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1 Zusammenfassung 

Während sich die allermeisten Aspekte des modernen Lebens durch die fortschreitende 
Digitalisierung verändern, vergrößert sich damit die Menge an Daten, die gemessen, 
gespeichert und verarbeitet wird, signifikant. Einerseits vergrößert sich die Datenmenge, 
andererseits erhöht sich auch die Komplexität der Daten selbst: Immer mehr Teilnehmer in 
sozialen und kollaborativen Netzen sorgen dafür, dass sich Daten schneller als je zuvor 
verändern. Obwohl unterschiedliche Arten von Geräten zwar Messungen der gleichen 
Datenmetrik vornehmen, tun sie dies aus ganz verschiedenen Gründen und in 
unterschiedlichen Kontexten – und eine Unzahl an Programmen und Apps kombinieren 
verschiedene Datenmetriken, um ihren Nutzern einen Mehrwert zu bieten. Dadurch haben 
Daten keine konsistente „Form“ mehr, sondern existieren in verschiedenen Qualitätsstufen 
durch unterschiedliche Repräsentationen auf verteilten, inhomogenen Datenbanken und 
werden für jede Anfrage anders verarbeitet – auch während sie sich permanent verändern. 
 

Diese Dissertation beschäftigt sich damit, wie man den Herausforderungen begegnen kann, 
die diese neue Art von Daten mit sich bringt: Wenn ein einzelnes Objekt in verschiedenen 
Domänen gemessen wird, existiert es nicht länger nur als einzelner Punkt in einem 
Datenraum, sondern es kann Repräsentationen in mehreren Räumen haben. Solch eine 
Multi-Repräsentation von Objekten erfordert neue Maßsysteme, Konzepte, Indexstrukturen 
und Algorithmen für Speicherung, Verwaltung und Anfragen. Während sich die Komplexität 
der Daten erhöht, explodieren zugleich die Kosten ihrer Verarbeitung: Die Beantwortung von 
Anfragen auf große heterogene Datenmengen sollte daher individuelle Eigenschaften der 
Daten berücksichtigen; und Data Mining hilft dabei, noch komplexere Abhängigkeiten und 
Beziehungen zu entdecken, was den Weg für weitere Anwendungen ebnet. 
 

Im Rahmen dieser Dissertation werden mehrere neue Methoden und Lösungen zur 
Behandlung solcher multi-repräsentierten Objekte vorgestellt. Jeder Ansatz konzentriert sich 
dabei auf unterschiedliche Aspekte und ermöglicht effiziente Lösungen für diese Szenarien. 
Eine neue Indexstruktur für generische, multi-metrische Daten ermöglicht es, dynamisch 
gewichtete Ähnlichkeitsanfragen effizient zu beantworten und schlägt bisherige 
Vergleichsverfahren. Ein neuer Ansatz zur Beantwortung von Skyline-Anfragen im geo-
sozialen Datenraum berücksichtigt domänenspezifische Eigenschaften und ermöglicht so 
eine effiziente Anfragebearbeitung, indem Berechnungen in der jeweils geeignetsten Metrik 
durchgeführt werden. Da soziale Daten neben der räumlichen, auch mit der zeitlichen 
Domäne verknüpft sein können, fokussiert sich eine vorgestellte Data Mining-Methode 
darauf, in einem sozialen Netzwerk einflussreiche Personen (sog. Influencer) zu finden, 
indem sie Interventionsanalysen auf temporal-sozialen Graphen durchführt. Außerdem 
werden in dieser Dissertation Methoden zur Anfragebearbeitung auf unsicheren räumlich-
zeitlichen Daten sowie nutzergenerierten („Crowd-Sourcing“) Graph-Daten vorgestellt. 
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2 Abstract 

As most aspects of modern life face a continuing process of digitalization, the amount of 
data that is measured, stored, and processed increases significantly. While the volume of 
data itself increases, the complexity increases as well: With more and more participants of a 
social and collaborating web, data changes faster than ever before. Different types of 
devices measure the same metrics but within different contexts; and tremendous amounts 
of applications combine different data metrics to provide benefit to their users. Therefore, 
data does not have a consistent “shape” anymore but exists in several levels of quality in 
different representations in non-homogeneous distributed data bases and is processed 
differently for each query while it changes constantly. 
 
This thesis focusses on how to approach the challenges of handling this new type of data: As 
the same entity is measured in different domains, it no longer exists as a single point in one 
data space but can have representations in multiple domain spaces. Such a multi-
representation of objects requires new measures, concepts, index structures and algorithms 
to efficiently be stored, managed and queried. As the complexity of the data increases, the 
cost of working with it may simultaneously explode: Answering queries on large 
heterogeneous data sets should consider the data’s individual properties and data mining 
approaches can discover even more complex connections and relationships, which opens 
the door for novel use cases. 
 
Within the scope of this dissertation several new methods and solutions for handling such 
multi-represented objects are presented. Each approach focusses on different aspects and 
provides efficient solutions for complex settings. A new index structure for generic multi-
metric data allows to answer dynamically weighted similarity searches and outperforms 
previous approaches. A novel approach to answer skyline queries in the geo-social domain 
considers domain-specific properties and allows for efficient query processing by performing 
calculations based on the most suitable metrics. As social data may not only be combined 
with a spatial, but a temporal domain as well, a new data mining technique to find 
influencers within a social network is presented that uses intervention analysis on temporal-
social graphs. Furthermore, techniques on query processing on uncertain spatial-temporal 
data as well as crowdsourced graph data lie within the scope of this dissertation as well. 
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4 Thesis Details 

This cumulative dissertation aggregates previously published research work, which consists 
of six contributions published at high-impact conferences within their research field. All 
publications were peer-reviewed by at least three program committee members. 
During the years since 2014 the following contributions have been accepted and published 
at conferences within the computer science field. The bibliography chapter enlist all 
participating co-authors for every publication, while an additional section on impact factors 
gives an overview of the quality and impact of the venues the contributions were published. 
 

4.1 Publications – Bibliography 
Within this dissertation, publications will be referenced and cited through the “short-code” 
in bold font, which translates to the common venue abbreviation and year of publication. 
Please note that for the publications [DASFAA'14] and [SIGMOD'14] the department 
followed the chair’s recommendation to enlist authors in alphabetical order. 
 

DASFAA'14 
[1] 

Tobias Emrich, Maximilian Franzke, Nikos Mamoulis, Matthias Renz, and 
Andreas Züfle. 
Geo-Social Skyline Queries. 
In: Sourav S. Bhowmick, Curtis E. Dyreson, Christian S. Jensen, Mong Li Lee, 
Agus Muliantara, and Bernhard Thalheim, editors, 
Proceedings of the 19th International Conference on Database Systems for 
Advanced Applications, Part 2, volume 8422 of Lecture Notes in Computer 
Science, Bali, Indonesia, April 2014, pp. 77–91. Springer International 
Publishing. 
ISBN: 978-3-319-05812-2, DOI: 10.1007/978-3-319-05813-9_6 
 

SIGMOD'14 
[2] 

Tobias Emrich, Maximilian Franzke, Hans-Peter Kriegel, Johannes 
Niedermayer, Matthias Renz, and Andreas Züfle. 
An Extendable Framework for Managing Uncertain Spatio-Temporal Data. 
In: Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, 
Proceedings of the 2014 ACM International Conference on Management of 
Data, Snowbird, UT, USA, June 2014, pp. 1087–1090. ACM, New York, NY, 
USA. 
ISBN: 978-1-4503-2376-5, DOI: 10.1145/2588555.2594523 
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ICDE'15 
[3] 

Gregor Jossé, Maximilian Franzke, Georgios Skoumas, Andreas Züfle, Mario 
A. Nascimento, and Matthias Renz. 
A Framework for Computation of Popular Paths from Crowdsourced Data. 
In: Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and 
Guy M. Lohman, editors, 
Proceedings of the 31st IEEE International Conference on Data Engineering, 
Seoul, South Korea, April 2015, pp. 1428–1431. IEEE. 
ISBN: 978-1-4799-7963-9, DOI: 10.1109/ICDE.2015.7113393 
 

ICDE'16 
[4] 

Maximilian Franzke, Thomas Emrich, Andreas Züfle, and Matthias Renz. 
Indexing Multi-Metric Data. 
In: Mei Hsu, Alfons Kemper, Timos Sellis, Boris Novikov, and Eljas Soisalon-
Soininen, editors, 
Proceedings of the 32nd IEEE International Conference on Data Engineering, 
Helsinki, Finland, May 2016, pp. 1122–1133. IEEE. 
ISBN: 978-1-5090-2019-5, DOI: 10.1109/ICDE.2016.7498318 
 

ADC'16 
[5] 

Maximilian Franzke, Janina Bleicher, and Andreas Züfle. 
Finding Influencers in Temporal Social Networks Using Intervention 
Analysis. 
In: Muhammad Aamir Cheema, Wenjie Zhang, and Lijun Chang, editors, 
Proceedings of the 27th Australasian Database Conference, volume 9877 of 
Lecture Notes in Computer Science, Sydney, Australia, September 2016, pp. 
3–16. Springer International Publishing. 
ISBN: 978-3-319-46921-8, DOI: 10.1007/978-3-319-46922-5_1 
 

EDBT'18 
[6] 

Maximilian Franzke, Tobias Emrich, Andreas Züfle, and Matthias Renz. 
Pattern Search in Temporal Social Networks. 
In: Michael Böhlen, Reinhard Pichler, Norman May, Erhard Rahm, Shan-
Hung Wu, Katja Hose, editors, 
Proceedings of the 21st International Conference on Extending Database 
Technology, Vienna, Austria, March 2018, pp. 289–300. 
OpenProceedings.org. 
ISBN: 978-3-89318-078-3, DOI: 10.5441/002/edbt.2018.26 
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4.2 Impact Factor 
While it is generally challenging to find a universal metric to rank each conference’s or 
journal’s impact within its field, there exist some approaches to rank conferences directly or 
categorize them into ranking clusters. The following table maps enlists various ranking 
scores for relevant conferences. 
 

 DASFAA SIGMOD ICDE ADC EDBT 
CS RANK1 0.79 0.99 0.98 0.75 0.88 
CORE RANK2 B 

“good 
conference, 
and well 
regarded in a 
discipline 
area” 

A* 
“flagship 
conference, 
a leading 
venue in a 
discipline 
area” 

A* 
“flagship 
conference, 
a leading 
venue in a 
discipline 
area” 

Australasian 
“A conference 
for which the 
audience is 
primarily 
Australians 
and New 
Zealanders” 

A 
“excellent 
conference, 
and highly 
respected 
in a 
discipline 
area” 

ERA RANK3 A A A B A 
MICROSOFT 
ACADEMIC4 

28 of 263 2 of 263  3 of 263  36 of 263  8 of 263 
 

  
 

4.3 Declaration of Contributions as Co-Author 

4.3.1 DASFAA'14 
Through my contribution of splitting the Bookmark Coloring Algorithm into incremental 
parts that can be calculated on demand, I laid the main foundation for our core algorithm 
submitted through the paper. By also proving that an additional upper bound for any node 
in the graph can be derived from the node’s distance to the query node, the algorithm 
became even more efficient. 
My design, implementation and evaluation of the experiments demonstrated that our 
proposed solution solves the geo-social skyline problem efficiently. 

                                                        
1 CS Conference Ranking: http://perso.crans.org/~genest/conf.html 
2 CORE2017 Ranking: http://www.core.edu.au/conference-portal 
3 ERA2010 Ranking: http://www.conferenceranks.com/data/era2010_conference_list.pdf 
4 Microsoft Academic Ranking in “Databases”: 
https://web.archive.org/web/20160420155441/http://academic.research.microsoft.com:80
/RankList?entitytype=3&topDomainID=2&subDomainID=18&last=0&start=1&end=100 



  Thesis Details 
 

   
 

8 

4.3.2 SIGMOD'14 
Since the proposed framework completes a series of works on spatio-temporal uncertain 
data, some parts of the underlying query processor and data structures have been 
developed previously. As my contribution within this publication, I designed a set of efficient 
client interfaces that allow a stand-alone graphical user interface to connect to the 
database. With these interfaces, it is possible to submit queries on the one hand, and on the 
other retrieve query results and database contents in a suitable structure so that the client 
can handle the data volumes sufficiently. 
I designed and implemented the graphical user interface (GUI) components, which contains 
sophisticated approaches to visualize and interact with uncertain spatio-temporal data 
intuitively and precisely. A ‘playback’ function allows to fluently browse temporal data 
within the state space as well as the geometric space – possible through constant 
optimizations for spatio-temporal data. 
 

4.3.3 ICDE'15 
With regards to data mining I contributed the idea of deriving the popularity of POIs by 
counting photos taken nearby; assuming people tend to photograph ‘scenic’ points of 
interest more likely. 
Traditional way-finding algorithms for graphs aim at finding the most cost-efficient path. 
Through my contribution of a concept of how to model gain as cost, we could use efficient 
and established algorithms to answer our queries. 
Finally, I implemented a visual GUI to interact with the framework and to submit and 
evaluate queries. 
 

4.3.4 ICDE'16 
As the main contribution of our paper, I designed the RR*-Tree and a corresponding 
similarity query that benefits from the underlying concepts. This includes a variable set and 
amount of reference objects per indexed metric.  
Based on the ELKI-framework5, I developed an implementation of our proposed PM-Tree 
and RR*-Tree index structures. This implementation was the foundation for my conduction 
of an extensive set of experiments which pinpoint the influence of numerous variables and 
measure query costs. The adjoining discussion showcases the benefits of each proposed 
solution in various scenarios. Performing the experiments included the generation of 
suitable synthetic data as well as using real world data (here: Twitter).  

                                                        
5 ELKI: Environment for Developing KDD-Applications Supported by Index-Structures: 
https://elki-project.github.io 
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4.3.5 ADC'16 
I developed the concept of generalizing the problem of influencer detection in social 
networks by explicitly considering the temporal domain of temporal social networks. This 
included the first known definition of influence in time-dependant attributed graphs by 
introducing the Social Influencer Score. The Top-k Influencer Query was presented along as 
well, which ranks individuals according to their score. 
Since the Social Influencer Score requires the definition of a performance function, suitable 
implementations for these functions had to be found for the practical applications (here: 
finding influencers in collaboration graphs) and it was necessary to prove they are reliable 
and fitting. The idea of using Auto-Regression Integrated Moving Average models from the 
field of Intervention Analysis was brought in by myself; while Dr. Züfle gave advise on setting 
up the Hero-Experiment to verify the claim that the performance function is a suitable 
model for influence. I performed the conducting of the experiment based on real-world data 
which then showed that the ARIMA-based approach is valid for approximating Social 
Influencer Scores. 
 

4.3.6 EDBT'18 
Researching a valid baseline approach and developing a concept of applying it to the domain 
of temporal social graphs was done by myself. It consists of using Ullmann's backtracking 
algorithm for the subgraph isomorphism problem and extending it by adding more 
processing steps to furthermore consider the temporal domain. During the integration work 
I discovered two filter steps that could be applied along Ullmann's filters during query 
processing. These new filters are specific to temporal graphs and can therefore be applied in 
the context of this work's problem definition: 
 

• As adapting Ullmann's algorithm to the temporal domain requires to perform the 
isomorphism search for every timepoint of the time domain, the query complexity 
increases linearly with the size of the time domain. This can be countered by applying 
a filter based on the time offset: At any timepoint, the actual graph may contain only 
a (very small in practise) subset of edges. Performing the isomorphism search on this 
smaller graph reduces runtime complexity drastically. 

• Our problem focuses on temporal social networks, where the social graph is usually 
sparse, and the query pattern is way smaller than the total graph. This justifies 
running a pruning filter based on network distance: Calculating the maximum 
number of hops from a central node to all nodes in the query subgraph allows to 
limit the number of candidates to be refined. This filter can be applied to non-
temporal subgraph isomorphism as well but is highly beneficial in graphs of similar 
kind as social networks. 
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Additionally, I contributed the procedure for performing the refinement work during the 
index-based query processing: After a simple subgraph structure from the query graph has 
been identified in the main graph through the index, a refinement is necessary to validate if 
other parts of the query graph are isomorph to the found candidate subgraph as well. 
Concepts from the baseline approach can be applied here as well, and a dedicated focus on 
assignment permutations helps to narrow the number of possible candidates. 
During the research phase I developed and implemented a foundation framework to run and 
measure the proposed methods and gather quantitative and qualitative results for the 
baseline approach, index structures and the query processing. This includes designing 
conducting the experiments to highlight strengths and weak points of the approaches in 
typical and edge case scenarios. Similar to that, designing a compact, yet meaningful and 
significant running example to highlight the critical points at every phase of the query 
processing fell under my responsibilities and is included in the paper. 
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5 Thesis Summary 

5.1 Introduction 
The continuously advancing digitalization now affects a large portion of industries. While 
new products and technologies emerge, also internal business processes are being analysed, 
formalized, and automated wherever possible. Among simple control and monitoring 
processes, more advanced adaptive systems are being put into production, which are often 
advertised as “smart” services. These services are not an enclosed isolated system anymore 
with just a few defined input and output operations but are able to consider large and 
complex amounts of data for their calculations. In addition to the increasing amount of data, 
the data itself is becoming more complex: Data models are composed from multiple 
components, which are distributed amongst very different systems. Here, objects may have 
a representation in several databases, while the representations may vary strongly with 
regards to quality, timeliness, accuracy and considered aspect. While in theory, an 
“omniscient oracle” (which may be simply a monolithic central database) can find ideal 
results for queries through its permanent access to all data in every quality required; 
practical smart services in the real world must try their best to answer queries under various 
restrictions. Examples for such types of restrictions are: 
 

• Access to an external data source may be disabled, restricted or limited. Social 
networks for example provide access to parts of their data to developers of third-
party applications, but the number of read operations to this data is typically limited 
to protect their own business model. The scope of access given to third parties may 
change over time as well, e.g. Facebook restricting developer access to their API in 
the aftermath of the uncovering of Cambridge Analytica’s activities in 20186. 

• Although several data providers measure and manage the same data attribute, it 
may be provided in varying quality, if the data was mined for different purposes. As 
an example, geographical data is available on a global scale through map services; 
but this data is much less precise in comparison to blueprints designed by an 
architect for a construction project. 

• While one account may have full access to a certain database, it is possible that this 
dataset is being anonymized or required to be alienated for other; e.g. due to 
applicable jurisdiction for protection of privacy or competition concerns, like for 

                                                        
6 Facebook Developer News: API and other product platform changes: 
https://developers.facebook.com/blog/post/2018/04/04/facebook-api-platform-product-
changes/ 
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example through the introduction of the General Data Protection Regulation in the 
European Union in 20187. 

• Personal devices such as smartphones, health tracking wristbands and home 
automation technologies are able to collect, store and evaluate data in real-time; 
while remote services and analog processes such like surveillance satellites or the 
residents’ registration office collect and update their data in much larger periods of 
time. 

• The possibility to create and edit user-generated content, which dominates the so-
called Web 2.0, causes ever-increasing pace of updates of databases’ contents. 
Additionally, smart services that adapt themselves to the behavior of their users no 
longer perform stateless queries without context: Every query affects the results of 
future queries through feedback processes – using a list of best-selling products 
based on past sales for product recommendations will affect future sales and will 
have an impact on itself over time. 

 
When these new types of services and applications want to answer the queries of their 
users, they must find ways and means to calculate correct results despite those restrictions. 
 

5.2 Problem Settings 
Basic concepts for query handling usually assume total access to a single database, in which 
datasets must be retrieved as efficiently as possible, which fulfill one or several criteria. If 
the type of query is known, a special query algorithm may for example be used, or an index 
structure can be constructed or the database itself may be pre-sorted according to some 
criteria. However, if no ideal access to the data is possible – for example due to one of the 
restrictions enlisted before – the cost for performing the query may increase drastically, 
when the search space can therefore not be pruned efficiently. If the query affects more 
than just a single database, e.g. when a JOIN operation must be performed, the cost for the 
query computation can increase significantly in practical applications when generic 
approaches for query handling are used. However, if a detailed analysis of the employed 
data sources and query types is performed, those generic query strategies can be improved 
noticeably by consideration of application-specific datatypes. 
 

                                                        
7 Data protection in the EU: https://ec.europa.eu/info/law/law-topic/data-protection_en 
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Figure 1: Schematic illustration of how the published work covers various heterogeneous combinations of 
spatial, social, and temporal data. 

As this thesis focuses on heterogeneous data based on the spatial, temporal, and social 
domain, various combinations of these domains need to be treated. This thesis is not based 
on incremental contributions, but rather explores different problem settings of 
heterogeneous data exploratively. These problem settings will be explained in more detail in 
the following sub-chapters, while Figure 1 illustrates graphically how the published papers 
cover these different data domains. 
 

5.2.1 Querying and Indexing Multi-Represented Heterogeneous Data 

Considering Dynamic Weights 
Combining social networks with spatial information about the entities in the social graph 
enables novel application cases on the one hand, but on the other faces practical issues 
when executing queries which now need to consider two data spaces simultaneously. A 
special, yet relevant to real-world application cases, type of query for objects that can have a 
multi-attribute relationship with each other is the skyline query [7]. An explicit feature of 
skyline queries is that it is up to user to decide for a trade-off between the costs in different 
data spaces, so that no assumptions about the weights of each data space can be made in 
advance; however skylines help with narrowing down a range of choices for the user [8] [9]. 
For efficient computation of Geo-Social Skyline Queries the published approach in 
[DASFAA'14] considers the different costs of performing an accurate distance calculation in 
geometric space and in social networks, respectively: While a naïve method for skyline 
computation would determine both measures of distance for a candidate object, the 

social spatial 
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enriched 
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metric data 
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proposed method only uses an exact calculation of the spatial distance, which can be 
achieved rather cheaply in comparison. For distances in the social graph however, only 
approximated values are used while still ensuring overall correctness of the results. These 
are either derived from already computed information or are iteratively refined until their 
exactness is suitable to decide whether they fulfill a certain condition, without spending 
effort to determine the exact value. Because meaningful measures of distance in social 
networks are expensive to compute, a vital increase in efficiency during query computation 
can be achieved by using this method. 
 
The approach of supporting varying query weights across different data metrics provided by 
the user while simultaneously introducing an index structure that helps with reducing the 
total cost of processing the query is introduced in Indexing Multi-Metric Data [ICDE'16], 
while the method is extended to generic metrics and queries performance is increased by 
employing an index structure. Here a dedicated focus is put to the fact that in some metrics 
distance calculations are more expensive than in others (a generalization of the optimization 
approach of [DASFAA'14]) and retrieving exactly refined data rows from remote systems 
may incur costs as well. Two novel index structures are introduced with the PM-Tree and the 
RR*-Tree that can be adjusted and configured for varying data sources and metrics in a 
flexible manner. 
 

5.2.2 Querying, Mining, and Indexing Temporal Social Networks  
It is possible to model a social network through a graph, where for example nodes represent 
persons and edges express the friendship relations amongst them. Such a social network has 
been combined with spatial information in the previous chapter to answer Geo-Social-
Skyline-Queries. However, if one were interested in not primarily spatial, but temporal 
aspects, new opportunities and challenges arise: With the knowledge about the historical 
evolution of a graph, more complex patterns and queries can be solved. In the publication 
[ADC'16] the Top-k Influencer Query was introduced, which evaluates historic connections 
between users to identify those that caused an impact on other users later on. This novel 
ranking query can be used for data mining, where the temporal information about a graph is 
used to mine a subset of nodes likely to have influential impact on others. 
Adding the temporal dimension to a graph not only increases its complexity, but graph-
related queries can be extended to consider temporal aspects as well. The subgraph 
isomorphism problem can be extended to not only find similar “structures” in the graph, but 
also “similar behaving” occurrences, like patterns of emerging friendship like triadic closure. 
The publication [EDBT'18] presents not only a method to extend existing subgraph 
isomorphism algorithms to the temporal domain, but furthermore presents an index 
structure capable of indexing a temporal social graph to allow for more efficient temporal 
subgraph matching. 
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5.2.3 Querying Uncertain Spatio-Temporal and Enriched Spatial Data 
When considering the temporal along with the spatial domain, historical positions and 
trajectories of objects can be modelled analogously to the previously presented concept of 
the evolvement process of social networks. In practice however, a spatio-temporal database 
is more likely to be sparse or discretized at another level of granularity than the queries 
would require it to be. This means that the position of objects may not be known for every 
possible time point when observations are infrequent – the most important time point being 
“now”, i.e. when no information about an object’s current location is present. However, 
considering possible world approaches assumptions about an object’s location between two 
observations can be made and [SIGMOD'14] presents a Framework for Managing Uncertain 
Spatio-Temporal Data. This framework allows to answer queries on the data probabilistically 
by involving techniques which adapt traditional concepts to uncertain spatio-temporal data 
[10] [11] [12] [13]. 
However, the challenge does not stop at uncertain data, which may not be present in the 
dataset in the desired level of granularity; it continues to applications where such data is not 
present at all. While a database may contain detailed geographical information about city 
and road maps, data in this form may not be needed for all application cases. The work 
[ICDE'15] realizes that it is more natural and comfortable for humans to memorize a route by 
important waypoints, or places of interest. This challenges the application to not only find 
navigation routes that are short and quick, but also easy to describe and remember. By 
introducing a query to find k-Constrained Pareto Optimal Popular Paths, the data needs to 
be enriched by the attribute popularity and the wayfinding algorithm will then optimize for 
paths that touch popular points of interest along their way. The popularity of points is 
hereby mined from crowdsourced data and result paths can be measured by the novel 
attribute popularity along traditional attributes like distance or duration in for example a 
skyline algorithm. 
 

5.3 Skyline Queries on Geo-Social Data 

5.3.1 Problem Motivation 
Skyline queries are an important tool for answering user queries on heterogeneous data as 
they allow the user to weigh different dimensions even after query time, thus making it very 
generic and flexible. Personal preferences can be fed by the user and thus search criteria fit 
the individual user’s demand. 
The publication [DASFAA'14] focuses on skyline queries in the specific application field of 
spatial data in combination with social data and delivers the following contributions: 
 

• Consideration and exploitation of the different properties of the underlying data 
dimension allow for fast query processing while not requiring an index structure for 
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the social graph (which would require immense overhead for frequent insert, update 
and delete operations in the graph). 

• Allowing for real-life relevant social distance function Random-walk-with-Restart 
and Bookmark Coloring Algorithm respectively, which do not even fulfill metric 
properties (triangular inequality). The functions depend on a personalization factor 
that can be set at query time and determines the balance between the importance 
of a node in the graph and the importance of a node in relation to a query node, 
thus offering a maximum level in personalization to the user. 
 

5.3.2 Dataset 
Real-world geo-social data may contain complex correlations and patterns which may not be 
replicated well through synthetic data generators. Therefore, the experiments for 
[DASFAA'14] were executed on real-world data only, namely the Gowalla dataset8 [10]. 
Gowalla was a social networking site where users could virtually “check in” to locations they 
were currently at (similar to past Foursquare9 or current Swarm10 functionality). The dataset 
has been anonymized and consists of list of friendship links and a history of user check-ins 
into locations. 
Geo-Social Skyline Queries are run on a social network, consisting of links between users 
(implying for example “friendship”) and a database where each user is assigned a geographic 
location. Both locations and links are relevant only for the current point of time. While 
friendship links can be directly extracted from the Gowalla dataset, a location for every user 
for a certain time-point is not available. Therefore, such a database is artificially created 
from the users’ history: Each user’s location is defined as the location of their last check-in. 
 

5.3.3 Approximating Social Similarity and Distance 
A special focus is put on how the social distance in the graph is defined. As the Random-
walk-with-Restart (RWR) [15] distance is an advanced flexible way of identifying relevant 
nodes in a graph with respect to a given node [16] it is used for the skyline computation. The 
Bookmark-Coloring-Algorithm (BCA) [13] is mathematically equivalent to RWR but calculated 
differently. While exact results are similarly hard to compute with BCA in comparison to 
RWR, BCA provides faster approximations of a distance, which can furthermore be limited 
through an upper and lower bound. These bounds are then used for the skyline 
computation, as it is sufficient to just determine whether an element is contained in the 

                                                        
8 Stanford Network Analysis Project: Network Datasets: Gowalla: 
http://snap.stanford.edu/data/loc-gowalla.html 
9 Foursquare: https://foursquare.com/ 
10 Swarm: https://www.swarmapp.com/ 
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skyline, and not its exact distance properties to the query object. The paper [DASFAA'14] 
proposes two bounds: A rough one based on the network distance between a candidate and 
the query object, and a dynamic one, which continuously improves as iterative steps of the 
BCA are performed. A huge performance gain is achieved by only refining the bounds so 
much that a pruning or hit decision can be made, which in practice leads to profound boosts 
in performance. 
 

5.3.4 Algorithm Performance 
The proposed algorithm contains a further improved version as well, which is able to prune 
the complete remaining candidate set but requires accessing nodes according to their spatial 
distance to the query node – which requires spatial sorting at the beginning. Furthermore, 
two additional pruning steps may be added that allow to prune more candidates through the 
information gathered about other candidates: 

• When a distinct candidate is refined, it may dominate other candidates, which can 
then be removed immediately. 

• Candidates from the backlog can dominate each other. The refinement of a distinct 
candidate may refine other candidates as well, so an additional check whether new 
dominations occur within the backlog may prune additional candidates. 

The later pruning check is foreseeable too expensive to be executed every time a refinement 
has happened. Therefore, it can be postponed to only be executed every ! refinements. 
Figure 2 illustrates the modularity of the filter steps. 
 

 
Figure 2: Modular pruning steps for the improved Geo-Social Skyline Query algorithm. 
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Because the improved version of the algorithm requires the construction of a spatial index 
structure to allow distance-based browsing, and the optional pruning methods require 
comparison calculations as well, it is crucial to evaluate whether the payoff of the pruning 
potential justifies investing in the additional checks. Therefore, an experiment is conducted, 
where each version of the algorithm is compared against each other and measured by their 
overall runtime, thus demonstrating whether the precomputation steps balance faster 
pruning, and a filter step should be included in an efficient algorithm. To prove generic 
applicability, the experiments are conducted across the range of the personalization 
parameter " of RWR and BCA, which allows for a balance between nodes that are relevant 
to the query object and objects that are generally important in the network. Because ! 
controls how often additional pruning calculations are performed and therefore influences 
performance as well, both a value of ! = 1,000 and ! = 10,000 are considered. Since 
results show that neither of the additional dominance checks described results in a better 
runtime, no further experiments are necessary to evaluate the best setting for !, as it is 
outperformed by the version that just includes early termination functionality. 
 

5.3.5 Qualitative Evaluation of the Problem Definition 
As the Geo-Social Skyline Query was introduced in [DASFAA'14], it needs to be shown 
whether the problem definition brings any practical benefits instead of being a rather 
theoretical concept. Therefore, the result of the query is examined to indicate usefulness: 
The idea of a skyline is to give the user a small, however diverse set of pareto-optimal 
objects to choose from. If the set is too large to be presented to a user (i.e., thousands of 
search results) or too small (e.g., none or one object), it lacks practical use. By measuring the 
average size of the skyline result set through various settings this argument can be 
addressed. In various experiment settings involving sparse and dense geographic query 
points, well-connected and lonely query nodes in the social graph and varying 
personalization factor ", the skyline size is measured to contain roughly fifteen objects 
across all settings, which is a very feasible amount of results and therefore shows the 
practical relevance of the problem definition. 
 

5.3.6 Discussion 
The proposed concept of geo-social skyline queries was proven to be relevant and applicable 
to real-world applications, as qualitative and quantitative evaluations on an actual dataset 
have shown. 
In contrast to many other concepts, this approach allows to use the more realistic Random-
walk-with-Restart distance as a measure for the social distance (instead of for example just 
the network distance), which is a more suitable approach for geo-social networks and 
commonly adapted in academia, e.g. [14] and [15]. However, the RWR-distance is expensive 
to compute, and while the proposed algorithms consider these costs and try to minimize 
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them especially, these optimizations exploit specific properties of the Bookmark Coloring 
Algorithm (which is equal to RWR). This implies that the proposed skyline algorithm cannot 
be applied to other measures of social distance with ease. 
 

5.4 Indexing Multi-Metric Data for Efficient Dynamic Similarity Search 

5.4.1 Problem Motivation 
When objects are represented in a heterogeneous dataset, users may query that data using 
constraints that span across all data dimensions. Range and window queries can be adapted 
to span all dimensions and by limiting the search space for each dimension, the user can 
narrow the size of the result set. However, for practical applications similarity queries are 
much more helpful, as they put the dataset in relation to a query object, thus personalizing 
it. Another important problem arises as soon as queries do not rely on absolute 
arrangements of the dataspace: Because data dimensions may be independent from each 
other, distances in these dimensions are as well. As soon as these independent distances 
have to be aggregated together, one has to face the question of how they should be 
weighed against each other. While a fixed decision for a certain application case may result 
in query performance increase, it limits the flexibility and freedom of the query. Thus, it is 
most practical to leave that decision up to the user, i.e. making no presumptions about 
query weight distribution until query time and allowing for dynamic similarity search. The 
Multi-Metric Similarity Query (MMSQ) allows for such flexibility, as it retrieves all objects ' 
from the database ( which under consideration of the user-provided weight distribution ) 
have a multi-metric distance m+ to the query object , shorter than a range -: 
 

MMSQ(,, ), -) ≔ {' ∈ (|m+(,, ') ≤ -} 
 
The concept of consideration for the different costs of distance functions in different data 
domains is generalized in [ICDE'16]. Here two novel generic index structures for multi-metric 
data are introduced that allow for efficient Multi-Metric Similarity Queries: 
 

• The PM-Tree is a combined index structure which allows individual index structures 
for each metric. These structures need to support distance-based browsing of data 
and the PM-Tree includes a method to coordinate the browsing of the individual 
metrics and compute the final result set.  

• The proposed RR*-Tree can adapt to different levels of “hardness” of metrics. 
• Different levels of refinement account for potentially expensive cost of distance 

computations in modern applications. 
• The user can decide at query time how to weigh the individual metrics against each 

other to retrieve an ordered list of relevant objects. 
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5.4.2 The PM-Tree and RR*-Tree 
Instead of combining all metrics into a single index like the M2-Tree [20] and M3-Tree [21] 
do, the PM-Tree keeps an individual index for each metric. For the generic case this can be a 
basic M-Tree [17], but if specifics about the metrics are known, other suitable data index 
structures applicable to that metric and supporting the essential queries are may be used as 
well. 

 

 
Figure 3: PM-Tree illustration for three metrics. In each metric, a rank is performed to order objects in relation 
to the query object. This continuously improves the lower bound for unseen or unrefined objects and enables 
pruning. 

To support Multi-Metric Similarity Queries, the PM-Tree considers the weights across the 
metrics the user has provided at query time. The PM-Tree performs a ranking query in each 
of its sub-indexes and retrieves objects from the indexes one-by-one and in parallel, which is 
illustrated in Figure 4. As the distances to the query object continuously increase, browsing 
can be terminated as soon as the query distance threshold is reached, as all further 
candidate objects can be safely pruned [23] [24]. As the user query weights may have a 
strong bias against one or some metrics, these metrics can be prioritized during the parallel 
refinement to reach the termination point faster.  
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Figure 4: Exemplary representation of an object ' by its distance to a reference object < in a two-metric 
scenario to visualize the concept of the RR*-Tree. By determining the distance of the query object , to < as well, 
the distance (or similarity) =>(,, ') can be bounded through the triangular inequality: 
|=>(,, <) − =>(', <)| ≤ =>(,, ') ≤ =>(,, <) + =>(', <).  

The ground laying idea of the RR*-Tree is the representation of the objects in another data 
space. By choosing a reference-object-space, each object is represented by its distance in 
each to a global reference object in each metric, as illustrated in Figure 4. Therefore, a 
vector can be a representation of the object and a traditional R*-Tree [25] can be used to 
index those vector representations. As it is assumed that similar objects will have similar 
distances to the reference objects, this increases the likelihood that similar objects will be 
indexed in the same data pages in the R*-Tree. For query evaluation, the query object’s 
distance to the reference object will be computed at query time and using the triangular 
inequality (which holds true for metric spaces), the distance from the query to candidate 
objects can be estimated. The paper also introduces the possibility to choose different 
reference objects for different metrics and even to choose more than one reference object 
per metric to improve the lower and upper bounds yielded through the triangular inequality. 
 

5.4.3 Performance Evaluation of the Proposed Index Structures 
As the publication proposes two novel index structures to handle similarity queries on multi-
enriched objects with an arbitrary weighting function between the metrics provided just at 
query time – namely the PM-Tree and the RR*-Tree – both new methods need to be 
evaluated in comparison: 

• against each other to provide an explanation which indexing method is beneficial in 
which conditions 
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• with an existing method: The M3-Tree [21] 
• against trivial methods to prove that the problem is so complicated that it cannot be 

treated efficiently 
 

While the M3-Tree, the RR*-Tree, and the PM-Tree each have fundamental underlying 
concepts, their performance may be affected by different configuration parameters, 
attributes of the handled data, and parameters of the similarity query. To either prove the 
superiority of one of the three approaches or explain the scenarios where one is 
advantageous to another, all those variables and parameters that can affect the cost of the 
query need to be identified and evaluated: 

• the number of objects inside the database 
• the number of attributes or metrics the objects are represented in 
• the “hardness” (internal complexity) of each available metric 
• the relative weight distribution across the metrics provided at query time 
• specific to the RR*-Tree: The number of reference objects used during index 

construction 
• specific to the RR*-Tree: The distribution of all available reference objects across the 

individual metrics 
 

Another important aspect for performance evaluation is which cost should be accounted for. 
Traditional research methodology mainly focusses on computation time and disk or RAM 
space. However, in times of distributed computation platforms and use cases, a more 
detailed analysis seems appropriate for this work. For example, in practice the cost of 
comparing two objects by their attributes through a comparison function requires on the 
one hand the calculation of a formula (a moderately easy task), but also prerequisites 
retrieving the attributes beforehand. In a world where an object may be represented in 
different services and databases (and not a central core storage), this task quickly becomes 
expensive. Therefore, it is obvious that the total count of similarity calculations (or distance 
calculations) can affect the total runtime significantly. Thus, the experiments will account for 
the total number of distance calculations separately. By denoting the count in absolute 
numbers, the conversion into practical runtime can then be achieved later; when for 
example different calculation times per use case (locally, remote, or distributed) can be 
applied. 
 

5.4.4 Evaluating Influential Parameters 
As explained before, various parameters have been identified that may have an impact on 
query performance. Since each parameter has its unique domain of valid configuration 
values, the total count of all possible attribute combinations is unfeasible. Because of this 
impediment, and secondly the interest to examine each parameter’s individual influence on 
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the query scenario, the following general experiment design was chosen: A default scenario 
was defined, where for each of the listed parameters has a default value. Then a dedicated 
experiment was run for each parameter in which only the current parameter was varied 
across its domain. This allows to see an individual parameter’s role in the query phase and 
limits the number of experiments to perform drastically. However, complex cross-
correlations of parameters cannot be detected through this setup. In practice this seemed 
nonetheless not to be a problem, as each parameters influence could clearly be described 
and did not follow arbitrary patterns, thus allowing for the conclusion that the parameters 
are independent from each other. 
The range of the domain from which a parameter’s value can be from was chosen by design 
and then iteratively extended until a clear trend could be the experiments could be 
observed. 
Furthermore, the underlying data has been varied as well. To show practicability in real-use 
applications, a Twitter dataset was chosen, which contains 100,000 different tweets. Five 
different metrics of those tweets have been chosen to be used in the experiment: 
 

• The text content of the tweet and by definition the distance between two texts was 
chosen to be equal to the Levenshtein-distance [26]. 

• The length of the tweet in count of characters. As this metric is obviously highly 
correlated with the previous metric, it is used to model correlation between metrics 
in the experiments. 

• The geographic reference of a tweet to measure the geographic distance between 
two tweets. Classical latitude/longitude coordinates have been transformed to 
(A|E|F) coordinates to allow the use of the Euclidian distance function, which in 
contrast to the orthodrome-based distance function satisfies the triangular inequality 
(thus making it a metric). 

• The friend count of the author of a tweet; thus, classifying tweets from popular 
influential people. 

• The hue value of the background color the author of the tweet has chosen for their 
profile page. This may seem rather random, and it is meant to be. While no 
correlation is expected between this metric and the others, this metric’s influence on 
the results can be compared to the tweet length metric, which on the contrary is 
highly correlated. 
 

Additionally, experiments have been run on a synthetic dataset as well. While “good” 
synthetic datasets are hard to produce, they allow to manipulate underlying properties of 
the dataset precisely and therefore allow a more quantitative analysis. In the context of this 
paper, synthetic datasets provide the possibility to set the intrinsic dimensionality of a 
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metric, i.e. its hardness. This concept can be visualized as follows: Assuming an object’s 
spatial location is described by a single value (e.g. its distance to a special point of interest): 
 

• In a one-dimensional space, like for example a sprint on a racetrack, a runner’s 
distance from the starting point describes their position in geometric space perfectly. 
Similarly, two runners with an equal distance from the start point are at the identical 
position. 

• In a three-dimensional space, a planet’s distance to the sun limits its spatial location 
drastically to all points on an imaginal sphere around the sun. However, we cannot 
make assumptions about the spatial distance between two planets with similar 
distance to the sun. They may either be really close in three-dimensional space, or 
pretty far away, being located at opposite points of the sun. 

• In a ten-dimensional space, it becomes even more difficult to make statements about 
individual object’s properties. If a student’s average grade is a “C”, it becomes nearly 
impossible to correctly assume their individual grades of the courses they took. 
 

5.4.5 Discussion 
The evaluation of the proposed PM-Tree and RR*-Tree have them proven to be viable 
solutions and to be more efficient than traditional approaches, especially when separately 
accounting for page accesses, indexing overhead and distance calculations. These 
performance measures are more relevant today, as they are flexible enough to account for 
remote database lookups and computation of very complex distance functions, like social 
distance. The novel index structures are heavily optimized towards these criteria and thus 
support handling of (partially) unrefined objects. 
The PM-Tree can outperform the RR*-Tree in scenarios where there is a larger imbalance in 
the weight distribution among the metrics, while the RR*-Tree allows to combine “easy” and 
“hard” metrics in a single, performant index structure. 
However, the Curse of Dimensionality limits the level at which the RR*-Tree can be 
optimized [25]: As each reference object chosen for the metrics increases the dimensionality 
of the internal R*-Tree, there is a practical limit of reference objects to be used and the 
challenge shifts to how the available reference objects should be distributed among the 
metrics to gain the best increase in performance. The paper proposes a heuristic approach 
of how to achieve this, by estimating how many more nodes may be pruned using an 
additional reference object. 
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5.5 Data Mining in Temporal Social Graphs: Identifying Influencers 

5.5.1 Problem Motivation 
In a temporal social graph both nodes and edges may undergo changes as time continues: 
Edges can be created, removed, intensified and diminished; whereas the nodes themselves 
may change as well, as they might have associated attributes which can vary over time. 
Influencers in a social graph are people that have an effect on others, like increasing the 
popularity of a brand with peers or enabling friends to get better grades in study classes. 
While the effect of the influence may have a temporal delay, it becomes challenging to 
identify the nodes which have caused the impact in the past to honor their efforts. 
 
The paper [ADC'16] proposes two new contributions: First, the definition of influence in 
time-dependent attributed graphs and followed by the definition of the Top-k Influencer 
Query. Second, simple performance functions and more advanced performance function 
based on intervention analysis [26] [27] to model and approximate the change in 
performance over time through influence are presented as well. 
Since the problem definition itself is new, it has to be shown that the results are viable as 
well as giving different insights than other problem definitions (qualitative evaluation). The 
different performance function should be compared against each other to give answers 
about the usefulness, quality and performance of their results (quantitative evaluation). 
 

5.5.2 Dataset 
To prove the problem’s usefulness in real-world applications, it is essential to analyze it on 
an authentic dataset. The ACM citation graph is a viable instance of such a dataset: 
Discretizing it to a yearly interval smoothens out seasonal fluctuation but keeps the time 
domain large enough to observe temporal changes. It is furthermore a dataset close enough 
to the main motivation: While influencers can also occur in social networks and advertising, 
where the influenced domain is sales or brand value; influence in the research field is also 
obvious. For practicality, the dataset has been reduced to the set of people who have had at 
least one publication at a SIGMOD conference (hence, the database community). 
Since there needs to be one or more attributes to be influenced, a person’s publication 
count is chosen as the key performance attribute for various reasons: 

• It is definitely and easily measurable 
• Publication count is essential for PhD students as well as post-docs and professors (at 

least in the computer science field from which the ACM dataset is from) 
• The popular and widely respected h-Index of a researcher is accepted as a viable 

indication of a person’s research in the academic field 
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As with [DASFAA'14], no efforts were made to artificially replicate a synthetic temporal 
social graph, as dependencies in the social and temporal domains are too complex for a data 
generator and infer the risk of bringing an unwanted bias. However, the ACM dataset will be 
punctually mutilated in dedicated experiments explained later.  
 

5.5.3 Modelling and Measuring Influence 
To formalize the term influence, performance functions are introduced. They can be applied 
to a node G in the graph under consideration of a specified attribute H this node has. 
Considering a time point I, the performance function expresses the quality of an external 
intervention on G at time I. The proposed performance functions only depend on available 
data, namely the time-series H(G)(I) and aim at spotting the exact moment (or period) the 
intervention was happening. Generally speaking, performance functions seek for a change in 
the attribute’s value under consideration that an impact may be delayed. Two concrete 
performance functions are introduced: 

• Before and After Average compares the average values of the time series in a 
defined window before respectively after the examined timepoint. This simple 
method aims at finding direct changes in the timeseries. 

• Auto-Regression Integrated Moving Average (ARIMA) is a stochastic intervention 
model aimed at modelling the impact on a timeseries using maximum likelihood 
estimation [28] [29]. 

 
As each node’s performance can now be expressed through a performance function, the 
graph structure can now be used to calculate a Social Influencer Score for each vertex: For 
any timepoint, the influencer score of a node is increased by the value of the performance 
function of the nodes the node is currently connected with. This directly attributes a node’s 
performance to its possible causes. The Top-k Influencer Query now identifies the set of J 
nodes with the highest Social Influencer Score. 
 

5.5.4 Evaluation 
After performing the Top-20 Influencer Query on the ACM dataset, the resulting top 
influential researchers are manually evaluated and compared to other renowned ranking 
methods (Microsoft’s field ranking score and the h-index retrieved through Google Scholar). 
The comparison shows that the Top-k Influencer Query does not give an arbitrary, however 
also not a correlating ranking to the other scoring methods. It furthermore seems to indicate 
that it indeed is a new, viable method for finding influential researchers. 
However, it is yet to be proven that the ranking itself is correct on the inside – as for 
example the random ranking would be different to established ranking approaches as well. 
To show that the new query actually finds influential people, the so-called Hero experiment 
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was designed. Its key idea is to create a single influencer (the hero) artificially and then verify 
that the Top-k Influencer Query identifies them correctly. For a single influencer to exist, the 
rest of the graph must be completely random, e.g. a synthetic network. The network is then 
adjusted that the nodes adjacent to the hero will experience a performance boost over the 
time period of two time points after the interaction with the hero. For this scenario, 
generating a simple synthetic network is applicable, as no qualitative or quantitative analysis 
on the network or the query results is being done – only the hero is being evaluated. 
Repeatedly executing this experiment shows that the hero’s position rises in the ranking, 
and the higher the performance boost given the more their position in the ranking climbs to 
the bottom. On the one hand, this obviously shows that the influencer is clearly identified 
through the proposed method. On the other hand, the experiment also verifies that the 
length of the influence can be nontransparent to the ranking algorithm, as it is nevertheless 
able to find the best influencer. 
 
As the problem definition of the Social Influencer Score relies on the existence of a 
performance function intended to model the quantity of an impact on a node at a given 
time, two performance functions are presented in the paper: The sophisticated ARIMA-
function (Auto-Regression Integrated Moving Average) based in intervention analysis in the 
field of statistics, along with the the Before and After Average Function (BaAA) that takes the 
average of a few points before the time point ant the average of a few time points after, and 
compares these two values. For obvious reasons, the later performance function is much 
easier to compute than the sophisticated ARIMA-model, for which solvers exist. This is 
supported through quantitative results: The calculation of single performance function value 
using ARIMA is approximately five orders of magnitude more expensive than BaAA. 
However, BaAA requires the specification of the number of time points to consider; i.e. an 
input variable that has to be provided with domain knowledge. Knowing (or guessing) the 
correct number can help BaAA to achieve equally as good results as ARIMA (verified by the 
Hero experiment, where the number can be set to the same value as the duration of the 
artificial influence as explained earlier), however with an arbitrary window size the quality 
usually lies beneath that of ARIMA. Therefore, a clear trade-off between optimal results and 
speed performance can be provided for application-specific use. 
 

5.5.5 Discussion 
Correctly identifying and attributing the influencers in a social graph is an important 
classification challenge, as it looks beyond graph structures and considers attribute values 
and their temporal change as well. 
Using the statistical ARIMA-model for a performance function identifies those influential 
nodes, however performing the maximum likelihood estimation necessary is very expensive 
as it requires tremendous computation time as it needs to be performed for every node in 
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the graph and every timepoint in the time domain. However, with the much simpler Before-
and-After-Average performance function a much more efficient, yet still accurately enough 
alternative is presented. 
The scope of this publication does not yet consider that even an influencers score may vary 
over time – i.e. they might evolve from a bad to a good influencer. Considering this fact in 
future research work would require adjustments to the query definition, depending on 
whether one is searching for the all-time best influencers or the best influencers right now. 
The later question can easily be answered by artificially truncating the time domain. 
 

5.6 Pattern Search in Temporal Social Graphs 

5.6.1 Problem Motivation 
In the previous section it was shown how to identify individual nodes that influence 
attributes of other peers in a temporal social graph. However, one may not only just be 
interested in individual nodes but may be seeking for patterns of structural and temporal 
shape in the graph, like when a group of friends is formed. These patterns can be searched 
for by using Temporal Subgraph Matching presented in [EDBT'18]. Informally, we are 
specifying a structural graph and define its temporal behavior, i.e. edges evolving, 
disappearing etc. Now all subgraphs of in the social graph should be identified where the 
nodes behave in the same temporal pattern as specified in the query. 
Subgraph isomorphism problems are in general NP-hard. To make the problem solvable with 
reasonable resources, it must be examined whether heuristics can be applied in the 
individual fields of application. As this work focusses on temporal social networks, such a 
limitation on the general problem is the case. 
 

5.6.2 Dataset 
All experiments are run on a derived dataset (called PUBS), which is based on the ACM 
citation graph used in [ADC'16] as well. For PUBS, the nodes from the citation graph (namely 
the researchers) are extracted and the time-domain is discretized into yearly intervals. If two 
researchers have published a work together included in the ACM citation graph, an edge 
between them is created in PUBS for the year of the publication. PUBS can therefore be 
described as a collaboration graph, and the focus on annual intervals is a viable and 
meaningful discretization of the time-domain, as it evens out seasonal factors and is still 
precise enough to allow for change during a researcher’s career. The evaluation of PUBS 
already shows that it is relatively sparse, which is beneficial to the solution of the subgraph 
isomorphism problem. 
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5.6.3 Temporal Subgraph Matching 
The publication demonstrates, how a traditional algorithm by Ullmann [18] for the subgraph 
isomorphism problem can be extended to consider the temporal domain as well. This is 
achieved by first projecting the graph und query graph along the temporal domain (i.e., 
creating a non-temporal social graph), solving the subgraph isomorphism query, and then 
reintroducing the temporal aspects and performing a last refinement step to account for the 
temporal correctness as well. Here two new filter steps are introduced for Ullmann’s 
subgraph isomorphism algorithm: 
 

• Pruning based on the time-offset only considers parts of the graph relevant for a 
specified time. This may result in a much sparser non-temporal graph on which the 
subgraph isomorphism is performed, hence an increase in performance. 

• Pruning based on network distance discards all parts of the graph whose network 
distance is greater than in the query graph when generating assignment mappings. 
This reduces the number of candidates to be checked and is also a generic 
application for non-temporal graphs. 

 
 

 
Figure 5: Exemplary temporal social graph (left) and temporal subgraph query (right). Numbers at the edges 
indicate, at which time points a connection between the vertices exist. Choosing a “triangle” (coloured in the 
picture) as a Simple Subgraph Structure helps to find candidate locations in the graph.  

To further improve the process of mining candidate subgraphs, an index structure for 
temporal social graphs is presented, which allows to index the temporal behaviors of 
specified Simple Subgraph Structures (SSG) by encoding the individual states at a certain 
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time through symbols. These symbols can now be concatenated to represent the temporal 
behavior of a simple subgraph occurrence. All occurrence’s encodings can now be stored in 
an index structure that supports efficient substring search. During query time, an SSG can 
now be identified in the query graph and its matching occurrences in the index can then be 
retrieved efficiently – illustrated in Figure 5. Additional components to the SSG in the query 
graph require an afterwards refinement. 
 

5.6.4 Evaluation 
As the main idea of the proposed index-supported search relies on the use of Simple 
Subgraph Structures, a list of basic SSGs is presented. All occurrences of the SSGs are then 
mined in the dataset PUBS and the count gives a foundation to discuss the question which 
SSG is a suitable selection for index construction, as the general idea is that the index works 
better if the SSG itself is more complex and specific, while a simpler SSG has a higher 
probability of occurring in the query graph at all. Evaluation shows that very simple SSGs 
without "loops" (I.e. chains of edges) occur quite frequently in a social graph, while more 
complex structures based around the "clique" structure (I.e., all or mostly all vertices are 
connected in the SSG) are scarce. Note however, that due to the internal symmetry of a 
clique an SSG has exponentially more permutations occurring in the graph the bigger the 
clique becomes. 

Besides SSGs, typical query graph structures need to be evaluated as well to give feedback 
about the feasibility of temporal subgraph matching. Various query graphs consisting of up 
to five nodes are then enlisted – each containing a triangular substructure. Based on this set 
of query structures, it can be analyzed how useful different SSGs are in regard to query 
performance. An SSG is useful, if it does not produce unnecessary candidates. More generic 
SSGs (like a string) deliver more matches in the graph than complex SSGs (like a triangle). 
The difference in the experiments is about three orders of magnitude. However, if an SSG is 
not contained in the query graph at all, it becomes useless all together. Hence, the 
evaluation helps with finding a well-balanced SSG suitable for efficient search. 

For examining the influence of the temporal length of the query on calculation time and size 
of the result, we generate a random temporal pattern for the set of SSGs mentioned before. 
In order to retrieve meaningful results; the pattern must in practice be not completely 
random but have at least one occurrence in the graph (which can be picked by random). 
Starting with a very long temporal pattern, and then iteratively reducing the temporal length 
consecutively, we can observe how more and more other parts of the graph become 
isomorph to the shorter query pattern. The number of results as well as the runtime of the 
query both increase exponentially, the smaller the temporal length gets. This leads to the 
conclusion that temporal subgraph isomorphism can be performed efficiently, when the 
temporal part of the query contains some amount of complexity (and thus uniqueness). 
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In direct comparison, the index-based approach is faster than the baseline approach by 
orders of magnitude. When the temporal length of the query increases, the performance 
gain becomes even more drastic. This is shown by a side-by-side comparison where each 
method must perform a temporal subgraph search, where the query pattern is either a 
three- or a four-clique, the temporal length of the query is between one and five, and the 
temporal behavior of the edges in the query graph are generated randomly (I.e. 
synthetically). 
As the baseline approach is first looking for the structural matches and then refines with the 
temporal behavior of the edges in the query graph as opposed to the index-supported 
solution which uses the temporal behavior first and then expands the structural 
isomorphism from the central SSG on, a direct comparison between both approaches is 
useful: Therefore, various query graphs with three to five nodes and temporal length of four 
are processed using both approaches. The result is that the index-based solution (benefiting 
from a high selectivity in the temporal pattern of the SSG in the query) outperforms the 
other approach by several orders of magnitude. 
For the baseline approach as well as the refinement step in the index-supported approach 
we rely on Ullmann's algorithm to retrieve all subgraph candidates. Ullmann proposed two 
filters (a filter based on the degree of nodes, and a filter dependent on whether a node's 
neighbors can be mapped), to which our paper brings another two novel filter approaches 
introduced in the previous section. All four filters should be evaluated regarding their 
effectiveness (I.e., how many candidates are they able to prune), their cost (how much time 
does it take to apply the filters) and – since they are freely combinable – their cost and 
effectiveness in combination. Experiments provided in the paper provide measurements and 
data to this question. A further look is also given to the order in which multiple filters have 
to be applied in. 

As the experiments have shown, the index-based solution greatly outperforms basic 
approaches in applications where a dedicated portion of the query aspect lies on the 
temporal domain. In such cases, the “temporal-first” approach can quickly gather the small 
set of candidates, because the temporal query conditions are more selective. 
Even the simplest SSG is suitable for a viable index, however if the specific application 
context allows for indexing more complex SSGs, the query processing can be sped up even 
more. 
 

5.6.5 Discussion 
The proposed index structure provides efficient support for mining temporal subgraphs from 
a temporal social network. However, it requires the selection of a Simple Subgraph Structure 
beforehand in the offline phase to build the index. While on the one hand a more specific, 
thus complex SSG is likely to provide better (i.e.: fewer) candidate results from the index, the 
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probability increases that the SSG is not contained in the query graph in the online phase. In 
this case, the index becomes useless. It is therefore recommended to either choose a simple 
SSG (which experiments have shown to be a viable approach) or create several parallel 
indexes for different SSGs so that the most suitable for the query may be chosen. This may 
require knowledge about the application-specific query patterns, thus a quantitative 
evaluation has not been performed in the context of this work, which on the contrary 
focusses on generic applications and use cases. 
 

5.7 Querying Uncertain Spatio-Temporal Data 

5.7.1 Problem Motivation 
In real-world applications observations and measurements often lack infinite preciseness. 
Observations may be sparse, i.e. between them lies a timeframe during which nothing is 
known about the measured object, or measurements themselves may be imprecise. With 
the publication [SIGMOD'14], a framework is introduced which aims at managing this 
uncertain spatio-temporal data by computing possible worlds between observations. It 
allows to perform uncertain temporal window queries, where the user selects a timeframe 
and spatial region and retrieves objects and their corresponding probability to be in this 
region during the specified time. Also supported are uncertain nearest-neighbor-queries, 
where objects can be identified that have a probability of being the nearest neighbor to a 
specified point in a given timespan. 
 

5.7.2 Dataset 
As a dataset the T-Drive dataset [31] has been chosen. It consists of GPS-logfiles for over 
10,000 taxicabs in Beijing for one week. For data visualization, OpenStreetMap11 is used as 
an underlying map layer to better visualize trajectories, state space and spatial properties. 
 

5.7.3 Framework 
The framework offers a powerful visualization, as it visually combines the state space used 
for the Markov-models with a map layer (Figure 8). Object trajectories can be displayed and 
if a specified location for an object is unknown, it is represented by a bounding box which 
contains the object’s actual location (Figure 6 and Figure 7). By allowing to manipulate the 
time-axis, or using the auto-play feature, the dynamic change of these elements is 
graphically visualized. 

                                                        
11 http://www.openstreetmap.org/ 
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Figure 6: Displaying the lifetime trajectory of the selected (purple) object. Its current exact position is unknown 
but bounded by the purple box. The red box represents a spatio-temporal window query, for which probabilistic 
results are returned. 

 
Figure 7: Objects' spatial locations bounded by boxes. 
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Figure 8: State space and trajectories overlaid on actual map data. 

5.7.4 Discussion 
The demonstration of the framework visualizes the challenges when working with uncertain 
spatio-temporal data and demonstrates how probabilistic queries can be handled. Analysis 
functionality helps to explore temporal dimension and makes uncertain or sparse datasets 
tangible. 
 

5.8  Using Enriched Spatial Data to Compute Popular Paths 

5.8.1 Problem Motivation 
Routing mechanisms usually focus on finding the shortest, fastest or most economical route. 
However, when users have to remember a route, they tend to only memorize a limited 
number of instructions or waypoints. By giving them a small set of memorisable, significant 
waypoints, such as Points of Interest (POIs), navigation can be made easier. Other users may 
not face the problem of needing to memorize a route but may opt for a more scenic route if 
it just means adding little extra travel time [24]. For the later, we introduce the Popular Path 
Query in [ICDE'15], where a set of pareto-optimal routes regarding travel time and 
popularity is calculated. For the first use case, the k-Constrained Popular Path Query 
calculates routes along J many POIs that maximize popularity. J is intended to be user-
definable so the user may decide how many POIs they want to remember. 
 

5.8.2 Enriching the Graph with Popularity Attributes 
To give a measure for the popularity of a POI, the graph is enriched with crowd-sourced 
information from which the popularity is deducted. A problem is encountered when dealing 
with popularity in a path-finding scenario: Algorithms usually try to minimize the cost of an 
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attribute to give the efficient route. Maximizing an attribute’s value may thus result in a very 
long, or even circular path. Thus, a method is proposed which transforms the vertex-related 
gain (popularity) into an edge-related cost. This allows us to adapt traditional path-finding 
methods to popular routes. 
The k-Constrained Popular Path Query is then an extension of the problem: The paths are 
now filtered to only have results that include at least J POIs. To measure the overall 
popularity of a path, only the J most important POIs in a path are considered. 
 

5.8.3 Framework 
The developed framework supports both Popular Path and k-Constrained Popular Path 
Queries and gives the user a detailed visualization of the result routes, the POIs along their 
way and additional mined information about the POIs along the way. 
 

5.8.4 Discussion 
The demonstration provides a valid and novel way of computing interesting routes for users. 
By focussing on POIs along the way, the route becomes on the one hand more interesting 
and on the other hand more descriptive. 
A further extension of the work may focus on how the POIs are distributed along the 
journey: At the local vicinity of the start and end point of the route POIs may be required in a 
denser sequence than along the journey: For example, a description of a route from Berlin to 
Paris requires more detailed description on how to reach Berlin’s airport than how to take 
the flight from Berlin to Paris itself – i.e. the length of a track segment does not have to 
correspond with the breadth of its description.  

6 Summary 

This thesis has presented novel data mining and data management techniques. Various 
aspects of multi-representation have been examined: geospatial data spaces in combination 
with social data, social data combined with temporal information, uncertain spatio-temporal 
data, and enriched spatial data. Furthermore, a generic approach for indexing unspecified 
multi-metric data pursues the concept of assessing an individual data metric’s properties. 
Data mining techniques introduced within the scope of this cumulative thesis demonstrate 
the valuable insights that can be mined from such heterogenous data. 
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