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Abstract 

The trithorax group (trxG) of genes encodes diverse transcriptional regulators that play a 

pivotal role in development of animals and plants. The characteristic property of trxG proteins is 

to maintain active transcription of their target genes by antagonizing the action of specific 

transcriptional repressors, the Polycomb group (PcG), at these genes. Together, PcG and trxG 

proteins form a system of counterbalancing transcriptional regulators that controls the correct 

spatial and temporal expression of developmental regulator genes in the body plan of 

multicellular organisms. The canonical target genes of the PcG/trxG system in animals are HOX 

genes. HOX genes encode another group of transcription factors that determine and preserve the 

identity of body structures in their specific expression domains. Loss of trxG function at an 

actively transcribed HOX gene results in the silencing of this gene by PcG proteins. The phenotypic 

consequences are morphological abnormalities in the body plan known as the classical homeotic 

phenotypes. In this thesis, I studied the trxG protein Absent, small, or homeotic discs 1 (Ash1). 

Genetic studies originally identified Ash1 as a trxG member in Drosophila based on its homeotic 

mutant phenotype. At the molecular level, Ash1 functions as a histone methyltransferase 

(HMTase) with specificity for di-methylation of lysine 36 in histone H3 (H3K36me2). The 

deposition of H3K36me2 is generally believed to be the means of Ash1 to oppose PcG action at 

target genes. However, the Ash1 protein alone has only poor HMTase activity. Structural studies 

have shown that the Ash1 catalytic domain is actually auto-inhibited. This led to the suggestion 

that Ash1 may be controlled by an unknown activation mechanism, possibly involving hitherto 

undiscovered interactors of Ash1. 

As first step in this study, I purified and characterized Ash1 complexes from Drosophila to 

investigate the regulation and function of Ash1 HMTase activity. The purifications of Ash1 

revealed that the protein is tightly associated with two other proteins: the Drosophila orthologue 

of human MORF4-related gene on chromosome 15 (MRG15) and the 55 kDa subunit of Chromatin 

assembly factor 1 (Caf1-55). Reconstitution of this assembly with recombinant proteins confirmed 

that Ash1, MRG15 and Caf1-55 together form a stable complex that I named AMC. Further 

analysis of the interactions in AMC showed that Ash1 binds MRG15 via a conserved FxLP-motif. 

Intriguingly, the interaction with MRG15 proved to strongly stimulate the Ash1 catalytic activity 

for H3K36 di-methylation on recombinant nucleosomes in vitro. 

In order to investigate the MRG15 function in vivo, I generated an MRG15 deletion allele 

in Drosophila. To learn about Ash1 HMTase function in transcription, an ash1 mutant carrying a 

point mutation in the catalytic Ash1 domain that disrupts its HMTase activity was made. Genetic 
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analyses of both mutants revealed that the MRG15 null and the ash1 catalytic phenotypes are 

very similar and highly specific. In particular, MRG15 null and ash1 catalytic mutants complete 

embryonic and larval development and undergo metamorphosis, but exhibit severe homeotic 

transformations caused by the loss of expression of multiple HOX genes in the adult stage. 

Remarkably, neither of the two mutants showed any other obvious morphological aberrations. 

These results strongly suggest that MRG15 is also important for AMC enzymatic activity in vivo. 

Moreover, the clearly homeotic mutant phenotype identifies MRG15 as a novel trxG gene.  

Apart from AMC, Drosophila possesses two other H3K36 HMTases, Nuclear receptor-

binding SET domain protein (NSD) and SET domain-containing protein 2 (SET2). I assessed the 

contribution of AMC to the global amount of cellular H3K36me2 and found that, consistent with 

the specific phenotypes of ash1 and MRG15 mutants, H3K36me2 bulk levels were not detectably 

reduced in these mutants. However, applying chromatin immunoprecipitation assays, I detected a 

strong reduction in H3K36me2 levels at the AMC target gene Ultrabithorax (Ubx) in mutants 

lacking Ash1.  

The findings reported in this work advance the understanding of the Ash1 HMTase 

function on a biochemical as well as on a genetic level. Ash1 was purified in a novel complex, 

AMC, that was shown to classify as a trxG complex. The discovery that the AMC subunit MRG15 is 

critically required for the Ash1 HMTase activity resolves how Ash1 becomes catalytically 

stimulated. The observation of loss of HOX gene expression in the ash1 catalytic mutant is 

consistent with the decrease in H3K36me2 levels at Ubx in the absence of Ash1. Both analyses 

together reveal H3K36 di-methylation of HOX gene chromatin as the mechanism by which AMC 

maintains active HOX gene expression. 
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Zusammenfassung 

Proteine der Trithorax-Gruppe (trxG) sind Regulatoren der Gentranskription mit 

entscheidenden Funktionen in der Entwicklung von Tieren und Pflanzen. Ihre charakteristische 

Eigenschaft ist es die Transkription von Zielgenen aufrecht zu erhalten, indem sie den Aktivitäten 

der transkriptionsreprimierenden Proteine der Polycomb-Gruppe (PcG) entgegensteuern. 

Zusammen bilden PcG- und trxG-Proteine ein ausgewogenes System antagonistisch wirkender 

Transkriptionsregulatoren, das für die zeitlich und örtlich korrekte Expression 

entwicklungsregulatorischer Gene im Körperbauplan vielzelliger Organismen verantwortlich ist. 

Die kanonischen Zielgene des PcG/trxG-Systems in Tieren sind HOX-Gene. HOX-Gene codieren 

wiederum für Transkriptionsfaktoren, die innerhalb ihrer Expressionsdomänen die Identität von 

Körperstrukturen determinieren und erhalten. Der Verlust der Funktion von trxG-Proteinen an 

einem aktiv transkribierten HOX-Gen führt zur „Übernahme“ durch PcG-Proteine, die das 

betreffende Gen „stilllegen“. Morphologische Anomalien im Körperbauplan, die klassischen 

homöotischen Phänotypen, sind die Folge. In meiner Doktorarbeit habe ich das trxG-Protein 

„Absent, small, or homeotic discs 1“ (Ash1) erforscht, das ursprünglich in genetischen Studien 

anhand seines homöotischen Mutationsphänotyps in Drosophila identifiziert wurde. Auf der 

molekularen Ebene agiert Ash1 als Histon-Methyltransferase (HMTase), die spezifisch das Lysin 36 

des Histons H3 dimethyliert (H3K36me2). Es wird vermutet, dass Ash1 PcG-Proteinen 

entgegenwirkt, indem es das Chromatin an gemeinsamen Zielgenen mit H3K36me2 modifiziert. 

Isoliertes Ash1-Protein weist alleine allerdings nur schwache HMTase-Aktivität auf. 

Strukturstudien haben gezeigt, dass der Zugang zur katalytischen Tasche in Ash1 durch ein 

autoinhibitorisches Element blockiert wird. Dies lässt vermuten, dass die enzymatische Aktivität 

von Ash1 über einen unbekannten Mechanismus stimuliert wird, an dem bisher nicht 

beschriebene Ash1-Bindungspartner beteiligt sein könnten.  

Im ersten Schritt meiner Doktorarbeit reinigte ich Ash1-Komplexe aus Drosophila auf und 

charakterisierte diese, um die Regulation und Funktion der HMTase-Aktivität von Ash1 zu 

untersuchen. In den Aufreinigungen wurden mit Ash1 zwei weitere Proteine stark angereichert, 

die als spezifische Bindungspartner in Frage kamen: das Drosophila-Ortholog des humanen 

„MORF4-related gene on chromosome 15“ (MRG15) und das „55 kDa subunit of Chromatin 

assembly factor 1“ (Caf1-55). Rekonstitutionsexperimente mit rekombinanten Proteinen zeigten, 

dass Ash1, MRG15 und Caf1-55 in der Tat zusammen einen stabilen Komplex formen, der AMC 

genannt wurde. Wie weitere Analysen der Interaktionen in AMC aufdeckten, bindet Ash1 MRG15 
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über ein konserviertes FxLP-Motiv. Bemerkenswerterweise stimulierte diese Wechselwirkung in 

vitro die katalytische Aktivität von Ash1 H3K36 zu di-methylieren.  

Mit dem Ziel die Funktion von MRG15 auch in vivo zu erforschen, generierte ich ein 

Deletionsallel von MRG15 in Drosophila zur Charakterisierung von MRG15-Nullmutanten. Um die 

Funktion der HMTase-Aktivität von Ash1 in der Transkription zu untersuchen, wurde zudem eine 

ash1-Mutante mit einer Punktmutation in der katalytischen Ash1-Domäne, die zu Inaktivität führt, 

hergestellt (ash1-katalytische Mutante). In genetischen Analysen beider Mutanten zeigte sich, 

dass der MRG15-Null- dem ash1-katalytischen Phänotyp stark ähnelt und beide sehr spezifisch 

sind. Sowohl die MRG15-Null- als auch die ash1-katalytischen Mutanten beenden die 

Larvenstadien und durchlaufen die Metamorphose, weisen aber im Adultstadium starke 

homöotische Transformationen auf, die auf den Expressionsverlust mehrerer HOX-Gene 

zurückgehen. Bemerkenswerterweise wurden in keiner der beiden Mutanten weitere 

morphologische Anomalien neben den homöotischen Transformationen gefunden. 

Zusammengenommen legen die Ergebnisse der genetischen Analysen nahe, dass MRG15 auch in 

vivo eine wichtige Rolle für die enzymatische Aktivität von AMC spielt. Darüber hinaus identifiziert 

sein eindeutig homöotischer Mutationsphänotyp MRG15 als neues trxG-Gen.  

Neben AMC verfügt Drosophila über zwei weitere HMTasen, die spezifisch H3K36 

methylieren: das „Nuclear receptor-binding SET domain protein“ (NSD) und das „SET domain-

containing protein 2“ (SET2). Ich analysierte den Beitrag von AMC zur Gesamtheit an zellulärem 

H3K36me2 und stellte dabei fest, dass die H3K36me2-Gesamtmenge in ash1-Null- und MRG15-

Nullmutanten in Übereinstimmung mit ihren spezifischen Phänotypen nicht im detektierbaren 

Rahmen reduziert ist. Am AMC-Zielgen Ultrabithorax (Ubx) dagegen zeigten Chromatin-

Immunpräzipitations-Experimente eine starke Reduktion der H3K36me2-Level in ash1-

Nullmutanten.  

Die Ergebnisse dieser Doktorarbeit bringen das Verständnis der Funktion der Ash1-

HMTase auf der biochemischen wie auch auf der genetischen Ebene wesentlich voran. Ash1 

wurde in einem zuvor unbekannten Protein-Komplex, AMC, aufgereinigt, von dem die 

genetischen Analysen seiner Untereinheiten zeigten, dass er als trxG-Komplex eingestuft werden 

kann. Die Entdeckung, dass die AMC-Untereinheit MRG15 für die HMTase-Aktivität von Ash1 

entscheidend ist, erklärt, wie Ash1 stimuliert wird. Die Ergebnisse, dass ash1-katalytische 

Mutanten einen starken Verlust an HOX-Gen-Expression aufweisen und dass die H3K36me2-Level 

am Ubx-Gen in Abwesenheit von Ash1 wesentlich reduziert sind, bestätigen einander. Beide 

Analysen zusammengenommen zeigen, dass die Dimethylierung von H3K36 im Chromatin von 

HOX-Genen der Mechanismus ist, über den der AMC-Komplex PcG-Proteinen entgegenwirkt und 

die Expression von HOX-Genen aufrechterhält. 
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1 Introduction 

1.1 Polycomb-group and trithorax-group transcriptional 

regulators in development 

Metazoans and the majority of plants develop through cell divisions and cell 

differentiations from a totipotent unicellular zygote into multicellular organisms that are 

composed of a broad spectrum of various cell types. Certain cell types together assemble to 

higher-order structures, such as organs or body segments. The latter are perceived as serially 

repeated units with related characteristics along the anterior-posterior body axis of bilaterian 

animals. Each structure in the body plan of multicellular organisms is dedicated to a specific 

function that defines its own identity. How these identities are determined at the onset of 

development and how they are maintained during the entire life span are the major questions in 

developmental biology. Intriguingly, the different cell types, that represent the basal building 

blocks of the body plan, all share the same genotype. By now, we know that it is the specific set of 

genes expressed out of all genes of a given genotype that makes the difference and that is 

characteristic for each biological structure, e.g. cell types, organs or segments. But what are the 

regulatory mechanisms behind and what are their means to ensure that in each structure only the 

corresponding identity-forming gene-set is expressed? Answers to the latter point emerged with 

more and more detailed understanding of epigenetic mechanisms as means to establish heritable 

transcriptional states beyond the DNA sequence.  

The focus of the work presented here lies on the protein Absent, small, or homeotic discs 

1 (Ash1). Ash1 is a member of the Polycomb group/trithorax group (PcG/trxG) system that is 

constituted of transcriptional regulators responsible for the maintenance of the identity of body 

structures in animal and plant development. PcG and trxG proteins control by epigenetic 

mechanisms which identity-defining genes are expressed in a given structure and which are not. 

In this manner, they regulate a large variety of developmental processes, such as vegetative 

growth, flower formation and flowering time in plants as well as cell proliferation and stem cell 

maintenance in mammals and preservation of segment identity in bilaterian animals (reviewed in 

Pu & Sung, 2015; Grossniklaus & Paro, 2014). Segment identity is maintained by PcG and trxG 

proteins through transcriptional regulation of the HOX gene family. HOX genes are the canonical 

targets of the PcG/trxG system in animals and shall be introduced in detail in the following.    
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1.1.1 Characteristics of HOX genes, the classical target genes of the PcG/trxG 

system 

Originally, HOX genes were identified in Drosophila melanogaster and have been studied 

most extensively in this model organism. They will therefore be described here using mainly 

Drosophila* as an example. The Drosophila body is divided into segments from the anterior to the 

posterior end of the body axis. Along the anterior-posterior body axis, HOX genes are expressed in 

restricted specific domains, that are nearly superimposable with the body segments, under the 

regulation of the PcG/trxG system and other transcription factors (described below in para 1.1.2). 

Figure 1 shows the HOX gene expression domains in a post-gastrulation Drosophila embryo. In 

their domains, HOX genes function as transcriptional regulators themselves that control the 

transcription of genes which ultimately form the identity of the corresponding segment. For 

correct morphogenesis, segment identities need to be preserved from the embryo up to the adult 

stage by maintenance of the pattern of HOX gene expression domains throughout development 

(compare embryo and adult fly in Figure 1). 

Besides their segment-specific expression and function, members of the HOX gene family 

have one structural characteristic in common, the presence of a homeobox in their sequence. The 

homeobox is a conserved element encoding for the DNA-interacting homeodomain. Via the 

homeodomain, HOX proteins bind to cis-regulatory adenine-thymine rich elements in their target 

genes (Beachy et al, 1988; Samson et al, 1989; Noyes et al, 2008; Berger et al, 2008). 

Within the Drosophila genome, HOX genes are organized in two homeotic clusters, the 

Antennapedia complex (ANT-C) and the bithorax complex (BX-C) (Lewis, 1978; Kaufman et al, 

1980; Lewis et al, 1980). The ANT-C comprises the genes labial (lab), proboscipedia (pb), 

Deformed (Dfd), Sex combs reduced (Scr) and Antennapedia (Antp); the BX-C contains the genes 

Ultrabithorax (Ubx), abdominal A (abd-A) and Abdominal B (Abd-B). Interestingly, the order of the 

HOX genes on the chromosome, with the exception of pb, corresponds to the order of the HOX 

gene expression domains along the anterior-posterior body axis, as sketched in Figure 1 and as 

described by Harding et al, 1985 and Akam, 1987. This phenomenon is known as spatial 

collinearity. 

Sequences and the clustered organization of HOX genes are highly conserved from insects 

to vertebrates. Vertebrates possess several copies of one homeotic cluster, that contains sub-

clusters orthologous to both Drosophila clusters, ANT-C as well as BX-C. The copies of the 

vertebrate cluster have been suggested to originate from gene duplication of an ancestral HOX 

cluster common with insects (Graham et al, 1989; Duboule & Dollé, 1989). In the genome of most 

* The terms “Drosophila” or “fly” refer to Drosophila melanogaster throughout this work.  
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vertebrates, including mouse and human, four copies of the homeotic cluster are present, HOXA, 

HOXB, HOXC and HOXD.  

 

 
 

 

1.1.2 Regulation of HOX gene expression in development  

According to current knowledge, three transcription regulatory systems are engaged in 

the definition of the precisely bounded HOX gene expression domains: Besides the PcG/trxG 

system, these are internal cross-regulatory mechanisms among HOX genes and regulation by 

segmentation genes. 

Segmentation genes initiate segmentation by setting up body segments and their polarity 

in the first stages of Drosophila embryogenesis. Subsequently, during cellular blastoderm 

formation, combinations of sub-groups of the segmentation genes, the gap and the pair-rule 

Figure 1. HOX gene expression domains and body segments in Drosophila. HOX genes preserve 
segment identity in bilaterian animals. For correct morphogenesis, the characteristic pattern of 
HOX gene expression domains along the body axis needs to be maintained throughout 
development, from the embryonic (bottom) up to the adult stage (top). In the Drosophila 
genome, HOX genes are organized collinear to their expression domains in two clusters: the 
Antennapedia complex and the bithorax complex (middle). T1 to T3: thoracic segments 1 to 3; A1 
to A8: abdominal segments 1 to 8. The illustration has been taken from Gilbert, 2006. 
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genes, induce identity formation of each pre-set 

segment by activating expression of the corresponding 

HOX genes (Irish et al, 1989). The gap and the pair-rule 

genes are replaced shortly after by proteins of the 

PcG/trxG system as HOX gene regulators. The PcG 

proteins are the transcription silencing factors in this 

system. They repress their target genes in segments, 

where they need to be inactive for identity preservation 

(Figure 2). In contrast, the trxG proteins protect HOX 

genes and other target genes from PcG-mediated 

silencing and maintain their transcription active at 

locations where their function is required. By their 

concerted, antagonizing action, PcG and trxG proteins 

maintain the patterning of the HOX gene expression 

domains along the anterior-posterior body axis from 

the post-blastoderm embryo up to the adult stage. HOX 

genes themselves contribute to the patterning, apart 

from a few exceptions, by repressing other HOX genes, 

whose expression domains are located anterior to 

theirs (Duboule & Morata, 1994). The cross-regulation 

among HOX genes was first described in the studies 

Morata & Kerridge, 1982 and Struhl, 1982. 

 

1.1.3 Homeotic phenotypes of ash1 mutants and PcG/trxG mutants in general 

Mutations in all regulatory systems of HOX genes and in HOX genes themselves may lead 

to either loss or gain of function of certain HOX genes and consequently result in adaptation of 

the identities of the neighboring segments by the affected segments. The characteristic 

morphological transformations as part of the segment identity changes are known as homeotic 

transformations. While homeotic transformations in a HOX gene mutant only occur in a specific 

segment, mutants of transcriptional regulators of HOX genes generally exhibit a spectrum of such 

aberrant morphologies in various segments due to their role of controlling the entire homeotic 

gene cluster(s) Ant-C and/or BX-C. 

The thorough analysis by Lewis, 1978 of homeotic transformations in a Drosophila mutant 

of the PcG group eponym Polycomb (Pc) led to a first understanding of the concept of PcG-

Figure 2. Transcription regulation 
by the PcG/trxG system.  
PcG proteins repress transcription 
of HOX genes and other PcG/trxG 
target genes, whereas trxG proteins 
maintain their transcription active. 
Which action dominates at which 
gene depends on the respective 
segment identity.  
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mediated transcription regulation: Ed Lewis described partial transformation of the thoracic and 

the first seven abdominal segments toward the identity of the eighth abdominal segment in 

homozygous Pc mutant larvae. From this observation, Ed Lewis derived the proposal that Pc 

encodes for a universal repressor of all genes in BX-C. In the following years, the easily 

extrinsically detectable homeotic transformations became the standard diagnostic tool for the 

discovery of other PcG proteins and, notably, for the discovery of the first universal positive 

regulators of the HOX genes in ANT-C and BX-C, the trxG proteins. The eponym of the trxG family, 

the trithorax (trx) gene, was identified and characterized in a trx mutant exhibiting 

transformations of the posterior abdominal segments toward the identity of anterior abdominal 

segments, and of the third thoracic segment towards the second (Ingham & Whittle, 1980; 

Ingham, 1981). 

An allele of ash1, the trxG member whose function is investigated in this work, was first 

isolated and mapped in a screen for mutants with imaginal disc defects (Shearn et al, 1971; 

Shearn & Garen, 1974). Imaginal discs are a type of insect larval primordia for adult structures. 

Homeotic transformations of imaginal disc-derived tissues in ash1-mutant adults reminiscent of 

trx mutants were first reported in Shearn et al, 1987: Shearn and colleagues described 

transformations of genitalia towards leg identity and of structures of the third thoracic segment 

towards second thoracic segment identity, as for example the third leg adapting second leg 

morphology and the balancing organ haltere adapting wing morphology. In a follow-up study 

(Tripoulas et al, 1994), ash1-mutant transformations of structures derived from another type of 

larval precursor cells, the histoblasts, were shown: Abdominal segments were partially developed 

into anterior abdominal segments. Molecular evidence that loss of HOX gene expression is indeed 

responsible for the aberrant morphology in ash1 mutants was provided in LaJeunesse & Shearn, 

1995. The transformations described above, that are characteristic for ash1 mutants will also be 

analyzed in Drosophila mutants in this study.  

In general terms, mutants of members of the trxG family are characterized by a HOX gene 

loss-of-function phenotype displaying mostly posterior-to-anterior segment transformations. PcG 

mutants, in contrast, show ectopic expression of HOX genes, that results in mostly anterior-to-

posterior segment transformations. The directionality of the transformations in the PcG/trxG 

mutants along the body axis is determined by the characteristic of HOX genes described in the 

previous paragraph to be negatively regulated by other HOX genes and not by PcG proteins in 

domains located posterior to their normal expression domain. 

Whereas PcG proteins are active suppressors of HOX gene expression, the trxG proteins 

are often defined in the literature as factors, that maintain rather than initially activate PcG/trxG 

target gene transcription. This view is based on studies that showed specific HOX gene loss-of-
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function phenotypes in mutants of the trxG genes trx or ash1 alone, but demonstrated that HOX 

gene expression is almost restored to wild-type levels in double mutants of trx or ash1 and 

members of the PcG family (Ingham, 1983; Klymenko & Müller, 2004). Moreover, HOX genes 

were misexpressed outside of their normal expression domains in the trxG/PcG double mutants, 

just like it is observed in the corresponding PcG single mutants. Thus, trx and ash1 seem to 

positively regulate transcription by blocking establishment of PcG-mediated repression, which is a 

dispensable function in a PcG-mutant background. Yet, this mechanism does not apply to all 

members of the trxG family. A subset of the trxG proteins has been isolated in screens for 

dominant repressors of Pc mutant phenotypes (Kennison & Tamkun, 1988; Fauvarque et al, 

2001), which implies a direct transcription activating function of these factors. Many of the 

dominant repressors of Pc mutants exhibit diverse mutant phenotypes beyond homeotic 

transformations and have therefore been suggested not to be restricted to transcription 

regulation of the classic PcG/trxG targets, but to fulfill rather global roles in gene regulation 

(reviewed in Kassis et al, 2017).   

 

1.1.4 PcG/trxG target genes other than HOX genes and Ash1 chromatin binding 

genome-wide  

HOX genes are the classic target genes of the PcG/trxG system and a role in HOX gene 

transcription regulation is generally seen as the prerequisite for classification of a specific factor 

as PcG or trxG protein. However, this does not rule out the possibility, that PcG/trxG members 

might also be involved in the transcription control of genes other than HOX genes.   

A variety of genome-wide studies have indeed shown binding of PcG and trxG proteins to 

numerous other sites in addition to the HOX clusters (Lee et al, 2006; Boyer et al, 2006; Schwartz 

et al, 2006; Tolhuis et al, 2006; Nègre et al, 2006; Oktaba et al, 2008; Schwartz et al, 2010; 

Kockmann et al, 2013; Huang et al, 2017; Kwong et al, 2008). Actual functional evidence from 

genetic studies demonstrating transcriptional regulation by PcG/trxG members is only available 

for a subset of the bound non-HOX genes. Among these are mainly developmental regulator 

genes such as even-skipped, engrailed (Dura & Ingham, 1988; Americo et al, 2002), hedgehog 

(Maurange & Paro, 2002), apterous, pannier, teashirt, Distall-less and Dorsocross (Oktaba et al, 

2008). Another group of genes that were found to be transcriptionally controlled by PcG/trxG 

proteins are cell cycle regulators, namely Cyclin A and Cyclin B (Martinez et al, 2006; Oktaba et al, 

2008). Moreover, auto-regulatory mechanisms have been reported for the PcG family: The 

expression rate of genes encoding for the PcG proteins Posterior sex combs (Psc) and Suppressor 

of zeste 2 (Su(z)2) is dependent on PcG factors (Park et al, 2012). It is important to note that some 
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of the above listed non-HOX genes, that are here called PcG/trxG targets, might actually be under 

the control of only individual PcG or trxG proteins fulfilling additional functions outside of the 

PcG/trxG system.  

The trxG protein Ash1 and its human homologue ASH1-like (ASH1L) have even been 

suggested to act as global transcription factors, that co-activate their target genes regardless of 

gene type and function (Gregory et al, 2007; Kockmann et al, 2013). Gregory and colleagues 

found ASH1L enriched at active housekeeping genes just as well as at active tissue-specific genes 

by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) analyses. 

Kockmann and colleagues based their view on Ash1 as a general transcription regulator on 

genome-wide ChIP-DNA sequencing (ChIP-seq) analysis in Drosophila Schneider’s 2 cell line-

derived S2-DRSC cells, that showed Ash1-binding in the promoter region of virtually all active 

genes. In the light of these results, the puzzling question is, how the suggested global role of Ash1 

could match with its specific homeotic mutant phenotype as described in the previous paragraph. 

Other studies then argue rather in favor of gene-specific functions of Ash1. Immunohistochemical 

stainings of Drosophila polytene chromosomes revealed about 100 sites bound by Ash1 (Tripoulas 

et al, 1996; Srinivasan et al, 2008). Nonetheless, these are still many more sites than there are 

HOX genes. In another genome-wide binding ChIP-chip study in Schneider’s 2 cell line-derived Sg4 

cells, only 50 genomic Ash1-binding sites in form of broad 10 to 75 kb-long chromatin domains 

encompassing gene bodies have been reported (Schwartz et al, 2010). Extensive Ash1-binding 

domains of a similar nature at about 400 genes in S2-DRSC cells were found recently by ChIP-seq 

as published in Huang et al, 2017. Transcriptomic analyses by Huang and colleagues revealed that 

only 18 out of the 400 Ash1-bound genes were actually downregulated (> 2-fold) in consequence 

of Ash1 knockdown. Most of the downregulated genes were not annotated or were 

developmental regulator genes, but not HOX genes. HOX genes are known to be transcriptionally 

silent in the analyzed S2-DRSC cell line (Cherbas et al, 2011). In the study Schmähling et al, 2018, 

in which parts of this thesis are published, the transcriptome of Drosophila thoracic imaginal discs 

was analyzed. ash1-null mutant and wild-type imaginal discs showed differential expression of 

about 600 genes by a factor greater than or equal to 2 and of about 300 genes by a factor greater 

than or equal to 4.  

 



Introduction 

 22 

1.2 Polycomb-group/trithorax-group complexes and their 

molecular functions  

Most PcG and trxG proteins that were first genetically identified in Drosophila have been 

subsequently purified in large multiprotein complexes (see Figure 4 for an overview). The means 

of PcG and trxG family members to control transcription are epigenetic mechanisms and the 

assembly of the PcG or trxG proteins to multimeric complexes provides an efficient way to fulfill 

the complex tasks in epigenetic regulation (e.g. complex binding and targeting to chromatin and 

regulation of enzymatic activities). 

 

1.2.1 Polycomb-group complexes 

PcG complexes act mainly as histone modifiers and readers. The Pc protein, whose 

mutant genotype analysis marked the beginning of PcG/trxG research (para 1.1.2), was purified in 

the Polycomb repressive complex 1 (PRC1) by Shao and colleagues (Shao et al, 1999). Pc 

comprises a chromodomain with a binding preference for tri-methylated histone H3 lysine K27 

(H3K27me3) (Min et al, 2003; Fischle et al, 2003). The PRC1 subunit Sex comb extra (Sce) was 

shown to act as an E3 ligase, that mono-ubiquitinates lysine K118 in histone H2A (H2AK118ub1) in 

Drosophila and H2AK119 in mammals (Wang et al, 2004a). The role of H2A mono-ubiquitination 

deposited by Sce in PcG-mediated transcriptional silencing is not well understood. The repression 

of HOX and other canonical PcG target genes by PRC1 occurs independently of H2A ubiquitination 

in Drosophila and mice (Pengelly et al, 2015; Illingworth et al, 2015). What is established in the 

literature is, that PRC1 can alter chromatin structure: The PRC1 subunits Psc, its paralogue Su(z)2 

and most likely also the Polyhomeotic (Ph) proteins are involved in PRC1-mediated chromatin 

compaction in vitro, which was, notably, even observed in the absence of histone tails (Francis et 

al, 2004; King et al, 2005; 2002).  

The PRC1-like complex dRing-associated factors (dRAF) shares two subunits with PRC1, 

namely Psc respectively Su(z)2, and the E3 ligase Sce (Lagarou et al, 2008). In distinction from 

PRC1, dRAF contains the Lysine-specific demethylase 2 (dKDM2), which specifically removes the 

active chromatin mark H3K36me2 (Lagarou et al, 2008). 

The dimeric Polycomb repressive deubiquitinase (PR-DUB) complex contains the subunits 

Additional sex combs (Asx) and Calypso. Calypso deubiquitinates H2AK118ub1 and is dependent 

on the presence of Asx for its catalytic activity (Scheuermann et al, 2010). The mechanism of PR-

DUB-mediated transcription silencing is not yet understood. It has been suggested to 

counterbalance unconfined H2AK118 mono-ubiquitination by the PRC1 subunit Sce, but PR-DUB 
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activity is only required for repression at a subset of PRC1 target genes (Gutiérrez et al, 2012; 

Scheuermann et al, 2010).  

Besides PRC1, the Polycomb repressive complex 2 (PRC2) is the most intensively studied 

PcG complex. PRC2 was originally purified in parallel by several groups from Drosophila embryos 

(Czermin et al, 2002; Müller et al, 2002) as well as from mammalian cells (Cao et al, 2002; 

Kuzmichev et al, 2002). The means of PRC2 to silence transcription is methylation of lysine K27 in 

histone H3 (H3K27) (Pengelly et al, 2013). As catalytic subunit of PRC2, Enhancer of zeste (E(z)) 

was identified and shown to be the only HMTase in Drosophila with specificity for H3K27 (Ebert et 

al, 2004; Ketel et al, 2005). E(z) catalyzes mono-, di- and tri-methylation of H3K27 

(H3K27me1/2/3), but strictly requires the presence of the PRC2 subunits Suppressor of zeste 12 

(Su(z)12) and Extra sex combs (Esc) for its activity (Cao et al, 2002; Czermin et al, 2002; Müller et 

al, 2002; Nekrasov et al, 2005). The 55 kDa subunit of Chromatin assembly factor 1 (Caf1-55) is 

generally also considered as a PRC2 core subunit but does not have an impact on the efficiency of 

the PRC2 HMTase activity. It has been suggested that Caf1-55 contributes to the binding of PRC2 

to nucleosomes (Nekrasov et al, 2005). Pre-existing histone modifications on substrate 

nucleosomes are integrated into the regulation of PRC2 activity by allosteric mechanisms 

(Schmitges et al, 2011; Yuan et al, 2011; Margueron et al, 2009; see also para 1.3.1). These 

allosteric mechanisms have been suggested to be mediated by Su(z)12, Esc and the mammalian 

Esc homologue Embryonic ectoderm development protein (EED). The tetrameric PRC2 core 

complex purifies with additional subunits, that are either the Polycomblike (Pcl) protein or the 

proteins Jumonji, AT rich interactive domain 2 (Jarid2) and Jing together (Nekrasov et al, 2007; 

Herz et al, 2012). These cofactors have been shown to be involved in PRC2 binding to specific 

subsets of target genes (Savla et al, 2008; Kim et al, 2009; Herz et al, 2012) and to promote 

H3K27me3 deposition by PCR2 in vitro (Choi et al, 2017)  and in vivo (Nekrasov et al, 2007). 

The only PcG complex, that does not possess histone-modifying activity is the Pho-

repressive complex (PhoRC). PhoRC is a dimeric complex formed by the proteins Scm-like with 

four MBT domain-containing protein 1 (Sfmbt) and Pleiohomeotic (Pho) or its paralogue Pho-like 

(Phol) (Klymenko et al, 2006). Pho and Phol are the only PcG proteins known to bind to DNA in a 

sequence specific manner (Brown et al, 1998; 2003). The binding sites of Pho/Phol are located 

within cis-regulatory elements, called Polycomb response elements (PREs), that are found 

upstream of or within PcG/trxG target genes. PREs are essential for inheritance of PcG-mediated 

transcriptional silencing in Drosophila (Laprell et al, 2017; Coleman & Struhl, 2017). In addition to 

PhoRC, PREs are enriched for subunits of PRC1, PRC1-like complexes and PRC2 (Schwartz et al, 

2006). 
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Based on the findings described above, a model for PcG-mediated transcription 

repression involving hierarchical recruitment of the PcG complexes in Drosophila had been 

proposed (Wang et al, 2004b): The PhoRC complex, that is bound to PREs, would recruit PRC2 via 

interactions with Esc and E(z). PRC2 would then decorate neighboring nucleosomes with the 

H3K27me3 mark, that would in turn be bound by the chromodomain of the PRC1 subunit Pc and 

thereby recruit PRC1 to chromatin. Finally, PRC1 might trigger chromatin compaction at the target 

gene. By now, this model has been challenged by recent studies, especially regarding its 

universality (reviewed in Kassis et al, 2017). The data in Frey et al, 2016 for example suggest that 

PRC1 can be recruited independently of PRC2 to PREs by direct interactions between the sterile α-

motif (SAM) domains of Sex comb on midleg (Scm) in PRC1 and of Sfmbt in PhoRC. Overall, it 

seems more likely that various mechanisms are employed by PcG proteins to silence different 

target genes. One aspect of transcription regulation by the PcG, that is for certain, is that HOX 

genes are decorated with PRC2-deposited H3K27me3 in the transcriptionally silent state in body 

segments where they are controlled by the PcG and not by other HOX genes (Papp & Müller, 

2006; Bowman et al, 2014).   
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Figure 3. PcG and trxG complexes in Drosophila and their chromatin modifying or binding 
functions. (A) Complete overview on purified PcG complexes. Subunits in color have mutant PcG 
homeotic phenotypes, subunits in grey are biochemically identified complex members. Subunits 
shared by PRC1 and dRAF are coloured orange. Scm is present in substoichiometric amounts in 
PRC1. Pcl and the Jarid2/Jing dimer are mutually exclusive PRC2 subunits. Continued on next page. 
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1.2.2 trithorax-group complexes 

Compared to the PcG of proteins, the trxG is much more heterogeneous in phenotypes as 

well as in molecular mechanisms of transcription regulation. 

trxG proteins were found to oppose PcG-mediated silencing by adenosine 

triphosphate(ATP)-dependent chromatin-remodeling, chromosome cohesion, covalent histone 

modification and mediation of crosstalk between transcription factors and RNA polymerase II. 

Like PcG proteins, trxG proteins act as subunits of large multimeric assemblies. trxG complexes 

that are either chromatin remodelers or histone modifiers have been most extensively studied 

and are shown in Figure 4B. 

The broad spectrum of mechanisms is in line with the diversity of trxG phenotypes. Only a 

subset of the trxG proteins has actually been identified based on a specific homeotic mutant 

phenotype like Ash1 and Trx (para 1.1.3). The majority was found in numerous screens for genetic 

interactors with various known PcG or trxG mutants as reviewed in Kassis et al, 2017. In the 

following, I will focus on two different groups of trxG proteins that have been known longest and 

are therefore most established. These are, on one hand, the trxG members that were discovered 

by their HOX gene loss-of-function phenotypes and, on the other hand, the trxG members that 

were found indirectly in a screen for dominant suppressors of Pc mutants (Kennison & Tamkun, 

1988). Table 1 provides an overview on these factors, that are discussed in detail below. 

 

(B) Selection of trxG complexes. Only the chromatin remodelers and histone modifiers as best 
studied trxG complexes are shown. Subunits in blue are proteins classified as trxG members due 
to their mutant homeotic phenotypes, subunits in grey co-purify but do not exhibit trxG mutant 
phenotypes. Stable interactors forming complexes with Ash1 or KIS-L could not be confirmed yet. 
Subunits in green are classified trxG proteins due to their functions as dominant suppressors of Pc 
mutants. Common subunits of the related BAP and PBAP complexes are of the same green shade. 
The protein Osa purifies exclusively with BAP and subunits in brown with PBAP. For abbreviations, 
see list in para 6.1. This illustration has been modified from Kassis et al, 2017. 
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Table 1. trxG proteins in Drosophila and their human orthologues. This table has been modified 
from Kennison & Tamkun, 1988 and Schuettengruber et al, 2011 and updated according to Kassis 
et al, 2017. Only members of the trxG family are shown, whose mutants exhibit a clear HOX gene 
loss-of-function phenotype or act as dominant suppressors of Pc mutants. For abbreviations not 
explained in this table, see list in para 6.1. For references, see text.  

Drosophila trxG protein Human 
orthologue(s) 

Drosophila 
complex 

Function 

Histone-modifying complexes 

Ash1 (Absent, small, or 
homeotic discs 1) 

ASH1L this study H3K36 di-methylation 

Trx (Trithorax) MLL1, MLL2 Trx complex 
(dCOMPASS-like) 

H3K4 methylation 

Ash2 (Absent, small, or 
homeotic discs 2) 

ASH2L Trx, Trr and Set1 
complexes 
(dCOMPASS-
family) 

Complex integrity or stability of 
HMTase activities of dCOMPASS 
family 

Utx (Ubiquitously 
transcribed 
tetratricopeptide 
repeat, X chromosome) 

KDM6A, 
KDM6B, UTY 

Trr complex 
(dCOMPASS-like) 

H3K27me3 demethylation 

ATP-dependent chromatin-remodeling complexes 

Brm (Brahma) BRM, BRG1 BAP/PBAP 
(SWI/SNF family) 

ATP hydrolysis 

Mor (Moira) SMARCC1, 
SMARCC2 

BAP/PBAP 
(SWI/SNF family) 

Complex integrity 

Osa (Osa) ARID1A, 
ARID1B 

BAP          
(SWI/SNF family) 

DNA binding 

KIS-L (KISMET-L) CHD7 - ATP hydrolysis 

Other functions 

Fsh-S (Female sterile (1) 
homeotic short) 

BRD2, BRD4, 
BRDT 

- H3KAc binding, possible 
recruitment of transcription 
elongation factors,             
serine-threonine kinase 

Kto (Kohtalo) TRAP230 Mediator 
module 

Promotion of 
enhancer/promoter 
interactions Skd (Skuld) TRAP240 Mediator 

module 
Vtd (Verthandi), 
alternative name: 
Rad21 

Rad21 Cohesin Mediation of interactions 
between insulators, enhancers, 
promoters in interphase 

Nipped-B NIPBL Kollerin Cohesin loading on interphase 
chromosomes 
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The trxG protein and ATPase Brahma (Brm) was purified from Drosophila in two different 

complexes, the Brahma-associated protein complex (BAP) and the Polybromo-containing BAP 

complex (PBAP) (Dingwall et al, 1995; Papoulas et al, 1998; Mohrmann et al, 2004). Both are ATP-

dependent chromatin remodelers, that bind specifically acetylated histones via bromodomains in 

their subunits, such as in Brm. Besides complex-specific subunits, BAP and PBAP have seven 

subunits in common (Mohrmann et al, 2004; Chalkley et al, 2008). One of them is the trxG protein 

Moira (Mor) that has been suggested to form the functional core of BAP and PBAP together with 

Brm (Crosby et al, 1999; Phelan et al, 1999). The DNA-binding trxG protein Osa only purifies in 

BAP. With this subunit composition, BAP is highly related to the yeast Switch/sucrose 

nonfermenting (SWI/SNF) complex, whereas PBAP is considered to be the homologous complex 

to yeast remodels the structure of chromatin (RSC).  

The trxG protein KISMET-L (KIS-L) is a member of the chromodomain helicase DNA-

binding (CHD) family, a subcategory of the SNF2 family of ATP-dependent chromatin remodelers 

(Daubresse et al, 1999; Therrien et al, 2000). KIS-L contains all domains characteristic of CHD 

proteins, that are tandem chromodomains with binding specificities for methylated histones and 

a SNF2-like ATPase domain. Therefore, KIS-L most likely positively regulates HOX gene 

transcription by altering nucleosome positioning upon ATP hydrolysis. Possible stable biochemical 

KIS-L interactors have not been identified yet.   

The Skuld (Skd) and the Kohtalo (Kto) protein are both subunits of the dissociable cyclin-

dependent kinase 8 module that is part of the mediator complex (Allen & Taatjes, 2015). 

Mutations in skd and kto were isolated as dominant suppressors of the homeotic transformations 

that occur in Pc heterozygotes (Kennison & Tamkun, 1988). Intriguingly, genetic screens for 

mutants that show Polycomb-like phenotypes in homozygotes also led to the identification of 

loss-of-function mutations in skd and kto (Gaytán de Ayala Alonso et al, 2007). The mammalian 

homologue of Kto has been proposed to be involved in chromosome loop formation between 

enhancers and promoters in dependence of the cohesin complex (Apostolou et al, 2013). Cohesin 

itself is best known for controlling chromosome segregation in mitosis and meiosis, but has also 

been shown to affect transcription in interphase cells by regulating interactions between 

insulators, enhancers and promoters (reviewed in Dorsett & Merkenschlager, 2013). Interestingly, 

mutations in the cohesin subunit Verthandi (Vtd), also known as Rad21, were isolated as well as 

suppressors of the homeotic phenotypes of Pc heterozygotes (Kennison & Tamkun, 1988; Hallson 

et al, 2008). The same was observed for mutations in Nipped-B (Hallson et al, 2008), which is a 

subunit of the kollerin complex that loads cohesion on interphase chromosomes. In general, 

mutations that cause a decrease of chromosome-bound cohesin give rise to trxG phenotypes. But 
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mechanistically, the interdependence of cohesin with the PcG/trxG system in transcription 

regulation is not understood to date.  

Even though Kto, Vtd and Nipped-B have been classified as trxG proteins, their roles in 

transcription are clearly not limited to the regulation of PcG/trxG target genes. Rather global roles 

in transcription activation have also been ascribed to Brm and the other trxG proteins involved in 

chromatin remodeling due to the wide range of gene expression defects in their corresponding 

loss-of-function mutants (Armstrong et al, 2002; Moshkin et al, 2007; Srinivasan et al, 2008). In 

contrast, histone modifying trxG proteins, such as Trx or Ash1, are generally considered as factors 

that fulfill functions specific for and rather restricted to the PcG/trxG system, albeit this view has 

also been sporadically challenged (Kockmann et al, 2013; Gregory et al, 2007).  

Methylation of histone H3 lysine K4 (H3K4), a modification typically found at actively 

transcribed genes, has been shown to be catalyzed by three HMTases in Drosophila 

melanogaster: SET domain-containing protein 1 (dSET1), Trithorax-related (Trr) and Trx (reviewed 

in Kassis et al, 2017). The three H3K4 HMTases have been purified in distinct multiprotein 

complexes, that are all related in subunit composition to the yeast COMPASS complex (COMPASS: 

Complex of proteins associated with SET1) (Mohan et al, 2011). The trxG protein Absent, small, or 

homeotic discs 2 (Ash2) exists in all three Drosophila COMPASS complexes and has been proposed 

to be required for enzymatic activity or complex stability (Dehé et al, 2006; Dou et al, 2006). The 

COMPASS complex with dSET1 as core (dCOMPASS) does not contain other proteins with a 

specific mutant HOX gene loss-of-function phenotype apart from Ash2. dSET1 itself has been 

shown to be responsible for the bulk levels of H3K4me2 and -me3 (Ardehali et al, 2011; Hallson et 

al, 2012) indicating a genome-wide function of dCOMPASS. The trxG protein Utx is a subunit of a 

COMPASS-type complex that contains the H3K4 methyltransferase Trr (Trr dCOMPASS-like 

complex) (Cho et al, 2007; Mohan et al, 2011). Utx functions as the only H3K27me3 

demethyltransferase in Drosophila (Smith et al, 2008) (Utx: Ubiquitously transcribed 

tetratricopeptide repeat, X chromosome). The activity of Utx has shown to be important for 

regulation of HOX gene expression in the very early stages of embryonic development during the 

onset of zygotic transcription (Copur & Müller, 2013; 2018). Since Trr and the other complex 

subunits do not exhibit mutant homeotic phenotypes, Utx appears to antagonize PcG action 

independently of other Trr dCOMPASS-like complex activities. The Trx protein, the eponym of the 

trxG, is embedded in the Trx dCOMPASS-like complex and is considered in the literature as the 

only H3K4 methyltransferase in Drosophila with a homeotic mutant phenotype (reviewed in 

Kassis et al, 2017). The human Trx homologues are the Mixed lineage leukemia protein 1 (MLL1) 

and 2 (MLL2). The catalytic domain in Trx is the classic SET domain, that was first identified in this 

protein (Mazo et al, 1990) and later found to be conserved in many other protein 
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methyltransferases (SET: Su(var)3-9, Enhancer-of-zeste and Trithorax). The HMTase activity of Trx 

has been suggested to be its critical function in vivo (Smith et al, 2004). Results of more recent 

studies indicate that Trx deposits H3K4me1 and me2, but not H3K4me3 (Tie et al, 2014; Rickels et 

al, 2016). H3K4 methylation has been shown to antagonize PcG action in a direct manner by 

inhibiting the catalytic activity of PRC2 allosterically (Schmitges et al, 2011).   

 

1.2.2.1 Ash1 and possible Ash1 binding partners 

Like Trx, the Drosophila Ash1 protein and its mammalian homologues modify histones as 

SET domain HMTases and positively regulate transcription. However, the mechanism of Ash1 and 

its potential interaction partners have long remained enigmatic. At the beginning of the work 

presented here, no Ash1-containing multiprotein complexes had been purified while most other 

PcG and trxG proteins had already been shown to exist and act in multimeric assemblies (Figure 

4). In 2013, Kockmann and colleagues reported that both the short and the long isoforms of the 

Female sterile homeotic (Fsh) protein, Fsh-S and Fsh-L, physically interact with Ash1 (Kockmann et 

al, 2013). In fact, Fsh-S had been classified as a trxG protein before, when it was shown to be 

involved in HOX gene regulation (Digan et al, 1986; Chang et al, 2007). The human homologue of 

Fsh, the bromodomain-containing protein 4 (BRD4), binds via its bromodomains to acetylated 

histones at enhancers and promoters and has been suggested to recruit the positive transcription 

elongation factor b to these regulatory sequences (Jonkers & Lis, 2015). How Ash1 could be 

involved in Fsh function is not known. The interaction between Fsh and Ash1 described by 

Kockmann and colleagues was identified by tandem affinity purification of tagged Ash1 protein 

from Drosophila S2-DRSC cells. In a reverse approach, in immunoaffinity purifications of 

transgenic Fsh-S from S2-DRSC cells, Ash1 did not co-purify (Chang et al, 2007). Hence, further 

investigation, also in other biological systems, is needed to clarify if Ash1 interacts with Fsh and 

whether the two proteins form a stable complex.  

The HMTase activity of Ash1 is in the focus of this work and therefore introduced in 

separate paragraphs in the following.       

 

1.3 Specificity, function and regulation of Ash1 HMTase activity 

The substrate specificity and the methylation state generated by Ash1 have been 

controversial for a long time. Ash1 was first believed to mainly methylate H3K4 (Byrd & Shearn, 

2003; Gregory et al, 2007). By now it is established that Ash1 and its mammalian homologues 

exclusively mono- and di-methylate lysine K36 of histone H3 (H3K36me1/2). Ash1-dependent 
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H3K36 mono- and di-methylation in vitro was first shown by HMTase assays on substrate histone 

H3 lysine residue mutants and by mass spectrometric analysis in the study Tanaka et al, 2007. 

Confirming data sets were published in Yuan et al, 2011 and An et al, 2011. In vivo evidence was 

provided by Dorighi & Tamkun, 2013, who observed co-localization of Ash1 with H3K36me2 and a 

reduction of H3K36me2, but not H3K36me3, in ash1 mutants at Drosophila polytene 

chromosomes. The current knowledge on how the H3K36me2 mark deposited by Ash1 opposes 

PcG-mediated transcriptional silencing, is summarized in the following. 

 

1.3.1 Role of Ash1 in opposing transcriptional silencing by the Polycomb group 

H3K36me2/me3 and H3K27me3 rarely coexist on the same histone H3 tail of 

nucleosomes (Yuan et al, 2011; Voigt et al, 2012) or in the same chromosome bands in Drosophila 

polytene chromosomes (Dorighi & Tamkun, 2013). Together, these observations suggest crosstalk 

between H3K36me2, catalyzed by Ash1 amongst other HMTases, and PRC2-deposited H3K27me3, 

that might be the means of Ash1 to counteract PcG action. Methylation of H3K27 has been shown 

to be essential for PRC2-mediated transcriptional silencing (Pengelly et al, 2013). HMTase assays 

with PRC2 on premodified nucleosomes revealed that H3K36me2 and -me3 marks indeed directly 

inhibit H3K27 mono-, di- and tri-methylation by PRC2 (Schmitges et al, 2011; Yuan et al, 2011). 

The inhibition was observed with PRC2 complexes from Drosophila, plants and humans. In order 

to affect H3K27 methylation, the H3K36 methylation mark needs to be present in cis, i.e. on the 

same histone H3 tail that contains the K27 substrate site (Schmitges et al, 2011; Voigt et al, 2012). 

The molecular mechanism behind this PRC2 inhibition has not been deciphered yet, but 

Schmitges and colleagues report findings indicating that H3K36 methylation might regulate the 

catalytic PRC2 subunit E(z) allosterically via the PRC2 subunit Su(z)2. 

In the light of these in vitro data on PRC2 regulation, it is well conceivable but remains to 

be demonstrated that inhibition of the catalytic activity of PRC2 by di-methylating H3K36 is the 

actual mechanism Ash1 employs to counteract PcG-mediated transcriptional silencing. However, 

various findings in Drosophila point towards this scenario. Polytene chromosomes in ash1 

mutants exhibit a decrease in total H3K36me2 levels, while H3K27me3 levels are elevated 

(Srinivasan et al, 2008; Dorighi & Tamkun, 2013). In the study Papp & Müller, 2006, the 

distribution of the H3K27me3 mark along the HOX gene Ubx was analyzed. Papp and Müller found 

that in tissues where Ubx is actively transcribed, H3K27me3 is highly enriched in the upstream 

control region of Ubx, but strongly diminished in the gene body. Analysis of the same tissues in 

ash1 mutants showed that H3K27me3 is present not only in the upstream control region but also 

at the Ubx promoter and all along the coding region, resembling the H3K27me3 distribution 
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pattern in tissues where the Ubx gene is repressed in wild type (Papp & Müller, 2006). It appears 

that in the transcriptionally silent state of Ubx, the H3K27me3 mark spreads from the upstream 

PRE, where PRC2 is bound, into the coding region. Consistent with this gain of repressive 

H3K27me3, Ubx expression in the analyzed ash1 mutant tissues was strongly decreased in the 

study by Papp and Müller.  

Based on these results, Ash1 was proposed to function by the following mechanism to 

antagonize PcG action (Papp & Müller, 2006; Schmitges et al, 2011): H3K36me2 deposited by 

Ash1 would act as a barrier that prevents spreading of the H3K27me3 mark past the promoter 

into the coding region. In ash1 mutants, in contrast, H3K36me2 levels would be reduced and PRC2 

would therefore no longer be inhibited, resulting in H3K27me3 deposition in this part of the gene 

to permit PcG repression by mechanisms not understood to date (see also para 1.2.1). However, 

whether Ash1 indeed acted by depositing H3K36me2 and did so across the entire coding region 

was not addressed at the time. Moreover, the actual binding profile of Ash1 has remained highly 

controversial (para 1.1.4).    

 

1.3.2 Ash1-generated H3K36me2 in the context of genome-wide H3K36 

methylation  

H3K36 methylation marks actively transcribed genes in eukaryotic species ranging from 

yeast to Drosophila and humans as reviewed in Wagner & Carpenter, 2012. The two methylation 

states, H3K36me2 and H3K36me3, are enriched in chromatin comprising the entire length of the 

coding regions of active genes with a frequently observed bias of H3K36me2 towards the middle 

part and a bias of H3K36me3 towards the 3’ ends (Bell et al, 2007; Pokholok et al, 2005; 

modENCODE data sets ID6388 and ID4950).  

To date, various roles have been ascribed to H3K36 methylation in transcription 

(Venkatesh & Workman, 2013; Wagner & Carpenter, 2012). All evidence taken together points 

towards two major functions of H3K36 methylation. These are, on one hand, antagonizing PRC2-

mediated transcriptional silencing as described above in para 1.3.1, and, on the other hand, 

quality control of transcription by preventing spurious intragenic transcription initiation through 

histone deacetylation by the Reduced potassium dependency-3 small (Rpd3S) complex. The yeast 

Rpd3S complex contains the chromo barrel domain protein ESA1-associated factor 3 (Eaf3). 

Structural studies showed that Eaf3 and its metazoan homologue MORF4-related gene on 

chromosome 15 (MRG15) interact with H3K36me2/me3 via their chromo barrel domains (Sun et 

al, 2008; Xu et al, 2008; Zhang et al, 2006). In line with these studies, Rpd3S is thought to bind 

specifically to H3K36 methylated sites through Eaf3 and to maintain a hypoacetylated state at 
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these sites. Loss of Rpd3S function in yeast leads to transcription initiation from within the coding 

region of genes in the sense and antisense direction (Carrozza et al, 2005; Joshi & Struhl, 2005; Li 

et al, 2007). 

In Saccharomyces cerevisiae, a single HMTase, the SET domain-containing protein 2 

(Set2), generates all existing H3K36 methylation marks (me1, me2 and me3) and is thought to be 

targeted to transcribed regions by association with the phosphorylated C-terminal domain of 

elongating RNA polymerase II (RNAP II) (Krogan et al, 2003; Xiao et al, 2003; Venkatesh & 

Workman, 2013). H3K36 methylation in metazoans is more complex: Their genomes encode 

several different H3K36 HMTases, each one responsible for catalysis of a distinct methylation 

state. In Drosophila, three H3K36 HMTases have been identified including SET2, Ash1 and the 

Nuclear receptor-binding SET domain protein (NSD) (Bell et al, 2007). While SET2 has been 

suggested to generate the bulk of H3K36me3, NSD appears to be responsible for catalyzing the 

bulk of H3K36me2 (Bell et al, 2007; Larschan et al, 2007). The contribution of Ash1 to H3K36 

methylation in Drosophila with respect to quantity as well as genomic sites has remained poorly 

understood.  

   

1.3.3 Architecture of the Ash1 SET domain and regulation of its activity 

Ash1 contains characteristic conserved domains, qualifying this protein as both a 

chromatin writer and a chromatin reader. These domains all cluster in the Ash1-C-terminal half 

(Figure 4). The classic protein methyltransferase domain SET is followed by a bromodomain, a 

plant homeodomain (PHD) and a bromo-adjacent homology (BAH) domain (CD-search published 

in Marchler-Bauer et al, 2015). The Ash1 SET domain consists of the subdomains Associated With 

SET (AWS), core SET and post-SET (An et al, 2011; Rogawski et al, 2015). The alignment in Figure 4 

demonstrates the high conservation of the Ash1 SET domain sequence across species among Ash1 

orthologues and with the SET domains of other H3K36me2 HMTases like human NSD1 and C. 

elegans Maternal-effect sterile protein 4 (MES4).  

Albeit clear genetic evidence was missing when I started my thesis, HMTase activity was 

considered to be the key physiological function of Ash1. It is probably for that reason that from all 

Ash1 domains, only the SET domain has been analyzed in greater detail by biochemical and 

structural approaches to shed light on the Ash1 catalytic mechanism and its regulation. An et al. 

reported the structure of the human ASH1L SET domain including all subdomains (An et al, 2011). 

This structure revealed that the entrance of the substrate binding pocket in the core SET domain 

is blocked by a loop formed by parts of the post-SET domain. The observation of high structural 

flexibility of this loop together with altered ASH1L enzymatic activity upon loop mutation 
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prompted An and colleagues to propose that this loop may fulfill a crucial regulatory function by 

auto-inhibiting Ash1 catalytic activity. Such a regulatory mechanism may be a common feature of 

H3K36 HMTases, since highly similar inhibitory post-SET loop conformations have been reported 

for human SET2 (Zheng et al, 2012) and human NSD1 (Qiao et al, 2011). For NSD1, molecular 

dynamics simulations predicted that binding to nucleosomes opens up the substrate binding 

pocket by changing the position of the inhibitory loop (Qiao et al, 2011). In line with such 

simulations, NSD1 is active on nucleosomes (Qiao et al, 2011). In the case of Ash1, in contrast, 

substrate binding does not suffice to trigger efficient histone methylation. Drosophila Ash1 or 

human ASH1L alone exhibit very weak or no detectable HMTase activity at all on nucleosomes (An 

et al, 2011; Rogawski et al, 2015; unpublished experiments by the Jürg Müller laboratory). This 

suggested that Ash1 binding partners might be required to permit the enzyme to efficiently 

methylate histones in nucleosomes, possibly by re-positioning the auto-inhibitory loop. Other 

loop-independent regulatory mechanisms mediated by Ash1 interactors are also conceivable.  
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Figure 4. Ash1 domain architecture and SET domain alignment with mutations in ash1 mutant 
alleles indicated. The catalytic domain of Ash1, SET, consists of three subdomains: AWS, SET and 
post-SET. They are highly conserved among Ash1 orthologues (Hs/Mm ASH1L, At ASHH2) and with 
other H3K36me2 HMTases (Hs NSD1, Ce MES4). The alignment was performed with Clustal 
Omega (EMBL-EBI). 
The Ash1 domain scheme shows also mutations of ash1 mutant alleles used in this study. The 
ash122 allele contains a premature stop codon, Q130stop, at the Ash1 N-terminus and has been 
reported in Tripoulas et al, 1996 to be a functional null allele. The ash1R1464A and the ash110 alleles 
bear point mutations of highly conserved residues in the SET domain (mutated residues marked in 
blue in alignment). See para 3.5 for detailed description and analysis of these alleles. 
A.T hook: adenine-thymine hook; AWS: Associated With SET; SET: Su(var)3-9, Enhancer-of-zeste 
and Trithorax; PHD: plant homeodomain; BAH: bromo-adjacent homology; aa: amino acids; Dm: 
Drosophila melanogaster; Hs: Homo sapiens; Mm: Mus musculus; Ce: Caenorhabditis elegans; At: 
Arabidopsis thaliana; ASH1L: ASH1-like; MES4: Maternal-effect sterile protein 4; ASHH2: ASH1 
homologue 2. 
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1.4 Aims of this work: Understanding the regulation and 

function of the Ash1 HMTase in transcription 

As discussed in the previous paragraphs, ash1 has been classified as a member of the trxG 

of genes based on its homeotic mutant phenotype. Genetic analyses of ash1 mutants and ash1 

PcG double mutants strongly suggested that Ash1 maintains transcription active at PcG/trxG 

target genes by specifically antagonizing transcription-silencing PcG actions. However, many 

questions were open concerning the molecular mechanisms underlying Ash1 function. It has been 

established that Ash1 possesses HMTase activity for di-methylation of H3K36. And the H3K36me2 

modification has been shown to inhibit H3K27 methylation by the PcG complex PRC2 in vitro. But 

if the deposition of H3K36me2 is indeed the mechanism Ash1 employs to antagonize PcG-

mediated transcriptional repression, remained to be demonstrated. Moreover, the two other 

H3K36 HMTases in Drosophila, SET2 and NSD, have been proposed to generate the bulk of H3K36 

methylation. Whether Ash1 also contributes to H3K36 methylation genome-wide or if it modifies 

chromatin rather restrictively at PcG/trxG target genes as its mutant phenotype suggests, was 

another unresolved, controversial question in the field. Importantly, it was also not understood 

how the Ash1 HMTase function becomes activated in the first place. The SET domain of isolated 

Ash1 has been shown to be auto-inhibited. 

The first objective of this thesis as part of the overall goal to learn about the regulation 

and function of the Ash1 HMTase was to identify Ash1 binding partners by purifying Ash1 from 

Drosophila. Ash1 protein complexes were then reconstituted in vitro from recombinant Ash1 and 

the newly found Ash1 complex subunits to probe their HMTase activity. These studies uncovered 

that one of the binding partners strongly stimulates the catalytic efficiency of Ash1. In order to 

assess the relevance of this stimulatory mechanism for Ash1 activity in vivo, the phenotypes of 

mutants for ash1 and its interactor were analyzed. Importantly, the complementation of the 

genetic analyses with molecular studies in these mutants permitted also the investigation of the 

function of Ash1-generated H3K36me2 in HOX gene expression and the contribution of Ash1 to 

the bulk of H3K36me2 in Drosophila. 
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2 Materials and Methods 

2.1 DNA analysis and cloning techniques 

2.1.1 PCR amplification and PCR product purification  

Polymerase chain reaction (PCR) amplification of specific DNA sequences was performed 

with the ‘Phusion High-Fidelity PCR Master Mix with HF Buffer’ (New England Biolabs).  

Apart from site-directed mutagenesis reactions (para 2.1.6), component concentrations in 

the PCR reactions and thermocycling conditions were chosen according to manufacturer’s 

instructions. One reaction contained 20 – 200 pg template. For preparative PCR, 50 µl reactions 

and for analytical PCR, 25 µl reactions were pipetted. PCR products were analysed by agarose gel 

electrophoresis and purified with the ‘QIAquick PCR Purification Kit’ or the ‘QIAquick Gel 

Extraction Kit’, both from Qiagen.    

 

2.1.2 Separation of DNA and mononucleosomes by agarose gel electrophoresis 

Agarose gel electrophoresis was either performed under denaturing or under native 

conditions. In the denaturing approach, DNA fragments from a PCR reaction or restriction digest 

were separated dependent on their size to analyze the length or amount of a specific fragment 

and, where necessary, to purify it from the gel. In native conditions, separation is not only size- 

but also conformation-dependent. This approach was chosen to test the quality of reconstituted 

mononucleosomes for HMTase assays by separating correctly assembled mononucleosomes from 

free DNA and from nucleosomes with an incorrect stoichiometry.  

For denaturing electrophoresis, an agarose gel consisting of 0,8 – 1,5% (weight/volume) 

agarose (Sigma) and 0,01% (volume/volume) ‘GelRed Nucleic Acid Gel Stain’ (Biotum) in 1x TBE 

was prepared (1x TBE: 89 mM tris(hydroxymethyl)aminomethane (Tris); 89 mM boric acid; 2 mM 

ethylenedinitrilo-tetraacetic acid (EDTA)). In each case, the percentage of agarose was adjusted to 

the size of the DNA fragments that were to be separated. DNA samples were mixed with 6x DNA 

loading dye (Fermentas) and loaded on the gel along with appropriate size markers. The gel run 

took place in 1x TBE at 90 V for the time necessary for DNA separation.  
To analyze mononucleosomes by native electrophoresis, a 1% (w/v) agarose gel (SeaKem 

ME Agarose, Biozym) in 0,4x TBE without a DNA stain such as ‘GelRed Nucleic Acid Gel Stain’ was 

poured. Approximately 3% of each nucleosome reconstitution were taken for the electrophoretic 
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quality check and supplemented with 8% glycerol instead of loading dye prior to gel loading. The 

gel was run in 0,4x TBE for at least 1 hr and afterwards stained for 20 min in 0,4x TBE in a light-

protected box on a shaker. 

In the last step, DNA was visualized in gel documentation systems with either an 

ultraviolet radiation or a blue light source. 

 

2.1.3 Restriction endonuclease digest and fusion of DNA fragments 

If conventional restriction cloning was performed, PCR product respectively insert and 

vector, that were going to be fused, were digested with endonucleases from New England 

Biolabs. 50 µl digest reactions containing 1-3 µg of insert or vector, 10 U per 1 µg DNA of enzymes 

and enzyme-specific buffer were set up. Digests took place overnight at a temperature 

corresponding to the respective enzyme’s optimum activity. As purification method of DNA from 

the digest mixture, gel extraction with the ‘QIAquick Gel Extraction Kit’ (Qiagen) was chosen to 

also remove undigested plasmid. Digested and purified insert and vector were ligated with the 

Quick Ligation Kit from New England Biolabs according to manufacturer’s instructions. 

The most frequently used cloning method in this study was not restriction cloning but In-

fusion cloning with the ‘In-fusion HD Plus EcoDry kit’ from Clontech. In this method, only the 

vector is digested with endonucleases and no ligation is performed. Complementary 15 

nucleotides long 5’-overhangs at the termini of the previously linearized vector and the insert are 

generated and annealed in one step by the In-Fusion enzyme mix.     

 

2.1.4 Transformation, amplification and purification of DNA constructs 

Standard transformation was performed with DH5α competent cells (Thermo Fisher), 

whereas plasmids larger than 15 kb were transformed into One Shot OmniMAX 2 T1R E. coli from 

Invitrogen. For both bacterial strains, the same chemical transformation protocol was followed. 

50 µl of competent bacteria were thawn on ice. Then, 2 µl of either ligation mixture or In-Fusion 

reaction (para 2.1.3) were added to the bacteria. After an incubation step on ice for 20 min, the 

transformation mixture was heat-shocked for 45 seconds at 42°C and then immediately placed 

back on ice for 2 min. The bacteria were topped up with 250 µl lysogeny broth (LB) without 

antibiotics and grown for 1 hour at 37°C and 600 rounds per minute (rpm) in a thermoshaker.  

Next, 10 – 70 µl of the bacteria culture were plated on an LB agar plate, that had been 

supplemented with the appropriate antibiotic, and incubated overnight at 37°C.  

To amplify plasmids prior to purification, 4 ml LB media with antibiotics were inoculated 

with a single clone picked from the LB agar plate and the bacteria culture was grown overnight at 
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37°C with agitation in a bacteria shaker. Plasmids were purified from the culture using the 

‘Plasmid Mini Kit’ from Qiagen. 

If DNA constructs were intended for transformation into Drosophila, 10 ml overnight 

cultures were set up and plasmids were purified with the ‘PureLink HiPure Plasmid Miniprep Kit’ 

(Invitrogen) to obtain better yields of higher purity. For preparation of the bacterial artificial 

chromosome (BAC) CH322-147P9, 10 ml of bacteria culture were supplemented with 10% 

arabinose after overnight incubation for induction of high-copy BAC amplification and incubation 

was continued for another 5 hours (hrs) at 37°C.  

 

2.1.5 DNA sequencing 

DNA constructs were pre-mixed with sequencing primers in the Mix2Seq Kit (eurofins 

Genomics) according to manufacturer’s instructions and sent for sequencing to eurofins 

Genomics. Sequencing primers used in this study are listed in Table 4, Table 5 and Table 6. 

 

2.1.6 Site-directed mutagenesis 

For PCR-based site-directed mutagenesis of plasmids, two 30-40 nucleotides long 

mutagenesis primers, complementary to each other and with the intended nucleotide 

substitutions in their center, were designed. PCR reactions were prepared with the ‘Phusion High-

Fidelity PCR Master Mix with HF Buffer’ (New England Biolabs) introducing the following 

modifications to the manufacturer’s protocol: Primer concentration was decreased to 0,1 µM to 

avoid dimers of the long mutagenesis primers, template concentration was increased to 30 ng/50 

µl since amplification in this case is only linear. Thermocycling conditions were always set as 

follows regardless of template size and specific primer melting temperature: 

 

Initial denaturation  98°C  30 sec 

25 cycles    98°C  15 sec 

         53°C  18 sec  

         72°C  10 min    

Final extension   72°C    7 min 

   

After amplification of the DNA construct in the thermocycler, 10 U of DpnI were directly 

added to 50 µl PCR reaction to digest the methylated template. The digest was carried out for 3 

hrs at 37°C. Then, purification of the PCR product directly followed by transformation were 

performed as described in para 2.1.1 and 2.1.4. 
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2.1.7 DNA constructs and their generation 

DNA constructs in this study were either cloned in preparation of the generation of 

Drosophila melanogaster mutants or in preparation of baculovirus-based protein expression in 

insect cells. Table 2 provides a list of these constructs and points out relevant features of the 

corresponding vector backbones (for explanations of abbreviations see list in para 6.1). 

Table 2. Overview of DNA constructs used in this work and description of their vector backbones.  

Construct Vector Vector application and 
features  

Reference/source 
vector 

pCaSpeR-tub-NTAP-
ash1 

pCaSpeR-
tub-NTAP 

Fly transformation and 
expression vector; P element; 
white marker gene; α-
tubulin1-promoter; N- or C-
terminal TAP tag 

Thummel & Pirrotta, 
1991; modified by 
Klymenko et al, 2006  pCaSpeR-tub-ash1-

CTAP 
pCaSpeR-
tub-CTAP 

pUMR-FLAP- ash1R1464A pUMR-FLAP Fly transformation and 
expression vector; integration 
into attP landing site via attB 
site; α-tubulin1-promoter 

Gambetta & Müller, 
2014; Pengelly et al, 
2015 pUMR-FLAP-ash1wt 

pW35-MRG15Δ pW35 Fly transformation; P element 
mini-white gene; FRTs; I-SceI 
sites 

Gong & Golic, 2003 

BAC CH322-160G6 attB-
P[acman]-
CMR-BW 

Fly transformation; 
integration into attP landing 
site via attB site; encodes 
MRG15 

Venken et al, 2009, 
BACPAC Resources 
Center 

pFastBac1-Flag-Ash1C pFastBac1-
Flag 

Transfer of cDNA to bacmid in 
preparation of recombinant 
protein expression; Flag-tag 
N-terminal to MCS 

pFastBac1 vector 
purchased at 
Invitrogen and 
modified by Raquel 
Matos 

pFastBac-HT-Ash1C pFastBac-HT Transfer of cDNA to bacmid in 
preparation of recombinant 
protein expression;  
TEV-cleavable 
6xhistidine(His)-tag N-
terminal to MCS 

Invitrogen 

pFastBac-HT-Ash1C
RxRP 

pFastBac-HT-
Ash1C

R1464A 
pFastBac-HT-Caf1-55 

pFastBac1-StrepII-Caf1-
55 

pFastBac1-
StrepII 

Transfer of cDNA to bacmid in 
preparation of recombinant 
protein expression; Strep-tag 
StrepII N-terminal to MCS 

pFastBac1 vector 
purchased at 
Invitrogen and 
modified by Reinhard 
Kalb  

pFastBac1-StrepII-Esc 

pFastBac1-StrepII-
MRG15 
pFastBac1-StrepII-Msl3 
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2.1.8 Cloning of TAP-ash1 expression constructs pCaSpeR-tub-NTAP-ash1 and 

pCaSpeR-tub-ash1-CTAP 

Arif Mohammed, a former postdoc in our laboratory, cloned the complete Ash11-2226 open 

reading frame into the Drosophila transformation vectors pCaSpeR-tub-NTAP and pCaSpeR-tub-

CTAP, respectively. Both vectors had been modified from pCaSpeR vectors by Tanya Klymenko 

(Klymenko et al, 2006). N- or CTAP stands for N- or C-terminal tandem affinity purification tag.  

 

2.1.9 Cloning of Ash1 transgenes ash1R1464A and ash1wt into the pUMR-FLAP 

vector  

Genomic ash1 coding and flanking sequences corresponding to the genome coordinates 

BDGP R6.14 chr3L:19,600,040...19,590,604 were subcloned from BAC CH322-147P9 (Venken et al, 

2009) into the pUC19 vector by conventional restriction cloning (BDGP R6.14: Berkeley Drosophila 

genome project release 6 update 14 genome assembly). 

In the TBP-associated factor 6 (Taf6) coding sequence, present in this fragment, the ATG 

initiation codon and four downstream alternative start codons specified in Table 3 were mutated 

to TAA stop codons in the case of both the ash1R1464A and the ash1wt transgene. For the ash1R1464A 

transgene, the AGG codon for Arg1464 was converted into GCG. Mutagenesis primers used are 

given in Table 3. All mutagenesis reactions were performed with the ‘QuikChange Lightning Multi 

Site-Directed Mutagenesis Kit’ from Agilent Technologies according to manufacturer’s 

instructions.  

In the final cloning step, both transgenes were cloned into the pUMR-FLAP vector, which 

had been modified to contain an attachment site on bacterial DNA (attB site) by Reinhard Kalb in 

our laboratory. The finalized constructs were sequenced in-depth with primers listed in Table 4. 

For injection of these constructs into Drosophila see para 2.3.2. 

Table 3. Mutagenesis primer for mutating Taf6 start codons and ash1 SET domain coding 
sequence for generation of the ash1wt and ash1R1464A transgenes. Table continued on next page. 

 

 

Name Sequence (5’ to 3’) Codons changed 
ash1_R1464A_F CAAGAATGGTTGACAAACGCACAATCGCTGCCCATCC

G 
AGG into GCG in 
ash1 à R1464A 

Taf6_M1Stop_R GCTCGGTTTCGACGGTTTTCCACTTTATTCCCAGGTTT 
TTACAAATAAACA 

ATG into TAA in 
Taf6 à M1Stop 

Taf6_M26Stop_R GCTCTCCGCGATCACCTTTTAGGACTCCGCCGAG ATG into TAA in 
Taf6 à M26Stop 
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Table 4. Sequencing primers used to verify the pUMR-FLAP-ash1wt/-ash1R1464A constructs. 

 
  

2.1.10 Cloning of the pW35-MRG15Δ construct for generation of the MRG15Δ 

deletion allele 

The MRG15Δ allele was generated by the ends-out targeting technique (Gong & Golic, 

2003), by which the region of interest is removed by replacement with the mini-white (w) marker 

gene by homologous recombination. To this end, sequences homologous to the genomic regions 

up- and downstream of MRG15 had to be cloned into the pW35 vector up- and downstream of its 

mini-white gene and are referred to as 5’ and 3’ homology arms from here on. 

In the MRG15Δ allele, the major part of exon 2, the complete exon 3 and the major part of 

exon 4 of MRG15 (BDGP R6.14 chr3R: 15,276,676...15,277,889) were deleted, but not the entire 

open reading frame in order to not damage genes overlapping with MRG15. Accordingly, in the 

initial cloning step, sequences corresponding to BDGP R6.14 chr3R: 15,277,890...15,281,975 and                                             

BDGP R6.14 chr3R: 15,272,003…15,276,675 were amplified as 5’ and 3’ homology arms from BAC 

Name Sequence (5’ to 3’) Codons changed 
Taf6_M80Stop_R CATTTCGCACCTTAAGGGATTAGTCGATGTCCCGCAC 

TGAG 
ATG into TAA in 
Taf6 à M80Stop 

Taf6_M175Stop_R CGCATCTTTGTTTAGGCCTTGATCTTACTTAATAACTG 
GATTGACCGAGTC 

ATG into TAA in 
Taf6 à M175Stop 

Taf6_M280Stop_R GATTATCCAGAAGCGCACGAACTTAGCGCATGAGGT 
AAATAAGCAAC 

ATG into TAA in 
Taf6 à M280Stop 

Name Sequence (5’ to 3’) Name Sequence (5’ to 3’) 
-1286_R CTTCTCCAGAAACAGCGAAGG +3178_R CAGCTAAACAGAAGGTGTCGG 
-957_R CTGCCGCATCTTTGTTTAG +3576_R CCACTGCAATCCCTAAGAGAGAC 
-829_F GTTTGTTGTGGAGGGAGTGC +3972_R GATGGCATCGATCCCAATAC 
-366_R AGCTGCTCGGCCAGTGTG +4397_R TCCTGCGAGCCTTCTACCAC 
-14_F ACGTGATGTCTACGCGACAG +4794_R CGAACTAAGCTACCCATTGCG 
+369_R GCGTAAGTGTGCTGTAGGTAATG +5162_R TGTCATTGGTGGCAAGTCG 
+567_F CGTTTCCAGAACCTTTGCTG +5962_R AAGCGCTGCAGTCCCTGAAG 
+785_R GTTAGGAGTCGTAGCAACCAAG +6374_R CCTGGAGGAATTTACCGAAG 
+1165_R GCGATACGGAGGACACAAC +6782_R GGAATGCAACGATGAGGATC 
+1571_R CATGGCGTATCTGGACAAGC +7156_R GGATGCAACTGCTGTCCATG 
+1963_R GCTACCGGAGTGATTGCAAG +7551_R CCATGTAAGATGTAACGGTGATAG 
+2356_R GTATGTGCAGCAGCTATGTGTC +8152_F GCAAATGAATTTTTGCGATAC 
+2787_R CAAAGCAATGACAGTTCCAGTC   
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CH322-160G6 (Venken et al, 2009). The 5’ homology arm was subcloned into the pCR 2.1-TOPO 

TA vector (Invitrogen) to then mutate the initiation ATG of MRG15 to ATC by site-directed 

mutagenesis using primers  

5’-CTATTATTGAAAATAAAATCGGAGAAGTAAAACCCGCTAAAG-3’ and 

5’-CTTTAGCGGGTTTTACTTCTCCGATTTTATTTTCAATAATAG-3’.  

Both, the 5’ and the 3’ homology arm, were subsequently cloned into pW35 with the ‘In-fusion 

HD Plus EcoDry kit’ from Clontech according to manufacturer’s instructions and the sequence of 

the resulting construct pW35-MRG15Δ was verified with primers listed in Table 5.  

The succeeding in vivo work is described in para 2.3.7.  

Table 5. Sequencing primers used to verify the pW35-MRG15Δ construct and the homology arms 
including their endogenous flanking regions in the MRG15Δ deletion allele 

 
  

2.1.11 Cloning of cDNA into pFastBac vectors for baculovirus-based expression  

All pFastBac constructs used, and with the exception of pFastBac1-Flag-Ash1C generated 

in the course of this study, are listed in Table 2. For proteins to be expressed with an N-terminal 

hexa-histidine tag (His-tag), the respective cDNAs were cloned into the the pFastBac-HT vector 

(Invitrogen); for proteins to be expressed with an N-terminal Strep-tag, cDNAs were cloned into 

the pFastBac1-StrepII vector. Cloning steps were performed with the ‘In-fusion HD Plus EcoDry kit’ 

from Clontech according to manufacturer’s instructions.  

Primer 5’ homology arm (HA) Primer 3’ homology arm (HA) 
Name Sequence (5’ to 3’) Name Sequence (5’ to 3’) 
5’pw35_F ACATCCACTTAACGTATGCTTGC 3’pw35_F GCTCTCTTTGTGTGCGTGTG 
5’HA_1R TGACAAGGTCCCCAGAATCG 3’HA_1R CCTTAAATTCCTCGTAAAGAACAGC 
5’HA_2R CGCGACTTGAACGGATTGTG 3’HA_2F GCTGGTTTCTGGGCAAGTTC 
5’HA_3R GCGAAATCAACAAAGGGGTGC 3’HA_2R AGAAACCAGCGAGCCTCTTC 
5’HA_4R CCGCTTTCTCTCTGCCTCTC 3’HA_3R TTGGATCGCAGTGGTTGAGG 
5’HA_5R CAACGTCATGTCTGCGAACG 3’HA_4R GATTGCAAAGAAGGGTGGCG 
5’HA_6R TTGCCAGTCCGAGGTTGATG 3’HA_5R GCAGTAAACAAGCCGCTGAG 
5’HA_7R GCTCAGACAAGTGCGCAATC 3’HA_6R TTACCCATTCACCTGCGTCC 
5’HA_8R AAAGACTGTGCGTAGGGTGC 3’HA_7R TCATGCCCAACGAGTTCCAG 
5’HA_9R CAGAACTTGCTCGCACTTGG 3’HA_8R ATGAGCCGAACATCAGGTGG 
5’HA_10R TTGCAGTGTAACCGCATG 3’HA_9R CCAACGCCAAGCTGAATCAC 
5’HA_11R GGAAGATCAGCCGACGACAG 3’HA_10R GACAATGCACGCCTTGATCG 
5’HA_12F AACCCGTTCCCCTGCAAATG 3’HA_11R GACGACAACAAGCAGCAGTG 
5’pw35_R CAAAGTGCAACTGAAGGCGG 3’HA_12R CGTCAAGCAGGAGACCGATG 
  3’pw35_R AAGTGATAGAGCCTGAACCAG 
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In the case of the Ash1 constructs, the cDNA of the C-terminus of Ash1, Ash1C (aa 1041 - 

2226), was amplified from a pFastBac1-Flag-Ash1C construct that had been cloned previously by 

Raquel Matos, a former Phd student in our laboratory. The Caf1-55-cDNA was a gift from the 

Christoph Müller laboratory, EMBL, Heidelberg. Each, the Ash1C-cDNA and the full-length Caf1-55-

cDNA, were integrated into a pFastBac-HT vector, that had been linearized with KasI and HindIII 

beforehand. This pFastBac-HT-Ash1C construct was then directly used as template to generate the 

pFastBac-HT-Ash1C
RxRP and the pFastBac-HT-Ash1C

R1464A constructs by site-directed mutagenesis. 

For the FxLP to RxRP mutations in the pFastBac-HT-Ash1C
RxRP construct the mutagenesis primers  

5’-CTCCGAAGGACTGAAATGGACCGTGAGCGACCTTACGACATTTGGTG-3’ and 

5’-CACCAAATGTCGTAAGGTCGCTCACGGTCCATTTCAGTCCTTCGGAG-3’ were used. 

The mutagenesis primers to make the pFastBac-HT-Ash1C
R1464A construct were 

5’-CAGCGGATGGGCAGCGATTGTGCGTTTGTCAACCATTCTTGC-3’ and 

5’-GCAAGAATGGTTGACAAACGCACAATCGCTGCCCATCCGCTG-3’ 

The cDNAs for Esc, MRG15 and Msl3 were obtained from the ‘DGRC cDNA library GOLD 

Parts 1-3, v2.1.1’ (Stapleton et al, 2002). Full-length Caf1-55-, full-length Esc-, full-length MRG15- 

and full-length Msl3-cDNAs were cloned into a pFastBac-StrepII vector, that had been digested 

with KpnI and SalI for the MRG15 construct and with KasI and HindIII for the other constructs.  

All pFastBac constructs were sequenced thoroughly with primers in Table 6. 

Table 6. Sequencing primers to verify the pFastBac constructs. The number in the primer name 
indicates primer distance in base pairs from the start codon. MRG stands for MRG15. 

Name Sequence (5’ to 3’) Name Sequence (5’ to 3’) 
pFastBac_F TGTTCGCCCAGGACTCTAGC Caf1_1068F GAGCAGAGTACGGAGGATGC 
pFastBac_R GCAGGCTCTAGATTCGAAAGC Esc_356F TCCGGATCCCGATGAAGTAT 
Ash1_2995F CCACTGCAATCCCTAAGAGAGAC Esc_750F CACAAGATCGAACTGTCGAA 
Ash1_3391F GATGGCATCGATCCCAATAC Esc_1150F ACAATTCGCGTAGCGTGG 
Ash1_3816F TCCTGCGAGCCTTCTACCAC MRG_71R TCCACGAACAGAGTGTTTGC 
Ash1_4213F CGAACTAAGCTACCCATTGCG MRG_370F ATAGCAACACCTCGCAATCG 
Ash1_4581F TGTCATTGGTGGCAAGTCG MRG_480R GGCGGTGCTGTTAGTAGTCG 
Ash1_4923F CTCCACACCATCTTCTCCTTC MRG_965F CGTTTATGGCAACCTCCTTG 
Ash1_5318F AAGCGCTGCAGTCCCTGAAG MRG_1170R CGTGAGTAGGTTCTGCATGG 
Ash1_5730F CCTGGAGGAATTTACCGAAG Msl3_20F GACACCGCTCTTTCACAAGG 
Ash1_6138F GGAATGCAACGATGAGGATC Msl3_582F CCACAGGAGGATCGCATTATG 
Caf1_179F GGATGGCAAGGACTACTCGG Msl3_869R CCGTCTACCACCTCCTTCAG 
Caf1_331R CTCCAAACTCGCCCTTCTCG Msl3_1141F TCTACATTGTTACCGCCAGC 
Caf1_638F CACACCCAAGGAGCATAGGG   
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2.2 Antibodies 

Table 7. Antibodies and their corresponding dilutions used in this study.                                             
IgG: immunoglobulin G; WB: western blot; IF: immunofluorescence; DSHB: Developmental Studies 
Hybridoma Bank; ChIP: chromatin immunoprecipitation; HRP: horseradish peroxidase. 

 

 

 Specificity Usage Host species / 
clonality 

Source / reference 

Pr
im

ar
y 

an
tib

od
ie

s 

Ash1 
(aa 443-769) 

1:3000 in WB Rabbit polyclonal Schmähling et al, 2018 

Ogt 1:5000 in WB Rabbit polyclonal H-300, Santa Cruz, sc-
32921 

MRG15 
(full-length) 

1:3000 in WB Rabbit polyclonal Kusch et al, 2004 

E(z) 
(full-length) 

1:7000 in WB Rabbit polyclonal Gambetta et al, 2009  

Caf1-55 
(full-length) 

1:50.000 in WB Rabbit polyclonal α-Nurf55 in 
Gambetta et al, 2009 

Spt5 
 

1:50.000 in WB Guinea pig 
polyclonal 

Saunders et al, 2003 

H3K36me2 1:250 in WB Rabbit 
monoclonal 

C75H12 / Cell Signaling 

H3K36me3 1:750 in WB in 
Figure 11 

Rabbit 
monoclonal 

D5A7 / Cell Signaling 

H3K36me3 1:1000 in WB in 
Figure 16 

Rabbit polyclonal 
 

ab9050 / Abcam 

H4 1:200.000 in WB Rabbit polyclonal 
 

ab10158 / Abcam 

Ubx 1:30 in IF Mouse 
monoclonal 

FP3.38 / DSHB 

Abd-B 1:200 in IF Mouse 
monoclonal 

1A2E9 / DSHB 

H3K36me2 ChIP (3 µl for 1 ml 
IP with chromatin 
from haltere and 
3rd leg discs from 
60 larvae) 

Rabbit polyclonal ab9049 / Abcam 

Se
co

nd
ar

y 
an

tib
od

ie
s 

Rabbit IgG 1:5000 in WB Donkey 
polyclonal 

HRP anti-rabbit IgG / 
Amersham Biosc. (NA934) 

Guinea pig IgG 1:5000 in WB Goat polyclonal  HRP anti-guinea pig IgG /  
Santa Cruz (sc-2438) 

Mouse IgG 1:500 in IF Goat polyclonal Cy3 anti-mouse IgG / 
Jackson ImmunoResearch 
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2.3 Drosophila genetics 

2.3.1 Fly husbandry 

Fly stocks and crosses were cultivated in Drosophila breeding vials or bottles on standard 

agar medium composed of cornmeal, soy flour, yeast and treacle supplemented with phosphoric 

acid and methyl paraben as fungicides. The incubation conditions were set to 65% relative 

humidity and a temperature of either 25°C or 18°C depending on how fast progeny needed to be 

obtained.  

For mass production of embryos to generate large-scale nuclear extracts for tandem 

affinity purifications (TAP) (para 2.5.1.1), populations of fly strains carrying ash1 transgenes were 

raised in breeding bottles and transferred to large-sized cages for the period of embryo collection. 

To obtain a sufficient amount of the transgenic embryos, 12 cages were necessary, each filled 

with 25 – 30 g of adult flies. Embryos were collected from food plates. This food in petri dishes 

was made of agar medium supplemented with apple juice, treacle and methyl paraben and, when 

dry, a portion of yeast paste added on top. At the end of embryo collection, adult flies were 

famished and a new population was started by expanding the transgenic strains in breeding 

bottles. Wild-type embryos (Oregon-R) were collected in the laboratory of Peter Becker (BMC, 

LMU, Munich).  

 

2.3.2 Transformation of DNA constructs into Drosophila  

The DNA sequences to be integrated into the Drosophila genome from the TAP-constructs 

(pCaSpeR-tub-NTAP-ash1 and pCaSpeR-tub-ash1-CTAP; para 2.1.8) and the pW35-MRG15Δ-

construct (para 2.1.10) were P elements. All three constructs were injected into the germ line of 

wild-type Drosophila melanogaster (w1118) by standard methods, where the P elements were 

incorporated into the genome as originally described in Rubin & Spradling, 1982. Fly stocks not 

showing an unspecific phenotype due to the P element insertion site were established and the P 

elements were mapped.  

The pUMR-FLAP-ash1R1464A- and the pUMR-FLAP-ash1wt-construct (para 2.1.9) as well as 

the BAC CH322-160G6 (Table 2) carried attB sites for integration into attachment sites on phage 

DNA (attP landing sites) by PhiC31 integrase-mediated site directed transgenesis (Groth et al, 

2004). The constructs were injected into the germ line of Drosophila melanogaster, pUMR-FLAP-

ash1R1464A and pUMR-FLAP-ash1wt into a strain containing the landing site VK37 (Venken et al, 

2006), CH322-160G6 into a strain with the landing site ZH-51C (Bischof et al, 2007). See Table 8 

for the genotypes of the landing site strains. 
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2.3.3 Genotypes of Drosophila strains used in this study 

Table 8. List of genotypes of Drosophila strains used in this study. As indicated, some strains were 
generated in the context of this work, others obtained from outside sources.  

Genotype Usage Source / Reference 

Oregon-R control for TAP - 

w ; + ; + (w1118) injection; control in 
Figure 11 - 22 

- 

w ; if-1/CyO Establishment of 
transgenic stocks 

- 

y1w ; + ; Dr1/TM6C - 

y1w ; sp1/CyO ; TM2/TM6B - 

y1w ; + ; Dr1/TM3, twi::EGFP - 

w ; + ; ash122, FRT2A/ TM3, twi::EGFP Ash1 mutant analysis Tripoulas et al, 1994 

w ; P{α-tub1-NTAP-ash1} ; ash122, FRT2A ‘NTAP-Ash1’ and ‘Ash1-
CTAP’ strains for TAP 

Schmähling et al, 2018 

w ; P{α-tub1-ash1-CTAP}/CyO ; ash122, 
FRT2A 
w hsp70-flp ; + ; P{ovoD1-
18}3L, P{FRT(whs)}2A/TM2/TM6B 

Generation ash1 
maternal minus 
mutants 

Norbert Perrimon, 
Harvard Medical School  

w ; + ; ash110/TM6C Ash1 catalytic mutant 
analysis 

Tripoulas et al, 1994 

y1 P{nos-phiC31\int.NLS}X ; PBac{y[+]-attP-
3B}VK00037 

landing site strain Venken et al, 2006 

w ; ash1R1464A (VK37) ; ash122, FRT2A/TM6B Ash1 catalytic mutant 
analysis 

Schmähling et al, 2018 

w; ash1wt(VK37) ; ash122, FRT2A 

y1 w ; + ; P{lacW}MRG15j6A3/TM3, Sb1 MRG15 mutant analysis Spradling et al, 1999 

y1 w/Dp(2;Y)G, P{hs-hid}Y 
; P{70FLP}11, P{70I-
SceI}2B, snaSco/CyO, P{hs-hid}4 

Generation MRG15 
deletion allele 

Yang Hong, University 
of Pittsburgh School of 
Medicine 

w ; P{MRG15∆} ; MRG15+ P[donor] strain Schmähling, 
unpublished 

w ; + ; MRG15∆/TM6C MRG15 deletion  Schmähling et al, 2018 

w ;  + ; Df(3R)BSC741/TM3, twi::EGFP complementation test; 
MRG15 mutant analysis 

Kevin Cook, 
Bloomington 
Drosophila Stock 
Center 

y1 M{vas-int.Dm}ZH-2A w1118 ; M{3xP3-
RFP.attP'}ZH-51C  

landing site strain Bischof et al, 2007  

w ; CH322-160G6 (ZH-51C)/CyO Rescue of MRG15∆ Schmähling, 
unpublished 
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2.3.4 Crosses performed to obtain the analyzed genotypes  

The ash1-null mutants devoid of Ash1 maternal load are called ash122 m− z− in this work and 

had the genotype w ; + ; ash122 m− z−, FRT2A (FRT: flippase recognition target site). In the first step 

to obtain these mutants, w ; + ; ash122, FRT2A/ovoD, FRT2A females with germ line clones 

homozygous for ash122, FRT2A were generated applying the autosomal FLP-DFS (flippase-

dominant female sterile) technique described in Chou & Perrimon, 1996. These                                

w ; + ; ash122, FRT2A/ovoD, FRT2A females were then crossed with w ; + ; ash122, FRT2A/TM3, 

twi::EGFP males. Part of the progeny were the wanted w ; + ; ash122 m− z−, FRT2A mutants, that 

could be distinguished and separated from the other viable genotype in the progeny (w ; + ; 

ash122 m−, FRT2A/ TM3, twi::EGFP ) by lack of GFP expression to perform phenotypic analyses.  

ash1-catalytically inactive mutants devoid of maternal Ash1 are named ash1R1464A m−z− in 

this work and had the genotype w ; ash1R1464A m− z− (VK37)/+ ; ash122, FRT2A. They were generated 

by crossing w ; ash1R1464A m+ z− (VK37) ; ash122, FRT2A females with w ; + ; ash122, FRT2A/TM3, 

twi::EGFP males. 

The ash110 m− z− flies had the genotype w ; + ; ash110 m− z−/ash122, FRT2A and were the 

progeny of w ; + ; ash110 m+ z−/ash122, FRT2A mothers and w ; + ; ash110/TM6C fathers. 

The genotype of the MRG15 mutant flies called MRG15j6A3 m+ z- was                                         

w ; + ; P{lacW}MRG15j6A3 m+ z-/Df(3R)BSC741 (Df: deficiency allele) generated by crossing flies from 

the strains w ; + ; P{lacW}MRG15j6A3/TM3, Sb1 and w ; + ; Df(3R)BSC741/TM3, twi::EGFP with each 

other.  

The MRG15-null mutant flies MRG15Δ  m+ z− had the genotype w; + ; MRG15Δ m+ 

z−/Df(3R)BSC741 and were derived from crosses between flies from the strains w ; + ; 

MRG15∆/TM6C and w ; + ; Df(3R)BSC741/TM6C. In order to obtain MRG15-null mutants devoid of 

MRG15 maternal load, w ; + ; MRG15Δ m+ z−/Df(3R)BSC741 females were crossed further with           

w ; + ; Df(3R)BSC741/TM3, twi::EGFP males. 

  

2.3.5 Adult cuticle preparations for microscopy 

Adult Drosophila melanogaster of the respective genotype were collected and stored in 

70% ethanol. Prior to dissection, ethanol had to be replaced by soaking the carcasses in PBT 

overnight at 4°C (PBT: 0,2% (v/v) ‘TWEEN 20’ from Sigma-Aldrich in phosphate-buffered saline 

(PBS)). On the next day, cuticles of the thoracic and abdominal segments were dissected as 

cleanly as possible in PBT in a glass well. As mounting medium, a 1:1 mixture of lactic acid and 

Hoyer’s solution (30 g gum arabic and 200 g chloral hydrate in 28% (v/v) glycerol) had been 

prepared. Each dissected cuticle was transferred to a drop of mounting medium on a microscope 
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slide and covered with a cover slip. To flatten the mounted tissue, a weight was put on the cover 

slip and the microscopy sample was kept at room temperature overnight without moving. 

Remaining tissue that was not part of the cuticle was dissolved by the mounting medium. 

Microscopic analysis of the adult cuticles was performed with an ‘Axio Scope.A1’ 

microscope. The pictures were taken with bright-field illumination and Nomarski contrast settings 

under the ‘10x/0.3 Ph1 EC Plan-Neofluar’ objective with the attached camera ‘AxioCam MRm’ 

(microscope, objective and camera from Zeiss). 

 

2.3.6 Immunofluorescent staining of larval tissues  

Third instar larvae were bisected in ice-cold PBS. The anterior parts were inverted; guts 

and fat bodies were removed and the carcasses with imaginal discs respectively brains still 

attached were transferred to an Eppendorf tube. For fixation, carcasses were incubated in 4% 

(w/v) formaldehyde in PBS for 20 min. The fixation step as well as the washing and blocking steps 

described in the following were performed at room temperature with agitation. After fixation, 

carcasses were washed twice for 10 min in PBT and blocked for 1 hr in BBT (1% (w/v) bovine 

serum albumin (BSA) and 0,1% (v/v) ‘Triton X-100’ from Sigma-Aldrich in PBS). BBT was exchanged 

four times during blocking. The subsequent incubation with a primary antibody directed against 

Ubx (FP3.38, DSHB, diluted 1:30) or Abd-B (1A2E9, DSHB, diluted 1:200) took place in BBT 

overnight at 4°C and was followed by six 10 min-washes in BBT. Next, carcasses were incubated in 

parallel with the 1:500 diluted fluorescently-labeled secondary antibody ‘Cy3 anti-mouse IgG’ 

(Jackson ImmunoResearch) and 50 ng/ml Hoechst 33342 DNA stain in BBT overnight at 4°C and, 

as in all steps from here onwards, protected from light. After two 10 min-washes in BBT and four 

10 min-washes in PBT, imaginal discs respectively brains were separated from the carcasses in 

PBT and mounted on microscope slides in Fluoromount-G (Southern Biotech). The 

immunofluorescent stainings were analyzed with the confocal laser scanning microscopes ‘TCS 

SP8’ from Leica (haltere and 3rd leg imaginal discs) or the ‘LSM 780’ from Zeiss (brains). Pictures 

were taken with the corresponding cameras of these microscopes under the ‘HC PL APO CS2 

20x/0.75 IMM’ objective (haltere and 3rd leg imaginal discs) or under the ‘LD LCI PL APO 25x/0.8 

IMM Korr DIC M27’ objective (brains). All pictures shown in this work represent the average of 

four sequential scans in the same focal plane. 

 

2.3.7 Generation of the MRG15Δ deletion allele 

The fly transformation vector pW35 used to generate the MRG15Δ deletion allele is a P 

element vector and harbors FRTs and I-SceI recognition sites as relevant elements for ends-out 
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targeting (Gong & Golic, 2003). The FRT and I-SceI sites flank the homology arms that border in 

turn the mini-white marker gene.  

First, the pW35-MRG15Δ construct bearing sequences up- and downstream of the MRG15 

gene as homology arms (see para 2.1.10) was injected and integrated into the Drosophila 

melanogaster genome as a P element as outlined in para 2.3.2. The respective transgenic flies 

were kept as P[donor] strain. Then, flies trans-heterozygous on chromosome two for the P 

element and for a chromosome carrying the hs-FLP and the hs-I-SceI transgenes, that encode the 

flippase and the I-SceI endonuclease under the heat-shock promoter of hsp70, were generated. 

Expression of flippase and I-SceI was induced by three subsequent heat-shocks of the trans-

heterozygous larvae for 1 hr at 37°C, 24, 48 and 72 hrs post egg laying, in order to excise the P 

element and enable recombination. When these candidate recombinants reached adult stage, 

they were individually crossed to Df(3R)BSC741/TM6B adults in a complementation test. 

Df(3R)BSC741 is a deficiency allele uncovering the entire MRG15 gene on chromosome three. Out 

of approximately 150 crosses, multiple independent targeting events were isolated, that 

manifested themselves in a Trithorax mutant phenotype similar to ash1 mutants. One of these 

alleles, MRG15Δ, was chosen for thorough sequencing analysis. First, genomic DNA from MRG15Δ 

homozygotes, the P[donor] strain and the wild-type strain (w1118) was isolated (para 2.3.8) and 

analyzed by PCR with the primer pairs listed in Table 9, followed by agarose gel electrophoresis. 

Primer pairs U and D were designed in a way that an amplification product could only be obtained 

in case of specific recombination and therefore correct disruption of MRG15. The PCR products 

generated with U and D on the genomic DNA of MRG15Δ were cloned into the  pCR 2.1-TOPO TA 

vector  aanndd  sseeqquueenncceedd  ffuullll--lleennggtthh  wwiitthh  primers in Table 5. The primers specific for the pW35 vector 

were replaced by the commercial M13 forward and reverse primers (Invitrogen) specific for pCR 

2.1-TOPO TA..   

AAfftteerr  tthhee  mmoolleeccuullaarr  aannaallyyssiiss  ooff  tthhee  MRG15Δ allele,  aa  ggeenneettiicc  rreessccuuee  aassssaayy  wwaass  sseett  uupp  ttoo  tteesstt  

iiff  tthhee  TTrriitthhoorraaxx  mmuuttaanntt  pphheennoottyyppee  ooff  tthhee  MRG15Δ//Df(3R)BSC741 trans-heterozygotes is rescued by 

the BAC CH322-160G6, which encodes MRG15. To this end, w ; +/CyO ; MRG15∆/TM2 flies were 

crossed with w ; CH322-160G6 (ZH-51C)/CyO ; Df(3R)BSC741/TM2 flies and the adult phenotype 

of the progeny w ; CH322-160G6 (ZH-51C)/CyO ; MRG15∆/Df(3R)BSC741 was compared with the 

phenotype of the progeny w ; +/CyO ; MRG15∆/Df(3R)BSC741. 
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Table 9. Primer pairs used to verify correct disruption of MRG15 in the MRG15Δ allele 

 
 

2.3.8 Purification of genomic DNA from adult Drosophila 

Fifty adult flies of the respective genotype were collected in 300 µl Solution A (0,1 M Tris-

HCl pH9; 0,1 M EDTA pH8; 1% (w/v) sodium dodecyl sulfate (SDS)) and squashed manually with a 

micro-pestle (Eppendorf). To foster further homogenization and to denature proteins, the 

suspension was incubated at 70°C for 30 min. SDS was then removed by adding 70 µl of 8 M 

potassium acetate and incubation on ice for 30 min. In the next step, insoluble tissue particles 

were pelletized and discarded. DNA in the soluble fraction was precipitated by adding 0,5x 

volume of isopropanol and centrifugation at 21.000 x g for 5 min. The DNA pellet was washed 

with 70% ethanol and subsequently resuspended in 100 µl of 10 mM Tris-HCl pH8,5. RNA in the 

sample was then digested by adding 15 mU of Ribonuclease (Roche, #11119915001) and 

incubation for 5 min at 37°C.  

To the end of further purifying the genomic DNA, phenol-chloroform extraction was 

performed using 2 ml MaXtract High Density Tubes (Qiagen) according to manufacturer’s 

instructions. For DNA precipitation, 1 µl of 20 mg/ml glycogen, 0,1x volume of 3 M sodium 

acetate pH5,2 and 2,5x volumes of 100% ethanol were added to the aqueous phase of the 

phenol-chloroform extraction (1x volume) and mixed by inversion. The sample was then 

incubated for 30 min at -80°C and centrifuged at 21.000 x g and 4°C for 20 min. The obtained DNA 

pellet was washed with 70% ethanol. Lastly, the purified genomic DNA was taken up in 50 µl 10 

mM Tris-HCl pH8,5.  

 

Name Sequence (5’ to 3’) Purpose 
U_R AGCGGTCGTGGATCAGATTTC Verification of correct disruption upstream (U) of 

MRG15 gene  U_F AGCAACGAGAATAGAGTGCCG 
D_R CGCTGCATGAATTAGCTTGGC Verification of correct disruption downstream (D) 

of MRG15 gene  D_F TTTCTTGATCTGGACCTCGGC 
W_R CATCGGTACTGTCCCATCCG Double check of mini-white region (W) 
W_F GCCAAGCTAATTCATGCAGCG 
E_R CGCGACTTGAACGGATTGTG Negative control. Primer pair specific for 

endogenous (E) MRG15 genomic locus. E_F GGCGGTGCTGTTAGTAGTCG 
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2.4 Recombinant protein expression using baculoviruses  

All recombinant proteins used in this work were expressed in insect cells via baculovirus 

infection. To this end, baculoviruses bearing the respective cDNAs were generated with the ‘Bac-

to-Bac Baculovirus Expression System’ from Invitrogen. Table 10 lists all baculoviruses that have 

been produced in the course of this study.  

Table 10. Baculoviruses generated in this study. Proteins marked as full-length lack methionine 1. 

 

 

2.4.1 Cultivation of insect cells 

Two different insect cell lines were used for baculovirus-based protein expression 

dependent on the precise application: Sf21 cells for generation of viruses (IPLB-Sf21 AE, ovarian 

tissue, Spodoptera frugiperda, Invitrogen, Cat no.12682-019) and High Five cells for protein 

expression (BTI-TN-5B1-4 ovarian tissue, Trichoplusia ni, Invitrogen, High Five Frozen cells, P/N 51-

4005). Sf21 cells were cultivated in EX-CELL TiterHigh animal-component free medium (Sigma-

Aldrich) at a density of 7 – 10 x 10^5 cells/ml; High Five cells were grown in Express Five SFM (1x) 

serum free medium (Gibco, Life Technologies) supplemented with 18 mM L-glutamine at a 

density of 4 – 8 x 10^5 cells/ml. Both cell lines were maintained as 500 ml suspension cultures in 

‘3 l disposable polycarbonate Erlenmeyer flasks’ (Corning) with vent caps at 27°C at 90 rpm. Cell 

counts, viability and morphology were regularly monitored with the cell viability analyzer ‘Vi-cell 

CR’ from Beckman coulter.  

 

2.4.2 Virus generation with the ‘Bac-to-Bac Baculovirus Expression System’ 

The ‘Bac-to-Bac Baculovirus Expression System’ (Invitrogen; Ciccarone et al, 1998) 

comprises several steps from generation of recombinant bacmids by site-specific transposition in 

E. coli to bacmid transfection into insect cells and production of the first passage of recombinant 

baculoviruses.   

 

Ash1 viruses Caf1-55 and MRG15 viruses Esc and Msl3 viruses  
Flag-Ash1C (1041 – 2226) 6xHis-Caf1-55full-length StrepII-Escfull-length 
6xHis-Ash1C (1041 – 2226) StrepII-Caf1-55full-length StrepII-Msl3full-length 

6xHis-Ash1C
RxRP

(1041 – 2226) StrepII-MRG15full-length  

6xHis-Ash1C
R1464A

(1041 – 2226)   
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2.4.2.1 Transposition of cDNA from pFastBac to bacmid 

The cDNA from which the respective protein of interest was going to be expressed was 

cloned into the pFastBac1 vector that was coding for the chosen protein tag in its multiple cloning 

site as described in para 2.1.11.  

Next, the cDNA was to be integrated into a baculovirus shuttle vector, the bacmid, by 

transformation of the cloned pFastBac1 construct into DH10EMBacY E. coli cells, which already 

contained the bacmid and a helper plasmid required for transposition. To this end, 100 µl of 

DH10EMBacY E. coli were thawn on ice; 2 µl of the pFastBac1 construct purified with the ‘Plasmid 

Mini Kit’ from Qiagen were added, gently mixed with the bacteria and incubated for 30 min on 

ice. Then, the transformation mixture was heat-shocked for 45 sec at 42°C and placed back on ice 

for 2 min. Next, the bacteria suspension was topped up with 900 µl of room temperature SOC 

(super optimal broth with catabolite repression) and incubated at 37°C for 3 - 4 hrs with agitation. In 

this time window, transposition took place. Afterwards, bacteria were spun down at 845 x g for 4 

min, resuspended in 200 µl LB and plated in different amounts (e.g. 20 and 160 µl) on selective LB 

agar medium for blue-white screening (selective LB agar medium: 50 μg/ml kanamycin, 10 μg/ml 

tetracycline, 34 μg/ml chloramphenicol, 7 μg/ml gentamicin, 100 μg/ml 5-Bromo-3-indolyl β-D-

galactopyranoside (Bluo-Gal), 40 μg/ml Isopropyl β-D-1-thiogalactopyranoside (IPTG)). The 

bacterial plates were incubated protected from light at 37°C for at least 36 hrs until blue and 

white colonies could be observed. For confirmation of candidate recombinants, several white 

colonies expected to contain the bacmid with the cDNA integrated were re-stroken on another 

selective plate along with a blue colony as control. 

 

2.4.2.2 Bacmid purification 

Three independent white colonies containing the recombinant bacmid were inoculated 

into 2,5 ml LB medium with antibiotics (50 μg/ml kanamycin, 10 μg/ml tetracycline, 34 μg/ml 

chloramphenicol, 7 μg/ml gentamicin) and incubated at 37°C for 20 hrs with agitation. The next 

day, bacteria only from cultures that had grown dense were processed further and pelletized at 

21.000 x g for 3 min. Each bacterial pellet was resuspended in 300 µl P1 buffer (Plasmid Mini Kit, 

Qiagen). For cell lysis, 300 µl P2 buffer (Plasmid Mini Kit, Qiagen) were added, the suspension 

carefully inverted and incubated for 5 min at room temperature. Then, the lysate was neutralized 

by topping up with 300 µl P3 (Plasmid Mini Kit, Qiagen), again careful inversion of the suspension 

and incubation for 5 min on ice. Cellular debris were removed in a centrifugation step at 21.000 x 

g and 4°C for 10 min. The pellet was discarded, the supernatant with the bacmid DNA mixed with 

800 µl isopropanol by inversion of the Eppendorf tube and incubated for 10 min on ice. The DNA 
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was precipitated by centrifuging at 21.000 x g and 4°C for 20 min. After discarding the 

supernatant, 70% ethanol was added and the sample centrifuged again at 21.000 x g and room 

temperature for 10 min. The pellet was air-dried at 37°C. Once the DNA appeared transparent, it 

was resuspended in 5 mM Tris-HCl pH 8,5 and stored at 4°C until transfection of Sf21 cells.  

 

2.4.2.3 Transfection of Sf21 cells with bacmid 

In preparation of transfection, SF21 cells were seeded into three independent wells in a 6-

well plate per recombinant bacmid and into two additional wells that were going to serve as 

negative controls. More precisely, 8 x 10^5 SF21 cells in 2 ml EX-CELL TiterHigh medium were 

plated per well followed by incubation of the well plate for 30 – 60 min at 27°C without agitation 

to allow cells to settle and adhere. In the meantime, the two components of the transfection 

mixture, bacmid DNA and transfection reagent were prepared: First, for each transfection 

reaction separately, 1000 ng bacmid DNA (concentration after purification usually 1000 ng/1 µl) 

were diluted in 100 µl EX-CELL TiterHigh medium and gently mixed. Second, a master mix with 8 

µl of Cellfectin II (Thermo Fisher) and 92 µl EX-CELL TiterHigh medium per transfection reaction 

was pipetted. 100 µl of this master mix were added to each bacmid dilution. This transfection 

mixtures were gently mixed and incubated for 15 – 30 min at 27°C. Next, the 200 µl transfection 

mixtures were pipetted dropwise to their allocated wells. To one negative control well only 

Cellfectin II and no DNA was added, to the second negative control only 200 µl EX-CELL TiterHigh 

medium. The SF21 cells were incubated in the transfection mixtures for 3 – 5 hrs at 27°C without 

agitation to allow uptake of the bacmid DNA. Then, the medium in the wells was replaced with 

fresh EX-CELL TiterHigh medium. In a further incubation step for 96 hrs at 27°C, the first virus 

passage, P1, was produced. Once the expected cytopathic effect was observed in the Sf21 cells, 

the supernatant containing P1 was harvested and stored in falcon tubes at 4°C until further 

amplification.  

 

2.4.3 Virus amplification  

For the purpose of obtaining a baculoviral stock of high titer and volume, all P1 stocks 

generated from one recombinant bacmid were passaged further. 

50 ml of free-floating 4 x 10^5 Sf21 cells in an Erlenmeyer flask were infected with 2,5 ml 

of one P1 stock and incubated for 96 hrs at 27°C and 90 rpm. The cell suspension was then 

centrifuged at 930 x g for 15 min. The supernatants containing the P2 viruses were harvested. On 

the base of the pellet size, it was estimated which supernatant most likely had the highest viral 

titer. Only this supernatant was passaged further and used to infect 250 - 500 ml free-floating 4 x 
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10^5 Sf21 cells in a 1:100 volume ratio. This cell suspension was incubated for 72 hrs at 27°C and 

90 rpm and then centrifuged in 500 ml centrifuge flasks from Corning at 930 x g for 15 min; the 

supernatant representing the P3 viral stock was collected and stored at 4°C. The P3 stock was the 

standard passage applied for protein expression.  

 

2.4.4 Recombinant protein expression 

For preparative protein expression, 500 ml free-floating High Five cells at a density of 8 x 

10^5 cells/ml were infected with one up to three different P3 viruses simultaneously for 

coexpression and incubated for 72 hrs at 27°C and 90 rpm. Then, the cell suspension was 

centrifuged at 930 x g for 15 min, the supernatant was discarded and the cell pellet with the 

recombinant proteins snap-frozen in liquid nitrogen and stored at -80°C until protein purification. 

If a new P3 virus was used or if specific combinations of recombinant proteins were 

coexpressed for the first time, small scale P3 titration tests were set up prior to preparative 

protein expression. In these titration tests, cells were infected with different virus dilutions and 

different combinations of virus dilutions. It was then tested by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and Coomassie Blue staining which dilution led to satisfying 

expression levels and which combination resulted in more or less equal expression levels among 

coexpressed proteins.  

 

2.5 Cell extract preparation and protein purification 

2.5.1 Purification of Ash1 complexes from Drosophila  

2.5.1.1 Large-scale nuclear extract preparation from Drosophila embryos 

As starting material for nuclear extract preparation for TAP (para 2.5.1.2), 10 – 14 hrs old 

embryos were collected from a population of wild-type, NTAP-Ash1 or Ash1-CTAP flies (para 

2.3.1) on several successive days to accumulate in total at least 40 g (dry weight dechorionated 

embryos). 40 g of embryos suffice for approximately three TAPs. Until collection was completed, 

already taken food plates with embryos were stored up to three days at 4°C to arrest 

development. In the case of the Ash1-CTAP flies, embryos homo- and heterozygous for the 

transgene might have been mixed. The chromosome bearing the Ash1-CTAP transgene is 

homozygous lethal at an undetermined developmental stage. In the next step, all embryos 

together were transferred from the food plates to a three sieves system with decreasing pore 

sizes (0,75 µm > 0,375 µm > 0,125 µm). After thorough washes with cold tap water in this sieves 
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system, embryos were transferred to a beaker with 20% bleach in embryo wash solution (0,7% 

NaCl; 0,04% ‘TWEEN 20’ from Sigma-Aldrich) and incubated for 3 min for dechorionation. Bleach 

was washed off from the embryos with cold tap water in the 0,125 µm sieve. Then, embryos were 

put on a 150 mm Millipore filter in a Büchner funnel on top of a vacuum device. All liquid was 

removed by applying vacuum so that the dry weight of the embryos could be determined.  

The following steps of the nuclear extract preparation were all carried out at 4°C. The 

dechorionated embryos were transferred to a glass dounce homogenizer (LSC LH-21 

homogenizer, Yamato) and topped up with 1 ml buffer NU1 per 1 g embryos (Buffer NU1: 15 mM 

HEPES pH 7,6; 10 mM KCl; 5 mM MgCl2; 0,1 mM EDTA pH 7,9; 0,5 mM triethylene glycol diamine 

tetraacetic acid (EGTA) pH 7,9; 20% glycerol; 350 mM sucrose; 1 mM dithiothreitol (DTT); 1 mM 4-

(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF); 1x complete (‘complete, EDTA–

free Protease Inhibitor Cocktail’) from Roche). Homogenization was performed by moving the 

mortar 30 times up and down during a pestle rotation of 1500 – 2000 rpm. The obtained lysate 

was filtered through two layers of miracloth. Next, for the purpose of isolating the nuclei, the 

lysate was centrifuged at 9600 x g and 4°C for 30 min. The supernatant was discarded and the 

pelletized nuclei were resuspended in 0,5 ml low salt buffer per 1 g embryos (low salt buffer: 15 

mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) pH 7,6; 20 mM KCl; 1,5 mM 

MgCl2; 0,2 mM EDTA pH 7,9; 20% glycerol; 1 mM DTT; 1 mM AEBSF; 1x complete).  

The nuclei suspension (1x volume) was transferred to falcon tubes and mixed with 1x 

volume of high salt buffer (15 mM HEPES pH 7,6; 800 mM KCl; 1,5 mM MgCl2; 0,2 mM EDTA pH 

7,9; 20% glycerol; 1 mM DTT; 1 mM AEBSF; 1x complete). In the following incubation step on a 

turning wheel for 30 min at 4°C, nuclei were lysed homogenously. Then, the soluble nuclear 

extract was separated from insoluble chromatin and lipids by ultracentrifugation at 182.000 x g 

and 4°C for 1 hour. The middle fraction out of three fractions representing soluble nuclear extract 

was collected and dialyzed overnight in ‘Snake Skin Dialysis Tubing’ with a 3,5 kDa cut-off (Thermo 

Fisher) against NE200 buffer (15 mM HEPES pH 7,6; 200 mM KCl; 1,5 mM MgCl2; 0,2 mM EDTA pH 

7,9; 20% glycerol; 1 mM DTT).  

Protein concentration in the ready nuclear extracts after dialysis ranged from 10 – 15 

mg/ml. This meant that 7 – 11 mg of nuclear protein could be obtained per 1 g dechorionated 

embryos. Extract quality was tested by probing for trxG and PcG proteins in western blots. The 

nuclear extracts were aliquoted, snap-frozen in liquid nitrogen and stored at -80 C until TAP.  
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2.5.1.2 Tandem affinity purification  

Prior to TAP, ‘IgG Sepharose 6 Fast Flow affinity resin’ (GE Healthcare) was cross-linked 

with dimethyl pimelimidate. 200 µl of cross-linked beads were transferred into a 10 ml ‘Poly-Prep 

Chromatography Column’ from Bio-Rad. To remove the bead storage buffer and non-cross-linked 

immunoglobulins G, beads were washed in four consecutive steps: First, in 1 ml 0,5 M acetic acid, 

second, in 5 ml PA buffer, third, in 1 ml 0,5 M acetic acid and fourth, in 5 ml PA buffer (10 mM 

Tris-HCl pH 8; 150 mM NaCl; 0,1% ‘IGEPAL CA-630’ from Merck; 2 mM MgCl2; 0,1 mM EDTA; 0,5 

mM DTT). Next, beads were equilibrated in 10 ml PA buffer for 10 – 30 min on a turning wheel. 

TAP was always performed in parallel from the nuclear extracts of transgenic NTAP-Ash1 or Ash1-

CTAP flies and from the nuclear extract of the wild-type control (para 2.5.1.1). The protein 

concentrations of both nuclear extracts, that ranged between 10 – 15 mg/ml, were adjusted to 

approximately the same concentration. Then, 10 ml of each extract were loaded on a column with 

equilibrated IgG beads. The following binding and wash steps of the TAP were performed as 

described in Klymenko et al, 2006. For elution, Calmodulin beads (‘Calmodulin Affinity Resin’, 

Agilent) were transferred from the columns to Eppendorf tubes. In total, three elution steps were 

performed. In each step, Calmodulin beads were incubated with 200 µl of the EGTA-containing 

buffer CE for 30 min at 4°C in a thermoshaker at 1000 rpm and then centrifuged for 10 min at 

3000 x g and 4°C. Supernatants representing the eluates were taken off and stored unpooled until 

further processing by SDS-PAGE, silver staining (para 2.7.1 and 2.7.2) and mass spectrometry 

(para 2.7.4). CE buffer was composed of 10 mM Tris-HCl pH 8; 150 mM NaCl; 0,1% ‘IGEPAL CA-

630’; 1 mM MgCl2; 2 mM EGTA; 1 mM imidazole pH 8 and 10 mM b-mercaptoethanol.  

 

2.5.2 Larval tissue extract preparation for western blot analysis 

Larval cuticles with imaginal discs attached were dissected out of 3rd instar larvae of a 

given genotype in ice-cold PBS supplemented with protease inhibitors (0,5x complete) as 

described in para 2.3.6. The wing, haltere and 3rd leg imaginal discs and, when indicated in the 

figure legend, also brains were separated from the carcasses, taken up in 0,1% ‘IGEPAL CA-630’ in 

PBS and transferred into a siliconized Eppendorf tube. The supernatant of the dissected tissues, 

which had settled at the tube bottom after short centrifugation at 500 x g, was replaced with 100 

µl 1,5x ‘NuPAGE LDS Sample Buffer’ (Thermo Fisher) per discs from 30 carcasses. Next, the sample 

was sonicated in the ‘Bioruptor Next Gen’ (Diagenode, sonication program: 6x 30 sec on and 30 

sec off at high-energy settings) and subsequently incubated for 3 min at 75°C. Tissue debris were 

then pelletized in a centrifugation step for 10 min at 21.000 x g. The supernatant representing the 
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total cellular extract was further analyzed by SDS-PAGE and western blot (para 2.7.1 and 2.7.5) for 

either Ash1, MRG15 or H3K36me2.      

  

2.5.3 Purification of recombinant Ash1 complexes from insect cells 

2.5.3.1 Insect cell extract preparation by freeze-thaw cycling  

Prior to Strep- or His-affinity purification, insect cells harvested after baculovirus-based 

recombinant protein expression as described in para 2.4.4 were lysed in freeze-thaw cycles. To 

this end, 20 ml lysis buffer were pipetted on a frozen cell pellet from 500 ml High Five cell 

suspension culture at a density of 0,8 x 10^6 cells/ml. Volumes and cell numbers given here 

correspond to preparative cell extractions and protein purifications to perform biochemical assays 

afterwards. The lysis buffer in the case of subsequent Strep-affinity purification, Strep-Buffer A, 

was composed of 20 mM Tris-HCl, pH 8; 300 mM KCl; 2 mM MgCl2; 15% glycerol; 10 µM ZnSO4; 

0,1% ‘IGEPAL CA-630’ (Merck); 1 mM DTT; 1 mM AEBSF and 1x complete; the lysis buffer in the 

case of subsequent His-affinity purification, His-Buffer A, was composed of 20 mM Tris-HCl, pH 8; 

300 mM KCl; 4 mM MgCl2; 5 mM imidazole, pH 8; 5% glycerol; 10 µM ZnSO4; 0,05% ‘IGEPAL CA-

630’; 4 mM b-mercaptoethanol; 1 mM AEBSF and 1x complete. The suspension from cells and 

lysis buffer in a falcon tube was thawn completely in a water bath at room temperature with 

agitation on a magnetic stirrer and then snap-frozen in liquid nitrogen. This procedure was 

repeated three times. Thereafter, the cell lysate was centrifuged at 75.600 x g for 1 hour. The 

supernatant was collected, cleared further by filtering in ‘Millex-SV 5 µm’ sterile filters (Merck) 

and subjected to protein purification (para 2.5.3.2 and 2.5.3.3).  

 

2.5.3.2 Strep-Tactin affinity purification  

In preparation of Strep-affinity purification, ‘Strep-Tactin Sepharose’ beads (IBA) were 

washed and equilibrated with 20 column volumes (CV) Strep-Buffer A (see para 2.5.3.1 for 

composition). Then, 2,5 ml beads in a ‘Glass Econo-Column’ (Bio-Rad) with a three-way cock were 

loaded with cleared cell lysate generated from 500 ml High Five cell culture (0,8 x 10^6 cells/ml) 

as described in para 2.5.3.1. The binding step for Strep-tagged proteins was performed at a low 

flow-rate (<0,5 ml/min) by releasing the lysate by gravity flow. Also, all subsequent steps were 

executed by gravity flow. After binding, beads were first washed with 20 CV Strep-Buffer B (20 

mM Tris-HCl, pH 8; 300 mM KCl; 15% glycerol; 0.1% ‘IGEPAL CA-630’ (Merck); 1 mM DTT; 1 mM 

AEBSF; 1x complete) and then with 30 CV Strep-Buffer C (20 mM Tris-HCl, pH 8; 300 mM NaCl; 

15% glycerol; 1 mM DTT; 1 mM AEBSF). Finally, bound protein was eluted with d-desthiobiotin in 
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three subsequent steps, each step with 1 CV Strep-Buffer D (20 mM Tris-HCl, pH 8; 150 mM NaCl; 

10% glycerol; 0,5 mM DTT; 1 mM AEBSF; 1x complete and 5 mM d-desthiobiotin-NaOH, pH 8).  

The three eluates were not pooled before controlling purity and concentration of the 

purified material by SDS-PAGE and Coomassie Blue staining. Typically, eluates from Strep-affinity 

purification needed to be concentrated in centrifugal filter units ‘Amicon Ultra-4’, 10 kDa cut-off 

(Merck) before proceeding to SDS-PAGE for presentation of purified complexes or histone 

methyltransferase assays (para 2.6.3 and 2.7.1). 

 

2.5.3.3 His-affinity purification  

For the purpose of purifying 6xHis-tagged proteins, gravity flow chromatography with ‘Ni-

NTA Agarose’ (Qiagen) as matrix was performed at 4°C. Per cell lysate generated from 500 ml 

High Five cell culture (0,8 x 10^6 cells/ml) as described in para 2.5.3.1, 1 ml Ni-NTA beads was 

used. Beads were transferred into a ‘Glass Econo-Column’ from Bio-Rad, washed with ddH2O and 

then equilibrated with His-Buffer A (see para 2.5.3.1 for composition). In the subsequent binding 

step, cleared cell lysate was loaded on the beads and released by gravity flow. Next, two wash 

steps were performed, one with 20 column volumes (CV) His-Buffer B (20 mM Tris-HCl pH 8; 300 

mM KCl; 10 mM imidazole pH 8; 5% glycerol; 0,05% ‘IGEPAL CA-630’ (Merck); 4 mM b-

mercaptoethanol; 1 mM AEBSF; 1x complete) and the following wash step with 30 CV His-Buffer C 

(20 mM Tris-HCl pH 8; 300 mM NaCl; 20 mM imidazole pH 8; 5% glycerol; 0,05% ‘IGEPAL CA-630’; 

4 mM b-mercaptoethanol; 1 mM AEBSF; 0,5x complete). After washing, bound protein was eluted 

with 250 mM imidazole in three steps, each step in 1,3 ml (1,3 CV) His-Buffer D (20 mM Tris-HCl 

pH 8; 300 mM NaCl; 250 mM imidazole pH 8; 5% glycerol; 0,05% ‘IGEPAL CA-630’; 4 mM b-

mercaptoethanol; 1 mM AEBSF; 1x complete).  

Eluates were not pooled, but checked separately for yield of purified protein by SDS-PAGE 

and Coomassie Blue staining (para 2.7.1 and 2.7.3). Without further concentration, SDS-PAGE for 

presentation of purified complexes could be performed. 

 

2.6 Histone methyltransferase assays on mononucleosomes 

HMTase assays were performed with different Ash1 complexes in comparison on 

recombinant Drosophila mononucleosomes. The protocol for generation of these 

mononucleosomes, from expression and purification of recombinant histones to reconstitution 

and purification of histone octamers and lastly the nucleosome assembly, was modified from 

Luger et al, 1999 and is described in more detail in the following.  
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2.6.1 Reconstitution of Drosophila octamers  

Archana Prusty, a former PhD student in our laboratory, had expressed wild-type 

Drosophila histones in BL21(DE3) PlysS E. coli, had purified them through a ‘HiTrap SP Sepharose 

FF’ ion exchange column (GE Healthcare) and had lyophilized histones for long-term storage. 

In the first step of the octamer reconstitution, I dissolved lyophilized histones by 

incubating 2 mg of each core histone in 500 µl unfolding buffer (20 mM Tris-HCl pH 7,5; 7 M 

guanidine-HCl; 10 mM DTT) for 1 hr at room temperature with gentle agitation. Then, all four 

different core histones were mixed and incubated for another 45 min at room temperature. For 

octamer formation, the histone mixture was transferred into a 3 ml ‘Slide-A-Lyzer Dialysis 

Cassette’ with a 3,5 kDa cut-off (Thermo Fisher) and dialyzed overnight against high salt-refolding 

buffer, which was exchanged three times during dialysis (refolding buffer: 10 mM Tris-HCl pH 7,5; 

2 M NaCl; 1 mM EDTA pH 8; 5 mM b-mercaptoethanol). Next, newly reconstituted octamers were 

spun at 9.400 x g and 4°C for 10 min to remove possible precipitates. The supernatant was loaded 

onto and pumped through a ‘Superdex 200 10/300 GL’ size exclusion column (GE Healthcare), 

that had been equilibrated in Refolding Buffer beforehand. 400 µl fractions were collected and 

analyzed by SDS-PAGE and Coomassie Blue staining (para 2.7.1 and 2.7.3). Fractions showing 

equal amounts of all four core histones in Coomassie Blue staining were considered to be 

homogenous, i.e. to contain almost exclusively octamers, and stored at 4°C for maximal two 

months until nucleosome assembly.   

 

2.6.2 Assembly of Drosophila mononucleosomes  

First, a 215 base pair(bp)-long DNA fragment bearing the nucleosome positioning 601 

sequence (Lowary & Widom, 1998) was amplified from a pUC19-601 construct, that had been 

cloned by Reinhard Kalb, a former postdoc in our laboratory. In the chosen amplicon, the 147 bp-

nucleosome binding sequence was flanked by a 40 bp-long DNA overhang on the 5’ site and a 28 

bp-long DNA overhang on the 3’ side. To generate preparative amounts of the 215 bp-601 DNA 

fragment, 96x 50 µl PCR reactions with 30 ng template were performed in a well plate following 

standard protocols (para 2.1.1.). After PCR product purification with the ‘QIAquick PCR 

Purification Kit’ from Qiagen, DNA was concentrated by sodium acetate/ethanol precipitation: 

0,1x sample volume of sodium acetate (pH 5,2) and 2,5x volume of ethanol were added to the 

DNA. After centrifugation for 40 min at 21.000 x g and 15°C, DNA pellets were washed with 

ethanol and then resuspended in seven times less volume 10 mM Tris-HCl (pH 8,5) than the DNA 

solution input volume of the acetate/ethanol precipitation. 
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Assembly of nucleosomes from 215 bp-601 DNA and recombinant octamers generated as 

described in para 2.6.1 was carried out by diluting the salt content slowly in gradient dialysis. 

First, small-scale nucleosome test reconstitutions with varying mass ratios of octamers to DNA 

were performed and tested in native agarose gel electrophoresis (para 2.1.2) to find conditions 

for homogenous nucleosome preparation with ideally all octamers and all DNA engaged in 

correctly assembled mononucleosomes. The mass concentration of the octamers was here 

determined presuming that an optical density of 0,42, when measuring absorbance at 280 nm, 

indicates a Drosophila octamer concentration of 1mg/ml. Typically, the test reconstitutions 

showed that a mass ratio of octamers to the 215 bp-601 DNA of 0,85 leads to a homogenous 

preparation. The actual nucleosome assembly reaction was then prepared with the following 

composition corresponding to Refolding Buffer conditions: 1x TE (10 mM Tris-HCl, 1 mM EDTA, pH 

8); 0,3 mg/ml DNA; 2 M NaCl; 0,26 mg/ml octamers. The nucleosome assembly reaction was 

transferred to a dialysis tube from the ‘Mini Dialysis Kit, 1 kDa cut-off’ (GE Healthcare) and placed 

in a beaker with Refolding Buffer on a magnetic stirrer at 4°C. Applying a peristaltic pump system, 

the Refolding Buffer was slowly diluted with 1x TE buffer at a flow rate of maximal 1,5 ml/min. 

After five times dilution, when it could be assumed that salt concentration in the assembly 

reaction had decreased from 2 M to 0,4 M and nucleosomes had formed, dialysis tubes were 

transferred to 1x TE buffer at 4°C and dialysis was continued for further 4 hrs. After completion of 

dialysis, the quality of the obtained nucleosomes was controlled by native agarose gel 

electrophoresis (para 2.1.2). Mononucleosomes were stored at 4°C for maximal two weeks before 

use in HMTase assays.  

 

2.6.3 Histone methyltransferase reactions 

All Ash1 complexes tested for their catalytic activity in the HMTase assays described in 

this paragraph had been isolated by Strep-Tactin affinity purification (para 2.5.3.2), snap-frozen in 

aliquots in liquid nitrogen, stored at -80°C and thawn on ice only once, shortly before pipetting 

the HMTase reactions. To the end of estimating the concentration of the enzyme Ash1 in each 

Ash1 complex purification, one aliquot had been sacrificed for a dilution series that was compared 

with a BSA standard by SDS-PAGE and Coomassie staining (para 2.7.1, 2.7.3). 

The HMTase reactions were performed with approximated 33 or 100 nM Ash1 complex 

and 80 µM S-adenosyl methionine on 400 nM reconstituted Drosophila mononucleosomes (para 

2.6.2) in a reaction buffer containing 65 mM Tris-HCl pH 8,5 at 25°C; 78 mM NaCl; 2,5 mM MgCl2; 

0,23 mM EDTA pH 8; 1 mM DTT; 1 mM b-mercaptoethanol; 2,6 mM d-desthiobiotin; 5% glycerol; 

0,5 mM AEBSF and 0,5x complete. The samples were incubated for 3 hrs at 25°C without 
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agitation. After 3 hrs, reactions were stopped by adding 13 µl of 4x ‘NuPAGE LDS Sample Buffer’ 

(Thermo Fisher) to 40 µl reaction volume and denatured for 10 min at 70°C.  

As means of analysis of the nucleosome substrates, an antibody-based approach was 

chosen.  The HMTase reactions were first separated by SDS-PAGE and then subjected to western 

blotting (para 2.7.1 and 2.7.5).  

 

2.7 Protein analysis 

2.7.1 SDS polyacrylamide gel electrophoresis 

SDS polyacrylamide gel electrophoresis was performed to separate proteins in a size-

dependent manner for downstream analysis. Two different electrophoresis buffer systems were 

applied in this work, the Tris-Glycine system and the Bis-Tris system. Tris-Glycine polyacrylamide 

gels were self-cast following standard protocols based on the original report Laemmli, 1970. Bis-

Tris polyacrylamide gels were precast and purchased from Thermo Fisher either as ‘NuPAGE Bis-

Tris Gels’ or as ‘Bolt Bis-Tris Plus Gels’. The particular buffer system and gel acrylamide 

concentration were chosen (1) dependent on the size of the protein or the range of sizes of 

several proteins to be separated and visualized, (2) dependent on the required sharpness of 

protein bands and (3) dependent on the sample volume. Wells of Bolt gels are three-dimensional 

and therefore accommodate a higher sample volume than conventional gels. Which specific 

polyacrylamide gel was taken for which experiment is indicated in the figure legends. In all cases, 

samples were denatured by incubation for 10 min at 70°C in 1x ‘NuPAGE LDS Sample Buffer’ 

(Thermo Fisher) prior to loading. Gels were run in the ‘XCell SureLock Mini-Cell Electrophoresis 

System’ (Thermo Fisher) at 150 – 180 V. As running buffer for the Tris-Glycine system standard 1x 

Laemmli running buffer was used, as running buffer for the Bis-Tris system either MES SDS buffer 

in case of separation of smaller proteins or MOPS SDS buffer in case of separation of bigger 

proteins were chosen (both buffers from Thermo Fisher).  

Following SDS-PAGE, proteins in the gel were either visualized by silver or Coomassie Blue 

stainings (para 2.7.2 and 2.7.3), digested in preparation of mass spectrometric analysis (para 

2.7.4) or subjected to western blot assays (para 2.7.5).  

 

2.7.2 Silver staining of tandem affinity purified proteins 

10% of the same TAP eluate that was analyzed by mass spectrometry were separated by 

SDS-PAGE (previous paragraph) and silver-stained for illustration purposes.  
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All steps of the silver staining described in the following took place on a shaker at room 

temperature. First, the polyacrylamide gel was fixed overnight in fixing solution (40% ethanol, 

10% acetic acid). Then, acetic acid was removed in three wash steps in 30% ethanol for 20 min 

each. Next, the gel was sensitized for staining by incubation for 1 min in freshly prepared 0,02% 

(w/v) sodium thiosulfate followed by three washes in deionized water for 20 sec each. Staining 

took place in pre-cooled 0,2% (w/v) silver nitrate for 1 hour. After three quick 20 sec-washes in 

water, the gel was developed in developing solution (3% (w/v) sodium carbonate; 0,05% 

formaldehyde; 0,0004% (w/v) sodium thiosulfate). Development was manually terminated when 

the obtained staining was considered to be sufficient (after 5 – 15 min development) by 

transferring the gel shortly into water, then into 0,5% glycine for 5 min. Lastly, the gel was washed 

in water for 30 min and stored in 1% acetic acid at 4°C. 

 

2.7.3 Coomassie Blue staining 

After SDS-PAGE, gels were washed three times for 10 min in deionized water to rinse out 

SDS and then stained in ‘PageBlue Protein Staining Solution’ (Thermo Fisher) for minimum 60 min 

to overnight with agitation. To destain, gels were washed for 5 min in water with agitation. 

 

2.7.4 Mass spectrometric analysis of tandem affinity purified proteins 

For mass spectrometric analysis, 90% of the most concentrated eluate out of three 

eluates of each TAP (para 2.5.1.2) were separated on a 4 - 12% Bis-Tris polyacrylamide gel and 

stained with Coomassie Blue (para 2.7.1 and 2.7.3). The entire gel lane was then excised and 

subdivided into ten smaller slices. From this step onwards, samples were processed by the Axel 

Imhof laboratory (BMC, LMU, Munich). Each gel slice was destained, alkylated with iodacetamide 

and digested with trypsin as described in Barth et al, 2014. The obtained peptides were then 

isolated from the gel matrix by acid extraction. In addition, 90% of a less concentrated eluate of 

the Ash1-CTAP purification were alkylated and digested directly in solution without previous 

separation by SDS-PAGE. From this point onwards, all samples were processed in the same 

manner. Each sample was concentrated by vacuum evaporation and taken up in 0.1% TFA. 50% of 

each of the digested TAP eluates was injected into an ‘Ultimate 3000 HPLC system’ from Thermo 

Fisher. Samples were then processed, loaded into and measured in the LTQ Orbitrap mass 

spectrometer (Thermo Fisher) as described in Barth et al, 2014. The resulting raw data were 

analyzed with the Andromeda algorithm of the MaxQuant protein analysis package (version 

1.5.3.30) against the Flybase dmel-all-translation-r5.32.fasta database including reverse 

sequences and contaminants. The acquired protein identifications were accepted provided that at 
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least one unique peptide had been detected. Peptide intensities were then converted into 

Intensity based absolute quantification (iBAQ) values to obtain a quantitative measurement of the 

identified proteins (see Schwanhäusser et al, 2011 for details on this quantification method). For 

easier presentation, iBAQ values were log2-transformed and subsequently missing values were 

imputed from a random distribution centered at 1/3 x log2 of the experimental data.  

Table 12 provides a list of the Ash1, MRG15 and Caf1-55 peptides identified in the Ash1-

CTAP in-solution digest, the Ash1-CTAP in-gel digest and the NTAP-Ash1 in-gel digest.  

 

2.7.5 Western blot 

In all western blot experiments performed in this study, proteins separated by SDS-PAGE 

were transferred from polyacrylamide gels to membranes by wet electroblotting in Towbin 

transfer buffer in the ‘TE 22 Mini Tank Transfer Unit’ (GE Healthcare). The Towbin buffer was 

composed of 25 mM Tris; 192 mM glycine; 0,05% (w/v) SDS and 20% (v/v) methanol. For blotting 

histones, as done for the analysis of the HMTase assays (para 2.6.3), the general protocol had to 

be modified to also operate for small-sized proteins and for the anti-histone antibodies used. 

These specific modifications are pointed out in the following description.  

After completion of the SDS-PAGE and in preparation of the transfer, the nitrocellulose 

membrane from GE Healthcare (‘Hybond ECL’, 0,45 µm; for histones ‘Amersham Protran 

Premium’, 0,2 µm) was pre-wetted shortly in ddH2O. Then, the polyacrylamide gel and the 

membrane were soaked in Towbin Buffer for 10 min. Next, the transfer cassette with gel and 

membrane and then the transfer unit comprising the transfer cassette, the tank filled with Towbin 

buffer and the lid with electric leads were assembled according to the instructions of GE 

Healthcare, the manufacturer of the transfer unit. The transfer was performed at 4°C with 

agitation on a magnetic stirrer and commonly for 90 min at 90 V, for histones first for 10 min at 

90 V followed by 30 min at 60 V.  

After transfer, the membrane was shortly washed in PBS (for histones: in TBS) and 

blocked for 1 hr up to overnight in milk blocking solution (5% (w/v) skim milk (AppliChem, 

#A0830) and 0,2% (v/v) ‘TWEEN 20’ (Sigma-Aldrich) in PBS) at 4°C with gentle agitation. For 

histone blots, blocking was always performed overnight in BSA blocking solution (5% (w/v) BSA 

and 0,1% (v/v) ‘TWEEN 20’ in TBS). Then, the individual primary antibodies were diluted in milk 

respectively BSA blocking solution in the case of histone blots (see Table 7 for precise dilutions). 

Incubation of the membrane (parts) with the primary antibody(ies) took place overnight at 4°C 

with gentle agitation with the exception of the anti-H4 antibody (ab10158, Abcam). The anti-H4 

antibody was added to anti-H3K36me2 or anti-H3K36me3 antibody solution (C75H12 and D5A7, 
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Cell Signaling) on the membrane on the next day for an incubation time of only 1 -2 hrs to avoid 

unspecific binding of this antibody. Incubation with the primary antibodies was followed by three 

wash steps, each for 10 min in 0,2% (v/v) ‘TWEEN 20’ in PBS with agitation. Histone blots were 

washed in 0,05% (v/v) ‘TWEEN 20’ in TBS. Incubation with the respective secondary antibody (see 

Table 7 for dilutions) was performed for 2 – 4 hrs in milk blocking solution with agitation at room 

temperature, in the case of histone blots in BSA blocking solution at 4°C. Then, the membrane 

was washed exactly as described for washes after the primary antibody incubation step.  

For western blot development, the detection reagent ‘Amersham ECL’ (RPN2209) or 

‘Amersham ECL Select’ (RPN2235) from GE Healthcare was pipetted on the membrane, the choice 

of the enhanced chemiluminescence (ECL) solution being dependent on the expected strength of 

bands. Immediately after application of the detection reagent, the emerging chemiluminescence 

on the membrane was visualized either by exposure to ‘Amersham Hyperfilm ECL’ (GE Healthcare) 

films with subsequent development in the X-ray film processor ‘OPTIMAX 2010 NDT’ (Protec) or 

by a charge-coupled device (CCD) camera in the imager ‘ImageQuant LAS 4000’ (GE Healthcare).  

 

2.8 Chromatin immunoprecipitation followed by quantitative 

PCR 

The chromatin immunoprecipitation assay coupled to qPCR was performed from haltere 

and 3rd leg imaginal discs of wild-type and ash122 m+z- 3rd instar larvae and directed against H3K36 

di-methylation at the Ubx gene. The protocol for fixation of imaginal discs, preparation of 

chromatin and immunoprecipitation described in the following was modified from Orlando et al, 

1997. 

 

2.8.1 Dissection and fixation of haltere and third leg imaginal discs 

Wild-type or ash122 m+z- larvae were processed in batches of 60 animals, accounting for 

one biological replicate, from dissection onwards.   

Third instar larvae were bisected horizontally in ice-cold PBS. The anterior part was 

inverted, gut and fat body were removed. The remaining cuticle with discs still attached was 

transferred to an Eppendorf tube. Sixty of these carcasses were accumulated and then fixed 

altogether for exactly 15 min in 1 ml crosslinking solution (1% (w/v) methanol-free formaldehyde 

(Thermo Fisher, #28906); 50 mM Hepes pH 8; 100 mM NaCl; 1 mM EDTA; 0,5 mM EGTA).  

Crosslinking was performed at room temperature with gentle agitation as all following steps in 
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Stop solution and wash buffers as well. During the course of fixation, Crosslinking Solution was 

exchanged four times. Fixation was then terminated by replacing Crosslinking Solution with 1ml 

stop solution (125 mM glycine and 0,01% (v/v) ‘Triton X-100’ in PBS). Stop Solution was 

exchanged five times during a 10-min incubation. Two 10-min wash steps followed, the first one 

in Wash Buffer A (10 mM Hepes pH 8; 1 mM EDTA; 0,5 mM EGTA; 0,25% (v/v) ‘Triton X-100’) and 

the second one in Wash Buffer B (10 mM Hepes pH 8; 1 mM EDTA; 0,5 mM EGTA; 0,01% (v/v) 

‘Triton X-100’; 200 mM NaCl). In both washes, the respective buffer was renewed four times.  

Fixed carcasses were stored in Wash Buffer B at 4°C for maximal three days. After 

separation of the imaginal discs from the carcasses in Wash Buffer B, haltere and 3rd leg imaginal 

discs from 60 larvae were taken up in 130 µl sonication buffer (10 mM Hepes pH 8; 1 mM EDTA; 

0,5 mM EGTA; 0,1% (w/v) SDS; 1 mM AEBSF; 1x complete). The 130 µl disc-samples, each 

representing one biological replicate, were snap-frozen in liquid nitrogen and stored at -80°C until 

preparation of chromatin.  

 

2.8.2 Chromatin preparation from imaginal discs and immunoprecipitation  

From chromatin preparation onwards, all biological replicates (three wild-type and three 

ash122 m+z- batches), that were to be directly compared in this ChIP assay, were processed in 

parallel.  

 The discs in Sonication Buffer, dissected, fixed and frozen as described in para 2.8.1 were 

thawn on ice and sonicated one by one in ‘AFA Fiber microTUBES’ in the ‘S220 Focused-

ultrasonicator’ from Covaris (sonication program: 105W/2%/30 min) at 4°C. After sonication, each 

130 µl disc-sample respectively biological replicate was supplemented with 0,5% (v/v) N-

lauroylsarcosine and incubated for 10 min at 4°C on a rotating wheel. Insoluble tissue debris were 

removed in a 10-min centrifugation step at 21.000 x g and 4°C. The supernatants with the soluble 

chromatin were transferred to dialysis tubes (one tube per replicate) from the ‘Mini Dialysis Kit, 1 

kDa cut-off’ (GE Healthcare) and dialyzed overnight at 4°C against dialysis buffer (10 mM Tris-HCl 

pH 8; 1 mM EDTA; 0,5 mM EGTA; 4% glycerol). Dialysis buffer was changed twice in the first few 

hours of dialysis. Chromatin preparation was completed with centrifugation of the dialyzed 

chromatin at 21.000 x g and 4°C for 20 min to remove possible precipitates. 

In a first step of the immunoprecipitation, 10 µl chromatin were saved from each 

replicate as input material that would be needed later on to determine the DNA amount before 

affinity purification. Until parallel processing of input and immunoprecipitation (IP) samples from 

Ribonuclease digest onwards, input material was stored at 4°C. The volume of the remaining 

major part of the chromatin was topped up from approximately 100 µl per replicate respectively 
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IP sample to 1 ml and thereby adjusted to RIPA-140 buffer conditions (10 mM Tris-HCl pH 8; 140 

mM NaCl; 1 mM EDTA; 1% ‘Triton X-100’; 0,1% SDS; 0,1% sodium deoxycholate; 1x complete; 1 

mM AEBSF). For the purpose of pre-clearing the chromatin from components, that bind 

unspecifically to the purification matrix going to be used, 40 µl of a 50% slurry of ‘Protein A 

Sepharose CL-4B’ (GE Healthcare) were added to each IP sample. The Protein A sepharose beads 

had been equilibrated in RIPA-140 buffer on a rotating wheel at 4°C for 1,5 hrs beforehand. Until 

stated otherwise, all incubation and wash steps described in the following took also place on a 

rotating wheel at 4°C. The IP samples with beads were incubated for 1 hr and then centrifuged for 

2 min at 1500 x g. The supernatants containing the pre-cleared chromatin were taken off and 

incubated with 3 µl anti-H3K36me2 antibody (ab9049, Abcam) per IP sample overnight. Next, 40 

µl of 50% slurry of Protein A sepharose were added to each IP and incubation was continued for 4 

hrs to capture the chromatin-antibody complexes. Samples were then centrifuged for 2 min at 

1500 x g and the supernatants discarded. Beads were washed in several consecutive steps by 

incubation in 1 ml wash buffer for 10 min with rotation in each step and centrifugation for 2 min 

at 1500 x g for buffer changes. The first wash was performed in RIPA-140 buffer followed by four 

more stringent washes in RIPA-500 buffer (10 mM Tris-HCl pH 8; 500 mM NaCl; 1 mM EDTA; 1% 

‘Triton X-100’; 0,1% SDS; 0,1% sodium deoxycholate; 1x complete; 1 mM AEBSF); then, one wash 

in LiCl buffer was carried out (LiCl buffer: 250 mM LiCl; 10 mM Tris-HCl pH 8; 1 mM EDTA pH 8; 

0,5% (v/v) ‘IGEPAL CA-630’ (Merck); 0,5% (w/v) sodium deoxycholate) and lastly two washes in 1x 

TE buffer. From now on, beads and inputs, that had been taken before the IP, were processed in 

parallel. Beads of each biological replicate were resuspended in 100 µl 1x TE; the volumes of 

inputs were topped up to 100 µl with 1x TE. Each sample was supplemented with 10 µg/ml 

Ribonuclease (Roche, #11119915001) and then incubated for 30 min at 37°C and 300 rpm in an 

Eppendorf thermoshaker. To release proteins from chromatin, 0,5% (w/v) SDS and 0,5 mg/ml 

proteinase K were added and samples were digested for 10 hrs at 37°C and 300 rpm. In a 

subsequent incubation step for 6 hrs at 65°C and 300 rpm, formaldehyde cross-links were 

reversed. Next, samples were vortexed vigorously to detach DNA from the beads and spun at 

21.000 x g for 1 min. For purification of DNA from the supernatants, the ‘MinElute PCR 

Purification Kit’ (Qiagen) was used according to manufacturer’s instructions. DNA from each 

sample was eluted in 500 µl 10 mM Tris-HCl pH 8,5 and stored at -20°C. 

  

 

 

 



Materials and Methods 

 

 68 

2.8.3 Quantitative PCR 

The relative DNA amounts of the respective target sequences in the IP and in the input 

samples were determined by qPCR in the 96-well real-time PCR instrument ‘StepOnePlus Real-

Time PCR System’ (Applied Biosystems) using SYBR Green I as DNA stain. 20 µl reactions 

containing 1x ‘Power SYBR Green 2x MasterMix’ (Thermo Fisher), 250 – 500 nM forward and 

reverse primers and template DNA were prepared. The appropriate primer concentrations not 

leading to primer dimer formation had been determined beforehand as well as the appropriate 

dilutions of template DNA from the IP or input samples, that would lead to amplification in the 

linear range. A DNA standard series was generated and measured in parallel with the IP and input 

reactions of all three replicates of both genotypes, wild type and ash122 m+z-, on the same 96-well 

plate. From the measured data, the percentage of input DNA of the respective target region 

recovered after precipitation was calculated using the ‘StepOne Software v2.3’ (Applied 

Biosystems).  

See Table 11 for location of the amplified target regions and sequences of the 

corresponding primer pairs.  

Table 11. qPCR primer pairs used for amplification of DNA sequences precipitated in ChIP against 
H3K36me2. Positions of the middle nucleotides in the amplified target regions are given relative 
to the corresponding gene transcription start site. See list in para 6.1 for abbreviations. 

 

 

Gene Position  Forward primer (5' to 3') Reverse primer (5' to 3') 
Ubx 0  TCCAATCCGTTGCCATCGAACGAAT TTAGGCCGAGTCGAGTGAGTTGAGT 
 +0,8 kb AATTGGTTTCCAGGGATCTGC ATCCAAAGGAGGCAAAGGAAC 
 +1,2 kb GGCAGTCCTGTTTGTAGGCT GAGTCCCTATGCCAACCACC 
 +34,4 kb GTCCTGGCCAAGGCAAATATT CGAAAGGAGAACGGAGAATGG 
 +75,5 kb TTCGTTCAGCTCCTTGATCG ACAGACATACACCCGCTACC 
 +76,9 kb GCTCGTTGGATCCACTAAACT TGAGCCGTTAATTGATCGTGAG 
wg +7,3 kb GTCCGGATCGTGTACAGTGA GCTGCATTCGGACTAACTGG 
tsh +6,8 kb TGCCTCGTCTGTTTTAAGTGC TTGGTGGATGAGTTGGATGGA 
Lam +1,3 kb AGTGCGTGGAAACTGAATCG ACCACGCCTTTTGTCTCTTC 
dpr12 +6,2 kb TCAAGCCGAACCCTCTAAAAT AACGCCAACAAACAGAAAATG 
 +39,1 kb CCGAACATGAGAGATGGAAAA AAAGTGCCGACAATGCAGTTA 



Results 

 

 69 

 

3 Results 

3.1 Caf1-55 and MRG15 co-purify with Ash1 from Drosophila 

In this first section, I shall describe the purification of Ash1 protein complexes from 

Drosophila embryos using tandem affinity purification (TAP), a strategy that has previously been 

successfully applied for homogenous purification of multimeric PcG protein complexes (e.g. 

Klymenko et al, 2006; Nekrasov et al, 2007). 

 

3.1.1 Generation and testing of TAP-Ash1 transgenic strains  

In a first step, Arif Mohammed, a former postdoc in the Jürg Müller laboratory, had 

generated fly strains carrying Ash1 transgenes. One strain contained a transgene encoding full-

length Ash1 fused to a TAP tag at its N-terminus (NTAP-Ash1) and another strain a transgene 

encoding full-length Ash1 with a C-terminal TAP tag (Ash1-CTAP). In both transgenes, the protein 

was expressed under the control of an α-tubulin1-promoter. The TAP tags themselves were 

composed of a Protein A-moiety, the tag for the first TAP purification step, a Tobacco Etch Virus 

(TEV) cleavage site and a Calmodulin binding peptide (CBP), the tag for the second purification 

step (Rigaut et al, 1999; Figure 5A). 

To ensure that the TAP-Ash1 fusion proteins were physiologically functional, the capacity 

of the Ash1 transgenes to rescue the ash1-null mutant phenotype was analyzed. Tripoulas and 

colleagues had generated the ethyl methanesulfonate (EMS) allele ash122 and reported it to be an 

ash1 null allele (Tripoulas et al, 1994; 1996; Figure 4). Drosophila homozygous for ash122 die in the 

late pupal stage at the end of metamorphosis and display severe homeotic transformations. Both 

the NTAP-Ash1 and the Ash1-CTAP transgenes were crossed into an ash122 homozygous 

background and found to rescue these animals into viable and fertile adults with wild-type 

morphology, that could be kept as healthy stocks (see Figure 5B for their genotypes). In the 

following, animals with these genotypes will be called NTAP-Ash1 and Ash1-CTAP flies.  

Consistent with the successful rescue tests, the western blot in  Figure 5C shows that full-

length NTAP-Ash1 or full-length Ash1-CTAP proteins were expressed from their corresponding 

transgenes. In this western blot, nuclear extracts of wild-type, NTAP-Ash1 and Ash1-CTAP 

embryos had been probed against Ash1. Although it was expected that the TAP-Ash1 proteins 

were over-expressed under the α-tubulin1-promoter and although they displayed stronger bands 
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than the endogenous Ash1 in this western blot, it has to be noted, that no statement can be made 

here about the expression levels of the TAP-Ash1 proteins. The reason for this is that the heavy 

chains of the α-Ash1 antibody and the secondary antibody bound with high affinity to the Protein 

A moiety in the TAP-tag in addition to the specific antigen binding. The interaction between the 

heavy chain and Protein A is a property of all immunoglobulins G. Figure 5C also shows that Ash1 

was prone to degradation in the nuclear extract preparation. 
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Figure 5. Architecture and expression of TAP-tagged Ash1 fusion proteins in transgenic strains. 
(A) Schematic representation of the N-terminally and the C-terminally TAP-tagged Ash1 fusion 
proteins (NTAP-Ash1 and Ash1-CTAP). The tags are drawn out of scale. TAP-tag composition: 
Protein A moiety (ProtA), TEV cleavage site, Calmodulin binding peptide (CBP). (B) Genotypes of 
transgenic fly strains from which Ash1 was TAP-purified. Both, the NTAP-Ash1 and the Ash1-CTAP 
strain, did not express endogenous Ash1 due to their ash122 homozygous background. The 
chromosome bearing the Ash1-CTAP transgene was homozygous lethal. (C) Western blot probed 
against Ash1 showing that NTAP-Ash1 and Ash1-CTAP proteins were expressed full-length (red 
asterisk) in embryonic nuclear extracts of NTAP-Ash1 and Ash1-CTAP strains (genotypes as in (B)). 
The non-specific band marked with two black asterisks served here as a loading control showing 
that comparable amounts of wild-type and TAP-Ash1 nuclear extracts had been loaded. The 
intensity differences between the TAP-Ash1 bands and the endogenous Ash1 band (blue asterisk) 
are not proportional to differences in expression levels due to additional binding of the 
antibodies’ heavy chains to the Protein A-moiety in the TAP tag.   
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3.1.2 Performance and analysis of purifications of TAP-tagged Ash1 proteins 

Ash1 and its binding partners were purified by TAP from embryos of the NTAP-Ash1 flies 

as well as of the Ash1-CTAP flies. Both fly strains only expressed the respective transgenic Ash1 

protein, but no endogenous Ash1, that could have possibly interfered with the co-purification of 

Ash1-associated proteins (see Figure 5B for genotypes).  

The NTAP-Ash1 and the Ash1-CTAP strains were expanded, embryos collected and large-

scale nuclear extracts generated. Then, TAPs were performed from TAP-Ash1 and wild-type 

nuclear extracts in parallel. Part of the purified material was subjected to SDS-PAGEs and 

visualized by silver stainings (Figure 6A). The protein band patterns in the silver stainings 

demonstrate that proteins could be successfully enriched by purification of both, NTAP-Ash1 as 

well as Ash1-CTAP, in contrast to the wild-type controls. 

Next, the very same eluates, that are shown in the silver stainings in Figure 6A, were 

analyzed by mass spectrometry in the Axel Imhof laboratory for identification and quantification 

of the purified proteins. As a quantitative measurement, the iBAQ factors of each protein in the 

NTAP-Ash1 respectively Ash1-CTAP eluate and in the corresponding wild-type (wt) eluate were 

determined (see para 2.7.4 for details on the iBAQ quantification). Then, the ratio of both iBAQ 

factors (iBAQ(TAP-Ash1/wt)) was formed to express protein enrichment in the eluates. Figure 6B 

presents in a scatter plot the enrichment of each protein by the NTAP-Ash1 purification versus the 

enrichment by the Ash1-CTAP purification. Three proteins are high-lighted in red in the scatter 

plot that stand out from the other identified proteins due to their high enrichment in both 

purifications: the bait Ash1, Caf1-55 and MRG15 (see Table 12 for identified peptides). These are 

the proteins I focused on in the follow-up work. All other top protein hits were only co-purified in 

high quantities in one of the two TAPs. Also, the specificity of many other high hits was 

questionable, such as of ribosomal proteins or of constituents of the cytoskeleton that had 

probably been introduced into the TAPs as cytoplasmic impurities during nuclear extract 

preparation (Figure 6B, hits labeled in grey). Fsh, the only protein hitherto reported as a binding 

partner of Ash1, had been identified as the most enriched protein after the bait in Ash1 

purifications from Drosophila S2-DRSC cells (Kockmann et al, 2013). However, in the TAP 

purifications I performed here from Drosophila embryos, Fsh (Figure 6B, labeled in black) was only 

quantified as about the 300th most abundant (NTAP-Ash1 TAP) or as the 50th most abundant 

(Ash1-CTAP TAP) protein hit. Therefore, I do not consider Fsh as a possible stable Ash1 complex 

subunit in the following.  

The western blots presented in Figure 6C are complementary to the mass spectrometric 

analysis. The input materials of the NTAP-Ash1 TAP (NTAP-Ash1 and wild-type nuclear extracts) 
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and the corresponding TAP eluates were blotted and probed with antibodies as indicated. Ash1, 

MRG15 and Caf1-55 were detected in the NTAP-Ash1 but not in the wild-type eluate. The PcG 

proteins O-glycosyltransferase (Ogt) and E(z) served as negative controls. Both were neither 

found by mass spectrometry nor by western blot in the NTAP-Ash1 or Ash1-CTAP eluates.  

In conclusion, the results of the NTAP-Ash1 and the Ash1-CTAP purifications together 

strongly suggested that Caf1-55, MRG15 and Ash1 interact biochemically. Whether these 

interactions are specific and direct, was investigated in the next step in reconstitution assays with 

recombinant proteins. 
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Figure 6. Analysis of TAP of NTAP-Ash1 and Ash1-CTAP from Drosophila embryos.  
(A) Proteins purified by TAPs from nuclear extracts of wild-type (wt) and NTAP-Ash1 embryos 
(left) and wild-type and Ash1-CTAP embryos (right), that were separated on ‘4-12% NuPAGE Bis-
Tris Gels’, then visualized by silver stainings. Protein identity of labeled bands is only assumed 
since entire lanes, not single bands, were analyzed by mass spectrometry. Probable Ash1 
degradation products are indicated with one asterisk. The band labeled with two asterisks is 
considered as non-specific, since it had been detected before in several mock purifications and 
here in the wild-type control of the Ash1-CTAP purification. (B) Scatter plot representation of 
protein enrichments in NTAP-Ash1 eluates versus protein enrichments in Ash1-CTAP eluates as 
determined by mass spectrometric analysis of the in-gel digests. Protein enrichments are 
expressed as log2-transformed ratios of the iBAQ factors of each protein in the TAP-Ash1 eluate 
and in the corresponding wild-type control. Caf1-55 and MRG15 (red) stand out as factors highly 
co-enriched with both, NTAP-Ash1 and Ash1-CTAP. Proteins written in grey possibly co-purified 
unspecifically, Fsh (black) has been previously reported as an Ash1 interactor. iBAQ: Intensity 
based absolute quantification value; see para 6.1 for protein names written out. (C) Confirmation 
of MRG15 and Caf1-55 as co-purifying factors with NTAP-Ash1 by western blot. The ‘Input’ 
material of TAPs (nuclear extracts of wild-type and NTAP-Ash1 embryos) was analyzed versus the 
corresponding TAP eluates (‘Eluate’). Continued on next page.  
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3.2 Recombinant Ash1, Caf1-55 and MRG15 co-exist in a 

complex 

The mass spectrometric analysis of the TAPs identified Caf1-55 and MRG15 as promising 

candidates for Ash1 complex subunits. Both candidates were already well-studied chromatin-

associated proteins, which have been identified as subunits of various other nuclear multiprotein 

complexes. Caf1-55 is a core-subunit of the PcG complex PRC2, the histone chaperone complex 

CAF-1, the Nucleosome remodeling and deacetylase complex (NuRD), the Nucleosome 

remodeling factor complex (NURF), as well as of Histone acetyltransferase 1 (HAT1) complexes 

and of histone deacetylase (HDAC) complexes (reviewed in Suganuma et al, 2008). As sketched in 

Figure 7, Caf1-55 bears a WD40 β-propeller by which it binds to soluble H3/H4 heterodimers and 

to unmodified H3 in the context of nucleosomes (Tagami et al, 2004; Nowak et al, 2011; 

Schmitges et al, 2011). MRG15 has been reported to interact with the human polypyrimidine 

tract-binding (PTB) protein that is involved in alternative splicing (Luco et al, 2010). The 

chromatin-remodeling and HAT complex Tip60 in Drosophila and its homologous complex NuA4 in 

yeast have been shown to contain MRG15 (Kusch et al, 2004) respectively the MRG15 yeast 

homologue Eaf3 (Eisen et al, 2001; Krogan et al, 2004) as stable subunit (Tip60: Tat-interactive 

protein 60 kDa complex; NuA4: Nucleosome acetyltransferase of histone H4 complex). The 

functions of the Tip60 complex are manifold and range from roles in DNA repair and apoptosis to 

transcriptional regulation as reviewed in Sapountzi et al, 2006. Moreover, the MRG15 orthologue 

Eaf3 has been purified as a member of the HDAC complex Rpd3S (Carrozza et al, 2005; Keogh et 

al, 2005). MRG15 bears two conserved domains, the chromo barrel and the MRG domain (Figure 

7). In the light of the H3K36 methyltransferase activity of Ash1, the binding specificities of the 

chromo barrel domains of MRG15 and Eaf3 for H3K36me2/3 are highly interesting (Zhang et al, 

2006; Sun et al, 2008; Xu et al, 2008). The MRG domain, the hallmark of MRG protein family 

members, is involved in protein-protein interactions (Bowman et al, 2006; Xie et al, 2012; 2015).  

 With the aim to reconstitute and to investigate the suggested interactions of Ash1 with 

Caf1-55 and MRG15, binding studies were performed by purifying the corresponding recombinant 

The red asterisk marks NTAP-Ash1 in the transgenic extracts. The strong NTAP-Ash1 signal was 
partially caused by unspecific binding of the IgG antibodies to the Protein A moiety of the TAP tag 
in addition to the antigen binding. The blue asterisk marks endogenous Ash1 in the wild-type 
control and the green asterisk CBP-Ash1 in the eluate, which remained after TEV cleavage of the 
TAP tag after the first TAP purification step (Figure 5A). Ogt and E(z) are negative controls.  
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proteins, that had been co-expressed in various combinations using baculoviruses in High Five 

insect cells. Of Ash1, the C-terminal half from amino acid 1041 to 2226 encompassing all 

conserved domains (Ash1C) was expressed. Caf1-55 and MRG15 were each expressed as full-

length proteins. See Figure 7 for domain architecture of Ash1, Ash1C, Caf1-55 and MRG15.  

 

 
 

 

3.2.1 Interactions of Ash1 with Caf1-55 and MRG15 can be reconstituted 

To test if Ash1 and Caf1-55 physically interact with each other, Ash1C was co-expressed 

with Strep-tagged Caf1-55 and, in a separate co-expression, with full-length Strep-tagged Esc. I 

had decided on the PRC2 subunit Esc as a negative control, since Esc also bears a conserved WD40 

domain like Caf1-55. When Strep-affinity purification was then performed from High Five cell 

extracts of the Ash1C-Strep-Caf1-55 co-expression, Ash1C was co-isolated. But with Strep-Esc as 

bait in the pull-down assay from the Ash1C-Strep-Esc co-expression, Ash1C could not be co-

purified. Therefore, Ash1 does interact directly and specifically with Caf1-55. See Figure 8A for 

Coomassie Blue stainings of the isolated proteins. On a side note, the tags of proteins are only 

mentioned in the text above and in the following, when they serve as affinity tags for the 

corresponding purification. All tags are indicated in the legend of Figure 8. 

Next, Strep-affinity purifications were performed from a co-expression of Ash1C and full-

length Strep-MRG15 and in parallel from a co-expression of Ash1C and full-length Strep-Male-

specific lethal-3 (Msl3) to verify the proposed Ash1:MRG15 interaction. Msl3 is also a member of 

the MRG protein family and, as such, contains a conserved MRG domain just like MRG15. 

However, Ash1C only clearly co-purified with MRG15 and not with Msl3 (Figure 8B). Though 

MRG15 seemed more enriched than Ash1 In the Ash1-MRG15 purification in the Coomassie Blue 

Figure 7. Domain architecture of Drosophila Caf1-55, MRG15 and Ash1. For in vitro 
reconstitution assays, full-length Caf1-55, full-length MRG15 and the C-terminal part of Ash1 
labeled as Ash1C were recombinantly expressed. Chromo: chromatin organization modifier; MRG: 
MORF4-related gene; WD40: Tryptophan-aspartic acid 40.       
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staining in (Figure 8B), but the stoichiometric ratio of Ash1 to Strep-MRG15 in the eluate equaled 

the ratio of the expression levels of both proteins in the input material.  

Overall, these pull-down assays showed that Ash1 interacts directly and specifically with 

both, Caf1-55 and MRG15. 

 

3.2.2 In the trimeric complex, Caf1-55 and MRG15 interact with Ash1, but not 

with each other 

Figure 8A and B show that Ash1 interacts with Caf1-55 in the absence of MRG15 as well as 

with MRG15 in the absence of Caf1-55, but it was yet an open question if also all three proteins 

together form a complex. Towards an answer to this question, His-affinity purifications were 

performed from a co-expression of all three proteins of interest and, in parallel, from a co-

expression of His-Caf1-55 and MRG15. His-tagged Caf1-55 served as bait in both purifications. The 

pull-down from the latter co-expression of His-Caf1-55 and MRG15, resulted in the isolation of 

His-Caf1-55 alone (Figure 8C). However, in the pull-down from the co-expression of His-Caf1-55, 

Ash1C and MRG15, all three proteins were purified, notably, also MRG15 (Figure 8C). Hence, Ash1, 

Caf1-55 and MRG15 can co-exist in a complex. Though, MRG15 was enriched in sub-

stoichiometric amounts, which is most likely due to greater difficulties to purify MRG15 than to 

purify Caf1-55 with the protocol used here. In Coomassie Blue stainings of aliquots taken in all 

purification steps (not presented here), I observed that a large fraction of the over-expressed 

MRG15 protein stays behind with the cell debris from the insect cell extract.  

Taken together, the results of all purifications presented in Figure 8, show that Ash1, 

Caf1-55 and MRG15 form a complex in vitro. Within this complex, Ash1 acts as the scaffolding unit 

binding to Caf1-55 and MRG15, whereas Caf1-55 and MRG15 do not physically interact with each 

other. I named the complex AMC corresponding to its subunits (Figure 8D). 

 

 



Results 

 

 78 

 

Figure 8. Investigation of biochemical interactions among Ash1, Caf1-55 and MRG15.  
(A-C) Total High Five cell lysates from co-expressions of the indicated recombinant proteins 
(Inputs) and affinity-purified material (Eluates) obtained from inputs, visualized by SDS-PAGE and 
Coomassie Blue stainings. Ash1C was Flag-tagged. (A) Strep-purifications of co-expressions of 
Ash1C and Strep-Caf1-55 and of Ash1C and Strep-Esc showing that Ash1C binds to Caf1-55, but not 
to Esc, albeit both bear a WD40 domain. PA gel: 10% Laemmli. (B) Strep-purifications of              
co-expressions of Ash1C with MRG domain proteins, Ash1C with Strep-MRG15 and Ash1C  with      
Strep-Msl3, revealing that Ash1C interacts with MRG15, but not with Msl3. PA gel: 8% Bolt Bis-Tris 
Plus. (C) His-purifications of co-expressions of Ash1C, His-Caf1-55 and MRG15 and, in parallel, of 
His-Caf1-55 and MRG15 showing that here Caf1-55 and MRG15 do not interact, but together with 
Ash1C they can co-exist in a complex. In this gel, Caf1-55 migrated slower than MRG15 due to its 
polyhistidine-tag and the different SDS-PAGE buffer system used. PA gel: 8% Laemmli. MRG15 
was Strep-tagged. (D) Schematic representation of the Ash1 complex, that is named AMC and was 
reconstituted from Ash1, Caf1-55 and MRG15. 
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3.3 Ash1 binds to MRG15 via a conserved FxLP motif 

The binding assay presented in the following is a continuation of the in vitro 

reconstitution of the interactions in the AMC complex described in para 3.2, but with the aim to 

investigate the binding of Ash1 to MRG15 in more detail. As described in the previous paragraph, 

MRG15 has been purified as a subunit of various multiprotein complexes other than AMC. 

Interestingly, the different MRG15 interactors in these complexes all share a conserved FxLP 

sequence which has been suggested to be required for the binding of MRG15. In particular, Xie 

and colleagues uncovered in structural studies that the PHD finger protein 12 (Pf1) binds via its 

FxLP motif to the MRG domain of MRG15 in the mammalian Rpd3S/Sin3S complex and showed an 

analogous interaction between the FxLP motif of the MRG/MORF4L-binding protein (MRGBP) and 

the MRG15 MRG domain in the mammalian NuA4/Tip60 complex (Xie et al, 2012; 2015). 

Intriguingly, I found the FxLP motif also conserved in Ash1 in an alignment of several Ash1 

orthologues (Figure 9). The Ash1 FxLP motif is located in direct vicinity of the Ash1 SET domain.  
 
 

Figure 9. Identification of a conserved FxLP motif in Ash1 characteristic for MRG domain binding 
proteins. Alignment of the Drosophila Ash1 segment containing the FxLP motif with orthologous 
Ash1 sequences. The Ash1 FxLP motif is located approximately 50 aa upstream of the AWS 
domain and 100 aa upstream of the SET domain. Dr: Danio rerio; Vc: Volvox carteri. Alignment 
was done with Clustal Omega (EMBL-EBI).  



Results 

 

 80 

The next consequential step was to test whether the identified FxLP motif in Ash1 is 

engaged in binding to MRG15 like the FxLP motifs of Pf1 and MRGBP. I generated a baculovirus 

strain from which mutant Ash1C protein with the FxLP sequence altered to RxRP was expressed 

(Ash1C
RXRP). Next, Strep-affinity purifications were performed from co-expressions of Ash1C

RXRP and 

Strep-MRG15 and from co-expressions of wild-type Ash1C
 and Strep-MRG15 as control. As shown 

in Figure 10, Ash1C successfully purified along with MRG15, whereas only MRG15 and no Ash1C
RXRP 

was detected in the eluate of the Ash1C
RXRP-Strep-MRG15 purification. The RxRP-mutation had 

disrupted the binding to MRG15. In other words, the Ash1 FxLP motif is essential for the 

interaction of Ash1 with MRG15. 

 

 
 

3.4 Ash1 exhibits high H3K36 di-methyltransferase activity in 

complex with MRG15 

Ash1 possesses very low or no HMTase activity at all, when it is overexpressed, isolated 

and tested alone. As in the case of human ASH1L, this is most likely due to the presence of the 

conserved auto-inhibitory loop in Ash1 (An et al, 2011). After having identified Caf1-55 and 

Figure 10. Verification of Ash1 binding to MRG15 via the FxLP motif. Total High Five cell lysates 
from co-expressions of Strep-MRG15 with wild-type Ash1C and with mutant Ash1C

RxRP (Inputs) and 
Strep-purified material (Eluates) obtained from inputs, visualized by SDS-PAGE and Coomassie 
Blue stainings. Wild-type Ash1C co-purified with Strep-MRG15, whereas Ash1C

RxRP could not bind 
to MRG15 and was not detected in the eluate. PA gel: 8% Bolt Bis-Tris Plus. Ash1C and Ash1C

RxRP
 

were His-tagged. 
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MRG15 as Ash1 interactors, I now went on to investigate in HMTase assays whether Caf1-55 and 

MRG15 are able to alter the enzymatic activity of Ash1.  

The HMTase assays were performed on recombinant mononucleosomes as substrates. 

The enzymatic complexes analyzed were the Ash1C:Caf1-55 and the Ash1C:MRG15 assemblies that 

have been presented before in Figure 8A and B and, in addition, a mutant Ash1C
R1464A:MRG15 

complex. Ash1C
R1464A:MRG15 had, like the other complexes, been purified from co-expressions 

from baculoviruses in High Five cells. The mutated arginine R1464 is located in the SET domain of 

Ash1 in an RXXNHS motif that is highly conserved among SET domain HMTases (Figure 4). 

Mutation of this residue in other HMTases like in Drosophila E(z) (Müller et al, 2002) or in yeast 

Set2 (Strahl et al, 2002) resulted in catalytic inactivity. The structure of human ASH1L shows that 

this arginine stabilizes the orientation of the S-adenosyl methionine-binding loop. Modeling of 

Drosophila Ash1 based on the ASHL structure in the Elena Conti laboratory (MPIB) suggested that 

this function of the arginine R1464 is lost upon mutation to alanine without disrupting the SET 

domain conformation. The phenotype of ash1R1464A mutants in Drosophila is presented in the 

following paragraphs. Here, the Ash1C
R1464A:MRG15 complex was used to control detection of only 

Ash1-specific HMTase activity in the HMTase assays. As detection method for histone 

methylation, western blotting was chosen. The HMTase reactions were analyzed with antibodies 

against H3K36me2 and H3K36me3. I did not analyze H3K36me1, since none of the tested 

antibodies exhibited satisfying specificity.  

The results of the western blots are shown in Figure 11 along with Coomassie Blue 

stainings of the enzymatic complexes separated by SDS-PAGE. The current consensus in the 

literature is that Ash1 catalyzes specifically di-methylation of K36 in histone H3 (para 1.3). 

Therefore, I shall first discuss the western blot against H3K36me2. Based on this western blot, 

Ash1C in complex with Caf1-55 has not been active (Figure 11; lanes 2, 3). Only bands resulting 

from unspecific antibody binding are visible in lanes 2 and 3 on the membrane probed against 

H3K36me2, like in the mock reaction (lane 1). The mock reaction contained no enzymatic 

complexes, but mononucleosomes. However, remarkably, considerable levels of H3K36me2 are 

detected in the reactions with the Ash1C:MRG15 complex (lanes 4, 5). The lack of detectable 

H3K36me2 levels in the reactions with the mutant Ash1C
R1464A:MRG15 assembly (lanes 6, 7) proves 

that the H3K36me2 modifications in the Ash1C:MRG15 reactions have been generated by the 

Ash1 SET domain and not by MRG15 or other factors in these assays. Lastly, none of the 

complexes tested here demonstrated H3K36 tri-methyltransferase activity.  
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The results of the HMTase reactions taken together, strongly suggest that MRG15 

potently enhances Ash1 enzymatic activity. In addition, these experiments represent a further 

confirmation of the long-debated catalytic specificity of Ash1 for H3K36 di-methylation (see also 

para 1.3).  

Figure 11. Comparative analysis of H3K36 di- and tri-methylation activity of Ash1:Caf1-55 and 
Ash1:MRG15 complexes. HMTase reactions were performed in parallel with Drosophila 
Ash1C:Caf1-55 (lane 2, 3), Ash1C:MRG15 (lane 4, 5) and Ash1C

R1464A:MRG15 (lane 6, 7) complexes 
as well as no enzyme as mock (lane 1) on recombinant Drosophila mononucleosomes. 50% of the 
reactions were analysed for H3K36me2, the other 50% for H3K36me3 by SDS-PAGEs and western 
blotting. Shown here, is the Coomassie Blue staining of the upper part of the gel from the 
H3K36me2-analysis visualizing the enzymatic complexes (10% Bolt Bis-Tris Plus gel). The bottom 
part of the gel with the nucleosome substrates was blotted and the membrane probed against 
H3K36me2 and H4 as loading control. From the H3K36me3-analysis, only the blot against 
H3K36me3 is presented. Each Ash1 complex was tested for activity in two concentrations. The 
Ash1 complex concentrations had been normalized before by estimating Ash1C concentrations 
from comparison with a Coomassie Blue-stained BSA standard. Ash1C and Ash1C

R1464A
 proteins 

were His-tagged.  
The Ash1C:Caf1-55 and the SET domain-mutant Ash1C

R1464A:MRG15 complex did not exhibit H3K36 
di-methylation or tri-methylation activity (lanes 2, 3, 6, 7). The wild-type Ash1C, when in complex 
with MRG15, was highly active for H3K36 di-methylation, but not for H3K36 tri-methylation (lanes 
4, 5). The Drosophila embryonic nuclear extract (NE) in lane 9 serves as control for the western 
blot analysis and shows that the blot against H3K36me3 technically worked. MW (lane 8): 
molecular weight standard in kDa.  
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3.5 Catalytic ash1 mutants show a trxG-like homeotic 

phenotype 

Analysis of multiple EMS-induced alleles of ash1 in Drosophila established that ash1 

mutants in general display a trxG phenotype (Shearn et al, 1987; Tripoulas et al, 1994). But a 

systematic comparative in vivo analysis of defined loss-of-function mutations in individual Ash1 

domains remained to be performed. For that reason, the contribution of the different domains to 

Ash1 function cannot be assessed to date. The key role is generally ascribed to the Ash1 SET 

domain since histone methylation is the only Ash1 function described in the literature. In a set of 

genetic experiments presented in this paragraph, I analyzed the phenotype of a Drosophila Ash1 

SET domain mutant only expressing catalytic inactive Ash1 protein in direct comparison with an 

ash1-null mutant. The alleles employed for this purpose were (1) ash1R1464A, (2) ash1wt, (3) ash110 

and (4) ash122. The mutations of all alleles have already been introduced in Figure 4. In brief, the 

ash1R1464A and the ash110 alleles both bear a SET domain point mutation of a well conserved 

residue and encode full-length Ash1 protein. The R1464A mutation has been shown in the 

previous paragraph 3.4 to be responsible for catalytic inactivity of the recombinant Ash1C
R1464A 

protein in vitro. The ash110 allele contains an N1467I mutation in close proximity to the R1464A 

mutation. But it has not been tested if the enzymatic activity of the Ash1 protein expressed from 

the ash110 allele is impaired or abolished. The ash122 allele is considered as an ash1 null allele due 

to a premature stop codon created by mutation of the Q130 codon in ash1 (Tripoulas et al, 1996). 

The ash110 and ash122 alleles are isolates from EMS screens (Shearn et al, 1987; Tripoulas et al, 

1994), whereas the ash1R1464A allele has been generated in the course of this study along with its 

control allele ash1wt. Both, ash1R1464A and ash1wt are transgenes that were cloned from genomic 

ash1 sequences and subsequently inserted into the same attP site of a specific landing site strain. 

For the precise genotypes of all Drosophila mutants with these alleles presented in the following 

including a description how they were generated, please see para 2.3.3 and 2.3.4. Animals 

derived from mothers homozygous for ash122 were considered to be devoid of maternally 

deposited wild-type Ash1 and are marked as m-, animals having been provided with maternal 

Ash1 are marked as m+. Mutants without the endogenous wild-type ash1 gene carry the label z-, 

standing in this case for no wild-type Ash1 protein expressed from the zygotic genome. 

Before characterizing the ash1 mutant phenotypes, I performed western blot analyses to 

ensure that full-length Ash1 protein is expressed from the transgenic ash1R1464A allele. Specifically, 

flies called ash1R1464A m+ z-, that carried the ash1R1464A allele in a homozygous ash122-null mutant 

background, were tested along with homozygotes for the ash122-null allele (ash122 m+ z- animals). 



Results 

 

 84 

As shown in the western blot in Figure 12, the ash122 m+ z- flies did indeed not express detectable 

levels of Ash1. Since total extracts from dividing tissues, brains and imaginal discs, from 3rd instar 

larvae were analyzed, the maternally deposited Ash1 protein was not traceable neither in these 

animals. However, in the extracts from the ash1R1464A m+ z- flies, wild-type levels of full-length Ash1 

protein were detected, that could have only been generated from the SET domain mutant 

transgene as the only ash1 allele in these animals. Therefore, the ash1R1464A allele is functional and 

suitable for analysis of the ash1-catalytically inactive mutant phenotype.  

 

3.5.1 The catalytic activity of Ash1 is required for viability 

In a first step to characterize the ash1-catalytic mutant phenotype versus the ash1-null 

mutant phenotype, the lethality of the corresponding mutants was analyzed. I collected a specific 

number of 1st and 2nd instar larvae of each genotype and counted the fraction of flies, that 

developed from this pool of larvae into pupal stage, as well as the fraction, that eclosed as adults 

from the pupal case. Females and males were not quantified separately, since the survival rates 

throughout the developmental stages of all ash1 mutants analyzed did not show a gender-specific 

bias. The results are presented in the histogram in Figure 13.  

Homozygotes for the ash122 allele but with maternally deposited wild-type Ash1 protein 

(ash122 m+ z-) were compared with ash122 homozygotes devoid of maternal Ash1 (ash122 m- z-). I 

point this out, since all previous studies on the requirement of Ash1 during development analyzed 

ash1 mutants that had been provided with wild-type Ash1 protein by their ash122 heterozygous 

Figure 12. Analysis of ash122 and ash1R1464A alleles for Ash1 protein expression. Western blot of 
total extracts from brains and imaginal discs of wild-type, ash122 m+ z- and ash1R1464A m+ z- 3rd instar 
larvae. The upper membrane part was probed against Ash1, the bottom part against Caf1-55 as 
loading control. Full-length Ash1 protein is marked with one asterisk, a cross-reacting band is 
marked with two asterisks and served as additional loading control here. Ash1 protein was not 
detectable in the extract of the reported ash1-null mutant ash122 m+ z-, whereas ash1R1464A m+ z- flies 
expressed full-length Ash1 at wild-type levels from the mutant transgene.  
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mothers. Here, the severest possible ash1-null mutant, ash122 m- z-, that neither contained 

zygotically expressed nor maternally deposited Ash1, was derived from mothers with ash122 

homozygous germ cells. Surprisingly, the majority of these ash122 m- z- flies developed as far as 

pupal stage, just like ash122 m+ z- animals did (Figure 13, data bars 2, 3). But fewer ash122 m- z- flies 

than ash122 m+ z- flies completed metamorphosis and reached the pharate adult stage (last pupal 

stage with adults in the pupal case, not quantified here).  

The transgenic catalytic-mutant allele ash1R1464A and its control, the transgenic ash1wt 

allele, were crossed into a homozygous ash122 mutant background. These flies, named ash1R1464A 

and ash1wt in the following text and in Figure 13, were directly comparable with each other. They 

contained the respective transgene as the only ash1 allele, which allowed for analyses of the 

specific phenotypes of both transgenes. As a first result, the ash1wt transgene rescued fully the 

ash122 mutant phenotype. The ash1wt flies developed into fertile adults with wild-type 

morphology, which could be kept as a strain. Interestingly, the SET domain-mutant ash1R1464A flies 

developed into the adult stage as well. The first generation, ash1R1464A m+ z- animals, were sick but 

fertile. This permitted the generation of ash1R1464A m- z-  flies, that were only provided with mutant 

Ash1R1464A protein as maternally loaded and zygotically expressed Ash1 protein. Again, a fraction 

of these ash1R1464A m- z- animals reached adulthood and eclosed from the pupal case (data bars 5). 

Therefore, lethal stages and survival rates of ash1R1464A m- z- and ash1wt flies were very similar as 

determined here, i.e. counting flies as adults once they eclosed the pupal case. However, for a 

complete description of the lethality of ash1R1464A mutants, it has to be noted that the fraction of 

the ash1R1464A m- z- flies, that hatched after metamorphosis, died without exception within one to 

two days. No strain could be maintained. Moreover, ash1R1464A m- z- and also ash1R1464A m+ z- adults 

exhibited severe homeotic transformations which will be described in detail in the following 

paragraph. In comparison with the ash122-null mutants, that invariably died in the pupal stage 

(data bars 3), the phenotype of the ash1R1464A flies was weaker.  

Taken together, the main finding of this experiment is that the catalytic activity of Ash1 is 

required for viability over more than one generation. This result is further supported by the 

phenotype of the ash110 m- z- flies that were trans-heterozygous for the second Ash1 SET domain-

mutant allele ash110 and for ash122. These mutants were derived from trans-heterozygous ash110 

m+ z- mothers and from fathers heterozygous for the ash110 allele. A fraction of the ash110 m- z- 

mutants hatched from the pupal case (data bars 6). But these ash110 m- z- adults exhibited 

homeotic transformations and died within one to two days, just like the ash1R1464A m- z- flies did. 
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3.5.2 Adult ash1-catalytic mutants exhibit homeotic transformations like        

ash1-null mutant 

Ash1 has been reported to regulate transcription of HOX genes in development as 

described in paragraph 1.1.3. Consequently, impairment of Ash1 function in ash1 mutants 

manifests itself in homeotic morphological transformations. 

In this paragraph, I compare the morphological transformations of an ash1-catalytically 

inactive mutant in type and severity with the transformations of a known ash1-null mutant. In 

particular, the morphology of the thoracic segments T2 and T3 and of the male posterior 

Figure 13. Survival rates of ash1-null and ash1-catalytic mutants throughout development.         
The indicated numbers of 1st and 2nd instar larvae (input) of each specified genotype were 
collected, distributed among at least three different breeding vials and reared. The numbers of 
these larvae developing into pupal stage (P) and the numbers of adults hatching from the pupal 
case (A) were determined. In the histogram, the percentages of P and A from the inputs are given 
as mean values ± standard deviation, that were derived from the numbers counted in the three or 
more independent vials for each genotype. ash1-null mutants, ash122 m+ z- and ash122 m- z-, 
developed up to pupal stage, but did not hatch (0). A fraction of the ash1-catalytic mutants 
ash1R1464A m- z- and ash110 m- z- eclosed from the pupal case, though neither of them could be 
maintained as a strain. 
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abdomen of wild type, ash122 m- z-, ash1R1464A m- z- and ash110 m- z- flies was studied in adult cuticle 

sections. Microscopic images of characteristic cuticles of each genotype are shown in Figure 14. 

The thorax sections (Figure 14, T2/T3 segment) revealed morphological transformations 

of structures in the T3 segment toward T2 identity in all ash1 mutants analyzed. These were 

namely partial transformations of the balancing organ haltere in T3 into T2-wing tissue (dorsal 

view, compare rows 2 – 4 with row 1) and transformations of T3-hypopleurite (hp) tissue into T2-

sternopleurite (sp) tissue (lateral view, rows 2 – 4). In the male abdomen of all ash1 mutants 

(Abdomen, dorsal view), abdominal segments 5 and 6 (A5 and A6) were transformed toward A4 

identity as indicated by either complete (row 2) or partial patchy loss (row 3, 4) of pigmentation in 

the affected segments. Furthermore, additional abdominal A7 segment structures formed in ash1 

mutants (row 2 - 4).   

Altogether, the ash1-catalytic mutants ash1R1464A m- z- and ash110 m- z- showed the same 

posterior-to-anterior homeotic transformations as the ash1-null mutant ash122 m- z-. However, the 

severity of the transformations was on average higher in ash122 m- z- flies than in the ash1-catalytic 

mutants, an observation in line with the earlier lethality of the ash1-null mutant (para 3.5.1). The 

images of ash122 m- z- in Figure 14 are not even truly representative as for the other ash1 mutants. 

They show rather milder examples of the ash122 m- z- phenotype since adult cuticles could only be 

mounted from the pharate adult stage onwards. The majority of the ash122 m- z- flies died in an 

earlier pupal stage (personal observation). It is important to be precise about the ash122 m- z- 

phenotype, since, as mentioned before, the severest possible ash1-null phenotype that is also 

devoid of maternally loaded Ash1 protein has not been described before. Comparison of the 

phenotypes of the SET domain mutants ash1R1464A m- z- and ash110 m- z- among each other showed 

that both developed homeotic transformations of comparable severity. 
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Figure 14. Comparison of morphological transformations in ash1-null and ash1-catalytic mutant 
adults. Adult (row 1, 4) or pharate adult (row 2, 3) cuticle preparations of the indicated genotypes 
with dorsal and lateral views of T2 and T3 thoracic segments and dorsal view of male posterior 
abdominal segments A4 to A6. Dorsal view of T2/T3: Wild-type flies form the haltere organ (H, 
black arrowhead) in T3 posterior to the wing (W) in T2. In the ash1-null mutant (ash122 m- z-) and 
the ash1-catalytic mutants (ash1R1464A m- z- and ash110 m- z-), the haltere was partially transformed 
into wing tissue (empty arrowheads). The asterisks in ash122 m- z- and ash110 m- z- images indicate 
meta- to mesonotum transformations. Lateral view of T2/T3: The sternopleurite (sp) tissue 
constitutes part of T2, the hypopleurite (hp) tissue part of T3 in wild type. The ash122 m- z-, the 
ash1R1464A m- z- and the ash110 m- z- flies exhibited hp-to-sp transformations, which were apparent by 
sp bristles, that are characteristic for T2-sp tissue and were formed in T3 in the ash1 mutants 
(black arrows). Dorsal view of abdomen: Segments A5 and A6 are fully pigmented in wild-type 
males. In ash122 m- z- mutants, A5 and A6 pigmentation was almost completely lost, in ash1R1464A m- z- 
and ash110 m- z- flies partially in a patchy pattern. Additional A7 segment structures developed fully 
in ash122 m- z- flies or rudimentary in ash1R1464A m- z- and ash110 m- z- flies (black arrowhead).  
The severity of a specific transformation varied in mutants of one genotype (e.g.: haltere-to-wing 
transformations in row 3, empty arrowheads, or meta- to mesonotum transformations marked 
with asterisks in rows 2-4, dorsal versus lateral views). But taken the analysis of n>40 flies of each 
genotype into account, all presented transformations were on average severer in ash122 m- z- 
mutants than in the ash1-catalytic mutants.  ash1R1464A m- z- and ash110 m- z- mutants were 
comparably strongly affected. T3-to-T2 transformations are indicative of loss of Ubx, A5/A6-to-A4 
transformations of loss of Abd-B expression.  
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3.5.3 Ash1 catalytic activity is essential for normal expression of the HOX genes 

Ubx and Abd-B   

The homeotic transformations described for ash1-null and ash1-catalytic mutants in the 

previous paragraph are indicative of loss of expression of specific HOX genes: the transformation 

of the T3 thoracic segment towards T2 identity of loss of Ubx and the transformation of the A5 

and A6 abdominal segments towards A4 identity of loss of Abd-B.  

As a matter of fact, loss of Ubx expression in ash122 and other ash1 EMS mutants has 

already been demonstrated (LaJeunesse & Shearn, 1995; Klymenko & Müller, 2004). With the 

experiment presented in this paragraph, I aimed at providing molecular evidence for the 

presumable loss of HOX gene expression in ash1-catalytic mutants. Then, the results were to be 

compared with loss of HOX gene expression in the ash1-null mutant ash122 m- z-. I probed the 

primordial tissues of the adult T3 segment in larvae, namely the haltere and 3rd leg imaginal discs, 

of wild-type, ash122 m- z-, ash1R1464A m- z- and ash110 m- z- flies with an antibody against Ubx. In wild-

type haltere and 3rd leg discs, Ubx was expressed in all cells (Figure 15). The ash1-null and both 

ash1-catalytic mutants, in contrast, showed patchy, irregular loss of Ubx expression in both T3 

discs. It is well established, that Ubx drives and maintains T3 segment identity (Figure 1). Thus, it 

can be concluded here, that the loss of Ubx expression in the ash1 mutant larval T3 imaginal discs 

represents the cause for the morphological ash1 mutant transformations of parts of the T3 

segment into characteristic adult T2 structures as described in the previous paragraph and shown 

in Figure 14. Consistently, the extent of Ubx expression loss in the different ash1 mutants (Figure 

15, Ubx, row 2 – 4) paralleled the severity of the homeotic T3 transformations in the 

corresponding adults (Figure 14, T2/T3 segment, dorsal view, row 2 – 4): ash122 m- z- flies were 

severest, ash1R1464A m- z- and ash110 m- z- flies on average equally severely affected.  

Besides the thorax, the adult abdominal epidermis exhibited homeotic transformations in 

the ash1-null and ash1-catalytic mutants, which are indicative of loss of Abd-B expression (Figure 

14). The primordia for the abdominal epidermis are histoblasts. This tissue is difficult to dissect. 

Hence, I analyzed Abd-B expression in the ash1 mutants in the larval central nervous system 

(CNS), which expresses Abd-B in its posterior cells in wild type (Figure 15, posterior CNS, row 1). 

The ash122 m- z-, ash1R1464A m- z- and ash110 m- z- flies showed all patchy loss of Abd-B. In the fraction of 

the cells, that retained Abd-B expression, the levels of the HOX protein were reduced (row 2 – 4).  

In summary, the analyses of the ash1-catalytic phenotype with regard to lethality (para 

3.5.1), morphology (para 3.5.2) and HOX gene expression (this para) led to three main 

observations: (1) Ash1 catalytic activity is required for viability over more than one generation, (2) 

the ash1-catalytically inactive phenotype is homeotic and (3) the ash1-catalytically inactive 
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phenotype is weaker than the ash1-null phenotype. I showed the HOX loss-of-function syndrome 

of ash1-catalytic mutants by testing two independent Ash1 SET domain-mutant alleles, ash1R1464A 

and ash110. The R1464A mutation abolished enzymatic activity of Ash1 in vitro within the 

detection limit (para 3.4), the N1467I mutation of the ash110 allele has not been tested in this 

regard. But both alleles, in absence of a wild-type ash1 locus, caused a homeotic phenotype, 

almost identical in type and severity, that I consider to be the ash1-catalytically inactive 

phenotype. Morphological aberrations other than homeotic transformations were not observed. 

The fact that the ash1-catalytically inactive phenotype is weaker than the ash1-null phenotype 

could have a technical or a biological reason. Despite its inactivity in vitro, the Ash1 protein 

bearing the R1464A mutation could possess residual activity in vivo. In that case, the ash110 allele 

would not be a true ash1-catalytically inactive allele neither. The possible biological explanation is 

that Ash1 fulfills other, so far undescribed functions in addition to H3K36 di-methylation. 
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Figure 15. Comparison of expression of the HOX genes Ubx and Abd-B in ash1-null and ash1-
catalytic mutant larvae. Immunostainings of the T3 primordia haltere (H) and 3rd leg (L3) imaginal 
discs against Ubx (red) and of the posterior CNS against Abd-B (red). Co-staining of DNA visualized 
nuclei (cyan). In total, tissues from n>40 3rd instar larvae of each indicated genotype were 
analyzed. Wild-type H and L3 discs expressed Ubx in all cells, whereas Ubx expression in H and L3 
discs of all ash1 mutants, ash122 m- z-, ash1R1464A m- z- and ash110 m- z-, was partially lost in a patchy 
irregular pattern. ash1 mutants differed in the extent of tissue area showing loss of Ubx 
expression (asterisks). On average, ash122 m- z- flies were severest, ash1R1464A m- z- and ash110 m- z- flies 
equally severely affected. Moreover, the sizes of the H discs in the ash1 mutants compared to the 
size of the wild-type H disc were enlarged indicating transformation into wing primordial tissue 
(all images cropped to scale). Abd-B was expressed in the posterior cells of the CNS of wild-type 
larvae. The posterior CNS of ash122 m- z-, ash1R1464A m- z- and ash110 m- z- mutants showed in some 
tissue areas patchy loss and in others reduction of Abd-B expression. 
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3.6 The MRG mutant phenotype resembles the ash1 mutant 

phenotype 

In the beginning of this work, I showed by TAP from Drosophila (para 3.1), by binding 

studies with recombinant proteins and by HMTase assays (para 3.2, 3.3, 3.4) that the MRG15 

protein physically interacts with Ash1 and probably strongly enhances Ash1 HMTase activity in 

vitro. The consequential question, if and to what extent MRG15 is important for the enzymatic 

activity of Ash1 in vivo, was addressed by the genetic experiments presented in the following. 

Specifically, the MRG15-null mutant phenotype was analyzed and compared with the homeotic 

ash1-catalytically inactive phenotype, which had been characterized in depth in the previous 

paragraph 3.5. Moreover, I would like to point out, that the analysis of the MRG15-null mutant 

phenotype per se was already of interest since the genetics of MRG15 has been poorly studied in 

Drosophila so far. 

In a first step, I tested if the only available endogenous MRG15 mutant allele at that time, 

MRG15j6A3, would meet the requirement for the planned analyses to be a null allele. The 

MRG15j6A3 allele has been generated in the course of the ‘BDGP gene disruption project’ 

(Spradling et al, 1999). It carries an 11 kb-long P element insertion in the second MRG15 exon, 

that disrupts the chromo barrel domain (Figure 16A). Hypothetically, the expression of a 

truncated MRG15 protein, which bears the complete MRG domain, is possible beginning from 

alternative start codons downstream of the P element in MRG15j6A3. The MRG domain most likely 

harbors the binding site of the Ash1 FxLP motif (para 3.3) and its presence could suffice for 

formation of Ash1:MRG15 complexes. To test for MRG15 expression from the MRG15j6A3 allele, 

western blot analysis was performed on total extracts from imaginal discs of MRG15j6A3 m+ z- 3rd 

instar larvae. MRG15j6A3 m+ z- animals contained maternally loaded but not zygotically expressed 

wild-type MRG15. These flies were trans-heterozygous for the MRG15j6A3 allele and the 

Df(3R)BSC741 allele, that is a chromosomal deletion in which the entire MRG15 gene and 

neighboring genes are removed. When the western blot was probed with an MRG15-specific 

antibody, no full-length MRG15 protein was detected in the MRG15j6A3 m+ z- extracts (Figure 16B). 

The MRG15 protein and RNA loaded maternally into the embryo is expected to be degraded or 

diluted out by cell division in imaginal discs as late as 3rd instar larval stage. But, notably, one band 

appeared repeatedly in the MRG15j6A3 m+ z- extract that was not visible in wild type. This band 

could, based on its migration behavior in the gel, represent truncated MRG15 expressed from one 

of the alternative start codons in the MRG15j6A3 allele marked in Figure 16A. In addition to 

MRG15, the MRG15j6A3 m+ z- extracts were analyzed for H3K36me3 by western blot. The binding 
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specificity of the MRG domain of MRG15 to H3K36me3 could possibly indirectly affect the levels 

of the histone modification. However, in the MRG15j6A3 m+ z- extracts tested here, the H3K36me3 

bulk levels were comparable to the levels in wild type. Altogether, the main conclusion of the 

analysis of the MRG15j6A3 allele was that its identity as a null allele is questionable.  

 

 

 

Figure 16. Structure and expression of the MRG15j6A3 allele. (A) Schematic representation of the 
MRG15j6A3 allele and neighboring genes. In MRG15j6A3, the MRG15 gene is disrupted by the 
insertion of the P element P{lacW} in the second exon. Alternative start codons downstream of 
P{lacW} are indicated with red asterisks. (B) Western blot on serial dilutions of total extracts from 
T2 (wing) and T3 imaginal discs of wild-type and MRG15j6A3 m+ z- 3rd instar larvae. The aim was to 
test the MRG15j6A3 allele for MRG15 expression products. Full-length MRG15 protein (blue 
asterisk in wild type) was not found in the MRG15j6A3 m+ z- extract. The band marked with a black 
asterisk in the MRG15j6A3 m+ z- extract is unspecific and runs higher than full-length MRG15 as was 
more clearly observable in western blots after longer SDS PAGE runs (not shown here). The red 
asterisk labels a band that was repeatedly detected by the MRG15 antibody only in the MRG15j6A3 

m+ z- extract and not in wild type. This band could represent a truncated MRG15 protein expressed 
from one of the alternative start codons shown in the scheme in (A). Spt5 served as loading 
control. Bulk levels of H3K36me3 were not affected in the MRG15j6A3-mutant extracts.  
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Since it could not be proven, that the P element insertion allele MRG15j6A3 is a functional 

null allele, I generated a molecularly defined null allele, MRG15Δ, in which the major part of the 

MRG15 gene, including 90% or more of the MRG domain and of the chromo barrel domain, was 

deleted. As deletion method, ends-out targeting according to Gong & Golic, 2003 was chosen. 

How ends-out targeting works, how the technique was applied to generate the MRG15Δ allele and 

how the deletion allele was then verified, is sketched in Figure 17A and described in detail in the 

‘Materials and Methods’ section, in the paragraphs 2.1.10 and 2.3.7. In brief, the MRG15 

sequence to be removed was replaced by the mini-white marker gene by homologous 

recombination. Recombination occurred between sequences of the target genomic region and 

homologous sequences (homologous arms), that flanked the mini-white gene in a donor 

fragment. The donor fragment had originally been an inserted P element, that was excised from a 

P[donor] allele before recombination.  

Lastly, the obtained MRG15Δ allele was tested by MRG15Δ-specific PCR amplification 

reactions on genomic DNA from MRG15Δ homozygotes (Figure 17B), by sequencing and by a 

genetic rescue assay (para 2.3.7). All tests together showed that the MRG15 gene has been 

deleted successfully and that the generated allele causes a phenotype specific for MRG15. The 

MRG15Δ allele was therefore considered as suitable for characterization of the MRG15-null 

mutant phenotype and for comparison with the ash1-catalytically inactive phenotype. The 

respective experiments are presented in the following paragraphs.  
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Figure 17. Generation and verification of the MRG15Δ-deletion allele. (A) Scheme of the 
generation of the MRG15Δ allele by the ends-out targeting technique. The major part of the 
MRG15 gene in the wild-type MRG15 genomic locus (top) was replaced with the mini-white 
marker gene provided by an excised P element (donor fragment, middle). The mechanism behind 
MRG15 replacement was homologous recombination between homologous arms flanking the 
mini-white gene in the donor fragment and homologous sequences in the wild-type MRG15+ 
genomic locus. The resulting MRG15Δ-deletion allele is shown at the bottom. (B) Quality control 
of the MRG15Δ-deletion allele by MRG15Δ-specific PCR reactions on genomic DNA from wild type, 
MRG15Δ homozygotes and the P[donor] strain, which beared the non-excised donor fragment on 
chromosome 2. The specificity of all primer pairs used was as illustrated in (A) and as follows: 
endogenous (E) for the wild-type MRG15+ genomic locus, white (w) for the mini-white gene, 
upstream (U) and downstream (D) for the MRG15Δ allele. The major part of the wild-type MRG15 
gene was successfully replaced by mini-white, and the homologous arms from the donor fragment 
had recombined correctly based on the size of the U- and D-PCR products from the MRG15Δ 
genomic DNA. NTC: no template control; chr.: chromosome.  

 



Results 

 

 96 

 

3.6.1 MRG15-null mutant flies die throughout all developmental stages, but 

may reach adulthood 

Preliminary analyses of the generated MRG15Δ-null allele (Figure 17) showed that a 

considerable fraction of the MRG15Δ homozygotes completes development up to adult stage. But 

flies trans-heterozygous for the MRG15Δ allele and the Df(3R)BSC741 deletion, that uncovers 

MRG15 and neighboring genes, exhibited higher survival rates than the MRG15Δ homozygotes, 

possibly due to second site mutations on the chromosome with the MRG15Δ deletion. For that 

reason, the systematic analyses of the lethality and of further phenotypic aspects described in the 

paragraphs 0 and 3.6.3 of MRG15-null mutants were performed with the MRG15Δ/Df(3R)BSC741 

trans-heterozygotes, for simplicity called MRG15Δ flies in the following.  

Survival rates were determined of MRG15Δ m+ z- as well as of MRG15Δ m- z- flies in the pupal 

and in the adult stage (see the histogram in Figure 18 for results). Both genotypes were devoid of 

zygotically expressed MRG15, MRG15Δ m+ z- flies contained maternally deposited MRG15, MRG15Δ 

m- z- flies did not. As already indicated above, more than 50% of the analyzed MRG15Δ m+ z- mutant 

larvae survived into adult stage. They exhibited a mutant phenotype, but were fertile, so that 

MRG15Δ m- z- progeny could be obtained without generation of germ line clones. Remarkably, a 

small fraction of these MRG15Δ m- z- flies, again, underwent metamorphosis and eclosed from the 

pupal case (Figure 18), just like the ash1-catalaytic inactive mutants, ash1R1464A m- z-, did (Figure 13). 

But it was impossible to maintain flies of both genotypes, MRG15Δ m- z- or ash1R1464A m- z-, as stocks. 

Less than 20% of the collected MRG15Δ m- z- larvae actually reached adulthood. The majority of 

these MRG15-null mutants died before in all stages throughout development. Therefore, the 

survival rate of the MRG15Δ m- z- flies was considerably lower than the survival rate of the 

ash1R1464A m- z- flies (60% of 1st and 2nd instar larvae hatched as adults, Figure 13). A possible reason 

for this could be AMC-independent functions of MRG15 as MRG15 has been purified with several 

other complexes that fulfill crucial roles for viability like the Tip60 complex (para 3.2). But overall, 

in light of these Ash1-independent functions of MRG15, the MRG15-null phenotype in terms of 

lethality is surprisingly weak.   
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Figure 18. Survival rates of MRG15Δ-null mutants throughout development. This assay was set 
up exactly as described in Figure 13 for the ash1 mutants. A specific number of 1st and 2nd instar 
larvae of each indicated genotype (input) was collected. Then the fractions of flies from this input, 
that developed into pupae (P) and that eclosed as adults from the pupal case (A) were counted. 
The numbers of P and A of each genotype are presented as mean percentages from the input in 
the histogram. For calculation of the mean percentages and their standard deviations, see Figure 
13, legend. Fractions of the MRG15Δ m+ z-- and, notably, of the MRG15Δ m- z--null mutants developed 
up to pupal stage and even hatched as adults. But the majority, more than 80%, of the MRG15Δ m- 

z- flies died before, throughout development from larval to adult stage. MRG15Δ flies were trans-
heterozygous for the MRG15Δ allele and the chromosomal deletion Df(3R)BSC741.  
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3.6.2 Adult MRG15-null mutant exhibits trxG-like homeotic transformations 

ash1-catalytic and -null mutant adults exhibit a trxG-like homeotic phenotype with 

posterior-to-anterior morphological transformations as described in detail previously in para 

3.5.2. The survival of a fraction of the MRG15Δ m- z- flies into adult stage permitted also analysis of 

their adult cuticles. This analysis revealed high similarities of the MRG15-null mutant phenotype 

with the homeotic ash1-mutant phenotypes (Figure 14, Figure 19). The thoracic segment T3 of 

MRG15Δ m- z- flies transformed toward T2 identity: The T3-haltere organ partially developed into 

T2-wing tissue (Figure 19, T2/T3 segment, dorsal view) and the T3-hypopleurite tissue into T2-

sternopleurite tissue (T2/T3 segment, lateral view). In the male MRG15Δ m- z- abdomen (Figure 19, 

Abdomen), the A5 segment partially adopted A4 identity. An additional male abdominal segment 

A7 was formed.  

All described trxG-like homeotic transformations were observed in each of the analyzed 

MRG15Δ m- z- flies (n>40), but the degree of severity varied. The adult cuticle sections in Figure 19 

display the estimated average MRG15Δ m- z--null mutant phenotype. For a more comprehensive 

view on the MRG15-null mutant phenotype I would like to add that already the MRG15Δ m+ z- flies, 

which had been supplied with MRG15 maternal load, showed homeotic transformations (not 

presented here). These transformations were less pronounced than in their progeny devoid of 

MRG15 maternal load, the MRG15Δ m- z- flies.  

In relation to the morphological transformations in ash1 mutants, the mean MRG15Δ m- z--

null mutant phenotype was very similar to, but slightly milder than the ash1-catalytically inactive 

phenotype of the ash1R1464A m- z- flies (Figure 19, row 2 vs. row 3).  

The most surprising observation made in the analysis of the MRG15-null mutant adult 

morphology was the specificity of the phenotype. Apart from the described trxG-like homeotic 

transformations, no other aberrations were detected in the MRG15Δ m- z--adult cuticulae despite 

the association of MRG15 with several nuclear multi-protein complexes that fulfill quite varied 

functions (para 3.2).  
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Figure 19. Analysis of adult morphological transformations in MRG15Δ-null mutant and 
comparison with ash1-catalytically inactive phenotype. Adult (row 1) or pharate adult (row 2, 3) 
cuticle preparations of indicated genotypes with dorsal and lateral views of T2 and T3 thoracic 
segments and dorsal view of male posterior abdominal segments A4 to A6. Pictures of wild-type 
and ash1R1464A m- z- cuticles are taken from Figure 14, since the same body segments were analyzed 
for transformations here. Dorsal view of T2/T3: The haltere organ in T3 marked with H and a black 
arrowhead in wild type showed partial transformation into T2-wing tissue in MRG15Δ m- z- flies 
(row 2, empty arrowhead), like the haltere organ in ash1R1464A m- z- flies did (row 3, empty 
arrowhead). Lateral view of T2/T3: The hypopleurite (hp) tissue in T3 (empty arrow in wild type) 
was partially transformed into T2-sternopleurite (sp) tissue in MRG15Δ m- z- flies as visible by sp 
bristles developed in T3 of the MRG15 mutants (row 2, black arrow). As described before, the 
ash1R1464A m- z- flies also exhibited hp-to-sp transformations and in some cases like here meta- to 
mesonotum transformations (row 3, asterisk). Dorsal view of abdomen: In the MRG15Δ m- z- 
mutant, just like in the ash1R1464A m- z- mutant, pigmentation in the abdominal segment A5 and in 
some cases in A6 was partially lost in a patchy pattern (row 2), which indicates transformation of 
A5 (and A6) toward A4 identity. MRG15Δ m- z - flies also developed an additional abdominal 
segment A7 (row 2, black arrowhead), like ash1R1464A m- z- flies did (row 3, black arrowhead).  
The MRG15Δ m- z--null mutant flies exhibited the same kinds of trxG-like homeotic transformations 
of slightly milder severity as the ash1-catalytically inactive mutant flies ash1R1464A m- z- (n>40 
animals per genotype analyzed). 
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3.6.3 Expression of Ubx and Abd-B is partially lost in MRG15-null mutant tissue 

The homeotic transformations that were observed in the third thoracic segment T3 or in 

the posterior abdominal segment A5 in MRG15Δ-null mutant adults (para 3.5.2) suggested loss of 

expression of the HOX genes Ubx or Abd-B in the primordia of these body segments, as shown 

before in paragraph 3.5.3 for the ash1 mutants. Consequently, in an analogous manner to the 

immunostainings of the ash1 mutants (Figure 15), the primordia of the T3 segment, the haltere 

and 3rd leg imaginal discs of MRG15Δ m- z- 3rd instar larvae were probed with an antibody against 

Ubx. In addition, the CNS tissues of MRG15Δ m- z- flies were stained against Abd-B. The CNS was 

chosen for technical reasons in place of the primordial tissues of the posterior abdominal 

segments to analyze Abd-B expression. Representative pictures of the immunostainings against 

the HOX proteins in MRG15Δ m- z-  primordial larval tissues are set into direct comparison to 

corresponding immunostainings of the ash1-catalytically inactive flies ash1R1464A m- z- in Figure 20. 

They show that Ubx expression was indeed lost in haltere and 3rd leg imaginal discs of MRG15Δ m- z- 

flies in a patchy and irregular pattern. The Abd-B stainings revealed either reduction or patchy 

loss of Abd-B expression in the posterior CNS cells of the MRG15Δ m- z- mutant. Thus, taken the loss 

of HOX gene expression in MRG15Δ m- z- flies together with the homeotic morphological 

transformations in the same mutant described in paragraph 3.5.3, it can be stated here that the 

MRG15-null phenotype is homeotic. 

In the ash1R1464A m- z- flies, loss of Ubx and Abd-B expression in T3 discs and in the CNS as 

described before in paragraph 3.5.3 and shown in Figure 20 occurred in a similar manner to the 

expression loss in MRG15Δ m- z- flies. The severity of the phenotype was only slightly milder in 

MRG15Δ m- z- flies. Overall, taken not only the loss of HOX gene expression and the resulting adult 

homeotic transformations (para 3.5.2) but also the partial survival into adults of both mutants 

into account (para 3.5.1), the MRG15Δ m- z--null phenotype was very similar to the ash1-

catalytically inactive phenotype of the ash1R1464A m- z- flies. This resemblance of phenotypes 

together with the likely boosting effect of MRG15 on Ash1 enzymatic activity in vitro strongly 

indicate that MRG15 also plays an important role for the HMTase activity of Ash1 in vivo. The role 

in Ash1 activity might even be the major cellular function of MRG15 in light of the relative 

weakness and the specificity of the MRG15-null mutant phenotype for loss of HOX gene function. 
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Figure 20. Expression of the HOX genes Ubx and Abd-B in MRG15Δ-null mutant and, in 
comparison, in ash1R1464A-catalytically inactive mutant. T3 primordia haltere (H) and 3rd leg (L3) 
imaginal discs of more than 40 3rd instar larvae of each indicated genotype were probed with an 
antibody against Ubx (red). The posterior CNS tissues of these larvae were probed with an 
antibody against Abd-B (red). DNA-specific staining visualized nuclei (cyan). The pictures of wild-
type and ash1R1464A m- z- tissues were overtaken from Figure 15. In wild type, Ubx was detected over 
the entire tissue area in all cells of the T3 imaginal discs H and L3. In contrast, MRG15Δ m- z- flies 
showed a patchy, irregular loss of Ubx expression in H and L3 discs, just as ash1R1464A m- z- flies did. 
Expression of Abd-B, that was detected in the posterior CNS cells in wild type, was in MRG15Δ m- z- 
flies either lost in a patchy pattern or reduced like in ash1R1464A m- z- flies. The mean extent of loss of 
Ubx and Abd-B expression, assessed by the size of tissue area affected (row 2/3, Ubx, asterisk), 
was slightly weaker in the MRG15Δ m- z- mutant than in the ash1R1464A m- z- mutant.  
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3.7 H3K36 di-methylation levels are decreased at the Ash1-

target gene Ubx, but not genome-wide 

The identity of Ash1 as a transcriptional regulator of HOX genes is indisputable. 

Moreover, genetic analyses presented in the paragraphs 3.5 and 3.6 showed on one hand, that 

mutants of the Ash1 interactor MRG15 exhibit a homeotic phenotype and, on the other hand, 

that it is the capacity of Ash1 to di-methylate H3K36, that is crucial for HOX gene regulation. 

However, whether the function of Ash1 is restricted to HOX genes is a controversial matter in the 

literature (para 1.1.4). It has been claimed that Ash1 acts as a genome-wide transcription factor 

(Gregory et al, 2007; Kockmann et al, 2013). In that case, Ash1 would probably contribute 

substantially to the total levels of H3K36me2. To test this assumption, I generated total cellular 

extracts from the wing (T2) and the haltere and 3rd leg (T3) larval imaginal discs of wild type, of 

the ash1-null mutant flies ash122 m+ z- and of the MRG15-null mutant flies MRG15Δ m- z-. The ash122 

m+ z- flies were homozygous for the ash122-null allele, and the MRG15Δ m- z- flies trans-heterozygous 

for the deletion alleles MRG15Δ and Df(3R)BSC741. The total cellular extracts were analyzed for 

H3K36me2 by western blot. As shown in Figure 21, the H3K36me2 bulk levels were not detectably 

decreased, neither in the ash1-null nor in the MRG15-null mutant, which points to a rather gene-

specific function of Ash1 and not to a genome-wide role in transcription.  

 

Figure 21. Analysis of H3K36me2 bulk levels in ash122- and MRG15Δ-null mutants.              
Western blot on serial dilutions of total cell extracts from T2 and T3 imaginal discs of wild-type, 
ash122 m+ z- and MRG15Δ m- z- 3rd instar larvae. The membrane was probed against H3K36me2 and, 
as loading controls, against Caf1-55 and H4. Genome-wide H3K36me2 bulk levels were not 
decreased in ash122- and MRG15Δ-null mutants.     
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After not having observed an effect on genome-wide H3K36me2 by the absence of Ash1, 

the next questions asked were if and how the H3K36me2 landscape at the single-gene level at the 

well-known Ash1 target gene Ubx is affected in ash1 mutants. To this end, a ChIP assay with an 

antibody against H3K36me2 was performed on chromatin isolated from the T3 imaginal discs of 

wild-type and ash122 m+ z- flies. The T3 discs were chosen as tissues to be analyzed due to their 

homogenous Ubx expression in all cells (Figure 15). Levels of H3K36me2 were then determined by 

qPCR at one or more locations in the transcribed regions of Ubx and the control genes wingless 

(wg), teashirt (tsh), Lamin and defective proboscis extension response 12 (dpr12) (Figure 22). Work 

from the Jürg Müller laboratory not presented here had shown that wg, tsh and Lamin are 

expressed, but not regulated by Ash1 in T3 discs (Schmähling et al, 2018), whereas dpr12 was 

chosen as an example for an inactive gene in the analyzed tissues. Regarding the gene regions to 

test for H3K36me2, one has to bear in mind that it is not known where Ash1 acts along the gene 

body. But at many Drosophila genes, H3K36me2 accumulates from the middle stretch towards 

the 3’ end (Bell et al, 2007). Based on this observation and on ChIP-seq profiles of H3K36me2 in 

wild-type Drosophila embryos (modENCODE ID 6388), the regions to be amplified by qPCR were 

selected (see Figure 22 and Table 11 for precise amplicon locations). At Ubx, also amplicons in the 

5’ region were analyzed since H3K36me2 has been shown to inhibit H3K27me3 deposition by 

PRC2 when present on the PRC2 substrate histone H3 tail (Schmitges et al, 2011; Voigt et al, 

2012). The H3K27me3 mark has been suggested to spread at Ubx in a linear manner from the 

upstream control region, where it is detected independent of transcription, into the 5’ part of the 

gene body in the transcriptionally silent state (Papp & Müller, 2006).  

The results of the ChIP-qPCR assay are presented in the histogram in Figure 22 as 

percentages of the chromatin precipitated with the H3K36me2 antibody from the input 

chromatin. In line with the role of H3K36me2 as a hallmark for actively transcribed chromatin, all 

genes expressed in the T3 discs were enriched for H3K36me2 in their coding regions in wild-type 

tissue. At the Ubx gene in wild type, H3K36me2 was analyzed and detected in the very 3’ end as 

well as in the first exon, but not at the TSS, which is likely to be located within a nucleosome-poor 

region while transcription is ongoing. The low H3K36me2 levels at the inactive gene dpr12 were 

considered as background. In the ash122 m+ z--null mutant tissues, H3K36me2 levels did not differ 

significantly from wild-type levels at the actively transcribed genes wg, tsh and Lamin, whose 

expression is independent from Ash1. However, at the Ash1 target gene Ubx, H3K36me2 was 

strongly decreased at the 5’ and at the 3’ end in the ash1-null mutants. The fact that H3K36me2 

was decreased but not completely eliminated at Ubx is remarkable and, as a matter of discussion, 

might provide insight into the mechanism by which Ash1 regulates gene expression. The residual 
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H3K36me2 at Ubx was most likely generated by the other Drosophila H3K36 di-methyltransferase, 

NSD, in the absence of Ash1. A contribution by maternal Ash1, that is loaded into the embryo, to 

H3K36me2 levels at Ubx in ash122 m+ z- flies at larval stage is improbable after that many cell 

divisions.  

In summary, the ChIP-qPCR analysis demonstrated that the H3K36me2 levels along the 

coding region of the actively transcribed Ash1 target gene Ubx are decreased in absence of Ash1.

Figure 22. Analysis of H3K36me2 levels at the Ash1 target gene Ubx in ash122-null mutants. The 
histogram shows H3K36me2 enrichment at the genes Ubx, wg, tsh, Lamin and dpr12 in 
chromatin, that was isolated from T3 imaginal discs of wild-type (dark-green bars) and ash122 m+ z- 
(light-green bars) 3rd instar larvae and then analyzed by ChIP-qPCR. At each gene, one or several 
regions were amplified. The positions of the amplicons are given as distances from the TSS of 
each gene in kilobases (kb) in the histogram and for Ubx, in addition, at the schematic Ubx gene 
representation and in Table 11. H3K36me2 levels shown here are mean values derived from three 
independent biological replicates of both genotypes and are presented as percentages of input 
chromatin precipitated at each region. The error bars illustrate standard deviations.  
All actively transcribed genes were enriched for H3K36me2 in their coding regions in wild-type T3 
discs, the inactive gene dpr12 was not. But solely Ubx, as the only Ash1-regulated gene presented, 
displayed decreased H3K36me2 levels at its first and at its last exon in ash122-null mutant tissues. 
Notably, H3K36me2 at Ubx was not completely eliminated.  
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4 Discussion 

Within the PcG/trxG family, the trxG protein and H3K36 di-methyltransferase Ash1 has 

been a rather enigmatic member. Ash1 plays an essential role in development. It maintains HOX 

gene expression active by antagonizing PcG-mediated silencing of transcription. But little was 

understood about the molecular mechanisms of Ash1 action and how they are regulated. A major 

limitation in investigating Ash1 mechanisms has been the lack of knowledge about the 

composition of probable Ash1 protein complexes in both flies and mammals. In contrast, most 

other PcG and trxG proteins had already been purified and shown to function in defined 

multiprotein complexes (reviewed in Kassis et al, 2017).  

In this study, I purified and characterized Ash1 complexes from Drosophila embryos. 

Moreover, I analyzed the regulation of the catalytic activity of Ash1 and its role in development in 

comparison with the function of the MRG15 protein, one of the newly identified Ash1 interactors. 

These investigations led to the following main findings: First, Ash1 forms a stable multimeric 

complex with the chromatin readers Caf1-55 and MRG15. This novel trxG complex is named AMC. 

Second, Ash1 interacts with MRG15 via a conserved FxLP motif, that is localized in close vicinity to 

the Ash1 catalytic domain. Third, MRG15 is strongly suggested by my results to enhance the 

enzymatic activity of Ash1 to di-methylate H3K36. Fourth, Ash1 enzymatic activity is the main 

Ash1 function required for HOX gene expression. Fifth, MRG15 mutants exhibit a very specific 

phenotype characterized by loss of HOX gene expression. MRG15 can therefore be classified as a 

novel trxG protein. Sixth, in the absence of AMC, genome-wide H3K36me2 bulk levels are not 

detectably diminished, but H3K36me2 in the chromatin of the AMC target gene Ubx is strongly 

decreased. These main findings are discussed in depth in the following.  

 

4.1 AMC complex purification and reconstitution   

In this work, two independent TAP purification approaches from Drosophila embryos 

using either N- or C-terminally tagged Ash1 proteins as baits led to the isolation of Ash1 in 

complex with MRG15 and Caf1-55 (para 3.1, Figure 6B). My data do not confirm an earlier report 

that identified the trxG member Fsh as a stable binding partner of Ash1 (Kockmann et al, 2013).  

In pull-down assays with recombinant proteins, I could verify the physical interactions of 

Ash1 with MRG15 as well as with Caf1-55 and show that all three proteins together form a 

complex in vitro, the AMC complex (Figure 8).  
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4.1.1 AMC complex formation in vitro and in vivo 

The reconstitution of AMC suggests that Ash1 most likely functions as the scaffolding unit 

to which MRG15 and Caf1-55 bind independently. At least under the standard conditions used 

here in the corresponding pull-down assay from insect cells overexpressing His-Caf1-55 and 

MRG15 (Figure 8C), MRG15 and Caf1-55 do not interact directly with each other. Structural 

studies are required in order to obtain a definite picture of the interactions among the subunits in 

AMC. In light of the indication that MRG15 and Caf1-55 do not physically assemble without Ash1, 

it cannot be formally ruled out that Ash1 exists in vivo in various separate complexes rather than 

in AMC. These separate Ash1 complexes might either exclusively contain MRG15 or exclusively 

Caf1-55. I did not attempt gel filtration or density gradient centrifugation assays to clarify the 

nature of the in vivo Ash1 complexes. However, in the TAP purification of C-terminally tagged 

Ash1 from embryos, MRG15 and Caf1-55 were isolated in nearly stoichiometric amounts 

compared to Ash1 (see mass spectrometric data in Figure 6B), which indicates the presence of all 

three proteins in the same Ash1 complex. Speculating about the function of MRG15 and Caf1-55 

with regard to Ash1, it is well conceivable that both complement each other while acting in one 

complex. As shown in this study, MRG15 likely stimulates the enzymatic activity of Ash1 and the 

human and yeast MRG15 homologues have been reported to bind with their chromo barrel 

domains to H3K36me2, the catalytic product of Ash1 (Zhang et al, 2006; Sun et al, 2008; Xu et al, 

2008). Caf1-55, in contrast, binds unmodified histone H3, the substrate of Ash1 (Nowak et al, 

2011; Schmitges et al, 2011). Moreover, work by the Bing Zhu laboratory (Chinese Academy of 

Sciences, Beijing) has provided further arguments in support of AMC as a stable complex (Huang 

et al, 2017): In their independent study, they also co-purified MRG15 and Caf1-55 together with 

Ash1 from the Drosophila tissue culture cell-line S2-DRSC. Importantly, Huang and colleagues 

showed in addition that AMC is conserved in mammals by purifying the human orthologous 

complex from the HEK293 cell-line. The conservation of the interaction between Ash1 and MRG15 

has also been demonstrated in Schmähling et al, 2018 by complex reconstitution from human 

ASH1L and MRG15.   

 

4.1.2 Interaction interfaces between Ash1 and MRG15 

Investigation of the Ash1:MRG15 interaction in more detail revealed that an FxLP motif, 

located in Ash1 in direct vicinity to its SET domain, is essential for the binding of Ash1 to MRG15 

(Figure 10). MRG15 belongs to the MRG protein family. The FxLP motif has already been shown to 

be highly conserved among binding partners of MRG protein family members and to interact with 

their conserved MRG domains (Xie et al, 2012; 2015). The MRG domain of another MRG protein, 
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Msl3, was reported to be bound by an FxLP-containing motif in the Male-specific lethal-1 (Msl1) 

protein in the dosage-compensation complex (Kadlec et al, 2011; Xie et al, 2015). However, Ash1 

interacts specifically with MRG15 and not with Msl3 despite the conservation of its FxLP sequence 

(Figure 8B). The likely explanation is a second binding interface that might mediate specificity. Xie 

and colleagues demonstrated that the FxLP-motif is essential but not sufficient for high-affinity 

interactions with MRG domains (Xie et al, 2012). They identified a second MRG domain binding 

motif in addition to FxLP in the MRG15 interactors Pf1 and MRGBP as well as in the Msl3 

interactor Msl1 (Xie et al, 2015). Notably, this second binding motif was not conserved in 

sequence. Whether further interaction sites in Ash1 besides FxLP contribute to binding to MRG15 

remains to be uncovered by structural studies. 

 

4.2 Molecular functions of AMC subunits 

4.2.1 Stimulation of Ash1 HMTase activity by MRG15 

I analyzed the enzymatic activity of Ash1 in dependence of the presence of MRG15 or 

Caf1-55 in vitro (Figure 11). The Ash1:MRG15 complexes were highly active for H3K36 di-

methylation. The Ash1:Caf1-55 complexes, in contrast, did not generate detectable H3K36me2 

levels. These results therefore suggest that only MRG15 but not Caf1-55 enhances Ash1 HMTase 

activity in AMC. However, it should be noted that I have not been able to purify sufficient 

amounts of the corresponding Ash1 protein alone, and could therefore not perform HMTase 

reactions to quantify the stimulatory effect of MRG15 on Ash1 activity. Biochemical analyses with 

defined amounts of Ash1:MRG15 and Ash1 alone using shorter Ash1 fragments encompassing the 

SET domain were carried out by Ji-Joon Song and co-workers and are reported in Schmähling et al, 

2018. These analyses suggest that full-length MRG15 enhances H3K36 methylation by Ash1 about 

30-fold. Ash1 activity stimulation by full-length MRG15 by the same order of magnitude was also 

determined by Huang and colleagues in their independently performed experiments (Huang et al, 

2017). Moreover, the enhancement of Ash1 activity by MRG15 is conserved in the human 

ASH1L:MRG15 complex (Schmähling et al, 2018). Thus, the data in this thesis, in Schmähling et al, 

2018 and in Huang et al, 2017 together strongly indicate that Ash1 does not function as an 

HMTase on its own but needs to be integrated in the AMC complex in order to methylate H3K36.  

The molecular mechanism that MRG15 applies to enhance Ash1 activity remains to be 

determined. However, it is tempting to speculate that MRG15 may somehow release the auto-

inhibitory loop formed by the Ash1 post-SET domain, that blocks access to the substrate binding 

pocket (An et al, 2011). Concerning Ash1 domains required for Ash1 enzymatic action, it was 
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demonstrated that a minimal Ash1 construct, which encompasses the SET domain region 

including the AWS, core-SET and post-SET subdomains as well as the preceding FxLP motif, is 

sufficient to methylate histones and to become stimulated by MRG15 (Schmähling et al, 2018).  

Within MRG15, the MRG domain alone suffices for enhancing Ash1 enzymatic activity 

(Huang et al, 2017; Schmähling et al, 2018). The second conserved domain of MRG15, the chromo 

barrel, in contrast, does not affect the efficiency of Ash1, when tested alone. However, when 

analyzed in the presence of the MRG domain, the chromo barrel domain further augments the 

enhancing effect of the MRG domain on Ash1 action (Huang et al, 2017). In the face of this result, 

it is interesting to recall that the MRG15 chromo barrel domain possesses binding specificity 

toward H3K36me2/me3. The chromo barrel domain might therefore contribute to the stimulation 

of Ash1 enzymatic activity by the MRG domain by mediating a positive feedback loop: In this 

scenario, AMC would start decorating individual nucleosomes with H3K36me2, the MRG15 

subunit would then bind with its chromo barrel domain to nucleosomes carrying H3K36me2 and 

thereby augment the efficiency of H3K36 methylation by AMC. Possible mechanisms behind the 

proposed stimulating effect of the MRG15 chromo barrel-H3K36me2 interaction could be 

induction of allosteric conformational changes in the AMC complex or correction of the 

positioning of AMC on nucleosomes. The latter point may, for example, result in better 

accessibility of unmodified substrate H3K36 residues on neighboring nucleosomes to the active 

site of Ash1. This would imply simultaneous binding of AMC to one nucleosome that is already 

modified with the own catalytic product and to a neighboring nucleosome with an unmodified 

histone substrate, as has in fact recently been shown for another HMTase complex, PRC2. Poepsel 

et al. published a near-atomic resolution structure of human PRC2 bound to a bifunctional di-

nucleosome (Poepsel et al, 2018). In this structure, the PRC2 subunit EED interacts with an 

H3K27me3-modified nucleosome while a domain in EZH2 adjacent to the catalytic SET domain 

binds to a second nucleosome displaying an unmodified histone H3 tail, which is in this 

configuration optimally positioned for methylation. Previously, PRC2 has been shown to be 

allosterically activated by its own catalytic product, H3K27me3 (Hansen et al, 2008; Margueron et 

al, 2009). Poepsel and colleagues suggest that their structure provides the molecular explanation 

for the allosteric activation of PRC2. In Poepsel et al, 2018, they propose that the PRC2-

dinucleosome configuration may form at borders of H3K27me3-modified to unmodified 

chromatin domains and thereby may empower spreading of this histone mark. Whether the 

HMTase activity of AMC is indeed also enhanced by a positive feedback loop and whether this 

feedback loop would be mediated by an AMC-dinucleosome configuration analogous to the PRC2-

dinucleosome structure is currently a matter of speculation, but well conceivable. Importantly in 
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this context, the enhancing contribution of the MRG15 chromo barrel domain to the Ash1 

HMTase activity has been observed on oligonucleosomes as substrates, not on mononucleosomes 

(Huang et al, 2017). The oligonucleosomes were homogenously unmodified. Continuative 

HMTase assays with substrate oligonucleosomes that contain both, H3K36me2-pre-modified and 

unmodified nucleosomes, could be interesting experiments to analyze the role of the MRG15 

chromo barrel domain in AMC function further. However, the essential MRG15 element for 

stimulation of the Ash1 catalytic activity is, in conclusion, the MRG domain as the data in the 

studies Huang et al, 2017 and Schmähling et al, 2018 collectively demonstrate. The binding of the 

MRG domain to the FxLP motif and perhaps other Ash1 sites may directly change the 

conformation of the Ash1 active site, possibly by displacement of the auto-inhibitory loop.  

The here discussed findings from my thesis, Schmähling et al, 2018 and Huang et al, 2017 

collectively are the first evidence that MRG15 is able to directly modulate the enzymatic activity 

of an associated HMTase. Previous studies on the role of MRG15 in chromatin-modifying 

complexes other than AMC focused mainly on analyzing its contribution to complex function by 

binding H3K36 methylation on chromatin (Joshi & Struhl, 2005; Carrozza et al, 2005; Keogh et al, 

2005). MRG15 or its yeast homologue Eaf3 have for example been identified as stable subunits of 

the yeast HDAC complex Rpd3S, as well as of the homologous chromatin-remodeling and HAT 

complexes NuA4 (yeast) and Tip60 (Drosophila) (see para 3.2 for references). Unraveling the 

molecular mechanism that MRG15 employs in AMC to enhance the enzymatic efficiency of Ash1 

in future studies might also lead to a better understanding of the regulation of the catalytic 

activities of the other MRG15-containing complexes. Interestingly, it has already been reported 

for the NuA4 HAT complex that Eaf3 depletion results in localized decreased histone acetylation 

levels but, notably, not in reduced binding of the complex to its target regions (Steunou et al, 

2016).  

In the case that MRG15 proves to stimulate Ash1 by re-positioning the auto-inhibitory 

loop, the corresponding mechanism might be of general interest for understanding regulation of 

other H3K36 HMTases like SET2, that bear an analogous auto-inhibitory element (see also para 

1.3.3). 

 

4.2.2 Possible AMC-specific functions of Caf1-55  

The functions of Caf1-55 in the context with AMC were not investigated in this study with 

the exception of the analysis of the HMTase activity of the Ash1:Caf1-55 complexes. As already 

discussed in the previous paragraph, the results of the corresponding HMTase assays (Figure 11) 

suggest that Caf1-55 does not stimulate Ash1 enzymatic activity. However, it is conceivable that in 
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AMC, when MRG15 is also present, Caf1-55 has an indirect impact on the Ash1 catalytic 

efficiency: Caf1-55 could stabilize the integrity of the AMC complex or its positioning on 

nucleosomes and thereby support the Ash1 enzymatic action. But could fulfillment of these 

accessory functions be the major role of Caf1-55 in AMC?    

As subunit of other chromatin-modifying complexes like PRC2, NuRD, NURF etc. 

(reviewed in Suganuma et al, 2008), Caf1-55 has been suggested to mediate complex targeting to 

histone substrates and/or complex anchoring on nucleosomes. On a side note, the role of Caf1-55 

as a histone chaperone in the CAF-1 complex is again different and not of relevance here. The 

suggestions for Caf1-55 functions in targeting or anchoring of complexes to chromatin have 

circulated in the literature for a long time. They were originally based on the binding specificity of 

Caf1-55 for histone H4 as observed in the nineties already (Vermaak et al, 1999; Tie et al, 2001). 

Subsequent biochemical and structural studies suggested that Caf1-55 rather binds to 

nucleosomes via interaction of its WD40 domain with the very N-terminus of unmodified histone 

H3 (Nowak et al, 2011; Schmitges et al, 2011). Histone H3 tails with K27me3 or K9me3 marks are 

also bound, but not in a specific manner that would indicate a significance of the modifications for 

Caf1-55 functions like histone crosstalk. Within the PRC2 complex, Caf1-55 in combination with 

Suppressor of zeste 12 (Su(z)12) was found to be critical for stable binding of PRC2 to 

nucleosomes (Nekrasov et al, 2005). However, puzzlingly, the authors observed efficient H3K27 

methylation of mononucleosomes by a trimeric PRC2 sub-complex lacking Caf1-55 and only 

consisting of Esc, E(z) and Su(z)12. Nekrasov and colleagues proposed thereupon that the 

contribution of Caf1-55 to PRC2 binding to nucleosomes may be of importance on more complex 

nucleosome targets, like chromatin in vivo. There, Caf1-55 could be responsible for the correct 

positioning of PRC2 on nucleosomes for efficient histone methylation.  

Taken together, the available data on the function of Caf1-55 in chromatin-modifying 

complexes is surprisingly limited in the face of its existence in various important complexes. The 

popular assumption that Caf1-55 anchors protein complexes on nucleosomes is still rather 

speculative and might be too simplistic, albeit it is unlikely to be completely wrong. Therefore, I 

speculate here that in the context with AMC, Caf1-55 contributes to the binding of the complex to 

nucleosomes, but without determining binding specificity to certain chromatin domains, since 

unmodified and various modified histone H3 tails are bound by the Caf1-55 WD40 domain in an 

unselective manner. Like the trimeric PRC2 sub-complex, Ash1 in complex with MRG15 does not 

require Caf1-55 for efficient methylation of histones in mononucleosomes (Figure 11). However, a 

function of Caf1-55 in correct orientation of AMC on chromatin is well conceivable.  
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4.3 The homeotic mutant phenotypes of ash1 and MRG15 

The catalytic activity of Ash1 is boosted by its binding partner MRG15 in vitro. But is 

MRG15 also important for Ash1 enzymatic function in vivo? And is the Ash1 H3K36 di-

methyltransferase activity actually the key function by which Ash1 regulates transcription of HOX 

genes? I addressed these questions in genetic experiments and found that ash1-catalytically 

inactive mutants and MRG15 mutants exhibit homeotic phenotypes similar to each other. This 

implies, first, that the Ash1 HMTase activity is indeed essential for normal HOX gene expression 

and, second, that MRG15 most likely contributes substantially to efficient H3K36 di-methylation 

by Ash1 in the AMC complex in vivo as well. The regulation of HOX gene expression by the 

enzymatic function of AMC is, moreover, directly corroborated by ChIP experiments establishing 

that AMC is critically required for high-level H3K36me2 at Ubx.  

The ChIP analyses of H3K36me2 will be discussed in the following paragraphs 4.4 and 4.5. 

Here, I shall focus on my genetic analyses of the homeotic transformations and the lethality of 

ash1-null, ash1-catalytically inactive and MRG15-null mutants as described in the paragraphs 3.5 

and 3.6. Notably, these mutants were devoid of maternally deposited and zygotically expressed 

wild-type Ash1 or MRG15 protein, which ensured comparability and allowed for characterization 

of the true null phenotypes. Concerning the ash1-null mutants, I found that the hitherto 

undescribed phenotype of flies lacking maternally deposited and zygotically expressed wild-type 

Ash1 (ash1-null m- z-) is, surprisingly, only slightly more severe than the phenotype of flies lacking 

only zygotic expression of ash1 (ash1-null z-): The homeotic transformations of ash1-null m- z- flies 

were stronger than of ash1-null z- flies, but both mutants developed up to pupal stage (Figure 13, 

personal observations). This indicates that Ash1 function is not important in early embryogenesis 

and, notably, also not during the onset of zygotic transcription when HOX gene expression is 

particularly sensitive to perturbations in the PcG/trxG system. However, Ash1 is essential for 

viability during the later stages of development.  

The analysis of the catalytically inactive ash1 phenotype showed that the lack of Ash1 SET 

domain function leads to loss of expression of the HOX genes Ubx and Abd-B and, consequently, 

to homeotic transformations, exactly like they are observed in ash1-null mutants (Figure 14, 

Figure 15). In direct comparison with the ash1-null mutant phenotype, the severity of the 

transformations was slightly weaker in the ash1-catalytically inactive mutants. Furthermore, 

about 50% of the ash1-catalytically inactive mutants developed even beyond the pupal stage 

(Figure 13), but died invariably one to two days after eclosing from the pupal case. The slightly 

weaker ash1-catalytically inactive phenotype in comparison to ash1-null mutants may account for 
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another function of Ash1 in HOX gene regulation in addition to di-methylating H3K36. However, 

importantly, this data shows for the first time that Ash1 enzymatic activity is indeed essential for 

normal HOX gene expression. It thereby strongly supports previous suggestions that H3K36 di-

methylation is the major means of Ash1 to oppose transcriptional silencing of HOX genes by PcG 

members (see Schmitges et al, 2011 and para 1.3.1).  

The characterization of the MRG15-null mutant phenotype was in the context of this 

study primarily relevant to assess the importance of MRG15 for AMC function in vivo. 

Nonetheless, a clear genetic analysis of MRG15 was also of more general interest. The MRG15-

mutant phenotype had been poorly studied in Drosophila. The available knowledge was mainly 

limited to specific aspects concerning the role of MRG15 in the Tip60 complex  (Kusch et al, 2004; 

2014). Moreover, the only previously identified MRG15 allele, MRG15j6A3, which has been isolated 

in a screen for P element insertions that cause lethality when homozygous (Spradling et al, 1999), 

turned out to be viable when analyzed in trans with a chromosomal deficiency uncovering MRG15 

(personal observation). Further analysis suggested that a truncated MRG15 protein is expressed 

from MRG15j6A3 (Figure 16B). In my genetic analysis of MRG15, I first generated a definite MRG15-

null allele by deleting almost the entire MRG15 coding region (Figure 17). I found using this allele 

that MRG15-null mutants, especially in the absence of MRG15 maternal load, die in a very 

heterogeneous manner throughout all stages of development (Figure 18, personal observation). 

Nevertheless, a small fraction of these MRG15-null mutants even undergoes metamorphosis and 

ecloses as adults. When analyzing the morphology of these MRG15-null mutant adults, I found 

anterior-to-posterior homeotic transformations but no other obvious defects (Figure 19). When 

analyzing MRG15-null mutant larvae, I detected loss of Ubx and Abd-B expression in line with the 

nature of the homeotic transformations observed in adults (Figure 20). Altogether, the MRG15-

null mutant phenotype is very similar to the phenotype of ash1-catalytically inactive mutants with 

respect to the kinds and severity of homeotic transformations as well as the partial survival up to 

the adult stage. This genetic analysis strongly suggests that MRG15 enhances Ash1 HMTase 

activity in vivo.  

Considering that MRG15 is also a subunit of various other chromatin-associated 

multiprotein complexes like Tip60 or Rpd3S, the high specificity of the phenotype and the partial 

viability of the MRG15-null mutants are very surprising. Based on the specific homeotic 

phenotype, MRG15 even appears to fulfill its major function in the AMC complex and seems not 

to be essential for the other complexes with which it associates. Nevertheless, this is not a 

definite statement since I focused in my analysis on the external morphology of the MRG15 

mutants. Further studies are needed to analyze for phenotypic defects in internal structures like 
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organs or in physiological processes that might be caused by lack of MRG15. Also, as discussed 

above, a considerable fraction of the MRG15-null mutant animals dies before the pupal stage. 

This could actually be due to roles of MRG15 in complexes other than AMC, since ash1-null 

mutants quite consistently develop into pupae.  

In a nutshell, the genetic analyses of the MRG15-null mutants uncover that these animals 

have a pronounced HOX loss-of-function syndrome. This phenotype classifies MRG15 as a novel 

trxG protein.  

 

4.4 The specificity of AMC function in transcriptional regulation 

The specificity of Ash1 in transcriptional regulation has been a matter of debate with 

sporadic and often controversial reports in the literature as discussed in paragraph 1.1.4. Some 

studies have suggested that Ash1 functions as a global transcription factor that is involved in 

regulation of the major part if not all active genes in the genome (Gregory et al, 2007; Kockmann 

et al, 2013). Others, in contrast, have found that Ash1 works more restrictively in a gene-specific 

manner (Schwartz et al, 2010; Huang et al, 2017; Schmähling et al, 2018). But even these latter 

reports still disagree substantially about the number of genes that are regulated by Ash1 as the 

identified Ash1 targets in Drosophila range from a dozen (Huang et al, 2017) to a few hundred 

genes (Schmähling et al, 2018). A possible and simple explanation for this discrepancy could be 

the use of different biological systems in these studies, i.e. larval imaginal discs in one case 

(Schmähling et al, 2018) and tissue culture cells in the other (Huang et al, 2017). Interestingly, all 

studies on this topic found independently from each other that many but not all Ash1 targets are 

developmental regulator genes and that of these, by far not all are HOX genes. However, the 

mutant phenotypes of ash1, as they were analyzed in this thesis (Figure 14) and as they have 

been described previously (Shearn et al, 1987; Tripoulas et al, 1994), as well as the phenotype of 

MRG15 mutants (Figure 19), are remarkably specific with characteristic homeotic 

transformations, but no other defects. Nonetheless, it is somewhat difficult to imagine that within 

the Ash1 target genes only loss of expression of HOX genes should have phenotypic 

consequences. Reduced levels of the Ash1-regulated non-HOX genes may perhaps affect the 

formation of internal structures or physiological processes in AMC mutants, which could not have 

been detected in my analyses of external adult morphology. However, my analyses certainly 

corroborate that HOX genes are major targets of the AMC complex. Altogether, a global function 

of Ash1 in transcription as has been suggested is very unlikely according to my results, not only 

due to the specificity of the AMC mutant phenotypes but also due to their relative mildness. As 
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discussed in the previous paragraph, AMC mutants develop up to pupal stage (ash1-null mutants) 

or even beyond (ash1-catalytically inactive and MRG15-null mutants).  

The ash1-catalytically inactive phenotype has established that the Ash1 capacity to di-

methylate H3K36 is required for normal Ash1-dependent HOX gene expression (previous 

paragraph). Therefore, H3K36me2 levels are a better indicator for either a global or a more 

specific AMC function than the number of Ash1 binding sites. Ash1 binding sites have been used 

as parameter for assessing Ash1 specificity in transcriptional regulation in the study Kockmann et 

al, 2013. When I analyzed here the H3K36me2 bulk levels in total cell extracts from Drosophila 

imaginal discs by western blot, I found that these levels are not globally decreased in MRG15-null 

and ash1-null mutants (Figure 21). I would like to recall at this point that there are two other 

H3K36 HMTases in Drosophila besides Ash1, NSD and SET2. NSD also catalyzes H3K36 di-

methylation, whereas SET2 has been suggested to generate only H3K36me3 and, in doing so, to 

be dependent on NSD or Ash1 pre-modifying substrates with H3K36me2 (Bell et al, 2007). 

Accordingly, the H3K36me2 bulk levels in the larval extracts presented in Figure 21, have, in all 

likelihood, been generated by NSD. NSD has already been shown previously to be responsible for 

the bulk of H3K36me2 in Drosophila (Bell et al, 2007). And taken the data from Bell and 

colleagues together with my analysis, NSD is most likely the only global Drosophila H3K36 di-

methyltransferase, while Ash1 might modify chromatin at specific target genes. In order to test 

this assumption, I had analyzed the enrichment of H3K36me2 at the established Ash1-target gene 

Ubx in Drosophila haltere and 3rd leg imaginal discs (T3 discs). The immunostainings performed 

against Ubx in this study have shown loss of Ubx expression in ash1 mutants in the very same 

tissues (Figure 15). When analyzing H3K36me2 at Ubx, I found that in the absence of Ash1 the 

levels of the histone modification were significantly decreased throughout the gene body from 

the 5’ to the 3’ end, although not down to background levels (Figure 22). The same observations, 

strong reduction but not elimination of H3K36me2, have also been made at other Ash1-regulated 

genes in ash1-null mutants, while the H3K36me2 levels at further actively transcribed genes 

remained unchanged (Schmähling et al, 2018). Therefore, Ash1 most likely di-methylates H3K36 

at specific target genes. One might argue, that the decrease of H3K36me2 in the absence of Ash1 

is an expectable side-effect in consequence of transcription stop at the corresponding genes. Such 

an assumption could be made based on the fact that the yeast H3K36 HMTase Set2 is known to 

be recruited to chromatin by elongating RNAP II (Venkatesh & Workman, 2013). The studies Bell 

et al, 2007 and Stabell et al, 2007 have suggested a homologous mechanism for the recruitment 

of Drosophila SET2. However, in Drosophila, SET2 is thought to generate only H3K36me3 and 

there is no indication that the targeting of NSD or Ash1 to their genomic sites of action is RNAP II-
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mediated. In fact, Ash1 has been reported to associate to chromatin in the absence of elongating 

RNAP II as well (Dorighi & Tamkun, 2013). Importantly, I observed H3K36me2 reduction in ash1-

null mutants also at the very 5’ end of the Ubx gene, which further supports the suggestion that 

this effect occurred independently of the absence of elongating RNAP II and as a specific result of 

loss of Ash1 enzymatic function. Moreover, the loss of HOX gene expression in the ash1-

catalytically inactive mutant (Figure 15) implies that the decrease of the catalytic Ash1 product, 

H3K36me2, at Ash1 target genes in ash1 mutants is the cause and not a consequence of the stop 

of transcription.  

The general question discussed in this paragraph was, how specific does Ash1 function in 

transcription? In summary, all data from this study concerning this question contradict a genome-

wide role of Ash1 in transcriptional regulation and strongly suggest that Ash1, as core subunit of 

the AMC complex, controls a restricted set of target genes. Data supporting this suggestion 

encompass the results of the genetic analyses of ash1 and MRG15 mutants that revealed weak 

but very specific phenotypes and the results of the analyses of the H3K36me2 levels in total in the 

cell and at single genes that revealed a decrease in the levels of H3K36me2 only gene-specifically. 

The main target genes of AMC in Drosophila are apparently HOX genes since loss of HOX gene 

expression in AMC mutants results in clear phenotypic manifestations.  

 

4.5 The mechanism of transcriptional regulation by AMC 

catalytic activity  

At HOX and possibly other target genes, PcG and trxG proteins form a counterbalancing 

system of transcriptional regulators that oppose each other in function. PcG proteins silence 

transcription whereas trxG proteins positively regulate transcription. Whose action is prevalent, 

depends on the spatial context in metazoans. I showed in this study that the trxG member Ash1 

most likely functions as core subunit of the AMC complex and, as such, indeed maintains 

transcription active by di-methylation of H3K36 as has been suspected previously (discussed in 

para 4.3 and 4.4). As underlying mechanism has been proposed that the H3K36me2 mark 

allosterically inhibits the enzymatic activity of the PcG complex PRC2 to tri-methylate H3K27 

(Schmitges et al, 2011). Enrichment of H3K27me3 marks at the chromatin spanning the gene body 

induces transcriptional silencing of HOX genes through so far unknown means (Papp & Müller, 

2006; Pengelly et al, 2013). The suggestion of an Ash1 mechanism involving inhibition of the PRC2 

function as HMTase was based on corresponding enzymatic in vitro assays (Schmitges et al, 2011; 

Yuan et al, 2011). The consequential question was, if this is indeed the mechanism by which Ash1-
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generated H3K36me2 keeps transcription active in vivo. In the only study which addressed this 

question so far (Papp & Müller, 2006), the H3K27me3 levels at Ubx in T3 imaginal discs were 

analyzed. In these tissues, the activating trxG function prevails in wild type, H3K27me3 is not 

enriched in the gene body and Ubx is transcribed. In the absence of Ash1, in contrast, H3K37me3 

levels are increased across the gene body and Ubx expression is lost, according to Papp and 

Müller. The findings of my work, that the transcribed region of Ubx in T3 imaginal discs is 

decorated with H3K36me2 and that these levels of H3K36me2 are decreased in ash1-null mutants 

(Figure 22), complements the study Papp & Müller, 2006. Both studies together strongly support 

the suggestion that H3K36me2 deposited by Ash1 in AMC indeed inhibits the PRC2 activity to tri-

methylate H3K27 at Ash1 target genes. Due to limitations in the amount of chromatin from ash1-

null mutant imaginal discs, I could not test the enrichment of H3K27me3 in parallel to H3K36me2 

in my experiment. But the Ubx amplicons at which Papp and Müller monitored increase of 

H3K27me3 in T3 discs of ash1-null mutants are partially identical with the Ubx amplicons at which 

I observed decrease of H3K36me2 in the same ash1-null mutant tissues (Table 11).  

The finding that H3K36me2 levels at Ubx (Figure 22) and other Ash1 target genes 

(Schmähling et al, 2018) are only decreased but not eliminated in ash1-null mutants is highly 

interesting concerning possible AMC mechanisms. AMC apparently cooperates with the global 

HMTase NSD in H3K36 di-methylation at its target genes. NSD is the enzyme most likely to have 

generated the H3K36me2 marks that were still detected in the absence of Ash1. This finding also 

suggests that AMC actually acts on top of pre-existing basal H3K36me2 levels and, therefore, on 

chromatin that might be already transcriptionally active. This scenario would be in line with 

genetic analyses having revealed that the loss of Ubx expression in T3 discs of ash1 mutants is 

restored in ash1 PRC2 double mutants (Klymenko & Müller, 2004). The phenotypes of the ash1 

PRC2 double mutants prove that transcription of Ubx is per se possible without Ash1. The view of 

Ash1 as a factor that rather upholds transcription in the presence of PcG members, in contrast to 

primarily activating it, was deduced from these genetic experiments.   

The histone modification enrichments at Ubx in the study Papp & Müller, 2006 and in this 

work (Figure 22) represent the average levels from all cells in the ash1-null mutant T3 imaginal 

discs. In fact, ash1-null mutant T3 imaginal discs and as well T3 discs that are mutant for MRG15 

lose Ubx expression in a conspicuous all-or-none patchy pattern over the entire tissue area: In 

some regions of the discs, the Ubx expression levels seem to equal wild-type levels whereas in 

other regions, Ubx is erased (Figure 15, Figure 20). The pattern of these regions suggests that the 

cells within one region of a specific Ubx expression state are clones. Accordingly, the homeotic 

transformations of ash1- or MRG15 mutant adult structures form in a patchy fashion as well 
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(Figure 14, Figure 19). This all-or-none loss of Ubx expression in the mutant T3 discs is likely also 

reflected by the histone modification landscape at the Ubx gene body: H3K36me2 levels might be 

diminished and H3K27me3 levels highly enriched in clonal patches where Ubx is not transcribed 

and vice versa in clonal patches of cells actively transcribing Ubx. Interestingly, in order to keep 

the Ubx protein levels up, it appears to suffice in this scenario if the H3K36me2 levels and with 

that the transcriptionally active state is maintained at only one out of the two Ubx alleles on the 

two homologous chromosomes per nucleus, since no clonal patches exhibiting medium Ubx 

expression levels were observed in the ash1 or MRG15 mutant T3 discs. In the cells not expressing 

Ubx, in contrast, both alleles would have lacked H3K36me2 and in consequence been ‘switched 

off’.  

Taken together, (1) the patchy all-or-none loss of Ubx expression in AMC mutants, (2) the 

H3K36me2 decrease as well as the H3K27me3 increase along the transcribed region of Ubx in 

ash1 mutants and (3) the inhibition of PRC2 enzymatic activity by H3K36me2 suggest the 

following model as to how the AMC complex functions to maintain transcription active at specific 

genes. This model is mainly based on data collected on Ubx. But it might well apply to the 

regulation of other Ash1 target genes as well, whose chromatin is decorated with H3K36me2 in 

the transcriptionally active and with H3K27me3 in the transcriptionally silent state. In this model, 

AMC targets genes that already exhibit basal levels of H3K36me2/me3 in their transcribed regions 

generated by NSD and SET2. The initial binding of AMC to the chromatin of these genes and the 

tethering of the complex to nucleosomes while modifying histones might be a cooperative 

process to which MRG15, Caf1-55 and various Ash1 domains contribute. The MRG15 chromo 

barrel domain might mediate binding of AMC to nucleosomes pre-modified with H3K36me2/me3 

(para 4.2.1), the WD40 domain of Caf1-55 to nucleosomes with unmodified histone H3 tails (para 

4.2.2). The bromodomain, the PHD finger and the BAH domain of Ash1 might mediate histone 

crosstalk by interacting with histone modifications other than H3K36me2/me3. While bound to 

AMC target genes, the complex would di-methylate H3K36 in chromatin along the gene body and 

thereby augment the pre-existing H3K36me2 levels. On the already partially decorated 

chromatin, the proposed AMC-dinucleosome configuration (see para 4.2.1), in which the complex 

engages simultaneously a modified nucleosome with the MRG15 chromo barrel domain and an 

unmodified histone H3 tail with the Ash1 SET domain region, might empower maximum AMC 

efficiency. The deposited H3K36me2 marks then most likely maintain transcription active by 

allosteric inhibition of the PRC2 activity to tri-methylate H3K27me3. For effective inhibition of 

PRC2 action, the H3K36me2 marks at the 5’ end of the gene body of Ubx or other Ash1 target 

genes might be especially important: Papp and Müller showed in their analysis of the chromatin 
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at Ubx, that H3K27me3 spreads in a linear manner from the upstream PRE, the PRC2 binding site, 

across the upstream control region and, in the transcriptionally silent state, further into the gene 

body. But in the transcriptionally active state, H3K36me2 might form a barrier that prevents the 

linear spreading of H3K27me3 from nucleosome to nucleosome into the transcribed region. Since 

the H3K36me2 mark is required to be present in cis on the same histone H3 tail as the PRC2 

substrate residue K27 for inhibition (para 1.3.1), the H3K36me2 barrier ideally starts from the 5’ 

end of the gene body. The puzzling part of the model described so far is, that according to the 

ash1 mutant HOX gene loss-of-function phenotypes, H3K36me2 deposited by Ash1 seems to be 

essential for antagonizing PRC2 function, albeit NSD apparently also generates H3K36me2 at Ash1 

target genes. I hypothesize here that the H3K36me2 levels need to pass a certain threshold to 

form a barrier that is actually effective against H3K27me3 invasion or, in other words, to 

efficiently inhibit PRC2. In this scenario, the specific function of Ash1 in AMC would be to augment 

the pre-existing H3K36me2 levels at the AMC target genes, so that this critical threshold is 

reached. Specifically at Ubx, this threshold might lie just above the average H3K36me2 levels NSD 

alone generates. Therefore, in some cells, the basal H3K36me2 levels deposited by NSD at at least 

one of the two Ubx alleles in AMC mutants would actually suffice to inhibit PRC2 there and to 

establish a stable transcriptionally active state, in which Ubx would be expressed at wild-type 

levels. In contrast, in other cells, the H3K36me2 levels at both Ubx alleles would not reach the 

critical threshold without AMC, which would lead to establishment of a stable transcriptionally 

silent state. In the following cell divisions, the corresponding transcriptional states would be 

clonally propagated resulting in the patchy pattern of the all-or-none loss of Ubx expression in T3 

imaginal discs. 

In a nutshell, this model of the mechanism of transcription regulation by Ash1 suggests 

that Ash1 antagonizes transcriptional silencing by the PcG as enzymatic core of the AMC complex. 

In the model, the specific function of AMC is to augment the number of H3K36me2-modified 

nucleosomes in the gene body of the target genes beyond a certain threshold that allows 

effective inhibition of PRC2 enzymatic activity.  

The major contributions to this model by my PhD thesis are the following findings, that 

have been discussed in depth in the previous paragraphs: Ash1 indeed regulates transcription by 

the means of H3K36 di-methylation. Together with MRG15 and Caf1-55, Ash1 forms the stable 

trxG complex AMC. Ash1 is most likely active as HMTase in vivo as subunit of AMC and not alone. 
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6 Appendix 

6.1 Abbreviations 

A.T hook adenine-thymine hook 
A1 to A8 abdominal segments 1 to 8 
aa amino acids 
abd-A abdominal A  
Abd-B Abdominal B 
AEBSF 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 
alphaTub67C Tubulin alpha-4 chain  
AMC Ash1:MRG15:Caf1-55 complex 
ANT-C Antennapedia complex 
Antp Antennapedia 
ARID1A/1B AT-rich interactive domain-containing protein 1A/1B 
Ash1 Absent, small, or homeotic discs 1  
Ash1-CTAP/NTAP-Ash1  Ash1 fusion protein with C-/N-terminal TAP tag 
ASH1L ASH1-like  
Ash2 Absent, small, or homeotic discs 2  
Asx Additional sex combs  
attB site attachment site on bacterial DNA 
attP site attachment site on phage DNA 
AWS  associated with SET domain 
BAC bacterial artificial chromosome 
BAH  bromo-adjacent homology  
BAP Brahma-associated protein complex  
Bap55/60/111/170 Brahma-associated protein 55/60/111/170 kD 
BDGP R6 Berkeley Drosophila genome project release 6 genome assembly 
betaTub56D Tubulin beta-1 chain  
bp base pair 
BRD2/4 Bromodomain-containing protein 2/4 
BRDT Bromodomain testis-specific  
BRG1 Brahma homolog 1 
Brm Brahma  
BSA bovine serum albumin 
BX-C bithorax complex  
Caf1-55 55 kDa subunit of Chromatin assembly factor 1 
CBP Calmodulin binding peptide 
CHD7 Chromodomain-helicase-DNA-binding protein 7  
ChIP chromatin immunoprecipitation 
ChIP-seq ChIP-DNA sequencing 
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chr3R/L right/left arm of chromosome 3 
Chromo chromatin organization modifier domain 
COMPASS Complex of proteins associated with SET1 
complete EDTA–free protease inhibitor cocktail from Roche 
ddH2O double-distilled water 
Df deficiency allele 
Dfd Deformed  
Dm or Drosophila Drosophila melanogaster 
dpr12 defective proboscis extension response 12 
dRAF dRing-associated factors  
DTT dithiothreitol 
E(z) Enhancer of zeste 
Eaf3 ESA1-associated factor 3 
EED Embryonic ectoderm development  
EMS ethyl methanesulfonate 
Esc Extra sex combs 
FLP flippase 
FRT flippase recognition target site 
Fsh Female sterile homeotic  
H disc/H organ haltere disc/organ 
H3K36me1/2/3 histone H3 lysine 36 mono/di/tri-methylation 
H3KAc histone H3 lysine acetylation 
HAT histone acetyltransferase  
Hcf1 Host cell factor 1 
HDAC histone deacetylase  
His-tag  hexa-histidine tag 
HMTase histone methyltransferase 
hp hypopleurite 
hrs hours 
Hs Homo sapiens 
Hsp70 Heat shock protein 70 
iBAQ Intensity based absolute quantification 
IgG immunoglobulin G 
Jarid2 Jumonji, AT rich interactive domain 2  
kb kilobases 
kDa kilodalton 
KDM2/6A/6B Lysine-specific demethylase 2/6A/6B 
KIS-L KISMET-L 
Kto Kohtalo  
L3 disc 3rd leg disc 
lab labial  
LB lysogeny broth 

m+ possesses maternally loaded protein/RNA 
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MCS multiple cloning site 
MLL1/2 Mixed lineage leukemia protein 1/2 
Mm Mus musculus 
Mor Moira 
MRG15 MORF4-related gene on chromosome 15 
MRGBP MRG/MORF4L-binding protein 
Msl3 Male-specific lethal-3 
NIPBL Nipped-B-like  
NSD Nuclear receptor-binding SET domain  
NuA4 Nucleosome acetyltransferase of histone H4  
NuRD Nucleosome remodeling and deacetylase complex 
NURF Nucleosome remodeling factor  
Ogt O-glycosyltransferase 
ORF open reading frame 
P1-3 baculovirus passages 1-3 
PA polyacrylamide 
PAGE polyacrylamide gel electrophoresis 
para paragraph(s) 
pb proboscipedia 
Pb Polybromo  
PBAP Polybromo-containing BAP  
Pc Polycomb  
PcG  Polycomb group of genes 
Pcl Polycomblike  
Pf1 PHD finger protein 12 
Ph-d Polyhomeotic-distal  
Ph-p Polyhomeotic-proximal  
PHD plant homeodomain 
Pho Pleiohomeotic 
Phol Pleiohomeotic-like 
PhoRC Pho-repressive complex 
PR-DUB Polycomb repressive deubiquitinase  
PRC1 Polycomb repressive complex 1 
PRC2 Polycomb repressive complex 2 
PRE Polycomb response element 
Psc Posterior sex combs  
qPCR quantitative polymerase chain reaction 
Rbbp5 Retinoblastoma binding protein 5 
RNAP II RNA polymerase II 
Rpd3S Reduced potassium dependency-3 small  
RpL10Ab Ribosomal protein L10Ab 
RpL18A 60S ribosomal protein L18A 
RpL27 Ribosomal protein L27 
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RpL4 60S ribosomal protein L4 
S2-DRSC cells Schneider’s 2-Drosophila RNAi Screening Center cells 
SAM  sterile α-motif  
Sayp Supporter of activation of yellow protein 
Sce Sex comb extra  
Scm Sex comb on midleg  

 Scr Sex combs reduced 
SET  Su(var)3-9, Enhancer-of-zeste and Trithorax  

 SET1 SET domain-containing protein 1 
SET2 SET domain-containing protein 2 
Sfmbt Scm-like with four MBT domain-containing protein 1 
Skd Skuld  

SMARCC1/2 SWI/SNF-related matrix-associated actin-dependent regulator of 
chromatin subfamily C member 1/2 

Snr1 Snf5-related 1 
sp sternopleurite 
Su(z)12 Suppressor of zeste 12 

 Su(z)2 Suppressor of zeste 2  
SWI/SNF Switch/sucrose nonfermenting  

 T1 to T3 thoracic segments 1 to 3 
TAP tandem affinity purification  
TEV Tobacco Etch Virus 
Tip60  Tat-interactive protein 60 kDa  

 TRAP230/240 Thyroid hormone receptor-associated protein complex 230/240 

  Trr Trithorax-related  
trx trithorax  
trxG  trithorax group of genes 
tsh teashirt 
tub α-tubulin1-promoter 
Ubx Ultrabithorax 
UTY Ubiquitously-transcribed TPR protein on the Y chromosome 

 v/v volume per volume 
Vtd Verthandi  
w white gene 
w/v weight per volume 
WD40 β-propeller tryptophan-aspartic acid 40 β-propeller 
Wds Will die slowly 
wg wingless 
wt wild type 
z- gene not zygotically expressed 
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6.4 Supplementary data: peptides found in TAP-Ash1 eluates 

Table 12. Ash1, MRG15 and Caf1-55 peptide sequences identified by mass spectrometry in 
eluates of NTAP-Ash1 and Ash1-CTAP purifications.  

 Ash1-CTAP           
(in-solution digest) 

Ash1-CTAP 
(in-gel digest) 

NTAP-Ash1    
(in-geI digest) 

Ash1 

ADIDADNYQCER  +  

AIQSIKDSYEQQK +  + 
AKEETIVQTAVPR + + + 
AEVESPIISAIDIKEDTK +  + 
AIEEGEEITYDYNFSIFNPSEGQPCR +   

EQAEAAPQPPPKSEPEIRPAK +  + 
CICGIYK  +  

CICGIYKDEGIMIQCSK  +  

CIDAQTAQEQPIDISYIISGR  +  

CMVWQHTECTK  +  

DEGIMIQCSK  +  

DICSAMETIK  +  

DIPIKDESGK  + + 
DISSAVAVAK  +  

DKNIPQYQSTIIQDFMEK  +  

DSPIVPIKVTPPPIIPIEASPDEDVIR  + + 
EEIQIDPIWR  + + 
EETIVQTAVPR  +  

EIDVNKKFR   + 
EIPIEEFTEEGHR  +  

EKPVQPVTVEEIPPEIPVSQEEIDAEAEAK  + + 
EQAEAAPQPPPK  + + 
ERDSPIVPIK  + + 
EVDREIPIEEFTEEGHR  + + 

EVISSEEEPGK + + + 
EVISSEEEPGKIAVK +  + 
FMTADKGWGVR +  + 
FVNHSCEPNCEMQK + +  

FYPNEVVR + +  

GGSISATNPDNFISK + + + 
GISAPADATAVHVVTPVAPNK + + + 
GITQAVHDPEIEKMAK + + + 
GRPMECNDEDHCYICEIR + +  

GTYIIEYVGEVVTEKEFK + + + 

GVIGGKSQR   + 
HAVAPGVER   + 
HIIEQPTSVSGAGSSASNSPIR + +  
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 Ash1-CTAP           
(in-solution digest) 

Ash1-CTAP 
(in-gel digest) 

NTAP-Ash1    
(in-geI digest) 

HYIITPGERPPAEVAFANGK + + + 
IASYVQIVEIIGDSESIQSFKPK  + + 
IDMAYIDKR +  + 

IGSTAATSKVEFR +  + 
IDSIPTEHDPIPASESHNPGPQDYASCSESSEDK  +  

IENVIITMK  + + 
IIDISPSSICSIK  +  

IITEIEIITSTFNSR  + + 

INAEAWAAAAAAAK  + + 
INESVITK  + + 
INRTGFPTVR   + 
IPDGIDPNTNFSCK  +  

IQDDRITGSSGK   + 

IQATIAAPSPAQQITINGGGPASTISK  +  

IQPISEKEK   + 
IQRPQTPAR   + 
ISAIRPTIGVVATK   + 
ISVVAIER  + + 

IVVDNNSISGGK + + + 
KQKTEIDVGAGPTTMHK +   

KVSVEQQTTAVIDEHEPEFDPDDEPIQSIRETR +   

KVVPTVPAPGNSGPAINESADSGVISTTSTTQSTTPSPK +   

IASSSGISK   + 
MQNENAVPTGSIPIASSSKPK + + + 
MSDIITTVSSKK + + + 
MVIFAK  + + 

MVYTECSPSNCPAGEK + +  

NAHKNPAETDSITDQSSQSK + + + 
NIEAGTQPK   + 
NIPQYQSTIIQDFMEK  + + 
NPAETDSITDQSSQSK  + + 

NREQAEAAPQPPPK  +  

NVVPSWNYR  + + 
QAGKDISSAVAVAK  + + 
QFNTFIVR  +  

QGDAVYVIR + + + 
QKTEIDVGAGPTTMHK  +  

QPVIEEPPPTPPPQQK  + + 
QSIMPPPAK  + + 
RVESDTEDTTVEGSFRK  +  

RFYPNEVVR  + + 
RIDSIPTEHDPIPASESHNPGPQDYASCSESSEDK  +  

RPSTPSSPSIAAQISAICSPR  +  

RTEMDFEIPYDIWWAYTNSK  +  
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 Ash1-CTAP           
(in-solution digest) 

Ash1-CTAP 
(in-gel digest) 

NTAP-Ash1    
(in-geI digest) 

RVESDTEDTTVEGSFR  +  

SATQFSVQR + + + 
SDTDGIRMR   + 

SGYVSDYGSVR   + 
SINIDSK   + 
SIQAQVEQGHYKTPQEFDDHMQQIFVEAK  + + 
SIKSATQFSVQR   + 
SIKSATQFSVQRSDTDGIR   + 

SMSVGAASGTGASTTICSK + +  

SIPTTSASK   + 
SQAQFNAR   + 
SQSNDSSSPDDHKIPIK   + 
SRIENVIITMK +  + 

SSAASMCSSYVSGVSR  +  

SSADDTVEDQDIIQIAGISIGQSSEESNEYISKPSIK  + + 
SSNNVNVQAAPNPPIDCERVPQAGEAR + +  

STASTKSQAQFNAR   + 
SYAPHDVDPSIIK + + + 

TEIDVGAGPTTMHK + + + 
TEMDFEIPYDIWWAYTNSK  +  

TGGNIIIK   + 
TNVYAESVRPNIAGFDHPTCNCK  +  

TPQEFDDHMQQIFVEAK  + + 

TQMIGQTVNAK  + + 
TYIVAGIFSNHYK + +  

VESDTEDTTVEGSFR   + 
VIAAKSGYVSDYGSVR   + 

VIYPPPR   + 
VKKTYIVAGIFSNHYK  +  

VKPIPAVEAKPSGEGISGR  + + 
VPQAGEARETFVAR   + 
VSIYEVVPIEIVIGR + + + 

VSVEQQTTAVIDEHEPEFDPDDEPIQSIR + + + 
VVETIIHK + + + 
WSVNGISR  + + 
YVTTGQYFGR  + + 
YYISIMR  + + 

MRG15 

AIPQVAIDINFSKGDR + +  

ASTPSKDSNTSQSTASSTPTTSAGPGSK +  + 

DSNTSQSTASSTPTTSAGPGSK  +  

FAIGGGEVIK  +  

EDPAAAETTEEEGPVAPK  +  
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 Ash1-CTAP           
(in-solution digest) 

Ash1-CTAP 
(in-gel digest) 

NTAP-Ash1    
(in-geI digest) 

GEVKPAKVENYSTGTDANTIFVDGER +   

GWDVGVAGMK  +  

HPDTPISEIYGSFHIIR  +  

HYITDDWYAVVR  +  

IGPNSTIVFEVEIK  +  

IIEIPAK + + + 
IKIPDEIKHYITDDWYAVVR + +  

IQSNNKTFDSIIK +   

IVDQVVGK  +  

IVDQVVGKGEEAK +   

MSEQRPSITGSDVAEKPIPPTTTPSTPTTEPAPCVESEEAYAAK  +  

NSSIFFSMSNFINVDPEYVR  + + 
NWDEWVPENR  + + 

QEYIVATVTK  +  

SEAGSTGTTTTNSTANSTTSR + + + 
SFHISGVAIDKGQEAK + +  

SMFWGINMKPER  +  

TKPDATPVEYYIHYAGWSK + + + 

TQYADVMQK + + + 
VENYSTGTDANTIFVDGER  + + 
VICFHGPIIYEAK + +  

VITCPPHMAYGAR  +  

VSVYYIGR +   

VTVQQISEQYIAHK  + + 
YSQTIIK  +  

Caf1-55 

APAVGIDIGTTYSCVGVFQHGK  +  

ARFEEINADIFR  +  

ATIDEDNIK + +  

EIEGVCNPIITK  +  

ETAEAYIGK  +  

FDDAAVQSDMK  +  

FEEINADIFR  +  

FEISGIPPAPR  +  

GEFGGFGSVCGK  +  

HPSKPEPSGECQPDIR  +  

HWPFEVVSADGKPK  +  

IEIEIK  +  

IEVTYKDEK  + + 
IGEEQSTEDAEDGPPEIIFIHGGHTAK + + + 

IHSFESHKDEIFQVQWSPHNETIIASSGTDR  +  

IHVWDISK  + + 
IIIGTHTSDEQNHIIIASVQIPSEDAQFDGSHYDNEK  +  
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 Ash1-CTAP           
(in-solution digest) 

Ash1-CTAP 
(in-gel digest) 

NTAP-Ash1    
(in-geI digest) 

IINEPTAAAIAYGIDK + +  

IIQDIFNGK  +  

IMIWDTR  +  

IVTHFVQEFK  +  

KFDDAAVQSDMK  +  

MKETAEAYIGK + +  

NGIESYCFNMK  +  

NIFTGHTAVVEDVAWHIIHESIFGSVADDQK  +  

NQVAMNPTQTIFDAK + +  

PSHTVDAHTAEVNCISFNPYSEFIIATGSADK  +  

QKEIEGVCNPIITK  +  

QTQTFTTYSDNQPGVIIQVYEGER  +  

RIHVWDISK  +  

SDNAAESFDDAVEER  + + 
SINPDEAVAYGAAVQAAIIHGDK  +  

STAGDTHIGGEDFDNR  +  

SVIHDIVIVGGSTR  +  

TFFPEEISSMVITK  +  

TPSSDVIVFDYTK  +  

TTPSYVAFTDTER + +  

TVAIWDIR  + + 

TVTNAVITVPAYFNDSQR + +  

VDRSDNAAESFDDAVEER +   

VEIIANDQGNR  +  

VINEEYKIWK   + 
WIDANQIADKEEYEHR  +  

YMPQNACVIATK  +  
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RESEARCH ARTICLE

Regulation and function of H3K36 di-methylation by the
trithorax-group protein complex AMC
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ABSTRACT
The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that
antagonizes Polycomb repression at HOX genes. Ash1 di-methylates
lysine 36 in histone H3 (H3K36me2) but how this activity is controlled
and at which genes it functions is not well understood. We show that
Ash1 protein purified fromDrosophila exists in a complexwithMRG15
and Caf1 that we named AMC. In Drosophila and human AMC,
MRG15 binds a conserved FxLP motif near the Ash1 SET domain
and stimulates H3K36 di-methylation on nucleosomes. Drosophila
MRG15-null and ash1 catalytic mutants show remarkably specific
trxG phenotypes: stochastic loss of HOX gene expression and
homeotic transformations in adults. In mutants lacking AMC,
H3K36me2 bulk levels appear undiminished but H3K36me2 is
reduced in the chromatin of HOX and other AMC-regulated genes.
AMC therefore appears to act on top of the H3K36me2/me3
landscape generated by the major H3K36 methyltransferases NSD
and Set2. Our analyses suggest that H3K36 di-methylation at HOX
genes is the crucial physiological function of AMC and the
mechanism by which the complex antagonizes Polycomb
repression at these genes.

KEY WORDS: Trithorax group, Ash1, MRG15, Histone H3K36
methylation, Drosophila

INTRODUCTION
In organisms ranging from yeast to humans, the chromatin spanning
the transcribed region of active genes is modified by di- and
tri-methylation of lysine 36 in histone H3 (H3K36me2/3). Although
nucleosomes in the 5′ regions of transcribed genes are
predominantly di-methylated at H3K36, nucleosomes in the 3′
region of genes mainly carry the H3K36me3 modification (Bell
et al., 2007; Pokholok et al., 2005). Among the different roles
ascribed to H3K36me2/3 (Venkatesh and Workman, 2013), there is

accumulating evidence for two principal mechanisms by which this
modification impacts on gene transcription. First, studies in yeast
revealed that the H3K36me2/3 mark is recognized by the chromo
barrel domain of the Eaf3 subunit (Sun et al., 2008; Xu et al., 2008)
of the Rpd3S complex that, by deacetylating nucleosomes in the
transcribed region, suppresses initiation of transcription at
intragenic sites (Venkatesh and Workman, 2013). H3K36me2/3 is
thus thought to participate in the quality control of transcription by
preventing production of unwanted transcripts. Second, in
metazoans, the H3K36me2/3 modification allosterically inhibits
the histone methyltransferase (HMTase) activity of Polycomb
Repressive Complex 2 (PRC2) and thereby prevents PRC2 from
depositing H3K27me3 on H3K36me2/3-modified nucleosomes
(Schmitges et al., 2011; Yuan et al., 2011). H3K36me2/3 was
therefore proposed to protect transcriptionally active genes from
becoming tri-methylated at H3K27 and thereby getting repressed by
the Polycomb system. This antagonism between H3K36me2/3 and
PRC2 is thought to be particularly crucial at developmentally
regulated genes that, although active in some cells, are at the same
time repressed by Polycomb in other cells of the body (Gaydos et al.,
2012; Klymenko and Müller, 2004).

In yeast, all H3K36 di- and tri-methylation is generated by a
single histone methyltransferase, Set2, that associates with the
phosphorylated form of elongating RNA polymerase II (Krogan
et al., 2003; Venkatesh and Workman, 2013; Xiao et al., 2003). In
metazoans, SET2 is responsible for generating the bulk of
H3K36me3, whereas NSD generates the bulk of H3K36me2 (Bell
et al., 2007; Gaydos et al., 2012; Larschan et al., 2007).

Higher metazoans contain an additional SET-domain HMTase
that di-methylates H3K36, called Ash1 (An et al., 2011; Dorighi
and Tamkun, 2013; Tanaka et al., 2007; Yuan et al., 2011). The
absent, small, or homeotic discs 1 (ash1) gene in Drosophila was
first identified because of the phenotype of ash1 mutants, which
developed into pharate adults and showed homeotic transformations
in several body segments (Shearn et al., 1987). The similarity of the
homeotic phenotypes of ash1 and trithorax mutants led to the
classification of ash1 as a trithorax-group (trxG) regulator (Shearn,
1989). As expected from the phenotype, ash1 mutants show loss of
expression of multiple HOX genes within their normal expression
domains (LaJeunesse and Shearn, 1995). However, in ash1mutants
that also lack PRC2, HOX gene expression is restored to normal
levels and, in addition, these double mutants also show widespread
misexpression of HOX genes, similar to PRC2 single mutants
(Klymenko and Müller, 2004). This suggested that, at least at HOX
genes, Ash1 is not required for transcriptional activation per se but is
needed to antagonize instalment of Polycomb repression. It is
important to note that in the wild type, PRC2 and other Polycomb
group (PcG) protein complexes are bound at target genes, not only
in the cells in which these genes are repressed but also in the cells inReceived 24 January 2018; Accepted 5 March 2018
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which they are expressed (Bowman et al., 2014; Kang et al., 2017;
Kwong et al., 2008; Langlais et al., 2012; Papp and Müller, 2006).
Nevertheless, at active genes, PRC2 fails to tri-methylate H3K27 in
their chromatin. In ash1 mutants, however, PRC2 deposits
H3K27me3 ectopically across the entire promoter and coding
region (Papp andMüller, 2006). Such ectopic methylation by PRC2
in ash1 mutants is also detected on polytene chromosomes, where
several genomic sites show an increase in H3K27me3
immunofluorescence signal (Dorighi and Tamkun, 2013;
Srinivasan et al., 2008). Moreover, genome-wide ectopic H3K27
tri-methylation is also observed in C. elegans mutants lacking the
NSD orthologue Mes-4 (Gaydos et al., 2012). Together with the
above-mentioned finding that H3K36me2/3 inhibits H3K27
methylation by PRC2 on nucleosomes in vitro (Schmitges et al.,
2011; Yuan et al., 2011), these observations collectively suggested
that Ash1 keeps HOX and possibly also other target genes active by
di-methylating H3K36 in the transcribed region of their chromatin
and thereby preventing H3K27me3 deposition and instalment of
Polycomb repression. However, several aspects that are central to
this model have remained unresolved. First, the Ash1 protein alone
shows only weak HMTase activity because its SET domain is
auto-inhibited (An et al., 2011). This raises the question of how
Ash1 catalytic activity becomes stimulated. Second, at least in
Drosophila tissue culture cells, the bulk of H3K36me2 is generated
by NSD (Bell et al., 2007) and it is not known where and to what
extent Ash1 contributes to H3K36 di-methylation, in particular at
HOX target genes. Third, it is not known whether Ash1 also
regulates genes other than HOX genes during Drosophila
development.
Here, we have biochemically purified Ash1 protein complexes

from Drosophila and characterized their activity in vitro and in the
developing organism. Our work reveals that Ash1 HMTase activity
is activated by MRG15, a subunit of the identified Ash1 complex,
and we show that this complex, rather than the Ash1 protein alone, is
the active form of this H3K36 methyltransferase, both in vitro and
in vivo. We show that Ash1 is not needed for global H3K36
di-methylation but is essential to generate normal H3K36me2 levels

at HOX and other genes that we found to be de-regulated in ash1
mutants. The specific homeotic phenotypes of mutants that lack
Ash1 or Ash1 HMTase activity establish that H3K36 di-methylation
at HOX genes is a key physiological function of the Ash1 protein
complex for Drosophila morphogenesis.

RESULTS
Biochemical purification and reconstitution identify MRG15
and Caf1 as Ash1 complex subunits
To identify proteins that form stable assemblies with the Ash1
protein inDrosophila, we used a tandem affinity purification (TAP)
strategy (Rigaut et al., 1999) and purified N- or C-terminally tagged
Ash1 (NTAP-Ash1 or Ash1-CTAP, respectively) from embryonic
nuclear extracts (Fig. 1A). The transgenes expressing NTAP-Ash1
or Ash1-CTAP in these assays rescued animals homozygous for the
ash122 null mutation (Tripoulas et al., 1996) into morphologically
normal and fertile adults, permitting the purification of these fusion
proteins from animals lacking untagged endogenous Ash1. Mass
spectrometric analyses of the purified material identified MRG15
and Caf1-55 (for simplicity referred to as Caf1) as the two major
proteins that co-purified with both NTAP-Ash1 and Ash1-CTAP
(Fig. 1B). In both purifications we failed to detect Fsh1, a protein
that was previously reported to co-purify with Ash1 from
Drosophila tissue culture cells (Kockmann et al., 2013).

We tested whether interactions of MRG15 and Caf1 with Ash1
could be reconstituted with recombinant proteins. MRG15, like its
yeast orthologue Eaf3, contains a chromo barrel domain that binds
H3K36me2/3 (Zhang et al., 2006) and an MRG domain (Fig. 2A).
Structural studies on MRG15 had revealed that the protein uses its
MRG domain to bind extended regions of its interaction partners via
high-affinity interactions that are centred around a conserved FxLP
motif in those partner proteins (Xie et al., 2012, 2015). Inspection of
the Drosophila and vertebrate Ash1 protein sequences identified in
each case a single FxLP motif in a conserved location, about 40
amino acid residues N-terminal to the AWS domain that precedes
the catalytic SET domain (Fig. 2A). Using baculovirus expression
vectors, we co-expressed Drosophila Ash11041-2226 (Ash1C) with

Fig. 1. Ash1 purified fromDrosophila exists in a complexwith MRG15 and Caf1. (A) Proteins isolated by tandem affinity purification (TAP) fromwild-type (wt)
and α-tubulin1-NTAP-Ash1 embryos (left), and from wild-type and α-tubulin1-Ash1-CTAP embryos (right) separated on a 4-12% polyacrylamide gel and
visualized by silver staining. The bandsmarked by an asterisk are TAP-Ash1 degradation products; the bands marked with two asterisks were considered as non-
specific because they were also detected in several mock TAPs from the wild-type control (e.g. lane 3). (B) Scatterplot representation of log2 transformed
iBAQAsh1/iBAQmock ratios (Intensity Based Absolute Quantification) from the mass spectrometric data of the same NTAP-Ash1 and Ash1-CTAP purifications
shown in A (see Tables S1 and S2).
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Strep-tagged full-length MRG15 (S-MRG15) in Hi-5 insect cells
and then performed Strep-affinity purification. This resulted in the
isolation of an Ash1C:MRG15 complex (Fig. 2B). In contrast, when
we co-expressed S-MRG15 with Ash1C containing a mutation of
the FxLP motif to RxRP, this mutant Ash1CRxRP protein failed to co-
purify with S-MRG15 (Fig. 2B). This suggests that the FxLP motif
in Ash1C is crucial for interaction with MRG15. As control for the
specificity of this interaction, we also tested for interaction of Ash1C
with Strep-tagged Msl3 (S-Msl3). Msl3 is another MRG domain
protein that uses a similar mode of interaction like MRG15 to bind a
conserved FxLP motif in its binding partner MSL1 (Xie et al.,
2015). However, strep affinity-purification from cells co-expressing
Ash1C with S-Msl3 resulted in the isolation of S-Msl3 alone
(Fig. 2C). We conclude that Ash1C, via the conserved FxLP motif,
directly and specifically interacts with MRG15.
We next investigated whether Caf1 directly interacts with Ash1C.

Caf1 is a WD40 β-propeller protein that is a core subunit of several
chromatin-modifying complexes, including PRC2, and is required
for cell viability (Anderson et al., 2011). Co-expression of Ash1C
with S-Caf1 resulted in the isolation of an Ash1C:Caf1 complex. In
contrast, Ash1C did not co-purify with S-Esc, another WD40 β-
propeller subunit of PRC2, used as control (Fig. 2D). Ash1C
therefore directly and specifically interacts with Caf1.
Finally, we tested whether Caf1 and MRG15 also directly bind

each other. His-affinity purification from cells co-expressing His-
tagged Caf1 (H-Caf1) and MRG15 resulted in the isolation of H-
Caf1 alone (Fig. 2E). When Ash1C was also co-expressed, a trimeric
complex containing substoichiometric amounts ofMRG15 could be
isolated (Fig. 2E). This suggests that Caf1 and MRG15 do not
interact directly and that Ash1C forms a scaffold to which both
proteins bind independently of each other. In conclusion, these
biochemical purification and reconstitution assays identify Ash1,

MRG15 and Caf1-55 as subunits of a novel protein complex that we
named AMC.

MRG15 stimulates H3K36 di-methylation in Drosophila and
human AMC
Previous studies reported that C-terminal fragments of Drosophila
or mammalian Ash1 protein containing the SET domain (Fig. 2A)
have HMTase activity for dimethylation of H3K36 in nucleosomes
(An et al., 2011; Eram et al., 2015; Miyazaki et al., 2013; Tanaka
et al., 2007; Yuan et al., 2011). Structural and enzymatic studies on
the isolated SET domain of human ASH1L found that this domain
has only weak HMTase activity because it is auto-inhibited by a
loop from the post-SET domain that blocks access to the substrate-
binding pocket (An et al., 2011). In a first set of experiments, we
performed HMTase assays with the Ash1C:MRG15 or Ash1C:Caf1
complexes described above (Fig. 2). As substrate, recombinant
mononucleosomes were used and the reactions were monitored by
western blot analysis with antibodies against H3K36me2 or
H3K36me3. Under our experimental conditions, we were unable
to detect HMTase activity in reactions with the Ash1C:Caf1
complex (Fig. 3A, lanes 2-3) but, strikingly, the Ash1C:MRG15
complex showed robust activity for generating H3K36me2
(Fig. 3A, lanes 4-5). Mutation of the Ash1 SET domain at
Arg1464, a residue that stabilizes the orientation of the SAM-
binding loop, abolished HMTase activity; the Ash1C

R1464A:MRG15
complex failed to generate detectable levels of H3K36me2
(Fig. 3A, lanes 6-7). This control confirms that H3K36 di-
methylation generated by the Ash1C:MRG15 complex is catalysed
by the Ash1 SET domain. We also note that the Ash1C:MRG15
complex catalyses only H3K36 di- and not tri-methylation on
nucleosomes (Fig. 3A). Taken together, these analyses show that
association of MRG15 with Ash1 greatly enhances its catalytic

Fig. 2. Reconstitution of recombinant AMC and
identification of the conservedAsh1 FxLPmotif as
the MRG15 interaction site. (A) Domain architecture
of MRG15, Caf1 and Ash1 and alignment of Ash1
protein sequences harbouring the FxLP motif.
(B-E) Total extracts (In) from Hi-5 cells co-expressing
the indicated AMC subunits and material isolated from
these cells (Elu) by Strep- (B-D) or His- (E) affinity
purification, separated on 8% (B,C,E) or 10% (D) SDS
polyacrylamide gels and visualized by Coomassie
Blue staining. (E) Use of the His-tag on Caf1 and a
different running buffer accounts for the slower
migration behaviour of Caf1 relative to MRG15 in this
experiment. See text for a description of the results.
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activity for H3K36 di-methylation and it therefore appears that the
AMC complex and not Ash1 alone is the active form of this
HMTase.
We next wanted to quantify the stimulatory effect of MRG15 on

Ash1 HMTase activity. To achieve this, we expressed and purified a
short soluble fragment of the Drosophila Ash1 protein comprising
the SET domain and the preceding amino acid sequences that
include the FxLP motif (Ash11275-1522, called Ash1XL-SET; Fig. 2A
and Fig. 3B, lanes 2-4). Like Ash1C, this Ash1XL-SET fragment also
interacted with full-length MRG15 and could be purified as a stable
Ash1XL-SET:MRG15 complex (Fig. 3B, lanes 5-7). We performed
HMTase assays on recombinant oligonucleosome arrays using
S-[methyl-3H] adenosylmethionine and quantified methyl-3H
incorporation into histone H3 using fluorography (Fig. 3B). The
Ash1XL-SET:MRG15 complex showed about 30-fold higher
HMTase activity compared with Ash1XL-SET alone under our
assay conditions (Fig. 3B, compare lanes 5-7 with lanes 2-4).

To extend these analyses, we also investigated the interaction
between humanASH1L andMRG15. Specifically, we reconstituted
and purified a recombinant minimal ASH1LXL-SET:MRG15MRG

complex containing an ASH1LXL-SET protein fragment
(ASH1L2035-2288) in complex with the MRG domain (MRG15151-362,
called MRG15MRG) of human MRG15 (Fig. 3C, lanes 5-7). The
human ASH1LXL-SET:MRG15MRG complex showed about a
sevenfold higher HMTase activity than the ASH1LXL-SET protein
alone (Fig. 3C, compare lanes 5-7 with lanes 2-4). We conclude that
the interaction between ASH1L and MRG15, and the stimulatory
effect of MRG15 on ASH1L HMTase activity is conserved in
humans. Moreover, these results also suggest that interaction of the
MRG domain of MRG15 with an ASH1L fragment comprising
only the SET domain and the preceding amino acid stretch with the
FxLP motif (i.e. ASH1LXL-SET) is sufficient to activate ASH1L
HMTase activity by almost an order of magnitude.

AMCHMTaseactivity is required for viabilityand is crucial for
HOX gene regulation in Drosophila
In the next set of experiments, we investigated the physiological role
of AMC and its H3K36 di-methyltransferase activity inDrosophila.
To this end, we generated animals that completely lacked Ash1 or
MRG15 protein, or mutants expressing full-length but catalytically
inactive Ash1 protein.

In the first experiment, we analysed the ash1-null mutant
phenotype. Earlier studies had identified and characterized ash122

as a protein null mutation (Tripoulas et al., 1996). Consistent with
these earlier reports, we were unable to detect Ash1 protein in larval
extracts from ash122 homozygotes (Fig. S1). It is important to note
that previous studies investigating the requirement of Ash1 during
Drosophila development had analysed ash1 mutant animals that
were derived from heterozygous mothers and therefore contained
maternally deposited wild-type Ash1 protein during the early stages
of development (Shearn, 1989; Shearn et al., 1987; Tripoulas et al.,
1996). The phenotype of ash1-null mutant animals that lack both
maternally deposited and zygotically expressed Ash1 protein, in the
following referred to as ash1 m– z– mutants, has not been described.
We generated ash122 m– z–mutant animals from females with ash122

mutant germ cells. Interestingly, these ash122 m– z– mutant animals

Fig. 3. H3K36 di-methylation by Drosophila Ash1 and human ASH1L is
stimulated by MRG15. (A) HMTase reactions with recombinant Drosophila
Ash1C:Caf1 (lanes 2, 3), Ash1C:MRG15 (lanes 4, 5) or Ash1CR1464A:MRG15
(lanes 6, 7) complexes and reconstituted recombinant mononucleosomes
(400 nM in lanes 1-7) were separated on a 10% SDS-polyacrylamide gel; the
upper part of the gel was stained with Coomassie Blue to visualize the enzyme
complexes, the bottom part was analysed by western blotting with antibodies
against H3K36me2 and, as a control, H4. The same reaction was also
analysed with antibody against H3K36me3. Enzyme concentrations in the
reactions were normalized by estimating Ash1C concentration relative to a
Coomassie Blue-stained protein standard. Drosophila embryo nuclear extract
(NE) in lane 9 served as control for western blot analysis. Lane 8: molecular
weight marker (MW). (B) HMTase reactions with recombinant Drosophila
Ash1XL-SET (lanes 2-4) or Ash1XL-SET:MRG15 complex (lanes 5-7) on
reconstituted recombinant Xenopus oligonucleosomes (320 nM in lanes 1-7).
One part of the reaction was analysed on a 15% SDS-polyacrylamide gel to
visualize proteins by Coomassie Blue staining (top), the other part of the
reaction was separated on a 15% SDS-polyacrylamide gel, transferred to
membrane and analysed by fluorography. PhotoShop software was used to
quantify radioactive signal in the H3 band; this signal represents the sum of
H3K36me1 and H3K36me2. Asterisk indicates H3 degradation products.
(C) HMTase reactions with recombinant human ASH1LXL-SET (lanes 2-4) or
ASH1LXL-SET:MRG15MRG complex (lanes 5-7) on reconstituted recombinant
Xenopus oligonucleosomes (320 nM in lanes 1-7). Reactions were
analysed as in B.
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developed up to the pupal stage and died as pharate adults, like
ash122 m+ z– mutants (Fig. 4A). ash122 m– z– pharate adults show a
spectrum of anteriorly directed homeotic transformations that are
similar to but slightly more severe than those of mutants lacking
only zygotic expression of Ash1 (Shearn, 1989; Shearn et al.,

1987). Specifically, ash122 m– z– mutant pharate adults showed
transformation of the third (T3) to the second thoracic segment (T2)
owing to widespread loss of expression of the HOX gene
Ultrabithorax (Ubx) in larval haltere and third-leg imaginal disc
primordia that form the T3 segment in adults (Fig. 4B, compare

Fig. 4. Requirement of AMC HMTase activity for viability and HOX gene regulation. (A) Viability of Drosophila with different ash1 and MRG15 mutant
genotypes. For each genotype [(1)-(7)], indicated numbers of 1st/2nd instar larvae (input) were isolated, distributed into at least three different food vials
and reared. In each vial, the percentage of animals that formed pupae (grey bar) and eclosed from the pupal case (white bar) was determined. Histograms
represent the mean±s.d. of these percentages in individual vials of a given genotype. ash122 m+ z− and ash122 m− z− animals do not eclose from the pupal case
(asterisk). The genotype ofMRG15Δm+ z− andMRG15Δm− z− animals shown here and in B isMRG15Δ/Df(3R)BSC741 (see text). (B) Lack of AMC function causes
a specific HOX loss-of-function syndrome. Left: HOX gene expression analysis. Larval haltere (H) and third leg (L3) imaginal disc tissues stained using Ubx
antibody (red) and co-stained with Hoechst to visualize nuclei (DNA, blue); CNS tissues stained using Abd-B antibody (red) and Hoechst (DNA, blue). In the wild
type (wt), Ubx is expressed in all cells of the H and L3 disc. ash122 m– z–, ash1R1464A m– z– and MRG15Δm– z– mutants show patchy loss of Ubx expression
(asterisks) in irregular patterns in both discs; this phenotype is observed in all animals in all three genotypes (n>40) but comparison of discs from these larvae
shows that the tissue area showing loss of expression is most extensive in ash122 m– z– mutants, somewhat less extensive in ash1R1464A m– z– mutants and even
less extensive in MRG15Δm– z– mutants. In wild-type animals, Abd-B is expressed in all cells of the posterior CNS, whereas ash122 m– z–, ash1R1464A m– z– and
MRG15Δm– z– mutants all show patchy loss or reduction of Abd-B expression. Right: cuticle phenotype analysis. Preparations of cuticles from adults (row 1) or
pharate adults (row 2-4) with dorsal and lateral views of T2 and T3 segment structures and dorsal views of the posterior abdomen, including the A4, A5 and A6
segments. Dorsal view T2 and T3: in wild-type animals, haltere disc tissues form the haltere (H, black arrowhead) in T3. ash122 m– z–, ash1R1464A m– z– and
MRG15Δm– z– mutants show haltere-to-wing transformations (empty arrowheads; wing in T2 marked as W in all cases), owing to loss of Ubx expression. The
extent of this T3 to T2 transformation matches the extent of Ubx expression loss in the three mutant genotypes (ash122 m– z–>ash1R1464A m– z–>MRG15Δm– z–).
Lateral view T2 and T3: T3 to T2 transformation in ash122 m– z–, ash1R1464A m– z– and MRG15Δm– z– mutants due to loss of Ubx expression in the 3L disc is
manifested by transformation of the hypopleurite (hp) in T3 (empty arrow in wild-type animals) into sternopleurite (sp) tissue with sp bristles (black arrows), which
are normally only found in T2. The haltere-to-wing (empty arrowhead) and meta- to mesonotum transformations (asterisk) are variable in animals of the same
genotype (compare lateral and dorsal views). Dorsal view of abdomen: wild-type males show characteristic pigmentation in A5 and A6 that is almost completely
lost in ash122 m– z– mutants or lost in a patchy pattern in ash1R1464A m– z– and MRG15Δm– z– mutants. A7 segment structures appearing in the three mutant
genotypes are indicated.
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rows 2 and 1). The abdominal segments A5 and A6 of ash122 m– z–

pharate adults showed transformations towards A4, most noticeable
by the loss of pigmentation in males (Fig. 4B, compare rows 2
and 1). Moreover, these males also develop an A7 segment that is
normally suppressed in the wild type (Fig. 4B, compare rows 2
and 1). All these transformations are indicative of loss of expression
of the HOX gene Abdominal-B (Abd-B) in the larval primordia of
these adult structures. The requirement of Ash1 for normal
expression of Abd-B is also apparent in the central nervous system
(CNS), where ash122 m– z–mutant larvae show patchy loss of Abd-B
expression (Fig. 4B, compare rows 2 and 1). Animals that
completely lack Ash1 protein therefore show a specific HOX
loss-of-function syndrome but, perhaps surprisingly, no other
obvious morphological defects.
We then investigated whether loss of Ash1 HMTase activity is

responsible for these phenotypes by analysing animals that
expressed the Ash1R1464A mutant protein instead of wild-type
Ash1. As documented above, the R1464A mutation in Ash1 SET
domain severely compromises HMTase activity (Fig. 3A). We
generated animals that were homozygous for the ash122 null
mutation but carried a single transgene that expressed the
Ash1R1464A protein or, as a control, wild-type Ash1 protein from
a genomic ash1 fragment. In the control animals, the transgene-
encoded wild-type Ash1 protein fully rescued ash122 homozygotes
into viable and fertile adults that were morphologically
indistinguishable from wild-type Drosophila and could be
maintained as a healthy strain (Fig. 4A). In contrast, the
Ash1R1464A mutant protein largely failed to rescue the homeotic
phenotypes of ash122 homozygotes but a substantial fraction of
these animals nevertheless eclosed from the pupal case (Fig. 4A).
The eclosed first generation, referred to as ash1R1464A m+ z–mutants,
were fertile and this permitted the generation of ash1R1464Am– z–

animals in which not only zygotically expressed but also the
maternally supplied Ash1 protein contained the R1464A point
mutation. These ash1R1464A m– z– mutant animals showed loss of
HOX gene expression and homeotic transformations almost as
severe as ash122 m– z–mutant animals (Fig. 4B, compare rows 3 and
2). Moreover, the ash1R1464A m– z–mutant animals that eclosed from
the pupal case invariably died after 1-2 days (Fig. 4A). The inability
of the Ash1R1464A protein to maintain normal HOX gene expression
indicates that Ash1 HMTase activity is crucial for this process. The
slightly less severe phenotype of ash1R1464A m– z– mutants and the
finding that a fraction of these animals even eclose from the pupal
case could be explained by low levels of residual HMTase activity
of the Ash1R1464A protein in vivo or, alternatively, by an HMTase-
independent function of Ash1 in maintaining HOX gene
transcription.
Finally, we tested the requirement of MRG15 for AMC function

in vivo. To analyseDrosophilamutants lacking theMRG15 protein,
we used homologous recombination (Gong and Golic, 2003) to
generate MRG15Δ, an allele that deletes almost the entire MRG15-
coding region (Fig. S2). Among the animals homozygous for
MRG15Δ that were derived from heterozygous parents, a substantial
fraction developed into adults that eclosed from the pupal case
(Fig. 4A) and showed mild HOX loss-of-function phenotypes in the
adult epidermis as their only detectable morphological defect. Many
of these MRG15Δ m+ z– animals died shortly after eclosing; better
survival was observed in animals that were trans-heterozygous for
MRG15Δ and Df(3R)BSC741, another chromosomal deletion that
removes the entireMRG15 gene and additional flanking genes. For
all experiments described below, we therefore used MRG15Δ/
Df(3R)BSC741 trans-heterozygous animals but for simplicity refer

to them as MRG15Δ mutants. MRG15Δ m+ z– surviving adults were
fertile and produced MRG15Δ m– z– progeny that lacked both
maternally-deposited and zygotically-expressed MRG15 protein.
A fraction of these MRG15Δ m– z– mutant animals again developed
into pupae and adults (Fig. 4A) that, intriguingly, showed loss of
HOX gene expression and homeotic transformations that overall
were almost as severe as those observed in ash1R1464A m– z– mutants
(Fig. 4B, compare rows 4 and 3). This striking similarity of the
MRG15 null and ash1 catalytic mutant phenotypes, together with
the finding that MRG15 is required for efficient H3K36 di-
methylation by Ash1 in vitro (Fig. 3), implies that MRG15 is also
important for Ash1 HMTase activity in vivo. We note that the
survival of MRG15Δ m– z– mutant animals to adulthood and the
specific homeotic phenotypes may seem surprising because
MRG15 is also present in other chromatin protein complexes,
such as the Tip60 complex (Kusch et al., 2004). It therefore appears
that the role of MRG15 in AMC likely is the primary vital function
of this protein in Drosophila. Finally, because of the specific
homeotic phenotype of MRG15 mutants, we propose that MRG15
should, like Ash1, be classified as a trxG protein.

AMC is required for the regulation of several hundred genes
The analyses described above provide strong evidence that AMC
activity is crucial for maintaining normal expression of HOX genes.
To obtain a comprehensive overview of the genes that are regulated
by this complex, we compared the transcriptome in imaginal disc
tissues from ash122 homozygous larvae (ash122 m+ z–) with that in
the same tissues fromwild-type larvae. To achieve this, we extracted
RNA from hand-dissected batches of haltere and third-leg imaginal
discs from the T3 segment, in the following referred to as T3 discs,
and, in parallel, also from batches of wing imaginal discs from the
T2 segment, referred to as T2 discs, from both wild-type and ash122

homozygous larvae. Transcriptome sequencing was then performed
on at least four independent biological replicates of each type of
sample. Bioinformatic analyses of RNA-seq data from ash122

mutant and wild-type larvae identified several hundred genes that
were differentially expressed in both T3 and T2 discs. Specifically,
about 300 genes are differentially expressed with a log2 fold change
≥2 and about 600 genes are differentially expressed with a log2 fold
change ≥1 (Fig. 5A,B; Table S3). As expected from the analyses
shown above (Fig. 4B), Ubx was downregulated more than fourfold
in ash1 mutant T3 discs (Fig. 5A) but was not detected as a
differentially regulated gene in T2 discs (Fig. 5B) because it is not
expressed in that tissue. Importantly, most other genes that were
differentially expressed in T3 discs of ash1 mutant and wild-type
larvae were also differentially expressed in T2 discs (Fig. 5C). The
altered expression of these genes in ash1 mutants is therefore not a
consequence of reduced expression of the transcription factor Ubx
in T3 discs. In summary, these results show that Ash1 is required for
the normal expression of a few hundred genes in addition to
regulating the HOX genes.

These results raised the issue of whether Ash1 directly binds to
these deregulated genes and whether Ash1 is required for
dimethylation of H3K36 in their chromatin. Three separate studies
have generated genome-wide Ash1 protein-binding profiles in
different Drosophila tissue culture cell lines (Huang et al., 2017;
Kockmann et al., 2013; Schwartz et al., 2010). Kockmann et al.
reported that Ash1 binds in a sharply localized manner in the
promoter region of most active genes in the cells they analysed
(Kockmann et al., 2013), whereas Schwartz et al. reported that Ash1
is bound at about 50 genomic regions where it is associated with
large chromatin domains that span on average about 10 kb
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(Schwartz et al., 2010); Huang et al. identified around 500 Ash1-
bound genes (Huang et al., 2017). To analyse Ash1 binding in the
same tissues that we had used for our transcriptome analyses, we
attempted to perform ChIP-seq experiments in imaginal discs.
However, we failed to enrich sufficient amounts of chromatin by
immunoprecipitation with Ash1 antibodies and were therefore
unable to generate reliable Ash1 protein-binding profiles. In the
following, we therefore focused our analysis on investigating how
H3K36me2 levels are affected in mutants lacking AMC.

Bulk H3K36me2 levels are not diminished inmutants lacking
AMC
In the first experiment, we assessed the contribution of AMC to total
H3K36me2 levels in developing larvae. We analysed H3K36me2
bulk levels in imaginal disc tissues dissected from wild-type,
ash122 m+ z– or MRG15Δ m– z– third instar larvae. As shown in
Fig. 6A, H3K36me2 bulk levels were not detectably diminished in
either of the two mutants. These results suggested that AMC might
contribute to H3K36 di-methylation in a more gene-specific
manner.

Ash1 is required for high-level H3K36 di-methylation at Ash1-
regulated genes
We next analysed H3K36me2 levels at genes that we had found to
be downregulated in ash1 mutants. We performed chromatin
immunoprecipitation (ChIP) assays with H3K36me2 antibodies on
chromatin prepared from haltere and third leg imaginal discs (T3
discs) dissected from ash122 homozygous larvae (ash122 m+ z–) or
from wild-type larvae and used real-time quantitative PCR (qPCR)
to monitor H3K36me2 levels in the transcribed region of specific
genes. These genes were:methuselah (mth), as an example of a gene
that is strongly (almost 200-fold) downregulated in ash1 mutants;
Ubx, as a moderately (more than fourfold) downregulated gene; and
CG6310, as a weakly (about twofold) downregulated gene
(Fig. 5A). As control, we analysed H3K36me2 at the wingless
(wg), teashirt (tsh) and lamin (lam) genes that are all expressed in
T3 discs but are not downregulated in ash1 mutants (Fig. 5A,
Table S3). As an additional control, we analysed H3K36me2 at
dpr12, a gene that is virtually inactive in T3 and T2 discs (Table S3).
As illustrated in Fig. 6B, in wild-type animals, H3K36me2 is
detected in the coding region of the expressed Ubx, mth, CG6310,

wg, tsh and lam genes, but not at the inactive dpr12 gene (Fig. 6B).
In ash1mutants, H3K36me2 levels were strongly diminished atUbx
and mth, and were mildly reduced at CG6310, but not significantly
changed at wg, tsh and lam (Fig. 6B). Nonetheless, even at the Ubx
and mth genes, where H3K36me2 levels are strongly reduced, the
modification is not completely abolished. This suggests that the
residual H3K36 di-methylation at these genes is generated by other
H3K36 HMTases, most likely by NSD and/or Set2. These
HMTases are likely also responsible for H3K36me2 at the wg, tsh
and lam genes, where the modification appeared undiminished in
ash1 mutants. It is important to keep in mind that even though the
extent of H3K36me2 reduction appears to roughly match the extent
to which expression of target genes is reduced in ash1 mutants, the
H3K36me2 reduction might not be uniform across the cell
population. A case in point for this is Ubx, where expression in
T3 discs of ash1 mutants is lost in a mosaic all-or-none fashion
(Fig. 4B). It is possible that, in cells showing loss ofUbx expression,
H3K36me2 might be completely lost from Ubx chromatin and that
the residual H3K36me2 ChIP signal at Ubx in ash1 mutants
(Fig. 6B) represents H3K36me2 at Ubx in those cells that retained
normal levels of Ubx expression. In summary, these analyses show
that genes that are downregulated in ash1mutants show a reduction,
but not complete loss, of H3K36me2 in their chromatin.

DISCUSSION
Biochemical studies over the past have revealed that almost all PcG
and trxG regulators originally identified through genetics are
subunits of multi-protein complexes that modify chromatin; this has
greatly helped to unravel the molecular mechanism of these proteins
and to understand how they function (Kassis et al., 2017). Here, we
have investigated the molecular interactions and the mechanism of
action of the trxG protein Ash1 and its role in regulating gene
expression in Drosophila. The work reported in this study leads to
the following main conclusions. First, biochemical purifications
from Drosophila show that Ash1 is the subunit of a multi-protein
complex that contains MRG15 and Caf1: the AMC complex.
Second, reconstitution of AMC using recombinant proteins
uncovered that the MRG domain of MRG15 binds to a conserved
FxLP motif next to the SET domain of Ash1, and that this
interaction greatly enhances Ash1 catalytic activity for H3K36 di-
methylation in nucleosomes. A recent study by Bing Zhu’s lab

Fig. 5. Alteration of gene expression in ash1mutants. (A,B) Volcano plots of changes in gene expression in ash122 m+ z− (ash1−/−) larvae compared with wild-
type larvae in T3 discs (A) and in T2 discs (B). Genes selected for the analyses documented in Fig. 6 are labelled. (C) Scatter plot comparing T2 and T3 by
log2 fold change of gene expression in ash122 m+ z− versus wild-type larvae, colour-coded by statistical significance in T2 or T3, or both (P<0.01, log2 fold change
≥2). There is high similarity in T3 and T2 tissues. Genes also labelled in A and B are indicated.
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reported the purification of an identical Ash1-MRG15-Caf1
complex and they also found that MRG15 stimulates Ash1
enzymatic activity in vitro (Huang et al., 2017), providing
independent support for these first two conclusions from our
work. Third, our transcriptome analyses in developing Drosophila
reveal that AMC is required for the normal expression of a few
hundred genes in addition to the HOX genes. Fourth, we show that
animals that lack Ash1 orMRG15, or contain a catalytically inactive
version of Ash1 have the capacity to go through embryonic, larval
and pupal development, and complete metamorphosis to
differentiate into adults that show very specific homeotic
phenotypes as their main morphological defect. Notably, this
defines MRG15 as a novel trxG protein. Fifth, we find that AMC
does not make a major contribution to the bulk of H3K36 di-
methylation in Drosophila but that the complex is essential for
generating wild-type levels of H3K36me2 at HOX and other target
genes that are downregulated in ash1 mutants. In the following, we
shall focus on specific aspects of these findings.

Activation of Ash1 methyltransferase activity by MRG15
Our analyses and those of Huang et al. (2017) strongly suggest that
AMC rather than the Ash1 protein alone is the active form of this

HMTase and that the MRG15 subunit stimulates Ash1 HMTase
activity via a mechanism that is conserved in flies and mammals. In
particular, the data sets in Fig. 3 collectively suggest that interaction
of the MRG domain with the FxLP motif preceding the Ash1/
ASH1L SET domain increases the catalytic activity of this domain
in both the fly and the human complex. Without structural
information about this interaction, we can currently only speculate
on the activation mechanism. An attractive possibility would be that
MRG15 binding allosterically activates the SET domain by
displacing the auto-inhibitory loop formed by the Ash1 post-SET
domain (An et al., 2011) and thereby facilitates access of the H3K36
substrate lysine to the catalytic centre in the SET domain. In
addition to this allosteric activation mechanism, MRG15 might also
promote AMC activity through a second mechanism involving
interaction of the MRG15 chromo barrel domain with nucleosomes
that already carry the H3K36me2 and/or -me3 modification (Zhang
et al., 2006). Specifically, in the chromatin of actively transcribed
genes that contain H3K36me2/3-modified nucleosomes, interaction
of MRG15 with such nucleosomes – perhaps in cooperation with
interactions of the Ash1 bromodomain or PHD finger with other
histone modifications – might permit AMC to di-methylate H3K36
in unmodified neighbouring nucleosomes more efficiently. This
might be particularly crucial when histone H3 is exchanged in the
wake of transcription or when newly synthesized octamers
containing unmodified H3 are incorporated after DNA replication.
In this context, it should also be recalled that the target genes Ubx,
mth or CG6310 still contain low levels of H3K36me2-modified
nucleosomes in discs of ash122 m+ z– mutant larvae. This residual
H3K36me2 is unlikely to represent nucleosomes that were modified
by maternally-deposited Ash1 protein. First, Ash1 protein is
undetectable in these cells (Fig. S1) and, second, the replication-
coupled dilution of parental nucleosomes in these dividing cells will
require de novo methylation of newly incorporated H3 molecules at
every S-phase. It therefore seems more likely that the low level of
H3K36me2 at these genes in ash1mutants is generated by NSD and
Set2. According to this view, Ash1 would thus act on top of an
H3K36me2/3 landscape generated by these more globally acting
H3K36-methylating enzymes. Furthermore, Ash1 association with
polytene chromosomes was reported to depend on Kismet/CHD7, a
nucleosome remodelling factor that is required for the transition
from transcription initiation to transcriptional elongation
(Srinivasan et al., 2008). Together, these observations all point to
a scenario where AMC acts on chromatin that already is
transcriptionally active and possibly already is at least partially
decorated with H3K36me2/3.

Developmental and gene expression defects in mutants
lacking AMC function
Our transcriptome analyses identified several hundred genes that are
de-regulated in ash1mutants. This observation may seem surprising
given that ash1-null and catalytic mutants nevertheless develop into
pharate or even viable and fertile adults, respectively. The homeotic
transformations in ash1 mutants show that downregulation of
HOX gene expression has a clear physiological consequence.
We have not been able to detect any other obvious
morphological defects in the epidermal structures of ash1
mutants. However, it is possible that changes in the expression
levels of AMC-regulated genes other than HOX genes cause
morphological defects in internal structures or organs, or that
they affect the physiology of mutant animals and could in this
way impact on their survival and viability. Future studies will be
needed to assess the consequences of altered expression levels of

Fig. 6. Ash1 is required for normal H3K36me2 levels at HOX and other
target genes. (A) H3K36me2 bulk levels are unchanged in ash1 or MRG15
null mutants. Western blot on serial dilutions (4:2:1) of total extracts from
imaginal discs from wild-type (wt), ash122 m+ z− and MRG15Δm– z– mutant
larvae, probed with antibodies against H3K36me2 and, as loading control,
histone H4 and Caf1. The genotype of theMRG15Δm− z− animals isMRG15Δ/
Df(3R)BSC741 (see text). (B) ChIP qPCR analysis in wild-type (dark-green
bars) and in ash122 homozygous (ash122, light-green bars) larvae, monitoring
H3K36me2 levels at the Ubx, mth, CG6310, wg, tsh, lam and dpr12 genes in
T3 discs. At each gene, H3K36me2 was analysed at one or more regions, and
for each qPCR, amplicon coordinates are indicated as distance in kb from the
transcription start site, see also Table S5. For both genotypes, bars show ChIP
signals from three independent ChIP reactions that were performed on three
independently prepared batches of chromatin and are presented as a
percentage of input chromatin precipitated at each region; dots show individual
experimental results and error bars show standard deviation.
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the non-HOX genes regulated by AMC. Here, we shall focus our
discussion on the role of AMC in regulating HOX genes where
lack of the complex and the reduction of H3K36me2 have a clear
physiological consequence.

Requirement for H3K36 dimethylation by AMC to counteract
Polycomb repression
As discussed in the Introduction, genetic and molecular studies
originally uncovered that Ash1 prevents H3K27 tri-methylation by
PRC2 in the coding region of theUbx gene in cells where this gene is
expressed (Papp and Müller, 2006). Biochemical studies in vitro
then established that PRC2HMTase activity for H3K27methylation
is inhibited on nucleosomes carrying H3K36me2 (Schmitges et al.,
2011; Yuan et al., 2011). Here, we now show that Ash1 is indeed
required for deposition of normal levels of H3K36me2 in the Ubx-
coding region in cells where Ubx is normally expressed (Fig. 6B).
Together, this supports a model in which AMC di-methylates
H3K36 in the Ubx-coding region and thereby antagonizes
H3K27me3 deposition by PRC2 and the instalment of Polycomb
repression at this gene. It remains to be investigated whether H3K36
di-methylation by AMC also antagonizes H3K27 tri-methylation at
other Ash1-regulated genes. Inspection of the available H3K27me3
profiles in wild-type Drosophila embryonic, larval or adult cells, or
in different tissue culture cell lines provides no evidence for
presence of H3K27me3 at the mth or CG6310 genes in any of these
cells (www.modencode.org). At these genes, AMC might therefore
preserve normal levels of expression throughmechanisms other than
counteracting Polycomb repression.
A conspicuous feature of mutants lacking AMC function is the

all-or-none loss of HOX gene expression. Specifically, the patchy
loss ofUbx and Abd-B expression and the patchy transformations in
the adult epidermis of ash1-null, ash1 catalytic inactive orMRG15-
null mutants suggest that expression of these genes is lost in a
stochastic fashion in a fraction of larval cells and, once lost, this
‘OFF’ state is then clonally propagated in their daughter cells
(Fig. 4B). Conversely, in other cells, HOX gene expression appears
to be maintained (Fig. 4B). How could this variegated loss of
expression be explained? As discussed above, the low levels of
H3K36me2 at Ubx in ash1 mutants are likely generated by NSD
and/or Set2. It is possible that, in the absence of AMC, H3K36
methylation by these other HMTases may suffice to sustain
H3K36me2 levels on at least one of the two Ubx alleles on the
two homologous chromosomes above the threshold level needed to
antagonize PRC2. We imagine that this crucial threshold is,
however, not reliably reached in all cells, and, as a consequence,
gain of H3K27 tri-methylation by PRC2 on both Ubx alleles may
result in a stable OFF switch that is then clonally propagated.
According to this view, a key physiological role of the trxG protein
complex AMC is to augment the number of H3K36me2-modified
nucleosomes across the chromatin of active HOX genes to safeguard
them from H3K27 tri-methylation by PRC2.

MATERIALS AND METHODS
Drosophila strains
Strains with the following genotypes were generated and/or used in this study:

w (wild type);
w; NTAP-Ash1; ash122 FRT2A;
w; ash1-CTAP/CyO; ash122 FRT2A;
w; ash122 FRT2A/TM3 twi::EGFP;
w hsp70-flp; ovoD FRT2A/TM2/TM6B;
w; ash1wt(VK37); ash122 FRT2A;
w; ash1R1464A (VK37); ash122 FRT2A/TM6B;
w; MRG15Δ/TM6C; and w; Df(3R)BSC741/TM3 twi::EGFP.

The genotypes of the animals shown in Fig. 4 were as follows: ash122 m− z−

animals were w; ash122 FRT2A and derived from crossing w; ash122 FRT2A/
ovoDFRT2A females (with germ line clones)withw; ash122 FRT2A/TM3 twi::
EGFPmales; ash1R1464A m− z− animals werew; ash1R1464A (VK37)/+; ash122

FRT2A and were derived from crossingw; ash1R1464A (VK37); ash122 FRT2A
females with w; ash122 FRT2A/TM3 twi::EGFP males; and MRG15Δm− z−

animals were w; MRG15Δ/Df(3R)BSC741 and derived from crossing w;
MRG15Δ/Df(3R)BSC741 females with w; Df(3R)BSC741/twi::EGFP males.

Antibodies
Antibodies used in this study are listed in Table S4. Antibodies against
Ash1517-842 were raised in rabbits. The Ash1517-842 epitopewas expressed as a
6×His-tagged protein in Escherichia coli and purified under denaturing
conditions; the same epitopewas used for affinity purification of the antibody.

Tandem affinity purification (TAP) of Ash1 complexes
The NTAP-Ash1 and Ash1-CTAP transgenes both contained the entire
Ash11-2226 open reading frame in the previously described Drosophila
transformation vectors CaSpeR-NTAP and CaSper-CTAP, respectively
(Klymenko et al., 2006); plasmid maps are available on request. Tandem
affinity purifications were performed from embryonic nuclear extracts of w;
NTAP-Ash1; ash122 FRT2A and w; ash1-CTAP/CyO; ash122 FRT2A strains
as described previously (Klymenko et al., 2006).

Mass spectrometric analysis of proteins isolated by TAP
Eluates from calmodulin beads after TAP were separated on 4-12%
polyacrylamide gels. One part of the material was used for silver staining to
visualize the proteins for illustration (Fig. 1A). For mass spectrometric analysis,
the bulk part of the material was separated on the same type of gel, the entire gel
lane was excised and subdivided into different slices that were then each
alkylated and digested with trypsin as described (Barth et al., 2014). Peptides
were collected by acid extraction, concentrated by evaporation and resuspended
in 0.1%TFA. Fifty percent of the digestedmaterial was injected into anUltimate
3000 HPLC system (Thermo-Fisher Scientific) and analysed as described
previously (Barth et al., 2014). For protein identification, the raw data were
analysed with the Andromeda algorithm of the MaxQuant protein analysis
package (version 1.5.3.30) against the FlyBase dmel-all-translation-r5.32.fasta
database, including reverse sequences and contaminants. For quantification,
Intensity Based Absolute Quantification (iBAQ) values were calculated from
peptide intensities. For presentation, values were log2-transformed and
subsequently missing values were imputed from a random distribution centred
at 1/3×log2 of the obtained experimental data (Table S1). Ash1, MRG15 and
Caf1 peptides identified by mass spectrometry are listed in Table S2.

Expression and purification of recombinant proteins
Drosophila Ash1C, and the complete coding sequences of MRG15, Msl3,
Caf1 and Esc were cloned into pFastBac1 (ThermoFisher) with appropriate
affinity-tag coding sequences at their N termini: StrepII-MRG15, StrepII-
Msl3, StrepII-Caf1, StrepII-Esc, His6-Ash1C, His6-Ash1CRxRP and His6-
Ash1CR1464A. Plasmids and viruses are available on request. Fig. 2B-D and
Fig. 3 show Strep-Tactin affinity purifications. Insect cells were lysed in
Strep-Buffer A [20 mMTris-HCl (pH 8), 300 mMKCl, 2 mMMgCl2, 15%
glycerol, 10 µM ZnSO4, 0.1% NP-40 substitute, 1 mM 1,4-dithiothreitol
and protease inhibitors]. Cleared lysates were loaded on Strep-Tactin
sepharose beads (IBA) and washed multiple times with Strep-Buffer
A. Retained proteins were released in Strep-Buffer B [20 mM Tris-HCl
(pH 8), 150 mM NaCl, 10% glycerol, 0.5 mM 1,4-dithiothreitol and
protease inhibitors] supplemented with 5 mM d-desthiobiotin (Sigma). For
affinity purification using the His-affinity tag in Fig. 2E, cells were lysed in
His-buffer A [20 mM Tris-HCl (pH 8), 300 mM KCl, 4 mMMgCl2, 5 mM
imidazole, 5% glycerol, 10 µM ZnSO4, 0.05% NP-40 substitute, 4 mM
β-mercaptoethanol and protease inhibitors] and subjected to a Ni-affinity
purification (Ni-NTA Agarose, Qiagen). After multiple washes with His-
buffer A, proteins were eluted with His-Buffer B [20 mM Tris-HCl (pH 8),
300 mM NaCl, 250 mM imidazole, 5% glycerol, 0.05% NP-40 substitute,
4 mM β-mercaptoethanol and protease inhibitors].

For expression inE. coli,DrosophilaAsh1XL-SET and humanASH1LXL-SET
were cloned into a modified pET28a-TEV vector, containing an N-terminal
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6×His-tag and a TEV protease site. Drosophila full-length MRG15 and
human MRG15MRG domain were cloned into pET21a vector. Ash1XL-SET
and ASH1LXL-SET proteins were expressed and Ash1XL-SET:MRG15 and
ASH1LXL-SET:MRG15MRG complexes were co-expressed in E. coli BL21
(RILP) cells. The proteins were then purified on Ni-NTA (Qiagen) resin.
Following treatment with TEV protease to remove the N-terminal 6×His-
tag, the proteins were further purified by ion exchange, and size exclusion
chromatography in a buffer containing 50 mM Tris HCl (pH 8.0) and
100 mM NaCl.

HMTase assays
Mononucleosome substrates were reconstituted with recombinantDrosophila
histones and a 215 bp long 601 DNA fragment. HMTase reactions on
mononucleosomeswere performed in buffer containing 80 µMSAM, 65 mM
Tris-HCl (pH 8.5), 78 mMNaCl, 2.5 mMMgCl2, 0.23 mMEDTA (pH 8.0),
1 mM DTT, 1 mM β-mercaptoethanol, 2.6 mM d-desthiobiotin, 5% glycerol
and protease inhibitors, and were incubated for 3 h at 25°C. For HMTase
reactions on oligonucleosomes, nucleosomal arrays were assembled with
recombinant Xenopus histones and G5E4 DNA. Reactions were performed in
buffer containing 2 µM 3H-SAM, 50 mM Tris-HCl (pH 9.0), 40 mM NaCl,
5 mM MgCl2 and 4 mM DTT, and were incubated for 80 min at 37°C. The
reactions were analysed on a 15% SDS-polyacrylamide gel, visualized by
Coomassie Blue staining or transferred to an immobilon-PSQ PVDF
membrane (ISEQ00010, Millipore) and exposed to an image plate. The
image plate was scanned with FLA-7000 (Fuji Film) for autoradiography.

Ash1 genomic transgenes
Transgenes containing genomic ash1 fragments comprised BDGP R6.14
chr3L sequences 19,600,040…19,590,604, using BAC CH322-147P9 as
template. In the Taf6-coding sequence present in this fragment, multiple
ATG initiation codons were converted into stop codons. For the ash1R1464A

transgene, the AGG codon for Arg1464 was mutated to GCG. The genomic
fragments were cloned into a modified attB vector (pUMR-FLAP) and
integrated at the attP site VK37 (BDSC 9752).

Generation of the MRG15Δ deletion allele
MRG15Δ was generated by replacing BDGP R6.14 chr3R: 15,276,676…
15,277,889 with miniwhite marker gene using ends-out targeting with the
pw35 vector (Gong and Golic, 2003). The 5′ homology arm (BDGP
R6.14)chr3R:15,277,890…15,281,975) and the 3′ homology arm (BDGP
R6.14 chr3R:15,272,003…15,276,675) shown in Fig. S2 were amplified
from BAC CH322-160G6 and the initiation ATG ofMRG15was mutated to
ATC. The MRG15Δ allele isolated and used throughout this study was
selected among multiple independent targeting events after confirming that
MRG15 was disrupted (Fig. S2) and that sequences in the homology arms
and flanking DNA were unaltered.

Immunostaining and adult cuticle preparations of Drosophila
Immunostaining of imaginal discs and preparations of adult cuticles were
performed following standard protocols (Beuchle et al., 2001).

Western blot analyses on larval tissue extracts
Western blots were performed on total extracts prepared from pooled hand-
dissected wing, haltere and 3rd leg imaginal discs of a given genotype
(Copur and Müller, 2013).

Transcriptome analysis by NGS
RNA was isolated from independently prepared batches of hand-dissected
haltere and third-leg imaginal discs (T3 discs; discs from eight larvae for
each biological replicate) or wing discs (T2 discs; discs from eight larvae for
each biological replicate) from wild-type or ash122 homozygous larvae,
using the Direct-zol RNA mini Prep Kit (Zymo Research). After additional
Agencourt AMPure XP purification (Beckman Coulter), isolated RNAwas
analysed on a Bioanalyzer (Agilent) using an RNA 6000 Nano Chip
(Agilent). Non-degraded RNA from at least four independent biological
replicates of each type of sample was used to construct sequencing libraries
using sense mRNA-Seq Library Prep Kit (Lexogen). Quality-controlled and

quantified libraries were sequenced on an HiSeq1500 system (Illumina) in
the single-end mode (100 nt read length).

For analysis, trimmed and quality-filtered reads were mapped using the
STAR aligner (Dobin et al., 2013) to the Ensembl genome annotation and
Drosophila genome assembly dm3. Read counts were quantified using
featurecounts (Liao et al., 2014) and differential gene expression calculated
with limma using the voom transformation (Law et al., 2014).

ChIP analysis
Chromatin preparation from hand-dissected haltere and third-leg imaginal
discs (T3 discs) from wild-type or ash122 homozygous larvae and ChIP
analysis was performed as described (Laprell et al., 2017). For each
biological replicate, chromatin prepared from the discs of 60 larvae were
used as input material. ChIP was performed with polyclonal anti-
H3K36me2 antibody (Abcam ab9049) and qPCR primers used for
analysis are listed in Table S5.
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