second chapter, we turned again to a generic, nongravitational setup and
studied the question of how a quantum system can achieve an efficient memory
storage. Building on the results of [36,204,205], we pointed out that nearly-gapless
modes play a crucial role, i.e. systems that contain those have great capabilities of
information storage. First, nearly-gapless degrees of freedom lead to states that are
almost degenerate in energy and therefore to a big microstate entropy. Secondly,
they cause the decoherence time to be long and moreover they can be excited
by soft external stimuli. Generalizing the models of [204, 205], we subsequently
showed that nearly-gapless modes can emerge due to a general mechanism which
we call assisted gaplessness. The only prerequisites for it to occur are that the
system is bosonic and that it features weak and attractive interactions. In this
case, a high occupation number of one of the modes can lower the energy threshold
for others and in this way assist them in becoming gapless.

Since gravity is bosonic and its interactions are attractive, the question im-
mediately arises if assisted gaplessness could be operative in black holes and de
Sitter and be responsible for their large entropies. As already emphasized in [36],
such a picture would not only pave the way for a microscopic explanation of the
Bekenstein-Hawking and Gibbons-Hawking entropy, but it also opens up the excit-
ing prospect of simulating those gravitational systems. Since assisted gaplessness
takes place in simpler nongravitational systems, which are much easier to control
both experimentally and theoretically, one can use those to draw conclusions about
information storage and processing in black holes and de Sitter. Similarly, such
analogue models have the potential to facilitate the analysis of further systems
of enhanced memory storage, such as neural networks. Finally, it is also very
interesting to study nongravitational systems that exhibit assisted gaplessness in
their own right since they could enable an efficient storage of quantum information
under laboratory conditions.

If states of enhanced memory capacity exist, we generically expect that they
are scarce among all states of a Hilbert space. Therefore, we proposed an ana-
lytic approach for finding them, which we call c-number method and which is a
generalization of the procedure employed in [51]. Apart from greatly facilitating
computations, it also serves to confirm our previous statement that bosonic systems
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with weak and attractive interactions generically feature some states of enhanced
memory capacity. We demonstrated the c-number method on a prototype model,
which we obtained as truncation of a one-dimensional Bose gas with an attractive
4-point interaction and Dirichlet boundary conditions, and numerically confirmed
our findings.

Finally, we discussed the phenomenon of memory burden, which was first an-
alyzed in [206]. Its essence is that in systems of enhanced memory capacity, the
stored information generically leads to a strong backreaction that tends to tie the
system to its initial state. For both de Sitter and black holes, we concluded that
memory burden describes the information-theoretic aspect of quantum breaking.
In the case of inflation, the stored information moreover acts as an observable that
is sensitive to the whole history of the Universe and not only the last 60 e-foldings.
For black holes, it remains an open question whether memory burden leads to a
slowdown of evaporation. If future studies show that this is true, it would con-
tribute to the interest in considering small primordial black holes as dark matter
candidates.

5.1.3 Infrared Physics and Information

Motivated by the importance of nearly-gapless modes for information storage, we
turned to infrared physics in the last chapter. After a brief comment on the
relationship of soft theorems and charge conservation, we reviewed key results on
infrared divergences. The starting point is the observation that in gapless theories
such as QED and perturbative gravity, the soft part of loop corrections leads
to a vanishing amplitude for any nontrivial process [57]. This is not a problem,
however, but a physical result. The probability that scattering takes place without
the emission of any soft bremsstrahlung is zero.

Therefore, a very natural way to deal with infrared divergences is the inclusive
formalism [57–59]. In this approach, one enlarges the final state by infrared radi-
ation, which is defined as a state of arbitrary photon/graviton number but with a
total energy below some resolution scale ε. Doing so leads to a finite total rate.
However, there exists an alternative approach, the dressed formalism [60–65], in
which no infrared radiation is taken into account. Instead, both final and initial
charged states are dressed with a coherent state of soft photons/gravitons that
is characterized by an energy scale r. The justification for this modification of
asymptotic states lies in the fact that gapless theories exhibit nontrivial asymp-
totic dynamics. If one sets r = ε, the dressed formalism leads to the same finite
rate as the inclusive formalism, up to subleading corrections.

This result is surprising for two reasons. First, it is unclear why two very dif-
ferent approaches should yield the same result. Secondly and more importantly,
considering both infrared emission and soft dressing at the same time leads to un-
physical infinite rates. For these reasons, we have developed a combined formalism
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that is able to simultaneously describe both radiation and dressing. The key step is
to give a physical interpretation of the scale r. Based on earlier work [244–246], we
argued that it is set by the inverse timescale of the process in question and thereby
determines the softest radiation that can be produced in the given setup. Thus,
photons with energy above r (but below ε) represent physical infrared radiation
whereas photons softer than r are effectively decoupled and therefore constitute
dressing. We computed the total rate in the combined formalism and showed that
it is independent of r, thereby explaining why the inclusive and dressed formalism
yield the same result.

Subsequently, we went one step further and calculated the density matrix of
the final state. Its diagonal is composed of the known rates, but its off-diagonal
elements contain information about the coherence of the final state. Whereas
the inclusive and the dressed formalism would respectively yield a fully decohered
and a fully coherent density matrix [66, 67], a crucial strength of the combined
formalism is that it leads to a small but nonzero amount of decoherence. This is
what we physically expect because of tracing over unobserved infrared radiation.

The relationship of infrared divergences and quantum coherence has important
implications for the puzzle of black hole information. Namely, we expect that like
any process in gravity, the emission of a Hawking quantum is accompanied by
infrared radiation. This leads to the question of how much information is lost if
we do not observe the soft radiation. In particular, the proposal [56] was made
that infrared gravitons could carry all information of a black hole. In this picture,
the combined system of Hawking quanta and soft gravitons would be pure and
a mixed state would only arise due to tracing over soft radiation. Our results
show, however, that this is not the case. Because Hawking quanta become softer
for bigger black holes, infrared radiation can at most account for a subleading
logarithmic part of the black hole entropy.

Finally, the connection [220] of the soft graviton theorem and asymptotic sym-
metries at null infinity led us to study the proposal of [221–224] that BMS su-
pertranslations could play a crucial role for black hole information. The starting
point of this suggestion is the long-known fact [250] that physical radiation causes
a memory effect, i.e. a permanent displacement of test masses. In turn, the mem-
ory effect can be mapped on a supertranslation diffeomorphism [221]. This fact
that physical radiation, as it is absorbed or emitted by a black hole, can be de-
scribed by a diffeomorphism raises the hope that one could define classical black
hole hair that is nevertheless compatible with the no-hair theorem. Our results
show, however, that such hair cannot be observable in the classical or semiclassical
limit. Although supertranslations can be used as a natural bookkeeping device to
describe absorption and emission, they have no constraining or predictive power
on black hole evaporation.
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5.1.4 Overall Conclusions
One conclusion that we can draw is that the limitations of classical physics tend
to be more severe than naively expected. In particular, the description in terms of
general relativity can break down for macroscopically large gravitational systems.
As we have briefly discussed in the introductory section 1.3.1, this observation
is crucial for understanding the puzzle of black hole information. For de Sitter,
quantum breaking leads to a drastic change of perspective. Whereas the spacetime
is eternal on the classical level, the description in terms of a metric develops a
finite timescale of validity due to backreaction from quantum effects. This has
particularly interesting implications for inflation. It enables the search for new
observables in scenarios that are close to quantum breaking and it rules out models
that last longer than their quantum-break time.

The breakdown of the classical description for black holes and de Sitter imme-
diately highlights the needs for nonperturbative computation techniques beyond
the semiclassical limit. In the absence of those, a viable strategy is to study sim-
pler analogue systems that share important characteristics with gravity. Whereas
the focus is traditionally placed on geometrical features, we have proposed to view
their enhanced memory storage capacity as the key property of black holes and de
Sitter. This make it possible to learn about information storage and processing in
those gravitational systems by studying much simpler models that are accessible
in table-top experiments.

In many fields of particle physics, the problem is not to come up with some
viable model to explain a certain phenomenon. On the contrary, there exist a
plethora of proposed scenarios, e.g. for inflation, dark matter and dark energy.
So the challenge consists in selecting from these manifolds models the one that is
realized in Nature. Typically, the more parameters a model has, the harder it is to
rule it out. For a long time, it was thought that quantum gravity has little to say
about these mostly low-energy questions. This perspective changes, however, if de
Sitter quantum breaking indeed leads to an inconsistency. In this case, a constant
dark energy, inflationary self-reproduction and many well-motivated extension of
the Standard Model are ruled. It is particularly interesting that for more involved
models, it is more likely that they are excluded because of quantum breaking.
Additionally, an inconsistency of de Sitter states makes the existence of the QCD
axion mandatory.

5.2 Outlook
There are many promising ways to continue the research summarized above. For
example, we have seen that computational limitations often make it difficult to
predict in what way the true quantum evolution deviates from the classical de-
scription, i.e. what the “broken” quantum state looks like. Apart from its generic
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conceptual relevance, such a study can have important phenomenological impli-
cations. Namely, it would allow to draw conclusions about what imprints the
1/N -effects, which are sensitive to the whole history of inflation, leave on infla-
tionary perturbations. Similarly, it could be interesting to investigate if there is a
regime in which quantum breaking can lead to observable signatures in the grav-
itational wave signals due to black hole mergers. Finally, an explicit study of the
final state of quantum breaking in a simplified model promises to provide further
insights into the question if it leads to an inconsistency in the special case of de
Sitter.

Concerning the enhanced memory storage, an important task would be to study
analogue models that match the information storage and processing properties of
a black hole as closely as possible (see [206] for a concrete suggestion). If such
systems can be found, it would show that the large entropy of black holes indeed
arises due to a universal phenomenon that is not tied to gravity. Moreover, the
analysis of explicit analogue models allows to investigate if rewriting of information
between different critical levels plays a role in a black hole. On the one hand, this
can show if memory burden leads to a slowdown of evaporation. One the other
hand, one could draw conclusions about the question if fast scrambling [265, 266]
is realized in black holes. While we have shown that critical states of enhanced
memory capacity generically exist in bosonic systems with weak and attractive
interactions, it would additionally be important to investigate to what extent a
system dynamically evolves towards them.1

Although we have concluded that infrared physics alone cannot elucidate the
puzzle of black hole information, it would nevertheless be very interesting to in-
vestigate if we can learn more from it about black hole evolution. Namely, the
great strength of infrared physics is that it is only sensitive to initial and final
states. Therefore, it allows to make statements about the corrections to scattering
processes involving black holes even if we do not know how to actually compute
the diagram itself. Due to collinear divergences that arise for a vanishing elec-
tron mass, such an approach could for example yield constraints on the Yukawa
couplings from black hole physics.2

1In the language of neural networks, this question was already studied in [267].
2First results on this question were already obtained in [268].
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Appendix

A.1 Concerning Chapter 2

A.1.1 Calculation of the Rate of Particle Production
In order to obtain the correct prefactors for the normalizations which we use, we
rederive how a general S-matrix element determines the differential decay rate. We
consider an initial coherent state |N〉, in which a constituent quantum of energy
mg decays to two particles with 4-momenta p1 = (p0,1,

#»p 1) and p2 = (p0,2,
#»p 2).

This leads to the final state |N ′〉⊗ |fΨ〉, where |N ′〉 is a possibly different coherent
state and |fΨ〉 = b̂†#»p 1 b̂

†
#»p 2 |0〉 describes the two external particles. The differential

transition probability is given by the square of the S-matrix element A, divided
by the norms of final and initial state and multiplied by the phase space factor:

dwfi = |A|2

〈N |N〉 〈N ′|N ′〉 〈fΨ|fΨ〉
d3 #»p 1 V

(2π)3
d3 #»p 2 V

(2π)3 = |A|2 d3 #»p 1d3 #»p 2 ,

where we used that coherent states are normalized, 〈N |N〉 = 〈N ′|N ′〉 = 1, and
that 〈fΨ|fΨ〉 =

(
δ(3)( #»0 )

)2
= (V/(2π)3)2. Defining the Feynman amplitudeM via

A = (2π)4δ(mg − p0,1 − p0,2)δ(3)( #»p 1 − #»p 2)M ,

we obtain the differential rate

dΓ = dwfi

T
= |M|2(2π)4V δ(mg − p0,1 − p0,2)| #»p 1|2 d| #»p 1| d2Ω ,

where we regularized the divergence of the one-dimensional δ-distribution with the
help of the time T during which the reaction happens, δ(0) = T

2π . Evaluating the
last δ-distribution, we get

dΓ
dΩ = | #»p 1|V |M|2

16π2mζΨ(p1)2ζΨ(p2)2 ,

with ζΨ(p) = ((2π)32p0)−1/2.
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For our application to particle production, the S-matrix element (2.151) yields
the Feynman amplitude

M = 1
√2mg

K(−p, p′)
√
N ′

V

(
1− ∆N2

8N

)
.

Thus, we get for the differential decay constant:

dΓ
dΩ =

√
m2
g

4 −m
2
Ψ N

′

2πM2
pm

2
g

(
p · p′ + 2m2

Ψ

)2
(

1− ∆N2

4N

)
,

where we plugged in (2.146). After integrating over the angles, we obtain the final
decay constant to leading order in 1/N :

Γ =
2
√

m2
g

4 −m
2
Ψ N

M2
pm

2
g

(
p · p′ + 2m2

Ψ

)2
(

1− ∆N2 − 4∆N
4N

)
.

A.2 Concerning Chapter 3

A.2.1 Review of Periodic Bose Gas
In order to provide a detailed example, we apply the c-number method to the
one-dimensional Bose gas with periodic boundary conditions and attractive four-
point interaction, which we already studied in section 2.2.4 from the perspective of
quantum breaking.1 Based on the analysis of [76], quantum information features of
this system have already been studied in a series of papers [36,40,51–53,136,271].
In particular, the replacement of the Hamiltonian by a c-number function has
already been used to find its critical point in [51].

Our starting point is the Hamiltonian (2.49) in momentum space. As we shall
justify later, we expect that for small coupling, momentum modes with |k| > 1
are suppressed due to their higher kinetic energy. Therefore, we first truncate the
system to the modes with |k| ≤ 1:

Ĥ =
∑
l=±1

â†l âl −
α

4

1∑
l,m,n=−1

â†l â
†
mân+lâm−n . (A.1)

For convenience, we have set ~ = R = 2m = 1. Following the method introduced in
section 3.1.4, we then replace the creation and annihilation operators by c-numbers.
As explained, we have to take into account symmetries in this procedure. The first
one is conservation of particle number, which is incorporated in the replacement
rule of the 0-mode. An additional symmetry of the system consists in momentum

1The repulsive case, in which we are not interested, is the Lieb-Liniger model [269,270].
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conservation. In the superselection sector of zero momentum, it implies that the
expectation values of the particle numbers in the 1- and −1-mode have to be
the same: 〈a†1a1〉 = 〈a†−1a−1〉. Moreover, the Hamiltonian is invariant under an
additional phase symmetry, â1 → eiφâ1 and â−1 → e−iφâ−1. So in total, we have
to eliminate an absolute value and a phase. In addition to the replacement rule
(3.17b) due to particle number conservation, we consequently get: a−1 → a1.
Thus, the Bogoliubov replacement (3.17) reads

#̂»a =
(
â−1
â1

)
→
(
a1
a1

)
, #̂»a

†
=
(
â†−1
â†1

)
→
(
a∗1
a∗1

)
, (A.2)

and
â0 →

√
N − 2|a1|2 , â†0 →

√
N − 2|a1|2 . (A.3)

This gives the following Bogoliubov Hamiltonian:

Hbog = 2|a1|2 −
α

4

(
N2 + 2N(a1 + a∗1)2 − 2|a1|2(3|a1|2 + 2a2

1 + 2a∗21 )
)
. (A.4)

For this so obtained complex-valued function, we want to find a flat direction.
First we look for an extremal point by finding a solution to (3.21):

∂Hbog

∂a1
= 2a∗1 − α

(
N(a1 + a∗1)− 3a2

1a
∗
1 − 3a1a

∗2
1 − a∗31

)
= 0 . (A.5)

An obvious solution is a1 = 0.2 The second step is to evaluate the matrix M of
second derivatives at this point. We need to determine when it fulfills (3.22), i.e.
when its determinant vanishes:

detM = −4 + 4αN = 0 . (A.6)

This is the case for a collective coupling λ = αN = 1. Therefore, we expect
a critical mode to appear for λlm = 1 in a state where all particles are in the
0-mode.

This fully matches our previous finding in section 2.2.4. As is evident from Eq.
(2.53), also the bilinear quantum Hamiltonian shows that a nearly-gapless mode
emerges for λ = 1. Moreover, this finding has been confirmed by a numerical
analysis of the full Hamiltonian for finite N [76,136,271]. As is expected, both the
gap and the critical value of λ receive corrections that are suppressed as a power
of 1/N .

2There are two other solutions at a1 ≈ ±0.5345
√

αN−1
α . However, the determinant of the

second derivative matrixM never vanishes at these points, i.e. there is no flat direction.
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A.2.2 Formulas
• First and second derivative of Bogoliubov Hamiltonian (3.44) for ∆2 = ∆3 =

0:
1
N

∂Hbog

∂x
= 1

16

[
− 16λ sin(2θ)− 2λ sin(4θ) + 16 cos(2θ)− 9λ+ 28λx sin(2θ)

+ 2λx sin(4θ) + 3λ(x− 1) cos(4θ) + 21λx− 4
]
, (A.7a)

1
N

∂Hbog

∂θ
= 1

4(x− 1)
[
− 8 sin(2θ) + λ(x− 1) cos(4θ)

− λ cos(2θ)
(
3(x− 1) sin(2θ)− 7x+ 1

)]
, (A.7b)

1
N

∂2Hbog

∂x2 = 1
16λ

(
28 sin(2θ) + 2 sin(4θ) + 3 cos(4θ) + 21

)
, (A.8a)

1
N

∂2Hbog

∂x ∂θ
= 1

4
(
− 8 sin(2θ) + 2λ(7x− 4) cos(2θ)

+ λ(x− 1)(2 cos(4θ)− 3 sin(4θ))
)
, (A.8b)

1
N

∂2Hbog

∂θ2 = 1
2(1− x)

(
8 cos(2θ) + λ

(
(7x− 1) sin(2θ) + 2(x− 1) sin(4θ)

+ 3(x− 1) cos(4θ)
))

. (A.8c)

• Second-order expansion of the full quantum Hamiltonian (3.42) around the
point defined by the replacements (3.43) of macroscopic occupation for ∆2 =
∆3 = 0:

Hquad = H
(1)
quad + 1

2H
(2)
quad , (A.9)

where we neglected the constant zeroth order. The first and second order
are given by

H
(1)
quad√
N

= 1
8
√

(1− x) cos2(θ)

[

+ 6â2
√
x
(

3λ(1− x)3/2 sin3(θ) + λ
√

1− x (4x− 3) sin(θ)

+ (λ(2x− 1) + 1)
√
−(x− 1) cos2(θ) + λ tan2(θ)

(
(1− x) cos2(θ)

)3/2
)

+ â3

(
λ(x− 1)2 cos(4θ) + λ(7x− 1)(x− 1) cos(2θ)

+
√

4− 4x sin(θ)
√
−(x− 1) cos2(θ) (3λ(x− 1) cos(2θ) + 8)

)]
+ h.c. (A.10)
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and

H
(2)
quad = 1

128 ((1− x) cos2(θ))3/2

[

+ 16â2â2λ

(√
1− x ((23− 16x)x− 4) sin(θ)

+ 4(4x− 1)
(
(1− x) cos2(θ)

)3/2

− (1− x)3/2 sin3(θ)(2(x− 1) cos(2θ) + 21x− 6)
)

+ 16â†2â2

(
2 sec2(θ)(λ(10x− 1) + 3)

(
(1− x) cos2(θ)

)3/2

+ sin(θ)
(
− 14λ(1− x)5/2 sin4(θ)− 7λ(1− x)3/2(7x− 4) sin2(θ)

− 6λ tan3(θ) sec(θ)
(
−(x− 1) cos2(θ)

)5/2
+ λ
√

1− x ((49− 32x)x− 14)

− 2 tan(θ) sec(θ)(λ(13x− 4) + 3)
(
(1− x) cos2(θ)

)3/2
))

+ 16â2â3λ
√
x
(
(1− x) cos2(θ)

)(
8(x− 1) cos(2θ) + 3x sec2(θ)

+ 10
√

1− x sin(θ)
√
−(x− 1) cos2(θ) − x+ 1

)

+ 16â2â
†
3λ
√
x
(
(1− x) cos2(θ)

)(
10(x− 1) cos(2θ) + 3x sec2(θ)

+ 2
√

1− x sin(θ)
√
−(x− 1) cos2(θ) + x− 1

)

+ â3â3λ(x− 1)
(

32 cos(2θ)
√

(1− x) cos2(θ) + 32x
√

(1− x) cos2(θ)

+ 32 cos(4θ) sec2(θ)
(
(1− x) cos2(θ)

)3/2

− 6
√

1− x sin(θ)(4(3x− 2) cos(2θ) + 3(x− 1) cos(4θ) + 17x− 5)
)

+ 16â3â
†
3

(
(1− x) cos2(θ)

)
sec2(θ)

(
2(λ(3x− 1) + 8)

√
(1− x) cos2(θ)

+ sin(θ)
(

sin(θ)
(
λ sin(θ)

(
5(x− 1) sin(θ)

(
3
√

1− x sin(θ)

+ 4
√

(1− x) cos2(θ)
)

+ 9
√

1− x (3− 4x)
)

− 2(λ(13x− 11) + 8)
√

(1− x) cos2(θ)
)

+ 12λ
√

1− x (2x− 1)
))

+ h.c. . (A.11)
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A.3 Concerning Chapter 4

A.3.1 Matching in Schwarzschild Coordinates
In this section, we demonstrate explicitly how we can transform a Schwarzschild
metric with nontrivial supertranslation field from advanced to retarded coordi-
nates. In this way, we show how we can naturally identify the advanced super-
translation field C− with the retarded one C+. We start from the Schwarzschild
metric gv ,0µν in advanced coordinates without supertranslation field:

ds2 = −(1− 2GNM

r
)dv2 + 2dvdr + r2dΩ2 . (A.12)

The corresponding generators of supertranslations are

ξvv =f− , (A.13a)

ξrv =− 1
2D

2f− , (A.13b)

ξAv =f
−, A

r
, (A.13c)

which are characterized by an arbitrary function f− on the sphere. Thus, the
supertranslated metric is

gvµν(f−) = gv ,0µν + Lξv(f−)g
v ,0
µν . (A.14)

In retarded coordinates, the Schwarzschild metric gu ,0µν without supertranslation
field is:

ds2 = −(1− 2GNM

r
)du2 − 2dudr + r2dΩ2 . (A.15)

The corresponding generators of supertranslations are

ξvu =f+ , (A.16a)

ξru =1
2D

2f+ , (A.16b)

ξAu =− f+, A

r
, (A.16c)

where it is important to note that the signs of ξru and ξAu have changed with respect
to (A.13). The supertranslated metric is:

guµν(f+) = gu ,0µν + Lξu(f+)g
u ,0
µν . (A.17)

The task now is to transform gvµν to retarded coordinates. As explained in
section 4.4.2, there can in general not be a unique way to match the advanced and
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retarded supertranslation fields. However, a natural choice in a static metric is to
require that the spherical metrics match: gvAB(f−) = guAB(f+). Therefore, we use
the diffeomorphism Dm defined by

v = u+ 2
∫ r

r0

1
1− 2GNM

r

dr′ − D2f−

1− 2GNM
r

− 2f− . (A.18)

Then it turns out that

Dm
(
gvµν(f−)

)
= gu ,0µν − Lξu(f−)g

u ,0
µν = guµν(−f−) . (A.19)

Thus, we identify
f+ = −f− . (A.20)

Up to a sign, the supertranslation field in advanced coordinates matches the re-
tarded one anglewise. With this choice, not only the spherical metrics match but
also the g00-components, i.e. the Newtonian potentials.

A.3.2 Explicit Solution for Goldstone Supertranslation of
a Planet

Step 1: Absorption

The Goldstone supertranslation consists of two steps: First, an initially spherically
symmetric planet absorbs as wave. As is well-known (see e.g. (9.3) in [272]), the
metric of a static spherically symmetric spacetime can be cast in the general form

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 , (A.21)

where all physical information is contained in the tt- and rr-components. Since we
want to describe a planet, there should neither be a surface of infinite redshift, i.e.
A(r) > 0 ∀ r, nor an event horizon, i.e. B(r) < ∞ ∀ r. Furthermore, asymptotic
flatness implies that A(r) r→∞−→ 1 and B(r) r→∞−→ 1 sufficiently fast. Using the
transformation

v = t+
∫ r

r0
dr′
√
B

A
, (A.22)

we obtain the metric gvµν in advanced BMS-gauge:

ds2 = −Adv2 + 2
√
AB dvdr + r2dΩ2 , (A.23)

which is suited to describe incoming radiation. Note that this metric describes the
whole spacetime and not only its asymptotic region, i.e. r →∞.
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We will restrict ourselves to infinitesimal supertranslations. In advanced time,
these are generated by

ξvv =f− , (A.24a)

ξrv =− 1
2rDBξ

B
v , (A.24b)

ξAv =f−, A
∫ ∞
r

dr′(
√
AB r′−2) , (A.24c)

where an arbitrary function f− on the sphere determines the change of the su-
pertranslation field. We denote it by f− instead of T− in this appendix to avoid
confusion with the energy-momentum-tensor of the wave. The minus-superscript
indicates that we deal with a supertranslation in advanced coordinates. Our goal is
to realize the infinitesimal diffeomorphism defined by (A.24) in a physical process,
i.e. outside the planet, we want to have the stationary metric gvµν before some time
v0 and after some point of time v1, we want to end up in the stationary metric
gvµν +Lξv(f−)g

v
µν . For v0 < v < v1, physical radiation interpolates between the two

metrics. Inside the planet, the wave should be absorbed so that the transformation
fades out and the metric around the origin remains unchanged. Adding as final
ingredient a change of the Bondi mass µ, which is necessary to ensure the positive
energy condition, we obtain

δgvµν = τv0, v1(v)s−(r)
(
Lξv(f−)g

v
µν + 2µGN

r
δ0
µδ

0
ν

)
, (A.25)

where 0 ≤ τv0, v1(v) ≤ 1 parametrizes the interpolation, i.e. τv0, v1(v < v0) = 0 and
τv0, v1(v > v1) = 1. The function s−(r) describes the absorption of the wave by
the planet. It has the property that it is monotonically increasing with s−(0) = 0
and s−(∞) = 1, where s−(0) = 0 ensures that the wave is fully absorbed before
the origin and no black hole forms. Moreover, s− ′(r) 6= 0 is only permissible
whenever the local energy density of the planet is nonzero. The magnitude of
s−
′(r) determines how much absorption happens at r. It is crucial to note that the

transformation s−(r)Lξv(f−)gµν is a diffeomorphism only where s−(r) is constant.
Thus, the transformation (A.25) acts as a diffeomorphism only outside the planet
but not inside. This reflects the fact that we want to obtain a physically different
planet. A transformation which acts as a diffeomorphism everywhere could not
achieve this.

Since we work with infinitesimal supertranslations, it is important that we
stay within the regime of validity of this first-order approximation, i.e. that terms
linear in f− dominate. As it will turn out in the calculation, this is the case
if max(θ,ϕ) |f−| � v1 − v0. This means that the timeshift induced by the su-
pertranslation must be much smaller than the timescale of the process, i.e. the
supertranslation must be performed slowly. We will choose v1 − v0 such that this
is the case and so that we can neglect all higher orders in f− when we calculate
the Einstein equations.
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We have to show that the transformation (A.25) leads to a valid solution of
the Einstein equations. Thus, if we calculate the Einstein Gµν and consequently
the new energy-momentum-tensor Tµν , we have to demonstrate that this is a valid
source. To this end, we have to perform two checks. First of all, it must be con-
served, T ;µ

µν = 0. This is trivially true in our construction because of the Bianchi
identity, G ;µ

µν = 0. Secondly, we have to show that Tµν fulfills an appropriate en-
ergy condition. For that purpose, we first note that this perturbation only depends
on the local geometry, except for ξµv and s−(r), which also depend on spacetime
points at bigger radii. Thus, outside the planet, we have the same solution as
in [224], except for the fact the we perform our supertranslation slowly:

T00 = 1
4πr2

[
µ− 1

4D
2(D2 + 2)f− + 3M

2r D
2f−

]
τ ′v0, v1(v) , (A.26a)

T0A = 3M
8πr2DAf

−τ ′v0, v1(v) , (A.26b)

where we used that there is no absorption outside the planet: s−(r > R) = 1.
Obviously, the energy condition is fulfilled. At this point, we remark that leaving
out all subleading parts, which are proportional to M , would also lead to a valid
wave in the metric (A.23), i.e. T ;µ

µν would also be true to all orders if one only
considered the leading order of (A.26). This means that we add the subleading
parts to (A.26) not because of energy conservation but since we want to realize
the transition (A.25) not only to leading order in 1/r, but to all orders.3

Fortunately, we do not either have to worry about the energy condition inside
the planet. For a small enough perturbation, this is true since the energy condition
inside a planet is not only marginally fulfilled. This means that s−′(r) can be
nonzero inside the planet: This corresponds to absorption of the wave by the
planet.

Lastly, we have to show that the wave is still a valid solution after it has been
partly absorbed. For the purpose of illustration, we model the planet as a sequence
of massive shell with vacuum in between, Tµν = 0. In that case, the only nontrivial
question is whether (A.25) fulfills the energy condition after it passed some or all
of the shells. Therefore, we calculate the energy-momentum-tensor in this region.
By Birkhoff’s theorem, the local geometry corresponds to a Schwarzschild solution
with diminished mass M̃ (where M̃ can be zero). It only depends on the matter
which it has passed via ξµv . We parameterize the difference of ξµv and the vector
field one would get in a pure Schwarzschild geometry of mass M̃ by

σ :=
∫ Rmax

Rmin
dr′((

√
AB − 1)r′−2) , (A.27)

3Of course, energy conservation relates the two subleading parts of T00 and T0A. When we
choose one, it determines the other.
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where we have no matter for r > Rmax and between r and Rmin.4 Explicitly, this
means that we can write

ξAv =f−, A
(1
r

+ σ
)
,

where it is important that σ does not depend on r in our region of interest. Of
course, σ = 0 corresponds to the case when there is no matter outside.

With the help of Mathematica [216], we compute:

T00 = 1
4πr2

[
µ̃− (1 + σr)

(
1
4D

2(D2 + 2)f̃− − 3M̃
2r D

2f̃−
)]

τ ′v0, v1(v) , (A.28a)

T0A =
[

3M̃
8πr2DAf̃

− + σ

16πDA(D2 + 2)f̃−
]
τ ′v0, v1(v) , (A.28b)

TAB =− σr

8π
[(

2DADB − γABD2
)
f̃−
]
τ ′v0, v1(v) , (A.28c)

where f̃− = s−(r)f− is the supertranslation which is attenuated because of ab-
sorption in the outer shells. It is crucial to note that s− ′(r) = 0 in this calculation
since we are not inside one of the shells of the planet and likewise µ̃ = s−(r)µ. As
we can estimate σ very crudely as σ < 1/R, we see that for sufficiently large µ, the
energy condition is fulfilled. With a more accurate estimate, we expect that the
freedom of choosing µ is not restricted when the wave passes a massive shell. In
summary, we have shown that the metric (A.25), which describes the dynamical
transition from a spherically symmetric planet to a counterpart with nontrivial
angular distribution of mass, is a valid solution.

Step 2: Emission

The second step is to describe the emission of the wave by the planet. Thus, our
initial metric is the one after absorption, as determined by equation (A.25):

δgvµν = s−(r)
(
Lξv(f−)g

v
µν + 2µGN

r
δ0
µδ

0
ν

)
. (A.29)

As we want to consider emission, our first step is to transform it to retarded
coordinates. Intuitively, it is clear that it should be possible to describe a slightly
asymmetrical planet also in retarded coordinates. While it is generically hard
to write down the corresponding diffeomorphism which connects the two metrics,
we can use that the metric of a planet does not differ from Schwarzschild in the
exterior region. Therefore, we can use the diffeomorphism (A.18) to obtain

guµν = gu, 0µν + s−(r)
(
Lξu(−f−)g

u, 0
µν + θ(R− r)dev

)
, (A.30)

4We use that AB = 1 in a Schwarzschild geometry of arbitrary mass.
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where gu, 0µν is the metric of the initial, spherically symmetric planet in retarded
coordinates. This means that we apply a supertranslation in retarded coordinates
which is defined by the function f− used to defined the advanced supertranslation.
The function dev accounts for the fact that we do not know the continuation of the
matching diffeomorphism (A.18) to the interior of the planet. Therefore, guµν might
deviate slightly from BMS-gauge but only in the interior. We expect, however,
that the matching diffeomorphism can be continued such that dev = 0. Finally,
we want to point out that guµν(r = 0) = gu, 0µν (r = 0) since s−(r = 0) = 0, i.e.
the wave does not reach the center and the mass distribution of the planet is still
spherically symmetric around r = 0.

The case of the planet provides us with another justification why the matching
(A.20) is natural. With this identification, both the metric (A.29) in advanced
coordinates and the metric (A.30) in retarded coordinates cover the whole man-
ifold. Extrapolating the results of [257, 258], where finite supertranslations of
Schwarzschild and Minkowski are discussed, we expect that for any other match-
ing, i.e. for any other value of the supertranslation field, this is no longer the case.
If this is true, the requirement that the BMS-coordinate system covers the whole
manifold singles out a unique value of the advanced supertranslation field as well
as a unique value of the retarded supertranslation field, and therefore a coordinate
matching.

Next, we want to describe how the metric (A.30) emits a wave. This wave
should realize a supertranslation described by f+, which is generically different
from f−:

δguµν = τu0, u1(u)s+(r)
(
Lξu(f+)g

u, 0
µν −

2µGN

r
δ0
µδ

0
ν

)
, (A.31)

where we used that Lξu(f+)g
u
µν = Lξu(f+)g

u, 0
µν to first order in f+ and f−. Thus,

working only to first order simplifies our calculations significantly since we can
simply use the calculations for the absorption. The wave (A.28) becomes:

T00 = 1
4πr2

[
µ̃− (1 + σr)

(
1
4D

2(D2 + 2)f̃+ − 3M̃
2r D

2f̃+
)]

τ ′u0, u1(u) , (A.32a)

T0A =−
[

3M̃
8πr2DAf̃

+ + σ

16πDA(D2 + 2)f̃+
]
τ ′u0, u1(u) , (A.32b)

TAB =− σr

8π
[(

2DADB − γABD2
)
f̃+
]
τ ′u0, u1(u) . (A.32c)

As for the absorption, we have shown that we can realize the transformation (A.31)
with a physical wave.

Finally, we analyze the joint effect of absorption and emission. Combining the
transformations (A.25) and (A.31), we get total total change of the metric:

δgtotµν = θ(r −R)Lξu(f+−f−)g
u, 0
µν

+ θ(R− r)
(
s+(r)Lξu(f+)g

u, 0
µν − s−(r)Lξu(f−)g

u, 0
µν + dev

)
, (A.33)
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where we used retarded coordinates. As desired, the mass of the planet stays
invariant. Moreover, δgtotµν acts as a diffeomorphism outside the planet, namely it is
the difference of the advanced supertranslation, described by f−, and the retarded
supertranslation, described by f+. If we furthermore assume that the term dev,
which reflects our incomplete knowledge of the matching between advanced and
retarded coordinates in the planet, is zero, we see that the metric does not change
for f− = f+. We obtain a trivial transformation if the angular energy distribution
of ingoing and outgoing radiation is anglewise the same.
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