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Summary

New methods to efficiently calculate energetics and first order-properties for mean-
field and correlated electronic structure theories are presented. In linear-scaling
short-range hybrid calculations new integral screening criteria exploiting the local-
ity of the attenuated Coulomb operator are introduced that allow to significantly
increase the performance of these density functionals. This enables short-range hy-
brid calculations at a similar cost as pure semi-local density functional theory (DFT)
calculations with increased accuracy due to the admixture of exchange. At the level
of correlated electronic structure theory, the realm of systems which can be calcu-
lated with a linear-scaling random-phase-approximation (RPA) method is extended
with a novel multi-node parallel algorithm. Furthermore, more efficient quadrature
schemes are used based on the equivalence of the employed integral transforms with
the Fourier transform of the non-interacting polarizability. In combination with a
new way to introduce Cholesky orbitals this results in a more effient and numerically
more accurate linear-scaling RPA correlation energy method with improved memory
requirements. Combining these techniques further with an approach to calculate an-
alytical first order properties using quantities from many body perturbation theory,
allows to present a low-scaling method that gives access to RPA gradients for molec-
ular systems with several hundred atoms. Moreover linear- and low-scaling methods
to calculate different beyond RPA correlation energies are devised, exploiting the
locality of exchange type contractions. This enables to apply these more accurate
RPA methods to significantly larger systems, which allows to demonstrate the gain
in accuracy for large, dispersion dominated systems. The newly developed methods
extend the scope of RPA and RPA with exchange correlation energies, and first or-
der RPA properties significantly, while the accuracy is under full numerical control.
Furthermore, there is no overhead to the respective canonical algorithm, making the
presented methods competitive also for small system sizes. Finally, a new beyond
RPA scheme is presented that combines the benefits of plain RPA and RPA with
second-order screened exchange, leading to a more balanced, highly accurate post
Kohn-Sham method.
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Chapter 1

Introduction

The overarching goal of quantum chemistry is to reliably predict or complement
experimental data. The two requirements that result from this goal are accurate
theoretical methods and the availability of efficient algorithms to obtain valuable
insights for large and complex systems. The perhaps most central equation of quan-
tum chemistry is the Schrödinger equation [1] in the Born-Oppenheimer approx-
imation [2]. While a route to the numerically exact solution of the Schrödinger
equation has been known for decades by the means of Full-CI (FCI), this approach
is limited to the smallest molecules and atoms due to its prohibitive computational
cost. On the other side of the spectrum, the Hartree-Fock (HF) method [3–5], as
the simplest approach to an approximate solution of the Schrödinger equation, is
nowadays routinely applicable to systems with thousands of atoms. The HF method
fails, however, to accurately describe experimental observables.

Quantum chemistry has been focussing on bridging the gap between accuracy
and computational efficiency. Two main avenues have emerged to tackle this prob-
lem. On the one hand, wave function based methods aim for a correction to the
HF Slater determinant or use a more sophisticated ansatz for the wave function.
As they are derived directly from first principles and do not contain any empirical
parameters, they are typically highly accurate and can be benchmarked reliably.
The downside of these methods is that they are usually computationally very in-
volved. On the other hand, density functional theory (DFT) in its simplest form has
a comparable computational cost to HF. While there are areas of applications where
the accuracy of DFT rivals the accuracy of wave function based methods, DFT has
a variety of limitations. As DFT functionals often contain fitted parameters, their
transferability can be limited [6]. Furthermore, there are intrinsic problems that
seem to be uncircumventable in the realm of pure DFT such as the lacking descrip-
tion of dispersion [7, 8], or in general non-local phenomena.

In the past years, methods based on the adiabatic-connection fluctuation-dissipa-
tion theorem (ACFDT) [9–11], the simplest being the random-phase-approximation
(RPA) [12], have regained popularity as electronic-structure methods. While the
adiabatic-connection (AC) is a concept which has been used widely to derive DFT
functionals, these methods also show characteristics of wave function based meth-
ods. The ACFDT methods are derived from first principles and contain no empirical
parameters. In comparison to other wave function methods the RPA in its modern
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formulation [13] is a fairly low-cost electron correlation method improving certain
problems of DFT, e.g., the abovementioned limited transferability and the prob-
lems in describing dispersion effects [14, 15]. Furthermore, using tools from time-
dependent DFT or many-body perturbation theory, more sophisticated ACFDT
methods can be derived that improve upon the RPA. The first step is the inclusion
of exchange effects. This makes ACFDT methods an interesting field at the border
of DFT and wave function theory giving access to a class of non-empirical, highly
accurate DFT functionals with reasonable computational cost.

Before the present work, a formulation of RPA correlation energies [16, 17] has
been introduced where the computation time scales linearly with the system size,
allowing for the treatment of systems with up to 1000 atoms. More sophisticated
ACFDT methods, such as RPA with exchange schemes and properties at the RPA
level of theory were still limited to small systems. This thesis extends the field of
ACFDT methods in three directions. First, it improves the numerical accuracy and
further extends the range of systems accessible to RPA correlation energies. Second,
it presents an efficient method to calculate analytical first order properties at the
RPA level of theory for molecules with hundreds of atoms, which is indispensable for
theoretical studies. Third, it extends the class of RPA with exchange methods by
introducing a new RPA with short-range second-order screened exchange functional,
and presents linear and low-scaling methods to calculate beyond RPA correlation en-
ergies for large systems. Finally, not in the field of ACFDT, new screening methods
are devised allowing for more efficient, linear-scaling short-range hybrid calculations,
making this class of DFT functionals a more accurate, yet computationally similarly
costly alternative to pure DFT.

This work is a cumulative dissertation with Publications I-V in Chapter 3
being the main part of this disseration. In Chapter 2, an overview of modern elec-
tronic structure theory including the theoretical foundations of this work is given.
Furthermore, the techniques employed to obtain the efficent, yet accurate electronic
structure methods presented in this work are introduced. Finally, Chapter 4 con-
cludes this work. A short introduction to each publication is given below.

In Publication I new screening methods are introduced to significantly opti-
mize the efficiency of short-range hybrid DFT calculations, a class of DFT func-
tionals that employ a fraction of short-range exact-exchange. The calculation of
the short-range exact-exchange contribution increases the accuracy in comparison
to pure DFT functionals. The calculation of short-range exact-exchange is then,
however, also the most expensive step of the calculation. Combining new integral
estimates for the arising short-range electron repulsion integrals with state-of-the-art
linear-scaling exchange methods significantly reduces the computational demand of
short-range hybrid DFT, making it similar in cost to the less accurate pure DFT
methods. Screening schemes for both classical CPU and GPU computing architec-
tures are presented.

The remainder of this thesis is concerned with developments in the field of
ACFDT methods. Publication II optimizes the previously most efficient method
to calculate RPA correlation energies [16, 17] in three ways. First, the accuracy of
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the employed integral transforms and, therefore, of the linear-scaling RPA method,
is drastically increased by realizing the equivalence of these transforms with the
Fourier transform of the non-interacting polarizability, a central quantity in RPA
calculations. This optimized transformation not only increases the accuracy, but
also reduces the complexity of the calculation by a factor of four, leading to a signif-
icant speedup. Second, the memory requirements are reduced by a new scheme to
introduce local Cholesky orbitals using solely the ground state one particle density
matrix. Finally, a multi-node parallel algorithm is presented that allows to exploit
the benefits of modern distributed computing architectures. These developments
combined allow to study the layering of covalent organic frameworks, a type of sys-
tem that was far out of reach of RPA correlation energy calculations beforehand.

As for the study of chemical phenomena access to properties beyond the ground
state energy are indispensable, Publication III presents a low-scaling method to
calculate RPA analytical gradients for large molecular systems. Employing a se-
ries of Fourier transforms of the non-interacting polarizability and the correlated
screened Coulomb interaction in the calculation of the self-energy to optimally ex-
ploit the locality of the respective many-body quantities allows for an asymptotic
quadratic scaling analytical gradient method. In comparison to the previously avail-
able quartic scaling RI-RPA gradient method [18], this extends the availability of
analytical gradients to systems with up to 600 atoms. Due to the optimized quadra-
ture schemes and the use of a compact Cholesky orbital basis, the new method is
superior for all system sizes.

While the RPA already significantly increases the accuracy of conventional DFT
methods, it has a variety of short comings that can be traced back to the neglect of
exchange contributions in the correlation energy. In comparison to the RPA, which
is a well defined approximation, it is not straightforward to formulate a ubiquitously
applicable RPA with exchange method. The most rigorously derived RPA with ex-
change methods suffer from the so called triplet instability [19]. Therefore, there is
a need for approximate RPA with exchange methods. One popular approach is the
second-order screened exchange (SOSEX) method [20–22], which reduces the self-
correlation present in RPA correlation energies. In doing so, it however sacrifices
the good description of static correlation in stretched molecules of plain RPA [23].
By modifying the SOSEX method to only correct the RPA at short-range distances,
a new approximate RPA with exchange scheme is presented in Publication IV.
The new short-range SOSEX correction results in a more balanced performance of
the new method, as exemplified by its superior performance for barrier heights and
systems prone to self-interaction error in comparison to both RPA and conventional
RPA-SOSEX. Therefore, this method represents a promising new avenue to highly
accurate beyond RPA correlation energies.

While the inclusion of exchange effects is crucial to correct the short comings
of the RPA, it also drastically increases the computational cost of these methods.
While before this thesis RPA with exchange schemes were only accessible to small
molecules, linear- and low-scaling methods were devised in Publication V that
are applicable to almost all different RPA with exchange methods. These methods
have extended the realm of RPA with exchange methods to systems containing up
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to 500 atoms. This is facilitated by the use of the time-domain representation of
the non-interacting response function. Furthermore, Cholesky orbitals and novel
integral estimates for the correlated screened Coulomb interaction are introduced.
These developments combined allow to test the accuracy of RPA-SOSEX for large,
dispersion dominated systems [24], drastically outperforming other electron correla-
tion methods, such as MP2.

The research presented in this thesis significantly contributes to the field of DFT
and in particular ACFDT methods. The efficient access to RPA and beyond RPA
correlation energies, first order RPA properties and the newly developed short-range
RPA-SOSEX method adds to the development of highly accurate alternatives to
conventional DFT that are applicable to a wide range of chemical systems.



Chapter 2

Theoretical Basis

A large part of quantum chemistry is concerned with an approximate, compu-
tationally efficient solution of the time-independent electronic Schrödinger equa-
tion [1] in the Born-Oppenheimer approximation [2]. This chapter first gives a short
overview of the different avenues to compute approximate solutions to the electronic
Schrödinger equation, which constitute modern electronic structure theory. Then
density functional theory and the adiabatic-connection are introduced in more de-
tail. From the adiabatic-connection, the inclusion of exact exchange into DFT is
motivated, which defines the field of hybrid DFT. Furthermore, the correlation en-
ergy in the adiabatic-connection fluctuation-dissipation theorem is derived, which is
the starting point for correlation energies within the random-phase-approximation
and beyond.

The remainder of this chapter introduces numerical approximation schemes that
allow to lower the computational complexity of expensive correlation energy calcu-
lations. In particular it is shown that expressing correlation energies in terms of
the non-interacting Green’s function, in a compact and local Cholesky-decomposed-
density (CDD) atomic orbital (AO) basis in imaginary time allows for low-scaling
calculations without computational overhead to the respective canonical theory.

The combination of these topics forms the basis for the research on DFT and
ACFDT methods presented in the next chapter.

2.1 Basis of Modern Electronic Structure Theory

The numerically exact solution of the electronic, time-independent Schrödinger
equation in the Born-Oppenheimer approximation [2]

Ĥ |Ψn〉 = En |Ψn〉 , (2.1)
Ĥ = T̂el + V̂eN + V̂ee + V̂NN, (2.2)

with the Ritz method [25] is commonly referred to as FCI (for a review see, e.g.,
Ref. [26]). In this approach the wave function is expanded in the complete set of
Slater-Determinants

|ΨFCI
0 〉 =

∑
i

ci |Φi〉 (2.3)



6 2. Theoretical Basis

within a given basis set. With this ansatz, Eq. 2.1 is solved by diagonalization.
Since the computational cost of this approach scales exponentially with the basis
set size, it is limited to light atoms and the smallest molecules. Therefore, approx-
imate yet accurate methods are required to tackle the many-body problem. This
research question defines the field of electronic structure theory. In the following,
the milestones that lay the foundation of modern quantum chemistry are briefly
outlined.

2.1.1 Hartree-Fock Theory

The Hartree-Fock method [3–5] was historically one of the first successful approx-
imation schemes, and is still widely used today, also as a starting point for more
accurate electronic structure methods. It is defined by the use of a single Slater-
Determinant (SD) of one-electron molecular orbitals (MOs) with Nel (number of
electrons) spatial-spin coordinates xi = (ri, σi) as an ansatz for the wave function

ΦSD
0 (x1, x2, . . . , xNel

) =
1√
Nel

∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2) . . . ϕ1(xNel

)
ϕ2(x1) . . . . . .
. . . . . . . . .

ϕNel
(x1) . . . . . . ϕNel

(xNel
)

∣∣∣∣∣∣∣∣ . (2.4)

Variational minimization of the expectation value of the Hamiltonian

EHF
0 =

〈ΦSD
0 | Ĥ |ΦSD

0 〉
〈ΦSD

0 |ΦSD
0 〉

(2.5)

with respect to the one-electron functions in the SD under the orthonormality con-
straint of the MOs leads to the well known canonical HF equations

F̂ϕi(x1) = εiϕi(x1), (2.6)
F̂ = T̂ + V̂N + Ĵ + K̂, (2.7)

T̂ = −
~∇2

2
, (2.8)

V̂N = −
NN∑
A

ZA
r1A

, (2.9)

Ĵ =

Nel∑
j

∫
dx2ϕ

∗
j(x2)

1

r12
ϕj(x2), (2.10)

K̂ = −
Nel∑
j

∫
dx2ϕ

∗
j(x2)

P̂

r12
ϕj(x2) (2.11)

for a system with NN nuclei with charges ZA. Atomic units are used throughout
this thesis. Eq. 2.6 can be solved routinely with the introduction of basis functions
in the Roothan-Hall scheme [27, 28]. The most prominent families of basis func-
tions in modern electronic structure theory are Gaussian type orbitals [29], which
are found mainly in the field of molecular quantum chemistry, and plane-waves
in solid-state physics. The HF ansatz is the simplest method which captures the
correct anti-symmetry of an electronic wave function. With this, it also includes
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non-classical same-spin electronic correlation effects, which are referred to as ex-
change interactions. The exchange-interactions manifest in the exchange-operator
K̂, where P̂ permutes the coordinate in the operator with the coordinate in the
function it acts on. As the HF equations are, however, single particle equations, the
electron-electron interaction is only described at the mean-field level through the
Coulomb Ĵ and exchange K̂ operators.

2.1.2 Electron Correlation

While the HF approach captures the majority of the FCI total energies, it typi-
cally fails to achieve quantitatively accurate results for observable quantities. The
remaining part of the energy that is missing in the HF description was defined by
Löwdin [30] as electron correlation. It is one of the biggest open research questions
in quantum chemistry to devise computationally efficient approaches to describe
electron correlation.
The conventional avenue to tackle the electron correlation problem are so called
wave function based methods, among which the most popular textbook exam-
ples are Møller-Plesset second-order perturbation theory (MP2) [31] and Coupled-
Cluster [32, 33] theory. The Coupled-Cluster (CC) ansatz, which is defined by an
exponential parameterization of the wave function in terms of excitations with ref-
erence to the HF-SD, leads systematically to the FCI result if all excitations levels
are incorporated. As this again leads to exponential computational requirements,
practical CC calculations truncate the excitation level, which leads to polynomial
scaling algorithms such as CC with single and double excitations (CCSD). Here,
one trades computational efficiency for accuracy. Over the years, the CCSD method
including perturbative triples (CCSD(T)) [34], established itself as the so called gold
standard of quantum chemistry, since it delivers chemically accurate (≈ 1 kcal/mol)
results for a wide range of problems. In its canonical formulation CCSD(T) scales as
O(N7) with the molecule size N , which limits its applicability to small and medium
sized systems.
The electron correlation present in the type of chemical systems for which CCSD(T)
and CC or MP2 methods in general deliver accurate results is dominated by dynamic
correlation effects. Dynamic correlation arises from electron scattering effects, which
are missing in the mean-field treatment of the electron-electron interaction in HF.
Static correlation on the other hand describes correlation effects which originate
from the fact that in these cases the wave function requires a multi-determinantal
description. For systems dominated by static correlation, all methods that start from
one determinant are usually inadequate, and one has to ressort to multiconfigura-
tional methods [35] such as complete-active-space self-consistent-field (CAS-SCF)
calculations, potentially with an on top dynamic correlation treatment such as CAS
second-order perturbation theory (CAS-PT2) [36, 37].
In their canonical formulation all the methods described in this section scale at least
as O(N5) with respect to the system size. Furthermore, correlated calculations show
slow convergence with the basis set size (see, e.g., Ref. [38]). These two facts com-
bined explain the steep computational scaling of wave function based correlation
methods, which hamper their widespread application. A variety of techniques exist
to accelarate the canonical algorithms of abovementioned theories, some of which
will be discussed in Section 2.5. Nevertheless, tackling large molecular systems with
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significantly more than 1000 atoms, or calculating multiple thousands of energies,
as, e.g., required in molecular dynamics simulations, with wave function based corre-
lation methods is not yet possible with the computing resources typically available
to quantum chemistry researchers. For these cases, the typical method of choice
is DFT, which has similar computational complexity as HF, includes, however, an
approximate description of electron correlation.

2.1.3 Density Functional Theory

An alternative approach to wave function theories is density functional theory. The
formulation of DFT nowadays is based on the work of Hohenberg, Kohn and Sham.
The foundations of DFT were laid by the Hohenberg-Kohn theorems in 1964 [39].
The first theorem states that there is a one to one correspondence between the
ground state density and the external potential Vext(r). Since the ground state den-
sity determines the number of electrons, it also fixes the ground state wave function
and all ground state properties. Thus, the ground state energy is a functional of
the ground state density, for which the second Hohenberg-Kohn theorem states a
variational principle. In principle one could, therefore, solve for the ground state
energy through functional minimization of

E[n] =

∫
drn(r)Vext(r) + FHK[n], (2.12)

n(r1) =

∫
. . .

∫
dσ1dx2 . . . dxNel

|Ψ0(x1, x2, . . . , xNel
)|2, (2.13)

where FHK[n] is the unknown Hohenberg-Kohn functional and n(r) the ground-state
density. For the discussion of N−, v−representability and the constrained search
formalism the reader is referred to a standard textbook on the subject [40]. As the
ground state density is a much simpler object than theN -electron wave function, this
might lead to a computationally significantly less involved procedure to determine
the ground state energy. The caveat is, however, that the exact Hohenberg-Kohn
functional is unknown and approximations to the exact functional are necessary.
Basically all of the nowadays highly succesful DFT approaches are based on the
Kohn-Sham (KS) formulation of DFT [41]. The idea of Kohn and Sham was to
introduce a non-interacting SD |ΦKS

0 〉, which yields the same ground state density
as the interacting system and is determined through minimization of the functional

E[n] = Ts[n] + EH[n] + Eext[n] + Exc[n], (2.14)

Ts[n] = −
Nel∑
i

∫
dxϕ∗i (x)

~∇2

2
ϕi(x), (2.15)

EH[n] =
1

2

∫ ∫
dr1dr2

n(r1)n(r2)

r12
, (2.16)

Eext[n] =

∫
drn(r)Vext(r), (2.17)

Exc[n] = T [n]− Ts[n] + Vee[n]− EH[n], (2.18)

with an orthonormality constraint for the MOs. This has the advantage that most
of the kinetic energy (Eq. 2.15) of the system and the Hartree repulsion (Eq. 2.16)
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can be represented exactly and only the missing part of the kinetic energy (T [n]−
Ts[n]) and the electron-electron interaction (Vee[n]−EH[n]) have to be approximated
through Exc[n]. minimization of Eq. 2.14 with an orthonomality constraint for
the MOs leads to the following system of one-particle equations analogous to the
canonical HF equations (Eq. 2.6)

ĥKSϕi(x1) = εiϕi(x1). (2.19)

In case the external potential Vext matches the nuclear potential VN, the one-particle
Kohn-Sham Hamiltonian is given as

ĥKS = T̂ + V̂KS, (2.20)
V̂KS = V̂N + V̂J + V̂xc = VKS(r), (2.21)

V̂J =

∫
dr2

n(r2)

r12
, (2.22)

V̂xc =
∂Exc[n(r)]

∂n(r)
= Vxc(r), (2.23)

where the local and multiplicative exchange-correlation potential Vxc is given as
the functional derivative of the exchange-correlation functional, which still needs
to be approximated. In this formulation, DFT promises an exact solution to the
ground-state Schrödinger equation with similar computational complexity as the HF
scheme, if the exchange-correlation potential were known.

2.1.4 Jacob’s-Ladder of Density Functional Theory

The Jacob’s-Ladder of DFT introduced by Perdew [42] describes a hierarchy of
DFAs, where DFAs on a higher rung incorporate more ingredients into the approx-
imate exchange-correlation functional. Going up Jacob’s ladder therefore leads to
increased computational cost, but ideally also to more accurate results. In total,
there are five rungs on Jacob’s ladder, the lowest one being functionals that solely
take the electron density n(r) as an input. These functionals are known as local
density approximations (LDA). The next rung of DFAs is known as generalized-
gradient-approximations (GGA), which in addition to the LDA include the gradient
of the density. The third rung functionals include occupied orbitals in the form of,
e.g., the kinetic-energy gradient and the fourth rung in form of a fraction of exact
exchange (Eq. 2.34). DFAs of the third rung are known as meta-GGA functionals
and the fourth rung as hybrid functionals. As meta-GGAs are, strictly speaking,
implicit density functionals due to the appearance of MOs and hybrid functionals
do not employ local, multiplicative exchange-correlation potentials, they fall in the
realm of the generalized Kohn-Sham (GKS) scheme [43]. Finally the fifth rung is
defined by the use of virtual orbitals. This can be in the form of, e.g., a second-order
perturbation correction (PT2) [44] or random-phase-approximation (RPA) correla-
tion energies, which are typically calculated as a post KS correction to a preceding
self-consistent DFT calculation with one of the DFAs belonging to rungs I-IV.
The research presented in this thesis extends and optimizes the computational ef-
ficiency of DFAs belonging to the fourth and fifth rung of Jacob’s ladder. As the
adiabatic-connection can be seen as the basis for both hybrid DFT and ACFDT
correlation energies it is derived in the next section. Section 2.3 will go into more
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detail of hybrid DFT and especially range-separated hybrid DFT calculations, which
is the topic of Publication I. Then the RPA and beyond RPA approaches within
the ACFDT framework are introduced in Section 2.4, which are the subject of Pub-
lications II-V.

2.2 Adiabatic-Connection
The adiabatic-connection is a very important and successful concept in DFT for the
derivation of exchange-correlation functionals. While the AC was first introduced
by Gunnarson and Lundqvist [9] and Langreth and Perdew [10, 11], the derivation
here follows the textbook approach of Engel and Dreizler [45]. The AC relies on a
coupling-strength Hamiltonian

Ĥλ = T̂ + λV̂ee + V̂ λ, (2.24)

where V̂ee is the exact electron-electron interaction and V̂ λ consists of a local, multi-
plicative potential. The coupling-strength parameter λ transforms the Hamiltonian
from the non-interacting case at λ = 0 to the fully-interacting case at λ = 1. The
local, multiplicative potential V̂ λ is defined such that the coupling strength Hamil-
tonian Ĥλ yields the same ground state density n for each value of λ and therefore
reduces to the external potential V̂ext (V̂N, Eq. 2.9, in the absence of another field)
for λ = 1 and to V̂KS for λ = 0. Furthermore, the normalized, coupling-strength
dependent ground state Ψλ

0 is given as the eigenfunction of Ĥλ

Ĥλ |Ψλ
0〉 = Eλ

0 |Ψλ
0〉 , (2.25)

1 = 〈Ψλ
0 |Ψλ

0〉 . (2.26)

The interacting ground state is given as Ψλ=1
0 and Ψλ=0

0 = ΦKS
0 corresponds to the

non-interacting KS-SD. Now, a formula for the interacting ground state energy can
be derived by employing the identity

E1
0 − E0

0 =

∫ 1

0

dλ
∂

∂λ
〈Ψλ

0 | Ĥλ |Ψλ
0〉 . (2.27)

Using the Hellman-Feynman theorem [46], which is valid along the coupling-strength
path gives

E1
0 − E0

0 =

∫ 1

0

dλ 〈Ψλ
0 | V̂ee +

∂V̂ λ

∂λ
|Ψλ

0〉 (2.28)

=

∫ 1

0

dλ 〈Ψλ
0 | V̂ee |Ψλ

0〉+

∫ 1

0

dλ

∫
drn(r)

∂V λ(r)

∂λ
(2.29)

Inserting the limits for V̂ λ at λ = 0 and λ = 1 allows to write

E1
0 − E0

0 =

∫ 1

0

dλ 〈Ψλ
0 | V̂ee |Ψλ

0〉+

∫
drn(r)[Vext(r)− VKS(r)]. (2.30)

With the non-interacting energy expression

E0
0 = 〈ΦKS

0 | Ĥ0 |ΦKS
0 〉 = 〈ΦKS

0 | T̂ |ΦKS
0 〉+

∫
drn(r)VKS(r), (2.31)
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the ground state energy can be written as

E1
0 = 〈ΦKS

0 | T̂ |ΦKS
0 〉+

∫
drn(r)Vext(r) +

∫ 1

0

dλ 〈Ψλ
0 | V̂ee |Ψλ

0〉 . (2.32)

Comparing Eq. 2.32 with Eq. 2.14 allows to identify the exchange-correlation energy
Exc after subtracting the Hartree-repulsion (Eq. 2.16)

Exc =

∫ 1

0

dλ 〈Ψλ
0 | V̂ee |Ψλ

0〉 −
1

2

∫ ∫
dr1dr2

n(r1)n(r2)

r12
. (2.33)

The result in Eq. 2.33 serves as the starting point for a variety of DFAs [47–49]. For
the construction of LDA and GGA functionals one usually evaluates Eq. 2.33 for
the model systems of the homogenuous electron gas or the slowly varying electron
gas to construct exchange-correlation functionals, which depend only on the density
or the gradient of the density. One popular example for such a functional is, e.g.,
the VWN correlation functional [47].
Eq. 2.33 is also the foundation of all the research presented in this thesis. If one ex-
pands the coupling-strength integrand in λ in the non-interacting limit (i.e., λ → 0)
one obtains the exact exchange energy EX expression in terms of KS orbitals

EX = −1

2

Nel∑
i,j

∫ ∫
dx1dx2

ϕ∗i (r1)ϕ
∗
j(r2)ϕi(r2)ϕj(r1)

r12
, (2.34)

as the first non-vanishing term. This was the motivation of Becke [48] to estab-
lish the class of hybrid DFT functionals including a fraction of KS exact exchange.
Range-separated hybrid DFT is a special case of hybrid DFT where the admixture
of exchange is different at different length scales. Publication I is concerned with
short-range hybrid functionals, where short-range exact exchange is employed to-
gether with long range KS exchange. More details are given in Section 2.3
Furthermore, Eq. 2.33 is the basis of all correlation energy formulas used in the
context of RPA and RPA with exchange schemes, where the coupling-strength inte-
grand is evaluated with the use of approximate response functions of the system at
hand. This is the topic of Section 2.4.

2.3 Hybrid Density Functional Theory
While pure KS-DFT has produced very successful DFAs such as, e.g., the Perdew-
Burke-Ernzerhof (PBE) functional [50], it has its limitations. The problems of pure
DFT can, e.g., be seen in the relatively weak performance for thermochemistry [48].
These problems have motivated to include a fraction of exact exchange in DFT
calculations. A physical motivation from first principles can be given by use of the
AC [48], which was introduced in the previous section. This initiated the field of
hybrid DFT. The general formula for the total energy in hybrid DFT reads

E = Ts + Eext + EH + aEKS
X + bEX + EKS

C . (2.35)

The factors a and b vary between functionals. Perdew et al. [51] used arguments
from perturbation theory for setting b = 0.25, which is the basis for the famous
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PBE0 functional [52]. While Eq. 2.35 allows to combine DFT exchange and exact
exchange it might be advantagous to have a more flexible combination of the two at
different length scales. This is facilitated by range-separated DFT [53]. One avenue
to range-separated DFT is the use of Coulomb attenuation. Here, one separates
the Coulomb operator in a short-range (sr) and a long-range (lr) component. One
possible way to do this is through use of the error function [54]

1

r12
=

erf(wr12)

r12
+

erfc(wr12)

r12
, (2.36)

where the error function approaches unity for large wr12 and goes to zero for small
arguments. The complementary error function adds the remaining part to unity and
therefore shows exactly the opposite behavior. Therefore, the first term in Eq. 2.36
describes long-range Coulomb interactions while the second term describes short-
range Coulomb effects. This is then used to seperate exact exchange EX and KS
exchange EKS

X into a short-range and long-range component. For the exact exchange
energy the expressions are readily obtained as

EX = Esr
X (w) + Elr

X (w), (2.37)

Esr
X (w) = −1

2

Nel∑
i,j

∫ ∫
dx1dx2

ϕ∗i (r1)ϕ
∗
j(r2)erfc(wr12)ϕi(r2)ϕj(r1)

r12
, (2.38)

Elr
X (w) = −1

2

Nel∑
i,j

∫ ∫
dx1dx2

ϕ∗i (r1)ϕ
∗
j(r2)erf(wr12)ϕi(r2)ϕj(r1)

r12
. (2.39)

For the KS exchange part this separation has to be performed individually for the
respective exchange DFT functional as, e.g., for short-range PBE in Ref. [55]. This
gives rise to a more flexible formula for the range-separated hybrid DFT total energy

E = Ts + Eext + EH + aEKS,sr
X + bEKS,lr

X + cEsr
X + dElr

X + EKS
C . (2.40)

Range-separated DFT calculations which mainly use exact exchange in the long-
range regime are typically used to model charge-transfer phenomena such as it is
done in the CAM-B3LYP DFA [56]. Short-range hybrid DFT sets d = 0 and only
keeps the short-range exact exchange fraction while modeling the rest with KS ex-
change. Here, the most-popular example is the HSE06 functional [57–60]. The
motivation for short-range hybrid DFT is that while including exact exchange into
DFT calculations typically increases the accuracy, it also drastically increases the
computational cost. Especially in periodic systems this can lead to significant prob-
lems due to convergence problems of exact exchange with the number of unit cells,
even though there are new developments trying to circumvent this problem [61].
But also in molecular calculations exact exchange is the time determining step in
SCF calculations for large systems. Here, short-range DFT can be a compromise
between including portions of exact exchange for increased accuracy while keeping
the computational cost low. Publication I presents integral screening methods
to exploit the short-range nature of short-range exchange in linear-scaling methods
to calculate the exchange matrix. This makes short-range hybrid DFT calculation
computationally similar in cost to pure hybrid DFT calculations while retaining the
gain in accuracy.
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2.4 Adiabatic-Connection Fluctuation-Dissipation
Theorem

Based on the AC one can not only motivate the use of exact exchange, but also derive
an exact formula for the correlation energy EC in terms of density response func-
tions with the help of the adiabatic-connection fluctuation-dissipation theorem. The
random-phase-approximation [12] is then the simplest approximation that turns the
ACFDT expression into a practical theory for molecular calculations. As the RPA,
however, still suffers from a variety of problems one can further include exchange
effects into RPA correlation energies to improve upon the RPA. In the following, the
working equations that build the basis for Publications II-V are derived. As in the
AC section the derivation follows the text book approach of Engel and Dreizler [45].

2.4.1 Correlation Energy in Terms of Response Functions

To obtain an expression for the correlation energy EC from Eq. 2.33 one starts with
its definition in the context of AC DFT

EC = Exc − EX, (2.41)

where EX is given by Eq. 2.34. Realizing that the expectation value of V̂ee with
a Slater-determinant is given as the sum of the Hartree- (Eq. 2.16) and the exact
exchange energy (Eq. 2.34) as well known from HF theory

〈ΦKS
0 | V̂ee |ΦKS

0 〉 =
1

2

∫ ∫
dr1dr2

n(r1)n(r2)

r12
+ EX (2.42)

one obtains for Eq. 2.41

EC =

∫ 1

0

dλ 〈Ψλ
0 | V̂ee |Ψλ

0〉 − 〈ΦKS
0 | V̂ee |ΦKS

0 〉 (2.43)

as an exact formula for the correlation energy.

Introduction of Density-Fluctuation Operators

To evaluate Eq. 2.43 it is convenient to work in second quantization. In second
quantization one employs the fermionic creation â†p and annihilation operators âp,
creating or destroying a particle in the one-particle state p. To incorporate the
correct fermion statistics they obey the following anti-commutation relations

{â†p, â†q} = 0, (2.44)
{âp, âq} = 0, (2.45)
{â†p, âq} = δpq. (2.46)

Here, δpq represents the Kronecker delta. Alternatively, one can employ the real-
space field operators Ψ̂†(x), Ψ̂(x) which respectively create or delete a particle at
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x = (r, σ). One can switch from one representation to the other using that the
one-particle basis forms a complete set in the one-particle Hilbert space

Ψ̂(x) =
∑
p

ϕp(x)âp, (2.47)

âp =

∫
dxϕp(x)Ψ̂(x), (2.48)

and the analogous formulas for the creation operators. From Eqs. 2.47 and 2.48
result the anti-commutation rules for the field operators

{Ψ̂†(x1), Ψ̂†(x2)} = 0, (2.49)
{Ψ̂(x1), Ψ̂(x2)} = 0, (2.50)
{Ψ̂†(x1), Ψ̂(x2)} = δx1,x2 . (2.51)

In second quantization the electron-electron interaction is now given as

V̂ee =
1

2

∫ ∫
dx1dx2

Ψ̂†(x1)Ψ̂
†(x2)Ψ̂(x2)Ψ̂(x1)

r12
(2.52)

where the field operators can be rearranged using Eqs. 2.49, 2.50 and 2.51

Ψ̂†(x1)Ψ̂
†(x2)Ψ̂(x2)Ψ̂(x1) = Ψ̂†(x1)Ψ̂(x1)Ψ̂

†(x2)Ψ̂(x2)− δx1,x2Ψ̂†(x1)Ψ̂(x1). (2.53)

Now the density operator is introduced

n̂(r) =

∫
dσΨ̂†(rσ)Ψ̂(rσ) (2.54)

to rewrite V̂ee as

V̂ee =
1

2

∫ ∫
dr1dr2v(r1, r2)[n̂(r1)n̂(r2)− δr1r2n̂(r1)], (2.55)

where v(r1, r2) = 1
r12

for convenience of notation. Therefore, Eq. 2.43 can be trans-
formed to

EC =
1

2

∫ 1

0

dλ

∫ ∫
dr1dr2v(r1, r2)[〈Ψλ

0 | n̂(r1)n̂(r2)− δr1r2n̂(r1) |Ψλ
0〉

− 〈ΦKS
0 | n̂(r1)n̂(r2)− δr1r2n̂(r1) |ΦKS

0 〉].
(2.56)

As per construction, the expectation value of the density operator yields the ground
state density along the adiabatic-connection path

n(r) = 〈Ψλ
0 | n̂(r) |Ψλ

0〉 , (2.57)

the density-fluctuation operators can be introduced

ˆ̃n(r) = n̂(r)− n(r) (2.58)

to simplify Eq. 2.56

EC =
1

2

∫ 1

0

dλ

∫ ∫
dr1dr2v(r1, r2)[ 〈Ψλ

0 | ˆ̃n(r1)ˆ̃n(r2) |Ψλ
0〉

− 〈ΦKS
0 | ˆ̃n(r1)ˆ̃n(r2) |ΦKS

0 〉].
(2.59)
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Introduction of the Response Function

To transform Eq. 2.59 into working equations one uses the resemblance of the ex-
pectation values of the product of the density-fluctuation operators with the time-
ordered response function, a well known quantity in many-body perturbation theory
(MBPT) and time-dependent density functional theory (TD-DFT):

χ(r1t1, r2t2) = −i 〈Ψ0|T [ˆ̃n(r1t1)ˆ̃n(r2t2)] |Ψ0〉 . (2.60)

Here, the density-fluctuation operator in the Heisenberg picture is given as

ˆ̃n(rt) = n̂(rt)− n(r), (2.61)

n̂(rt) = eiĤtn̂(r)e−iĤt, (2.62)

and T represents the time-ordering symbol with its usual definition [62]. The re-
sponse function along the coupling-strength path will be referred to as χλ and the
coupling-strength index is omitted for general discussion of the response function.
Comparing Eq. 2.59 with Eq. 2.60 shows that in this case only the limit t1, t2 → 0
is of interest

EC =
1

2

∫ 1

0

dλ

∫ ∫
dr1dr2v(r1, r2){i lim

t1,t2→0
[χλ(r1t1, r2t2)− χ0(r1t1, r2t2)]}. (2.63)

Lehmann Representation of the Response Function

Inserting the definition of the density-fluctuation operator (Eq. 2.61) in Eq. 2.60
yields

χ(r1t1, r2t2) = −i[〈Ψ0|T [n̂(r1t1)n̂(r2t2)] |Ψ0〉 − n(r1)n(r2)]. (2.64)

To obtain a convenient expression for the response function, the time ordering is
given explicitly and a complete set of states

∑
n |Ψn〉 〈Ψn| = 1̂ is inserted between

the density operators in Eq. 2.64

χ(r1t1, r2t2) = −i
{∑

n

[θ(t1 − t2) 〈Ψ0| n̂(r1t1) |Ψn〉 〈Ψn| n̂(r2t2) |Ψ0〉

− θ(t2 − t1) 〈Ψ0| n̂(r2t2) |Ψn〉 〈Ψn| n̂(r1t1) |Ψ0〉]

− n(r1)n(r2)
}
,

(2.65)

with the Heaviside step function θ(t1 − t2). This factorizes the expectation value of
the product of density operators:

〈Ψ0| n̂(r1t1) |Ψn〉 〈Ψn| n̂(r2t2) |Ψ0〉
= 〈Ψ0| eiĤt1n̂(r1)e

−iĤt1 |Ψn〉 〈Ψn| eiĤt2n̂(r2)e
−iĤt2 |Ψ0〉

= 〈Ψ0| n̂(r1) |Ψn〉 〈Ψn| n̂(r2) |Ψ0〉 eiE(t1−t2)e−iEn(t1−t2).

(2.66)

Eq. 2.66 shows that the time-ordered response function depends only on the time
difference (t1 − t2) and can therefore be expressed more conveniently in frequency
space. Fourier transformation leads to the so called Lehmann representation [63] of
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the response function

χ(r1, r2, ω) =

∫ ∞
−∞

d(t1 − t2)eiω(t1−t2)χ(r1, r2, t1 − t2), (2.67)

χ(r1, r2, ω) =
∑
n6=0

〈Ψ0| n̂(r1) |Ψn〉 〈Ψn| n̂(r2) |Ψ0〉
ω − (En − E0) + iη

−
∑
n6=0

〈Ψ0| n̂(r2) |Ψn〉 〈Ψn| n̂(r1) |Ψ0〉
ω + (En − E0)− iη

,

(2.68)

where the ground state Ψn=0 in the sum over states cancels the product of ground
state densities in Eq. 2.65. The infinitesimal pole shifts iη with η > 0 arise from the
integral formulation of the Heaviside step function. Now the frequency-dependent
response function is used to express the t1, t2 → 0 limit in Eq. 2.63

lim
t1,t2→0

χ(r1, r2, t1 − t2) = lim
t1,t2→0

∫ ∞
−∞

dω

2π
e−iω(t1−t2)χ(r1, r2, ω)

=

∫ ∞
−∞

dω

2π
χ(r1, r2, ω).

(2.69)

Since Eqs. 2.65, 2.66, 2.67 and 2.68 hold for any Ψλ
0 and Ĥλ along the AC, Eq. 2.63

can be expressed as

EC =
1

2

∫ 1

0

dλ

∫ ∞
−∞

dω

2π

∫ ∫
dr1dr2v(r1, r2)i[χλ(r1, r2, ω)− χ0(r1, r2, ω)]. (2.70)

The Lehmann representation of the response function (Eq. 2.68) shows that χ(r1, r2, ω)
is symmetric with respect to the frequency ω. Therefore, the ω-integration in
Eq. 2.70 can be restricted to the real positive axis. In most applications of Eq. 2.70
in this thesis the ω-integration is carried out numerically. Therefore, the present
form is not ideal as χ(r1, r2, ω) has poles close to the real axis, as can be inferred
from the spectral representation (Eq. 2.68) which makes numerical integration very
tedious. To avoid this, one applies contour integration in combination with the
residue theorem. This states that as no poles lie within the upper right complex
ω-plane, any contour integral surrounding that area has to yield zero. Thus the
contour shown in Fig. 2.1 implies that∫ ∞

0

dω

2π
χ(r1, r2, ω) =

∫ ∞
0

diω

2π
χ(r1, r2, iω), (2.71)

as the arc connecting real and imaginary ω-infinity does not contribute to the integral
as for lim|ω|→∞ χ(r1, r2, iω)→ 0. This allows to exchange the frequency integration
over real ω by a integration over imaginary ω:

EC = −
∫ 1

0

dλ

∫ ∞
0

dω

2π

∫ ∫
dr1dr2v(r1, r2)[χλ(r1, r2, iω)− χ0(r1, r2, iω)]. (2.72)

Therefore, the pole-shifts in Eq. 2.68 become obsolete and it is possible to omit
them in the following. The result in Eq. 2.72 is often referred to as the adiabatic-
connection fluctuation-dissipation theorem (ACFDT), which is the basis for the
correlation energy expressions derived in the remainder of this chapter.
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(0, 0)→ (∞, 0)

(0,∞)→ (0, 0)

(∞, 0)→ (0,∞)

Figure 2.1: View of the complex ω-plane, where the poles of the time-ordered
response function χ(r1, r2, ω) are denoted by x (compare Eq. 2.68). Furthermore,
a contour is shown starting at the origin, going to real infinity, from there to the
imaginary axis to imaginary infinity and back to the origin. As there is no pole
enclosed by the contour, the contour integral has to evaluate to zero according to
the residue theorem.
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2.4.2 Strategies to Obtain Approximate Response Functions

What Eq. 2.72 has achieved is replacing the search for the exchange-correlation
functional in conventional DFT with the search for the response function along the
AC path. For λ = 0 it is straightforward to find a form that can be evaluated with
the one-particle functions and energies of the non-interacting system. In these terms
χ0(r1, r2, iω) is given as

χ0(r1, r2, iω) =
Nocc∑
i

Nunocc∑
a

∑
σ1,σ2

[
ϕ∗i (r1σ1)ϕa(r1σ1)ϕi(r2σ2)ϕ

∗
a(r2σ2)

iω − (εa − εi)

− ϕ∗i (r2σ2)ϕa(r2σ2)ϕi(r1σ1)ϕ
∗
a(r1σ1)

iω + (εa − εi)

]
,

(2.73)

where the sums run over occupied and unoccupied MOs, respectively. It remains
to find expressions for the response function for λ 6= 0. One popular avenue is to
employ TD-DFT linear-response theory. In this field, the retarded response function,
defined as

χR(r1t1, r2t2) = −iθ(t1 − t2) 〈Ψ0| [n̂(r1t1), n̂(r2t2)] |Ψ0〉 , (2.74)

has been the subject of extensive research (see, e.g., Ref. [64] and references therein).
One can show that the frequency-domain representation of χR is identical to Eq. 2.68
except for the sign of one of the infinitesimal pole shifts. Because the pole shifts
are irrelevant for the evaluation of Eq. 2.72, one can use the techniques of TD-
DFT to find practical approximations for the interacting response function along
the AC path. An important result from TD-DFT is a Dyson-type equation for the
response function, which relates the non-interacting response function (Eq. 2.73) to
the interacting response function [65]

χR(r1, r2, ω) =χR,0(r1, r2, ω)

+

∫ ∫
dr3dr4χR,0(r1, r3, ω)[v(r3, r4)

+ fxc(r3, r4, ω)]χR(r4, r2, ω).

(2.75)

Here, fxc is the functional derivative of the frequency dependent exchange-correlation
potential with respect to the density. While fxc in Eq. 2.75 is still unknown, one
either neglects it, or uses approximations.
An alternative to linear-response TD-DFT is to employ the techniques of MBPT.
Here, one goes back to the definition of the time-ordered response function (Eq. 2.60)
and realizes that the main ingredient is the expectation value of a time-ordered prod-
uct of Heisenberg operators with the (λ)-interacting ground state. This is amenable
to the adiabatic switching technique [62], which in combination with the Gell-Mann
Low theorem [66] and Wick’s theorem [67] can be used to evaluate the interact-
ing response function with the help of Feynman diagrams [68, 69]. The simplest
building tool in MBPT is the non-interacting Green’s function G0(r1t1, r2t2) which
role in low-scaling algorithms for ACFDT and other perturbative approaches is
discussed in Section 2.5.2. For a comprehensive account of the abovementioned
concepts the reader is referred to Ref. [62]. The simplest approximation to the in-
teracting response function using either of the two techniques is the random-phase-
approximation, which is discussed in more detail in the next section.



2.4 Adiabatic-Connection Fluctuation-Dissipation Theorem 19

2.4.3 The Random-Phase-Approximation

As mentioned above, the simplest approximation to an interacting response function
is the random-phase-approximation. It is defined by neglecting fxc in Eq. 2.75
altogether, which yields the RPA response function

χRPA(r1, r2, ω) =χ0(r1, r2, ω)

+

∫ ∫
dr3dr4χ0(r1, r3, ω)v(r3, r4)χ

RPA(r4, r2, ω).
(2.76)

To evaluate Eq. 2.72, the response function along the AC path is required. Therefore,
Eq. 2.75 is generalized to the coupling-strength Hamiltonian and one obtains

χλ(ω) = χ0(ω) + χ0(ω)[λv + fλxc(ω)]χλ(ω), (2.77)
χRPA
λ (ω) = χ0(ω) + χ0(ω)λvχRPA

λ (ω), (2.78)

where, from here on, spatial coordinates are omitted, and integration is implicitly
expressed via the Einstein sum convention [70]. Plugging Eq. 2.78 into Eq. 2.72
yields the RPA correlation energy

ERPA
C = −

∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr{v[χRPA

λ (iω)− χ0(iω)]}, (2.79)

χRPA
λ (iω) = (1− χ0(iω)λv)−1χ0(iω), (2.80)

ERPA
C = −

∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr{v[(1− χ0(iω)λv)−1χ0(iω)− χ0(iω)]}, (2.81)

ERPA
C =

∫ ∞
0

dω

2π
Tr{log(1− χ0(iω)v) + χ0(iω)v}, (2.82)

where, in Eq. 2.82, the coupling strength integration is carried out analytically. The
trace implies a sum over all spatial coordinates. Eq. 2.82 is typically the starting
point for most RPA implementations. Since, in quantum chemistry, one generally
works with real MOs, it is possible to simplify the expression for the non-interacting
response function (Eq. 2.73), in particular for imaginary frequencies:

χ0(r1, r2, iω) =
Nocc∑
i

Nunocc∑
a

∑
σ1,σ2

[
ϕi(r1σ1)ϕa(r1σ1)ϕi(r2σ2)ϕa(r2σ2)

iω − (εa − εi)

− ϕi(r2σ2)ϕa(r2σ2)ϕi(r1σ1)ϕa(r1σ1)

iω + (εa − εi)

] (2.83)

=
Nocc∑
i

Nunocc∑
a

∑
σ1,σ2

−2(εa − εi)ϕi(r1σ1)ϕa(r1σ1)ϕi(r2σ2)ϕa(r2σ2)
ω2 + (εa − εi)2

. (2.84)

Furthermore, one chooses to work in the MO basis rather than in the real-space
basis. To transform Eq. 2.82 into the MO basis, the quantities

Via,jb = (ia|jb) =

∫ ∫
dx1dx2

ϕi(x1)ϕa(x1)ϕj(x2)ϕb(x2)

r12
, (2.85)

Π0ia,jb(iω) = δijδab
−2(εa − εi)

ω2 + (εa − εi)2
, (2.86)
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are introduced, which will be referred to as the Hartree-kernel (Eq. 2.85) and the non-
interacting polarization propagator (Eq. 2.86), and which are the particle-hole basis
representation of the Coulomb operator and the non-interacting response function,
respectively. Using the invariance of the trace under cyclic permutations allows to
introduce V and Π0(iω) into Eq. 2.82

ERPA
C =

∫ ∞
0

dω

2π
Tr{log(1−Π0(iω)V) + Π0(iω)V} (2.87)

where the trace now implies summation over particle-hole indices. Eq. 2.87 can
now be used to evaluate the RPA correlation energy with MOs from a preceding
self-consistent KS calculation. With a formal O(N6) scaling behavior and the re-
quirement to perform the numerical frequency integration, Eq. 2.87 is not yet ideal.
Low-scaling RPA approaches will be introduced in Section 2.5. It is possible to
perform the frequency integration in Eq. 2.87 analytically, which leads to the so
called plasmon formula [22, 49]. While this circumvents the numerical frequency
integration, it still shows a prohibitive O(N6) scaling behavior. Furthermore, it has
been shown [71] that direct ring Coupled Cluster is equivalent to the RPA method
introduced here. As the low-scaling methods presented in this work relate to the
dielectric matrix formalism (Eq. 2.87) further discussion of the plasmon formula and
the CC variant of RPA are omitted.

2.4.4 Beyond RPA: Inclusion of Exchange Effects

While the RPA has a variety of features that make it an appealing method, such as
the good description of dispersion effects [14, 15], or the ability to treat vanishing
gap sytems, it also has a variety of shortcomings. These include unsatisfactory per-
formance for short-range correlation effects and bad performance for non-isogyric
processes [72–75]. These failures can be traced back to the self-interaction in the
RPA correlation energy due to the complete neglect of exchange effects since fxc is
set to zero. The simplest example showing this deficiency is that the RPA yields
non-zero correlation energies for one-electron systems [23], which will be discussed
further below. Therefore, there is a need to include exchange into RPA correlation
energies to remedy these issues and further increase the accuracy of RPA correlation
energies.

Derivation of Beyond RPA Methods

While one could also work with Eq. 2.75 to derive more accurate response functions,
all RPA with exchange schemes that are used in this work were derived from the
analogous formula for the λ-interacting polarization propagator Πλ(iω)

Πλ(iω) = Π0(iω) + Π0(iω)[λV + Fλ
xc(iω)]Πλ(iω). (2.88)

Eq. 2.88 is also known as Bethe-Salpeter equation [76]. Here, the RPA corresponds
to setting Fλ

xc(iω) = 0. The inclusion of exchange-effects is performed by finding an
approximate form for the exchange-correlation kernel Fλ

xc, which reduces or removes
the self-interaction in the RPA. One approach suggested by Mussard et al. [22] is to
use a static, approximate exchange kernel

Kia,jb = (ib|ja), (2.89)
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to obtain the RPA with exchange (RPAx) polarization propagator

ΠRPAx
λ (iω) = Π0(iω) + Π0(iω)[λ(V −K)]ΠRPAx

λ (iω). (2.90)

This can be used together with the particle-hole basis variant of the ACFDT formula
for the correlation energy (Eq. 2.72)

EC = −
∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr{Πλ(iω)V −Π0(iω)V}, (2.91)

to obtain the RPAx correlation energy

ERPAx
C = −

∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr{ΠRPAx

λ (iω)V −Π0(iω)V}. (2.92)

After analytical coupling strength integration one obtains

ERPAx
C =

∫ ∞
0

dω

2π
Tr{log(1−Π0(iω)W)W−1V + Π0(iω)V}, (2.93)

with W = V − K. The RPAx correlation energy is free of one-electron self-
interaction and describes the dissocation of H2 correctly (vide infra). Expanding
the logarithm to second order yields the MP2 correlation energy expressed in terms
of an imaginary frequency integral

ERPAx
C,(II) = −1

2

∫ ∞
0

dω

2π
Tr{Π0(iω)WΠ0(iω)V} = EMP2

C . (2.94)

More correlation effects are described by the infinite sum implied by the matrix loga-
rithm. There is, however, a significant problem with this approach: Compared to the
argument of the logarithm in the RPA correlation energy expression, 1−Π0(iω)V
(Eq. 2.87), whose eigenvalue spectrum is bounded from below by 0, the RPAx argu-
ment 1−Π0(iω)W is indefinite. This can lead to cases where one cannot evaluate
the argument of the logarithm due to the occurrence of negative eigenvalues. This
phenomenon is known as triplet instability and is also known in the ring CC vari-
ant of RPA methods [19]. Other approaches using the exact exchange kernel from
TD-DFT instead of K suffer from the same problem [77, 78].
To circumvent this problem one could try to include additional terms into Fxc. As
the RPAx equations are, however, quite computationally involved and adding more
terms leads to further complications, other approximate RPA with exchange schemes
with similar computational complexity are desirable.
One method proposed by Furche and coworkers [73] consists of approximating the
RPAx polarization propagator (Eq. 2.90) by a series expansion in the RPA polar-
ization propagator

ΠRPA
λ (iω) = (Π0(iω)−1 − λV)−1, (2.95)

ΠRPAx
λ (iω) = (Π0(iω)−1 − λV + λK)−1 = (ΠRPA−1

λ (iω) + λK)−1, (2.96)
= ΠRPA

λ (iω)−ΠRPA
λ (iω)λKΠRPA

λ (iω) + . . . . (2.97)

Including only the term in first order of K additionally defines the approximate-
exchange-kernel (AXK) correction to RPA correlation energies. After coupling-
strength integration one obtains the following expression for the AXK correction

∆EAXK
C =

∫ ∞
0

dω

2π
Tr{log(1−Π0(iω)V)V−1K+(1−Π0(iω)V)−1Π0(iω)K}. (2.98)
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Figure 2.2: H2- and H+
2 -dissociation curves for RPA, RPAx, RPA-SOSEX and

RPA-AXK calculations using a PBE reference and the def2-QZVP basis set. The
CCSD curve represents the exact curve.

This circumvents the problem of the RPAx energy expression (Eq. 2.92). Before
the discussion of the strengths- and weaknesses of the RPA-AXK approach the last
RPA with exchange scheme that was used in this work is introduced. The second-
order screened exchange (SOSEX) correction to RPA was first introduced in the CC
variant of RPA [20, 21]. In the ACFDT framework it consists of using the RPA
polarization propagator and exchanging the Hartree-kernel V with the approximate
exchange kernel K in Eq. 2.91

∆ESOSEX
C =

∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr{ΠRPA

λ (iω)K−Π0(iω)K}, (2.99)

∆ESOSEX
C = −

∫ ∞
0

dω

2π
Tr{log(1−Π0(iω)V)V−1K + Π0(iω)K}, (2.100)

where Eq. 2.100 is obtained after performing the coupling strength integration. Since
the RPA polarization propagator is used and exchange is introduced by modification
of the electron-electron interaction operator, RPA-SOSEX also does not suffer from
the triplet instability. From an algebraic standpoint, the series expansion of both
the RPA-AXK and the RPA-SOSEX energy expression also yield MP2 at second
order and they only start to deviate from third order [73].

Comparison of Different RPA with Exchange Methods

To examine the strengths and weaknesses of the abovementioned methods, the model
systems H2 and H+

2 serve as good test cases, because in the dissociation limit they
exhibit static correlation or self-interaction errors, respectively. A large variety of
electronic structure methods fail to describe both of them correctly. As can be seen
in Figure 2.2, also RPA and beyond RPA methods struggle to obtain the correct
dissociation limits. In fact, only the RPAx method delivers a qualitatively correct
description of both systems. It is one-electron self-interaction free and describes the
static correlation in dissociated H2 correctly. Unfortunately, as already mentioned
above, due to the triplet instability, the RPAx method is not universally applicable
to all chemical systems, failing, e.g., for O2. RPA and RPA-AXK mimic the static
correlation present in dissociated H2 well. For the one-electron system of dissoci-
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ated H+
2 both methods, however, fail due to self-interaction errors, which are less

pronounced in RPA-AXK. RPA-SOSEX shows the exact opposite behavior being
exact for H+

2 , but failing to describe the static correlation in the dissocation limit
of H2. The approximate RPA with exchange methods RPA-AXK and RPA-SOSEX
improve significantly over RPA in the equilibrium distance of both molecules.
The failure of RPA-SOSEX for stretched H2 inspired the development of a new RPA
with exchange scheme in Publication IV. Realizing that SOSEX accurately cor-
rects the short-range behavior of RPA, but leads to a worse description in the long-
range regime, has motivated a short-range SOSEX correction. The novel short-range
SOSEX scheme allows to combine the benefits of RPA and RPA-SOSEX, resulting
in a a better performance across a variety of problems including static correlation
and self-interaction error. This includes barrier heights, electron affinities, ioniza-
tion potentials and electron deficient dimers.
While including exchange effects in RPA correlation energies increases the accuracy
for a variety of properties, it also increases the computational cost significantly. Be-
fore this thesis the most efficient ACFDT RPA with exchange schemes showed an
O(N5) scaling behavior, limiting the application of these methods to small systems.
In Publication V linear- and low scaling methods for all of the abovementioned
RPA with exchange methods were presented. This allows to further explore and ap-
ply the benefits of RPA with exchange methods to significantly larger systems than
possible before. The newly developed methods enabled to show that RPA-SOSEX
is more accurate than plain RPA and other electron correlation methods such as
MP2 for the large dispersion dominated systems in the L7 test set [24].

2.5 Numerical Approximations for Low-Scaling Quan-
tum Chemical Methods

This section introduces the techniques developed and employed in this thesis to make
the electron correlation methods presented in Section 2.4 applicable to large chemical
systems. While the physical approximations introduced in the traditional derivation
of the RPA and beyond RPA schemes have circumvented the exponential scaling of
FCI, they still scale as O(N6) with the system size in the canonical formalism (see
Eqs. 2.87, 2.92, 2.98 and 2.100). While this allows to treat small to medium sized
molecular systems, it is still prohibitively expensive for large molecules. As this
is also the case for other electron correlation methods such as CC and MP2, a
large arsenal of techniques have been developed to reduce the scaling behavior of
these methods without changing the underlying physical model. The popular field
of local correlation methods [79] relies on techniques to localize the MOs through
unitary transformations. This localization then potentially leads to a greatly reduced
number of significant interactions, resulting in low scaling methods. While there has
been work on RPA techniques using localized MOs [80, 81], this will not be the focus
here. Instead, techniques to reduce the scaling behavior are introduced that rely on
the sparsity of AOs and one-particle density matrices. Furthermore, a quick account
on the resolution-of-the-identity (RI) is given, which has widespread use in efficient
quantum chemical methods, as it allows for a compact encapsulation of quantities
such as the non-interacting response function in auxiliary gaussian basis sets.
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2.5.1 Resolution-of-the-Identity

The resolution-of-the-identity [82–85] is a widespread concept in quantum chemistry
and physics, which relies on the insertion of an identity spanned by an auxiliary basis
set

1̂ = |P̃ )(P̃ |. (2.101)

For Eq. 2.101 to hold, {P̃} has to be a complete orthogonal set. While completeness
can only ever be approximated with finite basis sets, the orthogonality has also to
be taken care of, as the gaussian basis sets typically applied for the RI are not
orthogonal. As the RI is mainly used to represent charge distributions spanned by
AO basis function pairs, one of the first strategies to obtain practical equations for
Eq. 2.101 used the following fitting strategy [83]

∂

∂Kµν
P

(µν − µ̃ν|m12|µν − µ̃ν) = 0, (2.102)

|µ̃ν) =
Naux∑
P

Kµν
P |χP ), (2.103)

where |µν) is a product of the primary AO basis functions, and the integral in
Eq. 2.102 denotes a two-electron integral in the Mulliken notation with the two point
function m12. Auxiliary basis functions are denoted by P,Q, · · · . The coefficents
Kµν
P were then obtained by use of Eq. 2.102, which minimises the self-repulsion of

the difference charge-density with respect to the operator m12. Historically, m12

was chosen as the overlap metric (δr12) or the Coulomb metric ( 1
r12

). Due to the
procedure described above, the RI is also widely known as density fitting [86]. The
most general formula for Eq. 2.101 in an approximate, non-orthogonal basis set is
presumably

1̂ ≈ |P )(P |m12|Q)−1(Q|m12, (2.104)

which can be derived either from Eq. 2.102 or purely from an RI perspective [87].
This can now be used to, e.g., factorize a four-center, two-electron integral in two-
and three-center quantities

(µν|λσ) ≈ (µν|m12|P )(P |m12|Q)−1(Q| 1

r12
|R)(R|m12|S)−1(S|m12|λσ), (2.105)

which is employed in different areas of quantum chemistry from self-consistent field
to correlated calculations.
In the context of RPA calculations the RI was introduced by Furche and cowork-
ers [13] to obtain an O(N4) scaling method to calculate RPA correlation energies.
This is in contrast to the naive O(N6) scaling method when directly evaluating e.g.
Eq. 2.87. While not the original derivation of the RI-RPA method, the quickest way
to obtain the RI-RPA expression is to insert Eq. 2.104 into Eq. 2.82 and use the
invariance of the trace in combination with the series expansion of the logarithm
to obtain a formula in terms of the auxiliary space representations of the Coulomb
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operator and the non-interacting response function

ERPA
C =

∫ ∞
0

dω

2π
Tr{log(1− χ0(iω)1̂v1̂) + χ0(iω)1̂v1̂}, (2.106)

ERPA
C =

∫ ∞
0

dω

2π
Tr{log(1− χ0(iω)C) + χ0(iω)C}, (2.107)

χ0(iω)PQ = (P |m12|ia)Π0(iω)ia,jb(jb|m12|Q) (2.108)
CPQ = (P |m12|R)−1(R|S)(S|m12|Q)−1. (2.109)

The benefit of Eq. 2.107 over Eq. 2.87 is that the O(N3
occN

3
unocc) matrix multipli-

cations are avoided and the most expensive step, namely the calculation of χ0(iω),
scales only as O(N2

auxNoccNunocc). As the dimension of the auxiliary basis set Naux

scales linearly with the system size, the scaling is reduced from O(N6) to O(N4).
Furche and coworkers [13] employed the Coulomb metric for the RI decomposition.
In contrast, the linear scaling AO based formulations of the RPA use either the
overlap [16] or the attenuated-Coulomb metric m12 = erfc(wr12)

r12
[17], which ensure

that only a linear number of elements of the three-center integral tensors B are
significant in a local basis such as the AO basis

BP
µν = (P |m12|µν). (2.110)

While the overlap metric is more local than the attenuated Coulomb metric, it is
much less accurate [17]. This shows that by the introduction of the RI, the formal
scaling behavior of an electronic structure method can be reduced independently of
the properties of the molecular system. The next section illustrates how to further
optimize the scaling behavior by exploiting locality in the electronic structure.

2.5.2 Atomic Orbital Formalism

Locality of Atomic Orbital Quantitites: The Example of Exchange

Using AOs has been a successful strategy to obtain efficient electronic structure
methods for large molecules. A good example to show the benefits of using AOs
is the formation of the exchange matrix in SCF calculations. In terms of AOs the
working equation is

Kµν =

Nbas∑
λ,σ

Pλσ(µλ|νσ), (2.111)

Pµν =
Nocc∑
i

CµiCνi, (2.112)

where P is the one-particle density matrix and C contains the MO coefficients.
While the naive calculation of K scales formally as O(N4

bas) with the basis set size
Nbas, this can be reduced to linear scaling using only two crucial observations. First,
in the asymptotic limit of large molecules there is only a linear number of significant
charge distributions |µν) when gaussian basis functions are employed, as the product
of two gaussians decays exponentially with the distance between the center of the
basis functions. This fact can be used to select a quadratic number of significant
integrals through the use of Schwarz’s inequality [88]

(µν|λσ) ≤
√

(µν|µν)
√

(λσ|λσ). (2.113)
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Second, P contains only a linear number of significant elements for extended systems
with non-vanishing HOMO-LUMO gap [89–91]. This allows to reduce the number
of significant contractions to linear by using the following screening criterium

Pλσ(µλ|νσ) ≤ |Pλσ|
√

(µλ|µλ)
√

(νσ|νσ) (2.114)

where the one particle density matrix renders only a constant numbers of Kets
significant for each Bra. A clever hierarchy of screening loops has therefore allowed
to reduce the scaling of the exchange matrix formation to linear for large, gapped
systems [92–94]. Publication I deals with further optimization of these strategies
for the local attenuated Coulomb operator in short-range hybrid DFT calculations
through the use of adapted integral screening criteria and screening schemes for
CPU and GPU architectures.

Atomic Orbitals in Electron Correlation: The Example of MP2

As shown above, AOs allow for the development of low-scaling electronic structure
methods. For correlated methods, devising AO schemes needs further attention,
since usually the working equations are given in terms of non-local canonical orbitals.
The textbook example is the MP2 energy expression

EMP2
C = −

Nocc∑
i,j

Nunocc∑
a,b

(ia|jb)[2(ia|jb)− (ib|ja)]

εa + εb − εi − εj
. (2.115)

From now on, occupied orbitals are labelled as i, j, · · · and virtual orbitals as a, b, · · · .
Here, the introduction of AOs is hindered by the denominator which couples four
MO indices. This was circumvented by the Laplace transformation [95]

1

εa + εb − εi − εj
=

∫ ∞
0

dτe−εaτe−εbτeεiτeεjτ , (2.116)

which allowed to formulate Eq. 2.115 in the AO basis [96, 97],

EMP2
C =

∫ τ

0

dτ

Nbas∑
µ,ν,λ,σ

Nbas∑
µ′,ν′,λ′,σ′

P τ
µµ′P

τ
λλ′P

τ

νν′P
τ

σσ′(µν|λσ)

[2(µ′ν ′|λ′σ′)− (µ′σ′|λ′ν ′)].
(2.117)

The occupied and virtual pseudo-densities are defined as

P τ
µν =

Nocc∑
i

Cµie
εiτCνi, (2.118)

P
τ

µν =
Nunocc∑
a

Cµae
−εaτCνa. (2.119)

The occupied and virtual pseudo-densities (Eqs. 2.118, 2.119) are similarly local as
the occupied and virtual one-particle density matrices (Eqs. 2.112, 2.140). Eq. 2.117
in combination with schemes exploiting the locality of the AO quantities allowed for
a variety of low-scaling MP2 formulations (see, e.g., Refs. [98–102]).
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Atomic Orbitals in ACFDT Methods: Imaginary Time Represention of
the Non-Interacting Polarizability

The quantity which needs to be decoupled in RPA correlation energy calculations
is the non-interacting polarization propagator (Eq. 2.86) or equivalently the non-
interacting response function (Eq. 2.73). In the linear-scaling AO-RPA method,
Schurkus and Ochsenfeld [16] devised a contracted double Laplace transform that
lead to three integral transforms which allow to decouple the MO indices. This
approach required two formulations of the integral transforms for numerical stability
of the quadrature. Publication II uses the equivalence of one of the integral
transforms with the Fourier transform of the non-interacting polarization propagator
from the imaginary time domain to the imaginary frequency domain. In combination
with an improved customized quadrature scheme [103] for the imaginary frequency
integral and the Fourier transform, a numerically significantly more accurate and
faster RPA method was developed. In particular for the non-interacting response
function, this transformation is given as [104, 105]

χ0(r1, r2, iω) =

∫ ∞
−∞

dτeiωτχ0(r1, r2, iτ) =

∫ ∞
−∞

dτ cos(ωτ)χ0(r1, r2, iτ), (2.120)

where the Fourier transform reduces to a cosine transform, as the non-interacting
response function is symmetric in iω (compare Eq. 2.84). One important result from
MBPT is that the non-interacting response function in the imaginary time domain
is given as

χ0(r1, r2, iτ) = G0(r1, r2, iτ)G0(r2, r1,−iτ), (2.121)

with the non-interacting Green’s function:

G0(r1, r2, iτ) = Θ(−iτ)G0(r1, r2, iτ) + Θ(iτ)G0(r1, r2, iτ), (2.122)

G0(r1, r2, iτ) =
occ∑
i

ϕi(r1)ϕ
∗
i (r2)e

−εiτ =

Nbas∑
µ,ν

φµ(r1)φν(r2)G0µν (iτ), (2.123)

G0(r1, r2, iτ) = −
unocc∑
a

ϕa(r1)ϕ
∗
a(r2)e

−εaτ = −
Nbas∑
µ,ν

φµ(r1)φν(r2)G0µν (iτ). (2.124)

Here, τ is given as t1−t2. The atomic orbital Green’s functions G0(iτ) and G0(iτ) are
equivalent to the occupied (Eq. 2.118) and unoccupied pseudodensities (Eq. 2.119).
Eq. 2.121 also translates to the auxiliary basis representation of the non-interacting
response function used in RI-RPA

χ0(iω)PQ =

∫ ∞
−∞

dτ cos(ωτ)χ0(iω)PQ,

=

∫ ∞
−∞

dτ cos(ωτ)BP
µνGµλ(−iτ)Gνσ(iτ)BQ

λσ,

(2.125)

which yields exactly the time-determining step in the linear-scaling RPAmethod [16].
This also gives a new perspective on the Laplace transform in MP2 theory. Starting
from the spectral representation introduced in Eq. 2.94 in real-space without using
the ω-symmetry explicitly

EMP2
C = −1

4

∫ ∞
−∞

dω

2π
Tr{χ0(iω)wχ0(iω)v}, (2.126)
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where w(r1, r2) = v(r1, r2) − k(r1, r2) and k(r1, r2) = P̂ /r12, with the same permu-
tation operator as in the case of HF exchange and inserting the Fourier transform
for the frequency dependent response function twice yields

EMP2
C =− 1

4

∫ ∞
−∞

dω

2π

∫ ∞
−∞

∫ ∞
−∞

dτdτ ′eiω(τ+τ
′)Tr{χ0(iτ)wχ0(iτ

′)v}

=− 1

4

∫ ∞
−∞

dτTr{χ0(iτ)wχ0(iτ)v},
(2.127)

where the identity
∫

dωeiω(τ+τ
′) = 2πδττ ′ was used [103]. Using the invariance of

the trace and inserting the definition of the non-interacting response function in
the imaginary time domain (Eq. 2.121) allows to transform Eq. 2.127 to Eq. 2.117.
As the non-interacting Green’s functions in Eq. 2.125 and the three-center integral
tensor B become sparse quantities for large molecules, an asymptotic O(N) scaling
RPA method has been achieved [16] and further optimized by Luenser et al. [17] as
well as in Publication II.
To summarize this section, a strategy was described that allows electronic structure
methods that depend on the non-interacting response function to be formulated in
AOs through the imaginary time representation of χ0 which allows for low-scaling
methods, if the locality of the resulting quantities is exploited. Also, it was shown
how the Laplace transform of MP2 theory fits in this framework.
For practical implementation in Gaussian basis sets, the RI has proved very useful
to represent real-space quantities in a compact auxiliary basis. Electron correla-
tion methods that solely depend on the non-interacting response function employ
Eq. 2.108 which can be calculated in a linear-scaling manner using Eq. 2.125 with a
local-metric [16]. In theories that include exchange, one additionally has to encapsu-
late the exchange effects which translates into finding a auxiliary basis representation
of

Y (r1, r2, iω) = χ0(r1, r3, iω)k(r3, r4)χ0(r4, r2, iω). (2.128)

This is given as [22]

YPQ(iω) =
Nocc∑
i,j

Nunocc∑
a,b

BP
iaΠ0ia,ia(iω)(ib|ja)Π0jb,jb(iω)BQ

jb. (2.129)

Forming Y(iω) is the time-determining step in RPA with exchange schemes em-
ploying the RI [22]. The formal scaling behavior of this step is O(N5), i.e., one
power worse than plain RI-RPA. Publication V introduces methods to calculate
Y(iω) for large systems in a linear- and low-scaling manner. These methods also
rely on imaginary time representations of the response function in combination with
exploiting the locality of exchange type contractions similar to Eq. 2.111. These
developments allow to calculate RPA with exchange correlation energies for systems
with up to 500 atoms, significantly extending the scope of these methods, which was
limited to small systems before due to the O(N5) scaling behavior.

2.5.3 Cholesky Orbitals Basis for Correlated Electronic Struc-
ture Theory

There are numerous examples that show that through the use of AOs the scaling
behavior of electronic structure methods can be reduced significantly. One problem
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that arises, however, with the use of AO methods is the redundancy present in typical
AO basis set. In the absence of sparsity, this leads to a significant computational
overhead as, e.g., a sum over occupied orbitals will run over the dimension of the
basis set instead. For correlated electronic structure theory, where large basis sets
are required, this can be a factor of 10 times more. To tackle this problem, rank
reduction through pivoted Cholesky decomposition (CD) [17, 106–110] has proved
very useful. Given a real, symmetric, positive semi-definite matrix A its CD is given
as

A = LLT (2.130)

where L denotes the matrix of Cholesky vectors with the same number of rows as
the original matrix, but only rank(A) non-zero columns. In electronic structure
theory this can be used to decompose, e.g., the occupied one particle density matrix
P, which only has rank Nocc, as can be seen from its spectral form (Eq. 2.112).
Therefore, with an adequate rearrangement of the summations, the canonical formal
scaling behavior can be reestablished while using CD quantities. The striking feature
of the Cholesky vectors is that they retain the sparsity of AO quantities without
increasing the formal scaling behavior of the method. This scheme was extended
to correlated electronic structure calculations at the MP2 [98] and RPA [17] level,
where instead the occupied and unoccupied pseudo-densities Eqs. 2.118, 2.119 (or
the equivalent AO Green’s functions) have been decomposed. While this allows for
low-scaling algorithms, multiple pseudo-densitities have to be decomposed and, e.g.,
in the CDD-RI-RPA method [17], the three center integrals are transformed with the
Cholesky vectors from every occupied pseudo-density. For computational efficiency
this requires to keep the three-center integrals in the AO basis in computer memory,
which results in a bottleneck in the calculation of large systems. In Publication II,
a scheme was developed that allows to circumvent the abovementioned drawbacks.
Comparing the CD of the one particle density matrix

P = LLT (2.131)

with its spectral decomposition

P = CNCT , (2.132)

where C contains all MOs and N is the occupation number matrix, allows to deduce
the following form of the Cholesky vectors

L = CN1/2U, (2.133)

where U is a unitary matrix. As N contains only Nocc ones on its diagonal, only the
occupied MOs and the Nocc orthonormal vectors of U are used. Solving for these
vectors Uocc

Uocc = CoccSL (2.134)

gives a Nocc ×Nocc unitary matrix that can be used to transform occupied orbitals
to the occupied Cholesky orbital basis (compare also Ref. [111]). Here S is the AO
overlap matrix. Performing this transformation for the occupied Green’s function
from the canonical into the local basis of Cholesky orbitals (denoted by i, j, · · · )
yields

G0(iτ)ij = Uocc†

ii G0(iτ)ijU
occ
jj . (2.135)
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The negative imaginary time Green’s function in the Cholesky orbital basis G0(iτ)ij
is a key ingredient in Publications II, III, V as it offers a compact and local
representation. Revisiting for example the time determining step in RI-RPA, namely
the formation of the non-interacting response function in imaginary time, starting
from the canonical MO basis

χ0PQ(iτ) = BP
iaG0(iτ)ijG0(iτ)abB

Q
jb (2.136)

yields the formulation used in Publication II after inserting 1 = UoccUocc,† twice

χ0PQ(iτ) =BP
ia(U

occUocc†)iiG0(iτ)ij(U
occUocc†)jjG0(iτ)abB

Q
jb

=BP
iµG0(iτ)ijG0(iτ)µνB

Q
jν ,

(2.137)

and transforming the positive imaginary time Green’s function into the AO basis
as in the other AO-RPA methods [16, 17]. This technique has reduced the storage
requirements by a factor of Nbas/Nocc, which allows to treat significantly larger
systems. These savings are faciliated by transforming the three center integrals into
the Cholesky orbital basis by means of Eq. 2.134 as shown in Eq. 2.137. Therefore,
only the more compact AO-CDD three-center integrals have to be stored instead of
the entire three-center integrals as in Ref. [17]. An analogous treatment could be
carried out for the virtual one-particle density, but as its rank Nunocc is typically
similar to the basis set dimension, this was omitted for the virtual Green’s function
in Publications II, III, V, because it was found to slightly deteriorate the sparsity
pattern [17].
Eq. 2.134 gives a new perspective of CD in correlated electronic structure theory as
an orbital rotation similar to the strategies used in local MO techniques. Based on
the techniques reviewed in this section and the previous section one can formulate a
general strategy to obtain low-scaling electronic structure methods. First, one tries
to find a formulation in terms of the non-interacting response function in imaginary
time. Next, the arising quantities are transformed to the compact and local CDD-
AO basis. The locality of these quantities can then be exploited by the use of
sparse-algebra [112, 113]. The ideas illustrated here for the calculation of RPA
correlation energies also form the basis for the development of linear- and low-
scaling methods to calculate beyond RPA correlation energies and RPA analytical
gradients in Publications III and V.

2.5.4 Low-Scaling Correlated Analytical Gradients

For an electronic structure theory to be broadly applicable to a wide range of prob-
lems, properties beyond ground state energies are required. Here, the first step are
analytical gradients, which allow, e.g., for geometry optimizations. Computational
efficiency is essential for the calculation of molecular properties as well. As the ex-
pressions for analytical gradients for an electronic structure method are typically
more involved than for the ground state energy, it would be convenient to have a
strategy to obtain the working equations in a rather straightforward manner. Here,
the ideas that lead to the development of low-scaling analytical RPA gradients in
Publication III are briefly recapitulated.
Working in the AO-RI framework, the RPA energy can be calculated from the quan-
tities B (Eq. 2.110), C (Eq. 2.109), G (Eq. 2.122) where the non-interacting Green’s
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function can be calculated purely in the AO basis [100, 114] as

G0(iτ) = Pe−τHKSP (2.138)
G0(iτ) = −Qe−τHKSQ. (2.139)

Here, the virtual one-particle density matrix is given as

Qµν =
unocc∑
a

CµaCνa. (2.140)

As it is well known how to calculate the derivatives of primary and auxiliary basis
functions and of the occupied density matrix [101], all contributions can be derived
using the chain rule

∂ERPA
C

∂x
=
∂ERPA

C

∂C

∂C

∂x
+
∂ERPA

C

∂χ0

∂χ0

∂B

∂B

∂x
+
∂ERPA

C

∂G0

∂G0

∂P

∂P

∂x
. (2.141)

Two of the partial derivatives in Eq. 2.141 correspond to the auxiliary basis represen-
tation of important quantitites in MBPT [115]. The partial derivative with respect
to the non-interacting response function is known as the correlated Coulomb inter-
action

WC =
∂ERPA

C

∂χ0

, (2.142)

and the partial derivative with respect to the non-interacting Green’s function is
known as the self-energy

ΣC =
∂ERPA

C

∂G0

. (2.143)

For the calculation of the quantities in Eq. 2.141 the same strategies as described in
the previous two sections are applied: performing the rate-determining steps in the
imaginary time domain, employing the sparsity of the non-interacting Green’s func-
tion, and using Cholesky orbitals where possible. This allows to develop asymptoti-
cally quadratic scaling RPA analytical gradients as compared to the quartic scaling
RI-RPA gradients for molecular systems that were previously the state-of-the-art
implementation [18]. The reduced computational requirements of the newly de-
vloped method allows to calculate analytical gradients for systems with more than
600 atoms, significantly extending the reach of first order properties at the RPA
level of theory.
To extend this framework to other electron correlation methods one could employ the
machinery of MBPT (as detailed in Ref. [62]) to derive the respective expresssions
for the correlated Coulomb interaction (Eq. 2.142) and the self-energy (Eq. 2.143).
While the derivative w.r.t. the Coulomb operator is not a commonly found quantity
in MBPT, it should be possible to use the same techniques to derive this expression.
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We present screening schemes that allow for efficient, linear-scaling short-range exchange calcula-
tions employing Gaussian basis sets for both CPU and GPU architectures. They are based on the LinK
[C. Ochsenfeld et al., J. Chem. Phys. 109, 1663 (1998)] and PreLinK [J. Kussmann and C. Ochsenfeld,
J. Chem. Phys. 138, 134114 (2013)] methods, but account for the decay introduced by the attenuated
Coulomb operator in short-range hybrid density functionals. Furthermore, we discuss the implemen-
tation of short-range electron repulsion integrals on GPUs. The introduction of our screening methods
allows for speedups of up to a factor 7.8 as compared to the underlying linear-scaling algorithm, while
retaining full numerical control over the accuracy. With the increasing number of short-range hybrid
functionals, our new schemes will allow for significant computational savings on CPU and GPU
architectures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4978476]

I. INTRODUCTION

Nowadays the most frequently employed method in quan-
tum chemistry is density functional theory (DFT) due to its
good compromise between cost and accuracy. Here the choice
of an appropriate functional is crucial. A common classifica-
tion for density functionals is the Jacob’s Ladder introduced
by Perdew,1 which categorizes density functionals based on
their level of sophistication. In this scheme, level 4 function-
als, i.e., hybrid functionals, employ portions of exact exchange
in combination with an exchange-correlation functional for
the calculation of the exchange correlation energy.2 Among
these are the highly cited B3LYP2–5 and PBE06 functionals
as examples for the high success of this class of functionals.
A variant of the PBE0 functional is the HSE06 functional,7–9

which employs short-range exact exchange introduced through
the substitution of the Coulomb operator 1/r12 with the atten-
uated Coulomb operator erfc(ωr12)/r12. The introduction of
the attenuated Coulomb operator reduces computational cost
and enables a more elaborate combination of density func-
tional based exchange and exact exchange, by describing the
short-range exchange with exact exchange and resorting to a
density functional description in the long range regime. This
is especially appealing not only for solid state applications but
also for calculations of large molecules. In solid state applica-
tions the attenuated Coulomb operator decreases the number
of unit cells that have to be included in the exact exchange
calculation to obtain converged results.10 Other functionals
employing screened exchange have also been introduced.11,12

A very promising short-range density functional with disper-
sion correction, HSE-3c, was recently introduced by Grimme
et al.,13 with the intention to provide a good description of

a)christian.ochsenfeld@uni-muenchen.de

non-covalent interactions for molecular crystals and molecules
at low computational cost. We note that there are also
long-range corrected DFT functionals, i.e., functionals that
combine short-range DFT exchange with long range exact
exchange.14,15 The purpose of those functionals is to cor-
rect the wrong long-range exchange behavior of short-
range and “conventional” hybrid density functionals. A more
elaborate scheme to combine density functional and exact
exchange at different ranges is the Coulomb-attenuating
method.16

While the accuracy of DFT calculations is generally
increased by employing exact exchange, the computational
cost also increases since the formation of the exchange matrix
in the basis of the Kohn-Sham orbitals becomes the rate
determining step. To reduce the cost of the exchange matrix
formation, algorithms have been introduced to achieve a linear-
scaling formation on conventional CPU17–20 and more recently
on GPU architectures.21 We employ the LinK method,17,18

which has been highly successful for the exchange formation
on CPUs using a sophisticated loop structure in combination
with one particle density matrix weighted Schwarz integral
estimates22 to achieve linear scaling. A straightforward exten-
sion of the LinK procedure on GPUs is not possible since it
requires branching, which leads to different execution paths
within a warp. This is prohibitive on a GPU architecture.
Therefore, the PreLinK21 method was developed, which also
employs the one particle density matrix and Schwarz integral
estimates to preselect significant exchange matrix elements
prior to the calculation of the two electron integrals. While
using the LinK and the PreLinK methods for screened hybrid
DFT calculations is possible, the additional decay introduced
by the attenuated Coulomb operator is not explicitly taken
into account, which leaves room for further improvement.
A distance dependent screening routine employing integral
estimates for the attenuated Coulomb operator in combination

0021-9606/2017/146(14)/144108/11/$30.00 146, 144108-1 Published by AIP Publishing.
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with a fast multipole method (FMM)-like boxing scheme has
been presented for screened hybrid calculations.23 Since the
LinK and PreLinK routines have proven to be highly efficient,
linear-scaling routines customized to the formation of the
exact exchange matrix, adaption to short-range hybrids should
enable fast, linear-scaling short-range hybrid DFT calculations
with decreased prefactor. In this work, we describe modifica-
tions of the LinK and PreLinK methods in combination with
novel screening criteria inspired by QQR estimates,24 taking
into account the additional decay, introduced by the attenu-
ated Coulomb operator. We show that this allows for efficient
short-range hybrid calculations for large molecules on CPU
and GPU computing architectures employing gaussian basis
sets.

II. THEORY

A. ERFC LinK screening

Density functionals relying on exact exchange calcula-
tions require the formation of the exchange matrix in the basis
of Kohn-Sham orbitals.2 In a conventional exchange matrix
formation, the elements Kµν are calculated in an atomic orbital
basis as follows:

Kµν =
∑

λ,σ

Pλσ (µλ|νσ) , (1)

where the (µλ|νσ) terms correspond to electronic repulsion
integrals (ERIs) of the Coulomb operator 1/r12 over the distri-
butionsΩµλ andΩνσ . Contraction with the respective element
of the one-particle density matrix Pλσ yields the exchange
matrix element Kµν . A naive calculation of K would therefore
scale as O(N4), where N is the number of basis functions. This
can be reduced to O(N2) when employing Schwarz integral
estimates,22

| (µλ|νσ) | ≤ QµλQνσ =
√

(µλ|µλ)
√

(νσ |νσ). (2)

In the case of electronic insulators, the coupling of the bra-
and ket-distributions in Eq. (1) with the local one-particle
density matrix Pλσ leads to a further reduction of signifi-
cant integrals that have to be evaluated. This is exploited in
a number of algorithms to obtain an overall linear-scaling
formation of the exchange matrix K (e.g., Ref. 17). In the
LinK scheme,17,18 significant ERIs are selected using den-
sity weighted Schwarz integral estimates, which ensures a

linear-scaling behavior of the algorithm for insulators, while
preserving the highly optimized structure of integral evaluation
schemes.

In electronic structure calculations using short-range
hybrids,7 the Coulomb operator 1/r12 is substituted by the
attenuated Coulomb operator erfc(ωr12)/r12, when forming
the short-range exchange matrix K′. This leads to the following
integrals:

(µλ|νσ) =
∫∫

χµ(r1)χλ(r1)erfc(ωr12)χν(r2)χσ(r2)

r12
dr1dr2,

(3)

which have to be evaluated during the short-range exchange
matrix formation. Here ω is a screening parameter, which
depends on the functional used in combination with the
screened exchange contribution. A common value is ω = 0.11
used in, e.g., the HSE06, HSE-3c, and N12-SX function-
als.9,11,13

When performing a screened hybrid calculation with the
conventional LinK method, the additional decay introduced
by the attenuated Coulomb operator can be employed dur-
ing the integral evaluation by comparing the intermediate Tω
to a given threshold (see Sec. III), to evaluate at an early
stage, whether the integral is significant or not.25 As will
be shown in the present work, there is, however, signifi-
cant capacity to modify the LinK method to further reduce
the computational effort, i.e., to yield a linear-scaling forma-
tion of the exchange matrix with reduced prefactor. This is
achieved by modifying the screening criteria in the original
LinK method, to account for the additional decay introduced
by the attenuated Coulomb operator erfc(ωr12)/r12, which
leads to the sketch of the ERFC LinK method shown in Figure
S1 of the supplementary material. The adapted method resem-
bles the original LinK loop structure but employs additional
screening criteria to reduce the screening effort (pre-sorting
loop) and the number of integrals that have to be evaluated
(screening loop). In the pre-sorting routine, Rmin,µν is defined
as

Rmin,µν = Rµν − extµ − extν (4)

using the reasoning that the extent of shell µ is an upper bound
to the extent of all significant shellpairsΩµλ. Because the com-
plementary error function is a strictly decaying function, the
following inequality holds:

�����
∫ ∫

χµ(r1)χλ(r1)erfc(ωr12)χν(r2)χσ(r2)

r12
dr1dr2

����� ≥ erfc(ωRmin,µν)|(µλ|νσ)| ≥ erfc(ωRmin,µν)QµλQνσ . (5)

Furthermore, we introduce QQR integral estimates QµλQνσ/
Rmin,µν ,24 to take into account the inherent decay of the
1/r12 operator. The relationship between this approach
and combining the decay of the attenuated Coulomb

operator23 with Schwarz integral estimates22 is discussed
below.

The extents extµ are calculated as the maximum extent
of all primitive basis functions in each shell µ, where



144108-3 Beuerle, Kussmann, and Ochsenfeld J. Chem. Phys. 146, 144108 (2017)

the definition from Sierka et al.26 was employed for
extµ,

extµ = max
∀α ∈ µ

{√
− ln ε + 1

2 ln ζµα
ζµα

}
, (6)

where ζµα corresponds to the exponent of the primitive basis
function α and ε corresponds to a pre-defined threshold.
We note that in Eqs. (6) and (9) the primitive contraction
coefficients are not taken into account. While it would be
theoretically possible to incorporate contraction coefficients
by, e.g., weighting the threshold or multiplying the extents
with a logarithmic expression containing the contraction coef-
ficients, we decided to use established shell extents, which have
proven to be useful in earlier studies.24,26,27 Introducing this
modified pre-screening routine reduces the number of terms
for which the computationally demanding erfc-function has
to be evaluated in the screening routine. In the pre-screening
routine, introducing a modified screening criterion is, however,
not essential. Numerical tests have shown that simply using the
conventional Schwarz estimate in the pre-screening loop also
yields good results since the major speedup is obtained in the
screening loop.

In the screening routine (shellpair loop), we employ
the following criteria using the same ideas that lead to
Eq. (5):

|Pλσ(µλ|νσ)| ≈ |Pλσ | ·
√

(µλ|µλ) ·
√

(νσ |νσ) · erfc(ωRµλ,νσ)

Rµλ,νσ
,

(7)
where Rµλ,νσ is defined as

Rµλ,νσ = RPQ − extµλ − extνσ , (8)

where RPQ corresponds to the distance between the centers
of the charge distributions Ωµλ and Ωνσ centered at P and
Q. The shellpair-centers P (and Q) were defined according to
Maurer et al.24 For the extent extµλ of the distributionΩµλ, the
definitions employed for QQR estimates,24 which are inspired
by the well-seperated extent of the continuous fast multipole
method (CFMM),27 are used. The explicit definition is as
follows:

extµλ = max
∀α,β in µ,λ

{√
2

ζµα + ζλβ
erfc−1(ϑthr) + rµλ,αβ

}
, (9)

where again ζµα and ζλβ correspond to the exponents of
the respective primitive basis function and ϑthr corresponds
to a predefined threshold. The term rµλ,αβ corrects for the
deviation of the center of the primitive shellpair to the
center of the contracted shellpair as defined by Maurer
et al.24 The maximum of all primitive extent is used for
each shellpair. Subtracting the shellpair extent is essential
to guarantee the validity of Eq. (5) and the QQR esti-
mates.24

An alternative screening criterion can be derived using the
decay of the attenuated Coulomb operators, which was given
in this context by Izmaylov et al.23 as

(µλ|νσ) ∼ erfc(θωRµλ,νσ)

Rµλ,νσ
, (10)

where θ2
ω is given by

θ2
ω = min

∀α,β,γ,δ ∈ µ,ν,λ,σ

×
{

1

(ζµα + ζλβ)−1 + (ζνγ + ζσδ)−1 + ω−2

}
. (11)

In our context we combine Eq. (10) with Schwarz integral
estimates22 to obtain

|Pλσ(µλ|νσ)| ≈ |Pλσ | ·
√

(µλ|µλ) ·
√

(νσ |νσ)

· erfc(θωRµλ,νσ)

Rµλ,νσ
(12)

with Rµλ,νσ defined as in Eq. (8). Minimal values of θω are
used to ensure validity for all primitive ERIs. We found that
both our screening criteria give highly similar results, which
suggests that

θω =

√
1

(ζµα + ζλβ)−1 + (ζνγ + ζσδ)−1 + ω−2
≈ ω. (13)

This can be understood since for the basis sets tested here
(def2-SVP, def2-SVPD, def2-TZVP) the minimal exponents
ζµα are on the same order of magnitude as ω. Therefore,
the ω term is dominant since it appears squared compared
to the exponents. Both criteria have been extensively tested
and yield similar accuracy with slightly increased efficiency
of the criterion shown in Eq. (7).

B. ERFC PreLinK pre-screening

While the LinK method has been highly successful on
CPU architectures, it is not compatible with massively paral-
lel computing architectures such as GPUs. The reason for this
is that the branching inherent to the LinK method strongly
reduces the efficiency on GPUs. Therefore, the PreLinK21

scheme has been developed to ensure a linear-scaling for-
mation of the exchange matrix on GPUs. In the Pre-LinK
scheme21 a screening matrix Q′ is calculated prior to the actual
calculation of the exchange matrix K, to allow for a linear-
scaling formation of the exchange matrix suitable for use on
GPUs. The elements Q′µν represent an upper bound to Kµν and
are calculated as follows:

Q′µν =
∑

λ,σ

|Pλσ |
√

(µλ|µλ)
√

(νσ |νσ) ≥ Kµν . (14)

The entire matrix Q′ is obtained by two matrix multiplications,

Q′ = Q × |P| ×Q, (15)

which can be performed in a linear-scaling manner using
sparse algebra routines. The essential characteristic of this
screening method is that the significant matrix elements are
selected prior to the calculation of the two electron integrals,
which allows efficient computation of the exchange matrix on
massively parallel computing architectures.

The PreLinK screening is the basis for a modified proce-
dure applicable to more precisely pre-select exchange matrix
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elements in short-range screened hybrid DFT calculations suit-
able for massively parallel computing architectures. Examin-
ing the screening criterion of the ERFC LinK routine (Eq. (7))
and setting Rµλ,νσ constant to a value smaller or equal to its
minimal value Rmin,µν for all significant distributions Ωµλ,
Ωνσ appearing in the calculation of Kµν allows to reformulate
Eq. (7) using Eqs. (14) and (15) as

K ′µν ≈
erfc(ωRmin,µν)

Rmin,µν
Q′µν . (16)

This can be used for screening purposes by equating the RHS
of Eq. (16) to a threshold ϑerfc,

ϑerfc =
erfc(ωRmin,µν)

Rmin,µν
Q′µν . (17)

If the RHS of Eq. (17) is smaller than the threshold, one does
not have to calculate the element K′. For the threshold ϑerfc,
the most natural choice is to simply employ the thresholds
recommended for the conventional PreLinK-scheme.21 Rmin,µν

is defined as in the pre-screening routine of the ERFC Link
routine (see Eq. (4)).

Alternatively one can also employ the decay of the attenu-
ated Coulomb operator23 (in analogy to Eq. (12)) and combine
this with the PreLinK scheme to yield

K ′µν ≈
erfc(θω,minRmin,µν)

Rmin,µν
Q′µν . (18)

A minimal value for θ2
ω,min is given by

θ2
ω,min =

1

(ζµα,min + ζλβ,min)−1 + (ζνγ,min + ζσδ,min)−1 + ω−2
,

(19)
where ζµα,min and ζνγ,min correspond to the minimal expo-
nents of shell µ and ν, and ζλβ,min and ζσδ,min are set to
the minimal exponents of the basis set used for the given
molecule. As for the ERFC LinK routine, we have tested
both criteria and again both have shown to give similar accu-
racy. The criterion in Eq. (16) has shown to yield increased
speedups, which is why solely these results are shown in
Sec. IV.

In the implementation of the ERFC PreLinK method,
we start with conventional PreLinK pre-screening since set-
ting up Q′ is required for Eq. (16) and comparing each
matrix element Q′µν against a pre-screening threshold ϑpre is
cheap and reduces the number of terms for which Eq. (17)
has to be evaluated. The remaining screening procedure
described above then reduces the prefactor of the linear-
scaling formation of K′ for screened hybrid calculations, facil-
itated by the introduction of the attenuated Coulomb operator
erfc(ωr12)/r12.

C. Tω-Pre-Screening

Since the results obtained with the ERFC PreLinK screen-
ing are not as satisfactory as for the CPU based ERFC LinK
routine, we also investigated a different approach to test
whether the performance of the GPU based screening algo-
rithms can be improved. For this approach, we examined the
fundamental integrals that occur during the evaluation of short-
range ERIs (Eq. (3)). We mainly follow the notation in Ref. 28.

The fundamental integrals are evaluated using the following
intermediates:25

σP =
1

ζµα + ζλβ
, σQ =

1
ζνγ + ζσδ

, (20)

P = (ζµαA + ζλβB)σP, Q = (ζνγC + ζσδD)σQ, (21)

UP = (πσP)3/2DADBe−ζµαζλβσP |A−B |2 ,

UQ = (πσQ)3/2DCDDe−ζνγζσδσQ |C−D |2 ,
(22)

R2 = |P −Q|2, (23)

θ2 =
1

σP + σQ
, θ2

ω =
1

σP + σQ + 1
ω2

, (24)

T = θ2R2, Tω = θ
2
ωR2, (25)

which are combined as follows to give the [0](m):

[0](m) = UPUQ{(2θ2)
m+1/2

Gm(T ) − (2θ2
ω)

m+1/2
Gm(Tω)},

(26)
where ζµα, ζλβ , ζνγ, ζσδ are the exponents corresponding to
the primitive basis functions µ, λ, ν, σ located at centers A,
B, C, D with coefficients DA, DB, DC , DD. Gm(T ) represents
the Boys function29,30 of argument T scaled by (2/π)1/2. Now
it is well established that if Tω exceeds some critical value
T crit, the integral (µλ|νσ) is negligible and does not need to
be calculated.25 Therefore if the minimum value of Tω of all
(µλ|νσ) appearing in the calculation of K ′µν is known and when
this value Tω,min exceeds T crit, this particular element of the
exchange matrix K ′µν does not have to be evaluated. Minimum
values for θ2

ω for shells µ and ν can be obtained as described
in Sec. II B. T crit is calculated as

Tcrit = −2 log ϑT, (27)

where ϑT corresponds to an accuracy threshold usually set to
ϑint/100.

In the actual screening routine, one then performs a Pre-
LinK pre-screening first, similar to the routine described in
Sec. II B. For the remaining elements Kµν , one evaluates
θ2
ω,min and solves for Rcut,µν , i.e., the biggest separation of

two shells µ and ν for them to still lead to a significant inter-
action (Ωµλ |Ωνσ). The explicit definition of Rcut,µν is given
by

Rcut,µν =

√
Tcrit

θ2
ω,min

+ extµ + extν . (28)

To ensure that Rcut,µν is valid for all significant charge distri-
butions including shells µ and ν, we add the extents of shells
µ and ν to Rcut,µν . If Rµν for the element Kµν is bigger than
Rcut,µν , one does not have to explicitly evaluate Kµν . Since
we found that this procedure leads to a systematic overes-
timation of Rcut,µν , an empirical scaling factor is applied to
Rcut,µν to obtain a compromise between accuracy and speed.
The empirical scaling parameter x will be denoted as Tx

ω-
screening or skipped if the default parameter is used (see also
Sec. III).

As mentioned above, pre-selection of significant inte-
grals is required, which is why rather crude estimates have
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to be used on massively parallel computing architectures.
For the PreLinK scheme, this is due to the fact that abso-
lute values for the one particle density matrix P have to be
used.21 For the additional screening routines accounting for
the attenuated Coulomb operator described above, this is due
to the need to use conservative screening quantities to retain
accuracy.

III. COMPUTATIONAL DETAILS
A. CPU implementation

The evaluation of short-range ERIs on CPUs was per-
formed using the Obara-Saika scheme.31 The only difference
compared to the evaluation of conventional ERIs is the need
to calculate the scaled Boys Function Gm twice (see Eq. (26)),
namely, once for the argument T and once for Tω .25 This also
enables the introduction of an early exit criterion Tω ≥ Tcrit (see
Eq. (25)), which reduces the computational workload without
any additional screening.25 The recurrence relations employed
in the Obara-Saika scheme do not change. Since especially for
large l-quantum number combinations the recurrence relations
are computationally dominant, the evaluation of short-range
ERIs on CPUs proceeds almost as fast as for conventional
ERIs.

B. GPU implementation

The implementation of the formation of the short-range
exact exchange matrix is based on the implementation for the
conventional exchange matrix formation routine on GPUs.21,32

All GPU calculations were performed using a double precision
implementation. We employ both the McMurchie Davidson
(McD) scheme33 and Rys quadrature34,35 for the evaluation
of the electronic repulsion integrals (ERIs) over the attenu-
ated Coulomb operator, depending on the l-quantum number
combination of the basis functions. In the McD scheme the
main difference between the evaluation of the ERIs over the
attenuated Coulomb operator and the conventional ERIs is
that the calculation of the fundamental integrals [0]m requires
approximately double the effort since two Boys Kernel for T
and Tω have to be evaluated for each m ≤ L (see Eq. (26)).
The evaluation of the ERIs then proceeds through the appli-
cation of recurrence relations to the [0]m to obtain the final
result. Since especially for large l-quantum numbers the recur-
rence relations take up most of the computational time, the
time required for the evaluation of the ERI over the atten-
uated Coulomb operator is approximately the same as for
conventional ERIs when the McD scheme is used. As will
be described in the next paragraph, this is a good argument
for the use of the McD scheme compared to Rys quadrature.
On GPUs the use of the McD scheme, however, becomes pro-
hibitive when dealing with large l-quantum numbers due to the
high memory per core requirements of this integral evaluation
scheme.21

The integral evaluation using Rys quadrature employs a
numeric quadrature to evaluate the two terms in Eq. (26). More
precisely, a quadrature of the polynomial t2m, with t as the
integration variable of the Boys function of order m and the
remainder of the expression constituting the weighting func-
tion, is performed using Rys polynomials. Since the weighting

function depends on T or Tω , respectively, one has to per-
form one complete quadrature for each term, which results in
approximately double the computational cost for the atten-
uated ERIs as compared to conventional ERIs. This limits
the computational benefit of short-range hybrid functionals
on GPUs, when integral evaluation is performed using Rys
quadrature, since even though less integrals have to be evalu-
ated, the evaluation of short-range ERIs using Rys quadra-
ture is significantly more expensive than the evaluation of
conventional ERIs. Despite this limitation Rys quadrature
becomes more efficient than the McD scheme for the eval-
uation of short-range ERIs with large l-quantum numbers,
due to the high memory requirements of the McD scheme in
those cases. Another performance limiting factor is the reduced
efficiency of the early exit condition described in Sec. III A
on GPUs due to the requirement to synchronize all threads
involved in the calculation of a primitive exchange matrix
element.

As described in the previous paragraphs, choosing the
integral evaluation scheme for short-range ERIs on GPUs
merely based on Flop count considerations is not possible
since the performance is mainly memory bound. For the same
reasons, Kussmann and Ochsenfeld21 timed each l-quantum
number combination to find the optimal balance between
Rys quadrature and the McD scheme for computational
efficiency. Due to the differences in the evaluation of short-
range and conventional ERIs using Rys quadrature, those
considerations are not optimal for the present purpose. There-
fore we again timed the performance of the McD scheme
vs. Rys quadrature for each l-quantum combination perform-
ing one short-range exchange matrix formation for a DNA16

molecule and an entire SCF-calculation for Amylose8 and
DNA4 using the def2-SVP basis set. Based on these calcula-
tions (NVIDIA GeForce GTX Titan GPU device), we find the
McD scheme to be more efficient for the following l-quantum
combinations:

[ss, ss], [sp, sp], [sp, ps], [sd, ss],

[sd, sp], [sd, sd], [sd, ps], [sd, pp],

[sd, ds], [ps, ss], [ps, ps], [pp, ss],

[pp, sp], [pp, ps], [pp, pp], [pd, sp],

[pd, ps], [ds, ss], [ds, sp], [ds, ps],

[ds, pp], [ds, ds], [dp, sp], [dp, ps].

For the remaining l-quantum number combinations and all
l-quantum combinations containing l ≥ 3, we use Rys quadra-
ture. The ERFC PreLinK and Tω-Pre-Screening routines
were implemented prior to the integral evaluation on CPUs
since the computational requirements for the screening are
negligible.

C. Calculations and timings

We implemented all screening routines and performed all
calculations in the FermiONs++ program package developed
in our group.21,36 The integral kernels were compiled using



144108-6 Beuerle, Kussmann, and Ochsenfeld J. Chem. Phys. 146, 144108 (2017)

the NVIDIA 7.5 toolkit. All CPU timings were recorded on
12 core CPU servers (2x Intel Xeon CPU E5645 @ 2.40 GHz).
In the case of GPU calculations, one NVIDIA GTX Titan was
used in combination with a 12 core CPU server (2x Intel Xeon
CPU E5-2620 v2 @ 2.10 GHz).

As an initial guess, we used a superposition of atomic
densities, generated for each individual atom by an atomic
SCF calculation prior to the actual SCF calculation. As a
convergence accelerator we used Pulay’s DIIS37,38 and
Saunders-Hillier level shifting.39 The exchange-correlation
energy provided by the relevant functional was calculated
using the LIBXC library.40 We employed a 99 (radial) 590
(angular) Lebedev/Laikov-grid, with an M4 radial grid41 for
all DFT calculations. The integral screening threshold ϑint was
set to 10�10. For the determination of the extents, ε (Eq. (6))
was set to 10�9, ϑthr (Eq. (9)) was set to 10�1, and ϑT was
set to 10�12. A convergence criterion (FPS-commutator) of
ϑconv = 10−7 was used in all calculations unless stated oth-
erwise. We employed the continuous fast multipole method
(CFMM)27 to allow for a linear scaling calculation of the
Coulomb energy on CPUs. On GPUs the Coulomb matrix
formation was performed based on the McD algorithm33 in
analogy to the J-engine method42,43 adapted for massively
parallel computing architectures.32 The empirical weighting
parameter used to scale Rcrit in the Tω-Pre-Screening routine
was set to 0.20 based on test calculations on a small set of
molecules unless stated otherwise.

Information about molecular geometries and all total ener-
gies and timings are presented in the supplementary material.
The reported speedups correspond to the fraction of time used
for the conventional LinK/PreLinK formation of the exchange
matrix accumulated during the SCF cycle divided by the time
used for the exchange matrix formation including the relevant
screening procedure. It has to be noted that the early exit crite-
rion Tω ≥ Tcrit is employed in both the reference and screened
calculations. This entails that the reported speedups are caused
only by the introduction of the relevant screening routine. The
errors were calculated for the final SCF energy compared to the
unscreened calculation employing a threshold of ϑCPU = 10−10

used in the LinK and ERFC LinK routines and ϑGPU = 10−4

used in the PreLinK and ERFC PreLinK/Tω-Pre-Screening
calculations.

IV. RESULTS AND DISCUSSION
A. General purpose test using the HSE06 functional

As a first test, we evaluated the performance of our screen-
ing routines on a large portion of the test-set introduced for
the benchmarking of the QQR integral estimates.24 The test-
set covers a variety of large molecules with different chemical
properties to ensure robustness along a wide range of molec-
ular systems. We tested the ERFC LinK routine using both
the criteria from Eqs. (7) and (12) to show the high similarity
between the two. Furthermore we evaluated the performance
of the GPU based ERFC PreLinK (criterion from Eq. (16))
and Tω-Pre-Screening routine.

The results of this benchmark (Table I) show that the
errors introduced by the ERFC LinK routines are negligi-
ble (below 10−7 H). Furthermore Table I shows that, as stated

in Sec. II, both criteria (Eqs. (7) and (12)) employed in the
screening routine show similar results in terms of speedups
and accuracy. Therefore solely the results obtained with the
criterion from Eq. (7) will be shown in the subsequent tests.
The highest speedup observed for the CPU routine was 7.8
for Polyene1024. It has to be noted that some of the systems
in Table I are not single reference systems and would have
to be treated with multireference techniques, to obtain phys-
ically reliable results. Here they serve, however, as test cases
for electronically delocalized systems.24 Other notable exam-
ples are the water clusters and the carbon nanotubes, which
show considerable speedups of up to a factor 3.8 for H2O569

and 5.0 for CNT(6, 3)8. In the specific case of CNT(6, 3)8 (690
atoms, def2-SVP basis,44 ∼9500 basis functions), introducing
the ERFC LinK routine leads to a reduction of the total wall
time required for exchange calculations from 179 h to 36 h,
while the total SCF wall time reduces from 205 h to 61 h. While
traditionally the formation of the exchange matrix is the most
time consuming step, employing the ERFC LinK routine ren-
ders the computational cost of this step more similar, or even
smaller than the formation of the Coulomb matrix in most
cases. This is illustrated in a scatter plot (see Figure 1), which
shows the computational cost required for the exact exchange
part vs. the Coulomb part for the test set in Table I. The average
ratio of the time required for the formation of the exchange
matrix compared to the Coulomb matrix T tot ,K /T tot ,J is 3.4
when employing the conventional LinK algorithm and 1.3
when employing the ERFC LinK scheme. This shows that DFT
calculations employing short-range exact exchange can be per-
formed with significantly reduced computational cost on CPU
architectures.

For the GPU based ERFC PreLinK screening, the errors
also do not exceed 10−7 H. The maximum speedup observed
for ERFC PreLinK screening is 2.07. The average speedup
for the entire test set with the ERFC PreLinK routine is ∼1.4
alongside with a negligible average error (∼7 nhartree). For the
Tω-Pre-Screening routine, the errors are significantly higher
compared to both the ERFC PreLinK and the ERFC LinK
routine. The maximum error is 56 µhartree (0.04 kcal/mol)
for polyene1024 and the average error is ∼4 µhartree. It has
to be noted that the higher average error as compared to the
ERFC LinK and ERFC PreLinK method is mainly accounted
for by systems with small HOMO-LUMO gap. For the remain-
ing systems, the errors are below 1 µhartree. While the errors
are higher as compared to the ERFC PreLinK routine, the
speedups are also higher with a maximum speedup of 3.2 for
the carbon nanotube CNT(6, 3)8 and an average speedup of
∼1.8 across the entire test set. Even though the speedups for
the formation of the exchange matrix on GPUs using the ERFC
PreLinK and the Tω-Pre-Screening routine are significantly
lower as compared to the ERFC LinK scheme, the impact on
the wall time required for the total SCF calculation for the GPU
routines is more similar to the ERFC LinK scheme. This is due
to the fact that the proportion of time required for exchange cal-
culations in comparison to the total time required for the SCF
calculation is higher on GPUs. In the case of DNA16 (1052
atoms, def2-SVP basis,44 ∼11 000 basis functions) a speedup
in the exchange part of 3.2 translates into a total speedup in
wall time of 2.2 for the ERFC LinK scheme on CPUs, while a
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TABLE I. Speedups (S.U.) and errors for the different screening routines for DFT calculations using the HSE06
functional7,9 with the def2-SVP basis set.44 Speedups correspond to the fraction of time required for exchange
matrix formations during the complete SCF cycle employing the reference algorithm (LinK for CPUs and PreLinK
for GPUs), divided by the time required employing the additional screening routine. Errors are reported for total,
converged SCF energies relative to the reference calculation.

ERFC LinK @CPU

Eq. (12) Eq. (7) ERFC PreLinK @GPU Tω-pre-screening @GPU

System NAtoms E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U.

Amylose2 45 0.2 1.14 0.2 1.13 0.3 1.02 0.5 1.04
Amylose4 87 0.5 1.42 0.5 1.42 0.4 1.14 1.4 1.33
Amylose8 171 1.2 1.71 1.2 1.72 0.7 1.30 3.9 1.61
Amylose16 339 2.2 1.84 2.0 1.84 1.3 1.35 5.8 1.71
Amylose32 675 4.0 1.87 3.7 1.84 0.4 1.36 8.7 1.73
Amylose48 1011 5.3 1.85 5.7 1.86 1.3 1.36 14.1 1.72
Amylose64 1347 5.0 1.85 5.5 1.86 0.4 1.35 20.1 1.69
Beta-carotene 96 0.3 1.87 0.3 1.89 1.8 1.58 1123.2 2.09

CNT
a
20 30 0.1 1.04 0.2 1.04 0.0 0.96 0.0 0.98

CNT
a
40 50 1.4 1.11 1.5 1.12 0.2 1.0 299.7 1.01

CNT
a
80 90 0.1 1.37 0.2 1.38 1.1 1.03 3116.7 1.27

CNT
a
160 170 0.1 2.10 1.0 2.12 5.6 1.38 13277.8 2.08

CNT(6,3)
a
8 690 58.9 4.91 65.6 4.97 78.5 1.89 40221.7 3.22

Diamond102 102 1.2 1.15 1.3 1.14 1.2 1.00 0.6 1.00
DNA1 62 0.1 1.44 0.1 1.40 0.1 1.19 5.2 1.40
DNA2 128 0.1 1.62 0.0 1.64 0.2 1.23 14.2 1.49
DNA4 260 0.5 2.09 0.5 2.11 0.0 1.39 35.1 1.90
DNA8 524 2.1 2.74 2.2 2.78 1.9 1.62 88.1 2.42
DNA16 1026 4.0 3.20 4.0 3.23 2.7 1.71 161.4 2.61
Graphite24 36 0.3 1.11 0.3 1.12 0.7 1.00 13.4 1.03
Graphite54 72 3.6 1.30 3.5 1.31 0.7 1.01 4337.0 1.20
Graphite96 120 9.7 1.57 9.0 1.59 5.5 1.08 8487.5 1.58
(H2O)68 204 0.3 1.94 0.3 1.96 3.1 1.33 2.3 1.50
(H2O)142 426 1.5 2.54 1.4 2.55 9.0 1.51 1.2 1.84
(H2O)285 855 2.7 3.17 3.5 3.19 19.2 1.67 6.8 2.17
(H2O)569 1707 7.8 3.76 9.3 3.80 53.5 1.78 35.7 2.41
(LiF)32 32 0.5 1.17 0.7 1.14 0.0 1.03 127.5 1.14
(LiF)72 72 5.0 1.26 5.5 1.28 0.3 1.03 432.3 1.19
Polyethyne64 130 0.4 2.54 0.3 2.58 10.7 1.88 719.6 2.55
Polyethyne128 258 0.8 3.29 0.7 3.36 23.2 1.96 1509.2 2.65
Polyene64 66 2.0 3.15 2.5 3.11 0.1 1.85 3290.2 3.10
Polyene1024 1026 36.2 7.77 40.6 7.81 0.5 2.07 56122.2 2.40
(S8)5 40 1.3 1.51 1.2 1.55 0.9 1.24 138.3 1.44
(S8)20 160 6.3 2.57 6.4 2.60 10.2 1.71 972.7 2.38

Average 4.9 2.21 5.3 2.22 6.9 1.38 3958.6 1.79

aDue to convergence problems a SCF energy difference criterion ϑconv = 10�6 was used.

a speedup in the exchange part of 2.6 leads to a total speedup
of 2.0 for the Tω-Pre-Screening routine on GPUs.

To test the accuracy of our routines on a large, covalent,
globular system, we performed a calculation on the crystal
structure of a 56 amino acid long protein domain (DGCR8
Dimerization Domain, PDB-ID: 4E5R,45 975 atoms, def2-
SVP basis,44 9176 basis functions). The ERFC LinK routine
yields a speedup of a factor of 3.0 for the exchange matrix
calculations, while the error remains below 1 nhartree. The
GPU based ERFC PreLink method leads to a speed up of
1.7, while the error remains well below 10 nhartree. The
Tω-Pre-Screening routine leads to a speedup of 2.8 along
with an error of 91 nhartree. These results show that also for
large, covalent, globular systems our screening routines remain

accurate, while yielding significant speedups. This is a further
confirmation that weighting Schwarz integral estimates with
the decay of the operator at hand in a QQR-type fashion,24

while not mathematically rigorous, is a viable approach to
accurate and efficient screening methods.

While the numbers from Table I and the more tedious inte-
gral evaluation for ERIs over the attenuated Coulomb operator
make the GPU routines appear less attractive, it is enlighten-
ing to compare the wall times of a calculation employing 12
CPU cores to the time required for the same calculation on
a single GPU. The scatter plot in Figure 2 shows the wall
times required for the entire SCF calculations for all systems
in Table I on a 12 core CPU server compared to the wall times
when both the Coulomb and exchange matrix calculations are
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FIG. 1. Scatter plot showing the accumulated wall times required for the
formation of the short-range exact exchange matrix compared to the wall time
required for the formation of the Coulomb matrix for each system in Table I
during the entire SCF cycle on CPUs. Shown are the numbers for the LinK
reference and the ERFC LinK routine employing the screening criterion from
Eq. (7).

performed on one GPU. On average the speedup obtained
with the Tω-Pre-Screening routine compared to the ERFC
LinK calculations was 5.9, while the ERFC PreLinK calcula-
tions were 4.7x faster. Therefore when both implementations
are available and the use of a short-range hybrid is required
due to its special features or as a reference, the GPU code is
recommended.

B. Scaling behavior

To make sure that our screening routines do not change the
linear-scaling behavior of the underlying linear-scaling algo-
rithms for the formation of the exchange matrix, we performed
calculations on a set of linear alkanes (AlkaneX , X = 1-320).
Such almost one dimensional systems are ideal to show the
asymptotic scaling behavior of a quantum chemical method
since the asymptotic limit is reached with modest computa-
tional requirements.46 Furthermore these calculations serve

FIG. 2. The graph shows the total wall times required for an entire SCF cycle
on a 12 core CPU server compared to the use of one GPU for the Coulomb
and exchange integral routines for each system in Table I. Both the Tω -Pre-
Screening and the ERFC PreLinK GPU routine are compared to the ERFC
LinK timings. To indicate a rough trend, linear fits to each data set are shown
as well.

as a test, whether the objective, namely, linear-scaling rou-
tines with reduced prefactor on CPUs and GPUs, have been
obtained. The results for both the CPU and GPU routines are
shown in Figure 3. It is evident that all routines achieve the
aim of providing a reduced prefactor linear-scaling formation
of the short-range exchange matrix. Furthermore the benefit
of the additional screenings remains constant with increas-
ing system size in the asymptotic limit. The highest prefactor
reduction is achieved by the ERFC LinK routine followed by
the Tω-Pre-Screening and ERFC PreLinK routines, which is
in line with the average speedups seen in Table I.

C. Basis set dependence

Furthermore we examined the basis set dependence of
our screening routines from small (def2-SV) to large (def2-
TZVP) and also the influence of diffuse basis functions (def2-
SVPD).44 For calculations with large and diffuse basis sets,
we focused on a subset of the molecules used in Table I. The
results are shown in Table II.

For the ERFC LinK routine, the speedups increase in
the following order def2-SV< def2-SVP< def2-TZVP, while
the errors stay on the same order of magnitude. The speedups

FIG. 3. The graphs show the time required for the formation of one short-
range exact exchange matrix with a converged one particle density matrix
plotted against the number of atoms in the system. The results for the CPU
routines are shown in the top and the results for the GPU routines are shown
in the bottom graph.
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TABLE II. Speedups (S.U.) and errors for the ERFC LinK, ERFC PreLinK and Tω -Pre-Screening routines for DFT calculations using the HSE06 functional7,9

with different def2-X (X = SV, SVP, SVPD, TZVP) basis sets.44 Speedups correspond to the fraction of time required for exchange matrix formations during
the complete SCF cycle employing the reference algorithm (LinK for CPUs and PreLinK for GPUs), divided by the time required employing the additional
screening routine. Errors are reported for total, converged SCF energies relative to the reference calculation.

ERFC LinK@CPU

def2-SV def2-SVP def2-TZVP def2-SVPD
System NAtoms E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U.

Amylose8 171 1.4 1.65 1.2 1.72 0.2 2.04 3.5 1.85
DNA2 128 0.1 1.54 0.0 1.64 0.1 1.74 1.9 1.47
(H2O)68 204 0.1 1.84 0.3 1.96 0.6 2.21 1.0 1.69
Polyethyne128 258 0.9 2.77 0.7 3.36 2.3 4.30 6.8 3.86
(S8)5 40 2.5 1.54 1.2 1.55 0.6 1.64 2.7 1.32

Average 1.0 1.87 0.68 2.05 0.8 2.39 3.2 2.04

ERFC PreLinK@GPU

def2-SV def2-SVP def2-TZVP def2-SVPD
System NAtoms E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U.

Amylose8 171 0.3 1.28 0.7 1.30 0.3 1.46 3.0 1.19
DNA2 128 0.0 1.20 0.2 1.23 0.8 1.15 1.5 1.03
(H2O)68 204 3.1 1.26 3.1 1.33 4.3 1.39 1.8 1.02
Polyethyne128 258 22.5 1.84 23.2 1.96 10.9 2.13 0.6 1.61
(S8)5 40 0.7 1.26 0.9 1.24 3.2 1.12 0.9 1.03

Average 5.3 1.37 5.62 1.41 3.9 1.45 1.6 1.18

Tω -pre-screening@GPU

def2-SV def2-SVP def2-TZVP def2-SVPD
System NAtoms E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U.

Amylose8 171 3.2 1.61 3.9 1.61 22.6 2.14 53.2 2.02
DNA2 128 10.9 1.48 14.2 1.49 20.1 1.53 11.1 1.43
(H2O)68 204 1.8 1.41 2.3 1.50 5.4 1.68 5.6 1.39
Polyethyne128 258 338.6 2.54 1509.2 2.65 11479.3 3.28 621.8 2.82
(S8)5 40 135.6 1.48 138.3 1.44 93.9 1.44 126.1 1.25

Average 98.0 1.70 333.6 1.74 2324.5 2.01 163.6 1.78

obtained when including diffuse functions (def2-SVPD) do
not show a clear trend; however, the error remains on the same
order of magnitude. A similar behavior is observed for the
ERFC PreLinK scheme; however, the errors for the calcula-
tions employing the def2-SVPD basis set are decreased. The
same holds true for the Tω-Pre-Screening routine, with errors
more or less independent of the basis set used. This shows that
all three routines deliver accurate results independent of the
basis set. The highest speedups were obtained with the def2-
TZVP basis, enabling fast short-range exchange calculations
employing a triple zeta basis. This indicates that the speedups
seen in Table I, e.g., 7.8, for polyene 1024, are expected to
increase, when using a bigger basis set.

D. Different ω-screening parameters

Finally we examined the performance of our screening
routines using a short-range density functional with a different
ω-value than HSE06. Here, Moussa et al.12 have shown that
ω = 0.22 (with different mixing parameter a = 0.425) yields
similar results in terms of accuracy as HSE06. This is appeal-
ing since a higher ω-value entails reduced computational cost

due to increased screening of the exchange contribution. The
results for the ERFC LinK and the GPU screening routines are
shown in Table III.

For the ERFC LinK scheme, the speedups obtained with
ω = 0.22 are higher than the ones obtained for ω = 0.11 in
all cases with a maximum increase of a factor of 1.8 in the
case of (S8)20. At the same time, the errors obtained with the
ERFC LinK routine decrease. The average increase in speedup
for the molecules shown in Table III for ω = 0.22 compared to
ω = 0.11 was 1.4. The total wall time for the exchange matrix
calculations decreases from 65 min to 38 min for (S8)20 (same
number of SCF iterations), highlighting the potential of even
higher speedups, when using short-range hybrid functionals
with higher ω-parameters.

For the ERFC PreLinK, no significantly increased
speedups were obtained on average for the higher ω-value.
Similar to the ERFC LinK routine, the errors decrease when
changing ω to 0.22. The calculation with Tω-Pre-Screening
shows both significant speedups and increase in errors, which
indicates that the scaling factor applied to Rcut to yield a cer-
tain accuracy is ω dependent. Performing the calculations
with a scaling factor of 0.25 instead of 0.20 reduces the error
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TABLE III. Speedups (S.U.) and errors for the ERFC LinK, ERFC PreLinK, and Tω -Pre-Screening routines for DFT calculations using the HSE12s functional12

(ω = 0.22) with the def2-SVP basis set.44 Speedups correspond to the fraction of time required for exchange matrix formations during the complete SCF cycle
employing the reference algorithm (LinK for CPUs and PreLinK for GPUs), divided by the time required employing the additional screening routine. Errors are
reported for total, converged SCF energies relative to the reference calculation.

ERFC LinK @CPU ERFC PreLinK @GPU T0.20
ω -Pre-Screening @GPU T0.25

ω -Pre-Screening @GPU

System NAtoms E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U. E[10�9H] S.U.

Amylose8 171 0.5 2.24 0.2 1.37 2188.9 2.65 3.0 2.05
DNA2 128 0.1 2.15 0.5 1.29 1056.8 2.62 14.7 1.91
(H2O)68 204 0.1 2.90 0.2 1.43 1859.3 3.46 7.9 2.31
Polyethyne128 258 0.2 4.45 0.0 1.61 39460.4 2.72 477.0 2.26
Polyene1024 1026 5.6 9.50 0.1 1.94 n.c.a n.c.a 14383.0 2.14
(S8)5 40 1.1 2.26 0.0 1.34 242.3 2.69 27.5 2.00
(S8)20 160 6.0 4.59 0.3 1.87 10228.7 6.05 179.2 3.84

Average ω = 0.22 1.9 4.01 0.2 1.55 9172.7 3.37 2156.0 2.36
Average ω = 0.11 7.2 2.95 5.5 1.55 8394.7 1.92 571.8 1.55

an.c.: Calculation did not converge because of too extensive screening.

significantly, but obviously also the speedups obtained. While
this ω dependence of the scaling factor is not optimal, cal-
ibration on a small test set for the ω value at hand should
yield a reliable value quickly. Furthermore, most short-range
functionals employ ω = 0.11, for which the values employed
in the majority of this study show stable behavior of the
Tω-Pre-Screening routine.

To test theω-dependence of the screening routines across
a wider ω-range, we performed calculations on (H2O)68

keeping the exchange mixing parameter fixed at the HSE
value of 0.25, but changing ω from 0.03 to 0.9. The results
in Figure 4 show that for the ERFC LinK routine the
speedup increases steadily with increasing ω up to a max-
imum of approximately 7. For the Tω-Pre-Screening rou-
tines with different scaling parameters, the overall trend is
the same for each scaling parameter T0.20−0.30

ω , namely, an
increase in speedup up to ω = 0.4 and then approximately
constant behavior. Obviously a lower weighting parameter
shows a higher speedup. The ERFC PreLinK routine shows
a slight increase in speedup up to ω = 0.2 and then constant
behavior.

When examining the ω-dependence of the errors intro-
duced by the screening, Figure 4 shows that the error for
the ERFC LinK routine does not significantly exceed 10�9 H
across the entire ω-range. For the ERFC PreLinK routine, the
error decreases with increasing ω and never exceeds 10�7 H
showing that both the ERFC LinK and ERFC PreLinK rou-
tine do not cause significant errors across the entire ω-range.
For the Tω-Pre-Screening graphs the error increases similar
to the speedup with increasing ω until ω = 0.4, after which the
error approximately remains constant (two points at ω = 0.3
and ω = 0.6 deviate from the overall trend on the curve for the
T0.20
ω - and T0.25

ω -Pre-Screening, respectively). As mentioned
earlier this behavior is not satisfactory; however, the error can
be easily reduced, when resorting to a higher scaling parameter
at higher ω-values. For the scaling parameter 0.20, the error
raises above the acceptable error of approximately 1 µhartree at
ω = 0.25. The error when employing T0.25

ω -Pre-Screening does
however not significantly exceed 1 µhartree, and the errors for
T0.30
ω -Pre-Screening are even lower.

A study by Moussa et al.,12 examined the HSE param-
eter space by varying the exact exchange mixing parameter
and the screening parameter ω. The authors12 found that

FIG. 4. The top graph shows a plot of the speedup of the wall time required for
the exchange matrix formation during the entire SCF calculation as compared
to the reference implementation (LinK for ERFC LinK, PreLink for Tω -Pre-
Screening and ERFC PreLinK) against the screening parameter ω employed
in the calculation. The bottom graph shows a plot of the total SCF error as
compared to the reference implementation against the screening parameterω
employed in the calculation. The superscript of the Tω -Pre-Screening labels
indicates the empirical scaling parameter used for the calculation of the matrix
element estimates.
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for ω > 0.22 no functional can be built, which yields sim-
ilar accuracy as compared to HSE06. This means that the
study of the behavior of our screening routines for ω > 0.22 is
mainly conceptual until another density functional exchange
description is available, which enables accurate results for
higher ω-values. For the relevant ω-space, all of our screen-
ing routines show satisfactory results in terms of accuracy and
speedup.

V. CONCLUSION

We have presented reduced prefactor linear-scaling algo-
rithms for short-range exchange matrix calculations. The CPU
based ERFC LinK routine yields speedups of up to a fac-
tor of 7.8, while the error introduced by the screening is not
significant. Among the GPU screening routines, the ERFC
PreLinK shows lower speedups. The performance-increase
obtained with the Tω-Pre-Screening method comes, how-
ever, with an increased error as compared to the ERFC Pre-
LinK method. Higher errors were observed especially for
higher ω-values and low HOMO-LUMO gap systems. We
showed, however, that the error can be easily controlled by
an empirical scaling parameter. The speedups obtained with
the GPU based routines are in general lower as compared to
the ERFC LinK routine since a more crude preselection of
matrix elements is necessary on massively parallel computing
architectures.21

We also discussed the problems involved with the imple-
mentation of short-range ERIs on GPUs. While this makes
short-range exchange calculations on GPUs seem less attrac-
tive, we showed that compared to the CPU implementation,
significant speedups are nevertheless possible.

While the proof of concept calculations shown in this
article focused on molecular systems, short-range hybrid cal-
culations are especially popular in the solid state community.
We are convinced that an extension of our methodology devel-
oped here is readily applicable to periodic boundary condition
calculations employing Gaussian basis sets, since all necessary
quantities are available.

Compared to an earlier study on efficient short-range
exchange calculations,23 we have introduced a new screen-
ing criterion in the case of the Tω-Pre-Screening routine and
combined different ideas from general screening considera-
tions23,24,47 to introduce screening criteria compatible with the
LinK and PreLinK schemes. Furthermore, our linear-scaling
algorithms do not depend on a boxing scheme, which enables
a more fine-grained screening and is also readily implemented
in pre-existing LinK and PreLinK implementations. While for
periodic boundary conditions, boxes (unit cells) are naturally
present, we believe that the ERFC LinK, ERFC PreLinK,
and Tω-Pre-Screening routine can also be beneficial here.
This is especially true for systems, which require large unit
cells.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular geometries,
total energies, and timings.
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1 ERFC LinK Scheme

1: loop over types (angular momenta, contraction,. . . ) of shell-pair blocks

2: loop over all µ’s in significant bra-shell pairs

3: loop over all ν’s in significant ket-shell pairs

4: if ([|Pµν | · (µmax|µmax)
1/2 · (νmax|νmax)

1/2] > Threshold) then

5: if ([|Pµν | · (µmax|µmax)
1/2 · (νmax|νmax)

1/2 · erfc(ωRmin,µν)
Rmin,µν

] > Threshold) then

6: Store significant ν’s for each µ

7: end if

8: end if

9: end loop

10: Sort ν’s by size of [|Pµν | · (νmax|νmax)
1/2] for each µ

11: end loop

12: loop over significant bra-shell pairs µλ

13: loop over significant ν’s corresponding to µ

14: loop over significant σ’s

15: if ([|Pµν | · (µλ|µλ)1/2 · (νσ|νσ)1/2] > Threshold) then

16: ctrσ + +

17: if ([|Pµν | · (µλ|µλ)1/2 · (νσ|νσ)1/2 · erfc(ωRµλ,νσ)
Rµλ,νσ

] > Threshold) then

18: Add (νσ) to MLµ

19: end if

20: else Leave σ-loop

21: end if

22: end loop

23: if ctrσ is zero then leave σ-loop

24: end loop

25: Same loop for λ to form MLλ

26: Merging sorted shell-pair lists MLµ and MLλ yields ML

27: loop over significant ket-shell pairs νσ ∈ ML

28: Form (µλ|νσ) and contract with Pµν , Pνσ, Pλν , Pλσ

29: end loop

30: end loop

31: end loop

Figure S1: Pseudocode of the ERFC LinK, scheme resembling the original LinK loop structure [1], with addi-

tional screening criteria to account for the decay introduced by the attenuated Coulomb operator.

2 Molecular Structures

The structures for the test set used in this article were adopted from Maurer et al. [2] and are available on our

group home-page along with the linear alkanes [3].

The crystal-structure of the DGCR8 dimerization domain was downloaded from the PDB (PDB-ID: 4E5R [4]).

3



Subsequently missing hyrdogens were added using Avogadro [5].

3 Total Energies and Timings

3.1 CPU calculations

3.1.1 Data for Section ’General Purpose Test using the HSE06 functional’

Table 1: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on CPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567121864 1187 525

Amylose4 -2514.6590442323 3703 1943

Amylose8 -4953.0635615979 9541 5630

Amylose16 -9829.8723965973 22186 13815

Amylose32 -19583.4903964247 45086 28128

Amylose48 -29337.1094519594 71645 43765

Amylose64 -39090.7291669768 101972 60696

Beta-carotene -1555.0156201718 3013 1721

CNT∗
20 -766.3696901960 578 294

CNT∗
40 -1526.9882093163 3479 1846

CNT∗
80 -3048.2929933866 13775 8133

CNT∗
160 -6090.8435904133 69452 50361

CNT(6, 3)∗
8 -25576.2260942159 736787 645817

Diamond102 -1631.7173281050 21524 10988

DNA1 -1760.3240502280 1639 864

DNA2 -4502.3006369713 11520 6655

DNA4 -9986.2377491667 42942 29091

DNA8 -20954.1262332797 170854 128900

DNA16 -42889.9083699813 535800 417343

Graphite24 -920.2459654458 915 468

Graphite54 -2064.5666929172 5687 3504

Graphite96 -3665.9943514948 18509 13196

(H2O)68 -5188.2204447163 6438 3755

(H2O)142 -10834.5826300924 20628 13703

(H2O)285 -21746.0223160767 66161 47589

(H2O)569 -43416.3054753086 249328 187652

(LiF)32 -1717.1001635839 548 263

(LiF)72 -3863.8868816667 9673 4883

Polyethyne64 -2473.5765328628 2047 1335

Polyethyne128 -4945.9875084588 5244 3607

Polyyne64 -2433.2728417950 771 510

Polyyne1024 -38914.7735893304 151322 35327

(S8)5 -15918.0655865763 689 440

(S8)20 -63672.3245839813 12482 10122

DGCR8 Dimerization Domain -24313.7175998831 310205 234829
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Table 2: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC Link

(Eq. 12) calculations on CPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567121862 1122 461

Amylose4 -2514.6590442318 3133 1372

Amylose8 -4953.0635615967 7233 3295

Amylose16 -9829.8723965951 15914 7521

Amylose32 -19583.4903964207 32089 15071

Amylose48 -29337.1094519541 51333 23657

Amylose64 -39090.7291669718 74119 32731

Beta-carotene -1555.0156201715 2214 921

CNT∗
20 -766.3696901961 572 282

CNT∗
40 -1526.9882093149 3302 1669

CNT∗
80 -3048.2929933867 11538 5948

CNT∗
160 -6090.8435904132 43146 23990

CNT(6, 3)∗
8 -25576.2260942748 222623 131633

Diamond102 -1631.7173281062 20087 9593

DNA1 -1760.3240502281 1371 602

DNA2 -4502.3006369714 9026 4096

DNA4 -9986.2377491662 27699 13909

DNA8 -20954.1262332776 88992 47060

DNA16 -42889.9083699773 249036 130469

Graphite24 -920.2459654461 868 423

Graphite54 -2064.5666929136 4884 2699

Graphite96 -3665.9943514851 13733 8425

(H2O)68 -5188.2204447160 4638 1940

(H2O)142 -10834.5826300909 12347 5389

(H2O)285 -21746.0223160740 33520 15033

(H2O)569 -43416.3054753008 111490 49949

(LiF)32 -1717.1001635834 511 224

(LiF)72 -3863.8868816617 8655 3869

Polyethyne64 -2473.5765328624 1233 525

Polyethyne128 -4945.9875084580 2727 1097

Polyyne64 -2433.2728417930 420 162

Polyyne1024 -38914.7735892942 120760 4547

(S8)5 -15918.0655865776 535 291

(S8)20 -63672.3245839876 6296 3938
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Table 3: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC LinK

(Eq. 7) calculations on CPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567121862 1118 463

Amylose4 -2514.6590442318 3145 1372

Amylose8 -4953.0635615967 7185 3266

Amylose16 -9829.8723965953 16055 7502

Amylose32 -19583.4903964210 32167 15261

Amylose48 -29337.1094519537 51292 23498

Amylose64 -39090.7291669713 73875 32562

Beta-carotene -1555.0156201715 2200 911

CNT∗
20 -766.3696901962 568 282

CNT∗
40 -1526.9882093148 3285 1655

CNT∗
80 -3048.2929933864 11506 5908

CNT∗
160 -6090.8435904143 42910 23781

CNT(6, 3)∗
8 -25576.2260942815 221204 129867

Diamond102 -1631.7173281063 20104 9601

DNA1 -1760.3240502281 1387 618

DNA2 -4502.3006369713 8918 4067

DNA4 -9986.2377491662 27667 13778

DNA8 -20954.1262332775 88839 46400

DNA16 -42889.9083699773 247986 129260

Graphite24 -920.2459654461 869 419

Graphite54 -2064.5666929137 4862 2685

Graphite96 -3665.9943514858 13612 8296

(H2O)68 -5188.2204447160 4614 1918

(H2O)142 -10834.5826300910 12299 5366

(H2O)285 -21746.0223160732 33568 14939

(H2O)569 -43416.3054752993 111167 49431

(LiF)32 -1717.1001635832 513 230

(LiF)72 -3863.8868816612 8648 3822

Polyethyne64 -2473.5765328625 1228 517

Polyethyne128 -4945.9875084581 2702 1074

Polyyne64 -2433.2728417925 423 164

Polyyne1024 -38914.7735892898 120669 4525

(S8)5 -15918.0655865775 529 284

(S8)20 -63672.3245839877 6251 3893

DGCR8 Dimerization Domain -24313.7175998833 153300 77678
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3.1.2 Data for Section ’Scaling Behavior’

Table 4: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on CPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Alkane01 -40.4316067044 2 ≤ 1

Alkane02 -79.6689867297 6 ≤ 1

Alkane03 -118.9088500395 14 4

Alkane04 -158.1482944884 25 8

Alkane05 -197.3876326675 46 16

Alkane06 -236.6269683354 69 26

Alkane07 -275.8663020060 104 43

Alkane08 -315.1056240125 176 54

Alkane09 -354.3449491534 229 77

Alkane10 -393.5842687765 270 93

Alkane13 -511.3022317827 407 166

Alkane15 -589.7808721998 496 222

Alkane20 -785.9774723309 717 360

Alkane30 -1178.3706721881 1240 691

Alkane40 -1570.7638713537 1835 1081

Alkane50 -1963.1570704472 2422 1458

Alkane60 -2355.5502699057 3030 1838

Alkane80 -3140.3366684876 4303 2618

Alkane100 -3925.1230669812 5676 3496

Alkane160 -6279.4822619087 10173 6035

Alkane200 -7849.0550585895 13929 7674

Alkane300 -11772.9870495731 25945 11815

Alkane320 -12557.7734475081 29640 12692

Table 5: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC LinK

(Eq. 7) calculations on CPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Alkane01 -40.4316067044 3 ≤ 1

Alkane02 -79.6689867297 6 1

Alkane03 -118.9088500395 14 3

Alkane04 -158.1482944884 25 7

Alkane05 -197.3876326674 46 17

Alkane06 -236.6269683354 68 26

Alkane07 -275.8663020061 102 41

Alkane08 -315.1056240125 172 50

Alkane09 -354.3449491534 226 70

Alkane10 -393.5842687765 261 86

Alkane13 -511.3022317828 379 138

Alkane15 -589.7808721998 448 175

Alkane20 -785.9774723309 598 243

Alkane30 -1178.3706721881 936 390

Alkane40 -1570.7638713537 1307 555

Alkane50 -1963.1570704472 1669 705

Alkane60 -2355.5502699057 2052 864

Alkane80 -3140.3366684875 2877 1203

Alkane100 -3925.1230669811 3729 1552

Alkane160 -6279.4822619082 6794 2642

Alkane200 -7849.0550585889 9607 3349

Alkane300 -11772.9870495723 19340 5209

Alkane320 -12557.7734475072 22544 5622
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3.1.3 Data for Section ’Basis Set Dependence’

Table 6: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on CPUs using the HSE06 functional [6, 7, 8].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

def2-SV

Amylose8 -4951.3205620620 4655 2384

DNA2 -4500.6327971215 5881 2956

(H2O)68 -5185.6849187408 2718 1295

Polyethyne128 -4944.6167451692 2017 1115

(S8)5 -15916.2919545647 350 205

def2-SVPD

Amylose8 -4953.5300284379 170481 119923

DNA2 -4502.5962276056 168659 112484

(H2O)68 -5189.1364561538 203492 126269

Polyethyne128 -4946.1647073198 41643 34225

(S8)5 -15918.3329759315 21479 12172

def2-TZVP

Amylose8 -4958.7185624054 128353 97492

DNA2 -4506.8696669914 153454 114987

(H2O)68 -5194.7265670686 28593 20829

Polyethyne128 -4951.2009579457 79660 70270

(S8)5 -15923.7893787900 11811 9089

Table 7: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC LinK

(Eq. 7) calculations on CPUs using the HSE06 functional [6, 7, 8].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

def2-SV

Amylose8 -4951.3205620606 3718 1444

DNA2 -4500.6327971214 4849 1917

(H2O)68 -5185.6849187407 2122 703

Polyethyne128 -4944.6167451701 1309 403

(S8)5 -15916.2919545672 286 133

def2-SVPD

Amylose8 -4953.5300284344 115553 64988

DNA2 -4502.5962276037 132424 76334

(H2O)68 -5189.1364561528 151883 74864

Polyethyne128 -4946.1647073130 16312 8876

(S8)5 -15918.3329759342 18471 9196

def2-TZVP

Amylose8 -4958.7185624052 78514 47798

DNA2 -4506.8696669913 104839 66143

(H2O)68 -5194.7265670680 17182 9430

Polyethyne128 -4951.2009579434 25701 16324

(S8)5 -15923.7893787894 8243 5526
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3.1.4 Data for Section ’Different ω-Screening Parameters’

Table 8: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on CPUs using the HSE12s functional [10]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779232697 9466 5568

DNA2 -4502.1196855058 12076 6975

(H2O)68 -5187.9190641817 5222 2958

Polyethyne128 -4945.9069482660 5169 3552

Polyyne1024 -38911.7852933736 151584 35361

(S8)5 -15918.6065844305 688 441

(S8)20 -63674.4940161102 12327 9986

Table 9: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC LinK

(Eq. 7) calculations on CPUs using the HSE12s functional [10]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779232702 6372 2481

DNA2 -4502.1196855057 8352 3244

(H2O)68 -5187.9190641816 3307 1021

Polyethyne128 -4945.9069482662 2416 798

Polyyne1024 -38911.7852933792 119731 3724

(S8)5 -15918.6065844316 439 195

(S8)20 -63674.4940161162 4511 2174

Table 10: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on CPUs using the HSE06 functional with varying ω-values. The calculations were performed

using the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753456259 5277 2994

(H2O)68 ω = 0.06 -5188.2644453995 5252 2998

(H2O)68 ω = 0.09 -5188.2418515808 5236 2972

(H2O)68 ω = 0.12 -5188.2080074242 5244 2974

(H2O)68 ω = 0.15 -5188.1646813287 5341 3025

(H2O)68 ω = 0.18 -5188.1140941219 5301 3018

(H2O)68 ω = 0.21 -5188.0585007055 5315 3026

(H2O)68 ω = 0.24 -5187.9999889148 5330 3037

(H2O)68 ω = 0.27 -5187.9403905412 5307 3022

(H2O)68 ω = 0.30 -5187.8812574021 5229 2990

(H2O)68 ω = 0.40 -5187.7020724959 5295 3030

(H2O)68 ω = 0.50 -5187.5696243854 5307 3042

(H2O)68 ω = 0.60 -5187.4933846844 5324 3047

(H2O)68 ω = 0.70 -5187.4706952243 5489 3215

(H2O)68 ω = 0.80 -5187.4923965782 5319 3033

(H2O)68 ω = 0.90 -5187.5468103389 5329 3051
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Table 11: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC LinK

(Eq. 7) calculations on CPUs using the HSE06 functional with varying ω-values. The calculations were per-

formed using the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753456254 4323 2038

(H2O)68 ω = 0.06 -5188.2644453990 4085 1835

(H2O)68 ω = 0.09 -5188.2418515804 3897 1642

(H2O)68 ω = 0.12 -5188.2080074239 3746 1470

(H2O)68 ω = 0.15 -5188.1646813285 3608 1310

(H2O)68 ω = 0.18 -5188.1140941217 3469 1175

(H2O)68 ω = 0.21 -5188.0585007055 3352 1067

(H2O)68 ω = 0.24 -5187.9999889148 3253 973

(H2O)68 ω = 0.27 -5187.9403905412 3212 902

(H2O)68 ω = 0.30 -5187.8812574022 3112 833

(H2O)68 ω = 0.40 -5187.7020724960 2944 682

(H2O)68 ω = 0.50 -5187.5696243854 2863 590

(H2O)68 ω = 0.60 -5187.4933846844 2812 539

(H2O)68 ω = 0.70 -5187.4706952242 2767 496

(H2O)68 ω = 0.80 -5187.4923965778 2747 470

(H2O)68 ω = 0.90 -5187.5468103372 2726 447
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3.2 GPU calculations

3.2.1 Data for Section ’General Purpose Test using the HSE06 functional’

Table 12: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567122199 162 88

Amylose4 -2514.6590442432 552 371

Amylose8 -4953.0635614375 1480 1066

Amylose16 -9829.8723960829 3567 2521

Amylose32 -19583.4903947622 7941 5141

Amylose48 -29337.1094494225 14453 8596

Amylose64 -39090.7291635501 22038 11715

Beta-carotene -1555.0156201547 495 310

CNT∗
20 -766.3696902044 95 50

CNT∗
40 -1526.9882091126 451 317

CNT∗
80 -3048.2929922719 1786 1438

CNT∗
160 -6090.8435865208 10345 8977

CNT(6, 3)∗
8 -25576.2260633609 98243 86368

Diamond102 -1631.7173289979 2070 1522

DNA1 -1760.3240502851 283 170

DNA2 -4502.3006370998 1794 1382

DNA4 -9986.2377487066 7670 6522

DNA8 -20954.1262303313 25187 21818

DNA16 -42889.9083605285 64162 53332

Graphite24 -920.2459652908 145 79

Graphite54 -2064.5666930582 881 640

Graphite96 -3665.9943526149 3068 2487

(H2O)68 -5188.2204457092 909 631

(H2O)142 -10834.5826332639 3553 2732

(H2O)285 -21746.0223241400 16814 13487

(H2O)569 -43416.3055035228 45770 35158

(LiF)32 -1717.1001635039 81 40

(LiF)72 -3863.8868803791 936 690

Polyethyne64 -2473.5765330623 434 227

Polyethyne128 -4945.9875093391 1015 485

Polyyne64 -2433.2728418121 192 96

Polyyne1024 -38914.7735887543 20356 3755

(S8)5 -15918.0655864665 164 115

(S8)20 -63672.3245813516 3264 2825

DGCR8 Dimerization Domain -24313.7175975892 50558 42713
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Table 13: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC PreLinK

calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567122196 163 86

Amylose4 -2514.6590442428 504 325

Amylose8 -4953.0635614368 1239 821

Amylose16 -9829.8723960842 2915 1868

Amylose32 -19583.4903947618 6598 3781

Amylose48 -29337.1094494238 12079 6298

Amylose64 -39090.7291635505 18926 8677

Beta-carotene -1555.0156201529 380 196

CNT∗
20 -766.3696902044 95 52

CNT∗
40 -1526.9882091128 450 317

CNT∗
80 -3048.2929922708 1745 1396

CNT∗
160 -6090.8435865152 7865 6496

CNT(6, 3)∗
8 -25576.2260632824 57590 45718

Diamond102 -1631.7173289967 2072 1522

DNA1 -1760.3240502852 254 143

DNA2 -4502.3006371000 1540 1124

DNA4 -9986.2377487066 5847 4703

DNA8 -20954.1262303294 16812 13430

DNA16 -42889.9083605258 41767 31140

Graphite24 -920.2459652915 145 79

Graphite54 -2064.5666930575 873 631

Graphite96 -3665.9943526094 2883 2299

(H2O)68 -5188.2204457061 751 475

(H2O)142 -10834.5826332549 2629 1805

(H2O)285 -21746.0223241208 11406 8052

(H2O)569 -43416.3055034693 30533 19787

(LiF)32 -1717.1001635039 79 39

(LiF)72 -3863.8868803794 918 672

Polyethyne64 -2473.5765330516 328 121

Polyethyne128 -4945.9875093159 781 247

Polyyne64 -2433.2728418120 146 52

Polyyne1024 -38914.7735887538 17917 1810

(S8)5 -15918.0655864656 143 93

(S8)20 -63672.3245813414 2093 1652

DGCR8 Dimerization Domain -24313.7175975879 32359 24645
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Table 14: Total energies, total SCF timings and total exchange matrix formation timings for the T0.20
ω -Pre-

Screening calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using

the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose2 -1295.4567122194 161 85

Amylose4 -2514.6590442418 459 280

Amylose8 -4953.0635614336 1075 661

Amylose16 -9829.8723960771 2522 1474

Amylose32 -19583.4903947535 5784 2967

Amylose48 -29337.1094494084 10827 4991

Amylose64 -39090.7291635300 17273 6923

Beta-carotene -1555.0156190315 339 148

CNT∗
20 -766.3696902044 95 51

CNT∗
40 -1526.9882088129 449 314

CNT∗
80 -3048.2929891556 1475 1128

CNT∗
160 -6090.8435732430 5690 4326

CNT(6, 3)∗
8 -25576.2260231392 38641 26782

Diamond102 -1631.7173289973 2070 1521

DNA1 -1760.3240502799 234 121

DNA2 -4502.3006370856 1344 928

DNA4 -9986.2377486715 4580 3437

DNA8 -20954.1262302432 12395 9019

DNA16 -42889.9083603671 31280 20455

Graphite24 -920.2459652774 144 77

Graphite54 -2064.5666887212 779 534

Graphite96 -3665.9943441274 2157 1572

(H2O)68 -5188.2204457069 701 421

(H2O)142 -10834.5826332627 2345 1484

(H2O)285 -21746.0223241332 9619 6229

(H2O)569 -43416.3055034871 25014 14614

(LiF)32 -1717.1001633764 75 35

(LiF)72 -3863.8868808114 829 581

Polyethyne64 -2473.5765323427 295 89

Polyethyne128 -4945.9875078299 715 183

Polyyne64 -2433.2728385219 126 31

Polyyne1024 -38914.7735326321 17920 1565

(S8)5 -15918.0655863282 129 80

(S8)20 -63672.3245803789 1629 1186

DGCR8 Dimerization Domain -24313.7175974982 23258 15417
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3.2.2 Data for Section ’Scaling Behavior’

Table 15: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Alkane01 -40.4316067051 2 1

Alkane02 -79.6689867315 4 2

Alkane03 -118.9088500435 8 0

Alkane04 -158.1482944926 11 2

Alkane05 -197.3876326755 16 4

Alkane06 -236.6269683566 21 4

Alkane07 -275.8663020247 29 8

Alkane08 -315.1056240516 32 8

Alkane09 -354.3449491990 41 12

Alkane10 -393.5842688390 48 14

Alkane13 -511.3022318665 70 26

Alkane15 -589.7808723186 87 30

Alkane20 -785.9774725166 125 55

Alkane30 -1178.3706725744 225 108

Alkane40 -1570.7638719227 334 162

Alkane50 -1963.1570713362 444 223

Alkane60 -2355.5502709667 558 281

Alkane80 -3140.3366702994 813 398

Alkane100 -3925.1230696454 1092 516

Alkane160 -6279.4822669559 2078 880

Alkane200 -7849.0550653718 2990 1136

Alkane300 -11772.9870609808 5901 1822

Alkane320 -12557.7734602370 6758 1960

Table 16: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC PreLinK

calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Alkane01 -40.4316067051 2 ≤ 1

Alkane02 -79.6689867315 4 ≤ 1

Alkane03 -118.9088500435 7 1

Alkane04 -158.1482944926 11 2

Alkane05 -197.3876326755 16 3

Alkane06 -236.6269683565 21 4

Alkane07 -275.8663020246 28 8

Alkane08 -315.1056240515 32 8

Alkane09 -354.3449491988 41 11

Alkane10 -393.5842688388 47 13

Alkane13 -511.3022318670 69 23

Alkane15 -589.7808723187 84 30

Alkane20 -785.9774725166 115 43

Alkane30 -1178.3706725750 192 76

Alkane40 -1570.7638719233 275 109

Alkane50 -1963.1570713352 362 142

Alkane60 -2355.5502709663 454 179

Alkane80 -3140.3366702994 661 243

Alkane100 -3925.1230696453 894 312

Alkane160 -6279.4822669558 1741 542

Alkane200 -7849.0550653716 2555 698

Alkane300 -11772.9870609811 5227 1152

Alkane320 -12557.7734602369 6056 1255
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Table 17: Total energies, total SCF timings and total exchange matrix formation timings for the Tω-Pre-

Screening calculations on GPUs using the HSE06 functional [6, 7, 8]. The calculations were performed using

the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Alkane01 -40.4316067051 2 0

Alkane02 -79.6689867315 4 0

Alkane03 -118.9088500435 8 1

Alkane04 -158.1482944926 11 1

Alkane05 -197.3876326755 16 4

Alkane06 -236.6269683565 21 4

Alkane07 -275.8663020245 28 3

Alkane08 -315.1056240504 31 8

Alkane09 -354.3449491961 40 11

Alkane10 -393.5842688344 47 14

Alkane13 -511.3022318580 67 20

Alkane15 -589.7808723073 80 24

Alkane20 -785.9774724983 106 33

Alkane30 -1178.3706725422 173 58

Alkane40 -1570.7638718776 248 86

Alkane50 -1963.1570712762 327 110

Alkane60 -2355.5502708933 410 132

Alkane80 -3140.3366701996 600 181

Alkane100 -3925.1230695180 811 235

Alkane160 -6279.4822667469 1610 411

Alkane200 -7849.0550651083 2394 535

Alkane300 -11772.9870605809 4994 901

Alkane320 -12557.7734598097 5788 994

3.2.3 Data for Section ’Basis Set Dependence’

Table 18: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on GPUs using the HSE06 functional [6, 7, 8].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

def2-SV

Amylose8 -4951.3205617632 681 397

DNA2 -4500.6327972428 801 508

(H2O)68 -5185.6849199231 428 216

Polyethyne128 -4944.6167451575 469 142

(S8)5 -15916.2919544447 68 34

def2-SVPD

Amylose8 -4953.5300285246 19450 16937

DNA2 -4502.5962277045 25695 22491

(H2O)68 -5189.1364559127 20224 17476

Polyethyne128 -4946.1647089930 4362 2873

(S8)5 -15918.3329758399 2311 1959

def2-TZVP

Amylose8 -4958.7185627018 19174 17337

DNA2 -4506.8696671336 21856 19994

(H2O)68 -5194.7265666859 4461 3919

Polyethyne128 -4951.2009598450 9330 7025

(S8)5 -15923.7893800571 2583 2368
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Table 19: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC PreLinK

calculations on GPUs using the HSE06 functional [6, 7, 8].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

def2-SV

Amylose8 -4951.3205617635 596 311

DNA2 -4500.6327972428 715 423

(H2O)68 -5185.6849199200 385 171

Polyethyne128 -4944.6167451350 405 77

(S8)5 -15916.2919544440 62 27

def2-SVPD

Amylose8 -4953.5300285276 16797 14282

DNA2 -4502.5962277030 25010 21811

(H2O)68 -5189.1364559145 19880 17123

Polyethyne128 -4946.1647089924 3276 1789

(S8)5 -15918.3329758390 2262 1909

def2-TZVP

Amylose8 -4958.7185627021 13692 11862

DNA2 -4506.8696671328 19286 17428

(H2O)68 -5194.7265666816 3362 2816

Polyethyne128 -4951.2009598341 5612 3301

(S8)5 -15923.7893800539 2326 2112

Table 20: Total energies, total SCF timings and total exchange matrix formation timings for the T0.20
ω -Pre-

Screening calculations on GPUs using the HSE06 functional [6, 7, 8].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

def2-SV

Amylose8 -4951.3205617600 531 247

DNA2 -4500.6327972319 640 344

(H2O)68 -5185.6849199213 365 153

Polyethyne128 -4944.6167448189 383 56

(S8)5 -15916.2919543091 59 23

def2-SVPD

Amylose8 -4953.5300285778 10905 8394

DNA2 -4502.5962276934 18976 15772

(H2O)68 -5189.1364559071 15332 12578

Polyethyne128 -4946.1647083712 2502 1020

(S8)5 -15918.3329759660 1925 1573

def2-TZVP

Amylose8 -4958.7185626792 9925 8096

DNA2 -4506.8696671135 14945 13088

(H2O)68 -5194.7265666805 2877 2339

Polyethyne128 -4951.2009483657 4446 2142

(S8)5 -15923.7893799622 1862 1648

3.2.4 Data for Section ’Different ω-Screening Parameters’

Table 21: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on GPUs using the HSE12s functional [10]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779231156 1541 1135

DNA2 -4502.1196856617 1878 1472

(H2O)68 -5187.9190652300 991 712

Polyethyne128 -4945.9069491412 830 365

Polyyne1024 -38911.7852953040 24202 3346

(S8)5 -15918.6065843363 167 121

(S8)20 -63674.4940131777 3253 2849
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Table 22: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC PreLinK

calculations on GPUs using the HSE12s functional [10]. The calculations were performed using the def2-SVP

basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779231154 1241 830

DNA2 -4502.1196856622 1551 1144

(H2O)68 -5187.9190652302 779 497

Polyethyne128 -4945.9069491412 696 227

Polyyne1024 -38911.7852953041 22648 1724

(S8)5 -15918.6065843363 134 90

(S8)20 -63674.4940131780 1929 1525

Table 23: Total energies, total SCF timings and total exchange matrix formation timings for the T0.20
ω -Pre-

Screening calculations on GPUs using the HSE12s functional [10]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779209267 833 428

DNA2 -4502.1196846049 968 561

(H2O)68 -5187.9190633707 482 206

Polyethyne128 -4945.9069886016 609 134

(S8)5 -15918.6065840940 88 45

(S8)20 -63674.4940234064 879 471

We want to note that the test calculations for the T0.25
ω - and T0.30

ω -Pre-Screening caluclations were performed

seperately and therefore the reference calculations were repeated on the exact computer node used for the

relevant calculation, to obtain precise timings. Therefore the reference values used to generate the numbers

in the main article for the T0.25
ω - and T0.30

ω -Pre-Screening caluclations might differ slightly from the reference

results shown here, which were used to compare the ERFC PreLinK and T0.20
ω -Pre-Screening caluclations.

Table 24: Total energies, total SCF timings and total exchange matrix formation timings for the T0.25
ω -Pre-

Screening calculations on GPUs using the HSE12s functional [10]. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

Amylose8 -4952.7779231182 968 561

DNA2 -4502.1196856472 1178 773

(H2O)68 -5187.9190652223 590 312

Polyethyne128 -4945.9069486642 684 161

Polyyne1024 -38911.7852809211 25143 1631

(S8)5 -15918.6065843638 109 62

(S8)20 -63674.4940133571 1176 736
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Table 25: Total energies, total SCF timings and total exchange matrix formation timings for the reference

calculations on GPUs using the HSE06 functional with ω-values. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753466264 757 482

(H2O)68 ω = 0.06 -5188.2644464002 823 547

(H2O)68 ω = 0.09 -5188.2418525830 838 589

(H2O)68 ω = 0.12 -5188.2080084065 885 631

(H2O)68 ω = 0.15 -5188.1646823155 920 670

(H2O)68 ω = 0.18 -5188.1140951214 981 708

(H2O)68 ω = 0.21 -5188.0585017210 964 714

(H2O)68 ω = 0.24 -5187.9999899231 1003 732

(H2O)68 ω = 0.27 -5187.9403915559 988 714

(H2O)68 ω = 0.30 -5187.8812584272 959 687

(H2O)68 ω = 0.40 -5187.7020735197 855 581

(H2O)68 ω = 0.50 -5187.5696253795 776 503

(H2O)68 ω = 0.60 -5187.4933857073 728 455

(H2O)68 ω = 0.70 -5187.4706962333 693 421

(H2O)68 ω = 0.80 -5187.4923975805 675 400

(H2O)68 ω = 0.90 -5187.5468113194 653 380

Table 26: Total energies, total SCF timings and total exchange matrix formation timings for the ERFC PreLinK

calculations on GPUs using the HSE06 functional with ω-values. The calculations were performed using the

def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753466038 667 389

(H2O)68 ω = 0.06 -5188.2644463850 708 432

(H2O)68 ω = 0.09 -5188.2418525764 702 450

(H2O)68 ω = 0.12 -5188.2080084041 724 471

(H2O)68 ω = 0.15 -5188.1646823150 733 484

(H2O)68 ω = 0.18 -5188.1140951217 775 504

(H2O)68 ω = 0.21 -5188.0585017210 750 499

(H2O)68 ω = 0.24 -5187.9999899221 782 509

(H2O)68 ω = 0.27 -5187.9403915555 774 502

(H2O)68 ω = 0.30 -5187.8812584278 765 490

(H2O)68 ω = 0.40 -5187.7020735196 710 435

(H2O)68 ω = 0.50 -5187.5696253791 661 386

(H2O)68 ω = 0.60 -5187.4933857083 623 348

(H2O)68 ω = 0.70 -5187.4706962338 593 320

(H2O)68 ω = 0.80 -5187.4923975809 576 301

(H2O)68 ω = 0.90 -5187.5468113190 559 283
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Table 27: Total energies, total SCF timings and total exchange matrix formation timings for the T0.20
ω -Pre-

Screening calculations on GPUs using the HSE06 functional with varying ω-values. The calculations were

performed using the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753466260 758 485

(H2O)68 ω = 0.06 -5188.2644464004 823 549

(H2O)68 ω = 0.09 -5188.2418525829 745 494

(H2O)68 ω = 0.12 -5188.2080084039 629 379

(H2O)68 ω = 0.15 -5188.1646822912 549 299

(H2O)68 ω = 0.18 -5188.1140945680 527 252

(H2O)68 ω = 0.21 -5188.0585007619 463 210

(H2O)68 ω = 0.24 -5187.9999877066 465 189

(H2O)68 ω = 0.27 -5187.9403873364 444 168

(H2O)68 ω = 0.30 -5187.8812579206 428 156

(H2O)68 ω = 0.40 -5187.7021316552 397 120

(H2O)68 ω = 0.50 -5187.5697943203 376 101

(H2O)68 ω = 0.60 -5187.4936410063 361 88

(H2O)68 ω = 0.70 -5187.4709473905 356 83

(H2O)68 ω = 0.80 -5187.4926412020 351 78

(H2O)68 ω = 0.90 -5187.5469893517 348 75

Table 28: Total energies, total SCF timings and total exchange matrix formation timings for the T0.25
ω -Pre-

Screening calculations on GPUs using the HSE06 functional with varying ω-values. The calculations were

performed using the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753466258 713 486

(H2O)68 ω = 0.06 -5188.2644464010 779 552

(H2O)68 ω = 0.09 -5188.2418525827 825 595

(H2O)68 ω = 0.12 -5188.2080084064 806 532

(H2O)68 ω = 0.15 -5188.1646823157 718 443

(H2O)68 ω = 0.18 -5188.1140951221 649 374

(H2O)68 ω = 0.21 -5188.0585017131 604 326

(H2O)68 ω = 0.24 -5187.9999899067 561 285

(H2O)68 ω = 0.27 -5187.9403915072 535 261

(H2O)68 ω = 0.30 -5187.8812583458 513 238

(H2O)68 ω = 0.40 -5187.7020728276 420 189

(H2O)68 ω = 0.50 -5187.5696243423 391 162

(H2O)68 ω = 0.60 -5187.4933856852 369 141

(H2O)68 ω = 0.70 -5187.4706975861 357 131

(H2O)68 ω = 0.80 -5187.4923991213 350 119

(H2O)68 ω = 0.90 -5187.5468124877 343 115
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Table 29: Total energies, total SCF timings and total exchange matrix formation timings for the T0.30
ω -Pre-

Screening calculations on GPUs using the HSE06 functional with varying ω-values. The calculations were

performed using the def2-SVP basis set [9].
System tot. Energy [H] tot. SCF Time [s] tot. Exchange Time[s]

(H2O)68 ω = 0.03 -5188.2753466258 758 483

(H2O)68 ω = 0.06 -5188.2644464009 822 547

(H2O)68 ω = 0.09 -5188.2418525834 871 599

(H2O)68 ω = 0.12 -5188.2080084063 890 617

(H2O)68 ω = 0.15 -5188.1646823156 830 557

(H2O)68 ω = 0.18 -5188.1140951213 763 491

(H2O)68 ω = 0.21 -5188.0585017208 707 435

(H2O)68 ω = 0.24 -5187.9999899223 639 390

(H2O)68 ω = 0.27 -5187.9403915554 630 356

(H2O)68 ω = 0.30 -5187.8812584273 598 324

(H2O)68 ω = 0.40 -5187.7020735171 537 257

(H2O)68 ω = 0.50 -5187.5696253685 494 220

(H2O)68 ω = 0.60 -5187.4933856741 470 193

(H2O)68 ω = 0.70 -5187.4706961696 449 176

(H2O)68 ω = 0.80 -5187.4923975037 438 164

(H2O)68 ω = 0.90 -5187.5468112081 429 157
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known that AO methods are highly efficient for extended systems, where sparsity
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ABSTRACT: An efficient algorithm for calculating the random
phase approximation (RPA) correlation energy is presented that
is as accurate as the canonical molecular orbital resolution-of-the-
identity RPA (RI-RPA) with the important advantage of an
effective linear-scaling behavior (instead of quartic) for large
systems due to a formulation in the local atomic orbital space.
The high accuracy is achieved by utilizing optimized minimax
integration schemes and the local Coulomb metric attenuated by
the complementary error function for the RI approximation. The
memory bottleneck of former atomic orbital (AO)-RI-RPA
implementations (Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016, 144, 031101 and Luenser, A.; Schurkus, H. F.;
Ochsenfeld, C. J. Chem. Theory Comput. 2017, 13, 1647−1655) is addressed by precontraction of the large 3-center integral
matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of N

N
basis

occ
.

Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy
calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even
on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems,
where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when
considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two
covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

1. INTRODUCTION

Density functional theory (DFT) is the most widely used
electronic structure method in chemistry, physics, and materials
sciences. This is mainly because of the excellent cost-
performance ratios and good accuracies of its parametrized
functionals for certain types of compounds and properties.
However, the high sensitivity of semilocal DFT results to the
parametrization has led to the development of many hundreds
of different functionals, which not only makes the selection of a
suitable functional for a specific problem challenging1 but also
limits its predictive power. Additionally, the general failure of
GGA functionals in describing noncovalent interactions2,3

necessitates the development of more broadly applicable
correlation models.
One theory to describe electron correlation, which has

become increasingly popular over the past decade, is the
random phase approximation (RPA). RPA is a post Kohn−
Sham4 method that was originally introduced by Bohm and
Pines in 1953.5 It contains an ab initio description of dispersion
effects,6 is size consistent,7 and does not depend on any
empirical parameters. Additionally, it is applicable to vanishing
electronic gap systems,7−9 making it highly interesting for a
wide range of applications in the field of quantum chemistry.

However, in its original form,10,11 the calculation of RPA
correlation energies of molecular systems scales as M( )6 with
system size M, making it impractical for larger molecules. In
2010, Furche and co-workers12−14 successfully employed the
resolution-of-the-identity (RI) approximation to reduce the
scaling to effective M( )4 , which can be viewed as a
breakthrough because it opened the door for RPA calculations
beyond the few atoms scale. In 2014, Kresse and co-workers15

presented an algorithm for the RPA that employed minimax
grids for the time as well as the frequency domain and a Fourier
transform scheme to reduce the scaling to cubic. Effective
linear-scaling of RPA calculations for molecules with non-
vanishing band gaps was achieved by Kaĺlay16 as well as
Schurkus and Ochsenfeld:17 The approach of Kaĺlay16 is based
on local correlation theory, which finds its origin in the
1980s,18−20 whereas the method of Schurkus et al.17 builds
upon the transformation into the local atomic orbital space.
Recently, Hutter and co-workers21 presented a different
approach toward large-scale RPA calculations by a cubic scaling
but highly parallel implementation, opening the door to
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calculations comprising up to 8000 electrons on a Cray XC40
supercomputer.
To obtain the desired linear-scaling behavior, Schurkus et

al.17 employed the local but with canonical auxiliary basis sets
less accurate overlap RI metric22 instead of the longe-range
Coulomb metric. Additionally, the pilot implementation was
strongly hampered in its applicability to larger basis sets
because the scaling with basis set size Nbasis and auxiliary basis
set size Naux is increased from N N N( )aux

2
basis occ to N N( )aux

2
basis
2

for a fixed molecular size. In 2017, Luenser et al.23 remedied
these drawbacks by switching to the Coulomb metric
attenuated by the complementary error function24−26 as well
as utilizing pivoted Cholesky decomposition27−31 of density
and pseudodensity matrices, which brought the scaling with
basis set size back to N N N( )aux

2
basis occ while scaling linearly

with molecular size. The improved implementation was termed
ω-CDD-RPA.23

However, in both the original atomic orbital RI-RPA as well
as the ω-CDD method, the complete 3-center integral matrix B
in the atomic orbital (AO) basis needs to be stored in memory,
which is a bottleneck when aiming for large systems.
Additionally, two different formulations for constructing the
frequency-dependent energy kernel Q(u) are necessary to avoid
numerical problems arising from the use of unoptimized
weights and roots for the numerical quadratures. Furthermore,
the final frequency integration is carried out with the
Clenshaw−Curtis scheme32 with optimization of the scaling
parameter as described by Furche and co-workers,13 where at
least 60 node points are necessary to obtain μHartree accuracy.
The focus of the present work is to overcome the drawbacks

described above: The use of an optimized minimax grid for the
frequency integration as described by Kresse and co-workers15

reduces the number of necessary quadrature points from
60−100 to 10−20. Utilizing optimized weights and roots for
the integrated double-Laplace expansion17 enables us to obtain
Q(u) without using the second equation, decreasing the
prefactor of our RPA reformulation by a factor of 4 and,
additionally, increasing the accuracy of the calculations by up to
4 orders of magnitude. Reformulating the formation of FINT as
described in this work reduces the memory effort of the

algorithm by a factor of N
N

basis

occ
and yields an additional speed-up.

Besides improved integration schemes, a parallel implementa-
tion of the new method is presented, which not only reduces
the evaluation time of correlation energies significantly but also
leads to a scalable decrease in memory requirements. Here, the
focus of our present parallel implementation is on small- to
medium-sized computing clusters typically available in local
research groups.
In the following, we first give a brief review of the derivation

of our ω-CDD-RI-RPA method23 in section 2.1. We then
establish the connection of our double-Laplace approach17 and
the cosine transformation of Kresse and co-workers15 in section
2.2. In section 2.3, the memory efficient reformulation of
evaluating FINT is outlined before we present the parallel
implementation of the method to further reduce the memory
requirements and speed up the calculations in section 2.4.
Computational details are given in section 3. Accuracy and
performance benchmarks as well as a illustrative application of
the new implementation are reported in section 4, followed by
the conclusions in section 5.

2. THEORY
2.1. Linear-Scaling Atomic Orbital Random Phase

Approximation. To create a complete picture of our new
effective linear-scaling atomic orbital RPA method, we will
briefly review the most important steps in the derivation of our
recently reported ω-CDD method.23 In this work, the following
notation has been adopted: μ, ν, λ, σ denote atomic orbitals
(AOs); i, j denote occupied molecular orbitals (MOs); a, b
denote virtual MOs; i, j denote Cholesky orbitals; and M, N
denote auxiliary RI functions. The number of basis functions is
represented by Nbasis; the number of auxiliary RI functions is
represented by Naux; and the numbers of occupied and virtual
molecular orbitals are represented by Nocc and Nvirt,
respectively. For 2-, 3-, and 4-center integrals, the Mulliken
notation will be employed. Furthermore, Einstein’s sum
convention33 is used, and the spin index is dropped for
convenience.
Within the adiabatic connection formalism,34 the total energy

can be expressed as10,11

ϕ ϕ ϕ= + + +E E E E E[{ }] [{ }] [{ }]T KS J KS X KS C (1)

where ET, EJ, and EX denote the kinetic, Coulomb, and exact
exchange energies, respectively. The expression for the
correlation energy35 EC, obtained by using the zero-temper-
ature fluctuation−dissipation theorem and the RPA,36 is given
by

∫ π
χ χ= − +

−∞
+∞

E
u

v iu v iu
d
4

Tr[ln(1 ( )) ( )]C 0 0 (2)

where v represents the Coulomb operator

′ = | − ′|v r r
r r

( , )
1

(3)

with the electronic coordinates r and r′, and χ0 denotes the
noninteracting density−density response function in the
occupied and virtual orbital representation in the zero-
temperature case37

χ
ϕ ϕ ϕ ϕ

ε ε
ϕ ϕ ϕ ϕ

ε ε

′ = −
* * ′ ′

− −
−

* ′ ′ *
− +

iu
iu

iu

r r
r r r r

r r r r

( , , )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i a a i

a i

i a a i

a i

0

(4)

with the occupied and virtual molecular spin orbitals ϕi and ϕa
and their respective orbital energies εi and εa. Note that v and
χ0(iu) denote matrices of which v(r, r′) and χ0(r, r′, iu)
represent the respective (r, r′)-th element and that

∫ ∫χ χ= ′ ′ ′v iu v iur r r r r rTr[ ( )] d d ( , ) ( , , )0 0 (5)

The correlation energy can also be expressed in a supermatrix
formalism38,39

∫ π
Π Π= − +

−∞
+∞

E
u

iu iu1 V V
d
4

Tr[ln( ( ) ) ( ) ]C 0 0 (6)

where we introduced the Kohn−Sham (KS) polarization
propagator in the canonical orbital space

π

π
Π =

−

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟iu

iu

iu
( )

( ) 0

0 ( )
0

(7)

with
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π Δ= − ±± −iu iu1( ) ( ) 1
(8)

δ δ ε εΔ = −( )ia ij ab a i,jb (9)

and the Hartree kernel matrix

∫ ∫= ′ ′ ′ = * *
† ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟vV r r b r r r b r

V V

V V
d d ( ) ( , ) ( )

11 12

12 11 (10)

with

ϕ ϕ ϕ ϕ= ··· * ··· * ···b r r r r r( ) ( , ( ) ( ), , ( ) ( ), )T
i a i a (11)

and its submatrices

= |V ia jb( )iajb11, (12)

= |V ia bj( )iajb12, (13)

For real-valued orbitals

= * = = *V V V V11 11 12 12 (14)

holds and, therefore, the Hartree kernel matrix simplifies to

= ⎜ ⎟⎛
⎝

⎞
⎠V

V V
V V (15)

The matrices appearing in eq 6 have dimensions (2NPH ×
2NPH) with NPH denoting the number of products between
occupied and virtual orbitals (particle-hole). To reduce the
dimensions to (NPH × NPH), we use the series expansion of the
matrix logarithm

∑Π Π− = −
=

∞
iu

n
iu1 V VTr[ln( ( ) )]

1
Tr[( ( ) ) ]

n

n
0

1
0

(16)

Application of the unitary transformation40

= −⎜ ⎟⎛
⎝

⎞
⎠U

1 1
1 1

1
2 (17)

cyclic permutation of the matrix products and considering that
only the trace is relevant leads to

∑ ∑ π πΠ− = − +
=

∞
†

=

∞
− +

n
iu

n
iu iuU VU V

1
Tr[( ( ) ) ]

1
Tr[({ ( ) ( )} ) ]

n

n

n

n

1
0

1

(18)

∑ ∑Π− = − −
=

∞
†

=

∞

n
iu

n
uU VU G V

1
Tr[( ( ) ) ]

1
Tr[( 2 ( ) ) ]

n

n

n

n

1
0

1 (19)

where

Δ
Δ

= +u
u

G
1

( ) 2 2 (20)

Applying the Coulomb-RI metric attenuated by the comple-
mentary error function24,26 as described by Luenser et al.23

| ≈ ̃ia jb B C B( ) ia
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(21)
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to factorize the 4-center integrals into 3-center integrals Bia
M, and

2-center-2-electron integrals C̃MN leads to
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Cyclic permutation of the matrix products and defining

=u uQ B G B( ) 2 ( )T
(27)

finally yields17

∫ π
= + ̃ − ̃+∞

E
u

u u1 Q C Q C2
d
4

Tr[ln( ( ) ) ( ) ]C
0 (28)

As shown by Schurkus and Ochsenfeld,17 the Kohn−Sham
energy-based G(u) can be decoupled by a contracted double-
Laplace expansion

= Δ
Δ +u

u
G( ( ))ia jb

ia jb

ia jb
,
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,
2 2

(29)
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yielding two different equations for calculating Q(u)

∫= ∞
u up pQ F( ) 2 cos( ) dp

0
INT
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(31)
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u

u
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u
pQ

F
F( ) 2 2
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(0)

2 0 2 D
( )

(32)

after partial integration with three different forms of F matrices
defined in ref 23. As evaluating the trace of the matrix logarithm
in the final frequency integration (eq 28) has a very small
prefactor, the time determining step of the algorithm is the
calculation of these three F matrices. Rewriting the expressions
for these matrices in the local atomic orbital basis allows for a
linear-scaling calculation because all occurring quantities
become sparse for large systems.17

2.2. Polarization Propagators in the Imaginary
Frequency and Time Domain in AO-RI-RPA Theory. As
mentioned in the section above, within the ω-CDD method
two equations for the calculation of Q(u) are necessary because
eq 31 suffers from numerical instability when u approaches
infinity and eq 32 becomes numerically unstable where u tends
to zero.17 It is assumed that these problems occur because
weights and roots are used for the numerical quadratures, which
are not optimized for these specific transformations.17 There-
fore, determining optimized weights and roots for the
integrated double-Laplace expansion should allow for using
eq 31 alone for calculating Q(u). This would decrease the
computational cost significantly while at the same time
increasing the accuracy of the quadrature. Kresse and co-
workers15 have described in great detail a procedure for finding
optimal weights and roots for their nonuniform cosine
transformation, which is based on minimax grids and allows
for transforming the polarizability χ ̂ from the imaginary time
domain into the imaginary frequency domain and vice versa.
We show in the following that the described cosine
transformation is equivalent to eq 31 stemming from the
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double-Laplace transform, which enables us to follow the
procedure outlined by Kresse and co-workers to obtain
optimized weights and roots for this transformation.
Therefore, consider the definition of Q(u)

ε ε
ε ε

= −
+ −u B

u
BQ ( ) 2

( )MN ia
M a i

a i
ia
N

2 2
(33)

Combination of the two indices i and a according to κ = (i, a)
and defining

ε ε= −κx a i (34)

results in

= Φκ κ κu B u x BQ ( ) ( , )MN
M N

(35)

where

Φ = +κ
κ

κ
u x

x
u x

( , )
2

2 2
(36)

Next, consider the definition of FINT, which is given by23

= ̲ ̅F P B P B( ) Tr( )p
MN

p M p N
INT
( ) ( ) ( )

(37)

= ̲ ̅μν νσ σλ λμP B P BF( )p
MN

p M p N
INT
( ) ( ) ( )

(38)

Inserting the definition for the occupied and virtual
pseudodensities, P(p) and P(p)17 and transforming B back into
the molecular orbital space yields

ε ε= + −B p p BF( ) exp( )exp( )p
MN ia

M
i a ia

N
INT
( )

(39)

Considering the definitions for κ and xκ finally leads to

= Φ̂κ κ κB p x BF( ) ( , )p
MN

M N
INT
( )

(40)

where

Φ̂ = −κ κp x x p( , ) exp( ) (41)

Comparison of eqs 35−40 with eqs 14−17 in ref 15 shows that
FINT is the representation of Q(u) in the imaginary time
domain. Therefore, the cosine transformation described by
Kresse and co-workers15 is equivalent to the double-Laplace
transformation in its integral formulation (eq 31), and we can
follow the procedure of ref 15 to obtain optimized weights and
roots for the transformation.
Additionally, the minimax grid for the imaginary frequency

domain will be utilized for the final frequency integration
replacing the Clenshaw−Curtis quadrature32 to obtain the RPA
correlation energy according to eq 28, which decreases the
number of necessary quadrature points from 60−100 to 10−20.
2.3. Memory Efficient Calculation of the FINT Matrix.

One of the major bottlenecks of the ω-CDD method is the
huge memory requirement of the complete 3-center integrals in
the AO basis. To find a strategy to reduce this memory
requirement, we consider the formation of the FINT matrix
according to23

= ̅F Z P Z( ) Tr( )p
MN M

p T p
N
p

INT
( ) ( ) ( ) ( )

(42)

where the pivoted Cholesky factorization of a given matrix A is
abbreviated by A = LLT and23

= ̲ ̲ = ̲ ̲Z B L P L LwithM
p M p p p p T( ) ( ) ( ) ( ) ( )

(43)

The Cholesky factor L(p) is a transformation matrix to a local
Cholesky basis,30,31 and therefore, transformation of the 3-

center integrals BM to this local basis reduces the dimensions of
each BM from Nbasis × Nbasis to Nbasis × Nocc while preserving all
sparsity of the original matrix.23 However, because ZM

(p) is
required for each Laplace point p, precontraction of each BM

with the Cholesky factors requires NauxNbasisNoccτ memory,
where τ is the number of Laplace points and, therefore, quickly
becomes unfeasible.
Reformulating the calculation of FINT using the idempotency

relation of the ground state density P

=P PSP (44)

with the 2-center overlap S and the extension to pseudodensity
matrices

̲ = ̲P PSP (45)

according to
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N
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(50)

allows to precontract each BM with the Cholesky factor L of the
occupied one-particle density P, which is not dependent on the
Laplace points. Again, the dimensions are reduced from Nbasis ×
Nbasis to Nbasis × Nocc while all sparsity of the original matrix is
preserved, which will be shown in section 4. In this way, the
required memory for saving the 3-center integrals is reduced by
a factor of N

N
basis

occ
(with the total memory requirement being

NauxNbasisNocc), which is highly beneficial, especially for large
basis sets. The final step for obtaining FINT is given by

= ̃ ̃μ μ̲ ̲B BF( )p
MN j

p M
j

N
INT
( ) ( ),

(51)

As the reformulation of FINT presented in this section makes
use of only the Cholesky decomposed ground state density
(CDGD) P, we will term the algorithm ω-CDGD-RPA.

2.4. Parallel Implementation. In the previous section, we
showed that the memory requirements of the 3-center integral
matrix can be decreased significantly by precontraction with the
Cholesky factor of the ground state density. However, for large
systems the 3-center integral matrix easily exceeds the available
memory on a single node even with reduced dimensions.
Therefore, our parallel implementation not only focuses on
reducing calculation times of RPA correlation energies but also
on a scalable decrease in memory requirements of the large 3-
center integral matrix per node. The implementation presented
here is a MPI/OpenMP hybrid parallelization of the ω-CDGD
method, where OpenMP is mainly used for linear algebra and is
therefore not discussed. The pseudocode of our implementa-
tion is shown in Figure 2.
The two most time-consuming steps in the ω-CDGD

algorithm are, first, the formation of FINT according to eq 51
and, second, evaluation of the 3-center integrals Bνσ

M . For
tackling all three of the bottlenecks mentioned above at once, a
parallelization with respect to auxiliary basis functions is
obvious. Therefore, each node calculates the 3-center integrals
of a specific batch of RI basis functions (AUX1...AUXn) and
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keeps this part in memory (if enough memory is available)
throughout the complete calculation. On each node, the 3-
center integrals in the atomic orbital space are additionally
evaluated in batches of RI basis functions, which are
transformed into the Cholesky space by contraction with the
Cholesky factor of the ground state density right after
evaluation to reduce memory requirements. For evaluating
the FINT matrix, the nodes are set up in a cyclic topology. Each
node calculates its specific diagonal block of the matrix
((FINT)M∈AUX1,N∈AUX1

) according to eq 51 and then sends a

copy of its batch of 3-center integrals (B̃μj
N∈AUX1) to the

neighboring node. In the next cycle, each node calculates the
next unique part of the FINT matrix ((FINT)M∈AUX1,N∈AUX2

) and
passes the batch (AUX2) on to the next neighbor. As FINT is

symmetric, there are −n n( 1)
2

unique nondiagonal parts of the

matrix, where n is the total number of computing nodes, which
is also the minimum number of send operations (see Figure 1).
Note, however, that the send operations are conducted in

parallel and the number of cycles = −( )N n
cycle

1
2

is of more

interest.
To prevent repetitive recalculation of B̃jμ

(p),M in eq 51 or
increasing the number of cycles by a factor of τ, a variable
number of these matrices are precomputed. For computational
efficiency, all τ matrices should be precomputed. However, to
reduce memory requirements, it would be best to precompute
only one of these matrices. In our implementation, the
complete available memory is exploited to precompute as
many of these matrices as possible. In the case of dense
matrices, the approximation of the required memory is trivial
because the memory requirements of all matrices are known
beforehand. To approximate the required memory in case of
sparse matrices, we use the fact that B̃jμ

(p),M becomes less sparse
when the value of the respective Laplace point p becomes

Figure 1. Schematic description of calculated unique blocks per node.
Only the gray boxes are calculated; the white boxes are not calculated
due to symmetry reasons.

Figure 2. Pseudocode for the parallel calculation of the RPA correlation energy.
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smaller. Therefore, we calculate B̃jμ
(p),M with the smallest value of

p and approximate the required memory by considering the
number of allocated blocks of all necessary matrices. Note that
we do not need to recalculate this matrix in the following
evaluation of FINT and, hence, this approximation does not
decrease the efficiency of our algorithm. The final frequency
integration (eq 28) is parallelized with respect to frequency
points, which necessitates having the complete FINT matrix on
all nodes because Q(u) has to be computed on the fly from all
FINT
(p) according to eq 31. For the complete matrix to be formed

on all nodes, the rotary scheme described above is again used.
This time, however, at least n − 1 cycles are necessary.
The parallel implementation described so far reduces the

memory requirements of the large 3-center matrix by a factor of
n
2
because two batches of B̃μj

N are necessary on every node. To

further reduce the required memory of the algorithm (if
necessary), we implemented an additional loop over batches of
atomic orbitals (AO1...AOc) on each node. Note that in this
case batching with respect to atomic orbitals is superior because
each batch (B̃j, μ∈AO1

(p),M∈AUX1) only needs to be combined with the

same AO batch of matrices (B̃μ∈AO1,j
N∈AUXn) and not with all other

AO batches because only the trace over atomic orbitals is
necessary in the calculation of FINT. The final result for the
unique part of FINT ((FINT)M∈AUX1,N∈AUXn

) is then obtained by
summing all results of the c AO batches.

3. COMPUTATIONAL DETAILS

The new ω-CDGD method as well as the ω-CDD23 and the
MO-RI-RPA13 methods were implemented in the
FermiONs++ program package.41,42 Kohn−Sham orbitals
used for the RPA energy calculations were obtained by
preceding DFT calculations employing the generalized gradient
approximation of Perdew, Burke, and Ernzerhof43,44 (PBE)
with def2-SVP, def2-TZVP, and def2-QZVP basis sets.45,46 The
RI approximation, which is only used for 4-center integrals in
the correlation part of the RPA energy, uses the corresponding
auxiliary basis sets47,48 with the attenuated Coulomb metric
with attenuation parameter ω = 0.1. For the Laplace expansion
in the AO implementations, 13−15 quadrature points were
used. In the case of the ω-CDD algorithm, pretabulated values
for the weights and roots of ref 49 are employed. Within the ω-
CDGD method, we implemented the sloppy Remez15 algorithm
to obtain optimized weights for the integrated double-Laplace
expansion to switch between the representation of Q in the
imaginary time domain to the representation in the imaginary
frequency domain. The MO-RI-RPA as well as the ω-CDD
methods use the Clenshaw−Curtis scheme13 with 60−100
quadrature points for the final frequency integration, whereas
the ω-CDGD algorithm utilizes a minimax grid15 with 13−15
frequency points.

For obtaining the minimax grids for the imaginary time and
frequency domain, a Remez algorithm as described by Kresse
and co-workers15 was implemented. As a starting guess for the
imaginary time domain, pretabulated values by Hackbusch and
co-workers49 are used. For obtaining a starting guess for the
weights and roots in the imaginary frequency domain, a least-
squares fit was performed utilizing the Levenberg−Marquardt
algorithm50 after the starting values were initialized randomly.
Total energies were obtained by adding the correlation

energy to the exact Hamiltonian expectation value calculated
from the PBE reference orbitals. Core orbitals were frozen in all
RPA calculations.
For accuracy benchmarks, the full S6651 test set of small-

molecule interaction energies and the L752 test set of
dispersion-dominated molecules of larger size were used.
Investigations on performance and scaling behavior were
conducted with a test set of linear n-alkanes and DNA
fragments of increasing size. For the efficiency of the parallel
implementation to be tested, the L7 test set was used again
because the contained molecules can be seen as a representative
selection of molecular sizes (15−112 atoms) for many
applications. As an illustrative example for the applicability of
our new method, the layer distance between two covalent
organic framework (COF) pores was calculated.

4. RESULTS AND DISCUSSION
4.1. Accuracy: S66 and L7 Test Sets. First, the accuracy

of the newly implemented ω-CDGD method is investigated
and compared to that of the ω-CDD method.23 Therefore, the
full S6651 test set of small-molecule interaction energies and the
L752 benchmark set of dispersion-dominated molecules of
larger size were calculated.
As reference serves our implementation of the canonical

MO-RI-RPA method described by Furche and co-workers13

using the Clenshaw−Curtis quadrature with optimization of the
scaling parameter and 60 quadrature points. For the Laplace
expansion in the two AO implementations, 15 quadrature
points were employed. Correspondingly, 15 quadrature points
were used for the final frequency integration in the ω-CDGD-
RI-RPA method, and the ω-CDD algorithm used the
Clenshaw−Curtis quadrature with settings equal to those of
the MO-RI-RPA calculations. Note that the ω-CDD method
yields better results for interaction energies when a fixed
integration interval of u ∈ [0;400] au is used.23 However, for
comparison reasons, the same settings for the frequency
integration were used as for the reference calculations. The
calculations of the full S66 test set were performed using the
def2-QZVP basis set, whereas for the L7 test set, the def2-
TZVP basis set was employed. All other settings remained
equal in all calculations to facilitate comparison.
Table 1 shows the mean absolute deviation (MAD) and the

maximum absolute deviation (MAX) of the calculated

Table 1. Mean Absolute Deviations (MAD) and Maximum Absolute Deviations (MAX) of the Calculated Absolute Energies
(Upper Part) as well as the Interaction Energies (Lower Part) Obtained with the ω-CDD and the New ω-CDGD Method from
the Reference MO-RI-RPA Calculations for the S66 (Left) and L7 (Right) Test Sets

S66 L7

MAD [H] MAX [H] MAD [H] MAX [H]

absolute energies ω-CDD 2 × 10−03 1 × 10−02 9 × 10−03 4 × 10−02

ω-CDGD 7 × 10−07 5 × 10−06 9 × 10−07 1 × 10−05

interaction energies ω-CDD 5 × 10−04 3 × 10−03 3 × 10−03 1 × 10−02

ω-CDGD 9 × 10−07 5 × 10−06 2 × 10−06 1 × 10−05
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correlated energies (upper part) as well as the interaction
energies (lower part) using the two AO implementations from
the MO reference calculations for both test sets. Starting with
the S66 test set, the ω-CDGD method shows a significantly
increased accuracy in absolute energies by 4 orders of
magnitude with respect to both deviation measures due to
the optimized integration schemes. Considering the interaction
energies, the gain in accuracy is less dramatic but still lies within
3 orders of magnitude for the mean absolute as well as the
maximum absolute deviation. Similar observations can be made
when considering the L7 test set. The observed accuracy in the
calculation of absolute energies is again increased significantly
using the new ω-CDGD method. For both measures of
deviation from the reference results, the occurring error is
decreased by at least 3 orders of magnitude. As for the S66 test
set, the difference in accuracy is smaller between the ω-CDD
and the ω-CDGD implementation when referring to
interaction energies. Still, the mean absolute as well as the
maximum absolute deviation from the reference are lowered by
3 orders of magnitude.
4.2. Performance and Scaling Behavior. Next, the

performance improvements and the scaling behavior of our new
method are investigated in comparison with the preceding
ω-CDD-RPA method. To do so, we calculated RPA correlation
energies of a set of linear n-alkanes and DNA fragments of
increasing size. The calculations on linear n-alkanes using the
ω-CDD algorithm were conducted with 13 quadrature points
for the Laplace expansion and 100 quadrature nodes for the
frequency integration on a fixed integration interval of u ∈
[0;300] au. The ω-CDGD method used 13 points for the
frequency integration as well as the integrated double-Laplace
expansion. For the calculations on the DNA fragments, we
employed 15 instead of 13 quadrature points for the Laplace
expansion as well as the minimax grid-based frequency
integration. All calculations employed the def2-SVP basis set
and were performed on an Intel Xeon E5-2667 processor using
16 threads.
4.2.1. Linear n-Alkanes. As a first test, we calculated a set of

linear n-alkanes of increasing length. The results are shown in
Table 2. Note that the calculations up to C80H162 were
performed with standard dense matrix algebra, whereas all
calculations of alkanes with larger size were conducted using
sparse matrix algebra.
Considering the timings shown in Table 2, it becomes

obvious that the newly implemented ω-CDGD method is
asymptotically 4-times faster than the ω-CDD method for
dense as well as sparse matrix algebra. This speed-up can be
explained by the fact that, in the case of the ω-CDGD method,
only the FINT matrix needs to be calculated, whereas in the ω-
CDD algorithm, all three expensive F matrices (F0, FINT, and
FD) need to be evaluated. As the formation of F0 is
independent of the Laplace points p, the time consumption is
almost negligible compared to those of the other two F
matrices. However, because the formation of FD is ∼3-times as
expensive as the formation of FINT (see ref 23), a speed-up of
approximately 4 is to be expected when only FINT is computed.
A linear plot of the wall times against the number of AO basis

functions is shown in Figure 3 (left). As can be seen, both
implementations show a linear increase in the wall times for
calculations using sparse matrix algebra (more than 1930 basis
functions). In addition, the dashed line in the graph shows the
wall times for the cubic-scaling frequency integration in the
ω-CDGD algorithm. The contribution to the total wall time is

very small even for the largest system under investigation (902
atoms) due to the small prefactor. On the right-hand side of
Figure 3, a log−log plot of the wall times against the number of
basis functions is shown. It shows that the scaling behavior for
small as well as large systems remains roughly the same in the
new implementation, however, with a significant decrease in the
prefactor compared to the original implementation. As already
stated above, an effective linear-scaling behavior can be
observed for systems having more than 1930 basis functions
in both algorithms.

4.2.2. DNA Fragments. To further investigate the perform-
ance improvements of our new method, we calculated RPA
correlation energies of DNA fragments of increasing size. All
calculations were performed using dense matrix algebra because
no performance improvements were observed for the fairly
moderate system sizes when sparse matrix algebra was applied.
The results are shown in Table 3 and visualized in Figure 4. As
for the set of linear n-alkanes, the ω-CDGD method is
asymptotically 4-times faster than the ω-CDD algorithm. Note
that the wall time for the ω-CDD-RPA calculation on the four
base pair DNA fragment (DNA4) was extrapolated because the
memory requirements of the large 3-center integral matrix
exceeded the available memory.
In conclusion, the ω-CDGD algorithm, which only makes

use of the FINT matrix calculated by just decomposing the
ground state density, preserves sparsity as well as the ω-CDD
method while at the same time reducing the memory
requirements by a factor of N

N
basis

occ
and the run-time prefactor

by a factor of 4.
4.3. Parallel Implementation. As described in section 2.4,

a parallelization of the ω-CDGD method was implemented to
further reduce the memory requirement of the algorithm and to
speed up the calculation of RPA correlation energies to open
the way for investigations of larger systems. In the following,
the parallel efficiency of the implementation, defined as the
observed speed-up divided by the number of nodes, is

Table 2. Wall Times for the Calculation of RI-RPA
Correlation Energies of Linear n-Alkanes with Increasing
Length Using the ω-CDD and ω-CDGD Methods with the
Last Column Giving the Speed-up of the Computation Time
Using the ω-CDGD Method Compared to the ω-CDD
Method

time [s]

molecule Nbasis ω-CDD ω-CDGD speed-up

dense C5H12 130 1 1 1.0
C10H22 250 5 2 2.5
C15H32 370 17 5 3.4
C20H42 490 43 12 3.6
C30H62 730 168 42 4.0
C40H82 970 459 111 4.1
C50H102 1210 978 232 4.2
C60H122 1450 1887 443 4.3
C70H142 1690 3221 763 4.2
C80H162 1930 5329 1241 4.3

sparse C90H182 2170 7111 1860 3.8
C100H202 2410 7914 2072 3.8
C120H242 2890 11348 3008 3.8
C160H322 3850 15351 3974 3.9
C200H402 4810 21444 5564 3.9
C300H602 7210 40239 10003 4.0
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investigated. To examine the changes in the parallel efficiency
by varying the number of computation nodes, correlated
energies of the complete L7 test set52 were calculated on 1, 5,
and 10 nodes using the def2-TZVP basis set on dual-core
processor Intel Xeon E5-2620 machines using 12 threads per
node. Note that these calculations do not only include the RPA
correlation energy but also the Hamiltonian expectation value
to give the total correlated energy of the system. The results are
shown in Table 4.

As can be seen, using 5 compute nodes results in a speed-up
in the cumulative calculation time of the complete L7 test set
by 4.9, which corresponds to a parallel efficiency of 98%. On 10
computing nodes, however, the parallel efficiency decreases to
87%. This can be explained by the increase in communication
over the network, which is particularly a problem for smaller
systems where the ratio between communication and
calculation time is large. However, because the calculation
times for the relatively small systems in the L7 test set are very
short even on only 1 node, the lower parallel efficiency for 10
nodes is less significant.
Focusing on larger systems, e.g., the circumcoronene

guanine-cytosine base pair complex (Table 5), which is the

system with the largest number of basis functions in the test set,
shows that even with 10 nodes a parallel efficiency of 96% is
observed. This means that, especially for large systems for
which the parallel efficiency matters most, significant speed-ups
are observed.

4.4. Illustrative Application. Efficient carbon capture and
storage as well as atmospheric water capture are important

Figure 3. Linear plot (left) and the respective log−log plot (right) of the wall times for calculating RI-RPA correlation energies of linear n-alkanes
using the ω-CDD (blue) and ω-CDGD (red) methods against the number of basis functions. Additionally, the wall time for the final frequency
integration in the ω-CDGD method is shown (red, dashed). The log−log plot further shows linear fits for the ω-CDD (blue line) and ω-CDGD
(red line) methods. For the linear fits, only data points are used, which were calculated using sparse matrix algebra.

Table 3. Wall Times for the Calculation of RI-RPA
Correlation Energies of DNA Fragments with Increasing
Size Using the ω-CDD and ω-CDGD Methods with the Last
Column Giving the Speed-up of the Computation Time
Using the ω-CDGD Method Compared to the ω-CDD
Methoda

time [s]

molecule Nbasis ω-CDD ω-CDGD speed-up

DNA1 625 126 35 3.6
DNA2 1332 2018 528 3.8
DNA4 2746 *32288 7755 4.2

aThe value marked with an asterisk (*) was extrapolated
conservatively.

Figure 4. Linear plot of the wall times for calculating RI-RPA
correlation energies of DNA fragments (DNA1, DNA2, and DNA4)
using the ω-CDD (blue) and ω-CDGD (red) methods against the
number of basis functions. The data point marked with an asterisk (*)
was extrapolated conservatively.

Table 4. Cumulative Wall Times, Speed-ups, and Parallel
Efficiencies for the Calculation of Correlated Energies of the
Complete L7 Test Set Using 1, 5, and 10 Nodes

number of nodes time [s] speed-up efficiency

1 33343
5 6824 4.9 0.98
10 3840 8.7 0.87

Table 5. Wall Times, Speed-ups, and Parallel Efficiencies for
Calculating the Correlated Energy of the Circumcoronene
Guanine-Cytosine Base Pair Complex (101 Atoms, 2431
Basis Functions, 5968 Auxiliary Basis Functions) from the
L7 Test Set Using 1−10 Computing Nodes

number of nodes time [s] speed-up efficiency

1 10074
2 4974 2.0 1.00
4 2582 3.9 0.98
6 1673 6.0 1.00
8 1280 7.9 0.99
10 1046 9.6 0.96
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societal challenges and necessitate the development of materials
with specific sorption properties. In 2015, Stegbauer et al.53

reported that COFs show very high CO2 and water uptake
capacities at low pressures, making them highly interesting for
environmental applications.
For understanding the absorption characteristics of COFs,

detailed structural analyses are indispensable. One of the
properties of intereset is the distance between two layers of the
COF. As the interlayer distance is strongly influenced by
dispersion interactions, a good description of these effects is
essential for obtaining reliable computational results. We
calculated total RPA energies of two azine-benzene-COF
(AB-COF, see Figure 5) pores with eclipsed stacking (384

atoms) and distances between the two pores ranging from 3.2
to 4.0 Å using our ω-CDGD algorithm. All calculations were
conducted using dense matrix algebra because no useful
sparsity could be expected due to the highly delocalized
electronic structure of the system. Note that the use of dense
linear algebra prevents linear-scaling behavior, which relies on
the sparsity of density matrices. The results are shown in Figure
6.
Although the preceding PBE calculations do not show a

minimum in the calculated range with both the def2-SVP as
well as the def2-TZVP basis sets, the RPA calculations clearly
improve upon the PBE results and show a minimum at ∼3.5 Å

using the def2-SVP basis set and a slightly right-shifted
minimum at 3.6 Å with the def2-TZVP basis set. Both results
for this model system are in good agreement with the
experimental value of Stegbauer et al.53 who reported an
interlayer distance of 3.44 Å. As expected, the DFT calculations
using the PBE functional are not sufficient to obtain reliable
results for the interlayer distance of the COF due to the missing
description of dispersion effects. However, with the method-
ology presented in this work, we are now able to correctly
describe noncovalent interactions without necessitating addi-
tional parameters.

5. CONCLUSION

The memory bottleneck of our first linear-scaling RPA
formulations has been overcome by a reformulation of the
FINT matrix, which only uses the Cholesky factors of the ground
state density. This new formulation preserves sparsity as well as
the previous Cholesky decomposition of the pseudodensities
method but reduces the memory requirements of the large 3-
center integral matrix by a factor of N

N
basis

occ
. This is essential to

further extend the applicability of this method to ever larger
systems. Additionally, we have presented a parallel implemen-
tation of our method, which is shown to be highly efficient and
also enables a further scalable decrease in memory require-
ments, opening the door for investigations of large molecules
even on small- to medium-sized computing clusters. While our
previous formulations required two different equations for the
calculation of Q(u), which necessitates evaluating three
different forms of F matrices, we have overcome this issue by
utilizing minimax grids for the imaginary time and frequency
domain as well as an optimized transform scheme to switch
between the two domains. To this end, we have shown that
FINT is the representation of Q(u) in the imaginary time
domain and that the integrated double-Laplace expansion is
equivalent to a Fourier transform of the frequency-dependent
noninteracting polarization propagator into the imaginary time
domain. Employing optimized weights and roots for this
transformation thus allows for using only the “INT”-
formulation (eq 31). This decreases the run-time prefactor of
our algorithm by a factor of 4 and at the same time increases
the accuracy of our method by up to 4 orders of magnitude.
Replacing the Clenshaw−Curtis scheme for the final frequency

Figure 5. Structure representation of one AB-COF pore.

Figure 6. Plot of the relative energies of the AB-COF pore dimer calculated with the ω-CDGD method using PBE reference orbitals (left) and the
PBE functional (right) employing the def2-SVP (blue) as well as the def2-TZVP (red) basis set against the interlayer distance. All data points were
referenced with respect to the lowest computed value. The total wall time for each RPA correlation energy calculation using the def2-TZVP basis set
is 130014 s on 10 computing nodes. The time for the communication between the nodes is 8307 s, which is approximately 6% of the total calculation
time.
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integration with a minimax quadrature decreases the number of
quadrature points from 60−100 to 10−20 without losing
accuracy. In conclusion, we have described an accurate linear-
scaling RPA theory that is efficiently parallelized, has a low
prefactor, is numerically very stable, and has low memory
requirements that can be further lowered by distribution over
multiple compute nodes. This enables calculations of large
molecular systems in a fraction of the time of former theories
on compute clusters typically available in local research groups.
As an illustrative application, we used our new method to
calculate the distance between two COF pores comprising 384
atoms and found the equilibrium distance to be in good
agreement with experimental results.
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We present an atomic orbital formalism to obtain analytical gradients within the random phase
approximation for calculating first-order properties. Our approach allows exploiting sparsity in
the electronic structure in order to reduce the computational complexity. Furthermore, we intro-
duce Cholesky decomposed densities to remove the redundancies present in atomic orbital basis
sets, making our method a competitive alternative to canonical theories also for small molecules.
The approach is presented in a general framework that allows extending the methodology to other
correlation methods. Beyond showing the validity and accuracy of our approach and the approx-
imations used in this work, we demonstrate the efficiency of our method by computing nuclear
gradients for systems with up to 600 atoms and 5000 basis functions. Published by AIP Publishing.
https://doi.org/10.1063/1.5052572

I. INTRODUCTION

Density-functional-theory (DFT) is the most widely used
method in quantum chemistry to calculate energetics and
properties. Its success stems from the good compromise of
computational cost and accuracy. There are, however, cer-
tain problems that come with the use of DFT. The most
important are the limited transferability of highly parame-
terized functionals to a broad range of chemistry (see, e.g.,
Ref. 1) and the lacking description of dispersion effects.2,3

For the latter problem, the most popular solution is the use
of empirical dispersion corrections (see, e.g., Ref. 4). An
alternative to DFT are wavefunction based methods such as
second-order Møller-Plesset (MP2) perturbation theory5 or
coupled cluster (CC) methods,6,7 which are significantly more
computationally involved.

In recent years, the direct random phase approximation
(RPA) (for an introduction see, e.g., Refs. 8–10) has regained
popularity as a post-Kohn-Sham (KS) functional, due to its
good description of dispersion11,12 and the ability to describe
small-gap systems, where other methods, e.g., MP2, fail drasti-
cally. Furthermore, the availability of algorithms that allow cal-
culating RPA energies with low computational cost contributes
to the popularity of the RPA. This was pioneered by Furche
and co-workers,13 who presented a resolution-of-the-identity
(RI) RPA approach with O(N4) computational cost, where N
denotes the molecule size. Furthermore, linear-scaling meth-
ods to calculate RPA correlation energies were presented,14–17

allowing for calculations on systems with more than
1000 atoms making it an attractive alternative to conventional
DFT.

a)christian.ochsenfeld@uni-muenchen.de

For the applicability of an electronic structure method, the
access to properties beyond ground state energies is indispens-
able. Analytical gradients are the first step in this direction,
where computational efficiency is key as well. To this end,
O(N6) schemes based on the CC variant of RPA have been
presented,18,19 as well as an O(N4) RI-RPA gradient approach
by Furche and co-workers.20 Very recently Kresse and co-
workers21 presented an O(N3) gradient approach for periodic
systems using a plane wave basis set.

In this work, we extend our linear and low-scaling atomic
orbital (AO) RI-RPA schemes14–16 to first order properties tak-
ing one step further in the direction of making RPA a general
purpose non-empirical alternative to conventional DFT.

II. THEORY

We formulate our theory starting from the AO-RI-RPA
formalism,14 which proved to be highly efficient for the calcu-
lation of RPA correlation energies. The Einstein sum conven-
tion is used throughout. Integration over spatial coordinates is
avoided by representing all quantities in atomic and auxiliary
basis sets and using discrete summations. We denote quanti-
ties related to occupied molecular orbitals (MOs) as i, j, . . .
and those related to virtual orbitals a, b, . . .. Atomic orbitals
are enumerated as µ, ν, . . ., Cholesky orbitals as i, j, . . ., and
auxiliary basis functions as P, Q, . . .. Two-, three-, and four-
center electron repulsion integrals (ERIs) will be denoted in
the Mulliken notation.

A. Atomic orbital RPA total energies

In the adiabatic-connection formalism,22 the total energy
is usually calculated as

E = Eh[{ρKS}] + EJ [{ρKS}] + EK [{ρKS}] + Ec, (1)

0021-9606/2018/149(24)/244111/11/$30.00 149, 244111-1 Published by AIP Publishing.
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where the sum of the one-particle energy contributions Eh and
the Coulomb and exchange energy contributions EJ , EK cor-
respond to the Hartree-Fock energy functional evaluated using
the density ρKS obtained from a semi-local Kohn-Sham (KS)
reference determinant

EHF[{ρKS}] = Eh[{ρKS}] + EJ [{ρKS}] + EK [{ρKS}]. (2)

Using the fluctuation-dissipation theorem and the RPA, the
correlation energy can be expressed after coupling-strength
integration using the RI as13,23–26

ERPA
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{

log
(
1 − χ0

(
iω

)
C
)

+ χ0
(
iω

)
C
}
, (3)

where the contravariant Coulomb operator in the auxiliary
basis is given as

CPQ = (P |m12 |R)−1(R|S)(S |m12 |Q)−1 (4)

with the metric in general notation m12 chosen for the RI-
decomposition. Popular choices for the metric m12 are the
Coulomb, the overlap, or the attenuated Coulomb metric. Fur-
thermore, χ0(iω) is the polarizability of the non-interacting
reference system in the imaginary frequency domain in the
auxiliary basis. Calculating χ0(iω) is done most efficiently
by employing a numerical contracted double-Laplace14 or
cosine transform27 from the imaginary time to the imaginary
frequency domain

χ0(iω) =
∫ ∞
−∞

dτ cos(ωτ)χ0(iτ), (5)

χ0(iτ)PQ = BP
µνG0

µλ(−iτ)G0
νσ(iτ)BQ

λσ . (6)

Here, B denotes the three-center ERI tensor

BP
µν = (P |m12 |µν), (7)

and the independent particle Green’s function G0(iτ) in
imaginary time is given as

G0(iτ) = Θ(−iτ)G0(iτ) + Θ(iτ)G
0
(iτ) (8)

with

G0(iτ)µν = CµiCνie
−(εi−εF )τ , (9)

G
0
(iτ)µν = −CµaCνae−(εa−εF )τ (10)

defined in analogy to the occupied and unoccupied pseudoden-
sities with the MO energies εm and MO coefficients C obtained
from the reference KS calculation and the Fermi level εF ,
which ensures numerical stability of the Green’s function at
large imaginary times. The Heaviside step function is denoted
as Θ(iτ).

B. General strategy to obtain first order properties

To obtain first order properties with respect to a pertur-
bation x, we use partial derivatives of the AO-RI-RPA energy
with respect to χ0, C, G0, and B. The total derivative is then
obtained by tracing the partial derivatives with the variation
of the respective quantity in response to a perturbation x and
summing over all contributions.

This is in similar spirit to the strategy followed by Burow
et al.20 To avoid the derivatives of the MO energies εm

and coefficients Cm, we take, however, a different route as
pursued in the canonical RI-RPA gradient theory and calcu-
late derivatives of the non-interacting Green’s function in the
imaginary time domain as proposed originally for MP2 gra-
dients.28–30 Along this line, analogies to the plane-wave RPA
gradients21 arise, which extends this general framework for
the calculation of first-order properties of electronic structure
theories that can be formulated as a functional of G0 to the
AO formalism. To avoid computing the derivative of G0 with
respect to each perturbation x, we take advantage of the Z-
vector technique by Handy and Schaefer31 and its formulation
in the AO basis.28 The derivative of numerical integration roots
and weights used for the numerical imaginary time and fre-
quency quadratures which are optimized using the molecular
orbital energies will be neglected. Earlier studies on MP2 gra-
dients using the same time grids28,29 and on RPA gradients
using exactly the same time and frequency grids21 showed
that sufficiently accurate results can be obtained without tak-
ing these derivatives into account. This is also supported by our
results.

We show the derivation in the following for the exam-
ple of perturbations caused by nuclear displacements in the
closed-shell formalism. First, we derive the gradient contribu-
tion stemming from the correlation energy and then add the
contribution from the Hartree-Fock energy functional evalu-
ated using the KS density. Here caution has to be taken since
the Hartree-Fock functional is not stationary with respect to the
KS orbitals, which requires to take the response of the density
into account as compared to regular Hartree-Fock force calcu-
lations, where this can be avoided using the energy weighted
one-particle density matrix.32

The total gradient can be split up as follows:

∂E
∂x
= EHF[{ρKS}](x) + EHF[{ρx

KS}] + ERPA,x
c [{C, B, G0}],

(11)

ERPA,x
c [{C, B, G0}] = Tr

{ ∂ERPA
c

∂C
∂C
∂x

}
+ Tr

{ ∂ERPA
c

∂B
∂B
∂x

}

+ Tr
{ ∂ERPA

c

∂G0

∂G0

∂x

}
. (12)

The derivatives of the Hartree-Fock functional containing only
integral derivatives are denoted as EHF[{ρKS}](x), whereas the
contribution stemming from the perturbed density is denoted
as EHF[{ρx

KS}].

C. Contribution from Coulomb operator
in auxiliary basis

First, we derive the expression of the gradient stemming
from the Coulomb operator in the auxiliary basis, C [first term,
Eq. (12)]. The contribution to the RI-RPA gradient stemming
from C caused by a nuclear displacement is readily evaluated
as

Tr
{ ∂ERPA

c

∂C
∂C
∂x

}
. (13)
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The derivative with respect to the Coulomb matrix can be
obtained by expanding the logarithm in the RI-RPA energy
expression as a series to yield

∂ERPA
c

∂C
=

1
2

∫ ∞
−∞

dω
2π

{− [(1 − χ0(iω)C)−1 − 1]χ0(iω)
}
. (14)

The variation of C with respect to a nuclear displacement x is
given as

∂C
∂x
= −Π−1

m12
Πx

m12
Π−1

m12
Πr12Π

−1
m12

+ Π−1
m12
Πx

r12
Π−1

m12

−Π−1
m12
Πr12Π

−1
m12
Πx

m12
Π−1

m12
, (15)

using the notation Πm12,PQ = (P |m12 |Q),Πr12,PQ = (P |Q). The
tensors Πx

m12
,Πx

r12
contain conventional ERI derivatives with

respect to nuclear coordinates for different Coulomb type oper-
ators, which can be computed routinely. With χ0(iω) being
available in a linear-scaling manner from RPA correlation
energy calculations,14–16 no new computationally involved
steps appear in this part of the gradient routine.

D. Contribution from three-center integrals

The contribution from three-center integrals [second term,
Eq. (12)] to the nuclear gradients is evaluated using

Tr
{ ∂ERPA

c

∂ χ0(iω)
∂ χ0(iω)
∂B

∂B
∂x

}
, (16)

where the trace implies integration over the imaginary fre-
quency axis. The first derivative in Eq. (16) can be evaluated
analogously to Eq. (14) and yields for a specific imaginary
frequency iω

∂ERPA
c

∂ χ0(iω)
= − 1

4π
{
C[(1 − χ0(iω)C)−1 − 1]

}
= − 1

4π
Wc(iω),

(17)

as previously shown by Kresse and coworkers.21 Here, Wc(iω)
is the correlated screened-Coulomb interaction represented
in the auxiliary basis set, which is an even function in iω-
space. Therefore, the contribution of the three-center inte-
grals [Eq. (16)] can be calculated using the imaginary time
representation of χ0 [Eq. (6)] as

Tr
{
−
∫ ∞
−∞

∫ ∞
−∞

dω
2π

dτ cos(ωτ)WPQ
c (iω)G0(−iτ)µλ

×BQ
λσG0(iτ)σν

(
∂B
∂x

)P

µν

}
(18)

= Tr
{
−
∫ ∞
−∞

dτWPQ
c (iτ)G0(−iτ)µλBQ

λσG0(iτ)σν
(
∂B
∂x

)P

µν

}
,

(19)

with the derivative of the three-center RI-integrals
( ∂B
∂x

)P
µν .

To evaluate Eq. (19) efficiently, we precontract all unper-
turbed quantities

MP
µν = −2

∫ ∞
0

dτWPQ
c (iτ)G0(−iτ)µλBQ

λσG0(iτ)σν , (20)

where the most compute intensive step is the transformation of
the three-center integrals with the screened-Coulomb interac-
tion, which has to be performed for each imaginary time grid
point. This shows an O(N2

AuxN2
Bas) formal scaling behavior,

where NAux and NBas denote the dimension of the auxiliary and
atomic basis sets, respectively. Since G0 and B become sparse
quantities for large systems when employing a local RI-metric
for B,14 while Wc is in general a dense matrix, the asymptotic
scaling behavior is expected to be quadratic with the molecule
size. Both calculating the three-center ERI derivatives and the
contraction with M are not time determining.

E. Contribution from non-interacting
Green’s function

As the last contribution to the gradient stemming from
the correlation energy, the part depending on the perturbed
non-interacting Green’s function [third term Eq. (12)] is given
by

Tr
{ ∂ERPA

c

∂ χ0(iω)
∂ χ0(iω)

∂G0(iτ)

∂G0(iτ)
∂x

}
, (21)

where again the trace implies integration over imaginary fre-
quency and imaginary time. Using the derivative with respect
to χ0(iω) [Eq. (17)] and the imaginary time representation of
χ0 [Eq. (6)] to calculate the derivative with respect to G0(iτ)
in analogy to Eq. (19), we obtain for Eq. (21)

Tr
{
− 1

2

∫ ∞
−∞

dτ
[
WPQ

c (iτ)BP
µλG0(−iτ)λσBQ

σν

(
∂G0(iτ)
∂x

)

µν

+ WPQ
c (iτ)BP

µλG0(iτ)λσBQ
σν

(
∂G0(−iτ)

∂x

)

µν

]}
. (22)

As the correlated self-energy in the GW-approximation in
imaginary time is defined as21,33,34

Σ(iτ)µν = −BP
µλG0(iτ)λσWPQ

c (iτ)BQ
σν , (23)

we can simplify the above expression

Tr
{1

2

∫ ∞
−∞

dτ
[
Σ(−iτ)

(
∂G0(iτ)
∂x

)
+Σ(iτ)

(
∂G0(−iτ)

∂x

)]}
(24)

= Tr
{ ∫ ∞
−∞

dτΣ(−iτ)
(
∂G0(iτ)
∂x

)}
, (25)

where we have used that Wc(iτ) is symmetric in imaginary
time.

While Kresse and co-workers21 proposed a scheme to cal-
culate the derivative of G0 in the imaginary frequency domain,
we employ a method presented by some of us earlier in the
context of MP2 gradient theory for the equivalent pseudo-
densities.28–30 Therefore, we employ the series expansion of
the matrix exponential in the non-interacting Green’s function
[Eqs. (9) and (10)] in the AO basis,28,35,36 e.g., for negative
imaginary times

G0(iτ) = Pe−τ(HKS−εF S)P = P
∞∑

k=0

1
k!

[−τ(HKS − εFS)P]k ,

(26)
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in combination with the series expansion of the derivative of
the matrix exponential

∂G0(iτ)

∂x
=
∂P
∂x

e−τ(HKS−εF S)P + P
∂ e−τ(HKS−εF S)P

∂x
, (27)

∂ e−τ(HKS−εF S)P

∂x
=

∞∑

k=1

k−1∑

l=0

(−τ)k

k!
[(HKS − εFS)P]l

× ∂(HKS − εFS)P
∂x

[(HKS − εFS)P]k−l−1,

(28)

to relate the derivative of the non-interacting Green’s func-
tion to the derivatives of the Hamiltonian corresponding to the
semi-local KS reference

HKS = h + J[P] + VKS[P] (29)

and the occupied one-particle density matrix

Pµν = lim
iτ→0−

G0(iτ)µν = CµiCνi, (30)

calculated from the KS-MO coefficients, as well as the AO
overlap matrix S. The notation in Eq. (29) implies

Jµν[X] = (µν |λσ)Xλσ , (31)

VKS,µν[X] = f XC
µνλσXλσ , (32)

where f XC
µνλσ is the exchange-correlation kernel of the KS ref-

erence system in the AO basis. The one-electron Hamiltonian
h contains the kinetic energy and nuclear potential matrices.
The same can be performed analogously for positive imaginary
times using the virtual one-particle density matrix

G
0
(iτ) = −Qe−τ(HKS−εF S)Q, (33)

Qµν = − lim
iτ→0+

G0(iτ)µν = CµaCνa. (34)

To avoid computation of the derivative of the virtual density
matrix,28 the completeness relation

1 = PS + QS, (35)

Qx = −Px − S−1SxS−1 (36)

is employed. The details of this procedure can be found in
Ref. 28.

The final expression for the gradient contribution stem-
ming from G0 [Eq. (21)] reads

Tr
{
PRPA

(
H(x)

KS − εFSx) + VRPAPx + S−1 (Σ+)
S−1Sx}. (37)

Here we have defined VRPA

VRPA = Σ + J[PRPA] + VKS[PRPA], (38)

PRPA =

∫ ∞
0

dτ
[
PY(−iτ) −QY(iτ)

]
, (39)

Σ = Σ
−

+ Σ
+
, (40)

Σ
+
=

∫ ∞
0

dτ
[
Y(iτ)(HKS−εFS)+e−τ(HKS−εF S)QΣ(−iτ)

]
, (41)

Σ
−
=

∫ ∞
0

dτ
[
Y(−iτ)(HKS − εFS) + eτ(HKS−εF S)PΣ(iτ)

]
, (42)

with a RPA density matrix PRPA and an “integrated” self-
energy term Σ constituent of a negative imaginary time Σ

−

and a positive imaginary time Σ
+

contribution. The auxiliary
matrix Y(iτ) is defined as

Y(iτ) = Θ(−iτ)Y(iτ) + Θ(iτ)Y(iτ), (43)

Y(iτ) =
∞∑

k=1

k−1∑

l=0

(−τ)k

k!
[(HKS − εFS)P]k−l−1Σ(−iτ)P

× [(HKS − εFS)P]l, (44)

Y(iτ) =
∞∑

k=1

k−1∑

l=0

(−τ)k

k!
[(HKS − εFS)Q]k−l−1Σ(−iτ)Q

× [(HKS − εFS)Q]l, (45)

which we calculate recursively as described in Ref. 28.
Furthermore, we note that in Eq. (37) we do not con-

sider the variation caused by the perturbed Fermi level which,
as indicated by our results in Sec. IV B, does not seem to
have a significant influence. The integral derivatives of the KS
Hamiltonian, which contain only basis function derivatives,
are denoted as

H(x)
KS = hx + Jx[P] + Vx

KS[P]. (46)

In terms of computational complexity, the most involved step
is the calculation of the self-energy in imaginary time. Here
the time-determining step is again the transformation of the
three-center integrals with the correlated screened-Coulomb
interaction, which we have discussed in Sec. II D and which
serves as an intermediate result for both M and Σ(iτ). Here we
want to note that a similar efficient calculation of the diago-
nal elements of the self-energy in the MO basis with a local
RI-metric and an AO formalism has been part of previous
studies on efficient GW calculations.34 The calculation of the
matrix exponentials and the Y(iτ) matrix is not relevant in
terms of computational resources, since it only involves low-
prefactor dense linear algebra. To assure fast convergence of
all matrix exponentials, the scaling and squaring technique
(see, e.g., Ref. 37) is used as described in Ref. 28. The effi-
cient calculation of the perturbed occupied one-particle density
matrix Px with help of the Z-vector technique is discussed
below.

F. Contributions from Hartree-Fock functional

Having dealt with the correlated part of the gradient, the
last contribution that remains is the Hartree-Fock functional
evaluated with the KS density

∂EHF

∂x
= EHF[{ρKS}](x) + EHF[{ρx

KS}], (47)

which we split in the contribution stemming from only integral
derivatives and the contribution stemming from the response
of the KS density. As mentioned earlier, the latter contribution
does not arise at regular self-consistent-field (SCF) level force
calculations since the energy functional is then stationary with
respect to variations of the density. The explicit form of the
first contribution reads
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EHF[{ρKS}](x) = Tr
{
Phx +

1
2

(
PJx[P] + PKx[P]

)}
, (48)

where

Kx[P]µν =
1
2

(µλ |νσ)xPλσ (49)

which can be routinely calculated using SCF force routines.
The second part reads

EHF[{ρx
KS}] = Tr

{
Pxh +

(
PxJ[P] + PxK[P]

)}
= Tr

{
HHFPx

}
,

(50)

where we have to solve for the derivative of the occupied
one-particle density matrix using the coupled-perturbed KS
(CPKS) equations for the semi-local KS-functional used to
obtain the reference determinant.

G. AO-based Z-Vector equation
for the calculation of Px

Examining Eq. (37) and Eq. (50), one could assume that
the solution of the CPKS equation is necessary for each per-
turbation, which would be computationally costly. One can,
however, collect all terms that are contracted with the occupied
perturbed one-particle density matrix in the form of

Tr
{(

HHF + VRPA
)
Px}. (51)

This form is now amenable to the Z-vector technique,31

which allows us to only solve one CPKS equation instead of
one for each perturbation. The adaption of the Z-vector tech-
nique to the AO formalism can be found in Ref. 28. Here
we use the density-matrix based Laplace variant of the CPKS
equations (DL-CPSCF/DL-CPKS),38 allowing for an efficient
linear-scaling solution of the CPKS equations. Another viable
route would be to use a D-CPSCF/D-CPKS method which
does not rely on a Laplace transform as, e.g., described in
Ref. 39.

H. Rank reduction through Cholesky decomposition

As mentioned earlier, for large molecules, the computa-
tionally most expensive linear algebra steps in the calculation
of RPA gradients appear in the evaluation of the self-energy
[Eq. (23)] and the quantity to be contracted with the three-
center integral derivatives M [Eq. (20)]. For regular atomic
and auxiliary basis sets, the time determining step will for-
mally scale as O{N2

AuxN2
Bas}, similar to the scaling of AO-RI-

RPA energy calculations. One disadvantage of AO theories
is that while AO quantities show local behavior that allow
for low-scaling algorithms, there are significant redundancies
in conventional gaussian atomic basis sets, which result in an
overhead as compared to canonical theories. Fortunately, these
redundancies can oftentimes be removed using rank reduction
through Cholesky decomposition (CD)40,41 with complete piv-
oting of positive semi-definite matrices. For applications of CD
in electronic structure theory, see, e.g., Refs. 15, 29, and 42–46.
Pivoted CD is particularly suitable as a matrix decomposition
in conjunction with AO methods since it conserves matrix
sparsity.45 The most significant savings can be obtained by
pivoted CD of quantities corresponding to occupied orbitals,
such as the one-particle density matrix P. We introduce CD by

realising that the projection of the non-interacting Green’s
function on the occupied space keeps the Green’s function
invariant at negative imaginary times

G0(iτ) = G0(iτ)SP. (52)

Now the one-particle density matrix is a positive semi-definite
matrix, which can be Cholesky decomposed as

P = LLT , (53)

where L is a rectangular matrix with NBas rows and Nocc

columns, where Nocc denotes the number of electrons. Now
we can reduce the formal scaling behavior of the calculation
of M by using

MP
µν = −2

∫ ∞
0

dτWPQ
c (iτ)

(
G0(−iτ)SL

)
µi

(
LT BQ)

iσG0(iτ)σν

(54)

and contracting the screened-Coulomb interaction with
the three-center RI-integral tensor transformed into the
Cholesky decomposed density atomic orbital (CDD-AO) basis
first, which yields steps that formally scale at most as
O{N2

AuxNBasNocc} just as in CDD-RI-RPA.15,16 As noted ear-
lier in the asymptotic limit of sparse G0, L, and B, this time
determining step shows quadratic scaling behavior with the
molecule size N. In the case where the Green’s function and
the density matrix are dense and only the sparsity of the three-
center integrals is exploited, the asymptotic scaling behavior is
cubic. The same idea can be applied for the calculation of the
self-energy at negative imaginary times [see Eq. (23)]. More
care has to be taken when calculating the self-energy at pos-
itive imaginary times, since in this case one can only exploit
the rank deficiency of the virtual one-particle density matrix,
which does not yield significant computational savings. Upon
closer inspection, one realizes, however, that it is possible to
calculate

Σ(iτ)PS =
(
Σ(iτ)L

)
LT S, (55)

which is amenable to the scheme presented above, instead
of the plain self-energy at imaginary positive times. Insert-
ing Eq. (55) into the calculation of Y(iτ) [Eq. (44)] yields the
exact same results due to the idempotency of the one-particle
density matrix P. The other place where the self-energy at
imaginary positive times appears is in the contraction in the
trace with the perturbed density matrix [Eqs. (37), (38), (40),
and (42)], where it is precontracted with the matrix exponen-
tial eτ(HKS−εF S)P. Here it is insightful to look at the different
projections of the perturbed density matrix that one solves
for. The occupied-virtual and virtual-occupied projections
of Px are determined using the respective Z-vector projec-
tions Zov and Zvo. As described in Ref. 38, these are of the
form

Zov =
∑

τ

tτG0(−iτ)XG0(iτ), (56)

Zvo =
∑

τ

tτG0(iτ)XG0(−iτ) (57)

with the numerical integration over Laplace points. This
shows in combination with the series expansion of the matrix-
exponential eτ(HKS−εF S)P [Eq. (26)] that one can insert Σ(iτ)PS
or SPΣ(iτ) for the calculation of Zov and Zvo, respec-
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tively, exploiting again the projection of the non-interacting
Green’s function at negative imaginary times onto the occupied
subspace and the idempotency of P. Finally, the occupied-
occupied part of the perturbed density matrix can be cal-
culated non-iteratively and without the Z-vector technique
as

Px
oo = −PSxP, (58)

where it is obvious that Σ(iτ)PS also yields the same result
as just the self-energy at positive imaginary times. There-
fore CDD enables time determining steps that only scale as
O(N2

AuxNBasNocc), just as in the most efficient CDD-RI-RPA
algorithm.15,16 This means that there is no significant overhead
to canonical theories and that large basis sets can be employed,
which is prohibitive in pure AO theories.

I. Notes on similar developments in the literature

As the calculation of the correlated self-energy is nec-
essary to obtain first order properties, we want to note that
this quantity also appears in the calculation of GW quasiparti-
cle energies, where low-scaling methods on large computing
clusters have been reported34,47 also using methods from ear-
lier studies on RPA correlation energies.14,48 In comparison to
the calculation of the self-energy in the low-scaling massively
parallel GW algorithm,34 where only the diagonal elements of
the self energy in the MO basis are calculated, we have addi-
tionally introduced CDDs which reduce the formal scaling of
our method by a factor of NBas/Nocc, resulting in a signif-
icantly lower prefactor. We want to note that to obtain GW-
quasiparticle energies, it is furthermore necessary to transform
the self-energy to the imaginary frequency domain first and
then extrapolate them to real frequencies before being able
to solve the quasiparticle equations, see, e.g., Refs. 33, 34,
and 47.

When comparing our method to the canonical RI-RPA
gradients,20 the formal scaling behavior of the rate determining
step is basically identical, our implementation uses, however,
only 15-20 grid points, while the implementation in TUR-
BOMOLE typically requires more than 60 frequency points.
Since the most compute intensive step has to be performed for
each frequency grid point, this results in a further reduction of
the computational effort. Furthermore, as shown in Sec. IV,
our algorithm allows reducing the observed asymptotic scal-
ing behavior to approximately quadratic as compared toO(N4)
for sparse electronic structures, i.e., extended systems with a
non-vanishing HOMO-LUMO gap.

In comparison to the plane-wave method by Kresse and
co-workers,21 we have to evaluate derivatives of basis func-
tions which is not necessary for plane-waves. The use of atomic
basis set is, however, essential for the low-scaling scheme
presented in our work. In terms of evaluating the contribu-
tion stemming from the non-interacting Green’s function, we
take a similar route. We evaluate the contribution, however, in
the imaginary time domain in contrast to the imaginary fre-
quency domain as performed in the plane-wave scheme. The
imaginary time technique has proven useful in the calcula-
tion of molecular properties in the AO formalism before.28–30

Concerning the scaling behavior, the plane-wave algorithm
shows cubic scaling, while our implementation shows for-
mal quartic scaling before sparsity in the integral or density
matrix type quantities is exploited. This is because the non-
interacting polarizability and the self-energy are evaluated on
a real-space grid where those steps show at most cubic scal-
ing behavior as opposed to quartic when employing gaussian
basis functions. The evaluation on a real-space grid is facili-
tated by fast Fourier transforms from reciprocal to real space
and vice versa, which is not possible for molecular systems
without translational symmetry. Furthermore, storing the non-
interacting polarizability and the self-energy on a real-space
grid with the required accuracy would significantly exceed
the storage capacity available on conventional computing
nodes making this an impractical approach for large molecular
systems.

III. COMPUTATIONAL DETAILS

The RPA nuclear gradients were implemented in the
FermiONs++49–51 package developed in our group. We use
minimax imaginary time {iτl}Ng

l=1 and imaginary frequency

grids {iωk }Ng

k=1, with a set of weights {wk }Ng

k=1 for the numerical

frequency integrations and {tl}Ng

l=1 for the numerical time inte-
grations. Furthermore, the transformation matrix γk ,l is used
for numerical cosine transformations from imaginary time to
imaginary frequency. For the transformation from imaginary
frequency to imaginary time, the matrix βl ,k is employed,
which is chosen to fulfil β cos(τω) =

(
γ cos(ωτ)

)−1. These
grids were first developed for RPA correlation energy and
GW-quasiparticle energy calculations.16,27,33 In general, we
employ Ng = 15 grid points for the imaginary time and fre-
quency grids as proved to be sufficient for RPA correlation
energy calculations.16,27 Currently, our implementation is lim-
ited to 20 grid points as the Remez algorithm requires the use
of quadruple-precision floating-point operations for the opti-
mization of larger grids. For sparse algebra operations, we
use the blocked compressed sparse row (BCSR) format39,52

which uses an atomic blocking scheme. We aim for a block
size of 50 elements and neglect blocks when both the maximum
row and maximum column sums regularized to the full matrix
dimension fall below 10−6. For a sketch of the algorithm using
sparse algebra and an overview on which quantities are stored
in the sparse-algebra format, see the supplementary material.
Here sparse algebra is employed for the calculation of the
self-energies and the transformed three-center integral tensor
M [see Eqs. (23), (54), and (55)]. The optimal procedure for
pivoted CD of occupied density matrices to preserve matrix
sparsity is described in, e.g., Refs. 15 and 45. As a threshold
for CD, we choose the LAPACK default which is calculated
as the product of the dimension of the matrix, the maximum
diagonal element, and the machine precision. The details of
the recursive calculation of the Y(iτ) matrices [see Eqs. (44)
and (45)] can be found in Ref. 28. With a target Frobenius
norm of 0.2 for the scaling and squaring step and a threshold
of 10−10 for the series expansion of the matrix exponential, it
was not necessary to go beyond 8th order for any calculation
carried out for this manuscript.
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As atomic basis sets, we use the def2-SVP, def2-TZVP,
and def2-QZVP family of basis sets53,54 along with the respec-
tive RI basis set.55,56 For the RI for the low-scaling calcula-
tions, we use the attenuated Coulomb metric,15,57–59 which
combines locality of the three-center integral tensors similar
to the overlap metric, while retaining the accuracy of the most
widely used Coulomb metric. We set the attenuation para-
meter to ω = 0.1.15 To obtain the KS-reference orbitals, we
use the Perdew-Burke-Ernzerhof exchange-correlation func-
tional.60 The Fermi-level is set in the middle between the
highest occupied and lowest unoccupied MO.

IV. RESULTS AND DISCUSSION

First, we benchmark the convergence of the numerical
imaginary frequency and imaginary time grids to find the nec-
essary number of grid points to obtain accurate RPA forces.
To test the validity of our approach, we first compare our
results for a set of small molecules against the implemen-
tation in TURBOMOLE20 and numerical forces. Then we
benchmark the effect of our approximations that allow for
computational savings, namely, the attenuated RI-metric and
the use of sparse algebra, before we show the efficiency of
our method and end with an illustrative application. All cal-
culations shown here use the RPA gradient obtained with
CDDs since this approach will always be more efficient than
the plain AO-RPA implementation and there is no loss of
accuracy.

A. Convergence of imaginary time
and frequency grids

First, we demonstrate the convergence of the imaginary
time and frequency grids16,27,33 of our RPA force method by
performing calculations on the methane-benzene and the uracil
dimers of the S22 test set61 and the anthracene and retinal
molecules with def2-QZVP basis sets using 10-20 grid points.
The S22 molecules represent a typical application for RPA
calculations. Anthracene and retinal are included to show that
our method also performs well for small gap systems. The
results in Table I show that the minimax imaginary time and
frequency grids allow converging the forces to below 10−6

a.u./bohr in all cases. The small fluctuations in the calcula-
tions for the benzene-methane dimer and anthracene for large
grids can be explained from the fact that we converge the solu-
tion of the DL-CPKS equations to a residual norm of 10−6,
which is approximately the same precision as obtained from
the imaginary time and frequency grids. Based on these results,
we adopt 15 grid points as a default for the calculations in this
manuscript.

B. Validation of the implementation

To validate our CDD-RI-RPA approach, we have per-
formed force calculations on the 36 closed-shell molecules
of the G2 test set62 with the def2-QZVP basis set with the
respective RI basis set, using the Coulomb RI-metric and
dense algebra. As a comparison, we have performed the same
calculations with the canonical RI-RPA implementation in

TABLE I. Results showing the convergence of RPA force calculations by
presenting mean-absolute-deviations (MADs) of the gradient vector calcu-
lated with the respective number of grid points against the calculation using
Ng = 20 grid points. All calculations employed the def2-QZVP basis set using
the Coulomb RI-metric and dense algebra.

Benzene-methane
dimer Uracil-dimer Anthracene Retinal

MAD MAD MAD MAD
Ng [10�6 a.u./bohr] [10�6 a.u./bohr] [10�6 a.u./bohr] [10�6 a.u./bohr]

10 1.63 7.06 2.89 12.93
11 1.47 4.06 1.62 6.28
12 0.67 2.87 0.48 4.44
13 0.33 1.83 0.42 3.06
14 0.30 1.29 0.33 2.40
15 0.27 0.86 0.29 1.48
16 0.21 0.57 0.23 1.05
17 0.29 0.33 0.28 0.69
18 0.23 0.19 0.30 0.51
19 0.36 0.13 0.27 0.43
20 . . . . . . . . . . . .

TURBOMOLE20 and evaluated the forces numerically using
the canonical RI-RPA implementation13 in FermiONs++,
however, with the minimax imaginary frequency grid.27 For
the numerical differentiation, we use the five-point stencil
method with a step size of 10−5 Å. Detailed results for every
system can be found in the supplementary material.

The comparison against numerical gradients (Table II)
shows average root-mean-squared deviation (RMSD) and
mean-absolute deviation (MAD) on the order of 10−6–10−5

a.u./bohr and no maximum error (MAX) larger than 10−3

a.u./bohr. The same holds true when comparing against the
canonical implementation in TURBOMOLE (Table II), with
the average values for RMSD, MAD, and the MAX deviation
being slightly higher. This is to be expected since the compari-
son between two different quantum-chemistry packages brings

TABLE II. Comparison of the results for the 36 closed shell molecules of the
G2 test set and the same set of molecules distorted out of equilibrium, obtained
with the CDD-RI-RPA approach using the Coulomb RI-metric against numer-
ical forces calculated with the canonical RI-RPA algorithm in FermiONs++
and canonical RI-RPA gradients calculated with TURBOMOLE. We present
average root-mean-squared and average mean-absolute deviations of the gra-
dient vector of each system as compared to the respective reference in 10�3

a.u./bohr. In addition, we show the maximum deviation for one gradient com-
ponent of the entire test set. The detailed results for every system can be found
in the supplementary material.

RMSD MAD MAX
[10�3 a.u./bohr] [10�3 a.u./bohr] [10�3 a.u./bohr]

Numerical forces

G2 0.008 0.005 0.099
G2 distorted 0.007 0.005 0.079

TURBOMOLE

G2 0.038 0.025 0.169
G2 distorted 0.036 0.024 0.276
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some difficulties as the errors in the calculation of DFT quan-
tities or additional approximations such as the use of the RI
make it hard to converge the results to beyond 10−5 a.u./bohr
precision.

Since the G2 test set is optimized at the MP2/6-31G∗ level
of theory, the absolute values of the gradient vectors are rather
small. To also test our implementation at non-equilibrium
geometries, we distort one atom in each molecule by 0.2 Å.
As shown in Table II, the statistical measures for the dis-
torted molecules basically stay the same showing that our
implementation reliably calculates forces accurately also for
non-equilibrium geometries.

C. Accuracy of low-scaling CDD-RI-RPA forces

To test the accuracy of our approximations that allow for
low-scaling calculation of large molecular systems, we per-
form calculations using the attenuated RI-metric and sparse
algebra for larger molecular systems and again compare
against the canonical implementation in TURBOMOLE. In
particular, we look at the forces for an amylose chain consist-
ing of four glucose units, a DNA base pair, and a linear alkane
chain with 40 carbon atoms using the def2-SVP basis set. We
use the attenuated RI-metric (ω = 0.1) and sparse algebra,
which allows reducing the computational complexity, as will
be shown in Sec. IV D. The results (Table III) show that for
large systems we obtain average accuracies of 10−5 a.u./bohr
and all maximum deviations are smaller than 10−3 a.u./bohr.
This shows that our approximations do not deteriorate the
accuracy of the method.

D. Scaling behavior with molecular size

To test the efficiency of our methods for extended
molecules, we performed calculations on linear alkane (up to
alkane200) and glycine chains (up to glycine60) using the def2-
SVP basis set. The attenuated RI-metric (ω = 0.1) was used
along with sparse algebra. All calculations were performed
using 16 threads on a dual-processor Intel Xeon CPU E5-
2667 machine. The results for the alkane and glycine chains
are shown in Fig. 1. The curve fit through the systems with
more than 1900 basis functions using a power law shows

TABLE III. Comparison of the results obtained for three large molecules
using the CDD-RI-RPA gradients with the attenuated RI-metric (ω = 0.1)
and sparse algebra against the canonical implementation in TURBOMOLE.
We have used 15 imaginary time and frequency grid points for the CDD-
RI-RPA calculations and as many grid points for the frequency integra-
tion in TURBOMOLE necessary to keep the sensitivity measure20 below
10�10. We present root-mean-squared, mean-absolute, and maximum devia-
tions of the total gradient vector as compared to the respective reference in
10�3 a.u./bohr.

TURBOMOLE

RMSD MAD MAX
System [10�3 a.u./bohr] [10�3 a.u./bohr] [10�3 a.u./bohr]

Amylose4 0.068 0.048 0.336
DNA1 0.086 0.053 0.344
Alkane40 0.018 0.009 0.078

FIG. 1. Timings for the force calculations on a set of linear alkanes and linear
glycine chains using the def2-SVP basis set with the corresponding RI basis
set. The crosses show the sum of the wall times required for the calculation of
the self-energy and the transformed three-center integral tensor. The number of
basis functions refers to the number of atomic basis functions. The attenuated
RI metric (ω = 0.1) was used along with sparse algebra. The scaling behavior
was calculated by fitting a power law to the total wall-times of the systems
with more than 1900 basis functions.

that our pilot implementation of the CDD-RI RPA gradients
shows asymptotic approximately quadratic scaling behavior
with the molecule size. Most of the computational time is
spent to compute the three-center integral tensor transformed
with the screened-Coulomb matrix as already mentioned in
Sec. II. The timings in Fig. 1 confirm that through the use of a
local RI-metric and the use of sparse algebra, this step scales
approximately quadratically with system size. The reason why
the scaling behavior is not perfectly quadratic is presumably
the overhead associated with sparse algebra. For large systems,
this reduced computational complexity will result in a signifi-
cant computational benefit as compared to the O(N4) scaling
canonical RI-RPA gradients.20

To show that our method is also applicable to larger basis
sets, which are usually required for correlation methods, we
performed force calculations with the CDD-RI-RPA method
on the set of linear alkanes up to alkane120 using the def2-
TZVP basis set. The results in Fig. 2 show that even though
the asymptotic scaling behavior is higher as compared to the
def2-SVP case, it is still sub-cubic and therefore significantly
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FIG. 2. Timings for the force calculations on a set of linear alkanes using
the def2-TZVP basis set with the corresponding RI basis set. The crosses
show the sum of the wall times required for the calculation of the self-energy
and the transformed three-center integral tensor. The number of basis func-
tions refers to the number of atomic basis functions. The attenuated RI metric
(ω = 0.1) was used along with sparse algebra. The scaling behavior was cal-
culated by fitting a power law to the total wall-times of the systems with more
than 1700 basis functions.

lower than O(N4). This shows that also for larger basis sets
the CDD-RI-RPA gradients show better scaling behavior than
the canonical method. For quadruple-zeta basis sets, the size
of systems available is limited by the large prefactor so that
we are not yet entering the regime where we would expect
significant speedups with the sparse-algebra implementation.
To reduce the basis set requirements, one could resort to range-
separated variants of RPA,63,64 where our gradient scheme is
applicable as well.

Finally, we performed calculations on more globular amy-
lose helices ranging from 1 to 16 glucose units using the
def2-SVP basis set. As shown in Fig. 3, also for these systems

FIG. 3. Timings for the force calculations on a set of amylose helices using
the def2-SVP basis set with the corresponding RI basis set. The crosses show
the sum of the wall times required for the calculation of the self-energy and
the transformed three-center integral tensor. The number of basis functions
refers to the number of atomic basis functions. The attenuated RI metric
(ω = 0.1) was used along with sparse algebra. The scaling behavior was
calculated by fitting a power law to the total wall-times of the systems with
more than 800 basis functions.

sub-cubic scaling behavior can be demonstrated. While these
systems are not fully three-dimensional, the results indicate
that also for non-linear molecules significant computational
savings can be obtained with our method.

To show that the calculation of the self energy and the
transformed three-center integrals is actually the time deter-
mining step for extended molecules, we have also plotted the
timings for these steps in Figs. 1–3. For the largest two systems
of each plot, this step requires 70%-80% of the total wall time.
This shows that for the currently tractable largest systems, this
is still the time determining step and not the small-prefactor
cubic scaling steps.

E. Scaling behavior with basis set size

A drawback of AO quantities as compared to canonical
theories is oftentimes the scaling with respect to the basis
set size due to the redundancies present in typical AO basis
sets. In our method, we reduce those redundancies through
the use of CDDs. The formal scaling behavior of our method
is O(N2

AuxNBasNocc) and should therefore demonstrate cubic
scaling with respect to the basis set size at constant molecule
size since all quantities except the number of occupied orbitals
are basis set dependent. This is the same scaling behavior as
is to be expected for canonical-RI- or CDD-RI-RPA energy
calculations.13,15 Therefore our method does not increase the
scaling behavior with respect to basis set size as compared
to the plain energy calculations. To demonstrate that this is
indeed the case we have performed force calculations on three
molecules of the L7 test set65 ranging from 15 to 56 atoms
with basis set sizes from double- to quadruple-zeta quality.
The results presented in Fig. 4 confirm the cubic scaling with
respect to basis set size. As for such rather small systems most
time is actually spent to form the Coulomb type matrices with
the Z-vector in solving the DL-CPSCF equations, we also
show the timings for just the calculation of the self-energy
and the transformed three-center integrals which are the com-
putationally most expensive steps for large systems as shown
in Sec. IV D. As expected, these operations also show approx-
imately cubic scaling behavior. The reason why these steps
show consistently sub-cubic scaling behavior is most likely
that linear-algebra routines get more efficient for larger matrix-
dimensions as encountered in the calculations with larger basis
sets. To speed up the formation of Coulomb type matrices,
one could resort to the RI approximation or a GPU accelerated
algorithm.49,66,67

F. Illustrative calculation

Since RPA total energies improve significantly over plain
DFT calculations for dispersion interactions, one potential
area of application of our method is structure optimization
of large dispersion dominated molecular complexes. Exam-
ples of those systems are collected in the L7 test set.65 As an
illustrative calculation, we performed a geometry optimization
of the octadecane dimer (112 atoms) of the L7 test set at the
RI-RPA level of theory using the def2-TZVP basis set with the
corresponding RI basis set. We used the attenuated RI metric
along with dense algebra. The structures in the test set were



244111-10 M. Beuerle and C. Ochsenfeld J. Chem. Phys. 149, 244111 (2018)

FIG. 4. Timings for the complete force calculation and only for the calculation
of the self-energy and the transformed three-center integrals of an adenine
molecule, alkane18, and a guanine-cytosine base pair (GC) with the def2-
SVP, def2-TZVP, and def2-QZVP basis set using dense algebra. The number
of basis functions refers to the number of atomic basis functions. The scaling
behavior was calculated by fitting a power law.

optimized at the DFT-D TPSS68 level of theory also employ-
ing a triple-zeta basis set, using an empirical dispersion term.
Starting from the DFT-D structure, our geometry optimization
converged after 5 iterations. As convergence criteria, we used
an energy difference criterion of 5 × 10−5 a.u. and a maxi-
mum norm of the gradient vector of 5 × 10−4 a.u./bohr. The
RMSD of atomic positions of the structure optimized at the
DFT-D and the RPA level of theory is 0.4 pm. This shows that
the structure obtained using the empirical dispersion correc-
tion is in very good agreement with the non-empirical RPA
structure. In the future, the CDD-RI-RPA gradients presented
in this work could, e.g., serve as a reference to benchmark
geometries obtained from dispersion corrected DFT schemes
for large molecular complexes.

V. CONCLUSION

In this work, we have derived and implemented analytical
gradients for the RPA in an AO framework. Furthermore, we
have shown that also for gradients the introduction of CDDs is
possible allowing for a reduction of the formal scaling behav-
ior, which is the same as the formal scaling behavior of the
CDD-RI-RPA correlation energies. The presented approach

was shown to be accurate and asymptotically quadratic
scaling, which will allow for significant computational sav-
ings for extended molecules with a non-vanishing HOMO-
LUMO gap as compared to the O(N4) scaling canonical
gradients.20

The derivation is given in a framework that allows to
easily extend the gradient scheme to other methods, which
are a functional of the non-interacting Green’s function and
can be formulated using the RI, such as RPA with exchange
methods,26,69 by simply calculating the respective self-energy
and the quantities to be contracted with the perturbed integral
tensors, with the rest of the algorithm remaining unchanged.
This allows for a straightforward implementation of first order
properties that fulfill the abovementioned criteria in the AO
framework, similar to the plane-wave scheme presented by
Ramberger et al.21

Furthermore, extending the RPA gradient scheme to other
first order properties such as hyperfine coupling constants
without spin-orbit couplings is straightforward, see, e.g., our
work at the MP2 level.30 In this case, the perturbation does not
affect basis function quantities, i.e., the two- and three-center
integral derivatives do not need to be computed.

In the AO-RPA algorithm, the full correlated self-energy
in the GW-approximation is calculated. As a side-product,
one could obtain all GW-quasiparticle energies at practically
no additional computational cost, since the most compute
intensive steps are already completed. Furthermore, the low-
scaling calculation of the self-energy could be beneficial in
self-consistent Green’s function calculations in the spirit of
second-order Green’s function calculations.70

SUPPLEMENTARY MATERIAL

See supplementary material for further data as indicated
in the text.
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1 Details on the Calculation of M and Σ(iτ) using Sparse Algebra.

Table S1: Summary of the quantities entering the calculation of M and Σ(iτ) with the format of storage and

the formal and theoretical asymptotic storage requirements. Sparse matrices are BCSR matrices while all three

index tensors are stored as vectors of BCSR matrices.

Quantity Storage Format Formal Dimension Asymptotic Dimension

Wc(iτ) dense NAux · NAux O(N2)

G0(iτ) sparse NBas · NBas O(N)

S sparse NBas · NBas O(N)

L sparse NBas · Nocc O(N)

B vec. of sparse NBas · NBas · NAux O(N)

BL vec. of sparse NBas · Nocc · NAux O(N)

Figure S1: Algorithm showing the sequence of computations carried out to calculate M and Σ(iτ). All quan-

tities that are not listed in Tab. S1 shown in the algorithm are stored as intermediate BCSR matrices. The

computationally most demanding step is shown in l.6.

Algorithm 1 Pseudocode for the calculation of the computationally most demanding quantities M and Σ(iτ)

1: for P ∈ NAux do

2: [BL]P = BP L

3: end for

4: for P ∈ NAux do

5: for τn ∈ Nτ do

6: [Wc(iτn)BL]P = WPQ
c (iτn)[BL]Q

7: [Wc(iτn)G(iτn)BL]P = G
0
(iτn)[Wc(iτn)BL]P

8: [Σ(iτn)PS]+ = BP [Wc(iτn)G(iτn)BL]P [LT S]

9: Σ(−iτn)+ = [Wc(iτn)BL]P [LT SG0(iτn)]BP

10: MP + = [Wc(iτn)G(iτn)BL]P [LT SG0(iτn)]

11: end for

12: end for

Table S2: Formal and asymptotic complexity of the computationally most demanding linear algebra steps in

the caclulation of RPA forces with the corresponding line number of the algorithm sketch in Fig. S1.

Quantity Line No. Formal Scaling Behavior Asymptotic Scaling Behavior

BL l.2 O(NAuxN
2
BasNocc) O(N)

Wc(iτn)BL l.6 O(N2
AuxNBasNocc) O(N2)

Wc(iτn)G(iτn)BL l.7 O(NAuxN
2
BasNocc) O(N2)

Σ(iτn)PS l.8 O(NAuxN
2
BasNocc) O(N)

Σ(−iτn) l.9 O(NAuxN
2
BasNocc) O(N)

M l.10 O(NAuxN
2
BasNocc) O(N2)
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2 Validation Data

Table S3: Comparison of the results for the G2 test set obtained with the CDD-RI-RPA approach using the

Coulomb RI-metric and dense algebra against numerical forces calculated with the canonical RI-RPA algorithm

in FermiONs++. We have used 15 imaginary time and frequency grid points for the CDD-RI-RPA calculations

and numerical forces. We present root-mean-squared, mean-absolute, and maximum deviations of the total

gradient vector as compared to the respective reference in 10−3 a.u./Bohr.

System RMSD MAD MAX System RMSD MAD MAX

C2H2 0.016 0.008 0.038 HF 0.003 0.002 0.005

NH3 0.002 0.001 0.003 HO-OH 0.006 0.004 0.010

CO2 0.013 0.006 0.030 H2S 0.003 0.002 0.004

CS 0.002 0.001 0.003 LiF 0.002 0.001 0.004

CO 0.011 0.007 0.020 LiH 0.001 0.000 0.002

Cl2 0.009 0.005 0.016 CH4 0.003 0.002 0.006

ClF 0.009 0.005 0.015 H3C − SH 0.011 0.007 0.031

Li2 0.003 0.002 0.006 CH3 − OH 0.004 0.003 0.009

H3Si − SiH3 0.033 0.019 0.099 CH3Cl 0.004 0.003 0.009

Na2 0.001 0.001 0.002 N2 0.011 0.007 0.020

H3C − CH3 0.023 0.013 0.074 P2 0.002 0.001 0.004

Ethylene 0.018 0.009 0.050 PH3 0.003 0.002 0.005

F2 0.006 0.003 0.010 SiH4 0.009 0.009 0.013

Formaldehyde 0.002 0.001 0.005 SiO 0.009 0.005 0.016

HOCl 0.006 0.004 0.010 CH2 0.003 0.002 0.005

H2N − NH2 0.003 0.003 0.008 SiH2 0.009 0.007 0.016

HCl 0.007 0.004 0.012 NaCl 0.009 0.005 0.017

HCN 0.017 0.008 0.036 H2O 0.004 0.003 0.007

3



Table S4: Comparison of the results obtained for the G2 test set with the CDD-RI-RPA approach using the

Coulomb RI-metric and dense algebra against the canonical implementation in TURBOMOLE. We have used

15 imaginary time and frequency grid points for the CDD-RI-RPA calculations and 120 grid points for the

frequency integration in the TURBOMOLE calculations. Values labelled with a dagger indicate the use of 240

grid points in the TURBOMOLE calculations. We present root-mean-squared, mean-absolute, and maximum

deviations of the total gradient vector as compared to the respective reference in 10−3 a.u./Bohr.

System RMSD MAD MAX System RMSD MAD MAX

C2H2 0.015 0.006 0.037 HF 0.056 0.033 0.098

NH3 0.073 0.057 0.169 HO-OH 0.082 0.069 0.142

CO2 0.012 0.006 0.027 H2S 0.055 0.039 0.117

CS† 0.061 0.035 0.106 LiF 0.002 0.001 0.005

CO 0.010 0.006 0.017 LiH 0.007 0.004 0.013

Cl2
† 0.050 0.029 0.087 CH4 0.009 0.008 0.011

ClF† 0.043 0.025 0.076 H3C − SH 0.032 0.021 0.074

Li2 0.007 0.004 0.012 CH3 − OH 0.044 0.030 0.108

H3Si − SiH3 0.037 0.025 0.072 CH3Cl 0.033 0.021 0.101

Na2
† 0.015 0.008 0.025 N2 0.040 0.023 0.068

H3C − CH3 0.021 0.018 0.035 P2
† 0.006 0.003 0.010

Ethylene 0.024 0.017 0.043 PH3 0.017 0.014 0.030

F2 0.090 0.052 0.157 SiH4 0.043 0.039 0.048

Formaldehyde 0.020 0.012 0.040 SiO† 0.062 0.036 0.110

HOCl† 0.051 0.034 0.103 CH2
† 0.062 0.036 0.150

H2N − NH2 0.085 0.063 0.154 SiH2
† 0.043 0.031 0.074

HCl 0.060 0.035 0.105 NaCl† 0.005 0.003 0.010

HCN 0.026 0.012 0.056 H2O 0.071 0.050 0.153

4



Table S5: Comparison of the results for the distorted G2 test set obtained with the CDD-RI-RPA approach

using the Coulomb RI-metric and dense algebra against numerical forces calculated with the canonical RI-RPA

algorithm in FermiONs++. We have used 15 imaginary time and frequency grid points for the CDD-RI-RPA

calculations and numerical forces. We present root-mean-squared, mean-absolute, and maximum deviations of

the total gradient vector as compared to the respective reference in 10−3 a.u./Bohr.

System RMSD MAD MAX System RMSD MAD MAX

C2H2 0.017 0.011 0.035 HF 0.004 0.002 0.006

NH3 0.002 0.001 0.004 HO-OH 0.007 0.006 0.012

CO2 0.024 0.011 0.055 H2S 0.005 0.004 0.010

CS 0.002 0.001 0.004 LiF 0.002 0.001 0.004

CO 0.001 0.001 0.002 LiH 0.000 0.000 0.000

Cl2 0.046 0.026 0.079 CH4 0.003 0.002 0.006

ClF 0.004 0.002 0.007 H3C − SH 0.012 0.009 0.031

Li2 0.001 0.000 0.001 CH3 − OH 0.006 0.005 0.014

H3Si − SiH3 0.020 0.013 0.063 CH3Cl 0.007 0.004 0.020

Na2 0.003 0.001 0.004 N2 0.002 0.001 0.003

H3C − CH3 0.013 0.009 0.038 P2 0.010 0.005 0.017

Ethylene 0.011 0.007 0.034 PH3 0.006 0.005 0.012

F2 0.009 0.005 0.016 SiH4 0.003 0.003 0.005

Formaldehyde 0.003 0.002 0.007 SiO 0.006 0.003 0.010

HOCl 0.004 0.003 0.008 CH2 0.004 0.003 0.007

H2N − NH2 0.006 0.004 0.013 SiH2 0.002 0.001 0.004

HCl 0.007 0.004 0.013 NaCl 0.003 0.002 0.005

HCN 0.012 0.008 0.026 H2O 0.002 0.001 0.004
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Table S6: Comparison of the results obtained for the distorted G2 test set with the CDD-RI-RPA approach

using the Coulomb RI-metric and dense algebra against the canonical implementation in TURBOMOLE. We

have used 15 imaginary time and frequency grid points for the CDD-RI-RPA calculations and 120 grid points

for the frequency integration in the TURBOMOLE calculations. Values labelled with a dagger indicate the

use of 240 grid points in the TURBOMOLE calculations. We present root-mean-squared, mean-absolute, and

maximum deviations of the total gradient vector as compared to the respective reference in 10−3 a.u./Bohr.

System RMSD MAD MAX RMSD MAD MAX

C2H2 0.038 0.021 0.083 HF 0.021 0.012 0.037

NH3 0.053 0.029 0.159 HO-OH 0.130 0.102 0.276

CO2 0.056 0.029 0.132 H2S
† 0.023 0.013 0.056

CS† 0.118 0.068 0.205 LiF 0.004 0.002 0.008

CO 0.009 0.005 0.016 LiH 0.010 0.006 0.017

Cl2
† 0.061 0.035 0.105 CH4 0.017 0.013 0.030

ClF† 0.001 0.001 0.003 H3C − SH 0.037 0.027 0.078

Li2 0.006 0.004 0.011 CH3 − OH 0.046 0.036 0.100

H3Si − SiH3 0.040 0.028 0.118 CH3Cl 0.017 0.008 0.056

Na2
† 0.012 0.007 0.021 N2 0.005 0.003 0.009

H3C − CH3 0.028 0.022 0.071 P2
† 0.087 0.050 0.151

Ethylene 0.023 0.015 0.049 PH3 0.027 0.021 0.046

F2
† 0.014 0.008 0.023 SiH4 0.061 0.046 0.153

Formaldehyde† 0.020 0.013 0.043 SiO† 0.002 0.001 0.003

HOCl† 0.043 0.035 0.080 CH2
† 0.023 0.016 0.052

H2N − NH2 0.100 0.077 0.211 SiH2
† 0.068 0.047 0.150

HCl† 0.011 0.006 0.019 NaCl† 0.011 0.007 0.020

HCN 0.047 0.023 0.104 H2O 0.015 0.011 0.031

6
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Direct random phase approximation (RPA) correlation energies have become increasingly popular as
a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties
such as long-range dispersion effects, which are problematic in conventional density functional theory.
On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric
processes. This can in parts be attributed to the self-correlation present in RPA correlation energies,
leading to significant self-interaction errors. Therefore a variety of schemes have been devised to
include exchange in the calculation of RPA correlation energies in order to correct this shortcoming.
One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX)
correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves
upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse
than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies
and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept
calculations and benchmarks showing the advantages of our method are presented. Published by AIP
Publishing. https://doi.org/10.1063/1.4998647

I. INTRODUCTION

In recent years, the direct random phase approximation
(RPA) has become an increasingly popular post-Kohn-Sham
method to obtain correlation energies (for an overview over
recent developments see, e.g., Refs. 1–3). There exists a variety
of formulations of how to calculate RPA correlation energies.
Two popular frameworks are the adiabatic connection fluctua-
tion dissipation theorem (ACFDT)4–8 and the direct ring cou-
pled cluster (drCCD) method.9 In the ACFDT framework, the
correlation energy is obtained utilizing linear response func-
tions obtained at the direct RPA level of theory. This entails
neglecting everything but direct (Coulomb) contributions in
the calculation of the linear response function. Approaches
including either approximate or exact exchange kernels in
the calculation of the response function are commonly
termed as RPA with exchange (RPAx, see, e.g., Refs. 6 and
10–17).

Equivalently, the direct RPA correlation energy can be
calculated by contracting the drCCD amplitudes with two-
electron integrals.9 The drCCD equations can be obtained
from the ring coupled cluster (rCCD) method by neglecting
all exchange contributions. The rCCD method on the other
hand can be derived from the coupled cluster doubles (CCD)
method by keeping only particle-hole ring contractions.

The strengths and weaknesses of RPA correlation energies
have been extensively discussed in the literature.7,14,18–24 It has
been shown that RPA is good at describing static correlation to

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

some extent, as exemplified by the paradigm system of closed-
shell stretched H2, which is problematic for, e.g., conventional
DFT methods.18,19 In terms of properties, RPA correlation
energies have been shown to provide a good description of
long-range dispersion interactions,20,21 which is also one of
the big weaknesses of conventional DFT. Furthermore, reac-
tion barrier heights are described very well within RPA, also
compared to several RPA correction schemes, which has also
been attributed to the good description of static correlation
within RPA.22

On the other hand, the performance of RPA energies
for short-range correlations and interactions and non-isogyric
processes such as ionisation potentials and atomisation ener-
gies is rather poor.7,14,22–24 This can in parts be attributed
to the self-correlation present in direct RPA energies due to
the neglect of all exchange terms, leading to a significant
self-interaction error.18 To circumvent this shortcoming of
RPA correlation energies, several approaches have been sug-
gested. Among those methods, RPA including second-order
screened exchange (RPA + SOSEX) introduces exchange via
contraction of the drCCD amplitudes with antisymmetrised
two-electron integrals in the CC framework.25,26 A similar,
however, not completely identical RPA + SOSEX variant
contracts the linear response functions with antisymmetrised
two-electron integrals in the ACFDT framework.6,10,27 Other
variants of RPA with exchange introduce exchange directly in
the calculation of the interacting linear response function or
the calculation of the double amplitudes (see, e.g., Refs. 9–17
and 28).

Schemes that are in principle compatible with all RPA
variants, are range separated variants of the RPA correlation

0021-9606/2017/147(20)/204107/8/$30.00 147, 204107-1 Published by AIP Publishing.
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energy.16,17,29–33 In these methods, long-range RPA correlation
is combined with a short-range density functional description.
The purpose of these schemes is to overcome the problems
associated with the description of short-range RPA correlation
energies while keeping the good performance for long-range
dispersion effects. Another advantage that has been mentioned
is increased convergence of the correlation energy with respect
to the basis set size.33

In this manuscript, we suggest to use range separation in
the calculation of RPA + SOSEX energies in a different man-
ner. While it has been shown that including SOSEX reduces
the self-interaction error of RPA and improves upon RPA in
this respect, RPA + SOSEX suffers from a lacking descrip-
tion of static correlation in the long range regime, which, for
example, deteriorates the RPA dissociation curve of closed
shell H2.18 In terms of properties, adding the RPA + SOSEX
correction leads to a better description of non-isogyric pro-
cesses such as ionisation potentials and atomisation ener-
gies.14,22,24,25 At the same time, however, RPA + SOSEX
barrier heights are worse than those obtained from a plain
RPA calculation.14,22,24 Those findings can be brought in line
with the fact that RPA + SOSEX improves upon the self-
interaction error of RPA, while sacrificing the good description
of static correlation.18 With these results in mind, we propose
and test a post-Kohn-Sham functional that uses a short-range
SOSEX correction in combination with full-range RPA. The
idea behind the short-range SOSEX correction is to correct for
the self-interaction error present in RPA, which is dominant in
the short-range regime, while the good description of RPA for
long-range static correlation is preserved.

II. THEORY
A. RPA SOSEX drCCD formalism

The SOSEX correction to RPA correlation energies was
first introduced in the drCCD framework.25,26 Herein, the
RPA correlation energy is obtained by contracting the drCCD
amplitudes with two-electron integrals

ERPA
c =

1
2

Tr {TdrCCDB} , (1)

where TdrCCD obeys the Riccati equation9

B + AT + TA + TBT = 0, (2)

with

Aia,jb = 〈ib|aj〉 + (εa − εi)δijδab, (3)

Bia,jb = 〈ij |ab〉 . (4)

Here εa and εi correspond to virtual and occupied orbital
energies and 〈pq|rs〉 represents a two-electron integral in the
Dirac notation, where a, b, . . . denote virtual orbitals and i, j,
. . . denote occupied orbitals. The RPA + SOSEX correlation
energy is given by replacing B with (B � K) in Eq. (1), where
K ia, jb = 〈ij |ba〉25,26 yielding

ESOSEX
c =

1
2

Tr{TdrCCD(B−K)}. (5)

This correction is supposed to improve upon the self-
interaction error present in RPA correlation energies. This
can be seen exemplarily for the case of a one-electron system

for which Eq. (5) delivers the correct result Ec = 0, while
Eq. (1) gives a nonzero correlation energy. However, introduc-
ing the SOSEX correction deteriorates the good performance
of RPA for bond dissociations, i.e., long-range correlation,
where static correlation effects become important.18 There-
fore we propose an attenuated SOSEX correction (B�Kµ)
using short-range integrals,

Kµ
ia,jb = 〈ij |ba〉µ

=

∫ ∫
ϕi(r1)ϕb(r1)erfc(µr12)ϕj(r2)ϕa(r2)

r12
dr1 dr2, (6)

where µ is the parameter controlling the attenuation of the
SOSEX correction. We omit complex conjugation since we
employ real orbitals in this work. This short-range SOSEX
correction then ideally combines the good short-range descrip-
tion of RPA + SOSEX removing self-correlation with the good
description of long-range correlation of RPA. We note that
this approach is in a similar spirit as compared to the range
separated Brueckner CCD theory.34 The short-range RPA
+ µ-SOSEX correlation energy is then evaluated as

Eµ−SOSEX
c =

1
2

Tr{TdrCCD(B−Kµ)}. (7)

B. RPA SOSEX ACFDT formalism

Alternatively the RPA and RPA + SOSEX correlation
energies can be calculated in the ACFDT framework. All quan-
tities in this section are formulated in the particle-hole orbital
basis. The starting point for this formulation is the formula for
the correlation energy in the ACFDT,4,5

EACFDT
c = −1

2

∫ 1

0
dα

∫ ∞
−∞

dω
2π

Tr{(Πα(iω) − Π0(iω))V}. (8)

Here Πα corresponds to the frequency dependent, interacting
polarization propagator at coupling strength α,Π0 corresponds
to the frequency dependent polarization propagator of the non-

interacting reference system, and V=

(
B B
B B

)
corresponds to

the Coulomb interaction in the particle-hole basis. Inserting
the RPA polarization propagator yields the formula for the
RPA correlation energy

ERPA
c = −1

2

∫ 1

0
dα

∫ ∞
−∞

dω
2π

Tr
{
(1 − αΠ0(iω)V)−1Π0(iω)V

−Π0(iω)V
}
. (9)

In the ACFDT framework, RPA + SOSEX was introduced
by substituting V in Eq. (8) with antisymmetrised integrals

W =

(
B−K B−K
B−K B−K

)
6,10

also using the RPA polarization

propagator

ESOSEX
c = −1

2

∫ 1

0
dα

∫ ∞
−∞

dω
2π

Tr
{
(1 − αΠ0(iω)V)−1Π0(iω)W

−Π0(iω)W
}
. (10)

Using real orbitals, we follow Ref. 10 and perform a dimension
reduction of all matrices appearing in Eqs. (9) and (10) from
2Nph × 2Nph to Nph × Nph, where Nph denotes the dimen-
sion of the particle-hole basis. Furthermore, we also perform
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the coupling strength integration analytically as described in
Ref. 10 leading to

ESOSEX
c =

1
2

∫ ∞
−∞

dω
2π

Tr{log (1−Π0(iω)B)B−1W +Π0(iω)W}.
(11)

For the dimension reduced case, the polarization propaga-
tor of the noninteracting reference corresponds to Π0(iω)ia,jb

= −2εiaδijδab(ε2
ia +ω2)−1 and W = B � K. Here we also intro-

duce the short-range SOSEX correction by substituting K with
Kµ. The short-range RPA + µ-SOSEX correlation energy is
then evaluated as follows using the ACFDT:

Eµ−SOSEX
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{

log (1 −Π0(iω)B)B−1Wµ

+Π0(iω)Wµ}, (12)

with Wµ = B−Kµ.
For plain RPA correlation energies, the results obtained

from the drCCD and the ACFDT calculations have been shown
to be strictly equivalent.9 The drCCD and ACFDT RPA +
SOSEX expressions agree, however, only up to second order
of perturbation.27 The numerical difference between the two
has been shown to be small.6 Therefore also the short-range
RPA + µ-SOSEX expressions obtained from the drCCD and
ACFDT approaches are not identical. The numerical impact
of this difference will be examined in Sec. IV.

III. COMPUTATIONAL DETAILS

We have implemented all RPA, RPA + SOSEX, and short-
range RPA + µ-SOSEX routines in the FermiONs++ program
package developed in our group.35,36 For the drCCD type
calculations, we have implemented two different approaches
to evaluate the Riccati equation. The first method pro-
posed by Heßelmann28 uses an iterative, damped amplitude
update scheme. Since we faced convergence problems with
this method for small gap systems (e.g., the dissociation
of molecules), we have also implemented a pseudo-Newton
method18 with a direct inversion of the iterative subspace
(DIIS) scheme37,38 adapted for CC calculations.39 We used
Heßelmann’s approach where possible due to its simplicity
and lower computational cost and resorted to the pseudo-
Newton method for difficult cases. For Heßelmann’s approach,
we converged the correlation energies to 10�8 H, while for the
pseudo-Newton method, we converged the norm of the residual
of the Riccati equation also to 10�8 H.

For all calculations using the ACFDT formulation, we
closely follow the implementation described in Ref. 10. This
entails using a Clenshaw-Curtis quadrature for the numeri-
cal frequency quadrature adapted for RPA type calculations,
originally proposed by Furche et al.40 While it was shown
that the adaption of the integration parameter developed origi-
nally for RPA40 can be employed directly for closed shell RPA
+ SOSEX calculations,10 this is not true for spin-unrestricted
RPA + SOSEX or short-range RPA + SOSEX calculations. We
found, however, that employing the same adaptive quadrature
for unrestricted RPA + SOSEX and RPA + µ-SOSEX cal-
culations also delivers improved convergence as compared to
the conventional Clenshaw-Curtis quadrature.41 We have used

256 integration points in most calculations resorting to 128
points for computationally demanding systems and to more
integration points for difficult cases, in which the numerical
integration was not converged with 256 points.

Both the drCCD and the ACFDT implementations used
in this work scale as N3

occN3
virt , where Nocc and Nvirt are the

number of occupied and virtual orbitals, respectively. We note
that there are a variety of approaches permitting more efficient
RPA calculations.28,40,42–47

While there is an ongoing discussion about the best refer-
ence orbitals for RPA calculations (see, e.g., Ref. 48), we have
performed all calculations using orbitals obtained from a DFT
calculation employing the Perdew-Burke-Ernzerhof (PBE)49

exchange-correlation functional, as is well established in the
literature.7,18,20,50 Total energies were obtained as usual by
adding the correlation energy to the Hartree-Fock energy
evaluated with the PBE reference orbitals (HXX energy).

We have assessed the performance of the short-range
SOSEX correction on several test sets. Since one of the pri-
mary ideas was to overcome the problems associated with RPA
+ SOSEX barrier heights, we chose the BH76,51,52 DBH24/08,
HTBH38/08, and NHTBH38/0853,54 test sets to thoroughly
evaluate the performance for barrier heights. Furthermore, we
performed calculations on the G21IP, G21EA and the W4-08
test sets51,52 to see how the correction affects the description of
non-isogyric processes, namely, ionisation potentials, electron
affinities, and atomisation energies. We excluded reaction 44
from the W4-08 test set, due to problems in obtaining a reliable
value for this reaction, as reported earlier in the literature for
RPA calculations.55 Finally, we also performed calculations on
the SIE1151,52 test set to evaluate the performance for systems,
where molecular self-interaction errors play an important role.

In all our calculations, we used correlation consistent (cc-
pVXZ) or augmented correlation consistent (aug-cc-pVXZ)
basis sets.56 In case complete basis set (CBS) extrapolation was
applied, we used a procedure proposed earlier for RPA calcula-
tions57 and then added the extrapolated correlation energies to
the HXX energies, evaluated using the PBE reference orbitals
of the higher cardinality basis to obtain total energies. We
employed the frozen core approximation in all calculations.

IV. RESULTS AND DISCUSSION
A. H2- and H+

2-dissociation

As a first test for studying to which extent our short-range
SOSEX correction enables the combination of removing the
self-interaction present in RPA, while not sacrificing the good
description of static correlation, we calculated H2- and H+

2-
dissociation curves as paradigm cases for the impact of static
correlation and self-interaction error.

As can be seen in Fig. 1, RPA underestimates the total
energy at the equilibrium bond distance, while the dissocia-
tion limit is correctly described.18,19 On the other hand, RPA
+ SOSEX drastically improves the description of short-range
correlation energies, as can be seen by the overlap with the
CCSD curve around the equilibrium bond distance. In the
dissociation limit, however, RPA + SOSEX reintroduces the
symmetry dilemma for stretched H2 leading to a too high
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FIG. 1. Closed-shell H2-dissociation curves for RPA, RPA + SOSEX
(SOSEX), and RPA + µ-SOSEX (µ-SOSEX) calculations using a PBE refer-
ence and an aug-cc-pV5Z basis. The CCSD curve represents the exact curve.
All RPA and beyond RPA curves were calculated using the drCCD approach.

dissociation energy. The proposed short-range SOSEX cor-
rection clearly reduces the large error of RPA + SOSEX in
the long-range regime, while the good description around the
equilibrium distance is retained. This is shown exemplarily in
Fig. 1 for attenuation parameters µ = 0.4 and µ = 0.7.

The RPA + SOSEX dissociation curve for H+
2 shown in

Fig. 2 corresponds to the exact curve. The RPA curve deviates
significantly from the exact curve at the equilibrium distance
and in the dissociation limit due to the self-interaction error
present in the correlation energy. The short-range SOSEX cor-
rection offers significant improvement over RPA; however, it
also suffers from significant self-interaction in the dissocia-
tion limit, a phenomenon that is also present in alternative
beyond-RPA approaches.14 The degree to which the preced-
ing conclusion applies is obviously again dependent on the
attenuation parameter, where exemplarily µ = 0.4 and µ = 0.7
are shown in Fig. 2.

FIG. 2. H+
2 -dissociation curves for RPA, RPA + SOSEX (SOSEX), and RPA

+ µ-SOSEX (µ-SOSEX) calculations using a PBE reference and an aug-cc-
pV5Z basis. The RPA + SOSEX curve represents the exact curve. All RPA
and beyond RPA curves were calculated using the drCCD approach.

The results shown in this paragraph for the two paradigm
systems for static correlation through bond dissociation and
self-interaction error, namely, the dissociation of closed-shell
H2 and H+

2 , exemplify that the short-range SOSEX correction
enables to interpolate between the complete removal of the
one-electron self-interaction error, with the limiting case of
RPA + SOSEX and the good description of static correlation,
with the limiting case of plain RPA. Since both RPA and RPA
+ SOSEX have been shown to have drawbacks as reviewed in
the introduction and the theory part, we hope to generate a
post-Kohn-Sham functional that combines the benefits of both,
leading to a balanced description along a wide range of prop-
erties. Therefore it would be necessary to perform a thorough
parameterisation of the attenuation parameter µ. We do not
perform this parameterisation in this work and set µ= 0.7 from
now on, to qualitatively show that this post-Kohn-Sham cor-
rection achieves good results for the properties examined in
Secs. IV B–IV D, aside from the model systems studied so far.

B. Barrier heights and reaction energies

Next we performed calculations on barrier heights since
RPA + SOSEX is known to deteriorate the good performance
of plain RPA calculations and we aim to improve this short-
coming with our short-range RPA + µ-SOSEX approach.
Therefore we chose the HTBH38/08 and NHTBH38/08 test
sets53,54 to evaluate the performance of the three methods
for hydrogen transfer (HTBH38/08) and non-hydrogen trans-
fer (NHTBH38/08) barrier heights. Both sets combined form
the BH76 test set.51,52 We used an aug-cc-pVQZ basis set
for our calculations on the entire test set as recommended
as a minimum size basis set for RPA calculations in the lit-
erature.57 To make sure that our results are not qualitatively
influenced by basis set incompleteness errors, we performed
complete basis set (CBS) extrapolation of the correlation ener-
gies57 for the DBH24/08 subset using aug-cc-pVQZ, aug-cc-
pV5Z extrapolation. The DBH24/08 set forms a representative
subset of the HTBH38/08 and NHTBH38/08 test sets. Bar-
rier heights were calculated for both energies obtained from
the drCCD and the ACFDT framework. The results are dis-
played in Table I. For the drCCD calculations, RPA + SOSEX
shows the by far worst performance across all test sets. RPA
shows remarkably good results throughout, as already men-
tioned earlier in the literature.22 Our newly proposed short-
range SOSEX correction, however, improves upon both RPA
+ SOSEX and plain RPA calculations for each set in Table I.
When comparing the performance for hydrogen transfer vs.
non-hydrogen transfer barrier heights, the results show that
the short-range SOSEX correction performs especially well
for non-hydrogen transfer barrier heights. The results for the
DBH24/08 test set with the aug-cc-pVQZ, aug-cc-pV5Z basis
sets show rather small differences to the CBS extrapolated
results as compared to the differences between the three dif-
ferent methods. This gives confidence in the conclusions drawn
from the results obtained with the smaller aug-cc-pVQZ basis.

As mentioned earlier, the RPA results calculated from
the ACFDT approach are identical to the drCCD results, as
has been proven analytically.9 The fact that the mean abso-
lute error (MAE) agrees to sub-0.01 kcal/mol accuracy gives
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TABLE I. Mean absolute errors (MAEs) for barrier heights of the HTBH38/08, NHTBH38/08, DBH24/08, and
BH76 test sets. The basis set used is indicated below the specification of the test set. The CBS results for the
DBH24/08 test set were extrapolated using aug-cc-pVQZ, aug-cc-pV5Z basis set extrapolation. All results are in
kcal/mol.

HTBH38/08 NHTBH38/08 BH76
DBH24/08

aug-cc-pVQZ aug-cc-pVQZ aug-cc-pVQZ aug-cc-pVQZ aug-cc-pV5Z CBS

drCCD

RPA 1.71 1.96 1.83 1.68 1.69 1.70
RPA + SOSEX 5.16 4.13 4.64 4.04 3.92 3.81
RPA + µ = 0.7-SOSEX 1.61 1.22 1.41 1.24 1.15 1.22

ACFDT

RPA 1.71 1.96 1.83 1.68 1.69 1.70
RPA + SOSEX 5.47 4.37 4.92 4.27 4.16 4.05
RPA + µ = 0.7-SOSEX 1.69 1.24 1.46 1.27 1.17 1.24

confidence in our implementation of the different methods
since it enables to cross-validate the amplitude and quadrature
based calculations. The ACFDT based RPA + SOSEX energy
expressions on the other hand are not identical.27 Previous tests
have shown, however, that the numerical difference is small.6

This is confirmed by the results presented here. The MAEs
obtained from ACFDT calculations qualitatively agree with
the drCCD results, with a maximum deviation of 0.3 kcal/mol
in the MAE. The same holds true for the proposed RPA
+ µ-SOSEX, with a maximum deviation of 0.1 kcal/mol. In
terms of individual results, all properties calculated in this sec-
tion and Secs. IV C and IV D agree with a maximum difference
of approximately 1 kcal/mol between the ACFDT and drCCD
results.

Having calculated the forward and backward barrier
heights of the HTBH and NHTBH test sets, together constitut-
ing the BH76 test set, one can calculate 30 reaction energies,
which are summarised in the BH76RC test set.51,52 At the aug-
cc-pVQZ level of theory, RPA provides the worst results for
reaction energies with an MAE of 2.3. In contrast to barrier
heights, the results for reaction energies of RPA + SOSEX are
slightly better than the plain RPA calculations with an MAE
of 2.1 kcal/mol for the drCCD calculations (ACFDT result:
2.2 kcal/mol). This can possibly be accounted for the fact that
the reaction reagents and products do not exhibit strong static
correlation effects. However also for reaction energies, our
newly proposed RPA + µ-SOSEX provides the best results
with an MAE of 1.6 kcal/mol for both the ACFDT and drCCD
calculations.

C. Non-isogyric processes: Ionisation potentials,
electron affinities, and atomisation energies

In the previous paragraph, we showed that the attenuated
SOSEX correction improves upon both the RPA and conven-
tional RPA + SOSEX results. While for barrier heights, RPA
provides significantly better results than RPA + SOSEX, the
opposite holds true for non-isogyric processes. To evaluate the
performance of our proposed attenuated SOSEX correction for
electron affinities and ionisation potentials, we performed cal-
culations on the G21EA and G21IP test sets.51,52 In order to

obtain results free from basis set incompleteness errors, we per-
formed an aug-cc-pVQZ, aug-cc-pV5Z extrapolation for the
G21EA test set and a cc-pVQZ, cc-pV5Z extrapolation for the
G21IP test set. The reason why we moved to non-augmented
basis sets for the ionisation potential test set is that there are no
aug-cc-pV5Z basis sets available for Li, Na, Mg, and Be. The
results presented in Table II show that the RPA results for both
ionisation potentials and electron affinities are the worst, while
RPA + SOSEX delivers the best results. Our short-range RPA
+ µ-SOSEX correction is significantly better than plain RPA,
however slightly worse than the conventional RPA + SOSEX
results. In particular for the drCCD formalism, the MAE of
our short-range RPA + µ-SOSEX results is approximately 4
kcal/mol better than RPA and approximately 1 kcal/mol worse
than RPA + SOSEX for electron affinities in the complete basis
set limit. For ionisation potentials, the MAE of the short-range
RPA + µ-SOSEX correction is approximately 5 kcal/mol bet-
ter than RPA and again approximately 1 kcal/mol worse than
RPA + SOSEX. The results for pentuple zeta basis sets show
that both RPA and our short-range RPA + µ-SOSEX correction
seem to benefit from an error compensation of methodological
error and basis set incompleteness error. The results from the

TABLE II. MAEs for electron affinities and ionisation potentials of the
G21EA and G21IP test sets. The CBS extrapolation for electron affinities
was performed using aug-cc-pVQZ, aug-cc-pV5Z basis sets, while the results
for ionisation potentials were obtained using cc-pVQZ, cc-pV5Z basis set
extrapolation. All results are in kcal/mol.

G21EA G21IP

aug-cc-pV5Z CBS cc-pV5Z CBS

drCCD

RPA 6.26 7.31 6.48 8.07
RPA + SOSEX 3.29 2.79 2.55 2.65
RPA + µ = 0.7-SOSEX 3.01 3.67 2.81 3.56

ACFDT

RPA 6.26 7.31 6.48 8.07
RPA + SOSEX 3.42 2.93 2.62 2.41
RPA + µ = 0.7-SOSEX 3.02 3.69 2.83 3.57



204107-6 M. Beuerle and C. Ochsenfeld J. Chem. Phys. 147, 204107 (2017)

ACFDT algorithms for RPA calculations again agree to below
0.01 kcal/mol, while the RPA + SOSEX and short-range RPA
+ SOSEX results show deviations of up to 0.2 kcal/mol but
qualitatively lead to the same conclusions. To summarize, the
results of this paragraph show that for ionisation potentials and
electron affinities, the full RPA + SOSEX correction performs
slightly better than our short-range SOSEX correction, which
in turn performs significantly better than plain RPA.

As a last test for non-isogyric processes, we examined the
performance of RPA + µ-SOSEX for the W4-08 atomisation
test set51,52 and the W4-08MR subset, consisting of systems
which exhibit a strong degree of multi-reference character. It
is well known that for atomization energies, RPA consistently
underbinds.7,58,59 It was shown that RPA + SOSEX corrects
this issue to some extent.58,59 The same can be seen here for the
W4-08 test set as shown by the results presented in Table III.
RPA shows the worst performance for atomization energies,
while RPA + SOSEX shows the best results. The short-range
RPA + µ-SOSEX correction performs better than RPA but
worse than RPA + SOSEX. While for ionisation potentials
and electron affinities, the difference between the short-range
RPA + µ-SOSEX and conventional RPA + SOSEX was small
in comparison to the performance of plain RPA, this is not
the case for the entire W4-08 test set. This indicates that for
atomisation energies, a full-range SOSEX correction seems to
be beneficial. Interestingly, however, for the subset of multi-
reference cases, plain RPA shows the best results, while RPA
+ µ-SOSEX performs slightly worse. Both of them exhibit
significantly better results than RPA + SOSEX. This is in line
with the observation that RPA describes static correlation bet-
ter than RPA + SOSEX and confirms that our short-range
RPA + µ-SOSEX combines the description of static corre-
lation and removal of self-interaction error. On an absolute
scale, all results for atomisation energies are somehow unsat-
isfactory. There are, however, orthogonal correction schemes
that improve this shortcoming such as the renormalized

TABLE III. MAEs for atomization energies of the W4-08 and the W4-08MR
test set. All results were obtained with CBS extrapolated correlation energies.
The CBS extrapolation of the correlation energies was performed using cc-
pVQZ, cc-pV5Z basis sets. All results are in kcal/mol.

drCCD ACFDT

W4-08 W4-08MR W4-08 W4-08MR

RPA 12.43 9.60 12.43 9.60
RPA + SOSEX 9.06 19.33 9.09 19.66
RPA + µ = 0.7-SOSEX 11.21 12.46 11.07 12.35

singles correction, which have been shown to deliver improved
atomization energies.22

D. Self-interaction error

As a final test for our short-range RPA + µ-SOSEX correc-
tion, we evaluated and compared its performance on the SIE11
test set.51,52 This set contains reactions that are prone to self-
interaction errors. We have already examined the performance
of the three methods for the one-electron self-interaction error
using the example of stretched H+

2 in Sec. IV A. While RPA
+ SOSEX is self-interaction free for one-electron systems,
this is not true for more complicated systems. Therefore we
benchmark the performance of the three methods for molec-
ular systems in this section. Because the last paragraphs have
shown that the results obtained from the drCCD calculations
are very similar to the results obtained from ACFDT calcula-
tions, we have performed calculations of the SIE11 test set only
with the drCCD variants, due to the significantly decreased
computational cost of solving the Riccati equation as com-
pared to the numerical frequency integration of the ACFDT
based methods. The results presented in Table IV show that
RPA + SOSEX does not improve the MAE for the SIE11 test
set significantly as compared to a plain RPA calculation. Sim-
ilar results have been reported earlier in the literature.60 RPA

TABLE IV. Deviations from the reference results of drCCD RPA, RPA + SOSEX, and RPA + µ-SOSEX calcula-
tions for the eleven reactions contained in the SIE11 test set. All energies were extrapolated to the CBS limit using
cc-pVQZ, cc-pV5Z extrapolation. Additionally mean errors (MEs), mean absolute errors (MAEs), and minimum
(Min) and maximum (Max) errors are given for each method for the entire test set. All results are in kcal/mol.

Reagents Products RPA RPA + SOSEX RPA + µ = 0.7-SOSEX

He+
2 He + He+ 13.43 −5.64 0.29

(NH3)+
2 NH3 + NH+

3 4.45 −5.85 −0.38
(H2O)+

2 H2O + H2O+ 9.49 −8.27 1.34
(C4H10)+ C2H5 + C2H+

5 2.44 −4.65 −1.44
(CH3)2CO+ CH3 + CH3CO+ 0.86 −0.01 −0.32
ClFCl ClClF 7.61 −3.42 4.66
C2H4 · · · F2 C2H4 + F2 −2.69 −3.04 −2.66
C6H6 · · ·Li C6H6 + Li −8.94 −7.74 −12.87
NH3 · · ·ClF NH3 + ClF −0.88 −2.42 −1.70
NaOMg MgO + Na −0.15 11.50 0.41
FLiF F2 + Li 44.27 −42.68 −0.10

MAE 8.66 8.66 2.38
ME 6.35 −6.57 −1.16
Min −8.94 −42.68 −12.87
Max 44.27 11.50 4.66
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consistently overbinds, while inclusion of the SOSEX correc-
tion leads to systematic underbinding. On the other hand, our
short-range RPA + SOSEX correction shows a mean absolute
error of only 2.4 kcal/mol. The negative mean error indicates
a tendency to underbind, however, not to the same extent as
RPA + SOSEX. This shows that while RPA + SOSEX is self-
interaction free for one-electron systems, its performance for
molecular systems prone to self-interaction errors is not better
than plain RPA, which suffers from serious self-correlation.
Our short-range SOSEX correction on the other hand offers
an improvement over RPA for the one-electron case (see
Sec. IV A) and a significant improvement over RPA and RPA
+ SOSEX for the molecular systems’ self-interaction bench-
mark shown in this paragraph.

V. CONCLUSION

We have introduced a scheme that provides a well bal-
anced compromise between plain RPA and RPA + SOSEX
for the calculation of the correlation energy. This enables
to combine the benefits of both methods, namely, removal
of self-interaction errors and the description of static corre-
lation. We have shown this for the two paradigm cases of
self-interaction errors and static correlation, i.e., the dissocia-
tion of H+

2 and closed shell H2. For real world systems, we have
shown that our short-range RPA + SOSEX correction, without
extensive parameterisation, improves upon both RPA and RPA
+ SOSEX barrier heights and reaction energies, while ionisa-
tion potentials and electron affinities are slightly worse than
RPA + SOSEX but significantly better than the RPA results.
Only for atomisation energies, the full RPA + SOSEX cor-
rection seems to be necessary for significant improvement
over RPA. One exception here is multi-reference cases, where
both RPA and our short-range RPA + µ-SOSEX deliver sig-
nificantly improved results over RPA + SOSEX. Finally we
showed that for molecular systems prone to self-interaction
errors, our short-range SOSEX correction clearly outperforms
both RPA and RPA + SOSEX. The entirety of our results con-
firms that a short-range RPA + SOSEX correction enables
to combine the benefits of RPA and RPA + SOSEX calcu-
lations, delivering a balanced description across a variety of
properties.

Future work on this subject should start with a thor-
ough parameterisation of the attenuation parameter µ. Further
performance increases might be possible by combining this
approach with orthogonal correction schemes, such as the
renormalized singles excitation correction.22

When comparing the drCCD based variant with the
ACFDT version, the former seems superior in terms of accu-
racy and speed when considering the molecular orbital imple-
mentations since no matrix diagonalisations are necessary
and the number of iterations necessary for solving the Ric-
cati equation is usually smaller than the number of frequency
points necessary for the numerical quadrature. However, when
switching to an atomic-orbital or a Cholesky basis, the ACFDT
version of RPA has shown potential for great computational
savings.42,43 Therefore an ACFDT based atomic-orbital vari-
ant of the short-range RPA + SOSEX correction might be a
viable approach for calculations of large molecules. Here, the

inherent locality of the short-range SOSEX correction could
also be beneficial.
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We present efficient methods to calculate beyond random phase approximation (RPA) correlation ener-
gies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the
resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propaga-
tor in conjunction with an atomic orbital formalism. Further improvements are achieved using integral
screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the
dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the
RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormal-
ized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application
of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, disper-
sion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables
calculating beyond RPA correlation energies for significantly larger molecules than possible to date,
thereby extending the applicability of these methods to a wider range of chemical systems. Published
by AIP Publishing. https://doi.org/10.1063/1.5025938

I. INTRODUCTION

Correlation energies obtained from the direct random
phase approximation (dRPA) have proven to be a valuable
post-Kohn-Sham (KS) correction (for an overview over recent
developments, see, e.g., Refs. 1–3). While the original formu-
lations for calculating dRPA correlation energies for molecules
showed an O(N 6) asymptotic scaling behavior,4 where N
denotes the molecular size, restricting the application to
small molecules, several reformulations have been introduced
recently for reducing the scaling behavior and allowing for cal-
culating larger systems, some with more than 1000 atoms.5–8

To reduce the computational cost, these methods employ, e.g.,
the resolution-of-the-identity (RI) technique,9 tensor hyper
contraction (THC),10–13 local,5 atomic,6 and Cholesky orbital7

formulations, and integral transforms of the non-interacting
polarization propagator,6–8,14,15 the latter being a central quan-
tity in the calculation of dRPA correlation energies. For some
methods, this brought the asymptotic scaling behavior down to
linear,5–8 enabling calculations for large systems of chemical
interest.

While dRPA calculations provide significant improve-
ments over conventional density functional theory (DFT) cal-
culations for properties such as dispersion interactions,16,17

dRPA delivers unsatisfactory results for non-isogyric pro-
cesses such as atomization energies.4,18–20 These failures
can be traced back to the self-interaction error present in
dRPA energies.21 To circumvent these problems, approaches

a)christian.ochsenfeld@uni-muenchen.de

beyond the direct random phase approximation have been
proposed that include exchange effects and higher order
correlations.

In general, RPA-type methods can be derived from two
frameworks, namely, those that resemble simplified coupled
cluster doubles equations22 or those derived from the adiabatic
connection fluctuation dissipation theorem (ACFDT).4,23–25

Here we focus on approaches derived from the latter frame-
work. In the ACFDT, the direct random phase approxima-
tion represents the simplest approach to obtain an approxi-
mate interacting polarization propagator required for the cal-
culation of ACFDT correlation energies. To further include
exchange effects, several approaches have been suggested:
Among those, a second-order screened exchange (RPA-
SOSEX) type approach26,27 replaces the Hartree kernel in
the ACFDT formula with an antisymmetrised Hartree ker-
nel.28,29 The RPA electron-hole time-dependent Hartree-Fock
(RPA-eh-TDHF) approximation uses an interacting polariza-
tion propagator obtained from a simplified time-dependent
Hartree-Fock kernel.29,30 RPA renormalized perturbation the-
ory uses a low-order approximation to the approximate
eh-TDHF polarization propagator as the leading correction
to dRPA (this approach is denoted as RPA-AXK).18 Further-
more, methods have been proposed using the exact-exchange
kernel from time-dependent density functional theory,31 also
including a power series approximation to the correlation
kernel.32 Applications of these methods have been ham-
pered so far by their steep computational scaling of up to
O(N 6) in their canonical formulation. Using the RI-technique,
O(N 5)-scaling ACFDT-based formulations have been pro-
posed,29,30,33 which is however still too expensive to tackle
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large molecular systems. Further performance benefits have
been obtained using a plane wave formulation in conjunc-
tion with a Gram-Schmidt orthogonalization scheme.34 It
is worthwhile to note that more efficient RPA with exchange
methods have been proposed not only in the ACFDT but also
the CCD framework.35,36

Here we present a framework that allows for a low
scaling calculation of different RPA with exchange meth-
ods. In particular, we show that our methods are applicable
for RPA-SOSEX, RPA-eh-TDHF, and RPA-AXK. We employ
methods recently introduced by us in the context of low-
and linear-scaling dRPA and MP2 methods,6–8,37 namely,
an RI-decomposition using a local metric in conjunction
with an atomic orbital (AO) or Cholesky basis formulation
using the integrated double-Laplace transform of the non-
interacting polarization propagator,6 which is equivalent to
a Fourier transform of the non-interacting polarization prop-
agator into the imaginary frequency domain.14 In this way,
RPA with exchange energies for significantly larger molecular
systems become accessible.

II. THEORY

In the following, we present a derivation of the work-
ing equations for this manuscript. For detailed information on
the different RPA with exchange methods and their deriva-
tions, we refer the reader to the original publications.18,29,30

We use the Mulliken notation for two, three, and four center
Coulomb integrals and enumerate quantities related to occu-
pied orbitals as i, j, . . . and those related to virtual orbitals
as a, b, . . ..

The dRPA correlation energy in the ACFDT using real-
valued spin orbitals after coupling strength integration is given
as23,24,29

EdRPA
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Π0(iω)V) +Π0(iω)V

}
, (1)

withΠ0(iω) being the non-interacting polarization propagator
at imaginary frequency iω,

Π0(iω)ia,jb =
−2εia

ε2
ia + ω2

δi,jδa,b, (2)

and V ia,jb = (ia|jb) being the Hartree kernel. Here εia = εa � εi

are particle-hole excitation energies, where εi, εj, . . . denote
the occupied orbital energies and εa, εb, . . . denote the virtual
orbital energies. Turning to the three beyond RPA methods
used in this work, the canonical formulation for the SOSEX
correction is given by29

ESOSEX
c = −1

2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Π0(iω)V)V−1K

+Π0(iω)K
}
, (3)

the RPA-AXK correction is given by18

EAXK
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Π0(iω)V)V−1K

+ (1 −Π0(iω)V)−1Π0(iω)K
}
, (4)

and the correlation energy expression for RPA-eh-TDHF is
given by29,30

ERPA-eh-TDHF
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Π0(iω)W)W−1V

+Π0(iω)V
}
. (5)

Here K ia,jb = (ib|ja) represents an approximate exchange kernel
and W = V � K. It is worth to note that the SOSEX and
AXK corrections have to be added to the dRPA correlation
energy, while the formula for RPA-eh-TDHF delivers the entire
correlation energy.

A. Resolution-of-the-identity formulations

The resolution-of-the-identity approximation is often
used in quantum chemistry to decompose the four-index two-
electron repulsion integral (ERI) tensor into two three-center
tensors,7,9,38–40

(ia| jb) ≈
∑

P,Q

(ia|m12 |P)CPQ(Q|m12 | jb)

=
∑

P,Q,R

(ia|m12 |P)C1/2
PR C1/2

RQ (Q|m12 | jb) =
∑

R

BR
iaBR

jb,

(6)
where (ia|m12|P) are the three-center integrals and the RI
matrix

CPQ =
∑

R,S

(P |m12 |R)−1(R|S)(S |m12 |Q)−1, (7)

with the respective metric m12 employed for the RI-
decomposition. Here P, Q, R, . . . denote the auxiliary basis
functions.

Inserting the RI-approximation to decompose V leads to
the following RI-dRPA expression introduced by Furche and
co-workers:9

ERI-dRPA
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Q(iω)) + Q(iω)

}
, (8)

where Q(iω) is a NAux × NAux matrix, with NAux being the
size of the auxiliary space. Q(iω) is defined as

QPQ(iω) =
∑

i,a

BP
iaΠ0(iω)ia,iaBQ

ia. (9)

Similar considerations allow decomposing both V and K
with the RI-approximation for the beyond RPA expressions
to obtain

ERI-SOSEX
c = −1

2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Q(iω))Q−1(iω)

×Y(iω)Q−1(iω) + Y(iω)Q−1(iω)
}
, (10)

ERI-AXK
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1 −Q(iω))Q−1(iω)Y(iω)

×Q−1(iω) + (1 −Q(iω))−1Y(iω)Q−1(iω)
}
, (11)

ERI-RPA-eh-TDHF
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{
log (1−Q(iω) + Y(iω)Q−1(iω))

× (Q(iω)−Y(iω)Q−1(iω))−1Q(iω)+Q(iω)
}
.

(12)

The Q(iω) matrix is the same as the one appearing in the
dRPA energy expression [Eq. (8)] and Y(iω) is given as
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YPQ(iω) =
∑

i,a,j,b

BP
iaΠ0(iω)ia,iaKia,jbΠ0(iω)jb,jbBQ

jb. (13)

For the derivation of the RI-expression for RPA-SOSEX, see
Ref. 29; for RPA-eh-TDHF, see Ref. 30; and for RPA-AXK,18

see the Appendix.

B. Atomic orbital formulation

While in Refs. 6–8, efficient methods to calculate Q(iω)
have been presented, the naive calculation of Y(iω) scales
at least as O(N 2

occN 2
virtNAux), where Nocc and Nvirt denote

the dimensions of the occupied and virtual space, respec-
tively. Although this is more efficient than the canonical
O(N 3

occN 3
virt) formulation for the beyond RPA methods, this

scaling is still prohibitively steep for large molecules. To
obtain an efficient method for calculating Y(iω), we use a
double-Laplace transform of the non-interacting polarization
propagator,6,14

Π0(iω)ia,ia =
−2εia

ε2
ia + ω2

= −2
∫ ∞

0
dτ cos (ωτ)e−εiaτ

= −2
∑

τ

wτ cos (ωτ)e−εiaτ , (14)

with roots τ and weights wτ , which allows calculating Y(iω)
in an atomic orbital (AO) formulation analogous to the AO
formulation of Q(iω) first shown in Ref. 6,

YPQ(iω) =
∑

µ,ν,λ,σ

∑

µ′,ν′,λ′,σ′

∑

τ,τ′
4wτwτ′ cos (ωτ) cos (ωτ′)

× Pτµµ′B
P
µνP

τ

νν′(µ
′σ′ |λ ′ν′)Pτ′λλ′BQ

λσP
τ′
σσ′ ,

(15)
with Pτ , P

τ
representing the occupied and virtual pseudoden-

sities, defined as

Pτµµ′ =
∑

i

Cµie
εiτCµ′i (16)

and

P
τ

µµ′ =
∑

a

Cµae−εaτCµ′a, (17)

where C is the matrix of molecular orbital coefficients. We
denote the AO basis functions as µ, µ′, ν, ν′, . . ..

The key idea of AO-based methods is a reformulation in
a local Gaussian basis to obtain sparse quantities, which allow
for an efficient calculation. Therefore, we also move the RI
matrix C out of the B tensor6 to obtain

YPQ(iω) =
∑

R,S

C1/2
PR ỸRS(iω)C1/2

SQ , (18)

ỸPQ(iω) =
∑

µ,ν,λ,σ

∑

µ′,ν′,λ′,σ′

∑

τ,τ′
4wτwτ′ cos (ωτ) cos (ωτ′)

×Pτµµ′B̃
P
µνP

τ

νν′(µ
′σ′ |λ ′ν′)Pτ′λλ′B̃Q

λσP
τ′
σσ′ , (19)

where B̃P
µν = (µν |m12 |P) represent solely the three-center inte-

grals. Now if one uses a local RI metric, such as the overlap6

or attenuated Coulomb metric,7,41–43 the number of elements
of the three-center tensor B̃ will grow only linearly with the
system size, allowing for an efficient calculation of Ỹ(iω).

Here we want to note that the contraction of Ỹ(iω) with the
RI-matrix and other operations on the NAux × NAux matrices
Q(iω) and Y(iω) (matrix multiplications and eigendecomposi-
tions) have a very low prefactor and will therefore only become
dominant for exceedingly large molecules,6 which means
that the calculation of Ỹ(iω) determines the effective scaling
behavior.

The AO formulation of Ỹ(iω) allows for an efficient
integral-direct calculation. Therefore, we first carry out the
double-Laplace transform to rewrite Ỹ(iω) as

ỸPQ(iω) =
∑

µ′,ν′,λ′,σ′
M̃P
µ′ν′(iω)Kµ′ν′,λ′σ′M̃

Q
λ′σ′(iω), (20)

with

M̃P
µ′ν′(iω) =

∑

µ,ν

∑

τ

−2wτ cos (ωτ)Pτµµ′B̃
P
µνP

τ

νν′ . (21)

Since the occupied and unoccupied pseudodensities are sparse
quantities, the number of elements of the three-index quan-
tity M̃(iω) also grows only linearly with system size and is
efficiently calculated using sparse algebra. Now Ỹ(iω) can
be calculated in a linear scaling fashion by an integral-direct
contraction of the AO ERI’s with one of the M̃(iω) ten-
sors followed by a matrix product over the remaining AO
indices,

KQ
µ′ν′(iω) =

∑

λ′,σ′
Kµ′ν′,λ′σ′M̃

Q
λ′σ′(iω), (22)

ỸPQ(iω) =
∑

µ′,ν′
M̃P
µ′ν′(iω)KQ

µ′ν′(iω). (23)

Linear scaling is achieved by the realization that the local-
ity of the M̃(iω) tensor and the locality of AO basis func-
tion pairs within the ERI tensor renders only a linear
number of ERIs significant. These are then contracted with
M̃(iω) by a LinK type scheme.44,45 To identify the sig-
nificant ERIs, we use Schwarz estimates Qµν = (µν|µν)1/2

weighted with the corresponding M̃max
µ′ν′ (iω) element, where

max denotes the maximum absolute value over all auxiliary
indices, and discard insignificant integrals according to a fixed
threshold ϑ,

|M̃P
µ′ν′(iω)(µ′σ′ |λ ′ν′)| ≤ |M̃max

µ′ν′ (iω)|Qµ′σ′Qλ′ν′ < ϑ. (24)

The remaining significant integrals are contracted with a con-
stant number of M̃P

µ′ν′(iω) elements, determined by the block
sparse algebra implementation. In practice, we perform the
contraction in Eq. (22) for batches of auxiliary indices to store
all necessary quantities in computer memory and to allow for
fine grained screening. Per default, we set up the batching
scheme by performing the contraction for all auxiliary indices
belonging to one atom, where max then refers to the batch
maximum. We note that the idea of an integral-direct compu-
tation of K along with an RI-decomposed Hartree kernel was
first mentioned in the supplementary information of Ref. 18.
Through the use of a local RI-metric in conjunction with a
transformed non-interacting polarization propagator and the
use of the LinK scheme, we arrive at an efficient scheme to
calculate beyond RPA correlation energies, which we will refer
to as AO-LinK in Sec. IV.
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C. Cholesky decomposed density (CDD) RI formulation

The method presented above will scale efficiently for
large molecules due to the sparsity of AO quantitites. An
issue with AO-based methods is, however, their steep com-
putational scaling with respect to the basis set size NBas

due to the redundancy present in typical AO basis sets, as
compared to canonical methods. A solution to this problem
has been to exploit the rank deficiency of AO quantities by
using pivoted Cholesky decomposition (CD).7,37,46–50 Pivoted
Cholesky decomposition allows decomposing a positive semi-
definite matrix into a product of a lower and upper triangular
matrix,

A = LLT . (25)

The Cholesky factors L have the same number of rows as the
original matrix A and rank(A) columns. Since the rank of the
occupied one-particle density matrix Pocc equals the number of
occupied orbitals, CD allows for huge computational savings
when large basis sets are employed. The rank of the virtual
one particle density matrix Pvirt equals the number of virtual
orbitals. Since especially for large basis sets Nvirt is of sim-
ilar size as NBas, the computational benefits of decomposing
Pvirt are not as high. Furthermore, decomposing Pvirt has been
found to interfere negatively with matrix sparsity,7 which is
why we omit the decomposition of Pvirt in this work. For a
more detailed description of pivoted CD in the context of one
particle density matrices, see, e.g., Ref. 7. While the rank dis-
cussion also applies to occupied and virtual pseudodensities
(where the rank is sometimes even lower than Nocc and Nvirt,
respectively), we found it to be more efficient to introduce
Cholesky decomposed densities (CDDs) into the calculation
of Ỹ(iω), by decomposing the one-particle density matrix
Pocc = LLT in conjunction with the following equality for
occupied pseudodensities:

Pτ = PτSPocc, (26)

where S is the AO overlap matrix. Thus, we can rewrite Eq. (20)
by also inserting the RI for the remaining ERI as

ỸPQ(iω) =
∑

i,j,ν′,σ′

∑

R

M̃P
iν′(iω)B̃R

iσ′B
R
jν′M̃

Q
jσ′(iω). (27)

Here i, j denote the Cholesky vectors of Pocc, B̃R
iσ′

=
∑
µ′ L

T
iµ′B̃

R
µ′σ′ , B = CB̃, and

M̃P
iν′(iω) =

∑

τ

−2wτ cos (ωτ)(LT SPτB̃
P

P
τ
)iν′ . (28)

Note that we used an asymmetric RI in Eq. (27). In this
way, it is possible to significantly reduce the cost of forming
Ỹ(iω) since the number of significant elements of B̃ scales
linearly with system size as opposed to B and B, when a
local RI metric is employed. To optimally exploit the local-
ity of the quantities in Eq. (27), the order of summation is
crucial. Optimizing the order of summation, subject to for-
mal O(N 3) memory requirements and lowest formal scaling
behavior, in conjunction with efficient usage of matrix spar-
sity, we arrive at the sequence shown in the pseudocode in

Algorithm 1. Pseudocode to optimally exploit sparsity in the formation of
Ỹ(iω) using the CDD-RI formulation.

1: function Calculate Ỹ(iω)
2: for R do
3: XRQ

ij (iω) =
∑

σ′ B̃R
iσ′M̃

Q
jσ′ (iω)

4: KQ
iν′ (iω)+ =

∑
j B

R
jν′X

RQ
ij (iω)

5: end for
6: ỸPQ(iω) =

∑
i,ν′ M̃P

iν′ (iω)KQ
iν′ (iω)

7: end function

Algorithm 1. Obviously sparse algebra routines are required
for efficiency.

We will refer to these methods as CDD-RI in Sec. IV.

D. Schwarz screened CDD-RI formulation

Memory layouts and caching of modern computers advo-
cate for rather large block dimensions in the blocked sparse
algebra routines which need to be traded off against the gran-
ularity at which the sparsity in the AO-CDD quantities can be
captured. This means that with the most efficient large block
sizes, an algorithm exploiting only block sparsity will trans-
late into significant computational savings only for rather large
molecules. Since the formal scaling behavior of the method in
Sec. II C isO(N 2

AuxN 2
occNBas), this would result in a noticeable

prefactor. Screening of individual integrals allows circumvent-
ing this problem, and the derivation of the necessary integral
estimates is given in the following. The method in this section
is currently only applicable to the RPA-SOSEX and RPA-AXK
correction and not to RPA-eh-TDHF. We show the derivation
here explicitly for RPA-SOSEX.

Using the rotatory invariance of the trace and defining

W(iω) = Q−1(iω) log (1 −Q(iω))Q−1(iω) + Q−1(iω). (29)

Equation (10) can be rewritten as

ERI-SOSEX
c = −1

2

∫ ∞
−∞

dω
2π

Tr
{
W(iω)Y

}
. (30)

Insertion of Eqs. (18) and (27) then yields

ERI-SOSEX
c =

1
2

∫ ∞
−∞

dω
2π

Tr
{∑

P,Q

MP
i,ν′(iω)MP

j,σ′(iω)BQ
i,σ′B

Q
j,ν′

}
,

(31)
with the definition

M(iω) = (−W(iω))1/2C1/2M̃(iω) . (32)

Note that we have absorbed the minus sign into the matrix root
since W(iω) is negative definite and this therefore allows for
a real-valued, symmetric decomposition.

While Eq. (31) is our final RI-formulation, it is insightful
to stress that whereas

∑

Q

BQ
i,σ′B

Q
j,ν′ = Kiν′,jσ′ (33)

is the RI-decomposition of the exchange-type electron repul-
sion integral, we introduce the RI-decomposition of the
coupling-strength averaged screened Coulomb interaction
W (iω),
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−
∑

P

MP
i,ν′(iω)MP

j,σ′(iω) = (iν′(iω)|W (iω)| jσ′(iω)). (34)

This can be easily seen by following the treatment of Secs. II B
and II C again, starting from an alternative resummation of Eq.
(3) given in Ref. 20,

ESOSEX
c = −1

2

∫ ∞
−∞

dω
2π

Tr
{
(ia|W (iω)| jb)(ib| ja)

×Π0(iω)ia,iaΠ0(iω)jb,jb

}
, (35)

which results in

ESOSEX
c = −1

2

∫ ∞
−∞

dω
2π

Tr
{
(iν′(iω)|W (iω)| jσ′(iω))(iσ′ | jν′)

}
.

(36)
Here we note that not only the coupling-strength averaged
screened Coulomb interaction but also the charge distribu-
tions

(
iν′(iω)| are frequency dependent. An RI-decomposition

of the screened Coulomb interaction has been introduced in
Ref. 51 and was applied to RPA-SOSEX using a numeri-
cal coupling-strength integration in Ref. 20. The approach
presented in our work, Eqs. (31) and (29), can in con-
trast be evaluated directly from the already integrated Q(iω)
and B.

Equation (31) bears close resemblance to the exchange-
type term of RI-CDD MP2, where an efficient evaluation
technique has been proposed.37 Due to the exchange type cou-
pling of the local charge distributions, one can select a linear
number of Coulomb ERIs [Eq. (33)] and coupling-strength
averaged screened Coulomb ERIs [Eq. (34)], which contribute
significantly to the final energy. These integrals are then calcu-
lated using the RI and directly summed up for the final energy
according to Eq. (31).

To find this linear number of significant integrals, one
needs to find efficient integral estimates to reduce the num-
ber of integrals that explicitly need to be evaluated. While in
Ref. 37, QQR-type integral estimates were used, we presently
use simple Schwarz estimates since the exchange coupling
ensures linear scaling of the number of integrals with respect
to the system size,

|(iσ′ | jν′)| ≤ (iσ′ |iσ′)1/2(jν′ | jν′)1/2 = Qiσ′Qjν′ , (37)

|(iν′(iω)|W (iω)| jσ′(iω))| ≤ (−(iν′(iω)|W (iω)|iν′(iω)))1/2

× (−(jσ′(iω)|W (iω)| jσ′(iω)))1/2

=: Qiν′(iω)Qjσ′(iω), (38)

and hence

|(iν′(iω)|W (iω)| jσ′(iω))(iσ′ | jν′)|
≤ Qiν′(iω)Qjσ′(iω)Qiσ′Qjν′ . (39)

This method not only allows for fine grained use of sparsity
but also reduces the formal scaling by a factor of NAux/NBas,
compared to the method in Sec. II C, to O(NAuxN 2

occN 2
Bas).

While all three-index quantities in Eq. (31) contain the
matrix square root of the RI-matrix, C1/2, and therefore lin-
ear scaling of the number of significant elements in the
B and M(iω) tensors is lost, it is still advisable to use

a local metric, such as the overlap or attenuated Coulomb met-
ric. This allows using sparsity in the formation of B and M(iω),
by first forming B̃ and M̃(iω) and then performing the contrac-
tion with the respective RI matrix. In the asymptotic limit, this
should show quadratic scaling behavior since the local metric
ensures a constant number of AO/Cholesky-indices for each
auxiliary basis index.

For RPA-AXK, the only difference is that the W(iω)
matrix is given as

W(iω) = Q−1(iω) log (1 −Q(iω))Q−1(iω)

+ Q−1(iω)(1 −Q(iω))−1 (40)

and we will refer to these methods as QQ-CDD-RI in
Sec. IV.

III. COMPUTATIONAL DETAILS

We have implemented all methods including the canon-
ical formulation and the canonical RI formulation in the
FermiONs++52,53 program package developed in our group.
For the canonical RI formulation, we follow the idea given
in the supplementary material of Ref. 29 which shows a
O(N 3

AuxN 2
occ) scaling behavior and makes optimal use of effi-

cient linear algebra libraries. For the canonical RI formulation,
we use the Coulomb RI-metric. Unless noted otherwise, we
employ the attenuated Coulomb metric with ω = 0.1 for all
low scaling algorithms, as has been shown to be optimal for
dRPA calculations.7

For the grids of the numerical frequency integration and
the double-Laplace transform, we employ the minimax grids
presented in Ref. 14. The rationale behind the fitting pro-
cedure given in Ref. 14 is easily extendable to the beyond
RPA methods treated here. For RPA-SOSEX and RPA-eh-
TDHF, the second-order approximation corresponds to the
MP2 energy,29 as compared to the direct (opposite spin) MP2
energy for dRPA. Since this only affects the integral tensors
but leaves the integrand unchanged, the exact same procedure
as for dRPA can be used. As discussed in the supplementary
information of Ref. 18, RPA-SOSEX and RPA-AXK recover
the same second-order contribution, which is why the grids are
also suited for RPA-AXK.

We employ 15 grid points for the time and frequency grid
in the general case. Where the integration interval is suffi-
ciently small for 15 grid points not to yield any more accuracy
in our double precision implementation, less grid points are
automatically employed.

As a sparse algebra format, we use the blocked com-
pressed sparse row (BCSR) format optimized for quantum
chemical methods.54,55 We employ a block size of 50 elements
and a sparsity threshold of 10�7 unless noted otherwise. For
the canonical algorithms, we of course always employ dense
algebra. For the remaining algorithms, we will mention this
explicitly in Sec. IV. The integral threshold ϑ for the AO-LinK
formulation was set to 10�10. The screening threshold for the
QQ-CDD-RI method was set to 10�9. The Schwarz estimates
used for the QQ-CDD-RI formulation are calculated using the
RI as in Ref. 37.
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The exact procedure for pivoted CD of density matrices is
detailed in, e.g., Refs. 7 and 37. For the generation of the pseu-
dodensities, we employ a Fermi shift to enhance numerical
stability as detailed in Ref. 56.

The evaluation of the RI-RPA-eh-TDHF correlation
energy using Eq. (12) with given Q(iω) and Y(iω) poses some
numerical challenges due to the need to explicitly calculate
Q�1(iω), as Q(iω) can turn out to be numerically close to a
singular matrix. Therefore, we follow the idea presented in
Ref. 40 and project all quantities on the space spanned by the
eigenvectors of Q(iω), corresponding to non-zero eigenvalues
(in this case absolute values larger than 10�14). Furthermore,
the argument in the logarithm is non-symmetric and therefore
complex eigenvectors are possible. A numerically more stable
version of Eq. (12) is work in progress.

All calculations use reference KS orbitals obtained from
DFT calculations with the Perdew-Burke-Ernzerhof (PBE)
functional.57 We employ def2-SVP, def2-TZVP, and def2-
QZVP basis sets58,59 along with their corresponding RI basis
sets.60,61 Total energies are obtained by adding correlation
energies to the Hartree-Fock energy evaluated with the KS-
orbitals. All calculations employ the frozen core approxima-
tion.

IV. RESULTS AND DISCUSSION

Since the purpose of this work is to show the efficient yet
accurate calculation of Y(iω), we present our results exem-
plarily using RPA-SOSEX correlation energies. We will start
with showing the accuracy of our methods using the S22 test
set,62 before demonstrating the efficiency of our methods. We
finish with an illustrative large scale application, by present-
ing RPA-SOSEX results for the L7 test set of large, dispersion
dominated molecules.63

A. Convergence of the frequency quadrature
and the double-Laplace transform

The convergence of the frequency quadrature and the
double-Laplace transform has been shown nicely for dRPA
correlation energies in a plane wave implementation.14 Here
we want to show briefly that minimax grids also allow for
well-converged results for beyond RPA correlation energies
with less than 20 grid points. Therefore, we calculated the
RPA-SOSEX correlation energies for the methane monomer
and dimer of the S22 test set62 using the def2-TZVP and
def2-QZVP basis sets, along with the corresponding RI
basis set. As a reference, we use canonical RI-RPA-SOSEX
results obtained with Clenshaw-Curtis quadrature with the
RPA adjusted parameter optimization,9 which has been shown
to also work for closed-shell RPA-SOSEX.29 For the refer-
ence calculations, we employ 500 grid points, which ensures
well-converged results.

Table I shows that the minimax grids allow converging
the absolute correlation energies to below 10�10 hartree with
respect to the numerical frequency integration. When addi-
tionally using the corresponding grids for the double-Laplace
transform of the non-interacting polarization propagator, the
minimax grids allow converging the total energies to 10�10

hartree as well (Table II). Beyond 13 grid points, the interaction

TABLE I. Convergence of the numerical frequency integration using mini-
max grids referenced against a well converged Clenshaw-Curtis quadrature
with 500 grid points. All results are RI-RPA-SOSEX correlation energies of
the methane monomer/dimer from the S22 test set.62 The interaction energy
is denoted as ∆E.

def2-TZVP

No. pts. Monomer (hartree) Dimer (hartree) ∆E (kcal/mol)

10 �0.201 615 930 3 �0.404 493 209 8 �0.304 712
13 �0.201 615 931 6 �0.404 493 214 3 �0.304 713
15 �0.201 615 931 6 �0.404 493 214 4 �0.304 713
18 �0.201 615 931 6 �0.404 493 214 4 �0.304 713
500 �0.201 615 931 6 �0.404 493 214 4 �0.304 713

def2-QZVP

No. pts. Monomer (hartree) Dimer (hartree) ∆E (kcal/mol)

10 �0.226 027 242 2 �0.453 494 471 6 �0.377 841
13 �0.226 027 338 4 �0.453 494 608 6 �0.377 806
15 �0.226 027 339 7 �0.453 494 612 4 �0.377 807
18 �0.226 027 339 9 �0.453 494 613 0 �0.377 807
500 �0.226 027 339 9 �0.453 494 613 0 �0.377 807

energy fluctuates in the range of 10�6 kcal/mol, which is
well beyond the accuracy of the methods under inspection.
Based on these results, we have chosen 15 grid points in Secs.
IV B–IV D.

B. Calculations on the S22 test set

To further examine the accuracy of all our presented
methods, we have performed calculations on the entire S22
test set.62 We have performed calculations using def2-SVP,
def2-TZVP, and def2-QZVP basis sets along with their

TABLE II. Convergence of the numerical frequency integration and double-
Laplace transform of the non-interacting polarization propagator using min-
imax grids referenced against a well converged Clenshaw-Curtis quadrature
with 500 grid points. The reference results are RI-RPA-SOSEX correla-
tion energies, while the convergence is tested using CDD-RI-RPA-SOSEX
(Coulomb metric) correlation energies. All correlation energies are calcu-
lated for the methane monomer/dimer from the S22 test set.62 The interaction
energy is denoted as ∆E.

def2-TZVP

No. pts. Monomer (hartree) Dimer (hartree) ∆E (kcal/mol)

10 �0.201 615 914 1 �0.404 493 171 7 �0.304 708
13 �0.201 615 931 3 �0.404 493 213 8 �0.304 713
15 �0.201 615 931 6 �0.404 493 214 4 �0.304 713
18 �0.201 615 931 6 �0.404 493 214 4 �0.304 713
500 �0.201 615 931 6 �0.404 493 214 4 �0.304 713

def2-QZVP

No. pts. Monomer (hartree) Dimer (hartree) ∆E (kcal/mol)

10 �0.226 028 705 4 �0.453 497 574 2 �0.377 951
13 �0.226 027 299 6 �0.453 494 532 3 �0.377 806
15 �0.226 027 332 9 �0.453 494 596 5 �0.377 799
18 �0.226 027 339 6 �0.453 494 612 4 �0.377 807
500 �0.226 027 339 9 �0.453 494 613 0 �0.377 807
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corresponding RI-basis sets. As a reference, we have per-
formed calculations using both the canonical implementa-
tion and the RI-canonical implementation using the Coulomb
metric.

The error introduced through the use of the RI within
the S22 test set as compared to the canonical implementa-
tion is 0.014 and 0.009 kcal/mol in the mean absolute error
(MAE) for the def2-SVP and def2-TZVP basis set, respec-
tively, and is therefore negligible (Fig. 1). For the def2-QZVP
results, we therefore employ the canonical RI implementa-
tion as a reference for our newly developed methods since the
computational cost and memory requirements for the canon-
ical implementation for the def2-QZVP basis set become
unfeasible.

To examine the impact of the different approximations
made here, we perform calculations using separately the
numerical double-Laplace transform with the Coulomb RI-
metric and calculations using the numerical double-Laplace
transform with the attenuated Coulomb metric also employing
sparse algebra. The results for the def2-SVP and def2-TZVP
basis sets are shown in Fig. 1. The results for the def2-QZVP
basis are shown in Fig. 2.

For all basis sets employed here, the error introduced
through the double-Laplace transform is barely noticeable, as
can be seen from the error bars for the CDD-RI and QQ-CDD-
RI calculations, as compared to the plain RI error. The error
introduced by changing from the Coulomb to the attenuated
Coulomb metric shows a maximum of 0.004 kcal/mol for the

FIG. 1. Bar chart showing the mean absolute error of the RPA-SOSEX inter-
action energies of the S22 test set as compared to the canonical implementation
using def2-SVP and def2-TZVP basis sets along with the corresponding RI-
basis set. As RI-metric the Coulomb metric is employed unless the suffix
0.1 is appended, which implies use of the attenuated Coulomb metric with
ω = 0.1.

FIG. 2. Bar chart showing the mean absolute error of the RPA-SOSEX
interaction energies of the S22 test set as compared to the RI-canonical
implementation using the def2-QZVP basis set along with the correspond-
ing RI-basis set. As RI-metric the Coulomb metric is employed unless the
suffix 0.1 is appended, which implies use of the attenuated Coulomb metric
withω = 0.1. For the QQ-CDD-RI, CDD-RI and CDD-RI-0.1 results we have
employed dense algebra, while the QQ-CDD-RI-0.1 results were produced
using sparse-algebra.

def2-SVP basis in the MAE as compared to the RI-canonical
value and is therefore also negligible. For the QQ-CDD-RI
formulation, the maximum deviation in the MAE as compared
to the RI-canonical implementation is 0.004 kcal/mol, show-
ing that the Schwarz screening does not introduce a relevant
error. The maximum error caused by Schwarz screening and
the use of the attenuated Coulomb metric combined is 0.005
kcal/mol for the def2-QZVP basis set. The use of sparse alge-
bra with the thresholds given in Sec. III in conjunction with
the def2-QZVP basis for the CDD-RI formulation leads to
significantly higher errors for some individual systems and a
total MAE of 0.3 kcal/mol. Employing dense algebra with the
attenuated Coulomb metric as shown in Fig. 2 produces again
a negligible deviation, as compared to the RI-canonical imple-
mentation. This problem is related to the atomic blocking used
in BCSR, which would require larger block sizes and a tighter
sparsity threshold for large basis sets.

For the AO-LinK method with the chosen thresholds, the
deviation in the MAE shows a maximum of 0.020 kcal/mol
(0.024 kcal/mol with the attenuated Coulomb metric) for the
def2-SVP basis set. This additional error as compared to
the CDD-RI variants could stem from the integral screening
employed in the integral-direct computation. We omitted the
computation of S22 interaction energies with the method for-
mulated in a pure AO basis for the def2-QZVP basis set due to
too high computational cost. The problem here stems from the
aforementioned bad scaling of pure AO methods with respect
to the basis set size due to the redundancy present in pure AO
basis sets. This already shows one advantage of the two low
scaling methods, which employ CDD to avoid this problem and
show similar formal scaling as the RI-canonical implementa-
tion, while still being efficient for large molecular systems, as
will be shown in Secs. IV C and IV D.

To put the above errors into perspective, the MAE of the
canonical implementation using def2-SVP and def2-TZVP
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basis sets is 0.85 kcal/mol and 0.35 kcal/mol, respectively,
and 0.27 kcal/mol for the def2-QZVP basis using the RI-
canonical implementation (all values referenced against the
S22A revised results of Ref. 64). This shows that the
errors introduced through our approximations are at least
one order of magnitude smaller than the method error cal-
culated with the reference implementation and therefore
insignificant.

The mean absolute percentage error of 7.0% for the largest
def2-QZVP basis set as compared to the S22A revised refer-
ence results64 is in good agreement with the values of 9.5%
and 10.5% reported for a plane wave34 and numerical atomic
orbital implementation20 of RPA-SOSEX, respectively.

C. Efficiency and asymptotic scaling behavior

To show the efficiency and the low asymptotic scaling
behavior of our presented methods for large systems with
a nonvanishing HOMO-LUMO gap, we performed RPA-
SOSEX correlation energy calculations for linear alkanes up
to C160H322. As has been discussed, e.g., in Ref. 6, these
systems serve as good and practical systems to determine
the asymptotic scaling of a quantum chemical method. We
have performed all calculations using the def2-SVP basis with
the corresponding RI basis set. We compare the scaling of
our method to the RI-canonical implementation. The calcu-
lations were performed using 12 threads on dual-processor
Intel Xeon CPU E5-2620 machines with 64 GB of mem-
ory. All timings shown in this section correspond to the wall
time needed to perform the beyond RPA correction. The time
required for the calculation of Q(iω) is excluded since we
want to focus on the efficient calculation of the beyond RPA
energy and Q(iω) is part of the dRPA calculation. For the
performance of the linear-scaling dRPA implementation, see
Refs. 7 and 8. As a rough estimate about the comparative cost
to form Q(iω) vs. the cost to form Y(iω), we consider the
calculation of C160H322 for which the calculation of Q(iω) is
presently faster by a factor of about 70. This can be explained
with the fact that the formal scaling of the linear scaling
CDD-RI-dRPA algorithm with respect to the molecular size
is smaller by one power, leading to a significantly smaller
prefactor.

To calibrate the sparsity settings, i.e., thresholds and block
sizes for our sparse algebra routines, we compare the results
for C40H82 against the RI-canonical implementation. Using

FIG. 3. Timings for the calculations on a set of linear alkanes using the
def2-SVP basis set with the corresponding RI basis set. The AO-LinK, CDD-
RI, and QQ-CDD-RI methods employ the attenuated Coulomb metric with
ω = 0.1 along with sparse algebra. The point labelled with an asterisk was
estimated conservatively based on the timing for a subset of the frequency
points.

the thresholds and block sizes listed in Sec. III, this leads to an
error of 57 and 42 µhartree for C40H82 in the absolute RPA-
SOSEX correlation energy for the CDD-RI and QQ-CDD-
RI formulation, respectively. For the AO-LinK method with
the chosen thresholds, the deviation is 2.9 mhartree. While
this deviation is significantly higher, one has to keep in mind
that in this method the integral tensor corresponding to K is
computed without the RI approximation, which means that
the canonical RI calculation contains the additional RI error
introduced through the RI decomposition of K.

The wall times shown in Fig. 3 for RPA-SOSEX cal-
culations on a series of alkanes from C10H22 to C160H322

exemplify that all our presented methods significantly outper-
form the RI-canonical implementation for large, electronically
sparse systems in terms of computational efficiency: The AO-
LinK method shows a crossover to the RI-canonical method at
C60H122, the CDD-RI method at C40H82, and the QQ-CDD-RI
method already at C20H42. Extrapolating the wall-time for the
RI-canonical method for the largest system (C160H322) assum-
ing anO(N 5) scaling behavior, the speed-up obtained with the
AO-LinK method is 42×, with the CDD-RI method is 61×, and
with the QQ-CDD-RI method is 183×.

TABLE III. Wall times and observed computational complexities for a set of linear alkanes using the def2-SVP
basis set along with the corresponding RI basis set for the different methods presented and the RI canonical
implementation. The computational complexities were calculated using the preceding calculation in the table. The
number labelled with an asterisk was estimated conservatively based on the timing for a subset of the frequency
points.

AO-LinK CDD-RI QQ-CDD-RI RI-canonical

Atoms Time (h) Scaling Time (h) Scaling Time (h) Scaling Time (h) Scaling

62 12.8 1.7 0.6 0.9
122 65.6 2.4 14.9 3.2 4.1 2.8 22.9 4.8
242 184.7 1.5 81.4 2.5 18.0 2.1 644.7∗ 4.9
362 362.4 1.7 183.4 2.0 50.6 2.6
482 488.6 1.0 338.6 2.1 112.8 2.8
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The observed computational scaling behavior of our meth-
ods is examined in more detail in Table III. The RI-canonical
implementation shows anO(N 5) scaling behavior as expected.
For the AO-LinK method, the observed scaling behavior in the
limit of sparse molecules is linear; for the CDD-RI method,
quadratic; and for the QQ-CDD-RI method, sub-cubic. To
show that for the QQ-CDD-RI formulation we indeed only cal-
culate a linear number of significant integrals, we have counted
the number of calculated integrals during each of the calcula-
tions on the linear alkanes. The result is shown in Fig. 4. As
can be seen clearly, the number of integrals shows early on
perfect linear scaling.

D. Large scale calculations

In this section, we show that the methods based on
CDDs also outperform the canonical-RI variant for larger than
double-ζ basis sets. Furthermore, we apply the QQ-CDD-RI
method to present RPA-SOSEX results for the L7 test set of
large, dispersion dominated molecules63 with up to triple-ζ
basis sets.

First, to study the performance of our methods for larger
basis sets, we have performed RPA-SOSEX correlation energy
calculations on linear alkanes up to C80H162 with the canon-
ical RI implementation and the CDD-RI and QQ-CDD-RI
variant using the def2-TZVP basis set. All calculations were
performed using 16 threads on a dual-processor Intel Xeon
CPU E5-2667 machine. The results presented in Fig. 5 show
that both the CDD-RI and the QQ-CDD-RI variant outper-
form the canonical implementation for large systems. The
crossover to the canonical implementation occurs at C60H122

with the CDD-RI method and at C40H82 with the QQ-CDD-RI
method. Furthermore, to show that the QQ-CDD-RI method is
beneficial also for quadruple-ζ basis sets, we have performed
a RPA-SOSEX correlation energy calculation on the C40H82

molecule with the def2-QZVP basis set and the correspond-
ing RI-basis set. Here the calculation of the RPA-SOSEX
correlation energy takes 104 h for the QQ-CDD-RI method,
while the calculation using the RI-canonical implementation
requires 408 h (extrapolated from 8 of the 15 frequency points).

FIG. 4. Number of integrals calculated with the QQ-CDD-RI method for a
set of linear alkanes using the def2-SVP basis set with the corresponding RI
basis set. The attenuated Coulomb metric was employed with ω = 0.1 along
with sparse algebra.

FIG. 5. Timings for the calculations on a set of linear alkanes using the
def2-TZVP basis set with the corresponding RI basis set. The CDD-RI, and
QQ-CDD-RI methods employ the attenuated Coulomb metric with ω = 0.1
along with sparse algebra. Points labelled with an asterisk were estimated
conservatively based on the timings for a subset of the frequency points.

This speed-up of a factor of 3.9 still compares well against
the speed-ups obtained with triple-ζ (speed-up: 4.5) and
double-ζ (speed-up: 5.6) basis sets obtained with the same
method. These results show that also for larger than double-ζ
basis sets significant speed-ups over the canonical implemen-
tation can be obtained with the CDD-RI and QQ-CDD-RI
methods, supported by the dimensionality reduction of the AO
basis set via Cholesky decomposition.

Finally, we present RPA-SOSEX benchmark results for
the L7 test set63 with def2-SVP and def2-TZVP basis sets
along with their corresponding RI-basis sets. The results
shown in Table IV exemplify two important aspects: The first
aspect is that our QQ-CDD-RI variant can also treat large
molecular systems without excessive sparsity in the electronic
structure such as the circumcoronene· · ·guanine-cytosine base
pair complex. The second aspect is that including exchange
effects yields a significant accuracy gain over plain dRPA for
the L7 test set, which can be seen when comparing the results
to dRPA results presented in Ref. 7 obtained with the same
basis set. The RPA-SOSEX results with double-ζ basis set
already improve upon dRPA results with a triple-ζ basis set.
The triple-ζ RPA-SOSEX results show a MAE to the reference
results63 of less than 1 kcal/mol, which is the desired chemical
accuracy.

TABLE IV. Benchmark results showing the root mean squared deviation
(RMSD), mean absolute and mean signed error (MAE and MSE) for the
L7 test set63 of large, dispersion dominated systems as compared to the
reference results. The CDD-dRPA values were taken from Ref. 7. The RPA-
SOSEX values were calculated using the QQ-CDD-RI approach described in
this work with the attenuated Coulomb metric (ω = 0.1) along with sparse
algebra.

RMSD MAE MSE

dRPA (def2-TZVP)7 2.90 2.45 �2.08
RPA-SOSEX (def2-SVP) 2.44 1.94 �0.13
RPA-SOSEX (def2-TZVP) 1.19 0.81 0.11
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V. CONCLUSION

We have introduced three methods that enable efficient
beyond RPA calculations for large molecular systems up to
500 atoms, while the accuracy is under full numerical con-
trol. These developments significantly extend the applicabil-
ity of beyond RPA methods by reducing the computational
cost compared to the canonical formulation with and without
RI. Next to the beyond RPA variants mentioned in the main
text, our methods are obviously also applicable to the short-
range RPA-SOSEX variant recently introduced by us.65 For
the present range of system sizes, we recommend the QQ-
CDD-RI method for general use; since even though it shows
the worst asymptotic scaling behavior of the newly presented
methods, it is most efficient for a wide range of molecular sizes
and shows very good scaling behavior with respect to basis set
size. Furthermore, we have shown that the methods employing
CDDs also allow for significant computational savings when
larger than double-ζ basis sets are used, which ensures the
applicability of these methods, since RPA correlation energies
require rather large basis sets to obtain converged results.66

To this end, range separated variants of RPA correlation ener-
gies67–72 would be a valuable addition to our approach. These
schemes reduce the basis set dependence significantly so
that double-ζ results were shown to be sufficiently accurate
already.73
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APPENDIX: DERIVATION FOR RI-RPA-AXK

To derive the RI-expression for RPA-AXK, we expand
the logarithm and the inverse of (1 � Π0(iω)V) appearing in
Eq. (4) as a series

Tr
{
log (1 −Π0(iω)V)V−1K

}
= Tr

{
−
∞∑

n=1

(Π0(iω)V)nV−1K
n

}
,

(A1)

Tr
{
(1 −Π0(iω)V)−1Π0(iω)K

}
= Tr

{ ∞∑
n=1

(Π0(iω)V)n−1Π0(iω)K
}
. (A2)

For n = 1, the terms of the two series cancel. Inserting the RI
for V and K, one can introduce the definitions of Q(iω) and
Y(iω) [see Eqs. (9) and (13)] using the cyclic invariance of the
trace,

Tr
{
log (1 −Π0(iω)V)V−1K + (1 −Π0(iω)V)−1Π0(iω)K

}
= Tr

{
−
∞∑

n=2

Q(iω)(n−2)Y(iω)
n

+
∞∑

n=2

Q(iω)(n−2)Y(iω)
}
.

(A3)

This can be brought to the closed form of Eq. (11), where again
the first term of each sum cancels.
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Chapter 4

Conclusions and Outlook

This thesis presents developments to increase the efficiency and the accuracy of
DFT and ACFDT methods. For short-range hybrid DFT calculations screening-
methods exploiting the short-range nature of the attenuated Coulomb operator in
linear-scaling exchange methods were introduced to significantly reduce the com-
putational requirements. Enabled by these developments, short-range hybrid DFT
calculations are now computationally similarly expensive as pure DFT, while in-
cluding a fraction of exchange for increased accuracy. This establishes short-range
hybrid DFT as a lower-cost alternative to conventional hybrid DFT for large molec-
ular systems.
In the field of ACFDT methods, this thesis contributes in various different ways.
The optimized transformations and quadratures in combination with the multinode
parallel algorithm mature the RPA to a numerically very accurate and truly large-
scale method. This is shown by a study on the displacement of two COF layers,
which previously was beyond the scope of RPA methods.
Furthermore, the realm of first order RPA analytical gradients is extended from the
few atom scale to systems with several hundred atoms. This allows for the first time
to perform theoretical studies beyond ground state energy calculations for large and
complex systems at the RPA level of theory, which is indispensable in making the
RPA a general purpose, non-empirical alternative to conventional DFT.
Moreover, a new RPA with exchange scheme is put forward, which combines the
benefits of RPA and RPA-SOSEX correlation energies. This results in a more bal-
anced description across systems prone to self-interaction error and static correlation
effects, adding a highly accurate method to the field of RPA with exchange schemes.
Finally, techniques are presented allowing for linear- and low-scaling calculation of
RPA with exchange correlation energies. These developments allow to show the
superiority of RPA-SOSEX over plain RPA and other correlation methods such as
MP2 for large, dispersion dominated systems. In the future, this will enable to fur-
ther test and apply beyond RPA methods to large and complex chemical systems.
Together these developments represent a significant contribution to the field of
ACFDT methods, which will enable to use RPA and RPA with exchange meth-
ods in chemical research, opening the way to accurate theoretical insights.
Future projects will aim to reduce the large basis set requirements of ACFDT cal-
culations and circumvent the dependence on the semi-local DFT reference. For the
former problem we currently develop the combination of linear- and low-scaling RPA
and RPA with exchange methods with range-separated DFT approaches. Here the
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short-range correlation effects, which include the electron-electron cusp are described
with a short-range density functional, which shows faster convergence with the ba-
sis set. The long-range correlation is then accurately described with the ACFDT
methods with moderately sized basis sets.
To cure the dependence of ACFDT methods on the reference KS determinant, we
currently devise a self-consistent AO-RPA method. Here, an RPA Hamiltonian, de-
fined as the derivative of the RPA energy expression with respect to the one-particle
density matrix, is employed. Most of the necessary ingredients for this procedure
also appear in the presented low-scaling analytical RPA gradients. Self-consistent
RPA will further reduce the dependence of ACFDT methods on conventional DFT.
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