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Zusammenfassung

Ultrakalte Quantengase sind wandlungsfähige Modellsysteme zur Erforschung der
Quantenphysik oder für die Simulation von Festkörpereigenschaften. Es gibt sie in-
zwischen aus den verschiedensten Atomen, von Alkalimetallen über Erdalkalis und
seltene Erden. Erst in den letzten Jahren sind Quantengase aus verschiedenen polaren
Molekülen hinzu gekommen. Die Erwartungen an Quantengase aus heteronuklea-
ren Molekülen sind hoch: Mit Hilfe ihrer großen elektrischen Dipolmomente können
diese Moleküle langreichweitig miteinander wechselwirken – nicht nur über Kon-
taktwechselwirkungen, wie die meisten Atome. Außerdem besitzen sie zusätzliche
Vibrations- und Rotationsfreiheitsgrade, die neue Möglichkeiten für die Quantensi-
mulation eröffnen.

Allerdings führen ebendiese Freiheitsgrade auch zu einige Herausforderungen.
Sie erschweren beispielsweise die Herstellung des Quantengases, das im atomaren
Fall in der Regel über eine Kombination von Laserkühlung und Verdampfungskühlen
erzeugt werden kann. Moleküle haben aber zumeist keine geschlossenen Übergänge
in ihren Spektren, die für das Laserkühlen nötig wären. Daher stellen wir unser mo-
lekulares Quantengas aus einer Mischung zweier ultrakalter atomarer Quantengase
her.

Im Rahmen dieser Arbeit wurde dafür zunächst eine solche experimentelle Me-
thoden für fermionische 23Na40K-Moleküle entwickelt, die auf dem Zwei-Photonen-
Prozess Stimulated Raman Adiabatic Passage (STIRAP) basiert. Die Hyperfeinstruktur
des darin verwendeten Zwischenzustandes spielt dabei eine wichtige Rolle. Expe-
rimentell und mit Hilfe eines theoretischen Models, das den gesamten Prozess be-
schreibt, erkennen wir, dass wir die meisten Moleküle erzeugen können, wenn wir
für den STIRAP eine große Ein-Photonen-Verstimmung wählen, sofern die Hyper-
feinstruktur des Zwischenzustandes nicht aufgelöst ist.

In einem weiteren Projekt ging es um die Rotationsstruktur des durch den STIRAP
bevölkerten Grundzustandes. Diese ist eng mit dem elektrischen Dipolmoment ver-
knüpft. Insbesondere beinhaltet die Superposition des Grundzustandes mit dem ers-
ten angeregten Rotationszustand ein Übergangsdipolmoment, das fast 60% des per-
manenten elektrischen Dipolmoments entspricht. Die Kohärenzzeit einer solchen Su-
perposition ist allerdings kurz, da die unterschiedliche Polarisierbarkeiten der Rotati-
onszustände zu Dephasierung in der optischen Falle führen. Mithilfe eines speziellen
Polarisationswinkel und einem kleinen, statischen elektrischen Feld können wir die-
se Unterschiede ausgleichen und eine Spin-entkoppelte magische Falle realisieren. Wir
messen mit dieser Technik einen neuen Kohärenzzeitrekord, allerdings nur für gerin-
ge Moleküldichten. Für größere Dichten beobachten wir erste Anzeichen für dipolare
Wechselwirkungen in einem Gas polarer Moleküle, welche wir mithilfe der moving-
average cluster expansion (MACE) auch modellieren.
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Abstract

Ultracold quantum gases are versatile model systems for exploring quantum physics
or for the simulation of solid state materials. Meanwhile, they have been created
from various atomic species – from alkali metals over alkaline earths to rare earth
elements. The latest addition are quantum gases of different kinds of polar molecules.
Expectations for quantum gases of heteronuclear molecules are high: Due to their
large electric dipole moments, these molecules can interact with each other via long-
range interactions – not just via contact interactions as is the case for most atoms.
Additionally, they have vibrational and rotational degrees of freedom, with open up
new possibilities for quantum simulation.

But the same degrees of freedom also pose some challenges. For example, they
make the preparation of the quantum gas more difficult, which is typically produced
with a combination of laser cooling and evaporative cooling in the atomic case. Mole-
cules mostly lack closed transitions in their spectra, which are required for laser cool-
ing. Therefore, we create our molecular quantum gas from a mixture of two atomic
quantum gases.

In this work, such an experimental method was developed for fermionic 23Na40K
molecules, which is based on the two-photon process Stimulated Raman Adiabatic Pas-
sage (STIRAP). Within STIRAP, the hyperfine structure of the chosen intermediate
state plays an important role. Experimentally, and with the help of a theoretical model
describing the whole process, we find that we produce the most molecules when we
use a large one-photon detuning, if the hyperfine structure of the intermediate state
is unresolved.

In another project, we explored the rotational level structure of the molecular
ground state populated by STIRAP. Rotation is closely linked to the electric dipole
moment. The superposition of the ground state with the first excited rotational state,
for example, has a transition dipole moment of almost 60% of the permanent electric
dipole moment. Unfortunately, coherence times of such superpositions are typically
short, as the different polarizabilities of the rotational states lead to dephasing in op-
tical traps. However, using a special polarization angle and a small, dc electric field,
we can compensate these differences and realize a spin-decoupled magic trap. With this
new technique we obtain record coherence times, at least for small molecular den-
sities. For larger densities we observe first indications for dipolar interactions in a
bulk gas of polar molecules, which we also model using the moving-average cluster
expansion (MACE).
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On the one hand, molecules consisting of a small
number of atoms represent the upper limit of complexity
that we can hope at present to understand in complete
detail, starting from quantum mechanics.
On the other hand, molecules are the building blocks
from which more complex phenomena emerge, including
chemistry, condensed matter, and life itself.

– J. Bohn, A. Rey, J. Ye
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Chapter 1

Introduction
Ultracold quantum gases are an excellent experimental platform for realizing and ob-
serving quantum phenomena and are thus a rapidly growing field. After the first
creation of Bose-Einstein Condensates (BEC) [1–3] for bosonic atoms and degenerate
Fermi gases [4] for fermionic particles, many experimental tools and techniques have
been developed to realize and study ever more complex quantum systems. Atoms
with different level structures from alkali metals over alkaline earths or rare earths
have been cooled to quantum degeneracy, which possess additional degrees of free-
dom, narrow linewidth transitions that can be utilized in atomic clocks, or magnetic
dipole moments. In order to simulate models from solid state physics, ultracold atoms
can be trapped in optical lattices [5], starting from simple cubic over hexagonal to
quasi-crystalline structures [6] or superlattices, e.g. of double well structures. Imag-
ing methods have been developed to study such gases to the single atom limit [7],
even with the additional capability to record the spin-degree of freedom [8].

In the more recent years, people have also started to explore systems, that allow
physics beyond the short-range contact interactions that so far governed the behav-
ior of atoms in ultracold quantum gases, e.g. by implementing dipolar interactions.
These ultracold dipolar gases promise exciting new opportunities for the research on
ultracold quantum gases. Dipole-dipole interactions are long-range and anisotropic
interactions. This gives rise to novel many-body physics ranging from rotons [9, 10] in
systems with weak dipolar interactions to quantum droplets [11, 12], dipolar crystals,
supersolids, and fractional Mott insulators [13], when the dipolar interaction domi-
nates over the contact interaction. Also interesting are spin dynamics and quantum
magnetism with dipolar interactions in optical lattices, for which new phases and
bahviours are expected, compared to short-range interacting gases [14].

Systems exhibiting dipolar interactions include quantum gases of atoms with a
magnetic dipole moment [15–17], ensembles of highly excited Rydberg atoms [18, 19]
or of ultracold atoms inside cavities [20], and polar molecules [21–26]. Compared to
these other systems, ultracold polar molecules feature strong, tunable dipole-dipole
interactions as well as long single particle lifetimes [27, 28]. They possess many de-
grees of freedom, that can be manipulated by the researcher [29–33] and thus can
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be used in quantum simulations. For example, nuclear spin states in the rovibronic
ground state promise exciting possibilities for quantum computation [34] due to their
extremely long coherence times [35]. In particular, interacting particles with long co-
herence times, e.g. superpositions of the rotational ground and and first excited state
[36], are a key ingredient for entanglement generation and quantum engineering. Po-
lar molecules are further an ideal platform to study ultracold chemistry and dipolar
collisions [37, 38]. Also, first results towards quantum simulation using polar mole-
cules in optical lattices [39, 40] or tweezer arrays [41] have been obtained, and the first
quantum denegerate molecular gas [42] has been realized.

There has been impressive progress on cooling molecules down to cold and ultra-
cold temperaturs recently [43–46]. In this thesis, however, we focus on the bottom-up
approach, in which the ultracold molecular gas is assembled from two ultracold quan-
tum gases of different species. Until today, this method allows to create the highest
phase-space density molecular gases.

The bottom-up creation of a high phase-space density gas of polar molecules, pro-
posed in [47], builds on two important previous achievements. The first was the cre-
ation of weakly bound Feshbach molecules, which will be discussed more in Chapter
2. The first homonuclear ones were created in 2002/2003 [48], heteronuclear mole-
cules followed a few years later. The second is the application of the coherent two-
photon process STIRAP [49, 50] in transferring such non-polar, heteronuclear mole-
cules, predominantly of triplet spin-character, to the singlet electronic ground state in
2008 - first to an vibrationally excited state [51] and a few months later all the way to
the singlet rovibronic ground state [21] - where a large permanent electric dipole mo-
ment can be induced. Earlier, in 2005, ultracold ground state polar molecules had been
produced starting from an unbound quantum gas mixture and using a two-photon
photoassociation scheme [52]. Compared to this, the new approach has several ad-
vantages: Starting out with Feshbach molecules enhances the wavefunction overlap
for the pump transition to the intermediate state. Thus, less laser power is required
to obtain the same coupling strength, which reduces the addressing of unwanted loss
channels. Further, employing a coherent two-photon process and starting from a well
defined initial state allows to populate only a single quantum state instead of several
as in schemes relying on spontaneous emission, like photoassociation.

Ten years after the first experiments in dipolar KRb [21], this approach has been
applied successfully to other dipolar molecules. LiNa [53] has been prepared in its
triplet ground state and RbCs [22, 23], NaK [24, 26, 54] and NaRb [25] molecules are
now readily available in the singlet ground state, with many more species on the way.

The first part of this thesis completes the experimental journey towards reaching
the ground state of 23Na40K, that beginnings of which have been outlined in previous
theses of the lab [55, 56]. In a second part, we use the rotational degree of freedom of
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our molecules to induce strong, long-range and dipolar interactions in the quantum
gas.

1.1 Outline of this Thesis

We begin with taking a close look at the electronic, vibrational, rotational and hyper-
fine level structure of heteronuclear diatomic molecules in Chapter 2, focusing on the
example of 23Na40K. In Chapter 3, the Polar Molecules Machine is introduced, the
setup on which the experimental work discussed in this thesis has been carried out.
Here we focus on new features of the apparatus, such as the narrow-linewidth dye
laser system for molecule production, the high-voltage electric field setup for the dc
polarization of the molecules and the microwave setup for rotational spectroscopy.
Chapter 4 describes the first experimental result of the setup, the production of ul-
tracold, fermionic ground-state molecules of 23Na40K using the two-photon process
Stimulated Raman Adiabatic Passage (STIRAP). In addition to the experimental ob-
servations, we also provide a theoretical model for STIRAP, where an intermediate
state with unresolved hyperfine structure is used. In Chapter 5, the first experiments
exploring the rotational level structure are performed on the ground state molecules.
The rotational degree of freedom is directly linked to the electric dipole moment and
therefore, long rotational coherence is desired. We implement a novel spin-decoupled
magic trapping technique, which allows us to extend the rotational coherence by an
order of magnitude by using a small electric field and a suitable trap light polariza-
tion. We carefully characterize the rotational coherence in Chapter 6 using Ramsey-
and spin-echo spectroscopy. Interestingly, we find a density dependence. We attribute
it to the dipolar interaction due to the transition dipole moment of the rotational su-
perposition and verify this with a simple moving-average cluster expansion (MACE)
model.
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Extending Rotational Coherence of Interacting Polar Molecules
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Chapter 2

Heteronuclear Diatomic Molecules
Molecular structure gives raise to the sought-after electric dipole moment and the re-
sulting anisotropic long-range interactions. But, due to its complexity, it also leads
to challenges on the way to a long-range interacting, ultracold quantum gas. In this
chapter, the relevant parts of the molecular structure for producing and working with
diatomic molecules are highlighted. First, the general hierarchy of the electronic, vi-
brational, rotational and hyperfine structure of bi-alkaline polar molecules is intro-
duced in Section 2.1. In Section 2.2, I focus on the properties of 23Na40K, the polar
molecule we produce and experiment with in the laboratory. A discussion of various
possibilities to polarize polar molecules concludes this chapter in Section 2.3.

2.1 Molecular Degrees of Freedom

Molecules have electronic and nuclear degrees of freedom, just as atoms do, and ad-
ditionally vibrational and rotational ones. In general, all of these momenta can couple
to each other and give rise to a rich molecular level structure. External fields further
modify the level structure via Stark and Zeeman shifts. However, equipped with a
good understanding of the molecular structure, full control over all degrees of free-
dom in polar molecules is possible and has been achieved. Sometimes, this even
allows to mitigate or manipulate unwanted couplings, see Chapter 5.

In the following, I will briefly describe the key points of the molecular structure.
If desired, find my more detailed summary in [57], or an extensive discussion in [58].

Each degree of freedom in molecules is associated with a typical energy scale. The
electronic structure is the largest with optical transition frequencies, followed by vi-
bration in the infra-red, rotation in the microwave regime and hyperfine structure on
the kHz-level, see Fig. 2.1. All these degrees of freedom are already available for the
simplest class of molecules, diatomic molecules. Heteronuclear diatomic molecules
are the simplest molecules with a permanent electric dipole moment and therefore
exhibit the desired long-range dipole-dipole interactions. In particular, we study bi-
alkaline heteronuclear molecules that consist of two different alkali metal atoms. Al-
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Figure 2.1: Molecular structure of a bi-alkaline molecule reaching from several hundreds of
THz to kHz. The corresponding transition energy scale for each structure is indicated by a
red arrow and specified at the bottom of the plots. The electronic structure (A), consisting of
singlet and triplet potentials, has the largest energy scale. Zooming in on the electronic, singlet
ground state reveals the next-largest vibrational structure (B). On an even smaller energy
scale, the rotation of the molecules becomes relevant (C). But an even smaller energy scale
exists, the hyperfine structure (D). Note, that if not in the rovibronic groundstate, vibration,
rotation and hyperfine structure generally cross-couple. This leads to the necessity of a magic
trap, as will be discussed in chapter 5.

kali metal atoms have been extremely well explored in recent years in the context of
ultracold quantum gases, which makes is feasible to go one step further and combine
two of them into a polar molecule.

The inner shells of electrons of the parent atoms remain largely undisturbed in a
molecular binding. Therefore it is sufficient to consider only the two outer valence
electrons that mediate the molecular binding, and the nuclei with their filled shells.
Further, because the mass of the nuclei is many orders of magnitude larger than that
of the electrons, their motion can be treated separately. This is the Born-Oppenheimer
approximation [58]. The Hamiltonian of a diatomic molecule can then be expressed as

H = TN + Te + V, (2.1)

where T denotes the kinetic energy operators for nuclei (N) or electrons (e), respec-
tively, and V is the potential energy of the system. The potential energy is given by
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the sum of Coulomb interactions between the two electrons, the two nuclei or elec-
trons and nuclei. Then, the electronic wave functions Φq, where q denotes an elec-
tronic state, can be obtained by solving the time-independent Schrödinger equation
using only the electronic part of the Hamiltonian of Eq. 2.1. The total molecular wave
function Ψ can then be expanded in terms of Φq, where the expansion coefficients Fq
are wave functions that represent nuclear motion, i. e. rotation and vibration. It is
convenient to treat the problem in polar coordinates with polar angles θ and φ and in-
ternuclear distance R. The Born-Oppenheimer approximation now consists of using
that Φq varies only slowly with R, θ and φ, so that derivatives with respect to these
quantities can be neglected. This allows to uncouple the Schrödinger equations and
write them as[

− h̄2

2µ

1
R2

∂

∂R

(
R2 ∂

∂R

)
+
〈Φs|N2 |Φs〉

2µR2 + Es(R)− E

]
Fs(R) = 0, (2.2)

where µ is the reduced mass of the nuclei, Es(R) is the eigenvalue of the electronic
wave equation of electronic state q = s, and N2 is the orbital angular momentum
operator for the relative angular motion of the nuclei. These are the nuclear wave
equations, E denotes the corresponding eigenvalue.

Note, how Es(R) acts as a potential in the nuclear wave equations. A typical form
of Es(R) is shown in Fig. 2.1 (A): If R is very large, the atoms essentially behave
like free atoms and their potential energy is constant, the sum of the energies of the
individual atoms. If, however, R becomes very small, the repulsive Coulomb force
dominates the potential. In between these two extremes, molecular bound states can
exist. Transitions between different electronic states occur in the visible or UV-range
of the electromagnetic spectrum and constitute the largest energy scale in molecules.
In the special case of bi-alkaline molecules, all electronic potentials are either singlet
or triplet potentials. To label these potentials, a similar nomenclature as in atoms is
used, the molecular term symbol 2Σ+1Λ. Here, Σ denotes the total spin of the molecule
and Λ is the electronic, orbital angular momentum quantum number. In front of this
term symbol, a letter is used to further distinguish states with the same term symbol.
The absolute ground state is traditionally denoted as X1Σ. Excited states with the
same multiplicity as the ground state are labeled with capital letters A, B, C, ..., while
states with a different multiplicity are labeled with lower case letters a,b,c and so forth.
However, this notation is just one convention in the literature. Sometimes, numbers
are used instead of letters, referring to the number of states with the same term symbol
counting from the lowest potentials.

Each electronic potential energy curve is inhabited by a number of vibrational
states, the next largest energy scale, see Fig. 2.1 (B). Molecular vibration is well ap-
proximated by treating it classically, assuming that the parent atoms are connected
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through a spring with spring constant ks. Close to the bottom of an electronic poten-
tial, it is valid to make a harmonic approximation. The energy of the vibrational states
can then be written as

Ev =

(
v +

1
2

)
h̄ω, (2.3)

where v denotes the vibrational quantum number and ω is related to the spring con-
stant ks as

ω =

√
k
µ

. (2.4)

The spring constant, on the other hand, depends on the electronic potential Es as

ks =
d2Es(R)

dR2

∣∣∣∣
R=R0

, (2.5)

where R0 denotes position of the minimum of the potential s. Transitions between
vibrational states of the same electronic potential may change v by |∆v| = 1 and are
in the infra-red range [58]. If the electronic state is changed as well, there are no
selection rules on ∆v.

Zooming in on one vibrational state, e.g. the vibrational ground state of the X1Σ-
potential reveals the next smaller rotational structure. When we approximate the mol-
ecule as a rigid rotor, the rotational energy is given in terms of the rotational quantum
number J as

Er = Brot J(J + 1) =
h̄2

2I
J(J + 1), (2.6)

B0 is called rotational constant and is given as Brot = h̄2/(2µR2
0). Therefore it also de-

pends on the specific electronic state s. The rotational constant is typically on the order
of GHz and the condition ∆J = 0,±1 has to be fulfilled in any molecular transition.

As we will see in chapter 4 we are able to resolve an even smaller energy scale
than rotation in the electronic, vibrational and rotational (rovibronic) ground state:
hyperfine structure. The energy spacing between neighboring hyperfine levels is on
the 10 kHz level. It is given as [26, 55]

Hh f = (µAIA + µBIB)B + c4IAIB, (2.7)

where µA (µB) denote the magnetic moments and IA (IB) are the nuclear spins of the
parent atoms A and B, respectively. The coefficient c4 denotes the scalar spin-spin
interaction constant.

With this hierarchy of molecular energy scales in mind we can now turn to the
specific case of 23Na40K molecules.
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2.2 Important States in NaK

In this work we study the ultracold, heteronuclear and bi-alkaline 23Na40K molecule,
see Fig. 2.2. Due to the complexity of the molecular level structure outlined in the
previous section, conventional laser cooling methods that allow the production of
atomic quantum gases fail for 23Na40K molecules1. Therefore the first part of the work
presented in this thesis consisted of assembling molecules from a mixed sodium and
potassium quantum gas. In the following, I will briefly outline the involved states,
which will then be discussed in detail below.

We first create weakly bound, so-called Feshbach molecules from the initial scat-
tering state. Feshbach molecules are comparatively easy to make and are associated to
the triplet a3Σ potential, but their lifetime is only milliseconds, and, worse, since their
binding energy is on the order of 100 kHz, they do not possess a significant electric
dipole moment. But they are an excellent starting point for a state transfer.

The target state is the rovibronic ground state in the singlet X1Σ potential. Since
it is the most deeply bound state, molecules in it have very long lifetimes and a large
permanent electric dipole moment of d = 2.72 D [60] in the case of 23Na40K. But a
single-photon transition between Feshbach and ground state molecules is impossible,
due to their different spin character and a negligible Franck-Condon factor.

Therefore a third, mediating state is necessary. This electronically excited state
needs to have mixed spin character, e.g. due to an accidental degeneracy between
a singlet and a triplet level and have favorable transition matrix elements with both
the initial and the final states. In 23Na40K, two different excited states have been suc-
cessfully employed for state transfer: the vc = 35 state associated with the B1Π/c3Σ
system [61] and, in this work, the vd = 5 state associated with the d3Π/D1Π system.
While our d/D scenario has the advantage of an one order of magnitude larger pump
transition dipole moment, the B/c scenario has Fermi contact hyperfine interaction,
which simplifies the transfer process. Details will be discussed in Chapter 4.

In the following, we will discuss the structural details of the Feshbach state |F〉
and the excited-state and ground-state manifolds E and G.

2.2.1 Feshbach State

Resonances in the scattering length, so-called Feshbach resonances, occur for colliding
atoms whose scattering state is tuned close to resonance with a molecular bound state,

1There are, however, a few special classes of molecules that can be laser cooled and alternative
cooling techniques for molecules have been developed [43–46]. Although this research is advancing
rapidly, at the writing of this thesis the synthesis approach discussed here yielded the molecule samples
with the highest phase space densities.
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Figure 2.2: Potential energy curves of 23Na40K according to [59]: The ground state potentials
X1Σ and a3Σ and the excited state potentials D1Π and d3Π, which are relevant for the present
work, are indicated by black solid lines. The B1Π/c3Σ system used as intermediate state in [24]
is indicated with dashed lines. The vertical lines symbolize the pump- (P) and Stokes (S) lasers
used to populate the rovibronic ground state by STIRAP, with the respective Rabi frequencies
denoted as ΩP and ΩS. Exemplary, we show the singlet (solid) and triplet (dashed) component
of one state in E and G and one spin projection for |F〉 (scaled up by a factor of 100). Adapted
from [26].
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e.g. with the help of an external magnetic field B, see [62]. They can occur between
atoms of the same species, or of different species, and are a convenient tool to tune
interactions in ultracold quantum gases. Also, they opened the door to the world of
ultracold molecules: On the side of the resonance where the scattering length is large
and positive, a weakly bound molecular state emerges. Molecules in this state are
accordingly called Feshbach molecules. This state can then selectively be populated to
create Feshbach molecules, see [48] for a comprehensive review.

Feshbach Association

Mainly two techniques are used for Feshbach association of molecules: magneto and
radio-frequency (RF) association. In the first case, the magnetic field is swept from
the negative to the positive side of the Feshbach resonance to populate the Feshbach
state. In the second case, the magnetic field is set to a fixed value, on the positive side
and close to the resonance, and an RF photon is used to transfer the binding energy
to the atom pair. We use the latter technique. Note, that in any case a magnetic field
will be present that adds Zeeman interactions to all molecular levels.

For 23Na and 40K mixtures, several Feshbach resonances have been explored [63,
64]2. We use the Feshbach resonance at 88.9 G in the |F,mF〉 = |1,1〉Na |9/2,−9/2〉K
collision channel, where F denotes the total spin of the atom and mF is the corre-
sponding eigenvalue. Sodium and potassium are prepared in |1,1〉Na and |9/2,−7/2〉K
state before we ramp the magnetic field up to 85.4 G. Using RF association, we create
Feshbach molecules with a binding energy of 80 kHz. Fig. 2.3 (B) shows an RF associ-
ation spectrum. Comparing the height of atomic and molecular peaks in the spectrum
demonstrates the low efficiency of the process: Only 15 % of all potassium atoms be-
come molecules. One reason for this might be bad overlap: In real space, the different
masses and polarizabilities lead to different gravitational sag and different momen-
tum distributions, and in phase space the different spin statistics of the bosonic 23Na
atoms and the fermionic 40K mixture prevent perfect overlap. In the future, this will
be remedied using a three-dimensional (3D) optical lattice. Currently, however, we
routinely produce up to 15.000 Feshbach molecules in a bulk gas, which is sufficient
for the studies presented in this thesis.

In contrast to the pulsed, fixed-frequency RF association technique discussed in
[55, 56], we lately use a frequency sweep (50 kHz in 0.2 ms) starting from the higher
frequency. As expected, this does not improve association efficiency, but leads to more
stable Feshbach molecule numbers.

2For Feshbach resonances in the bosonic sodium-potassium mixture see [65].
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Figure 2.3: RF association of Feshbach molecules. (A) RF association schematic. Potassium
atoms are prepared in the |F, mF〉 = |9/2,−7/2〉 state and close to an interspecies Feshbach
resonance (grey line). Sodium atoms are in the |1,1〉 state. With an RF photon (orange) the
mixture is transferred to the Feshbach state (red). A cleaning pulse (blue) transfers remaining
atoms in |9/2,−7/2〉 to further detuned hyperfine states. (B) RF association spectrum. When
scanning the frequency of the RF photon, the atomic transition to |9/2,−9/2〉 (large peak) and
the molecular bound state (small peak) appear. The conversion efficiency to Feshbach molecules
is roughly 15 %. Adapted from [55].

Feshbach Wavefunction

Coming from this experimental angle, it is intuitively clear what is meant when some-
one talks about a Feshbach molecule. However, determining the exact properties of
such a Feshbach molecule mathematically quickly gets involved. For example, the
Feshbach state |F〉 depends critically on the binding energy of the molecule.

Previously we tried to gain insights regarding the spin state composition of |F〉
using a asymptotic bound state model (ABM, see [56]). The advantage of such an approx-
imate calculation is its relative computational simplicity: Instead of the full molecular
potential, only the few closest molecular bound states are taken into account for set-
ting up an ABM. The scattering continuum is completely neglected. This simplifies
the Schrödinger equation and facilitates an exact diagonalization of the approximate
Hamiltonian. However, the predictions of the ABM were not compatible with exper-
imental results. The ABM neglects short-range effects, which are, however, relevant
for STIRAP. Qualitatively, this can be understood by looking at Ref. [66]: The au-
thors compare an ABM calculation with a full, numerical, coupled channels (CC) so-
lution for 6Li133Cs. They find that they need to minimize free parameters and consider
higher order couplings to reproduce the CC results with an ABM.

E. Tiemann, with whom we collaborated on this project, provided the CC results
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figure.

for our specific 23Na40K Feshbach molecule. Some spin projections of this wavefunc-
tion are displayed in Fig. 2.4. We expand the Feshbach state |F〉 in terms of a nuclear-
spin-decoupled basis |J, mJ , mNa,mK〉, where J is in the case of Feshbach molecules
equal to the total electronic spin S ∈ {0,1}, with eigenvalues mJ . This is a convenient
basis for all molecular states that we will encounter on the way to the ground state.
The Feshbach state is then given as

|F〉 = ∑
J,mJ ,mNa,mK

|JmJmNamK〉 |ψF ,JmJmNamK〉 , (2.8)

where |ψF ,JmJmNamK〉 are the radial parts of the projection of |F〉 on to the respective
spin states.

2.2.2 Intermediate State Manifold

The intermediate, excited state serves as the bridge between the weakly bound Fesh-
bach molecules and the desired deeply bound ground state molecules. Therefore it
needs to exhibit strong singlet-triplet mixing. States with mixed spin-character occur,
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for example, due to accidental degeneracies between molecular levels of different po-
tentials. Due to the sheer amount of molecular levels, this happens usually for several
states. These can then be further categorized by their wavelength requirements and
their transition matrix elements to Feshbach and ground states.

In 23Na40K, vd = 5, J = Ω = 1 seemed to be a promising intermediate state [67]3.
Strictly speaking, it is not a single state, but a manifold of excited states E (see note4),
because it contains several hyperfine (HF) components that can be excited starting
from |F〉. E has significant spin-orbit coupling, that results in a 2% admixture of
D1Π, vD = 6, and suitable transition dipole moments to G and |F〉 with a magni-
tude on the order of 0.01 D. The pump transition dipole moments between |F〉 and
states in E in particular is about one order of magnitude larger than for the vc = 35,
J = 1 [59, 61], that has also successfully been used as intermediate state in molecule
production. Typically, this pump transition matrix element limits the maximal cou-
pling to G since it is smaller than the Stokes transition matrix element between E and
G. This is simply due to Franck-Condon factors, which are given by the square of the
radial wave function overlap integral. However, in our d/D case the electronic spin
projection Σ = 0 vanishes, which results in the absence of a Fermi contact HF inter-
action [55]. Therefore, and since the orbital interaction in Na is small [68], we can not
spectroscopically resolve the HF structure in E . This is consistent with the observa-
tions in our photoassociation experiments [55, 57], in which we illuminated unbound
atom mixtures with the pump laser and observed atom loss whenever the laser was
resonant with an excited state.

Finally we perform high resolution pump spectroscopy with Feshbach molecules.
Instead of sweeping the pump laser frequency we now keep it fixed for each shot to
resolve narrow spectral features. For the J = Ω = 1 level it is clearly visible, see Fig.
2.5 (A), that the Feshbach field splits the transition line in three components due to
the Zeeman effect. However, as expected, no finer structure can be resolved.

To learn more about the spin state composition of the individual components we
repeat the high resolution pump spectroscopy for different polarizations of the pump
laser. In the following, α denotes the angle of the laser polarization with respect to the
axis defined by the applied Feshbach magnetic field. 0◦corresponds to π-polarization,
90◦corresponds to σ+ + σ−-polarization. The result of these measurements is shown

3The five Hund’s cases labelled from a to e describe the relative strengths of the electrostatic cou-
pling of the electronic angular momentum Λ to the internuclear axis, the spin-orbit coupling and the
rotational coupling of Λ and electronic spin Σ to the total angular momentum J [58]. Case (a) is relevant
here: The electrostatic interaction is strong, the spin-orbit coupling is intermediate and the rotational
coupling is weak. Therefore, Ω = Λ + Σ, the sum of the axial components of Λ and Σ, is a useful
quantum number. Ω is defined as the vector of length Ω pointing along the internuclear axis.

4I use E and G without a surrounding ket symbol when I refer to the state manifolds of excited and
ground states, in contrast to single states, like the Feshbach state |F〉.
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Figure 2.5: (A) The excited state as observed by Feshbach loss spectroscopy with three different
pump laser polarizations. The three Zeeman components mJ = 0,±1 are clearly visible. In the
case of π polarization (red), the central component is very small. For the σ++ σ−-polarization
case (blue), all three lines have a similar amplitude. For the black data set, the polarization was
set to 45 ◦. The black and blue data sets have been offset by 0.5 for clarity. (B) The expected
line strengths for all hyperfine components according to the ABM model [55, 56]. Note, that
all these components are degenerate and they are just offset in y-direction for clarity here. For
the same reason, half of the component’s values are also offset in x-direction by 0.55. The
mF quantum number of each hyperfine state is color coded. (C) The expected line strengths
according to the CC model.

in figure 2.5 (A) (colored lines). While for the 90◦case all transitions have a similar
amplitude the central line is strongly suppressed for 0◦. We assign the mJ-quantum
numbers 0 and ±1 to the three dips, as noted in the figure. Since the Feshbach mol-
ecule state has mF = 1− 9/2 = −7/2 and due to the selection rule ∆mF = 0,±1 the
mJ = −1 component must have mI = mI,Na + mI,K = −5/2 and thus contain 4 hyper-
fine levels (due to mI combinatorics). Likewise, mJ = 0 has mI = −7/2 and contains 3
hyperfine levels and mJ = 1 has mI = −9/2 and contains 2 hyperfine levels.

To describe E formally, we approximate the Hamiltonian by a Zeeman term and
an imaginary damping term that models decay to other molecular states

ĤE/h̄ = ( Ĵz − 1)gµBB− iγ
2
− ∆′, (2.9)

Ĵz denotes the angular momentum operator along the magnetic field axis with eigen-



16 2. Heteronuclear Diatomic Molecules

values mJ and µB is the Bohr magneton. For Hund’s case (a) g = Ω(Λ + geΣ)/(J(J +
1)) [68], where ge denotes the g-factor of the electron, so that we here obtain g =
1/2. The excited states decay with a rate γ and ∆′ = ωP − EE/h̄ is the detuning
of the pump laser from transition between |F〉 and the upper Zeeman component
|E ,mJ = 1〉 with energy EE . The total number of states in this manifold with J = 1
is 36× 3 = 108. No further molecular levels have to be considered, since even the
nearest one |vd = 5,J = 2, Ω = 1〉 is already 7.2 GHz away. A damped Hamiltonian
evolution is a good approximation to the full dynamics since spontaneous decay from
this intermediate state ends almost exclusively in uncoupled states.

The excited states in E are given by

|E ,JmJmNamK〉 = |E , JmJ〉 |mNa〉 |mK〉 (|ψE ,0〉+ |ψE ,1〉), (2.10)

where |ψE ,s〉 , s ∈ {0,1} are the electronic spin singlet and triplet components of the
radial part of E . In contrast to |F〉, they essentially do not depend on the nuclear spin
states because of negligible HF interaction compared to spin-orbit interaction.

Next we determine the coupling matrix elements relevant for the transfer. Let us
assume a general coupling field E(t) of the form (see e.g. [69])

E(t) = EP(t) sin(ωPt + φP(t))
+ ES(t) sin(ωSt + φS(t)) (2.11)

EP(t) = E0,P sin
(

π

2
t
τ

)
, ES(t) = E0,S cos

(
π

2
t
τ

)
where E0,x denotes the amplitude vector, φx(t) a time dependent phase (noise) term
and ωx the carrier frequency, the index x distinguishing between either pump (P)
or Stokes (S) field. τ is the coupling light pulse duration. We work in the rotat-
ing frame of these laser fields and employ the rotating wave approximation (RWA).
Using the expressions for the Feshbach state |F〉 of Eq. 2.8 and the intermediate
state |E ,JmJmNamK〉 of Eq. 2.10 the coupling matrix element for the pump transition
|F〉 → E is proportional to

〈F|E · d̂|E ,JmJmNamK〉 ∝ EP ∑
J′m′Jm′Nam′Kq

αq(2J + 1)−1/2 〈J′m′J1q|JmJ〉

× 〈ψF ,J′m′Jm′Nam′K
|ψE ,J〉

× 〈m′Na|mNa〉 〈m′K|mK〉 (2.12)

where q labels the polarization (0 corresponds to π-polarization and ±1 to σ+/σ−)
and αq is the polarization vector of EP(t). In Eq. (2.12), the first factor is the con-
ventional Clebsch-Gordan coefficient and represents the part of the Hönl-London fac-
tor which depends on the laboratory fixed quantum numbers. The second factor is
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Table 2.1: Overlap integrals for the pump transition for different spin components of the
Feshbach molecule for mF = −7/2 and S = 1. The sum of the squared values is normalized to
1. Adapted from [26].

mJ mNa mK overlap integral
-1 -3/2 -1 -0.095
-1 -1/2 -2 0.209
-1 1/2 -3 0.148
-1 3/2 -4 0.114
0 -3/2 -2 -0.100
0 -1/2 -3 -0.223
0 1/2 -4 -0.708
1 -3/2 -3 0.362
1 -1/2 -4 0.470

the radial function overlap integral, the square of which is the Franck-Condon (FC)
factor. The last ones are matrix elements in the nuclear spin space yielding zero or
one. We apply the Franck-Condon principle assuming that the electronic transition
moment is constant over the needed internuclear separation. For the chosen inter-
mediate state, the FC factors in the above expression originate mainly from the inner
turning point of the triplet part of the Feshbach wavefunction, see Fig. 2.2. Since
the singlet part with J′ = 0 is rapidly oscillating, see Fig. 2.4, its FC factors are very
small and thus all singlet terms will be neglected in the coupling between |F〉 and
E . Overlap integrals for our specific |F〉 and E are given in table 2.1. In figure 2.5
(B) and 2.5 (C) the transition amplitudes directly obtained by squaring the Franck-
Condon factors for transitions from the Feshbach molecule to the excited state for
various hyperfine states are visualized by bars for the ABM [55, 56] and the CC model.
The lengths of the bars indicate the magnitude of the transition probability and they
are grouped according to the mJ component that contains them. Different mF values
are color-coded according to their quantum number. An excited state spectrum is
shown for reference. In the ABM model, one of the mF = −7/2 components in mJ = 1
seems to be the most promising candidate level as intermediate state: It is address-
able with π-polarization which can be realized in the current setup. According to
the CC model, Table 2.1 shows that the largest coupling matrix elements belong to
the (J,mJ ,mNa,mK) = {(1, 0, 1/2,−4), (1, 1,−1/2,−4), (1, 1,−3/2,−3)} spin projections
of |F〉. For resonant driving (∆′ = 0) the dynamics will therefore be dominated
by couplings to mJ = 1 states in E . the mF = −5/2 component is a much better
choice. Addressing it would require σ+-polarized light. There is also an equally
strong mF = −9/2 transition, which could also be used. But we neglect it for the mo-
ment as it would lead to a higher energy hyperfine state in the rovibrational ground
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Figure 2.6: Hyperfine structure of the rovibrational ground state. (A) All the hyperfine states
of 23Na40K. States, that are accessible with a two-photon transition from the current choice of
Feshbach molecule, are colored. A spectrum of the states in the orange box is shown in (B). The
line is a double-Lorentzian fit to the data and serves as a guide to the eye. Vertical lines belong
to the states in (A) with the same color. This spectrum was recorded with π polarization on
the Pump and (σ+ + σ−)/

√
2 polarization on the Stokes beam. The other hyperfine states

can be addressed using different polarizations.

state, as we shall see below.

Further, we can qualitatively compare the two calculations to the experimentally
measured PA spectra with π and σ+ + σ− polarization, see figure 2.5 (A), by adding
up the respective transition amplitudes. Again we find better agreement with the CC
model.

2.2.3 Ground State Manifold

In the rovibronic ground state, the nuclear spin is the only degree of freedom. There-
fore, the Hamiltonian only contains nuclear Zeeman and nuclear spin-spin interaction
terms. Since the nuclear spins for sodium INa = 3/2 and IK = 4, the nuclear spin basis
for 23Na40K contains 4× 9 = 36 states. This is the ground state manifold G, which
is depicted in 2.6 (a). Since G is only accessed in the presence of the Feshbach field
B = BF = 85.5 G, the Hamiltonian can be approximated in the Paschen-Back limit for
large magnetic fields, where the nuclear spins uncoupled from the electronic angular
momentum. This is justified because hyperfine (HF) interactions are small. It is given
as

ĤG/h̄ = [( Îz,Na − 3/2)µNa + ( Îz,K + 4)µK]B + c4 Îz,Na Îz,K − δ′, (2.13)
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where Îz,Na/K are the projections of the respective nuclear spin operators onto the
magnetic field axis with eigenvalues mNa/K, µNa/K denote the magnetic moments of
the sodium and potassium nuclei, and c4 ≈ 2π× 0.4 kHz is the scalar spin-spin inter-
action constant [24, 61]. The two-photon detuning of the coupling lasers, δ′, is defined
relative to the HF ground state at BF with energy EG , i.e. δ′ = EG/h̄− (ωS −ωP). The
HF states in G are then given by

|G, mNamK〉 = |G, J = 0, mJ = 0〉 |mNa〉 |mK〉 |ψG〉 ,

with |ψG〉 being the radial part of the ground state wavefunction. Other molecular
states can safely be ignored because they are detuned by at least twice the rotational
constant in the ground state, 2Brot ≈ 5.6 GHz.

For this Stokes transition E → G the transition matrix element is then given by

〈E ,JmJmNamK| E · d̂ |G, m′Nam′K〉 (2.14)

∝ ES(t)∑
q

βq 〈JmJ1q|00〉 〈mNa|m′Na〉 〈mK|m′K〉 〈ψE ,1|ψG〉 ,

where βq is the polarization vector of the Stokes field ES(t).

Although the details of the ground state transfer will be discussed later in Chap-
ter 4, I want to mention our ground state spectroscopy results already here, because
they validate the assumptions discussed before. By keeping the Stokes laser on res-
onance while scanning the pump laser, we effectively vary the two-photon detun-
ing δ′ and record a spectrum of the hyperfine states in the ground state. One such
spectrum is shown in Fig. 2.6 (b). The π-polarized pump laser was one-photon de-
tuned with respect to the mJ = 1 component of the v = 5, J = Ω = 1 state by
∆ = ∆′/(2π) = 100 MHz, the Stokes laser is ⊥≡ (σ+ + σ−)/

√
2-polarized In this

configuration the dominant contributions to the ground state transfer originate from
the two HF components contained in mJ = 1. Consequently, we observe two HF com-
ponents that we attribute to mI,Na = −1/2, mI,K = −4 (left peak) and mI,Na = −3/2,
mI,K = −3 (right peak). A energy difference of 118 kHz between the two compo-
nents can be approximately obtained by fitting two Lorentzians to the data. This is
consistent with Eq. 2.13.

2.3 Polarizing Molecules

Heteronuclear, diatomic molecules such as 23Na40K are colloquially referred to as be-
ing polar molecules. It is true that they possess a large, permanent electric dipole
moment [70]. This is necessary, but not sufficient: Without an external field, a gas of
23Na40K molecules has zero net-dipole moment, because of the rotational symmetry
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of the eigenstates. However, there is a variety of of options to polarize the molecules
using ac or dc fields.

Molecules in their rovibronic ground state, trapped in a far-detuned dipole trap,
and subject to ac microwave or dc electric fields can be described by the following
Hamiltonian [71–73]

H = H0 +Hac +Hopt +Hh f , (2.15)

where

H0 = BrotJ2 − d0E, (2.16)

Hac = −d · (Eaceace−iωact + c.c.), (2.17)
Hopt = −E∗opt(r)α̂(ωL)Eopt(r), (2.18)

Hh f ≈ HQ +Hsc (2.19)

= − ∑
i=Na,K

e(∇E)i ·Qi + c4INaIK. (2.20)

Here, H0 denotes the rigid rotor coupled to a dc electric field E. d is the dipole mo-
ment operator, where dp = êp · d = dC1

p(θ,φ) are its spherical components, where
d is the permanent dipole moment of the molecule, p = 0, + 1,− 1, and the spheri-
cal basis vectors are defined as ê0 = ẑ and ê±1 = ±(x̂ ± iŷ)/

√
2. Here, Ck

p(θ,φ) =√
4π/(2k + 1)Yk,p(θ,φ), where Yk,p are spherical harmonics, and (θ,φ) the spherical

coordinates describing the orientation of the rotor. Hac describes the coupling of the
rotor to an ac field, e.g. a microwave field, with amplitude Eac, frequency ωac and po-
larization eac, which is 0,+1,−1 corresponding to σ−, π or σ+-polarization, relative
to the applied dc field. Although the trap light HamiltonianHopt is of similar shape as
Hac, it is useful to adapt a notation in terms of the dynamic polarizability tensor α̂ to
take advantage of the large detuning of the trap light frequency ωL from any molecu-
lar transitions. Hh f finally describes the hyperfine interaction, which is dominated by
the electric quadrupole contribution HQ and a scalar contribution Hsc. In HQ, (∇E)i
denotes the intra-molecular electric field gradient at nucleus i, where eQi is the re-
spective nuclear electric quadrupole moment. The nuclear spin-rotation interaction
and the nuclear dipole-dipole interaction were neglected because their contributions
are negligible [31].

2.3.1 dc Electric Fields

In our setup, details of which will be discussed in Chapter 3, we use four rod elec-
trodes within vacuum to apply dc electric fields to the molecules. We then measure
the Stark shift of the ground state transition at different applied voltages when mak-
ing ground state molecules, see Fig. 2.7. Neglecting hyperfine structure, we use the
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Figure 2.7: STIRAP at high electric fields. Stark shift of the STIRAP transition for various
applied electric fields (circles, lower axis). The applied electric field has been calibrated using a
DC Stark shift model and the molecular dipole moment determined in [60]. The corresponding
induced electric dipole moment is given on the upper axis, indicating that polar molecules with
0.54 D have been produced. Adapted from [26].

eigenvalues of H0 (Eq. 2.16) and the previously determined dipole moment of 2.72 D
for NaK [60] to calibrate our electric field. We further determine the induced dipole
moments [74]. Thus we conclude that we can routinely produce polar molecules with
dipole moments as high as 0.54 D in our setup. While Stark shift spectroscopy in dc
electric fields has already been performed at fields corresponding to dipole moments
up to 1.06 D in 23Na87Rb [25], actual polar molecules had so far only been produced
with dipole moments of up to 0.3 D [24]. In this experiment, the maximally achiev-
able dipole moment was limited by the stability of the high voltage supply, which
becomes ever more important with increasing dipole moment. Therefore, we believe
even higher dc dipole moments can be achieved with our setup in the future using a
more stable high voltage source. Meanwhile, however, the dc-polarization record is
held in 23Na87Rb at 0.7 D [75].

2.3.2 ac Electric Fields

Although many molecular species have been polarized using dc electric fields [22–
25], using ac microwave (MW) fields to dress the rotational states directly might be
even more promising to achieve large dipole moments in a gas of polar molecules.
As illustrated in Fig. 2.8, molecules in the J = 0 manifold can be coupled to the
first excited rotational manifold |1, (0,± 1)〉 via MW radiation with a frequency of
2Brot/h ≈ 5.6 GHz in the case of 23Na40K [31], Brot denotes the rotational constant of
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the electronic ground state. Mathematically, this is described by Hac of Eq. 2.17. Just
as in the dc case inH0 of Eq. 2.16, the Hamiltonian is proportional to the electric field
and the dipole operator.

A superposition of the rovibronic ground state |J, m〉 = |0,0〉 and one component
of the first excited state, |0, 0〉 or |1,±1〉, carries a significant fraction of the dipole
moment of d/

√
3 as the transition dipole moment [72, 73]. Figure 2.9 shows the evo-

lution of the wavefunction probability distributions for different superpositions of
rovibronic ground state and first excited state for various evolution times.

However, there is also hyperfine structure. In 23Na40K, there are (2INa + 1)(2IK +
1) = 36 hyperfine states in the J = 0 manifold and 108 hyperfine states in the J = 1
manifold. The nuclear spins in the J = 1 manifold couple to rotation, predominantly
via the nuclear electric quadrupole moment, see Eq. 2.20. Furthermore, the trapping
light field couples different mJ-states [33, 76]. Therefore, also hyperfine state changing
transitions to the excited state become possible. This is both a feature and a challenge.
For one, this allows for hyperfine spin-changing MW two-photon transitions within
the rovibronic ground state [29, 31]. But, on the other hand, this leads to rapid dephas-
ing of rotational excitations. How this can be remedied will be discussed in Chapter
5.
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meiωt|2 of |J,m〉 = |0,0〉 with |1,− 1〉, |1,0〉 and |1,1〉 for different values of ωt.

ω denotes the angular transition frequency and t is the evolution time. The z-direction is
chosen as the quantization axis for the |J,m〉 basis.
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Chapter 3

The Polar Molecules Machine
The Polar Molecules Machine is at the heart of the experiments performed in this the-
sis. Its mission is to facilitate the study of ultracold quantum gases of polar molecules
with long-range interactions. In this chapter, the machine will be introduced. In Sec-
tion 3.1, I will briefly summarize the key points of the base setup, which has already
been described in detail in previous theses of the lab [55, 56]. Then I will move on to
upgrades and additions that have since been made. These include dipole trapping of
the molecules in two geometries (Section 3.2), an upgrade of the laser system for mol-
ecule production (Section 3.3) as well as electric and microwave (MW) field control
(Sections 3.4 and 3.5).

At the time of writing of this thesis, the Polar Molecules Machine routinely pro-
duces 3000 ground state molecules at 300 nK. With the new tools and techniques, all
parameters of the molecules, from hyperfine state over rotational level and up to the
dipole moment, can now be precisely manipulated.

3.1 Overview over the Experimental Setup

In this section, the key functions of the Polar Molecules Machine are summarized. For
further details, please refer to the previous theses of our lab [55, 56].

The Polar Molecules Machine is a dual species setup for the production of ultra-
cold quantum gases of fermionic 23Na40K molecules. To this end, we make use of
the one naturally occurring isotope of sodium, the bosonic 23Na, and the only stable
fermionic potassium isotope 40K. The bosonic mixture of sodium and potassium 39K
is currently under study elsewhere [65].

The heart of the setup is the ultra-high vacuum system shown in Fig. 3.1 . It con-
sists of two-chambers, the main chamber and the science cell, and two oven regions,
one for each of the two species. Initially, both sodium and potassium are loaded into
the magneto-optical-trap (MOT) in the main chamber of the vacuum system. Both
species are already pre-cooled on their ways from the ovens. The sodium atoms
travel through a Zeeman slower, while the potassium atoms are transversally cooled
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Figure 3.1: Vacuum system of the Polar Molecules Machine. The potassium oven in the top of
the central figure is connected to the MOT chamber via a 2D-MOT. The sodium atoms travel
from their oven on the right through a Zeeman slower before being captured by the 3D-MOT.
The upper inset shows a cut of the oven section. After the 3D-MOT, the atoms are further
cooled evaporatively in a magnetic trap in the MOT-chamber. The lower inset shows a cut
through the coil setup of the MOT-chamber and the science cell, to which the atoms are moved
once sufficiently cool. There the molecules are created. To polarize them, four electrodes are
mounted inside the corners of the science cell that allow to apply DC electric fields. Reproduced
with permission from [55].
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by a 2D-MOT. After a typical MOT loading time of 4 s, both sodium and potassium
are transferred to a plugged magnetic trap and prepared in their stretched, low-field
seeking hyperfine states, |F,mF〉 = |2,2〉 and |9/2,9/2〉. Then, sodium is evaporated
with MW radiation, while potassium is sympathetically cooled via elastic collisions.
This essentially conserves the potassium number and thus allows us to work with
small 40K numbers, which is convenient because the fermionic isotope has very low
abundance - even in the enriched sample we use only 3 % are 40K atoms. Then we
transfer the 6 µK cold mixture to a far-detuned optical dipole trap generated by a
strong 1064 nm laser beam (power: 7.5 W, beam waist: w0 = 40 µm), that we send in
through the front facet of the glass cell. We call it the transport trap, because in it we
can move the atoms from the MOT chamber to the science cell, simply by shifting the
focal point of the transport beam (28 cm in 0.75 s). The dipole force then drags the
trapped atoms along. Due to the weak confinement along the beam axis the atomic
cloud is elongated in this direction. To compress the mixture in the glass cell we add
a second far-detuned optical dipole beam, this one at 1550 nm (power: 2 W, beam
waist: w0 = 100 µm) horizontally. This beam and the transport trap form a “crossed
trap", as they overlap under an angle. In the crossed trap, the potassium atoms are
prepared in the pure spin state |9/2,−7/2〉 using an RF Landau-Zeener sweep [55] at a
magnetic field of now 30 G. The sodium atoms remain in the |1,1〉 state, in which they
were already prepared for transport.

The next step then depends on the experiment that shall be conducted: Either the
atoms remain in the crossed trap or are loaded into a vertical 1D optical lattice that
is operated at 1550 nm. Details of these two setups - which hold both atoms and
molecules against gravity - will be discussed in the next section. Independent of the
trap, the atomic mixture is then ready to be converted to Feshbach molecules (for
details see Section 2.2.1). After Feshbach association, the molecules are transferred to
the rovibronic ground state using the stimulated Raman adiabatic passage (STIRAP)
technique, which will be discussed in chapter 4. The corresponding laser setup - in
particular the highly stable, narrow linewidth dye laser setup - will be discussed in
Section 3.3.

Once the molecules are in the ground state, we use resonant light to remove the
remaining unbound atoms. This allows background free detection of the molecules
and prevents collisional losses between atoms and molecules. Now experiments can
be performed on the ground state molecules: To induce a dipole moment, they can be
manipulated using DC electric or MW fields. Sections 3.4 and 3.5 discuss the setups
to generate and control these fields with high precision.

In order to detect the remaining molecules after an experiment, we reverse the
STIRAP and image the Feshbach molecules. Typically, we use high-field absorption
imaging of 40K at the Feshbach magnetic field in a time-of-flight measurement after all
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Figure 3.2: A typical experimental cycle. The schematic illustrates the necessary steps from
loading the still hot atoms (top), over cooling them up to creating molecules (going counter
clock-wise). Such a cycle takes 29 s and can be divided into different experimental stages,
symbolized by the colored slices. While the width of the slices indicates how long certain
steps take, the amplitudes of the slices indicates first the atom and later the molecule numbers.
Additionally, four absorption images of atoms or molecules illustrate the process. Here, the
color denotes the amount of atoms or molecules per pixel, the normalization N is given in the
bottom right corner of each image. The tiny, orange slice towards the end of the cycle indicates
the creation and manipulation time of the molecules.
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traps have been turned off. The absorption cross section for our Feshbach molecules
is essentially the same compared to bare atoms. From the shadow the atoms create
in the near-resonant imaging beam, our image analyzer software can then extract the
molecule numbers. Since the ultracold, molecular gas is destroyed in this process, the
whole sequence needs to be repeated to obtain the next data point. Figure 3.2 schemat-
ically illustrates one experimental cycle with images, atom or molecule numbers and
temperatures at different stages.

To ensure reproducible, exact timing of all experimental steps, we use an experi-
mental control program developed by our group and a real time computer (ADWin-
Pro). This computer is then programmed with the experimental sequences that we
write in Python. It then controls the exact timing of the settings of digital and ana-
log channels as well as direct digital synthesizers (DDS, based on AD9910) and other
equipment.

3.2 Optical Dipole Traps

Ultracold atoms or molecules need to be trapped to prevent them from falling down
due to gravity. The precise knowledge of their position is also required when manip-
ulating them with other electromagnetic radiation or external fields - or for imaging.

In this thesis, experiments are performed in far-detuned optical dipole traps in two
geometries, see Fig. 3.3. One is the two-color 1064 nm and 1550 nm crossed trap, the
second is a purely 1550 nm 1D lattice.

Both trap types work for 23Na and 40K atoms and for 23Na40K molecules. How-
ever, due to their respective polarizabilities and masses, trap depths can differ. In the
case of the molecules, the polarizability is even tunable, as will be demonstrated in
Chapter 5.

3.2.1 Two-Color Crossed Dipole Trap

The beams for this trap propagate in the horizontal plane, see Fig. 3.3 A. Originally
all dipole traps where planned for 1550 nm: The energy of a 1550 nm photon is far
detuned from any atomic or molecular transition in 23Na40K, which results in similar
polarizabilities for atoms and Feshbach or ground state molecules. But unfortunately
it was impossible to find a reliable laser system that supplies enough power for all
these purposes. Therefore, we use a 1550 nm beam for the crossed trap and a 1064 nm
laser for the transport trap instead. In principle, a 1064 nm photon (corresponding to
9398 cm−1) has enough energy to reach over the bottom of the lowest excited potential
energy curves, not for a ground state, but for a Feshbach molecule, see Fig. 2.2. But
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Figure 3.3: Overview over the two trap geometries. (A) The crossed trap configuration in
the science cell. The 1064 nm beam (red) and the 1550 nm beam (brown) cross in the x-y-
plane. Due to the different beam properties, the atom or molecule cloud (blue) in the cross
is elongated in the y-direction. (B) The lattice configuration in the science cell. A 1550 nm
lattice beam along the z-direction can be loaded from the crossed trap configuration (A). The
atoms or molecules then distribute over a stack of several 100 pancake-shaped planes (blue)
along the z-direction. Adapted from [36].

FC-factors for such a transition are small and since the trap wavelength is not reso-
nant with any particular molecular transition, we use the trap without any problems.
Further details about the crossed trap and how we operate it can be found in [55]. In a
typical experiment, we prepare ∼ 1.3× 105 atoms of each species in the crossed dipole
trap at a temperature of 0.7 µK, the phase space density of the sample being about 0.5.

3.2.2 1D Lattice

Optical trapping frequencies depend on the polarizability of the trapped particles -
which in turn depends on the wavelength of the beams. Therefore a one-color trap
is advantageous to study polarizability of and identify ideal trapping conditions for
rotating polar molecules as will be discussed in Chapter 5.

Therefore we have implemented a 1550 nm 1D optical lattice, see Fig. 3.3 (B).
It is formed by a single, retro-reflected 1550 nm beam along the vertical direction.
The beam is sent off-axis through our high-resolution objective and focused onto
the atomic clouds. After traveling through the atomic or molecular cloud once, the
beam is retro-reflected onto it under a small angle. Then a standing wave forms, a
1D-optical lattice, in which the atoms or molecules are confined to pancake-like 2D
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Figure 3.4: Lattice loading and experiments in the lattice. After the Feshbach optimized
evaporation of the atomic mixture in the trap formed by the transport and crossed beam, the
mixture is loaded into the lattice (orange shaded area). The power in each beam is specified.
Once the mixture is transferred to the lattice, molecules are created, experimented with and
transferred back for imaging (red shaded area). Note that the lattice power must be the same
for the two STIRAP processes at the beginning and the end of the red shaded area to avoid
transfer losses through Stark shifts, but it can change in between as shown here.

systems. Further details about the 1D lattice setup and the high-resolution imaging
system can be found in [77].

Typically, we directly load atoms from the crossed trap to the lattice by slowly
ramping up the lattice power while slowly turning off the crossed beams. The power
settings for the different beams in this part of the sequence are shown in Fig. 3.4.
The atoms are then distributed over tens of 2D lattice layers, in which they are free to
move. Tunneling between the pancakes is suppressed. We then proceed with Fesh-
bach association, just as in the crossed trap.

Later we will tune the polarizabilities of rotational states in the rovibronic ground
state. Therefore, we implement precise polarization control using a polarizing beam
splitter cube followed by a half-waveplate. They are installed just before the lattice
beam enters the objective.
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3.3 STIRAP Laser System

Making molecules consists of two steps: Associating Feshbach molecules and then
transfering them to the ground state using a two-photon process called stimulated
Raman adiabatic passage (STIRAP) [49]. The formation of 23Na40K ground state mol-
ecules will be discussed in detail in chapter 4. Here we will discuss the required
two-color laser system.

In order to meet the adiabaticity requirements, both lasers need to be narrow in
linewidth and low in noise. Therefore, we stabilize their frequencies to a common,
ultra-stable reference cavity [78]. A blue 10 mW diode laser setup at 487 nm is suffi-
cient to transfer molecules from the intermediate state to the ground state [55]. But
the transition dipole moment for the other transition – from the Feshbach molecule
to the intermediate state – is smaller. Therefore we replaced our initial red 10 mW
diode laser system at 652 nm with a 100 mW dye laser system to achieve similar Rabi
frequencies.

3.3.1 Reference Cavity

An ultra-stable cavity is used to lock the lasers with a linewidth of 1 kHz or less.
It consists of two fused silica mirrors coated for 487 nm and 652 nm separated by
a spacer made from ultra-low expansion (ULE) glass (all by Advanced Thin Films),
which keeps the resonator length constant. In our case this spacer has the shape of a
sphere, to the bores of which the mirrors are attached. We lock both the red and the
blue laser system to this cavity using the Pound-Drever-Hall (PDH) locking technique
[79]. The free spectral range of the cavity is 3.145 GHz and the Finesse for 487 nm
(652 nm) is 30000 (188000). For more details on the cavity see [78].

First, the length of the cavity needs to be kept as constant as possible. Passive
stability is achieved by using materials with as small as possible thermal expansion
coefficients, such as ULE glass, and isolating the cavity from external disturbances by
installing it in a small vacuum vessel and by minimizing the contact of the spacer to
the vacuum vessel. In our setup from Stable Laser Systems, the sphere is secured in a
fork-like mount by only two screws [80]. The vacuum vessel is then further actively
temperature stabilized to the point where the temperature expansion coefficient of the
spacer-mirror system is minimized [81].

But, secondly, the frequency of the stabilized lasers also depends on the specifics of
the PDH lock. In PDH locking, sidebands are added to the laser frequency to distin-
guish the sign of the frequency derivation between laser and cavity. This is commonly
achieved with electro-optical modulators (EOMs). These utilize birefringent crystals
and are therefore sensitive to the polarization of the laser beam. The resulting phase
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Figure 3.5: (A) Setup to measure a frequency comb beat. The comb light spectrum, originally
at 780 nm, is broadened in a photonic crystal fiber (PCF) to include 487 nm. Then a beat
with the blue diode laser setup can be recorded. A grating and a pin-hole are used to single
out the desired comb mode on the photo diode to obtain a good signal-to-noise ratio. After
low-pass filtering and low noise amplification the beat frequency is recorded by a counter. (B)
The frequency comb beat measured over several days. In the first 30 hours, regular lab work
was performed next to the cavity. Afterwards, the lab work was stopped. The inset shows a 5
minute interval after 35 hours, marked red in the main figure.

modulation of the laser light at the EOM causes an amplitude modulation at the cav-
ity, which leads to a shift of the locking frequency. Therefore, we implement precise
polarization control and the possibility to align the polarization and EOM crystal axes
to minimize these effects.

To quantify the stability of the reference cavity, we measured the difference fre-
quency of the blue laser and a frequency comb over several days. We used the fre-
quency doubled output of our Menlo frequency comb. It operates at 1550 nm and has
a repetition rate of 250 MHz, which is stabilized to 10 MHz synthesized from the Hän-
sch group’s maser, which has an Allan deviation of 10−14 per hour. The comb light
then travels through a photonic crystal fiber, in which the spectrum is broadened such
that it includes 487 nm. To obtain a frequency comb beat with a good signal to noise-
ratio, it is necessary to prevent all but the nearest comb mode from falling onto the
beat photo diode. Figure 3.5 (A) shows a schematic of the setup we used. The time
trace of the beat signal is displayed in Fig. 3.5 (B). We observe long time frequency
drifts on the order of 20 kHz over almost 90 hours. During the first 35 hours, the lab
was regularly operated and 10 kHz drifts occurred on a 5 hour time scale. Afterwards,
regular lab operations was halted and the drifts reduced. On shorter timescales of sev-
eral minutes, there is a 2 kHz fluctuation visible on the beat signal. This was caused
by power drifts that changed the dissipated power in the cavity and hence its reso-
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Figure 3.6: Beat note power spectrum between the blue master and slave lasers in lock. This
spectrum was recorded with a resolution bandwidth of 10 kHz and a video bandwidth of 30 Hz.
The servo bumps of the lock appear at 2.5 MHz. The inset shows a zoom on the central peak.

nance frequency. For the experiments conducted in this thesis we fixed that by careful
polarization adjustment of both colors and by adding a power stabilization for the red
light, see Fig. 3.7.

Since determining the linewidth of both lasers would require at least equally good
reference lasers, we cannot easily determine the precise value. However, in an early
stage the blue laser system was tuned to 487 nm, the subharmonic of the 243 nm 1S
to 2S two-photon transition in Prof. Hänschs hydrogen lab, and a beat note with their
1 Hz linewidth laser was recorded [78]. From this measurement, a linewidth well
below 1 kHz could be deduced.

3.3.2 Laser Locking Schemes

The ULE cavity is an excellent locking reference for frequencies that are multiples of
its free spectral range. To obtain tunability in between these cavity modes, we use
an offset lock: We stabilize one laser, the “master", to the reference cavity, while we
lock another laser to this master with a frequency offset. Their difference frequency is
measured on a fast photo diode, see Fig. 3.6 for a typical spectrum of this beat signal.
Then it is mixed with a tunable local oscillator, whose frequency can be adjusted. In
the case of the blue laser system, both lasers are home-built, identical diode lasers. It
is shown in the top of Fig. 3.7. More details on the blue diode laser system can be
found in [55].

Initially we used an identical red diode laser system: We locked a red diode laser
to the ULE cavity and kept tunability via an offset lock with a second diode laser.
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Figure 3.7: The STIRAP laser system. In the upper part, the blue diode laser system is shown,
in the lower part, the red dye laser setup. Both are locked to the ULE reference cavity with the
Pound-Drever-Hall locking technique. In both cases, frequency tunability with respect to the
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a fiber EOM produces a sideband that is locked to the reference cavity. Note, that there is
an output intensity stabilization and a cavity transmission intensity stabilization in the red
laser system, since the output power of the dye laser can fluctuate. The STIRAP pulses are
generated by DDS-controlled AOMs. The reference ports can be read out with a wavemeter or
used for a stability measurement with our frequency comb.
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However, soon we replaced the diode slave laser with a narrow-linewidth dye laser,
which provided more power and therefore coupling strength. We successfully used
this diode master, dye slave setup for ground state molecule production as discussed
in Chapter 4. During our attempts to produce as many ground state molecules as
possible, we realized that an even simpler scheme could improve the production effi-
ciency by reducing the red laser noise even further: A typical Coherent-899 ring dye
laser spectrum is relatively clean due to the 1.5 m long laser cavity. If it is then locked
to a diode master, in inherits the electronic noise pedestal of the diode laser. Therefore
we replace the offset lock setup with a single dye laser setup. This setup is then used
in the experiments described in Chapters 5 and 6.

In a Coherent-899 ring dye laser, originally a finesse F = 5 external cavity is used
to generate the locking error signal, which steers the active elements in the laser cavity
- a piezo mirror, a galvo Brewster plate and the so-called thick Etalon. Under these
conditions, the linewidth of the dye laser is 1 MHz [57].

To decrease this to 1 kHz, it is necessary to add a faster feedback branch to the
original locking scheme. We proceed similar to what is described in [82] and introduce
an intracavity EOM in the laser resonator, the two electrodes of which are controlled
individually. For the fast lock we send a small portion of the dye laser output to
the ULE reference cavity to generate another PDH error signal. In order to ensure
dye laser tunability we do not use the carrier frequency directly, but a fiber-EOM
generated sideband of the dye laser - the frequency of which we can adjust.

The threefold locking scheme consists of a slow, a high-voltage and a fast branch.
For the slow branch, we keep the original error signal, but add the PDH part to it,
see Fig, 3.7. Then the original Coherent control electronics supply the appropriate
voltages for the previously mentioned original actuators in the laser that take care of
the low frequency feedback on the order of a few kHz.

Secondly, a high-voltage feedback loop via one electrode of the intracavity EOM
is implemented. A phase noise analysis of the the ordinarily locked dye laser implies
that the absolute frequency change within a few ms is maximally on the order of
25 MHz [57]. Since a voltage change of 1 V at the EOM changes the frequency of the
laser by 75 kHz - the λ/10 voltage of the EOM is 200 V and the free spectral range of
the dye laser cavity is 150 MHz - we need at least 340 V at the EOM. The PDH error
signal is sent through a PI-stage (we use a home-built fast lock box that is designed for
intensity stabilization, and limit the integrator) and then to a home built HV amplifier
capable of delivering up to 400 V. The high-voltage branch has a bandwidth of 800
kHz.

Finally, there is the fast branch that is introduced to the lock via the second elec-
trode of the EOM. Here we use a Toptica-FALC module followed by the HVA-10M-
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60-F voltage amplifier by femto. The fast branch then has a bandwidth of 10 MHz.

Although this locking scheme is challenging to set up, it is both robust and reliable,
once the correct parameters for all three loops have been found. The dye laser system
is the best option at 652 nm in terms of power and noise, despite the need for regular
maintenance. This includes small realignment adjustments every other day and the
exchange of the dye every one to three months.

In the STIRAP experiments discussed in Chapter 4 we will need precise control
over pulse length τ and pulse shape of the two STIRAP lasers. We achieve this by
programming one DDS each with the desired pulse shape (we use cos2-pulses). The
DDS output is then amplified and used as the control for amplitude modulation of the
respective final AOM. Since τ is on the order of 10 µs, the pulses are too short for active
power stabilization. Therefore we pre-stabilize the pump and Stokes beam powers.
This is sufficient, since due to the small pulse area thermal drifts in the AOM are not
a problem throughout the pulse sequence. However, note that for the same reason it
is best to optimize the fiber coupling to the experiment while the AOM amplitude is
pulsed, not constant.

3.3.3 STIRAP Beam Alignment

Ultimately, the Rabi frequency of the STIRAP beams determines how fast and efficient
the Feshbach molecules can be converted to ground state molecules. To make the most
out of the available power, we match the STIRAP beam foci precisely to the Feshbach
molecule cloud. Due to the elongated cloud shape, we use elliptical beams. The beam
waist are ωx = 105 µm and ωz = 26 µm. Now precise alignment of the beams is
required to observe ground state transfer.

Both STIRAP beams are overlapped and sent to the atomic cloud, so that they
propagate perpendicular to the magnetic field axis. We can thus realize parallel (π)
or perpendicular (⊥≡ (σ+ + σ−)/

√
2) polarization. To precisely align the beams, we

employ two piezo-electric adjustable mirrors. We start with the red beam. For coarse
alignment we use its dipole force: We adjust the beam to sit slightly underneath a
cloud of sodium atoms that we then release from the trap. In a time-of-flight mea-
surement some of the atoms will then be caught in the red beam. We then adjust the
beam positions by catching as many atoms as possible. Fine alignment can then be
performed by using the red beam to drive a transition between the Feshbach state (or
an atomic mixture) and an excited state, once the transition frequency is known. The
alignment is optimal when the loss rate of the transition is maximized.

Then we can coarse align the blue beam by simply overlapping it with the red
beam. This we do with a dichroic mirror, which only affects the blue beam posi-
tion. We have installed a flip mirror close to the glass cell that can project the two
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beams onto a CCD camera. Finally, once the transition frequency to the ground state
is known, fine alignment of the blue beam can be performed by optimizing the num-
ber of ground state molecules.

3.4 Electric Field Setup

Molecules such as 23Na40K are frequently referred to as polar because they posses a
permanent electric dipole moment. However, at least in the rovibronic ground state,
their dipole moment averages out to zero - unless they are polarized. One approach
to do so is to apply strong, static dc electric fields to them. Thus the electric field setup
is a key component of every polar molecules machine. The goal is to generate as large
and as homogeneous DC electric fields as possible, since the larger the electric field
strength, the larger the electric dipole moment induced in the molecule.

In the following I will therefore describe our electrode setup and the stable, high
voltage sources we use to generate electric fields.

3.4.1 Electrodes Setup

When it comes to electrodes, there are several different options: Some experiments
use two indium-tin-oxide coated electrode plates [21, 24, 25] or four rod electrodes
[22, 23] outside of the vacuum system, some have coated intricate electrode structures
onto the windows of their vacuum chamber [83] and some rely on in-vacuum rod
electrodes [26, 33, 84].

To control direction, strength and gradient of the electric field along all axes we
use a combination of four in-vacuum “main" rod electrodes and two auxiliary groups
of four electrodes each, see Fig. 3.8 (A): The main electrodes consist of a stainless steel
wire with a round cross section and a diameter of 2 mm. They are oriented along
the x-direction and generate a near homogeneous electric field, either along the y- or
the z-direction (see Fig. 3.3 for axes definitions). Note that the distance between the
horizontal electrode pairs is 2.8 cm while the distance between the vertical pairs is
slightly smaller, 2.6 cm.

Even though the rods are kept at a few millimeters distance from the glass by
isolating spacers, we observe that the glass cell walls charge up over time when we
apply DC electric fields. Once accumulated, we observed that these charges remain
on the glass surfaces at least for several months – unless they are actively removed.
To do so we installed three UV-LEDs at the corners of the cell that we turn on during
the experimental cycle when there are no atoms yet in the science cell. This ensures
that the unwanted charge distribution is stable from on experimental shot to the next.
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Figure 3.8: (A) Model of main and auxiliary electrodes in and around the glass cell (light
grey). Inside the glass cell, the main electrodes are visible (grey bars). They are isolated from
the glass with ceramic spacers (white rings). The voltage supply for the main electrodes is
connected via a feed through in the main chamber, to which the flange on the left is connected.
Outside the science cell, two pairs of auxiliary electrodes are installed (red). These can be poled
in quadrupole configuration to cancel unwanted gradient fields. (B) Simulation of the electric
field with the full electrode configuration at the central horizontal cut through the science cell.
The color denotes the electric field strength and the arrows indicate the field direction At the
center of the circle, where the electric field is almost homogeneous, we create the molecules. In
this image, the voltage on the main electrodes is ±1 V and 0.5 V are applied to the auxiliary
electrodes in quadrupole configuration. Please note that we applied larger voltages in most of
the experiments described in this thesis.
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Figure 3.9: HV setup for one main electrode. The control voltage of a precise DAC is amplified
to generate up to 400 V at the electrode. To keep full flexibility for the electric field, we use four
identical setups to control each main electrode individually.

Still, in the very sensitive rotational Ramsey spectroscopy of ground state mol-
ecules, that will be discussed in Chapter 6, we observed dephasing due to electric
gradient fields. This might be due to incomplete removal of charges by the UV-LEDs
or inhomogeneities of the main electrodes. To cancel these we use the auxiliary elec-
trodes. They are oriented along y- and z-axis and are set up in a quadrupole config-
uration. Thus they do not change the magnitude of the electric field at the position
of the molecules to first order. We can also add quadrupole voltages to the main elec-
trodes and thus compensate electric field gradients along all directions. Fig. 3.8 (B)
shows the result of an electric field simulation using all electrodes.

3.4.2 Voltage Supplies

To test the main electrode setup we initially used one commercially available power
supply of the company FuG per electrode pair. These were high-voltages supplies
that could output up to 10 kV and were controlled with a common analog reference
voltage. However, due to their noise specification of 10000 ppm and thermal drifts
of the output voltage they are unsuitable to polarize molecules: This leads to DC
Stark shifts of the molecular ground state that prevent reliable STIRAP, which leads
to unstable molecule numbers. This is already a problem at small electric field values,
but gets dramatically worse the more polar - and thus susceptible to electric fields - the
molecules are. Therefore, we upgraded our electric field setup with less high-voltage,
but extremely high precision voltage sources.

We use one home built, high precision voltage source with ±400 V with an rms
noise of 0.55 mV from 10 µHz to 15 kHz following [85] per main electrode. These volt-
age sources are individually controlled by high precision digital-to-analog converters
(DACs), see Fig. 3.9. Since the auxiliary electrodes in quadrupole configuration do
not change the DC electric field to first order, requirements for them are slightly less
restrictive and we use voltage sources with an rms noise of 1 mV.
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Figure 3.10: Microwave setup for driving rotational transitions in ground state molecules.
A fixed frequency local oscillator at 5.3 GHz can be mixed with one of two direct digital syn-
thesizers (DDS) to reach the rotational transition frequency. Both DDS can be individually
controlled by the experimental control. Thus we can also drive two-photon MW transitions
between different hyperfine states.

The most precise way to calibrate the electric field at the place of the molecules is
measuring the DC Stark shift of the molecular rovibronic ground state using STIRAP
spectroscopy. This relies on the value for the permanent electric dipole moment d0 =
2.72 D of 23Na40K, which was determined in a heat-pipe experiment [60]. Since all four
main electrodes can be controlled separately, many different electric field geometries
can be realized. Due to the different spacing of the horizontal and vertical electrode
pairs the conversion factor c from power supply voltage to electric field differs for
the creation of a horizontal or vertical electric field. We find chor = 0.418 cm−1 and
cver = 0.392 cm−1.

3.5 Molecular Microwave Setup

As we saw in Chapter 2, molecules possess many degrees of freedom that could be
used in quantum simulation. The rotational one is particularly interesting, because it
gives direct access to dipolar interactions and can easily be addressed with microwave
(MW) radiation. The rotational transition frequency between levels with rotational
quantum number J and J + 1 is given by 2Brot J(J + 1). Brot is the rotational constant,
which is 2.82 GHz in 23Na40K [31].

We use a simple, home built dipole antenna, see Fig. 3.10, that we mount close to
the science cell. The orientation of the antenna with respect to the molecule axis de-
termines, whether the MW radiation will be horizontally or vertically polarized. To
control the MW frequency we use a direct digital synthesizer (DDS), that we add to a
fixed frequency oscillator at 5.3 GHz. Driving two-photon transitions between differ-
ent hyperfine states in the ground state requires two slightly different MW frequen-
cies. Therefore, the setup contains a second DDS, that can be individually controlled.
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Chapter 4

Ground State Molecules

The key technique in the creation of ultracold, polar 23Na40K molecules in their rovi-
bronic ground state is a two-photon process called stimulated Raman adiabatic passage
(STIRAP) [49]. In STIRAP, a special pulse sequence is used that enables highly effi-
cient population transfer from an initial to a final state. It is a very general concept
that is applicable in many three-level systems. In polar molecule production, it medi-
ates the transition between the Feshbach state, the electronically excited, intermediate
state manifold and the ground state manifold, which were introduced in Section 2.2.
The complex molecular multi-level system goes beyond the original three-level sys-
tem, but STIRAP can be generalized to such a scheme, as will be demonstrated in
Section 4.1 with a toy model. We then test the validity of the model by comparing it
to experimental results in Section 4.2. Finally, we explore the lifetime of the ground
state molecules in Section 4.3. This chapter is based on the publication Ref. [26].

4.1 STIRAP Ground State Transfer

STIRAP is a coherent two-photon process, capable of adiabatically transferring popu-
lation in a three-level system by employing a special pulse sequence. The concept has
found applications in a wide range of systems, from atoms and molecules to waveg-
uides and solid state systems, many of which are reviewed in [49, 50]. After intro-
ducing the working mechanism in a three-level system, I will show how to generalize
the approach to a multi-level system as in 23Na40K molecules, e.g. with degenerate
hyperfine levels in the excited state.

4.1.1 Three-Level System

A three-level system consists of three levels, |1〉, |2〉 and |3〉, and two coupling lasers,
see Fig. 4.1 for an exemplary lambda-like scheme. The laser connecting |1〉 and |2〉
is called pump laser, while the one between |2〉 and |3〉 is called Stokes laser. Conse-
quently, the transition Rabi frequencies are labeled ΩP and ΩS. The Hamiltonian of
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Figure 4.1: STIRAP in a three-level system. (A) Three-level system that is coupled with
two lasers with Rabi frequencies ΩP (pump transition) and ΩS (Stokes transition). The one-
and two-photon detunings ∆ and δ are indicated. Note, although a lambda-like scheme with
one excited and two ground states is drawn, STIRAP also works in a ladder-like three-level
system, as long as the two-photon resonance condition is fulfilled. (B) STIRAP sequence, in
which the Stokes pulse precedes the pump pulse. Ω0 denotes the peak Rabi frequency of the
pulses. (C) Populations of initial and final states throughout the STIRAP process.

the system is given in the rotating-wave approximation as

H(t) =
h̄
2

 0 ΩP(t) 0
ΩP(t) 2∆′ ΩS(t)

0 ΩS(t) 2δ′

 , (4.1)

where ∆′ = 2π · ∆ denotes the common one-photon detuning of both laser frequen-
cies with respect to the intermediate state |2〉 and δ′ = 2π · δ denotes the two-photon
detuning of the two-photon transition between initial and final state. Successful pop-
ulation transfer requires two-photon resonance, δ = 0. The eigenvalues of this Hamil-
tonian are then

|Φ+〉 = sin θ sin φ |1〉+ cos θ |2〉+ cos θ sin θ |3〉 , (4.2)
|Φ−〉 = sin θ cos φ |1〉 − sin θ |2〉+ cos θ cos θ |3〉 , (4.3)
|Φ0〉 = cos θ |1〉 − sin θ |3〉 , (4.4)

where the mixing angle θ and φ were defined as

tan θ = ΩP(t)/ΩS(t),
tan(2φ) = Ω/∆′,

and the effective Rabi frequency Ω is given as

Ω =
√

ΩP(t)2 + ΩS(t)2. (4.5)
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One of the eigenstates, |Φ0〉, is special since it only contains initial and final, but
not the intermediate state |2〉, which may be lossy. When the coupled system is in this
state, thus no photons are emitted. Therefore, |Φ0〉 is frequently called a dark state.

This dark state has fascinating implications, e.g. in can be used to engineer the dis-
persion relation of light in a medium using electromagnetically induced transparency
(EIT, [86]): EIT can make a medium completely transparent for an otherwise absorbed
wavelength or allows to slow down and even stop light propagation [87].

However, it is also useful to transfer populations from |1〉 to |3〉 with extremely
high efficiency. One can simply employ the dependence of |Φ0〉 on the Rabi frequen-
cies. To obtain the starting condition |Φ0〉 = |1〉, we require θ = 0, so ΩP/ΩS → 0
has to be fulfilled, requiring the pump beam to be off initially. In the final state, the
opposite is true: ΩP/ΩS → ∞ has to be fulfilled, so that |Φ0〉 = |3〉, so that the Stokes
beam must be off, finally.

Both these boundary conditions can be met with a special pulse sequence, in which
the Stokes pulse precedes the pump pulse, while both pulses overlap for a time τ. For
a STIRAP transfer with a smooth pulse shape, the following adiabaticity criterion
for effective Rabi frequency Ω and STIRAP duration τ can be derived, that has been
numerically verified [49]

Ωτ > 10. (4.6)

Interestingly, the exact pulse shape for STIRAP is rather unimportant, as long as it is
smooth and fulfills the boundary conditions.

4.1.2 Multi-Level System

STIRAP for polar molecule production was proposed in 2004 [47]. It can solve a criti-
cal problem in the creation of ultracold polar molecules: Feshbach molecules could be
readily produced, but are not polar. And the rovibronic ground state, which possesses
a large electric dipole moment in heteronuclear molecules, could not significantly be
populated with the existing schemes relying on spontaneous emission. However,
Feshbach molecules can simply be converted into ground state molecules using STI-
RAP. With this transfer approach, rovibronic ground state molecules were realized
for the first time in 2008 [21]. It has now become the standard procedure for creating
molecules at high phase-space density and has been succesfully applied for dipolar
KRb [21], RbCs [22, 23], NaK [24, 26] and NaRb [25] molecules.

For STIRAP in molecules, the initial state is typically a Feshbach state, the final
state is one of the hyperfine states in the rovibronic singlet ground state. Usually, there
are several different Feshbach states or hyperfine states in the ground state that could
be used. However, the biggest distinction between different routes to the ground
state lies not in the initial or final states, but in the properties of the intermediate,
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electronically excited state. Several criteria could be considered for the choice of this
state:

• Does it have significant singlet-triplet mixing, so that initial and final state can
be coupled to it?

• Are the Franck-Condon factors to the initial and final states large, so that large
Rabi frequencies can be achieved on the transitions?

• And how much of the hyperfine structure of the state can be resolved?

Especially the last point is interesting and two different cases have been studied for
the 23Na40K molecule. In the experiments at the Massachusetts Institute of Technol-
ogy (MIT) [24], an intermediate state with partially resolved hyperfine structure [61]
was used. Our group at the Max-Planck Institute of Quantum Optics (MPQ), how-
ever, chose an intermediate state with favorable singlet-triplet mixing and good tran-
sition matrix elements, as discussed in Section 2.2.2, which turned out to have a non-
resolved hyperfine structure. At the time that the laser system was built the role of
the hyperfine structure in STIRAP was neither considered nor understood. However,
the better the resolution of the different hyperfine levels, the closer the system gets
to the envisioned three-level system discussed in the previous section. But resolved
hyperfine structure is not required for successful transfer of Feshbach molecules to
the rovibronic ground state, as we could demonstrate in Ref. [26].

The molecular structure of the Feshbach, intermediate and ground states and man-
ifolds that we use in molecule production has already been introduced in Chapter 2.2.
We begin with 23Na40K Feshbach molecules, created close to the mF = −7/2 Fesh-
bach resonance at 88 G [64]. The intermediate state is the |vd = 5,J = Ω = 1〉 state
associated with the d3Π potential and consists of three mJ = 0,± 1 Zeeman compo-
nents with unresolved hyperfine structure. Here, vd denotes the vibrational quantum
number of a level of the d3Π potential, J refers to the total angular momentum of the
molecule without nuclear spins and Ω is the projection of J onto the internuclear axis.
The rovibronic ground state, finally, has a resolved hyperfine structure.

In the following, I will introduce the Hamiltonian model we developed to achieve
a quantitative description of the adiabatic transfer in all required details. We explicitly
consider the complex light coupling into the analysis, in addition to the molecular
structure analysis done for different bialkali systems [61, 88]. Figure 4.2 is a graphical
representation of the Hamiltonian. Note, that this multi-level, cross-coupled model
is intimately related to the work of the Bergmann group on STIRAP in multilevel
systems [89], but is specific to the alkali-alkali molecule formation.

We employ the nuclear spin decoupled molecular basis {|F〉 , |n, J, mJ , mNa, mK〉},
where n ∈ {E ,G}. Note that the physical meaning of J, the total angular momentum
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Figure 4.2: Schematics of the multi-level STIRAP Hamiltonian. The experimental data on
the upper left shows the spectrum of the excited state vd = 5, J = Ω = 1 at 85.5 G recorded
with 45◦ polarization and starting with the mF = −7/2 Feshbach molecules that can be created
at this field (lines are a guide to the eye). Three Zeeman mJ-components are clearly visible,
but no hyperfine structure is resolved. The individual hyperfine states of the excited and the
ground state are indicated schematically by circles as well as the hyperfine components of
the Feshbach state (diamonds). Symbols with the same total nuclear spin quantum number
mI = mNa + mK (−5/2,−7/2,−9/2) have the same color (light blue, red, dark blue); white
symbols refer to states that are not populated. Exemplary, shown by arrows, is the case of a
π-polarized pump beam and a σ+-polarized Stokes beam. In this case, only the two mF =
−7/2 components of mJ = 1 contribute to STIRAP. The strengths of the pump and Stokes
transitions are different, as indicated by the thickness of the arrows. The one-photon detuning
∆ and the two-photon detuning δ are also indicated. Note that the energy axis for the excited
state (spectrum and schematic) is inverted for clarity. Adapted from [26].
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quantum number excluding nuclear spins, depends on n: For the Feshbach molecule,
J is equal to the total electronic spin S ∈ {0,1}, while for the excited state J = 1
and in the ground state J = 0. In this basis the Hamiltonian is diagonal. Then, the
matrix elements for pump and Stokes transitions in the rotating wave approximation
are given by Eqs. 2.12 and 2.14 as

〈F|E · d̂|E ,JmJmNamK〉 ∝ EP(t) ∑
J′m′Jm′Nam′Kq

αq(2J + 1)−1/2 (4.7)

× 〈J′m′J1q|JmJ〉
× 〈ψF ,J′m′Jm′Nam′K

|ψE ,J〉

× 〈m′Na|mNa〉 〈m′K|mK〉 ,

〈E ,JmJmNamK| E · d̂ |G, m′Nam′K〉 ∝ ES(t)∑
q

βq 〈JmJ1q|00〉 (4.8)

× 〈mNa|m′Na〉 〈mK|m′K〉 〈ψE ,1|ψG〉 ,

where the STIRAP coupling field E(t) is defined following [69] as

E(t) = EP(t) sin(ωPt + φP(t))
+ ES(t) sin(ωSt + φS(t))

EP(t) = E0,P sin
(

π

2
t
τ

)
, ES(t) = E0,S cos

(
π

2
t
τ

)
(4.9)

where E0,x is the amplitude vector, φx(t) a time dependent phase (noise) term and ωx
the carrier frequency. The index x distinguishes between either pump (P) or Stokes
(S) field. τ is the coupling light pulse duration.

The Feshbach molecule with mF = 7/2 and spin S = 1 has nine hyperfine substates,
that are listed in Tab. 2.1. Since the nuclear spins factorize everywhere, we can reduce
our nuclear basis to only these nine components,as shown in Fig. 4.2. While G is an
angular momentum singlet (J = 0), E is a triplet (J = 1) and therefore the maximal
size of the basis is (1 + 3)× 9 + 1 = 37 states.

From Tab. 2.1, visualized in Fig. 2.5 (B), we see that the largest coupling matrix
elements for the pump transition are those involving the (J,mJ ,mNa,mK) = {(1,0,1/2,−
4), (1,1,−1/2,− 4), (1,1,−3/2,− 3)} spin projections of |F〉. If ∆ = 0, the dynamics will
be dominated by couplings to mJ = 1 states in E . With π polarization on the pump
field, as will be realized in the experiments discussed in the next section, those are
coming from the two mJ = 1 projections of |F〉 which are indicated with dark blue
diamonds in Fig. 4.2. Similarly, using σ+ on the pump field (the ideal scenario), the
nuclear spin projection mNa = 1/2, mK = −4 plays the largest role. In both cases, σ+

polarization on the Stokes field is optimal.

In the following, we will compare this model to the experimental results.
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4.2 Experimental Procedures and Results

Producing ground state polar molecules is a defining mile stone of any ultracold, po-
lar molecule experiment. Achieving it was a team effort of many people over many
years in our lab. During this time, we refined our understanding of the molecular
structure to develop the multi-level model discussed before, but also our experimen-
tal procedures. Ultimately, only the experiment can confirm or challenge our under-
standing any physical theory. Therefore, this section is dedicated to the experimental
tools and techniques and the results, that we obtained by using them.

4.2.1 Sequence

The starting point for the experiments discussed in the following is an ultracold mix-
ture of bosonic 23Na and fermionic 40K atoms trapped in a crossed, far-detuned opti-
cal dipole trap (see Chapter 3.2). We prepare ∼ 1.3× 105 atoms of each species with
a temperature of 0.7 µK. The phase space density of the sample is about 0.5. For
more details on the preparation of the mixture, see Chapter 3.1 for a summary and N.
Buchheim’s thesis [55] for all the details.

Figure 4.3 (A) depicts the key channels in molecule production. For Feshbach asso-
ciation, Sodium is prepared in the |F,mF〉 = |1,1〉 state and potassium in the |9/2,−7/2〉
state. Then we ramp up the magnetic field to 85.5 G, close to the interspecies Feshbach
resonance located at 88 G in the mF,Na = 1, mF,K = −9/2 collision channel [64]. With
a radio-frequency sweep we flip the potassium atoms into the mF = −9/2 molecular
bound state associated with the Feshbach resonance. The efficiency of this process is
roughly 10 % and we typically create ∼1.1× 104 Feshbach molecules with a binding
energy of 80 kHz. For more details on the sweeped Feshbach association, see Chapter
2.2.1.

For STIRAP, we use a 652 nm dye laser (pump transition) and 487 nm diode laser
(Stokes transition). Both lasers are locked via their master lasers to the same ultra-
stable Fabry-Perot reference cavity and have sub-kHz linewidths. The details of the
locking schemes can be found in Chapter 3.3. The STIRAP beams co-propagate in a
plane perpendicular to the magnetic field axis. In this way we can realize parallel (π)
or perpendicular (⊥≡ (σ+ + σ−)/

√
2) polarization. To perform STIRAP, we use the

pulses of Eq. (4.9). After the ground state transfer, we hold the molecules for 90 µs. In
this time we remove remaining potassium atoms from the trap using a resonant light
field. This has two advantages: First, it improves the lifetime of the molecules when
they do not collide with background atoms and second, we obtain a background free
STIRAP signal. To understand the latter it is useful to remember that for imaging
we bring the ground state molecules back to the Feshbach state with a reversed STI-
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Figure 4.3: STIRAP sequence. (A) Trigger timing of important channels in molecule produc-
tion. From top to bottom: The RF pulse for Feshbach association, the pump (red) and Stokes
(blue) STIRAP pulses and the resonant cleaning pulse for removing potassium atoms. (B)
Top panel: Evolution of the Feshbach state population throughout a STIRAP process. Here,
STIRAP is immediately reversed and no cleaning pulse was used. Bottom panel: Intensity of
the pump (red) and Stokes (blue) STIRAP pulses as recorded by a photodiode.

RAP sequence. This is because there are no cycling transitions for imaging directly
involving the ground state. There we can take absorption images with an essentially
unchanged cross-section compared to unbound atoms.

So although a full experimental cycle takes about half a minute, as depicted in Fig.
3.2, the part where we produce and experiment with ultracold, polar molecules can
be as short as several 100 ms.

In order to confirm that STIRAP actually takes place, we stop at any point in
time throughout the sequence and measure the population of the Feshbach state, see
Fig. 4.3 (B). Once the “forward" STIRAP is complete, no Feshbach molecules can
be observed, because all molecules are in the ground state. However, after the sec-
ond, “backward" STIRAP, Feshbach molecules, that have been brought back from the
ground state, can be detected again. Assuming, that the STIRAP efficiency η is the
same in both directions, we obtain η2 of the initial Feshbach molecules back. In the
displayed measurement, η = 63 %. We also measured the STIRAP pulse shapes by
recording their intensity on a photodiode. It is proportional to the square of the Rabi
frequency at the place of the molecules. Note, that we recorded the two traces for
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pump and Stokes pulses of Fig. 4.3 (B) individually, because we only have one photo
diode that normally measures the sum of both pulses.

4.2.2 Rabi Frequency Calibration with EIT

To calibrate the peak Rabi frequencies of the STIRAP beams, we use EIT. As discussed
in section 4.1, EIT is based on the same dark state as STIRAP. One difference is the
strength of the two coupling lasers: While we aim for equal Rabi frequencies for STI-
RAP, in EIT the pump beam acts as a weak probe while the Stokes beam is strong.
When we scan the pump laser frequency under these conditions, we obtain a typical
EIT profile. In the three-level case, this profile is of the form [86]

N ∝ exp

(
−tΩ2

P
4γδ′2

|Ω2
S + 2iδ′(γ + 2i∆′)|2

)
, (4.10)

where t is the EIT pulse duration and γ the excited state line width. Another differ-
ence between STIRAP and EIT is, that no smooth pulse shape is required. Thus we
simply use square shaped pulses for EIT. However, it is still necessary for the Stokes
pulse to precede the pump pulse. Otherwise, Feshbach molecules could be simply
resonantly excited.

Figure 4.4 shows an experimentally recorded EIT spectrum (circles), where we
kept the Stokes field resonant with the |F〉 → |E ,J = 1, mJ = 1〉 transition. Also
shown is a fit of Eq. 4.10 (red), where γ, ΩP and ΩS are free parameters. From this fit,
we directly obtain the peak Stokes Rabi frequency ΩS,p = 2π × 8.4 MHz for 10 mW
of power, and γ = 2π × 20 MHz. The peak pump Rabi frequency needs to be extra-
polated from the small pulse amplitude for EIT to the full available pump power. For
100 mW of pump power, we thus expect ΩP,p = 2π × 2.6 MHz. In this experiment,
both STIRAP beams had spot sizes of roughly 18 µm. Since we currently do not have
more power available on the pump transition, we reduce the Stokes power to match
the Rabi frequencies for optimal STIRAP.

How can we use those Rabi frequencies in the multi-level model of section 4.1.2?
Since the Stokes matrix elements do not depend on the nuclear spin (see Eq. 4.8) and
the transparency peak is much wider than the ground state energy spread (see Fig.
4.2), we can directly use ΩS as the peak Rabi frequency for all these matrix elements.
For the pump transition, we adjust EP in (4.7) such that

∑
mNa,mK

∣∣∣〈F|E · d̂|E ,J = 1, mJ = 1, mNamK〉
∣∣∣2 /h̄2 = Ω2

P. (4.11)
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Figure 4.4: EIT spectrum (circles) as measured in the experiment by scanning the pump laser
detuning ∆ while keeping the Stokes laser resonant with mJ = 1 component of the excited
state, δ = ∆. Error bars denote standard deviations of several experimental runs. The line is
a fit using Eq. (4.10). Adapted from [26].

4.2.3 Ground State Spectra

To observe different HF states in G, we scan the Stokes laser wavelength, effectively
changing δ, the two-photon detuning. Ground state spectra recorded with different
pump and Stokes beam polarizations are shown in Fig. 4.5.

First, we work with a ⊥-polarized Stokes field and a π-polarized pump field. In
this case, the nuclear spin states in the mS = 1 subspace of |F〉 (blue circles) are
transferred to the ground state. The largest STIRAP efficiency η is obtained for the
|mNa,mK〉 = |−1/2,− 4〉 hyperfine state at δ = 200 kHz, as expected from the pump
transition overlap integrals summarized in Tab. 2.1.

Then, we change the pump beam polarization to⊥ as well, so that now pump and
Stokes beam are both ⊥ polarized. This is not ideal, as the total Rabi frequency is
now divided between the σ+ and σ− branches of the Hamiltonian displayed in Fig.
4.2. Additionally, the σ−-component of the pump beam also couples to levels in the
excited state, although with additional detunings due to the Zeeman splitting, which
leads to additional loss. Therefore, it is not surprising that the total STIRAP efficiency
is reduced in this polarization scheme. Still we can observe, that mainly the |1/2,− 4〉
HF state gets populated, see Fig. 4.5 (red circles), as expected.

The simulated amplitude in both polarization schemes is qualitatively similar to
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Figure 4.5: Hyperfine spectra of the rovibronic groundstate. Blue (red) circles denote data
recorded with π(⊥)-pump polarization in panel A (B), the Stokes beam is always⊥-polarized.
Error bars, denoting standard error of the mean of several experimental runs, are mostly
smaller than the symbol size. Vertical lines indicate the expected positions of the hyperfine
levels with mF = −5/2 (light blue), −7/2 (red) −9/2 (dark blue), same color convention as in
Fig. 4.2. Simulation results for the two polarization scenarios are indicated by the shaded ar-
eas. The experimentally measured phase noise was included (see text for details). Both spectra
were recorded at ∆ = 100 MHz and using 70 µs STIRAP pulse durations. The data of panel
(A) is the same as in Fig. 2.6 (B).

the experimental results. In the ⊥ / ⊥ scheme, it even accurately matches the exper-
imental observation, but it is systematically to large in the π/ ⊥ case. While we did
not investigate this discrepancy in detail, possible reasons might be imperfections in
the π-polarization of the pump laser, faster loss of molecules at higher densities (see
section 4.3) or a mismatch between the experimentally achieved Feshbach molecule
binding energy and the one used in the CC calculation.

In all these measurements, we have worked with a large one-photon detuning of
∆ = 100 MHz (pulse duration τ = 70 µs) with respect to the mJ = 1 component of the
excited state. This might be surprising, as previous STIRAP transfer for polar mole-
cule production has been achieved with very small one-photon detunings. However,
our situation is different due to the non-resolved hyperfine structure of the interme-
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diate state. In the next section, we therefore experiment with one-photon detunings
and pulse durations to find the best multi-level STIRAP pathway.

4.2.4 STIRAP Efficiency Over One-Photon Detuning

In the ideal three-level STIRAP, the one-photon detuning ∆ does not play a role for the
transfer efficiency, as long as the two-photon resonance condition δ = 0 is fulfilled.
In multi-level STIRAP, where degenerate components in the intermediate state are
inevitably addressed with the pump beam, but for which δ = 0 is not fulfilled, ∆ is the
key to success. This is because scattering from the unwanted components decreases
as 1/∆2, while two-photon coupling only decreases as 1/∆ and the latter can, to some
extend, be compensated with longer pulse durations. Therefore, let us try STIRAP
with large one-photon detunings ∆.

To optimize the STIRAP process experimentally, we investigate the transfer effi-
ciency η to the |−1/2,− 4〉HF ground state, using the π/⊥-polarization scheme. While
assuring two-photon resonance δ = 0, we measure η for different one-photon detun-
ings ∆. Also the pulse duration τ is optimized for each value of ∆. The results are
shown in Fig. 4.6 (A) (blue circles). We find that the efficiency is 25% for one-photon
resonant STIRAP, but rises up to ∼40% for detunings larger than 20 MHz, where it
then saturates.

Also shown is the result of the parameter free model calculation (dashed dark
blue line) for optimal pulse duration, but neglecting noise. This ideal model predicts
a significantly larger efficiency than the one observed in the experiment. However,
when we include a realistic phase noise function φx(t) into the model, we can resolve
this discrepancy: In order to do so, we apply a random φx(t) that reproduces the
measured beat note radio-frequency spectrum between each STIRAP laser to their
respective master laser. The phase noise power spectrum of Fig. 3.6 has a bandwidth
of about 2.5 MHz and a magnitude that yields an rms amplitude φx,rms = 400 mrad.
This noise function is multiplied by a factor

√
2, assuming the phase noise of the

master laser to the cavity lock is the same as the phase noise of the slave laser to the
master lock. Including the laser phase noise spectra into the model calculation leads
to the solid dark blue line, that matches the data fairly well. By comparing the model
calculations with and without phase noise, it can be seen that its influence on the
molecule production is strongest close to resonance and becomes less prominent for
larger ∆.

Fig. 4.6 (B) shows the optimal STIRAP pulse durations τ, both obtained from the
experiment (circles) and the model including phase noise (solid line). Also in this case,
the model describes accurately what we observe. At large ∆, experimentally optimal
pulse durations are shorter. This indicates, that for the resulting reduced effective
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Figure 4.6: STIRAP at different one-photon detunings. (A) The measured STIRAP efficiency
(circles) increases initially and then saturates. Model results with phase noise (solid lines,
averaged over 12 simulations) and without phase noise (dashed lines) are also shown. As
before, color encodes the different polarization scenarios. Dark blue (red) denotes π(⊥)-pump
polarization, the Stokes beam is always ⊥-polarized. Light blue refers to the experimentally
not realized case of σ+ polarization for both pump and Stokes laser. (B) Optimal STIRAP
duration τ as determined for each ∆ for the π/⊥ situation. Data (circles) with model prediction
including phase noise (solid line). Error bars denote the standard error of the mean and are
mostly smaller than the symbol size.
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two-photon coupling and longer pulses other noise sources may become important,
that have not been considered in the model.

This can also explain the larger predicted efficiencies at large ∆ compared to the
experimentally observed ones. However, both the observed efficiency and the ideal
STIRAP pulse duration agree very well for small ∆.

We can also compare the HF spectra of Fig. 4.5 with our model: Using experimen-
tal parameters, including phase noise, the modeled spectra match. Only the ampli-
tude for the π/ ⊥ case is systematically too large. However, this is most likely also
due to the large detuning discrepancy, as the ground state spectra were recorded with
∆ = 100 MHz.

To further benchmark the accuracy of the model calculation, we also study ideal
STIRAP parameters in the second polarization scenario, where pump and Stokes
beam are both⊥ polarized for a few selected detunings. The corresponding efficiency
measurements are indicated with the red circles in Fig. 4.6 (A). And also in this case,
detuned STIRAP is favorable compared to resonant STIRAP. The agreement between
experiment and model calculation is equally good as in the first polarization scheme.

There is one polarization scheme, that is superior to both schemes that we could
try experimentally. It requires σ+/σ+ polarized pump/Stokes beams. Due to geo-
metrical constraints in the experimental apparatus, this ideal scheme could not yet be
implemented. But we can simulate it using the multi-level model, that we have now
experimentally verified. The ideal scenario also addresses the |1/2,− 4〉 ground state
and, according to the simulation, should yield the highest transfer efficiencies (light
blue line in Fig. 4.5 (A)). To obtain higher STIRAP efficiencies, it would therefore
be very promising to consider sending the STIRAP beams also along the z-direction
into the glass cell, when the next iteration of the z-lattice and high-resolution imaging
setups are planned.

4.3 Lifetime of Ground State Molecules

With the STIRAP scheme outline above we can routinely produce quantum gases with
about 5000 fermionic ground-state molecules. So what happens to the molecules in
the crossed dipole trap after STIRAP? To find out, we observe the loss of molecules
over time, as displayed in Fig. 4.7 (A). We find that a two-body loss model describes
well what we observe. In such a model, the loss can be described in terms of the
molecular density n as

dn
dt

= −βn2 (4.12)
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Figure 4.7: (A) Loss of molecules in the crossed, far-detuned optical dipole trap. A two-
body loss function (red) describes the observation best. The two-body loss coefficient is β =
7.3 × 10−11 cm3/s at a temperature of 600 nK. (B) Several possible outcomes of two-body
collisions. In an elastic collision (I), the molecules scatter, but remain intact. If an inelastic
collisions (II and III) occurs, what happens depends on the molecule. For some molecules, a
chemical reaction (II) is energetically favorable. For the other molecules, such as 23Na40K,
long-lived collision complexes may form (III).

where β is the two-body loss coefficient [29]. To fit the molecular loss, we use

N(t) =
N0

1 + n0βt
, (4.13)

where N0 and n0 denote the initial molecule number and density.

The density in a 1D-harmonic trap along the x-direction can be calculated from the
trapping potential V(x) = mω2x2/2, where m denotes the mass of the molecule and
ω is the trapping frequency. We can the calculate the density as

n(x) = N0
exp(−V(x)/kBT)´ ∞

−∞ exp(−V(x)/kBT)dx
, (4.14)

where N0 is the initial molecule number, kB denotes Boltzmann’s constant and T is the
temperature of the molecular gas, which we determine in a time-of-flight expansion
measurement of the gas as T = 600 nK. To obtain the peak density at the center of the
cloud, we evaluate Eq. 4.14 at the center, x = 0, and obtain

n0 = N0

√
mω√

2πTkB
. (4.15)

Generalizing this to 3D gives

n0 = N0

3
√

mωxωyωz
3
√

2πTkB
, (4.16)
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where ωx, ωy and ωz denote the trapping frequencies along the x, y and z-direction.
Using an average trapping frequency of ω̄ = 2π × 202 Hz we arrive at an initial
molecular density of 5.2× 1011 cm−3 for the data set in Fig. 4.7 (A). Thus, the two-
body loss coefficient in this measurement is 7.3× 10−11 cm3/s.

Interestingly, this is about 5 times larger than β = 1.5 × 10−11 cm3/s reported
in [24], also for 23Na40K, but in the hyperfine ground state |mNa,mK〉 = |3/2,− 4〉.
Whether this is due to the different hyperfine states used or due to errors in the density
or temperature calibration remains to be checked.

So what happens, if two molecules collide? Three scenarios are illustrated in Fig.
4.7 (B). The first option is an elastic collision. For identical fermionic molecules with
a sufficiently high p-wave barrier this is the most likely option. However, also in-
elastic processes can play a role. While reactions of the kind 2AB → A2B + B or
A + AB2 are energetically forbidden for singlet alkali-metal dimers near the poten-
tial minimum, reactions of the form AB + AB → A2 + B2 are energetically favorable
for a few molecules [90], among them 40K87Rb [91, 92]. In 23Na40K this reaction is,
however, endothermic and can not occur at ultracold temperatures, so that 23Na40K
is frequently referred to as a chemically stable molecule. Recently, however, more and
more bi-alkaline polar molecule experiments published their loss measurements and
it became apparent, that also the presumably stable molecules exhibit significant two-
body losses, comparable to the one observed in the reactive molecules. Especially
beautifully, this was demonstrated in 23Na87Rb [38]. In 23Na87Rb, the ground state
is chemically stable, but the first excited rotational state is not. Although for Fesh-
bach and thus non-polar molecules, all reactants and products could be measured
[93]. Like that, the loss rates with and without reactive channels could be compared
within the same experiment and were found to be essentially the same. Thus, there
must be another inelastic two-body loss channel for the stable molecules. One idea is
that long-lived complexes form. These complexes are, in the case of chemically stable
molecules, not properly bound states: Instead, a collision of two molecules could be
sticky, meaning that the two molecules are bound together only temporarily [94]. This
temporal binding is due to the large density of states of the two-molecule collision
and is long compared to typical experimental time scales.

Although these ideas seem plausible, what really happens remains so far un-
known. Theoretically, it is very challenging to calculate spectra of complexes with as
many as four atoms and without having any spectral information, hunting the com-
plexes down experimentally seems almost impossible. Apart from shedding more
light on these seemingly simple collisional processes, understanding this loss might
also enable one to circumvent it. Then, long-imagined goals like observing dipolar
crystallization [95] might come finally come true.

Meanwhile, however, one can also prevent this loss by confining the molecules
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to the sites of an optical lattice. This approach also has the additional benefit of im-
proving the Feshbach association fraction, the dominant source of loss of phase space
density.
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Chapter 5

Spin-Decoupled Magic Trapping
Among the many degrees of freedom that polar molecules posses, the rotational one
is particularly appealing: Superpositions of rotational states can be readily addressed
using microwave (MW) radiation and give rise to strong, long-range dipolar interac-
tions. Due to their opposite parity, however, these states can have very different polar-
izabilities and thus experience very different trapping conditions in an optical dipole
trap. The resulting dephasing of the superposition limits its usefulness for quantum
simulation. To remedy this, a magic trap can be used, the concept of which will be in-
troduced in Section 5.1. Section 5.2 contains our results in realizing a spin-decoupled
magic trap using a magic polarization angle and a small dc electric field, which aids
in the decoupling of the nuclear spins to get even closer to the ideal of identical trap-
ping conditions for two rotational states in polar molecules. This chapter is based on
publication [36].

5.1 A Magic Trap

In this section, we start with a brief look on the working mechanisms of dipole traps.
We find that the exact trapping potential for any atom or molecule depends on the
state it is in. Consequently, working with a superposition of two states, we want
both states to have the same trapping potential to achieve optimal coherence times
by preventing dephasing. We will see how these types of magic traps can be realized,
before we finally look specifically at magic angle traps and nuclear spin decoupling
for polar molecules.

5.1.1 The Dipole Force

Keeping an object of interest in a well defined position is usually a key requirement
in any scientific study. In the case of quantum gases, this is usually achieved using
far-detuned optical dipole traps, some specific realizations of which have been intro-
duced already in Section 3.2. This class of dipole traps is so popular, because it allows
any trap shape that is possible by superimposing arbitrarily many trap laser beams:
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Figure 5.1: Schematic of trapping potentials for two states, e.g. rotational ones, |↓〉 (black) or
|↑〉 (red). If the differential polarizability ∆α = α|↓〉− α|↑〉 = 0, a magic trap has been realized
(central panel). The transition frequency between |↓〉 and |↑〉 then becomes independent of
position. Normally, however, the potentials for the two states differ (left and right panels).
Adapted from [36].

From a simple single beam trap [96] as our transport trap to optical lattices in various
geometries [5].

As their name suggests, these traps work due to the dipole force

Fdip =
1
2

α(ωL,ε)∇[|E(r)|2], (5.1)

where α denotes the polarizability, which depends on the trap laser angular frequency
ωL and polarization ε. |E(r)|2 denotes the spatially varying trap intensity with r be-
ing the position. All optical traps in this thesis are generated by laser beams with a
Gaussian intensity profile.

When we now create a superposition of two rotational states |↑〉 and |↓〉 of the
molecules in our trap, their trapping potentials generally are not the same, see left
and right panels of Fig. 5.1. If one now drove transitions between the two states,
the excitation would quickly dephase: Since the transition frequency depends on the
position of the moving molecule in the trap and because the excitation only has a
certain linewidth, it can only be resonant with some part of the cloud at a time while
being detuned for the other.

To prevent dephasing, we need magic trapping conditions, in which both states
have the same polarizability (central panel). This can be achieved by tuning the trap-
ping force by changing the polarizability α. Then the transition frequency between the
states becomes independent of the position in the trap, r. Therefore state-insensitive,
so-called magic trapping conditions for pairs of internal states are very valuable for
precision measurements or quantum computation.

A beautiful example is the realization of a magic wavelength trap for an optical
lattice clock of strontium [97]. In this case, two scalar electronic states with angular
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momentum quantum number J = 0 could be employed, so that the polarizability
only depends on the wavelength, but not on the polarizability.

In the next sections, we will look at ways to achieve magic trapping conditions for
rotational states in polar molecules.

5.1.2 Magic Traps for Polar Molecules

Because of its large oscillating transition dipole moment, we want to create a magic
trap for the superposition of the J = 0 and J = 1 rotational states in our 23Na40K mole-
cules. Therefore, let us recall the Hamiltonian describing molecules in their rovibronic
ground state, Eq. 2.15 in Section 2.3,

H = H0 +Hac +Hopt +Hh f , (5.2)

where H0 describes the molecule as a rigid rotor coupled to a dc electric field, Hac
describes the effect of a microwave field driving a rotational transition, Hopt is the
trap light contribution andHh f describes the hyperfine structure.

In our experiments, we prepare all molecules in one of the 36 hyperfine states.
As shown in Fig. 2.8, this state in the J = 0 manifold can then be coupled to the
first excited rotational manifold |1, (0,± 1)〉 via MW radiation with a frequency of
2Brot/h ≈ 5.6 GHz [31], where Brot denotes the rotational constant. However, due
to the interactions and cross couplings in the above Hamiltonian hyperfine states in
the excited state get mixed. The nuclear spins in the J = 1 manifold and the rotation
predominantly couple via the nuclear electric quadrupole moment in Hh f , while the
trapping light field couples different mJ states inHopt [33, 76].

Figure 5.2 (A) shows a theoretically calculated AC Stark map of the rotational exci-
tation spectrum for the |J,mJ , mI,Na, mI,K〉 = |0,0,−1/2,− 4〉 hyperfine state in 23Na40K,
where the electric field strength is negligible. The strengths of the transitions are color
coded. In order to model the energies of all relevant rotational hyperfine levels in var-
ious external field set-ups, we follow the formalism of Ref. [98] and references therein.
We evaluate the effective Hamiltonian, which includes interactions from rotation, hy-
perfine, Zeeman, ac and dc Stark effects, in the zero-field rotational hyperfine basis
with J = 0 to 3. It is then diagonalized to obtain the eigenenergies and eigenvectors
at various external field settings. The same set of parameters to describe various in-
teractions are used as in Ref. [98] except dynamic polarizabilities at 1550 nm derived
from experimental results, see Section 5.2.3. Frank-Condon overlaps calculated from
the eigenvectors are used as transition probabilities.

The dependence of the transition frequency ν on the light intensity I, the polariza-
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Figure 5.2: Theoretically calculated ac-Stark maps of 23Na40K in a 1550 nm trap for the
J = 0 → J = 1 transition, where the J = 0 molecules were prepared in the |mNa,mK〉 =
|−1/2,− 4〉 state. The color of the lines encodes the transition strength down to values of
5 × 10−3. For clarity, all transitions with lower strengths are colored in the same darkest
nuance of red. (A) ac Stark map at negligible static electric field. A complex structure with
many avoided crossings arises. (B) ac Stark map at E = 101.3 V/cm at the magic angle. The
Stark shift separates the mJ = 0 component (top panel) from the |mJ = 1| components (lower
panel). The transitions of mJ = 0 become almost independent of the trap intensity.

tion angle φ, and the electric field E can be approximated by

∆ν = ν− ν0 =
1
h
[∆α(φ)I + β(E,φ)I2 +O(I3)], (5.3)

where ν0 denotes a transition frequency at I = 0, ∆α = α|↓〉 − α|↑〉 is the differential
polarizability, and β is the hyperpolarizability of J = 1 as β ≈ 0 for J = 0.

In Fig. 5.2, many hyperfine states and avoided crossings between them are visible.
But even these can be used to realize a spin-independent trap, as has been shown in
[33, 76] for 87Rb133Cs molecules: At the center of an avoided crossing, the slope of the
transition frequency, which is, to first order, the differential polarizability ∆α, is zero.
When the trap intensity was set to this value, the coherence time could be improved
up to 0.75 ms [33].

Alternatively, one could modify ∆α of Eq. 5.3 by changing the polarization of the
rotational J = 1 state. Since, in contrast to the J = 0 state, the excited J = 1 is not
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a scalar state, in principle both the wavelength and the polarization of the trap light
can be used to create a magic trap. However, due to the many additional states in
molecules compared to atoms, it is impossible to find magic wavelengths at large
enough detunings for negligible off-resonant light coupling. However, adjusting the
polarization of the trap laser is a good alternative [99]. If the excited rotational state
is tuned to the same polarizability as the ground state, we call the angle between the
polarization vector and the quantization axis a magic angle, θm. Typically, the magnetic
or dc electric field direction is chosen as quantization axis. Since the polarizability is
a rank-2 tensor, the magic angle is given by [99]

cos2 θm =
1
3

, (5.4)

where θm ≈ 54◦ follows. The first experiment realizing a magic angle trap [100] for
40K87Rb molecules, in which a quantization axis along the magnetic field direction
was chosen, reported a 10-fold increase of coherence time to 1.5 ms, when the magic
condition was fulfilled.

This coherence time is limited due to the strong mixing of the hyperfine levels,
which prevent equal trapping potentials, even when the first-order differential light
shift is cancelled [33, 99, 100]. Then, rotational states can still rapidly dephase in
an inhomogeneous optical trap due to higher order terms. To leading order this is
the hyperpolarizability β, which describes the intensity dependence of the molecular
polarizability in Eq. 5.3. It originates from the coupling between rotation, nuclear
spins and the trapping light field. In the next Section, we will see how this coupling
can be reduced.

5.1.3 Nuclear Spin Decoupling

In order to avoid frequent state crossings, it is helpful to increase the energy differ-
ence between the states. This can be achieved with large magnetic [101] or electric
fields [98], which have both been suggested to further simplify the polarizabilities of
the involved states. Electric fields are particularly appealing, since polar molecule
experiments usually already have electrodes in place for the polarization of the mol-
ecules. The Stark shift of the excited rotational state depends on |mJ |. Thus the only
non-degenerate states in an external field are the sub-states with mJ = 0.

However, applying large electric fields of a few kV/cm is a challenging task: The
larger the dc electric field, the larger the dipole moment of the molecule and, con-
sequently, the larger the linear Stark shift due to field fluctuations. Therefore, the
stability requirements on the electric field get harder and harder to fulfill. Luckily,
the dc Stark shift dominates all other interactions already at tiny values – 60 V/cm in
23Na40K– which are readily available in the lab. Already at this electric field, nuclear
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Figure 5.3: Schematic of the experimental
setup. Molecules are confined to several pan-
cake traps (red) in the x − y-plane, formed by
a 1D optical lattice along the z-axis with polar-
ization vector ε. Four in-vacuum rod electrodes
(grey bars) generate DC electric fields along the
y-axis. The angle φ between ε and E can be
used to adjust the first order differential AC
Stark shift between rotational states. A MW
dipole antenna supplies the MW photons for
the rotational transitions. Adapted from [36].

spins and rotation uncouple for the |J,mJ〉 = |1,0〉 states, thus simplifying the ac Stark
map. Further, also the rotation is decoupled from the light field, so that the curvature
of the transition frequencies reduces. Figure 5.2 (B) shows the theoretically calculated
spectrum for E = 101.3 V/cm and at the magic angle. While avoided crossings are
reduced all over the Stark map, there is not a single one left in the mJ = 0-component.
Additionally, the transition strength is also conveniently concentrated into individual
states.

5.2 Experimental Procedures and Results

In this section, we will first discuss the experimental setup that we then use to create
and characterize our magic angle trap.

5.2.1 Setup

The experiments begin with the preparation of ultracold 23Na40K molecules in the
rovibronic ground state at 300 nK. Initially, the molecules are in the
|J,mJ , mI,Na, mI,K〉 = |0,0,−1/2,− 4〉 hyperfine state which will be referred to as the
ground state |↓〉. Here, mI denotes the projections of the nuclear spins INa = 3/2 [102]
and IK = 4 [103] onto the electric field axis. We make molecules similarly as out-
lined in Chapter 4, but instead of creating the molecules in the crossed dipole trap,
we first load the atomic mixture to several pancake-shaped traps created by a one-
dimensional (1D) lattice, see Fig. 5.3. The lattice is generated by a single, linearly
polarized 1550 nm retro-reflected laser beam that propagates along the z axis. This is
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also the direction of the 86 G magnetic field required for the subsequent Feshbach mol-
ecule association. The Feshbach molecules in the lattice planes are then transferred to
the rovibronic ground state using STIRAP. The polarization of the lattice beam can be
adjusted manually with a half-wave plate within an uncertainty of 0.5 degrees.

We apply a dc electric field along the y axis, so that we can adjust the magic angle
between lattice polarization and electric field direction. The corresponding voltages
are applied to four in-vacuum rod electrodes. Further, eight additional auxiliary elec-
trodes compensate residual electric field gradients to below 0.5 V/cm2, see Section 3.4
for details on the electric field setup. To drive the rotational transitions we further use
a MW dipole antenna, that is mounted close to the glass cell.

5.2.2 ac Stark Maps

In our first experiment, we want to get a first-hand glance on the ac-Stark maps of the
J = 0 → J = 1 transition of Fig. 5.2. We therefore perform MW loss spectroscopy
at two electric field strengths, see right panels in Fig. 5.4. To ensure identical starting
conditions for all data points, the preparation of molecules is always performed at the
same lattice intensity, which is then ramped quickly to the respective spectroscopy
intensity shortly before the MW sweep (see Fig. 3.4). Afterwards the lattice is ramped
back and the remaining J = 0 molecules are detected. The MW loss spectroscopy
spectra were recorded as follows: In order to couple to states with different transition
strengths while maintaining good spectral resolution, we swept the MW frequency
across 10 kHz in 1.15 ms, symmetrically around the central transition frequency ν.
We adjusted the MW power such that the Rabi frequency for the strongest transition
was about 4.0 kHz. Whenever a reduction in |↓〉 molecules is detected, it is assumed
that a transition to J = 1 has occurred.

Figure 5.4 shows our experimental results (right panels) together with the the the-
oretically expected frequency and strengths for each MW transition (left panels). In
this figure, only transitions with strengths larger than 0.5% are displayed for clarity
in the left panels.

In the presence of an electric field E = 101.3 V/cm, see Fig. 5.4 (B), the mJ = 0
states separate from the nearly degenerate mJ = ±1 states due to the dc Stark split-
ting. Simultaneously, the polarization of the lattice beam is set to the magic angle with
respect to the static field E, thereby realizing a spin-decoupled magic trap.

Both with small or large electric field, the agreement between experiment and the-
ory is excellent. In the following, we focus on |↑〉, the hyperfine state of J = 1, mJ = 0
with the largest transition strength (indicated by the orange arrow in Fig. 5.4).



68 5. Spin-Decoupled Magic Trapping

5 15 25

-0.2

0.0

0.2

5 15 25

1.6

1.8

10 20 30

0.6

0.8

1.0

10 20 30

10 2

10 1

100

Tr
an

s. 
st

r. 
(a

rb
. u

.)

10 1

100

N J
=0

 (a
rb

. u
.)

 (M
Hz

)

Intensity (kW/cm2) Intensity (kW/cm2)

A B

Figure 5.4: AC Stark maps of the J = 0 to J = 1 transition manifold for two electric field
strengths. (A) E =8.8 V/cm. Left panel: transition frequencies from |↓〉 state to the J = 1
manifold for various light intensities. The normalized transition strengths are encoded by line
color. Only transitions stronger than 0.5% are shown for clarity. Right panel: molecule loss
spectroscopy. The molecule number remaining in |↓〉 after a MW sweep is recorded (blue). (B)
E =101.3 V/cm and under magic trapping condition. The mJ = 0 component (upper panel) is
separated from the mJ = ±1 components (lower panel) by a DC Stark shift. Consequently the
hyperfine structure of the mJ = 0 manifold is simplified to two strong lines. Their transition
frequency is almost independent of intensity. The arrow denotes the |↑〉 state that will be used
in the following. Theoretical (experimental) data in both subfigures is normalized to the same
maximal transition matrix element (detected atom number). Adapted from [36].

5.2.3 Polarizability and Hyperpolarizability

Ground State Polarizability

Due to their narrow STIRAP linewidth, ground state molecules are an excellent probe
to precisely determine their polarizability and thus to calibrate the lattice intensity.
We first measure the ac Stark shift of the rotational ground state in terms of the lattice
intensity I, as shown in Fig. 5.5 (A). The observed relationship between the STIRAP
two-photon detuning δ and I is linear. To determine the maximum intensity of the
lattice I0, we further need the polarizability of the ground state, α|↓〉.

We do that with parametric heating measurements [53, 76, 100, 104]. We modulate
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Figure 5.5: Lattice intensity calibration. (A) Differential AC Stark shift between |↓〉 and
Feshbach molecular state measured as STIRAP two-photon detuning δ for different lattice
intensities. Circles denote the center frequencies of Lorentzian fits to the spectra recorded at
each intensity, error bars are derived from the covariance matrix of the fit. The line is a linear fit
to the center frequencies. Parametric heating expansion measurement for 23Na40K molecules
(B) and Na atoms (C). Lines in (B) and (C) are Lorentzian fits to the data. (D) Normalized
transition frequency f0→2 as a function of the lattice depth when the quasi-momentum q = 0
(black solid line) and q = h̄k (black dashed line), where h̄k is the recoil momentum of the
lattice. The red (orange) line denotes the measured transition frequency of the molecules (Na
atoms).

the lattice depths Vlat of molecules and sodium atoms, which are related via

α|↓〉 =
VNaK

lat

VNa
lat

αNa. (5.5)

where the subscripts distinguish between atoms or molecules. The atomic polariz-
ability αNa = h × 9.0 Hz/(W/cm2) [105] in a 1550 nm trap is known. The lattice
intensity is typically modulated by 2.5% for 8 ms. Then the molecules (atoms) are
released from the lattice and the cloud radius along z-direction is recorded, see Fig.
5.5 (B) and (C). Parametric heating occurs, when the modulation frequency is equal
to the transition frequency from the ground band to the second excited band, f0→2.
We numerically solve the band structure of the optical lattice and obtain f0→2 as a
function of the lattice depth, as shown in 5.5 (D). From our measurements we obtain
f Na
0→2 = 76.5(2) kHz and f NaK

0→2 = 75.2(8) kHz.

The corresponding lattice depth is 38.6(2) ENa
R for sodium atoms and 226(4) ENaK

R
for 23Na40K molecules respectively, where ENa

R = h × 3.612 kHz and ENaK
R = h ×

1.319 kHz are the recoil energies of sodium atoms and 23Na40K molecules respectively.
We obtain α|↓〉 = h× 19.3(4) Hz/(W/cm2), which agrees well with the theoretical ab

initio value α
theory
|↓〉 = h× 20.4 Hz/(W/cm2).
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The differential Stark shift slope of 251(4) kHz/I0 amounts to the effective polar-
izability αeff, the difference between polarizabilities of the initial Feshbach molecular
state |FB〉 and the rovibronic ground state |↓〉, which is given by

αeff = αFB − α|↓〉 = αNa + αK − α|↓〉. (5.6)

The polarizability of Feshbach molecules αFB is well approximated by the sum of the
polarizabilities of the constituent sodium and potassium atoms, αNa and αK. Then we
can calculate αeff according to Eq. 5.6 and determine the maximum lattice intensity to
be I0 = 34(2) kW/cm2.

Excited State Polarizability and Hyperpolarizability

To characterize the magic angle for the |↓〉 → |↑〉 transition, we perform π-pulse loss
spectroscopy at E = 144.3 V/cm, see Fig. 5.6. For each angle φ, we record rotational
transition spectra for various intensities. We then extract the center frequencies ν with
a Lorentzian fit. The results of these measurements are depicted in Fig. 5.6 (A). From
the slopes we get the differential polarizabilities plotted in (B), which agree well with
the theory (red line). The magic condition ∆α = 0 occurs for φ = 54.0(5)◦.

We can now use the experimentally determined isotropic polarizability at 1550 nm,
αiso = (2α⊥ + α‖)/3 = h× 19.3 Hz/(W/cm2) to determine the dynamic perpendic-
ular and parallel radial electronic polarizabilities, α⊥ and α‖. The polarizability dif-
ference ∆αele = α‖ − α⊥ is obtained by fitting the experimental results of Fig. 5.6
(B) to ∆α(φ) = 2/15 × (1 − 3 cos2 φ)(α‖ − α⊥). The fitted values are α⊥ = h × 12
Hz/(W/cm2) and α‖ = h× 34 Hz/(W/cm2).

Although the lines in panel (A) appear to be linear, they are in fact parabolic at
a closer look, see panel (C). This is the hyperpolarizability described by β in Eq. 5.3.
To determine β, we use a similar π-pulse spectroscopy, but with a higher frequency
resolution. We work at the magic angle, φ = 54◦, and again record transition spectra,
this time for various electric fields. We extract β (blue circles) by fitting Eq. (5.3). As
expected, it decreases with increasing electric field as the spin-decoupling improves.

If d0E � Brot and d2
0E2/Brot is much larger than ∆αele I or the Zeeman splitting at

E = 0, and away from any spectral crossings, β can be derived from the second order
perturbation of the energy as

β(E,φ) =
4

15
sin2 (2φ)

∆α2
eleBrot

d2
0E2

, (5.7)

The red line in Fig. 5.6 B shows the result of Eq. (5.7) for our parameters. Although
experiment and theory qualitatively agree, the measured values are slightly smaller
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Figure 5.6: Characterizing the spin-decoupled magic trap. Circles are measurements, red
lines theory results and blue lines correspond to fits of the data to Eq. 5.3. All error bars were
calculated from the covariance matrix of the respective fits and are partially smaller than the
marker size. (A) AC Stark data at E = 144.3 V/cm to extract the differential polarizability,
∆α. (B) Differential polarizability ∆α for various lattice polarization angles. At approximately
54◦ a magic trapping condition is fulfilled and the differential polarizability vanishes. (C) AC
Stark data to extract the hyperpolarizability β for five electric field values in units of V/cm.
(D) Hyperpolarizability β at the magic angle for various DC electric fields. The larger the
electric field, the smaller the hyperpolarizability. For the measurements discussed in Chap. 6,
we use the field strength indicated by the vertical black line.

than the theoretical ones, especially for smaller values of E. This discrepancy might
be due to the AC Stark shift from the MW itself or higher order light shifts that are
not included in the simplified theoretical model.
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Chapter 6

Interacting molecules
Exploring and employing the anisotropic dipole-dipole interactions between polar
molecules is the ultimate reason why experimental setups such as the one discussed in
Chapter 3 were built. The two methods for inducing dipolar interactions in a molecu-
lar gas – strong dc electric fields or rotational superpositions – were already discussed
in Section 2.3. In this chapter, we study the coherence of rotational superpositions in
the spin-decoupled magic trap that we established in Chapter 5. Methods and results
of our Ramsey- and spin-echo spectroscopy are summarized in Section 6.1. We inter-
pret the results in Section 6.2 using e. g. a moving-average cluster expansion (MACE)
model. This chapter is based on publication Ref. [36].

6.1 Coherence of a Rotational Superposition

Creating rotational superpositions of molecules is a very appealing way to make a
molecular gas interact via the dipole-dipole interaction. One reason is that using large
dc electric fields in the kV/cm-range, the other method, is experimentally challenging.
The higher the induced dipole moment becomes in the molecular gas, the larger the
Stark shifts of the transitions and, consequently, the higher the electric field stability
needs to be in order to ensure resonant transitions. Rotational superpositions, on the
other hand, are conveniently prepared using microwave pulses. Furthermore, tran-
sition dipole moments are huge. In the case of the |J,mJ〉 = |0,0〉 → |1,1〉 transition
from the rotational ground to the first excited state, it is almost 60% of the permanent
electric dipole moment.

However, a rotational superposition is only useful if it has a long enough coher-
ence time. In the following, we will discuss how we measure rotational coherence us-
ing Ramsey- and spin-echo spectroscopy in the spin-decoupled magic trap of Chapter
5.
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Figure 6.1: Schematic of the pulse sequences for Ramsey (A) and spin-echo microwave spec-
troscopy (B). To obtain Ramsey fringes we scan the phase offset of the second π/2-pulse by
∆θ. For spin-echo, a π pulse in the middle of the evolution time t is added. Adapted from [36].

6.1.1 Setup and Experimental Methods

The experimental setup for studying the rotational coherence is the same as in the pre-
vious chapter: We load the atomic mixture to many layers of a 1D lattice and proceed
with molecule association there. To realize the spin-decoupled magic trap, we make
use of a small dc electric field of E = 68.3 V/cm parallel to the lattice planes, which
is large enough to decouple the |↑〉 state and small enough to minimize inhomoge-
neous broadening or temporal noise of the dc Stark shift. Additionally, we adjust the
polarization vector of the I = 3.4 kW/cm2 lattice to the magic angle with respect to
the electric field axis. A dipole antenna for the MW radiation is mounted closely to
the glass cell. A sketch of this setup can be found in Fig. 5.3.

To study the rotational coherence in the spin-decoupled magic trap, we use Ram-
sey and spin-echo pulse sequences [106], see Fig. 6.1. We set the MW frequency ν to
resonance and scan the relative phase ∆θ between the first and second π/2 pulse at a
fixed evolution time t to obtain Ramsey interference fringes. For spin-echo, we add a
π-pulse in the middle of the evolution time. Each fringe can be described by

N|↓〉(∆θ, t) =
N(t)

2
[1− c(t) cos(∆θ + θ0)], (6.1)

where c(t) is the measured contrast, N = N|↓〉 + N|↑〉 is the total molecule number
and θ0 is a phase offset due to small detunings of the MW, e. g. due to electric field
changes.

To generate different molecular densities for the Ramsey- and spin-echo exper-
iments, we vary the hold time between Feshbach molecule production and further
experiments, which leads to loss due to inelastic collisions. This allows us to change
the molecule number while keeping the cloud radius almost constant.
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Figure 6.2: Ramsey fringes and fitting bias considerations. (A) Two measured Ramsey fringes
for different evolution times (circles), together with their fits (solid lines). Error bars denote
the standard error of the mean over several experimental runs. (B). Simulated fringes for
N = 400 molecules in presence of molecule number fluctuations. Circles denote the simulated
population as a function of ∆θ, solid lines correspond to the respective fits. Error bars denote
the standard error of the mean over several simulations. (C) Fitted contrast c as function of the
actual contrast c0 when N =400 (light blue) or 800 (dark blue). Solid lines in the same color
are the corresponding contrasts given by Eq. (6.3). The red line shows the measured contrast
without noise. In all simulations we used ∆N = 98, and Ms = 35, similar to what we observe
in experiments. Above c0 = 0.5, all three lines essentially agree (inset). Adapted from [36].

6.1.2 Ramsey- and Spin-Echo Spectroscopy

To extract the coherence time, we measure the fringe contrast c(t) for various evo-
lution times t. Figure 6.2 (A) shows to Ramsey fringes recorded for t = 10 µs and
t = 6 ms (circles). The initial phase of the Ramsey fringe is unknown and can drift
slowly. Therefore, we let c be strictly positive in the fringe fitting with Eq. 6.1 to avoid
phase ambiguities for small contrasts (lines). This, however, biases the coherence time
when the fringe amplitude becomes comparable to the molecule number fluctuations
[107].

To quantitatively understand this, we simulate Ramsey interference fringes in
presence of molecule number fluctuations, see Fig. 6.2 (B). We add Gaussian noise
with a standard deviation ∆N to the molecule number of an ideal sinusoidal fringe
with contrast c0 and use Eq. 6.1 to extract the resulting contrast. We repeat this simu-
lation 300 times and obtain an average measured contrast c. We find that the contrast



76 6. Interacting molecules

bias ∆c adds quadratically to the ideal contrast, see Fig. 6.2 (C) as

c =
√

c2
0 + ∆c2, (6.2)

where

∆c =
√

a
Ms

2∆N
Ntot

. (6.3)

Here, Ms is the sampling size and a = 3.5 is an empirical parameter obtained from
the simulations. In our experiments, ∆c ≈ 10%, depending on the molecule number.
Using Eq. 6.3, we estimate the bias ∆c for each data point individually and exclude
data taken after the smallest evolution time where c < 1.5∆c. The remaining contrast
values are then fit with a Gaussian function of the form

c(t) = ci exp

(
−
(

t
τ

)2
)

, (6.4)

where ci is the initial contrast at the shortest evolution time and τ denotes the coher-
ence time.

Another approach would be to subtract the contrast bias using Eq. (6.2) before the
fitting. We found that in this case the coherence time is overestimated by less than
10%, even when the low contrast data is included. This is because the the small-
contrast tails contribute less to the fitting of the Gaussian of Eq. (6.4) than the high
contrast data. The detection offset of the molecule number is less than 20 molecules
and thus negligible.

Figure 6.3 summarizes our Ramsey (A) and spin-echo (B) measurements for vari-
ous molecule numbers (indicated in the upper right corners) and densities. The bias
of each data point according to Eq. 6.3 is indicated by the dark grey shaded area, the
light grey area denotes the bias cutoff. Red (blue) lines show the Gaussian fits of Eq.
6.4, that we use to extract the coherence times τ. Data points that are excluded from
this fit are indicated by empty circles. The Ramsey coherence time, here defined as the
1/e time of the fit, amounts to 8.7(6) ms for a low molecule number Ntot = 740(70),
which is six times larger than previously achieved coherence times [33, 100]. Residual
single particle dephasing could arise due to residual differential light shifts, electric
field gradients, and shot-to-shot fluctuations of the electric field.

By adding a π pulse in the middle of the evolution, we obtain a spin-echo sequence
[108]. The π-pulse reverses the dephasing accumulated during the first half of the
time evolution by inverting the order of the precessing spins on the Bloch sphere,
which do so at different speeds due to the dephasing. Thus, during the second half of
the evolution time, the slowly varying contributions to the single particle dephasing
can be canceled. This allows us to increase the coherence time to τ = 13(2) ms for low
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Figure 6.3: Measuring and simulating rotational coherence. (A) Comparison of measurement
(circles) and simulation (orange and black lines) of the Ramsey experiments. Numbers in the
right corner denote the initial molecule number N (number error ∆N). Light red solid lines
are Gaussian fits to extract the coherence time, black (orange) solid lines correspond to MACE
simulations with (without) external field gradient h × 1.3(1) Hz/µm. The orange shaded
region demonstrates the effect of a factor of two change in density in either direction on the
simulation. Dark grey shaded regions indicate the bias of the data, the light grey regions the
cutoff for the data (empty circles) that we chose to avoid fitting bias. (B) As in (A) but for
the spin-echo experiments (blue). The external field gradient for the MACE simulation is
h× 0.8(1) Hz/µm. Adapted from [36].
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Figure 6.4: Ramsey (red) and spin-echo (blue) coherence times for various molecular densities.
A mean dipolar interaction strength at the center of the cloud is indicated on the secondary
x axis. The coherence time is not limited by the 1/e lifetime of the rotational superposition,
as shown in the inset. All error bars are calculated from the covariance matrix of the fits and
denote one standard deviation. Adapted from [36].

initial molecule numbers. Note that the molecules in this work are moving with the
trapping period of Ttrap = 16 ms in the horizontal planes, which are weakly confined
by the 1D lattice. Spin echo fails to suppress or even enhances the single particle
dephasing when the evolution time is close to the trapping period [109]. This explains
why the maximum coherence time observed in our experiment remains below Ttrap.

Furthermore, we find that the coherence time depends on the initial molecule
number and thus on density, see Fig. 6.4. There could be several reasons for this.
One explanation would be a loss of molecules. However, because these collisions are
suppressed by the p-wave barrier, we measure an intrastate inelastic collision rate of
below 3 Hz. Thus, interstate inelastic collisions dominate. But since these lead to
equal loss of |↓〉 and |↑〉 molecules, they do not reduce the fringe contrast. Further-
more, this two-body loss occurs on much longer time scales than the decoherence,
see inset of Fig. 6.4. Therefore, we assume that another reason is responsible for the
density dependent decoherence in the system, namely the strong dipolar interaction
present in the system.
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6.2 Interpreting the Results

To test our hypothesis that the density dependent decoherence is due to the density-
dependent dipole-dipole interaction, we set up a simple theoretical model based on
the moving-average cluster expansion (MACE) method. Further, we estimate dephas-
ing rates due to experimental imperfections.

6.2.1 Dipolar Interactions and MACE Model

We employ the moving-average cluster expansion (MACE) method [110] to qualita-
tively understand the decoherence of the molecular rotation. With the MACE, we
can simulate the spin dynamics of randomly distributed molecules in bulk during
the Ramsey or spin-echo interferometry. If we neglect loss and molecular motion, the
system can be described by the following Hamiltonian

H = ∑
i>j

Uij

2
(Ŝ+

i Ŝ−j + h.c.) + ∑
i

∆(ri)Ŝz
i , (6.5)

where the first term describes the dipolar spin-exchange interaction and the second
term the coupling to external fields. Ŝ±i and Ŝz

i are the spin-1/2 angular momentum
operators of molecule i in position ri and Uij is the dipole-dipole interaction strength
between molecules i and j, which is given as

Uij =
2d2
↑↓

(4πε0)

1− 3 cos2 Θij

(|ri − rj|3)
, (6.6)

where d↑↓ =
√

1/3d0 is the transition dipole moment between |↓〉 and |↑〉 [72, 73], ε0
is the vacuum permittivity, and Θij is the angle between the vector connecting mole-
cules i and j and the quantization axis, which we assume to be along the electric field
direction. Finally, ∆(ri) describes a spatially dependent detuning of the microwave
transition.

The mean value of the angular-independent part of Uij of Eq. 6.6 sets an energy
scale for the dipolar interaction, which can be calculated as

〈Ud〉 ≈
2|d2
↑↓|

4πε0l3 , (6.7)

where l = n−1/3
0 is the average distance between molecules and n0 is the peak molec-

ular density. Note, that the lattice spacing 0.775 µm is much less than the average
distance between molecules in our setup. Therefore, the density distribution of the
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molecular gas can be approximated by

n(x,y,z) = n0 exp

(
− x2

σ2
x
− y2

σ2
y
− z2

σ2
z

)
, (6.8)

where the peak molecular density is

n0 =
N

π3/2σxσyσz
. (6.9)

The 1/e radii σx = σy = 27(4) µm and σz =11.5(6) µm of the molecular cloud are
determined by in situ imaging. The peak density for the highest molecule number
3200(300) is 7(3) × 1010 /cm3 and the corresponding average distance is 2.4(3)µm.
This results in a peak dipolar interaction of 〈Ud〉 = h × 50(20) Hz, similar to the
decoherence rate we observe at the highest molecule number. This dipolar energy
scale is indicated on the secondary axis of Fig. 6.4.

For more thorough insights, we implement the Hamiltonian of Eq. 6.5 using the
MACE [110]. We randomly distribute the molecules with a Gaussian probability dis-
tribution in tens of layers of the 1D-lattice with a spacing of 0.775 µm and assume, that
they are spatially frozen. We use the experimentally determined cloud radii along x,
y, and z direction in the simulation. According to the MACE idea, we divide all mol-
ecules into clusters, in our case each consists of four molecules, which are closest to
each other and thus have the strongest dipolar interactions. Then we exactly solve the
time evolution for each of the hundreds of clusters and sum up the expectation values
of all spins to obtain the Ramsey signal.

If the external field is homogeneous and the second term of Hamiltonian 6.5 can be
neglected, the decoherence is due to the random spread of dipolar interaction among
the molecules. We expect the coherence time τ to be inversely proportional to the
molecule number Nmol because the dipolar interaction is proportional to the molecu-
lar density. In this homogeneous MACE simulation the 1/e coherence time is about
12 ms with 3000 and 70 ms with 500 molecules, see orange lines in Fig. 6.3. In the
Ramsey experiments displayed in (A), however, the coherence time is limited to about
8 ms, even for low molecule numbers of 600, when the dipolar interaction is negligi-
ble. Therefore, we attribute this to residual single particle dephasing, which will be
discussed in the next section.

In order to qualitatively introduce this dephasing into the model, we implement a
simple effective external field gradient along x-direction ∆ = ∆′x in the model. Please
note, that this is a fictitious gradient, which, however, leads to simulation results that
are comparable with our experimental findings. In the experiment, we make sure that
no such gradient is present using the electric field control discussed in Section 3.4. In
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the model, we also tried a parabolic external field, which, however, produces similar
decoherence behavior in the simulation. For the sake of simplicity we therefore use
the simple field gradient for now. To determine which magnitude to use in the sim-
ulation, we fit the MACE model to the experimental data with the lowest molecule
number. We obtain ∆′ = h× 1.3(1) Hz/µm, which corresponds to a dephasing rate
of h× 35(2) Hz. Using this exact effective dephasing, we can reproduce the Ramsey
experiments with various molecule numbers in the simulation (black lines in Fig. 6.3
(A)). For the spin-echo experiments, see Fig. 6.3 (B), we again determine the effec-
tive external field gradient by fitting to a low molecule number data set. We obtain
∆′ = h× 0.8(1) Hz/µm, which corresponds to a dephasing rate of h× 21(2) Hz.

The excellent agreement of experiment and simulation indicates that dipolar in-
teractions are the dominant source of the density-dependent decoherence. However,
in the future a theoretical model tailored to the trap geometry discussed in this work
could deepen the understanding of the system. It could shed light on how molecular
loss, motion and contact interaction modify the spin dynamics in a bulk gas of polar
molecules.

6.2.2 Causes of Single-Particle Dephasing

In addition to the density-dependent decoherence, also single-particle dephasing is
important in the MACE model. This dephasing is due to transition frequency changes
between |↓〉 and |↑〉. These consist of temporal fluctuations and spatial variations in
the external potential across the molecular cloud and can be described by the MW
detuning term ∆(r,t) of Eq. 6.5. We can expand it as

∆(r, t) = ∆αI(r) + βI2(r) + ξE(r,t)2. (6.10)

The first two terms are residual first-order and second-order differential light shifts
from Eq. 5.7, that remain even in the magic trap configuration. We assume that the
lattice beam has a Gaussian intensity profile and ignore the intensity variation along
z-direction

I(r) = Ipeak exp

(
−2

x2 + y2

ω2
0

)
(6.11)

with beam waist ω0 = 100 µm. The third term of Eq. 6.10 is the differential dc Stark
shift, where according to [73]

ξ =
4

15
d2

0
Brot

= h× 177
Hz

(V/cm)2 . (6.12)

The electric field E can be written as

E(r,t) ≈ E0(t) +∇E · r+O(r2), (6.13)
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source value dephasing rate
δα h× 0.05 Hz/(W/cm2)

γL = h×32 Hz
β h× 30 Hz/(kW/cm2)2

δE 0.5 mV/cm γEN = h×12 Hz
∇E 0.5 V/cm2 γEG = h×38 Hz

Table 6.1: Maximal dephasing rates at 68.3 V/cm due to imperfect cancellation of local differ-
ential polarizability δα and residual hyperpolarizability β, and due to electric field noise and
gradients, δE and ∇E.

where E0(t) describes the temporal fluctuations and the second term captures the
first-order inhomogeneity of E.

The inhomogeneity of ∆(r) leads to dephasing of rotational excitations and can
be calculated from Eq. 6.10 by numerical integration. The experimentally observed
dephasing γ thus can be divided into local and temporal contributions: γL due to
residual differential light shifts, γEG, due to gradient electric fields, and γEN due to
temporal fluctuations of E. The dephasing due to residual differential light shifts can
be written as

γL =

´
n(r)

∣∣δα∆I(r) + β∆I2(r)
∣∣dr´

n(r)dr
, (6.14)

where the local differential polarizability is given as

δα = h(∂ν/∂I)|I=Ipeak = ∆α + 2βIpeak. (6.15)

Here, ∆I(r) = I(r) − Ipeak, and n(r) is the molecular density described in Eq. 6.8.
The dephasing rate due to gradient electric fields |∇E|, which we assume to be along
x-direction for simplicity, is given as

γEG = 2ξE0|∇E|σx, (6.16)

where E0 is the time averaged electric field in the center of the molecular cloud. The
dephasing due to temporal electric field noise δE0 is, finally,

γEN = 2ξE0δE0. (6.17)

The estimated maximal dephasing rates for these contributions are summarized in
Tab. 6.1 together with their experimental origin.

The total effective dephasing rate can then be calculated as

γ =
√

γ2
L + γ2

EG + 2γ2
EN (6.18)
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and is related to the coherence time by τ ≈ 2h̄/γ which we verified by numerical
simulation.

In the current setup, the dephasing rate γ is on the order of a few ten Hz. In the
future, we hope to reduce the dephasing rate to a few Hz by implementing less noisy,
more homogeneous dc electric fields as well as more precise laser polarization control.
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Chapter 7

Summary and Outlook
During the work on this PhD, we developed a thorough understanding of the mole-
cule production process using STIRAP. We learned, that a large one-photon detuning
is advantageous for molecule production when dealing with unresolved hyperfine
structure in the intermediate state. Other molecule experiments had so far not en-
countered this to such a degree. Secondly, also a precise knowledge of the initial
Feshbach state is extremely helpful as it determines which hyperfine states can be
populated at all and with which amplitudes. We found very good agreement with
the coupled channels calculation of the Feshbach wavefunction, while the asymptotic
bound state model we had used before had made completely different predictions.
This allowed us to pick a suitable polarization scheme for the STIRAP as to reduce
the amount of coupled levels. Only with this knowledge it became possible to rou-
tinely produce several thousands of ground state molecules with a STIRAP efficiency
of about 50% on a shot-to-shot basis in the experimental setup.

Once the ground state molecule production was secured, we started to explore
how to best polarize them. We induced dipole moments of 0.5 D using static electric
fields, and even larger transition dipole moments using superpositions of the rota-
tional ground and first excited states, that can be excited using microwaves. With
spin-decoupled magic trapping we improved on the magic polarization angle trap-
ping technique that had already been demonstrated in 40K87Rb [100] by adding a
small dc electric field. This allowed us to bring down hyperpolarizability, the depen-
dence of polarizability on intensity, which had been limiting the rotational coherence
time in the previous experiment. The about one order of magnitude improved rota-
tional coherence time in Ramsey- or spin-echo experiments allowed us to observe that
it also depends on density. A moving-average cluster expansion model allowed us to
verify that this is due to the strong dipolar interactions in the system.

With these two milestones reached, the experiment is in an excellent position for
future experiments.
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7.1 Technical Upgrades

Although we routinely create several 1000 ground state molecules with the current
setup, there is room for improvement. First of all, the STIRAP efficiency could be in-
creased. With the current scheme, it is 50%, slightly worse than the 75% reported by
the 23Na40K experiment at Massachusetts Insitute of Technology (MIT) [24]. There are
essentially two options: The first is to switch to the alternative route to the ground
state demonstrated by the MIT group via a lower energy intermediate state with
partially resolved hyperfine structure. However, this would require an entire new
STIRAP laser system. I would therefore recommend to first try a different polariza-
tion scheme within our current route to the ground state. As we saw in the multi-
level STIRAP-simulation in Chapter 4, using σ+-polarization on both STIRAP beams
would be very advantageous. Therefore, it would certainly pay off to find a way to
realize this polarization scheme in future setup changes.

The STIRAP efficiency is only one bottle neck in producing a high phase-space
density quantum gas. However, most phase-space density is already lost before the
STIRAP sequence starts, because the efficiency for Feshbach molecule production is
only 10%. The most promising way to change that is Feshbach association in a 3D
optical lattice [40, 111]. Ideally, one would prepare lattice sites with exactly one atom
of each species, so that the subsequent Feshbach association would be very efficient.
Therefore, we have prepared a 3D optical lattice setup for our lab [112], which is
currently being tested.

Further, we also already work on an improved high-voltage setup for dc polarizing
the molecules and improving the spin-decoupling for rotational states in the magic
trap. We will also have the possibility to apply the spin-decoupled magic trapping
technique to the 3D lattice.

7.2 Future Experiments

With these new tools in place, several experiments can be performed. First, the mol-
ecule production can be improved in the lattice. The maximal molecule number that
could be reached in the seminal experiments on 40K87Rb molecules in an optical lat-
tice [113] was limited by to the small size of the unity-filling Mott insulator. Since the
bosonic sodium in 23Na40K is significantly lighter than Rubidium, we expect this to be
a less severe limitation in our system. Numerical calculations show, that a molecular
filling factor of 0.4 should be feasible in our 3D optical lattice. In addition to provid-
ing ideal starting conditions for Feshbach association, a deep lattice is also helpful to
increase the coupling strength on the pump transition. Since inelastic collisions be-
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tween Feshbach molecules are prevented, it should become possible to go to deeper
bound Feshbach states, which have higher Franck-Condon factors to the intermediate
state.

Once higher molecule numbers can be reached, it also becomes feasible to think
about evaporative cooling to further increase the phase-space density of the molec-
ular gas. This, however, requires elastic collisions between molecules for thermal-
ization. Therefore, the collisional two-body loss discussed in Section 4.3, that even
non-reactive molecules suffer from, should be investigated further. It has been sug-
gested to reduce the trap dimensionality and to use a static polarizing field perpen-
dicular to the trap, so that the strong repulsion between molecules prevents collisions
[75, 92, 114, 115]. Alternatively, dressing of the molecular rotation with blue detuned
microwaves might also lead to a shielding effect [116].

But even in a deep lattice, in which tunnelling of the molecules in not possible,
spin-models with long-range interactions can be studied [28] due to the dipolar spin-
exchange interaction. One very exciting proposal is about a condensate of the rota-
tional excitation [117, 118] in a 2D system. The coherence of a rotational excitation
in this system, as measured e.g. by Ramsey spectroscopy, will depend on the filling.
Below a critical filling of 0.15, the coherence is expected to reduce with the filling,
while it will diverge at larger fillings. This is due to a conservation of energy and
due to the relativistic dispersion of the spin-wave due to the long-range dipole-dipole
interaction.
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