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Abstract 

Our modern way of life is based on the consumption of energy, which is mainly provided by 

the burning of fossil fuels, such as natural gas, oil or coal. Since such resources are limited on 

earth, humankind will run out of them sooner or later, endangering the wealth and the living 

standard of the people all over the world. Furthermore, the extensive burning of fossil fuels 

causes a massive emission of so-called greenhouses gases leading to an effect called global 

warming, which finally ends up in a dramatic increase of severe weather phenomena, such as 

floods, droughts and storms. In order to ensure that future generations can be provided with 

sufficient energy and to prevent or at least slow down the global warming, a lot of effort has 

already been put into the development of possibilities to produce sustainable energy without 

the emission of greenhouse gases. Among others, the harvesting of sunlight to generate 

electrical energy has turned out to be very promising, since the annual energy provided by 

sunlight hitting the earth is far more than the global energy consumption. Although 

conventional state-of-the-art silicon-based photovoltaics can already convert sunlight into 

electrical power with an efficiency of about 25 %, their production consumes a significant 

amount of energy, hampering a rapid market penetration of solar cells.  In order to make 

electrical power generated by solar energy more competitive to other energy sources, new 

photovoltaic concepts based on abundant materials that can be easily processed have to be 

developed. 

Possible candidates for reaching this goal can be organic-inorganic lead halide perovskite-

type materials, which show competitive efficiencies of more than 20 % for lead iodide based 

compounds. However, the toxicity of lead represents a major obstacle for the 

commercialization of this technology. A promising alternative to lead is given by tin based 

perovskites showing encouraging efficiencies of more than 6 %. However, the high sensitivity 

of the utilized Sn
2+

 cations towards moisture and oxygen makes the design of stable solar cells 

difficult. 

In order to find new, more stable Sn
2+

 based perovskites suitable for optoelectronic 

applications, this thesis presents a comprehensive study of two different compounds, namely 

n-butylammonium tin iodide ((BuA)2SnI4) and phenylethylammonium tin iodide 

((PEA)2SnI4) and their lead-based counterparts. Furthermore, their methylammonium-

containing relative, methylammonium tin iodide (MASnI3), was investigated. Optoelectronic 

investigations revealed that (BuA)2SnI4 and (PEA)2SnI4 feature excellent properties making 

them interesting for photovoltaic and light emitting applications. Furthermore, moisture 
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stability studies showed that the introduction of phenylethylammonium results in a drastic 

enhancement of the tin-based perovskite, most likely due to the large hydrophobic organic 

residue of the organic cation. 

Besides the toxicity of lead, the hazardous nature of the organic solvents utilized for the 

formation of the perovskite films is one concern preventing metal halide perovskite based 

optoelectronics from their commercialization. Here, lead-free tin-based perovskite films have 

been prepared by replacing the commonly used solvents N,N-dimethylformamide and 

dimethylsulfoxide by a mixture of the less hazardous alternatives methanol and 1,4-dioxane. 

The films made by the less hazardous approach feature an excellent smooth and homogeneous 

morphology and solar cells comprising such films show moderate efficiencies of about one 

percent, which is most likely caused by the formation of Sn
4+

 due the facile oxidation of Sn
2+

. 

Due to the high sensitivity of Sn
2+

 towards moisture and oxygen, a new, more stable, lead-free 

class of materials, namely double perovskites has been investigated for optoelectronic 

applications. Due to its optoelectronic properties, Cs2AgBiBr6 is one of the most suitable 

double perovskites for photovoltaic applications. Here, a synthesis protocol for the formation 

of Cs2AgBiBr6 thin films was developed comprising a preheating and a hot annealing step. It 

turned out that preheating the substrate and the precursor solution increased the amount of 

material deposited on top of the substrate, which in turn enhances the optoelectronic 

properties of the resulting films. Hot annealing at temperatures of more than 250 °C is needed 

to convert side phases occurring during the spin-coating process into the desired double 

perovskite phase. Solar cells comprising such films exhibit promisingly high efficiencies of 

almost 2.5 % and high stability under working conditions. 

Since the quality of the films of the photoactive material has a tremendous influence on 

device performance, a route for the preparation of high quality Cs2AgBiBr6 films has been 

developed. The photoactive layer is deposited via spin-coating with simultaneous 

precipitation of the double perovskite crystals by the addition of an antisolvent. Due to the 

different solubility properties of Cs2AgBiBr6 compared to lead and tin based perovskites, 

different organic solvents have been tested for their suitability to form homogeneous and 

smooth double perovskite films. It turned out that iso-propyl ether is an excellent antisolvent 

for the preparation of high quality Cs2AgBiBr6 films. Planar heterojunction solar cells 

comprising the newly developed films exhibited promising power conversion efficiencies of 

up to one percent.  
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1 Introduction 
 

In 2015, 196 countries subscribed to the so-called climate agreement of Paris, which was 

decided at the 21
st
 world climate conference. A main goal of the supporters of the climate 

agreement was to reduce or prevent the climate change caused by the so-called global 

warming. Accordingly, the subscribers to the Paris climate agreement decided to try to limit 

the increase of the global average temperature to 2 °C with respect to preindustrial values.
1
 

The reduction of the emission of so-called green-house gases is considered to be one major 

issue to achieve this goal. Green-house gases reduce the amount of solar energy which gets 

reflected by the surface of the earth, leading to a heating up of the world´s atmosphere.
2
 A 

large fraction of man-made green-house gas emissions is caused by the burning of fossil fuels, 

which is still the most important way to produce energy, see Figure 1-1. 

 

Figure 1: a) Estimated renewable energy share of total final energy consumption in 2015. b) Estimated 

renewable energy share of global electricity production by the end of 2016.
3 
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The emission of green-house gases can be expected to rise rapidly during the next decades 

since the energy demand of countries that are outside the Organization for Economic 

Cooperation and Development (OECD) is permanently increasing (Figure 1-2a). In particular, 

the energy demand of Asian countries, including India and China, which currently represent 

one third of world´s population, is disproportionately rising, see Figure 1-2b.
4 

 

Figure 1-2: a) Development of the world´s energy consumption from the year 1990 until 2040. The plot is 

divided in countries which are a member of the Organization for Economic Cooperation and Development 

(OECD) and countries which are not a member of the OECD (non-OECD). b) Development of the energy 

consumption of selected parts of the world from the year 1990 until 2040.
4 

 

Besides the fact that the burning of fossil fuels increases the average temperature of the 

world´s atmosphere leading to catastrophic weather phenomena, like storms, droughts and 

floods, fossil fuels are also a limited resource. Considering that the formation of the nowadays 

used fossil fuels took millions of years, humankind will run out of them sooner or later.
5
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Accordingly, new sources for energy production have to be developed, which cover the 

world´s rising energy demand and simultaneously do not emit green-house gases. 

An efficient way to produce electrical energy without emitting green-house gasses is the use 

of wind and water power.
6
 Among the sources of renewable energy, wind and water power 

already represent by far the largest portion. In contrast, the contribution of solar energy to the 

world´s energy production is less than one percent.
7
 Considering that 3.5 x10

24
 J of solar 

energy are reaching the earth every year, which is about 10000 times more than the annual 

human energy consumption, there is a huge potential to increase the impact of photovoltaics 

on the world´s energy production.
8
  

Commonly used state-of-the-art silicon-based photovoltaics show power conversion 

efficiencies of more than 20 %. Although the cost for highly efficient silicon solar cells has 

been decreased significantly during the last decades, the processing of such photovoltaics is 

still relatively complex and consumes much energy, due to the need for highly phase pure 

single crystalline or polycrystalline silicon, limiting the throughput of such photovoltaics. In 

order to overcome this drawback, the processing of existing silicon-based photovoltaics has to 

be improved and novel approaches and materials have to be investigated for their applicability 

in photovoltaics. In particular, cheap and abundant materials, which can be easily processed 

by solution-based methods, are of special interest, due to the possibility to manufacture highly 

efficient photovoltaics by printing methods, which could lead to a dramatic increase of the 

production of solar cells. Such materials hold promise for cheap solar cells, which can be 

distributed rapidly all over the world, especially in threshold and developing countries. This 

would represent a huge step helping to achieve the goals decided in the climate agreement of 

Paris in sufficient time. 

 

1.1 Basic Operation Principle of Photovoltaics 

 

A solar cell is a device that generates electric power upon absorption of sunlight. All 

photovoltaics are based on semiconductors, which are materials featuring a forbidden energy 

gap between their electron filled valence band (VB) and their empty conduction band (CB). 

The forbidden energy gap is called band gap (BG). Without any external excitation source, 

semiconductors exhibit almost no free charge carries in the CB leading to a low conductivity, 

between that of conductors and insulators. Upon light absorption or the application of an 
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external electric field, electrons can be excited into the CB and the semiconductor becomes 

conductive. It is important to notice that electrons can only be transferred into the CB if the 

energy, which is applied to the electrons, equals or exceeds the energy of the BG, see Figure 

1-3 b.
9,10 

 

Figure 1-3:a) Simplified schematic of a p-n-junction based solar cell. b) Schematic of the band structure of 

the p-n-junction based solar cell depicted in Figure 1-3a showing the processes involved in the light 

absorption event. The blue circles represent electrons and the red circles represent holes. The wave-

shaped arrow indicates a photon with a photon energy (hv) equal to or larger than the BG (3). 
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A classical semiconductor solar cell consists of an n-type and a p-type semiconductor which 

are in close contact with each other. Such an assembly is called p-n-junction. A simplified 

schematic of a p-n-junction based solar cell is given in Figure 1-3a. According to Figure 1-3a, 

a p-n-junction based solar cell basically consists of an n-type semiconductor (n-type) and a p-

type semiconductor (p-type), which build the p-n-juction. The two semiconductors are 

connected to an exerternal circuit, which exctracts the generated charges out of the 

semiconductors. An n-type semiconductor features an excess of negatively charged electrons, 

wherein a p-type semiconductor features an excess of positively charge holes. If a p-type 

semiconductor is in close contact with an n-type semiconductor, the excess electrons of the n-

type semiconductor and the excess holes of the n-type semiconductor diffuse towards either 

the p-type semiconductor or the n-type semiconductor, respectively, in order to compensate 

charges. Due to this charge carrier diffusion, a so-called depletion region forms in the region 

close to the interface between the two semiconductors. In the depletion region, the 

concentration of the negatively charged electrons in the n-type semiconductor is lower than 

that of the n-type semiconductor, which is not part of the depletion region. The distribution of 

the positively charged holes in the p-type semiconductor is similar to that described before for 

the elecrons in the n-type semiconductor. The distribution of the charge carriers within the 

depletion region creates a built-in field which counteracts the diffusion process of the 

electrons and the holes, limiting the size of the depletion region. Figure 1-3b shows a 

schematic of the band structure of the p-n-junction given in Figure 1-3a. Depending on the 

type of the semiconductor, the Fermi-energy EF of the semiconductors is either shifted 

towards the CB (n-type) or towards the VB (p-type). Due to the differences in the EF of the n-

type and the p-type semiconductor, the CB and the VB in a p-n junction are bent in the region 

of the depletion region. In Figure 1-3b, a photon, with a photon energy equal to or larger than 

the BG is absorbed in the p-type semiconductor. This leads to the excitation of an electron 

from the VB to the CB of the p-type semiconductor. The excited electron creates a hole in the 

VB. Both the electron and the hole are free to move. After excitation, the electron diffuses 

towards the depletion region where it follows the course of the CB towards the n-type 

semiconductor. The electron and the hole, which was created by the excited electron, are then 

extracted by the external circuit (see Figure 1-3a)..
9,10

 

As already mentioned, semiconductors are only able to absorb photons featuring an energy 

equal or exceeding the energy of the BG. Therefore, a semiconductor for photovoltaic 

applications must be able to absorb the majority of sun light hitting the earth. Figure 1-4a 

shows a so-called AM1.5 solar spectrum, which represents the sun light reaching the earth 
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surface after passing through 1.5 times the earth atmosphere under a zenith angle of z = 48.2°. 

The AM1.5 spectrum is a widely used reference solar spectrum and represents the 

illumination conditions on a clear, sunny day in countries lying in mid-latitudes, like the 

United States of America, European countries, China and Northern India.
12

 Accordingly, the 

BG of a semiconductor for photovoltaic applications should be small enough to absorb as 

much light as possible in the range where the illumination intensity of the AM1.5 spectrum is 

high. On the other hand, if the BG is too small a lot of energy gets lost due to thermalization 

(see Figure 1-4b).
13

 In the early 1960s, W. Schockley and H. J. Queisser calculated for the 

first time the optimal BG for a single junction silicon-based solar cell to be between 1.1 eV 

and 1.5 eV, reflecting a wavelength cutoff between 825 nm and 1125 nm.
14

 Since then, the 

maximum theoretical efficiency ηmax of a single junction solar cell at a given BG is called the 

Schockley-Queisser limit.  

 

Figure 1-4: a) Depiction of an AM1.5 solar spectrum including the three spectral ranges ultraviolet (UV), 

visible (Vis) and near infrared (NIR).
11

 b) Schematic illustration of the Schockley-Queisser limit showing 

different efficiency loss pathways, where Lth is the thermalization loss, Lr is the loss which occurs from 

partial reflection of the incident light, Lunabs is the loss caused be unabsorbed photons and max is the 

maximum efficiency.  

 

In principle, a solar cell can be considered as a diode. Thus, the model electrical circuit given 

in Figure 1-5 consists of a diode with a current source (light current) connected in parallel. 

Without illumination, the solar cell behaves like a diode exhibiting an exponential increase in 

current flow under forward bias conditions and almost no current flow under reverse bias 

conditions. Under illumination, the current-voltage (J-V) curve depicted in Figure 1-5b is 

moving up along the y-axis indicating light driven current generation. According to Figure 1-

5a, the efficiency of the solar cell is strongly influenced by several resistances, namely shunt 

resistance (Rsh) and series resistance (Rs). As given in the electrical model circuit in Figure 1-
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5b, Rsh should be infinite and Rs should be zero in an ideal solar cell. Both resistances can be 

estimated from the shape of the J-V curve. In particular, the slopes of the J-V curve at the 

intersections of the curve with either the y-axis or the x-axis, representing the maximum 

obtainable current and voltage, respectively, of the solar cell are of special interest. A detailed 

explanation of the characteristic points of a J-V curve is given in the characterization section. 

 

Figure 1-5: a) Model electrical circuit of a solar cell. b) Typical current-voltage (J-V) curve of a solar 

cell.
15

 

 

Since their invention several decades ago, many different types of solar cells have been 

developed. During the quest for solar cells that are highly efficient, cheap and 

environmentally friendly, a large variety of materials have already been investigated for their 

applicability in photovoltaics. Furthermore, also the assembly of the solar cells has changed. 

The following section is giving a short overview over the evolution of solar cells during the 

last decades. 

 

1.1.1 State of the Art Solar Cell Technologies 

 

In the early 1950s, the first reasonably efficient solar cell, based on crystalline silicon (c-Si), 

was presented by researchers of the Bell Laboratories exhibiting a power conversion 

efficiency (PCE) of up to 6 %. After about 30 years of development, solar cells have reached 

PCEs of far more than 20 %. Considering the Schockley-Queisser limit of 30 % for single 

junction solar cells, state-of-the-art c-Si based photovoltaics are already close to their 
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theoretical maximum efficiency.
16 

Despite the huge effort which has been put into the 

development of highly efficient solar cells during the last decades, the majority of 

commercially available photovoltaics is still based on the same basic principle from the early 

1950s. A schematic of a typical c-Si solar cell comprising layers of n-type and p-type c-Si is 

depicted in Figure 1-6.
17,18

 The interface between the p-type and n-type layer is called p-n-

junction and is needed for charge separation.
18

 According to Figure 1-6, the main part of such 

a solar cell is a c-Si wafer, which has to be single crystalline and highly phase pure, making 

the processing very costly, which made early solar cells very expensive.  

 

Figure 1-6: a) Basic assembly of a crystalline silicon based solar cell.
17

  

 

In order to make the costs for solar cells more competitive to the costs of other energy 

sources, like coal and oil, new photovoltaic concepts have been invented. The so-called 

second generation solar cells are based on thin films of the photoabsorber material. For 

comparison, while the film thickness of the thin film based devices ranges from several 

hundred nanometer to a few tens of microns, due to the smaller absorption coefficient of Si 

(with indirect band gap) the film thickness typically used for c-Si solar cells is about 200 

µm.
17,19

 One of the first developed thin film solar cells was based on amorphous silicon (a-Si). 

a-Si is the non-crystalline form of silicon featuring several advantages, like a direct band gap 

with a high value for the optical absorption coefficient.
20

 Due to the excellent optical 

properties of a-Si only a thin film (<300 nm) of the photo absorber is needed for a 

photovoltaic device. Together with the relatively simple processabilitiy of this material, by 

vapor deposition methods at low temperatures, a-Si is a promising candidate for low cost 

photovoltaics.
21

 Since the electron mobility in a-Si is much lower than that in c-Si, a-Si based 
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photovoltaics feature a p-i-n homojunction meaning that the p-i-n junction is created by the 

same material, see Figure 1-7a.
21

 The p-i-n junction consist of an internal (i-a-Si:H) a-Si layer 

which acts as photoabsorber, sandwiched between a layer of n-type and p-type a-Si, labeled n-

a-Si:H and p-a-Si:H, respectively. The n- and p-type layers create an internal electric field in 

the i-a-Si:H layer which helps to separate the charges generated in the absorber layer.
22

 Since 

a-Si based solar cells show rather low PCEs below 10 %, and due to stability issues,
21,23

 

further thin film materials for applications in photovoltaics have been developed.
24

  

 

Figure 1-7: a) Schematic of the assembly of a typical a-Si based solar cell.
24

 b) Schematic of the assembly 

of a typical CIGS based solar cell.
25 

 

Another approach for thin film photovoltaics is based on cadmium telluride (CdTe) or copper 

indium gallium selenide (CIGS) films serving as absorber layers. CdTe and CIGS are, similar 

to a-Si, easy to process and feature excellent band gap energies between 1 eV and 1.7 eV.
25,26

 

As depicted in Figure 1-7b, solar cells comprising either CIGS or CdTe absorber layers are 

based on a p-n junction of the p-type photoabsorber and a thin n-type cadmium sulfide (CdS) 

layer. In contrast to the p-i-n junction in an a-Si silicon based device, where the junction is 

created by the same material, the p-n junction of CIGS or CdTe based photovoltaics is formed 

by two different materials and therefore called heterojunction. Although CIGS and CdTe 

based photovoltaics show efficiencies of about 22 %, there are still issues concerning the 

stability against moisture and the toxicity of components of the devices.
27,28
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Although all solar cell technologies presented so far show reasonably good performance, they 

suffer from a number of problems, like the need for expensive vacuum or high temperature 

processing routes or the toxicity of their components. Accordingly, many other approaches to 

convert sun light into electricity have been developed.  

A promising technology to produce low cost solar cells without the need of a vacuum process 

is the so-called organic photovoltaics (OPV).
29

 As already indicated by the name, OPV relies 

on the use of organic semiconductors. A typical organic solar cell comprises a so-called bulk 

heterojunction, which is a blend of an organic electron donor, also acting as photoabsorber, 

and an organic electron acceptor. A suitable electron donor can be a small molecule or a 

polymer, while commonly used electron acceptors are fullerenes or quantum dots. The bulk 

heterojunction is sandwiched between a metal contact and a hole transporting 

layer/transparent contact, see Figure 1-8.
30

  

 

Figure 1-8: Schematic assembly of a bulk heterojunction organic solar cell including the distribution of 

the donor and acceptor phases within the active layer. 

 

Although OPV does not reach PCEs similar to silicon-based photovoltaics, OPV features 

several advantages. For example, the band gap energy of the photoabsorber can be easily 

changed by just changing the structure of the organic absorber. Furthermore, organic 

photoabsorbers feature high optical absorption coefficients making it possible to use very thin 

films of the absorber material in solar cells. Additionally, in principle organic films can be 

processed by high-throughput and low-temperature roll-to-roll techniques, which allow for a 

cheap mass production of OPVs. Since OPVs are much lighter than silicon based solar panels 

and can be deposited on flexible substrates, OPVs can be easily integrated into already 

existing structures, like windows or building fronts.
31 
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1.2 Hybrid Perovskite Solar Cells – A Game Changer in Photovoltaics 

 

Although known and investigated for several decades, hybrid organic-inorganic lead iodide 

perovskites have attracted much attention in the photovoltaics community just a few years 

ago, after the report on hybrid inorganic-organic lead iodide based solar cells featuring 

promising PCEs exceeding 10 %, in 2012.
32

 The term perovskite typically describes a class of 

metal oxide with the composition ABX3 exhibiting the structure of CaTiO3. A special class of 

perovskites are the hybrid organic-inorganic metal halide perovskites, where A can be a small 

organic cation, such as methylammonium (MA) or formamidinium (FA), B can be Sn
2+

 or 

Pb
2+

 and X can be Cl
-
, Br

-
 or I

-
. In this case, the metal ion is octahedrally coordinated by six 

halide ions. The metal halide octahedra, in turn, are connected by their corners to each other 

forming a three-dimensional network. The organic cation is situated inside the voids created 

by the three dimensional network of metal halide octahedra, see Figure 1-13a. 

 

Figure 1-13: a) Crystal structure of methylammonium lead iodide (hydrogens omitted). b) Absorption 

spectra of formamidinium lead iodide and different mixtures of iodide and bromide. y = 0 refers to 100 % 

bromide and y = 1 to 100 % iodide. c) Images of films made of formamidinium lead halide featuring 

different bromide and iodide mixtures.
33 
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In particular, lead based hybrid organic-inorganic halide perovskites are excellent materials 

for photovoltaic applications due to their outstanding properties, namely high absorption 

coefficients
34

, long lifetimes of the photogenerated species
35

 and the tunability of their BG 

just by replacing iodide by bromide, see Figure 1-13b & c.
36,37

 Furthermore, the perovskite 

structure of such compounds features a high flexibility allowing for the incorporation of a 

varity of different metal cations, organic cations and anions.
33

  

The first solar cells comprising hybrid organic-inorganic lead halide perovskites as absorber 

were still based on the widely used dye sensitized solar cell (DSSC) architecture featuring a 

liquid electrolyte.
38

 Due to the corrosive nature of the electrolyte leading to the degradation of 

the absorber material, the manufactured solar cells showed only modest PCEs.
38,39

 After the 

liquid electrolyte had been replaced by a solid state HTM, the efficiency of hybrid organic-

inorganic lead iodide based solar cells could be rapidly increased to the already mentioned 10 

%. 

Furthermore, it could be shown that the kind of material utilized for the mesoporous scaffold 

did not matter. In particular, the performance of solar cells featuring a scaffold made of 

alumina, which is an insulator, was not worse than that of devices comprising a titania 

scaffold.
32

 Subsequent studies on lead based hybrid perovskites revealed that the material 

itself shows excellent transport properties with electron-hole diffusion length exceeding one 

micron.
35

 Accordingly, the several micron thick mesoporous titania layer could be replaced by 

a several nanometer thin, dense electron selective contact.
40

 As result, device fabrication 

without a high temperature annealing step to sinter the TiO2 nanoparticles together was 

possible, just by using preformed nanoparticles or electron selective organic molecules for the 

formation of the electron selective contact, which made it possible to assemble hybrid 

organic-inorganic lead halide perovskite based solar cells even on plastic substrates.
41,42

  

On the other hand, the removal of a thick mesoporous layer creates the need for 

homogeneous, pin-hole free absorber layers to obtain good working devices. Therefore, many 

different methods to deposit high quality hybrid perovskite films have been developed and all 

aspects of the synthesis of such films, including the precursor solution,
43–49

 the thermal 

annealing step,
50–53

 the addition of additives to aid film formation and the treatment of 

substrate before film deposition have been optimized.
54–61

 Due to the effort put into the 

development of high quality hybrid organic-inorganic lead halide perovskite films, state-of-

the art solar cells now show efficiencies of more than 20 %.
62,63

 The evolution of the device 

architecture which leads to such high-performing photovoltaics is given in Figure 1-14. 
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Figure 1-14: Historic evolution of the solar cell architecture starting from a classical dye sensitized solar 

cell featuring a mesoporous scaffold and finishing with a planar heterojunction hybrid perovskite solar 

cell.
64 

 

Despite the high performance of hybrid organic-inorganic lead halide perovskite based solar 

cells approaching already values of commercially available photovoltaics, such as GaAs or Si, 

several challenges have to be managed before their commercialization. One important issue, 

which has to be addressed, is related to stability problems of hybrid lead halide based 

perovskites. Thus, hybrid lead halide perovskites exhibit a high sensitivity towards moisture 

leading to the degradation of the hybrid perovskite even at relatively modest relative humidity 

values of about 50 % and higher.
65,66

 Furthermore, hybrid lead halide perovskites show phase 

transitions and even degradation at solar cell operating temperatures.
67-69

 Besides stability 

problems, one of the most important obstacles for the widespread application of hybrid lead 
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halide based perovskites arises from the content of lead in this class of materials, which is 

hazardous to the environment and human health.
70,71

 The following sections will review 

recent results addressing the above-mentioned aspects to illustrate the efforts that have 

already been put into the solution of these issues in order to make halide perovskites 

accessible for commercialization.  

 

1.2.1 Stability 

 

While silicon based photovoltaics feature almost constant PCEs for several years under 

operation conditions, non-encapsulated solar cells based on hybrid lead halide perovskites 

show a significant decrease of their performance on a much shorter time scale.
72

 The much 

faster decrease of the device performance is associated with the degradation of the hybrid 

metal halide absorber layer upon exposure to light, oxygen, moisture and thermal stress.
73,74

 

In order to commercialize hybrid lead halide perovskite based photovoltaics, such devices 

have to show a reasonably constant power output for at least 10000 h.
75

 Since state-of-the-art 

perovskite based solar cells exhibit a stable power output of only up to 2000 h, the stability of 

these devices under ambient conditions has to be significantly improved.
76,77

 Therefore, it is 

also necessary to understand the pathways of how the hybrid lead halide perovskites degrade 

under the exposure of the distinct environmental conditions.  

In order to illustrate possible degradation pathways of hybrid lead halide perovskites upon 

exposure to humidity, the degradation of one of the most widely used compounds, namely 

methylammonium lead iodide (MAPbI3), is discussed below. In general, when MAPbI3 is 

exposed to conditions where the water in the gas phase surrounding the perovskite is able to 

condense, MAPbI3 decomposes irreversible into aqueous hydroiodic acid (HI), solid lead 

iodide (PbI2) and MA which can be either released as gas (ammine) or dissolved in water, 

leading to a permanent loss of the device efficiency.
36,78

  

However, when MAPbI3 is exposed to conditions where the water is not allowed to condense, 

the water molecules can be slowly incorporated into the crystal lattice of MAPbI3, resulting in 

a separation of the PbI2 octahedra and leading to the formation of the dihydrate, (MA)4PbI6 ● 

2H2O.
65

 The dihydrate formation is a two-step process. In the first step, the structure is 

saturated with one water molecule per formula unit giving the monohydrated species, MAPbI3 

● H2O. Upon longer exposure to humidity the reaction proceeds further and a second water 
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molecule is incorporated into the structure, resulting in the final dihydrate. During this 

reaction, the favorable 3D arrangement of the PbI6 octahedra in the non-hydrated compound 

undergoes a transition into a 1D network of double-chains of MAPbI3 in the monohydrate, 

resulting in the final 0D structure of isolated PbI6 octahedra in the dihydrate. A reaction 

scheme of the slow hydration of MAPbI3 with the corresponding schematic crystal structures 

is given in Figure 1-15a. 

 

Figure 1-15: a) Hydration reaction scheme with the corresponding crystal structures. b) XRD patterns of 

MAPbI3 thin films exposed to humidity conditions without water condensation. c) XRD patterns of 

MAPbI3 thin films exposed to humidity conditions with water condensation.
65

 

 

According to the reaction equation given in Figure 1-15a, the monohydrate is an intermediate 

product on the way to the dihydrate and can be easily converted back to the non-hydrated 

species.
79

 Figure 1-15b shows XRD patterns of MAPbI3 thin films which were exposed to 

slow hydration conditions for two hours. It can be clearly seen that the monohydrate forms 

first before the dihydrate appears, confirming that the formation of the dihydrate is a two-step 

process. However, the formation of the dihydrate is accompanied by the generation of PbI2 

and the release of water molecules. The released water can be used to convert remaining non-

hydrated MAPbI3 to the monohydrate. Similar to the formation of the monohydrate from the 

dry MAPbI3, also the reaction from the monohydrate to the dihydrate is reversible but limited 
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by the phase separation of the reaction products.
65

 When MAPbI3 is exposed to liquid water, 

e.g. due to condensation of air humidity, MA can be dissolved in it leading to a permanent 

removal of the organic cation, which results in an irreversible degradation of the hybrid 

perovskite as shown in Figure 1-15c. As long as MAPbI3 is not irreversibly degraded, 

hydrated MAPbI3 can be fully converted back into the non-hydrated form just by exposing it 

to relatively dry air ( 30 %RH) for several hours.
65

  

In order to improve the stability of MAPbI3 against moisture, several approaches have been 

explored so far. Noh et al. showed that a partial substitution of iodide by bromide leads to 

more stable devices since the bromide analog of MAPbI3 is in general more stable towards 

moisture than the pure iodide compound.
36,80

 However most of the developed methods to 

make MAPbI3 based photovoltaics less sensitive against moisture are based on the protection 

of the perovskite layer from direct contact with water, such as crystal crosslinking,
81

 the 

adoption of protective transport layers or electrodes
82,83

 and the use of hydrophobic 

materials.
84

  

Besides humidity, other factors of importance during the operation of a solar cell can also lead 

to the degradation of the hybrid perovskite. Thus, considering the low thermal conductivity of 

MAPbI3, heat deposited by light cannot be distributed effectively. Considering that 

conventional solar panels based on silicon featuring a much higher thermal conductivity can 

heat up to more than 60 °C during summertime, the thermal stability of MAPbI3 becomes a 

critical issue.
85–87

 Studies by Juarez-Perez et al. revealed that MAPbI3 starts to degrade 

already at relatively low temperatures of about 80 °C under ambient conditions.
88

 Since the 

thermal degradation of MAPbI3 at such low temperatures is characterized by a loss of the 

organic cation, a common method to increase the thermal stability of the perovskite is to 

replace the organic molecule by the inorganic cesium.
88,89

 Also, doping of the perovskite with 

other metal cations, such as Mn
2+

 or Zn
2+

, has been proposed to have a beneficial influence on 

the thermal stability of the compound.
90 

However, the substitution of the organic cation by Cs points to another common issue of lead 

halide perovskites, which is the presence of different structural modifications of the same 

compound. In the case of CsPbI3, the desired black phase needed for optoelectronic 

applications is not stable at room temperature.
91,92

 In order estimate the stability of ABX3 

perovskites, the so-called tolerance factor (t) can be used, which was introduced by 
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Goldschmidt in 1927.
93

 In the case of an ABX3 perovskite, t is depends on the radii r of the 

ions A, B and X and is defined as follows: 

 

 
   

      

√          
 (1-1) 

 

In general, a t value between 0.9 and 1 leads to an ideal cubic structure while t values between 

0.71 and 0.9 result in distorted perovskite structures with tilted octahedra. Values below 0.71 

and above 1 do not lead to perovskite structures.
93

 Accordingly, MAPbI3 features a distorted 

perovskite structure due to its low t value of about 0.83. Despite the low t value, MAPbI3 can 

undergo a phase transition to the cubic phase upon heating to at least 54 °C.
68,94

 Since the 

phase transition of MAPbI3 occurs in a temperature range which is typical for solar cell 

operation temperatures in summer, the transition can have negative effects on the device 

performance. For example, the permanent cycling between two crystal structures during day 

and night could lead to material fatigue and a reduced device lifetime. 

In order to avoid a phase transition at solar cell operation conditions, MA can be replaced by 

FA, which leads to a perovskite phase transition at 125 °C.
95

 Due to the large t value of more 

than 1, the desired photoactive α-phase of FAPbI3 is not stable at room temperature. Instead 

the non-photoactive hexagonal δ-phase forms.
96

 Figure 1-16a shows the crystal structures of 

PbI2 and of resulting compounds when either MA or FA is incorporated, including the high 

temperature polymorphs.
67
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Figure 1-16: a) Crystal structures of PbI2 and the resulting compounds when either MA or FA is 

incorporated, including the high temperature polymorphs. b) PXRD pattern of FAPbI3. c) PXRD pattern 

of FAPbI3 stabilized with 15 % MAI.
67 

 

According to Figure 1-16a, the thermodynamically more stable δ-FAPbI3 phase consists of 

layers of face-sharing PbI6 octahedra forming a 2D structure. Due to the lower dimensionality 

of the PbI6 octahedra scaffold compared to the 3D assembly in the photoactive α-FAPbI3 

phase, the δ-FAPbI3 phase exhibits an increased BG energy of 2.2 eV and compromised 

charge transport properties. A viable method to stabilize the α-FAPbI3 phase is the partial 

substitution of FA by MA. The replacement of 15 % FA by MA completely suppresses the 

phase transition from the α to the δ phase in a temperature range from RT to 220 °C. Despite 

the incorporation of the smaller MA cation, PXRD measurements do not show any change in 

the lattice parameters between the pure α-FAPbI3 phase and the MA/FA mixed phase, see 

Figure 1-16b & c. Furthermore, also the optoelectronic properties of the neat FAPbI3 and the 

MA/FA mixed phase are very similar.
67

 A possible explanation for the stabilization of α-

FAPbI3 by the partial substitution of FA by MA can be an increased overall hydrogen bonding 

strength between the organic cation and the iodide or an increase of the Madelung energy. 
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Also, a combination of both effects is conceivable. State-of-the-art solar cells comprising 

FA/MA mixed cation perovskite films achieve PCEs of more than 20 %.
97

 

 

1.2.2 Toxicity 

 

Previous studies on MAPbI3 films that were exposed to simulated rain revealed that the lead, 

which is hazardous to the environment and human health, can be easily washed off the 

substrate due to the relatively high solubility of PbI2 in water.
98-101

 In particular, water-soluble 

lead salts can be easily absorbed by living organism, making lead very harmful. Although the 

acute toxicity of lead is relatively low, the long-term uptake of a small amount of 1 mg lead 

per day will lead to symptoms of a chronic lead poisoning, such as birth defects.
102–105

 Similar 

to most of the other heavy metals, lead has a negative influence on many biological processes. 

Furthermore, it is harmful to many different tissues and organs, including heart, bones, 

kidneys, reproductive and nervous systems. Additionally, it affects the brain, which is the 

organ being the most sensitive to lead. Thus, lead poisoning can cause permanent learning and 

behavior disorders in children.
106

  

Accordingly, the US Environmental Protection Agency (EPA) has restricted the maximum 

accepted lead levels in water and air to 15 and 0.15 µg/L, respectively and the Center for 

Disease Control (CDC) has set standards regarding elevated lead concentrations in the blood 

for adults to 10 µg/dL and for children to 5µg/dL.
107,108

 Accordingly, the lead content in many 

different products, such as gasoline, ceramics, water pipe solder and paints has been limited 

and even dramatically reduced during the last decades. Considering the significant 

hazardousness of lead and the relatively high water solubility of lead salts, the lead content of 

lead halide perovskite based photovoltaics is considered to be a major obstacle for the 

commercialization of this technique. 

Additionally, the processing of perovskite based photovoltaics can be quite harmful due to the 

need for hazardous solvents, such as N,N-dimethylformamide (DMF), dimethyl sulfoxide 

(DMSO) and N-methyl-2-pyrrolidone (NMP) to dissolve the perovskite. In particular DMF, 

which is the most common solvent for the preparation of perovskite films, is known to be 

hepatotoxic and is classified to be harmful for reproduction.
109-112

 Accordingly, there is also 

an urgent need for replacing these solvents by less hazardous alternatives. However, since by 



1 Introduction 

33 

far the most effort has been put into the search for less hazardous alternatives to lead, only the 

developments in the field of lead-free perovskites will be discussed in the following. 

In order to find less hazardous alternatives to lead, many different lead-free perovskites have 

been investigated for their viability for photovoltaic applications. The most obvious 

alternatives are the elements tin (Sn) and germanium (Ge), which are also members of group 

14 in the periodic table. But while lead is featuring a stable oxidation state 2+, the stability of 

this oxidation state drastically decreases when moving up the periodic table. However, 

photovoltaic devices comprising either Sn
2+

 or Ge
2+

 have been prepared. Tauc plots and 

current-voltage characteristics of different Ge
2+

 based perovskites are displayed in Figure 1-

17a & b. 

 

Figure 1-17 a) Tauc plots of CsSnI3, CsGeI3, MAGeI3 and FAGeI3. The Tauc plot of the tin based 

perovskite is given as reference. b) Current-voltage curves of solar cells with CsGeI3 and MAGeI3.
113

 

 

According to Figure 1-17a, the BG energy of Ge based perovskites increases with increasing 

size of the A
+
 cation, with CsGeI3 featuring a BG energy close to the ideal BG given by the 

Schockley-Queisser limit.
14

 However, Ge
2+

 perovskite based photovoltaics show very poor 

performance with a maximum PCE of 0.2 % for a MAGeI3 based solar cell. The low 

performance of these devices is mainly attributed to the formation of Ge
4+

 due to oxidation.
113

 

Hybrid perovskites based on the other group 14 element, Sn, have been extensively 

investigated during the last decade. They have shown good mobilities in transistors and they 

can become metallic depending of their composition.
114,115

 In 2014, Noel et al. reported on 

MASnI3 based solar cells with PCEs of more than 6 %.
116

 Similar to MAPbI3, MASnI3 
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crystallizes in a tetragonal structure with similar lattice parameters as the Pb-based analog. 

Furthermore, MASnI3 exhibits promising optoelectronic properties for photovoltaic 

applications. Thus, the optical absorption of MASnI3 covers the whole visible and partially 

the near infrared starting from about 1000 nm. Similar to MAPbI3, MASnI3 features a strong 

photoluminescence signal at about 980 nm, being red-shifted compared to its Pb-based 

counterpart.
116

 The crystal structure and the optoelectronic properties of MASnI3 are given in 

Figure 1-18a & b. 

 

Figure 1-18 a) Crystal structure of MASnI3 b) Absorption and photoluminescence spectra of MAPbI3 and 

MASnI3. The MAPbI3 data are given as reference.
116

 c) Current-voltage characteristics of FASnI3 based 

solar cells where 0 %, 10 % or 25 % of the FA were replaced by ethylenediammonium (en). d) Evolution 

of the device performance of un-encapsulated FASnI3 based solar cells with and without the addition of 

en.
117 

 

Since the first reports on Sn halide perovskite based solar cells, much effort has been put into 

the improvement of the device performance and stability, resulting in Sn perovskite based 

photovoltaics exhibiting a higher stability under ambient conditions with PCEs of more than 7 

%, see Figure 1-18c & d.
117

 However, despite this progress, Sn
2+

 based photovoltaics still 

suffer from a rapid degradation upon exposure to oxygen and moisture.  
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Extensive investigations have also been carried out with divalent transition metals in order to 

overcome the stability problems of Sn
2+

 based perovskites. In particular, copper (Cu) is 

considered to be possible substitute for lead. Initially, hybrid Cu halide compounds were 

studied mainly due to their interesting magnetic properties.
118,119

 First investigations on hybrid 

Cu halide perovskites for the application in photovoltaics have been carried out by Cortecchia 

et al., where they synthesized and characterized (MA)2CuClxBr4-x. However, due to the small 

ionic radius, Cu forms 2D layered structures even with the relatively small MA cation, see 

Figure 1-19a.
120 

 

 

Figure 1-19 a) Crystal structure of (MA)2CuClxBr4-x b) Current voltage characteristics of Cu based hybrid 

perovskites with different Cl/Br ratios.
120

 
 

 

Regarding the optical properties, the absorption onset of the MACu halide based compound 

gets red-shifted with increasing bromide content covering nearly the full visible range. 

However, a pure bromide perovskite is not favorable since the Cu
2+

 gets reduced by the 

bromide. Therefore, the use of chloride is needed to stabilize the hybrid perovskite. Current-

voltage curves of (MA)2CuClxBr4-x based solar cells comprising two different Cl/Br ratios are 

depicted in Figure 1-19b. Although both materials show a very low performance, the much 

lower performance of the Br rich phase can be explained by trap states which are induced due 

to the reduction of copper. The low overall performance of (MA)2CuClxBr4-x based solar cells 

is caused by a combination of a low absorption coefficient and a heavy mass for holes.
120
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Recent works on Cu perovskites featuring larger cations could strongly increase the device 

performance to more than 0.6 %.
121

 This increase in efficiency holds promise for better 

working devices in the future. 

Due to the stability issues of Sn
2+

 and the very low performance of Cu
2+

 based photovoltaics, 

elements that do not exhibit the oxidation state 2+ have also been investigated. The most 

obvious candidates are group 15 elements. These elements, generally, feature an ns
2
np

3
 

valence shell configuration and can occur in the oxidation states 3-, 3+, 5+. Despite the 

different possible oxidation states of group 15 elements the oxidation state 3+ gets stabilized 

with increasing atomic mass due to the inert pair effect.
122

 Accordingly, Bi
3+

 is the most stable 

cation of the heaviest group 15 element Bi. Combined with its low toxicity, Bi is a very 

promising candidate for lead free photovoltaics.
123

  

First Bi perovskite based photovoltaics have been reported by Park et al., utilizing A3Bi2I9, 

where A can be Cs or MA, as photoactive layer. Such perovskites are built of bioctahedral 

(Bi2I9)
3-

 clusters surrounded by the organic or inorganic cations. The crystal structure of 

Cs3Bi2I9 is given in Figure 1-20a.
124

  

 

Figure 1-20 a) Crystal structure of Cs3Bi2I3
124

 b) Current-voltage characteristic of a MA3Bi2I9 based solar 

cell featuring a high quality absorber layer.
125 

 

Both Cs3Bi2I9 and MA3Bi2I9 feature a BG energy of about 2.2 eV, but only the fully inorganic 

perovskite exhibits a relatively strong, broad photoluminescence signal with its maximum at 
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about 650 nm. Solar cells comprising absorber layers of MA3Bi2I9 or Cs3Bi2I9 showed PCEs 

of 0.12 % and 1.09 %, respectively.
124

 The rather low performance compared to MAPbI3 

based photovoltaics is attributed to the lower absorption coefficient of A3Bi2I9 and the higher 

number of traps states within the Bi perovskite crystals. Furthermore, the poor film quality of 

theA3Bi2I9 films is also considered to be a major issue impeding high PCEs. Accordingly, 

Zhang et al. developed a new synthesis route to obtain high quality MA3Bi2I9 films resulting 

in devices showing more than 1.6 % PCE with high long-term stability, see Figure 1-20b.
125

  

Another promising Bi-based materials class for photovoltaic applications is called Rudorffites 

and is derived from the NaVO3 structure. Rudorffites feature the general formula AaBbXx (x = 

a+3 b), where A: Ag, Cu; B: Bi, Sb; X: I, Br. This structure is based on edge-sharing AX6 and 

BX6 octahedra, which is different from the typical perovskite structure comprising corner-

sharing metal halide octahedra, see Figure 1-21a.
126

  

 

Figure 1-21 a) General crystal structure of Rudorffites b) Current-voltage characteristic of a Ag3BiI6 

based solar cell.
126 

 

In contrast to the above-mentioned Cu and Bi based perovskites where structures of low 

dimensionality are formed, Rudorffites form a continuous 3D structure of connected metal 

halide octahedra, which holds promise for good charge transport properties. The most 

promising Rudorffites for photovoltaic applications are Ag-Bi based iodides due to their 

relatively small BG of about 1.8 eV. Accordingly, several groups have reported on solar cells 

based on Ag-Bi iodides with different composition, namely AgBi2I7, Ag2BiI5 and Ag3BiI6.
126–

128
 In particular, Ag3BiI6 based devices showed an impressively high PCE of more than 4 % 

pointing to the high potential of Bi based photovoltaics, see Figure 1-21b.  
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Besides Rudorffites, another class of Bi based materials, the so-called double perovskites, 

have attracted a lot of attention for the use in photovoltaics. Bismuth-based double 

perovskites, also called elpasolites, feature a highly symmetrical cubic structure with the 

general formula A2M
1+

BiX6 consisting of a 3D network of corner-sharing metal halide 

octahedra. Although Bi-based double perovskites comprising A = Rb, Cs, CH3NH3; M
1+

 = 

Na, K, Tl and X = F, Cl, Br have been studied for several decades, they did not come into 

focus for photovoltaic applications due to their large BG of more than 3 eV or their toxicity in 

case of Tl.
129–134

 This changed as several groups have reported on the synthesis of a Bi
3+

 

based double perovskite with Ag
+
 as monovalent cation featuring an BG of about 2 eV for the 

bromide based material, see Figure 1-22a, b & c.
135–140 

 

Figure 1-22 a) Image of a Cs2AgBiBr6 single crystal. b) Crystal structure of Cs2AgBiBr6. c) Absorbance 

spectrum and Tauc plot of a Cs2AgBiBr6 single crystal. d) Time-resolved photoluminescence decays of 

Cs2AgBiBr6 crystals and powders. 
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Together with the long photoluminescence lifetimes of several hundred nanoseconds (see 

Figure 1-22d) and calculated charge carrier effective masses close to those calculated for 

MAPbI3, Ag-Bi based double perovskites are promising candidates for photovoltaic 

applications.
135–140

 Recent studies on Cs2AgBiBr6 films for photovoltaic applications revealed 

encouraging PCEs of almost 2.5 % for devices comprising a mesoporous TiO2 layer and 1.44 

% for devices featuring a planar assembly.
141,142

 Considering that these are the very first 

reported PCEs of double perovskite based solar cells, belonging to the highest of all reported 

lead-free perovskite solar cells (except Sn
2+ 

based devices, which are fairly unstable), Bi 

halide double perovskites hold promise for non-toxic and stable photovoltaics, which may 

become competitive in comparison with Pb halide perovskite based solar cells. 
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2 Characterization 

 

2.1 X-Ray Diffraction 

 

X-ray diffraction (XRD) is a widely used technique to determine the atomic structure and the 

phase composition of crystalline materials. XRD is based on the scattering of electromagnetic 

waves on structures featuring physical dimensions similar to the wavelength. Since X-rays 

exhibit wavelengths in the subnanometer range they are suitable for investigations of atomic 

structures. A schematic representation of the scattering process in an XRD measurement is 

given in Figure 2-1: 

 

Figure 2-1: Schematic representation of the scattering process in an XRD measurement. 

 

For the generation of X-rays, an evacuated X-ray tube can be used, which mainly consists of a 

cathode and an anode. The cathode is typically built of a heated filament which emits 

electrons upon the application of a high electric field. The emitted electrons get accelerated 

towards the anode by a high voltage until they impinge onto the anode material. This leads to 

the emission of X-rays featuring a continuous energy spectrum (Bremsstrahlung) with 

energies not higher than the acceleration voltage. Common anode materials like copper or 

molybdenum additionally emit characteristic X-rays, which can be used for X-diffraction.
1–3
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In order to obtain an XRD pattern, constructive interference of the X-rays with the atomic 

structure of the investigated materials has to occur, which is the case for periodic lattices. The 

relationship between the incoming X-ray with its wavelength λ, the lattice spacing d and the 

angle of incidence θ is given by the following Bragg`s equation. 

 

 nλ = 2 d sin(θ) (2-1) 

 

With a given wavelength of λ = 1.540562 Å for Cu Kα radiation and considering a 

measurement range from 0.5° 2θ to 100° 2θ structures with dimensions from 0.1 nm to 20 nm 

can be resolved.
4
 

In this thesis X-ray diffraction measurements on films and powder samples were performed 

using a Bruker D8 Discover X-ray diffractometer operating at 40 kV and 30 mA, employing 

Ni-filtered Cu Kα radiation (λ = 1.5406 Å) and a position-sensitive detector (LynxEye) in 

reflection mode. Additionally, powder X-ray patterns were also obtained in transmission 

mode by a STOE Stadi MP diffractometer with a Cu Kα1 radiation source (λ = 1.54060 Å) 

operating at 40 kV and 40 mA. The diffractometer was equipped with a DECTRIS MYTHEN 

1K solid-state strip detector. 

 

2.2 Scanning Electron Microscopy 

 

Due to the resolution limit of optical microscopes, scanning electron microscopy (SEM) is a 

useful tool to charcterize surfaces and morphologies at the nanometer scale.
5
 This is due to the 

wavelength dependence of the resolution limit given in Equation 2: 

 

 
   

 

   
 

(2-2) 

 

Where d is the resolution limit, λ is the wavelength of the incident photons and NA the 

numerical aperture. Assuming a typical NA between 1 and 1.5 and a wavelength of about 550 

nm, which is usually used in fluorescence microscopy, a diffraction limit d of about 200 nm 

can be achieved.
6,7

 In contrast, SEM allows for spatial resolution close to one nanometer.
8
 A 

typical setup of an SEM in depicted in Figure 2-2. 
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Figure 2-2: Schematic setup of a scanning electron microscope 

 

The two most common ways to generate the electron beam are thermal emission and field 

emission. For thermal emission a wire of tungsten or a lanthanium hexaboride crystal is 

heated until it emits electrons. In the case of field emission a potential difference, between an 

anode and a nearby metal tip, causes electron emission. Regardless of the electron source, the 

emitted electrons are subsequently accelerated via a voltage of up to 30 kV and focused on the 

sample by several condenser lenses and an objective lens. The scan coils allow for scanning 

the focused electron beam across the sample.
8,9

  

The electrons hitting the sample can interact in many different ways with the specimen 

leading to a series of different signals that can be detected. For example, the electrons can be 

transmitted through the sample, which is used for transmission electron microscopy (TEM) to 

gain phase and diffraction information from the sample. Also elastic backscattering of the 

incident electrons from the surface, without a loss of energy, occurs (BS). The most relevant 

electrons for SEM are so-called secondary electrons, which arise from electrons of the 
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primary beam getting absorbed by the sample (SE). The absorbed electrons interact with 

atoms within the sample and can be re-emitted as electrons with lower energy. A schematic 

illustration of the emitted particles and electromagnetic radiation caused by the interaction of 

the sample with incident high energetic electrons is depicted in Figure 2-3.
8,9

  

 

Figure 2-3: left: Schematic illustration of the different particles and electromagnetic radiation emitted from the sample 
upon interaction with incident high energy electrons. right: Schematic illustration of the volume within the specimen 
where the emission of the particles and electromagnetic radiation occurs.

10
 

 

The emitted SE can be detected by an SE detector which is placed at a certain angle close to 

the sample holder. Since SE arise from areas close to the surface of the sample and the 

amount of SE reaching the detector is strongly influenced by the surface height, orientation 

and composition of the illuminated spot, SE provide a lot of morphological information. By 

moving the electron beam across the sample point for point, a microscopic image of the 

specimen can be generated.
8,9,11

 

According to Figure 2-3, the sample also emits characteristic X-rays when it gets hit by high 

energy electrons. The energy of the emitted characteristic X-rays depends on the atomic 

structure of the sample. Therefore, characteristic X-rays can be used to estimate the atomic 

composition of the analyzed sample via energy dispersive X-ray spectroscopy (EDX). The 

emitted characteristic X-rays are sorted by their energies in an analyzer and detected by a X-

ray detector, leading to spectrum which provides information about the composition of the 

structure.
12

 

In this thesis SEM images and EDX data were acquired on an FEI Helios NanoLab G3 UC 

microscope. 



2 Characterization 

53 

2.3 UV-Vis Absorption Spectroscopy 

 

In order to gain information of the electronic structure of liquid or solid samples, ultraviolet-

visible (UV-vis) absorption spectroscopy is a commonly used method. UV-Vis is based on the 

investigation of optical transitions from the ground state to various excited states which 

provides quantitative and qualitative information about the absorption properties of the 

specimen.  

The absorbance at a certain wavelength A(λ) represents the weakening of the light intensity of 

the incident beam after running through the sample and is defined by equation 2-3, where I is 

measured intensity after the incident beam has ran through the specimen and I0 is the intensity 

of the incident beam.  

 

 
          

    

     
 

(2-3) 

 

In the case of a liquid sample where the chromophore is dissolved in a proper solvent A(λ) is 

related to the concentration c of the chromophore. A mathematical relation between A(λ) and 

c is given by the Lambert-Beer law (equation 2-4), where ε is the specific extinction 

coefficient of the absorbing species and L the optical path length through the sample. 

 

                (2-4) 

 

The determination of the amount of light absorbed by the Lambert-Beer law works only with 

samples that are perfectly translucent without any light scattering within the sample. 

Therefore, the Lambert-Beer law is not applicable for investigations of solar cells featuring a 

typical layer assembly of materials with very different refractive indices leading to many 

different interfaces between the layers where scattering and refracting events can occur. Even 

a very simple model of a solar cell, consisting of the absorber material on a glass substrate, 

exhibits already three different interfaces, namely air-glass, glass-absorber and absorber-air 

interface. Since this gets even more complicated in a fully assembled device containing 

several charge selective layers and reflective metal contacts, the following procedure has been 

found to produce reliable results for many types of thin film samples, including fully 

assembled solar cells and has been utilized throughout this thesis to estimate the absorption of 
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thin films.
13–15 

Assuming that all light is either absorbed, transmitted or reflected by the sample, the intensity 

of the incident light can therefore be written as the sum of the percentages of absorbed (%A), 

transmitted (%T) and reflected (%R) light, see equation 2-5. 

 

            (2-5) 

 

In order to determine %A, the quantities %T and %R of the reference and the sample can be 

measured with an UV-Vis spectrometer equipped with an integrating sphere.  

For transmission measurements the sample has to be placed right at the entrance port of the 

integrating sphere. This allows for the collection of all transmitted light or light which gets 

scattered towards the edges of the sample. Reflection measurements will be performed by 

positioning the sample at the opposite end of the integrating sphere, just outside the sphere. 

This assembly ensures that only light which gets reflected by the sample is taken into account 

in this measurement. For all measurements the reference has to be measured in the same way 

as the sample. A suitable reference is the transparent substrate without the absorbing layer. 

Prior to all measurements, an instrument transmission baseline (100% T), without any optical 

obstacles in the beam path, and a Spectralon white standard (100% R) have to be measured. 

As shown in equation 2-5, the absorption can be calculated by subtracting the portions of the 

transmitted and reflected light from the total incident light intensity, which represents 100 %. 

The absorption in turn is related to the absorbance by the expression given in equation 2-6. 

 

               (2-6) 

 

According to equation 2-6, the absorbance of the sample can calculated from the absorption of 

the sample which was determined by transmission and reflection measurements. In order to 

obtain only the absorbance of the active layer it is necessary to subtract the absorbance of the 

reference from the absorbance of the complete sample. 

In this thesis absorption spectra were acquired with a Lambda 1050 UV-Vis 

spectrophotometer (Perkin Elmer) using an integration sphere. 
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2.4 Steady State Photoluminescence (ssPL) Spectroscopy 

 

Generally, photoluminescence (PL) occurs when electrons are excited to an excited state and 

subsequently relax to their ground state. The energy difference between these two states is 

often released as a photon, which can be detected by steady state photoluminescence (ssPL) 

spectroscopy. A schematic illustration of the processes involved in a PL process is given in 

Figure 2-4. 

 

Figure 2-4: Schematic illustration of the processes involved in a PL event 

 

According to Figure 2-4, the electrons mostly get excited to higher vibrational states than the 

lowest possible excited electronic state. Therefore, the excited electrons rapidly thermalize 

into the vibrational ground state of the excited electronic state, leading to emission of a 

photon exhibiting a lower energy than the energy of the exciting photons. Thus, the PL 

emission spectrum is shifted towards longer wavelength with respect to the spectrum of the 

excitation source. A schematic illustration of this so-called Stokes shift is depicted in Figure 

2-5.
16 
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Figure 2-5: Schematic illustration of the Stokes shift 

 

Although shown as such in Figure 2-5, the PL emission spectrum does not necessarily exhibit 

the same shape as the excitation spectrum.  

However, since the emitted photons possess information about the band gap of the sample, 

ssPL spectroscopy is applicable for the investigation of semiconductors like absorber 

materials for solar cells. 

In this thesis steady state measurements were performed with a Fluotime 300 

Spectrofluorometer (Picoquant GmbH). 

 

2.5 Time Correlated Single Photon Counting (TCSPC) 

 

While ssPL is only able to detect the total energy and intensity of the emitted photons, time 

correlated single photon counting (TCSPC) offers the possibility to investigate the time-

resolved kinetics of the photoemission from the band edge of a semiconductor. As already 
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indicated by the name TCSPC, it is based on a precisely timed registration of single photons 

emitted by the sample.  

TCSPC measurements are performed by measuring the time lag between a pulse of a pulsed 

laser source and the detection of the photon emitted by the sample. Due to quantum 

mechanical principles, it is not possible to know exactly when a single relaxation process is 

occurring, hence the time between a laser pulse and the detection of an emitted photon is not 

constant, see Figure 2-6. 

 

Figure 2-6: Measurement of start-stop times in time-resolved fluorescence measurement with TCSPC.
17 

 

Therefore, a multitude of subsequent single photon counting measurements has to be 

performed to obtain the photoluminescence decay dynamics, which is realized by a high 

repetition frequency of the excitation laser. In a TCSPC set-up the laser is typically pulsed at 

frequencies between 80 and 100 MHz. In order to collect a maximum of only one photon per 

excitation event the laser intensity has to be adjusted weak enough. All measured photon 

counts are sorted in a histogram consisting of a range of time bins (Figure 2-7). 
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Figure 2-7: Histogram of start-stop times in a time-resolved fluorescence measurement with TCSPC.
17

 

 

The exponential decrease of the histogram given in Figure 2-7 can be explained by a quantum 

mechanical interpretation, which predicts that only half of the excited species will relax in a 

given time interval. The resulting exponential decay can be fitted with a matching function to 

extract the half-life time of the excited species. 

In this thesis time-resolved PL measurements were performed with a Fluotime 300 

Spectrofluorometer (Picoquant GmbH). 

 

2.6 Current-Voltage Measurements 

 

The most important characteristic of solar cells is their power conversion efficiency (PCE, η), 

which is used to rate them and to compare them with each other. In order to ensure the 

comparability of PCEs measured in different laboratories, the testing takes place under 

standard conditions. The current standard for solar cell measurements is the ASTM G173-03 

air mass 1.5 global (AM1.5G) at a total light intensity of 100 mW/cm
2 

(1 sun).
18

 This 

spectrum corresponds to the standard spectrum emitted by the sun corrected for absorption 

and scattering by the atmosphere. 

The efficiency of solar cells is determined by current density-voltage (J-V) measurements 

under 1 sun illumination with a range of bias voltages applied to the test device. The resulting 
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current flow is recorded to determine the characteristics of the solar cell. A typical J-V curve 

is shown in Figure 2-8.  

 

Figure 2-8: Typical J-V curve of a solar cell including characteristic points. 

 

The intersection of the graph with the y-axis represents the short-circuit current (Isc) (or Jsc, 

the short-circuit current density), which is the current running through the device without any 

applied bias voltage. The Isc of a solar cell is influenced by its optical absorption properties, 

the ability to produce charge under illumination and transport of the generated charge carriers 

to the electrodes. The open-circuit voltage (Voc) is the maximum voltage available from the 

measured device and is obtained at the point where the net current is zero, meaning that the 

applied bias neutralizes the current generated by the solar cell under illumination.  

Since the electrical power is defined as the product of current and voltage, Isc and Voc 

correspond to the power generated by the device at any applied voltage. The point where the 

power produced of the solar cell is at its maximum is called the maximum power point (Pmax) 

and is defined by Imax and Vmax.
19

 Pmax indicates the voltage needed for the solar cell to work 

most efficiently. Pmax is related to the PCE by the following equation 



2 Charcterization 

60 

 

 
     

    

   
  

          

   
 (2-7) 

where Pin is the power of the incident light. 

As depicted in Figure 2-8, Pmax is defined by the rectangle given by Imax and Vmax which are 

smaller than the Isc and Voc of the tested device. Since Isc and Voc determine the theoretical 

maximum efficiency of a solar cell, the ratio between the areas of the rectangles given by Imax 

and Vmax and Isc and Voc provides information about the performance of a photovoltaic device 

with respect to its theoretical maximum PCE. This ratio is called fill factor (FF) and is given 

by equation 2-8. 

 

 
    

          

         
  

    

         
 (2-8) 

 

According to equation 2-8, a well-performing solar cell should feature a FF close to one. 

Usually, real solar devices exhibit a FF much lower due to losses from serial and shunt 

resistances. However, a FF of more than 0.7 can be realized in high quality solar cells.  

In this thesis J-V curves were recorded with a Keithley 2400 source meter under simulated 

AM 1.5 sunlight, calibrated to 100 mW cm
−
² with a Fraunhofer ISE certified silicon cell. The 

active area of the solar cells was defined with a square metal aperture mask of 0.0831 cm
2
. 

 

2.7 External Quantum Efficiency (EQE) 

 

Besides J-V measurements, external quantum efficiency (EQE) measurements can be 

performed to investigate photovoltaic devices under working conditions. In contrast to J-V 

measurements, which provide information about the overall PCE of a solar cell under sun-like 

white light illumination, EQE measurements take place under monochromatic illumination to 

study the response of the tested device towards illumination at a distinct wavelength. The 

method to determine the EQE is equivalent to incident photon to current conversion efficiency 

(IPCE) measurements. It depends on the light harvesting efficiency ηLHE, the electron 

injection efficiency ηinj and the charge collection efficiency ηcc. The mathematical relation 
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between these three parameters and the IPCE at a distinct wavelength is given in equation 2-

9. 

 

                            (2-9) 

 

In order to determine the IPCE at a certain wavelength, the device is illuminated with 

monochromatic light and the resulting Jsc (λ) is measured. The IPCE can be calculated with 

the determined Jsc (λ) according to the following equation 

 
             

   
       

 (2-10) 

 

where λ is the wavelength and Pin the power of the incident light. Accordingly, the overall 

short-circuit current of the solar cell under white light illumination can be calculated as the 

integral of the product of the wavelength dependent IPCE(λ) and the incident photon flux 

density (F(λ)), multiplied with the elemental charge of an electron e, see equation 2-11. 

 

 
     ∫                  (2-11) 

 

For an ideal solar cell, the Jsc calculated from the IPCE measurements should be equal to the 

Jsc obtained from the J-V measurements under sun-like white light illumination. 

In this thesis EQE) measurements were performed at short circuit with a bias illumination of 

0.1 sun provided by an AM 1.5 solar simulator (Solar Light Model 16S). The measurements 

were conducted with a 150 W xenon lamp equipped with a monochromator and order-sorting 

filters as the primary light source. The light intensity reaching the electrode was measured 

using a certified Fraunhofer ISE silicon reference cell equipped with a KG5 filter. For signal 

detection a Signal Recovery 7265 lock-in amplifier combined with a low-noise current 

amplifier (Femto DLPCA-200) was employed. 
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3 Investigation of the optoelectronic and stability properties of 

the 2D layer perovskites (C4H12NH3)2SnI4 and (C8H12NH3)SnI4 

for applications in lead-free perovskite based optoelectronics 
 

The results described in this chapter were partially obtained with the help of the research 

trainee (Forschungspraktikant) B. Sc. Minh Trung Cong. 

 

3.1 Introduction 

 

Considering the constantly rising global energy demand in connection with the decline of 

fossil fuels, which are currently the main sources for the generation of electrical power, 

humankind is running into severe problems regarding the sufficient supply with electricity.
1
 

Furthermore, extensive burning of fossil fuels results in the emission of huge amounts of so-

called green-house gases being considered to be responsible for the global warming, which 

causes an increased number of extreme weather phenomena, such as droughts, floods and 

storms. Thus, there is a strong demand for the production of sufficiently high amounts of 

electric power without emitting green-house gasses.
2
  

Considering that 3.5 x10
24

 J of solar energy are reaching the earth every year, which is about 

10000 times more than the annual human energy consumption, the conversion of this energy 

into electricity by photovoltaic devices is one of the most promising approaches for 

environmentally friendly production of electric power.
3
 Although state-of-the-art silicon 

based photovoltaics already generate electricity from solar energy with power conversion 

efficiencies (PCE) of more than 20 %, the energy-costly production of such solar cells is still 

an impediment for the rapid deployment of large-scale photovoltaics. In order to increase the 

impact of photovoltaics on the global energy production, less expensive and more efficiently 

produced photovoltaics are strongly needed. During the quest for possible alternatives to 

silicon based photovoltaics, hybrid organic-inorganic lead iodide perovskites have attracted 

much attention in 2012, due to solar cells based on such a compound, namely methyl 

ammonium lead iodide (MAPbI3), showing PCEs of more than 10 %.
4
 During the last few 

years, hybrid lead halide perovskite based photovoltaics have experienced a rapid increase of 
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device efficiency featuring PCEs of more than 20 % for state-of-the-art devices, making this 

technology a promising candidate for next generation photovoltaics.
5
 Furthermore, hybrid 

lead halide based perovskites have been shown to be feasible for applications in lasers and 

light emitting diodes (LED).
6,7

 Despite their outstanding optoelectronic properties, hybrid lead 

halide perovskites still suffer from several disadvantages.
8–17

 In particular, the sensitivity of 

hybrid lead halide perovskites towards moisture, which leads to the formation of hydrated 

species or to the complete degradation of the perovskite may impede their wide-spread 

application.
18

 Furthermore, the toxicity of lead, in combination with the relatively high 

solubility of lead halide salts in water, can be considered a major obstacle for the 

commercialization of this technology.
19–22

 Accordingly, a great deal of effort has been put into 

the development of less hazardous perovskite related compounds for photovoltaic 

applications. Previous studies involving several different elements such as Ge
2+

, Sn
2+

, Bi
3+

, 

Sb
3+

 or Cu
2+

 have revealed that the best performing lead-free solar cells can be achieved with 

devices comprising Sn
2+

 based hybrid perovskite absorber layers.
23–27

 In particular, solar cells 

based on methylammonium tin iodide (MASnI3) exhibited encouraging PCEs of about 6 %, 

making it an excellent candidate for highly efficient lead-free hybrid perovskite based 

photovoltaics.
28,29

 However, although tin is also a group 14 element, such as lead, its 

oxidation state 2+ is much less stable than that of the corresponding lead cation. This 

instability leads to a strong sensitivity of Sn
2+

 towards oxygen, resulting in the facile 

oxidation of Sn
2+

 to Sn
4+

.
28,29

 The formation of Sn
4+

 can be considered as p-type doping which 

leads to high hole mobilities for tin halide based perovskites. Accordingly, tin halide 

perovskites have been used as solid-state hole transport materials for dye sensitized solar 

cells.
30-32

 On the other hand, the formation of Sn
4+

 leads to the introduction of defect sites into 

the perovskite structure, which act as recombination centers for photoexcited charge carriers. 

Thus, the lifetime of photoexcited species within the tin halide perovskite is drastically 

reduced, resulting in a performance loss of photovoltaics comprising tin halide perovskite 

based absorber layers due the strong decrease of the mobility of the photoexcited species.
28,29

 

The instability of Sn
2+

 based perovskites is considered to be the major drawback which has to 

be solved before such materials are viable for wide-spread applications.  

Because moisture promotes the formation of Sn
4+

 within hybrid tin halide based perovskites, 

the stability of these compounds could possibly be enhanced by protecting the Sn
2+

 cation 

from a direct contact with water molecules.
33

 Recently, several groups showed that the 



3 Investigation of the optoelectronic and stability properties of the 2D layer perovskites 

(C4H12NH3)2SnI4 and (C8H12NH3)SnI4 for applications in lead-free perovskite based 

optoelectronics 

66 

moisture stability of hybrid lead halide perovskites can be strongly improved by the 

introduction of ammonium cations featuring large hydrophobic organic residues.
34,35

 

Accordingly, hybrid tin halide based perovskites featuring organic cations with large organic 

residues are interesting candidates for applications in stable Sn
2+

 based photovoltaics.  

Previous studies on n-butylammonium (BuA) and phenylethylammonium (PEA) showed that 

these organic cations can efficiently block water from reacting with the metal halide octahedra 

in lead iodide based perovskites, leading to a significant increase of the stability of the 

perovskite, which results in enhanced device stability.
35,36

 However, no stability studies on tin 

iodide based perovskites featuring large organic cations have been reported so far.  

Here, we present a comprehensive study of n-butylammonium tin iodide ((BuA)2SnI4) and 

phenylethylammonium tin iodide ((PEA)2SnI4) with a view on serving as potential absorbers 

in lead-free perovskite solar cells. The obtained results were compared to those of their lead 

based counterparts n-butylammonium lead iodide ((BuA)2PbI4) and phenylethylammonium 

lead iodide ((PEA)2PbI4), and their related lead and tin based methylammonium compounds, 

MAPbI3 and MASnI3, which are the most common materials for metal halide perovskite 

based optoelectronics. We investigated the structural and optoelectronics properties of these 

compounds via X-ray diffraction (XRD), ultraviolet/visible (UV/vis) spectroscopy, 

photoluminescence (PL) spectroscopy and time-correlated single photon counting (TCSPC) 

measurements, in order to investigate the viability of (BuA)2SnI4 and (PEA)2SnI4 for 

optoelectronic applications, such as photovoltaics and LEDs. Furthermore, we conducted the 

first moisture stability study of (BuA)2SnI4 and (PEA)2SnI4 by exposing the compounds to 

moderate and high relative humidity levels. The degradation of the samples was monitored by 

XRD and UV/vis measurements. It turns out that (BuA)2SnI4 and (PEA)2SnI4 feature 

optoelectronic properties making them interesting candidates for many different 

optoelectronic applications. Furthermore, regarding the moisture stability, we demonstrate 

that the choice of the organic cation is much more critical for tin based perovskites than for 

their lead-based counterparts. Our results reveal new possible routes for the development of 

stable Sn
2+

 based optoelectronics. 
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3.2 Results and Discussion 

 

Since the application of hybrid metal halide perovskites in optoelectronics is mainly realized 

by thin films of those materials, we prepared films of our investigated compounds. All films 

were manufactured via spin-coating a DMF-based precursor solution on top a glass substrate 

with a subsequent annealing step. For experimental details see section 3.4. The phase purity of 

the prepared films was checked by powder X-ray diffraction measurements (PXRD) of 

powders scratched off from the manufactured films, see Figure 3-1a-f. 
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Figure 3-1: PXRD patterns of a) MAPbI3, b) MASnI3, c) (BuA)2PbI4, d) (BuA)2SnI4, e) (PEA)2PbI4 and f) 

(PEA)2SnI4.The insets show the space group and the lattice parameters of each compound. The red lines 

indicate the simulated PXRD pattern of each perovskite. 

According to the lattice parameters given in the insets, the substitution of the relatively small 

methylammonium cation (MA) by the much larger BuA or PEA cation results in a strong 
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increase of one unit cell axis accompanied by a structural change from tetragonal to 

orthorhombic for BuA and monoclinic for PEA, regardless of which type of metal ions reside 

inside the structure. This transition is caused by the increased distance of the metal iodide 

octahedra layers due the larger alkyl chains of BuA and PEA.
34

 In the case of MA the organic 

cation is small enough to fit into the voids created by the interconnected metal halide 

octahedra without destroying the three-dimensional structure. This holds also for other cations 

that are not too large, such as formamidinium (FA) or cesium (Cs). Organic cations that 

exhibit larger aliphatic or aromatic residues can only be incorporated into the metal halide 

octahedra scaffold by disrupting the 3D assembly. Typically, 2D layered structures consisting 

of metal halide sheets separated by the organic cations are formed in this case. A schematic, 

showing the transition from a 3D structure to a 2D structure due the introduction of larger 

organic cations is given in Figure 3-2. 

 

Figure 3-2: Schematic of the transition from a 3D perovskite structure to a 2D layered perovskite 

structure caused by the incorporation of large organic cations. The general formula of each compound 

including possible components is given above the structure. 
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Since the metal halide layers are separated by bilayers of the organic cations, the 

stoichiometry changes from AMX3 to (R-NH3)2MX4, see Figure 3-2.
34

  

The transition from a 3D to a 2D structure is accompanied by a drastic change of the 

optoelectronic properties. Thus, we investigated the absorption properties of (BuA)2SnI4, 

(PEA)2SnI4, MASnI3 and their lead based counterparts via UV/vis measurements. According 

to the absorption spectra of MAPbI3, (BuA)2PbI4 and (PEA)2PbI4 given in Figure 3-3a, the 

transition from a 3 D to a 2D structure is accompanied by a large blue shift of the absorption 

onset leading to an increase of the band gap energy (Eg) of the perovskite. The Eg´s for 

MAPbI3 and for (BuA)2PbI4 and (PEA)2PbI4 were determined by Tauc plots, see Figure 3-3b. 

The obtained values of 1.58 eV for MAPbI3 and 2.3 eV for (BuA)2PbI4 and (PEA)2PbI4 are in 

good agreement with values reported in the literature.
4,38 

 

Figure 3-3: a) Absorbance spectra of MAPbI3, (BuA)2PbI4 and (PEA)2PbI4, b) Tauc plots of MAPbI3, 

(BuA)2PbI4 and (PEA)2PbI4, c) Absorbance spectra of MASnI3, (BuA)2SnI4 and (PEA)2SnI4, d) Tauc plots 

of MASnI3, (BuA)2SnI4 and (PEA)2SnI4 for direct Eg´s. The Eg´s were estimated via fitting the linear part 

of the graph.  
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The large increase of the Eg due to the transition from a 3D to 2D structure can be explained 

by confinement effects caused by the formation of separated PbI2 layers due to incorporation 

of large organic cations. Furthermore, a strong excitonic feature appears in the absorbance 

spectrum of (BuA)2PbI4 and (PEA)2PbI4 at around 500 nm. This indicates that the 2D 

compounds exhibit a much higher exciton binding energy than MASnI3, which is caused by 

the different dielectric constants of the organic and the inorganic layers leading to the 

stabilization of the created excitons.
39,40

 A similar behavior can also be observed for the tin-

based compounds revealing an Eg of about 1.25 eV for MASnI3 and an Eg of 1.95 eV for 

(BuA)2SnI4 and (PEA)2SnI4, which is also in good agreement with literature data, see Figure 

3-3c & d.
28,29,41

 Interestingly, the Eg´s of the tin based layered perovskites are significantly 

smaller than those of their lead-based counterparts, being very close to the optimal Eg for a 

top cell in a tandem solar cell assembly.
42

 Accordingly, these materials are interesting 

candidates for applications in this kind of photovoltaics.  

All investigated compounds feature a strong PL signal pointing to low non-radiative 

recombination rates within the metal halide perovskites, making them interesting candidates 

for light emitting applications, such as LEDs.
28,43,44

 Furthermore, the low frequency of non-

radiative recombination events is also a key feature of the photoactive layer in highly efficient 

perovskite based photovoltaics.
45

 According to Figure 3-4a & b, the PL signals of the layered 

compounds exhibit a strong blue shift with respect to their three-dimensional counterparts due 

to confinement effects, similar to the UV/vis spectra given in Figure 3-3a & d.
39,40

 Besides 

their number, the lifetime of the photoexcited species is also an important factor for 

photovoltaic applications. Since the photoexcited charge carriers have to be extracted from the 

photoactive material of a solar cell before they recombine, the lifetime of the photoexcited 

species has to be reasonable long. Accordingly, we performed TCSPC measurements with our 

compounds to evaluate if layered perovskites meet the requirements for highly efficient 

photovoltaics. The PL decays obtained for the lead and tin based perovskites are given in 

Figure 3-4c & d, respectively. According to common procedures, the decay curves were fitted 

either to a biexponential or triexponential decay model to obtain the lifetimes of the photo-

excited species.
46,47

 Typically, the decay models feature one slow decay component slow and a 

fast decay component fast. For the triexponential fitting model an additional intermediate 

decay component inter is present. The values of the different decay components are given in 

Table 3-1. 
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Figure 3-4: a) PL emission spectra of MAPbI3, (BuA)2PbI4 and (PEA)2PbI4, b) PL emission spectra of 

MASnI3, (BuA)2SnI4 and (PEA)2SnI4, c) TCSPC decays of MAPbI3, (BuA)2PbI4 and (PEA)2PbI4, d) 

TCSPC decays of MASnI3, (BuA)2SnI4 and (PEA)2SnI4.  

 

Table 3-1: Summary of the decay components for the PL decays shown in Figure 3-4c & d. 

 slow / ns inter / ns fast / ns 

MAPbI3 16.27 - 4.77 

(BuA)2PbI4 0.25 - 0.008 

(PEA)2PbI4 1.51 - 0.28 

MASnI3 1.04 - 0.25 

(BuA)2SnI4 10.61 1.88 0.34 

(PEA)2SnI4 20.77 4.46 0.95 
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According to Figure 3-4c and Table 3-1, MAPbI3 shows by far the slowest decay time for the 

lead based compounds, which is caused by the relatively low exciton binding energy leading 

to the generation of free charge carries, which can diffuse for a relatively long time inside the 

perovskite before they recombine.
48–50

 On the other hand, the decay times for the layered 

compounds (BuA)2PbI4 and (PEA)2PbI4 are drastically decreased. We note that for the layered 

compounds the fast component fast refers to radiative recombination while the slow 

component slow is most likely caused by trap state formation.
51

 The reduced lifetime of the 

photo-generated charge carriers is attributed to confinement effects present in the layered 

perovskites leading to a significant increase of the exciton binding energy.
39,40

 Accordingly, 

no efficient charge collection from a several hundred nanometer thick layered perovskite-

based absorber layer can be expected. Referring to the decay curves of the tin-based 

perovskites, depicted in Figure 3-4d, a trend contrary to that of the lead-based perovskites can 

be observed, wherein the three-dimensional compound MASnI3 shows the shortest decay 

times. These very short lifetimes of the photoexcited species are attributed to a large number 

of defects acting as recombination centers for the photo-generated charge carriers. The defect 

sites are introduced by the self-doping of MASnI3 with Sn
4+

 due the facile oxidation of the 

highly oxygen sensitive Sn
2+

.
28,29 

 

However, previous studies showed that the optimization of the composition and synthesis 

procedure under highly inert conditions can significantly increase the lifetime of the 

photoexcited charge carriers, leading to rather efficient Sn
2+

-perovskite based solar cells.
52,53

 

Similar to their lead-based counterparts, only the fast decay component fast can be referred to 

radiative recombination in the layered tin iodide perovskites, while the two slower decay 

components inter and slow are most likely caused by trap state formation.
51

 The much longer 

decay times for (BuA)2SnI4 and (PEA)2SnI4 indicate a much larger number of trap states in 

these compounds compared to their lead-based counterparts. This could probably be 

explained by the high sensitivity of the Sn
2+

 ions towards oxidation. Although radiative 

recombination in (BuA)2SnI4 and (PEA)2SnI4 is much faster than in MAPbI3, it is slower than 

in (BuA)2PbI4 and (PEA)2PbI4, in particular for (PEA)2SnI4. Since MASnI3 based solar cells 

comprising a mesoporous titania scaffold showed efficiencies of about 6 % with decay times 

for the photo-generated species of less than 200 ps,
28,29

 layered tin-based perovskites are 

promising candidates for novel absorber materials in solar cells featuring a mesoporous 

scaffold.  



3 Investigation of the optoelectronic and stability properties of the 2D layer perovskites 

(C4H12NH3)2SnI4 and (C8H12NH3)SnI4 for applications in lead-free perovskite based 

optoelectronics 

74 

Besides the optoelectronic properties, the stability of the active material is also an important 

issue that has to be resolved before the commercialization of perovskite-based 

optoelectronics. Previous studies showed that MAPbI3 gradually degrades under humid 

conditions of more than 50 % RH.
18

 This effect is even more pronounced for its tin-based 

counterpart MASnI3, which degrades under ambient conditions within several minutes, 

mainly due to the highly oxygen and moisture sensitive Sn
2+

 ions.
54

 In particular, the 

combination of moisture and oxygen promotes the degradation of MASnI3.
33 

A possible way 

to prevent water molecules from infiltrating the perovskite structure is the utilization of 

ammonium cations featuring large hydrophobic residues, as demonstrated for lead-based 

perovskites.
35,36

 Since no studies on tin-based layered perovskites are available so far, we 

performed an extensive moisture stability study with our lead-free compounds by means of 

XRD and UV/vis measurements. For reference purposes, we also investigated the moisture 

stability of the corresponding lead-based perovskites with XRD. Since hybrid lead halide 

perovskites are typically more stable than their tin-based counterparts, the lead halide 

perovskite films were placed in a desiccator which contained a saturated aqueous NaCl 

solution to provide a humid atmosphere with a relatively high moisture level of about 75 % 

RH to accelerate the degradation of the samples, see Figure 3-5a. 
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Figure 3-5: a) Schematic of the assembly used for the moisture stability test at high humidity levels, b) 

PXRD pattern of dry MAPbI3 and MAPbI3 exposed to 75 % RH for 48 h, c) PXRD pattern of dry 

(BuA)2PbI4 and (BuA)2PbI4 exposed to 75 % RH for 48 h, d) PXRD pattern of dry (PEA)2PbI4 and 

(PEA)2PbI4 exposed to 75 % RH for 48 h.  

 

According to Figure 3-5b, the exposure of MAPbI3 to elevated humidity levels results in the 

formation of many different degradation products, such as various hydrated species and 

PbI2,
18,55

 which are observable by the additional reflections in the PXRD pattern. In contrast, 

the compounds comprising the large organic cations exhibit almost no changes in their PXRD 

pattern, which indicates that ammonium cations featuring large organic residues can 

efficiently block water from reacting with the perovskite layer, leading to a strongly enhanced 

stability of the material. We note that even a relatively small cation like BuA is able to 

increase the moisture stability of the perovskite layer significantly. 
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For the investigation of the tin-based materials, the samples were also exposed to moderate 

humidity levels of about 35 % RH in addition to the high humidity level exposure, due to the 

fact that tin halide perovskites are much less stable than their lead-containing relatives. 

Furthermore, the evolution of the degradation of the tin-based compounds was monitored 

more often and in shorter intervals. The resulting PXRD patterns of the investigated 

compounds for the low and high humidity treatments are given in Figure 3-6a-f.  
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Figure 3-6: PXRD patterns of a) MASnI3 exposed to 35 % RH, b) MASnI3 exposed to 75 % RH, c) 

(BuA)2SnI4, exposed to 35 % RH, d) (BuA)2SnI4, exposed to 75 % RH, e) (PEA)2SnI4 exposed to 35 % RH, 

and f) (PEA)2SnI4, exposed to 75 % RH. The asterisks indicate the reflections of the degradation products. 
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The XRD patterns depicted in Figure 3-6a & b show that MASnI3 exhibits strong signs of 

degradation after 24 h exposure to humidity, regardless of whether the humidity level was 

moderate or high, confirming the expected high sensitivity of MASnI3 to oxygen and 

moisture. Since Sn
2+

 is much less stable than Pb
2+

, the final degradation products of MASnI3 

do not mainly consist of hydrated species as shown for MAPbI3. Instead, it is supposed that 

the degradation of MASnI3 finally results in a compound or compounds based on Sn
4+

, as 

shown for the oxidation of CsSnI3 to Cs2SnI6 upon exposure to ambient conditions.
33,56,57

 

Surprisingly, no beneficial effect on the stability can be observed for the BuA-containing 

compound, see Figure 3-6c & d. (BuA)2SnI4 significantly degrades even at moderate humidity 

conditions (see Figure 3-6c), behaving contrary to its lead based counterpart, which exhibits a 

strongly increased moisture stability compared to MAPbI3, see Figure 3-5c. This indicates 

that, due to the high sensitivity of Sn
2+

 towards oxygen and water, BuA is not able to 

sufficiently prevent water molecules from reacting with the metal cations. On the other hand, 

the PEA-based compound (PEA)2SnI4 features a significantly improved stability against 

moisture compared to its 3D relative MASnI3, see Figure 3-6e & f. Although additional 

reflections appear, reflections of the original compound can still be observed even after 24 h 

at high humidity conditions (see Figure 3-6f). This is not the case for the MA and BuA based 

materials, indicating the strong ability of PEA to block water molecules from reacting with 

the Sn
2+

 cations. Similar to MASnI3, Sn
4+

 based compounds can also be expected as final 

degradation products of (BuA)2SnI4 and (PEA)2SnI4, since all materials comprise the highly 

sensitive Sn
2+

 cations. Since the degradation of the materials is accompanied by a drastic 

change of the optical absorption properties, UV/vis spectra can also be utilized as a measure 

for the stability of tin halide perovskite-based samples.
58

 Accordingly, we performed UV/vis 

measurements of our tin-based samples to monitor the changes of the absorption with 

progressive degradation. The resulting spectra are given in Figure 3-7a-f. 
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Figure 3-7: UV/vis spectra of a) MASnI3 exposed to 35 % RH, b) MASnI3 exposed to 75 % RH, c) 

(BuA)2SnI4, exposed to 35 % RH, d) (BuA)2SnI4 exposed to 75 % RH, e) (PEA)2SnI4 exposed to 35 % RH, 

and f) (PEA)2SnI4 exposed to 75 % RH. The asterisks indicate the reflections of the degradation products. 

All spectra were obtained from films on glass substrates in transmission mode.  
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A comparison of the UV/vis spectra with their corresponding XRD patterns shows that the 

degradation of the perovskite films is accompanied with a strong absorption loss, which can 

result in an almost complete disappearance of the light absorption in the visible range, see 

Figure 3-7d. The relatively strong light absorption across the whole visible range of MASnI3 

even after 24 h exposure to high humidity levels (see Figure 3-7b) is most likely caused by the 

formation of a Sn
4+

 based compound, similar to Cs2SnI6 which features a strong light 

absorption in the visible range.
57

 On the other hand, the spectra of (PEA)2SnI4 show no 

significant change of the light absorption for the sample exposed to moderate humidity levels 

(see Figure 3-7e). Furthermore, in contrast to (BuA)2SnI4, the absorption characteristics of 

(PEA)2SnI4 are still observable after exposure to high humidity conditions for 24 h. Due to the 

high moisture stability of (PEA)2SnI4 under moderate humidity conditions, we extended the 

investigation of (PEA)2SnI4 to five consecutive days to reveal when a significant degradation 

of the material under moderate humidity conditions occurs, see Figure 3-8a & b. 

 

Figure 3-8: a) XRD patterns of (PEA)2SnI4, exposed to 35 % RH for different time spans. b) UV/vis 

spectra of (PEA)2SnI4 exposed to 35 % RH for different time spans. The asterisks indicate the reflections 

of the degradation products. 

 

The XRD patterns in Figure 3-8a and the UV/vis spectra in Figure 3-8b clearly show that 

(PEA)2SnI4 is quite stable for several days of exposure to moderate humidity conditions. Even 

after five days only small signs of degradation can be observed in the XRD pattern and in the 

UV/vis spectra, hence supporting the viability of PEA to significantly improve the stability of 

tin iodide-based perovskites.  
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3.3 Conclusion 

 

We have studied the structural and optoelectronic properties of MASnI3, (BuA)2SnI4 and 

(PEA)2SnI4. We showed that the introduction of ammonium cations featuring large organic 

residues leads to the formation of layered compounds accompanied with a strong blue shift of 

the absorption onset. However, since the Eg of the tin based compounds is significantly 

smaller than that of their lead-based counter parts, layered hybrid tin iodide based perovskites 

are interesting candidates for applications as top cell in a tandem solar cell assembly. 

Furthermore, our investigated layered compounds feature a strong PL signal in the visible 

range, making them interesting for applications in light-emitting devices. Additionally, 

moisture stability studies revealed that only large, bulky and highly hydrophobic organic 

residues like aromatic rings are able to efficiently block water from reacting with the highly 

sensitive Sn
2+

 cations. Accordingly, the substitution of MA by PEA resulted in an increased 

stability of the hybrid tin halide perovskite from a few hours to several days under moderate 

humidity conditions. Regarding the significant stability improvements achieved by the 

utilization of an ammonium cation featuring a large aromatic residue, we consider our work as 

a first step towards the development of highly stable lead-free tin halide perovskites based on 

large hydrophobic cations for different optoelectronics applications. 

 

3.4 Experimental Section 

 

Preparation of the precursors  

Methylammonium iodide (MAI) was prepared by first diluting 24 mL of a 33 % ethanolic 

methylamine solution (18 g, 0.2 mol, Sigma Aldrich) with 100 mL ethanol absolute in a 250 

mL roundbottom flask. Subsequently, 10 mL (17 g, 0.07 mol) of hydroiodic acid (57 %wt in 

water, Sigma Aldrich) were added to the methylamine solution under constant stirring. After 

one hour reaction time, the solvent was removed by rotary evaporation. The obtained white 

crystals were washed with dry diethyl ether and finally recrystallized from ethanol. 

Butylammonium iodide (BuAI) was prepared by first diluting 25 mL (18.5 g, 0,25 mol) n-

butylamine (99.5 %, Acros) with 25 mL ethanol absolute in a 250 mL roundbottom flask and 

cooling it down to 0 °C. Subsequently, 27 mL (46 g, 0.36 mol) of hydroiodic acid (57 %wt in 
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water, Sigma Aldrich) were added to the n-butylamine solution under constant stirring. The 

precipitate was collected by suction filtration and washed several times with diethyl ether. 

The obtained powder was recrystallized from iso-propanol and dried under reduced pressure.  

Phenethylammonium iodide (PEAI) was prepared as described for BuAI by using 25 mL (24 

g, 0.2 mol) 2-phenylethylamine ( 99 %, Sigma Aldrich). 

Sample preparation 

All samples were prepared on glass substrates, which were plasma cleaned for 5 min before 

film application, in a nitrogen glove box via spin-coating. The precursor solutions were 

prepared by dissolving either 461 mg PbI2 (1.0 mmol, 99 %, Sigma Aldrich) or 372 mg SnI2 

(1,0 mmol, 99.999 %, Alfa Aesar) in 1 mL N,N-dimethylfomamide (DMF, 99.8%, Sigma-

Aldrich). After the metal salt was completely dissolved the solution was added to a vial filled 

either with 159 mg (1.0 mmol) MAI, 402 mg (2.0 mmol) BuAI or 500 mg (2.0 mmol) PEAI 

to obtain the final spin-coating solution. 100 µL of the solution were spin-coated on a glass 

substrate at 3000 rpm for 30 s. Subsequently, the films were annealed at 100 °C for 5 min 

under nitrogen atmosphere to remove residual solvent. For the optoelectronic investigations, 

the tin-based samples were sealed with a microscope slide and epoxy resin to avoid the 

degradation of the specimen. 

 

Charcterization details 

Powder X-ray diffraction measurements were performed in transmission mode on a STOE 

Stadi MP diffractometer with a Cu Kα1 radiation source (λ = 1.54060 Å) operating at 40 kV 

and 40 mA. The diffractometer was equipped with a DECTRIS MYTHEN 1K solid-state strip 

detector. X-ray diffraction measurements on thin films were performed using a Bruker D8 

Discover X-ray diffractometer operating at 40 kV and 30 mA, employing Ni-filtered Cu Kα 

radiation (λ = 1.5406 Å) and a position-sensitive detector (LynxEye). 

Steady-state optical absorption spectra were acquired with a Lambda 1050 UV-Vis 

spectrophotometer (Perkin Elmer) using an integrating sphere. 

Steady state and time resolved photoluminescence measurements were conducted with a 

Fluotime 300 Spectrofluorometer (Picoquant GmbH). The excitation wavelength was fixed at 
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410 nm. The emission during time resolved measurements was monitored at the maximum 

intensity of the steady state photo-emission of each compound.  
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4.1 Introduction 

 

The constant increase of global energy consumption accompanied by the decline of fossil 

fuels generates a strong demand for new, sustainable energy sources.
[1]

 In the past few years, 

organic-inorganic lead halide perovskites have emerged as highly efficient and inexpensive 

absorber materials for solar cells.
[2,3]

 The simple processability and high power conversion 

efficiencies of over 20 % for state-of-the-art devices, assembled with methylammonium lead 

iodide (MAPbI3), make these materials interesting candidates for large-scale applications.
[4–6]

 

Due to the solubility of the lead salts in water, the toxicity of high-performing hybrid halide 

perovskites can be considered as a major barrier for commercializing this technology. 

Therefore, a great deal of effort has been undertaken to develop lead-free perovskite-related 

compounds based on Ge
2+

, Sn
2+

, Bi
3+

, Sb
3+

 or Cu
2+

 for photovoltaic applications.
[7–11]

 Sn-

based compounds with the general formula ASnX3, where A can be Cs, methylammonium 

(MA) or formamidinium (FA) and X can be I, Br, Cl or F, are the most promising alternatives 

to lead-based materials, with reported power conversion efficiencies (PCE) of  6 % for 

devices based on methylammonium tin iodide (MASnI3) films.
[12,13]

 The lower efficiencies 

compared to lead-based materials are generally assigned to Sn
4+

 self-doping due to the facile 

oxidation of Sn
2+

 under ambient conditions.
[13–17]

 

Further toxicity concerns arise from the harmful solvents utilized during the preparation of the 

perovskite films. The most common solvent, N,N-dimethylformamide (DMF), is known to be 

strongly hepatotoxic, even at relatively low concentrations, and the European Union has 
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classified it as toxic to reproduction.
[18–21]

 Furthermore, it can easily be taken up by dermal 

absorption, which is troubling since the dwell time of DMF in the body is much longer for 

percutaneous uptake than for pulmonary ingestion.
[22]

 The second widespread solvent, 

dimethylsulfoxide (DMSO), although not acutely toxic, can induce bradycardia, respiratory 

problems, and alterations in blood pressure.
[23,24]

 Furthermore, it potentially alters the 

chemical structure of cell membranes and thus their functional properties.
[25]

 However, the 

most critical property of DMSO is that it can serve as an efficient carrier for other agents by 

enhancing the penetration through skin tissue, which is particularly critical for toxic 

substances like soluble lead compounds.
[26]

  

With the prospect of possible commercialization of solution-processable solar cells, the 

development of less toxic film formation routes is an important issue to minimize the health 

risks during the film preparation. This must be balanced with the formation of homogenous 

films which uniformly cover the substrate. Considering Pb-based solar cells, the development 

of advanced film formation methods has led to homogeneous, smooth and pinhole-free 

perovskite films and has been the driving factor behind the great leaps in device efficiency.
[27]

 

Accordingly, the synthesis of high-quality MASnI3 films can be considered as a key task to 

enable the system for high-efficiency photovoltaic applications.  

MASnI3 forms very rough and inhomogeneous films with micron-sized pinholes when 

employing common deposition methods based on DMF due to the much faster crystallization 

process as compared to MAPbI3,. This, in turn, results in severely shunted photovoltaic 

devices. 
[12,13,15,28,29]

 In order to resolve these issues, Hao et al. developed a deposition route 

based on a (DMSO)-SnI2 intermediate phase which improved the surface coverage by slow 

crystallization of the perovskite.
[30]

 An alternative route was developed by Yokoyama et al. 

who adapted the well-known vapour-assisted solution process for the preparation of 

homogeneous but not crack-free MASnI3 films.
[31,32] 

Recently, Long et al. have developed a 

synthetic route for high-quality FASnI3 films based on antisolvent dripping.
[33]

 However, all 

three methods still rely on the hazardous DMF or DMSO solvents to deposit the metal halide 

layer. Previous studies on lead based hybrid perovskites showed that the hazardous solvents 

can be replaced by water to deposit the metal halide layer.
[34,35]

 However, due to the 

sensitivity of the Sn
2+

 ion to oxygen and moisture this approach cannot be transferred to the 

lead-free compound.
[13] 
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Here, we demonstrate a new one-step synthesis route for the preparation of high-quality, lead-

free MASnI3 films for photovoltaic applications based on less hazardous solvents (methanol 

(MeOH) and 1,4-dioxane (Dioxane)). Our route provides high quality films which outperform 

conventional one-step synthesis routes based on DMF and DMSO in photovoltaic devices. 

Our results represent a further step towards efficient lead-free perovskite based solar cells 

manufactured under non-dangerous conditions. 

 

4.2 Results and Discussions 

 

Our films were prepared on a 250 nm thick titanium dioxide (TiO2) scaffold via a one-step 

spin-coating process from precursors dissolved in a MeOH: Dioxane mixture. As a reference, 

we also prepared MASnI3 films utilizing the most common conventional one-step routes 

according to literature.
[12,30]

 

When employing our newly developed MeOH/Dioxane route, the perovskite film forms 

within a few seconds after application of the solution, as depicted schematically in Figure 4-1. 

Since MeOH and Dioxane feature rather high vapour pressures of 130 hPa
[36]

 and 37 hPa
[37]

 at 

20 °C, rapid solvent evaporation is expected. Accordingly, we propose that the fast 

supersaturation of the perovskite solution leads to the formation of a large number of small 

nuclei, resulting in smooth and homogeneous MASnI3 films after complete solvent 

evaporation. Due to the faster crystallization of MASnI3 compared to MAPbI3, the rapid 

solvent evaporation is essential to inhibit the growth of large, pointy crystals which protrude 

from the substrate and lead to substantial pinholes in the hole transporting layer (HTL).  



4 Synthesis of hybrid tin halide perovskite solar cells with less hazardous solvents: 

methanol and 1,4-dioxane 

92 

 

Figure 4-1: Schematic of the MeOH/Dioxane route. For simplification, only a few crystallites are depicted. 

The arrow underneath indicates the time range within which film formation usually occurs. 

 

The PXRD patterns given in Figure 4-2 show that the films made by our newly developed 

MeOH/Dioxane route are phase pure, similar to that made by the commonly used one step 

deposition routes based on DMF and DMSO precursor solutions. 

 

Figure 4-2: PXRD pattern of MASnI3 prepared from DMF, DMSO and MeOH/Dioxane solution. The 

patterns were taken from powder obtained by scratching off films. To confirm the phase purity, a 

simulated PXRD pattern of MASnI3 is depicted. 

 

Scanning electron microscopy (SEM) images revealed large differences in the morphology of 

MASnI3 films made from the different solvents. As shown in Figure 4-3a, films prepared 
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from a DMF solution are inhomogeneous, featuring a pattern of large MASnI3 grains with low 

surface coverage. Figure 4-3b shows the SEM image of a MASnI3 film made from a DMSO 

solution featuring enhanced homogeneity with less prominent patterns compared to films 

prepared from DMF solution. However, films made by our newly developed MeOH/Dioxane 

method (Figure 4-3c) fully cover the substrate with no visible pinholes or large protruding 

crystals, similar to those prepared by Long et al. via their antisolvent dripping route.
[33]

 

 

Figure 4-3: SEM images of MASnI3 films on TiO2 scaffold substrate: (a) DMF solution, (b) DMSO 

solution, (c) MeOH/Dioxane. Panels d – f represent SEM images of films a – c at higher magnifications, 

respectively. 

 

Higher magnifications of the depicted films (Figure 4-3d - f) reveal striking morphology 

differences. In the films manufactured from the conventional solvents DMF and DMSO 

(Figure 4-3d & e) the porous TiO2 scaffold is directly visible. In contrast, the film prepared 

from MeOH/Dioxane features a dense, homogeneous MASnI3 capping layer exhibiting many 

relatively small crystallites, which supports our proposed film formation mechanism. In 

contrast with 2-step deposition methods that result in small cuboid crystals, the 

MeOH/Dioxane route yields a smooth capping layer consisting of irregularly shaped crystals, 

similar to those from Yokoyama et al.
[32]

 This dense capping layer is an important feature of 

high-efficiency perovskite solar cells,
[38]

 as it prevents the direct contact of the HTL with the 

electron-transporting TiO2. 

The key enabler of the developed route based on less hazardous solvents is possible due to the 

higher solubility of SnI2 in alcohols compared to PbI2.
[29]

 However, simply employing MeOH, 

which showed the highest solubility for MASnI3 during our studies, leads to rather low 
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concentrations of  0.1 M. The addition of a miscible co-solvent that can complex with Sn(II) 

in the form of Dioxane, greatly increases the saturation  concentration of the precursor 

mixture up to ~0.3 M.
[39,40]

 

To gain more knowledge about the influence of Dioxane during the film formation, we 

prepared perovskite solutions with 25 % (v/v), 50 % (v/v) or 75 % (v/v) of Dioxane at a given 

MASnI3 concentration of 0.3 M. We observed a decreasing solubility of the perovskite with 

higher concentrations of Dioxane, eventually leading to the formation of a black MASnI3 

precipitate at the highest concentration (see Figure 4-4a), confirmed by PXRD measurements 

(see Figure 4-4b). 

 

Figure 4-4: a) Images of solutions prepared with 25 % (v/v), 50 % (v/v) or 75 % (v/v) Dioxane. The black 

precipitate can clearly be seen for the highest Dioxane concentration. b) PXRD pattern of MASnI3 films 

prepared from precursor solutions containing the three different Dioxane concentrations. The simulated 

patterns for MASnI3 (black) and SnI2 (red) are also given. Additionally, the PXRD pattern of the 

precipitate obtained from the solution with the highest Dioxane concentration is depicted (green). 
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Since highly polar solvents are commonly used to dissolve MASnI3, it is likely that the 

reduction of the solubility is due to the small dipole moment of Dioxane.
[41]

 This, in turn, 

suggests that the enhanced solubility of MASnI3 in the MeOH/Dioxane solvent mixture at low 

Dioxane concentrations is not caused by the good solubility of the perovskite in Dioxane, but 

rather by the coordination of the solvent to Sn(II).
[38,39]

 Since stable Sn(II)-( )-(Dioxane) 

complexes are known for SnCl2
[40] 

and SnBr2
[39]

, we propose an inhibited reaction of MAI 

with SnI2 to MASnI3 in solution by the formation of Sn(II)-(Dioxane) adducts, resulting in an 

increased solubility of MASnI3 in the utilized solvent mixture. The perovskite films form 

within a few seconds because of the high vapour pressure of the utilized solvents, and 

therefore a direct proof for the proposed Sn(II)-(Dioxane) adduct by commonly used FTIR 

measurements is not possible.  

In order to address this, we performed XRD measurements to obtain an indirect indication of 

the adduct, as shown in Figure 4-4b. Here, we observe additional reflections at the highest 

Dioxane concentration, which can be assigned to SnI2. This is likely caused by the 

stabilization of the Sn(II)-(Dioxane) adduct at high Dioxane concentrations, which prevents 

its complete reaction with MAI to MASnI3. Accordingly, we found an optimum in film 

quality and no phase segregation for 25 % (v/v) Dioxane. Thus, only the MASnI3 film 

properties made from solutions containing 25 % (v/v) Dioxane are discussed in the following. 

We investigated the influence of the three different film formation methods (Sn-perovskite 

films prepared either from DMF, DMSO or MeOH/Dioxane solutions) on the photovoltaic 

properties by incorporating the resulting films in devices with the typical layer assembly of 

fluorine doped tin oxide (FTO)/compact-TiO2/mesoporous-TiO2/perovskite/HTL/Au 

contact.
[31]

 A schematic of the solar cells and a cross-sectional image of a functional 

MeOH/Dioxane-derived device utilizing 2,2’,7,7’-tetrakis-(N,N-di-

pmethoxyphenylamine)9,9’-spirobifluoren (spiro-OMeTAD) as HTL are given in Figure 4-5a 

& b. The MASnI3 capping layer on top the mesoporous-TiO2 can clearly be seen, which is a 

feature of high efficiency devices as it prevents shunting paths in devices. 
[13,32]
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Figure 4-5: a) Schematic of an assembled solar cell. b) Cross-sectional SEM image of a functional device 

assembled with a MeOH/Dioxane MASnI3 film.  

In order to further improve the device performance, we partially substituted iodide by 

bromide, which leads to a slightly smaller unit cell due to the smaller bromide without 

changing the tetragonal structure of the perovskite (see Figures 4-6).  

 

 

Figure 4-6: PXRD pattern of MASnI3 and MASnBr0.5I2.5 powders obtained by scratching off films made 

via the MeOH/Dioxane route. No additional reflections can be observed for the bromide containing 

compound. The positions of the reflections of the bromide containing compound are slightly shifted to 

larger 2Θ values caused by slightly decreased unit cell size due to the insertion of bromide.  

 

Hao et al. showed that bromide has a beneficial effect on the device performance, mainly due 

to the reduction of the series resistance RS and the increase of the VOC.
[12] 

Additionally, they 

showed that bromide enhances the lifetime of the photoexcited species by destabilizing 

Sn
2+

/Sn
4+

 defects, leading to an enhanced charge collection efficiency resulting in a higher 
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JSC.
[42]

 Here, we obtained the best performing devices with a perovskite composition of 

MASnBr0.5I2.5. This composition slightly increases the band gap energy (Eg) of the perovskite 

from about 1.3 eV to 1.4 eV (see Figure 4-7), which is very close to the optimal Eg for a 

single-junction solar cell. Furthermore, the partial substitution of the iodide by bromide has no 

observable influence on the morphology of the prepared films, see Figure 4-8a – f. 

 

 

Figure 4-7: Tauc plots of MASnI3 and MASnBr0.5I2.5 made from MeOH/Dioxane. The bromide containing 

compound shows an increased band Eg of about 1.4 eV, which is characteristic for the substitution of 

iodide by bromide. 

 

Figure 4-8: SEM images of MASnBr0.5I2.5 films on FTO/TiO2 substrate: (a) DMF solution, (b) DMSO 

solution, (c) MeOH/Dioxane. Panels d – f represent SEM images of films a – c at higher magnifications, 

respectively. All films show a similar morphology to its MASnI3 counterpart 
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The current-voltage (J-V) curves of the best performing devices out of 36 individual solar 

cells per synthesis route are displayed in Figure 4-9a. We obtained consistently poor 

performance for devices assembled with MASnBr0.5I2.5 films prepared from DMF or DMSO 

solutions. In this case, the J-V curves show severely shunted behavior and PCEs of 0.04 % 

and 0.01 %, with short-circuit currents (JSC) of 8.84 mA/cm² and 4.67 mA/cm² and open-

circuit voltages (VOC) of 0.02 V and 0.01 V for the best devices, which is in good agreement 

with reported values by Hao et al. and Takamichi et al..
[30, 32] 

In contrast, the solar cells 

obtained via the MeOH/Dioxane route exhibit an enhanced performance with the highest PCE 

of 1.05 % with a JSC of 15.44 mA/cm², VOC of 0.18 V and a FF of 38 %. We note that devices 

based on films prepared with the MeOH/Dioxane route show prominent hysteresis, similar to 

that observed for photovoltaic cells based on lead halide perovskite, see Figure 4-9b.
[43–46]

 

 

Figure 4-9: a) Current-voltage characteristic showing the dependence of device performance on the 

deposition route. Hollow symbols refer to dark current traces. b) Forward and backward scan of the 

current-voltage curve of the best performing MASnBr0.5I2.5 based solar cell prepared via the 

MeOH/Dioxane route. The hysteresis is clearly visible. 

 

While low, the performance of the MeOH/Dioxane based devices is still in the range of 

reported results on tin halide perovskite-based solar cells by Yokoyama et al. and Long et al. 

showing a best PCE of 1.86 % and 0.11 %, respectively.
[32,33]

 This is likely a result of the 

encapsulation protocol, which requires a long 12 h curing period in a nitrogen atmosphere 

lowering the device performance.
[12] 

We note that our champion device exhibits an almost ten 

times higher PCE compared to that reported by Long et al. while both devices feature very 

similar morphologies, pointing to the high sensitivity of tin halide based perovskite phases to 

the synthesis conditions.
[33] 
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The VOC value for devices featuring tin-based perovskites is heavily impacted by first order 

recombination due to intrinsic defects, such as Sn vacancies, which depend on the Sn
4+

 

doping level.
[13,28] 

Hence, it is essential to keep the Sn
4+

 doping level as low as possible. 

Previous studies revealed that commercially available SnI2 already contains a significant 

amount of Sn
4+

 similar to the precursor purchased for our studies.
[12]

 Additionally, it has been 

shown that a voltage loss is also incurred due to the misalignment of the conduction band 

(CB) of the Sn-perovskite and the CB of TiO2.
[30,32] 

In an effort to reduce the defect density, we purified the starting material according to the 

protocol established by Hao et al.
[30,32]

 However, in our lab, we found no enhancement in the 

performance, see Figure 4-10 and Table 4-1. 

 

Figure 4-10: Current-voltage curve of a MASnBr0.5I2.5 based solar cell prepared from MeOH/Dioxane 

solution utilizing self-made SnI2. The characteristic values for the current-voltage curves are given in 

Table 4-1. 

 

Table 4-1: Short-circuit current JSC, open-circuit voltage VOC, fill factor FF, and power conversion 

efficiency η for the current-voltage curve depicted in Figure S6. For comparison the values for the best 

performing device MASnBr0.5I2.5 MeOH/Dioxane based on commercially available SnI2. 

Sample JSC / mA/cm² VOC / V FF η / % 

MASnBr0.5I2.5 selfmade SnI2 11.98 0.14 0.43 0.71 

MASnBr0.5I2.5 MeOH/Dioxane 15.44 0.18 0.38 1.05 
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Another approach to reducing the defect density is the use of an excess of SnF2 as reducing 

agent. Due to the very low solubility of SnF2 in our solvent mixture, we could not observe an 

effect on device performance. However, since the highest reported PCE values for MASnI3 

based devices were obtained without the addition of SnF2, we strongly believe that the new 

MeOH/Dioxane route holds promise for better-performing devices. 

Further information about defects in the perovskite materials can be gained through time-

resolved photoluminescence (PL) measurements.
[13]

 Previous studies on Pb-based devices 

revealed that a long lifetime is associated with the presence of long-lived charge carriers, 

resulting in an increased charge extraction efficiency.
[47,48].

Similar studies on MASnI3 yielded 

lifetimes of the photoexcited species of about 200 ps, being much shorter than for the lead-

based counterpart
[13,47,48]

 Here, we performed time-correlated single-photon counting 

(TCSPC) measurements on Sn-perovskite films prepared either from DMF, DMSO or 

MeOH/Dioxane solutions. All films show strong PL at around 840 nm (Figure 4-11a), as 

expected. The corresponding PL decays are depicted in Figure 4-11b. All samples exhibit fast 

decays with the shortest lifetime values for perovskite films prepared from DMF solution 

(310 ps) and DMSO solution (260 ps), similar to previously reported values for 

MASnI3.
[13].

The short lifetimes in these systems are typically assigned to the fast electron-hole 

pair recombination at Sn
2+

/Sn
4+

 defect sites, most likely due to self-doping of the Sn-

perovskite
[13,16,41,49].

Surprisingly, the MASnBr0.5I2.5 film deposited from the MeOH/Dioxane 

route exhibits a significantly longer lifetime of the excited species of 580 ps, indicating a 

lower defect density in the material. These TCSPC measurements provide a first indication 

that our newly developed MeOH/Dioxane route is suitable for preparing Sn-perovskite films 

with competitive photophysical properties. 
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Figure 4-11: a) Photoluminescence (PL) emission spectra of MASnBr0.5I2.5 films prepared from DMF, 

DMSO and MeOH/Dioxane solution. All films show a similar emission maximum at 840 nm. A small 

signal can be observed at 735 nm. Although, not detectable in the PXRD pattern, we hypothesize that the 

additional PL signal arises from trace amounts of methylammonium tin halide perovskites which feature 

a bromide concentration higher than 0.5, leading to a blue shift of the PL signal. b) Time-resolved 

photoluminescence measurements of MASnBr0.5I2.5 films made from DMF, DMSO and MeOH/Dioxane 

solution. 

 

Regarding toxicity concerns of the new MeOH/Dioxane route, both applied solvents represent 

less harmful alternatives to the commonly utilized solvents for perovskite film synthesis. 

Dioxane is a common solvent used in paints, varnishes, inks and dyes. Furthermore, it is a 

natural component in some food products, like tomatoes, shrimp and coffee. 
[50] 

Dioxane is, 

similar to DMSO, not classified as acutely toxic but animal experiments suggest a potentially 

carcinogenic effect, which could not be supported by studies on human workers exposed to 

occupational doses of Dioxane over decades.
[50,51]

 Based on this, the International Agency for 

Research on Cancer (IARC) classified Dioxane as a 2B carcinogen just as carbon black and 

TiO2, leading to the conclusion that Dioxane is not associated with cancer formation under 

common occupational conditions.
[52,53]

  

MeOH is a widespread chemical for industrial applications, occurring naturally in humans, 

animals and plants. Excessive uptake of MeOH can cause blindness and death but the lethal 

dose is about twice as high as for DMF.
[54,55] 

For occupational exposure, not only the toxicity 

is important but also the ability of the solvents to enter the body by different pathways. The 

effects of the different uptake pathways such as oral ingestion, percutaneous absorption or 

inhalation on the body are important factors to assess the overall hazardousness. In particular, 

dermal absorption and inhalation of the solvents are of special interest, since these are 

considered to be the most likely uptake routes under occupational conditions.
[56]

  



4 Synthesis of hybrid tin halide perovskite solar cells with less hazardous solvents: 

methanol and 1,4-dioxane 

102 

A comparison of the two solvents MeOH and Dioxane, utilized in our new synthesis route, 

with the commonly used solvents DMF and DMSO reveals that all solvents except Dioxane 

feature a high ability to penetrate through the skin, where DMSO exhibits by far the highest 

permeation rate among the solvents mentioned.
[57–60]

 This high ability to penetrate through the 

skin tissue combined with the ability to act as an excellent carrier for a wide range of agents 

makes DMSO a much more critical solvent than Dioxane, although both are not acutely 

toxic.
[26]

 Furthermore, DMF and MeOH show very similar permeation rates, which means that 

both solvents have a similar ability to penetrate through the skin tissue.
[57,58]

 Previous studies 

showed that dermal exposure to MeOH or DMF leads to increased concentrations of the 

particular chemical in the blood and urine of the experimental subjects.
[57,58]

  

Despite the very similar behaviour regarding dermal uptake, the degradation of the solvents in 

the body is very different. Chang et al. showed that dermal exposure to DMF of workers of a 

synthetic leather factory for several consecutive working days leads to a significant 

accumulation of the DMF body burden.
[60]

 Although there are no comparable data available 

for MeOH, Battermann et al. revealed a clearance time of MeOH in the body after dermal 

exposure of a few hours indicating the absence of MeOH accumulation in the body.
[57]

 

However, due to the high volatility of MeOH, the most probable uptake route is considered to 

be inhalation. Long-term studies on experimental subjects exposed to MeOH vapors for four 

consecutive days (8h/d) revealed no MeOH accumulation in the blood and urine of the 

experimental subjects at MeOH concentrations in the air slightly above the permissible 

exposure limit (PEL) of 260 mg/m
³
 stated by the National Institute for Occupational Safety 

and Health (NIOSH).
[54,61]

 Accordingly, the World Health Organization (WHO) considers 

MeOH as non-hazardous under occupational conditions, when maintaining the PEL.
[62]

  

In contrast, similar studies with DMF over a period of five consecutive days showed an 

accumulation of the toxic DMF metabolite N-acetyl-S-(N-methylcarbamoyl)cysteine in the 

blood and urine of the experimental subjects even at the PEL of 30 mg/m
3
.
[55,63]

 Furthermore, 

long-term exposure to DMF induces negative effects such as stomach pain, loss of appetite, 

nausea, headache and alcohol intolerance even at air concentrations below the PEL.
[64,65]

 

Accordingly, our new route based on MeOH and Dioxane can be regarded as a far less 

harmful synthesis route for the preparation of lead-free perovskite films. 
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4.3 Conclusions 

 

In conclusion, we have demonstrated a new synthesis route for high-quality MASnI3 films 

employing less hazardous solvents in an effort to address toxicity concerns. This new 

approach is based on the higher solubility of Sn(II) salts in alcoholic solvents compared to the 

usual lead compounds, which allowed us to deposit films from a MeOH/Dioxane mixture. 

Here, we found that the addition of Dioxane greatly enhances the solubility of SnI2, essential 

to achieve films of several hundred nanometers in thickness, through the formation of Sn(II)-

(Dioxane) adducts. Both MeOH and Dioxane feature high vapour pressures which, upon 

deposition and evaporation on the substrate, quickly lead to supersaturation of the precursor 

mixture and the formation of a large number of nuclei, leading to far smoother and 

homogeneous films than those prepared from conventional DMF or DMSO mixtures. Solar 

cells prepared with our new deposition route perform better than films prepared by 

conventional one-step routes, mainly due to the better film formation and fewer defects as 

indicated by time-resolved PL measurements. This opens a new avenue for more 

environmentally friendly and non-hazardous synthesis routes for perovskite-based solar cells. 

 

4.4 Experimental section 

 

All chemicals were used as received without any further purification. All synthesis steps were 

conducted in a nitrogen-filled glove box to avoid oxidation of the Sn(II) compounds. 

Substrate preparation  

Fluorine-doped tin oxide (FTO)-coated glass sheets (7 Ωsq
-1

, Pilkington, USA) were 

patterned by etching with zinc powder and 3 M HCl. They were subsequently cleaned with a 

2% Hellmanex solution and rinsed with deionized water, ethanol, and acetone. Directly before 

applying the blocking layer, remaining organic residues were removed by an oxygen plasma 

treatment for 5 min. A compact titanium dioxide (TiO2) layer was deposited by spin-coating a 

sol-gel precursor solution at 2000 rpm for 45 s followed by subsequent annealing at 500 °C 

for 45 min. For the sol-gel solution a 27.2 mM (70 µL) solution of HCl in 2-propanol (5 mL) 

was added dropwise to a vigorously stirred 0.43 mM (735 µL) solution of titanium 

isopropoxide (99.999%, Sigma–Aldrich) in 2-propanol (5 mL). Afterwards, a 250 nm thick, 
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mesoporous TiO2 layer was applied by spin-coating 100 µL of a TiO2 nanoparticle paste 

(Dyesol DSL 18NR-T) diluted in absolute ethanol (1:3.5 weight ratio) onto the compact TiO2 

layer at 2500 rpm for 30 s followed by subsequent annealing at 500 °C for 15 min.  

Perovskite film preparation 

Method 1: MeOH/Dioxane  

The precursor solution was prepared by dissolving 111.6 mg SnI2 (0.3 mmol, 99.999%, ultra 

dry, Alfa Aesar) in 1,4-dioxane (0.25 mL, Dioxane, anhydrous, 99.8 %, Sigma-Aldrich). In a 

second vial, either 48 mg of methylammonium iodide (0.3 mmol, MAI, Dyesol), for the pure 

iodide perovskite, or a mixture of 24 mg (0.15 mmol) MAI and 17 mg methylammonium 

bromide (0.15 mmol, MABr, Dyesol), for the mixed halide perovskite, were dissolved in 

methanol (0.75 mL, MeOH, anhydrous, 99.8 %, Sigma-Aldrich). After complete dissolution 

of the organic precursor, the MeOH solution was added to the SnI2 solution to dissolve the 

remaining SnI2 completely. Subsequently, 100 µL of the precursor solution was spun onto the 

TiO2-covered substrates at 3000 rpm for 15 s. The substrates were annealed at 70 °C for 10 

min to remove possible solvent residues directly after spin-coating. 

Method 2: DMF  

The perovskite solution was prepared by dissolving 372 mg (1.0 mmol) SnI2 and 159 mg (1.0 

mmol) MAI for the pure iodide compound or a mixture of 80 mg (0.5 mmol) MAI and 56 mg 

(0.5 mmol) MABr, for the mixed halide perovskite, in N,N-dimethylformamide (1 mL, DMF, 

anhydrous, 99.8 %, Sigma-Aldrich). After mixing, the solution was placed on a hotplate at 

100 °C in order to fully dissolve the tin precursor. 100 µL of the precursor solution were spun 

at 2000 rpm for 30 s onto a TiO2-covered substrate with subsequent annealing at 100 °C for 

10 min.  

Method 3: DMSO  

The procedure followed is the same as the previous procedure but using dimethylsulfoxide 

(DMSO, anhydrous, ≥99.9 %, Sigma-Aldrich) instead of DMF as the solvent. 100 µL of the 

precursor solution were spun at 4000 rpm for 30 s onto a TiO2-covered substrate with 

subsequent annealing at 100 °C for 10 min.  

Solar cell fabrication  
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After film formation, the films were covered with a hole transporting layer (HTL) of 

2,2’,7,7’-tetrakis-(N,N-di-pmethoxyphenylamine)9,9’-spirobifluorene (spiro-OMeTAD Borun 

Chemicals, 99.5% purity). The HTL solution was prepared by dissolving 73 mg of spiro-

OMeTAD in chlorobenzene (1 mL, 99.8%, Sigma–Aldrich). The solution was filtered and 

mixed with 2,5-lutidine (30 µL, 98+%, Alfa Aesar), and a 520 mg mL
-1

 

bis(trifluoromethane)sulfonamide lithium salt (LiTFSI, 99.95%, Sigma–Aldrich) solution in 

acetonitrile (17.5 µL). This solution was spin-coated dynamically at 1500 rpm for 45 s. In a 

second step the sample rotation was accelerated to 2000 rpm for 5 s to allow the solvent to dry 

completely. Finally, the 40 nm thick gold electrodes were evaporated thermally on top of the 

device. In order to prevent the perovskite film from oxidation, the devices were sealed by a 25 

µm thick hot-melting polymer (Surlyn®) and a microscope coverslip. To provide a complete 

sealing, the edges of the microscope coverslip were treated with epoxy resin. The devices 

were stored for about 12 h under inert conditions before measurements to allow for complete 

hardening of the epoxy resin. 

Characterization methods:  

X-ray diffraction measurements on films and the powder sample of the precipitate were 

performed using a Bruker D8 Discover X-ray diffractometer operating at 40 kV and 30 mA, 

employing Ni-filtered Cu Kα radiation (λ = 1.5406 Å) and a position-sensitive detector 

(LynxEye) in reflection mode. All other powder X-ray patterns were obtained in transmission 

mode using a STOE Stadi MP diffractometer with a Cu Kα1 radiation source (λ = 1.54060 Å) 

operating at 40 kV and 40 mA. The diffractometer was equipped with a DECTRIS MYTHEN 

1K solid-state strip detector. All samples were exposed to ambient conditions during the 

measurement. Scanning electron microscopy (SEM) cross-section images were acquired on a 

JEOL JSM-6500F microscope. The sample was fixed in a self-made sample holder. SEM top-

view images were taken with a Carl Zeiss Ultra Plus scanning electron microscope. The 

sample was fixed by a sticky carbon pad. All SEM samples were exposed to ambient 

conditions not longer than one minute during the transfer procedure into the SEM. For the 

optical characterization, precursor solutions were prepared similarly as used for the devices. 

100 µL of the solution was spun using the same conditions as utilized for solar cells onto a 

glass slide. Subsequently, the film was sealed by a glass coverslip and epoxy resin to avoid 

oxidation. Steady-state absorption spectra were acquired with a Lambda 1050 UV-Vis 

spectrophotometer (Perkin Elmer) using an integration sphere. Steady state and time-resolved 

PL measurements were performed with a Fluotime 300 Spectrofluorometer (Picoquant 
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GmbH). The excitation wavelength was fixed at 510 nm. The emission for time-resolved 

measurements was monitored at the maximum intensity of the steady state photo-emission. J-

V curves were recorded with a Keithley 2400 source meter under simulated AM 1.5 sunlight, 

calibrated to 100 mW cm
−
² with a Fraunhofer ISE certified silicon cell. The active area of the 

solar cells was defined with a square metal aperture mask of 0.0831 cm
2
. 
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5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin 

films for optoelectronic applications 
 

This chapter is based on the following publication: 

Enrico Greul, Michiel L. Petrus, Andreas Binek, Pablo Docampo and Thomas Bein, Journal 

of Materials Chemistry A 2017, 5, 19972–19981. 

 

5.1 Introduction 

 

Since the first reports of solid-state solar cells in 2012, hybrid organic-inorganic lead halide 

perovskites emerged as some of the most promising absorber materials for low-cost 

photovoltaic devices.
1
 Published PCEs of over 22% make these materials potential candidates 

for replacing commonly employed Si-based solar cells.
2
 Despite their excellent photophysical 

properties,
3–8

 lead halide perovskites still suffer two serious disadvantages, namely stability 

issues and the toxicity of lead.
9–12

 Many research groups have therefore focused on the 

development of more stable and/or lead-free perovskite materials. Substitution of the Pb
2+

 by 

the homovalent group-14 element Sn
2+

 initially led to promising PCEs of  6%. However, the 

devices showed extremely low stability, even under commonly used inert conditions, due to 

the facile oxidation of Sn
2+

. So far, this makes Sn
2+

-based materials unfeasible for typical 

photovoltaic applications.
13,14

 A recent approach towards lead-free perovskite materials is the 

substitution of Pb
2+

 by heterovalent M
3+

 cations. A promising candidate for this type of 

substitution is non-toxic Bi
3+

, which is isoelectronic with Pb
2+

. Due to the higher charge of 

Bi
3+

, bismuth ions cannot simply be incorporated into the hybrid three-dimensional A
1+

M
2+

X3 

structure of the lead-based compounds. Generally, related hybrid Bi
3+

 compounds feature 

low-dimensional structures resulting in less favorable optoelectronic properties than their 

lead-based counterparts.
15–18

 

In order to incorporate Bi
3+

 ions into a three-dimensional structure, a class of materials called 

elpasolites, also known as double perovskites, could provide an attractive extension of the 

conventional perovskite system. Elpasolites, with the general formula A2M
1+

M
3+

X6, feature a 

highly symmetric cubic double perovskite structure, with one monovalent and one trivalent 

cation.
19

 Bismuth-containing elpasolites with A = Rb, Cs, CH3NH3; M
1+

 = Na, K, Tl and X = 
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F, Cl, Br have been investigated for several decades.
20–24

 Unfortunately, compounds 

containing alkali metals do not absorb light in the visible range due to their large band gap 

energies (Eg) exceeding 3 eV.
20,25

 Although the thallium-containing compound features a 

reasonable small Eg of 2.16 eV, the severe toxicity of thallium excludes this element as a non-

toxic alternative for lead.
23

  

Recently, several groups have reported Bi
3+

-based double perovskites with Ag
+
 as the 

monovalent cation featuring Eg´s of  2 eV for the bromide-based material, 

photoluminescence (PL) lifetimes of several hundred nanoseconds and calculated charge 

carrier effective masses close to those calculated for methylammonium lead iodide, making it 

a very interesting candidate for photovoltaic applications.
19, 26–30

 

However, the preparation of high quality films of these perovskites for optoelectronic 

applications is challenging, especially for the bromide and iodide based systems.
26

 As a result 

of the difficulties to process this material, neither films nor photovoltaic devices based on Ag-

Bi double perovskites have been reported so far.  

Since thin films are critical for making double perovskites accessible for optoelectronic 

applications, we have developed a synthetic route that allows for the preparation of phase 

pure, thin films of the double perovskite Cs2AgBiBr6. Extensive powder X-ray diffraction 

(PXRD) investigations revealed that high annealing temperatures of at least 250 °C are 

needed to remove side phases which form during the film synthesis. Light absorption 

measurements as well as steady-state and time-resolved PL measurements show that our films 

feature absorption properties and lifetimes of the photoexcited species similar to the lead-

based counterparts. First steps to optimize the film synthesis conditions were undertaken to 

improve the optoelectronic properties of our Cs2AgBiBr6 films, leading to photovoltaic 

devices with PCEs of up to 2.43% and a high Voc exceeding one volt. Additionally, the 

Cs2AgBiBr6-based devices revealed a high stability under operating conditions. Hence, we 

demonstrate the potential of highly tunable double perovskites as a novel class of 

semiconducting materials for optoelectronic applications. 
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5.2 Results and Discussions 

 

So far, bismuth halide-based double perovskite crystals have only been synthesized by solid 

state reactions or solution growth from the corresponding halide acids.
19,26–29

 The solubility of 

the double perovskites in these acids is relatively low leading to double perovskite 

concentrations (< 0.1 M) much lower than that generally used for the preparation of lead or 

tin perovskite based films by solution based methods,
4–6,13,14

 so it is essential to find 

alternative solvents that can reach a higher precursor concentration in order to prepare 

Cs2AgBiBr6 films from solution. Since Cs2AgBiBr6 is hardly soluble in the most commonly 

used solvents, we screened several alternatives where dimethylsulfoxide (DMSO) showed the 

highest ability to dissolve the precursors, AgBr, CsBr and BiBr3, and the double perovskite 

(Table 4-1) 

Table 5-1: Solubility of Cs2AgBiBr6 in different solvents. 

Solvent Max. concentration / 

Mol L
-1 

Hydrobromic acid (HBr)  0.05 

N,N-Dimethylformamide (DMF)  0.1 

Dimethylsulfoxide (DMSO)  0.6 

N-Methyl-2-pyrrolidone (NMP)  0.1 

 

As a result, the Cs2AgBiBr6 films prepared in this study were deposited by spin-coating a 

DMSO-based precursor solution on top of a substrate. Our utilized synthesis route employs 

two different heating steps. The first step is named “preheating step” where the substrate and 

precursor solution are heated to 75 °C prior the spin-coating. Then, the hot precursor solution 

was spun on top of the hot substrate. This preheating step improves the surface coverage and 

film quality (Fig. 4-1).  
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Figure 5-1: Images of Cs2AgBiBr6 films made on glass prepared with different preheating temperatures. 

The 25 °C sample was made at room temperature without a preheating step. The increase of the film 

quality in terms of surface coverage with increasing preheating temperature is clearly visible, in 

particular for preheating temperatures of 75 °C and higher. 

The second heating step named “annealing step”, is performed after the spin-coating 

procedure at a temperature of at least 250 °C and is needed to obtain phase pure films. A 

scheme of the complete synthesis procedure is given in Fig. 4-2. 

 

Figure 5-2: Schematic of the synthesis route for Cs2AgBiBr6 thin films. The film formation (3.) occurs 

already while the substrate is spinning. 

 

Previous studies by Xiao et al. propose the facile formation of side phases due to the narrow 

chemical potential region for the formation of phase-pure Cs2AgBiBr6, which could have 

negative effects on the optoelectronic properties of the double perovskite.
31

 Therefore, we 

performed temperature-dependent PXRD investigations to assure the formation of phase-pure 

films. We found that two of the predicted side phases, namely Cs3Bi2Br9 and AgBr,
31

 actually 
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formed during the film synthesis. In order to remove these side phases we performed an 

extensive annealing temperature study, revealing that an annealing temperature of at least 250 

°C is needed to assure complete conversion of the precursors to the desired double perovskite 

phase. Fig. 4-3 depict PXRD patterns of Cs2AgBiBr6 powders obtained from Cs2AgBiBr6 

films at different annealing temperatures showing the typical reflections of the cubic 

elpasolite structure.
26

  

 

Figure 5-3: XRD patterns of Cs2AgBiBr6 powders obtained from our prepared films annealed at different 

temperatures, the asterisk (*) indicates the position of reflections from the side phases AgBr (ICDD No. 

00-006-0438) and Cs3Bi2Br9 (ICDD No. 01-070-0493), respectively. The sample labelled with RT was kept 

at room temperature (ca. 25 °C) after film formation without any annealing step. 

 

The patterns from samples annealed at temperatures below 250 °C feature additional 

reflections at 12.8°, 30.9° and 44.2°, which can be assigned to Cs3Bi2Br9 and AgBr, while 

films annealed at 250 °C appear to be phase-pure. This trend can also be confirmed with the 

corresponding PL spectra were only the 250 °C sample exhibits the typical PL signal of 

Cs2AgBiBr6 (Fig. 4-4). The PXRD patterns in Fig. 4-3, clearly show that the vanishing of the 

side-phases is not caused by the removal of metal-solvent intermediates, as it was shown for 

lead and tin based hybrid perovskites.
32,33

 This is also supported by the evolution of the 

intensity of the reflections of the side-phases with temperature. Even at 150 °C annealing 

temperature, which is usually sufficient to remove the metal-solvent intermediates, no 

decrease of the reflection intensities could be observed pointing to highly stable side phases. 

However, McClure et al. demonstrated the synthesis of Cs2AgBiBr6 via solid state reaction at 

210 °C for 10 h,
19

 which is close to the temperature we use to obtain phase pure double 

perovskite films. Therefore, we hypothesize that micro scale solid state reactions in our 
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prepared films are responsible for the complete conversion of the precursors and side-phases 

into the desired Cs2AgBiBr6 phase. 

 

Figure 5-4: The influence of the annealing temperature on the PL signal. The typical PL signal of 

Cs2AgBiBr6 is only visible for the 250 °C sample. 

 

As the Cs2AgBiBr6 films were prepared for photovoltaic applications, sufficient light 

absorption is mandatory for efficiently working devices. In order to optimize the optical 

absorption properties of the double perovskite films, we added an additional preheating step 

to our synthesis protocol where the spin-coating solution and the substrate were put on a 

hotplate and heated to 75 °C before spin-coating. Fig. 4-5a shows absorption spectra of 

Cs2AgBiBr6 films on glass prepared with and without a preheating step at different 

temperatures. Without the preheating step, insufficient light absorption would limit the 

photocurrent of the resulting devices to approximately 2 mA cm
-2

, which is inadequate to 

prepare efficient solar cells. We found that preheating the substrate and the solution increases 

the quality of the double perovskite films, by improving the surface coverage, as can be seen 

with the naked eye, enhancing the optical absorption of the films (Fig. 4-2). In particular, the 

absorption close to the onset is significantly increased, which is also observable for films 

made on an mp-TiO2 scaffold as used for solar cell fabrication (Fig. 4-5b). 
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Figure 5-5: a) Optical absorption spectra of Cs2AgBiBr6 films prepared from DMSO on flat glass 

substrates. The films were manufactured without a preheating step at room temperature (ca. 25 °C) or 

with a preheating step at 65 °C, 75 °C, 100 °C or 125 °C before spin-coating. b) UV/vis spectra of 

Cs2AgBiBr6 films on mp-TiO2 scaffolds as used for solar cell assembly prepared without (RT, ca. 25 °C) or 

with a preheating step (75°C, 125 °C). The improved light absorption close to the onset for the preheated 

samples is clearly visible. We assign the enhanced light absorption at energies below the onset to light 

scattering because of the roughness of the preheated samples. 

 

We attribute the increase of the optical absorption to an increased surface coverage on the 

substrate due to a larger amount of deposited double perovskite caused by the faster solvent 

evaporation at elevated temperatures. Increasing the amount of deposited Cs2AgBiBr6 by 

simply increasing the concentration of the precursors in the spin-coating solution is not 

possible since the precursor concentration of the utilized solution is already close to the 

maximum of about 0.6 M.  

The band gap of the Cs2AgBiBr6 films was determined from the absorption spectra given in 

Fig. 5-5a. The spectra show a steep onset at about 550 nm corresponding to an Eg of 2.21 eV 

for a direct band gap obtained with a Tauc plot (see inset), which is comparable to the value 

reported by McClure et al.
19

 and consistent with other reports ranging from 1.83 eV
26

 to 2.19 

eV
19

. The relatively large spread of the reported Eg values most likely originates from 

different synthesis conditions and measurement methods used in the different studies.
29

 

According to the Shockley-Queisser limit, a theoretical maximum PCE of 16.4% can be 

obtained with an Eg of 2.2 eV, thus holding promise for working double perovskite based 

photvoltaics.
34

 Although, the theoretical maximum PCE of this material does not reach the 

highest reported PCEs of single junction methylammonium lead iodide (MAPbI3) based 

photovoltaics, Cs2AgBiBr6 is a promising candidate for applications in tandem solar cells as it 
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was already shown for methylammonium lead bromide, which features a slightly larger Eg of 

2.3 eV.
35 

The energy level diagram in Fig. 5-6
26

 shows that the conduction band (CB) of the 

Cs2AgBiBr6 is well aligned with the CB of the electron transporting material (ETM) titania, 

which was also recently shown in a computational study of Feng et al.
36

 In contrast, the 

highest occupied molecular orbital (HOMO) of the hole transporting material (HTM) 2,2',7,7'-

tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) shows a 

strong offset compared to the valence band (VB) of the double perovskite, which is likely to 

limit the potential Voc of a photovoltaic device. In this work, as a first demonstration of the 

potential of Cs2AgBiBr6, we focused on the preparation of devices comprising this state-of-

the-art material which has been shown to be able to reach Voc’s exceeding 1.5V.
37

 

Nevertheless, the energy level alignment allows for charge extraction, and functioning devices 

are expected. 

 

Figure 5-6: Energy level diagram of the double perovskite and the charge extraction materials.
26

 

 

Not only the band gap and energy alignment with the charge extraction layers, but also charge 

collection efficiency is important to fabricate high-efficiency solar cells. PL lifetime 

measurements can provide an indication as to whether a material can perform in this area. 

Here, we investigated the PL decay times of the double perovskite films by time-correlated 

single photon counting (TCSPC). For comparison, additional TCSPC measurements were 

performed on polycrystalline powder samples that were obtained by the conventional 

approach from HBr solution.
26

 The PL decays are displayed in Fig. 5-7a. Although the PL of 
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Cs2AgBiBr6 features three differently fast decay processes, only the value for the long-lived 

process is given in Fig. 5-7a. We attribute the two short lifetime processes to trap and/or 

surface state emission, while the long lifetime process is suggested to be the fundamental PL 

decay time of the material.
26

 Both the powder and the film show long PL decay times in the 

range of hundreds of nanoseconds, similar to the values observed for lead-based hybrid 

perovskites,
38

 hinting at the potential for well-performing devices. We note that the decay 

times do not differ significantly between single crystals and polycrystalline powders, which 

suggest a high defect tolerance of this material.
26

 The slightly faster decay for films is likely 

the result of a larger concentration of trap states in the perovskite film, as has been previously 

shown for lead halide-based films.
39

 Here, the fast formation of the perovskite during the 

spin-coating process causes a broad grain size distribution within the film and, consequently, 

a large number of grain boundaries.
 

PL quenching experiments are widely used to study the charge transfer from a photoabsorber 

to the charge-selective contacts
,40,41

 From the energy diagram (Fig. 5-7b) we expect favorable 

charge transfer behavior from Cs2AgBiBr6 to the electrodes, which was experimentally tested 

with PL quenching experiments. For the measurements, mp-TiO2 and spiro-OMeTAD were 

chosen as ETM and HTM, respectively, while mp-Al2O3 was used as reference as no charge 

transfer is expected (for experimental details see the characterization section). Fig. 5-7d 

shows the quenching of the PL emission of Cs2AgBiBr6 on TiO2 by approximately 60%, 

while the PL was reduced by more than 80% in contact with spiro-OMeTAD. These results 

indicate that charge transfer from the double perovskite to the charge-selective materials is 

taking place, as required for working photovoltaic devices. However, the low PL quantum 

yield of Cs2AgBiBr6 indicates that the main recombination pathways in Cs2AgBiBr6 are 

nonradiative
26

 and therefore not detectable in PL quenching experiments. It has to be 

mentioned that, the PL signal of our films is relatively broad but similar to that reported for 

single crystals.
26

 The broad PL signal is most likely caused by defects and excitonic effects.
29

 

Furthermore, previous studies by Slavney et al. revealed that in addition to the direct band gap 

at about 2.2 eV, Cs2AgBiBr6 features an indirect band gap at about 1.9 eV, which was not 

detectable in the light absorption spectra of our prepared films.
26

 Considering that the value of 

the indirect band gap matches quite closely the position of the observed PL maximum, we 

believe that the relatively large red shift of the maximum of the PL signal with respect to the 

absorption onset can be assigned to contributions of this indirect band gap at about 1.9 eV. 
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Nevertheless, the PL results indicate that Cs2AgBiBr6 films can be incorporated in working 

photovoltaic devices. 

 

Figure 5-7: a) TCSPC decays of a Cs2AgBiBr6 film on glass and polycrystalline powder. b) PL emission 

spectra of Cs2AgBiBr6 films on mp-Al2O3, mp-TiO2 and mp-Al2O3 covered with spiro-OMeTAD. The films 

presented in 3d were prepared on an 800 nm thick mp scaffold. All films were prepared according the 

procedure depicted in Fig. 1 with a 285 °C annealing step. 

 

The morphology of the double perovskite films prepared according the procedure shown in 

Fig. 5-3 was investigated with scanning electron microscopy (SEM). Fig. 5-8a shows a SEM 

top-view image of a Cs2AgBiBr6 film, on an 800 nm thick mp-TiO2 scaffold as used for the 

preparation of photovoltaic devices. Here, no dense and homogeneous capping layer on top of 

the mp-TiO2 is observable, instead many agglomerates at the scale of about one micron have 

formed. This is most likely caused by the fast crystallization process during the spin-coating 

procedure induced by fast solvent evaporation due to the performed preheating step, as shown 

in Fig. 5-3. We believe that this fast crystallization process impedes homogeneous crystal 

growth, leading to the observed agglomerates. Energy dispersive X-ray spectroscopy (EDX) 

measurements were performed to evaluate the penetration depth of the double perovskite into 

the mp-TiO2 scaffold. Fig. 5-8b-g show a SEM cross-section of the film presented in Fig. 4a 

and the elemental maps of Ti, Cs, Ag, Bi and Br, respectively. The cross-section image and 

EDX maps clearly establish complete infiltration of Cs2AgBiBr6 into the mp-TiO2 scaffold, 

which is important to obtain efficient devices, while some additional Cs2AgBiBr6 

agglomerates are formed on top of the scaffold. 
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Figure 5-8: a) SEM top-view image of a Cs2AgBiBr6 film prepared with a 75 °C preheating step on mp-

TiO2. (b) SEM cross-section image of the film presented in (a). c-g) EDX elemental maps of Ti (red), Cs 

(turquoise), Ag (purple), Bi (blue) and Br (yellow). 

 

Based on the promising results of the above investigations, we incorporated the newly 

developed Cs2AgBiBr6 films into photovoltaic devices featuring a layer assembly of fluorine 

doped tin oxide (FTO)/dense TiO2/mp-TiO2/Cs2AgBiBr6/spiro-OMeTAD/Au to investigate 

their photovoltaic characteristics. As mentioned before, the thickness of the utilized mp-TiO2 

layer was approx. 800 nm as depicted in Fig. 5-8b. 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

123 

Fig. 5-9a displays the statistical parameter distribution of 48 solar cells (per treatment 

temperature) that were assembled with Cs2AgBiBr6 films prepared without a preheating step 

and with a preheating step at different temperatures. The studies revealed a PCE maximum at 

75 °C, we attribute to the improved optical properties of those films shown in Fig. 3a and S3. 

Furthermore, the J-V curves given in Fig. 5-9b show that the increased device performance at 

75 °C preheating is not only caused by an increased short-circuit current (Jsc) due to the 

enhanced optical absorption properties because of the preheating, but also by the enhanced fill 

factor (FF) and by the Voc increase observed with increasing preheating temperature. We 

hypothesize that the preheating also improves the mp-TiO2/double perovskite interface, for 

e.g. by reducing trap states, resulting in an enhanced performance.
42

 The large spread of the 

device performance observable for films preheated at 25 °C and 65 °C indicates that the 

improvement of the TiO2/double perovskite interface is not as reliable as for preheating at 75 

°C, which results in the smallest performance spread of all investigated preheating 

temperatures. The PCE decrease and the broadening of the PCE distribution at higher 

preheating temperatures (>100 °C) is tentatively attributed to the formation of a top layer 

consisting of large crystallites on the mp-TiO2 scaffold, caused by a strongly accelerated 

precipitation of the double perovskite due to the relatively high deposition temperature, as 

shown in Fig. 5-9c & d, which is apparently too thick for efficient charge transport. We note 

that Cs2AgBiBr6 films prepared without a preheating step feature the most homogeneous 

morphology, with the lowest number of agglomerates on top the mp-TiO2 scaffold (see Fig 5-

9e & f), without resulting in the best performing devices. Accordingly, it is likely that 

preheating to 75 °C results in double perovskite films featuring strongly improved 

optoelectronic properties, which overcome the possible detrimental effects of a less 

homogeneous morphology due to the agglomerate formation on top of the mp-TiO2 induced 

by the preheating.  
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Figure 5-9: a) Device performance as a function of preheating temperature, values obtained from 48 

individual devices per temperature. All films were annealed at 250 °C after spin-coating to achieve phase 

pure Cs2AgBiBr6 films. b) J-V characteristics of Cs2AgBiBr6 based devices prepared with a preheating 

step at different temperatures. The depicted J-V curves show only the backwards scan. The characteristic 

values of the J-V curves are given in Table 5-2. c) SEM cross-section and (d) top-view image of a 

Cs2AgBiBr6 film deposited with a preheating step at 125 °C. The presence of a top layer consisting of large 

crystallites is clearly observable. e) SEM cross-section and (f) top-view image of a Cs2AgBiBr6 film 

deposited without a preheating step at There are only a few agglomerates visible on top the mp-TiO2 

scaffold. 

 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

125 

Table 5-2: Jsc, Voc, FF and PCE of the J-V curves shown in Figure 5-9b. 

Preheating 

temperature 

Jsc / 

mA/cm² 

Voc / 

V 

FF PCE 

/ % 

RT 2.99 0.67 0.39 0.81 

65 °C 3.02 0.86 0.55 1.45 

75 °C 3.54 0.95 0.62 2.15 

100 °C 3.05 0.78 0.58 1.41 

125 °C 2.75 0.78 0.54 1.20 

 

Although a full conversion of the precursors into the double perovskite phase is achieved by 

250 °C annealing after film formation, the obtained PCEs showed a large spread. Therefore, 

an extensive study of the influence of the annealing temperature on device performance was 

conducted. Fig. 5-10a shows the relation between annealing temperature and the statistical 

distribution of PCEs of 48 individual devices. The highest and most reproducible PCEs were 

obtained for an annealing temperature of 285 °C. The increase in PCE with increasing 

annealing temperature is dominated by an increase of Jsc and FF at annealing temperatures 

below 250 °C, whereas only the Jsc rises significantly at higher annealing temperatures (Fig. 

5-10b). Up to 250 °C, this trend is most likely caused by a decrease of the side phases 

observed in the PXRD pattern (Fig. 5-3), until the phase-pure Cs2AgBiBr6 has formed at 250 

°C. This temperature is the lower end of the range of the annealing temperature required to 

fully convert the precursors into the double perovskite phase. Annealing at slightly higher 

temperatures (285 °C) make this process more robust, leading to slightly higher PCEs and 

more importantly, better reproducibility. The decrease in PCE at even higher temperature 

(300 °C) is associated with a reduction in Jsc, which we attribute to the degradation of the 

Cs2AgBiBr6 films as the double perovskite slowly starts to come off the substrate at annealing 

temperatures at about 300 °C (Fig. 5-10b). 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

126 

 

Figure 5-10: a) Device performance of solar cells assembled with Cs2AgBiBr6 films preheated at 75 °C as a 

function of annealing temperature, values obtained from 48 individual devices per temperature. b) J-V 

charcteristics of Cs2AgBiBr6 based solar cells prepared with a 75 °C preheating step and annealed at 

different temperatures. The depicted J-V curves show only the backwards scan. The characteristic values 

of the J-V curves are given in Table 5-3. The J-V curves show a clear decrease of device performance upon 

300 °C annealing. Furthermore, for annealing steps at 250 °C and 285 °C, Voc´s of more than one volt 

could be obtained. 

 

Table 5-3: Jsc, Voc, FF and PCE of the J-V curves shown in Figure 5-10b. 

Annealing 

temperature 

Jsc / 

mA/cm² 

Voc / 

V 

FF PCE / 

% 

RT 1.80 0.92 0.34 0.58 

75 °C 1.85 0.90 0.37 0.63 

150 °C 2.02 0.82 0.55 0.93 

250°C 3.38 1.03 0.59 2.15 

285 °C 3.94 1.03 0.54 2.20 

300 °C 2.30 0.86 0.66 1.25 

 

The application of our optimized synthesis conditions resulted in devices showing PCEs of 

more than two percent. Remarkable is the relatively narrow distribution in the performance, 

taking into consideration the surface of the film that contains the perovskite agglomerates. 

Fig. 5-11 displays the J-V curve of the best performing device exhibiting a PCE of 2.43%. In 

particular, the Voc of 0.98 V is significantly higher than that of other bismuth-based 

compounds featuring comparable Eg´s.
43-45

 Moreover, Voc´s exceeding 1 V were measured, 
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which are, with the best of our knowledge, the highest Voc values reported for bismuth halide 

based materials (see Fig. 5-10b), confirming the good alignment of the conduction band of the 

perovskite with TiO2 as predicted from the energy level diagram in Fig. 5-6 and in 

computational studies.
36

  

 

Figure 5-11: J-V curve of the best performing device showing a PCE of 2.43 %. Regarding the forward 

and backward scan, the device features strong hysteresis. 

 

These PCEs are viewed as an excellent starting point for double perovskite absorbers in solar 

cells if one considers that the spectroscopically predicted maximum efficiency of Cs2AgBiBr6 

is reaching 7.92% determined from density functional theory calculations by Savory et al..
46

 

As the band gap of Cs2AgBiBr6 is 2.2 eV, the current of solar cells comprising this absorber is 

limited to 6.8 mA cm
-2

 under 1 sun illumination. External quantum efficiency (EQE) 

measurements show an integrated current of 3.6 mA cm
-2

 (Fig. 5-12a), which is in good 

agreement with the Jsc of 3.7 mA cm
-2

 obtained from the J-V curve (Fig. 5-12b). The EQE 

spectrum (Fig. 5-12a) shows an onset around 550 nm, which is in agreement with the 

absorbance data, and is above 50% from 375 to 470 nm with a maximum of 60% at 415 nm. 

According to Fig. 5-11 the J-V curves show hysteresis, comparable to behavior observed in 

devices employing lead-based perovskites.
47–50

 Computational studies by Eames et al. reveal 

that the migration of the halide anions contributes to the hysteresis in hybrid lead halide 

perovskite based photovoltaics due to their very low activation barrier.
51

 Therefore, we 

believe that similar effects, including trapping/de-trapping of charge carriers,
47,52

 are likely to 

be responsible for the hysteresis in our Cs2AgBiBr6 based devices since the crystal structure 

of the double perovskite is very similar.  
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Figure 5-12: a) EQE spectrum (black) and integrated predicted current (red) of a device showing a Jsc of 

3.7 mA cm
-
². b) J-V curve of the solar cell used for the EQE measurements. 

 

Besides performance, stability is also an important issue for widespread applications as 

devices need to work for many years at high intensity illumination. Accordingly, we 

conducted the first stability studies on Cs2AgBiBr6-based solar cells. Fig. 5-13 displays the 

stabilized power output under ambient conditions. The device shows a rapid response after 

illumination, resulting in a PCE of around 2.0%. During the next 30 s, only a very small decay 

of around 5% in the PCE was observed, after which the PCE stabilizes just above 1.9% and 

no further decay was observed over a period of five minutes, indicating a similar performance 

stability like lead halide based solar cells.  
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Figure 5-13: Stabilized power output and current density measured under ambient conditions without 

encapsulation. The device was manufactured according the procedure described in Fig. 5-3 with a 285 °C 

annealing step. 

 

Another device was illuminated using an AM1.5 solar simulator under ambient conditions for 

a period of 100 min while at regular intervals J-V scans were taken (Fig 5-14a & b). 

 

Figure 5-14: a) Photovoltaic performance as a function of time under continuous illumination under 

ambient conditions. b) Voc and FF of the device given in Figure 5-14a. The device was manufactured 

according the procedure described in Fig. 5-3 with a 285 °C annealing step. 

 

During the first couple of minutes an increase in the PCE was observed as a result of an 

increase in the Voc, which we assign to light soaking effects.
53

 This indicates the presence of 

(interfacial) defects that can be neutralized with photogenerated charge carriers.
53–59

 After this 

period the Voc and Jsc turn out to be very stable. Some fluctuation in the FF (Fig. 5-14b) are 
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observed, which are also reflected in the PCE, nevertheless after 100 min the PCE did not 

significantly decay and at 2.06%, it was even higher than the initial value measured before the 

light soaking. The results presented in Figure 5-14a & b indicate a high device stability under 

permanent illumination, higher than that of reported MAPbI3 based devices showing a 

significant drop of Jsc within the first two hours.
60

 Furthermore, initial longer-term stability 

studies on the new Cs2AgBiBr6-based devices revealed an excellent stability under ambient 

conditions for at least 25 days (Fig. 5-15). The devices were stored in the dark to avoid any 

possible light driven degradation processes of the double perovskite as indicated by Slavney 

et al..
26 

 

Figure 5-15: Development of the PCEs of 12 devices, prepared according the procedure described in 

Figure 5-3, stored under ambient conditions in the dark for 25 days, revealing excellent device stability. 

No significant performance loss is observable. 

 

Another important stability aspect is the sensitivity of the absorber material against moisture. 

The state-of-the-art materials methylammonium lead iodide perovskites are known to be very 

sensitive to humidity,
61

 which leads to the fast degradation of the material. In contrast, 

Cs2AgBiBr6 solar cells have shown to possess a high stability.
26

 In order to study the 

sensitivity of the prepared Cs2AgBiBr6 films we performed in-situ hydration measurements at 

elevated humidities (Figure 5-15a & b).  
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Figure 5-16: XRD measurements of the hydration a Cs2AgBiBr6 film exposed to (a) 75% RH and (b) 90 % 

RH in air for 21 days and 19 days, respectively. The XRD reflection for the degradation products (grey 

exclamation mark), and the FTO substrate (green asterisk) and TiO2 extraction layer (yellow dot) are 

marked in the graph 

 

Figure 5-16a shows the XRD patterns of a Cs2AgBiBr6 film on mp-TiO2/FTO which was 

continuously exposed to 75% RH in air. No reorganization of the crystal was observed up on 

exposure of the film to humidity, while degradation of the Cs2AgBiBr6 film was only 

observed after nine days of continues exposure. Up on exposure of the films to higher 

humidity (90% RH) we observed the formation of another degradation product, which 

appeared after 6 days (Figure 5-16b). In comparison, commonly used lead iodide based 

perovskites such as CH3NH3PbI3, HC(NH2)2PbI3, (FAPbI3) and FA 0.9Cs0.1PbI3 films have 

shown to degrade within a couple of hours.
61–66

 The XRD study confirms the anticipated high 

stability against humidity for Cs2AgBiBr6 films. We found that the degradation of the 

Cs2AgBiBr6 perovskite is irreversible, which indicates that the degradation product is not a 

hydrated species, while a crystallographic database survey indicates that oxides, hydroxides or 

oxyhalides can be excluded. Additional studies have to be conducted to identify the 

degradation products of Cs2AgBiBr6  

Additionally, the performance of solar cells based on Cs2AgBiBr6 was recorded after 

exposure to elevated humidities (75 and 90% RH), see Figure 5-17. Here, we observe 

impressive stability of the Cs2AgBiBr6 perovskite solar cells. Devices based on Cs2AgBiBr6 

stored at 75% RH show some fluctuation in their performance, but do not lose more than 15 

% of their efficiency over a period of 9 days. Afterwards a strong decrease in device 
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efficiency can be observed which corresponds with the film degradation as was observed by 

PXRD and shown in Figure 5-16a. By exposing the devices to 90% RH, we observed a drop 

in PCE already after 24 hours. The XRD study showed that the perovskite degrades fast at 

high humidities, which our data suggests is the main culprit behind the degradation of the 

solar cell performance, although degradation of the HTM and its interfaces might also play a 

role.
67 

Nevertheless our devices show an impressive enhancement in the stability compared to 

state-of-the-art lead-based perovskites. 

 

Figure 5-17: Development of the PCEs of devices exposed to humidity levels of 75 % RH and 90 % RH for 

10 days.  

 

5.3 Conclusions 

 

In conclusion, we have demonstrated the solution-based formation of double perovskite films 

via a fast and efficient spin-coating method. Extensive studies of the synthesis conditions 

revealed the necessity of a high-temperature annealing step to fully convert the precursors into 

the desired double perovskite phase, and the requirement of an additional preheating step to 

improve the optical properties of the Cs2AgBiBr6 films. The resulting Cs2AgBiBr6 films 

feature an Eg comparable to that of single crystals and polycrystalline powders, and solar cells 

comprising these new films exhibit very promising PCEs close to 2.5% with Voc´s exceeding 

one volt, demonstrating the suitability of double perovskites for optoelectronic devices. 

Furthermore, our Cs2AgBiBr6-based devices feature a high stability under constant 

illumination at ambient conditions, higher than that of reported MAPbI3 based solar cells. 
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Since the elpasolite structure allows for numerous different combinations of elements, this 

work shows the potential for developing a wide range of double perovskites for diverse 

environmentally friendly optoelectronic applications. 

 

5.4 Experimental section 

 

All chemicals were used as received without any further purification. All synthesis steps were 

conducted under ambient conditions except the application of the hole transporting layer  

(HTL) which was performed in a nitrogen-filled glove box. 

Substrate preparation 

Fluorine-doped tin oxide (FTO)-coated glass sheets (7 Ωsq
-1

, Pilkington, USA) were 

patterned by etching with zinc powder and 3 M HCl. They were subsequently cleaned with a 

2% Hellmanex solution and rinsed with deionized water and ethanol. Directly before applying 

the blocking layer, remaining organic residues were removed by an oxygen plasma treatment 

for 5 min. A compact titanium dioxide (TiO2) layer was deposited by spin-coating a sol-gel 

precursor solution at 2000 rpm for 45 s followed by subsequent annealing at 500 °C for 45 

min. For preparing the sol-gel solution, a 27.2 mM (70 µL) solution of HCl in 2-propanol (5 

mL) was added dropwise to a vigorously stirred 0.43 mM (735 µL) solution of titanium 

isopropoxide (99.999%, Sigma–Aldrich) in 2-propanol (5 mL). Afterwards, an approx. 800 

nm thick, mesoporous (mp)-TiO2 layer was applied by spin-coating 100 µL of a TiO2 

nanoparticle paste (Dyesol DSL 18NR-T) diluted in absolute ethanol (1:2 weight ratio) onto 

the compact TiO2 layer at 2500 rpm for 30 s, followed by subsequent annealing at 500 °C for 

15 min under ambient conditions. 

Perovskite film preparation  

The precursor solution was prepared by dissolving 268 mg BiBr3 (0.6 mmol, ≥ 98%, Sigma 

Aldrich), 112.8 mg of AgBr (0.6 mmol, 99.5%, Alfa Aesar) and 254 mg CsBr (1.2 mmol, 99 

%, Alfa Aesar) in dimethylsulfoxide (1 mL, DMSO, anhydrous, 99.9%, Sigma-Aldrich). 

After complete dissolution of the precursors, both the solution and the substrate were 

preheated to 75 °C before spin-coating. 100 µL of the hot precursor solution was spin-coated 

onto the TiO2-covered substrate at 2000 rpm for 30 s. The substrates were subsequently 
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annealed at 285 °C for 5 min under ambient conditions to allow for a complete formation of 

the desired double perovskite phase. The temperatures for both the preheating and the 

annealing steps were also varied to identify the optimal conditions for phase pure films.  

Solar cell fabrication  

After film formation, the films were covered with a HTL of 2,2',7,7'-tetrakis-(N,N-di-4-

methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD, Borun Chemicals, 99.5% 

purity). The HTL solution was prepared by dissolving 73 mg of spiro-OMeTAD in 

chlorobenzene (1 mL, 99.8%, Sigma–Aldrich). The solution was filtered and mixed with 4-

tert-butylpyridine (10 µL, TBP, 96% Sigma Aldrich) and a 173 mg mL
-1

 

bis(trifluoromethane)sulfonamide lithium salt (LiTFSI, 99.95%, Sigma–Aldrich) solution in 

acetonitrile (30 µL). This solution was spin-coated dynamically at 1500 rpm for 45 s. In a 

second step the sample rotation was accelerated to 2000 rpm for 5 s to allow the solvent to dry 

completely. Finally, 40 nm thick gold electrodes were thermally deposited under a high 

vacuum on top of the device. 

Characterization 

PXRD measurements were performed in transmission mode on a STOE Stadi MP 

diffractometer with a Cu Kα1 radiation source (λ = 1.54060 Å) operating at 40 kV and 40 

mA. The diffractometer was equipped with a DECTRIS MYTHEN 1K solid-state strip 

detector. PXRD measurements on thin films were performed using a Bruker D8 Discover X-

ray diffractometer operating at 40 kV and 30 mA, employing Ni-filtered Cu Kα radiation (λ = 

1.5406 Å) and a position-sensitive detector (LynxEye). Scanning electron microscopy (SEM) 

images and EDX data were acquired on a FEI Helios NanoLab G3 UC microscope. The 

sample was fixed by silver paste. For the optical characterization, precursor solutions were 

prepared similar to those used for the devices. Similar deposition conditions were also chosen. 

For UV-Vis measurements the films were prepared on glass substrates or on the mp-TiO2 

substrates also used for solar cells. For PL measurements the double perovskite films were 

either prepared on approximately 800 nm thick mp-TiO2 or mp-Al2O3 films deposited on a 

glass slide. For the mp-TiO2 on glass, similar solutions and conditions were chosen as for the 

solar cell preparation. For the formation of the mp-Al2O3 film, Al2O3 nanoparticles dispersed 

in isopropanol (Sigma Aldrich, <50 nm, 20%wt) were diluted with isopropanol (Sigma 

Aldrich, 99.8%) in 1 : 1 ratio. 100 µL of the Al2O3 dispersion was spun on a glass substrate at 

2500 rpm for 30 s with subsequent annealing at 120 °C for 10 min. Steady-state absorption 
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spectra were acquired with a Lambda 1050 UV-Vis spectrophotometer (Perkin Elmer) using 

an integrating sphere. Steady state and time resolved PL measurements were conducted with a 

Fluotime 300 Spectrofluorometer (Picoquant GmbH). The excitation wavelength was fixed at 

405 nm. The emission for time resolved measurements was monitored at 630 nm being the 

wavelength of the maximum intensity of the steady state photo-emission. J-V curves were 

recorded with a Keithley 2400 sourcemeter under simulated AM 1.5 sunlight, calibrated to 

100 mW cm
−
² with a Fraunhofer ISE certified silicon cell. The active area of the solar cells 

was defined with a square metal aperture mask of 0.0831 cm
2
. External quantum efficiency 

(EQE) measurements were performed at short circuit with a bias illumination of 0.1 sun 

provided by an AM 1.5 solar simulator (Solar Light Model 16S). The measurements were 

conducted under low-frequency chopped monochromatic light (12 Hz). A 150 W xenon lamp 

equipped with a monochromator and order-sorting filters was used as a light source. The light 

intensity reaching the electrode was measured using a certified Fraunhofer ISE silicon 

reference cell equipped with a KG5 filter at a frequency of 40 Hz. For signal detection a 

Signal Recovery 7265 lock-in amplifier combined with a low-noise current amplifier (Femto 

DLPCA-200) was employed. 

 

 

 

 

 

 

 

 

 

 

 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

136 

5.5 Literature 

 

[1] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 

338, 643.  

[2] NREL chart, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (accessed July 

2017). 

[3] T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 2016, 1, 

15007. 

[4] S. De Wolf, J. Holovsky, S.-J. Moon, P. SLoiper, B. Niesen, M. Ledinsky, F.-J. Haug, 

Yum, C. Ballif J. Phys. Chem. Lett. 2014, 5, 1035. 

[5] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, 

L. M. Herz, A. Petrozza, H. J. Snaith Science 2013, 342, 341. 

[6] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L- M. Herz, Adv. Mater. 

2014, 26, 1584. 

[7] R. E. Brandt, V. Stevanović, D. S. Ginley, T. Buonassisi, MRS Commun. 2015, 5, 265. 

[8] A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong, S.-H. Wei, Angew. Chem., Int. Ed. 

2015, 54, 1791. 

[9] Y.-Y Zhang, S. Chen, P. Xu, H. Xiang, X.-G. Gong, A. Walsh, S.-H. Wei, 

arXiv:1506.01301, 2015. 

[10] G. P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Proc. Natl. Acad. Sci. U. S. A. 

2016, 113, 7717. 

[11] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, 

T. Rath, S. A. Haque, Angew. Chem., Int. Ed. 2015, 54, 8208. 

[12] Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Nat. Mater. 2016, 15, 247. 

[13] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics, 

2014, 8, 489. 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

137 

[14] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. 

Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. 

Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061. 

[15] R. Jakubas, J. Zaleski, L. Sobczyk, Ferroelectrics 1990, 108, 109. 

[16] S. Sun, S. Tominaka, J-H. Lee, F. Xie, P. D. Bristowe, A. K. Cheetham, APL Mater. 

2016, 4, 031101. 

[17] B. Chabot, E. Parthé, Acta Cryst. 1978, B34, 645. 

[18] A. J. Lehner, D. H. Fabini, H. A. Evans, C. A. Hébert, S. R. Smock, J. Hu, H. Wang, J. 

W. Zwanziger, M. I. Chabinyc, R. Seshadri, R. Chem. Mater. 2015, 27, 7137. 

[19] E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Chem. Mater. 2016, 28, 

1348. 

[20] L. R. Morrs, W. R. Robinson, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. 

Chem. 1972, 28, 653. 

[21] F. Pelle, B. Jacquier, J. Denis, B. J. Blanzat, Lumin. 1978, 17, 61. 

[22] W. Smit, G. Dirksen, D. Stufkens, J. Phys. Chem. Solids. 1990, 51, 189. 

[23] Z. Deng, F. Wei, S. Sun, G. Kieslich, A. K. Cheetham, P. D. Bristowe, J. Mater. 

Chem., A 2016, 4, 12025. 

[24] A. Tressaud, S. Khaïroun, J. P. Chaminade, M. Couzi, Phys. Status Solidi A 1986, 98, 

417.  

[25] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M. A. Carpenter, P. D. 

Bristowe, A. K. Cheetham, Mater. Horiz. 2016, 3, 328. 

[26] A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 

138, 2138. 

[27] G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. 

Giustino, J. Phys. Chem. Lett. 2016, 7, 1254. 

[28] F. Wei, Z. Deng, S. Sun, F. Zhang, D. M. Evans, K. Kieslich, S. Tominaka, M. A. 

Carpenter, J. Zhang, P. D. Bristowe, A. K. Cheetham, Chem. Mat. 2017, 29, 1089. 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

138 

[29] M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, F. Giustino, J. Phys. Chem. 

Lett. 2016, 7, 2579. 

[30] M. R. Filip, C. Verdi, F. Giustino, J. Phys. Chem. C 2015, 119, 25209. 

[31] Z. Xiao, W. Meng, J. Wang, Y. Yan, ChemSusChem 2016, 9, 2628. 

[32] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryuand, S. I. Seok, Nat. Mater. 2014, 

13, 897. 

[33] F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. 

Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11445. 

[34] S. Rühle, Phys. Status Solidi A 2017, 1600955. 

[35] R. Sheng, A. W. Y. Ho-Baillie, S. Huang, M. Keevers, X. Hao, L. Jiang, Y.-B Cheng, 

M. A. Green, J. Phys. Chem. Lett., 2015, 6, 3931. 

[36] H.-J. Feng, W. Deng, K. Yang, J. Huang, X. C. Zeng, J. Phys. Chem. C 2017, 121, 

4471. 

[37] S. Gholipour, A. M. Ali, J.-P. Correa-Baena, S.-H. Turren-Cruz, F. Tajabadi, W. 

Tress, N. Taghavinia, M. Grätzel, A. Abate, F. De Angelis, C. A. Gaggioli, E. Mosconi, A. 

Hagfeldt, M. Saliba, Adv. Mater. 2017, 1702005. 

[38] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, 

A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben O. F. Mohammed, E. H. 

Sargent, O. M. Bakr, Science 2015, 347, 519. 

[39] D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. 

Ziffer, H. J. Snaith, D. S. Ginger, Science 2015, aaa5333. 

[40] D. S. Ginger, N. C. Greenham, Phys. Rev. B 1999, 59, 10622. 

[41] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, Nat. commun 2013, 

4, 2761. 

[42] M. Abdi-Jalebi, M. I. Dar, A. Sadhanala, S. P. Senanayak, F. Giordano, S. M. 

Zakeeruddin, M. Grätzel, R. H. Friend, J. Phys. Chem. Lett. 2016, 7, 3264. 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

139 

[43] Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L. N. Quan, F. p. García de 

Arquer, R. Comin, J. Z. Fan, E. H. Sargent, Angew. Chem., Int. Ed. 2016, 55, 9586. 

[44] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. Johansson, J. Adv. 

Mater. 2015, 27, 6806. 

[45] I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, H. Yamagishi, 

M. Kondo, S. Aramaki, ChemSusChem 2017, 10, 1. 

[46] C. N. Savory, A. Walsh, D. O. Scanlon, ACS Energy Lett. 2016, 1, 949. 

[47] H .J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, 

J. T. W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 2014, 5, 1511. 

[48] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, 

M. G. Christoforo, M. D. McGehee, Energy Environ. Sci. 2014, 7, 3690. 

[49] H. S. Kim, N. G. Park, J. Phys. Chem. Lett. 2014, 5, 2927. 

[50] R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, J. 

Bisquert, J. Phys. Chem. Lett. 2014, 5, 2357. 

[51] C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O´Regan, A. Walsh, M. S. Islam, Nat. 

Commun. 2015, 7497.  

[52] A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. 

Gra  tzel, ACS Nano 2013, 8, 362. 

[53] C. Zhao, B. Chen, X. Qiao, L. Luan, K. Lu, B. Hu, Adv. Energy Mater. 2015, 5, 

1500279.  

[54] P. Tiwana, P. Docampo, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. 

Sci. 2012, 5, 9566. 

[55] L. Cabau, L. Pellejà, J. N. Clifford, C. V. Kumar, E. Palomares, J. Mater. Chem. A, 

2013, 1(31), 8994. 

[56] T. Kobayashi, H. Yamaguchi, T. Nakada, Prog. Photovolt: Res. Appl. 2014, 22, 115. 

[57] L. Yang, B. Xu, D. Bi, H. Tian, G. Boschloo, L. Sun, E. M. Johansson, J. Am. Chem. 

Soc. 2013, 135, 7378. 



5 Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic 

applications 

140 

[58] J. Kim, G. Kim, Y. Choi, J. Lee, S. Heum Park, K. Lee, Appl. Phys. 2012, 111, 

114511. 

[59] S. Trost, K. Zilberberg, A. Behrendt, A. Polywka, P. Görrn, P. Reckers, J. Maibach, T. 

Mayer, T. Riedl, Adv. Energy Mater. 2013, 3, 1437. 

[60] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith Nat. Commun. 

2013, 4, 2885.  

[61] J. S. Manser, M. I Saidaminov, J. A. Christians, O. M. Bakr, P. V. Kamat, Acc. Chem. 

Res. 2016, 49, 330. 

[62] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764. 

[63] L. M. Petrus, Y. Hu, D. Moia, P. Calado, A. Leguy, P. R. Barnes, P. Docampo, 

ChemSusChem, 2016, 9(18), 2699. 

[64] F. Liu, Q. Dong, M. K. Wong, A. B. Djurišić, A. Ng, Z. Ren, A. M. C. Ng, Adv. 

Energy Mater 2016, 6, 1502206. 

[65] Y. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, T. Bein, P. Docampo, 

ACS nano 2016, 10(6), 5999. 

[66] D. P McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, 

A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, 

Science, 2016, 351(6269), 151. 

[67] J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, 

L.Han, Energy Environ. Sci. 2014, 7, 2963. 

 

 



6 Fully solution processed Cs2AgBiBr6 high quality films for planar heterojunction 

solar cells 

141 

6 Fully solution processed Cs2AgBiBr6 high quality films for 

planar heterojunction solar cells 
 

This chapter is based on the following manuscript 

Enrico Greul, Maximilian Sirtl, Pablo Docampo and Thomas Bein, manuscript in preparation 

 

6.1 Introduction 

 

During the last six years, hybrid organic-inorganic lead halide perovskites have been shown to 

be outstanding materials for applications in many different optoelectronic devices, such as 

lasers, light emitting diodes and solar cells.
1–4

 In particular, hybrid lead halide based 

photovoltaics have achieved strikingly high power conversion efficiencies (PCE) of more than 

22 %, being competitive with efficiencies achieved by conventional silicon based solar cells.
5
 

This high performance in combination with the high abundance of the raw materials and their 

facile, low temperature processability make hybrid lead halide based solar cells interesting 

candidates for replacing conventional photovoltaics. However, hybrid lead halide perovskites 

suffer from two major drawbacks, namely stability issues and the toxicity of lead, so far 

impeding large scale applications.
6–9

 Accordingly, since the appearance of hybrid lead halide 

based solar cells, many research groups put much effort into the development of less toxic 

and/or more stable alternatives. As a result, state-of-the-art solar cells based on lead-free 

hybrid perovskites comprising the most obvious substitute tin, which is also a group-14 

element such as lead, feature PCEs of more than 9 %.
10

 However, the Sn
2+

 cation used as 

substitute for Pb
2+

 in hybrid metal halide perovskites drastically reduces the device stability 

due to the facile oxidation of Sn
2+

 to Sn
4+

, even under common inert conditions.
11

 This 

process leads to the formation of defect sites within the photoactive material, resulting in a 

rapid decrease of the performance of photovoltaics based on hybrid perovskites comprising 

Sn
2+

 cations.
11,12

 Accordingly, several other cations including Ge
2+

, Bi
3+

, Sb
3+

 or Cu
2+

 have 

been investigated for their viability to perform in perovskite-related photovoltaic systems.
13–16

 

Among the alternatives to Pb
2+

, Bi
3+

 is one of the most promising substitutes since it is highly 

stable and non-toxic. While Bi
3+

 features a higher charge than Pb
2+

, often resulting in low-

dimensional structures that make the optoelectronic properties of such compounds less 
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favorable, Bi
3+

 can also be incorporated into a desirable three-dimensional structure by 

utilizing a monovalent co-cation.
17–20

 A common class of 3D bismuth-based compounds are 

the elpasolites, which feature a highly symmetric cubic, so-called double perovskite structure 

with the general formula A2M
1+

M
3+

X6.
21

 Although bismuth-containing elpasolites with A
+
 = 

Rb, Cs, CH3NH3; M
1+

 = Na, K, Tl and X
-
 = F, Cl, Br have been investigated for several 

decades,
22–26

 they have not been considered for photovoltaic applications due to their large 

band gap energy (Eg) of more than 3 eV.
22,27

 The only compound exhibiting a Eg suitable for 

photovoltaics comprises thallium which is even more toxic than lead.
25

 A great leap towards 

the practical application of bismuth-based elpasolites has been made in 2016, when several 

groups reported on a silver-bismuth based double perovskite with the formula Cs2AgBiBr6 

featuring an Eg of about 2 eV, photoluminescence (PL) lifetimes of several hundred 

nanoseconds and calculated charge carrier effective masses close to those calculated for 

methylammonium lead iodide, making it a very interesting candidate for photovoltaic 

applications.
21,28–32

 Corresponding studies indeed revealed that Cs2AgBiBr6 can be 

incorporated into solar cells featuring a mesoporous TiO2 scaffold, resulting in encouraging 

PCEs close to 2.5 % with open-circuit voltages (Voc) of more than one Volt, which are the 

highest Voc values of all lead-free perovskite based photovoltaics with a comparable Eg.
33–36

 

However, the morphology of the double perovskite films utilized in those solar cells was 

poorly defined and therefore not suitable for applications in planar heterojunction devices 

without a mesoporous scaffold.
36 

Considering that the film morphology has a strong impact on 

the device performance and that the Eg of Cs2AgBiBr6 is suitable for tandem solar cell 

applications, which require excellent film morphologies without the use of a supporting 

mesoporous metal oxide network, the formation of high quality double perovskite thin films is 

highly desirable.
37,38

  

Recently, Wu et al. reported on planar heterojunction solar cells based on high quality 

Cs2AgBiBr6 films showing PCEs of up to 1.44 %.
39

 However, the synthesis presented by Wu 

et al. is based on a low-pressure step, which creates the demand for additional equipment, 

such as a pump and a vacuum chamber, making the film synthesis more costly.  

In order to simplify the preparation of such planar films, here we present a fully solution-

based synthesis route for high quality Cs2AgBiBr6 films, which can be performed under 

ambient conditions. Our newly developed route is based on a two-step spin-coating process 

where iso-propyl ether is added as an antisolvent in the second step. This leads to the 

formation of Cs2AgBiBr6 films featuring an excellent morphology similar to that of already 
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published films. Extensive optoelectronic studies revealed that high temperature annealing at 

300 °C drastically improves the optoelectronic properties of the prepared films, leading to 

planar heterojunction solar cells exhibiting PCEs of about 1 %. Hence, we demonstrate for the 

first time the simple and fast synthesis of high quality Cs2AgBiBr6 films under ambient 

conditions, opening an avenue for further developing optoelectronic applications of double 

perovskite materials.  

 

6.2 Results and Discussion 

 

Our high quality Cs2AgBiBr6 films were prepared via spin-coating a DMSO-based precursor 

solution on the substrate with subsequent antisolvent addition. The films, which form almost 

immediately after the addition of the antisolvent, were annealed at 300 °C for 10 minutes after 

the spin-coating procedure. A schematic of the employed synthesis route is given in Figure 6-

1.  

 

Figure 6-1: Schematic of the synthesis route utilized for the preparation of high quality Cs2AgBiBr6 films.  

 

The synthesis protocol illustrated in Figure 6-1 is based on a common synthesis route for the 

preparation of highly efficient hybrid lead halide based photovoltaics featuring a slow and a 

fast spinning step.
40

 The slow spinning step allows for a slow spread of the precursor solution 

all over the substrate, while the fast spinning step provides a rapid and homogeneous 

distribution of the antisolvent across the wet film, ensuring a uniform crystallization of the 
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double perovskite. The duration of the spinning steps and the moments of precursor solution 

and antisolvent addition are depicted in the scheme given in Figure 6-2. 

 

Figure 6-2: Graph of the utilized spinning protocol and the moments of precursor solution and antisolvent 

addition. 

 

Previous studies have revealed that several different organic solvents, such as chlorobenzene, 

anisole or diethyl ether, are suitable antisolvents for the preparation of high quality hybrid 

lead halide films. Accordingly, a few of such solvents have been tested for their viability for 

the synthesis of homogeneous and pin-hole free Cs2AgBiBr6 thin films.
41–43

 Here we compare 

the impact of different potential antisolvents on the resulting double perovskite film 

morphologies. Top-view scanning electron microscopy (SEM) images of the resulting films 

are shown in Figure 6-3. An SEM image of a double perovskite film made without any 

antisolvent addition is given for comparison (Figure 6-3a). 
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Figure 6-3: SEM top-view images of Cs2AgBiBr6 films prepared without antisolvent addition (a), and with 

addition of chlorobenzene (b), anisole (c), diethyl ether (d), n-propyl ether (e), or iso-propyl ether (f) 

serving as antisolvent. The deposition conditions are the same for each sample (see Figures 6-1 and 6-2).  

 

The SEM images given in Figure 6-3a-d clearly show that the addition of an antisolvent 

significantly improves the film morphology. Among these samples, only the film where 

diethyl ether was used as antisolvent shows a perfectly pin-hole free Cs2AgBiBr6 layer, which 

is mandatory for well-performing devices. Despite the good results obtained by dripping 
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diethyl ether on top of the wet double perovskite film, the relatively high vapor pressure of 

diethyl ether remains a critical issue. Due to the high vapor pressure of diethyl ether of about 

560 hPa at 20 °C, the handling of the solvent with a pipet is rather difficult, leading to the 

premature release of the diethyl ether from the pipet which makes the preparation of 

homogeneously covered substrates more difficult, see Figure 6-4a.
44

 Accordingly, alkyl ethers 

with lower vapor pressures were also tested. Thus, the two C3 analogs of diethyl ether, n-

propyl and iso-propyl ether were utilized as antisolvents.
45,46

 It turned out that the addition of 

n-propyl ether does not result in densely covered and pin-hole free double perovkite films, 

while dripping of iso-propyl ether leads to perfectly homogeneous and pin-hole free 

Cs2AgBiBr6 films, see Figure 6-3e & f. Our results, obtained with the different ethers, 

indicate that a high vapor pressure is beneficial for the resulting film morphology. On the 

other hand, the vapor pressure of the ether utilized as antisolvent should not be too high to 

ensure proper handling with the pipet. Accordingly, iso-propyl ether turned out to be an 

excellent antisolvent featuring a vapor pressure suitable for the reproducible preparation of 

high quality Cs2AgBiBr6 films, see Figure 6-4b.   

 

Figure 6-4: a) Image of a Cs2AgBiBr6 film made with diethyl ether antisolvent drip. b) Image of a 

Cs2AgBiBr6 film made with iso-propyl ether antisolvent drip. 

  

Based on the above morphological investigations, the most promising antisolvent for the 

preparation of Cs2AgBiBr6 thin films suitable for the application in planar heterojunction 

photovoltaics appears to be iso-propyl ether. Thus, all following discussions refer to high 

quality Cs2AgBiBr6 films made by the addition of iso-propyl ether as an antisolvent. 
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Since our high quality Cs2AgBiBr6 films were developed for applications in planar 

heterojunction photovoltaics, the optoelectronic properties of the films also play an important 

role. The ultraviolet-visible (UV-vis) optical absorption spectrum is shown in Figure 6-5a.  

 

Figure 6-5: a) UV-vis spectrum of a Cs2AgBiBr6 film made by iso-propyl ether antisolvent drip. b) PL 

emission spectra of Cs2AgBiBr6 films annealed at different temperatures for 10 minutes each. 

 

The spectrum given in Figure 6-5a shows an absorption onset at about 525 nm and a strong 

absorption feature with its maximum at about 440 nm, which is attributed to the formation of 

excitons.
39

 The inset of Figure 6-5a shows a Tauc plot of the absorption spectrum given in 

Figure 6-5a. The Eg of 2.35 eV corresponds very well with the absorption onset at 525 nm 

visible in the absorption spectrum. The shape of the spectrum is very similar to that given by 

Wu et al., who reported on planar heterojunction double perovskite solar cells featuring a 

maximum PCE of 1.44 %.
39

 However, the overall absorbance is slightly lower than that 

presented by Wu et al., which is most likely caused by the thickness of our prepared double 

perovskite films, which is about 30 % less than that presented by Wu et al..
39

 The estimated 

Eg of our double perovskite films is slightly larger than the values reported in the 

literature.
28,36

 We attribute the larger Eg to the low film thickness which reduces the 

absorbance of the films, in particular in the long wavelength region (500 nm and more), 

making it more difficult to determine the exact Eg.
36

 

Furthermore, the photoluminescence (PL) of the double perovskite films was examined. We 

find that the PL emission intensity strongly depends on the temperature at which the 

manufactured films were annealed after the spin-coating procedure, see Figure 6-5b. The 

spectra in Figure 6-5b clearly show that the PL emission intensity increases with increasing 
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annealing temperature (in addition to a slight red shift of the emission maximum). A possible 

explanation could be the reduction of defect states within the double perovskite that act as 

quenching/recombination sites. This hypothesis is also supported by time-resolved single 

photon counting (TCSPC) measurements performed on Cs2AgBiBr6 films annealed at 

different temperatures. The obtained emission decays are given in Figure 6-6a. 

 

Figure 6-6: a) TCSPC decay curves of Cs2AgBiBr6 films annealed at 60 °C, 200 °C, 250 °C for ten minutes. 

b) TCSPC decay curves of Cs2AgBiBr6 films annealed at  275 °C, 300 °C or 325 °C for 10 minutes. b) 

Evolution of the lifetime (long-life component 3) of the photoexcited species with the annealing 

temperature. 

 

The decay traces shown were fitted, as common in the literature, to a triexponential model 

curve to extract the specific lifetimes of the photoexcited species.
28,36

 Since only the longest 

decay time 3 is assumed to represent the specific lifetime of the photoexcited species in 

Cs2AgBiBr6, 3 was used to show the evolution of the lifetimes with annealing temperature as 



6 Fully solution processed Cs2AgBiBr6 high quality films for planar heterojunction 

solar cells 

149 

depicted in Figure 6-6b.
28

 We attribute the two short lifetime processes 1 and 2 to trap and/or 

surface state emission, while the long lifetime process is suggested to be the fundamental PL 

decay time of the material.
28 

The lifetime of the photoexcited species features a dramatic 

increase with increasing annealing temperature, matching well with the development of the 

PL intensities given in Figure 6-5b. Considering that polycrystalline powders of Cs2AgBiBr6 

grown from solution exhibit decay times 3 of more than 600 ns, the very low value for the 60 

°C sample is most likely caused by the formation of a large number of defect states induced 

by the rapid crystallization of the Cs2AgBiBr6 film after antisolvent addition.
47

 Accordingly, 

heating the films could lead to a decrease of defect states due to a rearrangement of the ions in 

the crystal lattice. In particular, heating to temperatures above 250 °C, which is in the 

temperature range used for the synthesis of Cs2AgBiBr6 via solid state reactions, should be 

suitable to remove defect states efficiently, as indicated by the corresponding strong increase 

of the lifetimes of the photoexcited species depicted in Figure 6-6b.
21

 Complementary studies 

of the impact of annealing times on the lifetimes revealed a much less striking effect 

compared to that of the annealing temperatures, see Figure 6-7a & b. 

 

Figure 6-7: a) TCSPC decay curves of Cs2AgBiBr6 films annealed at 300 °C for 450 s, 600 s, 750 s, and 

1200 s. b) Evolution of the lifetimes of the photoexcited species (long-life component 3) with the annealing 

time at 300 °C. 

 

Nevertheless, the graph given in Figure 6-7b indicates that the double perovskite thin films 

should be annealed for at least 600 s to obtain long lifetimes of the photoexcited species of 

about 200 ns and higher, which hold promise for the design of efficient photovoltaic devices.  
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Since annealing temperatures above 250 °C are in the range or even higher than that used for 

the solid state synthesis of Cs2AgBiBr6, powder X-ray diffraction (PXRD) measurements 

were performed to investigate if the formation of side phases occurs. The powders for the 

PXRD measurements were obtained by scraping off Cs2AgBiBr6 films that had been annealed 

at different temperatures, see Figure 6-8a. 

 

Figure 6-8: a) PXRD pattern of powders obtained from Cs2AgBiBr6 films which were annealed at different 

temperatures for 600 s. b) PXRD pattern of powders obtained from Cs2AgBiBr6 films which were 

annealed at 300 °C for 450 s, 600 s or 1200 s. The asterisks and exclamation marks indicate reflections 

attributed to side phases, where the asterisks represent AgBr and the exclamation marks represent 

Cs2AgBr3. 

 

According to Figure 6-8a, side phase formation upon heating can be observed, where, 

depending on the annealing temperature, one or two different side phases, namely AgBr and 

Cs2AgBr3, are formed in small amounts. While AgBr vanishes with increasing temperature, 

which is consistent with previous studies,
36

 the intensities of Cs2AgBr3 reflections increase 

with increasing annealing temperature. A possible explanation for the formation of Cs2AgBr3, 

which was predicted to form under non-optimized conditions,
48

 could be the separation of 

Cs2AgBiBr6 into Cs2AgBr3 and BiBr3 at elevated temperatures. Since the annealing 

temperatures are close or even above the melting point of BiBr3, sublimation/evaporation of 

BiBr3 could also occur, which would explain the absence of BiBr3 reflections in the PXRD 

patterns.
49

 However, these results appear to be inconsistent with previous reports on single 

crystals (sizes at the order of millimeters) which revealed that the double perovskite is 

thermally stable up to temperatures of more than 350 °C.
28

 Our results suggest that 

Cs2AgBiBr6 crystals featuring small grain sizes of a few hundred nanometers (and associated 
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large surface area) may be less thermally stable than crystals with sizes at the order of 

millimeters. Moreover, as the heating step was performed under ambient conditions also a 

degradation of the double perovskite due to reactions with water and/or oxygen, which are 

always present in ambient atmosphere, could be conceivable. We note that a degradation of 

the double perovskite films  was not observed by Wu et al. although they perfomed the 

annealing step also under ambient conditions for the same time span we utilized, and although 

their films feature very similar crystallite sizes. This could be due to the different ways of 

measuring the PXRD pattern. While the present work shows PXRD pattern obtained from 

powders measured in transmission mode, Wu et al. shows XRD pattern of films measured in 

reflection mode. Since crystal orientation effects also play a role in the method used by Wu et 

al., reflections of the measured compound are typically not represented with their correct 

intensity distribution. Furthermore, reflections that are clearly visible in a pattern obtained by 

PXRD measurements in transmission mode, can completely vanish when measured in 

reflection mode. Thus, the absence of side phases in the XRD pattern presented by Wu et al. 

does not necessarily mean that no such phases were present within the film. Additional PXRD 

measurements of Cs2AgBiBr6 powders obtained from films annealed for different time spans 

(see Figure 6-8b) revealed no significant variation in the pattern, which indicates that the 

annealing temperature is more critical for the film properties than the annealing time – this is 

consistent with the observations regarding the lifetimes of the photoexcited species given in 

Figures 6-6a & b and 6-7a & b.  

To investigate the influence of the annealing temperature and the annealing time on the 

photovoltaic performance, our newly developed films were incorporated into planar 

heterojunction solar cells where the double perovskite layer is sandwiched between an 

electron transporting TiO2 layer and a spiro-OMeTAD layer that acts as a hole transporter 

with a gold electrode on top. All layers were deposited on an FTO substrate. A schematic of 

the device and an SEM cross-section image of a fully assembled device are given in Figure 6-

9a & b. 
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Figure 6-9: a) Schematic of an assembled planar heterojunction solar cell containing an active layer of 

Cs2AgBiBr6. b) SEM cross-section image of completely assembled solar cell. 

 

The SEM cross-section image depicted in Figue 6-9b reveals that the photoactive Cs2AgBiBr6 

layer is only about 100 nm thick, which is thinner than a typical lead halide perovskite based 

absorber layer.
50,51

 As mentioned before, the absorbance of our double perovskite films is 

slightly lower than that presented by Wu et al. (see Figure 6-5a). Accordingly, a lower 

performance of the devices assembled with our double perovskite films is expectable due to 

the lower amount of absorbed photons. However, as the absorption properties of our double 

perovskite films are just slightly lower than that of the double perovskite films presented by 

Wu et al., working solar cells could b expected. In case of Cs2AgBiBr6, the thickness of the 

films is limited by the relatively low solubility of the double perovskite in the utilized solvent. 

Nevertheless, the absorber layer shows a very homogeneous thickness without any visible 

defects which is mandatory for efficient photovoltaic devices. Accordingly, we were able to 

obtain working solar cells comprising our newly developed films. At first, the influence of the 

annealing temperature on the device performance was investigated. Hence, statistics of 120 

individual devices comprising Cs2AgBiBr6 films annealed at different temperatures are shown 

in Figure 6-10a-d.  
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Figure 6-10: a) Device performance of solar cells assembled with Cs2AgBiBr6 films that were annealed for 

10 minutes at different annealing temperatures as indicated; values obtained from 24 individual devices 

per temperature. b) Short-circuit current of solar cells assembled with Cs2AgBiBr6 films that were 

annealed for 10 minutes at different annealing temperatures as indicated; values obtained from 24 

individual devices per temperature. c) Open-circuit voltage of solar cells assembled with Cs2AgBiBr6 films 

that were annealed for 10 minutes at different annealing temperatures as indicated; values obtained from 

24 individual devices per temperature. d) Fill factor of solar cells assembled with Cs2AgBiBr6 films that 

were annealed for 10 minutes at different annealing temperatures as indicated; values obtained from 24 

individual devices per temperature. 

 

The values in Figure 6-10a clearly show that the device performance increases with increasing 

annealing temperature up to 300 °C. Regarding the characteristic values of the current-voltage 

(J-V) curves, the increase of the device performance is mainly attributed to an increase of the 

short-circuit current (Jsc), which points to an improved charge extraction from the double 

perovskite films. This matches well with the results regarding the PL intensity and the 

lifetimes of the photoexcited species discussed above. However, the performance of the solar 

cells comprising Cs2AgBiBr6 that were annealed at 325 °C seems to contradict the 

optoelectronic results because the films which were annealed at 325 °C show the longest 

decay times 3. As a long decay time is typically associated with well performing solar cells, 
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the best working devices could be expected for the double perovskite films which were 

annealed at 325 °C. As indicated by the PXRD patterns shown in Figure 6-8, a small degree 

of degradation proceeds with increasing annealing temperature, suggesting that an annealing 

temperature of 300 °C represents an optimum. Furthermore, the Cs2AgBiBr6 films slowly 

start to delaminate off the substrate at 325 °C, leading to a loss of the light absorption 

properties (see Figure 6-11), which results in a decreased device performance as shown in 

Figure 6-10a-d. 

 

Figure 6-11: Absorbance spectra of Cs2AgBiBr6 films annealed at either 300 °C or 325 °C for 10 minutes. 

As the absorption charactersitics do not differ significantly for annealing tempartures up to 300 °C, the 

graph 300 °C represents also the films which were annealed at lower temperatures. 

 

We note that solar cells comprising double perovskite films that appear phase pure according 

to the PXRD pattern in Figure 6-8a, do not show the best performance. This is most likely 

caused by the less optimal optoelectronic properties of these films. On the other hand, this 

indicates that possible negative effects on the device performance caused by the formation of 

side phases upon hot annealing can be, at least partially, compensated by the strongly 

improved optoelectronic properties induced by hot annealing. 

In the next step, the influence of the annealing time on the performance of the solar cells was 

studied. Accordingly, the statistics of 120 individual devices comprising double perovskite 

films that were annealed at 300 °C for different time spans are given in Figure 6-12a-d. 
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Figure 6-12: a) Device performance as a function of annealing time of solar cells assembled with 

Cs2AgBiBr6 films that were annealed at 300 °C, values obtained from 24 individual devices per 

temperature. b) Short-circuit current as a function of annealing time of solar cells assembled with 

Cs2AgBiBr6 films that were annealed at 300 °C, values obtained from 24 individual devices per 

temperature. c) Open-circuit voltage as a function of annealing time of solar cells assembled with 

Cs2AgBiBr6 films that were annealed at 300 °C, values obtained from 24 individual devices per 

temperature. d) Fill factor as a function of annealing time of solar cells assembled with Cs2AgBiBr6 films 

that were annealed at 300 °C, values obtained from 24 individual devices per temperature. 

 

As already indicated by the lifetimes of the photoexcited species, the effect of the annealing 

time on the device performance is less pronounced than that of the annealing temperature. 

Nevertheless, there is an observable trend in device performance, in particular for annealing 

times longer than 600 s. The specific values obtained from the corresponding J-V curves show 

that the decrease of the PCEs at longer annealing times is not caused by a decrease of a 

specific device parameter. In particular, the Jsc of the measured devices is very similar for all 

tested annealing times, which again shows that the major impact on the device performance is 

given by the annealing temperature. However, annealing for at least 600 s seems to make the 

device performance more robust, leading to a slightly improved device performance. The 

decrease of the device performance at longer annealing times, which was not expected by the 
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data obtained from the optoelectronic investigations, is most likely due to the slow 

disintegration of the double perovskite films over time, leading to a partial shunting of the 

devices and resulting in slightly decreased Voc´s and fill factors (FF), see Figure 6-12c &d.
52

  

According to the results obtained from the investigations of the annealing conditions, the 

optimized synthesis protocol featuring an annealing step at 300 °C for 10 minutes resulted in 

a champion solar cell exhibiting a PCE of about 1 % with a Voc of more than one volt and a Jsc 

of about 1.5 mA/cm
2
, see Figure 6-13.  

 

Figure 6-13: a) J-V curves of the forward and backward scan of the best performing device based on fully 

solution processed high quality Cs2AgBiBr6 films. The characteristic values for the different scan 

directions are given in the table underneath the J-V curves. 

 

Similar to previously reported J-V curves of Cs2AgBiBr6 based photovoltaics, the J-V curves 

of devices presented in this work also show a relatively strong hysteresis.
36

 Since hysteresis is 

a very common feature of lead halide perovskite based photovoltaics,
53–56

 many studies, 

experimental and computational, on the origin of the hysteresis in metal halide perovskite 

solar cells have been published. They revealed that several effects such as ion migration and 

trapping/de-trapping of charge carriers are likely to contribute to the hysteresis.
53,57,58

 

According to the crystal structure of Cs2AgBiBr6, which is similar to that of lead halide 

perovskites, related effects causing the hysteresis in double perovskite based photovoltaics 

might be expected. However, since the characteristic photovoltaic parameters of the 
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assembled devices, in particular Jsc and Voc, are close to those reported by Wu et al., our 

newly developed Cs2AgBiBr6 film processing methods constitute an attractive alternative 

approach for the generation of lead-free planar heterojunction perovskite solar cells. 

 

6.3 Conclusions 

 

We have demonstrated the preparation of high quality, fully solution processed Cs2AgBiBr6 

films based on an antisolvent drip without the need for an additional low pressure step. The 

extensive investigation of many different organic solvents revealed that iso-propyl ether 

features physical properties making it an excellent antisolvent for the reproducible production 

of homogeneous and pin-hole free double perovskite films. Studies of the annealing 

conditions showed that the optoelectronic properties can be drastically enhanced with 

increasing annealing temperature, indicating the possibility to tune the optoelectronic 

properties of Cs2AgBiBr6 films after film formation. The manufactured high quality films 

were incorporated into planar heterojunction solar cells, resulting in a PCE of the best 

performing device of about one percent. Furthermore, the characteristic values of the solar 

cells presented in this work are close to previously published values obtained for solar cells 

comprising double perovskite films made with an additional low pressure step. Since our 

newly developed Cs2AgBiBr6 films were manufactured under ambient conditions without the 

need for any costly additional step, we believe that this work paves the way for the efficient 

preparation of environmentally friendly high quality double perovskite films for diverse 

optoelectronic applications. 

 

6.4 Experimental section 

 

All chemicals were used as received without any further purification. All synthesis and 

annealing steps were conducted under ambient conditions except the application of the hole 

transporting layer  (HTL) which was performed in a nitrogen-filled glove box. 

Substrate preparation 

Fluorine-doped tin oxide (FTO)-coated glass sheets (7 Ωsq
-1

, Pilkington, USA, 12 cm x 12 cm 

in size) were patterned by etching with zinc powder and 3 M HCl. They were subsequently 
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cleaned with a 2% Hellmanex solution and rinsed with deionized water and ethanol. 

Afterwards the (FTO)-coated glass sheets were cut down to substrates of 3 cm x 3 cm in size. 

Directly before applying the blocking layer, remaining organic residues were removed by an 

oxygen plasma treatment for 5 min. A compact titanium dioxide (TiO2) layer was deposited 

by spin-coating a sol-gel precursor solution at 2000 rpm for 45 s followed by subsequent 

annealing at 500 °C for 45 min. For preparing the sol-gel solution, a 27.2 mM (70 µL) 

solution of HCl in 2-propanol (5 mL) was added dropwise to a vigorously stirred 0.43 mM 

(735 µL) solution of titanium isopropoxide (99.999%, Sigma–Aldrich) in 2-propanol (5 mL).  

Perovskite film preparation  

The precursor solution was prepared by dissolving 224 mg BiBr3 (0.5 mmol, ≥ 98%, Sigma 

Aldrich), 94 mg of AgBr (0.5 mmol, 99.5%, Alfa Aesar) and 212 mg CsBr (1.0 mmol, 99 %, 

Alfa Aesar) in dimethylsulfoxide (1 mL, DMSO, anhydrous, 99.9%, Sigma-Aldrich). The 

precursor solution was heated to about 150 °C to ensure complete dissolution of the 

precursors. Afterwards, the clear, yellow solution was allowed to cool down to room 

temperature. 100 µL of the precursor solution was spin-coated onto the TiO2-covered 

substrate employing a two-step spinning procedure. In the first step, the substrate was spun 

with 1000 rpm for 10 s followed by a spinning step at 4000 rpm for 30 s. After approximately 

3s after starting the spinning process, the precursor solution was added. The antisolvent was 

added 10 s before the end of the second, fast spinning step. The substrates were subsequently 

annealed at 300 °C for 10 min under ambient conditions by putting the substrates, which are 

coated with the double perovskite films, on a temperature-controlled hot plate placed in a 

fume hood to improve the optoelectronic properties of the prepared films. The temperature for 

this step was also varied to identify the optimal conditions.  

Solar cell fabrication  

After film formation, the films were covered with a HTL of 2,2',7,7'-tetrakis-(N,N-di-4-

methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD, Borun Chemicals, 99.5% 

purity). The HTL solution was prepared by dissolving 73 mg of spiro-OMeTAD in 

chlorobenzene (1 mL, 99.8%, Sigma–Aldrich). The solution was filtered and mixed with 4-

tert-butylpyridine (10 µL, TBP, 96% Sigma Aldrich) and a 173 mg mL
-1

 

bis(trifluoromethane)sulfonamide lithium salt (LiTFSI, 99.95%, Sigma–Aldrich) solution in 

acetonitrile (30 µL). This solution was spin-coated dynamically at 1500 rpm for 45 s. In a 

second step the sample rotation was accelerated to 2000 rpm for 5 s to allow the solvent to dry 
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completely. Finally, 40 nm thick gold electrodes were thermally deposited under a high 

vacuum on top of the device. 

Characterization 

PXRD measurements were performed in transmission mode on a STOE Stadi MP 

diffractometer with a Cu Kα1 radiation source (λ = 1.54060 Å) operating at 40 kV and 40 

mA. The diffractometer was equipped with a DECTRIS MYTHEN 1K solid-state strip 

detector. Scanning electron microscopy (SEM) images were acquired on a FEI Helios 

NanoLab G3 UC microscope. The sample was fixed by silver paste. For the optical 

characterization, precursor solutions were prepared similar to those used for the devices. 

Similar deposition conditions were also chosen. For UV-Vis, PL and TCSPC measurements 

the films were prepared on glass substrates. Steady-state absorption spectra were acquired 

with a Lambda 1050 UV-Vis spectrophotometer (Perkin Elmer) using an integrating sphere. 

Steady state and time resolved PL measurements were conducted with a Fluotime 300 

Spectrofluorometer (Picoquant GmbH). The excitation wavelength was fixed at 405 nm. The 

emission for time-resolved measurements was monitored at 630 nm, being the wavelength of 

the maximum intensity of the steady state photoemission. J-V curves were recorded with a 

Keithley 2400 sourcemeter under simulated AM 1.5 sunlight, calibrated to 100 mW cm
−
² with 

a Fraunhofer ISE certified silicon cell. The active area of the solar cells was defined with a 

square metal aperture mask of 0.0831 cm
2
.  
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7 Conclusions 
 

This thesis focused on the investigation and processing of lead-free perovskite related 

materials for applications in optoelectronic devices. In the first part, the tin based hybrid 

perovskites (BuA)2SnI4 and (PEA)2SnI4 comprising the large ammonium cations BuA and 

PEA were investigated for their viability to perform in optoelectronics and for their moisture 

stability. It turned out that the investigated compounds feature optoelectronic properties that 

are different from their lead-based counterparts, making them suitable for applications as top 

cell in a tandem solar cell assembly and in light emitting devices such as LEDs. Moisture 

stability studies revealed that ammonium cations featuring large hydrophobic cations can 

strongly enhance the stability of tin-based perovskites, similar to their lead-based 

counterparts. However, in contrast to their lead-based relatives, the choice of the organic 

residue of the ammonium cation in order to improve the moisture stability is much more 

critical for the tin containing compounds.  

Besides the toxicity of the lead-based perovskite, the toxicity of the solvents utilized for the 

preparation of perovskite thin films was also addressed. Accordingly, a mixture of two new 

solvents, namely MeOH and 1-4-dioxane, which are less hazardous than the commonly 

utilized solvents DMF and DMSO, was employed for the formation of lead-free MASnI3 

films. The ratio of the two solvents in the mixture was shown to be essential to enhance the 

solubility of SnI2 without simultaneously precipitating the perovskite. Films prepared from 

solutions comprising the optimal solvent ratio feature an excellent morphology with a surface 

coverage of 100 %. Solar cells assembled with films made by the newly developed route 

outperformed devices made by conventional one step deposition routes based on DMF or 

DMSO precursor solution, which can mainly be attributed to the high quality of the films 

prepared by the less hazardous route.  

Due to the high sensitivity of tin(II) halide-based hybrid perovskites towards oxidation, an 

alternative stable lead-free material, which features a double perovskite structure with the 

composition Cs2AgBiBr6, was investigated for its viability to perform in optoelectronic 

devices. Accordingly, a synthesis route for the deposition of double perovskite films via the 

spin-coating method was developed. Considering the low solubility of Cs2AgBiBr6, it was 

shown that the optical absorption properties of the prepared films, which are important for 

efficient light harvesting of the resulting solar cells, can be enhanced by preheating the 
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substrate and the precursor solution prior the spin-coating. Furthermore, it turned out that hot 

annealing at temperatures higher than 250 °C was necessary to obtain phase-pure Cs2AgBiBr6 

films. The viability of Cs2AgBiBr6 for optoelectronic applications was demonstrated by 

incorporating the double perovskite films into photovoltaic devices. Devices comprising 

Cs2AgBiBr6 films made by the optimized synthesis protocol exhibited encouraging power 

conversion efficiencies close to 2.5 % with a high open-circuit voltage of more than 1 V, 

which is so far the highest voltage obtained with a lead-free perovskite-based solar cell. 

Furthermore, stability tests revealed an excellent stability of the assembled devices under 

working conditions, even surpassing the stability of lead halide perovskite-based 

photovoltaics.  

Since the performance of a photovoltaic device strongly depends on the quality of the 

photoactive layer, a new route for the synthesis of high quality Cs2AgBiBr6 films based on the 

addition of an antisolvent to precipitate the double perovskite crystals was developed. 

Extensive studies with many different organic solvents revealed that iso-propyl ether is a 

proper antisolvent for the preparation of smooth, homogeneous and pin-hole free double 

perovskite thin films. We showed that trap states being introduced by the rapid film formation 

can be efficiently removed by hot annealing at 300 °C, leading to drastically increased 

lifetimes of the photo-excited species within the double perovskite film. Accordingly, films 

that were integrated in planar heterojunction solar cells showed an increase of the 

performance with increasing annealing temperature, resulting in promising power conversion 

efficiencies of about one percent. 

In view of the still relatively low performance of lead-free perovskite based photovoltaics 

compared to their lead-based counterparts, there is still much research needed to make the 

efficiencies of lead-free perovskite-based solar cells competitive with commonly used devices 

such as silicon-based technologies. However, considering that the investigation of lead-free 

perovskites for photovoltaic applications is just at the very beginning and regarding the rapid 

development of lead halide-based solar cells during the last six years, which resulted in 

perovskite-based solar cells with efficiencies similar to silicon solar cells, a significant 

improvement of lead-free perovskite based photovoltaics can be expected in the near future. 
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