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ABSTRACT 

Energy efficient technologies together with renewable energy sources are necessary to cover 

and reduce the world’s energy demand. Among renewable energy sources, sunlight is the most 

abundant and easily accessible. Current efforts mainly center around silicon-based photovoltaic 

technologies. However, the rollout of silicon is inherently slow, energy-intensive, and new 

technologies would be highly desirable.  

Very recently, hybrid lead halide perovskite materials were found to be highly promising 

candidates for both light emitting diodes (LED) and solar cell applications with very cost-

efficient manufacturing potential. The perovskite materials show both strong absorption and 

emission properties combined with solution-based fabrication. However, it turned out that in 

addition to other factors, the efficiency of optoelectronic devices strongly depends on 

perovskite thin film morphology. The present thesis reports on new perovskite synthesis 

procedures for application in highly efficient perovskite-based optoelectronic devices, like solar 

cells and LEDs.  

In the work described in chapter 3, we synthesized dense layers of a wide bandgap perovskite 

(methylammonium lead bromide) with 10 µm large crystallites. We confirmed the perfect 

crystal alignment of the large grains with (100) facets parallel to the substrate by using grazing-

incidence-wide angle X-ray scattering (GIWAXS).  With photovoltaic devices, we showed that 

increased grain size and the strong preference in crystal facet alignment are beneficial for solar 

cell performance. This improvement led to high voltages of over 1.4 V and high photocurrents, 

as well as internal quantum efficiencies approaching unity. 

In chapter 4 we describe a new intermediate phase, which provides the optimum crystallization 

conditions for iodide-based perovskite films. We validated grain sizes of over 10 µm in 450 nm 

thin films with high-resolution investigations in a transmission electron microscope. Similar to 

the bromide compound described in chapter 3, we determined pure perovskite crystal alignment 

in one direction via GIXAWS investigations. To investigate the influence of thin film quality 

on electronic properties such as charge carrier mobilities, we performed time-of-flight (TOF) 

measurements. Our polycrystalline thin films show superior charge carrier mobilities, 

comparable to single crystals, and led to the superior performance of photovoltaic devices in a 

like-to-like comparison. 

In chapter 5, we studied the influence of perovskite crystal facet alignment on optoelectronic 

device applications. The strong crystal alignment in one direction of all our MAPbX3 films 
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reveals a special case for the iodide-based compound. We discovered that substituting small 

amounts of highly polar solvents could be used to tune the alignment of the crystallites. 

Depending on the chosen reaction conditions, purely aligned films with (200) or (002) 

tetragonal crystal facets parallel to the substrates were obtained. To reveal the role of crystal 

orientation in optoelectronic devices, we investigated the charge transport with time-of-flight 

techniques (ToF). In the photovoltaic device application, particularly with the (200) perovskite 

crystal facets in combination with TiO2, we observed an energetic barrier causing a dramatic 

loss in fill factor. With an additional fullerene-based interface layer on top of TiO2, or in the 

inverted device architecture with fully organic interface layers, the energetic barrier at the 

interfaces was avoided and fill factors of 80 % were reached. 

In chapter 6, we addressed one of the most challenging factors for reproducible thin film 

deposition from solution, namely the interaction between the solution and the substrate surface. 

We introduce a new interfacial treatment to enhance the reproducibility of perovskite deposition 

on different surfaces. This method additionally enables up-scaling to produce large area 

modules. To decrease the impact of substrate hydrophobicity towards polar perovskite 

precursor solutions, we applied small amounts of nanoparticles on top to improve surface. With 

contact angle measurements and scanning electron microscopy investigations, we established 

that approximately 1 % surface coverage of insulating nanoparticles like Al2O3 or SiO2 on top 

of rather hydrophobic fullerene interfaces significantly improves the wetting properties. In 

photovoltaic device applications, the performance was not compromised by the presence of the 

particles at the interface. 

Finally, in chapter 7 we used chloride- and bromide-based perovskite compounds for LED 

applications. Here, our optimized process enabled the production of very thin but homogeneous 

perovskite films with varying halide compositions. We characterized the films using X-ray 

diffraction, photothermal deflection spectroscopy, time-resolved photoluminescence, and 

energy dispersive X-ray measurements. We were able to tune the emission color from the blue 

to the green region of the visible spectrum (425–570 nm). Low voltages between 2.2–3 V were 

sufficient to light up the LEDs.   
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1 INTRODUCTION 

1.1 GLOBAL ENERGY CHALLENGE 

The annual global energy consumption constantly increased by 1.8 % over the last decade.1 

Even if we assume no further increase in energy consumption, the current main energy sources, 

namely the fossil fuels are expected to be depleted in 113 years for coal, 52 years for natural 

gas and 50 years for oil.1  The only reasonable approach to prevent this upcoming energy crisis 

is, on the one hand, the development of more energy efficient technologies and on the other 

hand, a stronger focus on renewable energy sources. 

Up to date, fossil fuels fulfill over 81 % of the total energy demand (see Figure 1 - 1a).2 

However, the use of fossil fuels is unsustainable, and their emission products may catalyze 

irreversible climate change.3 Therefore, energy production from wind and solar has been at the 

forefront of renewable energy research in recent decades. Both approaches are potentially cost-

effective, abundant and evenly distributed in the world.4 In particular, the sun provides about 

120000 terawatts to the earth’s surface and therefore potentially covers 6000 times the present 

world’s energy consumption.5 Covering just 0.4% of planet’s surface with 15 % efficient solar 

panels6 or a solar farm with 160 000 km2 in the Sahara Desert with 25 % efficient solar panels7 

would cover the projected energy needs. Thus, the application of photovoltaic (PV) 

technologies has increased constantly in the last few years. Between 2012 and 2015, the amount 

of energy demand covered with PV was doubled from 100 GW to 200 GW8 and was expected 

to be 300 GW in 2017. Such a rapid increase was only possible due to the constant increase of 

cost efficiency in PV systems.9 Here, the improvement of performance in silicon-based solar 

cells and the reduction of its production cost turned this system into a leading PV technology 

with an installed capacity of over 40 GW in 2015 (see Figure 1 - 1b).10 

In addition to silicon solar cells, other technologies were also developed in the past decades to 

address the global energy challenge with PVs. Figure 1 – 1b gives a summery.11  Although 

GaAs reaches top efficiencies with up to 28 % on single junction solar cells, the production cost 

is too high to be considered for mass production.11,12 However, one of the most competitive 

technologies in comparison with silicon-based PV was found to be the second-generation thin 

film-based PV with CdTe or Cu(InGa)Se2 (CIGS). Such devices show high efficiencies of up 

to 22.6 % and are compatible with up-scalable techniques.13-16 The biggest advantage of these 
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systems compared to crystalline silicon is a lower probability of charge recombination at grain 

boundaries or other traps. Therefore, a high crystal quality is not as crucial.17 However, these 

devices are either too toxic or contain rather rare elements like indium, which is much less 

abundant and harder to extract than silicon, making large-scale deployment difficult. 

 

Figure 1 - 1: a) World electricity generation by source, non-hydro renewables includes geothermal, solar, wind, 

tide/wave/ocean, biofuels, waste, heat and other;2 b) annual photovoltaic market demand by technology, with c-Si for crystalline 

silicon, mc-Si for multicrystalline silicon and a-Si:H for amorphous hydrogenated silicon;18 c) historical development of the 

most common white-light sources.19 

The driving force for the development of third-generation PV technologies was mainly the 

possibility of mass production without the requirement of high-temperature annealing and high 

vacuum during synthesis. Therefore, solution-processable solar cells gained increasing interest 

in organic photovoltaics (OPV),20 dye-sensitized solar cells (DSSC)21 or quantum dot solar cells 
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(QD-SC).22 However, the photovoltaic performance is still rather limited in all these types of 

devices. The most efficient type, a QD-SC, presently reaches 13.4 % power conversion 

efficiency.23 Typically, these devices suffer from high recombination losses associated with 

surface defects after ligand exchange.24 In OPV and DSSCs, the losses associated with the 

thermodynamic driving force required to either dissociate strongly bound photo-generated 

excitons20 or to drive electron transfer processes in a DSSC24 inherently limit the device 

efficiencies. Thus, the highest efficiencies so far do not exceed 12 %.23 With the emergence of 

hybrid perovskite materials in solid state thin film PV applications, the development of a highly 

efficient but solution processable technique seems to be imminent, but significant optimization 

is still required. Especially the morphology and microstructure of the perovskite material have 

a significant influence on photovoltaic performance, but a detailed study of their influence and 

further optimization is still necessary.  

Although the development of new technologies to cover the world’s energy demand may appear 

to be the most efficient and direct approach, the introduction of more energy efficient 

technologies tackles the problem at the source. Worldwide, 19 % of the produced electricity 

provides the energy for artificial light.25 Therefore energy conservation measures are required 

for lighting applications. To date, light emitting diodes (LEDs) show the highest potential with 

the better energy efficiency of white LEDs compared to incandescent bulbs and fluorescent 

lamps (see Figure 1 - 1c).26 LEDs show dramatic improvement in luminous efficiency 

compared to High-Pressure Sodium (HPS) systems in general illumination and road lighting.27 

Additionally, LEDs do not suffer from drawbacks such as exposure to mercury found in 

fluorescent bulbs.19 

To date, the use of inorganic LEDs has transformed artificial lighting with significant savings 

in energy. Unfortunately, these semiconductors rely on high temperature, expensive vacuum-

based processing with epitaxial growth on expensive and rigid substrates. Recently, 

OLEDs28 and QLEDs29 emerged as the most promising candidates in comparison with the III-

V semiconductors and have already found commercial application.30,31 However, in QLEDs the 

performance is limited due to large non-radiative recombination caused by the high amount of 

surface defects. OLEDs on the other side, are typically processed via vacuum-based 

sublimation, which is unsuitable for cost-effective large-area processing. Furthermore, 

forbidden (triplet exciton) radiative recombination fundamentally limits their intrinsic emission 

process to typically no more than 25%.32 Hybrid perovskite semiconductors, however, show - 

despite their manufacturability from solution - low defect densities and a direct bandgap, which 
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results in photoluminescence quantum yields exceeding 90 %.33,34 Still, the field of perovskite-

based light emitting diodes (PeLEDs) presents some unexplored areas. Especially, the 

development of blue PeLEDs is desirable for lighting applications but still challenging. Blue 

light generation belongs to the most challenging tasks in LED development and is the emission-

limiting factor in OLEDs35,36 as well as in QLEDs37. However, the generation of white light by 

LEDs requires blue radiation to cover a large part of the emission spectrum.25,35,38 

1.2 PEROVSKITES: A NEW CLASS OF MATERIALS FOR OPTOELECTRONIC 

APPLICATIONS 

Recently, the hybrid perovskite halides emerged as the most promising material for low-cost 

photovoltaic applications. These absorber layers are the basis of the fourth generation of PV 

technology. In 2009 perovskites were first introduced to PV applications in DSSC devices.39 

However, the perovskite material quickly progressed as the most promising absorber layer in 

solid-state thin-film PV devices. After only eight years of research, the power conversion 

efficiencies for perovskite-based solar cells (PSCs) are exceeding 22 %.40,41 Therefore, the 

photovoltaic performance of perovskite-based devices is competitive compared to the other 

solid-state-based PV techniques (see Figure 3b), while it combines the advantages of 

fabrication from solutions and material abundance of OPV, DSSC, and QD-SC.  

The term perovskite arises from the materials crystal structure-type which was discovered with 

CaTiO3 in 1839 and named after the mineralogist Lew Alexejewitsch Petrowski.42 This specific 

crystal structure typically exhibits ABX3 stochiometry, and its oxides like BaBiO3 belong to 

the most studied perovskites, due to their outstanding electrical properties of ferroelectricity 

and superconductivity.43 Thus, the hybrid metal halide perovskites integrate formidably into the 

highly interesting perovskite family. In particular, the methylammonium lead halides 

(MAPbX3) belong to the most investigated hybrid perovskite materials due to the dark 

tetragonal perovskite phase that is stable at temperatures between 160 K and 330 K.44 At higher 

temperatures a transformation to a cubic phase occurs with no dramatic changes of the 

optoelectronic properties.44 Therefore, this compound crystallizes in a strong light absorbing 

phase with good charge carrier transport properties.  

In the MAPbX3 compound, lead (on position B) is octahedrally coordinated by the halides (on 

position X), while methylammonium (on position A) occupies the octahedral voids in the 

structure. The structure modification possibilities include both, cation- and anion-variation. The 
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Goldschmidt tolerance factor (t, see Equation 1 – 1) is a reliable tool to predict the formation 

of a perovskite crystal structure based on the atom-/ molecule-radii in the compound. 

Additionally, with the octahedral factor (µ, see Equation 1 – 2) the stability of the perovskite 

can be evaluated. The optimal range for t is considered to be between 0.813-1.107 and for µ 

between 0.442-0.895.45 The high number of variation possibilities results in expanded 

modification options (see Figure 1 – 2).46-50  

𝑡 = #$%#&
√((#*%#&)

    (Equation 1 – 1) 

𝜇 = 𝑟. 𝑟/0     (Equation 1 – 2) 

 

Figure 1 - 2: Schematic illustration of the halide perovskite structure and the possible ions.  

1.2.1 Perovskite-Based Solar Cells (PSCs) 
In PSCs, the perovskite semiconductor absorbs light and generates charges, which are 

transferred to the charge extraction layers and finally transported to the electrodes. The design 

of devices commonly matches a sandwich-like architecture. The intrinsic perovskite absorber 

layer is arranged in between the charge extraction layers with additional electrodes on top and 

bottom. Here, a “regular” architecture classifies devices with an electron-extraction layer on the 

bottom and hole-extraction layer on top of the perovskite thin film. Inverted devices exhibit a 

reversed stacking sequence. In all device configurations, the nature of the perovskite layer 

regarding morphology, composition, etc. in combination with the nature of the interface the 

perovskite layer creates with the charge extraction layers is essential for the resulting 

photovoltaic performance.  

Generally, for solar cell applications, the key parameters of a semiconductor are the presence 

of a direct band gap, strong light absorption, fast and efficient charge carrier transport and a 
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high tolerance of defects in the structure. The perovskite fulfills all these requirements.51-54 In 

particular, the optical absorption and the low degree of energetic disorder is superior to most of 

the other conventional thin-film solar cells and almost comparable to GaAs (see Figure 1 – 

3a).55 Therefore, the absorber layers can be ultrathin and concomitantly create a sufficient 

number of charges upon illumination, resulting in efficient extraction due to their short travel 

distances. However, the loss during charge extraction for perovskite solar cells is usually very 

low even with film thicknesses of about 500 nm, due to the shallow nature of the dominating 

defects in perovskite films.56  

 

Figure 1 - 3: a) Effective absorption coefficient of a MAPbI3 thin film compared to other typical photovoltaic systems;55  b) the 
current status of PV technology. 

This shallow nature of the defects can be attributed to their low formation energies, while deep 

defect levels only form at high energies in MAPbI3. This unusual defect chemistry was found 

to be due to a strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high 

ionicity of MAPbI3 and explains the long electron-hole diffusion length and high open circuit 

voltages (VOC).52,56 Even though this dominating feature is considered to be responsible for the 

high efficiencies in perovskite solar cells, the control over the perovskite growth conditions is 

the key to regulate the dominant material defect doping and to approach highest solar cell 

efficiencies.56,57 

The perovskite morphology and composition are crucial factors determining the photovoltaic 

parameters in PSCs.58 The change in composition tunes the band-gap47, absorption coefficient59 

or exciton binding energy60,61. However, the perovskite morphology affects the electron and 

hole diffusion lengths62,63, ambipolar charge mobilities64,65 and charge carrier lifetime66.As a 

consequence of high-quality perovskite morphology, photovoltaic devices can approach 100 % 

internal quantum efficiencies67 and exhibit remarkably high VOC68-70 and fill factors71 

approaching the Shockley-Queisser limit 72. However, the electric properties like charge carrier 
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mobilities or diffusion lengths of thin nanocrystalline films are still inferior to single crystalline 

materials73-80, which implies a strong need to increase the grain size in thin perovskite films. 

Various perovskite deposition techniques exist, but so far grain dimensions in thin films are 

limited to mostly 1 µm. 

1.2.2 Perovskites in Light Emitting Diodes (PeLEDs) 
The perovskite materials fulfill the requirements to be the key components of great solar cells 

and great LEDs.72 The material shows strong photoluminescence (PL) with up to 70% quantum 

yield at high photon fluxes due to its low defect densities and therefore reduced non-radiative 

recombination pathways.81 The advantageous electrical transport properties are crucial to 

achieving balanced charge-carrier densities82, and the moderate ionization energy (IE) of the 

perovskite is beneficial to form stable functional interfaces83. In fact, good electroluminescence 

properties can already be observed in a solar cell device configuration.84,85  

One of the strongest features of the perovskite for LED (peLED) applications is the tuneable 

color over the whole visible range.86-88 In the ABX3 structure, every element can be exchanged 

and mixed to tune the emission color. Especially the anion-based color tuning, i.e., exchanging 

the halides in MAPbX3 with Cl-, Br-, I-, gives the largest variation in bandgap from 3.1 eV to 

1.6 eV.89-92 Continuous bandgap tuning is possible by mixing the halides. However, halide 

segregation can occur under heat, light, etc., leading to a shift in the PL emission and loss of 

photoluminescence quantum yield (PLQE) in these systems.93,94 The same applies to stacked 

systems with sequentially deposited films. Here, halides can migrate in-between the individual 

layers. Consequently, the individual PL emission of each layer is lost, which limits the 

engineering of white light emission.95 With nanoparticles (NPs), embedded in a polymer matrix, 

no shift in PL emission occurs, and red and green emitting perovskite films on top of a GaN 

chip have realized white light emission.95 However, the lack of peLEDs with a blue emitting 

perovskite layer hinders the development of fully perovskite-based white LEDs. 

Currently, perovskite PeLEDs exhibit efficiencies similar to those of phosphorescent organic 

LEDs.96 In less than two years, the efficiency of PeLEDs improved from 1% to 8% external 

quantum efficiencies (EQE). This improvement was mainly possible with the optimizations of 

perovskite emission layer morphology.96 The morphologies of thin emission films in LED 

applications are desired to be twenty-five times thinner than for PV applications to achieve 

confinement of the charges injected into the emission layer. Synthesizing very thin perovskite 

films is rather challenging since they usually exhibit pinholes and other morphological 

defects.97,98 Therefore, with 35 % the highest PLQE of thin films is also much lower than that 
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of perovskite NPs with 90 %. However, PeLEDs based on NPs suffer mostly from device 

degradation and efficiency drop due to heating at high current densities.99 Additionally, the high 

defect densities common with NPs create similar limitations as observed in QLEDs. Therefore, 

the synthesis of high-quality thin films with high crystallinity but very small film thicknesses 

will be necessary for high-performance PeLEDs.  

1.3 PEROVSKITE CRYSTALLIZATION 
Studying perovskite thin film crystallization is crucial for their application in optoelectronic 

devices. In particular, the perovskite thin film morphology and microstructure are decisive 

regarding defect densities in the material and its resulting electrical properties, like charge 

transport under operating conditions.100 The improvement of morphology can be obtained with 

increased grain sizes. However, the microstructure additionally affects the charge transfer to 

the charge extraction layers in devices, leading to facet-dependant photovoltaic efficiency 

variation of single grains in polycrystalline thin perovskite films.101 Usually, the crystals in 

polycrystalline perovskite films are randomly-aligned and different facets are exposed to the 

charge extraction layers. Improved crystal alignment potentially decreases the defect densities 

in perovskite films and enables the optimization of interface engineering in the device 

architectures. 

Interface engineering and the perovskite thin film quality are the most critical factors for 

optoelectronic device performance. Furthermore, perovskite crystallization strongly depends 

on the interface on top of the substrate.102,103 Regarding the wetting behavior of the substrate 

towards the polar perovskite precursor solutions, the perovskite nucleation and crystallization 

are strongly altered by changes in surface roughness. Therefore, the nature of the bottom 

interface generally limits most perovskite crystallization techniques. These limitations need to 

be solved to enable a broad perovskite thin film application in various device configurations. 

In particular, the up-scaling to modules is an important factor for commercialization of 

perovskite devices.  

To study perovskite crystallization in general, methylammonium lead halides (MAPbX3, with 

X=I-, Br-, Cl-) are some of the most suitable compounds for fundamental studies. All MAPbX3 

compounds show good phase purity of the perovskite structure with the tetragonal structure for 

the iodide compound or the cubic structure for the bromide or chloride compounds. These 

compounds can all be processed at low temperature and from solution. Therefore, various 

possibilities for perovskite conversion techniques arise, distinguished in one- or two-step 
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approach. In the two-step approach, a precursor is usually pre-deposited in the solid state to 

react with the other precursor afterward, typically in a liquid or gas environment. Whereas in 

the one-step approach all precursors are mixed into one precursor solution and the perovskite 

conversion is rather direct from solution. This method is considered to be the potentially easiest 

and therefore cheapest technique. Furthermore, the classification of one-step approaches has 

been proposed as (i) direct transition104,105, (ii) crystallization through an intermediate 

phase 39,106,107 or (iii) through precursors108. In all methods, the nucleation occurs with induced 

supersaturation, such as solvent removal with isothermal heating109-112 or addition of 

antisolvents74,104,113,114.   

 

Figure 1 - 4: a) Schematic illustration of classical homogeneous and heterogeneous nucleation during supersaturation of thin 
film solution115; Top-view SEMs of MAPbI3 from MAI+PbI2 precursor with b) dimethylformamide (DMF) solvent116; c) MAF 
ionic liquid117.  

During the perovskite conversion process either heterogeneous or homogeneous nucleation (see 

Figure 1 - 4a) can occur. The heterogeneous nucleation on the substrate is the most desirable 

one to achieve uniform thin films.115 However, the polar solvents necessary to dissolve the 

perovskite precursors lead to strong coordination with the divalent metal, regarding Lewis-

base-adduct formation (the solvent O-atoms coordinate to the electron deficient Pb2+ cation). 

Since lead halides are known to be Lewis-acids and to form iodoplumbate anions, like [Pb3I10]4- 

and [Pb5I16]6- 118,119, it was also suspected that colloids form, and therefore that this would not 

be an ideal scenario for perovskite nucleation.115,120 The colloids can serve as heterogeneous 

nucleation sites, which can assemble to form a bulk structure, leading to low nuclei distribution 

on the substrate, and promoting island growth with non-fully-covering films (see Figure 1 – 4). 

Thus, the main focus in process development for perovskite crystallization is to create ideal 

conditions for nucleation. So far, the use of an ionic liquid (methylammonium formate, MAF) 

presented the ideal case of nucleation for pure MAPbI3 with films featuring large and highly 

aligned crystallites in fully-covered films.100,117 This was attributed to the pure transition of the 

perovskite upon heating while the liquid remained on top.117 However, this process condition 

also led to rough surfaces, which makes most device applications unfeasible.  
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1.3.1 The Two-Step Approach 
One of the first processes introduced to avoid island formation during perovskite crystallization 

is the so-called two-step approach. Here, undesirable perovskite nucleation effects are 

prevented by pre-depositing a lead iodide layer, followed by the perovskite conversion 

afterward. The achievement of uniform perovskite films is even possible with a PbI2 layer 

containing small pinholes, due to the healing of those pinholes during perovskite conversion.121 

Therefore, no complex thin film deposition methods are required for PbI2 layer deposition and 

a process via blade coating can be efficiently used for the large-scale application.122  

The two-step approach distinguishes between three different categories of conversion: solid-

liquid123,124, solid-solid125 and solid-vapour121 (see Figure 1 – 5). In all cases, the solid lead 

iodide-based layer represents the basis for the final perovskite film morphology, especially in 

a solid-liquid and solid-solid reaction. The conversion to the perovskite occurs through the 

diffusion and the subsequent intercalation of methylammonium iodide (MAI) into the lead 

iodide film. Therefore, the mobility of MAI must be guaranteed, either with liquid phase or by 

heating to facilitate ion movement. With the MAI intercalation, the PbI2 lattice expands in 

volume.126,127 This makes the process rather complex to understand or control.  

 

Figure 1 - 5: Schematic illustration of 2-step conversion techniques: a) solid-liquid; b) solid-solid; c) solid-vapour. 

With in situ grazing-incidence small angle X-ray scattering (GISAXS), two main limitations 

for perovskite crystal growth were identified, such as thin film delamination and high roughness 

from grain growth constraints.126 To overcome such limitations, the use of porous PbI2127 was 

suggested, or of density-matched adduct complexes, like the Lewis-base-adduct 

PbI2٠xDMSO128-130. The use of adducts belongs to be the most promising approaches due to the 

avoided or reduced volume expansion during the perovskite conversion.129  

The partial substitution of MAI with MACl provides no change in the perovskite morphology, 

but an improvement in the photovoltaic performance.124,131  This improvement was attributed 
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to the significantly decreased perovskite crystallization rate and the preferential crystals growth 

with (002/110) crystal facets parallel to the substrate.132-134   

1.3.2 Antisolvent Techniques 
One of the one-step approaches aiming to avoid perovskite island growth and to achieve high-

quality uniform perovskite morphologies was found to be the so-called antisolvent technique. 

This approach stands out due to a simple process with reproducible uniform perovskite 

nucleation. Here, a solvent in which the perovskite shows only low solubility, i.e., an antisolvent 

like chlorobenzene (CB) or toluene, is added during the spin-coating process of the perovskite 

precursors (see Figure 1 – 6).104,113 In a rapid process, the polar precursor solvent is extracted 

with the antisolvent and the perovskite nucleation is forced.115 Therefore, the resulting 

perovskite films exhibit homogeneous coverage with ultrasmooth and fine grains.104,114 The use 

of the Lewis-adduct MAI-PbI2-DMSO established a further improvement in morphology, 

which now belongs to the most common perovskite deposition techniques in small lab-scale 

applications.41,106,135 Similar to the two-step conversion, the DMSO-containing complex 

formation results in high-quality perovskite films after conversion. Especially for fast 

processes, such as the antisolvent technique, the Lewis-base DMSO was found to be an 

excellent intermediate to control to some extent the morphology and grain size of MAPbI3. 

With these techniques, the highest recorded photovoltaic efficiencies reached up to 19.7%.106  

 

Figure 1 - 6: Schematic illustration of the antisolvent technique and conventional spin‐coating process for fabricating perovskite 
films. Conventional spin‐coating (top) results in a shiny gray film composed of large non‐uniform crystals as a result of slow 
crystallization. In the antisolvent process (bottom), a second solvent (e.g., chlorobenzene) introduced on top of the wet film 
during the spin‐coating process induces fast crystallization of uniformly sized perovskite grains.104 

1.3.3 Alternative Lead Sources 
Another strategy to modify the nucleation of the iodide-based compounds is to use lead sources 

alternative to PbI2. Buin et al. predicted high trap densities in films synthesized with a high 

iodide content. As a consequence, iodide-free lead sources should have the potential for 
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achieving a better performance by avoiding this issue.136 Mainly, PbCl2, Pb(Ac)2 and Pb(NO3)2 

were suggested by Aldibaja et al., and their crystallization kinetics analyzed (see 

Figure 1 – 7).137,138 Figure 1 – 7 shows literature-known morphologies with the largest 

perovskite grain sizes achieved for each precursor.  However, only PbCl2 and Pb(Ac)2 showed 

satisfying perovskite nucleation behavior in a one-step process without the need for extensive 

optimization.137,138 Especially in a direct comparison of PbI2, PbCl2, and Pb(Ac)2 at a ratio of 

1:3 with MAI, only the perovskite films from the Pb(Ac)2 precursor resulted in a homogeneous 

layer. 139 This was attributed to a much higher nucleation density with the highly volatile excess 

organic salt in Pb(Ac)2, as nucleation and crystallization already occurred at RT with the solvent 

being still on top.138,139  

 

Figure 1 - 7: a) Schematic timelines for the four lead salt systems used in perovskite crystallization kinetics study.138 The legend 
shows the title for each colored bar with the full explanation of the process given in the text. Although the pathway timeline is 
intended to be schematic, the start time and length for each process calculated from data in [108]; SEM top-view of about the 
best MAPbI3 thin film morphologies with b) PbI2 precursor105; c) PbCl2 precursor107; d) Pb(Ac)2 precursor139; e) Pb(NO3)2 
precursor140. 

Such a fast process results in small grain sizes with up to 500 nm in dimension within the 

perovskite films.139 Interestingly, the amount of hydration water in Pb(Ac)2 shows a substantial 

impact on crystallization kinetics with slight morphological variations but significant changes 

in solar cell performance if the amount of hydration water is varied.141,142 However, the origin 

of such effects was not revealed so far, and the grain sizes do not extend beyond 1 µm in thin 

films.  
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Using a PbCl2 precursor resulted in the largest grain sizes in the µm-range. Here, the 

crystallization was related to the pre-formation of an intermediate phase based on a chloride-

rich compound.107 However, usually the large crystallites were disconnected and a poor surface 

coverage resulted.  Thus, with this approach a crystal size- and surface coverage compromise 

was necessary.107,131,143-145 

1.3.4 Precursor Additives 
The trends described in the previous sections on perovskite crystallization mostly point toward 

ideal crystallization kinetics in perovskite formation through an intermediate phase. Chloride-

based compounds and Lewis-base additives create such intermediate phases, and the perovskite 

nucleation is regulated by their stability, especially towards temperature. As described in the 

following, a trial and error approach with varying precursor additives was established to 

determine the best conditions.146 

In the case of chloride-based compounds, the tests included either highly volatile compounds 

like NH4Cl and HCl or the non-volatile compound CaCl2. Here, mainly the volatile compounds 

led to smooth film morphologies but nanometer-sized grains.147 With the non-volatile 

compound perovskite grain sizes were increased, leaving the insulating CaCl2 behind. The big 

drawback of this approach is that no complete removal of CaCl2 occurred with heat treatment 

as in the case of volatile compounds. Thus, devices achieved only poor performance.148  

 

Figure 1 - 8: SEM images of MAPbI3 perovskite films derived from different additives: a-d) morphological changes with 
variation of Lewis-base additive.146 

Lewis-bases are considered to be the more ideal precursor additives to improve the perovskite 

thin film morphology. Usually, an intermediate phase forms, which directly converts to the 

perovskite. Therefore, homogeneous films of the Lewis-adducts can be deposited and converted 

to the perovskite at a slow nucleation rate while avoiding island formation. Additional studies 

showed increased crystal size related to the stability of the complex during perovskite 

conversion.146 By choice of Lewis-bases (like DMSO, thiourea or urea), the stability could be 

varied by the interactions with the lead ions. Thiourea forms a more stable Lewis-base-adduct 
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than DMSO or urea, which results in larger grain sizes in the perovskite films (see 

Figure 1 – 8).146 However, the stability of the Lewis-base-adducts based on thiourea entails a 

non-phase pure perovskite layer with low performance in photovoltaic applications.146,149 Less 

stable Lewis-base adducts, such as the PbI2-MAI-DMSO complexes are highly unstable at RT 

if deposited in the solid state. The instability causes barely controllable nucleation and 

crystallization process during perovskite conversion.150  

1.4 OUTLINE OF THE THESIS 
The preceding experience regarding perovskite crystallization points towards the elaboration of 

an ideal perovskite film formation through a stable intermediate perovskite phase with easily 

removable side products. In this thesis, we developed a new and highly stable intermediate 

phase with direct conversion to the pure perovskite phase under heat treatment due to highly 

volatile side products. We determined that this beneficial intermediate phase forms by mixing 

a hydrated lead acetate precursor with methylammonium halides. This method includes highly 

polar solvent mixtures like dimethylformamide (DMF), dimethylsulfoxide (DMSO) or 

tetraethylthiophene-1-oxide (THTO) and is beneficial for the deposition of iodide-, bromide- 

or chloride-based perovskite compounds.  

The halide variation from iodide over bromide to chloride tunes the bandgap of the material, 

such that different applications are feasible. We used chloride- or bromide-based compounds 

for LED applications. Here, our process enabled the production of very thin but homogeneous 

perovskite films with variable halide compositions. We tuned the emission color from blue to 

the green region of the visible spectrum (425–570 nm), and only low voltages between 2.2-3 V 

were necessary to light up the LEDs. This first report on a blue perovskite LED supports the 

possibility of very cost-efficient lighting applications of the perovskite materials. Furthermore, 

our results show sharp, color-pure electroluminescence (EL), which is interesting for LEDs in 

display applications.  

Bromide-rich compounds are also very good candidates for solar cell applications. These wide 

bandgap perovskites are particularly interesting materials because of their potentially high 

open-circuit voltage and are therefore attractive for driving electrochemical reactions like the 

generation of solar fuels or for multi-junction device applications. However, high-quality films 

are necessary for good performance in devices, and the synthesis of such planar 

methylammonium lead bromide thin films is very challenging. We managed to optimize the 

film deposition conditions with the use of a hydrated lead acetate precursor and synthesized 
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dense layers with large crystallites (5–10 μm in size) and perfect crystal alignment. The single 

junction devices exhibit high photocurrents, internal quantum efficiencies approaching unity 

and voltages exceeding 1.4 V. As a result, we obtained highly efficient solar cells with high 

open-circuit voltages.  

A similar effect regarding photovoltaic performance occurred for iodide-based devices that are 

particularly interesting for single solar cell junctions due to their high-power conversion 

efficiencies. The discovered intermediate phase (IP) formed with lead acetate precursor 

provides optimized crystallization conditions, especially for the iodide-based compound 

MAPbI3 due to its stability compared to the other halide systems. We obtained thin films with 

grain sizes of over 10 µm with pure crystal orientation with respect to the substrate. With the 

improved film morphology and microstructure, the electric properties were boosted and 

approach the ones of single crystals. Power conversion efficiencies amounted to 18.5%, higher 

than MAPbI3-based devices prepared from standard methods in a like-to-like comparison. 

All of our methylammonium lead halide films exhibit strong crystal alignment concerning the 

substrate. However, the role of perovskite crystal orientation in optoelectronic device 

application remains unclear. While all our bromide- and chloride-based compounds crystallized 

with the (100) cubic crystal facets preferably aligned parallel to the substrate, the crystal 

alignment in the iodide-based compound with a tetragonal crystal structure is tuneable. We 

discovered tunability of crystal facet alignment with the variation of highly polar solvent 

additives during synthesis, enabled by the formation of the IP from the lead acetate precursor. 

For the (200) and (002) tetragonal crystal facets, we can achieve almost perfect crystal 

alignment parallel to the substrate without changing the perovskite crystallization dynamics and 

morphology. In general, we observed improved charge transport with a higher degree of crystal 

alignment. However, the exposure of specific crystal facets to different charge extraction 

materials leads to changes in the interface. In particular, the (200) perovskite crystal facets in 

combination with TiO2 cause an interfacial energetic barrier with severe loss in fill factor. We 

introduced a C60-self-assembled monolayer on top of TiO2 which removed the energetic barrier. 

Furthermore, inverted devices fully based on organic layers show no hint of the presence of 

barriers and fill factor values in such devices approach the theoretical maximum with 81 %.   

The interactions between the perovskite precursor solution and the substrate limit the choice of 

the bottom interfaces in devices. Fullerene-based interfaces belong to the most challenging due 

to its hydrophobicity towards the polar perovskite precursor solutions. As a result, non-

homogeneous perovskite layer coverage and its delamination usually limit the device size and 
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reproducibility of power conversion efficiency. To decrease the hydrophobicity and to enable 

a universal solution for perovskite crystallization independent from the substrate, we applied 

small amounts of nanoparticles, like Al2O3 or SiO2 improving the wetting behavior of the 

surface. By adding these insulating nanoparticles, surface coverage of about 1 % at the interface 

already improved the wetting of polar perovskite solutions on top of fullerenes significantly (by 

66 %). This way, a full and uniform film coverage was enabled. The solid-state IP from lead 

acetate precursor additionally provided the best conditions for large area perovskite synthesis. 

Following this approach, the perovskite was generated from the IP independent of the speed of 

the low-volatility solvent removal, and homogeneous large-grain films were obtained on a 144 

cm2 sized substrate.  



1   INTRODUCTION 
 

- 17 - 
 

1.5 LITERATURE 

 (1) British Petroleum 2017, 66. 
 (2) International Energy Agency 2017. 
 (3) Höök, M.; Tang, X. Energy Policy 2013, 52, 797. 
 (4) J. Nelson; Emmott, C. J. Trans. R. Soc. A 2013, 371, 4. 
 (5) Grätzel, M. Acc. Chem. Res. 2009, 42, 1788. 
 (6) Docampo, P.; Guldin, S.; Leijtens, T.; Noel, N. K.; Steiner, U.; Snaith, H. J. Adv. 
Mater. 2014, 26, 4013. 
 (7) Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J. 
Energy Environ. Sci. 2014, 7, 3952. 
 (8) Singh, R.; Alapatt, G. F.; Lakhtakia, A. IEEE Journal of the Electron Devices 
Society 2013, 1, 129. 
 (9) de la Tour, A.; Glachant, M.; Ménière, Y. Energy Policy 2011, 39, 761. 
 (10) Green, M. A. Nature Energy 2016, 1, 15015. 
 (11) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Progress in Photovoltaics: 
Research and Applications 2010, 18, 346. 
 (12) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Science 1999, 285, 
692. 
 (13) Bhattacharya, R. N.; Contreras, M. A.; Egaas, B.; Noufi, R. N.; Kanevce, A.; 
Sites, J. R. Appl. Phys. Lett. 2006, 89. 
 (14) Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; 
Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P.; Cahen, D.; Friend, R. H. J. Phys. 
Chem. Lett. 2014, 5, 2501. 
 (15) Ayre, J.  Clean Technica, 2014. 
 (16) Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. physica 
status solidi (RRL) – Rapid Research Letters 2016, 10, 583. 
 (17) Visoly-Fisher, I.; Cohen, S. R.; Ruzin, A.; Cahen, D. Adv. Mater. 2004, 16, 879. 
 (18) Ng, C. H.; Lim, H. N.; Hayase, S.; Zainal, Z.; Huang, N. M. Renewable and 
Sustainable Energy Reviews 2018, 90, 248. 
 (19) Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Nature Photonics 
2009, 3, 180. 
 (20) Brabec, C. J. Sol. Energy Mater. Sol. Cells 2004, 83, 273. 
 (21) Grätzel, M. Journal of Photochemistry and Photobiology C: Photochemistry 
Reviews 2003, 4, 145. 
 (22) Nozik, A. J. Physica E: Low-dimensional Systems and Nanostructures 2002, 14, 
115. 
 (23) Best Research-Cell Efficiencies (NREL, h. w. n. g. n. i. e. c. j. 
 (24) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, 
P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 
2006, 18, 1202. 
 (25) Lin, Y.-C.; Karlsson, M.; Bettinelli, M. Top. Curr. Chem. 2016, 374, 21. 
 (26) Uchida, Y.; Taguchi, T.; SPIE: 2005; Vol. 44, p 9. 
 (27) Li, F.; Chen, D.; Song, X.; Chen, Y. In 2009 Asia-Pacific Power and Energy 
Engineering Conference 2009, p 1. 
 (28) Murawski, C.; Leo, K.; Gather, M. C. Adv. Mater. 2013, 25, 6801. 
 (29) Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Nature Photonics 
2012, 7, 13. 
 (30) Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-
Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703. 



1   INTRODUCTION 

- 18 - 
 

 (31) Applications of Organic and Printed Electronics; Springer US, 2013. 
 (32) Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nature Photonics 2012, 6, 253. 
 (33) He, H.; S., S. A.; V., K. S.; Fu, H. T.; L., R. A. Advanced Science 2015, 2, 
1500194. 
 (34) Abhishek, S.; Ramya, C.; Kumar, R. V.; Mir, I.; Arindam, C.; Angshuman, N. 
Angew. Chem. 2015, 127, 15644. 
 (35) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, 
K. Nature 2009, 459, 234. 
 (36) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. 
Nature 2006, 440, 908. 
 (37) Wan Ki, B.; Jeonghun, K.; Jaehoon, L.; Donggu, L.; Min Ki, N.; Kookheon, C.; 
Changhee, L.; Seonghoon, L. Nanotechnology 2009, 20, 075202. 
 (38) Schubert, E. F.; Kim, J. K. Science 2005, 308, 1274. 
 (39) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 
6050. 
 (40) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, 
S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376. 
 (41) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; 
Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M. 
Science 2016, 354, 206. 
 (42) Rose, G. De novis quibusdam fossilibus, quae in montibus uraliis inveniuntur, 
scripsit. 1839, Berlin. 
 (43) Yan, B.; Jansen, M.; Felser, C. Nat Phys 2013, 9, 709. 
 (44) Quarti, C.; Mosconi, E.; Ball, J. M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, 
H. J.; Petrozza, A.; De Angelis, F. Energy Environ. Sci. 2016, 9, 155. 
 (45) Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Acta Crystallographica 
Section B 2008, 64, 702. 
 (46) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nature 
Photonics 2014, 8, 489. 
 (47) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 
1764. 
 (48) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; 
Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. 
 (49) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; 
Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. 
Energy Environ. Sci. 2016, 9, 1989. 
 (50) Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; 
Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D.; Bein, T.; Docampo, 
P. J. Phys. Chem. Lett. 2014, 5, 2791. 
 (51) Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623. 
 (52) Yin, W.-J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. 
 (53) Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. J. Mater. Chem. A 2015, 
8926. 
 (54) Park, N.-G. Mater. Today. 
 (55) De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; 
Haug, F.-J.; Yum, J.-H.; Ballif, C. J. Phys. Chem. Lett. 2014, 5, 1035. 
 (56) Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. 
 (57) Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S. H. Angew. Chem. Int. 
Ed. 2015, 54, 1791. 
 (58) Huang, J.; Shao, Y.; Dong, Q. J. Phys. Chem. Lett. 2015, 6, 3218. 



1   INTRODUCTION 
 

- 19 - 
 

 (59) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, 
S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Scientific Reports 
2012, 2, 591. 
 (60) Zheng, K.; Zhu, Q.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; 
Niu, Y.; Ribaud, L.; Canton, S. E.; Pullerits, T. J. Phys. Chem. Lett. 2015, 6, 2969. 
 (61) D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. 
D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Nat Commun 2014, 5. 
 (62) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; 
Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. 
 (63) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, 
S.; Sum, T. C. Science 2013, 342, 344. 
 (64) Leijtens, T.; Stranks, S. D.; Eperon, G. E.; Lindblad, R.; Johansson, E. M. J.; 
McPherson, I. J.; Rensmo, H.; Ball, J. M.; Lee, M. M.; Snaith, H. J. ACS Nano 2014, 8, 7147. 
 (65) Chen, Y.; Peng, J.; Su, D.; Chen, X.; Liang, Z. ACS Applied Materials & 
Interfaces 2015, 7, 4471. 
 (66) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. 
Adv. Mater. 2014, 26, 1584. 
 (67) Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Das, S.; Ivanov, I.; 
Rouleau, C.; Duscher, G.; Geohegan, D.; Xiao, K. J. Am. Chem. Soc. 2015, 137, 9210. 
 (68) Wolff, C. M.; Zu, F.; Paulke, A.; Toro, L. P.; Koch, N.; Neher, D. Adv. Mater. 
2017, 29, 1700159. 
 (69) Shao, Y.; Yuan, Y.; Huang, J. Nature Energy 2016, 1, 15001. 
 (70) Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. J. Mater. Chem. A 2015, 
3, 8926. 
 (71) Stolterfoht, M.; Wolff, C. M.; Amir, Y.; Paulke, A.; Perdigon-Toro, L.; 
Caprioglio, P.; Neher, D. Energy Environ. Sci. 2017, 10, 1530. 
 (72) Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. 
 (73) Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 
2015, 347, 967. 
 (74) Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; 
Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; 
Mohammed, O. F.; Sargent, E. H.; Bakr, O. M. Science 2015, 347, 519. 
 (75) Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; 
Dursun, I.; Yuan, M.; Hoogland, S.; Sargent, E. H.; Bakr, O. M. Nat Commun 2015, 6. 
 (76) Zhumekenov, A. A.; Saidaminov, M. I.; Haque, M. A.; Alarousu, E.; Sarmah, S. 
P.; Murali, B.; Dursun, I.; Miao, X.-H.; Abdelhady, A. L.; Wu, T.; Mohammed, O. F.; Bakr, O. 
M. ACS Energy Letters 2016, 1, 32. 
 (77) Petrus, M. L.; Schlipf, J.; Li, C.; Gujar, T. P.; Giesbrecht, N.; Müller‐
Buschbaum, P.; Thelakkat, M.; Bein, T.; Hüttner, S.; Docampo, P. Advanced Energy Materials 
2017, 7, 1700264. 
 (78) Semonin, O. E.; Elbaz, G. A.; Straus, D. B.; Hull, T. D.; Paley, D. W.; van der 
Zande, A. M.; Hone, J. C.; Kymissis, I.; Kagan, C. R.; Roy, X.; Owen, J. S. J. Phys. Chem. Lett. 
2016, 7, 3510. 
 (79) Tian, W.; Zhao, C.; Leng, J.; Cui, R.; Jin, S. J. Am. Chem. Soc. 2015, 137, 12458. 
 (80) Handloser, K.; Giesbrecht, N.; Bein, T.; Docampo, P.; Handloser, M.; 
Hartschuh, A. ACS Photonics 2016, 3, 255. 
 (81) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; 
Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. 
J. Phys. Chem. Lett. 2014, 5, 1421. 
 (82) Stranks, S. D.; Snaith, H. J. Nature Nanotechnology 2015, 10, 391. 
 (83) Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452. 



1   INTRODUCTION 

- 20 - 
 

 (84) Jaramillo-Quintero, O. A.; Sanchez, R. S.; Rincon, M.; Mora-Sero, I. J. Phys. 
Chem. Lett. 2015, 6, 1883. 
 (85) Gil-Escrig, L.; Longo, G.; Pertegas, A.; Roldan-Carmona, C.; Soriano, A.; 
Sessolo, M.; Bolink, H. J. Chem. Commun. 2015, 51, 569. 
 (86) Dohner, E. R.; Hoke, E. T.; Karunadasa, H. I. J. Am. Chem. Soc. 2014, 136, 
1718. 
 (87) Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. J. Am. Chem. Soc. 
2014, 136, 13154. 
 (88) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; 
Dong, Y. ACS Nano 2015, 9, 4533. 
 (89) Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J.-P.; 
Lee, J. W.; Song, J. K. Nano Lett. 2015, 15, 5191. 
 (90) Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; 
Prato, M.; Manna, L. J. Am. Chem. Soc. 2015, 137, 10276. 
 (91) Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; 
Kovalenko, M. V. Nano Lett. 2015, 15, 5635. 
 (92) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, 
C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692. 
 (93) Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. ACS Energy Letters 2018, 
3, 204. 
 (94) Sutter-Fella, C. M.; Ngo, Q. P.; Cefarin, N.; Gardner, K. L.; Tamura, N.; Stan, 
C. V.; Drisdell, W. S.; Javey, A.; Toma, F. M.; Sharp, I. D. Nano Lett. 2018. 
 (95) Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks, S. D.; Liu, J.; 
Eperon, G. E.; Ducati, C.; Wojciechowski, K.; Griffiths, J. T.; Haghighirad, A. A.; Pellaroque, 
A.; Friend, R. H.; Snaith, H. J. Chem. Mater. 2015, 27, 8066. 
 (96) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. 
H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im, S. H.; Friend, R. H.; Lee, T.-W. Science 2015, 
350, 1222. 
 (97) Li, G.; Tan, Z.-K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.-W.; Friend, R. H.; 
Greenham, N. C. Nano Lett. 2015, 15, 2640. 
 (98) Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.-K.; Du, H.; Cheng, L.; Dai, X.; Bai, 
S.; He, H.; Ye, Z.; Lai, M. L.; Friend, R. H.; Huang, W. Adv. Mater. 2015, 27, 2311. 
 (99) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, 
F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. 
J.; Friend, R. H. Nat Nano 2014, 9, 687. 
 (100) Cho, N.; Li, F.; Turedi, B.; Sinatra, L.; Sarmah, S. P.; Parida, M. R.; Saidaminov, 
M. I.; Murali, B.; Burlakov, V. M.; Goriely, A.; Mohammed, O. F.; Wu, T.; Bakr, O. M. Nature 
Communications 2016, 7, 13407. 
 (101) Leblebici, S. Y.; Leppert, L.; Li, Y.; Reyes-Lillo, S. E.; Wickenburg, S.; Wong, 
E.; Lee, J.; Melli, M.; Ziegler, D.; Angell, D. K.; Ogletree, D. F.; Ashby, Paul D.; Toma, F. M.; 
Neaton, J. B.; Sharp, I. D.; Weber-Bargioni, A. Nature Energy 2016, 1, 16093. 
 (102) Ye, F.; Chen, H.; Xie, F.; Tang, W.; Yin, M.; He, J.; Bi, E.; Wang, Y.; Yang, X.; 
Han, L. Energy Environ. Sci. 2016, 9, 2295. 
 (103) Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Nature 
Communications 2015, 6, 7747. 
 (104) Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-
Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. Angew. Chem. 2014, 126, 10056. 
 (105) Noel, N. K.; Habisreutinger, S. N.; Wenger, B.; Klug, M. T.; Horantner, M. T.; 
Johnston, M. B.; Nicholas, R. J.; Moore, D. T.; Snaith, H. J. Energy Environ. Sci. 2017, 10, 
145. 



1   INTRODUCTION 
 

- 21 - 
 

 (106) Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. J. Am. 
Chem. Soc. 2015, 137, 8696. 
 (107) Binek, A.; Grill, I.; Huber, N.; Peters, K.; Hufnagel, A. G.; Handloser, M.; 
Docampo, P.; Hartschuh, A.; Bein, T. Chemistry – An Asian Journal 2016, 11, 1117. 
 (108) Munir, R.; Sheikh, A. D.; Abdelsamie, M.; Hu, H.; Yu, L.; Zhao, K.; Kim, T.; 
Tall, O. E.; Li, R.; Smilgies, D.-M.; Amassian, A. Adv. Mater. 2016, n/a. 
 (109) Jung, H. S.; Park, N. G. Small 2015, 11, 10. 
 (110) Zhao, Y.; Zhu, K. J. Phys. Chem. Lett. 2014, 5, 4175. 
 (111) Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Angew. 
Chem. Int. Ed. 2015, 54, 3240. 
 (112) Im, J.-H.; Kim, H.-S.; Park, N.-G. APL Mat. 2014, 2, 081510. 
 (113) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 
2014, 13, 897. 
 (114) Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P. J. Mater. 
Chem. A 2015, 3, 8178. 
 (115) Zhou, Y.; Game, O. S.; Pang, S.; Padture, N. P. J. Phys. Chem. Lett. 2015, 6, 
4827. 
 (116) Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. 
Sci. 2014, 7, 2359. 
 (117) Moore, D. T.; Tan, K. W.; Sai, H.; Barteau, K. P.; Wiesner, U.; Estroff, L. A. 
Chem. Mater. 2015, 27, 3197. 
 (118) Krautscheid, H.; Vielsack, F. J. Chem. Soc., Dalton Trans. 1999, 2731. 
 (119) Krautscheid, H.; Vielsack, F. Z. Anorg. Allg. Chem. 2000, 626, 3. 
 (120) Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. J. Am. Chem. 
Soc. 2015, 137, 4460. 
 (121) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, 
G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622. 
 (122) Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; 
Cameron, P.; D'Epifanio, A.; Licoccia, S.; Reale, A.; Brown, T. M.; Di Carlo, A. J. Power 
Sources 2015, 277, 286. 
 (123) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, 
M. K.; Gratzel, M. Nature 2013, 499, 316. 
 (124) Docampo, P.; Hanusch, F. C.; Stranks, S. D.; Döblinger, M.; Feckl, J. M.; 
Ehrensperger, M.; Minar, N. K.; Johnston, M. B.; Snaith, H. J.; Bein, T. Advanced Energy 
Materials 2014, 4, n/a. 
 (125) Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; 
Huang, J. Energy Environ. Sci. 2014, 7, 2619. 
 (126) Schlipf, J.; Docampo, P.; Schaffer, C. J.; Körstgens, V.; Bießmann, L.; Hanusch, 
F.; Giesbrecht, N.; Bernstorff, S.; Bein, T.; Müller-Buschbaum, P. J. Phys. Chem. Lett. 2015, 
6, 1265. 
 (127) Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, 
S.; Zhu, K.; Padture, N. P. J. Mater. Chem. A 2015, 3, 9249. 
 (128) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. 
Science 2015, 348, 1234. 
 (129) Li, W.; Fan, J.; Li, J.; Mai, Y.; Wang, L. J. Am. Chem. Soc. 2015, 137, 10399. 
 (130) Cao, J.; Jing, X.; Yan, J.; Hu, C.; Chen, R.; Yin, J.; Li, J.; Zheng, N. J. Am. Chem. 
Soc. 2016, 138, 9919. 
 (131) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 
2012, 338, 643. 
 (132) Grill, I.; Handloser, K.; Hanusch, F. C.; Giesbrecht, N.; Bein, T.; Docampo, P.; 
Handloser, M.; Hartschuh, A. Sol. Energy Mater. Sol. Cells 2017, 166, 269. 



1   INTRODUCTION 

- 22 - 
 

 (133) Oesinghaus, L.; Schlipf, J.; Giesbrecht, N.; Song, L.; Hu, Y.; Bein, T.; Docampo, 
P.; Müller-Buschbaum, P. Advanced Materials Interfaces 2016, 3, 1600403. 
 (134) Docampo, P.; Hanusch, F. C.; Giesbrecht, N.; Angloher, P.; Ivanova, A.; Bein, 
T. APL Mat. 2014, 2, 081508. 
 (135) Zheng, X.; Chen, B.; Wu, C.; Priya, S. Nano Energy 2015, 17, 269. 
 (136) Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. 
Nano Lett. 2014, 14, 6281. 
 (137) Moore, D. T.; Sai, H.; Wee Tan, K.; Estroff, L. A.; Wiesner, U. APL Mat. 2014, 
2, 081802. 
 (138) Moore, D. T.; Sai, H.; Tan, K. W.; Smilgies, D.-M.; Zhang, W.; Snaith, H. J.; 
Wiesner, U.; Estroff, L. A. J. Am. Chem. Soc. 2015, 137, 2350. 
 (139) Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; Hörantner, M. T.; 
Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.; Alexander-Webber, J. A.; Abate, A.; 
Sadhanala, A.; Yao, S.; Chen, Y.; Friend, R. H.; Estroff, L. A.; Wiesner, U.; Snaith, H. J. Nat. 
Commun. 2015, 6, 6142. 
 (140) Hsieh, T.-Y.; Wei, T.-C.; Wu, K.-L.; Ikegami, M.; Miyasaka, T. Chem. 
Commun. 2015, 51, 13294. 
 (141) Bai, S.; Sakai, N.; Zhang, W.; Wang, Z.; Wang, J. T. W.; Gao, F.; Snaith, H. J. 
Chem. Mater. 2017, 29, 462. 
 (142) Ling, L.; Yuan, S.; Wang, P.; Zhang, H.; Tu, L.; Wang, J.; Zhan, Y.; Zheng, L. 
Adv. Funct. Mater. 2016, 26, 5028. 
 (143) Pool, V. L.; Gold-Parker, A.; McGehee, M. D.; Toney, M. F. Chem. Mater. 2015, 
27, 7240. 
 (144) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, 
A.; Snaith, H. J. ACS Nano 2014, 8, 9815. 
 (145) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 
1739. 
 (146) Zhu, L.; Xu, Y.; Zhang, P.; Shi, J.; Zhao, Y.; Zhang, H.; Wu, J.; Luo, Y.; Li, D.; 
Meng, Q. J. Mater. Chem. A 2017, 5, 20874. 
 (147) He, J.; Chen, T. J. Mater. Chem. A 2015, 3, 18514. 
 (148) Chen, Y.; Zhao, Y.; Liang, Z. J. Mater. Chem. A 2015, 3, 9137. 
 (149) Fei, C.; Li, B.; Zhang, R.; Fu, H.; Tian, J.; Cao, G. Advanced Energy Materials 
2016, 1602017. 
 (150) Guo, Y.; Shoyama, K.; Sato, W.; Matsuo, Y.; Inoue, K.; Harano, K.; Liu, C.; 
Tanaka, H.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 15907. 



 

- 23 - 
 

2 CHARACTERIZATION 

2.1 X-RAY DIFFRACTION (XRD) 
XRD is an important tool to obtain information about the crystal structure and crystallinity of a 

material. X-rays are generated via an electron beam targeting on a pure metal anode contained 

in a vacuum tube. Therefore, ground state electrons from the atoms of the target material are 

ejected, and holes are created. The emission of the X-rays is initiated by the refilling the ground 

state with the created holes. Copper or molybdenum are common anode materials with the 

emission of characteristic X-rays at λ = 0.154 nm for Cu-Kα1 and λ = 0.702 nm for Mo-Kα1. If 

these X-rays are directed onto the sample, they are diffracted by crystalline phases in the sample 

according to Bragg’s law. Bragg’s law describes the condition for constructive interference and 

is shown in Equation 2 – 1 and the schematic of the process in Figure 2 - 1. The resolution of 

this technique is given by measurable angles between 0.5° 2θ and 100° 2θ, which correlate to 

lattice spacings of 0.1 nm to 20 nm.1  

𝑛𝜆 = 2𝑑	𝑠𝑖𝑛(𝜃)   (Equation 2 – 1) 

d = spacing between the atomic planes; λ = wavelength of the X-rays; θ = incident angle 

 

Figure 2 - 1: Diffraction process according to the Bragg’s law. 

2.2 GRAZING-INCIDENCE-WIDE ANGLE X-RAY SCATTERING (GIWAXS) 
The principle of GIWAXS is similar to traditional X-ray diffraction, except that the incident X-

ray wave vector ki is kept at a grazing angle with respect to the sample surface to minimize the 

undesired background scattering (both elastic and inelastic) emanating from the bulk, and to 

enhance the near-surface scattering. The grazing incidence geometry is shown in Figure 2 – 2. 
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This technique captures a two-dimensional slice through reciprocal space, allowing the 

reconstruction of the structure and extraction of information on the orientation of the crystal 

planes from azimuthal intensity distribution.2-4  Wide angle scattering allows probing the order 

at the atomic scale, which is the typical technique to probe the crystallographic lattice of 

nanostructures. In wide-angle scattering, the incident angle αi and angle of total reflection αf are 

very small, such that the scattering plane is nearly parallel with the surface and the diffracting 

lattice planes are perpendicular to it. Since the scattering geometry is defined by the incident 

beam and detector directions, a long-range periodicity parallel with the surface is probed. 

 

Figure 2 - 2: Grazing incidence X-ray scattering geometry, at wide angles. 

In GIWAXS the angular coordinates are related to the wavevector transfer coordinates 

according to:  

𝑞: = 𝑘<=cos(2𝜃A) cosB𝛼AD − cos	(𝛼F)G  (Equation 2 – 2) 

𝑞H = 𝑘<=sin(2𝜃A) cosB𝛼ADG   (Equation 2 – 3) 

𝑞K = 𝑘<=sin(𝛼A)+	sin(𝛼F)G   (Equation 2 – 4) 

𝑘< = 2𝜋 𝜆0     (Equation 2 – 5) 

q = wavevector transfer; k0 = elastically conserved wave vector modulus; 2θ = scattering angle; αf = angle of total reflection; 

αi = incident angle; λ = is the X-ray wavelength. 

The intensity measured by X-ray scattering techniques depends on the angular coordinates αi,  

αf, and 2θf. The coordinates allow building the intensity distribution in reciprocal space. If the 

out-of-plane and in-plane vectors differ in comparison, an independent analysis of structural 

properties of nanostructures such as strain, composition, and shape, without interference with 

the substrate is possible.5 

2.3 SCANNING ELECTRON MICROSCOPY (SEM) 
SEM is an imaging technique of a sample surface with a focused beam of electrons and gives 

information on topography or sample composition. This technique is capable of imaging at a 
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significantly higher resolution than light microscopes, due to the significantly smaller de 

Broglie wavelength of electrons. Here, an electron beam is scanned across the sample creating 

either backscattered or secondary electrons, which are then detected. The difference in the 

number of detected electrons at different scan positions enables the visualization of an image 

in the cathode-ray tube.  

 

Figure 2 - 3: a) Schematic representation of basic SEM components; b) the interaction volume of an electron beam on the 
sample. 

Two different electron source types can be used for SEM, either a thermal emitter or a field 

emission gun. Thus, emission of electrons is activated either thermally or with a high electrical 

field from a source, such as a tungsten cathode in a vacuum. Afterward, the electrons are 

directed to the anode. Due to electromagnetic lenses, an inhomogeneous magnetic field is 

created which focuses the electrons that are then scanned across the sample. The schematic of 

the SEM setup is shown in Figure 2 – 3a. If the electrons target the sample, different 

interactions can occur, see Figure 2 – 3b. The significant interactions for imaging in SEM are 

backscattered and secondary electrons. For electron detection, semiconductor detectors or 

scintillator-photomultiplier detectors are used. For example, in a semiconductor detector, a 

doped Si single crystal with a p-n-junction beneath the surface creates electron-hole pairs upon 

electron illumination. An external field or voltage is applied to separate the charge carriers, and 

the signal is detected and monitored. A scintillator-photomultiplier detector accelerates the 

electrons into the scintillator, converts the generated photons back to electrons and cascades the 

electrons in the photomultiplier, thus creating the signal.6 
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2.4 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

 

Figure 2 - 4: Schematic view of imaging and diffraction modes in TEM. 

The working principle of TEM is very similar to SEM. In TEM transmitted electrons are 

projected onto an area detector to form an image. Here, thin samples (less than 100 nm 

thickness) are required, and this technique has a much higher resolution than SEM. 

Additionally, in contrast to classical SEM, TEM provides both image and diffraction 

information of the sample. The schematic view of the two different modes, which only differ 

in the imaging mode of the intermediate lens, is shown in Figure 2 – 4. For both modes, the 

sample is illuminated with the parallel electron beam, which is formed by condenser lenses and 

a condenser aperture. Either the transmitted electrons that remain un-scattered or are scattered 

due to interactions with the sample are detected. Inelastic scattering originates from interactions 

between the primary beam and the electrons of the sample, which is caused by heterogeneities 

like composition, morphology, etc. Therefore, electrons with various intensities are detected 

and are used for imaging. The diffraction information on the sample can be acquired with 
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elastically scattered electrons, which exhibit no energy loss. With this technique, the crystal 

structure can be analyzed together with the morphology.7 

2.5 UV-VIS ABSORPTION SPECTROSCOPY 
UV-vis spectroscopy is a method to determine the light absorption behavior of molecules in 

solution or of the bulk material. To this end, a spectrometer contains a light source, a 

monochromator, a sample holder and a detector. To generate a continuous spectrum, a 

deuterium arc lamp for the UV region and a tungsten filament or a xenon arc lamp for the visible 

region are usually used as light sources. The monochromator disperses the light to create a 

wavelength-resolved spectrum. Finally, a signal is detected by a photomultiplier, a photodiode 

array or a charge-coupled device.  

During the measurement, the sample is illuminated. In the case of bulk materials like thin films, 

the measurement is dependent on the type of the incident beam and the detector. In this work 

transmission and reflectance of the films were measured. For the transmission measurement, 

the background of the substrate was subtracted, and the sample was pointed with the glass side 

towards the incident light. For the reflectance measurement, the background was measured with 

a white standard, and the sample was pointed with the film side towards the light. To eliminate 

the absorption of the substrate, also the transmission and reflectance were measured for each 

clean substrate type. To calculate the absorption from the first path of the light, Equation 2 – 6 

was used: 

𝐴𝑏𝑠%QRS = 100% − 𝑇%− 𝑅%− 𝐴𝑏𝑠%XYZ (Equation 2 – 6) 

Abs%PK1 = absorption from the first path of the perovskite; T% = transmission; R% = Reflectance; Abs%SUB = absorption of 

the substrate. 

Due to the additional reflectance of the substrate during the transmission measurement, the 

absorption of the second path from Equation 2 – 7 needs to be calculated to obtain the absolute 

absorption.  

𝐴𝑏𝑠%QR( = (100 − 𝑅%− 𝐴𝑏𝑠%XYZ − 𝐴𝑏𝑠%QRS) ∙
\Z]%^_`

S<<
+ 𝐴𝑏𝑠%QRS      (Equation 2 – 7) 

Abs%PK2 = absorption from the second path; Abs%PK1 = absorption from the first path of the perovskite; T% = transmission; 

R% = Reflectance; Abs%SUB = absorption of the substrate. 

To derive the theoretical maximum current possible from the analyzed perovskite layers, we 

integrated the Spectrum of Abs%PK2.  
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2.6 PHOTOTHERMAL DEFLECTION SPECTROSCOPY (PDS) 
PDS is a very sensitive and powerful technique to study the optical absorption of thin samples. 

With this technique, the change in refractive index of the sample is mainly measured. The 

change occurs with the heating of the medium due to absorption of the optically exciting beam 

and also causes a refractive index gradient in a thin layer adjacent to the sample surface. 

Therefore, the probe laser is refracted or bent proportional to the temperature gradient of the 

transparent medium near the surface. With a second beam, the deflection of the varying 

refractive index can be related to the optical absorption of the sample.  

PDS can be performed in two variations, in collinear or transverse photothermal deflection. In 

the first, the gradient of the refractive index is both created and probed within the sample. For 

samples with the poor optical quality, the transverse photothermal deflection is more suitable 

since the probing of the gradient of the refraction index is accomplished in the thin layer 

adjacent to the sample.8  

2.7 STEADY STATE PHOTOLUMINESCENCE (SSPL) 
Photoluminescence (PL) spectroscopy is a method to analyze the photoactive material. Here, 

photons are used to excite the electronic states in the material and light is emitted at a 

wavelength specific for the material according to relaxation of the excited states.  

Typically, the light source is a laser which operates in a wavelength region in which the sample 

absorbs photons efficiently. After the excitation of the electrons to a higher energy level, the 

system undergoes a fast non-radiative relaxation to a more stable excited level in which it stays 

for a characteristic lifetime in an excited state. Afterward, a radiative relaxation is released 

while the electron is returning to the ground state. Due to the non-radiative relaxation, the 

emitted light has longer wavelengths (lower energy) than the incident light. A fast PL emission 

is called fluorescence and a slow PL emission with a lifetime of 10-4 to 10 s is called 

phosphorescence, following a different relaxation mechanism. The emission of the sample is 

passed through an optical spectrometer to the photon detector.9  

2.8 TIME-CORRELATED SINGLE PHOTON COUNTING (TCSPC) 
If the sample emits photoluminescence, the lifetime of this emission can be analyzed with 

TCSPC to gain information on the recombination mechanism. Here, pulsed laser light excites 

the sample at a fixed repetition rate. Data collection of the number of detected photons provides 

a fluorescence decay profile. This technique is based on repetitive and precise time registration 
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of single photons, which are stored in a histogram.  The time is here referred to the moment of 

the excitation pulse. The detection of a single photon is necessary to guarantee an accurate time-

decay with the histogram, in which the x-axis represents the time difference whereas the y-axis is 

the number of photons detected in this period between laser pulses, as shown in Figure 2 - 5. After 

the data collection is complete, the histogram represents a waveform of the decay. With the decay 

data obtained during the measurement, the actual lifetime of excitons or charges before 

recombination can be fitted with appropriate models. The typical result in time-resolved 

fluorescence experiments is a histogram with an exponential drop of counts towards later times. 

 

Figure 2 - 5: Schematic illustration of the number of photons counted with increasing time and its resulting typical PL decay 
curve. 

In this study, the PL decay data were fitted according to the calculations below: 

In Equation 2 – 8 and 2 – 9 the recombination dynamics are described.  

d𝑛(𝑡)dt = −𝑘c𝑛c − 𝑘(𝑛( − 𝑘S𝑛S   (Equation 2 – 8) 

𝑛 = 𝑛d ∙ ∅    (Equation 2 – 9) 

n = carrier density; Ø = PL quantum yield; ñ = number of charge carriers; k3 = decay constants of Auger recombination; 

k2 = of bimolecular recombination; k1 = monomolecular process.  

In the case of bimolecular recombination, the charge carrier dynamics can be represented by 

Equation 2 – 10 and fitted with Equation 2 – 11. 

d𝑛(𝑡)dt ≈ −𝑘(𝑛(   (Equation 2 – 10) 

𝑓(𝑡) = 1𝑎 + 𝑏𝑡   (Equation 2 – 11) 

a = parameter; b is equal to Øk2 
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The monomolecular recombination can be represented by Equation 2 – 12 and fitted with 

Equation 2 – 13. 

d𝑛(𝑡)dt ≈ −𝑘S𝑛S   (Equation 2 – 12) 

𝑓(𝑡) = 𝑎𝑡    (Equation 2 – 13) 

a is equal to Øk1 

The calculation of k1 or k2 is possible if the PLQY is known.10  

2.9 ELECTROLUMINESCENCE (EL) 
The electroluminescence spectroscopy is used to analyze luminescence properties of materials, 

under an applied electric field or current. Excited electrons release the energy as photons during 

the recombination with holes, and therefore the sample emits light through electroluminescence 

at specific wavelengths.11 

2.10 CURRENT-VOLTAGE MEASUREMENTS 
This chapter is based on the publication 12 and 13. Photovoltaic devices are characterized via a 

current(density)-voltage (JV)-curve. The most important parameters describing the JV-curve 

from Figure 2 – 6 are the power conversion efficiency (PCE), the open-circuit voltage (VOC) 

and the short-circuit current density (JSC). For convenience, the current density is often simply 

referred to as current. 

 

Figure 2 - 6: Typical JV-curve of perovskite-based devices. 

The maximum limit for the JSC is given by the photogenerated current density JPh. At zero 

ohmic losses JPh = JSC applies. VOC is dependent on the Fermi levels of the hole- and electron 
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selective layers and also depends on the charge recombination rate. The fill factor (FF) defines 

the shape of the JV-curve and gives information on the ideality of the device, which is 100 % 

if the curve would exhibit a rectangular shape. In Equation 2 – 11 the mathematical expression 

for the FF is shown. 

𝐹𝐹 = jklmnklm
jopnqp

    (Equation 2 – 11) 

ImaxVmax = Pmax (maximum power output) 

 

The resulting power conversion efficiency is defined in Equation 2 – 12, where Pin is the power 

input: 

𝑃𝐶𝐸 = uopnqpvv
Qwx

    (Equation 2 – 12) 

2.11 TIME OF FLIGHT MEASUREMENTS (TOF) 
ToF is an experimental technique for mobility measurements and most established in organic 

disordered systems, such as polymers. A schematic of the experimental ToF setup is shown in 

Figure 2 – 7. This technique is based on the measurement of the carrier transit time (τ). The 

transit time is the time required of photogenerated charge carriers near one electrode to drift to 

the other electrode under an applied electric field. The charges are generated by short pulsed 

light irradiation at a wavelength falling into an absorption band of the material. Since the 

charges are created locally near one electrode, the polarity of the applied E-field defines 

whether electron- or hole-transport across the material is observed. 

The electrode configuration is most commonly in a vertical configuration with top- and bottom 

electrodes and the transit time is measured with respect to the film thickness of the analyzed 

material. However, perovskite-based material crystallization is restricting the film thickness to 

usually below 500 nm, which can lead to transit times below the resolution limit of our 

employed setup (~2 ns). 14 Therefore, we used a sample architecture with varying electrode 

spacing d, as shown in Figure 2 – 7. We used a sample layout with laterally contacted electrodes 

with spacing d in the range of 20 µm to 80 µm. 
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Figure 2 - 7: a) Scheme of the experimental ToF setup; b) scheme of lateral device architecture. 

The charge carrier mobilities can be derived from Equation 2 – 13 determined by the different 

electrode spacing d:15  

𝜇 = 	 y
z{

     (Equation 2 – 13) 

μ= carrier drift mobility; E = applied electric field; τ = transit time; d = electrode spacings 
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3 SYNTHESIS OF PERFECTLY ORIENTED AND MICROMETER-
SIZED MAPBBR3 PEROVSKITE CRYSTALS FOR THIN FILM 

PHOTOVOLTAIC APPLICATIONS 

 

This chapter is based on the following publication: 

Nadja Giesbrecht, Johannes Schlipf, Lukas Oesinghaus, Andreas Binek, Thomas Bein, Peter 

Müller-Buschbaum, Pablo Docampo ACS Energy Lett. 2016, 1, 150-154. 

 

3.1 INTRODUCTION 
Perovskite-based solar-cell development has been very impressive with power conversion 

efficiencies already exceeding 20 % after only a few years of development.1 This fast 

development can be attributed to the excellent properties of the perovskite material, mainly its 

very high absorption coefficient2 and long charge carrier diffusion length.3,4 Furthermore, the 

perovskite material is easy to process from solution, with no high-temperature steps required.5 

Although alternatives based on the exchange of iodide for bromide are interesting for 

applications in multijunction and photoelectrochemical devices, their fabrication has not been 

studied in detail.6-9 Bromide-based compounds are interesting since they exhibit a wider 

bandgap of approximately 2.3 eV and thus can achieve much higher values compared to the 

iodide counterpart.6,8  

To date, the most efficient devices employing methylammonium lead bromide (MAPbBr3) 

utilize a mesoscopic titania scaffold as the electron extraction layer.6,8 However, a planar 

architecture provides higher flexibility for device optimization, multijunction construction and 

thus can be employed in a wider variety of applications.10,11 The main challenges for planar 

heterojunction solar cells, which we will focus on, are the perovskite film coverage, grain size, 

and crystal orientation.12  

Recent studies have highlighted the importance of the perovskite morphology, which 

determines to a large extent the performance of the final device.13 In particular, further 

understanding of the crystallization processes has been the driving force behind the recent 

impressive device performance improvements in the iodide perovskite system.14-17 Thus, a wide 
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variety of deposition techniques has been developed, such as the fast deposition-crystallization 

procedure, vapor-assisted solution process, or the interdiffusion of solution-processed precursor 

stacking layers, respectively.13,18,19 To improve the solar cell performance in the bromide 

perovskite system, a similar improvement in morphology is expected to be necessary.  

Recently, we have highlighted the importance of perovskite crystal orientation in the 

performance of the assembled devices.20 A higher degree of preferential orientation of the 

crystallites in the perovskite film generally leads to higher device photocurrents and more 

reproducible solar cells overall.20 Therefore, further understanding on the crystallization process 

for the bromide system will not only provide a path to enhanced performance with higher 

voltages of this system but will also give insights applicable to other hybrid halide perovskite 

structures. 

In this work, we introduce a new synthesis approach for MAPbBr3 and incorporate this material 

into a planar device structure.  We achieve extended control over crystallization such that the 

perovskite film exhibits densely packed and highly-ordered grains with crystallite sizes between 

5 and 10 µm. We present the first grazing-incidence wide-angle X-ray scattering (GIWAXS) 

investigation of the MAPbBr3 perovskite and the highest orientation of the crystallites in a 

perovskite film ever reported for this family of materials. Such highly-ordered crystallites, in 

combination with the perovskite film quality in solar devices, maximize the charge collection 

efficiency leading to internal quantum efficiencies of over 95%.  

3.2 RESULTS AND DISCUSSION 
In order to understand the impact of morphology and crystal orientation of methylammonium 

lead bromide based solar cells, we have prepared films via the state-of-the-art spin-coating the 

PbBr2 and MABr precursors from γ-butyrolactone:dimethylsulfoxide solution (BD),8 vapor-

assisted solution process (VASP)18 and via spin-coating from a lead acetate precursor, which 

we have termed controlled solvent drying (CSD). To deposit the perovskite via the state-of-the-

art process, referred to as BD from here on, we spin-coated the perovskite from the precursor 

solution and added toluene during the spin-coating process with a subsequent heating step.8 The 

deposition steps for the VASP technique are illustrated in Figure 3 – 1b. In this case, an initial 

lead bromide layer is deposited directly on TiO2-coated ITO substrates and afterward converted 

to the perovskite phase with methylammonium bromide (MABr) vapor.18  
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Figure 3 - 1: a) Schematic illustration of the perovskite-layer synthesis approach via CSD; b) Schematic illustration of the 
perovskite-layer synthesis approach via evaporation; first: PbBr2 was deposited via spin-coating; second: the PbBr2 film was 
dried on a hotplate; third: conversion of the PbBr2 to the perovskite in a MABr vapor. 

In Figure 3 – 1a we show a schematic illustration of the deposition-route via the CSD process. 

Our approach involves two stages wherein the solution of Pb(Ac)2 and MABr precursors is 

spin-coated in a nitrogen-rich environment and is annealed under a glass cover. Here, we find 

that control of the solvent atmosphere during the whole crystallization process is crucial to 

maximizing crystal size. In particular, films undergo gentle solvent annealing during the 3 

minute spin-coating process as a result of the solvent coating the walls of the spin-coater. To 

achieve high-quality films, an excess of solvent in the spin-coater must be removed between 

samples. Exposure to too much solvent or traces of alcoholic solvents such as methanol leads 

to secondary nucleation and inhomogeneous films, as shown in Figure 3 – 2. 

 

Figure 3 - 2: SEM top views of MAPbBr3 perovskite films deposited via CSD; a) film deposited with an excess of perovskite 
solution, b) film deposited in a MeOH containing environment in the glove-box. 
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Figure 3 - 3: SEM top-view and cross-sectional images of MAPbBr3 perovskite-film a, c, e) deposited on a TiO2/ITO substrate 
by VASP, and b, d, f) deposited on TiO2/ITO by spin-coating with a lead acetate precursor. 

In Figure 3 – 3a, c, e we illustrate the morphology of the perovskite films prepared via VASP 

which has been shown in previous studies to achieve high performance when employed in solar 

cells.7,21 This morphology is comparable with the state-of-the-art films deposited on a 

mesoporous scaffold with full surface coverage and grain sizes of approximately 1 µm and is 

similar to that achieved for the iodide system.18,21 On the other hand, films deposited via the 

CSD method are very smooth and also achieve full surface coverage with large crystals between 

5 and 10 µm, as shown in Figure 3 – 3 and 3 – 4a. We have also prepared films through the BD 

process, as shown in Figure 3 – 5. In this case, the crystal sizes are very small, in the range of 

100 nm.8  
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Figure 3 - 4: a) SEM images of MAPbBr3 perovskite films deposited via CSD, b) SEM top-view of MAPbBr3 perovskite-film 
deposited by spin-coating from lead acetate precursor with a short spin-coating duration of 30 s, c) SEM top view of 
FAPbBr3 deposited with the CSD method on TiO2/ITO coated glass. 

 

Figure 3 - 5: SEM images of MAPbBr3 perovskite films deposited via the state-of-the-art BD method; a,b,c) top view on a film 
prepared on ITO, d) cross-sectional image of a solar cell device prepared on ITO, e) J-V curve under AM 1.5 solar irradiation 
conditions of the best performing device, f) XRD pattern normalized to the reflex at 2 ϑ = 14.9 °. 

We attribute the full surface coverage and large grain size to our newly developed synthesis 

approach, which results in improved control over the crystallization of the perovskite. Low 

volatile solvents, such as dimethylformamide (DMF) are good candidates to grow large crystals 

at temperatures around 100 °C. However, achieving perovskite films with full surface coverage 

is challenging.22,23 In our developed CSD method Pb(Ac)2 and MABr react to form the 

perovskite structure, and the excess organic components react to form methylammonium 

acetate, methylamine, and acetic acid. All the expected organic components formed during the 

reaction are liquid at room temperature which keeps the films wet during the process. This in 

turn likely allows a certain degree of precursor mobility and enables the very large and highly 

oriented crystal growth observed in the final films. Further evidence that this is the case is given 

by the structurally related formamidinium lead halide perovskite (FAPbX3). Here, a solid 

formamidinium acetate salt is formed, and thus the films completely dry within the spin-coating 
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step. In turn, this results in the formation of a non-continuous perovskite film with large voids 

between the crystals (see Figure 3 – 4).  

To further investigate the crystalline quality of the films with the large domains, X-ray 

diffraction (XRD) experiments were performed for both CSD and VASP derived films. The X-

ray patterns, shown in Figure 3 - 6a, confirm for both films a phase-pure MAPbBr3 compound 

crystallized in the cubic 𝑃𝑚3~𝑚 structure type. However, most of the reflections for the CSD 

sample are not present, which indicates a high degree of crystal orientation. A good tool to fully 

determine this parameter is grazing incidence wide-angle X-ray scattering (GIWAXS) which 

captures a two-dimensional slice through reciprocal space, allowing the reconstruction of the 

crystal structure and extraction of information on the orientation of the crystal planes from the 

azimuthal intensity distribution.24,25 In Figure 3 – 6b and 3 – 6d we show GIWAXS data for 

VASP and CSD derived perovskite films. For VASP films, very homogeneous rings with no 

pronounced peaks are found. This implies no preferential orientation of the crystallites in the 

perovskite film. In contrast, films fabricated via the CSD process show very intense Bragg 

peaks and no rings. This implies that all crystallites are very well oriented with the (001) planes 

parallel to the glass substrate. This is remarkable for a thin polycrystalline film processed from 

solution. The orientation distribution is shown schematically in Figure 3 – 6c. We suggest that 

such a high degree of order is derived from the pre-crystallization step in the presence of a 

solvent layer on top. We note that a similar effect was observed for the iodide system when an 

ionic liquid was used to crystallize the perovskite.26   
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Figure 3 - 6: a) XRD patterns normalized to the reflex at 2 ϑ = 14.9 °, perovskite-film prepared via CSD and via VASP and the 
theoretical pattern, b) 2D GIWAXS patterns of the sample produced via CSD ((001) and (101) peaks are marked in red and 
white, respectively. The data are corrected as outlined in the experimental section.), c) schematic illustration of the crystal 
orientation of the perovskite film prepared via CSD and disorder of the film prepared via VASP, d) 2D GIWAXS pattern of 
the sample produced via VASP. 

To correlate the effect of morphology and crystal orientation with the solar cell performance, 

we prepared devices with the developed perovskite layer in the standard device configuration, 

employing TiO2 and Spiro-OMeTAD as the charge extraction layers, as shown schematically 

in Figure 3 - 6a. To exclude variations in the optical absorption of the films due to different 

perovskite film thicknesses, we have fixed this value for both techniques to 350 nm. The 

corresponding photovoltaic performance for perovskite films deposited via CSD and VASP is 

shown in Figure 3 – 7 and the data are summarized in Table 3 – 1. In general, the performance 

of devices employing VASP-derived films is lower compared to those employing CSD-derived 

films. In Figure 3 – 7c, 7d and in Figure 3 – 8 we show the distribution of the photovoltaic 

performance for the fabricated devices. The difference in device performance may arise from 

the different crystallization processes of the film leading to disparities in perovskite surface and 

defect density. However, the VASP technique leads to the highest performance reported,21 thus 

we expect the number of defects to not be the major factor behind the variation in device 

performance. 
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Figure 3 - 7: a) Scheme of the regular solar cell layout and energy diagram, b) J-V curves under AM 1.5 solar irradiation 
conditions for solar cell employing MAPbBr3 derived from CSD or  VASP processes, c) photocurrent and d) efficiency box 
plots of 20 devices employing VASP- or CSD-derived perovskite films. The edges of the box represent the 25/75 percentile, 
while the horizontal line represents the median value. Whiskers represent the minimum and maximum values. 

 

 

 

 

Table 3 - 1: Photovoltaic performance data of devices employing CSD- or VASP-derived perovskite films. 

Here, devices employing perfectly oriented perovskite films, derived via the CSD process, 

exhibit photocurrents between 6 and 7 mA cm-2, which is twice the average value found for 

devices employing non-oriented perovskite crystals, prepared via the VASP process. We note 

that the theoretical limit for the short-circuit current extracted from light absorption 

measurements on devices is 7.15 mA cm-2 which implies an internal quantum efficiency of over 

95% (c.f. Figure 3 – 8).  

Method  VOC / V JSC / mA cm-2 FF / % PCE / % 

CSD 1.38 6.60 67 6.08 

VASP 1.26 5.05 62 4.00 
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Figure 3 - 8: Distribution of device performance data of 20 devices with perovskite films prepared via VASP or spin-coating 
from a lead acetate precursor (CSD), a) open circuit voltage, b) fill factor, c) forward and reverse scanning results for solar 
cells employing MAPbBr3 derived from CSD, d) Absorptance of MAPbBr3 prepared via VASP or spin-coating from lead 
acetate precursor, e) PL decay curves for MAPbBr3 prepared via VASP or spin-coating from lead acetate precursor. The 
samples were illuminated at 510 nm with a pump fluence of ~0.3 µJcm-2; the emission was monitored at the maximum of PL 
emission at 549.5 nm for CSD and 540 nm for VASP; f) PL emission. 

To further understand the differences in crystalline quality between films obtained from the 

CSD process and VASP derived films, we performed time-correlated single photon counting 

(TCSPC) to obtain the lifetime of the photoexcited species. Recent investigations showed that 

time-resolved photoluminescence (PL) measurements yield not only important information 

about the diffusion length of the photoexcited species in the devices but also correlate with the 

perovskite layer morphology. In particular, larger crystals present narrower band gaps and 

longer lifetimes, which points towards a smaller radiative bimolecular recombination 

coefficient.27 Our results presented in Figure 3 – 8 agree with these findings since we also 

observed a red shift of the steady-state PL maximum for the CSD-derived sample concerning 

the BD- and VASP-derived sample. We also observed a slower bimolecular recombination 

process for films prepared with CSD, which is a strong indicator of good crystalline quality 

with fewer defects and lower disorder compared to BD- and VASP-derived films.28,29  
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Figure 3 - 9: a) SEM top views of MAPbBr3 perovskite films deposited via VASP, b) SEM top views of MAPbBr3 perovskite 
films deposited via CSD on FTO, c) XRD pattern normalized to the reflex at 2 ϑ = 14.9 °. 

 

Figure 3 - 10: Distribution of device performance data of 45 devices with perovskite films prepared via spin-coating from a 
lead acetate precursor (CSD) with an FTO- or ITO-coated substrate, a) short circuit current output, b) fill factor, c) open circuit 
voltage, d) power conversion efficiencies 

The higher current for our CSD-derived films may be a result of either their larger crystal size 

or their enhanced crystal order, as compared to those deposited via the VASP technique. To 

investigate this further, we have prepared devices with the rougher bottom contact FTO. This 

enhanced surface roughness hinders horizontal crystal growth and reduces the domain sizes in 

the perovskite layer, leading to crystal sizes comparable to those derived with the VASP 

approach, as shown in Figure 3 – 9. However, these films maintain their high degree of 

orientation with the (001) plane parallel to the substrate, allowing us to discriminate between 
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effects arising from the crystal size or the crystal orientation. We show histograms of all 

photovoltaic parameters in Figure 3 – 10. Here, we observe that the short circuit current is not 

affected by the crystal size of the films, leading us to postulate that the degree of crystal order 

in the film is the parameter affecting the short circuit current. This may be a result of a lower 

number of defects at the grain boundaries as all neighboring crystals exhibit the same facets 

with the same orientation. 

3.3 CONCLUSION 
In summary, we have studied the role of morphology and crystal order in the photovoltaic 

performance of MAPbBr3 deposited via three different deposition techniques. We developed a 

new fabrication method based on solvent drying with a halide-free lead precursor controlling 

the crystallization atmosphere. Here, the reaction of the precursors yields liquid organic by-

products at RT which enable large crystal growth with perfectly oriented crystal planes parallel 

to the substrate as shown by GIWAXS measurements. Our results show that large crystal sizes 

can only be achieved for smooth ITO substrates, whereas perovskite films on FTO result in 

crystals limited to hundreds of nanometers due to the enhanced surface roughness which limits 

horizontal growth. Also, we examined the role of perovskite crystallite orientation in planar 

heterojunction solar cells by comparing non-oriented VASP-derived films with our newly 

developed oriented CSD-derived films. We show that this perfect alignment of the cubic crystal 

planes parallel to the substrate of the CSD-derived film leads to a reproducible and high device 

performance. Additionally, we show enhanced short circuit currents approaching 7 mA cm-2, 

their theoretical limit, compared to non-oriented VASP-derived perovskite films. The 

photocurrents generated in these devices correlate with the degree of crystal orientation rather 

than the crystal size. Thus, this work demonstrates that crystal orientation and morphology are 

key parameters to maximize the short-circuit current and thus the performance of perovskite 

solar cells. 
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4 SINGLE-CRYSTAL-LIKE OPTOELECTRONIC-PROPERTIES 

OF MAPBI3 PEROVSKITE POLYCRYSTALLINE THIN FILMS   

 

This chapter is based on the following publication: 

Nadja Giesbrecht, Johannes Schlipf, Irene Grill, Philipp Rieder, Vladimir Dyakonov, Thomas 

Bein, Achim Hartschuh, Peter Müller-Buschbaum, Pablo Docampo J. Mater. Chem. A 2018, 6, 

4822. 

 

4.1 INTRODUCTION 
Hybrid halide perovskite materials have galvanized the photovoltaic community due to their 

unprecedented easy and low-cost fabrication combined with remarkable optoelectronic 

properties, reminiscent of GaAs.1,2 Polycrystalline perovskite-based photovoltaic devices 

already reach efficiencies above 22 % after extensive optimization of the perovskite film 

morphology and composition and engineering of the film interfaces.3-6 However, the density of 

grain boundaries in those polycrystalline perovskite films is still rather high, which places a 

constraint on the charge transport properties of the perovskite films and ultimately will limit 

the maximum achievable device performance.7  

Single crystals of perovskite materials show a dramatic improvement of all properties, including 

charge carrier mobility, charge carrier diffusion length, and a substantially reduced defect 

density.8-11 Therefore, higher performance can be expected with single crystalline perovskite 

absorber layers, as is the case for Si- or GaAs-based photovoltaic devices.12 However, the 

growth of single crystalline thin perovskite films is challenging13-15, and the forced lateral 

architecture with sequentially deposited electrodes, charge extraction material, and buffer 

layers is usually required. Such devices to date do not show competitive efficiencies.13,16 

Instead, the main improvement to perovskite solar cells has risen as a result of the development 

of novel synthesis methods focussing on polycrystalline films with vertical device stack 

architectures.3,17 Nevertheless, to facilitate further progress in the performance of perovskite 

solar cells, we must tap into the full potential of perovskite materials by targeting thin films that 

exhibit properties similar to those of single crystals, i.e., macroscopic crystal grains and 

minimum disorder at the grain boundaries. 
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To this end, precise control of orientation and morphology of polycrystalline films will be 

necessary. Currently, a plethora of deposition methods are being developed and studied for the 

methylammonium lead iodide (MAPbI3) compound. In particular, the crystallization kinetics 

and dynamics were investigated with different lead(II)-precursors and different 

methylammonium iodide (MAI) ratios18-21 or different solvents for the precursor solution, in 

both one and two-step approaches.22-27 In general, the crystallization kinetics can be divided 

into three categories: (i) direct formation of the perovskite material from a precursor solution 

mixture, (ii) sequential addition of the perovskite components or (iii) formation of an 

intermediate crystalline or amorphous phase which is then converted into the perovskite phase. 

Employing the first method leads to little control of the morphology, albeit rather large crystals 

can be formed if an ionic liquid or the anti-solvent technique is used.28,29 Employing a sequential 

deposition approach (ii) generally leads to small grain sizes in the range of hundreds of 

nanometres.30 The formation of an intermediate phase (iii), especially the Pb-

Dimethylsulfoxide (DMSO) complex3 so far resulted in perovskite films showing highest 

efficiencies in perovskite solar cells. However, the intermediate phase is formed from the 

solution and is highly unstable.31 Therefore, this approach usually lacks fine control of 

perovskite phase formation and does not lead to perovskite grain sizes exceeding 1 µm.3,22-24,32  

Larger grain sizes have been already reached for MAPbBr3 based thin films in our previous 

work based on the use of the lead acetate precursor.33 Grain sizes larger than 10 µm were 

achieved in a smooth, thin film comprising perfectly aligned crystals with respect to the 

substrate. For MAPbI3 films, so far only crystal sizes in the nanometer range were synthesized 

with the use of the lead acetate precursor. However, two independent studies showed that if 

using the PbAc2 precursor, the amount of hydration water during perovskite synthesis is 

essential for the optimized photovoltaic performance of the employed perovskite films in 

devices.34,35 Thus, the role of the hydration water for the perovskite synthesis needs to be 

understood to improve this synthesis strategy further.  

In this paper, we introduce a new crystallization strategy based on lead acetate trihydrate. 

Dissolving this precursor mixture in a highly polar solvent, such as tetrahydrothiophene 1-

oxide, leads to the formation of an air-stable intermediate phase that can be converted into the 

perovskite phase upon heating. We controlled the crystallization process by reducing the 

nucleation rate significantly and triggering fast perovskite crystal growth with the annealing 

step, leading to grain sizes of over 10 µm in a homogeneous thin film.  Such an increase in grain 

size and orientation leads to remarkably enhanced electrical properties of the polycrystalline 
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perovskite films reaching single-crystalline properties, such as charge carrier mobility values 

in the range of 40 cm2/Vs. When introduced into devices, polycrystalline films were grown 

using the new approach resulted in power conversion efficiency values above 18.5 %, 

significantly above those found for traditional approaches in a like-to-like comparison. 

4.2 RESULTS AND DISCUSSION 
The MAPbI3 thin films developed in this work are based on a new synthetic protocol using lead 

acetate trihydrate in combination with a highly polar solvent, tetrahydrothiophene-1-oxide 

(THTO). Briefly, the solid precursors are mixed in the solid form, and then the solvent mixture 

Dimethylformamide (DMF)/ THTO is added. To form the MAPbI3 films the solution was spin-

coated at 5000 rpm for 180 s on top of the substrate and annealed at 130 °C for 5 min (see 

chapter 9 for all details).  

The crucial step in the film formation process is mixing the precursor in the solid state before 

adding the solvent mixture. As shown in Figure 4 – 1a, the colorless precursor mixture becomes 

yellow after manually shaking the vial. This leads to the formation of a highly crystalline 

intermediate phase (IP) with the crystal structure shown in Figure 4 – 1b. In the XRD pattern 

of the new phase, we see no presence of the precursor phases, indicating a phase-pure new 

compound that can be indexed to an orthorhombic structure with a space group similar to P222 

with lattice parameters a=6.4 Å, b=15.935 Å, and c=27.805 Å. We note that the formation of 

the IP relies on the presence of hydration water in the lead acetate precursor. The XRD analysis 

in Figure 4 – 2 of the precursor mixture using dehydrated PbAc2 shows that no new phase is 

formed. This is not unexpected, as different groups found hydration water in the lead acetate 

precursor to be necessary to crystallize high-performing perovskite films in photovoltaic 

devices.34,35 

To further study this new IP and its structure we crystallized it from the water. We found that 

the crystals growth is anisotropic with very long lengths in the mm range but widths in the nm 

range as shown in Figure 4 – 1c and in Figure 4 – 2d). Our 2D XRD data show similarity to an 

(MA+)2(PbI3-)2PbI2٠2DMSO phase from a synthesis via a polymeric plumbate(II) fiber 

identified by Guo et al. 31 We note that this approach can also be used for bromide instead 

iodide, as shown in Figure 4 – 2c. In contrast to the Pb-DMSO complex, the IP shown here is 

very stable at ambient conditions and directly converts to the perovskite phase, if heated to at 

least 80 °C.  
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Figure 4 - 1: Figure 4 - 1. a) photos of the precursor mixtures before and after shaking of the vial;b) Comparison of the 
precursors MAI and (hydrated) PbAc2*3H2O with resulting new intermediate phase (IP)compound from mixing both solids; c) 
SEM image of the needle-shaped crystals from the IP; d) Schematic illustration of the spin-coating process; e) in situ XRD 
while annealing the substrate with the spin-coated precursor solution. 

To deposit the IP from the solution the choice of solvent is highly important. The most 

commonly used solvents such as DMF or γ-butyrolactone (GBL) do not favor the formation of 

the IP18,34,36 but instead result in fast perovskite crystallization, as can be seen in Figure 4 – 3a.21 

Therefore, the solvent mixture needs to be modified to promote the crystallization of the IP 

rather than the perovskite phase. This is achieved by simply increasing the solubility of the 

perovskite compared to the solubility of the IP. Foley et al. predicted with Mayer bond order 

calculations a slightly more negative enthalpy of perovskite solvation for DMSO compared to 

DMF and a much more negative enthalpy of solvation for THTO.27To find a suitable solvent 

mixture, we studied the crystallization behaviour from a range of solvents via in-situ XRD 

measurements at ambient conditions right after spin-coating the films in a nitrogen-filled 

glovebox. DMF-based solutions lead to a highly crystalline perovskite phase immediately after 

spin-coating. However a weak reflection at around 9.6 °, 2θ indicates the presence of a second 

phase which corresponds to the IP. Employing DMSO, as shown in Figure 4 - 3b leads to 
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slower perovskite crystallization and a higher amount of the intermediate phase. Here, 

increasing the DMSO concentration leads to a competition of the lead-DMSO complex as 

shown in Figure 4 – 3 and therefore inhibited crystallization of the new IP. Finally, THTO does 

not form any additional intermediate phases from the perovskite precursor solution, and small 

concentrations around 10-13 vol% are already sufficient to prevent perovskite nucleation before 

the IP is fully crystallized (see Figure 4 – 3c-f). In Figure 4 – 1d a schematic illustration of the 

final synthesis process through the IP phase is illustrated. 

 

Figure 4 - 2: PXDR Analysis: a) comparison of the precursors MAI and anhydrous PbAc2 with the mixture of both, which does 
not form a new phase; b) comparison of in water fully converted new phase from (hydrated) PbAc2•3H2O and MAI needle-
shaped bright yellow crystallites and the powder scratched off from deposited film from precursor solution with 13 vol% 
THTO. Both agree very well with a calculated pattern in the P222 structure type; c) comparison of the precursors MABr and 
hydrated PbAc2 with resulting new compound from mixing both solids which also agree with an orthorhombic structure type; 
d) SEM images of the synthesized needles of the IP. 

The in situ XRD data collected in Figure 4 – 1e clearly show the direct transformation of the 

(003) reflection of the IP to the (200) reflection of the perovskite. Initially, the IP shows the 

(003) reflection at 10°, which shifts to 9.6° upon complete drying as shown in Figure 4 – 3. At 

this stage, the IP is completely stable under ambient conditions with the same structure as from 

solid state reaction from the precursors. We note that the IP in the film is highly oriented and 

therefore mainly the reflection at 9.6 ° is visible. To confirm that the IP is the same in both 
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cases, we have compared the XRD between powder from the precursor mixture, and powder 

scraped off from the film, showing the same crystallographic pattern (see Figure 4 – 2b). 

 

Figure 4 - 3: In-situ XRD of spin-coated films, before and while annealing: a) film prepared from DMF solution; b) films 
prepared from DMF-based solution containing 20 vol% DMSO; c) films prepared from DMF based solution containing 9 vol% 
THTO; d) films prepared from DMF-based solution containing 13 vol% THTO; e) films prepared from DMF-based solution 
containing 13 vol% THTO and dried at RT for 6 h; f) films prepared from DMF based solution containing 26 vol% THTO; e) 
films prepared from DMF-based solution containing 30 vol% DMSO, Pb3I8 complex appears in XRD at 6.6°, 7.2°, 9.2° 
agreeing with [24]. 

To inhibit the perovskite nucleation and promote the crystallization of the IP from the solution, 

the addition of THTO to the solvent mixture is crucial. This, in turn, influences the resulting 

grain size by determining the number of potential nucleation points for perovskite phase 

conversion as shown in Figure 4 – 4. Grain sizes of up to 100 µm can be reached with 26 vol% 

THTO additive, but the films show poor grain interconnection and smoothness. We found the 

best compromise between grain size and overall film quality to be reached with perovskite films 

obtained from 13 vol% THTO. This mixture leads to grain sizes of above 10 µm in a very dense 
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and smooth film when annealed at 130 °C. Somewhat surprisingly, lower annealing 

temperatures and longer conversion times lead to smaller crystallites as shown in Figure 4 – 5. 

 

Figure 4 - 4: SEM images of perovskite films prepared from different THTO concentrations: a) 7 vol% THTO; b) 10 vol% 
THTO; c) 13 vol% THTO; d) 26 vol% THTO. 

To obtain more insights regarding crystal orientation we performed grazing-incidence wide-

angle X-ray scattering (GIWAXS) measurements, see Figure 4 – 6a. GIWAXS is a powerful 

method for evaluation of crystal orientation in thin films due to the high statistical relevance 

and the possibility to extract quantitative information about the crystalline part of the sample.37-

39 A typical sample based on lead acetate and employing DMF solvent usually shows no 

preferential orientation as shown in literature and the Figure 4 – 7 for films prepared under our 

synthesis conditions.35,36,40 As shown earlier by Foley et al., the solvent THTO, on the other 

hand, can be used to achieve a high degree of orientation in MAPbI3 films.27 They argue that 

homogeneous nucleation is suppressed and instead heterogeneous nucleation starting at the 

substrate is responsible for this orientation. Here the synthesis parameters are different since 

the perovskite is formed through an IP.  

However, with increased THTO concentration, the perovskite crystal alignment within the film 

is confined to the (200) facet parallel to the substrate as explained in the following: Figure 

4 – 6a shows the 2D GIWAXS pattern of a film with 13 vol% THTO. The strong preferential 

orientation of the MAPbI3 crystallites is apparent from the individual scattering reflections 

which are labeled according to the crystal planes from which they originate. The splitting of the 

cubic (110) and (111) peaks gives rise to the (112)/(200) and the (211)/(202) pair of peaks, 
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respectively, and shows that the sample is in tetragonal phase. In comparison, in the 2D 

GIWAXS pattern of the sample prepared from pure DMF solvent, the reflections adopt the form 

of Debye-Scherrer rings indicating no preferential crystal orientation (cf. Figure 4 – 7). 

 

Figure 4 - 5: SEM top-view images of films deposited on TiO2/FTO-coated glass. a) intermediate phase 1 day after deposition; 
b) perovskite converted at RT over 1 week from intermediate phase; c) perovskite deposited from solution with 13 vol% THTO 
and annealed at 100 °C; d) perovskite deposited from solution with pure DMF solution (0 vol% THTO). 

The azimuthal line cuts around the q range of the (002)/(110) and their second order peaks 

(004)/(220) of the 13 vol% THTO data are plotted with intensity vs. azimuthal angle γ in 

Figure 4 – 7b. From the intensity distribution in these cuts, the orientation of crystals in the film 

can be evaluated statistically. Therefore, the peaks were fitted with Voigt functions and their 

positions was determined to be 44.8(3) °. These peak positions verify that the sample is oriented 

with the (200) facet parallel to the substrate which can be imagined as a cuboid lying on its side. 

The extremely narrow FWHM of 2.0(7) ° of these Voigt functions shows how well the MAPbI3 

crystals are aligned inside the film. As seen in Figure 4 – 7, already 10 vol% of THTO additive 

is sufficient for strong crystal alignment and 13 vol% THTO is optimal for pure crystal 

alignment verifying the GIWAXS result. 

To determine the actual grain size within the perovskite film, we performed high-resolution 

transmission electron microscopy (HRTEM) on a cross-section of a photovoltaic device. To 

this end, we cut a 45 µm long lamella with a focused ion beam from a complete solar cell device 

in FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au architecture. In Figure 4 – 6 we show a 

representative area of a 16 µm long TEM cross-section. Here, HRTEM images from four 

different spots are shown together with their fast Fourier transform (FFT). A change in pattern 
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can only be observed in bright regions between the grains. Thus, we assume the bright lines to 

be the grain boundaries. In the image, the FFT pattern along the 12 µm distance between the 

bright areas does not change, indicating that it is indeed a single crystal. Our results show that 

there are mainly two distinct crystal orientations in the in-plane direction in this sample, 

confirming the high degree of order in the material. We note that the samples are highly 

sensitive to the electron beam and particularly the grain boundaries become broader with longer 

illumination times.  

 

Figure 4 - 6: a) 2D GIWAXS pattern of a sample prepared from 13 vol% THTO solvent additive to the precursor solution 
shown in qr-qz representation; b) TEM cross-section of the lamella incorporating a MAPbI3 film deposited from 13 vol% 
THTO; c-f) HRTEM's and their FFT's from the spots marked in b). 
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To additionally classify the different layers in the cross-section, we performed energy-

dispersive X-ray spectroscopy (EDX) during the TEM investigation, as shown in Figure 4 – 7. 

Here, we can clearly distinguish between our different layers in the stack with the distribution 

of different atoms present and detectable. We see no heterogeneity in our perovskite layers, 

confirming their high quality. 

 

Figure 4 - 7: 2D GIWAXS investigation: a) 2D GIWAXS pattern of samples prepared from 13 vol% THTO solvent additive 
to the precursor solution, the boxes mark the positions for the cuts around the (002) and (004) reflection presented in b) Voigt 
functions were fitted at 44.8(3)° with FWHM = 2.0(7)° showing extremely narrow peaks and hence very narrow distribution 
of crystal orientations; c) 2D GIWAXS pattern of a film produced with pure DMF solvent (measured for 1 h); d) XRD 
investigation of MAPbI3 films prepared from different THTO concentrations; e) EDX mapping in TEM. 

To quantify the improvement in optoelectronic properties with larger grains in our 

polycrystalline films we performed Time of Flight (ToF) measurements as shown in Figure 4 – 

8. ToF measurements were performed in a lateral sample configuration where the different 

MAPbI3 films were deposited on top of an in-plane gold contact pattern. Here, the 

photogenerated carriers can be extracted from the electrodes with varying spacing d in the range 

of several tens of micrometers. Charge carrier generation is induced upon pulsed laser excitation 

at the margin of one contact while drift of the charges occurs due to an external DC field (E = 

5 kV/cm) which is applied only during the short measurement period of the j-t profile. Since 
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the charges are created locally near one electrode, the polarity of the E-field defines whether 

electron or hole transport across the material is observed. A detailed description of the 

employed setup can be found in chapter 9.  

 

Figure 4 - 8: a) Representative transients obtained at 42 µm spacing; b) Extracted transit times for holes from ToF with 
perovskite films deposited from different THTO concentrations; c-f) device performance deviation of devices in the 
architecture FTO/TiO2/C60/Al2O3/MAPbI3/Spiro-OMeTAD/Au employing perovskite films deposited from different THTO 
concentrations. 

THTO conc. / 
vol% 

Hole mobility / 
cm2 (Vs)-1 

Electron mobility 
/ cm2 (Vs)-1 

Stand. Dev. / 
cm2 (Vs)-1 

Sum / 
cm2 (Vs)-1 

0 8 9 1 17 
7 11 12 1 23 
10 13 13 1 26 
13 15 17 1 32 
26* 17* 23*  40* 

Table 4 -  1: Extracted mobility values from ToF measurement showing increasing charge mobility with grain size. The 26 
vol% sample (*) was measured with a different procedure as discussed in the Supporting Information. 

Representative transients obtained for different electrode spacings are shown in Figure 4 – 8a. 

Following a fitting procedure for ToF transients41, the transit time ttr was extracted and plotted 

as a function of d for every investigated material (Figure 4 – 8b). Because of the linear 

dependence of ttr on d, the mobility can be calculated from the respective fit according to 

µ=d/(E·ttr). The determined values are listed in Table 4 – 1. Clearly, an influence of the grain 

size is observable. With increasing grain size the mobility values increase, indicating improved 

transport properties due to a reduced number of grain boundaries which represent potential 

recombination sites.7 We note that a full analysis of the 26 vol% THTO sample was not possible 

due to a large number of pinholes in the film. Therefore, the photocurrent in this device was 
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only measurable for a small number of different electrode spacings with no representative trend 

from the obtained transients. The value presented here was obtained from a voltage series 

performed on a fixed gap size where the photocurrent was detectable (see Figure 4 – 9) and 

represents a lower limit of the mobility. We further note that the transport measurement in the 

lateral configuration is essential to gain information on the optoelectronic properties of the 

perovskite layer, while vertical in-plane devices show several limitations for data acquisition.42 

Additionally, our sample configuration allows for the measurement of charge transport on a 

macroscopic scale over several micrometers reflecting the influence of grain boundaries and 

defects, which directly affects charge carrier transport.  

 

Figure 4 - 9: ToF analysis data: a) Extracted transit times for electrons from ToF analysis for perovskite films deposited with 
different THTO concentrations; b) Voltage series for 13 vol% THTO sample for a proof-of-principle for the acquired data in 
c); c) Voltage series for fixed gap sizes with 26 vol% THTO sample; c) representative transients for different electrode spacing 
for 13 vol% THTO sample. 

To study the effect of crystal size on solar cell performance, we prepared devices in a planar 

heterojunction configuration (FTO/TiO2/C60/Al2O3/MAPbI3/Spiro-OMeTAD/Au). We show a 

box plot distribution of the device performance of at least 8 devices for the different perovskite 

films in Figure 4 – 8. Here, we mainly observe an increase in fill factor (FF), correlating with 

the improved electrical properties of the bigger crystal films. We note that for devices fabricated 

from films with crystal sizes above 3 µm (namely 10 vol% and 13 vol% THTO), no significant 

difference in device performance occurs.  The performance of these two samples is in fact 

within the experimental error of the system and show the highest value at 18.5 % as well as the 
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highest reproducibility. The high short-circuit current densities above 22 mA/cm2, which are 

gained in these devices correlate perfectly with the current calculated from EQE measurement 

of 22.45 mA/cm2 (see Figure 4 – 10). We, however, note that all the devices employing 

architectures as shown in Figure 4 – 10a have high hysteresis with non-stabilized power output. 

This instability is probably related to the charge extraction layers and not the perovskite layer, 

since with devices employing different transport materials such as  Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or [6,6]-Phenyl C61 butyric 

acid methyl ester (PCBM) demonstrated minimal hysteresis and stabilized power output, as can 

be seen in Figure 4 -10. 

 

Figure 4 - 10: a+b) JV-curves of devices in different device architecture with straight lines for forward scan and dashed lines 
for reverse scan; c+d) Steady-state power output under applied bias for different perovskite films and device architectures; e) 
EQE of a device with a perovskite film from 13 vol% THTO in the device architecture: FTO/TiO2/C60/Al2O3/MAPbI3/Spiro-
OMeTAD/Au; f) transmittance spectrum obtained from a film synthesized with 26 vol% THTO with photo of the same film. 
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The perovskite films with the largest grain sizes contain a large number of pinholes which leads 

to semi-transparent films with an average transmittance of about 28 % in the visible range, as 

shown in Figure 4 – 10f. Therefore the device properties drop if these films are incorporated. 

However, the current density in these devices is extremely high with 19 mA/cm-2 on average 

which is much higher than for any reported semitransparent MAPbI3-based solar cells with a 

transmittance of about 20-30 %.43-46 Hence, the device efficiency reaches very high values with 

the maximum of 12 %, which is 4 % higher than that of device shown in the literature with 

semitransparent appearance due to pinholes.43 

4.3 CONCLUSION 
In this work, we introduce a new route to deposit hybrid perovskite films with extremely large 

and perfectly oriented crystalline domains of 10-40 µm in size. To achieve this, we targeted a 

new, highly stable intermediate phase based on lead acetate trihydrate. Importantly, we find 

that a highly polar solvent, such as tetrahydrothiophene 1-oxide is necessary to inhibit the 

perovskite phase growth and to favor the crystallization of the IP. With HRTEM we can clearly 

identify the grain boundaries and verify high crystallinity and order within the perovskite film. 

The newly developed films show charge transport properties similar to those found in 

perovskite single crystals with very high mobility values in the 40 cm2/ Vs range. We 

capitalized on these improved properties by fabricating solar cells with a planar heterojunction 

architecture. The highly oriented and large grains lead to a power conversion efficiency of 

18.5 %, higher than what is achieved with standard fabrication in a like-to-like comparison.  
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5 PEROVSKITE CRYSTAL FACETS: DO THEY MATTER? 

 

This chapter is based on a publication in preparation: 
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Müller-Buschbaum, Achim Hartschuh, Thomas Bein, Tom Savenije, Pablo Docampo 

 

5.1 INTRODUCTION 
In recent years, hybrid halide perovskite compounds have evolved extremely attractive for 

optoelectronic applications. Photovoltaic devices employing methylammonium lead iodide 

(MAPbI3) as absorber material nowadays reach power conversion efficiencies (PCE) over 

20 %, while mixed anion and cation perovskite materials can yield PCEs of over 22 %.1-4 

Beyond compositional optimization of perovskite films and their morphology, interface 

engineering is critical to achieving high efficiencies and in fact, has played a significant role in 

the rapid development of the photovoltaic device efficiency.2,5-10 However, the efficiency loss 

mechanism in optoelectronic devices is still not fully understood. Further optimization of 

perovskite-based optoelectronic device efficiencies requires the understanding of these 

fundamental characteristics. 

Perovskite materials exhibit a surprisingly high defect tolerance, where polycrystalline films 

with crystal sizes in the nanometre range still show high charge carrier mobilities and 

lifetimes.11-14 The significantly more pronounced non-radiative charge carrier recombination 

locates at interfaces of the perovskite layer rather than bulk and grain boundaries.15 In this 

setting, perovskite surface film passivation via the introduction of molecules that can bind to 

the perovskite crystal is one of the main strategies to address the issue of surface 

recombination.4,5,16,17 However, typical polycrystalline perovskite films exhibit a rather 

heterogeneous surface, with a pronounced degree of crystal facet disorder. In perovskite films 

with crystal facet disorder, the photoluminescence and cathodoluminescence strongly alter with 

the investigated grain.18,19 The same trend applies for photovoltaic efficiency with observable 

intra-grain heterogeneities.20 

In the latter study, Leblebici et al. suggested perovskite crystal facet-dependency of 

photovoltaic devices due to variations in defect densities for different crystal facets.20 A 
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possible explanation for how different crystal facets might influence the solar cell performance 

was suggested by Yin et al. in a theoretical study.21 Here, interfacial charge transfer anisotropy 

between different perovskite facets was proposed where hole- or electron injection varies for 

(200) and (002) perovskite crystal facets exposed to the charge extraction layers.21 However, a 

direct correlation between perovskite crystal termination and their optoelectronic features is 

still missing.  

Here, we investigated the impact of perovskite crystal facet termination on the behavior of 

optoelectronic devices. We show substantial heterogeneity in device performance under applied 

bias. In particular, (200) perovskite crystal facets contacted with a TiO2 or SnO2 interface in 

devices exhibit JV-curves with a significant s-shape indicating an energetic interfacial barrier. 

Analyzing the corresponding Schottky diodes, we confirmed a more pronounced energetic 

barrier between the (200) perovskite crystal facet and a metal oxide electron transfer layer than 

for the (002) facet. When fullerenes are deposited over the metal oxide interface or in inverted 

devices with organic interfaces, a barrier was not observable for both different perovskite 

crystal alignments. Interestingly, devices fabricated with perovskite films oriented with (200) 

facets exposed, result in fill factors which approach theoretical limitations, showcasing the 

importance of interfacial order to maximize charge transfer in the system. However, with time-

resolved microwave conductivity (TRMC) measurements no significant difference of 

photoconductance was observed if (200) or (002) perovskite crystal facet was terminated at a 

quartz or TiO2 interface, indicating no change in defect densities for different crystal facets. 

5.2 RESULTS AND DISCUSSION 
Tuning crystal orientation is challenging and usually requires different synthesis procedures.22  

We recently demonstrated a new synthesis approach for purely aligned MAPbI3 perovskite 

crystallites where the (200) planes are parallel to the surface in thin films.23 We attribute this 

high degree of crystal orientation mainly to the formation of an already highly oriented non-

perovskite intermediate phase, which then converts into the perovskite structure. Therefore, the 

stability of the intermediate pre-perovskite-phase has a substantial impact on the final alignment 

of the perovskite crystallites in the layer. The addition of highly polar solvents, such as 

dimethylsulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO), to the precursor 

solution, helps with the stabilization of the highly aligned intermediate phase. In contrast to the 

THTO additive, DMSO tends to form complexes with lead-based precursors, which usually 

leads to the high alignment of the perovskite crystals with their (002) plane parallel to the 
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surface.24 Thus, the concentration of DMSO solvent additive tunes perovskite crystal 

alignment.  

In Figure 5 – 1c and 1f, we show the schematics of the two main differences in the perovskite 

facet alignments studied here. To analyze the type and degree of perovskite crystal alignment 

with respect to the substrate, we performed grazing incidence wide-angle X-ray scattering 

(GIWAXS) experiments. This technique captures a two-dimensional slice through reciprocal 

space, allowing for the reconstruction of the structure and extraction of information on the 

orientation of the crystal planes from the azimuthal intensity distribution.25-27 Hence, with the 

GIWAXS patterns in Figure 5 – 1b and 1e, we can confirm the synthesis of perovskite films 

with strong alignment of (002) facets parallel to the substrate with 10 vol% DMSO additive, 

hereon termed (002) facets; or pure alignment of the (200) crystal facet parallel to the substrate 

with 20 vol% DMSO, hereon termed (200) facets.  

 

Figure 5 - 1: a) 2D GIWAXS image of non-oriented perovskite films with pure DMF-based solution; b) 2D GIWAXS image 
of the perovskite film with (002) facet parallel to the substrate with 10 vol% DMSO additive; c) schematic illustration of the 
(002) crystal facets parallel to the substrate; d) 2D GIWAXS image of the perovskite film with (200) and (321) facet parallel 
to the substrate with 15 vol% DMSO additive; e) 2D GIWAXS image of the perovskite film with (200) facet parallel to the 
substrate with 20 vol% DMSO additive; f) schematic illustration of the (002) crystal facets parallel to the substrate; g) SEM 
image of the non-oriented films with pure DMF-based solution; h) SEM image of the with (002) facet aligned films with 
10 vol% DMSO additive; i) SEM image of the with (200) facet aligned films with 20 vol% DMSO additive.  
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Multiple facet alignment degrees are also possible with no preference in crystal alignment with 

a fully DMF-based solution (Figure 5 – 1a), and a mixed arrangement of (321) facets together 

with (200) facets in the same perovskite film with 15 vol% DMSO (see Figure 5 – 1d). Hence, 

the variation of the DMSO solvent additive between 0-20 vol% tunes the crystal alignment a 

large extent. We note here that the variety is highly reproducible and was confirmed with 

GIWAXS and XRD studies (see Figure 5 – 2). The change in overall film morphology, 

however, remained negligible and for all films, grain sizes between 1-3 µm were achieved with 

DMSO additive variation (see Figure 5 – 1g-i). When using the THTO additive instead of 

DMSO, we could additionally increase the grain sizes significantly to values over 10 µm in 

films with pure crystal alignment of (200) facets, as shown in our previous work described in 

chapter 4.23  

 

Figure 5 - 2: a) Schematic illustration of the resulting crystal alignment from the corresponding solvent mixtures; b) 1D 
integration of scattering data from GIWAXS results; c) azimuthal cut at q~1Å-1 from GIWAXS results; d) XRD results on thin 
films investigated with GIWAXS. 

To study the impact of crystal orientation on the photovoltaic performance, we prepared devices 

in the regular architecture with the perovskite layers sandwiched between TiO2 and Spiro-

OMeTAD as displayed in Figure 5 – 3a. In Figure 5 – 3b and 5 – 3c we show representative 

JV-curves of devices implementing the (002) and the (200) perovskite crystal facets at the 
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interface with the charge transport materials (CTMs). Here, the most significant difference 

appeared in the shape of the JV-curve close to open-circuit voltage (VOC). This s-shape 

repeatedly appears in devices with the (200) plane facing TiO2 and Spiro-OMeTAD resulting 

in lower VOC and fill factor (FF) if directly compared to similar architectures with (002) 

perovskite crystal facet terminal to the substrate.  

To further examine the effect of facet disorder, we prepared samples with equally strong (200) 

and (321) crystal facet alignment parallel to the substrate as shown in the XRD pattern and the 

GIWAXS investigation in Figure 5 – 2. Application of these films sandwiched between TiO2 

and Spiro-OMeTAD show no s-kink in the JV-curve. The device open circuit voltages are 

higher than those fabricated from pure (002) or (200) facets, similar to samples exhibiting no 

preferential crystal alignment (see Figure 5 – 3). Therefore, we can conclude that only pure 

perovskite crystal alignment shows a significant energetic barrier in solar cells, indicating a 

facet-dependent charge injection from the perovskite material to the CTMs. 

 

Figure 5 - 3: a) Schematic illustration of the device architecture studied in this work; b) JV-curves of devices employing 
perovskite films with (200), (002) or (200) with (321) facets parallel to the substrate in the dark and under radiation; c) JV 
curves of devices employing perovskite films made with different solvent mixtures and crystal facet alignments; d) JV-curves 
obtained with different scan speeds of devices containing perovskite films with the (200) facets parallel to the substrate. 
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S-shapes in the JV-curve are already well known and discussed in the literature for organic 

photovoltaic (OPV). In most cases, energy barriers at the interfaces constitute the respective 

kink.28 Furthermore, the much lower dark current for the devices employing the (200) facets 

compared to devices with the (002) facets indicates the presence of an injection barrier, see 

Figure 5 – 3b. With a change in scan speed, the shape of the JV-curve remains as shown in 

Figure 5 – 3d, which indicates that the s-kink is not an electronic phenomenon due to light 

soaking or capacitive effects arising from ion migration.   

 

Figure 5 - 4: ToF analysis data of perovskite films prepared from different DMSO concentrations: a) extracted transit times for 
holes from ToF analysis; b) extracted transit times for electrons from ToF; c) representative transients at fixed electrode spacing 
with 62 µm; d) table of the extracted electron- and hole-mobility from ToF measurement. 

In OPV the formation of such barriers is attributed to a variety of effects, from imbalance in 

charge carrier mobilities or energetic injection and extraction barriers between the photoactive 

layer and the electrodes.28 Here, the s-kink arises or vanishes simply by changing the crystal 

alignment of the perovskite in the thin film. Therefore, we studied charge carrier mobilities of 

the differently aligned perovskite films with Time-of-Flight (ToF) transient photoconductivity 

measurements (see Figure 5 – 4). This technique allows the determination of charge carrier 

mobility upon pulsed laser excitation. To this end, we employed a lateral sample layout, which 

enables us to perform photocurrent measurements for varying electrode spacings d at constant 
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external voltage E (here: 5 kV/cm). By illuminating the sample at the edge of one contact, 

charge carriers are created locally and extracted at the opposite electrode. Hence, the polarity 

of the applied field determines the type of charges probed (holes or electrons). The obtained 

transients were plotted on a double log scale while the intersection of the pre- and post-transit 

defines the transit time ttr, which is needed to calculate the mobility according to: 

𝜇 = 	𝑑 (𝐸 ∙ 𝑡�#)⁄    (Equation 5 – 1) 

A detailed description of the ToF-setup can be found in chapter 9.  

From the laterally contacted perovskite films, we extracted charge carrier mobility values 

shown in Figure 5 – 4d. Representative transients, as well as the determination of the mobility 

from the transit time as a function of electrode spacing, are shown in Figure 5 – 4. We measured 

perovskite films with no preference in orientation and with (200) or (002) perovskite crystal 

facet parallel to the substrate. Grain sizes in all layers were very similar and therefore are not 

expected to have a substantial impact on charge transport. In all cases, we have high-quality 

perovskite films with balanced hole- and electron-mobilities with values over 15 cm2 Vs–1 and 

the difference between electron- and hole-mobility was within the standard deviation, excluding 

an imbalance in charge carrier mobility as a possible reason for the energy barrier in devices 

with (200) perovskite facet.29  

Our results show that a significant improvement of at least 35 % in mobility occurs with a 

higher degree of crystal alignment in the perovskite films if the grain size is similar for both 

crystal facet alignments, indicating the benefits of purely aligned polycrystalline films, see 

Figure 5 – 4d. In our measurements, we see no clear trend according to anisotropy in charge 

transport of differently aligned perovskite films. Here, the films were measured laterally, while 

the high alignment of our samples is in the out-of-plane direction rather than in-plane. On the 

other hand, ToF measurements in the vertical direction of the film (thickness around 450 nm) 

do not provide any meaningful information as charge transport in this direction occurs on a 

faster timescale than the temporal resolution of our ToF setup, which is approximately two ns.30 

Nevertheless, the correlation between higher orientational order and higher mobility is 

significant and reproducible.  

To further explore and tailor the origin of the energetic barrier in our solar cells with (200) 

aligned perovskite films, we investigated interfaces to different charge transport material. We 

tested different Hole-Transporting Materials (HTMs) and Electron-Transporting Materials 

(ETMs) with the (200) perovskite interface, as shown in Figure 5 – 5. Here, for both HTMs, 
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Spiro-OMeTAD and EDOT-OMeTPA, an s-kink arises in the JV-curve. In the case of the 

ETMs, the s-kink appeared with a metal oxide interface, such as TiO2 or SnO2, but disappeared 

with the deposition of a fullerene layer between the metal oxide and the perovskite interface. In 

either case, with a thin PCBM layer or a C60-self-assembled monolayer (SAM), the devices 

showed improved VOC values and FFs and a correspondingly enhanced device performance. 

Most importantly, in these cases no s-shape of the JV-curve was visible.  

 

Figure 5 - 5: (200) Perovskite facets applied in different device architectures, each schematic of the architecture is shown inside 
the plot: a) JV-curves of devices in the configuration with different HTMs; b) JV-curves of devices in the architecture with 
different ETMs; c) JV-curves of devices in inverted architecture with different HTMs; d) deviation of fill factor with different 
bottom CTMs. 

A similar trend is observed with inverted devices for different HTMs, as shown in 

Figure 5 – 5d. In the representative JV-curves of devices employing NiOx as HTM, the (200) 

perovskite shows a slight s-shape that is not present with PEDOT:PSS at the interface. In 

particular, devices with inverted architectures with the (200) facet exposed to PEDOT:PSS and 

PCBM reach a fill factor of 81 %, approaching the theoretical maximum of 89 %.31 These fill 

factor values are 10 % higher than the ones obtained with a C60 layer at the interface and about 

20 % higher than with devices employing a TiO2-interface with s-kink in the JV-curves (see 

Figure 5 – 5d). 
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To quantify the barrier heights of the contacts between (200) or (002) perovskite crystal facets 

in combination with a metal oxide interface like SnO2, we prepared Schottky diodes with 

PCBM and silver on top (see Figure 5 – 7a). We fitted the JV-curves to the Schottky diode 

equations: 

𝐽 = 	 𝐽X𝑒
��
���`    (Equation 5 – 2) 

𝐽X = 𝐴∗𝑇(𝑒
��*
��    (Equation 5 – 3) 

J is current density; Js is the saturation current which is extrapolated from the current density at 0V; V is applied bias; q is the 

electron charge; k the Bolzmann constant; T the temperature; A* is the Richardson constant for thermionic emission; φB is the 

Schottky barrier height. 

 

Figure 5 - 6: a) Schematic illustration of the Schottky diode architecture; b) JV-curves of the Schottky diodes in dark, measured 
from 1.5 V to -1.5 V to 1.5 V, the current obtained from 1.5 V to 0 V was multiplied by -1, full lines for reverse scan and 
dashed lines for forward scan; c) table containing  Schottky barrier heights for diodes estimated by fitting the JV-curves in b) 
with Equation 5 – 3. 

This approach assumes that all the injection current is via thermionic emission, ignores the 

shape of the barrier and tunneling currents and assumes band-bending in the perovskite 

layer. We used A* = 1.54٠10-5 A cm-2 K-2 for the Richardson constant, as was approximated for 

a MAPbI3-MAPbBr3 heterojunction.34 The values were not derived explicitly for our system. 

Therefore, our obtained barrier heights are considered to be rough estimates. We calculated the 

barrier heights from the fits shown in Figure 5 – 6b and summarized the values in 

Figure 5 – 6c. Here, the estimated barrier heights follow the trend observed in the JV-curves of 

devices containing different perovskite crystal facets exposed to a metal oxide interface (TiO2 

or SnO2) with significantly more pronounced barrier heights for the (200) facet/ SnO2 interface. 

Additionally, a definite kink is present in the forward scan around 1 V for the diode containing 

(200) facet, similar to the s-kink in solar cells.  
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5.3 CONCLUSION 
In this work, we showed how the MAPbI3 perovskite crystal termination impacts photovoltaic 

device performance. We studied the (200) and (002) crystal facet terminations in polycrystalline 

perovskite thin films accomplished by a new approach switching crystal alignment within the 

same layer synthesis approach. With this method, the charge transport was improved in both 

highly ordered films compared to films with the disorder in crystal alignment. However, 

photovoltaic devices revealed a perovskite crystal facet-dependent anisotropy in performance. 

In particular, perovskite films with (200) facets exposed to a metal oxide CTM show a highly 

pronounced s-shape in the JV-curve, leading to a loss in VOC and FF. With a C60 monolayer at 

the metal oxide interface the energetic barrier was removed, and the FF improved. Especially 

with the use of inverted devices with PEDOT:PSS and PCBM as CTMs and (200) perovskite 

facet at the interfaces, the FF increased close to its theoretical limit without hysteresis in device 

performance. With our results, we prove and specify the impact of different perovskite crystal 

facets and emphasize the importance of perovskite crystal facet dependent interface engineering 

for highly efficient perovskite solar cells.   
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6.1 INTRODUCTION 
Hybrid lead halide-based perovskites have recently emerged as a serious contender to 

established technologies for photovoltaic applications. Perovskite solar cells combine record 

power conversion efficiencies (PCEs), comparable to record values of multi-crystalline silicon 

or Cu(In,Ga)Se2 at over 22 %,1,2 with low cost deposition methods from precursor solutions or 

inks, typically deposited via spin coating.3-6 These exciting characteristics have led to extensive 

research efforts to fabricate large area devices in order to enable their commercialization 

through upscalable solution-based techniques such as spray-coating,7 inkjet printing,8 doctor-

blading,9 slot-die coating,10 or drop casting.11 

However, module fabrication is challenging and solution-based processes of stacked layers may 

be limited by two major technical constraints: i) re-dissolving the underlying layer has to be 

avoided by the use of orthogonal solvents, and ii) de-wetting of the subsequent layer has to be 

controlled by suitable means. The first issue constrains the number of suitable solvents, while 

the second issue leaves few options to form uniform perovskite films limiting possible stack 

architectures at present to a few traditionally used routes. 

The planar n-i-p (standard) architecture mostly uses substrates with electron selective bilayers 

of oxides such as TiO2 and fullerenes such as C60-SAMs (self-assembled monolayers) or 

phenyl-C61-butyric acid methyl ester (PCBM),12-16 since they offer good contact and passivation 

against hysteresis effects15-18 compared to single oxide layers.19 The fullerenes have a low 

surface energy of < 40 mJm-2 20,21 making the surface hydrophobic and leading to severe de-

wetting issues in the subsequent perovskite layer.22 On one hand, it was shown that hydrophobic 
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interfaces improve the solar cell performance by increasing the crystallite size.23 On the other 

hand it is very difficult to produce large scale homogeneous layers without uncovered areas on 

the hydrophobic fullerene interfaces, which strongly inhibit the upscaling possibilities of these 

devices. In the p-i-n (inverted) architecture, large area devices could be printed on well wetting 

hole transport materials such as Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) 

(PEDOT:PSS),24 but there are other more promising materials available, which are often very 

hydrophobic such as Poly(3-hexylthiophen-2,5-diyl) (P3HT) or Poly(triaryl amine) (PTAA).25 

In order to overcome these issues a methodical step is needed, which enables good wetting, yet 

does not alter the morphology, complies with any printing technique and plays only a passive 

role in the solar cell performance. Testing solvent pre-treatment of the hydrophobic material on 

our samples showed only little effect. Plasma etching is also an option for surface activation 

and usually can improve the wetting, but the risk of damaging the sensitive organic layer is 

high. Furthermore, surface treatments such as plasma etching do not prevent a change in 

crystallization dynamics caused by different surfaces.26 Selective linkers have been used to 

specifically increase the surface energy of certain materials,27 but this is of course very 

demanding to develop for any new material. 

This work demonstrates a universal wetting strategy enabling the deposition of perovskite thin 

films independent of deposition technique or nature and size of the substrate. This method 

comprises the deposition of electrically inert metal oxide nanoparticles (NPs) (≤50 nm) such as 

aluminum oxide (Al2O3) or silicon oxide (SiO2) at the problematic interfaces, e.g. C60-SAMs 

or P3HT. We show that the insulating nature of the nanoparticles ensures a passive application 

without interrupting the functionality of the interface whether it is p-type or n-type. Notably, 

already 14 % surface coverage with the NPs improves the wetting behavior of the perovskite 

dramatically and facilitates a homogeneous spread of the precursor film. Consequently, high-

quality perovskite film morphologies with 5-10 µm grain sizes as previously introduced28 are 

feasible in the same quality for 144 cm2 large area devices in standard (n-i-p) geometry with a 

low-surface-energy fullerene bottom-contact and for modules with about 24 cm2 active area 

dimension. Moreover, the wetting promotion by the particles can be adapted for various other 

hydrophobic interfaces and is not only limited to perovskite deposition.  
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6.2 RESULTS AND DISCUSSION 
Improved Wetting by Nanoparticles 

In order to understand how nanoparticles improve the wetting on variant low-energy surfaces, 

we have carried out contact angle measurements with perovskite precursors based on different 

solvents. Following Young’s theory, the contact angle of a liquid droplet directly relates to the 

surface energy and therefore is an indicator for the surface wettability by perovskite solutions.29 

From these investigations we can conclude that the density of particle distribution on the surface 

and the particle size have the strongest influence on the wettability. Figure 6 – 1a illustrates the 

general mechanism how the nanoparticles decrease the contact angle and improve the droplet 

spreading that results in homogeneous perovskite layers without de-wetting issues regardless 

of the solution deposition technique. 

To prove the strong effect of the distribution of nanoparticles on the surface, we deposited 

commercially available Al2O3 nanoparticles by spin coating from differently diluted alcoholic 

dispersions. Figure 6 – 1b shows scanning electron microscopy (SEM) images of a fullerene 

(PCBM) surface and the spatial distribution of nanoparticles deposited from a 0.2 wt% in 

isopropanol (IPA) solution, which corresponds to a covered area of 14 %. The Al2O3 

nanoparticles have a mean diameter of 35 nm (±26 nm) (see SEM images and size distribution 

in Figure 6 – 2a and Figure 6 – 2b). Following the graphs in Figure 6 – 1c, different 

combinations of organic interlayers (PCBM or C60-SAM) and two perovskite precursors based 

on the solvents dimethyl formamide (DMF) and tetrahydrothiophene-1-oxide (THTO) in the 

volume ratio of 87:13 and γ-butyrolactone (GBL) and dimethyl sulfoxide (DMSO) (70:30) 

reveal the strong decrease of the contact angle with increase of the nanoparticle concentration. 

In all cases, increasing the nanoparticle concentration and overcoming a critical surface 

coverage leads to contact angle reduction to less than 10° and a change in the droplet wetting 

behavior. The perovskite precursor solution then spreads almost perfectly flat on top of the 

substrate. 

Furthermore, we observed that particles with a smaller diameter lead to a stronger decline of 

the contact angle (Figure 6 – 1d). For this study, ethanol-based dispersions with 0.4 and 0.6 

wt% concentration of SiO2 nanospheres of diameters of 20, 40 and 60 nm (see Figure 6 – 2b) 

were synthesized following Bogush et al.30 References with untreated- and ethanol pre-treated 

PCBM surfaces have both high contact angles of about 45°, indicating a weak effect of pure 

solvent pre-treatment. In our experience, alternative perovskite solvents such as DMF, GBL 

and DMSO or switching between isopropanol or ethanol for diluting the nanoparticles has only 
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little influence on the contact angle. Our results indicate that the wetting behavior is mainly 

influenced by concentration and size of the nanoparticles. Here, the contact angle declines 

below 10° in case of the smallest particles (10 nm) at 0.6 wt% concentration. Notably the 

variation of the diameter has a stronger effect on the contact angle than increasing the 

concentration. The same relation between contact angle and nanoparticle size is shown by 

Munshi et al.31 

 

Figure 6 - 1: a) Schematic illustration of the wetting improvement by nanoparticles; b) SEM micrographs of various 
nanoparticles on PCBM-surface; c) contact angles of DMF/THTO+PbAc or GBL/DMSO+PbI2-based perovskite solutions on 
fullerene interface (PCBM or C60-SAM) covered with Al2O3-NPs from differently concentrated solutions; d) contact angle of 
a DMF/THTO+PbAc-based perovskite solution on PCBM interface covered with differently sized SiO2-NPs. 
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Figure 6 - 2: a) SEM micrographs of various nanoparticles on top of FTO/TiO2/PCBM-surface; the roughness of the FTO 
surface effects the morphology of the PCBM and the distribution of the nanoparticles b) distribution of calculated diameters of 
different NPs; c) Particle quantity, volume, area and radii (normalized to surface area) of different sized SiO2-NPs as function 
of contact angle. 

The well-established contact angle theories of Wenzel and Cassie predict that the roughness has 

a strong influence on the contact angle. They describe also the transitions from the non-wetting 

Cassie state, in which the droplet sits on top a rough morphology with air trapped underneath, 

to a wetting Wenzel state, where the droplet completely penetrates the surface.32,33 In our case, 

a rising number of nanoparticles increases the roughness of the interface and leads to a direct 

decline of the wetting angle. In consequence, we propose here wetting behavior relates to a 

Wenzel-like mechanism, at which the high surface energetic oxide particles increase the overall 
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surface energy dominated by the fullerenes and act as capillary features that force the liquid to 

spread in between the gaps of the energetically favored particles. Other fields of research, e.g. 

the fabrication of solution-processable organic transistors on hydrophobic surfaces, confirmed 

the validity of the Wenzel-like wetting mechanism.34-36 

There are two reasons why a decrease of the particle diameter favors the wetting even more. By 

keeping the mass concentration in the precursor dispersion constant, a reduction of the particle 

diameter leads to a significantly increased particle density at the interface. This can be observed 

as a higher surface roughness, which generally improves the wetting mechanism.31,37 

Furthermore, the additional rise in free surface energy, due to the high surface-to-volume ratio 

and the increased number of gaps between smaller particles exhibits a strong capillary force 

and therefore enable the perovskite solution to spread more easily. On the other hand, 

nanoparticles smaller than 20 nm may show negative effects on the wetting. Due to their 

increased surface energy, the particles tend to agglomerate (see Figure 6 – 2a) and thereby the 

capillary action is inhibited by the large distance between the clusters. 

Perovskite layer formation 

In solar cell applications, the perovskite film formation is critical and usually depends strongly 

on the bottom layer surface.23 For investigation of the surface coverage of Al2O3-NPs and the 

influence on the wetting, the final nucleation and crystallization behavior of the perovskite thin 

films, we analyzed top-view SEM images. We used the same lead acetate-based (PbAc) 

perovskite fabrication for large-grained MAPbI3 thin films as introduced in our previous 

work.38 The favorable morphology with about 5 µm sized crystallites is obtained for perovskite 

films directly deposited on TiO2 and can be reproduced on top of non-wetting TiO2/C60-SAM, 

when varying surface coverages of Al2O3-NPs (see Figure 6 – 3a-d) are applied. Since the grain 

diameter is much larger than the average distance between the particles, it is very unlikely that 

the nanoparticles act as nucleation centers. Additionally, all related XRD patterns show no 

significant differences in crystallinity and crystal alignment (see Figure 6 – 3e). 
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Figure 6 - 3: SEM top-views of perovskite films on top of: a) FTO/TiO2; b) FTO/TiO2/C60-SAM/0.02 wt% Al2O3; c) 
FTO/TiO2/C60-SAM /0.2 wt% Al2O3; d) FTO/TiO2/C60-SAM /2 wt% Al2O3; e) XRD pattern of perovskite thin films 
crystallized on top of different interfaces. 

Furthermore, we studied the effect of substrate surface dependent perovskite crystallization on 

microscopic glass or silicon wafers with and without nanoparticle wetting agent. These 

substrates used for analytical means should demonstrate the same perovskite morphology from 

the solar cell stack with TiO2 interface. An additional plasma-etching step was needed to enable 

full surface coverage on reference surfaces without nanoparticles. Both plasma treated glass 
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and silicon substrates result in perovskite films with morphological defects (see the red marks 

in Figure 6 – 4), but the application of Al2O3-NPs at the interface enable comparable and high 

quality perovskite morphologies in both cases (see Figure 6 – 4b and Figure 6 – 4d). These 

results indicate that not only the wetting improves but also the perovskite morphology is well 

controlled when using additional oxide nanoparticles on any substrate surface. 

 

Figure 6 - 4: SEM top-views of perovskite films on top of: a) plasma etched microscopic glass; b) glass/0.02 wt% Al2O3-NPs; 
c) plasma etched silicon; d) silicon/2 wt% Al2O3-NPs. 

In order to study the impact of the wetting strategy on the solar cell performance, we prepared 

full device stacks with variation in type, size and distribution of NPs. The device stack of the 

investigated n-i-p architecture was FTO/TiO2/C60-SAMs/NPs/MAPbI3/Spiro-OMeTAD/Au 

(compare also Figure 6 – 12c).  

 

Figure 6 - 5: Series resistance of devices (ITO/TiO2/C60-SAM/Al2O3-NPs/MAPbI3/Spiro-OMeTAD/Au) employing Al2O3 
nanoparticles from dispersions with different concentrations. The series resistance was calculated from one diode equivalent 
circuit model fits to the dark JV-response and the reverse JV-scan under one sun illumination. 
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Figure 6 – 6b shows that the C60-SAMs at the interface improve the power conversion 

efficiency of the devices compared to non-treated TiO2 interfaces. We attribute this to the 

improved fill factor (see Figure 6 – 7c), but we observe a bad reproducibility due to the poor 

wetting properties. This is overcome with the application of the metal oxide NPs at the interface 

and the best compromise between perovskite surface coverage and efficiency (18%) was 

achieved with 0.2 wt% Al2O3-NP in solution (IPA) with an average particle size of 35 nm and 

resulting surface coverage of 14 % (see Figure 6 – 2a). Only a rather concentrated 2 wt% 

solution of Al2O3-NPs leads to a drop of PCE. Analyzing the JV-data (Figure 6 – 7) reveals 

significant losses in Jsc and FF due to the complete coverage of the interface by the insulating 

metal-oxide particles. In all other cases with only fractions of the surface covered, the solar 

cells reached Jsc values larger than 22 mA cm-2, which is close to the theoretical maximum of 

the MAPbI3 perovskite material. This confirms the transparency of the non-conducting SiO2 or 

Al2O3 nanoparticles and that their presence neither results in dark areas nor that they inhibit 

charge transport. As shown in our previous work38 the achieved short-circuit current density 

values correlate perfectly with the value of 22.45 mA cm−2 determined from an external 

quantum efficiency measurement. 

 

Figure 6 - 6: a) Photographs of perovskite film coverage in devices (without electrodes) with different NP concentrations at the 
C60-SAM-interface; b) Boxplots of performance values from devices employing different surface coverage of Al2O3-NPs at the 
interface; c) Boxplots of performance values from devices employing Al2O3 or SiO2 nanoparticles with different particle sizes 
from 0.2 wt% solution. Shown values were measured reversely from + 1.5 to 0 V at a scan speed of 0.2 V/s. 

Further analysis of the dark and light JV-curves by fitting a one-diode equivalent circuit model 

revealed, that devices with a simple C60-SAM interface suffer from higher series resistances of 

4 to 5 Ωcm² compared to devices employing nanoparticles (see Figure 6 – 5). Concluding from 

the previous observations, the capillary forces seem to aid the formation of a better interface 

with less defects between the fullerenes and the perovskite, by which the mean series resistance 
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of the devices could be decreased to 2 to 4 Ωcm² for nanoparticle concentrations between 0.05 

to 0.5 wt%. Once again, applying a too high concentration of nanoparticles of 2 wt% leads to 

an increased series resistance due to the insulation of the interface. 

 

Figure 6 - 7: a) JV-curves of devices with different bottom interfaces (in configuration ITO/bottom interface/MAPbI3/Spiro-
OMeTAD/Au), straight lines for reverse scan and dashed lines for forward scan; c-e) box plots of performance for devices 
employing Al2O3 nanoparticles from dispersions with different concentrations: c) fill factor FF; d) open circuit voltage Voc; e) 
short circuit current density Jsc; f) power conversion efficiency. 

The devices of this work show rather strong hysteresis as visible in Figure 6 – 7a due to the 

large preferential orientation of the perovskite crystals as described in our previous work.38 

However, stabilized PCE values at maximum power point of up to 16.5 % are achieved due to 

the additional fullerene interface with NPs - a significant improvement compared to reference 
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samples with a simple TiO2 layer (see Figure 6 – 7b). Low concentrations of Al2O3-NPs at the 

fullerene interface maintain the power output stability of the devices and in general the NPs do 

not affect the hysteresis negatively, indicating that they do not inflict additional charge 

accumulation. 

 

Figure 6 - 8: Box plots of performance for devices employing Al2O3 or SiO2 nanoparticles with different particle sizes: a) PCE; 
b) short circuit current density Jsc; c) open circuit voltage Voc; d) fill factor FF. 

An additional experiment was designed to evaluate the influence of the NP-material choice as 

well as the wetting-impact of the size of the individual particles, by using the previously 

introduced SiO2 nanoparticles with very narrowly distributed average diameters of 20, 40, and 

60 nm, respectively (Figure 6 – 2b). As expected from the contact angle studies, the wetting 

benefits from a decrease in NP-size. In particular, 20 nm sized SiO2-particles at the interface 

usually show better photovoltaic performance in comparison to larger particles (Figure 6 – 6c 

and Figure 6 – 8) originating from the generally improved reproducibility of high performing 

devices. Bad wetting and poor layer quality lead to a large scattering of the performance, when 

the largest particles (60 nm) are employed. Providing good wetting conditions by choosing a 

preferably small particle size and an appropriate concentration, the choice of the insulating 

oxide material, here Al2O3 or SiO2, does not affect solar cell parameters significantly (see 
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Figure 6 – 8), which repeatedly confirms the passive role of the NPs in the solar cell 

functionality.  

 

Figure 6 - 9: a) Photographs of perovskite devices with different interfaces (FTO/TiO2/Interface/MAPbI3), the center sample 
was treated with an H2O dripping, in order to rule out any wetting effects by the H2O from the aqueous SnO2-NP dispersion; 
b) JV-curves from similar devices with different NP interfaces fitted by a one diode equivalent circuit model in order to 
determine the series resistance; c) and d) boxplot of the corresponding device efficiencies (experimental) and series resistance 
(simulated fits); e) cross sectional SEM micrograph of a device with SnO2 based wetting agent. 

In special applications, it may be beneficial to turn the passive NPs into active contributors. Tin 

oxide (SnO2) is widely used in perovskite solar cells as a n-type semiconductor and is 

commercially available as nanoparticle dispersions, thus making these n-type NPs a perfect 

candidate for their application on n-type fullerene interfaces. As expected from the previous 

findings, these 10-15 nm oxide-NPs from a 0.5 wt% aqueous dispersion improve the wetting 

equally well compared to the insulating nanoparticles, but as an electron selective charge 

conductor, the SnO2-NPs improve the solar cell performance actively. Analysis of the JV-
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response proves the active role of the SnO2, because the additional gathering and transfer of 

charges through the nanoparticles enlarges the contact area and leads to a reduction of the device 

series resistance down to 15 Ωcm² (Figure 6 – 9). However, these may not be universally 

applicable to other interfaces that require a passive wetting agent, whereas on p-type interfaces 

other p-semiconducting oxides such as NiOx might facilitate the wetting as well as the electrical 

contact improvement. 

 

Figure 6 - 10: a) Photographs of different perovskite layers on different interfaces FTO/TiO2/Interface/MAPbI3. The perovskite 
was deposited in different approaches (orange) by a one-step PbAc based process and (green) by a PbI2 based anti-solvent 
dripping method; b) corresponding SEM top view micrographs show the uniform morphology on the different interfaces 
marked by roman numbers; Boxplots of the power conversion efficiency of the corresponding devices with c) PbI2 based 
precursor and d) PbAc based precursor. 

Besides the previously discussed one-step PbAc-based deposition method with the large grain 

morphology, various other perovskite recipes could possibly benefit from the wetting agent. 
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For demonstrating this, we chose a PbI2-based perovskite deposition method including the 

formation of the Pb-DMSO complex together with an anti-solvent initiated nucleation, resulting 

in grain sizes smaller than 1 µm.39 This method is commonly applied and usually shows less 

dependency on substrate surface interactions compared to the PbAc deposition technique 

without anti-solvent, which is used in this work for large area deposition.40 In direct comparison 

between both methods, in each case the application of nanoparticles is mandatory in order to 

get complete coverage of the FTO/TiO2/C60-SAM substrates (Figure 6 – 10a). As we already 

demonstrated for the PbAc-based perovskite, also the small grain morphology of the PbI2-based 

perovskite can be reproduced on either wetting oxide-, non-wetting fullerene-, or wetting 

fullerene-surfaces after nanoparticles have been applied to it (Figure 6 – 10). In contrast to 

earlier reports23 a facilitated grain growth due to the non-wetting C60-SAMs interface is not 

observable in our studies. 

 

Figure 6 - 11: a-d) Demonstration of pinhole defect suppression by the application of Al2O3 nanoparticles on different substrates 
(ITO/SnO2, FTO/SnO2) with PCBM as fullerene layer. 

However, when dealing with even more hydrophobic materials like PCBM instead of C60-

SAMs and further reduce the surface energy by a decreased surface roughness, pinhole 

formation in the perovskite layer is often an issue, which is highly critical for upscaling 

perovskite solar cells.4 In order to analyze this effect in more detail, two substrates, one with a 

low (ITO) and one with high surface roughness (FTO), have been spin coated with 

GBL/DMSO+PbI2-based perovskite along with a toluene anti-solvent step. 

Despite the enhanced wetting through the 0.2 wt% Al2O3-NP layer Figure 6 – 11a and 11c 

shows the formation of macroscopic pinholes in the crystallized perovskite layer in the top-
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view photographs and confocal micrographs after spin coating. The smooth surface of 

ITO/SnO2/PCBM has a very low surface energy and exhibits more and larger pinholes than the 

second rougher FTO/SnO2/PCBM sample. The pinholes form due to de-wetting of the still-wet 

precursor solution during spin coating. During the nucleation step, the toluene cast dissolves 

and removes the PCBM from the pinhole bottom. This example shows how substrate 

morphology, choice of materials and solvents can lead to different wetting issues. In both cases 

however, the pinholes could be effectively suppressed by increasing the surface energy with 

the application of a higher concentration of Al2O3-NPs of 0.5 wt% as shown in Figure 6 – 11b 

and 11d. 

Large area spin coating and module fabrication 

 

Figure 6 - 12: a) SEM image of perovskite film morphology; b) photograph of 144 cm2 sized substrate covered with thin 
perovskite film; c) schematic illustration of the device stack; d) SEM cross-section of devices from large scale deposition with 
NPs marked in red circles. 

With proper control of the wetting behavior, it is possible to push the substrate size to the 

technical limit of the spin coater, in our case to sample diameters of 17 cm. Even then, the 

application of the nanoparticle wetting agent enables complete coverage and furthermore 

provides control of the perovskite morphology. Consequently, we proved this by the usage of 

the PbAc-based, one-step spin coating procedure that produces perovskite films with 

characteristic 5 µm large grains and scaled it up from 9 cm² to a 144 cm² substrate (Figure 

6 – 12a and 12b) in a setup with ITO/TiO2/C60-SAMs and NP treatment. As shown in Figure 
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6 – 13b-f the perovskite grain size and coverage remains homogeneous even on the 16-times 

larger substrate. 

 

Figure 6 - 13: a) Photograph of 144 cm² substrate with perovskite on top, letters in red mark the different spots of SEM 
investigation; b-f) SEM images of perovskite morphology in different spots of the large area thin film. 

In order to demonstrate that the device performance can be maintained on larger substrate sizes, 

full devices composed of ITO/TiO2/C60-SAM/NPs/MAPbI3/Spiro-OMeTAD/Au (see Figure 

6 – 12c and 12d were prepared on a 144 cm2 area. Afterwards, the sample was cut into 16 pieces 

to match our standard test device structure (30 x 30 mm² substrate area) defining 12 cells with 

an active area of 0.0831 cm2 each (Figure 6 – 14a and 14b). Device efficiencies of 

approximately 16 % on average are similar to the ones reached by processing small-sized, 

standard test devices in the same device architecture. Comparing the devices out of the lower 

left quadrant of the 144 cm2 substrate (Figure 6 – 14a), only minor variations in device 

performance are apparent (Figure 6 – 14c-f) indicating a homogeneous deposition of the total 

of all layers on the large device area. However, we note that our hotplate used for the perovskite 

annealing at 130 °C step was only about 14 cm in diameter, and the corners of the large substrate 

reached beyond the hotplate. Therefore, the corners of the substrate show inhomogeneity and 

were discarded from the investigation. 

Reproducible perovskite deposition on increased substrate sizes is particularly desirable for the 

fabrication of modules. Insufficient wetting interactions of perovskite precursor solutions on 

top of fullerene interfaces have limited the module fabrication in this configuration so far. Here, 

we present a large area module in ITO/TiO2/C60-SAM/NPs/MAPbI3/Spiro-OMeTAD/Au 

architecture with an aperture area of 23.65 cm². The overall efficiency of the device containing 

11 cells with 2.15 cm2 active area each is 5.7 %, with evenly distributed individual cell 
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performance between 5-7 % (see black curves in Figure 6 – 15a). The narrow distribution in 

performance indicates a homogeneous perovskite layer quality over the full area of the module. 

Furthermore, we confirmed the perovskite layer quality by light-induced current (LBIC) 

mappings (Figure 6 – 15c and 15d). The mappings show evenly colored areas that indicate a 

homogeneous charge carrier generation and extraction throughout the complete film. Small 

shunts would already result in a current drop over the complete cell area, as it is the case for 

cell number 10 and 11 in Figure 6 – 15c. Little inhomogeneity originates from comet-like 

defects induced by the spin coating process. 

 

Figure 6 - 14: a) Photograph of 144 cm2 sized substrate covered with thin perovskite film, lines in blue indicate the cuts for 
9 cm2 devices. The numbers correspond to the device pieces characterized in photovoltaic efficiency with each 12 pixels as 
schematically shown in b); c-f) Box plots of photovoltaic device parameters. Corresponding devices marked in a). 

The performance loss of modules compared to small area devices mostly derives from a 

significantly reduced fill factor (FF). With increased device area, the series resistance at the 

interconnections becomes more dominant. Therefore, the smaller device (red curves) with an 

active area of 2.8 cm² shows the potential of the setup with a higher power conversion efficiency 

of 10.7 %. Both modules exhibit high open circuit voltages of VOC = 1050 mV, which add up 

almost loss-free in the serial interconnection (Figure 6 – 15b) to a total open circuit voltage of 

10.4 V of the large module. 
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Figure 6 - 15: a) PCE chart of 2.8 cm² (red) and 23.65 cm² modules (black). Filled dots: measurements of cells in serial 
connection; white dots: measurements of individual cells; b) open circuit voltage Voc; c) and d) light beam induced current 
(LBIC) mappings of each module. 

 

Extended application for upscaling 

Wetting challenges of the perovskite precursor on different types of thin films are inherent of 

the technique utilized for its deposition, but our nanoparticle wetting agent is truly universal for 

upscaling any sort of perovskite solar cell stack. Having already demonstrated successful 

wetting of hydrophobic polymers, molecules and inorganic surfaces by spin coating, we show 

how upscalable solution-based printing techniques benefit from our solution as well. Therefore, 

we chose doctor blading as a representative upscaling method to deposit a DMF+PbAc-based 

perovskite layer on top of a poly-3-hexylthiophene (P3HT) interface with the aid of SiO2-NPs. 

The polymeric hole transport material P3HT is a candidate for the p-i-n architecture, but can 

hardly be used underneath a perovskite layer due to its extremely low surface energy of below 

30 mJ m-2.20 Initially, the doctor blade forces the DMF-based perovskite solution to wet the 

 

1 2 3 4 5 6 7 8 9 10 11

0.7 1.4 2.1 2.8
2.15 4.30 6.45 8.60 10.7512.9015.0517.2019.3521.5023.65

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Active Area / cm²
PC

E 
/ %

Cell ID
1 2 3 4 5 6 7 8 9 10 11

0.7 1.4 2.1 2.8
2.15 4.30 6.45 8.60 10.7512.9015.0517.2019.3521.5023.65

0.80
0.85
0.90
0.95
1.00
1.05

2

4

6

8

10

Active Area / cm²

 3x3 cm² combined
 3x3 cm² single
 6x6 cm² combined
 6x6 cm² single

V
oc

 / 
V

Cell ID

0 5 10 15 20 25 30 35 40 45 50 55

0

5

10

15

20

25

30

35

40

45

50

x / mm

y 
/ m

m

0.00

0.04

0.09

0.13

0.17

0.22

URi / µV

0 2 4 6 8 10 12 14 16 18 20 22

0
2
4
6
8

10
12
14
16
18
20
22

x / mm

y 
/ m

m

0.0

0.1

0.2

0.4

0.5

0.6
URi / µV



6   UNIVERSAL NANOPARTICLE WETTING AGENT FOR UPSCALING PEROVSKITE SOLAR CELLS 

- 95 - 
 

P3HT interface, but the super-hydrophobicity leads to immediate de-wetting of the film and the 

solution remains in the meniscus of the blade. The result of the non-coated P3HT surface is 

observable from the cross-section SEM image in Figure 6 – 12d. Only the application of SiO2-

NP at the interface allows for sufficient wetting of the perovskite solution and the subsequent 

formation of a uniform crystalline layer (Figure 6 – 16b). Comparing to reference p-i stacks 

with (PEDOT:PSS), that can also be coated without the aid of NPs due to its higher surface 

energy of over 70 mJ m-2 41 (Figure 6 – 16c and 16d), we conclude that the morphology and 

film thickness is again well controlled by the wetting agent. These results show high potential 

of our nanoparticle-induced wetting strategy to promote the fabrication of perovskite solar cells 

by scalable printing techniques such as blade coating. 

 

Figure 6 - 16: SEM cross-sections of blade coated perovskite layers on top of a) ITO/P3HT (due to de-wetting, no perovskite 
remained on the surface); b) ITO/P3HT/SiO2-NPs (red circles); c) ITO/PEDOT-PSS; d) ITO/PEDOT-PSS/SiO2-NPs (red 
circles). 

 

Not only perovskite film deposition suffers from wetting challenges but also various other 

applications. The use of NPs to improve wetting on low-energy surfaces show potential to be a 

universally valid solution. In our experience, extremely smooth MAPbBr3 films with large grain 

sizes28 show non-wetting behavior towards Spiro-OMeTAD from chlorobenzene solutions (see 

Figure 6 – 17a). Thus, pinholes in the Spiro-OMeTAD layer regularly appear and the devices 
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suffer mostly from local voids in the hole-transporting layer. When Al2O3-NPs from a 0.2 wt% 

solution cover the surface of the MAPbBr3 perovskite film we can deposit a homogenous Spiro-

OMeTAD layer on top (see Figure 6 – 17b). As a result, the number of completely HTL-

covered functional devices is increased along with an increase in performance (see Figure 

6 – 17c). 

 

Figure 6 - 17 a) SEM cross-section of ITO/TiO2/MAPbBr3/Spiro-OMeTAD/Au and b) the same setup but with Al2O3-NPs at 
the perovskite/HTL interface; c) JV-curves of devices with ITO/TiO2/MAPbBr3/Spiro-OMeTAD/Au or ITO 
TiO2/MAPbBr3/Al2O3-NPs/Spiro-OMeTAD/Au architecture, measured reversely from 1.5 to 0 V. 
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6.3 CONCLUSION 
In this work, we present a universally applicable wetting agent for perovskite deposition on 

non-wetting, low-energy surfaces. Electrically inert metal oxide nanoparticles such as Al2O3 or 

SiO2 with diameters between 20 and 60 nm promote the wetting of perovskite precursor 

solutions on various surfaces. In the special case of n-type contacts SnO2-NPs can improve both 

the wetting and electrical contact formation. Even hardly-wetting, low energetic surfaces e.g. 

PCBM, C60-SAMS or P3HT are covered homogeneously and defect-free by solution-based 

perovskite deposition when the nanoparticles are pre-applied at the interface. Furthermore, the 

nanoparticles do not significantly interfere with the dominant perovskite grain growth 

mechanism as we demonstrate for different prominent perovskite synthesis routes. In particular, 

the wetting agent strategy allowed the homogeneous deposition of a perovskite film with 5 µm 

grains by spin coating on a 144 cm2 large, non-wetting C60-SAM interface and the fabrication 

of 24 cm² modules of the same. Interfaces with less than 30 % NP coverage provide full 

photovoltaic functionality. Efficiencies in the range of 16-18 % were obtained for small area 

perovskite solar cells deposited on 9 cm2 and 144 cm2 large substrates. Our route to enhance 

wetting on problematic surfaces provides an extremely useful tool for all solution-based 

deposition processes. Three major applications are conceivable: 1) Implementation of 

hydrophobic materials with controlled formation of subsequent perovskite layers or other 

functional films, 2) achieving superior results when upscaling thin film processing, and 3) 

realization of perovskite layers with representative morphology on any hydrophobic substrate 

for analytical research.  
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7 BLUE-GREEN COLOUR TUNABLE PEROVSKITE LEDS 

 

This chapter is based on the following publication: 

Aditya Sadhanala, Shahab Ahmad, Baodan Zhao, Nadja Giesbrecht, Phoebe M. Pearce, Felix 

Deschler, Robert L. Z. Hoye, Karl C. Goedel, Thomas Bein, Pablo Docampo, Siân E. Dutton, 

Michael F.L. De Volder, Richard H. Friend Nano Lett. 2015, 15, 6095. 

Initial experiments and optical characterization were performed by Aditya Sadhanala, Shahab 

Ahmad, Baodan Zhao and Phoebe Pearce. Nadja Giesbrecht was additionally involved in 

optimization of perovskite film deposition including morphology and composition and 

application in LEDs and also performed structural characterization of the perovskite 

composites. The optical characterization was done by Felix Deschler and optimization of ALD-

deposited injection layers was done by Robert Hoye. 

 

7.1 INTRODUCTION 
The field of solution processed organic-inorganic halide perovskite-based optoelectronics has 

emerged in the last couple of years.1-6 This was initially driven by solar cells based on organo-

lead halide perovskite that now demonstrates power conversion efficiencies of above 20%.7 

Thin films based on the mixed-halide CH3NH3Pb(IxCl1–x)3 version of these perovskite materials 

also feature high photoluminescence quantum yield (PLQE).8 The demonstration of these high 

radiative emission efficiencies led to the development of bright light-emitting diodes (LEDs) 

and optically pumped lasers.5,8,9 There are recent reports that the optical bandgap of lead halide 

perovskites can be tuned in the visible range of ∼550–780 nm through the use of solid solutions 

of bromide-iodide mixed halides.10-12 These solid solution based thin films can be easily 

prepared by varying the ratio of the two individual pure trihalide perovskite solutions mixed 

(for example, CH3NH3PbI3 and CH3NH3PbBr3). However, tuning the bandgap in the blue-green 

region using solution processed chloride–bromide mixed halide perovskites has been a 

challenging task, given the low solubility of the chloride containing precursor materials 

(CH3NH3Cl and PbCl2) in regularly used solvents like N,N-dimethylformamide (DMF). We 

here make use of mixed solvents DMF and dimethyl sulfoxide (DMSO) along with an organic 

lead source of lead acetate Pb(CH3COO)2 to achieve the solution processability of the chloride 
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containing precursor materials. Realizing such large bandgap solution-processed 

semiconductors is of great importance given their utility in making tandem solar cells and 

making LEDs which emit in the blue-green range of the visible spectrum. 

Here, we demonstrate bandgap tuning of the CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites in 

the UV–visible (UV–vis) range of ∼3.1–2.3 eV. We tuned the bandgap in this range by varying 

the chloride to bromide ratios in the CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites, which are 

solution processed from their respective precursor solutions. This solution processed mixed 

chloride–bromide films were further characterized using X-ray diffraction (XRD), 

photothermal deflection spectroscopy (PDS), time-resolved photoluminescence (TRPL), and 

energy dispersive X-ray (EDX) measurements. These mixed chloride–bromide perovskites 

provide a way to realize solution processed large bandgap perovskite solar cells to combine 

with small bandgap perovskite solar cells in tandem architecture. Furthermore, these 

perovskites allow blue LEDs to be realized, which have proven to be a difficult task with 

gallium nitride (GaN) being the only widely used option for commercial application. We here 

demonstrate the use of the CH3NH3Pb(BrxCl1–x)3 perovskites in the fabrication of LEDs with 

color tunability dependent on the composition, and for CH3NH3Pb(BrxCl1–x)3 [x < 0.6] we 

demonstrate blue LEDs with narrow emission full-width at half maxima (FWHM). 

7.2 RESULTS AND DISCUSSION 
Bandgap tuning in the CH3NH3Pb(BrxCl1–x)3 [0≤x ≤1] perovskites was achieved by substitution 

of Br and Cl ions in the precursor solutions. We prepared perovskite precursor solutions with 

two different organic (CH3NH3X) to inorganic (Pb(CH3COO)2) molar ratios 3:1 and 5:1 organic 

to inorganic (for a detailed description of material preparation refer to chapter 9. We note that 

these ratios correspond respectively to (1) a stoichiometric solution and (2) one with an excess 

of CH3NH3X, and these are analogous to the 1:1 and 3:1 ratios for methylammonium halide 

and lead halide starting materials typically used.5,13,14 The photophysical properties of the 3:1 

molar starting ratio perovskite samples are summarized in the Figures 7 – 1, 7 – 2, and 7 – 3). 

In brief, we observe a monotonic blue shift in the bandgap with decreasing bromide content and 

increasing chloride content in the CH3NH3Pb(BrxCl1–x)3 [0≤x ≤1] perovskites. X-ray diffraction 

of the CH3NH3Pb(BrxCl1–x)3 films formed using the stoichiometric solution indicates the 

formation of a cubic perovskite, space group Pm3m, across the entire composition range 

[0≤x≤1]. In agreement with Vegard’s law, a monotonic decrease in the lattice parameter with 

increasing chloride content is observed. These 3:1 molar staring ratio perovskite materials could 

be useful in solar cell applications as their band-edges are sharper with clean sub-bandgap and 



7   BLUE-GREEN COLOUR TUNABLE PEROVSKITE LEDS 
 

- 102 - 
 

narrow XRD diffraction peaks (see Figures 7 – 1, 7 – 2, and 7 – 3 for PDS and XRD spectra). 

However, for luminescence applications, we use 5:1 organic to inorganic molar starting ratio 

perovskite materials analogous to the materials used to make efficient perovskite LEDs 

previously,5,14-17 and these are described in detail as follows. 

 

Figure 7 - 1: a) PDS absorption data for the 3:1 molar starting ratio CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskite thin films with 
different chloride-bromide ratios as indicated, showing monotonic bandgap; tuning with changing composition. They also 
demonstrate sharp band-edges and clean sub-bandgap. b) Urbach energy for all the samples showing low disorder. The 24 and 
45% chloride samples demonstrate the lowest Urbach energy of ~ 17 meV and the samples with no chloride content shows 
Urbach energy of ~19 meV and the remaining samples with chloride content higher than 45% showed higher Urbach energies 
of ~23 meV. These Urbach energy values are much lower than those obtained for the 5:1 molar starting ratio CH3NH3Pb(BrxCl1-

x)3 [0 ≤ x ≤ 1] perovskite thin films, which makes them more useful for solar cell applications. 

 

Figure 7 - 2: a) XRD patterns as a function of composition for 3:1 organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1-

x)3 [0 ≤ x ≤ 1] perovskite thin films showing diffraction pattern shift to higher scattering angle, 2q with decreasing bromide 
content. b) and c) Show the evolution of the normalized XRD patterns for the (100) and (200) reflection respectively as a 
function of composition for the same thin films. 
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Figure 7 - 3: a-f) PDS spectra for the 3:1 molar starting ratio CH3NH3Pb(BrxCl1-x)3 [0≤x ≤1] perovskite thin films with different 
chloride-bromide ratios as indicated. The grey lines in each plot are the linear fits to the Urbach tail used to calculate the Urbach 
energy and the obtained Urbach energy ‘Eu’ which is indicated for each sample. 

 

Figure 7 - 4: Energy dispersive X-ray spectroscopy (EDX) data for the 5:1 molar starting ratio CH3NH3Pb(BrxCl1-x)3 [0≤x≤1] 
perovskite solid solutions based thin films with different chloride-bromide ratios as indicated showing a close match between 
the concentration in solution and that in thin films. 
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EDX measurements were performed (see Figure 7 – 4) to determine the nominal halide 

composition in the 5:1 organic-to-inorganic molar starting ratio based CH3NH3Pb(BrxCl1–x)3 

[0≤x≤1] perovskite films spin-coated onto quartz substrates, and it was found that the halide 

content in films is similar to that in the precursor mixture solutions within the detection error 

limits of the measurement (±5%). Henceforth, the composition indicated in the rest of the 

manuscript is that of the respective perovskite films. 

 

Figure 7 - 5: (a) UV–visible absorption spectra and (b) normalized photoluminescence spectra for the 5:1 organic to inorganic 
molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskite thin films with different chloride–bromide ratios as indicated. 
Excitation for PL was performed with a pulsed laser system at 3.1 eV photon energy and 100 fs pulse length, and PL spectra 
have been normalized to the peak emission. (c) PDS spectra are showing sharp band edges and a clean bandgap. 

The optical properties of 5:1 organic-to-inorganic molar starting ratio based CH3NH3Pb(BrxCl1–

x)3 [0≤x≤1] perovskite films spin-coated onto quartz substrates were measured. The absorption 

spectra in Figure 7 – 5a shows a monotonic blue shift in the bandgap of these films with 

decreasing bromide content (or increasing chloride content), from a band-edge of around 

530 nm for 0% chloride sample (CH3NH3PbBr3) to 400 nm for the 100 % chloride sample 

(CH3NH3PbCl3). To analyze the quality of a semiconductor formed, we performed PDS 

measurements to probe the sub-bandgap absorption of our perovskite films. PDS is a highly 

sensitive absorption measurement technique capable of measuring absorbances down to 10–5 

and is not subject to optical effects, such as light scattering, reflection, and interference effects 

at the substrate/material interface. PDS has been extensively used to study various organo-metal 

halide perovskites to measure the sub-bandgap defect states, degradation, and energetic disorder 

in the form of Urbach energy.5,12,13,18-20 The PDS spectra for the 5:1 organic to inorganic molar 

starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films are shown in Figure 7 – 5c, which 

shows a blue shift in the bandgap with increasing chloride content in the perovskite films. We 

find that all of these perovskite films have sharp band edges and clean sub-bandgap absorption 

indicating the superior quality of the semiconductor formed. Steady-state PL spectra of the 5:1 

organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskites were 

measured (Figure 7 – 5b). We observe a systematic blue shift in the PL spectra with increasing 
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chloride content from 543 nm for 0 % chloride perovskite (CH3NH3PbBr3) to 428 nm for 100% 

chloride perovskite (CH3NH3PbCl3). The PL and the PDS spectra demonstrate that the resulting 

CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films demonstrate a single optically active phase. 

This finding supports our observation of a clean bandgap in these films. 

 

Figure 7 - 6: (a) XRD patterns showing the evolution of the (200) reflection as a function of composition for 5:1 molar starting 
ratio CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤1] perovskite thin films showing diffraction pattern shift to higher scattering angle, 2θ with 
increasing chloride content. (b) Changes of normalized lattice parameters for 5:1 (closed squares) and 3:1 (closed triangles) 
organic-to-inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite thin films and PL peak position with a 
change in composition for the same films. (c) The plot of normalized PL intensity versus time for the same films. (d) 
Comparison of the change in FWHM of the PL emission peak, (200) XRD reflection, and the Urbach energy calculated from 
PDS measurements for the same films. The normalized lattice parameter and XRD FWHM show two data points for 20 % and 
40 % chloride samples each, and these values are for the split phases observed in the XRD of these samples. Excitation for PL 
was performed with a pulsed laser system at 3.1 eV photon energy and 100 fs pulse length. 

XRD studies of the CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films formed using the 5:1 molar 

starting ratio solutions (Figure 7 – 6a), indicate the formation of a cubic phase, space group 

𝑃𝑚3~𝑚, across the composition range (for full XRD spectra see Figure 7 – 7). Quantitative 

analysis to determine the lattice parameters was carried out using a Le Bail analysis,21 in the 

Fullprof suite of programmes;22 preferential alignment in the films prevents a full analysis of 

the crystal structure. As the chloride content increases, the peaks in the diffraction pattern shift 

to higher scattering angle, 2θ, as would be expected when bromide is replaced by smaller 

chloride ions. At low chloride concentrations (20–40 % Cl) the high angle peaks at 30–31.5° 

2θ (Figure 7 – 6a) are observed to split, indicating the formation of cubic perovskites with more 

than one lattice parameter. Given the monotonic variation in the lattice parameters in the 3:1 

films with composition, this is most likely to arise as a result of bulk phase segregation into 
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perovskite crystals with different ratios of halides with a composition within 10 % of the initial 

starting solution. From the current analysis, it is not possible to determine the relative phase 

fraction of the perovskites formed, and so it is not possible to quantify the extent of the phase 

segregation. At higher chloride concentrations (x>0.4) a single perovskite phase is seen in the 

XRD patterns; however, the broadening of the reflections may indicate some less extensive 

phase segregation. 

 

Figure 7 - 7: a) X-ray diffraction (XRD) data for the 5:1 molar starting ratio CH3NH3Pb(BrxCl1-x)3[0≤x ≤1] perovskite thin 
films with different chloride-bromide ratios as indicated. b) XRD patterns are showing the evolution of the (100) reflection as 
a function of composition for the same samples. 

In Figure 7 – 6b, we compare the change in the PL peak positions alongside the extracted 

normalized lattice parameters, where both follow a linear trend with the changing chloride 

fraction for the 5:1 organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] 

perovskite films. We further measured the photoluminescence kinetics of the 5:1 organic to 

inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤1] perovskite films (Figure 7 – 6c) 

which show single bimolecular decays for the 0 % chloride film (CH3NH3PbBr3) and also for 

films down to 60 % chloride sample, similar to what was reported previously for bromide–

iodide mixed halide perovskite materials.8,12 Films with 80% and 100% chloride content both 

show faster kinetics than the films with lower chloride content. 

The Urbach energies were measured for all of the 5:1 organic to inorganic molar starting ratio 

CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films using the PDS spectra. Urbach energy “EU” is 

an empirical parameter that indicates the energetic disorder for a given semiconductor.23,24 The 

Urbach energy is derived from the PDS absorption data by using the following expression: A = 

A0 exp((E – Eg)/EU), where A is the absorbance, A0 is a constant, and Eg is the bandgap of the 

material.12,24,25 Figure 7 – 6d shows the correlation between the extracted Urbach energies and 
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the full width at half maxima (FWHM) of the PL spectra and the (200) XRD reflection of the 

5:1 organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films 

with various chloride content. It can be seen that the Urbach energy is the lowest for the 0 % 

chloride (CH3NH3PbBr3) sample at 20 meV and increases monotonically with increasing 

chloride content to 41 meV for the 80 % chloride film and then drops down to 31 meV for the 

100% chloride sample (CH3NH3PbCl3). We also observe a similar trend in the PL with a 

minimum for the 0 % chloride (CH3NH3PbBr3) and 80 % chloride (CH3NH3Pb(Br0.2Cl0.8)3) 

samples at 142 and 124 meV, respectively. Furthermore, the PL FWHM increases 

monotonically with increasing chloride content in the films to reach a maximum of 167 meV 

for 60 % chloride sample (CH3NH3Pb(Br0.4Cl0.6)3). The FWHM of a process (absorption and 

emission) is generally indicative of the magnitude of disorder experienced by the excited 

carriers in the energetic landscape around them. Interestingly, the FWHM of the (200) reflection 

XRD shows a similar trend to the PL FWHM and Urbach energy. This similarity in the trends 

between Urbach energy, PL FWHM, and XRD FWHM, indicates the possibility that the 

energetic disorder experienced by the absorptive and emissive species are similar and are 

related to the structural disorder. 

 

Figure 7 - 8: (a) Device structure of the perovskite LEDs. (b) Normalized EL spectra of the 5:1 organic to inorganic molar 
starting ratio CH3NH3Pb(BrxCl1−x)3 [0≤x≤1] perovskite thin film based LEDs with different chloride−bromide ratios as 
indicated and measured at 77 K. These LEDs were fabricated in a device structure comprising of 
ITO/Mg:ZnO/perovskite/CBP/MoOx/Au and they demonstrate high color purity and emission tunability with a change in 
composition. (c) Current density and external quantum efficiency curves for the 0% chloride (CH3NH3PbBr3) LED measured 
at room temperature (300 K) and (d) the forward emission of this LED with respect to a bias voltage for the same device at 
room (300 K) and liquid nitrogen (77 K) temperatures. 
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Figure 7 - 9: UPS spectra of the 5:1 molar starting ratio CH3NH3Pb(BrxCl1-x)3[0≤x≤1] different chloride-bromide ratios as 
indicated, on a gold substrate. a) UPS spectra of the top of the Valance band maxima (EV) for the perovskite samples as a 
function of composition giving the difference between the Fermi energy level (EF) and EV of around 1.08 eV and 0.77 eV for 
100 % and 0 % chloride samples respectively. b) Photoemission cut-off for the perovskite samples as a function of composition, 
from which the vacuum level of the film is extracted. The EF for 100 % and 0 % chloride samples are -5.4 eV and -5.2 eV 
respectively.  

In order to demonstrate the potential application of these CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] 

perovskite films in optoelectronic devices, we fabricated light-emitting diodes using these 5:1 

organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] perovskite films. The 

device structure used in this work is ITO/Mg:ZnO/CH3NH3Pb(BrxCl1–x)3/CBP/MoOx/Au, 

where a combination of indium tin oxide (ITO) coated glass substrate and 50 nm ZnO followed 

by 10 nm zinc magnesium oxide (Mg:ZnO) forms the electron selective contact and the 

combination of 25 nm 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), 15 nm molybdenum 

trioxide, and 100 nm gold (Au) electrode act as a hole-selective contact. This device structure 

is depicted in Figure 7 – 8a along with the energy levels. The energy levels of the perovskite 

films were measured using Ultraviolet photoelectron spectroscopy (UPS) (see Figure 7 – 9), 

and all other energy levels were obtained from various literature reports. 26,27 We measured the 

electroluminescence (EL) spectra for devices with varying chloride content, 

CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] (Figure 7 – 8b). At room temperature weak or no EL could be 

measured except for the 0% chloride (CH3NH3PbBr3) based perovskite LED device which gave 

us a peak external quantum efficiency (EQE) of around 0.1 % at ∼6 V which is comparable to 

previous reports.5,28 This LED demonstrated a near bandgap turn on at around 2.2 V indicating 

efficient and balanced charge injection in the device. The other LEDs containing different 

chloride content other than 0 % chloride did not show weak or no measurable EL emission at 

room temperature. However, on cooling below 200 K, EL is observed in devices containing the 

mixed halide, 5:1 organic to inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x<1], 

perovskite films. The EQE could not be measured at low temperatures due to experimental 
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difficulties. Nevertheless, we compare the peak forward emission intensity of the 100 % 

bromide (CH3NH3PbBr3) device at room temperature and 77 K (Figure 7 – 8b) which is 

indicative of the device performance at the measured temperatures. From Figure 7 – 8c and d, 

we observe that the turn-on voltage remains at 2.2–3 V even at 77 K similar to what we observe 

at room temperature. This is an interesting observation given the device turn-on voltages for 

conventional organic LEDs (OLEDs) increases with decreases in temperature.29 The forward 

emission intensity of this device also increases at low temperatures, indicating the improvement 

in the photoluminescence quantum efficiency (PLQE) at low temperatures due to a potential 

reduction in nonradiative recombination pathways at low temperatures.30 

In Figure 7 – 8b we demonstrate the ability to tune the bandgap and emission wavelength of 

the LEDs based on the mixed halide, 5:1 organic-to-inorganic molar starting ratio 

CH3NH3Pb(BrxCl1–x)3 [0≤x<1], perovskite films which were measured at liquid nitrogen 

temperatures (77 K). The EL emission wavelength monotonically changes from 570 nm for 

0 % chloride (CH3NH3PbBr3) based LED to 427 nm for the 100% chloride LED 

(CH3NH3PbCl3). One notable observation is the narrow 5 nm EL FWHM for the 100% chloride 

(CH3NH3PbCl3) perovskite-based LED, which to our knowledge is one of the lowest FWHM 

observed to date for any solution processed material.5,14,16,28,31 

 

Figure 7 - 10: PL spectra for the 60 % chloride content sample (CH3NH3Pb(Br0.4Cl0.6)3) measured before and immediately 
after exposure to 1sun intensity (100 mW/cm2) demonstrating no change in the PL peak position proving the photo-stability of 
these materials; b) Plot of the natural log of the PL Vs inverse temperature for the 5:1 molar starting ratio CH3NH3Pb(Br0.4Cl0.6)3 
perovskite thin films showing high integrated PL at lower temperatures and high activation energies in the range of ~590 meV 
for this thermally-activated PL quenching process. 

The reason for the materials with large bandgap not showing any EL at room temperature could 

probably be the optical instability of these perovskite films. Recently, it was reported that the 

mixed halide bromide-iodide perovskite show optical instability under solar illumination (100 

mW/cm2).32 To rule out any such optical instability in these perovskites, we performed PL 
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measurements on the 60% chloride (CH3NH3Pb(Br0.4Cl0.6)3) sample before and immediately 

after a 10 min exposure under 1 sun illumination (100 mW/cm2) (see Figure 7 – 10). We found 

that the PL peak position does not change before and after illumination, which suggests that 

these 5:1 organic-to-inorganic molar starting ratio CH3NH3Pb(BrxCl1–x)3 [0≤x<1] perovskite 

films are optically stable. One other reason behind the lack of EL at room temperature from the 

LEDs fabricated using large bandgap perovskite films could be the low PLQE. We investigated 

this by measuring the integrated PL from the 60 % chloride (CH3NH3Pb(Br0.4Cl0.6)3) perovskite 

film at low temperatures. The integrated PL from this film increases with a decrease in 

temperature from room temperature (300 K) down to liquid nitrogen temperature (77 K). This 

can be inferred as an increase in PLQE at low temperatures, and this can be further inferred 

from the PL activation curve (see Figure 7– 9). We observe an increase in the integrated PL 

intensity for the 60 % chloride sample with decreasing temperature indicating the presence of 

efficient nonradiative processes at room temperature which is suppressed on cooling.30 We 

estimate activation energies in the range of ∼590 meV for this thermally activated PL 

quenching. 

Nevertheless, the fact that the LEDs based on these perovskite materials demonstrate narrow 

emission and low turn-on voltages at low temperatures along with the color tunability is a step 

forward to realize high color purity tunable LEDs. Further investigation into increasing the 

quality and PLQE of perovskite materials can help us realize blue LEDs operating at room 

temperature, and this could become a potential alternative to the current industrial standard 

gallium nitride (GaN) based blue LEDs. 

7.3 CONCLUSION 
In summary, we demonstrate bandgap is tuning in the green to blue region of the visible 

spectrum using solution-processed CH3NH3Pb(BrxCl1–x)3 [0≤x<1] perovskites. We overcame 

the challenge of incorporating chloride into perovskite structures containing bromide by using 

mixed solvent approach and organic source of lead. These color tunable materials have been 

used to fabricate high color-purity, tunable LEDs with narrow FWHM emission and low turn-

on voltages. With further investigation into increasing the quality of mixed chloride–bromide 

perovskites, CH3NH3Pb(BrxCl1–x)3, to enhance the PLQE, these materials may offer an 

alternative to current gallium nitride (GaN) based blue LED technologies.  
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8 CONCLUSION AND OUTLOOK 

In this thesis, we discovered a new and highly stable intermediate perovskite-like phase that 

allowed us to fabricate high-quality perovskite MAPbX3 films with grain sizes exceeding 

10 µm and pure crystal alignment. In the first part, we developed a new method to process the 

wide-bandgap perovskite MAPbBr3. This perovskite compound is especially interesting as a 

green light emitting layer in LEDs or as an absorber for high voltage solar cells. In the course 

of this work, the optimized deposition conditions led to high-quality thin films with crystal sizes 

of up to 10 µm and pure alignment of the crystallites. In photovoltaic devices, these film 

qualities boosted the power conversion efficiency significantly, compared to thin films with 

smaller grain sizes and no preference in crystal alignment. In particular, the MAPbBr3 thin films 

presented here exhibit high photocurrents in single-junction devices, in combination with high 

voltages of over 1.4 V. 

The high stability of the intermediate perovskite-like phase (IP) in the iodide-based compounds 

creates rather optimal synthesis conditions for the perovskite formation. To deposit the IP from 

the solution, we found the use of highly polar solvent additives to be necessary. In particular, 

the additive tetrahydrothiophene-1-oxide (THTO) enabled the crystallization of the phase-pure 

IP from solution. This precursor enabled a highly controlled conversion to perovskite from the 

crystalline IP, such that we obtained grain sizes of over 10 µm with pure crystal orientation 

with respect to the substrate. Therefore, the electronic properties of these films approached the 

ones of single crystals, leading to very high solar power conversion efficiencies for this 

compound with 18.5 %. 

Moreover, the formation of the IP makes tuning of crystal alignment possible if the Lewis-base 

DMSO was used as a solvent additive. By varying the amount of DMSO additive in the range 

of 10 vol%, the crystal alignment was flipped from strong alignment with the long c-axis 

perpendicular to the substrate to pure alignment of the long c-axis parallel to the substrate. 

These findings enabled a study on the influence of crystal facet alignment in perovskite thin 

films in optoelectronic devices. We found that a higher crystal alignment most likely decreases 

defect densities within the perovskite films and generally leads to improved charge carrier 

mobility. However, the most significant impact in solar cells was provided by the interface 

between different crystal facets and charge extraction materials (CTMs). In particular, 

interfacial energetic barriers were formed under applied bias for the (002) perovskite crystal 

facets and TiO2. The barrier between the (200) facets and TiO2 vanished with an additional 
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fullerene-layer at the interface. In contrast, with the use of inverted devices with fully organic 

CTMs, no the energetic barrier was observable. Therefore, charge transfer and consequently 

the device performance in perovskite solar cells was notably optimized with pure perovskite 

facet alignment and by matching interfaces with the charge extraction materials.  

The limitation of the perovskite crystallization to suitable bottom interfaces is very unfavorable 

for flexible interface engineering or up-scaling of devices to produce modules. In this thesis, 

we developed a deposition method for adhesion promoters at the interfaces to increase the 

surface roughness and improve the wetting behavior of various interfaces. We used electrically 

inert oxide nanoparticles (NPs), such as Al2O3 or SiO2. Already with 1 % surface coverage of 

the NPs, we significantly improved the surface wetting of highly hydrophobic interfaces like 

fullerenes. This improvement enabled up-scaling of spin-coating processes with homogeneous 

coverage of diverse perovskite precursor solution variations up to substrate sizes of 144 cm2 

with no loss in performance of devices. The NPs serving as adhesion promoters were not limited 

to perovskite deposition but enabled various other processes using hydrophilic solutions on top 

of hydrophobic surfaces. In the case of the deposition of lead acetate-based precursor mixtures, 

film deposition of similar morphologies on substrate sizes between 9 cm2 and 144 cm2 was 

possible. The device performance was not compromised by the presence of the NPs at the 

interface up to a surface coverage of about 30 %. 

The lead halide perovskite materials are equally suitable for photovoltaic and light emitting 

applications. With methylammonium lead halides, the light emitting color can be tuned in the 

full visible range from red over green to blue. To engineer white light for lighting applications, 

blue emitters are necessary, but usually, they are the most complex to be processed or highly 

unstable. In this thesis, we solution-processed blue-emitting perovskite-based LEDs. With the 

use of lead acetate precursor, we developed a synthesis approach for homogeneous but very 

thin perovskite films with bromide-chloride mixtures. This way, we produced very cost-

efficient LEDs with low turn-on voltages. Another intriguing feature of these LEDs is the sharp, 

color-pure electroluminescence (EL), which is of interest for display applications.  

In this thesis, we have examined the fundamental factors controlling the morphology and 

microstructure of perovskite polycrystalline thin films in optoelectronic devices. Additionally, 

the findings in the present thesis offer easy but powerful solutions for interface engineering 

without altering the perovskite crystallization or even to enable upscaling of optoelectronic 

devices to make them commercially more attractive. In particular, to push the photovoltaic 

device performance further towards the Shockley-Queisser limit, the perovskite thin film 
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morphology should approach the quality of single crystal wafers. In addition, matching 

interfaces need to be targeted according to the specific crystal facet alignment for most efficient 

charge extraction to the electrodes.  
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9 EXPERIMENTAL 

9.1 PEROVSKITE SYNTHESIS 

9.1.1 Synthesis Methods in Chapter 3 
PEROVSKITE DEPOSITION: CH3NH3Br was synthesized by reacting 8 mL of hydrobromic acid 

(48 vol% in water) with 24 mL of methylamine (33 vol% in methanol, Sigma-Aldrich) in 

ethanol in a round-bottom flask at room temperature for 1 h. To recover the precipitates, solvent 

evaporation at 60 °C at a pressure of 200 mbar was used and the products were recrystallized 

in ethanol, filtered and dried with diethyl ether and under vacuum afterwards.  

BD: A 1.2 M solution of the perovskite precursors PbBr2 and MABr (1:1 ratio) was prepared 

in a solvent mixture of γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO) in a 7:3 

(GBL:DMSO) ratio. The precursor solution was deposited in a 3-step spin-coating program. 

The first step of the program was at 500 rpm for 5s, the second step was at 1000 rpm for 40 s 

and the third step was at 5000 rpm for 50 s. At the beginning of the last step, toluene was dripped 

onto the substrate. Afterwards the films were annealed at 100 °C for 10 min. 

VASP: In the vapor-assisted-solution process first the lead bromide precursor layer was 

deposited. The PbBr2 was dissolved in DMF (a 1 M solution) and preheated together with the 

substrates at 60 °C before spin-coating the layer at 3000 rpm for 15 s. Afterwards the PbBr2 

was dried at 60 °C for 10 min and converted in a closed vial to the perovskite in MABr vapor 

for 2 hours at 150 °C. 

CSD: The perovskite layer was deposited on a substrate kept at room temperature via 

dynamically spin-coating 50 µL solution (1.5 Pb(Ac)2 + 4.5 M MABr in DMF) per 9 cm2 of 

substrate dimension at 5000 rpm for 3 min. The samples were then annealed at 100 °C for 2 

min with a glass lid covering the substrate in order to avoid defects caused by gas circulation.   

9.1.2 Perovskite Synthesis Methods in Chapter 4 
The perovskite synthesis was performed in a nitrogen-filled glovebox. In all cases a 62 wt% 

perovskite precursor solution was used. PbAc2 x 3 H2O (99.995 % purity, Sigma Aldrich) was 

mixed with methylammonium iodide (MAI, Dyesol) at a molar ratio of 1:3. The main solvent 

used was dimethylformamide (DMF, Sigma Aldrich) and the additive used was 

tetrahydrothiophene-1-oxide (THTO, Alfa Aesar). For the solution preparation, it is very 

important to first add both precursors into the same vial and mix them until the mixture turns 
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yellow to form the intermediate phase (IP) before dissolving it. The mixture can be easily 

dissolved at RT and should not be heated at any time, since heat destroys the IP very fast, which 

changes the crystallization mechanism. For perovskite deposition, the solution was spin-coated 

dynamically at 5000 rpm for 3 min. Here, it is very important to use the minimum amount of 

solvent to cover the substrate. In our case, we used 50 µL for substrate dimensions of 9 cm2. 

After spin-coating the film appeared bright yellow and after 10 min of staying at RT, the films 

turned to the bright orange IP. After the IP was formed, the film was transferred to the hotplate 

and annealed at 130 °C for 5 min to crystallize the perovskite. We note that the purity of the 

atmosphere in the glovebox is crucial for perovskite nucleation and crystal growth. For 

example, vapors of antisolvents like chlorobenzene (CB) can induce faster perovskite 

nucleation and lead to smaller grain sizes. 

9.1.3 Perovskite Synthesis Methods in Chapter 5  
In all cases a 62 wt% perovskite precursor solution with PbAc2 and MAI in a 1:3 molar ratio 

was prepared in different solvent mixtures (see Table 9 – 1)and spin-coated for 3 min at 

5000 rpm. After spin-coating the film appears yellow and transparent and turns orange-brown 

when the intermediate phase is pre-crystallized at RT to form the perovskite. After pre-

crystallization, the substrate was transferred to the hotplate and annealed at 130 °C for 5 min. 

To achieve pure orientation in (200) direction, either a solvent mixture of DMSO/DMF was 

used with 20 vol% DMSO or a mixture of THTO/DMF with 13 vol% THTO. To achieve high 

preference in (002) direction a solvent mixture of DMSO/DMF was used with 10 vol% DMSO. 

Equally strong preference in (200) and (321) direction was achieved with 15 vol% DMSO. No 

preference in crystal orientation was obtained with pure DMF. 

 Solvent Mixture 

Crystal orientation DMF / vol% DMSO / vol% THTO / vol% 

(200) 80 20 0 

(200) 87 0 13 

(200)+(321) 85 15 0 

(002) 90 10 0 

No pref. 100 0 0 

Table 9 - 1: Solvent mixtures. 

9.1.4 Synthesis procedures in Chapter 6 
NANOPARTICLE SYNTHESIS: The SiO2 nanoparticles were synthesized following Bogush [38] 

using fixed amounts of ethanol (2.71 ml), ammonia (101 µl) and tetraethyl orthosilicate (TEOS, 
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114 µl) and varying H2O amounts (see Table 9 – 2) for 3 mL of  a 1.2 wt% dispersion. The 

solution was stirred at 30° C for 3 hours. 

SiO2-NP size / nm H2O / µl NH3 / µl Ethanol / µl TEOS / µl 

20 27 101 2717 114 

40 67.5 101 2717 114 

60 108 101 2717 114 
Table 9 - 2: Synthesis mixtures. 

LARGE GRAIN SIZED PEROVSKITE SYNTHESIS: The perovskite synthesis was performed as 

described in [39]. A 62 wt% perovskite precursor solution with PbAc2 x 3 H2O (99.995 % purity, 

Sigma Aldrich), mixed with methylammonium iodide (MAI, Dyesol) in a molar ratio of 1:3. 

The precursor mixture was dissolved in 87 vol% dimethylformamide (DMF, Sigma Aldrich) 

and 13 vol% tetrahydrothiophene-1-oxide (THTO, Alfa Aesar. To deposit the perovskite, the 

solution was spin-coated dynamically at 5000 rpm for 3 min. A volume of 50 µL for substrate 

dimensions of 3 cm x 3 cm and 500 µm for substrate dimensions of 12 cm x 12 cm were used. 

After spin-coating the film was pre-crystallized for 8 min at RT for substrate dimensions of 

9 cm2 and for 20 min in the case of 144 cm2 substrate sizes. Afterwards the films were 

transferred to the hotplate and annealed at 130 °C for 5 min to crystallize the perovskite.  

9.1.5 Perovskite Synthesis Methods in Chapter 7 
3:1 Molar Starting Ratio Precursor Mixture Solutions 

CH3NH3PbBr3 precursor solution was synthesized by mixing CH3NH3Br and Pb(CH3COO)2 in 

a 3:1 molar stoichiometric ratio in DMF to obtain a 0.5 M solution. Similarly, the CH3NH3PbCl3 

precursor solution was synthesized by mixing CH3NH3Cl and Pb(CH3COO)2 in a 3:1 molar 

stoichiometric ratio in a mixed solvent comprising DMSO and DMF in the ratio of 40:60 (v/v) 

to get a 0.5 M solution. To prepare the desired CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] precursor 

solutions, the above-mentioned CH3NH3PbBr3 and CH3NH3PbCl3 precursor solutions were 

mixed together in the required stoichiometric ratios. 

5:1 Organic-to-Inorganic Molar Starting Ratio Precursor Mixture Solutions 

CH3NH3PbBr3 precursor solution was synthesized by mixing CH3NH3Br and Pb(CH3COO)2 in 

a 5:1 molar stoichiometric ratio in DMF to obtain a 0.5 M solution. Similarly, the CH3NH3PbCl3 

precursor solution was synthesized by mixing CH3NH3Cl and Pb(CH3COO)2 in a 5:1 molar 

stoichiometric ratio in a mixed solvent comprising DMSO and DMF in the ratio of 40:60 (v/v) 

to get a 0.5 M solution. To prepare the desired CH3NH3Pb(BrxCl1–x)3 [0≤x≤1] precursor 
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solutions, the above-mentioned CH3NH3PbBr3 and CH3NH3PbCl3 precursor solutions were 

mixed together in the required stoichiometric ratios. 

9.2 DEVICE FABRICATION 
SUBSTRATE PREPARATION: Fluorine-doped tin oxide (FTO, Pilkington, 7 Ω/sq) substrates were 

etched with 2 M HCl and zinc powder and cleaned in 2 % Hallmanex detergent, acetone, 

ethanol and were plasma-cleaned in nitrogen plasma before deposition of charge transport 

layers. 

9.2.1 Photovoltaic Devices in Regular Architecture 
A sol-gel approach was used to deposit the TiO2 layer with a solution containing 0.23 M 

titanium isopropoxide (Sigma-Aldrich, 99.999 %) and 0.013 M HCl in isopropanol (IPA). The 

250 µL of solution was spin-coated dynamically on top of a 36 cm2 large substrate at 2000 rpm 

for 45 s, dried at 150 °C for 10 min and annealed at 500 °C for 45 min. Afterwards, the 

substrates were transferred to a glovebox. To prepare devices with a C60-interface, a monolayer 

was deposited from a 0.5 mg/mL solution of 4-(1’,5’-dihydro-1’methyl-2’H-[5,6]fullereno-

C60-Ih-[1,9-c]pyrrol-2’-yl)benzoic acid (C60-SAM)  dissolved in chlorobenzene (CB). 50 µL of 

the resulting solution were dynamically spread on top of a 9 cm2 large substrate with 2000 rpm 

for 30 s and then annealed at 100 °C for 5 min. To achieve a better wetting and nucleation of 

the perovskite solution, a 0.2 wt% IPA solution of Al2O3 nanoparticles (Sigma-Aldrich, < 

50 nm particle size, 20 wt% in IPA) was deposited on top of C60 at 2000 rpm for 30 s and dried 

at 130 °C for 5 min. 

The perovskite was deposited on top and a Spiro-OMeTAD (99.6 % purity, Borun New 

Materials Technology Ltd.) layer afterward. We used a 75 mg/mL Spiro-OMeTAD solution in 

CB with 3 vol% of 170 mg/mL bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI, Sigma-

Aldrich) in acetonitrile (Sigma-Aldrich, anhydrous, 99.8%) and 1 vol% 4-tert-butylpyridine 

(TBP, Sigma-Aldrich, 96%). 75 µL of the solution was spin-coated on top of a 9 cm2 large 

substrate at 1500 rpm for 45 s. The devices were stored for one day in a desiccator to oxidize 

the Li-TFSI additive in Spiro-OMeTAD. To finalize the devices, a 40 nm thick Au counter 

electrode was thermally evaporated under high vacuum conditions (<10-7 mbar) through a metal 

aperture leading to devices in the range of 0.10 cm2. The specific active area was determined 

with a 0.083 +/- 0.001 cm2 metal aperture. 

9.2.2 Photovoltaic Devices in Inverted Architecture 
As hole-transport layers either a PEDOT:PSS or a NiOx layer was used: 
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A poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, Heraeus Clevios, 

Al 4083, 1.0-1.3 % concentration by weight) solution was diluted with MeOH at a ratio of 1:2, 

treated in an ultrasonication bath for 10 min and filtered. 250 µL of the solution was spin-coated 

on top of a 36 cm2 large substrate at 4000 rpm for 45 s and the substrate was annealed at 150 °C 

for 10 min. Afterwards, it was immediately transferred to the glovebox.  

A NiOx hole-transporter was deposited via ALD after a procedure described in 1 with a final 

thickness of 7 nm. In short, nickelocene precursor was oxidized with oxygen plasma ant atomic 

layers were grown at 250 °C with a growth rate of 0.042 nm per cycle. To fully oxidize the 

NiOx layer, we annealed it at 300 °C for 1 h at ambient conditions.  

On top of each layer, 100 µL of a 0.2 wt% Al2O3 nanoparticle solution in IPA was deposited 

on top of a 9 cm2 large substrate at 2000 rpm for 30 s and annealed at 130 C for 5 min. The 

perovskite layer was deposited on top. [6,6]-Phenyl C61 butyric acid methyl ester ([60]PCBM, 

solenne, >99.5%) was used as electron transport material with a 20 mg/mL solution 

concentration in CB, which was spin-coated with 50 µL at 1800 rpm for 30 s and annealed at 

100 °C for 5 min. 100 µL of a 0.5 mg/mL bathocuproine (BCP, Sigma-Aldrich, 99.99%) 

solution in IPA, spin-coated at 4000 rpm for 30 s, was used as an interfacial layer between ETM 

and the electrode. To finalize the devices, a 100 nm thick Ag counter electrode was thermally 

evaporated under high vacuum conditions (<10-7 mbar) through a metal aperture leading to 

devices in the range of 0.10 cm2. The specific active area was determined with a 0.083 +- 0.001 

cm2 metal aperture. 

9.2.3 Light Emitting Device Fabrication 
Prepatterned ITO substrates were cleaned using an ultrasonic bath in acetone followed by 

isopropanol for 15 min each (see Figure 9 – 1). The cleaned substrates were subjected to 

oxygen plasma cleaning for 1 min. Magnesium-doped zinc oxide films (ZnO:Mg) were 

deposited at 150 °C using an atmospheric pressure spatial atomic layer deposition (AP-SALD) 

reactor operating in chemical vapor deposition (CVD) conditions. 2 First, 50 nm of ZnO was 

deposited onto these substrates, followed by 10 nm of Zn0.56Mg0.44O on top. We used previously 

reported flow conditions for these depositions. 3 After deposition, the films were cleaned by 

soaking in acetone for 1 h, followed by 3 min of sonication in ethanol. All films were annealed 

at 400 °C for 15 min in air. Further, a 5 nm PEI layer was deposited using a 0.4 wt % solution 

in 2-methoxyethanol followed by annealing for 10 min at 100 °C. Desired perovskite precursor 

mixture solutions were spin-coated and annealed in a nitrogen-filled glovebox at 100 °C for 

5 min. The resulting thickness of the perovskite film was in the range of 125–150 nm. We then 
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spin-coated a 25 nm thin layer of CBP from a chlorobenzene solution. This was followed by 

thermal evaporation of 15 nm of MoOx and 100 nm of gold, which forms the top electrode. 

 

Figure 9 - 1: Schematic of : a) substrate pattern; b) full device stack.  

9.3 CHARACTERIZATION 

9.3.1 X-ray diffraction (XRD) 
Every XRD analysis was operated with a Cu Kα X-ray source. Films were deposited on TiO2-

coated FTO-coated glass and scans were obtained using a Bruker D8 Discover X-ray 

diffractometer with a position-sensitive detector (LynxEye) in Bragg-Brentano geometry. 2θ 

scans for powder X-ray diffraction (PXRD) were obtained with a STOE Stadi MP 

diffractometer equipped with a DECTRIS MYTHEN 1 K solid-state strip detector. 

9.3.2 Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 
GIWAXS data of the perovskite films were acquired with a Ganesha 300XL SAXS-WAXS 

system with a Cu Kα X-ray source. The incident angle was set to 0.4 °, which is well above the 

critical angle of MAPbBr3 and MAPbI3 so that the X-ray beam can penetrate the entire film. 

The measurement time was 10 h if not stated otherwise and the scattering signal was recorded 

with a Dectris Pilatus 300 k pixel detector with automatic flat field correction, positioned 106 

mm behind the sample. Data treatment and reduction including solid-angle, efficiency, and 

polarization correction and reshaping of 2D images was conducted with the Matlab software 

GIXSGUI by Argonne National Laboratory. 4 The applied corrections include the solid angle 

correction, the efficiency correction and the polarization correction in Chapter 3 and 5. 5,6 In 

Chapter 5, further corrections as suggested in the literature were not applied, 5,6 which we 

explain in the following: The highly oriented samples presented in the present work gave us the 

opportunity to measure intensities of (002) and (110) peaks individually. For non-oriented 

samples, the Debye-Scherrer rings for these planes overlap and are not distinguishable. Here, 

they could be identified by their slightly differing q values. The intensity for the (110) reflex 



9   EXPERIMENTAL 

- 123 - 
 

should be higher than the intensity of the (002) peak, and this relation is reversed by applying 

Lorentz corrections, so simple Lorentz factors for in-plane powders are not applicable to these 

MAPbI3 films. 

9.3.3 Scanning Electron Microscopy (SEM) 
A scanning electron microscope (FEI Helios NanoLab G3 UC) was used to acquire SEM 

images of perovskite layers prepared on TiO2-coated FTO/ ITO glass for top-view images and 

complete devices for cross-sections. 

9.3.4 Transmission Electron Microscopy (TEM) 
TEM was performed on an FEI Titan Themis equipped with a field emission gun operated at 

300 kV. 

9.3.5 Contact Angle Measurements 
A customized setup was used to take photographs of contact angles inside a nitrogen-filled 

glovebox. For evaluation of the data and contact angle fitting, program ImageJ 7 was used 

with the contact angle measurement tool by Marco Brugnara. 8   

9.3.6 Light absorption 
The absorbance of the perovskite films on TiO2-coated FTO glass was measured with a Lambda 

1050 UV/Vis spectrometer (Perkin Elmer) using an integrating sphere.  

Linear absorption spectra of thin films deposited on quartz substrates were measured using a 

Hewlett-Packard 8453 UV–vis spectrometer with blank substrate correction. 

The photothermal deflection spectroscopy (PDS) technique was used for the absorption 

measurements. Films spun on quartz substrates were used for the measurements. PDS is a 

highly sensitive scatter-free surface averaged absorption measurement technique capable of 

measuring absorbances down to 10–5. A detailed description of the PDS setup can be found in 

Sadhanala et al. 9  

9.3.7 Photoluminescence (PL) 
Steady-state and time-correlated single photon counting measurements of the perovskite films 

coated on non-conductive glass were performed with a Fluotime 300 Spectrofluorometer 

(Picoquant GmbH); the excitation wavelength was fixed to 510 nm with a pump fluence of 

~0.3 µJcm-2 and the emission was monitored at the maximum at 550 nm, the maximum intensity 

of the steady state photo emission.   
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Time-resolved photoluminescence measurements were taken with a gated intensified CCD 

camera system (Andor iStar DH740 CCI-010) connected to a grating spectrometer (Andor 

SR303i). Excitation was performed with femtosecond laser pulses which were generated by a 

home-built setup by second harmonic generation (SHG) in a BBO crystal from the fundamental 

output (pulse energy 1.55 eV, pulse length 50 fs) of a Ti:sapphire laser system (Spectra Physics 

Soltstice). The laser pulses generated from the SHG had a photon energy of 3.1 eV, pulse length 

∼100 fs. 

9.3.8 Time-of-Flight Measurement (TOF) 
The generation of charges in the MAPbI3 films was induced upon low-intensity pulsed laser 

excitation at 540 nm with 1 J per pulse, 20 Hz repetition rate with a power of 20 W. The laser 

system consists of an optical parametric oscillator (LeCroy), pumped by a solid-state Nd: YAG 

laser (Innolas) with a repetition rate of 20 Hz and a pulse width of 7 ns. Perovskite thin films, 

contacted with a lateral electrode architecture (see Figure 9 - 1) and top-coated with a thin 

PMMA layer to prevent moisture-induced degradation, were illuminated from the semi-

transparent glass/gold side at the edge of one contact by focusing the laser through a microscope 

objective (spot diameter approximately 2 µm). An external DC field was applied through the 

Au electrodes exclusively during the measurement of the transient (time frame of approximately 

1 s). Photocurrent transients at bias voltages between 1.2 and 3.0 V were recorded in steps of 

200 mV to confirm the applicability of Equation 9 – 2 to the determined transit times. 

𝜇 = 	 y
z{

     (Equation 9 - 1) 

μ= carrier drift mobility; E = applied electric field; τ = transit time; d = electrode spacings 

 

Figure 9 - 2: Lateral device architecture. 
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9.3.9 Photovoltaic Device Characterization 
Photovoltaic device performance was measured with a Keithley 2400 source meter in the air at 

25 °C under illumination by a Newport Oriel Sol2A solar simulator, which was calibrated to 

100 mW/cm-2 with a Fraunhofer ISE certified silicon cell with a mismatch factor of 1.01. The 

active area of the solar cell was defined with a square metal aperture mask of 0.0831 cm2. The 

devices were pre-biased at 1.5 V for 5 sec and measured with a scan speed of 0.2 V/s from 1.5 

V to 0 V and back to 1.5 V. 

To calculate the short circuit current from the EQE measurements, the AM 1.5G reference 

irradiance spectrum provided by the American Society for Testing and Materials was used 

(ASTM G173-03). 

9.3.10 LED Characterization 
Current-voltage (I–V) characteristics were measured using a Keithley 2400 source measure unit. 

The photon flux emitted during the scan was measured using a calibrated silicon photodetector, 

and the external quantum efficiency (EQE) was calculated assuming a Lambertian emission 

profile. The electroluminescence spectra were measured using an optical fiber connected to a 

calibrated Ocean Optics USB 2000+ spectrometer. An Oxford instruments flow cryostat was 

used to perform the LED measurements at low temperature with liquid helium as a cooling 

medium. At low temperatures, the LED was driven by manually changing the device bias and 

by coupling the EL output into a gated intensified CCD camera system (Andor iStar DH740 

CCI-010) connected to a grating spectrometer (Andor SR303i). 
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