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Abstract 

One of the most intriguing fields of research in this century is the development of controllable 

and effective drug delivery systems for targeted cancer therapy. This goal is closely connected 

to the development of suitable and innovative nanomaterials. In addition to the design of 

completely new nanoparticles, the properties of already existing materials, such as 

mesoporous silica nanoparticles, can be improved and modified by investigating new stimuli-

responsive release mechanisms and different cancer cell targeting strategies. Cancer 

nanotherapeutics is a rapidly progressing and growing research field, with conventional drug 

delivery systems already bypassing limitations of classical chemotherapy such as nonspecific 

biodistribution and targeting, lack of water solubility and poor bioavailability. The design of 

tailor-made nanoparticles of differing sizes and surface characteristics offers the ability to 

increase their circulation time in the bloodstream. Additionally, they are able to carry their 

loaded active cargo selectively to cancer cells and release the drugs after applying specific 

internal or external stimuli. By using the unique pathophysiology of tumors, such as their 

enhanced permeability and retention (EPR) effect and the difference in vascularity of the 

tumor microenvironment compared to healthy tissue, passive tumor targeting can be 

exploited. In addition to this passive targeting mechanism, active targeting strategies using 

ligands or antibodies on the external surface of nanocarriers can lead to enhanced specific 

receptor-mediated cancer cell uptake. Hence, emerging multifunctional nanoscale drug 

delivery systems can improve current cancer treatment strategies to close the gap to specific 

and personalized chemotherapy.  

This thesis is focused on the synthesis and modification of nanomaterials for targeted drug 

delivery applications. Effective tailoring of mesoporous silica nanoparticles (MSN) is 

described to further develop their great potential as multifunctional drug delivery 
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nanocarriers. The requirements for an efficient stimuli-responsive and thus controllable 

release of cargo molecules into cancer cells and the design principles for smart and 

autonomous nanocarriers are discussed. The possibility to spatially and temporally control the 

release of cargo molecules is shown. Different innovative stimuli-responsive release 

mechanisms were investigated and demonstrated in several in vitro and in vivo environments. 

The coating of the nanoparticles with different organic moieties on the external particle 

surface improves their biocompatibility, it can be utilized for the effective encapsulation of 

cancer therapeutics, and it facilitates attachment of targeting ligands for specific cellular 

recognition. The use of specific ligands for active cancer cell targeting is discussed in detail. 

The biocompatibility and toxicity of functionalized nanoparticles was tested in vitro and in 

vivo. Additionally, new silica-reduced and non-silica based nanomaterials for biomedical 

applications were synthesized and used for cellular delivery approaches.  

The first part of this thesis describes an enzyme-responsive release system on MSNs. These 

nanoparticles allow for controlled and targeted drug delivery to diseased tissues and therefore 

bypass systemic side effects. Spatio-temporal control of drug release can be achieved by these 

nanocarriers that respond to elevated levels of disease-specific enzymes. For example, matrix 

metalloproteinase 9 (MMP9) enzymes are overexpressed in tumors, are known to enhance the 

metastatic potency of malignant cells, and have been associated with poor prognosis of lung 

cancer. Here, the used MSNs are tightly capped by avidin molecules via MMP9 sequence-

specific linkers to allow for site-selective drug delivery in high MMP9-expressing tumor 

areas. We provide proof-of-concept evidence for successful MMP9-triggered drug release 

from MSNs in human tumor cells and in mouse and human lung tumors using the novel 

technology of ex vivo 3D lung tissue cultures. This technique allows for translational testing 

of drug delivery strategies in diseased mouse and human tissue. Using this method we show 

MMP9-mediated release of cisplatin, which induced apoptotic cell death only in lung tumor 
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regions of Kras mutant mice, without causing toxicity in tumor-free areas or in healthy mice. 

The MMP9 responsive nanoparticles also allowed for effective combinatorial drug delivery of 

cisplatin and the proteasome inhibitor bortezomib, which had a synergistic effect on the 

toxicity. Importantly, we demonstrate the feasibility of MMP9 controlled drug release in 

human lung tumors (Chapter 3). 

Another stimuli-responsive capping system is described in Chapter 4, where a novel 

thermoresponsive snaptop for stimulated cargo release from superparamagnetic iron oxide 

core – mesoporous silica shell nanoparticles based on a [2+4] cycloreversion reaction (retro-

Diels Alder reaction) is presented. The non-invasive external actuation through alternating 

magnetic fields makes this material a promising candidate for future applications in externally 

triggered drug delivery. 

In a joint project with Prof. Bräuchle, Prof. Carell, and co-workers, a third stimuli-responsive 

release mechanism on MSNs is presented (Chapter 5). Here, we describe a novel enzyme-

based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a 

targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-

responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic 

anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was 

genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal 

attachment of even very sensitive targeting ligands such as folic acid and anandamide. This 

leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful 

delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel 

nanocarrier concept provides a promising platform for the development of precisely 

controllable and highly modular theranostic systems. 
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In order to show the biocompatibility and explore the toxicity of functionalized MSNs in the 

lung, we investigated the bioresponse of avidin-coated MSNs (MSN-AVI), as well as 

aminated (uncoated) MSNs, after direct application into the lungs of mice (Chapter 6). We 

quantified MSN distribution, clearance rate, cell-specific uptake, and inflammatory responses 

to MSNs within one week after instillation. We show that amine-functionalized (MSN-NH2) 

particles are not taken up by lung epithelial cells, but induced a prolonged inflammatory 

response in the lung and macrophage cell death. In contrast, MSN-AVI co-localized with 

alveolar epithelial type 1 and type 2 cells in the lung in the absence of sustained inflammatory 

responses or cell death, and showed preferential epithelial cell uptake in in vitro co-cultures. 

Further, MSN-AVI particles demonstrated uniform particle distribution in mouse lungs and 

slow clearance rates. Thus, we provide evidence that avidin functionalized MSNs (MSN-AVI) 

have the potential to serve as versatile biocompatible drug carriers for lung-specific drug 

delivery. These MSNs were subsequently used for active targeting studies in the upcoming 

section. 

Specific receptor-mediated cancer cell targeting with functionalized MSNs was evaluated in 

Chapter 7. Targeting of tumor cells typically involves functionalization of nanoparticles with 

ligands for receptors that are specific for or overexpressed in cancer cells. Combination 

therapy with distinctly functionalized nanocarriers can be employed to target several cancer 

cell types. Here, we investigated the targeting efficiencies of EGFR- or CCR2-targeted 

mesoporous silica nanoparticles (MSNs) in vitro and in vivo for lung cancer therapy with 

cellular resolution. Nanoparticles functionalized with the artificial peptides GE11- or ECL1i- 

for EGFR- or CCR2-targeting, respectively, were specifically taken up by receptor 

overexpressing cell lines of the lung in vitro. In contrast, systemically applied GE11-

functionalized nanoparticles failed to accumulate in EGFR-overexpressing flank or lung 

tumors of mice, but accumulated in the liver or tissue-resident macrophages regardless of 
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their functionalization and the flank tumor type. Moreover, both EGFR- and CCR2-

functionalized MSNs did not target lung tumor tissue but were efficiently taken up by resident 

alveolar macrophages in tumorous but also tumor-free regions of the lungs upon local 

intratracheal administration to Kras-mutant transgenic mice. In conclusion, in vitro validated 

nanoparticle-mediated targeting of receptors on tumor and immune cells can fail in vivo in 

two distinct biological environments, i.e. the blood and the lung lining fluid. These findings 

suggest that nanoparticle-bound targeting ligands can be effectively shielded by the distinct 

biological environment in the serum and the lining fluid of the lung and redirected to 

phagocytosing mononuclear cells. Novel strategies that overcome this natural defense 

mechanism of the organism to foreign materials are thus required to establish efficient cell-

specific nanoparticle-mediated delivery of drugs for tumor therapy.  

The final parts of this thesis mainly focus on the development of new nanomaterials for 

cellular delivery applications. In Chapter 8 we describe a novel inorganic-organic hybrid 

material with a strikingly high organic content of almost 50 wt%. The colloidal periodic 

mesoporous organosilica (PMO) nanoparticles synthesized in this section consist entirely of 

curcumin and ethane derivatives serving as constituents that are crosslinked by siloxane 

bridges, without any added silica. These mesoporous curcumin nanoparticles (MCNs) exhibit 

very high surface areas (over 1000 m
2
/g), narrow particle size distribution (around 200 nm) 

and a strikingly high stability in simulated biological media. Additionally, the MCNs showed 

high autofluorescence and were used as a cargo delivery system in live-cell experiments. A 

supported lipid bilayer (SLB) efficiently seals the pores and releases Rhodamin B as model 

cargo in HeLa cells.  

Another innovative multifunctional nanomaterial that is applied in controlled drug delivery 

comprises cyclodextrin-based nanoparticles. In Chapter 9 we report on the synthesis of a 
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novel biocompatible material, entirely consisting of covalently crosslinked organic molecules. 

The β-cyclodextrin structures were crosslinked with a rigid organic linker molecule to obtain 

small (~150 nm) and highly water-dispersable nanoparticles. The nanoparticles can be 

covalently labeled with dye molecules to effectively track them in in vitro cell experiments. 

Very fast cell-uptake kinetics were observed on HeLa cells revealing particle uptake within 

less than an hour due to sugar-receptor mediated endocytosis. Additionally, the particles can 

be loaded with different cargo molecules showing pH-responsive release behavior. Successful 

nuclei staining with Hoechst 33342 and effective cell killing with doxorubicin as cargo 

molecules were shown in live-cell experiments, respectively. 

In summary, different novel stimuli-responsive release mechanisms (enzyme-responsive, 

temperature-responsive, pH-responsive) were investigated for MSNs and proven in in vitro, 

ex vivo and in vivo experiments. Additional toxicity studies and targeting approaches reveal 

the great potential as well as possible pitfalls of this family of nanomaterials in future drug 

delivery applications. We also established two new nanoparticle systems with reduced silica-

content or completely silica-free chemistry to expand the repertoire of powerful 

multifunctional nanocarrier systems.  
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1 Introduction 

1.1 Introduction to nanotechnology 

In December 1959 Richard Feynman, an American theoretical physicist, gave a lecture in 

front of an audience at the California Institute of Technology in Pasadena which is now 

considered to be the founder’s charta of modern nanotechnology.  

“But I am not afraid to consider the final questions to whether - in the great future - we can 

arrange the atoms the way we want; the very atoms, all the way down! What would happen if 

we could arrange the atoms one by one the way we want them. […] Atoms on small scale 

behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as 

we go down and fiddle around with the atoms down there, we are working with different 

laws, and we can expect to do different things.”
1
 

His ideas of denser computer circuitry, better electron microscopes and adapting concepts of 

small, but complex, biological systems later led to the invention of groundbreaking 

microscopy techniques, e.g. scanning tunneling microscopy (STM) and atomic force 

microscopy (AFM), and high-performance storage systems like Millipede which were 

invented by IBM researchers.
2, 3

 In a general definition, nanomaterials are objects with at least 

one dimension being smaller than 100 nm, leading to drastically different properties compared 

to bulk materials. The change in optical, electrical or magnetic properties is partially due to 

the drastic increase in surface atoms with decreasing size compared to the total number of 

atoms in a material.
4
 As one of the first researchers recognizing the huge scientific and 

application potential of nanotechnology, in 1974 Norio Taniguchi characterized it as the 

separation, deformation or formation of materials formed from few atoms or molecules.
5 

The 

field of nanoscience experienced another big push in the late eighties and early nineties with 
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the discovery of carbon-based nanomaterials.
6-8

 The groundbreaking work of Harry Kroto and 

Sumio Iijima on fullerenes and single- and multi-walled carbon nanotubes provided materials 

with possible applications in power engineering, semiconductor industry and usage for 

biological and medical purposes. With the continuous improvement of characterization and 

imaging techniques it is possible to develop and characterize nanomaterials in less and less 

time and with greatly increasing information content, e.g., high-resolution transmission 

electron microscopy allows for the direct imaging of the atomic structure of a material.
9
 Far-

field optical nanoscopy methods, such as stimulated emission depletion (STED) or 

photoactivated localization microscopy (PALM), provides lateral resolution in the nanometer 

range even for fluorophore-labeled living cells.
10, 11

 This toolbox of Nobel prize – awarded 

characterization techniques in combination with proper preparation approaches made 

nanotechnology one of the most dynamic growing fields in scientific and industrial research.  

In general, two preparation approaches can be used to synthesize nanomaterials and fabricate 

nanostructures, namely top-down or bottom-up.
12

 The bottom-up approach includes the self-

assembly of components at the atomic level (atoms, molecules, clusters) to complex and 

stable nanostructures. Typical examples are the formation of nanoparticles from colloidal 

dispersions or quantum dot formation during epitaxial growth. In contrast, the top-down 

approach starts with larger initial structures that are then reduced to nanoscale with externally 

controlled processes. Photolithography, electron-beam lithography, etching or ball milling are 

just a few examples for top-down approaches that are used to achieve the synthesis of stable 

nanostructures, with great structural control in the case of lithography. In comparison to 

bottom-up synthesis of nanoparticles, top-down milling processes often lead to nanomaterials 

with more inhomogenous morphologies and broader particle size distributions, whereas more 

homogenous nanoobjects can be synthesized following the bottom-up approach. 
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One of the most demanding and most promising fields in nanotechnology in the next century 

will be the development of effective and controllable nanosystems for targeted cancer therapy. 

Since cancer is a widespread disease with almost half a million new cases in Germany per 

year alone and a high general mortality rate, the demand for innovative therapies is 

enormous.
13

 The following introduction guides the reader through different preparation 

methods for silica- and non-silica-based mesoporous nanoparticles and describes different 

applications of these materials in conventional drug delivery, imaging, sensing and for general 

biomedical purposes. 

1.2 Introduction to porous nanomaterials and their biomedical 

application 

According to the International Union of Applied Chemistry (IUPAC) notation, porous 

materials are classified into three general categories depending on their pore size. 

Microporous materials exhibit pore sizes less than 2 nm in diameter and macroporous 

materials have pore sizes bigger than 50 nm, whereas mesoporous materials lie in between 

(from 2 to 50 nm).
14

 Due to their corresponding difference in optical, electrical, adsorption 

and physiological properties porous nanomaterials have an emerging variety of possible 

applications in energy conversion and storage, biomedicine and microelectronics, just to name 

a few.
15

 Prominent representatives in the class of porous materials are zeolites, metal-organic 

frameworks (MOFs), covalent organic frameworks (COFs), mesoporous silica nanoparticles 

(MSNs) and supramolecular nanoparticles (SNPs).  

In general, zeolites are crystalline porous aluminosilicate materials consisting of corner-sharing 

MO4 tetrahedra (M = Si, Al, P, etc.), which are being used at large industrial scale for 

separation, ion exchange and catalysis applications.
16-18

 These microporous crystals recently 

reached the nanoscale with colloidal stability and particle sizes under 200 nm, which brings 
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along unique properties and expands the area of zeolite applications towards optoelectronics, 

chemical sensing, and medicine.
19

 The size-controlled synthesis of nanozeolites can be 

achieved via controlled hydrothermal conditions in a water/surfactant/organic solvent mixture 

(emulsion method).
20

 The hydrophilic/hydrophobic properties of these nanomaterials can be 

finely tuned by changing the framework composition or adjusting the applied synthesis 

conditions. A recent example for nanozeolites used in biomedical applications was shown by 

the group of de Cola where PEGylated and antibody-modified L-Zeolite nanocrystals 

exhibited fast and targeted cancer cell uptake.
21

 However, some limitations of zeolite 

materials such as the sensitivity to deactivation by irreversible adsorption, as well as their 

limited pore size and structural rigidity and limited tunability, encouraged scientists to focus 

on the investigation of other porous materials for biomedical applications.
22

  

MOFs are another prominent representative of microporous materials, which attract 

increasing scientific interest over the past decade. MOFs are framework structures consisting 

of inorganic metal ions and organic linker molecules. This new class of crystalline materials 

with exceptionally high surface areas and high thermal stability was first introduced by Omar 

M. Yaghi in 1995.
23

 Another great advantage of MOFs is the finely tunable composition and 

structure due to their versatile coordination chemistry, which makes them attractive for 

different applications such as gas storage, catalysis and separations.
24

  

The chemical tailorability and the structural diversity of MOFs are based on the nearly infinite 

number of combination possibilities for metal ions with specific functionalized organic 

molecules that are connected via molecular linkers using coordinative bonds. This leads to the 

creation of a well-ordered crystalline framework and provides the possibility to adjust pore 

sizes and structures, to design the shape of the material and to implement different 

functionalities within the material (Figure 1-1). 
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Figure 1-1. Schematic illustration of a MOF synthesis strategy.
25

 

In recent years different groups have focused on scaling down the bulk materials to the 

nanometer length scale, which offers new application fields for MOFs with the obvious 

advantages of nanomaterials for biomedical purposes.
26-28

  

 

Figure 1-2: Schematic illustration of different synthesis strategies to achieve MOF nanostructures.
27
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The different bottom-up approaches used for the synthesis of MOF nanoparticles are shown in 

Figure 1-2 including template-assisted synthesis, controlled solvothermal precipitation and 

microemulsion techniques. 

Much effort was then put in the functionalization of the outer surface and the enhancement of 

the specific drug loading capacity of the synthesized MOF nanoparticles, leading to uptake in 

cancer cells and controlled drug release behavior.
29-33

 The bridge to achieve mesoporosity 

with large pore sizes of up to 20 nm in the formerly microporous MOFs was closed during the 

last few years. This makes these materials even more promising for the delivery of larger 

therapeutic agents.
34-36

 

Mesoporous silica-based materials are another important class of porous nanoparticles for 

biomedical applications and basic scientific investigations. The whole research area of 

synthesizing mesoporous silica systems started back in 1991, when scientists from the 

American Mobil Oil Company successfully investigated the M41S systems.
37

 These were the 

first structured mesoporous silica systems synthesized via a basic-catalyzed sol-gel process. 

Three different mesoporous representatives were synthesized through a self-assembled liquid 

crystal templating mechanism: the most-studied hexagonal MCM41 (Figure 1-3 a), the cubic 

MCM48 (b), and the lamellar MCM50 (c).  
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Figure 1-3: Structures of mesoporous silica systems: MCM41 (a), MCM48 (b), MCM50 (c).
38

 

The down-sizing of these materials to the nanoscale led to the synthesis of mesoporous silica 

nanoparticles (MSNs) with high colloidal stability, which quickly attracted growing attention 

as drug delivery systems for targeted cancer therapy and as bioimaging devices.
39-41

 MSNs 

can feature a well-defined and tunable porosity, tunable pore sizes and pore shapes, high 

loading capacity, good control over synthesis and introduction of core-shell functionalization, 

and the possibility to attach different functionalizations for targeting and entering different 

types of cells.
42

 Generally, the synthesis of MSNs used in this work follows a base-catalyzed 

hydrolysis and condensation of the silica source in the presence of an organic template. The 

organic template forms micelles in the aqueous reaction medium and strongly influences the 

resulting pore diameter and shape.
43

 Depending on reaction parameters such as temperature, 

pH value and surfactant to solution ratio the micelles form lamellar (g = 1), spherical (g = 1/3) 

or cylindrical (g = 1/2) structures. For this purpose, the characteristic parameter g is defined 

as the surfactant packing parameter.
44

 

  
  

  
 

Equation 1-1.   = surfactant packing parameter,   = Volume of the micelles of the organic template,   = 

surface interface of micelles,   = micelle diameter. 
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Figure 1-4 shows schematically the self-assembly of ionic surfactants and amphiphilic block-

copolymer molecules into micelles acting as structure directing agents (SDA) for the 

synthesis of ordered porous nanostructures. Body centered cubic (bcc) packed spheres (BCC), 

hexagonally ordered cylinders (HEX), gyroids (Ia3d), hexagonally perforated layers (HPL), 

modulated lamellae (MLAM), lamellae (LAM), cylindrical micelles (CYL), and spherical 

micelles (MIC) are common structures that can be formed by organic template molecules. 

 

 

Figure 1-4: Schematic illustration of different template shapes of ionic surfactants and amphiphilic block-

copolymers.
45

 

In case of a common MSN synthesis, the positively charged headgroups of the surfactant 

molecules are attracted to the anionic groups of the hydrolyzed silica precursor (usually 

tetraethyl ortho silicate, TEOS) by Coulomb forces. Subsequently, the silica source condenses 

and forms Si-O-Si bridges around the micellar template. In a subsequent step the 
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condensation proceeds and the silica framework is built around the surfactant micelles.
46

 To 

slow down the reaction rate of the condensation process, and therefore controlling the particle 

size, the complexing agent triethanolamine (TEA) can be added to the reaction mixture.
47

 In 

cooperation with a small amount of ammonium fluoride this leads to particles that are well-

defined and controlled in size and shape. The mesoporous system is generally made 

accessible upon template extraction in boiling organic solvents or calcination at high 

temperatures (Figure 1-5).  

 

Figure 1-5. Illustration of a template-assisted MCM41 synthesis procedure.
48

 

Because of their favourable particle size, the exceptional pore parameters and the possibility 

to specifically functionalize their inner and outer surface, these MSNs are prominent 

representatives for nanoparticles in biomedical applications. In the following chapters, 

different materials classes, such as MSNs, periodic mesoporous organosilica nanoparticles 

(PMOs), superparamagnetic hybrid nanoparticles and supramolecular structures for high-

performance multifunctional drug delivery and biomedical imaging and sensing are presented 

in detail. 

1.3 Multifunctional drug delivery systems 

1.3.1. Mesoporous silica nanoparticles 

Mesoporous silica nanoparticles (MSNs) are widely studied for possible applications in 

targeted drug delivery because of their exceptional materials properties such as porosity, 
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biocompatibility and favorable particle sizes.
49,50

 However, the possibility to site-specifically 

functionalize MSNs makes them even more attractive for further investigations and 

applications in biomedicine and host-guest chemistry. Especially, the delayed co-

condensation approach developed in our group leads to controlled and spatially segmented 

distribution of different functionalization of the pores and the external surface of MSNs 

(Figure 1-6).
51

 In a first step of the synthesis procedure, an organosilane precursor (green) and 

tetraethyl orthosilicate (TEOS) are mixed in an aqueous template solution containing the basic 

catalyst. This leads to the formation of a functionalized nanoparticle core. The nanoparticle 

growth is continued in a second step by the addition of a specific amount of pure TEOS (blue) 

resulting in an unfunctionalized silica shell around the functionalized core. With the addition 

of a second organotriethoxysilane (RTES, R represents an organic moiety, red) and TEOS the 

external surface with a different functionality is formed. 

 

Figure 1-6: Delayed co-condensation approach for the synthesis of core-shell functionalized MSNs.  

The introduced functionalization can be used for various applications. The functionalization 

of the internal pore structure can lead to controlled and well-defined interactions between the 

pore walls and the corresponding cargo molecules, e.g. to trigger the release only at the 

desired spot. The functionalization of the external surface can increase colloidal stability, and 

with varying the surface charge the interaction with living cells and other biological substrates 
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can be influenced. Different stimuli-responsive capping systems can be attached on the 

external particle surface by introducing specific organic moieties. The capping systems can 

open and close the pore system of the nanoparticles by using well-defined and controlled 

trigger mechanisms. Additionally, the external surface can be modified with specific targeting 

ligands that are able to recognize overexpressed receptors at cancer cell surfaces to release the 

cargo efficiently and to discriminate between healthy and cancerous cells with more efficient 

uptake kinetics.
42

 With the great advantages of all the aforementioned functionalization and 

the additional high storage capacity, MSNs can be developed as site-specific vehicles with the 

possibility to adjust properties to requirements. Figure 1-7 shows schematically the 

illustration of MSNs containing the necessary features for a stimuli-responsive controlled 

release of the loaded cargo into the cytosol of a targeted cell. 
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Figure 1-7: MSNs as highly functionalized drug delivery vehicles. 

The stimuli-responsive gates can be specifically cleaved by either external (light, temperature, 

magnetic, ultrasound) or internal stimuli (pH, redox, enzyme) to release the cargo from the 

particles at the desired site. The fluorescent dye attached to the outer surface of the particle 

allows for monitoring the cellular uptake by using different fluorescence microscopy 

methods. The advantages of such a complex drug delivery system compared to common 

chemotherapeutic approaches include controllable release of the cargo and potential reduction 

of side-effects by specific attack of cancer tissue. Therefore, in principle the damage of 

healthy tissue by highly toxic chemotherapeutics can be avoided.  

In the last decade, various studies were published using different capping and trigger 

strategies to achieve controlled drug delivery with MSNs, which are schematically shown in 

Figure 1-8. A few selected examples are described in the following. 
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Figure 1-8: Different gatekeeper strategies on the pore outlets of MSNs for controlled drug delivery.
52

 

Different nanoparticles, such as Fe3O4, Au, CdS or ZnO, can be covalently bound to the 

external particle surface and can be used to block the pore entrances of MSNs before being 

removed by applying specific external or internal triggers.
53-55

 An early example was shown 

by Lin et al. where iron oxide nanoparticles, covalently bound to the surface via redox-

responsive cleavable disulfide linkers, could be removed from the pore entrances by applying 

external magnetic fields in combination with the cell-internal reductive milieu to achieve 

controlled cargo release.
56

 In a similar redox-responsive mechanism CdS nanoparticles where 

used to release neurotransmitters and drug molecules.
57

  

In a second type of gatekeepers, linear molecules like polymers are often used to achieve 

efficient and controllable pore closure. A pH-responsive and reversible capping system was 

introduced by covalently attaching poly(2-vinylpyridine) (PVP) which uses the change in 

hydrophobicity upon protonation in the endosomal cell compartments to open the pore 

system.
58

 Moreover, high colloidal stability was achieved due to an additionally coupled PEG 
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shell which offers the ability to covalently attach a wide variety of dyes, targeting ligands and 

other functionalities at the outer periphery. Other polymers like poly(N-isopropylacrylamide) 

(PNIPAM) were used as a temperature-sensitive capping system on MSNs.
59

 These 

nanoparticle-polymer composites show temperature-dependent uptake and release of different 

cargos. The response is correlated to the lower critical solution temperature (LCST) of the 

polymer and its corresponding phase transition from a random coil to a globular structure at 

reduced temperatures. Ultrasound can also be used as an external trigger for polymer-grafted 

MSNs, exploiting the change in hydrophobicity of the corresponding polymer and therefore 

effectively controlling the cargo release upon the action of remote stimuli.
60

  

In another general type of capping systems macrocyclic compounds such as cyclodextrins, 

crown ethers, cucurbit[6]urils or proteins are attached to the pore outlets of MSNs through 

covalent or non-covalent interactions that can be cleaved by certain stimuli, thereby clearing 

the pore entrances.
61-68

 Cyclodextrins were developed as a prominent representative for 

macrocyclic gatekeepers on MSNs and combined with various external or internal triggers. 

The groups of Fraser Stoddart, Jeffrey Zink et al. developed different pH-responsive systems 

usually consisting of a layer of β-cyclodextrin (β-CD) rings positioned selectively around the 

orifices of the mesopores of silica nanoparticles. Under neutral conditions even large cargo 

molecules (e.g. rhodamine) could be stored effectively in the porous system whereas under 

slightly acidic conditions the cargo was released upon removal of the cyclodextrin.
69-71

 

Another cyclodextrin-based pH-responsive capping system was investigated by Kim et al. 

who post-synthetically functionalized MSNs with polyethylenimine (PEI).
72

 This surface was 

subsequently complexed with cyclodextrines. By slight acidification (pH ~ 5) afterwards, the 

PEI backbone gets positively charged and the cyclodextrine caps are detached from the 

surface. As an early example for protein-coated MSNs, an enzyme-mediated capping system 
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based on the well-studied biotin-avidin complex was developed by Schlossbauer et al.. 

Herein, biotin-functionalized MSNs with encapsulated cargo molecules were capped by the 

bulky protein avidin from egg white via noncovalent interactions with the biotin molecules on 

the external particle surface. After addition of the protease trypsin, simulated as a cell-internal 

trigger, the linkage between biotin and avidin was cleaved and the cargo could be released.
73

  

Figure 1-8 shows a fourth general type of pore blockers, which is multilayers such as 

supported lipid bilayers (SLB) or layered double hydroxides.
74-78

 Recently, Bein and co-

workers could demonstrate different systems consisting of MSNs coated with an SLB and 

equipped with different external trigger mechanisms. The SLB was shown to seal the pores 

and to prevent premature release of the loaded cargo. Upon activation of an incorporated 

photosensitizer with red light, the subsequent generation of reactive oxygen species initiated 

cargo release due to rupture of the SLB. Photosensitizers are promising components of 

nanocarrier systems for efficient drug delivery because they can simultaneously cause 

endosomal escape and controlled cargo release in combination with SLB-coated MSNs.  

In order to effectively trigger efficient cargo release within the cancerous tissue, targeting of 

cancer cells with nanoparticles is viewed as a promising approach to avoid unwanted side 

effects observed with classic chemotherapeutics. Especially in anticancer chemotherapy, the 

limited selectivity of the clinically used cytostatic agents towards tumor cells is responsible 

for many undesired side effects. Nonspecific toxicity to normal cells can cause these severe 

side effects and prevents an effective killing of malignant cells requiring a higher drug 

dose.
79,80

 Nanoparticles with sizes smaller than 500 nm are often taken up via endocytosis 

where they are engulfed by the cell membrane and transferred as intracellular endosomal or 

lysosomal vesicles.
81, 82

 A passive targeting approach based on nanoparticles relies on the 

enhanced permeability and retention (EPR) effect, which is described as the tendency of 

particles (in the nanometer size range), such as nanoparticles, liposomes, or macromolecular 
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drugs, to preferentially accumulate in tumor tissue.
83

 Tumorous and inflamed tissues typically 

reveal increased permeable vascularities and are lacking effective lymphatic drainage. 

Additionally, a lack of cell-specific interactions might affect the therapeutic efficiency and 

induce multiple drug resistance (MDR).
84-87

 The cellular uptake kinetics are strongly 

dependent on the size of the applied nanoparticles in vitro as well as in vivo. It was shown that 

the cellular uptake of specific nanoparticles in vitro on HeLa cells is highly size-dependent in 

the order 50 nm > 30 nm > 110 nm > 280 nm > 170 nm.
88, 89

  

In order to overcome the pitfall of unspecific cell uptake and to enhance the specificity 

achieved by the EPR effect, different targeting ligands, like folic acid or the epidermal growth 

factor (EGF), can be employed in order to exploit the overexpression of certain receptors on 

tumor cell surfaces which will lead to enhanced binding to tumor cells and subsequent 

interaction with targeting ligands. Figure 1-9 shows an overview of different overexpressed 

cell membrane receptors on cancer cells used in preclinical investigations of cancer treatment. 

This active targeting can promote specific nanocarrier binding and cancer-cell uptake. In 

particular, active nanoparticle-based targeting of tumor cells has emerged as a potential 

therapeutic approach to increase drug doses within the tumor while reducing systemic 

toxicity.
90, 91

 Cell-specific targeting can be achieved by engineering of nanoparticles with 

defined ligands on their surface that bind to receptors which are specifically overexpressed on 

cancer cells. One prominent example is nanoparticles that target the epidermal growth factor 

receptor (EGFR). This receptor is overexpressed in several types of cancer including breast 

carcinoma, colon carcinoma, and lung cancer.
92

 Nanoparticles are often functionalized with 

EGFR ligands and designed to deliver either silencing agents against defined oncogenes or 

chemotherapeutic drugs.
93

 These nanoparticles are then preferentially recognized and bound 

by tumor cells overexpressing EGFR, and are rapidly taken up into the cell by receptor-
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mediated endocytosis where the drug is released intracellularly to specifically kill the tumor 

cell.
94

  

 

Figure 1-9. Summary of overexpressed cell membrane receptors on different cancer cells.
95

 

Another prominent ligand used on mesoporous silica nanoparticles is the small molecule folic 

acid (FA), which has been widely investigated and has shown a notable enhancement in 

uptake efficiency and kinetics of MSN nanocarriers on different cancer cell types.
58, 96-98

 In 

general, the attachment of targeting ligands onto the external surface of spherical MSNs is 

Major receptor type Specific receptor(s) Overexpression in cancer cell types

Integrins
ανβ3 is of particular interest in selective 

drug targeting

Activated endothelial cells and tumor 

cells (such as U87MG glioblastoma 

cells), ovarian cancer cells.

Folate receptors (FRs) FRα, FRβ and FRγ
Most tissues including breast cancer 

cells.

Transferrin receptors (TfRs)
Two types of receptors only have been 

described so far

Breast, ovary, and brain cancers such as 

glioma and glioblastomas.

Epidermal growth factor receptor 

(EGFR)

EGFR (or ErbB1, HER1), ErbB2 (HER2, 

neu in rodents), ErbB3 (HER3) and 

ErbB4 (HER4)

Lung, breast, bladder, and ovarian 

cancers.

Fibroblast growth factors (FGFRs)
A hallmark of FGFRs is the presence of 

an acidic, serine-rich sequence 

Breast, prostate, bladder, and gastric 

cancer

Sigma receptors (SRs)  S1R and S2R 
Non-small cell lung carcinoma, prostate 

cancer, melanoma, and breast cancer.

Follicle stimulating hormone receptors 

(FSHRs)
Ovarian surface epithelium

Biotin receptors (BRs) Leukemia

C-type lectin receptors (CLRs).

Asialoglycoprotein receptor (ASGPR)

NRP-1 Human vascular cells

G protein coupled receptors (GPCRs)

Lung, prostate, breast, pancreatic, 

head/neck, colon, uterine, ovarian, 

renal cell, glioblastomas, 

neuroblastomas, gastrointestinal 

carcinoids, intestinal carcinoids, and 

bronchial carcinoids.

Small cell lung, neuroendocrine tumor, 

prostate cancer, breast cancer, 

colorectal carcinoma, gastric cancer, 

hepatocellular carcinoma

Melanoma tissues

Others
Hepatocytes, dendritic cells, 

macrophages

Endothelin receptors (ETRs)

Bombesin receptor (BnR)

Somatostatins receptors (SSTRs)



1.3. Multifunctional drug delivery systems 

 

18 

 

often achieved by using long spacer molecules, such as PEG chains or other linear or 

branched polymers. This linkage provides high flexibility to obtain efficient binding of the 

targeting ligands to the cell membrane receptors. In another example, the group of Wilner et 

al. exploited the overexpression of transferrin receptors on breast cancer cells and 

glioblastoms by synthesizing specific aptamers via a modified stable nucleic acid lipid 

particle (SNALP) protocol which led to enhanced cancer cell uptake in various cell lines.
99

  

In obvious contrast to the ever-growing number of sophisticated nanoparticle-based cell-

targeting strategies that effectively target tumor cells in vitro, only few studies showed 

successful tumor-cell specific targeting and controlled cancer cell killing in vivo. Even fewer 

nanoformulations have found their way into clinical studies and practice.
100

 This translational 

gap is partly due to insufficient data on cell-specific targeting in vivo and the lack of 

physiologically and clinically relevant animal models.
101, 102

 Although the main research 

interest in the nanoparticle field lies on the investigation of effective active targeting 

approaches, one of the few clinically relevant examples so far is DOXIL
®
, a PEGylated 

doxorubicin formulation, which is exploiting exclusively passive targeting pathways via the 

EPR effect.
103

 Active tumor targeting without nanoparticles is shown by HERCEPTIN
® 

from 

Roche, a humanized monoclonal antibody that can bind effectively to the HER2 receptors 

which are overexpressed on breast cancer cells.  

Another important bioapplication of MSNs is in vitro and in vivo imaging. With the 

possibility to functionalize MSNs specifically with different dye molecules or to combine 

them with other materials the field of application ranges from optical microscopy to magnetic 

resonance imaging, and to ultrasonic imaging, near infrared imaging and other 

techniques.
104,105

 To investigate cellular internalization of the nanoparticles, MSNs can be 

covalently modified by the conjugation with fluorescent dye molecules, such as FITC or 
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RITC. He et al. used fluorescein-modified MSNs in order to investigate the particle shape and 

size on the uptake kinetics in A375 cancer cells (Figure 1-10).
106

 

 

Figure 1-10. Confocal microscopy images of A375 cells after 4 h incubation at 37 °C with MSN 

nanoparticles with different functionalization. Fluorescent images of the cell nucleus (A, D, G), images of 

MSN-FITC fluorescence in cells (B, E, H), image of MSN-FITC fluorescence superimposed on the nucleus 

(C, F, I).
106

 

Mesoporous silica nanoparticles were successfully equipped with different functionalities to 

become excellent bimodal imaging probes for intracellular labeling and in vivo magnetic 

resonance imaging (MRI) contrast agents. Mou et al. showed the first in vivo application of 

magnetic-MSN hybrids via direct injection into mice for MRI experiments.
107

 Yang et al. 

synthesized theranostic nanoparticles that can act as an effective MRI/NIRF bimodal imaging 

probe and operate in combination with an effective drug delivery system that shows great 



1.3. Multifunctional drug delivery systems 

 

20 

 

potential in cancer diagnosis and therapy.
108

 By functionalizing MSNs specifically with near-

infrared (NIRF) dyes, such as Cy7, in combination with an incorporated iron oxide core this 

platform can be used for NIRF and magnetic resonance imaging of tumorous tissue in vivo 

(Figure 1-11). 

 

Figure 1-11. (a) Schematic representation of PTX-loaded Fe3O4@mSiO2 NPs for tumor targeting, MRI, 

fluorescence imaging and chemotherapy. (b) In vivo NIRF imaging of the pure NIRF dye (Cy7), MRTN 

and Fe3O4@mSiO2-NH-Cy7 in A549 lung cancer tumor-bearing mice (marked with a circle) at 1 and 24 h 

post injection. The first column shows the bright field images of the tumor-bearing mice. (c) In vivo MRI 

of a tumor-bearing mouse (SW620 tumor, marked with the circle) without injection (i), and at 1 h post 

injection of MRTN (ii) and Fe3O3@mSiO2 nanorattle (iii).
108

 

1.3.2. Periodic mesoporous organosilica  

In recent years, periodic mesoporous organosilica materials (PMO) have attracted much 

attention for biomedical applications. Since this class of inorganic-organic hybrid materials 

offers a wide variety of tunable mesopores and an almost unlimited diversity in the chemical 

nature of the walls, it holds great promise in a variety of fields such as chemical sensing,
109-115

 

catalysis
116-120

 and biomedical applications.
121-123

 Since the independent discovery of this new 

class of mesoporous materials in the groups of Inagaki, Stein and Ozin in 1999,
124-126

 PMO 

materials, synthesized by using bridged silsesquioxanes as precursors, have recently been 
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prepared at the nanoscale.
127-129

 Figure 1-12 shows the schematic synthesis route of 

mesoporous and non-porous organosilica materials with or without the presence of TEOS as 

silica source. These different types of organosilica composite nanomaterials can be 

distinguished in the following four categories: mesoporous organosilica, non-porous 

organosilica, periodic mesoporous organosilica, and non-porous silsesquioxane NPs.  
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Figure 1-12. Structures and synthetic pathways of various organosilica nanocomposites: organically-

doped mesoporous silica NPs (A and B), organically-doped (C) and surface-functionalized (D) non-porous 

silica NPs, periodic mesoporous organosilica NPs (E and F),* and non-porous silsesquioxane NPs with or 

without surface functionalization (H and G respectively). Cetyltrimethylammonium bromide (CTAB) is a 

typical surfactant in sol–gel processes. Organoalkoxysilane and bridged organoalkoxysilane precursors 

can possess ethoxy or methoxy R groups. *Not sensu stricto but generally with a disorganized low micro 

or mesoporosity.
131

  

The PMO structures are based only on silsesquioxanes, which implies that the synthesis must 

be performed in the absence of a silica source (e.g. tetraethoxysilane), and that there is 

sufficient porosity to be considered a mesoporous material, which is often a major synthetic 

challenge.
130

 Mesoporous organosilica NPs could be prepared by co-condensation of a silica 

source (e.g. tetraethoxysilane (TEOS)) with a mono or a bridged organoalkoxysilane in a 

templated aqueous solution which leads to nanoparticles with functional pores (Figure 1-12 
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A, B). A template-assisted sol-gel synthesis route with bridged organoalkoxysilanes without 

additional TEOS as the silica source affords particles with much higher organic wall content 

(Figure 1-12 E, F). Without using any template during the synthesis procedure, non-porous 

organosilica or silsequioxane particles can be prepared (Figure 1-12 C, D, G, H). Different 

approaches were used to synthesize PMO nanoparticles with simple, low-molecular-weight 

organosilane bridging groups. In a sol-gel process using Pluronic P123 as the template, 

Landskron et al. synthesized rodlike nanoparticles with adjustable aspect ratios.
132

 Using 

cetyltrimethylammonium bromide (CTAB) as the micellular template and an ammonia-

catalyzed sol-gel reaction, Huo et al. prepared highly ordered and dispersable PMO 

nanoparticles with methane, ethane, ethylene and benzene organic bridging groups within the 

pore walls (Figure 1-13).
133

  

 

Figure 1-13. TEM images of ethylene- (a, b), methylene- (c, d), ethynylene- (e, f), and phenylene-bridged 

PMO NPs (g, h) at low and high magnification.
133

 

In another approach, the group of Shi et al. used silica-etching chemistry to obtain hollow 

PMO nanoparticles that were used for nano-biomedical applications for the first time.
134

 

Recently, the group of Durand reported the synthesis of biodegradable PMO nanospheres and 
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nanorods with a disulfide-containing organic bridging group. The morphology and size of 

these nanostructures was controlled by adjusting the ratio of bis(triethoxysilyl)ethane and 

bis(3-triethoxysilyl-propyl)-disulfide (Figure 1-14).
135

 These mixed PMO nanospheres and 

rods were used as a biodegradable nanocarrier for doxorubicin in breast cancer cell lines. In 

the group of Kashab et al., enzymatically degradable silsesquioxane nanoparticles were 

synthesized and used as fluorescent nanoprobes for in vitro imaging of cancer cells.
136

 Zink 

and co-workers developed different light-activatable and pH-responsive hybrid materials for 

drug delivery applications.
137-139

 

 

Figure 1-14. Schematic representation of the size and morphology control in ethenylene-bridged PMO (a), 

ethynylene-bis(propyl)disulfide-bridged PMO (b–d), and non-porous bis(propyl)disulfide bridged 

silsesquioxane NPs (e) by the variation of the E/DIS precursor ratio in the reaction media. TEM images of 

NPs obtained from E/DIS ratios of 100/0, 90/10, 75/25, 50/50, and 0/100 (a–e respectively).
135 



1. Introduction  

 

25 

 

Besides the described drug delivery applications, PMO nanoparticles were also investigated 

as bioimaging tools in in vitro and in vivo experiments. Due to the great variety of organic 

components that could be incorporated into organosilica nanostructures, several strategies 

have been explored to endow the particles with imaging capabilities. The first approach of 

bioimaging via PMO nanoparticles involved the synthesis of a hybrid material consisting of 

Nile red dyes and a large conjugated molecule as the main organic components. This structure 

was used to generate Förster resonance energy transfer (FRET) upon two-photon-excited 

fluorescence-imaging in the near-infrared range and allowed for successful in vitro particle 

tracking.
140

 Another important aspect of bioimaging was successfully investigated in the 

group of Lin. By synthesizing a biodegradable polysilsequioxane with an extremely high 

incorporation of paramagnetic Gd(III) centers, this material was explored as an efficient 

contrast agent for magnetic resonance imaging (MRI).
141

 Herein, a disulfide-containing 

Gd(III) diethylenetriamine pentaacetate (Gd-DTPA) silane precursor was reacted in a base-

catalyzed reverse microemulsion experiment to form biodegradable nanoparticles. The 

Gd(III)-containing nanoparticles showed high T1-weighted sensitivity and were demonstrated 

in in vitro MR imaging of human lung and pancreatic cancer cells. With the ability to 

incorporate additional specific photosensitizers into the organosilica wall material of PMO 

nanoparticles, these structures can also be used in photodynamic therapy (PDT). Upon 

appropriate laser irradiation, photosensitizers can generate reactive oxygen species, such as 

singlet oxygen (
1
O2).

142, 143
 Hayashi and co-workers recently reported one of the most 

advanced PDT studies in in vivo therapy by using organosilica NPs consisting of porphyrin 

building blocks as well as iodopropyl silanes as the main organic components (Figure 1-15 A, 

B).
144

 The synthesized monodisperse 50 nm spherical particles combine photodynamic and 

photothermal therapy (PTT) to effectively treat tumor-bearing mice. The relative quantum 

yield of the production of singlet oxygen in these particles was enhanced via the external 
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heavy atom effect of the incorporated iodine affording a higher yield (0.85) than that of 

photosensitizers currently used in clinics and clinical trials (0.3 to 0.77).
145

 With laser 

irradiation at 650 nm the nanoparticle-treated mice showed a tumor growth ten times lower 

than the control group and survived the complete experimental time of ten weeks (Figure 1-15 

C, D). 

 

 

Figure 1-15. Synthesis of iodine-porphyrin containing organosilica hybrid nanoparticles and their 

PDT/PTT combination therapy by the enhancement of 
1
O2 generation via the heavy atom effect and the 

conversion of the energy absorbed from photons into heat (A). TEM image of the as-synthesized 

nanoparticles (B). Tumor growth behavior (C) and the survival period of mice (D) (circle: mice without 

treatment, diamond: mice injected with nanoparticles, triangle: mice exposed to LED light, square: mice 

exposed to LED light after injection of nanoparticles).
144

 

Due to their unique capability of introducing an almost unlimited number of organic 

constituents into the wall structure of porous nanoparticles, PMO nanomaterials constitute a 

very promising new area of research in the following decade. The remarkable control of the 

synthesis and composition of such particles offer a wide variety of possible application fields. 
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1.3.3. Magnetic nanocomposites 

Nanocomposites with a magnetically responsive core and a functional outer shell have 

attracted increasing attention because of their unique functionality and separability.
146

 

Especially the coating of superparamagnetic iron oxide nanocrystals with a multifunctional 

mesoporous silica shell has opened up a wide range of applications including magnetic 

resonance imaging (MRI), hyperthermia treatment, applications in toxin removal, waste 

remediation, catalysis, reactive sorbents, and targeted drug delivery, since they combine 

different advantageous properties in one multifunctional nanocomposite.
147-150

 The first step 

in the exploration of these nanocomposites is the synthesis of small and stable magnetic 

nanoparticles (NPs).  

 

Figure 1-16. Schematic illustration of different methods for preparation of magnetic nanoparticles: A) 

synthesis of magnetic NPs smaller than 30 nm, and B) synthesis of magnetic NPs larger than 100 nm.
151 
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Magnetic NPs can be synthesized with a number of different compositions and phases 

including pure iron oxides such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), or alloys such 

as FePt, as well as spinel-type ferromagnets such as NiFe2O4. Using different synthesis 

approaches, such as co-precipitation, thermal decomposition, the emulsion method or 

hydrothermal synthesis small and stable high-quality magnetic nanocrystals can be prepared 

Figure 1-16 A).
152-155

 Because of their exceptional stability under a large range of conditions, 

the most common method for the production of magnetic NPs with particle diameters below 

30 nm is the chemical co-precipitation of iron salts. The polyol method and different self-

assembly approaches are generally adapted for the synthesis of magnetic nanoparticles with a 

particle size larger than 100 nm 

Figure 1-16 B). Nano-sized magnetic NPs with particle diameters smaller than 20 nm exhibit 

superparamagnetic properties without a permanent magnetic moment but just one single 

crystal domain, which allows for targeting of biological samples by exposure to an external 

magnetic field.
156, 157

  

Due to their hydrophobic exterior after the synthesis, magnetic NPs consisting of iron oxide 

can aggregate rapidly into large clusters and thus lose their unique properties associated with 

the presence of single particles. In order to prevent this behavior, the magnetic NPs have to be 

coated with different materials to prevent them from irreversible aggregation. This can be 

achieved by generating a core-shell structure with the magnetic nanocrystal as the inner part 

and an outer, more hydrophilic mesoporous silica shell built around it.  

Hyeon and coworkers were the first who reported back in 2008 the synthesis of magnetic NPs 

coated with fluorescently labeled mesoporous silica shells that were utilized as drug 

nanocarriers.
158

 With the usage of cetyltrimethylammonium bromide (CTAB) as the 

surfactant different tasks in this specific synthesis approach were addressed. The surfactant 
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molecules transfer the as-synthesized hydrophobic iron oxide NPs to the aqueous phase via a 

ligand-exchange process. Additionally, the surfactant molecules can act as a template for the 

following sol-gel reaction of the silica source creating core-shell particles with a magnetic 

core and a mesoporous silica shell after subsequent template extraction (Figure 1-17). 

 

 

Figure 1-17. Synthesis scheme for the coating of hydrophobic magnetic nanoparticles with a mesoporous 

silica shell.
150

 

The obtained nanocomposites feature high surface areas and pore volumes in addition to the 

ability to react to externally applied magnetic fields, which makes these vehicles promising 

candidates for targeted drug delivery.
159, 160

  

Zink and co-workers showed an early example of successful in vitro drug release by using a 

magnetic-silica hybrid nanomaterial.
161

 These nanoparticles featured a nanovalve that 

remained closed at physiological temperature and opened when heated as a result of external 

magnetic heating procedures. The material demonstrated successful doxorubicin release in the 

breast cancer cell line MDA-MB-231 in the presence of the oscillating magnetic field (Figure 

1-18). The local heating caused by the incorporated nanocrystals facilitated the release of 

doxorubicin from the silica pores, inducing effective apoptosis in the in vitro experiments. In 

contrast, non-loaded particles showed less toxicity due to hyperthermia effects only. Thus, 
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both hyperthermia and drug delivery contributed to cell death and the nanoparticles showed a 

synergistic effect. 

 

Figure 1-18. Results of MDA-MB-231 cancer cells exposure to magnetic mesoporous silica nanoparticles. 

Color scheme: green, fluorescently labeled nanoparticles; red, doxorubicin (DOX); yellow, merged green 

and red. Nanoparticles containing DOX were taken up into the cells, but before the AC field was applied, 

no drug release (images 1 and 2) and negligible cell death [∼5%; panel (b), left bar] occurred. Images 3 and 

4 show the effects of the magnetic field on nanoparticles without DOX in the pores. Heating of the 

particles accounted for 16% of the cell killing [panel (b), middle bar]. Images 5 and 6 demonstrate DOX 

release after a 5 min AC field exposure, which caused 37% of the cell death [panel b, right bar].
161

 

Another approach was investigated by Kim et al. who reported on the dual function of a 

silica–iron oxide hybrid nanoparticle combined with a stimulus responsive gatekeeper 

attached to the external surface of the nanomaterial.
162

 The gatekeeper can be stimuli-

responsively cleaved in the presence of increased reductive milieu, as it is present in the 

cytosol of cancer cells. Figure 1-19 shows images of the hybrid material with incorporated 

iron oxide cores and the response of A549 cancer cells towards doxorubicin-loaded 
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nanoparticles. In this case the magnetic cores were used as an additional MR imaging probe 

featuring significant reduction of the transverse relaxation time T2. 

 

Figure 1-19. TEM (a, c) and SEM (b) images of mesoporous silica nanoparticles with a magnetic core of 

22 nm. Representative photomicrographs of A549 cells after treatment with plain nanoparticles and 

doxorubicin-loaded nanoparticles (d). Cell-viability study where relative fluorescence intensities were 

quantified and normalized to the fluorescence intensity of DAPI (e).
162

  

In summary, magnetic nanocomposites with well-defined mesoporous structures, shapes, and 

tailored properties are of growing scientific and technological interest. Because of their 

chemical and physical stability, and the functional and magnetic properties provided by 

magnetic cores, these nanocomposites hold promise as important drug nanocarrier systems. 

Moreover, they can additionally serve as imaging agents for magnetic resonance and fluorescence 

imaging. 

1.3.4. Supramolecular nanoparticles 

Supramolecular nanoparticles (SNPs) have increasingly attracted attention as drug delivery 

systems and non-viral gene vectors in preclinical studies and even in clinical trials.
163-166
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SNPs are particles in which different building blocks are brought together by non-covalent 

interactions resulting in the controlled assembly of larger structures.
167

 The assembly is either 

based on electrostatic interactions or hydrophobic host-guest interactions. 
168, 169

 In contrast to 

conventional chemical synthesis, which is capable of forming and breaking covalent bonds, 

the formation of supramolecular complexes requires the combination of several elemental 

noncovalent interactions and an additional geometric fitting within the interaction structure. 

Prominently used host molecules in supramolecular chemistry are pillararenes, crown ethers, 

polypeptides, calixarenes, cucurbiturils, and different metallo structures.
170-174

  

The most widely used host entity family in the formation of SNPs by far is cyclodextrin. 

Cyclodextrins (CDs) are cyclic oligosaccharides composed of six, seven, or eight D(+)-

glucose units linked by α-1,4-linkages, which are named α-, β-, and γ-CD, respectively 

(Figure 1-20).
175

 These different oligosaccharides are frequently used in the medical field 

because of their biocompatibility and their low toxicity.
176-179

  

 

Figure 1-20. Molecular structures and dimensions of various CDs: A, α-CD; B, β-CD; and C, γ-CD.
180

 

CDs have a hydrophilic exterior and a hydrophobic cavity inside the oligosaccharide rings, 

which can be used to encapsulate different kinds of guest and cargo molecules.
181-184

 The 

encapsulation is based on supramolecular host-guest interactions, such as hydrogen bonding, 

van-der-Waals forces or hydrophobic interactions, and is used in various application fields 

such as biomedicine, catalysis, environmental protection and separation processes.
185

 The 
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hydrophobic cavity in β-CD can form inclusion complexes with several guest moieties 

(adamantane, azobenzene, ferrocene, cholesterol, etc.) to form nanostructures through a 

controlled self-assembly process.
186

 Wang and co-workers introduced a controlled self-

assembly process of supramolecular nanoparticles that is achieved by adjusting the molar 

ratio of polymer to β-CD. This self-assembly approach is termed the “bricks and mortar” 

strategy in which Ad-PEG and Ad-PAMAM with the guest adamantyl groups serve as the 

bricks while the PEI−β-CD polymer bearing the host functionality serves as the mortar 

(Figure 1-21). The size of the structures can be controlled via modifying the polymer length 

and polymer to cyclodextrin ratio.
187
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Figure 1-21. (A) General PEGylation on β-CD-grafted polymer mediated by adamantyl PEG (Ad-PEG). 

(B) Synthesis, and (C) size control of supramolecular nanoparticles assembled by PEI−βCD, Ad-PEG, and 

Ad-PAMAM with the “bricks and mortar” strategy, presented by electron microscopy with scale bar = 

100 nm.
187

 

A prominent example for supramolecular structures already reaching clinical trials is given by 

Eliasof et al., where the cyclodextrin-poly(ethylene glycol) copolymer conjugated to 

camptothecin, a classic hydrophobic cytostatic agent, is investigated for the therapy of 

pancreatic cancer, non small-cell lung cancer, breast cancer and colorectal cancer.
188

 The 

drug-cyclodextrin-PEG conjugates self-assembled into nanoparticles that are called CRLX101 

(Figure 1-22).  

 

Figure 1-22. Schematic synthesis of CRLX101, a nanopharmceutic comprised of camptothecin conjugated 

to a linear, cyclodextrin-poly(ethylene glycol) (CD-PEG) copolymer and formulated into nanoparticles.
188

 

Camptothecin is known to be a potent inhibitor of topoisomerase 1 (Topo 1), which is an 

important and validated drug target for cancer therapy today. Topo 1 remains a highly 

attractive drug target because it is essential for basic cellular processes including DNA 

replication, recombination, and transcription, which are particularly up-regulated in rapidly 

dividing tumor cells.
189

  

The supramolecular assembly CRLX101 was successfully investigated using a lymphoma 

xenograft model in vivo featuring efficient therapy and prolonged animal survival rates 
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compared to the control group and simultaneously applied irinotecan, a conventional 

lymphoma drug (Figure 1-23).
190
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Figure 1-23. Efficacy study of CRLX101 compared to irinotecan using a lymphoma xenograft in mice. A) 

bioluminescence study using luciferase activity of the incorporated tumors. Weekly dosing × 3 at 

100 mg/kg (irinotecan), 5 mg/kg (CRLX101, triangles), and 10 mg/kg (CRLX101, diamonds). B) 

corresponding survival graphs. CRLX101 achieved 55.6% complete tumor response at Day 125 post-

treatment at the 10 mg/kg dose, while no complete tumor responses were observed in irinotecan-treated 

mice and the control group.
190

 

Even though there are examples of successful applications of SNPs in the biomedical field, 

the non-covalent interactions could limit their use for drug delivery applications, since they 

might degrade easily before they reach their target, and any new guest molecule that is 
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incorporated or loaded into the particle needs to be optimized in its interactions with the 

particle structure. Thus, covalently crosslinked cyclodextrin materials could facilitate their 

breakthrough for drug delivery applications. Recently, different approaches were used to 

prepare covalently crosslinked CD molecule-containing materials. One is through 

crosslinking α-CD-poly-ethyleneglycol (PEG) inclusion complexes by using epichlorohydrin. 

The nanomaterial was obtained after extracting the PEG chains that penetrated the 

hydrophobic cavity.
191

  

In another approach, Dichtel et al. polymerized β-CD in a nucleophilic aromatic substitution 

reaction with tetrafluoro terephtalonitrile and obtained a mesoporous bulk material that was 

used to rapidly remove organic micropollutants from waste water.
192

 In chapter 9 the 

successful synthesis of covalently crosslinked cyclodextrin nanoparticles is shown in detail, 

which makes this innovative and biocompatible nanocarrier concept a promising platform for 

the development of controllable and efficient theranostic systems. 
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2 Characterization 

Various techniques have been used to characterize the synthesis, functionalization and 

applications of the investigated nanomaterials. The size and the agglomeration behavior of the 

nanoparticles in different solvents can be investigated by Dynamic Light Scattering (DLS) 

measurements. By measuring Zeta potential, the surface charge of the different nanomaterials 

can be determined. The porous structure and morphological parameters can be investigated 

with nitrogen sorption measurements, X-ray Diffraction (XRD), Transmission Electron 

Microscopy (TEM) and Scanning Electron Microscopy (SEM). Vibrational spectroscopy 

(infrared and Raman spectroscopy) and solid-state nuclear magnetic resonance spectroscopy 

(ssNMR) are necessary to characterize different functional groups and organic compounds 

attached to the nanoparticles. The amount of attached or incorporated organic moieties was 

evaluated by thermo gravimetric analysis (TGA). By means of fluorescence and UV/VIS 

spectroscopy the loading capacity and stimuli-responsive release of fluorescence dyes from 

the porous nanocarriers can be explored. Temperature- and pH-responsive sensing of 

nanoparticles was also investigated with fluorescence spectroscopy. Different fluorescence 

microscopy techniques were used in live-cell imaging. Nuclear magnetic resonance (NMR) 

spectroscopy of liquids and mass spectroscopy are helpful tools to investigate the successful 

synthesis of organic compounds. Superconducting quantum interference device (SQUID) 

measurements were used to explore the superparamagnetic behavior of hybrid nanoparticles. 

2.1 Dynamic light scattering  

Hydrodynamic radii of nanoparticles in colloidal solutions and their degree of agglomeration 

in different solvents can be investigated with dynamic light scattering (DLS) measurements. 
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Typical reliable values of measured diameters of colloidal nanomaterials lie in the range 

between 1 and 1000 nm. The theoretical background of this method is based on the Brownian 

motion of nanoparticles. The Brownian motion is the movement of particles due to 

temperature > 0 K and the deflection is due to random collision with molecules in a colloidal 

solution surrounding the particle.
1
 Usually, a DLS setup is composed of a laser source, a 

sample holder with thermostat, a photodetector and an autocorrelation software. Figure 2-1 

shows a schematic illustration of a DLS measurement setup. By illuminating the sample with 

a laser beam, the scattering of this beam is correlated with the collision of the particles. A 

monochromatic laser beam is directed through the cuvette filled with a diluted suspension of 

nanoparticles and the scattered light is collected and analyzed with a photomultiplier and a 

photo detector system. 
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Figure 2-1. Schematic illustration of a DLS measurement setup.
2
 

 

If the size of the particles is small compared to the wavelength of the light source, Rayleigh 

scattering occurs equally in all directions. The constructive and destructive interference of the 

scattered light gives intensity fluctuations, a so-called speckle pattern. This pattern contains 

information about the movement of the scatterers, i.e. the nanoparticles in the measured 

solution. The resulting detected size is always the hydrodynamic radius rather than the real 

size of the objects. The changes in the speckle pattern are analyzed with the help of a digital 

correlator and the fluctuations in intensity are correlated over time with a second order 

autocorrelation function: 

          
              

       
 2-1. 
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Equation 2-1: 2nd order autocorrelation function; q: wave detector, τ: delay time, I: Intensity. 

This function decays exponentially towards long delay times and can be related to a first order 

autocorrelation function g1: 

                        2-2. 

Equation 2-2: 1st order autocorrelation function; q: wave detector, τ: delay time, β: correction factor. 

The diffusion coefficient D can be obtained from a single exponential function when 

assuming a monodisperse dilute dispersion of nanoparticles: 

             
    2-3. 

Equation 2-3: D: Diffusion coefficient. 

The Stokes-Einstein equation gives the relation between this diffusion coefficient and the 

hydrodynamic diameter of spherical particles: 

   
  

    
 2-4. 

Equation 2-4: Stokes-Einstein equation; k: Boltzmann constant, T: temperature, η: solvent viscosity, d: 

hydrodynamic diameter. 

If the measured solution contains polydisperse nanoparticles, size distribution effects have to 

be taken into account by the application of Mie theory or Rayleigh scattering. While Rayleigh 

scattering is used to describe the elastic interaction of unpolarized light with particles smaller 

than the wavelength of the light, Mie theory describes the scattering of larger particles: 
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 2-5. 

Equation 2-5: Scattering intensity; I0: intensity of incoming light, θ: scattering angle, R: distance to the 

particle, λ: wavelength of incoming light, n: refractive index of the material, d: diameter of particles. 

Since the scattering intensity is proportional to d
6
, big particles contribute much more to the 

scattering intensity as compared to small ones. This effect leads to an over-estimation of the 

size in polydisperse samples and thus needs to be considered in data evaluation. To solve this 

issue, the intensity-based measurement data of the DLS can also be presented as volume-

weighted (d
3
) or number-weighted (d) distributions, giving the real size distribution of 

polydisperse samples. Dynamic light scattering (DLS) measurements in this work were 

carried out on diluted suspensions using a Malvern Zetasizer-Nano instrument with a 4 mW 

He-Ne laser (λ = 633 nm) and an avalanche photo detector. 

2.2 Zeta potential 

The charge of the outer surface of nanoparticles can be investigated by measuring the Zeta 

potential. For this purpose, the electrostatic potential of the sample is measured depending on 

changing pH values of the surrounding medium. Nanoparticles in an aqueous dispersion 

feature a zeta potential, which is the electrokinetic potential difference between a stationary 

layer of ions in a liquid attached to the dispersed particles and the liquid medium in the 

surroundings.
3
 Particles in these aqueous colloidal suspensions can exhibit surface charges 

that either originate from the adsorption of charged species, ionization of functional groups at 

the external particle surface, or differential loss of charged species from the particle. The 

charged particle surfaces affect the distribution of ions in the dispersion medium, generating 
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layers of counter ions close to the surface. The resulting electrical double layer which exists 

around individual particles is shown 

Figure 2-2. 

 

Figure 2-2. Negatively charged particle surrounded by an electric double layer. 

Both layers consist of ions that are charged oppositely to the nanoparticle. The outer boundary 

(of the double layer) is called slipping plane and the inner layer with more densely packed 

counter ions is called Stern layer. The Stern layer as well as the slipping plane is very 

sensitive towards pH changes of the surrounding medium. The zeta potential is measured 

indirectly by determination of the electrophoretic mobility. In order to measure the zeta 

potential of a sample, an electric field is applied across a capillary cell containing the particle 

suspension and the electrophoretic mobility is observed. Particles inside the dispersion that 

possess a specific zeta potential will migrate towards the electrode of opposite charge 



2. Characterization  

 

57 

 

whereby the migration velocity is proportional to the magnitude of the zeta potential. Using 

the technique of Laser Doppler Velocimetry (LDV), this velocity within the dispersion is 

measured. The frequency shift of the laser light (λ = 633 nm) caused by the different 

migration velocities of nanoparticles is recorded as the particle mobility. This mobility is 

transformed into zeta potential by the application of an appropriate theory together with the 

input of the dispersant’s viscosity. The Henry equation describes the relation between the 

electrophoretic mobility and the zeta potential. 

   
       

  
  2-6. 

 

Equation 2-6: Henry equation;   = electrophoretic mobility,  = dielectric constant of the sample,      = 

Henry function,  = viscosity,  = zeta potential. 

With low electrical fields and small particles (diameter < 200 nm) the Henry function 

becomes approximately 1, which leads to the Hückel-Onsager approximation that was finally 

used to calculate the zeta potential of particles in colloidal solutions.
4
 The Smoluchowski 

approximation is suitable for particles lager than 200 nm in diameter and for suspensions 

containing more than 1 mM salt concentrations. A typical plot shows the zeta potential of the 

sample depending on the set pH value. At the isoelectric point the zeta potential equals zero. 

Zeta potential measurements in this work were carried out on diluted suspensions (0.1 

mg/mL) using a Malvern Zetasizer-Nano instrument with a 4 mW He-Ne laser (λ = 633 nm), 

an avalanche photo detector and an MPT-2 titration system. 

2.3 Nitrogen sorption 

Nitrogen sorption experiments of a gas adsorbate on a porous adsorbent give information 

about the specific surface area, the pore volume and the size and shape of the corresponding 
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pore system of a material.
5, 6

 The weak interactions occurring during physisorption (physical 

adsorption) measurements are mainly van-der-Waals forces such as dipole-dipole interactions, 

London forces or hydrogen bonding. Chemisorption (chemical adsorption), however, involves 

the formation of covalent chemical bonds between the adsorbate and the surface. This process 

is thus less preferred for the determination of porosity parameters. Herein, nitrogen gas was 

used as the adsorbate because it is not reacting with the analyzed sample material. The 

amount of the adsorbed nitrogen gas at different pressures and at a constant temperature near 

its boiling point (77 K) is used to generate sorption isotherms in typical physisorption 

measurements (Figure 2-3). The increase in the adsorbed gas volume by the substrate is 

measured as a function of the partial pressure. During the measurement an equilibrium state is 

established between the adsorptive gas and the adsorbate depending on the relative pressure 

p/p0.  
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Figure 2-3. Six major types of sorption isotherms defined by the IUPAC. 

The equilibrium isotherms are obtained by plotting the adsorbed volume as a function of p/p0. 

The IUPAC classifies six major types of adsorption isotherms (Figure 2-3, Table 2-1), each 

type being characteristic for materials with certain pore structures.  

 Isotherm type Interpretation for corresponding material 

I Chemisorption isotherm or physisorption in microporous materials, where a 

plateau is reached after filling of the micropores 

II Nonporous and macroporous materials with high energies of adsorption 

III Nonporous and macroporous materials with low energies of adsorption 

IV Mesoporous materials with high energies of adsorption, often contain hysteresis 

loops attributed to mesoporosity 

V Mesoporous materials with low energies of adsorption, often contain hysteresis 

loops attributed to mesoporosity 

VI Several possibilities, including multiple pores sizes and multiple distinct energies 

of adsorption 

Table 2-1. Major types of sorption isotherms classified by IUPAC. 

High surface area materials with micorporous systems (pore sizes up to 2 nm) like metal 

organic frameworks (MOFs), covalent organic frameworks (COFs) or zeolites exhibit type I 

isotherms with a very steep increase in adsorbed gas volume at low relative pressures, 

corresponding to the pore filling of the micropores of the material. These materials can reach 
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surface areas of over 7000 m
2
/g material.

7
 Most of the particles obtained in this work exhibit 

type IV isotherms, which are typical for mesoporous materials (pore sizes between 2 and 

50 nm). In contrast to microporous materials, the sorption behavior in mesoporous materials is 

also depending on the attractive interactions between the fluid molecules. This leads to the 

occurrence of multilayer adsorption and capillary condensation in the pores of the material at 

relative pressures above p/p0 ≈ 0.2. The pore walls are covered by a multilayer adsorbed film 

at the onset of the pore condensation.
8
 Due to resulting van-der-Waals forces during the 

measurement more energy has to be applied to remove the adsorbed gas molecules from the 

solid when the external pressure p is reduced during the desorption process. Hence, adsorption 

and desorption curves typically do not completely overlap when the pores are bigger than 

4 nm in diameter. Generally, a wide variety of shapes for hysteresis loops is known 

corresponding to different pore shapes. The type of hysteresis loop formed by 

adsorption/desorption isotherms is determined by different mechanisms of condensation and 

evaporation and depends upon the size and the shape of pores.
9
 The most common ones are 

depicted in Figure 2-4.  
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Figure 2-4. Different types of hysteresis loops corresponding to different pore shapes.
10

  

There are many mathematical methods to calculate the porosity of particles. The most 

commonly used models are the Langmuir, Freundlich or Brunauer-Emmett-Teller (BET, 

Equation 2-7: BET equation;  = amount of the adsorbate at a relative pressure
 

  
,   = 

capacity of a single monolayer,  = BET constant,  = equilibrium pressure,   = saturation 

vapor pressure of the sample.) approaches.
11

 
12

 
13

 Besides simple approximations like a 

uniform surface and equal binding sites, the used BET approach also includes multilayer 

adsorption. 

 

  
 

 
 

  

   
 

  
      

 

  
 
 2-7. 

Equation 2-7: BET equation;  = amount of the adsorbate at a relative pressure
 

  
,   = capacity of a single 

monolayer,  = BET constant,  = equilibrium pressure,   = saturation vapor pressure of the sample. 

The BET plot of (p/p0)/[n(1-p/p0)] versus p/p0 gives a linear relationship with a slope of (C-

1)/nmC and intercept 1/nmC. Based on these data and the required space of one adsorbed 

molecule on the surface of the particle, the specific surface area of the adsorbent material can 

be calculated. To calculate the pore size distribution, density functional theory (DFT) or 

Monte-Carlo based simulations are the most accurate models.
14

 Nitrogen sorption 
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measurements in this work were either performed on Quantachrome Instruments NOVA 

4000e or Autosorb at 77 K. For the measurements a minimum of 5 mg of the dried sample 

were used. Sample outgassing was usually performed at 120 °C and 10 mTorr for 12 hours. 

For enzyme-containing or temperature-sensitive samples, the outgassing temperature was set 

to room temperature. The corresponding pore volumes and pore sizes were calculated with a 

NLDFT equilibrium model for N2 on silica or carbon with cylindrical pores. To estimate the 

specific surface areas of the different samples, a BET model was used. 

2.4 X-ray diffraction  

X-ray diffraction (XRD) is a common non-destructive technique in materials science that is 

widely used for the investigation of crystalline materials, providing information on phase 

composition, lattice parameters, unit cell dimensions, and size of crystalline domains. 

Additionally, XRD can be used for the characterization of periodically ordered 

mesostructures, e.g., mesoporous silica or organosilica nanoparticles show specific reflections 

in small-angle X-ray diffraction (SAXS), which can be used to calculate the pore-to-pore 

distance within the amorphous material.
15

 In general, X-ray diffraction is based on the 

scattering of a monochromatic X-ray beam by atoms in a periodic three-dimensional structure 

having a periodicity similar to the X-ray wavelengths. Herein, the scattered X-rays interfere 

constructively and give the diffraction pattern when the material is periodically structured. 

The used X-rays are generated in a cathode ray tube by heating a filament to produce 

electrons. These electrons are accelerated towards a target anode (typically Cu, Mo or Co) 

using high voltage. The collision of the accelerated electrons with the anode material leads to 

the emission of a continuous radiation (Bremsstrahlung) and characteristic X-ray radiation. 

By knocking out inner shell electrons from the anode atoms and electrons from higher energy 
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levels filling up the resulting vacancies, characteristic X-ray photons are emitted. The 

generated X-ray beam is filtered through a monochromator and directed onto the sample. A 

copper anode is the most commonly used target material with a resulting wavelength of Cu 

Kα radiation of 1.5418 Å. Constructive interference occurs when the interaction of the 

incident X-rays with the sample satisfies the Bragg equation: 

          2-8. 

Equation 2-8: Bragg’s equation;  =lattice spacing,  = scattering angle,  =order of reflexes,  = 

wavelength.  

Figure 2-5 shows a graphic illustration of Bragg’s law: 

 

Figure 2-5. Illustration of the Bragg relation; Constructive interference occurs when the path difference is 

a multiple integer of the wavelength of the X-rays. 

The distances between the atoms in the material analyzed correspond to the wavelength of the 

X-rays, so that the crystalline structure can be determined. The crystallite sizes can be 
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calculated by using the broadening of the reflections in the diffraction pattern. For this 

purpose, the Scherrer equation is used: 

  
  

     
 2-9. 

Equation 2-9: Scherrer equation;  = mean size of the crystalline domains,  = dimensionless shape factor 

with a typical value of around 0.9 for spherical particles,  = full width at half maximum (FWHM) of the 

reflection corrected for the intrinsic instrumental broadening,  = wavelength,  = diffraction angle. 

Because of the pore walls consisting of amorphous silica for most of the materials synthesized 

in this work and due to the small domain sizes and limited periodicity the observable reflexes 

appear quite broad.
16

 The moderately ordered wormlike channels of the mesoporous system of 

the nanoparticles studied here are responsible for receiving only first order reflections in the 

small angle range (      ). X-Ray diffraction patterns were investigated on a Bruker D8 

Discovery diffractometer in θ/θ Bragg-Brentano scattering geometry using Ni-filtered Cu-Kα 

radiation with λ = 1.5406 Ả. Small-angle experiments were performed to analyze the 

mesoporous structure of the samples. Wide-angle experiments and diffraction patterns on a 

STOE Stadi MP with Mo-Kα radiation with λ = 0.7118 Ả were performed to investigate the 

metal oxide phases. 

2.5 Electron microscopy 

Electron microscopy is a very important technique to characterize materials concerning their 

structure and composition on the nanoscale. Optical microscopes using wavelengths of 

roughly 400 – 800 nm have a resolution limit due to the Abbe restriction with a maximum 

resolution of about 250 nm. In order to image very small features (smaller than about half the 

wavelength of visible light), an electron microscope can be used.
17

 Since the achievable 
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resolution in microscopy is directly proportional to the wavelength of the electromagnetic 

waves used to image a specimen, waves of short wavelengths are needed. These short 

wavelengths in electron microscopy are produced by accelerating electrons to very high 

kinetic energies. Primary electrons are accelerated by an anode and then focused by several 

electromagnetic coils onto the specimen. In general, thermal emission or field emission is 

used to generate electrons from a tungsten filament. These electrons are then accelerated by 

an anode to energies of up to 400 keV and focused by condenser lenses. 

  
 

        
 2-10. 

Equation 2-10: Equation to calculate the wavelength of the electrons;  = wavelength;  = Planck constant, 

  = mass of the electron,     = acceleration energy. 

Atomic resolution can be obtained with the generated small wavelength of the electrons, 

which makes electron microscopy predestined for studying cell parameters, pore dimensions 

and morphologies of nanomaterials. Different processes can occur when the electron beam 

hits the surface of the specimen. Accelerated electrons can undergo elastic scattering or can be 

inelastically scattered. Others just pass through the sample without interaction (Figure 2-6). 

Typical signals used for imaging include transmitted electrons in TEM applications and 

secondary electrons (SE) and backscattered electrons (BSE) in SEM mode. 

Cathodoluminescence, Auger electrons and characteristic X-rays are used for quantitative and 

semiquantitative analyses of materials as well as element mapping. Bremsstrahlung 

(continuum) radiation is a continuous spectrum of X-rays from zero to the energy of the 

electron beam and produces a large background signal. To obtain the characteristic X-rays for 

analysis this background has to be removed.  

http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/elementmapping.html
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Figure 2-6. Electron beam-specimen interactions leading to different processes.
18

 

For TEM investigations the specimen has to be very thin, because only transmitted electrons 

are detected on the CCD detector. Electron radiation is ionizing and therefore can interact in 

many different ways with the analyzed sample. This can lead to radiolysis where chemical 

bonds within the sample structure are destroyed. Further limiting factors in the usage of 

electron microscopy are spherical aberrations, chromatic aberrations and astigmatism.
19

 
20

 The 

spherical aberration is limiting the level of details by bending electrons more strongly which 

are further away from the optical axes. For this reason, a point is imaged as a disc. The 

chromatic aberration creates the same effect by bending electrons with higher energy more 

strongly than others. These aberration errors can be reduced with a special arrangement of 

concave lenses and a monochromator. Figure 2-7 shows schematic constructions and beam 

paths of a transmission electron microscope and a scanning electron microscope.  
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Figure 2-7. Schematic construction of a transmission electron microscope and a scanning electron 

microscope.
21

  

Besides imaging, a TEM can also be used to create an electron diffraction pattern. Electrons 

are negatively charged, which can lead to strong interactions with the subject matter and 

therefore they are diffracted by electron density and atomic nuclei. By inserting an aperture 

between the sample holder and the detector into the beam path of the TEM column, selected 

area electron diffraction (SAED) patterns can be obtained. Furthermore, both TEM and SEM 

can be used to analyze the chemical and electronic structure of a sample. For this purpose, 

energy dispersive X-ray (EDX) analysis or electron energy loss spectroscopy (EELS) in TEM 

mode can be carried out. The TEM measurements were either performed on a Jeol JEM-2010 

operating at 200 kV and a basic CCD detection system or with a FEI Titan 80-300 equipped 

with a field emission gun operated at 80 kV. SEM images were obtained with a JEOL JSM-

6500F scanning electron microscope equipped with a field emission gun operated at 2.5 kV. 
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2.6 Infrared spectroscopy 

Infrared (IR) spectroscopy is an extremely powerful analytical method for both qualitative 

and quantitative analysis of nanomaterials. Here, the sample is illuminated with infrared light 

(range of 400 – 4000 cm
-1

) to excite vibrational energy states: 

       2-11. 

Equation 2-11: Equation for exciting energy states;  = Planck constant,  = velocity of the light,   = 

wavenumber. 

In general, molecules possessing an electric dipole that changes during vibrational excitation 

are IR active.
22

 The frequency of the incident light has to match the frequency of the 

oscillating bonds of the irradiated molecule. The energetic difference between two vibrational 

states is often characteristic for a specific bond or functional group. In the near infrared (NIR) 

region (0:8 μm to 2:5 μm, 12 800 cm
-1

 to 4000 cm
-1

), usually higher harmonics of vibrations 

can be found. In the mid infrared (MIR) region (2.5 μm to 50 μm, 4000 cm
-1

 to 200 cm
-1

) 

fundamental vibrations occur, and the far infrared (FIR) region (50 μm to 1000 μm, 200 cm
-1

 

to 10 cm
-1

) usually features rotational or phonon modes. By absorbing energy from infrared 

light illumination, molecules can be stimulated to excited vibrational and rotational states. 

The quantum mechanical model of the anharmonic oscillator is used to describe the 

transitions between different vibrational states (Figure 2-8). 
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Figure 2-8. Potential of the harmonic (dashed line) and anharmonic (full line) oscillator.
23

 

By analyzing the characteristic vibrational modes of different functional groups, it is possible 

to obtain information about the chemical bonding within the molecules and the structure in 

the specimen. The intensity of the transmitted or scattered light is measured. IR measurements 

in this work were performed with small amounts of sample on a ThermoScientific Nicolet 

iN10 IR microscope in absorption mode with a liquid nitrogen-cooled MCT-A detector. 

2.7 Raman spectroscopy 

In contrast to IR spectroscopy, a molecule is Raman-active when the activated vibrations 

create a change in polarizability (deformation in the electron cloud).
24

 When light is scattered 

from a molecule, most photons are elastically scattered, which means that they have the same 

energy as the incident photons. However, a small fraction of light (approximately 1 in 

10
7 

photons) is inelastically scattered (usually lower frequencies compared to the incident 

photons) leading to the Raman effect. Raman scattering can occur with a change in 
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vibrational, rotational or electronic energy of a molecule. To characterize a sample with 

Raman spectroscopy, usually monochromatic light generated by a laser is used. The 

interaction between light and the electron shell of molecules causes scattering radiation that is 

measured, and the intensity of scattered light is plotted versus the energy difference in a 

Raman spectrum. Rayleigh, Stokes or Anti-Stokes scattering can be observed in a Raman 

experiment (Figure 2-9), depending on absorbing or desorbing energy from the laser beam. 

 

Figure 2-9. Raman excitation and relaxation processes.  

Since the elastic Rayleigh scattering shows no change in frequency, it is not of interest for the 

analysis of a molecule’s excitation processes. In inelastic Raman scattering the scattered light 

can either be shifted to lower frequencies (Stokes Raman) or higher frequencies (Anti-Stokes 

Raman) with respect to the incident frequency of photons. Because of its higher intensity, 

Stokes scattering is mostly used for the analysis. Comparable to IR spectroscopy, different 

functional groups show characteristic scattering frequencies which can be used to determine 

information about the chemical environment in the sample analyzed.
25

 The nanomaterials in 

this work were measured on a Raman spectrometer equipped with a He-Ne laser (λ=633 nm). 
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A confocal LabRAM HR UV/VIS (HORIBA Jobin Yvon) Raman microscope (Olympus 

BX 41) with a SYMPHONY CCD detection system was used. In this case, the dried samples 

were directly measured on a glass plate. Raman spectra were also measured on a Bruker 

Equinox 55 FTIR/FTNIR, set in Raman mode, with a laser power of 100 mW. 

2.8 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is used to determine the mass loss of a sample related to 

the temperature of a heating ramp. With temperatures up to 900 °C, attached organic moieties 

or adsorbed guest molecules can be gravimetrically measured and quantitatively analyzed. 

Besides other reactions, pyrolysis and evaporation of the attached molecules take place. By 

controlling the atmosphere during the measurement process with inert gas or synthetic air, 

oxidation of the sample can be controlled. The probe is heated with a constant temperature 

ramp and sample weight is measured depending on the applied temperature.
26

 The obtained 

thermograms include quantitative information about the amount of organic moieties attached 

to the analyzed materials. Additional differential scanning calorimetry (DSC) experiments can 

be carried out simultaneously with the TGA measurement. In DSC, the temperature of the 

sample is increased and the amount of required heat is compared to that of an inert reference 

material. With this information a weight loss step observed in TGA can either be attributed to 

an endothermic or an exothermic process. Therefore, the temperature stability of materials as 

well as exothermic (weight losses connected to combustion) or endothermic (desorption) 

processes can be investigated. Thermogravimetric analysis (TGA) of approximately 10 mg of 

dried bulk powder was performed on a Netsch STA 440 C TG/DSC. The measurements 

proceed at a heating rate of 10 K/min up to 900 °C in a stream of synthetic air or nitrogen of 

about 25 mL/min. 
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2.9 Fluorescence spectroscopy 

By means of fluorescence spectroscopy the fluorescence of samples can be investigated. Upon 

excitation of electronic ground states with applied laser light, non-radiative deactivation takes 

place, according to Franck-Condon’s rule. The subsequent emission of a photon with lower 

energy than the incident laser beam by reaching the electrical ground-state is called 

fluorescence.
27

 This process includes different stages as can be seen in Figure 2-10.
 

 

Figure 2-10. Mechanism of the fluorescence process.
  

In a first absorption step, a photon A of certain energy (h A) is generated by an external 

source (incandescent lamp or laser light) and absorbed by the fluorophore material. This can 

result in an excitation of the electron from the electronic ground state (S0) to an excited 

electronic state (S2). This process is very fast, taking place within femtoseconds. 

Subsequently, a process called internal-conversion takes place usually within 1 – 10 ns. This 

non-radiative transition of the electron from the excited state (S2) to the relaxed excited state 

(S1) is caused by vibrational relaxation of the fluorophores. In the last step, the excited 

electron falls back to the ground state (S0) while emitting a photon B with lower energy (h B) 

than in the absorption process. This is the reason why fluorescence leads to a red-shift of the 
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emitted wavelength in comparison with the incident photons. The difference between the 

corresponding maxima of absorption and emission spectra (Figure 2-11) is called 

bathochromic Stokes-shift and is due to the previously described energy loss in the non-

radiative deactivation process.
28

 

 

 

Figure 2-11. Schematic absorption and emission spectra of a fluorescence dye.
29

  

 

In addition to fluorescence, other relaxation processes can occur that cause a fall-back of the 

excited electrons to the ground state or into other related states, e.g. quenching, 

photobleaching, fluorescence energy transfer and intersystem crossing, which leads to 

phosphorescence. Fluorescence spectra in this work were recorded on a PTI 

spectrofluorometer with a xenon short arc lamp (UXL-75XE USHIO) and a photomultiplier 

detection system (model 810/814). For the release experiments a ROTH Visking type 8/32 

dialysis membrane with a molecular cut-off of 14000 g/mol was used. 
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2.10 UV/VIS spectroscopy 

In UV/VIS spectroscopy electromagnetic waves in the visible and the ultraviolet range are 

used to illuminate molecules in solutions or solids. The absorption of light of a specific 

wavelength leads to excitation of valence electrons to higher energy states. The energy of the 

absorbed photons by the molecules corresponds to the energy difference of the states and can 

give information about the electronic properties of the analyzed sample. The concentration of 

an analyte in the absorbing species can be determined using Lambert-Beer’s law: 

      
 

  
     2-12. 

Equation 2-12: Lambert-Beers law;  = Absorbtion,   = Intensity of incident light,  =Intensity of 

transmitted light,  = Molar extinction coefficient,  = Concentration of the analyte,  = Path length through 

the cuvette. 

An UV/VIS spectrometer setup usually exists of a light source (deuterium lamp for UV range, 

tungsten lamp for visible range), a monochromator, a detector and a cuvette holder for the 

analyte (Figure 2-12). 

UV/VIS measurements in the following work were performed on a Perkin Elmer Lambda 

1050 spectrophotometer with a deuterium arc lamp and a tungsten filament. The detector was 

a standard CCD system. Small sample amounts were measured on a NanoDrop 2000c 

spectrophotometer from Thermo Fisher Scientific. 
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Figure 2-12. Schematic UV/VIS setup.
30

  

2.11 Fluorescence microscopy 

Fluorescence microscopy is a powerful method in nanosciences to detect and investigate cell-

particle-interactions. The instrument is capable of imaging the distribution of single molecular 

species based solely on fluorescence emission. With fluorescence microscopy, the precise 

location of intracellular components labeled with specific fluorophores and additional labeled 

nanoparticles can be monitored.  
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Figure 2-13. Schematic setup of a basic upright fluorescence microscope.
31

  

High spatial resolution in 3D and a high time resolution is crucial to gain proper information. 

In general, fluorescence microscopy can also be used to investigate environmental parameters 

such as pH, viscosity, refractive index, ionic concentrations, membrane potential, and solvent 

polarity in living cells and tissues. Figure 2-13 shows a schematic setup of a basic 

fluorescence microscope with incident reflected light illumination. The microscope usually 

consists of a trinocular observation head that is coupled to a cooled charge-coupled device 

(CCD) camera system. Two illumination sources are used, one for transmitted light and the 

other for the excitation of fluorescence processes (tungsten-halogen for UV range and 

mercury arc-discharge for visible range, respectively). Alternatively, lasers can also be used 

for illumination. 
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Figure 2-14. Schematic illustration of spinning disc microscope.
32

  

Different optical excitation filters are needed to isolate one specific wavelength for the 

excitation of fluorophores in the sample. It is possible to separate excitation and emission 

light in the same pathway optically via a dichroic mirror. This is due to the previously 

described Stokes shift of excitation and emission wavelength. In this case, only the emission 

light is collected by the objective and an additional emission filter helps to suppress unwanted 

background light. To study living cells and cell-particle interactions in this work, a spinning 

disc microscope was used. Figure 2-14 shows schematically the setup of such a spinning disc 

microscope. A confocal microscope is improved in comparison to a simple fluorescence 

microscope by introducing pinholes in the excitation and detection pathway to block the out-

of-focus fluorescence. Thereby, especially the axial resolution is increased, which is given by 

the Rayleigh criterion: 
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 2-13. 

Equation 2-13: Axial resolution of confocal microscope.         axial resolution,    refractive index, 

   wavelength,       numerical aperture. 

Spinning disc confocal microscopes are further improved confocal microscopes. Herein, the 

usual pinholes are substituted with a spinning disk unit consisting of two fast rotating discs. 

One disc contains multiple lenses that are concentrically arranged. On the other disc there are 

pinholes that allow for multiple simultaneous scans. With the combination of these fast 

rotating discs many confocal spots can be screened over the sample. This leads to a faster 

imaging compared to a scanning confocal microscope and to a significant increase in time 

resolution. However, strong lasers are needed when using this method because much light 

gets lost while passing through the pinholes. Confocal microscopy for live-cell imaging in this 

work was performed on a setup based on the Zeiss Cell Observer SD utilizing a Yokogawa 

spinning disk unit CSU-X1. The system was equipped with a 1.40 NA 100x Plan apochromat 

oil immersion objective or a 0.45 NA 10x air objective from Zeiss. For all experiments the 

exposure time was 0.1 s and z-stacks were recorded. DAPI and Hoechst 33342 dyes were 

imaged with approximately 0,16 W/mm
2
 of 405 nm, GFP and the caspase-3/7 reagent were 

imaged with approximately 0.48 W/mm
2
 of 488 nm excitation light. Atto 633 was excited 

with 11 mW/mm
2
 at 639 nm. In the excitation path a quad-edge dichroic beamsplitter 

(FF410/504/582/669-Di01-25x36, Semrock) was used. For two-color detection of 

GFP/caspase-3/7 reagent or DAPI/Hoechst 33342 and Atto 633, a dichroic mirror (560 nm, 

Semrock) and band-pass filters 525/50 and 690/60 (both Semrock) were used in the detection 

path. Separate images for each fluorescence channel were acquired using two separate 

electron multiplier charge coupled device (EMCCD) cameras (PhotometricsEvolve
TM

). 
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2.12 Nuclear magnetic resonance spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is frequently used as an indispensable 

physical method to analyze the behavior of certain nuclei in external magnetic fields. Fast and 

precise analysis of organic reaction products, determination of molecular structures in solids 

and liquids, as well as the study of dynamics in organic, inorganic, and biological systems can 

be obtained with a small amount of sample. Only isotopes with an intrinisic nuclear spin    

unequal to zero and therefore containing a magnetic moment     can be measured: 

         2-14. 

Equation 2-14: Magnetic moment;     = magnetic moment;  = gyromagnetic constant,    = nuclear spin. 

By applying an external magnetic field these magnetic moments spin towards the applied 

direction. With the resulting angular momentum a resonance frequency (Larmour frequency) 

is obtained: 

          
      2-15. 

Equation 2-15: Larmour frequency;      = Larmour frequency;  = gyromagnetic constant,   
      = external 

magnetic field. 

In an external magnetic field these spin states are not degenerate and split into certain energy 

levels. The difference in energy between the two states is given by: 

   
 

  
  2-16. 

Equation 2-16:   = Different energy levels,    Planck constant,      = Larmour frequency. 
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The resonance frequencies and therefore the energy transitions are influenced by the 

individual chemical and magnetic environment of the different nuclei. Because of this 

property, NMR spectroscopy can be used to investigate the electronic environment and 

chemical structure of a molecule. In solid-state NMR (ssNMR) the internuclear dipole-dipole 

interactions and the anisotropy of the chemical shift result in the broadening of the signals in 

the corresponding spectrum. These anisotropic interactions can be eliminated by using magic-

angle spinning (MAS) during the measurement (Figure 2-15). To this end, the sample holder 

is rotated at a very high frequency (usually between 1 and 100 kHz) at the magic angle of 

54°74’’ with respect to the direction of the applied magnetic field. 

 

Figure 2-15. Schematic illustration of the sampleholder rotating at the "magic angle" of 54.74 degrees 

with respect to the direction of the magnetic field.
33

 

In this work, approximately 100 mg of ssNMR samples were measured on a Bruker Avance 

III-500 (500 MHz, 11.74 T) instrument. Liquid NMR samples were dissolved in the 

corresponding deuterated solvent and measured either on a Bruker or a JEOL 400 MHz 

instrument. 
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2.13 Superconducting quantum interference device  

A superconducting quantum interference device (SQUID) was used to measure the 

magnetization of nanoparticles and to investigate their possible superparamagnetic behavior. 

Figure 2-16 shows schematically the setup of such devices: two Josephson junctions can split 

a superconducting path while sustaining a maximum supercurrent. With a magnetic material, 

and therefore a certain amount of magnetic flux piercing through the loop, the amplitude of 

the electrical current is modulated and can be monitored. This modulation is used to 

determine the properties of magnetic materials.  

 

Figure 2-16. a) Schematic illustration of a SQUID containing two Josephson junctions. b) The maximum 

electrical current (I, black, left axis) flowing through the device from left to right can be fully modulated 

by the amount of magnetic flux (Φ) passing through the loop.
34
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Magnetic nanomaterials in this work were examined in a Quantum Design MPMS XL5 

SQUID-magnetometer (Superconducting QUantum Interference Device) operating in a 

temperature range between 1.8 K and 380 K and with magnetic fields from -50 kOe to 

+50 kOe. The homogenized samples were weighed out in gelatine capsules with familiar 

diamagnetic properties and subsequently fixed in a plastic straw. Measurements were 

accomplished via the software MPMS MultiVu, whereas the program SQUID Processor was 

used to convert and correct the data. Origin was used to process the output data files. 
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3 Protease mediated release of chemotherapeutics from 

mesoporous silica nanoparticles to ex vivo human and mouse 

lung tumors 

This chapter is based on the following publication: 

Sabine H. van Rijt, Deniz A. Bölükbas, Christian Argyo, Stefan Datz, Michael Lindner, 

Oliver Eickelberg, Melanie Königshoff, Thomas Bein, and Silke Meiners, ACS Nano 2015, 9, 

2377-2389. 

 

Abstract 

Nanoparticles allow for controlled and targeted drug delivery to diseased tissues and therefore 

bypass systemic side effects. Spatio-temporal control of drug release can be achieved by 

nanocarriers that respond to elevated levels of disease-specific enzymes. For example, matrix 

metalloproteinase 9 (MMP9) are overexpressed in tumors, are known to enhance the 

metastatic potency of malignant cells, and have been associated with poor prognosis of lung 

cancer. Here, we report the synthesis of mesoporous silica nanoparticles (MSNs) tightly 

capped by avidin molecules via MMP9 sequence-specific linkers to allow for site-selective 

drug delivery in high expressing MMP9 tumor areas. We provide proof-of-concept evidence 

for successful MMP9-triggered drug release from MSNs in human tumor cells and in mouse 

and human lung tumors using the novel technology of ex vivo 3D lung tissue cultures. This 

technique allows for translational testing of drug delivery strategies in diseased mouse and 

human tissue. Using this method we show MMP9-mediated release of cisplatin, which 

induced apoptotic cell death only in lung tumor regions of Kras mutant mice, without causing 

toxicity in tumor-free areas or in healthy mice. The MMP9 responsive nanoparticles also 
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allowed for effective combinatorial drug delivery of cisplatin and proteasome inhibitor 

bortezomib, which had a synergistic effect on the toxicity. Importantly, we demonstrate the 

feasibility of MM9 controlled drug release in human lung tumors. 

 

3.1 Introduction 

In the past decade, the use of nanoparticles as inert carriers for therapeutics has revolutionized 

the field of drug delivery. Such nanocarrier systems have shown advantageous features 

resulting in improved accumulation of active drugs at disease sites, and have contributed to 

reduced systemic toxicity.
1
 However, release systems of many drug carriers rely on 

spontaneous degradation of the nanoparticle in vivo (e.g., hydrolysis), and do not allow for 

controlled drug release. Controlled drug delivery can be achieved by exploiting the 

(patho)physiologic characteristics of biological microenvironments, such as reducing 

conditions, changes of pH (e.g., acidic endosomal compartments), or altered levels of disease-

specific enzymes. For example, matrixmetalloproteinases 2 and 9 (MMP2 and MMP9) are 

overexpressed in advanced stages of cancer including lung cancer, whereas they are 
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minimally expressed in healthy tissue.
2
 Indeed, elevated levels of MMP9 in the tumor 

microenvironment enhance the metastatic potency of malignant cells and correlate with tumor 

progression, angiogenesis, or metastasis.
3
 In particular, increased expression of MMP9 has 

been associated with poor prognosis of lung cancer.
4, 5

 Specific peptide sequences can be 

exploited as protease-sensitive linkers
6
 to allow for controlled release of chemotherapeutics 

from nanoparticles, as recently shown by the use of MMP2/9 sensitive peptides for drug 

delivery.
7-13

 Consequently, the use of MMP2/9 responsive nanoparticles represents a 

promising strategy for local treatment of aggressive lung cancer. 

Multifunctional mesoporous silica nanoparticles (MSNs) are attractive carriers for drug 

delivery.
14

 They offer unique properties such as tunable pore sizes and pore volumes for high 

drug loading capacity, and efficient encapsulation of a wide variety of cargo molecules.
15

 

Additionally, these carriers can be selectively functionalized at specific sites within the 

nanoparticle.
16

 For example, an outer shell functionalization enables the attachment of 

external functions exclusively on the outer surface of the particle, which do not interfere with 

the pore environment. This can be exploited to create stimuli-responsive pore sealing for 

controlled drug release.
17-21

 For example, MSN pore closing can be achieved by utilizing 

biotin-avidin complexation, which serves as a bulky biomolecule-based valve blocking the 

entrances of the MSN pores.
22

  

In this work, we developed avidin-capped MSNs functionalized with linkers that are 

specifically cleaved by MMP9, thereby allowing for controlled release of chemotherapeutics 

from the MSNs in high MMP9 expressing lung tumor areas. We demonstrate efficient 

protease sequence-specific release of the incorporated chemotherapeutic cisplatin (CP), as 

well as combination treatment with proteasome inhibitor, bortezomib (Bz), in two lung cancer 

cell lines. To assay therapeutic effectiveness in diseased tissue, we established a novel 

experimental set-up using 3D lung tissue cultures (3D-LTC) of mouse lung cancer tissue. This 
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technique allows for spatio-temporal resolution and quantification of nanoparticle-mediated 

drug delivery in the preserved 3D environment of diseased mouse and human lung tissue. We 

here demonstrate MMP9-mediated tumor-site selective drug release and tumor cell death in 

mouse and human lung tumors revealing the feasibility of MMP9 controlled drug site-

selective delivery for treatment of lung cancer.  

3.2 Results and Discussion 

Synthesis and characterization of MMP9 responsive MSNs. According to previous reports, 

the MSNs were synthesized by a sol-gel procedure.
16, 23

 In the present work, the external 

surface of the MSNs was coated with a heptapeptide (HP) linker (MSNHP) consisting of a 

biotin functionality on the periphery (for detailed synthesis procedure, refer to SI). This HP 

sequence is selectively recognized by MMP9 for proteolysis (RSWMGLP, cutting sequence 

shown in bold).
24

 As a negative control, MSNs containing a non-cleavable heptapeptide 

(NHP) attached to the outer surface of the particles were synthesized (MSNNHP). In this NHP-

biotin linker, the specific cleavage site for MMP9 is lost due to an exchange of a single amino 

acid (RSWMLLP, exchanged amino acid shown in bold). After dye/drug uptake into the 

mesopores of both particle types, the glycoprotein avidin (66 kDa, av. diameter ~8 nm) was 

attached to the outer surface of the particles via non-covalent linkage to the biotin groups. The 

particles have been termed throughout the script as cMSN (MMP9-cleavable linkers) or 

ncMSN (MMP9 non-cleavable linkers). Avidin shows high affinity to biotin, and therefore 

acts as a bulky gatekeeper to block the mesopores of the silica nanoparticles. The complete 

synthesis strategy and characterization of the particles is depicted in Figure 3-1. 

Comprehensive characterization of the synthesized MSNs involved a range of physiochemical 

methods; thermogravimetric analysis, zeta potential, dynamic light scattering, nitrogen 

sorption, and infrared (IR) spectroscopy (Figure 3-1B–F, respectively), all of which 
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confirmed the successful synthesis of cMSN or ncMSN. See also Table 3-1 and SI for 

additional information. From these data, we conclude that the attachment of the avidin 

gatekeepers via short heptapeptide-biotin linkers (cleavable and non-cleavable for MMP9) to 

the external surface of MSNs was successful. In order to prove the MMP9-specific release 

behavior of our nanoparticle system, release experiments with fluorescein were performed as 

previously reported.
22

 Only upon the addition of recombinant MMP9 to the particle 

suspension, an increase in fluorescence intensity over time was observed reaching a plateau 

after about 16 h. Importantly, no release of the preloaded fluorescein was observed for MSNs 

containing a non-cleavable heptapeptide linker (ncMSN) (Figure 3-1G). Furthermore, MMP2 

was also able to induce fluorescein release from the particles, but with slower kinetics, 

compared to MMP9 (Figure S 3-1D). This is not surprising as MMP2 has differential enzyme 

kinetics compared to MMP9, and has been shown to degrade several substrates that are not 

degraded by MMP9 and vice versa.
25

 For this reason, we chose to continue with MMP9 in the 

in vitro studies. However, it is important to note that both enzymes are overexpressed in lung 

cancer and so we expect a cumulative effect on cargo release in vivo.
4, 5

 The cMSN particles 

could uptake the drug cisplatin very efficiently (0.44 ± 0.02 mg/mg cMSN) and showed 

specific release of cisplatin when incubated with recombinant MMP9, whereas no release of 

cisplatin could be detected in the absence of MMP9 (Table 3-3). Furthermore, the avidin 

capped particles preloaded with fluorescein (cMSN-fluorescence) showed stability of the 

capping system for up to 16 h (Figure S 3-1F). Colloidal stability of our particles was retained 

for up to 7 days (168 hours), after which time agglomeration of the MSNs could be observed 

in solution (Figure S 3-1G). In addition, long-term cargo release experiments of fluorescein 

loaded cMSN in HBSS buffer solution (no MMP9) showed that the particles were stable for at 

least 28 days (Figure S 3-1H), similar to what we previously observed for related MSNs with 
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organic coatings.
26, 27

 Consequently, above experiments validate highly specific release 

behavior of fluorescein and cisplatin from cMSNs by recombinant MMP2/9 enzymes.  

 

Figure 3-1. Synthesis and characterization of MMP9 responsive mesoporous silica nanoparticles. A) 

Synthesis scheme of core (green, thiol groups) shell (red, amino groups) functionalized mesoporous silica 

nanoparticles (MSN). (i) EDC amidation of amino groups with carboxy groups of the MMP9 cleavable HP 

(HP, red) or the MMP9 non-cleavable HP-biotin linker (NHP, blue) results in a covalent attachment to the 

external particle surface (MSNHP, MSNNHP). (ii) After cargo incorporation (cisplatin (CP) or bortezomib 

combination treatment (CT), yellow star), (iii) the strong binding affinity of biotin to avidin leads to 

blocking of the mesopores for MSNs with MMP9 cleavable linkers (cMSN) and MMP9 non-cleavable 

linkers (ncMSN). Characterization of MSNs. B) Thermogravimetric analysis, C) zeta potential 

measurements, D) dynamic light scattering, E) nitrogen sorption isotherms, and F) infrared spectroscopy 

(all curves are shifted by a value of 0.02 along the y-axis for clarity) of MSN (black), MSNHP (red), 

MSNNHP (blue), and cMSNs (green). G) Release kinetics of fluorescein from the MSNs before and after 

MMP9 administration.  
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Sample Particle size
a
 (nm) 

BET surface area 

(m²/g) 

Pore volume
b
 

(cm³/g) 

DFT pore size
c
 

(nm) 

MSN 106 ±9 1150 0.67 3.6 ±0.1 

MSNHP 142 ±13 882 0.55 3.6 ±0.1 

cMSN 164 ±15 90 0.05  - ±0 

MSNNHP 142 ±17 825 0.52  3.6 ±0.1 

Table 3-1. Structural parameters of functionalized MSNs. 

a
Particle size refers to the peak value of the size distribution derived from DLS measurements. 

b
Pore volume was calculated up to a pore size of 8 nm to remove the contribution of inter-

particle textural porosity. 
c
DFT pore size refers to the peak value of the pore size distribution. 

 

MMP9 responsive release of cargo using lung cancer cells. We next investigated MMP9 

mediated release of the chemotherapeutic drug cisplatin in two human lung cancer cell lines 

(A549 and H1299) as a function of cell viability. MMP9-dose responsive release of cisplatin 

from the nanoparticles, and subsequent induction of dose-dependent cell death was observed 

in both cell lines (Figure 3-2A and B).  

It is important to note that the MSNs were preloaded by diffusing a defined cisplatin solution 

into the particles, after which the particles were sealed and washed. In the figures, these 

loading concentrations are referred to as loaded cisplatin concentrations. However, the 

amount of cisplatin released from the particles, thus the effective cisplatin concentration the 

cells or tissue were exposed to, was much lower, as the incorporated amount is lower than the 

provided amount in the stock solution. Of note, we observed high cisplatin MSN loading of 
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440 ± 0.02 µg/mg MSN, when diffusing 10 mM cisplatin stock solution into the pores. The 

cisplatin concentration released from the particles was estimated to be an order of 10 fold less 

(then the used stock solution), when compared to free cisplatin as determined by a dose-

response viability curve of direct cisplatin treatment in A549 and H1299 cells (Figure S 

3-2A). To determine if cell-secreted MMP9 was able to open the particle caps, A549 and 

H1299 cells were transiently transfected with MMP9 cDNA and overexpression of active 

MMP9 was validated with gelatin zymography (Figure S 3-2B). MMP9 overexpressing cells 

responded to cisplatin loaded MSNs with pronounced loss of cell viability compared to empty 

vector transfected control cells. This demonstrates that the cell-secreted concentrations of 

MMP9 were able to trigger the release of chemotherapeutic drugs from stimuli-responsive 

MSNs (Figure 3-2C). Importantly, cisplatin-loaded MSNs containing non-cleavable linkers 

(ncMSN-CP) did not induce any cell death in either cell line (Figure 3-2D) indicating tight 

sealing of the particles. Importantly, non-loaded MSNs were found to be nontoxic at the dose 

applied (50 µg/mL) (Figure 3-2E).  

Because MSNs can efficiently encapsulate multiple drugs, these carriers offer a unique 

opportunity for combinatorial drug delivery, which overcomes the problem of acquired drug 

resistance.
28

 Proteasome inhibitors are promising combinatorial drugs as suggested by 

multiple clinical trials, since they effectively inhibit proliferation of tumor cells, sensitize 

them to apoptosis, and overcome drug resistance.
29

 Bortezomib (Bz) is FDA-approved for 

treatment of multiple myeloma and mantle cell lymphoma, and is currently tested in phase II 

clinical trials for lung cancer.
30

 In our set-up, nanoparticles loaded with non-toxic doses of 

cisplatin and Bz when used on their own, induced significant cell death in the presence of 

MMP9 when applied in combination (Figure 3-2F). Augmented cytotoxicity was largest for 

the lowest cisplatin dose (2 µM), with an increased cytotoxicity of over 35 % in the presence 

of Bz. This was a remarkable 5 to 10 fold increase in cytotoxic potency for non-toxic doses of 
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a single drug. Cells exposed to MSNs loaded with cisplatin and Bz (cMSN-CT) in the absence 

of MMP9 showed no significant loss in cell viability (Figure 3-2F, white bars) indicating 

again tight sealing of the particles. These results demonstrated that the combinatorial delivery 

of cisplatin and Bz via nanoparticles induced an additive cytotoxic effect and thus allow for a 

reduction of drug doses.  

 

Figure 3-2. MMP9 responsive release in lung cancer cells. Controlled release of cisplatin from cMSN as 

measured by percent cell survival after 24 h exposure, incubated with; 0 (white bars), 0.5 (light-grey bars), 

or 1 µg/mL (dark-grey bars) MMP9 for in H1299 (A) and A549 cells (B), or C) with MMP9 cDNA (grey 

bars) or empty vector transfected cells (white bars) in H1299. D) ncMSN particles encapsulating cisplatin 

incubated in presence of 1 µg/mL MMP9 for 24 h did not result in significant cytotoxicity in H1299 (light 

grey bars) and A549 cells (dark grey bars). E) Cytotoxicity of cMSNs determined by WST-1 assay in 

H1299 and A549 lung cancer cell lines after 24 h of exposure. F) Controlled release of cMSN loaded with 

cisplatin alone (CP, light grey bars) and in combination with 1 µM bortezomib (CT, dark grey bars) in 

MMP9 cDNA transfected A549 cells, in comparison to empty vector transfected A549 cells (white bars). 

Untreated cells were set to 100 % survival, * means a significant decrease in percent cell survival 

compared to control (p < 0.05). Values given are average of three independent experiments ± SD. 

Application of 3D lung mouse and human tissue cultures. Having shown the feasibility of 

MMP9 mediated drug release from the avidin capped MSNs in lung tumor cell lines, we next 

aimed to validate MMP9 responsive drug release in the complex setting of lung tumor tissue. 

For that purpose, we made use of a novel 3D ex vivo tissue culture method. This technology 
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involves the preparation of ex vivo tissue cultures from healthy and tumoral mouse and human 

lungs, which can be cultured for up to 7 days (Figure 3-3A). For our purposes, mouse and 

human lung tissue slices of 200 µm thickness were exposed for 24 to 72 h to MSNs that had 

been covalently labeled with Atto633 in their core. After treatment, lung tissue slices were 

fixed and stained using immunofluorescence (Figure 3-3B). As a model for murine lung 

tumors, we used transgenic mice carrying a spontaneously activated Kras mutation, which are 

highly predisposed to a range of tumor types, however predominantly show early spontaneous 

development of lung cancer after only a few weeks of age.
31

 This mouse model does not only 

carry the most common mutation, i.e. Kras, observed in human lung cancer patients,
32-34

 but 

also closely resembles spontaneous tumor development via oncogene activation as seen in 

humans. Human material was obtained from freshly excised lung tumor tissue from 

consenting patients. Tumor lesions were clearly detectable in both mouse Kras and human 

patient derived 3D-LTC as characterized by loss of parenchymal lung structure and the 

appearance of dense cell populations (Figure 3-3B, phalloidin staining). Staining of 3D-LTC 

with a Kras antibody confirmed its overexpression in Kras tumor and non-tumor tissue, 

compared to low expression in 3D-LTC of wild-type (WT) mice. MSNs suspended in culture 

media distributed evenly and reproducibly in the tissue (Figure S 3-4B). Non-loaded particles 

were not toxic to the 3D-LTC for up to 72 h of exposure as revealed by the absence of 

apoptotic caspase-3 activation (Figure S 3-4C). High MMP9 expression was detected in tumor 

lesions of Kras mutant mice and in tumorous human tissue by MMP9 immunofluorescence 

staining, and by immunohistochemistry of paraffin-embedded lung tissue (see SI). MMP9 

expression was highest in early-phase neoplasms and staining was most pronounced at the 

invading peripheries of the tumors (Figure S 3-4D). These data confirm MMP9 

overexpression in Kras mouse and human lung tumors, validating this model as suitable for 

MMP9-mediated drug delivery.  
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Figure 3-3. 3D human and mouse ex vivo tissue culture. A) 200 µm thick WT and Kras mouse and human 

lung tissue slices were kept under normal culture conditions, Kras mouse tumors can be easily observed 

with bright-field microscopy (5x objective). B) Confocal microscopy images of WT mouse and Kras 

mutant mouse 3D-LTC with (from top to bottom) phalloidin, Kras, and MMP9 staining using 

immunofluorescence and immunohistochemistry. C) 3D images of tumorous and tumor-free lung tissues 

from human with (from top to bottom) phalloidin, and MMP9 staining using immunohistochemistry 

(Hemat. = hematoxylin). The scale bar is 50 µm. 

MSN mediated MMP9 responsive drug delivery to Kras mutant mouse lungs. Having 

established the 3D-LTCs of Kras mouse lung tumor tissue as a powerful tool for MMP9 

mediated drug delivery via nanoparticles, we next evaluated therapeutic effectiveness of drug 

release from our functionalized nanoparticles (cMSN). For that, lung tissue slices of Kras 

mutant mice were exposed to particles that contained different concentrations of cisplatin 

(cMSN-CPlow and cMSN-CPhigh; 5x higher concentration), or a combination of low doses of 
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cisplatin with bortezomib (cMSN-CT) for 24 or 48 h. Comparing cell death caused by 

cisplatin released from the MSNs to that of direct cisplatin administration in our in vitro 

experiments, we estimated that the cisplatin concentration released from the particles is at the 

order of 10 fold less. Next, we established the dose for direct cisplatin application by exposing 

the lung tissue slices to various concentrations of the drug. At the reported concentrations we 

observed a significant amount of apoptosis of approx. 12 % of cells after 24 h and 20 % after 

48 h using the higher dose of cisplatin (Figure 3-4D, F), as indicated by a significant amount 

of caspase-3 positive staining (Figure S 3-6A, B and Figure S 3-7A, B). Based on our in vitro 

findings of about 10fold less encapsulation of cisplatin into the MSNs we encapsulated 10x 

higher doses of cisplatin solution inside the MSNs to be able to achieve a similar effect and 

applied those to the lung slices (see Table 3-2 for an overview of used doses). Importantly, a 

similar induction of tumor cell death was observed for both, the encapsulated drugs and the 

drugs alone for all tested doses and time-points, showing that the chosen doses were effective 

and comparable to each other (Figure 3-4C-F).  

Strikingly, all nanoparticles containing chemotherapeutic(s) induced apoptosis only in tumor 

lesions of Kras lungs, while not affecting tumor-free regions in the same Kras lung tissues 

(Figure 3-4A). In addition, we observed a dose-dependent therapeutic effect on apoptotic cell 

death, with the combination therapy (cMSN-CT) being most effective. In contrast, Kras 

mutant mouse 3D-LTC exposed to comparable doses of free (non-encapsulated) drug(s) (CP 

or CT), resulted in apoptotic cell death that did not discriminate between tumorous and non-

tumorous tissue. Of note, MSNs with non-cleavable linkers encapsulating both drugs 

(ncMSN-CT), did not cause any significant apoptotic cell death in Kras tumors or in healthy 

tissue in Kras lungs (Figure 3-4B upper panel). In addition, healthy lungs of WT mice 

exposed to drug-loaden nanoparticles (cMSN-CT) did not show significant signs of apoptosis, 

whereas exposure to comparable doses of free (non-encapsulated) drugs caused apoptotic cell 
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death that distributed evenly in the healthy tissue further proving the selective cytotoxic effect 

of our MSNs. The dose- and time- dependent therapeutic effects of the MSNs were quantified 

by counting the number of apoptotic cells versus the total number of cells in lung tissue slices 

containing tumors of comparable size (see Figure S 3-6 and Figure S 3-7 for the images used 

for quantification). Of note, cell death in the tumor area was 10 to 25 fold higher compared to 

the non-tumor area upon nanoparticle-mediated drug delivery. This was even more 

pronounced after 48 h (Figure 3-4E). The effect was highest for the combination therapy with 

a 25-fold increase in apoptotic tumor cell death while exposure of Kras lung tissue to Bz 

alone did not cause any significant apoptosis (Figure S 3-8A). In contrast to the nanoparticle-

mediated drug delivery, Kras lungs exposed to comparable doses of cisplatin ± Bortezomib 

for 24 h and 48 h showed a similar degree of apoptotic cell death in the tumor and non-tumor 

areas (Figure 3-4D and F). Only for the highest doses (CPhigh and CT) a small but significant 

increase in tumor cell death was observed. This might be attributed to the increased 

effectiveness of cisplatin towards fast-dividing and ‘leaky’ tumor cells.
35
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Figure 3-4. Therapeutic efficacy of MMP9 responsive MSNs in Kras mutant mouse lungs. A) Kras mutant 

mouse 3D-LTC exposed to MSN particles encapsulating either a low dose of cisplatin (cMSN-CPlow), high 

dose of cisplatin (cMSN-CPhigh), low dose of cisplatin in combination with Bz (cMSN-CT), or to 

comparable doses of the free drugs (CP/ CT) for 48 h. B) Kras mouse 3D-LTC exposed to MSNs with non-

cleavable linkers encapsulating combination treatment (ncMSN-CT) for 48 h (upper panel) and WT 

mouse 3D-LTC exposed to MSNs with MMP9-cleavable linkers encapsulating combination treatment 

(cMSN-CT), or free (non-encapsulated) drugs (CT) for 48 h (lower panel). The scale bar is 50 µm. 

Comparable sized tumors were chosen for microscopy (indicated by dotted line), tumor-free refers to 

images that were made in a non-tumor area of a Kras 3D-LTC. Nuclear staining (DAPI) is shown in blue, 

apoptotic marker (cleaved caspase-3 positive) in green and Atto633 labelled MSN particles in red. Images 

shown are representative for three independent experiments (see also Figure S6, S7). Quantification of 

apoptotic cells (cleaved caspase-3) per number of counted nuclei (DAPI) in tumor and tumor-free areas in 

Kras 3D-LTC after C, D) 24 h of exposure and E, F) 48 h of exposure to MSN particles encapsulating 

drugs (cMSN-CP/CT) or free (non-encapsulated) drugs (CP/CT), respectively. Non-treated control slices 

(white bars) and control MSNs (i.e., ncMSN-CT) (light grey bar, 48 h exposure) were also included in the 

study. * means a significant increase in apoptosis compared to a non-tumor control area (p < 0.05). Values 

given are average of three independent experiments ± SD. 
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As represented in Fig. 1 Label (loaded) drug concentrations 

  cMSN-CPlow 

cMSN-CPhigh 

cMSN-CT 

2 mM cisplatin 

10 mM cisplatin 

2 mM cisplatin + 1 µM Bortezomib 

 ncMSN-CPlow 

ncMSN-CPhigh 

ncMSN-CT 

2 mM cisplatin 

10 mM cisplatin 

2 mM cisplatin + 1 µM Bortezomib 

 CPlow 

CPhigh 

CT 

0.2 mM cisplatin 

1 mM cisplatin 

0.2 mM cisplatin + 0.2 µM 

Bortezomib 

Table 3-2. Drug doses used for the mouse lung tissue slices experiments. 

Importantly, MSNs induced apoptosis correlated with MMP9 expression in tumor lesions 

(Figure 3-5A, Figure S 3-8B). Detailed analysis of the 3D-LTC revealed that apoptosis took 

place throughout the tumor while the particles remained mainly on the top of the tissue, where 

they associated with the tissue (Figure 3-5B and Figure S 3-8C). This observation suggests 

that the particles are first immobilized on the tissue and subsequently cleaved by 

overexpressed MMP9 on the surface of the tissue, and the released chemotherapeutic(s) 

effectively diffuse into the tissue. A similar distribution of apoptotic cells was observed for 

3D-LTC exposed to the drug alone (Figure 3-5B and Figure S 3-8C). This indicates that deep 

cleavable linker 
(HP) 

non-cleavable 
linker (NHP) 
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penetration of nanoparticles into the tumor tissue is not required as the released drugs 

effectively diffuse throughout the tissue. Moreover, we confirmed that the cytotoxic effects 

were mainly restricted to epithelial tumor cells by co-staining of 3D-LTCs with cleaved 

caspase-3 and the epithelial cell type marker E-cadherin (Figure 3-5C Figure S 3-8D). These 

data clearly demonstrate tumor site-selective drug delivery by our nanoparticles. 

 

Figure 3-5. A) Kras 3D-LTC exposed to cMSN-CT for 48 h with MMP9 antibody co-staining (magenta, 

maximum intensity projections of the different channels, white dots in merged image show direct overlay) 

in tumor (top) and tumor-free (bottom) areas. B) Exposed Kras 3D-LTC, only showing the calculated 

number of particles, nuclei and apoptotic cells per 3D-LTC tissue slice from the side where tumor tissue is 

located. Red spots represent the calculated particles, blue spots represent the nuclei, and green spots 

represent the apoptotic cells in cMSN-CT exposed 3D-LTC (above panel), and CT exposed 3D-LTC 

(below panel). Original stainings were omitted for clarity. C) Kras 3D-LTC exposed to cMSN-CT for 48 h 

with E-cadherin antibody co-staining (magenta, orthographic representation using a 63x objective). The 

nuclear staining (DAPI) is shown in blue, apoptotic marker (cleaved caspase-3) in green. The fluorescence 

signal originating from Atto 633 labeled MSN particles was omitted from the images for clarity (for A and 

C). Scale bar is 50 µm. 

MMP9 responsive drug delivery to human lung tumors. In a final step, we set out to assess 

protease responsive drug delivery from our nanoparticles in human lung tumors. For that 

purpose, we used 3D-LTCs from freshly excised human lung cancer tissue obtained from 

different donors. Cisplatin-loaded nanoparticles (cMSN-CPlow) induced pronounced apoptotic 
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cell death in human cancer tissue after 72 h of exposure. This correlated well with particle 

density on the tissue (Figure 3-6A). Furthermore, therapeutic effectiveness of the cMSN-CP 

was not dependent on the tumor type as apoptotic cell death was induced both in metastatic 

and primary lung tumors (Figure 3-6A). Untreated control tissue showed only a minor degree 

of apoptosis which might be attributed to the tissue cutting procedure (Figure 3-6A). Human 

3D-LTCs exposed to non-cleavable MSNs (ncMSN-CP) did not show significantly more 

apoptosis compared to control tissues (Figure 6A, middle panel) confirming MMP9 sequence 

specific drug release. Importantly, cMSN-CPlow particle exposure did not induce any 

apoptosis in healthy human tissue (Figure 3-6B). MSN induced apoptosis was observed 

throughout the tumor tissue (Figure S 3-9). The therapeutic effect of the particles was 

confirmed by quantification of cleaved caspase-3 levels by western blot analysis using whole 

3D-LTC homogenates (Figure 3-6C).  
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Figure 3-6. Therapeutic effect of MMP9 responsive MSNs in human lungs. A) human lung 

adenocarcinoma and B) human healthy lung 3D-LTC exposed to cMSN-CPlow, or ncMSN-CPlow for 72 h. 

Non-exposed control slices were included in the study. Nuclear staining (DAPI, blue), cleaved caspase-3 

(green) and MSNs (red). The scale bar is 50 µm. Images shown are representative for three different cuts 

within the tumor (see also Figure S9). C) Western blot analysis of human 3D-LTC exposed to cMSN-CPlow 

and ncMSN-CPlow for 72 h. 

Nanoparticles as drug delivery carriers have received a lot of attention in the last decades and 

several formulations have been approved by the FDA and European Medicines Agency for 

the treatment of cancer.
36

 Many of these formulations offer improved pharmacodynamics over 

the free drug by increasing their bioavailability, and tumor delivery efficiency. In addition, 

nanoparticles such as MSNs can be developed for inhalation therapy
37

, which is advantageous 

for treatment of lung cancer as drugs are directly administered in the target organ, bypassing 

the gastrointestinal tract and the liver, and problems associated with stability throughout blood 
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circulation become irrelevant. Indeed, our preliminary data indicate that the particles are well 

distributed in the lungs and have low lung toxicity. The drug release of nanocarries such as 

liposomes and polymers is sustained (i.e. slow release of drugs over-time that is not 

controllable). A promising approach to further increase the tumor-specificity and 

effectiveness of nanoparticles is the ability to release high concentrations of drugs only in the 

extracellular matrix in close proximity to the tumor site. Cancer-specific extracellular 

enzymes can be used to achieve this goal. For example, MMP9 is overexpressed in lung 

tumors, known to enhance the metastatic potency of malignant cells, and is associated with 

poor prognosis in lung cancer.
2-5

 The feasibility and promise of MMP2/9 responsive drug 

therapy has previously been demonstrated in in vivo mouse xenografts of the pancreas,
38

 

fibrosarcoma,
11

 glioblastoma (brain),
12

 and hepatoma (liver),
39

 demonstrating that this is a 

promising technology for treatment of a variety of cancers. No such in vivo data for NSCLC 

lung cancer currently exists. 

In the present study, we report the synthesis of novel mesoporous silica nanoparticles 

containing an MMP9 responsive avidin capping system. MMPs-responsive MSNs were 

reported only in three studies recently by Singh et al.,
40

 Zhang et al.,
41

 and by Xu et al.
42

 

However, these studies did not report a MMP9 sequence-specific capping system for 

controlled drug delivery from the MSNs. In the study by Singh et al., the MSNs were coated 

with a polymer shell consisting of MMP substrate polypeptides with a degradable sequence. 

However, need for improvement over control of drug release is required for these 

nanocarriers. In the study by Zhang et al., MSNs were coated with a polyanion layer 

preventing particle uptake by healthy cells, which could be removed via MMP cleavage in 

MMP2 expressing colon and squamous cancer cell lines. After (tumor) cell uptake of the 

particle, cargo release (doxorubicin) was obtained by a redox-driven release mechanism. In 
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another study by Xu et al, gelatin was used both as a gatekeeper and as a degradable substrate 

for MMPs in gelatin-coated MSNs and showed efficacy in a MMP2 overexpressing colon 

cancer cell line and a xenograft mouse model. Nevertheless, the efficiency of pore sealing to 

prevent premature drug release was poor in this system. In contrast, here we showed effective 

MMP2/9 sequence-specific release of loaded cargo from the biomolecule-capped MSN 

system in two non-small-cell lung cancer cell lines and in mouse and human lungs. To 

achieve this, we developed a novel ex vivo tissue culture application (3D-LTC) to test our 

particles. The 3D-LTC technique allows for high resolution and spatio-temporal imaging of 

the therapeutic effect of nanoparticles in selected areas of interest (e.g. diseased versus 

healthy areas) within the complex 3D structure of lung (cancer) tissue. While previous reports 

have used 3D-LTC predominantly for short-term toxicological analysis of nanoparticles, 
43-45

 

we studied the therapeutic effect of nanoparticles in relevant disease models. As a model for 

murine lung tumors, we used transgenic mice carrying a spontaneously activated Kras 

mutation, which show early spontaneous development of lung cancer after only a few weeks 

of age. As this model closely reflects the human pathophysiology, we believe that therapeutic 

strategies that are confirmed in this model are more likely to translate to humans than the 

commonly used xenograft mouse models. Furthermore, finding therapeutic strategies that 

work against Kras tumors is promising as Kras mutations result in aggressive cancers, are 

generally correlated with poor prognosis, and are associated with reduced responsiveness to 

many existing therapies.
46-48

 Additionally, this technique allowed us to confirm our findings 

also in diseased human tissue, which represents a major advance in closing the gap between 

drug development and application in the clinics. Using this method, we show that in vivo 

MMP9 concentrations are locally highly expressed in mouse Kras tumor and in patient 

derived explanted tumor tissue compared to healthy mouse and human lung tissue. Because 

MMP9 expression has been reported as a clinical marker for tumor progression and 
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metastasis,
49

 it is possible that these highly MMP9 positive tumor areas represent metastasis-

prone tumor cells. A link between MMP9 expression and metastasis was also shown in mice 

where MMP9 deficient mice had a reduced number of metastatic colonies.
50

 MMP9 mediated 

drug delivery may thus most likely target metastatic tumor cell areas and therefore may 

effectively reduce tumor invasion and metastasis. Indeed, only MMP9-expressing Kras tumor 

areas were affected by MSN treatment as revealed by spatio temporal high-resolution 

imaging, whereas healthy lungs from WT mice and healthy areas in tumor-bearing mouse 

lungs remained unaffected. In contrast, slices exposed to free (non-encapsulated) drugs had an 

even distribution of apoptosis in tumor, tumor-free and healthy lung tissue. Accordingly, 

quantification of the therapeutic effect showed that the MSNs were 10 to 25 fold more 

effective in tumor tissue, whereas the free drug was less than 2-fold more effective in tumor 

tissue compared to the tumor-free areas in the same tissue slices. Furthermore, our 3D-LTC 

data proved the synergistic effect of our combinatorial drug delivery strategy and agrees very 

well with our in vitro data where we observed a 5-10 fold increase in cytotoxic potency upon 

combinatorial drug delivery. Using proteasome inhibitors in combination with a commonly 

used chemotherapeutic is a novel approach for treatment of cancer in general, and for lung 

cancer in particular. A phase II clinical trial study with bortezomib in combination with 

carboplatin (another platinum-based chemotherapeutic) showed promising progression-free 

and improved overall survival rates for treatment of non-small cell lung cancer (NSCLC).
51

 

Our report is the first in which nanoparticle-based controlled release of a proteasome inhibitor 

in combination with cisplatin shows greatly enhanced antitumor activity. Finally, we provide 

proof that these particles are also effective in human metastasis and adenocarcinoma lung 

cancer. We show that MMP9 sensitive MSNs encapsulating cisplatin cause significant 

apoptosis in human lung tumor 3D-LTCs but not in healthy human lung tissue 3D-LTCs. This 

effect was MMP9 sequence specific as no apoptosis was induced for MSNs containing non-
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cleavable linkers encapsulating the same cisplatin concentration. To our knowledge, we are 

the first to show the effectiveness of MMP9 responsive drug delivery to human patient-

derived tissue.  

3.3 Conclusion 

In summary, this study shows the feasibility of MMP9 mediated drug release in human lung 

tissue and in an advanced mouse model (Kras mutant mice) that closely reflects the human 

pathophysiology. Specifically, our novel drug delivery system using MMP9 responsive MSN 

particles could be used to effectively deliver a combination of two drugs, bortezomib and 

cisplatin, in a stimuli-controlled manner, and potentiate a synergistic effect selectively to 

(metastatic) tumors in mouse and human ex vivo tissue slices. 

3.4 Experimental Part 

Materials. Tetraethyl orthosilicate (TEOS, Fluka, > 98 %), triethanolamine (TEA, Aldrich, 

98 %), cetyltrimethylammonium chloride (CTAC, Fluka, 25 % in H2O), mercaptopropyl 

triethoxysilane (MPTES, Fluka, > 80 %), aminopropyl triethoxysilane (APTES, Sigma 

Aldrich, 99 %), ammonium fluoride (NH4F, Fluka), ammonium nitrate (NH4NO3, Fluka), 

hydrochloric acid (HCl, 37 %), Bio-PLGMWSR (HP-biotin, GenScript, 96.3 %), Bio-

PLLMWSR (NHP-biotin, GenScript, 90.1 %), N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC, Aldrich), N-hydroxysulfosuccinimide sodium salt 

(sulfoNHS, Aldrich), avidin, egg white (Merck, Calbiochem), fluorescein disodium salt 

dihydrate (Acros), calcein acetoxymethyl ester (calcein-AM, Sigma Aldrich), cisplatin (Sigma 

Aldrich), bortezomib (Bz, Velcade, Millennium Pharmaceuticals), cleaved caspase-3 antibody 

(Asp175) (Cell signaling, 9661), E-cadherin antibody (BD biosciences, 610181), Kras 
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antibody (Santa Cruz, SC30), MMP9 antibody (Millipore, AB19016), β-actin antibody (Cell 

Signaling), α-tubulin (Genetex) and secondary Alexafluor antibodies (Invitrogen) were used 

as received. Ethanol (EtOH, Aldrich, absolute), dimethylsulfoxide (DMSO, Aldrich), and 

HBSS buffer (Gibco) were used as solvents without further purification. Bi-distilled water 

was obtained from a Millipore system (Milli-Q Academic A10). 

Synthesis procedures. Particle synthesis of MSNs containing SH groups in the core particle 

and NH2 groups on the particle surface (MSN). A mixture of tetraethyl orthosilicate (TEOS, 

1.63 g, 7.82 mmol), mercaptopropyl triethoxysilane (MPTES, 112 mg, 0.48 mmol) and 

triethanolamine (TEA, 14.3 g, 95.6 mmol) was heated under static conditions at 90 °C for 

20 min in a polypropylene reactor. Then, a solution of cetyltrimethylammonium chloride 

(CTAC, 2.41 mL, 1.83 mmol, 25 wt% in H2O) and ammonium fluoride (NH4F, 100 mg, 

2.70 mmol) in H2O (21.7 g, 1.21 mmol) was preheated to 60 °C, and rapidly added to the 

TEOS solution. The reaction mixture was stirred vigorously (700 rpm) for 20 min while 

cooling down to room temperature. Subsequently, TEOS (138.2 mg, 0.922 mmol) was added 

in four equal increments every three minutes. After another 30 min of stirring at room 

temperature, TEOS (19.3 mg, 92.5 µmol) and aminopropyl triethoxysilane (APTES, 20.5 mg, 

92.5 µmol) were added to the reaction. The resulting mixture was then allowed to stir at room 

temperature overnight. After addition of ethanol (100 mL), the MSNs were collected by 

centrifugation (19,000 rpm, 43,146 rcf, for 20 min) and re-dispersed in absolute ethanol. The 

template extraction was performed by heating the MSN suspension under reflux (90 °C, oil 

bath temperature) for 45 min in an ethanolic solution (100 mL) containing ammonium nitrate 

(NH4NO3, 2 g), followed by 45 min heating under reflux in a mixture of concentrated 

hydrochloric acid (HCl, 10 mL) and absolute ethanol (90 mL). The mesoporous silica 
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nanoparticles were collected by centrifugation and washed with absolute ethanol after each 

extraction step. 

Heptapeptide functionalization (MSNHP and MSNNHP). Bio-PLGMWSR (HP-biotin 96.3 %, 

5.1 mg, 4.6 µmol) or Bio-PLLMWSR (NHP-biotin, 90.1 %, 5.0 mg, 4.0 µmol) were dissolved 

in 100 µL DMSO. The solution was diluted by addition of 400 µL H2O. Then, EDC (0.8 mg, 

5.2 µmol) was added, and the reaction mixture was stirred for 5 min at room temperature. 

Subsequently, sulfoNHS (1 mg, 5.0 µmol) was added, and the reaction mixture was stirred for 

another 5 min at room temperature. This mixture was added to a suspension containing 50 mg 

of MSN-NH2 OUT in a total volume of 8 mL (EtOH:H2O 1:1). The resulting mixture was then 

allowed to stir at room temperature overnight. The MSNs were thoroughly washed with EtOH 

and H2O (3 times) and finally collected by centrifugation (19,000 rpm, 43,146 rcf, 20 min). 

The HP-biotin or NHP-biotin functionalized MSNs were stored as colloidal suspension in 

absolute ethanol. 

Cargo loading. 1 mg of MSNs (MSNHP or MSNNHP) were immersed in 500 µl HBSS buffer 

containing fluorescein disodium salt dihydrate (1 mM), calcein-AM (20 µM or 50 µM), 

cisplatin (2 µM, 10 µM, 20 µM, or 100 µM), or a combination of cisplatin and Bz (2 µM + 

1 µM, 10 µM + 1 µM, or 20 µM + 1 µM) for 2 h at room temperature. Afterwards, the 

particles were coated with avidin. Fluorescein-loaded particles were washed once by 

centrifugation and redispersion prior to the addition of avidin. All other samples were coated 

with avidin without a previous washing procedure. 

Avidin capping (cMSN and ncMSN). 1 mg of loaded or non-loaded MSNs (in 500 µL HBSS 

buffer) were added to 500 µL HBSS buffer containing 1 mg of avidin. The solution was 

mixed by vortexing for 5 sec and allowed to react for 30 min under static conditions at room 

temperature. The resulting suspension was then centrifuged (5000 rpm, 2200 rcf, 4 min, 
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15 °C) and washed three times with HBSS buffer. The particles were finally re-dispersed in 

HBSS buffer and used for cuvette release experiments or in vitro studies. 

For details on characterization of the MSNs, please refer to the Supporting Information.  

Cell culture. The human non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, 

were obtained from ATCC (American Type Culture Collection, Manassas, USA). Both cell 

lines were maintained in DMEM media (Gibco, Life Technologies). Media were 

supplemented with 10 % FBS (fetal bovine serum) and 1 % penicillin/streptomycin. All cells 

were grown at 37 °C in a sterile humidified atmosphere containing 5 % CO2. 

WST-1 assay. Cytotoxicity of the non-loaded MSNs was assessed using the WST-1 assay 

(Roche). Briefly, 1.5 x 10
4
 cells/well were seeded in 96-well plates. 24 h after seeding, the 

cells were exposed to MSNHPAVI or MSNNH2 particles for 4 or 24 h. After treatment, 10 µL 

of WST-1 reagent solution (Roche) was added to each well, and the cells were incubated at 

37 °C for 30 min. Absorbance was measured at 450 nm using a Tristar LB 941 plate-reader 

(Berthold Technologies). 

MTT assay. The MTT assay was performed to assess cell viability after cisplatin or Bz 

release from the particles. Briefly, 1 x 10
4
 cells/well for H1299 and 0.5 x 10

4
 cells/well for 

A549 were seeded in 96-well plates. 48 h after seeding, cells were exposed to 50 µg/mL MSN 

particles that had been loaded with solutions of cisplatin with or without Bz, in the presence 

of 0, 0.5 or 1 µg/mL of recombinant MMP9 (Enzo life sciences) in 50 µL of fresh media. In 

the case of transfected cells, 24 h after seeding, the cells were transfected with 0.15 µg of 

MMP9 cDNA (DNASU) or empty vector cDNA per well using SatisFection
TM

 transfection 

reagent (Agilent Technologies), according to manufacturer’s instructions. 24 h after 

transfection, the cells were exposed to 50 µg/mL cMSN particles that had been loaded with 
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solutions of cisplatin, in 50 µL of fresh media. After treatment, 10 µL of freshly prepared 

solution of 5 mg thiazolyl blue tetrazolium bromide/mL PBS (Sigma) was added to each well, 

and the cells were incubated at 37 °C for 1 h. The supernatant was then aspirated, and the 

violet crystals were dissolved in 500 µL isopropanol + 0.1 % Triton X-100. Absorbance was 

measured at 570 nm, using a Tristar LB 941 plate-reader (Berthold Technologies). 

Experiments were done in triplicate. Data analyses were performed in Prism graphpad 

(version 6) software.  

Zymography. To assess catalytically active MMP9 expression and transfection efficiency in 

A549 and H1299 cells, gelatin zymography was performed. In short, collected cell culture 

supernatants were centrifuged to get rid of cellular debris and then electrophoresed on 10 % 

SDS-gels containing 1 % gelatin substrate in non-reducing conditions (i.e., no β-

mercaptoethanol), so that the proteins could renaturate afterwards. After electrophoresis, the 

enzymes were renaturated by incubation with 2.5 % Triton-X-100 in developing buffer 

(50 mM Tris, 200 mM NaCl, 5 mM CaCl2, pH 7.5) for 1 h at room temperature, to ensure that 

the proteins were catalytically active. Afterwards, the gels were incubated in developing 

buffer at 37 °C for 24 h, to allow for the enzyme reaction to proceed. Thereafter, the gels were 

stained using PAGE-Blue
TM

 (Fermentas) protein staining, according to the manufacturer’s 

instructions. Gels were analyzed using the ChemiDoc
TM

 XRS+ software (BioRad).  

Animals. 129S/Sv-Kras
tm3Tyj

/J (K-ras
LA2

) mutant mice were obtained from The Jackson 

Laboratory, Bar Harbor, Maine, USA and cross-bred with FVB-NCrl WT females obtained 

from the Charles River Laboratories, Sulzfeld, Germany for seven generations. Animals were 

kept in rooms maintained at constant temperature and humidity with a 12/12 h light/dark 

cycle, and were allowed food and water ad libitum. All procedures were conducted according 
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to the international guidelines and with the approval of the Bavarian Animal Research 

Authority in Germany. 

Human tissue. The experiments with human tissue were approved by the Ethics Committee 

of the Ludwig-Maximilians-University Munich, Germany (LMU, project Nr. 455-12). All 

samples were provided by the Asklepios Biobank for Lung Diseases, Gauting, Germany 

(Project Nr. 333-10). Written informed consent was obtained from all subjects. Tumor or 

tumor-free tissue from patients who underwent lung tumor resection was used.  

Human and mouse precision cut lung slicing (3D-LTC). The whole procedure was 

performed under sterile conditions. WT FVB as well as Kras mutant mice with lung tumor 

burden were anaesthetized with a mixture of ketamine and xylazin hydrochloride (bela-

pharm, Germany). Kras mice of approx. 3 months of age which had several tumor lesions in 

each lung tissue slice were used. After intubation and diaphragm dissection, lungs were 

perfused via the right ventricle with sodium chloride solution (Braun Vet Care, Germany). 

Using a syringe pump, airways were filled with warm 2 wt-% low melting agarose solution 

(Sigma, Germany) prepared in DMEM/F12 (Gibco, Germany) supplemented with 1% 

penicillin/streptomycin and amphotericin B (Sigma, Germany). Later, tracheae were knotted 

with a thread to keep the liquid agarose inside the airways. Afterwards, the lungs were excised 

and transferred into tubes loaded with cultivation medium, left to cool on ice to allow for the 

solidification of the agarose. Finally, lobes were separated and cut with a vibratome (Hyrax 

V55, Zeiss, Germany) to a thickness of 200 μm. The 3D-LTC were cultivated for up to three 

days. The amount of sections per mouse varied between 30 to 50 slices. Directly after cutting, 

mouse 3D-LTC were exposed to 50 µg/mL of CP, CT or to Atto 633 labelled MSNs particles 

containing CP or CT, administered directly into the medium. For human 3D-LTC, tumorous 

and tumor-free regions excised from lung cancer surgeries were used. Airways at tumor-free 
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segments were filled up with 3 wt-% agarose dissolved in DMEM/F12 as described above, via 

respective bronchi. Both the tumorous and tumor-free segments were then cut to a thickness 

of 300 μm with the vibratome. Directly after cutting, mouse and human 3D-LTC were 

exposed to 50 µg/mL of MSNs particles containing CP or CT, administered directly into the 

medium. Human and mouse 3D-LTC were treated for either 24 or 48 h.  

Immunofluorescence. 3D-LTC were fixed with acetone/methanol 50/50 vol% solution for 10 

min, washed with PBS, blocked for 1 h with Roti®-ImmunoBlock (Carl Roth, Germany) at 

room temperature, and incubated with primary antibody at 4°C overnight. Afterwards, 3D-

LTC were washed with PBS, incubated with secondary antibody for 2 h at room temperature, 

again washed with PBS and finally stained with DAPI. Stained 3D-LTC were mounted using 

fluorescence mounting medium (DAKO, USA) and evaluated using confocal microscopy 

(LSM710, Carl Zeiss, Germany). 3D reconstruction and quantification of cell death in the 3D-

LTC were conducted using the IMARISx64 software (version 7.6.4, Bitplane, Switzerland). 

Maximum intensity projections were made using ZEN2009 software (Carl Zeiss, Germany).  

Immunohistochemistry. Lung segments were placed in 4% (w/v) paraformaldehyde after 

exciscion and processed for paraffin embedding. 3 µm thick sections on slides were subjected 

to quenching of endogenous peroxidase activity using a mixture of methanol/H2O2 for 20 min, 

followed by antigen retrieval in a decloaking chamber. From this step on, the slides were 

washed with TBST after each incubation with the reagents throughout the procedure. The 

sections were incubated firstly with Rodent Block M (Zytomed Systems, Germany) for 30 

min, and then with the primary antibody, i.e. MMP9 (Millipore, USA) or IgG, control for 1 h. 

The cuts were then incubated with Rabbit on Rodent AP-Polymer for 30 min which was 

followed by Vulcan Fast Red, AP substrate solution (both Biocare Medical, Concord, USA) 

incubation for 10-15 min. The sections were counterstained with hematoxylin (Carl Roth, 
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Germany) and dehydrated respectively in consecutively grading ethanol and xylene (both 

AppliChem, Germany) incubations. Dried slides were mounted in entellan (Merck, Germany). 

Study design and statistics. The therapeutic effect of the particles was assessed by 

immunofluorescent stainings using an apoptosis marker (cleaved caspase-3) and was 

investigated on lung tissue slices from 15 different Kras mutant animals that were cut and 

exposed to the MSNs or free drugs in three independent experiments. Similarly sized tumors 

were chosen for the imaging from a minimum of 3 different mice per individual staining. In 

addition, each staining was performed a minimum of 3 times per mouse. Three representative 

images of 3 different mice were chosen for the quantification as shown in Figure 4. The 

quantification was done blinded using the IMARISx64 software (version 7.6.4, Bitplane, 

Switzerland). For the controls, 9 WT FVB mice were cut in 3 independent experiments, and 

stained and quantified according the same principle. For comparison of two groups, one-way 

ANOVA analysis was performed. A p-value lower than 0.05 was considered statistically 

significant 

Western Blotting. Human 3D-LTC were lysed in RIPA buffer (50 mM Tris HCl, pH 7.5, 150 

mM NaCl, 1% NP40, 0.5% sodiumdeoxycholate, 0.1% SDS) supplemented with protease 

inhibitor cocktail (Complete
TM

, Roche). Protein content was determined in the supernatants 

using the Pierce BCA protein assay kit (Thermo Scientific). For western blot analysis, equal 

amounts of protein were subjected to electrophoresis on 12% SDS-PAGE gels and blotted 

onto PVDF membranes. Membranes were treated with antibodies using standard Western blot 

techniques. The ECL Plus Detection Reagent (GE Healthcare) was used for chemiluminescent 

detection and membranes were analyzed with the ChemiDoc
TM

 XRS+ (Bio-Rad).  
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3.6 Appendix 

Materials and Methods. Transmission electron microscopy (TEM) was performed at 300 kV 

on an FEI Titan 80-300 equipped with a field emission gun. For sample preparation, the 

colloidal solution of MSNs was diluted in absolute ethanol, and one drop of the suspension 

was then deposited on a copper grid sample holder. The solvent was allowed to evaporate. 

Dynamic light scattering (DLS) and zeta potential measurements were performed on a 

Malvern Zetasizer-Nano instrument equipped with a 4 mW He-Ne laser (633 nm) and an 

avalanche photodiode detector. DLS measurements were directly recorded in diluted colloidal 

aqueous suspensions of the MSNs at a constant concentration of 1 mg/mL for all sample 

solutions. Zeta potential measurements were performed using the add-on Zetasizer titration 

system (MPT-2), based on diluted NaOH and HCl as titrants. For this purpose, 1 mg of the 

MSN sample was diluted in 10 mL bi-distilled water. Thermogravimetric analyses (TGA) of 

the extracted bulk samples (approximately 10 mg) were recorded on a Netzsch STA 440 C 

TG/DSC. The measurements proceeded at a heating rate of 10 °C/min up to 900 °C, in a 

stream of synthetic air of about 25 mL/min. Nitrogen sorption measurements were performed 

on a Quantachrome Instrument NOVA 4000e at -196 °C. Sample outgassing was performed 

for 12 hours at a vacuum of 10 mTorr at 120 °C. Pore size and pore volume were calculated 

with an NLDFT equilibrium model of nitrogen on silica, based on the desorption branch of 

the isotherms. In order to remove the contribution of the interparticle textural porosity, pore 

volumes were calculated only up to a pore size of 8 nm. A BET model was applied in the 

range of 0.05 – 0.20 p/p0 to evaluate the specific surface area. Infrared spectra were recorded 

on a ThermoScientific Nicolet iN10 IR-microscope in reflection-absorption mode with a 

liquid-N2 cooled MCT-A detector. ICP-OES measurements have been performed on a Varian 

Vista RL (radial) CCD Simultaneous ICP-OES instrument. Time-based fluorescence spectra 

were recorded on a PTI spectrofluorometer equipped with a xenon short arc lamp (UXL-
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75XE USHIO) and a photomultiplier detection system (model 810/814). The measurements 

were performed in HBSS buffer at 37 °C, to simulate human body temperature. For time-

based release experiments of fluorescein, a custom-made container consisting of a Teflon 

tube, a dialysis membrane (ROTH Visking type 8/32, MWCO 14,000 g/mol), and a 

fluorescence cuvette were used (Figure S2). The excitation wavelength was set to λ=495 nm 

S3 for fluorescein-loaded MSNs. Emission scans (505 – 650 nm) were performed every 

5 min. All slits were adjusted to 1.0 mm, bandwidth 8 nm. The release of calcein-AM, hence 

the staining of the cells from the particles was assessed using confocal microscopy. Freshly 

prepared calcein-AM containing MSN or MSNctl particles were incubated with 0, 1 or 

2 μg/mL recombinant MMP9 (Enzo life sciences) for 2 h at 37 °C in a thermoblock that was 

shaking mildly at 700 rpm. After the incubation time, the particles were removed by 

centrifugation, and the cells were incubated with the supernatants for 30 min, so that the 

released calcein-AM could be taken up by the living cells. Afterwards, the nuclei of the cells 

were counterstained with Hoechst (Enzo life sciences). Live cell imaging was performed 

using a confocal microscope (Zeiss LSM 710).  

Characterization of the particles. The core-shell functionalized MSNs have been 

synthesized by a delayed co-condensation approach, resulting in functionalization of the 

external particle surface with amino groups. Additionally, the inner pore system has been 

decorated with thiol groups. This additional core functionalization offers a site for covalent 

attachment of cargo via cleavable linkers, or binding of fluorescent dyes for particle tracking, 

which are important for particle tracking in in vitro and in vivo studies. Sample MSN 

consisted of nano-sized mesostructured particles of about 70 nm, as derived from transmission 

electron microscopy (TEM, Figure S 3-1A). The TEM image shows a spherical particle 

shape, and the worm-like structure of the mesopores is clearly visible. Dynamic light 
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scattering (DLS) measurements revealed a mean particle size of 106 nm (Table 3-1) and good 

colloidal stability. This apparent difference in particle size, compared to TEM, is attributed to 

the involvement of the hydrodynamic diameter and weak transient agglomeration of a few 

nanoparticles during the DLS measurements. Importantly, a narrow particle size distribution 

and no significant agglomeration were observed after each synthesis step (particle size 

distribution, see Figure 3-1D). After the modification of the MSNs with the short heptapeptide 

linkers and further attachment of avidin, the mean particle sizes increased, due to these 

additional organic layers (Table 3-1and Figure 3-1D). Thermogravimetric analyses showed 

stepwise additional weight loss for the samples MSNHP and fully functionalized MSNs 

(MSN), compared to MSNnaked, during heating from 150 – 900 °C (Figure 3-1). This 

confirmed efficient attachment of the short organic heptapeptide linker and the bulky protein 

avidin (+3 % and +25 % additional weight loss, respectively). The zeta potential 

measurements showed no significant change in the surface charge at different pH values of 

the MSNHP and MSNNHP samples, compared to MSNnaked, confirming that the quantity of 

charged groups at the external surface was not increased by the attachment of the 

heptapeptide linkers (mainly consisting of unprotonable residues). The isoelectric points were 

around pH = 6. Only after attachment of the avidin (cMSN), a drastic change in the surface 

charge of the coated nanoparticles was observed at around pH = 7 (Figure 3-1C). Avidin-

capped MSNs still showed positive surface charge at neutral pH values, which was due to 

various functional groups in the protein sequence including arginine, lysine, and histidine 

residues. Nitrogen sorption measurements were performed to gain information about the 

porosity and the surface area of the functionalized MSNs. Figure 3-1E shows typical type IV 

isotherms for MSN, MSNHP, and MSNNHP amples with inflection points at around 0.3 p/p0, 

indicating mesoporous structure for these samples. Furthermore, nitrogen sorption isotherms 

showed a small hysteresis loop at around 0.9 p/p0 for all samples, which is attributed to 
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interparticle textural porosity (Figure 3-1E). Relatively high BET surface areas and pore 

volumes were obtained for the MSN nanoparticles. A summary of the porosity parameters is 

given in Table 3-1. A reduction in specific surface area and pore volume occurred for the 

MSNs containing the heptapeptide linkers (MSNHP and MSNNHP, Table 3-1). This 

reduction in BET surface area and pore volume, compared to unfunctionalized MSN, can be 

attributed to the increased sample weight by addition of non-porous organic material (HP-

biotin and NHP-biotin), and to the blocking of some pores towards the access of nitrogen 

molecules by frozen organic moieties in the surface layer of the nanoparticles. The narrow 

pore size distribution, with a maximum at around 3.6 nm, confirmed an accessible porous 

system even after modification with the heptapeptide linkers (Figure S 3-1B). After the 

attachment of avidin to the silica nanoparticles (cMSN), we obtained a type II isotherm, 

indicating loss of specific surface area and pore volume (Figure 3-1E). These data show that 

the mesopores of the avidin-coated MSNs were blocked for the access of nitrogen molecules, 

proving that avidin is a suitable gatekeeper to efficiently seal the mesopores of our 

nanoparticles. Infrared spectroscopy of MSNHP and MSNNHP showed a band at 1654 cm
-1

 

(C=O stretching vibration), which can be attributed to the amide bonds of the short 

heptapeptide linkers (Figure 3-1F, for full spectra see Figure S 3-1C). Subsequently, this band 

was fully obscured after the modification with avidin (MSN), and typical amide vibration 

bands of high intensity (amide I: C=O stretching vibration at 1643 cm
-1

; amide II: N-H 

deformation and C-N stretching vibration at 1535 cm
-1

) were detected, providing evidence for 

the presence of the avidin protein. Additionally, infrared spectra of all MSN samples showed 

typical bands of the silica framework (Si-O-Si) between 1000 and 1300 cm
-1

. Two additional 

bands at 780 and 900 cm
-1

 were also present (asymmetric stretching and bending vibrations of 

Si-OH groups).  
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Figure S 3-1. Additional characterization of mesoporous silica nanoparticles. A) Transmission electron 

micrograph of sample MSN. B) DFT pore size distribution, and D) infrared spectroscopy data (full range) 

of MSN (black), MSNHP (red), MSNNHP (blue), and avidin-capped cMSNs (green). D) Release kinetics of 

fluorescein from the MSNs before (black dots) and after (red dots) MMP2 administration (100% of 

released fluorescein is defined as the total amount being released from MSN after addition of MMP9). E) 

Custom-made release setup consists of a reservoir for the particles (Teflon tube) (a), a dialysis membrane 

(b), and a fluorescence cuvette (c). F) Long-term stability of avidin capping for MSNs (MSN) in the 

absence of MMP9 (100% of released fluorescein is defined as the total amount being released from cMSN 
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after addition of MMP9). G) Long-term particle size stability assay of cMSN measured by DLS 

investigating the aggregation behavior in HBSS buffer solution for 28 days. H) Long-term cargo release 

experiment of fluorescein loaded cMSN in HBSS buffer solution (no MMP-9) for 28 days. The amount of 

fluorescein released (nmol/mg MSN) has been determined by UV-Vis measurements. 

 

Uptake of CP 440 ± 0.02 µg/mg MSN 

Release of CP (+ MMP-9) 7 ± 0.8 µg/mg MSN 

Release of CP (- MMP-9) 0 µg/mg MSN* 

Table 3-3. Quantification of the uptake and release of cisplatin (CP) by/from cMSN. Release behavior has 

been investigated in the presence (+) and absence (-) of MMP-9. Data derived by ICP-OES measurements. 

Values given are average of three independent measurements ± SD. * Values < LOD (Limit of Detection). 

 

 

Figure S 3-2. A) Dose-response survival curve of cisplatin (non-encapsulated) in A549 and H1299 cells 

after 24 h exposure. B) Gelatin zymography, assessing MMP9 activity in cell culture supernatants of 

empty vector (first two lanes) or MMP9 cDNA (middle two lanes) transfected A549 and H1299 cells, 

compared to 0.25, 0.5 and 1 µg/mL recombinant MMP9 (outer three lanes). 
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Figure S 3-3. Confocal microscopy images showing A) calcein staining as a result of MMP-9 responsive 

release of calcein-AM (Cl-AM, green) from MSNs containing MMP-9 cleavable or non-cleavable linkers 

(MSNHPAVI and MSNNHPAVI), after 2 h incubation with 0, 1, or 2 µg/mL MMP-9 administration in A549 

cells and B) in H1299 cells. C) dose-responsive calcein staining (green) as a result of increasing calcein-AM 



3. Protease mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex 

vivo human and mouse lung tumors  

 

127 

 

concentrations directly administered to A549 and D) H1299 cells. Hoechst was used as a counterstain for 

nuclei (blue). Pictures show representative micrographs from three independent experiments. Image sizes 

are 450 x 450 µm. 

 

Figure S 3-4. Experimental set-up of precision cut lung slices (3D-LTC) using healthy wild-type (WT) and 

Kras mutant (Kras) mice. A) Kras 3D-LTC in a tumor-free region stained with Kras antibody, B) 

Calculated amount of particles per 3D-LTC using Imaris software over 24 slices, C) Toxicity of avidin-

capped MSNs in WT lung 3D-LTC slices after 72 h of exposure. D) WT and Kras 3D-LTC stained with 

MMP9 antibody. Scale bar is 50 µm. E) IgG control for MMP9 immunohistochemistry in WT and Kras 

mouse tissue. 
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Figure S 3-5. WT 3D-LTC exposed to cMSN-CPlow, cMSN-CPhigh and CPlow and CPhigh. The nuclear 

staining (DAPI) is shown in blue, apoptotic marker (cleaved caspase-3) in green. Scale bar is 50 µm. 
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Figure S 3-6. Maximum intensity projections of Kras mutant mouse 3D-LTC exposed for 24 h to A) low 

dose of cisplatin (CPlow) and MSN encapsulated CPlow (cMSN-CPlow) B) high dose of cisplatin (CPhigh) and 

cMSN-CPhigh and C) low dose of cisplatin in combination with Bz (CT) and cMSN-CT D) untreated 

controls. Comparably sized tumors were chosen for the imaging (indicated by dotted line), tumor-free 



3. Protease mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex 

vivo human and mouse lung tumors  

 

131 

 

refers to images that were made in a non-tumor area of a Kras 3D-LTC. Nuclear staining (DAPI) is shown 

in blue, apoptotic marker (cleaved caspase-3) in green and Atto 633 labeled MSN particles in red. Scale 

bar is 50 µm. Unexposed control slices were included in the study. 
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Figure S 3-7. Maximum intensity projections of Kras mutant mouse 3D-LTC exposed for 48 h to A) a low 

dose of cisplatin (CPlow) and cMSN encapsulated CPlow (cMSN-CPlow), B) a high dose of cisplatin (CPhigh) 

and cMSN-CPhigh, and C) low dose of cisplatin in combination with Bz (CT) and cMSN-CT. D) untreated 

controls and MSN with non-cleavable linkers encapsulating a low dose of cisplatin in combination with Bz 
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(cMSN-CT). Comparably sized tumors were chosen for the imaging (indicated by dotted line), non-tumor 

refers to images that were taken in a non-tumor area of a Kras 3D-LTC. Nuclear staining (DAPI) is shown 

in blue, apoptotic marker (cleaved caspase-3) in green and Atto 633 labeled MSN particles in red. Scale 

bar is 50 µm. 

 

Figure S 3-8. A) Kras 3D-LTC exposed to Bz alone. Nuclear staining (DAPI) is shown in blue, apoptotic 

marker (cleaved caspase-3) in green and Atto 633 labeled MSN particles in red. B) Kras 3D-LTC exposed 

to cMSN-CT for 48 h with MMP9 antibody co-staining (magenta, maximum intensity projections of the 
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different channels, white dots in merged image show direct overlay) in tumor area. The calculated number 

of particles, nuclei and apoptotic cells per 3D-LTC tissue slice is shown from the side where tumor tissue is 

located. Red spots represent the calculated particles, blue spots represent the nuclei, and green spots 

represent the apoptotic cells in C) cMSN-CP exposed 3D-LTC and D) CP exposed 3D-LTC. Original 

stainings were omitted for clarity. D) Kras 3D-LTC exposed to cMSN-CT for 48 h with E-cadherin 

antibody co-staining (magenta, orthographic representation using a 63x objective). The fluorescence 

signal originating from Atto 633 labeled MSN particles was omitted from the images for clarity. Scale bar 

is 50 µm. Images are representative of three independent experiments. 
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Figure S 3-9. Maximum intensity projections of human carcinoma 3D-LTC exposed to cMSN or ncMSN 

particles loaded with CPlow (cMSN-CPlow and ncMSNctl-CPlow, respectively) for 72 h in two different areas 

in the tumor. Nuclear staining (DAPI) is shown in blue, apoptotic marker (cleaved caspase-3) in green and 

Atto 633 labeled MSN particles in red. Scale bar is 50 µm. 
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4 A molecular nanocap activated by superparamagnetic heating 

for externally stimulated cargo release 

This chapter is based on the following publication: 

Bastian Rühle, Stefan Datz, Christian Argyo, Thomas Bein, Jeffrey I. Zink, Chem. Comm. 

2016, 52, 1843-1846. 

Abstract 

A novel thermoresponsive snaptop for stimulated cargo release from superparamagnetic iron 

oxide core – mesoporous silica shell nanoparticles based on a [2+4] cycloreversion reaction 

(retro-Diels Alder reaction) is presented. The non-invasive external actuation through 

alternating magnetic fields makes this material a promising candidate for future applications 

in externally triggered drug delivery. 
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4.1 Introduction 

Mesoporous silica nanoparticles (MSNs) have attracted much attention as drug carriers in 

recent years. Using specific functionalization and design allows for controlled and targeted 

drug delivery from silica nanocarriers to specific target sites, such as cancer cells.
1-5

 However, 

there is still a great demand for spatial and temporal control of the release via external, non-

invasive methods of actuation. Superparamagnetic iron oxide nanoparticles (SPIONs) can 

generate heat when exposed to an alternating magnetic field (AMF),
6
 and also act as contrast 

agents in T2-weighted magnetic resonance imaging, making them an important tool in 

biomedical applications and theranostics.
7-9

 These characteristics can even be enhanced when 

using iron oxide nanoparticles that were doped with other metal ions that increase the 

magnetization, such as zinc and manganese ions.
10

 Combining both materials in a single, 

multifunctional core-shell nanostructure provides access to the advantages of both materials, 

i.e. a high loading capacity of various guests into the mesoporous silica shell, as well as 

localized superparamagnetic heating of the iron oxide core through an external AMF.
11

 This 

localized heating has the advantage of spatio-temporal control and activation using a deep 

tissue penetration stimulus. In consequence, decorating the pore openings of the MSNs with 

thermosensitive molecular gatekeepers that can act as valves and unblock the pores upon 

localized heating is a promising concept for developing new, externally controlled, on-

demand delivery systems for various cargo molecules.
12

 A particularly interesting concept for 

thermally triggered release of molecules is the cleavage of covalent chemical bonds. While 

this process often requires high temperatures, it is known that a concerted [2+4] cycloaddition 

(Diels Alder reaction) and more importantly also the corresponding cycloreversion of 

maleimide derivatives with furan derivatives can proceed at mild temperatures.
13-15 

It has been 

demonstrated that the Diels Alder reaction of a malemide derivative with a furan derivative 

can be carried out on the surface of Stöber particles.
16

 Also, it was shown that the 
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corresponding cycloreversion of Diels Alder adducts attached directly to the surface of 

superparamagnetic iron oxide or gold nanoparticles can be triggered by superparamagnetic 

heating
17

 or plasmonic heating,
18, 19

 respectively. However, these examples require that the 

molecule that should be released features either a furan group or a maleimide group, which is 

not the case for many biologically or pharmaceutically relevant compounds. Moreover, in 

these examples each cycloreversion leads to the release of only one cargo molecule. A 

delivery system based on superparamagnetic iron oxide core – mesoporous silica shell 

nanoparticles (SPION@MSN) does not suffer from these limitations. The mesoporous silica 

shell features a high loading capacity for various cargo molecules without the requirement 

that they have specific functional groups. Additionally, when thermoresponsive gatekeepers 

are used to block the pore openings of the SPION@MSN and dissociate upon 

superparamagnetic heating, a single cycloreversion event will result in the release of multiple 

cargo molecules instead of just one. While there are examples in the literature of 

thermoresponsive gatekeepers that can be operated through superparamagnetic heating, most 

of them are based on polymers or phase change materials
20-24

 and there are only few examples 

of small molecular nanovalves that block individual pores and can be controlled through 

AMFs.
12

 The advantage of these small molecular nanovalves is that the surface of the MSN 

can be further functionalized with additional functional groups such as targeting ligands, 

fluorescent probes, or even polymers such as PEG or PEI without affecting the operation of 

the valves.
25

 Moreover, because each of the molecular nanovalves is chemically identical, 

heterogeneities that occur during polymer capping due to the random coiling and 

entanglement of polymer chains or phase change materials are avoided, resulting in a more 

well-defined and homogeneous system. In this work, we present a small molecular snaptop
26-

28
 which blocks the pores of MSNs by supramolecular interactions between β-cyclodextrin 

and adamantane,
29-32

 while thermoresponsiveness is implemented by attaching the 
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adamantane group to maleimide-functionalized silica nanoparticles through a thermally 

reversible [2+4] cycloaddition of a furan-modified linker (see Figure 4-1). Upon conventional 

or superparamagnetic heating, the system can undergo a cycloreversion, resulting in the 

dissociation of the furan-adamantane-β-cyclodextrin moiety from the particle surface, which 

leads to pore unblocking and cargo release (see Figure 4-1). 

 

Figure 4-1. (a) Chemical structures of the dienophile (1), the diene (2) and the Diels-Alder cycloaddition 

product (3). (b) Schematic representation of the operating principle of the thermoresponsive nanovalve. A 

change in temperature triggers a cycloreversion reaction which leads to a dissociation of the bulky 

gatekeepers from the silica surface and allows cargo molecules to diffuse out of the mesopores. 

 



4. A molecular nanocap activated by superparamagnetic heating for externally stimulated 

cargo release  

 

141 

 

4.2 Results and Discussion 

Two different kinds of nanoparticles were prepared. Mesoporous silica nanoparticles without 

an iron oxide core (denoted MSN) that were used in the conventional heating experiments 

were synthesized under basic conditions with hexadecyltrimethylammonium bromide 

(CTAB) as the template according to a published procedure.
33, 34

 The particles were grafted 

with maleimidopropyl triethoxysilane 1 (denoted MSN-Mal), which was synthesized by a two 

step procedure (see supplementary information). A co-condensation synthesis where 

maleimidopropyl triethoxysilane and tetraethylorthosilicate were reacted in a one-pot 

procedure was unsuccessful, probably due to hydrolysis of the maleimide under the basic 

conditions during MSN synthesis. The zinc and manganese doped superparamagnetic iron 

oxide nanoparticles (SPIONs) with the formula (Zn0.4Mn0.6)Fe2O4 were chosen due to the 

larger magnetization of the doped SPIONs (~200 emu/g, Figure S 4-10) as compared to 

undoped SPIONs (typically 50-120 emu/g), leading to an enhancement of superparamagnetic 

heating and MRI contrast.
10

 The doped SPION particles were synthesized by a thermal 

decomposition process of the metal salts in oleic acid/oleylamine/octyl ether according to 

literature (see also Figure S 4-10).
10

 TEM analysis shows that their approximate size is 8-

10 nm (see Figure 4-2a and Figure S 4-10). In order to coat them with mesoporous silica, the 

SPIONs were transferred to the aqueous phase by coating them with CTAC, followed by the 

addition of triethanolamine, and heating the mixture at 60°C. A stepwise addition of tetraethyl 

orthosilicate (TEOS) in small portions resulted in mesoporous silica shells in a layer-by-layer 

manner (see supplementary information for experimental details). After template removal 

from the sample by solvent extraction, the nanoparticles (denoted SPION@MSN) show a 

high BET surface area of 1034 m
2
/g, a total pore volume of 1.23 cc/g, a mesopore volume 

(pore diameter < 6.5 nm) of 0.81 cc/g, and a pore diameter of 4.3 nm (see Figure 4-2b and 
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Table 4-1). The particles are about 70-80 nm in diameter (based on TEM observations, see 

Figure 4-2a), have an effective hydrodynamic diameter of about 110 nm in water at pH=7 

(based on DLS measurements, see Figure 4-2c) and a zeta potential at pH=7 of -21 mV 

(Figure 4-2d). After surfactant extraction, the particles were grafted with maleimidopropyl 

triethoxysilane 1 (the resulting sample is denoted SPION@MSN-Mal). The maleimide groups 

on the surfaces of samples MSN-Mal and SPION@MSN-Mal later act as the dienophile 

component in the Diels Alder reaction. As the diene component, the adamantane-

functionalized furan derivative 2 was synthesized in a one step procedure by acylation of 

furfurylamine with adamantane carbonyl chloride in dry dichloromethane in the presence of 

triethylamine (see supplementary information for more details). 
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Figure 4-2. (a) TEM images of zinc and manganese doped iron oxide nanoparticles ((Zn0.4Mn0.6)Fe2O4; 

top) and SPION@MSN (bottom) at different magnifications; (b) nitrogen adsorption (filled symbols) and 

desorption (open symbols) isotherms of sample SPION@MSN (black squares) and SPION@MSN-DA 

(blue circles) (inset: NLDFT pore size distribution); (c) dynamic light scattering of samples SPION@MSN 

(black), SPION@MSN-Mal (red) and SPION@MSN-DA (blue); (d) zeta potential analysis at pH=7 of 

samples SPION@MSN (black square), SPION@MSN-Mal (red circle) and SPION@MSN-DA (blue 

triangle; the line is a guide to the eye). 

 

The Diels Alder reaction of the maleimide groups attached to the silica surface of samples 

MSN-Mal and SPION@MSN-Mal and the furan-modified adamantane was then carried out 

in toluene for 3 days at 40 °C, giving samples MSN-DA and SPION@MSN-DA, respectively. 

The successful attachment of the maleimide and the formation of the Diels Alder 

cycloaddition product were confirmed by Fourier transform infrared spectroscopy (FTIR, 

Figure 4-3), thermogravimetric analysis (TGA, Figure S 4-1), and 
13

C solid state NMR 
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(ssNMR, Figure S 4-7). The appearance of two bands in the IR spectrum due to carbonyl 

stretching vibrations at ύ=1773 cm
-1

 and ύ=1702 cm
-1 

indicate the presence of maleimide 

groups attached to the silica particles. This is also supported by newly emerging absorptions 

at ύ=1354 cm
-1

 (C-N-C stretching vibration), ύ =845 cm
-1

 (C-H deformation vibration) and ύ 

=697 cm
-1

 (maleimide ring deformation vibration). Additionally, two new characteristic 

amide absorptions (Amide I and Amide II) appear after the Diels Alder reaction at 

ύ=1652 cm
-1

 and ύ=1539 cm
-1
, respectively. At the same time the sharp band at ύ=697 cm

-1
 

disappears and a new, broader band at ύ=702 cm
-1

 appears, indicating the successful 

cycloaddition of the furan derivative to the maleimide groups. Thermogravimetric analysis 

shows a mass loss of 13%, 16% and 23% for samples SPION@MSN, SPION@MSN-Mal and 

SPION@MSN-DA after heating in air to 550 °C, indicating the presence of organic 

molecules attached to the silica nanoparticles after the functionalization steps. The increase in 

weight loss from 16% to 23% after the Diels Alder reaction corresponds well to the 

theoretical 7% weight gain of the Diels-Alder addition product compared to the 

maleimidopropyl silane functionalized MSNs. 
13

C ssNMR of sample MSN-DA shows new 

peaks at δ = 177 ppm, 138 ppm, 128 ppm, 90 ppm, 79 ppm and 48 ppm (see green arrows in 

Figure S 4-7) that can tentatively be assigned to the bicyclic cycloaddition product, while 

there are no peaks corresponding to the monocyclic ring carbon atoms of maleimide or furan; 

other signals from both components are however present. A strong shift of the monocyclic 

ring carbon signals is expected after forming the cycloaddition product, so these findings also 

indicate that the Diels-Alder reaction was successful and nearly quantitative. 
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Figure 4-3. IR data for samples SPION@MSN (black), SPION@MSN-Mal (red), and SPION@MSN-DA 

(blue). The vibrations discussed in the text are highlighted by boxes. Peak assignments are based on 

literature data.
35

 For further information and raw spectral data see Fig. S2 in the supplementary 

information. 

 

Nitrogen sorption indicates a small loss of surface area, pore diameter and total pore volume 

after the functionalization steps, probably due to some extent of internal pore surface 

functionalization during silane grafting. However, with a remaining BET surface area of 859 

m
2
/g, a pore diameter of 3.8 nm and a total pore volume of 0.82 cc/g the porosity of the 

functionalized material is still sufficient for its application as a carrier system (see Figure 4-2b 

and Table 4-1). As expected, dynamic light scattering does not show a significant change in 

hydrodynamic diameter of the particles (approximately 110-120 nm) after any of the 

modification steps (see Figure 4-2c). The zeta potential at pH=7 changes from -21 mV for 

sample SPION@MSN to -15 mV for sample SPION@MSN-Mal and then to an almost 
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neutral value of +3 mV for sample SPION@MSN-DA (see Figure 4-2d). This can be 

explained by the fact that after surface functionalization with maleimide and especially with 

the hydrophobic adamantane-functionalized furan derivative, the negatively charged silanol 

groups on the surface of the silica nanoparticles are shielded by the uncharged organic 

moieties. After attaching the adamantane-functionalized furan to the silica surface, fluorescein 

cargo was loaded into the mesoporous silica nanoparticles by soaking them in a 1 mM 

aqueous solution overnight. The pore openings were then blocked by a bulky β-cyclodextrin 

moiety, which was bound to the adamantane groups through supramolecular interactions 

(samples MSN-CD and SPION@MSN-CD). Carrying out the cycloaddition first and sealing 

the pores with a bulky gatekeeper at a later stage has the advantage that the experimental 

conditions for the loading step can be chosen independently from the reaction conditions for 

the cycloaddition reaction (i.e., organic solvents such as toluene, 3 days, 40 °C) that might be 

incompatible with some cargo molecules. In order to confirm that the intended cycloreversion 

and pore unblocking can be triggered by external heating, fluorescein release from sample 

MSN-CD was monitored at room temperature, 37 °C and 65 °C, respectively. 0.5 mg of 

MSN-CD were placed in a reservoir that was separated from an aqueous solution inside a 

fluorescence cuvette by a 14 kDa MWCO dialysis membrane, which is permeable to 

fluorescein but impermeable to the silica nanoparticles. The fluorescence intensity of 

fluorescein released into the cuvette was monitored over time. The temperature was adjusted 

externally by using a temperature-controlled cuvette holder, and the temperature dependence 

of fluorescein emission was corrected with the help of calibration curves obtained separately 

(see Figure S 4-8 and the supplementary information for more details). The data show that 

there is almost no leakage at room temperature and 37°C, but a strong increase in fluorescein 

release upon heating from 37 °C to 65 °C (see Figure 4-4a). Encouraged by these findings and 

by the fact that a similar temperature increase should also be feasible through 
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superparamagnetic heating of iron oxide core – silica shell nanoparticles,
11

 a similar release 

experiment was performed with sample SPION@MSN-CD in order to confirm that the 

release can also be triggered by superparamagnetic heating. After monitoring the release 

every 15 min for 1 h at room temperature, the sample was exposed to an AMF in a five-turn 

copper coil (5 cm height and diameter) at a power of 5 kW and a frequency of 370 kHz for 

30 min, followed again by monitoring the release at room temperature (the bulk solution 

temperature increased from room temperature to approx. 38 °C directly after the AMF 

exposure, but cooled back down to room temperature before the next AMF cycle). In total, 

five such heating/monitoring cycles were performed (see Figure 4-4b).  

 

 

Figure 4-4. Release of the fluorescein cargo from samples (a) MSN-CD and (b) SPION@MSN-CD through 

(a) bulk solvent heating and (b) local superparamagnetic heating. 

 

The observed rise in fluorescein fluorescence indicates that a displacement of the β-

cyclodextrin caps can also be triggered externally by local heating by an AMF. To exclude the 

possibility that the observed increase in fluorescein release is merely caused by bulk heating 
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of the solution rather than localized superparamagnetic heating of SPION cores inside the 

mesoporous silica nanoparticles, a similar release experiment was carried out, but the sample 

was kept in an ice bath at 0°C at all times (see Figure S 4-9). Under these conditions, the bulk 

solution temperature stays unchanged, and the heat generation is confined to the core-shell 

nanoparticles. As expected, the fluorescence intensity still rises after AMF exposure, 

indicating that indeed localized superparamagnetic heating triggers the release. In conclusion, 

we have demonstrated that a thermally reversible cycloaddition reaction can be used to 

construct a molecular snaptop that can trap cargo inside the pores of mesoporous silica 

nanoparticles. The cycloreversion can be triggered by an externally applied AMF resulting in 

local particle heating and thus in the detachment of the cap from the pore openings and cargo 

release.  

4.3 Conclusion 

This new concept of a molecular nanocap based on a retro-Diels Alder reaction activated 

through superparamagnetic heating adds to the toolbox of externally controllable, thermally 

triggered nano-valves. We envision that changing the electronic properties of the diene and 

dienophile component in the Diels Alder reaction should allow for further fine-tuning of the 

release properties of such nanovalves. Actuation through an AMF has the advantage of deep 

tissue penetration and non-invasiveness, making these nanovalves interesting candidates for 

future applications in drug delivery. 

 



4. A molecular nanocap activated by superparamagnetic heating for externally stimulated 

cargo release  

 

149 

 

4.4 Experimental Part 

Nuclear magnetic resonance spectroscopy was carried out on a Bruker AV400 at room 

temperature in CDCl3 at 400.13 MHz and 16 scans (
1
H), or at 100.61 MHz and 512 scans 

(
13

C) for 1D spectra, on a Bruker DRX500 in CDCl3 at 500.33 MHz and 8 scans for 2D 

spectra, and on a Bruker Avance III-500 at 125.79 MHz 65272 scans for ssNMR. All FIDs 

were processed by zero-filling and phase correction, and liquid-state NMR FIDs are calibrated 

to the solvent signal. FIDs for solid state and 1D 
13

C spectra were processed additionally by 

applying an exponential window function to the FID before FFT. FIDs of 2D spectra were 

processed additionally by applying a 0° shifted sine window function to the FID before FFT 

(LB=0.3 Hz and GF=0.1 Hz in the evolution (F1) domain and LB=0.3 Hz and GF=0.0 Hz in 

the detection (F2) domain). Peak assignments are based on multiplicity, integrals, HMBC and 

HMQC spectra. NMR spectra of new compounds are shown in Figure S 4-3 - Figure S 4-7. 

Fourier transform infrared spectroscopy (FTIR) was carried out with a JASCO FT/IR-420 

spectrometer averaging 128 scans in the range of 4000–400 cm
-1

 at a resolution of 1 cm
-1

. 

KBr discs were prepared by mixing approximately 2 mg of nanoparticles with approximately 

200 mg of KBr and forming the disc under pressure. The spectra shown in the main text are 

background corrected with a linear baseline, normalized to the symmetric Si–O–Si stretching 

vibration around ύ = 795 cm
-1

, and vertically offset by 0.3 units. Raw spectral data are shown 

in Figure S 4-2. 

Transmission electron microscopy (TEM) images were recorded on a Tecnai T12 Quick 

CryoEM and CryoET (FEI) at an accelerating voltage of 120 kV. A suspension (8 µL) of 

nanoparticles in ethanol (MSNs) or chloroform (SPIONs) was dropped on a 200 mesh carbon 

coated copper grid and the solvent was allowed to evaporate at room temperature. Energy-
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dispersive x-ray spectroscopy (EDX) and electron diffraction (ED) were carried out at 300 kV 

using a Titan 80-300 kV microscope and are shown in Figure S 4-10. 

Nitrogen adsorption and desorption isotherms were obtained at 77 K using an Autosorb-iQ 

(Quantachrome Instruments). Sample outgassing was performed for 12 hours at 493 K. Pore 

size distribution and pore volume were calculated by a NLDFT equilibrium model of N2 on 

silica, based on the adsorption branch of the isotherms. BET surface area was calculated over 

the range of partial pressure between ~0.08–0.23 p/p0. The mesopore volume was determined 

from NLDFT calculations for pores smaller than 6.5 nm in diameter.  

Zeta-potential analysis and dynamic light scattering (DLS) were carried out on a ZetaSizer 

Nano (Malvern Instruments Ltd., Worcestershire, U.K.) in DI water for MSNs and in 

chloroform for SPION nanoparticles. 

Fluorescence spectra were recorded on an Acton Spectra Pro 2300i CCD cooled below 

-120 °C with liquid nitrogen. For excitation, a CUBE 445-40C laser (Coherent Inc., Santa 

Clara, CA, USA) was used at a wavelength of 448 nm and a power of 2 mW. A 475 nm long 

pass filter was used to block scattered and stray light. In the experiments with conventional 

heating, a temperature-controlled cuvette holder (Varian Cary 1x1 Peltier) was used. Spectral 

calibration curves of the fluorescein emission at different temperatures and concentrations are 

shown in Figure S7 and a release curve obtained at 0 °C is shown in Figure S 4-8. 

Superparamagnetic heating was carried out using a Magnetic Hyperthermia System 

manufactured by MSI Automation, Inc. The diameter and height of the five-turn copper coil 

that was used for the experiments was 50 mm, the oscillation frequency was 370 kHz, and the 

induction power was 5 kW. 
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Thermogravimetric analysis (TGA) was performed using a Perkin-Elmer Pyris Diamond 

TG/DTA under air (200 mL/min). Approximately 10-15 mg of sample was loaded into 

aluminum pans. The sample was held at 50 °C for ten minutes, and then the data were 

recorded from 50 to 550 °C at a scan rate of 5 °C/min. The plotted values are normalized to 

the weight at 200 °C. An empty aluminum pan was used as a reference.  

Field-dependent magnetization isotherms were recorded with a MPMS-XL 

superconducting quantum interference device (SQUID) magnetometer (Quantum Design Inc.) 

at 300 K and are shown in Figure S 4-10. 

Chemicals. Tetraethylorthosilicate (TEOS; 99%, Aldrich), cetyltrimethylammonium bromide 

(CTAB; 98% , Aldrich), sodium hydroxide (99%, Fisher Scientific), maleic anhydride (99%, 

Aldrich), zinc chloride (anhydrous, 97%, Strem Chemicals), zinc powder (97%, Fisher 

Scientific), iron(III) acetylacetonate (Fe(acac)3; 97%, Aldrich), manganese(II) chloride 

(MnCl2; Merck), octylether (99%, Aldrich), triethanolamine (TEA; 98%, Aldrich), 

cetyltrimethylammonium chloride (CTAC; 25% in H2O, Fluka), ammonium nitrate, absolute 

ethanol (EtOH; Aldrich), chloroform (CHCl3; Aldrich), hexamethyldisilazane (HMDS; 99%, 

Aldrich), 3-aminopropyl triethoxysilane (APTES; 99%, Aldrich), furfurylamine (99%, 

Aldrich), 1- -

-CD; 95%, TCI) and fluorescein disodium salt (90%, Aldrich) were used as 

received. 

Anhydrous toluene and dichloromethane (DCM) were obtained by distillation from CaH2 

under dry nitrogen. 

Zinc chloride was purified according to a literature protocol.
36

 In brief, 10 g of zinc chloride 

and 1 g of zinc powder were refluxed in 1,4-dioxane for 1 h, the hot solution was filtered 
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through celite to remove Zn powder, and allowed to cool to room temperature. The white 

crystalline solid that formed after cooling was recrystallized from 1,4-dioxane. 

Oleic acid and oleylamine were distilled under reduced pressure (1 mbar and 167 °C and 

1 mbar and 155°C, respectively) prior to use. 

All organic reactions were carried out in dried glassware under an inert atmosphere of dry 

nitrogen using standard Schlenk techniques. 

Synthesis of N-((3-Triethoxysilyl)propyl)maleimide (1): 

 

 

 

The synthesis was carried out according to a published procedure.
4, 5

 In brief, 1.73 g (17.6 

mmol) of maleic anhydride were stirred in 60 mL of anhydrous dichloromethane in a flame-

dried 250 mL three neck round bottom flask under nitrogen for 5 minutes. Then, 4.125 mL of 

3-aminopropyl triethoxysilane (17.6 mmol) in 20 mL of dry dichloromethane was added 

slowly under stirring, and the resulting mixture was kept at room temperature for 1 h. After 

that, volatiles were removed in vacuo, and the intermediate maleamic acid derivative was 

obtained as a white powder, which was directly used in the next step without further 

purification. 

In the next step, the intermediate product was dissolved in 60 mL of dry toluene and stirred 

under nitrogen. Then, 2.40 g of anhydrous zinc chloride were added at once and the reaction 
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mixture was heated to 80 °C. Next, 3.67 mL of hexamethyldisilazane (17.6 mmol) were 

added, and the mixture was kept at 80 °C for 5 hours. After cooling to room temperature, the 

solution was filtered to remove zinc chloride and the solvent was removed in vacuo, giving 

the product as a colorless oil. 
1
H NMR (400.13 MHz; CDCl3): δ = 0.53(m, 2H, SiCH2), 1.16t, 

9H, CH3CH2O), 1.64(p, 2H, SiCH2CH2), 3.45(t, 2H, CH2N), 3.75(q, 6H, CH3CH2O), 6.63(s, 

2H, HC=CH), 
13

C NMR (100.61 MHz; CDCl3): δ = 7.88(SiCH2), 18.41(CH3CH2O), 

22.26(SiCH2CH2), 40.55(CH2N), 58.57(CH3CH2O), 134.18(HC=CH), 170.98(C=O). 

Synthesis of N-(furan-2-ylmethyl)adamantane-1-carboxamide (2): 

 

 

 

In a flame-dried 100 mL round bottom flask, a mixture of 2.0 mL of furfurylamine (22 mmol) 

and 3 mL of triethylamine were stirred in 45 mL of dry dichloromethane under nitrogen at 

0 °C. Then, 4.4 g of 1-adamantane carbonylchloride (22 mmol) in 5 mL of dry dichloro-

methane was added slowly, and the solution was allowed to warm to room temperature. After 

stirring for 1 h at room temperature, the solution was washed with 40 mL of an aqueous 

ammonium chloride solution (saturated) and 40 mL of an aqueous potassium carbonate 

solution (5%), the organic layer was separated, dried over MgSO4, filtered, and evaporated to 

dryness in vacuo. The crude product was recrystallized from heptane/EtOAc = 1:1 (v/v) to 

yield the product as off-white needles (3.15 g, 55%). 
1
H NMR (400.13 MHz; CDCl3):δ = 
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1.69(m, 6H, CCH2CHCH2(Ad)), 1.84(m, 6H, CCH2CHCH2(Ad)), 2.02(m, 3H, 

CCH2CHCH2(Ad)), 4.40(d, 2H, CH2NH), 5.86(bs, 1H, NH), 6.18(dd, 1H, CCHCHCH(Fur)), 

6.29(dd, 1H, CCHCHCH(Fur)), 7.33(dd, 1H, CCHCHCH(Fur)) 
13

C NMR (100.61 MHz; 

CDCl3): δ = 28.31(CCH2CHCH2(Ad)), 36.70(CCH2CHCH2(Ad)), 36.70(CH2NH), 

39.41(CCH2CHCH2(Ad)), 40.88(CCH2CHCH2(Ad)), 107.42(CCHCHCH(Fur)), 

110.63(CCHCHCH(Fur)), 142.34(CCHCHCH(Fur)), 151.84(CCHCHCH(Fur)), 

177.88(C=O). 

Sample MSN. Unfunctionalized mesoporous silica nanoparticles were synthesized according 

to a published procedure.
4
 In brief, 200 mg of CTAB and 600 µL of sodium hydroxide 

solution (2 M) were dissolved in 100 mL of water under stirring. The solution was heated at 

80 °C for 30 minutes, followed by the addition of 1050 µL of TEOS under vigorous stirring. 

Stirring was continued for 2 h at 80 °C, and then the solution was allowed to cool to room 

temperature. The nanoparticles were collected by centrifugation (10 min at 7197 rcf), washed 

2x with water (2x 90 mL), 2x with ethanol (2x 90 mL) and 2x with toluene (2x 90 mL), 

redispersed in 20 mL of dry toluene and directly used for further functionalization. 

Sample MSN-Mal. The unfunctionalized mesoporous silica nanoparticles in 20 mL of dry 

toluene were stirred in a flame-dried 50 mL round bottom flask under nitrogen. Then, 40 µL 

of N-((3-triethoxysilyl)propyl)maleimide were added, and the resulting mixture was heated to 

reflux overnight. The nanoparticles were collected by centrifugation (10 min at 7197 rcf), 

washed 2x with toluene (2x 90 mL) and 2x with ethanol (2x 90 mL). To extract the organic 

template from the pores, the nanoparticles were dispersed in 90 mL of an ethanolic 

ammonium nitrate solution (1 mg/50 mL), refluxed for 1 h, collected by centrifugation (10 

min at 7197 rcf), washed 1x with ethanol (90 mL), redispersed in 90 mL of a fresh ethanolic 



4. A molecular nanocap activated by superparamagnetic heating for externally stimulated 

cargo release  

 

155 

 

ammonium nitrate solution (1 mg/50 mL), refluxed again for 1 h, collected by centrifugation 

(10 min at 7197 rcf), washed 2x with ethanol (2x 90 mL) and stored in ethanol. 

Sample MSN-DA. 25 mg of MSN-Mal nanoparticles (dispersed in ethanol) were washed 2x 

with toluene (2x 1.5 mL), and then redispersed in 10 mL of toluene. 80 mg of N-(furan-2-

ylmethyl) adamantane-1-carboxamide were added, and the resulting mixture was stirred for 3 

days at 40°C. The nanoparticles were collected by centrifugation in a cooled centrifuge (5 min 

at 20817 rcf and 18°C), washed 2x with toluene (2x 1.5 mL), 2x with ethanol (2x 1.5 mL) and 

2x with water (2x 1.5 mL). 

Sample MSN-CD. For loading the model drug into the nanoparticles, 0.5 mg of sample 

MSN-DA were dispersed in 1 mL of an aqueous fluorescein solution (1 mM) and kept on a 

-cyclodextrin was added to 

the solution, and shaking was continued for 1 d at room temperature. The nanoparticles were 

then collected by centrifugation in a cooled centrifuge (5 min at 20817 rcf and 18 °C), washed 

5x with water (5x 1.5 mL), and redispersed in 250 µL water. 

Superparamagnetic zinc and manganese doped iron oxide nanoparticles 

(Zn0.4Mn0.6)Fe2O4. Zinc and manganese doped iron oxide nanoparticles were synthesized 

following a thermal decomposition process as previously described.
37

 In brief, 0.353 g (1.00 

mmol) Fe(acac)3, 30.0 mg (0.220 mmol) ZnCl2 and 63.3 mg (0.320 mmol) MnCl2 were placed 

in a 50 mL three-neck round bottom flask equipped with a reflux condenser under nitrogen 

atmosphere. 2.00 mL oleic acid, 4.00 mL oleylamine and 2.06 mL octylether were added and 

the reaction mixture was heated to 300 °C (SiC bath) for 1 h. The reaction mixture was cooled 

to room temperature and absolute ethanol was added. The resulting nanoparticles were 

washed three times with a mixture of chloroform and ethanol (1:10) by centrifugation (10 

min, 26892 rcf) and finally redispersed in 10 mL of chloroform. 
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Sample SPION@MSN. Prior to the sol-gel reaction, the SPIONs were transferred from the 

organic phase to the aqueous phase. 4.285 mL of a 7 mg/mL SPION dispersion in CHCl3 

(corresponding to 30 mg of SPIONs) were placed in a polypropylene reactor. 21.7 g H2O and 

2.41 mL of aqueous CTAC solution (25 wt%) was added, generating a second phase. The 

mixture was sonicated for 15 min (60% of continuous power (250 W), frequency 20 KHz) 

using a probe sonicator and subsequently the chloroform was evaporated at elevated 

temperature (70 °C) for 2 h. After a second sonication step lasting 15 min, the mixture was 

added to 14.3 g TEA and stirred (1000 rpm) at 60 °C. The silica source TEOS (10 times 

155 µL, 692 µmol) was added stepwise every 10 min over a total time period of 90 min at 

constant temperature of 60 °C. The synthesis mixture was stirred at 1000 rpm at room 

temperature for 12 h. After addition of ethanol (100 mL), the SPION@MSNs were separated 

by centrifugation (43.146 rcf for 20 min) and redispersed in ethanol. The template extraction 

was performed twice by heating the SPION@MSN suspension under reflux at 90 °C (oil 

bath) for 45 min in an ethanolic solution (100 mL) containing ammonium nitrate (2 g). The 

SPION@MSNs were collected by centrifugation and washed with ethanol after each 

extraction step. The resulting nanoparticles were stored in an ethanolic solution. 

Sample SPION@MSN-Mal. 20 mg of the unfunctionalized iron oxide core – mesoporous 

silica shell nanoparticles (SPION@MSN) were washed 2x with toluene (2x 1.5 mL), 

redispersed in 10 mL of dry toluene and stirred in a flame-dried 25 mL round bottom flask 

under nitrogen. Then, 40 µL of N-((3-triethoxysilyl)propyl)maleimide was added, and the 

resulting mixture was heated to reflux overnight. The nanoparticles were collected by 

centrifugation (5 min at 16873 rcf), washed 2x with toluene (2x 1.5 mL) and redispersed in 

2.5 mL of toluene. 
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Sample SPION@MSN-DA. 20 mg of SPION@MSN-Mal in 2.5 mL of toluene were stirred 

in a glass vial together with 80 mg of N-(furan-2-ylmethyl)adamantane-1-carboxamide for 3 

days at 40 °C. The nanoparticles were collected by centrifugation in a cooled centrifuge (5 

min at 20817 rcf and 18 °C), and washed 2x with toluene (2x 1.5 mL), 2x with ethanol (2x 1.5 

mL) and 2x with water (2x 1.5 mL). 

Sample SPION@MSN-CD. For loading the model drug into the nanoparticles, 1 mg of 

sample SPION@MSN-DA were dispersed in 1 mL of an aqueous fluorescein solution (1 mM) 

-cyclodextrin 

was added to the solution, and shaking was continued for 1 d at room temperature. The 

nanoparticles were then collected by centrifugation in a cooled centrifuge (5 min at 20817 rcf 

and 18 °C), washed 5x with water (5x 1.5 mL), and redispersed in 250 µL water. 

Release experiments For the release experiments by conventional heating, 0.5 mg of 

nanoparticles suspended in 250 µL water were added into a reservoir that was separated from 

an aqueous solution in a standard 1 cm fluorescence cuvette by a 14 kDa MWCO dialysis 

membrane (VWR). An emission scan (409.13 nm – 688.30 nm) was recorded every second, 

the intensity around the fluorescein emission maximum was integrated (500 nm – 550 nm) 

and averaged over 600 scans (corresponding to 10 minutes), and the results were plotted 

against time. For obtaining the spectral data of fluorescein fluorescence at different 

concentrations and temperatures, appropriate dilutions of fluorescein disodium salt in water 

were prepared and fluorescence emission data from 60 spectra were averaged. The obtained 

data were fitted with a linear regression model and used to calculate the amount of released 

fluorescein at different temperatures (see also Figure S 4-9). 

In the superparamagnetic heating experiments at room temperature, 1 mg of nanoparticles was 

dispersed in 250 µL water and added to a reservoir that was separated from an aqueous 
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solution (10 mL) in a 20 mL glass vial by a 14 kDa MWCO dialysis membrane. After 

monitoring the release every 15 minutes for 1 hour at room temperature, the sample was 

exposed to an AMF for 30 minutes, followed again by monitoring the release at room 

temperature for 30 minutes (plotted is the mean intensity of 3 individual measurements 0 min, 

15 min and 30 min after the heating cycle). In total, five such heating/monitoring cycles were 

performed. For measuring fluorescein emission, a 2.5 mL sample was drawn from the vial, 60 

emission scans were recorded from 409.13 nm – 688.30 nm at an exposure time of 1 second, 

the intensity around the fluorescein emission maximum was integrated (490 nm – 550 nm), 

the results were averaged, and the 2.5 mL sample was added back into the vial. Here, no 

correction was made to the emission intensity since the effect of temperature change of the 

bulk solution on fluorescein fluorescence was negligible. 

The procedure for the superparamagnetic heating experiment at 0 °C was similar to the one 

described above. The only differences were that the sample was kept in an ice bath at 0 °C at 

all times, and that only three cycles with 30 minutes AMF exposure and 1 hour of monitoring 

time were carried out. Here, also no correction was made to the emission intensity since the 

temperature was always fixed at 0 °C for all measurements due to the ice bath. 
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4.6 Appendix 

 

Figure S 4-1. Thermogravimetric analysis of samples SPION@MSN (black), SPION@MSN-Mal (red) and 

SPION@MSN-DA (blue). 

 

Figure S 4-2. Raw IR spectral data for samples SPION@MSN (black), SPION@MSN-Mal (red), and 

SPION@MSN-DA (blue). 
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Figure S 4-3. 
1
H NMR (CDCl3, 25 °C) of N-(furan-2-ylmethyl)adamantane-1-carboxamide. 

 

Figure S 4-4. 
13

C-NMR (CDCl3, 25 °C) of N-(furan-2-ylmethyl)adamantane-1-carboxamide. 
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Figure S 4-5. 1H-13C HMBC (CDCl3, 25 °C) of N-(furan-2-ylmethyl)adamantane-1-carboxamide. 

 

Figure S 4-6. 
1
H-

13
C HMQC (CDCl3, 25 °C) of N-(furan-2-ylmethyl)adamantane-1-carboxamide. 
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Figure S 4-7. 
13

C NMR data of the diene component (blue), the dienophile component (red) and the Diels-

Alder cycloaddition product on the surface of the silica nanoparticles (black). 

 

Figure S 4-8. Calibration curves for different fluorescein concentrations at 25 °C, 37 °C and 60 °C. 
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Figure S 4-9. Release experiments with superparamagnetic heating in an ice bath at 0 °C. 

 

Figure S 4-10. Further characterization of zinc and manganese-doped iron oxide nanoparticles. (a) TEM 

image (inset: electron diffraction pattern). (b) EDX analysis. Cu and C are from the TEM grids. (c) 

Dynamic light scattering in CHCl3. The particle size is approximately 10 nm. (d) Field-dependent 

magnetization isotherms recorded at 300 K. The saturati on magnetization is approximately 200 emu/g. 
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Property SPION@MSN SPION@MSN-DA 

SBET (m2/g) 1034 859 

dPore (NLDFT) (nm) 4.3 3.8 

Vtot (NLDFT) (cc/g) 1.23 0.82 

Vmesopores (NLDFT) (cc/g) 0.80 0.59 

dPore (BJH) (nm) 3.0 2.8 

Vtot (BJH) (cc/g) 1.48 0.97 

Vmesopores (BJH) (cc/g) 1.03 0.73 

Table 4-1. Nitrogen Sorption Data. 
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5 Genetically designed biomolecular capping system for 

mesoporous silica nanoparticles enables receptor-mediated cell 

uptake and controlled drug release 

This chapter is based on the following publication: 

Stefan Datz, Christian Argyo, Michael Gattner, Veronika Weiss, Korbinian Brunner, Johanna 

Bretzler, Constantin von Schirnding, Adriano Torrano, Fabio Spada, Milan Vrabel, Hanna 

Engelke, Christoph Bräuchle, Thomas Carell, and Thomas Bein, Nanoscale 2016, 8, 8101-

8110. 

 

Abstract 

Effective and controlled drug delivery systems with on-demand release and targeting abilities 

have received enormous attention for biomedical applications. Here, we describe a novel 

enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly 

combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is 

based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the 

enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene 

moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-

orthogonal attachment of even very sensitive targeting ligands such as folic acid and 

anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We 

demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D 

to KB cells. This novel nanocarrier concept provides a promising platform for the 

development of precisely controllable and highly modular theranostic systems. 
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5.1 Introduction 

The development of effective systems for targeted drug delivery combined with on demand 

release behavior can be considered one of the grand challenges in nanoscience. In particular, 

porous nanocarriers with high drug loading capacity, immunological stealth behavior and 

tunable surface properties are promising candidates for biomedical applications such as cancer 

therapy and bioimaging.
1-5

 Specifically, multifunctional mesoporous silica nanoparticles 

(MSNs) have great potential in drug delivery applications due to their attractive porosity 

parameters and the possibility to conjugate release mechanisms for diverse cargos
6, 7

 including 

gold nanoparticles,
8, 9

 iron oxide nanocrystals,
10

 bio-macromolecules,
11, 12

 enzymes,
13

 and 

polymers.
14

 Control over a stimuli-responsive cargo release can be achieved via different 

trigger mechanisms such as redox reactions,
15

 pH changes,
16

 light-activation,
6, 17

 or change in 

temperature.
7
 Drug delivery vehicles equipped with acid-sensitive capping mechanisms are 

highly desirable for acidified target environments such as the translation from early to late 

endosomes, tumors, or inflammatory tissues.  

Here, we present genetically designed enzyme-capped MSNs that combine two important 

prerequisites for advances in drug delivery, namely stimuli-responsive drug release and 

specific cell targeting (Figure 5-1). Specifically, these pH-responsive MSNs consist of a 

capping structure based on carbonic anhydrase (CA). CA is a model enzyme abundant in 

humans and animals and generally catalyzes the hydration of carbon dioxide and the 

dehydration of bicarbonate.
18

 It is attached to the silica nanoparticle surface via aryl 

sulfonamide groups. As its natural inhibitor sulfonamide groups strongly bind to the active 

site of the CA. This enzyme-sulfonamide binding is reversible depending on the pH, where an 

acidic medium causes protonation of the sulfonamide, resulting in cleavage of the 

coordination bond and access to the porous system.
19

 The CA gatekeepers were used to 
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exploit the endosomal pH change as an internal cellular trigger and to gain control over the 

release of cargo molecules from the mesoporous system.  

This stimuli-responsive capping system on MSNs was combined with cell targeting 

specificity via a bio-orthogonal click chemistry approach. Targeting ligands provide specific 

binding to certain cell membrane receptors allowing for an enhanced and distinctive cellular 

uptake of such modified nanocarriers. For example, various cell receptors are overexpressed 

on cancer cells, which can lead to a preferential receptor-mediated endocytosis of modified 

MSNs. For the attachment of such targeting ligands exclusively to the outer periphery of the 

enzyme gatekeepers, we exploited a recently developed method that takes advantage of the 

Pyrrolysine amber suppression system followed by bio-orthogonal copper-free click 

chemistry.
20-22

 This system has already been utilized in applications such as optical gene 

control.
23

 To the best of our knowledge, this is the first time the Pyrrolysine amber 

suppression system is used in a combination with porous nanocarriers for specific cell 

recognition and drug delivery. The incorporation of an unnatural amino acid (UAA) 

containing a norbornene moiety into CA provides a bio-orthogonal reaction pathway by 

covalently attaching tetrazine-modified targeting ligands.
24, 25

 It has recently been 

demonstrated that norbornene-tetrazine click chemistry is a favorable synthesis strategy over 

various other methods including thiol-maleimide reaction and amide formation due to 

extremely mild and biocompatible reaction conditions and higher selectivity.
26

 Here, copper-

free click chemistry of norbornene-modified human carbonic anhydrase II with targeting 

ligands was performed to prepare folate- and anandamide-modified multifunctional 

mesoporous silica nanocarriers.
27

 The anandamide is, due the cis-configured double bonds, a 

particularly sensitive receptor ligand that requires extremely mild coupling conditions. The 

targeting system based on folate-modified silica nanocarriers was studied on KB cancer cells, 

which are known to overexpress the folate receptor FR-α.
6, 28

 The targeting system based on 
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anandamide-modified particles was tested on neural stem cells. The combination of on-

demand release and specific receptor-mediated cell uptake properties within one 

multifunctional mesoporous silica nanocarrier system, containing biomolecular valves based 

on carbonic anhydrase, is anticipated to offer promising potential for controlled drug delivery 

applications including cancer therapy.  

 

 

Figure 5-1. Schematic illustration of the genetically designed biomolecular pore gating system providing a 

pH-responsive drug release from mesoporous silica nanoparticles (MSNs). Aryl sulfonamide 

functionalized MSNs offer pH-dependent reversible attachment of the bulky enzyme carbonic anhydrase, 

which efficiently blocks the pore entrances to prevent premature cargo release. Furthermore, specific 

cancer cell targeting can be achieved via site-specific modification of a genetically incorporated 

norbornene amino acid in the biomolecular gatekeepers. 

  



Results and Discussion 

172 

 

5.2 Results and Discussion 

pH-Responsive MSNs with an average particle size of 150 nm (average pore diameter: 3.8 

nm) containing biomolecular valves based on the enzyme carbonic anhydrase (CA, 

hydrodynamic diameter: 5.5 nm) were synthesized via a delayed co-condensation approach.
34

 

In a second step, benzene sulfonamide (phSA) groups were covalently attached to the silica 

nanoparticles via a short bifunctional crosslinker (maleimide-C6-NHS) at mild reaction 

conditions (sample MSN-phSA). After cargo loading, the enzyme CA was added to the 

buffered particle solution (pH 7.4). The formation of the inhibitor-enzyme complex (phSA-

CA) leads to a dense coating at the external particle surface (MSN-phSA-CA).  

 

Figure 5-2. Characterization of multifunctional MSNs. a) Dynamic light scattering (DLS), b) zeta potential 

measurements, c) infrared (IR) spectroscopy data, d) Raman spectroscopy data, e) nitrogen sorption 

isotherms, and f) DFT pore size distribution of the MSNs. MSN-SH (black), MSN-phSA (red) and MSN-

phSA-CA (green). 
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Dynamic light scattering (DLS) measurements showed the size distribution of the 

functionalized MSNs to be narrow and around 150 nm (Figure 5-2a), implying excellent 

colloidal stability after all functionalization steps. The surface charge of silica nanoparticles, 

measured as the zeta potential, changed due to the stepwise attachment of organic moieties 

(Figure 5-2b): The isoelectric point (IEP) of MSN-SH (pH 3.6) was shifted to a more acidic 

pH value (< 2) for MSNs containing the benzene sulfonamide groups on the outer surface. 

The tendency for sulfonamide groups to be protonated is relatively low due to the stabilizing 

resonance effect, which leads to the increase in negative surface charge (predominantly 

influenced by silanol content). After attachment of the carbonic anhydrase, a drastic increase 

of the zeta potential was observed resulting from amino acid residues that can be easily 

protonated - such as arginine, histidine and lysine - on the surface. IR data for all samples 

showed typical vibrational modes of the silica framework between 780 and 1300 cm
-1

 (Figure 

S 5-1c). MSNs containing the benzene sulfonamide groups showed additional modes for C=O 

stretching vibrations at 1700 and 1627 cm
-1

 and a peak of weak intensity at 1340 cm
-1

, which 

belongs to the typical asymmetric SO2 stretching vibration modes of the sulfonamide groups. 

For the sample MSN-phSA-CA, amide vibrations (Amide I: 1639 cm
-1

, C=O stretching 

vibration; Amide II: 1535 cm
-1

, N-H deformation and C-N stretching vibration) of high 

intensity were observed; these are typical for proteins. Raman spectroscopy provided data 

complementary to IR spectroscopy. In Figure 5-2d a more detailed view of the spectra for 

MSN-SH and MSN-phSA in the range between 1900 and 600 cm
-1

 is depicted and various 

additional bands (*) were observed for the benzene sulfonamide-functionalized particles. 

(data for MSN-phSA-CA not shown, for full range Raman spectra see Figure S4). Nitrogen 

sorption measurements show type IV isotherms for MSN-SH and MSN-phSA, confirming 

mesoporosity of the silica nanoparticles. Relatively high surface areas (up to 1200 m²/g) and 

pore volumes (0.8 cm³/g) were observed for MSN-SH and MSN-phSA (Table 5-1). 
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Sample BET surface area (m²/g) Pore volume
a
 (cm³/g) DFT pore size

b
 (nm) 

MSN-SH 1170 0.83 3.8 

MSN-phSA 1004 0.72 3.7 

MSN-phSA-CA 99 0.07 - 

Table 5-1. Porosity parameters of functionalized MSNs. 

aPore volume is calculated up to a pore size of 8 nm to remove the contribution of interparticle porosity. 
bDFT pore size refers to the peak maximum of the pore size distribution. 

Importantly, the DFT pore size distribution (Figure 5-2f) was not affected by the attachment 

of the benzene sulfonamide linkers and no incorporation of organic groups inside the 

mesopores was observed. The attachment of the bulky enzyme carbonic anhydrase resulted in 

a drastic reduction of surface area and pore volume for sample MSN-phSA-CA. Thus, the 

carbonic anhydrase enzymes were able to efficiently block the mesopores even towards the 

access of nitrogen molecules. We observed no pore size distribution for MSN-phSA-CA in 

the range between 2 and 9 nm. This confirms the successful synthesis of carbonic anhydrase-

coated MSNs via benzene sulfonamide linkers. 

In order to investigate the pH-responsive removal of the bulky gatekeepers from the particles, 

in vial cargo release experiments were performed. We used a custom-made two-compartment 

system to analyze the time-based release of the fluorescent model cargo fluorescein.
12

 After 

incorporation of fluorescein molecules into the mesoporous system, carbonic anhydrase was 

added to block the pore entrances. An efficient sealing of the pores and no premature release 

of the cargo was observed for the sample MSN-phSA-CA dispersed in HBSS buffer (pH 7.4) 

at 37 °C (Figure 5-3a, closed state, black curve). After 3 h the solution was exchanged and the 

particles were dispersed in citric-acid phosphate buffer (CAP buffer, pH 5.5). The change to 

acidic milieu, which simulates the acidification of endosomes, causes a significant increase in 

fluorescence intensity over time (open state, red curve). Furthermore, we could show the 
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long-term stability of the capping system for more than 16 hours in HBSS buffer and cell 

medium at pH 7.4 (Figure 5-3b). These in vial release experiments demonstrate efficient 

sealing of the pores with carbonic anhydrase acting as a bulky gatekeeper, preventing 

premature cargo release and allowing for release upon acid-induced detachment of the 

capping system. 

 

Figure 5-3. In vial release kinetics of fluorescein molecules from the enzyme-coated MSNs at different pH 

values. (a) Sample MSN-pSA-CA features no premature release of the fluorescent cargo molecules in 

HBSS buffer solution at pH 7.4 (closed state, black curve). After 3 h the medium was changed to slightly 

acidic milieu (CAP buffer, pH 5.5, red curve) resulting in a significant increase in fluorescence intensity. 

The gatekeepers are detached from the particle surface upon acidification, causing an efficient and 

precisely controllable release of fluorescein from the mesoporous system. (b) Long-term stability of the 

capping system was investigated in HBSS buffer (pH 7.4, black curve) and cell medium (blue curve). No 

unintended cargo release was observed within about 16 h. 

The enzyme activity assay investigates the hydrolysis in TRIS-buffered solution of a 

chromogenic substrate (p-nitrophenyl acetate, NPA) in the presence of the enzyme, generating 

nitrophenol. UV-Vis spectroscopy is used to measure the resulting absorption maximum at 

400 nm.  

Figure 5-4 shows the resulting curve for the non-catalyzed (no carbonic anhydrase) reaction, 

which can be taken as baseline. The slight slope for this curve is due to the hydrolysis rate of 
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the pure substrate in aqueous solution in the absence of catalytic enzymes. In the presence of 

100 nM enzyme (non-inhibited) the maximum conversion of the substrate can be obtained. A 

slight decrease in conversion efficiency can be observed upon addition of 50 µg of MSN-SH 

particles due to marginal reduction of enzyme activity in the presence of silica nanoparticles. 

We assume that this effect corresponds to minor unspecific attachment of the carbonic 

anhydrase to the silica nanoparticles causing blocking of the active sites to some extent. In 

comparison, the addition of inhibitor-containing particles (MSN-phSA) causes a significant 

decrease of the slope of the resulting curve. This proves a specific formation of the inhibitor-

enzyme complex at the external surface of the silica nanoparticles. Thus we have shown 

conclusively that the sulfonamide-functionalized MSNs are able to bind the enzyme carbonic 

anhydrase. At neutral pH values, the enzyme is specifically attached to the sulfonamide-

functionalized particle surface resulting in an inhibition of the enzyme’s active site. This leads 

to a drastic decrease in enzyme activity. 

 

Figure 5-4. Enzyme activity assay of CA catalyzing the hydrolysis of the chromogenic substrate p-

nitrophenyl acetate measured by UV-Vis spectroscopy (absorbance at 400 nm). Non-catalyzed (green) and 

non-inhibited (blue) reaction and after addition of MSN-SH (black) or MSN-phSA (red). 
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For efficient receptor-mediated cancer cell uptake and selective drug delivery a targeting 

ligand needs to be implemented. Since the particle surface is covered with bulky enzymes 

(CA), we aimed for the attachment of the targeting moieties directly to the outer periphery of 

the enzyme, in order to be accessible for cell receptors. For this approach to be successful, the 

site of targeting ligand attachment on the enzyme is of key importance. Ideally it should be 

positioned opposite of the binding site of the enzyme, to prevent blocking of the active site 

and thus leakage of the capping system. However, site-specific chemical modifications of 

proteins are highly challenging. Several methods, such as the reaction of thiol groups with 

maleimide or of lysine chains with activated esters, lack specificity. A more specific method 

is the incorporation of unnatural amino acids into the protein.
20, 35, 36

 Among others, the 

genetic incorporation of UAAs bearing side chains with alkyne,
37, 38

 trans-cyclooctene,
39

 

cyclooctyne
40

 or norbornene
20, 24

 functionalities has been reported previously. Subsequently 

these residues can be modified specifically and bio-orthogonally, for example by reverse 

electron-demanding Diels-Alder reactions with tetrazines.
25, 26, 39

 The natural PylRS/tRNAPyl 

pair is perfectly suitable to genetically incorporate UAAs due to its orthogonality to common 

expression strains. Recently, a norbornene-containing Pyl analogue (Knorb) has been 

developed by some of us.
20, 21

 Here, the synthesis of norbornene-functionalized human 

carbonic anhydrase II (HCA) was accomplished similar to a previously described procedure 

yielding HCA H36Knorb.
41

 The correct position of the UAA was confirmed by tryptic 

digestion of the protein followed by HPLC-MS/MS analysis (see SI). HCA H36Knorb 

carrying norbornene on the opposite face of its phSA-binding site was bound to phSA-MSN 

and then treated with an excess of folate-PEG2000-tetrazine (Figure 5-5a) or anandamide-

tetrazine. The excess of the tetrazine reagent could be easily removed by centrifugation of the 

nanoparticles followed by washing. The efficiency of the folate-targeting system was 

examined on KB-cells presenting either free or blocked FA-receptors (Figure 5-5). For 
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visualization, the cell membrane of the KB cells was stained with WGA488 (green), and the 

particles were labeled with Atto633 (red). In Figure 5-5 c-e we present the folic acid receptor 

blocked cells that were incubated with particles between 2 and 8 h. With increasing 

incubation time, only a few particles were internalized and unspecific cell uptake was 

observed only to a minor degree. In contrast, the cells with available folic acid receptor on 

their surface (Figure 5-5 f-h) exhibit a significant and increasing uptake behavior and a 

considerably higher degree of internalized particles. Thus we could confirm the successful 

application of bioorthogonal modification of a capping enzyme to act as targeting ligand. We 

also proved, that the here described genetically modified enzyme capping strategy can be used 

to attach even sensitive ligands like arachidonic acid via mild click-chemistry conditions e.g. 

for the site-specific targeting of neural stem cells and different cancer cells.
32

 We tested the 

anandamide-targeting system on neural stem cells and A431 cells. Neural stem cells have 

anandamide receptors and successfully internalized the anandamide-particles (see Appendix, 

Figure S 5-3). A431 cells (epidermoid carcinoma) are also known to overexpress the G-

protein coupled cannabinoid-based receptors CB1 and CB2. These receptors can be attacked 

with anandamide-functionalized MSNs. Corresponding to the folate-based targeting 

experiment the cannabinoid receptors on the A431 cells were either blocked or free. After 3 h 

of incubation the receptor blocked cells internalized just a few anandamide-functionalized 

MSNs. In contrast, the amount of intracellular particles is clearly much larger in the case of 

non-blocked cannabinoid receptors (Figure S 5-4). The successful experiments with different 

cell lines and targeting ligands show that the investigated bioorthogonal attachment concept 

could be expanded on a variety of enzymes and ligands. 
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Figure 5-5. a) Norbornene-functionalized carbonic anhydrase (HCA H36Norb) with indicated 

functionalization site (red) and active site (blue) is able to react in a reversed-electron-demand Diels-Alder 

reaction with a folate-PEG2000-tetrazine derivative to give HCA-FA. b) Schematic receptor-mediated 

uptake of folate-functionalized MSN-CA nanoparticles. c-e) Nonspecific and f-h) receptor-mediated 

a) 

b) 
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endocytosis of MSN-phSA-CA-FA (red) by KB cells (WGA488 membrane staining, green). A specific 

receptor-mediated cell uptake was observed for MSN-phSA-CA-FA with KB cells (not pre-incubated with 

FA) after 5 and 8 h incubation at 37 °C (g/h). Incubation of MSN-phSA-CA-FA with FA-pre-incubated 

KB cells for 2, 5, 8 h at 37 °C showed only minor unspecific cellular uptake over all incubation times (c-e). 

The scale bar represents 10 μm. 

Employing fluorescent live-cell imaging, we investigated the in vitro release behavior of 

encapsulated 4’,6-diamidino-2-phenylindole (DAPI) in HeLa cancer cells. The molecular size 

of DAPI is similar to fluorescein. It was therefore expected to efficiently enter the 

mesoporous system of the silica nanoparticle. Due to its effective turn-on fluorescence upon 

intercalation into DNA double strands, DAPI is commonly used as nuclei counterstain in cell 

imaging (about 20 fold enhancement in fluorescence intensity).
42

 Since DAPI is cell 

membrane permeable, free fluorescent dye molecules are able to stain the nucleus within very 

short time periods (1-5 min), as described in several staining protocols.
43

 After incorporation 

of DAPI into the mesoporous system of the silica nanocarriers, the pores were sealed by 

addition of carbonic anhydrase. The HeLa cells were incubated for a total time period of 24 h 

with the loaded particles, which were additionally labeled with Atto 633 dye (red), as depicted 

in Figure 5-6. After 7 h of incubation, MSNs were efficiently taken up by the cells and were 

found to be located in endosomes. Importantly, almost no staining of the nuclei with DAPI 

(blue) could be observed at this time point. Only after 15 h, blue fluorescence (even more 

intensive after 24 h) provided evidence of efficiently released DAPI from the MSNs. Control 

experiments in which the sample supernatant after particle separation (centrifugation) was 

added to the HeLa cells showed no significant nuclei staining even after 24 h (Figure 5-6d). 

These cell experiments prove a substantial time-dependent release of DAPI from the 

mesopores of our nanocarrier system and also show that no free dye molecules were present 

in the solution. We suggest that the observed delayed nuclei staining results from a cascaded 

release mechanism. First, acidification throughout the endosomal pathway to late endosomes 
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or endolysosomes is of key importance. Only the pH change to mildly acidic values (about 

5.5) makes the detachment of the bulky gatekeepers from the MSN hosts possible. Subsequent 

opening of the pores leads to an efficient cargo release. 

 

Figure 5-6. Fluorescence microscopy of HeLa cells incubated with MSN-phSA-CA nanoparticles loaded 

with DAPI and labeled with Atto 633 (red) after a) 7 h, b) 12 h and c) 24 h of incubation. The delayed 

nuclei staining with DAPI (blue) is caused by a time-dependent release of DAPI based on the need for an 

acidic environment. d) In a control experiment, the incubation with the supernatant solution (without 

MSNs) showed no staining of the nuclei with DAPI after 24 h, suggesting that no free DAPI molecules 

were present in the particle solution. The nuclei are indicated with dashed circles. The scale bar 

represents 10 µm. 

Additional co-localization experiments showed the localization of CA-capped nanoparticles in 

acidic cell compartments after endocytosis (Figure S 5-2). To examine the ability of our 

newly developed MSN drug delivery system to transport chemotherapeutics and to affect cells 

with their cargo, we incorporated Actinomycin D (AmD), a cytostatic antibiotic, dissolved in 

DMSO. Free AmD is membrane permeable and induced an uncontrolled cell death within a 

few hours. MSN-phSA-CA provided intracellular AmD release and caused efficient cell death 

after 24 h. The delayed reaction demonstrates that AmD was delivered in a controlled manner 

via the particles and released only after acidification of the endosome and subsequent de-

capping of the gate-keeper CA. In  
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Figure 5-7 cell death is visualized by a caspase 3/7 stain - a marker for apoptotic/dead cells. 

Control particles loaded with pure DMSO did not induce significant cell death at all, nor did 

the supernatant solution after particle separation via centrifugation ( 

Figure 5-7i-l). The results are in good accordance with dose-dependent cell viability studies 

(Figure S 5-5) where the AmD-loaded particles effectively killed HeLa cells after 24 h of 

incubation (IC50,rel = 8.3 µg/mL). This experiment shows the great potential of the MSN-

phSA-CA system to efficiently deliver chemotherapeutics to cancer cells. The pH-responsive 

genetically modified capping system provides the ability to act as a general platform for 

different targeting ligands and cargos. 

 

Figure 5-7. Representative fluorescence microscopy images of HeLa cells incubated with MSN-phSA-CA 

nanoparticles loaded with Actinomycin D (AmD; a-d) or DMSO (e-h) and labeled with Atto 633 (red) 

after 24 h of incubation. As a control, the supernatant of AmD loaded particles after particle separation 

was incubated with the cells (i-l). Cell nuclei were stained with Hoechst 33342 (blue). For live/dead 



5. Genetically designed biomolecular capping system for mesoporous silica nanoparticles 

enables receptor-mediated cell uptake and controlled drug release  

 

183 

 

discrimination CellEvent caspase 3/7 (green) was used. Due to activation of caspase-3/7 in apoptotic cells, 

DNA can be stained after cleavage of the DNA-binding dye from a binding-inhibiting peptide. MSNs were 

efficiently taken up by cells (c/d and g/h). Cell death can only be observed for cells treated with AmD 

loaded MSN-phSA-CA after 24 h of incubation (increased DNA staining in green) (b). In contrast, 

nanoparticles loaded with DMSO or the sample supernatant do not induce significant apoptosis (almost 

no DNA-staining) (f and j). The scale bars represent 50 µm. 

5.3 Conclusion 

We conclude that the novel capping system concept based on pH-responsive detachment of 

carbonic anhydrase combined with folic acid as targeting ligand allows for highly controllable 

drug release from porous nanocarriers. Our drug delivery system provides an on-demand 

release mechanism shown by in vial and in vitro cargo release experiments. The 

multifunctional MSNs were efficiently endocytosed in cancer cells and could be located in 

acidic cell compartments where they released their cargo. Furthermore, the system has an on-

board targeting mechanism as demonstrated in additional in vitro experiments. The targeting 

mechanism is attached at a specific site of the capping enzyme preventing interference with 

the closure mechanism. Our newly developed pH-responsive gatekeepers with genetically 

designed targeting functions provide a promising platform for the design of versatile and 

modular drug delivery systems. 
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5.4 Experimental Part 

Materials. Tetraethyl orthosilicate (TEOS, Fluka, > 99 %), triethanolamine (TEA, Aldrich, 

98 %), cetyltrimethylammonium chloride (CTAC, Fluka, 25 % in H2O), (3-mercaptopropyl)-

triethoxysilane (MPTES, Sigma Aldrich, > 80 %), 6-maleimidohexanoic acid N-

hydroxysuccinimide ester (Fluka, > 98 %), bovine carbonic anhydrase (bCA, Sigma, > 95 %), 

4-(2-aminoethyl)benzenesulfonic acid (Aldrich, 98 %), folic acid (FA, Sigma Aldrich, 

≥ 97 %,), 4,6-Diamidino-2-phenylindole dihydrochloride (DAPI, Sigma-Aldrich, ≥ 98 %), 

CellEvent™ Caspase-3/7 Green Detection Reagent (lifeTechnologies), Hoechst 33342, 

Trihydrochloride, Trihydrate (lifeTechnologies), Wheat Germ Agglutinin, Alexa Fluor® 488 

Conjugate (lifeTechnologies), CellLight© Early Endosome-GFP, Late Endosome-GFP, and 

Lysosome-GFP, BacMam 2.0 (lifeTechnologies), Atto 633 maleimide (ATTO-TEC), 

ammonium nitrate (NH4NO3, Aldrich), ammonium fluoride (NH4F, Aldrich), hydrochloric 

acid (37 %), fluorescein disodium salt dihydrate (Aldrich, 90 %), and Hank´s balanced salt 

solution (HBSS-buffer, Sigma Aldrich) were used as received. Ethanol (EtOH, absolute, 

Aldrich), DMSO and dimethylformamide (DMF, dry, Aldrich) were used as solvent without 

further purification. Bidistilled water was obtained from a millipore system (Milli-Q 

Academic A10). Citric-acid phosphate buffer (CAP-buffer, pH 5.5) was freshly prepared by 

carefully mixing a certain amount of disodium hydrogen phosphate (Na2HPO4, 0.2 M in H2O) 

and citric acid (0.2 M in H2O) to adjust a pH value of 5.5. Subsequently, the solution was 

diluted with bidistilled H2O to a total volume of 500 mL.  

Characterization. DLS and zeta potential measurements were performed on a Malvern 

Zetasizer Nano instrument equipped with a 4 mW He-Ne-Laser (633 nm) and an avalanche 

photodiode detector. DLS measurements were directly recorded in diluted colloidal 

suspensions of the particles at a concentration of 1 mg/mL. Zeta potential measurements were 
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performed using the add-on Zetasizer titration system (MPT-2) based on diluted NaOH and 

HCl as titrants. For this purpose, 1 mg of the particles was diluted in 10 mL bi-distilled water. 

Thermogravimetric analyses (TGA) of the bulk extracted samples (approximately 10 mg) 

were recorded on a Netzsch STA 440 C TG/DSC. The measurements proceeded at a heating 

rate of 10 °C/min up to 900 °C in a stream of synthetic air of about 25 mL/min. Nitrogen 

sorption measurements were performed on a Quantachrome Instrument NOVA 4000e at -

196 °C. Sample outgassing was performed for 12 hours at a vacuum of 10 mTorr at RT. Pore 

size and pore volume were calculated by a NLDFT equilibrium model of N2 on silica, based 

on the desorption branch of the isotherms. In order to remove the contribution of the 

interparticle textural porosity, pore volumes were calculated only up to a pore size of 8 nm. A 

BET model was applied in the range of 0.05 – 0.20 p/p0 to evaluate the specific surface area. 

Infrared spectra of dried sample powder were recorded on a ThermoScientific Nicolet iN10 

IR-microscope in reflexion-absorption mode with a liquid-N2 cooled MCT-A detector. Raman 

spectroscopy measurements were performed on a confocal LabRAM HR UV/VIS (HORIBA 

Jobin Yvon) Raman microscope (Olympus BX 41) with a SYMPHONY CCD detection 

system. Measurements were performed with a laser power of 10 mW at a wavelength of 

633 nm (HeNe laser). Dried sample powder was directly measured on a coverslip. UV/VIS 

measurements were performed on a Perkin Elmer Lambda 1050 spectrophotometer equipped 

with a deuterium arc lamp (UV region) and a tungsten filament (visible range). The detector 

was an InGaAs integrating sphere. Fluorescence spectra were recorded on a PTI 

spectrofluorometer equipped with a xenon short arc lamp (UXL-75XE USHIO) and a 

photomultiplier detection system (model 810/814). The measurements were performed in 

HBSS buffer solution at 37 °C to simulate human body temperature. For time-based release 

experiments of fluorescein a custom made container consisting of a Teflon tube, a dialysis 

membrane (ROTH Visking type 8/32, MWCO 14,000 g/mol) and a fluorescence cuvette was 
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used. The excitation wavelength was set to λ = 495 nm for fluorescein-loaded MSNs. 

Emission scans (505 – 650 nm) were performed every 5 min. All slits were adjusted to 

1.0 mm, bandwidth 8 nm). Mass spectra were recorded a Thermo LTQ-Orbitrap XL. For 

analytical HPLC separations of protein and peptide samples with subsequent MS a Dionex 

Ultimate 3000 Nano HPLC was used. Acetonitrile of LC-MS grade was purchased from Carl 

Roth GmbH + Co. KG. Water was purified by a Milli-Q Plus system from Merck Millipore.  

Synthesis of thiol-functionalized MSNs (MSN-SH). A mixture of TEOS (1.92 g, 9.22 mol) 

and TEA (14.3 g, 95.6 mmol) was heated to 90 °C for 20 min under static conditions in a 

polypropylene reactor. Then, a preheated (60 °C) mixture of CTAC (2.41 mL, 1.83 mmol, 

25 % in H2O) and NH4F (100 mg, 0.37 mmol) in bidistilled H2O (21.7 g, 1.21 mol) was added 

and the resulting reaction mixture was stirred vigorously (700 rpm) for 30 min while cooling 

down to room temperature. Afterwards, TEOS (18.2 mg, 92 µmol) and MPTES (18.1 mg, 

92 µmol) were premixed briefly before addition to the reaction mixture. The final reaction 

mixture was stirred over night at room temperature. After dilution with absolute ethanol 

(100 mL), the nanoparticles were collected by centrifugation (19,000 rpm, 43,146 rcf, 20 min) 

and redispersed in absolute ethanol. Template extraction was performed in an ethanolic 

solution of MSNs (100 mL) containing NH4NO3 (2 g) which was heated at reflux conditions 

(90 °C oil bath) for 45 min. This was followed by a second extraction step (90 mL absolute 

ethanol and 10 mL hydrochloric acid (37 %)) under reflux conditions for 45 min (the material 

was washed with absolute ethanol after each extraction step and collected by centrifugation); 

finally the particles were redispersed in absolute ethanol and stored as colloidal suspension. 

Synthesis of sulfonamide-functionalized MSNs (MSN-phSA). For the covalent attachment 

of a sulfonamide derivative to the external particle surface, a thiol-reactive linker was 

synthesized. 6-maleimidohexanoic acid N-hydroxysuccinimide ester (mal-C6-NHS, 10 mg, 

33 µmol) was dissolved in DMF (500 µL, dry) and was added to an ethanolic solution 
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(15 mL) containing 4-(2-aminoethyl)benzene sulfonamide (6.7 mg, 33 µmol). The resulting 

reaction mixture was stirred for 1 h at room temperature. Afterwards, thiol-functionalized 

silica nanoparticles (MSN-SH, 100 mg) in absolute ethanol (10 mL) were added and the 

mixture was stirred over night at room temperature. Subsequently, the particles were collected 

by centrifugation (19,000 rpm, 41,146 rcf, 20 min), washed twice with absolute ethanol and 

were finally redispersed in ethanol (15 mL) to obtain a colloidal suspension. 

Cargo loading and particle capping. MSNs (MSN-phSA, 1 mg) were immersed in an 

aqueous solution of fluorescein (1 mL, 1 mM), DAPI (500 µL, 14.3 mM) or Actinomycin D 

(500 µL [14 v% DMSO], 140 µM) and stirred over night or for 1 h, respectively. After 

collection by centrifugation (14,000 rpm, 16,837 rcf, 4 min), the loaded particles were 

redispersed in a HBSS buffer solution (1 mL) containing carbonic anhydrase (1 mg) and the 

resulting mixture was allowed to react for 1 h at room temperature under static conditions. 

The particles were thoroughly washed with HBSS buffer (4 times), collected by centrifugation 

(5,000 rpm, 2,200 rcf, 4 min, 15 °C), and finally redispersed in HBSS buffered solution. 

Click chemistry of norbornene-containing hCA. MSNs (MSN-phSA, 0.5 mg) were 

immersed in 500 µL HBSS buffer solution and 0.5 mg norbornene-containing hCA were 

added. In the meantime, 2.5 µg tetrazin p-benzylamine (DMSO stock solution, 0.92 mg/mL) 

and 0.41 mg NHS-PEG2000-FA were mixed in 100 µL HBSS and stirred overnight in the dark 

at room temperature. The solutions were mixed afterwards and stirred for two hours, washed 

several times and redispersed in 1 mL HBSS buffer. Subsequently, 1 µL Atto633mal (DMF 

stock solution, 0.5 mg/mL) was added and the mixture was stirred for 1 hour. The particles 

were thoroughly washed with HBSS buffer (4 times), collected by centrifugation (5,000 rpm, 

2,200 rcf, 4 min, 15 °C), and finally redispersed in HBSS buffered solution. 
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Synthesis of Knorb. The norbornene containing amino acid Knorb was synthezised as 

described in Ref.
29

 

Mutagenesis of pACA_HCA H36amber. Adapted from Ref. 
30

 with permission from The 

Royal Society of Chemistry. The amber codon (TAG) was introduced into the expression 

vector pACA_HCA
31

 at position His36 of the human carbonic anhydrase II gene by blunt end 

site directed mutagenesis using the primers forward HCA H36amber and reverse HCA 

H36amber (see Table 5-2). 

Name Sequence 

forward HCA 

H36amber 

5’phosph GTT GAC ATC GAC ACT TAG ACA GCC AAG TAT 

GAC 

reverse HCA 

H36amber 
5’phosph AGG GGA CTG GCG CTC TCC CTT GG 

Table 5-2. Sequences of the used primers for the generation of expression vector pACA_HCA H36amber. 

The introduced Amber codon is shown in bold. 

Expression of norbornene-containing HCA. Adapted from Ref.
30

 with permission from The 

Royal Society of Chemistry. The expression vector pACA_HCA H36 amber was transformed 

together with pACyc_pylRS Norb, 3xpylT
29

 which contains the genes of the triple mutant of 

PylRS and three copies of pylT in E. coli BL21(DE3) cells (NEB). 1 L of LB medium 

containing 34 mg/L chloramphenicol, 100 mg/L carbenicillin and 2 mM norbornene amino 

acid Knorb was inoculated with 10 mL of an overnight culture. The cells were stirred at 37 °C 

until an OD600 of 0.9. At this optical density 1 mM ZnSO4 and 0.1 mM IPTG were added to 

induce the expression of the HCA H36amber gene. After further 10 h at 37 °C the cells were 

harvested and stored at -20 °C until further use. The harvested cells were resuspended in 

washing buffer (25 mM Tris; 50 mM Na2SO4; 50 mM NaClO4; pH 8.8) and disrupted by 

French Press procedure. The supernatant of the centrifuged lysate was used for sulfonamide 
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affinity protein purification using an ÄKTA purifier system. The self-packed 3 mL column of 

p-Aminomethylbenzenesulfonamide-Agarose resin (Sigma-Aldrich, A0796) was equilibrated 

with washing buffer. After binding (0.75 mL/min) of the protein solution, the column was 

washed with 7 column volumes of washing buffer. HCA was eluted by lowering the pH by 

elution buffer (100 mM NaOAc; 200 mM NaClO4; pH 5.6). The protein containing fractions 

were combined, analyzed by SDS-PAGE, dialyzed against water and lyophilized. Typical 

yields of the pure norbornene amino acid Knorb containing protein HCA H36Knorb were 

20 mg/L expression medium.  

Tryptic digestion and MS/MS of norbornene-containing HCA. Adapted from Ref. 
30

 with 

permission from The Royal Society of Chemistry. The sequence of HCA II is shown in Table 

5-3. Position His36 which was chosen for the incorporation of amino acid Knorb is shown in 

red. The peptide generated after tryptic digestion is emphasized in bold letters. Figure 5-8 

shows the corresponding MS/MS spectrum. Table 5-4 shows the expected and identified 

MS/MS fragments of the relevant tryptic peptide. 

Table 5-3. Amino acid sequence of HCA II.  

 10  20  30  40  50  60  

MAHHWGYGKH NGPEHWHKDF PIAKGERQSP VDIDTHTAKY DPSLKPLSVS YDQATSLRIL  

 

 70  80  90 100 110 120  

NNGHAFNVEF DDSQDKAVLK GGPLDGTYRL IQFHFHWGSL DGQGSEHTVD KKKYAAELHL  

 

 130 140 150 160 170 180  

VHWNTKYGDF CKAVQQPDGL AVLGIFLKVG SAKPGLQKVV DVLDSIKTKG KSADFTNFDP  

 

 190 200 210 220 230 240  

RGLLPESLDY WTYPGSLTTP PLLESVTWIV LKEPISVSSE QVLKFRKLNF NGEGEPEELM  

 

 250 260  

VDNWRPAQPL KNRQIKASFK 
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Figure 5-8. MS/MS spectrum of the tryptic peptide QSPVDIDTXTAK (X = 4). Parent ion: [M+2H]2+calc. 

= 726.8829, [M+2H]2+obs. = 726.8807 (ΔM = 3 ppm). 

 

#1 b⁺ Seq. y⁺ #2 

1 129.06586 Q  12 

2 216.09789 S 1324.69949 11 

3 313.15066 P 1237.66746 10 

4 412.21908 V 1140.61469 9 

5 527.24603 D 1041.54627 8 

6 640.33010 I 926.51932 7 

7 755.35705 D 813.43525 6 

8 856.40473 T 698.40830 5 

9 1134.56774 X 597.36062 4 

10 1235.61542 T 319.19761 3 

11 1306.65254 A 218.14993 2 

12  K 147.11281 1 

Table 5-4. Expected and identified MS/MS fragments of the tryptic peptide QSPVDIDTXTAK 

(X = Knorb). Identified fragments are shown in red for b ions and blue for y ions. 

Synthesis of Anandamide-tetrazine. Chemicals were purchased from Sigma-Aldrich, Fluka 

or Acros and used without further purification. Solutions were concentrated in vacuo on a 

Heidolph rotary evaporator. The solvents were of reagent grade and purified by distillation. 
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Chromatographic purification of products was accomplished using flash column 

chromatography on Merck Geduran Si 60 (40-63 μM) silica gel (normal phase). Thin layer 

chromatography (TLC) was performed on Merck 60 (silica gel F254) plates. Visualization of 

the developed chromatogram was performed using fluorescence quenching or staining 

solutions. 
1
H and 

13
C NMR spectra were recorded in deuterated solvents on Bruker ARX 300, 

Varian VXR400S, Varian Inova 400 and Bruker AMX 600 spectrometers and calibrated to the 

residual solvent peak. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, br. = broad. ESI spectra and high-resolution ESI spectra 

were obtained on the mass spectrometers Thermo Finnigan LTQ FT-ICR. IR measurements 

were performed on Perkin Elmer Spectrum BX FT-IR spectrometer (Perkin Elmer) with a 

diamond-ATR (Attenuated Total Reflection) setup. Repetencys are given in cm-1. The 

intensities are abbreviated as follows: vs (very strong), s (strong), m (medium), w (weak), vw 

(very weak).  
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Figure 5-9. Synthesis of anandamide-tetrazine 4. a) 1. TFA, DCM, 0°C; 2. DIPEA, HATU, HOBt, DMF, 

RT, 42% b) 1. TFA, DCM, 0°C; 2. arachidonic acid, DIPEA, HATU, HOBt, RT, 46%. 

tert-butyl (4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)benzyl)carbamate (1) was synthesized 

according to the procedures described by Willems et al. 

2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azanonadecan-19-oic acid (2) was synthesized 

like from Shirude et al described.  

 

tert-butyl (3-oxo-1-(4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)-5,8,11,14-tetraoxa-2-

azahexadecan-16-yl)carbamate (3) 
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tert-butyl (4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)benzyl)carbamate (1) (162 mg, 

0.160 mmol) was dissolved in 6.4 mL DCM and cooled to 0°C before TFA (1.6mL) were 

added. After 45 min the solvent was removed in vacuo and the resulting residue was used in 

the next reaction without further purification.  

2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azanonadecan-19-oic acid (2) (228 mg, 

0.649 mmol, 2.5 eq.) was diluted in 3.77 mL dry DMF and HATU (119 mg, 0.312 mmol, 

1.2 eq.), HOBt (102 mg, 0.780 mmol, 3 eq.) and finally DIPEA (0.192 mL, 0.780 mmol, 

3 eq.) were added. After 10 min the deprotected tetrazinamine (0.068 mg, 0.260 mmol, 1 eq.) 

was added and the reaction was stired over night at RT. The reaction was diluted with DCM 

and the washed with water and brine before the combined organic phases were dried over 

MgSO4 and the solvent was removed in vacuo. The residue was purified by column 

chromatography (silica, DCM/EtOAc/MeOH, 5:5:1) to obtain the 3 as violet oil (66.0 mg, 

0.110 mmol, 42%). 

Rf = 0.22 (CH2Cl2/EtOAc/MeOH, 5:5:1). 

1
H-NMR (600 MHz, CDCl3): δ [ppm] = 9.11 (d, 

3
J = 4.9 Hz, 2H, 2xC-Harom), 8.68 (d, 

3
J = 8.4 Hz, 2H, 2xC2-Harom), 7.59 – 7.54 (m, 1H, C-Harom), 4.61 (d, 

3
J = 6.2 Hz, 2H, Ar-CH2-

NH), 4.12 – 4.08 (m, 2H, C=O-CH2-O), 3.73 – 3.50 (m, 14H, tetraethylene glycol 7x CH2), 

3.47 (t, 
3
J = 5.1 Hz, 2H, CH2-NH), 1.40 (s, 9H, 

3xCH3-tBu). 

13
C-NMR (150 MHz, CDCl3): δ [ppm] = 164.57, 163.32, 159.82, 159.81, 158.62, 129.33, 

128.77, 122.68, 70.62, 70.36 (Tetraethylenglykol 7 x CH2), 42.76 (Ar-CH2-NH), 28.64 (CH3-

tBu). 

HR-MS (ESI): [M+Na]
+
 calc.: 621.2755, found: 621.2763. 
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FT-IR (ATR, cm
-1

): 3336 (br, w), 2921 (w), 1702 (m), 1676 (m), 1610 (m), 1563 (m), 1529 

(m), 1434 (m), 1380 (vs), 1250 (m), 1144 (m), 1113 (m), 844 (s).  

14-((5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenamido)-N-(4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-

3-yl)benzyl)-3,6,9,12-tetraoxatetradecanamide (4) 

 

 

tert-Butyl (3-oxo-1-(4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)-5,8,11,14-tetraoxa-2-

azahexadecan-16-yl)carbamat (3) (66.0 mg, 0.1103 mmol) was solved in 1.15 mL DCM and 

0.3 mL TFA was added. After 45 min the solvent was removed in vacuo and the resulting 

residue was used in the next step without further purification.  

Arachidonic acide (54.6 µmol, 166 µmol, 1.5 eq.) was dissolved in 0.7 mL dry DMF and 

HATU (50.3 mg, 132 µmol, 1.2 eq.), HOBt (44.7 mg, 331 µmol, 3 eq.) and DIPEA (56,3 µL, 

332 µmol, 3 eq.) were added. After 10 min the deprotected amine (55.0 mg, 110 µmol, 

1 Äquiv.), dissolved in 0.6 mL dry DMF, was added and the reaction was steered for 2h at 

RT. The reaction was diluted with DCM and washed with saturated NH4Cl-solution. After 

drying of the combined organic phases over MgSO4 and removing of the solvent in vacuo, the 

residue was purified by column chromatography (silica, 

iHex/EtOAc, 1:1 → DCM/EtOAc/MeOH, 10:10:1). 4 was received as violet oil (39,6 mg, 

50,6 µmol, 46%). 

Rf = 0.72 (CH2Cl2/EtOAc/MeOH, 2:2:1). 
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1
H-NMR (600 MHz, CDCl3): δ [ppm] = 9.11 (d, 

3
J = 4.8 Hz, 2H, C-Harom), 8.67 (d, 

3
J = 8.4 Hz, 2H, 2xC3‘-Harom), 7.59 – 7.54 (m, 1H, C5-Harom), 5.43 – 5.23 (m, 8H, 8xCH), 

4.61 (d, 
3
J = 6.2 Hz, 2H, Ar-CH2-NH), 4.11 – 4.02 (m, 2H, C=O-CH2-O), 3.73 – 3.36 (m, 

18H, tetraethylene glykole 8xCH2, CH2-NH), 2.82 – 2.72 (m, 6H, 3xC-H2arach), 2.18 – 2.12 

(m, 2H, CH2arach), 2.09 – 1.99 (m, 4H, 2xC-H2arach), 1.67 (q, 
3
J = 7.5 Hz, 2H, C-H2arach), 1.37 – 

1.20 (m, 6H, 3xC-H2arach), 0.86 (t, J = 7.0 Hz, 3H, C-H3arach).  

13
C-NMR (100 MHz, CDCl3): δ [ppm] = 173.38 , 170.64, 164.54, 163.27, 159.72 (Cq), 

158.64 (2xCarom), 129.35 (CH), 129.33 (2xC), 128.90, 128.81, 128.74, 128.43, 128.38, 

128.06, 127.72 (7xCH), 126.95, 122.75 (Carom), 71.30, 70.65, 70.60, 70.47, 70.34, 70.13 

(Tetraethylenglykol 8xCH2), 42.73 (CH2-NH), 39.40, 36.21 (Carach), 31.72 (Carach), 29.92 

(Carach), 27.43 (Carach), 26.91 (Carach), 25.85 (Carach), 25.83 (Carach), 25.74 (Carach), 22.79 (Carach), 

14.30 (Carach).  

HR-MS (ESI): [M+H]
+
 calc.: 785.4709, found: 785.4727. 

FT-IR (ATR, cm
-1

): 3311 (m), 2923 (s), 1555 (s), 1413 (s), 1103 (s). 

Click chemistry of norbornene-containing hCA with anandamide tetrazine. MSNs 

(MSN-phSA, 0.5 mg) were loaded in 500 µL of calcein solution (1 mM) for 1 h. The loaded 

particles were collected by centrifugation (14,000 rpm, 16,837 rcf, 4 min) and 500 µL HBSS 

buffer solution was added. After addition of 0.5 mg norbornene-containing hCA the particles 

were redispersed and stirred for 1 h. Then, 5 µg anandamide tetrazine (DMSO stock solution, 

2 mg/mL) were added and stirred for 1 h respectively. The particles were thoroughly washed 

with HBSS buffer (4 times), collected by centrifugation (5,000 rpm, 2,200 rcf, 4 min, 15 °C), 

and finally redispersed in 500 µL HBSS buffered solution. 

Cell Culture. HeLa cells were grown in Dulbecco’s modified Eagle’s medium (DMEM):F12 

(1:1) (lifeTechnologies) with Glutamax I medium and KB cells in folic acid deficient Roswell 
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Park Memorial Institute 1640 medium (RPMI 1640, lifeTechnologies), both supplemented 

with 10 % fetal bovine serum (FBS) at 37 °C in a 5 % CO2 humidified atmosphere. The cells 

were seeded on collagen A-coated LabTek chambered cover glass (Nunc). For live cell 

imaging the cells were seeded 24 or 48 h before measuring, at a cell density of 2x104 or 

1x104 cells/cm
2
. The FGF-2 and EGF dependant neural stem cell line ENC1 was derived 

from E14 mouse embryonic stem cells and cultured as described.
32

 ENC1 cells were 

maintained in gelatine coated flasks and propagated in a 1:1 mixture of Knockout-DMEM 

(Life Technologies) and Ham’s F-12 (Sigma) supplemented with 2 mM GlutaMAX-I (Life 

Technologies), 100 U/ml penicillin (Sigma), 100 mg/ml streptomycin (Sigma) 1% N2 and 20 

ng/ml each of mouse recombinant FGF-2 and EGF (Peprotech). N2 supplement was produced 

in house as described, with the exception that Insulin was of human origin (Sigma I9278) 

instead of bovine. Stem cells were seeded on ibidi 8-well µ-slides.  

In vitro Cargo Release. Cells were incubated 7 – 24 h prior to the measurements at 37 °C 

under a 5% CO2 humidified atmosphere. Shortly before imaging, the medium was replaced by 

CO2-independent medium (Invitrogen). During the measurements all cells were kept on a 

heated microscope stage at 37 °C. The subsequent imaging was performed as described in the 

spinning disk confocal microscopy section. 

Endosomal compartment staining. To stain the early/late endosome or the lysosome with 

GFP, commercially available CellLight© staining from lifeTechnologies was used . The cells 

were simultaneously incubated with MSNs and the BacMam 2.0 reagent. The concentration 

of the labeling reagent was chosen with 25 particles per cell (PCP) of the BacMam 2.0 reagent 

(cf. staining protocol 
33

). For incubation, the cells stayed at 37 °C under 5% CO2 humidified 

atmosphere for 21 – 24 h till the measurement. 
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Caspase-3/7 staining. For apoptosis detection commercially available CellEvent™ Caspase-

3/7 Green Detection Reagent was used. A final concentration of 2.5 µM Caspase-3/7 reagent 

and 0.5 µg/mL Hoechst 33342 were added to the cells for 30 min and imaging was performed 

without further washing steps. 

Uptake studies. The functionality of the folic acid targeting ligand was evaluated in a 

receptor competition experiment. For this purpose, one part of the KB cells was pre-incubated 

with 3 mM folic acid, to block the receptors, for 2 h at 37 °C under a 5% CO2 humidified 

atmosphere. Then the KB cells were incubated with particles for 2/5/8 h at 37 °C under a 5% 

CO2 humidified atmosphere. For staining the cell membrane, the cells were incubated with a 

final concentration of 10 μg/mL wheat germ agglutinin Alexa Fluor 488 conjugate for one 

minute. The cells were washed once with CO2-independent medium and imaged. For stem 

cell uptake studies cells were seeded the day prior to incubation. They were incubated for 2 h 

with free anandamide-tetrazine at a final concentration of 10 µg/ml. After 2 h 15 µg of 

particles were added and incubated for another 2 h. Then, the cells were washed 3x with 

medium containing growth factors and if preincubated free anandamide-tetrazine and 

incubated until imaging. Immediately before imaging, cells membranes were stained using 

cell mask deep red (lifetechnologies) and washed with medium.  

Spinning disc confocal microscopy. Confocal microscopy for live-cell imaging was 

performed on a setup based on the Zeiss Cell Observer SD utilizing a Yokogawa spinning 

disk unit CSU-X1. The system was equipped with a 1.40 NA 100x Plan apochromat oil 

immersion objective or a 0.45 NA 10x air objective from Zeiss. For all experiments the 

exposure time was 0.1 s and z-stacks were recorded. DAPI and Hoechst 33342 were imaged 

with approximately 0,16 W/mm
2
 of 405 nm, GFP was and the caspase-3/7 reagent were 

imaged with approximately 0.48 W/mm
2
 of 488 nm excitation light. Atto 633 was excited 
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with 11 mW/mm
2
 of 639 nm. In the excitation path a quad-edge dichroic beamsplitter 

(FF410/504/582/669-Di01-25x36, Semrock) was used. For two color detection of 

GFP/caspase-3/7 reagent or DAPI/Hoechst 33342 and Atto 633, a dichroic mirror (560 nm, 

Semrock) and band-pass filters 525/50 and 690/60 (both Semrock) were used in the detection 

path. Separate images for each fluorescence channel were acquired using two separate 

electron multiplier charge coupled device (EMCCD) cameras (PhotometricsEvolveTM). 
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5.6 Appendix 

 

 

Figure S 5-1. a) Transmission electron micrograph of thiol-functionalized MSNs (MSN-SH). b) Small-

angle X-ray diffraction pattern of MSN-SH (black) and MSN-phSA (red). c) Thermogravimetric analysis 

of MSN-SH (black), MSN-phSA (red), and MSN-phSA-CA (green). 

TEM images of thiol-functionalized MSNs are depicted in Figure S 5-1 and display mostly 

spherically shaped particles with a radially disposed worm-like structure of the mesopores. 

The mesoporous structure is also confirmed by the first-order reflection of the mesoporous 

material observed with small-angle X-ray diffraction (XRD) (Figure S 5-1c). The amount of 

attached organic moieties on the MSNs was investigated by thermogravimetric analysis, 

showing an additional weight loss of about 14 % after attachment of CA (TGA, Figure S 

5-1b). MSN-phSA particles show an additional weight loss of 3 % in the range between 130 

and 900 °C due to the attachment of the benzene sulfonamide linker and enzyme-coated 

MSNs (MSN-phSA-CA) feature a relatively high additional weight loss compared to sample 

MSN-SH (+14 % at 900 °C). Apparently, degradation of the carbonized enzymes occurs only 

at very high temperatures, and is not even finished at 900 °C. This was already observed 

before for thermogravimetric analysis of enzyme-coated MSNs. 
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Figure S 5-2. Fluorescence microscopy of HeLa cells incubated with Atto 633-labeled MSN-phSA-CA 

(red) after a) 24 h on GFP-early endosome (green) tagged cells, b) 21 h incubation on GFP-late endosome 

(green) tagged cells, and c) 21 h on GFP-lysosome (green) tagged cells. Co-localization (yellow) could be 

primarily observed for late endosomes and lysosomes (indicated with arrows) suggesting that the 

multifunctional MSNs are located in acidic compartments after endocytosis. The scale bar represents 10 

µm. 

In order to verify the fate of our drug delivery vehicles ending up in acidic cell compartments, 

co-localization experiments with labeled MSNs and endosomes or lysosomes were performed. 

Simultaneous with particle incubation, the HeLa cells were transfected with a BacMam 

reagent in order to express different fusion-constructs of green fluorescent protein (GFP) and 

early/late endosome or lysosome markers, respectively. After 24 h of incubation with 

fluorescently labeled nanoparticles, almost no co-localization (yellow) between early 

endosomes and MSNs could be observed, as can be seen in Figure S 5-2a. In contrast, 

multiple yellow spots indicating co-localization between GFP (green) and MSNs (red) were 

clearly visible in the case of late endosomal and lysosomal staining after 21 h (Figure S 

5-2b/c, denoted by arrows). This shows that the localization of our nanocarriers in an acidic 

compartment is crucial to initiate cargo release. 
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Figure S 5-3. Fluorescence microscopy of neural stem cells incubated with calcein-labeled MSN-phSA-CA 

(green) after 24h a) incubated with anandamide-targeted MSN-phSA-CA, b) pretreated with free 

anandamide-tetrazine and incubated with anandamide targeted MSN-phSA-CA afterwards c) incubated 

with control MSN-phSA-CA without anandamide. Cell membranes are stained with cell mask deep red. 

The scale bar represents 10 µm. 

To test targeting of anandamide functionalized particles neural stem cells were treated with 

anandamide functionalized particles. As control, cells were pretreated with free anandamide-

tetrazine and incubated with anandamide particles after 2 h of pretreatment. Another control 

was performed with control particles without anandamide functionalization. After two hours 

of particle incubation all cells were washed with medium. Already a few hours after 

incubation anandamide-particles were observed to stick to the cells in large amounts whereas 

particles without anandamide did not show this behavior. After 24h anandamide-targeted 

particles were successfully taken up into the cells. Cells that were incubated with control 

particles or preincubated with anandamide did not show as much particle uptake (Figure S 

5-3).  
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Figure S 5-4. Fluorescence microscopy of A431 cells incubated with Atto633-labeled MSN-phSA-CA (red) 

after 3h a) incubated with anandamide-targeted MSN-phSA-CA, b) pretreated with free inhibitors and 

incubated with anandamide targeted MSN-phSA-CA afterwards. Cell membranes are stained with 

CellMask orange (green).  

To test the targeting of cannabinoid receptors with anandamide-functionalized particles on 

A431 cells, the receptors were either blocked or free corresponding to the folate-based 

experiments. The functionality was evaluated in a receptor competition experiment. For this 

purpose, one part of the A431 cells was pre-incubated with 10 µL of an inhibitor mixture 

(1 mg/mL anandamide-tetrazine in DMSO, 1 mg/mL folic acid), to block the receptors, for 

4 h at 37 °C under a 5% CO2 humidified atmosphere. Then the A431 cells were incubated 

with 5 µg MSN-phSA-CA-Anandamide particles for 3 h at 37 °C under a 5% CO2 humidified 

atmosphere. For staining the cell membrane, the cells were incubated with CellMask orange 

(0.05%) for 1 min. The cells were washed three times with PBS, fresh medium was added and 

subsequently the cells were imaged. Clearly an enhanced receptor-mediated cell uptake can be 

seen when the cannabinoid receptors are available on the cell surface.  
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Figure S 5-5. MTT assay on HeLa cells with MSN-phSA-CA and MSN-phSA-CA+AmD (according to 

Figure 5). Incubation time was 24 h. 

 

For MTT-Assays we seeded 5000 HeLa cells per well containing 100 μL of the respective 

medium and treated them with MSN-pHSA-CA and MSN-pHSA-CA+AmD 24h after 

seeding. After 24 h of incubation the cells were washed three times with PBS buffer. 100 μL 

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 0.5 mg/mL in 

DMEM) was added to each well of the nanoparticle-treated cells and incubated for further 2 

h. Unreacted MTT and medium were removed and the 96-well plates were stored at -80 °C 

for at least 1 h. Then, 100 μL DMSO was added to each well. The absorbance was read out by 

a Tecan plate reader. All studies were performed in triplicates. 
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6 Applicability of avidin protein coated mesoporous silica 

nanoparticles as drug carriers in the lung 

This chapter is based on the following publication: 

Sabine van Rijt, Deniz Bölükbas, Christian Argyo, Karina Wipplinger, Mariam Naureen, 

Stefan Datz, Oliver Eickelberg, Silke Meiners, Thomas Bein, Otmar Schmid, Tobias Stöger, 

Nanoscale, 2016, 8, 8058 – 8069. 

 

Abstract 

Mesoporous silica nanoparticles (MSNs) exhibit unique drug delivery properties and are thus 

considered as promising candidates for next generation nano-medicines. In particular, 

inhalation into the lungs represents a direct, non-invasive delivery route for treating lung 

disease. To assess MSN biocompatibility in the lung, we investigated the bioresponse of 

avidin-coated MSNs (MSN-AVI), as well as aminated (uncoated) MSNs, after direct 

application into the lungs of mice. We quantified MSN distribution, clearance rate, cell-

specific uptake, and inflammatory responses to MSNs within one week after instillation. We 

show that amine-functionalized (MSN-NH2) particles are not taken up by lung epithelial cells, 

but induced a prolonged inflammatory response in the lung and macrophage cell death. In 

contrast, MSN-AVI co-localized with alveolar epithelial type 1 and type 2 cells in the lung in 

the absence of sustained inflammatory responses or cell death, and showed preferential 

epithelial cell uptake in in vitro co-cultures. Further, MSN-AVI particles demonstrated 

uniform particle distribution in mouse lungs and slow clearance rates. Thus, we provide 

evidence that avidin functionalized MSN (MSN-AVI) have the potential to serve as versatile 

biocompatible drug carriers for lung-specific drug delivery. 
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The following experiments have been performed as a joint project: The nanoparticle 

synthesis, characterization and stabilization experiments were performed by Christian Argyo 

and Stefan Datz. The in vitro and in vivo studies were performed in the Comprehensive 

Penumology Center (CPC) in Munich. The study functions as the groundwork for the 

targeting experiments in the upcoming Chapter 7. 

6.1 Introduction 

In the past decades, the use of nanoparticles as inert carriers for therapeutic agents has 

revolutionized the field of drug delivery research. Several nanoscale drug delivery systems, 

especially non-functionalized particle formulations, have been approved by the FDA and 

European Medicines Agency for treatment of cancer.
1
 Nanocarriers offer major improvements 

such as increased bio-availability of the incorporated agent, site specificity, and the ability to 

overcome multi-drug resistance.
2, 3

 Particularly, mesoporous silica nanoparticles (MSNs) are 

novel drug carriers with unique properties, such as high loading capacity with tunable pore 
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sizes and volumes for transport of a wide variety of cargo molecules.
4
 Importantly, these 

particles can be selectively functionalized at specific sites within their structure. For example, 

the particle core offers a site for covalent attachment of fluorescent dye molecules for particle 

tracking in biological studies.
5
 In addition, the surface of the MSNs can be selectively 

modified to introduce controlled drug release functions for optimized drug delivery.
4
 For 

example, in our recent work we developed mesoporous silica nanoparticles with protease-

responsive avidin caps for controllable drug release in lung tumour areas.
6
 Due to the tight 

sealing of the mesopores by the avidin caps and the selective cleavage of these caps at high 

protease concentrations found in lung tumours, these drug carriers were able to efficiently 

release a combination of chemotherapeutic drugs in vitro and ex vivo (mouse and human) with 

high tumour-selectivity. Other interesting examples of functionalized MSNs that have shown 

in vivo effectiveness include MSNs functionalized with PEG chains,
7
 folic acid,

8
 or 

transferrin.
9
 Due to their unique properties, MSNs have been considered as promising 

candidates for next generation nano-medicines.
10

 However, before these carriers can be used 

in the clinic, their biocompatibility needs to be proven. Although MSNs are generally 

considered to be biocompatible, several reports suggest that their bioresponse is strongly 

affected by their size,
11

 shape,
12

 porosity,
13

 and surface chemistry.
11, 14

 In addition, the 

administration route has been found to play an important role for their biodistribution and 

bioresponse.
15

 Encouragingly, in vivo toxicity studies on different types of MSNs 

administered using several application routes, indicate that the use of these particles is safe for 

drug delivery purposes
16-20

, however, not many of these studies deal with the applicability of 

MSNs directly in the lung. 

Direct application of nanoparticles into the lung (i.e. inhalation therapy) would be beneficial 

for treatment of (chronic) lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic 



Introduction 

210 

 

obstructive pulmonary disease (COPD) and asthma, as drugs are directly administered in the 

target organ. This is advantageous because high local doses at the site of disease (lung) can be 

accomplished allowing for high efficacy combined with low prevalence of side effects. 

Moreover, in contrast to oral administered delivery, inhaled drugs bypass the gastrointestinal 

tract and the liver, avoiding problems associated with drug degradation in these organs and/or 

stability in blood circulation. Moreover, pulmonary application of drugs presents a non-

invasive route for systemic delivery of drugs, since the huge surface area of the alveolar lung 

epithelium (ca. 100 m
2
) presents an effective portal of entry into the blood stream. Many drug 

delivery materials such as polymers are commonly accepted as biocompatible for systemic 

applications, but some have shown to develop adverse cytotoxic and pro-inflammatory 

properties in the lungs and seem therefore not suited for direct application into the lung.
21

 

Moreover, the inflammatory potential of nanoparticles is especially relevant for the treatment 

of inflammatory lung diseases such as COPD and asthma, as the additional inflammation 

caused by drug delivery particles could lead to worsening of the symptoms. 

Here, we investigated the suitability of direct application of avidin-capped MSNs in the lung, 

namely their distribution, clearance rate, cell specific uptake, and the inflammatory response 

induced over the course of one-week time. For that purpose, single high doses (20 or 

100 µg/mouse) of avidin-capped MSNs (MSN-AVI) were instilled in adult BALB/c mice, and 

their bioresponse after 1, 3, and 7 days was studied. To analyse the impact of the avidin 

protein coating, we also included non-protein coated MSNs containing propyl amines on the 

outer shell (MSN-NH2) in the study. Labelling of the particle core with a fluorescent dye 

(ATTO 633) allowed for whole lung dosimetry as well as cell specific particle tracking in 

lung cryo-sections and cytospins of bronchoalveolar lavage fluid (BALF) recovered cells. 

Moreover, supporting studies using in vitro cell cultures were performed. This provided 

evidence that MSNs capped with avidin are significantly more biocompatible than amino 
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functionalized MSNs as proven by analyses of their inflammation and toxicity profiles, 

biodistribution, and cell specific internalization rates, and thus hold potential for use in future 

lung disease therapy. 
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6.2 Results and Discussion 

Pulmonary inflammation analyses 

In vivo inflammatory cell recruitment into the airspace was first assessed by BAL differential 

cell count. Total BAL cell numbers were not significantly different from sham control (PBS) 

at day 1, but increased at day 3 for 100 µg of MSN-AVI and at day 7 for 100 µg of MSN-NH2 

particles (Figure 6-1A). These changes are mainly related to the increases in macrophage 

numbers, which in general represent the majority of BAL leukocytes (Figure 6-1C). A 

particular severe inflammatory response was detected by the acute increase of 

polymorphonuclear neutrophils (PMNs): after 1 day of treatment with the high dose (100 µg) 

of MSN-NH2 particles giving rise to 60% of total BAL cells (Figure 6-1B, Table 6-1). The 

same treatment with MSN-AVI particles also resulted in a distinct PMN influx into the 

airspace; however, comparatively less pronounced to what was observed for the MSN-NH2 

particles (33% of total BAL cells, Figure 6-1B). This almost 2 fold higher PMN influx into 

the alveolar airspace at day 1 after instillation for MSN-NH2 compared to MSN-AVI particles 

indicates an improved biocompatibility of the MSN surface due to avidin capping. In addition, 

for both particle types, a time-dependent resolution of the neutrophilic inflammation was 

noted, but only for the MSN-AVI particles inflammation had completely resolved after 7 days 

(Figure 6-1B), further indicating improved biocompatibility for MSN-AVI.  

In line with that, only MSN-NH2 instillation resulted in macrophage accumulation in the 

airspace from day 3 to day 7 (Figure 6-1C, Table 6-1) as well as the formation of giant cells 

(multinucleated macrophages, Figure 6-1D, Table 6-1), both of which are signs for chronic 

inflammation and foreign body response.
27

 Lymphocyte numbers remained below 2,000 

(<0.5% of total BAL cells) for all conditions investigated (Figure S 6-3C).  
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Table 6-1. Summary of the inflammatory effects of MSN-NH2 and MSN-AVI in BAL at 1, 3 and 7 days 

after instillation. In addition, an overview of the collected cytokine parameters is given. 

a
 HCC= home cage control animals (non-treated mice) 

b
PBS= 100 µL PBS instilled mice (vehicle/sham control)  

 Instilled 

amount 

(µg)  

PMN cell 

count x 

10
3
(%)  

Macrophages 

cell count x 10
3
 

(%)  

Multinucleated 

macrophages cell 

count x 10
3
 (%) 

Detected cytokines 

1 d HCC
a
 

PBS
b
 

MSN-AVI 

MSN-AVI 

MSN-NH2 

- 

- 

20 

100 

100 

0.2 (0) 

7.9 (1.6) 

9.2 (2) 

183 (33) 

326 (60) 

280 (100) 

491 (98) 

444 (98) 

363 (66) 

131 (29) 

0.1 (0) 

0.6 (0.1) 

0.1 (0) 

0.5 (0.1) 

0 (0) 

- 

- 

- 

CXCL5, CXCL1 

CXCL5, CXCL1, 

CCL2, IL-1β, TNF-α 

3 d MSN-AVI 

MSN-NH2 

100 

100 

35 (5) 

65 (11) 

644 (95) 

511 (88) 

1.9 (0.3) 

3.4 (0.6) 

CXCL5, CXCL1 

CXCL5, CXCL1, 

TNF-α 

7 d MSN-AVI 

MSN-NH2 

100 

100 

2 (0.4) 

34 (4.3) 

581 (99) 

751 (95) 

0.9 (0.2) 

5.2 (0.7) 

CXCL5 

CXCL5 
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Figure 6-1. BAL cell analysis and cytokine release in BALF at three time points after MSN instillation into 

Balb/c mice. Bronchoalveolar lavage (BAL) cells were counted and dead cells were discriminated by 

Tryphan blue staining; differentiation was analyzed by May-Grünwald staining. Total BAL cell count is 

shown in A, total neutrophil numbers in B, macrophage numbers in C, and multinucleated macrophages 

in D. Release of cytokines was measured in bronchoalveolar lavage fluid (BALF) for each animal in each 

group, interleukin-1 beta (IL-1β) is shown in E, TNF-α is shown in F, monocyte chemotactic protein 1 

(CCL2) is shown in G, Cxcl1 is shown in H, and Cxcl5 is shown in I. Values are indicated as mean ± SD, 

n=6, asterisks represent significance compared to PBS control groups (100 µL PBS instilled animals) with 

*** p<0.001, ** p<0.01, * p<0.05. HCC = home cage control (non-treated animals). 



6. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in 

the lung  

 

215 

 

Inflammation caused by MSN-NH2 was further assessed on the molecular level by BALF 

cytokine profiling, assessing IL-1β, and TNF-α as the major pro-inflammatory master 

cytokines, CCL2 as classical monocyte/macrophage and CXCL1 and CXCL5 as the most 

relevant neutrophil chemoattractants. Treatment with MSN-NH2 caused the highest pro-

inflammatory cytokine response; 1 day after treatment yielded high levels of all cytokines 

investigated (Figure 6-1 E-I). BALF levels of the two master cytokines for inflammation, IL-

1β and TNFα, were high during the acute phase after MSN-NH2, but not after MSN-AVI 

treatment and returned to baseline levels by day 7 (Figure 6-1 E, F). Levels of chemokine 

CCL2, a monocyte attractant, correlated rather with PMN than macrophage numbers and were 

highest 1 day after MSN-NH2 treatment (Figure 6-1G), where the lowest macrophage 

numbers were detected. This argues for significant macrophage cell death during the acute 

phase after MSN-NH2 instillation, causing a depletion of the alveolar macrophage pool 

uncompensated by the high levels of the CCL2 monocyte/macrophage attractant. The 

concentrations of the functional murine IL-8 homologues, CXCL1 and -5 (Figure 6-1 H, I) 

correlated well with the number of BAL PMNs (Figure 6-1B) and showed accordingly higher 

levels for MSN-NH2 than MSN-AVI treated lungs. Elevated levels of the epithelial derived 

CXCL5 at day 7 could be interpreted as a sign for prolonged epithelial pro-inflammatory 

response to MSN particles, however similar levels are observed for untreated controls at day 

1, thus questioning a physiological relevance. No evidence for inflammation was detected at 

the lower dose of 20 µg MSN-AVI per mouse, suggesting 1 mg/kg as a safe dose for 

pulmonary applications for this particle type.  

The impact of the particle characteristics, agglomeration state, zeta-potential and specific 

surface area are of particular interest for the development of safe nanocarrier systems for 

pulmonary drug delivery. Recently, an indirect correlation between the agglomerate size of 
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instilled particles and the acute inflammatory response was described for different dispersions 

of nickel-oxide nanoparticles with size distributions ranging from 100 nm to 4 µm.
28

 Based on 

their findings the authors argued that the reduced biologically accessible surface area of 

poorly dispersed suspensions might be limiting the bioactivity and toxicity of the instillation 

delivered nanoparticles. High zeta-potential of nanoparticle dispersions are generally 

appreciated for their enhanced stability, but have also been associated with increased toxicity 

and inflammation.
29, 30

 As opposed to this broad rule, we show an improved biocompatibility 

for MSN-AVI preparations characterized by low agglomerate size and even higher zeta-

potential as compared to the MSN-NH2 material. The particle surface of crystalline silica (i.e. 

quartz), is well known to induce lung inflammation (silicosis) upon inhalation. Toxicity has 

also been shown for some non-crystalline (amorphous) silica particles when applied directly 

in the lung, although highly dependent on size, surface and preparation route of the silica 

particles. 
31

 The release of IL-1 from pulmonary macrophages is described as a central 

mechanism triggering their toxicity in the lung.
32

 In agreement with the latter, the highest 

levels of IL-1β release, and inflammatory cell accumulation were detected for MSN-NH2 

particles, where the silicate particle surface area is not coated and hidden by the basically 

charged glycoprotein, avidin. The observation of an increased inflammatory response for 

MSN-NH2 compared to MSN-AVI particles suggests that the partially exposed silica surface 

of the MSN-NH2 particles, but not the avidin protein covered surface, induces inflammation. 

The MSN-NH2 particles have a large BET surface area of 1150 m²/g and a negative zeta 

potential of -30 mV, while MSN-AVI particles have a BET surface area of only 90 m²/g and a 

zeta potential of 30 mV (measured at pH = 7).
6
 This dramatic difference in accessible surface 

area and charge indicates that the avidin protein covers the surface of the MSN, thus 

significantly changing the surface characteristics of the particles. Further analysis of the 

MSN’s incubated with isolated mouse lung alveolar lining fluid (BALF) revealed that MSN-
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NH2 particles form a significantly larger protein corona compared to MSN-AVI particles 

(Figure S 6-3D). This may be explained by the partially exposed silica surface of the MSN-

NH2 particles, compared to the already protein-coated MSN-AVI particles. This result 

highlights that MSN’s coated with a protein corona do not behave similarly compared to 

MSN particles that have a protein coat that is covalently attached to the surface of the particle. 

Interestingly, when instilling 100 µL of MSN-NH2 or non-functionalised MSNs (with 

hydroxyl groups on the surface; nonMSN) into mice, we observed that nonMSN cause 

significantly less acute inflammation (pulmonary PMNs influx) compared to MSN-NH2 after 

24 h (Table 6-1). Both particles have a large BET surface area arguing against surface area as 

major driver of toxicity in this case. It is possible that the amine groups are responsible for the 

increased inflammatory effect. Similarly, polystyrene particles with outer NH2 groups have 

been reported to be more toxic then their hydroxyl counterparts.
36-38

 In addition to their 

differential functionalities, our observations may also be explained by the fact that MSN-NH2 

particles form larger agglomerates (about 1000 nm) compared to MSN-AVI and nonMSN 

particles (about 200 nm) after only a few hours in suspension (Figure S 6-3A). Large 

agglomerates (bigger than 400 nm) are more effectively phagocytized by macrophages than 

endocytosed by epithelial cells.
39

 In addition, the formation of a larger protein corona on 

MSN-NH2 particles compared to the MSN-AVI (Figure S 6-3) may also contribute to 

enhanced bio-activity and even to the observed increased macrophage particle uptake for the 

MSN-NH2. Size-dependent nanoparticle uptake has been observed previously in lung 

macrophage and epithelial cells.
40

 All in all, our data suggests that avidin protein modified 

MSNs are safe to use for lung application at 1mg/kg dose and induce a minor inflammatory 

response at 5mg/kg dose that completely resolved after 7 days.  
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Cytotoxicity analysis 

The toxic effects of the two particle types in the mouse model were investigated with 

cytospins of bronchoalveolar lavage (BAL) cells and on lung cryo-sections (from non-lavaged 

mice) using immunofluorescence staining. For this approach, cells and tissues were stained 

with an apoptotic cell marker (cleaved caspase-3, green signal in Figure 6-2A). The MSNs, 

covalently labelled with ATTO 633 dye, could easily be recognised in both the cytospins and 

the cryo-sections (red signal in Figure 6-2A). Exposure to high doses of MSN-AVI particles 

did not cause any significant apoptotic toxicity in BAL cells, compared to the vehicle/sham 

control (PBS instilled mice) or the low dose of MSN-AVI (Figure 6-2A upper panel, controls 

are shown in Figure S 6-4). Significant apoptosis, however, could be observed for BAL cells 

exposed to MSN-NH2 particles, which did not subside 7 days after exposure (Figure 6-2A 

lower panel). Neither particle type induced any distinguishable toxicity in lung cryo-sections 

of the lavaged lungs (Figure 6-2A, right panel). Furthermore, particle uptake and burden of 

the macrophages correlated with increased apoptosis marker staining (Figure 6-2B). 

Macrophage MSN particle internalization was confirmed with phalloidin staining in confocal 

microscopy, showing actin (green) encapsulated MSN agglomerates (Figure 6-2C). In 

addition, in in vitro exposure experiments of the three major cell types of the lung supported 

our in vivo observation; only for MSN-NH2 showed significant cytotoxicity towards MH-S 

murine alveolar macrophage cells, whereas no effect was observed in murine lung epithelial 

(MLE-12) or fibroblast (CCL-206) cell lines at high doses for either material (Figure 6-2D). 

In line with that, also no structural changes of the alveolar microarchitecture could be 

observed in paraffin lung sections due to particle exposure (Figure S 6-4B).  
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Figure 6-2. Cytotoxicity assessment of MSN-AVI and MSN-NH2 particles. A) Toxicity of MSN-AVI or 

MSN-NH2 particles in Balb/c mice after instillation with 100 µg for 1, 3, or 7 days, analyzed from 

cytospins of BAL cells (left) and lung cryo-slices (right). Cell nuclei are shown in blue (DAPI), ATTO 633 

labelled MSNs are shown in red, and the apoptotic marker (cleaved caspase-3) is shown in green. B) 

Toxicity of MSN-NH2 in Balb/c mice exposed to 100 µg for 7 days in cytospins of BAL recovered cells 

using a 63 x objective; high particle loading correlates with toxicity. The apoptotic marker (cleaved 

caspase-3) is shown in green. Yellow staining (in A and B) is due to overlap of MSNs (red) and apoptotic 

cells (green). C) MSN uptake in macrophages after 1 day exposure to, from left to right, 100 µL PBS, 100 

µg MSN-AVI or MSN-NH2 (cytoskeleton labelled with phalloidin, green), D) Cytotoxicity of MSN-AVI 

and MSN-NH2 particles as determined by MTT assay in MH-S, MLE-12, and CCL-206 cells after 16 h of 
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exposure. Values are indicated as mean ± SD, n=3, asterisks represent significance with * p<0.05. Scale 

bar is 20 µm. 

In accordance with our pulmonary inflammation analysis, the MSN-NH2 particles appear to 

cause selective macrophage toxicity, but no toxicity in lung parenchyma or in epithelial and 

fibroblast cell lines. It seems therefore likely that a phagocytic uptake of the large MSN-NH2 

agglomerates is required to generate the cytotoxic response while non-professional 

phagocytes might be spared from the harmful effects of non-avidin coated MSNs. In 

summary, the nanoparticle coating appears to be crucial for their inflammatory and toxic 

response in the lung, where protein coating enhances biocompatibility. 

 

Pulmonary dose and clearance of MSNs  

The pulmonary dose of MSN-AVI particles at the three time points was determined by 

quantifying the fluorescent signal of the particles in three pulmonary compartments, namely 

homogenized lung tissue (after BAL), BAL fluid (BALF) and BAL cells. Using gravimetric 

analysis of the instillation wear prior and after instillation, we determined that 87.8 ± 3.5 µg 

and 17.6 ± 0.6 µg of the nominally applied 100 µg and 20 µg MSN dose was delivered to the 

lungs, respectively. It is important to note that while the absolute pulmonary dose (in µg) 

determines the toxicological (and pharmacological) response, the pulmonary clearance 

(removal) and biodistribution of particles is typically expressed in terms of relative dose, i.e. 

pulmonary dose normalized to applied dose (here: 87.8 or 17.6 µg). For the following, we 

refer to the pulmonary dose as the relative dose. As seen in Figure 6-3A, the pulmonary dose 

slowly decreased from 80.1% of the applied dose at day 1 to 55.5 % at day 7, indicating 

relatively slow clearance kinetics (for both 20 and 100 µg MSN doses), which can be 

attributed to macrophage clearance from the alveolar surface.
39

 By fitting the measured total 

lung dose to an exponential function (relative dose = 0.851e
-0.061t

, where t represents time in 
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units of days), the alveolar clearance half time was determined as 8.7 days. During this period, 

the MSN dose decreased by 50% corresponding to an average clearance rate of 5.7 % per day. 

Consequently, we found a relatively high retention of MSN-AVI particles in pulmonary tissue 

at day 7 after instillation (56% of the applied dose). When extrapolating the exponential fit 

curve to t = 0 (time point of MSN application), one obtains a relative dose of 0.851, i.e. 

macrophage clearance can only account for 85.1% of the actually applied dose. The residual 

14.9% can be attributed to a faster clearance mechanism known as mucociliary clearance 

from the bronchial region, which is typically completed within 1d after application.
39

  

The phagocytic clearance of MSNs was also studied on cytospins of BAL cells by counting 

the amount of MSN agglomerates larger than 1 µm (the smallest detectable cross sectional 

area) per nuclei on cytospins (i.e. the amount of >1 µm MSN agglomerates over the total 

amount of counted nuclei per image). After 1 day, more agglomerates of MSN-AVI could be 

observed in the BAL compared to MSN-NH2 (Figure 6-3C). The ratio of estimated MSN 

agglomerates per nuclei showed a transient increase at day 3 which declined again by day 7 

after treatment (Figure 6-3D). The observed difference in clearance rate may be explained by 

the fact that at day 1 the number of macrophages in MSN-NH2 treated lungs had declined to 

about one third of MSN-AVI treated mice due to the pronounced phagocyte toxicity of MSN-

NH2. However, the macrophage number recovered to similar levels of MSN-AVI treated mice 

at the later time points (Figure 6-1C).  
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Figure 6-3. Pulmonary dose and clearance of MSNs in the lungs of Balb/c mice up to seven days after 

particle instillation. A) Temporal decrease of pulmonary dose (normalized to applied dose) and derived 

exponential clearance kinetics of MSN-AVI particles up to day 7 (n=3). B) MSN-AVI particle distribution 

in lung tissue and BAL over time (n=3). C) MSN-AVI and MSN-NH2 particles (red) distribution in BAL 

cells (nuclei DAPI staining,blue) after 1 day. D) Quantification of particle clearance in BAL cells depicted 

as the number of MSN agglomerates (larger than 1µm) per counted nuclei (n=3 animals, 2 images per 

animal). E) MSN-AVI particles (red) in BAL recovered cells with macrophage marker co-staining 

(MAC3, green). Cell nuclei are shown in blue (DAPI), ATTO 633 labelled MSNs are shown in red. Scale 

bar is 20 µm. 

Particle uptake specifically by alveolar macrophages was confirmed, by counterstaining with 

a macrophage marker (MAC3, green channel). All detected MSN-AVI were found in 

macrophage marker positive cells with round nuclei, but not in 
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polymorphonuclear neutrophils, thus significant uptake by other BAL cells could be excluded 

(Figure 6-2E). The type A scavenger receptor MARCO (macrophage receptor with 

collagenous structure) has been described to function as an important receptor of alveolar 

macrophages mediating the interaction with unopsonized particles such as silica or bacteria.
41

 

Since the expression of MARCO is restricted to subpopulations of tissue macrophages and 

particularly high in spleen marginal zone, resident peritoneal, and alveolar macrophages but is 

low in monocyte derived macrophages,
42

 the choice of cells studied is very important. Surface 

modification, such as by avidin might reduce the interaction of MSN particles with these 

scavenger receptors and thus effect a rapid phagocytosis and related clearance by alveolar 

macrophages. In summary, MSN-AVI particles showed the bimodal lung clearance kinetics 

(i.e. slow alveolar macrophage clearance, and fast mucociliary clearance from the bronchial 

region) which is typical for particle removal from the lungs.
39

 The MSN-AVI had a slow 

clearance kinetics which is particularly promising for pulmonary therapy as it increases the 

residence time and hence the bioavailability of the encapsulated drugs. 

 

Particle distribution in the lung 

The distribution of MSNs in the lungs was assessed by preparing cryo-sections of (non-

lavaged) lungs, which were analysed by immunofluorescence. ATTO 633 labelled MSNs 

could easily be detected by confocal microscopy on 14 µm thick lung cryo-sections (red 

channel, Figure 6-4A). The MSNs were distributed evenly over the tissue, also reaching the 

alveolar region of the lung. Furthermore, the nanoparticles showed widespread and significant 

accumulation in the lungs for at least 7 days, confirming our previous dosimetry findings 

(Figure 6-4A, Figure S 6-5).  
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Figure 6-4. MSN distribution in mouse lungs up to 7 days after particle instillation. A) Lung cryo-slices of 

Balb/c mice exposed to 100 µg MSN-AVI for 1, 3, or 7 days with phalloidin co-staining (upper panel) and 

the same images showing only MSNs (lower panel, MSNs are shown in white to increase the contrast). 

Lung cryo-slices of Balb/c mice exposed to B) 100 µg MSN-AVI for 1 day (left) and 7 days 

(right)(arrowheads represent locations of MSN-AVI) and C) 100 µg MSN-NH2 for 1 day, D) 100 µg MSN-

AVI with epithelial cell type 1 co-staining (T1α, green) for 1 day (left) and 7 days (right), and E) 100 µg 

MSN-AVI with epithelial cell type 2 co-staining (pro-SPC, green) for 1 day (left) and 7 days (right). Cell 
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nuclei are shown in blue (DAPI), ATTO 633 labelled MSNs are shown in red. Images are representative 

images for n=4 animals. Scale bar is 20 µm. 

After 1 day, many particle agglomerates could be observed, while after 3 and 7 days, fewer 

but bigger MSN-AVI agglomerates remained (Figure 6-4A lower panel). High magnification 

images indicated that a fraction of the MSN-AVI particles remained on the epithelium, 

evidence of which was still present after 7 days (Figure 6-4B, Figure S 6-5). In contrast, only 

limited evidence was obtained that MSN-NH2 particles were taken up by epithelial cells. In 

fact, when investigating cryo-sections at higher magnifications, we mainly observed 

macrophage uptake of MSN-NH2 particles (Figure 6-4C). Furthermore, z-stack images of 

non-phagocytized MSN-NH2 particles revealed that these nanoparticles appear to associate 

with the tissue rather than being internalized into the cells (Figure 6-4C, right panel). 

Counterstaining the cryo-sections with epithelial type I and II cell markers, podoplanin (T1α) 

and pro-surfactant associated protein C (Pro-SPC), respectively, revealed that MSN-AVI 

particles are internalized by epithelial lung cells (Figure 6-4D, E and Figure S 6-4) as 

confirmed by confocal z-stack imaging (Figure 6-5A). To investigate the cell specific uptake 

further, we prepared co-cultures of a murine alveolar macrophage cell line (MH-S) and an 

alveolar epithelial cell line (MLE-12) to study the fate of the particles in an in vitro model. 

Clearly distinguishable cell populations could be observed by fluorescence-activated cell 

sorting (FACS) analysis excluding leakage of the dye to the other cell type at the studied 

time-points (Figure S 6-7). Co-cultures indeed showed enhanced MSN-AVI particle uptake in 

epithelial cells compared to macrophage cell uptake (Figure 6-5B, left panel). In contrast, 

MSN-NH2 particles showed almost exclusively uptake in macrophages in the same co-culture 

set-up (Figure 6-5B, right panel). 
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Figure 6-5. Cellular uptake comparison of MSN-AVI and MSN-NH2. A) Z-stack images (63x objective) of 

cryo-slices of Balb/c mice exposed to MSN-AVI for 1 day after instillation, co-stained with alveolar 

epithelial cell type 1 (ATI) marker (T1α, left image) and alveolar epithelial cell type 2 (ATII) marker (pro-

SPC, right image) in green. DAPI staining in blue, scale bar is 20 µm. B) Representative (of n=3) FACS 

histograms of co-cultures of MH-S and MLE-12 cells, showing differential cell uptake of MSN-AVI and 

MSN-NH2 particles. MSN particles (labelled with Alexafluor 488) uptake could be quantified by gating 

MLE-12 DiD labelled cell population (630 nm) and non-labelled MH-S cell population. 

In summary, cell type specific immunostainings revealed that MSN-NH2 particles are 

preferentially internalized by macrophages in vivo and in vitro and that this leads to 

macrophage cytotoxicity. In contrast, MSN-AVI particles were - in addition to being 

phagocytically cleared by macrophages - also efficiently internalized by alveolar epithelial 

type 1 and type 2 cells, as investigated in lung tissue cryo-sections. Moreover, MSN-AVI also 

showed higher uptake in epithelial cells compared to macrophage cell uptake in an in vitro co-
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culture model. Previous studies have shown that cellular uptake of MSNs is highly dependent 

on surface charge, surface modifications, and is cell type-specific.
43, 44

 Furthermore, several in 

vitro studies have shown that the cell uptake of MSNs is cell-type-, dosage- and time-

dependent.
45, 46

 Interestingly, it has been reported that amination of MSN particles prevents 

particle endocytosis in T-lymphocyte cells (Jurkat) and in a human neuroblast cell 

line.
44,39

 These findings highlight the importance of outer surface modifications and their 

interactions with different cell types, but also that avidin coating may be a good strategy to 

overcome issues related to macrophage uptake and particle toxicity. 

6.3 Conclusion 

In this study, we investigated the relevance of avidin-capped MSNs (MSN-AVI) for 

pulmonary therapy by looking at their pulmonary distribution, clearance rate, cell specific 

uptake, and induction of inflammatory response after direct (intratracheal) instillation in the 

lungs of mice. In a recent publication we showed that these particles are promising carriers for 

lung cancer therapy as they could release a combination of drugs efficiently and tumor-

selectively in in vitro and in human and mouse ex vivo lung tissue.
6
 Since MSNs allow for 

multiple functionalizations, which have been found to be important for their bioresponse, we 

also included non-capped (only amino-functionalized; MSN-NH2) particles in this study. We 

show that MSN avidin surface modification had an effect not only on toxicity, but also on cell 

specific uptake and tissue distribution in the lungs. In particular, non-capped (MSN-NH2) 

particles were found to be cytotoxic to macrophages, caused an enhanced inflammatory 

response, and were hardly taken up by epithelial cells. In contrast, MSN-AVI particles co-

localized with alveolar epithelial type 1 and type 2 cells in the lung tissue and showed 

preferential epithelial cell uptake in in vitro co-cultures. These findings, in combination with 
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the low surface specific toxicity, wide distribution of the particles in the mouse lungs and 

slow clearance rate is promising for the treatment of chronic lung diseases such as COPD, 

IPF, and lung cancer, where (alveolar) epithelial cells play an important role in the 

pathogenesis. Moreover, the inflammatory potential of drug delivery particles is most critical 

in inflammatory lung diseases such as asthma and COPD, due to additive effects leading to 

worsening of the symptoms. In this context, the observation that the dose of 1 mg/kg of MSN-

AVI did not cause any detectable inflammatory response is particularly promising for 

treatment of these devastating lung diseases. Thus, we believe that avidin-coated MSNs offer 

potential for inhalative application as therapeutic drug carriers in chronic lung diseases. In 

addition, the finding that surface modifications greatly affect toxicity and cell type specific 

uptake highlights the importance of these types of studies for future development of 

nanomedicines.
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6.4 Experimental Part 

Materials. Core-shell functionalized MSNs containing thiol groups in the core and propyl 

amines on the shell (MSN-SHinNH2,out), avidin coated MSNs (MSN-AVI) and outer shell non-

functionalised MSN particles (nonMSN) were synthesized as previously reported.
5, 6

 

Characterisation of the MSN-SHinNH2,out, and MSN-AVI can be found in the SI. Details on 

the synthesis and characterization of non-functionalised MSNs can be found in the SI. The 

MSNs suspended in bi-distilled water feature BET surface areas of 1150 m
2
/g (MSN-NH2) 

and 90 m
2
/g (MSN-AVI), zeta-potentials of -30 mV (MSN-NH2) and +30 mV (MSN-AVI) at 

pH 7.4, and diameter of 106±9 nm (MSN-NH2) and 164±15 nm (MSN-AVI). The cores of the 

MSNs were covalently labelled with ATTO 633 dye and the outer surface contained either 

NH2 groups (MSN-NH2) or avidin protein (MSN-AVI) covalently attached to the MSNs 

through a peptide linker. Further details on the synthesis and characterization of the MSNs 

can be found in the supplementary details. 

Cleaved caspase-3 antibody (Asp175) (Cell signaling, 9661), T1α antibody (R&D, AF3244), 

Pro-SPC antibody (Millipore, AB3786), MAC3 antibody (BD biosciences, BD 550292), were 

used as received. Bi-distilled water was obtained from a Millipore system (Milli-Q Academic 

A10). The mouse cell lines, MH-S (murine alveolar macrophages), MLE-12 (murine lung 

epithelial cells), and CCL-206 (murine lung fibroblasts) were obtained from ATCC 

(American Type Culture Collection, Manassas, USA). The MLE-12 cell line was maintained 

in RPMI 1640 medium (Gibco, Life Technologies); the MH-S cell line was maintained in 

RPMI 1640 medium supplemented with 1 mM Na-pyruvate, 10 mM HEPES, and 50 µM 2-

ME (all AppliChem). The CCL-206 cell line was maintained in DMEM-F12 medium (Gibco, 

Life Technologies). All media were supplemented with 10% FBS (Biochrom) and 1% 
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penicillin/streptomycin (Life Technologies). All cells were grown at 37 °C in a sterile 

humidified atmosphere containing 5% CO2. 

Study design. The nanoparticles were instilled into Balb/c mice (20 or 100 µg) and after 1, 3, 

or 7 days the lungs were excised (n=10 per group). Characterisation of the MSN dispersion 

over time was performed to assess the agglomeration of the nanoparticles in cell culture 

medium (RPMI supplemented with FCS). MSN-NH2 particles of 100 nm primary size 

agglomerated after 1 hour to form microparticles of about 1 µm, while MSN-AVI particles 

agglomerated to a much lesser extent (Figure S3A). It is important to note that the particles 

were instilled into the mouse lungs as a homogeneous mixture by vortexing before application 

(i.e. minimal agglomeration had taken place). Four lungs were directly prepared for cryo-

slicing. An additional six mice were used for bronchoalveolar lavage (BAL); BAL fluid 

(BALF) was collected and separated into cells and supernatant by centrifugation. In addition, 

BAL recovered cells on cytospins were prepared for all mice for differential cell count. 

Furthermore, the lavaged lungs and the BAL were used for dosimetry analyses (see Figure 

S3B for a scheme of the experimental set-up). 

MTT assay. The MTT assay was performed to assess cell viability after exposure to the 

MSNs in vitro. Briefly, 14 x 10
3
 MLE-12 cells/well and 7 x 10

3
 MH-S or CCL-206 cells/well 

were seeded in 96-well plates. 24 h after seeding, cells were exposed to 10, 50, 100, 250, or 

500 µg/mL of MSN-NH2 or MSN-AVI particles for 16 h. After treatment, 10 µL of freshly 

prepared solution of 5 mg thiazolyl blue tetrazolium bromide/mL PBS (Sigma) was added to 

each well, and the cells were incubated at 37 °C for 1 h. The supernatant was then aspirated, 

and the violet crystals were dissolved in 500 µL isopropanol + 0.1% Triton X-100 (both 

AppliChem). Absorbance was measured at 570 nm, using a Tristar LB 941 plate-reader 

(Berthold Technologies). Experiments were done in triplicate. Data analyses were performed 

in Prism GraphPad (version 5.0) software. All values are shown as mean with standard 
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deviation. For comparison of two groups, a one-way ANOVA was performed. A p-value 

lower than 0.05 was considered statistically significant. 

Co-culture experiments. MLE-12 cells were labelled with VybrantDiD (Thermo Fisher 

Scientific, Germany) before they were seeded, according to the procedure described by 

Burguera et al.
22

 Briefly, MLE-12 cells were incubated for 20 min with 5 µL/mL of 

VybrantDiD. The labelled cells were washed three times with their respective medium and 4 

x10
5
 cells/well were seeded in 6-well plates and incubated for 12 h. After incubation, 2 x10

5
 

MH-S cells/well were seeded in the same 6-well plates and incubated for 4 h. 50 µg/mL 

MSN-AVI or MSN-NH2 was added to the wells and the plate was incubated for 16 h. The 

cells were then trypsinised, washed three times with PBS, and finally suspended in 700 µL of 

PBS. Samples were then analysed by flow cytometry (BD LSRII). MSN uptake in the 

different cell types was quantified by gating the labelled MLE-12 cells and non-labelled MH-

S cells using the APC-A channel (Figure S5), and analysing the particle signal (FITC channel) 

in each gated cell population. 

Animal experiments. Animal experiments were carried out according to the German law of 

protection of animal life and were approved by an external review committee for laboratory 

animal care. 8-12 week-old female BALB/cAnNCrl mice (Charles River Laboratories, 

Sulzfeld, Germany) were intratracheally instilled, as described by Stoeger et al.
23

 1, 3, or 7 d 

post-instillation mice were sacrificed with an overdose of ketamine (188.3 mg/kg body 

weight) and xylazin hydrochloride solution (4.1 mg/kg body weight) (bela-pharm, Germany) 

and their blood was retro-orbitally collected for further investigation. The lungs of 6 mice 

were lavaged with PBS buffer (37 ºC), as previously described.
24

 Cytocentrifuged slides of 

spun down lavaged cells were prepared for cell differentiation, after staining with May-

Grünwald dye. For each mouse two slides were used for cell differentiation counting (200 

cells/slide). Two additional sets of BAL cell cytospins were frozen at -80°C for subsequent 
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confocal microscopy analyses. Lavaged lungs were then isolated and frozen for whole lung 

fluorescence analysis as described below. Four non-lavaged mice lungs from each group were 

excised and prepared for cryo-slicing and immunofluorescent staining. 

Cytokine release. In this study, secretions of five cyto-/chemokines (IL-1β, TNF-α, CXCL1, 

CXCL5, and CCL2) were investigated by ELISA analyses performed with the BAL (DuoSet 

ELISA, R&D Systems, Inc., Minneapolis, USA). The assay was performed as previously 

described.
25

 

Histological preparations. After treatments, four mice from each group were anesthetised 

and sacrificed as aforementioned for histological analyses. Following intubation and 

diaphragm dissection, lungs were perfused via the right ventricle with sodium chloride 

solution (Braun Vet Care, Germany). Airways were filled with Neg-50™ frozen section 

medium (Fisher Scientific) at room temperature. Later, the tracheae were knotted, the lungs 

were excised and transferred into cryomolds (Thermo Scientific) loaded with Neg-50™. 

Samples were left to freeze on dry ice and then stored at -80 °C. 14 µm thick cryo-sections 

were sliced with the cryostat (Carl Zeiss Hyrax C 50) and placed on superfrost ultra plus 

adhesion slides (Thermo Scientific). Immunofluorescence stainings were performed as 

described below. For hematoxylin and eosin staining, the lungs were placed in 4% (w/v) 

paraformaldehyde and processed for paraffin embedding. The deparaffinised 3 µm thick 

sections were stained with hematoxylin and eosin (both Carl Roth, Germany) subsequently, 

and dehydrated respectively in consecutively grading ethanol and xylene solutions (both 

AppliChem, Germany). Dried slides were mounted in entellan (Merck, Germany). 

Immunofluorescence analyses. Lung cryo-sections or cytospins of BAL recovered cells 

were fixed with methanol 70 vol% solution for 10 min, washed with PBS, blocked with 

Roti®-ImmunoBlock (Carl Roth, Germany) for 1 h at room temperature, and incubated with 

primary antibody at 4 °C overnight. Afterwards, lung cryo-sections were washed with PBS, 
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incubated with Alexafluor 488 secondary antibody for 2 h at room temperature, again washed 

with PBS and finally stained with DAPI (Sigma-Aldrich). In case phalloidin staining (Life 

Technologies) was used, lung cryo-sections were incubated with a mixture of phalloidin and 

DAPI for 30 min at room temperature directly after the fixation and washing step. Stained 

lung cryo-sections were mounted using fluorescence mounting medium (DAKO, USA) and 

analysed using confocal microscopy (LSM710, Carl Zeiss, Germany).  

Dosimetry. As the core of the MSNs was labelled with ATTO 633, both the BAL fluid and 

the lavaged lung tissue were analysed for MSN dosimetry based on quantitative fluorescence 

analysis at three time points (1d, 3d, 7d). While aliquots of the thawed supernatant of the 

centrifuged BAL could be sampled directly, an aliquot of the cell pellet of the BAL was 

resuspended in 200 µL PBS, vortexed and further diluted with PBS to yield 1000 µL of 

sample. The lavaged lung tissue was homogenized according to the following protocol. A 

defined volume of PBS (1200 µL minus liquid content of the lung approximated by 1 mg of 

lung tissue corresponding to 1 µL) was added to the tissue samples. The samples were 

mechanically homogenized with a high-performance disperser (T10 basic ULTRA-

TURRAX®) at room temperature until no tissue pieces were visible anymore (ca. 3-5 min 

with short breaks to avoid undue heating of the samples). Residual tissue was rinsed off the 

disperser using 300 μL of PBS. Samples were vortexed immediately prior to pipetting four 

50 μL aliquots (quadruple determination) from each of the samples in a black 96-well plate 

for quantitative fluorescence analysis with a standard multiwell plate reader (Tecan Safire 2; 

bandwidth of optical filters: 7 nm; excitation and emission wavelength: 630 nm and 650-

670 nm (average of 650 nm, 660 nm and 670 nm), respectively). The fluorescence signals 

were related to the corresponding MSN mass using standard curves, which were prepared 

from the BAL and lung tissue of non-exposed mice according to the same protocol described 

above (cage control).  
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The dosimetric method presented here was validated using reference mice with a known 

pulmonary MSN dose as previously described.
26

 In brief, these reference mice received 

100 µL of the MSN-AVI suspension via intratracheal instillation and were sacrificed 

immediately after the procedure to avoid dose bias due to partial clearance of the applied 

MSN-AVI particles from the lung. The actually instilled volume of the MSN-AVI suspension 

was determined for each mouse by gravimetric analysis of the instillation wear prior and after 

instillation.
26

 The spectrophotometrically measured amount of MSN-AVI agreed with the 

applied amount of MSN-AVI within the expected experimental uncertainty of 15%. Finally, 

7d-incubation of MSN-AVI particles in the supernatant of the BAL and subsequent 

centrifugation revealed that no detectable amount of the fluorescent tracer (ATTO 633) was 

leaking out of the MSN-AVI. This is a prerequisite for reliable pulmonary dosimetry based on 

fluorescence analysis.  

Native gel (protein corona). To analyze the difference in protein corona formation with 

respect to the different functionalizations, we performed native PAGE after treating the MSNs 

with isolated mouse lungs alveolar lining fluid (BALF). 500µL of each MSN (-AVI or -NH2 

at a concentration of 1mg/mL) was centrifuged at 10,000 rpm and HBBS medium was 

removed, the pellet was resuspended in 500 µL mouse BAL. 500 µL of each MSN particle 

type in HBBS 1mg/mL was used as control. The samples were incubated at 37°C for 16 hours 

while gently shaking. After the incubation period, the samples were vortexed briefly followed 

by centrifugation at 18,000 rpm for 40 min at 15°C. The supernatant was removed and the 

remaining pellets were washed with PBS (centrifugation at 18,000 rpm for 40 min at 15°C 

after each wash). Finally, the pellet was dissolved in 50µL of PBS and run on a 10% native 

gel for 90 minutes at 100 V. The native gel was stained with page blue
TM

 and the whole gel 

was imaged using a ChemiDoc imaging system (Bio-rad). 
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Statistics. All values are presented as mean ± standard deviation (SD) of six animals per 

group (n=6), unless otherwise stated. Significant differences between two groups were 

evaluated by the unpaired two-tailed t-test with Welch’s correction. Statistical analysis was 

performed using the program GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA 

92037, USA). Quantification of nanoparticles in cryo-sections or on BAL cytospins was 

conducted using the IMARISx64 software (version 7.6.4, Bitplane, Switzerland). A p-value 

lower than 0.05 was considered statistically significant.
  



References 

236 

 

6.5 References 

1. C. M. Dawidczyk, C. Kim, J. H. Park, L. M. Russell, K. H. Lee, M. G. Pomper 

and P. C. Searson, J control release, 2014, 187, 133-144. 

2. C. A. Schutz, L. Juillerat-Jeanneret, H. Mueller, I. Lynch, M. Riediker and N. 

Consortium, Nanomedicine, 2013, 8, 449-467. 

3. S. H. van Rijt, T. Bein and S. Meiners, Eur Respir J, 2014, 44, 765-774. 

4. C. Argyo, V. Weiss, C. Bräuchle and T. Bein, Chem. Mater., 2013, DOI: 

10.1021/cm402592t. 

5. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J. Am. Chem. 

Soc., 2009, 131, 11361-11370. 

6. S. H. van Rijt, D. A. Bölükbas, C. Argyo, S. Datz, M. Lindner, O. Eickelberg, 

M. Koenigshoff, T. Bein and S. Meiners, ACS Nano, 2015. 

7. H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. 

Hyeon and D. H. Min, Small, 2012, 8, 1752-1761. 

8. J. Lu, Z. Li, J. I. Zink and F. Tamanoi, Nanomedicine: NBM, 2012, 8, 212-220. 

9. H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, Adv Mater, 2012, 

24, 755-761. 

10. Y. Chen, H. Chen and J. Shi, Adv Mater, 2013, 25, 3144-3176. 

11. Q. He, Z. Zhang, F. Gao, Y. Li and J. Shi, Small, 2011, 7, 271-280. 

12. X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen and F. Tang, ACS Nano, 

2011, 5, 5390-5399. 

13. Y. S. Lin and C. L. Haynes, J. Am. Chem. Soc., 2010, 132, 4834-4842. 

14. Y. Zhao, X. Sun, G. Zhang, B. G. Trewyn, Slowing, II and V. S. Lin, ACS 

Nano, 2011, 5, 1366-1375. 

15. O. Taratula, O. B. Garbuzenko, A. M. Chen and T. Minko, J Drug Target, 

2011, 19, 900-914. 

16. J. Lu, M. Liong, Z. Li, J. I. Zink and F. Tamanoi, Small, 2010, 6, 1794-1805. 

17. N. Kupferschmidt, X. Xia, R. H. Labrador, R. Atluri, L. Ballell and A. E. 

Garcia-Bennett, Nanomedicine, 2013, 8, 57-64. 

18. H. Vallhov, N. Kupferschmidt, S. Gabrielsson, S. Paulie, M. Stromme, A. E. 

Garcia-Bennett and A. Scheynius, Small, 2012, 8, 2116-2124. 

19. T. Yu, K. Greish, L. D. McGill, A. Ray and H. Ghandehari, ACS Nano, 2012, 

6, 2289-2301. 



6. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in 

the lung  

 

237 

 

20. S. P. Hudson, R. F. Padera, R. Langer and D. S. Kohane, Biomaterials, 2008, 

29, 4045-4055. 

21. A. Beyerle, A. Braun, A. Banerjee, N. Ercal, O. Eickelberg, T. H. Kissel and T. 

Stoeger, Biomaterials, 2011, 32, 8694-8701. 

22. E. F. Burguera, M. Bitar and A. Bruinink, Eur cells mater, 2010, 19, 166-179. 

23. T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg, B. Ritter, J. 

Heyder and H. Schulz, Environ. Health Perspect., 2006, 114, 328-333. 

24. O. M. Merkel, A. Beyerle, D. Librizzi, A. Pfestroff, T. M. Behr, B. Sproat, P. 

J. Barth and T. Kissel, Mol. Pharm., 2009, 6, 1246-1260. 

25. A. A. Gotz, A. Vidal-Puig, H. G. Rodel, M. H. de Angelis and T. Stoeger, Part 

Fibre Toxicol., 2011, 8, 28. 

26. N. Barapatre, P. Symvoulidis, W. Moller, F. Prade, N. C. Deliolanis, S. Hertel, 

G. Winter, A. O. Yildirim, T. Stoeger, O. Eickelberg, V. Ntziachristos and O. 

Schmid, J. Pharm. Biomed. Anal., 2015, 102, 129-136. 

27. J. M. Anderson, A. Rodriguez and D. T. Chang, Semin Immunol 2008, 20, 86-

100. 

28. T. Sager, M. Wolfarth, M. Keane, D. Porter, V. Castranova and A. Holian, 

Nanotoxicology, 2015, DOI: 10.3109/17435390.2015.1025883, 1-11. 

29. W. S. Cho, R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. Macnee, C. 

A. Poland, C. L. Tran and K. Donaldson, Toxicol. Sci., 2012, 126, 469-477. 

30. M. Simko, D. Nosske and W. G. Kreyling, Int J Environ Res Public Health 

2014, 11, 4026-4048. 

31. L. M. Costantini, R. M. Gilberti and D. A. Knecht, PLoS One, 2011, 6, 

e14647. 

32. W. J. Sandberg, M. Lag, J. A. Holme, B. Friede, M. Gualtieri, M. Kruszewski, 

P. E. Schwarze, T. Skuland and M. Refsnes, Part Fibre Toxicol., 2012, 9, 32. 

33. O. Schmid, W. Moller, M. Semmler-Behnke, G. A. Ferron, E. Karg, J. Lipka, 

H. Schulz, W. G. Kreyling and T. Stoeger, Biomarkers, 2009, 14 Suppl 1, 67-

73. 

34. T. Stoeger, O. Schmid, S. Takenaka and H. Schulz, Environ. Health Perspect., 

2007, 115, A290-291; author reply A291-292. 

35. V. Marzaioli, J. A. Aguilar-Pimentel, I. Weichenmeier, G. Luxenhofer, M. 

Wiemann, R. Landsiedel, W. Wohlleben, S. Eiden, M. Mempel, H. Behrendt, 



References 

238 

 

C. Schmidt-Weber, J. Gutermuth and F. Alessandrini, Int J Nanomedicine, 

2014, 9, 2815-2832. 

36. S. Bhattacharjee, D. Ershov, K. Fytianos, J. van der Gucht, G. M. Alink, I. M. 

Rietjens, A. T. Marcelis and H. Zuilhof, Part Fibre Toxicol., 2012, 9, 11. 

37. H. W. Chiu, T. Xia, Y. H. Lee, C. W. Chen, J. C. Tsai and Y. J. Wang, 

Nanoscale, 2015, 7, 736-746. 

38. P. Ruenraroengsak and T. D. Tetley, Part Fibre Toxicol., 2015, 12, 19. 

39. W. G. Kreyling, M. Semmler-Behnke, S. Takenaka and W. Moller, Acc. Chem. 

Res., 2013, 46, 714-722. 

40. D. A. Kuhn, D. Vanhecke, B. Michen, F. Blank, P. Gehr, A. Petri-Fink and B. 

Rothen-Rutishauser, Beilstein J. Nanotechnol., 2014, 5, 1625-1636. 

41. M. S. Arredouani, A. Palecanda, H. Koziel, Y. C. Huang, A. Imrich, T. H. 

Sulahian, Y. Y. Ning, Z. Yang, T. Pikkarainen, M. Sankala, S. O. Vargas, M. 

Takeya, K. Tryggvason and L. Kobzik, J. Immunol., 2005, 175, 6058-6064. 

42. S. Mukhopadhyay, Y. Chen, M. Sankala, L. Peiser, T. Pikkarainen, G. Kraal, 

K. Tryggvason and S. Gordon, Eur. J. Immunol., 2006, 36, 940-949. 

43. T. H. Chung, S. H. Wu, M. Yao, C. W. Lu, Y. S. Lin, Y. Hung, C. Y. Mou, Y. 

C. Chen and D. M. Huang, Biomaterials, 2007, 28, 2959-2966. 

44. Z. Tao, B. B. Toms, J. Goodisman and T. Asefa, Chem. Res. Toxicol., 2009, 

22, 1869-1880. 

45. J. L. Vivero-Escoto, Slowing, II, B. G. Trewyn and V. S. Lin, Small, 2010, 6, 

1952-1967. 

46. F. Tang, L. Li and D. Chen, Adv. Mater., 2012, 24, 1504-1534. 

 

  



6. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in 

the lung  

 

239 

 

6.6  Appendix 

Synthesis of MSN-SHcore-NH2,shell. Core-shell functionalized MSNs were synthesized using 

a similar method, as previously reported.  In brief, a mixture of tetraethyl orthosilicate (TEOS, 

1.63 g, 7.82 mmol), mercaptopropyl triethoxysilane (MPTES, 112 mg, 0.48 mmol) and 

triethanolamine (TEA, 14.3 g, 95.6 mmol) was heated under static conditions at 90 °C for 

20 min in a polypropylene reactor. Then, a solution of cetyltrimethylammonium chloride 

(CTAC, 2.41 mL, 1.83 mmol, 25 wt% in H2O) and ammonium fluoride (NH4F, 100 mg, 

2.70 mmol) in H2O (21.7 g, 1.21 mmol) was preheated to 60 °C, and added to the TEOS 

solution rapidly. The reaction mixture was stirred vigorously (700 rpm) for 20 min while 

cooling down to room temperature. Subsequently, TEOS (138.2 mg, 0.922 mmol) was added 

in four equal increments every three minutes. After another 30 min of stirring at room 

temperature, TEOS (19.3 mg, 92.5 µmol) and aminopropyl triethoxysilane (APTES, 20.5 mg, 

92.5 µmol) were added to the reaction. The resulting mixture was then allowed to stir at room 

temperature overnight. After addition of ethanol (100 mL), the MSNs were collected by 

centrifugation (19,000 rpm, 43,146 rcf, for 20 min) and re-dispersed in absolute ethanol. The 

template extraction was performed by heating the MSN suspension under reflux (90 °C, oil 

bath temperature) for 45 min in an ethanolic solution (100 mL) containing ammonium nitrate 

(NH4NO3, 2 g), followed by 45 min heating under reflux in a solution of concentrated 

hydrochloric acid (HCl, 10 mL) and absolute ethanol (90 mL). The mesoporous silica 

nanoparticles were collected by centrifugation and washed with absolute ethanol after each 

extraction step. 

Heptapeptide functionalisation (MSN-HP). Bio-PLLMWSR (HP-biotin, 90.1 %, 5.0 mg, 

4.0 µmol) was dissolved in 100 µL DMSO. The solution was diluted by addition of 400 µL 

H2O. Then, EDC (0.8 mg, 5.2 µmol) was added, and the reaction mixture was stirred for 
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5 min at room temperature. Subsequently, sulfoNHS (1 mg, 5.0 µmol) was added, and the 

reaction mixture was stirred for another 5 min at room temperature. This mixture was added 

to a suspension containing 50 mg of MSN-NH2 OUT in a total volume of 8 mL (EtOH:H2O 

1:1). The resulting mixture was then allowed to stir at room temperature overnight. The 

MSNs were thoroughly washed by EtOH and H2O (3 times) and finally collected by 

centrifugation (19,000 rpm, 43,146 rcf, 20 min). The HP-biotin functionalized MSNs were 

stored as colloidal suspension in absolute ethanol. 

 

Figure S 6-1. Characterisation of MSN-SHin-NH2,out, MSN-HP and MSN-AVI particles A) DLS 

measurements of functionalised MSNs in ethanol. B) Zeta potential of the different functionalisation 

stages. C) A stepwise attachment of the peptide linker followed by the addition of avidin on the outer 

periphery can be visualised by infrared spectroscopy. D) Nitrogen sorption isotherms show mesoporous 

pore structure and huge surface areas for MSNs. E) After addition of avidin the pores are sealed and no 

pore size distribution is visible. F) Thermogravimetric analysis (TGA) data show increasing amount of 

organic residues in different functionalisation steps. 

 Avidin coating (MSN-AVI). 1 mg of MSN-HP (in 500 µL HBSS buffer) was added to 

500 µL HBSS buffer containing 1 mg of avidin. The solution was mixed by 5 sec of vortexing 

and allowed to react for 30 min under static conditions at room temperature. The resulting 
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suspension was then centrifuged (5000 rpm, 2200 rcf, 4 min, 15 °C) and washed three times 

with HBSS buffer. The particles were finally re-dispersed in HBSS buffer and used in vitro 

and in vivo studies. 

For Atto633 labeling, 1 mg MSNs in 1 mL ethanol were reacted with 1 uL Atto633Mal for 12 

h. Afterwards the particles were washed three times with ethanol and resuspended in 1 mL 

HBSS buffer. 

Synthesis of unfunctionalised MSNs (unMSN). In brief, a mixture of tetraethyl orthosilicate 

(TEOS, 1.92 g, 9.22 mmol) and triethanolamine (TEA, 14.3 g, 95.6 mmol) was heated under 

static conditions at 90 °C for 20 min in a polypropylene reactor. Then, a solution of 

cetyltrimethylammonium chloride (CTAC, 2.41 mL, 1.83 mmol, 25 wt% in H2O) and 

ammonium fluoride (NH4F, 100 mg, 2.70 mmol) in H2O (21.7 g, 1.21 mmol) was preheated 

to 60 °C, and added to the TEOS solution rapidly. The reaction mixture was stirred vigorously 

(700 rpm) for 20 min while cooling down to room temperature. Subsequently, the resulting 

mixture was then allowed to stir at room temperature overnight. After addition of ethanol 

(100 mL), the MSNs were collected by centrifugation (19,000 rpm, 43,146 rcf, for 20 min) 

and re-dispersed in absolute ethanol. The template extraction was performed by heating the 

MSN suspension under reflux (90 °C, oil bath temperature) for 45 min in an ethanolic 

solution (100 mL) containing ammonium nitrate (NH4NO3, 2 g), followed by 45 min heating 

under reflux in a solution of concentrated hydrochloric acid (HCl, 10 mL) and absolute 

ethanol (90 mL). The unfunctionalized mesoporous silica nanoparticles were collected by 

centrifugation and washed with absolute ethanol after each extraction step. 
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Figure S 6-2. A) DLS measurements of unfunctionalized MSNs (unMSN) in ethanol show a particle size of 

about 100 nm. B) Zeta potential of unMSN with an isoelectric point of 4. C) IR spectrum. D) Nitrogen 

sorption isotherms show mesoporous pore structure (pore size 3.7 nm) and huge surface areas (1050 m
2
/g) 

for unMSNs.  
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Figure S 6-3. A) DLS measurements of MSN-NH2, unMSN and MSN-AVI suspensions over time. Data 

show that MSN-NH2 particles suspended in cell culture buffer with 10% FCS, form larger agglomerates 

compared to MSN-AVI and unMSN in time. B) experimental set-up of animal work, C) Lymphocyte cell 

count in bronchoalveolar lavage (BAL). Lymphocyte counts are overall close to the detection limit (1% of 
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total BAL cells) and no significant changes (p<0.05) have been observed between MSN treated and control 

mice (n=6). D) protein corona formation on MSN-AVI and MSN-NH2: Native gel analysis of MSN-NH2 

and MSN-AVI incubated with mouse BALF fluid.  

 

 
N 

(mice) 
Total cell 

count x 10
6
 

Macrophage cell 
count x 10

3
 

Multinucleated 
macrophages 

cell count x 10
3
 

PMN cell count 
x 10

3 
(%) 

Lymphocyte cell 
count x 10

3
 (%) 

       

a
 HCC 2 0.36 ± 0.00 356.2 ± 4.4 0.0 ± 0.0 0.0 ± 0.0 (0) 0.0 ± 0.0 

b 
PBS 6 0.29 ± 0.03 290.6 ± 29.5 0.0 ± 0.0 3.2 ± 1.6 (0) 0.0 ± 0.0 

MSN-NH2 6 0.33 ± 0.03 135.0 ± 15.1 0.2 ± 0.1 191.5 ± 13.9 (59) 0.4 ± 0.2 

unMSN 6 0.35 ± 0.03 308.7 ± 31.4 0.9 ± 0.4 37.33 ± 3.0 (11) 0.8 ± 0.2 

Table 6-2. The inflammatory effects detected by BAL cell differentiation, 24 h after 100 µg of MSN-NH2 

or unMSN instillation, compared to 100 µL PBS (vehicle control) and HCC (home cage control) untreated 

animals. 

a 
HCC = home cage control animals (non-treated mice) 

b 
PBS = 100 μL PBS instilled mice (vehicle/sham control) 



6. Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in 

the lung  

 

245 

 

 

Figure S 6-4. A) Toxicity of BAL recovered cells of PBS control mice (left); MSN-AVI in Balb/c mice 

exposed to 20 µg for 1 day in BAL (middle) and lung tissue of PBS control mice (right). Cell nuclei are 

shown in blue (DAPI), ATTO 633 labeled MSNs are shown in red. Scale bar is 20 µm. B) Hematoxylin and 

eosin staining of lung sections from mice exposed to MSN-AVI or MSN-NH2 particles for 1 or 7 days. 

Scale bar is 50 µm. 
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Figure S 6-5. Nanoparticle distribution in lung cryo-slices of Balb/c mice exposed to 100 µg MSN-AVI 

after 1, 3, and 7 days. B) PBS control and nanoparticle distribution in lung cryo-slices after 1 day 

exposure to 100 µg MSN-NH2. Cell nuclei are shown in blue (DAPI), ATTO 633 labeled MSNs are shown 

in red, cell actin staining (phalloidin) is shown in green. Images are representative for n=4 animals. Scale 

bar is 20 µm. 
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Figure S 6-6. Confocal microscopy images (20x objective) of cryo-slices of Balb/c mice exposed to MSN-

AVI for 1 or 7 days, co-stained with alveolar epithelial cell type 1 marker (T1α, green, top) or with 

alveolar epithelial cell type 2 marker (pro-SPC, green, bottom). Cell nuclei are shown in blue (DAPI) and 

ATTO 633 labeled MSNs are shown in red. Scale bar is 20 µm. 
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Figure S 6-7. DiD selective labeling of MLE-12 cells in a MLE-12/ MH-S co-culture set-up. A) dot plot of 

SSC against APC-A channel, B) histogram of co-culture in APC-A channel. 
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7 Cellular resolution is essential for validation of active targeting 

of nanoparticles in vivo 

This chapter is based on the following publication: 

Deniz Bölükbas, Stefan Datz, Charlotte Meyer-Schwickerath, Malamati Vreka, Lin Yang, 

Dorothée Gößl, Theodora Agalioti, Christian Argyo, Sabine van Rijt, Michael Lindner, Oliver 

Eickelberg, Tobias Stöger, Otmar Schmid, Georgios Stathopolous, Thomas Bein, Silke 

Meiners, 2017, submitted. 

 

Abstract 

Nanoparticle-based therapies hold great promise in targeted delivery of drugs. Targeting of 

tumors, for instance, involves functionalization of nanoparticles for receptors that are specific 

for cancer cells. Indeed, several cell types can be targeted in parallel by distinctly 

functionalized nanocarriers. Here, we investigated the targeting efficiencies of EGFR- or 

CCR2-targeted mesoporous silica nanoparticles (MSNs) in vitro and in vivo for lung cancer 

therapy with cellular resolution. Nanoparticles functionalized with the artificial peptides, 

GE11 or ECL1i for EGFR- or CCR2-targeting respectively, were specifically taken up by 

receptor overexpressing cell lines of the lung in vitro. Systemically applied GE11-

functionalized nanoparticles, however, did not efficiently accumulate in EGFR-

overexpressing flank tumors of mice, but were filtered out by the liver, regardless of their 

functionalization and tumor type. Moreover, both EGFR- or CCR2-functionalized MSNs, 

which were intratracheally administered to the lungs of Kras-mutant transgenic mice, did not 

preferentially target tumor cells, but were mainly taken up by resident alveolar macrophages 

in tumorous and also tumor-free regions of the lungs. Thus, not just regional but cellular 
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resolution is essential for validation of nanoparticle-based cell targeting. Novel strategies that 

overcome the effective natural defense against foreign materials are thus required to establish 

efficient cell-specific nanoparticle-mediated delivery of drugs for tumor therapy. 

 

7.1 Introduction 

The use of nanoparticles as therapeutic agents for cancer therapy has attracted great attention 

in the past decades 
1
. In particular, nanoparticle-based active targeting of tumor cells has 

emerged as a potential therapeutic approach to increase drug doses within the tumor while 

reducing systemic toxicity 
2,3

. Cell-specific targeting can be achieved by functionalization of 

nanoparticles with targeting ligands on their surface that bind to receptors that are specifically 

overexpressed on cancer cells. In this context, nanoparticles targeting the epidermal growth 

factor receptor (EGFR) have attracted notable attention 
4
. This receptor is overexpressed in 
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several types of cancers including breast carcinoma, colon carcinoma, and lung cancer 
5,6

. 

Nanoparticles are often functionalized with EGFR targeting ligands and designed to deliver 

either silencing agents against defined oncogenes or chemotherapeutic drugs 
4
. These 

nanoparticles are then preferentially recognized and bound by the tumor cells overexpressing 

EGFR; then they are rapidly taken up into the cells by receptor-mediated endocytosis where 

the drug is released into the cytoplasm to specifically kill the tumor cells 
7
. Receptor-mediated 

targeting via nanoparticles also offers the promise of targeting different types of cells at the 

same time. In particular, inflammatory immune cells such as tumor-associated macrophages 

have been identified as a major culprit supporting malignant and metastatic tumor growth 
8,9

. 

Accordingly, complementary targeting of tumor and tumor-associated immune cells has 

emerged as a novel approach for cancer therapy 
10,11

, yet has hardly been exploited for 

nanoparticle-mediated cell targeting 
12,13

. Such complementary targeting strategies require 

comprehensive validation of cell-specific targeting in vivo with cellular resolution. While 

many in vivo studies demonstrate effective targeting of tumor tissue and therapeutic efficiency 

of receptor-targeting nanoparticles in mouse tumor models 
14–16

, most of these studies, 

however, lack proof of cell-specific targeting and nanoparticle-induced killing of tumor cells 

but rather show accumulation of nanoparticles in the target tissue 
17–20

. We here analyzed 

complementary targeting of tumor and tumor-associated immune cells by application of 

fluorescently labeled mesoporous silica nanoparticles (MSN) that had been coupled to EGFR- 

and C-C chemokine receptor type 2 (CCR2) -specific targeting ligands 
21,22

 in vitro and in 

vivo. Cell-specific targeting efficiency of EGFR- and CCR2-ligand bound nanoparticles was 

validated using two distinct delivery strategies, i.e. systemic delivery via intravenous injection 

and local intratracheal delivery to the lung. This also allowed us to test targeting specificity of 

nanoparticles in two different biological environments which are known to form distinct 

protein coronas on nanoparticles that may influence receptor-mediated targeting 
23–28
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Intriguingly, proven in vitro cellular targeting specificity of ligand-functionalized 

nanoparticles was severely hampered in vivo in two distinct tumor mouse models irrespective 

of particle delivery via the blood or the lung due to highly effective foreign body clearance 

mechanisms. 

7.2 Results and Discussion 

Complementary overexpression of EGFR and CCR2 in lung cancer 

The EGF receptor is commonly overexpressed in non-small cell lung cancer (NSCLC) which 

correlates with poor prognosis of patients with NSCLC, a common devastating type of lung 

carcinoma with a mean 5-year survival of only 15% 
30,31

. CCR2 is a chemokine receptor that 

is specifically overexpressed in tumor-associated macrophages and promotes metastatic 

spread of tumor cells in preclinical cancer models including lung cancer 
32–36

. For our 

complementary targeting approach, we first validated cell-type specific overexpression of 

EGFR and CCR2 in tumors of lung cancer patients. Pronounced overexpression of EGFR was 

observed in infiltrating nests of lung tumor cells, while CCR2 was strongly overexpressed in 

the surrounding stroma as depicted by immunohistopathological staining of the same patient 

material (Figure 7-1). These data validate the combined use of EGFR- and CCR2-specific 

targeting nanoparticles as a valid approach to obtain specific targeting of lung tumors and 

tumor-associated immune cells at the same time. 
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Figure 7-1. EGFR and CCR2 expression in non-small cell lung cancer (NCSLC). Immunohistochemical 

staining of (A) EGFR (pink) is observed in infiltrating tumor nests whereas (B) CCR2 (pink) mainly 

localizes to desmoplastic stroma of NSCLC tumors of the patient.  

Synthesis and characterization of the mesoporous silica nanoparticles (MSNs) 

Functionalized MSNs were synthesized according to previous reports, resulting in 

functionalization of the internal pore system with thiol groups and of the external particle 

surface with amino groups 
37

 (For details on the synthesis scheme and characterization of the 

particles see SI, Figure S 7-1). The additional core functionalization was used for covalent 
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attachment of fluorescent dyes for particle tracking in our in vitro and in vivo studies. The 

external surface of the MSNs was functionalized with a pH-cleavable linker system 

containing a biotin functionality on the outer periphery. The glycoprotein avidin was attached 

to the outer surface of the particles via noncovalent association with the biotin groups, thus 

acting as a bulky gatekeeper of the internal pore system. In our study, these MSNAVI 

nanoparticles served as the non-targeting particle control. Different targeting ligands were 

attached to the outer surface of the avidin gatekeepers such as the natural ligand of the EGFR, 

i.e. EGF, an artificial ligand GE11, and the artificial CCR2 antagonist ECL1i referred to as 

particles MSNEGF, MSNGE11, and MSNECL1i, respectively (Figure S 7-1A) 
21,22,37

. All MSN 

types showed colloidal stability in aqueous and mucosal solutions (Figure S 7-1 I,J) and pH-

responsive release behavior for independently manufactured batches as analyzed by release of 

propidium iodide as a model cargo (Figure S 7-1K). Additional comprehensive 

characterization of the MSN particle systems with thermogravimetric analysis, nitrogen 

sorption, zeta potential measurements, and IR spectroscopy can be found at the SI and 

confirmed successful synthesis of a pH-cleavable MSN system with different targeting 

ligands that was subsequently used for specific in vitro and in vivo cellular targeting 

experiments. 

Receptor-mediated targeting of MSNs in vitro 

We analyzed in vitro receptor-specific targeting of EGFR–abundant cells with fluorescently 

labeled functionalized MSNs in two human NSCLC cell lines that differ in their basal EGFR 

expression. EGFR is strongly overexpressed in A549 cells compared to H520 cells as 

determined by Western blot analysis (Figure 7-2A and Figure S 7-2). Of note, we always 

applied the nanoparticles in the presence of 10% FCS to allow for in vitro protein corona 

formation 
24,27

. Confocal microscopy revealed pronounced uptake of the targeted MSNs in 
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EGFR-abundant A549 cells. EGF receptor staining confirmed co-localization of the 

fluorescently labeled MSNs with EGFR, thus validating that the uptake was EGFR-mediated 

(Figure 7-2B). Importantly, the uptake was confirmed for different MSN particles presenting 

both the natural EGFR ligand, EGF, and the artificial ligand, GE11, using several independent 

batches of nanoparticle preparations. In contrast, EGFR-scarce H520 cells showed only a 

minor uptake of GE11-functionalized MSNs (Figure 7-2B and Figure S 7-2). In flow 

cytometry analysis, we observed significant increase in the uptake when the particles were 

EGFR-targeted with EGF or GE11 compared to non-targeted MSNAVI particles (Figure 7-2C). 

Specificity of our CCR2-targeted MSNs was tested in the presence of serum in the mouse 

alveolar macrophage cell line MH-S, which expresses increased levels of CCR2 as 

determined by Western blot analysis (Figure S 7-3). Treatment of MH-S cells with CCR2-

ligand functionalized and fluorescently labeled MSNs showed strong uptake of particles that 

co-localized with CCR2 staining indicating receptor-mediated uptake of these MSNs. In 

contrast, non-targeted MSNAVI particles were only minimally taken up by MH-S cells (Figure 

7-3A). In addition, the CCR2-scarce lung adenocarcinoma cell line A549 cells showed a 

much less pronounced uptake when compared to the MH-S cells, thus demonstrating CCR2-

specific delivery of our CCR2-targeted MSNs (Figure S 7-3). Flow cytometry analysis 

confirmed the significant increase in uptake in MH-S cells upon CCR2-targeting with 

independent batches of particle preparations (Figure 7-3B). 
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Figure 7-2. EGFR-specific uptake of MSNs in vitro. (A) Basal EGFR overexpression in A549 but not in 

H520 cells at the protein level, assessed by Western blot analysis. (B) EGFR-targeted versus non-targeted 

uptake of ATTO 633-labeled MSNAVI, MSNEGF, and MSNGE11 within 1 h by A549 cells compared to 

MSNGE11 uptake in H520 cells co-stained for EGFR by immunofluorescence, measured by confocal 

microscopy. Nuclear staining (DAPI) is shown in blue, EGFR staining in green and ATTO 633-labeled 

MSNs in red in the merged images, and in gray in the single channel for better resolution. (C) 

Quantification of the ATTO 488-labeled MSNAVI, MSNEGF, and MSNGE11 uptake within 1 h by A549 cells 

by flow cytometry analysis. After gating for the viable cells, medians of the histogram curves were 

obtained. Autofluorescence signals of the untreated cells were blanked from the treated cells. * indicates a 

significant increase in the uptake of MSNEGF and MSNGE11 compared to MSNAVI (p < 0.05). Values given 

are an average of six independent experiments using different particle preparations ±SEM. 



7. Cellular resolution is essential for validation of active targeting of nanoparticles in vivo  

 

257 

 

 

Figure 7-3. CCR2-specific uptake of MSNs in vitro. (A) CCR2-targeted versus non-targeted uptake of 

ATTO 633-labeled MSNAVI and MSNECL1i in one hour in MH-S cells immunofluorescently co-stained for 

CCR2, measured by confocal microscopy (B) Quantification of ATTO 488-labeled MSNAVI and MSNECL1i 

uptake within 1 h in MH-S cells by flow cytometry analysis. After gating for the viable cells, medians of 

the histogram curves were obtained. Autofluorescence signals of the untreated cells were blanked from the 

treated cells. * means a significant increase in the uptake of MSNECL1i compared to MSNAVI (p < 0.05). 

Values given are an average of four independent experiments using different particle preparations ±SEM. 

 

Systemic delivery of MSNGE11 versus MSNAVI in mouse flank tumor models 

In vivo, we first analyzed receptor-mediated targeting of the EGFR-functionalized 

nanoparticles in flank tumor bearing mouse models by systemic delivery via the bloodstream. 



Results and Discussion 

258 

 

In the blood, nanoparticles are reported to be immediately coated with a distinct protein 

corona 
25

. EGFR-targeting specificity was assessed by using genetically engineered murine 

melanoma cells (B16F10), that express only low levels of EGFR (B16F10
EGFR-

) and a 

derivative of these cells stably transfected to overexpress EGFR (B16F10
EGFR+

) (Figure 

7-4A). These cell lines were injected subcutaneously into the left and right flanks of a 

syngeneic and immunologically fully competent mouse strain (C57BL/6) for flank tumor 

formation.  

 

Figure 7-4. Biodistribution of EGFR- targeted versus non-targeted nanoparticles in mice with 

B16F10
EGFR-

 and B16F10
EGFR+

 syngeneic tumors. (A) Overexpression of EGFR protein in cDNA 
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transfected B16F10 cells in comparison to control vector transfected cells in vitro by Western blot 

analysis. (B) Histological analysis of the intravenously administered MSNAVI and MSNGE11 biodistribution 

in the EGFR-abundant B16F10
EGFR+

 tumors, EGFR-scarce B16F10
EGFR-

 tumors, livers, spleens, lungs, and 

kidneys of the mice three days after treatment by means of confocal microscopy. Nuclear staining (DAPI) 

is shown in blue, actin staining (phalloidin) in green and ATTO 633-labeled MSNs in red in the merged 

image, and in gray in the single channel for improved resolution. To obtain reliable qualitative data on the 

distribution of the particles in these tissues, we analyzed 5 mice per group with 5 random sections and 3 

images per section taken in a blinded manner. (C) Quantification of the MSNAVI and MSNGE11 uptake per 

nuclei observed in histological analyses in B16F10
EGFR-

 and B16F10
EGFR+

 tumors, kidneys, lungs, spleens, 

and livers, respectively. In the HBSS control, animals only received HBSS buffer and no particles. *** 

indicates a significant increase in MSN uptake in the livers compared to the tumors (p < 0.001). Values 

given are averages ±SEM of three different images/tissue sections per mouse in each group (n = 5 per 

MSN type). 

In a complementary approach, genetically engineered murine Lewis lung carcinoma cells 

(LLC), which endogenously overexpresses EGFR (LLC
EGFR+

) and a derivative of these cells 

in which EGFR had been knocked down via stable short-hairpin-mediated RNA silencing 

(LLC
EGFR-

) were used (Figure S 7-4). With this approach, we are able to control for EGFR-

specific targeting of our functionalized nanoparticles to tumor cells within the same mouse, as 

receptor-negative tumor cells serve as an internal control for receptor-specific targeting. This 

animal model thus allows for an unprecedented control of receptor-mediated targeting 

specificity. In both settings, cells grew to form tumors of similar size of 1-2 cm
3
 within two 

weeks with similar histology. ATTO 633-labeled EGFR-targeted nanoparticles were then 

systemically applied via retro-orbital intravenous injection and biodistribution of the particles 

was compared to labeled but non-targeted MSNAVI particles by in vivo fluorescence imaging. 

Fluorescence signals were low and close to the detection limit of our near-infrared bioimaging 

system but indicated accumulation of nanoparticles in the liver (data not shown). We 

investigated the biodistribution of the systemically applied MSNs on the cellular level by 

comparative immunofluorescence analysis of the right and left flank tumors and of several 

internal organs. Both the targeted and non-targeted fluorescently-labeled MSNs were mainly 

localized in the liver and spleen with only little uptake into the flank tumors, lungs, and 
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kidneys (Figure 7-4B). Quantification of the immunofluorescence signal per cell nucleus 

confirmed that the delivery of the MSNs to the liver was much more effective than to other 

organs or tumors (Figure 7-4C). Importantly, we did not observe any difference in the uptake 

between EGFR overexpressing and EGFR-scarce B16F10 tumor cells. Very similar data were 

obtained with the second set of EGFR-abundant and -scarce LLC tumor cells (Figure S 7-4). 

Likewise, quantification of nanoparticle-derived fluorescence in tissue homogenates of flank 

tumors and the liver revealed pronounced accumulation of fluorescence signals in liver 

homogenates regardless of MSN functionalization in the LLC flank tumor model (Figure S 

7-4). 

Local intratracheal delivery of MSNGE11 and MSNECL1i in Kras-mutant transgenic 

mouse model 

In order to assess the targeting specificity of our functionalized nanoparticles by a different 

delivery route and in the presence of a different biological environment, i.e. the lung lining 

fluid, we evaluated local delivery of targeted MSNs into the lungs via instillation using the 

Kras
LA2

 mouse model for lung cancer. In this mouse model, transgenic mice spontaneously 

develop lung tumors upon random activation of oncogenic Kras signaling, resulting in a more 

realistic tumor model than the inducible cancer models 
38,39

. As such, this mouse model 

closely resembles the onset of NSCLC in patients where activation of Kras has been shown to 

be the most prominent oncogenic driver mutation 
6,40

. Immunohistochemical staining for 

EGFR and CCR2 confirmed that the receptors are overexpressed in these lung tumors, thus 

validating the Kras
LA2

 lung tumor model as a suitable model for investigating EGFR- and 

CCR2-specific targeting via functionalized nanoparticles (Figure S 7-6). For in vivo 

evaluation of receptor-specific uptake of EGFR- and CCR2-targeted MSNs by tumor and 

tumor-associated immune cells, fluorescently labeled targeted (MSNGE11, MSNECL1i) - and 
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non-targeted MSNs (MSNAVI) were intratracheally instilled directly into the lungs of tumor-

bearing Kras
LA2

 mice.  

 

Figure 7-5. Cellular distribution of instilled nanoparticles in the lungs of Kras
LA2

 mutant mice. 

Histological analysis of ATTO 633-labeled MSNAVI, MSNGE11, and MSNECL1i uptake in solid tumor cores 

versus their edges, and in hyperplastic or in tumor-free regions of the tumorous lungs. Nuclear staining 

(DAPI) is shown in blue, actin staining (phalloidin) in green, and ATTO 633-labeled MSNs in red in the 

merged images, and in gray in the single channels for more clear observation. To obtain reliable 
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qualitative data on the distribution of the particles in these tissues, we analyzed five mice per group with 

five random sections and three images per section taken in a blinded manner. Images shown are 

representative for three different regions from each group of mice (n = 5 per MSN type). 

The biodistribution of the fluorescently-labeled MSNs was evaluated three days after 

administration on the cellular level using confocal microscopy of the lung, liver, and spleen 

sections as described before. Translocation of MSNs to secondary organs was not detected 
41

 

(Figure S 7-7), instead MSNs were retained in the lungs of the Kras
LA2

 mice (Figure 7-5). In 

the tumorous lungs, particle uptake was detected in smaller hyperplastic lesions of the lung 

but not in large and solid tumors, except for the edges of these tumors (Figure 7-5). 

Nanoparticles also localized to tumor-free lung tissue regardless of their functionalization 

(Figure 7-5). Importantly, we did not observe any difference in cellular uptake of EGFR-, 

CCR2-targeted nanoparticles, and non-targeted MSNAVI particles on the cellular resolution 

level. Remarkably, the nanoparticles did accumulate in specific cells both in the tumor-free 

and in tumorous regions. Immunofluorescence staining with the macrophage marker CD68 

identified these cells as alveolar macrophages (Figure S 7-8). These cells are specialized 

tissue-resident macrophages of the lung that colonize the alveolar surface and play an 

essential role in the pulmonary defense against particles and pathogens 
42

. Of note, these cells 

stained also strongly positive for both EGFR and CCR2, in both the tumor-free and the 

tumorous lesions of Kras
LA2

 tumor mice (Figure 7-6). Uptake of nanoparticles, however, was 

independent of the receptor expression as also the non-targeted MSNAVI nanoparticles were 

efficiently taken up by EGFR- and CCR2-positive alveolar macrophages (Figure 7-6). 

Moreover, lung carcinoma cells that overexpressed both EGFR and CCR2 did not 

preferentially take up EGFR- and CCR2-targeted MSNs, respectively (Figure S 7-6 and 

Figure 7-6C&D). These data reveal disturbance of targeting specificity of functionalized 

nanoparticles in the lung. 
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Figure 7-6. Nanoparticles localize to alveolar macrophages in Kras
LA2

 mutant lungs. Immunofluorescence 

co-staining for (A) EGFR and (B) CCR2 in tumor-free regions compared to (C) EGFR and (D) CCR2 co-

staining in tumor regions of the mutant lungs with lung cancer that had been treated with ATTO 633-

labeled MSNAVI versus MSNGE11 or MSNECL1i. Nuclear staining (DAPI) is shown in blue, actin staining 

(phalloidin) in red, receptor staining (EGFR for A & C, CCR2 for B & D) in green, and ATTO 633-

labeled MSNs in gray. Images shown are representative for three different regions from each group of 

mice (n = 5 per MSN type). 

7.3 Conclusion 

In conclusion, in vitro validated nanoparticle-mediated targeting of receptors on tumor and 

tumor-associated immune cells is strongly deprived in vivo. This failure in cellular targeting 

specificity is particularly obvious for the lung-delivered nanoparticles as the alveolar 

macrophages of the Kras-mutant mice strongly overexpressed both EGFR and CCR2, but 

efficiently entrapped targeted as well as non-targeted nanoparticles to a similar extent. 
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Enhanced cell-specific uptake by macrophages of the lung compared to tumor cells would 

have escaped analysis if only particle uptake within the tissue would have been monitored as 

done previously 
17–20

. Similarly, analysis of cell-specific particle uptake in the flank tumor 

models also unambiguously revealed loss of cellular targeting specificity. Our data thus 

emphasize the need for analyzing cellular targeting specificities with cellular resolution also 

in the major target organs. This is particularly relevant when aiming for combination targeting 

of different cell populations with distinct ligand-functionalized nanoparticles. 

These findings do not rule out that targeted nanoparticles have therapeutic effects in mouse 

tumor models as indicated by numerous studies using MSNs and other nanomaterials 
43–46

. 

Our findings, however, indicate that these therapeutic effects may not always be due to a 

direct nanoparticle-mediated tumor killing but may also involve bystander effects such as 

cytotoxicity of tissue-resident phagocytic cells, immune-modulatory effects, and unspecific 

drug release from nanoparticles in the liver into the circulation. Some of these effects may 

have even been mitigated in previous studies due to the use of immunocompromised mice. As 

recently outlined by Wilhelm and Torrice 
47,48

, numbers of contradictory reports on in vivo 

tumor targeting efficiency of nanomedicines are on the rise and may explain the ineffective 

translation of nanomedicines into clinical practice. Our data also suggest that targeting 

specificity in vivo is probably not solely related to the shielding of ligand-receptor interactions 

on target cells by formation of a protein corona on the nanoparticles 
23,24

 as cell-specific 

targeting was hampered in two distinct biological environments, i.e. the blood and the lung. 

Our own and other published data indicate that blood-derived serum and the lung lining fluid 

form distinct protein coronas on nanoparticles in vitro (Figure S 7-9) 
23

. Moreover, protein 

corona also forms rapidly in cell culture medium containing serum where receptor-mediated 

targeting was effective (Figure S 7-9). Taken together, our study argues in favor of a stringent 

validation of cell-specific targeting with cellular-resolution when using nanoparticle-based 
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targeting strategies. Moreover, closing the translational gap in nanomedicine calls first for 

physiologically relevant animal models, such as the Kras
LA2

 mice as used here which develop 

spontaneous lung tumors closely resembling the human situation, and second for rigorous 

biological testing of nanoparticles using state of the art molecular manipulation of cells and 

animals critically. 

7.4 Experimental Part 

Synthesis of the mesoporous silica nanoparticles (MSNs). The core-shell functionalized 

MSNs have been synthesized by a delayed co-condensation approach resulting in 

functionalization of the internal pore system with thiol groups and the external particle surface 

with amino groups. The additional core functionalization offers a site for covalent attachment 

of fluorescent dyes for particle tracking in in vitro and in vivo studies. The external amino 

functionalization was used to attach a linker system with avidin as the bulky gatekeeper. 

Subsequently, different targeting ligands were covalently attached on the outer periphery of 

the particles and the synthesized particle system was used for in vitro and in vivo uptake 

studies. 

Cell culture. The human non-small-cell lung cancer cell lines, A549 and H520, and the 

mouse alveolar macrophage cell line; MH-S; were obtained from American Type Culture 

Collection. A549 cells were maintained in DMEM medium supplemented with 10% FBS and 

1% Pen/Strep. H520 and MH-S cells were maintained in RPMI 1640 medium supplemented 

with 10% FBS and 1% Pen/Strep. MH-S cells were further supplemented with 1 mM sodium 

pyruvate, 10 mM HEPES, and 50 µM β-mercaptoethanol (all AppliChem). All cells were 

grown at 37°C in a sterile humidified atmosphere containing 5% CO2. 
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Animal models. Syngeneic flank tumor models. C57BL/6 mice were obtained from Jackson 

Laboratories (Bar Harbor) and were bred at the Center for Animal Models of Disease of the 

University of Patras. Experiments were approved a priori by the Veterinary Administration of 

the Prefecture of Western Greece, and were conducted according to Directive 2010/63/EU. 

Experimental mice were sex-, weight-, and age-matched. For induction of solid tumors, mice 

were anesthetized using isoflurane inhalation and received s.c. injections of 100 µL PBS 

containing 0.5 x 10
6
 LLC or B16F10 clones.  

Transgenic lung cancer model. 129S/Sv-Kras
tm3Tyj

/J (Kras
LA2

) mutant mice were obtained 

from the Jackson Laboratory, USA, and cross-bred with FVB-NCrl WT females obtained 

from Charles River Laboratories, Germany, for over seven generations. Animals were kept in 

rooms maintained at constant temperature and humidity with a 12/12 h light/dark cycle and 

were allowed food and water ad libitum. Animal experiments were carried out according to 

the German law of protection of animal life and were approved by an external review 

committee for laboratory animal care.  

In vivo biodistribution studies. Intravenous application. Two weeks after s.c. inoculation of 

EGFR-abundant and EGFR-scarce LLC and B16F10 tumor clones, 1 mg ATTO 633-labeled 

MSNAVI or MSNGE11 was applied to each mouse retro-orbitally. The mice were sacrificed 

with an overdose of isoflurane three days after the administration.  

Intratracheal application. 12 week-old Kras
LA2

 mutant mice were intratracheally instilled 

with ATTO 633-labeled targeted or non-targeted MSNs, as described by Stoeger et al 
29

. 

Three days post-instillation, the mice were sacrificed with an overdose of ketamine (188.3 

mg/kg) and xylazin hydrochloride (4.1 mg/kg) (bela-pharm). Lung lobes from each group 

(n=5 mice per group) were excised and prepared for cryoslicing. 
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Histological preparations and immunofluorescence imaging. For the intravenous systemic 

delivery experiment, internal organs as well as flank tumors were dissected and placed in 4% 

PFA overnight after which the suspension medium was exchanged to PBS. Representative 

parts of the organs were frozen in Tissue-Tek and kept at -80°C. For the intratracheal local 

delivery experiment, animals were sacrificed and the lungs were perfused via the right 

ventricle with NaCl solution. Airways were then filled with Tissue-Tek. Later, the lung lobes 

were separated, transferred into cryomolds, and covered with Tissue-Tek. Samples were left 

to freeze on dry ice and then stored at −80°C. For both experiments, 5 μm thick cryo-sections 

were sliced with the cryostat (Zeiss Hyrax C 50) and placed on superfrost plus adhesion 

slides. Immediately before staining, all cryo-sections were fixed with 4% (w/v) PFA for 10 

min, then washed with PBS, and permeabilized with 0.5% Triton-X. The sections were 

incubated with Roti-Block for 1 h at room temperature, and then incubated with the primary 

antibody at 4°C overnight; i.e. EGFR (Abcam, ab52894) and CCR2 (Novus Biologicals, 

NBP1-48338). Afterwards, the sections were washed with PBS, incubated with Alexa Fluor 

488 secondary antibody for 1 h at room temperature. After another PBS wash, the sections 

were finally stained with DAPI. In case phalloidin staining was used, the sections were first 

incubated with phalloidin for 45 min and then with DAPI for 10 min at room temperature 

directly after the fixation and washing step. The sections were mounted using fluorescence 

mounting medium (DAKO) and analyzed using confocal microscopy (LSM710, Carl Zeiss). 

Quantification of the cellular uptake of the MSNs in the tissues was conducted using the 

IMARISx64 software (version 7.6.4, Bitplane). 
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7.6 Appendix 

Materials. Tetraethyl orthosilicate (TEOS, Fluka, > 98%), triethanolamine (TEA, Aldrich, 

98%), cetyltrimethylammonium chloride (CTAC, Fluka, 25% in H2O), mercaptopropyl 

triethoxysilane (MPTES, Fluka, > 80%), aminopropyltriethoxysilane (APTES, Sigma 

Aldrich, 99%), ammonium fluoride (NH4F, Fluka), ammonium nitrate (NH4NO3, Fluka), 

hydrochloric acid (HCl, 37%), oxalic acid dehydrate (Alfa, 98%), ECL(1) peptide 

(CKLFTGL, GenScript), GE11 peptide (YHWYGYTPQNVI, GenScript), recombinant EGF 

(Peprotech, 315-09), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, 

Aldrich), N-hydroxysulfosuccinimide sodium salt (sulfoNHS, Aldrich), 3,9-bis(3-

aminopropyl)-2,4,8,10-tetraoxaspiro-[5,5`]-undecane (AK-linker), biotin (Aldrich), avidin 

from egg white (Merck, Calbiochem), ATTO 633-mal and ATTO 488-mal (ATTO-TEC), 2-

iminothiolan hydrochloride (Aldrich, > 98%), O-[N-(6-maleimidohexanoyl)aminoethyl]-O’-

[3-(N-succinimidyloxy)-3-oxopropyl] polyethylene glycol3000 (Aldrich), β-actin antibody 

(Cell Signaling), secondary Alexa fluor antibodies (Invitrogen), and phalloidin (Life 

Technologies), Tissue-Tek (Sakura), superfrost plus adhesion slides (Thermo Scientific), 

Entellan (Merck), Roti®-ImmunoBlock (Roti-Block, Carl Roth), penicillin/streptomycin 

(Pen/Strep, Life Technologies), fetal bovine serum (FBS, Biochrom), Triton-X (AppliChem), 

cOmplete protease inhibitor cocktail (Sigma-Aldrich), Pierce Silver Stain Kit (Thermo 

Scientific), and DAPI (Sigma-Aldrich) were used as received. Ethanol (Aldrich, absolute), 

sodium chloride (NaCl, Braun Vet Care), dimethylsulfoxide (DMSO, Aldrich), and DMEM, 

RPMI 1640, HBSS (Gibco, Life Technologies) were used as solutions without further 

purification. Ultrapure water was obtained from a Millipore system (Milli-Q Academic A10). 
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Human tissue. The stainings with human tissue were approved by the Ethics Committee of 

the Ludwig-Maximilians-University Munich, Germany (LMU, project no. 455-12). All 

samples were provided by the Asklepios Biobank for Lung Diseases, Gauting, Germany 

(project no. 333-10). Written informed consent was obtained from all subjects. 

Immunohistochemistry. Lung tumor specimens from human and Kras
LA2

 mutant mice were 

placed in 4% (w/v) paraformaldehyde (PFA) overnight at 4°C and processed for paraffin 

embedding. 3 μm thick paraffin sections were sliced with the microtome (Zeiss Hyrax M 55) 

and placed on superfrost plus adhesion slides. Deparaffinized sections were subjected to 

quenching of endogenous peroxidase activity using a mixture of methanol/H2O2 for 20 min, 

followed by antigen retrieval in a decloaking chamber. From this step on, the slides were 

washed with TBST (20 mM Tris, 0.8% NaCl, 0.02% Tween-20, pH 7.6 adjusted with HCl) 

after each incubation with the reagents throughout the procedure. The sections were incubated 

first with Rodent Block M (Zytomed Systems) for 30 min and then with the primary antibody, 

i.e., EGFR (Cell Signaling, D38B1 for human, Abcam, ab52894 for mouse), CCR2 (Novus 

Biologicals, NB110-55674), or IgG control for 1 h. The cuts were then incubated with Rabbit 

on Rodent AP-Polymer for 30 min, which was followed by Vulcan Fast Red AP substrate 

solution (both Biocare Medical) incubation for 10-15 min. Sections were counterstained with 

hematoxylin (Carl Roth) and dehydrated respectively in consecutively grading ethanol and 

xylene (both Appli-Chem) incubations. Dried slides were mounted in Entellan. 

Synthesis of core-shell functionalized mesoporous silica nanoparticles (MSN-SHin-

NH2,out). A mixture of tetraethyl orthosilicate (TEOS, 1.63 g, 7.82 mmol), mercaptopropyl 

triethoxysilane (MPTES, 112 mg, 0.48 mmol) and triethanolamine (TEA, 14.3 g, 95.6 mmol) 

was heated under static conditions at 90 °C for 20 min in a polypropylene reactor. Then, a 

solution of cetyltrimethylammonium chloride (CTAC, 2.41 mL, 1.83 mmol, 25 wt% in H2O) 

and ammonium fluoride (NH4F, 100 mg, 2.70 mmol) in H2O (21.7 g, 1.21 mmol) was 
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preheated to 60 °C, and rapidly added to the TEOS solution. The reaction mixture was stirred 

vigorously (700 rpm) for 20 min while cooling down to room temperature. Subsequently, 

TEOS (138.2 mg, 0.922 mmol) was added in four equal increments every three minutes. After 

another 30 min of stirring at room temperature, TEOS (19.3 mg, 92.5 µmol) and aminopropyl 

triethoxysilane (APTES, 20.5 mg, 92.5 µmol) were added to the reaction. The resulting 

mixture was then allowed to stir at room temperature overnight. After addition of ethanol (100 

mL), the MSNs were collected by centrifugation (7000 rcf, for 20 min) and re-dispersed in 

absolute ethanol. The template extraction was performed by heating the MSN suspension 

under reflux (90 °C, oil bath temperature) for 45 min in an ethanol solution (100 mL) 

containing ammonium nitrate (NH4NO3, 2 g), followed by 45 min heating under reflux in a 

mixture of concentrated hydrochloric acid (HCl, 10 mL) and absolute ethanol (90 mL). The 

mesoporous silica nanoparticles were collected by centrifugation and washed with absolute 

ethanol after each extraction step (SI Figure 1A(i)). 

Synthesis of MSNCOOH. A large excess of oxalic acid (10 mg, 110 µmol) was dissolved in 2 

mL water and activated with EDC (18 µL, 102 µmol) and a catalytic amount of sulfoNHS (1 

mg) for 10 minutes at room temperature. The premixed solution was added dropwise to 100 

mg MSN-SHin-NH2,out particles dissolved in 15 mL ethanol under vigorous stirring. The 

mixture was stirred at room temperature overnight. Afterwards the solution was centrifuged at 

7000 rcf for 10 minutes, washed two times with ethanol and redispersed in 10 mL ethanol (SI 

Figure 1A(i)). 

Synthesis of MSNAK. 25 mg of MSN-COOH were diluted in 15 mL ethanol. Subsequently, 

10 µL N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, 57 µmol) and 

3.1 mg of N-hydroxysulfosuccinimide (sulfo-NHS, 14.3 µmol) were added and the mixture 

was stirred for 15 minutes at room temperature. A premixed solution containing of 3.5 mg 
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3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro-[5,5`]-undecane AK-Linker (13 µmol) in 3 mL 

of a 1/1 mixture ethanol/DMSO were added dropwise over a period of 10 minutes and the 

resulting solution was stirred over night at room temperature. The functionalized MSNAK 

particles were separated by centrifugation (7000 rcf, 20 minutes), washed two times with 

ethanol and redispersed in 15 mL ethanol (SI Figure 1A(i)). 

Synthesis of MSNBiotin. A premixed solution of 1 mg biotin (4.1 µmol), 1 µL N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, 5.7 µmol) and 1.2 mg N-

hydroxysulfosuccinimide (sulfo-NHS, 5.7 µmol) were added to 10 mg of MSNAK particles in 

5 mL ethanol and stirred overnight at room temperature. After centrifugation (7000 rcf, 20 

minutes) and washing two times with ethanol, MSNBiotin particles were separated by 

centrifugation and redispersed in 5 mL ethanol (SI Figure 1A(i)). 

Dye-labeling of MSNBiotin. 1 mg MSNBiotin were diluted in 1 mL ethanol and 1 µL ATTO 

633- or ATTO 488- maleimide (0.5 mg/mL in DMF) was added. The mixture was reacted for 

12 h overnight in the dark. Afterwards the particles were centrifuged (7000 rcf, 5 min), 

washed twice with ethanol and resuspended in HBSS buffer to give a 1 mg/mL particle 

concentration (SI Figure 1A(ii)). 

Synthesis of MSNAVI. After centrifugation (14000 rpm, 4 minutes) the loaded or non-loaded 

residue (MSNBiotin) was redispersed in a solution containing of 1 mg avidin from egg white in 

1 mL HBSS buffer solution and stored for 1 h at room temperature in the dark without 

stirring. The resulting suspension was then centrifuged (5000 rcf, 4 minutes, cooled) and 

washed several times with buffer solution. Subsequently, the particles were finally redispersed 

in 1 mL of the corresponding buffer solution and used for the following experiments (SI 

Figure 1A(ii)). 



Appendix 

276 

 

Addition of the targeting ligands to synthesize MSNGE11, MSNEGF, and MSNECL1i. 1 mg 

of cargo-loaded and/or dye-labeled MSNAVI particles were centrifuged (5000 rcf, 4 minutes, 

cooled) and redispersed in 500 µL HBSS buffer solution. In the meantime, 50 µL of the 

corresponding targeting ligand (GE11, EGF, ECL1i) dissolved in bi-distilled water (100 

µg/mL) were added to 200 µL HBSS and 0.2 mg 2-iminothiolan hydrochloride (1.5 µmol). 

The mixture was reacted for 1 h at room temperature without stirring. Subsequently, 0.3 mg 

of the hetero-bifunctional PEG-linker mal-PEG3000-NHS was added and the mixture was 

allowed to react for 1 h at room temperature. The activated PEG-targeting ligand was then 

added to the MSNAVI particle solution, reacted for 1 h, centrifuged (5000 rcf, 4 minutes, 

cooled) and washed three times with HBSS. 1 mg of MSNGE11, MSNEGF, and MSNECL1i were 

redispersed in 1 mL HBSS, respectively (SI Figure 1A(iii)). 

Characterization methods. Dynamic light scattering (DLS) and zeta potential measurements 

were performed on a Malvern Zetasizer-Nano instrument equipped with a 4 mW He-Ne laser 

(633 nm) and an avalanche photodiode detector. DLS measurements were directly recorded in 

diluted colloidal aqueous suspensions of the MSNs at a constant concentration of 0.5 mg/mL 

for all sample solutions. Zeta potential measurements were performed using the add-on 

Zetasizer titration system (MPT-2), based on diluted NaOH and HCl as titrants. For this 

purpose, 0.5 mg of the MSN sample was diluted in 10 mL bi-distilled water. Transmission 

electron microscopy (TEM) was performed at 300 kV on an FEI Titan 80-300 equipped with 

a field emission gun. For sample preparation, the colloidal solution of MSNs was diluted in 

absolute ethanol, and one drop of the suspension was then deposited on a copper grid sample 

holder. The solvent was allowed to evaporate. Thermogravimetric analyses (TGA) of the 

extracted bulk samples (approximately 10 mg) were recorded on a Netzsch STA 440 C 

TG/DSC. The measurements proceeded at a heating rate of 10 °C/min up to 900 °C, in a 

stream of synthetic air of about 25 mL/min. Nitrogen sorption measurements were performed 
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on a Quantachrome Instrument NOVA 4000e at -196 °C. Sample outgassing was performed 

for 12 hours at a vacuum of 10 mTorr at 120 °C or room temperature. Pore size and pore 

volume were calculated with an NLDFT equilibrium model of N2 on silica, based on the 

desorption branch of the isotherms. In order to remove the contribution of the interparticle 

textural porosity, pore volumes were calculated only up to a pore size of 8 nm. A BET model 

was applied in the range of 0.05 – 0.20 p/p0 to evaluate the specific surface area. Infrared 

spectra were recorded on a ThermoScientific Nicolet iN10 IR-microscope in reflection-

absorption mode with a liquid-N2 cooled MCT-A detector. For time-based release 

experiments of propidium iodide, the loaded and avidin-capped particles were redispersed in 

the corresponding buffer solutions (pH = 7 and pH = 5) and stored at 37 °C on a thermo 

shaker. After certain time-points (4 h, 24 h, 48 h) the particles were centrifuged (5000 rcf, 4 

minutes, cooled) and the supernatant was measured on a UV/VIS Thermo Scientific 

NanoDrop 2000c system. 

Characterization of the functionalized MSNs. The core-shell functionalized MSNs have 

been synthesized by a delayed co-condensation approach, resulting in functionalization of the 

internal pore system with thiol groups and the external particle surface with amino groups. 

The additional core functionalization offers a site for covalent attachment of fluorescent dyes 

for particle tracking, which is important for particle tracking in in vitro and in vivo studies. 

The synthesized core-shell functionalized MSNs reveal average sizes of about 100 nm as 

derived from transmission electron microscopy (TEM, SI Figure 1B). The TEM image shows 

a spherical particle shape and a worm-like pore structure. Nitrogen sorption measurements 

were performed to gain information about the porosity and the surface area of the 

functionalized MSNs. SI Figure 1D shows a typical type IV isotherm for the native core-shell 

functionalized MSN-SHin-NH2,out with an inflection point at around 0.3 p/p0, indicating a 

mesoporous structure for these sample. Until the biotinylated stage (MSNBiotin) the pore 
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structure remains accessible with surface areas of up to about 800 m
2
/g and a pore volume of 

0.6 cm
3
/g. The narrow pore size distribution, with a maximum at around 3.6 nm, also 

confirmed an accessible porous system even after modification with the acetal and the biotin 

linkers (SI Figure 1D inset). Furthermore, nitrogen sorption isotherms showed a small 

hysteresis loop at around 0.9 p/p0 for these two samples, which is attributed to interparticle 

textural porosity. A summary of the porosity parameters is given in SI Figure 1H. A drastic 

reduction in specific surface area and a loss in pore volume occurred for the MSNs containing 

the avidin capping (MSNAVI). After the attachment of avidin to the silica nanoparticle surface, 

we obtained a type II isotherm and no visible pore size distribution, indicating successful 

sealing of the pores. Thermogravimetric analyses showed stepwise additional weight loss for 

the different samples (SI Figure 1E). The native core-shell functionalized MSNs reveal a 

weight loss of 17 % due to template residues and the organosilanes. Efficient attachment of 

the short organic linkers up to the biotinylated stage (MSNBiotin) and the bulky protein avidin 

in the sample MSNAVI (+ 5 % and + 65 % additional weight loss, respectively) was 

confirmed. To gain more information about the successful attachment of the different 

functional moieties FTIR-spectroscopy was used. The signals were normalized to the most 

intense absorbance of silica (SI Figure 1F). All of the synthesized samples show the 

characteristic silica stretching vibrations of the Si-O-Si network between 1000 and 1300 cm
-1

. 

The two additional bands at 780 and 900 cm
-1

 can be assigned to asymmetric stretching and 

bending vibrations of the Si-O-H groups. The biotinylated stage shows an intensive peak for 

the carbonyl stretching vibration at 1710 cm
-1

 due to the different functional linker 

compounds attached on the surface. In the spectrum for the avidin-capped particle system, the 

typical broad amide vibrations (Amide I: C=O stretching vibration, Amide II: N-H 

deformation + C-N stretching vibration) can be seen in the region between 1500 and 1650 cm
-

1
. Also increasing intensities of C-H stretching vibrations at 2900 cm

-1
 from the different 
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organic moieties are visible for the different functionalization stages. Therefore, a successful 

implementation of the biotin-functionalization as well as the avidin-capping can be 

concluded. The zeta potential measurements also correlate with the stepwise addition of the 

linkers and avidin as the bulky gatekeeper (SI Figure 1G). The shift of the isoelectric point 

towards 5.11 after carboxylic acid-functionalization can be explained with the attachment of 

negatively charged carboxylate groups. With addition of the AK-linker and biotin, the IEP 

shifts towards higher pH values. By adding the avidin capping, the outer surface is positively 

charged over the whole measured pH range because of the exceptional amount of cationic 

amino acids in the protein structure. The IEP is at 9.81, which is in good accordance to the 

literature value for avidin (9.99) 
1
. Dynamic light scattering (DLS) measurements in aqueous 

media revealed a mean particle size of 170 nm (SI Figure 1I) and good colloidal stability for 

all samples. This apparent difference in particle size, compared to TEM, is attributed to the 

involvement of the hydrodynamic diameter and weak transient agglomeration of a few 

nanoparticles during the DLS measurements. Importantly, a narrow particle size distribution 

and no significant agglomeration were observed after the complete synthesis functionalization 

steps. The sample MSNAVI, as well as the samples with the different targeting ligands 

(MSNGE11, MSNEGF, MSNECL1i) reveal nice colloidal stability in aqueous solution as well as in 

healthy and cancerous mucus conditions (SI Figure 1J). UV-VIS loading capacity 

measurements showed an average propidium iodide loading of 0.365 mg/mg MSNs. pH-

responsive release of PI in different buffer solutions reveal an time-dependent release 

behavior with an average release of about 60 % after 48 h at pH 5 (SI Figure 1K). 

Western blotting. A549, H520, and MH-S cells were lysed in RIPA buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) 

supplemented with protease inhibitor cocktail (Complete, Roche). Protein content was 

determined using the Pierce BCA protein assay kit (Thermo Scientific). For Western blot 
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analysis, equal amounts of protein were subjected to electrophoresis on 10% SDS-PAGE gels 

and blotted onto PVDF membranes (Bio-Rad). Membranes were treated with antibodies using 

standard Western blot techniques. The ECL Plus detection reagent (GE Healthcare) was used 

for chemiluminescent detection and the membranes were analyzed with the ChemiDoc XRS+ 

(Bio-Rad). 

Immunocytofluorescence. A549, H520, and MH-S cells which were grown on coverslips 

were treated with ATTO 633-labeled nanoparticles for 1 h. Afterwards, the cells were washed 

three times with phosphate buffered saline (PBS), then once with NaCl (0.15 M, pH 3.0), and 

then three times with PBS. Cells were fixed with 70% ethanol and permeabilized with 0.1% 

Triton-X. After another PBS wash, cells were incubated with Roti-Block for 1 h at room 

temperature (RT). Afterwards, A549 and H520 cells were stained with EGFR antibody 

(Abcam, ab52894), whereas MH-S cells were stained with CCR2 antibody (Novus 

Biologicals, NB110-55674) overnight at 4°C. The following day, the cells were incubated 

with the Alexa Fluor secondary antibodies for 1 h at RT, washed with PBS, incubated with 

DAPI for 10 min for nuclear staining, and then mounted with fluorescent mounting medium 

(Dako). 

Flow cytometry. 5x10
5
 A549, H520, and MH-S cells were plated on 6 well plates and 

incubated overnight. The next day, the cells were treated with ATTO 488- or ATTO 633- 

labeled nanoparticles for 1 h. Afterwards, the cells were washed three times with PBS, once 

with NaCl (0.15 M, pH 3.0), and then three times with PBS again to create a final cell 

suspension. Samples were then analyzed by flow cytometry (BD LSRII). MSN uptake in 

different cell types was quantified by the median fluorescence signal collected in the Alexa 

Fluor 488 or 647 channels. 
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Genetic engineering for flank tumor models. C57BL/6 mouse Lewis lung carcinoma (LLC) 

and B16F10 skin melanoma cells were obtained from the NCI Tumor Repository (Frederick). 

For RNA interference, the following proprietary lentiviral shRNA pools were obtained from 

Santa Cruz Biotechnology (Palo Alto): random control shRNA (shC, sc-108080), GFP control 

(sc-108084), anti-EGFR-shRNA (sc-29302-V), and stable transfections of the LLC and 

B16F10 cells were generated. 

Fluorescence dosimetry of MSNs in organ homogenates. The dose of fluorescence-labeled 

MSNs (ATTO 633) in the flank tumor and liver was determined with quantitative 

fluorescence analysis similar to the validated method described by Rijt et al.
2
. Briefly, 

aliquots of the tissue were dried at low power setting in a microwave oven (SEVERIN, 

MW7803; 30% power; 270 Watt) until no change of tissue mass was observed anymore. 

Aliquots of dried tumor and liver tissue (ca. 10 mg) were diluted by 1:90 (w/v) and 1:60 with 

PBS, respectively (i.e. 1 mg of dried tissue was diluted by 89 and 59 µL PBS, respectively). 

The diluted samples were mechanically homogenized with a high-performance disperser (T10 

basic ULTRA-TURRAX®) at RT until no tissue pieces were visible anymore (ca. 3-5 min 

with short breaks to avoid undue heating of the samples). Residual tissue was rinsed off the 

disperser using 200 μL of PBS. Samples were vortexed immediately prior to pipetting four 75 

μL aliquots (quadruple determination) from each of the samples into a black 96-well plate for 

quantitative fluorescence analysis with a standard multiwell plate reader (Tecan, Safire 2; 

excitation and emission wavelengths: 630 nm and 660 nm). The fluorescence signals were 

related to the corresponding MSN mass using standard curves, which were prepared from 

blank liver and flank tumor tissues of non-exposed mice spiked with known amount of MSN 

and processed according to the same protocol described above (cage control). The prerequisite 

for reliable dosimetry is that the homogenization and drying process does not destroy the 

fluorescence signal of MSNGE11 and MSNAVI. This was proven by comparison of fluorescence 
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signals of homogenates from dried and non-dried samples as well as by adding MSN prior 

and after homogenization. For analysis of a potential enrichment of MSNGE11 over MSNAVI in 

the tumor, the MSN concentration (MSN mass per mass of tissue) was calculated for both 

tumor and liver samples.  

Characterization of protein corona on nanoparticles. 100 µg MSNAVI and MSNGE11 were 

shaken overnight (16 h) either in cell culture medium in the presence of 10% FCS, human 

serum, or murine lung lining fluid (diluted in 1 mL PBS containing cOmplete protease 

inhibitor cocktail) at room temperature. The suspension was centrifuged and the nanoparticles 

were resuspended in PBS three times (15,000 rpm, for 30 min, at 4°C). The proteins adsorbed 

on the pelleted nanoparticles were eluted by incubating them at 95°C for 5 min in Laemmli 

buffer. The suspension was centrifuged again and the supernatant was subjected to 

electrophoresis on 10% SDS-PAGE gels. Silver staining was conducted as described in the 

instructions manual of the Pierce Silver Stain Kit (Thermo Scientific). The gels were scanned 

with the ChemiDoc XRS+ (Bio-Rad). 
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Figure S 7-1. Synthesis scheme and characterization of pH-responsive mesoporous silica nanoparticles 

(MSNs) with different targeting ligands. (A) Delayed co-condensation process leads to different core 

(green, thiol groups) and shell (red, amino groups) functionalization of MSN-SHin-NH2,out. (i) In a three 

step modulation approach, first the amino groups were transformed into carboxy groups. EDC amidation 

with the pH-cleavable linker and subsequent addition of biotin leads to covalent attachment and results in 

MSNBiotin. (ii) After cargo loading and covalent attachment of the dyes at the thiol groups in the inner pore 

system, avidin efficiently seals the mesopores and results in MSNAVI. (iii) On the outer surface different 

targeting ligands were added (MSNGE11, MSNEGF, MSNECL1i). Characterization of MSNs. (B) Transmission 

electron micrograph (TEM) of MSN-SHin-NH2,out. Scale bar = 50 nm. (C) Small-angle x-ray scattering (D) 

Nitrogen sorption isotherms of MSN-SHin-NH2,out (black), MSNBiotin (green) and MSNAVI (red) with 
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corresponding pore size distributions as inset. (E) Thermogravimetric analysis, (F) Infrared spectroscopy, 

(G) Zeta potential measurements, (H) Summary of sorption data and isoelectric points for the different 

functionalization stages, (I) Dynamic light scattering (DLS) of MSNAVI (red), MSNGE11 (light green), 

MSNEGF (orange) and MSNECL1i (grey) in water. (J) Variance in size distribution in healthy (2%) versus 

cancerous (8%) mucus conditions. (K) Time-dependent pH-responsive percent release statistics at pH 7 

and pH 5. * means a significant increase in the release of the cargo at pH 5 compared to pH 7 (** p < 

0.01). Values given are an average of three independent experiments ±SEM. 

 

Figure S 7-2. EGFR-targeted MSN uptake in H520 cells in vitro. (A) Basal EGFR expression in A549 and 

in H520 cells at the protein level, assessed by Western blot analysis. (B) EGFR-targeted versus non-

targeted uptake of ATTO 633- labeled MSNAVI, MSNEGF, and MSNGE11 in 1 h in EGFR-scarce H520 cells 

co-stained for EGFR by immunofluorescence, measured by confocal microscopy. Nuclear staining (DAPI) 

is shown in blue, EGFR staining in green, and ATTO 633-labeled MSNs in red in the merged image, and 

in gray in the single channel for improved resolution. Scale bar = 100 µm. (C) Quantification of the ATTO 

633- labeled MSNAVI, MSNEGF, and MSNGE11 uptake in 1 h in H520 cells by flow cytometry analysis. After 

gating for the viable cells, median fluorescence intensities from the histogram curves were obtained. 
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Autofluorescence signals of the untreated cells were blanked from the treated cells. Values given are an 

average of six independent experiments ±SEM. 

 

Figure S 7-3. CCR2-targeted MSNs uptake in A549 cells in vitro. (A) Basal CCR2 overexpression in MH-S 

cells versus A549 cells at the protein level, assessed by Western blot analysis. (B) Quantification of the 

ATTO 488- labeled MSNAVI and MSNECL1i uptake in 1 h in CCR2-scarce A549 cells by flow cytometry 

analysis. After gating for the viable cells, median fluorescence intensities from the histogram curves were 

obtained. Autofluorescence signals of the untreated cells were blanked from the treated cells. Values given 

are of a single experiment. 
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Figure S 7-4. Biodistribution of the EGFR-targeted versus non-targeted MSNs in mice bearing LLC
EGFR+

 

versus LLC
EGFR-

 syngeneic flank tumors. (A) EGFR expression of genetically modified LLC clones at 

protein level shown by Western blot analysis, and schematic representation of the syngeneic double flank 

tumor-bearing mouse model that was generated by subcutaneous injection of the individual cell clones, 

respectively. (B) Histological analysis of the biodistribution of intravenously administered MSNAVI and 

MSNGE11 in EGFR-abundant LLC
EGFR+

 and EGFR-scarce LLC
EGFR-

 tumors, livers, spleens, lungs, and 

kidneys of the mice by means of confocal microscopy. Nuclear staining (DAPI) is shown in blue, actin 

staining (phalloidin) in green and ATTO 633-labeled MSNs in red in the merged image, and in gray in the 

single channel for better resolution. Images shown are representative for three different regions from each 

mice (n = 5 mice treated). Scale bar = 100 µm. (C) Quantification of the MSNAVI and MSNGE11 uptake per 

nuclei observed in histological analyses in LLC
EGFR+

 and LLC
EGFR-

 tumors, kidneys, lungs, spleens, and 

livers, respectively. (D) Quantitative dosimetric analyses of the MSNAVI and MSNGE11 fluorescence 

achieved from the homogenates of LLC
EGFR+

 and LLC
EGFR-

 tumors versus livers of the treated mice. In the 
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HBSS control, animals only received HBSS buffer and no particles. *** means a significant increase in 

MSN uptake in the livers compared to the tumors (p < 0.001). Values given are average of three different 

images per each treated mice ± SEM (n = 5 per MSN type). 

 

Figure S 7-5. Organ-specific biodistribution of EGFR- targeted versus non-targeted MSNs in mice bearing 

LLC
EGFR+

 versus LLC
EGFR-

 syngeneic flank tumors. Histological analysis of the biodistribution of retro-

orbitally administered MSNAVI and MSNGE11 in the EGFR-abundant LLC
EGFR+

 tumors, EGFR-scarce 

LLC
EGFR-

 tumors, livers, spleens, lungs, and kidneys of each of the treated mice by confocal microscopy. 

Nuclear staining (DAPI) is shown in blue, actin staining (phalloidin) in green, and ATTO 633-labeled 

MSNs in red. Images shown are representative for three different regions from each mice (n = 5 mice per 

MSN type). Scale bar = 100 µm. 
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Figure S 7-6. EGFR and CCR2 expression in the lungs of Kras
LA2

 transgenic mice with lung cancer. 

Immunohistochemical staining of (A) EGFR (pink) is overexpressed heterogeneously in tumor cells and 

immune cells whereas (B) CCR2 (pink) is overexpressed rather homogeneously in tumor cells and 

immune cells of the Kras
LA2

 mutant mouse with lung cancer, respectively. 
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Figure S 7-7. Biodistribution of MSNs after local delivery to the lungs in major organs of Kras
LA2

 mutant 

mice. Histological analysis of the biodistribution of ATTO 633-labeled MSNAVI, MSNGE11, and MSNECL1i in 

livers, spleens, and kidneys of the Kras
LA2

 mutant mice three days after instillation. Nuclear staining 

(DAPI) is shown in blue, actin staining (phalloidin) in green, and ATTO 633-labeled MSNs in red. Images 

shown are representative for three different regions from each mice (n = 5 per MSN type). Scale bar = 100 

µm. 
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Figure S 7-8. CCR2-targeted and non-targeted MSNs accumulate in CD68 positive macrophages in 

Kras
LA2

 mutant lungs. Immunofluorescence co-staining for the macrophage marker CD68 in tumor-free 

regions of the lungs of Kras
LA2

 mice with ATTO 633-labeled MSNs. Nuclear staining (DAPI) is shown in 

blue, actin staining (phalloidin) in red, CD68 staining in green, and ATTO 633-labeled MSNs in gray. 

Images shown are representative for three different regions from each mice (n = 5 per MSN type). Scale 

bar = 100 µm. 
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Figure S 7-9. Protein corona formation on the surface of the nanoparticles in distinct biological 

environments. Silver staining of the protein corona formed on the surface of MSNAVI and MSNGE11 in cell 

culture medium with 10% FCS, human blood serum, and murine lung lining fluid, overnight. 
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8 Lipid bilayer-coated curcumin-based mesoporous organosilica 

nanoparticles for cellular delivery  

This chapter is based on the following publication: 

Stefan Datz, Hanna Engelke, Constantin v. Schirnding, Linh Nguyen, Thomas Bein, Microp. 

Mesop. Mater. 2016, 225, 371-377. 

 

Abstract 

Effective and controlled drug delivery systems with on-demand release abilities and 

biocompatible properties receive enormous attention for biomedical applications. Here, we 

describe a novel inorganic-organic hybrid material with a strikingly high organic content of 

almost 50 wt%. The colloidal periodic mesoporous organosilica (PMO) nanoparticles 

synthesized in this work consist entirely of curcumin and ethane derivatives serving as 

constituents that are crosslinked by siloxane bridges, without any added silica. These 

mesoporous curcumin nanoparticles (MCNs) exhibit very high surface areas (over 

1000 m
2
/g), narrow particle size distribution (around 200 nm) and a strikingly high stability in 

simulated biological media. Additionally, the MCNs show high autofluorescence and were 

used as a cargo delivery system in live-cell experiments. A supported lipid bilayer (SLB) 

efficiently seals the pores and releases Rhodamin B as model cargo in HeLa cells. This novel 

nanocarrier concept provides a promising platform for the development of controllable and 

highly biocompatible theranostic systems. 
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8.1 Introduction 

Periodic mesoporous organosilica (PMO) constitutes a new type of inorganic-organic porous 

hybrid material, which holds great promise in a variety of fields such as chemical sensing,
1-7

 

catalysis
8-12

 and biomedical applications.
13-15

 Since the independent discovery of this new 

class of mesoporous materials in the groups of Inagaki, Stein and Ozin in 1999,
16-18

 PMO 

materials, synthesized by using bridged silsesquioxanes as precursors, have recently been 

prepared at the nanoscale.
19-21

 Different approaches were used to synthesize PMO 

nanoparticles with simple, low-molecular-weight organosilane bridging groups. In a sol-gel 

process using Pluronic P123 as the template, Landskron et al. synthesized rodlike 

nanoparticles with adjustable aspect ratios.
22

 Using cetyltrimethylammonium bromide 

(CTAB) as the micellular template and an ammonia-catalyzed sol-gel reaction, Huo et al. 

prepared highly ordered and dispersable PMO nanoparticles with methane, ethane, ethylene 

and benzene organic bridging groups within the pore walls.
23

 In another approach the group of 
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Shi et al. used silica-etching chemistry to obtain hollow PMO nanoparticles that were used for 

nano-biomedical applications for the first time.
24

  

Recently, the group of Durand reported the synthesis of biodegradable PMO nanospheres and 

nanorods with a disulfide-containing organic bridging group. The morphology and size of 

these nanostructures was controlled by adjusting the ratio of bis(triethoxysilyl)ethane and 

bis(3-triethoxysilyl-propyl)-disulfide.
25

 These mixed PMO nanospheres and rods were used as 

a biodegradable nanocarrier for doxorubicin in breast cancer cell lines. In the group of Kashab 

et al., enzymatically degradable silsesquioxane nanoparticles were synthesized and used as 

fluorescent nanoprobes for in vitro imaging of cancer cells.
26

 Zink and co-workers developed 

different light-activatable and pH-responsive hybrid materials for drug delivery 

applications.
27-29

 In these studies mostly low-molecular weight organic silsesquioxane 

bridging groups were incorporated into the pore walls of mesoporous nanostructures. Here, 

we report the synthesis of a PMO nanomaterial consisting of the biocompatible and large 

molecule curcumin and ethane organic moieties without the use of additional silica. Curcumin 

is a natural yellow-colored antioxidant compound extracted from Curcuma longa and has 

been used for centuries in its crude form as dietary supplement and in traditional Asian 

medicines.
30

 Recently, it has been shown that curcumin exhibits an exceptionally large range 

of biomedical activity against diseases such as Alzheimer, Parkinson, Malaria and many 

more.
31

 In addition, it shows strong anti-inflammatory effects and has potential 

chemotherapeutic value as it inhibits cell proliferation and induces apoptosis in various cancer 

cell lines.
32-35

 However, its bioavailability is limited by its very low aqueous solubility.
36-37

 

Many different approaches have been investigated to improve the bioavailability and 

biopharmaceutical properties such as incorporating curcumin into liposomes,
38-39

 polymeric 

nanoparticles
40-42

, bioactive glasses
43

 or amino acid conjugates.
44-45

 Various successful in 

vitro
46-48

 and in vivo
49-51

 studies show the exceptional anticancer properties of curcumin 
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nanoformulations. Additionally, it is well tolerated by the human body up to 12 g/day in oral 

administration as shown in clinical studies, which shows great promise regarding the 

biocompatibility of curcumin-based nanosystems.
52

  

Here, we present the synthesis of PMO nanoparticles with curcumin being the main organic 

constituent of the organosilica framework. Importantly, the synthesis was achieved without 

the addition of tetraethyl orthosilicate (TEOS), which is often used in other PMO studies for 

framework stabilization. The nanoparticles obtained in this study exhibit good dispersibility 

and high porosity parameters, which hold promise for a variety of applications in drug 

delivery. Furthermore, the incorporated curcumin compounds cause significant fluorescence 

of the nanoparticles themselves, which implies that no additional dye is necessary to track the 

NPs in live-cell experiments. The mesoporous PMO nanoparticles were used as a cargo 

release system with a Supported Lipid Bilayer (SLB) serving as cap in various in vitro 

experiments. 

8.2 Results and Discussion 

The new nanomaterial was synthesized starting with the preparation of precursors. The 

synthesis of the precursor curcumin-IPTES was achieved following a previously described 

procedure.
5
 In this reaction, curcumin and 3-isocyanatopropyl-(triethoxy)silane (IPTES) form 

carbamate linkages under anhydrous basic conditions. The completion of the reaction can be 

monitored by infrared and UV-VIS spectroscopy in addition to NMR data shown in the 

experimental section. The UV-VIS spectrum (see SI, Figure S 8-1) shows a significant blue-

shift in the absorption from 430 to 415 nm after addition of the electron-withdrawing 

carbamate-linked silyl groups next to the conjugated π-electron system of the curcumin 

compound. In the IR spectra, the completion of the reaction can be followed by the 
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disappearance of the characteristic isocyanate vibration at 2270 cm
-1

 and the increasing 

intensity of the C=O stretching vibration due to the carbamate linkage group absorbing at 

1710 cm
-1

. The synthesized precursor was then used in a carefully controlled sol-gel reaction 

to form mesoporous curcumin nanoparticles (MCNs). The synthesis was performed in a 

water-ethanol mixture with cetyltrimethylammonium bromide as the micellular template 

under slightly basic conditions (Figure 8-1). The addition of ethanol was crucial because of 

the low solubility of Curcumin-IPTES in aqueous solutions. 

 

Figure 8-1. Schematic representation of the synthesis and the inorganic-organic hybrid composition of 

yellow-colored mesoporous curcumin nanoparticles (MCNs). 

The template preparation, the catalyzed hydrolysis of Curcumin-IPTES and BTSE acting as 

the silica sources, and the nanoparticle formation was performed at 80 °C. After completion 

of the reaction the template was extracted in an ammonium nitrate containing ethanolic 
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solution followed by an additional extraction step with ethanol under reflux. After several 

washing steps and redispersion in absolute ethanol the synthesis resulted in a colloidal yellow 

suspension of MCNs (see SI, Figure S 8-3b).  

 

Figure 8-2. Characterization of the Curcumin PMO nanoparticle material. a) DLS measurements in 

ethanol and water, b) zeta potential measurement, c) infrared spectrum, d) nitrogen sorption isotherm 

and pore size distribution (inset), e) small-angle X-ray scattering (SAXS), f) thermogravimetric analysis of 

MCNs and reference nanoparticles without curcumin. 

Dynamic light scattering (DLS) measurements showed a narrow size distribution of MCNs 

with a maximum around 220 nm (Figure 8-2a), implying excellent colloidal stability in 

ethanol and in water. Compared to silica particles, the zeta potential measurement of MCNs 

shows an increased isoelectric point at pH 5.5, which is due to the strongly reduced amount of 

negatively charged silanol groups on the surface of the nanoparticles, compared to common 

mesoporous silica nanoparticles (Figure 8-2b).
53

 In order to investigate the total organic 

amount within the PMO framework, a reference PMO nanoparticle material was synthesized. 

These reference nanoparticles consist exclusively of ethane groups as the organic linker in the 
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PMO material. IR data for both types of samples depicted typical vibrational modes of the 

silica framework between 780 and 1300 cm
-1

 (Figure 8-2c). The shoulders at 1705 cm
-1

 and 

1510 cm
-1

 in the MCN sample can be assigned to the stretching vibrations of C=O and N-H of 

the carbamate group, respectively. The peak at 1560 cm
-1

 is attributed to the secondary amine 

vibrational modes. The intensive signal at 1640 cm
-1

 is due to physisorbed water and can be 

seen in all spectra. The signals beyond 2800 cm
-1

 are assigned to C-H and N-H stretching 

vibrations of the incorporated organic moieties. Nitrogen sorption and small-angle X-ray 

scattering (SAXS) measurements were used to characterize the porosity parameters of the 

obtained nanoparticles. The nitrogen sorption data (Figure 8-2d) showed a type IV isotherm 

with a strikingly high calculated BET surface area of 1040 m
2
/g and a narrow pore size 

distribution around 2.8 nm. The resulting pore volume is 0.55 cm
3
/g. In SAXS measurements, 

only the first (100) reflex is observed, indicating a disordered worm-like pore structure of the 

mesopores in the nanoparticles (Figure 8-2e). Thermogravimetric analysis (TGA) data (Figure 

8-2f) indicate a relative mass loss of 15 wt% up to 900 °C in the reference material consisting 

of a PMO with ethane groups but without curcumin. In comparison, the mixed PMO MCN 

nanoparticles containing curcumin and ethane organic bridging groups reveal a significantly 

enhanced mass loss of 45 wt% indicating the successful incorporation of curcumin into the 

silica framework. Raman spectroscopy and additional solid-state NMR spectra show specific 

signals for curcumin and ethane in the nanoparticle material as well (see SI, Figure S 8-3a and 

Figure S 8-4). The 
29

Si-spectrum shows the presence of T-type signals between -45 and -

70 ppm. The signals arising from the organic parts indicate that the organic linkers are 

completely included into the hybrid silica framework with a high degree of silanol 

condensation. Importantly, the absence of Q-type 
29

Si-signals provides evidence that the Si-C 

bonds are stable under the applied synthetic conditions. Electron microscopy was used to 

investigate the morphology, pore structure and size distribution of MCNs. 
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Figure 8-3. Transmission electron microscopy characterization of the MCNs. 

TEM images of MCNs are depicted in Figure 8-3 and display spherically shaped particles 

with a very narrow particle size distribution. A radially disposed worm-like structure of the 

mesopores of MCNs can be seen in the STEM image (Figure S 8-5c). 2D Fourier 

transformation of the image (FFT, Figure S 8-5g) reveals a pore-to-pore distance of about 

4.5 nm in good accordance to previously described sorption and SAXS measurements. The 

biological stability of MCNs was investigated in simulated body fluid (SBF) to gain insights 

regarding the reactivity of these particles in simulated biological media for future drug 

delivery applications. The long-term stability was investigated with nitrogen sorption, X-ray 

analysis, electron microscopy, and infrared spectroscopy. Strikingly, the particles were stable 

throughout the complete experimental time (up to 28 days) in SBF solution and showed no 

phase transition or crystallization behavior at all. In comparison, common mesoporous silica 

nanoparticles (MSNs) start to show degradation and formation of apatite-like structures after a 

few hours.
54

 Figure 8-4 shows TEM images at the different time points of MCNs stored in 

SBF, where no morphology changes or increased agglomeration can be observed over the 

complete experimental time. The particles also retained their porosity during the process 

(Figure S 8-6). 



Results and Discussion 

300 

 

 

Figure 8-4. Transmission electron microscopy (TEM) images at different time points of MCNs in SBF (0 

h, 3 h, 1 d, 7 d, 28 d) as part of the biodegradability test. 

Our findings can be explained by the drastically decreased amount of reactive silanol groups 

and siloxane bridges on the surface of organosilica nanoparticles compared to classical silica-

based MSNs. This feature is anticipated to make colloidal MCNs promising candidates for 

drug delivery applications in in vivo experiments where enhanced stability is desired.
55

 The 

highly porous and colloidal MCN nanoparticles were also investigated in live-cell 

experiments. Cellular uptake of MCNs and the release of model cargos were investigated in 

HeLa cells. MCNs show significant autofluorescence with an excitation maximum at about 

425 nm and an emission maximum at about 520 nm (Figure 8-5a). This key feature allows us 

to observe them in a fluorescence microscope without addition or attachment of further dyes. 

When coated with a lipid bilayer, colloidal curcumin nanoparticles are internalized with high 

efficiency by HeLa cells after 24 h of incubation and can be detected based on their 

autofluorescence (Figure 8-5b). 
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Figure 8-5. a) Fluorescence excitation and emission spectra of MCNs in PBS buffer. b) Cellular uptake of 

SLB-coated MCNs (green) after 24 h incubation on HeLa cells (red: WGA647 membrane staining); scale 

bar represents 10 µm. 

The release behavior of cargo-loaded MCNs was investigated in vitro. Rhodamin B - a dye 

that stains mitochondria in cells - was chosen as a model cargo and the particles were sealed 

with a supported lipid bilayer (SLB). The SLB was produced in a modulated two-step 

approach employing first DOTAP only, followed by a DOTAP/DOPC mixture.
56

 In vial 

release experiments show the effective closure of the porous system with the SLB. After 

incorporation of RhoB molecules into the mesopores, the SLB was used to block the pore 

entrances. An efficient sealing of the pores and almost no premature release of the cargo was 

observed, whereas upon addition of Triton-X the cargo was released within 48 h (Figure S 

8-7). Additonally, the particles loaded with Rhodamin B and coated with the lipid layer were 

efficiently internalized by HeLa cells. After 24 h a slight release of Rhodamin B could be 

observed. Addition of chloroquine leads to an enhanced release after 48 h as shown in Figure 

8-6. 
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Figure 8-6. Rhodamin B-loaded MCNs in HeLa cells. Release can be observed after 48 h incubation and 

addition of chloroquine. Scale bar: 10 µm. 

8.3 Conclusion 

To conclude, we have developed new colloidal periodic mesoporous organosilica 

nanoparticles containing curcumin as organic component, with very high organic wall 

content. They are fluorescent, possess a large pore volume and surface area and show very 

high stability in simulated body fluid. When coated with a lipid layer they are successfully 

internalized by cells and can deliver and release Rhodamin B in those cells. Thus, they show 

great potential for future applications as drug delivery system. 
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8.4 Experimental Part 

Materials and characterization techniques. Curcumin (60-70%), 3-isocyanatopropyl-

(triethoxysilane) (IPTES), tetrahydrofuran (dry), triethylamine (97%), cetyl trimethyl-

ammonium bromide, ammonium nitrate, ammonium bicarbonate, Rhodamin B, calcein, 

sodium hydroxide, DMSO-d6, dichloromethane, CDCl3, methanol were purchased from 

Sigma Aldrich. Bis(triethoxysilyl)ethane (BTSE) was purchased from ABCR. DOPC (1,2-

dioleoyl-sn-glycero-3-phosphocholine) and DOTAP (1,2-dioleoyl-3-trimethylammonium 

propane) were purchased from Avanti Polar Lipids. All chemicals were used as received 

without further purification. Doubly distilled water from a Millipore system (Milli-Q 

Academic A10) was used for all synthesis and purification steps. All samples were 

investigated with an FEI Titan 80-300 transmission electron microscope operating at 300 kV 

with a high-angle annular dark field detector. A droplet of the diluted MSN solution in 

absolute ethanol was dried on a carbon-coated copper grid. Dynamic light scattering (DLS) 

measurements were performed on a Malvern Zetasizer-Nano instrument equipped with a 

4 mW He-Ne laser (633 nm) and an avalanche photodiode. The hydrodynamic radius of the 

particles was determined by dynamic light scattering in ethanolic suspension. For this 

purpose, 100 µL of an ethanolic suspension of MSN (ca. 10 mg/mL) was diluted with 3 mL of 

ethanol prior to the measurement. Zeta potential measurements of the samples were 

performed on a Malvern Zetasizer-Nano instrument equipped with a 4 mW He-Ne laser 

(633 nm) and an avalanche photodiode. Zeta potential measurements were performed using 

the add-on Zetasizer titration system (MPT-2) based on diluted NaOH and HCl as titrants. For 

this purpose, 1 mg of the particles was diluted in 10 mL bi-distilled water. Nitrogen sorption 

measurements were performed on a Quantachrome Instruments NOVA 4000e. All samples 

(10 mg each) were heated to 100 °C for 12 h in vacuum (10 mTorr) to outgas the samples, 
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before nitrogen sorption was measured at 77 K. Pore size and pore volume were calculated 

with a NLDFT adsorption branch model of N2 on silica, based on the adsorption branch of the 

isotherms. A BET model was applied in the range of 0.05 – 0.20 p/p0 to evaluate the specific 

surface area of the samples. Centrifugation was performed using an Eppendorf centrifuge with 

an adapter for Falcon tubes or an Eppendorf centrifuge 5418 for small volumes. Raman 

spectra were recorded on a Jobin Yvon Horiba HR800 UV Raman microscope using a He-Ne 

laser emitting at λ = 633 nm with a laser power of 10 mW. IR measurements were performed 

on a Bruker Equinox 55 FTIR spectrometer in absorbance mode (spectra were background 

substracted). UV-VIS spectra were recorded with a NanoDrop ND 1000 spectrometer. 

Usually, 2 µL of sample were used and all presented spectra are background corrected for 

water absorption. Thermogravimetric analysis (TGA) of the samples (about 10 mg of dried 

nanoparticles) was performed on a Netzsch STA 440 Jupiter thermobalance with a heating 

rate of 10 K/min in a stream of synthetic air of about 25 mL/min. Cross-polarized 
29

Si- and 

13
C-MAS NMR measurements were performed on a Bruker DSX Avance500 FT spectrometer 

(11.74 T) in a 4 mm ZrO2 rotor. The spinning rate was 10 kHz and a total number of 256 

scans were recorded. The used contact time was 2 ms and the recycle delay was 1 s. 

Synthesis of Curcumin-Precursor. Curcumin ((1E,6E)-1,7-bis-(4-hydroxy-3-methoxy-

phenyl)-hepta-1,6-dien-3,5-dion, 2.00 g, 5.43 mmol, 1 eq.) was dissolved in 25 mL dry THF 

in a three-necked flask. Subsequently, 3-isocyanatopropyl(triethoxysilane) (5.37 g, 21.7 

mmol, 4 eq.) and triethylamine (165 µg, 1.63 mmol, 0.3 eq.) were added under stirring and 

the mixture was refluxed for 24 h at 85 °C in a nitrogen flow. After cooling down to room 

temperature, the sample was filtered and washed with ethyl acetate. The solvents were 

evaporated at reduced pressure and the sample was purified with column chromatography on 

silica gel with a solvent mixture containing 97 v% dichloromethane, 2 v% methanol and 1 v% 

triethylamine. The compound obtained (named Curcumin-IPTES) was dried under high 
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vacuum for 12 hours and used without further purification (yield: 2.29 g, 2.65 mmol, 49 %). 

1
H-NMR (300 MHz, DMSO-d6): δ [ppm] = 7.72 (t, 2H), 7.62 (d, 2H), 7.44 (s, 2H), 7.26 (d, 

2H), 7.09 (d, 2H), 6.95 (d, 2H), 6.16 (s, 1H), 3.80 (s, 6H), 3.73 (qa, 18H), 1.45 (q, 6H), 1.12 

(t, 27H), 0.55 (t, 6H). 
13

C-NMR (400 MHz, CDCl3): δ [ppm] = 183.14, 153.98, 152.00, 

141.75, 140.10, 133.36, 124.00, 123.67, 121.10, 111.47, 101.68, 58.49, 51,92, 43.72, 23.61, 

18.29, 9.20. MS (ESI): [M-H]
- 
cal.: 861.36206, found: 861.36672. 

Synthesis of mesoporous Curcumin-PMO nanoparticles (MCNs). In a two-step sol-gel 

reaction, cetyl trimethyl-ammonium bromide (CTAB, 0.96 mmol, 350 mg) was dissolved in a 

mixture containing 120 mL H2O and 15 mL absolute ethanol in a 250 ml round bottom flask. 

Subsequently, 875 µL sodium hydroxide solution (2 M) was added and the mixture was 

stirred at 80 °C for 30 minutes. In a glass vessel, 400 mg Curcumin-IPTES (0.32 mmol) was 

mixed with 200 µL bis(triethoxysilyl)ethane (BTSE, 0.51 mmol) and 400 µL ethanol. This 

precursor solution was preheated to completely dissolve the compounds and afterwards 

quickly injected into the stirring aqueous template solution. The reaction was maintained for 

90 minutes at 80 °C and 700 rpm. Extraction of the organic template was achieved by heating 

the ethanol-suspended (80 mg) sample under reflux at 90 °C for 1 h in a mixture of 2 g 

ammonium nitrate and 100 mL ethanol. Afterwards, the sample was centrifuged for 15 

minutes at 7830 rpm (7197 rcf), redispersed in ethanol and heated under reflux at 90 °C in a 

solution of 100 mL ethanol for 45 minutes. After centrifugation, the particles were re-

dispersed in 20 mL ethanol, resulting in a colloidal yellow suspension with a concentration of 

4 mg/mL. 

Synthesis of reference PMO nanoparticles. The reference PMO nanoparticles consisting 

exclusively of ethane organic bridging groups were synthesized in a similar two-step sol-gel 

approach as mentioned above. Cetyl trimethyl-ammonium bromide (CTAB, 0.96 mmol, 350 
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mg) was dissolved in a mixture containing 120 mL H2O and 15 mL absolute ethanol in a 250 

ml round bottom flask. Subsequently, 875 µL sodium hydroxide solution (2 M) was added 

and the mixture was stirred at 80 °C for 30 minutes. 325 µL bis(triethoxysilyl)ethane (BTSE, 

0.83 mmol) and 400 µL ethanol were mixed and quickly injected into the stirring aqueous 

template solution. The reaction was maintained for 90 minutes at 80 °C and 700 rpm. 

Extraction of the organic template was achieved by heating the ethanol-suspended (80 mg) 

sample under reflux at 90 °C for 1 h in a mixture of 2 g ammonium nitrate and 100 mL 

ethanol. Afterwards, the sample was centrifuged for 15 minutes at 7830 rpm (7197 rcf), 

redispersed in ethanol and heated under reflux at 90 °C in a solution of 100 mL ethanol for 45 

minutes. After centrifugation, the particles were redispersed in 20 mL ethanol. 

Degradation study in Simulated Body Fluid (SBF). To prepare the SBF buffer, the 

following reagents were dissolved in bi-distilled water and the solution was filled up to 1000 

ml: 6.057 g NH2C(CH2OH)3 (TRIS), 0.350 g NaHCO3, 0.224 g KCl, 7.996 g NaCl, 0.228 g 

K2HPO4
.
3 H2O, 0.305 g MgCl2

.
6 H2O, 0.278 CaCl2, 0.071 g Na2SO4. The pH of the solution 

was adjusted to 7.4 at 37 °C with 1 M HCl.
55

 100 mg of as-synthesized Curcumin 

nanoparticles were centrifuged, washed with bi-distilled water and redispersed in 50 mL SBF 

buffer solution. The mixture was stored at 37 °C and at selected times, 10 mL of the solution 

containing nanoparticles was collected, centrifuged and washed with water for several times 

to remove deposited salts. The sample was then dried at 70 °C and used for further 

characterization. The collected supernatants were used for pH measurements. The selected 

times to collect the samples were 3 h, 1, 4, 7 and 28 days. 

Lipid preparation. The following lipids were used: DOPC (1,2-dioleoyl-sn-glycero-3-

phosphocholine, Avanti Polar Lipids), DOTAP (1,2-dioleoyl-3-trimethylammonium propane, 

Avanti Polar Lipids). The amount of 2.5 mg of the individual lipids was dissolved in a 1 mL 

mixture of 40 %vol absolute ethanol and 60 %vol MQ water (conc. 2.5 mg/mL). 
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Cargo loading and Supported Lipid Bilayer-capping (SLB). The amount of 0.5 mg of 

MCNs in ethanolic solution were centrifuged (4 min, 8609 rcf, at 15 °C) and redispersed in a 

1000 µL loading mixture containing Rhodamin b (0.5 mM in water). The particles were 

centrifuged after 2 h of loading (4 min, 8609 rcf, at 15 °C), separated from the loading 

solution and 100 µL of the above DOTAP solution was added. Upon addition of 900 µL MQ 

water (pH adjusted to 9.4 with sodium hydroxide) the formation of the first SLB layer on the 

external surface of MCNs was induced. After centrifugation (4 min, 8609 rcf, at 15 °C) and 

redispersion in 100 µL of a 1:1 mixture of the above DOPC/DOTAP solutions, the formation 

of a second layer around the MCNs was induced by adding 900 µL HBSS buffer. For the in 

vial release experiments 10 µL of the detergent Triton-X were added to the loaded and capped 

MCNs in order to open the pores. The particles were centrifuged after 24 and 48 h and the 

supernatant was measured on the fluorescence spectrometer.  

Cell culture. HeLa cells were grown in DMEM supplemented with 10 % FBS 

(lifetechnologies) at 37 °C in a humidified atmosphere containing 5 % CO2. They were 

seeded into ibiTreat 8 well slides (ibidi GmbH) at concentrations of 5000 – 10 000 cells per 

well the day prior to treatment. For internalization as well as release studies 2 µg of particles 

were added per well. For internalization studies the cell membranes were stained immediately 

before imaging by addition of wheat germ agglutinin Alexa Fluor 647 conjugate (WGA 647, 

lifetechnologies) at a final concentration of 5 µg/mL and subsequent washing with DMEM 

medium.  

Live cell imaging. Cells were imaged 24 or 48 h after incubation with particles on a spinning 

disc microscope (Zeiss Cell Observer SD utilizing a Yokogawa spinning disk unit CSU-X1). 

The objective was a 63x plan apochromat oil immersion objective (NA 1.4, Zeiss). The 
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exposure time was 0.1 s. For MCN imaging the excitation was 488 nm, for Rhodamin B 561 

nm and for WGA 647 633 nm laser light. 
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8.6 Appendix 

 

Figure S 8-1. UV-VIS absorption (a) and IR spectroscopy (b) data on the formation of the precursor.  

 

Figure S 8-2. 
1
H-NMR (a) and 

13
C-NMR (b) data of the precursor Curcumin-IPTES.  
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Figure S 8-3. Raman spectrum of MCNs (a), image of colloidal MCNs stored in ethanol (b).  

 

 

Figure S 8-4. 29Si MAS ssNMR (a) and 13C MAS ssNMR (b) of MCNs. 
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Figure S 8-5. Electron microscopy of MCNs. SEM images (a, b), STEM image (c), TEM images (d-f), FFT 

(g). 
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Figure S 8-6. Biostability study. Wide-angle X-ray scattering data (a, WAXS), small-angle X-ray 

scattering data (b, SAXS), nitrogen sorption isotherm (c, inset: pore size distribution), infrared 

spectroscopy (d). 

 

 

Figure S 8-7. In vial release experiment: Rhodamin B-loaded MCNs were sealed with SLB and measured 

in the closed and open state (opening of the lipid membrane was induced by adding the detergent Triton-

X). Graphs show efficient sealing of the pore system and successful release of RhoB upon destruction of 

SLB within 48 h. 
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Figure S 8-8. Spinning disc micrographs of Rhodamin B loaded MCNs internalized by HeLa cells. After 

24 h (a) and 48 h (b) only a slight release of Rhodamin B is visible. Upon addition of chloroquine release is 

significantly increased (indicated by white arrows) (c). Scale bar: 10 µm. 
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9 Biocompatible β-cyclodextrin nanoparticles as multifunctional 

carriers for cellular delivery  

This chapter is based on the following work:  

Stefan Datz, Bernhard Illes, Hanna Engelke, Thomas Bein, 2017, in preparation. 

 

Abstract 

Nanoparticle-based biomedicine has received enormous attention for theranostic applications, 

as these systems are expected to overcome several drawbacks of conventional therapy. 

Herein, effective and controlled drug delivery systems with on-demand release abilities and 

biocompatible properties are used as a versatile and powerful class of nanocarriers. We report 

the synthesis of a novel biocompatible material, entirely consisting of covalently crosslinked 

organic molecules. Here, β-cyclodextrin structures were crosslinked with a rigid organic 

linker molecule to obtain small (~150 nm) and highly water-dispersable nanoparticles. The 

nanoparticles could be covalently labeled with dye molecules to effectively track them in in 

vitro cell experiments. Fast sugar-mediated cell-uptake kinetics was observed on HeLa cells, 

revealing particle uptake within less than an hour. Additionally, the particles could be loaded 

with different cargo molecules showing pH-responsive release behavior. Successful nuclei 

staining with Hoechst 33342 dye and effective cell killing with doxorubicin as cargo 

molecules were shown in live-cell experiments, respectively. This novel nanocarrier concept 

provides a promising platform for the development of controllable and highly biocompatible 

theranostic systems. 
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9.1 Introduction 

Cancer therapy is currently shifting from a standardized systemic approach to a more 

personalized and specifically customized disease treatment. Such personalized treatments use 

multifunctional drugs in combination with carrier systems and are ideally based on molecular-

level diagnosis.
1
 After decades of research, the demand for innovative biocompatible 

nanomaterials for the transport of therapeutic agents is still growing. In particular, 

nanoparticle-based targeting of tumor cells has emerged as a potential therapeutic approach to 

release effective drug doses within the tumorous tissue.
2-6

 Because of the prolonged blood 

circulation time combined with nonspecific accumulation in tumors through the enhanced 

permeability and retention (EPR) effect, nanoparticles have been regarded as a suitable 

candidate in the pharmaceutical fields, especially for targeted and personalized cancer 

therapy. A number of different carrier systems have been investigated in the field of 

nanobiosciences with differing results in the last decade. Besides inorganic materials, such as 

mesoporous silica nanoparticles (MSNs),
7-15

 periodic mesoporous organosilica nanoparticles 

(PMOs),
10, 16-20

 or metal-based materials, e.g. Au-
21-23

 or iron oxide nanoparticles,
24-29

 

polymeric micelles,
30-32

 lipids,
33-35

 and DNA origami are other examples for potential drug 

delivery systems used in fundamental biomedical research,
36-38

 However, some of these 

materials have certain drawbacks, e.g. polymeric micelles and lipids often need specific 

formulations for different cargos, and may face stability issues. Besides small magnetic iron-

oxide based materials, none of the other larger solid nanoparticles, such as silica materials, 

have reached clinical trials, partially due to concerns about the unknown fate of these particles 

in the human organism.
39

 In obvious contrast to the ever-growing number of sophisticated 

nanoparticle-based cell-targeting strategies that effectively target tumor cells in vitro, only 

few studies showed successful tumor-cell specific targeting and controlled cancer cell killing 

in vivo. Even fewer nanoformulations have found their way into clinical studies and 
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practice.
40

 Ligand-assisted targeting of cancer cells with nanoparticles in vivo through specific 

receptor-mediated uptake can be limited due to protein corona formation.
41

 Therefore, there is 

a rapidly growing interest in new nanomaterials which can overcome some of the 

aforementioned limitations. Sugar-based materials are promising candidates since cancer cells 

are known to have a faster glycolysis metabolism that selectively leads to an increased 

glucose uptake compared to healthy cells.
42-45

 In the following work, a novel biocompatible 

multifunctional nanomaterials class consisting of cross-linked β-cyclodextrin molecules is 

presented. Cyclodextrins (CDs) are a family of cyclic oligosaccharides composed of six, 

seven, or eight D(+)-glucose units linked by α-1,4-linkages, which are named α-, β-, and γ-

CD, respectively.
46

 These different oligosaccharides are frequently used in the medical field 

because of their biocompatibility and their low toxicity.
47-50

 CDs have a hydrophilic exterior 

and a hydrophobic cavity inside the oligosaccharide rings that can be used to encapsulate 

different kinds of guest and cargo molecules.
51-54

 This encapsulation is based on 

supramolecular host-guest interactions such as hydrogen bonding, van-der-Waals forces or 

hydrophobic interactions, and is used in various application fields including biomedicine, 

catalysis, environmental protection and separation processes.
55

 Although the use of different 

CDs in the medical field has been documented for decades, their application is still rather 

limited due to significant synthetic challenges, demanding the development of more specific 

and controllable CD-containing nanoparticles. Until now, a variety of supramolecular 

nanoparticles (SNPs) with CD-building blocks have been investigated. However, SNPs are 

particles in which different building blocks are brought together by non-covalent interactions 

resulting in controlled larger assemblies.
56

 The assembly is either based on electrostatic 

interactions or host-guest interactions. 
57, 58

 The non-covalent interactions limit their use for 

drug delivery applications, since they might degrade easily before they reach their target and 

any new guest molecule that is incorporated or loaded into the particle needs to be optimized 
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regarding its interactions with the particle structure. Thus, a covalently crosslinked CD 

nanoparticle is viewed as an enabling concept that could facilitate a breakthrough for drug 

delivery applications. Recently, different approaches were used to prepare covalently 

crosslinked CD molecule-containing materials. One is defined by crosslinking α-CD-poly- 

ethyleneglycol (PEG) inclusion complexes by using epichlorohydrin. The nanomaterial was 

obtained after extracting the PEG chains that penetrated the hydrophobic cavity.
59

 In another 

approach, Dichtel et al. polymerized β-CD in a nucleophilic aromatic substitution reaction 

with tetrafluoro terephthalonitrile and obtained mesoporous bulk material that was used to 

rapidly remove organic micropollutants from waste water.
60

 However, no nanoparticles of 

covalently crosslinked CD molecules were obtained yet. In the following work, we combined 

these different approaches to crosslink β-CD-PEG inclusion complexes with rigid aromatic 

groups providing for the first time small, dispersable and thermally stable nanoparticles. 

These NPs can be covalently labeled with dye molecules exploiting simple click-chemistry to 

track them effectively in in vitro cell experiments. β-CD NPs were taken up by cancer cells 

very rapidly and could efficiently release different cargo molecules. This novel and 

biocompatible nanocarrier concept provides a promising platform for the development of 

controllable and efficient theranostic systems. 

9.2 Results and Discussion 

Highly dispersable and thermally stable β-CD NPs for possible drug delivery applications 

were derived from a carefully controlled nucleophilic aromatic substitution reaction with 

tetrafluoroterephthalonitrile (TFTN, see Figure 9-1A).  
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Figure 9-1: Synthesis scheme of β-CD NPs following a nucleophilic aromatic substitution reaction with 

TFTN (A), SEM images of β-CD NPs showing spherical particles with a narrow particle size distribution 

(B). 

Since cyclodextrins (CDs) are known to form inclusion complexes with certain linear polymer 

chains such as poly(ethylene glycol) (PEG), this approach was used to create self-assembled 

aggregates of CD nanostructures.
61

 By modifying previously described synthesis procedures, 

these polyrotaxane structures were reacted with the rigid aromatic linker TFTN to form small 

and water-dispersable spherical nanoparticles. In this work, the β-CD-PEG inclusion 

complexes self-assembled with the help of CTAB surfactant into spherical nanostructures and 

were subsequently polymerized and cross-linked with TFTN in a suspension of K2CO3 in 

dimethylsulfoxide (DMSO) at 80 °C. Several washing steps were essential to remove the 

excess of precursors and salt and the included PEG chains, resulting in a pale yellow 

suspension of β-CD NPs with a yield of 25 %. As can be seen in the scanning electron 
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microscopy (SEM) images in Figure 9-1B the obtained nanoparticles exhibit diameters of 150 

to 200 nm with a narrow particle size distribution. Additional transmission electron 

microscopy (TEM) images can be found in the supporting information. Further 

characterization of the obtained nanomaterial is shown in Figure 9-2. Dynamic light scattering 

(DLS, Figure 9-2A) measurements reveal a high colloidal stability with hydrodynamic 

particle diameters of about 180 nm in water, rendering the obtained β-CD NPs useful for 

cellular delivery applications. Because of their exceptional colloidal stability without 

agglomeration in aqueous solutions, no additional hydrophilic coating such as PEGylation is 

necessary to use them in biotheranostics.
62

 Infrared spectroscopy (Figure 9-2B) was used to 

follow the formation of β-CD NPs with TFTN as the rigid organic crosslinker. The strong 

signal (a) at 1035 cm
-1

 corresponds to characteristic R3C-OH stretching vibrations due to the 

oligosaccharide rings of the incorporated β-cyclodextrin compounds. Signal (b) at 1260 cm
-1 

is due to saturated aliphatic C-O-C ether vibrations of the sugar rings and newly formed 

asymmetric alkyl-aryl-ether =C-O-C vibrations of the crosslinked material. The aromatic 

system of TFTN incorporated into the nanostructure of β-CD NPs is also confirmed by the 

signals (c) corresponding to aromatic -C=C- stretching vibrations and (d) corresponding to the 

strong nitrile vibration. The very broad band (e) around 3200 cm
-1

 is attributed to O-H 

absorption of the incorporated oligosaccharide building blocks. Additional solid-state nuclear 

magnetic resonance (ssNMR) characterization reveals the presence of both TFTN and β-

cyclodextrin in the crosslinked material (see SI). Figure 9-2C displays nitrogen sorption 

experiments of freeze-dried β-CD NPs and reveals an isotherm with a calculated specific 

Brunauer-Emmett-Teller (BET) surface area of about 140 m
2
/g. The pore size distribution 

(inset) shows different pore sizes ranging from 1 to 6.5 nm comprising the majority of the 

accessible pore volume of 0.26 cm
3
/g. Thermogravimetric analysis (TGA) of β-CD NPs 

(Figure 9-2D) indicates the presence of a thermally stable material up to 285 °C and a 
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complete mass loss of almost 100 % up to 900 °C. Zeta potential measurements show that the 

nanoparticles have a negative surface charge of about -35 mV at pH 7 due to the free hydroxyl 

groups of the oligosaccharide compounds. This zeta potential is comparable to other 

nanocarriers such as unfunctionalized mesoporous silica nanoparticles.
63

  

 

Figure 9-2: Characterization of β-CD NPs. A) Dynamic light scattering (DLS) revealing hydrodynamic 

particle diameters of about 180 nm in aqueous solution. B) Infrared spectroscopy data of β-CD (blue), 

TFTN (red) and β-CD NPs (black) with characteristic vibrations. Spectra were normalized and shifted for 

clarity by 0.75 a.u. along the y-axis. C) Nitrogen sorption isotherm and pore size distribution (inset) of β-

CD NPs. D) Thermogravimetric analysis (TGA) up to 900 °C of β-CD NPs. 

With this size and zeta potential as well as their porosity maintained even in the dry state, the 

particles reveal promising properties for drug delivery purposes. Therefore, the synthesized 

nanoparticles were subsequently used for in vitro drug delivery experiments. First, the cell 

uptake kinetics of rhodamine-labeled β-CD nanoparticles was studied on HeLa cells. To 



9. Biocompatible β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery  

 

327 

 

obtain labeled nanoparticles, the free nitrile groups of the incorporated organic crosslinker can 

be used to covalently attach specific dye molecules. Here, the fluorescent 

tetramethylrhodamine (TAMRA) azide was used under mild reaction conditions in a zinc-

catalyzed formation of a tetrazole-ring with the free nitrile groups of β-CD nanoparticles.
64

 

The formation of the compound was followed with IR spectroscopy (see SI). After several 

washing steps the particles were used for in vitro experiments. 

 

Figure 9-3: Upper panel: In vitro cell uptake of rhodamine-labeled β-CD nanoparticles (red) without 

additional coating (A, B) and with lipid coating (C) after 30 min of incubation on WGA-stained HeLa cells 

(green). The blurry red spot in C) results from an accumulation of particles on top of the cells. Lower 

panel: In vitro cell uptake of rhodamine-labeled β-CD nanoparticles (red) without additional coating (D, 

E) and with lipid coating (F) after 24 h of incubation on WGA-stained HeLa cells (green). Scale bar 

represents 10 μm, respectively. 

The upper panel of Figure 9-3 shows representative confocal microscopy images of particle 

uptake by HeLa cells after just 30 min of incubation. The red-fluorescent material was 
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efficiently internalized by cancer cells - even after very short incubation times of 30 minutes 

(Figure 9-3 A, B). Compared to the uptake of other nanomaterials, the internalization was 

very fast, possibly due to the oligosaccharide nature of the particles and sugar-receptor 

mediated endocytosis.
65, 66

 As a reference experiment, the particles were coated with a lipid 

bilayer in order to compare cell uptake kinetics with as-synthesized β-CD nanoparticles (see 

Figure 9-3 C and F). After 30 min, exclusively uncoated β-CD nanoparticles were taken up by 

HeLa cells, whereas after 24 h of incubation both particle types are internalized. The 

experiment leads us to the assumption that the oligosaccharides are effectively taken up via 

sugar receptors and that the oligosaccharides can be shielded by the lipid coating resulting in 

slower cell uptake compared to the sugar-receptor mediated endocytosis of the uncoated 

particles. This suggests that an additional surface coating for as-synthesized β-CD 

nanoparticles is counterproductive for cellular uptake.  

In order to obtain more insights into the endocytosis pathway of β-CD nanoparticles, an in 

vitro competition experiment was performed. For this purpose, prior to the particle incubation 

the sugar receptors on the external cell surface of HeLa cells were saturated by adding 

concentrated aqueous solutions of different mono- and oligosaccharides, namely D-glucose, 

D-L-arabinose, 2-deoxy-D-glucose and β-cyclodextrin (see SI, Figure S 9-3). In all cases the 

particle uptake was hindered when the receptors were blocked, confirming our hypothesis that 

the endocytosis of β-CD nanoparticles is mediated via a specific sugar-receptor mediated cell 

uptake.  

Next, the drug delivery and release properties of β-CD nanoparticles were evaluated by the 

loading and release of different guest molecules, namely Hoechst 33342 as nuclei staining dye 

and doxorubicin as model chemotherapeutic agent. Rhodamine-labeled β-CD NPs were 

loaded with Hoechst 33342 or doxorubicin and subsequently used for in vitro release 
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experiments. The inclusion capability of the β-CD nanoparticles was evaluated by the loading 

and release of different guest molecules. Using the porous β-CD cavities that were liberated 

from the inclusion of PEG, the β-CD nanoparticles could be loaded with either Hoechst 33342 

as a nuclei staining dye or with doxorubicin as a chemotherapeutic agent, respectively. First, 

we studied loading and release of Hoechst 33342. Strikingly, the benzimidazole-containing 

compound is effectively loaded and efficiently released after particle endocytosis due to the 

acidification in the lysosomal compartments that destroys the hydrophobic interaction of 

Hoechst 33342 and the particle cavities (Figure 9-4). 
67, 68

 Since Hoechst 33342 is membrane-

permeable, it is able to penetrate the lysosomal membrane and to efficiently stain the nuclei of 

HeLa cells within very short time periods of less than 10 minutes.  

As a reference experiment the used particle solution was centrifuged after 2 h and the 

supernatant was incubated on HeLa cells. No nuclei staining could be observed. Since 

Hoechst 33342 is a live cell stain, any molecules in the solution would have stained the 

nuclei. The absence of any staining resulting from the supernatant demonstrates that no cargo 

molecules were released prematurely and that the in vitro nuclei staining is due to the 

acidification of nanoparticles in the endosomal compartments that triggers the release of the 

dye. This rapid and efficient delivery and release of Hoechst 33342 as model cargo suggests 

that the newly synthesized particles can serve as a promising drug delivery platform with 

controlled release mechanism.  
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Figure 9-4: In vitro Hoechst 33342 release on HeLa cells. A) Rhodamin-labelled β-CD NPs (yellow) 

released Hoechst 33342 nuclei staining (red) on WGA-stained HeLa cells (green) after just 2 h of 

incubation time. B) As a control experiment the supernatant of centrifuged particles (after 2 h) was added 

to HeLa cells showing no nuclei staining, i.e. no premature release of cargo molecules. Scale bar 

represents 10 μm. 

In order to investigate the ability of our newly developed drug delivery system to transport 

and release chemotherapeutics and to affect cancer cells with their cargo, we replaced the 

model cargo Hoechst 33342 with doxorubicin (DOX), a classic cytostatic agent. DOX is 

known to form inclusion complexes based on hydrophobic interactions with β-cyclodextrin 

structures similarly to Hoechst 33342 and should therefore exhibit a similar loading and 

release behavior. Additionally, it should reveal a pH-responsive release behavior due to 

enhanced solubility when protonated.
69-71

 Hence, the effect of particles containing DOX on 

HeLa cells was investigated. Free DOX is membrane-permeable and is able to induce an 

uncontrolled cell death within a few hours. Thus, we expected it to escape from the 

endosomal membrane when released from the particle in the lysosome and to subsequently 

induce cell death within a few hours after endosomal escape. 
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Figure 9-5: Dose-dependent cell-viability study on HeLa cells after 24 h of incubation with β-CD NPs, 

DOX-loaded β-CD NPs and the supernatant after centrifugation as a reference. 

Indeed, our newly developed β-CD NPs provided intracellular DOX release and caused 

efficient cell death after 24 h of incubation with a calculated IC50 value of 7.23 μg/mL for the 

DOX-loaded β-CD particles. In addition, the nanoparticles exhibited an exceptionally high 

DOX-loading capacity of up to 40 wt% (see SI, Figure S 9-4). The dose-dependent cell 

viability assay demonstrates that DOX was delivered in a controlled manner via the particles 

and released only after endosomal acidification. In contrast, as-synthesized β-CD NPs without 

any cargo show good biocompatibility in the dose-dependent cell viability studies (Figure 

9-5). As a control experiment the DOX-loaded nanoparticles were centrifuged after 24 h 

storage and the respective amount of supernatant was incubated on HeLa cells. This control 

revealed good biocompatibility, i.e. no prematurely released cargo molecules were present. 

This experiment shows the great potential of β-CD NPs to efficiently deliver 

chemotherapeutics to cancer cells without premature release. The newly developed 
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biocompatible carrier system provides the ability to act as a general platform for cellular 

delivery applications with exceptionally fast cell uptake kinetics. 

9.3 Conclusion 

To conclude, we have developed a novel nanomaterial consisting of covalently crosslinked β-

cyclodextrin molecules as the main organic component. The obtained nanoparticles are small 

(~150 nm) and highly dispersable in aqueous solutions. They exhibit very fast cell uptake 

kinetics due to sugar-receptor mediated endocytosis and can be covalently labeled with dye 

molecules to effectively track them in in vitro experiments. Furthermore, the porous cavities 

of the particles can be loaded with different cargo molecules, which are subsequently released 

in the endosomal cell compartments due to acidification. This triggered release mechanism 

allows us to show efficient nuclei staining with Hoechst 33342 dye and effective cancer cell 

killing with doxorubicin as cargos, respectively. Thus, the nanoparticles show great potential 

for future applications as a biocompatible drug carrier system.  
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9.4 Experimental Part 

Materials. β-cyclodextrin (97 %, Sigma Aldrich), tetrafluoroterephthalonitrile (TFTN, 98 %, 

Alfa Aesar), polyethylene glycol 2000 (PEG2000, BioUltra, Sigma Aldrich), potassium 

carbonate (K2CO3, 99.5 %, Grüssing GmbH), tetramethylrhodamine 5-carboxamido-(6-

azidohexanyl) (TAMRA azide, Base click), doxorubicin hydrochloride (98 % HPLC, Sigma 

Aldrich), D-glucose (Sigma Aldrich), D-L-arabinose (Sigma Aldrich), 2-deoxy-D-glucose 

(Sigma Aldrich), Hoechst 33342 trihydrochloride (ThermoFisher Scientific), cetyl 

trimethylammonium bromide (Sigma Aldrich), wheat germ agglutinin, Alexa Fluor® 488 

conjugate (lifeTechnologies), Dulbecco’s modified Eagle’s medium (DMEM) 

(lifeTechnologies), Hank´s balanced salt solution (HBSS-buffer, Sigma Aldrich) were used as 

received. Ethanol (EtOH, absolute, Aldrich), hydrochloric acid (1 M, Bernd Kraft), 

dimethylsulfoxide (DMSO, anhydrous, >99.9 %, Sigma Aldrich) and dimethylformamide 

(DMF, >99.9 %, anhydrous, Sigma Aldrich) were used as solvents without further 

purification. Bidistilled water was obtained from a millipore system (Milli-Q Academic A10).  

Characterization. DLS and zeta potential measurements were performed on a Malvern 

Zetasizer Nano instrument equipped with a 4 mW He-Ne-Laser (633 nm) and an avalanche 

photodiode detector. DLS measurements were directly recorded in diluted colloidal 

suspensions of the particles at a concentration of 1 mg/mL. Zeta potential measurements were 

performed using the add-on Zetasizer titration system (MPT-2) based on diluted NaOH and 

HCl as titrants. For this purpose, 1 mg of the particles was diluted in 10 mL bi-distilled water. 

Thermogravimetric analyses (TGA) of the bulk-extracted samples (approximately 10 mg) 

were recorded on a Netzsch STA 440 C TG/DSC. The measurements proceeded at a heating 

rate of 10 °C/min up to 900 °C in a stream of synthetic air of about 25 mL/min. Nitrogen 

sorption measurements were performed on a Quantachrome Instrument NOVA 4000e at -

196 °C. Sample outgassing was performed for 12 hours at a vacuum of 10 mTorr at 120 °C. 
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Pore size and pore volume were calculated by a QSDFT equilibrium model of N2 on carbon, 

based on the adsorption and desorption branch of the isotherms. A BET model was applied in 

the range of 0.05 – 0.20 p/p0 to evaluate the specific surface area. Infrared spectra of dried 

sample powder were recorded on a ThermoScientific Nicolet iN10 IR-microscope in 

reflection-absorption mode with a liquid-N2 cooled MCT-A detector. Cross-polarized 
13

C-

MAS NMR measurements were performed on a Bruker DSX Avance500 FT spectrometer 

(11.74 T) in a 4 mm ZrO2 rotor. The spinning rate was 10 kHz and a total number of 256 

scans was recorded. The used contact time was 2 ms and the recycle delay was 1 s. Scanning 

electron microscopy (SEM) was performed on a FEI Helios instrument at an acceleration 

voltage of 2.5 kV. For this purpose the samples were put on an adhesive graphite film and 

sputtered twice with carbon with a BALTEC MED 020 Coating System. Transmission 

electron microscopy (TEM) data were obtained with a FEI Titan Themis 60–300 microscope 

at an acceleration voltage of 80 kV. 

Synthesis of β-CD NPs. In a 40 mL polypropylene reactor, 400 mg β-cyclodextrin 

(0.35 mmol), 200 mg tetrafluoroterephthalonitrile (TFTN, 1.00 mmol), 600 mg K2CO3 

(4.34 mmol), 50 mg polyethylene glycol (PEG2000) and 50 mg cetyltrimethylammonium 

bromide (CTAB, 0.14 mmol) were mixed with 15 mL anhydrous DMSO. The mixture was 

sonicated (15 min) and subsequently stirred at 900 rpm and 80 °C for 3 h. The orange 

suspension was cooled to room temperature and 15 mL bidistilled water and 15 mL 

hydrochloric acid (1 M) were slowly added to the reaction mixture. After centrifugation for 15 

minutes at 7830 rpm (7197 rcf) the isolated light yellow solid was washed extensively with 

water (2 x 40 mL), HCl (1 M, 2 x 40 mL) and ethanol (2 x 40 mL) followed by centrifugation 

steps (15 min, 7197 rcf), respectively. Finally, the pale yellow powder was dispersed in 

10 mL bidistilled water and used for further characterization (150 mg, 25 % yield).  
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Rhodamine-labelling of β-CD NPs. 1 mg of β-CD NPs in ethanolic solution were mixed 

with 2 μL TAMRA-azide (2 mg/mL in anhydrous DMF) and a catalytic amount of zinc(II) 

acetate dihydrate. The mixture was shaken at 37 °C for 12 h and afterwards washed 

extensively with ethanol and water (centrifugation steps: 14,000 rpm, 16,837 rcf, 4 min) until 

no fluorescence could be detected in the supernatant. Finally, the particles were redispersed in 

1 mL H2O and used for in vitro uptake experiments. 

Cargo loading of β-CD NPs. An aqueous solution of 1 mg/mL β-CD NPs was centrifuged 

(14,000 rpm, 16,837 rcf, 4 min), washed once with 500 μL HBSS buffer and redispersed 

again in a mixture containing 500 μL HBSS buffer with either 5 μL doxorubicin 

hydrochloride (100 mg/mL in DMSO) or 500 μL Hoechst 33342 (10 mg/mL in water), 

respectively. The nanoparticles were incubated for 3 h and subsequently washed extensively 

with HBSS buffer (14,000 rpm, 16,837 rcf, 4 min) until no fluorescence could be detected in 

the supernatant. Finally, the loaded nanoparticles were redispersed in 1 mL HBSS buffer and 

used for further in vitro release experiments. As a reference sample the particles were 

centrifuged (14,000 rpm, 16,837 rcf, 4 min) after certain time points and the corresponding 

amount of supernatant was used on HeLa cells. 

Lipid preparation. The following lipids were used: DOPC (1,2-dioleoyl-sn-glycero-3-

phosphocholine, Avanti Polar Lipids), DOTAP (1,2-dioleoyl-3-trimethylammonium propane, 

Avanti Polar Lipids). The amount of 2.5 mg of the individual lipids was dissolved in a 1 mL 

mixture of 40 %vol absolute ethanol and 60 %vol MQ water (conc. 2.5 mg/mL). The amount 

of 1 mg of nanoparticles in aqueous solution was centrifuged (4 min, 8609 rcf, at 15 °C) and 

redispersed in 100 µL of the above DOTAP solution. Upon addition of 900 µL MQ water (pH 

adjusted to 9.4 with sodium hydroxide) the formation of the first SLB layer on the external 

surface of the nanoparticles was induced. After centrifugation (4 min, 8609 rcf, at 15 °C) and 
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redispersion in 100 µL of a 1:1 mixture of the above DOPC/DOTAP solutions, the formation 

of a second layer around the nanoparticles was induced by adding 900 µL HBSS buffer. 

Cell Culture. HeLa cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(lifeTechnologies) supplemented with 10 % fetal bovine serum (FBS) and incubated at 37 °C 

under a 5 % CO2 humidified atmosphere. For live cell imaging the cells were seeded on ibidi 

8-well µ-slides 24 h before adding particles, at a cell density of 5000 cells per well. 

Uptake studies and in vitro Cargo release. The cells were incubated with 2 µL or 5 µL of a 

1 mg/mL β-CD NPs solution for 0.5 – 24 h prior to the measurements at 37 °C under a 5% 

CO2 humidified atmosphere. During the measurements all cells were kept on a heated 

microscope stage at 37 °C under a 5% CO2 humidified atmosphere. For imaging, the cells 

were stained with 1 μL of a WGA solution and were incubated for 2-5 min at 37°C in a 5% 

CO2 humidified atmosphere and then washed twice with DMEM. In addition to the uptake 

studies, the supernatant of the stock solution was similarly investigated for fluorescence and 

nucleus staining. The subsequent imaging was performed as described in the spinning disk 

confocal microscopy section.  

Spinning disc confocal microscopy. Confocal microscopy for live-cell imaging was 

performed on a setup based on the Zeiss Cell Observer SD utilizing a Yokogawa spinning 

disk unit CSU-X1. The system was equipped with a 1.40 NA 63x Plan apochromat oil 

immersion objective from Zeiss. For all experiments the exposure time was 0.2 s and z-stacks 

were recorded. Hoechst 33342 was imaged with light at 405 nm and a power density of 

approximately 0.16 W/mm
2
, WGA was imaged at 488 nm with approximately 0.48 W/mm

2
, 

and Rhodamin was excited at 561 nm with 11 mW/mm
2
. In the excitation path a quad-edge 

dichroic beamsplitter (FF410/504/582/669-Di01-25x36, Semrock) was used. Separate images 
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for each fluorescence channel were acquired using two separate electron multiplier charge 

coupled device (EMCCD) cameras (PhotometricsEvolveTM). 

Cell viability studies. For MTT-Assays we seeded 5000 HeLa cells per well containing 

100 μL of high glucose DMEM medium and treated them with particles 24 h after seeding. 

After 24 h of incubation the cells were washed twice with HBSS buffer. 100 μL of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 0.5 mg/mL in DMEM) was 

added to each well of the nanoparticle-treated cells and incubated for further 2 h. Unreacted 

MTT and medium were removed and the 96-well plates were stored at -80 °C for at least 1 h. 

Then, 100 μL DMSO was added to each well. The absorbance was read out by a Tecan plate 

reader at 590 nm with a reference wavelength of 630 nm. All studies were performed in 

triplicates. The IC50 and the standard mean deviations were calculated using the Origin 9.0 

software. 
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9.6 Appendix 

 

Figure S 9-1: A) Transmission electron microscopy (TEM) image of β-CD NPs revealing a particle size 

distribution of around 100-200 nm. B) 
13

C-MAS solid-state nuclear magnetic resonance (ssNMR) 

spectrum of β-CD NPs indicating the successful incorporation of the oligosaccharide compounds and the 

rigid organic linker into the crosslinked material. 

 

Figure S 9-2: A) IR spectroscopy data of as-synthesized β-CD NPs (black) and rhodamine-labeled 

nanoparticles (violet). The successful attachment can be followed by the vanishing nitrile stretching 

vibration at 2245 cm
-1

 due to the covalent binding of the dye’s azide groups to form tetrazole rings in a 

1,3-dipolar cycloaddition. Spectra were normalized and shifted for clarity by 1.0 along the y-axis. B) 
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Photograph of 1 mg of as-synthesized pale yellow β-CD NPs (I) and pink labeled Rho-β-CD NPs (II) in 

water after centrifugation, respectively. 

 

 

Figure S 9-3. Fluorescence microscopy of HeLa cells incubated with rhodamine-labeled β-CD NPs (red) 

after 30 min (A), or pretreated with free inhibitors (e.g. β-cyclodextrin) for 30 min and incubated with 

rhodamine-labeled β-CD NPs for 30 min afterwards (B). Cell membranes are stained with WGA (green). 

Scale bars represent 10 μm each. 

To test the targeting of sugar receptors with β-CD nanoparticles on HeLa cells, the receptors 

were either blocked or free. The functionality was evaluated in a receptor competition 

experiment. For this purpose, one part of the HeLa cells was pre-incubated with 5 µL of an 

inhibitor solution (10 mM aqueous solutions of D-glucose, D-L-arabinose, 2-deoxy-D-glucose 

or β-cyclodextrin, respectively), to block the receptors, for 30 min at 37 °C under a 5% CO2 

humidified atmosphere. Then the HeLa cells were incubated with 5 µg of rhodamine-labeled 

β-CD-NPs for 30 min at 37 °C under a 5% CO2 humidified atmosphere. For staining the cell 

membrane, the cells were incubated with WGA for 2 min. The cells were washed three times 

with PBS, fresh medium was added and subsequently the cells were imaged. Clearly an 
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enhanced sugar receptor-mediated cell uptake can be seen when the sugar receptors are 

available on the cell surface (A) compared to blocked receptors (B). 

 

Figure S 9-4: Calibration curve for doxorubicin loading capacity measured at 500 nm. 

The concentration of the DOX loading solution was 1 mg/mL with 1 mg nanoparticles. After 

several washing steps the supernatants were collected and revealed an added-up absorbance of 

0.698. By using the linear regression fit of the calibration curve this leads to a DOX content of 

580 μg/mL in the collected supernatants. Therefore, the total amount of loaded DOX was 

420 μg per mg nanoparticles leading to a loading capacity of 42 wt%. 
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10 Conclusions and Outlook 

The focus of this thesis was the development of different stimuli-responsive capping systems 

for multifunctional mesoporous silica nanoparticles. Additionally, toxicity and targeting 

studies were performed with MSNs in vitro and in vivo. As a highlight, two new innovative 

nanoparticle materials were developed and applied in cellular delivery applications.  

In the first three chapters capping systems on MSNs responding to different external or 

internal stimuli were synthesized and investigated for drug delivery applications. An enzyme-

responsive capping system based on a matrix metalloproteinase 9 (MMP9) specific linker 

molecules was developed to obtain tightly capped MSNs. MMP9 is overexpressed in tumors 

and known to enhance the metastatic potency of malignant cells, and has been associated with 

poor prognosis of lung cancer. The used MSNs are tightly capped by avidin molecules via 

MMP9 sequence-specific linkers to allow for site-selective drug delivery in high MMP9-

expressing tumor areas. This study shows the feasibility of MMP9 mediated drug release in 

human lung tissue and in an advanced mouse model (Kras mutant mice) that closely reflects 

the human pathophysiology. Moreover, our novel drug delivery system using MMP9 

responsive MSN particles could be used to effectively deliver a combination of two drugs, 

bortezomib and cisplatin, in a stimuli-controlled manner, and potentiate a synergistic effect 

selectively to (metastatic) tumors in mouse and human ex vivo tissue slices.  

Another capping system developed in this thesis is based on the externally applied magnetic 

heating stimulus. This new concept of a molecular nanocap based on a retro-Diels Alder 

reaction and activated through superparamagnetic heating adds to the toolbox of externally 

controllable, thermally triggered nano-valves. We envision that changing the electronic 

properties of the diene and dienophile component in the Diels Alder reaction should allow for 
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further fine-tuning of the release properties of such nanovalves. Actuation through an 

alternating magnetic field has the advantage of deep tissue penetration and non-invasiveness, 

making these nanovalves interesting candidates for future applications in drug delivery.  

In a third approach, a pH-responsive capping system was developed for internally triggered 

cargo release in addition to specific bioorthogonal targeting experiments. The novel capping 

system concept based on pH-responsive detachment of carbonic anhydrase combined with 

folic acid as targeting ligand allows for highly controllable drug release from porous 

nanocarriers. The drug delivery system provides an on-demand release mechanism shown by 

in vial and in vitro cargo release experiments. The multifunctional MSNs were efficiently 

endocytosed in cancer cells and could be located in acidic cell compartments where they 

released their cargo. Furthermore, the system has an on-board targeting mechanism as 

demonstrated in additional in vitro experiments. The targeting mechanism is attached at a 

specific site of the capping enzyme, preventing interference with the closure mechanism. 

These newly developed pH-responsive gatekeepers with genetically designed targeting 

functions provide a promising platform for the design of versatile and modular drug delivery 

systems. 

In the following chapter, we investigated the relevance of avidin-capped MSNs (MSN-AVI) 

for pulmonary therapy by looking at their pulmonary distribution, clearance rate, cell specific 

uptake, and induction of inflammatory response after direct (intratracheal) instillation in the 

lungs of mice. Since MSNs allow for multiple functionalizations, which have been found to 

be important for their bioresponse, we also included non-capped (only amino-functionalized; 

MSN-NH2) particles in this study. We showed that MSN avidin surface modification had an 

effect not only on toxicity, but also on cell specific uptake and tissue distribution in the lungs. 

Specifically, non-capped (MSN-NH2) particles were found to be cytotoxic to macrophages, 

caused an enhanced inflammatory response, and were hardly taken up by epithelial cells. In 
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contrast, MSN-AVI particles co-localized with alveolar epithelial type 1 and type 2 cells in 

the lung tissue and showed preferential epithelial cell uptake in in vitro co-cultures. These 

findings, in combination with the low surface-specific toxicity, wide distribution of the 

particles in the mouse lungs and slow clearance rate is promising for the treatment of chronic 

lung diseases such as COPD (chronic obstructive pulmonary disease), IPF (idiopathic 

pulmonary fibrosis), and lung cancer, where (alveolar) epithelial cells play an important role 

in the pathogenesis. Moreover, the inflammatory potential of drug delivery particles is most 

critical in inflammatory lung diseases such as asthma and COPD, due to additive effects 

leading to worsening of the symptoms. In this context, the observation that the dose of 1 

mg/kg of MSN-AVI did not cause any detectable inflammatory response is particularly 

promising for treatment of these devastating lung diseases. Thus, we believe that avidin-

coated MSNs offer potential for inhalative application as therapeutic drug carriers in chronic 

lung diseases. In addition, the finding that surface modifications greatly affect toxicity and 

cell type specific uptake highlights the importance of these types of studies for future 

development of nanomedicines. These toxicity data were the fundamental basis for the 

following application of MSNs in specific receptor-mediated targeting studies. 

In chapter 7, we investigated the targeting efficiencies of EGFR- or CCR2-targeted 

mesoporous silica nanoparticles (MSNs) in vitro and in vivo for lung cancer therapy with 

cellular resolution. Notably, in vitro validated nanoparticle-mediated targeting of receptors on 

tumor and tumor-associated immune cells is strongly deprived in vivo. This failure in cellular 

targeting specificity is particularly obvious for the lung-delivered nanoparticles as the alveolar 

macrophages of the Kras-mutant mice strongly overexpressed both EGFR and CCR2, but 

efficiently entrapped targeted as well as non-targeted nanoparticles to a similar extent. 

Enhanced cell-specific uptake by macrophages of the lung compared to tumor cells would 

have escaped analysis if only particle uptake within the tissue would have been monitored as 
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done previously. Similarly, analysis of cell-specific particle uptake in flank tumor models also 

unambiguously revealed loss of cellular targeting specificity. Our data thus emphasize the 

need for analyzing cellular targeting specificities with cellular resolution also in the major 

target organs. This is particularly relevant when aiming for combination targeting of different 

cell populations with distinct ligand-functionalized nanoparticles. Our findings, however, 

indicate that these therapeutic effects may not always be due to a direct nanoparticle-mediated 

tumor killing but may also involve bystander effects such as cytotoxicity of tissue-resident 

phagocytic cells, immune-modulatory effects, or unspecific drug release from nanoparticles in 

the liver into the circulation. Our own and other published data indicate that blood-derived 

serum and the lung lining fluid form distinct protein coronas on nanoparticles in vitro. 

Moreover, protein corona also forms rapidly in cell culture medium containing serum where 

receptor-mediated targeting was effective. Taken together, our study argues in favor of a 

stringent validation of cell-specific targeting with cellular-resolution when using nanoparticle-

based targeting strategies. Moreover, closing the translational gap in nanomedicine calls first 

for physiologically relevant animal models, such as the Kras
LA2

 mice as used here which 

develop spontaneous lung tumors closely resembling the human situation, and second for 

rigorous biological testing of nanoparticles using state of the art molecular manipulation of 

cells and animals critically. 

Two different novel nanomaterials for drug delivery were successfully synthesized, with 

reduced silica-content and completely without silica. In chapter 8, we report the development 

of new colloidal periodic mesoporous organosilica nanoparticles containing curcumin as the 

main organic component, with very high organic wall content. They are fluorescent, possess a 

large pore volume and surface area and show very high stability in simulated body fluid. 

When coated with a lipid layer they are successfully internalized by cells and can deliver and 

release Rhodamin B in those cells. Thus, they show great potential for future applications as 
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drug delivery system. Additionally, we have developed a novel nanomaterial consisting of 

crosslinked β-cyclodextrin molecules as the main organic component. The obtained 

nanoparticles are small (~150 nm) and highly dispersible in aqueous solutions. They exhibit 

very fast cell uptake kinetics due to sugar-receptor mediated endocytosis and can be 

covalently labeled with dye molecules to effectively track them in in vitro experiments. 

Furthermore, the porous cavities of the particles could be loaded with different cargo 

molecules, which were subsequently released in the endosomal cell compartments due to 

acidification. This triggered release mechanism allowed us to show efficient nuclei staining 

with Hoechst 33342 and effective cancer cell killing with doxorubicin acting as cargo, 

respectively. Thus, the nanoparticles show great potential for future applications as a 

biocompatible drug delivery system. 

In conclusion, we have developed novel synthesis and application strategies for the 

production of multifunctional mesoporous silica nanoparticles. These were successfully used 

as stimuli-responsive carrier systems in drug delivery applications in vitro, ex vivo and in 

vivo. Additional toxicity studies and targeting experiments showed the great potential as well 

as specific challenges of these nanosystems. To overcome some of these challenges, two new 

novel nanomaterials were successfully synthesized and applied as carrier systems in cellular 

delivery investigations. 
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