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Abstract

Let R be a commutative ring. An important question in the study of projective modules
is under which circumstances a projective R-module P is cancellative, i.e. under which
circumstances any isomorphism P& R* = Q@& R* for some projective R-module @ and k > 0
already implies P 2 Q).

If R is an affine algebra of dimension d over an algebraically closed field &, then it is known
that projective R-modules of rank r > d are cancellative. While it is known that projective
modules of rank r = d — 2 are not cancellative in general, it remains an open question
whether projective modules of rank r = d — 1 are cancellative or not. By substantially
using a map called the Vaserstein symbol, Fasel-Rao-Swan could prove that at least R!
is cancellative if d > 4, (d—1)! € k* and R is normal.

Motivated by the cancellation problem of projective modules, the aim of this work is
to construct a generalized Vaserstein symbol associated to any projective R-module Fy
of rank 2 with a trivialization of its determinant: The generalized Vaserstein symbol is
defined on the orbit space Um(Py® R)/E(FPy® R) of the set Um(Py ® R) of epimorphisms
Py® R - R under the right action of the subgroup E(FP, ® R) of the group Aut(F, ® R)
of automorphisms of Fy @ R generated by elementary automorphisms and maps into the
abelian group V(R), which can be identified with the so-called elementary symplectic Witt
group Wg(R).

We prove that the generalized Vaserstein symbol is a bijection if R is a regular Noetherian
ring of dimension 2 or a regular affine algebra of dimension 3 over a perfect field k£ with
cd.(k) <1 and 6 € k*. This enables us to generalize a result of Fasel-Rao-Swan on
transformations of unimodular rows via elementary matrices. Furthermore, by means of
the generalized Vaserstein symbol, we can give a necessary and sufficient condition for the
triviality of the orbit space Um(Py@R)/SL(FPy® R) over affine algebras of dimension 4 over
an algebraically closed field k. We can also classify stably isomorphic oriented projective
modules of rank 2 with a trivial determinant over affine algebras of dimension 3 over finite

fields.






Zusammenfassung

Sei R ein kommutativer Ring. Eine wichtige Frage im Studium projektiver Moduln ist,
unter welchen Bedingungen ein projektiver R-Modul P kiirzbar ist, d.h. unter welchen
Bedingungen jeder Isomorphismus P @ R* = QQ @ R* fiir einen projektiven R-Modul @ und
k > 0 bereits P = () impliziert.

Ist R eine affine Algebra von Dimension d iiber einem algebraisch abgeschlossenen Kérper
k, dann sind projektive R-Moduln von Rang r > d kiirzbar. Wahrend projektive R-Moduln
von Rang r = d — 2 nicht immer kiirzbar sind, ist es immer noch eine offene Frage, ob pro-
jektive Moduln von Rang r = d -1 kiirzbar sind oder nicht. Fasel-Rao-Swan konnten unter
Verwendung des sogenannten Vaserstein-Symbols beweisen, dass zumindest R4! kiirzbar
ist, falls d > 4, (d—1)! € k* und R normal ist.

Motiviert vom Studium projektiver Moduln ist es das Ziel dieser Arbeit, ein verallge-
meinertes Vaserstein-Symbol, das jedem projektiven R-Modul Py von Rang 2 mit einer
Trivialisierung seiner Determinante zugeordnet wird, zu definieren: Diese Abbildung ist
auf dem Orbitraum Um(FPy @ R)/E(Fy ® R) der Menge Um(F, @ R) der Epimorphismen
Py® R - R unter der Rechtswirkung der von den elementaren Automorphismen erzeugten
Untergruppe E(Py @ R) der Automorphismengruppe Aut(P, @ R) von Py & R definiert
und bildet in die abelsche Gruppe f/(R) ab, die sich mit der elementaren symplektischen
Witt-Gruppe Wg(R) identifizieren lésst.

Wir beweisen, dass das verallgemeinerte Vaserstein-Symbol eine Bijektion ist, falls R ein
reguldrer noetherscher Ring von Dimension 2 oder eine regulédre affine Algebra von Di-
mension 3 iiber einem perfekten Korper k& mit c.d.(k) <1 und 6 € k> ist. Dies ermdglicht
es uns, ein Resultat von Fasel-Rao-Swan tiber die Umformbarkeit unimodularer Reihen
mittels elementarer Matrizen zu verallgemeinern. Auflerdem konnen wir anhand des ve-
rallgemeinerten Vaserstein-Symbols eine notwendige und hinreichende Bedingung fiir die
Trivialitdt des Orbitraums Um(FPy @ R)/SL(FP, ® R) iiber einer affinen Algebra von Di-
mension 4 iiber einem algebraisch abgeschlossenen Korper k£ finden. Wir konnen ebenfalls
stabil isomorphe orientierte projektive Moduln von Rang 2 mit trivialer Determinante tiber

affinen Algebren von Dimension 3 iiber endlichen Korpern klassifizieren.
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Introduction

In this thesis, we construct a generalized Vaserstein symbol map and explore its applications
to the classification of finitely generated projective modules. Projective modules were first
introduced in 1956 by Henri Cartan and Samuel Eilenberg (cp. [CE]) and have since then
been widely studied by many mathematicians. As a matter of fact, if R is a commutative
ring and X = Spec(R), then finitely generated projective R-modules correspond to locally
free coherent sheaves of Ox-modules. The study of finitely generated projective modules
can hence be interpreted as the study of algebraic vector bundles over affine schemes.

First of all, note that every finitely generated projective R-module P gives rise to a map
rankp : Spec(R) - 7Z

which assigns to every p € Spec(R) the rank of the finitely generated projective and hence
free module P, over R,. This map is locally constant and hence continuous if we equip
Z with the discrete topology. Since Spec(R) is quasi-compact, the map rankp takes only
finitely many values r;, ¢ = 1,...,n. The decomposition Spec(R) = U}, rankp'(r;) induces
decompositions R= Ry x...x R, and P= P, &...® P,, where P, = P®r R; fori=1,...,n.
Since any P; is a finitely generated projective R;-module such that rankp, : Spec(R;) - Z
is a constant map, we can restrict our study of finitely generated projective modules to
projective modules of constant rank. For any commutative ring R and r > 0, we let V,.(R)
denote the set of isomorphism classes of finitely generated projective R-modules of constant

rank r. Then we consider the stabilization maps
¢ : Vo (R) > Vi (R), [Pl ~ [P o R].

The main goal in the classification of finitely generated projective modules is to give coho-
mological descriptions of the sets V,.(R) for all » > 0 and of the images and the fibers of the
stabilization maps above. Of course, any class of a projective R-module P’ of rank r + 1

lies in the image of the map ¢, if and only if P’ 2 P& R for some P of rank r. In general,
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the fiber ¢ ([P® R]) can be identified with the orbit space Um(P® R)/Aut(P & R) of the
set Um(P @ R) of R-linear epimorphisms P @& R — R under the right action of the group
Aut(P @ R) of R-linear automorphisms of P& R. If P is free, we can identify Um(P & R)
with the set Um,,1(R) of unimodular rows of length r+1, Aut(P & R) with GL,,;(R) and
hence ¢; ([R™*']) with Um,41(R)/GL+1(R).

In the end, the goal is to describe the set of isomorphism classes of finitely generated
projective R-modules. The direct sum of projective R-modules endows this set with the
structure of an abelian monoid. Its group completion is just the group Ky(R); in other
words, Ky(R) is the quotient of the free abelian group generated by the isomorphism
classes [P] of finitely generated projective R-modules P modulo the subgroup generated
by [P]+[Q] - [P & Q] for all such P and @. By abuse of notation, we also denote by
[P] the class of a finitely generated projective R-module in Ky(R). General properties
of group completions imply that the classes of finitely generated projective R-modules P
and @ coincide in Ky(R) if and only if P& R* = ) @ R" for some n > 0. Furthermore,
if we denote by [Spec(R),Z] the group of continuous maps from Spec(R) to Z (with the

discrete topology), then there is a natural group homomorphism
rank : Ko(R) - [Spec(R),Z]

induced by the rank maps for all finitely generated projective modules over R. In fact, this
rank map is a split surjection; a right-inverse of rank can be defined as follows: First of
all, note that [Spec(R),Z] is the group completion of the abelian monoid [Spec(R),N] of
continuous maps from Spec(R) to N (with the discrete topology). If f : Spec(R) - N is
continuous, we let r;, i = 1, ..., n, denote the finitely many values of f and R = Ry x...x R, be
the corresponding decomposition of R. Then we let R/ be the direct sum of the R-modules
R, i=1,...,n. The assignment f+~ R/ induces a homomorphism [Spec(R),Z] - K, (R),

which clearly defines a right-inverse of rank. Hence we obtain a split short exact sequence
0 Ko(R) - Ko(R) - [Spec(R),Z] - 0,

where we let Ko(R) denote the kernel of rank. It is also called the reduced Ko-group of R
and yields a stable classification of finitely generated projective modules over R as follows:
As above, we let V,.(R) denote the set of isomorphism classes of projective R-modules of
constant rank r. We can equip these sets with basepoints by taking the free R-modules of
each particular rank. Then we form the direct limit V(R) := lim,»V.(R) with respect to
the stabilization maps. By abuse of notation, we also denote by [P] the class of a finitely

generated projective module P of constant rank in V(R). We obtain maps
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Ve (R) > V(R)

for all 7 > 0. Since the stabilization maps are all pointed, V(R) is also pointed by m([0]).
We then define maps f, : V,(R) - Ko(R) for all > 0 by f.([P]) = [P] - [R"]. Clearly,

these maps are compatible with the stabilization maps and hence induce a map
fV(R) ~ Ko(R),

which can easily be checked to be a pointed bijection. It follows that the pointed set V(R)
can be endowed with the structure of an abelian group via the bijection f : V(R) 5 Ko(R).
Thus, the stable classification of finitely generated projective modules already becomes part
of a theory which behaves in many aspects like a cohomology theory. The pointed set V(R)
can consequently be studied and computed via cohomological methods. For this reason
and furthermore by analogy with the study of topological vector bundles, it is reasonable
to try to extend these cohomological methods to the unstable classification of finitely gen-
erated projective modules, i.e. to the study of the pointed sets V,.(R) and the stabilization
maps ¢, for r > 0.

Let us now review the major results in the classification of finitely generated projective
modules over commutative rings. In this thesis, we will mainly be interested in affine alge-
bras over fields or, more generally, Noetherian rings. As explained above, one can restrict
oneself to projective modules of constant rank; in fact, since the spectrum of a Noethe-
rian ring is a Noetherian topological space with only finitely many connected components,
it is in this case sufficient to study projective modules over Noetherian rings R such that
Spec(R) is connected. The first important classification results were proven by Jean-Pierre

Serre and by Hyman Bass for Noetherian commutative rings:

Theorem (Serre). Let R be a commutative Noetherian ring of dimension d. Then any
finitely generated projective R-module P of constant rank r > d is of the form P = P’@ R4

for some projective R-module P’ of constant rank d.

In his original paper, Jean-Pierre Serre proved this result under the assumption that
Spec(R) is a connected topological space (cp. [JPS1, Théoreme 1]). The theorem above

then follows by applying his result connected component by connected component.

Theorem (Bass). Let R be a commutative Noetherian ring of dimension d. If P and

Q are finitely generated projective R-modules of constant rank r > d, then P& RF ~ Q) & RF
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for some k >0 implies P 2 Q).

As a matter of fact, Bass could prove that in the situation of the theorem the subgroup
E(P&R) of Aut(P@ R) generated by elementary automorphisms of P@ R acts transitively
on the right on Um(P@® R); in particular, the orbit spaces Um(P® R)/FE(P® R) and hence
Um(P@&R)[Aut(P@® R) are trivial (cp. [HB, Chapter IV, Theorem 3.4 and Corollary 3.5]).
As a special case, one obtains that Um,.1(R)/E,+1(R) is trivial for such rings.

The theorems by Jean-Pierre Serre and Hyman Bass in particular show that we may re-
strict to projective modules of constant rank r < dim(R) + 1: It follows immediately from
the theorems that, for a Noetherian ring R of dimension d, the map ¢, : V,.(R) - V,41(R)
is injective if 7 > d + 1 and surjective if r > d; in particular, Ko(R) = V(R) = Vi (R).
Furthermore, the map ¢, : Vi(R) = V2(R) is always injective for an arbitrary commutative
ring R as P 2 det(P @ R) » det(Q & R) = @ for projective modules P and @ of rank 1
such that P® R 2 Q @ R. In particular, if R is a Noetherian ring of dimension 1, then
Ko(R) 2 V(R) = Vi(R) = Pic(R).

For general Noetherian rings or affine algebras over arbitrary fields, the result by Bass is
the best possible: Indeed, let A = R[z,y, z]/{x?+y? + 22— 1) be the real algebraic 2-sphere,
which is an affine algebra over R of dimension 2. Then the unimodular row (z,y,z) of
length 3 over A cannot be completed to an invertible matrix. In particular, the kernel P
of the homomorphism (z,y,z) : A3 - A is a non-free stably free A-module of rank 2. In
order to see this, note that any triple (a,b,c) € A3 induces a vector field S? - R3; the row
(z,y,2) then corresponds to the vector field which is pointing radially outward. Hence
any element of P gives a vector field on S? which is tangent to the 2-sphere. Now if P
was a free A-module of rank 2, then any free A-basis {f, g} would give two vector fields
f,g:5% > R3 such that f(p) and g(p) are linearly independent for every point p € S2. But
it follows from a well-known theorem by Brouwer (cp. [Br, Satz 2]) that this is impossible.
Consequently, P cannot be free and the map ¢, : Vo(A) - V3(A) cannot be injective.
Since the result by Bass cannot be improved for Noetherian rings or affine algebras over
arbitrary fields, we will henceforth consider affine algebras over algebraically closed fields.
In [S1], Andrei Suslin proved the following cancellation theorem for affine algebras over

algebraically closed fields:

Theorem (Suslin). Let R be an affine algebra of dimension d over an algebraically closed

field k. Then any finitely generated projective R-module P of rank d is cancellative, i.e.
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any isomorphism P & RF = Q @ R* for some ) and k > 0 implies P = Q.

For any given dimension d, the cancellation theorem above holds for all affine algebras
of dimension d over an algebraically closed field k if and only if it holds for all reduced
affine algebras of dimension d over k (cp. [HB, Chapter III, Proposition 2.12]). For a
reduced affine algebra R of dimension d over an algebraically closed field & and a pro-
jective module P of rank d, Andrei Suslin then proves that Um(P & R)/Aut(P & R) is
trivial by first studying the orbit space Um(P & R)/E(P & R), where E(P @ R) is the
subgroup of Aut(P & R) generated by elementary automorphisms; in fact, he does this in
the language of unimodular elements by using a version of Swan’s Bertini theorem (cp.
[Sw, Theorem 1.3]). Writing any a €e Um(P @ R) as (ap,ar) (where ap is the restriction of
a to P and ag is the element of R corresponding to the restriction of a to R respectively),
he proves that any a € Um(P & R) can be transformed via elementary automorphisms to
an element b € Um(P & R) of the form b = (bp,b}) such that P ®p R/brR is free and
dim(R/brR) < d- 1. For elements of this form, he then proves that they are equivalent to
the projection P@® R — R with respect to the action of Aut(P & R) on Um(P & R) as soon
as Aut(P ®g R/brR) acts transitively on Um(P ®r R[/bgR) (cp. [S1, Lemma 2]). This
enables him to prove his theorem by induction on d.

Again using a version of Swan’s Bertini theorem (cp. [Sw, Theorem 1.5]), Andrei Suslin
could also prove in [S5] that if R is a normal affine algebra of dimension d over a field &
such that c.d.(k) < 1 and d! € k*, then stably free R-modules of rank d are free. Using
similar methods, Shrikant Bhatwadekar could prove that any projective R-module of rank
d is cancellative whenever R is an affine algebra of dimension d over an infinite perfect field
k such that c.d.(k) <1 and d! € k* (cp. [B, Theorem 4.1 and Remark 4.2]).

Henceforth, let R be a smooth affine algebra of dimension d over an algebraically closed
field k£ and let X = Spec(R). By analogy with the situation in algebraic topology, there
are Chern classes ¢;(P) e CHY(X), i > 0, associated to any finitely generated projective
R-module P of rank r, which satisfy the expected properties: First of all, one has ¢q(P) =1
and ¢;(P) =0 for ¢ > r. Furthermore, one has a Whitney sum formula, i.e. for any short

exact sequence
0—>P1—>P2—>P3—>0

of finitely generated projective R-modules, one has ¢(P,) = ¢(Py) -c(P;) e CH*(X), where
c(Py) = YisoCi(Px) denotes the total Chern class of Py, k = 1,2,3. The Chern classes

induce maps
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(Clu "'7CT) : VT‘(R) - H;:l CHZ(X)

for all » > 1. It is in general very difficult to determine whether these maps are injective
or surjective, but some results have been proven in lower dimensions:

We let Go(R) be the quotient of the free abelian group generated by isomorphism classes
[M] of finitely generated R-modules M modulo the subgroup generated by the elements
of the form [M;] + [M3] - [Ms] for any short exact sequence 0 - M; — My - M3 — 0 of

finitely generated R-modules. There is an obvious map

which is an isomorphism because R is assumed to be smooth; this basically follows from
the fact that any finitely generated R-module has a finite projective resolution.
The group Go(R) (and hence also Ky(R)) has an obvious filtration (F"Go(R)),s0,
FiGy(R) is defined as the subgroup of Gy(R) generated by the classes of finitely generated
the induced
filtration of Ky(R). For all i > 1, the ith Chern class induces a group homomorphism

where

R-modules whose support has codimension > i. We denote by (FKy(R))

120

¢;: FIKo(R)|F* Ko(R) » CH!(X).

Moreover, there is an isomorphism Ko(R)/F'Ky(R) -~ CH(X) induced by the 0th Chern
class and rank. Furthermore, the groups FiGo(R)/F*'Go(R) are in fact generated by
the classes [R/p] for prime ideals of height i. The assignment Spec(R/p) — [R/p] factors

through rational equivalence and hence induces a natural surjective homomorphism
pi: CHI(X) » FIKy(R) [ Ko R).

It is well-known that both composites @; o¢; and ¢; o @; are multiplication by (=1)""(i-1)!
for ¢ > 1. In particular, the maps ¢; and ¢; are automatically isomorphisms if ¢ < 2. This

leads to a classification of projective modules of rank 2 on smooth affine surfaces:
Theorem. Let R be a smooth affine algebra of dimension 2 over an algebraically closed
field k and let X = Spec(R) be connected. Then the Chern classes induce a bijection

(01,62) VQ(R) g OHI(X) X CH2(X)

The theorem was basically a consequence of the fact that projective modules of rank 2
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over smooth affine algebras of dimension 2 over algebraically closed fields are cancella-
tive. This was first proven in [MS] and generalized by Suslin’s cancellation theorem above.
The rough idea of the proof is the following: Since projective modules of rank 2 over R
are cancellative, we know that Ky(R) 2 V,(R). Furthermore, we have two short exact

sequences
0 F'Ky(R) > Ko(R) > CH(X) -0
and
0 F?2Ky(R) » F'Ko(R) » CHY(X) - 0.

Since the homomorphism Ky(R) - CH°(X) 2 Z corresponds to the rank map, it fol-
lows that Ko(R) = F1Ky(R). Moreover, the second Chern class induces an isomorphism
F?Ky(R) x CH?(X) as FiKy(R) =0 for ¢ > 3. The theorem above can be deduced from
these observations.

If R is a smooth affine algebra of dimension 3 over an algebraically closed field, then one
can also use the filtration (F"Ky(R)),,, in order to study the corresponding maps on Va(R)
and V3(R) induced by Chern classes. Indeed, the following results were proven by N. Mo-
han Kumar and M. Pavaman Murthy in [KM]:

Theorem (Kumar-Murthy). Let R be a smooth affine algebra of dimension 3 over an
algebraically closed field k& with char(k) # 2 and let X = Spec(R) be connected. Then
the map (c1,¢) : Vo(R) - CHY(X) x CH?(X) is surjective and, moreover, the map
(c1,09,¢3) : V3(R) - CHY(X) x CH?(X) x CH3(X) is bijective.

One of the main ingredients in their proof was the fact that CH3(X) is uniquely 2-
divisible and hence isomorphic to F3Ky(R) in the situation of the theorem (cp. [Sr]).
Nevertheless, they were still unable to prove with the filtration (F"/Ky(R)),,, that the map
(c1,¢2) : Vo(R) - CHY(X) x CH?(X) is injective. This was established by Aravind Asok
and Jean Fasel in [AF2]| using A'-homotopy theory.

The Al-homotopy category H(k) and its pointed version H,(k) over a base field k were
introduced by Fabien Morel and Vladimir Voevodsky in [MV] and provide a framework to
apply methods used in the classical homotopy theory of topological spaces to questions in
algebraic geometry. We denote by Smy, the category of smooth separated schemes of finite

type over k. Note that we can interpret any smooth k-scheme as a Nisnevich sheaf of sets
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Sm;? — Sets; since any set can be interpreted as a constant simplicial set, we can interpret
any smooth k-scheme as a simplicial Nisnevich sheaf of sets. Furthermore, any simplicial
set § can also be considered a simplicial Nisnevich sheaf of sets by setting S(Y') = S for any
Y € Smy, and S(f) =ids for any morphism in Smy. Hence the category A°Shvy;s(Smy)
of simplicial Nisnevich sheaves of sets over Sm; contains both the category Sm; and the
category of simplicial sets. As a first step, one equips this category with a model structure
called the simplicial model structure. A morphism between simplicial Nisnevich sheaves is
a weak equivalence with respect to the simplicial model structure if it induces weak equiv-
alences of simplicial sets on the stalks at all points of the Nisnevich topology. One then
obtains the Al-model structure from the simplicial model structure by formally inverting
the projections X x A; - X for all X € A?Shvy;(Smy). The weak equivalences of this
model structure are called Al-weak equivalences. The Al-homotopy category H (k) is then
defined as the homotopy category of A?Shvy;s(Smy) with respect to the Al-model struc-
ture and is thus obtained from A°?Shuvy;s(Smy) by inverting the Al-weak equivalences.
Analogously, one defines the pointed A'-model structure on the category of pointed Nis-
nevich sheaves of sets; its weak equivalences are called pointed Al-weak equivalences. The
pointed A'-homotopy category H.(k) is then defined as its homotopy category and hence
obtained from the category of pointed simplicial Nisnevich sheaves by inverting pointed
A'l-weak equivalences.

We refer to objects of # (k) (or of H.(k)) as (pointed) spaces. For two spaces X and Y, we
denote by [X,)Y]a1 the set of morphisms from X to Y in H(k); similarly, for two pointed
spaces (X, z) and (),y), we denote by [(X,x), (Y, y)]ar. the set of morphisms from (X, z)
to (V,y) in H.(k). For any pointed space (X,x) and i > 0, one can define Al-homotopy
sheaves ﬂ?l (X, z), which are Nisnevich sheaves of sets on Smy, if i > 0, Nisnevich sheaves
of groups on Smy if ¢ > 1 and Nisnevich sheaves of abelian groups on Smy, if ¢ > 2.

One nice feature of A'-homotopy theory is that there exists a representability result for
algebraic vector bundles over affine schemes which is the algebro-geometric analogue of
Steenrod’s homotopy classification of topological vector bundles (cp. [Ste, §19.3]): For any

r > 0, there is a natural bijection
Vo(R) 2 [X,BGL,]p

for any smooth affine scheme X = Spec(R) over k, where BG L, is the simplicial classifying
space of the scheme G L, of invertible r x r-matrices. This result was proven in its greatest
generality in [AHW] and is due to Fabien Morel, Marco Schlichting, Aravind Asok, Marc
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Hoyois and Matthias Wendt.

By analogy with the situation in topology, one can use a version of a Postnikov tower
in Al-homotopy theory in order to compute the set [ X, BGL,],1: For any pointed space
(Y,y) such that W(’?l(y,y) = 0, there exist pointed spaces (Y(®,y), pointed morphisms
pi: (V,y) = (Y@, y) and pointed morphisms f; : (Y1) y) - (YD ) such that

Al i _ . .
1) 7 (YO,y) =0 for j > 1,
2) the morphism p; induces an isomorphism on A!-homotopy sheaves in degree < i,

3) the morphism f; is an Al-fibration whose homotopy fiber is an Eilenberg-MacLane
space K (i, (V,y),i+1),

4) the induced morphism (), y) — holim;(Y?,y) is a pointed Al-weak equivalence.

In addition, there exists a homotopy cartesian square of the form

N4AGaY) Bt (V,y)

|

P — wal(y,y)(ﬂﬁll(% y),i+2),

where B2 (), y) is the classifying space of 72" (), y) and Kﬂﬁl(y7y>(wﬁll(y,y),i +2)is a
twisted Eilenberg-MacLane space.

For any smooth k-scheme X, we let X, = X u* be the disjoint union of X and an artifi-
cially added basepoint. One can compute the set [X,Y]a1 = [X,, (Y, y)]ar« by means of
the spaces (Y, y). Indeed, because of property 4), a morphism X, —» (Y, y) in H.(k) is
given by a sequence of compatible morphisms from X, to the spaces (Y, y) in H,(k).
A morphism X, — (Y@ y) lifts to a morphism X, — (Y1 ) if and only if the composite
X, = (YD y) > K 0w (72 (), y),i+2) lifts to a map Br2' (), y). The set of morphisms
from X, to K”'fl(y’y)(ﬂﬁll(y,y),i +2) as well as the set of lifts of a morphism X, — Y
to Y0+ have cohomological descriptions. Very roughly speaking, the Al-Postnikov tower
above translates the computation of [ X, Y]a1 into cohomological terms.

Now let the base field k be algebraically closed such that char(k) # 2, let (Y,y) be
(BG Ly, *) with its canonical basepoint and let X = Spec(R) be a smooth affine three-
fold over k. First of all, one has 7T§1(BGL2, *) = 0 and one can use the A!-Postnikov
tower in order to compute Vo(R). In [AF2], Aravind Asok and Jean Fasel develop a suf-
ficient understanding of the higher Al-homotopy sheaves of BG Ly and of their Nisnevich
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cohomology in order to compute [X, BGLy|a1 = [ Xy, (BGLg, #)]a1.. In particular, their
computations show that [ X, (BGLs,*)]a1 . 2 [ Xy, (BGLf), )] Al

Again using the A!'-Postnikov tower, one can see that any morphism X, — (BGng), *) in
H.(k) is uniquely determined by pairs of cohomology classes (&, ), where £ corresponds
to a class in [ X}, (BGLS), #)]ate = [Xi, (BGyy, #)]are 2 CHY(X) and o corresponds to a
class in [X,, (K(K3',2),#)]a. & H2(X,K)') 2 CH2(X). Aravind Asok and Jean Fasel
then verify that these classes are in fact the first and second Chern classes of the associated

finitely generated projective R-module. This yields:

Theorem (Asok-Fasel). Let R be a smooth affine algebra of dimension 3 over an al-
gebraically closed field k such that char(k) + 2 and let X = Spec(R). Then the map
(c1,02) : Vo(R) - CH'(X) x CH?(X) is bijective.

In particular, this completes the classification of finitely generated projective modules over
smooth affine threefolds. As an immediate corollary, one obtains the following cancellation

theorem:

Theorem (Asok-Fasel). Let R be a smooth affine algebra of dimension 3 over an alge-
braically closed field k with char(k) # 2. Then any finitely generated projective R-module
P of rank 2 is cancellative, i.e. any isomorphism P & R* = Q @ R* for some @ and some
k>0 implies P = Q.

This raises the question whether a projective module P of rank d — 1 over a smooth affine
algebra R of dimension d over an algebraically closed field is cancellative in general. This

is an open question, but the special case P = R%! has been settled in [FRS, Theorem 7.5]:

Theorem (Fasel-Rao-Swan). Let R be a normal affine algebra of dimension d > 3 over
an algebraically closed field k& with (d — 1)! € k*; if d = 3, furthermore assume that R is

smooth. Then stably free modules of rank d — 1 are free, i.e. R%1! is cancellative.

In order to prove the theorem, one only has to show that any unimodular row a = (ay, ..., aq)
of length d is equivalent to (1,0,...,0) with respect to the right action of GL4(R) on
Umg(R). In fact, it follows from a theorem by Suslin that any unimodular row of the form

(bgd_l)!,bg, ...,bg) is completable to an invertible matrix. In particular, it is sufficient to
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prove that a is equivalent to a row of this form with respect to the action of GL4(R).

For this purpose, we set I = {(ay, ...,aq) and let B = R/I. Then we consider the map
Umg(B)/Eg(B) d Umd(R)/Ed(R), (61762,53) = (b17b2,bg,a4, ...76Ld),

which is easily seen to be well-defined. It follows that it suffices to show that (ay, as,as) is
equivalent to a row (Bgd_l)!, by, bs) with respect to the action of F3(B). As a consequence
of Swan’s Bertini theorem (cp. [Sw, Theorem 1.5]), we can actually assume that B is a

smooth threefold over k. Furthermore, there is a map

called the Vaserstein symbol, which maps into the so-called elementary symplectic Witt
group (cp. [SV, §3]). In case of a smooth threefold over a field with the properties of k,
it is known that this map is a bijection (cp. [RvdK, Corollary 3.5]) and hence induces
a group structure on Ums(B)/FE3(B). Furthermore, one has nV (b1, by, bs) = V (b7, by, b3)
and hence n(by, by, b3) = (b7, by, bs) for all (by,bs,b3) with respect to the group structure
induced by the Vaserstein symbol.

The group Wg(B) is actually a reduced higher Grothendieck-Witt group; using the Gersten-
Grothendieck-Witt spectral sequence, one can prove that it is divisible prime to char(k).
This implies in particular that there exists a unimodular row (by,bs,bs) of length 3 over
B such that (a,ds,ds) = (d—1)!(by, b, bs) = (81" by, bs) in Ums(B)/Es(B), which con-
cludes the proof given in [FRS].

As already mentioned, the general case of a projective module P of rank d — 1 remains an
open problem. Of course, one can also ask whether projective modules of rank < d -2 are
cancellative, but this is not true in general: For any prime number p, N. Mohan Kumar
constructed in [NMK] examples of non-free stably free modules of rank p over a smooth
affine algebra of dimension p + 2 over an algebraically closed field.

Given any polynomial f(X) of degree p over a field K with f(0) = a € K*, N. Mohan
Kumar recursively defines polynomials by

Fi(Xo,X1) = Xff(&) and

1

pi—l i
Fi+1(X07 ---,Xi+1) = Fl(Fi(XO7 ceey X,L), CLFXZP_H).

Clearly, the polynomial F}, is homogeneous of degree p™. Then he proves that F;, is ir-
reducible if f(X?"™") is irreducible. In particular, if f(X?") is irreducible, then F,,; is
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irreducible. Under this assumption, he then considers the smooth affine scheme over K
defined by X = PP N\ V(F,.1).

As a next step, he constructs a Zariski covering of X given by Y = (P}’ HEN V(F,))nX
(where F), is naturally viewed as a polynomial in p+2 variables) and Z = (P2 \V(G))n X,

where
pP1 D
G(X(), ...,Xp+1) = f‘jp()(o7 ‘..,Xp) —aqrl X11)?+1'

Since F,11 € (F),, G), one clearly has X = YuZ. Then he considers the smooth affine scheme
Y n Z of dimension p + 1 over K.

He further shows that the point y = [0:0:...:0:1:1] is a complete intersection in Y
and hence corresponds to a maximal ideal m, in Oy (Y’) generated by a regular sequence
(b1, ..., bpy1) of elements in Oy (Y'). Since y ¢ Z, the sequence defines a unimodular row of
length p+ 1 over Oynz(Y nZ). Using intersection theory, N. Mohan Kumar then proves
that this unimodular row cannot be completed to an invertible matrix over Oynz(Y n Z)
and hence defines a non-free stably free module of rank p over Oy, (Y n 7).

If we let K = k(T") be the function field in one variable over an algebraically closed field k
and f(X) = XP+T, then the construction gives an example of a smooth affine algebra of
dimension p + 1 over k(T') which admits a non-free stably free module of rank p. Clearing
denominators, one obtains a smooth affine scheme Xy = Spec(Ry) of dimension p + 2 over
k together with a non-free stably free Rx-module of rank p.

For p = 2, the construction gives in particular an example of a smooth affine algebra Ry
of dimension 4 which admits a non-free stably free module of rank 2. As a consequence,
the maps ¢o : Vo(Rx) - V3(Rx) and (c1,¢2) : Va(Rx) > CHY (X)) x CH?( X)) cannot be
injective.

If R is a smooth affine algebra of dimension 4 over an algebraically closed field, the classifica-
tion of finitely generated projective R-modules can therefore not be completely determined
by the intersection theory of the underlying affine scheme X = Spec(R); the classification
of projective modules of rank 2 seems to be a particularly subtle problem. In view of N.
Mohan Kumar’s examples, it is natural to ask whether there is a cohomological criterion

for a projective R-module of rank 2 to be cancellative.
In this thesis, we investigate the cancellation problem of finitely generated projective mod-

ules, i.e. the question whether an isomorphism P & R* = Q @ R* for projective modules P

and () over a commutative ring R and k£ > 0 implies that P 2 (). As we have seen above,
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the usual approach to this problem is to study the orbit spaces Um(P & R)/E(P & R).
Motivated by the methods used by Fasel-Rao-Swan in the proof of their results on stably

free modules, we construct a generalized Vaserstein symbol map

Vo : Um(Py® R)/E(Py® R) - V(R)

associated to any projective R-module P, of rank 2 with a fixed trivialization 6y of its
determinant, where R is a commutative ring and f/(R) is a group which is canonically
isomorphic to the elementary symplectic Witt group Wg(R).

By means of this map, we generalize the approach of Fasel-Rao-Swan to the cancellation
problem of projective modules of rank d—1 over smooth affine algebras of dimension d over
algebraically closed fields and, moreover, we study the cohomological obstructions for the
cancellation of projective modules of rank 2 with trivial determinant over smooth affine
algebras of dimension 4 over algebraically closed fields. Our applications of the generalized
Vaserstein symbol in this thesis are representative of methods and techniques that, we

think, might be useful for future developments in the study of projective modules.

Overview of the main results. Let R be a commutative ring and, furthermore, let
Py be a finitely generated projective R-module of constant rank 2 with a fixed trivializa-
tion 6 : R > det(Fy) of its determinant. In order to explain our results, let us fix some
notation first: For all n > 3, we let P, = Py ® Res ® ... ® Re,, be the direct sum of F,
and free R-modules of rank 1 with explicit generators e;, ¢ = 3,...,n. Furthermore, we
let 7, + P, = R be the projections onto the free direct summands of rank 1 with index
k=3,..,n. Any a € Um(P,) can be written as (aq,as, ...,a,), where aq is the restriction
of a to Py and any a; = a(e;), i = 3,...,n, corresponds to the restriction of a to Re;. We let
E(P,) denote the subgroup of the group Aut(F,) of automorphisms of P, generated by el-
ementary automorphisms. Note that there are embeddings E(P,) — E(P,1) for all n > 3;
we let Foo (Py) denote the direct limit of the groups E(P,) via these embeddings. Moreover,
we let Um(P,) denote the set of epimorphisms P, - R and we let Unim.FEl.(P,) denote
the set of unimodular elements of P,,. The group Aut(FP,) acts on the right on Um(P,) and
on the left on Unim.El.(P,). Evidently, the same also holds for any subgroup of Aut(P,).

As already mentioned, we construct a generalized Vaserstein symbol

Vo : Um(Py® R)]E(Py® R) - V(R)

associated to Py and the fixed trivialization 6y of its determinant (cp. Theorem 4.6). The

terminology is justified by the following observation: If we take Py = R? and let e; = (1,0)
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and e, = (0,1), then it is well-known that there is a canonical isomorphism 6, : R = det(R?)
given by 1~ e; Aey. As we will see, the generalized Vaserstein symbol associated to -6,
then coincides with the usual Vaserstein symbol via the identification V(R) & Wg(R). Of
course, any two trivializations of det(P,) are equal up to multiplication by a unit of R. We
will actually make precise how the generalized Vaserstein symbol depends on the choice of
a trivialization of det(P,) by means of a canonical R*-action on V(R).

We then generalize criteria found by Andrei Suslin and Leonid Vaserstein in [SV, §5] for

the injectivity and surjectivity of the usual Vaserstein symbol (cp. Theorems 4.8 and 4.17):

Theorem. The generalized Vaserstein symbol Vy, : Um(Py @ R)/E(Py ® R) - V(R)
is surjective if Um(Pans1) = Tone1 2041 E(Pons1) for all n > 2. Furthermore, it is injective if

E(Pgn)egn = (EOO(P()) n Aut(PM))eM for all n >3 and Eoo(PO) n AUt(P4) = E(P4)

If R is a Noetherian ring of dimension d < 3, then it follows from [HB, Chapter IV, Theo-
rem 3.4] that m, ,E(P,) = Um(P,) and E(P,)e, = Unim.El.(P,) for n > 5. In particular,
the generalized Vaserstein symbol is a bijection if moreover Eo (Fy) n Aut(Py) = E(Py).
Using local-global principles for transvection groups (cp. [BBR]), we may then prove the
following result (Theorems 1.21, 1.22, 4.18 and 4.19 in the text):

Theorem. The equality Fo(FPy) n Aut(Py) = E(F,) holds if R is a 2-dimensional reg-
ular Noetherian ring or if R is a 3-dimensional regular affine algebra over a perfect field k
such that c.d.(k) <1 and 6 € k*. In particular, it follows that the generalized Vaserstein
symbol Vy, : Um(Py @ R)/E(Py ® R) - V(R) is a bijection in these cases.

Now recall that one of the main ingredients in the proof of [FRS, Theorem 7.5] was the
formula nV (ay, a2, a3) = V(al, az, az) for all unimodular rows (ay,as, az) of length 3 when-
ever R is a smooth affine algebra over an algebraically closed field. It is therefore natural
to ask whether an analogous formula holds for the generalized Vaserstein symbol. By rein-
terpreting the generalized Vaserstein symbol in the language of motivic homotopy theory,

we can indeed prove (cp. Theorem 4.23):
Theorem. Let R be a smooth affine algebra over a perfect field k with char(k) # 2 such

that -1 € k% and n e N. If n =0, 1 mod 4, then the sum formula Vigo (a0, a%) = n-Vo,(ao, ar)
holds for all (ag,ar) € Um(Py @ R).
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This theorem enables us to generalize the approach of Fasel-Rao-Swan to stably free mod-
ules of rank d—1 over normal affine algebras of dimension d over algebraically closed fields.

Using Swan’s Bertini theorem, we prove (cp. Theorem 4.24):

Theorem. Let R be a normal affine algebra of dimension d > 3 over an algebraically
closed field k with char(k) # 2; if d = 3, furthermore assume that R is smooth. Then, for
any a € Um(P;) and j € N with ged(char(k),j) = 1, there is an automorphism ¢ € E(FP,)
such that ay has the form b = (bo,bé, iy bg).

In particular, if there exists j € N with ged(char(k),j) = 1 such that any epimorphism of
the form b = (bo, b}, ..., bg) is completable to an automorphism v € Aut(P;) (i.e. b=mgq)),
then P;_, = Py® R%3 is cancellative. If d = 3 and j = 2, then we can explicitly construct such
an automorphism with determinant 1 by generalizing a construction given by Krusemeyer
in [Kr] (cp. Section 1.4). This immediately proves the following cancellation theorem (cp.
Corollary 4.25):

Theorem. Let R be a smooth affine algebra of dimension 3 over an algebraically closed
field k& with char(k) # 2. Then Um(P, ® R)/SL(F, @ R) is trivial; in particular, Fy is

cancellative.

In the sequel, we also prove that the generalized Vaserstein symbol descends to a map
Vg : Um(Py ® R)/SL(Py ® R) » Vs (R),

which we call the generalized Vaserstein symbol modulo SL. The group VSL(R) is the
cokernel of a hyperbolic map SK;(R) - V(R). Focusing on Noetherian rings of dimension
< 4, we then study the generalized Vaserstein symbol modulo SL and give again criteria
for its surjectivity and injectivity. The criterion for the surjectivity is the following (cp.
Theorem 4.27):

Theorem. Let R be a Noetherian ring of Krull dimension < 4. Furthermore, assume
that SL(Ps) acts transitively on the set Um(Ps). Then the generalized Vaserstein symbol
Vi, : Um(Py® R)/SL(Py ® R) - Vs (R) modulo SL is surjective.
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The group V(R) is a subgroup of a group usually denoted V(R) (cp. [FRS, Section 4.2]),
which is generated by isometry classes of the form [P, x1, x2] for non-degenerate alternat-
ing forms x1, x2 on a finitely generated projective R-module P. For any non-degenerate
alternating form y on P,, we define Sp(x) = {¢ € Aut(P,)|p'xp = x}. There is a non-
degenerate alternating form xo on Py given by (p,q) ~ 05 (p A ¢). Furthermore, there is a

canonical non-degenerate alternating form ¢ on R? given by the matrix

[ )

Our criterion for the injectivity of Vy, : Um(Py® R)/SL(Py® R) — Vg (R) is the following
(cp. Theorem 4.32):

Theorem. Let R be a Noetherian ring of dimension < 4. Then the generalized Vaser-
stein symbol Vy, : Um(Py ® R)/SL(P, ® R) — Vg (R) modulo SL is injective if and
only if SL(Py)ey = Sp(x)es for all non-degenerate alternating forms y on P; such that
[ P4, X0 L 1o, x] € V(R)

As an immediate consequence, we obtain the following criterion for the triviality of the
orbit space Um(Py® R)/SL(Py® R) (cp. Corollary 4.33):

Theorem. Let R be a Noetherian ring of dimension < 4. Assume that SL(Ps) acts
transitively on the set Um(Ps). Then the orbit space Um(Py® R)/SL(P, ® R) is trivial if
and only if VSL(R) is trivial and SL(Py)es = Sp(xo L ¥)ey.

If Py = R?, we can take the trivialization R — det(R?),1 — e; A e3, mentioned above.
The non-degenerate alternating form y, then corresponds to 1». In particular, we can
identify Sp(xo L 12) with Sps(R). Moreover, the sets Um/(P,) and Unim.El.(P,) can be
identified with the sets Um,,(R) of unimodular rows of length n over R and Um/ (R) of
unimodular columns of length n over R in this case. Motivated by the previous theorem,
we then study symplectic orbits of unimodular columns. Using motivic homotopy theory

and Suslin matrices, we prove (cp. Corollary 4.45):

Theorem. Let R be a smooth affine algebra of dimension d > 4 over an algebraically
closed field k with d! € k*. Assume that d is divisible by 4. Then Spy(R) acts transitively
on Um!(R); in particular, Spg(R)eq = SLy(R)eq.
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As a direct consequence of the previous two theorems, we obtain the following criterion for
the triviality of Umg(R)/SLs(R) (cp. Theorem 4.46):

Theorem. Let R be a 4-dimensional smooth affine algebra over an algebraically closed
field k with 6 € k. Then Ums(R)/SLs(R) is trivial if and only if Vg, (R) = 0.

In the situation of the theorem, the group VSL(R) is actually a 2-torsion group: Indeed,
the usual Vaserstein symbol surjects on the group Wy (R) 2 VSL(R) and, moreover, one
has 2V (ay,as,a3) = V(a?,az,a3) = V(1,0,0) = 0 because any row of the form (a?,as,as)
can be completed to an invertible 3 x 3-matrix with determinant 1 (cp. [SwT] or [Kr]).
In particular, Vsz(R) = 0 if and only if Vg, (R) is 2-divisible. Motivated by this, we use
the Gersten-Grothendieck-Witt spectral sequence in order to find cohomological criteria
for the 2-divisibility of the groups V(R) and Vs (R). These criteria enable us to prove
(cp. Corollary 4.47):

Theorem. Let R be a 4-dimensional smooth affine algebra over an algebraically closed
field k with 6 € k* and let X = Spec(R). Then Ums(R)/SLs(R) is trivial if CH3(X)
and H2(X, K3 are 2-divisible. Furthermore, Ums(R)/SLs(R) is trivial if H2(X,T%) is
2-divisible and CH3(X) = CH*(X) =0.

As a corollary of this, it follows that any finitely generated projective R-module over a
smooth affine algebra R of dimension 4 over an algebraically closed field k& with 6 € £* is
free if CH(X) =0 for i = 1,2,3,4 and H2(X,I?) = 0, where X = Spec(R) (cp. Corollary
4.48 in the text).

Finally, let us remark that our methods do not only apply to smooth affine algebras over
algebraically closed fields. For example, we can also classify stably isomorphic oriented
projective modules of rank 2 with a trivial determinant over affine algebras of dimension
3 over finite fields (cp. Theorem 4.34):

Theorem. Assume that R is an affine algebra of dimension d = 3 over a finite field
F,. Then Sp(x)es = Unim.El.(P,) for any non-degenerate alternating form y on F,.
In particular, it follows that the generalized Vaserstein symbol descends to a bijection
Vo, : Um(Py® R)/SL(Py® R) > Vs.(R).
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Structure of the thesis. The first chapter of this thesis is dedicated to the study of
finitely generated projective modules over commutative rings. In particular, we study
non-degenerate alternating forms on projective modules, the group of automorphisms of
projective modules and its subgroup generated by transvections as well as the actions of
these groups on the set of unimodular elements. Moreover, we study the stabilization
maps for projective modules and oriented projective modules and we use the local-global
principle for transvection groups in order to prove stability results on automorphisms of
projective modules. The results proven in this chapter provide the technical groundwork
for the proofs of some of the main results in this thesis.

The second chapter gives a brief introduction to motivic homotopy theory. First of all, we
outline the construction of the unstable A'-homotopy category H(S) and of its pointed
version H.(S) over a base scheme S. Then we study the endomorphisms of P} in the
pointed A'-homotopy category H.(S) over the spectrum S = Spec(R) of a smooth affine
algebra R over a perfect field k with char(k) # 2. Furthermore, we shortly discuss A!-fiber
sequences and Suslin matrices at the end of the second chapter.

In the third chapter of this thesis, we introduce higher Grothendieck-Witt groups, which
are a modern version of Hermitian K-theory. In this context, we also define and study
the groups V(R) and Vs (R) mentioned above. Moreover, we define Grothendieck-Witt
sheaves and use the Gersten-Grothendieck-Witt spectral sequence in order to give coho-
mological criteria for the 2-divisibility of V(R) and V. (R) whenever R is a smooth affine
algebra of dimension 4 over an algebraically closed field k of characteristic # 2.

In the last chapter of this thesis, we first review the usual Vaserstein symbol for unimod-
ular rows and then reinterpret it by means of the isomorphism Wg(R) = V(R) for any
commutative ring R. We then construct the generalized Vaserstein symbol associated to
any projective R-module Py of rank 2 with a fixed trivialization 6, : R =N det(Fy) of its
determinant and finally prove the main results in this thesis. In the last section of this

thesis, we relate our results to some open questions in the study of projective modules.

Remark. Parts of this thesis appear in similar form in [Syl] and [Sy2]: This concerns
Sections 1.1, 1.3, 1.4, 1.5, 2.3, 3.1, 3.2, 3.3, 3.4 and 4.3 as well as parts of Sections 1.2, 2.1,
4.1 and 4.2. The main results in [Syl] are Theorems 4.8, 4.17, 4.18 and 4.19 in this thesis;
the main results in [Sy2] are Theorems 4.27 and 4.32, Corollaries 4.33 and 4.45, Theorem
4.46 and Corollary 4.47 in this thesis.
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The Study Of Projective Modules

In the first chapter of this thesis, we recall some basic definitions and facts on projective
modules over commutative rings and prove some technical lemmas which will be largely
used later in the proofs of the main results of this thesis. In particular, we study the group
of elementary automorphisms of projective modules and prove some results on transforma-
tions of unimodular elements via elementary automorphisms. In this context, we briefly
recall in Section 1.3 how projective modules which are stably isomorphic to a given pro-
jective module P can be classified in terms of the orbit space of the set of epimorphisms
P & R — R under the action of the group of automorphisms of P @ R. Furthermore, we
construct explicit completions of some specific epimorphisms P® R — R, which generalizes
a construction given by Krusemeyer in [Kr|. At the end of this chapter, we also recall the
local-global principle for transvection groups from [BBR] in order to prove stability results

on automorphisms of projective modules.

1.1 Projective modules

Let R be a commutative ring. An R-module P is projective if it is the direct summand of a
free R-module; if P is finitely generated, it is projective if and only if there is an R-module
@ such that R™ 2 P& () for some n € N. For any projective R-module P and for any prime
ideal p of R, the localized R,-module B, is again projective and therefore free (because
projective modules over local rings are free). In this weak sense, projective modules are
locally free. If the rank of B, as an R,-module is finite for every prime p, then we say that

P is a projective module of finite rank. In this case, there is a well-defined map
rankp : Spec(R) - Z

which sends a prime ideal p of R to the rank of P, as an R,-module. In general, it is

not true that projective modules of finite rank are finitely generated; nevertheless, this is
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known to hold if rankp is a constant map (cp. [W, Chapter I, Ex. 2.14]). We will say
that P is locally free of finite rank (in the strong sense) if it admits elements fi,..., f, € R
generating the unit ideal such that the localizations Py, are free R, -modules of finite rank
for k = 1,...,n. In fact, it is well-known that this is true if and only if P is a finitely
generated projective R-module. The following lemma follows from [W, Chapter I, Lemma
2.4] and [W, Chapter I, Ex. 2.11]:

Lemma 1.1. Let R be a commutative ring and M be an R-module. Then the following

statements are equivalent:
a) M is a finitely generated projective R-module;
b) M is locally free of finite rank (in the strong sense);

c) M is a finitely presented R-module and M, is a free R,-module for every prime ideal
p of R;

d) M is a finitely generated R-module, M, is a free R,-module for every prime ideal p

of R and the induced map ranky; : Spec(R) — Z is continuous.

In this thesis, we will study projective modules which satisfy the equivalent conditions of

Lemma 1.1 by primarily focusing on projective modules of finite constant rank.

1.2 Alternating forms, elementary automorphisms and

unimodular elements

Now let R be a commutative ring. For any projective R-module P of finite rank, we let

PY = Homp_ne (P, R) be its dual. There is a canonical isomorphism
can: P — PV, pw (ev,: PV - R.a~ a(p)),

induced by evaluation. A symmetric isomorphism on P is an isomorphism f : P - PV such

that the diagram

p—t.pv

can l

PVV S PV

id
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is commutative. Furthermore, a skew-symmetric isomorphism on P is an isomorphism
f: P — PV such that the diagram

p—t.pv

—canj

PVV N PV

id

is commutative. Finally, an alternating isomorphism on P is an isomorphism f: P - PV
such that f(p)(p) =0 for all pe P.

Analogously, a symmetric form on a projective R-module P of finite rank is an R-bilinear
map x : P x P — R such that x(p,q) = x(q,p) for all p,q € P. Similarly, a skew-symmetric
form on a projective R-module P of finite rank is an R-bilinear map x : P x P - R such
that x(p,q) = —=x(¢,p) for all p,q € P. Moreover, an alternating form on a projective R-
module P of finite rank is an R-bilinear map y : P x P - R such that x(p,p) = 0 for all
p € P. Note that any alternating form on P is automatically skew-symmetric. If 2 € R*,
any skew-symmetric form is alternating as well. A (skew-)symmetric or alternating form
X is non-degenerate if the induced map P — PY,q » (p = x(p,q)) is an isomorphism.
Obviously, the data of a non-degenerate (skew-)symmetric form is equivalent to the data
of a (skew-)symmetric isomorphism. Analogously, the data of a non-degenerate alternating
form is equivalent to the data of an alternating isomorphism.

Now let x : M x M - R be any R-bilinear form on M. This form induces a homomorphism
M ®r M - R. Moreover, for any prime p of R, there is an induced homomorphism
M, ®g, My = (M ®r M), — R,. This gives an R-bilinear form x, : M, x M, - R, on M,.

The following lemma shows that these localized forms completely determine y:

Lemma 1.2. If x1 and xo are R-bilinear forms on an R-module M. Then x1 = x2 if and
only if X1, = X2, for every prime ideal p of R.

Proof. The forms y; and s agree if and only if x1(p,q) — x2(p,q) = 0 for all p,q € M.
Therefore the lemma follows immediately from the fact that being 0 is a local property for

elements of any R-module. ]

Now let M = @;.; M; be an R-module which admits a decomposition into a direct sum
of R-modules M;, i = 1,...,n. An elementary automorphism ¢ of M with respect to the
given decomposition is an endomorphism of the form Ps;; = tdpr + 85, where s+ My — M,

is an R-linear homomorphism for some i # j (cp. [HB, Chapter IV, §3]). Any such
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homomorphism automatically is an isomorphism with inverse given by go;}j =idp — 85. In
the special case M = R™ = @;.; R one just obtains the automorphisms given by elementary
matrices. We denote by Aut(M) the group of automorphisms of M and by E(Mj, ..., M,)
(or simply E(M) if the decomposition is understood) the subgroup of Aut(M) generated
by elementary automorphisms.

The following lemma gives a list of some useful formulas, which can be checked easily by

direct computation:
Lemma 1.3. Let M =&;., M, be a direct sum of R-modules. Then we have
a) s, Pty = Plsigatyy) Jor all sy = My — M, ti5: My — M; and i # j;
b) sy, Psry = PspPsi; Jor all sig: My — My, sy e My — My, i#5, k#1l, j#+k, i#l;
c) s s Ps55; P50 = Plsis58) for all s;; : M; — M;, s+ My — M; and distinct i, j, k;
d) Dsi; P Psi; Psis = Pl-suisis) for all s;; : My — M;, sy : M; - M, and distinct 4, j, k.
If we restrict to the case M; = M,, for ¢ > 2, we obtain the following result on E(M):

Corollary 1.4. If M; = M, fori>2, then the group E(M) is generated by the elementary
automorphisms of the form g =idy +s, where s is an R-linear map M; - M, or M, - M,

for some i #+ n. The same statement holds if one replaces n by any other k > 2.

Proof. Since M; = M, for all ¢ > 2, we have identities id;, : M,, - M, and id,,; : M; - M,
for all : > 2. Let s;;: M; - M, be a morphism with ¢ # j and therefore either 7 > 2 or j > 2.
We may assume that 7, j,n are distinct. If ¢ > 2, then

Psi; = Pidin Pidnisi; P—idin P(~idnisij)

by the third formula in Lemma 1.3. If j > 2, then

Psi; = Plsijidjn) Pidn; P(-sijidn) P—idy; -

by the third formula in Lemma 1.3. This proves the first part of the corollary. The last
part follows in the same way if n is replaced by k > 2. ]

The proof of Corollary 1.4 also shows:

Corollary 1.5. Let M = @&;., M; be a direct sum of R-modules and also let s : M; - M;,
i # 7, be an R-linear map. Assume that there is k # i with My, = M; or k # j with My, = M;.

Then the induced elementary automorphism g s a commutator.
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The following lemma is a version of Whitehead’s lemma (cp. [SV, Lemma 2.2]) in our

general setting:

Lemma 1.6. Let M = My @& M and let f: My — M, g: My - M; be morphisms. Assume
that vdy, + gf is an automorphism of My. Then:

a) idy, + fg is an automorphism of My;
b) (idas, + gf) ® (idag, + fg)~" is an element of E(M; & M,).

Proof. We have idyy, & (ida, + fg) = p_sp_g((idar, + 9f) @ idar, ) 5py. This shows the first

statement. For the second statement one checks that

(idaiy + 9F) @ (idat, + £9) ™ = =g -1 0P iy, o) g PS5
So (ida, + gf) @ (idag, + fg) " lies in E(M; @ M,). O

Now let P be a finitely generated projective R-module. We denote by Um/(P) the set of
epimorphisms P - R. The group Aut(P) of automorphisms of P then acts on the right on
Um(P). Consequently, the same holds for any subgroup of Aut(P); in particular, it holds
for the subgroup SL(P) of automorphisms of determinant 1. If we fix a decomposition
Pz2@!, P, the group E(P) = E(Py,..., P,) acts on Um(P) as well. In this case, we may
write any a € Um(P) as (ay,..,a,), where any a;, i = 1,...,n, is the restriction of a to the
direct summand P; respectively.

An element p € P is called unimodular if there is an a € Um(P) such that a(p) = 1; this
means that the morphism R - P, 1 — p defines a section for the epimorphism a. We denote
by Unim.El.(P) the set of unimodular elements of P. Note that the group Aut(P) and
hence also SL(P) and E(P) with respect to any decomposition act on the left on P; these
actions restrict to actions on Unim.El.(P). Again, if we fix a decomposition P = @}, P;,
we can write any a € Unim.El.(P) as (ay, .., a,), where any a;, ¢ = 1,...,n, is the coordinate
of a in the direct summand P; respectively.

The canonical isomorphism can : P — PYV identifies the set of unimodular elements
Unim.El.(P) of P with the set Um(PV) of epimorphisms PV - R, i.e. an element p € P
is unimodular if and only if ev, : P¥ — R is an epimorphism. Furthermore, if p and ¢ are
unimodular elements of P and ¢ € Aut(P) with ¢(p) = ¢, then ev,p¥ =ev,: PV - R.

We therefore obtain a well-defined map

Unim.El.(P)]Aut(P) - Um(PV)[Aut(PV).
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Let us show that this map is actually a bijection. Since the map is automatically surjective,
it only remains to show that it is injective. So let 1) € Aut(PV) such that ev,i = ev,. One
can easily check that the map Aut(P) — Aut(PV), ¢ — @Y, is bijective; hence ¢ = ¢V for
some ¢ € Aut(P). Thus, we obtain ev, = ev,p" = ev,(p) and therefore ¢(p) = ¢ because

can: P — PYV is injective. Altogether, we obtain a bijection
Unim.El(P)]Aut(P) S Um(PV)]Aut(PV).

In particular, if P = PV, then Unim.El.(P)[Aut(P) 2 Um(P)[Aut(P).

If P~ @j., P; is a direct sum, then obviously P = @;., P and we have the identification
Unim.El(P)/E(P) > Um(PV)|/E(PY).

In this thesis, we will study these orbit spaces and will use both interpretations as orbit
spaces of the set of epimorphisms or unimodular elements of a projective module.

If P = R", we naturally identify Um(P) with the set Um,,(R) of unimodular rows of length
n and Unim.El.(P) with the set Um! (R) of unimodular columns of length n. We also
identify Aut(P), SL(P) and E(P) with GL,(R), SL,(R) and E,(R) in this case.

We now introduce some notation: Let Fy be a finitely generated projective R-module of
rank 2. For any n > 3, let P, = Py ® Res @ ... ® Re,, be the direct sum of Fy and free
R-modules Re;, 3 <i<n, of rank 1 with explicit generators e;. Note that we can write any
ae€Um(P,) as (ag,as, ...,a,), where aqg is the restriction of a to Py and any a;, i =3, ...,n,
is the element of R corresponding to the restriction of a to Re; respectively, i.e. a; = a(e;).
We denote by 7, : P, = R the projections onto the free direct summands of rank 1
with index k = 3,...,n. For any non-degenerate alternating form x on P,, n > 2, we set
Sp(x) = {¢ € Aut(Po)|p'xp = x}-

For n > 3, we have embeddings Aut(P,) - Aut(P,;+1) and E(P,) - E(P,,1). We denote
by Aute(Fp) (resp. FEeo(Fp)) the direct limits of the groups Aut(P,) (resp. E(P,)) via
these embeddings.

In the following lemmas, we denote by 1), the non-degenerate alternating form on R? given

by the matrix
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Thus, for any non-degenerate alternating form y on P, for some n > 2, we obtain a non-
degenerate alternating form on Ps,.o given by the orthogonal sum y L 5.
With this notation in mind, we may now prove a few lemmas which provide the technical

groundwork for the proofs of some of the main results in this thesis:

Lemma 1.7. Let x be a non-degenerate alternating form on Ps, for some n > 2. Let
p€ Poy_1 and a: Py,.1 > R. Then there are ¢, € Aut(Psy,_1) such that

a) the morphism (¢ ® 1)(idp,, + pmon2n) s an element of E(Pay) N Sp(x);
b) the morphism (¢ @ 1)(idp,, + aea,) is an element of E(Ps,) N Sp(x).

Proof. We let @ : P, - Pj, be the alternating isomorphism induced by x and ®~! be its
inverse.

For the first part, we introduce the following homomorphisms: Let d denote the morphism
R — Py, ; which sends 1 to ®~!(mg,2,); note that it can be considered an element of
P,y because of map, 00 (P H(7an2n)) = X(P7 1 (m2n2n), P71 (7T2n2,)) = 0. Furthermore, let
v =x(p,-) : Pay_1 > R. We observe that vd = 0. By Lemma 1.6, the homomorphism
¢ =1dp,, ,—dv is an automorphism and ¢@®1 is an elementary automorphism. In particular,
(p@1)(idp,, +pTon.2n) is an elementary automorphism. In light of the proof of [SV, Lemma
5.4] and Lemma 1.2, one can check locally that it also lies in Sp(x).

For the second part, we introduce the following homomorphisms: We let ¢ denote the
homomorphism x (-, ez,) : Py,-1 = R. Furthermore, we let a®0 : P, > R be the extension
of a to P,, which sends ey, to 0; then we denote by ¥ the homomorphism R — P,,_; which
sends 1 to 7®~1(a®0), where 7 : Py, - P»,_1 is the projection. Note that ¢ = 0. Again by
Lemma 1.6, the morphism 1 = idp,, , —¥c is an automorphism and 1) @ 1 is an elementary
automorphism. In particular, (¢ @ 1)(idp,, +aes,) is an elementary automorphism as well.
Again, in light of the proof of [SV, Lemma 5.4] and Lemma 1.2, one can check locally that
it also lies in Sp(x). O

Lemma 1.8. Let x be a non-degenerate alternating form on the module P, for somen > 2.
Then E(Psy)ean = (E(Pan) N Sp(X))ean.

Proof. Let p € E(Py,)es,. By Corollary 1.4, the group E(P,,) is generated by automor-
phisms of the form idp,, +s, where s is a morphism P,,_1 = Rey, or Rey, - P, 1. Hence
we can write (aj...a;.)(p) = ea,, where each «; is one of these generators. We show by
induction on r that p € (E(P,,)nSp(x))ean. If r = 0, there is nothing to show. So let r > 1.
Lemma 1.7 shows that there is v € Aut(Ps,-1) such that (7@ 1)a, lies in E(Ps,) N Sp(x)-
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We set ;= (v@® 1)a; (71 @1) for each i < r. Each of the f; lies in E(F»,) and is again one
of the generators of E(P,,) given above. Furthermore, (f;...5,-1(7® 1)a;.)(p) = ea,. This

enables us to conclude by induction. ]

Lemma 1.9. Let x1 and x2 be non-degenerate alternating forms on the module P, such
that ©'(x1 L o) = X2 L ¥ for some @ € Eou(FPy) N Aut(Paopsa). Now let x = x1 L . If
(Eoo(FPo) N Aut(Paons2))e2ns2 = (Eoo(Fo) N Sp(X))e2ns2 holds, then one has Y'x1v = x2 for
some 1 € Eoo(Py) N Aut(Psy,).

Proof. Let ¢"egni9 = pegna for some " € Eo(FPy) nSp(x). Then we set ¢/ = (w”)_lgo.
Since (w’)t(Xl L )" = x2 L )9, the composite 1 : Py, R Py, 0 = Py, and 1)’ satisfy the

following conditions:

b ¢'(€2n+2) = Con+2;
4 7T2n+1,2n+2¢’ = T2n+1,2n+2;
o Vix1Y = xo.

The first two conditions imply that ¢ equals ¥’ up to elementary morphisms and also that
€ Eo(FPy) N Aut(Py,), which finishes the proof. O

Lemma 1.10. Assume that mopi1 2041 (Feo(Fo) N Aut(Pans1)) = Um( Paps1) holds for some
n € N. Then, for any non-degenerate alternating form x on Ps,.o, there exists an au-
tomorphism ¢ € Foo(Py) N Aut(Papya) such that olxp =1 L 1y for some non-degenerate

alternating form ¥ on Ps,,.

Proof. Let d = x(—, €ap42) : Pons1 = R. Since d can be locally checked to be an epimorphism,
there is an automorphism ¢’ € Eo(Fy) N Aut(Pans1) such that dp’ = mopi190+1. Then
the alternating form y’ = (¢’ @ 1)tx(gp’ @ 1) satisfies that x/(—, €aps2) : Pons1 = R is just
Ton+1,2n+1- Now we simply define ¢ = x/(—, €ap41) : Pans1 = R and let ¢, = idp,,,, + ceanso
be the elementary automorphism on Ps,,s induced by ¢; then p.tx'¢. =1 L 1y for some

non-degenerate alternating form ¢ on P,,, as desired. ]

Lemma 1.11. We have E(Py® R) c SL(Py ® R). Furthermore, if ¢ € SL{(Py® R), then
the induced morphism ¢, : det(Py @ R) — det(Fy & R) is the identity on det(Py @ R).

Proof. 1f p € E(Py® R) and p is any prime ideal of R, then ¢, will obviously correspond to

an elementary automorphism of (%), ® I,. Choosing any isomorphism (), 2 R;, it will
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therefore correspond to an element of E3(R,) c SL3(R,). Thus, E(Py® R) c SL(Fy @ R),
as desired.

Since being 0 is a local property, the second statement can also be checked locally. Again,
choosing any isomorphism (PO)p ~ Ry, the automorphism ¢, will by assumption correspond
to an element of SL3(R,). But since for any automorphism of R} the induced automor-
phism on det(R}) is just multiplication by its determinant, the second statement follows

immediately. ]

We will now introduce useful maps which allow us to some degree to restrict our study
of the orbit spaces Um(P,)/E(P,) to the orbit spaces of the form Um(P;)/E(P;). For
this, let n > 4 and a € Um(P,). As usual, we can write a as (ao,as,...,a,), where qq is
the restriction of a to Fy and any a;, ¢ = 3,...,n, is the element of R corresponding to
the restriction of a to Re; respectively, i.e. a; = a(e;). We denote by I the image of the
homomorphism a = (ay, ...,a,) : @, Re; > R; in other words, I = (ay, ..., aq). From now
on, we write by abuse of notation 7 for the canonical projection @ - (/I for any R-module
Q. We consider the R/I-module P3/IP; and naturally identify it with (Py/IFy) @ (R/I).
Furthermore, we let Um(Ps/IPs) be the set of R/I-linear epimorphisms onto R/I. As
usual, we may write any b € Um(P;/IP3) as (by,bs). For any such b e Um(Ps/IPs), there

exists an R-linear map b = (b, b3) such that the diagram

Ps

b l_
b
R R/I

commutes because Pj is projective and R - R/I is an R-linear surjective map. Clearly,
the homomorphism (b, b3, a4, ..., a,) is then an element of Um(P,).

Now assume that O’ = (b),0;) is another R-linear map such that the diagram above is
commutative. Then the R-linear map b—b" maps Ps into /. Thus, as Ps is projective, there

exists an R-linear map s: P; - @, Re; such that the diagram

Py

S lb—b’
£

n a
i=4 Rei — > I

is commutative. In particular, if we let ¢, = idp, + s be the elementary automorphism of
P, induced by s, then (bf, b5, a4, ...,an) s = (bo, bs, aq, ..., ay).

It follows that the assignment (bg,b3) + (b, bs, ay, ..., a,) induces a well-defined map
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Um(PyJ1Py) — Um(P,)/E(P,).

Finally, let b € Um(Ps/IP;) and 5 : Py/IPy - R/I and t : R/I - P,/IP, be R/I-linear
maps. Then, again since Fy and R are projective R-modules, there exist R-linear lifts
s:Pp—> Rand t : R —» Py of 5 and t respectively. In particular, ¢, = idp, + s and
¢y = idp, +t are lifts of the elementary automorphisms ¢z, o7 of P3/IP; induced by § and ¢
respectively. If &’ = bys and b” = by and b: Py - R is an R-linear map which lifts b, then
b, and by, are R-linear lifts of &’ and b” to P; — R respectively. In particular, if we let
b= (bo,b3), b' = by, = (b),b5) and b” = by, = (by, b4 ), then the classes of (by,bs,aq, ..., an),
(b, b5, aq, ..., an) and (by, b5, aq,...,a,) in Um(P,)/E(F,) coincide.

Altogether, it follows from this that the map above descends to a well-defined map

®(a) : Um(Ps/1P3)[E(P3/1P3) —» Um(F,)[E(F,).

More generally, let I; = (a1, ..., a,) for 3<i<n-1. By repeating the reasoning above, we

can prove that there is a well-defined map

®i(a) : Um(P/L;P) [ E(P[ L F;) > Um(P,) [ E(F,)

which sends the class of (b, bs, ..., b;) € Um(P;/I;P;) to the class represented by the homo-
morphism (bo, ..., b;, i1, .., ar ) € Um(P,), where (bg, b3, ...,b;) : P; > R is any R-linear lift
of (bo, b3, ...,b;). In particular, ®3(a) = ®(a).

By dualizing the reasoning above, one can also prove that, for any unimodular element

a = (ag, ...,a,) € P,, there are analogously defined maps
®;(a) : Unim.EL(P/I;P)|E(P;]I;P;) - Unim.El.(P,)/E(P,),

where again I; = (a;41,...,a,) for 3<i<n-1.

The following two lemmas are generalizations to our situations of the corresponding well-
known statements when Py = R? (cp. [Va] and [SV, Lemma 2.7(c)]):

Lemma 1.12. Let n>5, a = (ag,as, ...,a,) € Um(P,) and let k € N and 3<i,j<n. Then

there exists @ € E(P,) such that (ag,...,aF, ...,a,)e = (ao, ...,a;?, ey ).

Proof. Let J denote the image of ag. We consider the ring R/J and the unimodular rows
(as,...,al,...,a,) and (as,...,a%, ...,a,). Then it is well-known that there is ¢’ € E,_o(R/J)

such that (as,...,ar, ..., a, )@’
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We now lift ¢’ to an element ¢’ of E(P;) which is the identity on F,. If we then set
(bo, b3, ..., bn) = (a0, as, ...,ak, ...,a,)¢’, there exist p, € Py, 3 <1< n, such that a;—b; = ag(p;)
for [ #j,3<1<n, and ag? —bj = ap(p;). Furthermore, by = ao.

Then we let p: @L; Re; - Py be the homomorphism which sends e; to p; for 3 <l <n. If
we then let ¢, be the induced element of E(P,), the automorphism ¢ = ¢’¢, lies in E(F,)

k k
and transforms (ay, ..., a%, ...,a,) to (ao,...,aj,...,an). O

Lemma 1.13. Let a = (ag, as, ..., a,) € Um(P,) such that (ay,...,a,) € Um,_3(R). Then
there exists p € E(P,) such that ap = T, .

Proof. As in the previous proof, we let J denote the image of ag. We consider the
ring R/J and the unimodular row (as,...,a,). Then there is @’ € E, o(R/J) such that
(ag,..., 4, ..., a,)@" = (0,...,1) (cp. [SV, Lemma 2.7(c)]).

We can then lift ¢’ to an element ¢’ of E(P,) which is the identity on Fy. If we set
(bo, b3, ..., bn) = (g, as, ..., a, )¢’ there exist p; € Py, 3 <1 < n, such that a; — b; = ag(p;) for
3 <l <n. Moreover, by = ag.

Then we let p: @L; Re; = Py be the homomorphism which sends e; to p; for 3 <! <n. If
we then let ¢, be the induced element of E(P,), the automorphism ¢ = @', lies in E(P,)

and transforms (ao, ..., a,) t0 T p. O]

In the remainder of this section, we will prove some statements which allow us to restrict
our study of orbit spaces of unimodular elements over affine algebras to algebras of lower

dimensions:

Lemma 1.14. Assume that R is a normal affine algebra of dimension d > 4 over an
algebraically closed field k with char(k) # 2; furthermore, let a = (ag,...,aq) € Um(Py).
Then there exists p € E(Py) such that if we let ap = (by,...,bq) and I = (by, ...,by), then R]I

is either 0 or a smooth affine algebra of dimension 3 over k.

Proof. Since R is normal, the ideal J of the singular locus of R has height at least 2 and
therefore dim(R/J) < d - 2. Hence it follows from [HB, Chapter IV, Theorem 3.4] that
Um(Py]JPy) = 144E(Py]JP;) and therefore we can assume that the image of a¢ and any
a; for 3<i<d-1liein J and that ag—1¢€ J.

Now let p = (po,cs,...,cq) € Py be a section of a, i.e. a(p) = 1. Then we consider the
unimodular row a = (ag(po),as,...,aq). By Swan’s Bertini theorem (cp. [Sw, Theorem
1.5]), there is an upper triangular matrix B = (f3; j)2<ij<d (notice the indexing!) of rank

d—1 over R such that aB = (ao(po), a}, ...,a;) has the property that if I = {(a}, ..., a};), then
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R/I is either 0 or a smooth threefold outside the singular locus of R. But by the previous
paragraph, it follows that we still have a/,— 1 € J, which means that R/I is either 0 or a
smooth affine threefold over k.

We now define a homomorphism sy : @%5 Re; = Py by so(e;) = B2ipo. Furthermore, we
define homomorphisms s; : @%,,, Re; - Re; for each [, 3 <1< d-1, by s;(e;) = Buier.
Then we let pg and ¢;, 3 <l <d-1, be the elementary automorphisms of P; induced by
so and the s; respectively and we define ¢ = 41 0 ... 0o 3 0 py. By construction, we have

ap = (ap, aj, ...,a’;), which finishes the proof. ]

We introduce some further notation: For any commutative ring R, any finitely generated
projective R-module P and any element p € P, we let o(p) = {f(p)|f € PV} ¢ R, which is
clearly an ideal of R. Note that p is unimodular if and only if o(p) = R.

Proposition 1.15. Assume that R is an affine algebra of dimension d > 3 over a finite field
IF, or its algebraic closure Fq. Then the group E(Py1) acts transitively on Unim.El.(Pg1).

Proof. First of all, we note that we can assume that R is reduced: If R is not reduced
and the proposition is proven for reduced algebras, we may consider R/N, where N is
the nilradical of R. Then it follows that any unimodular element can be transformed via
elementary automorphisms to an element of the form a = (ag, as, ..., ags1), where agy1 — 1 is
nilpotent. But this means that a4,; is a unit in R. Hence Lemma 1.13 shows that there is
p € E(Pyy1) such that p(a) = eg1. So let us henceforth assume that R is reduced.
Following the proof of [S1, Theorem 1], we pick a point on each irreducible component of the
maximal spectrum Maz(R) of R, denote the resulting finite set by V' and set v = [T, -
Then, for each p € V', we pick py,,...,p2, € Py such that their classes in Py/uFy form a
basis of Py/pFy as an R/pR-module. Then we find py,ps € Py such that p; —p; , € pPy for
i=1,2. Note that if we let p; = ¢; for 3 <i <d+1 and denote their classes in Pyy1/1Pyy1 by
Dip, then py ., ..., Pas1,, form a basis of Py /pPu.

Now let 2 = o(p1 A p2). By construction, 2 is not contained in any u € V. Since every
minimal prime ideal of R is contained in some p € V', this implies that dim(R/2A) <d - 1;
in particular, dim(R/v2) < d - 1. Therefore it follows from [HB, Chapter IV, Theorem
3.4] that any unimodular element a = (ag, ag, ...,aq+1) can be transformed via elementary
automorphisms of Py, to an element (b, bs, ..., bgy1) with by — 1 € v2A. If we let p; denote
the classes of the p;, i = 1,...,d + 1, modulo bg,1, then o(p; A p2) = R/bgy1 R; this implies
that Py/bg1 Py is free with a basis given by the classes p;, i = 1,2, and, in particular, that
Py/bg.1 Py is free with a basis given by the classes p;, i = 1,...,d. As bgy1 — 1€ v, R/bgs1 R
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has dimension < d - 1; hence the group E;(R/bgs R) acts transitively on Umb(R/bg R)
(cp. [SV, Corollary 17.3]).

It follows that (bo,...,bqr1) and hence (ao,...,aq41) can be transformed via elementary
automorphisms to an element of the form a’ = (0,...,1 + cbgy1,bgqs1) for some ¢ € R. We
then let s : Regy1 = Regq,1 = —c and t : Rey; - Regy1,1 = —bgyr and let og, o be the

induced elementary automorphisms on P;,q; furthermore, we let 15 be the automorphism

0 1
(_1 0)€E2(R)

and let ¢ € E(Py1) be the automorphism of Py which is 15! on Rey @ Reqyq and the
identity on the other direct summands. Then ¥p,ps(a’) = (0,...,0,1), which finishes the
proof. [

of Req ® Regqq given by the matrix

Proposition 1.16. Assume that R is a normal affine algebra of dimension d > 4 over the
algebraic closure k =T, of a finite field F, of characteristic 2. Then, for any unimodular
element a € Py, there exists an automorphism ¢ € E(Py) such that ¢(a) = (bo,bs, ..., ba),
where RJbyR is a smooth k-algebra of dimension d—1 and Py[byFy is a free R|bgR-module.

Proof. Since R is normal, the ideal J defining the singular locus of Spec(R) has height
> 2. Following the proof of [B, Theorem 1], we let ¢ be a non-zero-divisor such that (F), is
free of rank 2. We can assume that ¢ € J (as ht(J) > 2). Note that if we pick two elements
of Py which form a basis of (I}),, then the induced map R?* - I is injective. Hence we
obtain a free submodule F' = R? of B, such that F; = (F,),. Furthermore, we let s = ¢!
such that sPy c F'. We denote by (eq, es) the standard basis of F'; in particular, for n > 3,
(e1,€2,€3,...,e,) is a basis of F,, = F & Re3 & ... ® Re, c P, and sP, c F,.

Since s is a non-zero-divisor, we have dim(R/sR) < d - 1. Using Proposition 1.15, we
can then conclude that there exists 1 € E(P;) such that ¢q(a) = (bo,bs, ..., b4-1, b)) with
(bo, b3, ..., b4-1) € sPy_y ¢ Fy_1 and with 1 -0/, € sR.

If we let by = biey + boea, then (by,bs,bs,...,04-1,0,) and, furthermore, as 1 -/, € sR,
(sby, sy, sbs, ..., sbg_1, ;) are unimodular rows over R. Therefore Swan’s Bertini theorem
(cp. [Sw, Theorem 1.5]) implies that there exist f; € R, 1 < i < d -1, such that for
bg = b, + Zf:_f fisb; the ring R/b4R is a smooth k-algebra of dimension d - 1.

Now let (eY,...,eY_,) be the (dual) basis of FY, and let a = Y% sf;eY. Note that, since
sPy1 € Fy_q, we have sF) | ¢ PY | and we can interpret « as a homomorphism Py_; — Req.

We let 5 be the elementary automorphism on P; induced by .
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By construction, one has ¢s(bo, bs, ..., b4-1,0,) = (bo, b, ..., b4-1,bq). Note that 1 —by € sR.
Since F; = ([),, the inclusion F' ¢ Fy induces an equality F/bsF = Fy/bqFy. Thus, Py/bsFo
is a free R/bgR-module of rank 2, as desired. ]

1.3 The stabilization maps

Let R be a commutative ring. We consider the map
¢r :Ve(R) = Ve (R), [P] = [P R,

from the set of isomorphism classes of projective modules of rank r to the set of isomorphism
classes of projective modules of rank r + 1 and fix a projective module P & R representing
an element of V,;1(R) in the image of this map. An element [P’] of V,.(R) lies in the
fiber over [P @ R] if and only if there is an isomorphism i : P’ ® R — P & R. Any such

isomorphism yields an element of Um(P & R) given by the composite
it s
a(i):P®R~— P’ @ R~ R.

Note that if one chooses another module P” representing the isomorphism class of P’ and
any isomorphism j : P” & R = P ® R, the resulting element a(j) of Um(P & R) still lies in
the same orbit of Um(P & R)/Aut(P & R): For if we choose an isomorphism k : P" > P",

then we have an equality
a(i) = a(j) o (j(k @ idg)i™").
Thus, we obtain a well-defined map
o, H([P®R]) > Um(Pa®R)/Aut(P & R).

Conversely, any element a € Um(P@®R) gives an element of V,.(R) lying over [ P& R], namely
[P'] = [ker(a)]. Note that the kernels of two epimorphisms P & R — R are isomorphic if
these epimorphisms are in the same orbit in Um(P & R)/Aut(P & R). Thus, we also obtain

a well-defined map

Um(P & R)]Aut(P ® R) - ¢;' ([P ® R]).
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One can then easily check that the maps ¢;'([P & R]) > Um(P ® R)/Aut(P & R) and
Um(PoR)[Aut(Pe&R) — ¢;'([P®R]) are inverse to each other. Note that [ P] corresponds
to the class represented by the canonical projection 7r : P® R — R under these bijections.
In conclusion, we have a pointed bijection between the sets Um(P & R)/Aut(P & R) and
o1 ([P ® R]) equipped with [7mg] and [P] as basepoints respectively. Moreover, we also
obtain a (pointed) surjection Um(P @& R)/E(P & R) - ¢;' ([P & R]).

Furthermore, we denote by V?(R) the set of isomorphism classes of oriented projective
modules of rank 7, i.e. isomorphism classes of pairs (P, ), where P is projective of constant
rank r and 6 : det(P) 5 R is an isomorphism. An isomorphism between two such pairs
(P,6) and (P’,0") is an isomorphism k : P > P’ such that 6 = ¢’ o det(k). Note that if
(P,0) is an oriented projective module of rank r, then there is an induced orientation on
P & R given by the composite 0+ : det(P @ R) = det(P) %R

We now consider the stabilization maps
o2 VR(R) = V2, (R), [(P.0)] ~ [(Pe R,0%)]

from the set of isomorphism classes of oriented projective modules of rank r to the set
of isomorphism classes of oriented projective modules of rank r» + 1. We fix an oriented
projective module (P @ R, 6*) representing an element of V2, (R) in the image of this map.
An element [(P’,0")] of V2(R) lies in the fiber over [(P ® R,0%)] if and only if there is an
isomorphism i : P’ & R 5 P® R such that 6* o det(i) = 0"*. Any such isomorphism yields

an element of Um(P @ R) given by the composite
a(i): P& RS> P oR™ R,

If one chooses another module (P”,6") representing the isomorphism class of (P’,6’) and
any isomorphism j : P” ® R = P @ R with 67+ = 6* o det(j), the resulting element a(;)
of Um(P @ R) still lies in the same orbit of Um(P @& R)/SL(P & R): For if we choose an
isomorphism k : P’ > P” with 6’ = 6" o det(k), then j(k ®idg)i~' € SL(P & R) and we

have an equality
a(i) = a(j) o (j(k®idg)i™').
Thus, we obtain a well-defined map

o ([(P®R,6%)]) > Um(P®R)/SL(P&R).
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Conversely, any element a € Um(P @ R) gives an element of V?(R) lying over [(P® R, 0%)]:

If we let P’ =ker(a), then the short exact sequence
0P ->P®&R>R~—0

is split and any section s of a induces an isomorphism ¢ : P’ & R 5 P® R. The induced
isomorphism det(i) : det(P’ @ R) = det(P @ R) does not depend on the section s; hence

we can canonically define an orientation ¢’ on P’ given by the composite
det(4) o
det(P’) 2 det(P'® R) —— det(P® R) — R.

Then [(P’,0")] € g2 ([(P @ R,#%)]). Note that this assignment only depends on the class
ofain Um(P@& R)/SL(P® R).

Thus, we also obtain a well-defined map
Un(P®R)/SL(P®R) - ¢ ([(P & R,0%)]).

Again, one can check that the maps ¢ ' ([(P @ R,0*)]) » Um(P ® R)/SL(P & R) and
Un(P®R)/SL(P®R) - ¢° ' ([(P®R,0%)]) are inverse to each other. Note that [(P,6)]
corresponds to the class represented by the canonical projection 7r : P® R - R under these
bijections. Altogether, we have a pointed bijection between the sets Um(P&R)/SL(P& R)
and ¢o"' ([(P ® R,0%)]) equipped with [7z] and [(P,6)] as basepoints respectively.
Finally, if (P,#0) is an oriented projective module of rank r as above, the canonical pro-
jection Um(P & R)/SL(P & R) - Um(P & R)/Aut(P & R) then corresponds to the map
o ([(P® R,0%)]) - ¢-1([P @ R]) forgetting the orientation of P.

1.4 Explicit completions of unimodular elements

Let R be a commutative ring and let Fy be a projective R-module of rank 2 with a
trivialization 6 : R — det(Py) of its determinant. We use the notation of Section 1.2 and
let Py = Py @ Res. In particular, any a € Um(P3) can be written as (ag,agr), where aq is
the restriction of a to Py and ag = a(es) € R. For any a € Um(P;) of the form (ao,a%),
there exists ¢ € SL(Ps) such that m33¢ = a (cp. [B, Proposition 2.7] or [S1, Lemma 2]).
We now construct an explicit completion ¢ of a = (ag, a%). For this, let us first look at the
case Py = R?: If (b,c,a) is a unimodular row and ¢b + rc + pa = 1, then it follows from a

construction given by Krusemeyer in [Kr| that the matrix
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-p—qr  ¢* —-c+2aq
2 —p+qr b+2ar

2

-r

b c a

is a completion of (b, c,a?) with determinant 1. We observe that

[0 -() e
()60

This shows how to generalize the construction of this explicit completion. We denote by

and also

Xo : Py = Py the alternating isomorphism given by ¢ ~ (x0(q) : Po = R,p~ 05 (p A q)). If
a = (ag,agr) is an element of Um(FPy @ R) with a section s uniquely given by the element
s(1) = (q,p) € Py® R, we consider the following morphisms: We define an endomorphism
of Py by

o ==(mp,s) o xolq) = p-idp,: Fo > By
and we also define a morphism R — F, by

¢r:R— Py, 1 2ag-q+ x5 (ao).

Then we consider the endomorphism of ¢ : Py @ R given by

Yo ¥R
ao CL% ’

Essentially by construction, ¢ is a completion of (ag, a%):

Proposition 1.17. The endomorphism ¢ of Py ® R defined above is an automorphism of
Py @ R of determinant 1 such that w33 = (ag, a%).

Proof. Choosing locally a free basis (¢!, €) of (Fp), at any prime p with (65"),(ej Aeb) =1,
we can check locally that this endomorphism is an automorphism of determinant 1 (because
locally it coincides with the completion given in [Kr]); by definition, we obviously have
m33¢ = (ao,a%). Thus, ¢ has the desired properties and generalizes the explicit completion

given in [Kr]. O
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1.5 Local-global principles

We will now briefly review the local-global principle for transvection groups proven in
[BBR] and use it in order to deduce stability results for stably elementary automorphisms
of Py® R?. For this, we only have to assume that R is an arbitrary commutative ring with
unit.

First of all, let P be a finitely generated projective R-module and g € P, ¢ € PV such that
©(q) = 0. This data naturally determines a homomorphism ¢, : P - P by ¢,(p) = ¢(p)q
for all p € P. An automorphism of the form idp + ¢, is called a transvection if either
q € Unim.El.(P) or ¢ € Um(P). We denote by T'(P) the subgroup of Aut(P) generated
by transvections.

Now let ) = P @ R be a direct sum of a finitely generated projective R-module P of rank
> 2 and the free R-module of rank 1. Then the elementary automorphisms of P & R are
easily seen to be transvections and are also called elementary transvections. Consequently,
we have F(Q) c T(Q) c Aut(Q).

In the theorem stated below, we denote by R[X] the polynomial ring in one variable over
R and let Q[ X] = Q®g R[X]. The evaluation homomorphisms evy, evy : R[X] — R induce
maps Aut(Q[X]) - Aut(Q). If a(X) € Aut(Q[X]), then we denote its images under
these maps by «(0) and a(1) respectively. Similarly, the localization homomorphism
R - R, at any maximal ideal m of R induces a map Aut(Q[X]) - Aut(Qu[X]), where
Qn[X] = Q[X] ®rx] Ru[X]; if a(X) € Aut(Q[X]), we denote its image under this map
by am(X).

We will use the following results proven by Bak, Basu and Rao (cp. [BBR, Theorems 3.6
and 3.10]):

Theorem 1.18. The inclusion E(Q) c T(Q) is actually an equality. Furthermore, if
a(X) e Aut(Q[X]) satisfies a(0) =idg € Aut(Q) and an(X) € E(Qu[X]) for all mazimal
ideals m of R, then a(X) € E(Q[X]).

In order to prove the desired stability results, we introduce the following property: Let €
be either the class of Noetherian rings or the class of affine k-algebras over a fixed field k.
Furthermore, let d > 1 be an integer and m € N. We say that € has the property P(d, m)
if, for R in € of dimension d and for any finitely generated projective R-module P of rank
m, the group SL(P & R") acts transitively on Um(P & R") for all n > 2. If k is a field, we
simply say that k has the property P(d, m) if the class of affine k-algebras has the property
P(d,m).
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Of course, if the class of Noetherian rings has the property P(d, m), then the same holds for
every field. The class of Noetherian rings has the property P(d, m) for m > d. Furthermore,
it follows from [B, Remark 4.2] that any infinite perfect field k& of cohomological dimension
< 1 satisfies property P(d,d - 1) if d! € kx.

In the remainder of this section, we will denote by 7 the canonical projection P& R* - R

onto the "last” free direct summand of R™.

Lemma 1.19. Let € be the class of Noetherian rings or affine k-algebras over a fixed field
k. Assume that € has the property P(d,m). Let R be a d-dimensional ring in €, P a
projective R-module of rank m and a € Um(P & R"™) for some n > 2. Moreover, assume
that there is an element t € R and a homomorphism w: P& R™ - R such that a — 7 = tw.
Then there is ¢ € SL(P & R™) such that a = 1 and ¢(z) = idpern(x) modulo (t) for all x.

Proof. We set B = R[X]/{X?-tX). By assumption, we have a = 7+ tw. Then we lift it to
a(X)=m+Xw:(P®R")®r B — B, which can be checked to be an epimorphism (as in the
proof of [RvdK, Proposition 3.3]). Hence we have a(X) € Um((P@®R")®g B). Since B is a
ring in € of dimension d, property P(d, m) now gives an element (X ) € SL{(P®R")®rB)
with a(X) = 7p(X). Then ¢ = ¢(0) "¢(t) is the desired automorphism. O

For any n > 2, we say that two automorphisms ¢,9 € SL(P & R") are isotopic if there is
an automorphism 7(X) of (P ® R") ®g R[X ] with determinant 1 such that 7(0) = ¢ and

7(1) = .

Theorem 1.20. Let € be the class of Noetherian rings or affine k-algebras over a fixed
field k. Assume that € has the property P(d+1,m +1). Let R be a d-dimensional ring in
¢, P a projective R-module of rank m and o € Aut(P & R™) for some n > 2. Assume that
oc®le E(P®R"). Then o is isotopic to idpgpn.

Proof. Since o @1 € E(P@®R™!), there is a natural isotopy 7(X) € E((P® R™')®r R[X])
with 7(0) = idpgrn+1 and 7(1) = 0 ® 1. Now apply the previous lemma to R[X ], X2 - X
and a = 77(X) in order to obtain an automorphism y(X) € SL((P & R"*') @ R[X]) with
7x(X) = a such that x(X)(z) = # modulo (X2 - X). Thus, 77(X)x(X)™" = 7. Therefore
7(X)x(X) ™ equals p(X) @1 for some p(X) e SL((P ® R*) ® R[X]) up to elementary

automorphisms. But then p(X) is an isotopy from idpggn to o. [

We can now use Theorem 1.20 in order to deduce the following stability results:

Theorem 1.21. With the notation of Section 1.2, we assume that Py has rank 2. If R is a
reqular Noetherian ring of dimension 2, then there is an equality Eo(Py)nAut(Py) = E(P,).
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Proof. If o0 € SL(Py) is stably elementary, then o € E(P,;1) for some n > 4. We can now
apply Theorem 1.20 to P = Fy and deduce that there is an isotopy p(X) € SL(P,[X])
from idp, to o. But since R is regular, we know that p,(X) is stably elementary (for
any maximal ideal m of R); in fact, we can deduce that p,(X) is elementary because
dim(R) = 2. Therefore Theorem 1.18 implies that p(X) € E(P,[X]) and consequently
o =p(l) e E(P,). The theorem now follows by inductively repeating this argument and
deducing that o € E(Fy). O

Theorem 1.22. With the notation of Section 1.2, we further assume that Py has rank
2. Let k be a field with P(4,3). If R is a reqular affine k-algebra of dimension 3, then
EOO(P()) n Aut(P4) = E(P4)

Proof. We know that there is an equality SLy(R,[X]) = Enx(R,[X]) for any prime p of
R and N >4 by a famous theorem of Vorst (cp. [V]). We can thus argue as in the proof
of Theorem 1.21. ]
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Motivic Homotopy Theory

In this chapter, we give a brief introduction to motivic homotopy theory as developed by
Fabien Morel and Vladimir Voevodsky in [MV]. At first, we outline the construction of the
unstable Al-homotopy category over a regular Noetherian base scheme S of finite Krull
dimension and of its pointed version. In the subsequent section, we study the endomor-
phisms of Pg in the pointed Al-homotopy category over the spectrum S = Spec(R) of a
smooth affine algebra R over a perfect field of characteristic # 2. In fact, we will extend
some computations which are known over a perfect field k with char(k) # 2 as a base
scheme to the case of a smooth affine algebra over k. Finally, we briefly discuss Al-fiber

sequences and Suslin matrices in the last section of this chapter.

2.1 The unstable Al-homotopy category

Let S be a regular Noetherian base scheme of finite Krull dimension and let Smg be
the category of smooth separated schemes of finite type over S. Furthermore, we denote
by Spcg = APShvys(Smg) (resp. Spes.) the category of (pointed) simplicial Nisnevich
sheaves of sets over Smg. We refer to objects of Spcs (Spcs.) as (pointed) spaces. Note
that any (pointed) simplicial set or any (pointed) Nisnevich sheaf of sets can be considered
(pointed) spaces. In particular, any (pointed) scheme X € Smg defines an object of Spcg
(resp. Spcs.e).

One can define a model structure on Spcg as follows: A (simplicial) cofibration in Spcg is
just defined to be a monomorphism of simplicial sheaves. A morphism f: X — ) is called
a simplicial weak equivalence if f(x): X(z) - Y(x) is a weak equivalence of simplicial sets
for any point x in the Nisnevich site on Smg. The (simplicial) fibrations are then defined
to be the morphisms with the right lifting property with respect to trivial cofibrations,
i.e. (simplicial) cofibrations which are also simplicial weak equivalences; this means that a

morphism p: & — B is a simplicial fibration if, for any diagram
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with i : A - X a trivial cofibration, there is a morphism f : X - £ making the diagram
commutative.

We denote by Cy the class of (simplicial) cofibrations, by W the class of simplicial weak
equivalences and by Fy the class of (simplicial) fibrations defined as above. The triple
(Cs, Wy, Fy) determines a model structure on Spcg called the simplicial model structure
or the local injective model structure. One also obtains a simplicial model structure on
Spcse by defining a morphism f: (X,2) - (Y, y) of pointed simplicial Nisnevich sheaves
to be a pointed (simplicial) cofibration, weak equivalence or fibration if it is a cofibration,
weak equivalence or fibration of simplicial Nisnevich sheaves with respect to the simplicial
model structure on Spcg just described. We write Hs(S) (resp. Hso(.S)) for the (pointed)
simplicial homotopy category, which can be obtained from Spcg (resp. Spcg.) by inverting
(pointed) simplicial weak equivalences.

The AL-model structure can be obtained as a Bousfield localization of the simplicial model

structure described above: A space Z € Spcg is called AL-local if the map
HomHs(S) (X7 Z) - HomHs(S) (X X A}S’v Z)

induced by the projection X x Ay - X is a bijection for any X € Spcg. Furthermore, a
morphism f : X - Y of simplicial Nisnevich sheaves is called an Ag-weak equivalence if

the map
[*Homp sy)(V,Z2) > Hompy,s)(X, 2)

is a bijection for any Ag-local space Z. We denote by WA.li-‘ the class of Ag-weak equiva-
lences. Note that all simplicial weak equivalences and all the projections X x Ay - X are
automatically Ag-weak equivalences.

We define the class CA;S of (Ak-)cofibrations again as the class of monomorphisms, i.e.
OAIS = (5. Moreover, we define the class F) AL of Ai-fibrations to be class of morphisms
with the right lifting property with respect to trivial Ag-cofibrations, i.e. monomorphisms
which are also Al-weak equivalences. Then the triple (CA}S‘ W, Fay ) determines the A}-
model structure on Spcg. Again, one obtains an Ag-model structure on Spcg, by defining

a morphism f : (X,z) - (),y) of pointed simplicial Nisnevich sheaves to be a pointed
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Al-cofibration, Ag-weak equivalence or Al-fibration if it is a cofibration, weak equivalence
or fibration of simplicial Nisnevich sheaves with respect to the A§-model structure on Spcg
just described.

The (pointed) unstable Ag-homotopy category H(S) (resp. H.(S)) is the homotopy cat-
egory associated to the (pointed) A}-model structure and is obtained from Spcg (resp.
Spcs.) by inverting (pointed) Ag-weak equivalences. In case of an affine base scheme
S = Spec(R), we simply write Spcr, Spcr.e, H(R) or H.(R) for the respective categories.
Objects of H(S) (resp. H.(S)) will be referred to as (pointed) spaces. For two spaces
X and Y, we denote by [X,y]A% = Homyys)(X,Y) the set of morphisms from X to Y
in #(5); similarly, we denote by [(X,z), (¥, y)]ay.. = Homa,s)((X,2),(Y,y)) the set of
morphisms from a pointed space (X, z) to another pointed space (),y) in H.(S). Some-
times we will omit the basepoints from the notation or write R instead of Spec(R) if
S = Spec(R) is an affine scheme.

If X,Y € Spcs, we say that two morphisms f,g: X — ) are naively Ag-homotopic if there
is a morphism H : X x Ay - Y such that H(-,0) = f and H(-,1) = g. We denote by
[X,Y]n the set of equivalence classes of morphisms from X to ) under the equivalence
relation generated by the relation of naive Ag-homotopies. A (pointed) space Y is called
Al-fibrant if the unique morphism Y — % = S is an Al-fibration; in fact, for any (pointed)
space Y, there is a (pointed) AL-fibrant space Y’ together with a (pointed) AL-weak equiv-
alence Y — Y. If Y is an A{-fibrant space and X is any space, then the relation of naive
Al-homotopies on the set of morphisms from X to Y is an equivalence relation and the
natural map [X, Y]y - [X,Y]a1 is a bijection.

For any space X, the product functor X x — : Spcs — Spcs admits a right adjoint
Hom(X,-) : Spcs — Spcg; the adjoint pair forms a Quillen pair and therefore induces

an adjunction
X x-:H(S) 2 H(S): RHom(X,-)

on the Aj-homotopy category; here, RHom(X,-) denotes a right derived functor of
Hom(X,-).

Like in classical topology, one can define a wedge product (X,z) v (Y,y) and a smash
product (X,x) A (Y,y) of two pointed spaces (X, x) and (Y,y): The wedge product is
defined by the pushout square
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* = (V.y)

. |

(X,:I:)—>(X,:c)v(y,y)

and the smash product by the pushout square

(X, z)v(Y,y)
l(idxy)v(xxid) j
(X xY,xxy)—=(X,2) A (V).

*

For any pointed space (X, x), the functor (X, x)A—: Spege = Spcs.. admits a right adjoint
Hom,((X,z),—) : Spcs.e = Spcs,; the adjoint pair forms a Quillen pair and hence descends

to an adjunction
(va) ASalE H'(S) = H'(S) :RM.((X,ZB),—)

on the level of the pointed Al-homotopy category; here, RHom,((X,x),-) is a right
derived functor of Hom, ((X,x),-). As a particularly interesting special case, one obtains
the functor X, = ST A —: Spege - Spcs., which is called the simplicial suspension functor;
its right adjoint Q; = Hom, (S, ) : Spcs. = Spcs.e is called the simplicial loop space
functor. We denote by >7 and Q7 the iterated suspension and loop space functors for any
n € N. For any pointed space (X, x), its simplicial suspension ¥, (X, x) = ST A (X, z) has
the structure of an h-cogroup in H.(S) (cp. [A, Definition 2.2.7] or [Ho, Section 6.1]);
in particular, for any pointed space (),y), there is a natural group structure on the set
[Xs(X,2),(V,y)]a . induced by the h-cogroup structure of X,(&,x). For any pointed
space (Y,y), the space R(Y,y) has the structure of an h-group in H.(S) and hence
the set [(X,x), RQ(Y, y)]A}g,, has a natural group structure for any pointed space (X, x)
induced by the h-group structure of R (Y, y).

Furthermore, the functor (), : Spcs - Spcse, X = X, = X U and the forgetful functor
F : Spcse — Speg, (X, x) » X form a Quillen pair and hence descend to an adjunction

(), :H(S) 2H(5) : RF,

where RF is a right derived functor of F. We will tacitly use this in some proofs in order

to force some spaces to have a basepoint.
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2.2 Endomorphisms of P!

For any base scheme S as above, we let IP’}9 = P! xz S and G, 5 = G,, xz S, where
P! =P} = Proj(Z[Ty,T1]) and G,, = Spec(Z[T]7). If S = Spec(R) is an affine scheme, we
simply write PL and G, r instead of ngec( R)
pointed by oo, the scheme G,, g by 1. It is well-known that there is a pointed Aj-weak

and G, spec(ry- The scheme IP% is canonically

equivalence between Py and S' A G,, . Via this identification of P{ and S A Gy, g in
H.(S), the space PL obtains the structure of an h-cogroup (cp. [A, Definition 2.2.7] or
[Ho, Section 6.1]). In particular, for any pointed space (X, z), the set [Py, (X7x)]A157' has
a natural group structure.

Now let S = Spec(k) be the spectrum of a perfect field k with char(k) # 2. The group
[P}, P} ] al. has been computed in [C] as follows: We say that two pointed morphisms
f.g : P, - P, are naively A}-homotopic if there is a morphism H : P} x; A} — P} with
H(-,0) = f, H(-,1) = g and such that H(oco,-) = c0. We then denote by [P},P}]n. the
set of equivalence classes of pointed morphisms under the equivalence relation generated
by the relation of naive Aj-homotopies.

As it was proven in [C, Theorem 3.24], the set [P}, P} |y. can be endowed with a structure
of an abelian monoid such that the map [P}, P}]n. — [P}, P}] Al 18 a group completion.
Any pointed morphism f : P, - P} has an associated non-degenerate symmetric bilinear
form Bez(f) called the Bézout form of f. We let MW (k) be the Witt monoid of iso-
morphism classes of non-degenerate symmetric bilinear forms over k. The Grothendieck
group of MW (k) is the Grothendieck-Witt ring GW (k) of non-degenerate symmetric
bilinear forms over k. The discriminant induces a well-defined monoid homomorphism
MW (k) = k*[k*2.

It is proven in [C, Corollary 3.11] that the assignment

(f: Py = Py) = (Bez(f), det(Bez(f)))

induces a monoid isomorphism

o

[Py, Prlne = MW () X2 K

where the right-hand term is the fiber product with respect to the discriminant map
MW (k) = k*/k** and the projection k* — k*/k**.
It follows that we have a group isomorphism

~

[lP’,i,IP’}q]A}W. — GW(k) X g2 K

95



For any n € N, there is a natural pointed morphism of schemes G,,, , = G, induced by the
k-algebra homomorphism k[T'|; - k[T']r,T = T™. Taking the smash product with S*, we
obtain a morphism 97 : S' AG,, , = S' A Gy, 1, which corresponds up to canonical pointed
A}-weak equivalence to a morphism P; — P;. The Bézout form Bez(1}) is given by the
n x n-matrix with only 1’s on the anti-diagonal and 0’s elsewhere. Its class in GW (k)

equals n., which is given by the formula
ne=Y", < (-1)Y > e GW (k).

As det(Bez(y7)) = (-1)"""D2 it follows that Y1 corresponds to the pair (n., (=1)"/2)
under the isomorphism [P,ﬁ,]}”}i]A}w, 5 GW (k) xpx g2 K. In particular, if 1 € k3 ie. if
-1 is a square in k, and if furthermore n = 0,1 mod 4, then the morphism v}’ corresponds
to n-idgiag,,, 0 [STA Gy g, ST A Gm,k]Ai,r

We now want to prove the latter computation for a more general base scheme. For this,
we let k be a perfect base field with char(k) # 2 as in the computation above and we let
f: X = Spec(R) - Spec(k) be a smooth affine scheme of finite type over k.

If we take X as a base scheme, we again consider the morphism G, - G,,; given by
k[T)r - k[T]r,T » T, for all n € N. Its pullback along the morphism f: X — Spec(k)
gives a morphism G,, g > G, gr. Taking the smash product with S!, we obtain a morphism
YR SYAG,, g > ST AG,, g in H.(R).

Lemma 2.1. The morphism f: X — Spec(k) induces a well-defined group homomorphism
[Sl A Gm,ka Sl A Gm,k]Ab. - [Sl A Gm,R7 Sl A Gm,R]A}{,o-

Proof. There is a restriction functor f* : Spcye = Spcr. induced by f. It follows from
MV, Proposition 3.2.8] that f* commutes with the smash product of pointed spaces,
sends Aj-weak equivalences to AlL-weak equivalences and hence descends to a functor
f*:Ho(k) > Ho(R). The functor f* sends any smooth k-scheme U to its pullback U x;, R
along f and similarly sends a morphism ¢ : U — V between two k-schemes to its pullback
g% R:Ux; R -V %, R; furthermore, it fixes simplicial sets and morphisms between them.
Hence we obtain a map [S! A G, ST A vak]Aiﬂ' - [SYAG g, ST A (Gm7R]A}%7,. As the
group structure of both sets is induced by the structure of S! as an h-cogroup, the map is

clearly a group homomorphism. O]

As an immediate consequence of the previous lemma, we obtain:

Corollary 2.2. If -1 ¢ k*?, n=0,1 mod 4 and X ¢ Spcre, then the class of Y} A X in

[STAGrAX,S! /\Gm,R/\X]A}%7, equals the class of n-idgiag,, sax-
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2.3 Al-fiber sequences and Suslin matrices

In any pointed model category, i.e. in any model category whose initial and terminal objects
are isomorphic, there exists the notion of fiber sequences (F, f) = (£,¢e) - (B,b) (cp. [Ho,
Section 6.2]). Since Spcg. is a pointed model category with its Al-model structure, this
notion in particular exists in motivic homotopy theory. Analogous to the situation in

classical topology, such fiber sequences give rise to long exact sequences of the form
o X, RO (B0) st e = [X(F, f)lare = [X,(E.€)Jare = [X, (B, 0) a1,

for any pointed space X.

Now let us fix a perfect field k£ with char(k) # 2. For any pointed space (X,x) € Spc.e
and i > 0, we define the ith Al-homotopy sheaf 72" (X, ) as the Nisnevich sheaf on Smy
associated to the presheaf U ~ [XiU,, (X, x)] Al In general, the A}-homotopy sheaves
ﬂﬁl(ét' ,x) are Nisnevich sheaves of sets on Smy, for i > 0, Nisnevich sheaves of groups for
7 > 1 and Nisnevich sheaves of abelian groups for 7 > 2. Since sheafification is exact, any

Aj}-fiber sequence (F, f) = (£,e) - (B,b) yields a long exact sequence

(B,b) —>7TZA1(]:,f) —>7Tﬁ1(5,e) —>7T1A1(B,b) - ...

Al
v T

of A}-homotopy sheaves. For the purpose of this thesis, we simply state the existence of
the following A}-fiber sequences, which follows from [W, Section 5] and [AHW2, Section
2]

Theorem 2.3. Let (X, x) be a pointed k-scheme. If G = Spa,, SL,,GL, and P - X is a

G-torsor, then there is an A} -fiber sequence of the form
G—>P->X.
As special cases of this theorem, we obtain A}-fiber sequences of the form

SLn i SLn+1 - SLn+1/SLn7
San ing SL2n - SL2n/Sp2n7
Sp?n ind GL2n g GLQn/Sp2n'

Let us describe the quotients SL,/SL,_1: For n > 1, the projection on the first column
induces a morphism SL, [SL,_1 - A7 \ 0, which is Zariski locally trivial with fibers iso-

morphic to AP and hence an A}-weak equivalence.
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For all n > 1, let Q% | = Spec(k[x1,...;Tn, Y1, Yu ] [{Xhy ziy; — 1)) the smooth affine
quadric hypersurfaces in A?". The projection on the coefficients w1, ..., z, induces a mor-
phism p§ _, : Q% _, — A7\ 0, which is locally trivial with fibers isomorphic to A?~! and

hence an A -weak equivalence. Thus, we have A}-weak equivalences
~ ~ k
SL,/SL,-1 21 AT N0 2p1 Q5,1

for all n > 1. Note that these A}-weak equivalences are all pointed if we equip SL,/SL,4
with the identity matrix, A? \x 0 with (1,0,..,0) and Q5 , with (1,0,..,0,1,0,..,0) as
basepoints.

If R is a smooth affine k-algebra and X = Spec(R), then it is well-known that

Umy,(R) 2 Homgp, (X, A7\ 0)
and
{(a,b)|a,be Um,(R),abt =1} = Homgm, (X, Q% ).
If n >3, it follows from [Mo, Remark 8.10] and [F, Theorem 2.1] that

U, (R)[En(R) 2 [ X, A7~ 0],1.

k

In particular, if we let S5 | = k[z1, ..., T, Y1, oo Ym | [{Ximq 23y; — 1) for m > 1, then the

orbit space Um,, (S5 )/ E.(S5,, 1) is just given by
[Q 1, AT~ O]A}C = [A7" N0, A7 N O]A}C.

It is well-known that A}’ \ 0 is isomorphic to X7"7'G)", in H.(k) for all m > 1; therefore
A"\ 0 inherits the structure of an h-cogroup in H.(k) for m >2 (cp. [A, Definition 2.2.7]
or [Ho, Section 6.1]). In particular, the orbit space Um,, (S5 )/E,(S5 ) has a natural

group structure for m > 2, n > 3.

Now let R be a commutative ring, n > 1 and a = (aq,...,a,),b = (b1,...,b,) be row vec-
tors of length n. In [S2], Suslin inductively constructed matrices ay,(a,b) of size 271 called

Suslin matrices as follows: For n = 1, one simply sets a;(a,b) = (a1); for n > 2, one sets
a' = (ag,...,ap), 0" = (ba,...,b,) and defines

ap(a,b) =

ayldon—2 an-1(a’,b")
—op (U, a') by Idgn—n |
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In [S2, Lemma 5.1], Suslin proved that det(a,(a,b)) = (abt)w2 if n > 2; in particular, if
a=(ay,...,a,) is a unimodular row of length n and b = (b1, ...,b,) defines a section of a, i.e.
abt =¥ a;b; =1, then «v,(a,b) € SLyn1(R).

Suslin originally introduced these matrices in order to show that if a = (a1, a2, as, ..., a,)
is a unimodular row of length n > 3, then the row of the form o' = (ay, as,as, ...,a%”_l)!)
is completable to an invertible matrix. In fact, he proved that, for any a with section b,
there exists an invertible n x n-matrix 3(a,b) whose first row is a’ such that the classes of
p(a,b) and a,(a,b) in K;(R) coincide (cp. [S4, Proposition 2.2 and Corollary 2.5]).

As explained in [AF4], one can in fact interpret Suslin’s construction as a morphism of
schemes: We let Q% | = Spec(k[z1, ..., Tn, Y1, Yn | /{E iy 2iy; — 1)) as above. Then there
exists a morphism «, : Q5 | = SLys1 induced by «a,(z,y), where z = (z1,...,2,) and
Y= (Y1, yn); if we equip Q% with (1,0,..,0,1,0,...,0) and SLyn1 with the identity as
basepoints, this morphism is pointed. Composing with the canonical map SLgn-1 - SL,
we obtain a morphism Q& | — SL, which we also denote by a,,. If R is a smooth affine

algebra over k and n > 3, then the induced morphism
Uma(R)/En(R) 2 [Spec(R), Q5,1 = [Spec(R), SL]41 = SK1(R)

takes the class of any a € Um,,(R) to the class of a,,(a,b) in SK;(R), where b is any section

of a.
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Hermitian K-Theory

In this chapter, we give a brief introduction to Hermitian K-theory and we give several
presentations of the higher Grothendieck-Witt group GW3(R) for any smooth affine alge-
bra R over a perfect field of characteristic # 2. For any commutative ring R, we introduce
the group W, (R) and its subgroup Wg(R) called the elementary symplectic Witt group
in the second section of this chapter; moreover, we define the group W{, (R), which is
the cokernel of a hyperbolic map SK;(R) — WL(R), and its subgroup Wgr(R). In the
following section, we define the groups V(R) and Vsy(R); in fact, we will see that there
are canonical isomorphisms W} (R) = V(R) and W{,(R) = Vs.(R). Furthermore, we will
see that there is a canonical isomorphism GW?(R) = W, (R) for any smooth affine algebra
R over a perfect field k of characteristic # 2. Finally, we introduce Grothendieck-Witt
sheaves and study their Nisnevich cohomology in order to give criteria for the 2-divisibility
of Wg(R) and the group Wgr(R).

3.1 Grothendieck-Witt groups

In this section, we recall some basics about higher Grothendieck-Witt groups, which are a
modern version of Hermitian K-theory. The general references of the modern theory are
[MS1], [MS2] and [MS3]. Let X be a scheme with 1 € ['(X, Ox) and let £ be a line bundle
on X. Then we consider the category C?(X) of bounded complexes of locally free coherent
Ox-modules. The category C?(X) inherits a natural structure of an exact category from
the category of locally free coherent Ox-modules by declaring C, - C, - C/ to be exact
if and only if C! - C, - C/ is exact for all n. The duality Home, (-, L) induces a
duality #, on C?(X) and the isomorphism id - Homeo, (Homeo, (-, L), L) for locally
free coherent O x-modules induces a natural isomorphism of functors @, : id — #,#,
on C*(X). Moreover, the translation functor 7' : C*(X) — C?(X) yields new dualities

JG+1)/2

#2 = T4, and natural isomorphisms wi = (-1) w,. We say that a morphism in
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C?(X) is a weak equivalence if and only if it is a quasi-isomorphism and we denote by ¢is
the class of quasi-isomorphisms. For all j, the quadruple (C*(X), ¢is, #2, w]L) is an exact
category with weak equivalences and strong duality (cp. [MS2, §2.3]).

Following [MS2], one can associate a Grothendieck-Witt space GW to any exact category
with weak equivalences and strong duality. The (higher) Grothendieck-Witt groups are
then defined to be its homotopy groups:

Definition 3.1. For all j, let GW(C*(X), qis, #Q,wé) denote the Grothendieck- Witt space
associated to the quadruple (Cb(X),qis,#]é,wj) as above. Then, for any i >0, we define
GW{(X,E) = ﬂigW(Cb(X),qis,#é,wi). If L = Ox, we also denote GVV;(X, Ox) by
GW/(X). Furthermore, if X = Spec(R), we simply denote GW? (X, L) or GW/(X) by

GW/(R, L) or GW/(R) respectively.

The groups GW/ (X, £) are 4-periodic in j. If we let X = Spec(R) be an affine scheme, the
groups GW/(X) coincide with Hermitian K-theory and U-theory as defined by Karoubi
(cp. [MK1] and [MK2]) because 3 € I'(X, Ox) by our assumption (cp. [MS1, Remark 4.13]
and [MS3, Theorems 6.1-2]). In particular, there are isomorphisms K;O(R) = GW?(R),
Ui(R) 2 GWHR), K;Sp(R) 2 GWZ(R) and U;(R) = GW?(R).

The Grothendieck-Witt groups defined as above carry a multiplicative structure. Indeed,
the tensor product of complexes induces product maps

GW?(XaEI) x GWE(X, La) — GW'jJrS(X, L10®Ly)

+r

for all 7, j,7, s and line bundles £y, £, on a scheme X with 1 € (X, Ox) (cp. [MS3, §9.2]).
For all ¢,j > 0, there exist forgetful homomorphisms f; ; : GW/Z?(X L) - K;(X), hyper-
bolic homomorphisms H,; : K;(X) - GW/(X, L) and also boundary homomorphisms
n GWij:rll(X L) - GVV;(X ,L), which are connected by means of the exact sequence

called Karoubi periodicity sequence of the form

Ko (X) 2225 QWX £) 5 GWI (X, £) 25 Ky (X) 225 Gwi™ (X, £).

i+1

In this thesis, the group of our interest is GW3(R) = U;(R) for a smooth affine algebra R
over a perfect field & with char(k) # 2. As a matter of fact, it is argued in [FRS] and [AF4]
that there is a natural isomorphism between GW3(R) and the group W} (R), the latter of
which will be introduced in the next section of this chapter.

Now let S be a regular Noetherian affine scheme of finite Krull dimension with 1 € I'(S, Og).
Then it is known (cp. [JH, Theorem 3.1]) that higher Grothendieck-Witt groups of smooth
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separated schemes of finite type over S are representable in the pointed A}-homotopy
category H.(S) as defined by Morel and Voevodsky. More precisely, if we let X be a
smooth separated scheme of finite type over S, it is shown that there are pointed spaces
GW’ and natural isomorphisms

(S X, W] 2 G (X)),

)

In particular, we have identifications
[X, ROUIGW 1 = GW] (X).

It follows also from this that any morphism f :Y — X of smooth separated schemes of
finite type over S induces a pullback morphism f*: GW?(X) - GW?(Y).

Following [ST], we are now going to make these spaces more explicit: For n € N, we let
GL,, O, Spa, be the schemes (defined over S) of invertible n x n-matrices, of orthogonal
2n x 2n-matrices and of symplectic 2n x 2n-matrices. Then we consider for all n € N the
closed embeddings GL,, - O, and GL,, - Sps, induced by

M 0
M ¥

0 (M1
For any n € N, these embeddings are compatible with the standard stabilization embeddings
GL, - GL,1, O, = Os,49 and Spo, = Sponso. Taking direct limits over all n with
respect to the induced maps Os,/GL, = O,40/GLyy1 and Spo, /G L, = Spoynia/G Ly,
we obtain spaces O/GL and Sp/GL. Similarly, the natural inclusions Spy, — GLo, are
compatible with the standard stabilization embeddings and we analogously obtain a space

GL/Sp = colim,, GLa,[Spay,. As proven in [ST, Theorems 8.2 and 8.4], there are canonical

pointed Aj-weak equivalences

Z x OGr if 7=0 mod 4
, Sp/GL  if j=1mod 4
G =4y .
Z x HGr if =2 mod 4
O/GL if 7 =3 mod 4

and
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ROLOJGL =, GL/Sp,

where OGr is an ”"infinite orthogonal Grassmannian” and HGr is an ”infinite symplectic
Grassmannian”. As a consequence of all the previous paragraphs, there is a natural iso-
morphism [X,GL/Sp]s 2 GWP(X).

To conclude this section, we let the base scheme S = Spec(k) be the spectrum of a perfect
field k& with char(k) # 2 and describe two actions of R* on GW3(R) for any smooth affine
k-algebra R. We consider the product map

GWE(R) x GWH(R) - GW(R)

for a smooth affine algebra R over k induced by the multiplicative structure on the
higher Grothendieck-Witt groups mentioned above. As described above, there is a canon-
ical isomorphism GWY(R) 2 KoO(R) and the latter group can be identified with the
Grothendieck-Witt ring GW(R) of non-degenerate symmetric bilinear forms, i.e. the
Grothendieck completion of the abelian monoid of non-degenerate symmetric bilinear forms

over R. Furthermore, there is a canonical map
R*—> GW(R), u~ (Rx R — R,(x,y) » uzy),

which induces an action of R* = G, x(R) on GW3(R) via the product map mentioned
above. Following [AF3, Section 3.5], we refer to this action as the multiplicative action of
R* =Gy, x(R) on GW(R).

We now describe an action of G, on GL/Sp. For any smooth affine k-algebra R and any

unit u € R*, we denote by s, the invertible 2n x 2n-matrix inductively defined by

[u 0
Y2,u 0 1

and Y2124 = Yanu L V2. Conjugation by yz‘gm induces an action of G,,; on G Ly, for all
n. As Spy, is preserved by this action, there is an induced action on GLs,/Spa,. Since
all the morphisms G La,/Span, = GLoyy2/Spanso are equivariant for this action, we obtain
an action of G, on GL/Sp. In particular, there is an induced action of R* = G, x(R)
on GW3(R) = [Spec(R),GL[Sp]a for any smooth affine k-algebra R by taking the A}-
homotopy classes of morphisms. Again following [AF3, Section 3.5, we refer to this action
as the conjugation action of R* on GW2(R). It follows from the proof of [AF3, Proposition

3.5.1] that the conjugation action coincides with the multiplicative action.
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3.2 The elementary symplectic Witt group

Let R be a commutative ring and let G be any group such that E(R) ¢ G ¢ SL(R). For
any n € N, we denote by As,(R) the set of alternating invertible matrices of rank 2n. We

inductively define an element s, € Ay, (R) by setting

0 1
()

and Yg,19 = o, L 1y For any m < n, there is an embedding of A, (R) into Ay, (R) given
by M+~ M 1 19, 2,. We denote by A(R) the direct limit of the sets As,(R) under these
embeddings. Two alternating invertible matrices M € As,,(R) and N € Ay, (R) are called
G-equivalent, M ~g N, if there is an integer s € N and a matrix E € SLoyioms2s(R) NG
such that

M1 w2n+25 = Et(N 1l ¢2m+25)E'

This defines an equivalence relation on A(R) and the set of equivalence classes A(R)/~g
is denoted W/ (R). Since

0 dd,
e (R
(o )

for even rs, it follows that the orthogonal sum equips W/, (R) with the structure of an
abelian monoid. As it is shown in [SV], this abelian monoid is actually an abelian group.
An inverse for an element of W/ (R) represented by a matrix N € A,,(R) is given by

the element represented by the matrix oo, N ~'oy,, where the matrices o9, are inductively

defined by
01
Oo =
1o

and 09,40 = 09, L 09. In particular, for G = E(R) or SL(R), we obtain abelian groups
Wi(R) and W{, (R).

Now recall that one can assign to any alternating invertible matrix M an element Pf (M)
of R* called the Pfaffian of M. The Pfaffian satisfies the following formulas:

o Pf(M L N)=Pf(M)Pf(N) for all M € Ay, (R) and N € As,(R):;
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o Pf(G'NG) =det(G)Pf(N) for all G € GLy,(R) and N € Ay, (R);
o Pf(N)*=det(N) for all N € Ay, (R):

e Pf(1)s,) =1 for all neN.

Therefore the Pfaffian determines a group homomorphism Pf : W/ (R) - R*; its kernel is
denoted Wg(R). If G = E(R), the group Wg(R) is simply denoted Wg(R) and is called
the elementary symplectic Witt group of R. Furthermore, if G = SL(R), we denote W (R)
simply by Wsr(R).

As mentioned in the previous section, it is argued in [FRS] and [AF4] that there is a natural
isomorphism between GW(R) and the group W, (R) for any smooth affine algebra R over
a perfect field of characteristic # 2. One of the main tools to compute the group GW3(R)
is the Karoubi periodicity sequence also mentioned in the previous section. By means of
the identification GW3(X) 2 WL (R), this yields an exact sequence of the form

fi,2 H3 fo,2

Ky Sp(R) = K1(R) —> Wi(R) = KoSp(R) = Ko(R).

The homomorphisms in this sequence can be explicitly described as follows: The forget-
ful homomorphisms K;Sp(R) 25 Ky (R) and KoSp(R) 225 Ky(R) are induced by the
obvious inclusions Sps,(R) - GLo,(R) and the assignment (P,¢) — P for any skew-
symmetric space (P,p), i.e. for any finitely generated projective R-module P with a
non-degenerate skew-symmetric form ¢ on P, respectively. Moreover, the hyperbolic map
K (R) 2, WL(R) is induced by the assignment M ~ My, M for all M e GLy,(R).
Finally, the boundary homomorphism W, (R) uN KySp(R) is induced by the assignment
M — [R?" M| - [R?", 1), ] for all M € Ay, (R).

As the image of K1 Sp(R) under f o in K;(R) lies in SK;(R), one can rewrite the sequence

above as

KiSp(R) 23 KL (R) 255 Wa(R) % KoSp(R) 5 Ko(R).
We are now going to explain the identification GW?(R) 2 W/, (R) in terms of the repre-
sentability results for higher Grothendieck-Witt groups in motivic homotopy theory. For
this, we fix a base scheme S = Spec(R), where R is a smooth affine algebra over any perfect
field k with char(k) # 2. As explained in the previous section, there is an AL-weak equiv-
alence RQIGW? ~pL GL/Sp, where GL and Sp denote the infinite linear and symplectic

groups (over R) respectively. We let A,, denote the scheme (over R) of skew-symmetric
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invertible 2n x 2n-matrices. For any n € N, one can define a morphism GLs,/Sps, = Asp
by M + Mo, M. By the same reasoning as in [AF4, Section 2.3.2], these morphisms are
isomorphisms and hence induce an isomorphism between GL/Sp and A = colim,, Ay, (tran-
sition maps are defined by adding 15). If B is a smooth affine R-algebra and Y = Spec(B),
the obvious map A(B) — [Y, A, induces the identification Wi (B) ¥ GW}(B). Anal-
ogously, there is an isomorphism between SL/Sp and A’ = colim, A}, where A is the
scheme (over R) of skew-symmetric invertible 2n x 2n-matrices of Pfaffian 1. Again, if
B is a smooth affine R-algebra and Y = Spec(B), there is an analogous indentification
Wg(B) = [V, A']u .

In fact, if R =k, the A}-fiber sequences

Sp—->GL - GL/Sp
Sp—-SL - SL/Sp

induce the homomorphisms

KiSp(R) & K1(R) & Wi(R)
KiSp(R) & SKi(R) & Wi(R)

in the Karoubi periodicity sequence above.

3.3 The groups Vi (R)

Again, let R be a commutative ring. Consider the set of triples (P, g, f), where P is a
finitely generated projective R-module and f, g are alternating isomorphisms on P. Two
such triples (P, fo, f1) and (P’, f§, f{) are called isometric if there exists an isomorphism
h: P — P such that f; = hVf/h for i = 0,1. We denote by [P, g, f] the isometry class of
the triple (P, g, f).

Let V(R) be the quotient of the free abelian group on isometry classes of triples as above

modulo the subgroup generated by the relations

e [PoP . gLyg,fLf']=[Pgfl+[P,g,[f] for alternating isomorphisms f,g on P
and f’,¢" on P’

o [P, fo, fi] + [P, f1, f2] = [P, fo, f2] for alternating isomorphisms fy, f1, fo on P.
Note that these relations yield the useful identities
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e [P f,f]=01in V(R) for any alternating isomorphism f on P;
o [Pg,f]l=-[P, f,g] in V(R) for alternating isomorphisms f, g on P;

e [Pg,pBYaYfaB] =[P, f,a"fa] +[P,g,8vf3] in V(R) for all automorphisms «, 8 of

P and alternating isomorphisms f, g on P.

We may also restrict this construction to free R-modules of finite rank. The correspond-
ing group will be denoted Vj..(R). Note that there is an obvious group homomorphism
Viree(R) = V(R). This homomorphism can be seen to be an isomorphism as follows:

For any finitely generated projective R-module P, we call

0 idpv

H(P)=( 0 ):P@PV»PV@PW
—can

the hyperbolic isomorphism on P.

Now let (P, g, f) be a triple as above. Since P is a finitely generated projective R-module,
there is another R-module () such that P& () 2 R™ for some n € N. In particular, it follows
that P® PV & Q & QV is free of rank 2n. Therefore the triple

(PoP'oQaQV,g Lcang™ L H(Q),f Lcan g' L H(Q))

represents an element of V.. (R); this element is independent of the choice of Q). It follows

that the assignment
(Pg,f)»(PoP'®Qa&QV,g Lcan g™ L H(Q),f Lcan g' L H(Q))
induces a well-defined group homomorphism
V(R) = Vi (R).
Since
[P,g,f]=[P®P"0Q&QV,g Lcan g L H(Q),f Lcan g™t L H(Q)]

in V(R) by the first of the useful identities listed above, this homomorphism is actually
an inverse to the canonical homomorphism Vi (R) = V(R). Thus, Vje.(R) 2 V(R).

There is a canonical isomorphism between V(R) and the group W[ (R) defined in the
previous section. In order to discuss this identification, we first need to prove Lemma 3.2
and Corollaries 3.3 and 3.4 below. They will also be used in the proofs of some later results

in this thesis.
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Lemma 3.2. Let P = @], P; be a finitely generated projective R-module and f; alternating
isomorphisms on P;, 1 =1,...m. Let f=f1 L ... L fu. Then [P, f,¢vfe] =0 in V(R) for
any element ¢ of the commutator subgroup of Aut(P). In particular, the same holds for

every element of E(P) with respect to the given decomposition.

Proof. By the third of the useful identities listed above, we have

[P, [, o50) forpe] = [P, oY forl + [P, f, 05 foa].

Therefore we only have to prove the first statement for commutators. If ¢ = 127 05"

is a commutator, then the formula above yields

[P, f,0v fel =[P, f. Y for] + [P, fooy foa] + [P f, (") fer'] + [P f. (03") fo3t] = 0,

which proves first part of the lemma.

For the second part, observe that by the formula above we only need to prove the statement
for elementary automorphisms. So let ¢, be the elementary automorphism induced by
s: P; - P,. Since we can add the summand [P, f;, f;] = 0, we may assume that we are in
the situation of Corollary 1.5. Therefore we may assume that ¢, is a commutator and the

second statement then follows from the first part of the lemma. ]

Corollary 3.3. Let P be a finitely generated projective R-module and x be an alternating
isomorphism on P. Then [P® R?*,x L Yoy, oV (X L ¥2,)p] =0 in V(R) for any elementary
automorphism ¢ of P® R?". In particular, if f is any alternating isomorphism on P& R*",
it follows that there is an equality [P® R*, x L o, @V fo] = [P®R?*", x L, f] in V(R).

Proof. The first part follows directly from the previous lemma. The second part is then a

direct consequence of the second relation given in the definition of the group V(R). ]

Corollary 3.4. For any matriz E € Ey,(R), we have [R*,1q,, B9, E] =0 in V(R). In
particular, we have [ R?", s, N| = [R?",9,, ENE] in V(R) for any alternating invertible
matriz N € Ag,(R).

Using the previous corollary, the group Vj..(R) can be identified with W, (R) as follows:
If M € As,,(R) represents an element of W (R), then we assign to it the class in Vi (R)
represented by [ R*™, 1y, M]. By Corollary 3.4, this assignment descends to a well-defined
homomorphism v : WL(R) = Ve (R).

Now let us describe the inverse £ : Vi (R) = W (R) to this homomorphism. Let (L, g, f)
be a triple with L free and g, f alternating isomorphisms on L. We can choose an isomor-

phism « : R?" = L and consider the alternating isomorphism
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(¥ fa) L ogn(avga) oY : R @ (R*)Y - (R2)Y @ R?".

With respect to the standard basis of k2" and its dual basis of (R2")", we may interpret this
alternating isomorphism as an element of Ay,(R) and then consider its class £([L, g, f])
in WL(R). In fact, this class is independent of the choice of the isomorphism o : R?" 5L
If g: R*™ 5 L is another isomorphism, then it suffices to show that the alternating
matrix M corresponding to a¥ fa L Vg is equivalent in W, (R) to the alternating matrix
corresponding to SYfB L avga. But there is an isometry v = (a”'f8) L (f7'a) from
ovfa L BVgP to BYfB L avga, which is an elementary automorphism by Whitehead’s
lemma. One then also checks easily that the defining relations of Vj..(R) are also satisfied
by the assignment above. Hence it follows that this assignment induces a well-defined
homomorphism & : Vi (R) = W(R). By construction, v and £ are obviously inverse to
cach other and therefore identify W, (R) with Vi (R). From now on, we denote by V (R)
the subgroup of V(R) corresponding to the elementary symplectic Witt group Wg(R)
under the isomorphisms V(R) 2 Ve (R) 2 WL(R).

In view of the previous paragraph, we obtain the following new presentation of the group
W, (R): Let Vs (R) be the quotient of the free abelian group on isometry classes of triples
(P, g, f) modulo the subgroup generated by the relations

e [PoP gLy, fLf']=[Pgf]+[P,g,f'] for alternating isomorphisms f,g on P
and f’, g’ on P’;

o [P, fo, fil + [P, f1, fo] = [P, fo, f2] for alternating isomorphisms fo, f1, f2 on P;
e [Py, f]=[P,g,¢"fe] for alternating isomorphisms g, f on P and ¢ € SL(P).

Then Vs (R) 2 W%, (R). We denote by Vs (R) the subgroup of Vs (R) corresponding to
Wsr(R). Automatically, there is a canonical epimorphism V(R) — Vs (R) corresponding
to the map Wg(R) - Wsr(R).

Since we have isomorphisms GW3(R) = W,(R) 2 V(R) for any smooth affine algebra
R over a perfect field & with char(k) # 2, we can now make the functoriality of the
Grothendieck-Witt group GW?(R) more explicit in terms of the group V(R). For this,
we let S = Spec(R) be a base scheme, where R is a smooth affine algebra over a perfect
field k& with char(k) # 2. Assume that Y = Spec(B) and Z = Spec(C) are all smooth affine
schemes over S = Spec(R). Any morphism Z — Y over Spec(R) then corresponds to an
R-algebra homomorphism f: B - (. If P is a finitely generated projective B-module with
alternating isomorphisms y; and x», then the class of the triple [P, x2, x1] € V(B) is sent
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under the pullback morphism f* to [P®g C, x2®5 C,x1 ®5 C] e V(CO).

Now let R be a commutative ring. In order to conclude this section, we describe some
group actions on V(R): For any finitely generated projective R-module P, alternating
isomorphism x : P - PY and uw € R*, the morphism w -y : P - PV is again an alternating
isomorphism on P. Note that the alternating isomorphism u - x is canonically isometric to
the alternating isomorphism u ®g x : R®g P UBRX R ®r P¥ 2 (R®g P)” and we therefore

have an equality
[P,u-x2,u-x1]=[R®r P,u®p x2,u®g x1] in V(R)
for all x1,x2. One can check easily that the assignment

(U,(P,X2,X1)) = (P>U'X27U'X1)

descends to a well-defined action of R* on V(R).

Now let us assume that 2 € R*, let ¢ : Q > QQV be a symmetric isomorphism on a finitely
generated projective R-module ). Then, for any skew-symmetric isomorphism y : P - PV
as above, there is an induced homomorphism ¢ ®z x : Q ®z P - Q¥ ®r P¥ = (Q®5 P)",
which is a skew-symmetric isomorphism on ) ®z P. One can check easily that the assign-

ment

((Q,¢), (P, x2,x1)) = (Q®r P, o ®r X2, ®r X1)

induces a well-defined action of the Grothendieck-Witt group GW(R) = GW?(R) of R on
V(R).

For any smooth affine algebra R over a perfect field k& with char(k) # 2, recall that we have
defined also an action of R* on GW?(R) in the previous section called the conjugation
action, which coincides with another action called the multiplicative action. By means of
the identifications GW(R) = W, (R) 2 V(R), we have many equivalent ways to describe
this action: If M € G Ly, (R) represents a morphism Spec(R) — G La, and u is a unit of R,
note that the conjugation of M by ygﬁ’u is sent via the morphism G Lo, > G' Lo, [Span, = Ao,

to
/72_717th’72n,u¢2n72n,uM72_71,u = 72_717th (u ' ¢2n)M’72_717u
Furthermore, note that the isometry induced by the matrix ~s, , yields an equality
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[R2", 9an, ’Yz_ﬁ,th(U . ¢2n)M’Y5ﬁ,u] = [R?", u - g, M (- 1b2n) M]

in V(R). As a consequence, the conjugation action of R* on GW3(R) can be described via
the isomorphism GW3?(R) = V(R) as follows: If (P, x2,x1) is a triple as in the definition
of the group V(R) and u € R*, then the action is given by

(U, (P7X27X1)) = (Pvu'X27u'Xl)-

Hence in this case the conjugation action is just given by the action of R* on V(R) which we
defined above. The conjugation action is thus a homotopy-theoretic interpretation of the
action defined above in case of a smooth affine algebra over a perfect field of characteristic
# 2. Since the conjugation action coincides with the multiplicative action, we therefore also
obtain another interpretation of the R*-action on V (R) defined above via the multiplicative

structure of higher Grothendieck-Witt groups.

3.4 The Gersten-Grothendieck-Witt spectral sequence

In the last section of this chapter, we introduce Grothendieck-Witt sheaves and study their
cohomology. This will give cohomological obstructions to the 2-divisibility of Wg(R) and
Wsp(R) for any smooth affine fourfold over an algebraically closed field k of characteristic
+2.

First of all, we fix a perfect base field k& with char(k) # 2. Recall that we have defined
A}-homotopy sheaves ﬂfl()( ,x) for any pointed space (X, x) € Spcy.. As a special case,

we define Grothendieck-Witt sheaves as follows:
Definition 3.5. For any i,7 >0, we set GW? = 7" (GW).

Now let X = Spec(R) be a smooth affine k-scheme. The Karoubi periodicity sequence

induces an exact sequence of sheaves
Hyz3 9 f3,2

K¢ % ew? L ew? 224 K9,

where KZQ denotes the ith Quillen K-theory sheaf for ¢ > 0. We denote by A the image of

H, 3 and by B the image of 7 and obtain a short exact sequence

0->A->GW]->B-0

72



of sheaves. It follows from [AF2, Lemma 4.11] and from the computations in [AF3, Section
3.6] that the associated exact sequence of cohomology groups yields an exact sequence of

the form
H3(X,K%/2) > H3(X,GW?2) > Ch3(X) - Ch4(X) » H4(X,GW?3) - 0,

where Chi(X) = CHY(X)/2 for i = 3,4. Since CH*(X) is 2-divisible for any smooth affine

fourfold X over an algebraically closed field, we obtain:

Proposition 3.6. If R is a smooth affine algebra of dimension 4 over an algebraically
closed field k with char(k) # 2 and X = Spec(R), then there is an exact sequence of the
form H3(X,K%/2) - H3(X, GW3) - Ch3(X) - 0.

In particular, if H3(X,K$/2) and Ch3(X) are trivial, then also H3(X, GW?3) is trivial.

In fact, one can prove the following statement:

Proposition 3.7. If R is a smooth affine algebra of dimension 4 over an algebraically
closed field k with char(k) # 2 and X = Spec(R), then H3(X,K%) is 2-divisible and
H3(X,K%/2) = 0. In particular, H3(X, GW3) is 2-divisible if and only if CH3(X) is
2-divisible.

Proof. We let 2K? be the image and {2}K% be the kernel of the morphism K¢ — K%

induced by multiplication by 2. Then we consider the two short exact sequences of sheaves
0—>{2}K§—>K4Q—>2K4Q—>0

and
O—>2Kf—>K§—>K4Q/2—>O.

The Gersten resolutions of {2}Ki2 and K4Q /2 are flasque resolutions of these sheaves and

can therefore be used in order to compute their cohomology.
Since Ko(F) = Z for any field F, we have H*(X,{2}K%) = 0. It follows that the map
H3(X,KY) - H3(X,2KY) is surjective. As the composite

H3(X,K$) - H3(X,2K?) - H3(X,K%)

is multiplication by 2, it thus suffices to prove that H3(X, Kf/2) =0.
For any ¢,m € N, we let H4(m) be the sheaf associated to the presheaf

U o HL(U, ™).
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Recall that the Bloch-Ogus spectral sequence (cp. [BO]) converges to the étale cohomology
groups H} (X, p$™) and its terms on the second page are HY, (X, H%(m)). These groups

can be computed via the Gersten complex
d d
Hi(k(X), puS™) = &, cxay HI k(1) p§™71) = ...,

By [JPS2, §4.2, Proposition 11], one has cd(k(z,)) < 4—p for any x, € X(P). Hence it follows
that HY (X, Hi(m)) = 0 for all ¢ > 5; consequently, H3(X,H*(m)) = H (X, u$™) =0
because X is affine.

Since H3(X,K2/2) = H3(X,K9/2) and H3(X,H4(4)) = H3(X, K} /2) because of the
proof of the Bloch-Kato conjecture, this proves the result. O

In the remainder of this section, we will use the Gersten-Grothendieck-Witt spectral se-
quence in order to compute Wg (S5 ) for all n divisible by 4 and in order to find coho-
mological obstructions for the 2-divisibility of Wg(R) and Ws(R) when R is a smooth
affine algebra of dimension 4 over an algebraically closed field k with char(k) # 2.

Recall that if X is a smooth k-scheme of dimension d, then the Gersten-Grothendieck-Witt

spectral sequence E(3) associated to X has terms of the form

5(3) B, cxm GW3 P (k(zy),ws,) if0<p<dand3>p+g

=3
2
112

0 else
on the first page and converges to GW3 _(X). There is a filtration
O=FpicFijc...c FFcGWX) =Fy

with F,/Fp.1 2 F(3)%°7 for all p. Furthermore, the terms F(3)5 on the second page are
isomorphic to HP(X, ng_q) for 0 <p<dand p+q<3. We define GWﬁTed(X) =F;. In
general, the group GWired(X) coincides with [ X, SL/Sp]Ai. In particular, if X = Spec(R)
is affine, then it coincides with Wg(R). Hence we can compute the group Wg(R) via the

limit terms F(3)%°7.

Proposition 3.8. Let n € N be divisible by 4 and k be a perfect field with char(k) # 2.
Then Wg(Sk ) 2 Z[2Z.

Proof. We have identifications

74



Wi(S5, 1) = [Q4, 1. SL/Splay 2 [AZ N 0,SL/Spla = GWE, (A7 N 0).

We use the Gersten-Grothendieck-Witt spectral sequence E(3) associated to X = A7\ 0

in order to compute GW3 _ (A7~ 0). As indicated above, we have a filtration

O=F,, cF,c..cGW?

Prea(X) =1 c GWP(X) = Fy

with F,/F,,1 2 E(3)%7 for all p.

Let us compute the limit terms F(3)%’. It is known that the terms E(3)5? on the second
page are precisely isomorphic to HP(X, ng_q). Since n is divisible by 4, it follows from
[AF1, Lemma 4.5] that

It follows immediately from this that GW? _,(X) = Iy = GW{ (k). But GW§(k) = Z[2Z
by [F'S, Lemma 4.1]. This proves the proposition. O

Finally, we can give the following cohomological criteria for the 2-divisibility of Wg(R)
and WSL(R)Z

Proposition 3.9. Let R be a smooth affine algebra of dimension 4 over an algebraically
closed field k with char(k) # 2 and X = Spec(R). Then Wg(R) is 2-divisible if H*(X, K3'™V)
and H3(X, GWY) are 2-divisible. Furthermore, Wsr(R) is 2-divisible if H2(X, ) is 2-
divisible and CH3(X) = CH*(X) = 0.

Proof. We use the Gersten-Grothendieck-Witt spectral sequence E(3) associated to X.
We have a filtration

O=FscFic..cGW} (R)=FcGWP(R)=F

with F,/F,,; 2 F(3)%°7 for all p. The terms £(3)5? on the second page are HP (X, GW3_,)
for 0 <p<4 and p+q <3 and 0 elsewhere.

First of all, [FRS, Lemma 2.2] implies that E(3)?" = 0 for all p. Therefore E(3)a' = 0 and
hence F, = Wg(R). Moreover, since k is algebraically closed, the limit term Fj = E(3)a >
is a quotient of @, ywk* and therefore 2-divisible. Altogether, we have two short exact

sequences
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0— F3 > Wg(R) > E(3)i’,0 -0,
0> Fy—Fy—»FE3)% -0,

where F} is 2-divisible. In particular, Wg(R) is 2-divisible as soon as E(3)%’ and F(3)3™"
are 2-divisible.

However, E(3)%™" is a quotient of H3(X,GW?3). Furthermore, we know that E(3)5°
is precisely H2(X,GW3) = H2(X,K3"). Hence E(3)%’ is precisely the kernel of the
differential mapping into E(3)y™" = H4(X,GW?3). But by the fact that CH*(X) is 2-
divisible and by [AF3, Proposition 3.6.4], we can conclude that H4(X,GW?3) = 0. Thus,
the limit term E(3)% is precisely H2(X,K23™) and the first statement follows.

For the second statement, we will use the Brown-Gersten-Quillen spectral sequence E’(3)

associated to X, which has terms of the form

@D, exn K5y o (k(zp)) if0<p<dand3>p+q

0 else

E'(3)

=3
Q
112

on the first page and converges to KQ_*(X). The group SK;(R) can be computed via the

limit terms E’(3)%*: There is a filtration
0=F!/cFjc..cSK|(R)=F|cK|(R)=F]

with F)/F) ., = E/(3)%77" for all p. Moreover, the terms E’(3)% on the second page are
isomorphic to HP(X, K?_q) for0<p<dandp+q<3.

By construction of both the Brown-Gersten-Quillen and the Gersten-Grothendieck-Witt
spectral sequences, the hyperbolic morphism induces a morphism of spectral sequences.

Hence we get a commutative diagram

0—— F, —~ SK(X) FI|F;

e e e ]

00— Fy —— Wg(X) — H2(X,K)'") —

with exact rows. If H3(X,GW3) is 2-divisible (in particular, if CH3(X) is 2-divisible),
then we have seen above that Fj is 2-divisible. Since Wy (R) is 2-torsion, the snake lemma
induces an isomorphism Wey(R) > H2(X,KYW)/H, 5(F//F}). In particular, there is a
surjection H2(X, K3 /H, 3(F}/F}) - Wsr(R).
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Since CH4(X) = 0, the group H2(X,KY) surjects onto F}/F} = E/(3)% and it follows that
there is an equality H2(X, K3™)/Hy 3(F}/F}) = H2(X, K3")/Hs5(H2(X,KY)). Finally,
as the homomorphism H?(X, K3Q) - H?*(X, 2K3Q) is surjective, the long exact sequence of

cohomology groups associated to the short exact sequence
0-2KY - KW - 1P -0

shows that H2(X, KY")/Hs5(X, K$) = H2(X,T*). This yields the second statement. [

77






The Generalized Vaserstein Symbol

In the last chapter of this thesis, we finally define the generalized Vaserstein symbol and
prove our main results. First of all, we start by reviewing the definition and basic properties
of the usual Vaserstein symbol as defined by Suslin and Vaserstein in [SV, §5]. In the
subsequent section, this leads to the construction of the generalized Vaserstein symbol
Vi, : Um(Py@R)/E(Py®R) — V(R) associated to a finitely generated projective module P,
of rank 2 over a commutative ring R together with a fixed trivialization of its determinant
0o R = det(Py). We will then study its basic properties and prove in particular that it
is a bijection if R is either a regular Noetherian ring of dimension 2 or a regular affine
algebra of dimension 3 over a perfect field k with c.d.(k) < 1 and 6 € k*. Furthermore,
we prove a sum formula Vy,(ag,a’) = n-Vp,(ag,ar) for n = 0,1 mod 4 over smooth affine
algebras over perfect fields with characteristic # 2 such that -1 € k*? and explore its
applications. Finally, we will see that the generalized Vaserstein symbol descends to a map
Vi, : Um(Py ® R)/SL(Py ® R) - Vs (R), which we will study in the third section of this
chapter. As an application of this map, we will give a criterion for the triviality of the
orbit space Um(FPy @ R)/SL(Py @ R) for Noetherian rings of dimension < 4. Motivated
by this criterion, we study symplectic orbits of unimodular rows and prove in particular
that Sps(R) acts transitively on Umg4(R) whenever d > 4 is divisible by 4 and R is a
smooth affine algebra of dimension d over an algebraically closed field k with d! € k*. As
an immediate consequence of this, we will prove that Umgs(R)/SLs(R) is trivial if and
only if Vg (R) is trivial whenever R is a smooth affine algebra of dimension 4 over an
algebraically closed field k with 6 € k*. Furthermore, we will prove that the generalized
Vaserstein symbol induces a bijection Vj, : Um(Py @ R)/SL(Py ® R) - Vsi(R) if R is
an affine algebra of dimension 3 over a finite field. In order to conclude this thesis, we
contextualize our results in the last section of this chapter by relating them to some open

questions in the study of projective modules.
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4.1 The Vaserstein symbol for unimodular rows

In this section, we review the Vaserstein symbol map as introduced by Suslin and Vaserstein
in [SV, §5]. Furthermore, we prove a cancellation theorem for finitely generated projective
modules of a specific form over normal affine algebras over the algebraic closure of a finite
field. We conclude this section by reinterpreting the Vaserstein symbol by means of the
isomorphism W, (R) 2 Vi (R).

First of all, we let R be a commutative ring and we let Ums(R) be its set of unimodular
rows of length 3, i.e. triples a = (a1, as,az) of elements in R such that there are elements

b1,b9,b3 € R with 2;11 a;b; = 1. This data determines an exact sequence of the form
0- P(a) > R* 3 R -0,

where P(a) = ker(a). The triple b = (b1,b9,b3) € R? gives a section to the epimorphism
a: R?® - R and induces a retraction r : B3 — P(a),e; = e; — a;b, where e; = (1,0,0),
es =(0,1,0) and ez = (0,0,1). One then obtains an isomorphism i =7 +a: R* - P(a) ® R,
which induces an isomorphism det(R3) — det(P(a) ® R). Finally, by composing with the
canonical isomorphisms det(P(a) & R) 2 det(P(a)) and R — det(R3),1 — e1 A ea A €3, one
obtains an isomorphism 0 : R — det(P(a)).

The element of W (R) defined by the matrix

0 -a1 —-ay -as
ap 0  -by by
as b 0 -b
as —by by 0

V(a,b) =

has Pfaffian 1 and does not depend on the choice of the section b (cp. [SV, Lemma 5.1]). We
therefore obtain a well-defined map V' : Ums(R) - Wg(R). In particular, if we let G be any
group such that E(R) c G c SL(R), we obtain a well-defined map Vg : Umsz(R) - Wg(R);
in the case G = E(R), we just recover the map V. These maps were introduced and studied
by Suslin and Vaserstein in [SV, §5]. They proved (cp. [SV, Theorem 5.2]):

Theorem 4.1. Let R be a commutative ring and, moreover, let G be any group such that
E(R)cGc SL(R). Foralln > 1, we let m, = (1,0,...,0) be the standard unimodular row
of length n. The map Vg : Ums - Wg(R) has the following properties:

a) Va(a) = Vg(ap) for all a € Ums(R) and p € Gn SL3(R).
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b) If 12041 (G N SLapt1(R)) = Umaper (R) for all n > 2, then Vi is surjective.

¢) If monEon(R) = m0,(G* N SLy,(R)) for all n > 2, then Vg(a) = Vg(a') for some
a,a’ € Umz(R) implies that a = a’p for some p € GNSL3(R).

In particular, the theorem implies that the maps Vg : Ums(R) - W (R) descend to maps
Vi : Uns(R)[/(GnSL3(R)) - Wg(R).
Moreover, one obtains a map
Vi Ums(R)/E5(R) > We(R)

called the Vaserstein symbol. Of course, this is just the composite

V: Ums(R)/Es(R) — Ums(R)/(E(R) n SLy(R)) —% Wi(R).

Suslin and Vaserstein studied the injectivity and surjectivity of the Vaserstein symbol by
means of the criteria given by the theorem above. In [SV, Corollary 7.4], they proved that
the Vaserstein symbol is a bijection if dim(R) < 2. In fact, if we let 71, = (1,0,...,0) be the
standard unimodular row of length n, their proof showed that the Vaserstein symbol is sur-
jective if Ty 9p11 Eope1 (R) = Umaper (R) for n > 2 and injective if 7y 9, By, (R) = 71 205 Lo (R)
for n >3 and E(R)nSLy(R) = E4(R). Since m ,E,(R) = Um,(R) if n > 5 for any Noethe-
rian ring of dimension 3 (cp. [HB, Chapter IV, Theorem 3.4]), the only remaining criterion
which needs to be proven for a Noetherian ring of dimension 3 is E(R)nSL4(R) = E4(R).
Using local-global principles, Rao and van der Kallen could prove in [RvdK, Theorem 3.4
and Corollary 3.5]:

Theorem 4.2. Assume that R is a regular affine algebra of dimension 3 over a field k with
c.d.(k) <1 which is perfect if char(k) = 2,3. Then E(R)nSL4(R) = E4(R). In particular,
the Vaserstein symbol V : Ums(R)[/Es(R) - Wg(R) is a bijection.

In particular, the orbit space Ums(R)/E3(R) can be endowed with an abelian group struc-
ture in the situation of the theorem. In [FRS], this abelian group structure was substan-
tially used in order to show that stably free modules of rank d—1 over normal affine algebras
of dimension d > 4 or smooth affine algebras of dimension d = 3 over an algebraically closed
field k£ with (d —1)! € k* are free. In their proof, they implicitly showed that if j € N such

that ged(char(k),j) = 1, then any unimodular row of length d can be transformed via
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elementary matrices to a row of the form (aq, ..., ail); in particular, if one takes j = (d—1)!,
then Suslin’s n!-factorial theorem (cp. [S1, Remark after Lemma 2]) enabled them to con-
clude their proof.

We are now going to use their implicit result in order to prove a cancellation theorem for

projective modules over normal affine algebras over the algebraic closure of a finite field:

Theorem 4.3. Let R be a normal affine algebra of dimension d over the algebraic closure
F, of a finite field F,. Furthermore, let d > 5 and Py be a projective R-module of rank 2
and assume that (d—-1)! e Fx. Then the projective R-module Py, = Py ® R of rank d -1

18 cancellative.

Proof. By Proposition 1.16, we know that any unimodular element in P; can be trans-
formed via elementary automorphisms to a unimodular element of the form a = (ag, as, ..., ay)
such that R/a,R is a smooth k-algebra of dimension d -1 and Py/aqFp is a free Rja,R-
module of rank 2.

The proof of [FRS, Theorem 7.5] now shows that the unimodular element (ao, as, ..., Gg-1)
of P;_1/aqP; 1 can be transformed via elementary automorphisms to an element of the form
b= (b, Eéd_l)!,l_u, ...;bg_1). Using the map ®4_; (a) associated to a and using Lemma 1.12, it
follows that a can be transformed via elementary automorphisms to a unimodular element
of the form b = (b, bs, ..., bfﬁf)!,az_l). By [S1, Lemma 2], there is an automorphism ¢ of

P; such that ¢(eg) = b, which proves the theorem. O

In fact, it was proven in [DK] that projective modules of rank d — 1 over affine algebras of
dimension d > 4 over the algebraic closure of a finite field IF, with (d-1)! € I are cancellative
in general. Hence our theorem above illustrates how the implicit result of Fasel-Rao-Swan
on transformations of unimodular rows via elementary matrices immediately implies this
cancellation theorem in some special cases.

In order to conclude this section, let us now reinterpret the Vaserstein symbol map in light
of the isomorphism W (R) = V(R) fre. discussed in the previous chapter. The symbol
V'(a) is sent to the element of Vj..(R) represented by the isometry class [R*, 14,V (a,b)].
If we denote by x, the alternating form P(a) x P(a) - R,(p,q) ~ 071 (p A q), we obtain an
alternating form on R* given by (i @ 1)"(x4 L ¢,)(i ® 1). Moreover, if we set

-1

€ E4(R),

o O = O
o = O O
_ o O O
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then one can check that the form (i @ 1) (xa L 12)(i ® 1) is given by the matrix ¢tV (a,b)'o.
In particular, if we let M : Ums(R) — Ums(R) be the map which sends a unimodular
row a = (ay,as,a3) to the row M(a) = (-ay,-as,—a3), then the composite v oV o M is
given by a v [R*, 14, (i ® 1)'(xa L 12)(i®1)]. Since both M and v are bijections, these

considerations lead to a generalization of the Vaserstein symbol.

4.2 The generalized Vaserstein symbol

In this section, we will define the generalized Vaserstein symbol and prove criteria for its
surjectivity and injectivity which are the analogues of Suslin’s and Vaserstein’s criteria for
the Vaserstein symbol mentioned in the previous section. Our criteria will enable us to
prove that the generalized Vaserstein symbol is a bijection if R is a regular Noetherian
ring of dimension 2 or a regular affine algebra of dimension 3 over a perfect field £ such
that c.d.(k) <1 and 6 € k*. Finally, we give an alternative definition of the generalized
Vaserstein symbol for smooth affine algebras over perfect fields of characteristic # 2 and
use this definition in order to prove a sum formula for the generalized Vaserstein symbol.
As an application, we can generalize the implicit result in [FRS, Theorem 7.5] that any
unimodular row of length d over a normal affine algebra of dimension d > 4 or a smooth
affine algebra of dimension d = 3 over an algebraically closed field k with (d —1)! € k* can

be transformed via elementary matrices to a row of the form (ay, ...,afld_l)!)

. Moreover,
this will enable us to re-prove a cancellation theorem for projective modules of rank 2 with
a trivial determinant over smooth affine threefolds (cp. [AF2, Corollary 3.8]).

Now let R be a commutative ring and F) be a projective R-module of rank 2. We will
use the notation of Section 1.2: For all n > 3, we let P, = Fy ® Re3 & ... ® Re,, be the
direct sum of Py and free R-modules Re;, 3 <i < n, of rank 1 with explicit generators e;.
We will sometimes omit these explicit generators in the notation. Moreover, we denote
by 7, ¢ P, = R the projections onto the free direct summands of rank 1 with index
k =3, ...,n. Recall that any a € Um(P,) can be written as (ag,as, ..., a,), where ag is the
restriction of a to Py and a; = a(e;), i = 3,...,n, is the element of R corresponding to the
restriction of a to Re;. We assume that P, admits a fixed trivialization 0, : R = det(Fp)
of its determinant. Furthermore, we denote by x( the non-degenerate alternating form on
Py given by Py x Py = R, (p,q) = 05" (p A q).

Any element a of Um(Py @ R) gives rise to an exact sequence of the form
0->P(a)>Py®R>R—0,
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where P(a) = ker(a). Any section s: R - Py @ R of a determines a canonical retraction
r:Py® R - P(a) given by r(p) = p - sa(p) and an isomorphism i : Py & R - P(a) @ R
given by i(p) = a(p) +r(p).

The exact sequence above yields an isomorphism det(F)) = det(P(a)) and therefore an
isomorphism 6 : R - det(P(a)) obtained by composing with ;. We denote by x, the
non-degenerate alternating form on P(a) given by P(a) x P(a) - R, (p,q) = 6 X (p A q).

We now want to define the generalized Vaserstein symbol
Vo : Um(Py® R) —» V(R)
associated to Py and the fixed trivialization 6y of det(Fy) by

Vo (a) = [Po® R2, xo L, (i@ 1) (xa L1bo) (i@ 1)].

If there is no ambiguity, we will usually suppress the fixed trivialization 6, and denote
Vo, simply by V' in order to simplify our notation. In order to prove that this generalized

symbol is well-defined, one has to show that our definition is independent of a section of a:

Theorem 4.4. The generalized Vaserstein symbol is well-defined, i.e. the element V(a)

defined as above is independent of the choice of a section of a.

Proof. Let a e Um(P, ® R) with two sections s,t: R - Py @ R. We denote by i, and i; the
isomorphisms Py ® R ¢ P(a) @ R induced by the sections s and ¢ respectively. Since the
isomorphism det(P(a)) = det(F,) does not depend on the choice of a section (because the
difference of two sections maps R into P(a)), the form y, is independent of the choice of

a section as well. Therefore it suffices to show that the elements

V(CL,S) = [P() (5] R27X0 1 1/12, (ls @ l)t(Xa 1 1/)2)(23 5] 1)] and
V(a,t)=[Po®R2 xo L s, (i: 1) (Xa L ¥2) (i @1)]

are equal in V' (R).
We do this in the following three steps:

e We defineamap d: Pp@R — R. We get a corresponding automorphism ¢ € E(Py®R?)
defined by ¢ = idp,er2 — de.

e We show that (i ®1)"(Xa L 12)(is® 1)@ = (i; ® 1)" (xa L ¢2) (ir @ 1).
e Using Corollary 3.3, we conclude that V{(a,s) = V(a,t).
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Now let us carry out the first step: First of all, we define a map d’: Py ® R — det(P @ R)
by p = s(1) At(1) Ap e det(Py® R). Then d: Py® R — R is the map obtained from
d’" by composing with the isomorphisms det(FP, @ R) = det(FPy) 2 R. Let dy and dgi be
its restrictions to Fy and R respectively. Furthermore, we let ¢y = idp,gr2 — does and
YR = idp,gr2 — dres be the elementary automorphisms of Fy @ R? defined by —-dy and -dg
respectively. Moreover, we let ¢ = idp gr2 —des. Note that ¢ = popr = prpo € E(FPy @ R?).
Now let us conduct the second step. By Lemma 1.2, we can check the desired equality
locally. So let p be a prime ideal of R and (€},e}) be a basis of the free R,-module (F),
of rank 2. We may further assume that (Qal)p(e’i Aeb) = 1. With respect to the basis
(e}, €5, e3) of (Fy), ® Ry, the epimorphism aj, can be represented by the unimodular row
(a},ab,a}) and both sections s, and t, can be represented by the columns (s}, s, $2)" and
(t’{,tg,tg)t. Using the basis (€}, e}, es,e4) of (Fo), ® R, we can check the desired equality
locally: If we let d = t§sh —thsh, db = thsh — t8s] and df = ths} — s} and

1 0O 0 0
0 1 0 0
Mp: 3
0 O 1 0
P& - 1
this amounts to verifying the equality

0 s -s5 df 0o & -t d
A -5 0 s d) M. — -5 0 ] db
Pl =8 0 di] th -t 0 d§
-a) -dy -daf 0 -al -dy -a} 0

But this follows from the proof of [SV, Lemma 5.1].

Finally, we conclude by Corollary 3.3: Since g and ¢g are elementary automorphisms of
Py @ R?, the automorphism ¢ = popr is an element of E(FP, @ R?). By Corollary 3.3, we
deduce that

V(CL,S) = [P() &) RQ,XO 1 'ng, (ZS &) 1)t(Xa 1 ¢2)(13 (&) 1)]
= [Po® R2, xo L 9, 0! (i ® 1) (Xa L ¥2) (35 ® 1))

But by the second step, we also know that

[Po® R2, X0 L ¥, ¢! (is ® 1) (Xa L 12) (is ® 1) ]
=[Py® R2, xo L 02, (i @ 1) (xa L ¥2) (1, ® 1)] = V(a,1).
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This finishes the proof. [

We note that there is a natural homomorphism Pf : V(R) - R* obtained as the composite
V(R) 5 Viee(R) s WEL(R) X, R*. We denote its kernel by V(R). Of course, the
isomorphism V' (R) 2 WZ(R) induces an isomorphism V(R) = Wg(R).

As stated in the previous section, the usual Vaserstein symbol of a unimodular row is an
element of Wg(R) and is invariant under elementary transformations. We will now prove

that the analogous statements also hold for the generalized Vaserstein symbol:

Lemma 4.5. The generalized Vaserstein symbol V : Um(Py@®R) — V(R) maps Um(Py®R)
into V(R).

Proof. For this, we note that the Pfaffian of an element of V' (R) is completely determined
by the Pfaffians of all its images under the maps V(R) - V(R,) induced by localization
at any prime ideal p. But the localization (PO)p at any prime p is a free R,-module of rank
2; choosing a basis (€, €}) of (Fy), such that (Hgl)p(e'; Aeb) =1 as in the proof of Theorem
4.4, we may calculate the Pfaffian of any Vaserstein symbol by the usual formula for the

Pfaffian of an alternating 4 x 4-matrix. The lemma then follows immediately. [

Theorem 4.6. Let ¢ be an elementary automorphism of Py® R. Then we have an equality
V(a) = V(ap) for any a € Um(Py @ R). In particular, we obtain a well-defined map
V:Un(Py® R)/E(Py® R) - V(R).

Proof. Let ¢ be an elementary automorphism of Py@® R and let s: R - Fy® R be a section
of ae Um(Py® R). Then clearly ¢~'s is a section of ap. We let i: Py® R — P(a) ® R and
Jj:Py® R — P(ap) ® R be the isomorphisms induced by the sections s and ¢=ts. We will
show that

(o) (i) (xalin)(i®1){e®l)=(j®1) (Xa L) (j@®1).

The theorem then follows from Corollary 3.3.

So let us show the equality above. Directly from the definitions, one immediately checks
that (i@ 1)(p® 1) = ((p@1)®1)(j ® 1), where by abuse of notation we understand ¢
as the induced isomorphism P(agp) — P(a). Altogether, it only remains to show that
¢ Xa = Xag-

For this, let (p,q) a pair of elements in P(ap); by definition, x,, sends these elements
to the image of p A ¢ under the isomorphism det(P(ay¢)) 2 R. This element can also be
described as the image of p A ¢ A p~1s(1) under the isomorphism det(FP, ® R) 2 R.
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Analogously, the alternating form ¢!y, sends the pair (p,q) to the image of the element
©(p) A@(q) A s(1) under the isomorphism det(Fp @ R) 2 R. Therefore Lemma 1.11 allows

us to conclude as desired, which finishes the proof of the theorem. O

Note that if we equip the set Um(FP @ R) with the projection 7z = 733 : Py @ R - R onto
R as a basepoint, then the generalized Vaserstein symbol is a map of pointed sets because
Vi(mr) = [Fo® R? xo L ¥, X0 L 2] = 0.

Let us briefly discuss how the generalized Vaserstein symbol depends on the choice of
the trivialization 6, of the determinant of F,. For this, recall that we have defined an
action of R* on V(R) in Section 3.3. In case of a smooth affine algebra over a perfect field
of characteristic # 2, we saw also in Section 3.3 that this action can be identified with the
multiplicative action induced by a product map in the theory of higher Grothendieck-Witt
groups.

Now let Py be a projective R-module of rank 2 which admits a trivialization 8 of its deter-
minant. Furthermore, let a € Um(Py@® R) with section s and let 4, xo, X, as in the definition
of the generalized Vaserstein symbol. We consider another trivialization 6} of det([%) and
we let x{ and x/, be the corresponding alternating forms on Py and P(a). Obviously, there
is a unit u € R* such that 0, = u-6); in particular, we have u-xo = x{, and u-x, = x,. Thus,

if we denote the Vaserstein symbol associated to 6 by Vp, then

Vo, = [Po® B2, (u-xo0) Lo, (i ® D' ((u-xa) L) (i@ 1)].

idpo ®lou

Finally, the isometry given by P, & R? Py ® R? yields an equality

[Py R2, (u-x0) Lo, (1@1) ((u-xa) Lhs)(i®1)]
=[P @R*u-(xoL o), u (i®1) (xa L) (i@ 1)].

Thus, if we denote the Vaserstein symbol associated to 0y by Vj,, then
Voy = u-V,.

In particular, the property of the generalized Vaserstein symbol to be injective, surjective
or bijective onto V(R) does not depend on the choice of 6.

There is another immediate consequence of this: If we let Py = R? be the free R-module of
rank 2 and let e; = (1,0),e3 = (0,1) € R? be the obvious elements, then there is a canonical

isomorphism 6 : R = det(R?) given by 1~ e A es. Then recall that the usual Vaserstein
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symbol can be described as Vg, o M (up to the identification Wz (R) = V(R)). But by the
formula above, it immediately follows that the generalized Vaserstein symbol associated
to —0, coincides with the usual Vaserstein symbol via the identification V(R) = Wg(R)

mentioned above.

We will now study the generalized Vaserstein symbol Vy, : Um(P, @ R)/E(Py®R) - V (R)
and give some criteria for its surjectivity and injectivity. As we have already seen, these
properties are independent of the choice of a trivialization of det(Fy). So let us again fix
such a trivialization 6y : R det(Py) and let us denote Vj, simply by V.

Recall that a unimodular row of length n is an n-tuple a = (a4, ..., a,,) of elements in R such
that there are elements by, ..., b, € R with Y| a;b; = 1. We denote by Um,,(R) the set of uni-
modular rows of length n. For any n > 3, there are obvious maps U, : Um,,_2(R) - Um(P,).
As a first step towards our criterion for the surjectivity of the generalized Vaserstein symbol

(cp. Theorem 4.8 below), we prove the following statement:

Lemma 4.7. Any element of the form [Py, xo L 2, x] € V(R) for a non-degenerate alter-

nating form x on Py is in the image of the generalized Vaserstein symbol.

Proof. First of all, we set a = x(—,e4) : Py ® Res - R. Since x is non-degenerate, there
is an element p € Py such that x(-,p) : Py = R is just —my4. In fact, since x(p,p) =0, it
immediately follows that p € P;. But then a(p) = x(p,e4) = =x(es,p) = 1. Hence p defines
a section s: R— P35, 1 »p, of a: Py® Res - R.

The generalized Vaserstein symbol V' (a) of a may therefore be computed by means of this
section: As in the definition of the generalized Vaserstein symbol, we obtain an isomorphism
i:Py® R — P(a)® R and an alternating form y, on P(a) = ker(a) induced by a and its
section s. The generalized Vaserstein symbol V' (a) of a is then just given by the element
[Po® R2,x0 L ¥, (i ® 1) (xa L 12)(i®1)] of V(R). But one can check easily that the
form (i ®1)"(xa L ¥2)(i®1) locally coincides with x by construction. By Lemma 1.2, it
thus follows that it also coincides with x globally. Therefore we obtain the desired equality
Via) =[Po® R?, x0 L ¥a, x]. O

Using Lemma 4.7 and the technical lemmas proven in previous chapters, we may now prove

the following criteria for the surjectivity of the generalized Vaserstein symbol:

Theorem 4.8. Let N € N. Assume that 3 € V(R) is of the form [Panya, Xo L an, x] for
some non-degenerate alternating form x on Ponyo. Furthermore, assume that we have an
equality Ton+1 9n+1(Eoo(Fy) N Aut(Paps1)) = Um(Paps1) for any n e N such that 1 <n < N.
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Then B lies in the image of the generalized Vaserstein symbol. As a consequence, the
generalized Vaserstein symbol V : Um(Py @ R)JE(Py @ R) — V(R) is surjective if the
equality moni1 2041 (Eoo (Fo) N Aut(Pons1)) = Um(Paps1) holds for all n > 2.

Proof. By assumption, 8 € V(R) has the form 8 = [Pan.2, X0 L %an, x] for some non-
degenerate alternating form y on P,y,o. Furthermore, we may inductively apply Lemma
1.10 (because of the second assumption) in order to deduce that there is a stably elementary
automorphism ¢ on P,y,o such that o'y =1 1L yn_o for some non-degenerate alternating
form ¢ on P,. In particular, 5 = [Py, xo L ¥9,%] by Corollary 3.3. Finally, any element of
this form is in the image of the generalized Vaserstein symbol by Lemma 4.7. So [ is in
the image of the generalized Vaserstein symbol.

For the last statement, note that any element of V (R) is of the form [R?", 1y, x] for some
non-degenerate alternating form x on R2" (because of the isomorphism V(R) = Wz (R)).
We may then artificially add a trivial summand [Py, xo, Xo]; hence any element of V(R) is
of the form [Py,42, X0 L %an, Xo L Xx] for some non-degenerate alternating form y on R?".

We can then conclude by the previous paragraph. O

Theorem 4.9. Let N € N. Assume that the following conditions are satisfied:

e Every element of V(R) is of the form [R2N 4on, x] for some non-degenerate alter-

nating form x on R2N.

e One has Tons1 2041 (Eoo (Po) N Aut(Paps1)) = Um(Paps1) for any neN with 1 <n< N

and U2N+1( UmzN—1(R)) c 7T2N+1,2N+1E(P2N+1)~
Then the generalized Vaserstein symbol V : Um(Py ® R)/E(Py ® R) - V(R) is surjective.

Proof. We proceed as in the proof of Theorem 4.8: By the first assumption, any element
of V(R) is of the form [R2N, sy, x] for some non-degenerate alternating form y on R2N.
Again adding a trivial summand [Py, xo, Xo], we see that any element of V(R) is of the
form [Panye, Xo L ¥an, Xo L x] for some non-degenerate alternating form y on R*V. As in
the proof of Theorem 4.8, it then follows inductively from Lemma 1.10 that any element
of V(R) is of the form [Py ® R2, xo L s, x] for some non-degenerate alternating form y on
Py ® R?. The generalized Vaserstein symbol is then surjective by Lemma 4.7. Note that
the condition mon41on+1 E(Pan+1) = Um(Payy41) can be replaced by the weaker condition

U2N+1( UmgN_l) c 7T2N+1,2N+1E(P2N+1) in our situation. O]

Corollary 4.10. Assume that the following conditions are satisfied:
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e The usual Vaserstein symbol V' : Umz(R)[E3(R) — Wg(R) is surjective;
o U5( Umg(R)) c 7T5,5(E°°(P0) N AUt(P5))

Then the generalized Vaserstein symbol Vy, : Um(Py® R)/E(Py® R) - V(R) is surjective.

Proof. The surjectivity of the usual Vaserstein symbol means that any element of V (R)
is of the form [R* 1y, x] for some non-degenerate alternating form y on R* Now the

corollary follows from the proof of Theorem 4.9. [

In order to prove our criterion for the injectivity of the generalized Vaserstein symbol,
we first introduce the following condition: We will say that P, satisfies condition (*) if
[Py@® R?, xo L Yo, x1] = [Po® R2, X0 L ¥s, X2] € V(R) for alternating forms x1, 2 on Py® R2
implies af(x1 L ¥o,) = X2 L ¥, for some automorphism a € Eo (FPy) N Aut(Popssa)-

If By is a free R-module, condition (*) is satisfied, which basically follows from the isomor-
phism Vi (R) 2 WL(R). Moreover, using the isomorphisms V(R) 2 Vj..(R) 2 WL(R),
we will see that it is possible to prove that condition () is always satisfied (cp. Lemma

4.12). As a first step towards Lemma 4.12, we observe:

Lemma 4.11. Let x be a non-degenerate alternating form on a finitely generated projective
R-module P. Then there exists a finitely generated projective R-module P’ with a non-

degenerate alternating form x' on P' and an isomorphism T : R*" 5 P P such that

THX L X)T = Yon.

Proof. Let @ be a finitely generated projective R-module such that P&() is free. Then, for
Q1=P'eQaeQ", one has P® )y 2 R*™ for some m > 0. Moreover, for ¢, = canx™! L Hy,
the form y L1 ¢ is hence isometric to a form ¢y on R*™. Now let ¢3 be a form on R?$ for
some s > 0 which represents the inverse of ¢, in W, (R). Then ¢y L ¢35 L 1)y is isometric
t0 Yomeossor for some ¢ > 0. We set P’ = Q1 @ R?**? and x’ = ¢1 L ¢3 L 1)o;. Then there is

an isometry 7 : R?M*25%2n — P’ hetween from g,,49s42: and x L X/, as desired. O]
Using Lemma 4.11, we may prove:
Lemma 4.12. Any Py satisfies condition (*).

Proof. We use the explicit description of the inverse of Vj..(R) = V(R) to prove Lemma
4.13 below, which obviously implies Lemma 4.12 for P = Py® R? and x = xo L ¥s: O]

90



Lemma 4.13. If [P, x,x1] = [P, X, x2] € V(R) for non-degenerate alternating forms x, x1
and x2 on a finitely generated projective R-module P, then a!(x1 L ¥on)a = X2 L o, for

some n € N and some automorphism o € E(P & R*").

Proof. The equality [P, x,x1] = [P, X, x2] means that [P, x1,x2] = 0. By Lemma 4.11, it
follows that there is a finitely generated projective R-module P; with a non-degenerate
alternating form x’ on P; and, moreover, with an isomorphism 7 : R?>™ 5 Pe P such
that 78(x1 L X')7 = ¥om. In particular, one has 0 = [P, x1, x2] = [R*™, Yom, T (X2 L X')T]
in V(R). Therefore the class of 7¢(x2 L x’)7 in WL(R) is trivial and there exist u > 1
and ¢ € EF(R*+2¢) such that ¢*((7%(x2 L X’)7) L ¥2,)C = Yamso,. Note that ¢ lies in the
commutator subgroup of Aut(R?*m+2v).

Again by Lemma 4.11, there exists a finitely generated projective R-module P, with a non-
degenerate alternating form x” on P, and with an isomorphism S : R?" 5 P eoR™e P,
such that G'(x’ L ¥a, LX) = 19,. But then the composite

€= (idp® ) (T ®idpe ®idp,) (T @idp,) (77! ® idgee @ idp, ) (idp & )

is an isometry from x; L o, to Y2 L %9, and also lies in the commutator subgroup
of Aut(P @ R?') because it is a conjugate of (7! 1 idp,. In particular, it follows that
€ L idgew € E(P @ R**?%) for some w > 0. Finally, if we then set a = £ 1 idg2e and

n =v +w, the lemma is proven. O]

Now that we have proven that condition (*) is always satisfied, we can find conditions
which imply that two elements a,b € Um(P, @ R) with the same Vaserstein symbol are

equal up to a stably elementary automorphism of Fy & R. More precisely:

Theorem 4.14. Assume that E(Py,)es, = (Eo(Po) 0 Aut(Psy,))es, for n > 2. Then
V(a) =V (b) for a,be Um(Py ® R) implies that b= ap for some p € Eoo(Py) N Aut(P3).

Proof. Let a,b e Um(P, ® R) with sections s, respectively and let i : PBp@ R - P(a) @ R
and j: Py® R — P(a) ® R be the isomorphisms induced by these sections. Furthermore,
we let V(a,s) = (i®1) (xa L ¥a)(i®1) and V(b,t) = (& 1) (x5 L ¥)(j ®1) be the
alternating forms on P, @ R? appearing in the definition of the generalized Vaserstein
symbols of a and b respectively. Now let us assume that V' (a) = V(b). Since P, satisfies
condition (*), there exist n € N and an automorphism « € Eo (FPy) N Aut(Ps,.4) such that
at(V(a,s) L Yop)a = V(b,t) L g,. Using Lemma 1.9, we may inductively deduce that
BtV (a,s)B = V(b,t) for some B € E(Py) n Aut(Py @ R?). Now by Lemma 1.8 and the
assumption in the theorem, there exists an automorphism v € E(FPy @ R?) n Sp(V(a, s))
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such that fey = vey.
We now define 6 : Py® R — Py & R as the composite

Py ® Res — Py ® Res ® Rey > Py @ Res ® Rey — Py ® Res.
One can then check that ¢ is an element of Eo (FPy) n Aut(Py & R). Moreover, we have
B (y)V(a,s)y' 8=V (bt)
and in particular ad = b, as desired. O]

Corollary 4.15. Under the hypotheses of Theorem 4.14, furthermore assume that the
equality a(Fo(FPy) N Aut(Py @ R)) = aE(FPy @ R) holds for all a €e Um(Py ® R). Then the
generalized Vaserstein symbol V : Um(Py@® R)/E(Py ® R) — V(R) is injective.

Proof. By Theorem 4.14, we already know that V(a) = V(b) implies b = ay’ for some
¢ € Ew(Py) n Aut(Py @ R). Now by the additional assumption, there also exists an
elementary automorphism ¢ of Py @ R such that b = ap. So the generalized Vaserstein

symbol is injective. O

Regarding the additional assumption in Corollary 4.15, it is actually possible to adapt
the arguments given in the proof of [SV, Corollary 7.4] in order to prove that the desired
equality a(Fw(Py) N Aut(Py ® R)) = aE(Py ® R) holds for all a € Um(P, @ R) if one has
Eo(Py) n Aut(Py® R?) = E(Py):

Lemma 4.16. If the equality Ew(Fy) N Aut(Py® R?) = E(Py) holds, then also the equality
a(Eo(Po) n Aut(Py® R)) = aE(Py ® R) holds for all a e Um(P, & R).

Proof. Let a € Um(Py ® R) with section s and let ¢ € Eo(Fy) n Aut(Py @ R). If we let
V(a,s) be the alternating form from the definition of the generalized Vaserstein symbol,

then it follows from the proof of Lemma 4.7 that
(p@1)V(as)(pel)=V(d,s)

for some a’ € Um(FPy @ R) with section s’. By assumption, the automorphism ¢ &1 of P, is
an element of the group F(P;). Moreover, by Corollary 1.4, the group E(P;) is generated

by elementary automorphisms ¢, = idp, + g, where g is a homomorphism
1) g- R@g - POa
2) g: PO - Re37
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3) g: Res - Rey or

4) g: Rey — Res.
It therefore suffices to show the following: If ¢!V (a,s)p, = V(a',s") for some g as above,
then a’ = at) for some ¢ € E(Py@® R). The only non-trivial case is the last one, i.e. if g is
a homomorphism Rey — Res.

So let g : Rey — Res and let ¢, be the induced elementary automorphism of Pj;. As

explained above, we assume that
etV(a,s)py=V(d',s")

for some epimorphism a’ : Py® Rez - R with section s’. Now write a = (ag, agr), where qq is
the restriction of a to Py and ag = a(es) respectively. Furthermore, let p = mp,(s(1)). From
now on, we interpret the alternating form yq in the definition of the generalized Vaserstein

symbol as an alternating isomorphism xq : P — PY. Then one can check locally that

a’ = (ag - g(1) - xo(p), ar)-

Then let us define an automorphism ¢ of P; as follows: We first define an endomorphism
of P() by

Yo =idp, —g(1) -mp, 0 sox0(p) : Fo = Py
and we also define a morphism Fy - Res by
Yr=-g(1)-mrosoxo(p): o~ R
Then we consider the endomorphism of Fy @ R given by
v (% ! )
Yr idg
First of all, this endomorphism coincides up to an elementary automorphism with
)
0 idg
Since xo(p) o g, © s = 0, this endomorphism is an element of E(P, ® R) by Lemma 1.6.

Hence the same holds for ¢. Finally, one can check easily that ai = a’ by construction. [

As an immediate consequence, we can finally deduce our criterion for the injectivity of the

generalized Vaserstein symbol:
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Theorem 4.17. Assume that E(Ps,)ea, = (Ew(FPy) N Aut(Pay,))es, for all n > 3 and
furthermore that E(Py) n Aut(P,) = E(Py). Then the generalized Vaserstein symbol
V:Um(Py® R)/E(Py® R) - V(R) is injective.

Proof. Combine Corollary 4.15 and Lemma 4.16. ]

Let us now study the criteria for the surjectivity and injectivity of the generalized Vaserstein
symbol found in this section. In [HB], the conditions of Theorem 4.8 and Theorem 4.17
are studied in a very general framework. If R is a Noetherian ring of Krull dimension d,
it follows from [HB, Chapter IV, Theorem 3.4] that actually Unim.El.(P,) = E(P,)e, for
all n>d+2 (or Um(P,) = m,, E(P,) for all n >d+2). In particular, if dim(R) < 4, then
the generalized Vaserstein symbol is injective as soon as Eo(Fy) n Aut(Py) = E(P,); if
dim(R) < 3, it is surjective. Hence the following results are immediate consequences of our

stability results in Section 1.5:

Theorem 4.18. Assume that R is a reqular Noetherian ring of dimension d =2. Then the
generalized Vaserstein symbol V : Um(Py @ R)|E(Py ® R) — V(R) is a bijection.

Proof. This follows directly from Theorem 1.21. [

Theorem 4.19. Assume that R is a reqular affine algebra of dimension d = 3 over an
algebraically closed field k or over a perfect field k such that c.d.(k) <1 and 6 € k*. Then

the generalized Vaserstein symbol V : Um(FPy @ R)[E(FPy® R) — V(R) is a bijection.

Proof. Tt follows from [S1] and [B, Remark 4.2] that k satisfies property P(4,3) if k is
algebraically closed or if k is infinite perfect with c.d.(k) <1 and 6 € k*. If k is finite, this

follows from Proposition 1.15. Hence the theorem follows directly from Theorem 1.22. [

Because of the pointed surjection Um(Py®R)/E(Po®R) - ¢35 ([ Po® R]), the bijectivity of
the generalized Vaserstein symbol always gives rise to a surjection Wg(R) — ¢3' ([Po® R]);
in this case, it seems that the group structure of Wg(R) 2 Um(Py®R)/E(Py®R) essentially
governs the structure of the fiber ¢;1 ([P @ R]).

The following application follows - to some degree - the pattern of the proof of [FRS,

Theorem 7.5] and illustrates the previous paragraph:

Theorem 4.20. Let R be a commutative ring and Py be a projective R-module of rank 2
which admits a trivialization 0y of its determinant. Assume that the following conditions

are satisfied:

94



a) The generalized Vaserstein symbol Vg, : Um(Py ® R)/E(Py @ R) - V(R) induced by

Oy is a bijection.
b) 2Vy,(ag,ar) = Va,(ag,a%) for (ag,ar) e Um(Py @ R).
¢) The group Wg(R) is 2-divisible.
Then ¢35 ([ Py ® R]) is trivial.

Proof. Assume P'® R = Fy @ R. As we have seen in Section 1.3, P’ has an associated
element in the orbit space Um(Py@® R)/Aut(Py® R). We lift this element to an element [b]
of Um(Py® R)/E(Py® R) ([b] denotes the class of be Um(FPy® R)). Since the generalized
Vaserstein symbol is a bijection and Wg(R) is a 2-divisible group by assumption, we get
that [b] = 2[a], where [a] denotes the class of an element a = (ag,ar) of Um(Py & R)
in the orbit space Um(P, ® R)/E (P, @ R). But then the second assumption shows that
2[a] = [(ao,a%)]. It follows from [B, Proposition 2.7] or [S1, Lemma 2] that any element
of Um(Py & R) of the form (ag,a%) is completable to an automorphism of P, @ R, i.e.
mre = (ag,a%) for some automorphism ¢ of Py & R, where 7 = 133 : Py ® R - R is
the projection. Altogether, mr and b therefore lie in the same orbit under the action of
Aut(Py @ R) and hence P’ = P. Thus, ¢;' ([P, @ R]) is trivial. O

In the remainder of this section, we are going to address the second condition in the theorem
above. In fact, we are going to prove that the sum formula nV (ag,ar) = V (ao, a%) holds
for a smooth affine algebra R over a perfect field & with char(k) # 2 such that —1 e k< if
n =0,1 mod 4. This formula will be proven by using the AL-homotopy category over the
base scheme Spec(R).

For the first lemma below, we let R be any commutative ring and I be as usual a projective
R-module of rank 2 with a fixed trivialization 6, of its determinant. Furthermore, we let

f:R— B and g: B — C be ring homomorphisms. Then we have canonical maps
fem :Um(Py® R) -~ Um((Py ®r B) ® B)
and
G5 Um((Po®r B) @ B) > Um((Py®or C) & C).

Furthermore, the B-module Py ®r B and the C-module Py ®r C' have trivial determinants;
their trivializations are given by 6y ®g B and 6y ®r C respectively. Finally, note that there
is a group homomorphism g* : V(B) — V(C') which sends any class [P, x1, x2] in V(B) to
the class [P ®p C, x1 ®5 C, x2 ®5 C] in V(C).
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Lemma 4.21. We have Vy,g,c(9f,,(a)) = 9*(Vosrp(a)) for any a e Um((Py®r B) ® B).

Proof. If s: B - (Py®g B) @ B is a section of a, then s clearly induces a section s ® 5 C'
of aep C e Um((Py®rC) @ (C). We let P(a) = ker(a), P(a®p C) =ker(a®p C) and we
let is : (Ph®r B)® B — P(a) @ B and isg,c : (Ph®r C) ®C — P(a®p C)® C be the
isomorphisms induced by s and s®g C. Furthermore, we let V(a, s) and V(a®pC,s®pC)
be the alternating forms (i, ® 1)"(xq L ¢2)(is ® 1) and (isg,c @ 1) (Xaope L ¥2)(isppc @ 1)
from the definition of the generalized Vaserstein symbol. As usual, we let P, = Py & R?.
Then, under the isomorphism (Py ®x B) ®5 C' = Py ®p C, it is routine to check that the
alternating form V' (a, s)®pC' corresponds to V{(a®pC, s® 5C'). This proves the lemma. O

We now fix a smooth affine algebra R over a perfect field k with char(k) # 2 as a base ring
and give an alternative description of the generalized Vaserstein symbol for smooth affine
algebras over the base ring R.

For this, we start with a few general remarks: We fix finitely generated projective R-
modules P and () such that P & () = R™ for some n € N. Furthermore, we denote by
Sym(P), Sym(Q) and Sym(R") = R[Xj, ..., X,,] the symmetric R-algebras of P, ) and
R™ respectively. Next we set E(P) = Spec(Sym(P)), E(Q) = Spec(Sym(Q)) and identify
A" with Spec(Sym(R™)). Note that the inclusions ip, ig of P and @) into R and the
projections mp, mg of R™ onto P and () respectively induce R-algebra homomorphisms
between the corresponding symmetric algebras.

We denote by (P) and (@) the ideals in Sym(P) and Sym(Q) generated by the homo-
geneous elements of degree > 1 and denote by 0 their corresponding closed subschemes of
E(P) and E(Q). By abuse of notation, we also denote by (P) and (@) the ideals generated
by their images in Sym(R"). Note that Sym(R")/{Q) = Sym(P).

Now let SI | = R[Xy,..., X, Y1, ... V, ]/(E, XiYi— 1) and let QF | = Spec(SE ;). Then

the R-algebra homomorphism
in s Sym(R") = R[ X4, ..., X,] = SE | X;» X,
induces a Zariski-locally trivial morphism of schemes
pro: Q5 > AENO

with fibers isomorphic to A%
Again by abuse of notation, we will denote by (Q) the ideal generated by the image of
(Q) ¢ Sym(Q) under the map Sym(Q) - Sym(R") 2 SE . furthermore, we define
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SE =Sk Q) and QF | = Spec(SE ). One can check easily that the composite of

mn

R-algebra homomorphisms
i Sym(P) > Sym(R) = Sf_, ~ S,
induces a Zariski-locally trivial morphism of schemes
ry Qf oy = E(P)NO

with fibers isomorphic to A%t It follows that Q% | is a smooth scheme over Spec(R) and
pr,, is an AL-weak equivalence.
Now let B be a smooth affine algebra over R. Then one can check easily that there are

natural bijections
Homp_g(Sym(P), B) = Homp_me (P ®r B, B)
and
Hompag(SE_,B) > {(a,s) e Um(P ®r B) x B"|a(npe,5(s)) = 1}.

We apply the previous paragraphs now to the case P = Py = Py @ R (with Fy a projective
R-module of rank 2 with a fixed trivialization 6 of its determinant as usual). The epimor-
phism 75 : Py@ R - R with section (0, 1) € Py® R induces basepoints Spec(R) = Qg,-; and
Spec(R) - E(P) 0. The morphism pr,, : QF | = E(P) 0 is then a pointed morphism;
in particular, it has an inverse pr;! in H.(R). Forgetting the basepoints, we may also
interpret this morphism as a morphism in H(R).

The identity of S¥ | corresponds to an epimorphism a : P3®g S _| - SE | with a section
s € Pyor SE | and an element t € Q ®g SF . Therefore the identity on Q¥ | deter-
mines a well-defined generalized Vaserstein symbol (with respect to the fixed trivialization
0o ®r SE | of det(Py) ®r SE )

V(a) € V(S51) 2 [QF, 1, RUGW [y,

which corresponds to a morphism Q% | - RQIGW? in H(R); we will denote this morphism

by V. Furthermore, the composite

— -1
pry,

BE(P)~ 025 QF 5 ROIGW?
defines a morphism E(P) \ 0 — RQLGW? in #(R), which we again denote by V.
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Lemma 4.22. Assume that B is a smooth affine algebra over R, a € Um(P; ®g B) and
fa @ Spec(B) —» E(P3) ~ 0 the morphism of schemes corresponding to a. Then V o f,

corresponds to the generalized Vaserstein symbol of a associated to the trivialization Oy®rB.
Proof. This follows directly from Lemma 4.21. [

As a matter of fact, there is a formal way to prove that we can assume that the composite
E(P)~NO L o % ROLGW? can be represented by an actual morphism of pointed
spaces E(P) N0 > RQIGW?: Since ROQLGW? is Al-fibrant, we already know that the
composite E(P) 0 L DL % ROLGW? is given by an actual morphism of spaces.
Moreover, since the composite Spec(R) - E(P)~0 ﬂ ROQLGW? computes the general-
ized Vaserstein symbol of the projection 7g : Py@®R — R, it is null-homotopic. As RQIGW?
is AL-fibrant, there is a naive AL-homotopy from the basepoint Spec(R) — ROQLGW? of
ROLGW? to the composite Spec(R) - E(P) N0 T ROQIGW?. By adjuntion, this naive
AlL-homotopy is represented by a morphism H : Spec(R) - Hom(AL, RQIGW?). As
Hom(Spec(R), RQLGW?) = RQIGW? | we obtain a commutative diagram

Spec(R) —~ Hom(AL RQIGW?)

T

E(P)~0 ROQIGW?,

Vpr,!

where the right-hand vertical morphism is induced by evaluation at 1. By [MV, Lemma
2.2.9], this morphism is a simplicial fibration and weak equivalence; since furthermore the
morphism Spec(R) — E(P) ~ 0 is a cofibration, there automatically exists a morphism
F: E(P)N0 - Hom(AL, RQIGW?) making the two resulting triangles commute. If
we let evy : Hom(AL RUIGW?) - RQLGW? be the morphism induced by evaluation
at 0, then the composite evyF is a pointed morphism E(P)\ 0 - RQLGW? which is
naively AlL-homotopic to Vpry,!. Hence it follows that we can assume that the composite
E(P)NO p_r—;bi QF | % ROLGW? can be represented by an actual morphism of pointed
spaces F(P)~0 - RQLGW?.

The previous paragraph finally enables us to prove the desired sum formula:

Theorem 4.23. Let R be a smooth affine algebra over a perfect field k with char(k) # 2
such that -1 € k% and n € N. Furthermore, let Py be a projective R-module of rank 2 with
a fized trivialization 0y : R 5 det(Py) of its determinant. If n = 0,1 mod 4, then the sum
formula Vg, (ag,a) =n- Vo, (ao,ar) holds for all (ag,ar) €e Um(Fy @ R).
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Proof. As we have just seen, the generalized Vaserstein symbol can be defined by means
of a pointed morphism V: E(Ps) \ 0 - RQIGW? in Speg..

Setting P = P3, we now consider the pushout square

((E(P)N0)xGpr), —= (E(Fy) xGp.r),

| |

((E(Ro) ~0) x AR), (E(P)~0),

in Spcr. given by the Zariski covering of (E(P) \0),, which is also a homotopy pushout

square. Furthermore, we also consider the square

(E(Po)N0), xGyr—E(R) xGpr

|

(E(PO) N O)+ x A}{

and let ) be its homotopy pushout. Clearly, the obvious morphism from the first to the
second diagram induces a morphism ¢ : (E(P)\0), -» Y. Furthermore, the n-fold power
map A} - Al, can be used to define power operations v, : (E(P) \ 0), - (E(P)~0), and
¥, : Y = Y respectively. By sending * x G,, p and * x A} to the basepoint of ROQIGW?,
we can extend the morphism V, obtained from the morphism V defining the generalized
Vaserstein symbol to a morphism V: Y - RQLGW?.

Now the commutative diagram

(E(P)\0), = (E(P) \ 0), ~—~RQIGW’

+

L

Y Y Y~ ROIGW?

shows that it suffices to show that the composition V o1, is equal to n-V in H.(R) with
respect to the group structure on [%RQ;QW?’]A}%’, induced by RQIGW?.
But since Y is the homotopy pushout of the diagram

(E(PO) N\ 0)+ X Gm,R—>Gm,R )

|

(E(Po)~0)

+
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it is weakly equivalent to S' A G,, g A (E(FP)N0), (cp. [Mo, p.219]) and therefore has
the structure of an h-cogroup. Under this weak equivalence, the power operation 1), then
corresponds to the smash product of the n-fold power map on G,, p with STA(E(Fy) N 0),.
By Corollary 2.2, this implies that ), is equal to n-idy in [, y]%, and also that Vo1,
is equal to n-V in [, RQiQWg] Al e with respect to the group structures induced by ) as
an h-cogroup. By the usual Eckmann-Hilton argument, it follows that V o4, is equal to
the n-fold sum of V with respect to the group structure on [V, RQIGW?] sl o induced by
ROLGW? as an h-group. This proves the theorem. O

We conclude this section with two applications of the previous theorem:

Theorem 4.24. Let R be a normal affine algebra of dimension d > 3 over an algebraically
closed field k with char(k) # 2; if d = 3, furthermore assume that R is smooth. Let Py be a
projective R-module of rank 2 with a trivial determinant and let P, = Py ® R" 2 for n > 3.
Then, for any a € Um(P;) and j € N with gcd(char(k),j) = 1, there is an automorphism
@ € B(P;) such that ap has the form b= (by, b}, ..., bq).

Proof. Let a = (ag,as,...,aq) € Um(P;) and I = (ay4,...,aq). By Lemma 1.14, we know
that we can assume that R/I is either 0 or a smooth affine algebra of dimension 3 over
k. If R/I =0, then Lemma 1.13 proves the statement of the theorem. So let us assume
that R/I is a smooth affine algebra of dimension 3 over k. In this case, we know that
the generalized Vaserstein symbol associated to Py/IP, and any fixed trivialization of its
determinant gives a pointed bijection between Um(Ps/IPs)/E(Ps/IPs) and V(R/I); this
bijection induces a group structure on Um/(Ps/1P3)[E(Ps/1P;) (cp. Theorem 4.19). Since
the latter group is divisible prime to char(k) # 2 (cp. [FRS, Propositions 5.1 and 6.1}),
there is (bo, b3) € Um(Ps/IPs) with 45-(bo, b3) = (@o,as) in Um(Ps/IPs)]E(Ps/IPs). Then
the previous theorem implies that in fact (by,by’) = (do,as) in Um(Ps/IPs)/E(Ps/IPs).
Applying the map ®3(a) now yields the theorem. ]

Corollary 4.25. Let R be a smooth affine algebra of dimension 3 over an algebraically
closed field k with char(k) # 2 and let Py a projective R-module of rank 2 with trivial
determinant. Then Um(Py @ R)[SL(Py ® R) is trivial; in particular, Py is cancellative.

Proof. Let a = (ag,a3) € Um(Py @ R). By the previous theorem, there is p € E(FPy ® R)
such that aep is of the form b = (by, b2). By Proposition 1.17, there is ¢ € SL(P, & R) such
that b1 is the projection onto R. This proves that Um(Py @ R)/SL(Fy @ R) is trivial. In
particular, this implies that the orbit space Um(Py @ R)/Aut(FPy @ R) is trivial and hence

that P, is cancellative.
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4.3 The generalized Vaserstein symbol modulo SL

In this section, we compose the generalized Vaserstein symbol Vj,, with the canonical epi-
morphism V(R) — Vs (R). In fact, we will see immediately that this map descends
to a map Vp, : Um(Py ® R)/SL(Py ® R) - Vsr(R). We will study this map under
some suitable assumptions and deduce a criterion for the triviality of the orbit space
Um(Py®R)/SL(Py® R). In particular, by studying symplectic orbits of unimodular rows,
we will prove that Ums(R)/SLs(R) is trivial if and only if Vs, (R) is trivial whenever R
is a smooth affine algebra of dimension 4 over an algebraically closed field k with 6 € k*.
We will use the notation of Sections 1.2 and 4.2: Throughout this section, we let R be a
commutative ring and we let F be a projective R-module of rank 2 with a fixed trivializa-
tion 0y : R — det(Py,) of its determinant. For all n > 3, we let P, = Py® Re3 @ ... ® Re,, and
we will sometimes omit the explicit generators e;, i = 3,...,n, of the free direct summands
of rank 1 in the notation. Again, we denote by ., : P, = R the projections onto the free
direct summands of rank 1 with index k =3, ..., n.

As usual, we will mostly omit the trivialization 6, in our notation and denote Vj, simply

by V' if there is no ambiguity. As a first step, we prove:

Theorem 4.26. Let ¢ € SL(Py®R) and a € Um(Py®R). Then V(a) = V(ay) in Vsr(R).
In particular, we obtain a well-defined map V : Um(Py @ R)[SL(Py® R) —» Vs (R), which

we call the generalized Vaserstein symbol modulo SL.

Proof. Let ¢ € SL(Py® R) and let s: R - Py @ R be a section of a € Um(Py ® R). Then
v~ ls is a section of ap. We let i: By@ R - P(a) ® R and j: Py & R — P(ay) @ R be the

isomorphisms induced by the sections s and ¢~'s. Obviously, it suffices to show that

(pol)(i0l) (xaLva)(iel)(vel)=(j&1) (x@u) L¥2)(ie1).

As in the proof of Theorem 4.6, one checks that (i®1)(¢®1) = ((¢@®1)®1)(j@®1), where
by abuse of notation we understand ¢ as the induced isomorphism P(ay) — P(a). Hence
it suffices to show that ¢'x,¢ = Xaq-

For this, we let (p, ¢) a pair of elements in P(ayp); by definition, x,, sends these elements
to the image of p A ¢ under the isomorphism det(P(ay¢)) 2 R. This element can also be
described as the image of p A ¢ A p~1s(1) under the isomorphism det(FP, ® R) 2 R.
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Analogously, the alternating form ¢!y, sends the pair (p,q) to the image of the element
©(p) Ap(q) As(1) under the isomorphism det( Py @ R) ~ R. Since ¢ has determinant 1, the
automorphism of det(Fy @ R) induced by ¢ is the identity (cp. Lemma 1.11). This proves
the desired equality ©'xa9 = Xap- ]

By abuse of notation, we denote by V =V, : Um(Py®R)/E(Py®R) - Vs (R) the compos-
ite of the generalized Vaserstein symbol associated to 6y and the canonical epimorphism
V(R) > Vsi(R).

Theorem 4.27. Let R be a Noetherian ring of Krull dimension < 4. Assume that SL(Ps)
acts transitively on Um(P;). Then the map V : Um(Py & R)/E(Py ® R) —» Vsi(R) is

surjective.

Proof. Let [ € VSL(R). Since dim(R) < 4, we know that Um(FP,) = m, ,E(F,) for all n > 6.
Therefore every element in V(R) is of the form [Ps, xo L 4, x] for some non-degenerate
alternating form y on Ps by Lemma 1.10; hence the same holds for any element in Vg L(R).
Consequently, we can write 8 = [Ps, xo L ¥4, X].

Now let d = x(-,e¢) : Ps = R. Since d can be locally checked to be an epimorphism,
there is an automorphism ¢ € SL(Ps) such that dp = m55. Then the alternating form
X' = (0@ 1) x(p ®1) satisfies that '(-,es) : Ps - R is just m55. Now we simply define
c=x'(-,e5) : Ps > R and let . = idp, +ceg be the elementary automorphism on Py induced
by ¢; then ¢/ x"p. =1 1 1y for some non-degenerate alternating form ¢ on Pj. Since all
the isometries we used have determinant 1, we conclude that 5 =[Py, xo L 12,%]. As any
element of this form lies in the image of the generalized Vaserstein symbol by Lemma 4.7,

this proves the theorem. O

We remark that the assumption in the last theorem is satisfied if R is an affine algebra of
dimension < 4 over an infinite perfect field k£ of cohomological dimension < 1 with 6 € k*
(cp. [S1], [S5] and [B]) or if R is a Noetherian ring of dimension < 3 ([HB, Chapter IV,
Corollary 3.5]).

In order to study the fibers of the map V : Um(Py @ R)/E(Py ® R) — Vs (R), we prove
the analogue of Lemma 4.13 for the group f/SL(R):

Lemma 4.28. If two elements [P, x,x1],[P, X, x2] € Vs.(R) are equal, then there is an
automorphism ¢ of SL(P & R>") for some n >0 such that x1 L g, = ¢V (x2 L ¥a,) .

Proof. The equality [P, x, x1] = [P, x, x2] means that [P, x1,x2] = 0. By Lemma 4.11, it

follows that there is a finitely generated projective R-module P; with a non-degenerate
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alternating form y’ on P; and, moreover, with an isomorphism 7 : R?™ 5 Peo P such
that 7¢(x1 L x')7 = t9n,. In particular, one has 0 = [P, x1, x2] = [R?*™, Yom, 7' (x2 L X')7]
in Vs (R). Therefore the class of 7¢(x2 L x')7 in W%, (R) is trivial and hence there exist
u>1 and ¢ € SL(R?>"*2v) such that C*((7%(x2 L X')7) L ¥2,)C = Yomiou-

Again by Lemma 4.11, there exists a finitely generated projective R-module P, with a non-
degenerate alternating form y” on P, and with an isomorphism [ : R?? S PeR"e P,
such that S'(x’ L ¥ay LX) = 19,. But then the composite

o= (de & 6_1)(7' @idR2u @ idPQ)(C_l @'idpz)(T_l @'édRzu @idPQ)(idp & B)

is an isometry from x; L 19, to x2 L ¥, and clearly has determinant 1. This proves the

lemma. O]

Now let us study the fibers of the map V : Um(Py® R)/E(Py® R) - Vs, (R). For this, we
describe an action of SL(P;) on Um(Py & R)/E(Py ® R) as follows:

First of all, note that E(F,) is a normal subgroup of SL(Py): If we let ¢ € SL(P,) and
¢’ € E(PFy), then there is a natural isotopy from idp, to ¢~'¢'p. By Theorem 1.18 and
Suslin’s normality theorem (cp. [S3]), it follows that p=tp'@ € E(Py).

Now let ¢ € SL(Py) and a € Um(Py & R). We choose a section s: R - Py @ R of a and

obtain a non-degenerate alternating form
V(a,s) = (is®1) (xa L ¥2) (is 1)

as in the definition of the generalized Vaserstein symbol. Then we consider the alter-
nating form !V (a,s)p. By abuse of notation, we also denote by a the class of a in
Um(Py® R)/E(Py® R) and define a - ¢ to be the class in Um(Py @ R)/E(FP, ® R) repre-
sented by 'V (a,s)p(—,e4): Ph® R - R.

Now let us show that this assignment gives a well-defined right action of SL(FP,;) on
Um(Py® R)|E(Py @ R): If we choose another section s’ of a, then there is ¢’ € E(P;)
such that ¢’V (a,s")¢’ =V (a,s) (cp. the proof of Theorem 4.4). Since E(Py) is a normal
subgroup of SL(Py), it follows that

(©)V(a,8)p= (") () V(a,s)pp"

for some ¢” € E(P;). The lemma below will hence imply that our assignment does not
depend on the choice of the section s of a.

Similarly, if o/ = ay’ for ¢’ € E(Py @ R), then V(a/,s') = (¢’ ®1)"'V(a,s)(¢’ ® 1), where
s' = (') ""s (this follows from the proof of Theorem 4.6). Again, since E(P,) is normal in
SL(Py), it follows that
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(©)'V(a,s)p = (") (@) V(d,s")pp"

for some ¢” € E(P,). The following lemma then also implies that our assignment does
only depend on the class of a in Um(P, @ R)/E(FPy @ R).

Lemma 4.29. Let x and x' be non-degenerate alternating forms on the module Py such that
[Pi, X0 L 2, x], [Pa; X0 L ¥2,X'] € V(R) and let a = x(=,e4),a" = x'(~,€s) € Um(Py @ R).
If otxp = X' for some p € E(Py), then the classes of a and a' coincide in the orbit space
Um(Py® R)/E(P, @ R).

Proof. First of all, the group E(Py) is generated by elementary automorphisms ¢, = idp, +9,

where ¢ is a homomorphism

1) g: Rez —» Py,

2) g: Py~ Res,

3) g: Res - Rey or

4) g: Rey — Res.
Furthermore, we can write x = V(a,s) and x’ = V(a’,s’) for sections s and s’ of a and o
respectively (cp. the proof of Lemma 4.7). Hence it suffices to show the following:
If 'V (a,s)p, =V (a',s') for some g as above, then a’ = ai) for some ¢ € E(F, ® R). The
only non-trivial case is the last one, i.e. if g is a homomorphism Re; - Res.

As in the proof of Lemma 4.16, we let g : Rey - Res and let ¢, be the induced elementary

automorphism of P, and we assume that

woV (a,5) g =V (d',s)

for some epimorphism a’ : Py @ Reg — R with section s’. We then write a as a = (ag,ar),
where ag is the restriction of a to Py and ag = a(es). Moreover, we define p = 7wp,(s(1)).
From now on, we interpret the alternating form yo in the definition of the generalized

Vaserstein symbol as an alternating isomorphism xq: P - PV. One can verify locally that

a’ = (ao = g(1) - xo(p), ar).

Then let us define an automorphism v of P; as follows: We first define an endomorphism
of Py by

Yo =1idp, = g(1) -7, 050 x0(p) : Py = Py
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and we also define a morphism Fy - Reg by

Yr=-g(1) -mrosoxo(p): Ph—~ R.

Then we consider the endomorphism of Py @& R given by

(% O
¢_(¢R Z.dR)‘

First of all, this endomorphism coincides up to an elementary automorphism with

Yy 0
0 idg)

Since xo(p) o g, © s = 0, this endomorphism is an element of F(P, ® R) by Lemma 1.6.

Hence the same holds for ¢. Finally, one can check easily that aw = a’ by construction. [J

As indicated above, the previous lemma shows that our previous assignment gives a well-

defined map
Um(Po@R)/E(P()EBR) X SL(P4) — Um(P()EBR)/E(PQ@R)

Note that if a € Um(Py® R) with section s and ¢ € SL(Py), then it follows from the proof of
Lemma 4.7 that the alternating form ¢V (a, s)¢ equals V {a-p, s') for some section s’ of a-p.
It follows that the map above is indeed a right action of SL(P;) on Um(Py® R)/E(Py® R).
In fact, the previous lemma shows that this action descends to an action of SL(P,)/E(Py)
on Um(Py@® R)/E(Py® R).

Lemma 4.30. Let x; and xo be non-degenerate alternating forms on the module Py, such
that ©'(x1 L ¥2)e = x2 L 1y for some ¢ € SL(Pa,y2). Furthermore, let x = x1 L 9. If
SL(Pspt2)eon+a = Sp(X)eansa holds, then one has ¥ix1¢ = x2 for some 1 € SL(Py,).

Proof. Let ¢"eonia = @eanro for some ¢ € Sp(x). Then we set ' = (w”)_lgo. Since
(@D/)t(Xl L o))" = x2 L 19, the composite 1 : Py, v, P90 — P, and 1’ satisfy the

following conditions:

b ¢'(€2n+2) = €2n+2;
L4 7T2n+1,2n+21/1' = Ton+1,2n+2;

o Yy = xo.
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These conditions imply that ¢ equals ¥’ up to elementary morphisms of P, and hence

has determinant 1 as well. This finishes the proof. O

Theorem 4.31. Let R be a Noetherian ring of dimension < 4. Let a,a’ € Um(Py & R).
Then V(a) = V(a') in Vsr(R) if and only if a-¢ = a’ in Um(Py® R)|E(Py® R) for some
((2S SL(P4)

Proof. We let s,s" : R - Py @ R be sections of a and a’ and V(a,s) and V(a/,s’) be the
alternating forms induced by s and s’ which appear in the definition of the generalized
Vaserstein symbol. Now assume that V(a) = V(a’). Since dim(R) < 4, we know that
E(P,)e, =Um(P,) for all n > 6. In particular, one has (E(Ps,) n Sp(x))ean = Um(Py,)
for all n > 3 and all non-degenerate alternating forms on P, (cp. Lemma 1.8). Hence we
can apply Lemma 4.28 and Lemma 4.30 in order to deduce that ¢!V (a,s)p =V (a’,s") for
some ¢ € SL(P;). By definition of the action of SL(P;) on Um(Py & R)/E(P, ® R), this
means that a- ¢ =a’.

Conversely, assume that a-¢ = a’ for some ¢ € SL(P;). By definition, this means that
©'V(a,s)p =V(a",s"), where the class of a” e Um( P, ® R) coincides with the class of a/ in
Um(Py@R)/E(FPy® R) and s" is a section of a”. In particular, it follows from the proofs of
Theorem 4.4 and Theorem 4.6 that there exists ¢ € E(Py) with ¥'o!V (a, s)p =V (a', s").
This clearly implies that V' (a) = V(a') in V1 (R). O

For any Noetherian ring R of dimension < 4, we have established the following exact

sequence of groups and pointed sets whenever SL(Ps) acts transitively on Um(Ps):
SL(P)) = Um(Py® R)]E(Py® R) 5 Vsr(R) — 0.

In this situation, we mean by exactness at Um (P, ® R)/E(P, ® R) that two classes in
Um(Py® R)/E(Py® R) represented by a,a’ e Um(Py ® R) satisfy V (a) = V(a') in Vs (R)
if and only if ap = o’ for some ¢ € SL(Py).

Furthermore, there is a well-defined right action of SK;(R) on Wg(R) = V(R) given by the
following assignment: If ¢ € SLs,(R) and 6 € As,(R) represent elements of SK;(R) and
Wg(R), then 6-p is represented by the class of ¢! in Wg(R). This action is compatible
with the right action introduced above: Following [We, Chapter III, Lemma 1.6], any
finitely generated projective R-module () such that Py @ ) @ R" for some n > 0 induces a
well-defined group homomorphism SL(P;) - SL,,2(R). This induces a well-defined map
SL(P;) - SKi(R) independent of the choice of (). In fact, the map descends to a well-
defined group homomorphism St : SL(P;)/E(P;) - SKi(R). One can then check easily
that the diagram

106



Um(Ps)[E(Ps) x SL(FPy)[ E(Py) —Um(Ps)/E(Ps) —=Um(P3)[SL(P)

)
e | |

V(R) x SK,(R) (R) VSL(R)

<

1s commutative.

As a consequence of the previous theorem, we obtain the following criterion for the injec-
tivity of the map V : Um(Py @ R)/SL(Py® R) - Vs (R):

Theorem 4.32. Let R be a Noetherian ring of dimension < 4. Then the induced map
V:Um(Py® R)/SL(Py® R) — Vs.(R) is injective if and only SL(Py)eq = Sp(x)es for all
non-degenerate alternating forms x on Py such that [Py, xo L 12, x] € V(R).

Proof. First of all, assume that SL(P;)e; = Sp(x)es for all non-degenerate alternating
forms x on Py such that [Py, xo L %2, x] € V(R). Now let a,a’ € Um(Py ® R) such that
V(a) =V (a'). Then ¢'V(a,s)p =V {(a’,s") for some ¢ € SL(P;) and sections s, s’ of a and
a’ by the previous theorem. By assumption there is ¢’ € Sp(V(a,s)) with pey = @'ey. If
we let " = "1, then ¢”ey = e4 and ¢V (a,s)¢” = V(a',s’). Thus, if we write

o = (“Off O) e Aut(Py @ R),
Pr 1

then ¢ has determinant 1 and satisfies a’ = ap{/. In particular, the classes of a and a’ in
Um(Py® R)/SL(Py ® R) coincide and V is injective.

Conversely, assume that V' is injective. Let x be an arbitrary non-degenerate alternat-
ing form on P, such that [Py, xo L w2, x] € V(R) and also let ¢ € SL(P,). We write
X = V(a,s) and ptxp = V(d/,s") for a,a’ € Um(Py @ R) with sections s and s’. Then
obviously V(a) = V(a’). By assumption, there is ¢’ € SL(Py @ R) with a/ = a¢’ and hence
(0@ 1)V (a,s)(¢'@®1) = V(a,s"), where s is a section of a’. Furthermore, there exists
©" € E(Py) with ey = e4 such that "V (a’,s"”)¢” = V(a’,s’) (cp. the proof of Theorem
4.4). The automorphism 3 = o (¢’ ® 1)_1 lies in Spx and satisfies [Ses = ey, which

proves the theorem. O
The proof of Theorem 4.32 shows in particular the following statement:

Corollary 4.33. Let R be a Noetherian ring of dimension < 4. Assume that SL(Ps) acts
transitively on Um/(Ps). Then the orbit space Um(Py & R)[SL(FPy & R) is trivial if and
only if Wsr(R) is trivial and SL(Py)es = Sp(xo L 2)eq.
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As an immediate consequence, we can classify stably isomorphic oriented projective mod-

ules of rank 2 over affine algebras of dimension 3 over finite fields:

Theorem 4.34. Assume that R is an affine algebra of dimension d =3 over a finite field
F,. Then Sp(x)es = Unim.El.(Py) for any non-degenerate alternating form x on Py. In
particular, the generalized Vaserstein symbol associated to any trivialization 0y of det(Pp)

gives a bijection Vg, : Um(Py ® R)/SL(Py® R) = Vs.(R).

Proof. Proposition 1.15 and Lemma 1.8 imply the first statement. The second statement

follows from the first statement and Theorem 4.32. ]

We remark that the group Vg (R) is not trivial in general for an affine algebra of dimension
3 over a finite field: Let F, be the field with p elements for a prime number p with
p =1 mod 8. We consider the polynomial X® — a for some element a € [F» which is not
a square; furthermore, we let ¥/a be a root of this polynomial in an algebraic closure of
F,. Since p = 1 mod 8, the field [F, contains all 8th roots of unity, i.e. all zeros of the
polynomial X8 -1 over F,. In particular, by Kummer’s theorem on cyclic field extensions,
we see that F,(/a) is Galois over F,, and [F,(¥/a) : F,,] = r such that r divides 8. Therefore
the minimal polynomial M (¥/a) of &/a over F, has degree 1,2,4 or 8. But the coefficient
of M(3/a) in degree zero is a product of 8th roots of unity (which are all in F,) and /a'.
Since a is not a square in [, it follows that E/&i ¢, for i =1,2,4 and r has to be 8. Hence
X8 —a is irreducible over [F,. If we take the polynomial X2 - a for N. Mohan Kumar’s
construction of stably free modules in [NMK], then we produce a smooth affine algebra Ry
of dimension 3 over F, which admits a non-free stably free module of rank 2. It follows
from the previous theorem that Vs (Rx) # 0.

Recall that one of the basic tools to study the groups Wg(R) and W (R) is the Karoubi

periodicity sequence
K1Sp(R) - SK{(R) » Wg(R) - K¢Sp(R) - Ko(R).

We let Wg(R)/SL3(R) be the cokernel of the composite SL3(R) - SKi(R) - Wg(R).

Then we can deduce the following result from Corollary 4.33:

Corollary 4.35. Assume that R is a smooth 4-dimensional algebra over the algebraic
closure k =F, of a finite field such that 6 € k*. Then the orbit space Umz(R)[SLs(R) is
trivial if and only if Wg(R)[SLs(R) is trivial.
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Proof. As a matter of fact, it was proven in [FRS, Corollary 7.8] that the homomorphism
SLy(R)/Es«(R) = SK;(R) is an isomorphism.

Now assume that Ums(R)/SL3(R) is trivial. By Corollary 4.33, this means that the map
SKi(R) - Wg(R) is surjective and Spy(R)es = SLy(R)es. The second condition and
the isomorphism SL4(R)/Es(R) = SK1(R) easily imply that any matrix in SLs(R) lies
in SL3(R) up to a matrix in Sp,(R)Es(R). Since elements in Sp,(R)E,(R) are sent to
0 in Wg(R) under the hyperbolic map SK;(R) - Wg(R), this immediately implies that
We(R)[SLs(R) = Wsr(R) = 0.

Conversely, assume that Wg(R)/SL3(R) is trivial. Then Wsz(R) is obviously trivial.
Now let ¢ € SLy(R). Then the class of the matrix ¢!y is trivial in Wg(R)/SLs(R).
By the Karoubi periodicity sequence, this means that there exists a matrix ¢’ € SL3(R)
such that ¢(¢’ @ 1) is in the image of the map K;Sp(R) - SK1(R). Since dim(R) =4,
K, Sp(R) is generated by Spy(R); the isomorphism SLs(R)/E4(R) = SK;(R) then implies
that " 'p(' @ 1) lies in E4(R) for some ¢” € Spy(R). Since for any v e Um'(R) one
has Ey(R)v = (E4(R) n Sp,(R))v, it follows that there is an element ¢ € E;(R) n Sp,(R)
with " 'p(' @ 1) ey = ey, Since (' @ 1) 'eq = ey, it follows that ey = ¢1e, and
") € Sp,(R). This proves the corollary. O

Corollary 4.36. Assume that R is a smooth affine algebra of dimension 3 over an alge-
braically closed field k with char(k) #2. Then Sp(xo L ¥2)eq = Unim.El.(Py).

Proof. By Corollary 4.25 we know that Um(Fy @ R)/SL(FPy @ R) is trivial. Since moreover
SL(Py)es = Unim.El.(P;) and SL(P5) acts transitively on Um/(Ps), the result follows by
Corollary 4.33. 0

Recall that the Bass-Quillen conjecture BQ(R) asserts that all finitely generated projective
modules over R[ X, ...X,,] are extended from R whenever R is a regular Noetherian ring; in
particular, all finitely generated projective R[ X ]-modules are free if R is a regular local ring
such that BQ(R) holds. The Bass-Quillen conjecture is known to hold in many cases, e.g.
if R is a regular k-algebra essentially of finite type over a field &k (cp. [Li]). Furthermore, it
follows from the Quillen-Suslin theorem that all finitely generated projective R[ X ]-modules
are free if R is a regular local ring of dimension < 1. Moreover, M. P. Murthy proved in
[M] that all finitely generated projective R[ X ]-modules are free if R is a regular local ring
of dimension 2 and later R. A. Rao proved in [R] that the same statement holds if R is a
regular local ring of dimension 3 with 6 € R*. Note that if R is a regular local ring, the

assumption on regularity implies that all finitely generated projective modules over R[X ]
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are stably free and hence the conjecture holds if and only if GL,.(R[X]) acts transitively
on Um,(R[X]) (or, equivalently, on Um'(R[X])) for all 7 > 3. We may thus deduce the

following statement from the previous results:

Proposition 4.37. Let R be a regular local ring of dimension 4 with 6 € R*. Then all
finitely generated projective R[X]-modules are free if and only if Sps(R[X]) acts transi-
tively on Um'(R[X]).

Proof. Since R[X] is essentially of dimension 4, we know that F,(R[X]) acts transitively
on Um,(R[X]) for r > 6. Moreover, it was proven in [R, Corollary 2.7] that E5(R[X])
acts transitively on Ums(R[X]) as well.

Of course, if we let Py = R?, then there exists a canonical trivialization 6, of det(R?) given
by 1+ e A ey, where e; = (1,0),e5 = (0,1) € R%2. Consequently, there is a generalized
Vaserstein symbol Vy, : Ums(R[X])/SLs(R[X]) = Vs (R[X]) associated to 6. Although
dim(R[X]) = 5, the proofs of Theorems 4.31, 4.32 and Corollary 4.33 work for R[X] be-
cause E,(R[X]) acts transitively on Um'(R[X]) for r > 5.

Now let us first assume that all finitely generated projective R[X]-modules are free.
Then SL,(R[X]) acts transitively on Um'(R[X]) for r = 3,4. In particular, the orbit
space Umsz(R[X])/SLs(R[X]) is trivial. Then it follows directly from Corollary 4.33 that
Sps(R[X]) acts transitively on Um/(R[X]).

Conversely, assume only that Sps(R[X]) acts transitively on Um}(R[X]). The proofs of
[R, Proposition 2.2 and Proposition 2.9] show that the usual Vaserstein symbol V_y, and
hence also Vp, : Ums(R[X])/SLs(R[X]) = Vs (R[X]) is a constant map. But the proof
of Theorem 4.32 then shows that it is also injective because Sps(R[ X ]) acts transitively on
Umf(R[X]). Consequently, all finitely generated projective R[ X ]-modules are free. [

Let R be a Noetherian commutative ring of dimension < 4 such that SL(Ps) acts transi-
tively on Um/(Ps). We now try to use the previous results in order to give descriptions of
the orbit spaces Um(FPy @ R)/E(Py® R) and Um(Py® R)/SL(F, ® R).

For any map F : M — N between sets M and N, one obviously has M = Uy F~1(z).
Therefore we also have Um(Fy @ R)/E(Fy ® R) = Ugep, ()Y 7' (B). Now let us fix an el-
ement a € Um(P, ® R) together with a section s and give a description of the preimage
V(V(a)) cUm(Py® R)[E(Py® R). We set x =V (a,s). We have an obvious map

Ig SL(P4) - V_I(V(CL)),QO = a-p,

induced by the right action of SL(Py) on Um (P, ® R)/E(Fy @ R). By our observations

above, this map is immediately surjective.
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Now assume that there are two elements 1 and @y of SL(P;) with ¢1¢97! € Sp(x)E(Py).
Then obviously i,(¢1) = i4(p2). Conversely, let o1, ps € SL(Py) such that 7,(¢1) = iq(p2)-
Then it follows from the proofs of Theorems 4.4 and 4.6 that there is an element ¢ € E(F})
such that

e1txpr = plpatxpap.

In particular, since E(Py) is a normal subgroup of SL(Fy), it follows that o191 lies in
Sp(x)E(Py). Thus, it follows that ¢, induces a bijection

ia = SpOO)E(PO\SL(Py) = V-(V(a))

between the set of right cosets of Sp(x)E(P,) in SL(P;) and the preimage V-1(V(a)).
Altogether, we have just established the following description of Um(Py ® R)/E(FP, @ R):

Theorem 4.38. Let R be a Noetherian commutative ring of dimension < 4 such that
SL(Ps) acts transitively on Um(Ps). Let {x;}ir be a set of non-degenerate alternating
forms on Py such that I — Vgi,(R),i — [Py, X0 L w2, x:], is a bijection. Then there is a
bijection Um(Py @ R)[E(FPy ® R) = Uier Sp(x:) E(PA)\SL(Fy).

Remark 4.39. We remark that SL(Py)/E(P,) is abelian if R is a smooth affine algebra
of dimension 4 over an algebraically closed field k such that 6 € k* and Py s free: This
follows from the fact that the map SL4(R)[/Es(R) - SK1(R) is injective in this situation
(cp. [FRS, Corollary 7.7]). Hence the subgroup Sp(x)Es(R) of SL4y(R) is normal and
Sp(X)Es(R)\SLy(R) = SLa/Sp(x) Es(R).

Let us now describe the orbit space Um(FPy @ R)/SL(Fy @ R). Analogously, we consider
the surjective map V : Um(Py ® R)/SL(Py ® R) - Vs, (R) and describe the preimages
V-1(V(a)) for a e Um(P, & R). Henceforth we assume that SL(FP,)/E(P,) is an abelian

group. By repeating the arguments above appropriately, we obtain a bijection
ia: SL(P1)[Sp(x)SL(P5)E(Py) = V-(V(a)).

Theorem 4.40. Let R be a Noetherian commutative ring of dimension < 4 such that
SL(Ps) acts transitively on Um(Ps). Let {x:}ier be a set of non-degenerate alternating
forms on Py such that I — Vs (R),i = [Py, xo L ¥2,X:], is a bijection. Furthermore,
assume in addition that SL(Py)/E(Fy) is an abelian group. Then there is a bijection
Um(Py® R)[SL(Py® R) 2 Uit SL(Py)[Sp(xi) SL(Ps) E(Fy).
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Because of Remark 4.39, we obtain the following description of Umg(R)/SLs(R):

Corollary 4.41. Let R be a smooth affine algebra of dimension <4 over an algebraically
closed field k of characteristic #+ 2,3. Furthermore, let {x;}icr be a set of non-degenerate
alternating forms on R* such that the map I — Vsp(R),i ~ [R* 14, xi], is a bijection.
Then there is a bijection Ums(R)[SL3(R) 2 Ujer SLy(R)[Sp(xi)SLs(R)E4(R).

Now let R be a smooth affine algebra of even dimension d over an algebraically closed field
k with d! € k*. Motivated by the previous results, we study the orbits of unimodular rows
of length d under the right actions of SLy(R) and Spy(R). We will use this to prove the
equality SLy(R)eq = Spa(R)eq. Since we have SLq(R)ey = Um'(R) in this case (cp. [FRS,
Theorem 7.5]), this means that one has to prove that Spy(R) acts transitively on the left
on Um%(R).

As already indicated, we will approach this problem in terms of the right actions of SLy4(R)
and Spy(R) on Umg(R). For the remainder of this section, we let m 4 = (1,0,...,0) and
Taa = (0,...,0,1) be the standard unimodular rows of length d and e; 4 = 7Ti7d and eqq = Wfi’d
the corresponding unimodular columns. As a first step, let us recall some basic facts about
symplectic and elementary symplectic orbits. The following result by Gupta is a special
case of [G, Theorem 3.9] and extends [CR, Theorem 5.5]:

Theorem 4.42. Let R be a commutative ring. For any n € N and any unimodular row
v € Uma,(R), the equality vE,,(R) = vESp,,(R) holds.

Corollary 4.43. Let R be a commutative ring. If v,v" € Umg,(R) for some n € N and
vE9,(R) = v'Ey,(R), then vSpa,(R) = v'Spa,(R).

We can then give a partial answer to a question raised by Gupta (cp. [G, Question 5.5]):

Theorem 4.44. Let R be a smooth affine algebra of dimension d >4 over an algebraically
closed field k with d! € k*. Assume that d is divisible by 4. Then Spq(R) acts transivitely
on Umg(R).

Proof. 1t follows from the proof of [FRS, Theorem 7.5] that any unimodular row of length
2

d can be transformed via elementary matrices to a row of the form (aq, ...,ad_l,afld_l)! ).

By the previous corollary, it thus suffices to show that any such row of length d is the first

row of a symplectic matrix.

So let a = (ay, ...,ad_l,agd_l)!) and let b = (by,...,b4-1,bq) be a unimodular row such that

d-1)1?
(d-1) )

ab® = 1. Furthermore, let ' = (a1, ..., aq-1, ay . It follows from [S4, Proposition 2.2,
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Corollary 2.5] that there exists a matrix 5(a,b) € SLq(R) whose first row is a’ such that
[B(a,b)] = [aa(a,b)] in SK;(R).

Now let us first assume that the class of a4(a,b) in K;(R) lies in the image of the forgetful
map K;Sp(R) EN Ki(R). Then it is well-known that Sp(R) = ESp(R)Sp,(R) (cp. [SV,
Theorem 7.3(b)]). Therefore the class of ay(a, b) actually lies in the image of the composite
Spy(R) - K1Sp(R) EN K (R). In other words, there exists a matrix ¢ € Spg(R) such that
[¢] = [aa(a,b)] = [B(a,b)] in Ki(R). As the homomorphism SL;(R)/E4(R) - SK(R) is
injective (cp. [FRS, Corollary 7.7]), it follows that 5(a,b)pt € E4(R). Since the equality
m aEa(R) = m 4ESpy(R) holds, there is ¢ € ESp,(R) such that m 46(a,b)¢™ = 1 4. In
particular, a’ = m 40(a,b) = m 410 lies in the orbit of m; 4 under the action of Sp.(R).
Thus, it suffices to show that the class of ag4(a,b) in Ki(R) indeed lies in the image of
K,Sp(R) LK 1(R). For this, recall that a unimodular row of length d over R corresponds
to a morphism X = Spec(R) — A\ 0 and there is a canonical pointed A}-weak equivalence
p2a-1 = Dby Qb — AN 0. As a matter of fact, a morphism X — Q4, | corresponds to a
unimodular row of length d with the choice of an explicit section. Furthermore, there is an
A}-fiber sequence Sp - GL -~ GL/Sp, which induces the Karoubi periodicity sequence by
taking the sets of morphisms in H (k). There is a pointed morphism a4 : Q%, , > SL -~ GL
induced by ag4(z,y).

Let a” = (ay,...,aq-1,a4) € Umg(R). We now interpret this unimodular row as a morphism
a’: X — A? N0 of spaces. If we let (@' : AYN 0 - A¢\ 0 be the morphism induced by
(21, .y Ta1,2q) P (21, ...,xd_l,wfid_l)!), then we obviously have a = ¥(@-D'q” : X - Ad \ 0.
It thus suffices to prove the existence of a morphism A% \ 0 - Sp in H (k) that makes the
diagram

d p—l_lll/(d—l)! X
Aig\ t'—s Q54

lad
¥

Sp GL GL/Sp

commutative. For this purpose, we first of all note that the motivic Brouwer degree of
Pl-D' e JAT N0, A N 0]a1.0 = GW(k) is (d-1)!.. Since k is algebraically closed, it follows
that agpyy_ V@D equals (d - 1)! - agpyy_ € [Ad N 0,GL]s1 ., where the group structure
is understood with respect to the structure of A{ \ 0 as an h-cogroup in H.(k). The
usual Eckmann-Hilton argument then implies that also agpy} WD = (d-1)!-agp;; | in
[AYN0,GL] AL es where the group structure is understood with respect to the structure of
an h-group of GL ~,1 RQ,BGL in Hy(k). As [Ad N0, GL/Sp]a = Wg(Ss ) 2 Z/[27Z and
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(d-1)! is even, it follows that

\Il(d_l)!

—1
(AdN0) 2 Qk 2% GL - GL/Sp

is trivial and hence the factorization exists, as desired. O

As a consequence, we can prove a corresponding statement for the left action of Spy(R)

on Umb(R):

Corollary 4.45. Let R be a smooth affine algebra of dimension d >4 over an algebraically
closed field k with d! € k*. Assume that d is divisible by 4. Then Spq(R) acts transitively
on Umb(R); in particular, Spy(R)eq = SLq(R)eq.

Proof. First of all, let

Yo = (_01 (1)) € GLy(R).

We can then inductively define @910 = @, L 9o € GLapo(R) for all n € N. Furthermore,
we have libapa = V5, vl = pa and 7' = ¢4

Now let v € Umy(R) and v* the corresponding unimodular column. By the previous
theorem, there is ¢ € Spy(R) with mg40 = vggs. Then it follows that p.pl@g € Spa(R).

Finally, one has @q¢tpaeqq = papqvt = vt, which proves the corollary. ]

Theorem 4.46. Let R be a 4-dimensional smooth affine algebra over an algebraically closed
field k with 6 € k<. Then Ums(R)[SL3(R) is trivial if and only if Wsr(R) = 0.

Proof. This follows immediately from Corollary 4.33 and Corollary 4.45. ]

Corollary 4.47. Let R be a 4-dimensional smooth affine algebra over an algebraically
closed field k with 6 € k* and let X = Spec(R). Then Umg(R)[SLs(R) is trivial if CH3(X)
and H2(X, K3 are 2-divisible. Furthermore, Ums(R)/SLs(R) is trivial if H*(X, ) is
2-divisible and CH3(X) = CH*(X) =0.

Proof. By Theorem 4.46, we have to show that Ws(R) = 0 if CH3(X) and H2(X,K}'")
are 2-divisible or if H2(X,T?) is 2-divisible and CH3(X) = CH*(X) = 0. But since the
Vaserstein symbol surjects onto Wgy(R) and k is algebraically closed, it follows from
[FRS, Lemma 7.4] and the Swan-Towber theorem [SwT, Theorem 2.1] that Wgp(R) is
2-torsion. Hence it suffices to show that Wg(R) or Wg.(R) is 2-divisible. So the first
statement follows from Propositions 3.7 and 3.9. The second statement follows directly

from Proposition 3.9. ]
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Corollary 4.48. Let R be a 4-dimensional smooth affine algebra over an algebraically
closed field k with 6 € k* and let X = Spec(R). Moreover, assume that CH'(X) =0 for
i=1,2,3,4 and that H2(X,P) = 0. Then all finitely generated projective R-modules are

free.

Proof. We may assume that X = Spec(R) is connected; in particular [X,Z] = Z. The fact
that CHY(X) = 0 for i = 1,2,3,4 immediately implies that F*Ky(R) = 0 for i = 1,2,3,4.
Hence rank : Ko(R) 5 [X,Z] % Z is an isomorphism and all finitely generated projective
R-modules are stably free. Since stably free R-modules of rank > 3 are free (cp. [S1] and
[FRS]), it suffices to prove that stably free modules of rank 2 are free. But this follows

from Corollary 4.47. ]

4.4 Further thoughts

In the last section of this thesis, we discuss some open questions in the study of projective
modules and relate them to our results. For this, we let R be a smooth affine algebra of
dimension d > 3 over an algebraically closed field k such that (d-1)!e k.

In general, it is an open question whether any finitely generated projective R-module P
of rank d -1 is cancellative. If d = 3, then P is cancellative by results of Asok-Fasel (cp.
[AF2, Corollary 6.8]); if P has a trivial determinant, we are already able to re-prove their
cancellation theorem by means of the generalized Vaserstein symbol (cp. Corollary 4.25).
Moreover, if P = R4! then P is also cancellative by results of Fasel-Rao-Swan (cp. [FRS,
Theorem 7.5)).

Our results in Section 4.2 suggest that any projective R-module of the form P;_; = Py®R%3,
where P, has rank 2 and a trivial determinant, is cancellative. Indeed, because of Theorem
4.24, it suffices to prove that for some j prime to char(k) any epimorphism of the form
b= (bo,bg,b4, ybg) € Um(P;1 ® R) can be completed to an automorphism of Py 1 & R,
i.e. there is an automorphism ¢ € Aut(P,; & R) such that b = mp, where 7 is just the
projection P; 1 & R - R onto the last free direct summand.

By analogy with Andrei Suslin’s proof of his cancellation theorem in [S1], one could try to
prove this by induction on d. In fact, we have already settled the base case by constructing
an explicit completion of an epimorphism of the form (by,b%) in Section 1.4.

Another approach would be to reformulate the above problem in the language of Al-
homotopy theory; for example, the special case of unimodular rows and their completability

is discussed in [AF1, Section 5]. Since the free R-module is always extended from the
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base field k, one can use the Al-homotopy category H(k) over the base field in this case.
In general, one possibly has to use the Al'-homotopy category H(R) with base scheme
X = Spec(R). Nevertheless, we leave the investigation of this remaining problem to future
work.

Throughout this thesis, we have considered projective modules with a trivial determinant.
An affine scheme X = Spec(R) is called a topologically contractible smooth affine variety
over C if it is an irreducible smooth affine scheme over C such that its associated complex
manifold X (C) is a contractible topological space. It is known that C H'(X) = 0 for such
a variety. Hence it follows in particular that our results apply to topologically contractible
smooth affine varieties over C. The generalized Serre conjecture on algebraic vector bundles
asserts that algebraic vector bundles over topologically contractible smooth affine varieties
over C are trivial. The conjecture is known to hold in dimensions < 2, but is open in
higher dimensions. Under the assumption that the generalized Serre conjecture holds in
higher dimensions and in view of Theorem 4.46, it might be expected that Wsr(R) = 0 for
a smooth affine algebra R of dimension 4 over C such that X = Spec(R) is a topologically
contractible variety.

Fabien Morel and Vladimir Voevodsky have defined complex realization functors

m(c : 7‘[(@) - 7‘[,
9‘{@7. : H.(C) g 7‘[.,

where ‘H and H, are the homotopy categories of topological spaces and pointed topological
spaces respectively. These functors extend the assignment which sends any smooth affine
scheme X to the topological space X(C). For any base scheme S, a space X € Spcg is
called Ag-contractible if X is isomorphic to S in H(.S). It follows from the existence of
the complex realization functors that Ag-contractible smooth affine varieties over C are
topologically contractible. By the algebro-geometric analogue of Steenrod’s homotopy clas-
sification of topological vector bundles (cp. [AHW]), it follows that all algebraic vector
bundles on Al-contractible smooth affine varieties over C are trivial. Thus, the subtle
question behind the generalized Serre conjecture is under which circumstances topologi-
cally contractible smooth affine varieties are in fact Al-contractible.

In fact, there exist examples of topologically contractible smooth affine varieties of dimen-
sion 3 over C which are not isomorphic to A% called the Koras-Russell threefolds of the
first and second kind. In [HK@)], it was proven that all algebraic vector bundles over the

Koras-Russell threefolds of the first and second kind are trivial. As a matter of fact, it
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was later proven in [DF] that the Koras-Russell threefolds of the first kind are in fact
At-contractible, which trivialized the result on their vector bundles. Nonetheless, it still
remains an open question whether the Koras-Russell threefolds of the second kind are Af-
contractible as well.

Now let us return to the case of a general commutative ring R. Our results raise the ques-
tion whether one can define a generalized Vaserstein symbol for any projective R-module
of rank 2 (not necessarily with a trivial determinant). For any projective R-module L of
rank 1, we set PVt = Hompg_meo (P, L). For any projective R-module P of finite rank, one

has a natural isomorphism
cany, : P — PViVL pw (ev,: PVt — L, a ~ a(p)),

induced by evaluation. Then an L-oriented alternating morphism on P is a morphism
f: P — PVt such that f(p)(p) =0 for all pe P. An L-oriented alternating isomorphism
on P is an L-oriented alternating morphism on P which is an isomorphism. Replacing
alternating isomorphisms by L-oriented alternating isomorphisms, we can then mimic our
definition of the group V(R) (cp. Section 3.3) in order to define a group V (R, L). Note
that for any finitely generated projective R-module P there is a hyperbolic L-oriented
alternating isomorphism Hy(P): P& PVt - PVt @ PVLVL given by

0 id
—cany;, O '

Now let Py be a projective R-module of rank 2 and let L = det(FP,). Then the form
Py x By - det(Fy),(p,q) = p A q induces an L-oriented alternating isomorphism on Py,
which we denote by xg.

If a e Un(Py & R) with section s : R - Py & R and P(a) = ker(a), then we obtain as
usual isomorphisms i, : Py ® R — P(a) ® R and 6 : det(Py) = det(P(a)). Then the form
P(a) x P(a) - L,(p,q) = 07'(p A q) induces an L-oriented alternating isomorphism on

P(a), which we denote by x,. We can then associate to a the element
Via)=[Ph@®@R® RVL,xo L HL(R), (is®1)""(xa L HL(R))(is®1)]

in V(R,L). In order to define a Vaserstein symbol for Fy, it then remains to prove that
the element V' (a) does not depend on the choice of the section s above. But we can mimic
the proof of Theorem 4.4 for this: If ¢ is another section of a and i, : Py® R — P(a)® R is

the isomorphism induced by ¢, then one has to show that the elements
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[PO ®R® RvLaXO 1 HL(R)7 (is ® 1)VL(Xa 1 HL(R))(ZS ® 1)] and
[Po@ R® RVr,xo L HL(R), (i1 1) (xa L HL(R))(ir®1)]

are equal in V(R,L). For this, we define a homomorphism d’ : Py ® R — det(P, & R) by
prs(1)Aat(1)apedet(Py® R). Then we let d: Py® R — RVt be the map obtained from d’
by composing with the canonical isomorphisms det(FPy® R) 2 det(Fy) £ RV:. Furthermore,
we let ¢ be the elementary automorphism on Py @& R@® RVL induced by —d. As in the proof
of Theorem 4.4, one can then check locally that

PV (is® 1) (Xa L HL(R))(is® 1) = (i @ 1) (xa L HL(R))(ir @ 1)

and conclude that our assignment does not depend on the choice of s. Of course, this
raises the question whether one can then prove results without the assumption of a trivial
determinant which are analogous to our results in this thesis. We leave the investigation

of this to future work.
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