Simultane Bestimmung des Östrogen- und HER2-Rezeptorstatus disseminierter Tumorzellen im Knochenmark bei Patientinnen mit primärem Mammakarzinom

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

vorgelegt von
Charlotte Ulrike Finkenzeller
aus
Schwetzingen
2019
Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter: Prof. Dr. med. Harald Sommer

Mitberichterstatter: PD Dr. Oliver J. Stötzer
Prof. Dr. Doris Mayr

Mitbetreuung durch die promovierte Mitarbeiterin: Dr. med. Bernadette Jäger

Dekan: Prof. Dr. med. dent. Reinhard Hickel

Tag der mündlichen Prüfung: 23.05.2019
Aus dem Promotionsprojekt ging folgende Orginalarbeit hervor:

Estrogen Receptor and HER2 Status on Disseminated Tumor Cells and Primary Tumor in Patients with Early Breast Cancer

Translational Oncology, December 2015
4.1.1. DTC Häufigkeitsverteilung pro Patientin 37
4.1.2. Häufigkeit detektiert DTC 38
4.1.3. ER- und HER2-Status der DTC je Patientin 41

4.2. Vergleich des ER- und HER2-Status zwischen DTC und PT 42
4.2.1. ER-Status 42
4.2.2. HER2-Status 43
4.2.3. Triple-negativer PT 44

4.3. Heterogenität des ER- und HER2-Status der DTC 44

4.4. Assoziation des ER- und HER2-Status der DTC mit klinisch pathologischen Faktoren 46

5. Diskussion 48
5.1. Kritische Bewertung der Studie 48
5.1.1. Detektionsort der MRD 48
5.1.2. Methode und Patientenkollektiv 49
5.2. Diskussion der Ergebnisse 51
5.2.1. Zusammenfassung unserer Ergebnisse 51
5.2.2. ER- und HER2-Status der DTC und Korrelation mit PT 52
5.2.2.1. ER-Status 52
5.2.2.2. HER2-Status 54
5.2.3. Heterogenität des ER- und HER2-Status der DTC 56
5.2.4. ER- und HER2-Status der DTC in Korrelation mit klinisch pathologischen Faktoren und Prognosefaktoren 57
5.2.5. Hypothese zur Erklärung der Divergenz der ER- und HER2-Expression zwischen PT und DTC und der Heterogenität von DTC 58
5.2.6. Auswirkung auf die Therapie 61

6. Schlussfolgerung 64
7. Zusammenfassung 65
8. Literaturverzeichnis 67
9. Abkürzungsverzeichnis 74
10. Abbildungs- und Diagrammverzeichnis 75
11. Tabellenverzeichnis 76
12. Eidesstattliche Versicherung 77
13. Danksagung 78
1. Einleitung

1.1. Hintergrund Mammakarzinom

Zu den etablierten prognostischen Faktoren des Mammakarzinoms gehören unter anderem das Alter, der Menopausenstatus, das Tumor-Nodus-Metastasen (TNM)-Stadium, das Grading, der histologische Tumortyp und der Hormonrezeptor- und HER2-Status [3]. Daneben wurde auch die prognostische Bedeutung von Tumorzellen im Knochenmark (KM) oder Blut in aktuellen Studien belegt [4-6].

Die Therapie des Mammakarzinoms richtet sich nach diesen Tumorcharakteristika des Primärtumors (PT). Neben der operativen Therapie und der Strahlentherapie hat die Systemtherapie einen hohen Stellenwert.
Gemäß Empfehlungen der S3-Leitlinie werden (neo-)adjuvante Chemotherapien in kurativer Absicht durchgeführt [7]. Eine Indikation besteht bei triple-negativen Tumoren, HER2-positiven Tumoren, Luminal-B-Tumoren, nodal-positiven Tumoren, Tumoren mit einer aggressiven Tumorbiologie und bei jungen Patientinnen (<35 Jahren) [9]. Der Standard ist eine anthrazyklin- und taxanhaltige Kombination.

Die Indikation zu einer endokrinen Therapie ist bei einem hormonrezeptorpositiven Mammakarzinom gegeben. Bei HER2-positiven Tumoren kommen HER2-zielgerichtete Therapeutika zum Einsatz.
1.2. Hormon- und HER2-Rezeptorstatus des Mammakarzinoms
1.2.1. Östrogenrezeptor-Status

Ein langer hormonell aktiver Zeitraum, d.h. eine lange Einwirkzeit der Östrogene auf die ERen des Brustdrüsengewebes, ist ein bekannter Risikofaktor des Mammakarzinoms. Die ER-Expression ist ein günstiger prognostischer und wichtiger prädiktiver Faktor.

Bis zu 80% der diagnostizierten Mammakarzinome weisen eine ER-Expression auf [13].

1.2.1.1. Bestimmung des Östrogenrezeptor-Status des Primärtumors
Der ER-Status des PT wird, an dem in Paraffin fixierten Operationsgewebe, mittels einer immunhistochemischen Färbung bestimmt. Für die ER-Expression wird der „Immunreaktiver Score nach Remmele und Stegner“ (IRS) angegeben [14].

<table>
<thead>
<tr>
<th>Punkte</th>
<th>Färbeintensität</th>
<th>Positive Zellkerne in Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine Reaktion</td>
<td>Keine</td>
</tr>
<tr>
<td>1</td>
<td>Schwache Reaktion</td>
<td>weniger als 10 %</td>
</tr>
<tr>
<td>2</td>
<td>Mäßige Reaktion</td>
<td>zwischen 10 und 50 %</td>
</tr>
<tr>
<td>3</td>
<td>Starke Reaktion</td>
<td>zwischen 51 und 80 %</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>mehr als 80 %</td>
</tr>
</tbody>
</table>

Tabelle 1 IRS nach Remmele und Stegner zur Bestimmung des ER-Status des PT [14]

Für die Bestimmung des IRS wird die Intensität der ER-Färbung und die Prozentzahl der Zellen mit nukleärer Reaktivität bewertet (Tabelle 1). Der IRS ergibt sich aus der vorherrschenden Färbeintensität multipliziert mit dem Prozentsatz positiver Zellen und kann Werte zwischen 0 und 12 annehmen.
Einleitung

In der Arbeit von Remmele und Stegner wird kein Wert angegeben, ab welchem IRS ein Tumor als positiv gewertet wird, bzw. bei welchen Werten man von einem ER-negativen Tumor spricht. Laut dem St. Gallen-Konsensus gelten Mammakarzinome als hormonsensitiv, wenn eine Anfärbung von mindestens 1% der Zellkerne nachgewiesen werden kann. Tumore mit 1-10% positiver Zellkerne gelten als schwach, bzw. fraglich positiv [15, 16]. Deshalb wird in dieser Arbeit ein Cut-Off von 10% bzw. ein IRS von 2 angenommen.

1.2.1.2. **Klinische Relevanz**

Der ER-Status wird bestimmt um hormonsensitive Mammakarzinome zu identifizieren, damit dieser mit in die Therapieentscheidung einfließt [17].

1.2.2. Progesteronrezeptor-Status

Progesteron ist ein weibliches steroidales Geschlechtshormon. Es existieren zwei Isoformen des PR, PR-A und PR-B. PRen werden durch Tumorzellen synthetisiert, die durch Östrogene stimuliert werden. Somit ist die Expression des PR an die ER-Expression gekoppelt [19-22].

Meist kommt es durch parakrine Mechanismen mittels Tumornekrosefaktoren wie zum Beispiel RANKL (receptor activator of nuclear factor k B ligand), selten Cyclin D1 vermittelt, zu einer Stimulierung der PRen und dadurch zu einer Proliferation der PR-positiven Epithelzellen der Mamma [23].

Beim Mammakarzinom kann Progesteron als proliferatives Hormon die Entstehung triggern [24]. In einer großen Pooled-Analyse konnte gezeigt werden, dass eine PR-Expression bei ca. zwei Drittel der Patientinnen mit einem Mammakarzinom vorliegt [25].

Die Bedeutung der PR-Expression im Hinblick auf Therapie und Prognose beim Mammakarzinom wird kontrovers diskutiert:

Eine bessere Prognose liegt bei Patientinnen mit einem PR-negativen Tumor im Vergleich zu einem PR-positiven vor [26].

Dahingegen hat eine Arbeit gezeigt, dass bei Patientinnen mit einem ER-negativen/PR-negativen Mammakarzinom ein deutlich kürzeres rezidivfreies Überleben vorliegt als bei Patientinnen mit einem ER-negativen/PR-positiven oder ER-positiven/PR-positiven Primärtumor [27].

Kontrovers zeigte eine Studie, dass Patientinnen mit mehr als 20% PR-positiven Tumorzellen bei einem Luminal A Tumor, ein besseres Gesamtüberleben aufweisen [28].

Zudem konnte gezeigt werden, dass PR-positive Tumore einen positiven prädiktiven Einfluss auf das Ansprechen einer antiöstrogenen Therapie haben und damit ein verbessertes Rezidivfreies- und Gesamtüberleben vorliegt [26, 29].

Patientinnen mit einem ER-negativen/PR-positiven/HER2-negativen Primärtumor haben eine deutlich bessere Prognose in Bezug auf das Gesamtüberleben und die rezidivfreie Zeit, wenn sie eine endokrine Therapie erhalten haben [30].
Einleitung

Die Höhe der Hormonrezeptorlevel scheint eine Rolle zu spielen. Hohe PR-Level bei Frauen mit einem ER-positivem Mammakarzinom gehen mit einem besseren krankheitsfreien- und Gesamtüberleben einher [31].

1.2.3. HER2-Status

Bis zu 30% aller Mammakarzinome zeigen eine HER2-Überexpression [32, 33]. HER2 ist ein Tyrosinkinase erb-B Rezeptor. Bei Aktivierung des transmembranösen epidermalen Wachstumsfaktorrezeptors werden Information an den Zellkern gesendet (RAS-MAP-Kinase Signalkaskade). Dort führt diese Aktivierung unter anderem zu vermehrten Mitosen und damit zur Zellproliferation, sowie zur Inhibition von Apoptosen [32].

Der HER2-Status gehört, wie der ER-Status, zu den Prognosefaktoren des Mammakarzinoms. Das Vorhandensein eines HER2-positiven Tumors geht mit einem kürzeren rezidivfreien Überleben einher [34, 35]. Ein positiver HER2-Status des Mammakarzinoms wird als Neigung zu einem aggressiveren Tumorwachstum und als Zeichen einer Chemotherapieresistenz angesehen [33, 36]. Insgesamt hat sich die Prognose jedoch durch die neuen Therapiemöglichkeiten bei HER2-positiven Mammakarzinomen deutlich verbessert (siehe Kapitel 1.2.3.2) [36].
1.2.3.1. **Bestimmung des HER2-Status des PT**

Der HER2-Status beim Primärtumor der Patientinnen dieser Arbeit wurde immunhistochemisch bestimmt. Dazu wurde der sogenannte Hercep Test (DAKO, Glastrup, Dänemark) verwendet [17]. Dieser erlaubt einen quantitativen Nachweis der HER2-Expression in Brustkrebsgewebe. Die HER2-Expression wird in einem Score von 0 bis +++ ausgedrückt (Tabelle 2).

<table>
<thead>
<tr>
<th>Score</th>
<th>Beschreibung</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine/Färbereaktion oder ≤10% der invasiven Tumorzellen mit Markierung der Zellmembran</td>
<td>Negativ</td>
</tr>
<tr>
<td>+</td>
<td>>10% der invasiven Tumorzellen mit schwacher inkompletter Markierung der Zellmembran</td>
<td>Negativ</td>
</tr>
<tr>
<td>++</td>
<td>>10% der invasiven Tumorzellen mit zirkulärer Markierung der Zellmembran; Färbeintensität gering bis mittelgradig oder stark zirkuläre Markierung der Zellmembran in <30%</td>
<td>Schwach positiv (geringer HER2-Überexpression)</td>
</tr>
<tr>
<td>+++</td>
<td>>30% der invasiven Tumorzellen mit zirkulärer Markierung der Zellmembran; Färbeintensität stark</td>
<td>Stark positiv (starke HER2-Überexpression)</td>
</tr>
</tbody>
</table>

Tabelle 2 Bewertung HER2-Immunhistochemie [17]

In dieser Arbeit wurden Tumore mit einem Score von +++ als HER2-positiv gewertet. Im Falle eines ++ Wertes wurde eine Fluoreszenz-In-Situ-Hybridisierung (FISH) (Pathvysion Kit, Vysis, Downers Grove, IL) durchgeführt um eine HER2-Amplifikation nachzuweisen. Wenn diese vorlag wurden HER2 ++ Werte als positiv gewertet. HER2-Scores von 0, + und ++ mit negativer FISH-Untersuchung wurden als HER2-negative Tumoren gewertet [37].

Seit der Erhebung des HER2-Status des Primärtumors in dieser Arbeit kam es zu einer Veränderung der Bewertung der HER2-Immunhistochemie und für die In-Situ-Hybridisierung. Der Cut-off für den Score 3+ wurde von 30% auf 10% reduziert [38] (Tabelle 3).

<table>
<thead>
<tr>
<th>Score</th>
<th>Beschreibung</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine/schwache inkomplette Membranreaktion ≤10% der Tumorzellen</td>
<td>Negativ</td>
</tr>
</tbody>
</table>
Einleitung

+	Schwache inkomplette Membranreaktion >10% der Tumorzellen	Negativ
++	Schwache/mäßige zirkuläre Membranreaktion >10% der Tumorzellen oder starke zirkuläre Membranreaktion ≤10% der invasiven Tumorzellen	zweifelhaft
+++	Gleichmäßige intensive zirkuläre Membranreaktion ≥10% der Tumorzellen	positiv

Tabelle 3 Aktuell empfohlener HER2-Testalgorithmus für die Immunhistochemie [38]

Auch wurde der Grenzwert für die In-Situ-Hybridisierung angepasst [38].

Die Einteilung in HER2-positiver oder HER2-negativer Primärtumor erfolgte bei Diagnosestellung gemäß den alten Empfehlungen.

1.2.3.2. **Klinische Relevanz**

Der HER2-Status des Mammakarzinoms wird in der histopathologischen Untersuchung routinemäßig bestimmt, da dieser mit in die Therapieentscheidung einfließt [7].

HER2 bietet einen guten Angriffspunkt für HER2-zielgerichtete Therapien. Entsprechend ist bei diesen Patientinnen eine Therapie mit Antikörpern (AK) wie Trastuzumab und/oder Pertuzumab indiziert [7, 36, 39, 40]. Durch diese neuen Therapeutika hat sich unter anderem die Prognose metastasierter HER2-positiver Tumoren deutlich verbessert und ist vergleichbar mit HER2-negativen Tumoren [41].

Dabei ist Trastuzumab ein monoklonaler humanisierter AK, der sich gegen die extrazelluläre Domäne (Subdomäne IV) des HER2 richtet [42, 43]. Durch Bindung von Trastuzumab an HER2 kommt es zu einer ligandenunabhängigen Inhibierung der Signalkaskade und dadurch zur Verhinderung der Formation von HER2-Homodimeren [40]. Ein Parameter für das Ansprechen einer Trastuzumabtherapie scheint eine starke Färbung des HER2 in einer immunhistochemischen Untersuchung zu sein [16].

Pertuzumab ist ebenfalls ein monoklonaler humanisierter AK. Dieser greift im Vergleich zu Trastuzumab an einem anderen Epitop der extrazellulären Domäne (Subdomäne II) des HER2 an. Er verhindert die Heterodimerization von HER2 mit anderen Rezeptoren.
Einleitung
durch ligandenabhängige Inhibierung der Signalkaskade und führt so zu einem langsameren Tumorwachstum [40].

Eine weitere Alternative wäre Lapatinib. Dabei handelt es sich um einen Tyrosin-Kinasen-Inhibitor, welcher an die intrazelluläre Domäne HER1 und HER2 bindet und damit die Aktivierung der Signalkaskade blockiert [43].
1.2.4. Änderung des Rezeptorstatus im Krankheitsverlauf

Es ist bekannt, dass sich Metastasen bei Patientinnen mit einem primären Mammakarzinom bezüglich ihres Rezeptorstatus vom PT unterscheiden können. Exemplarisch zeigen die in Tabelle 4 aufgeführten Studien, dass sich der ER- und HER2-Status während der Erkrankung verändern kann und sich Metastasen phänotypisch vom PT unterscheiden können [13, 44-46].

<table>
<thead>
<tr>
<th>Studie</th>
<th>n</th>
<th>Veränderung ER (%)</th>
<th>Veränderung HER2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson [13]</td>
<td>137</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Amir [44]</td>
<td>94</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Lindström [46]</td>
<td>459</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>Jensen [45]</td>
<td>119</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 4 Diskrepanz des ER- und HER2-Status zwischen PT und Rezidiv und/oder Metastasen, n= Anzahl Patientinnen

Meist findet dabei ein Wechsel von einem initial positiven Hormonrezeptorstatus des PT zu einem negativen Hormonrezeptorstatus der Metastasen statt. Eine Differenz des ER-Status des PT und eines lokalen Rezidiv und/oder Metastasen liegt in einem Drittel der Fälle vor [46]. Für den HER2-Status wurden seltener, zwischen 3 und 14%, Diskrepanzen zwischen dem PT und einem Rezidiv, respektive Metastasen beschrieben [13, 45, 46].

Einleitung

1.3. Tumorzeldisseminierung

1.3.1. Klinische Bedeutung der Tumorzeldisseminierung

Die Streuung einzelner Tumorzellen bei malignen Erkrankungen bezeichnet man als Tumorzeldisseminierung. Im Blutkreislauf werden sie als zirkulierende Tumorzellen (CTC) bezeichnet. Ein Bruchteil dieser Zellen ist in der Lage sich in tumorfernen Körperkompartimenten, unter anderem im KM, anzusiedeln und dort zu persistieren. Diese werden als disseminierte Tumorzellen (DTC) bezeichnet [47, 48]. Der Nachweis von DTC und/oder CTC wird als Surrogatmarker für die Minimal Residual Disease (MRD) angesehen [49].

Bei 15 bis 36% der Patientinnen in einem frühen Brustkrebsstadium (Stadium I-II, keine Fernmetastasierung) konnten DTC im KM nachgewiesen werden [5, 50-54]. Bei Patientinnen in einem lokal fortgeschrittenen Stadium (IIB-III, keine Fernmetastasierung) sogar in bis zu 74% der Fälle [55].

Einleitung

Abzugrenzen sind DTC von Mikrometastasen. DTC gelten als eine Vorstufe von Mikrometastasen, da bei ihnen noch keine Stromainvasion, kein Gefäßkontakt und keine Proliferation stattgefunden hat [68].

Auch ist bekannt, dass sich der ER- und HER2-Status der DTC vom PT unterscheiden kann. Eine Übereinstimmung des ER-Status des PT und der DTC lag in lediglich 28% vor [74]. Bezüglich des HER2-Status wurde eine Diskordanz zwischen PT und DTC in 28% der Fälle beobachtet [66].

Die standardmäßige Detektion und Charakterisierung von DTC, insbesondere die Bestimmung des ER- und HER2- Status, wäre im Hinblick auf mögliche neue Therapieansätze basierend auf der MRD von großem Interesse [76] und könnte Einblicke in wesentliche Schritte der Metastasenentstehung bieten [69, 70, 77].
Einleitung

1.3.2. Detektion disseminierter Tumorzellen

1.3.2.1. Nachweismethode disseminierter Tumorzellen

Da das Vorkommen von DTC ein seltenes Ereignis ist, ca. 1-2 pro 1 Million mononukleärer Zellen im KM, findet eine initiale Anreicherung der Zellen statt [78]. Der Nachweis von DTC erfolgt meist nach einer Dichtegradientenzentrifugation, Filtration oder immunomagnetischen Separation [57, 79].

Zur Detektion der DTC im KM existieren verschiedene Methoden [67]. Die am häufigsten in der Literatur beschriebene Methode ist die immunzytochemische Detektion.

Bei CK werden zwei Subtypen unterschieden, die Zuordnung erfolgt je nach isoelektrischem Punkt und Molekulargewicht. Zum sauren Subtyp I zählen die CK 9-20 (Molekulargewicht 40kD bis 64kD) und zu dem basischen/neutraalen Subtyp 2 die CK 1-8 (Molekulargewicht 52kD bis 68kD). Die Grundeinheit des Zytokeratinfilaments, wird aus einem Tetramer aus jeweils zwei neutralen und zwei sauren CK gebildet [80, 85]. Die Zytokeratinexpression in Geweben ist somit recht heterogen, sodass AK gegen CK für den Nachweis von epithelialer Tumorzelldissemination des PT eingesetzt werden können [86]. In humanen Epithelien sind mehr als 20 verschiedene CK bekannt. Beim Mammakarzinom werden vor allem A45-B/B3 monoklonale AK benutzt um spezifisch Tumorzellen zu detektieren. Dieser richtet sich gegen die Heterodimere CK 8/18 und CK 8/19 sowie gegen gemeinsame Epitope verschiedener CK [54, 58, 78].

Bei der sogenannten alkalischen Phosphatase- Anti-Alkalische Phosphatase (APAAP) Färbung, werden epithelspezifische Antigene, wie zum Beispiel CK,
Einleitung

Oberflächenmoleküle oder Wachstumsfaktoren nachgewiesen. Dazu bindet an das nachzuweisende Antigen ein AK, an den im Anschluss ein oder mehrere APAAP-Komplexe angekoppelt werden und wodurch eine Verstärkung der Reaktion bewirkt wird.

Eine weitere immunzytochemische Methode zu Nachweis und Charakterisierung von DTC ist die Immunfluoreszenzfärbung. Das Ziel dabei ist es, spezifische Strukturen mithilfe von mit Fluoreszenzfarbstoffen markierten AK sichtbar zu machen. Bei der direkten Methode wird das spezifische Antigen für die zu untersuchende Struktur der Zelle mit einem fluorochrom markierten AK direkt gekoppelt.

Bei der indirekten Immunfluoreszenzfärbung, welche in der vorliegenden Arbeit angewendet wurde, wird zuerst das nachzuweisende Epitop auf der Zielstruktur mit einem spezifischen AK versehen (Primärantikörper). Erst durch den zweiten Schritt erfolgt die eigentliche Färbung. Der mit Fluorochrom markierte AK (Sekundärantikörper), der spezifisch an den Primärantikörper bindet, wird auf die Probe gegeben. Diese Methode ist sensitiver als die direkte Immunfluoreszenzfärbung, da mehrere Sekundärantikörper an einen Primärantikörper binden können und es somit zu einer Signalverstärkung kommt.

Des Weiteren gibt es für den Nachweis von DTC molekularbiologische Methoden, wie zum Beispiel die RT-PCR, Fluoreszenz In-situ-Hybridisierung (FISH), die Amplifikationen tumorspezifischer Antigen der Zellen nachweisen [87].
1.3.2.2. Bewertungskriterien für disseminierte Tumorzellen

2. Zielsetzung und Fragestellung

Der Hormonrezeptor- und HER2-Status des PT gehört neben operativen und weiteren histopathologischen Ergebnissen zu den klassischen Prognosefaktoren des Mammakarzinoms und bietet Angriffspunkte für eine endokrine- oder HER2-zielgerichtete Therapie. Studien konnten zeigen, dass sich der ER- oder HER2-Status eines Rezidivs, von Metastasen oder DTC von dem des PT unterscheiden kann [13, 44-46].

Die Detektion und Charakterisierung von DTC ist eine vielversprechende Möglichkeit um eine zusätzliche Risikoeinschätzung bei Patientinnen mit Mammakarzinom durchzuführen. Der Nachweis und die Charakterisierung dieser Zellen könnten das Verständnis der Tumor- und Metastasenentstehung verbessern und diese als mögliches Ziel einer personalisierten Therapie dienen.

Hinsichtlich neuer individualisierter Therapieoptionen ist der ER- und HER2-Status der DTC ebenfalls von großem Interesse. Die aktuellen Therapieregime richten sich nach dem PT. Die Bestimmung des Phänotyps der DTC, zusätzlich zur Phänotypisierung des korrespondierenden PT, könnte neue Angriffspunkte für die Therapie des Mammakarzinoms bieten. Der Nachweis und die Charakterisierung von DTC könnten auch als Indikator für ein Therapieansprechen, sowie als Echtzeit Kontrollmarker („liquid biopsy“) wichtige Informationen liefern und in der klinischen Routine hilfreich sein.

In dieser retrospektiven Arbeit wurde erstmals eine dreifache indirekte Immunfluoreszenzfärbung an KM von 54 Patientinnen mit einem primären Mammakarzinom durchgeführt. Der ER-Status und die HER2-Expression der DTC im KM wurden simultan mit CK als Marker für Tumorzellen bestimmt.
Zielsetzung und Fragestellung

Die Ziele dieser Arbeit waren:

1) Etablierung einer dreifachen Immunfluoreszenzfärbung zur simultanen Bestimmung des ER- und HER2-Status der DTC zusammen mit CK.

2) Korrelation des ER- und HER2-Status der DTC mit dem ER- und HER2-Status des PT.

3) Bestimmung der Heterogenität der ER- und HER2-Expression der DTC, bei Patienten bei denen mehr als eine DTC im KM detektiert wurde.

4) Untersuchung von Zusammenhängen zwischen bekannten etablierten Risikofaktoren und dem ER- und HER2-Status der DTC.
3. Patienten, Material und Methoden

3.1. Patientenkollektiv

Patienten, Material und Methoden

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasives Mammakarzinom ED 2006-2009</td>
<td>Zweitmalignom</td>
</tr>
<tr>
<td>DTC im APAAP Primärscreening</td>
<td>Maligne Tumorerkrankung innerhalb der letzten 5 Jahre vor Diagnosestellung</td>
</tr>
<tr>
<td>>4 Objektträger à 10⁶ Zellen</td>
<td>Neoadjuvante Chemotherapie</td>
</tr>
<tr>
<td>KMP zum Zeitpunkt Primäroperation in LMU Frauenklinik, Campus Innenstadt</td>
<td>Unvollständige Dokumentation</td>
</tr>
<tr>
<td>Schriftliche Einverständniserklärung</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5 Ein- und Ausschlusskriterien des Patientenkollektivs

3.1.1. Alter

![Diagramm 1 Alter bei Erstdiagnose](image)

Patienten, Material und Methoden

3.1.2. Menopausenstatus

<table>
<thead>
<tr>
<th>Menopausenstatus</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prämenopausal</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>39</td>
<td>72</td>
</tr>
</tbody>
</table>

Tabelle 6 Menopausenstatus; n= Anzahl

Bei Erstdiagnose waren 15 Patientinnen (28%) prämenopausal, 39 Patientinnen (72%), befanden sich bei der Diagnosestellung in der Postmenopause.

3.1.3. Tumorstadium

Bei den in dieser Arbeit eingeschlossenen Patientinnen zeigten sich folgende Verteilung der Tumorstadien:

<table>
<thead>
<tr>
<th>Tumorstadium</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT1b</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>pT1c</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>pT2</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>pT3</td>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabelle 7 Tumorstadium; n= Anzahl

Die meisten Tumoren wurden in einem pT1 Stadium diagnostiziert (54%). In 33% der Fälle lag ein pT2 Stadium vor. Lediglich 13% der Tumore, wurden im Stadium pT3 diagnostiziert.
3.1.4. Lymphknotenbeteiligung

<table>
<thead>
<tr>
<th>Lymphknotenbeteiligung</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN0</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>pN1</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>pN2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>pN3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>nicht bekannt</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabelle 8 Lymphknotenbeteiligung; n= Anzahl

Knapp zwei Drittel der Fälle (65%) waren nodalnegativ. Ein pN1 Stadium lag in 18%, der Fälle vor. Ein pN2 oder pN3 Stadium konnte lediglich in 6% bzw. 9% der Fälle beobachtet werden.

3.1.5. Tumorhistologie

Tabelle 9 zeigt die Verteilung der histologischen Typen, die bei unserem Patientinnenkollektiv vorlagen.

<table>
<thead>
<tr>
<th>Histologischer Typ</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duktal</td>
<td>40</td>
<td>74</td>
</tr>
<tr>
<td>Lobulär</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Andere</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>· Adenosquamös</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Medullär</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Muzinös</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Papillär</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9 Tumorhistologie; n= Anzahl
In rund dreiviertel der Fälle (74%) lag ein Mammakarzinom vom duktalen Typ vor.

Sei der Probegewinnung und der Durchführung der Experimente wurde die Nomenklatur für das vormals duktale Mammakarzinom geändert, da es keine ausreichende Evidenz dafür gibt, dass diese Karzinome aus duktalem Gewebe entstehen. Diese werden nun als „Invasives Karzinom ohne speziellen Typ“ (no special type=NST) klassifiziert [7].

Mammakarzinome vom lobulären Typ wurden bei knapp einem Fünftel der Patientinnen beobachtet.

3.1.6. Grading

<table>
<thead>
<tr>
<th>Grading</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>G2</td>
<td>31</td>
<td>58</td>
</tr>
<tr>
<td>G3</td>
<td>18</td>
<td>33</td>
</tr>
</tbody>
</table>

Tabelle 10 Grading; n= Anzahl

Bei über der Hälfte der Patientinnen in dieser Arbeit (58%) wiesen die Tumoren einen mittleren Malignitätsgrad (G2) auf. Schlecht differenzierte Tumore (G3) waren in einem Drittel der Fälle nachweisbar. Gut differenzierte Tumoren (G1) konnten lediglich bei 9% der Patientinnen detektiert werden.

3.1.7. Hormonrezeptor- und HER2-Status des Primärtumors

3.1.7.1. Östrogenrezeptor-Status

<table>
<thead>
<tr>
<th>ER-Status</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>positive</td>
<td>42</td>
<td>78</td>
</tr>
</tbody>
</table>

Tabelle 11 ER-Status; n= Anzahl

Ein ER-positiver PT lag bei 42 (78%) Patientinnen vor. Lediglich 22% der Tumore waren ER negativ.
3.1.7.2. **Progesteronrezeptor-Status**

<table>
<thead>
<tr>
<th>PR-Status</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>positive</td>
<td>34</td>
<td>63</td>
</tr>
</tbody>
</table>

Tabelle 12 PR-Status; n= Anzahl

PR konnte bei 63% der PT nachgewiesen werden. 37% der Tumore waren PR negativ.

3.1.7.3. **HER2-Status**

<table>
<thead>
<tr>
<th>HER2-Status (Immunhistochemie und FISH-Test)</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>negativ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>46,3</td>
</tr>
<tr>
<td>+</td>
<td>12</td>
<td>22,2</td>
</tr>
<tr>
<td>++ FISH negativ</td>
<td>11</td>
<td>20,4</td>
</tr>
<tr>
<td>positiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISH positiv</td>
<td>2</td>
<td>3,7</td>
</tr>
<tr>
<td>+++</td>
<td>4</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Tabelle 13 HER2-Status; n= Anzahl

Die meisten Patientinnen hatten einen negativen HER2-Status (n=48). Bei 6 Patientinnen war HER2-positiv, d.h. +++ bzw. ++ mit Amplifikationen in der FISH-Analyse.

3.1.7.4. **Triple negativer Tumor**

Von den 54 Patientinnen wiesen 10 einen tripel-negativen-PT (ER, PR und HER2-negativ) auf.
3.2. Material

3.2.1. Laborutensilien

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller/Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deckgläser 24x40mm, #1</td>
<td>Gerhard Menzel GmbH, Braunschweig, Deutschland</td>
</tr>
<tr>
<td>Falconröhrchen 15ml</td>
<td>Greiner bio-one, Frickenhausen, Deutschland</td>
</tr>
<tr>
<td>Falconröhrchen 50ml</td>
<td>Becton Dickinson, Franklin Lakes, New Jersey, USA</td>
</tr>
<tr>
<td>Färbe kammer</td>
<td>Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, München, Deutschland</td>
</tr>
<tr>
<td>Gefrierschrank -20°C ComfortNoFrost</td>
<td>Liebherr, Bulle, Schweiz</td>
</tr>
<tr>
<td>Gefrierschrank -80°C HeraFreeze</td>
<td>Thermo Scientific, Langenselbold, Deutschland</td>
</tr>
<tr>
<td>Kurzzeitmesser</td>
<td>LLG, Meckenheim, Deutschland</td>
</tr>
<tr>
<td>Neubauer-Zählkammer improved</td>
<td>Marienfeld Superior, Lauda-Königshofen, Deutschland</td>
</tr>
<tr>
<td>Objektträgerkasten nach Hellendahl mit Erweiterung (76x26mm)</td>
<td>Glaswarenfabrik Karl Hecht GmbH&Co KG "Assistent", Sondheim/Rhön, Deutschland</td>
</tr>
<tr>
<td>Pipetten 0,5-10µl, 10-100µl und 100-1000µl</td>
<td>Eppendorf AG, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Safe-Lock Eppendorf Tubes 0.5 ml</td>
<td>Eppendorf AG, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Spannplatte 1662</td>
<td>Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland</td>
</tr>
<tr>
<td>Spitzen für Pipetten 0,5-10µl, 100-1000µl</td>
<td>Sarstedt AG&Co., Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Thermofrost-Plus Objektträgerglas (25x75x1,0mm)</td>
<td>Gerhard Menzel GmbH, Braunschweig, Deutschland</td>
</tr>
<tr>
<td>Zytokammer 1662 für Spannplatte 1666</td>
<td>Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 14 Laborutensilien
3.2.2. Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller, Ortschaft, Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxioCam MR</td>
<td>Carl Zeiss, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>Axiophot Mikroskop</td>
<td>Carl Zeiss, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>Filterset für Axiophot Mikroskop:</td>
<td>Carl Zeiss, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>HC480/17, HC556/20, HC370/36</td>
<td>Carl Zeiss, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>Heraeus Multifuge 3SR Plus</td>
<td>Thermo Scientific, Part of Thermo Fisher Scientific, Schwerte, Deutschland</td>
</tr>
<tr>
<td>LMX Mixer VTX-3000L</td>
<td>LMS Consult GmbH & Co. KG, Brigachtal, Deutschland</td>
</tr>
<tr>
<td>Zentrifuge Rotina 380</td>
<td>Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland</td>
</tr>
<tr>
<td>Zentrifuge Universal 30F</td>
<td>Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 15 Geräte
3.2.3. Chemikalien und Pufferlösungen

<table>
<thead>
<tr>
<th>Chemikalien und Pufferlösungen</th>
<th>Hersteller/Standort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dako Antibody Diluent with Background Reducing Components</td>
<td>Dako North America Inc., Carpinteria, USA</td>
</tr>
<tr>
<td>DAKO Pen</td>
<td>Dako Denmark A/S. Glostrup, Dänemark</td>
</tr>
<tr>
<td>Ficoll-Paque</td>
<td>Healthcare, München, Deutschland</td>
</tr>
<tr>
<td>Fomaldehyd 3,5-3,7% neutral gepuffert mit Methanol stabilisiert</td>
<td>Otto Fischer GmbH&Co. KG, Saarbrücken, Deutschland</td>
</tr>
<tr>
<td>Hanks’ Salt Solution</td>
<td>Biochrom AG, Berlin, Deutschland</td>
</tr>
<tr>
<td>Human Erythrocyt Lysing Kit</td>
<td>R&D Systems, Inc., Minneapolis, USA</td>
</tr>
<tr>
<td>Kaisers Glycerogelatine für Mikroskopie</td>
<td>MerckKGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Large Volume Ultra V Block (ready-to-use)</td>
<td>Lab Vision Corporation, Subsidiary of Thermo Fisher Scientific, Fremont, USA</td>
</tr>
<tr>
<td>Methanol zur Analyse -20°C</td>
<td>MerckKGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>PBS (phosphate buffered saline) Dubelco</td>
<td>Biochrom AG, Berlin, Deutschland</td>
</tr>
<tr>
<td>Trypan Blue Sol.</td>
<td>Sigma-Aldrich Chemie GmbH, Taufkirchen, Deutschland</td>
</tr>
</tbody>
</table>

|Tabelle 16 Chemikalien und Pufferlösungen|
3.2.4. Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>receptor (clone Sp1), rabbit monoclonal ab</td>
<td>Lab Vision Corporation, Subsidiary of Thermo Fisher Scientific, Fremont, USA</td>
</tr>
<tr>
<td>Goat antimouse IgG (H+L) ML DyLight488, A492, E510</td>
<td>Jackson Immunoresearch Laboratories, Inc., West Grove, USA</td>
</tr>
<tr>
<td>Goat antirabbit IgG (H+L) Fab Fragments Cy3, A550, E570</td>
<td>Jackson Immunoresearch Laboratories, Inc., West Grove, USA</td>
</tr>
<tr>
<td>Goat antirabbit IgG (H+L) ML Coumarin AMCA, A350, E450</td>
<td>Jackson Immunoresearch Laboratories, Inc., West Grove, USA</td>
</tr>
<tr>
<td>Mouse IgG1 A45 B/B8 - Anti Human Cytokeratin 200µg/ml, 500µl in PBS with 0,05% Sodium Azide</td>
<td>Microment AG, München, Deutschland</td>
</tr>
<tr>
<td>Poly clonal Rabbit-Anti-Human c-erB-2-Oncoprotein 0,32g/L</td>
<td>Dako Denmark A/S., Glostrup, Dänemark</td>
</tr>
</tbody>
</table>

Tabelle 17 Antikörper

3.2.5. Zelllinien

<table>
<thead>
<tr>
<th>Zelllinien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>ECACC, Porton Down, Großbritannien</td>
</tr>
<tr>
<td>Sk-BR-3</td>
<td>ATCC, Wesel, Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 18 Zelllinien
3.3. Methoden

3.3.1. Knochenmarkpunktion
Alle Patientinnen wurden vor der Knochenmarkpunktion (KMP) ausführlichen, schriftlich über den Ablauf des Verfahrens und über Risiken des Eingriffs aufgeklärt. Das Knochenmarkaspirat, ca. 10-20ml, wurde zum Zeitpunkt der primären Brustoperation, nach Einleitung der Intubationsnarkose, aus der Spina iliaca anterior superior, unter sterilen Bedingungen gewonnen. Anschließend, wurde das KM im tumorimmunologischen Labor der Frauenklinik der LMU, Campus Innenstadt, innerhalb von 24 Stunden wie in Kapitel 3.3.2. beschrieben aufgearbeitet.

3.3.2. Aufarbeitung des Knochenmarkaspirat und Herstellung der Objektträger
Das KM der Patientinnen wurde in 50ml Falconröhrchen überführt und mit Hanks’Salt Solution auf 50ml aufgefüllt. Nach einer Zentrifugation (170g, 10 Minuten bei Raumtemperatur) trennte sich die Fettphase (Fettpartikel, Plasma, Detritus) von der Zellsuspension. Der obere Überstand, die Fettphase, wurde bis auf das Sediment abpipettiert und verworfen. In einem 15ml Röhrchen wurde anschließend 8ml Ficoll vorgegeben, über dass das Sediment langsam überschichtet wurde. Es folgt eine Zentrifugation (1105g, 20 Minuten, 4°C), bei der sich die Tumorzellen zusammen mit Knochenmarkzellen, Leukozyten und peripheren Blutbestandteilen im Interphasenring anreicherten. Die durch Zentrifugation entstandene Ober- und die Interphase wurde in ein neues 50ml Falcon Röhrchen gegeben, welches mit PBS auf 50ml aufgefüllt und anschließend erneut zentrifugiert wurde (535g, 10 Minuten, 4°C). Nach der Zentrifugation wurde der Überstand abgegossen. Sollten nach diesen Schritten ein zu großer Anteil von Erythrozyten vorhanden sein, wurde durch die Zugabe von 1-2ml Erythrozytenlysepuffer die Lösung 5 Minuten inkubiert und anschließend mit PBS auf 50ml aufgefüllt bevor sich eine Zentrifugation (535g, 10 Minuten, 4°C) anschloss. Nach dem Entfernen des eventuell zu hohen Erythrozytenanteils wurde für alle Knochenmarksproben in gleicher Weise fortgefahren: Das Sediment wurde in 2-5ml PBS resuspendiert. Damit dieselbe Anzahl von Zellen, eine Million, auf jeden Objektträger vorhanden ist, wurde die Suspension mit Trypanblaulösung gemischt um in der
Patienten, Material und Methoden

Neubauer-Zählkammer die Gesamtzellzahl und somit das nötige Volumen für die Herstellung der Objektträger zu ermitteln. Folgende Formeln wurden verwendet:

\[
\text{Gesamtzellzahl} = \text{Volumen (ml)} \times \text{ermittelte Zellzahl} \times 2 \times 10000
\]

Die Formel zur Bestimmung des Volumens lautet:

\[
\text{Volumen (ml)} = \frac{10^6 \times \text{Gesamtvolumen}}{\text{Gesamtzellzahl}}
\]

Das errechnet Volumen wurde in 15ml Röhrchen überführt und auf 6ml mit PBS aufgefüllt um 12 Objektträger à 500μl Suspension herzustellen. Die Objektträger wurde mit der Knochenmarknummer und dem Datum der Herstellung beschriftet, mit jeweils 500μl Zellösung befüllt und anschließend zentrifugiert (500 rounds per minute (rpm), 5 Minuten, Raumtemperatur). Der Überstand wurde abpipettiert und die Objektträger bei Raumtemperatur zwölf bis vierundzwanzig Stunden getrocknet. Anschließend wurden die fertigen Objektträger bei -80°C gelagert.

3.3.3. Herstellung der Positivkontrollen

Um sicherzustellen, dass Patientinnen mit ER- und HER2-negative DTC auch tatsächlich einen negativen Hormon- und HER2-Status der DTC haben und dies nicht durch einen Fehler im Färbevorgang hervorgerufen wurde, wurde bei jeder Färbung Positivkontrollen mitgefärbt. Als Positivkontrolle für den HER2-Status wurden Zellen der Sk-Br-3 Zelllinien verwendet. Für die Positivkontrollen des ER-Status wurden Zellen der Zelllinie MCF-7 verwendet. Alle Positivkontrollen wurden nach dem folgenden Protokoll hergestellt (Abbildung 1 zeigt die Zelllinien nach Durchführung der Immunfluoreszenzfärbung):

MCF-7 Zellen, bzw. SK-Br3-Zellen, wurden zu Beginn mittels dem Vorplexmischer VTX-3000L durchmischt und anschließend zentrifugiert (700g, 10 Minuten, 4°C). Die Anzahl der Zellen auf dem Objektträger sollte, wie bei den Objektträgern der Patientinnen auch, eine Million Zellen betragen. Durch die Zahl der Zellen im Zellmedium und dem Volumen wurde die Zahl der herzustellenden Objektträger bestimmt (siehe Formeln aus Kapitel 3.2.2.).
Nach der Zentrifugation wurde das Zellmedium abgeschüttet und die Zellen mit entsprechenden PBS Volumen resuspendiert, sodass pro 1ml, der auf einen Objektträger pipettiert wurde die Anzahl der Zellen 1 Million beträgt. Die Objektträger wurden beschriftet und mit 1ml der Zellpellet/PBS-Suspension befüllt. Nach einer Zentrifugation der Objektträger (500rpm, 5Minuten, Raumtemperatur) wurde der Überstand abpipettiert und die Objektträger über Nacht bei Raumtemperatur getrocknet, bevor sie bei -80°C bis zu Ihrer Verwendung gelagert wurden.

Abbildung 1 Kontrollzelllinien MCF-7 (A) und SkBr3 (B)

3.3.4. Färbeprotokoll für Patientenkollektiv
Die hier angewendete Methode zur DTC-Detektion und zur simultan Bestimmung des ER- und HER2-Status, basiert auf einer CTC-Immunfluoreszenz-Färbung [89].

Die Objektträger wurden fünf Minuten bei Raumtemperatur aufgetaut und die Zellen mit neutral gepufferten Formalin (15 Minuten) fixiert. Nachdem die Objektträger zwei mal fünf Minuten gewaschen wurden, wurde die Membran der Zellen auf den
Patienten, Material und Methoden

Objektträgern durch das einwirken von Methanol (-20°C, zwei Minuten) permeabilisiert. In der sich anschließenden Zeit, in der die Objektträger bei Raumtemperatur 15 Minuten trockneten, wurden die Zellen auf den Objektträger der Patientinnen mit dem Dako-Pen umrundet. Ebenso die Positivkontrollen, die jedoch zusätzlich durch den Dako-Pen in zwei Hälften geteilt wurden. Durch die somit entstandene wasserabweichende Barriere um die Zellen kann gewährleistet werden gleichförmige immunhistochemische Färbeergebnisse zu erzielen und die Menge an Reagenzien zu reduzieren.

Patienten, Material und Methoden

Alle Objektträger wurden 30 Minuten getrocknet und abschließend mit Glycerogelatine und Deckgläsen verdeckelt. In einer dunklen Umgebung wurden sie bis zur Analyse innerhalb der nächsten beiden Tage bei Raumtemperatur aufbewahrt.

3.3.5. Analyse

Für die Identifikation der DTC orientierte man sich an den Empfehlungen von Fehm et al. für die standardisierte Detektion von DTC [67].

Zytomorphologie und Phänotyp disseminierter Tumorzellen

<table>
<thead>
<tr>
<th>Kriterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergrößerter Zellkern</td>
</tr>
<tr>
<td>Verhältnis Zellkern/Zytoplasma >1</td>
</tr>
<tr>
<td>Granulierter Zellkern (unregelmäßige Struktur des Zellkerns)</td>
</tr>
<tr>
<td>Große Nukleoli</td>
</tr>
<tr>
<td>Zellkluster</td>
</tr>
<tr>
<td>Starkes und/oder unregelmäßig gefärbtes Zytoplasma</td>
</tr>
<tr>
<td>Immunzytologische Färbung bedeckt zumindest partiell den Zellkern</td>
</tr>
<tr>
<td>Einzelne Zytokeratinfilamente sind erkennbar (netzartige Struktur)</td>
</tr>
</tbody>
</table>

Tabelle 19 Kriterien zur Identifikation von Tumorzellen [67]

<table>
<thead>
<tr>
<th>Klassifizierung von DTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positiv</td>
</tr>
<tr>
<td>CK-positive/immunzytochemisch positive Zellen, Morphologie entsprechend einer DTC</td>
</tr>
<tr>
<td>Negativ</td>
</tr>
<tr>
<td>Kein Nachweis immunzytochemisch positiver Zellen oder Nachweis von immunzytochemisch-positiven Zellen ohne charakteristische DTC-Morphologie (z.B. hämatopoetische Zellen)</td>
</tr>
</tbody>
</table>

Tabelle 20 Klassifizierung von DTC [67]

Die weitere Charakterisierung einer DTC wurde mit den anderen Filtern und den charakteristischen Fluoreszenzsignalen durchgeführt (siehe Tabelle 21). Der ER-Status einer DTC wurde als positiv gewertet, wenn eine nukleäre Färbung vorhanden war. Der HER2-Status einer DTC wurde, entsprechend den Kriterien zur HER2-Bestimmung von Solomayer et al [90], als positiv gewertet, wenn eine komplette membranöse Färbung vorhanden war. Sowohl für den ER- als auch den HER2-Status muss die Färbung bei derselben Zell aufgetreten sein, die als DTC positiv definiert wurde.
Patienten, Material und Methoden

<table>
<thead>
<tr>
<th>Lokalisation der Färbung</th>
<th>AK</th>
<th>Anregungsspektrum der Fluoreszenzfärbstoffe</th>
<th>Emissionsspektrum der Fluoreszenzfärbstoffe</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK membranös</td>
<td>Goat antimouse IgG (H+L) ML DyLight488</td>
<td>492nm</td>
<td>510nm</td>
<td>HC480/17</td>
</tr>
<tr>
<td>ER nukleär</td>
<td>Goat antirabbit IgG (H+L)Fab</td>
<td>550nm</td>
<td>570nm</td>
<td>HC556/20</td>
</tr>
<tr>
<td>HER2 membranös</td>
<td>Goat antirabbit IgG (H+L) ML Coumarin AMCA</td>
<td>350nm</td>
<td>450nm</td>
<td>HC370/36</td>
</tr>
</tbody>
</table>

Tabelle 21 Lokalisation der Färbung, Anregungs- und Emissionsspektren

Alle CK positive Zellen, sowie deren ER- und HER2-Status wurden dokumentiert. Die Koordinate der CK positiven Zelle wurde zusätzlich mit Hilfe der am Objekttisch des Mikroskops vorhandenen Skalierung notiert.

Mit der Kamera AxioCam MR und der AxioVision 4.8.2 Software wurden Fotos in einer vierzigfachen Vergrößerung unter standardisierten Bedingungen aufgenommen. Die Fotoaufnahmen wurden zu Dokumentationszwecken, zur Verifizierung der erhobenen Charakteristika und zur Diskussion bei fraglichen Befunden herangezogen. Für die Fotos wurde für den jeweiligen Filter (Phase, CK, ER, HER2) nach mehrmaligen Färben der Zelllinien SK-Br-3 und MCF-7 eine standardisierte Belichtungszeit festgelegt. Diese betrug entsprechend 700ms (Phase), 500ms (HC370/36), 2500ms (HC480/17) und 3500ms (HC556/20).
3.4. Statistische Auswertung
Alle statistischen Analysen erfolgte mit dem „Statistical Package for the Social Sciences“ (SPSS Version 22, IBM, USA) für Windows.

4. Ergebnisse

4.1. Disseminierte Tumorzellen

4.1.1. DTC Häufigkeitsverteilung pro Patientin

Diagramm 2 Anzahl der DTC pro Patientin

Es wurde zwischen einer und 95 DTC pro Patientin detektiert. Die mediane Anzahl DTC pro Patientin war 13.

Bei den meisten Patientinnen konnten nur wenig DTC in den \(2 \times 10^6\) pro Patientin gefärbten Zellen detektiert werden. Bei der Mehrzahl der Patientinnen (n=35) wurden zwischen einer und 20 DTC detektiert. Lediglich bei 4 Patientinnen konnten mehr als 50 DTC nachgewiesen werden.
4.1.2. Häufigkeit detektierter DTC

Bei den 54 Patientinnen wurden 1082 DTC detektiert. Insgesamt wurden 180 ER-positive DTC und 81 HER2-positive DTC detektiert. Die meisten DTC (79%) waren ER-negativ / HER2-negativ.

43 (4%) der insgesamt 1082 detektierten DTC waren ER-negativ / HER2-positiv und 142 (13%) der DTC waren ER-positiv / HER2-negativ. Lediglich 38 (4%) aller detektierten DTC waren sowohl ER-positive / HER2-positiv.

Abbildung 2 bis 5 zeigen exemplarisch DTC aus unserem Patientenkollektiv.
Ergebnisse

Abbildung 2
Typische CK-positive DTC Beispiele aus dem Patientenkollektiv

<table>
<thead>
<tr>
<th>Phase</th>
<th>CK</th>
<th>ER α</th>
<th>HER2</th>
</tr>
</thead>
</table>

Abbildung 3
Typische CK/ER-positive DTC aus dem Patientenkollektiv, verschiedene Intensitäten der ER-Expression
Ergebnisse

<table>
<thead>
<tr>
<th>Phase</th>
<th>CK</th>
<th>ER α</th>
<th>HER2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 4 Typische CK/HER2-positive DTC aus dem Patientenkollektiv

<table>
<thead>
<tr>
<th>Phase</th>
<th>CK</th>
<th>ER α</th>
<th>HER2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5 Typische CK/ERα/HER2-positive DTC aus dem Patientenkollektiv
4.1.3. ER- und HER2-Status der DTC je Patientin

Eine Patientin wurde als HER2- oder ER-positiv gewertet, wenn mindestens eine HER2-, bzw. ER-positive DTC detektiert wurde.

<table>
<thead>
<tr>
<th>DTC</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER-positiv</td>
<td>40</td>
<td>74</td>
</tr>
<tr>
<td>HER2-positiv</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>ER-negativ</td>
<td>51</td>
<td>94</td>
</tr>
<tr>
<td>HER2-negativ</td>
<td>52</td>
<td>96</td>
</tr>
</tbody>
</table>

Tabelle 22 Anzahl der Patientinnen mit ≥1 ER- oder HER2-positiver oder negativer DTC

94% der Patientinnen hatten mindestens eine ER-negative DTC und 74% mindestens eine ER-positive DTC. Hinsichtlich des HER2-Status konnte gezeigt werden, dass die meisten Patientinnen mindestens eine HER2-negative DTC hatten (96%). Bei 44% der Patientinnen konnte mindestens eine HER2-positive DTC nachgewiesen werden.

Diagramm 4 Anzahl der Patientinnen mit ≥1 DTC

ER-positive / HER2-positive Zellen lagen bei 14 (26%) der Patientinnen vor. DTC die ER-negativ / HER2-negativ waren, konnte bei fast allen Patientinnen (93%, n=50) detektiert werden. Von diesen hatten 10 Patientinnen ausschließlich ER-negative / HER2-negative DTC.
4.2. Vergleich des ER- und HER2-Status zwischen DTC und PT

4.2.1. ER-Status

<table>
<thead>
<tr>
<th>Tumor</th>
<th>ER-Status</th>
<th>nur ER-negative DTC (%)</th>
<th>≥1 ER-positive DTC (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER-negativ, n (%)</td>
<td>6 (11)</td>
<td>6 (11)</td>
<td></td>
<td>12 (22)</td>
</tr>
<tr>
<td>ER-positiv, n (%)</td>
<td>8 (15)</td>
<td>34 (63)</td>
<td></td>
<td>42 (78)</td>
</tr>
<tr>
<td>Total, n (%)</td>
<td>14 (26)</td>
<td>40 (74)</td>
<td></td>
<td>54 (100)</td>
</tr>
</tbody>
</table>

Tabelle 23: Korrelation des ER-Status der DTC mit dem ER-Status des PT

Die Korrelationsrate zwischen dem ER-Status des PT und der DTC lag bei 74%.

42 Patientinnen in dieser Arbeit hatten einen ER-positiven PT. 34 von diesen hatten mindestens eine ER-positive DTC. Bei 39 Patientinnen mit einem ER-positiven PT konnte mindestens eine ER-negative DTC nachgewiesen werden. 8 der Patientinnen mit ER-positiven PT hatten ausschließlich ER-negative DTC im KM.

Bei Patientinnen, die einen ER-positiven PT hatten, wurden signifikant häufiger mindestens eine ER-positive DTC im Vergleich zu Patientinnen mit einem ER-negativen PT detektiert (Chi-Quadrat Test, $x^2=4,7$, $p=0,031$).

Von den insgesamt 12 Patientinnen mit einem ER-negativen PT hatten alle Patientinnen mindestens eine ER-negative DTC. Ausschließlich ER-negative DTC bei ER-negativen PT konnten in 50% der Fälle beobachtet werden. Bei der anderen Hälfte der Patientinnen mit einem ER-negativen PT konnte mindestens eine ER-positive DTC detektiert werden.

Der ER-Status von DTC (zum Beispiel mindestens eine ER-positive DTC) war nicht mit dem IRS des PT assoziiert (Chochran-Armitage Test for Trend, $p=0,208$).
4.2.2. HER2-Status

<table>
<thead>
<tr>
<th>Tumor</th>
<th>HER2-Status</th>
<th>DTC</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nur HER2-negative DTC (%)</td>
<td>≥1 HER2-positive DTC (%)</td>
<td></td>
</tr>
<tr>
<td>HER2-negativ, n (%)</td>
<td>26 (48)</td>
<td>22 (41)</td>
<td>48 (89)</td>
</tr>
<tr>
<td>HER2-positiv, n (%)</td>
<td>4 (7)</td>
<td>2 (4)</td>
<td>6 (11)</td>
</tr>
<tr>
<td>Total, n (%)</td>
<td>30 (55)</td>
<td>24 (45)</td>
<td>54 (100)</td>
</tr>
</tbody>
</table>

Tabelle 24 Korrelation des HER2-Status der DTC mit dem HER2-Status des PT

Die Korrelationsrate zwischen dem HER2-Status des PT und der DTC lag bei 52%.

Sechs Patientinnen in dieser Arbeit hatten einen HER2-positiven PT. Bei zwei dieser konnte mindestens eine HER2-positive DTC detektiert werden. Bei allen Patientinnen mit einem HER2-positiven PT konnte mindestens eine HER2-negative DTC detektiert werden. Bei vier (7%) aller Patientinnen mit einem HER2-positiven PT konnten ausschließlich HER2-negative DTC im KM nachgewiesen werden.

Von den insgesamt 48 Patientinnen mit einem HER2-negativen PT konnten bei 22 mindestens eine HER2-positive DTC detektiert werden. ausschließlich HER2-negative DTC wurden bei 26 Patientinnen detektiert.

Bei 46 der insgesamt 48 Patientinnen mit einem HER2-negativen PT und bei allen Patientinnen mit einem HER2-postiven PT konnte mindestens eine HER2-negative DTC detektiert werden.

Die Wahrscheinlichkeit mindestens eine HER2-positive DTC zu detektieren war nicht signifikant mit dem HER2-Status des PT assoziiert (Chi-Quadrat Test, $x^2=0,34$, $p=0,56$).
4.2.3. Triple-negativer PT

In dieser Studie hatten 10 Patientinnen einen triple-negativen PT. Die Mehrzahl der Patientinnen mit einem triple-negativen PT (70%) hatte mindestens eine ER- oder HER2-positive DTC, bzw. eine ER-positive / HER2-positive DTC. Bei 90% der Patientinnen wurde mindestens eine DTC detektiert die ER-negativ / HER2-negativ war.

4.3. Heterogenität des ER- und HER2-Status der DTC

<table>
<thead>
<tr>
<th>PT</th>
<th>DTC Status</th>
<th>1 DTC Profil</th>
<th>2 DTC Profile</th>
<th>3 DTC Profile</th>
<th>4 DTC Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER+/HER2-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ER+/HER2+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ER-/HER2-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ER-/HER2+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabelle 25 Kombinierter ER-/HER2-Status der DTC und Vergleich mit dem ER-/HER2-Status des PT; + = positiv, - = negativ, n = Anzahl der Patientinnen mit mindestens einer ER- oder HER2-positiven/negativen DTC

Die Heterogenität des kombinierten ER- und HER2-Status der DTC und die Assoziation mit dem ER- und HER2-Status des PT werden in Tabelle 25 gezeigt. Der ER-/HER2-Status der DTC einer Patientin wurde als heterogen angesehen, wenn sich die detektierten DTC im KM einer Patientin im Hinblick auf den ER-/HER2-Status des PT unterschieden. Es gibt vier verschiedene ER-/HER2-Profile: ER-positiv/HER2-negativ, ER-positiv/HER2-positiv, ER-negativ/HER2-negativ und ER-negativ/HER2-positiv. Bei 48 Patientinnen aus unserem Patientenkollektiv, wurde mehr als eine DTC detektiert. Bei 40 (83%) dieser Patientinnen konnte eine heterogene ER- und HER2-Expression nachgewiesen werden. 22 (46%) dieser Patientinnen hatten DTC mit zwei verschiedenen ER-/HER2-Profile. Drei verschiedene ER-/HER2-Profile konnten bei acht (17%) der Patientinnen nachgewiesen werden. Alle vier verschiedenen Möglichkeiten der ER- und HER2-Expression konnten bei zehn Patientinnen (25%) nachgewiesen werden. Sieben der acht Patientinnen mit
mehr als einer DTC und einer heterogenen ER- und HER2-Expression (zum Beispiel alle DTC mit demselben ER-/HER2-Profil) hatten ausschließlich ER-negative/HER2-negative DTC (Spanne 3-31 DTC). Ausschließlich ER-positive / HER2-positive DTC konnte nur bei einer der 8 Patientinnen, bei denen eine homogene ER-/HER2-Expression vorlag, nachgewiesen werden.

Sieben der 10 Patientinnen mit einem triple-negativen PT hatte mindestens eine DTC welche ER-positiv, HER2-positiv oder ER-positiv/HER2-positiv war. Andererseits konnten bei neun der Patientinnen mit einem triple-negativen PT mindestens eine DTC nachgewiesen werden, die weder ER-positiv noch HER2-positiv war.

In Abbildung 6 sind exemplarisch DTC mit allen vier möglichen ER- und HER2-Expressionsprofilen dargestellt, die bei einer Patientin detektiert wurden.

Abbildung 6 Heterogenität der DTC bei einer Patientin mit allen vier möglichen Profilen der DTC (A: CK positive DTC, B: CK und ER-positiv DTC, C: CK und HER2-positiv DTC, D: CK, ER und HER2-positiv DTC)
4.4. Assoziation des ER- und HER2-Status der DTC mit klinisch pathologischen Faktoren

Der ER-Status von DTC war signifikant mit dem ER-Status des PT assoziiert (Chi-Quadrat-Test, p-Werte >0,031). ER-positive DTC waren meist, jedoch nicht statistisch signifikant, bei PR-positiven PT zu finden (Chi-Quadrat-Test, p=0,070) und bei Patientinnen mit einem low-grade Tumor (Chi-Quadrat-Test, p=0,059). Zu weiteren klinischpathologischen Faktoren gab es keine significante Assoziation (Chi-Quadrat-Test, alle p-Werte >0,05).

Im Gegensatz dazu gab es keinerlei Assoziationen zwischen dem HER2-Status der DTC (zum Beispiel das Vorhandensein von mindestens einer HER2-positiven DTC) und klinisch pathologischen Faktoren (Chi-Quadrat-Test, alle p-Werte >0,4).

<table>
<thead>
<tr>
<th>Faktor</th>
<th>n</th>
<th>≥1 ER-positive DTC</th>
<th>p</th>
<th>≥1 HER2-positive DTC</th>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menopausenstatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prämenopausal</td>
<td>15</td>
<td>11</td>
<td>20,4</td>
<td>0,939</td>
<td>17</td>
<td>31,5</td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>39</td>
<td>29</td>
<td>53,7</td>
<td></td>
<td>7</td>
<td>13,0</td>
</tr>
<tr>
<td>Stadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1</td>
<td>29</td>
<td>24</td>
<td>44,4</td>
<td></td>
<td>13</td>
<td>24,1</td>
</tr>
<tr>
<td>pT2</td>
<td>18</td>
<td>11</td>
<td>20,4</td>
<td>0,433</td>
<td>8</td>
<td>14,8</td>
</tr>
<tr>
<td>pT3</td>
<td>7</td>
<td>5</td>
<td>9,3</td>
<td></td>
<td>3</td>
<td>5,6</td>
</tr>
<tr>
<td>Lymphknotenbeteiligung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>35</td>
<td>28</td>
<td>51,9</td>
<td></td>
<td>15</td>
<td>27,8</td>
</tr>
<tr>
<td>pN1</td>
<td>10</td>
<td>7</td>
<td>12,9</td>
<td></td>
<td>5</td>
<td>9,3</td>
</tr>
<tr>
<td>pN2</td>
<td>3</td>
<td>1</td>
<td>1,9</td>
<td>0,382</td>
<td>2</td>
<td>3,8</td>
</tr>
<tr>
<td>pN3</td>
<td>5</td>
<td>3</td>
<td>5,6</td>
<td></td>
<td>1</td>
<td>1,9</td>
</tr>
<tr>
<td>nicht bekannt</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>5</td>
<td>5</td>
<td>9,3</td>
<td>0,059</td>
<td>1</td>
<td>1,9</td>
</tr>
<tr>
<td>G2</td>
<td>31</td>
<td>25</td>
<td>46,3</td>
<td></td>
<td>14</td>
<td>25,9</td>
</tr>
<tr>
<td>G3</td>
<td>18</td>
<td>10</td>
<td>18,5</td>
<td></td>
<td>9</td>
<td>16,7</td>
</tr>
</tbody>
</table>
Tabelle 26 Korrelation des ER- und HER2-Status der DTC mit klinisch pathologischen Faktoren; n = Anzahl der Patientinnen, % = Prozent des Gesamtkollektivs, p = p-Wert (n.s. = nicht signifikant bei p>0,05, signifikant bei p<0,05)

<table>
<thead>
<tr>
<th>Faktor</th>
<th>n</th>
<th>≥1 ER-positive DTC</th>
<th>≥1 HER2-positive DTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>p</td>
</tr>
<tr>
<td>Histologie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duktal</td>
<td>40</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>Lobulär</td>
<td>10</td>
<td>9</td>
<td>16,7</td>
</tr>
<tr>
<td>Andere</td>
<td>4</td>
<td>4</td>
<td>7,4</td>
</tr>
<tr>
<td>ER-Status des PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>12</td>
<td>6</td>
<td>11,1</td>
</tr>
<tr>
<td>Positiv</td>
<td>42</td>
<td>34</td>
<td>63,0</td>
</tr>
<tr>
<td>PR-Status des PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>20</td>
<td>12</td>
<td>22,2</td>
</tr>
<tr>
<td>Positiv</td>
<td>34</td>
<td>28</td>
<td>51,9</td>
</tr>
<tr>
<td>HER2-Status des PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>48</td>
<td>36</td>
<td>66,7</td>
</tr>
<tr>
<td>Positiv</td>
<td>6</td>
<td>4</td>
<td>7,4</td>
</tr>
</tbody>
</table>
5. Diskussion

5.1. Kritische Bewertung der Studie

5.1.1. Detektionsort der MRD

Tumorzellen können sowohl im Blut als auch im KM nachgewiesen werden [52]. Bei einer KMP werden selten Komplikationen beschrieben [91]. Es darf jedoch nicht vergessen werden, dass es sich hierbei um einen invasiven und für die Patientinnen teilweise unangenehmen Eingriff handelt. Blut kann leichter und weniger invasiv als KM gewonnen werden. Studien zeigen jedoch, dass CTC seltener detektiert werden als DTC [52, 79, 92-94]. Dies könnte durch das ungünstige Tumorzell/Blut-Verhältnis und die damit im Vergleich zur DTC-Detektion erschwerte CTC-Detektion bedingt sein, Pierga et al. bestätigten dies [58]. Zudem scheint die Prognose des Mammakarzinoms eher vom Vorliegen der DTC als der CTC abhängen [92, 94].

Bezüglich des Phänotyps scheint es komplexere Zusammenhänge zwischen DTC und dem PT als zwischen CTC und dem PT zu geben [52]. Eine Divergenz des Phänotyps zwischen DTC und dem PT konnte häufiger beobachtet werden als zwischen CTC und dem PT. Krishanamurthy et al. zeigten, dass HER2 Genamplifikationen sowohl bei CTC als auch bei DTC vorkommen können. Dabei konnten HER2-positive Zellen häufiger im KM als im Blut detektiert werden und eine Diskordanz des HER2-Status von DTC und PT wurde häufiger bei DTC (28,2%) als bei CTC (15%) beobachtet [66].

Entsprechend haben wir die Detektion von DTCs aus KM gewählt und die KMP mit der Narkose der im Rahmen der Behandlung notwendigen Brust-OP kombiniert, um die Belastung für die Patientin so gering als möglich zu halten.
5.1.2. Methode und Patientenkollektiv

Um Fehler bei der Durchführung und Auswertung der Experimente zu vermeiden wurden alle Arbeitsschritte in einem standardisierten Vorgehen durchgeführt.

Die Subjektivität der Untersucher bei der Analyse der Objektträger stellt jedoch einen Schwachpunkt der Methode dar. Um möglichst alle DTC zu erfassen, wurden in dieser Arbeit die Objektträger in zwanzigfacher Vergrößerung gescreent. Durch die Analyse der
Objektträger durch zwei unabhängige Betrachter und das Hinzuziehen einer weiteren Person in unklaren Fällen sollte die Sensitivität der Analyse gesteigert werden. Anhand der Fotodokumentation der DTC konnten die Zellen bei Unklarheiten, vor allem im Hinblick auf den ER- und HER2-Status, im Nachhinein evaluiert werden, wodurch die Spezifität gesteigert wurde.

Zu beachten ist, dass es bei häufigem und langem Mikroskopieren zu einem Verblauen der Färbung kommen kann. Dies ist insbesondere bei der Fotodokumentation der Zellen durch lange Belichtungszeiten relevant. Deswegen erfolgte die Fotodokumentation durch den zweiten Betrachter, um auch nur schwach fluoreszierende Zellen zu detektieren.

5.2. Diskussion der Ergebnisse

5.2.1. Zusammenfassung unserer Ergebnisse

Insgesamt wurden bei unserem Kollektiv von 54 Patientinnen 1082 DTC nachgewiesen. Die durchschnittliche Anzahl an detektierten Tumorzellen war 20 (zwischen 1 und 95 DTC pro Patientin).

Die meisten detektierten DTC waren ER-negativ oder HER2-negativ, bzw. ER-negativ / HER2-negativ (79%). 93% der Patientinnen hatte mindestens eine ER-negative / HER2-negative DTC, 74% mindestens eine ER-positive und 44% mindestens eine HER2-positive DTC. Mindestens eine DTC die ER-positiv / HER2-positiv war, konnte bei 26% der Patientinnen detektiert werden.

Die Übereinstimmung des ER-Status der DTC und des PT war 74%. 34 der 42 Patientinnen mit einem ER-positiven PT hatten mindestens eine ER-positive DTC und bei fast allen Patientinnen konnte mindestens eine ER-negative DTC detektiert werden. Lag eine ER-negativer PT vor, hatte die Hälfte der Patientinnen mindestens eine ER-negative DTC.

Die Übereinstimmung des HER2-Status der DTC und des PT war 52%. Bei einem Drittel der Patientinnen mit einem HER2-positiven PT konnte mindestens eine HER2-positive DTC und bei allen Patientinnen mindestens eine HER2-negative DTC detektiert werden. Bei 48 Patientinnen lag ein HER2-negativer PT vor, davon hatten 54% der Patientinnen ausschließlich HER2-negative DTC im KM.

Eine heterogene ER- und HER2-Expression der DTC bei Patientinnen mit mehr als einer DTC lag in 83% der Fälle vor. Es wurden alle möglichen Kombinationen des ER- und HER2-Status der DTC beobachtet, unabhängig von dem Status des entsprechenden PT.

Der ER-Status der DTC war nicht mit dem des PT assoziiert. Die Wahrscheinlichkeit mindestens eine HER2-positive DTC zu detektieren war nicht mit dem HER2-Status des PT assoziiert.
5.2.2. ER- und HER2-Status der DTC und Korrelation mit PT

5.2.2.1. ER-Status

In der Arbeit „ERalpha-status of disseminated tumor cells in bone marrow of primary breast cancer patients“ [74] bestimmten Fehm et al. mittels einer doppelten Immunfluoreszenzfärbung den ER-Status von DTC im KM und verglichen ihn mit dem des PT. Hier zeigten die meisten DTC einen ER-negativen Status, obwohl der PT meist ER-positiv war. 12 der 88 Patientinnen mit ER-positiven PT hatten ER-positive DTC. Die Übereinstimmung des ER-Status des PT mit dem der DTC betrug 28%. Ditsch et al. untersuchten ebenfalls den ER-Status der DTC und verglichen ihn mit dem des PT. In Einklang mit der Arbeit von Fehm et al. waren die meisten detektierten DTC ER-negativ, trotz einem in der Mehrzahl der Fälle ER-positiven PT. Lediglich 18% der Patientinnen mit einem ER-positiven PT hatten ER-positive DTC im KM. Die Konkordanz zwischen PT und DTC betrug 47% [95].

<table>
<thead>
<tr>
<th>Studie</th>
<th>n</th>
<th>ER+ PT</th>
<th>ER- PT</th>
<th>ER+ DTC</th>
<th>ER- DTC</th>
<th>Konkordanz PT und DTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehm et al. [74]</td>
<td>107</td>
<td>88</td>
<td>19</td>
<td>13</td>
<td>94</td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditsch et al. [95]</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigene Studie</td>
<td>54</td>
<td>42</td>
<td>12</td>
<td>40</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 27 Vergleich des ER-Status des PT mit dem der DTC, n = Anzahl, + = positiv, - = negativ

Wir konnten ebenfalls zeigen, dass die meisten detektierten DTC ER-negativ (83%) sind, trotz einem in der Mehrzahl der Fälle ER-positiven PT (78%). Eine Übereinstimmung des Hormonrezeptorstatus des PT und der DTC konnte auch in dieser Arbeit gezeigt werden. Allerdings war diese größer (74%) als in den Arbeiten von Fehm et al. und Ditsch et al. (28% und 47%). Dies könnte dadurch bedingt sein, dass es nur eine sehr geringe
Übereinstimmung im ER-positiven Setting in der Arbeit von Fehm et al. gab. Bei lediglich 11% der Patientinnen mit einem ER-positiven PT konnten in der Arbeit von Fehm et al. ER-positive DTC detektiert werden (vs. 81% in dieser Arbeit). Eine weitere Erklärung könnte sein, dass diese Methode sensitiver für die ER-Detektion ist, als die von Fehm et al. beschriebene. Das kleine Patientenkollektiv in der Arbeit von Ditsch et al. (n=17) kann eine weitere Begründung für die größere Konkordanz in dieser Arbeit sein.

Trotz der hohen Konkordanz des ER-Status zwischen PT und DTC bei den meisten Patientinnen in dieser Arbeit unterscheidet sich der ER-Status der DTC von dem des PT bei 26% der Patientinnen (bei Fehm et al. und Ditsch et al. sogar 72% bzw. 53%). Patientinnen mit einem ER-negativen Tumor und ER-positiven DTC (in dieser Arbeit 11% der Patientinnen) könnten möglicherweise von einer endokrinen Therapie profitieren, die sich nicht nur nach dem Primarius richtete, sondern auch den Phänotyp der DTC berücksichtigte.

Die Hormon- und HER2-Rezeptorexpression der DTC wurde in dieser Arbeit mit der Expression in einem Tumorschnitt verglichen. Es gilt zu diskutieren ob einzelne Zellen einen guten Einblick in die Tumorbiologie gegeben
Hypothesen die erklären könnten, warum die meisten detektierten DTC ER-negativ sind und in der Mehrzahl der Fälle eine Divergenz des ER-Status zwischen PT und DTC beobachtet werden kann, werden in Kapitel 5.2.3 ausgeführt.

5.2.2.2. **HER2-Status**

Bezüglich des HER2-Status gibt es eine relevante Anzahl an Studien, die sich mit dem Vergleich PT und DTC befassen (siehe Tabelle 28).

<table>
<thead>
<tr>
<th>Studie</th>
<th>n</th>
<th>HER2+ PT</th>
<th>HER2- PT</th>
<th>HER2+ DTC</th>
<th>HER2- DTC</th>
<th>Konkordanz HER2 PT und DTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krawczyk [50]</td>
<td>31</td>
<td>5</td>
<td>26</td>
<td>8</td>
<td>23</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16%</td>
<td>84%</td>
<td>26%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>Solomayer [90]</td>
<td>45</td>
<td>13</td>
<td>32</td>
<td>20</td>
<td>25</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29%</td>
<td>71%</td>
<td>44%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Becker [96]</td>
<td>105</td>
<td>26</td>
<td>79</td>
<td>22</td>
<td>83</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25%</td>
<td>75%</td>
<td>21%</td>
<td>79%</td>
<td></td>
</tr>
<tr>
<td>Braun [97]</td>
<td>24</td>
<td>7</td>
<td>17*</td>
<td>15</td>
<td>9</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29%</td>
<td>71%</td>
<td>62,5%</td>
<td>37,5%</td>
<td></td>
</tr>
<tr>
<td>Hartkopf [63]</td>
<td>151</td>
<td>27</td>
<td>124</td>
<td>79</td>
<td>72</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
<td>82%</td>
<td>52%</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>Krishnamurthy [66]</td>
<td>78</td>
<td>11</td>
<td>67</td>
<td>17</td>
<td>61</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14%</td>
<td>86%</td>
<td>22%</td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>Eigene Studie</td>
<td>54</td>
<td>6</td>
<td>48</td>
<td>24</td>
<td>30</td>
<td>52%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11%</td>
<td>89%</td>
<td>45%</td>
<td>55%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 28 Korrelation HER2-Status DTC mit PT; * HER2+ und ++ wurden als negativ gewertet; n = Anzahl, + = positiv, - = negativ
In den in Tabelle 28 aufgeführten Studien sind die meisten detektierten DTC HER2-negativ (48% bis 79%). Auch in unserer Arbeit waren die meisten aller detektierten DTC HER2-negativ (95%), bei 55% der Patientinnen konnten HER2-negative DTC nachgewiesen werden. Lediglich in der Arbeit von Braun et al. wurden mehr HER2-positive DTC (62,5%) als HER2-negative DTC (37,5%) detektiert. Eine Erklärung hierfür könnte die doppelte Bestimmung des HER2 (intrazelluläre und extrazelluläre Domäne) sein und damit eine Erhöhung der Sensitivität der Färbung.

Wie beim ER-Status konnte in dieser Arbeit auch beim HER2-Status eine Konkordanz zwischen dem PT und der DTC beschrieben werden. Diese war allerdings geringer als beim ER-Status. Die Übereinstimmungsraten des HER2-Status der DTC und des PT lag bei 52%. Sie ist im Vergleich zu anderen Studien eher niedrig (51% bis 77%).

In der Studie von Solomayer et al. konnten bei 60% der Patientinnen mit einem HER2-negativen PT HER2-positive DTC detektiert werden. Auch in der Studie von Hartkopf et al. konnte gezeigt werden, dass DTC häufiger eine HER2-Überexpression zeigen als der korrespondierende PT. In der Studie von Hartkopf et al. wurde zudem bei 51% der Patientinnen mit einem HER2-negativen PT mindestens eine HER2-positive DTC detektiert. In unserer Studie war dies bei 46% der Patientinnen der Fall. Ein noch geringerer Anteil wurde von Becker et al. beschrieben. Bei lediglich 15% bzw. 21% der Patientinnen wurden HER2-positive DTC detektiert (mittels Immunzytochemie bzw. RT-PCR). Becker et al. beschreiben, dass lediglich bei 13% der Patientinnen mit einem HER2-negativen PT HER2-positive DTC im KM nachweisbar sind.

Hypothesen die erklären können, warum die meisten detektierten DTC HER2-negativ sind und warum eine Divergenz des HER2-Status zwischen PT und DTC bei vielen Patientinnen vorliegt, werden in Kapitel 5.2.5 ausgeführt.

Dies ist im Hinblick auf eine sekundäre Systemtherapie von Relevanz. Patientinnen mit HER2-negativen PT, jedoch HER2-positiven DTC könnten möglicherweise von einer HER2-zielgerichteten Antikörpertherapie profitieren. Überlegungen über Konsequenzen unserer Ergebnisse auf die Therapie werden in Kapitel 5.2.6 angestellt.
5.2.3. Heterogenität des ER- und HER2-Status der DTC

Betrachtet man die Patientinnen bei denen nur ein DTC Profil detektiert wurde, zeigte sich dass die meisten DTC ER-negativ/HER2-negativ waren unabhängig vom ER-/HER2-Status des Primärtumors. In weniger als der Hälfte der Fälle spiegelten die DTC den ER-bzw. den HER2-Status des Primärtumors wieder. Da DTC in den meisten Fällen in dieser Arbeit ein heterogene Rezeptorexpression zeigen, könnte man bei den Fällen mit nur einer einzelnen Tumorzelle gegeben falls auch die fehlende Korrelation zum Primärtumor erklären.

In der Studie von Fehm et al. wurden bei 38 der 107 Patientinnen mehr als eine DTC im KM detektiert. Eine heterogene ER-Expression lag bei 26% der Patientinnen vor. Bei den meisten (74%) konnten ausschließlich ER-negative DTC detektiert werden und bei keiner der Patientinnen konnten nur ER-positive DTC nachgewiesen werden [74]. Auch für den HER2-Status konnte von Solomayer et al. gezeigt werden, dass in 41% der Fälle eine heterogene HER2-Expression vorlag, wenn mehr als eine DTC detektiert wurde [90]. Ebenfalls konnte in der Arbeit von Krawczyk et al. eine Heterogenität der DTC bzgl. des HER2-Status in 43% der Fälle nachgewiesen werden [50].

DTC haben nicht in allen Fällen eine homogene ER- und HER2-Expression, so können DTC mit unterschiedlichen ER- und HER2-Profilen bei einer Patientin auftreten. Verschiedene Erklärungen werden hierfür in Kapitel 5.2.5. diskutiert.

Diese Ergebnisse könnten für die Therapie des Mammakarzinoms relevant sein. Durch die Heterogenität der DTC und somit unterschiedlichen Rezeptorprofilen, könnte erklärt sein, warum nicht alle DTC auf eine endokrine oder HER2-zielgerichtete Therapie ansprechen.
In Kapitel 5.2.6 wird auf die Konsequenzen unserer Ergebnisse auf die Therapie eingegangen.

5.2.4. ER- und HER2- Status der DTC in Korrelation mit klinisch pathologischen Faktoren und Prognosefaktoren

Bezüglich des ER-Status der DTC konnte in der Studie von Fehm et al. keine Korrelation mit den etablierten prognostischen Faktoren einschließlich des ER-Status des PT festgestellt werden [74]. In der Studie von Krawczyk et al. hingegen wurde eine Korrelation zwischen DTC im KM und einem ER-negativen PT festgestellt [50]. In unserer Arbeit konnte eine signifikante Korrelation des ER-Status der DTC mit dem ER-Status des PT nachgewiesen werden (p=0,031). Es zeigte sich zudem der Trend, dass ER-positive DTC scheinbar häufiger bei niedrig differenzierten Tumoren zu finden sind (p=0,059).

Für den HER2-Status der DTC konnte in dieser Arbeit keine Korrelationen mit klinisch pathologischen Faktoren gefunden werden. In der Arbeit von Hartkopf et al. konnte gezeigt werden, dass eine HER2-Überexpression bei DTC häufiger als beim korrespondierenden PT ist [63]. Zudem zeigte die Arbeit, dass die durchschnittliche krankheitsfreie Zeit bei Patientinnen mit HER2-positiven DTC signifikant kürzer war als bei Patientinnen mit HER2-negativen DTC und dass HER2-positive DTC mit einem aggressiveren Tumorwachstum assoziiert sind [63]. In einer anderen Studie konnte gezeigt werden, dass Patientinnen mit HER2-positiven DTC häufiger Rezidive und Metastasen entwickeln [97].

Diese Ergebnisse unterstreichen die klinische Bedeutung der Detektion und Phänotypisierung der DTC. Da das Patientenkollektiv in unserer Studie eher klein ist, Therapie und Follow-Up nicht mit untersucht wurden, kann keine Aussagen über die Auswirkung der unterschiedlichen ER- und HER2-Status der DTC hinsichtlich des Outcomes getroffen werden. Dies müssten weitere Auswertungen zeigen.
5.2.5. Hypothese zur Erklärung der Divergenz der ER- und HER2-Expression zwischen PT und DTC und der Heterogenität von DTC

Unsere Ergebnisse lassen folgern, dass DTC nicht zwangsläufig den ER- und HER2-Status des PT reflektieren. Wenn bei einer Patientin mehr als eine DTC detektiert wurde, lag meist eine heterogene Expression des ER- und HER2-Status vor. Bezüglich dieser Ergebnisse gilt es verschiedene Hypothesen zu diskutieren.

Eine Erklärung der Heterogenität des Hormon- und HER2-Status von DTC könnte die intratumorale, klonale Heterogenität des PT sein [74, 90, 96, 98]. Tumore bestehen aus einer Vielzahl von Zellen, die unterschiedliche biologische Charakteristika und Differenzierungsgrade aufweisen können [99]. Eine Subpopulation von beispielsweise HER2-positiven Zellen des PT, bei welchem nicht das Cut-Off-level erreicht wird (<10% aller Zellen sind HER2-positiv), könnte der Ursprung von HER2-positiven DTC sein [100]. Dies würde erklären warum HER2-positive und -negative DTC bei einer Patientin auftreten können. Diese Überlegung gilt gleichermäßen für den ER-Status. Die Hypothese der intratumoralen Heterogenität könnte auch die Heterogenität der ER- und HER2-Expression erklären, ebenso die Differenz des ER- oder HER2-Staus zwischen PT und DTC.

Die Tumorzelldissemimierung zu einem frühen Zeitpunkt der Erkrankung könnte eine weitere Erklärung dafür sein, weshalb der Hormonrezeptor- und HER2-Status von DTC und PT nicht korrelieren [96, 97, 101]. Es ist bekannt, dass Tumorzellen bereits zu einem sehr frühen Zeitpunkt der Erkrankung in das KM disseminieren können [48, 102]. Sie könnten sich somit eventuell unabhängig von PT entwickeln [84]. Je früher die Disseminierung stattfindet, desto unterschiedlicher können sich die Zellen entwickeln.

Auch eine Veränderung des ER-Status oder der HER2-Überexpression im Krankheitsverlauf ist denkbar und wurde bereits für den HER2-Status beschrieben [68, 96, 100, 101, 103].

Die Veränderungen der Histopathologie und Genetik im Krankheitsverlauf, wie zum Beispiel genetische Aberrationen [104] oder Veränderung des Hormonrezeptor- und HER2-Status, könnte Begründung dafür sein, dass auch bei Patientinnen mit einem HER2-negativen PT HER2-positive DTC detektiert werden. Dass sich der HER2-Status von
DTC im Krankheitsverlauf (innerhalb eines Follow-Ups von 6 bis 30 Monate) verändern kann wurde von Krawczyk et al. in einer Studie beschrieben. Bei einer erneuten Untersuchung des KM nach adjuvanter Chemotherapie war eine erhöhte Prävalenz HER2-positiver DTC im Vergleich zur initialen Untersuchung bei der Diagnosestellung zu beobachten [50]. Dies könnte durch die Aneignung eines aggressiveren Phänotyps im Lauf der Zeit bedingt sein oder ein geringeres Ansprechen der DTC auf die adjuvante Chemotherapie oder endokrine Therapie [101].

Ferner könnte eine Erklärung für die Diskrepanz des ER- und HER2-Status zwischen PT und DTC sein, dass ER-negative und HER2-negativ DTC einen Wachstums- und/oder Überlebensvorteil haben [90, 101, 105]. Durch ihre Fähigkeit im KM zu persistieren, könnte die vermehrte Detektion ER- und HER2-negativer DTC begründet sein, unabhängig des ER- und HER2-Status des korrespondierenden PT.

Eine weitere Hypothese formuliert, dass verschiedene Zellen des PT ein unterschiedliches malignes Potential und eine unterschiedliche Tendenz zu disseminieren haben [95, 100, 106, 107]. DTC sind häufig mit Faktoren assoziiert, die mit einem schlechteren klinischen Outcome vergesellschaftet sind, wie z.B. ein negativer Hormonrezeptorstatus [74]. Dass häufiger ER-negative als ER-positive DTC detektiert wurden, könnte durch eine Down-Regulation im Laufe des Disseminierungsprozesses bedingt sein oder durch eine selektive Disseminierung der ER-negativen DTC [95]. Dies könnte die hohe Rate an ER-negativen DTC in der vorliegenden Arbeit erklären, trotz überwiegend ER-positiven PT. Die HER2-Expression beim PT wird als Zeichen einer Progression zu einem aggressiven Tumorwachstum und damit als Zeichen einer höheren Malignität angesehen [34]. Da in unserer Arbeit bei knapp der Hälfte der Patientinnen mit einem HER2-negativem PT HER2-positive DTC gefunden wurden, lässt vermuten, dass DTC von einem ursprünglich aggressiveren PT abstammen und somit auch öfter HER2 exprimieren [74, 97]. Unsere Ergebnisse bezüglich des ER- und HER2-Status sind im Einklang mit dieser Hypothese.

Diskussion

5.2.6. Auswirkung auf die Therapie

Ziel einer Systemtherapie ist es, einzelne Tumorzellen zu eradizieren, die vom PT abgeschilfert werden, bevor sie sich zu klinisch manifsteten Metastasen entwickeln. Die aktuellen Therapien (Chemo-, endokrine oder HER2-zielgerichtete Therapie) richten sich vor allem gegen den Phänotyp des Primarius, obwohl in diversen Studien gezeigt werden konnte, dass sich die Therapieangriffspunkte im Rahmen des Krankheitsverlaufs verändern können (vergleiche Tabelle 4).

Es existieren Studien, die sich mit dem Effekt von Systemtherapien auf DTC beschäftigen. Die Datenlage zur Elimination von DTC durch eine Chemotherapie ist uneinheitlich. Einige Arbeiten konnten zeigen, dass nach einer abgeschlossenen adjuvanten Chemotherapie keine DTC im KM mehr nachweisbar waren und sich die Prognose bei diesen Patientinnen verbesserte [116, 117]. Andere Arbeiten zeigten jedoch, dass DTC nach einer (neo-)adjuvanten Chemotherapie im KM persistieren [50, 56, 61, 64]: Ein insuffizienter Effekt einer adjuvanten Chemotherapie auf DTC wurde durch Braun et al. beschrieben. In deren Arbeit konnte eine Tumorzellpersistenz im KM nach einer aggressiven Chemotherapie bei 44% der Patientinnen nachgewiesen werden [61]. Janni et al. zeigten, dass bei ca. 15% der Patientinnen bei einer Reevaluierung des KM nach adjuvanter Chemotherapie nach wie vor HER2-positive DTC nachweisbar waren [56]. Auch Krawczyk et al. konnten zeigen, dass es in 16% der Fälle eine Persistenz der HER2-positiven DTC nach einer abgeschlossenen adjuvanten Chemotherapie gab und die Häufigkeit der HER2-positiver DTC im 5 Jahres Follow-up höher war als beim Primärscreening (36% vs. 26%) [50].

Patientinnen mit einer Tumorzellpersistenz nach einer adjuvanten Chemotherapie hatten eine schlechtere Prognose und ein höheres Rezidivrisiko als Patientinnen bei denen keine DTC mehr nachgewiesen werden können [56, 60, 61, 64, 65, 67, 90].

Erklärung für die Persistenz der DTC, auch nach vollständiger Entfernung des PT und einer abgeschlossenen adjuvanten Chemotherapie, und somit der möglicherweise Entstehung von Rezidiven oder Metastasen, werden im Folgenden diskutiert.

Geht man von der Theorie der intratumoralen, klonalen Heterogenität des PT aus, können DTC von einem heterogenen PT abgeschilfert werden und somit ein heterogenes ER- und HER2-Expressionsprofil aufweisen [74, 90, 96], was eine Resistenz
Diskussion

gleichen gegenüber Chemotherapien bedingen kann. Zum anderen können sich Veränderungen des therapeutischen Angriffspunktes (beispielsweise des ER- oder HER2-Status der DTC) erst während der Tumorprogression entwickeln. Eine weitere plausible Erklärung für ein insuffizientes Ansprechen der Therapie auf eine MRD könnte sein, dass sich die Zellen in einem „Dormant State“ befinden. Durch dass sie sich lange in einem nicht proliferativen Zustand befinden, ist ihre metabolische Aktivität herabgesetzt und es findet keine Zellteilung statt (niedriger Proliferationsindex) [113]. Sie können somit über Jahre im KM persistieren und sind nicht chemosensitiv [61, 114].

Der positive Einfluss auf das Überleben in einem adjuvanten Setting könnte eventuell durch den Effekt von Bisphosphonate auf DTC erklärt werden [124, 125].

6. Schlussfolgerung

In dieser Arbeit konnte gezeigt werden, dass sich der ER- und HER2-Status der DTC von dem des PT unterscheiden kann. Bei Patientinnen bei denen mehr als eine DTC im KM detektiert wurde, konnte eine heterogene Expression des ER- und HER2-Status nachgewiesen werden. Die meisten detektierten DTC waren ER-negativ und HER2-negativ.

Diese phänotypische Vielseitigkeit der DTC bei Patientinnen mit Mammakarzinom kann unterschiedliche Ursachen haben. Die Hypothesen der klonalen Heterogenität des PT und dass DTC eigentlich Tumorstammzellen sind, die sich vom PT abgesondert haben, escheinen dabei am naheliegendsten.

Die Systemtherapie des Mammakarzinoms richtet sich derzeit nach der Histologie des Primarius. Die Diskrepanz des ER- und HER2-Status zwischen PT und DTC und die Heterogenität der DTC könnte eine Erklärung dafür sein, weshalb manche Patientinnen nicht von einer endokrinen- oder HER2-zielgerichtete Antikörpertherapie profitieren, obwohl sie einen ER- oder HER2-positiven PT haben.

7. Zusammenfassung

DTC, und im Krankheitsverlauf auch Metastasen, können im Vergleich zum PT einen anderen Phänotyp aufweisen. Dennoch wird derzeit die Indikation zur endokrinen- oder HER2-zielgerichteten Antikörpertherapie rein aufgrund des ER- und HER2-Status des PT gestellt. Die Detektion und Phänotypisierung der DTC könnte neue Ansatzpunkte für die Therapie des Mammakarzinoms bieten.

Die Ziele dieser Arbeit waren die simultane Bestimmung des ER- und HER2-Status der DTC im KM, der Vergleich des ER- und HER2-Status der DTC mit dem des korrespondierenden PT und bei Patientinnen bei denen mehr als eine DTC detektiert wurde, die Bestimmung der Heterogenität des ER- und HER2-Status.

Insgesamt wurden 1082 DTC detektiert. Die Zahl der DTC pro Patientin lag bei durchschnittlich 20 (1-95). Die meisten DTC waren ER-negativ und/oder HER2-negativ. ER-positive DTC wurden bei 74% und HER2-positive DTC bei 44% der Patientinnen detektiert. Ein ER- bzw. HER2-positiver PT lag in 78%, bzw. 11% der Fälle vor. Die Übereinstimmung zwischen dem ER-Status der DTC und dem PT lag bei 74%, wohingegen die Übereinstimmung der HER2-Expression nur 52% betrug. Bei 83% der
Zusammenfassung

Patientinnen, bei denen mehr als einer DTC im KM detektiert wurde, lag eine heterogene ER- und HER2-Expression vor.

Die Detektion und Phänotypisierung von DTC im KM könnte für die Optimierung der Therapie des Mammakarzinoms sinnvoll sein. Bei einer Diskordanz von DTC und PT würden vor allem Patientinnen mit einem initial ER-negativen oder HER2-negativen PT, und insbesondere Patientinnen mit einem Triple-negativen PT und ER und/oder HER2-positiven DTC von einer endokrinen oder HER2-zielgerichteten Therapie profitieren können.

Die Differenz des ER- und HER2-Status zwischen DTC und PT kann auf verschiedene Art erklärt werden. Die intratumorale Heterogenität des PT und die Stammzelltheorie scheinen hier am naheliegendsten.
8. Literaturverzeichnis

9. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>APAAP</td>
<td>Alkalische Phosphatase Anti-alkalische Phosphatase</td>
</tr>
<tr>
<td>CISH</td>
<td>Chromogene In-situ-Hybridisierung</td>
</tr>
<tr>
<td>CK</td>
<td>Zytokeratin</td>
</tr>
<tr>
<td>CTC</td>
<td>Circulating Tumor Cells, zirkulierende Tumorzellen</td>
</tr>
<tr>
<td>DTC</td>
<td>Disseminated Tumor Cells, disseminierte Tumorzellen</td>
</tr>
<tr>
<td>ER</td>
<td>Östrogenrezeptor</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluoreszenz In-situ-Hybridisierung</td>
</tr>
<tr>
<td>HER2</td>
<td>Human Epidermal Growth Factor Receptor 2</td>
</tr>
<tr>
<td>IRS</td>
<td>Immunreaktiver Score nach Remmele und Stegner</td>
</tr>
<tr>
<td>KM</td>
<td>Knochenmark</td>
</tr>
<tr>
<td>KMP</td>
<td>Knochenmarkpunktion</td>
</tr>
<tr>
<td>MRD</td>
<td>Minimal Residual Disease</td>
</tr>
<tr>
<td>PR</td>
<td>Progesteronrezeptor</td>
</tr>
<tr>
<td>PT</td>
<td>Primärtumor</td>
</tr>
<tr>
<td>RANKL</td>
<td>receptor activator of nuclear factor k B ligand</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute = Umdrehungen pro Minute</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumor-Nodus-Metastasen-Klassifikation</td>
</tr>
</tbody>
</table>
10. Abbildungs- und Diagrammverzeichnis

Abbildung 1 Kontrollzelllinien MCF-7 (A) und SkBr3 (B) .. 31
Abbildung 2 Typische CK-positive DTC Beispiele aus dem Patientenkollektiv 39
Abbildung 3 Typische CK/ER-positive DTC aus dem Patientenkollektiv, verschiedene Intensitäten der ER-Expression ... 39
Abbildung 4 Typische CK/HER2-positive DTC aus dem Patientenkollektiv 40
Abbildung 5 Typische CK/ERα/HER2-positive DTC aus dem Patientenkollektiv........... 40
Abbildung 6 Heterogenität der DTC bei einer Patientin mit allen vier möglichen Profilen der DTC .. 45

Diagramm 1 Alter bei Erstdiagnose .. 20
Diagramm 2 Anzahl der DTC pro Patientin ... 37
Diagramm 3 ER- und HER2-Status der detektierten DTC.. 38
Diagramm 4 Anzahl der Patientinnen mit ≥1 DTC ... 41
11. Tabellenverzeichnis

Tabelle 1 IRS nach Remmele und Stegner zur Bestimmung des ER-Status des PT [14] .. 3

Tabelle 2 Bewertung HER2-Immunhistochemie [17] ... 7

Tabelle 3 Aktuell empfohlener HER2-Testalgorithmus für die Immunhistochemie [38] 8

Tabelle 4 Diskrepanz des ER- und HER2-Status zwischen PT und Rezidiv und/oder Metastasen; n= Anzahl Patientinnen ... 10

Tabelle 5 Ein- und Ausschlusskriterien des Patientenkollektivs 20

Tabelle 6 Menopausenstatus; n= Anzahl .. 21

Tabelle 7 Tumorstadium; n= Anzahl .. 21

Tabelle 8 Lymphknotenbeteiligung; n= Anzahl ... 22

Tabelle 9 Tumorhistologie; n= Anzahl ... 22

Tabelle 10 Grading; n= Anzahl .. 23

Tabelle 11 ER-Status; n= Anzahl .. 23

Tabelle 12 PR-Status; n= Anzahl ... 24

Tabelle 13 HER2-Status; n= Anzahl .. 24

Tabelle 14 Laborutensilien ... 25

Tabelle 15 Geräte .. 26

Tabelle 16 Chemikalien und Pufferlösungen ... 27

Tabelle 17 Antikörper ... 28

Tabelle 18 Zelllinien .. 28

Tabelle 19 Kriterien zur Identifikation von Tumorzellen [67] ... 34

Tabelle 20 Klassifizierung von DTC [67] ... 34

Tabelle 21 Lokalisation der Färbung, Anregungs- und Emissionsspektren 35

Tabelle 22 Anzahl der Patientinnen mit ≥1 ER- oder HER2-positiver oder negativer DTC .. 41

Tabelle 23 Korrelation des ER-Status der DTC mit dem ER-Status des PT 42

Tabelle 24 Korrelation des HER2-Status der DTC mit dem HER2-Status des PT 43

Tabelle 25 Kombinierter ER-/HER2-Status der DTC und Vergleich mit dem ER-/HER2- Status des PT .. 44

Tabelle 26 Korrelation des ER- und HER2-Status der DTC mit klinisch pathologischen Faktoren ... 47

Tabelle 27 Vergleich des ER-Status des PT mit dem der DTC .. 52

Tabelle 28 Korrelation HER2-Status DTC mit PT ... 54
12. Eidesstattliche Versicherung

Eidesstattliche Versicherung

Finkenzeller, Charlotte Ulrike

Ich erkläre hiermit an Eides statt,

dass ich die vorliegende Dissertation mit dem Thema

Simultane Bestimmung des Östrogen- und HER2-Rezeptorstatus disseminierter Tumorzellen im Knochenmark bei Patientinnen mit primärem Mammakarzinom

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

Basel, 06.06.2019

Charlotte U. Finkenzeller

Ort, Datum

Unterschrift Doktorandin/Doktorand
13. Danksagung

In erster Linie möchte ich mich bei Prof. Dr. med. Harald Sommer für die unkomplizierte Zusammenarbeit bedanken und die große Unterstützung beim Abschluss dieser Arbeit.

Insbesondere was die wissenschaftliche Betreuung und schriftliche Gestaltung dieser Arbeit angeht, erhielt ich von meiner Betreuerin Frau Dr. med. Bernadette Jäger zahlreiche Anregungen. Durch ihre konstante Begleitung, trotz mehrerer Standortwechsel, trug sie massgeblich zur Förderung der Arbeit bei.

Dem Team des Labors, insbesondere Leonie Majunke, danke ich für die hilfreichen Ratschläge bei der Durchführung der Versuche und die durchwegs positive und stimulierende Arbeitsatmosphäre, sowie das Durchhaltevermögen am Mikroskop.

Nicht zuletzt danke ich meinen Eltern und meinen Brüdern für die stets motivierende Unterstützung. Ihr habt mich auf meinem bisherigen Lebensweg begleitet und mir stets geholfen die richtigen Türen zu öffnen und gute Entscheidungen zu treffen.