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Summary 
 
 
 
High-grade serous ovarian cancer (HGSOC) is the most commonly diagnosed (70%) 

and aggressive epithelial ovarian cancer (OvCa) subtype; only 30% of the patients 

diagnosed with advanced stage disease live beyond 5 years after initial diagnosis, 

making it the most lethal gynecologic cancer. In contrast to many other cancers, the 

prognosis for HGSOC is unchanged in recent decades, despite extensive translational 

and clinical research. To a large degree, this is linked to the fact that HGSOC 

pathogenesis has remained an enigma such that there is currently no clear consensus 

even about the exact cell-of-origin. Nonetheless, recent ‘omics’ technologies have 

started to shed new light on the molecular landscape of HGSOC, which may not only 

help to better understand its biology, but also to uncover new therapeutic strategies 

and stratify patients for treatment. In particular, the field of quantitative proteomics has 

reached a state that now enables system-wide analysis of protein expression in any 

biological system. Complemented by the study of protein-protein interactions, post-

translational modifications or protein dynamics, modern proteomic technologies are 

extremely versatile for the study of proteins in various settings, such as in the context 

of HGSOC biology.  

 

All three projects described in this thesis were conducted in a very productive 

interdisciplinary collaboration with the Ernst Lengyel ovarian cancer laboratory at the 

University of Chicago. 

 

In the first project, I aimed to characterize 30 frequently used ovarian cancer cell lines 

for their suitability to represent HGSOC at the proteomic level. It was shown recently 

that the most often used HGSOC cell lines do not resemble human HGSOC tissue at 

the global genomic level (12). Conversely, some rarely used cell lines were found to 

be more suitable to model HGSOC, at least based on their genomic make-up. 

However, it was still unknown to what extent these reported genomic features were 

reflected at the protein level. We hypothesized that a streamlined and in-depth 

proteomic workflow may refine the previously suggested cell line classification and 

define the proteomic HGSOC cell line landscape. By quantitatively analyzing > 10,000 
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proteins, we found for the first time that the ‘good’ HGSOC cell lines grouped into two 

distinct proteome classes. Integration of primary cells and tumor tissues further 

revealed that the grouping of the proteomes likely reflects a cell-of-origin based 

classification, an interesting observation in light of the previously hypothesized dualistic 

precursor model for HGSOC (13). This large inventory of proteins across cell lines 

additionally provides a useful resource for the OvCa community and can be accessed 

via the MaxQB database at http://maxqb.biochem.mpg.de/mxdb/project/list. 

 

In the second and principal project, I conducted a discovery proteomics based study 

with the goal to improve understanding of chemotherapy sensitivity in advanced stage 

HGSOC, the largest histologic subgroup of epithelial ovarian cancers (70%). Up to 80-

90% of patients with metastatic HGSOC develop a chemoresistant state despite a 

favorable initial response to conventional carboplatin/taxol chemotherapy (14), leading 

to the above-mentioned low 5-year survival rate of only 30%. However, a small number 

of patients with metastatic disease (17%) respond remarkably well to chemotherapy 

and remain free of relapse for more than a decade after primary treatment (15). The 

molecular details for these exceptional responses are still unknown despite the 

extensive genomic characterization of HGSOC (16, 17). In a first of a kind clinical 

proteomics study, we analyzed 25 HGSOC patient biobank samples from responders 

and non-responders to a depth of in total a 9,000 proteins. Integrating the clinical 

survival data into the analysis revealed that chemotherapy outcome is generally not 

apparent from the global proteome pattern. Instead, I found the expression of a single 

protein, cancer-testis antigen 45 (CT45), to be an independent prognostic indicator for 

long-term survival. We validated this finding in a larger patient cohort and subsequently 

showed an active function of CT45 in mediating chemotherapy sensitivity based on in 

vitro and in vivo models. Extending these findings, my work revealed mechanistic 

insights of the biology of CT45 mediated chemotherapy sensitivity. It interferes with 

protein phosphatase 4 (PP4) dependent signaling on chromatin during the DNA 

damage response (DDR). Furthermore, we found evidence of an additional axis of anti-

cancer immune response directed against CT45, involving T-cell mediated cytotoxicity 

and likely potentiating the effect on long-term survival. 

http://maxqb.biochem.mpg.de/mxdb/project/list
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In the third project of this thesis, I established a highly sensitive ‘micro-proteomic’ 

workflow, which enabled the analysis of as few as 5,000 laser-microdissected tumor 

cells from FFPE biobank material to an unprecedented depth of up to 5,000 proteins 

from single-run (4h) analysis. This made it possible to address important clinical 

questions directly related to HGSOC biology: How does the proteome change during 

HGSOC progression from early pre-neoplastic lesion to late metastasis? What is the 

contribution of the tumor microenvironment (TME) to ovarian cancer progression? For 

the first time, we analyzed the proteomic progression of HGSOC in eleven patients 

diagnosed with advanced stage disease. Interestingly, whereas our results did not 

reveal commonly observed metastatic changes in the tumor proteome, we identified a 

conserved stromal protein signature in the tumor microenvironment, which was linked 

to metastasis to the omentum. Follow-up experiments by my collaboration partners at 

the University of Chicago (Lengyel group) highlighted the importance of the identified 

stromal proteins in mediating the aggressive nature of metastatic HGSOC. These 

observations may open up new avenues for HGSOC treatment in future. 
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1 Introduction 
 

1.1 Ovarian cancer 
 

Ovarian cancer (OvCa) is an aggressive disease and the most lethal gynecologic 

malignancy: Only 46 % of patients survive five or more years, which accounts for 

14,180 deaths in the US annually (18) and 29,770 deaths in the European Union (19-

21). The high mortality is in part due to presentation at late stage (only 15% are 

diagnosed with loco-regional stage I/II disease). Furthermore, the response to the 

standard platinum-based chemotherapy has a limited durability, with 20% of patients 

chemo refractory and 30% chemo resistant, meaning they have recurrence in less than 

six months. Despite extensive biomedical research efforts in the past decades, 

uncertainties about the exact origin and pathogenesis of this disease remain, making 

OvCa one of the least understood cancers.  

Major histological subtypes for epithelial OvCa, which are associated with different 

prognosis and pathogenesis, include serous, endometrioid, clear-cell and mucinous 

cancers. For this thesis, the term ‘ovarian cancer’ is used as a synonym for ovarian, 

fallopian tube, and peritoneal cancer. 

 

1.1.1 Pathogenesis of high-grade serous ovarian cancer  

 

High-grade serous ovarian cancer (HGSOC) represents the most commonly 

diagnosed (70%) and aggressive subtype of epithelial OvCa with a 5-year survival rate 

of only 30% for metastatic, advanced stage disease (22). According to the 

classification of the International Federation of Gynecology and Obstetrics (FIGO), 

75% of patients are initially diagnosed with stage III or IV disease, highlighting the 

importance of research dedicated to early ovarian cancer detection and prevention 

(18). 

Traditionally, HGSOC was believed to originate exclusively in the ovaries as the 

ovaries are almost invariably transformed. There is experimental and pathological 

evidence for the ovarian surface epithelium (OSE) as a possible site of origin as OSE-

derived inclusion cysts can undergo tubal metaplasia and full transformation (23-25). 

Moreover, OSE is a multipotent epithelium that may give rise to HGSOC (23). 



2 
 

However, the recent paradigm-shifting discovery of a potential precursor lesion, serous 

tubal intraepithelial carcinoma (STIC), in the tubal fimbria of BRCA mutation carriers 

and HGSOC patients has questioned the traditional view of HGSOC origin from the 

OSE (14, 26-33). These studies revealed that the pre-neoplastic STIC lesions were 

associated with secretory cells, TP53 mutations and up-regulation of DNA damage 

markers (e.g. JH2AX) (34-36). Interestingly, somatic TP53 mutations in STICs and 

corresponding HGSOCs were found to be identical in 27 of 29 patients with ovarian 

cancer suggesting a clonal relationship between STICs and HGSOCs (37). Today, 

HGSOC is thought to 1) originate primarily in the secretory cells of the distal fallopian 

tube, 2) evolve to STIC, 3) fully transform to invasive fallopian tube cancer, and 4) 

regularly metastasize to ovarian and/or extra-ovarian tissues such as the omentum 

(Fig. 1). Consequently, HGSOC of the ovary may represent a first metastatic spread 

from the fallopian tube to the ovary. However, some HGSOCs develop without any 

detectable fallopian tube involvement, suggesting a different site of origin for these 

cancers, such as the OSE or another cell type in the ovary. It is noteworthy that both 

hypotheses are supported by animal models (38-41). While neither hypothesis on the 

cell of origin of OvCa has unequivocally been proven correct, it is generally accepted 

that the high prevalence of STICs (27) (70% for ovarian or peritoneal HGSOC), 

indicates that the majority of HGSOC may indeed originate in the fallopian tube. 

 

 

 

 

 

 

 

 

 
Figure 1: Model of high-grade serous ovarian cancer progression in the fallopian 
tube. Left: High-grade serous ovarian cancer (HGSOC) is thought to originate in the 
secretory cells of the fallopian tube (FTEC) and often metastasizes to omental tissue. 
Right: Different stages of HGSOC progression in the fallopian tube. 
Immunohistochemical staining of p53 mutant signatures reveals HGSOC initiation in 
STIC lesions. Tumor cell expansion leads to the development of invasive carcinoma. 
Adapted and modified from (1). 
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Due to ineffective screening methods, the majority of HGSOC cases (75%) is 

diagnosed with advanced stage disease when the tumor has already spread and 

metastasized to the peritoneal cavity. Interestingly, HGSOC disseminates primarily to 

the adipocyte-rich omentum, which the tumor can utilize as energy source for rapid 

growth in the peritoneal cavity (42). Following detachment from the primary tumor site 

such as the fallopian tube or ovary, which usually involves an epithelial-to-

mesenchymal transition (43), E-cadherin loss (44) and a more invasive phenotype 

(45), the tumor cells are thought to reach the mesothelium-lined omentum and 

peritoneum via passive transport through the peritoneal fluid (46). Tumor cell binding 

to the mesothelium, a single cell layer of mesothelial cells attached to a basement 

membrane, is orchestrated through binding via β1-integrins (47) as well as CD44 (48). 

Once bound, ovarian carcinoma cells can induce a cascade of proteolytic (49, 50) and 

pro-apoptotic (51) activities to invade deeper into the sub-mesothelial layers. Only little 

is known about what happens after successful ovarian carcinoma implantation. 

However, it has been speculated that the tumor induces proangiogenic signaling to 

build de-novo vasculature surrounding the site of metastasis (46). 

The tumor microenvironment (TME) plays a key role during all phases of tumorigenesis 

(52), influences chemotherapy response (53) and patient outcome (54, 55). Several 

cell types of the microenvironment interact with tumor cells and modulate the 

aggressiveness of their behavior. For cancers such as HGSOC, the TME cell types 

include cancer-associated fibroblasts (CAFs), tumor-associated macrophages 

(TAMs), endothelial cells, adipocytes, mesothelial cells as well as various immune cell 

types. Of note, HGSOC was one of the first reported examples for a positive correlation 

between prolonged patient survival and the number of intraepithelial tumor-infiltrating 

lymphocytes (TILs) (56). 

In light of the recent success in applying immune checkpoint inhibition strategies for 

cancer immunotherapy treatment of melanoma or non-small cell lung cancer (57), it is 

tempting to speculate that HGSOC might also be vulnerable to these combination 

treatments. However, a recent clinical phase II study of an immune checkpoint inhibitor 

against PD-L1, although not associated with safety issues, had minimal overall 

efficiency (58). Future studies are needed to dissect why only a small subset of patients 

showed complete and durable responses. Interestingly, in another study, patients with 

good neoadjuvant chemotherapy response had a lower number of intratumoral 

FOXP3+ regulatory T-cells (Tregs) (59), suggesting a functional link between these 
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cells and chemotherapy. Moreover, neoadjuvant chemotherapy increased the T-cell 

specific expression of PD-L1 indicating that immune checkpoint inhibition in 

combination with chemotherapy may offer a promising new therapeutic approach for 

HGSOC treatment.  

Tumor antigens such as ERBB2, TP53, CTAG1B, MSLN, NY-ESO-1, MAGE 

melanoma antigen family members or TERT (60) have already shown promise to elicit 

an immune response against HGSOC. Clearly, treating HGSOC with immunotherapy 

approaches is very promising and this thesis directly contributes to this concept 

(Results section 2.2).  
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1.1.2 The proteogenomic landscape of HGSOC 

 

Genetically, HGSOC is characterized by ubiquitous somatic TP53 mutations and 

genetic instability (16). In addition to TP53 mutational inactivation, there are only very 

few known additional recurrent mutations, including BRCA1, BRCA2, RB1, NF1, FAT3, 

CSMD3, GABRA6 and CDK12, as well as BRIP1 and PALB2 (61). Instead, there are 

widespread DNA copy number alterations (CNA), which together with the low number 

of recurrent mutations make HGSOC a ‘C class’ tumor (62) (Fig. 2).  This suggests an 

early breakdown of DNA repair pathways, ultimately leading to pronounced 

chromosomal instability. Interestingly, functional loss of TP53 is not sufficient to drive 

the full transformation from STIC to invasive fallopian tube cancer in animal models 

(63) indicating that additional, yet unidentified molecular events are crucial for this step 

in progression. (61). The most commonly observed chromosomal alterations lead to 

CCNE1 amplification (20%), NF1 loss (17%) and RB1 loss (15%). Based on genomic 

pathway analyses, it was suggested that roughly half of all HGSOC tumors are 

defective in homologous recombination (64).  

Owing to its high degree of structural chromosomal alterations and low mutational 

profile, HGSOC should represent an ideal cancer type for proteomic or proteogenomic 

approaches, since all proteins in the amplicons are investigated together (65). A very 

recent report from the CPTAC consortium investigated 169 HGSOC tissue samples at 

the proteomic level and related it to genomic information such as copy number 

alterations (5). A low overall correlation between mRNA and protein levels (Spearman 

r = 0.45) was reported and several copy number alterations with in trans effects on 

protein abundance (independent of the genomic locus) showed no changes of mRNA 

levels. This contradicts reports in other cancers such as colorectal (66) or breast 

cancer (67) and, assuming correct proteomic quantification, highlights the unique 

molecular landscape of HGSOC. The authors identified several genomic copy number 

alterations that directly translated to changes in protein abundance and used these 

findings to stratify patients into different survival groups. These proteogenomic 

alterations included fractions of chromosomes 2, 7, 20 and 22, which caused changes 

in abundance of more than 200 proteins (Fig. 2c).  Further analysis revealed that many 

of these proteins were involved in cell movement/adhesion and immune system related 

functions, indicating important biological roles of these processes during HGSOC 

progression.  
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Figure 2: HGSOC is characterized by genomic copy number alterations rather 
than mutations. a. HGSOC is classified as a ‘C class’ tumor and features the 
highest number of recurrent copy number alterations across human cancers. ‘M 
class’ tumors (left) are dominated by mutations. For HGSOC, only few recurrent 
mutations have been identified (1). b. Overview of recurrent mutations and genomic 
alterations in HGSOC (1). c. Copy number alterations (CNA) associated with RNA 
abundance and protein abundance along the genome. Adapted from (5). 
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1.1.3 Prioritized HGSOC research goals 

 

1.1.3.1 The need for accurate cellular models 
 

The identification of accurate HGSOC models for preclinical investigations was 

declared as one of the key missions at the Ovarian Cancer Action’s international 

research meeting (Helene Harris Memorial Trust (HHMT)) in January 2015 (14). Since 

most pre-clinical research relies on cellular models for in vitro and in vivo studies, this 

raises the important question of how closely they resemble the tissue being studied. 

It has recently become apparent that a considerable amount of research in the past 

was based on cellular models that do not resemble HGSOC at the global genomic level 

(12). This was caused in part because no reliable genomic tools were available to 

distinguish between representative and poor cellular models, as well as to identify 

cross-contamination or an incorrect assignment of the underlying tissue of origin. With 

the development of “omics” tools that identify models which represent human disease, 

a variety of urgent, HGSOC related, questions, such as characterizing distinct HGSOC 

subtypes reflective of their cell-of-origins or understanding mechanisms of drug 

resistance and/or sensitivity at the molecular level, as well as tumor biology can be 

tackled. 

 

The concept of characterizing cell lines for pre-clinical research is not novel. 

Historically, first reports in the ovarian cancer field date back to the late 70s and 80s 

when individual, newly established OvCa cell lines were described according to 

morphology, histology, karyotype, and growth characteristics (68-74). This led to the 

assignments of the tissue of origin for many of the OvCa cell lines used today. 

However, due to a lack of standardized and validated methods for the systematic 

comparison of cell lines, the results of these investigations were often questionable. 

More advanced and large-scale analyses had to wait until the 21st century when major 

breakthroughs in ‘omics’ technologies had occurred. Since then, multiple studies have 

been published almost all focusing on genomic or transcriptomic-based methods (12, 

75-77). Most importantly, in conjunction with cell line data obtained from the Cancer 

Cell Line Encyclopedia (CCLE) consortium (78), a recent study evaluated a panel of 

47 ovarian cancer cell lines by means of copy number alterations, mutation frequency, 

and gene expression data (12). Surprisingly, the authors found that the most commonly 
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used cell lines did not resemble HGSOC at the genomic level. This study has also 

provided a rational for the use of a set of newly identified HGSOC cell lines. Based on 

these findings, three recent reports addressed functional properties of the ‘good’ 

HGSOC cell lines (79-81). Unexpectedly, these were less capable to form in vivo 

tumors than the previously used ones and displayed a larger functional heterogeneity 

in e.g. proliferation, migration, invasion and the expression of EMT markers.  

 

Before the subsequently described studies, it remained elusive to what extent the 

previously reported cell line features are represented at the protein level. The 

proteomic profiling of OvCa cell lines conducted in this thesis (Results section 2.1) 

complements and significantly expands the above-mentioned recent studies and 

findings. 
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1.1.3.2 Understanding chemotherapy efficacy 
 
 

HGSOC treatment involves first surgery, which often requires surgical debulking, 

followed by adjuvant chemotherapy with a combination of carboplatin and paclitaxel. 

Although most HGSOC patients initially respond well to first-line chemotherapy, 80-

90% of those diagnosed with advanced stage disease develop chemoresistant 

disease. This usually happens through several cycles of relapse which can be 

monitored by serum CA-125 levels (Fig. 3).  Much research has concentrated on 

understanding the multifaceted nature of chemoresistant HGSOC by using a variety of 

genomic and bioinformatic tools, however, so far only little has really translated into 

the clinic. Therefore, despite the tremendous amount of work by oncologists, clinicians 

and life-scientists all around the world, HGSOC mortality has only changed minimally 

in the last decades. Conversely, the molecular landscape of chemotherapy sensitive 

HGSOC has not yet been studied in great detail. A recent large-scale ovarian cancer 

study found that 17% of patients with advanced stage disease survived beyond 10 

years after initial diagnosis (15). This suggests the presence of yet unidentified, 

predisposing molecular features promoting chemotherapy sensitivity and long-term 

survival. It is of great clinical importance to understand these ‘exceptional responders’, 

as they may shed light on the problem of very widespread chemotherapy resistance. 

 

  

Figure 3: Treatment and disease course of HGSOC. 
Following initial response to carboplatin based chemotherapy, 
the majority of HGSOC patients develops a chemoresistant 
state over multiple treatment/relapse cycles as indicated by 
CA125 levels (in units per millilitre) over time (1). 
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1.1.3.3 Understanding disease progression   
 

To date, only little is known about the proteomic progression of HGSOC and the 

development of its complex microenvironment from early serous tubal intra-epithelial 

carcinoma (STIC) lesions in the fallopian tube to omental metastases. As outlined in 

the HHMT 2015 meeting (14), more sophisticated and integrated ‘omics’ approaches 

are urgently needed to dissect the multitude of molecular changes taking place in the 

tumor.  

 

There is a current lack of streamlined and robust proteomics methods to analyze ‘low-

input’ samples, such as those obtained from laser-capture microdissection (LCM), 

coupled to the unavailability of tumor tissue from multiple tumor sites. Therefore, the 

previous large-scale proteomic analysis of HGSOC was based on whole-tissue 

specimens predominantly obtained from invasive ovarian tumors (5). LCM approaches 

are superior to whole-tissue analysis in regard of the finely-resolved quantitative read-

out in the presence of cell type heterogeneity in the HGSOC environment. This 

scientific challenge could be addressed using improved sample processing workflows 

with the goal to analyze minute amounts of tissue. Together with well annotated 

biobanks this will allow further mechanistic studies at the proteomic level. These will 

not only address the degree and nature of proteomic alterations linked to disease 

progression, but might also reveal novel disease-relevant driver proteins. 
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1.2 The Proteome 
 

The central dogma of molecular biology states that genetic information is encoded in 

the form of DNA in the nucleus, which can be read and transcribed into transportable 

messenger RNA (mRNA) molecules and ultimately translated into functional proteins 

(82). Today this sequential flow of information can be analyzed in a very 

comprehensive and system-wide manner for genome and transcriptome analyses 

using next-generation sequencing approaches. Mass spectrometry (MS) based 

proteomics is the technology of choice to study the entirety and nature of all expressed 

proteins in the cell, the so called proteome (83). Whereas the genome encodes a 

defined number of genes (a20.000) (84, 85), the level of complexity increases 

substantially for the number of transcripts, which are dynamically expressed in different 

cell types and time points and which can be differentially spliced. The proteome is 

much more complex still, due to the existence of diverse protein modifications or 

protein processing (86). Furthermore, protein-protein interactions as well as spatio-

temporal protein dynamics add yet another level of protein complexity. Consequently, 

proteomics is a multidisciplinary research field comprised of a plethora of approaches 

and methodologies to analyze and characterize proteins under various biological or 

biomedical conditions. 

 

 

1.3 Mass spectrometry-based quantitative proteomics 
 

Over the last decades, mass spectrometry (MS) has evolved into the key technology 

for the study of proteins, the functional entities of most biological processes taking 

place inside and outside of the cell. Mostly due to very significant technological 

advances in MS itself, availability of powerful solutions for sample preparation, as well 

as sophisticated computational workflows to analyze gigabytes of raw data files, MS-

based proteomics in principle allows converting every protein-centric biological 

experiment into a systems biology approach. Historic milestones for the field of MS-

based proteomics include the development of the soft ionization techniques matrix-

assisted laser desorption / ionization (MALDI) (87, 88) and electrospray ionization 

(ESI) (89). In the latter technique, which shared the Chemistry Nobel Prize in 2002, 

kilovolt potentials between the end of the capillary column and the entrance of the 
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mass spectrometer generate a spray of charged droplets. Intact proteins or peptides 

are then directly ionized out of the liquid phase into the gas phase.  

Conceptually, there are two strategies for MS-based proteomics: In top-down 

proteomics, intact proteins are analyzed by the MS, which, due to the complexity of the 

mass spectra generated from individual intact proteins, involves extensive up-front 

protein purification. Top-down proteomics is therefore mainly used for recombinant 

protein characterization such as therapeutic antibodies, protein degradation products, 

and proteoforms, including the exact combination of post-translational modifications 

(PTMs) on them (90). Small proteins are more amenable to MS-analysis than large 

ones, due to better protein purification and fewer charge states, and top down may 

have advantages in this case. 

In bottom-up or ‘shotgun’ proteomics (Fig. 5), proteins are first digested to peptides by 

using sequence specific proteases such as trypsin and are then analyzed individually 

by the mass spectrometer. This is the method of choice for the study of proteins, 

protein complexes and entire cellular proteomes. An underlying reason for this is that 

MS of peptides is much more sensitive and easy than MS of intact proteins and lends 

itself to straightforward protein identification. Furthermore, many proteins such as 

insoluble or ‘sticky’ proteins are not be amenable to purification and analysis but can 

readily be analyzed at the peptide level by shotgun proteomics (91).  

Complex peptide mixtures require sufficient upfront chromatographic separation to 

ensure that as many peptide species as possible can be subjected to mass 

spectrometric analysis. The combination of liquid chromatography (LC) coupled ‘on-

line’ to ESI mass spectrometry has emerged as a very powerful platform to analyze 

complex samples (92). In LC-MS, chromatographic separation of peptides is based on 

their different strengths of hydrophobic interaction with a stationary phase, typically 

C18-silica phase. Peptide elution then occurs in a time dependent manner by an 

increasing concentration of an organic solvent such as acetonitrile. Eluting peptide 

species are then ionized via ESI and directly transferred to the vacuum of the mass 

spectrometer. The mass spectrometer continuously scans the peptide mass range, 

recording the masses and intensities of the eluting peptides. For peptide identification, 

tandem MS (or MS/MS) is employed, in which specific peptides are selected, isolated 

and fragmented by collision with neutral gas molecules such as nitrogen, argon or 

helium. A pre-defined number of the most intense peptides per MS1 scan (also termed 

survey or full scan) is selected and subsequently fragmented by collision-induced 
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dissociation (CID) or higher-energy collisional-dissociation (HCD). This strategy is 

called data-dependent acquisition and produces alternating cycles of full scans and 

fragmentation scans throughout the entire chromatographic retention time. CID or HCD 

fragmentation primarily break peptide bonds, resulting in b-ion (N-terminal part) or y-

ions (C-terminal part). In current bottom up proteomics, hybrid Orbitrap systems have 

become very popular and are used exclusively in this thesis. They typically include a 

selection quadrupole, which is coupled to a collision cell and a ‘C-trap’ for injection of 

the ions into the Orbitrap analyzer itself (93). In a typical shotgun proteomics 

experiment, hundreds of thousands of tandem mass spectra are recorded in this way. 

Correctly assigning them to their calculated spectra obtained from in silico digestion of 

the corresponding peptide sequence is a challenging task in the computational 

downstream analysis. MaxQuant is a widely used software package for the analysis of 

shotgun proteomics data developed by our group  (94). Peptides (MS1 features) are 

identified by first assigning them at parts-per-billion (ppb) mass accuracy to compatible 

peptides retrieved from a proteome reference file, and secondly by using the 

probability-based Andromeda search engine (95) to stringently match the observed 

fragment ions (MS/MS information) of each peptide to the theoretical fragment ions. A 

scoring function then identifies the best database hit among all submitted comparisons 

(Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4: Peptide identification in tandem mass spectrometry. Measured tandem 
mass spectra (left) and theoretical mass spectra retrieved from the in silico digestion 
of a reference proteome (right) are matched to each other for the probability score 
based peptide identification process. Adapted and modified (91). 
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The resulting peptide spectral matches (PSM) are finally assembled back into proteins. 

Due to the inherent fact that not all identified tryptic peptides are unique to one protein, 

the concept of protein groups is widely used in the field of shotgun proteomics. In order 

to deal with this ‘protein inference’ problem, proteins are assigned to the same protein 

group if there are only shared peptides among the proteins within one group. This 

usually involves splice variants from the same genomic locus or proteins sharing 

similar domains. 
 

 

 
 

 

 

Figure 5: A representative shotgun proteomics workflow. 
Following homogenization and lysis of cells or tissues, extracted proteins are digested 
with sequence specific enzymes such as trypsin and separated via high performance 
liquid chromatography (HPLC). Electrospray-ionized peptides are then analyzed by the 
mass spectrometer in data-dependent mode. A pre-defined number of the most intense 
peptides per full-scan are then subjected to fragmentation via higher-energy collisional 
dissociation (HCD). The resulting fragment ions contain peptide sequence information 
and are then used to search a reference database to identify the measured peptides. 
Peptides are then assembled into proteins using bioinformatic tools (Maxquant), based 
on their published sequences. Finally, downstream bioinformatic analyses include 
descriptive and inferential statistics for data interpretation. Adapted (8).  
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Mass spectrometry itself is not inherently a quantitative methodology. This is due to 

the fact that different analytes can strongly vary in their physico-chemical properties 

such as size, charge or hydrophobicity, which can ultimately lead to different mass 

spectrometric signals (4). Consequently, relative quantitative information can only be 

retrieved by comparing identical peptide species across samples. Peptide signals from 

different experimental conditions are compared to each other without any a priori 

information about the absolute protein concentration in the sample. To this end, various 

strategies have been developed over the years, each of them having unique strengths 

and weaknesses. They can conceptually be divided into label-free or stable isotope 

labeling approaches and the most commonly used approaches summarized in Figure 

6.  

For stable isotope labeling, specific mass shifts are introduced according to the heavy 

and light stable isotope labels employed. This can be achieved either metabolically, 

chemically or enzymatically during protein digestion. Quantitative information is 

extracted by comparing the intensities of the light to the corresponding heavy peptides. 

In metabolic labeling such as stable isotope labeling with amino acids in cell culture 

(SILAC) (96), heavy isotopes are introduced at the earliest possible experimental time 

point through growth media or food containing the heavy isotopes.   

Figure 6: Labeling strategies for quantitative proteomics and their accuracy. 
Different colors (blue and yellow) represent different experimental conditions. 
Horizontal lines show when the samples are combined. Dashed lines indicate stages 
of potential experimental variation. Adapted from (2-4). 
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Consequently, metabolic labeling is by far the most accurate method as variation 

caused by different sample handling can be neglected. In SILAC, a combination of 

heavy arginines and lysines with tryptic digestion is usually used in order to generate 

peptide species that contain at minimum one heavy amino acid (except for the last, C-

terminal peptide). This is crucial as non-labeled peptides are not distinguishable from 

the light sample. Therefore, SILAC strictly depends on successful label incorporation, 

which can substantially vary between different cell lines and might require several 

rounds of cell divisions. Primary cells or clinical samples such as tumor tissues can 

generally not be labeled with SILAC amino acids. To address this limitation, multiple 

labeled cell lines can be combined and used as a surrogate reference termed super-

SILAC mix (97). These cell lines should ideally closely resemble the tissue being 

studied in order to provide a reference to as many endogenous proteins as possible. 

However, as cell lines may not fully reflect the entire proteomic composition of tissues, 

e.g. due to the presence of multiple cell types in the tissue microenvironment, or tissue-

specific extracellular matrix proteins, super-SILAC quantification – despite it accurate 

and robust quantification - inevitably suffers from less quantitative depth compared to 

label-free approaches. Furthermore, the presence of different label states increases 

the MS1 level complexity. 

 

In chemical labeling approaches such as for example isobaric Tag for Relative and 

Absolute Quantitation (ITRAQ) (98) or tandem mass tags (TMT) (99), isobaric tags are 

introduced chemically by the covalent binding to primary amines on the peptides. Due 

to the identical masses of the used isobaric tags, which is achieved by balancing 

groups, peptides derived from samples labeled with different isobaric reagents are 

indistinguishable at the MS1 level. This is advantageous because, in contrast to 

metabolic labeling, the MS1 level complexity does not increase. Upon fragmentation, 

distinct reporter ion species are then generated, which provide relative peptide 

quantification. Current versions of TMT allow analyzing up to ten samples at once in 

the same mass spectrometric run (TMT 10-plex) (100). This is a very versatile 

approach for the comparison of a large number of samples, for example in discovery 

based clinical proteomics projects that aim at screening large patient cohorts over a 

short time period. Disadvantages include more complex fragmentation spectra, 

chemical side reactions and mainly the co-fragmentation of peptides with similar 

elution profiles, which inherently result in an underestimation of the actual 
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protein/peptide abundance ratios (‘ratio compression’ (101)), unless specialized 

methods are used (85). 

 

The method used exclusively in this thesis is label-free quantification (LFQ). Here, the 

intensities of identical peptide species from multiple mass spectrometric runs are 

directly compared to each other without any isotope labeling. Consequently, LFQ can 

principally be applied to any type and number of biological samples of interest. As 

illustrated in Fig. 7a, LFQ can be further subdivided into spectral counting or intensity 

based approaches (102). Due to higher quantitative accuracy, intensity-based 

approaches such as the MaxLFQ algorithm (103) of the MaxQuant software (94), are 

superior to spectral counting approaches as these simply correlate the number of 

peptide spectral matches for a given protein to its abundance (102). Spectral counting 

can be especially problematic for the quantification of small or low abundance proteins 

that may not provide enough data points (spectral counts) for precise quantification 

(Fig. 7b). 

Due to the completely separate sample handling in label-free quantification, 

experimental variability can theoretically be introduced at all stages in the proteomic 

workflow, potentially reducing the quantitative accuracy of LFQ workflows. However, 

advanced software has now been developed, which is capable of dealing with technical 

variations introduced during sample processing or MS measurement (103). This 

makes label-free quantification a very attractive and cost-effective alternative to label-

based approaches (although at the cost of increased replicates). Post-processing of 

proteomic raw files - apart from peak picking or noise reduction - generally includes 

normalization algorithms to adapt retention times and MS intensities (10, 103). In the 

context of studies that aim at comparing a large number of samples at great proteomic 

depth, large dynamic range and reasonably high quantification accuracy, intensity-

based LFQ has gained strong momentum in recent years. In particular, MaxLFQ, which 

is a part of the MaxQuant bioinformatic suite, incorporates very sophisticated re-

normalization algorithms and the maximum number of pairwise comparisons (103) and 

has been used throughout this study. Remarkably, MaxLFQ enabled the time-resolved 

quantification of the in vivo insulin signaling pathway covering >10,000 phosphorylation 

sites without any sample pre-fractionation (104). The LFQ workflow was highly 

reproducible and, as experimentally assessed, only marginally contributed to the total 

sample variability. In fact, biological differences between tissues or variations in LC-
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MS measurements caused higher variability. In this way, the study accurately 

quantified phosphorylation changes on timescales of less than 1 min and from fold 

changes as small as 2-fold.  

In summary, intensity-based LFQ workflows are now cost-effective, reproducible, 

streamlined, and universally applicable. The high level of quantitative accuracy and 

precision, which can be achieved today, has made LFQ a true and valid alternative to 

label-based approaches. Apart from relative quantification, the summed LFQ values of 

the peptides identifying each protein can also be used as a rough proxy for the absolute 

amount of protein.   
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Figure 7: Label-free quantification strategies and their accuracies.  
a. The two types of label-free quantification strategies are spectral counting 
and peptide intensity-based quantification. Quantification based on spectral 
counting (middle panel) compares the number of MS2 scans recorded for 
each sample in order to estimate relative peptide/protein abundances. Right 
panel: peptide intensity-based quantification relies on the comparison of 
peak intensities along the peak retention time. b. Intensity-based 
quantification approaches (e.g. the MaxLFQ algorithm) are more accurate 
than spectral counting approaches. Log ratios of E.coli (orange)/human 
(blue) 3:1 vs 1:1 samples are plotted against the estimated absolute protein 
abundance (summed peptide intensities (log10) of the 1:1 sample). Note 
that quantification ratios are less accurate for spectral counting compared 
to MaxLFQ as determined by the larger ratio scattering in the lower intensity 
(y-axis) region. Adapted and modified from (10). 
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1.4 Clinical cancer proteomics 
 
The first mass spectrometric clinical test was recently approved by the federal drug 

administration (FDA) in the United States, detecting a large number of pathogenic 

yeast and bacteria strains (105, 106). The simultaneous and timely identification of 

almost 200 different strains with a single device provides a significant advance in the 

field as conventional methods require culturing of microorganisms, which can take 

several days and may be problematic for severe infections where the correct clinical 

treatment is time-sensitive. This example clearly shows that current proteomic 

technology has the capacity to improve or even replace current clinical standard tests. 

For diseases such as cancer, this may open the door for proteomics-based 

personalized healthcare to guide patient diagnosis, treatment and clinical care.  

 
 
1.4.1 Cancer proteomics: A brief history 
 
 
First attempts to profile protein expression in a disease context such as cancer already 

date back to more than half a century ago when Fine and Creyssel reported in 1959 

abnormal serum levels of globulin among patients with myeloma and 

macroglobulinemia (107). This observation was based on starch gel electrophoresis 

(108), a technique that – although revolutionary at the time - allowed the detection of 

only a few protein bands. More complex proteome analyses became feasible with the 

development of isoelectric focusing and polyacrylamide gels in the 1960s, which 

subsequently led to the development of two-dimensional polyacrylamide gel 

electrophoresis (2D PAGE). Because hundreds of protein spots could be visualized 

simultaneously, the era of 2D PAGE can be seen as the beginning of protein-centric 

systems biology. 2D PAGE was then extensively applied to a variety of cancer 

diseases. For example, one study reported the identification of acute lymphoblastic 

leukemia cell subgroups based on the analysis of 413 protein spots, which also led to 

the discovery of putative markers for specific B or T cell lineages (109). However, 

despite its wide application, 2D PAGE has remained a cumbersome methodology for 

the detection and identification of low abundant proteins due to the limited dynamic 

range of detection and unreliable reproducibility. In addition, protein identification via 

‘Edman degradation’ was laborious and no longer adequate for the ever increasing 

number of detectable protein bands or spots. These unsurmountable hurdles strongly 
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increased the interest for alternative analytical methods such as mass spectrometry; 

however, its application had to wait for major technological breakthroughs in the field, 

namely the development of the soft ionization techniques MALDI and ESI techniques 

for peptide or protein ionization. Early applications of MS for protein combined 2D 

PAGE to first separate proteins by their molecular mass and isoelectric point and 

secondly to identify them via specific peptide mass maps obtained by the mass 

spectrometer (110). This was a paradigm-shifting development due to the rapid, 

sensitive and systematic nature of protein identification. That said, gel-based protein 

separation eventually was superseded by more direct approaches. In particular, ESI 

MS in combination with sample pre-fractionation and isotopic labeling has replaced 

that technology and has been used extensively for the large-scale analysis of proteins 

derived from biological samples such as cell lines, tissues or body fluids for many years 

(111).  

Today, MS-based proteomics is coming ever closer to its goal of detecting all 

expressed proteins of complex samples such as cancer cell lines. This is due to great 

technological improvements of the current generation of mass spectrometers, as well 

as refined sample preparation and computational workflows (112). For the field of 

cancer proteomics, this has opened up a new era of systems biology to decipher 

signaling pathways, identify novel protein signatures related to tumor initiation and 

progression, or to discover new biomarker candidates. However, despite the great 

level of excitement and enthusiasm that current technologies provide, pre-mature 

claims from the early 2000s have affected the reputation of the cancer proteomics field. 

In 2002, a study was published that reported the unambiguous detection of early 

ovarian cancer based on unidentified proteomic patterns obtained by surface-

enhanced laser desorption and ionization (SELDI) (113). This diagnostic test was 

reported to have an unprecedented diagnostic sensitivity (100%) and specificity (95%), 

which consequently gained great attention in the scientific and non-scientific media. 

Shortly after publication, doubts about effectiveness of the test accumulated (114) and 

it turned out that the obtained results were not reproducible due to artifacts from 

different sample processing (115, 116). Notably, even noise regions were sufficient to 

distinguish OvCa patients from normal individuals in the test samples, suggesting that 

systematic differences in sample handling strongly contributed to these results. The 

lessons from this study should guide the current development of cancer proteomic 

approaches, caution researchers with respect to biomarker claims and motivate them 
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to rigorously avoid previous pitfalls. For example, the use of biologically meaningful 

data such as protein expression levels provides stronger scientific rationale for the 

stratification of patients than the mere presence or absence of dubious unassigned 

mass spectrometric peaks. Furthermore, to put the potential biomarkers into a 

biological perspective, modern proteomic technologies allow the unambiguous and 

system-wide analysis of protein-protein interactions (117) or signaling networks (118), 

aiding the study of protein function on the molecular level. Integrating these additional 

approaches may lead to more promising new cancer discoveries in the future.  

 

In light of the improved proteome coverage, reduced biases and increased quantitative 

precision of modern MS-based proteomics technologies (92), the integration of whole-

genome or transcriptome sequencing data is currently one of the most important goals 

for the field of cancer proteomics. This could allow to address alterations in the flow of 

genetic information from the genome to the proteome (119). Based on the efforts of 

‘The Cancer Genome Atlas’ (TCGA) project, which sequenced, characterized and 

catalogued cancer-specific alterations for several human cancer types (120), the 

National Cancer Institute launched the ‘Clinical Proteomic Tumor Analysis Consortium’ 

(CPTAC) to systematically identify disease-relevant proteins and their underlying 

biological pathways. For example, CPTAC’s proteogenomic analyses of colorectal 

cancer revealed novel proteomic tumor subtypes associated with clinical outcome, 

similar to their studies in breast (67) and ovarian cancer (5). Interestingly, protein levels 

in tumor tissues could not be reliably predicted based on DNA or RNA-bases methods 

alone, emphasizing the urgent need to expand proteogenomic efforts.  

 

1.4.2 Cancer tissue proteomics  

 
Clinical cancer proteomics can be subdivided by the sample of interest - generally into 

tissue or body fluid analysis. Cancer tissue proteomics, as also conducted in this 

thesis, usually aims at the global, ideally proteome-wide, quantification of proteins 

expressed in the sample of interest to systematically address proteomic changes 

between e.g. healthy and diseased states. In particular, studies tailored to 

retrospectively analyze the proteome under certain clinical conditions, such as in the 

context of a drug response, are among the most prominent applications of cancer 

tissue proteomics. These approaches provide a historical snapshot of the protein 
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repertoire in the diseased tissue, which can be combined with knowledge about 

subsequent patient outcome events. This combination of reliable clinical data with 

proteomics information, could be a powerful tool to uncover new drug targets or 

disease-specific biomarkers. For example, in a recent lymphoma study conducted by 

our laboratory, a combination of tissue proteomics and machine-learning based 

classification reliably segregated patients with diffuse large B-cell lymphoma according 

to the cell-of-origin (121). Interestingly, this also revealed that a cell line derived 

signature can be used to stratify patients. 

 

As most cancer tissue specimens are archived in the form of formalin-fixed and 

paraffin-embedded (FFPE) material, we have developed techniques to reverse 

formalin crosslinking of proteins to ensure deep and quantitative proteomic profiling to 

a depth of up to 10,000 proteins (122, 123). This allowed the systematic dissection of 

the proteomic composition of biobank-derived tumor cells in comparison to matched 

normal tissues. We found that cell-surface and nuclear proteins showed the strongest 

expression differences, suggesting de-regulated signaling pathways in the cancer 

cells. Furthermore, proteomic differences between primary and metastatic colorectal 

cancer were of minor nature indicating that no extensive proteome remodeling is 

required for the metastatic spread to distant organs (124). Interestingly, this 

observation was also made in breast cancer recently (125).  

The utility of FFPE material for proteomic analyses may not drastically depend on 

storage time as even 28 years old samples have already been used successfully (126). 

Moreover, post-translational modifications such as phosphorylation and N-

glycosylation can also be analyzed in FFPE material (127). 

 

With respect to sample collection and processing, cancer tissue proteomics can be 

performed based on whole-tissue samples or homogeneous cell populations isolated 

after careful microscopic inspection of the area of interest via laser-capture 

microdissection (LCM) (128). This is especially advantageous for the analysis of 

distinct cell types present in the heterogeneous tumor tissue environment such as 

cancer cells, fibroblasts, immune cells or endothelial cells. Indeed, LCM has been 

widely applied to identify new biomarker candidates in a variety of diseases such as 

prostate (129), breast (130) and ovarian cancer (131).   
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Due to low sample quantities, LCM workflows are inherently more challenging and 

require optimized sample processing to minimize any potential sample loss. This can 

be aided either by using filter devices (123) or MS compatible compounds for tissue 

lysis and protease digestion such as trifluoroethanol (132), which is fully volatile and 

thus enables simple buffer exchange via vacuum centrifugation without any additional 

sample loss. In this way, as few as 1.000 microdissected cells have been analyzed 

already in 2011, although only to a depth of a few hundred proteins (132). Clearly 

further technological improvements in mass resolution, accuracy and sensitivity are 

needed to substantially increase the proteome coverage of these ‘micro-proteomic’ 

approaches.  
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1.4.3 Biomarker discovery 

 
1.4.3.1 Types and technology 
 
 
 

According to the National Cancer Institute, a biomarker is defined as:  

 

“A biological molecule found in blood, other body fluids, or tissues that is a sign of a 

normal or abnormal process, or of a condition or disease. It may be used to see how 

well the body responds to a treatment for a disease or condition “.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8: Common strategies for biomarker discovery.  
Green boxes indicate the involvement of mass spectrometry. The 
two marked green boxes indicate methodologies that were used in 
this thesis (Results sections 2.2 and 2.3). 
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In respect to personalized medicine and the 

development of highly effective anticancer 

drugs, biomarkers can be grouped into 

prognostic, predictive or pharmacodynamic 

types (Fig. 9) (7). 

Prognostic biomarkers such as the gene 

expression based Mamma Print (Agendia), 

Oncotype DX (Genomic Health) or the H/I 

test (AviaraDx), are used to predict the 

clinical outcomes of breast cancer patients 

and to stratify these patients according to 

their likelihood of benefiting from a particular therapeutic intervention. Prognostic 

biomarker studies therefore usually aim at analyzing treatment naive tissue or body 

fluid specimens collected during the initial surgical procedure, usually shortly after 

diagnosis. In contrast, a predictive biomarker may indicate the probability of success 

for a specific treatment. A classic example of a predictive biomarker is the genomic 

amplification of the ERBB2 gene in breast cancer which indicates the clinical efficacy 

of the ERBB2 blocking antibody trastuzumab (Herceptin). Furthermore, leukemia 

patients carrying the PML–RARA translocation respond remarkably well to all-trans 

retinoic acid (ATRA) therapy. The third group of ‘pharmacodynamic biomarkers’ is 

used to monitor treatment outcome. They are important to assess the optimal drug 

dose or to define the best route of administration. The identification of 

pharmacodynamic biomarkers is challenging for solid tumors due to the limited 

availability of tissues from multiple time points during the treatment course.  

 

Molecular biomarkers include DNA or RNA molecules, as well as proteins and 

metabolites. Consequently, various analytical platforms and strategies have been 

developed over the years for biomarker discovery (see Fig. 8).  As proteins represent 

the functional molecular machineries of the human body and are actively involved in 

disease onset, progression and/or resolution, they are principally well suited as 

molecular biomarkers to diagnose and monitor patients or to guide treatment and 

assess therapeutic outcomes (133). However, the discovery of new protein biomarkers 

is much more challenging than that of DNA or RNA-based ones. This is due to the 

comparative immaturity of MS-based proteomics and to the large dynamic range of 

Figure 9: Biomarker types. Adapted 
and modified from (7). 
 



 

27 
 

protein concentrations found in tissues and body fluids. In human plasma for example, 

protein concentrations are distributed over more than 10 orders of magnitude (134), 

an overwhelmingly large span compared to the dynamic range of detection of roughly 

6 orders of magnitude for a typical state-of-the-art shotgun proteomics measurement 

(92). Multiple strategies have attempted to overcome the dynamic range problem such 

as antibody-based depletion of the most abundant plasma proteins or extensive 

sample pre-fractionation. However, these methods usually come at the cost of 

reproducibility and throughput, two very important aspects in the design of a clinical 

proteomics study. This has prompted our group to develop a highly reproducible single-

run plasma proteomics workflow, employing  short 20 min gradients, which is capable 

of robustly quantifying hundreds of proteins, among them more than 40 FDA-approved 

biomarkers (135). Once MS-based proteomics develops more powerful and reliable 

workflows to characterize the plasma proteome in greater depth, it may uncover novel 

biomarkers or protein patterns in an unbiased fashion. 

The classical approaches for the discovery of protein biomarkers are immunoaffinity-

based, as there is currently no PCR equivalent available for proteins to amplify signals 

of low abundant analytes. Depending on the assay, they can detect protein biomarkers 

in the low nanogram/milliliter range from blood samples (136). However, by their nature 

they are ‘biased’ in the sense that biomarker candidates have to be selected a priori. 

 

1.4.3.2 Biomarker study design 
 
 
Great care has to be taken in designing and performing discovery proteomics based 

biomarker studies, as large datasets inevitably produce a high number of false-positive 

results without suitable statistical validation. These wrong ‘hits’ may be eliminated by 

proper design of verification and validation studies. A recent search of SciFinder 

Scholar™ resulted in roughly 20,000 ‘hits’ for the terms protein or peptide biomarker 

(137). However, this stands in stark contrast to the actual number of roughly one FDA 

approved biomarker per year since 1998 (136). Although the long and laborious route 

from the discovery phase to the clinical application is one reason for the low number 

of new biomarker tests, it is also apparent that flaws during primary study design or 

realization inevitably prevent the initial discovery of meaningful candidates.    
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Figure 10 summarizes the different phases of a typical biomarker study. In this thesis, 

we applied discovery-based clinical proteomics to two ovarian cancer projects, partly 

following such an outline (Results sections 2.2 and 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The definition of a distinct clinical problem or need is the starting point of any 

hypothesis-driven discovery proteomics study. The research question should be as 

simple as possible to simplify later data interpretation. A well-defined homogenous 

patient cohort should be selected according to clinico-pathological characteristics such 

as disease subtype, stage or medication as well as socio-demographical background 

like gender, age and body mass index. The size of the discovery cohort has to be 

chosen with respect to the expected inter-patient variability as well as assay variability. 

Typical numbers for discovery proteomics based studies are in the range of 10-50 

patients, however, this may strongly vary depending on the clinical question, sample 

type and analytical platform as well as available resources. Moreover, analytical 

strategies are usually defined based on the exact clinical question and sample type of 

interest. As an example from this thesis (Results section 2.3), a highly sensitive single-

run mass spectrometric workflow needed to be developed and adapted, which was 

Figure 10: Phases of biomarker study design (6). 
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capable of analyzing low-input samples (a 5.000 – 25.000 cancer cells) derived from 

laser-capture microdissection. If sufficient material is available, pre-fractionation steps 

or PTM enrichment strategies can also be applied to tissue or body fluid samples prior 

to MS analysis (123, 138, 139).  

The selection of the appropriate sample source is a very critical aspect of the study 

design. For body fluid analyses, samples can generally be categorized according to 

their proximity to the tissue of interest (6). Proximal fluids such as cerebrospinal 

fluid (CSF) or ascites are ideal sources for disease-specific biomarkers due to likely 

high local analyte concentrations (136), however, their availability is usually limited due 

to the invasive nature of collection.  The second category is comprised of non-invasive 

body fluids such as urine or plasma, which are available in large quantities. However, 

disease-specific biomarkers present in these samples may be difficult to detect due to 

strong dilution effects in addition to the large dynamic range in plasma. With respect 

to sample collection, care has to be taken regarding any pre-analytical variability 

introduced by different sample handling or storage conditions (140). The use of 

approved standard protocols for sample collection and handling reduces variability 

(141). 

Downstream data analysis should incorporate stringent statistical testing to identify 

significant ‘true’ hits in the dataset. Especially for large-scale ‘omics’ datasets, 

Bonferroni correction, Benjamini-Hochberg or permutation-based false-discovery 

rates, need to be applied in addition to the primary statistical tests to account for 

multiple-hypothesis testing. The outcome is usually a list of biomarker candidates, 

which need to be further verified in a larger and independent patient cohort. In this 

context, antibody-based methods such as tissue microarrays (TMA) or ELISA are 

frequently used to screen large patient cohorts in a candidate-driven, targeted manner. 

Furthermore, targeted, quantitative MS such as multiple reaction monitoring (MRN) in 

combination with isotope-labeled standards can be applied for biomarker verification, 

with the promise of high accuracy, sensitivity, and reproducibility (142).  

Finally, for clinical approval, ‘validation studies’ may need to be performed in which 

thousands of samples are analyzed to assess clinical performance (i.e. sensitivity and 

specificity) of the biomarker test. 

In summary, the proper design of biomarker discovery studies is extremely challenging 

and does not follow a ‘one-fits-all’ rule. Instead, each phase has to be adapted to the 

end goal addressing a precise clinical need. 
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1.4.4 Cancer antigen discovery 

 

The immune system is extremely efficient in recognizing tumor-related antigens 

presented on human leukocyte antigens (HLA) complexes, which can ultimately result 

in T-cell mediated tumor rejection and long-term protection. This has led to the design 

of highly effective immunotherapies to treat diverse of human cancers (57).  

 

Generally, cancer immunotherapy comprises a variety of strategies to activate the 

patient’s immune system against the diseased, neoplastic tissue. Among them, 

checkpoint inhibition strategies, which aim at breaking the tumor’s intrinsic ability to 

suppress tumor-directed T-cell activation, have recently shown remarkable clinical 

results in e.g. advanced melanoma (143) and an ever-expanding list of other 

neoplasms. This has prompted the field to uncover the identity and nature of the 

underlying tumor-derived antigens to develop more personalized cancer 

immunotherapies in form of e.g. cancer vaccines or adoptive T-cell transfers. The 

combination of these personalized approaches with checkpoint inhibition therapies 

and/or standard conventional therapies, such as chemotherapy, may unleash the full 

potential of cancer immunotherapy in the near future. 

 

Tumor antigens can be grouped into tumor associated antigens (TAAs), tumor-specific 

antigens (TSAs) and cancer germline/cancer-testis antigens (CTAs) (144). TAAs are 

often differentiation antigens or overexpressed oncogenes, for example Wilms tumor 

1 (WT1) (145) or Her2/neu (146). Due to the fact that TAAs are also expressed in 

normal tissues, their immunogenicity strongly depends on overexpression in the tumor 

to overcome immunological tolerance mechanisms (144). Given their frequent 

expression, cancer immunotherapy strategies targeting TAAs are principally applicable 

to a large number of patients. However, the immunoreactivity can be associated with 

severe side effects caused by the destruction of normal tissue (147).  

 

TSAs, in contrast, represent antigens with high tumoral specificity such as neo-

antigens derived from somatic non-synonymous mutations or chromosomal 

rearrangements, which are usually absent in the germline genome. The altered amino 

acid sequence can be presented on HLA complexes on the cell surface and finally be 

detected as foreign by T-cells. Therefore, the presence of TSAs usually correlates with 
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the mutational status of the tumor. Lung carcinomas, melanomas and colorectal 

carcinomas are prime examples for tumors with high mutational loads and presumably 

large neo-antigen repertoires (11, 148). One challenge of TSAs is that mutated 

antigens are rarely shared between patients, which limits the design of effective cancer 

vaccines applicable to a large number of patients. Nevertheless, patient-specific TSAs 

may be used in future to individually treat patients according to their available tumor 

antigen repertoire, an ultimate instance of personalized medicine. In particular, a 

combination of mass spectrometry, next generation sequencing (NextGenSeq) and 

bioinformatics was used recently to discover novel mutated neo-antigens that, when 

administered as vaccines, provided therapeutic protection in a mouse model (149). 

This provides a proof of principle that a personalized immunotherapy approach 

targeting patient-specific neo-epitopes might also work in a clinical context.   

 

The last group of antigens is comprised of cancer germline/cancer-testis antigens. Due 

to their frequent and tumor specific expression, CTAs have been increasingly 

recognized as attractive cancer immunotherapy targets. CTAs are normally expressed 

in immune-privileged organs such as testis, fetal ovaries, and trophoblasts (150). In 

cancer tissues, CTAs can be activated at an advanced disease stage due to 

demethylation of CpG islands in promotor regions. According to the genomic locus, 

CTAs are grouped into an X chromosome-coded class (CTA-X) and a non-X 

chromosome-coded class (non-CTA-X) (150). CTAs make up an estimated half of all 

tumor-specific antigens that elicit spontaneous T-cell responses in cancer patients 

(11). The CTA database (http://www.cta.lncc.br/) currently lists 158 CT antigen 

families. Among them, the MAGE-A gene family and NY-ESO-1 are the most 

prominent CTA-X members, which are currently tested as potential cancer vaccines in 

the clinic. Of particular note, NY-ESO-1-specific T-cells were successfully used for an 

adoptive T-cell transfer in myeloma patients with promising clinical responses in 16 of 

20 patients (151). To extend the list of expressed CTAs in various cancer types, much 

research has been dedicated to the discovery of frequently expressed CTAs and their 

underlying immunogenic HLA peptides. Based on RT-PCR data, CTAs are commonly 

expressed in lung cancer, hepatocellular carcinoma, bladder cancer, ovarian cancer, 

and melanoma (150). Taking advantage of to their known regulation by DNA 

methylation, a recent study employed a DNA de-methylation strategy to activate CTA 

expression with the goal of identifying CTA-derived HLA-I peptides by mass 

http://www.cta.lncc.br/)
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spectrometry (152). This approach may furthermore represent a very attractive 

therapeutic approach for cancers with low CTA expression such as renal cancer, colon 

cancer, gastric cancer or leukemia/lymphoma. Indeed, treatment with 5-aza-2'-

deoxycytidine, a drug causing global DNA demethylation, activated NY-ESO-1 

expression, which in turn promoted T-cell mediated tumor cell killing (153). In addition, 

treatment with decitabine (5-aza-2'-deoxycytidine) was recently shown to be 

synergistic with immune checkpoint blockage therapy in a murine ovarian cancer 

mouse model (154), underlining the great potential of CTAs for immunotherapeutic 

interventions to treat cancer. 

 

 

 

 

 

 

 

 

Figure 11: Human tumor antigen classes.  
a. Tumor-specific antigens and their origins are shown. As a result of genomic 
mutations, mutant variants of peptides can be presented on HLA complexes on the cell 
surface. In addition, mutations can also enable HLA binding of non-binding peptides. 
Cancer-testis antigens are tumor-specific due to their non-physiological up-regulation 
via DNA demethylation in the tumor. Expression in germline cells does not lead to 
presentation due to the lack of HLA receptor molecules. b. Antigens with low tumor 
specificity and their origins are shown. Genes that are expressed tissue-specifically 
(e.g. melanocyte-specific) or at unnatural high levels (e.g. ERBB2) can also elicit anti-
tumor responses (11). 
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Historically, the first T-cell recognized cancer antigen, MAGEA1, was discovered in 

1991 using a genetic screening approach of a melanoma DNA library (155). In 1995 

the SEREX method (156) (serological analysis of recombinant cDNA expression 

libraries) was established, which used a recombinantly expressed cDNA tumor library 

to identify specific serum antibody epitopes. Multiple CTAs were identified this way, for 

example NY-ESO-1 (157) and SSX2 (158). However, today in the age of whole-

genome analysis and systems biology, new cancer-specific antigens are primarily 

identified by a combination of NextGenSeq approaches, such as whole-exome-

sequencing, and bioinformatic in silico predictions for HLA binding (159-161). This 

strategy has been widely applied for cancer antigen discovery, however, as 

intracellular processing and antigen immunogenicity is generally not taken into 

account, many reported peptide hits are irrelevant in vivo. Consequently, immense 

experimental follow-up work is needed to filter for ‘true’ and T-cell reactive candidates. 

For example, in a recent study only half (54%) of the a priori known antigens were also 

recovered within the top three hits from an in silico prediction of a large number of 

peptides (162), highlighting the necessity for alternative approaches that identify HLA 

peptides in a completely unbiased and more direct fashion.   

Mass spectrometry should in principle be a very powerful tool to directly measure and 

identify HLA peptides (HLAp) isolated from cell lines, tissue or plasma-derived HLA 

complexes (163-165). This approach is termed ‘MS-based immunopeptidomics’ and 

includes immunoaffinity purification of HLA complexes and subsequent isolation of the 

entirety of bound HLA peptides. These are then separated and analyzed by LC-MS. 

For HLA complex purification, pan-HLA class I and pan-HLA class II antibodies are 

used, however, allele-specific antibodies have also been reported in this context (166). 

Beginnings with just a few peptides more than 20 years ago (167), this today allows 

the simultaneous identification of thousands of HLA-I peptides in a single mass 

spectrometric run, without the use of peptide pre-fractionation. This has led to the 

identification of multiple cancer-related antigens in a large number of cancer diseases 

such as melanoma, glioblastoma, renal cell carcinoma, ovarian cancer, hepatocellular 

carcinoma and leukemia (163). Even neo-antigens resulting from somatic mutations 

can readily be detected by integrating NextGenSeq data of the analyzed sample (149). 

MS-based immunopeptidomics further allows discovering post-translationally modified 

HLAp, which might be exclusive to the tumor and therefore offer an additional level of 

immunogenic targets for immunotherapy. Validation approaches for the identified 
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HLAp include the design and measurement of synthetic versions of the candidate 

peptides, whose spectra should exactly match those of the experimentally observed 

ones. In addition, functional follow-up work is needed to test T-cell reactivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

Figure 12: MS-based immunopeptidomics workflow for antigen 
discovery and personalized immunotherapy. 
Antigen discovery by MS-based immunopeptidomics for personalized cancer 
immunotherapy. Immunoaffinity-based HLA complex purification from cancer 
tissues or cell lines. Isolated HLA-binding peptides are measured by HPLC-
MS/MS, followed by database matching. In specialized laboratories this now 
allows to simultaneously identify thousands of HLA-I peptides in a single MS 
run. Selected candidate peptides are validated by obtaining mass spectra from 
synthetic peptide versions as well as through T-cell assays to determine HLA 
binding and immunogenicity. Downstream immunotherapeutic applications 
include the development of personalized immunotherapies such as peptide 
vaccines or adoptive T-cell transfers (9). 
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1.5 Aims of the thesis 
 

In this thesis, state-of-the-art MS-based proteomics methodologies were developed 

and applied to investigate high-grade serous ovarian cancer (HGSOC) at the 

proteomic level. I completed three projects addressing important clinical questions 

related to HGSOC. All three projects were conducted in an exceptionally productive 

and fruitful collaboration with the Ernst Lengyel ovarian cancer laboratory at the 

Department of Obstetrics and Gynecology, of the University of Chicago. 

The first project addresses an important question for any HGSOC-related pre-clinical 

investigation: which ovarian cancer cell lines are ‘good’ models to study HGSOC? We 

reasoned that an integrated and streamlined proteomic workflow applied to frequently 

employed ovarian cancer cell lines would offer a very attractive methodology to identify 

suitable cell line models by comparing their underlying proteomic profiles to those of 

the actual HGSOC tissues and to corresponding primary cells. Our single-run, label-

free workflow identified distinct HGSOC cell line proteomes and refined a previously 

reported genomics-based cell line classification.  

For the second project, I used the developed single-run workflow to retrospectively 

compare the proteomes of HGSOC patients with differential survival times following 

standard carboplatin/taxol chemotherapy. The in-depth analysis yielded a total of 9,000 

proteins obtained from FFPE biobank samples and highlighted the power of discovery-

based clinical proteomics to identify novel protein biomarker candidates linked to 

chemotherapy efficacy.  Complemented by a variety of techniques including interaction 

proteomics and immunopeptidomics, we further gained functional and mechanistic 

insights into the biology of chemotherapy sensitive HGSOC. The results are currently 

being evaluated for potential use in a clinical setting in the future.  

The third project of this thesis likewise focused on the analysis of FFPE biobank 

specimens and constitutes the first proteomic analysis of HGSOC progression. 

Towards this goal we developed and adapted a novel and highly sensitive and 

streamlined proteomic workflow to analyze as few as 5,000 tumor cells. This allowed 

us investigating the proteome of the tumor and its adjacent microenvironment in the 

context of HGSOC progression. Our results revealed novel insights into ovarian cancer 

biology and highlighted the importance of the tumor microenvironment for ovarian 

cancer progression. Current work addresses the potential clinical utility of our findings.  
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2 Results 
 

2.1 Manuscript 1: Deep proteomic profiling of ovarian cancer models 
 

2.1.1 Project aim and summary 

 

 

 

 

 

 

 

 

 

 

 

The large heterogeneity of ovarian cancer is reflected in the fact that the 

histopathological origin of the most frequently used OvCa cell lines is not completely 

clear (12). Research dedicated to the identification of bona-fide HGSOC cell lines has 

consequently gained strong interest in the OvCa community (22, 168). In a recent 

genomics-based study, HGSOC cell lines with high genetic similarity to HGSOC tumor 

tissues were identified, however, so far a proteomics-based classification comparing 

cell lines and tumors has not been undertaken. We therefore undertook such an 

integrated and streamlined MS-based proteomics approach, reasoning that it would 

represent a powerful technology for the identification of ‘good’ HGSOC cell lines.  

 

For the first time, we acquired quantitative proteomic data (>10.000 proteins) for 30 

ovarian cancer cell lines, primary cells and tumor tissues. This revealed a high 

proteomic similarity in terms of expressed proteins (77%). However, our data clearly 

showed large protein expression level differences for the analyzed cell lines indicating 

a pronounced quantitative proteome heterogeneity. This observation prompted us to 

investigate whether our data allowed the identification of distinct proteomic cell line 

subgroups.  
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Extending previous genomics-based findings (12), we identified two distinct HGSOC 

types of cell line proteomes, in addition to a group of clear-cell OvCa cell lines. The 

integration of immortalized ovarian surface epithelial cells (IOSE) and fallopian-tube 

epithelial cells (FTEC) further suggested a possible dual cell-of-origin based 

classification for the newly identified HGSOC cell line proteomes. Based on a novel 

67-protein signature that we derived, we were then able to validate our findings in two 

independent datasets, among them a recent study of 84 HGSOC tumor proteomes. 

This showed that patients with an IOSE-like profile had a worse prognosis than those 

with a FTEC-like profile and suggests a previously overlooked simple stratification 

according to the cell-of-origin.  

 

As a proof-of-concept, we additionally showed that our proteomic dataset can be used 

to select the most appropriate cell lines for various pre-clinical investigations. This 

delineated a strong up-regulation of several ‘vitamin A pathway’ proteins in a subgroup 

of cell lines with HGSOC-like genomic and proteomic features. For example, the 

transporter protein CRABP2, which promotes anti-oncogenic all-trans retinoic acid 

(ATRA) signaling (169), was highly expressed in these cells. We showed that our 

quantitative data correctly predicted the anticipated tumor-suppressive response to 

ATRA that we measured in our system.  

 

Our proteomic dataset has been made available for the OvCa community on a user-

friendly website: http://maxqb.biochem.mpg.de/mxdb/project/list. 

 

 

 

 

 

 

 

 

 

 

http://maxqb.biochem.mpg.de/mxdb/project/list
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2.1.2 Contribution 

 

Ernst Lengyel conceived the initial idea for the project and proposed it to Matthias 

Mann and myself in 2013. Matthias Mann, Ernst Lengyel (University of Chicago), Karen 

Watters (University of Chicago), and I incubated and developed this project. Matthias 

Mann and Ernst Lengyel supervised me during all phases of the project. My 

contribution included the conceptual study design, proteomic sample preparation, 

proteomic data acquisition, as well as data analysis and interpretation. Karen Watters 

conducted all functional ATRA experiments and validation experiments.  I designed 

the majority of the figures and tables in the publication and wrote the manuscript 

together with Karen Watters, Ernst Lengyel and Matthias Mann. 
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2.1.3 Publication 
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2.2 Manuscript 2 (in preparation): Proteomic characterization of 

chemotherapy sensitive ovarian cancer  
 

2.2.1 Project aim and summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment for HGSOC involves a surgical debulking procedure followed by 

neoadjuvant carboplatin/paclitaxel combination chemotherapy. Unfortunately, 80-90% 

of patients diagnosed with advanced stage disease develop a chemoresistant state 

independent of any favorable initial response. Conversely, 17% of patients with 

advanced stage disease show long-term survival beyond 10 years after initial 

diagnosis (15). To date, it is still unclear what distinguishes these long-term survivors 

from the majority of patients with poor clinical outcome. The strong survival differences 

between these patient subgroups suggest the existence of yet unidentified, 

predisposing molecular mechanisms that actively contribute to chemotherapy 

sensitivity and promote long-term protection from any tumor relapse. The objective of 
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this study was therefore to apply state-of-the-art discovery-based proteomics to clinical 

biobank (FFPE) specimens obtained from advanced-stage HGSOC patients to identify 

discriminating proteins linked to the above mentioned different chemotherapy 

outcomes. 

 

Our single-run proteomic workflow led to the quantification of in total a 9,000 proteins 

obtained from 25 biobank specimens; an unprecedented proteomic depth considering 

the absence of any sample pre-fractionation. Out of all quantitatively compared 

proteins, we identified a single differentially expressed protein that was highly up-

regulated in the majority of the long-term survivors. To our knowledge, this is the first 

time that MS-based proteomics unambiguously discovered a clear molecular marker 

for cancer treatment success, and interestingly it manifested not as a global pattern 

but as a unique, differentially expressed entity. The protein turned out to be unknown 

except having been picked up in a large group of differentially expressed mRNAs 

where it has been termed cancer-testis antigen 45, CT45 (170) and neither the 

literature nor its sequence associate it to any known molecular function. The finding 

that CT45 was differentially expressed was then confirmed in a larger patient cohort 

(a150 cases) using tissue microarrays (TMA). This revealed that platinum resistance 

commenced after 363 days when CT45 staining was weak to strong versus 153.5 days 

for patients with no detectable expression of CT45. 

 

Due to the tumor-specific expression of cancer-testis antigens and their recognized  

capacities to mount anti-cancer immune responses (150), we addressed if the 

favorable patient outcome was linked to T-cell mediated tumor rejection. We used an 

immunopeptidomics approach, which we applied to cell lines and tumor tissues to 

screen for CT45-derived HLA class I peptides. This indeed led to the first identification 

of CT45-derived HLA-I peptides. Our work further showed that these antigens are 

capable of activating patient-derived cytotoxic T-cells and to promote cancer cell killing 

in vitro. Based on this evidence, our results indeed suggested that the immune system 

may contribute to the favorable outcome of CT45+ patients. However, we were unable 

to ascertain a general correlation between the number of cytotoxic T-cells and CT45 

expression in our initial discovery cohort. This indicated a strong immune inhibitory 

microenvironment in omental HGSOC tissues, in line with a recent report (59).  
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As no clear biological function has been reported for CT45, we used an interaction 

proteomics approach in the hope of gaining functional insights through ‘guilt by 

association’. Indeed, we found that CT45 interacted with the DNA damage-linked 

protein phosphatase 4 (PP4) complex on chromatin and that this caused an inhibitory 

phenotype in the context of PP4-mediated DNA damage signaling. We further showed 

that ovarian cancer cells expressing CT45 were more susceptible to carboplatin-based 

chemotherapy in vitro and in vivo, ultimately leading to apoptosis. Based on our 

functional studies, I developed a model in which cells expressing CT45 run into stalled 

chromatin relaxation after DNA damage repair, resulting from inhibited PP4-mediated 

KAP1/TRIM28 de-phosphorylation. 

 

We conclude that CT45 may represent an ideal prognostic biomarker for 

chemotherapy sensitivity and long-term survival in HGSOC and possibly in other 

cancers. The identified HLA-I peptides represent promising candidate antigens for 

cancer immunotherapy approaches in the future or may help to stratify patients with 

differential responses to immune checkpoint blockage therapies. Patients with high 

tumoral levels of CT45 may represent ideal subjects for immune checkpoint therapies 

as T-cells would be exposed to strong antigens presented on the cancer cells. 
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2.2.2 Contribution 

 

Ernst Lengyel suggested the comparison of responders and non-responders to 

chemotherapy and proposed this to Matthias Mann and myself in 2012. Matthias Mann, 

Ernst Lengyel (University of Chicago), Marion Curtis (University of Chicago), and I 

initiated this project, which was a shared effort between both laboratories over a period 

of 4 years starting end of 2012. Matthias Mann and Ernst Lengyel supervised me 

during all phases of the project. My work started with an adaptation and optimization 

of the proteomic sample preparation for clinical FFPE material, which soon allowed to 

us measure relatively deep (6.000 - 8.000 proteins) biobank proteomes in single-run 

(4h) analysis. I acquired all proteomic measurements of the study, analyzed and 

interpreted the data and identified CT45 as a marker of chemotherapy sensitivity. My 

interactomics work suggested an important functional role in DNA damage signaling 

and my HLA immunopeptidomics results showed that it may be a cancer 

immunotherapy target. Together with Marion Curtis and Bradley Ashcroft from 

University of Chicago, I then worked on follow-up experiments to gain functional 

insights. Marion Curtis collected and processed all biobank specimens of the study, 

conducted all animal experiments and performed the comet assays and other 

functional assays. Jaikumar Duraiswamy performed all T-cell based experiments. I 

designed most of the figures in the publication and wrote the manuscript together with 

Marion Curtis (Univ. of Chicago).  Ernst Lengyel and Matthias Mann edited the 

manuscript. 
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2.2.3 Publication 
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ABSTRACT  

 

Most high-grade serous ovarian cancer (HGSOC) patients will develop resistance to platinum-

based chemotherapy but a subset (15%) will remain disease-free for over a decade. To discover 

drivers of long-term survival following chemotherapy, we analyzed the proteomes of 25 

platinum resistant and sensitive HGSOC patients to a depth of over 9,000 proteins. We 

identified cancer/testis antigen 45 (CT45) as an independent prognostic factor for prolonged 

disease-free survival. Immunopeptidomics discovered several CT45 derived HLA class I 

peptides capable of activating patient-derived cytotoxic T cells. Interaction proteomics 

identified a direct interaction with members of the protein phosphatase 4 (PP4) complex linking 

CT45 to the DNA damage response. CT45 mediates chemosensitivity by impeding PP4-

dependent KAP-1 dephosphorylation following DNA damage leaving the chromatin in an open 

conformation and making it susceptible to carboplatin toxicity. Thus, CT45 is a novel regulator 

of chemosensitivity and is a potential target for immunotherapy. 
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INTRODUCTION 

 

HGSOC accounts for the majority of ovarian cancer fatalities (~70%) with the high 

mortality rate mainly driven by late diagnosis and frequently acquired resistance to 

chemotherapy (14). However, one in six patients remains disease-free for more than ten years 

after initial diagnosis with advanced stage disease (III or IV) treated with tumor debulking 

surgery following by chemotherapy treatment (15). This suggests the presence of tumor-

intrinsic, pre-disposing features that influence chemotherapy outcome and promote long-term 

survival in this subset of patients. The molecular mechanisms which explain why some patients 

are long-term survivors have not been illuminated.  

Cancer is predominantly studied at the genetic level, but proteomics has long been a 

promising complementary technology to gain insight into this disease at the protein level. 

Currently, there are few if any examples where this technology has identified clinically relevant 

biomarkers of the disease (136, 171). However, proteomics technology has improved 

tremendously in recent years and advances in proteomic sample preparation and computational 

workflows now enable very deep and quantitative profiling of cellular systems, including 

formalin-fixed and paraffin-embedded (FFPE) biobank material, to a depth and quantitative 

accuracy that could not be achieved previously (67, 123, 172). We therefore reasoned that a 

system-wide quantitative proteomics approach using state-of-the-art mass-spectrometry 

applied to clinical biobank specimens would offer a promising strategy to uncover driver 

proteins responsible for chemotherapy response and improved survival.  
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RESULTS 

 

Identification of CT45 by shotgun proteomics 

We performed quantitative proteomics on FFPE tumor samples isolated from 25 

chemotherapy-naïve patients with advanced stage HGSOC (Fig. 1a, Extended Data Fig.1, 

Supplementary Tables 1 and 2). Since patients with advanced stage disease generally have 

the worst prognosis (15), we selected metastatic tumors from the omentum for proteomic 

analysis. We first assessed global proteomic differences between chemoresistant (N=11, 

median DFS = 190 days) and chemosensitive (N=14, median DFS=1160 days) patients in our 

cohort by adapting a recently described and highly sensitive label-free proteomic workflow 

capable of accurately quantifying a large portion of the cellular proteome (103, 173).  We 

stringently identified and quantified more than 9,000 proteins from low µg input archival 

samples in single-run measurements in the MaxQuant environment (94, 103) (1% FDR at 

protein and peptide levels; Extended Data, Fig. 1b). The dynamic range of protein signals 

spanned more than six orders of magnitude (Extended Data Fig. 1c). Pearson R values between 

all specimens were consistently above 0.77 (mean 0.88) and the correlation was 0.95 between 

independently prepared tissue of the same tumor (Extended Data Fig. 1d). Based on the 

quantitative levels of 8,190 proteins after data filtering (Methods, Extended Data Fig. 1b), we 

observed few overall proteome changes across patients. However, the comparison of 

chemosensitive and chemoresistant patients identified cancer/testis antigen 45 (CT45), as 

significantly higher expressed in chemosensitive patients (FDR < 5%, Fig. 1b). Furthermore, 

CT45 protein levels strongly correlated with disease-free survival time (Extended Data Fig. 2a). 

CT45 is comprised of 10 distinct but highly similar genes, which make them nearly identical at 

the protein level (amino acid identity >98%, Extended Data Fig. 2b). Immunohistochemistry 

for CT45 confirmed the relative expression of CT45 in serial sections of the tumors used in the 

proteomic cohort and showed localization to the nucleus and in some cases to the nucleolus 

(Fig. 1c). 

To validate the proteomic findings in a larger patient cohort, we stained tissue microarrays 

(TMA) to analyze CT45 expression in over 200 cases of primary and metastatic ovarian cancer 

(Extended Data Fig. 3a). CT45 protein levels were assessed by a gynecologic pathologist 

blinded to patient outcomes. CT45 was only rarely expressed in cases of endometrioid, clear 

cell, or mucinous ovarian cancer subtypes compared to serous papillary - in line with a previous 

study of mRNA expression (174) - and the protein was expressed at identical levels between 

primary and metastatic tumors from the same HGSOC patients. Consistent with our discovery 
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cohort, CT45 expression correlated with chemosensitivity in 124 patients with advanced stage 

HGSOC (FIGO 2014 stage IIIb or higher) (P = 0.005, Extended Data Fig. 3a). Furthermore, 

patients with high CT45 expression (staining 1+) had prolonged disease-free survival compared 

to patients with no expression of CT45 (P = 0.02, 363 days versus 153.5 disease free days; Fig. 

1d) and there was a trend towards longer overall survival (P = 0.09, Extended Data Fig. 3b). 

Thus, CT45 expression is an independent prognostic indicator for advanced stage HGSOC. 

 

CT45 is an independent prognostic indicator 

  

To validate the proteomic findings in a larger patient cohort, we stained tissue microarrays 

(TMA) to analyze CT45 expression in over 200 cases of primary and metastatic ovarian cancer 

(Extended Data Fig. 3). CT45 protein levels were quantified by a gynecologic pathologist who 

was blinded to the patients’ outcomes. CT45 expression was not as common in endometrioid, 

clear cell, mucinous ovarian cancer subtypes compared to serous papillary, in line with large-

scale mRNA expression data (174). There was no significant difference in protein expression 

between primary and metastatic tumours from the same HGSOC patients (P = 0.61). However, 

consistent with our discovery cohort, CT45 expression correlated with chemosensitivity in 124 

patients with advanced stage disease (FIGO IIIb or higher) (Extended Data Fig. 3). Kaplan-

Meier survival analysis revealed that advanced stage (FIGO IIIb or higher) HGSOC patients 

with high CT45 expression had a lower risk of recurrence with median days to platinum 

resistance of 363 days (staining 1+) versus 153.5 days for patients with no expression of CT45 

(P = 0.02, Fig. 1e). A trend towards longer overall survival was also evident (P = 0.09, Fig. 1f). 

We further validated our proteomic findings using a larger and independent public dataset 

generated by The Cancer Genome Atlas (TCGA) consortium (64). Using RNA-Seq data of 305 

HGSOC cases, we calculated CT45 expression from the accumulated expression of the detected 

6 gene family members (CT45A1-A6). Grouping patients into a CT45 high group (top 25%, 

N=76) and CT45 low group (lower 75%, N=229) resulted in a significantly longer overall 

survival for the CT45 high group (P = 0.01, Fig. 1g). Thus CT45 expression is an independent 

prognostic indicator for advanced stage HGSOC. 
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CT45 is a native tumor antigen 
 

Despite previous reports on CT45 expression in several tumor types (175-178), its role 

as a tumor antigen has not been elucidated. To investigate whether CT45-specific peptides are 

bound and presented on human leukocyte antigen (HLA) class I complexes on cancer cell lines, 

we used an approach coupling immunopeptidomics to mass spectrometry(163) with a cell line 

(59M) expressing high endogenous levels of CT45 (Extended Data Fig. 4a and 4b). Of 6,413 

identified HLA-I peptides (Extended Data Fig. 4c, Supplementary Table 3), five derived 

from CT45: AVDPETVFK, GVQGPTAVR, GVQGPTAVRK, VQGPTAVRK, QGPTAVRK; 

all of which matched the binding motifs of the A-03:01 and A-11:01 HLA-I receptor (Extended 

Data Fig. 4d, 4e, and 4f).  We further confirmed the identity of these peptides using synthetic 

versions and tandem mass spectrometry (Extended Data Fig. 4g). In-silico HLA epitope 

prediction revealed weak and strong binding affinity of AVDPETVFK to A-03:01 or A-11:01, 

respectively, and low or no binding affinity for the remaining four peptides (Fig. 2a).  

CT45 expression is regulated by DNA methylation (174) and patients treated with 

demethylating agents show an altered immune response that correlates with upregulation of 

cancer/testis antigens as well as genes involved in immunomodulatory pathways (179, 180). 

Treatment with 5-aza-2'-deoxycytidine (DAC) strongly activated CT45 expression in 

SKOV3ip1 ovarian cancer cells (Fig. 2b, Extended Data Fig. 5a) along with the CT antigens 

NY-ESO-1, MAGEA4 and SSX2, in line with recent publications (179, 180). Using the same 

immunopeptidomics strategy, we identified three additional, but sequence related CT45 

peptides matching to the measured peptide motifs of the alleles A-03:01 and/or A-68:01 (Fig. 

2c, Extended Data Fig. 5b, 5c, and 5d, Supplementary Table 3).  

To address if the identified epitopes function as targets for CD8+ T cells, we stimulated patient 

derived A-11:01 CD8+ T cells collected from a CT45 positive tumor with the two CT45 

peptides with the best binding affinity predictions (AVDPETVFK and GVQGPTAVRK). Both 

CT45 peptides, but not a control peptide, induced T cell activation as assessed by Ki67 and 

intracellular IFNγ staining of CD8+ T cells (Fig. 2d). Similar results were obtained using A-

03:01 CD8+ T cells using three peptides identified after DAC treatment (Extended Data Fig. 

5e).  The A-11:01 CD8+ T cells reacted with one of two CT45 tetramers (A-11) containing the 

peptide, AVDPETVFK, which had the highest predicted affinity for A-11:01, while A-03:01 

CD8+ T cells reacted with the tetramer (A-03) containing the GVQPTAVRK peptide (Fig. 2e). 

Co-culture of the CT45+ 59M cell line with peptide stimulated A-11:01 CD8+ tumor-

infiltrating lymphocytes (TIL) targeting two different CT45 peptides lysed the cancer cells in a 
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dose-dependent manner (Fig. 2f). These data demonstrate that CT45 is an endogenously 

processed and presented antigen recognized and targeted by patient-derived CD8+ T cells. 

 

CT45 is a functional mediator of chemosensitivity  

In addition to DAC’s ability to modulate the immune response, it also shows synergism 

with platinum agents in ovarian cancer therapy (181, 182). DAC sensitized SKOV3ip1 ovarian 

cancer cells to carboplatin (Extended Data Fig. 6a) and intriguingly, proteomic analysis on 

DAC treated cells revealed that CT45 was among the top ten DAC induced proteins (Fig. 2b).  

Overexpression of CT45 in an ovarian cancer cell line reduced the number of colonies in a 

colony formation assay (Fig. 3a) but did not affect proliferation or the cell cycle (Extended 

Data Fig. 6c and 6d). Addition of carboplatin reduced proliferation and colony formation in 

CT45 expressing cells (Extended Data Fig. 6c and Fig. 3a). Similar effects were observed in 

a second serous ovarian cancer cell line, OVKATE (Extended Data Fig. 6b and 6e). Treatment 

with carboplatin significantly reduced growth of CT45 expressing subcutaneous tumors in an 

immunodeficient mouse as compared to the untreated CT45+ tumors while having no effect on 

the vector control cell line (Fig. 3b). CT45 expression also significantly reduced overall tumor 

growth as compared to the vector control (Fig. 3b). This data reveals a functional link between 

CT45 expression and carboplatin chemosensitivity and highlights the potential tumor 

suppressive capacities of CT45 in ovarian cancer. 

To understand the mechanism of CT45-mediated chemosensitivity, we mined a recent 

quantitative human interactome study published by our laboratory (117). Interestingly, we 

found that CT45 interacts with several members of the evolutionarily conserved protein 

phosphatase 4 (PP4) complex. The PP4 interaction was confirmed in two ovarian cancer cell 

lines (OVCAR-5 and COV318) expressing Flag or V5-tagged CT45, respectively. The 

regulatory subunits PP4R3α, PP4R3β, and PP4R2 as well as the catalytic subunit, PP4C, of PP4 

were all highly significantly enriched in CT45 immunoprecipitates (p < 0.001; Fig. 3c and 3d, 

Extended Data Fig. 6f) pointing to their specific and direct interaction with CT45. Since PP4 

deficiency impedes the DNA damage response (DDR) (183-187) and causes hypersensitivity 

to platinum compounds (188), we next investigated if CT45 expression influenced the level of 

DNA damage in ovarian cancer cells following treatment with carboplatin. Indeed, CT45-

expressing cancer cells showed increased levels of the DNA damage marker γH2AX and 

cleaved caspase-3 after carboplatin exposure (Fig. 3e). In addition, more DNA damage was 

present in CT45-expressing cells as demonstrated by longer tail moments in a comet assay (Fig. 

3f). 
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CT45 promotes chromatin relaxation mediated by KAP1 phosphorylation 

PP4 plays an important role in the DNA damage response by dephosphorylating several 

critical proteins including 53BP1 (186), γH2AX (183, 189), RPA2 (184), and KAP-1/TRIM28 

(190, 191). Using a candidate based approach we found that carboplatin treatment induced 

phosphorylation of KAP-1 at the ATM target site Ser824 (192). Phosphorylation was increased 

in CT45-expressing cells as compared to vector control cells following DNA damage (Fig. 4a). 

Consistent with these results, phosphorylated KAP-1 was pan-nuclear, peaking at day 3 

following carboplatin treatment in both cell lines (Fig. 4b). In CT45-expressing cells p-KAP-1 

peaked at a higher level and remained elevated on day 5 and day 7, while the p-KAP-1 signal 

dissipated to baseline levels by day 7 in control cells. We observed similar trends for γH2AX. 

KAP-1 is a building block of heterochromatin important for chromatin condensation (193) and 

to understand whether CT45 is also associated with chromatin, we analyzed both ectopically 

(OVCAR5-CT45) and endogenously (59M) CT45 expressing cells using a biochemical 

chromatin segregation assay(194). CT45 was strongly chromatin-enriched and associated with 

nuclease resistant heterochromatin, similar to its PP4 interaction partners, as well as the known 

heterochromatin linked proteins HDAC2 and KAP-1 (Fig. 4c and Extended Data Fig. 7a).  

One possibility for how CT45 may inhibit KAP-1 dephosphorylation is by altering KAP-1 

retention on the chromatin (195), but we did not find that either CT45 or carboplatin altered the 

chromatin enrichment of KAP-1 or PP4 (Extended Data Fig. 7b). 

 Furthermore, chromatin-immunoprecipitation coupled to mass spectrometry (ChIP-

MS)(196) confirmed an association of CT45 with heterochromatin as indicated by the co-

enrichment of KAP1 and HDAC2 in addition to the PP4 complex (Fig. 4d). Pathway analysis 

of the CT45 interactome revealed a strong enrichment of heterochromatic and DDR linked 

proteins (Fig. 4e). Reciprocal ChIP-MS using KAP-1 as a bait showed a clear enrichment of 

CT45, independently confirming its association with chromatin (Extended Data Fig. 7d and 

7e). The interaction of CT45 with heterochromatin-associated PP4 was not affected by 

carboplatin (Extended Data Fig. 7c). 

Since KAP-1 phosphorylation at S824 induces global chromatin decondensation 

following DNA damage (191, 192, 194), we next asked if the KAP-1 Ser-824 phosphorylation 

differences caused changes in chromatin structure. Following carboplatin treatment, cells 

expressing CT45 had larger nuclei on day 5 suggesting an increased level of relaxed chromatin 

(Fig. 4f). Structural chromatin changes were interrogated using a micrococcal nuclease 

(MNase) assay (197) at several time points following carboplatin exposure. After five days, 

carboplatin treatment induced global chromatin relaxation in both vector control and the CT45 
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overexpressing cell line. Strikingly, CT45 induced a higher proportion of nuclease-accessible 

chromatin compared to vector control cells (Fig. 4g and 4h) indicating that the chromatin is 

more accessible to platinum-induced chromatin damage. Furthermore, whereas the control cells 

completely restored chromatin compaction at day 7, chromatin in CT45 expressing cells 

remained in a relaxed conformation suggesting that CT45 impedes the KAP-1 mediated 

restoration of chromatin compaction through its binding to PP4 during recovery from DNA 

damage (Fig 4i). 

 

DISCUSSION 

Until recently, proteomic technology was not amenable to in-depth proteome analysis 

from FFPE tissue without extensive sample pre-fractionation, which requires relatively large 

sample amounts and measurement times. Using a high sensitivity, single-run workflow on 

minute amounts of FFPE tissue, we are now able to quantify over 9,000 proteins, which was 

crucial in the identification of CT45 as an independent prognostic factor for patients with 

advanced stage HGSOC. The ability to successfully use minute amounts of starting material 

from biobank samples as demonstrated here provides validation for the application of MS-based 

proteomics to a variety of important clinical questions and in particular to the long elusive 

identification of clinically relevant cancer biomarkers. 

Mutational load correlates with clinical response to CTLA-4 blockade in melanoma 

(198) and to PD-1 inhibition in colorectal cancers with mismatch-repair deficiencies (199). 

Therefore, most immunotherapy approaches have focused on cancers with a high mutational 

load and the presence of mutant antigens. Notably, ovarian cancer patients treated with immune 

checkpoint inhibitors have not experienced the impressive response rates evident in some other 

cancers (200).  This has been attributed to the low mutational burden present in ovarian tumors 

which are characterized by copy number alterations (62, 201). In our discovery cohort several 

patients showed long term survival following treatment with surgery and chemotherapy. Two 

of these patients are positive for the HLA class I alleles A-03:01 or A-11:01 which bind the 

CT45 derived peptides we discovered using immunopeptidomics (Fig. 2). We hypothesize that 

CT45 may serve as a non-mutant tumor rejection antigen that provides long-term protection to 

patients through activation of cytotoxic T cells which inhibit cancer growth. Based on our 

studies we could envision a treatment approach where CT45 expression is activated on tumor 

cells (e.g. by DAC) and targeted by T cells engineered to recognize the CT45 peptide:HLA-I 

complex.  
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Using interaction proteomics, we found that CT45 directly interacts with the 

evolutionarily conserved protein phosphatase 4 complex, mediating sensitivity to the DNA 

damaging agent carboplatin by impeding dephosphorylation of KAP-1. Phosphorylated KAP-

1 provides a global signal to transiently relax chromatin in order for DNA damage repair to 

occur (193, 202). Our data suggest that CT45 prevents chromatin associated PP4 from 

dephosphorylating KAP-1 and thereby suspends chromatin in a relaxed state (Fig. 4i). Over 

time this leads to further accumulation of platinum induced DNA damage as more of the 

chromatin is exposed and ultimately result in cell death.  KAP-1 was originally described as a 

transcriptional corepressor (203) and was shown to assist in the inactivation of p53 through an 

interaction with MDM2 leading to repression of p53 transcriptional activity (204). Since most 

HGSOC tumors have mutant p53 it is unknown what if any affect CT45 may have on the 

transcriptional activity of p53 mediated by prolonged KAP-1 phosphorylation.  

Overall, our data suggest a model (Fig. 4i) whereby CT45 functions as both a cell 

intrinsic mediator of chemosensitivity by impeding KAP-1 mediated chromatin condensation 

during recovery from DNA damage and as an antigen for CD8+ T cells. Both these findings 

may be clinically relevant. We propose that CT45 expression could be activated in tumors 

lacking CT45 by treating with demethylating agents to improve efficacy of chemotherapy both 

during first line therapy and with recurrent disease. Furthermore, immunotherapy targeting 

CT45 either alone or in combination with platinum-based chemotherapy could be an effective 

strategy for the treatment of advanced stage ovarian cancer. 
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Figure 1. Proteomics identifies CT45 expression to predict long-term survival in HGSOC 
a, Summary of the shotgun proteomics workflow applied to FFPE biobank specimens from 
ovarian cancer patients. Following tissue lysis and homogenization, purified proteins were 
digested and analyzed in single-run HPLC-MS using a Q Exactive mass spectrometer. Data 
were analyzed and quantified in MaxQuant(94, 103). b, Volcano plot of chemotherapy resistant 
versus sensitive patient proteomes. Expression fold changes are plotted against the t-test p-
value. Dashed lines indicate the significance threshold (FDR < 0.05, s0 = 2). CT45 is highlighted 
in green. c, Immunohistochemistry for CT45 and corresponding H&E staining in serial sections 
of tumor from 3 representative patients. d, Kaplan-Meier survival analysis based on CT45 
staining scores from ovarian cancer TMAs for disease-free survival. Advanced stage HGSOC 
patients comparing a staining score of 0 (N=82) versus 1+ (N=42).  
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Figure 2. CT45 is a native tumor antigen 
a, Predicted binding affinities (NetMHC4.0) for HLA class I peptides of CT45 with a length of 
8-11 amino acids. Affinities are plotted on the y-axis as % rank-1. Weak affinity cut-off: % rank 
< 2, high affinity cut-off: % rank < 0.5. Peptides identified by MS are highlighted in green. 
b, Volcano plot of the proteomic comparison between 5-aza-2'-deoxycytidine (DAC) treated 
and control SKOV3ip1 ovarian cancer cells. Protein fold change (t-test difference, log2) is 
plotted against the t-test p-value (–log10). Significance thresholds are indicated by dashes lines 
(FDR < 0.01). Cancer-testis antigens including CT45 are highlighted. c, HLA-I peptide 
intensity ratio from immunopeptidomics of DAC treated versus control SKOV3iP1 ovarian 
cancer cells, plotted against the ranked peptide ratio. CT45 peptides are highlighted in green. 
d, Staining for Ki-67 and IFN-γ of CD8+ T cells (A-11:01) after stimulation with two CT45 
peptides (AVDPETVFK and GVQGPTAVRK) or one HIV negative control peptide analyzed 
with flow cytometry. e, Tetramer staining of A-11:01 or A-03:01 CD8+ T cells with two CT45 
tetramers (AVDPETVFK and GVQGPTAVRK) and one HIV negative control tetramer 
analyzed with flow cytometry. f, Lysis of HLA-A11:01 positive 59M cell line by CD8+ effector 
T cells (A-11:01) at indicated effector:target ratios using a chromium release assay. Data are 
means r s.d. from two independent experiments. 
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Figure 3. CT45 mediates chemotherapy sensitivity  
a, Clonogenic survival assay of the ovarian cancer cell line OVCAR5 stably overexpressing 
CT45 (green) or control vector (purple) after carboplatin (5µM) treatment. Dots represent mean 
values from three independent experiments. Error bars show s.e.m. for each group. 
Representative images are shown above bars. b, Growth of OVCAR5-V5 (control plasmid) and 
OVCAR5-V5-CT45 tumors (N=5-8) over time during treatment with carboplatin (20mg/kg). 
Data are means r s.e.m. for each group. c, Interaction proteomics screen in OVCAR5 cells 
stably overexpressing FLAG-tagged CT45.  Protein enrichment (t-test difference) was 
calculated over the corresponding control cell line (FLAG tag alone) and plotted against the t-
test p-value (-log10). Dashed lines indicate significance thresholds. The bait protein CT45 
(green) and members of the PP4 complex (blue) are highlighted. Results represent 3 replicates 
per experiment group P < 0.01. d, Western blot of immunoprecipitated V5-tagged CT45 
protein. The co-enriched members of the protein phosphatase 4 complex, PP4R3α, PP4R3β and 
PP4C, are shown. e, Western blot of cleaved caspase-3, γH2AX, and CT45 following treatment 
with carboplatin (5µM) and paclitaxel (1.5nM). Day 5. f, Tail moment following carboplatin 
treatment at day 5 using a comet assay. Data are means + s.e.m. of 4 independent replicates 
(right panel). Representative images of comet assays are shown. OVCAR5 cells were treated 
with 5µM carboplatin and COV318 were treated with 2µM carboplatin. 
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Figure 4. CT45 interferes with chromatin dynamics after DNA damage 
a, Western blot analysis of OVCAR5 and OVKATE cell line pairs treated with carboplatin 
(5µM). Day 3. b, Immunofluorescence staining of KAP1-S824 (red) γH2AX (green) and DAPI 
(blue) in OVCAR5-V5 and OVCAR5-V5-CT45 cell line pair with or without carboplatin 
treatment (5µM) at day 3, 5, and 7. Data are means + s.e.m. of 5 independent replicates (right 
panel). Representative cells are shown left. c, CT45 positive 59M cells were collected and 
processed for a chromatin segregation assay as detailed in the Methods. PP4 complex members, 
KAP1, and HDAC2 were detected by western blot. d, Volcano plot of chromatin-
immunoprecipitation mass spectrometry (ChIP-MS) results for the V5-tag in OVCAR5-V5-
CT45 vs. OVCAR5-V5 cell line. Fold enrichment of V5-tagged CT45 over control cell line 



72 
 

(V5 tag alone) is plotted against the t-test p-value (-log10). Dashed lines indicate significance 
thresholds (FDR < 0.01, s0 = 2). e, Pathway enrichment analysis of proteins significantly co-
enriched with CT45 (right side of volcano plot in panel d). Most significant pathways are ranked 
by enrichment false-discovery rate. f, Fold change in nuclear sizes of OVCAR5-V5-CT45 and 
OVCAR5-V5 cells at day 5 with carboplatin (5µM) treatment normalized to untreated cells. 
Representative DAPI images are shown in upper panel. Bar plots represent nuclear sizes from 
5 independent experiments. Scale bar=10µM. Data are means r s.e.m. 
g, h OVCAR5-V5-CT45 and OVCAR5-V5 cells were collected and processed for the 
micrococcal nuclease (Mnase) assay as described in the Methods. Results are shown for 
untreated control samples at day 3 and day 3, 5 and 7 with carboplatin (5µM) treatment. DNA 
size profiles are illustrated in h. i, Proposed model of CT45 mediating chemosensitivity and 
long-term survival in metastatic HGSOC. 
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Extended Data Figure 1. Patient characteristics of proteomic cohort and proteomic depth 
per specimen. a, Clinico-pathologic parameters for the resistant and sensitive patients analyzed 
by proteomics. b, Proteomic depth per patient. Samples were measured as technical duplicate. c, 
Dynamic range of protein abundance of all quantified proteins. d, Correlation matrix of all measured 
samples based on Pearson correlation values. The proteomic comparison of independently 
prepared tissue of the same tumor is highlighted.  
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Extended Data Figure 2. CT45 gene homology and staining validation. a, Correlation analysis 
of disease-free survival time versus CT45 protein expression (log2) for 25 HGSOC patients. 
Patients highlighted in green were alive at the time of analysis. b, Amino acid alignment of the 10 
members of the CT45 gene family. Color shows level of conservation with red being 100% and 
blue being 0%.  
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Extended Data Figure 3. Patient characteristics of tissue microarray validation cohort.  
a, Clinico-pathologic parameters for patients with advanced stage serous papillary ovarian cancer 
included in the TMA validation cohort. Tumors were stained for CT45 and the staining was scored 
0-3. b, Kaplan-Meier survival analysis for overall survival based on CT45 staining scores from 
ovarian cancer TMAs. Advanced stage HGSOC patients comparing a staining score of 0 (N=82) 
versus 1+ (N=42) are compared.  
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Extended Data Figure 4. HLA-I peptidomics reveals presentation of CT45-derived 
peptides. a, Western blot of CT45 protein expression in 8 ovarian cancer cell lines. b, Schematic 
of immuno-peptidomics strategy to identify HLA-I binding peptides. HLA-I receptors with peptide 
complexes are pulled down with an antibody specific for HLA-I. Peptides are eluted from the HLA 
complex and identified by mass spectrometry. c, Histogram of the identified peptide lengths from 
the 59M cell line (length 8-11 amino acids) consistent with peptides that bind to HLA-I receptors. 
d, CT45A1 protein sequence. Identified HLA-I peptides are highlighted in red. e, Identified 
consensus clusters based on the GibbsCluster -1.0 tool for all identified 9-mer peptides (4,017) f, 
Binding motifs. HLA-I consensus binding motifs for the two largest clusters in e. The A11:01 motif 
is similar to A3:01. g, Comparison of MS/MS scans from experimentally identified HLA-I peptides 
(upper panel) and synthetic versions of the same peptides (lower panel). Y (red) and b-ions (blue) 
are shown.  
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Extended Data Figure 5. CT45-derived peptides are presented after DAC treatment. 
a, Western blot of CT45 protein expression in SKOV3ip1 (HLA-A*03:01, 68:01) following DAC 
treatment. 59M serves as positive control. b, Histogram of the identified peptide lengths from the 
DAC treated SKOV3ip1 cell line. c, Identified consensus clusters based on the GibbsCluster tool 
for all identified 9-mer peptides (5,146). d, HLA-I consensus binding motifs for the two largest 
clusters identified in c. The A68:01 motif is similar to A3:01. e, Stimulation of CD8+ tumor infiltrating 
HLA-A*03:01+ T cells isolated from ascites with CT45-derived peptides. Staining for Ki-67 and IFN-
γ of CD8+ T cells (A-03:01) after stimulation with 3 CT45 peptides (EGVQGPTAVR, GVQGPTAVR, 
and VAVDPETVFKR) or an EBV positive control or HIV negative control peptide analyzed with flow 
cytometry.  
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Extended Data Figure 6. CT45 sensitizes cancer cells to carboplatin. a, MTT of SKOV3ip1 
cells with or without 500nM DAC treated with increasing doses of carboplatin. Cells were pretreated 
with 500nM DAC for 72hr then cultured for 4 days and treated with carboplatin on day 7. The MTT 
was performed after 72hr with carboplatin treatment. b, Western blot of CT45 expression in ovarian 
cancer cell lines transduced with a CT45A5 lentivirus. c, Proliferation of OVCAR5 control (V5) or 
CT45 expressing cells with increasing concentrations of carboplatin. d, Cell cycle analysis of 
OVCAR5 control (V5) or CT45 expressing cells stained with propidium iodide. e, Clonogenic 
survival assay of the ovarian cancer cell line OVKATE stably overexpressing CT45 (green) or 
control (purple). Dots represent mean values from three independent experiments. Error bars show 
s.e.m. for each group. f, Interaction proteomics screen in the ovarian cancer cell line COV318 
stably over-expressing V5- tagged CT45. Protein enrichment (t-test difference) is calculated over 
the corresponding control cell line (V5 tag alone) and plotted against the t-test p-value (-log10). 
Dashed lines indicate significance thresholds (p < 0.005, s0 = 3). The bait protein CT45 (green) and 
members of the protein phosphatase 4 complex (blue) are highlighted. Results represent 3 
replicates per experiment group.  
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Extended Data Figure 7. CT45 is chromatin-bound independent of DNA damage. a, Chromatin 
fractionation of the OVCAR5-V5-CT45 cell line. b, Chromatin fractionation of the OVCAR5-V5-
CT45 cell line carboplatin c, ChIP-MS results targeting V5-tagged CT45 in the OVCAR5-V5-CT45 
cell line ± carboplatin. Fold enrichment is calculated over an IgG control antibody. The bait protein 
CT45 (green) and members of the protein phosphatase 4 complex (blue) are highlighted. Results 
represent 3 replicates per experiment group. d, e, ChIP-MS results targeting KAP1 in the OVCAR5 
cell line pair (d), and the 59M cell line (e). Protein enrichment (t-test difference) is calculated over 
the corresponding control (V5 control cell line for d or an IgG control antibody for e, and plotted 
against the t-test p-value (-log10).  
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METHODS 

Cell lines and reagents 
SKOV3ip1 (from Dr. Gordon Mills, M.D. Anderson Cancer Center, Houston, TX), OVCAR5 
(UCSF) and COV318 (from Dr. Gottfried Koneczny, UCLA) were cultured in DMEM, 10% 
FBS. 59M (ECACC) was cultured in DMEM, 10% FBS supplemented with 10µg/ml bovine 
insulin (Sigma, MO). OVKATE (from Dr. Gottfried Koneczny, UCLA) were cultured in 
RPMI-1640, 10% FBS. All cell lines were tested for mycoplasma and authenticated using a 
commercial service (CellCheck, IDEXX Bioresearch). Growth factor reduced Matrigel was 
from BD Biosciences (Rockville, MD). pLX304 (205) was a gift from Dr. David Root 
(Addgene plasmid #25890). pLX304-CT45A5 was acquired from DNASU Plasmid Repository 
(206-208) (clone HsCD00446210). 3xFLAG-CT45A1 was synthesized (Eurofins) and cloned 
into pcDNA3.1 (Invitrogen).  The Ki-CT45-2 antibody (used for WB and IMF) was a kind gift 
of Hans-Jürgen Heidebrecht. W6/32 monoclonal antibodies were purified from the growth 
medium of HB95 cells that were grown in CELLine CL-350 flask (Wilson Wolf Manufacturing 
Corporation, Minnesota) using Protein-A Sepharose (Invitrogen, CA). Antibodies acquired 
from Cell Signaling Technology were: γH2AX (9718, rabbit), Cleaved Caspase-3 (9661), anti-
rabbit IgG-HRP (#7074), and anti-mouse IgG-HRP (#7076), normal rabbit IgG (#2729). 
Antibodies acquired from Bethyl laboratories were: PP4C (A300-835A), PP4R3β (A300-
842A), KAP1 (A300-274A), pS824-KAP1 (A300-767A). Other antibodies used were: actin 
(Sigma, #A5441), anti-CT45A antibody (Sigma, SAB1301842), γH2AX (mouse, Thermo 
Scientific, #MA1-2022), and V5 (Life Technologies, #MA5-15253), PP4R2 (Atlas antibodies, 
HPA034695), PP4R3α (Atlas antibodies, HPA002568).  HLA-I types of cell lines were 
determined using high-resolution genotyping (Center for Human Genetics and Laboratory 
Medicine, Martinsried). 
 
FFPE tissue preparation for MS analysis 
Tumors were collected from patients undergoing primary debulking surgery by a gynecologic 
oncologist at the University of Chicago Hospital, Department of Obstetrics and Gynecology, 
Section of Gynecologic Oncology. Informed consent was obtained before surgery and the study 
was approved by the IRB of the University of Chicago. FFPE biobank specimens (5 serial 
sections, 10uM thick) were first deparaffinized as previously described (123). Areas containing 
70% or more tumor were macrodissected from the slide using a scalpel blade. Lysis was then 
carried out in 4% SDS, 10 mM Hepes pH 8.0 at 99°C for 60 min and by 15 min sonication 
(level 5, Bioruptor, Diagenode). Proteins in the cleared lysate (16,000 g, 10 min) were reduced 
with 10 mM DTT for 30 min and alkylated with 55 mM iodoacetamide for an additional 30 
min. 100 ug of proteins were purified from SDS by acetone precipitation and the protein pellet 
resolved in 100 μl 6 M urea/2 M thiourea (in 10 mM Hepes pH 8.0). LysC digestion was carried 
out with 1 μg of LysC for 3 h at room temperature. After adding 4 volumes of 50 mM 
ammonium bicarbonate buffer, 1 μg trypsin was added for tryptic digestion overnight. The next 
day, digestion was stopped by adding 1% TFA. Peptides were finally desalted on C18 StageTips 
and kept at -20°C until MS analysis. The majority of samples were injected twice for MS 
analysis. 
 
Liquid Chromatography (LC)-MS analysis of FFPE samples 
For LC-MS analysis, a Q Exactive(209) (Thermo Fisher Scientific) mass spectrometer was used 
coupled on-line to an EASY-nLC 1000 HPLC system (Thermo Fisher Scientific). Desalted 
peptides were separated on in- house packed C18 columns (75 μm inner diameter, 50 cm length, 
1.9 μm particles, Dr. Maisch GmbH, Germany) in a 250-min gradient from 2% to 60% in buffer 
B (80% acetonitrile, 0.5% formic acid) at 200 nl/min. Mass spectra were acquired in data-
dependent mode. Briefly, each survey scan (range 300 to 1,650 m/z, resolution of 70,000 at m/z 
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200, maximum injection time 20 ms, ion target value of 3E6) was followed by high-energy 
collisional dissociation based fragmentation (HCD) of the 5 most abundant isotope patterns 
with a charge ≥ 2 (normalized collision energy of 25, an isolation window of 2.2 m/z, resolution 
of 17,500, maximum injection time 120 ms, ion target value of 1E5). Dynamic exclusion of 
sequenced peptides was set to 45 s. All data was acquired using Xcalibur software (Thermo 
Scientific). 
 
Data analysis of proteomic raw files 
MS raw files were processed with the MaxQuant software (94) (version 1.5.3.15). The 
integrated Andromeda search engine (95) was used for peptide and protein identification at an 
FDR of less than 1%. The human UniProtKB database (August 2015) was used as forward 
database and the automatically generated reverse database for the decoy search. ‘Trypsin’ was 
set as the enzyme specificity. We required a minimum number of 7 amino acids for the peptide 
identification process. Proteins that could not be discriminated by unique peptides were 
assigned to the same protein group (94). Label-free protein quantification was performed using 
the MaxLFQ (103) algorithm (MaxQuant environment). Briefly, quantification was based on 
extracted high-resolution 3D peptide features in mass-to-charge, retention time and intensity 
space. Only common peptides were used for pair-wise ratio calculations. Protein ratios were 
then determined based on median peptide ratios. We required a minimum peptide ratio count 
of 1 to report a quantitative read-out and averaged the results from duplicate measurements of 
the same sample. The ‘Match Between Runs’ feature of MaxQuant was enabled to transfer 
peptide identifications across runs based on high mass accuracy and normalized retention times. 
Prior to data analysis, proteins, which were found as reverse hits or only identified by site-
modification, were filtered out.  
 
Tissue microarray 
Tissue microarrays (TMAs) were deparaffinized and rehydrated through xylenes and serial 
dilutions of EtOH to deionized water.  They were incubated in antigen retrieval buffer (Tris-
EDTA, pH 9, S2367, DAKO) and heated in steamer at over 97 ˚C for 20 minutes.  Tissue 
sections were incubated in a humidity chamber with CT45A antibody (1:200, Sigma, 
SAB1301842) for 1h at room temperature. The antigen-antibody binding was detected by Bond 
Polymer Refine Detection (DS9800, Leica Microsystems). Tissue sections were briefly 
immersed in hematoxylin for counterstaining and were covered with cover glasses. The stained 
TMAs were scored by an expert pathologist on a scale from 0-3. Data acquisition and analysis 
were blinded. Tumors were collected from patients undergoing primary debulking surgery by 
a gynecologic oncologist at the University of Chicago Hospital, Department of Obstetrics and 
Gynecology, Section of Gynecologic Oncology. Informed consent was obtained before surgery 
and the study was approved by the IRB of the University of Chicago. 
 
 
HLA-I peptidomics 
SKOV3ip1 cells were treated with 500nM 5-aza-2'-deoxycytidine (DAC) (Sigma, MO) for 3 
days with DAC refreshed every 24 hours. After treatment cells were cultured an additional 4 
days without DAC and collected for HLA-I purification at day 7. 59M cells were cultured under 
normal conditions prior to collection. HLA peptide purification, mass spectrometric analysis 
and data analysis were performed as previously described (163). We used the GibbsCluster-1.0 
Server tool (210) to perform Gibbs clustering analysis of all identified 9-mer HLA-I peptides 
as input using the default settings for 1-6 clusters. We compared the resulting motifs to the 
known and predicted motifs of the HLA-I alleles using the MHC motif viewer (211). Binding 
motifs were plotted using the Seq2Logo tool (212). The NetMHC 4.0 algorithm (213) was used 
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to model binding affinity of the identified peptides using default affinity thresholds for peptide 
binding (% rank 0.5 for strong binders and 2 for weak binders). 
 
T cell peptide stimulation 
Tumors and ascites were collected from ovarian cancer patients undergoing primary debulking 
surgery at the University of Chicago. TILs were thawed and resuspended in RPMI, 10% FCS 
(or human serum). Cells were adjusted to 2x106/ml in 24-well plates and cultured for 7-10 days 
in the presence or absence of 1Pg/ml peptide. After 3 days, 6IU/ml of rhIL-2 was added to the 
culture. Flow cytometric analysis of cultured cells was performed. 
 
Intracellular cytokine staining: In vitro expanded TILs were restimulated at the end of culture 
with the relevant peptide (100 ng/ml) in the presence of Brefeldin A (BD Biosciences) for about 
5-6 hours at 37qC in a 5% CO2 incubator. The cells were washed once with FACS buffer and 
stained with surface makers (anti-CD3, -CD8, live/dead stain) for 30 min on ice. Then the cells 
were fixed and permeabilization with the Cytofix/Cytoperm kit (BD Biosciences), and stained 
for cytokines using either anti-IFN-J antibody. After washing, the cells were analyzed on a flow 
cytometer.  
 
Tetramer staining: In vitro expanded TILs were stained with PE-labeled MHC Class I 
tetramers along with surface staining antibodies (anti-CD3,-CD8, live/dead stain) for 1 hour on 
ice. MHC class-I tetramers carrying CT45 antigen (GVQGPTAVRK AVDPETVFK) or HIV 
peptides (RLRPGGKKK or QVPLRPMTYK) were used. After washing, the cells were 
analyzed on a flow cytometer.  
 

51Cr release assays: The 59M tumor cell line (target cells) was labeled with 100 PCi 51Cr at 
37qC for 1 hour. Target cells were than washed three times in PBS, resuspended in culture 
medium at 1x105 viable cells/ml and 100 Pl was added per well of a 96-well U-bottom plate. 
In vitro expanded TILs (effector cells) were washed twice in culture medium and added to 
targets at the given ratios. Plates were shortly centrifuged to settle cells, and incubated at 37qC 
in a 5% CO2 incubator for 5 hours after which time the supernatants were harvested, transferred 
to small tubes and counted using a Liquid Scintillation Counter. Spontaneous 51Cr release was 
evaluated in target cells incubated with medium alone. Maximal 51Cr release was measured in 
target cells incubated with zap solution at a final concentration of 1% (v/v). Percent specific 
lysis was calculated as (experimental - spontaneous lysis/maximal - spontaneous lysis) times 
100. 
 
Clonogenic survival assay 
Cells were treated with different carboplatin concentrations for 48-72 hours. 2000 cells per 6-
well were then plated for 7-9 days in drug-free medium. Grown colonies were fixed and stained 
with 1% formaldehyde, 1% methanol and 0.05% Crystal Violet for 20 min. Colony numbers 
were then counted with the ColonyArea ImageJ plugin and plotted as percent of control on a 
logarithmic scale. 
 
Western blot analysis 
Cells were treated with indicated drugs for 3 days and then media was changed. On indicated 
day of collection, both adherent and non-adherent cells were collected in RIPA buffer (25mM 
Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) 
supplemented with protease inhibitor cocktail (Thermo Scientific) and phosphatase inhibitor 
cocktail (Sigma). Lysates were incubated for 30 min on ice, sonicated and cleared by 
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centrifugation (15min, 14 000 rpm, 4°C). The quantity of protein was determined by BCA 
reagent (Pierce). The extracts were analyzed by SDS-PAGE on a 4-20% gradient gel (Bio-Rad). 
 
Comet assay 
Cells were treated with carboplatin for 3 days and then incubated an additional 2 days without 
drug. The comet assay was performed on day 5 as previously described(214). Briefly, 2.5e4 
cells/ condition were resuspended in 70uL 0.5% low melting point agarose (LMPA) at 37C and 
plated on a glass slide precoated with 1% agarose in PBS. Samples were allowed to solidify at 
4C for 20 minutes with a square cover glass. The cover class was gently removed and a second 
70uL layer of 0.5% LMPA was applied and again allowed to solidify. The cover glass was 
removed and the slides immersed in Comet Lysis solution (2.5M NaCl, 100mM EDTA, 10mM 
Tris, 0.015% Triton X-100, pH 10) for one hour at 4C and from this point forward protected 
from light. After lysis, the slides were equilibrated for 20 minutes in Comet Electrophoresis 
Buffer (0.3N NaOH, 1mM EDTA, pH 10) at 4C, and then run at 25V for 20 minutes. Then they 
were incubated at room temp in Comet Neutralization Buffer (0.4M Tris, pH 7.5) for five 
minutes twice, then in ddH2O for three minutes, stained with a 1:10,000 dilution of SYBR Gold 
in ddH2O, and finally mounted with a glass cover slip for imaging. Images were taken at 10X 
using a Zeiss AxioObserver A.1. At least 100 cells were quantified/ sample using the software 
OpenComet (215). Data shown is the mean + s.e.m. of 4 biological repeats. 
 
Mouse experiments 
Five million OVCAR5-V5 or OVCAR5-V5-CT45 cells suspended in a 1:2 solution of serum-
free media to growth-factor reduced matrigel were injected subcutaneously into the right and 
left flanks respectively, of 8 weeks old female athymic nude mice. After 5 days, treatment was 
administered through the tail vein 1 time/week at 20mg/kg. Sterile water served as the control 
treatment. Tumor growth was measured every 2-3 days using calipers until the tumor neared 1 
cm3 and was measured daily. Once the tumor reached 1 cm3 the mouse was sacrificed. 4 mice 
were removed from the study early due to ulcerations of the skin. All experiments were 
approved by the Institutional Animal Care and Use Committee of the University of Chicago. 
 
Affinity Purification and Mass Spectrometry 

Affinity purification coupled to mass spectrometry (AP-MS) was performed as previously 
described (216). For immunoprecipitation of cell lines ectopically expressing N-terminally 
tagged CT45A1 (3xFLAG tag) or C-terminally tagged CT45A5 (V5 tag), 30 ul of ANTI-FLAG 
M2 Affinity Gel (Sigma) or ANTI-V5 Affinity Gel (Sigma, CLONE V5-10), respectively, was 
used and incubated with 1 mg of total lysate overnight at 4°C. After three washing steps in 
washing buffer (150mM NaCl, 50mM Tris (pH 7.5), 5% glycerol, 0.05% IGPAL-CA-630) and  
three washing steps in a buffer containing 150mM NaCl, 50mM Tris (pH 7.5), 5% glycerol, 
elution was carried out by a partial on-bead digest. Peptides were finally desalted with C18 
StageTips prior to MS analysis. 
 
Chromatin experiments 
For chromatin immunoprecipitation coupled to mass spectrometry (ChIP-MS), freshly 
harvested cells were crosslinked with 1% formaldehyde for 10 min in PBS. Cells were lysed in 
IP Buffer (50 mM Tris-HCl (pH 8), 100 mM NaCl, 5mM EDTA (pH 8), 0.3% SDS, 1.7% 
Triton-X-100, supplemented with EDTA-free protease inhibitor cocktail (Roche) and 
phosphatase inhibitor cocktail (Roche)) and chromatin sonicated to an average size of 200-400 
bp. 1 mg of total cell lysate was incubated with 3 µg of respective antibody overnight at 4°C 
under constant rotation.  The next day, 30 µl of protein G-coupled agarose beads (Cell signaling 
technology) were added and incubated for 3h at 4°C under constant rotation. Antibody-bait 
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complexes were then washed three times with low salt wash buffer (50 mM HEPES pH 7,5, 
140 mM NaCl, 1% Triton), once with high salt wash buffer (50 mM HEPES pH 7,5, 500 mM 
NaCl, 1% Triton) and twice with TBS. Elution was carried out by a partial on-bead digest as 
recently described(216). Peptides were finally desalted with C18 StageTips prior to MS 
analysis.  
 
Chromatin fractionation was performed as described previously(194). Soluble proteins and 
proteins bound to open or compacted chromatin were separated by stepwise increasing the salt 
and nuclease (MNase) treatment. 1E7 cells were washed with PBS and 1 ml low salt buffer 
(LSB:10 mM HEPES [pH 7.4], 25 mM KCl, 10 mM NaCl, 1mM MgCl2, 0.1 mM EDTA). 
Pelleted cells were then resuspended in six times the packed cell volume (PCV) of LSB 
supplemented with protease and phosphatase inhibitor cocktail (Roche).  After snap freezing in 
liquid nitrogen, samples were quickly thawed and immediately centrifuged (10 min at 10,000 
rpm). The pellet was resuspended in a volume of high-salt buffer (HSB: 50 mM Tris-HCl [pH 
8.0], 5% [v/v] glycerol, 1 mM EDTA, 10 mM MgCl2, 400 mM KCl, supplemented with 
protease and phosphatase inhibitor cocktail), equal to 0.25 V of LSB. After centrifugation at 
10,000 rpm (supernatant = nucleoplasmic fraction), the pellet was resuspended in a volume 
nuclease buffer containing 10 U/ml MNase (NEB) and incubated at 37°C for 10 min and 
centrifuged for 5 min at 10,000 rpm (supernatant = chromatin fraction 1). The pellet was then 
resuspended in the same volume of nuclease buffer containing 100 U/ml MNase and incubated 
another 45 min at 37°C before an equal V of solubilization buffer (nuclease buffer + 2% [v/v] 
NP-40, 2% [v/v] Triton X-100, 600 mM NaCl) was added. After brief vortexing, samples were 
centrifuged (5 min, 10,000 rpm) and the supernatant collected (chromatin fraction 2). Finally, 
the pellet was resuspended in a volume of solubilization buffer and an equal V of denaturing 
buffer (50 mM Tris [pH 6.8], 1% [v/v] SDS, 100 mM DTT, 10% glycerol), briefly sonicated, 
boiled for 5 min, and centrifuged for 5 min at 10,000 rpm (supernatant = chromatin fraction 3).  
 
 
Chromatin relaxation was assayed using the micrococcal nuclease (MNase) assay as previously 
described (197), with a few modifications.  Briefly, nuclei from 1E6 cells were extracted with 
300 µl ice-cold lysis buffer (10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 3 mM MgCl2 and 0.4% 
IGPAL-CA-630) on ice for 5 min. After centrifugation (2,000g for 5 min at 4°C), nuclei were 
washed two times in lysis buffer and one time in 500 µl digestion buffer (0.32M sucrose, 50mM 
Tris-HCl (pH7.5), 4mM MgCl2, 1mM CaCl2). Nuclei were then digested in digestion buffer 
with 50 gel units MNase (NEB) for 9 min at 27°C in a final volume of 100 µl. The reaction was 
stopped by adding a final concentration of 1% SDS and 15mM EGTA. Genomic DNA was 
purified and separated by gel electrophoresis (1.2% agarose). 
 
Immunofluorescence 
Cells were treated with 0 or 5 µM carboplatin on glass chamber slides. After 72hr, media was 
changed. At designated timepoints, slides were fixed for 10min at room temperature with 4% 
paraformaldehyde, cells were washed and permeabilized with PBS/0.1% Triton-X for 15min 
and then blocked for 1hr in blocking buffer (PBS/0.1%Triton-X/0.05% BSA/0.05% goat 
serum). Cells were washed three times and then were then incubated with primary antibody 
overnight diluted in blocking buffer at 4°C. Following three washes, cells were incubated with 
secondary antibody (diluted in blocking buffer) for 1hr at room temperature and then with 
Hoechst 33342 for 2min. Slides were mounted with ProLong Gold Antifade. Slides were 
imaged using a Zeiss LSM 510 microscope. Image analysis was performed using CellProfiler 
(217). A minimum of 100 cells/sample were analyzed. Data shown is the mean + s.e.m. of 4-5 
biological repeats. 
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Statistical analysis 
All statistical and bioinformatics analyses were done using the freely available software Perseus 
(218) (MaxQuant environment), R framework, Stata Version 14 (Stata Corp., College Station, 
TX) or GraphPad Prism (GraphPad). For pairwise proteomic comparisons, we used a 2-sided 
t-test statistic including a permutation-based false discovery rate (FDR) of 1% (5% for Fig. 1b 
after filtering for at least 10 out of 25 valid values) and an s0 value (219) of 2. Missing values 
were imputed based on a normal distribution (width = 0.15; downshift = 1.8). For analysis of 
clinicopathological data, comparisons between groups were performed using chi-squared or 
Fisher’s exact tests for categorical variables and Wilcoxon rank-sum tests for continuous 
variables. Overall survival and disease-free survival was compared between groups using the 
log-rank test. The association between CT45 levels and disease-free days was assessed using 
Pearson correlation. Pathway enrichment analysis (Fig. 4e) was performed based on a Fisher 
exact test with a Benjamini-Hochberg FDR cutoff of 0.02. GOBP, CORUM and Uniprot 
Keyword annotations were used for the analysis. 
Sample sizes were determined based on previous experience with the individual experiment 
except for animal studies where power calculations were used. With the exception of the tissue 
microarray analysis, no randomization or blinding was done for data acquisition or assessment 
of outcome. The mean and the standard error of the mean (s.e.m) indicating variance are 
reported for all graphs. For experiments making one comparison, data was analyzed using a 
two-tailed Mann Whitney U test to account for non-normal distribution of the data. For 
experiments with more than one comparison, One-Way ANOVA with Tukey’s multiple 
comparisons post-test was used. Before applying ANOVA, we first tested whether the variation 
was similar among the groups using the Bartlett’s test. Where the standard deviations were 
significantly different, a log2 transformation was applied to the data before analysis. Differences 
were considered significant if p< 0.05. 
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2.3 Manuscript 3 (in preparation): Compartment-resolved proteomics of 

ovarian cancer progression 
 

2.3.1 Project aim and summary 

 

 

 

 

 

 

HGSOC has been characterized at the genomic, transcriptomic and proteomic level 

(5, 16, 17). This has usually meant analyzing whole tumor tissues taken primarily from 

the ovaries, which are almost inevitably transformed. However, due to the large variety 

of different cell types present in the tumor microenvironment, as well as due to 

contributions from the extracellular matrix, data obtained from whole-tissue analyses 

inherently result in a mixture of different cell type specific read outs, which may limit 

data interpretation or at worst lead to incorrect conclusions. Consequently, whole-

tissue analysis usually requires further orthogonal validation to ensure the validity of 

the identified features. Not surprisingly, known HGSOC subtypes, namely 

‘differentiated’, ‘immunoreactive’, ‘proliferative’, and ‘mesenchymal’ (220, 221), are 

strongly linked to features representing the complex HGSOC microenvironment. 

However, given the availability of efficient and streamlined approaches tailored to 

analyze only the cell type of interest, more accurate results may be obtained than that 

of classical whole-tissue analyses. Laser-capture microdissection (LCM) allows 

isolating distinct cell types present in the tissue of interest, which increases the sample 

homogeneity and accuracy of the analytical read-out. We therefore wished to employ 

LCM coupled to state-of-the-art proteomic analysis to study the compartment-resolved 

proteomic composition and progression of HGSOC at high quantitative resolution.  
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In total, we collected 107 archival (FFPE) biobank samples obtained from 11 patients 

diagnosed with late stage HGSOC. This for the first time allowed to study the proteomic 

progression from early neoplastic STIC lesions (see introduction 1.1.1), through 

primary invasive fallopian tube and ovarian cancer, to omental metastasis, at a depth 

of in total a 7.000 proteins. Surprisingly, we found no shared metastatic proteome 

changes in the tumor compartments. There was a remarkably high proteomic 

correlation between primary and metastatic tumors from the same patients, similar to 

previous observations in studies of colorectal (124) and luminal breast cancer (125). 

However, by additionally analyzing the proteomic changes in the adjacent tumor 

microenvironment (stromal compartment), we identified a highly conserved stromal 

signature of HGSOC metastasis to the omentum. We validated our findings by a 

candidate-driven follow-up approach, which provided new functional insights into the 

complex metabolic and epigenetic interplay between HGSOC and its associated 

microenvironment. Of particular note, Nicotinamide N-Methyltransferase (NNMT), a 

metabolic enzyme that is associated with reduced S-adenosyl methionine (SAM) levels 

in cancer cells (222) and with loss of repressive H3K27me3 chromatin marks in 

differentiating human embryonic stem cells (223), was highly and ubiquitously 

expressed in the stroma of all omental metastasis specimens. This was further 

confirmed in a larger patient cohort by using tissue microarray analysis (TMA) 

encompassing over 200 matched primary (fallopian tube or ovary) and metastatic 

omental sites. NNMT expression in primary tumor sites was less frequent (35%), 

however, these patients showed significantly lower disease-free and overall survival 

time compared to the NNMT stromal negative group. Further functional experiments 

revealed an important role of NNMT in HGSOC progression as a metabolic regulator 

for cancer-associated fibroblasts. Interestingly, NNMT abrogation leads to a reversal 

of the CAF phenotype in vitro and was associated with less pronounced tumorigenicity 

in an orthotopic mouse model. We plan future pre-clinical work to address whether 

selective inhibition of the enzymatic activity of NNMT could be used in a clinical setup, 

for example in combination with standard chemotherapy. 
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2.3.2 Contribution 

 

Ernst Lengyel proposed to investigate the ovarian cancer microenvironment by 

proteomics to Matthias Mann and myself in October 2012. Matthias Mann, Ernst 

Lengyel (University of Chicago), Mark Eckert (University of Chicago), and I initiated 

this project. I developed and optimized a highly sensitive and streamlined sample 

preparation method for the analysis of low input samples (few thousand laser-

microdissected tumor cells) obtained from FFPE biobank material. I then acquired all 

proteomic measurements of the study, analyzed and interpreted the data. This 

identified a conserved stromal protein signature of OvCa metastasis to the omentum. 

Mark Eckert (Univ. of Chicago) collected all tissue samples and worked on the follow-

up experiments. I designed all proteomics related figures and tables, and wrote the 

manuscript together with Mark Eckert, Ernst Lengyel and Matthias Mann. 
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2.3.3 Publication 
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ABSTRACT 
 
 

High grade serous carcinoma (HGSC) has a poor prognosis primarily due to its early 

dissemination throughout the abdominal cavity. Although genomic and proteomic approaches 

have provided snapshots of the proteogenomics of ovarian cancer (OvCa) (224, 225), a 

systematic examination of both the tumor and stromal compartments is critical to understanding 

OvCa metastasis. We therefore developed a label-free proteomic workflow to analyze as few 

as 5,000 microdissected cells from each compartment. The tumor proteome was stable during 

the progression from in situ lesions to metastatic disease; however, the stroma was 

characterized by a highly conserved proteomic signature associated with metastasis. This 

signature prominently included the methyltransferase enzyme nicotinamide N-

methyltransferase (NNMT). Functionally, stromal NNMT expression was necessary and 

sufficient for multiple functional aspects of the cancer associated fibroblast (CAF) phenotype, 

including the expression of CAF markers and the secretion of cytokines and oncogenic 

extracellular matrix. Stromal NNMT supported OvCa migration, proliferation, and in vivo 

growth and metastasis. Mechanistically, expression of NNMT in CAFs led to a depletion of S-

adenosyl methionine (SAM) and a reduction in histone methylation associated with gene 

expression changes in the tumor stroma. This work supports the use of ultra-low input 

proteomics to identify candidate drivers of disease phenotypes and reveals that NNMT is a 

central, metabolic regulator of CAF differentiation and cancer progression in the stroma. 
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INTRODUCTION 
 
 

While almost all serous OvCa harbor TP53 mutations (37), other recurrent mutations 

are rare and serous cancers are generally characterized by chromosomal instability (224, 226). 

HGSC has a relatively high proportion of stroma, but little is known about how interactions 

between the cancer cells and the surrounding extracellular microenvironment regulate tumor 

growth. Several reports describe the proteome of human ovarian cancer (173, 225, 227, 228) 

but none have differentiated between proteins in the stroma and the epithelial components of 

the tumor. Given that the stroma has a tumor-supporting role and co-evolves with the epithelial 

compartment during progression and metastasis (229-232), we set out to evaluate the proteome 

of both compartments in a systematic fashion. We reasoned that developments in mass 

spectrometry (MS)-based proteomics (172), particularly in ultra-high sensitivity analysis (233), 

could be combined with microdissection technology to obtain a more accurate and finely-

resolved picture of cancer progression. 
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RESULTS 

 

To elucidate the proteomic changes underlying OvCa progression in both the tumor and 

stroma, we identified a cohort of 11 patients which supplied access to HGSC tissue representing 

serous tubal in situ carcinoma (STIC), invasive fallopian tube (FT) lesions, invasive ovarian 

(Ov) lesions, and omental (Om) metastases (Supplementary Table S1; Fig. 1a). All tissues 

were collected prospectively during initial debulking surgery and all patients were 

chemotherapy naïve. For each patient and every anatomic site, both tumor and stromal 

compartments were microdissected and proteins extracted using an optimized high sensitivity, 

label-free proteomic workflow for low-input samples. We applied an MS1-based quantification 

method that enables quantification even when many of the peptide signals are insufficient for 

fragmentation (Methods). In total, we obtained 7,515 unique protein quantifications from 107 

analyzed samples, both tumor and benign, at a protein and peptide false-discovery rate (FDR) 

of less than 1% (94). A median of 5,080 and 4,511 proteins were quantified per tumor or stromal 

sample, respectively, and at similar dynamic ranges (Supplementary Table S2, Fig. 1b, and 

Extended Data Fig. 1a). Independently microdissected and processed specimens had excellent 

reproducibility (Pearson r = 0.986) (Extended Data Fig. 1b) and unsupervised hierarchical 

clustering robustly segregated tumor and stromal proteomes (Extended Data Fig. 1c). Tumor 

compartments were enriched for known markers of HGSC (e.g., PAX8, EPCAM, mucin-16, 

and folate receptor alpha) while stromal compartments were characterized by expression of 

ECM components and activated fibroblast markers (e.g., collagens, fibronectin (FN1), smooth 

muscle actin (SMA), and myosins) (Supplementary Table S2, Fig. 1c and Extended Data 

Fig. 1d). Pathway enrichment analyses revealed an over-representation of pathways involved 

in DNA replication and epithelial differentiation in the tumor compartment (Extended Data 

Fig. 2a) while the stromal compartment was dominated by extracellular matrix and 

transforming-growth factor beta (TGF-β) signaling pathways (Extended Data Fig. 2b).  

 

We hypothesized that proteins differentially expressed between anatomic sites would 

reveal functional effectors in both tumor and stromal cells associated with disease progression 

and metastasis. However, unsupervised hierarchical clustering of tumor compartments revealed 

no conserved proteomic signatures that correlated with anatomic sites, and only one protein 

(FABP4; upregulated in omental metastases and expressed at the tumor-stromal interface) was 

differentially expressed in any anatomic site to the depth of our analysis (FDR < 0.01, Fig. 1d 

and Extended Data Fig. 3a-c). Indeed, the tumor compartment was characterized by patient-
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specific protein signatures (ANOVA FDR < 0.01, Extended Data Fig. 3a, c) that likely reflect 

the molecular heterogeneity of HGSC between different patients (224, 225). In contrast, 

clustering of stromal samples led to a clear grouping of all omental samples, suggesting a 

conserved stromal response associated with metastasis across all patients (Supplementary 

Table S3 and Extended Data Fig. 3c). Moreover, a comparison between the four anatomic 

sites (STIC, FT, OV, and OM) identified 128 proteins significantly differentially expressed in 

these stromal compartments (Extended Data Fig. 3a). Interestingly, the omental metastasis 

group contributed most to this list of significant proteins. To identify the drivers with the 

strongest expression differences between primary and metastatic stroma, we compared all 

primary (FT or OV) and metastatic (OM) stromal sites in a pairwise fashion. This resulted in a 

set of 60 proteins which were universally up- or downregulated in all omental metastases (FDR 

< 0.01, Fig. 1d).  

The stromal signature consisted of 21 up- and 39 downregulated proteins, including 

FAP, LOX, TNC, and VCAN, which are proteins known to have tumor-supporting roles in the 

stroma (Fig. 1e and Extended Data Fig. 3d). Downregulated proteins included negative 

regulators of TGFβ such as LTBP4 (234) and SDPR (235). The 21 upregulated proteins that 

make up the stromal signature were all highly enriched in the mesenchymal TCGA subtype 

(Extended Data Fig. 3e) (5). Other proteins, such as ENPP1, PYCR1, and COPZ2, had no 

previously described roles in the tumor stroma or the biology of cancer associated fibroblasts 

(CAFs). Due to its biochemical activity and roles in epigenetic regulation, upregulation of 

nicotinamide N-methyltransferase (NNMT) in the omental stroma was an interesting target. 

NNMT transfers a reactive methyl group from S-adenosyl methionine (SAM) to nicotinamide 

(NA) to generate S-adenosyl homocysteine (SAH) and the metabolically inert product 1-methyl 

nicotinamide (1-MNA) (Fig. 2a). This activity generates a methyl sink in the form of 1-MNA, 

that leads to a depletion of SAM and a reduction in the global methylation potential of the cell 

(222, 236). NNMT-mediated SAM depletion leads to an attenuation of histone and protein 

methylation in cancer cells, adipocytes, and embryonic stem cells (222, 223, 237-239). 

NNMT was universally elevated in the metastatic stroma of OvCa patients, as assessed 

by proteomics and IHC (Fig. 2b-c and Extended Data Fig. 4a), and was significantly increased 

in transformed omental tissue compared to benign omental stroma (Fig. 2c and Extended Data 

Fig. 4b). A TMA encompassing over 200 matched primary (FT or Ov) and metastatic OvCa 

samples confirmed that NNMT protein expression was primarily localized in the stroma of both 

omental and peritoneal metastases (Fig. 2c-d). Tumor expression of NNMT did not vary 

significantly by anatomic site (Extended Data Fig. 4c). In both syngeneic (240) and 
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autochthonous (241) mouse models of HGSC, NNMT was highly expressed in the stroma of 

omental metastases (Extended Data Fig. 4d). High stromal NNMT was also observed in breast 

and colon cancer stroma, suggesting that stromal NNMT expression may be a general feature 

of CAFs in multiple cancer types (Extended Data Fig. 4e). 

CAFs are differentiated from normal fibroblasts by expression of CAF markers, 

secretion of oncogenic ECM components, production of pro-tumorigenic cytokines, 

cytoskeletal rearrangements associated with SMA expression, and increased ability to contract 

collagenous matrices (230). Knockdown of NNMT in OvCa CAFs led to a reversion of cell 

morphology to one that more closely resembled normal omental fibroblasts (NOFs) (Fig. 2e 

and Extended Data Fig. 5a-c). Knockdown or overexpression of NNMT led to significant 

perturbation of its activity, as assessed by 1-MNA production using MS (Fig. 2f). CAF markers, 

including SMA and fibronectin, were decreased upon NNMT knockdown and increased with 

its overexpression (Fig. 2g and Extended Data Fig. 5c-e). Analysis of TMAs also revealed 

that high stromal NNMT expression correlated with increased fibronectin levels (Extended 

Data Fig. 5f). Functionally, NNMT knockdown attenuated CAF collagen contractility (Fig. 

2h) and globally affected CAF gene expression (Supplementary Table S4 and Extended Data 

Fig. 5g). In particular, gene set enrichment analysis (GSEA) demonstrated a robust and 

significant enrichment of genes upregulated in the proteomic signature of metastasis and the 

TCGA mesenchymal subtype, including COMP, FN1, and COL11A1 (Fig. 2i and Extended 

Data Fig. 5h).  

Because NNMT regulated multiple aspects of the CAF phenotype and significantly 

altered expression of numerous genes, we hypothesized that high stromal NNMT expression 

drives gene expression through hypomethylation of DNA, RNA, or histones via attenuation of 

the SAM/SAH ratio (i.e., methylation potential of the cell) (222). Indeed, methylation potential 

was directly regulated by NNMT expression, as assessed by mass spectrometry. NNMT 

knockdown increased the SAM/SAH ratio more than 2.5-fold, while NNMT overexpression 

led to a greater than 5-fold decrease (Fig. 3a). Since global DNA methylation was not 

significantly increased upon NNMT knockdown (Extended Data Fig. 6a), we hypothesized 

that NNMT-mediated histone hypomethylation drove the CAF phenotype. 

Histone H3 lysine methylation and acetylation are tightly coupled to transcriptional 

activity (242-244). To understand how the observed alterations in methylation potential impact 

histone methylation, we performed targeted proteomics of histone H3, using a multi-reaction 

monitoring approach to quantify relative levels of histone methylation (243). NNMT 

knockdown led to an increase in histone methylation at residues associated with transcriptional 
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regulation (243, 244), including a significant increase in H3K4 and H3K27 trimethylation 

(me3; Fig. 3b). Immunoblotting confirmed that H3K27 trimethylation was perturbed upon 

knockdown or overexpression of NNMT (Fig. 3c and Extended Data Fig. 6b). Cartilage 

oligomeric matrix protein (COMP), an extracellular matrix protein (232), was the most 

upregulated protein in all metastatic stroma samples of the omentum when compared to the 

corresponding primary sites (FT and OV) (Fig. 1d and Extended Data Fig. 3c). COMP is 

highly expressed in the stroma of omental metastases (Fig. 3d) and tightly regulated by NNMT 

expression (Fig. 3e). We therefore investigated histone methylation (H3K27me3) at the COMP 

promoter as a proof-of-concept. Indeed, knockdown of NNMT led to a significant increase in 

H3K27me3 occupancy at the COMP promotor, as assessed by chromatin immunoprecipitation 

(Fig. 3f-g). Treatment of CAFs expressing shNNMT with the EZH2 histone methyltransferase 

inhibitor, DZNep, or the general histone methyltransferase inhibitor, 3DZA, was sufficient to 

revert the CAF phenotype by restoring expression of CAF markers and promoting collagen 

contractility (Fig. 3g-I and Extended Data Fig. 6c) (230). 

Functionally, CAFs support and accelerate tumor growth, progression, and metastasis 

(230, 245, 246). Stromal NNMT regulates the expression of several pro-tumorigenic cytokines 

(Supplementary Table S4) including IL-8, CXCL10, and CCL5 (Extended Data Fig. 7a). 

Overexpression of NNMT in normal fibroblasts promoted cancer cell proliferation in response 

to conditioned media; conversely knockdown of NNMT in CAFs attenuated cancer cell 

proliferation (Fig. 4a). Extending these findings, knockdown of NNMT in CAFs inhibited 

cancer cell chemotaxis (Fig. 4b). To understand if stromal NNMT activity is required for tumor 

progression in vivo, we co-injected HGSC cells expressing luciferase with CAFs expressing 

shCtrl or shNNMT constructs. Knockdown of NNMT specifically in the stromal compartment 

reduced in vivo proliferation and overall tumor burden (Fig. 4c). To determine if NNMT is 

sufficient to promote ovarian cancer progression, we utilized an orthotopic model in which ID8 

mouse ovarian cancer cells are co-cultured with conditioned media from fibroblasts expressing 

control or NNMT overexpression constructs for 48 hours before intraperitoneal injection (Fig. 

4d). Tumor seeding of the omentum was significantly increased when ID8 cells were pre-

treated with conditioned media from fibroblasts overexpressing NNMT (Fig. 4d). 

Although NNMT was primarily expressed in the stroma of omental metastases, a subset 

of patients had high stromal expression of NNMT in primary sites (37%; ovary and fallopian 

tube) (Fig. 2e). The TMA used to validate stromal NNMT expression was also used to evaluate 

the prognostic role of NNMT in chemo-naïve,  high grade serous cancer (247). We found that 

elevated stromal NNMT at primary sites was associated with a significantly worse recurrence-
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free (median survival of 349 versus 598 days) and overall survival (737 versus 1489 days; 

Supplementary Table S5, Fig. 4e, and Extended Data Fig. 7b). In contrast, expression of 

NNMT in the tumor compartment was not predictive of survival or recurrence (Extended Data 

Fig. 7c-d). High stromal NNMT expression was significantly associated with platinum 

resistance in our patient cohort (Supplementary Table S5). 

 

 

DISCUSSION 

 

In summary, by using laser-capture microdissection combined with an optimized high-

sensitivity proteomic pipeline we demonstrated the quantification of up to 5,000 unique proteins 

from as few as 5,000 cancer cells. This approach enabled compartment-resolved proteomic 

analysis of both tumor and stromal compartments across the HGSC progression series from 

STIC to metastatic tumors and revealed a metastatic stromal signature. Our results emphasize 

the molecular heterogeneity of ovarian cancer while also revealing that tumor proteomes within 

individual patients are comparatively stable during progression. In a recent genomic study of a 

subset of the patient cohort described here, we observed similar genomic alterations across all 

anatomic sites, including STIC, within each patient (248). Of note, we did not observe a 

proteomic signature that differentiated STIC from advanced cancers, suggesting STIC already 

possess the molecular aberrations at both the genomic and proteomic levels associated with a 

fully developed cancer. Despite the marked genetic and proteomic heterogeneity of epithelial 

OvCa across patients, the stromal proteome was remarkably uniform and characterized by high 

NNMT expression. 

NNMT metabolically reprograms the epigenome of the stroma to promote OvCa 

progression in a manner that co-opts NNMT-dependent processes that occur during embryonic 

stem cell priming (223), metabolic syndrome (237), and tumor cell aggressiveness (Fig 4f) 

(222). The specificity of the observed methylation patterns, marked by H3K27 and H3K4 

hypomethylation, is likely due to differences in the affinity of different methyltransferase 

enzymes for SAM (222, 249, 250). Although CAF gene expression can be regulated by 

chromatin modifiers and DNA methylation (251, 252), metabolically-defined histone 

methylation plays a central role in defining the pro-tumorigenic role of the stroma. Inhibition 

of NNMT activity by knockdown led to a reversion of the CAF phenotype, suggesting stromal 

methyltransferase activities can be targeted to normalize the tumor stroma. This study suggests 
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that epigenetic targets in the stroma may play key roles in the response to inhibitors targeting 

regulators of the epigenome undergoing clinical testing. 

 

 
 
 
 
 

 

 
 
 
Fig.1: Compartment-resolved proteomics of ovarian cancer progression reveal a stromal 
signature of HGSC metastasis. (a) Tumor and stromal compartments were microdissected from an 
ovarian cancer progression series (serous tubal intraepithelial carcinoma, STIC; invasive fallopian tube, 
FT; ovarian lesions, Ov; and omental metastases, Om) and label-free, quantitative shotgun proteomics 
performed to identify proteins differentially expressed in tumor and stromal compartments across all 
anatomic sites. (b) Number of unique proteins quantified by MaxLFQ in each anatomic compartment. 
(c) Ranking of proteins by expression in tumor compartment versus stromal compartment identifies 
established markers characterizing tumor (green) and stromal (purple) components of the tumor. (d) 
Volcano plots comparing omental metastases to primary sites (FT and Ov) in tumor (left) and stromal 
(right) compartments. Significantly differentially expressed proteins are highlighted in green (tumor) or 
purple (stroma), n = 11 patients. (e) Heatmap of proteins upregulated in omental stromal signature of 
metastasis (bottom axis) across all patients (rows) and anatomic sites (STIC, FT, Ov, and Om). Warmer 
colors are higher expression. Missing values are grey; missing samples are white. 
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Fig. 2: NNMT is upregulated in the stroma of HGSC metastases and regulates the CAF phenotype. 
(a) NNMT catalyzes the transfer of a reactive methyl group from S-adenosyl-L-methionine (SAM) to 
nicotinamide (NA), generating S-adenosyl-L-homocysteine (SAH) and the metabolically inert product 
1-methylnicotinamide (1-MNA), thus depleting intracellular SAM and reducing methylation potential. 
(b) Stromal NNMT expression from quantitative proteomic analyses reveals significant upregulation in 
omental metastases, n = 11 patients. (c) Representative NNMT immunohistochemistry (IHC) confirms 
elevated expression of NNMT in omental and peritoneal (Periton) metastases and stromal specificity. 
NNMT is not expressed in the benign omentum. (d) Stromal NNMT expression is elevated in omental 
(Om) and peritoneal metastases compared to ovarian sites. (e) Morphology of CAFs expressing 
indicated constructs (green; GFP). (f) Production of 1-MNA as assessed with HPLC-MS is attenuated 
upon knockdown and enhanced upon overexpression of NNMT, n = 3 biological replicates. (g) 
Knockdown of NNMT in CAFs attenuates expression of CAF markers (fibronectin, Fn1; smooth muscle 
actin, SMA), while NNMT overexpression in normal fibroblasts increases expression of the markers. 
(h) Knockdown of NNMT in CAFs reduces collagen contractility; overexpression in normal fibroblasts 
(3T3) increases contractility, n = 3 biological replicates. (i) Gene set enrichment analysis reveals that 
genes regulated by NNMT in CAFs are enriched for components of the stromal signature of metastasis. 
All error bars are standard error of mean (SEM). *p < 0.05; ***p < 0.001.  
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Fig. 3: NNMT regulates histone methylation to drive the CAF phenotype. (a) HPLC-MS relative 
quantification of SAM and SAH levels of CAFs (left) and normal fibroblasts (right; 3T3, 293T, and 
normal omental fibroblasts) expressing the indicated constructs, n = 3 biological replicates. (b) 
Quantitative proteomics of histone H3 methylation in CAFs expressing shCtrl or shNNMT constructs 
following immunoprecipitation. me1=mono-methylation; me2=dimethylation; me3=trimethylation. 
Significantly altered histone marks are highlighted in red. n = 3 technical replicates. (c) Immunoblotting 
of H3K27me3 in fibroblasts overexpressing NNMT (top) or CAFs transfected with the indicated 
siRNAs. (d) Representative immunohistochemistry of COMP in an omental metastasis. T=tumor; 
S=stroma. (e) qRT-PCR analysis of COMP expression in CAFs expressing the indicated constructs, n 
= 3 biological replicates. (f) Schematic of H3K27me3 peaks (maroon) and primers targeting COMP 
promoter region (red) in relation to COMP transcriptional start site. Relative H3K27me3 enrichment as 
determined with qPCR in CAFs expressing shCtrl or shNNMT constructs, n = 2 biological replicates. 
(g) Immunoblot and (h) qRT-PCR of CAF markers after treatment with the EZH2 histone 
methyltransferase inhibitor DZNep, n = 3 biological replicates. (i) Collagen contractility of CAFs 
expressing shNNMT construct treated with DZNep, n = 3 biological replicates. All error bars are SEM. 
*p < 0.05; **p < 0.01; ***p < 0.001.   
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Fig. 4: Stromal NNMT supports HGSC progression and is associated with a poor prognosis. (a) 
Proliferation (doubling time) of HeyA8 and TYKnu OvCa cells following treatment with the indicated 
conditioned media (CM). Proliferation rate increases (doubling time decreases) with NNMT 
overexpression and decreases (doubling time increases) upon knockdown, n = 3 biological replicates. 
(b) Representative images (left) and quantification (right) of chemotaxis of the indicated OvCa cells in 
response to conditioned media from CAFs expressing the shCtrl or shNNMT constructs, n = 3 biological 
replicates. (c) In vivo proliferation and total tumor burden of luciferase-labeled HeyA8 cells co-injected 
with CAFs expressing shCtrl or shNNMT constructs. 9 tumors per group. (d) Schematic of experimental 
design (top). Representative images and quantification of omental adhesion of luciferase/GFP-labeled 
ID8 mouse OvCa cells treated with conditioned media from fibroblasts expressing the indicated 
constructs, n = 7 mice per group. (e) A TMA assembled from 92 patients with chemonaïve HGSC and 
matched primary and metastatic tumors was stained for NNMT. Representative images of ovarian 
tumors expressing low (top) or high (bottom) levels of stromal NNMT (left). Kaplan-Meier overall 
survival curves for patients with low (black) or high (red) stromal expression of NNMT in ovarian sites 
(right). (f) Stromal NNMT drives ovarian cancer progression by metabolic regulation of histone 
methylation which causes epigenetic and transcriptional changes in the stroma that promote OvCa 
proliferation, migration, and metastasis. All error bars are SEM. *p < 0.05.  
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Extended Data Fig. 1: Quantitative proteomics of low-input samples. (a) MaxLFQ label-free 
quantitation values and dynamic range are similar across all anatomic sites and in both tumor (left) and 
stroma (right) samples. (b) Example of experimental replicates of microdissection, protein extraction, 
and quantitative proteomics with Pearson correlation of >0.95. (c) Unsupervised hierarchical clustering 
of all proteomic samples leads to clustering of tumor and stromal samples characterized by proteomic 
signatures associated with the indicated pathways. (d) One-dimensional principal component analysis 
of all tumor and stromal samples. Component 1 accounts for 23.5% of the total data variation. 
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Extended Data Fig. 2: Gene network analysis of HGSC progression proteomics. Gene network 
analysis of (a) all tumor compartments and (b) all stromal compartments in the progression series (Fig. 
1a). Pathways in more than one network are filled with more than one color.  Size of circles correlates 
with number of genes in the pathway; pathways will shared genes are connected with lines.  
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Extended Data Fig. 3: HGSC progression is characterized by patient-specific signatures in the 
tumor compartment and site-specific signatures in the stroma. (a) Left and right panels show 
proportions of all proteins that are significantly different by patient (purple) or anatomic site (blue). 
1,474 proteins are differentially expressed in the tumor compartment between patients while only 30 
stromal proteins are significantly different between patients. In respect to the compartment 
(tumor/stroma, blue) one protein is different in the tumor compartment (FABP4) while 128 proteins are 
differentially expressed in the stroma. (b) Boxplot of FABP4 expression in tumor (left) and stromal 
(right) compartments during progression. (c) Unsupervised hierarchical clustering of tumor (left) and 
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stroma (right) proteins reveals patient-specific clustering in the tumor compartment while the stromal 
samples cluster by anatomic site. For example, all STIC samples (green) across all patients cluster 
together. (d) Unsupervised hierarchical clustering of differentially expressed stromal proteins (Fig. 1d) 
reveal anatomic site-specific clusters, including a core signature of 21 proteins consistently upregulated 
in the stroma of omental metastases (box). (e) Expression of 21 protein signature in the TCGA subtypes 
reveals enhanced expression in mesenchymal subtype.  
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Extended Data Fig. 4: NNMT is highly expressed in the stroma of ovarian cancers. (a) 
Representative IHC of NNMT in omental metastases from individual patients reveals strong expression 
restricted to the stromal compartment. (b) Quantitative proteomics of the stroma of omental metastases 
(n = 11 patients) and normal omental tissue (nOm; n = 6 patients) find significantly elevated expression 
of NNMT in the metastatic stroma. (c) Quantification of tumoral NNMT staining in TMA analysis. (d) 
Representative IHC of NNMT in the stroma of metastases in an autochthonous model of ovarian cancer 
(top, PAX8:TP53

mut
;PTEN

-/-
;BRCA1

mut
) and a syngeneic model (bottom, ID8 intraperitoneal 

xenograft). (e) NNMT is expressed in the stroma of breast and colon cancers. ***p < 0.001. 
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Extended Data Fig. 5: NNMT promotes acquisition and maintenance of the CAF phenotype. (a) 
qRT-PCR for NNMT in CAFs expressing the indicated constructs, n = 3 biological replicates. (b) 
Immunofluorescence analysis of smooth-muscle actin (SMA) reveals attenuation of SMA stress fibers 
upon knockdown of NNMT in CAFs. (c) Representative brightfield images of normal omental 
fibroblasts and primary CAFs expressing shCtrl and shNNMT constructs reveal a reversion of CAF 
morphology to more closely resemble normal omental fibroblasts upon knockdown of NNMT. (d) 
Relative mRNA (n = 3 biological replicates) and (e) protein expression of fibronectin and SMA in CAFs 
expressing the indicated constructs. (f) Elevated stromal fibronectin is associated with NNMT 
expression. (g) Volcano plot of genes significantly regulated by NNMT upon knockdown in CAFs. 
Significantly differentially expressed genes are highlighted in red. Over-represented KEGG pathways 
are highlighted. (h) GSEA analysis of genes regulated by knockdown of NNMT in the TCGA 
mesenchymal signature. Error bars are 95% confidence intervals.  
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Extended Data Fig. 6: NNMT does not regulate DNA methylation and a general methyltransferase 
inhibitor is sufficient to induce expression of CAF markers. (a) Quantification of 5-methylcytosine 
(5-mC) in genomic DNA extracted from CAFs expressing the indicated constructs, n = 3 biological 
replicates. (b) Treatment of CAFs expressing and shNNMT construct with the general methyltransferase 
inhibitor 3-DZA reduces H3K27 trimethylation and increases SMA expression. Error bars are SEM; ns 
= not significant.  
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Extended Data Fig. 7: NNMT regulates pro-tumorigenic cytokines and is associated with a poor 
clinical outcome. (a) Representative images and quantification of a cytokine array of CAFs expressing 
the indicated constructs. Genes downregulated upon knockdown of NNMT are highlighted in blue, those 
increased in red. 100% relative to shCtrl is highlighted with dashed grey line (n = 2 technical duplicates). 
(b) Kaplan-Meier curve of recurrence-free survival of patients with low (black) or high (red) stromal 
NNMT expression in primary sites. NNMT expression in the tumor compartment at primary sites was 
not associated with (c) overall or (d) recurrence-free survival. Error bars are SEM.  
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METHODS. 
 
Patient samples. 

All patients included in the study underwent primary debulking surgery at the University of 

Chicago and were diagnosed with metastatic HGSOC (Supplementary Table S1). All human 

tissue samples were collected with informed consent under University of Chicago Institutional 

Review Board-approved protocols and in accordance with the Declaration of Helsinki. 

 

Laser-capture microdissection. 

Samples were prepared as previously described (248). Formalin-fixed, paraffin-embedded 

(FFPE) specimens were sectioned with a microtome (10 μm sections) and mounted on Leica 

PEN-membrane MembraneSlides (2 µm). Slides were deparaffinized with xylene and 

rehydrated through graded alcohols and water. Sections were stained with Mayer’s hematoxylin 

(Sigma) and dehydrated through graded alcohols and xylene. Tumor and stromal tissues were 

dissected with a Leica LMD 6500 laser microdissection system and tumor and stromal samples 

collected in 0.5 ml tubes. Depending on the FFPE specimen, an area of 1-5×106 Pm2 was 

collected (approximately 5-25,000 cells, as derived from dissected area × slide thickness / 

average mammalian cell volume of 2,000 Pm3, BNID 100434). 

 

FFPE tissue preparation for MS analysis. 

FFPE tissue lysis was adapted from previously described methods (132). Microdissected tissue 

was collected by pipetting 50 Pl of lysis buffer (50% 2,2,2-trifluoroethanol (TFE) and 5 mM 

dithiothreitol in 25 mM NH4HCO3 buffer) and centrifuged for 5 min at maximum speed to 

collect all remaining tissue. Samples were boiled at 95°C for 30 min and briefly centrifuged 

every 5-10 min. Subsequently, samples were sonicated for 10 min (level 5, Bioruptor Plus, 

Diagenode). After centrifugation for 10 min at maximum speed, supernatants were transferred 

to new tubes and alkylated with 20 mM iodoacetamide for 30 min in the dark. Samples were 

vacuum-concentrated for 30 min at 45°C (until approximately 10 Pl buffer remained). 40 Pl of 

fresh digestion buffer (10% TFE and trypsin in 50 mM NH4HCO3) was added in a trypsin 

(Promega) to total protein ratio of approximately 1:50. Digestion was carried out at 37°C 

overnight and digestion stopped by addition of 1% TFA. Samples were vacuum-evaporated to 

a volume of 5-10 Pl and resuspended in 100 Pl 0.2% TFA and 2% acetonitrile prior to desalting 

with C18 StageTips. Samples were stored at -20°C until MS analysis. 
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Liquid chromatography (LC)-mass spectrometry (MS) analysis. 

Quadrupole Orbitrap mass spectrometers (209, 253) (Q Exactive and Q Exactive HF, Thermo 

Fisher Scientific) coupled to an EASY-nLC 1000 HPLC system (Thermo Fisher Scientific) via 

a nano-electrospray source were operated in data dependent mode for LC-MS analysis of 

peptides. LC columns (75 μm inner diameter, 50 cm length) were packed in-house with C18 

particles (1.9 μm, Dr. Maisch GmbH, Germany). Peptides were separated with a 250 min HPLC 

gradient from 2% to 60% in buffer B (80% acetonitrile, 0.5% formic acid) at a flow-rate of 200 

nl/min. We employed a resolution of 70,000 at m/z 200 (60,000 for Q Exactive HF) for survey 

scans. The scan range was set to 300 to 1,650 m/z. Up to the 3 most abundant MS1 features 

(charge ≥ 2) were selected for high-energy collisional dissociation fragmentation at a resolution 

of 17,500 at m/z 200 (15,000 for Q Exactive HF). Dynamic exclusion of sequenced peptides 

was set to 45 s. Ion injection times and ion target values were set to 20 ms and 3×106 for the 

survey scans and 220 ms and 1×105 for the MS/MS scans, respectively. Data was acquired 

using Xcalibur software (Thermo Scientific). 

 

Data analysis of proteomic raw files. 

MS raw files were processed with MaxQuant (94) (version 1.5.3.15). The Andromeda search 

engine(95) of MaxQuant was used for peptide and protein identification. Andromeda is a 

probability-based search engine that employs a target-decoy approach to identify peptides and 

proteins at a false-discovery rate (FDR) of less than 1%. The UniProtKB database release 

(August 2015) was used as the forward database. MaxQuant automatically generated a reverse 

decoy database based on the provided forward database. Proteins which could not be 

distinguished based on the identified peptides were grouped into protein groups (94). The 

MaxLFQ(103) algorithm was used for label-free proteome quantification. MaxLFQ is a peptide 

intensity-based algorithm that makes use of high-resolution 3D peptide features in mass-to-

charge, retention time and intensity space.  

 

For each protein, peptide ratios were calculated in a pairwise manner and combined with protein 

ratios by calculating the median of all peptide ratios. Only the exact same peptide species was 

considered for each pairwise calculation. A least-squares analysis was then used to reconstruct 

the relative protein abundance across samples, which preserves the total summed intensity for 

a protein over all samples. A minimum of one ratio count for each pairwise comparison was 

required. The “Match Between Runs” feature of MaxQuant was enabled to match high-

resolution MS1 features between runs.  
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Proteomic bioinformatic analyses. 

All statistical and bioinformatics analyses were done using Perseus (218) (MaxQuant 

environment) or R framework. For pairwise proteomic comparisons, we used a 2-sided t-test 

statistic including a permutation-based FDR of 1% and an s0 value (219) of 2. Missing values 

were imputed based on a normal distribution (width = 0.15; downshift = 1.8). For pathway 

enrichment analyses, we used the Cytoscape plugin ClueGO. Enriched Gene Ontology 

annotations (GOMF) for the top 100 tumor or stromal proteins were calculated over the entire 

protein list and corrected by applying a Benjamini-Hochberg FDR of 5%.  

 

Tissue immunohistochemistry & immunofluorescence. 

FFPE tissue specimens were cut at 10 µm, deparaffinized in xylene, and rehydrated through 

graded ethanols. Following heat-mediated, sodium citrate antigen retrieval (10 mM sodium 

citrate, 0.05% Tween 20, pH 6), slides were stained with anti-NNMT (Santa Cruz G-4; 1:200) 

or anti-COMP (Thermo Fisher Scientific MA1-20221; 1:100) antibodies and processed with 

the VECTASTAIN Elite ABC HRP kit and DAB Substrate Kit (Vector Laboratories). Slides 

were counterstained with hematoxylin and dehydrated through graded alcohols and xylene. For 

immunofluorescence, slides were stained with fluorescently-labeled secondary antibodies 

(1:500; Thermo Fisher) and Hoechst 33258 (1:200; Molecular Probes). Confocal microscopy 

was performed with a Zeiss LSM510 and images processed with Image J 1.50j. 

 

Tissue microarray analysis. 

Assembly and construction of the tissue microarray have been previously described(254). 

NNMT immunohistochemical reactivity was scored without knowledge of clinical outcome by 

two experienced pathologists (S.M. and R.L.). Each sample was scored based on the percentage 

of positive cells in each compartment (0, no staining; 1, <30%; 2, 30–50%; 3, ≥50%); staining 

intensity was similar across all samples. Expression was considered “low” if the staining 

intensity was 0 or 1 and “high” if 2 or 3. Analysis was limited to the ovarian compartment of 

chemotherapy naïve patients with high grade serous pathology (n=97 patients; Supplementary 

Table S5). Kaplan-Meier survival curves and statistical analyses of overall and progression-

free survival were performed with GraphPad Prism 7 using the Mantel-Cox (log-rank) test. 
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Isolation of primary cells. 

CAFs were isolated from transformed omental tissue of patients with HGSOC. Normal omental 

fibroblasts (NOFs) were isolated from omental tissue from female patients undergoing surgery 

for benign conditions. CAFs and NOFs were isolated and validated as previously 

described(255). Tissues were thoroughly rinsed with PBS before mincing and digestion (12-18 

hr) with collagenase (3 mg/ml) and hyaluronidase (0.5 mg/ml) in 10% fetal bovine serum (FBS) 

in DMEM. Primary NOFs or CAFs adhered to tissue culture plastic within 24 hr. 

 

Cell lines. 

HeyA8 (Gordon Mills, MD Anderson, Houston, TX), 3T3 (American Type Culture Collection), 

293T (Lucy Godley, University of Chicago, Chicago, IL), and primary and immortalized CAF 

cells were cultured in DMEM supplemented with 10% FBS, MEM vitamins, MEM non-

essential amino acids, penicillin, and streptomycin. TYKnu cells (Gottfried Koneczny, 

University of California, Los Angeles) were cultured in MEM Alpha supplemented with 10% 

FBS, MEM vitamins, and MEM non-essential amino acids. ID8 cells were grown in DMEM 

supplemented with 4% FBS, Insulin-Transferrin-Selenium (5mg/ml; Gibco). All cells were 

cultured at 37 oC in a humidified incubator at 5% CO2. For experiments, CAFs and fibroblasts 

(3T3 and 293T cells) were grown in 10 µM methionine media. For some experiments, cells 

were treated with 1 µM DZNep or 1 µM 3DZA or vehicle (DMSO) control for 72 hr. All cells 

lines were Mycoplasma-negative and authenticated (IDEXX Bioresearch short tandem repeat 

marker profiling). 

 

Plasmids and expression. 

Short hairpin RNA (shRNA) oligonucleotides were designed using the shRNA Designer from 

BiOSETTIA (using accession number NM_006169) and cloned into the pLV-hU6-CMV-

Green backbone using the manufacturer’s protocol (Supplementary Table S7). CAFs were 

infected with non-targeting shCtrl or shNNMT constructs; 3T3 normal fibroblasts were infected 

with pLenti6 empty vector control or pLX304-NNMT overexpression vector (HsCD00442343; 

DNasu.org). CAFs were immortalized with pBABE-neo-hTERT (1774; Addgene). To produce 

lentivirus, 293T cells were seeded at 1 × 106 cells per 6 cm dish in DMEM supplemented with 

10% FBS. After 18 hr, cells were transfected with 1 µg expression vector, 0.9 µg pCMV-dR8.2 

packaging vector (8455; Addgene), and 0.1 µg pCMV-VSV-G expression vector (8454; 

Addgene) using Lipofectamine 2000. Viral supernatant was harvested at 48 and 72 hr post-

transfection, filtered through a 0.8 µm filter, and added to recipient cells with 4 µg/ml polybrene 
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for 8-12 hr before selection with puromycin (2 µg/ml) or blasticidin (1 µg/ml). For transient 

transfections, cells were seeded in a 6-well dish and transfected with 5 nmoles siRNA pools 

(GE Dharmacon) using Lipofectamine 2000 (Thermo Fisher) in OptiMEM Reduced Serum 

Media (Thermo Fisher).   

 

Targeted LC-MS/MS metabolomics. 

Cells were scraped into ice-cold PBS and isolated by centrifugation at 1,400 rcf at 4°C. Cell 

pellets were resuspended in 300 μl of an 80:20 mixture of MeOH/H2O. Internal deuterated 

standards, 10 nmol d3-serine, were added to the extraction solution for sample normalization. 

The mixture was sonicated (Fisher Scientific FB-505) for 5 s followed by a 10 min 

centrifugation at 16,000 rcf. The supernatant was collected and dried under N2 gas. The dried 

metabolites were resuspended in 30 µl of an 80:20 mixture of MeOH/H2O. Resuspended 

metabolites were separated by hydrophilic interaction chromatography with a Luna-NH2 

column (5 μm, 100 Å, 50 × 4.6 mm, Phenomenex). Mobile phase A was composed of 100% 

CH3CN, and mobile phase B was composed of 95:5 (v/v) H2O:CH3CN. For positive mode 

analysis, mobile phase A and B were supplemented with 0.1% formic acid. The gradient started 

with 0% B for 5 min and increased linearly to 100% B over 15 min with a flow rate of 0.4 

ml/min, followed by an isocratic gradient of 100% B for 10 min at 0.4 ml/min. Then, the column 

was equilibrated with 0% B for 5 min at 0.4 ml/min. Targeted MS/MS analysis was performed 

on an Agilent triple quadrupole LC-MS/MS instrument (Agilent Technologies 6460 QQQ). The 

capillary voltage was set to 4.0 kV. The drying gas temperature was 350 oC, the drying gas flow 

rate was 10 L/min, and the nebulizer pressure was 45 psi. The mass spectrometer was run in 

MRM mode. The following MS transitions were used to measure the indicated metabolites: NA 

(m/z 123.05 → 80.05), 1-MNA (m/z 137 → 94), SAM (m/z 399 → 250), SAH (m/z 385 → 136), 

and d3-Serine (m/z 109.07 → 63.1). Relative metabolite abundance was quantified by 

integrated peak area for the given MRM-transition. Data presented are representative of three 

independent biological experiments each containing three technical replicates for a given 

condition. 

 

Immunoblots and cytokine array. 

Cells were lysed in SDS lysis buffer containing 4% SDS and 10 mM HEPES, pH 8.5. Proteins 

were separated by SDS-PAGE on a 4-20% gel and transferred to a nitrocellulose membrane. 

The membrane was blocked with 5% non-fat dry milk (NFDM) in Tris-buffered saline with 

Tween 20 (TBST) for 30 min at RT and probed overnight with primary antibodies in 2% bovine 
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serum albumin in TBST at 4oC (Supplementary Table S6). After washing with TBST, the 

membrane was incubated with secondary antibodies (Thermo Fisher Scientific) conjugated to 

horseradish peroxidase at 1:5,000 dilution in 5% NFDM/TBST for 1 hr at RT. Proteins were 

visualized using Clarity Western ECL Substrate (Bio-Rad) or SuperSignal West Femto 

Substrate (Fisher Scientific). For the cytokine array, cells were seeded at 3×106 cells per 15 cm 

plate and grown for 72 hr in growth media. Conditioned media was collected, filtered through 

a 0.22 µm filter, and processed with the Proteome Profiler Human Cytokine Array Kit, Panel 

A (R&D Systems) following the manufacturer’s recommendations. Images were quantified 

using ImageJ. Full-length immunoblots are available in Supplementary Data.  

 

RT-qPCR. 

Total RNA was isolated and treated with DNase using RNeasy Mini Kit (Qiagen) according to 

the manufacturer’s protocol. Reverse transcription of 2 µg total RNA was carried out using the 

High Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific). qPCR was 

performed with TaqMan probes and TaqMan Fast Advanced Master Mix or custom primers 

(IDT) and Fast SYBR Green Master Mix on an Applied Biosystems StepOnePlus Real-Time 

PCR System and analyzed using the 2-ΔΔCt method (Supplementary Table S7).  

 

Collagen contractility assay. 

Indicated cells were trypsinized and diluted to 2×105 cells/ml in growth media. 400 µl of diluted 

cells were mixed with 200 µl of rat tail collagen (5 mg/ml; BD Biosciences) and neutralized 

with 5 µl 1 N NaOH and transferred to a 24-well plate. After 20 min of incubation, collagen 

gel was freed from the edges with a pipette tip and 600 µl of media added to the well. Collagen 

gels were incubated at 37 oC for 24 hr before fixation (4% paraformaldehyde) and staining with 

Eosin-Y (Sigma) before imaging to quantify collagen gel area with ImageJ 1.50j.  

 

Proliferation assays. 

Ovarian cancer cells were seeded at 1,000 cells per well in a 96-well plate and allowed to adhere 

for 24 hr before addition of conditioned media (72 hr) from the indicated cells. After 24 hr and 

48 hr, nuclei were visualized by addition of Hoechst 33258 (1:5000) and wells fluorescently 

imaged with a Zeiss Axiovert Observer.A1 to extract cell number and doubling time. Images 

were analyzed with ImageJ 1.50j. 
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Migration assays. 

40,000 cells in serum-free media were added to the top chamber of an 8.0 µm PET cell culture 

insert (Falcon) with conditioned media (72 hr) from indicated cells in the bottom reservoir. 

After 12 (HeyA8) or 18 (TYK-nu) hr cells were fixed with 4% PFA in PBS, representative 

fluorescent images collected with a Zeiss Axiovert Observer.A1, stained with 0.1% crystal 

violet, washed extensively with PBS, and dried. Crystal violet was released with 10% acetic 

acid and the absorbency measured at 520 nm to quantify relative migration.  

 

Gene expression analysis. 

RNA was collected from CAFs expressing shCtrl or shNNMT constructs (RNeasy Mini Kit, 

Qiagen) and 100 ng of total RNA analyzed on Illumina HumanHT-12 v4 Expression BeadChips 

(two biological replicates per group). cDNA labeling and hybridization were performed at the 

University of Chicago Functional Genomics core facility using protocols as suggested by the 

manufacturer. Data was processed with Illumina GenomeStudio GSGX 1.9.0 and in R 

(http://www.r-project.org) with the limma Bioconductor package and p values adjusted using 

Benjamini-Hochberg correction for multiple testing. All analyses were performed at the probe 

level. Annotation of significant (corrected p > 0.05) genes with KEGG pathways was performed 

with ConsensusPathDB-human (Release 32). Gene set enrichment analysis was performed with 

GSEA v2.2.0.  

 

DNA methylation quantification. 

Genomic DNA was extracted from indicated cells using the Wizard Genomic DNA Purification 

Kit (Promega). DNA methylation (5-methylcytosine) was quantified with the MethylFlash 

Global DNA Methylation (5-mC) ELISA colorimetric kit (Epigentek) and read with a 

Molecular Devices SpectraMax i3 plate reader per manufacturer’s protocol. 

 

Histone modification proteomics. 

Nuclei were isolated using gentle detergent treatment (0.3% NP-40 in NIB-250 buffer) of cells 

and centrifugation at 0.6 rcf and washed with NIB-250 buffer. Histones were acid-extracted 

and derivatized with propionic anhydride both prior to and following trypsin. Propionylated 

histone peptides were resuspended in 50µL water with 1% TFA and 3µL were injected in 3 

technical replicates on nanoLC/triple quadrupole MS which consisted of a Dionex UltiMate 

3000 coupled to a ThermoFisher Scientific TSQ Quantum triple quadrupole mass spectrometer. 

Buffer A was 100% LC-MS grade water with 0.1% formic acid and buffer B was 100% ACN. 

http://www.r-project.org/
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The propionylated peptides were loaded onto an in-house packed C18 trapping column (4 cm 

× 150 µm; Magic AQ C18, 3µm, 200 Å -Michrom) for 10 min at a flow-rate of 2.5 µL/min in 

0.1% TFA loading buffer. The peptides were separated by a gradient from 1 to 35% buffer B 

from 5 to 45 min. The analytical column was a 10 cm × 75 µm PicoChip (1PCH7515-105H253-

NV New Objective) consisting of the same C18 material as the trapping column. The triple 

quadrupole settings were as follows: collision gas pressure of 1.5 mTorr; Q1 peak width of 0.7 

(FWHM); cycle time of 3 s; skimmer offset of 10 V; electrospray voltage of 2.5kV. SRM mass 

spectrometer transitions were developed as described previously (256). Data were analyzed 

using Skyline software (v3.5; MacCoss Lab, University of Washington) with Savitzky–Golay 

smoothing of peaks. Automatic peak assignment and retention times were checked manually. 

 

Chromatin immunoprecipitation. 

For chromatin immunoprecipitation (ChIP), freshly harvested cells were crosslinked with 1% 

formaldehyde for 10 min in PBS. Cells were lysed in IP Buffer (50 mM Tris-HCl (pH 8), 100 

mM NaCl, 5mM EDTA (pH 8), 0.3% SDS, 1.7% Triton-X-100, supplemented with EDTA-free 

protease inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche)) and chromatin 

sonicated (Biorupter Plus, Diagenode) to an average size of 200-400 bp. 1 mg of total cell lysate 

was incubated with 3 μg of respective antibody overnight at 4°C under constant rotation. After 

12 hr, 30 μl of protein G-coupled agarose beads (Cell Signaling Technology) were added and 

incubated for 3 hr at 4°C under constant rotation. Antibody-bait complexes were then washed 

and the bound chromatin eluted and reverse-crosslinked overnight. Samples were digested with 

RNase A for 2 hr at 37°C and DNA purified. 

 

Xenograft and syngeneic models. 

All animal experiments were approved by the University of Chicago Institutional Animal Care 

and Use Committee. Animals were not randomized and were not excluded. Sample size was 

based on pilot experiments and previous experience with the models. For the xenograft model, 

female nude mice (6-week old; Harlan) were subcutaneously injected in the left and right flanks 

with 100,000 HeyA8-Luciferase cells mixed with 200,000 CAFs expressing shCtrl or shNNMT 

constructs in 50% Matrigel (BD Biosciences) diluted with serum-free DMEM. Tumor burden 

was assessed 7 and 14 days after injection using a Xenogen IVIS 200. Luciferase imaging was 

performed via intraperitoneal injection of 100 μl D-luciferin (30 mg/ml in PBS; 0.22 μm sterile 

filtered) 10 min prior to imaging. Images were analyzed with Living Image 4.4 software. Mice 
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were sacrificed with isoflurane and tumors dissected to assess total tumor burden under blinded 

conditions. 

 

For the syngeneic model, ID8-luciferase/GFP cells were pre-treated with conditioned media 

(72 hr) from 3T3 cells overexpressing NNMT or a control construct for 48 hr. Animals were 

not randomized and were not excluded. 4 million pre-treated ID8 cells were injected 

intraperitoneally in 7 female C57BL/6 mice (6 weeks old; Harlan) and allowed to implant for 

14 hr before mice were sacrificed and the omentums harvested. Following imaging of the 

omentums (GFP), tissues were lysed with luciferase assay lysis buffer (Promega) and luciferase 

signal detected using a Lumat LB 9507 luminometer (Berthold Technologies). Analysis of 

tumor burden was conducted under blinded conditions. 

 

Statistical analyses. 

Statistical analyses were carried out using Perseus, Excel, R, and GraphPad Prism 7.01. Data 

are reported as mean ± standard error of mean (SEM), unless otherwise noted in figure legends. 

Number and type of replicates are indicated in the legends of the corresponding figures. Sample 

size was based on pilot experiments or previous experience with the models. P values are 

reported in the figure legends and were calculated with unpaired Student’s t-test for two groups 

or analysis of variation (ANOVA) with Tukey correction for experiments with more than two 

groups. For survival analyses, significance was assessed with log-rank (Mantel-Cox) test and 

hazard ratios calculated with log-rank test. P values less than 0.05 were considered significant 

(95% confidence interval).   

 

Data availability. 

Proteomic data is available online at 

 http://maxqb.biochem.mpg.de/mxdb/project/show/9373012627500 (username: review2; 

password: 5kcGES) and have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD006396) via the PRIDE 

partner repository with the dataset identifier PXD006396 (username: 

reviewer40116@ebi.ac.uk; password: XsCmGwHJ). Microarray data is available in the Gene 

Expression Omnibus (GEO) database (series GSE98267) and can be accessed at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wfuvgwkejtqdjol&acc=GSE98267. 

The MaxQuant quantitative proteomics software package and Perseus data analysis software 

http://maxqb.biochem.mpg.de/mxdb/project/show/9373012627500
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD006396
mailto:reviewer40116@ebi.ac.uk
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wfuvgwkejtqdjol&acc=GSE98267
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environment are freely available: http://www.biochem.mpg.de/5111733/software. 

Supplementary data is available online.  
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3 Discussion and Outlook 
 
3.1 The modern proteomic toolbox for the study of ovarian cancer   
 

The poor clinical outcome of HGSOC is linked to a variety of factors such as a scarce 

understanding of HGSOC origin and pathogenesis, late diagnosis at an advanced 

metastatic stage and frequently acquired chemotherapy resistance. Furthermore, a 

substantial amount of pre-clinical research has been performed on inadequate cellular 

models.  

 

Modern expression proteomics is powerful, comprehensive and comprised of a 

multitude of techniques to study protein expression, function, regulation, spatio-

temporal dynamics or interactions. Remarkably, each of these can be achieved today 

in single shotgun proteomics runs. Even global proteome studies that aim at 

quantifying ideally the entirety of all expressed proteins in a single cellular system have 

reached a nearly complete detection of all expressed proteins (92, 112). This greatly 

impacts on systems biology-based projects that aim at obtaining a global proteomic 

portrait of the sample of interest. 

 

In manuscript 1 of this thesis, I addressed proteomic similarities and differences 

across 30 frequently used ovarian cancer cell lines. I showed that a single-run (4h) 

workflow can be used to detect and quantify roughly 8,000 proteins across the 

measured cell lines. These numbers could only be achieved previously by extensive 

protein or peptide pre-fractionation, which inevitably increases the analysis time and 

decreases the throughput. This was the first study to apply the single-run workflow to 

a large number of cell lines related to a single disease context. Our data revealed that 

state-of-the-art proteomics can be used to identify distinct cell line groups resembling 

HGSOC tissue at the proteomic level. This is of great relevance for the OvCa 

community as it allows selecting the most appropriate cell lines for any pre-clinical 

investigation. Especially in conjunction with the previous genomic characterization of 

ovarian cancer cell lines (12), the data will be useful for finding the most accurate 

cellular models for a variety of research questions. As a proof of concept, we used the 

proteomic resource to predict the treatment response to all-trans-retinoic acid (ATRA). 

Two receptors have been linked to differential cellular ATRA responses, CRABP2, 

which mediates the anti-oncogenic signaling of ATRA, and FABP5, which induces pro-
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oncogenic signaling (169). The presence of a high CRABP2/FABP5 ratio was 

previously shown to promote apoptosis in cancer cells following treatment with ATRA, 

whereas higher FABP5 levels caused an opposing effect by mediating cell survival 

(169).  Our data indeed revealed that the group of cell lines with high expression levels 

of CRABP2, compared to FABP5, decreased proliferation or changed morphology to 

a more differentiated phenotype. This clearly indicated the beneficial, anti-oncogenic 

ATRA response. Conversely, we observed ATRA-induced proliferation in cell lines that 

showed low CRABP2 expression, clearly reflecting the reported FABP5-mediated pro-

oncogenic signaling pathway. With respect to future clinical trials, these observations 

may help to select patients potentially benefiting from ATRA-based therapy. 

 

The identified cell line groups further revealed a potential cell-of-origin based 

classification into OSE-derived and FTEC-derived. This is of particular importance for 

HGSOC as currently there is no clear consensus on the cellular origin of HGSOC. This 

is largely due to the fact that both hypotheses, the OSE origin and FTEC origin, have 

been supported by animal models or clinico-pathological observations (23, 27, 28, 38, 

40, 257, 258). Consequently, both hypotheses may be correct thus leading to a 

proposed third dualistic precursor model (13). Of note, the gene expression profile of 

normal ovarian tissue was found to be similar to the mesenchymal HGSOC subtype 

(259). This supports our new proteomics-based classification, into predominantly 

mesenchymal (potentially OSE-derived) and epithelial (potentially FTEC-derived). 

Interestingly, the differential expression of EMT markers in the ‘good’ HGSOC cell lines 

has already been reported recently (81), however, it remained unclear what these 

observations actually reflected. Based on our findings, the expression differences of 

the EMT markers may potentially represent two different cellular origins of serous 

OvCa (OSE and FTEC). Consistent with my results, a recent miRNA study likewise 

identified two distinct HGSOC subtypes, an integrated epithelial subtype and an 

integrated mesenchymal subtype (220). The study further identified that a specific 

miRNA, miR-506, promoted CDH1 (E-cadherin) expression, prevented TGFβ-induced 

epithelial-mesenchymal transition and correlated with good clinical prognosis. Indeed, 

our data clearly showed higher expression of CDH1 in the likely FTEC-derived cell 

lines, suggesting that, at least to some extent, miRNA regulatory networks led to the 

differential protein expression in the two identified HGSOC subtypes. Moreover, we 

likewise observed that the epithelial HGSOC subtype correlated with better prognosis 
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as assessed by the comparison of our results to two additional proteomic and genomic 

datasets.  

In summary, manuscript 1 sheds new light onto HGSOC origin and provides a useful 

database for the selection of bona-fide HGSOC cell lines, as well as candidate marker 

proteins to stratify patients into a mesenchymal or epithelial subtype. This might be of 

prognostic relevance as the mesenchymal subtype is linked to unfavorable clinical 

outcome (16, 221). The manuscript was published in the August issue of Nature 

Communications with me as first author. 

 

Manuscript 2 illustrates the power of modern discovery-based proteomics to 

investigate proteins under various biological aspects. We initially employed a single-

run shotgun proteomics workflow to discover proteins associated with chemotherapy 

efficacy in late-stage HGSOC. In this retrospective study, our near-comprehensive 

proteomic dataset (a 9,000 quantified proteins) identified the cancer-testis antigen 45 

(CT45) as significantly up-regulated in the group of patients with favorable response 

to carboplatin/paclitaxel chemotherapy. Due to the strong correlation between CT45 

expression and disease-free survival (Pearson r = 0.75), this suggested an active role 

of CT45 in mediating chemotherapy sensitivity.  

 

CT45 belongs to the group of cancer-testis antigens that are considered as attractive 

cancer immunotherapy targets due to their tumor specificity and broad applicability 

(see section 1.4.4). We used an immunopeptidomics approach to identify CT45 

derived HLA class I specific peptides presented on the surface of CT45+ ovarian 

cancer cells. Our follow-up work showed that these antigens were indeed in vivo T-cell 

targets that promoted proliferation and activation of patient-derived CD8+ T-cells, and 

ultimately mediated cancer cell killing. However, we did not observe an overall 

correlation between the number of CD8+ T-cells and CT45 expression in our discovery 

cohort of 25 patients. Assuming an effective T-cell response against CT45+ tumors in 

vivo, this stands in contrast to the observed correlation between intratumoral T-cells 

and clinical outcome of advanced ovarian carcinoma after surgical debulking and 

chemotherapy (56). However, there are several possible explanations for this finding.  

Firstly, we did not identify CT45-derived HLA-I peptides of HLA alleles other than 

A*03:01, A*11:01 or A*68:01. For example, two HLA-A*02:01 CT45+ cell lines were 

also screened, which did not result in an identification of additional CT45-derived HLA-
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I peptides. The best in silico predicted A*02:01 specific peptides did not result in T-cell 

activation. Therefore, CT45+ tumors without the HLA-A*03:01, A*11:01 or A*68:01 

alleles may not induce a T-cell response against CT45, potentially due to the lack of 

presented peptides. One of the patients with the best clinical outcome in our cohort 

(DFS > 7 years, patient is alive) was positive for allele A*11:01, which was predicted 

to have the highest affinity to our identified CT45 peptides. Additionally, this patient 

had high CT45 protein expression in the tumor. It is tempting to speculate that the 

observed long-term protection from tumor recurrence was facilitated by a strong T-cell 

memory response in addition to the observed chemotherapy sensitivity, and that this 

is mediated by CT45.  

Secondly, in contrast to previous studies, we analyzed metastatic omental tumor 

tissues, which may be associated with a strong immunosuppressive environment 

inhibiting T-cell activation and expansion. In support of this, the number of 

immunosuppressive FOXP3+ intratumoral T-cells was recently found to be predictive 

of good neoadjuvant chemotherapy (NACT) outcome, whereas the number of CD8+ 

T-cells remained unchanged (59). This finding is of relevance for future studies 

addressing the link between CT45 expression, chemotherapy efficacy and the role of 

the immune system. 

 

An interaction proteomics approach helped to discover the function of CT45 by 

identifying the protein phosphatase 4 (PP4) complex as strongly interacting with CT45. 

PP4 is critical for the repair of DNA lesions after exogenous DNA damage (183, 185, 

187, 189, 260). Our subsequent work consequently focused on the role of PP4 and its 

related targets such as KAP1/TRIM28, in the context of DNA damage signaling. Briefly, 

we found that, similar to the PP4 members, CT45 was chromatin associated and 

perturbed PP4 mediated DNA signaling during heterochromatic DNA damage repair. 

CT45 expression inhibited PP4 mediated chromatin re-condensation via KAP1-S824 

de-phosphorylation after DNA damage repair. This may prolong the DNA damage 

signal and ultimately lead to apoptosis (Fig. 13). Interestingly, knockdown of 

heterochromatic proteins, for example KAP1, or induced chromatin de-condensation 

have been linked to DNA damage sensitivity (192, 261). Our model now suggests that 

the selective inhibition of KAP1 de-phosphorylation after DNA damage might be a 

promising therapeutic strategy to pursue in combination with conventional 

chemotherapy. In such a scenario, ATM induced global chromatin relaxation, which is 
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required for the repair of heterochromatic DNA damage foci (202), would be prolonged. 

This may further sensitize cancer cells to more DNA damage due to the vulnerability 

of open chromatin to form carboplatin-DNA crosslinks. Furthermore, CT45-derived 

peptides binding to and perturbing PP4/KAP1 signaling during the DNA damage 

response could be designed. An interaction screen could be used to map the exact 

PP4 interaction site of CT45. These peptides could be further selected for their ability 

to mediate chemotherapy sensitivity. This might be especially advantageous in the 

context of a CT45 negative tumor, ideally in combination with neoadjuvant 

chemotherapy.  

 

 

 

 

 

 

 

 

 

Based on our results and those of other studies, an attractive treatment strategy for 

HGSOC may be the combination of conventional chemotherapy, immune checkpoint 

blockage and personalized cancer immunotherapy (Fig. 14).  This concept can be 

illustrated based on the results of manuscript 2.  

Figure 13: Model of CT45 mediated chemotherapy sensitivity.  
a. Following DNA damage in heterochromatin (HCR), ATM induced chromatin 
relaxation occurs to facilitate DNA damage repair. PP4 restores heterochromatin to 
end the DDR. b. CT45 perturbs PP4 from restoring heterochromatin, leading to a 
maintained DNA damage signal and increased signal amplification in case DNA 
damaging drugs are still present. This may ultimately result in apoptosis and tumor 
shrinkage. 
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Before first-line chemotherapy, tumor tissue taken from the initial debulking surgery 

could be used to evaluate CT45 expression, expression of immune checkpoint 

molecules such as PD-L1 or CTLA-4, and the presence of intratumoral T-cells. In 

parallel, blood and ascitic fluid would be collected to isolate PBMCs and CD8+ T-cells, 

respectively. Following conventional chemotherapy, checkpoint immunotherapy may 

be used to eliminate the remaining tumor cells via T-cell mediated killing. The reported 

up-regulation of PD-L1 on T-cells through chemotherapy may provide a rational to start 

checkpoint blockage directly after chemotherapy (59). Chemotherapy induced 

apoptosis may further lead to T-cell activation through the presentation of tumor 

derived antigens on HLA-I complexes of antigen presenting cells (APCs). To account 

for immune cell depletion through chemotherapy, T-cells isolated form ascites may be 

expanded in vitro and infused back to the patient. Finally, CD8+ T-cells derived from 

PBMC differentiation could also be used to generate CAR T-cells (262) for adoptive T-

cell transfer targeting CT45-derived HLA-I peptides. The continuous administration 

and monitoring of CAR T-cells may promote long-term protection against any tumor 

recurrence. With respect to CT45 negative tumors, drugs like decitabine (5-aza-2'-

deoxycytidine) could be evaluated in combination with standard chemotherapy to 

activate CT45 antigen expression and presentation (152, 179). Interestingly, 

decitabine treatment was shown to result in up-regulation PD-L1 expression in cancer 

cells further indicating its combination with checkpoint blockage therapies (263). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 14: Beyond chemotherapy: advanced possibilities for 
ovarian cancer treatment 
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Despite the uncertainties with regards to HGSOC origin, there is little doubt about the 

fact that advanced-stage HGSOC almost inevitably includes metastasis to the 

omentum, an adipocyte-rich tissue located in the peritoneal cavity (42). Roughly 75% 

of HGSOC patients present at an advanced disease stage when the cancer has 

already spread from the primary fallopian tube or ovarian sites to the omentum. 

Consequently, research dedicated to understanding HGSOC progression and 

metastasis at the molecular level is of great clinical importance. The goal of 

manuscript 3 was therefore to analyze the complete proteomic progression of 

HGSOC in a discovery cohort of eleven patients with late-stage disease. I established 

a novel, sensitive workflow to analyze proteins derived from minute amounts of laser-

microdissected clinical biobank material (FFPE). We extended the scope of this study 

by separately analyzing changes in the tumor and its associated microenvironment. 

Such a study could not be conducted so far due to great challenges in sample 

collection, processing and proteomic analysis. Interestingly and surprisingly, we found 

that the tumor proteomes did not substantially change during progression to 

metastasis, indicating that the large genomic alterations frequently observed in 

HGSOC are already present at the pre-neoplastic level of STICs. In contrast to the 

tumor compartment, our data showed a distinct metastatic protein signature derived 

from the omental tumor microenvironment. Follow-up work by my collaborators 

confirmed the proteomic findings and discovered the functional importance of the 

proteins associated with omental metastasis. Out of these, we identified together 

Nicotinamide N-Methyltransferase (NNMT) as a major regulator of cancer-associated-

fibroblasts by metabolically reprogramming normal fibroblasts. This knowledge might 

be useful for the design of specific inhibitors against metastatic HGSOC. Furthermore, 

it sheds additional light on the tumor microenvironment as a promising target for 

HGSOC treatment. 

 

The proteomic findings described in manuscript 3 might further have general 

implications for the current understanding of HGSOC and its related subtypes. Based 

on whole-tissue gene-expression analysis, HGSOC can be grouped into four subtypes 

termed differentiated, immunoreactive, proliferative, and mesenchymal (220, 221). 

However, it is a well-known that these subtypes are primarily a reflection of discrete 

microenvironmental features present in the analyzed whole-tumor tissues. Due to the 

absence of spatio-temporally resolution of previous analyses, proteomic changes 
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during progression had not be addressed so far. Consequently, existing subtype 

assignment may be imprecise since it is based on assessment of single samples. Our 

data revealed a conserved stromal signature of HGSOC in the omentum, however, in 

addition we found that the signature was not unique to metastasis and but also 

presented in some HGSOC tissues isolated from the fallopian tube or ovary. A 

comparison to previous datasets showed that the identified stromal proteins clearly 

represented markers of the known mesenchymal HGSOC subtype, which is 

associated with poor survival. This strongly highlights the importance of compartment-

resolved protein analysis to obtain a more refined molecular profile. To put this in 

perspective, had the study be limited to solely omental tumors for subtype definition 

instead of ovarian tumors, one would have found predominantly one mesenchymal 

HGSOC subtype. Alternatively, the analysis of tumors from the FT or ovary of the same 

patient may have resulted in a different subtype assignment. This possibility is 

supported by the highly dynamic nature of the tumor microenvironment (264), e.g. by 

the continuously changing population of different cell types and restructuring of the 

extracellular matrix. In contrast to the stroma, our analysis clearly showed a remarkably 

stable tumor proteome throughout HGSOC progression. Interestingly, similar results 

were obtained for colorectal (124) and luminal breast cancer (125), pointing to a 

general proteomic feature across cancers. This knowledge may provide a rationale for 

the search for distinct HGSOC subtypes based on tumor cell derived protein signatures 

in addition to the known microenvironmental subtypes. Indeed, a recent large-scale 

characterization of 169 HGSOC cases stratified patients into different survival groups 

based on proteogenomic features, derived from DNA copy number alterations (5). Due 

to the known genomic stability of the tumor microenvironment, these features were in 

all likelihood tumor cell derived. Based on our results, tumor cell derived signatures 

might be more conserved across tumor sites than stroma derived signatures. This 

suggests alternative definitions of HGSOC subtypes. 

 

The fact that the identified stromal protein signature, linked to omental metastasis, was 

conserved across all analyzed patients highlights the unique metastatic niche of the 

omentum. Mesothelial cells for example, covering omental tissues as a single cell 

layer, have been implicated in OvCa metastasis because they secrete large amounts 

of fibronectin, which in turn promotes tumor cell adhesion, invasion and proliferation 

(49). Indeed, fibronectin (FN1) was among the proteins highly expressed in all stromal 
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samples of omental metastasis, indicating a strong contribution of mesothelial cells to 

the protein signature. In regard of the observed stromal signature in invasive tumors 

of the fallopian-tube and ovary, it is tempting to speculate that these may represent a 

transformation of the ovarian surface epithelium (OSE) - a mesothelium - which can 

ultimately give rise to a mesenchymal-type tumor resembling tumors of omental 

metastasis.  Consequently, the absence of the mesenchymal protein signature in FT 

or ovarian tumors may indicate an FT origin with primary metastasis from the FT to the 

ovary. This raises the question about the origin of tumors, which show a mesenchymal-

type FT tumor but no mesenchymal signature in the ovarian tumor site. Our data 

revealed that two of eleven patients may belong to this group (Fig. 15). One possibility 

is that some mesenchymal-like FT cancers are linked to a potential stromal origin as 

previously described in a mouse model (40). Alternatively, the original FT derived 

tumor spread to the ovary in these cases, involving an additional epithelial-to-

mesenchymal transition exclusively in the original FT tumor, but not in the ovarian site. 

These site-specific differences may be due to divergent clonal propagation of tumor 

cells as recently reported for HGSOC (265, 266). Our results in manuscript 1 indeed 

showed that a minority of the likely FT-derived cell lines such as KURAMOCHI and 

COV318 showed mesenchymal characteristics (COL3A1high, CDH1low), similar to the 

likely OSE-derived cell lines,  despite their clear proteomic assignment to the group of 

likely FT-derived, PAX8+ cell lines. Interestingly, both cell lines were originally derived 

from ascites which may explain their mesenchymal features due to EMT during 

omental metastasis (46). However, our patient derived proteomic data did not reveal 

significant changes in the tumor compartment during progression raising the question 

about whether an EMT program in the tumor cells indeed occurred. We instead found 

strong pro-metastatic changes in the tumor-associated stroma (e.g. high FN1, TNC, 

VCAN, NNMT, COL11A1 and THBS2). This is in support by a recent study in colorectal 

cancer, which linked the expression of a poor-prognosis, mesenchymal gene signature 

to cancer-associated fibroblasts, as opposed to tumor cells (55). Of note, these 

observations do not exclude that tumor cells undergo EMT. The fact that we did not 

find a clear EMT related proteomic signature in the tumor compartment throughout 

progression simply argues for an apparently small proportion of tumor cells undergoing 

EMT, for example at the invasion front.  

In conclusion, mesenchymal-type of cancers should not be inherently linked to tumor 

cell features, but instead considered to be strongly influenced by stromal contributions. 
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a 
 

The distinct proteomic signature of mesenchymal-type HGSOC may help to better 

understand the origin for these cancers and to understand the important role of CAFs 

during disease progression.  

  

b 
 

Figure 15: A simplified model for HGSOC progression based on the stromal 
appearance of the mesenchymal protein signature.  
a. A conserved mesenchymal protein signature of HGSOC omental metastasis. 
Proteins are shown on the x-axis. Patients are plotted on the y-axis. Colors from 
blue to red indicate protein levels from low to high expression. Bar plots on the right 
show disease-free survival times. The two highlighted patients who showed early 
stromal changes in the FT and ovary had the worst clinical outcomes likely 
representing the known mesenchymal HGSOC subtype. b. Proposed model for the 
different scenarios in a. Fallopian-tube (FT) derived tumors (blue) or ovarian-derived 
(OV) tumors (red) both metastasize to the omentum. The appearance of the 
mesenchymal protein signature in FT or OV tumors may help to stratify tumors with 
different cellular origins. 
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3.2 The age of large-scale proteomics: implications for biomedicine 
 

The possibility to analyze the entirety of all expressed proteins in a given cellular 

context, the proteome, has been a source of fascination for a considerable time.  

Today, 28 years after the development of Matrix-assisted laser desorption / ionization 

(MALDI) (87, 88) and electrospray ionization (ESI) (89), the two techniques that are 

the cornerstones of modern MS-based proteomics, the field of proteomics has reached 

a remarkable level of maturation. It is now possible to routinely decode nearly complete 

cellular proteomes such as those from yeast (267) or to quantify 10,000 distinct protein 

phosphorylation events in a single 4h measurement without any upfront protein or 

peptide separation (104). For more complex proteomes such as those of mammalian 

cells, 10,000 proteins have already been reported (112, 268). Comparison to 

transcriptomic data revealed that roughly 10,000 – 12,000 different protein coding loci 

are likely expressed in an average mammalian cell line, demonstrating that state-of-

the-art proteomic technology can detect and quantify nearly complete mammalian 

proteomes (defined by at least one protein from every genomic locus (92). From a 

biomedical point-of-view, this strongly aids our current efforts at dealing with a variety 

of diseases by the identification of novel disease driver proteins or drug targets. For 

example, a single-run phospho-proteomics workflow recently allowed the 

quantification of 9,000 phosphorylation sites per sample in Parkinson’s disease cellular 

models. This led to the discovery of novel bona-fide substrates for LRKK2, a kinase 

which is frequently mutated in a subset of Parkinson patients. These findings may 

directly aid the clinical application of specific LRRK2 kinase inhibitors and they already 

shed new light on the biology of Parkinson’s disease. One of the largest challenges in 

the future will be to take full advantage of the spectacular journey MS-based 

proteomics has already made, specifically by demonstrating its uniqueness and 

versatility in important clinical settings. Additional technological advances such as 

improving mass spectrometric acquisition speed, dynamic range of detection, mass 

accuracy, sensitivity and mass resolution are already in development. The routine, fast, 

and accurate analysis of complete proteomes may be realistic in the near future. 

Specifically ion-mobility-separation (IMS) techniques show great promise due to the 

additional orthogonal nature of the separation based on the analyte size, shape, and 

charge (269). Fully integrated into the data dependent acquisition (DDA) workflow of 
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shotgun proteomics approaches, this combination might be especially advantageous 

for the rapid analysis of complete proteomes, e.g. in a discovery-based clinical context. 

It is already certain that MS-based proteomics will make a central contribution to all 

aspects of translational research and clinical practice.   

  



 

133 
 

Abbreviations 
 
 
APC:    Antigen presenting cell 
ATRA:   All-trans retinoic acid 
AUC:   Area under the curve  
CAF:    Cancer-associated fibroblast 
CCLE:   The Cancer Cell Line Encyclopedia 
CID:    Collision-induced dissociation 
CPTAC:  Clinical Proteomic Tumor Analysis Consortium 
CSF:    Cerebrospinal fluid 
CT45:    Cancer-testis antigen 45 
CTA:    Cancer-testis antigen 
CTA-X:   X chromosome coded class of cancer-testis antigens 
DDA:    Data dependent acquisition 
ESI:    Electrospray ionization 
FDA:   Federal drug administration 
FFPE:    Formalin-fixed and paraffin-embedded 
FTEC:   Fallopian-tube epithelial cells 
HCD:    Higher-energy collisional-dissociation 
HGSOC:   High-grade serous ovarian cancer 
HHMT:   Helene Harris Memorial Trust 
HLA:   Human leukocyte antigen 
HLAp:    HLA peptide 
IMS:    Ion-mobility separation 
IOSE:    Immortalized ovarian surface epithelial cells 
ITRAQ:   Isobaric Tag for Relative and Absolute Quantitation 
LCM:    Laser-capture microdissection 
LC:   Liquid chromatography 
LFQ:   Label-free quantification 
MALDI:   Matrix-assisted laser desorption / ionization 
MRN:    Multiple reaction monitoring 
mRNA:   Messenger RNA 
MS:    Mass spectrometry 
NACT:   Neoadjuvant chemotherapy 
NextGenSeq:  Next generation sequencing 
NNMT:   Nicotinamide N-Methyltransferase 
non-CTA-X:   Non-X chromosome coded class of cancer-testis antigens 
OvCa:    Ovarian cancer 
PP4:    Protein phosphatase 4 
ppb:    Parts-per-billion 
PSM:    Peptide spectral match 
PTM:   Post-translational modification 
SELDI:   Surface-enhanced laser desorption and ionization 
SILAC:   Stable isotope labeling with amino acids in cell culture 
STIC:    Serous tubal intraepithelial carcinoma 
TAA:    Tumor-associated antigen 
TCGA:   The Cancer Genome Atlas 
TIL:   Tumor-infiltrating lymphocyte 
TMA:    Tissue microarray 
TMT:    Tandem mass tag 
Treg:    Regulatory T-cell 
TSA:    Tumor-specific antigen 
XIC:   Extracted ion chromatogram (XIC) 
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