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Abstract

Let R be a commutative ring. An important question in the study of projective modules

is under which circumstances a projective R-module P is cancellative, i.e. under which

circumstances any isomorphism P `Rk � Q`Rk for some projective R-module Q and k A 0

already implies P � Q.

If R is an affine algebra of dimension d over an algebraically closed field k, then it is known

that projective R-modules of rank r C d are cancellative. While it is known that projective

modules of rank r � d � 2 are not cancellative in general, it remains an open question

whether projective modules of rank r � d � 1 are cancellative or not. By substantially

using a map called the Vaserstein symbol, Fasel-Rao-Swan could prove that at least Rd�1

is cancellative if d C 4, �d � 1�! > k� and R is normal.

Motivated by the cancellation problem of projective modules, the aim of this work is

to construct a generalized Vaserstein symbol associated to any projective R-module P0

of rank 2 with a trivialization of its determinant: The generalized Vaserstein symbol is

defined on the orbit space Um�P0`R�~E�P0`R� of the set Um�P0`R� of epimorphisms

P0 `R � R under the right action of the subgroup E�P0 `R� of the group Aut�P0 `R�
of automorphisms of P0 `R generated by elementary automorphisms and maps into the

abelian group Ṽ �R�, which can be identified with the so-called elementary symplectic Witt

group WE�R�.
We prove that the generalized Vaserstein symbol is a bijection if R is a regular Noetherian

ring of dimension 2 or a regular affine algebra of dimension 3 over a perfect field k with

c.d.�k� B 1 and 6 > k�. This enables us to generalize a result of Fasel-Rao-Swan on

transformations of unimodular rows via elementary matrices. Furthermore, by means of

the generalized Vaserstein symbol, we can give a necessary and sufficient condition for the

triviality of the orbit space Um�P0`R�~SL�P0`R� over affine algebras of dimension 4 over

an algebraically closed field k. We can also classify stably isomorphic oriented projective

modules of rank 2 with a trivial determinant over affine algebras of dimension 3 over finite

fields.





Zusammenfassung

Sei R ein kommutativer Ring. Eine wichtige Frage im Studium projektiver Moduln ist,

unter welchen Bedingungen ein projektiver R-Modul P kürzbar ist, d.h. unter welchen

Bedingungen jeder Isomorphismus P `Rk � Q`Rk für einen projektiven R-Modul Q und

k A 0 bereits P � Q impliziert.

Ist R eine affine Algebra von Dimension d über einem algebraisch abgeschlossenen Körper

k, dann sind projektive R-Moduln von Rang r C d kürzbar. Während projektive R-Moduln

von Rang r � d � 2 nicht immer kürzbar sind, ist es immer noch eine offene Frage, ob pro-

jektive Moduln von Rang r � d�1 kürzbar sind oder nicht. Fasel-Rao-Swan konnten unter

Verwendung des sogenannten Vaserstein-Symbols beweisen, dass zumindest Rd�1 kürzbar

ist, falls d C 4, �d � 1�! > k� und R normal ist.

Motiviert vom Studium projektiver Moduln ist es das Ziel dieser Arbeit, ein verallge-

meinertes Vaserstein-Symbol, das jedem projektiven R-Modul P0 von Rang 2 mit einer

Trivialisierung seiner Determinante zugeordnet wird, zu definieren: Diese Abbildung ist

auf dem Orbitraum Um�P0 `R�~E�P0 `R� der Menge Um�P0 `R� der Epimorphismen

P0`R � R unter der Rechtswirkung der von den elementaren Automorphismen erzeugten

Untergruppe E�P0 ` R� der Automorphismengruppe Aut�P0 ` R� von P0 ` R definiert

und bildet in die abelsche Gruppe Ṽ �R� ab, die sich mit der elementaren symplektischen

Witt-Gruppe WE�R� identifizieren lässt.

Wir beweisen, dass das verallgemeinerte Vaserstein-Symbol eine Bijektion ist, falls R ein

regulärer noetherscher Ring von Dimension 2 oder eine reguläre affine Algebra von Di-

mension 3 über einem perfekten Körper k mit c.d.�k� B 1 und 6 > k� ist. Dies ermöglicht

es uns, ein Resultat von Fasel-Rao-Swan über die Umformbarkeit unimodularer Reihen

mittels elementarer Matrizen zu verallgemeinern. Außerdem können wir anhand des ve-

rallgemeinerten Vaserstein-Symbols eine notwendige und hinreichende Bedingung für die

Trivialität des Orbitraums Um�P0 ` R�~SL�P0 ` R� über einer affinen Algebra von Di-

mension 4 über einem algebraisch abgeschlossenen Körper k finden. Wir können ebenfalls

stabil isomorphe orientierte projektive Moduln von Rang 2 mit trivialer Determinante über

affinen Algebren von Dimension 3 über endlichen Körpern klassifizieren.
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Introduction

In this thesis, we construct a generalized Vaserstein symbol map and explore its applications

to the classification of finitely generated projective modules. Projective modules were first

introduced in 1956 by Henri Cartan and Samuel Eilenberg (cp. [CE]) and have since then

been widely studied by many mathematicians. As a matter of fact, if R is a commutative

ring and X � Spec�R�, then finitely generated projective R-modules correspond to locally

free coherent sheaves of OX-modules. The study of finitely generated projective modules

can hence be interpreted as the study of algebraic vector bundles over affine schemes.

First of all, note that every finitely generated projective R-module P gives rise to a map

rankP � Spec�R�� Z

which assigns to every p > Spec�R� the rank of the finitely generated projective and hence

free module Pp over Rp. This map is locally constant and hence continuous if we equip

Z with the discrete topology. Since Spec�R� is quasi-compact, the map rankP takes only

finitely many values ri, i � 1, ..., n. The decomposition Spec�R� � �ni�1 rank
�1
P �ri� induces

decompositions R � R1 � ... �Rn and P � P1 ` ... ` Pn, where Pi � P aR Ri for i � 1, ..., n.

Since any Pi is a finitely generated projective Ri-module such that rankPi
� Spec�Ri� � Z

is a constant map, we can restrict our study of finitely generated projective modules to

projective modules of constant rank. For any commutative ring R and r C 0, we let Vr�R�
denote the set of isomorphism classes of finitely generated projective R-modules of constant

rank r. Then we consider the stabilization maps

φr � Vr�R�� Vr�1�R�, �P �( �P `R�.

The main goal in the classification of finitely generated projective modules is to give coho-

mological descriptions of the sets Vr�R� for all r C 0 and of the images and the fibers of the

stabilization maps above. Of course, any class of a projective R-module P � of rank r � 1

lies in the image of the map φr if and only if P � � P `R for some P of rank r. In general,
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the fiber φ�1
r ��P `R�� can be identified with the orbit space Um�P `R�~Aut�P `R� of the

set Um�P `R� of R-linear epimorphisms P `R � R under the right action of the group

Aut�P `R� of R-linear automorphisms of P `R. If P is free, we can identify Um�P `R�
with the set Umr�1�R� of unimodular rows of length r�1, Aut�P `R� with GLr�1�R� and

hence φ�1
r ��Rr�1�� with Umr�1�R�~GLr�1�R�.

In the end, the goal is to describe the set of isomorphism classes of finitely generated

projective R-modules. The direct sum of projective R-modules endows this set with the

structure of an abelian monoid. Its group completion is just the group K0�R�; in other

words, K0�R� is the quotient of the free abelian group generated by the isomorphism

classes �P � of finitely generated projective R-modules P modulo the subgroup generated

by �P � � �Q� � �P ` Q� for all such P and Q. By abuse of notation, we also denote by

�P � the class of a finitely generated projective R-module in K0�R�. General properties

of group completions imply that the classes of finitely generated projective R-modules P

and Q coincide in K0�R� if and only if P ` Rn � Q ` Rn for some n C 0. Furthermore,

if we denote by �Spec�R�,Z� the group of continuous maps from Spec�R� to Z (with the

discrete topology), then there is a natural group homomorphism

rank �K0�R�� �Spec�R�,Z�
induced by the rank maps for all finitely generated projective modules over R. In fact, this

rank map is a split surjection; a right-inverse of rank can be defined as follows: First of

all, note that �Spec�R�,Z� is the group completion of the abelian monoid �Spec�R�,N� of

continuous maps from Spec�R� to N (with the discrete topology). If f � Spec�R� � N is

continuous, we let ri, i � 1, ..., n, denote the finitely many values of f and R � R1�...�Rn be

the corresponding decomposition of R. Then we let Rf be the direct sum of the R-modules

Rri
i , i � 1, ..., n. The assignment f ( Rf induces a homomorphism �Spec�R�,Z��K0�R�,

which clearly defines a right-inverse of rank. Hence we obtain a split short exact sequence

0� K̃0�R��K0�R�� �Spec�R�,Z�� 0,

where we let K̃0�R� denote the kernel of rank. It is also called the reduced K0-group of R

and yields a stable classification of finitely generated projective modules over R as follows:

As above, we let Vr�R� denote the set of isomorphism classes of projective R-modules of

constant rank r. We can equip these sets with basepoints by taking the free R-modules of

each particular rank. Then we form the direct limit V�R� �� limrC0Vr�R� with respect to

the stabilization maps. By abuse of notation, we also denote by �P � the class of a finitely

generated projective module P of constant rank in V�R�. We obtain maps
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πr � Vr�R�� V�R�
for all r C 0. Since the stabilization maps are all pointed, V�R� is also pointed by π0��0��.
We then define maps fr � Vr�R� � K̃0�R� for all r C 0 by fr��P �� � �P � � �Rr�. Clearly,

these maps are compatible with the stabilization maps and hence induce a map

f � V�R�� K̃0�R�,
which can easily be checked to be a pointed bijection. It follows that the pointed set V�R�
can be endowed with the structure of an abelian group via the bijection f � V�R� �

Ð� K̃0�R�.
Thus, the stable classification of finitely generated projective modules already becomes part

of a theory which behaves in many aspects like a cohomology theory. The pointed set V�R�
can consequently be studied and computed via cohomological methods. For this reason

and furthermore by analogy with the study of topological vector bundles, it is reasonable

to try to extend these cohomological methods to the unstable classification of finitely gen-

erated projective modules, i.e. to the study of the pointed sets Vr�R� and the stabilization

maps φr for r C 0.

Let us now review the major results in the classification of finitely generated projective

modules over commutative rings. In this thesis, we will mainly be interested in affine alge-

bras over fields or, more generally, Noetherian rings. As explained above, one can restrict

oneself to projective modules of constant rank; in fact, since the spectrum of a Noethe-

rian ring is a Noetherian topological space with only finitely many connected components,

it is in this case sufficient to study projective modules over Noetherian rings R such that

Spec�R� is connected. The first important classification results were proven by Jean-Pierre

Serre and by Hyman Bass for Noetherian commutative rings:

Theorem (Serre). Let R be a commutative Noetherian ring of dimension d. Then any

finitely generated projective R-module P of constant rank r A d is of the form P � P �
`Rr�d

for some projective R-module P � of constant rank d.

In his original paper, Jean-Pierre Serre proved this result under the assumption that

Spec�R� is a connected topological space (cp. [JPS1, Théorème 1]). The theorem above

then follows by applying his result connected component by connected component.

Theorem (Bass). Let R be a commutative Noetherian ring of dimension d. If P and

Q are finitely generated projective R-modules of constant rank r A d, then P `Rk � Q`Rk
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for some k C 0 implies P � Q.

As a matter of fact, Bass could prove that in the situation of the theorem the subgroup

E�P `R� of Aut�P `R� generated by elementary automorphisms of P `R acts transitively

on the right on Um�P `R�; in particular, the orbit spaces Um�P `R�~E�P `R� and hence

Um�P `R�~Aut�P `R� are trivial (cp. [HB, Chapter IV, Theorem 3.4 and Corollary 3.5]).

As a special case, one obtains that Umr�1�R�~Er�1�R� is trivial for such rings.

The theorems by Jean-Pierre Serre and Hyman Bass in particular show that we may re-

strict to projective modules of constant rank r B dim�R� � 1: It follows immediately from

the theorems that, for a Noetherian ring R of dimension d, the map φr � Vr�R�� Vr�1�R�
is injective if r C d � 1 and surjective if r C d; in particular, K̃0�R� � V�R� � Vd�1�R�.
Furthermore, the map φ1 � V1�R�� V2�R� is always injective for an arbitrary commutative

ring R as P � det�P ` R� � det�Q ` R� � Q for projective modules P and Q of rank 1

such that P ` R � Q ` R. In particular, if R is a Noetherian ring of dimension 1, then

K̃0�R� � V�R� � V1�R� � Pic�R�.
For general Noetherian rings or affine algebras over arbitrary fields, the result by Bass is

the best possible: Indeed, let A � R�x, y, z�~`x2
� y2

� z2
� 1e be the real algebraic 2-sphere,

which is an affine algebra over R of dimension 2. Then the unimodular row �x, y, z� of

length 3 over A cannot be completed to an invertible matrix. In particular, the kernel P

of the homomorphism �x, y, z� � A3 � A is a non-free stably free A-module of rank 2. In

order to see this, note that any triple �a, b, c� > A3 induces a vector field S2 � R3; the row

�x, y, z� then corresponds to the vector field which is pointing radially outward. Hence

any element of P gives a vector field on S2 which is tangent to the 2-sphere. Now if P

was a free A-module of rank 2, then any free A-basis �f, g� would give two vector fields

f, g � S2 � R3 such that f�p� and g�p� are linearly independent for every point p > S2. But

it follows from a well-known theorem by Brouwer (cp. [Br, Satz 2]) that this is impossible.

Consequently, P cannot be free and the map φ2 � V2�A�� V3�A� cannot be injective.

Since the result by Bass cannot be improved for Noetherian rings or affine algebras over

arbitrary fields, we will henceforth consider affine algebras over algebraically closed fields.

In [S1], Andrei Suslin proved the following cancellation theorem for affine algebras over

algebraically closed fields:

Theorem (Suslin). Let R be an affine algebra of dimension d over an algebraically closed

field k. Then any finitely generated projective R-module P of rank d is cancellative, i.e.
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any isomorphism P `Rk � Q`Rk for some Q and k C 0 implies P � Q.

For any given dimension d, the cancellation theorem above holds for all affine algebras

of dimension d over an algebraically closed field k if and only if it holds for all reduced

affine algebras of dimension d over k (cp. [HB, Chapter III, Proposition 2.12]). For a

reduced affine algebra R of dimension d over an algebraically closed field k and a pro-

jective module P of rank d, Andrei Suslin then proves that Um�P ` R�~Aut�P ` R� is

trivial by first studying the orbit space Um�P ` R�~E�P ` R�, where E�P ` R� is the

subgroup of Aut�P `R� generated by elementary automorphisms; in fact, he does this in

the language of unimodular elements by using a version of Swan’s Bertini theorem (cp.

[Sw, Theorem 1.3]). Writing any a > Um�P `R� as �aP , aR� (where aP is the restriction of

a to P and aR is the element of R corresponding to the restriction of a to R respectively),

he proves that any a > Um�P `R� can be transformed via elementary automorphisms to

an element b > Um�P ` R� of the form b � �bP , bdR� such that P aR R~bRR is free and

dim�R~bRR� B d � 1. For elements of this form, he then proves that they are equivalent to

the projection P `R � R with respect to the action of Aut�P `R� on Um�P `R� as soon

as Aut�P aR R~bRR� acts transitively on Um�P aR R~bRR� (cp. [S1, Lemma 2]). This

enables him to prove his theorem by induction on d.

Again using a version of Swan’s Bertini theorem (cp. [Sw, Theorem 1.5]), Andrei Suslin

could also prove in [S5] that if R is a normal affine algebra of dimension d over a field k

such that c.d.�k� B 1 and d! > k�, then stably free R-modules of rank d are free. Using

similar methods, Shrikant Bhatwadekar could prove that any projective R-module of rank

d is cancellative whenever R is an affine algebra of dimension d over an infinite perfect field

k such that c.d.�k� B 1 and d! > k� (cp. [B, Theorem 4.1 and Remark 4.2]).

Henceforth, let R be a smooth affine algebra of dimension d over an algebraically closed

field k and let X � Spec�R�. By analogy with the situation in algebraic topology, there

are Chern classes ci�P � > CH i�X�, i C 0, associated to any finitely generated projective

R-module P of rank r, which satisfy the expected properties: First of all, one has c0�P � � 1

and ci�P � � 0 for i A r. Furthermore, one has a Whitney sum formula, i.e. for any short

exact sequence

0� P1 � P2 � P3 � 0

of finitely generated projective R-modules, one has c�P2� � c�P1� � c�P3� > CH��X�, where

c�Pk� � PiC0 ci�Pk� denotes the total Chern class of Pk, k � 1,2,3. The Chern classes

induce maps
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�c1, ..., cr� � Vr�R��Lr
i�1CH

i�X�

for all r C 1. It is in general very difficult to determine whether these maps are injective

or surjective, but some results have been proven in lower dimensions:

We let G0�R� be the quotient of the free abelian group generated by isomorphism classes

�M� of finitely generated R-modules M modulo the subgroup generated by the elements

of the form �M1� � �M3� � �M2� for any short exact sequence 0 � M1 � M2 � M3 � 0 of

finitely generated R-modules. There is an obvious map

K0�R�� G0�R�, �P �( �P �,

which is an isomorphism because R is assumed to be smooth; this basically follows from

the fact that any finitely generated R-module has a finite projective resolution.

The group G0�R� (and hence also K0�R�) has an obvious filtration �F iG0�R��iC0, where

F iG0�R� is defined as the subgroup of G0�R� generated by the classes of finitely generated

R-modules whose support has codimension C i. We denote by �F iK0�R��iC0 the induced

filtration of K0�R�. For all i C 1, the ith Chern class induces a group homomorphism

ci � F iK0�R�~F i�1K0�R�� CH i�X�.

Moreover, there is an isomorphism K0�R�~F 1K0�R�� CH0�X� induced by the 0th Chern

class and rank. Furthermore, the groups F iG0�R�~F i�1G0�R� are in fact generated by

the classes �R~p� for prime ideals of height i. The assignment Spec�R~p� ( �R~p� factors

through rational equivalence and hence induces a natural surjective homomorphism

ϕi � CH i�X�� F iK0�R�~F i�1K0�R�.

It is well-known that both composites ϕi Xci and ci Xϕi are multiplication by ��1�i�1�i�1�!
for i C 1. In particular, the maps ϕi and ci are automatically isomorphisms if i B 2. This

leads to a classification of projective modules of rank 2 on smooth affine surfaces:

Theorem. Let R be a smooth affine algebra of dimension 2 over an algebraically closed

field k and let X � Spec�R� be connected. Then the Chern classes induce a bijection

�c1, c2� � V2�R�� CH1�X� �CH2�X�.

The theorem was basically a consequence of the fact that projective modules of rank 2
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over smooth affine algebras of dimension 2 over algebraically closed fields are cancella-

tive. This was first proven in [MS] and generalized by Suslin’s cancellation theorem above.

The rough idea of the proof is the following: Since projective modules of rank 2 over R

are cancellative, we know that K̃0�R� � V2�R�. Furthermore, we have two short exact

sequences

0� F 1K0�R��K0�R�� CH0�X�� 0

and

0� F 2K0�R�� F 1K0�R�� CH1�X�� 0.

Since the homomorphism K0�R� � CH0�X� � Z corresponds to the rank map, it fol-

lows that K̃0�R� � F 1K0�R�. Moreover, the second Chern class induces an isomorphism

F 2K0�R� � CH2�X� as F iK0�R� � 0 for i C 3. The theorem above can be deduced from

these observations.

If R is a smooth affine algebra of dimension 3 over an algebraically closed field, then one

can also use the filtration �F iK0�R��iC0 in order to study the corresponding maps on V2�R�
and V3�R� induced by Chern classes. Indeed, the following results were proven by N. Mo-

han Kumar and M. Pavaman Murthy in [KM]:

Theorem (Kumar-Murthy). Let R be a smooth affine algebra of dimension 3 over an

algebraically closed field k with char�k� x 2 and let X � Spec�R� be connected. Then

the map �c1, c2� � V2�R� � CH1�X� � CH2�X� is surjective and, moreover, the map

�c1, c2, c3� � V3�R�� CH1�X� �CH2�X� �CH3�X� is bijective.

One of the main ingredients in their proof was the fact that CH3�X� is uniquely 2-

divisible and hence isomorphic to F 3K0�R� in the situation of the theorem (cp. [Sr]).

Nevertheless, they were still unable to prove with the filtration �F iK0�R��iC0 that the map

�c1, c2� � V2�R� � CH1�X� �CH2�X� is injective. This was established by Aravind Asok

and Jean Fasel in [AF2] using A1-homotopy theory.

The A1-homotopy category H�k� and its pointed version HY�k� over a base field k were

introduced by Fabien Morel and Vladimir Voevodsky in [MV] and provide a framework to

apply methods used in the classical homotopy theory of topological spaces to questions in

algebraic geometry. We denote by Smk the category of smooth separated schemes of finite

type over k. Note that we can interpret any smooth k-scheme as a Nisnevich sheaf of sets
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Smop
k � Sets; since any set can be interpreted as a constant simplicial set, we can interpret

any smooth k-scheme as a simplicial Nisnevich sheaf of sets. Furthermore, any simplicial

set S can also be considered a simplicial Nisnevich sheaf of sets by setting S�Y � � S for any

Y > Smk and S�f� � idS for any morphism in Smk. Hence the category ∆opShvNis�Smk�
of simplicial Nisnevich sheaves of sets over Smk contains both the category Smk and the

category of simplicial sets. As a first step, one equips this category with a model structure

called the simplicial model structure. A morphism between simplicial Nisnevich sheaves is

a weak equivalence with respect to the simplicial model structure if it induces weak equiv-

alences of simplicial sets on the stalks at all points of the Nisnevich topology. One then

obtains the A1-model structure from the simplicial model structure by formally inverting

the projections X � A1
k � X for all X > ∆opShvNis�Smk�. The weak equivalences of this

model structure are called A1-weak equivalences. The A1-homotopy category H�k� is then

defined as the homotopy category of ∆opShvNis�Smk� with respect to the A1-model struc-

ture and is thus obtained from ∆opShvNis�Smk� by inverting the A1-weak equivalences.

Analogously, one defines the pointed A1-model structure on the category of pointed Nis-

nevich sheaves of sets; its weak equivalences are called pointed A1-weak equivalences. The

pointed A1-homotopy category HY�k� is then defined as its homotopy category and hence

obtained from the category of pointed simplicial Nisnevich sheaves by inverting pointed

A1-weak equivalences.

We refer to objects of H�k� (or of HY�k�) as (pointed) spaces. For two spaces X and Y , we

denote by �X ,Y�A1 the set of morphisms from X to Y in H�k�; similarly, for two pointed

spaces �X , x� and �Y , y�, we denote by ��X , x�, �Y , y��A1,Y the set of morphisms from �X , x�
to �Y , y� in HY�k�. For any pointed space �X , x� and i C 0, one can define A1-homotopy

sheaves πA1

i �X , x�, which are Nisnevich sheaves of sets on Smk if i C 0, Nisnevich sheaves

of groups on Smk if i C 1 and Nisnevich sheaves of abelian groups on Smk if i C 2.

One nice feature of A1-homotopy theory is that there exists a representability result for

algebraic vector bundles over affine schemes which is the algebro-geometric analogue of

Steenrod’s homotopy classification of topological vector bundles (cp. [Ste, §19.3]): For any

r C 0, there is a natural bijection

Vr�R� � �X,BGLr�A1

for any smooth affine scheme X � Spec�R� over k, where BGLr is the simplicial classifying

space of the scheme GLr of invertible r � r-matrices. This result was proven in its greatest

generality in [AHW] and is due to Fabien Morel, Marco Schlichting, Aravind Asok, Marc
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Hoyois and Matthias Wendt.

By analogy with the situation in topology, one can use a version of a Postnikov tower

in A1-homotopy theory in order to compute the set �X,BGLr�A1 : For any pointed space

�Y , y� such that πA1

0 �Y , y� � 0, there exist pointed spaces �Y�i�, y�, pointed morphisms

pi � �Y , y�� �Y�i�, y� and pointed morphisms fi � �Y�i�1�, y�� �Y�i�, y� such that

1) πA1

j �Y�i�, y� � 0 for j A i,

2) the morphism pi induces an isomorphism on A1-homotopy sheaves in degree B i,

3) the morphism fi is an A1-fibration whose homotopy fiber is an Eilenberg-MacLane

space K�πA1

i�1�Y , y�, i � 1�,
4) the induced morphism �Y , y�� holimi�Y i, y� is a pointed A1-weak equivalence.

In addition, there exists a homotopy cartesian square of the form

Y�i�1� //

fi
��

BπA1

1 �Y , y�
��

Y�i� // KπA1
1 �Y,y��πA1

i�1�Y , y�, i � 2�,

where BπA1

1 �Y , y� is the classifying space of πA1

1 �Y , y� and KπA1
1 �Y,y��πA1

i�1�Y , y�, i � 2� is a

twisted Eilenberg-MacLane space.

For any smooth k-scheme X, we let X� � X @ � be the disjoint union of X and an artifi-

cially added basepoint. One can compute the set �X,Y�A1 � �X�, �Y , y��A1,Y by means of

the spaces �Y�i�, y�. Indeed, because of property 4�, a morphism X� � �Y , y� in HY�k� is

given by a sequence of compatible morphisms from X� to the spaces �Y�i�, y� in HY�k�.
A morphism X� � �Y�i�, y� lifts to a morphism X� � �Y�i�1�, y� if and only if the composite

X� � �Y�i�, y��KπA1
1 �Y,y��πA1

i�1�Y , y�, i�2� lifts to a map BπA1

1 �Y , y�. The set of morphisms

from X� to KπA1
1 �Y,y��πA1

i�1�Y , y�, i � 2� as well as the set of lifts of a morphism X� � Y�i�

to Y�i�1� have cohomological descriptions. Very roughly speaking, the A1-Postnikov tower

above translates the computation of �X,Y�A1 into cohomological terms.

Now let the base field k be algebraically closed such that char�k� x 2, let �Y , y� be

�BGL2,�� with its canonical basepoint and let X � Spec�R� be a smooth affine three-

fold over k. First of all, one has πA1

0 �BGL2,�� � 0 and one can use the A1-Postnikov

tower in order to compute V2�R�. In [AF2], Aravind Asok and Jean Fasel develop a suf-

ficient understanding of the higher A1-homotopy sheaves of BGL2 and of their Nisnevich
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cohomology in order to compute �X,BGL2�A1 � �X�, �BGL2,���A1,Y. In particular, their

computations show that �X�, �BGL2,���A1,Y � �X�, �BGL�2�
2 ,���A1,Y.

Again using the A1-Postnikov tower, one can see that any morphism X� � �BGL�2�
2 ,�� in

HY�k� is uniquely determined by pairs of cohomology classes �ξ,α�, where ξ corresponds

to a class in �X�, �BGL�1�
2 ,���A1,Y � �X�, �BGm,���A1,Y � CH1�X� and α corresponds to a

class in �X�, �K�KM
2 ,2�,���A1,Y � H2�X,KM

2 � � CH2�X�. Aravind Asok and Jean Fasel

then verify that these classes are in fact the first and second Chern classes of the associated

finitely generated projective R-module. This yields:

Theorem (Asok-Fasel). Let R be a smooth affine algebra of dimension 3 over an al-

gebraically closed field k such that char�k� x 2 and let X � Spec�R�. Then the map

�c1, c2� � V2�R�� CH1�X� �CH2�X� is bijective.

In particular, this completes the classification of finitely generated projective modules over

smooth affine threefolds. As an immediate corollary, one obtains the following cancellation

theorem:

Theorem (Asok-Fasel). Let R be a smooth affine algebra of dimension 3 over an alge-

braically closed field k with char�k� x 2. Then any finitely generated projective R-module

P of rank 2 is cancellative, i.e. any isomorphism P `Rk � Q `Rk for some Q and some

k A 0 implies P � Q.

This raises the question whether a projective module P of rank d � 1 over a smooth affine

algebra R of dimension d over an algebraically closed field is cancellative in general. This

is an open question, but the special case P � Rd�1 has been settled in [FRS, Theorem 7.5]:

Theorem (Fasel-Rao-Swan). Let R be a normal affine algebra of dimension d C 3 over

an algebraically closed field k with �d � 1�! > k�; if d � 3, furthermore assume that R is

smooth. Then stably free modules of rank d � 1 are free, i.e. Rd�1 is cancellative.

In order to prove the theorem, one only has to show that any unimodular row a � �a1, ..., ad�
of length d is equivalent to �1,0, ...,0� with respect to the right action of GLd�R� on

Umd�R�. In fact, it follows from a theorem by Suslin that any unimodular row of the form

�b�d�1�!
1 , b2, ..., bd� is completable to an invertible matrix. In particular, it is sufficient to
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prove that a is equivalent to a row of this form with respect to the action of GLd�R�.
For this purpose, we set I � `a4, ..., ade and let B � R~I. Then we consider the map

Um3�B�~E3�B�� Umd�R�~Ed�R�, �b̄1, b̄2, b̄3�( �b1, b2, b3, a4, ..., ad�,

which is easily seen to be well-defined. It follows that it suffices to show that �ā1, ā2, ā3� is

equivalent to a row �b̄�d�1�!
1 , b̄2, b̄3� with respect to the action of E3�B�. As a consequence

of Swan’s Bertini theorem (cp. [Sw, Theorem 1.5]), we can actually assume that B is a

smooth threefold over k. Furthermore, there is a map

V � Um3�B�~E3�B��WE�B�

called the Vaserstein symbol, which maps into the so-called elementary symplectic Witt

group (cp. [SV, §3]). In case of a smooth threefold over a field with the properties of k,

it is known that this map is a bijection (cp. [RvdK, Corollary 3.5]) and hence induces

a group structure on Um3�B�~E3�B�. Furthermore, one has nV �b̄1, b̄2, b̄3� � V �b̄n1 , b̄2, b̄3�
and hence n�b̄1, b̄2, b̄3� � �b̄n1 , b̄2, b̄3� for all �b̄1, b̄2, b̄3� with respect to the group structure

induced by the Vaserstein symbol.

The groupWE�B� is actually a reduced higher Grothendieck-Witt group; using the Gersten-

Grothendieck-Witt spectral sequence, one can prove that it is divisible prime to char�k�.
This implies in particular that there exists a unimodular row �b̄1, b̄2, b̄3� of length 3 over

B such that �ā1, ā2, ā3� � �d � 1�!�b̄1, b̄2, b̄3� � �b̄�d�1�!
1 , b̄2, b̄3� in Um3�B�~E3�B�, which con-

cludes the proof given in [FRS].

As already mentioned, the general case of a projective module P of rank d � 1 remains an

open problem. Of course, one can also ask whether projective modules of rank B d � 2 are

cancellative, but this is not true in general: For any prime number p, N. Mohan Kumar

constructed in [NMK] examples of non-free stably free modules of rank p over a smooth

affine algebra of dimension p � 2 over an algebraically closed field.

Given any polynomial f�X� of degree p over a field K with f�0� � a > K�, N. Mohan

Kumar recursively defines polynomials by

F1�X0,X1� �Xp
1f�X0

X1
� and

Fi�1�X0, ...,Xi�1� � F1�Fi�X0, ...,Xi�, a pi�1
p�1 Xpi

i�1�.

Clearly, the polynomial Fn is homogeneous of degree pn. Then he proves that Fn is ir-

reducible if f�Xpn�1� is irreducible. In particular, if f�Xpp� is irreducible, then Fp�1 is
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irreducible. Under this assumption, he then considers the smooth affine scheme over K

defined by X � Pp�1
K � V �Fp�1�.

As a next step, he constructs a Zariski covering of X given by Y � �Pp�1
K � V �Fp�� 9X

(where Fp is naturally viewed as a polynomial in p�2 variables) and Z � �Pp�1
K �V �G��9X,

where

G�X0, ...,Xp�1� � Fp�X0, ...,Xp� � a pp�1
p�1 Xpp

p�1.

Since Fp�1 > `Fp,Ge, one clearly has X � Y 8Z. Then he considers the smooth affine scheme

Y 9Z of dimension p � 1 over K.

He further shows that the point y � �0 � 0 � ... � 0 � 1 � 1� is a complete intersection in Y

and hence corresponds to a maximal ideal my in OY �Y � generated by a regular sequence

�b1, ..., bp�1� of elements in OY �Y �. Since y ¶ Z, the sequence defines a unimodular row of

length p � 1 over OY 9Z�Y 9 Z�. Using intersection theory, N. Mohan Kumar then proves

that this unimodular row cannot be completed to an invertible matrix over OY 9Z�Y 9Z�
and hence defines a non-free stably free module of rank p over OY 9Z�Y 9Z�.
If we let K � k�T � be the function field in one variable over an algebraically closed field k

and f�X� � Xp
� T , then the construction gives an example of a smooth affine algebra of

dimension p � 1 over k�T � which admits a non-free stably free module of rank p. Clearing

denominators, one obtains a smooth affine scheme XK � Spec�RK� of dimension p� 2 over

k together with a non-free stably free RK-module of rank p.

For p � 2, the construction gives in particular an example of a smooth affine algebra RK

of dimension 4 which admits a non-free stably free module of rank 2. As a consequence,

the maps φ2 � V2�RK� � V3�RK� and �c1, c2� � V2�RK� � CH1�XK� �CH2�XK� cannot be

injective.

IfR is a smooth affine algebra of dimension 4 over an algebraically closed field, the classifica-

tion of finitely generated projective R-modules can therefore not be completely determined

by the intersection theory of the underlying affine scheme X � Spec�R�; the classification

of projective modules of rank 2 seems to be a particularly subtle problem. In view of N.

Mohan Kumar’s examples, it is natural to ask whether there is a cohomological criterion

for a projective R-module of rank 2 to be cancellative.

In this thesis, we investigate the cancellation problem of finitely generated projective mod-

ules, i.e. the question whether an isomorphism P `Rk � Q`Rk for projective modules P

and Q over a commutative ring R and k A 0 implies that P � Q. As we have seen above,
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the usual approach to this problem is to study the orbit spaces Um�P ` R�~E�P ` R�.
Motivated by the methods used by Fasel-Rao-Swan in the proof of their results on stably

free modules, we construct a generalized Vaserstein symbol map

Vθ0 � Um�P0 `R�~E�P0 `R�� Ṽ �R�
associated to any projective R-module P0 of rank 2 with a fixed trivialization θ0 of its

determinant, where R is a commutative ring and Ṽ �R� is a group which is canonically

isomorphic to the elementary symplectic Witt group WE�R�.
By means of this map, we generalize the approach of Fasel-Rao-Swan to the cancellation

problem of projective modules of rank d�1 over smooth affine algebras of dimension d over

algebraically closed fields and, moreover, we study the cohomological obstructions for the

cancellation of projective modules of rank 2 with trivial determinant over smooth affine

algebras of dimension 4 over algebraically closed fields. Our applications of the generalized

Vaserstein symbol in this thesis are representative of methods and techniques that, we

think, might be useful for future developments in the study of projective modules.

Overview of the main results. Let R be a commutative ring and, furthermore, let

P0 be a finitely generated projective R-module of constant rank 2 with a fixed trivializa-

tion θ0 � R
�

Ð� det�P0� of its determinant. In order to explain our results, let us fix some

notation first: For all n C 3, we let Pn � P0 ` Re3 ` ... ` Ren be the direct sum of P0

and free R-modules of rank 1 with explicit generators ei, i � 3, ..., n. Furthermore, we

let πk,n � Pn � R be the projections onto the free direct summands of rank 1 with index

k � 3, ..., n. Any a > Um�Pn� can be written as �a0, a3, ..., an�, where a0 is the restriction

of a to P0 and any ai � a�ei�, i � 3, ..., n, corresponds to the restriction of a to Rei. We let

E�Pn� denote the subgroup of the group Aut�Pn� of automorphisms of Pn generated by el-

ementary automorphisms. Note that there are embeddings E�Pn�� E�Pn�1� for all n C 3;

we let Eª�P0� denote the direct limit of the groups E�Pn� via these embeddings. Moreover,

we let Um�Pn� denote the set of epimorphisms Pn � R and we let Unim.El.�Pn� denote

the set of unimodular elements of Pn. The group Aut�Pn� acts on the right on Um�Pn� and

on the left on Unim.El.�Pn�. Evidently, the same also holds for any subgroup of Aut�Pn�.
As already mentioned, we construct a generalized Vaserstein symbol

Vθ0 � Um�P0 `R�~E�P0 `R�� Ṽ �R�
associated to P0 and the fixed trivialization θ0 of its determinant (cp. Theorem 4.6). The

terminology is justified by the following observation: If we take P0 � R2 and let e1 � �1,0�
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and e2 � �0,1�, then it is well-known that there is a canonical isomorphism θ0 � R
�

Ð� det�R2�
given by 1 ( e1 , e2. As we will see, the generalized Vaserstein symbol associated to �θ0

then coincides with the usual Vaserstein symbol via the identification Ṽ �R� �WE�R�. Of

course, any two trivializations of det�P0� are equal up to multiplication by a unit of R. We

will actually make precise how the generalized Vaserstein symbol depends on the choice of

a trivialization of det�P0� by means of a canonical R�-action on Ṽ �R�.
We then generalize criteria found by Andrei Suslin and Leonid Vaserstein in [SV, §5] for

the injectivity and surjectivity of the usual Vaserstein symbol (cp. Theorems 4.8 and 4.17):

Theorem. The generalized Vaserstein symbol Vθ0 � Um�P0 ` R�~E�P0 ` R� � Ṽ �R�
is surjective if Um�P2n�1� � π2n�1,2n�1E�P2n�1� for all n C 2. Furthermore, it is injective if

E�P2n�e2n � �Eª�P0� 9Aut�P2n��e2n for all n C 3 and Eª�P0� 9Aut�P4� � E�P4�.

If R is a Noetherian ring of dimension d B 3, then it follows from [HB, Chapter IV, Theo-

rem 3.4] that πn,nE�Pn� � Um�Pn� and E�Pn�en � Unim.El.�Pn� for n C 5. In particular,

the generalized Vaserstein symbol is a bijection if moreover Eª�P0� 9 Aut�P4� � E�P4�.
Using local-global principles for transvection groups (cp. [BBR]), we may then prove the

following result (Theorems 1.21, 1.22, 4.18 and 4.19 in the text):

Theorem. The equality Eª�P0� 9 Aut�P4� � E�P4� holds if R is a 2-dimensional reg-

ular Noetherian ring or if R is a 3-dimensional regular affine algebra over a perfect field k

such that c.d.�k� B 1 and 6 > k�. In particular, it follows that the generalized Vaserstein

symbol Vθ0 � Um�P0 `R�~E�P0 `R�� Ṽ �R� is a bijection in these cases.

Now recall that one of the main ingredients in the proof of [FRS, Theorem 7.5] was the

formula nV �a1, a2, a3� � V �an1 , a2, a3� for all unimodular rows �a1, a2, a3� of length 3 when-

ever R is a smooth affine algebra over an algebraically closed field. It is therefore natural

to ask whether an analogous formula holds for the generalized Vaserstein symbol. By rein-

terpreting the generalized Vaserstein symbol in the language of motivic homotopy theory,

we can indeed prove (cp. Theorem 4.23):

Theorem. Let R be a smooth affine algebra over a perfect field k with char�k� x 2 such

that �1 > k�2 and n > N. If n � 0,1 mod 4, then the sum formula Vθ0�a0, anR� � n �Vθ0�a0, aR�
holds for all �a0, aR� > Um�P0 `R�.
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This theorem enables us to generalize the approach of Fasel-Rao-Swan to stably free mod-

ules of rank d�1 over normal affine algebras of dimension d over algebraically closed fields.

Using Swan’s Bertini theorem, we prove (cp. Theorem 4.24):

Theorem. Let R be a normal affine algebra of dimension d C 3 over an algebraically

closed field k with char�k� x 2; if d � 3, furthermore assume that R is smooth. Then, for

any a > Um�Pd� and j > N with gcd�char�k�, j� � 1, there is an automorphism ϕ > E�Pd�
such that aϕ has the form b � �b0, b

j
3, ..., bd�.

In particular, if there exists j > N with gcd�char�k�, j� � 1 such that any epimorphism of

the form b � �b0, b
j
3, ..., bd� is completable to an automorphism ψ > Aut�Pd� (i.e. b � πd,dψ),

then Pd�1 � P0`Rd�3 is cancellative. If d � 3 and j � 2, then we can explicitly construct such

an automorphism with determinant 1 by generalizing a construction given by Krusemeyer

in [Kr] (cp. Section 1.4). This immediately proves the following cancellation theorem (cp.

Corollary 4.25):

Theorem. Let R be a smooth affine algebra of dimension 3 over an algebraically closed

field k with char�k� x 2. Then Um�P0 ` R�~SL�P0 ` R� is trivial; in particular, P0 is

cancellative.

In the sequel, we also prove that the generalized Vaserstein symbol descends to a map

Vθ0 � Um�P0 `R�~SL�P0 `R�� ṼSL�R�,

which we call the generalized Vaserstein symbol modulo SL. The group ṼSL�R� is the

cokernel of a hyperbolic map SK1�R�� Ṽ �R�. Focusing on Noetherian rings of dimension

B 4, we then study the generalized Vaserstein symbol modulo SL and give again criteria

for its surjectivity and injectivity. The criterion for the surjectivity is the following (cp.

Theorem 4.27):

Theorem. Let R be a Noetherian ring of Krull dimension B 4. Furthermore, assume

that SL�P5� acts transitively on the set Um�P5�. Then the generalized Vaserstein symbol

Vθ0 � Um�P0 `R�~SL�P0 `R�� ṼSL�R� modulo SL is surjective.
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The group Ṽ �R� is a subgroup of a group usually denoted V �R� (cp. [FRS, Section 4.2]),

which is generated by isometry classes of the form �P,χ1, χ2� for non-degenerate alternat-

ing forms χ1, χ2 on a finitely generated projective R-module P . For any non-degenerate

alternating form χ on P2n, we define Sp�χ� � �ϕ > Aut�P2n�Sϕtχϕ � χ�. There is a non-

degenerate alternating form χ0 on P0 given by �p, q�( θ�1
0 �p , q�. Furthermore, there is a

canonical non-degenerate alternating form ψ2 on R2 given by the matrix

�
�

0 1

�1 0

�
�.

Our criterion for the injectivity of Vθ0 � Um�P0`R�~SL�P0`R�� ṼSL�R� is the following

(cp. Theorem 4.32):

Theorem. Let R be a Noetherian ring of dimension B 4. Then the generalized Vaser-

stein symbol Vθ0 � Um�P0 ` R�~SL�P0 ` R� � ṼSL�R� modulo SL is injective if and

only if SL�P4�e4 � Sp�χ�e4 for all non-degenerate alternating forms χ on P4 such that

�P4, χ0 Ù ψ2, χ� > Ṽ �R�.

As an immediate consequence, we obtain the following criterion for the triviality of the

orbit space Um�P0 `R�~SL�P0 `R� (cp. Corollary 4.33):

Theorem. Let R be a Noetherian ring of dimension B 4. Assume that SL�P5� acts

transitively on the set Um�P5�. Then the orbit space Um�P0 `R�~SL�P0 `R� is trivial if

and only if ṼSL�R� is trivial and SL�P4�e4 � Sp�χ0 Ù ψ2�e4.

If P0 � R2, we can take the trivialization R � det�R2�,1 ( e1 , e2, mentioned above.

The non-degenerate alternating form χ0 then corresponds to ψ2. In particular, we can

identify Sp�χ0 Ù ψ2� with Sp4�R�. Moreover, the sets Um�Pn� and Unim.El.�Pn� can be

identified with the sets Umn�R� of unimodular rows of length n over R and Umt
n�R� of

unimodular columns of length n over R in this case. Motivated by the previous theorem,

we then study symplectic orbits of unimodular columns. Using motivic homotopy theory

and Suslin matrices, we prove (cp. Corollary 4.45):

Theorem. Let R be a smooth affine algebra of dimension d C 4 over an algebraically

closed field k with d! > k�. Assume that d is divisible by 4. Then Spd�R� acts transitively

on Umt
d�R�; in particular, Spd�R�ed � SLd�R�ed.
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As a direct consequence of the previous two theorems, we obtain the following criterion for

the triviality of Um3�R�~SL3�R� (cp. Theorem 4.46):

Theorem. Let R be a 4-dimensional smooth affine algebra over an algebraically closed

field k with 6 > k�. Then Um3�R�~SL3�R� is trivial if and only if ṼSL�R� � 0.

In the situation of the theorem, the group ṼSL�R� is actually a 2-torsion group: Indeed,

the usual Vaserstein symbol surjects on the group WSL�R� � ṼSL�R� and, moreover, one

has 2V �a1, a2, a3� � V �a2
1, a2, a3� � V �1,0,0� � 0 because any row of the form �a2

1, a2, a3�
can be completed to an invertible 3 � 3-matrix with determinant 1 (cp. [SwT] or [Kr]).

In particular, ṼSL�R� � 0 if and only if ṼSL�R� is 2-divisible. Motivated by this, we use

the Gersten-Grothendieck-Witt spectral sequence in order to find cohomological criteria

for the 2-divisibility of the groups Ṽ �R� and ṼSL�R�. These criteria enable us to prove

(cp. Corollary 4.47):

Theorem. Let R be a 4-dimensional smooth affine algebra over an algebraically closed

field k with 6 > k� and let X � Spec�R�. Then Um3�R�~SL3�R� is trivial if CH3�X�
and H2�X,KMW

3 � are 2-divisible. Furthermore, Um3�R�~SL3�R� is trivial if H2�X, I3� is

2-divisible and CH3�X� � CH4�X� � 0.

As a corollary of this, it follows that any finitely generated projective R-module over a

smooth affine algebra R of dimension 4 over an algebraically closed field k with 6 > k� is

free if CH i�X� � 0 for i � 1,2,3,4 and H2�X, I3� � 0, where X � Spec�R� (cp. Corollary

4.48 in the text).

Finally, let us remark that our methods do not only apply to smooth affine algebras over

algebraically closed fields. For example, we can also classify stably isomorphic oriented

projective modules of rank 2 with a trivial determinant over affine algebras of dimension

3 over finite fields (cp. Theorem 4.34):

Theorem. Assume that R is an affine algebra of dimension d � 3 over a finite field

Fq. Then Sp�χ�e4 � Unim.El.�P4� for any non-degenerate alternating form χ on P4.

In particular, it follows that the generalized Vaserstein symbol descends to a bijection

Vθ0 � Um�P0 `R�~SL�P0 `R� �

Ð� ṼSL�R�.
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Structure of the thesis. The first chapter of this thesis is dedicated to the study of

finitely generated projective modules over commutative rings. In particular, we study

non-degenerate alternating forms on projective modules, the group of automorphisms of

projective modules and its subgroup generated by transvections as well as the actions of

these groups on the set of unimodular elements. Moreover, we study the stabilization

maps for projective modules and oriented projective modules and we use the local-global

principle for transvection groups in order to prove stability results on automorphisms of

projective modules. The results proven in this chapter provide the technical groundwork

for the proofs of some of the main results in this thesis.

The second chapter gives a brief introduction to motivic homotopy theory. First of all, we

outline the construction of the unstable A1-homotopy category H�S� and of its pointed

version HY�S� over a base scheme S. Then we study the endomorphisms of P1
S in the

pointed A1-homotopy category HY�S� over the spectrum S � Spec�R� of a smooth affine

algebra R over a perfect field k with char�k� x 2. Furthermore, we shortly discuss A1-fiber

sequences and Suslin matrices at the end of the second chapter.

In the third chapter of this thesis, we introduce higher Grothendieck-Witt groups, which

are a modern version of Hermitian K-theory. In this context, we also define and study

the groups Ṽ �R� and ṼSL�R� mentioned above. Moreover, we define Grothendieck-Witt

sheaves and use the Gersten-Grothendieck-Witt spectral sequence in order to give coho-

mological criteria for the 2-divisibility of Ṽ �R� and ṼSL�R� whenever R is a smooth affine

algebra of dimension 4 over an algebraically closed field k of characteristic x 2.

In the last chapter of this thesis, we first review the usual Vaserstein symbol for unimod-

ular rows and then reinterpret it by means of the isomorphism WE�R� � Ṽ �R� for any

commutative ring R. We then construct the generalized Vaserstein symbol associated to

any projective R-module P0 of rank 2 with a fixed trivialization θ0 � R
�

Ð� det�P0� of its

determinant and finally prove the main results in this thesis. In the last section of this

thesis, we relate our results to some open questions in the study of projective modules.

Remark. Parts of this thesis appear in similar form in [Sy1] and [Sy2]: This concerns

Sections 1.1, 1.3, 1.4, 1.5, 2.3, 3.1, 3.2, 3.3, 3.4 and 4.3 as well as parts of Sections 1.2, 2.1,

4.1 and 4.2. The main results in [Sy1] are Theorems 4.8, 4.17, 4.18 and 4.19 in this thesis;

the main results in [Sy2] are Theorems 4.27 and 4.32, Corollaries 4.33 and 4.45, Theorem

4.46 and Corollary 4.47 in this thesis.
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The Study Of Projective Modules

In the first chapter of this thesis, we recall some basic definitions and facts on projective

modules over commutative rings and prove some technical lemmas which will be largely

used later in the proofs of the main results of this thesis. In particular, we study the group

of elementary automorphisms of projective modules and prove some results on transforma-

tions of unimodular elements via elementary automorphisms. In this context, we briefly

recall in Section 1.3 how projective modules which are stably isomorphic to a given pro-

jective module P can be classified in terms of the orbit space of the set of epimorphisms

P `R � R under the action of the group of automorphisms of P `R. Furthermore, we

construct explicit completions of some specific epimorphisms P `R � R, which generalizes

a construction given by Krusemeyer in [Kr]. At the end of this chapter, we also recall the

local-global principle for transvection groups from [BBR] in order to prove stability results

on automorphisms of projective modules.

1.1 Projective modules

Let R be a commutative ring. An R-module P is projective if it is the direct summand of a

free R-module; if P is finitely generated, it is projective if and only if there is an R-module

Q such that Rn � P `Q for some n > N. For any projective R-module P and for any prime

ideal p of R, the localized Rp-module Pp is again projective and therefore free (because

projective modules over local rings are free). In this weak sense, projective modules are

locally free. If the rank of Pp as an Rp-module is finite for every prime p, then we say that

P is a projective module of finite rank. In this case, there is a well-defined map

rankP � Spec�R�� Z

which sends a prime ideal p of R to the rank of Pp as an Rp-module. In general, it is

not true that projective modules of finite rank are finitely generated; nevertheless, this is
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known to hold if rankP is a constant map (cp. [W, Chapter I, Ex. 2.14]). We will say

that P is locally free of finite rank (in the strong sense) if it admits elements f1, ..., fn > R

generating the unit ideal such that the localizations Pfk are free Rfk-modules of finite rank

for k � 1, ..., n. In fact, it is well-known that this is true if and only if P is a finitely

generated projective R-module. The following lemma follows from [W, Chapter I, Lemma

2.4] and [W, Chapter I, Ex. 2.11]:

Lemma 1.1. Let R be a commutative ring and M be an R-module. Then the following

statements are equivalent:

a) M is a finitely generated projective R-module;

b) M is locally free of finite rank (in the strong sense);

c) M is a finitely presented R-module and Mp is a free Rp-module for every prime ideal

p of R;

d) M is a finitely generated R-module, Mp is a free Rp-module for every prime ideal p

of R and the induced map rankM � Spec�R�� Z is continuous.

In this thesis, we will study projective modules which satisfy the equivalent conditions of

Lemma 1.1 by primarily focusing on projective modules of finite constant rank.

1.2 Alternating forms, elementary automorphisms and

unimodular elements

Now let R be a commutative ring. For any projective R-module P of finite rank, we let

P - �HomR�mod�P,R� be its dual. There is a canonical isomorphism

can � P � P --, p( �evp � P - � R,a( a�p��,

induced by evaluation. A symmetric isomorphism on P is an isomorphism f � P � P - such

that the diagram

P
f //

can
��

P -

id

P --

f-
// P -
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is commutative. Furthermore, a skew-symmetric isomorphism on P is an isomorphism

f � P � P - such that the diagram

P
f //

�can
��

P -

id

P --

f-
// P -

is commutative. Finally, an alternating isomorphism on P is an isomorphism f � P � P -

such that f�p��p� � 0 for all p > P .

Analogously, a symmetric form on a projective R-module P of finite rank is an R-bilinear

map χ � P � P � R such that χ�p, q� � χ�q, p� for all p, q > P . Similarly, a skew-symmetric

form on a projective R-module P of finite rank is an R-bilinear map χ � P � P � R such

that χ�p, q� � �χ�q, p� for all p, q > P . Moreover, an alternating form on a projective R-

module P of finite rank is an R-bilinear map χ � P � P � R such that χ�p, p� � 0 for all

p > P . Note that any alternating form on P is automatically skew-symmetric. If 2 > R�,

any skew-symmetric form is alternating as well. A (skew-)symmetric or alternating form

χ is non-degenerate if the induced map P � P -, q ( �p ( χ�p, q�� is an isomorphism.

Obviously, the data of a non-degenerate (skew-)symmetric form is equivalent to the data

of a (skew-)symmetric isomorphism. Analogously, the data of a non-degenerate alternating

form is equivalent to the data of an alternating isomorphism.

Now let χ �M �M � R be any R-bilinear form on M . This form induces a homomorphism

M aR M � R. Moreover, for any prime p of R, there is an induced homomorphism

Mp aRp Mp � �M aRM�p � Rp. This gives an R-bilinear form χp �Mp �Mp � Rp on Mp.

The following lemma shows that these localized forms completely determine χ:

Lemma 1.2. If χ1 and χ2 are R-bilinear forms on an R-module M . Then χ1 � χ2 if and

only if χ1p � χ2p for every prime ideal p of R.

Proof. The forms χ1 and χ2 agree if and only if χ1�p, q� � χ2�p, q� � 0 for all p, q > M .

Therefore the lemma follows immediately from the fact that being 0 is a local property for

elements of any R-module.

Now let M � >
n
i�1Mi be an R-module which admits a decomposition into a direct sum

of R-modules Mi, i � 1, ..., n. An elementary automorphism ϕ of M with respect to the

given decomposition is an endomorphism of the form ϕsij � idM � sij, where sij �Mj �Mi

is an R-linear homomorphism for some i x j (cp. [HB, Chapter IV, §3]). Any such
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homomorphism automatically is an isomorphism with inverse given by ϕ�1
sij

� idM � sij. In

the special case M � Rn �>
n
i�1R one just obtains the automorphisms given by elementary

matrices. We denote by Aut�M� the group of automorphisms of M and by E�M1, ...,Mn�
(or simply E�M� if the decomposition is understood) the subgroup of Aut�M� generated

by elementary automorphisms.

The following lemma gives a list of some useful formulas, which can be checked easily by

direct computation:

Lemma 1.3. Let M �>
n
i�1Mi be a direct sum of R-modules. Then we have

a) ϕsijϕtij � ϕ�sij�tij� for all sij �Mj �Mi, tij �Mj �Mi and i x j;

b) ϕsijϕskl � ϕsklϕsij for all sij �Mj �Mi, skl �Ml �Mk, i x j, k x l, j x k, i x l;

c) ϕsijϕsjkϕ�sijϕ�sjk � ϕ�sijsjk� for all sij �Mj �Mi, sjk �Mk �Mj and distinct i, j, k;

d) ϕsijϕskiϕ�sijϕ�ski � ϕ��skisij� for all sij �Mj �Mi, ski �Mi �Mk and distinct i, j, k.

If we restrict to the case Mi �Mn for i C 2, we obtain the following result on E�M�:
Corollary 1.4. If Mi �Mn for i C 2, then the group E�M� is generated by the elementary

automorphisms of the form ϕs � idM �s, where s is an R-linear map Mi �Mn or Mn �Mi

for some i x n. The same statement holds if one replaces n by any other k C 2.

Proof. Since Mi � Mn for all i C 2, we have identities idin � Mn � Mi and idni � Mi � Mn

for all i C 2. Let sij �Mj �Mi be a morphism with i x j and therefore either i C 2 or j C 2.

We may assume that i, j, n are distinct. If i C 2, then

ϕsij � ϕidinϕidnisijϕ�idinϕ��idnisij�

by the third formula in Lemma 1.3. If j C 2, then

ϕsij � ϕ�sijidjn�ϕidnj
ϕ��sijidjn�ϕ�idnj

.

by the third formula in Lemma 1.3. This proves the first part of the corollary. The last

part follows in the same way if n is replaced by k C 2.

The proof of Corollary 1.4 also shows:

Corollary 1.5. Let M � >
n
i�1Mi be a direct sum of R-modules and also let s �Mj �Mi,

i x j, be an R-linear map. Assume that there is k x i with Mk �Mi or k x j with Mk �Mj.

Then the induced elementary automorphism ϕs is a commutator.
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The following lemma is a version of Whitehead’s lemma (cp. [SV, Lemma 2.2]) in our

general setting:

Lemma 1.6. Let M �M1 `M2 and let f �M1 �M2, g �M2 �M1 be morphisms. Assume

that idM1 � gf is an automorphism of M1. Then:

a) idM2 � fg is an automorphism of M2;

b) �idM1 � gf�` �idM2 � fg��1
is an element of E�M1 `M2�.

Proof. We have idM1 ` �idM2 �fg� � ϕ�fϕ�g��idM1 � gf�` idM2�ϕfϕg. This shows the first

statement. For the second statement one checks that

�idM1 � gf�` �idM2 � fg��1
� ϕ�gϕ�fϕgϕ�idM1

�gf��1g�gϕfgf�f .

So �idM1 � gf�` �idM2 � fg��1
lies in E�M1 `M2�.

Now let P be a finitely generated projective R-module. We denote by Um�P � the set of

epimorphisms P � R. The group Aut�P � of automorphisms of P then acts on the right on

Um�P �. Consequently, the same holds for any subgroup of Aut�P �; in particular, it holds

for the subgroup SL�P � of automorphisms of determinant 1. If we fix a decomposition

P �>
n
i�1Pi, the group E�P � � E�P1, ..., Pn� acts on Um�P � as well. In this case, we may

write any a > Um�P � as �a1, .., an�, where any ai, i � 1, ..., n, is the restriction of a to the

direct summand Pi respectively.

An element p > P is called unimodular if there is an a > Um�P � such that a�p� � 1; this

means that the morphism R � P,1( p defines a section for the epimorphism a. We denote

by Unim.El.�P � the set of unimodular elements of P . Note that the group Aut�P � and

hence also SL�P � and E�P � with respect to any decomposition act on the left on P ; these

actions restrict to actions on Unim.El.�P �. Again, if we fix a decomposition P �>
n
i�1Pi,

we can write any a > Unim.El.�P � as �a1, .., an�, where any ai, i � 1, ..., n, is the coordinate

of a in the direct summand Pi respectively.

The canonical isomorphism can � P � P -- identifies the set of unimodular elements

Unim.El.�P � of P with the set Um�P -� of epimorphisms P - � R, i.e. an element p > P

is unimodular if and only if evp � P - � R is an epimorphism. Furthermore, if p and q are

unimodular elements of P and ϕ > Aut�P � with ϕ�p� � q, then evpϕ- � evq � P - � R.

We therefore obtain a well-defined map

Unim.El.�P �~Aut�P �� Um�P -�~Aut�P -�.
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Let us show that this map is actually a bijection. Since the map is automatically surjective,

it only remains to show that it is injective. So let ψ > Aut�P -� such that evpψ � evq. One

can easily check that the map Aut�P � � Aut�P -�, ϕ ( ϕ-, is bijective; hence ψ � ϕ- for

some ϕ > Aut�P �. Thus, we obtain evq � evpϕ- � evϕ�p� and therefore ϕ�p� � q because

can � P � P -- is injective. Altogether, we obtain a bijection

Unim.El.�P �~Aut�P � �

Ð� Um�P -�~Aut�P -�.

In particular, if P � P -, then Unim.El.�P �~Aut�P � � Um�P �~Aut�P �.
If P �>

n
i�1Pi is a direct sum, then obviously P - �>

n
i�1P

-

i and we have the identification

Unim.El.�P �~E�P � �

Ð� Um�P -�~E�P -�.

In this thesis, we will study these orbit spaces and will use both interpretations as orbit

spaces of the set of epimorphisms or unimodular elements of a projective module.

If P � Rn, we naturally identify Um�P � with the set Umn�R� of unimodular rows of length

n and Unim.El.�P � with the set Umt
n�R� of unimodular columns of length n. We also

identify Aut�P �, SL�P � and E�P � with GLn�R�, SLn�R� and En�R� in this case.

We now introduce some notation: Let P0 be a finitely generated projective R-module of

rank 2. For any n C 3, let Pn � P0 ` Re3 ` ... ` Ren be the direct sum of P0 and free

R-modules Rei, 3 B i B n, of rank 1 with explicit generators ei. Note that we can write any

a > Um�Pn� as �a0, a3, ..., an�, where a0 is the restriction of a to P0 and any ai, i � 3, ..., n,

is the element of R corresponding to the restriction of a to Rei respectively, i.e. ai � a�ei�.
We denote by πk,n � Pn � R the projections onto the free direct summands of rank 1

with index k � 3, ..., n. For any non-degenerate alternating form χ on P2n, n C 2, we set

Sp�χ� � �ϕ > Aut�P2n�Sϕtχϕ � χ�.

For n C 3, we have embeddings Aut�Pn� � Aut�Pn�1� and E�Pn� � E�Pn�1�. We denote

by Autª�P0� (resp. Eª�P0�) the direct limits of the groups Aut�Pn� (resp. E�Pn�) via

these embeddings.

In the following lemmas, we denote by ψ2 the non-degenerate alternating form on R2 given

by the matrix

�
�

0 1

�1 0

�
�.
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Thus, for any non-degenerate alternating form χ on P2n for some n C 2, we obtain a non-

degenerate alternating form on P2n�2 given by the orthogonal sum χ Ù ψ2.

With this notation in mind, we may now prove a few lemmas which provide the technical

groundwork for the proofs of some of the main results in this thesis:

Lemma 1.7. Let χ be a non-degenerate alternating form on P2n for some n C 2. Let

p > P2n�1 and a � P2n�1 � R. Then there are ϕ,ψ > Aut�P2n�1� such that

a) the morphism �ϕ` 1��idP2n � pπ2n,2n� is an element of E�P2n� 9 Sp�χ�;
b) the morphism �ψ ` 1��idP2n � ae2n� is an element of E�P2n� 9 Sp�χ�.

Proof. We let Φ � P2n � P -

2n be the alternating isomorphism induced by χ and Φ�1 be its

inverse.

For the first part, we introduce the following homomorphisms: Let d denote the morphism

R � P2n�1 which sends 1 to Φ�1�π2n,2n�; note that it can be considered an element of

P2n�1 because of π2n,2n�Φ�1�π2n,2n�� � χ�Φ�1�π2n,2n�,Φ�1�π2n,2n�� � 0. Furthermore, let

ν � χ�p,�� � P2n�1 � R. We observe that νd � 0. By Lemma 1.6, the homomorphism

ϕ � idP2n�1�dν is an automorphism and ϕ`1 is an elementary automorphism. In particular,

�ϕ`1��idP2n�pπ2n,2n� is an elementary automorphism. In light of the proof of [SV, Lemma

5.4] and Lemma 1.2, one can check locally that it also lies in Sp�χ�.
For the second part, we introduce the following homomorphisms: We let c denote the

homomorphism χ��, e2n� � P2n�1 � R. Furthermore, we let a`0 � P2n � R be the extension

of a to P2n which sends e2n to 0; then we denote by ϑ the homomorphism R � P2n�1 which

sends 1 to πΦ�1�a`0�, where π � P2n � P2n�1 is the projection. Note that cϑ � 0. Again by

Lemma 1.6, the morphism ψ � idP2n�1 �ϑc is an automorphism and ψ ` 1 is an elementary

automorphism. In particular, �ψ`1��idP2n �ae2n� is an elementary automorphism as well.

Again, in light of the proof of [SV, Lemma 5.4] and Lemma 1.2, one can check locally that

it also lies in Sp�χ�.
Lemma 1.8. Let χ be a non-degenerate alternating form on the module P2n for some n C 2.

Then E�P2n�e2n � �E�P2n� 9 Sp�χ��e2n.

Proof. Let p > E�P2n�e2n. By Corollary 1.4, the group E�P2n� is generated by automor-

phisms of the form idP2n � s, where s is a morphism P2n�1 � Re2n or Re2n � P2n�1. Hence

we can write �α1...αr��p� � e2n, where each αi is one of these generators. We show by

induction on r that p > �E�P2n�9Sp�χ��e2n. If r � 0, there is nothing to show. So let r C 1.

Lemma 1.7 shows that there is γ > Aut�P2n�1� such that �γ ` 1�αr lies in E�P2n� 9 Sp�χ�.
37



We set βi � �γ` 1�αi�γ�1
` 1� for each i @ r. Each of the βi lies in E�P2n� and is again one

of the generators of E�P2n� given above. Furthermore, �β1...βr�1�γ ` 1�αr��p� � e2n. This

enables us to conclude by induction.

Lemma 1.9. Let χ1 and χ2 be non-degenerate alternating forms on the module P2n such

that ϕt�χ1 Ù ψ2�ϕ � χ2 Ù ψ2 for some ϕ > Eª�P0� 9Aut�P2n�2�. Now let χ � χ1 Ù ψ2. If

�Eª�P0� 9Aut�P2n�2��e2n�2 � �Eª�P0� 9 Sp�χ��e2n�2 holds, then one has ψtχ1ψ � χ2 for

some ψ > Eª�P0� 9Aut�P2n�.
Proof. Let ψ��e2n�2 � ϕe2n�2 for some ψ�� > Eª�P0� 9 Sp�χ�. Then we set ψ� � �ψ����1

ϕ.

Since �ψ��t�χ1 Ù ψ2�ψ� � χ2 Ù ψ2, the composite ψ � P2n
ψ�

Ð� P2n�2 � P2n and ψ� satisfy the

following conditions:

� ψ��e2n�2� � e2n�2;

� π2n�1,2n�2ψ� � π2n�1,2n�2;

� ψtχ1ψ � χ2.

The first two conditions imply that ψ equals ψ� up to elementary morphisms and also that

ψ > Eª�P0� 9Aut�P2n�, which finishes the proof.

Lemma 1.10. Assume that π2n�1,2n�1�Eª�P0�9Aut�P2n�1�� � Um�P2n�1� holds for some

n > N. Then, for any non-degenerate alternating form χ on P2n�2, there exists an au-

tomorphism ϕ > Eª�P0� 9 Aut�P2n�2� such that ϕtχϕ � ψ Ù ψ2 for some non-degenerate

alternating form ψ on P2n.

Proof. Let d � χ��, e2n�2� � P2n�1 � R. Since d can be locally checked to be an epimorphism,

there is an automorphism ϕ� > Eª�P0� 9 Aut�P2n�1� such that dϕ� � π2n�1,2n�1. Then

the alternating form χ� � �ϕ� ` 1�tχ�ϕ� ` 1� satisfies that χ���, e2n�2� � P2n�1 � R is just

π2n�1,2n�1. Now we simply define c � χ���, e2n�1� � P2n�1 � R and let ϕc � idP2n�2 � ce2n�2

be the elementary automorphism on P2n�2 induced by c; then ϕctχ�ϕc � ψ Ù ψ2 for some

non-degenerate alternating form ψ on P2n, as desired.

Lemma 1.11. We have E�P0 `R� ` SL�P0 `R�. Furthermore, if ϕ > SL�P0 `R�, then

the induced morphism ϕ� � det�P0 `R�� det�P0 `R� is the identity on det�P0 `R�.
Proof. If ϕ > E�P0`R� and p is any prime ideal of R, then ϕp will obviously correspond to

an elementary automorphism of �P0�p `Rp. Choosing any isomorphism �P0�p � R2
p, it will
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therefore correspond to an element of E3�Rp� ` SL3�Rp�. Thus, E�P0 `R� ` SL�P0 `R�,
as desired.

Since being 0 is a local property, the second statement can also be checked locally. Again,

choosing any isomorphism �P0�p � R2
p, the automorphism ϕp will by assumption correspond

to an element of SL3�Rp�. But since for any automorphism of R3
p the induced automor-

phism on det�R3
p� is just multiplication by its determinant, the second statement follows

immediately.

We will now introduce useful maps which allow us to some degree to restrict our study

of the orbit spaces Um�Pn�~E�Pn� to the orbit spaces of the form Um�P3�~E�P3�. For

this, let n C 4 and a > Um�Pn�. As usual, we can write a as �a0, a3, ..., an�, where a0 is

the restriction of a to P0 and any ai, i � 3, ..., n, is the element of R corresponding to

the restriction of a to Rei respectively, i.e. ai � a�ei�. We denote by I the image of the

homomorphism ã � �a4, ..., an� � >n
i�4Rei � R; in other words, I � `a4, ..., ade. From now

on, we write by abuse of notation π for the canonical projection Q� Q~I for any R-module

Q. We consider the R~I-module P3~IP3 and naturally identify it with �P0~IP0� ` �R~I�.
Furthermore, we let Um�P3~IP3� be the set of R~I-linear epimorphisms onto R~I. As

usual, we may write any b̄ > Um�P3~IP3� as �b̄0, b̄3�. For any such b̄ > Um�P3~IP3�, there

exists an R-linear map b � �b0, b3� such that the diagram

P3

b̄π
��

b

~~
R

π // // R~I
commutes because P3 is projective and R � R~I is an R-linear surjective map. Clearly,

the homomorphism �b0, b3, a4, ..., an� is then an element of Um�Pn�.
Now assume that b� � �b�0, b�3� is another R-linear map such that the diagram above is

commutative. Then the R-linear map b�b� maps P3 into I. Thus, as P3 is projective, there

exists an R-linear map s � P3 �>
n
i�4Rei such that the diagram

P3

b�b�

��

s

zz
>
n
i�4Rei

ã // // I

is commutative. In particular, if we let ϕs � idPn � s be the elementary automorphism of

Pn induced by s, then �b�0, b�3, a4, ..., an�ϕs � �b0, b3, a4, ..., an�.
It follows that the assignment �b̄0, b̄3�( �b0, b3, a4, ..., an� induces a well-defined map
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Um�P3~IP3�� Um�Pn�~E�Pn�.
Finally, let b̄ > Um�P3~IP3� and s̄ � P0~IP0 � R~I and t̄ � R~I � P0~IP0 be R~I-linear

maps. Then, again since P0 and R are projective R-modules, there exist R-linear lifts

s � P0 � R and t � R � P0 of s̄ and t̄ respectively. In particular, ϕs � idP3 � s and

ϕt � idP3 � t are lifts of the elementary automorphisms ϕs̄, ϕt̄ of P3~IP3 induced by s̄ and t̄

respectively. If b̄� � b̄ϕs̄ and b̄�� � b̄ϕt̄ and b � P3 � R is an R-linear map which lifts b̄, then

bϕs and bϕt are R-linear lifts of b̄� and b̄�� to P3 � R respectively. In particular, if we let

b � �b0, b3�, b� � bϕs � �b�0, b�3� and b�� � bϕt � �b��0 , b��3�, then the classes of �b0, b3, a4, ..., an�,
�b�0, b�3, a4, ..., an� and �b��0 , b��3 , a4, ..., an� in Um�Pn�~E�Pn� coincide.

Altogether, it follows from this that the map above descends to a well-defined map

Φ�a� � Um�P3~IP3�~E�P3~IP3�� Um�Pn�~E�Pn�.
More generally, let Ii � `ai�1, ..., ane for 3 B i B n � 1. By repeating the reasoning above, we

can prove that there is a well-defined map

Φi�a� � Um�Pi~IiPi�~E�Pi~IiPi�� Um�Pn�~E�Pn�
which sends the class of �b̄0, b̄3, ..., b̄i� > Um�Pi~IiPi� to the class represented by the homo-

morphism �b0, ..., bi, ai�1, ..., an� > Um�Pn�, where �b0, b3, ..., bi� � Pi � R is any R-linear lift

of �b̄0, b̄3, ..., b̄i�. In particular, Φ3�a� � Φ�a�.
By dualizing the reasoning above, one can also prove that, for any unimodular element

a � �a0, ..., an� > Pn, there are analogously defined maps

Φi�a� � Unim.El.�Pi~IiPi�~E�Pi~IiPi�� Unim.El.�Pn�~E�Pn�,
where again Ii � `ai�1, ..., ane for 3 B i B n � 1.

The following two lemmas are generalizations to our situations of the corresponding well-

known statements when P0 � R2 (cp. [Va] and [SV, Lemma 2.7(c)]):

Lemma 1.12. Let n C 5, a � �a0, a3, ..., an� > Um�Pn� and let k > N and 3 B i, j B n. Then

there exists ϕ > E�Pn� such that �a0, ..., aki , ..., an�ϕ � �a0, ..., akj , ..., an�.
Proof. Let J denote the image of a0. We consider the ring R~J and the unimodular rows

�ā3, ..., āki , ..., ān� and �ā3, ..., ākj , ..., ān�. Then it is well-known that there is ϕ̄� > En�2�R~J�
such that �ā3, ..., āki , ..., ān�ϕ̄� � �ā3, ..., ākj , ..., ān�.
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We now lift ϕ̄� to an element ϕ� of E�Pd� which is the identity on P0. If we then set

�b0, b3, ..., bn� � �a0, a3, ..., aki , ..., an�ϕ�, there exist pl > P0, 3 B l B n, such that al � bl � a0�pl�
for l x j, 3 B l B n, and akj � bj � a0�pj�. Furthermore, b0 � a0.

Then we let p � >n
l�3Rel � P0 be the homomorphism which sends el to pl for 3 B l B n. If

we then let ϕp be the induced element of E�Pn�, the automorphism ϕ � ϕ�ϕp lies in E�Pn�
and transforms �a0, ..., aki , ..., an� to �a0, ..., akj , ..., an�.
Lemma 1.13. Let a � �a0, a3, ..., an� > Um�Pn� such that �a4, ..., an� > Umn�3�R�. Then

there exists ϕ > E�Pn� such that aϕ � πn,n.

Proof. As in the previous proof, we let J denote the image of a0. We consider the

ring R~J and the unimodular row �ā3, ..., ān�. Then there is ϕ̄� > En�2�R~J� such that

�ā3, ..., āi, ..., ān�ϕ̄� � �0, ...,1� (cp. [SV, Lemma 2.7(c)]).

We can then lift ϕ̄� to an element ϕ� of E�Pn� which is the identity on P0. If we set

�b0, b3, ..., bn� � �a0, a3, ..., an�ϕ�, there exist pl > P0, 3 B l B n, such that al � bl � a0�pl� for

3 B l B n. Moreover, b0 � a0.

Then we let p � >n
l�3Rel � P0 be the homomorphism which sends el to pl for 3 B l B n. If

we then let ϕp be the induced element of E�Pn�, the automorphism ϕ � ϕ�ϕp lies in E�Pn�
and transforms �a0, ..., an� to πn,n.

In the remainder of this section, we will prove some statements which allow us to restrict

our study of orbit spaces of unimodular elements over affine algebras to algebras of lower

dimensions:

Lemma 1.14. Assume that R is a normal affine algebra of dimension d C 4 over an

algebraically closed field k with char�k� x 2; furthermore, let a � �a0, ..., ad� > Um�Pd�.
Then there exists ϕ > E�Pd� such that if we let aϕ � �b0, ..., bd� and I � `b4, ..., bde, then R~I
is either 0 or a smooth affine algebra of dimension 3 over k.

Proof. Since R is normal, the ideal J of the singular locus of R has height at least 2 and

therefore dim�R~J� B d � 2. Hence it follows from [HB, Chapter IV, Theorem 3.4] that

Um�Pd~JPd� � πd,dE�Pd~JPd� and therefore we can assume that the image of a0 and any

ai for 3 B i B d � 1 lie in J and that ad � 1 > J .

Now let p � �p0, c3, ..., cd� > Pd be a section of a, i.e. a�p� � 1. Then we consider the

unimodular row ã � �a0�p0�, a3, ..., ad�. By Swan’s Bertini theorem (cp. [Sw, Theorem

1.5]), there is an upper triangular matrix B � �βi,j�2Bi,jBd (notice the indexing!) of rank

d� 1 over R such that ãB � �a0�p0�, a�3, ..., a�d� has the property that if I � `a�4, ..., a�de, then
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R~I is either 0 or a smooth threefold outside the singular locus of R. But by the previous

paragraph, it follows that we still have a�d � 1 > J , which means that R~I is either 0 or a

smooth affine threefold over k.

We now define a homomorphism s0 � >
d
i�3Rei � P0 by s0�ei� � β2,ip0. Furthermore, we

define homomorphisms sl � >
d
i�l�1Rei � Rel for each l, 3 B l B d � 1, by sl�ei� � βl,iel.

Then we let ϕ0 and ϕl, 3 B l B d � 1, be the elementary automorphisms of Pd induced by

s0 and the sl respectively and we define ϕ � ϕd�1 X ... X ϕ3 X ϕ0. By construction, we have

aϕ � �a0, a�3, ..., a
�

d�, which finishes the proof.

We introduce some further notation: For any commutative ring R, any finitely generated

projective R-module P and any element p > P , we let o�p� � �f�p�Sf > P -� ` R, which is

clearly an ideal of R. Note that p is unimodular if and only if o�p� � R.

Proposition 1.15. Assume that R is an affine algebra of dimension d C 3 over a finite field

Fq or its algebraic closure F̄q. Then the group E�Pd�1� acts transitively on Unim.El.�Pd�1�.
Proof. First of all, we note that we can assume that R is reduced: If R is not reduced

and the proposition is proven for reduced algebras, we may consider R~N , where N is

the nilradical of R. Then it follows that any unimodular element can be transformed via

elementary automorphisms to an element of the form a � �a0, a3, ..., ad�1�, where ad�1 � 1 is

nilpotent. But this means that ad�1 is a unit in R. Hence Lemma 1.13 shows that there is

ϕ > E�Pd�1� such that ϕ�a� � ed�1. So let us henceforth assume that R is reduced.

Following the proof of [S1, Theorem 1], we pick a point on each irreducible component of the

maximal spectrum Max�R� of R, denote the resulting finite set by V and set ν �Lµ>V µ.

Then, for each µ > V , we pick p1,µ, ..., p2,µ > P0 such that their classes in P0~µP0 form a

basis of P0~µP0 as an R~µR-module. Then we find p1, p2 > P0 such that pi � pi,µ > µP0 for

i � 1,2. Note that if we let pi � ei for 3 B i B d� 1 and denote their classes in Pd�1~µPd�1 by

pi,µ, then p1,µ, ..., pd�1,µ form a basis of Pd�1~µPd�1.

Now let A � o�p1 , p2�. By construction, A is not contained in any µ > V . Since every

minimal prime ideal of R is contained in some µ > V , this implies that dim�R~A� B d � 1;

in particular, dim�R~νA� B d � 1. Therefore it follows from [HB, Chapter IV, Theorem

3.4] that any unimodular element a � �a0, a3, ..., ad�1� can be transformed via elementary

automorphisms of Pd�1 to an element �b0, b3, ..., bd�1� with bd�1 � 1 > νA. If we let p̄i denote

the classes of the pi, i � 1, ..., d � 1, modulo bd�1, then o�p̄1 , p̄2� � R~bd�1R; this implies

that P0~bd�1P0 is free with a basis given by the classes p̄i, i � 1,2, and, in particular, that

Pd~bd�1Pd is free with a basis given by the classes p̄i, i � 1, ..., d. As bd�1 � 1 > νA, R~bd�1R
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has dimension B d � 1; hence the group Ed�R~bd�1R� acts transitively on Umt
d�R~bd�1R�

(cp. [SV, Corollary 17.3]).

It follows that �b0, ..., bd�1� and hence �a0, ..., ad�1� can be transformed via elementary

automorphisms to an element of the form a� � �0, ...,1 � cbd�1, bd�1� for some c > R. We

then let s � Red�1 � Red,1 ( �c and t � Red � Red�1,1 ( �bd�1 and let ϕs, ϕt be the

induced elementary automorphisms on Pd�1; furthermore, we let ψ2 be the automorphism

of Red `Red�1 given by the matrix

�
�

0 1

�1 0

�
� > E2�R�

and let ψ > E�Pd�1� be the automorphism of Pd�1 which is ψ�1
2 on Red ` Red�1 and the

identity on the other direct summands. Then ψϕtϕs�a�� � �0, ...,0,1�, which finishes the

proof.

Proposition 1.16. Assume that R is a normal affine algebra of dimension d C 4 over the

algebraic closure k � F̄q of a finite field Fq of characteristic x 2. Then, for any unimodular

element a > Pd, there exists an automorphism ϕ > E�Pd� such that ϕ�a� � �b0, b3, ..., bd�,
where R~bdR is a smooth k-algebra of dimension d�1 and P0~bdP0 is a free R~bdR-module.

Proof. Since R is normal, the ideal J defining the singular locus of Spec�R� has height

C 2. Following the proof of [B, Theorem 1], we let t be a non-zero-divisor such that �P0�t is

free of rank 2. We can assume that t > J (as ht�J� C 2). Note that if we pick two elements

of P0 which form a basis of �P0�t, then the induced map R2 � P0 is injective. Hence we

obtain a free submodule F � R2 of P0 such that Ft � �P0�t. Furthermore, we let s � tl

such that sP0 ` F . We denote by �e1, e2� the standard basis of F ; in particular, for n C 3,

�e1, e2, e3, ..., en� is a basis of Fn � F `Re3 ` ...`Ren ` Pn and sPn ` Fn.

Since s is a non-zero-divisor, we have dim�R~sR� B d � 1. Using Proposition 1.15, we

can then conclude that there exists ϕ1 > E�Pd� such that ϕ1�a� � �b0, b3, ..., bd�1, b�d� with

�b0, b3, ..., bd�1� > sPd�1 ` Fd�1 and with 1 � b�d > sR.

If we let b0 � b1e1 � b2e2, then �b1, b2, b3, ..., bd�1, b�d� and, furthermore, as 1 � b�d > sR,

�sb1, sb2, sb3, ..., sbd�1, b�d� are unimodular rows over R. Therefore Swan’s Bertini theorem

(cp. [Sw, Theorem 1.5]) implies that there exist fi > R, 1 B i B d � 1, such that for

bd � b�d �P
d�1
i�1 fisbi the ring R~bdR is a smooth k-algebra of dimension d � 1.

Now let �e-1 , ..., e-d�1� be the (dual) basis of F -

d�1 and let α � P
d�1
i�1 sfie

-

i . Note that, since

sPd�1 ` Fd�1, we have sF -

d�1 ` P
-

d�1 and we can interpret α as a homomorphism Pd�1 � Red.

We let ϕ2 be the elementary automorphism on Pd induced by α.
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By construction, one has ϕ2�b0, b3, ..., bd�1, b�d� � �b0, b3, ..., bd�1, bd�. Note that 1 � bd > sR.

Since Fs � �P0�s, the inclusion F ` P0 induces an equality F ~bdF � P0~bdP0. Thus, P0~bdP0

is a free R~bdR-module of rank 2, as desired.

1.3 The stabilization maps

Let R be a commutative ring. We consider the map

φr � Vr�R�� Vr�1�R�, �P �( �P `R�,

from the set of isomorphism classes of projective modules of rank r to the set of isomorphism

classes of projective modules of rank r � 1 and fix a projective module P `R representing

an element of Vr�1�R� in the image of this map. An element �P �� of Vr�R� lies in the

fiber over �P ` R� if and only if there is an isomorphism i � P �
` R

�

Ð� P ` R. Any such

isomorphism yields an element of Um�P `R� given by the composite

a�i� � P `R
i�1

Ð� P �
`R

πR
Ð� R.

Note that if one chooses another module P �� representing the isomorphism class of P � and

any isomorphism j � P ��
`R

�

Ð� P `R, the resulting element a�j� of Um�P `R� still lies in

the same orbit of Um�P `R�~Aut�P `R�: For if we choose an isomorphism k � P �
�

Ð� P ��,

then we have an equality

a�i� � a�j� X �j�k ` idR�i�1�.

Thus, we obtain a well-defined map

φ�1
r ��P `R��� Um�P `R�~Aut�P `R�.

Conversely, any element a > Um�P`R� gives an element of Vr�R� lying over �P`R�, namely

�P �� � �ker�a��. Note that the kernels of two epimorphisms P `R � R are isomorphic if

these epimorphisms are in the same orbit in Um�P `R�~Aut�P `R�. Thus, we also obtain

a well-defined map

Um�P `R�~Aut�P `R�� φ�1
r ��P `R��.
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One can then easily check that the maps φ�1
r ��P ` R�� � Um�P ` R�~Aut�P ` R� and

Um�P`R�~Aut�P`R�� φ�1
r ��P`R�� are inverse to each other. Note that �P � corresponds

to the class represented by the canonical projection πR � P `R � R under these bijections.

In conclusion, we have a pointed bijection between the sets Um�P `R�~Aut�P `R� and

φ�1
r ��P ` R�� equipped with �πR� and �P � as basepoints respectively. Moreover, we also

obtain a (pointed) surjection Um�P `R�~E�P `R�� φ�1
r ��P `R��.

Furthermore, we denote by Vor �R� the set of isomorphism classes of oriented projective

modules of rank r, i.e. isomorphism classes of pairs �P, θ�, where P is projective of constant

rank r and θ � det�P � �

Ð� R is an isomorphism. An isomorphism between two such pairs

�P, θ� and �P �, θ�� is an isomorphism k � P
�

Ð� P � such that θ � θ� X det�k�. Note that if

�P, θ� is an oriented projective module of rank r, then there is an induced orientation on

P `R given by the composite θ� � det�P `R� � det�P � θ
Ð� R.

We now consider the stabilization maps

φor � V
o
r �R�� Vor�1�R�, ��P, θ��( ��P `R, θ���

from the set of isomorphism classes of oriented projective modules of rank r to the set

of isomorphism classes of oriented projective modules of rank r � 1. We fix an oriented

projective module �P `R, θ�� representing an element of Von�1�R� in the image of this map.

An element ��P �, θ��� of Von�R� lies in the fiber over ��P `R, θ��� if and only if there is an

isomorphism i � P �
`R

�

Ð� P `R such that θ� X det�i� � θ��. Any such isomorphism yields

an element of Um�P `R� given by the composite

a�i� � P `R
i�1

Ð� P �
`R

πR
Ð� R.

If one chooses another module �P ��, θ��� representing the isomorphism class of �P �, θ�� and

any isomorphism j � P ��
` R

�

Ð� P ` R with θ��� � θ� X det�j�, the resulting element a�j�
of Um�P `R� still lies in the same orbit of Um�P `R�~SL�P `R�: For if we choose an

isomorphism k � P �
�

Ð� P �� with θ� � θ�� X det�k�, then j�k ` idR�i�1 > SL�P ` R� and we

have an equality

a�i� � a�j� X �j�k ` idR�i�1�.

Thus, we obtain a well-defined map

φor
�1���P `R, θ����� Um�P `R�~SL�P `R�.

45



Conversely, any element a > Um�P `R� gives an element of Vor �R� lying over ��P `R, θ���:
If we let P � � ker�a�, then the short exact sequence

0� P � � P `R
a
Ð� R � 0

is split and any section s of a induces an isomorphism i � P �
`R

�

Ð� P `R. The induced

isomorphism det�i� � det�P �
`R� �

Ð� det�P `R� does not depend on the section s; hence

we can canonically define an orientation θ� on P � given by the composite

det�P �� � det�P �
`R� det�i�

ÐÐÐ� det�P `R� θ�

Ð� R.

Then ��P �, θ��� > φor�1���P `R, θ����. Note that this assignment only depends on the class

of a in Um�P `R�~SL�P `R�.
Thus, we also obtain a well-defined map

Um�P `R�~SL�P `R�� φor
�1���P `R, θ����.

Again, one can check that the maps φor
�1���P ` R, θ���� � Um�P ` R�~SL�P ` R� and

Um�P `R�~SL�P `R�� φor
�1���P `R, θ���� are inverse to each other. Note that ��P, θ��

corresponds to the class represented by the canonical projection πR � P`R � R under these

bijections. Altogether, we have a pointed bijection between the sets Um�P`R�~SL�P`R�
and φor

�1���P `R, θ���� equipped with �πR� and ��P, θ�� as basepoints respectively.

Finally, if �P, θ� is an oriented projective module of rank r as above, the canonical pro-

jection Um�P `R�~SL�P `R� � Um�P `R�~Aut�P `R� then corresponds to the map

φor
�1���P `R, θ����� φ�1

r ��P `R�� forgetting the orientation of P .

1.4 Explicit completions of unimodular elements

Let R be a commutative ring and let P0 be a projective R-module of rank 2 with a

trivialization θ0 � R
�

Ð� det�P0� of its determinant. We use the notation of Section 1.2 and

let P3 � P0 `Re3. In particular, any a > Um�P3� can be written as �a0, aR�, where a0 is

the restriction of a to P0 and aR � a�e3� > R. For any a > Um�P3� of the form �a0, a2
R�,

there exists ϕ > SL�P3� such that π3,3ϕ � a (cp. [B, Proposition 2.7] or [S1, Lemma 2]).

We now construct an explicit completion ϕ of a � �a0, a2
R�. For this, let us first look at the

case P0 � R2: If �b, c, a� is a unimodular row and qb � rc � pa � 1, then it follows from a

construction given by Krusemeyer in [Kr] that the matrix
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�����

�p � qr q2
�c � 2aq

�r2
�p � qr b � 2ar

b c a2

�����
is a completion of �b, c, a2� with determinant 1. We observe that

�
�
�qr q2

�r2 qr

�
� =

�
�
q

r

�
� ��r q�

and also

�
�
�c

b

�
� =

�
�

0 �1

1 0

�
�
�
�
b

c

�
�.

This shows how to generalize the construction of this explicit completion. We denote by

χ0 � P0 � P -

0 the alternating isomorphism given by q ( �χ0�q� � P0 � R,p( θ�1
0 �p , q��. If

a � �a0, aR� is an element of Um�P0 `R� with a section s uniquely given by the element

s�1� � �q, p� > P0 `R, we consider the following morphisms: We define an endomorphism

of P0 by

ϕ0 � ��πP0s� X χ0�q� � p � idP0 � P0 � P0

and we also define a morphism R � P0 by

ϕR � R � P0, 1( 2aR � q � χ�1
0 �a0�.

Then we consider the endomorphism of ϕ � P0 `R given by

�
�
ϕ0 ϕR

a0 a2
R

�
�.

Essentially by construction, ϕ is a completion of �a0, a2
R�:

Proposition 1.17. The endomorphism ϕ of P0 `R defined above is an automorphism of

P0 `R of determinant 1 such that π3,3ϕ � �a0, a2
R�.

Proof. Choosing locally a free basis �ep1, ep2� of �P0�p at any prime p with �θ�1
0 �p�ep1,ep2� � 1,

we can check locally that this endomorphism is an automorphism of determinant 1 (because

locally it coincides with the completion given in [Kr]); by definition, we obviously have

π3,3ϕ � �a0, a2
R�. Thus, ϕ has the desired properties and generalizes the explicit completion

given in [Kr].
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1.5 Local-global principles

We will now briefly review the local-global principle for transvection groups proven in

[BBR] and use it in order to deduce stability results for stably elementary automorphisms

of P0`R2. For this, we only have to assume that R is an arbitrary commutative ring with

unit.

First of all, let P be a finitely generated projective R-module and q > P , ϕ > P - such that

ϕ�q� � 0. This data naturally determines a homomorphism ϕq � P � P by ϕq�p� � ϕ�p�q
for all p > P . An automorphism of the form idP � ϕq is called a transvection if either

q > Unim.El.�P � or ϕ > Um�P �. We denote by T �P � the subgroup of Aut�P � generated

by transvections.

Now let Q � P `R be a direct sum of a finitely generated projective R-module P of rank

C 2 and the free R-module of rank 1. Then the elementary automorphisms of P `R are

easily seen to be transvections and are also called elementary transvections. Consequently,

we have E�Q� ` T �Q� ` Aut�Q�.
In the theorem stated below, we denote by R�X� the polynomial ring in one variable over

R and let Q�X� � QaRR�X�. The evaluation homomorphisms ev0, ev1 � R�X�� R induce

maps Aut�Q�X�� � Aut�Q�. If α�X� > Aut�Q�X��, then we denote its images under

these maps by α�0� and α�1� respectively. Similarly, the localization homomorphism

R � Rm at any maximal ideal m of R induces a map Aut�Q�X�� � Aut�Qm�X��, where

Qm�X� � Q�X� aR�X� Rm�X�; if α�X� > Aut�Q�X��, we denote its image under this map

by αm�X�.
We will use the following results proven by Bak, Basu and Rao (cp. [BBR, Theorems 3.6

and 3.10]):

Theorem 1.18. The inclusion E�Q� ` T �Q� is actually an equality. Furthermore, if

α�X� > Aut�Q�X�� satisfies α�0� � idQ > Aut�Q� and αm�X� > E�Qm�X�� for all maximal

ideals m of R, then α�X� > E�Q�X��.
In order to prove the desired stability results, we introduce the following property: Let C

be either the class of Noetherian rings or the class of affine k-algebras over a fixed field k.

Furthermore, let d C 1 be an integer and m > N. We say that C has the property P�d,m�
if, for R in C of dimension d and for any finitely generated projective R-module P of rank

m, the group SL�P `Rn� acts transitively on Um�P `Rn� for all n C 2. If k is a field, we

simply say that k has the property P�d,m� if the class of affine k-algebras has the property

P�d,m�.
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Of course, if the class of Noetherian rings has the property P�d,m�, then the same holds for

every field. The class of Noetherian rings has the property P�d,m� for m C d. Furthermore,

it follows from [B, Remark 4.2] that any infinite perfect field k of cohomological dimension

B 1 satisfies property P�d, d � 1� if d! > k�.

In the remainder of this section, we will denote by π the canonical projection P `Rn � R

onto the ”last” free direct summand of Rn.

Lemma 1.19. Let C be the class of Noetherian rings or affine k-algebras over a fixed field

k. Assume that C has the property P�d,m�. Let R be a d-dimensional ring in C, P a

projective R-module of rank m and a > Um�P ` Rn� for some n C 2. Moreover, assume

that there is an element t > R and a homomorphism w � P `Rn � R such that a � π � tw.

Then there is ϕ > SL�P `Rn� such that a � πϕ and ϕ�x� � idP`Rn�x� modulo `te for all x.

Proof. We set B � R�X�~`X2
� tXe. By assumption, we have a � π � tw. Then we lift it to

a�X� � π�Xw � �P `Rn�aRB � B, which can be checked to be an epimorphism (as in the

proof of [RvdK, Proposition 3.3]). Hence we have a�X� > Um��P `Rn�aRB�. Since B is a

ring in C of dimension d, property P�d,m� now gives an element ϕ�X� > SL��P`Rn�aRB�
with a�X� � πϕ�X�. Then ϕ � ϕ�0��1

ϕ�t� is the desired automorphism.

For any n C 2, we say that two automorphisms ϕ,ψ > SL�P `Rn� are isotopic if there is

an automorphism τ�X� of �P `Rn�aR R�X� with determinant 1 such that τ�0� � ϕ and

τ�1� � ψ.

Theorem 1.20. Let C be the class of Noetherian rings or affine k-algebras over a fixed

field k. Assume that C has the property P�d � 1,m � 1�. Let R be a d-dimensional ring in

C, P a projective R-module of rank m and σ > Aut�P `Rn� for some n C 2. Assume that

σ ` 1 > E�P `Rn�1�. Then σ is isotopic to idP`Rn.

Proof. Since σ ` 1 > E�P `Rn�1�, there is a natural isotopy τ�X� > E��P `Rn�1�aRR�X��
with τ�0� � idP`Rn�1 and τ�1� � σ ` 1. Now apply the previous lemma to R�X�, X2

�X

and a � πτ�X� in order to obtain an automorphism χ�X� > SL��P `Rn�1�aRR�X�� with

πχ�X� � a such that χ�X��x� � x modulo `X2
�Xe. Thus, πτ�X�χ�X��1

� π. Therefore

τ�X�χ�X��1
equals ρ�X� ` 1 for some ρ�X� > SL��P `Rn� aR R�X�� up to elementary

automorphisms. But then ρ�X� is an isotopy from idP`Rn to σ.

We can now use Theorem 1.20 in order to deduce the following stability results:

Theorem 1.21. With the notation of Section 1.2, we assume that P0 has rank 2. If R is a

regular Noetherian ring of dimension 2, then there is an equality Eª�P0�9Aut�P4� � E�P4�.
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Proof. If σ > SL�P4� is stably elementary, then σ > E�Pn�1� for some n C 4. We can now

apply Theorem 1.20 to P � P0 and deduce that there is an isotopy ρ�X� > SL�Pn�X��
from idPn to σ. But since R is regular, we know that ρm�X� is stably elementary (for

any maximal ideal m of R); in fact, we can deduce that ρm�X� is elementary because

dim�R� � 2. Therefore Theorem 1.18 implies that ρ�X� > E�Pn�X�� and consequently

σ � ρ�1� > E�Pn�. The theorem now follows by inductively repeating this argument and

deducing that σ > E�P4�.
Theorem 1.22. With the notation of Section 1.2, we further assume that P0 has rank

2. Let k be a field with P�4,3�. If R is a regular affine k-algebra of dimension 3, then

Eª�P0� 9Aut�P4� � E�P4�.
Proof. We know that there is an equality SLN�Rp�X�� � EN�Rp�X�� for any prime p of

R and N C 4 by a famous theorem of Vorst (cp. [V]). We can thus argue as in the proof

of Theorem 1.21.
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Motivic Homotopy Theory

In this chapter, we give a brief introduction to motivic homotopy theory as developed by

Fabien Morel and Vladimir Voevodsky in [MV]. At first, we outline the construction of the

unstable A1-homotopy category over a regular Noetherian base scheme S of finite Krull

dimension and of its pointed version. In the subsequent section, we study the endomor-

phisms of P1
S in the pointed A1-homotopy category over the spectrum S � Spec�R� of a

smooth affine algebra R over a perfect field of characteristic x 2. In fact, we will extend

some computations which are known over a perfect field k with char�k� x 2 as a base

scheme to the case of a smooth affine algebra over k. Finally, we briefly discuss A1-fiber

sequences and Suslin matrices in the last section of this chapter.

2.1 The unstable A1-homotopy category

Let S be a regular Noetherian base scheme of finite Krull dimension and let SmS be

the category of smooth separated schemes of finite type over S. Furthermore, we denote

by SpcS � ∆opShvNis�SmS� (resp. SpcS,Y) the category of (pointed) simplicial Nisnevich

sheaves of sets over SmS. We refer to objects of SpcS (SpcS,Y) as (pointed) spaces. Note

that any (pointed) simplicial set or any (pointed) Nisnevich sheaf of sets can be considered

(pointed) spaces. In particular, any (pointed) scheme X > SmS defines an object of SpcS

(resp. SpcS,Y).

One can define a model structure on SpcS as follows: A (simplicial) cofibration in SpcS is

just defined to be a monomorphism of simplicial sheaves. A morphism f � X � Y is called

a simplicial weak equivalence if f�x� � X �x�� Y�x� is a weak equivalence of simplicial sets

for any point x in the Nisnevich site on SmS. The (simplicial) fibrations are then defined

to be the morphisms with the right lifting property with respect to trivial cofibrations,

i.e. (simplicial) cofibrations which are also simplicial weak equivalences; this means that a

morphism p � E � B is a simplicial fibration if, for any diagram
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A //

i
��

E

p

��
X //

f
??

B

with i � A � X a trivial cofibration, there is a morphism f � X � E making the diagram

commutative.

We denote by Cs the class of (simplicial) cofibrations, by Ws the class of simplicial weak

equivalences and by Fs the class of (simplicial) fibrations defined as above. The triple

�Cs,Ws, Fs� determines a model structure on SpcS called the simplicial model structure

or the local injective model structure. One also obtains a simplicial model structure on

SpcS,Y by defining a morphism f � �X , x� � �Y , y� of pointed simplicial Nisnevich sheaves

to be a pointed (simplicial) cofibration, weak equivalence or fibration if it is a cofibration,

weak equivalence or fibration of simplicial Nisnevich sheaves with respect to the simplicial

model structure on SpcS just described. We write Hs�S� (resp. Hs,Y�S�) for the (pointed)

simplicial homotopy category, which can be obtained from SpcS (resp. SpcS,Y) by inverting

(pointed) simplicial weak equivalences.

The A1
S-model structure can be obtained as a Bousfield localization of the simplicial model

structure described above: A space Z > SpcS is called A1
S-local if the map

HomHs�S��X ,Z��HomHs�S��X �A1
S,Z�

induced by the projection X � A1
S � X is a bijection for any X > SpcS. Furthermore, a

morphism f � X � Y of simplicial Nisnevich sheaves is called an A1
S-weak equivalence if

the map

f� �HomHs�S��Y ,Z��HomHs�S��X ,Z�

is a bijection for any A1
S-local space Z. We denote by WA1

S
the class of A1

S-weak equiva-

lences. Note that all simplicial weak equivalences and all the projections X �A1
S � X are

automatically A1
S-weak equivalences.

We define the class CA1
S

of (A1
S-)cofibrations again as the class of monomorphisms, i.e.

CA1
S
� Cs. Moreover, we define the class FA1

S
of A1

S-fibrations to be class of morphisms

with the right lifting property with respect to trivial A1
S-cofibrations, i.e. monomorphisms

which are also A1
S-weak equivalences. Then the triple �CA1

S
,WA1

S
, FA1

S
� determines the A1

S-

model structure on SpcS. Again, one obtains an A1
S-model structure on SpcS,Y by defining

a morphism f � �X , x� � �Y , y� of pointed simplicial Nisnevich sheaves to be a pointed
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A1
S-cofibration, A1

S-weak equivalence or A1
S-fibration if it is a cofibration, weak equivalence

or fibration of simplicial Nisnevich sheaves with respect to the A1
S-model structure on SpcS

just described.

The (pointed) unstable A1
S-homotopy category H�S� (resp. HY�S�) is the homotopy cat-

egory associated to the (pointed) A1
S-model structure and is obtained from SpcS (resp.

SpcS,Y) by inverting (pointed) A1
S-weak equivalences. In case of an affine base scheme

S � Spec�R�, we simply write SpcR, SpcR,Y, H�R� or HY�R� for the respective categories.

Objects of H�S� (resp. HY�S�) will be referred to as (pointed) spaces. For two spaces

X and Y , we denote by �X ,Y�A1
S
� HomH�S��X ,Y� the set of morphisms from X to Y

in H�S�; similarly, we denote by ��X , x�, �Y , y��A1
S ,Y

� HomHY�S���X , x�, �Y , y�� the set of

morphisms from a pointed space �X , x� to another pointed space �Y , y� in HY�S�. Some-

times we will omit the basepoints from the notation or write R instead of Spec�R� if

S � Spec�R� is an affine scheme.

If X ,Y > SpcS, we say that two morphisms f, g � X � Y are naively A1
S-homotopic if there

is a morphism H � X � A1
S � Y such that H��,0� � f and H��,1� � g. We denote by

�X ,Y�N the set of equivalence classes of morphisms from X to Y under the equivalence

relation generated by the relation of naive A1
S-homotopies. A (pointed) space Y is called

A1
S-fibrant if the unique morphism Y � � � S is an A1

S-fibration; in fact, for any (pointed)

space Y , there is a (pointed) A1
S-fibrant space Y � together with a (pointed) A1

S-weak equiv-

alence Y � Y �. If Y is an A1
S-fibrant space and X is any space, then the relation of naive

A1
S-homotopies on the set of morphisms from X to Y is an equivalence relation and the

natural map �X ,Y�N � �X ,Y�A1
S

is a bijection.

For any space X , the product functor X � � � SpcS � SpcS admits a right adjoint

Hom�X ,�� � SpcS � SpcS; the adjoint pair forms a Quillen pair and therefore induces

an adjunction

X � � � H�S�� H�S� �RHom�X ,��

on the A1
S-homotopy category; here, RHom�X ,�� denotes a right derived functor of

Hom�X ,��.
Like in classical topology, one can define a wedge product �X , x� - �Y , y� and a smash

product �X , x� , �Y , y� of two pointed spaces �X , x� and �Y , y�: The wedge product is

defined by the pushout square
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�
y //

x

��

�Y , y�
���X , x� // �X , x� - �Y , y�

and the smash product by the pushout square

�X , x� - �Y , y� //

�id�y�-�x�id�
��

�

���X � Y , x � y� // �X , x� , �Y , y�.
For any pointed space �X , x�, the functor �X , x�,� � SpcS,Y � SpcS,Y admits a right adjoint

Hom
Y
��X , x�,�� � SpcS,Y � SpcS,Y; the adjoint pair forms a Quillen pair and hence descends

to an adjunction

�X , x� , � � HY�S�� HY�S� �RHomY
��X , x�,��

on the level of the pointed A1
S-homotopy category; here, RHom

Y
��X , x�,�� is a right

derived functor of Hom
Y
��X , x�,��. As a particularly interesting special case, one obtains

the functor Σs � S1
, � � SpcS,Y � SpcS,Y, which is called the simplicial suspension functor;

its right adjoint Ωs � Hom
Y
�S1,�� � SpcS,Y � SpcS,Y is called the simplicial loop space

functor. We denote by Σn
s and Ωn

s the iterated suspension and loop space functors for any

n > N. For any pointed space �X , x�, its simplicial suspension Σs�X , x� � S1
, �X , x� has

the structure of an h-cogroup in HY�S� (cp. [A, Definition 2.2.7] or [Ho, Section 6.1]);

in particular, for any pointed space �Y , y�, there is a natural group structure on the set

�Σs�X , x�, �Y , y��A1
S ,Y

induced by the h-cogroup structure of Σs�X , x�. For any pointed

space �Y , y�, the space RΩs�Y , y� has the structure of an h-group in HY�S� and hence

the set ��X , x�,RΩs�Y , y��A1
S ,Y

has a natural group structure for any pointed space �X , x�
induced by the h-group structure of RΩs�Y , y�.
Furthermore, the functor ��

�
� SpcS � SpcS,Y,X ( X� � X @ � and the forgetful functor

F � SpcS,Y � SpcS, �X , x�( X form a Quillen pair and hence descend to an adjunction

��
�
� H�S�� HY�S� �RF ,

where RF is a right derived functor of F . We will tacitly use this in some proofs in order

to force some spaces to have a basepoint.
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2.2 Endomorphisms of P1

For any base scheme S as above, we let P1
S � P1

�Z S and Gm,S � Gm �Z S, where

P1 � P1
Z � Proj�Z�T0, T1�� and Gm � Spec�Z�T �T �. If S � Spec�R� is an affine scheme, we

simply write P1
R and Gm,R instead of P1

Spec�R�
and Gm,Spec�R�. The scheme P1

S is canonically

pointed by ª, the scheme Gm,S by 1. It is well-known that there is a pointed A1
S-weak

equivalence between P1
S and S1

, Gm,S. Via this identification of P1
S and S1

, Gm,S in

HY�S�, the space P1
S obtains the structure of an h-cogroup (cp. [A, Definition 2.2.7] or

[Ho, Section 6.1]). In particular, for any pointed space �X , x�, the set �P1
S, �X , x��A1

S ,Y
has

a natural group structure.

Now let S � Spec�k� be the spectrum of a perfect field k with char�k� x 2. The group

�P1
k,P1

k�A1
k
,Y has been computed in [C] as follows: We say that two pointed morphisms

f, g � P1
k � P1

k are naively A1
k-homotopic if there is a morphism H � P1

k �k A1
k � P1

k with

H��,0� � f , H��,1� � g and such that H�ª,�� � ª. We then denote by �P1
k,P1

k�N,Y the

set of equivalence classes of pointed morphisms under the equivalence relation generated

by the relation of naive A1
k-homotopies.

As it was proven in [C, Theorem 3.24], the set �P1
k,P1

k�N,Y can be endowed with a structure

of an abelian monoid such that the map �P1
k,P1

k�N,Y � �P1
k,P1

k�A1
k
,Y is a group completion.

Any pointed morphism f � P1
k � P1

k has an associated non-degenerate symmetric bilinear

form Bez�f� called the Bézout form of f . We let MW �k� be the Witt monoid of iso-

morphism classes of non-degenerate symmetric bilinear forms over k. The Grothendieck

group of MW �k� is the Grothendieck-Witt ring GW �k� of non-degenerate symmetric

bilinear forms over k. The discriminant induces a well-defined monoid homomorphism

MW �k�� k�~k�2.

It is proven in [C, Corollary 3.11] that the assignment

�f � P1
k � P1

k�( �Bez�f�,det�Bez�f���
induces a monoid isomorphism

�P1
k,P1

k�N,Y �

Ð�MW �k� �k�~k�2 k�,

where the right-hand term is the fiber product with respect to the discriminant map

MW �k�� k�~k�2 and the projection k� � k�~k�2.

It follows that we have a group isomorphism

�P1
k,P1

k�A1
k
,Y

�

Ð� GW �k� �k�~k�2 k�.
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For any n > N, there is a natural pointed morphism of schemes Gm,k � Gm,k induced by the

k-algebra homomorphism k�T �T � k�T �T , T ( T n. Taking the smash product with S1, we

obtain a morphism ψnk � S
1
,Gm,k � S1

,Gm,k, which corresponds up to canonical pointed

A1
k-weak equivalence to a morphism P1

k � P1
k. The Bézout form Bez�ψnk � is given by the

n � n-matrix with only 1’s on the anti-diagonal and 0’s elsewhere. Its class in GW �k�
equals nε, which is given by the formula

nε � P
n
i�1 @ ��1��i�1�

A > GW �k�.
As det�Bez�ψnk �� � ��1�n�n�1�~2

, it follows that ψnk corresponds to the pair �nε, ��1�n�n�1�~2�
under the isomorphism �P1

k,P1
k�A1

k
,Y

�

Ð� GW �k� �k�~k�2 k�. In particular, if �1 > k�2, i.e. if

�1 is a square in k, and if furthermore n � 0,1 mod 4, then the morphism ψnk corresponds

to n � idS1,Gm,k
in �S1

,Gm,k, S1
,Gm,k�A1

k
,Y.

We now want to prove the latter computation for a more general base scheme. For this,

we let k be a perfect base field with char�k� x 2 as in the computation above and we let

f �X � Spec�R�� Spec�k� be a smooth affine scheme of finite type over k.

If we take X as a base scheme, we again consider the morphism Gm,k � Gm,k given by

k�T �T � k�T �T , T ( T n, for all n > N. Its pullback along the morphism f � X � Spec�k�
gives a morphism Gm,R � Gm,R. Taking the smash product with S1, we obtain a morphism

ψnR � S1
,Gm,R � S1

,Gm,R in HY�R�.
Lemma 2.1. The morphism f �X � Spec�k� induces a well-defined group homomorphism

�S1
,Gm,k, S1

,Gm,k�A1
k
,Y � �S1

,Gm,R, S1
,Gm,R�A1

R,Y
.

Proof. There is a restriction functor f� � Spck,Y � SpcR,Y induced by f . It follows from

[MV, Proposition 3.2.8] that f� commutes with the smash product of pointed spaces,

sends A1
k-weak equivalences to A1

R-weak equivalences and hence descends to a functor

f� � HY�k�� HY�R�. The functor f� sends any smooth k-scheme U to its pullback U �k R

along f and similarly sends a morphism g � U � V between two k-schemes to its pullback

g�kR � U �kR � V �kR; furthermore, it fixes simplicial sets and morphisms between them.

Hence we obtain a map �S1
, Gm,k, S1

, Gm,k�A1
k
,Y � �S1

, Gm,R, S1
, Gm,R�A1

R,Y
. As the

group structure of both sets is induced by the structure of S1 as an h-cogroup, the map is

clearly a group homomorphism.

As an immediate consequence of the previous lemma, we obtain:

Corollary 2.2. If �1 > k�2, n � 0,1 mod 4 and X > SpcR,Y, then the class of ψnR , X in

�S1
,Gm,R ,X , S1

,Gm,R ,X �A1
R,Y

equals the class of n � idS1,Gm,R,X
.
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2.3 A1-fiber sequences and Suslin matrices

In any pointed model category, i.e. in any model category whose initial and terminal objects

are isomorphic, there exists the notion of fiber sequences �F , f�0 �E , e�� �B, b� (cp. [Ho,

Section 6.2]). Since SpcS,Y is a pointed model category with its A1
S-model structure, this

notion in particular exists in motivic homotopy theory. Analogous to the situation in

classical topology, such fiber sequences give rise to long exact sequences of the form

...� �X ,RΩs�B, b��A1,Y � �X , �F , f��A1,Y � �X , �E , e��A1,Y � �X , �B, b��A1,Y

for any pointed space X .

Now let us fix a perfect field k with char�k� x 2. For any pointed space �X , x� > Spck,Y
and i C 0, we define the ith A1

k-homotopy sheaf πA1

i �X , x� as the Nisnevich sheaf on Smk

associated to the presheaf U ( �Σi
sU�, �X , x��A1

k
,Y. In general, the A1

k-homotopy sheaves

πA1

i �X , x� are Nisnevich sheaves of sets on Smk for i C 0, Nisnevich sheaves of groups for

i C 1 and Nisnevich sheaves of abelian groups for i C 2. Since sheafification is exact, any

A1
k-fiber sequence �F , f�0 �E , e�� �B, b� yields a long exact sequence

...� πA1

i�1�B, b�� πA1

i �F , f�� πA1

i �E , e�� πA1

i �B, b�� ...

of A1
k-homotopy sheaves. For the purpose of this thesis, we simply state the existence of

the following A1
k-fiber sequences, which follows from [W, Section 5] and [AHW2, Section

2]:

Theorem 2.3. Let �X,x� be a pointed k-scheme. If G � Sp2n, SLn,GLn and P � X is a

G-torsor, then there is an A1
k-fiber sequence of the form

G0 P �X.

As special cases of this theorem, we obtain A1
k-fiber sequences of the form

SLn 0 SLn�1 � SLn�1~SLn,

Sp2n 0 SL2n � SL2n~Sp2n,

Sp2n 0 GL2n � GL2n~Sp2n.

Let us describe the quotients SLn~SLn�1: For n C 1, the projection on the first column

induces a morphism SLn~SLn�1 � An
k � 0, which is Zariski locally trivial with fibers iso-

morphic to An�1
k and hence an A1

k-weak equivalence.
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For all n C 1, let Qk
2n�1 � Spec�k�x1, ..., xn, y1, ..., yn�~`Pn

i�1 xiyi � 1e� the smooth affine

quadric hypersurfaces in A2n
k . The projection on the coefficients x1, ..., xn induces a mor-

phism pk2n�1 � Q
k
2n�1 � An

k � 0, which is locally trivial with fibers isomorphic to An�1
k and

hence an A1
k-weak equivalence. Thus, we have A1

k-weak equivalences

SLn~SLn�1 �A1
k
An
k � 0 �A1

k
Qk

2n�1

for all n C 1. Note that these A1
k-weak equivalences are all pointed if we equip SLn~SLn�1

with the identity matrix, An
k � 0 with �1,0, ..,0� and Qk

2n�1 with �1,0, ..,0,1,0, ..,0� as

basepoints.

If R is a smooth affine k-algebra and X � Spec�R�, then it is well-known that

Umn�R� �HomSmk
�X,An

k � 0�
and

��a, b�Sa, b > Umn�R�, abt � 1� �HomSmk
�X,Qk

2n�1�.
If n C 3, it follows from [Mo, Remark 8.10] and [F, Theorem 2.1] that

Umn�R�~En�R� � �X,An
k � 0�A1

k
.

In particular, if we let Sk2m�1 � k�x1, ..., xm, y1, ..., ym�~`Pm
i�1 xiyi � 1e for m C 1, then the

orbit space Umn�Sk2m�1�~En�Sk2m�1� is just given by

�Qk
2m�1,An

k � 0�A1
k
� �Am

k � 0,An
k � 0�A1

k
.

It is well-known that Am
k � 0 is isomorphic to Σm�1

s G,m
m,k in HY�k� for all m C 1; therefore

Am
k � 0 inherits the structure of an h-cogroup in HY�k� for m C 2 (cp. [A, Definition 2.2.7]

or [Ho, Section 6.1]). In particular, the orbit space Umn�Sk2m�1�~En�Sk2m�1� has a natural

group structure for m C 2, n C 3.

Now let R be a commutative ring, n C 1 and a � �a1, ..., an�, b � �b1, ..., bn� be row vec-

tors of length n. In [S2], Suslin inductively constructed matrices αn�a, b� of size 2n�1 called

Suslin matrices as follows: For n � 1, one simply sets α1�a, b� � �a1�; for n C 2, one sets

a� � �a2, ..., an�, b� � �b2, ..., bn� and defines

αn�a, b� � �
�

a1Id2n�2 αn�1�a�, b��
�αn�1�b�, a��t b1Id2n�2

�
� .
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In [S2, Lemma 5.1], Suslin proved that det�αn�a, b�� � �abt�2n�2
if n C 2; in particular, if

a � �a1, ..., an� is a unimodular row of length n and b � �b1, ..., bn� defines a section of a, i.e.

abt � P
n
i�1 aibi � 1, then αn�a, b� > SL2n�1�R�.

Suslin originally introduced these matrices in order to show that if a � �a1, a2, a3, ..., an�
is a unimodular row of length n C 3, then the row of the form a� � �a1, a2, a3, ..., a

�n�1�!
n �

is completable to an invertible matrix. In fact, he proved that, for any a with section b,

there exists an invertible n � n-matrix β�a, b� whose first row is a� such that the classes of

β�a, b� and αn�a, b� in K1�R� coincide (cp. [S4, Proposition 2.2 and Corollary 2.5]).

As explained in [AF4], one can in fact interpret Suslin’s construction as a morphism of

schemes: We let Qk
2n�1 � Spec�k�x1, ..., xn, y1, ..., yn�~`Pn

i�1 xiyi � 1e� as above. Then there

exists a morphism αn � Qk
2n�1 � SL2n�1 induced by αn�x, y�, where x � �x1, ..., xn� and

y � �y1, ..., yn�; if we equip Qk
2n�1 with �1,0, ..,0,1,0, ...,0� and SL2n�1 with the identity as

basepoints, this morphism is pointed. Composing with the canonical map SL2n�1 � SL,

we obtain a morphism Qk
2n�1 � SL, which we also denote by αn. If R is a smooth affine

algebra over k and n C 3, then the induced morphism

Umn�R�~En�R� � �Spec�R�,Qk
2n�1�A1

k

αn�
ÐÐ� �Spec�R�, SL�A1

k
� SK1�R�

takes the class of any a > Umn�R� to the class of αn�a, b� in SK1�R�, where b is any section

of a.
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Hermitian K-Theory

In this chapter, we give a brief introduction to Hermitian K-theory and we give several

presentations of the higher Grothendieck-Witt group GW 3
1 �R� for any smooth affine alge-

bra R over a perfect field of characteristic x 2. For any commutative ring R, we introduce

the group W �

E�R� and its subgroup WE�R� called the elementary symplectic Witt group

in the second section of this chapter; moreover, we define the group W �

SL�R�, which is

the cokernel of a hyperbolic map SK1�R� � W �

E�R�, and its subgroup WSL�R�. In the

following section, we define the groups V �R� and VSL�R�; in fact, we will see that there

are canonical isomorphisms W �

E�R� � V �R� and W �

SL�R� � VSL�R�. Furthermore, we will

see that there is a canonical isomorphism GW 3
1 �R� �W �

E�R� for any smooth affine algebra

R over a perfect field k of characteristic x 2. Finally, we introduce Grothendieck-Witt

sheaves and study their Nisnevich cohomology in order to give criteria for the 2-divisibility

of WE�R� and the group WSL�R�.

3.1 Grothendieck-Witt groups

In this section, we recall some basics about higher Grothendieck-Witt groups, which are a

modern version of Hermitian K-theory. The general references of the modern theory are

[MS1], [MS2] and [MS3]. Let X be a scheme with 1
2 > Γ�X,OX� and let L be a line bundle

on X. Then we consider the category Cb�X� of bounded complexes of locally free coherent

OX-modules. The category Cb�X� inherits a natural structure of an exact category from

the category of locally free coherent OX-modules by declaring C �
Y
� CY � C ��

Y
to be exact

if and only if C �
n � Cn � C ��

n is exact for all n. The duality HomOX
��,L� induces a

duality #L on Cb�X� and the isomorphism id � HomOX
�HomOX

��,L�,L� for locally

free coherent OX-modules induces a natural isomorphism of functors $L � id
�

Ð� #L#L

on Cb�X�. Moreover, the translation functor T � Cb�X� � Cb�X� yields new dualities

#j
L
� T j#L and natural isomorphisms $j

L
� ��1�j�j�1�~2

$L. We say that a morphism in
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Cb�X� is a weak equivalence if and only if it is a quasi-isomorphism and we denote by qis

the class of quasi-isomorphisms. For all j, the quadruple �Cb�X�, qis,#j
L
,$j

L
� is an exact

category with weak equivalences and strong duality (cp. [MS2, §2.3]).

Following [MS2], one can associate a Grothendieck-Witt space GW to any exact category

with weak equivalences and strong duality. The (higher) Grothendieck-Witt groups are

then defined to be its homotopy groups:

Definition 3.1. For all j, let GW�Cb�X�, qis,#j
L
,$j

L
� denote the Grothendieck-Witt space

associated to the quadruple �Cb�X�, qis,#j
L
,$j

L
� as above. Then, for any i C 0, we define

GW j
i�X,L� � πiGW�Cb�X�, qis,#j

L
,$j

L
�. If L � OX , we also denote GW j

i �X,OX� by

GW j
i �X�. Furthermore, if X � Spec�R�, we simply denote GW j

i �X,L� or GW j
i �X� by

GW j
i �R,L� or GW j

i �R� respectively.

The groups GW j
i �X,L� are 4-periodic in j. If we let X � Spec�R� be an affine scheme, the

groups GW j
i �X� coincide with Hermitian K-theory and U -theory as defined by Karoubi

(cp. [MK1] and [MK2]) because 1
2 > Γ�X,OX� by our assumption (cp. [MS1, Remark 4.13]

and [MS3, Theorems 6.1-2]). In particular, there are isomorphisms KiO�R� � GW 0
i �R�,

�1Ui�R� � GW 1
i �R�, KiSp�R� � GW 2

i �R� and Ui�R� � GW 3
i �R�.

The Grothendieck-Witt groups defined as above carry a multiplicative structure. Indeed,

the tensor product of complexes induces product maps

GW j
i�X,L1� �GW s

r �X,L2�� GW j�s
i�r �X,L1 aL2�

for all i, j, r, s and line bundles L1,L2 on a scheme X with 1
2 > Γ�X,OX� (cp. [MS3, §9.2]).

For all i, j C 0, there exist forgetful homomorphisms fi,j � GW
j
i �X,L� � Ki�X�, hyper-

bolic homomorphisms Hi,j � Ki�X� � GW j
i �X,L� and also boundary homomorphisms

η � GW j�1
i�1 �X,L� � GW j

i �X,L�, which are connected by means of the exact sequence

called Karoubi periodicity sequence of the form

Ki�1�X� Hi�1,j�1

ÐÐÐÐ� GW j�1
i�1 �X,L� η

Ð� GW j
i �X,L� fi,j

Ð�Ki�X� Hi,j�1

ÐÐÐ� GW j�1
i �X,L�.

In this thesis, the group of our interest is GW 3
1 �R� � U1�R� for a smooth affine algebra R

over a perfect field k with char�k� x 2. As a matter of fact, it is argued in [FRS] and [AF4]

that there is a natural isomorphism between GW 3
1 �R� and the group W �

E�R�, the latter of

which will be introduced in the next section of this chapter.

Now let S be a regular Noetherian affine scheme of finite Krull dimension with 1
2 > Γ�S,OS�.

Then it is known (cp. [JH, Theorem 3.1]) that higher Grothendieck-Witt groups of smooth
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separated schemes of finite type over S are representable in the pointed A1
S-homotopy

category HY�S� as defined by Morel and Voevodsky. More precisely, if we let X be a

smooth separated scheme of finite type over S, it is shown that there are pointed spaces

GW
j and natural isomorphisms

�Σi
sX�,GW

j�A1
S ,Y

� GW j
i �X�.

In particular, we have identifications

�X,RΩi
sGW

j�A1
S
� GW j

i �X�.

It follows also from this that any morphism f � Y � X of smooth separated schemes of

finite type over S induces a pullback morphism f� � GW j
i �X�� GW j

i �Y �.
Following [ST], we are now going to make these spaces more explicit: For n > N, we let

GLn, O2n, Sp2n be the schemes (defined over S) of invertible n�n-matrices, of orthogonal

2n � 2n-matrices and of symplectic 2n � 2n-matrices. Then we consider for all n > N the

closed embeddings GLn � O2n and GLn � Sp2n induced by

M (
�
�
M 0

0 �M�1�t
�
�.

For any n > N, these embeddings are compatible with the standard stabilization embeddings

GLn � GLn�1, O2n � O2n�2 and Sp2n � Sp2n�2. Taking direct limits over all n with

respect to the induced maps O2n~GLn � O2n�2~GLn�1 and Sp2n~GLn � Sp2n�2~GLn�1,

we obtain spaces O~GL and Sp~GL. Similarly, the natural inclusions Sp2n � GL2n are

compatible with the standard stabilization embeddings and we analogously obtain a space

GL~Sp � colimn GL2n~Sp2n. As proven in [ST, Theorems 8.2 and 8.4], there are canonical

pointed A1
S-weak equivalences

GW
j
�A1

S

¢̈̈̈
¨̈̈̈̈
¨̈¦̈̈
¨̈̈̈̈
¨̈̈¤

Z �OGr if j � 0 mod 4

Sp~GL if j � 1 mod 4

Z �HGr if j � 2 mod 4

O~GL if j � 3 mod 4

and
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RΩ1
sO~GL �A1

S
GL~Sp,

where OGr is an ”infinite orthogonal Grassmannian” and HGr is an ”infinite symplectic

Grassmannian”. As a consequence of all the previous paragraphs, there is a natural iso-

morphism �X,GL~Sp�A1
S
� GW 3

1 �X�.
To conclude this section, we let the base scheme S � Spec�k� be the spectrum of a perfect

field k with char�k� x 2 and describe two actions of R� on GW 3
1 �R� for any smooth affine

k-algebra R. We consider the product map

GW 0
0 �R� �GW 3

1 �R�� GW 3
1 �R�

for a smooth affine algebra R over k induced by the multiplicative structure on the

higher Grothendieck-Witt groups mentioned above. As described above, there is a canon-

ical isomorphism GW 0
0 �R� � K0O�R� and the latter group can be identified with the

Grothendieck-Witt ring GW �R� of non-degenerate symmetric bilinear forms, i.e. the

Grothendieck completion of the abelian monoid of non-degenerate symmetric bilinear forms

over R. Furthermore, there is a canonical map

R� � GW �R�, u( �R �R � R, �x, y�( uxy�,

which induces an action of R� � Gm,k�R� on GW 3
1 �R� via the product map mentioned

above. Following [AF3, Section 3.5], we refer to this action as the multiplicative action of

R� � Gm,k�R� on GW 3
1 �R�.

We now describe an action of Gm,k on GL~Sp. For any smooth affine k-algebra R and any

unit u > R�, we denote by γ2n,u the invertible 2n � 2n-matrix inductively defined by

γ2,u �
�
�
u 0

0 1

�
�

and γ2n�2,u � γ2n,u Ù γ2,u. Conjugation by γ�1
2n,u induces an action of Gm,k on GL2n for all

n. As Sp2n is preserved by this action, there is an induced action on GL2n~Sp2n. Since

all the morphisms GL2n~Sp2n � GL2n�2~Sp2n�2 are equivariant for this action, we obtain

an action of Gm,k on GL~Sp. In particular, there is an induced action of R� � Gm,k�R�
on GW 3

1 �R� � �Spec�R�,GL~Sp�A1
k

for any smooth affine k-algebra R by taking the A1
k-

homotopy classes of morphisms. Again following [AF3, Section 3.5], we refer to this action

as the conjugation action of R� on GW 3
1 �R�. It follows from the proof of [AF3, Proposition

3.5.1] that the conjugation action coincides with the multiplicative action.

64



3.2 The elementary symplectic Witt group

Let R be a commutative ring and let G be any group such that E�R� ` G ` SL�R�. For

any n > N, we denote by A2n�R� the set of alternating invertible matrices of rank 2n. We

inductively define an element ψ2n > A2n�R� by setting

ψ2 �
�
�

0 1

�1 0

�
�

and ψ2n�2 � ψ2n Ù ψ2. For any m @ n, there is an embedding of A2m�R� into A2n�R� given

by M (M Ù ψ2n�2m. We denote by A�R� the direct limit of the sets A2n�R� under these

embeddings. Two alternating invertible matrices M > A2m�R� and N > A2n�R� are called

G-equivalent, M �G N , if there is an integer s > N and a matrix E > SL2n�2m�2s�R� 9G
such that

M Ù ψ2n�2s � Et�N Ù ψ2m�2s�E.

This defines an equivalence relation on A�R� and the set of equivalence classes A�R�~�G
is denoted W �

G�R�. Since

�
�

0 ids

idr 0

�
� > Er�s�R�

for even rs, it follows that the orthogonal sum equips W �

G�R� with the structure of an

abelian monoid. As it is shown in [SV], this abelian monoid is actually an abelian group.

An inverse for an element of W �

G�R� represented by a matrix N > A2n�R� is given by

the element represented by the matrix σ2nN�1σ2n, where the matrices σ2n are inductively

defined by

σ2 �
�
�

0 1

1 0

�
�

and σ2n�2 � σ2n Ù σ2. In particular, for G � E�R� or SL�R�, we obtain abelian groups

W �

E�R� and W �

SL�R�.
Now recall that one can assign to any alternating invertible matrix M an element Pf �M�
of R� called the Pfaffian of M . The Pfaffian satisfies the following formulas:

� Pf �M Ù N� � Pf �M�Pf �N� for all M > A2m�R� and N > A2n�R�;
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� Pf �GtNG� � det�G�Pf �N� for all G > GL2n�R� and N > A2n�R�;
� Pf �N�2

� det�N� for all N > A2n�R�;
� Pf �ψ2n� � 1 for all n > N.

Therefore the Pfaffian determines a group homomorphism Pf �W �

G�R� � R�; its kernel is

denoted WG�R�. If G � E�R�, the group WG�R� is simply denoted WE�R� and is called

the elementary symplectic Witt group of R. Furthermore, if G � SL�R�, we denote WG�R�
simply by WSL�R�.
As mentioned in the previous section, it is argued in [FRS] and [AF4] that there is a natural

isomorphism between GW 3
1 �R� and the group W �

E�R� for any smooth affine algebra R over

a perfect field of characteristic x 2. One of the main tools to compute the group GW 3
1 �R�

is the Karoubi periodicity sequence also mentioned in the previous section. By means of

the identification GW 3
1 �X� �W �

E�R�, this yields an exact sequence of the form

K1Sp�R� f1,2
ÐÐ�K1�R� H1,3

ÐÐ�W �

E�R� η
Ð�K0Sp�R� f0,2

ÐÐ�K0�R�.

The homomorphisms in this sequence can be explicitly described as follows: The forget-

ful homomorphisms K1Sp�R� f1,2
ÐÐ� K1�R� and K0Sp�R� f0,2

ÐÐ� K0�R� are induced by the

obvious inclusions Sp2n�R� � GL2n�R� and the assignment �P,ϕ� ( P for any skew-

symmetric space �P,ϕ�, i.e. for any finitely generated projective R-module P with a

non-degenerate skew-symmetric form ϕ on P , respectively. Moreover, the hyperbolic map

K1�R� H1,3

ÐÐ� W �

E�R� is induced by the assignment M ( M tψ2nM for all M > GL2n�R�.
Finally, the boundary homomorphism W �

E�R� η
Ð� K0Sp�R� is induced by the assignment

M ( �R2n,M� � �R2n, ψ2n� for all M > A2n�R�.
As the image of K1Sp�R� under f1,2 in K1�R� lies in SK1�R�, one can rewrite the sequence

above as

K1Sp�R� f1,2
ÐÐ� SK1�R� H1,3

ÐÐ�WE�R� η
Ð�K0Sp�R� f0,2

ÐÐ�K0�R�.

We are now going to explain the identification GW 3
1 �R� � W �

E�R� in terms of the repre-

sentability results for higher Grothendieck-Witt groups in motivic homotopy theory. For

this, we fix a base scheme S � Spec�R�, where R is a smooth affine algebra over any perfect

field k with char�k� x 2. As explained in the previous section, there is an A1
R-weak equiv-

alence RΩ1
sGW

3
�A1

R
GL~Sp, where GL and Sp denote the infinite linear and symplectic

groups (over R) respectively. We let A2n denote the scheme (over R) of skew-symmetric
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invertible 2n � 2n-matrices. For any n > N, one can define a morphism GL2n~Sp2n � A2n

by M (M tψ2nM . By the same reasoning as in [AF4, Section 2.3.2], these morphisms are

isomorphisms and hence induce an isomorphism between GL~Sp and A � colimnA2n (tran-

sition maps are defined by adding ψ2). If B is a smooth affine R-algebra and Y � Spec�B�,
the obvious map A�B� � �Y,A�A1

R
induces the identification W �

E�B� � GW 3
1 �B�. Anal-

ogously, there is an isomorphism between SL~Sp and A� � colimnA�

2n, where A�

2n is the

scheme (over R) of skew-symmetric invertible 2n � 2n-matrices of Pfaffian 1. Again, if

B is a smooth affine R-algebra and Y � Spec�B�, there is an analogous indentification

WE�B� � �Y,A��A1
R

.

In fact, if R � k, the A1
k-fiber sequences

Sp� GL� GL~Sp
Sp� SL� SL~Sp

induce the homomorphisms

K1Sp�R� f
Ð�K1�R� H

Ð�W �

E�R�
K1Sp�R� f

Ð� SK1�R� H
Ð�WE�R�

in the Karoubi periodicity sequence above.

3.3 The groups VG�R�

Again, let R be a commutative ring. Consider the set of triples �P, g, f�, where P is a

finitely generated projective R-module and f, g are alternating isomorphisms on P . Two

such triples �P, f0, f1� and �P �, f �0, f
�

1� are called isometric if there exists an isomorphism

h � P � P
�

such that fi � h-f �ih for i � 0,1. We denote by �P, g, f� the isometry class of

the triple �P, g, f�.
Let V �R� be the quotient of the free abelian group on isometry classes of triples as above

modulo the subgroup generated by the relations

� �P ` P �, g Ù g�, f Ù f �� � �P, g, f� � �P �, g�, f �� for alternating isomorphisms f, g on P

and f �, g� on P �;

� �P, f0, f1� � �P, f1, f2� � �P, f0, f2� for alternating isomorphisms f0, f1, f2 on P .

Note that these relations yield the useful identities
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� �P, f, f� � 0 in V �R� for any alternating isomorphism f on P ;

� �P, g, f� � ��P, f, g� in V �R� for alternating isomorphisms f, g on P ;

� �P, g, β-α-fαβ� � �P, f,α-fα� � �P, g, β-fβ� in V �R� for all automorphisms α,β of

P and alternating isomorphisms f, g on P .

We may also restrict this construction to free R-modules of finite rank. The correspond-

ing group will be denoted Vfree�R�. Note that there is an obvious group homomorphism

Vfree�R�� V �R�. This homomorphism can be seen to be an isomorphism as follows:

For any finitely generated projective R-module P , we call

H�P � � �
�

0 idP-

�can 0

�
� � P ` P - � P -

` P --

the hyperbolic isomorphism on P .

Now let �P, g, f� be a triple as above. Since P is a finitely generated projective R-module,

there is another R-module Q such that P `Q � Rn for some n > N. In particular, it follows

that P ` P -
`Q`Q- is free of rank 2n. Therefore the triple

�P ` P -
`Q`Q-, g Ù can g�1 ÙH�Q�, f Ù can g�1 ÙH�Q��

represents an element of Vfree�R�; this element is independent of the choice of Q. It follows

that the assignment

�P, g, f�( �P ` P -
`Q`Q-, g Ù can g�1 ÙH�Q�, f Ù can g�1 ÙH�Q��

induces a well-defined group homomorphism

V �R�� Vfree�R�.
Since

�P, g, f� � �P ` P -
`Q`Q-, g Ù can g�1 ÙH�Q�, f Ù can g�1 ÙH�Q��

in V �R� by the first of the useful identities listed above, this homomorphism is actually

an inverse to the canonical homomorphism Vfree�R�� V �R�. Thus, Vfree�R� � V �R�.
There is a canonical isomorphism between V �R� and the group W �

E�R� defined in the

previous section. In order to discuss this identification, we first need to prove Lemma 3.2

and Corollaries 3.3 and 3.4 below. They will also be used in the proofs of some later results

in this thesis.
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Lemma 3.2. Let P �>
n
i�1Pi be a finitely generated projective R-module and fi alternating

isomorphisms on Pi, i � 1, ..., n. Let f � f1 Ù ... Ù fn. Then �P, f,ϕ-fϕ� � 0 in V �R� for

any element ϕ of the commutator subgroup of Aut�P �. In particular, the same holds for

every element of E�P � with respect to the given decomposition.

Proof. By the third of the useful identities listed above, we have

�P, f,ϕ-2ϕ-1fϕ1ϕ2� � �P, f,ϕ-1fϕ1� � �P, f,ϕ-2fϕ2�.
Therefore we only have to prove the first statement for commutators. If ϕ � ϕ1ϕ2ϕ�1

1 ϕ
�1
2

is a commutator, then the formula above yields

�P, f,ϕ-fϕ� � �P, f,ϕ-1fϕ1� � �P, f,ϕ-2fϕ2� � �P, f, �ϕ�1
1 �-fϕ�1

1 � � �P, f, �ϕ�1
2 �-fϕ�1

2 � � 0,

which proves first part of the lemma.

For the second part, observe that by the formula above we only need to prove the statement

for elementary automorphisms. So let ϕs be the elementary automorphism induced by

s � Pj � Pi. Since we can add the summand �Pi, fi, fi� � 0, we may assume that we are in

the situation of Corollary 1.5. Therefore we may assume that ϕs is a commutator and the

second statement then follows from the first part of the lemma.

Corollary 3.3. Let P be a finitely generated projective R-module and χ be an alternating

isomorphism on P . Then �P `R2n, χ Ù ψ2n, ϕ-�χ Ù ψ2n�ϕ� � 0 in V �R� for any elementary

automorphism ϕ of P `R2n. In particular, if f is any alternating isomorphism on P `R2n,

it follows that there is an equality �P `R2n, χ Ù ψ2n, ϕ-fϕ� � �P `R2n, χ Ù ψ2n, f� in V �R�.
Proof. The first part follows directly from the previous lemma. The second part is then a

direct consequence of the second relation given in the definition of the group V �R�.
Corollary 3.4. For any matrix E > E2n�R�, we have �R2n, ψ2n,Etψ2nE� � 0 in V �R�. In

particular, we have �R2n, ψ2n,N� � �R2n, ψ2n,EtNE� in V �R� for any alternating invertible

matrix N > A2n�R�.
Using the previous corollary, the group Vfree�R� can be identified with W �

E�R� as follows:

If M > A2m�R� represents an element of W �

E�R�, then we assign to it the class in Vfree�R�
represented by �R2m, ψ2m,M�. By Corollary 3.4, this assignment descends to a well-defined

homomorphism ν �W �

E�R�� Vfree�R�.
Now let us describe the inverse ξ � Vfree�R��W �

E�R� to this homomorphism. Let �L, g, f�
be a triple with L free and g, f alternating isomorphisms on L. We can choose an isomor-

phism α � R2n �

Ð� L and consider the alternating isomorphism
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�α-fα� Ù σ2n�α-gα��1
σ-2n � R

2n
` �R2n�- � �R2n�- `R2n.

With respect to the standard basis of R2n and its dual basis of �R2n�-, we may interpret this

alternating isomorphism as an element of A4n�R� and then consider its class ξ��L, g, f��
in W �

E�R�. In fact, this class is independent of the choice of the isomorphism α � R2n �

Ð� L.

If β � R2n �

Ð� L is another isomorphism, then it suffices to show that the alternating

matrix M corresponding to α-fα Ù β-gβ is equivalent in W �

E�R� to the alternating matrix

corresponding to β-fβ Ù α-gα. But there is an isometry γ � �α�1β� Ù �β�1α� from

α-fα Ù β-gβ to β-fβ Ù α-gα, which is an elementary automorphism by Whitehead’s

lemma. One then also checks easily that the defining relations of Vfree�R� are also satisfied

by the assignment above. Hence it follows that this assignment induces a well-defined

homomorphism ξ � Vfree�R� � W �

E�R�. By construction, ν and ξ are obviously inverse to

each other and therefore identify W �

E�R� with Vfree�R�. From now on, we denote by Ṽ �R�
the subgroup of V �R� corresponding to the elementary symplectic Witt group WE�R�
under the isomorphisms V �R� � Vfree�R� �W �

E�R�.
In view of the previous paragraph, we obtain the following new presentation of the group

W �

SL�R�: Let VSL�R� be the quotient of the free abelian group on isometry classes of triples

�P, g, f� modulo the subgroup generated by the relations

� �P ` P �, g Ù g�, f Ù f �� � �P, g, f� � �P �, g�, f �� for alternating isomorphisms f, g on P

and f �, g� on P �;

� �P, f0, f1� � �P, f1, f2� � �P, f0, f2� for alternating isomorphisms f0, f1, f2 on P ;

� �P, g, f� � �P, g,ϕ-fϕ� for alternating isomorphisms g, f on P and ϕ > SL�P �.
Then VSL�R� �W �

SL�R�. We denote by ṼSL�R� the subgroup of VSL�R� corresponding to

WSL�R�. Automatically, there is a canonical epimorphism Ṽ �R�� ṼSL�R� corresponding

to the map WE�R��WSL�R�.
Since we have isomorphisms GW 3

1 �R� � W �

E�R� � V �R� for any smooth affine algebra

R over a perfect field k with char�k� x 2, we can now make the functoriality of the

Grothendieck-Witt group GW 3
1 �R� more explicit in terms of the group V �R�. For this,

we let S � Spec�R� be a base scheme, where R is a smooth affine algebra over a perfect

field k with char�k� x 2. Assume that Y � Spec�B� and Z � Spec�C� are all smooth affine

schemes over S � Spec�R�. Any morphism Z � Y over Spec�R� then corresponds to an

R-algebra homomorphism f � B � C. If P is a finitely generated projective B-module with

alternating isomorphisms χ1 and χ2, then the class of the triple �P,χ2, χ1� > V �B� is sent
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under the pullback morphism f� to �P aB C,χ2 aB C,χ1 aB C� > V �C�.

Now let R be a commutative ring. In order to conclude this section, we describe some

group actions on V �R�: For any finitely generated projective R-module P , alternating

isomorphism χ � P � P - and u > R�, the morphism u � χ � P � P - is again an alternating

isomorphism on P . Note that the alternating isomorphism u �χ is canonically isometric to

the alternating isomorphism uaR χ � RaR P
uaRχ
ÐÐÐ� RaR P - � �RaR P �- and we therefore

have an equality

�P,u � χ2, u � χ1� � �RaR P,uaR χ2, uaR χ1� in V �R�

for all χ1, χ2. One can check easily that the assignment

�u, �P,χ2, χ1��( �P,u � χ2, u � χ1�

descends to a well-defined action of R� on V �R�.
Now let us assume that 2 > R�, let ϕ � Q � Q- be a symmetric isomorphism on a finitely

generated projective R-module Q. Then, for any skew-symmetric isomorphism χ � P � P -

as above, there is an induced homomorphism ϕ aR χ � Q aR P � Q-
aR P - � �QaR P �-,

which is a skew-symmetric isomorphism on QaR P . One can check easily that the assign-

ment

��Q,ϕ�, �P,χ2, χ1��( �QaR P,ϕaR χ2, ϕaR χ1�

induces a well-defined action of the Grothendieck-Witt group GW �R� � GW 0
0 �R� of R on

V �R�.
For any smooth affine algebra R over a perfect field k with char�k� x 2, recall that we have

defined also an action of R� on GW 3
1 �R� in the previous section called the conjugation

action, which coincides with another action called the multiplicative action. By means of

the identifications GW 3
1 �R� �W �

E�R� � V �R�, we have many equivalent ways to describe

this action: If M > GL2n�R� represents a morphism Spec�R�� GL2n and u is a unit of R,

note that the conjugation of M by γ�1
2n,u is sent via the morphism GL2n � GL2n~Sp2n

�

Ð� A2n

to

γ�1
2n,uM

tγ2n,uψ2nγ2n,uMγ�1
2n,u � γ

�1
2n,uM

t�u � ψ2n�Mγ�1
2n,u.

Furthermore, note that the isometry induced by the matrix γ2n,u yields an equality
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�R2n, ψ2n, γ�1
2n,uM

t�u � ψ2n�Mγ�1
2n,u� � �R2n, u � ψ2n,M t�u � ψ2n�M�

in V �R�. As a consequence, the conjugation action of R� on GW 3
1 �R� can be described via

the isomorphism GW 3
1 �R� � V �R� as follows: If �P,χ2, χ1� is a triple as in the definition

of the group V �R� and u > R�, then the action is given by

�u, �P,χ2, χ1��( �P,u � χ2, u � χ1�.

Hence in this case the conjugation action is just given by the action of R� on V �R� which we

defined above. The conjugation action is thus a homotopy-theoretic interpretation of the

action defined above in case of a smooth affine algebra over a perfect field of characteristic

x 2. Since the conjugation action coincides with the multiplicative action, we therefore also

obtain another interpretation of the R�-action on V �R� defined above via the multiplicative

structure of higher Grothendieck-Witt groups.

3.4 The Gersten-Grothendieck-Witt spectral sequence

In the last section of this chapter, we introduce Grothendieck-Witt sheaves and study their

cohomology. This will give cohomological obstructions to the 2-divisibility of WE�R� and

WSL�R� for any smooth affine fourfold over an algebraically closed field k of characteristic

x 2.

First of all, we fix a perfect base field k with char�k� x 2. Recall that we have defined

A1
k-homotopy sheaves πA1

i �X , x� for any pointed space �X , x� > Spck,Y. As a special case,

we define Grothendieck-Witt sheaves as follows:

Definition 3.5. For any i, j C 0, we set GWj
i � π

A1

i �GWj�.
Now let X � Spec�R� be a smooth affine k-scheme. The Karoubi periodicity sequence

induces an exact sequence of sheaves

KQ
4

H4,3

ÐÐ�GW3
4

η
Ð�GW2

3

f3,2
ÐÐ�KQ

3 ,

where KQ
i denotes the ith Quillen K-theory sheaf for i C 0. We denote by A the image of

H4,3 and by B the image of η and obtain a short exact sequence

0�A�GW3
4 � B� 0
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of sheaves. It follows from [AF2, Lemma 4.11] and from the computations in [AF3, Section

3.6] that the associated exact sequence of cohomology groups yields an exact sequence of

the form

H3�X,KQ
4 ~2��H3�X,GW3

4�� Ch3�X�� Ch4�X��H4�X,GW3
4�� 0,

where Chi�X� � CH i�X�~2 for i � 3,4. Since CH4�X� is 2-divisible for any smooth affine

fourfold X over an algebraically closed field, we obtain:

Proposition 3.6. If R is a smooth affine algebra of dimension 4 over an algebraically

closed field k with char�k� x 2 and X � Spec�R�, then there is an exact sequence of the

form H3�X,KQ
4 ~2��H3�X,GW3

4�� Ch3�X�� 0.

In particular, if H3�X,KQ
4 ~2� and Ch3�X� are trivial, then also H3�X,GW3

4� is trivial.

In fact, one can prove the following statement:

Proposition 3.7. If R is a smooth affine algebra of dimension 4 over an algebraically

closed field k with char�k� x 2 and X � Spec�R�, then H3�X,KQ
4 � is 2-divisible and

H3�X,KQ
4 ~2� � 0. In particular, H3�X,GW3

4� is 2-divisible if and only if CH3�X� is

2-divisible.

Proof. We let 2KQ
4 be the image and �2�KQ

4 be the kernel of the morphism KQ
4 � KQ

4

induced by multiplication by 2. Then we consider the two short exact sequences of sheaves

0� �2�KQ
4 �KQ

4 � 2KQ
4 � 0

and

0� 2KQ
4 �KQ

4 �KQ
4 ~2� 0.

The Gersten resolutions of �2�KQ
4 and KQ

4 ~2 are flasque resolutions of these sheaves and

can therefore be used in order to compute their cohomology.

Since K0�F � � Z for any field F , we have H4�X,�2�KQ
4 � � 0. It follows that the map

H3�X,KQ
4 ��H3�X,2KQ

4 � is surjective. As the composite

H3�X,KQ
4 ��H3�X,2KQ

4 ��H3�X,KQ
4 �

is multiplication by 2, it thus suffices to prove that H3�X,KQ
4 ~2� � 0.

For any q,m > N, we let Hq�m� be the sheaf associated to the presheaf

U (Hq
et�U,µam2 �.
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Recall that the Bloch-Ogus spectral sequence (cp. [BO]) converges to the étale cohomology

groups H�

et�X,µam2 � and its terms on the second page are Hp
Zar�X,Hq�m��. These groups

can be computed via the Gersten complex

Hq�k�X�, µam2 � d0
Ð� `x1>X�1�Hq�1�k�x1�, µam�1

2 � d1
Ð� ....

By [JPS2, §4.2, Proposition 11], one has cd�k�xp�� B 4�p for any xp >X�p�. Hence it follows

that Hp
Zar�X,Hq�m�� � 0 for all q C 5; consequently, H3�X,H4�m�� � H7

et�X,µam2 � � 0

because X is affine.

Since H3�X,KM
4 ~2� � H3�X,KQ

4 ~2� and H3�X,H4�4�� � H3�X,KM
4 ~2� because of the

proof of the Bloch-Kato conjecture, this proves the result.

In the remainder of this section, we will use the Gersten-Grothendieck-Witt spectral se-

quence in order to compute WE�Sk2n�1� for all n divisible by 4 and in order to find coho-

mological obstructions for the 2-divisibility of WE�R� and WSL�R� when R is a smooth

affine algebra of dimension 4 over an algebraically closed field k with char�k� x 2.

Recall that if X is a smooth k-scheme of dimension d, then the Gersten-Grothendieck-Witt

spectral sequence E�3� associated to X has terms of the form

E�3�p,q1 �

¢̈̈̈
¦̈̈
¤̈
>xp>X�p� GW

3�p
3�p�q�k�xp�, ωxp� if 0 B p B d and 3 C p � q

0 else

on the first page and converges to GW 3
3���X�. There is a filtration

0 � Fd�1 ` Fd ` ... ` F1 ` GW 3
1 �X� � F0

with Fp~Fp�1 � E�3�p,2�pª for all p. Furthermore, the terms E�3�p,q2 on the second page are

isomorphic to Hp�X,GW3
3�q� for 0 B p B d and p � q B 3. We define GW 3

1,red�X� � F1. In

general, the group GW 3
1,red�X� coincides with �X,SL~Sp�A1

k
. In particular, if X � Spec�R�

is affine, then it coincides with WE�R�. Hence we can compute the group WE�R� via the

limit terms E�3�p,2�pª .

Proposition 3.8. Let n > N be divisible by 4 and k be a perfect field with char�k� x 2.

Then WE�Sk2n�1� � Z~2Z.

Proof. We have identifications
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WE�Sk2n�1� � �Qk
2n�1, SL~Sp�A1

k
� �An

k � 0, SL~Sp�A1
k
� GW 3

1,red�An
k � 0�.

We use the Gersten-Grothendieck-Witt spectral sequence E�3� associated to X � An
k � 0

in order to compute GW 3
1,red�An

k � 0�. As indicated above, we have a filtration

0 � Fn�1 ` Fn ` ... ` GW 3
1,red�X� � F1 ` GW 3

1 �X� � F0

with Fp~Fp�1 � E�3�p,2�pª for all p.

Let us compute the limit terms E�3�p,qª . It is known that the terms E�3�p,q2 on the second

page are precisely isomorphic to Hp�X,GW3
3�q�. Since n is divisible by 4, it follows from

[AF1, Lemma 4.5] that

E�3�p,q2 �

¢̈̈̈
¨̈̈
¦̈̈
¨̈̈̈
¤

GW 3
3�q�k� if p � 0

GW 3
3�n�q�k� if p � n � 1

0 else.

It follows immediately from this that GW 3
1,red�X� � F1 � GW 3

0 �k�. But GW 3
0 �k� � Z~2Z

by [FS, Lemma 4.1]. This proves the proposition.

Finally, we can give the following cohomological criteria for the 2-divisibility of WE�R�
and WSL�R�:
Proposition 3.9. Let R be a smooth affine algebra of dimension 4 over an algebraically

closed field k with char�k� x 2 and X � Spec�R�. Then WE�R� is 2-divisible if H2�X,KMW
3 �

and H3�X,GW3
4� are 2-divisible. Furthermore, WSL�R� is 2-divisible if H2�X, I3� is 2-

divisible and CH3�X� � CH4�X� � 0.

Proof. We use the Gersten-Grothendieck-Witt spectral sequence E�3� associated to X.

We have a filtration

0 � F5 ` F4 ` ... ` GW 3
1,red�R� � F1 ` GW 3

1 �R� � F0

with Fp~Fp�1 � E�3�p,2�pª for all p. The terms E�3�p,q2 on the second page areHp�X,GW3
3�q�

for 0 B p B 4 and p � q B 3 and 0 elsewhere.

First of all, [FRS, Lemma 2.2] implies that E�3�p,11 � 0 for all p. Therefore E�3�1,1
ª � 0 and

hence F2 �WE�R�. Moreover, since k is algebraically closed, the limit term F4 � E�3�4,�2
ª

is a quotient of `x>X�4�k� and therefore 2-divisible. Altogether, we have two short exact

sequences
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0� F3 �WE�R�� E�3�2,0
ª � 0,

0� F4 � F3 � E�3�3,�1
ª � 0,

where F4 is 2-divisible. In particular, WE�R� is 2-divisible as soon as E�3�2,0
ª and E�3�3,�1

ª

are 2-divisible.

However, E�3�3,�1
ª is a quotient of H3�X,GW3

4�. Furthermore, we know that E�3�2,0
2

is precisely H2�X,GW3
3� � H2�X,KMW

3 �. Hence E�3�2,0
ª is precisely the kernel of the

differential mapping into E�3�4,�1
2 � H4�X,GW3

4�. But by the fact that CH4�X� is 2-

divisible and by [AF3, Proposition 3.6.4], we can conclude that H4�X,GW3
4� � 0. Thus,

the limit term E�3�2,0
ª is precisely H2�X,KMW

3 � and the first statement follows.

For the second statement, we will use the Brown-Gersten-Quillen spectral sequence E��3�
associated to X, which has terms of the form

E��3�p,q1 �

¢̈̈̈
¦̈̈
¤̈
>xp>X�p� K

Q
3�p�q�k�xp�� if 0 B p B d and 3 C p � q

0 else

on the first page and converges to KQ
3���X�. The group SK1�R� can be computed via the

limit terms E��3�p,2�pª : There is a filtration

0 � F �

5 ` F
�

4 ` ... ` SK1�R� � F �

1 `K1�R� � F �

0

with F �
p~F �

p�1 � E��3�p,2�pª for all p. Moreover, the terms E��3�p,q2 on the second page are

isomorphic to Hp�X,KQ
3�q� for 0 B p B d and p � q B 3.

By construction of both the Brown-Gersten-Quillen and the Gersten-Grothendieck-Witt

spectral sequences, the hyperbolic morphism induces a morphism of spectral sequences.

Hence we get a commutative diagram

0 //

��

F �

3

H1,3

��

// SK1�X�
H1,3

��

// F �

1~F �

3

H1,3

��

// 0

��
0 // F3

//WE�X� // H2�X,KMW
3 � // 0

with exact rows. If H3�X,GW3
4� is 2-divisible (in particular, if CH3�X� is 2-divisible),

then we have seen above that F3 is 2-divisible. Since WSL�R� is 2-torsion, the snake lemma

induces an isomorphism WSL�R� �

Ð� H2�X,KMW
3 �~H1,3�F �

1~F �

3�. In particular, there is a

surjection H2�X,KMW
3 �~H1,3�F �

2~F �

3��WSL�R�.
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Since CH4�X� � 0, the group H2�X,KQ
3 � surjects onto F �

2~F �

3 � E
��3�2,0

ª and it follows that

there is an equality H2�X,KMW
3 �~H1,3�F �

2~F �

3� �H2�X,KMW
3 �~H3,3�H2�X,KQ

3 ��. Finally,

as the homomorphism H2�X,KQ
3 ��H2�X,2KQ

3 � is surjective, the long exact sequence of

cohomology groups associated to the short exact sequence

0� 2KM
3 �KMW

3 � I3
� 0

shows that H2�X,KMW
3 �~H3,3�X,KQ

3 � �H2�X, I3�. This yields the second statement.
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The Generalized Vaserstein Symbol

In the last chapter of this thesis, we finally define the generalized Vaserstein symbol and

prove our main results. First of all, we start by reviewing the definition and basic properties

of the usual Vaserstein symbol as defined by Suslin and Vaserstein in [SV, §5]. In the

subsequent section, this leads to the construction of the generalized Vaserstein symbol

Vθ0 � Um�P0`R�~E�P0`R�� Ṽ �R� associated to a finitely generated projective module P0

of rank 2 over a commutative ring R together with a fixed trivialization of its determinant

θ0 � R
�

Ð� det�P0�. We will then study its basic properties and prove in particular that it

is a bijection if R is either a regular Noetherian ring of dimension 2 or a regular affine

algebra of dimension 3 over a perfect field k with c.d.�k� B 1 and 6 > k�. Furthermore,

we prove a sum formula Vθ0�a0, anR� � n � Vθ0�a0, aR� for n � 0,1 mod 4 over smooth affine

algebras over perfect fields with characteristic x 2 such that �1 > k�2 and explore its

applications. Finally, we will see that the generalized Vaserstein symbol descends to a map

Vθ0 � Um�P0 `R�~SL�P0 `R� � ṼSL�R�, which we will study in the third section of this

chapter. As an application of this map, we will give a criterion for the triviality of the

orbit space Um�P0 ` R�~SL�P0 ` R� for Noetherian rings of dimension B 4. Motivated

by this criterion, we study symplectic orbits of unimodular rows and prove in particular

that Spd�R� acts transitively on Umd�R� whenever d C 4 is divisible by 4 and R is a

smooth affine algebra of dimension d over an algebraically closed field k with d! > k�. As

an immediate consequence of this, we will prove that Um3�R�~SL3�R� is trivial if and

only if ṼSL�R� is trivial whenever R is a smooth affine algebra of dimension 4 over an

algebraically closed field k with 6 > k�. Furthermore, we will prove that the generalized

Vaserstein symbol induces a bijection Vθ0 � Um�P0 ` R�~SL�P0 ` R� � ṼSL�R� if R is

an affine algebra of dimension 3 over a finite field. In order to conclude this thesis, we

contextualize our results in the last section of this chapter by relating them to some open

questions in the study of projective modules.
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4.1 The Vaserstein symbol for unimodular rows

In this section, we review the Vaserstein symbol map as introduced by Suslin and Vaserstein

in [SV, §5]. Furthermore, we prove a cancellation theorem for finitely generated projective

modules of a specific form over normal affine algebras over the algebraic closure of a finite

field. We conclude this section by reinterpreting the Vaserstein symbol by means of the

isomorphism W �

E�R� � Vfree�R�.
First of all, we let R be a commutative ring and we let Um3�R� be its set of unimodular

rows of length 3, i.e. triples a � �a1, a2, a3� of elements in R such that there are elements

b1, b2, b3 > R with P
3
i�1 aibi � 1. This data determines an exact sequence of the form

0� P �a�� R3 a
Ð� R � 0,

where P �a� � ker�a�. The triple b � �b1, b2, b3� > R3 gives a section to the epimorphism

a � R3 � R and induces a retraction r � R3 � P �a�, ei ( ei � aib, where e1 � �1,0,0�,
e2 � �0,1,0� and e3 � �0,0,1�. One then obtains an isomorphism i � r � a � R3 � P �a�`R,

which induces an isomorphism det�R3� � det�P �a�`R�. Finally, by composing with the

canonical isomorphisms det�P �a�`R� � det�P �a�� and R � det�R3�,1( e1 , e2 , e3, one

obtains an isomorphism θ � R � det�P �a��.
The element of W �

E�R� defined by the matrix

V �a, b� �
��������

0 �a1 �a2 �a3

a1 0 �b3 b2

a2 b3 0 �b1

a3 �b2 b1 0

��������
has Pfaffian 1 and does not depend on the choice of the section b (cp. [SV, Lemma 5.1]). We

therefore obtain a well-defined map V � Um3�R��WE�R�. In particular, if we let G be any

group such that E�R� ` G ` SL�R�, we obtain a well-defined map VG � Um3�R��WG�R�;
in the case G � E�R�, we just recover the map V . These maps were introduced and studied

by Suslin and Vaserstein in [SV, §5]. They proved (cp. [SV, Theorem 5.2]):

Theorem 4.1. Let R be a commutative ring and, moreover, let G be any group such that

E�R� ` G ` SL�R�. For all n C 1, we let π1,n � �1,0, ...,0� be the standard unimodular row

of length n. The map VG � Um3 �WG�R� has the following properties:

a) VG�a� � VG�aϕ� for all a > Um3�R� and ϕ > G 9 SL3�R�.
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b) If π1,2n�1�G 9 SL2n�1�R�� � Um2n�1�R� for all n C 2, then VG is surjective.

c) If π1,2nE2n�R� � π1,2n�Gt
9 SL2n�R�� for all n C 2, then VG�a� � VG�a�� for some

a, a� > Um3�R� implies that a � a�ϕ for some ϕ > G 9 SL3�R�.
In particular, the theorem implies that the maps VG � Um3�R��WG�R� descend to maps

VG � Um3�R�~�G 9 SL3�R���WG�R�.

Moreover, one obtains a map

V � Um3�R�~E3�R��WE�R�

called the Vaserstein symbol. Of course, this is just the composite

V � Um3�R�~E3�R�� Um3�R�~�E�R� 9 SL3�R�� VE�R�

ÐÐÐ�WE�R�.

Suslin and Vaserstein studied the injectivity and surjectivity of the Vaserstein symbol by

means of the criteria given by the theorem above. In [SV, Corollary 7.4], they proved that

the Vaserstein symbol is a bijection if dim�R� B 2. In fact, if we let π1,n � �1,0, ...,0� be the

standard unimodular row of length n, their proof showed that the Vaserstein symbol is sur-

jective if π1,2n�1E2n�1�R� � Um2n�1�R� for n C 2 and injective if π1,2nE2n�R� � π1,2nSL2n�R�
for n C 3 and E�R�9SL4�R� � E4�R�. Since π1,nEn�R� � Umn�R� if n C 5 for any Noethe-

rian ring of dimension 3 (cp. [HB, Chapter IV, Theorem 3.4]), the only remaining criterion

which needs to be proven for a Noetherian ring of dimension 3 is E�R�9SL4�R� � E4�R�.
Using local-global principles, Rao and van der Kallen could prove in [RvdK, Theorem 3.4

and Corollary 3.5]:

Theorem 4.2. Assume that R is a regular affine algebra of dimension 3 over a field k with

c.d.�k� B 1 which is perfect if char�k� � 2,3. Then E�R�9SL4�R� � E4�R�. In particular,

the Vaserstein symbol V � Um3�R�~E3�R��WE�R� is a bijection.

In particular, the orbit space Um3�R�~E3�R� can be endowed with an abelian group struc-

ture in the situation of the theorem. In [FRS], this abelian group structure was substan-

tially used in order to show that stably free modules of rank d�1 over normal affine algebras

of dimension d C 4 or smooth affine algebras of dimension d � 3 over an algebraically closed

field k with �d � 1�! > k� are free. In their proof, they implicitly showed that if j > N such

that gcd�char�k�, j� � 1, then any unimodular row of length d can be transformed via
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elementary matrices to a row of the form �a1, ..., a
j
d�; in particular, if one takes j � �d�1�!,

then Suslin’s n!-factorial theorem (cp. [S1, Remark after Lemma 2]) enabled them to con-

clude their proof.

We are now going to use their implicit result in order to prove a cancellation theorem for

projective modules over normal affine algebras over the algebraic closure of a finite field:

Theorem 4.3. Let R be a normal affine algebra of dimension d over the algebraic closure

F̄q of a finite field Fq. Furthermore, let d C 5 and P0 be a projective R-module of rank 2

and assume that �d� 1�! > F�q . Then the projective R-module Pd�1 � P0 `Rd�3 of rank d� 1

is cancellative.

Proof. By Proposition 1.16, we know that any unimodular element in Pd can be trans-

formed via elementary automorphisms to a unimodular element of the form a � �a0, a3, ..., ad�
such that R~adR is a smooth k-algebra of dimension d � 1 and P0~adP0 is a free R~adR-

module of rank 2.

The proof of [FRS, Theorem 7.5] now shows that the unimodular element �ā0, ā3, ..., ād�1�
of Pd�1~adPd�1 can be transformed via elementary automorphisms to an element of the form

b̄ � �b̄0, b̄
�d�1�!
3 , b̄4, ..., b̄d�1�. Using the map Φd�1�a� associated to a and using Lemma 1.12, it

follows that a can be transformed via elementary automorphisms to a unimodular element

of the form b � �b0, b3, ..., b
�d�2�!
d�1 , ad�1

d �. By [S1, Lemma 2], there is an automorphism ϕ of

Pd such that ϕ�ed� � b, which proves the theorem.

In fact, it was proven in [DK] that projective modules of rank d � 1 over affine algebras of

dimension d C 4 over the algebraic closure of a finite field Fq with �d�1�! > F�q are cancellative

in general. Hence our theorem above illustrates how the implicit result of Fasel-Rao-Swan

on transformations of unimodular rows via elementary matrices immediately implies this

cancellation theorem in some special cases.

In order to conclude this section, let us now reinterpret the Vaserstein symbol map in light

of the isomorphism W �

E�R� � V �R�free discussed in the previous chapter. The symbol

V �a� is sent to the element of Vfree�R� represented by the isometry class �R4, ψ4, V �a, b��.
If we denote by χa the alternating form P �a��P �a�� R, �p, q�( θ�1�p, q�, we obtain an

alternating form on R4 given by �i` 1�t�χa Ù ψ2��i` 1�. Moreover, if we set

σ �

��������

0 0 0 �1

1 0 0 0

0 1 0 0

0 0 1 0

��������
> E4�R�,
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then one can check that the form �i` 1�t�χa Ù ψ2��i` 1� is given by the matrix σtV �a, b�tσ.

In particular, if we let M � Um3�R� � Um3�R� be the map which sends a unimodular

row a � �a1, a2, a3� to the row M�a� � ��a1,�a2,�a3�, then the composite ν X V XM is

given by a ( �R4, ψ4, �i` 1�t�χa Ù ψ2��i` 1��. Since both M and ν are bijections, these

considerations lead to a generalization of the Vaserstein symbol.

4.2 The generalized Vaserstein symbol

In this section, we will define the generalized Vaserstein symbol and prove criteria for its

surjectivity and injectivity which are the analogues of Suslin’s and Vaserstein’s criteria for

the Vaserstein symbol mentioned in the previous section. Our criteria will enable us to

prove that the generalized Vaserstein symbol is a bijection if R is a regular Noetherian

ring of dimension 2 or a regular affine algebra of dimension 3 over a perfect field k such

that c.d.�k� B 1 and 6 > k�. Finally, we give an alternative definition of the generalized

Vaserstein symbol for smooth affine algebras over perfect fields of characteristic x 2 and

use this definition in order to prove a sum formula for the generalized Vaserstein symbol.

As an application, we can generalize the implicit result in [FRS, Theorem 7.5] that any

unimodular row of length d over a normal affine algebra of dimension d C 4 or a smooth

affine algebra of dimension d � 3 over an algebraically closed field k with �d � 1�! > k� can

be transformed via elementary matrices to a row of the form �a1, ..., a
�d�1�!
d �. Moreover,

this will enable us to re-prove a cancellation theorem for projective modules of rank 2 with

a trivial determinant over smooth affine threefolds (cp. [AF2, Corollary 3.8]).

Now let R be a commutative ring and P0 be a projective R-module of rank 2. We will

use the notation of Section 1.2: For all n C 3, we let Pn � P0 ` Re3 ` ... ` Ren be the

direct sum of P0 and free R-modules Rei, 3 B i B n, of rank 1 with explicit generators ei.

We will sometimes omit these explicit generators in the notation. Moreover, we denote

by πk,n � Pn � R the projections onto the free direct summands of rank 1 with index

k � 3, ..., n. Recall that any a > Um�Pn� can be written as �a0, a3, ..., an�, where a0 is the

restriction of a to P0 and ai � a�ei�, i � 3, ..., n, is the element of R corresponding to the

restriction of a to Rei. We assume that P0 admits a fixed trivialization θ0 � R
�

Ð� det�P0�
of its determinant. Furthermore, we denote by χ0 the non-degenerate alternating form on

P0 given by P0 � P0 � R, �p, q�( θ�1
0 �p , q�.

Any element a of Um�P0 `R� gives rise to an exact sequence of the form

0� P �a�� P0 `R
a
Ð� R � 0,
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where P �a� � ker�a�. Any section s � R � P0 `R of a determines a canonical retraction

r � P0 ` R � P �a� given by r�p� � p � sa�p� and an isomorphism i � P0 ` R � P �a� ` R
given by i�p� � a�p� � r�p�.
The exact sequence above yields an isomorphism det�P0� � det�P �a�� and therefore an

isomorphism θ � R � det�P �a�� obtained by composing with θ0. We denote by χa the

non-degenerate alternating form on P �a� given by P �a� � P �a�� R, �p, q�( θ�1�p , q�.
We now want to define the generalized Vaserstein symbol

Vθ0 � Um�P0 `R�� V �R�

associated to P0 and the fixed trivialization θ0 of det�P0� by

Vθ0�a� � �P0 `R2, χ0 Ù ψ2, �i` 1�t�χa Ù ψ2��i` 1��.

If there is no ambiguity, we will usually suppress the fixed trivialization θ0 and denote

Vθ0 simply by V in order to simplify our notation. In order to prove that this generalized

symbol is well-defined, one has to show that our definition is independent of a section of a:

Theorem 4.4. The generalized Vaserstein symbol is well-defined, i.e. the element V �a�
defined as above is independent of the choice of a section of a.

Proof. Let a > Um�P0 `R� with two sections s, t � R � P0 `R. We denote by is and it the

isomorphisms P0 `R � P �a� `R induced by the sections s and t respectively. Since the

isomorphism det�P �a�� � det�P0� does not depend on the choice of a section (because the

difference of two sections maps R into P �a�), the form χa is independent of the choice of

a section as well. Therefore it suffices to show that the elements

V �a, s� � �P0 `R2, χ0 Ù ψ2, �is ` 1�t�χa Ù ψ2��is ` 1�� and

V �a, t� � �P0 `R2, χ0 Ù ψ2, �it ` 1�t�χa Ù ψ2��it ` 1��
are equal in V �R�.
We do this in the following three steps:

� We define a map d � P0`R � R. We get a corresponding automorphism ϕ > E�P0`R2�
defined by ϕ � idP0`R2 � de4.

� We show that ϕt�is ` 1�t�χa Ù ψ2��is ` 1�ϕ � �it ` 1�t�χa Ù ψ2��it ` 1�.
� Using Corollary 3.3, we conclude that V �a, s� � V �a, t�.
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Now let us carry out the first step: First of all, we define a map d� � P0 `R � det�P0 `R�
by p ( s�1� , t�1� , p > det�P0 ` R�. Then d � P0 ` R � R is the map obtained from

d� by composing with the isomorphisms det�P0 ` R� � det�P0� � R. Let d0 and dR be

its restrictions to P0 and R respectively. Furthermore, we let ϕ0 � idP0`R2 � d0e4 and

ϕR � idP0`R2 � dRe4 be the elementary automorphisms of P0 `R2 defined by �d0 and �dR

respectively. Moreover, we let ϕ � idP0`R2 � de4. Note that ϕ � ϕ0ϕR � ϕRϕ0 > E�P0 `R2�.
Now let us conduct the second step. By Lemma 1.2, we can check the desired equality

locally. So let p be a prime ideal of R and �ep1, ep2� be a basis of the free Rp-module �P0�p
of rank 2. We may further assume that �θ�1

0 �p�ep1 , ep2� � 1. With respect to the basis

�ep1, ep2, e3� of �P0�p ` Rp, the epimorphism ap can be represented by the unimodular row

�ap1, ap2, ap3� and both sections sp and tp can be represented by the columns �sp1, sp2, sp3�t and

�tp1, tp2, tp3�t. Using the basis �ep1, ep2, e3, e4� of �P0�p `R2
p, we can check the desired equality

locally: If we let dp1 � t
p
3s

p
2 � t

p
2s

p
3, dp2 � t

p
1s

p
3 � t

p
3s

p
1 and dp3 � t

p
2s

p
1 � t

p
1s

p
2 and

Mp �

��������

1 0 0 0

0 1 0 0

0 0 1 0

�dp1 �dp2 �dp3 1

��������
,

this amounts to verifying the equality

M t
p

��������

0 sp3 �sp2 ap1
�sp3 0 sp1 ap2
sp2 �sp1 0 ap3
�ap1 �ap2 �ap3 0

��������
Mp =

��������

0 tp3 �tp2 ap1
�tp3 0 tp1 ap2
tp2 �tp1 0 ap3
�ap1 �ap2 �ap3 0

��������
But this follows from the proof of [SV, Lemma 5.1].

Finally, we conclude by Corollary 3.3: Since ϕ0 and ϕR are elementary automorphisms of

P0 `R2, the automorphism ϕ � ϕ0ϕR is an element of E�P0 `R2�. By Corollary 3.3, we

deduce that

V �a, s� � �P0 `R2, χ0 Ù ψ2, �is ` 1�t�χa Ù ψ2��is ` 1��
� �P0 `R2, χ0 Ù ψ2, ϕt�is ` 1�t�χa Ù ψ2��is ` 1�ϕ�.

But by the second step, we also know that

�P0 `R2, χ0 Ù ψ2, ϕt�is ` 1�t�χa Ù ψ2��is ` 1�ϕ�
� �P0 `R2, χ0 Ù ψ2, �it ` 1�t�χa Ù ψ2��it ` 1�� � V �a, t�.
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This finishes the proof.

We note that there is a natural homomorphism Pf � V �R�� R� obtained as the composite

V �R� �

Ð� Vfree�R� ξ
Ð� W �

E�R� Pf
Ð� R�. We denote its kernel by Ṽ �R�. Of course, the

isomorphism V �R� �W �

E�R� induces an isomorphism Ṽ �R� �WE�R�.
As stated in the previous section, the usual Vaserstein symbol of a unimodular row is an

element of WE�R� and is invariant under elementary transformations. We will now prove

that the analogous statements also hold for the generalized Vaserstein symbol:

Lemma 4.5. The generalized Vaserstein symbol V � Um�P0`R�� V �R� maps Um�P0`R�
into Ṽ �R�.
Proof. For this, we note that the Pfaffian of an element of V �R� is completely determined

by the Pfaffians of all its images under the maps V �R� � V �Rp� induced by localization

at any prime ideal p. But the localization �P0�p at any prime p is a free Rp-module of rank

2; choosing a basis �ep1, ep2� of �P0�p such that �θ�1
0 �p�ep1,ep2� � 1 as in the proof of Theorem

4.4, we may calculate the Pfaffian of any Vaserstein symbol by the usual formula for the

Pfaffian of an alternating 4 � 4-matrix. The lemma then follows immediately.

Theorem 4.6. Let ϕ be an elementary automorphism of P0`R. Then we have an equality

V �a� � V �aϕ� for any a > Um�P0 ` R�. In particular, we obtain a well-defined map

V � Um�P0 `R�~E�P0 `R�� Ṽ �R�.
Proof. Let ϕ be an elementary automorphism of P0`R and let s � R � P0`R be a section

of a > Um�P0 `R�. Then clearly ϕ�1s is a section of aϕ. We let i � P0 `R � P �a�`R and

j � P0 `R � P �aϕ�`R be the isomorphisms induced by the sections s and ϕ�1s. We will

show that

�ϕ` 1�t�i` 1�t�χa Ù ψ2��i` 1��ϕ` 1� � �j ` 1�t�χaϕ Ù ψ2��j ` 1�.
The theorem then follows from Corollary 3.3.

So let us show the equality above. Directly from the definitions, one immediately checks

that �i ` 1��ϕ ` 1� � ��ϕ ` 1� ` 1��j ` 1�, where by abuse of notation we understand ϕ

as the induced isomorphism P �aϕ� � P �a�. Altogether, it only remains to show that

ϕtχaϕ � χaϕ.

For this, let �p, q� a pair of elements in P �aϕ�; by definition, χaϕ sends these elements

to the image of p , q under the isomorphism det�P �aϕ�� � R. This element can also be

described as the image of p , q , ϕ�1s�1� under the isomorphism det�P0 `R� � R.
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Analogously, the alternating form ϕtχaϕ sends the pair �p, q� to the image of the element

ϕ�p� ,ϕ�q� , s�1� under the isomorphism det�P0 `R� � R. Therefore Lemma 1.11 allows

us to conclude as desired, which finishes the proof of the theorem.

Note that if we equip the set Um�P0 `R� with the projection πR � π3,3 � P0 `R � R onto

R as a basepoint, then the generalized Vaserstein symbol is a map of pointed sets because

V �πR� � �P0 `R2, χ0 Ù ψ2, χ0 Ù ψ2� � 0.

Let us briefly discuss how the generalized Vaserstein symbol depends on the choice of

the trivialization θ0 of the determinant of P0. For this, recall that we have defined an

action of R� on V �R� in Section 3.3. In case of a smooth affine algebra over a perfect field

of characteristic x 2, we saw also in Section 3.3 that this action can be identified with the

multiplicative action induced by a product map in the theory of higher Grothendieck-Witt

groups.

Now let P0 be a projective R-module of rank 2 which admits a trivialization θ0 of its deter-

minant. Furthermore, let a > Um�P0`R� with section s and let i, χ0, χa as in the definition

of the generalized Vaserstein symbol. We consider another trivialization θ�0 of det�P0� and

we let χ�0 and χ�a be the corresponding alternating forms on P0 and P �a�. Obviously, there

is a unit u > R� such that θ0 � u � θ�0; in particular, we have u �χ0 � χ�0 and u �χa � χ�a. Thus,

if we denote the Vaserstein symbol associated to θ�0 by Vθ�0 , then

Vθ�0 � �P0 `R2, �u � χ0� Ù ψ2, �i` 1�t��u � χa� Ù ψ2��i` 1��.

Finally, the isometry given by P0 `R2
idP0

`1`u
ÐÐÐÐÐ� P0 `R2 yields an equality

�P0 `R2, �u � χ0� Ù ψ2, �i` 1�t��u � χa� Ù ψ2��i` 1��
� �P0 `R2, u � �χ0 Ù ψ2�, u � �i` 1�t�χa Ù ψ2��i` 1��.

Thus, if we denote the Vaserstein symbol associated to θ0 by Vθ0 , then

Vθ�0 � u � Vθ0 .

In particular, the property of the generalized Vaserstein symbol to be injective, surjective

or bijective onto Ṽ �R� does not depend on the choice of θ0.

There is another immediate consequence of this: If we let P0 � R2 be the free R-module of

rank 2 and let e1 � �1,0�, e2 � �0,1� > R2 be the obvious elements, then there is a canonical

isomorphism θ0 � R
�

Ð� det�R2� given by 1 ( e1 , e2. Then recall that the usual Vaserstein
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symbol can be described as Vθ0 XM (up to the identification WE�R� � Ṽ �R�). But by the

formula above, it immediately follows that the generalized Vaserstein symbol associated

to �θ0 coincides with the usual Vaserstein symbol via the identification Ṽ �R� � WE�R�
mentioned above.

We will now study the generalized Vaserstein symbol Vθ0 � Um�P0`R�~E�P0`R�� Ṽ �R�
and give some criteria for its surjectivity and injectivity. As we have already seen, these

properties are independent of the choice of a trivialization of det�P0�. So let us again fix

such a trivialization θ0 � R
�

Ð� det�P0� and let us denote Vθ0 simply by V .

Recall that a unimodular row of length n is an n-tuple a � �a1, ..., an� of elements in R such

that there are elements b1, ..., bn > R withP
n
i�1 aibi � 1. We denote by Umn�R� the set of uni-

modular rows of length n. For any n C 3, there are obvious maps Un � Umn�2�R�� Um�Pn�.
As a first step towards our criterion for the surjectivity of the generalized Vaserstein symbol

(cp. Theorem 4.8 below), we prove the following statement:

Lemma 4.7. Any element of the form �P4, χ0 Ù ψ2, χ� > Ṽ �R� for a non-degenerate alter-

nating form χ on P4 is in the image of the generalized Vaserstein symbol.

Proof. First of all, we set a � χ��, e4� � P0 ` Re3 � R. Since χ is non-degenerate, there

is an element p > P4 such that χ��, p� � P4 � R is just �π4,4. In fact, since χ�p, p� � 0, it

immediately follows that p > P3. But then a�p� � χ�p, e4� � �χ�e4, p� � 1. Hence p defines

a section s � R � P3, 1( p, of a � P0 `Re3 � R.

The generalized Vaserstein symbol V �a� of a may therefore be computed by means of this

section: As in the definition of the generalized Vaserstein symbol, we obtain an isomorphism

i � P0 `R � P �a� `R and an alternating form χa on P �a� � ker�a� induced by a and its

section s. The generalized Vaserstein symbol V �a� of a is then just given by the element

�P0 ` R2, χ0 Ù ψ2, �i` 1�t�χa Ù ψ2��i` 1�� of Ṽ �R�. But one can check easily that the

form �i` 1�t�χa Ù ψ2��i` 1� locally coincides with χ by construction. By Lemma 1.2, it

thus follows that it also coincides with χ globally. Therefore we obtain the desired equality

V �a� � �P0 `R2, χ0 Ù ψ2, χ�.
Using Lemma 4.7 and the technical lemmas proven in previous chapters, we may now prove

the following criteria for the surjectivity of the generalized Vaserstein symbol:

Theorem 4.8. Let N > N. Assume that β > Ṽ �R� is of the form �P2N�2, χ0 Ù ψ2N , χ� for

some non-degenerate alternating form χ on P2N�2. Furthermore, assume that we have an

equality π2n�1,2n�1�Eª�P0� 9Aut�P2n�1�� � Um�P2n�1� for any n > N such that 1 @ n B N .
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Then β lies in the image of the generalized Vaserstein symbol. As a consequence, the

generalized Vaserstein symbol V � Um�P0 ` R�~E�P0 ` R� � Ṽ �R� is surjective if the

equality π2n�1,2n�1�Eª�P0� 9Aut�P2n�1�� � Um�P2n�1� holds for all n C 2.

Proof. By assumption, β > Ṽ �R� has the form β � �P2N�2, χ0 Ù ψ2N , χ� for some non-

degenerate alternating form χ on P2N�2. Furthermore, we may inductively apply Lemma

1.10 (because of the second assumption) in order to deduce that there is a stably elementary

automorphism ϕ on P2N�2 such that ϕtχϕ � ψ Ù ψ2N�2 for some non-degenerate alternating

form ψ on P4. In particular, β � �P4, χ0 Ù ψ2, ψ� by Corollary 3.3. Finally, any element of

this form is in the image of the generalized Vaserstein symbol by Lemma 4.7. So β is in

the image of the generalized Vaserstein symbol.

For the last statement, note that any element of Ṽ �R� is of the form �R2n, ψ2n, χ� for some

non-degenerate alternating form χ on R2n (because of the isomorphism Ṽ �R� � WE�R�).
We may then artificially add a trivial summand �P0, χ0, χ0�; hence any element of Ṽ �R� is

of the form �P2n�2, χ0 Ù ψ2n, χ0 Ù χ� for some non-degenerate alternating form χ on R2n.

We can then conclude by the previous paragraph.

Theorem 4.9. Let N > N. Assume that the following conditions are satisfied:

� Every element of Ṽ �R� is of the form �R2N , ψ2N , χ� for some non-degenerate alter-

nating form χ on R2N .

� One has π2n�1,2n�1�Eª�P0� 9Aut�P2n�1�� � Um�P2n�1� for any n > N with 1 @ n @ N

and U2N�1�Um2N�1�R�� ` π2N�1,2N�1E�P2N�1�.
Then the generalized Vaserstein symbol V � Um�P0 `R�~E�P0 `R�� Ṽ �R� is surjective.

Proof. We proceed as in the proof of Theorem 4.8: By the first assumption, any element

of Ṽ �R� is of the form �R2N , ψ2N , χ� for some non-degenerate alternating form χ on R2N .

Again adding a trivial summand �P0, χ0, χ0�, we see that any element of Ṽ �R� is of the

form �P2N�2, χ0 Ù ψ2N , χ0 Ù χ� for some non-degenerate alternating form χ on R2N . As in

the proof of Theorem 4.8, it then follows inductively from Lemma 1.10 that any element

of Ṽ �R� is of the form �P0`R2, χ0 Ù ψ2, χ� for some non-degenerate alternating form χ on

P0 `R2. The generalized Vaserstein symbol is then surjective by Lemma 4.7. Note that

the condition π2N�1,2N�1E�P2N�1� � Um�P2N�1� can be replaced by the weaker condition

U2N�1�Um2N�1� ` π2N�1,2N�1E�P2N�1� in our situation.

Corollary 4.10. Assume that the following conditions are satisfied:
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� The usual Vaserstein symbol V � Um3�R�~E3�R��WE�R� is surjective;

� U5�Um3�R�� ` π5,5�Eª�P0� 9Aut�P5��.

Then the generalized Vaserstein symbol Vθ0 � Um�P0`R�~E�P0`R�� Ṽ �R� is surjective.

Proof. The surjectivity of the usual Vaserstein symbol means that any element of Ṽ �R�
is of the form �R4, ψ4, χ� for some non-degenerate alternating form χ on R4. Now the

corollary follows from the proof of Theorem 4.9.

In order to prove our criterion for the injectivity of the generalized Vaserstein symbol,

we first introduce the following condition: We will say that P0 satisfies condition ��� if

�P0`R2, χ0 Ù ψ2, χ1� � �P0`R2, χ0 Ù ψ2, χ2� > Ṽ �R� for alternating forms χ1, χ2 on P0`R2

implies αt�χ1 Ù ψ2n�α � χ2 Ù ψ2n for some automorphism α > Eª�P0� 9Aut�P2n�4�.
If P0 is a free R-module, condition ��� is satisfied, which basically follows from the isomor-

phism Vfree�R� � W �

E�R�. Moreover, using the isomorphisms V �R� � Vfree�R� � W �

E�R�,
we will see that it is possible to prove that condition ��� is always satisfied (cp. Lemma

4.12). As a first step towards Lemma 4.12, we observe:

Lemma 4.11. Let χ be a non-degenerate alternating form on a finitely generated projective

R-module P . Then there exists a finitely generated projective R-module P � with a non-

degenerate alternating form χ� on P � and an isomorphism τ � R2n �

Ð� P ` P � such that

τ t�χ Ù χ��τ � ψ2n.

Proof. Let Q be a finitely generated projective R-module such that P `Q is free. Then, for

Q1 � P -
`Q`Q-, one has P `Q1 � R2m for some m C 0. Moreover, for φ1 � canχ�1 ÙHQ,

the form χ Ù φ1 is hence isometric to a form φ2 on R2m. Now let φ3 be a form on R2s for

some s C 0 which represents the inverse of φ2 in W �

E�R�. Then φ2 Ù φ3 Ù ψ2t is isometric

to ψ2m�2s�2t for some t C 0. We set P � � Q1 `R2s�2t and χ� � φ1 Ù φ3 Ù ψ2t. Then there is

an isometry τ � R2m�2s�2n � P � between from ψ2m�2s�2t and χ Ù χ�, as desired.

Using Lemma 4.11, we may prove:

Lemma 4.12. Any P0 satisfies condition ���.
Proof. We use the explicit description of the inverse of Vfree�R� � V �R� to prove Lemma

4.13 below, which obviously implies Lemma 4.12 for P � P0 `R2 and χ � χ0 Ù ψ2:

90



Lemma 4.13. If �P,χ,χ1� � �P,χ,χ2� > V �R� for non-degenerate alternating forms χ, χ1

and χ2 on a finitely generated projective R-module P , then αt�χ1 Ù ψ2n�α � χ2 Ù ψ2n for

some n > N and some automorphism α > E�P `R2n�.
Proof. The equality �P,χ,χ1� � �P,χ,χ2� means that �P,χ1, χ2� � 0. By Lemma 4.11, it

follows that there is a finitely generated projective R-module P1 with a non-degenerate

alternating form χ� on P1 and, moreover, with an isomorphism τ � R2m �

Ð� P ` P1 such

that τ t�χ1 Ù χ��τ � ψ2m. In particular, one has 0 � �P,χ1, χ2� � �R2m, ψ2m, τ t�χ2 Ù χ��τ�
in V �R�. Therefore the class of τ t�χ2 Ù χ��τ in W �

E�R� is trivial and there exist u C 1

and ζ > E�R2m�2u� such that ζt��τ t�χ2 Ù χ��τ� Ù ψ2u�ζ � ψ2m�2u. Note that ζ lies in the

commutator subgroup of Aut�R2m�2u�.
Again by Lemma 4.11, there exists a finitely generated projective R-module P2 with a non-

degenerate alternating form χ�� on P2 and with an isomorphism β � R2v �

Ð� P1 `R2u
` P2

such that βt�χ� Ù ψ2u Ù χ���β � ψ2v. But then the composite

ξ � �idP ` β�1��τ ` idR2u ` idP2��ζ�1
` idP2��τ�1

` idR2u ` idP2��idP ` β�
is an isometry from χ1 Ù ψ2v to χ2 Ù ψ2v and also lies in the commutator subgroup

of Aut�P ` R2v� because it is a conjugate of ζ�1 Ù idP2 . In particular, it follows that

ξ Ù idR2w > E�P ` R2v�2w� for some w C 0. Finally, if we then set α � ξ Ù idR2w and

n � v �w, the lemma is proven.

Now that we have proven that condition ��� is always satisfied, we can find conditions

which imply that two elements a, b > Um�P0 ` R� with the same Vaserstein symbol are

equal up to a stably elementary automorphism of P0 `R. More precisely:

Theorem 4.14. Assume that E�P2n�e2n � �Eª�P0� 9 Aut�P2n��e2n for n C 2. Then

V �a� � V �b� for a, b > Um�P0 `R� implies that b � aϕ for some ϕ > Eª�P0� 9Aut�P3�.
Proof. Let a, b > Um�P0 `R� with sections s, t respectively and let i � P0 `R � P �a�`R
and j � P0 `R � P �a� `R be the isomorphisms induced by these sections. Furthermore,

we let V �a, s� � �i` 1�t�χa Ù ψ2��i` 1� and V �b, t� � �j ` 1�t�χb Ù ψ2��j ` 1� be the

alternating forms on P0 ` R2 appearing in the definition of the generalized Vaserstein

symbols of a and b respectively. Now let us assume that V �a� � V �b�. Since P0 satisfies

condition ���, there exist n > N and an automorphism α > Eª�P0� 9Aut�P2n�4� such that

αt�V �a, s� Ù ψ2n�α � V �b, t� Ù ψ2n. Using Lemma 1.9, we may inductively deduce that

βtV �a, s�β � V �b, t� for some β > Eª�P0� 9 Aut�P0 ` R2�. Now by Lemma 1.8 and the

assumption in the theorem, there exists an automorphism γ > E�P0 ` R2� 9 Sp�V �a, s��
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such that βe4 � γe4.

We now define δ � P0 `R � P0 `R as the composite

P0 `Re3 � P0 `Re3 `Re4
γ�1β
ÐÐ� P0 `Re3 `Re4 � P0 `Re3.

One can then check that δ is an element of Eª�P0� 9Aut�P0 `R�. Moreover, we have

βt�γ�1�tV �a, s�γ�1β � V �b, t�
and in particular aδ � b, as desired.

Corollary 4.15. Under the hypotheses of Theorem 4.14, furthermore assume that the

equality a�Eª�P0� 9Aut�P0 `R�� � aE�P0 `R� holds for all a > Um�P0 `R�. Then the

generalized Vaserstein symbol V � Um�P0 `R�~E�P0 `R�� Ṽ �R� is injective.

Proof. By Theorem 4.14, we already know that V �a� � V �b� implies b � aϕ� for some

ϕ� > Eª�P0� 9 Aut�P0 ` R�. Now by the additional assumption, there also exists an

elementary automorphism ϕ of P0 ` R such that b � aϕ. So the generalized Vaserstein

symbol is injective.

Regarding the additional assumption in Corollary 4.15, it is actually possible to adapt

the arguments given in the proof of [SV, Corollary 7.4] in order to prove that the desired

equality a�Eª�P0� 9Aut�P0 `R�� � aE�P0 `R� holds for all a > Um�P0 `R� if one has

Eª�P0� 9Aut�P0 `R2� � E�P4�:
Lemma 4.16. If the equality Eª�P0�9Aut�P0`R2� � E�P4� holds, then also the equality

a�Eª�P0� 9Aut�P0 `R�� � aE�P0 `R� holds for all a > Um�P0 `R�.
Proof. Let a > Um�P0 ` R� with section s and let ϕ > Eª�P0� 9 Aut�P0 ` R�. If we let

V �a, s� be the alternating form from the definition of the generalized Vaserstein symbol,

then it follows from the proof of Lemma 4.7 that

�ϕ` 1�tV �a, s��ϕ` 1� � V �a�, s��
for some a� > Um�P0`R� with section s�. By assumption, the automorphism ϕ`1 of P4 is

an element of the group E�P4�. Moreover, by Corollary 1.4, the group E�P4� is generated

by elementary automorphisms ϕg � idP4 � g, where g is a homomorphism

1) g � Re3 � P0,

2) g � P0 � Re3,
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3) g � Re3 � Re4 or

4) g � Re4 � Re3.

It therefore suffices to show the following: If ϕtgV �a, s�ϕg � V �a�, s�� for some g as above,

then a� � aψ for some ψ > E�P0 `R�. The only non-trivial case is the last one, i.e. if g is

a homomorphism Re4 � Re3.

So let g � Re4 � Re3 and let ϕg be the induced elementary automorphism of P4. As

explained above, we assume that

ϕtgV �a, s�ϕg � V �a�, s��
for some epimorphism a� � P0`Re3 � R with section s�. Now write a � �a0, aR�, where a0 is

the restriction of a to P0 and aR � a�e3� respectively. Furthermore, let p � πP0�s�1��. From

now on, we interpret the alternating form χ0 in the definition of the generalized Vaserstein

symbol as an alternating isomorphism χ0 � P � P -. Then one can check locally that

a� � �a0 � g�1� � χ0�p�, aR�.
Then let us define an automorphism ψ of P3 as follows: We first define an endomorphism

of P0 by

ψ0 � idP0 � g�1� � πP0 X s X χ0�p� � P0 � P0

and we also define a morphism P0 � Re3 by

ψR � �g�1� � πR X s X χ0�p� � P0 � R.

Then we consider the endomorphism of P0 `R given by

ψ �
�
�
ψ0 0

ψR idR

�
�.

First of all, this endomorphism coincides up to an elementary automorphism with

�
�
ψ0 0

0 idR

�
�.

Since χ0�p� X πP0 X s � 0, this endomorphism is an element of E�P0 ` R� by Lemma 1.6.

Hence the same holds for ψ. Finally, one can check easily that aψ � a� by construction.

As an immediate consequence, we can finally deduce our criterion for the injectivity of the

generalized Vaserstein symbol:
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Theorem 4.17. Assume that E�P2n�e2n � �Eª�P0� 9 Aut�P2n��e2n for all n C 3 and

furthermore that Eª�P0� 9 Aut�P4� � E�P4�. Then the generalized Vaserstein symbol

V � Um�P0 `R�~E�P0 `R�� Ṽ �R� is injective.

Proof. Combine Corollary 4.15 and Lemma 4.16.

Let us now study the criteria for the surjectivity and injectivity of the generalized Vaserstein

symbol found in this section. In [HB], the conditions of Theorem 4.8 and Theorem 4.17

are studied in a very general framework. If R is a Noetherian ring of Krull dimension d,

it follows from [HB, Chapter IV, Theorem 3.4] that actually Unim.El.�Pn� � E�Pn�en for

all n C d � 2 (or Um�Pn� � πn,nE�Pn� for all n C d � 2). In particular, if dim�R� B 4, then

the generalized Vaserstein symbol is injective as soon as Eª�P0� 9 Aut�P4� � E�P4�; if

dim�R� B 3, it is surjective. Hence the following results are immediate consequences of our

stability results in Section 1.5:

Theorem 4.18. Assume that R is a regular Noetherian ring of dimension d � 2. Then the

generalized Vaserstein symbol V � Um�P0 `R�~E�P0 `R�� Ṽ �R� is a bijection.

Proof. This follows directly from Theorem 1.21.

Theorem 4.19. Assume that R is a regular affine algebra of dimension d � 3 over an

algebraically closed field k or over a perfect field k such that c.d.�k� B 1 and 6 > k�. Then

the generalized Vaserstein symbol V � Um�P0 `R�~E�P0 `R�� Ṽ �R� is a bijection.

Proof. It follows from [S1] and [B, Remark 4.2] that k satisfies property P�4,3� if k is

algebraically closed or if k is infinite perfect with c.d.�k� B 1 and 6 > k�. If k is finite, this

follows from Proposition 1.15. Hence the theorem follows directly from Theorem 1.22.

Because of the pointed surjection Um�P0`R�~E�P0`R�� φ�1
2 ��P0`R��, the bijectivity of

the generalized Vaserstein symbol always gives rise to a surjection WE�R�� φ�1
2 ��P0`R��;

in this case, it seems that the group structure of WE�R� � Um�P0`R�~E�P0`R� essentially

governs the structure of the fiber φ�1
2 ��P0 `R��.

The following application follows - to some degree - the pattern of the proof of [FRS,

Theorem 7.5] and illustrates the previous paragraph:

Theorem 4.20. Let R be a commutative ring and P0 be a projective R-module of rank 2

which admits a trivialization θ0 of its determinant. Assume that the following conditions

are satisfied:
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a) The generalized Vaserstein symbol Vθ0 � Um�P0 `R�~E�P0 `R� � Ṽ �R� induced by

θ0 is a bijection.

b) 2Vθ0�a0, aR� � Vθ0�a0, a2
R� for �a0, aR� > Um�P0 `R�.

c) The group WE�R� is 2-divisible.

Then φ�1
2 ��P0 `R�� is trivial.

Proof. Assume P �
` R � P0 ` R. As we have seen in Section 1.3, P � has an associated

element in the orbit space Um�P0`R�~Aut�P0`R�. We lift this element to an element �b�
of Um�P0`R�~E�P0`R� (�b� denotes the class of b > Um�P0`R�). Since the generalized

Vaserstein symbol is a bijection and WE�R� is a 2-divisible group by assumption, we get

that �b� � 2�a�, where �a� denotes the class of an element a � �a0, aR� of Um�P0 ` R�
in the orbit space Um�P0 `R�~E�P0 `R�. But then the second assumption shows that

2�a� � ��a0, a2
R��. It follows from [B, Proposition 2.7] or [S1, Lemma 2] that any element

of Um�P0 ` R� of the form �a0, a2
R� is completable to an automorphism of P0 ` R, i.e.

πRϕ � �a0, a2
R� for some automorphism ϕ of P0 ` R, where πR � π3,3 � P0 ` R � R is

the projection. Altogether, πR and b therefore lie in the same orbit under the action of

Aut�P0 `R� and hence P � � P . Thus, φ�1
2 ��P0 `R�� is trivial.

In the remainder of this section, we are going to address the second condition in the theorem

above. In fact, we are going to prove that the sum formula nV �a0, aR� � V �a0, anR� holds

for a smooth affine algebra R over a perfect field k with char�k� x 2 such that �1 > k�2 if

n � 0,1 mod 4. This formula will be proven by using the A1
R-homotopy category over the

base scheme Spec�R�.
For the first lemma below, we let R be any commutative ring and P0 be as usual a projective

R-module of rank 2 with a fixed trivialization θ0 of its determinant. Furthermore, we let

f � R � B and g � B � C be ring homomorphisms. Then we have canonical maps

f�Um � Um�P0 `R�� Um��P0 aR B�`B�
and

g�Um � Um��P0 aR B�`B�� Um��P0 aR C�`C�.
Furthermore, the B-module P0aRB and the C-module P0aRC have trivial determinants;

their trivializations are given by θ0 aRB and θ0 aRC respectively. Finally, note that there

is a group homomorphism g� � V �B�� V �C� which sends any class �P,χ1, χ2� in V �B� to

the class �P aB C,χ1 aB C,χ2 aB C� in V �C�.
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Lemma 4.21. We have Vθ0aRC�g�Um�a�� � g��VθaRB�a�� for any a > Um��P0 aR B�`B�.
Proof. If s � B � �P0 aR B� `B is a section of a, then s clearly induces a section s aB C

of aaB C > Um��P0 aR C�`C�. We let P �a� � ker�a�, P �aaB C� � ker�aaB C� and we

let is � �P0 aR B� ` B � P �a� ` B and isaBC � �P0 aR C� ` C � P �a aB C� ` C be the

isomorphisms induced by s and saBC. Furthermore, we let V �a, s� and V �aaBC, saBC�
be the alternating forms �is ` 1�t�χa Ù ψ2��is ` 1� and �isaBC ` 1�t�χaaBC Ù ψ2��isaBC ` 1�
from the definition of the generalized Vaserstein symbol. As usual, we let P4 � P0 ` R2.

Then, under the isomorphism �P4 aR B� aB C �

Ð� P4 aR C, it is routine to check that the

alternating form V �a, s�aBC corresponds to V �aaBC, saBC�. This proves the lemma.

We now fix a smooth affine algebra R over a perfect field k with char�k� x 2 as a base ring

and give an alternative description of the generalized Vaserstein symbol for smooth affine

algebras over the base ring R.

For this, we start with a few general remarks: We fix finitely generated projective R-

modules P and Q such that P ` Q � Rn for some n > N. Furthermore, we denote by

Sym�P �, Sym�Q� and Sym�Rn� � R�X1, ...,Xn� the symmetric R-algebras of P , Q and

Rn respectively. Next we set E�P � � Spec�Sym�P ��, E�Q� � Spec�Sym�Q�� and identify

An
R with Spec�Sym�Rn��. Note that the inclusions iP , iQ of P and Q into Rn and the

projections πP , πQ of Rn onto P and Q respectively induce R-algebra homomorphisms

between the corresponding symmetric algebras.

We denote by `P e and `Qe the ideals in Sym�P � and Sym�Q� generated by the homo-

geneous elements of degree C 1 and denote by 0 their corresponding closed subschemes of

E�P � and E�Q�. By abuse of notation, we also denote by `P e and `Qe the ideals generated

by their images in Sym�Rn�. Note that Sym�Rn�~`Qe � Sym�P �.
Now let SR2n�1 � R�X1, ...,Xn, Y1, ..., Yn�~`Pn

i�1XiYi � 1e and let QR
2n�1 � Spec�SR2n�1�. Then

the R-algebra homomorphism

in � Sym�Rn� � R�X1, ...,Xn�� SR2n�1,Xi ( X̄i

induces a Zariski-locally trivial morphism of schemes

prn � QR
2n�1 � An

R � 0

with fibers isomorphic to An�1
R .

Again by abuse of notation, we will denote by `Qe the ideal generated by the image of

`Qe ` Sym�Q� under the map Sym�Q� � Sym�Rn� in
Ð� SR2n�1; furthermore, we define
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S̄R2n�1 � SR2n�1~`Qe and Q̄R
2n�1 � Spec�S̄R2n�1�. One can check easily that the composite of

R-algebra homomorphisms

īn � Sym�P �� Sym�Rn� in
Ð� SR2n�1 � S̄R2n�1

induces a Zariski-locally trivial morphism of schemes

p̄rn � Q̄
R
2n�1 � E�P � � 0

with fibers isomorphic to An�1
R . It follows that Q̄R

2n�1 is a smooth scheme over Spec�R� and

p̄rn is an A1
R-weak equivalence.

Now let B be a smooth affine algebra over R. Then one can check easily that there are

natural bijections

HomR�Alg�Sym�P �,B� �

Ð�HomB�Mod�P aR B,B�
and

HomR�Alg�S̄R2n�1,B� �

Ð� ��a, s� > Um�P aR B� �BnSa�πPaRB�s�� � 1�.

We apply the previous paragraphs now to the case P � P3 � P0 `R (with P0 a projective

R-module of rank 2 with a fixed trivialization θ0 of its determinant as usual). The epimor-

phism πR � P0`R � R with section �0,1� > P0`R induces basepoints Spec�R�� Q̄2n�1 and

Spec�R� � E�P � � 0. The morphism p̄rn � Q̄
R
2n�1 � E�P � � 0 is then a pointed morphism;

in particular, it has an inverse p̄r�1
n in HY�R�. Forgetting the basepoints, we may also

interpret this morphism as a morphism in H�R�.
The identity of S̄R2n�1 corresponds to an epimorphism a � P3aR S̄R2n�1 � S̄R2n�1 with a section

s > P3 aR S̄R2n�1 and an element t > Q aR S̄R2n�1. Therefore the identity on Q̄R
2n�1 deter-

mines a well-defined generalized Vaserstein symbol (with respect to the fixed trivialization

θ0 aR S̄R2n�1 of det�P0�aR S̄R2n�1)

V �a� > V �S̄R2n�1� � �Q̄R
2n�1,RΩ1

sGW
3�A1

R
,

which corresponds to a morphism Q̄R
2n�1 �RΩ1

sGW
3 inH�R�; we will denote this morphism

by V. Furthermore, the composite

E�P � � 0
p̄r�1n
ÐÐ� Q̄R

2n�1

V
Ð�RΩ1

sGW
3

defines a morphism E�P � � 0�RΩ1
sGW

3 in H�R�, which we again denote by V.
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Lemma 4.22. Assume that B is a smooth affine algebra over R, a > Um�P3 aR B� and

fa � Spec�B� � E�P3� � 0 the morphism of schemes corresponding to a. Then V X fa

corresponds to the generalized Vaserstein symbol of a associated to the trivialization θ0aRB.

Proof. This follows directly from Lemma 4.21.

As a matter of fact, there is a formal way to prove that we can assume that the composite

E�P � � 0
p̄r�1n
ÐÐ� Q̄R

2n�1

V
Ð� RΩ1

sGW
3 can be represented by an actual morphism of pointed

spaces E�P � � 0 � RΩ1
sGW

3: Since RΩ1
sGW

3 is A1
R-fibrant, we already know that the

composite E�P � � 0
p̄r�1n
ÐÐ� Q̄R

2n�1

V
Ð� RΩ1

sGW
3 is given by an actual morphism of spaces.

Moreover, since the composite Spec�R�� E�P �� 0
V p̄r�1n
ÐÐÐ�RΩ1

sGW
3 computes the general-

ized Vaserstein symbol of the projection πR � P0`R � R, it is null-homotopic. As RΩ1
sGW

3

is A1
R-fibrant, there is a naive A1

R-homotopy from the basepoint Spec�R� � RΩ1
sGW

3 of

RΩ1
sGW

3 to the composite Spec�R�� E�P � � 0
V p̄r�1n
ÐÐÐ�RΩ1

sGW
3. By adjuntion, this naive

A1
R-homotopy is represented by a morphism H � Spec�R� � Hom�A1

R,RΩ1
sGW

3�. As

Hom�Spec�R�,RΩ1
sGW

3� �RΩ1
sGW

3, we obtain a commutative diagram

Spec�R� H //

��

Hom�A1
R,RΩ1

sGW
3�

ev1
��

E�P � � 0
V p̄r�1n

// RΩ1
sGW

3,

where the right-hand vertical morphism is induced by evaluation at 1. By [MV, Lemma

2.2.9], this morphism is a simplicial fibration and weak equivalence; since furthermore the

morphism Spec�R� � E�P � � 0 is a cofibration, there automatically exists a morphism

F � E�P � � 0 � Hom�A1
R,RΩ1

sGW
3� making the two resulting triangles commute. If

we let ev0 � Hom�A1
R,RΩ1

sGW
3� � RΩ1

sGW
3 be the morphism induced by evaluation

at 0, then the composite ev0F is a pointed morphism E�P � � 0 � RΩ1
sGW

3 which is

naively A1
R-homotopic to V p̄r�1

n . Hence it follows that we can assume that the composite

E�P � � 0
p̄r�1n
ÐÐ� Q̄R

2n�1

V
Ð� RΩ1

sGW
3 can be represented by an actual morphism of pointed

spaces E�P � � 0�RΩ1
sGW

3.

The previous paragraph finally enables us to prove the desired sum formula:

Theorem 4.23. Let R be a smooth affine algebra over a perfect field k with char�k� x 2

such that �1 > k�2 and n > N. Furthermore, let P0 be a projective R-module of rank 2 with

a fixed trivialization θ0 � R
�

Ð� det�P0� of its determinant. If n � 0,1 mod 4, then the sum

formula Vθ0�a0, anR� � n � Vθ0�a0, aR� holds for all �a0, aR� > Um�P0 `R�.
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Proof. As we have just seen, the generalized Vaserstein symbol can be defined by means

of a pointed morphism V � E�P3� � 0�RΩ1
sGW

3 in SpcR,Y.

Setting P � P3, we now consider the pushout square

��E�P0� � 0� �Gm,R��
��

// �E�P0� �Gm,R��
����E�P0� � 0� �A1

R�� // �E�P � � 0�
�

in SpcR,Y given by the Zariski covering of �E�P � � 0�
�
, which is also a homotopy pushout

square. Furthermore, we also consider the square

�E�P0� � 0�
�
�Gm,R

��

// E�P0� �Gm,R

�E�P0� � 0�
�
�A1

R

and let Y be its homotopy pushout. Clearly, the obvious morphism from the first to the

second diagram induces a morphism i � �E�P � � 0�
�
� Y . Furthermore, the n-fold power

map A1
R � A1

R can be used to define power operations ψn � �E�P � � 0�
�
� �E�P � � 0�

�
and

ψ̄n � Y � Y respectively. By sending � �Gm,R and � � A1
R to the basepoint of RΩ1

sGW
3,

we can extend the morphism V� obtained from the morphism V defining the generalized

Vaserstein symbol to a morphism V̄ � Y �RΩ1
sGW

3.

Now the commutative diagram

�E�P � � 0�
�

i

��

ψn // �E�P � � 0�
�

i

��

V� // RΩ1
sGW

3

Y
ψ̄n // Y

V̄ // RΩ1
sGW

3

shows that it suffices to show that the composition V̄ X ψ̄n is equal to n � V̄ in HY�R� with

respect to the group structure on �Y ,RΩ1
sGW

3�A1
R,Y

induced by RΩ1
sGW

3.

But since Y is the homotopy pushout of the diagram

�E�P0� � 0�
�
�Gm,R

��

// Gm,R

�E�P0� � 0�
�

,
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it is weakly equivalent to S1
, Gm,R , �E�P0� � 0�

�
(cp. [Mo, p.219]) and therefore has

the structure of an h-cogroup. Under this weak equivalence, the power operation ψ̄n then

corresponds to the smash product of the n-fold power map on Gm,R with S1
,�E�P0� � 0�

�
.

By Corollary 2.2, this implies that ψ̄n is equal to n � idY in �Y ,Y�A1
R,Y

and also that V̄ X ψ̄n

is equal to n � V̄ in �Y ,RΩ1
sGW

3�A1
R,Y

with respect to the group structures induced by Y as

an h-cogroup. By the usual Eckmann-Hilton argument, it follows that V̄ X ψ̄n is equal to

the n-fold sum of V̄ with respect to the group structure on �Y ,RΩ1
sGW

3�A1
R,Y

induced by

RΩ1
sGW

3 as an h-group. This proves the theorem.

We conclude this section with two applications of the previous theorem:

Theorem 4.24. Let R be a normal affine algebra of dimension d C 3 over an algebraically

closed field k with char�k� x 2; if d � 3, furthermore assume that R is smooth. Let P0 be a

projective R-module of rank 2 with a trivial determinant and let Pn � P0 `Rn�2 for n C 3.

Then, for any a > Um�Pd� and j > N with gcd�char�k�, j� � 1, there is an automorphism

ϕ > E�Pd� such that aϕ has the form b � �b0, b
j
3, ..., bd�.

Proof. Let a � �a0, a3, ..., ad� > Um�Pd� and I � `a4, ..., ade. By Lemma 1.14, we know

that we can assume that R~I is either 0 or a smooth affine algebra of dimension 3 over

k. If R~I � 0, then Lemma 1.13 proves the statement of the theorem. So let us assume

that R~I is a smooth affine algebra of dimension 3 over k. In this case, we know that

the generalized Vaserstein symbol associated to P0~IP0 and any fixed trivialization of its

determinant gives a pointed bijection between Um�P3~IP3�~E�P3~IP3� and Ṽ �R~I�; this

bijection induces a group structure on Um�P3~IP3�~E�P3~IP3� (cp. Theorem 4.19). Since

the latter group is divisible prime to char�k� x 2 (cp. [FRS, Propositions 5.1 and 6.1]),

there is �b̄0, b̄3� > Um�P3~IP3� with 4j ��b̄0, b̄3� � �ā0, ā3� in Um�P3~IP3�~E�P3~IP3�. Then

the previous theorem implies that in fact �b̄0, b̄
4j
3 � � �ā0, ā3� in Um�P3~IP3�~E�P3~IP3�.

Applying the map Φ3�a� now yields the theorem.

Corollary 4.25. Let R be a smooth affine algebra of dimension 3 over an algebraically

closed field k with char�k� x 2 and let P0 a projective R-module of rank 2 with trivial

determinant. Then Um�P0 `R�~SL�P0 `R� is trivial; in particular, P0 is cancellative.

Proof. Let a � �a0, a3� > Um�P0 ` R�. By the previous theorem, there is ϕ > E�P0 ` R�
such that aϕ is of the form b � �b0, b2

3�. By Proposition 1.17, there is ψ > SL�P0 `R� such

that bψ is the projection onto R. This proves that Um�P0 `R�~SL�P0 `R� is trivial. In

particular, this implies that the orbit space Um�P0 `R�~Aut�P0 `R� is trivial and hence

that P0 is cancellative.
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4.3 The generalized Vaserstein symbol modulo SL

In this section, we compose the generalized Vaserstein symbol Vθ0 with the canonical epi-

morphism Ṽ �R� � ṼSL�R�. In fact, we will see immediately that this map descends

to a map Vθ0 � Um�P0 ` R�~SL�P0 ` R� � ṼSL�R�. We will study this map under

some suitable assumptions and deduce a criterion for the triviality of the orbit space

Um�P0`R�~SL�P0`R�. In particular, by studying symplectic orbits of unimodular rows,

we will prove that Um3�R�~SL3�R� is trivial if and only if ṼSL�R� is trivial whenever R

is a smooth affine algebra of dimension 4 over an algebraically closed field k with 6 > k�.

We will use the notation of Sections 1.2 and 4.2: Throughout this section, we let R be a

commutative ring and we let P0 be a projective R-module of rank 2 with a fixed trivializa-

tion θ0 � R
�

Ð� det�P0� of its determinant. For all n C 3, we let Pn � P0 `Re3 ` ...`Ren and

we will sometimes omit the explicit generators ei, i � 3, ..., n, of the free direct summands

of rank 1 in the notation. Again, we denote by πk,n � Pn � R the projections onto the free

direct summands of rank 1 with index k � 3, ..., n.

As usual, we will mostly omit the trivialization θ0 in our notation and denote Vθ0 simply

by V if there is no ambiguity. As a first step, we prove:

Theorem 4.26. Let ϕ > SL�P0`R� and a > Um�P0`R�. Then V �a� � V �aϕ� in ṼSL�R�.
In particular, we obtain a well-defined map V � Um�P0 `R�~SL�P0 `R�� ṼSL�R�, which

we call the generalized Vaserstein symbol modulo SL.

Proof. Let ϕ > SL�P0 `R� and let s � R � P0 `R be a section of a > Um�P0 `R�. Then

ϕ�1s is a section of aϕ. We let i � P0 `R � P �a� `R and j � P0 `R � P �aϕ� `R be the

isomorphisms induced by the sections s and ϕ�1s. Obviously, it suffices to show that

�ϕ` 1�t�i` 1�t�χa Ù ψ2��i` 1��ϕ` 1� � �j ` 1�t�χ�aϕ� Ù ψ2��j ` 1�.
As in the proof of Theorem 4.6, one checks that �i`1��ϕ`1� � ��ϕ`1�`1��j`1�, where

by abuse of notation we understand ϕ as the induced isomorphism P �aϕ�� P �a�. Hence

it suffices to show that ϕtχaϕ � χaϕ.

For this, we let �p, q� a pair of elements in P �aϕ�; by definition, χaϕ sends these elements

to the image of p , q under the isomorphism det�P �aϕ�� � R. This element can also be

described as the image of p , q , ϕ�1s�1� under the isomorphism det�P0 `R� � R.
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Analogously, the alternating form ϕtχaϕ sends the pair �p, q� to the image of the element

ϕ�p�,ϕ�q�,s�1� under the isomorphism det�P0`R� � R. Since ϕ has determinant 1, the

automorphism of det�P0 `R� induced by ϕ is the identity (cp. Lemma 1.11). This proves

the desired equality ϕtχaϕ � χaϕ.

By abuse of notation, we denote by V � Vθ � Um�P0`R�~E�P0`R�� ṼSL�R� the compos-

ite of the generalized Vaserstein symbol associated to θ0 and the canonical epimorphism

Ṽ �R�� ṼSL�R�.
Theorem 4.27. Let R be a Noetherian ring of Krull dimension B 4. Assume that SL�P5�
acts transitively on Um�P5�. Then the map V � Um�P0 ` R�~E�P0 ` R� � ṼSL�R� is

surjective.

Proof. Let β > ṼSL�R�. Since dim�R� B 4, we know that Um�Pn� � πn,nE�Pn� for all n C 6.

Therefore every element in Ṽ �R� is of the form �P6, χ0 Ù ψ4, χ� for some non-degenerate

alternating form χ on P6 by Lemma 1.10; hence the same holds for any element in ṼSL�R�.
Consequently, we can write β � �P6, χ0 Ù ψ4, χ�.
Now let d � χ��, e6� � P5 � R. Since d can be locally checked to be an epimorphism,

there is an automorphism ϕ > SL�P5� such that dϕ � π5,5. Then the alternating form

χ� � �ϕ` 1�tχ�ϕ ` 1� satisfies that χ���, e6� � P5 � R is just π5,5. Now we simply define

c � χ���, e5� � P5 � R and let ϕc � idP6�ce6 be the elementary automorphism on P6 induced

by c; then ϕctχ�ϕc � ψ Ù ψ2 for some non-degenerate alternating form ψ on P4. Since all

the isometries we used have determinant 1, we conclude that β � �P4, χ0 Ù ψ2, ψ�. As any

element of this form lies in the image of the generalized Vaserstein symbol by Lemma 4.7,

this proves the theorem.

We remark that the assumption in the last theorem is satisfied if R is an affine algebra of

dimension B 4 over an infinite perfect field k of cohomological dimension B 1 with 6 > k�

(cp. [S1], [S5] and [B]) or if R is a Noetherian ring of dimension B 3 ([HB, Chapter IV,

Corollary 3.5]).

In order to study the fibers of the map V � Um�P0 `R�~E�P0 `R� � ṼSL�R�, we prove

the analogue of Lemma 4.13 for the group ṼSL�R�:
Lemma 4.28. If two elements �P,χ,χ1�, �P,χ,χ2� > ṼSL�R� are equal, then there is an

automorphism ϕ of SL�P `R2n� for some n A 0 such that χ1 Ù ψ2n � ϕ-�χ2 Ù ψ2n�ϕ.

Proof. The equality �P,χ,χ1� � �P,χ,χ2� means that �P,χ1, χ2� � 0. By Lemma 4.11, it

follows that there is a finitely generated projective R-module P1 with a non-degenerate
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alternating form χ� on P1 and, moreover, with an isomorphism τ � R2m �

Ð� P ` P1 such

that τ t�χ1 Ù χ��τ � ψ2m. In particular, one has 0 � �P,χ1, χ2� � �R2m, ψ2m, τ t�χ2 Ù χ��τ�
in ṼSL�R�. Therefore the class of τ t�χ2 Ù χ��τ in W �

SL�R� is trivial and hence there exist

u C 1 and ζ > SL�R2m�2u� such that ζt��τ t�χ2 Ù χ��τ� Ù ψ2u�ζ � ψ2m�2u.

Again by Lemma 4.11, there exists a finitely generated projective R-module P2 with a non-

degenerate alternating form χ�� on P2 and with an isomorphism β � R2n �

Ð� P1 `R2u
` P2

such that βt�χ� Ù ψ2u Ù χ���β � ψ2n. But then the composite

α � �idP ` β�1��τ ` idR2u ` idP2��ζ�1
` idP2��τ�1

` idR2u ` idP2��idP ` β�
is an isometry from χ1 Ù ψ2n to χ2 Ù ψ2n and clearly has determinant 1. This proves the

lemma.

Now let us study the fibers of the map V � Um�P0`R�~E�P0`R�� ṼSL�R�. For this, we

describe an action of SL�P4� on Um�P0 `R�~E�P0 `R� as follows:

First of all, note that E�P4� is a normal subgroup of SL�P4�: If we let ϕ > SL�P4� and

ϕ� > E�P4�, then there is a natural isotopy from idP4 to ϕ�1ϕ�ϕ. By Theorem 1.18 and

Suslin’s normality theorem (cp. [S3]), it follows that ϕ�1ϕ�ϕ > E�P4�.
Now let ϕ > SL�P4� and a > Um�P0 ` R�. We choose a section s � R � P0 ` R of a and

obtain a non-degenerate alternating form

V �a, s� � �is ` 1�t�χa Ù ψ2��is ` 1�
as in the definition of the generalized Vaserstein symbol. Then we consider the alter-

nating form ϕtV �a, s�ϕ. By abuse of notation, we also denote by a the class of a in

Um�P0 `R�~E�P0 `R� and define a � ϕ to be the class in Um�P0 `R�~E�P0 `R� repre-

sented by ϕtV �a, s�ϕ��, e4� � P0 `R � R.

Now let us show that this assignment gives a well-defined right action of SL�P4� on

Um�P0 ` R�~E�P0 ` R�: If we choose another section s� of a, then there is ϕ� > E�P4�
such that ϕ�V �a, s��ϕ� � V �a, s� (cp. the proof of Theorem 4.4). Since E�P4� is a normal

subgroup of SL�P4�, it follows that

�ϕ�tV �a, s�ϕ � �ϕ���t�ϕ�tV �a, s��ϕϕ��
for some ϕ�� > E�P4�. The lemma below will hence imply that our assignment does not

depend on the choice of the section s of a.

Similarly, if a� � aϕ� for ϕ� > E�P0 ` R�, then V �a�, s�� � �ϕ� ` 1�tV �a, s��ϕ� ` 1�, where

s� � �ϕ���1
s (this follows from the proof of Theorem 4.6). Again, since E�P4� is normal in

SL�P4�, it follows that
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�ϕ�tV �a, s�ϕ � �ϕ���t�ϕ�tV �a�, s��ϕϕ��

for some ϕ�� > E�P4�. The following lemma then also implies that our assignment does

only depend on the class of a in Um�P0 `R�~E�P0 `R�.
Lemma 4.29. Let χ and χ� be non-degenerate alternating forms on the module P4 such that

�P4, χ0 Ù ψ2, χ�, �P4, χ0 Ù ψ2, χ�� > Ṽ �R� and let a � χ��, e4�, a� � χ���, e4� > Um�P0 `R�.
If ϕtχϕ � χ� for some ϕ > E�P4�, then the classes of a and a� coincide in the orbit space

Um�P0 `R�~E�P0 `R�.
Proof. First of all, the group E�P4� is generated by elementary automorphisms ϕg � idP4�g,

where g is a homomorphism

1) g � Re3 � P0,

2) g � P0 � Re3,

3) g � Re3 � Re4 or

4) g � Re4 � Re3.

Furthermore, we can write χ � V �a, s� and χ� � V �a�, s�� for sections s and s� of a and a�

respectively (cp. the proof of Lemma 4.7). Hence it suffices to show the following:

If ϕtgV �a, s�ϕg � V �a�, s�� for some g as above, then a� � aψ for some ψ > E�P0 `R�. The

only non-trivial case is the last one, i.e. if g is a homomorphism Re4 � Re3.

As in the proof of Lemma 4.16, we let g � Re4 � Re3 and let ϕg be the induced elementary

automorphism of P4 and we assume that

ϕtgV �a, s�ϕg � V �a�, s��
for some epimorphism a� � P0 `Re3 � R with section s�. We then write a as a � �a0, aR�,
where a0 is the restriction of a to P0 and aR � a�e3�. Moreover, we define p � πP0�s�1��.
From now on, we interpret the alternating form χ0 in the definition of the generalized

Vaserstein symbol as an alternating isomorphism χ0 � P � P -. One can verify locally that

a� � �a0 � g�1� � χ0�p�, aR�.
Then let us define an automorphism ψ of P3 as follows: We first define an endomorphism

of P0 by

ψ0 � idP0 � g�1� � πP0 X s X χ0�p� � P0 � P0
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and we also define a morphism P0 � Re3 by

ψR � �g�1� � πR X s X χ0�p� � P0 � R.

Then we consider the endomorphism of P0 `R given by

ψ �
�
�
ψ0 0

ψR idR

�
�.

First of all, this endomorphism coincides up to an elementary automorphism with

�
�
ψ0 0

0 idR

�
�.

Since χ0�p� X πP0 X s � 0, this endomorphism is an element of E�P0 ` R� by Lemma 1.6.

Hence the same holds for ψ. Finally, one can check easily that aψ � a� by construction.

As indicated above, the previous lemma shows that our previous assignment gives a well-

defined map

Um�P0 `R�~E�P0 `R� � SL�P4� ���

Ð� Um�P0 `R�~E�P0 `R�.

Note that if a > Um�P0`R� with section s and ϕ > SL�P4�, then it follows from the proof of

Lemma 4.7 that the alternating form ϕtV �a, s�ϕ equals V �a�ϕ, s�� for some section s� of a�ϕ.

It follows that the map above is indeed a right action of SL�P4� on Um�P0`R�~E�P0`R�.
In fact, the previous lemma shows that this action descends to an action of SL�P4�~E�P4�
on Um�P0 `R�~E�P0 `R�.
Lemma 4.30. Let χ1 and χ2 be non-degenerate alternating forms on the module P2n such

that ϕt�χ1 Ù ψ2�ϕ � χ2 Ù ψ2 for some ϕ > SL�P2n�2�. Furthermore, let χ � χ1 Ù ψ2. If

SL�P2n�2�e2n�2 � Sp�χ�e2n�2 holds, then one has ψtχ1ψ � χ2 for some ψ > SL�P2n�.
Proof. Let ψ��e2n�2 � ϕe2n�2 for some ψ�� > Sp�χ�. Then we set ψ� � �ψ����1

ϕ. Since

�ψ��t�χ1 Ù ψ2�ψ� � χ2 Ù ψ2, the composite ψ � P2n
ψ�

Ð� P2n�2 � P2n and ψ� satisfy the

following conditions:

� ψ��e2n�2� � e2n�2;

� π2n�1,2n�2ψ� � π2n�1,2n�2;

� ψtχ1ψ � χ2.
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These conditions imply that ψ equals ψ� up to elementary morphisms of P2n�2 and hence

has determinant 1 as well. This finishes the proof.

Theorem 4.31. Let R be a Noetherian ring of dimension B 4. Let a, a� > Um�P0 ` R�.
Then V �a� � V �a�� in ṼSL�R� if and only if a �ϕ � a� in Um�P0 `R�~E�P0 `R� for some

ϕ > SL�P4�.
Proof. We let s, s� � R � P0 `R be sections of a and a� and V �a, s� and V �a�, s�� be the

alternating forms induced by s and s� which appear in the definition of the generalized

Vaserstein symbol. Now assume that V �a� � V �a��. Since dim�R� B 4, we know that

E�Pn�en � Um�Pn� for all n C 6. In particular, one has �E�P2n� 9 Sp�χ��e2n � Um�P2n�
for all n C 3 and all non-degenerate alternating forms on P2n (cp. Lemma 1.8). Hence we

can apply Lemma 4.28 and Lemma 4.30 in order to deduce that ϕtV �a, s�ϕ � V �a�, s�� for

some ϕ > SL�P4�. By definition of the action of SL�P4� on Um�P0 `R�~E�P0 `R�, this

means that a � ϕ � a�.

Conversely, assume that a � ϕ � a� for some ϕ > SL�P4�. By definition, this means that

ϕtV �a, s�ϕ � V �a��, s���, where the class of a�� > Um�P0`R� coincides with the class of a� in

Um�P0`R�~E�P0`R� and s�� is a section of a��. In particular, it follows from the proofs of

Theorem 4.4 and Theorem 4.6 that there exists ψ > E�P4� with ψtϕtV �a, s�ϕψ � V �a�, s��.
This clearly implies that V �a� � V �a�� in ṼSL�R�.
For any Noetherian ring R of dimension B 4, we have established the following exact

sequence of groups and pointed sets whenever SL�P5� acts transitively on Um�P5�:
SL�P4�� Um�P0 `R�~E�P0 `R� V

Ð� ṼSL�R�� 0.

In this situation, we mean by exactness at Um�P0 ` R�~E�P0 ` R� that two classes in

Um�P0 `R�~E�P0 `R� represented by a, a� > Um�P0 `R� satisfy V �a� � V �a�� in ṼSL�R�
if and only if aϕ � a� for some ϕ > SL�P4�.
Furthermore, there is a well-defined right action of SK1�R� on WE�R� � Ṽ �R� given by the

following assignment: If ϕ > SL2n�R� and θ > A2n�R� represent elements of SK1�R� and

WE�R�, then θ �ϕ is represented by the class of ϕtθϕ in WE�R�. This action is compatible

with the right action introduced above: Following [We, Chapter III, Lemma 1.6], any

finitely generated projective R-module Q such that P0 `Q � Rn for some n A 0 induces a

well-defined group homomorphism SL�P4� � SLn�2�R�. This induces a well-defined map

SL�P4� � SK1�R� independent of the choice of Q. In fact, the map descends to a well-

defined group homomorphism St � SL�P4�~E�P4� � SK1�R�. One can then check easily

that the diagram
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Um�P3�~E�P3� � SL�P4�~E�P4� //

V �St
��

Um�P3�~E�P3�
V
��

// Um�P3�~SL�P3�
V
��

Ṽ �R� � SK1�R� // Ṽ �R� // ṼSL�R�
is commutative.

As a consequence of the previous theorem, we obtain the following criterion for the injec-

tivity of the map V � Um�P0 `R�~SL�P0 `R�� ṼSL�R�:
Theorem 4.32. Let R be a Noetherian ring of dimension B 4. Then the induced map

V � Um�P0 `R�~SL�P0 `R�� ṼSL�R� is injective if and only SL�P4�e4 � Sp�χ�e4 for all

non-degenerate alternating forms χ on P4 such that �P4, χ0 Ù ψ2, χ� > Ṽ �R�.
Proof. First of all, assume that SL�P4�e4 � Sp�χ�e4 for all non-degenerate alternating

forms χ on P4 such that �P4, χ0 Ù ψ2, χ� > Ṽ �R�. Now let a, a� > Um�P0 ` R� such that

V �a� � V �a��. Then ϕtV �a, s�ϕ � V �a�, s�� for some ϕ > SL�P4� and sections s, s� of a and

a� by the previous theorem. By assumption there is ϕ� > Sp�V �a, s�� with ϕe4 � ϕ�e4. If

we let ϕ�� � ϕ��1ϕ, then ϕ��e4 � e4 and ϕ��tV �a, s�ϕ�� � V �a�, s��. Thus, if we write

ϕ�� �
�
�
ϕ��0 0

ϕ��R 1

�
� > Aut�P3 `R�,

then ϕ��0 has determinant 1 and satisfies a� � aϕ��0 . In particular, the classes of a and a� in

Um�P0 `R�~SL�P0 `R� coincide and V is injective.

Conversely, assume that V is injective. Let χ be an arbitrary non-degenerate alternat-

ing form on P4 such that �P4, χ0 Ù ψ2, χ� > Ṽ �R� and also let ϕ > SL�P4�. We write

χ � V �a, s� and ϕtχϕ � V �a�, s�� for a, a� > Um�P0 ` R� with sections s and s�. Then

obviously V �a� � V �a��. By assumption, there is ϕ� > SL�P0 `R� with a� � aϕ� and hence

�ϕ� ` 1�tV �a, s��ϕ� ` 1� � V �a�, s���, where s�� is a section of a�. Furthermore, there exists

ϕ�� > E�P4� with ϕ��e4 � e4 such that ϕ��tV �a�, s���ϕ�� � V �a�, s�� (cp. the proof of Theorem

4.4). The automorphism β � ϕϕ���1�ϕ� ` 1��1
lies in Spχ and satisfies βe4 � ϕe4, which

proves the theorem.

The proof of Theorem 4.32 shows in particular the following statement:

Corollary 4.33. Let R be a Noetherian ring of dimension B 4. Assume that SL�P5� acts

transitively on Um�P5�. Then the orbit space Um�P0 ` R�~SL�P0 ` R� is trivial if and

only if WSL�R� is trivial and SL�P4�e4 � Sp�χ0 Ù ψ2�e4.
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As an immediate consequence, we can classify stably isomorphic oriented projective mod-

ules of rank 2 over affine algebras of dimension 3 over finite fields:

Theorem 4.34. Assume that R is an affine algebra of dimension d � 3 over a finite field

Fq. Then Sp�χ�e4 � Unim.El.�P4� for any non-degenerate alternating form χ on P4. In

particular, the generalized Vaserstein symbol associated to any trivialization θ0 of det�P0�
gives a bijection Vθ0 � Um�P0 `R�~SL�P0 `R� �

Ð� ṼSL�R�.
Proof. Proposition 1.15 and Lemma 1.8 imply the first statement. The second statement

follows from the first statement and Theorem 4.32.

We remark that the group ṼSL�R� is not trivial in general for an affine algebra of dimension

3 over a finite field: Let Fp be the field with p elements for a prime number p with

p � 1 mod 8. We consider the polynomial X8
� a for some element a > F�p which is not

a square; furthermore, we let 8
º
a be a root of this polynomial in an algebraic closure of

Fp. Since p � 1 mod 8, the field Fp contains all 8th roots of unity, i.e. all zeros of the

polynomial X8
� 1 over Fp. In particular, by Kummer’s theorem on cyclic field extensions,

we see that Fp� 8
º
a� is Galois over Fp and �Fp� 8

º
a� � Fp� � r such that r divides 8. Therefore

the minimal polynomial M� 8
º
a� of 8

º
a over Fp has degree 1,2,4 or 8. But the coefficient

of M� 8
º
a� in degree zero is a product of 8th roots of unity (which are all in Fp) and 8

º
a
r
.

Since a is not a square in Fp, it follows that 8
º
a
i
¶ Fp for i � 1,2,4 and r has to be 8. Hence

X8
� a is irreducible over Fp. If we take the polynomial X2

� a for N. Mohan Kumar’s

construction of stably free modules in [NMK], then we produce a smooth affine algebra RK

of dimension 3 over Fp which admits a non-free stably free module of rank 2. It follows

from the previous theorem that ṼSL�RK� x 0.

Recall that one of the basic tools to study the groups WE�R� and WSL�R� is the Karoubi

periodicity sequence

K1Sp�R�� SK1�R��WE�R��K0Sp�R��K0�R�.

We let WE�R�~SL3�R� be the cokernel of the composite SL3�R� � SK1�R� � WE�R�.
Then we can deduce the following result from Corollary 4.33:

Corollary 4.35. Assume that R is a smooth 4-dimensional algebra over the algebraic

closure k � F̄q of a finite field such that 6 > k�. Then the orbit space Um3�R�~SL3�R� is

trivial if and only if WE�R�~SL3�R� is trivial.
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Proof. As a matter of fact, it was proven in [FRS, Corollary 7.8] that the homomorphism

SL4�R�~E4�R� �

Ð� SK1�R� is an isomorphism.

Now assume that Um3�R�~SL3�R� is trivial. By Corollary 4.33, this means that the map

SK1�R� � WE�R� is surjective and Sp4�R�e4 � SL4�R�e4. The second condition and

the isomorphism SL4�R�~E4�R� � SK1�R� easily imply that any matrix in SL4�R� lies

in SL3�R� up to a matrix in Sp4�R�E4�R�. Since elements in Sp4�R�E4�R� are sent to

0 in WE�R� under the hyperbolic map SK1�R� � WE�R�, this immediately implies that

WE�R�~SL3�R� �WSL�R� � 0.

Conversely, assume that WE�R�~SL3�R� is trivial. Then WSL�R� is obviously trivial.

Now let ϕ > SL4�R�. Then the class of the matrix ϕtψ4ϕ is trivial in WE�R�~SL3�R�.
By the Karoubi periodicity sequence, this means that there exists a matrix ϕ� > SL3�R�
such that ϕ�ϕ� ` 1��1

is in the image of the map K1Sp�R� � SK1�R�. Since dim�R� � 4,

K1Sp�R� is generated by Sp4�R�; the isomorphism SL4�R�~E4�R� � SK1�R� then implies

that ϕ���1ϕ�ϕ� ` 1��1
lies in E4�R� for some ϕ�� > Sp4�R�. Since for any v > Umt

4�R� one

has E4�R�v � �E4�R� 9 Sp4�R��v, it follows that there is an element ψ > E4�R� 9 Sp4�R�
with ϕ���1ϕ�ϕ� ` 1��1

e4 � ψe4. Since ϕ�ϕ� ` 1��1
e4 � ϕe4, it follows that ϕe4 � ϕ��ψe4 and

ϕ��ψ > Sp4�R�. This proves the corollary.

Corollary 4.36. Assume that R is a smooth affine algebra of dimension 3 over an alge-

braically closed field k with char�k� x 2. Then Sp�χ0 Ù ψ2�e4 � Unim.El.�P4�.
Proof. By Corollary 4.25 we know that Um�P0`R�~SL�P0`R� is trivial. Since moreover

SL�P4�e4 � Unim.El.�P4� and SL�P5� acts transitively on Um�P5�, the result follows by

Corollary 4.33.

Recall that the Bass-Quillen conjecture BQ�R� asserts that all finitely generated projective

modules over R�X1, ...Xn� are extended from R whenever R is a regular Noetherian ring; in

particular, all finitely generated projective R�X�-modules are free if R is a regular local ring

such that BQ�R� holds. The Bass-Quillen conjecture is known to hold in many cases, e.g.

if R is a regular k-algebra essentially of finite type over a field k (cp. [Li]). Furthermore, it

follows from the Quillen-Suslin theorem that all finitely generated projective R�X�-modules

are free if R is a regular local ring of dimension B 1. Moreover, M. P. Murthy proved in

[M] that all finitely generated projective R�X�-modules are free if R is a regular local ring

of dimension 2 and later R. A. Rao proved in [R] that the same statement holds if R is a

regular local ring of dimension 3 with 6 > R�. Note that if R is a regular local ring, the

assumption on regularity implies that all finitely generated projective modules over R�X�
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are stably free and hence the conjecture holds if and only if GLr�R�X�� acts transitively

on Umr�R�X�� (or, equivalently, on Umt
r�R�X��) for all r C 3. We may thus deduce the

following statement from the previous results:

Proposition 4.37. Let R be a regular local ring of dimension 4 with 6 > R�. Then all

finitely generated projective R�X�-modules are free if and only if Sp4�R�X�� acts transi-

tively on Umt
4�R�X��.

Proof. Since R�X� is essentially of dimension 4, we know that Er�R�X�� acts transitively

on Umr�R�X�� for r C 6. Moreover, it was proven in [R, Corollary 2.7] that E5�R�X��
acts transitively on Um5�R�X�� as well.

Of course, if we let P0 � R2, then there exists a canonical trivialization θ0 of det�R2� given

by 1 ( e1 , e2, where e1 � �1,0�, e2 � �0,1� > R2. Consequently, there is a generalized

Vaserstein symbol Vθ0 � Um3�R�X��~SL3�R�X��� ṼSL�R�X�� associated to θ0. Although

dim�R�X�� � 5, the proofs of Theorems 4.31, 4.32 and Corollary 4.33 work for R�X� be-

cause Er�R�X�� acts transitively on Umt
r�R�X�� for r C 5.

Now let us first assume that all finitely generated projective R�X�-modules are free.

Then SLr�R�X�� acts transitively on Umt
r�R�X�� for r � 3,4. In particular, the orbit

space Um3�R�X��~SL3�R�X�� is trivial. Then it follows directly from Corollary 4.33 that

Sp4�R�X�� acts transitively on Umt
4�R�X��.

Conversely, assume only that Sp4�R�X�� acts transitively on Umt
4�R�X��. The proofs of

[R, Proposition 2.2 and Proposition 2.9] show that the usual Vaserstein symbol V�θ0 and

hence also Vθ0 � Um3�R�X��~SL3�R�X�� � ṼSL�R�X�� is a constant map. But the proof

of Theorem 4.32 then shows that it is also injective because Sp4�R�X�� acts transitively on

Umt
4�R�X��. Consequently, all finitely generated projective R�X�-modules are free.

Let R be a Noetherian commutative ring of dimension B 4 such that SL�P5� acts transi-

tively on Um�P5�. We now try to use the previous results in order to give descriptions of

the orbit spaces Um�P0 `R�~E�P0 `R� and Um�P0 `R�~SL�P0 `R�.
For any map F � M � N between sets M and N , one obviously has M � 8x>NF �1�x�.
Therefore we also have Um�P0 `R�~E�P0 `R� � 8β>ṼSL�R�V

�1�β�. Now let us fix an el-

ement a > Um�P0 ` R� together with a section s and give a description of the preimage

V �1�V �a�� ` Um�P0 `R�~E�P0 `R�. We set χ � V �a, s�. We have an obvious map

ia � SL�P4�� V �1�V �a��, ϕ( a � ϕ,

induced by the right action of SL�P4� on Um�P0 ` R�~E�P0 ` R�. By our observations

above, this map is immediately surjective.
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Now assume that there are two elements ϕ1 and ϕ2 of SL�P4� with ϕ1ϕ2
�1 > Sp�χ�E�P4�.

Then obviously ia�ϕ1� � ia�ϕ2�. Conversely, let ϕ1, ϕ2 > SL�P4� such that ia�ϕ1� � ia�ϕ2�.
Then it follows from the proofs of Theorems 4.4 and 4.6 that there is an element ϕ > E�P4�
such that

ϕ1
tχϕ1 � ϕtϕ2

tχϕ2ϕ.

In particular, since E�P4� is a normal subgroup of SL�P4�, it follows that ϕ1ϕ2
�1 lies in

Sp�χ�E�P4�. Thus, it follows that ia induces a bijection

ia � Sp�χ�E�P4��SL�P4� �

Ð� V �1�V �a��

between the set of right cosets of Sp�χ�E�P4� in SL�P4� and the preimage V �1�V �a��.
Altogether, we have just established the following description of Um�P0 `R�~E�P0 `R�:
Theorem 4.38. Let R be a Noetherian commutative ring of dimension B 4 such that

SL�P5� acts transitively on Um�P5�. Let �χi�i>I be a set of non-degenerate alternating

forms on P4 such that I � ṼSL�R�, i ( �P4, χ0 Ù ψ2, χi�, is a bijection. Then there is a

bijection Um�P0 `R�~E�P0 `R� � 8i>ISp�χi�E�P4��SL�P4�.
Remark 4.39. We remark that SL�P4�~E�P4� is abelian if R is a smooth affine algebra

of dimension 4 over an algebraically closed field k such that 6 > k� and P0 is free: This

follows from the fact that the map SL4�R�~E4�R� � SK1�R� is injective in this situation

(cp. [FRS, Corollary 7.7]). Hence the subgroup Sp�χ�E4�R� of SL4�R� is normal and

Sp�χ�E4�R��SL4�R� � SL4~Sp�χ�E4�R�.
Let us now describe the orbit space Um�P0 `R�~SL�P0 `R�. Analogously, we consider

the surjective map V � Um�P0 ` R�~SL�P0 ` R� � ṼSL�R� and describe the preimages

V �1�V �a�� for a > Um�P0 `R�. Henceforth we assume that SL�P4�~E�P4� is an abelian

group. By repeating the arguments above appropriately, we obtain a bijection

ia � SL�P4�~Sp�χ�SL�P3�E�P4� �

Ð� V �1�V �a��.

Theorem 4.40. Let R be a Noetherian commutative ring of dimension B 4 such that

SL�P5� acts transitively on Um�P5�. Let �χi�i>I be a set of non-degenerate alternating

forms on P4 such that I � ṼSL�R�, i ( �P4, χ0 Ù ψ2, χi�, is a bijection. Furthermore,

assume in addition that SL�P4�~E�P4� is an abelian group. Then there is a bijection

Um�P0 `R�~SL�P0 `R� � 8i>ISL�P4�~Sp�χi�SL�P3�E�P4�.
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Because of Remark 4.39, we obtain the following description of Um3�R�~SL3�R�:
Corollary 4.41. Let R be a smooth affine algebra of dimension B 4 over an algebraically

closed field k of characteristic x 2,3. Furthermore, let �χi�i>I be a set of non-degenerate

alternating forms on R4 such that the map I � ṼSL�R�, i ( �R4, ψ4, χi�, is a bijection.

Then there is a bijection Um3�R�~SL3�R� � 8i>ISL4�R�~Sp�χi�SL3�R�E4�R�.
Now let R be a smooth affine algebra of even dimension d over an algebraically closed field

k with d! > k�. Motivated by the previous results, we study the orbits of unimodular rows

of length d under the right actions of SLd�R� and Spd�R�. We will use this to prove the

equality SLd�R�ed � Spd�R�ed. Since we have SLd�R�ed � Umt
d�R� in this case (cp. [FRS,

Theorem 7.5]), this means that one has to prove that Spd�R� acts transitively on the left

on Umt
d�R�.

As already indicated, we will approach this problem in terms of the right actions of SLd�R�
and Spd�R� on Umd�R�. For the remainder of this section, we let π1,d � �1,0, ...,0� and

πd,d � �0, ...,0,1� be the standard unimodular rows of length d and e1,d � πt1,d and ed,d � πtd,d
the corresponding unimodular columns. As a first step, let us recall some basic facts about

symplectic and elementary symplectic orbits. The following result by Gupta is a special

case of [G, Theorem 3.9] and extends [CR, Theorem 5.5]:

Theorem 4.42. Let R be a commutative ring. For any n > N and any unimodular row

v > Um2n�R�, the equality vE2n�R� � vESp2n�R� holds.

Corollary 4.43. Let R be a commutative ring. If v, v� > Um2n�R� for some n > N and

vE2n�R� � v�E2n�R�, then vSp2n�R� � v�Sp2n�R�.
We can then give a partial answer to a question raised by Gupta (cp. [G, Question 5.5]):

Theorem 4.44. Let R be a smooth affine algebra of dimension d C 4 over an algebraically

closed field k with d! > k�. Assume that d is divisible by 4. Then Spd�R� acts transivitely

on Umd�R�.
Proof. It follows from the proof of [FRS, Theorem 7.5] that any unimodular row of length

d can be transformed via elementary matrices to a row of the form �a1, ..., ad�1, a
�d�1�!2

d �.
By the previous corollary, it thus suffices to show that any such row of length d is the first

row of a symplectic matrix.

So let a � �a1, ..., ad�1, a
�d�1�!
d � and let b � �b1, ..., bd�1, bd� be a unimodular row such that

abt � 1. Furthermore, let a� � �a1, ..., ad�1, a
�d�1�!2

d �. It follows from [S4, Proposition 2.2,
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Corollary 2.5] that there exists a matrix β�a, b� > SLd�R� whose first row is a� such that

�β�a, b�� � �αd�a, b�� in SK1�R�.
Now let us first assume that the class of αd�a, b� in K1�R� lies in the image of the forgetful

map K1Sp�R� f
Ð� K1�R�. Then it is well-known that Sp�R� � ESp�R�Spd�R� (cp. [SV,

Theorem 7.3(b)]). Therefore the class of αd�a, b� actually lies in the image of the composite

Spd�R��K1Sp�R� f
Ð�K1�R�. In other words, there exists a matrix ϕ > Spd�R� such that

�ϕ� � �αd�a, b�� � �β�a, b�� in K1�R�. As the homomorphism SLd�R�~Ed�R�� SK1�R� is

injective (cp. [FRS, Corollary 7.7]), it follows that β�a, b�ϕ�1 > Ed�R�. Since the equality

π1,dEd�R� � π1,dESpd�R� holds, there is ψ > ESpd�R� such that π1,dβ�a, b�ϕ�1 � π1,dψ. In

particular, a� � π1,dβ�a, b� � π1,dψϕ lies in the orbit of π1,d under the action of Spd�R�.
Thus, it suffices to show that the class of αd�a, b� in K1�R� indeed lies in the image of

K1Sp�R� f
Ð�K1�R�. For this, recall that a unimodular row of length d over R corresponds

to a morphism X � Spec�R�� Ad
k�0 and there is a canonical pointed A1

k-weak equivalence

p2d�1 � pk2d�1 � Q
k
2d�1 � Ad

k �0. As a matter of fact, a morphism X � Qk
2d�1 corresponds to a

unimodular row of length d with the choice of an explicit section. Furthermore, there is an

A1
k-fiber sequence Sp � GL � GL~Sp, which induces the Karoubi periodicity sequence by

taking the sets of morphisms in H�k�. There is a pointed morphism αd � Qk
2d�1 � SL0 GL

induced by αd�x, y�.
Let a�� � �a1, ..., ad�1, ad� > Umd�R�. We now interpret this unimodular row as a morphism

a�� � X � Ad
k � 0 of spaces. If we let Ψ�d�1�!

� Ad
k � 0 � Ad

k � 0 be the morphism induced by

�x1, ..., xd�1, xd� ( �x1, ..., xd�1, x
�d�1�!
d �, then we obviously have a � Ψ�d�1�!a�� � X � Ad

k � 0.

It thus suffices to prove the existence of a morphism Ad
k � 0 � Sp in H�k� that makes the

diagram

Ad
k � 0

p�12d�1Ψ�d�1�!

//

��

Qk
2d�1

αd

��
Sp // GL // GL~Sp

commutative. For this purpose, we first of all note that the motivic Brouwer degree of

Ψ�d�1�! > �Ad
k � 0,Ad

k � 0�A1
k
,Y � GW �k� is �d � 1�!ε. Since k is algebraically closed, it follows

that αdp�1
2d�1Ψ�d�1�! equals �d � 1�! � αdp�1

2d�1 > �Ad
k � 0,GL�A1

k
,Y, where the group structure

is understood with respect to the structure of Ad
k � 0 as an h-cogroup in HY�k�. The

usual Eckmann-Hilton argument then implies that also αdp�1
2d�1Ψ�d�1�! � �d� 1�! �αdp�1

2d�1 in

�Ad
k � 0,GL�A1

k
,Y, where the group structure is understood with respect to the structure of

an h-group of GL �A1
k
RΩsBGL in HY�k�. As �Ad

k � 0,GL~Sp�A1
k
�WE�Sk2n�1� � Z~2Z and
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�d � 1�! is even, it follows that

�Ad
k � 0� p�12d�1Ψ�d�1�!

ÐÐÐÐÐÐ� Qk
2d�1

αd
Ð� GL� GL~Sp

is trivial and hence the factorization exists, as desired.

As a consequence, we can prove a corresponding statement for the left action of Spd�R�
on Umt

d�R�:
Corollary 4.45. Let R be a smooth affine algebra of dimension d C 4 over an algebraically

closed field k with d! > k�. Assume that d is divisible by 4. Then Spd�R� acts transitively

on Umt
d�R�; in particular, Spd�R�ed � SLd�R�ed.

Proof. First of all, let

ϕ2 �
�
�
�1 0

0 1

�
� > GL2�R�.

We can then inductively define ϕ2n�2 � ϕ2n Ù ϕ2 > GL2n�2�R� for all n > N. Furthermore,

we have ϕtdψdϕd � ψ
t
d, ϕ

t
d � ϕd and ϕ�1

d � ϕd.

Now let v > Umd�R� and vt the corresponding unimodular column. By the previous

theorem, there is ϕ > Spd�R� with πd,dϕ � vϕd. Then it follows that ϕdϕtϕd > Spd�R�.
Finally, one has ϕdϕtϕded,d � ϕdϕdvt � vt, which proves the corollary.

Theorem 4.46. Let R be a 4-dimensional smooth affine algebra over an algebraically closed

field k with 6 > k�. Then Um3�R�~SL3�R� is trivial if and only if WSL�R� � 0.

Proof. This follows immediately from Corollary 4.33 and Corollary 4.45.

Corollary 4.47. Let R be a 4-dimensional smooth affine algebra over an algebraically

closed field k with 6 > k� and let X � Spec�R�. Then Um3�R�~SL3�R� is trivial if CH3�X�
and H2�X,KMW

3 � are 2-divisible. Furthermore, Um3�R�~SL3�R� is trivial if H2�X, I3� is

2-divisible and CH3�X� � CH4�X� � 0.

Proof. By Theorem 4.46, we have to show that WSL�R� � 0 if CH3�X� and H2�X,KMW
3 �

are 2-divisible or if H2�X, I3� is 2-divisible and CH3�X� � CH4�X� � 0. But since the

Vaserstein symbol surjects onto WSL�R� and k is algebraically closed, it follows from

[FRS, Lemma 7.4] and the Swan-Towber theorem [SwT, Theorem 2.1] that WSL�R� is

2-torsion. Hence it suffices to show that WE�R� or WSL�R� is 2-divisible. So the first

statement follows from Propositions 3.7 and 3.9. The second statement follows directly

from Proposition 3.9.
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Corollary 4.48. Let R be a 4-dimensional smooth affine algebra over an algebraically

closed field k with 6 > k� and let X � Spec�R�. Moreover, assume that CH i�X� � 0 for

i � 1,2,3,4 and that H2�X, I3� � 0. Then all finitely generated projective R-modules are

free.

Proof. We may assume that X � Spec�R� is connected; in particular �X,Z� � Z. The fact

that CH i�X� � 0 for i � 1,2,3,4 immediately implies that F iK0�R� � 0 for i � 1,2,3,4.

Hence rank � K0�R� �

Ð� �X,Z� � Z is an isomorphism and all finitely generated projective

R-modules are stably free. Since stably free R-modules of rank C 3 are free (cp. [S1] and

[FRS]), it suffices to prove that stably free modules of rank 2 are free. But this follows

from Corollary 4.47.

4.4 Further thoughts

In the last section of this thesis, we discuss some open questions in the study of projective

modules and relate them to our results. For this, we let R be a smooth affine algebra of

dimension d C 3 over an algebraically closed field k such that �d � 1�! > k�.

In general, it is an open question whether any finitely generated projective R-module P

of rank d � 1 is cancellative. If d � 3, then P is cancellative by results of Asok-Fasel (cp.

[AF2, Corollary 6.8]); if P has a trivial determinant, we are already able to re-prove their

cancellation theorem by means of the generalized Vaserstein symbol (cp. Corollary 4.25).

Moreover, if P � Rd�1, then P is also cancellative by results of Fasel-Rao-Swan (cp. [FRS,

Theorem 7.5]).

Our results in Section 4.2 suggest that any projective R-module of the form Pd�1 � P0`Rd�3,

where P0 has rank 2 and a trivial determinant, is cancellative. Indeed, because of Theorem

4.24, it suffices to prove that for some j prime to char�k� any epimorphism of the form

b � �b0, b
j
3, b4, ..., bd� > Um�Pd�1 ` R� can be completed to an automorphism of Pd�1 ` R,

i.e. there is an automorphism ϕ > Aut�Pd�1 ` R� such that b � πϕ, where π is just the

projection Pd�1 `R � R onto the last free direct summand.

By analogy with Andrei Suslin’s proof of his cancellation theorem in [S1], one could try to

prove this by induction on d. In fact, we have already settled the base case by constructing

an explicit completion of an epimorphism of the form �b0, b2
3� in Section 1.4.

Another approach would be to reformulate the above problem in the language of A1-

homotopy theory; for example, the special case of unimodular rows and their completability

is discussed in [AF1, Section 5]. Since the free R-module is always extended from the
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base field k, one can use the A1-homotopy category H�k� over the base field in this case.

In general, one possibly has to use the A1-homotopy category H�R� with base scheme

X � Spec�R�. Nevertheless, we leave the investigation of this remaining problem to future

work.

Throughout this thesis, we have considered projective modules with a trivial determinant.

An affine scheme X � Spec�R� is called a topologically contractible smooth affine variety

over C if it is an irreducible smooth affine scheme over C such that its associated complex

manifold X�C� is a contractible topological space. It is known that CH1�X� � 0 for such

a variety. Hence it follows in particular that our results apply to topologically contractible

smooth affine varieties over C. The generalized Serre conjecture on algebraic vector bundles

asserts that algebraic vector bundles over topologically contractible smooth affine varieties

over C are trivial. The conjecture is known to hold in dimensions B 2, but is open in

higher dimensions. Under the assumption that the generalized Serre conjecture holds in

higher dimensions and in view of Theorem 4.46, it might be expected that WSL�R� � 0 for

a smooth affine algebra R of dimension 4 over C such that X � Spec�R� is a topologically

contractible variety.

Fabien Morel and Vladimir Voevodsky have defined complex realization functors

RC � H�C�� H,

RC,Y � HY�C�� HY,

where H and HY are the homotopy categories of topological spaces and pointed topological

spaces respectively. These functors extend the assignment which sends any smooth affine

scheme X to the topological space X�C�. For any base scheme S, a space X > SpcS is

called A1
S-contractible if X is isomorphic to S in H�S�. It follows from the existence of

the complex realization functors that A1
C-contractible smooth affine varieties over C are

topologically contractible. By the algebro-geometric analogue of Steenrod’s homotopy clas-

sification of topological vector bundles (cp. [AHW]), it follows that all algebraic vector

bundles on A1
C-contractible smooth affine varieties over C are trivial. Thus, the subtle

question behind the generalized Serre conjecture is under which circumstances topologi-

cally contractible smooth affine varieties are in fact A1
C-contractible.

In fact, there exist examples of topologically contractible smooth affine varieties of dimen-

sion 3 over C which are not isomorphic to A3
C called the Koras-Russell threefolds of the

first and second kind. In [HKØ], it was proven that all algebraic vector bundles over the

Koras-Russell threefolds of the first and second kind are trivial. As a matter of fact, it
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was later proven in [DF] that the Koras-Russell threefolds of the first kind are in fact

A1
C-contractible, which trivialized the result on their vector bundles. Nonetheless, it still

remains an open question whether the Koras-Russell threefolds of the second kind are A1
C-

contractible as well.

Now let us return to the case of a general commutative ring R. Our results raise the ques-

tion whether one can define a generalized Vaserstein symbol for any projective R-module

of rank 2 (not necessarily with a trivial determinant). For any projective R-module L of

rank 1, we set P -L � HomR�mod�P,L�. For any projective R-module P of finite rank, one

has a natural isomorphism

canL � P � P -L-L , p( �evp � P -L � L,a( a�p��,
induced by evaluation. Then an L-oriented alternating morphism on P is a morphism

f � P � P -L such that f�p��p� � 0 for all p > P . An L-oriented alternating isomorphism

on P is an L-oriented alternating morphism on P which is an isomorphism. Replacing

alternating isomorphisms by L-oriented alternating isomorphisms, we can then mimic our

definition of the group V �R� (cp. Section 3.3) in order to define a group V �R,L�. Note

that for any finitely generated projective R-module P there is a hyperbolic L-oriented

alternating isomorphism HL�P � � P ` P -L � P -L ` P -L-L given by

�
�

0 id

�canL 0

�
�.

Now let P0 be a projective R-module of rank 2 and let L � det�P0�. Then the form

P0 � P0 � det�P0�, �p, q� ( p , q induces an L-oriented alternating isomorphism on P0,

which we denote by χ0.

If a > Um�P0 ` R� with section s � R � P0 ` R and P �a� � ker�a�, then we obtain as

usual isomorphisms is � P0 `R
�

Ð� P �a� `R and θ � det�P0� �

Ð� det�P �a��. Then the form

P �a� � P �a� � L, �p, q� ( θ�1�p , q� induces an L-oriented alternating isomorphism on

P �a�, which we denote by χa. We can then associate to a the element

V �a� � �P0 `R`R-L , χ0 ÙHL�R�, �is ` 1�-L�χa ÙHL�R���is ` 1��
in V �R,L�. In order to define a Vaserstein symbol for P0, it then remains to prove that

the element V �a� does not depend on the choice of the section s above. But we can mimic

the proof of Theorem 4.4 for this: If t is another section of a and it � P0 `R
�

Ð� P �a�`R is

the isomorphism induced by t, then one has to show that the elements
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�P0 `R`R-L , χ0 ÙHL�R�, �is ` 1�-L�χa ÙHL�R���is ` 1�� and

�P0 `R`R-L , χ0 ÙHL�R�, �it ` 1�-L�χa ÙHL�R���it ` 1��

are equal in V �R,L�. For this, we define a homomorphism d� � P0 `R � det�P0 `R� by

p( s�1�, t�1�,p > det�P0`R�. Then we let d � P0`R � R-L be the map obtained from d�

by composing with the canonical isomorphisms det�P0`R� � det�P0� � R-L . Furthermore,

we let ϕ be the elementary automorphism on P0 `R`R-L induced by �d. As in the proof

of Theorem 4.4, one can then check locally that

ϕ-L�is ` 1�-L�χa ÙHL�R���is ` 1�ϕ � �it ` 1�-L�χa ÙHL�R���it ` 1�

and conclude that our assignment does not depend on the choice of s. Of course, this

raises the question whether one can then prove results without the assumption of a trivial

determinant which are analogous to our results in this thesis. We leave the investigation

of this to future work.
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[Br] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Mathematische An-

nalen 71 (1912), 97-115

119



[BBR] A. Bak, R. Basu, R. A. Rao, Local-global principle for transvection groups, Pro-

ceedings of American Mathematical Society 138 (2010), 1191-1204

[C] C. Cazanave, Algebraic homotopy classes of rational functions, Annales scien-

tifiques de l’ENS 45 (2012), fascicule 4, 511-534

[CE] H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, Prince-

ton, 1956

[CR] P. Chattopadhyay, R. A. Rao, Elementary symplectic orbits and improved K1-

stability, J. K-theory 7 (2011), no. 2, 389-403

[DF] A. Dubouloz, J. Fasel, Families of A1-contractible affine threefolds, Algebraic

Geometry 5 (2018), 1-14

[DK] A. M. Dhorajia, M. K. Keshari, A note on cancellation of projective modules, J.

Pure Appl. Algebra 1 (2012), vol. 216, 126-129

[F] J. Fasel, Some remarks on orbit sets of unimodular rows, Comment. Math. Helv.

86 (2011), no. 1, 13-39

[FRS] J. Fasel, R. A. Rao and R. G. Swan, On stably free modules over affine algebras,

Publ. Math. Inst. Hautes Études Sci. 116 (2012), 223-243

[FS] J. Fasel, V. Srinivas, A vanishing theorem for oriented intersection multiplicities,

Math. Res. Lett. 15 (2008), 447-458

[G] A. Gupta, Optimal injective stability for the symplectic K1Sp group, J. Pure

Appl. Algebra 219 (2015), 1336-1348

[HB] H. Bass, Algebraic K-theory, Benjamin, New York, 1968

[HKØ] M. Hoyois, A. Krishna, P. A. Østvær, A1-contractibility of Koras-Russell three-

folds, Algebr. Geom. 3 (2016), 407-423

[Ho] M. Hovey, Model categories, volume 63 of Mathematical Surveys and Mono-

graphs, American Mathematical Society, Providence, 1999

[JH] J. Hornbostel, A1-representability of Hermitian K-theory and Witt groups,

Topology 44 (2005), 661-687

120



[JPS1] J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire
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