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1 Introduction 
 

Magnetic resonance imaging (MRI) is a most important and versatile tool in today’s medical diag-

nostics
1
 providing tomographic images of the entire body. In contrast to X-ray computed tomogra-

phy (CT) or positron emission tomography (PET), MRI does not expose the patients to ionizing 

radiation but utilizes the effect of nuclear magnetic resonance (NMR) instead. While MRI pro-

vides also excellent soft-tissue contrast, a major feature of MRI is imaging beyond morphology 

with the aim of gaining information about physiological processes and tissue function. The selec-

tion of available methods is vast and only a selected few shall be named here: a recent develop-

ment, chemical exchange saturation transfer (CEST)
2
, allows for the imaging of organic com-

pounds at miniscule concentrations. Another example, dating back to the late 1980s
3
, is the use of 

intravenous contrast agents to reveal information about the hemodynamic state of the microvascu-

lature. Characterizing the delivery of arterial blood through the capillary bed is of great interest in 

many diseases, such as stroke
4
, impaired function of the abdominal organs

5
, and cancer

6
.  

     The theoretical groundwork for another functional technique, known today as diffusion-

weighted MRI (DW-MRI), was laid by Torrey
7
 as early as 1956, and it has since found numerous 

applications and became widely used in clinical MRI. DW-MRI offers the unique possibility to 

assess the displacement of water molecules inside the tissue due to their thermal molecular (or 

Brownian) motion
8
, which was demonstrated to be of pivotal value in the detection of ischemic 

regions in the brain by Moseley et al.
9
 in 1990. Further main areas of application are the tracking 

of nerve fiber bundles in white matter
10,11

, as well as the diagnosis and characterization of tumor-

ous lesions throughout the entire body
12

. However, DW-MRI is not only sensitive to thermal mo-

lecular diffusion, but also to incoherent motion of water molecules in general, coining the term 

intravoxel incoherent motion (IVIM) MRI
13,14

. A primary source of such motion (in addition to 

thermal molecular diffusion) is capillary perfusion. This opens up the possibility of assessing tis-

sue hemodynamics without the need for intravenous contrast agents, which is a highly desirable 

prospect for the diagnosis of many diseases. Accordingly, IVIM MRI is a topic of current research 

and its value has been demonstrated in the examination of abdominal organs
15–18

, lesion characteri-

zation
19,20

, and the monitoring of anticancer therapy
21–24

, to name a few.   

     Virtually all studies performing IVIM MRI measurements model the particle displacement due 

to capillary perfusion as a pseudo-diffusion coefficient, which results in a biexponential signal 

decay as a function of the applied diffusion weighting. This model follows from the assumptions 

that the capillary bed is a network of a vast number of randomly oriented channels and that the 

flowing particles are traversing from one channel to the next numerous times during the measure-

ment, describing a diffusion-like motion. While these assumptions significantly simplify the analy-

sis of the measured data, it is often unclear if the preconditions for this model to be valid are met, 

which limits the physiological interpretation and accuracy of the obtained parameters. Recent stud-

ies have addressed and also capitalized on this issue, improving upon the confidence in the esti-

mated parameters
25

 and even extracting additional knowledge from the measured data
26,27

. Specifi-

cally, findings of Wetscherek et al.
26

 indicated that the pseudo-diffusion limit was not reached in 
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common DW-MRI experiments in the liver and pancreas. They also presented a new “phase-

distribution” IVIM method using numerical simulation of particle pathways to generate statistical 

distributions of spin phases depending on flow properties and gradient timing. This phase-

distribution approach does not assume the pseudo-diffusion limit and allows one to estimate the 

average particle speed due to blood flow as well as the average length of a capillary segment, in-

formation previously obscured in the pseudo-diffusion coefficient.  In contrast to the pseudo-

diffusion model, the phase-distribution method also allows for the explicit consideration of a sta-

tistical distribution of particle speeds.  

     While Wetscherek et al. obtained physiologically reasonable parameter estimates, the (quantita-

tive) validation of IVIM MRI methods is inherently difficult. Quantities such as the blood flow 

velocity, the perfusion fraction, and the capillary length are extremely challenging, if not impossi-

ble, to determine in vivo without the use of highly invasive methods and can hardly be regulated. 

However, assessing the performance of a medical measurement procedure under varying condi-

tions is essential to provide confidence in the estimated parameters and to facilitate physiological 

interpretation. 

The purpose of this thesis is to approach this problem by assessing and comparing conventional 

pseudo-diffusion IVIM MRI and phase-distribution IVIM MRI experimentally using a perfusable 

capillary phantom closely matching the geometry of in vivo capillary beds. A primary objective is 

to identify each method’s domain of validity with regard to the characteristics of the underlying 

capillary flow. Achieving this goal entails the construction of a phantom featuring the controlled 

application of fluid flow at an adjustable rate to generate varying perfusion conditions. The de-

tailed characterization of the constructed capillary network using direct measurements (i.e., optical 

microscopy) serves as a basis for the validation of different applied IVIM MRI methods. Building 

on this, the potential of phase-distribution IVIM MRI to generate accurate and intuitive parameter 

estimates is investigated. Furthermore, the limits to the applicability of simplified models are eval-

uated to elucidate the consequences of inaccurate model assumptions on the validity of the esti-

mated parameters. As a secondary goal, detailed numerical simulations aim to consolidate the ex-

perimental findings and to advance the understanding of the effects of flow characteristics on data 

measured with DW-MRI.  

Chapters 2 to 4 of this thesis review the theoretical background of DW-MRI and the current state 

of the literature regarding the analysis of perfusion effects using IVIM techniques. Chapter 5 fo-

cuses on the employed numerical methods and presents several theoretical results based on simula-

tion studies. Chapter 6 describes the construction and characterization of the capillary phantom 

followed by the main experimental results and initial discussion in chapter 7. Finally, chapter 8 

reviews the obtained results with regard to the literature and discusses potential consequences of 

the presented work.  
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2 Nuclear Magnetic Resonance 
 

This chapter covers the basic principles of nuclear magnetic resonance (NMR), the physical phe-

nomenon utilized to perform magnetic resonance imaging (MRI). A brief overview of the nuclear 

spin and the magnetic moment of a nucleus (section 2.1) is followed by a discussion of how the 

interaction between nuclei and an external magnetic field (section 2.2) leads to the formation of a 

macroscopic magnetization (subsection 2.2.1). Subsequently, it is shown how this macroscopic 

magnetization can be harnessed using a radiofrequency pulse to generate a measureable signal 

(section 2.3) and how the time evolution governed by the Bloch equations leads to restoration of 

the initial equilibrium (section 2.4). Finally, the refocusing of spin magnetization is described in 

section 2.5. For a more detailed discussion the reader may be referred to the work by Abragam
28

. 

2.1 Nuclear Spin and Magnetic Moment 
An atomic nucleus possess a total angular momentum 𝑰, characterized by a quantum number that 

may be zero, half-integer or integer depending on the fermionic configuration. It is related to the 

magnetic moment 𝝁 of the nucleus via 

 𝝁 =  𝛾𝑰, (2.1) 

 

defining the nucleus-specific gyromagnetic ratio 𝛾. In clinical MRI the primary nucleus is hydro-

gen, with 𝑰 = 1/2 and 𝛾 = 2.675 × 108 rad T−1s−1.  

     In quantum mechanics, the operator �̂� = (𝐼𝑥, 𝐼𝑦, 𝐼𝑧) obeys the commutation relation  

 [𝐼𝑖, 𝐼𝑗 ] = 𝑖ħε𝑖𝑗𝑘𝐼𝑘 (2.2) 

  [�̂�2, 𝐼𝑖] = 0              (2.3) 

 

with the commutator [�̂�, �̂�] = �̂��̂� − �̂��̂� . Quantized along the z-axis, the equations for the eigen-

values of �̂� are given by 

  �̂�2|𝐼,𝑚⟩ = ħ2𝐼(𝐼 + 1)|𝐼,𝑚⟩ (2.4) 

 𝐼𝑧|𝐼,𝑚⟩ = ħ𝑚|𝐼,𝑚⟩,            (2.5) 

 

with the nuclear spin quantum number 𝐼 and the magnetic quantum number 𝑚. The quantum num-

ber 𝑚 can take values from −𝐼,−𝐼 + 1,⋯ , 𝐼 and characterizes the 2𝐼 + 1 possible energy states of 

a nuclear spin in an external magnetic field (see section 2.2). 
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2.2 Influence of an External Magnetic Field 
Magnetic resonance is based on the interaction of the magnetic moment 𝝁 and an external magnet-

ic field 𝑩 described by the Hamiltonian 

 �̂� = −�̂� ∙ 𝑩 = −𝛾�̂�𝑩, (2.6) 



which simplifies to �̂� = −𝛾𝐼𝑧𝐵0, in the case of a stationary magnetic field of strength 𝐵0 along the 

z-axis. Since the eigenfunctions of �̂� are simultaneous eigenfunctions of �̂�, the energy levels 𝐸𝑚 of 

the time-independent Schrödinger equation �̂�|𝐼,𝑚⟩ = 𝐸𝑚|𝐼,𝑚⟩ can be found using equations (2.4) 

and (2.5) yielding 

 𝐸𝑚 = −𝛾ħ𝑚𝐵0. (2.7) 

 

The energy difference between two neighboring energy states is Δ𝐸 = 𝐸𝑚 − 𝐸𝑚−1 = 𝛾ħ𝐵0 =

ħ𝜔0, with the Larmor frequency 𝜔0 = 𝛾𝐵0 being directly proportional to the magnetic field 

strength 𝐵0. An oscillating magnetic field perpendicular to the static magnetic field 𝑩 with fre-

quency 𝜈0 = 
𝜔0

2𝜋
 can induce transitions between neighboring energy levels. 

2.2.1 Macroscopic Magnetization 
Considering 𝑁 nuclear spins in thermal equilibrium, the different energy states 𝐸𝑚 are occupied 

with probability 𝑝𝑚, determined by the Boltzmann distribution 

 𝑝𝑚 =
𝑒
−𝐸𝑚
𝑘𝑇

∑ 𝑒
−𝐸𝑚
𝑘𝑇𝐼

𝑚=−𝐼

=
𝑒
ħ𝑚𝜔0
𝑘𝑇

∑ 𝑒
ħ𝑚𝜔0
𝑘𝑇𝐼

𝑚=−𝐼

= 
𝑁𝑚

𝑁
. (2.8) 

 

For hydrogen at body temperature (𝑇 = 310 K) and at magnetic field strength 𝐵0 = 3 T, this trans-

lates to a seemingly miniscule relative difference in occupation of ∆𝑁 𝑁 = 9.89 ∙ 10−6⁄ . However, 

the summation of the expected magnetization 〈�̂�𝒌〉 of a sufficiently large number of protons per 

volume V, as present in the human body, builds up to a measureable macroscopic magnetization 𝑴

 𝑴 =
1

𝑉
∑〈�̂�𝒌〉

𝑁

𝑘=1

=
𝛾

𝑉
∑〈�̂�𝒌〉

𝑁

𝑘=1

. (2.9) 



The macroscopic magnetization is aligned along the external magnetic field (since the x and y 

components of the expected magnetization equal zero) and the magnetization 𝑀0 in thermal equi-

librium is 

 𝑀0 =
𝛾

𝑉
∑〈𝐼𝑧〉

𝑁

𝑘=1

=
𝛾ħ𝑁

𝑉𝑍(𝑇)
∑ 𝑚𝑒

ħ𝑚𝜔0
𝑘𝑇

𝐼

𝑚=−𝐼

, (2.10) 
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with the partition function 𝑍(𝑇). For ħ𝜔0 ≪ 𝑘𝑇 (which is certainly satisfied at body temperature), 

the high-temperature approximation can be used to simplify 𝑀0 by doing a first-order expansion: 

 𝑀0 ≈
𝑁

𝑉

𝛾2ħ2𝐼(𝐼 + 1)𝐵0
3𝑘𝑇

. (2.11) 

 

Consequently, 𝑀0, which translates directly to the obtainable signal-to-noise ratio (SNR) using 

MRI, is directly proportional to the spin density 𝑁 𝑉⁄  as well as to the square of 𝛾. This predes-

tines the hydrogen nucleus for clinical MRI since it is abundant in biological tissue in the form of 

water molecules and has a large gyromagnetic ratio. 

The time evolution of 𝑴 can be anticipated by considering the time evolution of an individual 

magnetic moment 𝝁 given by 

 
𝑑〈�̂�〉

𝑑𝑡
= 〈

𝑖

ħ
[�̂�, �̂�]〉 =

𝑖𝛾2

ħ
〈�̂�(�̂� ∙ 𝑩) − (�̂� ∙ 𝑩)�̂�〉. (2.12) 

 

Component-wise evaluation using the Einstein notation yields 

 𝐼𝑘𝐼𝑙𝐵𝑙 − 𝐼𝑙𝐵𝑙𝐼𝑘 = 𝐵𝑙(𝐼𝑘𝐼𝑙 − 𝐼𝑙𝐼𝑘) = 𝐵𝑙[𝐼𝑘, 𝐼𝑙] = 𝑖ħ𝐵𝑙𝐼𝑚𝜀𝑘𝑙𝑚 = 𝑖ħ(𝑩 × �̂�)
𝑘
, (2.13) 

 

leading to the time evolution of 𝑴 by summation over 𝑁 particles in a volume 𝑉: 

 
𝑑𝑴

𝑑𝑡
=
1

𝑉
∑ 〈

𝑑�̂�𝒌
𝑑𝑡

〉

𝑁

𝑘=1

=
𝛾

𝑉
∑〈�̂�𝒌〉

𝑁

𝑘=1

×𝑩 = 𝛾𝑴× 𝑩. (2.14) 

 

The solution to this gyroscopic equation corresponds to a precession of 𝑴 around the direction of 

𝑩 with the angular frequency 𝜔0 = 𝛾|𝑩|. 

2.3 Excitation 
The angle 𝛼 between 𝑴 and 𝑩 = (0,0, 𝐵0) can be affected by applying an additional radiofre-

quency field 𝑩1(𝑡) = 𝐵1 ∙ (cos(𝜔1𝑡) , sin(𝜔1𝑡) , 0), polarized perpendicular to the axis of 𝑩. The 

time dependence of the total magnetic field needs to be accounted for in eq. (2.14) yielding  

 
𝑑𝑴(𝑡)

𝑑𝑡
= 𝛾𝑴(𝑡) × (𝐵1 cos(𝜔1𝑡) , 𝐵1sin(𝜔1𝑡) , 𝐵0). (2.15) 

 

A simplified form of eq. (2.15) can be obtained by performing a transformation
29

 from the labora-

tory system (𝑥, 𝑦, 𝑧, ) into a coordinate system rotating with frequency 𝜔1 around the axis of 𝑩 

(𝑥′ = 𝑥 cos(𝜔1𝑡) + 𝑦 sin(𝜔1𝑡),  𝑦
′ = −𝑥 sin(𝜔1𝑡) + 𝑦 cos(𝜔1𝑡), 𝑧

′ = 𝑧): 

 
𝑑𝑴(𝑡)

𝑑𝑡
= 𝛾𝑴(𝑡) × (𝐵1, 0, 𝐵0 −

𝜔1

𝛾
) = 𝛾𝑴(𝑡) × 𝑩eff.  (2.16) 
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Again, the macroscopic magnetization performs a precession around the axis of the introduced 

effective magnetic field 𝑩eff = (𝐵1, 0, 𝐵0 −
𝜔1

𝛾
) with frequency 𝜔eff = 𝛾‖𝑩eff‖. If the applied 

radio frequency meets the resonance condition 𝜔1 = 𝜔0, the z-component of 𝑩eff vanishes and M 

rotates solely around the x-axis. This causes the angle 𝛼 between 𝑴 and 𝑩 = (0,0, 𝐵0) to vary 

depending on the duration 𝑡𝑅𝐹 and the strength 𝐵1 of the applied radio frequency pulse 

 𝛼 = 𝛾𝐵1𝑡𝑅𝐹. (2.17) 

 

After turning off the radiofrequency field, the accrued transverse magnetization 𝑀𝑥𝑦 = 𝑀0 sin(𝛼) 

rotates around the axis of 𝑩 with 𝜔0 in the laboratory system and can be expressed using the com-

plex notation 

 𝑀𝑥𝑦(𝑡) =  𝑀𝑥𝑦(𝑡0)𝑒
𝑖𝜔0𝑡 = 𝑀𝑥(𝑡) + 𝑖𝑀𝑦(𝑡). (2.18) 

 

A temporary radiofrequency field is referred to as a radiofrequency pulse, while the change in the 

angle 𝛼 between 𝑴 and 𝑩 caused by said pulse is referred to as its flip angle.  

     In turn, the resulting rotating transverse magnetization 𝑀𝑥𝑦(𝑡) induces an electric current in the 

radiofrequency coils, which constitutes the measured signal 𝑆(𝑡) that ultimately leads to image 

formation (see chapter 3). 

2.4 Relaxation  
Interactions of the excited spins with their surrounding (spin-lattice) as well as among each other 

(spin-spin) cause relaxation processes and eventually the equilibrium magnetization 𝑴0 is re-

stored. 

𝑇1 Relaxation  
The relaxation of the longitudinal magnetization 𝑀𝑧 along the axis of 𝑩 is facilitated by the ther-

mal motion of the spins creating fluctuating magnetic fields. These fields carry spectral compo-

nents at the Larmor frequency, thereby inducing transitions between the energy levels 𝐸𝑚 at a 

specific rate 𝑅1 = 1 𝑇1⁄ . Consequently, the spin-lattice relaxation time 𝑇1 characterizes the expo-

nential restoration of 𝑀𝑧. The energy released by this relaxation process is transferred as heat to 

the lattice, e.g. the measured object. 

𝑇2 Relaxation  
Conversely, the spin-spin relaxation time 𝑇2 characterizes the decay of the transverse magnetiza-

tion 𝑀𝑥𝑦 caused by a loss of phase coherence of the spins. Immediately after applying a radiofre-

quency pulse, excited spins rotate with a coherent phase around the 𝑧-axis. However, by inevitable 

dipole-dipole interactions, the spins experience small random variations in their local magnet 

fields causing discrepancies in their precession frequency and thereby leading to an irreversible 

loss of their phase coherence.   

     Additional local inhomogeneities in the magnetic field caused by magnetic inference fields (e.g. 

due to changes in susceptibility at surface boundaries) may dephase the spins as well, which is 
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termed 𝑇2
′-relaxation. Due to the static nature of these inference fields, the 𝑇2

′-relaxation is a re-

versible process by inverting the phases using a 180° inversion pulse (see section 2.5). The entire 

decay of the transverse magnetization 𝑀𝑥𝑦 can be summarized by the constant 𝑇2
∗ 

 
1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′. (2.19) 

 

Generally
30

 (but not in principle
31

), 𝑇1 is greater than 𝑇2. Within the range of clinically used mag-

netic field strengths of 0.5 − 3 T, 𝑇1 is more susceptible to the strength of the external magnetic 

field than 𝑇2. However, at very high fields of 7 T and above, 𝑇2 values of most tissues shorten 

substantially
32

. Furthermore, since 𝑇2
∗ is influenced by field inhomogeneities, 𝑇2

∗ is always equal or 

shorter than 𝑇2 (as is evident from equation (2.19)). 

Bloch equations  
In 1946 Felix Bloch introduced empirically found equations

33
, describing the aforementioned re-

laxation processes: 

 
𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) × 𝑩(𝑡))𝑥 −

𝑀𝑥(𝑡)

𝑇2
 (2.20) 

 
𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) × 𝑩(𝑡))𝑦 −

𝑀𝑦(𝑡)

𝑇2
 (2.21) 

           
𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) × 𝑩(𝑡))𝑧 −

𝑀𝑧(𝑡) − 𝑀0

𝑇1
. (2.22) 

 

Eqs. (2.20)-(2.22) can also be expressed in matrix form: 

 
𝑑𝑴(𝑡)

𝑑𝑡
= 𝛾𝑴(𝑡) × 𝑩(𝑡) −

(

 
 

1
𝑇2
⁄ 0 0

0 1
𝑇2
⁄ 0

0 0 1
𝑇1
⁄

)

 
 
(𝑴(𝑡) −𝑴𝟎). (2.23) 

 

Using the previously introduced transverse magnetization 𝑀𝑥𝑦, the solutions of the Bloch equa-

tions in the case of a constant and homogenous external magnetic field 𝑩 = (0, 0, 𝐵0) are given by 

 𝑀𝑧(𝑡) = 𝑀0 − (𝑀0 −𝑀𝑧(𝑡0))𝑒
−
𝑡
𝑇1 (2.24) 

 𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(𝑡0)𝑒
𝑖𝜔𝑜𝑡𝑒

−
𝑡
𝑇2 .            (2.25) 

 

In accordance with the previous description, 𝑀𝑧 recovers exponentially with the time constant 𝑇1, 

whereas 𝑀𝑥𝑦 decays exponentially with the time constant 𝑇2 (since we ruled out field inhomoge-

neities), whilst precessing around the 𝑧-axis with the Larmor frequency 𝜔0. This time evolution of 

the magnetization is referred to as free induction decay (FID). 
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2.5 Echo generation 
In the previous section it was mentioned that the 𝑇2

′-relaxation, caused by constant local inhomo-

geneities in the magnetic field, can be reversed.  

Spin Echo  

This can be achieved by irradiating a 180° pulse after a predefined delay 𝑡 = 𝑇𝐸 2⁄  following the 

90° (or any other flip angle) excitation pulse as is illustrated in Figure 2.1. The constant local in-

homogeneities in the magnetic field cause spins to rotate at slightly varying frequencies depending 

on their spatial position, resulting in the accumulation of a phase. The 180° RF pulse inverts the 

magnetization vectors as well as the phases. Spins rotating at increased frequencies now have a 

delayed phase and are catching up with slower rotating spins. As the local precession frequencies 

are unaffected by the 180° pulse, the spins eventually rephase at the echo time 𝑡 = 𝑇𝐸, forming 

the so-called spin echo. The spin echo was initially discovered by Erwin Hahn
34

 in 1950 and is the 

basis many modern MRI pulse sequences.  

 
Figure 2.1: Generation of a spin echo: A 90° excitation pulse is followed by a predefined delay 𝑡 = 𝑇𝐸 ⁄ 2 

and a subsequent 180° pulse designed to reverse the 𝑇2
′-relaxation by inverting the phase of the 

precessing spins, causing them to form a spin echo at 𝑡 = 𝑇𝐸. 

 

Stimulated Echo  
Another sequence of pulses, designed to circumvent the excessive loss of signal due to relaxation 

processes, results in the formation of so-called stimulated echoes (STE). In contrast to spin echoes, 

stimulated echoes are formed by irradiating two 90° pulses instead of a single 180° inversion pulse 

(Figure 2.2). The first 90° pulse after the excitation at 𝑡 = 𝑇𝐸/2 tips the transverse magnetization 

𝑚𝑥𝑦 in the 𝑥𝑧-plane. During the mixing time 𝑇𝑀, the resulting 𝑧-component of the spins is then 

subject to 𝑇1-relaxation rather than the typically much faster 𝑇2-relaxation until at 𝑡 = 𝑇𝐸 2⁄ + 𝑇𝑀 

the third 90° pulse is irradiated and flips the 𝑧-components back into the 𝑥𝑦-plane. The spins re-

sume their precession around the 𝑧-axis and finally form the stimulated echo at 𝑡 = 𝑇𝐸 + 𝑇𝑀. 

     While the maximum signal intensity of a STEAM pulse sequence is inherently half that of a 

spin-echo amplitude with an equivalent echo time TE
35

, the prevention of 𝑇2-relaxation during 𝑇𝑀 

allows one to realize long intervals between the excitation pulse and the data acquisition during the 

echo. In the context of imaging, the acronym STEAM for stimulated echo acquisition mode was 

introduced by Frahm et al.
36

 in 1986, however, the phenomenon of stimulated echoes was initially 

described by Hahn
34

 in 1950 alongside the spin echo as well.  

90 

180 

𝑇𝐸

Spin Echo
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Figure 2.2: Generation of a stimulated echo: A 90° excitation pulse is followed by a predefined delay 

𝑡 = 𝑇𝐸 ⁄ 2 and a subsequent 90° pulse, tipping the transverse magnetization 𝑚𝑥𝑦 in the 𝑥𝑧-

plane. After the mixing time 𝑇𝑀, a third 90° pulse flips the 𝑧-components back into the 𝑥𝑦-

plane, where the spins resume their precession around the 𝑧-axis and finally form the stimulated 

echo at 𝑡 = 𝑇𝐸 + 𝑇𝑀. 

 

 

90 90 90 

𝑇𝐸/2 𝑇𝐸/2𝑇𝑀

Stimulated Echo
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3 Magnetic Resonance Imaging 
 

Having introduced nuclear magnetic resonance in the previous chapter, means to use this phenom-

enon for the formation of tomographic images will now be discussed. In section 3.1, the spatial 

encoding of the generated signal using magnetic gradient fields is shown. Section 3.2 explains how 

the magnetization can be selectively excited, effectively reducing the problem of spatial encoding 

to two dimensions, followed by a brief discussion of the concept of 𝑘-space in section 3.3. Finally, 

putting these aspects into context, one of the simplest and most relevant MRI pulse sequences, the 

spin-echo pulse sequence, is presented in section 3.4. 

3.1 Gradient Fields and Spatial Encoding 
To achieve a spatial encoding of the Larmor frequency 𝜔0, gradient coils are used to superimpose 

a linear magnetic gradient field 𝐵𝑧,𝑔 in the form of  

 𝐵𝑧,𝑔(𝒙, 𝑡) =  𝒙 ∙ 𝒈(𝑡), (3.1) 

 

with the magnetic field gradient 𝒈 = ∇𝐵𝑧 = (
𝜕𝐵𝑧

𝜕𝑥
,
𝜕𝐵𝑧

𝜕𝑦
,
𝜕𝐵𝑧

𝜕𝑧
), onto the static magnetic field 

𝑩 = (0, 0, 𝐵0). Consequently, the Larmor frequency will then be spatially dependent: 

 𝜔(𝒙, 𝑡) = 𝛾𝐵𝑧(𝒙) = 𝛾𝐵0 + 𝛾𝒙 ∙ 𝒈(𝑡). (3.2) 

 

Solving the Bloch equations in a rotating reference frame while taking this spatial dependency as 

well as a local spin density 𝜌(𝒙) = 𝑁 𝑉⁄  under account leads to 

 𝑀𝑧(𝒙, 𝑡) = 𝑀0(𝒙) − (𝑀0(𝒙) − 𝑀𝑧(𝒙, 𝑡0))𝑒
−
𝑡
𝑇1 (3.3) 

    𝑀𝑥𝑦
 (𝒙, 𝑡) = 𝑀𝑥𝑦

 (𝒙, 𝑡0)𝑒
−𝑖𝜙(𝒙,𝑡)𝑒

−
𝑡
𝑇2 , (3.4) 

 

where the effect of g on the equilibrium magnetization M0 was assumed to be negligible (since the 

superimposed gradient field is typically small compared to the static field). The time evolution of 

the longitudinal magnetization 𝑀𝑧 remains unchanged compared to equation (2.24), whereas the 

transverse magnetization accumulates a spatially dependent phase 𝜙(𝒙, 𝑡): 

 𝜙(𝒙, 𝑡) = ∫ 𝜔(𝒙, 𝑡′)
𝑡

0

d𝑡′ = 𝜔0𝑡 + 𝛾𝒙 ∙ ∫ 𝒈(𝑡′)d𝑡′
𝑡

0

= 𝜔0𝑡 + 𝒌(𝑡)𝒙, (3.5) 

 

using the definition of the spatial wave vector  

 𝒌(𝑡) = 𝛾∫ 𝒈(𝑡′) d𝑡′
𝑡

0

. (3.6) 
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The measured signal intensity 𝑆(𝑡) is proportional to the transverse magnetization 𝑀𝑥𝑦 and inte-

gration of eq. (3.4) over the volume 𝑉 leads to 

 𝑆(𝒌(𝑡)) ∝ ∫𝑀𝑥𝑦
 (𝒙, 𝑡0)

 

𝑉

𝑒−𝑖𝒌(𝑡)∙𝒙 d3𝒙, (3.7) 

 

where the decay of the transverse magnetization due to 𝑇2-relxation was neglected and the high 

frequency phase modulation 𝑒𝑖𝜔0𝑡 has been dropped. Eq. (3.7) dictates that the signal 𝑆(𝒌), meas-

ured in k-space, is proportional to the Fourier transform of the spatial distribution of the transverse 

magnetization 𝑀𝑥𝑦(𝒙). Hence, measuring the signal 𝑆(𝑘𝑖) in a sufficient number of points 𝑘𝑖, 

𝑀𝑥𝑦(𝒙) can be reconstructed from the measured signal via the inverse Fourier transform: 

 𝑀𝑥𝑦
 (𝒙) ∝ ∫ 𝑆(𝒌𝒊)𝑒

𝑖𝒌𝒊∙𝒙d3𝒌
 

𝑉𝑘

. (3.8) 

3.2 Slice-Selective Excitation 
To reduce the problem of spatial encoding to just two dimensions, slice-selective excitation can be 

employed. According to equation (3.2), a superimposed magnetic gradient field results in a spatial-

ly dependent Larmor frequency 𝜔(𝒙). Assuming the gradient direction to be parallel to the 𝑧-axis, 

a radiofrequency pulse 𝐵1(𝑡) with frequency 𝜔1 will then meet the resonance condition 𝜔1 =

𝜔(𝑧) = 𝛾𝐵0 + 𝛾𝑧 ∙ 𝑔𝑧 for just a single 𝑥𝑦-plane. By using a radiofrequency pulse with a band-

width ∆𝜔, protons inside a slice with finite thickness ∆𝑧 can be exited (Figure 3.1).  

     The slice thickness ∆𝑧 is therefore subject to the strength of the magnetic field gradient 𝑔 and 

to the bandwidth size ∆𝜔 of the irradiated radio frequency: 

 ∆𝑧 =
∆ω

𝛾𝑔
. (3.9) 

 

Using slice-selective excitation, the signal in eq. (3.7) becomes  

 𝑆(𝑘𝑥 , 𝑘𝑦, 𝑡) ∝ ∫ 𝑀𝑥𝑦
 (𝑥, 𝑦, 𝑡0)

 

𝑥,𝑦

𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)d𝑥d𝑦. (3.10) 

 

Spatial encoding and 𝑘-space sampling is then reduced to just two dimensions to be able to recon-

struct a single tomographic image of a slice with thickness ∆𝑧.  

     Upon further consideration
37

, the solution of the Bloch equations for the transverse magnetiza-

tion 𝑀𝑥𝑦
  in presence of a constant magnetic field gradient can be approximated for small flip an-

gles by 

 
|𝑀𝑥𝑦

 (𝑡, ∆𝜔)|

𝑀0
≈ 𝛾 |∫ 𝐵1(𝑡)𝑒

𝑖∆𝜔𝑡d𝑡
𝑡

0

|. (3.11) 
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Figure 3.1: Slice-selective excitation: A linear magnetic gradient field in the 𝒛-direction is superimposed 

onto 𝑩 while a radiofrequency pulse with bandwidth ∆𝝎 is applied. The resonance condition is 

met only for protons within ∆𝒛, resulting in a single excited slice perpendicular to the gradient 

direction. 

 

Accordingly, the slice profile of 𝑀𝑥𝑦
  is given by the Fourier transform of the envelope function 

𝐵1(𝑡). A perfectly rectangular profile can theoretically be obtained by using an sinc-pulse
37

 (of 

infinite duration) 

 𝐵1(𝑡) = 𝐵1 sinc (𝑡
∆𝜔

2
), (3.12) 

 

however, the sinc-pulse can only be applied for a finite duration and therefore needs to be pruned, 

resulting in small deviations from a perfect rectangular shape in the magnetization profile. 

3.3 𝑘-Space Sampling 
The navigation through 𝑘-space, i.e. the manipulation of 𝒌(𝑡), is subject to the gradient field 𝒈(𝑡), 

which in turn is manipulated by specifically designed gradient coils. There are three gradient coils 

in an MRI-system, one for each axis, allowing for arbitrary trajectories through 𝑘-space. Recalling 

eq. (3.6), in the two-dimensional case, the located k-space point is (𝑘𝑥 , 𝑘𝑦) = 𝛾(𝑔𝑥𝑡𝑥,  𝑔𝑦𝑡𝑦). In 

the following, the 𝑘-space trajectory and sampling scheme will be related to the resolution and 

field of view (𝐹𝑂𝑉) of the reconstructed images. For simplification, the spatial encoding will be 

reduced to a single dimension 𝑥.  

     Due to technical constraints, the 𝑘-space trajectory can only be sampled discretely, usually on 

an equidistantly spaced grid of 𝑁 points. Rewriting eq. (3.8) for the one-dimensional case using 

the inverse discrete Fourier transform (DFT) yields 

 𝑀𝑥𝑦
 (𝑥) ∝ ∑ 𝑆(𝑛∆𝑘)𝑒𝑖𝑥𝑛∆𝑘

 𝑁 2⁄

𝑛=−𝑁 2⁄

, (3.13) 

 

z

z

ω

ω(z)

ω
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with steps ∆𝑘 = 𝛾𝐺∆𝑡. Thus, the reconstructed distribution of the transverse magnetization ap-

pears periodically around the image center with field of view 

 𝐹𝑂𝑉 =
2𝜋

∆𝑘
. (3.14) 

 

As a consequence, for imaged objects larger than the 𝐹𝑂𝑉, the reconstructed magnetization distri-

bution overlaps. This is referred to as aliasing effect.  

     The resolution ∆𝑥 of the reconstructed image is given by 

 ∆𝑥 =
𝐹𝑂𝑉

𝑁
=

𝜋

𝑘𝑚𝑎𝑥
, (3.15) 

 

with the width of the sampled 𝑘-space  

 𝑘𝑚𝑎𝑥 =
𝑁∆𝑘

2
. (3.16) 

 

As the width of the sampled 𝑘-space is increased, the resolution of the reconstructed image im-

proves. It can further be anticipated, that the lower frequencies sampled at the 𝑘-space center de-

fine the image contrast, while high frequencies sampled at 𝑘𝑚𝑎𝑥 allow to resolve smaller details. 

3.4 Spin-Echo Pulse Sequence 
Having the physical phenomena of nuclear magnetic resonance and the fundamentals of image 

formation in mind, it is now possible to discuss one of the simplest and most relevant MRI pulse 

sequences, the spin-echo pulse sequence (Figure 3.2).  

The sequence begins with slice selective excitation using a RF pulse with a 90° flip angle while 

applying a magnetic gradient field 𝑔𝑧 along the 𝑧-axis. As the gradients fields cannot be employed 

arbitrarily fast, they are typically trapezoidal in shape, with a short ramp-up and ramp-down time. 

The spin dephasing evoked by the slice selection gradient is counteracted by a subsequent gradient 

with inverse sign, followed by the first step of spatial encoding in the 𝑥𝑦-plane: a gradient 𝑔𝑥 

along the 𝑥-axis is employed to target the k-space coordinate (𝑘𝑥 , 𝑘𝑦) = (−𝑘𝑚𝑎𝑥 2, 0)⁄ .  

     Next, a second RF pulse, albeit with a flip angle of 180°, is applied, designed to reverse the 𝑇2
′-

relaxation. Alike the 90° excitation pulse, the 180° inversion pulse is also made slice selective by 

employing a simultaneous gradient along the 𝑧-axis.  

     The next step is referred to as phase-encoding: a gradient in 𝑦-direction with varying strength 

𝑔𝑦 moves the targeted coordinate to the beginning of the 𝑘-space line 

(𝑘𝑥 , 𝑘𝑦) = (−𝑘𝑚𝑎𝑥 2, 𝛾𝑔𝑦𝑡𝑦)⁄  , that is to be read out during the current excitation. In a simple 

spin-echo sequence, the 𝑘-space is sampled in a line-wise fashion, while the respective 𝑘𝑦-

coordinate of the sampled line is defined by the phase encoding step, i.e. the gradient strength 𝑔𝑦. 

By performing repeated excitations with varying gradient strengths 𝑔𝑦, eventually the entire se-

lected k-space can be sampled.    
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Figure 3.2: Diagram of a spin-echo sequence. Slice-selective excitation is followed by a gradient 𝑔𝑥 along 

the x-axis to target the 𝑘𝑥 = −𝑘𝑚𝑎𝑥  coordinate. At 𝑡 = 𝑇𝐸 2⁄  a second RF pulse with a flip 

angle of 180° is applied. The 𝑘𝑦 coordinate is then targeted by a gradient with varying strength 

𝑔𝑦. During the readout centered around  𝑡 = 𝑇𝐸, the RF signal is sampled at a specific number 

of equidistantly spaced points, while a gradient 𝑔𝑥 moves the k-space coordinate from 

𝑘𝑥 = −𝑘𝑚𝑎𝑥  to 𝑘𝑥 = 𝑘𝑚𝑎𝑥. After the repetition time 𝑇𝑅, a new excitation cycle begins to sam-

ple the next line in 𝑘-space. 

 

     A respective excitation cycle is concluded with the readout centered around 𝑡 = 𝑇𝐸, where the 

signal is recorded. A gradient 𝑔𝑥 thereby moves the k-space coordinate from 𝑘𝑥 = −𝑘𝑚𝑎𝑥 to 

𝑘𝑥 = 𝑘𝑚𝑎𝑥, while the RF signal (measured with a dedicated receive coil) is sampled at a specific 

number of equidistantly spaced points, determined by the desired image matrix. After the repeti-

tion time TR, the next excitation cycle begins in order to sample the successive k-space line.  

Aside from image characteristics such as resolution and field of view, the user is at liberty to freely 

adjust the echo time 𝑇𝐸 as well as the repetition time 𝑇𝑅 (aside from certain technical limitations 

and the obvious condition: 𝑇𝐸 < 𝑇𝑅), achieving the desired image contrast: 

 The influence of the 𝑇2-relaxation on the image contrast (𝑇2-weighting) is defined by 𝑇𝐸. 

A short 𝑇𝐸 (𝑇𝐸 ≪ 𝑇2) causes the 𝑇2-relaxation to be cut short, mitigating most of its im-

pact on the image contrast. Yet, by choosing a long 𝑇𝐸 (𝑇𝐸~𝑇2), the image contrast is 

heavily influenced by the 𝑇2-relaxation times of the respective tissue, where tissues with 

short T2 times will appear dark and tissues with long 𝑇2 times will be bright in comparison 

(T2-weighted MRI).  

 

 Varying 𝑇𝑅 will alter the 𝑇1-weighting of the image contrast. A long 𝑇𝑅 (𝑇𝑅 ≫ 𝑇1) will 

ensure that most of the longitudinal magnetization 𝑀𝑧 has been restored before the next 

excitation cycle begins, leaving the contrast unaffected to differing 𝑇1 relaxation times. A 

short 𝑇𝑅 (𝑇𝑅~𝑇1) however, does not allow for a complete restoration of 𝑀𝑧 between suc-

cessive excitations, causing tissues with long 𝑇1 times to appear dark, while tissues with 

short 𝑇1 times appear bright in comparison (T1-weighted MRI).   

 As will be seen in the following chapters, there are possibilities to create image contrast based on 

further tissue properties, for example the thermal diffusion of the water molecules. 
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4 Diffusion-Weighted MRI 
 

In this chapter, the fundamentals of diffusion-weighted magnetic resonance imaging (DW-MRI) 

will be discussed. Section 4.1 covers the free diffusion process of particles in liquids and gas, fol-

lowed by the implications of this diffusive motion on the time-evolution of the magnetization in 

magnetic resonance experiments (section 4.2). The different pulse sequences used in the course of 

this work are covered in section 4.3, and section 4.4 discusses flow-induced spin dephasing in 

DW-MRI experiments
26,27

. 

4.1 Free Diffusion Process 
At temperatures above absolute zero, all particles in liquids or gases possess thermal energy mani-

fested by kinetic motion. Due to interactions with adjacent particles, the fashion of this motion is 

random and it is referred to as diffusion. The free diffusion process can be described quantitatively 

using Fick’s laws of diffusion
38

, where the first law relates the diffusion flux vector 𝒋 to a concen-

tration gradient ∇𝑛 via the diffusion coefficient 𝐷: 

 𝒋 = −𝐷∇𝑛. (4.1) 

 

The diffusion coefficient 𝐷 is a function of the viscosity and the temperature of the fluid as well as 

the size of the particles. Furthermore, the continuity equation under conservation of mass states  

 
𝜕𝑛(𝒙, 𝑡)

𝜕𝑡
+ ∇𝒋(𝒙, 𝑡) = 0, (4.2) 

 

yielding Fick’s second law: 

 
𝜕𝑛(𝒙, 𝑡)

𝜕𝑡
=  ∇ ∙ (𝐷∇𝑛(𝒙, 𝑡)) = 𝐷∆𝑛(𝒙, 𝑡), (4.3) 

 

where a constant (and scalar) diffusion coefficient 𝐷 was assumed. This partial differential equa-

tion defines the change of the concentration 𝑛(𝒙, 𝑡) over time. Assuming an ensemble of particles 

with initial position 𝒙(𝑡0) = 𝒙′, the distribution of particles 𝑛(𝒙, 𝑡) is described by a three-

dimensional Gaussian distribution with mean 𝒙′ (Figure 4.1): 

 𝑛(𝒙, 𝑡) =
1

(4𝜋𝐷𝑡)3 2⁄
𝑒
−(𝒙−𝒙′)2

4𝐷𝑡 . (4.4) 

 

Considering only the x-axis, the spatial distribution of particles 𝑃𝑠(𝑥, 𝑡) is given by a Gaussian 

distribution with the variance 𝜎𝑥
2: 

 𝜎𝑥
2 = 〈𝑥2〉 = 2𝐷𝑡. (4.5) 
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In three dimensions the variance is given by 𝜎2 = 〈𝒙2〉 = 6𝐷𝑡. Thus, in contrast to a regular linear 

motion, the expected “translation” (root of the mean squared displacement, while the mean dis-

placement is 0) of a single particle due to diffusion is merely increasing proportional to √𝑡.  

4.2 Bloch-Torrey Equations 
The Bloch equations (eq. (2.20)-(2.22)) can be extended to include the effect of diffusive motion 

on the time evolution of the magnetization in magnetic resonance experiments. The resulting 

Bloch-Torrey equations in isotropic media (with scalar constant diffusion coefficient 𝐷 and con-

stant magnetic field 𝑩 along the z-axis) are given by
7
 

 
𝑑𝑴

𝑑𝑡
= 𝛾𝑴× 𝑩 −

(

 
 

1
𝑇2
⁄ 0 0

0 1
𝑇2
⁄ 0

0 0 1
𝑇1
⁄

)

 
 
(𝑴−𝑴𝟎) + 𝐷∆𝑴. (4.6) 

 

In the presence of a magnetic field gradient 𝒈(𝑡), eq. (4.6) yields for the time evolution of the 

transverse magnetization 𝑀𝑥𝑦(𝒙, 𝑡) 

 
𝜕𝑀𝑥𝑦

𝜕𝑡
= −𝑖𝛾(𝐵0 + 𝒙 ∙ 𝒈(𝑡))𝑀𝑥𝑦 −

𝑀𝑥𝑦

𝑇2
+ 𝐷∆𝑀𝑥𝑦. (4.7) 

 

 
Figure 4.1: Illustration of the free diffusion process. Each particle in an ensemble with common starting 

position (A) performs a random walk motion as time passes (B). The distribution of particles 

after time 𝑡 is described by a three-dimensional Gaussian distribution (C) with zero mean dis-

placement. The standard deviation is proportional to the square root of the product of 𝐷 and 𝑡  
(illustration after 

26
). 

𝜎𝑥 = 2𝐷𝑡
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To eliminate the Larmor precession as well as the 𝑇2 signal decay, the transverse magnetization 

can be substituted by 𝑀𝑥𝑦(𝒙, 𝑡) = 𝑚𝑥𝑦(𝒙, 𝑡)𝑒
−𝑖𝛾𝐵0𝑡−

𝑡

𝑇2, simplifying eq. (4.7) to 

 
𝜕𝑚𝑥𝑦(𝒙, 𝑡)

𝜕𝑡
= −𝑖𝛾𝑚𝑥𝑦(𝒙, 𝑡)𝒙 ∙ 𝒈 + 𝐷∆𝑚𝑥𝑦(𝒙, 𝑡). (4.8) 

 

The measured signal in diffusion-weighted MRI is determined by the magnitude of 𝑚𝑥𝑦. By sub-

stituting
7
 𝑚𝑥𝑦(𝒙, 𝑡) = 𝑀(𝑡)𝑒−2𝜋𝑖𝒙∙𝒌(𝑡), using the definition of 𝒌 given in eq. (3.6), the phase and 

magnitude of 𝑚𝑥𝑦 can be separated. The time derivative of 𝑀(𝑡) is then given by 

 
𝜕𝑀(𝑡)

𝜕𝑡
= 𝑀(𝑡)𝐷𝑒𝑖𝒙∙𝒌(𝑡)∆𝑒−𝑖𝒙∙𝒌(𝑡) = −𝐷𝑀(𝑡)𝒌(𝑡) ∙ 𝒌(𝑡), (4.9) 

 

and integration leads to 

 𝑀(𝑡) = 𝑀(0) ∙ exp (−𝐷∫ 𝒌(𝑡′) ∙
𝑡

0

𝒌(𝑡′)𝑑𝑡′). (4.10) 

 

In a diffusion-weighted magnetic resonance experiment, the measured signal intensity at the echo 

time 𝑇𝐸 is therefore 

 𝑆(𝑇𝐸) = 𝑆(0) ∙ exp(−𝐷∫ 𝒌(𝑡′) ∙
𝑇𝐸

0

𝒌(𝑡′)𝑑𝑡′) =  𝑆(0) ∙ 𝑒−𝑏𝐷, (4.11) 

 

with the 𝑏-value  

 𝑏 = 𝛾2∫ (∫ 𝒈(𝑡′)𝑑𝑡′
𝑡

0

)

2

𝑑𝑡
𝑇𝐸

0

. (4.12) 

 

In a diffusion-weighted magnetic resonance experiment, the signal is attenuated due to diffusive 

motion and the 𝑏-value defines the strength of the diffusion weighting of the pulse sequence. As 

the 𝑏-value is increased, the signal attenuation due to diffusion becomes stronger, allowing one to 

quantify the diffusion coefficient 𝐷 by repeated measurements of the signal intensity 𝑆(𝑏) with 

varying diffusion-weightings 𝑏1 and 𝑏2 as 

 𝐷 =
ln(𝑆𝑏1 𝑆𝑏2⁄ )

𝑏2 − 𝑏1
. (4.13) 

 

In DW-MRI, the measured diffusion coefficient is often referred to as the apparent diffusion coef-

ficient 𝐴𝐷𝐶, owed to the fact that eq. (4.11) is only correct for freely diffusing homogenous liq-

uids or gases. Most DW-MRI applications measure diffusion coefficients within the tissue, where 

the water molecules interact with barriers such as cell membranes. This leads to reduction in the 

measured diffusion coefficient as well as deviations of the signal behavior from eq. (4.11), hence 

the term apparent diffusion coefficient
13

.  

     In fact, depending on the tissue structure, the reduction in the measured diffusion coefficient 
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may not be isotropic. This effect is particularly strong in white matter for example, where the par-

allel architecture of the axons facilitates the diffusion of water molecules along their main direc-

tion, but hinders their perpendicular motion. The anisotropy of the molecular diffusion can be 

probed with a diffusion tensor imaging (DTI) experiment
39

. In a DTI experiment, the diffusion 

gradients are applied in many different spatial directions (at least 6) to calculate the diffusion ten-

sor 𝐷𝑖𝑗 (a symmetric 3×3 matrix). The diffusion tensor contains the information about the direc-

tional dependency of the thermal diffusion and may be used to calculate a dimensionless measure 

called the fractional anisotropy 𝐹𝐴 via 

 𝐹𝐴 = √
(𝜆1 − 𝜆3)

2 + (𝜆2 − 𝜆3)
2 + (𝜆1 − 𝜆3)

2

2(𝜆1
2 + 𝜆2

2 + 𝜆3
2)

, (4.14) 

 

with the eigenvalues of the diffusion tensor 𝜆1−3. The 𝐹𝐴 is a measure of the diffusion anisotropy 

within an imaging voxel. Perfectly isotropic diffusion yields 𝐹𝐴 = 0 and approaches 1 for highly 

directional diffusion. 

4.3 Pulse Sequence Design in DW-MRI 
While the theoretical foundation of quantitative DW-MRI has been established as early as 1956

7
, 

the applicability was hampered by high technical requirements and long acquisition times even 

after the introduction of clinical routine MRI in the 1980s. The total acquisition time 𝑇 of a classic 

spin-echo sequence is given by 

 𝑇 = 𝑇𝑅 ∙ 𝑁𝑝 ∙ 𝑁𝐴, (4.15) 

 

with the number of phase encoding steps 𝑁𝑝 and the number of signal averages 𝑁𝐴. Due to limited 

gradient strengths, DW-MRI sequences typically have to resort to long echo times (> 50 ms) in 

order to achieve high 𝑏-values. Additionally, the signal-to-noise ratio is further decreased due to 

the diffusion weighting. This SNR starvation can be counteracted by acquiring multiple signal 

averages 𝑁𝐴 and by choosing a long repetition time 𝑇𝑅 (also to avoid a 𝑇1-weighted image con-

trast) to allow for a full relaxation of the longitudinal magnetization 𝑀𝑧. The resulting total acqui-

sition time for multiple measurements with varying 𝑏-values may therefore be prohibitive for rou-

tine application. Without going into detail, it should also be mentioned that classic spin-echo se-

quences suffer from high susceptibility to artifacts caused by motion. A remedy to both of these 

shortcomings, a readout technique called echo-planar imaging (EPI), is introduced in subsection 

4.3.1. Afterwards, the different diffusion gradient schemes used in this work are motivated and 

discussed in subsection 4.3.2 

4.3.1 Echo-Planar Imaging 
Echo-planar imaging (EPI), a readout technique designed to reduce the acquisition time in MRI 

sequences, was presented in 1977 by Mansfield
40

, however, it was only realizable in the 1990s in 

clinical MRI systems. Today most DW-MRI experiments are performed using this technique, 

where in order to reduce the number of phase encoding steps 𝑁𝑝, large portions (segmented EPI)  
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or even the entire selected 𝑘-space (single-shot EPI) is acquired during a single excitation cycle 

(Figure 4.2).  

     Using oscillating gradients in the readout direction, intersected by short phase-encoding blips, 

the 𝑘-space is sampled in a meandering fashion. The echo time 𝑇𝐸 of an EPI-sequence is usually 

defined by the point in time when the central 𝑘-space line is acquired, as it determines most of the 

image contrast. The refocusing pulses are timed accordingly to ensure the formation of the spin 

echo at 𝑡 = 𝑇𝐸. The pulse sequences employed for the DW-MRI experiments in this work all use 

the single-shot EPI readout technique.  

     A further advantage of single shot EPI pulse sequences (or any other fast single-shot readout 

technique) is the robustness to bulk motion. As the entire 𝑘-space is sampled after a single excita-

tion, the acquired data represents a “snapshot” compared to conventional pulse sequences, where 

the 𝑘-space is sampled over multiple excitations and phase-encoding steps. Accordingly, the re-

constructed images using single-shot-acquired data remain largely unaffected by bulk motion 

without the need for motion compensation techniques.  

 

Figure 4.2: Diagram of a pulse sequence using echo-planar imaging (A) and the resulting 𝑘-space trajectory 

(B). After the initial localization of (𝑘𝑥, 𝑘𝑦) = (−𝑘𝑥𝑚𝑎𝑥
2⁄ , 𝑘𝑦𝑚𝑎𝑥

2⁄ ), oscillating gradients 

(green) in the readout direction, intersected by short phase-encoding blips (orange) allow for the 

sampling of the selected 𝑘-space in a meandering fashion (blue). 
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4.3.2 Diffusion Gradient Profiles 
As discussed in section 4.2, the diffusion weighting or b-value of a sequence is determined by the 

strength and the timing of the applied diffusion gradients. To help understand how particle move-

ment during the application of a magnetic field gradient may introduce a distribution of phases and 

therefore a change in the measured signal intensity, the concept of gradient moments is introduced.  

Gradient Moments  

The position 𝒙(𝑡) of a particle can be written as a Taylor series 

 𝒙(𝑡) = 𝒙𝟎 + 𝑡𝒗𝟎 +
𝑡2

2
𝒂𝟎 +⋯, (4.16) 

 

with the starting position 𝒙𝟎, the initial velocity 𝒗𝟎 and the initial acceleration 𝒂𝟎. According to 

eq. (3.5), the time-evolution of the phase 𝜙′ of the transverse magnetization 𝑀𝑥𝑦 of a particle mov-

ing along 𝒙(𝑡) (calculated in a reference frame rotating with 𝜔0) is given by 

 𝜙𝒙(𝑡)
′ (𝑡) = 𝛾∫ 𝒙(𝑡′) ∙ 𝒈(𝑡′)d𝑡′

𝑡

0

. (4.17) 

 

Using the Taylor series for 𝒙(𝑡) (eq. (4.16)), the phase 𝜙′ can be expanded to yield 

 𝜙𝒙(𝑡)
′ (𝑡) = 𝛾 (𝒙𝟎 ∙ 𝒎𝟎(𝑡) + 𝒗𝟎 ∙ 𝒎𝟏(𝑡) +

1

2
𝒂𝟎 ∙ 𝒎𝟐(𝑡) + ⋯), (4.18) 

 

with the 𝑛th gradient moment 𝒎𝑛 

 𝒎𝒏(𝑡) = ∫ (𝑡′)𝑛𝒈(𝑡′)d𝑡′
𝑡

0

. (4.19) 

 

The 0𝑡ℎ gradient moment 𝒎𝟎 introduces a phase based on the position 𝒙𝟎 of the particle, which, as 

described in section 3.1, is utilized to encode the spatial localization in the MR signal using imag-

ing gradients. Therefore, additional diffusion-sensitizing gradients must meet the rephasing condi-

tion, i.e. the total 𝒎𝟎 of the diffusion gradient profile must be zero in order to avoid interference 

with the image formation and to ensure that the image contrast corresponds to the respective 𝑏-

value.   

     A non-zero 𝒎𝟏 will introduce a phase depending on the initial velocity 𝒗𝟎. For diffusion gradi-

ent profiles with non-zero 𝒎𝟏, bulk motion, i.e. uniform motion of all particles within a given 

volume with a constant velocity, will introduce a global phase, however, it is noteworthy that the 

magnitude of 𝑚𝑥𝑦 and therefore the signal intensity remains unaffected by this type of motion. In 

contrast, a set of particles moving with constant speeds albeit in different directions, for example 

flow in randomly oriented straight channels, will accumulate a phase based on the respective angle 

between the direction of the diffusion gradient 𝒈𝑑 and each particles movement direction. This 

results in a distribution of phases and an attenuation of the signal as will be discussed in section 

4.4. Diffusion-gradient profiles where the 1𝑠𝑡 gradient moment 𝒎𝟏 equals zero are referred to as 
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flow-compensated, as by using this type of gradient profile, particle movement with a constant 

speed void of acceleration will not introduce a phase, independent of the movement direction.  

     For the experiments in this work, diffusion gradient profiles with zero as well as non-zero 𝒎𝟏 

were used and will now be discussed in detail. 

Monopolar spin-echo diffusion gradients  

Initially devised for NMR measurements in 1965 by Stejskal and Tanner
41

, the most basic diffu-

sion-gradient profile consists of two symmetrical gradient lobes with (effectively) inverted signs 

(Figure 4.3). The gradient lobes are separated by a 180° inversion pulse, effectively inverting the 

sign of the second gradient lobe, which is thus applied in the same spatial direction as the first lobe 

(giving rise to the naming as monopolar profile). Using the notation from Figure 4.3, the 𝑏-value 

(eq. (4.12)) for a monopolar gradient profile 𝑏𝑚𝑝 is given by
37

  

 𝑏𝑚𝑝 = 𝛾2𝑔2(𝛿2(∆ − 𝛿 3⁄ ) + 𝜀3 30⁄ − 𝛿𝜀2 6⁄ ), (4.20) 

 

with the gradient amplitude 𝑔, the gradient duration 𝛿, the interval between the start of the gradi-

ent lobes ∆, and the ramp time 𝜀. Neglecting the ramp times 𝜀 for ideal rectangular gradient lobes, 

eq. (4.20) simplifies to 

 𝑏𝑚𝑝 = 𝛾2𝑔2𝛿2(∆ − 𝛿 3⁄ ). (4.21) 

 

As is depicted in Figure 4.3, the rephasing condition (total 𝒎𝟎 = 0) is met, provided the gradient 

lobes have the same net area. However, using this gradient profile flow-compensation (total 

𝒎𝟏 = 0) cannot be achieved.  

 

Figure 4.3: Stejskal-Tanner pulse sequence with monopolar diffusion gradient profile. The diffusion-

sensitizing magnetic field gradients 𝒈𝑫 are separated by the 180° inversion pulse, which effec-

tively inverts the sign of the second gradient lobe. By having the same net area, the rephrasing 

condition is met with a zero total 𝒎𝟎. However, the total first gradient moment 𝒎𝟏 is non-zero, 

the gradient profile is therefore not flow-compensated. 

 

Monopolar STEAM diffusion gradients  
In contrast to the Stejskal-Tanner sequence, the gradient pair in the STEAM sequence is separated 

not by a single 180° inversion pulse, but two 90° pulses (Figure 4.4). This allows one to realize 

large intervals between the two gradient lobes, while avoiding an excessive loss of signal due to  
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𝑇2-relaxation (see section 2.5). The motivation for the use of such long intervals will become ap-

parent in section 5.4.   

     As can be seen in Figure 4.4, the diffusion gradients describe a monopolar profile as well. Ac-

cordingly, the calculation of the 𝑏-value follows eq. (4.20) and (4.21). Alike the Stejskal-Tanner 

sequence, the total first gradient moment 𝒎𝟏 is non-zero, in fact, the longer the interval between 

the gradient lobes is chosen (while reducing the gradient strength 𝑔𝑑, thus keeping the resulting 𝑏-

value constant), the greater the absolute value of 𝒎𝟏 will be.  

 

Flow-compensated spin-echo diffusion gradients  

A possible diffusion gradient profile achieving zero first gradient moment 𝒎𝟏  consists of two 

gradient pairs separated by a 180°-pulse (as depicted in Figure 4.5). The two gradient pairs must 

be of (effectively) inverted sign to yield total 𝒎𝟏 = 0. Using the notation from Figure 4.5 and 

neglecting the ramp times 𝜀 the b-value can be calculated as
37

 

 𝑏𝑓𝑐 = 𝛾2𝑔2
𝛿3

6
, (4.22) 

 

with the gradient amplitude 𝑔 and the bipolar gradient duration 𝛿. As is apparent by comparing eq. 

(4.21) with eq. (4.22), the 𝑏-value of the flow-compensated diffusion gradient profile cannot be 

increased by elongating the interval between the start of the bipolar gradients ∆. Furthermore, as-

suming the limiting case ∆ = 𝛿, the flow-compensated gradients must be applied for twice the 

duration to achieve a 𝑏-value comparable to the monopolar gradient profile.  

     It is also noteworthy that any magnetic field gradient used throughout a pulse sequence (e.g. for 

slice-selective excitation or spatial encoding) affects the 𝑏-value as well. In quantitative DW-MRI, 

this becomes especially important for images without diffusion-weighting gradients, e.g. images 

where the 𝑏-value allegedly equals zero as this is de facto unobtainable in MRI. To counteract this 

potential source of error, in this work, the 𝑏-values of the images without diffusion weighting were 

calculated numerically using the exact timings of all employed gradients as will be discussed in 

subsection 7.1.3. 

 

Figure 4.4: Monopolar diffusion gradient profile with STEAM pulse sequence. The two gradient lobes are 

separated by two 90° pulses, effectively inverting the sign of the second lobe. Analogous to the 

Stejskal-Tanner pulse sequence, the rephrasing condition is met with a zero total 𝒎𝟎, while the 

total first gradient moment 𝒎𝟏 is non-zero, resulting in a non-flow-compensated diffusion gra-

dient profile. 
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Figure 4.5: Flow-compensated diffusion-gradient profile. Two gradient pairs with effectively inverted sign 

are separated by a 180° pulse, yielding a zero total first gradient moment 𝒎𝟏. 

 

4.4 IVIM Dephasing due to Capillary Flow 
Having introduced the gradient moments in subsection 4.3.2, it is apparent that particle movement 

besides thermal diffusion may introduce additional intravoxel dephasing, which in turn can affect 

the signal attenuation in a DW-MRI experiment. It was briefly mentioned, that bulk motion during 

the application of the diffusion-sensitizing gradients can introduce a global phase, however, the 

magnitude of 𝑚𝑥𝑦 and therefore the signal intensity remains unaffected by such a global phase. In 

contrast, incoherent motion, e.g. particles moving independently of one another in different direc-

tions inside a given voxel, may result in a distribution of phases and, accordingly, in an attenuation 

of the measured signal intensity. The thermal diffusion of water molecules constitutes such a form 

of incoherent motion and in section 4.2 it was shown, that the attenuation of the measured signal 

intensity due to free diffusion is a factor of the exponential form 𝑒−𝑏𝐷, with the diffusion coeffi-

cient 𝐷. Another source of incoherent motion in tissue is capillary perfusion: the water molecules 

in blood are flowing through randomly oriented capillaries at varying speeds in different direc-

tions. Depending on the duration of the diffusion experiment and the diffusion gradient profile, 

this type of motion may result in a distribution of phases as well and therefore causes additional 

signal attenuation. This led to the formulation of the intravoxel incoherent motion (IVIM) model 

by Le Bihan et al.
42

 in 1988, where the signal 𝑆(𝑏) as a function of the 𝑏-value is expressed in 

terms of two compartments  

 𝑆(𝑏) = 𝑆0(𝑓 ∙ 𝑒
−𝑏𝐷 ∙ 𝐹[𝒙(𝑡), 𝒈(𝑡)] + (1 − 𝑓) ∙ 𝑒−𝑏𝐷). (4.23) 

 

The compartment with signal fraction (1 − 𝑓) is thereby only subject to thermal diffusion, while 

the compartment with signal fraction 𝑓 experiences additional signal attenuation through further 

incoherent motion, specifically capillary perfusion, summarized in the factor 𝐹[𝒙(𝑡), 𝒈(𝑡)]. The 

attenuation factor 𝐹 = 𝐹[𝒙(𝑡), 𝒈(𝑡)] is a functional of (all) the particles’ motion paths 𝒙(𝑡) and 

the magnetic field gradient 𝒈(𝑡) = 𝒈 ∙  (𝑡) with temporally varying amplitude  (𝑡) and (in the 

context of this thesis) constant gradient direction 𝒈. In eq. (4.23) it was further assumed that both 
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compartments are governed by the same thermal diffusion coefficient 𝐷. Accordingly, the signal 

fraction 𝑓 can be understood as the signal fraction attributed to blood in a given voxel. Accounting 

for the relaxation times of the two compartments as well as the sequence parameters 𝑇𝐸 and 𝑇𝑅, 𝑓 

can further be translated to the actual blood volume in the tissue
43

.   

     As has been stated by Le Bihan et al.
42

, the manifestation of the factor 𝐹 is dependent on the 

characteristics of the capillary blood flow. The important characteristics of the blood flow are the 

flow velocity 𝒗 and the time 𝜏 until a particle changes its movement direction with respect to the 

duration 𝑇 of the diffusion-sensitizing period. For the sake of simplicity, the capillary bed is as-

sumed to consist of segments that are interconnected, approximately straight and randomly orient-

ed. Accordingly, a directional change occurs as a particle traverses from one segment to the next. 

In order to approximate 𝐹, further assumptions about the nature of the capillary blood flow within 

a voxel must be made:  

 Each water molecules within the capillary network is moving with constant speed 𝑣 = |𝒗| 

during the diffusion experiment, where the movement direction is dictated by the orienta-

tion of the capillary segment in which the molecule currently resides. 

 Tentatively, a common speed 𝑣 for all particles is assumed, however, in subsection 4.4.3 it 

will be shown how the results can be generalized to accommodate for a statistical distribu-

tion of speeds 𝜌(𝑣). 

 The capillary segments have a constant length 𝑙, consequently, the duration a particle re-

sides within a segment is given by 𝜏 = 𝑙 𝑣⁄ . 

 Capillary segments are numerous within a single voxel and are randomly oriented, so that 

an isotropic distribution of particle movement directions can be inferred.  

 The movement directions of a particle before and after changing a capillary segment are 

uncorrelated. 

 

In subsection 4.4.1 an approximation for the signal attenuation factor in the limiting case 𝜏 ≪ 𝑇 

(i.e., many directional changes during the diffusion preparation), called the pseudo-diffusion limit, 

will be introduced. Complementary, in subsection 4.4.2, an analytic solution for F in the limiting 

case 𝜏 ≫ 𝑇 (i.e., the duration 𝑇 of the diffusion experiment is much shorter than the time 𝜏 until a 

particle changes its movement direction), which translates to isotropic straight flow, will be de-

rived
44

. This is followed by the introduction of normalized phase distributions based on the works 

of Wetscherek at al.
26,27

 in subsection 4.4.3, allowing one to analyze the signal attenuation with an 

arbitrary number of directional changes during the application of the diffusion-sensitizing gradi-

ents.  

4.4.1 Pseudo-Diffusion Limit 
Originally introduced by Le Bihan et al.

42
, the pseudo-diffusion limit in IVIM MRI implies that the 

particle displacement due to capillary flow is approximately Gaussian, similar to thermal diffusion. 

This requires that the particles experience many directional changes during the diffusion-

sensitizing period, i.e. 𝜏 ≪ 𝑇. The signal attenuation factor can then be approximated by the expo-

nential function 𝐹 = 𝑒−𝑏𝐷
∗
, with the pseudo-diffusion coefficient 𝐷∗. As will be shown in subsec-
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tion 4.4.3, 𝐷∗ is related to 𝜏 and particle speed 𝑣 via 𝐷∗ = 𝑣2𝜏 6⁄ . Applying the pseudo-diffusion 

limit to eq. (4.23) yields 

 𝑆(𝑏) = 𝑆0 ((1 − 𝑓) ∙ 𝑒−𝑏𝐷 + 𝑓 ∙ 𝑒−𝑏(𝐷+𝐷
∗)). (4.24) 

 

According to Le Bihan et al., at least four directional changes during the diffusion-sensitizing pe-

riod are required for eq. (4.24) to be applicable
42

. For a more detailed discourse on the domain of 

validity of the biexponential model, the reader shall be referred to section 5.5. Remarkably, eq. 

(4.24) does only depend on the 𝑏-value, but not on the temporal profile of the diffusion gradients. 

Therefore, in the pseudo-diffusion limit, the measured signal decay is expected to be independent 

of the employed gradient scheme.  

4.4.2 Straight Flow Limit 
Next, the attenuation factor 𝐹 in the limiting case of straight flow (𝜏 ≫ 𝑇) will be discussed. The 

straight flow case implies that particles may flow in randomly oriented directions, however, they 

experience no acceleration or changes in their movement direction during the diffusion experi-

ment.  

     Considering an ensemble of particles, 𝐹 can be expressed in terms of the sum of transverse 

magnetization vectors with phase distribution 𝜌(𝜙) induced by the incoherent flow during the 

diffusion experiment:  

 𝐹 =  |〈𝑒𝑖𝜙〉| = |∫ 𝜌(𝜙)𝑒𝑖𝜙d𝜙
𝜋

−𝜋

|. (4.25) 

 

In order to estimate 𝐹, one must therefore derive the distribution of phases 𝜌(𝜙). Treated in a 

frame of reference rotating with 𝜔0, the phase accumulated by a single particle travelling along the 

path 𝒙(𝑡) during 𝑇 (duration of a diffusion experiment) is given by eq. (4.17) and partial integra-

tion leads to 

 𝜙 = 𝛾∫ 𝒙(𝑡)
𝑇

0

∙ 𝒈(𝑡)d𝑡 =  −𝛾∫ 𝒗(𝑡) ∙ ∫ 𝒈(𝑡′)d𝑡′d𝑡
𝑡

0

𝑇

0

. (4.26) 

 

Due to the rephasing condition 𝑚0 = ∫ 𝒈(𝑡)𝑑𝑡
𝑇

0
= 0, which needs to be fulfilled to allow for un-

impaired image formation, 𝜙 is independent of the individual particles’ starting positions 𝑥𝑖.  

     As is evident from eq. (4.26), in an ensemble of particles moving uniformly during 𝑇, i.e. all 

particles are sharing the same relative path 𝒙(𝑡) (bulk motion, rigid body motion), the accumulated 

phase will be equal for all particles. It can easily be appreciated that in this case, eq. (4.25) equates 

to 1 and therefore coherent motion of particles inside a given voxel does not introduce additional 

signal decay in diffusion-weighted images.  

     As an example of incoherent particle movement, we will consider the following simple case: In 

accordance with previously stated assumption, all particles inside a capillary network are moving 

with identical and constant speed 𝑣 in isotropically distributed directions and the angle between a 

particle’s movement direction and the axis of the applied diffusion gradient is further given by 𝛼. 
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The characteristic duration 𝜏 is assumed to be much longer than the duration of the diffusion ex-

periment 𝑇, so that directional changes (changes between capillary segments) of particles can be 

neglected. Using integration by parts of 1 ∙ ∫ 𝒈(𝑡′)d𝑡′
𝑡

0
 and the rephasing condition from above, 

the acquired phase of a particle will be proportional to the cosine of 𝛼: 

 𝜙 = −𝛾∫ 𝒗 ∙ ∫ 𝒈(𝑡′)d𝑡′d𝑡
𝑡

0

𝑇

0

= 𝑣 ∙ cos(𝛼) ∙ 𝛾 ∫ 𝑡 ∙ 𝑔(𝑡)d𝑡
𝑇

0

= 𝑣 ∙ cos(𝛼) ∙ 𝑚1, (4.27) 

 

with the total first moment of the diffusion gradient profile 𝑚1 =  𝛾 ∫ 𝑡 ∙ 𝑔(𝑡)d𝑡
𝑇

0
.  

     For 3D isotropically distributed velocity directions, the probability distribution of 𝛼 is 𝜌(𝛼) =
1

2
sin𝛼, with 0 ≤ 𝛼 < 𝜋. Substituting 𝑢 = cos𝛼, the integral in eq. (4.25) yields 

 𝐹 = |
1

2
∫ sin𝛼 𝑒𝑖𝑚1𝑣 cos𝛼d𝛼
𝜋

0

| =  |sinc(𝑚1 ∙ 𝑣)|. (4.28) 

 

For flow-compensated gradient profiles, the total 𝑚1 is zero and 𝐹 again equates to 1, leaving the 

signal of flow-compensated sequences insensitive to the aforementioned type of particle move-

ment (constant speed, random direction). For non-flow-compensated gradient profiles, 𝑚1 is non-

zero and the signal decays sinc-modulated with increasing 𝑚1(𝑏). In this case, the signal decay is 

therefore strongly dependent on the gradient scheme. 

4.4.3 Normalized Phase Distributions 
We will now consider a more general case, where particles are still moving at constant speeds, but 

are experiencing an arbitrary amount of directional changes during the diffusion-sensitizing peri-

od. For this purpose we follow a framework presented by Wetscherek et al.
26,27

 making use of 

normalized phase distributions.  

     In DW-MRI experiments where the diffusion-sensitizing magnetic field gradient is fixed along 

a direction 𝒆𝑔, 𝒈(𝑡) can be expressed using a normalized temporal profile  (𝑡 𝑇⁄ ) by 

 𝒈(𝑡) = 𝑔 (
𝑡

𝑇
)𝒆𝑔 =  𝑔 ( )𝒆𝑔 , 0 ≤  ≤ 1, (4.29) 

 

with the maximum gradient amplitude 𝑔.  

     Using eq. (4.12), the maximum gradient amplitude is directly related to the 𝑏-value via substi-

tuting  = 𝑡/𝑇 in the outer integral and  ′ = 𝑡′/𝑇 in the squared inner integral: 

 𝑏 =  ∫ [𝛾∫ 𝒈(𝑡′)d𝑡′
𝑡

0

]

2

d𝑡 = 𝛾2𝑔2𝑇3∫ 𝑚0
2( )d =  ℎ

2𝛾2𝑔2𝑇3
1

0

𝑇

0

, (4.30) 

 

with the accumulated 0𝑡ℎ gradient moment 𝑚0( ) = ∫  ( ′)d ′
𝑠

0
 and  ℎ: = √∫ 𝑚0

2( )d 
1

0
. The 

factor  ℎ thus relates the shape of the respective gradient profile to the 𝑏-value, i.e.  ℎ is a meas-
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ure of a gradient profiles efficiency with regards to achieving a strong diffusion weighting.  

     Using eq. (4.30), 𝒈(𝑡) can be expressed as 

 𝒈(𝑡) = 𝑔 (
𝑡

𝑇
)𝒆𝑔 =

√𝑏

 ℎ𝛾𝑇
3 2⁄

 (
𝑡

𝑇
)𝒆𝑔. (4.31) 

 

Inserting eq. (4.31) into eq. (4.26) yields 

 𝜙 =
−√𝑏

 ℎ𝑇
3 2⁄

𝒆𝑔 ∙ ∫ 𝒗(𝑡)
𝑇

0

∫  (
𝑡′

𝑇
)

𝑡

0

d𝑡′d𝑡 =
√𝑏

 ℎ√𝑇
𝒆𝑔 ∙ ∫ 𝒗(𝑡)

𝑇

0

𝑚0 (
𝑡

𝑇
)d𝑡. (4.32) 

 

To evaluate this integral, we now apply the assumptions made in our particle movement model: 

 Each particle moves with constant speed 𝑣 =  |𝒗(𝑡)| 

 Each particle’s movement direction 𝒆𝑣(𝑡) changes randomly after a constant time 

val 𝜏 

 The first directional change of a given particle occurs randomized in time at 𝑡1 = 𝜏 ∙  , 

with  ∈ 𝑈(0,1), where 𝑈(0,1) is the uniform random distribution between 0 and 1 (ex-

cluding 0). 

Using this model, the integral in eq. (4.32) can be split in 𝑀 = ⌈𝑇 𝜏⁄ + 1 −  ⌉ intervals of constant 

movement, with the ceiling function ⌈⋯ ⌉. The 𝑘th directional change is therefore only dependent 

on   and 𝜏 and occurs at 𝑡𝑘 = ( + 𝑘 − 1)𝜏. We further define that the 0th directional change oc-

curs at 𝑡0 = 0 and the last at 𝑡𝑀 = 𝑇. The current movement segment is given by 𝑘(𝑡) =

⌊𝑡 𝜏⁄ −  + 1⌋, with the floor function ⌊⋯ ⌋ and starting with 𝑘 = 0 for the initial segment (seg-

ment before the 1st directional change occurs). A particles velocity at the time 𝑡 in the 𝑘th seg-

ment is then given by 𝒗(𝑡) = 𝑣 ∙ 𝒆𝑘(𝑡), with the movement direction 𝒆𝑘 in the 𝑘th segment.  

     Applying this mode, eq. (4.32) transforms to 

 

𝜙ℎ(𝑏, 𝑣, 𝑇, 𝜏,  ) =
𝑣√𝑏

 ℎ√𝑇
∑ 𝒆𝒈 ∙ 𝒆𝒌∫ 𝑚0 (

𝑡

𝑇
)d𝑡

𝑡𝑘+1

𝑡𝑘

𝑀−1

𝑘=0

=
𝑣√𝑏𝑇

 ℎ
∑ 𝒆𝒈 ∙ 𝒆𝒌∫ 𝑚0( )d 

𝑠𝑘+1

𝑠𝑘

𝑀−1

𝑘=0

, 

(4.33) 

 

where again, the normalized times  = 𝑡 𝑇⁄  and  𝑘 = 𝑡𝑘 𝑇⁄  were used.  

     It is now possible to rewrite eq. (4.33) using a normalized phase 𝜗ℎ, which only depends on the 

temporal gradient profile  ( ),   and the average (i.e., non-integer) number of directional changes 

𝑀 = 𝑇 𝜏⁄ , using the dimensionless product 𝑣√𝑏𝑇 to define: 

 𝜙ℎ(𝑏, 𝑣, 𝑇, 𝜏,  ) = 𝑣√𝑏𝑇 𝜗ℎ(𝑀,  ). (4.34) 

 

 

  



32  4 Diffusion-Weighted MRI 

 

 

Thus, the normalized phases are given by 

 𝜗ℎ(𝑀,  ) =  
1

 ℎ
∑𝒆𝑔 ∙ 𝒆𝑘∫ 𝑚0( )d 

𝑠𝑘+1

𝑠𝑘

𝑁−1

𝑘=0

. (4.35) 

 

The problem of determining the signal attenuation factor 𝐹 is therefore reduced to calculating the 

distribution of normalized phases 𝜌𝜗ℎ(𝜗,𝑀) for a given gradient scheme  ( ) and average number 

of directional changes 𝑀. The distribution 𝜌𝜙ℎ
 of the original phase 𝜙ℎ is then given by 

 𝜌𝜙ℎ
(𝜙,𝑀) = 𝜌𝜗ℎ (

𝜙

𝑣√𝑏𝑇
,𝑀) ∙

1

𝑣√𝑏𝑇
, (4.36) 

 

and the signal attenuation from eq. (4.25) is 

 𝐹ℎ(𝑏, 𝑣, 𝑇, 𝜏) = |∫ 𝜌𝜙ℎ
(𝜙,

𝑇

𝜏
) 𝑒𝑖𝜙d𝜙

∞

−∞

| = |∫ 𝜌𝜗ℎ (𝜗,
𝑇

𝜏
) 𝑒𝑖𝑣√𝑏𝑇𝜗d𝜗

∞

−∞

|. (4.37) 

 

Using this expression, it is possible to calculate the normalized phase distributions for a given  ( ) 

and 𝑀 only once and then scale according to the sequence parameters 𝑏 and 𝑇 and to the particle 

velocity 𝑣 to determine the respective attenuation factor 𝐹.  

In the following it will be shown how the distribution 𝜌𝜗ℎ for a given  ( ) and 𝑀 can be evaluated 

by numerical simulation.  

     For a particle ensemble with isotropic distribution of movement directions, the statistical distri-

bution of angles 𝜃 ∈ (0, 𝜋) between the diffusion gradient and the particle paths is given by 

𝜌(𝜃) =
1

2
sin 𝜃. With 𝑢𝑘:= 𝒆𝑔 ∙ 𝒆𝑘 = cos𝜃𝑘, the distribution 𝜌(𝑢𝑘) is given by 

 𝜌(𝑢𝑘) = 𝜌(𝜃(𝑢𝑘)) ∙ |
𝑑𝜃

𝑑𝑢𝑘
| =

sin(cos−1(𝑢𝑘))

2
∙

1

√1 − 𝑢𝑘
2
=
1

2
 . (4.38) 

 

Accordingly, 𝑢𝑘 ∈ 𝑈(−1, 1) is uniformly distributed between – 1 and 1 and the product 𝒆𝑔 ∙ 𝒆𝑘 in 

eq. (4.35) can be replaced by randomly drawn 𝑢𝑘 for the purpose of numerical simulation. Fur-

thermore, the integral in eq. (4.35) can be regarded as a weighting factor of the particle movement 

in the 𝑘th segment. Following this idea, we can introduce the weightings 𝑐ℎ 

 𝑐ℎ( + 𝑘,𝑀) ≔
1

 ℎ
∫ 𝑚0( )d =

1

 ℎ
∫ 𝑚0( )d 
min(1,

𝑘+𝑟
𝑀

)

min(1,max(0,
𝑘+𝑟−1

𝑀
))

𝑠𝑘+1

𝑠𝑘

, (4.39) 

 

and insertion in eq. (4.35) finally yields 

 𝜗ℎ(𝑀,  ) =  ∑ 𝑢𝑘𝑐ℎ( + 𝑘,𝑀)

⌈𝑀⌉

𝑘=0

. (4.40) 
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Eq. (4.40) can then be used to generate the normalized phase distributions by performing Monte 

Carlo experiments for a large number of particles: tuples of random variables ( , 𝑢0, … , 𝑢⌈𝑀⌉) are 

generated for each particle, allowing one to obtain a histogram of the resulting phases 𝜗ℎ.  

The phase-distribution framework can also be used to deduce the attenuation factor 𝐹 in the pseu-

do-diffusion limit (large 𝑀). The normalized phase 𝜗ℎ is a weighted sum of many uniformly dis-

tributed random variables 𝑢𝑘 with zero mean and standard deviation 𝜎𝑘 = 1 √3⁄ . Therefore, the 

central limit theorem applies
45

 and 𝜌𝜗ℎ  can be approximated as Gaussian with zero mean and 

standard deviation 𝜎 = 𝜎𝑘 √𝑀⁄ = 1 √3𝑀⁄  for large 𝑀: 

 𝜌𝜗ℎ(𝜗,𝑀) ≈ √
3𝑀

2𝜋
∙ 𝑒−

3𝑀
2
𝜗2  for 𝑀 ≫ 1. (4.41) 

 

Applying the Gaussian phase approximation to eq. (4.25), 𝐹 is simply the Fourier transform of a 

Gaussian, given by 𝐺(𝜔) = 𝑒−𝜔
2𝜎2 2⁄ , at the coordinate 𝜔 = 𝑣√𝑏𝑇:  

 𝐹ℎ(𝑏, 𝑣, 𝑇, 𝜏) = |∫ 𝜌𝜗ℎ (𝜗,
𝑇

𝜏
) 𝑒𝑖𝑣√𝑏𝑇𝜗d𝜗

∞

−∞

| ≈ 𝑒−
𝑏𝑇𝑣2

6𝑀 = 𝑒−
𝑏𝑣2𝜏
6 = 𝑒−𝑏𝐷

∗
. (4.42) 

 

In the last step, the relationship 𝐷∗ = 𝑣2𝜏 6⁄  was established. Thus, in the case of large M, the 

phase-distribution framework results in an exponentially decaying 𝐹 as a function of the applied 𝑏-

value as well (compare to subsection 4.4.1). 

The phase distributions generated by evaluating eq. (4.40) for a large number of particles are valid 

only for the particular values of 𝑀 used for the respective simulation. It can be shown that the 

exact phase distribution for any 𝑀 < 1 is given by a linear interpolation of 𝜌𝜗ℎ(𝜗, 0) and 

𝜌𝜗ℎ(𝜗, 1)
26

: 

 𝜌𝜗ℎ(𝜗,𝑀) = (1 −𝑀)𝜌𝜗ℎ(𝜗, 0) + 𝑀𝜌𝜗ℎ(𝜗, 1),       0 < 𝑀 < 1. (4.43) 

 

By sampling a fine grid of 𝑁𝑀 exponentially spaced 𝑀𝑘 = exp (𝑘 𝑁𝑀⁄ ∙ log(𝑀𝑚𝑎𝑥)) > 1, with 

𝑘 = (1, 2,… ,𝑁𝑀), close approximations of the phase distributions for arbitrary (non-integer) 𝑀 

can again be obtained by linear interpolation. 

General Distributions of Particle Speeds  

So far, only ensembles of particles with a common speed 𝑣 and, therefore, a common 𝑀 were con-

sidered, i.e. the (implied) distribution of particle speeds was considered to follow a delta distribu-

tion. It is possible to calculate normalized phase distributions 𝜌𝜗ℎ
′ (𝜗,𝑀) for arbitrary speed distri-

butions 𝜌(𝑣), 𝑣 ≥ 0 with mean 〈𝑣〉 by introducing the distribution of (dimensionless) relative 

speeds 𝑣𝑟𝑒𝑙 = 𝑣 〈𝑣〉⁄  

 𝜌𝑟𝑒𝑙(𝑣𝑟𝑒𝑙) =  〈𝑣〉 𝜌(〈𝑣〉𝑣𝑟𝑒𝑙) . (4.44) 

 

The distribution of relative speeds 𝜌𝑟𝑒𝑙(𝑣𝑟𝑒𝑙) therefore has the same shape as 𝜌(𝑣), yet is distribut-
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ed around the mean value 1. The distribution of normalized phases 𝜌𝜗ℎ(𝜗,𝑀) is implicitly de-

pendent on the relative speeds since the width (maximum obtainable phase) as well as the average 

number of directional changes are linearly proportional to the respective relative speed 𝑣𝑟𝑒𝑙. This 

can be accommodated for by adjusting the distribution of normalized phases for the relative speeds 

as  

 𝜌𝑣𝑟𝑒𝑙(𝜗,𝑀) =
𝜌𝜗ℎ(𝜗 𝑣𝑟𝑒𝑙⁄ , 𝑣𝑟𝑒𝑙𝑀)

𝑣𝑟𝑒𝑙
. (4.45) 

 

Finally, 𝜌𝜗ℎ
′ (𝜗,𝑀) can be calculated by integrating the speed-adjusted phase distributions 

𝜌𝑣𝑟𝑒𝑙(𝜗,𝑀) multiplied by the distribution of relative speeds 𝜌(𝑣𝑟𝑒𝑙) with respect to 𝑣𝑟𝑒𝑙: 

 𝜌𝜗ℎ
′ (𝜗,𝑀) = ∫ 𝜌(𝑣𝑟𝑒𝑙) ∙ 𝜌𝑣𝑟𝑒𝑙(𝜗,𝑀)d𝑣𝑟𝑒𝑙

∞

0

. (4.46) 

 

Replacing 𝜌𝜗ℎ(𝜗,𝑀) in eq. (4.37) by 𝜌𝜗ℎ
′ (𝜗,𝑀), the speed 𝑣 corresponds to the mean 〈𝑣〉 of the 

respective speed distribution 𝜌(𝑣).   

     A particle ensemble with common speed translates to delta-distributed speed, which, as is easi-

ly verified using eq. (4.44)-(4.46), results in 𝜌𝜗ℎ(𝜗,𝑀) = 𝜌𝜗ℎ
′ (𝜗,𝑀). In section 5.1 suitable rela-

tive speed distributions 𝜌(𝑣𝑟𝑒𝑙) for the constructed capillary phantom (chapter 6) will be intro-

duced. 
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5 Simulations and Theoretical Results 
 

In this chapter, specifics regarding the generation of the normalized phase distributions and the 

analysis of MRI data are given, followed by precursory results based on simulations.  

     To properly model the spin dephasing induced by capillary flow, an approximation of the un-

derlying particle speed distribution in the investigated object must be found. In chapter 6, the con-

struction of a perfusable capillary phantom will be described. Based on information gained by 

characterizing the capillary phantom via optical microscopy (section 6.2) and previously published 

research in the field of fracture networks, a capillary network speed distribution 𝜌CN(𝑣) is deduced 

in section 5.1. Section 5.2 discusses the generation of the gradient profile respective phase distri-

butions and prospects the emerging signal decay for different flow scenarios. Subsequently, sec-

tion 5.3 details the model fitting and error estimation method. In section 5.4, a relationship be-

tween the diffusion duration experiments and the parameter estimation accuracy is established, 

serving as a basis for the design of the experiments in chapter 7. Finally, utilizing the generated 

phase distributions, signal decay curves for different flow-scenarios were simulated and analyzed 

in section 5.5 to assess the adequacy of the biexponential IVIM model and to facilitate the inter-

pretation of the results in chapter 7. 

5.1 Particle Speed Distribution 
Section 4.4 was concluded by linking the distribution of normalized phases 𝜌𝜗ℎ(𝜗,𝑀) with an 

arbitrary particle speed distribution 𝜌(𝑣). Having an adequate approximation of the statistical 

speed distribution of the flowing particles is crucial to facilitate an accurate model fit to the meas-

ured data and generate meaningful parameter estimates, as will become apparent in this chapter. In 

this section, a statistical distribution of particle speeds for the constructed capillary phantom will 

be motivated based on two considerations: Subsection 5.1.1 will cover the particle speed distribu-

tion inside a single capillary segment, while in subsection 5.1.2 the distribution of capillary-

averaged speeds is discussed. The conjunction of those two considerations leads to the overall 

particle speed distribution 𝜌CN(𝑣). 

5.1.1 Laminar Flow 
As a first step to approximate the velocity distribution inside the capillary network, it is necessary 

to determine if fluid flow inside a single segment can be described as turbulent or laminar. The 

former manifests itself in chaotic motion and strong fluctuations in the particle velocities, while 

the latter is characterized by streamlined and ordered motion. This distinction can be made by 

calculating the ratio of inertial forces to viscous forces of the fluid called the Reynolds number 

𝑅𝑒46
: 

 𝑅𝑒 =
�̅�𝐷

𝜈
=
𝜌�̅�𝐷

𝜇
, (5.1) 
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with the average particle speed �̅�, the characteristic length of the confining geometry 𝐷, and the 

kinematic viscosity 𝜈 = 𝜇 𝜌⁄ . Fluid flow is laminar for 𝑅𝑒 ≤ 2300 under most practical condi-

tions
46

. If we assume the confining geometry to be cylindrical tubes with a diameter of 𝐷 =

 30 μm (maximum diameter measured using optical microscopy in section 6.2) and the flowing 

liquid to be the NaCl solution determined in section 6.3 at room temperature (𝜈 ≈ 1.33 ×

10−6  m2 s⁄  according to Kestin et al.
47

), eq. (5.1) dictates that the flow can be expected to be lam-

inar for �̅� ≤ 57 m s⁄ . To achieve flow velocities of that magnitude inside the capillary system 

would require exorbitant pumping pressure, which would most likely result in the destruction of 

the phantom. As will be shown in chapter 7 the determined average particle speed using the data 

from the flow-dependent DW-MRI experiments are in the order of 10−3m s⁄ . It is therefore rea-

sonable to assume that flow is laminar inside the capillaries.  

     Laminar flow is characterized by a constant axial velocity of each fluid particle along a stream-

line, absent of motion in the radial direction (Figure 5.1). The speed profile is a parabolic function 

of the radial position   and can be written as 

 𝑣( ) = 2�̅� (1 −
 2

(𝐷 2⁄ )2
). (5.2) 

 

Integration over an entire cross section yields for the distribution 𝜌lam,�̅�(𝑣) of (non-negative) 

speeds 

 𝜌lam,�̅�(𝑣) =
Θ(2�̅� − 𝑣)

2�̅�
, (5.3) 

 

with the Heaviside function Θ. The particle speeds 𝑣 are therefore uniformly distributed between 0 

and 𝑣max = 2�̅�.   

 
Figure 5.1: Illustration of fully developed laminar flow profile in a cylindrical capillary (panel A) and the 

corresponding uniform speed distribution 𝜌(𝑣) (panel B). The average velocity �̅� through a 

cross section is given by the half of the maximum particle velocity: �̅� =  𝑣max/2. 

�̅�

𝑣max

�̅�
𝑣

𝜌
𝑣

𝑣max

1

𝑣max

A B
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5.1.2 Speed Distribution in Capillary Networks 
The speed distribution in eq. (5.3) was derived for a single capillary, but will also be valid for a 

network of capillary segments assuming the average speed �̅� is common across different capillary 

segments. As a more general approach, one may assume that different capillaries will yield vary-

ing average speeds, due to variations in the diameters, lengths and pressure differences. The over-

all statistical speed distribution 𝜌(𝑣), taking the distribution of average speeds 𝜌(�̅�) as well as the 

capillary respective speed distribution 𝜌lam,�̅�(𝑣) due to laminar flow into consideration, is then 

given by the convolution 

 𝜌(𝑣) = ∫ 𝜌(�̅�) ∙
∞

0

𝜌lam,�̅�(𝑣)d�̅� = ∫ 𝜌(�̅�) ∙
Θ(2�̅� − 𝑣)

2�̅�
d�̅�

∞

0

= ∫
𝜌(�̅�)

2�̅�
d�̅�

∞

𝑣 2⁄

, (5.4) 

 

where the Heaviside function Θ(2�̅� − 𝑣) was eliminated by adjusting the integral bounds.  

     As will become apparent in this chapter, a reasonable approximation of the underlying distribu-

tion of average speeds 𝜌(�̅�) is crucial for the accurate estimation of the flow parameters. While it 

would in theory be possible to formulate an inverse problem using the data obtained in chapter 7 to 

fit the underlying speed distribution, the ill-posedness of this problem would require extensive 

regularization (aside from an exorbitant computing power), limiting the meaningfulness of the 

generated result. One way to obtain an approximation of the speed distribution is to perform fluid 

flow simulations using an exact digital 3D model of the capillary phantom. Unfortunately, this 

approach entails significant difficulties. Firstly, due to the very small details of the capillary struc-

ture in the micrometer range, accurately capturing the entire phantom poses a considerable tech-

nical challenge. While advanced X-ray microtomography scanners are able to deliver resolutions 

at 1 μm isotropic resolution, the phantom dimensions do not conform to the required maximum 

sample size. As the sample size and with it the field of view increases, the achievable resolution 

decreases. Consequentially, the phantom would have need to be cut up into smaller sections to be 

scanned separately and pieced together subsequently, rendering the phantom unusable for any 

subsequent MRI measurements. Furthermore, the accurate simulation of fluid flow in complex 

geometries is far from straight forward and topic of current research.  

     Hence, a more practical approach was taken by applying results from related research in the 

field of particle transport in fracture networks. Particle transport through fractured rock is an im-

portant issue in subsurface hydrology, particular in regards to the geological disposal of nuclear 

waste
48

. In particle transport, one is primarily interested in the Lagrangian flow velocities, tracking 

individual particles as they move through space and time
46

. In the Lagrangian picture, the particles 

are labeled by a time-independent vector 𝒙𝟎 (e.g., their initial position at 𝑡 = 0), and the flow is 

described by the function  

 𝐗(𝐱𝟎, 𝑡), (5.5) 

 

giving the position of a particle at time 𝑡. This is contrasted by the Eulerian picture, where one is 

interested in the velocity field 𝐮(𝐱, 𝑡) within a fixed observation frame.  
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The Lagrangian and the Eulerian descriptions of flow are related by
49

 

 𝐮(𝐗(𝐱𝟎, 𝑡), 𝑡) =
𝜕𝐗

𝜕𝑡
(𝐱𝟎, 𝑡). (5.6) 

 

The analysis of flow-induced spin dephasing in DW-MRI experiments adheres to the Eulerian 

picture, since the observation frame is fixed by the imaging parameters. Fortunately, the analysis 

of the Lagrangian velocities in particle transport is usually based on the initial simulation of Eu-

lerian velocity fields.  

     Particle transport analyses by Painter et al.
48

 as well as by Frampton and Cvetkovic
50,51

 were 

based on a simulated three-dimensional fracture network with uniformly oriented fractures of log-

normally distributed lengths and apertures (length and apertures uncorrelated). As will be shown in 

section 6.2, the distribution of the capillary lengths inside the phantom, determined using optical 

microscopy, is well approximated by a log-normal distribution. Assuming cylindrical capillaries, 

the distribution of apertures in the phantom is given by  

 𝜌( ) = 𝜋𝜌 ((
𝑑

2
)
2

), (5.7) 

 

with the measured diameters 𝑑. Fitting a log-normal distribution to 𝜌( ) and subsequently per-

forming a Kolmogorov-Smirnov test to compare the actual and fitted distributions yields a statistic 

of 𝐷𝑛 = 0.022 and 𝑝 = 0.367. The strong similarity of the measured capillary and aperture distri-

butions to log-normal distributions serves as reasonable basis for the applicability of the results by 

the aforementioned studies. Their findings indicate, that the distribution of the “segment slowness” 

𝜌(𝛽) = 𝜌(1 �̅�⁄ ), with the particle speed �̅�, is closely approximated by a Pareto power-law distri-

bution
52

: 

 𝜌(𝛽) = 𝛼𝛽min
𝛼 ∙ Θ(𝛽 − 𝛽min) ∙ 𝛽

−𝛼−1, (5.8) 

 

with the scale parameter 𝛽min > 0 and the shape parameter 𝛼 > 0. The notation �̅� was used since 

in the works of Frampton and Cvetkovic
50,51

 the particle flow inside the capillaries was approxi-

mated as plug flow and �̅� = 1 𝛽⁄  can therefore be considered as the average speed within a capil-

lary with regard to a laminar flow profile (see previous section). The distribution of the average 

particle speeds as a function of 𝑣, 𝜌(�̅�), can be obtained via 

 𝜌(�̅�) = 𝜌(𝛽(�̅�)) ∙ |
𝑑𝛽

𝑑�̅�
|. (5.9) 

 

By substituting 𝛽min = 1 �̅�max⁄  follows 

 𝜌(𝛽(�̅�)) =
𝛼

�̅�max
𝛼 ∙ Θ (

1

�̅�
−

1

�̅�max
) ∙ �̅�𝛼+1 =

𝛼

�̅�max
𝛼 ∙ Θ(�̅�max − �̅�) ∙ �̅�𝛼+1 (5.10) 

 

and  
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 𝛽 =
1

�̅�
 →  

d𝛽

d�̅�
=
−1

�̅�2
 . (5.11) 

 

Insertion into (5.9) yields  

 𝜌(�̅�) =
 

�̅�max
𝛼 ∙ Θ(�̅�max − �̅�) ∙ �̅�𝛼−1. (5.12) 

 

A comparison of 𝜌(�̅�) for varying 𝛼 is shown in Figure 5.2 A. Depending on 𝛼, the PDF is either 

positively skewed (𝛼 < 1), uniform (𝛼 = 1) or negatively skewed (𝛼 > 1).   

     The maximum particle speed �̅�max can be related to the average particle speed by calculating 

the expectation value E[�̅�] = 〈�̅�〉  

 〈�̅�〉 =  ∫ �̅� ∙ 𝜌(�̅�)d𝑣

∞

0

=
𝛼

�̅�max
𝛼 ∫ �̅�𝛼d�̅�

�̅�max

0

=
𝛼

𝛼 + 1
�̅�max. (5.13) 

 

Hence, eq. (5.12) can be expressed as 

 𝜌(�̅�) = 𝛼 (
𝛼

〈�̅�〉(𝛼 + 1)
)
𝛼

Θ(
〈�̅�〉(𝛼 + 1)

𝛼
− �̅�) �̅�𝛼−1, (5.14) 

 

which simplifies for 𝛼 = 1 to the uniform distribution 

 𝜌(𝑣,̅  𝛼 = 1) =
1

2〈�̅�〉
Θ(2〈�̅�〉 − �̅�). (5.15) 

 

Taking into account the laminar flow profile inside the capillaries, eq. (5.4) must be applied to eq. 

(5.14) and eq. (5.15) to obtain the overall speed distribution which is then finally given by  

 
𝜌(𝑣) =

{
 
 

 
 𝛼2 (1 − (

𝛼𝑣
2〈𝑣〉(𝛼 + 1)

)
𝛼−1

)

2〈𝑣〉(𝛼 + 1)(𝛼 − 1)
∙ Θ(

〈𝑣〉(𝛼 + 1)

𝛼
−
𝑣

2
) 𝛼 ≠ 1

ln(2〈𝑣〉) − ln (
𝑣
2)

4〈𝑣〉
𝛼 = 1

 

 

(5.16) 

 

Figure 5.2 B  illustrates the resulting particle speed distributions for varying 𝛼 values. After con-

sidering the laminar flow profile, the distributions are positively skewed regardless of the value of 

𝛼. However, as 𝛼 decreases the distributions display a more pronounced L-shape with an elongat-

ed tail towards higher speeds as the maximum speed is given by 𝑣max = 2〈𝑣〉 (𝛼 + 1) 𝛼⁄ . The 

appropriate value of the shape parameter 𝛼 is dictated by the frame of reference, i.e. Eulerian or 

Lagrangian picture
46

. A phenomenon called preferential flow
53

 describes how the majority of par-

ticles follow the fastest flowing path. Consequently, in the Lagrangian frame of reference, where 

one is following individual particles, 𝛼 is larger than 1, resulting in a 𝜌(�̅�) that is negatively 

skewed towards faster particle speeds (see Figure 5.2).  
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Figure 5.2: Comparison of the PDFs (solid lines) and CDFs (dotted lines) of the average particle speeds 

within capillaries 𝜌(�̅�) (eq. (5.12)) in panel A and the overall particle speeds (including also the 

laminar flow profiles) 𝜌(𝑣) (eq. (5.16)) in panel B for varying shape parameters 𝛼. The PDFs 

were normalized to yield an equal expectation value E[�̅�] = 〈�̅�〉 and E[𝑣] = 〈𝑣〉, respectively. 

 

In the Eulerian frame of reference, where one is observing a fixed location in space, the slow ve-

locities dominate and can become arbitrarily small. In this case, the shape parameter 𝛼 is smaller 

than 1 and 𝜌(�̅�) is positively skewed.  

     During the course of the analysis of the experimental data, the determination of the optimum 

value for 𝛼 based on the model fits has not proven to be expedient (see chapter 7). However, it will 

become apparent that a positively skewed speed distribution can indeed be deduced clearly from 

the measured signal intensities. It will be shown that using a value of 𝛼 = 0.5 leads to a high 

goodness of fit and to physically meaningful parameter estimates. The distribution derived in eq. 

(5.16) with 𝛼 = 0.5 will in the following simply referred to as the capillary network speed distri-

bution 𝜌CN(𝑣) and is given by 

 𝜌CN(𝑣) =
1

6〈𝑣〉
(
√6〈𝑣〉

√𝑣
− 1) ∙ Θ(6〈𝑣〉 − 𝑣). (5.17) 

 

Thus, 𝜌CN(𝑣) has essentially the shape of 𝑓(𝑥) = 1 √𝑥⁄  but is scaled and shifted along the y-axis 

such that the zero occurs at 𝑣max = 6〈𝑣〉. 

5.2 Phase Distributions 
In subsection 4.4.3, it was demonstrated that the normalized phase of a single particle acquired 

during a diffusion MRI experiment due to flow in randomly oriented capillaries can be expressed 

as 

 𝜗ℎ(𝑀,  ) =  ∑ 𝑢𝑘𝑐ℎ( + 𝑘,𝑀)

⌈𝑀⌉

𝑘=0

, (5.18) 

 

with random variables ( , 𝑢0, … , 𝑢⌈𝑀⌉), the number of directional changes 𝑀 and the weighting of 

each movement segment 𝑐ℎ. Sampling a vast number of normalized phases allows one to approxi-

�̅�

�̅�

𝜌
𝑣

𝑣

𝑣

𝜌
𝑣

A B
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mate the underlying normalized phase distribution and finally to determine the respective signal 

attenuation factor 𝐹 (optionally applying a particle speed distribution beforehand as in eq. (4.46)). 

The weightings 𝑐ℎ of the movement segments depend on the normalized profile  ( ) of the em-

ployed gradients. More specifically, the normalized 0th gradient moment 𝑚0( ) as well as 

 ℎ = √∫ 𝑚0
2( )d 

1

0
 have to be determined.   

     The calculation of the normalized phase distributions for the gradient profiles employed in the 

diffusion experiments (chapter 7) is discussed in detail in subsection 5.2.1. Subsequently, the ob-

tained phase distributions and the corresponding signal attenuation factors 𝐹 is discussed in sub-

section 0 with a focus on the influence of 𝑀 as well as the particle speed distributions. 

5.2.1 Generating Normalized Phase Distributions 
To obtain distributions of the normalized phases 𝜌𝜗ℎ(𝜗,𝑀) according to eq. (5.18) using Monte 

Carlo simulations,  ( ), 𝑚( ) and  ℎ have to be determined for each employed gradient scheme. 

First, the monopolar gradient scheme (Figure 5.3) will be discussed.   

Due to technical limitations, the diffusion gradients cannot be employed arbitrarily fast. A short 

interval 𝜏 (~0.7 ms, depending on the maximum gradient amplitude) is required to ramp the gra-

dients up and down, respectively, which is exaggeratedly depicted in the exact gradient profile in 

Figure 5.3. The interval between the start of the ramp-up and ramp-down is given by 𝛿, while the 

interval between the start of each lobe, separated by the 180° inversion pulse, is given by ∆. To 

simplify the temporal gradient profile  ( ) for the calculation of the normalized phases, the gradi-

ent lobes were modelled as step functions. Hereby, the maximum gradient amplitude duration was 

increased by /2 on each side to accommodate for the ramping-duration, before normalizing the 

temporal profile on the resulting total gradient scheme duration ∆ + 𝛿. Note that the 180° inver-

sion pulse inverts the effective sign of subsequent gradients, which is ignored for the temporal 

gradient profile  ( ) in Figure 5.3, but is reflected in the following equation for  ( ) and the re-

sulting 0
th
 gradient moment 𝑚0( ): 

 monopolar:          ( ) = {
1
0
−1

;        𝑚0( ) = {
 
 
1 −  

                 
0 ≤  <  
 ≤  < 𝑏
𝑏 ≤  < 1

, (5.19) 

 

with 

  =  
𝛿

∆ + 𝛿
;  𝑏 =

∆

∆ + 𝛿
 . (5.20) 

 

For  ℎ follows with ∫ 𝑚0
2( )d 

1

0
= ∫  2d 

𝑎

0
+ ∫  2d 

𝑏

𝑎
+ ∫ (1 −  )2d 

1

𝑏
: 

  ℎ = √∫ 𝑚0
2( )d 

1

0

= √
1

3
− 𝑏 + 𝑏2 −

𝑏3

3
+  2𝑏 −

2 3

3
= √

𝛿2(3∆ − 𝛿)

3(𝛿 + ∆)3
. (5.21) 
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Considering the trapezoidal shape of 𝑚0( ), the integral in eq. (4.39) can be evaluated for arbi-

trary bounds  𝐿 <  𝑈 using 

 
∫ 𝑚0( )𝑑 
𝑠𝑈

𝑠𝐿

=
1

2
( 𝑈

2 −  𝐿
2 −𝑚 𝑥(0,  𝑈 −  ) ( 𝑈 −  ) −𝑚 𝑥(0,  𝑈 − 𝑏) ( 𝑈 − 𝑏)

+𝑚 𝑥(0,  𝐿 −  ) ( 𝐿 −  ) +𝑚 𝑥(0,  𝐿 − 𝑏) ( 𝐿 − 𝑏)). 

(5.22) 

 

The here deduced equations are also valid to generate the phase distributions for STEAM pulse 

sequences using monopolar diffusion gradients. As discussed in subsection 4.3.2, STEAM pulse 

sequences allow for increased diffusion times while preserving acceptable SNR values by circum-

venting T2 relaxation effects. Instead of a 180° pulse, STEAM sequences employ two subsequent 

90° pulses, separated by an adjustable time interval, which can be accommodated for in the above-

introduced temporal gradient profile  ( ) for monopolar diffusion gradients by adjusting the value 

of ∆ accordingly.  

     Next, the flow-compensated gradient scheme (Figure 5.4) will be treated in an equivalent man-

ner. Again, the temporal gradient profile  ( ) was modelled as a step function, where the gradient 

ramp-duration 𝜏 was taken into account by extending the duration of the maximum gradient ampli-

tudes. After normalization,  ( ) and 𝑚( ) are given by 

 flow‐compensated:        ( ) =

{
  
 

  
 
1
0
−1
0
−1
0
1

;        𝑚0( ) =

{
  
 

  
 
                                 
 
𝑐 −  
0
𝑑 −  
− 
 − 1 

0 ≤  <  
 ≤  < 𝑏
𝑏 ≤  < 𝑐
𝑐 ≤  < 𝑑
𝑑 ≤  < 𝑒
𝑒 ≤  < 𝑓
𝑓 ≤  < 1

, (5.23) 

 

with 

 

Figure 5.3: Exact gradient profile, simplified temporal gradient profile  ( ) and 0th gradient moment 

𝑚0( ) of the monopolar gradient scheme. 
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 =
𝛿 − 𝜏

2(∆ + 𝛿)
;  𝑏 =

𝛿 + 𝜏

2(∆ + 𝛿)
;  𝑐 =

𝛿

∆ + 𝛿
;  

𝑑 =
∆

∆ + 𝛿
;  𝑒 =

𝛿 + 2∆ − 𝜏

2(∆ + 𝛿)
;  𝑓 =

𝛿 + 2∆ + 𝜏

2(∆ + 𝛿)
. 

(5.24) 

 

For  ℎ follows (by piecewise integration as before) 

 ℎ

= √
1

3
−
2 3

3
+  2𝑏 +

𝑐3

3
− 𝑐2𝑏 + 𝑐𝑏2 −

𝑏3

3
+ 𝑑2𝑒 − 𝑑𝑒2 +

𝑒3

3
−
𝑑3

3
+  2𝑓 −  2𝑒 −

𝑓3

3
+ 𝑓2 − 𝑓

= √
1

3
+
4

3

(𝛿 − 𝜏)2(𝛿 + 2𝜏) − 2(∆ + 𝛿)3

8(∆+ 𝛿)3
= √

(𝛿 − 𝜏)2(𝛿 + 2𝜏)

6(∆+ 𝛿)3
. 

 

(5.25) 

 

Approaching the integral ∫ 𝑚0( )𝑑 
𝑠𝑈
𝑠𝐿

 for arbitrary bounds  𝐿 <  𝑈 analogously as in the mono-

polar case leads to 

 

∫ 𝑚0( )𝑑 
𝑠𝑈

𝑠𝐿

=
1

2
( 𝑈

2 −  𝐿
2 −𝑚 𝑥(0,  𝑈 −  ) ( 𝑈 −  ) +𝑚 𝑥(0,  𝐿 −  ) ( 𝐿 −  )

−𝑚 𝑥(0,  𝑈 − 𝑏) ( 𝑈 − 𝑏) +𝑚 𝑥(0,  𝐿 − 𝑏) ( 𝐿 − 𝑏)
+𝑚 𝑥(0,  𝑈 − 𝑐) ( 𝑈 − 𝑐) − 𝑚 𝑥(0,  𝐿 − 𝑐) ( 𝐿 − 𝑐)
− 𝑚 𝑥(0,  𝑈 − 𝑑) ( 𝑈 − 𝑑) +𝑚 𝑥(0,  𝐿 − 𝑑) ( 𝐿 − 𝑑)
+𝑚 𝑥(0,  𝑈 − 𝑒) ( 𝑈 − 𝑒) −𝑚 𝑥(0,  𝐿 − 𝑒) ( 𝐿 − 𝑒)

+𝑚 𝑥(0,  𝑈 − 𝑓) ( 𝑈 − 𝑓) −𝑚 𝑥(0,  𝐿 − 𝑓) ( 𝐿 −  )). 

(5.26) 

 

 

 

Figure 5.4: Exact gradient profile, simplified temporal gradient profile  ( ) and 0𝑡ℎ gradient moment 

𝑚0( ) of the flow-compensated gradient scheme. 
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For the diffusion-weighted MRI experiments with applied flow through the phantom, four differ-

ent sequences with varying gradient schemes and gradient timings were used as summarized in 

Table 5.1. The sequence ID is referring to the monopolar (MP) or flow-compensated (FC) gradient 

profiles followed by the leading edge separation between two gradient lobes, also referred to as 

diffusion time interval 𝑡𝐷. For the monopolar diffusion gradient profiles 𝑡𝐷 corresponds to ∆, 

whereas for the flow-compensated profiles 𝑡𝐷 equals to (𝛿 + 𝜏) 2⁄ .   

     Having deduced the above-mentioned expressions for  ( ), 𝑚( ) and  ℎ, the Monte Carlo 

experiments to obtain the normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀) were performed using Matlab 

(The MathWorks, Natick, Massachusetts, USA). For each gradient profile, the normalized phase 

distributions were generated for 256 logarithmically spaced values for the number of directional 

changes 𝑀 ranging from 1 to 30 by simulating paths for 640,000,000 particles. As mentioned in 

subsection 4.4.3, 𝜌𝜗ℎ(𝜗,𝑀 < 1) is given by linear interpolation of 𝜌𝜗ℎ(𝜗, 0) and 𝜌𝜗ℎ(𝜗, 1), 

whereas 𝜌𝜗ℎ(𝜗,𝑀 > 30) can be approximated by a Gaussian distribution for all of the employed 

gradient profiles. Lastly, the normalized phase distributions for the different particle speed distri-

butions were calculated according to eq. (5.4).  

Table 5.1: Sequences with varying gradient schemes and gradient timings used for the diffusion-weighted 

MRI experiments with applied flow through the phantom. 

5.2.2 Signal Decay 
The purpose of this section is to show how the generated normalized phase distributions and the 

resulting signal attenuation depend on the number of directional changes 𝑀 as well as to illustrate 

the significance of applying a speed distribution other than a delta distribution.  

Figure 5.5 shows the generated normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀) as well as the resulting 

attenuation factors 𝐹 for the gradient schemes with ID ‘FC18’ (flow-compensated gradients) and 

‘MP28’ (monopolar gradients) when no further particle speed distribution was applied. Using a 

constant particle speed 𝑣 = 1 mm/s, 𝐹 is hereby plotted as a function of the diffusion weighting 

(𝑏-value).   

     The flow-compensated gradients show no dephasing for 𝑀 = 0, such that the factor 𝐹 remains 

constant independent of the applied 𝑏-value. This is consistent with eq. (4.28) derived for the 

straight flow case. For 0 < 𝑀 < 1, 𝐹 decreases with increasing 𝑏-value, however, in a non-

exponential fashion and with a limit greater than zero. Eventually, as 𝑀 is further increased, the 

phase distribution starts to approximate a Gaussian distribution. Accordingly, at large 𝑀 the atten-

uation factor 𝐹 decreases exponentially with increasing 𝑏-value.   

     The monopolar gradient on the other hand shows the fastest dephasing in the case of 𝑀 = 0, as 

the normalized phases take on a uniform distribution. The associated attenuation factor decreases 

steeply with increasing 𝑏-value in a sinc-like fashion in accordance with eq. (4.28), creating local  

ID Gradient scheme b-values[s/mm²] [ms] [ms] [ms] 𝒂𝒉 𝑻𝑬[ms] 

FC11 Flow-compensated 0-200 25.4 21.7 0.7 0.126 58 

FC18 Flow-compensated 0-800 38.8 34.7 0.7 0.132 84 

MP28 Monopolar 0-800 28.1 22.3 0.7 0.283 60 

MP171 Monopolar (STEAM) 5-800 171.2 16.2 0.7 0.081 47 
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minima where particles completely dephase and local maxima where they partly rephase. 

As 𝑀 is increased, the distribution of the normalized phases is passing over dome-shaped to even-

tually approximating Gaussian for large 𝑀 as well. Simultaneously, the slope of 𝐹 is decreasing, 

pushing the local minima to higher 𝑏-values until they disappear as the phase distribution becomes 

Gaussian. As can be inferred from Figure 5.5, for 𝑀 = 32 the phase distributions for the two gra-

dient profiles are virtually identical and the respective attenuation factors 𝐹 both decrease expo-

nentially with increasing 𝑏-value at the same rate. It is noteworthy that there are no results to be 

found in the literature demonstrating an unambiguous sinc-like signal decay in a diffusion-

weighted MRI experiment where capillary perfusion was investigated. By applying an appropriate 

particle speed distribution (see section 5.1) this seemingly unphysiological behavior can be reme-

died for, as will be shown in the following paragraph.  

     Figure 5.6 shows the generated normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀) and the resulting 

attenuation factors 𝐹 when the speed distribution 𝜌CN(𝑣) determined in section 5.1 (which was 

derived from the Pareto power-law distribution with 𝛼 = 0.5) was applied, again with an average 

particle speed of 𝑣 = 1 mm/s. For both the flow-compensated and the monopolar gradients, the  

 
Figure 5.5: Generated normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀) (top row) and the corresponding signal 

attenuation factors 𝐹 (bottom row) using a delta-distributed particle speed with a constant parti-

cle speed 𝑣 = 1 mm/s for flow-compensated (left column) and monopolar (right column) gra-

dients.  

-0.5 0.50 -0.5 0.50

𝜗ℎ 𝜗ℎ

𝜌
𝜗
ℎ
𝜗
,𝑀

𝜌
𝜗
ℎ
𝜗
,𝑀

1 1

0 0

𝑏 s/mm 𝑏 s/mm 

flow-compensated monopolar
𝐹 𝐹

M = 0

M = 1

M = 2

M = 4

M = 8

M = 16

M = 32

M = 0

M = 1

M = 2

M = 4

M = 8

M = 16

M = 32

20 40 60 80 20 40 60 80



48  5 Simulations and Theoretical Results 

 

 

 

generated phase distributions appear asymptotic, however, all but the flow-compensated gradients 

with 0 ≤ 𝑀 < 1 lead to a well-defined (i.e. finite) value for 𝜌𝜗ℎ(0,𝑀). Most noticeably, the local 

minima and maxima for the attenuation factor 𝐹 in the monopolar case have disappeared, as the 

shape of the generated phase distributions does no longer facilitate a complete dephasing and sub-

sequent rephasing of the spins as the b-value is increased. Again, for large 𝑀, the phase distribu-

tions and thus the decay shapes of 𝐹 from the two gradient profiles appear alike. However, due to 

the wide distribution of particle speeds, the decay of F deviates from a true exponential decay even 

at large 𝑀, as will be discussed in section 5.5.  

     Another way of illustrating the differences in the signal attenuation factor 𝐹 and therefore dif-

ferences in the resulting signal intensities 𝑆(𝑏) between the monopolar and flow-compensated 

gradients is shown in Figure 5.7, where the maximum absolute slope of the attenuation factor, i.e. 

the slope at 𝑏 = 0, lim𝑏→0 |
𝜕𝐹

𝜕𝑏
|, is plotted versus the number of directional changes 𝑀. At small 

values of 𝑀, the slopes differ vastly between gradient profiles, therefore a large deviation in the re-

spective signal decay is to be expected. However, if the particles experience many directional  

 
Figure 5.6: Generated normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀) (top row) and the corresponding signal 

attenuation factors 𝐹 (bottom row) using the speed distribution 𝜌CN(𝑣) determined in section 

5.1 (derived from the Pareto power-law distribution with 𝛼 = 0.5) with an average particle 

speed 𝑣 = 1 mm/s for flow-compensated (left column) and monopolar (right column) gradi-

ents. 
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Figure 5.7: Maximum absolute slope of the attenuation factor lim𝑏→0 |
𝜕𝐹

𝜕𝑏
| versus the number of directional 

changes M using different gradient profiles (blue: fc = flow-compensated; red: mono = monopo-

lar) and particle speed distributions (solid: delta distribution; dashed: 𝜌CN(𝑣)). 
 

changes 𝑀 during the diffusion experiment (𝑀 ⪞ 6), the maximum absolute slope becomes largely 

independent of the gradient profile and the particle speed distribution. It should be noted that while 

the maximum absolute slope of the attenuation factor is independent of the particle speed distribu-

tion at large 𝑀, this does not apply to the further decay of the attenuation factor (section 5.5).  

5.3 Parameter Fitting and Error Estimation 
The normalized phase distributions 𝜌𝜗ℎ(𝜗,𝑀), as derived in subsection 5.2.1, enables one to for-

mulate an optimization problem using simulated (section 5.4) or measured (chapter 7) data and the 

signal model given in eq. (4.23). The model is fitted to the data to obtain estimates for the model 

parameters. Specifically, these parameters are the unweighted signal intensity 𝑆0, the thermal dif-

fusion coefficient 𝐷, the fraction 𝑓 of the signal coming from particles within perfused capillaries 

(as opposed to “static” particles outside the perfused capillaries), the average particle speed 𝑣 due 

to flow in the capillaries and the characteristic duration 𝜏 a particle remains in a capillary segment 

on average. Note that if 𝑛 different gradient profiles are considered within an experimental setup, 

𝑛 separate unweighted signal intensities 𝑆0 as well as 𝑛 effective (apparent) diffusion coefficients 

𝐷0 have to be fitted. Fitting separate diffusion coefficients is required since the matrix material of 

the constructed phantom restricts the Brownian motion of the water molecules (see chapter 6). The 

effect of this restriction on the measured signal decay is dependent on the respective gradient pro-

file (see section 4.2 and 7.2) which has to be accounted for to facilitate an appropriate modelling of 

the measured data. The reasoning is trivial for 𝑆0 as each measured signal decay has an independ-

ent y-axis intercept. The fraction 𝑓, the speed 𝑣 as well as the duration 𝜏 are “shared” parameters, 

i.e. they are independent of the gradient scheme and are fitted with respect to all data.  

     The parameter fitting was done using the Matlab function fminunc, a nonlinear programming 

solver which finds the minimum of an unconstrained multivariable function using the quasi-

newton algorithm
54

. The multivariable function is defined as the sum of the squared residuals 𝑅𝑆𝑆. 
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Using 𝑘 to index the gradient profiles and 𝑔 to index the respective 𝑏-values, the 𝑅𝑆𝑆 is given by: 

 𝑅𝑆𝑆 =∑ 𝑖
2

𝑁

𝑖=1

= ∑∑(𝑆𝑘,𝑔 − 𝑆𝑘(𝑏𝑘,𝑔, 𝑆0𝑘 , 𝐷𝑘 , 𝑓, 𝑣, 𝜏))
2

𝑚𝑘

𝑔=1

𝑛

𝑘=1

, (5.27) 

 

where 𝑆𝑘(𝑏𝑘,𝑔, 𝑆(0)𝑘 , 𝐷𝑘, 𝑓, 𝑣, 𝜏) are the modelled signal intensities, 𝑆𝑘,𝑔 are the actual (measured 

or simulated) signal intensities and 𝑁 is the total amount of acquired data points. For a thorough 

discourse of error estimations in nonlinear modelling the reader is referred to Gallant
55

 and Bates
56

, 

only the essential steps are listed in the following.  

     The determined parameter estimates 𝑃 can be used to estimate the unbiased variance of the 

residuals 𝜎𝑟 =
1

𝑁−𝑘
∑  𝑖

2𝑁
𝑖=1 , with the number of model parameters 𝑘. The 𝑘 × 𝑘 covariance matrix 

is then given by 

 cov(𝑃) =  𝜎𝑟 (𝐽 
𝑇(𝑃)𝐽 (𝑃))

−1
, (5.28) 

 

with the 𝑁 × 𝑘 Jacobian matrix 𝐽 (𝑃) =
𝜕 

𝜕𝑥
(𝑃). Finally, the standard error of the estimated param-

eters can be determined as the square root of the diagonal elements of the covariance matrix 

  𝑒𝑖 = √cov(𝑃)𝑖𝑖. (5.29) 

 

The capillary length 𝑙 does not appear explicitly in the signal decay model, but is calculated as the 

product 𝑣 ∙ 𝜏. Applying the propagation of uncertainty, its standard error  𝑒𝑙 is given by 

  𝑒𝑙 = √( 𝑒𝑣 ∙ 𝜏)
2 + ( 𝑒𝜏 ∙ 𝑣)

2. (5.30) 

5.4 Estimation Accuracy and Gradient Duration 
In subsection 4.4, it was demonstrated how the signal attenuation factor 𝐹 can be assigned to dif-

ferent regimes, depending on the number of directional changes 𝑀 the particles experience during 

the diffusion experiment. 𝑀 is dependent on the particle speed and capillary length of the underly-

ing system and on the adjustable duration of the diffusion experiment 𝑇. An anticipatory choice of 

the duration of the diffusion experiment can therefore facilitate a more accurate estimation of the 

model parameters by sampling a more informative regime of 𝐹. To illuminate this issue further, a 

Monte Carlo simulation was performed.  

     Signal intensities were simulated for a theoretical two-compartment system with the following 

properties: fraction of particles inside perfused capillaries 𝑓 = 0.5; thermal diffusion coefficient 

𝐷 = 1 × 10−3mm s⁄ ; average particle speed due to flow 𝑣 = 1mm s⁄ ; characteristic duration 

until a directional change occurs 𝜏 = 100 ms (which translates to a capillary length 𝑙 = 0.1 mm); 

statistical speed distribution 𝜌CN(𝑣). A measurement consisting of two diffusion experiments, one 

with a monopolar and one with a flow-compensated gradient profile, was considered (in actuality 

it is of course beneficial to perform more than two experiments; however, time constraints may be  
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prohibitive) with respective b-value sampling scheme 𝑏 = 0;  5;  10;  15;  20;  30;  45;  60;  80;  

110;  150;  200;  280;  400;  600;  800 s mm2⁄ . The duration of the diffusion preparation of each 

of the two experiments was varied independently, taking on 20 logarithmically spaced values be-

tween 𝑇 = 𝜏 10⁄ = 10 ms and 𝑇 = 10𝜏 = 1 s. For each of the resulting 400 diffusion experiment 

duration pairs, 1000 iterations were run by adding Rician noise
57,58

 to the simulated signal (corre-

sponding to a signal-to-noise ratio of approx. 95 at 𝑏 = 0) und subsequently obtaining parameter 

estimates as well as error estimates (see section 5.3). 

Figure 5.8 shows the median relative estimation error (estimation error divided by the respective 

parameter value) for each model parameter depending on the duration of the diffusion experi-

ments. As a general trend, it is observable that the simulated measurements where the experiment 

duration of the monopolar gradient was longer than 𝜏 and the experiment duration of the flow-

 
Figure 5.8: Median relative parameter estimation error by performing two diffusion experiments of varying 

duration with monopolar and flow-compensated gradients, respectively. The duration of each of 

the two diffusion experiments was varied independently relative to the characteristic interval 

between directional changes τ due to capillary flow. 
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compensated gradients was shorter than 𝜏 yielded the lowest relative errors for all parameters. This 

therefore serves as a useful rule of thumb for defining measurement settings, provided 𝜏 can be 

roughly estimated a priori. In detail, the estimate for the thermal diffusion 𝐷 has the smallest over-

all median relative error and profits from shortening the duration of the flow-compensated gradient 

as much as possible. This is intuitive, since exceedingly short flow-compensated gradients “com-

pensate” the majority of the dephasing due to capillary flow and the resulting signal attenuation 

will solely be characteristic of the thermal diffusion. The estimation accuracy of the perfusion 

fraction 𝑓 can be optimized by choosing a long experiment duration for the monopolar gradients, 

resulting in a biexponential decay of the respective attenuation factor 𝐹. Following the previously 

formulated rule of thumb minimizes the estimation error of the particle speed 𝑣 as well as the 

characteristic duration 𝜏 and it can be appreciated that an optimal choice within the investigated 

range of the experiment durations may decrease the error of 𝜏 by a factor of 4. It should be noted 

that there is an interrelation between the true parameter values and the relative estimation errors. A 

small fraction 𝑓 and/or a slow particle speed 𝑣 impede the differentiation between the two com-

partments, reducing the parameter estimation accuracy in general.  

To devise optimal measurement settings, the here deduced insights must be complemented by 

further considerations. Increasing the duration of the diffusion gradients inevitably increases the 

duration of the MRI sequence as a whole. For spin-echo sequences, this entails an increased echo 

time TE and may cause a significant loss of overall SNR due to 𝑇2-relaxation effects. STEAM 

pulse sequences pose an option to mitigate this issue; however, this is accompanied with an inher-

ent loss of half of the signal. In addition, 𝑇1-relaxation will take place in between the 90° pulses 

and constrains in terms of total acquisition time may also play a prohibitive role. On the other 

hand, the minimum diffusion gradient duration is limited by the finite gradient amplitude and the 

desired maximum 𝑏-value of the diffusion experiment. Thus, for the measurements described in 

chapter 7, a flow-compensated diffusion experiment with shorter gradient durations (FC11) was 

employed using a reduced b-value set with a maximum 𝑏-value of 200 s/mm  (see Table 5.1). 

5.5 Phase-Distributions vs. Pseudo-Diffusion 
In the course of section 4.4 it was shown how the attenuation factor 𝐹 decays exponentially as a 

function of the applied 𝑏-value when the necessary preconditions are met, giving rise to the biex-

ponential pseudo-diffusion model 

 𝑆(𝑏) = 𝑆0 ((1 − 𝑓) ∙ 𝑒−𝑏𝐷 + 𝑓 ∙ 𝑒−𝑏(𝐷+𝐷
∗)), (5.31) 

 

where the dephasing effect due to capillary flow is conveyed by the pseudo-diffusion coefficient 

𝐷∗ = 𝑣2𝜏 6 = 𝑣𝑙/6⁄ , with the capillary length 𝑙. Due to its simplicity and reduced set of parame-

ters, the biexponential model is the preferred choice in the literature for the analysis of perfusion 

effects using DW-MRI. However, whether the necessary preconditions, namely a large amount of 

directional changes 𝑀 during the experiment and a particle speed distribution that results in a 

Gaussian phase distribution, are met for the biexponential model to be appropriate is often unclear 

or ignored. The biexponential model implies a linear relationship (assuming a constant capillary 

length 𝑙) between the pseudo-diffusion coefficient 𝐷∗ and the average particle speed 𝑣. Using the 
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biexponential model to analyze a DW-MRI experiment, one can therefore deduce the average par-

ticle speed via
43

 𝑣biexp = 6𝐷∗/𝑙.   

     In the following, the ambiguity of the pseudo-diffusion coefficient 𝐷∗ and the perfusion frac-

tion 𝑓 when the pseudo-diffusion preconditions are not met will be assessed by relating the biex-

ponential-model-deduced parameters to predefined characteristics of a simulated system with ca-

pillary flow. For this purpose, a variety of capillary flow scenarios is considered to generate data 

akin to typical IVIM measurements with monopolar diffusion gradients using the phase-

distribution model in combination with the MP28 gradient profile. Subsequent analysis of the gen-

erated signal decays facilitates a comparison between the true underlying flow characteristics and 

the parameter estimates obtained using the biexponential pseudo-diffusion model.  

     In subsection 5.5.1, a system comprising solely of perfused capillaries is considered, while in 

subsection 5.5.2 a two-compartment system is analyzed.  

5.5.1 Perfusion Fraction Only 
Assuming an exponential decay of the attenuation factor 𝐹 as a function of the applied 𝑏-value, the 

pseudo-diffusion coefficient 𝐷∗ constitutes the decay rate of 𝐹(𝑏) and is calculated as 

 
𝐷∗ =

−ln (
𝐹(𝑏2)
𝐹(𝑏1)

)

𝑏2 − 𝑏1
=
−ln (𝐹(𝑏2))

𝑏2
, 

(5.32) 

 

with 𝑏1 = 0 and 𝐹(0) = 1. In Figure 5.9 it is shown how the determined value for 𝐷∗ is affected 

by the choice of 𝑏2 for different underlying particle speed distributions by relating 𝑣biexp = 6𝐷∗/𝑙 

to the actual average particle speed 𝑣true. For 𝑀 = 2, the respective normalized phase distribu-

tions are distinctively non-Gaussian (see Figure 5.5), accordingly, 𝐹(𝑏) does not decay exponen-

tially and 𝑣biexp is highly dependent on the choice of 𝑏2 (Figure 5.9 A). The estimate 𝑣biexp dete-

riorates with respect to the actual average particle speed 𝑣true as 𝑏2 increases. Moreover, 𝑣biexp 

underestimates the particle speed consistently, except for the delta-distributed particle speeds, 

where the zeros of the sinc-like decay of 𝐹(𝑏) leads to an asymptotic behavior of 𝑣biexp. For 

𝑀 = 16, the discrepancy between 𝑣biexp and 𝑣true is much less severe (Figure 5.9 B). As 𝑏2 ap-

proaches zero, 𝑣true is well approximated by 𝑣biexp independent of the speed distributions, how-

ever, for large 𝑏-values non-delta-distributed particle speeds again result in an underestimated 

𝑣biexp. The different behaviors illustrated in Figure 5.9 A and Figure 5.9 B emphasize the impact 

of varying 𝑀 on the applicability of the biexponential model.  

     In Figure 5.10 this is further broken down by showing the behavior of 𝑣biexp as a function of 𝑀 

and the particle speed 𝑣true, using varying values for 𝑏2 and the particle speed distribution 

𝜌CN(𝑣). Panel A shows 𝑣biexp divided by 𝑣true as a function of 𝑀 while keeping the particle 

speed 𝑣true and the diffusion duration 𝑇 constant (achieved by adapting 𝜏, which translates to ef-

fectively adapting the capillary length 𝑙). As anticipated, 𝑣biexp heavily underestimates 𝑣true for 

small 𝑀, which improves as 𝑀 is increased, however, 𝑣biexp remains biased even up to large 𝑀 

depending on the value of 𝑏2. In panel B the particle speed 𝑣true is variable while keeping 𝑀 = 8 

constant (which again translates to adapting the capillary length 𝑙). At small particle speeds, 𝑣biexp 
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Figure 5.9: Relationship between the estimated particle speed 𝑣biexp and the actual particle speed 𝑣true 

depending on the choice of the diffusion weighting (𝑏2-value) for different underlying particle 

speed distributions. A: For 𝑀 = 2, the estimate 𝑣biexp is highly dependent on the diffusion 

weighting, severely underestimating the particle speed 𝑣true. B: At a higher value of 𝑀 = 16, 

the estimate 𝑣biexp improves, however, a dependency on the diffusion weighting as well as the  

underestimation bias remains for non-delta-distributed particle speeds. 

 

approximates 𝑣true well, since even the highest used 𝑏2-value (= 400 s mm ⁄ ) acts as a “low” 𝑏-

value due to the very slow decay of 𝐹(𝑏) at small particle speeds. In contrast, a strong discrepancy 

is observed at high particle speeds, where 𝐹(𝑏) decays rapidly. Usually, the capillary length 𝑙 is 

constant in the investigated object of interest, meaning that the particle speed 𝑣true and the number 

of directional changes 𝑀 are linearly proportional to each other. Panel C shows how 𝑣biexp be-

haves in such a scenario. The capillary length 𝑙 and the duration of the experiment 𝑇 were hereby 

chosen such that 𝑀 = 𝑣true [mm s⁄ ]⁄ . The resulting behavior of 𝑣biexp is essentially a combina-

tion of panel A and panel B: At small 𝑀, 𝑣biexp underestimates 𝑣true heavily, which improves 

with increasing 𝑀. Coincidentally, fast particle speeds introduce a bias as illustrated in panel B. 

Panel D is an alternative illustration of the same scenario, where 𝑣biexp is not normalized and plot-

ted vs 𝑣true and 𝑀, respectively. While 𝑣biexp does increase monotonously with 𝑣𝑡𝑟𝑢𝑒, it is appar-

ent that 𝑣biexp is an inaccurate estimate of the particle speed in this single compartment scenario 

when the pseudo-diffusion preconditions are not fully met.  

     The results from this section demonstrate the ambiguity of the pseudo-diffusion coefficient 𝐷∗ 

in the investigated scenario. The relationship between 𝐷∗ and the particle flow speed 𝑣 established 

by Le Bihan and Turner
43

 seems to be only valid under restrictive preconditions, which should be 

verified in an actual experiment. However, densely sampling the initial signal decay using small b-

values of less than 50 s mm2⁄  potentially alleviates the negative bias of 𝑣biexp.  

5.5.2 Two-Compartment Model 
Based on the phenomena described in the previous section, it is of interest to investigate the con-

sequences of varying flow characteristics in a hypothetical IVIM measurement. In contrast to the 

previous section, a two-compartment system is now considered: One compartment is governed by  
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thermal diffusion only (fraction 1 − 𝑓), while the other is subjected to additional flow effects 

(fraction 𝑓). The methodology of an IVIM measurement to assess capillary perfusion is generally 

as follows: A multitude (usually ≥ 8) of different 𝑏-values is sampled using a monopolar (or more 

generally non-flow-compensated) diffusion gradient scheme. The sampling is more dense for 

small 𝑏-values to improve the estimation accuracy of the perfusion-related parameters: the pseudo-

diffusion coefficient 𝐷∗ and perfusion fraction 𝑓. Subsequently, the measured signal intensities are 

used to estimate the biexponential model (eq. (5.31)) parameters using a Levenberg-Marquardt 

nonlinear least-squares algorithm. For the analytical assessment in this section, the sampling 

scheme 𝑏 = 0;  5;  10;  15;  20;  30;  45;  60;  80;  110;  150;  200;  280;  400;  600;  800 s mm2⁄  

was used. The signal intensities 𝑆(𝑏) were simulated according to eq. (4.23) using a constant per-

fusion fraction 𝑓true = 0.3 and thermal diffusion coefficient 𝐷true = 1 × 10−3mm2 s⁄  while vary-

ing the two flow-related parameters “average particle speed” 𝑣 and “number of directional changes 

during the diffusion experiment” 𝑀. The total duration ∆ + 𝛿 of the monopolar diffusion gradients 

was set to 𝑇 = 100 ms with no gap between the gradient lobes. For the flow-induced particle 

 
Figure 5.10: Behavior of 𝑣biexp as a function of 𝑀 and the particle speed 𝑣true, using varying values for 𝑏2. 

A: 𝑣biexp 𝑣true⁄  as a function of 𝑀 with constant 𝑣true and 𝑇. B: 𝑣biexp 𝑣true⁄  as a function of 

𝑣true with constant 𝑀 and 𝑇. C: 𝑣biexp 𝑣true⁄  as a function of 𝑀 = 𝑣true [mm s⁄ ]⁄  with constant 

𝑇 and 𝑙. D: 𝑣biexp as a function of 𝑀 = 𝑣true [mm s⁄ ]⁄  with constant 𝑇and 𝑙. 
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speed distribution, 𝜌𝐶𝑁(𝑣) was used. For each set of flow parameters, the respective model param-

eters 𝑓, 𝐷, 𝐷∗ (and therefore 𝑣biexp) were determined via least squares fitting. 

Figure 5.11 A and B depict the determined normalized 𝑣biexp and the determined perfusion frac-

tion 𝑓, respectively, as a function of the average particle speed 𝑣true. At slow particle speeds, the 

dephasing effect due to flow is small, resulting in a similar signal decay of the two compartments. 

The differentiation of the two compartments is thus impeded
59

, reflected by the unsteady behavior 

of 𝑣biexp, 𝑓 and D. This effect is more persistent for large 𝑀, since more directional changes 

(while 𝑣true is kept constant) during 𝑇 lead to a reduction in the variance of 𝜌𝜗ℎ(𝜗,𝑀) (see sub-

section 0). As the particle speed increases, the least squares fit becomes more stable, however, 

contrary to the findings in the previous section, 𝑣biexp initially overestimates 𝑣true. This behavior 

is owed to the interaction of 𝐷∗ and 𝑓: As the least-squares algorithm minimizes the residual sum 

of squares between the simulated data and a biexponential signal decay (as presumed by the pseu-

do-diffusion model), large parts of the perfusion fraction are wrongly ascribed to the solely diffus-

ing fraction. Consequently, the determined 𝑓 substantially underestimates 𝑓true for all 𝑀 while 

overestimating the decay rate of the perfusion fraction, in turn leading to the overestimation of 

𝐷∗and thus 𝑣biexp. Furthermore, 𝐷 consistently overestimates 𝐷true for the larger flow rates as 

well, however, here the bias is less severe. As 𝑣true increases, the normalized 𝑣biexp decreases and 

eventually underestimates 𝑣true at fast flow speeds. The particle speed at which this crossing ap-

pears increases with 𝑀. Figure 5.11 D shows the deceptive nature of the biexponential model fit: 

The fitted curve seems to represent the data well and it is extremely difficult to perceive any dis-

crepancies visually. Panel E, however, clearly illustrates the systematic residuals between simulat-

ed data and model fit. Note, that the simulated signal is void of any noise. In an actual measure-

ment, any such observation will be further obfuscated by noise.  

Figure 5.12 illustrates the behavior of 𝑣biexp when 𝑓 as well 𝑆0 are fixed to their true value, i.e. 

𝑓 = 𝑓true = 0.3 and 𝑆0 = 𝑆0true = 1, effectively reducing the free model parameters to 𝐷 and 𝐷∗. 

The estimation problem is now similar to the conditions in the previous section, since the ampli-

tude of each fraction is fixed and the remaining degrees of freedom are merely to fit the slope of 

the signal decay. Accordingly, the relationship between 𝑣biexp and 𝑣true in Figure 5.12 A is simi-

lar to the findings shown in Figure 5.10 B with 𝑏2 ≈ 100 s mm2⁄ , demonstrating a consistent 

underestimation of 𝑣true. However, Figure 5.12 B plainly shows the inability of the biexponential 

model to represent the simulated data accurately when the compartment amplitudes are fixed to 

their correct values. 

Finally, in Figure 5.13, a case is investigated where 𝑣true and 𝑀 are linearly proportional, i.e. the 

capillary length 𝑙 stays constant (as in the previous section, the capillary length 𝑙 and the duration 

of the experiment 𝑇 where chosen so that 𝑀 = 𝑣true [mm  ⁄ ]⁄ ). This creates a situation similar to 

chapter 7, where experiments with incrementally increasing flow through a constructed phantom 

were performed. Once more, all biexponential model parameters were fit freely. Again, at slow 

𝑣true the estimated parameters are showing an erratic behavior until the fitting becomes more sta-

ble at higher flow speeds. Panel A illustrates a rather benign deviation of 𝑣biexp from 𝑣true.  

This can be logically deduced from Figure 5.11 A: At slow flow speeds, 𝑣true is best estimated by  
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Figure 5.11: Study of biexponential model parameter estimates as a function of the particle flow speed 

𝑣true for varying 𝑀 in a two-compartment system. For simulation and parameter estimation 

details please refer to the text in subsection 5.5.2. A and B: 𝑣biexp 𝑣true⁄  and 𝑓, respectively, 

as a function of 𝑣true. At slow particle speeds, the differentiation of the two compartments by 

the least squares model fit is impeded, reflected by the unsteady behavior of 𝑣biexp and 𝑓. 

Once the least squares fit stabilizes, 𝑣biexp initially overestimates 𝑣true owed to the interaction 

with 𝑓, which heavily underestimates 𝑓true, independent of 𝑀. As 𝑣true increases, it is eventu-

ally underestimated by 𝑣biexp (depending on 𝑀), while 𝑓 remains well short of 𝑓true. C: The 

fitted diffusion coefficient 𝐷 displays an unsteady behavior at slow speeds as well, followed 

by a consistent overestimation of 𝐷true of approx. 10% at higher flow rates. D: Simulated data 

and biexponential model fit for 𝑀 = 2. The inappropriate model fits the data well and it is 

difficult to recognize discrepancies, however, panel E clearly illustrates that the residuals 

show a systematic pattern. 
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𝑣biexp in a small 𝑀 scenario. As 𝑣true increases however, larger 𝑀 scenarios yield a better esti-

mate. Consequently, since 𝑣true and 𝑀 are linearly proportional in the scenario in Figure 5.13, the 

overall deviation of 𝑣biexp from 𝑣true is less severe compared to the previous findings. The esti-

mated perfusion fraction 𝑓 in Figure 5.13 B increases slightly as 𝑣true increases, yet a significant 

bias remains. Panel C is an alternative representation of panel A where the estimated 𝑣biexp was 

not normalized, therefore deviations at slow 𝑣true appear less severe and 𝑣biexp as a function of 

𝑣true stays appreciably close to the identity line.  

The findings in this section highlight potential fallacies resulting from inappropriately applying the 

pseudo-diffusion model to analyze capillary flow. The biexponential model is seemingly able to fit 

a wide array of decays that are not of biexponential nature
60

 while keeping residuals small and 

inconspicuous in the presence of noise. Furthermore, the interaction of the parameters in the biex-

ponential model impedes the a priori estimation of the potential biases. Aside from the number of 

directional changes 𝑀 during the diffusion experiment, the particle speed distribution was shown 

to be of great impact on the signal decay. This section focused on the signal decay resulting from 

the previously deduced particle speed distribution 𝜌CN(𝑣). Due to the L-shape of 𝜌CN(𝑣) far high-

er values of M are needed to result in an approximately Gaussian phase distribution compared to 

delta-distributed particle speeds, making the biexponential signal-decay model inappropriate for 

the considered scenarios.  

 

 
Figure 5.12: Simulated data of a two compartment model, as previously described, analyzed using the 

biexponential model with parameter constraints. The parameters 𝑓 as well 𝑆0 are fixed to their 

true value, i.e. 𝑓 = 𝑓true = 0.3 and 𝑆0 = 𝑆0true = 1, effectively reducing the free model pa-

rameters to 𝐷 and 𝐷∗. A: The relationship between 𝑣biexp and 𝑣true is now similar to the find-

ings shown in Figure 5.10 with 𝑏2 = 100 s mm2⁄ , demonstrating a consistent underestimation 

of 𝑣true. B: When the amplitudes of the two compartments are fixed to their true value, the 

biexponential model fails to result in a proper fit of the data. 

𝑀: 1  

BA

2  4  8  16  

𝑏 s/mm 

𝑣
b
ie
x
p
𝑣
tr
u
e

⁄

𝑣true mm s⁄

𝑇 = 100 ms
𝑙 varia le
fixed: 𝑓 = 0.3

 𝑆(0)  =  1

𝑆

𝑇 = 100 ms
𝑣true= 3 mm/s
𝑀   2

fixed: 𝑓 = 0.3
𝑆(0)  =  1



5.5 Phase-Distributions vs. Pseudo-Diffusion  59 

 

 

 
Figure 5.13: Scenario in which 𝑀 and 𝑣true are linearly proportional (i.e. constant capillary length 𝑙), com-

parable to the measurement series in chapter 7. A: The deviation between 𝑣biexp and 𝑣true is 

more benign than in the previous scenarios. B: 𝑓 still severely underestimated 𝑓true and in-

creases slightly with faster flow speeds. C: The estimated 𝑣biexp is not normalized, therefore 

deviations at slow 𝑣true appear less severe and 𝑣biexp as a function of 𝑣true stays appreciably 

close to the identity line.  
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6 Capillary Phantom: Construction & 

Characterization 
 

This chapter describes the construction and characterization of a capillary phantom, designed to 

facilitate the investigation of dephasing effects in DW-MRI due to flow in an interconnected, ran-

domly orientated network. Constructing a perfusable network that matches the dimensions of in 

vivo capillary beds is challenging. So far, studies analyzing the effects of capillary flow in diffu-

sion-weighted MRI have resorted to using flow phantoms made of sponges
61

, plastic tubes
44,62

 or 

columns packed with microspheres
42,63,64

 to simulate capillary perfusion. While these phantoms 

may be able to provide some form of flow-induced dephasing, their structure deviates substantially 

from in vivo capillary beds limiting their applicability, especially with regard to the phase-

distribution model.  

     Section 6.1 describes the construction process of a perfusable capillary phantom, closely mim-

icking the geometry of in vivo capillary beds. Subsequently, the qualitative and quantitative analy-

sis of the constructed phantom using optical microscopy is presented in section 6.2. Differences of 

the magnetic susceptibility between the matrix material and the liquid inside the capillary bed may 

lead to undesirable effects such as image artifacts and rapid relaxation processes when performing 

MRI experiments. To minimize these potential issues, a susceptibility-matched sodium chloride 

solution was determined via a dilution series, described in section 6.3. After flooding the capillary 

phantom with the matched sodium chloride solution, basic magnetic resonance imaging as well as 

quantitative analysis of the relaxation processes and thermal diffusion in the absence of flow are 

presented in section 6.4. 

6.1 Phantom Construction Process 
As previously proposed by Bellan et al.

65
, a 3-dimensional microchannel network was constructed 

using melt-spun sugar fibers embedded in a synthetic resin (Figure 6.1). With this method, it is 

possible to fabricate a sealed-off artificial capillary bed, accessible via two macro-channels. Sugar 

fibers were produced using a modified cotton candy machine (Candyland, Klarstein, Berlin, Ger-

many), optimized in terms of rotational speed and heating temperature to adjust the diameter of the 

sugar filaments to match in vivo capillary scales of 2 − 10 μm as reported by Potter and Groom66. 

Store-bought granulate sugar was used for the manufacturing of melt-spun fibers, which were col-

lected on a paper cone and afterwards evenly compressed to a homogenous and dense intercon-

nected fiber ball. To provide the phantom with an inlet and an outlet, sugar sticks were molded 

around metal wires and attached to Luer-Lock adapters. Parts of the metal wires protruded beyond 

the Luer-Lock adapters to enable a fastening of the construct for the curing process later on. Sub-

sequently, the sugar sticks were carefully attached to the fiber ball on opposing ends. In order to 

facilitate a large number of connections in between the ball and the macrochannel sugar sticks,  
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it is crucial to expose the fiber system to an environment of increased humidity. The fiber ball with 

the attached sugar sticks was then placed in a box-shaped plastic container (5 × 3 × 2 cm³) and 

fastened to a custom-built framework. In its original design proposed by Bellan et al., the matrix 

material consisted of either PDMS (a silicon-based polymer) or epoxy. Our initial experiments 

have shown that the PDMS does not withstand enough pressure for the intended use, therefore, a 

low viscosity two-component epoxy resin (E45GB, Breddermann Kunstharze, Schapen, Germany) 

was used as matrix material. The epoxy was carefully poured into the container along the inner 

side, ensuring that the resin rose slowly from the bottom to the top of the fiber ball to avoid the 

entrapping of air bubbles. To degas the system further, the phantom was placed in a vacuum 

chamber for several minutes until no residual air bubbles were visible within the epoxy resin. After 

24 hours of subsequent curing, the epoxy-sugar block was placed in a water-ethanol bath at 40°C 

for several days to dissolve the sugar structures embedded in the hardened epoxy, leaving a highly 

interconnected capillary system. Once the sugar was completely dissolved, the capillary network 

was filled with a sodium chloride solution of 213 g  a l/l using demineralized water as solvent 

(see section 6.3). 

 

Figure 6.1: Construction process of the capillary phantom. A: A cotton candy fiber ball, attached to two 

sugar sticks serving as feeding and draining macrochannels, was placed inside a plastic mold 

and covered with two-component synthetic resin. B: After curing, the phantom was placed in a 

water-ethanol bath to dissolve the sugar structures embedded in the epoxy. C and D: Eventually, 

a highly interconnected capillary system remains, which was filled with a sodium chloride solu-

tion of 213 g  a l/l using demineralized water as solvent (illustration with permission after
120

). 
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6.2 Characterization by Optical Microscopy 
To obtain structural information about the capillary network, such as average capillary diameter 

and segment length, optical microscopy of the constructed phantom was performed. The images 

were taken using an optical microscope of type DM2500 (Leica, Wetzlar, Germany). The flooded 

phantom is opaque, impeding the acquisition of contrast-rich images using transmitted light only. 

This was counteracted by additionally illuminating the phantom laterally during microscopy, giv-

ing the resulting images a relief-like appearance (exemplary image portrayed in Figure 6.2).  

     The microscopy images show clearly that the dissolved sugar structures indeed leave a highly 

interconnected capillary system. Furthermore, the network seems to be strewn with circular dila-

tions. Taking the non-illustrated 𝑧-dimension into account, it is likely that these dilations are actu-

ally spherical in shape. They appear to originate from sugar crystals sticking to the melt-spun sug-

ar and residual bubbles of air that were not completely degassed during the construction process. It 

will become apparent in chapter 7 that these dilations play an important role with regard to the 

signal decay in the flow-dependent DW-MRI experiments.  

     A total of 9 imaged sections of the capillary network were analyzed using the software Im-

ageJ
67

. Capillary segments were manually drawn in along their axis of orientation (longitudinal), 

yielding their length and their angular orientation within the imaged 𝑥𝑦-plane. The diameter of the 

capillary segments was estimated by measuring the width perpendicular to the axis of orientation 

(transverse), the diameter of all discernible spherical dilations was drawn in and measured as well. 

It should be noted that the longitudinal (length and angular orientation) and transverse (diameter) 

measurement of the capillary segments was not performed in a pairwise fashion, however, in 

 

Figure 6.2: Exemplary microscopy image of the capillary network taken with a DM2500 (Leica, Wetzlar, 

Germany) optical microscope. Due to the opaqueness of the phantom, image contrast was en-

hanced by exposing the phantom to light from a lateral direction, giving the image a relief-like 

appearance. A highly interconnected capillary system is left by the dissolved sugar structures, 

strewn with spherically shaped dilations presumably caused by residual air bubbles and sugar 

crystals. On the right, the marked capillary segments (red) and spherical dilations (yellow) are 

illustrated. 
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particular for the longitudinal measurement, importance was attached to mark every discernible 

segment. In total, 1726 capillary segments and 225 spherical dilations were marked inside the 9 

imaged sections. As optical microscopy results in a 2D representation of the imaged object, the 

propagation of capillaries in 𝑧-direction could not be captured, which may lead to an underestima-

tion of capillary lengths. However, this effect is somewhat mitigated by the fact that the analysis 

was restricted to structures that were clearly delineated in their entirety, which precludes capillar-

ies strongly aligned with the 𝑧-direction due to the limited depth of focus.  

Figure 6.3 depicts the histogram of the measured capillary segment diameters with an average 

segment diameter of 11.4 ± 4.4 μm. The histogram was analyzed using the R
68

 package fitdis-

trplus
69

 and best approximated by a gamma distribution with fitted shape parameter 𝛼 = 6.679 and 

rate parameter 𝛽 = 0.587 (mean of fitted distribution: 𝐸[𝑋] = 𝛼 𝜃⁄ = 11.39). A Kolmogorov–

Smirnov test was performed to compare the equality of the measured values and the fitted distribu-

tion. The test yielded a Kolmogorov–Smirnov statistic of 𝐷𝑛 = 0.017 and a p-value of 𝑝 = 0.693, 

suggesting a high similarity between the distribution of diameters and the fitted gamma distribu-

tion (0 ≤ 𝐷𝑛 ≤ 1 and 𝐷𝑛 = 0 when comparing identical distributions).  

     The measured average segment length was 162 ± 78 μm and the histogram was best approxi-

mated by a Log-normal distribution with parameters 𝜇 = 4.972 and 𝜎 = 0.484 and mean 𝐸[𝑋] =

exp(𝜇 + 𝜎2 2⁄ ) = 162.3 (Figure 6.4). The Kolmogorov–Smirnov statistic was 𝐷𝑛 = 0.021 with a 

p-value of 𝑝 = 0.448.  

     The dimensions of the capillaries are within the range of values reported from the human cere-

bral capillary system
70

 (reported lengths: 63.3 ± 53.7 μm; reported diameters: 6.56 ± 1.27 μm) 

and the cerebral cortex of cats
71

 (reported lengths: 12 to 302 μm; reported diameters: 5.0 ±

0.91 μm). 

     As briefly mentioned, Figure 6.2 depicts multiple circular dilations, strewn in the capillary net-

work, which will become important with regard to the signal decay in the flow-dependent DW-

MRI experiments. The measured average dilation diameter was 62.4 ± 20.6 μm and the histogram 

was best approximated by a Log-normal distribution with parameters 𝜇 = 4.081 and 𝜎 = 0.326  

 
Figure 6.3: Capillary segment diameter measured using optical microscopy. The average segment diameter 

was 11.4 ± 4.4 μm. The histogram was well approximated by a fitted gamma distribution with 

shape parameter 𝛼 = 6.679, rate parameter 𝛽 = 0.587 as demonstrated in the Q-Q plot. The Q-

Q plot, comparing the quantiles derived from the measurements and the theoretical gamma 

distributed quantiles, closely follows the identity line.  
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Figure 6.4: Capillary segment lengths measured using optical microscopy. The average segment length was 

162 ± 78 μm. The histogram was well approximated by a Log-normal distribution with param-

eters 𝜇 = 4.972 and 𝜎 = 0.484 as demonstrated in the Q-Q plot. The Q-Q plot, comparing the 

quantiles derived from the measurements and the theoretical gamma distributed quantiles, close-

ly follows the identity line.  

 

and mean 𝐸[𝑋] = exp(𝜇 + 𝜎2 2⁄ ) = 62.4 (Figure 6.5). The Kolmogorov–Smirnov statistic was 

𝐷𝑛 = 0.069 with a p-value of 𝑝 = 0.239.  

     It is of interest to estimate the ratio of the volume inside the capillaries 𝑉cap to the total network 

volume 𝑉cap + 𝑉dil. In the following calculations, a conservative observational error of the indi-

vidual measurements of ±3 μm was used for the error propagation. For the imaged sections, 𝑉dil 

can be calculated by assuming a spherical geometry and summarizing the individual volumes of 

the marked dilations 

 𝑉dil =∑
𝜋

6
𝑑dil,𝑖

3

𝐾

𝑖=1

= 39.0 ± 0.2 mm³, (6.1) 

 

with the diameter 𝑑dil,𝑖 of dilation 𝑖. To calculate 𝑉cap, the capillary geometry was assumed to be 

cylindrical. Due to the fact that the capillary lengths and diameters were not measured in a pair-

wise fashion, 𝑉cap was estimated by using the mean of the distribution of the squared diameters as 

 
Figure 6.5: Dilation diameters measured using optical microscopy. The average dilation diameter was 

62.4 ± 20.6 μm. The histogram was moderately approximated by a Log-normal distribution 

with parameters 𝜇 = 4.081 and 𝜎 = 0.326.  
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follows: 

 𝑉cap =∑𝑙cap,𝑖 ∑
𝜋

𝑀
(
𝑑cap,𝑘

2
)

2𝑀

𝑘=1

𝑁

𝑖=1

= 32.6 ± 0.05 mm³, (6.2) 

 

with the diameter 𝑑cap,𝑘 of capillary segment 𝑘 and the length 𝑙cap,𝑖 of capillary segment 𝑖. Using 

the results from eq. (6.1) and (6.2), one can calculate  

 
𝑉cap

𝑉cap + 𝑉dil
= 0.454 ± 0.002. (6.3) 

 

It should be emphasized that the ratio deduced in eq. (6.3) is a rough estimate. The calculated error 

is small due to the large number of measured capillaries and dilations; however, the achieved cov-

erage using optical microscopy is sparse and the structure of the phantom may vary in unsampled 

areas. Nevertheless, it can be deduced that the total volumes of the dilations 𝑉dil and the capillary 

segments 𝑉cap are most likely to be of the same order of magnitude and to be comparable in size. 

     The distribution of the angular orientations of the marked capillaries within the imaged sections 

is visualized in Figure 6.6. The visual impression of uniformly distributed angles is supported by a 

Kolmogorov–Smirnov statistic of 𝐷𝑛 = 0.0102 with 𝑝 = 0.808, when comparing the measured 

angles with a uniform distribution. Unfortunately, the angular distribution in the 𝑧-direction could 

not be probed by means of optical microscopy, however, the randomness of the construction pro-

cess and the uniform distribution in the 𝑥𝑦-plane imply that the 3D orientation distribution is iso-

tropic on the macroscopic scale of an imaged voxel (5 × 5 × 5 mm³). 

 

Figure 6.6: Visualization of the angular distribution of the marked capillaries within the imaged plane. The 

angular distribution was mapped onto a polar rose plot, creating a direction-intensity histogram. 

All angles were mirrored on the horizontal axis, as a capillary orientation of 𝛼 > 180° corre-

sponds to 𝛼′ = 180° − 𝛼 and vice versa. The angular distribution appears to be uniform. 
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6.3  Susceptibility-Matched Filling Fluid 
The dimensionless magnetic susceptibility 𝜒 of a substance describes its magnetic behavior when 

placed in an external magnetic field. Substances with susceptibility 𝜒 < 0 are referred to as dia-

magnetic and form an internal magnetization that opposes the external field, resulting in a repellant 

force and an attenuation of the local magnetic field strength. Conversely, substances with suscepti-

bility 𝜒 > 0 are referred to as paramagnetic and form an internal magnetization that aligns with 

the external field, resulting in an attraction of the substance and an increased local magnetic field 

strength. Substances imaged using MRI generally have a very weak interaction with the external 

magnetic field, however, even small differences of the magnetic susceptibilities of adjacent sub-

stances can lead to inhomogeneities in the local magnetic field. These inhomogeneities can cause 

severe artifacts in the acquired images
72

, which is especially true for EPI sequences
73

 commonly 

used for DW-MRI (subsection 4.3.1). Furthermore, it has been shown by simulation and experi-

ments, that 𝑇2-relaxation times are strongly influenced by local susceptibility changes
74

. To avoid 

any of the previously mentioned negative effects impairing the data quality, the magnetic suscepti-

bility of the matrix material and the fluid inside the capillaries needed to be matched.  

     According to Arrighini et al.
75

 the volume magnetic susceptibility of water is given by 

𝜒𝑣(H2O) = −9.035 × 10−6. In a study by Keyser and Jefferts
76

, investigating the magnetic sus-

ceptibility of materials used for apparatus construction, the volume magnetic susceptibility of 5 

different epoxy resins was measured, ranging from −8.50 × 10−6 to −9.98 × 10−6. This indi-

cates that some of the measured epoxies are more diamagnetic than pure water, while some were 

measured to be less diamagnetic. A more recent study by Wapler et al.
77

 measured the magnetic 

susceptibility of two epoxy resins (Epotec 201 and Araldite 2020) to be −9.646 × 10−6 and 

−9.697 × 10−6, respectively. Concluding from the literature, the magnetic susceptibility varies 

between different types of epoxy resins, however, as described below, the magnetic susceptibility 

of the epoxy used for the construction of the capillary phantom (E45GB, Breddermann 

Kunstharze, Schapen, Germany) was determined to be more diamagnetic than demineralized water 

(𝜒𝑣(H2O) > 𝜒𝑣(E45GB)). As it is difficult to alter the magnetic susceptibility of the epoxy, the 

magnetic susceptibility of the water was adapted instead. A simple means of doing so is by solving 

an appropriate amount of sodium chloride in water, which decreases its magnetic susceptibility to 

the desired value. The appropriate sodium chloride concentration was determined as follows.  

     Magnetic field inhomogeneities arising from susceptibility changes will result in localized 

phase variations of spins during an MRI measurement. Thus, information about the magnetic field 

inhomogeneity, and therefore about local susceptibility changes, can be obtained from phase maps 

generated from the complex-valued MRI-signal
78

 of gradient-echo pulse sequences. A dedicated 

phantom was built for phase imaging, consisting of a cylindrical epoxy core (diameter 15 mm, 

height 50 mm) enclosed by a cylindrical body (diameter 77 mm, height 55 mm) fillable with the 

respective sodium chloride solution. Phase imaging was performed on a 3-Tesla clinical MRI 

scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany) using a 15-channel knee 

coil. A 3D gradient-echo pulse sequence
37

 was employed with a sufficiently long echo time of 

𝑇𝐸 = 40 ms to allow for a pronounced phase evolution caused by the susceptibility variations. 

Other sequence parameters were: slice thickness 2 mm; 𝑇𝑅 = 50 ms; acquisition matrix 256 ×

192; FoV 256 × 192 mm²; flip angle 30°. The cylindrical phantom was filled with the respective 

sodium chloride solution and subsequently placed upright inside the imaging coil. Sodium chloride  
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solutions between 0 g  a l/l and 300 g  a l/l were used for the measurement series. After imag-

ing, coronal slices through the vertical axis at the center of the phantom were visually assessed 

(Figure 6.7). Using pure demineralized water, the phase maps show an obvious disturbance at the 

interface between the water and the epoxy core (since the epoxy core yields no MRI signal, the 

phase maps show only noise which was blanked out in Figure 6.7). As the sodium chloride con-

centration was increased, the phase disturbances attenuated. Solving sodium chloride in water 

decreases its magnetic susceptibility, indicating that the epoxy is more diamagnetic than pure wa-

ter. An optimum concentration, where phase disturbances were not discernible, was found at 

213 g  a l/l. Further increasing the concentration induced local phase effects once more, indicat-

ing that the solution was now more diamagnetic than the epoxy.  

The determined optimum solution was filled into a syringe (diameter approx. 10 cm) and subse-

quently analyzed in terms of the relaxation times 𝑇1 and 𝑇2 as well as the 𝐴𝐷𝐶. For the 𝑇1 relaxo-

metry, an inversion-recovery fast low-angle-shot (FLASH) sequence
79

 was used with the following 

sequence parameters: 𝑇𝑅 𝑇𝐸⁄ = 5000 ms 1.57 ms⁄ ; flip angle 𝛼 = 12°; voxel size 0.6 × 0.6 ×

5 mm3; inversion recovery durations 𝑇𝐼 = 300, 400, 600, 800, 1000, 1500, 2000, 3000,

4000 ms. 𝑇1 was determined by fitting the model 𝑆(𝑇𝐼) = 𝑆0(1 − 2exp(−𝑇𝐼 𝑇1⁄ )) to the meas-

ured signal intensities yielding a 𝑇1 of 2.71 ± 0.05 s. For the 𝑇2 relaxometry, a spin-echo sequenc-

es with varying echo times 𝑇𝐸 were employed: 𝑇𝑅 = 3800 ms; voxel size 0.6 × 0.6 × 5 mm3; 

𝑇𝐸 = 10, 500, 1000 ms. By fitting the model 𝑆(𝑇𝐸) = 𝑆0(exp(−𝑇𝐸 𝑇2⁄ )) to the measured 

signal intensities, a 𝑇2 of 1.25 ± 0.18 s was determined. In line with the literature
80

, both 𝑇1 and 

𝑇2 are shortened due to the high concentration of NaCl compared to pure water with 𝑇1 = 5 s and 

𝑇2 = 3.1 s at 3T according to Rohrer et al
81

. However, the 𝑇2 relaxation appears to be long enough 

to have no significant impact on image quality in terms of a reduced signal-to-noise ratio. The 

apparent diffusion coefficient at room temperature was measured using a spin-echo single-shot 

sequence with EPI readout, monopolar diffusion gradients (3 orthogonal directions) and the fol-

lowing sequence parameters: 𝑇𝑅 𝑇𝐸⁄ = 3000 ms/65 ms; voxel size 1.25 × 1.25 × 10 mm3; 

diffusion-weightings: 𝑏 = 5, 10, 15, 20, 30, 45, 60, 80, 110, 150, 200, 280, 400, 600,

800 s mm2⁄ . The measured signal intensities were used to fit the model 

   Demineralized water         NaCl solution 100 g/l          NaCl solution 213 g/l          NaCl solution 250 g/l 

  

Figure 6.7: Phase maps visualizing differences in the magnetic susceptibility of the epoxy core and the 

surrounding sodium chloride solution. Using pure demineralized water led to strong disturb-

ances at the interface between the water and the epoxy core, which attenuated as the sodium 

chloride concentration was increased. At a concentration of 213g NaCl/l, no disturbances were 

discernible; higher concentrations re-introduced local phase effects. 
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 𝑆(𝑏) = 𝑆0(exp(−𝑏 ∙ 𝐴𝐷𝐶)), yielding an 𝐴𝐷𝐶 of 1.63 ± 0.01 × 10−3mm2 s⁄ . The measured 

𝐴𝐷𝐶 demonstrates a reduced self-diffusion of the water molecules compared to pure water 

(𝐷𝐻2𝑂 =  2.023 × 10−3mm2 s⁄  at 20°𝐶82
), and the determined value is in accordance with previ-

ously published literature
80,83–85

.  

6.4 MRI Phantom Characterization with Static 

Fluid 
After the capillary phantom was filled with the determined sodium chloride solution, the inlet and 

outlet were closed to perform MRI in the absence of flow. It should be noted that the matrix mate-

rial does not yield any MRI signal due to an extremely fast 𝑇2-relaxation process; any measured 

signal can therefore be attributed solely to the sodium chloride solution. As before, imaging was 

performed using a 3-Tesla clinical MRI scanner (Magnetom Skyra, Siemens Healthineers, Erlan-

gen, Germany). The capillary phantom was placed inside a 16-channel wrist coil; however, due to 

the small dimensions of the phantom it was positioned near the third coil element containing 8 

channels (Figure 6.8), the remaining coil elements were not used for imaging. Additionally, since 

the total volume of H2O inside the phantom is small, two foot-ankle phantoms (Siemens Healthi-

neers, Erlangen, Germany) were placed around the wrist coil to allow for a better determination of 

the proton resonance frequency of the MRI system. 

 
Figure 6.8: Setup inside of the MRI scanner. The capillary phantom was placed near the third coil element 

of a 16-channel wrist coil. Additional foot-ankle phantoms were placed around the upper part of 

the coil to facilitate the determination of the proton resonance frequency.  
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Figure 6.9 shows coronal, axial and sagittal views through the phantom using a fast low-angle-shot 

(FLASH
86

) sequence (𝑇𝑅 𝑇𝐸⁄ = 11 ms 4.5 ms⁄ ; flip angle 𝛼 = 20°; reconstructed voxel size 

0.27 × 0.27 × 8 mm³). The macro-channels serving as in- and outlet demonstrate high SNR. Be-

tween them, the capillary network is situated, yielding lower signal intensity since the matrix ma-

terial is taking up most of the volume.   

6.4.1 Relaxometry 
For the subsequent 𝑇1 and 𝑇2 relaxometry as well as all DW-MRI experiments, imaging was per-

formed in the sagittal plane, yielding a similar view as shown in Figure 6.9 on the right. This ori-

entation was chosen to ensure that the signal in the analyzed image was coming solely from the 

solution inside the capillary network excluding the macro-channels.   

     As described in the previous section, inversion-recovery FLASH sequences were used for 𝑇1 

relaxometry (𝑇𝑅/𝑇𝐸 = 5000 ms/2.82 ms; flip angle 𝛼 = 12°; voxel size 2.34 × 2.34 × 7 mm3; 

inversion-recovery times 𝑇𝐼 = 400, 800, 1500, 3000, 4500 ms.) and spin-echo sequences were 

used for 𝑇2 relaxometry (𝑇𝑅 = 3800 ms; voxel size 2.34 × 2.34 × 7 mm3; 𝑇𝐸 = 10, 100,

 
Figure 6.9: Coronal, axial and sagittal views through the capillary phantom using a fast low-angle shot 

(FLASH
86

) sequence. 

 
Figure 6.10:  𝑇1 and 𝑇2 relaxometry of the sodium chloride solution inside the capillary network. A: Using 

inversion recovery FLASH sequences with varying inversion times 𝑇𝐼 a 𝑇1 of 1.46 ± 0.11 s 
was estimated. B: Spin-echo sequences with varying echo times 𝑇𝐸 yielded a 𝑇2 of 367.3 ±
0.8 ms. 

𝑆 𝑆

𝑇𝐼 [ms] 𝑇𝐸 [ms]A B

𝑇1 = 1.46 ± 0.11 s 𝑇2 = 367.3 ± 0.8 ms
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400 ms). Figure 6.10 displays the measured signal intensities (averaged inside a region of interest 

covering the entire cross section of the capillary network) and the respective fitted decay models. 

The determined 𝑇1 was 1.46 ± 0.11 s and 𝑇2 was 367.3 ± 0.8 ms. Both, 𝑇1 and 𝑇2 are shortened 

when measured inside the capillary network compared to the values determined in the syringe (see 

previous section), most likely due to magnetization transfer effects
87,88

. However, the shortened 

relaxation times did not constitute an issue for DW-MRI in terms of reduced SNR due to prema-

ture 𝑇2 relaxation. 

6.4.2 DW-MRI 
For DW-MRI inside the capillary phantom, a single-shot EPI sequence was employed using the 

sequence parameters stated in the previous section (section 6.3) except for the voxel size, which 

was increased to 5 × 5 × 7 mm3 because of the low proton density. Figure 6.11 shows the meas-

ured signal intensities (again cross section averaged) as a function of the applied diffusion 

weighting and the respective model fits. Aside from the regular monoexponential 𝐴𝐷𝐶 model in 

panel A, in panel B the kurtosis model  

 𝑆(𝑏) = 𝑆0 (exp(−𝑏 ∙ 𝐷𝐾 +
𝑏2

6
∙ 𝐷𝐾

2 ∙ 𝐾)) (6.4) 

 

was fitted to the signal decay, yielding the kurtosis 𝐾 and an adjusted diffusion coefficient 𝐷𝐾. In 

freely diffusing homogenous liquids, the probability distribution function (PDF) of the particle 

displacement during the diffusion experiment is Gaussian, leading to a strictly monoexponential 

signal decay as a function of the diffusion weighting 𝑏. However, a particle’s diffusive motion 

may be restricted by obstacles such as cell membranes or, in the present case, the matrix material, 

reducing the mean squared particle displacement (i.e., reducing the variance of the PDF) as well as 

leading to a non-Gaussianity of the particle displacement PDF. The kurtosis model introduces a 

dimensionless statistical metric 𝐾 to attribute for the degree of the non-Gaussianity of the particle 

displacement PDF
89

. The 𝐴𝐷𝐶 measured in the capillary phantom of just 1.26 ± 0.01 ×

10−3mm2 s⁄  is markedly reduced compared to the value determined in the previous section inside 

of the syringe (1.63 ± 0.01 × 10−3mm2 s⁄ ). Evidently, the diffusion of the water molecules in-

side the capillary system is restricted by the capillary walls. Using the kurtosis model an adjusted 

diffusion coefficient of 𝐷𝐾 = 1.34 ± 0.01 × 10−3mm2  ⁄  and a kurtosis of 𝐾 = 0.49 ± 0.04 was 

determined, in line with the notion of restricted diffusion. Inferring from panel A, the monoexpo-

nential model may appear to fit the data well and the deviation from a monoexponential decay are 

small, however, by using the kurtosis model the residual sum of squares 𝑅𝑆𝑆 was reduced approx-

imately tenfold from 31.05 × 10−5 to 2.76 × 10−5.   

     While the use of the kurtosis model in the no-flow case is reasonable and the improvement of 

the goodness of fit apparent, for the analysis of the DW-MRI experiments with flow (chapter 7) 

the kurtosis was not taken into account to reduce the number of model parameters. Since the non- 

Gaussianity of the particle displacement PDF depends on the diffusion duration, the kurtosis can 

only be determined with respect to the timing of the applied diffusion gradients. For the experi-

ments in chapter 7, multiple sequences with varying diffusion-gradient timings were employed and 
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analyzed using a joint model. Incorporating the kurtosis into the model thereby inflates the amount 

of model parameters significantly, leading to possible overfitting and overall parameter estimation 

instability
90

. Furthermore, the effect of the non-Gaussianity of the thermal diffusion on the signal 

decay is small within the measured 𝑏-value range compared to the effects of the applied flow. As 

will be shown in chapter 7, flow within the capillary system leads to a rapid loss of signal as a 

function of the diffusion weighting even at moderate flow velocities, so that the non-Gaussianity 

of the thermal diffusion is secondary.  

     To probe the isotropy of the capillary orientations alongside optical microscopy, a diffusion 

tensor imaging (DTI, section 4.2) experiment was performed. In the previous paragraph, it was 

concluded from the 𝐴𝐷𝐶 measurement that the thermal diffusion within the capillary system is 

measurably restricted by the matrix material. Due to the cylindrical geometry of the capillaries 

with 𝑙 ≫ 𝑑, one may hypothesize that the restriction mainly occurs along the direction perpendicu-

lar to the respective capillary orientation. A highly anisotropic distribution of the capillary orienta-

tion should therefore be recognizable by yielding a large 𝐹𝐴. For the DTI measurement, a single-

shot EPI sequence with 12 diffusion gradient directions at 𝑏 = 1 s/mm  and 𝑏 = 1600 s/mm  (3 

averages each), 𝑇𝑅 𝑇𝐸⁄ = 4000 ms 71 ms⁄  and voxel size 5 × 5 × 8 mm3 was used. The frac-

tional aniso-tropy was determined in each voxel (see Figure 6.12) and averaged within the imaged 

cross section yielding 𝐹𝐴 = 0.110 ±  0.028 (mean ± standard deviation). It should be noted 

that the presence of image noise generates an upward FA bias in systems with low anisotropy
91–93

. 

While the determined fraction anisotropy does not equate 0, it is therefore small enough to support 

the notion that the overall capillary orientation can be considered isotropic, as inferred from optical 

microscopy. For comparison, FA values in healthy white matter, where diffusion is highly aniso-

tropic, range typically from 0.4 up to 0.7, while in gray matter, where diffusion is considered to be 

largely isotropic, FA values between 0.1 and 0.2 are reported
94–96

.  

 

 

Figure 6.11: Measured signal intensities and diffusion model fits. A: While the monoexponential 𝐴𝐷𝐶 

model appears to describe the measured data well, the reduced 𝐴𝐷𝐶 of 1.26 ± 0.01 ×
10−3 mm /s indicates restriction of the thermal diffusion by the capillary walls. B: The kur-

tosis model, accounting for the non-Gaussianity of the particle displacement PDF, reduces the 

residual sum of squares 𝑅𝑆𝑆 approximately tenfold, yielding 𝐷𝐾 = 1.34 ± 0.01 ×
10−3mm2  ⁄  and 𝐾 = 0.49 ± 0.04. 

𝑆 𝑆

𝑏 [s/mm²] 𝑏 [s/mm²]A B

𝐴𝐷𝐶 = 1.26 ± 0.01 × 10−3mm2 s⁄
𝐾 = 0.49 ± 0.04
𝐷𝐾 = 1.34 ± 0.01 × 10−3mm2 s⁄
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Figure 6.12: Fractional anisotropy map within the capillary phantom yielding 𝐹𝐴 = 0.110 ±

 0.028 (mean ± standard deviation within cross section). 
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7 Experimental Assessment of Flow-

Dependent IVIM-MRI 
 

As stated in chapter 6, the constructed capillary phantom was equipped with Luer-Lock connectors 

to allow for the application of controlled flow through the network while performing IVIM-MRI 

experiments. A detailed description of the experimental setup and procedure of the flow-dependent 

measurements is given in section 7.1, followed by a detailed analysis and discussion of the ob-

tained results in section 7.2 with respect to the following hypothesis: 

 If present, the relative volumes of multiple compartments are independent of the applied 

flow rate (subsection 7.2.1). 

 The thermal diffusion coefficient 𝐷 is independent of the applied flow rate (subsection 

7.2.1).  

 The measured data complies with the phase-distribution (PD) model using the deduced 

particle speed distribution 𝜌CN(𝑣) (subsection 7.2.2). 

 The determined average particle speed 〈𝑣〉 is linearly proportional to the applied flow rate 

(subsection 7.2.3). 

 Linear regression of the determined particle speed 〈𝑣〉 and the applied flow rate yields a y-

axis intercept of 0, i.e. there is no constant bias (subsection 7.2.3). 

 The determined capillary length 𝑙 is independent of the applied flow rate, i.e. the charac-

teristic time 𝜏 until a directional change occurs is inversely proportional to the applied 

flow rate (subsection 7.2.3). 

 The determined capillary length 𝑙 is in accordance with the average capillary length ob-

tained using optical microscopy (subsection 7.2.3). 

 A comparison with results obtained by using the IVIM model yields results in accordance 

with the simulations in section 5.5 (subsection 7.2.4). 

For the sake of notational simplicity, the estimated average particle speed 〈𝑣〉 will be denoted as 𝑣 

in the remainder of this chapter. 

7.1 Methods  
Subsection 7.1.1 describes the experimental setup outside of the scanner bore, facilitating the ap-

plication of controlled flow through the capillary network, followed by details about the used MRI 

parameters and settings in subsection 7.1.2. Deviations between the nominal and actual 𝑏-values, 

taking image-formation gradients into account, were corrected for as depicted in subsection 7.1.3, 

prior to the analysis of the acquired images, described in subsection 7.1.4. 
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Figure 7.1: Schematic picture of the capillary phantom connected to a syringe. The syringe is placed inside 

the pumping mechanism of a Harvard Apparatus syringe pump to generate precise flow through 

the phantom at varying rates during DW-MRI. 

 

7.1.1 Experimental Setup 
In addition to the MRI setup details given in section 6.4, for the following experiments the capil-

lary phantom was connected to a syringe, filled with the determined sodium chloride solution (see 

section 6.3), via the Luer-Lock adapters before positioning it inside the wrist coil (see Figure 7.1). 

A syringe pump (Standard Infuse/Withdraw PHD 2000 Syringe Pump, Harvard Apparatus, Cam-

bridge, Massachusetts, USA) was then used to generate precise (accuracy ±0.35%, stated by the 

vendor) flow at varying rates through the capillary network during MRI. Note that instead of a 

single extension, as depicted schematically in Figure 7.1, three MR contrast agent tubes (Spectris 

Solaris MRI Integral "T" with Check Valve, Medrad, Warrendale, Pennsylvania, USA) were con-

nected in series to provide the length needed to reach the MRI bore center with the pump stationed 

outside the scanner room (extensions placed through wall outlet). A large nearby reservoir of the 

NaCl solution allowed for a seamless refilling of the syringe in between measurements using a 

feed line connected to the system via t-valve. Before each measurement, the entire system was 

visually inspected for air bubbles and vented if necessary.  

     According to the manufacturer specifications, the syringe pump can generate a pressure of ap-

proximately 60 psi (4.14  ar) with regard to the syringes used for the experiments (BD Perfusion 

50 ml Syringe with Luer-Lock tip, Becton Dickinson, Franklin Lakes, New Jersey, USA). The 

syringe pump does not offer a pressure measurement during application; however, the available 

clinical MR contrast agent injector (Medrad, Bayer AG, Leverkusen, Germany) provides this fea-

ture. In a preparatory experiment, the phantom was connected to this injector in the same fashion 

as described above. Subsequently, the maximum flow rate of 2.4ml s⁄  used for the IVIM experi-

ments was applied while logging the pumping pressure. Initially increasing, a constant pressure of 
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33 psi was reached after approximately 5 minutes of constant pumping. This is well below the 

pressure that can be generated by the syringe pump as well as the approved pressure for the con-

trast agent tubes (350 psi). Consequently, for all flow-dependent experiments, imaging was de-

layed by at least 5 minutes after starting the pump to ensure constant pressure and flow during the 

measurement. Note that the MR injector system was not used for the imaging experiments since it 

only allows for relatively large step sizes of 0.6 ml/s for the flow rates.  

7.1.2 MR Imaging 
After completing the setup and proper positioning of the phantom inside the scanner, imaging was 

initiated using a localizer scan. Based on the localizer images, sagittal DW-MRI was planned as 

described in section 6.4. Additionally, saturation regions were placed on top of the macro channels 

to avoid inflow effects
97

 and unwanted contributions to the measured MRI signal. Flow rates rang-

ing from 0.2ml min⁄  to 2.4ml min⁄ , increasing in increments of 0.2ml min⁄ , were applied while 

performing the DW-MRI experiments. For each flow rate, all sequences listed in Table 5.1 were 

employed. The (nominal) 𝑏-value sampling scheme followed 𝑏 = 0;  5;  10;  15;  20;  30;  45;  60; 

 80;  110;  150;  200;  280;  400;  600;  800 s mm2⁄ , however, the FC11 sequence only sampled a 

reduced 𝑏-value interval (see Table 5.1) to achieve shorter diffusion gradient durations. The diffu-

sion-sensitizing gradients were applied in three orthogonal directions, specifically in the read 

(through-bore), phase (vertical) and slice (right-left) direction. Further sequence parameters were 

T = 3000 ms; TE variable (see Table 5.1), voxel size 5 × 5 × 7 mm3; matrix size 64 × 64, field 

of view 230 × 230 mm2, parallel imaging factor 2 (GRAPPA), 3 signal averages. All flow rates 

of a series were measured in one session with a total duration of approx. 10 hours.  

7.1.3 𝑏-Value Correction 
Restating the equation from chapter 4, the diffusion weighting or 𝑏-value of an MRI pulse se-

quence is given by  

 𝑏 = 𝛾2∫ (∫ 𝒈(𝑡′)𝑑𝑡′
𝑡

0

)

2

𝑑𝑡
𝑇𝐸

0

. (7.1) 

 

As discussed in chapter 3, image formation in MRI utilizes pulsed magnetic field gradients for 

slice selective excitation and refocusing as well as in-slice spatial encoding. Consequently, an MRI 

pulse sequence is inherently attributed with a non-zero b-value. The DW-MRI sequences (provid-

ed by Siemens Healthineers, Erlangen, Germany) used for the experiments in this chapter offer the 

possibility to acquire an image with a 𝑏-value of 0 s mm2⁄ . Upon inquiry, it was confirmed by the 

pulse sequence authors that the image formation gradients might not be properly factored into the 

calculation of the diffusion weighting. Furthermore, at nominal 𝑏 = 0 s/mm , additional crusher 

gradients are played out during the pulse sequences to prevent the formation of unwanted stimulat-

ed echoes. As the size of the diffusion-sensitizing gradients falls below a certain threshold, they 

are removed and replaced by the crusher gradients as well.   

     The deviations in the diffusion weighting caused by these issues are usually small and of negli-

gible consequence in a clinical setting. However, the analysis of the diffusion-weighted experi-
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ments performed in section 7.2  requires a particularly high accuracy with respect to the b-values. 

This is especially true for very small b-values, as the initial signal decay is rapid at high flow rates 

and a precise sampling in this range is essential for robust parameter estimations. Furthermore, 

diffusion experiments with long durations, such as the MP171 sequence, potentiate the effects on 

the inaccuracy of the 𝑏-values. To address this issue, the nominal 𝑏-values were replaced with b-

vales obtained through simulation of the MRI pulse sequence and subsequent application of eq. 

(7.1). For the simulations, a dedicated computer running the IDEA software (Siemens Healthi-

neers, Erlangen, Germany) was set up. Source codes for the pulse sequences were supplied as part 

of a research agreement. The simulations were run using the exact same sequence settings as used 

for the actual diffusion experiment (copied via the MRI scanner export tool). The gradients em-

ployed throughout the sequences were exported and subsequently used to calculate the b-values 

according to eq. (7.1) in Matlab (The MathWorks, Natick, Massachusetts, USA). The echo time 

TE was determined at the readout of the k-space center. For the STEAM pulse sequences, the 

aforementioned introduction of crusher gradients at 𝑏 = 0 s/mm  leads to significant deviations 

from the nominal b-value depending on the duration of the specified steam time (interval between 

90° STEAM pulses). Thus, the 𝑏 = 0 s/mm  images of the STEAM pulse sequences were ex-

cluded from the analysis.  

7.1.4 Data Analysis 
All analyses of the acquired DICOM images were done using Matlab (The MathWorks, Natick, 

Massachusetts, USA). For each image, the signal in the capillary network was (arithmetically) 

averaged inside regions of interest (ROI) based on thresholding of the least diffusion-weighted 

image of the respective sequence. Averaging signal intensities inside very heterogeneous ROIs, for 

example covering different tissue types such as brain matter and cerebral spinal fluid, may affect 

parameter estimates when models with multiple compartments are fitted
19,98,99

. However, the ho-

mogenous structure of the sugar-fiber ball transferred to the molded capillary network, displaying 

a homogenous signal behavior in the imaged cross section. A threshold of more than 30 times the 

standard deviation of the background noise ensured that only voxels with strong signal from the 

capillary network were included in the ROI. The resulting ROIs consisted of approx. 30 voxels. 

As mentioned in the previous section, the diffusion-weighted gradients were applied in the read, 

phase and slice directions. Generally, the analysis of non-directional parameters (as opposed to the 

fractional anisotropy, for example) is done using trace-weighted images, which can be calculated 

by averaging three orthogonal diffusion directions using the geometric mean. However, the data 

acquired using diffusion gradients in the slice direction were excluded from the analysis to avoid 

effects of macroscopic flow as explained in the following paragraph.   

     The imaged slice is oriented sagittally between the two macro-channels of the phantom; there-

fore, the slice direction corresponds to the direction of the macroscopic pressure gradient from 

inlet to outlet. Consequently, there will be a net flow in slice direction and the resulting particle 

movement will not fully conform to the random walk model established in section 4.4., which 

serves as basis of the IVIM theory. Over the course of the data analysis it will be shown that the 

measured signal decay is fitted best by a two-compartment model (subsection 7.2.1), where a sec-

ond, non-flowing compartment is hypothesized to stem from NaCl solution inside the spherical 

dilations described in section 6.2. A macroscopic net flow along the diffusion gradient direction 
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introduces additional dephasing between the flowing and stagnant compartment as well as intra-

compartmental dephasing, since the macroscopic flow is likely to be spatially dependent (i.e. not 

bulk motion). Consequently, the signal decay as a function of the diffusion weighting will be fur-

ther accelerated when applying the diffusion gradients in the slice direction, compared to the read 

and phase directions. This can be demonstrated by anticipating some results from the parameter 

estimation when the individual gradient directions were analyzed separately: At an applied flow 

rate of 2 ml/min an average particle speed of 4.6 ± 0.3 mm/s was determined using gradients in 

the slice direction, while the read and phase directions yielded 2.6 ± 0.1 mm/s and 2.2 ±

0.1 mm/s, respectively. Other flow rates show a similar trend as illustrated in Figure 7.2.  

     In DW-MRI experiments, the signal attenuation is only affected by motion along the diffusion 

gradient direction. Consequently, experiments using gradients in the read and phase directions are 

not susceptible to aforementioned adverse effects of the macroscopic net flow. The particle 

movement pattern in the read-phase plane should entirely be dictated by the randomness of the 

capillary network. To minimize the effect of the macroscopic pressure gradient and the associated 

net flow, the measurement data using diffusion gradients in the slice direction was therefore ex-

cluded from the following analysis. The measured signal intensities from the read and phase direc-

tions were averaged using the geometric mean to improve the SNR, to generate (semi) directional-

ly independent parameter estimates and to allow for a straightforward presentation of the obtained 

results.   

     Deviations from the nominal 𝑏-values were accounted for by calculating the arithmetic average 

of the determined actual 𝑏-values from the two remaining gradient directions (see subsection 

7.1.3). The estimation of the model parameters follows the description in section 5.3 if not speci-

fied otherwise. 

 

Figure 7.2: Estimated average particle speed 𝑣 at varying rates of flow. The three diffusion-gradient direc-

tions (read, phase and slice) were analyzed separately. Noticeably faster particle speeds in slice 

direction are apparent compared to the read and phase directions. As the slice direction aligns 

with the macroscopic pressure gradient from inlet to outlet, this directional dependency is likely 

caused by a macroscopic net flow in slice direction. Error bars and shaded areas indicate the 

95% confidence interval, determined as ±1.96 ∙ standard error. 
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7.2 Results and Discussion 

 

Exemplary diffusion-weighted images of the capillary phantom using the MP28 sequence at an 

applied flow rate of 1.2 ml min⁄  are shown in Figure 7.3 displaying a high SNR. The capillary 

network appears distorted in the phase-encoding direction (left-right in presented image orienta-

tion), an artifact common to single-shot EPI sequences. The large difference in the magnetic sus-

ceptibility of the epoxy and the surrounding air leads to an inhomogeneous magnetic field around 

the boundary, resulting in a “misplacement” of nearby signal in the reconstructed image
72

. The 

signals of multiple imaging voxels are placed on top of each other, creating localized areas of high 

signal intensity. However, the distortions are independent of the diffusion weighting and therefore 

of no consequence to the quantitative analysis of the signal decay.   

     Figure 7.4 illustrates signal intensities 𝑆(𝑏) on a reduced 𝑏-value range (up to 200 s mm2⁄ ), 

measured using the sequences MP28 (monopolar diffusion gradients) and FC11 (flow-

compensated diffusion gradients) at varying rates of flow. As the flow rate increases, the initial 

signal decay at small 𝑏-values accelerates, however, the effect is much more pronounced for the 

monopolar diffusion gradients. Apparently, the flow-compensated diffusion gradients suppress 

much of the flow-induced signal decay indicating that the particles are mostly performing a linear 

motion and do not undergo, on average, many directional changes during the diffusion experiment. 

Indeed, even at the highest flow rate, there is a marked difference between the pictured signal de-

cays.  

In the following, a detailed quantitative analysis of the measured data using the phase-distribution 

(PD) model introduced in section 4.4 and an interpretation of the results is presented. In subsection 

7.2.1, the presence of two compartments, one flowing and one static, will be the subject of discus-

sion, followed by the assessment of the derived particle speed distribution 𝜌CN(𝑣) in subsection 

7.2.2. The effects of the varying flow rates on the signal model fits and the resulting parameter 

estimates as well as the reproducibility will be discussed in subsection 7.2.3 and lastly a compari-

son to the results obtained using the biexponential pseudo-diffusion model will be made in subsec-

tion 7.2.4. 

 
𝑏 = 0.2 s mm2⁄                 𝑏 = 80 s mm2⁄                      𝑏 = 400 s mm2⁄                 𝑏 = 800 s mm2⁄  

Figure 7.3: Exemplary diffusion-weighted images of the capillary phantom using the MP28 sequence at an 

applied flow rate of 1.2 ml min⁄ . 
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7.2.1 1-Compartment vs 2-Compartment Model 
Initially, the measured signal intensities were analyzed using a model comprising of a single, flow-

ing compartment: 

 𝑆1𝑐(𝑏) = 𝑆0𝑒
−𝑏𝐷 ∙ 𝐹[𝒙(𝑡), 𝒈(𝑡)], (7.2) 

 

where 𝐹 is based on the generated normalized phase distributions 𝜌𝜗ℎ .However, as illustrated in 

Figure 7.5, the model fit is lacking, especially at higher flow rates. The residual sum of squares 

(𝑅𝑆𝑆) shows a strong dependency on the applied flow rate and the residuals appear to display a 

systematic pattern. The introduction of a second, static compartment to the model (albeit sharing 

the molecular diffusion coefficient 𝐷 with the flowing compartment): 

 𝑆2𝑐(𝑏) = 𝑆0(𝑓 ∙ 𝑒
−𝑏𝐷 ∙ 𝐹 + (1 − 𝑓) ∙ 𝑒−𝑏𝐷), (7.3) 

 

shows a profound improvement of the model fit. Furthermore, the 𝑅𝑆𝑆 remains largely constant 

over the whole range of the applied flow rates.  

  

 

Figure 7.4: Signal intensities 𝑆(𝑏) on a reduced 𝑏-value range (up to 200 s mm2⁄ ), measured using the 

sequences MP28 (monopolar diffusion gradients, left) and FC11 (flow-compensated diffusion 

gradients, right) at varying rates of flow. The signal measured using the monopolar diffusion 

gradients displays a greatly accelerated decay at small b-values compared to the flow-

compensated gradients, indicating that the particles do not undergo many directional changes 

due to capillary flow during the diffusion experiment. 
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Introducing additional parameters to a model almost always results in an improved fit to the meas-

ured data. The Akaike information criterion
100

 represents a measure to quantify this improvement 

by considering the 𝑅𝑆𝑆𝑖 of model 𝑖 in relation to the number of model parameters 𝑘𝑖 and the num-

ber of available measurement points 𝑛: 

 𝐴𝐼𝐶𝑖 = 2𝑘𝑖 + 𝑛 log (
𝑅𝑆𝑆𝑖
𝑛

) +
2𝑘𝑖

2 + 2𝑘𝑖
𝑛 − 𝑘𝑖 − 1

. (7.4) 

 

A smaller 𝐴𝐼𝐶 indicates a more appropriate model. The calculated 𝐴𝐼𝐶𝑖 can also be used to obtain 

the corresponding weight 𝑊𝑖, yielding a relative probability for the appropriateness of model 𝑖 90
. 

Using this procedure to compare the single-compartment vs two-compartment model at an exem-

plary applied flow rate of 1.8ml min⁄ , the respective weights are 𝑊1c = 3.5 × 10−38 and 𝑊2c ≈

1, indicating that the two-compartment model is more appropriate with very high certainty. The 

𝐴𝐼𝐶 clearly favors the two-compartment at all applied flow rates apart from 0.2ml min⁄ , where 

 
Figure 7.5:  Comparison of the model fits using a single, flowing compartment (1-comp model) and a model 

comprising of a flowing and an additional static compartment. In panel A, the residual sum of 

squares (𝑅𝑆𝑆) is plotted versus the applied flow rate. The 𝑅𝑆𝑆 of the 1-compartment model 

displays a strong dependency on the applied flow rate, while the 𝑅𝑆𝑆 of the 2-compartment 

model is appreciably smaller and remains largely constant. Panel B shows an exemplary model 

fit at an applied flow of 1.8 ml/min (top) and the residuals between the model fit and the meas-

urement data (bottom, only data for sequence MP28 is displayed). The 2-compartment model 

fits the measured data closely, whereas the 1-compartment model deviates clearly in a systemat-

ic pattern. 
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Figure 7.6: Parameter estimates for the signal fraction 𝑓 attributed to flowing particles and estimates for the 

molecular diffusion coefficients 𝐷. The fraction 𝑓 initially shows a high degree of inaccuracy 

but evens out at around 0.451 ± 0.023 (mean ± sd of all flow rates) as the flow rate increases. 

The diffusion coefficients display a consistent behavior, with an initial increase followed by 

levelling off at higher flow rates and appear ordered due to restricted-diffusion effects. 
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flow-induced dephasing is marginal. It should be noted that the residuals using the two-

compartment still show a systematic pattern (see subsection 7.2.4). The reason for this is most 

likely a deviation of the actual statistical distribution of particle speeds from the applied approxi-

mation 𝜌CN(𝑣).  

     Figure 7.6 A illustrates the estimated fraction of the signal 𝑓 attributed to the flowing compart-

ment as well as the molecular diffusion coefficient 𝐷 versus the applied flow rate. The fraction 𝑓 

initially shows a high degree of inaccuracy, owed to the very slow particle speed, making it diffi-

cult to separate flowing from static fraction. As the flow rate increases, the estimates even out at 

around 0.451 ± 0.023 (mean ± sd of all flow rates). This value is appreciably close to the ratio of 

the volume inside the capillaries 𝑉𝑐𝑎𝑝 to the total network volume 𝑉𝑐𝑎𝑝 + 𝑉𝑑𝑖𝑙, estimated using the 

data obtained from optical microscopy (see section 6.2) to be 0.454 ± 0.002. It thus stands to 

reason that the non-flowing compartment can be ascribed to liquid inside the spherical dilations (as 

well as eventual dead-end capillaries, to a smaller extend). Furthermore, given the constant behav-

ior of 𝑓 at larger flow rates is in line with the anticipation that the relative volumes of multiple 

compartments are independent of the applied flow rate.  

     As is evident from optical microscopy, the spherical dilations are connected to the capillary 

network; however, applying flow through the phantom seems to have limited effect on the particle 

motion inside the dilations (Figure 7.6 B). Note that the varying diffusion times of the different 

sequences mandate the inclusion of sequence-respective molecular diffusion coefficients 𝐷𝑖 into 

the model to  accommodate for the varying degrees of restricted-diffusion effects. Hence, each 

model fit yields four diffusion coefficients.  

     The estimated molecular diffusion coefficient 𝐷MP28 increases to some extend with the flow 

rate and levels off around 1.4 × 10−3mm2 s⁄ . The increase of 𝐷MP28 at the highest flow rate 

compared to the measurement without flow, where the 𝐴𝐷𝐶 was estimated to be 1.26 ×

10−3mm2 s⁄  (measured using the MP28 Sequence as well, see subsection 6.4.2), is about 11%. 
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Furthermore, the fastest estimated 𝐷MP28 of 1.407 × 10−3mm2 s⁄  is still decidedly slower than 

the determined 𝐴𝐷𝐶 of the freely diffusing NaCl solution of 1.68 × 10−3mm2 s⁄ . The remaining 

diffusion coefficients show a similar trend; however, the effects of restricted diffusion come into 

display: The MP171 sequence, with its long diffusion preparation time, is most susceptible to the 

restriction of the water molecules’ Brownian motion in the capillary phantom and yields the small-

est diffusion coefficients, followed by the MP28 sequence. FC11 has the shortest diffusion time, 

resulting in the largest diffusion coefficients, above the estimated coefficients of FC18. Due to the 

reduced 𝑏-value sampling interval, 𝐷FC11 displays rather large errors compared to the other se-

quences.  

     Concluding from the presented results, the hypothesis that the molecular diffusion coefficient 𝐷 

is independent of the applied flow rate is not readily confirmed. Two processes are likely to cause 

the observed behavior of 𝐷:  

 Reduced restriction in the static compartment. As was reasoned above, the flowing 

compartment consists of a network of cylindrical channels, while the static compartment 

consists of spherical dilations with comparatively large diameters. The effects of re-

striction of the measured diffusion coefficient using DW-MRI is mainly dependent on the 

surface-to-volume ratio of the enclosing structure
101

, which is given by 𝑆c 𝑉c⁄ =

(2 + 2 ) (  )⁄ ≈ 2/  for (long) cylinders and by 𝑆s 𝑉s⁄ = 3  ⁄  for spheres. A larger ratio 

leads to lower measured diffusion coefficients. The average dimensions determined using 

optical microscopy (see section 6.2) yield surface-to-volume ratios of 364 mm−1 and 

96 mm−1 for the cylinders and the spheres, respectively, indicating reduced restriction ef-

fects in the spherical dilations. As the applied flow rate increases, the flowing compart-

ment is growingly dominated by dephasing effects due to capillary flow. The resulting 

signal decay is exceedingly fast compared to the decay attributed to molecular diffusion. 

Consequently, the slowly decaying, static compartment will have a stronger weight on the 

determined value of 𝐷 and the reduced restriction effect in the spherical dilations thus 

leads to higher estimates. Note that fitting separate diffusion coefficients for the flowing 

and static compartment was not practicable due to the resulting excessive amount of model 

parameters.  

 Turbulences and drifts inside the static compartment. While there is an absence of di-

rectional flow, adjoining capillaries may still evoke turbulences and drifts in the spherical 

dilations, which will reflect on the estimated diffusion coefficients. 

7.2.2 Comparison of Speed Distributions 
In section 5.1, the L-shaped statistical distribution 𝜌CN(𝑣) of particle speeds in the capillary-

network was motivated. In this section, the signal model fits to the data using 𝜌CN(𝑣), delta-

distributed, and uniformly distributed particle speeds will be compared. In Figure 7.7 A, the result-

ing 𝑅𝑆𝑆 values are plotted versus the applied flow rate. At slow flow rates, where the dephasing 

due to flow is not as prominent, all speed distributions result in small 𝑅𝑆𝑆 values, however, a dis-

tinct improvement by using 𝜌CN(𝑣) over uniformly and especially delta-distributed speeds is al-

ready apparent. This is further accentuated as the flow rate increases, with the 𝑅𝑆𝑆 of both delta 

and uniformly distributed particle speeds showing a strong dependency on the applied flow rate. In 
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contrast, using 𝜌CN(𝑣) the 𝑅𝑆𝑆 is approximately constant over the entire flow rate spectrum at an 

appreciatively small level. The boxplot, summarizing the 𝑅𝑆𝑆 values of all applied flow rates for 

each particle speed distribution, highlights the low variability and the superiority of the model fits 

using 𝜌CN(𝑣). Panel B shows exemplary model fits at an applied flow rate of 1.2 ml/min. Note 

that only the signal and respective fitted models for the MP28 sequence are illustrated; however, 

all data of the four sequences were used for the model fits. Furthermore, a limited b-value range is 

displayed (≤ 300 s mm2⁄ ) to highlight the fast signal decay due to flow. The model fit using del-

ta-distributed particle speeds deviates clearly from the measured data and shows the characteristic 

sinc-like decay (see section 5.2), which was not observed in any of the performed experiments. 

The model fit using uniformly distributed particle speeds greatly improves upon this, however, 

upon close examination, there are still obvious deviations between measured data and model fit, 

which show a systematic pattern and can therefore not be explained by signal noise alone. Using 

𝜌CN(𝑣), those deviations are visibly reduced and the model fit follows the measured data more 

closely. While it is apparent that 𝜌CN(𝑣) offers a distinct improvement over uniformly and delta-

distributed particle speeds, the resulting residuals still show a systematic pattern (see subsection 

7.2.4 for further illustrations), albeit to a greatly reduced extent. The reason for this is likely a re-

maining discrepancy between 𝜌CN(𝑣) and the true underlying particle speed distribution, which 

may follow a more complex and irregular shape. However, the appreciably close fit of the data as 

well as the fact, that the 𝑅𝑆𝑆 does not show a dependence on the applied flow rate, indicates that 

𝜌CN(𝑣) is indeed a reasonable approximation of the true particle speed distribution. 
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Figure 7.7: Comparison of the goodness of the signal model fit using a delta-shaped particle speed distribu-

tion, a uniform distribution, and 𝜌CN(𝑣). Panel A shows the 𝑅𝑆𝑆 for each distribution versus the 

applied flow rate. The delta-distribution exhibits the largest 𝑅𝑆𝑆 with an obvious correlation to 

the flow rate. The uniform distribution improves upon this; however, using 𝜌CN(𝑣) provides a 

further distinct reduction of the 𝑅𝑆𝑆 values and eliminates the flow rate dependency. Panel B 

shows an exemplary model fit (top) and the residuals between model fit and measurement data 

(bottom) at a flow rate of 1.2 ml/min (only data of sequence MP28 shown on a reduced 𝑏-

value range: 𝑏 ≤ 300 s mm2⁄ ). Using the delta distribution results in the characteristic sinc-like 

decay, which is not reflected by the measured data and thus results in a poor model fit. Both the 

uniform distribution and 𝜌CN(𝑣) represent the data much better with 𝜌CN(𝑣) yielding the closest 

model fit. 
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7.2.3 Analysis of Flow Dependency 
In this section, a more detailed analysis of the effects of the varying flow rates on the signal model 

fits and the resulting parameter estimates is presented. Furthermore, two measurement series per-

formed on different days will be compared to assess the reproducibility of the estimates.  

     Figure 7.8 illustrates measured signal intensities and the respective model fits at exemplary 

flow rates. Note that even though the sequences are colored individually, at each flow rate only a 

single model fit was performed, incorporating the data of all four sequences. In general, the phase-

distribution model fits the measured data well as the fitted curves closely follow the measurement 

points. At an applied flow rate of 0.6 ml/min, the data measured using non-flow-compensated 

diffusion gradients (MP28 and MP171) already exhibit a fast signal decay at low 𝑏-values com-

pared to the sequences FC18 and FC11, which still follow an approximately mono-exponential 

 

Figure 7.8: Measured signal intensities and the respective model fits at exemplary flow rates. In general, the 

signal model fits the measured data well as the fitted curves closely follow the measurement 

points. At an applied flow rate of 0.6 ml/min the sequences FC18 and FC11 compensate the 

flow-induced dephasing almost completely. Accordingly, the estimated 𝜏 (the average flow 

duration within a single cylindrical segment) is very long, albeit with a high degree of uncer-

tainty. The initial decay at low 𝑏-values steepens with increasing flow rate and the dephasing 

effect becomes clearly visible in the flow-compensated data as well.  
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decay curve. Thus, at this flow rate the particles do not seem to change their movement direction 

often during the diffusion experiment due to capillary flow and, accordingly, the estimated 𝜏 (the 

average dwell duration within a single cylindrical segment) is rather long with 560 ± 184 ms. In 

this case, the estimated error for 𝜏 is large, owed to the fact that 𝜏 is much longer than the duration 

of the diffusion gradients of all four sequences, thereby limiting the estimation accuracy (see sec-

tion 5.4). As the applied flow rate increases, the initial decay at low 𝑏-values steepens and the 

dephasing effect becomes clearly visible in the flow-compensated data as well. Accordingly, the 

estimated average particle speed 𝑣 increases, while 𝜏 decreases and 𝑓 stays approximately con-

stant.  

     The difficulty of accurately estimating 𝜏 at small flow rates is further exemplified in Figure 7.9. 

At an applied flow rate of 0.6 ml/min the residual sum of squares 𝑅𝑆𝑆 as a function of 𝑣 and 𝜏 

takes on the shape of an elongated trench parallel to the 𝜏-axis. Accordingly, the 𝑅𝑆𝑆 remains 

close to minimal for a wide range of 𝜏, resulting in a large relative error of 32.9%. In contrast, the 

𝑅𝑆𝑆 function at an applied flow rate of 1.8 ml/min demonstrates a distinct convex shape with an 

obvious global minimum at 𝑣 = 2.2 mm/s and 𝜏 = 92 ms and estimated relative errors of 4.2% 

and 8.1%, repectively.   

     A comprehensive illustration of the obtained results is presented in Figure 7.10, where each 

estimated parameter and its respective 95% confidence interval (calculated as ±1.96 ×  𝑒) is plot-

ted versus the applied rate of flow for the two measurement series A and B, performed on different 

dates. All parameter estimates and errors are listed in Table 7.1 as well.  

     As anticipated above, the fraction of the signal 𝑓 attributed to flowing particles shows large 

uncertainties at low flow rates, especially noticeable in series A, due to the difficulty of separating 

flowing from static fraction at slow particle speeds.  

 

Figure 7.9: RSS as a function of 𝑣 and 𝜏 for flow rates of 0.6 ml/min and 1.8 ml/min. At 0.6 ml/min the 

𝑅𝑆𝑆 takes on the shape of an elongated trench parallel to the 𝜏-axis, indicating a large uncertain-

ty in the estimated value. At 1.8 ml/min the 𝑅𝑆𝑆 demonstrates a convex shape with a distinct 

global minimum, yielding appreciably small relative errors of 4.2% and 8.1% for 𝑣 and 𝜏, re-

spectively. 
 

𝑣
 
m
m

s
⁄

𝜏 ms 𝜏 ms

𝑅𝑆𝑆
 low = 1.8 ml min⁄ low = 0.6 ml min⁄



7.2 Results and Discussion  89 

 

 

For flow rates of ≥ 1 ml/min the confidence interval is appreciably small and the estimates show 

little variability with an average of 0.438 ± 0.009 and 0.449 ± 0.009 (𝑚𝑒 𝑛 ±  𝑑, flow rates 

≥ 1 ml min⁄ ) for measurement series A and B, respectively. The estimated average particle speed 

𝑣 shows a linear proportionality to the applied rate of flow and increases from 0.25 ± 0.03 to 

2.73 ± 0.13 mm/s, respectively 0.36 ± 0.02 to 2.71 ± 0.11 mm/s, over the course of the meas-

urement series. The characteristic duration 𝜏 suffers from poor accuracy at slow flow rates and is 

the parameter that is most difficult to estimate accurately, as the average relative standard errors 

for flow rates ≥ 1 ml/min are 9.3% and 8.8% for measurement series A and B, respectively. 

Nonetheless, the confidence intervals and the estimated parameters appear reasonable, allowing 

 

Figure 7.10: Estimated parameters and respective 95% confidence intervals (calculated as ±1.96 ×  𝑒) 

versus the applied rate of flow for two measurement series A and B (performed on different 

dates). The estimates for 𝑓 and 𝜏 show large uncertainties and variability at slow flow rates, 

however, for flow rates of ≥ 1 ml/min the confidence intervals are appreciably small, with 𝑓 

remaining largely constant and 𝜏 showing an inverse proportionality to the applied flow rate. 

The estimates for 𝑓 closely match the ratio of the volume inside the capillaries to the total 

network volume of 𝑉cap (𝑉cap + 𝑉dil)⁄ = 0.454 determined using optical microscopy (dashed 

line). The estimated average particle speed 𝑣 shows a linear proportionality to the applied rate 

of flow with narrow confidence intervals. The average capillary segment length calculated via 

𝑙 = 𝑣 × 𝜏 remains approximately constant at flow rates of ≥ 1 ml/min and is close to the 

average segment length of 162 μm determined using optical microscopy (dashed line). 
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one to calculate the average capillary segment length via 𝑙 = 𝑣 × 𝜏. With 𝑣 showing a linear pro-

portionality and 𝜏 being inverse proportional to the applied rate of flow, the resulting 𝑙 remains 

approximately constant at flow rates of ≥ 1 ml/min with an average estimated length of 195 ±

13 μm and 183 ± 10 μm (𝑚𝑒 𝑛 ±  𝑑, flow rate ≥ 1 ml min⁄ ) for measurement series A and B, 

respectively. In comparison, the average capillary length determined using optical microscopy (see 

section 6.2) is 162 ± 78 μm and is therefore 14 % shorter than average length estimated using 

DW-MRI. A possible source of this bias is the missing depth-information using optical microsco-

py. The measured segment lengths are not taking any possible propagation of the capillaries in and 

out of the image plane into consideration, leading to a bias towards smaller values. Nonetheless, 

the length of 162 μm estimated using microscopy is still within the 95% confidence interval of the 

length obtained by DW-MRI for the majority of flow rates.  

     The average number of directional changes 𝑀 due to flow during the diffusion experiment dif-

fers between the employed gradient profiles (as they also differ in duration 𝑇). With regard to the 

gradient profile MP28 (𝑇 = 50.4 ms), which is most comparable to commonly performed in vivo 

IVIM measurements, 𝑀 increases from less than 0.01 to 0.70, respectively less than 0.01 to 0.78, 

for the two measurement series. Considering that the particle speeds are actually following a dis-

tribution and that the maximum speed is six time the average speed (see subsection 5.1.2), the 

fastest flowing particles change their movement directions up to 4.2 times, respectively 4.7 times 

during the MP28 diffusion experiment.  

     As can be appreciated in Figure 7.10, the results from the two measurement series are in good 

agreement, excluding flow rates of < 1 ml/min. To quantify the agreement, the coefficient of 

variation
102,103

 (𝐶𝑉) was calculated via 

 𝐶𝑉(%) = 100 ×
𝑆𝐷

Mean
, (7.5) 

 

with the standard deviation 𝑆𝐷 = √(∑ (𝑥𝐴,𝑖 − 𝑥𝐵,𝑖)
2𝑛

𝑖=1 ) 2𝑛⁄ , Mean = ∑ (𝑥𝐴,𝑖 + 𝑥𝐵,𝑖)
𝑛
𝑖=1 2𝑛⁄ , and 

the number 𝑛 of estimate pairs 𝑥1 and 𝑥2. Including all applied flow rates, the 𝐶𝑉s are 6.3%, 

6.2%, 345% and 358% for 𝑓, 𝑣, 𝜏 and 𝑙, respectively. The poor 𝐶𝑉s for 𝜏 and 𝑙 originate from the 

large uncertainties at small flow rates. Excluding flow rates of < 1 ml/min yields 𝐶𝑉s of 2.7%, 

3.8%, 13.1% and 8.1%, respectively.  

     The linear proportionality of the estimated average particle speed 𝑣 to the applied flow rate is 

an important feature to substantiate the plausibility of the estimated parameters. Figure 7.11 illus-

trates the linear regression of 𝑣 (measurement series A) versus the applied flow rate. The estimated 

coefficient of determination is 𝑅2 = 0.993 with a 𝑝-value of 2.5 × 10−12, indicating that practi-

cally all variation in 𝑣 is predictable from the applied flow rate. Furthermore, the estimated inter-

cept at 0.034 mm/s is very close to 0 mm/s, showing that there is negligible constant bias.  
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Figure 7.11: Regression analysis of 𝑣 (measurement series A) versus the applied flow showing a highly 

significant linear proportionality with 𝑅2 = 0.993 and a 𝑝-value of 2.5 × 10−12. The estimat-

ed intercept at 0.034 mm/s indicates that there is negligible constant bias. 
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Table 7.1: Parameter estimates for measurement series A and B and the resulting coefficients of variation (𝐶𝑉) between the measurement series. 

 𝐅𝐥𝐨𝐰 [𝐦𝐥 𝐦𝐢𝐧⁄ ] 𝒇 𝒗 [𝐦𝐦 𝐬⁄ ] 𝝉 [𝐦𝐬] 𝒍 [𝝁𝒎]  𝑫 [𝟏𝟎−𝟑𝐦𝐦𝟐 𝐬⁄ ] (range) 

 0.2  0.492 ± 0.092 0.250 ± 0.036 7.3 × 106 ± 1.2 × 1011 1.8 × 106 ± 2.9 × 1010 1.038…1.416 

 0.4  0.476 ± 0.026 0.463 ± 0.033 7.1 × 106 ± 4.3 × 1010 3.3 × 106 ± 2.0 × 1010 1.108…1.511 

 0.6  0.487 ± 0.022 0.652 ± 0.041 559.9 ± 184.4 365.2 ± 122.4 1.104…1.562 

 0.8  0.456 ± 0.017 0.926 ± 0.055 229.6 ± 29.5 212.6 ± 30.1 1.145…1.530 

 1.0  0.431 ± 0.012 1.257 ± 0.062 165.1 ± 16.0 207.4 ± 22.6 1.186…1.539 

Series A 1.2  0.437 ± 0.014 1.445 ± 0.068 138.2 ± 12.6 199.7 ± 20.4 1.178…1.580 

 1.4  0.437 ± 0.011 1.674 ± 0.074 128.1 ± 11.2 214.4 ± 21.0 1.210…1.630 

 1.6  0.421 ± 0.011 1.989 ± 0.096 93.3 ± 9.1 185.6 ± 20.1 1.209…1.592 

 1.8  0.440 ± 0.010 2.156 ± 0.087 91.9 ± 7.4 198.0 ± 17.9 1.212…1.637 

 2.0  0.436 ± 0.011 2.385 ± 0.112 78.4 ± 7.5 187.0 ± 20.0 1.206…1.652 

 2.2  0.444 ± 0.011 2.457 ± 0.114 69.8 ± 6.6 171.4 ± 18.0 1.191…1.612 

 2.4  0.454 ± 0.012 2.729 ± 0.132 71.9 ± 7.1 196.1 ± 21.7 1.225…1.701 

 0.2  0.385 ± 0.019 0.365 ± 0.020 3.7 × 104 ± 1.0 × 106 1.3 × 104 ± 3.7 × 105 1.091…1.610 

 0.4  0.430 ± 0.019 0.641 ± 0.036 312.3 ± 47.2 200.2 ± 32.3 1.143…1.633 

 0.6  0.432 ± 0.015 0.898 ± 0.047 210.3 ± 22.4 188.8 ± 22.4 1.165…1.760 

 0.8  0.432 ± 0.012 1.184 ± 0.055 155.4 ± 13.8 183.9 ± 18.5 1.198…1.738 

 1.0  0.442 ± 0.010 1.401 ± 0.059 142.1 ± 11.6 199.1 ± 18.3 1.205…1.764 

Series B 1.2  0.442 ± 0.010 1.525 ± 0.062 123.7 ± 9.8 188.6 ± 16.8 1.220…1.734 

 1.4  0.438 ± 0.011 1.796 ± 0.080 97.7 ± 8.7 175.5 ± 17.3 1.225…1.599 

 1.6  0.444 ± 0.011 1.959 ± 0.085 87.2 ± 7.5 170.8 ± 16.5 1.216…1.723 

 1.8  0.460 ± 0.013 2.156 ± 0.110 90.2 ± 9.2 194.6 ± 22.2 1.241…1.732 

 2.0  0.454 ± 0.011 2.460 ± 0.109 72.1 ± 6.5 177.5 ± 17.8 1.253…1.724 

 2.2  0.452 ± 0.010 2.573 ± 0.110 70.1 ± 6.1 180.5 ± 17.5 1.242…1.751 

 2.4  0.463 ± 0.010 2.708 ± 0.114 65.0 ± 5.6 176.1 ± 16.9 1.240…1.737 

 𝐶𝑉 6.26 %  6.22 % 344.6 % 358.2 %  

 𝐶𝑉 ( low ≥ 1) 2.71 % 3.75 % 13.06 % 8.13 %  
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Combined Model  

In theory, the fraction of the signal 𝑓 attributed to flowing particles as well as the capillary seg-

ment length 𝑙 are characteristic features of the capillary network and should not show any depend-

ency on the applied flow rate. So far, for each flow rate, a separate model fit was performed and 

indeed, 𝑓 as well as 𝑙 remained largely constant once the applied flow rate is high enough to allow 

for accurate parameter estimations. Alternatively, one may formulate a combined minimization 

problem that incorporates the measurement points of all flow rates, effectively forcing 𝑓 and 𝑙 to 

be constant across flow rates. Figure 7.12 A illustrates the results of this combined model com-

pared to the average estimates and standard errors of the separate model fits using the data from 

measurement series A. For the separate model fits, flow rates < 1 ml/min have been excluded due 

to the large standard errors. The separate fits yield an average capillary length of 195 μm with an 

average error of ±20 μm. The combined model yields a similar estimated length of 202 μm, how-

ever, with a significantly smaller error of ±13 μm. The signal fraction 𝑓 shows a likewise trend 

with average 𝑓 = 0.438 ± 0.022 obtained from the separate fits and 𝑓 = 0.444 ± 0.004 from the 

combined model, with an even more pronounced reduction of the standard error. Figure 7.12 B 

shows the regression analysis of the particle speeds 𝑣 obtained using the combined model versus 

the applied flow rate. While the separate fits already yielded a highly linear proportionality of 𝑣 

and the flow rate (Figure 7.11), the combined model enhances this relationship even further with 

an estimated coefficient of determination of 𝑅2 = 0.999 and a 𝑝-value of 1.7 × 10−17. The esti-

mated diffusion coefficients 𝐷 using the combined model (not shown) behave very similar com-

pared to the separate fits with a range of 𝐷 = 1.07…  1.39 × 10−3 mm2/s at a flow rate of 

0.2 ml/min, up to a range of 𝐷 = 1.26…1.72 × 10−3 mm2/s at a flow rate of 2.4 ml/min. 

 

Figure 7.12: Results of a combined model, incorporating the measurement points of all flow rates into a 

single fit. Panel A: Comparison of the average estimates and errors for 𝑙 and 𝑓 of the separate 

model fits (excluding flow rates < 1 ml/min due to the large standard errors) with the com-

bined model results. The separate fits yield 𝑙 = 195 ± 20 μm and 𝑓 = 0.438 ± 0.022, the 

combined model yields 𝑙 = 202 ± 13 μm and 𝑓 = 0.444 ± 0.004, greatly reducing the 

standard errors for both parameters. Panel B: Regression analysis of the particle speeds 𝑣 

obtained using the combined model versus the applied flow rate. 
 

𝑙 𝑓

μm

A

 ntercept = 0.035 mm s⁄

𝑅2 = 0.999
𝑝 − value = 1.7e − 17

𝑣
 [
m
m

s
⁄
]

Flow ml min⁄B



94 7 Experimental Assessment of Flow-Dependent IVIM-MRI 

 

 

7.2.4 Comparison to Pseudo-Diffusion Model 
The biexponential pseudo-diffusion model with its four parameters, the perfusion fraction 𝑓, the 

pseudo-diffusivity 𝐷∗, the tissue diffusivity 𝐷 and the unweighted signal intensity 𝑆0, is the pre-

ferred choice in the literature to investigate effects due to capillary flow in DW-MRI. In this sec-

tion, an analysis of biexponential model fits based on the MP28 measurement data is presented and 

compared to the results obtained using the phase-distribution (PD) model. The MP28 sequence 

was chosen, since it closely reflects the sequence designs commonly used for IVIM measurements 

for example in the kidneys
14,16

.  

     Figure 7.13 illustrates the estimated parameters and their respective 95% confidence interval 

(calculated as ±1.96 ×  𝑒) using the biexponential model, plotted versus the applied rate of flow. 

In line with the PD model results and the simulations performed in section 5.5, the biexponential 

model fails to separate the flowing from the static compartment at the lowest flow rate, reflected 

by a large estimated error for 𝑓. Subsequently, 𝑓 increases with the applied flow rate from 

𝑓(0.4 ml/min) = 0.131 to 𝑓(2.4 ml/min) = 0.234. The pseudo-diffusion coefficient 𝐷∗ exhibits 

a strong linear relationship to the applied flow rate and increases from 𝐷∗(0.4 ml/min) = 10.6 ×

10−3mm s⁄  to 𝐷∗(2.4 ml/min) = 80.7 × 10−3mm s⁄ . The diffusion coefficient 𝐷 of the static 

compartment shows a distinct dependency of the applied flow rate as well, increasing from 

𝐷(0.4 ml/min) = 1.41 × 10−3mm s⁄  to 𝐷(2.4 ml/min) = 1.68 × 10−3mm s⁄ . Close exami-

nation of the biexponential model fit at an exemplary flow rate of 1.6 ml/min reveals systematic 

deviations between the measured data and the fitted curve (further analyzed in Figure 7.15).   

     A direct comparison of the signal fractions 𝑓, the particle speeds 𝑣 and the molecular diffusion 

coefficients 𝐷 estimated using the different models is shown in Figure 7.14. For the biexponential 

model, the particle speed was calculated via 𝑣 = 6𝐷∗/𝑙, whereby a capillary length of 𝑙 = 202 μm 

was used (as determined in the previous section using the combined PD model). Both 𝑓 and 𝑣 

illustrate similar behaviors to the results obtained in section 5.5: The biexponential estimates for 𝑓 

are much lower than the estimates obtained using the PD model, however, the estimates for 𝑣 

show a reasonable agreement between the two models. In line with the simulation results, it ap-

pears that applying an inadequate signal model has the most negative effect on the signal fraction 

𝑓. The estimates for 𝑣 are associated with comparatively large errors, which is partly due to the 

reduced number of measurement points but likely also originates from the inadequacy of the biex-

ponential model function and the resulting poor model fit. The molecular diffusion 𝐷 is estimated 

consistently higher when using the biexponential model compared to the PD model. This is likely 

due to the interaction between 𝑓 and 𝐷: As the biexponential model underestimates the fraction of 

flowing particles 𝑓, the rapid signal decay is not fully accounted for by the pseudo-diffusion 𝐷∗, 

and is in turn compensated by overestimating the molecular diffusion coefficient 𝐷.  

     A detailed analysis of the residuals and goodness of fits is presented in Figure 7.15. Note that 

only the residuals from sequence MP28 are discussed here, even though the PD model fits are 

based on all four sequences. Panel A illustrates the fit residuals as line-plots color-coded according 

to the applied flow rate. In general, the PD model fit results in decidedly smaller absolute values of 

the residuals, which is most prominent at high flow rates. Furthermore, the residuals of both mod-

els show contributions that are clearly not normally distributed and exhibit a systematic pattern. 

Notably, the residuals of the biexponential model in Figure 7.15 appear very much alike the 

residuals displayed in Figure 5.11, which were obtained by fitting the biexponential model to data 
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Figure 7.13: Estimated parameters and their respective 95% confidence intervals (calculated as ±1.96 ×

 𝑒) using the biexponential model, plotted versus the applied rate of flow and an exemplary 

model fit. The biexponential model fails to separate flowing from static compartment at the 

lowest flow rate, reflected by a large estimated error for 𝑓. For the subsequent measurements, 

all parameters display a dependency on the applied flow rate. Close examination of the model 

fit reveals systematic deviations between the measured data and the fitted curve (further ana-

lyzed in Figure 7.15). 
 

simulated using the PD model with the particle speed distribution 𝜌CN(𝑣). The strong resemblance 

of the residual pattern further indicates that 𝜌CN(𝑣) is indeed a reasonable approximation of the 

actual particle speed distribution inside the capillary network. However, as previously mentioned, 

the residuals of the PD model do show non-normally distributed contributions as well, albeit to a 

greatly reduced extend, indicating that there are some remaining dephasing effects, which are not 

properly reflected by the PD model. Panel B shows the sum of the squared fit residuals of the re-

spective models versus the applied flow rate, highlighting the superiority of the PD model, espe-

cially at high flow rates.  

     Previously introduced (see subsection 7.2.1), the Akaike information criterion (𝐴𝐼𝐶) and the 

resultant weights may be used to quantify the appropriateness of each model by relating the 𝑅𝑆𝑆 to 

the number of measurement points and model parameters. While the biexponential model has four 

parameters, 𝑆0, 𝑓, 𝐷∗ and 𝐷, the situation is not as obvious for the PD model when only consider-

ing a single sequence, in this case MP28. Instead of 𝐷∗, the PD model has two parameters, 𝑣 and  
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Figure 7.14: 

 
Comparison of the signal fractions 𝑓 and the particle speeds 𝑣 estimated using the biexponen-

tial and PD model. For the biexponential model, the particle speed was calculated via 𝑣 =
6𝐷∗/𝑙, whereby a capillary length of 𝑙 = 202 μm was used. The biexponential estimate for 𝑓 

is much lower than the estimate obtained using the PD model, however, the estimates for 𝑣 

show a reasonable agreement between the two models. The biexponential estimates for 𝑣 are 

associated with comparatively large errors due to the reduced number of measurement points 

and the poor model fit. The molecular diffusion 𝐷 is estimated consistently higher when using 

the biexponential model compared to the PD model. 
 

𝜏. Although these are not truly free parameters with respect to the MP28 data fit (as they are de-

termined with respect to the best model fit to all four sequences), they have been regarded as such 

for the 𝐴𝐼𝐶 calculation. It is important to realize that the parameters 𝑆0 and 𝐷 are sequence respec-

tive in the PD model, i.e. only the 𝑆0 and 𝐷 of MP28 contribute to the number of model parame-

ters with regard to the 𝐴𝐼𝐶. This is easily understandable by considering the following: The PD 

model can in theory solely be fit to the MP28 data, resulting in a reduced number of total model 

parameters and a smaller or at worst equal 𝑅𝑆𝑆 (since 𝑣 and 𝜏 are now truly free parameters with 

respect to the MP28 data). Furthermore, 𝜌CN(𝑣) was semi-empirically determined and depends on 

the shape parameter 𝛼 = 0.5. To err on the side of caution, the PD model was therefore assumed 

to have six parameters: 𝛼, 𝑆0, 𝐷, 𝑓, 𝑣 and 𝜏. Figure 7.15 C shows the calculated weights at each 

flow rate. Since both models result in similar 𝑅𝑆𝑆 values at small flow rates, the biexponential 
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Figure 7.15: Analysis of the residuals and goodness of fits using the biexponential and PD model. A: The 

PD model results in decidedly smaller absolute values of the residuals, which is most promi-

nent at high flow rates. Both models show contributions that are clearly not normally distribut-

ed and show a characteristic pattern. B: 𝑅𝑆𝑆 (sum of squared fit residuals) values of the re-

spective models versus the applied flow rate, highlighting the superiority of the PD model, 

especially at high flow rates. C: Akaike weights at each flow rate using 𝑘 = 4 and 𝑘 = 6 mod-

el parameters for the biexponential and PD model, respectively. Since both model fits result in 

similar 𝑅𝑆𝑆 values at low flow rates, the biexponential model is preferred by the AIC due the 

smaller set of parameters. However, as the flow rate increases, the decidedly reduced 𝑅𝑆𝑆 

values obtained using the PD model outweighs the larger parameter set. 
 

model is preferred by the AIC due to the smaller set of parameters. However, as the flow rate in-

creases, the decidedly reduced 𝑅𝑆𝑆 values obtained using the PD model outweighs the larger pa-

rameter set and a strong preference of the PD model becomes apparent. 
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8 Discussion & Outlook 
 

In the course of this work, the capability of conventional pseudo-diffusion (biexponential) IVIM 

MRI and phase-distribution IVIM MRI to characterize capillary flow was investigated and com-

pared. To this end, a phantom, facilitating flow in a capillary bed at adjustable rates, was con-

structed and subsequently analyzed using optical microscopy. Based on extensive DW-MRI meas-

urement series, the potential of phase-distribution IVIM MRI to accurately estimate flow proper-

ties such as the flow speed as well as information about the capillary geometry was assessed while 

demonstrating the limitations of the conventional pseudo-diffusion model. Furthermore, detailed 

numerical simulations were performed to consolidate the experimental findings and to advance the 

understanding of the effects of flow characteristics on data measured using DW-MRI. 

Characterizing capillary flow using IVIM MRI  

The diffusion-weighted images of the capillary network acquired at different rates of flow dis-

played a high SNR and, paired with the ROI-based evaluation, the measured signal decay curves 

appeared smooth with barely any visible noise-associated jitter. Notably, there was a stark differ-

ence in the slope of the curves between the different employed gradient schemes at all applied 

flow rates. Having previously established that the signal decay is indifferent to the applied gradient 

scheme in the pseudo-diffusion limit, it can already be anticipated that the underlying particle 

movement does not conform to this limiting case.  

Utilizing the Akaike Information Criterion (AIC), the acquired data was shown to be best de-

scribed by a two-compartment model consisting of a static and a flowing compartment, where the 

static compartment is hypothesized to be ascribed to liquid inside the spherical dilations. The flow-

ing compartment was fit using the phase-distribution model. In accordance with the expectation 

that the relative volumes of multiple compartments should be independent of the applied flow rate, 

the determined signal fraction 𝑓 attributed to the flowing compartment stayed approximately con-

stant over the course of the measurement series. The average signal fraction 𝑓 = 0.451 ± 0.023 of 

all flow rates from the measurement series A is appreciably close to the ratio of the volume inside 

the capillaries 𝑉𝑐𝑎𝑝 to the total network volume 𝑉𝑐𝑎𝑝 + 𝑉𝑑𝑖𝑙, estimated at 0.454 ± 0.002 using the 

data from optical microscopy. This further supports the notion that the static compartment consists 

of the liquid inside the spherical dilations. Having a flowing and static compartment of roughly the 

same size benefits the detailed analysis of flow effects using DW-MRI; however, with respect to in 

vivo measurements, a perfusion fraction of 𝑓 = 0.451 can be considered rather large. Values close 

to that have only been reported in the best-perfused organs such as the kidneys
104

 or the liver
27

.  

     In a closed system, the average particle speed due to flow must be linearly proportional to the 

applied rate of flow. The estimated average particle speed 〈𝑣〉 inside the capillary phantom fully 

met this expectation. The calculated coefficient of determination between the applied rate of flow 

and 〈𝑣〉 is 𝑅2 = 0.99, indicating that practically all variation in 〈𝑣〉 is predictable from the applied 

flow rate. Furthermore, there is negligible constant bias, as the estimated y-axis intercept of 

0.034 mm/s is close to zero. The estimated average flow speeds, ranging from 〈𝑣〉 = 0.25 mm/s 



100 8 Discussion & Outlook 

 

 

up to 2.7 mm/s cover reported values from various studies. Ivanov et al.
105

 measured the red cell 

velocity in the brain and the temporalis muscle of rats to be 0.8 mm/s and 1.1 mm/s, respective-

ly. Pawlik et al.
71

 investigated the cerebral cortex of cats and determined the median flow velocity 

of red cells to be 1.5 mm/s. Both of these studies used highly invasive methods where the exam-

ined tissue layers were first exposed and subsequently imaged using optical microscopy. Using a 

more recent and less invasive method, laser Doppler anemometry, the velocity of capillary blood 

cells in the cutaneous microvasculature was reported to range between 0.2 mm/s to 1.4 mm/s in 

patients with venous leg ulcers in a study by Stücker at al.
106

. Due to the associated difficulties, 

measured values of the blood flow speed in internal organs have never been reported to our 

knowledge. However, using their proposed phase-distribution IVIM method, Wetscherek et al.
26

 

estimated the speed of flow to be 4.6 mm/s and 3.9 mm/s for the liver and pancreas, respectively. 

In the presented work, it was not possible to reach velocities of that magnitude since the utilized 

pump did not provide enough pumping pressure.  

     At very slow flow rates, the characteristic duration 𝜏 until a particle changes its movement di-

rection (due to the traversing of capillary segments) could not be determined with satisfactory 

accuracy resulting in large standard errors. At flow rates greater than 0.8 ml/min, 𝜏 showed an 

inverse proportionality to the applied flow rate. Consequently, the hypothesis that the capillary 

segment length, calculated as 𝑙 = 〈𝑣〉 ∙ 𝜏, is independent of the applied flow rate is confirmed in 

this domain, serving as further basis for the validity of the applied signal model. Optical microsco-

py yielded an average capillary length of 162 ± 78 μm which is slightly below the values deter-

mined using DW-MRI ranging from 171 μm to 214 μm for flow rates larger than 0.8 ml/min. A 

possible source of this bias is the missing depth-information in optical microscopy.  

     Naturally, the average number of directional changes 𝑀 is not only subject to the speed of flow 

and capillary length, but also to the duration of respective diffusion experiment. With regard to the 

employed sequence MP28, the average 𝑀 was estimated to range between 0.01 to 0.78 in the per-

formed experiments, which is well below the pseudo-diffusion limit. The reported range of in vivo 

blood flow velocities in the literature is broad, however, considering a speed of 1 mm/s and a 

capillary length
70

 of 63 μm, a directional change can be expected to occur every 63 ms. The diffu-

sion gradients in the MP28 sequence have a total duration of 𝑇 = 50.4 ms, accordingly, these in 

vivo values would translate to 𝑀 = 0.8, also well below the pseudo-diffusion limit. Especially at 

the higher applied flow rates, the estimated values of 𝑀 correspond very well to this approxima-

tion and the performed phantom measurements can therefore be considered a reasonable represen-

tation of this aspect. 

The measured data was analyzed using the biexponential pseudo-diffusion IVIM model as well; 

however, the 𝑅𝑆𝑆 values vastly increased in comparison to the phase-distribution model at flow 

rates larger than 0.8 ml/min indicating that the pseudo-diffusion limit was not reached even at the 

highest flow rate. At slow flow rates, the reduced parameter set of the biexponential model out-

weighs the reduction in 𝑅𝑆𝑆, yet, as the flow rate increases the perfusion effects become more 

dominant and the AIC clearly favors the phase-distribution model. Using the biexponential model, 

the signal fraction 𝑓 was estimated to be much smaller (ranging from 0.13 to 0.23) but displayed a 

strong increase with the applied flow rate compared to the phase-distribution model estimate. Yet, 
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translating the pseudo-diffusion 𝐷∗ to the particle speed 𝑣biexp, the estimates from both models 

display a good agreement. These findings are in accordance with the results of the simulation 

study; they highlight the intricate interplay of the model parameters and show that the accuracy of 

the estimated signal fraction 𝑓 is highly susceptible to correct model assumptions. This is especial-

ly interesting with regard to the common notion that 𝐷∗ is most difficult to estimate accurately, 

suffering heavily in the presence of signal noise and insufficient 𝑏-value sampling
59

.  

IVIM-MRI phantom studies  

To our knowledge, this work represents the first time IVIM-MRI experiments were performed 

using a perfusable phantom consisting of a three-dimensional microchannel network similar to in 

vivo capillary beds, and it was the first time that the phase-distribution model was investigated 

using phantom measurements. As the most important property, an IVIM-MRI phantom must fa-

cilitate incoherent particle motion within the scale of a single imaging voxel. This can be achieved 

in a number of ways, for example using sponges or columns packed with microspheres. However, 

these approaches create mostly turbulent flow and lack the capillary structure needed to assess 

phase-distribution IVIM. Creating a three dimensional network on the scale of in vivo capillaries is 

challenging. Modern 3D printing may become a viable option in the future; however, this tech-

nique is just now approaching a resolution of 0.01 mm (vendor specification, N2 Plus FFF 3D, 

Raise3D, Irvine, CA), which can still be considered too coarse to adequately recreate a capillary 

bed with smooth surfaces. In this work a more unconventional yet approachable method was cho-

sen using sacrificial sugar structures as initially proposed by Bellan et al
65

. The constructed phan-

tom allowed for the controlled application of fluid flow at adjustable rates and optical microscopy 

revealed a capillary structure with comparable dimensions to in vivo capillary beds. It was there-

fore possible to generate true incoherent capillary flow within a single imaging voxel enabling the 

detailed assessment of the phase-distribution model. However, there are previously published stud-

ies based on IVIM measurements in various otherwise constructed phantoms using the straight-

flow (sinc) or the pseudo-diffusion (biexponential) model. 

Early experiments performed in 1987 by Ahn et al.
44

 investigated the effects of water flow in a 

“ball made by winding a long (33 m) flexible tube with a small diameter (1 mm) in a random fash-

ion”, using gravity to generate flow. The authors found a good agreement between the measured 

signal decay and their signal model, which corresponds to the straight flow limit while considering 

a laminar flow profile within the tube. The authors justify their methodology by concluding from 

previously published data
107,108

 that in vivo blood flow in capillaries is “almost linear with con-

stant velocities” within their experiment duration of 100 ms. However, the assumed capillary 

length of 0.75 mm and flow velocity of 0.3 to 0.5mm s⁄  are not in good agreement with more 

recently reported values, as detailed above.  

     Within one of their initial studies on IVIM MRI, Le Bihan et al.
42

 constructed a phantom con-

sisting of a column packed with porous microspheres. Flow through the phantom was maintained 

by gravity. They assumed that the water inside the microspheres was diffusing only, while the 

water in the interstitial volume was flowing in random orientations. On this basis, a theoretical 

perfusion fraction of 𝑓 = 0.32 was expected, however, the analysis of the measured data using the 

biexponential IVIM model yielded a significantly lower perfusion fraction of only 𝑓 = 0.09. The 

authors attribute this discrepancy to “a too-low water flow”. This is very much in line with the 
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results in the presented work, as it was shown by simulation and experiment that the signal fraction 

𝑓 estimated using the biexponential model can suffer from a significant negative bias and is de-

pendent on the flow velocity. Furthermore, it is plausible that the implicit model assumption in the 

study of Le Bihan et al. of delta-distributed particle speeds did not reflect the actual particle speed 

distribution inside the constructed phantom.  

     In 2012 Cho et al.
61

 presented IVIM measurements in a very sophisticated phantom using en-

capsulated sponges allowing them to apply varying degrees of pressure. They analyzed the data 

using the biexponential model and, in accordance with the presented work, the authors found that 

aligning the gradient direction with the direction of the macroscopic flow results in a greatly accel-

erated signal decay and results in higher estimates for the pseudo-diffusion coefficient 𝐷∗ com-

pared to the transverse directions. The estimates for 𝐷∗ displayed a positive correlation to the ap-

plied pressure; however, the authors also state that the signal decay using flow-compensated diffu-

sion gradients remains largely unaffected by the applied pressure. This suggests that the flowing 

particles were performing a largely linear motion (straight-flow limit) within the duration of the 

diffusion experiment. The applicability of the biexponential IVIM model is therefore questionable, 

which might explain why the estimated signal fraction 𝑓 was increasing with the applied pressure 

in some of their measurements.  

     In a recently published study, Lee et al.
64

 performed IVIM measurements in columns filled with 

sephadex gel beads of different sizes at varying rates of flow. Following Le Bihan et al., water 

inside the beads was considered stagnant, while water in the interstitial volume was considered to 

be flowing. With this in mind, a flowing water content fraction 𝐹𝑊𝐶 was estimated for each bead 

size by analyzing micro-CT images of the respective column. The comparison between the esti-

mated signal fraction 𝑓, using the biexponential model, and the 𝐹𝑊𝐶 followed a familiar pattern: 

The signal fraction 𝑓 mostly underestimated 𝐹𝑊𝐶, especially at low flow rates and 𝑓 displayed a 

strong positive correlation to the applied flow rate. Furthermore, the estimated 𝐷∗ displayed a 

counterintuitive behavior by initially decreasing as the applied rate flow was increased. In light of 

the presented work, these occurrences can be explained a) by too-slow flow and therefore not 

reaching the pseudo-diffusion limit, b) by causing little flow-induced signal decay and c) by ignor-

ing that the particle flow speeds might follow a complex distribution. The authors also analyzed 

the measured data using a segmented fitting approach
15

, designed to allow for a more robust esti-

mation of the model parameters at the expense of a possible bias
109

. This helped to alleviate the 

counterintuitive behavior of 𝐷∗, however, resulting in even smaller estimates for 𝑓. 

Limitations  
The performed simulation study demonstrated that inappropriate model assumptions can lead to a 

significant bias in the estimated parameters. Notably, the particle speed distribution was found to 

have a significant impact on the resulting signal decay and, vice versa, properly accounting for the 

particle speed distribution when analyzing IVIM MRI data was proven to be pivotal to generate 

meaningful parameter estimates. For example considering a wide speed distribution with a non-

negligible fraction of slowly flowing particles, many more (average) directional changes are nec-

essary to result in an approximately exponential signal decay compared to delta-distributed particle 

speed distributions (with only a single speed). In the presented work, the speed distribution for the 

constructed capillary network was approximated by adapting previously published results on the 

related topic of fluid flow in fracture networks. Having further established that the flow can be 
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expected to be laminar within a given capillary, the resulting speed distribution 𝜌CN(𝑣) was found 

to be highly asymmetric and L-shaped. A comparison of the signal model fits of the experimental 

data indicated that the determined particle speed distribution in the capillary network 𝜌CN(𝑣) is 

indeed a reasonable approximation of the true speed distribution. Compared to a uniform distribu-

tion and to a delta distribution, the signal model using 𝜌CN(𝑣) resulted in greatly reduced 𝑅𝑆𝑆 

values, especially at higher flow rates. Obvious patterns in the residuals are a sign of applying an 

inappropriate speed distribution. The speed distribution 𝜌CN(𝑣) improves upon this; however, 

upon close examination the residuals still show a visible pattern indicating that the true underlying 

particle speed distribution may follow a more complex and irregular shape. Considering possible 

in vivo measurements, such subtle systematic deviations between measured data and model fits are 

likely to be obscured by image noise making it challenging to assess the correct speed distribution 

based on the model fits. To approximate the speed distribution for in vivo microperfusion, further 

considerations will be necessary. While the assumption of laminar flow is reasonable under the 

experimental conditions in the constructed capillary phantom, blood flow in very small capillaries 

is unlikely to be strictly laminar. The diameters of smaller capillaries can easily be surpassed by 

the size of human red blood cells (6.2– 8.2 μm110), which are then “squeezed” through the capillar-

ies separated by segments of plasma, creating a plug-flow effect
111,112

. Naturally, the heterogene-

ous composition of blood also influences the flow in larger capillaries and microvessels
113

. Flow-

ing blood acts therefore as a non-Newtonian fluid and the velocity profile of laminar flow likely 

needs to be re-evaluated for in vivo experiments. Furthermore, the distribution of average flow 

speeds across differently sized capillaries must be considered. 

Unfortunately, there is no ground truth for the average particle speed inside the capillary network 

and the estimates had to be validated indirectly by performing a regression analysis. As mentioned 

above, the highly significant linear correlation with the applied flow rate indicates that practically 

all variation in 𝑣 is predictable from the applied flow rate and the small y-axis intercept shows that 

there negligible constant bias. This does leave the estimated average particle speed open to a pro-

portional bias, meaning that the true value could be over- or underestimated by a certain fixed 

percentage. While this is certainly not ideal, it can be argued that a proportional bias is less critical 

in a clinical question once reference values for healthy tissue or baseline values for progress moni-

toring of a disease have been established. 

A Monte Carlo simulation study revealed that the duration of the diffusion-sensitizing period of 

the employed gradient schemes has a significant impact on the accuracy of the estimated parame-

ters. Regarding the flow-compensated gradient scheme, the accuracy generally benefits from a 

very short diffusion-sensitizing duration. However, at the same time the maximum 𝑏-value needs 

to be large enough to facilitate a proper separation of the flowing and solely diffusing signal frac-

tions. Since the diffusion-sensitizing duration and the maximum obtainable 𝑏-value are closely 

related, this poses a significant challenge to the MRI systems hardware. Within this work, this 

issue was addressed by employing multiple flow-compensated gradient schemes, one of which 

used a reduced 𝑏-value set to achieve a shorter gradient duration. 

It should be noted that the construction process of the capillary phantom creates a random network 

of channels, which precludes the manufacturing of identical standardized phantoms. By keeping 

variables such as the humidity and the pressure that is applied to compress the sugar fibers con-
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stant, it is possible to construct phantoms with similar properties, however, the exact structure of 

the capillary network will ultimately be unique. Accordingly, each constructed phantom will have 

to be characterized individually. While the formed capillary network closely resembles in vivo 

capillary beds, the curved nature of blood vessels could only be emulated to a certain degree and 

the rigid matrix material does not allow for expansion or contraction of the microchannels. 

Conclusion & Outlook  
The constructed phantom facilitated the detailed investigation of incoherent-flow-induced spin 

dephasing in DW-MRI in a controllable fashion. To our knowledge, it is the first phantom to mim-

ic the key feature of fluid flow inside a highly interconnected network of randomly oriented chan-

nels at the scale of in vivo capillary beds serving as a basis for the applicability of IVIM MRI 

methods. The systematic analysis of the acquired data has greatly improved the understanding of 

the interplay of capillary flow characteristics and the resulting signal decay measured using DW-

MRI. The results showed that advanced methods are capable of accurately characterizing fluid 

flow inside a capillary network in a reproducible manner, yielding meaningful and intuitive pa-

rameter estimates. At the same time, the phantom experiments confirmed the results from the ini-

tial simulation study, where the importance of appropriate model assumptions emerged. Specifical-

ly, the particle speed distribution was shown to have a significant impact on the resulting signal 

decay and, if not properly accounted for, can lead to significant systematic errors in parameter 

estimates. 

The findings of this study indicate that the use of the biexponential IVIM model should be treated 

with caution since the estimated parameters are at risk to be subject to a significant bias. Future 

studies examining perfusory effects using DW-MRI should be aware of this potential issue and are 

advised to verify that the model assumptions reflect the nature of the blood flow in the investigated 

tissue. Compared to the commonly used biexponential model, the more advanced phase-

distribution model features the consideration of arbitrary particle speed distributions while having 

the additional benefit of obtaining information about the capillary morphology, which may be of 

diagnostic value in cancerous diseases 
114–118

 for example.   

     However, the current methodology of this advanced technique limits its applicability. Generat-

ing the phase distributions needed for the data analysis requires significant computing power as 

well as the a priori knowledge about the employed gradient profiles and the particle speed distribu-

tion (if accounted for). Moreover, the long measurement procedure involving multiple DW-MRI 

sequences with varying gradient profiles is likely to prove prohibitive in a clinical setting. With 

this regard, in this work a first step was taken by relating the parameter estimation accuracy to the 

duration of the employed diffusion gradients with the goal of devising optimized measurement 

settings. Future endeavors should place a focus on making this technique more approachable and 

time efficient, for example by incorporating compressed sensing techniques
119

, to allow for appli-

cations in clinical studies and to unveil its diagnostic potential.  

The usage of the constructed phantom is not limited to DW-MRI. In a previous publication
120

 the 

capillary network was demonstrated to facilitate the assessment of dynamic contrast-enhanced
121

 

MRI yielding highly reproducible results. As a possible next step, further imaging techniques aim-

ing to provide information about tissue perfusion, such arterial spin labeling
122

 may be investigat-
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ed. Additionally, the phantom design may be further improved, for example by experimenting with 

flexible matrix materials to reflect the elastic nature of in vivo capillaries more accurately. 
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9 Summary/Zusammenfassung  
 

Diffusion-weighted magnetic resonance imaging (DW-MRI)
7,41

 offers the unique possibility to 

assess non-invasively the microscopic displacement of water molecules inside biological tissue. 

For free thermal molecular diffusion, the measured DW-MRI signal intensity as a function of the 

applied diffusion weighting follows an exponential decay. However, DW-MRI is not only sensi-

tive to thermal molecular diffusion, but also to incoherent motion of water molecules in general, 

coining the term intravoxel incoherent motion (IVIM) MRI
42

. A primary source of such motion in 

vivo (in addition to thermal molecular diffusion) is capillary blood flow, leading to an additional 

superimposed decay attributed to the signal of blood in perfused capillaries. This effect can be 

utilized to assess tissue hemodynamics non-invasively, which is a highly desirable prospect for the 

diagnosis of many diseases making IVIM MRI a topic of current research. However, the exact 

shape of the signal decay in IVIM MRI depends not only on the speed of blood flow, but also on 

the time until a flowing particle changes its movement direction (due to capillary curvature or 

branching). Two limiting cases lead to analytical solutions: Straight particle movement, i.e. no 

changes of movement direction during the diffusion-sensitizing period, results in a sinc-like signal 

decay. In contrast, the signal decay of many directional changes during the diffusion experiment, 

called pseudo-diffusion limit, can be approximated by an exponential function, which results (after 

including thermal diffusion) in a biexponential signal decay.   

     This biexponential pseudo-diffusion model enjoys great popularity since it is elegant and seem-

ingly fits measured data from a great variety of organs very well. However, it is often unclear or 

ignored if the preconditions for the pseudo-diffusion model are met. This issue was recently ad-

dressed by Wetscherek et al.
26,27

 by introducing a method that does not assume a limiting case but 

is based on phase distributions of the NMR spin ensemble generated by the simulation of particle 

pathways. With this approach, it was not only shown that the pseudo-diffusion limit was not 

reached in common DW-MRI experiments in the liver and pancreas, but the new method also al-

lowed to estimate the average speed 〈𝑣〉 of the blood flow as well as the characteristic duration 𝜏 

until a particle changes its movement direction. In contrast, the conventional pseudo-diffusion 

model combines these measures into the pseudo-diffusion coefficient 𝐷∗ = 〈𝑣〉2𝜏/6. Furthermore, 

picturing the microvasculature as a successive network of straight segments, the average length of 

a single segment can be calculated via 𝑙 = 〈𝑣〉 ∙ 𝜏. Unlike the pseudo-diffusion model, the phase-

distribution method also allows for the explicit consideration of a particle speed distribution. How-

ever, the validation of IVIM MRI methods in vivo is inherently difficult. Quantities such as the 

blood flow velocity and the capillary length are extremely challenging, if not impossible, to deter-

mine in vivo without the use of highly invasive methods and can hardly be regulated. 

The purpose of this thesis was to approach this problem by assessing and comparing conventional 

pseudo-diffusion IVIM MRI and phase-distribution IVIM MRI experimentally using a perfusable 

capillary phantom. As a secondary goal, detailed numerical simulations aimed to consolidate the 

experimental findings and to advance the understanding of the effects of flow characteristics on 

data measured using DW-MRI. 
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A capillary phantom was constructed to assess fluid flow at systematically variable rates inside a 

highly interconnected network of randomly oriented channels at the scale of in vivo capillary beds. 

Adapting a method proposed by Bellan et al.
65

 the capillary network was formed using sacrificial 

sugar fibers embedded into synthetic resin. The phantom was customized to allow for the con-

trolled application of fluid flow at variable rates while performing DW-MRI. Optical microscopy 

revealed a dense and highly interconnected network of randomly oriented capillaries strewn with 

spherical dilations. The measured average capillary length of 162 + 78 μm and the average capil-

lary diameter of 11.4 ± 4.4 μm are within the range of in vivo capillary dimensions, enabling in-

coherent particle motion within the scale of a single imaging voxel.  

     As was demonstrated by an initial simulation study, accounting for the particle speed distribu-

tion inside the constructed phantom is critical to facilitate accurate assessment of the capillary flow 

characteristics using IVIM MRI. Based on previously published results
50,51

 on the related topic of 

fluid flow in fracture networks, the speed distribution inside the constructed capillary network was 

approximated by a highly asymmetric and L-shaped speed distribution 𝜌CN(𝑣) ∝ √6〈𝑣〉 √𝑣⁄ − 1 

with average flow speed 〈𝑣〉.  

Flow-dependent IVIM MRI experiments were carried out by connecting the capillary phantom to a 

syringe pump and increasing the applied flow rate from 0.2 ml/min to 2.4 ml/min in increments 

of 0.2 ml/min. For each flow rate, data was acquired using four different DW-MRI sequences, 

two with monopolar diffusion gradient schemes and two with flow-compensated schemes. The 

respective duration of the diffusion preparation was optimized with the aim of improving the pa-

rameter estimation accuracy based on the results of a Monte Carlo simulation.  

     Utilizing the Akaike information criterion (AIC), the acquired data was shown to be best de-

scribed by a two-compartment model consisting of a static and a flowing compartment, where the 

static compartment is hypothesized to be ascribed to liquid inside the spherical dilations. The 

phase-distribution model allowed for an excellent fit to the acquired data with a small residual sum 

of squares (𝑅𝑆𝑆) independent of the applied flow rate. A comparison of the respective model fits 

demonstrated greatly reduced 𝑅𝑆𝑆 values using 𝜌CN(𝑣) compared to uniformly or delta-distributed 

particle speeds, highlighting the importance of considering an appropriate underlying particle 

speed distribution.  

Using the phase-distribution model, the estimated signal fraction 𝑓 of the flowing compartment 

stayed approximately constant over the applied flow rates. The average of 𝑓 = 0.451 ± 0.023 

agrees very well with the ratio of the volume inside the capillaries to the total (capillaries plus 

dilations) network volume, estimated at 0.454 ± 0.002 using the data from optical microscopy.  

     The estimated average particle flow speeds, ranging from 𝑣 = 0.25 mm/s up to 2.7 mm/s, 

cover various reported in vivo flow speed values of red blood cells
71,105,106

. A regression analysis 

revealed a highly significant linear proportionality to the applied flow rate with a coefficient of 

determination of 𝑅2 = 0.99, indicating that practically all variation in 𝑣 is predictable from the 

applied flow rate. Furthermore, there seems to be negligible constant bias as the estimated y-axis 

intercept of 0.034 mm/s was close to zero.  

     At very small flow rates, the characteristic duration 𝜏 until a directional change occurs could 

not be determined with satisfactory accuracy resulting in large standard errors. At flow rates great-

er than 0.8 ml/min, 𝜏 showed an inverse proportionality to the applied flow rate. Consequently, 
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the estimated capillary segment length stayed approximately constant in this domain with an aver-

age of 195 ± 13 μm close to the average length determined using optical microscopy of 162 +

78 μm.  

Analyzing the measured data using the biexponential pseudo-diffusion IVIM model resulted in 

substantially increased 𝑅𝑆𝑆 values compared to the phase-distribution model at flow rates greater 

than 0.8 ml/min. This indicates that even at the highest flow rate, the pseudo-diffusion limit was 

not reached and the signal decay was not properly fit by the biexponential model. In line with the 

simulation study, the discrepancy between data and model resulted in a significant bias of the es-

timated parameters. Most notably, the signal fraction 𝑓 was heavily underestimated (with values 

between 0.12 and 0.24) and displayed a clear dependence on the applied flow rate. Yet, the esti-

mated particle speed 𝑣biexp = 6𝐷∗ 𝑙⁄  closely followed the particle speed determined using the 

phase-distribution model. These findings highlight the intricate interplay of the model parameters 

and show that the accuracy and validity of the estimates are highly susceptible to the chosen model 

assumptions.  

In conclusion, the constructed phantom enabled the detailed investigation of incoherent-flow-

induced spin dephasing in DW-MRI in a controllable fashion. To our knowledge, it is the first 

phantom to mimic the key feature of fluid flow inside a highly interconnected network of random-

ly oriented channels at the scale of in vivo capillary beds serving as a basis for the applicability of 

IVIM MRI methods. The systematic analysis of the acquired data has substantially improved the 

understanding of the interplay of capillary flow characteristics and the resulting signal decay 

measured using DW-MRI. The results showed that advanced methods are capable of accurately 

characterizing fluid flow inside a capillary network. At the same time, the phantom experiments 

confirmed the results from the initial simulation study, where the importance of appropriate model 

assumptions emerged. Specifically, the statistical distribution of particle speeds was shown to have 

significant impact on the resulting signal decay and, if not properly accounted for, can lead to sig-

nificant systematic errors in parameter estimates such as the perfusion fraction. 
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Die diffusionsgewichtete Magnetresonanztomographie (DW-MRT)
7,41

 bietet die einzigartige Mög-

lichkeit, die mikroskopische Bewegung von Wassermolekülen innerhalb von biologischem Gewe-

be nicht-invasiv zu untersuchen. Für freie thermische Diffusion folgt der gemessene Signalverlauf 

als Funktion der angewandten Diffusionsgewichtung einem exponentiellen Zerfall. Die DW-MRT 

ist jedoch nicht nur sensitiv gegenüber der thermischen Diffusion, sondern grundsätzlich gegen-

über jeglicher inkohärenten Bewegung der Wassermoleküle. Diese Tatsache prägte den Begriff der 

„intravoxel incoherent motion“-(IVIM-)MRT
42

. Eine Hauptquelle solch inkohärenter Bewegung 

im Gewebe (zusätzlich zur thermischen Diffusion) stellt der Blutfluss in Mikrokapillaren dar. Bei 

einer Untersuchung mittels DW-MRT führt dies zu einem überlagerten Zerfall des Signalanteils 

der Wassermoleküle im Blut, dem Perfusionsanteil. Dieser Effekt kann für die nicht-invasive Eva-

luierung der Hämodynamik im Gewebe genutzt werden, die für die Diagnose vieler Krankheitsbil-

der sehr hilfreich ist; die IVIM-MRT ist daher ein Gebiet aktueller Forschung. Die genaue Form 

des mittels IVIM-MRT gemessenen Signalverlaufs hängt allerdings nicht nur von der Fließge-

schwindigkeit des Blutes ab, sondern insbesondere auch von der Dauer, bis ein fließendes Molekül 

seine Bewegungsrichtung ändert (aufgrund von gekrümmten oder verzweigenden Kapillaren). 

Zwei Grenzfälle führen dabei zu analytischen Lösungen: Geradlinige (jedoch zufällig gerichtete) 

Bewegung der Moleküle, also keine Änderung der Bewegungsrichtung während der Diffusions-

präparation, führt zu einem sinc-förmigen Signalzerfall. Im Gegensatz dazu lässt sich der Signal-

zerfall bei sehr vielen Richtungsänderungen während der Diffusionspräparation, als Pseudo-

Diffusions-Grenzfall bezeichnet, durch eine exponentielle Funktion annähern. Zusammen mit den 

Auswirkungen der thermischen Diffusion ergibt sich so ein biexponentieller Signalverlauf.  

     Dieses biexponentielle Pseudo-Diffusionsmodell erfreut sich großer Beliebtheit, da es elegant 

ist und sehr gut die Messdaten aus einer Vielzahl von Organen beschreibt. Es ist jedoch oft unklar 

oder wird vernachlässigt, ob die Voraussetzungen für die Anwendbarkeit des Pseudo-

Diffusionsmodells erfüllt sind. Diese Problematik wurde kürzlich von Wetscherek et al.
26,27

 durch 

die Einführung einer Methode, die keinen Grenzfall voraussetzt, adressiert. Die vorgestellte Me-

thode basiert auf Phasenverteilungen des NMR-Spinensembles, welche durch die Simulation von 

Teilchenpfaden erzeugt werden. Mit diesem Ansatz ließ sich nicht nur nachweisen, dass das Pseu-

do-Diffusionslimit bei gängigen DW-MRT Experimenten in Leber und Pankreas nicht erreicht 

wurde, sondern er ermöglichte es auch, die Durchschnittsgeschwindigkeit 〈𝑣〉 des Blutflusses so-

wie die Dauer τ, bis ein fließendes Teilchen seine Bewegungsrichtung ändert, zu bestimmen. Im 

Gegensatz dazu kombiniert das herkömmliche Pseudo-Diffusionsmodell diese Messgrößen zu dem 

Pseudo-Diffusionskoeffizienten 𝐷∗ = 〈𝑣〉2𝜏/6. Betrachtet man die Mikrovaskulatur als ein aufei-

nanderfolgendes Netzwerk von geraden Segmenten, kann zudem die durchschnittliche Länge eines 

einzelnen Segments über 𝑙 = 〈𝑣〉  ∙  𝜏  berechnet werden. Anders als das Pseudo-Diffusionsmodell, 

erlaubt das Phasenverteilungsmodell auch die explizite Berücksichtigung von Geschwindigkeits-

verteilungen der fließenden Teilchen. Die Validierung von IVIM-MRT-Verfahren in vivo gestaltet 

sich jedoch inhärent problematisch. Größen wie die Fließgeschwindigkeit des Blutes und die Ka-

pillarlänge sind extrem schwierig, wenn nicht sogar unmöglich, in vivo ohne den Einsatz von 

hochinvasiven Methoden zu bestimmen und können kaum reguliert werden. 

Das Hauptziel dieser Arbeit war es deshalb, konventionelle Pseudo-Diffusions-IVIM-MRT und 

Phasenverteilungs-IVIM-MRT experimentell unter Verwendung eines perfundierbaren Kapillar-

phantoms zu überprüfen und zu vergleichen. Als sekundäres Ziel sollten mithilfe von detaillierten 
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numerischen Simulationen die experimentellen Ergebnisse konsolidiert und das Verständnis des 

Zusammenhangs zwischen Flusseigenschaften und DW-MRT-Daten verbessert werden. 

Um Fluss mit systematisch variierbaren Geschwindigkeiten innerhalb eines Kapillarnetzwerks in 

der Größenordnung von In-vivo-Kapillarbetten zu analysieren, wurde ein entsprechendes Mess-

phantom hergestellt. Nach einem von Bellan et al.
65

 vorgeschlagenen Verfahren wurde das Kapil-

larnetzwerk unter Verwendung von in Kunstharz eingebetteten und anschließend herausgelösten 

Zuckerfasern gebildet. Das Messphantom wurde mit einem Zu- und Ablauf versehen, um während 

der DW-MRT-Untersuchung einen kontrollierbaren Fluss mit variablen Geschwindigkeiten zu 

ermöglichen. Die optische Mikroskopie zeigte ein dichtes und stark verzweigtes Netzwerk aus 

zufällig orientierten Kapillaren, durchsetzt mit kugelförmigen Dilatationen. Die gemessene durch-

schnittliche Kapillarlänge von 162 + 78 μm und der durchschnittliche Kapillardurchmesser von 

11,4 ± 4,4 μm liegen im Bereich der In-vivo-Kapillardimensionen und ermöglichen damit die 

inkohärente Teilchenbewegung innerhalb eines einzelnen Bildgebungsvoxels.  

     Wie eine initiale Simulationsstudie gezeigt hat, ist die Berücksichtigung der Geschwindigkeits-

verteilung der Teilchen innerhalb des konstruierten Messphantoms von entscheidender Bedeutung, 

um eine akkurate Quantifizierung des Kapillarflusses mittels IVIM-MRT zu ermöglichen. Basie-

rend auf bereits veröffentlichten Ergebnissen
50,51

 zum verwandten Thema der Flüssigkeitsströme in 

Kluftnetzwerken, wurde die Fließgeschwindigkeitsverteilung innerhalb des hergestellten Kapillar-

netzwerks durch eine stark asymmetrische und L-förmige Geschwindigkeitsverteilung 𝜌CN(𝑣) ∝

√6〈𝑣〉 √𝑣⁄ − 1, mit der durchschnittlichen Fließgeschwindigkeit 〈𝑣〉, approximiert. 

Flussabhängige IVIM-MRT-Experimente wurden durchgeführt, indem das Kapillarphantom an 

eine Injektionspumpe angeschlossen und der eingestellte Volumenstrom von 0,2 ml/min auf 

2,4 ml/min in Schritten von 0,2 ml/min erhöht wurde. Bei jedem Volumenstrom wurden Daten 

mit vier verschiedenen DW-MRT-Sequenzen aufgenommen, zwei mit monopolaren Diffusions-

gradientenschemata und zwei mit flusskompensierten Schemata. Basierend auf den Ergebnissen 

einer Monte-Carlo-Simulation, wurde die jeweilige Dauer der Diffusionspräparation hinsichtlich 

der Genauigkeit der zu bestimmenden Parameter optimiert.  

     Die Berechnung des Akaike-Informationskriteriums (AIC) hat gezeigt, dass die erfassten Daten 

am besten durch ein Zwei-Kompartiment-Modell beschrieben werden, welches aus einem stati-

schen und einem fließenden Kompartiment besteht. Es ist davon auszugehen, dass das statische 

Kompartiment der Flüssigkeit innerhalb der kugelförmigen Dilatationen zuzuschreiben ist. Das 

Phasenverteilungsmodell ermöglichte einen hervorragenden Modellfit an die Messdaten mit einer 

niedrigen Residuenquadratsumme (𝑅𝑆𝑆) unabhängig vom angelegten Volumenstrom. Die 𝑅𝑆𝑆-

Werte zeigten sich deutlich reduziert unter Verwendung der Geschwindigkeitsverteilung 𝜌CN(𝑣) 

im Vergleich zu gleichverteilten oder Dirac-verteilten Geschwindigkeiten. Diese Ergebnisse unter-

streichen, dass die Berücksichtigung der zugrundeliegenden Teilchengeschwindigkeitsverteilung 

maßgeblich die Flusscharakterisierung mittels IVIM-MRT beeinflusst.  

     Unter Verwendung des Phasenverteilungsmodells blieb der bestimmte Signalanteil 𝑓 des flie-

ßenden Kompartiments über die angelegten Volumenströme näherungsweise konstant. Der Durch-

schnittswert von 𝑓 = 0,451 ± 0,023 liegt nahe bei dem Verhältnis des Volumens innerhalb der 

Kapillaren zum Gesamtvolumen (Kapillaren plus Dilatationen), welches anhand der optischen 

Mikroskopie auf 0,454 ± 0,002 geschätzt wurde.  
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Die ermittelten durchschnittlichen Teilchengeschwindigkeiten reichen von 𝑣 = 0,25 bis 2,7 mm/s 

und umfassen damit diverse in der Literatur berichtete In-vivo-Fließgeschwindigkeiten von roten 

Blutkörperchen
71,105,106

. Eine Regressionsanalyse ergab eine hoch signifikante lineare Proportiona-

lität von 𝑣 zu dem angelegten Volumenstrom mit einem Bestimmtheitsmaß von 𝑅2 = 0,99, was 

darauf hinweist, dass praktisch alle Variationen in 𝑣 aus dem angelegten Volumenstrom vorher-

sagbar sind. Darüber hinaus scheint eine etwaige systematische Abweichung vernachlässigbar zu 

sein, da der bestimmte y-Achsenabschnitt von 0,034 mm/s nahe bei Null lag.  

     Bei sehr niedrigen Volumenströmen konnte die Dauer 𝜏, bis ein fließendes Teilchen seine Be-

wegungsrichtung ändert, nicht mit zufriedenstellender Genauigkeit bestimmt werden. Bei Volu-

menströmen über 0,8 ml/min verhielt sich das ermittelte 𝜏 reziprok proportional zum angelegten 

Volumenstrom. Dementsprechend blieb die berechnete Kapillarsegmentlänge in dieser Domäne 

annähernd konstant mit einem Durchschnittswert von 195 ± 13 μm, welcher nahe dem mittels 

optischer Mikroskopie ermittelten Wert von 162 + 78 μm liegt.  

Die Analyse der gemessenen Daten mit dem biexponentiellen Pseudo-Diffusions-IVIM-Modell 

zeigte deutlich erhöhte 𝑅𝑆𝑆-Werten im Vergleich zum Phasenverteilungsmodell bei Volumen-

strömen über 0,8 ml/min. Das bedeutet, dass selbst beim höchsten Volumenstrom der Pseudo-

Diffusion-Grenzfall nicht erreicht wurde und der Signalzerfall nicht adäquat durch das biexponen-

tielle Modell beschrieben werden konnte. In Übereinstimmung mit der Simulationsstudie führte 

die Diskrepanz zwischen Daten und Modell zu einer erheblichen Abweichung der ermittelten Pa-

rameter. Vor allem der Signalanteil 𝑓 wurde (mit Werten zwischen 0,12 und 0,24) stark unter-

schätzt und zeigte zudem eine deutliche Abhängigkeit vom angelegten Volumenstrom. Die ermit-

telte Teilchengeschwindigkeit 𝑣biexp = 6𝐷∗ 𝑙⁄  stimmte jedoch gut mit der Teilchengeschwindig-

keit, welche unter Verwendung des Phasenverteilungsmodells bestimmt wurde, überein. Diese 

Ergebnisse unterstreichen das komplizierte Zusammenspiel der Modellparameter und zeigen, dass 

die Genauigkeit und Aussagekraft der ermittelten Parameter sehr anfällig gegenüber den gewähl-

ten Modellannahmen sind. 

Zusammenfassend ermöglichte das hergestellte Messphantom, Effekte von inkohärentem Fluss in 

der DW-MRT auf kontrollierbare und systematische Art und Weise detailliert zu analysieren. Un-

seres Wissens handelt es sich dabei um das erste Phantom, welches die wesentlichen Schlüssel-

merkmale für die Anwendbarkeit von IVIM-MRT-Verfahren aufweist, nämlich Fluidströmung in 

einem stark miteinander verbundenen Netzwerk von zufällig orientierten Kanälen in der Größen-

ordnung von In-vivo-Kapillarbetten. Die systematische Analyse der erfassten Daten hat das Ver-

ständnis des Zusammenspiels von Strömungseigenschaften und dem daraus resultierenden DW-

MRT-Signalabfall wesentlich verbessert. Die Ergebnisse zeigen, dass der Flüssigkeitsstrom in 

einem Kapillarnetzwerk mit den verwendeten komplexen Methoden akkurat charakterisiert werden 

kann. Gleichzeitig bestätigten die Phantomexperimente die Ergebnisse der Simulationsstudie, in 

der sich die Signifikanz adäquater Modellannahmen herauskristallisierte. Insbesondere zeigte sich, 

dass die statistische Verteilung der Fließgeschwindigkeiten einen wesentlichen Einfluss auf den 

resultierenden Signalzerfall hat und bei nicht ordnungsgemäßer Berücksichtigung zu erheblichen 

systematischen Fehlern bei der Parameterbestimmung (insbesondere beim Perfusionsanteil) führen 

kann. 
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