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Zusammenfassung

Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modell-
wahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gra-
dienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und
komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre
Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als
leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting
im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des kompo-
nentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit
ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf
Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter
Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss
von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als
Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden
fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf
Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschla-
gen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparam-
eteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine
hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die
wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen.

Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu
entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Opti-
mierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting
fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises
Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für
Location, Scale und Shape.





Summary

The goal of automatic machine learning (AutoML) is to automate all aspects of model selection
in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the
context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting.
Both techniques have a common methodology, but their goal is quite different. While gradient
tree boosting is widely used in machine learning as a powerful prediction algorithm, component-
wise gradient boosting strength is in feature selection and modeling of high-dimensional data.
Extensions of component-wise gradient boosting to multidimensional prediction functions are
considered as well. Focusing on Bayesian optimization and efficient early stopping strategies
the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in
the optimization of these algorithms is shown by a large scale random search on hyperparame-
ters for machine learning algorithms, that can build the foundation of new AutoML and meta-
learning approaches. Furthermore, advanced feature selection strategies are summarized and a
new method based on shadow features is introduced. Finally, an AutoML approach based on the
results and best practices for feature selection and hyperparameter optimization is proposed, with
the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This
is compared to AutoML approaches using much more complex search spaces and ensembling
techniques.

Four software packages for the statistical programming language R have been newly developed or
extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; au-
toxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting;
compboost: A modular framework for component-wise boosting written in C++; gamboostLSS:
A framework for component-wise boosting for generalized additive models for location scale and
shape.
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1. Introduction

Society is built on interfaces. You take a complex thing, put it inside a sturdy box,
and put some simple buttons on the box so that people can use the thing inside. The
box makes it easier to use and prevents people from breaking it. For example, you
can take the machinery of a clock, put it in a box, and put two hands on the outside
along with a knob for winding it. Take all the machinery of a car, hide it behind a
dashboard, and give people two pedals and wheel. Take all the circuits of a computer,
put them in a box, and give people a monitor and a keyboard.

(The Interface Series)
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Figure 1.1.: Number of accepted papers in four of the
most popular machine learning conferences. Con-
ference on Neural Information Processing Systems
(NIPS), Association for the Advancement of Ar-
tificial Intelligence Conference on Artificial Intel-
ligence (AAAI), International Conference on Ma-
chine Learning (ICML) and International Conference
on Artificial Intelligence and Statistics (AISTATS).
Source: http://dblp.org

More and more areas of daily life are influ-
enced, enhanced or even controlled by auto-
matic decision-making machine learning algo-
rithms. Machines recommend routes based on
current traffic information, suggest music to
listen to and which restaurant we are likely to
enjoy most for lunch. The above described
services can be convenient but also easily ig-
nored if not desired. This is no longer possi-
ble when an automatic decision-making pro-
cess has a greater and more lasting impact
on our lives. When machines pick the in-
terest rate of a loan or decide whether a fi-
nancial transaction is fraudulent, mistakes can
be catastrophic. For this reason, it is crucial
that the machine learning models that govern
the decision-making process are optimally se-
lected and configured.

In recent years, the number of machine learn-
ing algorithms has increased dramatically. It
is difficult to quantify the number of available
algorithms, but if submissions to machine learning conferences (Figure 1.1) are an indicator, a
sharp increase is visible. The increasing number of methods makes it more difficult for practi-
tioners and researchers in the field of machine learning to keep up with new developments and to

http://dblp.org
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have a sound practical knowledge of these algorithms. However, this knowledge can be important
to choose the correct model for a particular problem.

Although these developments are assessed positively by most researchers, they demonstrate the
need for automatic and efficient model selection in machine learning. Otherwise, it will be dif-
ficult to meet the growing demand for machine learning specialists. The optimal search and
selection of hyperparameters for machine learning is a well-studied field of research that has led
to more complex and highly configurable ML algorithms. In numerous recent publications, these
techniques have been used as a basis to include the model choice itself as a hyperparameter for op-
timization. With the method itself as a hyperparameter and inclusion of preprocessing steps, the
tuning space becomes a lot more complex due to its size and hierarchical structure. An example
of such a space is shown in Figure 1.2.

Figure 1.2.: Example of a machine learning pipeline.
The preprocessing step is composed of one or mul-
tiple transformations (exemplary shown are princi-
pal component analysis and feature filtering). Sub-
sequent is the model selection step in which a sin-
gle model is selected (exemplary shown are k-nearest
neighbors, a linear support vector machine and a clas-
sification tree). The pipeline is defined as a directed
acyclic graph (DAG), assuming that no preprocessing
step can be visited twice. Each node in the DAG can
add numerical and categorical hyperparameters to the
optimization space.

It is difficult to pinpoint the beginning of au-
tomatic machine learning. The term model se-
lection has been around for a long time, but
can refer to different steps in the model build-
ing process, like hyperparameter optimization
or feature selection (Escalante et al., 2009).
One of the first publications that jointly op-
timizes preprocessing steps, feature selection
and machine learning model choice is by Es-
calante et al. (2009), who call this process
full model selection and propose to use Parti-
cle Swarm Optimization to tune over this joint
space. Thornton et al. (2013) call this process
Combined Algorithm Selection and Hyperpa-
rameter optimization (CASH). In general, this
problem can be referred to as machine learn-
ing pipeline configuration, since the optimiza-
tion space is describable as a directed acyclic
graph (DAG) of discrete preprocessing, mod-
eling and postprocessing steps. An example
of such a graph can be seen in Figure 1.2.
Each node in these graphs can be associated
with numeric or discrete hyperparameters. As
a consequence, optimizing over such a space
of pipelines becomes a challenging problem
because the configuration space takes on a hi-
erarchical structure and most standard black-
box optimizers assume a flat, often even fully
numeric, configuration space. More and more
frameworks and methodologies for this prob-

lem have been introduced in recent years, using Bayesian optimization (Feurer et al., 2015), ge-
netic algorithms (Olson et al., 2016) or planning techniques (Mohr et al., 2018).
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With the success of (deep) neural networks in the past years and their high difficulty in being
configured optimally, AutoML techniques have been applied to the problem of finding an optimal
networks architecture, i.e, number, size and type of layers. This problem is usually referred to
as Neural Architecture Search (Zoph and Le, 2016; Zoph et al., 2017). In this thesis architecture
search will not be considered in detail, instead the focus will be on classical machine learning
techniques for tabular data.

Following, a short overview of current AutoML systems is given and in Table 1.1 their configu-
ration spaces and optimization strategies are briefly summarized.

auto-sklearn (Feurer et al., 2015) is an AutoML framework developed in Python. It is based
on the machine learning framework Scikit-learn (Pedregosa et al., 2011) and the Bayesian
optimization framework SMAC (Hutter et al., 2011). It uses meta-learning based on OpenML
data (Vanschoren et al., 2014) to initialize the optimization process and uses stacking to create
powerful ensembles.

Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2017) is implemented in Java and applies
Bayesian optimization to tune over a space of classifiers and their hyperparameters implemented
in the WEKA machine learning library (Holmes et al., 1994; Hall et al., 2009). It has stacking of
base algorithms as part of its search space. An interface to python exists.

H2O AutoML (H2O.ai, 2019a) is based on the H2O machine learning framework H2O.ai
(2019b) implemented in Java. It performs a random search and ensembles models implemented
in H2O. Interfaces to Python and R are available.

hyperopt-sklearn (Komer et al., 2014) also uses Scikit-learn, but uses hyperopt
(Bergstra et al., 2013) as its optimizer to offer random search, simulated annealing and an op-
timizer based on trees of Parzen estimators (Bergstra et al., 2011) to search the configuration
space.

TPOT (Olson et al., 2016) is again based on machine learning algorithms from
Scikit-learn, but uses genetic algorithms to sample, modify and combine machine learn-
ing pipelines.

ML-Plan (Mohr et al., 2018) is implemented in Java and based on hierarchical task network
planning (Erol et al., 1994). It can be applied to WEKA as well as Scikit-learn machine
learning algorithms.

Furthermore there are multiple approaches that discretize the search space and use some form
of collaborative filtering (Fusi et al., 2018; Yang et al., 2018; Sun-Hosoya, Guyon, and Sebag,
Sun-Hosoya et al.). The general concept of ensembling or stacking (Caruana et al., 2004) is quite
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Machine learning framework

Name Scikit-learn WEKA H2O xgboost Optimization method

auto-sklearn ! ! Bayesian optimization
auto-WEKA ! Bayesian optimization
H2O AutoML ! ! Random search
hyperopt-sklearn ! ! Various
TPOT ! ! Genetic algorithms
ML-Plan ! ! ! Hierarchical task networks

Table 1.1.: Overview of AutoML systems.

important in AutoML and is used by a large number of the frameworks introduced above. Some
AutoML approaches, such as Wistuba et al. (2017), produce a massive amount of models that are
stacked in multiple layers and achieve very strong performance.

Many more AutoML systems are rapidly developed and published, making a thorough compar-
ison and benchmark between these systems difficult. One approach which is currently still in
development is called automlbenchmark*. It is based on Docker containers and OpenML for
reproducibility and extendability.

Since 2015 three AutoML challenges have been organized by automl.chalearn†. The first two
challenges have been won by modified versions of autosklearn (Guyon et al., 2016; Feurer
et al., 2018). Interestingly, for the third challenge, AutoML systems relying exclusively on a
single machine learning algorithm were used by both the first and second place teams. The first
place AutoGBT (Wilson et al., 2018) and second place “A Boosting Tree Based AutoML System
for High Cardinality Streaming Data Classification with Concept Drift”, used exclusively gra-
dient tree boosting. The success of these approaches in the third challenge could have various
reasons, the data was much larger than in the previous competitions while the provided com-
puting resources were not scaled proportionally. The data also exhibited concept drift, i.e., a
time-dependent change in data distribution, which made automatic adaption by AutoML systems
a requirement. However, it is still noteworthy that AutoML systems using only gradient tree
boosting appear to be competitive with methods with much larger configuration spaces. Chap-
ter 9 presents an AutoML system that, similar to the first and second place of the third AutoML
challenge, is only based on gradient boosting and feature engineering. The importance of gra-
dient boosting in AutoML can also be seen in Table 1.1, in which all frameworks except for
auto-WEKA contain xgboost (Chen and Guestrin, 2016), an extremely flexible and efficient
implementation of the gradient tree boosting algorithm.

Tree based machine learning methods, such as random forests (Breiman, 2001), extraTrees
(Geurts et al., 2006) and gradient tree boosting (Friedman, 2001), have many desirable properties

*https://github.com/openml/automlbenchmark
†http://automl.chalearn.org/

https://github.com/openml/automlbenchmark
http://automl.chalearn.org/
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for AutoML approaches. They can often natively deal with missing values, are stable against out-
liers, can process categorical features with a large number of possible levels and use embedded
feature selection. Fernández-Delgado et al. (2014) discuss the question of whether we need hun-
dreds of classifiers to solve real world classification problems except the random forests. In this
publication, no hyperparameter optimization is performed for the comparison of machine learn-
ing methods. This is questionable in respect to the random forest, which is a very stable algorithm
regarding its hyperparameters and requires little tuning (Probst and Boulesteix, 2018). Neverthe-
less, gradient tree boosting with optimized hyperparameters often surpasses random forests, as
can be seen in its very strong performance in machine learning competitions (Chen and Guestrin,
2016). Since gradient tree boosting is such an important algorithm, its fundamental principles
and properties for automatic machine learning are discussed in this thesis.

In addition, the gradient boosting algorithm can be easily adjusted to boost generalized linear
or additive model (Hothorn et al., 2010), which is then called model-based or component-wise
gradient boosting. Component-wise gradient boosting has strong feature selection characteristics
(Mayr et al., 2012; Hofner et al., 2015) and feature effects of the model can be easily visualized
with the disadvantage that tree-based boosting often produces a stronger predictor.





2. Methodological and General
Background

2.1. Gradient Boosting

Boosting is probably one of the most important techniques in statistical- and machine learning. It
is based on the weak learner theorem by Schapire (1990) which states ”that a model of learnabil-
ity in which the learner is only required to perform slightly better than guessing is as strong as
a model in which the learner’s error can be made arbitrarily small”. The question was initially
posed by Kearns and Valiant (1994).

For a given data setD =
{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
, sampled i.i.d. from of X ×Y , a hypoth-

esis is defined as a mapping h : X → Y and the set of all feasible candidate mappings is referred
to as hypothesis class H . A learner, also called an inducer, takes D and generates a hypothesis h
from H ,

h :
{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
⊂ X × Y → H. (2.1)

A weak learner is defined as a learner which only has a slightly better predictive performance than
random guessing, e.g., a misclassification rate of slightly less than 0.5 in binary classification (as-
suming balanced classes). The fundamental idea of boosting is to form a sequential ensemble of
such learners where each weak learner is applied to the previous model’s error. The models built
from these weak learners are finally combined into a single model. As these weak learners are
the basis of the final model, they are called base-learners. The final model is denoted by f to dis-
tinguish it from the base-learner models h. Together with bagging (Breiman, 1996) and stacking
(Caruana et al., 2004), boosting is one of the basic approaches of ensemble methods. The main
difference between boosting and bagging is that in bagging, several slightly modified versions
of D are created, most commonly by bootstrapping. The models are then trained independently
on each data set, as opposed to boosting, where the models are trained sequentially. Stacking
trains different model types and uses their predictions as new and additional features in a new
layer, which creates multiple stacks of machine learning models. In addition, strong learning
algorithms are considered in a stacking ensemble instead of only weak-learners.

The first boosting algorithm, AdaBoost of Freund and Schapire (1997), trains base-learners and
iteratively reweighs

(
x(i), y(i)

)
∈ D based on the errors of previous models and aggregates the
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Algorithm 1: Adaboost algorithm (Freund and Schapire, 1997)
Input: Data D, hypothesis space H , number of iterations mstop.

1 Initialize weights w[1](i) = 1
n
∀i ∈ {1, . . . , n}

2 for m ∈ {1, . . . ,mstop} do
3 h[m] = fit(H,D, w[m])
4

ε[m] =

∑n
i=1w

[m](i)I(y(i) 6= h[m](x(i)))∑n
i=1w

[m](i)

5 β[m] = 1
2

log(1−ε
[m]

ε[m] )

6 w[m+1](i) = w[1](i) exp(β[m]I(y(i) 6= h[m](x(i)))) ∀i ∈ {1, . . . , n}
7 return f(x) =

∑mstop
m=1 β

[m]h[m](x)

models as a weighted sum of each model’s individual performance. Algorithm 1 formally de-
scribes this algorithm.

In the most commonly used version of boosting, base-learners are not trained on reweighed data
D, but on (x(i), r(i)), where r(i) is the negative gradient of the loss L

(
y(i), f

(
x(i)
))

, evaluated by
the current model at each observation in D, i.e.,

r[m](i) = −
[
∂L
(
y(i), f

(
x(i)
))

∂f (x(i))

]

f=f [m−1]

. (2.2)

These pseudo residuals point towards the direction of steepest descent with regard to the risk,
in the function space H , where functions are evaluated only at x(1), . . . , x(n). This approach is
called gradient boosting and was initially developed by Friedman (2001). Algorithm 2 describes
this general approach.

Algorithm 2: Gradient boosting algorithm (Friedman, 2001)
Input: Data D, hypothesis space H , number of iterations mstop, learning rate ν.

1 Initialize f [0] = argminc
∑n

i=1 L(y(i), c)
2 for m ∈ {1, . . . ,mstop} do

3 r[m](i) = −
[
∂L(y(i),f(x(i)))

∂f(x(i))

]

f=f [m−1]

, ∀i ∈ {1, . . . , n}

4 h[m] = argminh∈H
∑n

i=1(r
[m](i) − h(x(i)))2

5 β[m] = argminβ
∑n

i=1 L(y(i), f [m−1](x(i)) + βh[m](x(i)))

6 f [m] := f [m−1] + νβ[m]h[m]

7 return f [m]
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This is an extremely flexible and versatile algorithm which is able to create models with extremely
different properties, depending on the choice ofH . It is also a superset of the Adaboost algorithm,
since gradient boosting with exponential loss

L(y, f(x)) = exp(−yf(x)), (2.3)

is identical to Adaboost. A proof can be found in Friedman et al. (2001). It is more flexible than
Adaboost because it works on problems other than binary classification by choosing a suitable
loss function, e.g., L

(
y(i), f

(
x(i)
))

= (y(i) − f
(
x(i)
)
)2, for regression. Extensions to multiclass

classification are also available and are discussed in Section 2.1.4.

2.1.1. Gradient Tree Boosting

The basic idea is to limit the hypothesis space H to regression trees (Breiman, 1984)

H =

{
T∑

t=1

ctI(x ∈ Rt) |ct ∈ R, Rt = boxm(X ) ∀t = 1, . . . , T

}
. (2.4)

With boxesRt, axis parallel toX , such that
⋃
t=1,...,T Rt = X andRt∩Rt′ = ∅ ∀t 6= t′. A major

advantage of trees is that steps 4 and 5 of Algorithm 2 can be performed in a single operation,
since trees are piecewise constant models and every leaf can be fitted with regard to an arbitrary
loss function.

c̃
[m]
t = argmin

c

∑

x(i)∈R[m]
t

L(y(i), f [m−1](x(i)) + c) (2.5)

Trees themselves have many desirable properties:

Training speed: Trees can be trained quite fast. The time required for the initial sorting of
all features 1, . . . , p is O(pn log(n)). The actual split finding for the tree is also typically
around pn log(n) but can take up to O(pn2) (Friedman et al., 2001). This can be further
accelerated by not iterating over each possible split point, but only quantiles (Chen and
Guestrin, 2016).

Missing values: Trees can handle missing values by creating surrogate splits that behave
similarly to the split containing missing observations (Breiman, 1984). Alternatively, nu-
meric missing values can be encoded as out of range, e.g., twice the largest observed value,
which allows the tree to easily split these values in a separate node which contains the miss-
ing information. In categorical features missing values can be encoded as a new category.
One of the simplest ways is to define a default split direction. This direction can be learned
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for every node by firstly choosing the optimal split ignoring missing values and then check-
ing if the split quality is higher when the observations with missing values go to the left or
to the right child (Chen and Guestrin, 2016).

Outliers and skewness: Since trees only take into account the order of observations, out-
liers and very skewed feature distributions have no detrimental influence on them. This
reduces required preprocessing, e.g., log-scaling skewed features.

Categorical features: Trees can often optimally treat categorical features natively in an
efficient way. This is done by ordering the categories based on the average response in
regression or for classification by the relative frequency of the positive class. Only splits
in this order are considered. This scales linearly with the number of categories, whereas
considering all possible partitions grows exponentially. It was originally proposed for re-
gression by Fisher (1958) and for binary classification by Breiman (1984). No proven
efficient optimal method is known for multiclass classification.

Gradient tree boosting is very susceptible to overfitting, as the boosting algorithm focuses on
smaller subsets of the data in later iterations (Rashmi and Gilad-Bachrach, 2015). Additional
regularization by tree depth as well as L2 and L1 penalty terms are used in most boosting frame-
works (Chen and Guestrin, 2016; Ke et al., 2017). These regularizations can easily be added to
Equation 2.5 and allow the fitting of terminal regions to be based on the regularized risk. Rashmi
and Gilad-Bachrach (2015) suggest additional regularization by using a dropout mechanism (Sri-
vastava et al., 2014) in the boosting process. In each iteration, a random subset of previously
trained trees is ignored, when a new tree is added to the ensemble. Finally, the new tree is scaled
by the factor of |d|

|d|+1
, with d being the subset of active trees in this iteration. Such additional

regularization techniques allow growing more and deeper trees without overfitting. Extensions
to ranking problems (Burges, 2010) as well as the modeling of survival times (Chen et al., 2013)
exist. A more efficient use of time and memory in the tree building process can be achieved
by not considering every possible split point but only some quantiles of the ordered data (Chen
and Guestrin, 2016; Zhang and Wang, 2007). These quantiles can either be recomputed after
every split or completely precomputed. As a result, trees will be worse predictors, which can be
compensated by using more and deeper trees.

2.1.2. Component-Wise Boosting

In component-wise boosting, the hypothesis space H is limited to additive statistical models,
like generalized linear or additive models defined on single features or small sets of features. In
simplest case the hypothesis space is restricted to simple linear regression terms, i.e.,

H = {θ0j + θ1jxj|(θ0j, θ1j) ∈ R2, j = 1, . . . , p}. (2.6)

Bühlmann et al. (2007) argue that in this case the line search in step 5 of Algorithm 2 can be
ignored. According to Friedman (2001), the line search is obsolete for the quadratic loss. Fur-
thermore, by using a first order Taylor approximation on the risk at f [m−1] for arbitrary loss
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Function call Description

bols(x) Linear effect xTβ with intercept (dummy coding for factors)
bols(x, by = y) Linear effect with interaction
bbs(x) Smooth P -spline
bbs(x, by = z) Varying coefficient
bspatial(x) Spatial effect: tensor product P -spline
bmrf(x) Discrete spatial effect: Markov random field
brandom(x) Random intercept
brandom(x, by = x) Random slope

Table 2.1.: Overview of the important base-learners in mboost (Hothorn et al., 2018)

functions and without line search, the risk looks very similar to the squared error case up to a
factor of 1 − ν

2
. They conclude that as long as the learning rate ν is sufficiently small, the line

search does not have a high influence on the results.

In general more complex additive base-learners, e.g., smooth univariate or multivariate splines,
radial basis functions, random effects or Markov random fields can be used.

H = {s(x)|s := additive regression model on single or multiple xj, j = 1, . . . , p}. (2.7)

This enables extremely flexible modeling for interpretable models. An important aspect to keep
in mind is the different flexibility of different types of base-learners in component-wise boosting.
Suppose that both a linear effect and a smooth p-spline base-learner on the same feature are in-
cluded in the hypothesis space. There will be an inherent preference to the more flexible p-spline,
as it can also approximate a linear effect (Hofner et al., 2011). While this effect can be ignored
and only flexible base-learners can be used, it may be desirable to only use smooth effects if they
deviate from simple linear effects. Although this can be achieved by feature selection techniques,
a more efficient way is to split base-learners of numeric features into three parts: A constant
offset, a linear effect without intercept, and a smooth deviation from the linear effect, e.g., by a
centered spline. At the end, one needs to ensure that each of these parts has the same flexibility,
e.g., by limiting their degrees of freedom. Hofner et al. (2011) propose such a framework for
unbiased selection between linear and smooth effects as well as continuous and categorical fea-
tures. An important implementation of this method is available in the mboost package (Hothorn
et al., 2018) for the programming language R. It contains a large number of base-learners listed
in Table 2.1.

A new implementation for component-wise boosting, called compboost, is discussed in Chap-
ter 10. It is implemented in C++ for speed and improved memory usage, yet provides an interface
to R via Rcpp (Eddelbuettel and François, 2011).
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2.1.3. Parallel Gradient Boosting

With the increased availability of more and more parallel computing capabilities on modern com-
puters, the inherent parallelism of machine learning algorithms becomes more and more impor-
tant. Gradient boosting is a sequential algorithm, which means parallelizing the algorithm is not
trivial. For gradient tree boosting, efficient parallelism can be introduced into the split finding
process of the tree fit (Tyree et al., 2011). As the potential split points are precomputed, they
can be evaluated in parallel. Such a form of parallelism is implemented in most of the latest effi-
cient gradient boosting implementations, like xgboost (Chen and Guestrin, 2016), lightGBM
(Ke et al., 2017) or catboost (Prokhorenkova et al., 2018). For component-wise boosting,
parallelism is less studied. A simple but efficient way of doing this would be to parallelize the se-
lection of base-learner in each iteration of the algorithm. Currently, no component-wise boosting
framework is implementing such a form of parallelism*.

2.1.4. Gradient Boosting for Multiclass Classification

Another non-trivial extension for gradient boosting is the handling of multi-class classification.
In general, the problem can be reduced to several binary classification problems by considering
1-vs-1 or 1-vs-all subproblems. This has a considerable disadvantage of increased complexity
and lack of guarantees of an optimal joint predictor (Saberian and Vasconcelos, 2011). A more
formal way for gradient tree boosting was introduced by Friedman (2001). In each iteration a
model fk is trained for each class k = 1, . . . , g and the softmax function

πk =
exp fk(x)∑g
j=1 exp fj(x)

(2.8)

is applied to obtain probability distribution. This model can be trained with a multinomial loss

L(y, f(x))−
g∑

k=1

I(y = k) log πk. (2.9)

Growing trees with this loss create the problem that the optimal solution c̃[m]
t for the terminal

regions based on the loss function has no closed-form solution. Friedman et al. (2000) suggest an
approximate solution by first order Taylor approximation.

In component-wise boosting the extension to distributional regression (Schmid et al., 2010; Mayr
et al., 2012) allows handling multinomial loss as well as further complex loss functions.

*The R package parboost trains multiple boosting models independently on a subset of the data. This simple
form of parallelism can be done with any machine learning algorithm and is not specific to boosting.
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2.1.5. Component-wise Boosting for Distributional Regression

Extending component-wise boosting to distributional regression is a possible extension, since
generalized additive models for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos,
2005) are an extension of generalized additive models. The idea was originally proposed by
Schmid et al. (2010) to handle overdispersion in count models, and later extended to general
distributions by Mayr et al. (2012). So far, it has been assumed that the loss function depends
on a single parameter that needs to be modeled. For negative log-likelihoods of distributions
used as loss functions, this implies that only the location parameter, e.g., mean µ for a normal
distribution, is modeled by the features. GAMLSS models extend this by making it possible to
model multiple distribution parameters, e.g., the variance parameter σ2 of a normal distribution.
This is possible for an arbitrary number of parameters K. Current GAMLSS implements loss
functions with up to six parameters (Stasinopoulos and Rigby, 2018). To extend the component-
wise boosting framework to GAMLSS, an additional loop is introduced in the algorithm, which
is shown in Algorithm 3. In general, separate hypothesis spacesH1, . . . , HK as well as maximum
iteration numbersmstop,1, . . .mstop,K and learning rates can be defined for each fk(x). The original
definition by Mayr et al. (2012) uses a fixed cycle to update the models f1(x), . . . , fK(x) of the
algorithm. An alternative approach is discussed in Chapter 7 of this thesis. The software package
gamboostLSS (Hofner et al., 2018) implements this method in the programming language R.
It is build on top of mboost (Hothorn et al., 2018).

Algorithm 3: Gradient Boosting for distributional regression (Mayr et al., 2012). f−k
is a shorthand for f1, . . . , fk−1, fk+1, . . . , fK

Input: Data D, hypothesis spaces H1, . . . , HK , number of iterations mstop,1, . . .mstop,K ,
learning rate ν.

1 Initialize f [0]
1 , . . . , f

[0]
K // Initialization defined by loss and y.

2 for m ∈ {1, . . . ,max(mstop,1, . . .mstop,K)} do
3 for k ∈ {1, . . . , K} do
4 if m ≤ mstop,k then

5 r
[m](i)
k = −

[
∂L(y(i),f(x(i)),f−k(x

(i)))
∂f(x(i))

]

f=f
[m−1]
k

∀i ∈ {1, . . . , n}

6 h
[m]
k = argminh∈Hk

∑n
i=1(r

[m](i)
k − hk(x(i)))

7 f
[m]
k := f

[m−1]
k + νh

[m]
k

8 return f [m]
1 , . . . , f

[m]
K

2.2. Hyperparameter Tuning for Gradient Boosting

For nearly all machine learning algorithms, their hyperparameters have a critical impact on their
performance and for optimal results, careful and often extensive tuning of these parameters is
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required. For the general framework of hyperparameter optimization, a configuration space Λ
has to be provided. It consists of parameters with (finite) ranges that can be sampled from. A
single configuration λ ∈ Λ induces a learner that can be trained on data D, which is then usually
evaluated using cross-validation. The aim of hyperparameter optimization is to find a λ∗ ∈ Λ that
optimizes a performance measure.

Some algorithms like the random forest are relatively unaffected by their hyperparameters (Probst
et al., 2018), but this is rather an exception. Figure A.1 in the appendix shows the performance
distribution for different hyperparameter settings over 38 data sets for gradient boosting and ran-
dom forest. It can be seen that for some of the data sets the distribution for gradient boosting
is wider than the random forest, although there are still relevant improvements in the random
forest by careful adjustment of its parameters. This is consistent with the results of Probst et al.
(2018).

Especially modern efficient implementations of gradient tree boosting like xgboost or lightGBM,
have a large number of hyperparameters. This makes their optimal tuning a challenge as it results
in a high dimensional configuration space that has to be searched. For component-wise boost-
ing, the number of hyperparameters normally tuned is usually much smaller and according to
Bühlmann et al. (2007), only the number of iterations has to be tuned, since the learning rate is of
relatively little importance as long as it is small enough. However, this is a theoretical statement
and there are no published benchmarks to confirm this in practice. Additionally, if the parameters
implemented by more complex base-learners are tuned and not set to their defaults or selected
by human experts, a large number of additional hyperparameters is introduced. For example, a
smooth P-spline base-learner would introduce up to seven additional hyperparameters (degree,
differences, knots, λ, degrees of freedom, cyclicality, monotonicity). If each base-learner is con-
figured separately for each feature, the dimension of the configuration space scales linearly with
the number of features p, which will quickly become infeasible, especially for high-dimensional
problems.

2.2.1. Bayesian Optimization

One of the state-of-the-art methods for hyperparameter optimization is Bayesian optimization
(Jones et al., 1998; Snoek et al., 2012), also called model-based optimization. The main idea is
to train a surrogate (regression) model on evaluated hyperparameter configurations, where cross-
validated performance is the response. Since an evaluation is only a prediction of the surrogate
model instead of a full cross-validation the response surface of this surrogate model can be opti-
mized cost-effectively. The general sequence of Bayesian optimization is shown in Figure 2.1. An
infill-criterion is optimized to balance the exploitation of estimated well-functioning configura-
tions and the exploration of high uncertainty regions. These infill-criteria are usually composed of
predicted performance and posterior model uncertainty. Therefore, models that allow uncertainty
estimations such as Gaussian processes and random forests, are mainly used as surrogate models
(Jones et al., 1998; Hutter et al., 2011). Their choice is often very problem-dependent, for exam-
ple, in a fully numeric configuration space, Gaussian process surrogates are often outperforming
random forests. In more complex spaces, with categorical and hierarchical hyperparameters,
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random forests oftentimes outperform Gaussian processes. A benchmark of different Bayesian
optimization implementations with their choices of surrogate models on the hyperparameter op-
timization library (Eggensperger et al., 2015) can be found in Chapter 5.

Evaluate function on 
proposed configuration 
and add it to the design.

Evaluate function

Propose a new 
configuration based by 
maximizing the infill 
criterion

Propose configuration

Fit surrogate model to 
current design.

Train surrogate

Check if any termination 
criterion is met. If so, 
return solution

Check termination

Sample initial design, and 
evaluate function on 
these configurations.

Create design

Return best found 
configuration.

Return solution

Figure 2.1.: Diagram of Bayesian optimization. A detailed description of every step in the process can be
found in Chapter 5.

Bayesian optimization can be extended in multiple ways. Multi-point proposals, often referred
to as batch Bayesian optimization, allow to propose multiple configurations in one iteration of
the algorithm, which can save a large amount of time when multiple configurations can be evalu-
ated in parallel. Important is the distinction between synchronous and asynchronous multi-point
methods. The performance of the former can be severely reduced by heterogeneous runtime of the
machine learning model to tune. In Chapter 6 an overview and benchmark of different multi-point
strategies is given.

Often not only a single performance measure, but multiple measures have to be considered and
optimized simultaneously. Useful applications in machine learning are for example the tuning
of predictive performance and training time (Koch et al., 2012), false positive and negative rates
(Horn and Bischl, 2016) or tuning of predictive performance and model sparseness. Several ex-
tensions of Bayesian optimization to the multi-objective case have been proposed (Jeong and
Obayashi, 2005; Knowles, 2006; Bischl et al., 2014; Keane, 2006). A taxonomy of these meth-
ods can be found in Horn et al. (2015) and a benchmark of these methods is summarized in
Chapter 5.

One of the usual assumptions of Bayesian optimization is that configurations can be evaluated
noiselessly, i.e., without random error. This is clearly not a correct assumption in case of hyper-
parameter optimization, as the estimated performance based on cross-validation is always only
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an estimation of the true generalization performance of the model. Several ways of correctly
handling noisy evaluations in Bayesian optimization have been proposed. In general, there are
methods that adapt surrogate modeling and infill criteria, e.g., Huang et al. (2006); Picheny et al.
(2013), as well as methods that try to allocate budget optimally for reevaluation of configurations,
e.g., Bartz-Beielstein et al. (2011, 2005). Building on this work gives the opportunity to dynam-
ically choose the number of cross-validation folds for each configuration, which can save a large
amount of computation resources.

2.2.2. Early Stopping

An important aspect of tuning any kind of gradient boosting model is the number of iterations. It is
a special hyperparameter as it is possible to measure the performance for the full trace 1, . . . ,mstop

in a single fit. Algorithm 4 shows the general procedure to choose m optimally by early stopping.
This approach has the drawback that we need validation data Dval to track the performance mea-
sured on out-of-bag data. Since in real applications data is always limited, the amount of training
data Dtrain has to be reduced. More advanced approaches use cross-validation, which allows for
more precise stopping, but suffer from additional computational costs.

Algorithm 4: Gradient Boosting with early Stopping
Input: Training data Dtrain, early stopping data Dval, performance measure perf ,

patience pat, hypothesis space H , maximum number of iterations mstop, learning
rate ν.

1 f [0] = argminc
∑n

i=1 L(y(i), c)

2 p[0] = v(f [0](yval),yval)
3 m := 0
4 while m ≤ mstop do
5 m := m+ 1

6 r[m](i) = −
[
∂L(y(i),f(x(i)))

∂f(x(i))

]

f=f [m−1]

∀i ∈ {1, . . . , n}

7 h[m] = argminh∈H
∑n

i=1(r
[m](i) − h(x(i)))

8 β[m] = argminβ
∑n

i=1 L(y(i), f [m−1](x(i)) + βh[m](x(i)))

9 f [m] = f [m−1] + νβ[m]h[m]

10 p[m] = perf(f [0](yval),yval)

11 mopt = argminmc∈1,...,m p
[mc] . w.l.o.g lower p is better.

12 if mopt < m− pat then
13 mstop := mopt

14 return f [mopt]

Early stopping focuses on predictive performance of the model to decide the optimal number of
iterations. In component-wise boosting, sparseness is often a very desired property and early
stopping is used here to reduce the number of features the model uses. If the sparseness and
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identification of informative features is even more important, a probing approach can be used for
early stopping. This is discussed in more detail in Subsection 2.4.2 and Chapter 5.

2.2.3. Hyperband

In general, any hyperparameter optimization strategy can be used for gradient boosting. But
most advanced hyperparameter optimization strategies, like Bayesian optimization, are not able
to handle the number of boosting iterations properly without adjustment. This means that the
optimizer only has access to the final performance of the model, not the performance at each
individual boosting iteration. Consequently, it is highly inefficient since a lot of information is
discarded. A simple way of using this information is to stop training if the intermediate results are
not promising compared to the results of other configuration at this training iteration. A structured
way of doing this is the successive halving procedure of Jamieson and Talwalkar (2016). The
main idea is to train a number of models for a small budget, i.e., iterations in gradient boosting,
and drop the worst half. This happens iteratively with increasing budgets for each model until
only a single model remains. Compared to training all models for their full budget, this approach
can save a lot of computational resources. A major problem in this algorithm is the so called n
vs. B/n question. Assuming a fixed budget B, the choice of the number of configurations to
sample n has a very high impact on the result. For a large n, each configuration gets a smaller
overall budget and many are stopped very early in training, which punishes configurations that
have bad performance early on, but will become very strong if trained for a long enough time.
For a very small n only a small fraction of the configuration space can be sampled, each getting
a relatively high budget before potentially being dropped. The Hyperband algorithm (Li et al.,
2017) addresses this problem by performing a grid search over n. The procedure is outlined as
Algorithm 5.

Algorithm 5: General Hyperband Algorithm Li et al. (2017)
Input: max. resources R, discard fraction η

1 smax = blogη(R)c
2 B = (smax + 1) ·R
3 for s ∈ {smax, smax − 1, . . . , 0} do
4 n = dB

R
· ηs

(s+1)
e

5 r = R · η−s
6 T = sample configurations(n)
7 for i ∈ {0, . . . , s} do
8 ni = bn · η−ic
9 ri = r · ηi

10 k = bni

η
c

11 M = {train models and evaluate(t, ri) : t ∈ T}
12 T = select top k(T, L, k)
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Hyperband was initially mainly developed for the configuration of deep neural networks, but it
is suitable for gradient boosting as well. It is also possible to apply it to any arbitrary machine
learning algorithm configuration problem, if the budget is assumed to be the fraction of the full
training data to use. Consequently, the models have to be retrained after each selection step, which
is less effective but can still save a large amount of time as shown by Li et al. (2017). Hyperband
has many desirable properties that make it a practical choice in many situations. It is easy to
implement and understand, it can be parallelized efficiently and scaled up for massively parallel
hyperparameter optimization, even asynchronously (Li et al., 2018). But a major drawback of
Hyperband is, that the configuration space is only searched by a random search, which can be
quite inefficient. Falkner et al. (2018) improved this by combining Hyperband with Bayesian
optimization to search the configuration space much more efficient. A generic and expandable
implementation of Hyperband in R can be found in the hyperbandr† package.

2.3. Machine Learning Pipelines

Up to this point the main focus was on the optimal configuration of the used machine learning
algorithm. But for most real-world machine learning applications certain pre- and postprocessing
operations are required or can greatly improve the model’s performance. Preprocessing opera-
tions always depend on model type and data properties. This makes configuring a full machine
learning pipeline a challenging problem. There are some simple preprocessing operations, like
checking for (nearly) constant features, that should be done in any case. Further typical prepro-
cessing operations that are considered by AutoML systems are feature scaling and transformation,
feature filtering, imputation of missing values, dimensionality reduction, for example by princi-
ple component analysis, and encoding strategies for categorical features. Especially categorical
features with a very high number of categories can be challenging since one-hot encoding is not a
feasible approach anymore. Alternatives include clustering or merging of categories, impact en-
coding (Micci-Barreca, 2001), feature hashing (Moody, 1989) and numeric embeddings (Guo and
Berkhahn, 2016). Many of these steps also add additional hyperparameters to the search space.
Additionally, it is not given that a single encoding strategy is necessarily best for all categorical
features in a data set. A useful trick is to define a maximum number of categories for features
allowed to be one-hot encoded and to use a more sophisticated technique for features with more
categories. This threshold has to be tuned by the AutoML system. Here the advantage of fully
tree-based approaches can be seen as many of the above mentioned preprocessing steps become
unnecessary. As discussed in Section 2.1.1, trees do not require any scaling or monotonous trans-
formations as only the order of observations in features matters to the split finding algorithm.
They also have methods to handle categorical features, missing values and possess feature se-
lection properties. Solely in case of multi-class classification where no efficient optimal way for
categorical features is known, different encoding methods have to be searched. In Chapter 9 the
proposed AutoML framework tunes over a threshold for one-hot and impact encoding to handle
categorical features. Typical postprocessing operations include tuning of classification thresholds
(Cheng et al., 2011) and probability calibration (Niculescu-Mizil and Caruana, 2005).

†https://github.com/ja-thomas/hyperbandr

https://github.com/ja-thomas/hyperbandr
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2.4. Feature Selection

In a variety of real-world applications, predictive performance of a model is not the only the
deciding factor in model selection. Often, sparseness and interpretability are is crucial. Feature
selection is a domain studied in statistics, machine learning, artificial intelligence and data mining
(Guyon and Elisseeff, 2006). For certain applications, such as the analysis of gene expression
data, it is a key component for analysis (Romero et al., 2006; Clarke et al., 2008).

While the main motivation for feature selection is often indeed the search for a sparser feature
set, it can also help to improve predictive performance (Guyon and Elisseeff, 2006). In automatic
machine learning, the focus is primarily on predictive performance, and in most approaches,
sparseness is not rewarded. In other words, for two candidate models with (nearly) identical
predictive performance the sparser model is not necessarily selected.

2.4.1. Feature Selection by Importance

The combination of models with feature selection techniques like filter (Bell and Wang, 2000) or
wrapper methods (Aha and Bankert, 1996) often results in a higher computational effort. This
makes machine learning algorithms that use automatic, inherent feature selection properties ad-
vantageous when sparseness is desired.

Gradient tree boosting consists of single regression trees that possess an automatic feature selec-
tion mechanism. This property of trees still applies for gradient tree boosting but in a less strict
form. While each tree selects only some features to partition the space until a stopping criterion is
reached, e.g., depth of the tree or minimum number of observations in a node, the added random-
ness from column and row subsampling yields a higher number of used features. Consequently,
gradient tree boosting will often select many more features than a single tree.

One way to achieve sparser models with gradient tree boosting is to consider the relative impor-
tance of every feature. This works in the same way as other tree based methods (Breiman, 1984).
It is defined as the overall empirical improvement in error or purity for all splits using a given
feature. Finally, this is aggregated over all trees. Alternatives are the number of times a feature is
used for splitting (Ke et al., 2017), the average number of samples that are affected by splits of a
feature (Chen and Guestrin, 2016) or the decrease in performance based on random permutation
of features (Breiman, 2001). While these approaches of feature importance only give a simple
form of feature selection by giving all features that have never been used an importance of zero,
it furthermore creates a ranking of all features by their importance, allowing the selection of the
k most important features. These approaches have been criticized by Strobl et al. (2007) for ran-
dom forests, and it is likely that similar arguments are valid for gradient tree boosting as well.
Altmann et al. (2010) as well as Kursa et al. (2010) extend feature selection procedures based
on feature importance with additional resampling for improved selection. Both of these methods
require significant additional computational resources.
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For component-wise boosting feature importance is only rarely used and less explored. This is be-
cause it has stronger feature selection properties, that are discussed in the following subsections.
If feature importance is desired in component-wise boosting, it is straightforward to calculate by
adding the loss reduction for groups of base-learners, e.g., all selected base-learners that use xj .
Calculating importance values for actual features instead of such groups of base-learners is much
more difficult in cases where single base-learners contain multiple features.

2.4.2. Early Stopping for Sparseness

Usually, early stopping is triggered as soon as the empirical risk does not improve for a certain
number of boosting iterations. Frequently this will result in the inclusion of many uninformative
features (Meinshausen and Bühlmann, 2010; Mayr et al., 2012) for component-wise boosting.
An easy way to solve this problem is the use of shadow features. These are features that have
the same marginal distribution as a real feature, but are statistically independent from the target.
Instead of early-stopping based on the out-of-bag risk, training can be stopped as soon as such a
shadow feature is selected. This is further discussed in Chapter 4.

The recent introduction of knockoffs (Barber et al., 2015; Candes et al., 2018) enables the creation
of better shadow features that not only have the same marginal distribution, but also identical
joint distribution with all other features in the data set. Knockoffs have already successfully been
applied to control the false discovery rate in stepwise feature selection. The biggest disadvantage
of using knockoffs is that they are difficult to create and usually require a known data distribution
X or complex generative procedures (Jordon et al., 2019).

2.4.3. Stability of Feature Selection

Controlling the number of selected uninformative features, that is, features with no dependency
to the target is an important aspect in feature selection, as it gives a principle to choose levels of
regularization and consequently number of features to select. Meinshausen and Bühlmann (2010)
introduced stability selection, a method to control the false discovery rate for a number of feature
selection methods. Their approach was later refined by Shah and Samworth (2013) and shown to
work well for component-wise boosting by Hofner et al. (2015). The general idea is to repeatedly
subsample the data and apply the same feature selection method to each subsample. Only features
with selection frequencies of at least πthr are considered in the end. Combined with a feature limit
for the selection methods q, an upper bound of the per-family error rate E(V ) can be calculated,
where V is the number of selected uninformative features.

E(V ) =
q2

(2πthr − 1)p
(2.10)

Here, p is the number of features in D. Algorithm 6 shows the general procedure of applying
stability selection to gradient boosting.
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Algorithm 6: Stability Selection for Gradient Boosting (Hofner et al., 2015)
Input: Data D, hypothesis space H , number of iterations mstop, learning rate ν,

maximum number of selected features per model q, selection threshold πthr.
1 for b ∈ {1, . . . , B} do
2 Subsample Db of size bn/2c from D.
3 Initialize f [0]

b = argminc
∑

y(i)∈Db
L(y(i), c).

4 for m ∈ {1, . . . ,mstop} do
5 update pseudo residuals and choose new base learner on Db
6 f

[m]
b := f

[m−1]
b + νβ[m]h[m]

7 Ŝb = get selected features(f [m]
b )

8 if |Ŝb| ≥ q then // count number of features in f
[m]
b

9 break

10 for j ∈ {1, . . . , p} do
11 π̂j = 1

B

∑B
b=1 I{j∈Ŝb}

12 Ŝstable = {j : π̂j ≥ πthr}
13 return Ŝstable

A major drawback of this approach is that of q,E(V ) and πthr, two have to be chosen by the
user (the missing value can be calculated from Equation 2.10). In Chapter 4 a comparison be-
tween stability selection, early stopping using shadow features and regular cross-validation is
discussed.





3. Future Direction and Open
Questions

Automatic machine learning is a growing area that helps to meet the rapidly growing demand
for machine learning experts. In this chapter three open problem and research directions are
briefly discussed. These improvements should enable AutoML to be applicable in more real-
world applications.

AutoML becomes more powerful and is made easier to use by companies providing AutoML
services, such as Google’s Cloud AutoML and Amazon’s Sagemaker. These simplify the deploy-
ment of trained AutoML systems in a business environment and allow their scaling to millions of
users. It is important to note that the lifecycle of a machine learning model does not end with de-
ployment. Changes in the data distribution or model requirements can be devastating, if they are
not detected and handled appropriately. Worse still, the deployment and use of a machine learn-
ing model itself can change the future data distribution as different business decisions are made
based on the models predictions. This results in a need for repeated model selection and adaption.
If the goal of automatic machine learning is to automate the complete machine learning model
lifecycle, detecting drifts and monitoring aspects need to be automated as well. A good starting
point was the third AutoML challenge by chalearn called Lifelong AutoML*. It included changes
in data distribution by concept-drift the AutoML systems had to adapt to. First approaches for
this like Wilson et al. (2018) and Madrid et al. (2018) have been introduced, and hopefully more
work will follow.

A further important aspect is that current research places a great deal of emphasis on model per-
formance, i.e., for most benchmarks and challenges a single measure has to be optimized. In
practice, there are often many obvious or hidden constraints in the model selection process. Cur-
rent AutoML approaches are not flexible enough to reflect and support this. Examples for obvious
model constraints include model size, which can be important when models should be deployed
on end-user devices, or prediction speed, when decisions need to be made in fractions of a sec-
ond. These constraints could be handled by multi-objective optimization which build a Pareto
front of solutions and lets the domain expert decide which trade-off between different measures
is best for a given problem. A more challenging problem arises when model requirements are
more difficult to quantify. Interpretability is an important aspect for many real world applications
of machine learning. Many see explainable machine learning as one of the most important and
promising fields in machine learning and a large amount of funding is put in this area like the

*https://competitions.codalab.org/competitions/19836

https://competitions.codalab.org/competitions/19836
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Defense Advanced Research Projects Agency (DARPA) with their Explainable Artificial Intelli-
gence (XAI) program started in 2016. The optimization of AutoML for interpretability is still an
open problem. The simple solution to solely tune over interpretable models is not good enough,
since compromises between model performance and interpretability are inherent, and ultimately,
these still have to be made by humans with domain knowledge. The problem becomes even
more difficult when constrains are not formally specified or known beforehand. The inclusion
of humans back in the model selection process seems like a step back for AutoML at first, but
extensions to a human-in-the-loop AutoML system would allow model selection in settings with
unknown constrains and preferences. The human in this approach does not need to be an expert in
machine learning anymore, but only be able to decide which aspects of machine learning models,
presented to him by an AutoML system in an easy to understand way, are to be preferred.

If machine learning competitions such as kaggle are a good indication of the state-of-the-art in
supervised machine learning, it becomes apparent that one of the most important aspects is still
feature engineering. Feature engineering, i.e., the combination of several existing features to cre-
ate more informative ones and improve predictive performance, is still a mostly manual process.
Approaches to automatic feature engineering exist, e.g. Kanter and Veeramachaneni (2015) and
Nargesian et al. (2017), but the problem still suffers from exponential growth in possible com-
binations of features in higher dimensional data. A human-in-the-loop AutoML approach could
be proposed here as well. Domain experts usually understand their data very well and can define
features that belong together semantically, but do not know in which way to combine these fea-
ture most efficiently. In such a reduced search space automatic feature engineering could be done
quite efficiently.

The main task of AutoML should be the automation of workflows that can be efficiently optimized
by a machine, while still allowing repeated user feedback with information that is hard, or even
impossible, for the machine to learn autonomously.

The rest of this thesis is structured as following. Chapters 4 to 10 contain peer-reviewed publi-
cations, technical reports and workshop contributions (co-)authored by the author of this thesis
in chronological order of their publication. The individual contributions of each author of these
publications is described separately in the beginning of the respective chapters.
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We present a new variable selection method based on model-based gradient boosting and randomly permuted variables. Model-
based boosting is a tool to fit a statistical model while performing variable selection at the same time. A drawback of the fitting
lies in the need of multiple model fits on slightly altered data (e.g., cross-validation or bootstrap) to find the optimal number of
boosting iterations and prevent overfitting. In our proposed approach, we augment the data set with randomly permuted versions
of the true variables, so-called shadow variables, and stop the stepwise fitting as soon as such a variable would be added to the
model. This allows variable selection in a single fit of the model without requiring further parameter tuning. We show that our
probing approach can compete with state-of-the-art selection methods like stability selection in a high-dimensional classification
benchmark and apply it on three gene expression data sets.

1. Introduction

At the latest since the emergence of genomic and proteomic
data, where the number of available variables 𝑝 is possibly far
higher than the sample size 𝑛, high-dimensional data analysis
becomes increasingly important in biomedical research [1–4].
Since common statistical regression methods like ordinary
least squares are unable to estimate model coefficients in
these settings due to singularity of the covariance matrix,
varying strategies have been proposed to select only truly
influential, that is, informative, variables and discard those
without impact on the outcome.

By enforcing sparsity in the true coefficient vector, reg-
ularized regression approaches like the lasso [5], least angle
regression [6], elastic net [7], and gradient boosting algorithms
[8, 9] perform variable selection directly in the model fitting
process. This selection is controlled by tuning hyperparame-
ters that define the degree of penalization.While these hyper-
parameters are commonly determined using resampling
strategies like cross-validation, bootstrapping, and similar

methods, the focus on minimizing the prediction error often
results in the selection of many noninformative variables
[10, 11].

One approach to address this problem is stability selection
[12, 13], a method that combines variable selection with
repeated subsampling of the data to evaluate selection fre-
quencies of variables. While stability selection can consider-
ably improve the performance of several variable selection
methods including regularized regression models in high-
dimensional settings [12, 14], its application depends on
additional hyperparameters. Although recommendations for
reasonable values exist [12, 14], proper specification of these
parameters is not straightforward in practice as the optimal
configuration would require a priori knowledge about the
number of informative variables. Another potential draw-
back is that stability selection increases the computational
demand, which can be problematic in high-dimensional
settings if the computational complexity of the used selection
technique scales superlinearly with the number of predictor
variables.
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In this paper, we propose a newmethod to determine the
optimal number of iterations in model-based boosting for
variable selection inspired by probing, a method frequently
used in related areas of machine learning research [15–17]
and the analysis of microarrays [18]. The general notion
of probing involves the artificial inflation of the data with
random noise variables, so-called probes or shadow variables.
While this approach is in principle applicable to the lasso or
least angle regression as well, it is especially attractive to use
with more computationally intensive boosting algorithms,
as no resampling is required at all. Using the first selection
of a shadow variable as stopping criterion, the algorithm
is applied only once without the need to optimize any
hyperparameters in order to extract a set of informative
variables from the data, thereby making its application very
fast and simple in practice. Furthermore, simulation studies
show that the resulting models in fact tend to be more
strictly regularized compared to the ones resulting from
cross-validation and contain less uninformative variables.

In Section 2, we provide detailed descriptions of the
model-based gradient boosting algorithm as well as stability
selection and the new probing approach. Results of a simu-
lation study comparing the performance of probing to cross-
validation and different configurations of stability selection in
a binary classification setting are then presented in Section 3
before discussing the application of these methods on three
data sets with measurements of gene expression levels in
Section 4. Section 5 summarizes our findings and presents an
outlook to extensions of the algorithm.

2. Methods

2.1. Gradient Boosting. Given a learning problem with a data
set 𝐷 = {(x(𝑖), 𝑦(𝑖))}𝑖=1,...,𝑛 sampled i.i.d. from a distribution
over the joint spaceX×Y, with a 𝑝-dimensional input space
X = (X1×X2×⋅ ⋅ ⋅×X𝑝) and an output spaceY (e.g.,Y = R

for regression and Y = {0, 1} for binary classification), the
aim is to estimate a function, 𝑓(x), X → Y, that maps
elements of the input space to the output space as good as
possible. Relying on the perspective on boosting as gradient
descent in function space, gradient boosting algorithms try
to minimize a given loss function, 𝜌(𝑦(𝑖), 𝑓(x(𝑖))), 𝜌 : Y ×
R → R, that measures the discrepancy between a predicted
outcome value of 𝑓(x(𝑖)) and the true 𝑦(𝑖). Minimizing this
discrepancy is achieved by repeatedly fitting weak prediction
functions, called base learners, to previous mistakes, in order
to combine them to a strong ensemble [19]. Although early
implementations in the context of machine learning focused
specifically on the use of regression trees, the concept has
been successfully extended to suit the framework of a variety
of statistical modelling problems [8, 20]. In this model-based
approach, the base learners ℎ(x) are typically defined by
semiparametric regression functions on x to build an additive
model. A common simplification is to assume that each base
learner ℎ𝑗 is defined on only one component 𝑥𝑗 of the input
space

𝑓 (x) = 𝛽0 + ℎ1 (𝑥1) + ⋅ ⋅ ⋅ + ℎ𝑝 (𝑥𝑝) . (1)

For an overview of the fitting process of model-based boost-
ing see Algorithm 1.

Algorithm 1 (model-based gradient boosting). Starting at
𝑚 = 0 with a constant loss minimal initial value 𝑓[0](x) ≡ 𝑐,
the algorithm iteratively updates the predictor with a small
fraction of the base learner with the best fit on the negative
gradient of the loss function:

(1) Set iteration counter 𝑚 fl 𝑚 + 1.
(2) While 𝑚 ≤ 𝑚stop, compute the negative gradient

vector of the loss function:

𝑢(𝑖) = −
𝜕𝜌 (𝑦, 𝑓)

𝜕𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓=𝑓[𝑚−1](x(𝑖)),𝑦=𝑦(𝑖)
. (2)

(3) Fit every base learner ℎ[𝑚]𝑗 (𝑥𝑗) separately to the
negative gradient vector u.

(4) Find ℎ̂[𝑚]𝑗∗ (x𝑗∗), that is, the base learner with the best
fit:

𝑗∗ = arg min
1≤𝑗≤𝑝

𝑛

∑
𝑖=1

(𝑢(𝑖) − ℎ̂[𝑚]𝑗 (𝑥(𝑖)𝑗 ))
2
. (3)

(5) Update the predictor with a small fraction 0 ≤ ] ≤ 1
of this component:

𝑓 (x)[𝑚] = 𝑓 (x)[𝑚−1] + ] ⋅ ℎ̂[𝑚]𝑗∗ (𝑥𝑗∗) . (4)

The resulting model can be interpreted as a generalized
additive model with partial effects for each covariate con-
tained in the additive predictor. Although the algorithm relies
on two hyperparameters ] and𝑚stop, Bühlmann andHothorn
[9] claim that the learning rate ] is of minor importance as
long as it is “sufficiently small,” with ] = 0.1 commonly used
in practice.

The stopping criterion, 𝑚stop, determines the degree of
regularization and thereby heavily affects the model quality
in terms of overfitting and variable selection [21]. However,
as already outlined in the introduction, optimizing 𝑚stop
using common approaches like cross-validation results in
the selection of many uninformative variables. Although
still focusing on minimizing prediction error, using a 25-
fold bootstrap instead of the commonly used 10-fold cross-
validation tends to return sparser models without sacrificing
prediction performance [22].

2.2. Stability Selection. The weak performance of cross-
validation regarding variable selection partly results from the
fact that it pursues the goal ofminimizing the prediction error
instead of selecting only informative variables. One possible
solution is the stability selection framework [12, 13], a very
versatile algorithm that can be combined with all kinds of
variable selection methods like gradient boosting, lasso, or
forward stepwise selection. It produces sparser solutions by
controlling the number of false discoveries. Stability selection
defines an upper bound for the per-family error rate (PFER),
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for example, the expected number of uninformative variables
E(𝑉) included in the final model.

Therefore, using stability selection with model-based
boosting means that Algorithm 1 is run independently on
𝐵 random subsamples of the data until either a predefined
number of iterations 𝑚stop is reached or 𝑞 different variables
have been selected. Subsequently, all variables are sorted with
respect to their selection frequency in the 𝐵 sets.The amount
of informative variables is then determined by a user-defined
threshold 𝜋thr that has to be exceeded. A detailed description
of these steps is given in Algorithm 2.

Algorithm 2 (stability selection for model-based boosting
[14]).

(1) For 𝑏 = 1, . . . , 𝐵,

(a) draw a subset of size ⌊𝑛/2⌋ from the data;
(b) fit a boosting model to the subset until the

number of selected variables is equal to 𝑞 or
the number of iterations reaches a prespecified
number (𝑚stop).

(2) Compute the selection frequencies per variable 𝑗:

𝜋̂𝑗 fl
1
𝐵

𝐵

∑
𝑏=1

I{𝑗∈𝑆𝑏}
, (5)

where 𝑆𝑏 denotes the set of selected variables in
iteration 𝑏.

(3) Select variables with a selection frequency of at least
𝜋thr, which yields a set of stable covariates:

𝑆stable fl {𝑗 : 𝜋̂𝑗 ≥ 𝜋thr} . (6)

Following this approach, the upper bound for the PFER
can be derived as follows [12]:

E (𝑉) ≤
𝑞2

(2𝜋thr − 1) 𝑝
. (7)

With additional assumptions on exchangeability and shape
restrictions on the distribution of simultaneous selection,
even tighter bounds can be derived [13]. While this method
is successfully applied in a large number of different appli-
cations [23–26], several shortcomings impede the usage in
practice. First off, three additional hyperparameters 𝜋thr,
PFER, and 𝑞 are introduced. Although only two of them have
to be specified by the user (the third one can be calculated
by assuming equality in (7)), it is not intuitively clear which
parameter should be left out and how to specify the remaining
two. Even though recommendations for reasonable settings
for the selection threshold [12] or the PFER [14] are proposed,
the effectiveness of these settings is difficult to evaluate in
practical settings.The second obstacle in the usage of stability
selection is the considerable computational power required

for calculation. Overall 𝐵 boostingmodels ([13] recommends
𝐵 = 100) have to be fitted and a reasonable 𝑚stop has to be
found as well, which will most likely require cross-validation.
Even though this process can be parallelized quite easily,
complex model classes with smooth and higher-order effects
can become extremely costly to fit.

2.3. Probing. The approach of adding probes or shadow vari-
ables, for example, artificial uninformative variables to the
data, is not completely new and has already been investigated
in some areas of machine learning. Although they share the
underlying idea to benefit from the presence of variables
that are known to be independent from the outcome, the
actual implementation of the concept differs (see Guyon and
Elisseeff (2003) [15] for an overview). An especially useful
approach, however, is to generate these additional variables
as randomly shuffled versions of all observed variables.These
permuted variables will be called shadow variables for the
remainder of this paper and are denoted as 𝑥𝑗. Compared to
adding randomly sampled variables, shadow variables have
the advantage that themarginal distribution of𝑥𝑗 is preserved
in 𝑥𝑗. This approach is tightly connected to the theory of
permutation tests [27] and is used similarly for all-relevant
variable selection with random forests [28].

Implementing the probing concept to the sequential
structure ofmodel-based gradient boosting is rather straight-
forward. Since boosting algorithms proceed in a greedy
fashion and only update the effect which yields the largest
loss reduction in each iteration, selecting a shadow variable
essentially implies that the best possible improvement at this
stage relies on information that is known to be unrelated to
the outcome. As a consequence, variables that are selected
in later iterations are most likely correlated to 𝑦 only by
chance as well. Therefore, all variables that have been added
prior to the first shadow variable are assumed to have a true
influence on the target variable and should be considered
informative. A description of the full procedure is presented
in Algorithm 3.

Algorithm 3 (probing for variable selection in model-based
boosting).

(1) Expand the data set𝑋 by creating randomly shuffled
images𝑥𝑗 for each of the 𝑗 = 1, . . . , 𝑝 variables 𝑥𝑗 such
that

𝑥𝑗 ∈ 𝑆𝑥𝑗 , (8)

where 𝑆𝑥𝑗 denotes the symmetric group that contains
all 𝑛! possible permutations of 𝑥𝑗.

(2) Initialize a boosting model on the inflated data set

𝑋 = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑝 𝑥1 ⋅ ⋅ ⋅ 𝑥𝑝] (9)

and start iterations with 𝑚 = 0.
(3) Stop if the first 𝑥𝑗 is selected; see Algorithm 1 step (3).
(4) Return only the variables selected from the original

data set 𝑋.
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The major advantage of this approach compared to
variable selection via cross-validation or stability selection is
that one model fit is enough to find informative variables and
no expensive refitting of the model is required. Additionally,
there is no need for any prespecification like the search space
(𝑚stop) for cross-validation or additional hyperparameters (𝑞,
𝜋thr, PFER) for stability selection.However, it should be noted
that, unlike classical cross-validation, probing aims at optimal
variable selection instead of prediction performance of the
algorithm. Since this usually involves stopping much earlier,
the effect estimates associated with the selected variables are
most likely strongly regularized andmight not be optimal for
predictions.

3. Simulation Study

In order to evaluate the performance of our proposed variable
selection method, we conduct a benchmark simulation study
where we compare the set of nonzero coefficients determined
by the use of shadow variables as stopping criterion to cross-
validation and different configurations of stability selection.
We simulate 𝑛 data points for 𝑝 variables from a multivariate
normal distribution 𝑋 ∼ N(0, Σ) with Toeplitz correlation
structure Σ𝑖𝑗 = 𝜌|𝑖−𝑗| for all 1 < 𝑖, 𝑗 < 𝑝 and 𝜌 = 0.9. The
response variable 𝑦(𝑖) is then generated by sampling Bernoulli
experiments with probability

𝜋(𝑖) =
exp (𝜂(𝑖))

1 + exp (𝜂(𝑖))
, (10)

with 𝜂(𝑖) the linear predictor for the 𝑖th observation 𝜂(𝑖) =
𝑋(𝑖)𝛽 and all nonzero elements of 𝛽 sampled from U(−1, 1).
Since the total amount of nonzero coefficients determines the
number of informative variables in the setting, it is denoted
as 𝑝inf .

Overall, we consider 12 different simulation scenarios
defined by all possible combinations of 𝑛 ∈ {100, 500}, 𝑝 ∈
{100, 500, 1000}, and 𝑝inf ∈ {5, 20}. Specifically, this leads to
the evaluation of 2 low-dimensional settings with 𝑝 < 𝑛, 4
settings with 𝑝 = 𝑛, and 6 high-dimensional settings with
𝑝 > 𝑛. Each configuration is run 100 times. Along with
new realizations of 𝑋 and 𝑦, we also draw new values for
the nonzero coefficients in 𝛽 and sample their position in the
vector in each run to allow for varying correlation patterns
among the informative variables. For variable selection with
cross-validation, 25-fold bootstrap (the default in mboost) is
used to determine the final number of iterations. Different
configurations of stability selection were tested to investigate
whether and, if so, to what extent these settings affect the
selection. In order to explicitly use the upper error bounds
of stability selection, we decided to specify 9 combinations
with PFER ∈ {1, 2.5, 8} and 𝜋thr ∈ {0.6, 0.75, 0.9} and
calculate 𝑞 from (7). Aside from the learning rate ], which
is set to 0.1 for all methods, no further parameters have
to be specified for the probing scheme. Two performance
measures are considered for the evaluation of the methods
with respect to variable selection: first, the true positive rate
(TPR) as the fraction of (correctly) selected variables from

all true informative variables and, second, the false discovery
rate (FDR) as the fraction of uninformative variables in the set
of selected variables. To ensure reproducibility the R package
batchtools [29] was used for all simulations.

The results of the simulations for all settings are illustrated
in Figure 1. With TPR and FDR on the 𝑦-axis and 𝑥-axis,
respectively, solutions displayed in the top left corner of the
plots therefore successfully separate𝑝inf informative variables
from the ones without true effect on the response. Although
already using a sparse cross-validation approach, the FDR of
variable selection via cross-validation is still relatively high,
with more than 50% false positives in the selected sets in the
majority of the simulated scenarios. Whereas this seems to
be mostly disadvantageous in the cases where 𝑝inf = 5, the
trend to more greedy solutions leads to a considerably higher
chance of identifying more of the truly informative variables
if 𝑝inf = 20 or with very high 𝑝, however, still at the price
of picking up many noise variables on the way. Pooling the
results of all configurations considered for stability selection,
the results cover a large area of the performance space in
Figure 1, thereby probably indicating high sensitivity on the
decisions regarding the three tuning parameters.

Examining the results separately in Figure 2, the dilemma
is particularly clearly illustrated for 𝑝inf = 20 and 𝑛 =
500. Despite being able to control the upper bounds for
expected false positive selections, only a minority of the true
effects are selected if the PFER is set too conservative. In
addition, the high variance of the FDR observed for these
configurations in some settings somewhat counteracts the
goal to achieve more certainty about the selected variables
one might probably pursue by setting the PFER very low.The
performance of probing, on the other hand, reveals a much
more stable pattern and outperforms stability selection in the
difficult 𝑝inf = 20 and 𝑛 = 100 settings. In fact, the TPR is
either higher or similar to all configurations used for stability
selection, but exhibiting slightly higher FDR especially in
settings with 𝑛 = 500. Interestingly, probing seems to provide
results similar to those of stability selection with PFER =
8, raising the question if the use of shadow variables allows
statements about the number of expected false positives in
the selected variable set.

Considering the runtime, however, we can see that prob-
ing is orders of magnitudes faster with an average runtime
of less than a second compared to 12 seconds for cross-
validation and almost one minute for stability selection.

4. Application on Gene Expression Data

In this section we exploit the usage of probing as a tool for
variable selection on three gene expression data sets. More
specifically, this includes data from using oligonucleotide
arrays for colon cancer detection [30] with 40 tumor and
22 regular colon tissue samples and 𝑝 = 2000 measured
genes expression levels. In addition, we analyse data from
a study aiming to predict metastasis of breast carcinoma
[31], where patients were labelled good or poor (𝑛 = 111
and 𝑛 = 57, resp.) depending on whether they remained
event-free for a five-year period after diagnosis or not. The
data set contains log-transformed expression levels of 𝑝 =
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Figure 1: True positive rate (on 𝑦-axis) and false discovery rate (on 𝑥-axis) for three different, boosting-based variable selection algorithms,
probing (black), stability selection (green), cross-validation (blue), and different simulation settings: 𝑛 ∈ {100, 500}, 𝑝 ∈ {100, 500, 1000}, and
𝑝inf ∈ {5, 20}. All settings of stability selection are combined. Shaded areas are smooth hulls around all observed values.

2905 genes.The last example examines riboflavin production
by Bacillus subtilis [32] with 𝑛 = 71 observations of log-
transformed riboflavin production rates and expression level
for 𝑝 = 4088 genes. All data are publicly available via R
packages datamicroarray and hdi. Our proposed probing
approach is implemented in a fork of the mboost [33]
software for component-wise gradient boosting. It can be
easily used by setting probe=TRUE in the glmboost() call.

In order to evaluate the results provided by the new
approach, we analysed the data using cross-validation, sta-
bility selection [34], and the lasso [35] for comparison.
Table 1 shows the total number of variables selected by each

method along with the size of the intersection between
the sets. Starting with the probably least surprising result,
boosting with cross-validation leads to the largest set of
selected variables in all examples, whereas using probing as
stopping criterion instead clearly reduces these sets. Since
both approaches are based on the same regularization profile
until the first shadow variable enters the model, the less
regularized solution of cross-validation always contains all
variables selected with probing. For stability selection, we
used the conservative approach with PFER = 1 and 𝑞 = 20 as
suggested by Bühlmann et al. (2014) [32]. As a consequence,
the set of variables considered to be informative further
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Table 1: Total number of selected variables and intersection size for four variable selection techniques (boosting with 25-fold bootstrap,
probing, stability selection, and the lassowith 10-fold cross-validation) on three gene expression data sets.The last column compares algorithm
runtime in seconds.

Cross-validation Probing Stability selection Lasso (glmnet) Runtime (sec.)
Colon cancer

Cross-validation 9 10.52
Probing 5 5 1.78
Stability selection 3 3 3 49.4
Lasso (glmnet) 7 5 3 7 0.4

Breast carcinoma
Cross-validation 32 24
Probing 14 14 4.39
Stability selection 1 1 1 102.28
Lasso (glmnet) 14 14 1 14 1.13

Riboflavin production
Cross-validation 50 14.2
Probing 10 10 6.89
Stability selection 5 5 5 66.46
Lasso (glmnet) 23 7 4 30 0.68
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Figure 2: Boxplots of true positive rate (top) and false discovery rate (bottom) for different simulation settings and the three boosting-based,
variable selection algorithms. Different Stability selection settings are denoted by SS(𝜋thr,PFER).
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shrinks in all three scenarios. Again, these results clearly
reflect the findings from the simulation study in Section 3,
placing the probing approach between stability selection with
probably overly conservative error bound and the greedy
selection with cross-validation.

Since so far all approaches rely on boosting algorithms,
we additionally considered variable selection with the lasso.
We used the default settings of the glmnet package for
R to calculate the lasso regularization path and determine
the final model via 10-fold cross-validation [35]. Although
the lasso already tends to result in sparser models under
these conditions compared to model-based boosting [22],
glmnet additionally uses a “one-standard-error rule” to
regularize the solution even further. In fact, this leads to
the selection of an identical set of genes as probing for the
breast carcinoma example, but the final models estimated
for both other examples still contain a higher number of
variables. This is especially the case for the data on riboflavin
production, where the lasso solution is further not simply
a subset of the cross-validated boosting approach and only
agrees on 23 mutually selected variables. Interestingly, even
one of the 5 variables proposed by stability selection is also
missing.The R code used for this analysis can be found in the
Supplementary Material of this manuscript available online
at https://doi.org/10.1155/2017/1421409.

5. Conclusion

We proposed a new approach to determine the optimal
number of iterations for sparse and fast variable selection
with model-based boosting via the addition of probes or
shadowvariables (probing).Wewere able to demonstrate via a
simulation study and the analysis of gene expression data that
our approach is both a feasible and convenient strategy for
variable selection in high-dimensional settings. In contrast to
common tuning procedures for model-based boosting which
rely on resampling or cross-validation procedures to optimize
the prediction accuracy [21], our probing approach directly
addresses the variable selection properties of the algorithm.
As a result, it substantially reduces the high number of
false discoveries that arise with standard procedures [14]
while only requiring a single model fit to obtain the set of
parameters.

Aside from the very short runtime, another attractive
feature of probing is that no additional tuning parameters
have to be specified to run the algorithm. While this greatly
increases its ease of use, there is, of course, a trade-off
regarding flexibility, as the lack of tuning parameters means
that there is no way to steer the results towards more
or less conservative solutions. However, a corresponding
tuning approach in the context of probing could be to allow
a certain amount of selected probes in the model before
deciding to stop the algorithm (cf. Guyon and Elisseeff, 2003
[15]). Although variables selected after the first probe can
be labelled informative less convincingly, this resembles the
uncertainty that comes with specifying higher values for the
error bound of stability selection.

A potential drawback of our approach is that due to the
stochasticity of the permutations, there is no deterministic

solution and the selected set might slightly vary after rerun-
ning the algorithm. In order to stabilize results, probing could
also be used combined with resampling to determine the
optimal stopping iteration for the algorithm by running the
procedure on several bootstrap samples first. Of course, this
requires the computation of multiple models and therefore
again increases the runtime of the whole selection procedure.

Another promising extension could be a combination
with stability selection. With each model stopping at the first
shadow variable, only the selection threshold 𝜋thr has to be
specified. However, since this means a fundamental change
of the original procedure, further research on this topic is
necessary to better assess how this could affect the resulting
error bound.

While in this work we focused on gradient boosting for
binary and continuous data, there is no reason why our
results should not also carry over to other regression settings
or related statistical boosting algorithms as likelihood-based
boosting [36]. Likelihood-based boosting follows the same
principle idea but uses different updates, coinciding with
gradient boosting in case of Gaussian responses [37]. Further
research is also warranted on extending our approach tomul-
tidimensional boosting algorithms [25, 38], where variables
have to be selected for various models simultaneously.

In addition, probing as a tuning scheme could be gen-
erally also combined with similar regularized regression
approaches like the lasso [5, 22]. Our proposal for model-
based boosting hence could be a starting point for a new way
of tuning algorithmic models for high-dimensional data, not
with the focus on prediction accuracy, but addressing directly
the desired variable selection properties.
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Abstract

We present mlrMBO, a flexible and comprehensive R toolbox for model-based
optimization (MBO), also known as Bayesian optimization, which addresses
the problem of expensive black-box optimization by approximating the given
objective function through a surrogate regression model. It is designed for
both single- and multi-objective optimization with mixed continuous, categor-
ical and conditional parameters. Additional features include multi-point batch
proposal, parallelization, visualization, logging and error-handling. mlrMBO is
implemented in a modular fashion, such that single components can be eas-
ily replaced or adapted by the user for specific use cases, e.g., any regression
learner from the mlr toolbox for machine learning can be used, and infill cri-
teria and infill optimizers are easily exchangeable. We empirically demonstrate
that mlrMBO provides state-of-the-art performance by comparing it on differ-
ent benchmark scenarios against a wide range of other optimizers, including
DiceOptim, rBayesianOptimization, SPOT, SMAC, Spearmint, and Hyperopt.

Keywords: Model-Based Optimization, Bayesian Optimization, Black-Box
Optimization, Hyperparameter Tuning, Parameter Configuration, R

1. Introduction

Black-box functions are systems that require a number of input parameters
to produce one or multiple (numeric) outputs. In most cases these are (a) ex-
pensive to evaluate in terms of time and/or monetary cost, and (b) knowledge
of their internal working is not available, which often manifests through the
absence of derivatives. Such problems occur in production engineering [e.g. 1],
where the inputs are possible settings of industrial machines or used materials
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and the output is one or multiple measurements regarding the quality of fab-
ricated parts. Since this makes a single evaluation expensive, one tries to find
the optimal settings of production steps in a minimal number of tries. Design
of Computer Experiments (DACE) [2] is a discipline focused on solving such
problems and sequential model-based optimization (SMBO) [3] has become the
state-of-the-art optimization strategy in recent years.

The generic SMBO procedure starts with an initial design of evaluation
points, and then iterates the following steps:

1. Fit a regression model to the outcomes and design points obtained so far,

2. query the model to propose a new, promising point, often by optimizing
a so-called infill criterion or acquisition function,

3. evaluate the new point with the black-box function and add it to the
design.

Several adaptations and extensions, e.g., multi-objective optimization [4], multi-
point proposal [5, 6], more flexible regression models [7] or alternative ways to
calculate the infill criterion [8] have been investigated recently.

A different field of application for SMBO is the hyperparameter optimization
for machine learning methods [e.g. 9, 10, 11]. Here, the black-box is a machine
learning method and the objective(s) is one or multiple performance measure(s),
validated via resampling on a data set of interest. The black-box function
can be more complex, for example a machine learning pipeline which includes
preprocessing, feature selection and model selection.

After a brief comparison with related software in Subsection 1.1 and clari-
fication of our main contributions in Subsection 1.2, we introduce the general
SMBO procedure in more detail in Section 2. Section 3 highlights the capabili-
ties of our software mlrMBO, showcased by some code examples. In Section 4 we
empirically demonstrate that mlrMBO achieves state-of-the-art performance on
a wide range of synthetic and real-world single- and multi-objective scenarios.
Section 5 gives an outlook on future work.

1.1. Related Software
We will briefly present an overview of available software for model-based

optimization, starting with implementations based on the Efficient Global Op-
timization algorithm (EGO), i.e., the SMBO algorithm proposed by Jones et al.
[3] using Gaussian processes (GPs), and continue with extensions and alterna-
tive approaches.

Both DiceOptim [12] and rBayesianOptimization [13] are R packages that
offer EGO implementations. A sophisticated EGO implementation can be found
in the Python package Spearmint [14]. It focuses on hyperparameter optimiza-
tion of machine learning algorithms with enhancements regarding variable costs
of experiments and parallelization. All three packages offer different GP ker-
nels and infill criteria, but only support numerical (non-conditional) parameters
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and, except for Spearmint, no multi-criteria optimization or parallelization is
available. A multi-criteria version of Spearmint is introduced in [15].

The C++ library BayesOpt [16] contains an extended version of EGO, in-
cluding Student-t processes, support of mixed and conditional parameters as
well as meta-criteria algorithms to automatically find reasonable infill criteria
during optimization. It offers interfaces for Python, Matlab and Octave.

SMAC [7] is one of the most established frameworks and allows to optimize
mixed parameter spaces as it uses a random forest instead of a GP for regression.
Besides general black-box optimization, it is focused on algorithm configuration.
However, SMAC is limited to single-criteria optimization and parallelization is not
supported.

Hyperopt [8] is an optimization package in Python that supports numerical,
categorical and conditional parameters. Instead of a regression it uses a tree of
Parzen estimators (TPE) to compute point suggestions. It supports distributed
parallel and asynchronous execution. Hyperopt can be used for general black-
box optimization, but is mainly focused on machine learning tasks.

Another R implementation for sequential black-box optimization is SPOT [17].
It is a toolbox with different modeling techniques and offers a wide variety of
statistical methods. SPOT contains sophisticated algorithms to handle functions
with noisy evaluations, is able to handle constrains in functions and supports
multi-objective optimization.

1.2. Main Contributions and Prior Applications
The main contribution of this paper is the presentation of the R package

mlrMBO, which implements a generic SMBO framework and provides a large
variety of different SMBO methods due to its modular structure. mlrMBO is even
more flexible than SPOT in its choice of surrogate models as it is connected to
the R package mlr [18] which interfaces more than 60 machine learning regression
algorithms. Besides the default SMBO procedure, mlrMBO focuses on three
domains: Mixed parameter space optimization, multi-point proposals and multi-
objective optimization. Even combinations of the three domains are possible,
which to our knowledge no other software is currently capable of. mlrMBO is easy
to use as many default implementations for the individual steps of the SMBO
procedure are directly supported in a plug-and-play style. Simple interfaces are
available to extend the package with user specific variants.

Benchmarks show that mlrMBO achieves state-of-the-art performance in each
domain. Additionally, mlrMBO has been successfully applied in some practical
settings. In [19, 20] it was used to optimize the hyperparameters of machine
learning pipelines (joint pre-processing and model hyperparameters) for support
vector machines and general machine learning models, respectively, in a single
objective setting. Hess et al. [21] proposed an mlrMBO ensemble-based approach
to identify the best surrogate model during optimization through reinforcement
learning. Horn et al. [22] considered a multi-objective benchmark and optimized
the runtime-accuracy trade-offs of several approximate support vector machine
solvers. Horn and Bischl [11] introduced the general capability of mlrMBO to
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solve multi-objective machine learning tasks. Steponavičė et al. [23] investigated
the impact of different initial design sampling techniques on the performance of
multi-objective model-based optimization methods by using mlrMBO.

2. Sequential Model-Based Optimization

This section describes the general SMBO setup and presents the individual
building blocks in Subsection 2.1. While SMBO is modular and can thus be
customized for a variety of different tasks, we highlight the most prominent
combinations of components described in the literature like EGO [3] (Subsec-
tion 2.2) or SMAC-like [7] optimizers (Subsection 2.3). Subsections 2.4 and 2.6
introduce parallelization through multi-point proposal, and multi-objective op-
timization.

2.1. Sequential model-based optimization
Let f(x) : X → R be an arbitrary black-box function with a d-dimensional

input domain X = X1 × X2 × · · · × Xd and a deterministic output y. Each Xi
(i = 1, · · · , d) can be either numeric and bounded (i.e. Xi = [li, ui] ⊂ R) or a
finite set of s categorical values (Xi = {vi1, . . . , vis}). Without loss of generality,
we want to find the input x∗ with

x∗ = arg min
x∈X

f(x).

In the context of model-based optimization, we usually assume that f is ex-
pensive to evaluate, hence the total number of function evaluations is limited
by a budget. At the heart of SMBO are so-called surrogate models f̂ which
cheaply estimate the expensive black-box function f and which are iteratively
updated and refined. The general approach is illustrated in Figure 1. The figure
outlines the following steps, whereas each step is explained in more detail in the
following subsections:

(1) An initial design of ninit points x(j) (j = 1, . . . , ninit) is sampled from X
and f is evaluated at these points to yield outcomes y(j) = f(x(j)). The
tuples

(
y(j),x(j)

)
constitute the data to build the initial surrogate model

f̂ in the next step.

(2) Fit a surrogate model to all evaluated points x(j) ∈ X and corresponding
values y(j).

(3) An infill criterion proposes m points x(j+i) (i = 1, . . . ,m). The criterion
is defined on X and operates on the surrogate f̂ to determine points which
are promising for the optimization. These points should either have a good
expected objective value or high potential to improve the quality of the
surrogate model.

(4) The proposed points are evaluated using f and the new tuples
(
y(j+i),x(j+i)

)

are added to the design.
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(5) If the budget is not exhausted (and no other termination criteria is met),
go to step (2).

(6) If the budget is exhausted or another termination criteria is met, return
the proposed solution for the optimization problem.

(1)
Generate

initial design
(2.1.1)

(2)
Fit surrogate
model (2.1.2)

(5)
Budget

exceeded?
(2.1.5)

(6)
Return best
point (2.1.6)

(3)
Propose

new point(s)
(2.1.3)

(4)
Evaluate
function

and update
design
(2.1.4)

yesno

Figure 1: General SMBO approach.

2.1.1. Initial Design
The initial design specifies the points of the input domain at which the

black-box function is evaluated to build the initial surrogate model f̂ . If too
few points are chosen or if the points do not cover X well, the fit of f̂ may be
poor and thus points proposed based on f̂ may be suboptimal for the progress
of the optimization. Fitting a surrogate model may even be impossible. On the
other hand, a large initial design may reduce the available budget too much.
mlrMBO provides various options for the initial design: The user can specify it
manually or generate designs either completely at random, coarse grid designs
or by using space-filling Latin Hypercube Designs [24].

2.1.2. Surrogate Models
One of the main factors that determines the choice of surrogate model f̂ is

the structure of the input space X . If X ⊂ Rd, Kriging [3] is the recommended
choice and provides state-of-the-art performance. In Section 2.2, the Kriging-
based EGO approach is discussed in more detail. If the search space X also
includes categorical parameters on the other hand, random forests are a viable
alternative [7] as they can handle such parameters directly, without the need to
encode the categorical parameters as numeric. mlrMBO allows the use of any of
the many regression models available in the R package mlr, which itself can also
be easily extended to support custom regression learners [25].

While Kriging models and random forests already provide uncertainty esti-
mation natively, generic bagging can be applied to arbitrary regression models
to retrieve standard error estimators in mlr.
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2.1.3. Infill Criteria
The infill criterion, or sometimes called acquisition function, guides the op-

timization and tries to trade-off exploitation and exploration. This is usually
achieved by combining µ̂(x) and ŝ(x) (or ŝ2(x)) in a single formula in a well-
balanced fashion, where the posterior mean µ̂(x) and posterior standard devi-
ation ŝ(x) (or posterior variance ŝ2(x)) are estimated by the surrogate model
f̂ . ŝ(x) and ŝ2(x) are sometimes also called “local uncertainty estimators”. As-
suming that our model f̂ is somewhat “spatial” in the sense that higher values
of ŝ(x) indicate regions of the search space that few of our design points lie
close to and / or we have not learned the structure of f very well at x, we are
therefore looking for points with low µ̂(x) and high ŝ(x).

Arguably the most popular choice is the expected improvement

EI(x) := E(I(x))

where the random variable I(x) defines the potential improvement at x over
the currently best observed function value ymin:

I(x) := max {ymin − Y (x), 0} .

Here, Y (x) is a random variable that should express the posterior distribution
at x, estimated with f̂ . For a Gaussian process, Y (x) is normally distributed
with Y (x) ∼ N(µ̂(x), ŝ2(x)). Under this assumption, EI(x) can be expressed
analytically in closed form as

EI(x) = (ymin − µ̂(x)) Φ

(
ymin − µ̂(x))

ŝ(x)

)
+ ŝ(x)φ

(
ymin − µ̂(x)

ŝ(x)

)
, (1)

where Φ and φ are the distribution and density function of the standard normal
distribution, respectively.

A simpler approach to balance µ̂(x) and ŝ(x) for a point x is given by the
lower confidence bound

LCB(x, λ) = µ̂(x)− λŝ(x), (2)

where λ > 0 is a constant that controls the “mean vs. uncertainty” trade-off.
Furthermore, mlrMBO currently support pure mean µ̂(x) minimization (pure

exploitation) and pure uncertainty ŝ(x) maximization (pure exploration) and
further criteria for multiple point proposals (see Section 2.4), noisy optimization
(see Section 2.5), and multi-objective optimization (See section 2.6).

2.1.4. Infill Optimization
The infill optimizer searches for the point x which yields the best infill value.

Unlike the original optimization problem on f , the optimization on the infill cri-
terion can be considered inexpensive. While this is still a black-box optimization
problem, points can be evaluated more lavishly, and Jones et al. [3] propose a
branch and bound algorithm for this task. mlrMBO defaults to a more generic ap-
proach, which we call focus search, outlined in Algorithm 1. It is able to handle
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numeric parameter spaces, categorical parameter spaces, as well as mixed and
hierarchical spaces. The algorithm starts with a large random design from which
all points are evaluated by the surrogate regression model to determine the most
promising point. Next, focus search shrinks the search space around the best
point and samples new random points for the now focused search space. The
shrinkage of search space is iterated niters times. The complete procedure can
be restarted nrestart times to avoid local optima. Finally the best point over all
restarts and iterations is returned. Evolutionary algorithms like CMA-ES [26]
or custom user-defined optimizers can be selected alternatively.

Algorithm 1 Infill Optimization: Focus Search.
Require: infill criterion c : X → R, control parameters nrestart, niters, npoints
1: for u ∈ {1, ..., nrestart} do
2: Set X̃ = X
3: for v ∈ {1, ..., niters} do
4: generate random design D ⊂ X̃ of size npoints
5: compute x∗u,v = (x∗1, ..., x

∗
d) = arg minx∈D c(x)

6: shrink X̃ by focusing on x∗:
7: for each search space dimension X̃i in X̃ do
8: if X̃i numeric: X̃i = [li, ui] then
9: li = max{li, x∗i − 1

4 (ui − li)}
10: ui = min{ui, x∗i + 1

4 (ui − li)}
11: end if
12: if X̃i categorical: X̃i = {vi1, . . . , vis}, s > 2 then
13: x̄i = sample one category uniformly from X̃i\x∗i
14: X̃i = X̃i\x̄i
15: end if
16: end for
17: end for
18: end for
19: Return x∗ = arg min

u∈{1,...,nrestart},v∈{1,...,niters}
c(x∗u,v)

2.1.5. Termination
Multiple termination criteria can be used in mlrMBO. Commonly a limit is set

for the total number of evaluations of f or for the number of SMBO iterations.
Alternatively, the optimization can be terminated after a given time or after a
time budget for function evaluations is exhausted. The optimization can also
be stopped as soon as a predefined objective value is reached. Furthermore, the
user can create custom termination rules.

2.1.6. Final Point
Finally, the final solution x∗ has to be determined. Usually the best point

observed during the optimization is picked. Fitting a last surrogate model to
find the best point predicted is a viable option, especially if f is noisy.
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2.2. Efficient Global Optimization (EGO)
Kriging models [27] are arguable the most popular choice for a surrogate

model because they are very flexible and provide a local uncertainty estima-
tor [3].

In general, we consider a numeric-only input domain X ⊂ Rd. Jones et al.
[3] were the first who introduced surrogate models for the sequential optimiza-
tion of box-constrained functions with real-valued arguments. Their Efficient
Global Optimization (EGO) algorithm employs Kriging models together with
the expected improvement infill criterion (see Equation 1). Maximizing the EI
results in an infill criterion that balances exploitation of the model structure
and exploration of regions with high uncertainty and has proven to be highly
effective [3]. It can ensure global convergence [28, 29] (which is somewhat unre-
alistic to expect under the usually tight budget constraints that exist for many
expensive black-box optimization problems).

Figure 2 illustrates the point proposal at the 3rd (left) and the 4th iteration
(right) of an EGO run on a 1d cosine mixture function. It illustrates how
high uncertainty (ŝ) and a low value of µ̂ contribute to the EI and thus to the
selection of the next point and the ability of model-based optimization to find
the optimum even for multi-modal functions.
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Figure 2: State at the 3rd (left) and 4th iteration (right) of an exemplary EGO run on a
1d cosine mixture function. The upper part shows the real function f as a solid line and its
estimation µ̂ dotted. The uncertainty is indicated by the shaded area. Initial design points
are displayed as red circles, sequential points as green squares. The lower part shows the
respective value for the EI. The optimum of the EI defines the point that proposed to be
evaluated next (blue triangle).

2.3. Mixed Space Optimization
Real life scenarios often include mixed-valued as well as hierarchical param-

eter spaces with conditional parameters. An example is the tuning of a support
vector machine, for which the parameter space is illustrated in Figure 3. De-
pending on the choice of the kernel, the hyperparameter γ has to be optimized
for the radial kernel (so it is conditional on the setting of kernel), but it is not
present (or we could say: active) for the linear kernel. In contrast to γ, the
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hyperparameter C is unconditionally always active. Kriging is not really suited
for such problem domains, since covariance kernels natively supporting those
types of data are still subject to research [30].

For the initial design all options support categorical parameters as well as
hierarchical dependencies (feasible values of a parameter depend on the values
of other parameters).

For the surrogate we need a regression model that is more flexible and can
handle categorical features as well as missing values to support dependent pa-
rameters. A slightly modified random forest can be used for this purpose. If a
hyperparameter is not active in a design point in the training set (due to unful-
filled conditions), we will mark its value as missing. Although the random forest
could potentially directly handle missing values, many implementations do not.
Hence, we impute these values in the following way: For categorical parameters
we code missing values as a new level, and for numerical parameters we code the
imputed value out of the range of the box-constraints of the parameter under
consideration. This is known as the separate-class method and was shown to
perform best for decision trees in a prediction-oriented study, when missingness
is related to the outcome [31].

In order to still use infill criteria as LCB and EI, we also have to compute
an uncertainty estimate ŝ(x) for the random forest. For bagging-like predictors
this can be computed or approximated in various ways from the bootstrap. We
refer the reader to [32, 33] for further details. In mlr the uncertainty estimator
can be deviated from an expensive extra bootstrap around the random forest,
the jackknife, the infinitesimal jackknife, or a simple estimator which extracts
the standard error simply from the internal bootstrap of the random forest. In
our experience, the jackknife estimator works most reliably, so it is the current
default for mlrMBO with random forests as surrogate. However, it should be
noted that the random forest is not really a spatial model as a Gaussian process
and therefore the properties of the uncertainty estimator are less intuitive in
comparison to the ones from Kriging models. Our following results still indicate
that we obtained state-of-the-art results with this default, and we deem this
aspect a matter for further research.

X

C

kernel

radial

linear

γ

[0, Inf]

[0, Inf]

Figure 3: Dependent search space for the tuning of a support vector machine. Circles denote
parameters, rectangles denote parameter ranges, arrows denote the hierarchical structure.

9

44
5. mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box

Functions



2.4. Multi-Point Proposal
The expensive nature of the optimization problem makes parallelization, i.e.

the evaluation of different configurations on multiple CPUs, an important ex-
tension to speed up the SMBO process. Recently many methods have been pro-
posed to simultaneously propose m points in each iteration. We showcase three
methods implemented in mlrMBO, which are also discussed in [6]. A straightfor-
ward approach is qLCB [34], an extension of the LCB criterion. Instead of one
fixed λ, multiple λk (k = 1, . . . ,m) are drawn from an exponential distribution
to obtain m points x(j+1), . . . ,x(j+m):

qLCB(x, λk) = ŷ(x)− λkŝ(x), λk ∼ Exp

(
1

λ

)
.

The criterion is than optimized separately for every λk, so that overall m points
are proposed. Proposals that were obtained by optimizing the qLCB for a low
value of λk exploit the model and are in proximity of the best found y so far.
For high values of λk the proposals will be of exploratory nature. This ensures
that in one SMBO iteration all proposals balance exploitation and exploration.

Another approach to propose multiple points using the expected improve-
ment is known as constant liar [5]. Here we obtain x(j+1) in the same way as
for the ordinary EI. To obtain x(j+2) we assume that the evaluation at point
x(j+1) is done and update the surrogate model with a made up target value
y. Exemplary choices for the made up value are min(y), max(y), the mean ȳ,
or the predicted posterior mean µ̂(x(j+1)) of the surrogate model. The latter
approach is also often referred to as kriging believer.

Bischl et al. [6] propose the multi-objective infill model-based optimization
(MOIMBO) approach. The posterior mean µ̂(x) and variance ŝ(x) are not
scalarized in a single function (as done by EI or (q)LCB), instead a multi-
objective optimization strategy (see Section 2.6) is used to optimize them jointly
and propose a whole set of optimal points. To ensure that the points are diverse,
a distance measure, e.g. the nearest neighbor distance, can be used as a third
objective.

2.5. Noisy Optimization
Noisy optimization assumes that the objective function f is stochastic. Usu-

ally, one now faces the problem to optimize E[f(x)] instead of f(x) and com-
mon strategies are intelligent repetition strategies [35] or adapted infill criteria.
mlrMBO currently only offers the latter (but of course the user can always opt
to perform averaging in the objective function, e.g. by naively averaging over a
constant number of repetitions himself).

A popular infill criterion for noisy functions is the expected quantile improve-
ment [36] which is an extension of EI. Instead of looking for an improvement
over best value observed so far (the ymin in the EI formula), we exchange this
with a so called “plug-in” value qmin:

EQI(x) = (qmin − q(x)) Φ

(
qmin − q(x)

sq(x)

)
+ sq(x)φ

(
qmin − q(x)sq(x)

)
, (3)
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where qmin is the lowest β-quantile q(xi) for all previously evaluated points
x ∈ {x1, . . .xn}, and β is a user control parameter for the EQI. The estimated β-
quantile at point x is given by q(x) = µ̂(x)+Φ−1(β)ŝ(x). This implies that the
criterion will be non-zero at already evaluated points allowing re-evaluations or
evaluations very close to already evaluated design points to increase knowledge
of promising points.

mlrMBO offers also the so called “augmented expected improvement” and its
modular design makes extensions towards further criteria functions straightfor-
ward. For a further in-depth discussion of this topic we refer the reader to [37]
and their benchmark for noisy MBO approaches.

2.6. Model-Based Multi-Objective (MBMO) Optimization
Multi-objective optimization problems are characterized by a set of target

functions f(x) = (f1(x), . . . , fk(x)) which have to be optimized simultaneously.
Since there is no total order in Rk, for k ≥ 2, the concept of Pareto dominance
is used. A point x pareto-dominates another point x̃, x � x̃, if fi(x) ≤ fi(x̃)
for i = 1, . . . , k and ∃ j fj(x) < fj(x̃), i.e., x needs to be as good as x̃ in
each component and strictly better in at least one. A point x is said to be non-
dominated if it is not dominated by any other point. The set P = {x |@ x̃ x̃ � x}
of all non-dominated points is called the Pareto set. It contains all incomparable
trade-off solutions. In multi-objective optimization the goal is to approximate
the Pareto set or the Pareto front f(P ), i.e., the image of P under f .

In recent years some approaches were published that generalize single-objective
SMBO algorithms like EGO for the multi-objective case. We distinguish be-
tween 3 different MBMO algorithm classes: First, scalarization based algorithms
that use EGO to optimize a scalarized version of the black-box functions with
random weights for the scalarization in each iteration. Second, Pareto based
algorithms that fit individual models for each objective and perform multi-
objective optimization of infill criteria on these models. Third, direct indicator
based algorithms that also fit individual models, but perform a single objective
optimization of an infill criterion aggregating all models. mlrMBO supports 4 dif-
ferent MBMO algorithms, covering all 3 classes: ParEGO [38] as scalarization
based, MSPOT [39] as Pareto based, and both SMS-EGO [40] and ε-EGO [41]
as direct indicator based algorithms.

A much more detailed discussion of these methods, their multi-point vari-
ants, and what is currently implemented in mlrMBO is given in [4].

3. mlrMBO R Package

We implemented the software package mlrMBO for the statistical program-
ming language R. It is designed as a modular framework. The individual com-
ponents of model-based optimization such as the infill criterion or the stopping
conditions (cf. Section 2) can easily be combined in a plug-and-play fashion to
respect the specific characteristics of the optimization problem at hand. In the
following we give a short introduction of this process which is split into multiple
steps.
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Definition of the black-box function. For the first step mlrMBO relies on the
smoof package [42] which provides a unified interface to work with black-box
functions. Many test functions that are frequently used to benchmark op-
timizers are already included. Additionally, the package provides the func-
tions make{Single,Multi}ObjectiveFunction() as constructors for custom
test functions. Mandatory arguments are the function itself, a name and a
parameter set. In the simplest case, the latter is defined by names and box con-
straints, which can be specified concisely using the ParamHelpers package. For
more complex settings, it is also possible to connect parameters with arbitrary
transformation functions (e.g., to vary a parameter on the log-scale) or declare
dependencies between parameters. The following listing gives an example for
the definition of the black-box f(x) = (x2 − 0.1x21 + x1 − 6)2 + cos(x1) with
x1 ∈ [−5, 10], x2 ∈ [0, 15]:

fn = makeSingleObjectiveFunction(
name = "my_blackbox",
fn = function(x) (x[2] - 0.1 * x[1]^2 + x[1] - 6)^2 + cos(x[1]),
par.set = makeParamSet(

makeNumericParam("x1", lower = -5, upper = 10),
makeNumericParam("x2", lower = 0, upper = 15)

)
)

Definition of the Initial Design. To specify the points to be evaluated to ini-
tialize the surrogate an initial design has to be specified. It is recommended to
use a Latin Hypercube Design by calling generateDesign() and passing the
number of desired points. If no design is given by the user, mlrMBO will generate
a maximin Latin Hypercube Design of size 4 times the number of the black-box
function’s parameters.

Definition of the surrogate regression model. mlrMBO builds up on the mlr pack-
age [18], which offers a unified interface for a plethora of machine learning meth-
ods in R. For surrogate regression, Kriging (makeLearner("regr.km")) and ran-
dom forests (makeLearner("regr.randomForest")) are popular choices, but
other regression methods can be selected as well. Keep in mind that if expected
improvement or LCB is chosen as the infill criterion, the surrogate either has
to provide an uncertainty estimator, or has to be combined with a bagging ap-
proach using the makeBaggingWrapper() in mlr. If no regression method is
supplied by the user, the fallback is a Kriging model with a Matern-3/2 kernel
and the “GENetic Optimization Using Derivatives” (genoud) fitting algorithm in
a fully numeric setting, and a random forest with jackknife variance estimation
otherwise.

Definition of the control flow. Basic settings like the number of proposed points
in each SMBO iteration or the error handling are set via makeMBOControl()
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which returns a base control object. This object can be further extended to ad-
just the different component of the SMBOmethodology. setMBOControlInfill()
adjusts the infill criterion and the infill criterion optimizer. If the infill opti-
mization is unspecified, mlrMBO uses LCB as infill criterion with λ = 1 in a fully
numeric setting and λ = 2 if at least one one discrete parameter is present. To
optimize the criterion, focus search with nrestarts = 3, niters = 5 and npoints =
1000 is used by default. For multi-point proposals or multi-objective optimiza-
tion, setMBOControlMultiPoint() and setMBOControlMultiObj() are used,
respectively. If multiple points are proposed, they can be evaluated simultane-
ously using different parallelization (i.e. multicore, sockets, and MPI) and high-
performance computation systems (e.g., Slurm, LSF, OpenLava, TORQUE, or
Docker Swarms) with the R packages parallelMap and batchtools [43]. Fi-
nally, setMBOControlTermination() controls the termination criteria.

Putting it all together. The actual optimization is finally started by calling the
mbo() function with the (optional) initial design, the black-box function, the
(optional) surrogate regression method, and the control object as arguments.
The following listing demonstrates an application of mlrMBO to optimize our
example black-box.

library(mlrMBO)

# Create initial random Latin Hypercube Design of 10 points
library(lhs) # for randomLHS
des = generateDesign(n = 5L * 2L, getParamSet(fn), fun = randomLHS)

# Specify kriging model with standard error estimation
surrogate = makeLearner("regr.km", predict.type = "se",

covtype = "matern3_2")

# Set general controls
ctrl = makeMBOControl()
ctrl = setMBOControlTermination(ctrl, iters = 30L)
ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritEI())

# Start optimization
mbo(fn, des, surrogate, ctrl)

The resulting object contains the full optimization path, with all x and y val-
ues, runtime of function evaluations, final state, potential error messages as well
as optionally all fitted surrogate models. Diagnostic visualizations of the opti-
mization are available by calling plot() and for one and two dimensional input
domains with single- or multi-objective targets, each step of the optimization
process can be visualized by calling exampleRun() or exampleRunMultiObj().
For instance, Figure 2 has been created with exampleRun() and plotExampleRun().
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4. Benchmarks

In this section, the performance of mlrMBO is evaluated on three extensive
benchmarks. First, we compare mlrMBO against other black-box optimizers con-
nected to R (Section 4.1), then against state-of-the-art optimizers that are not
available in R through the optimization benchmark framework HPOlib [44] (Sec-
tion 4.2). Furthermore, we summarize a previously published simulation study
of multi-objective optimization using mlrMBO [4] (Section 4.3). All benchmarks
were conducted using the batchtools [43] package for R.

4.1. Model-Based Single-Objective Optimization
We run our implementation on various single-objective optimization tasks

and compare it with the three EGO implementations available in R: DiceOptim [12],
rBayesianOptimization [13] and SPOT [17]. Additionally, to ensure that an
EGO approach is suitable, we also consider a basic random search as well as
the popular covariance matrix adaptation evolution strategy (CMA-ES) based
on the R package cmaesr [26].

Benchmarks. The methods are evaluated on a set of six 5-dimensional, continu-
ous, and single-objective test functions: Alpine01, Deflected Corrugated Spring,
Schwefel, Ackley, Griewank and Rosenbrock. All are defined in the R-package
smoof and have been subject to optimization benchmarks previously.

Setup. For the initial design, the same pre-generated maximin Latin Hyper-
cube design containing 25 points is used for mlrMBO, DiceOptim, SPOT and the
random search. It was not possible to pass a user-defined initial design in
rBayesianOptimization without provoking an error. Instead, a random design
of the same size is generated internally. We allow each algorithm 200 sequen-
tial iterations. Since CMA-ES as an evolutionary algorithm does not initialize
with a design, it gets an additional budget of 25 iterations (in total 225). All
algorithms are run in their default settings carefully chosen by the respective
package authors.

Evaluation. The objective values of the proposed solutions are summarized in
Figure 4. All methods performed clearly better than the baseline random search
approach on all six test functions. In comparison with the other EGO-based
algorithms, mlrMBO yields a substantial better objective on four test functions
and similar objective on the other two. SPOT is slightly better than mlrMBO on
Griewank, but worse on three others. The evolutionary CMA-ES is comparable
to mlrMBO on Alpine01 and slightly better on Rosenbrock, but considerably worse
on the four other problems. If we consider the averaged rank of the methods
over all test functions as shown in Table 1, mlrMBO proves to be the best method
overall, with SPOT in second place.

Besides the quality of the solution, runtime, and computational overhead
should also be considered. The timings for a complete optimization run in
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Figure 4: Best objective value (on y axis) found by respective algorithms on respective test
function.

minutes are listed in Table 1. Note that we are basically measuring the over-
head of the optimization algorithms, as the synthetic test functions are evalu-
ated in microseconds. The random search unsurprisingly comes with the least
overhead, followed by CMA-ES as implemented in the package cmaesr. The
EGO-based approaches consume considerably more time by fitting the surro-
gate model and optimizing the infill criterion. Here, mlrMBO is slower than
DiceOptim but still more than twice as fast as SPOT and orders of magnitudes
faster than rBayesianOptimization. However, keep in mind that EGO is tai-
lored for expensive problems. If we paid each function evaluation with just one
minute of computation time, the differences between 200 min for random search
and 212 min for mlrMBO seems to be a reasonable price to pay for a much better
objective value.
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Algorithm Average Rank Average runtime in minutes
mlrMBO 1.95 8.03
SPOT 2.48 27.88
cmaesr 3.17 0.01
DiceOptim 3.97 3.35
rBayesOpt 4.24 695.96
Random 5.19 0.00

Table 1: Average ranks and runtime on artificial test functions.

4.2. Model-Based Single-Objective Optimization in Mixed Spaces
The second benchmark compares mlrMBO to three1 other state-of-the-art

Bayesian optimizers which are not connected to R: Spearmint [14], hyperopt
(called TPE in the following) [8] and SMAC [7]. We use the hyperparameter
optimization library HPOlib [44], which contains a large number of standardized
benchmarks. Besides purely numerical problems, the HPOlib also defines prob-
lems with mixed and dependent parameter spaces. We evaluate the methods
on four synthetic functions (branin, camelback, michalewicz and har6 ), three
parameter optimization problems on grids (linear discriminant analysis (lda),
logistic regression (logreg) and a support vector machine (svm)), as well as a
deep neural network (hpnnet) with 15 parameters, and a deep belief network
(hpdbnet) with 35 parameters. The latter two problems were originally proposed
by Bergstra et al. [8]. mlrMBO uses its default settings, i.e., a Gaussian process
as surrogate model for all solely numerical problems and a random forest for the
problems with mixed and dependent parameter spaces (hpnnet and hpdbnet).
We deviate from the defaults only for the initial design of hpnnet and hpdbnet.
Here, the number of allowed function evaluations compared to the dimension
of the parameter set is very small, therefore the initial design has only size 2d
instead of the default 4d. Spearmint uses an internal dummy encoding of all
categorical parameters for its Gaussian process. The number of iterations on
each benchmark as well as the specific settings of all other optimizers are defined
in HPOlib.

Evaluation. The results of ten runs on each benchmark are summarized in Fig-
ure 5. On each of the four synthetic test functions, mlrMBO outperforms both
SMAC and TPE and has similar performance compared to Spearmint, except
for michalewicz where mlrMBO outperforms all competitors. For the grid opti-
mizations, mlrMBO also performs exceptionally well on every single one, while
each other optimizer results in worse performance on at least one of the three
problems, which overall places mlrMBO on the first place in numeric settings
(cf. Table 2). Regarding the neural network and deep belief network, mlrMBO
achieves similar results as SMAC and slightly better results than Spearmint

1Since BayesOpt is neither connected to HPOlib nor possesses an R interface, we refer the
reader to the benchmarks in [16] and do not consider BayesOpt in our analysis.
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Figure 5: Best objective value (on y axis) found by respective optimizer on 13 HPOlib test
functions. For details on the test functions we refer to [8] for hpnnet and hpdbnet and to [44]
for everything else.

and TPE. Especially Spearmint has a clearly worse performance on three of
the six problems, while mlrMBO is only worse than its competitors on hpdb-
net/cv_convex. As a result, Table 2 shows that mlrMBO also places first w.r.t.
aggregated mean ranks for mixed hyperparameter spaces. We can clearly see
that mlrMBO is on par with other state-of-the-art Bayesian optimization software,
even in highly complex settings.

4.3. Model-Based Multi-Objective Optimization
In the following section we will briefly summarize a benchmark performed

by Horn et al. [4]. We will focus on the results concerning the four MBMO
algorithms implemented in mlrMBO. For the detailed experimental setup and
further details we refer to the original paper.
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Optimizer Avg. rank Avg. rank (numeric only) Avg. rank (mixed only)
mlrMBO 1.90 (1) 1.64 (1) 2.20 (1)
smac 2.65 (3) 2.90 (3) 2.35 (2)
spearmint 2.61 (2) 2.32 (2) 2.95 (4)
TPE 2.85 (4) 3.14 (4) 2.50 (3)

Table 2: Average ranks on HPOlib problems, Results were ranked in each replication and then
averaged over the replications and problems. Numeric only ranks are based on benchmark 7
to 13 and mixed only ranks are based on 1 to 6.

Benchmarks. The benchmark was performed on nine artificial test functions.
On the one hand, four well known multi-objective test functions were used,
namely ZDT1, ZDT2 and ZDT3 each with dimension d = 5 and number of
objectives k = 2, as well as DTLZ2 using d = 5 and k ∈ {2, 5}. On the
other hand, four additional test functions were constructed by combining various
single-objective problems, in such a way that each combination of d ∈ {2, 5} and
k ∈ {2, 5} is used. These are called GOMOP in the following.

Setup. To simulate an expensive setting, all algorithms had a budget of only
40d function evaluations. The popular popular evolutionary multi-objective
algorithm NSGA2 [45] and a random search serve as baseline for the four im-
plementation in mlrMBO: SMS-EGO, ε-EGO, SMS-Ego, and MSPOT (cf. Sec-
tion 2.6).

Evaluation. Various performance measures for comparing different approxima-
tions have been introduced. The most popular measure may be the dominated
hypervolume (also known as S-Metric). In the bi-objective case the hypervol-
ume simply measures the area between the discrete approximation of the Pareto
front and a pessimistic reference point. If an approximation reaches a higher
hypervolume value, it is considered superior.

The final Pareto front approximations were normalized to the interval [1, 2]m

with respect to a reference set. In Figure 6, the hypervolume values of all runs
with respect to the reference point (1.1)k are shown for 20 replications per test
function. We see that most MBMO algorithms outperform both baseline algo-
rithms on nearly all test functions, only ParEGO fails occasionally. Moreover,
its performance is always worse than ε-EGO and SMS-EGO. The three remain-
ing MBMO algorithms perform comparably well, whereas SMS-EGO shows top
or near-top performance on all test functions.

5. Conclusion

We introduced the R package mlrMBO, a modular toolbox for model-based
optimization in the R programming language. We gave a brief introduction
to software specific aspects and features. Furthermore, we performed compre-
hensive benchmarks of mlrMBO against other black-box optimizers in different
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Figure 6: Normalized dominated hypervolume (on y axis) for the respective algorithm on
respective test functions.

scenarios. In the single-objective benchmark mlrMBO proved state-of-the-art per-
formance regarding solution quality in comparison with the CMA evolutionary
strategy, random search, and alternative SMBO implementations, while still
being reasonably fast. Furthermore, mlrMBO is on par with the well known op-
timization frameworks SMAC, Spearmint, and TPE as shown by benchmarks
using HPOlib. The benchmark study on expensive multi-objective optimiza-
tion revealed SMBO-based methods, in particular SMS-EGO, to show excellent
performance. Both the state-of-the-art NSGA-II evolutionary algorithm as well
as the baseline random search algorithm were outperformed on all nine test
functions (only ParEGO occasionally failed). All in all the results demonstrate
the suitability of the mlrMBO toolbox in particular for expensive optimization
scenarios in R for single- and multi-objective tasks, with continuous or mixed
parameter spaces.
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Abstract. Sequential model-based optimization is a popular technique
for global optimization of expensive black-box functions. It uses a regres-
sion model to approximate the objective function and iteratively pro-
poses new interesting points. Deviating from the original formulation, it
is often indispensable to apply parallelization to speed up the computa-
tion. This is usually achieved by evaluating as many points per iteration
as there are workers available. However, if runtimes of the objective func-
tion are heterogeneous, resources might be wasted by idle workers. Our
new knapsack-based scheduling approach aims at increasing the effec-
tiveness of parallel optimization by efficient resource utilization. Derived
from an extra regression model we use runtime predictions of point eval-
uations to efficiently map evaluations to workers and reduce idling. We
compare our approach to five established parallelization strategies on
a set of continuous functions with heterogeneous runtimes. Our bench-
mark covers comparisons of synchronous and asynchronous model-based
approaches and investigates the scalability.

Keywords: Black-box optimization · Model-based optimization ·
Global optimization · Resource-aware scheduling · Performance man-
agement · Parallelization

1 Introduction

Efficient global optimization of expensive black-box functions is of interest to
many fields of research. In the engineering industry, computationally expensive
models have to be optimized; for machine learning hyperparameters have to
be tuned; and for computer experiments in general, expensive algorithms have
parameters that have to be optimized to obtain a well-performing algorithm
configuration. The problems of global optimization can usually be modeled by a
c� Springer International Publishing AG 2017
R. Battiti et al. (Eds.): LION 2017, LNCS 10556, pp. 180–195, 2017.
https://doi.org/10.1007/978-3-319-69404-7_13
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real-valued objective function f with a d-dimensional domain space. The chal-
lenge is to find the best point possible within a very limited time budget.

Together with [1,22,23], Model-based optimization (MBO) [15] is a state-of-
the-art algorithm for expensive black-box functions. Starting on an initial design
of already evaluated configurations, a regression model guides the search to new
configurations by predicting the outcome of the black-box on yet unseen con-
figurations. Based on this prediction an infill criterion (also called acquisition
function) proposes a new promising configuration for evaluation. In each iter-
ation the regression model is updated on the evaluated configurations of the
previous iteration until the budget is exhausted. Jones et al. [15] proposed this
now popular Efficient Global Optimization (EGO) algorithm. EGO sequentially
adds points to the design using Kriging as a surrogate and the Expected Improve-
ment (EI) as an infill criterion. Following, other infill criteria [14], specializations
e.g. for categorical search spaces like in SMAC [10] and noisy optimization [20]
have been introduced.

For computer experiments, parallelization has become of increasing interest
to reduce the overall computation time. Originally, the EGO algorithm iter-
atively proposes one point to be evaluated after another. To allow for paral-
lelization, infill criteria and techniques (constant liar, Kriging believer, qEI [9],
qLCB [11], MOI-MBO [4]) have been suggested that propose multiple points
in each iteration. Usually, the number of proposed points equals the number of
available CPUs. However, these methods still do use the available resources inef-
ficiently if the runtime of the black-box is heterogeneous. Before new proposals
can be generated, the results of all evaluations within one iteration are gathered
to update the model. Consequently all CPUs have to wait for the slowest func-
tion evaluation before receiving a new point proposal. This can lead to idling
CPUs that are not contributing to the optimization. The goal in general is to
use all available CPU time to solve the optimization problem.

One approach to avoid idling is to desynchronize the model update. Here,
the model is updated each time an evaluation has finished, letting each parallel
worker propose the next point for evaluation itself. Such asynchronous techniques
have been suggested and discussed by [8,12]. The main challenge is to modify the
infill criterion to deal with points that are currently under evaluation to avoid
evaluations of very similar configurations. The Expected Expected Improvement
(EEI) [13] is one possibility for such a modification.

Another strategy is to keep the synchronous model update and schedule the
evaluations of the proposed points in such a way that idling is reduced. Such an
approach was presented in [19]. Here, a second regression model is used to predict
runtimes for the proposed points which are used as an input for scheduling.

Our article contains the following contributions: First, we extended the par-
allel, resource-aware synchronous model-based optimization strategy proposed
in [19] with an improved resource-aware scheduling algorithm. This algorithm,
which replaces the original simple first fit heuristic, is based on a knapsack solver
to better handle heterogeneous runtimes. Furthermore we use a clustering-based
refinement strategy to ensure improved spatial diversity of the evaluated points.
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Second, we compare our algorithm to three asynchronous MBO strategies
that also aim at using all available CPU time to solve the optimization problem
in parallel. Two of them [8,12] use Kriging as a surrogate and the third is included
in SMAC [10] which uses a random forest surrogate.

Third, we benchmark the MBO algorithms on a set of established continuous
test functions combined with simulated runtimes. For each function we use a
2- and a 5-dimensional version each of which is optimized using 4 and 16 CPUs
in parallel to investigate scalability.

Compared to the considered asynchronous approaches, our new approach
converges faster to the optima if the runtime estimates used as input for schedul-
ing are reliable.

2 Model-Based Global Optimization

The aim of global optimization is to find the global minimum of a given function
f : X → R, f(x) = y,x = (x1, . . . , xd)T . Here, we assume X ⊂ Rd, usually
expressed by simple box constraints. The optimization is guided by a surrogate
model which estimates the response surface of the black-box function f (see
also [22,23]). The surrogate is comparably inexpensive to evaluate and is utilized
to propose new promising points x∗ in an iterative fashion. A promising point
x∗ is determined by optimizing some infill criterion. After, f(x∗) is evaluated to
obtain the corresponding objective value y, the surrogate model is refitted and a
new point is proposed. The infill criterion quantifies the potential improvement
based, on an exploitation-exploration trade-off where a low (good) expected
value of the solution μ̂(x) is rewarded, and low estimated uncertainty ŝ(x) is
penalized. A popular infill criterion, especially for Kriging surrogate models, is
the expected improvement

EI(x) = E(max(ymin − μ̂(x), 0))

= (ymin − μ̂(x)) Φ

�
ymin − μ̂(x))

ŝ(x)

�
+ ŝ(x)φ

�
ymin − μ̂(x)

ŝ(x)

�
,

where Φ is the distribution and φ is the density function of the standard normal
distribution and ymin is the best observed function value so far. Alternatively,
the comparably simpler lower confidence bound criterion

LCB(x, λ) = μ̂(x) − λŝ(x), λ ∈ R

is used, where μ̂(x) denotes the posterior mean and ŝ(x) the posterior standard
deviation of the regression model at point x. Before entering the iterative process,
initially some points have to be pre-evaluated. These points are generally chosen
in a space-filling manner to uniformly cover the input space. The optimization
usually stops after a target objective value is reached or a predefined budget is
exhausted [22,23].
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2.1 Parallel MBO

Ordinary MBO is sequential by design. However, applications like hyperparame-
ter optimization for machine learning or computer simulations have driven the
rapid development of extensions for parallel execution of multiple point eval-
uations. The parallel extensions either focus on a synchronous model update
using infill criteria with multi-point proposals or implement an asynchronous
evaluation where each worker generates one new point proposal individually.

Multi-Point proposals derive not only one single point x∗ from a surrogate model,
but q points x∗

1, . . . ,x
∗
q simultaneously. The q proposed points must be suffi-

ciently different from each other to avoid multiple evaluations with the same
configuration. For this reason Hutter et al. [11] introduced the criterion

qLCB(x, λj) = μ̂(x) − λj ŝ(x) with λj ∼ Exp(λ) (1)

as an intuitive extension of the LCB criterion using an exponentially distributed
random variable. Since λ guides the trade-off between exploration and exploita-
tion, sampling multiple different λj might result in different “best” points by
varying the impact of the standard deviation. The qLCB criterion was imple-
mented in a distributed version of SMAC [11]. An extension of the EI criterion
is the qEI criterion [9] which directly optimizes the expected improvement over
q points. A closed form solution to calculate qEI exists for q = 2 and useful
approximations can be applied for q ≤ 10 [7]. However, as the computation is
using Monte Carlo sampling, it is quite expensive. A less expensive and popu-
lar alternative is Kriging believer approach [9]. Here, the first point is proposed
using the single-point EI criterion. Its posterior mean value is treated as a real
value of f to refit the surrogate, effectively penalizing the surrounding region
with a lower standard deviation for the next point proposal using EI again. This
is repeated until q proposals are generated.

In combination with parallel synchronous execution the above described
multi-point infill approaches can lead to underutilized systems because a new
batch of points can only be proposed as soon as the slowest function evaluation
is terminated. Snoek et al. [21] introduce the EI per second to address hetero-
geneous runtimes. The runtime of a configuration is estimated using a second
surrogate model and a combined infill criterion can be constructed which favors
less expensive configurations.

We also use surrogate models to estimate resource requirements but instead of
adapting the infill criterion, we use them for the scheduling of parallel function
evaluations. Our goal is to guide MBO to interesting regions in a faster and
resource-aware way without directly favoring less expensive configurations.

Asynchronous Execution approaches the problem of parallelizing MBO from a
different angle. Instead of evaluating multiple points in batches to synchronously
refit the model, the model is refitted after each function evaluation to increase
CPU utilization workers. Here, each worker propose the next point for evaluation
itself, even when configurations xbusy are currently under evaluation on other
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processing units. The busy evaluations have to be taken into account by the
surrogate model to avoid that new point proposals are identical or very similar
to pending evaluations. Here, the Kriging believer approach [9] can be applied to
block these regions. Another theoretically well-founded way to impute pending
values is the expected EI (EEI) [8,13,21]. The unknown value of f(xbusy) is inte-
grated out by calculating the expected value of ybusy via Monte Carlo sampling,
which is, similar to qEI, computationally demanding. For each Monte Carlo iter-
ation values y1,busy, . . . , yµ,busy are drawn from the posterior distribution of the
surrogate regression model at x1,busy, . . . ,xµ,busy, with μ denoting the number
of pending evaluations. These values are combined with the set of already known
evaluations and used to fit the surrogate model. The EEI can then simply be
calculated by averaging the individual expected improvement values that are
formed by each Monte Carlo sample:

�EEI(x) =
1

nsim

nsim�

i=1

EIi(x) (2)

whereas nsim denotes the number of Monte Carlo iterations.
Besides the advantage of an increased CPU utilization, asynchronous execu-

tion can also potentially cause additional runtime overhead due to the higher
number of model refits, especially when the number of workers increases. There-
fore our experiments include a comparison with most of the above described
approaches to investigate the advantages and disadvantages.

Instead of using asynchronous execution to efficiently utilize parallel com-
puter architectures, our new approach uses the synchronous execution combined
with resource-aware scheduling and is presented in the following section.

3 Resource-Aware Scheduling with Synchronous Model
Update

The goal of our new scheduling strategy is to guide MBO to interesting regions
in a faster and resource-aware way. To efficiently map jobs (proposed points)
to available resources our strategy needs to know the resource demands of jobs
before execution. Therefore, we estimate the runtime of each job using a regres-
sion model. Additionally, we calculate an execution priority for each job based
on the multi-point infill criterion. In the following, we will describe these inputs.

3.1 Infill Criterion - Priority

The priorities of the proposed points should reflect their usefulness for optimiza-
tion. In our setup we opt for the qLCB (1) to generate a set of job proposals
by optimizing the LCB for q randomly drawn values of λj ∼ Exp( 1

2 ), as in
Richter et al. [19]. qLCB is suitable because the proposals are independent of
each other. There is no direct order of the set of obtained candidates x∗

j in
terms of how promising or important one candidate is in comparison to each
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other. Therefore, we introduce an order that steers the search more towards
promising areas. We give the highest priority to the point xj that was proposed
using the smallest value of λj . We define the priority for each point as pj := −λj .

3.2 Resource Estimation

To estimate the resource demands of proposed candidates, we use a separate
regression model. To adapt to the domain space of the objective function, we
choose the same regression method used for the surrogate. In the same fashion
as for the MBO algorithm, runtimes are predicted in each MBO iteration based
on all previously evaluated jobs and measured runtimes.

3.3 Resource-Aware Knapsack Scheduling

The goal of our scheduling strategy is to reduce the CPU idle time on the workers
while acquiring the feedback of the workers in the shortest possible time to avoid
model update delay. The set of points proposed by the multi-point infill criterion
forms the set of jobs J = {1, . . . , q} that we want to execute on the available
CPUs K = {1, . . . , m}. For each job the estimated runtime is given by t̂j and the
corresponding priority is given by pj . To reduce idle times caused by evaluations
of jobs with a low priority, the maximal runtime for each MBO iteration is defined
by the runtime of the job with the highest priority. Lower prioritized jobs have
to subordinate. At the same time we want to maximize the profit, given by the
priorities, of parallel job executions for each model update. To solve this problem,
we apply the 0 − 1 multiple knapsack algorithm by interfacing the R-package
adagio for global optimization routines [5]. Here the knapsacks are the available
CPUs and their capacity is the maximally allowed computing time, defined by
the runtime of the job with the highest priority. The items are the jobs J , their
weights are the estimated runtimes t̂j and their values are the priorities pj . The
capacity for each CPU is accordingly t̂j∗ , with j∗ := arg maxjpj . To select the
best subset of jobs the algorithm maximizes the profit Q:

Q =
�

j∈J

�

k∈K

pjckj ,

which is the sum of priorities of the selected jobs, under the restriction of the
capacity

t̂j∗ ≥
�

j∈J

t̂jckj ∀k ∈ K

per CPU. The restriction with the decision variable ckj ∈ {0, 1}

1 ≥
�

k∈K

ckj ∀j ∈ J, ckj ∈ {0, 1}.

ensures that a job j is at most mapped to one CPU.
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As the job with the highest priority defines the time bound t̂j∗ it is mapped to
the first CPU k = 1 exclusively and single jobs with higher runtimes are directly
discarded. Then the knapsack algorithm is applied to assign the remaining can-
didates in J to the remaining m−1 CPUs. This leads to the best subset of J that
can be run in parallel minimizing the delay of the model update. If a CPU is left
without a job we query the surrogate model for a job with an estimated runtime
smaller or equal to t̂j∗ to fill the gaps. For a useful scheduling the set of can-
didates should have considerably more candidates q than available CPUs. This
knapsack scheduling is a direct enhancement of the first fit scheduling strategy
presented in [19].

3.4 Refinement of Job Priorities via Clustering

The refinement of job priorities has the goal to avoid parallel evaluations of
very similar configurations. Approaches to specifically propose points that are
promising but yet diverse are described in [4]. qLCB performed well and was
chosen here because it is comparably inexpensive to create many independent
candidates. However, qLCB does not include a penalty for the proximity of
selected points which gets problematic if the number of parallel points is high.
Therefore, we use a distance measure to reprioritize pj to p̃j , encouraging the
selection sets of candidates more scattered in the domain space.

First, we oversample a set of q > m candidate points from the qLCB criterion
and partition them into q̃ < q clusters using the Euclidean distance. Next, we
take the candidate with maximum priority pj from each cluster and sort them
according to their priority before pushing them to the list J̃ of selected jobs.
Selected jobs are removed from the clusters and empty clusters are eliminated.
We repeat this procedure until we have moved all q jobs into the list J̃ . Finally,
we assign new priorities p̃j based on the order of J̃ , i.e. the first job in J̃ gets
the highest priority q and the last job gets the lowest priority 1.

As a result, the set of candidates contains batches of jobs with similar pri-
ority that are spread in the domain space. The new priorities serve as input for
scheduling which groups the q jobs to m CPUs using the runtime estimates t̂.

4 Numerical Experiments

In our experiments, we consider two categories of synthetic functions to ensure
a fair comparison in a disturbance-free environment. They are implemented in
the R package smoof [6]:

1. Functions with a smooth surface: rosenbrock(d) and bohachevsky(d) with
dimension d = 2, 5. They are likely to be fitted well by the surrogate.

2. Highly multimodal functions: ackley(d) and rastrigin(d) (d = 2, 5). We
expect that surrogate models can have problems to achieve a good fit here.

As these are illustrative test functions, they have no significant runtime. As
a resort, we also use these functions to simulate runtime behavior. First, we
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combine two functions: One determines the number of seconds it would take
to calculate the objective value of the other function. E.g., for the combina-
tion rastrigin(2).rosenbrock(2) it would require rosenbrock(2)(x) seconds
to retrieve the objective value rastrigin(2)(x) for an arbitrary proposed point
x. Technically, we just sleep rosenbrock(2)(x) seconds before returning the
objective. We simulate the runtime with either rosenbrock(d) or rastrigin(d)
and analyze all combinations of our four objective functions, except where the
objective and the time function are identical.

A prerequisite for this approach is the unification of the input space. Thus,
we simply mapped values from the input space of the objective function to the
input space of the time function. The output of the time functions is scaled to
return values between 5 min to 60 min.

We examine the capability of the considered optimization strategies to mini-
mize functions with highly heterogeneous runtimes within a limited time budget.
To do this, we measure the distance between the best found point at time t and
a predefined target value. We call this measure accuracy. In order to make this
measure comparable across different objective functions, we scale the function
values to [0, 1] with zero being the target value. It is defined as the best y reached
by any optimization method after the complete time budget. The upper bound
1 is the best y found in the initial design (excluding the initial runs of smac)
which is identical for all algorithms per given problem. Both values are averaged
over the 10 replications.

If an algorithm needs 2 h to reach an accuracy of 0.5, this means that within
2 h half of the way to 0 has been accomplished, after starting at 1. We compare
the differences between optimizers at the three accuracy levels 0.5, 0.1 and 0.01.

The optimizations are repeated 10 times and conducted on m = 4 and m = 16
CPUs. We allow each optimization to run for 4 h on 4 CPUs and for 2 h on
16 CPUs in total which includes all computational overhead and idling. All
computations were performed on a Docker Swarm cluster using the R package
batchtools [18]. The initial design is generated by Latin hypercube sampling
with n = 4 · d points and all of the following optimizers start with the same
design in the respective repetition:

rs: Random search, serving as base-line.
qLCB: Synchronous approach using qLCB where in each iteration q = m

points are proposed.
ei.bel: Synchronous approach using Kriging believer where in each iter-

ation m points are proposed.
asyn.eei: Asynchronous approach using EEI (100 Monte Carlo iterations)

asyn.ei.bel: Asynchronous Kriging believer approach.
rambo: Synchronous approach using qLCB with our new scheduling app-

roach where in each iteration q = 8 · m candidates are proposed.

qLCB and ei.bel are implemented in the R package mlrMBO [3], which builds
upon the machine learning framework mlr [2]. asyn.eei, asyn.ei.bel and
rambo are also based on mlrMBO. We use a Kriging model from the package
DiceKriging [20] with a Matern 5

2 -kernel for all approaches above and add a
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nugget effect of 10−8 · Var(y), where y denotes the vector of all observed func-
tion outcomes. Additionally we compare our implementations to:

smac: Asynchronous approach that turns m independent SMAC runs into m
dependent runs by sharing surrogate model data (also called shared-
model-mode1).

SMAC was allowed the same initial budget as the other optimizers and was
started with the defaults and the shared-model-mode activated. SMAC uses a
random forest as surrogate and the EI criterion.

4.1 Quality of Resource Estimation

The quality of resource-aware scheduling naturally depends on the accuracy
of the resource estimation. Without reliable runtime predictions, the sched-
uler is unable to optimize for efficient utilization. As Fig. 1 exemplary shows,
the runtime prediction for the rosenbrock(5) time function works well as the
residual values are getting smaller over time, while the runtime prediction for
rastrigin(5) is comparably imprecise. For the 2-dimensional versions the results
are similar. This encourages to consider scenarios separately where runtime pre-
diction is possible (rosenbrock(·), Subsect. 4.2) and settings where runtime pre-
diction is error-prone (rastrigin(·), Subsect. 4.3) for further analysis.
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Fig. 1. Residuals of the runtime prediction in the course of time for the rosenbrock(5)
and rastrigin(5) time functions on 4 CPUs and bohachevsky(5) as objective function.
Positive values indicate an overestimated runtime and negative values an underestima-
tion.

4.2 High Runtime Estimation Quality: rosenbrock

Figure 2 shows boxplots for the time required to reach the three different accuracy
levels in 10 repetitions within a budget of 4 h real time on 4 CPUs (upper part) and

1 Hutter, F., Ramage, S.: Manual for SMAC version v2.10.03-master. Department
of Computer Science, UBC. (2015), www.cs.ubc.ca/labs/beta/Projects/SMAC/
v2.10.03/manual.pdf.
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Table 1. Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with
rosenbrock(·) time function on 4 and 16 CPUs with a time budget of 4 h and 2 h,
respectively.

Algorithm 4 CPUs 16 CPUs

0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.32 (2) 3.52 (1) 4.97 (2) 3.75 (3) 4.30 (3) 5.45 (3)

asyn.ei.bel 3.55 (3) 4.10 (3) 4.97 (2) 3.48 (2) 4.08 (2) 4.53 (2)

RAMBO 3.17 (1) 3.85 (2) 4.57 (1) 3.13 (1) 3.93 (1) 4.47 (1)

ei.bel 4.38 (4) 4.98 (4) 5.90 (5) 5.00 (5) 5.48 (6) 6.28 (6)

qLCB 4.52 (5) 5.03 (5) 5.63 (4) 4.72 (4) 5.17 (4) 6.10 (4)

rs 6.02 (6) 6.67 (6) 6.83 (7) 5.50 (7) 6.48 (7) 6.87 (7)

smac 6.22 (7) 6.70 (7) 6.82 (6) 5.32 (6) 5.47 (5) 6.17 (5)

2 h on 16 CPUs (lower part). The faster an optimizer reaches the desired accuracy
level, the lower the displayed box and the better the approach. If an algorithm did
not reach an accuracy level within the time budget, we impute with the respective
time budget (4 h or 2 h) plus a penalty of 1000 s.

Table 1 lists the aggregated ranks over all objective functions, grouped by
algorithm, accuracy level, and number of CPUs. For this computation, the algo-
rithms are ranked w.r.t. their performance for each replication and problem
before they are aggregated with the mean. If there are ties (e.g. if an accuracy
level was not reached), all values obtain the worst possible rank.

The benchmarks indicate an overall advantage of our proposed resource-
aware MBO algorithm (rambo): On average, rambo reaches the accuracy level
first in 2 of 3 setups on 4 CPUs and is always fastest on 16 CPUs. rambo is
closely followed by the asynchronous variant asyn.eei on 4 CPUs but the lead
becomes more clear on 16 CPUs. In comparison to the conventional synchronous
algorithms (ei.bel, qLCB), rambo as well as asyn.eei and asyn.ei.bel reach
the given accuracy levels in shorter time. This is especially true for objective
functions that are hard to model (ackley(·), rastrigin(·)) by the surrogate
as seen in Fig. 2. The simpler asyn.ei.bel performs better than asyn.eei on
16 CPUs. Except for smac, all presented MBO methods outperform base-line rs
on almost all problems and accuracy levels. The bad average results for smac
are partly due to its low performance on the 5d problems and probably because
of the disadvantage of using a random forest as a surrogate on purely numerical
problems. A recent benchmark in [3] was able to demonstrate the competitive
performance of the Kriging based EGO approach. On 16 CPUs smac performs
better than rs and comparable to ei.bel.

For a thorough analysis of the optimization, Fig. 3 exemplary visualizes the
mapping of the parallel point evaluations (jobs) for all MBO algorithms on
16 CPUs for the 5d versions of the problems. Each gray box represents com-
putation of a job on the respective CPU. For the synchronous MBO algorithms

69



190 H. Kotthaus et al.

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2
d

 (4
 C

P
U

s)
5

d
 (4

 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4h
o
u
rs

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs smac

ackley.rosenbrock bohachevsky.rosenbrock rastrigin.rosenbrock

2
d

 (1
6

 C
P

U
s)

5
d

 (1
6

 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

accuracy level

h
o
u
rs

Fig. 2. Accuracy level vs. execution time for different objective functions using time
function rosenbrock(·) (lower is better).

(rambo, qLCB, ei.bel) the vertical lines indicate the end of an MBO iteration.
For asyn.eei red boxes indicate that the CPU is occupied with the point pro-
posal. The necessity of a resource estimation for jobs with heterogeneous run-
times becomes obvious, as qLCB and ei.bel can cause long idle times by queuing
jobs together with large runtime differences. The knapsack scheduling in rambo
manages to clearly reduce this idle time. This effect of efficient resource utiliza-
tion increases with the number of CPUs. rambo reaches nearly the same effective
resource-utilization as the asynchronous asyn.ei.bel algorithm and smac (see
Fig. 3) and at the same time reaches the accuracy level fastest on 16 CPUs.

The Monte Carlo approach asyn.eei generates a high computational over-
head as indicated by the red boxes, which reduces the effective number of evalu-
ations. Idling occurs because the calculation of the EEI is encouraged to wait for
ongoing EEI calculations to include their proposals. This overhead additionally
increases with the number of already evaluated points. asyn.ei.bel and smac
have a comparably low overhead and thus basically no idle time. This seems
to be an advantage for asyn.ei.bel on 16 CPUs where it performs better on
average than its complex counterpart asyn.eei.
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Fig. 3. Scheduling of MBO algorithms. Time on x-axis and mapping of candidates to
m = 16 CPUs on y-axis. Each gray box represents a job. Each red box represents
overhead for the asynchronous approaches. The gaps represent CPU idle time. (Color
figure online)

Summed up, if the resource estimation that is used in rambo has a high
quality, rambo clearly outperforms the considered synchronous MBO algorithms
qLCB, ei.bel, and smac. This indicates, that the resource utilization obtained
by the scheduling in rambo leads to faster and better results, especially, when
the number of available CPUs increases. On average rambo performs better than
all considered asynchronous approaches.

4.3 Low Runtime Estimation Quality: rastrigin

The time function rastrigin used in the following scenario is difficult to fit by
surrogate models, as visualized by the residual plot in Fig. 1. For this reason, the
benefit of our resource-aware knapsack strategy is expected to be minimal. For
example in a possible worst case multiple supposedly short jobs are assigned to
one CPU but their real runtime is considerably longer.

Similar to Subsect. 4.2, Fig. 4 shows boxplots for the benchmark results, but
with rastrigin(·) as the time function. Table 2 provides the mean ranks for
Fig. 4, calculated in the same way as in previous Subsect. 4.2.

Despite possible wrong scheduling decisions, rambo still manages to outper-
form qLCB and performs better than ei.bel on the highest accuracy level on
average. asyn.eei reaches the accuracy levels fastest on 4 CPUs. Similar to the
previous benchmarks on Subsect. 4.2, the simplified asyn.ei.bel seems to ben-
efit from its reduced overhead and places first on 16 CPUs. This difference w.r.t.
the scalability becomes especially visible on rosenbrock(·).

71



192 H. Kotthaus et al.

Table 2. Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with
rastrigin(·) time function on 4 and 16 CPUs with a time budget of 4 h and 2 h,
respectively.

Algorithm 4 CPUs 16 CPUs

0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.65 (1) 3.25 (1) 4.47 (1) 4.42 (3) 4.38 (2) 5.20 (3)

asyn.ei.bel 3.88 (2) 3.50 (2) 4.52 (2) 3.90 (1) 3.75 (1) 4.33 (1)

RAMBO 4.50 (4) 4.70 (4) 4.72 (3) 4.43 (4) 4.60 (4) 5.17 (2)

ei.bel 4.22 (3) 4.42 (3) 4.87 (4) 4.33 (2) 4.55 (3) 5.27 (4)

qLCB 4.95 (5) 4.80 (5) 5.38 (5) 5.10 (5) 5.00 (5) 5.82 (5)

rs 6.30 (7) 6.42 (6) 6.63 (6) 5.78 (7) 6.23 (7) 6.43 (6)

smac 5.90 (6) 6.98 (7) 7.00 (7) 5.30 (6) 5.77 (6) 6.72 (7)
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Fig. 4. Accuracy level vs. execution time for different objective functions using time
function rastrigin(·) (lower is better).

smac can not compete with the Kriging based optimizers. Overall, rambo
appears not to be able to outperform the asynchronous MBO methods on 4 CPUs
as unreliable runtime estimates likely lead to suboptimal scheduling decisions.
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However, rambo reaches comparable results to asyn.eei on 16 CPUs and com-
pared to the default synchronous approaches it is a viable choice.

5 Conclusion

We benchmarked our knapsack based resource-aware parallel MBO algorithm
rambo against popular synchronous and asynchronous MBO approaches on a set
of illustrative test functions for global optimization methods. Our new approach
was able to outperform SMAC and the default synchronous MBO approach qLCB
on the continuous benchmark functions. On setups with high runtime estimation
quality it converged faster to the optima than the competing MBO algorithms on
average. This indicates, that the resource utilization obtained by our new app-
roach improves MBO, especially, when the number of available CPUs increases.
On setups with low runtime estimation quality the asynchronous Kriging based
approaches performed best on 4 CPUs and only the simplified asynchronous
Kriging believer kept its lead on 16 CPUs. Unreliable estimates likely lead to sub-
optimal scheduling decisions for rambo. While the asynchronous Kriging believer
approach, SMAC and rambo benefited from increasing the number of CPUs, the
overhead of the asynchronous approach based on EEI increased.

If the runtime of point proposals is predictable we suggest our new rambo
approach for parallel MBO with high numbers of available CPUs. Even if the
runtime estimation quality is obviously hard to determine in advance, for real
applications like hyperparameter optimization for machine learning methods pre-
dictable runtimes can be assumed. Our results also suggest that on some setups
the choice of the infill criterion determines which parallelization strategy can
reach a better performance. For future work a criterion that assigns an infill
value to a set of candidates that can be scheduled without causing long idle
times appears promising. Furthermore we want to include the memory con-
sumption measured by the traceR [16,17] tool into our scheduling decisions for
experiments with high memory demands.
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Abstract We present a new algorithm for boosting gen-
eralized additive models for location, scale and shape
(GAMLSS) that allows to incorporate stability selection,
an increasingly popular way to obtain stable sets of covari-
ates while controlling the per-family error rate. The model
is fitted repeatedly to subsampled data, and variables with
high selection frequencies are extracted. To apply stability
selection to boosted GAMLSS, we develop a new “noncycli-
cal” fitting algorithm that incorporates an additional selection
step of the best-fitting distribution parameter in each itera-
tion. This new algorithm has the additional advantage that
optimizing the tuning parameters of boosting is reduced
from amulti-dimensional to a one-dimensional problemwith
vastly decreased complexity. The performance of the novel
algorithm is evaluated in an extensive simulation study. We
apply this new algorithm to a study to estimate abundance
of common eider in Massachusetts, USA, featuring excess
zeros, overdispersion, nonlinearity and spatiotemporal struc-
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tures. Eider abundance is estimated via boosted GAMLSS,
allowing both mean and overdispersion to be regressed on
covariates. Stability selection is used to obtain a sparse set
of stable predictors.

Keywords Boosting · Additive models · GAMLSS ·
GamboostLSS · Stability selection

1 Introduction

In view of the growing size and complexity of modern
databases, statistical modeling is increasingly faced with
heteroscedasticity issues and a large number of available
modeling options. In ecology, for example, it is often
observed that outcomevariables do not only showdifferences
inmean conditions but also tend to be highly variable across
different geographical features or states of a combination
of covariates (e.g., Osorio and Galiano 2012). In addition,
ecological databases typically contain large numbers of cor-
related predictor variables that need to be carefully chosen
for possible incorporation in a statistical regression model
(Aho et al. 2014; Dormann et al. 2013; Murtaugh 2009.

A convenient approach to address both heteroscedasticity
and variable selection in statistical regression models is the
combination of GAMLSS modeling with gradient boosting
algorithms. GAMLSS, which refer to “generalized additive
models for location, scale and shape” (Rigby andStasinopou-
los 2005), are a modeling technique that relates not only
the mean but all parameters of the outcome distribution to
the available covariates. Consequently, GAMLSS simulta-
neously fit different submodels for the location, scale and
shape parameters of the conditional distribution. Gradient
boosting, on the other hand, has become a popular tool for
data-driven variable selection in generalized additive models
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(Bühlmann and Hothorn 2007). The most important feature
of gradient boosting is the ability of the algorithm to perform
variable selection in each iteration, so that model fitting and
variable selection are accomplished in a single algorithmic
procedure. To combine GAMLSS with gradient boosting,
we have developed the gamboostLSS algorithm (Mayr et al.
2012) and have implemented this procedure in the R add-on
package gamboostLSS (Hofner et al. 2016, 2017).

A remaining problem of gradient boosting is the tendency
of boosting algorithms to select a relatively high number
of false-positive variables and to include too many nonin-
formative covariates in a statistical regression model. This
issue, which has been raised in several previous articles
(Bühlmann and Hothorn 2010; Bühlmann and Yu 2006;
Huang et al. 2012), is particularly relevant formodel building
in the GAMLSS framework, as the inclusion of noninforma-
tive false positives in the submodels for the scale and shape
parameters may result in overfitting with a highly inflated
variance. As a consequence, it is crucial to include only those
covariates in these submodels that show a relevant effect on
the outcome parameter of interest. From an algorithmic point
of view, this problem is aggravated by the conventional fitting
procedure of gamboostLSS: Although the fitting procedure
proposed inMayr et al. (2012) incorporates different iteration
numbers for each of the involved submodels, the algorithm
starts with mandatory updates of each submodel at the begin-
ning of the procedure. Consequently, due to the tendency of
gradient boosting to include relatively high numbers of non-
informative covariates, false-positive variables may enter a
GAMLSS submodel at a very early stage, even before the
iteration number of the submodel is finally reached.

To address these issues and to enforce sparsity in GAML
SS, we propose a novel procedure that incorporates stability
selection (Meinshausen and Bühlmann 2010) in gamboost-
LSS. Stability selection is a generic method that investigates
the importance of covariates in a statistical model by repeat-
edly subsampling the data. Sparsity is enforced by including
only the most “stable” covariates, in the final statistical
model. Importantly, under appropriate regularity conditions,
stability selection can be tuned such that the expected number
of false-positive covariates is controlled in a mathematically
rigorousway.Aswill be demonstrated in Sect. 3 of this paper,
the same property holds in the gamboostLSS framework.

To combine gamboostLSS with stability selection, we
present an improved “noncyclical” fitting procedure for
gamboostLSS that addresses the problem of possible false-
positive inclusions at early stages of the algorithm. In contrast
to the original “cyclical” gamboostLSS algorithm presented
in Mayr et al. (2012), the new version of gamboostLSS
not only performs variable selection in each iteration but
additionally an iteration-wise selection of the best submodel
(location, scale, or shape) that leads to the largest improve-
ment in model fit. As a consequence, sparsity is not only

enforced by the inclusion of the most “stable” covariates in
the GAMLSS submodels but also by a data-driven choice
of iteration-wise submodel updates. It is this procedure that
theoretically justifies and thus enables the use of stability
selection in gamboostLSS.

A further advantage of “noncyclical” fitting is that the
maximum number of boosting iterations for each submodel
does not have to be specified individually for each sub-
model (as in the originally proposed “cyclical” variant),
instead only the overall number of iterations must be chosen
optimally. Tuning the complete model reduces from a multi-
dimensional to a one-dimensional optimization problem,
regardless of the number of submodels, therefore drastically
reducing the amount of needed runtime for model selection.

A similar approach for noncyclical fitting of multi-
parameter models was recently suggested by Messner et al.
(2017) for the specific application of ensemble post-process-
ing for weather forecasts. Our proposed method generalizes
this approach, allowing gamboostLSS to be combined with
stability selection in a generic way that applies to a large
number of outcome distributions.

The rest of this paper is organized as follows: In Sect. 2,
we describe the gradient boosting, GAMLSS and stability
selection techniques and show how to combine the three
approaches in a single algorithm. In addition, we provide
details on the new gamboostLSS fitting procedure. Results
of extensive simulation studies are presented in Sect. 3.
They demonstrate that combining gamboostLSS with stabil-
ity selection results in prediction models that are both easy
to interpret and show a favorable behavior with regard to
variable selection. They also show that the new gamboost-
LSS fitting procedure results in a large decrease in runtime
while showing similar empirical convergence rates as the tra-
ditional gamboostLSS procedure. We present an application
of the proposed algorithm to a spatiotemporal data set on sea
duck abundance in Nantucket Sound, USA, in Sect. 4. Sec-
tion 5 summarizes the main findings and provides details on
the implementation of the proposed methodology in the R
package gamboostLSS (Hofner et al. 2017).

2 Methods

2.1 Gradient boosting

Gradient boosting is a supervised learning technique that
combines an ensemble of base-learners to estimate complex
statistical dependencies. Base-learners should beweak in the
sense that they only possess moderate prediction accuracy,
usually assumed to be at least slightly better than a random
predictor, but on the other hand easy and fast to fit. Base-
learners can be, for example, simple linear regressionmodels,
regression splines with low degrees of freedom, or stumps
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(i.e., trees with only one split; Bühlmann and Hothorn 2007).
One base-learner by itself will usually not be enough to fit a
well-performing statistical model to the data, but a boosted
combination of a large number can compete with other state-
of-the-art algorithms on many tasks, e.g., classification (Li
2012) or image recognition (Opelt et al. 2004).

Let D = {(x (i), y(i))}i=1,...,n be a learning data set sam-
pled i.i.d. from a distribution over the joint spaceX ×Y , with
a p-dimensional input spaceX = (X1×X2×· · ·×Xp) and a
usually one-dimensional output space Y . The response vari-
able is estimated through an additive model whereE(y|x) =
g−1(η(x)), with link function g and additive predictor η :
X → R,

η(x) = β0 +
J∑

j=1

f j (x |β j ), (1)

with a constant intercept coefficient β0 and additive effects
f j (x |β j ) derived from the pre-defined set of base-learners.
These are usually (semi-)parametric effects, e.g., splines,
with parameter vector β j . Note that some effects may later
be estimated as 0, i.e., f j (x |β j ) = 0. In many cases, each
base-learner is defined on exactly one element X j of X and
thus Eq. 1 simplifies to

η(x) = β0 +
p∑

j=1

f j (x j |β j ). (2)

To estimate the parameters β1, . . . , βJ of the additive predic-
tor, the boosting algorithm minimizes the empirical risk R
which is the loss ρ : Y ×R → R summed over all training
data:

R =
n∑

i=1

ρ(y(i), η(x (i))). (3)

The loss function measures the discrepancy between the true
outcome y(i) and the additive predictor η(x (i)). Examples
are the absolute loss |y(i) − η(x (i))|, leading to a regression
model for the median, the quadratic loss (y(i) − η(x (i)))2,
leading to the conventional (mean) regression model or the
binomial loss−y(i)η(x (i))+log(1+exp(η(x (i)))) often used
in classification of binary outcomes y(i) ∈ {0, 1}. Very often
the loss is derived from the negative log likelihood of the
distribution ofY , depending on the desired model (Friedman
et al. 2000).

While there exist different types of gradient boosting algo-
rithms (Mayr et al. 2014a, b), in this article we will focus
on component-wise gradient boosting (Bühlmann and Yu
2003; Bühlmann and Hothorn 2007). The main idea is to
fit simple regression-type base-learners h(·) one by one to
the negative gradient vector of the loss u = (u(1), . . . , u(n))

instead of to the true outcomes y = (y(1), . . . , y(n)). Base-
learners are chosen in such a way that they approximate the
effect f̂ (x |β j ) = ∑

m h j (·). The negative gradient vector
in iteration m, evaluated at the estimated additive predictor
η̂[m−1](x (i)), is defined as

u =
(

− ∂

∂η
ρ(y, η)

∣∣∣∣
η=η̂[m−1](x (i)), y=y(i)

)

i=1,...,n

.

In every boosting iteration, each base-learner is fitted
separately to the negative gradient vector by least-squares
or penalized least-squares regression. The best-fitting base-
learner is selected based on the residual sum of squares with
respect to u

j∗ = argmin
j∈1...J

n∑

i=1

(u(i) − ĥ j (x
(i)))2. (4)

Only the best-performing base-learner ĥ j∗(x)will be used to
update the current additive predictor,

η̂[m] = η̂[m−1] + sl · ĥ j∗(x) (5)

where 0 < sl � 1 denotes the step length (learning rate;
usually sl = 0.1). The choice of sl is not of critical importance
as long as it is sufficiently small (Schmid and Hothorn 2008).

The main tuning parameter for gradient boosting algo-
rithms is the number of iterationsm that are performed before
the algorithm is stopped (denoted as mstop). The selection of
mstop has a crucial influence on the prediction performance
of the model. Ifmstop is set too small, the model cannot fully
incorporate the influence of the effects on the response and
will consequently have a poor performance. On the other
hand, too many iterations will result in overfitting, which
hampers the interpretation and generalizability of the model.

2.2 GAMLSS

In classical generalized additive models (GAM, Hastie and
Tibshirani 1990), it is assumed that the conditional distri-
bution of Y depends only on one parameter, usually the
conditional mean. If the distribution hasmultiple parameters,
all but one are considered to be constant nuisance parameters.
This assumptionwill not always hold and should be critically
examined, e.g., the assumption of constant variance is not
adequate for heteroscedastic data. Potential dependency of
the scale (and shape) parameter(s) of a distribution on pre-
dictors can be modeled in a similar way to the conditional
mean (i.e., location parameter). This extended model class
is called generalized additive models for location, scale and
shape (GAMLSS, Rigby and Stasinopoulos 2005).
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The framework hence fits different prediction functions
to multiple distribution parameters θ = (θ1, . . . , θk), k =
1, . . . , 4. Given a conditional density p(y|θ), one estimates
additive predictors (cf. Eq. 1) for each of the parameters θk

ηθk = β0θk +
Jk∑

j=1

f jθk (x |β jθk ), k = 1, . . . , 4. (6)

Typically, these models are estimated via penalized likeli-
hood. For details on the fitting algorithm, see Rigby et al.
(2008).

Even though thesemodels can be applied to a large number
of different situations, and the available fitting algorithms
are extremely powerful, they still inherit some shortcomings
from the penalized likelihood approach:

1. It is not possible to estimate models with more covariates
than observations.

2. Maximum likelihood estimation does not feature an
embedded variable selection procedure. For GAMLSS
models, the standard AIC has been expanded to the gen-
eralized AIC (GAIC) in Rigby and Stasinopoulos (2005)
to be applied to multi-dimensional prediction functions.
Variable selection via information criteria has several
shortcomings, for example the inclusion of toomanynon-
informative variables (Anderson and Burnham 2002).

3. Whether tomodel predictors in a linear or nonlinear fash-
ion is not trivial. Unnecessary complexity increases the
danger of overfitting as well as computation time. Again,
a generalized criterion like GAICmust be used to choose
between linear and nonlinear terms.

2.3 Boosted GAMLSS

To deal with these issues, gradient boosting can be used to fit
the model instead of the standard maximum likelihood algo-
rithm.Based on an approach proposed in Schmid et al. (2010)
to fit zero-inflated count models, in Mayr et al. (2012) the
author developed a general algorithm tofitmulti-dimensional
prediction functions with component-wise gradient boosting
(see Algorithm 1).

The basic idea is to cycle through the distribution parame-
ters θ in the fitting process. Partial derivatives with respect to
each of the additive predictors are used as response vectors.
In each iteration of the algorithm, the best-fitting base-learner
is determined for each distribution parameter, while all other
parameters stay fixed. For a four parametric distribution, the
update in boosting iterationm+1maybe sketched as follows:

∂

∂ηθ1

ρ(y, θ̂ [m]
1 , θ̂

[m]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ1

∂

∂ηθ2

ρ(y, θ̂ [m+1]
1 , θ̂

[m]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ2

∂

∂ηθ3

ρ(y, θ̂ [m+1]
1 , θ̂

[m+1]
2 , θ̂

[m]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ3

∂

∂ηθ4

ρ(y, θ̂ [m+1]
1 , θ̂

[m+1]
2 , θ̂

[m+1]
3 , θ̂

[m]
4 )

update−→ η
[m+1]
θ4

.

Unfortunately, separate stopping values for each distribution
parameter have to be specified, as the prediction functions
will most likely require different levels of complexity and
hence a different number of boosting iterations. In case of
multi-dimensional boosting, the different mstop,k values are
not independent of each other and have to be jointly opti-
mized. The usually applied grid search scales exponentially
with the number of distribution parameters and can quickly
become computationally demanding or even infeasible.

Algorithm 1 “Cyclical” component-wise gradient boosting
in multiple dimensions (Mayr et al. 2012)

Initialize

1. Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂[0]

θ2
, η̂[0]

θ3
, η̂[0]

θ4
) with

offset values.
2. For each distribution parameter θk , k = 1, . . . , 4, specify a set of

base-learners, i.e., for parameter θk define hk1(x (i)), . . . , hk Jk (x
(i))

where Jk is the cardinality of the set of base-learners specified for
θk .

Boosting in multiple dimensions
For m = 1 to max(mstop,1, . . . ,mstop,4):

3. For k = 1 to 4:

(a) If m > mstop,k set η̂
[m]
θk

:= η̂
[m−1]
θk

and skip this iteration.

Else compute negative partial derivative− ∂
∂ηθk

ρ(y, η) an plug

in the current estimates η̂[m−1](·):

uk =
(

∂

∂ηθk

ρ(y, η)

∣∣∣
η=η̂[m−1](x (i)),y=y(i)

)

i=1,...,n

(b) Fit each of the base-learners uk contained in the set of base-
learners specified for the distribution parameter θk in step (2)
to the negative gradient vector.

(c) Select the component j∗ that best fits the negative partial
derivative vector according to the residual sum of squares, i.e.,
select the base-learner hkj∗ defined by

j∗ = argmin
j∈1,...,Jk

n∑

i=1

(u(i)
k − ĥk j (x

(i)))2.

(d) Update the additive predictor ηθk

η̂
[m]
θk

= η̂
[m−1]
θk

+ sl · ĥk j∗ (x),
where sl is the step length (typically sl = 0.1), and update the
current estimates for step 4(a):

η̂
[m−1]
θk

= η̂
[m]
θk

.
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2.4 Stability selection

Selecting an optimal subset of explanatory variables is a cru-
cial step in almost every supervised data analysis problem.
Especially in situations with a large number of covariates, it
is often almost impossible to get meaningful results without
automatic, or at least semiautomatic, selection of the most
relevant predictors. Selection of covariate subsets based on
modified R2 criteria (e.g., the AIC) can be unstable, see,
for example, Flack and Chang (1987), and tend to select too
many covariates (see, e.g., Mayr et al. 2012).

Component-wise boosting algorithms are one solution to
select predictors in high dimensions and/or p > n problems.
As only the best-fitting base-learner is selected to update the
model in each boosting step, as discussed above, variable
selection can be obtained by stopping the algorithm early
enough. Usually, this is done via cross-validation methods,
selecting the stopping iteration that optimizes the empirical
risk on test data (predictive risk). Hence, boosting with early
stopping via cross-validation offers away to performvariable
selection while fitting the model. Nonetheless, boosted mod-
els stopped early via cross-validation still have a tendency to
include too many noise variables, particularly in rather low-
dimensional settings with few possible predictors and many
observations (n > p; Bühlmann et al. 2014).

2.4.1 Stability selection for boosted GAM models

To circumvent the problems mentioned above, the stabil-
ity selection approach was developed (Meinshausen and
Bühlmann 2010; Shah and Samworth 2013). This generic
algorithm can be applied to boosting and all other variable
selection methods. The main idea of stability selection is
to run the selection algorithm on multiple subsamples of
the original data. Highly relevant base-learners should be
selected in (almost) all subsamples.

Stability selection in combination with boosting was
investigated in Hofner et al. (2015) and is outlined in Algo-
rithm 2. In the first step, B random subsets of size �n/2� are
drawn, and a boosting model is fitted to each one. The model
fit is interrupted as soon as q different base-learners have
entered the model. For each base-learner, the selection fre-
quency π̂ j is the fraction of subsets in which the base-learner
j was selected (7). An effect is included in the model if the
selection frequency exceeds the user-specified threshold πthr

(8).
This approach leads to upper bounds for the per-family

error rate (PFER) E(V ), where V is the number of nonin-
formative base-learners wrongly included in the model (i.e.,
false positives; Meinshausen and Bühlmann 2010):

E(V ) ≤ q2

(2πthr − 1)p
. (9)

Algorithm 2 Stability selection for model-based boosting
1. For b = 1, . . . , B:

(a) Draw a subset of size �n/2� from the data
(b) Fit a boostingmodel until the number of selected base-learners

is equal to q or the number of iterations reaches a pre-specified
number (mstop).

2. Compute the relative selection frequencies per base-learner:

π̂ j := 1

B

B∑

b=1

I{ j∈Ŝb}, (7)

where Ŝb denotes the set of selected base-learners in iteration b.
3. Select base-learners with a selection frequency of at least πthr,

which yields a set of stable covariates

Ŝstable := { j : π̂ j ≥ πthr}. (8)

Under certain assumptions, refined, less conservative error
bounds can be derived (Shah and Samworth 2013).

One of the main difficulties of stability selection in prac-
tice is the choice of the parameters q, πthr and PFER. Even
though only two of the three parameters need to be specified
(the last one can then be derived under equality in (9)), their
choice is not trivial and not always intuitive for the user.

Meinshausen and Bühlmann (2010) state that the thresh-
old should be πthr ∈ (0.6, 0.9) and has little influence on the
result. The number of base-learners q has to be sufficiently
large, i.e., q should be at least as big as the number of infor-
mative variables in the data (or better to say the number of
corresponding base-learners). This is obviously a problem in
practical applications, in which the number of informative
variables (or base-learners) is usually unknown. One nice
property is that if q is fixed, πthr and the PFER can be varied
without the need to refit the model. A general advice would
thus be to choose q relatively large or to make sure that q is
large enough for a given combination of πthr and PFER. Sim-
ulation studies like Hofner et al. (2015), Mayr et al. (2016)
have shown that the PFER is quite conservative and the true
number of false positives will most likely be much smaller
than the specified value.

In practical applications, two different approaches to
select the parameters are typically used. Both assume that
the number of covariates to include, q, is chosen intuitively
by the user: The first idea is to look at the calculated inclusion
frequencies π̂ j and look for a breakpoint in the decreasing
order of the values. The threshold can be then chosen so
that all covariates with inclusion frequencies larger than the
breakpoint are included, and the resulting PFER is only used
as an additional information. The second possibility is to fix
the PFER as a conservative upper bound for the expected
number of false-positive base-learners. Hofner et al. (2015)
provide some rationales for the selection of the PFER by
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relating it to common error types, the per-comparison error
(i.e., the type I error without multiplicity correction) and the
family-wise error rate (i.e., with conservative multiplicity
correction).

2.4.2 Stability selection for boosted GAMLSS models

The question of variable selection in (boosted) GAMLSS
models is even more critical than in regular (GAM) models,
as the question of including a base-learner implies not only if
the base-learner should be used in themodel at all, but also for
whichdistributionparameter(s) it shouldbeused.Essentially,
the number of possible base-learners doubles in a distribution
with two parameters, triples in one with three parameters and
so on. This is particularly challenging in situations with a
large amount of base-learners and in p > n situations.

Themethod of fitting boostedGAMLSSmodels in a cycli-
cal way leads to a severe problem when used in combination
with stability selection. In each iteration of the algorithm,
all distribution parameters will receive an additional base-
learner as long as theirmstop limit is not exceeded. Thismeans
that base-learners are added to the model that might have a
rather small importance compared to base-learners for other
distribution parameters. This becomes especially relevant if
the number of informative base-learners varies substantially
between distribution parameters.

Regarding the maximum number of base-learners q to
be considered in the model, base-learners are counted sepa-
rately for each distribution parameter, so a base-learner that
is selected for the location and scale parameter counts as two
different base-learners. Arguably, one might circumvent this
problem by choosing a higher value for q, but still less sta-
ble base-learners could be selected instead of stable ones for
other distribution parameters. One aspect of the problem is
that the possible model improvement between different dis-
tribution parameters is not considered. A careful selection of
mstop per distribution parameter might resolve the problem,
but the process would still be unstable because the margin
of base-learner selection in later stages of the algorithm is
quite small. Furthermore, this is not in line with the gen-
eral approach of stability selection where the standard tuning
parameters do not play an important role.

2.5 Noncyclical fitting for boosted GAMLSS

The main idea to solve the previously stated problems of the
cyclical fitting approach is to update only one distribution
parameter in each iteration, i.e., the distribution parameter
with a base-learner that leads to the highest loss reduction
over all distribution parameters and base-learners.

Usually, base-learners are selected by comparing their
residual sum of squares with respect to the negative gradient
vector (inner loss). This is done in step (4c) of Algorithm 1

where the different base-learners are compared. However,
the residual sum of squares cannot be used to compare the
fit of base-learners over different distribution parameters, as
the gradients are not comparable.
Inner loss One solution is to compare the empirical risks
(i.e., the negative log likelihood of the modeled distribu-
tion) after the update with the best-fitting base-learners that
have been selected via the residual sum of squares for each
distribution parameter: first, for each distribution parameter
the best-performing base-learner is selected via the resid-
ual sum of squares of the base-learner fit with respect to
the gradient vector. Then, the potential improvement in the
empirical loss Δρ is compared for all selected base-learners
(i.e., over all distribution parameters). Finally, only the best-
fitting base-learner (w.r.t. the inner loss) which leads to the
highest improvement (w.r.t. the outer loss) is updated. The
base-learner selection for each distribution parameter is still
done with the inner loss (i.e., the residual sum of squares),
and this algorithm will be called analogously.
Outer loss Choosing base-learners and parameters with
respect to two different optimization criteria may not always
lead to the best possible update. A better solution could be
to use a criterion which can compare all base-learners for all
distribution parameters. As stated, the inner loss cannot be
used for such a comparison. However, the empirical loss (i.e.,
the negative log likelihood of the modeled distribution) can
be used to compare both, the base-learners within a distribu-
tion parameter and over the different distribution parameters.
Now, the negative gradients are used to estimate all base-
learners ĥ11, . . . , ĥ1p1 , ĥ21, . . . , ĥ4p4 . The improvement in
the empirical risk is then calculated for each base-learner
of every distribution parameter, and only the overall best-
performing base-learner (w.r.t. the outer loss) is updated.
Instead of the using the inner loss, the whole selection pro-
cess is hence based on the outer loss (empirical risk), and the
method is named accordingly.

The noncyclical fitting algorithm is shown inAlgorithm 3.
The inner and outer variants solely differ in step (3c).

A major advantage of both noncyclical variants compared
to the cyclical fitting algorithm (Algorithm 1) is that mstop

is always scalar. The updates of each distribution parame-
ter estimate are adaptively chosen. The optimal partitioning
(and sequence) of base-learners between different param-
eters is done automatically while fitting the model. Such
a scalar optimization can be done very efficiently using
standard cross-validation methods without the need for a
multi-dimensional grid search.

3 Simulation study

In a first step, we carry out simulations to evaluate the per-
formance of the new noncyclical fitting algorithms regarding
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Algorithm 3 “Noncyclical” component-wise gradient boost-
ing in multiple dimensions
Initialize

1. Initialize the additive predictors η̂[0] = (η̂
[0]
θ1
, η̂[0]

θ2
, η̂[0]

θ3
, η̂[0]

θ4
) with

offset values.
2. For each distribution parameter θk , k = 1, . . . , 4, specify a set

of base-learners, i.e., for parameter θk define hk1(·), . . . , hk Jk (·)
where Jk is the cardinality of the set of base-learners specified for
θk .

Boosting in multiple dimensions
For m = 1 to mstop:

3. For k = 1 to 4:

(a) Compute negative partial derivatives − ∂
∂ηθk

ρ(y, η) and plug

in the current estimates η̂[m−1](·):

uk =
(

∂

∂ηθk

ρ(y, η)

∣∣∣
η=η̂[m−1](x (i)),y=y(i)

)

i=1,...,n

(b) Fit each of the base-learners uk contained in the set of base-
learners specified for the distribution parameter θk in step (2)
to the negative gradient vector.

(c) Select the best-fitting base-learner hkj∗ either by
• the inner loss, i.e., the residual sum of squares of the

base-learner fit w.r.t. uk :

j∗ = argmin
j∈1,...,Jk

n∑

i=1

(u(i)
k − ĥk j (x

(i)))2

• the outer loss, i.e., the negative log likelihood of themod-
eled distribution after the potential update:

j∗ = argmin
j∈1,...,Jk

n∑

i=1

ρ
(
y(i), η̂

[m−1]
θk

(x (i)) + sl · ĥk j (x (i))
)

(d) Compute the possible improvement of this update regarding
the outer loss

Δρk =
n∑

i=1

ρ
(
y(i), η̂

[m−1]
θk

(x (i)) + sl · ĥk j∗ (x (i))
)

4. Update, depending on the value of the loss reduction
k∗ = argmink∈1,...,4(Δρk)only the overall best-fitting base-learner:

η̂
[m]
θk∗ = η̂

[m−1]
θk∗ + sl · ĥk∗ j∗ (x)

5. Set η̂[m]
θk

:= η̂
[m−1]
θk

for all k 
= k∗.

convergence, convergence speed and runtime. In a second
step, we analyze the variable selection properties if the new
variant is combined with stability selection.

3.1 Performance of the noncyclical algorithms

The response yi is drawn from a normal distribution
N (μi , σi ), where μi and σi depend on 4 covariates each.
The xi , i = 1, . . . , 6, are drawn independently from a uni-
form distribution on [−1, 1], i.e., n = 500 samples are drawn
independently from U (−1, 1). Two covariates x3 and x4 are
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Fig. 1 Distribution of coefficient estimates from B = 100 simulation
runs. The dashed lines show the true parameters. All algorithms were
fitted until convergence

shared between both μi and σi , i.e., they are informative for
both parameters, which means that there are pinf = 6 infor-
mative variables overall. The resulting predictors look like

μi = x1i + 2x2i + 0.5x3i − x4i

log(σi ) = 0.5x3i + 0.25x4i − 0.25x5i − 0.5x6i .

ConvergenceFirst, we compare the newnoncyclical boosting
algorithms and the cyclical approach with the classical esti-
mation method based on penalized maximum likelihood (as
implemented in the R package gamlss, Rigby et al. 2008).
The results from B = 100 simulation runs are shown in
Fig. 1. All four methods converge to the correct solution.
Convergence speed Second, we compare the convergence
speed in terms of boosting iterations. Therefore, nonin-
formative variables are added to the model. Four settings
are considered with pn-inf = 0, 50, 250 and 500 additional
noninformative covariates independently sampled from a
U (−1, 1) distribution. With n = 500 observations, both
pn-inf = 250 and pn-inf = 500 are high-dimensional situ-
ations (p > n) as we have two distribution parameters. In
Fig. 2, the mean risk over 100 simulated data sets is plot-
ted against the number of iterations. The mstop value of the
cyclical variant shown in Fig. 2 is the sum of the number of
updates on every distribution parameter. Outer and inner loss
variants of the noncyclical algorithm have exactly the same
risk profiles in all four settings. Compared to the cyclical
algorithm, the convergence is faster in the first 500 itera-
tions. After more than 500 iterations, the risk reduction is the
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Fig. 2 Convergence speed (regarding the number of boosting
iterations m) with 6 informative and pn-inf = 0, 50, 250 and 500 addi-
tional noise variables

same for all three methods. The margin between cyclical and
both noncyclical algorithms decreases with a larger number
of noise variables.
Runtime The main computational effort of the algorithms
is the base-learner selection, which is different for all
three methods. The runtime is evaluated in context of
cross-validation, which allows us to see how out-of-bag
error and runtime behave in different settings. We consider
two scenarios—a two-dimensional (d = 2) and a three-
dimensional (d = 3) distribution. The data are generated
according to setting 1A and 3A of Sect. 3.2. In each sce-
nario, we sample n = 500 observations, but do not add any
additional noise variables. For optimization of the model,
the out-of-bag prediction error is estimated via a 25-fold
bootstrap. A grid of length 10 is created for the cyclical
model, with an maximum mstop of 300 for each distribution
parameter. The grid is created with the make.grid func-
tion in gamboostLSS (refer to the package documentation
for details on the arrangement of the grid points). To allow
the same complexity for all variants, the noncyclical methods
are allowed up to mstop = d × 300 iterations.

The results of the benchmark are shown in Fig. 3. The
out-of-bag error in the two-dimensional setting is similar
for all three methods, but the average number of optimal
iterations is considerably smaller for the noncyclical meth-
ods (cyclical:360 vs.inner:306,outer:308). In the
three-dimensional setting, the outer variant of the noncycli-
cal fitting results in a higher error, whereas the inner variant
results in a slightly better performance compared to the cycli-
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Fig. 3 Out-of-bag error (top) and optimization time in minutes (loga-
rithmic scale) Out-of-bag error (top) and optimization time in minutes
(logarithmic scale; bottom) for a two-dimensional (left) and three-
dimensional distribution (right) based on 25-fold bootstrap

cal variant. In this setting, the optimal number of iterations is
similar for all threemethods but near the edge of the searched
grid. It is possible that the outer variant will result in a com-
parable out-of-bag error if the range of the grid is increased.

3.2 Stability selection

After having analyzed the properties of the new noncycli-
cal boosting algorithms for fitting GAMLSS, the remaining
question is how they perform when combined with stability
selection. In the previous subsection, no differences in the
model fit (Fig. 1) and convergence speed (Fig. 2) could be
observed, but the optimization results in a three-dimensional
setting (Fig. 3) was worse for the outer algorithm. Taking
this into consideration, we will only compare the inner and
cyclical algorithms here.

We consider three different distributions: (1) the normal
distributionwith two parameters, meanμi and standard devi-
ation σi . (2) The negative binomial distribution with two
parameters, mean μi and dispersion σi . (3) The zero-inflated
negative binomial (ZINB) distributionwith three parameters,
μi and σi identical to the negative binomial distribution, and
probability for zero inflation νi .

Furthermore, two different partitions of six informative
covariates shared between the distribution parameters are
evaluated:

(A) Balanced case For normal and negative binomial dis-
tribution, both μi and σi depended on four informative
covariates, where two are shared. In case of the ZINB
distribution, each parameter depends on three informa-
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tive covariates, each sharing one with the other two
parameters.

(B) Unbalanced case For normal and negative binomial dis-
tribution, μi depends on five informative covariates,
whileσi onlyonone.No informative variables are shared
between the two parameters. For the ZINB distribution,
μi depends on five informative variables, σi on two, and
νi on one. One variable is shared across all three param-
eters.

To summarize these different scenarios for a total of six
informative variables, x1, . . . , x6:

(1A, 2A)

μi = β1μx1i + β2μx2i + β3μx3i + β4μx4i

log(σi ) = β3σ x3i + β4σ x4i + β5σ x5i + β6σ x6i

(1B, 2B)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

+β4μx4i + β5μx5i

log(σi ) = β6σ x6i

(3A)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

log(σi ) = β3σ x3i + β4σ x4i + β5σ x5i

logit(νi ) = β1νx1i + β5νx5i + β6νx6i

(3B)

log(μi ) = β1μx1i + β2μx2i + β3μx3i

+β4μx4i + β5μx5i

log(σi ) = β5σ x5i + β6σ x6i

logit(νi ) = β6νx6i

Toevaluate the performanceof stability selection, twocriteria
have to be considered. First, the true-positive rate, or the
number of true positives (TP, number of correctly identified
informative variable). Secondly, the false-positive rate, or
the number of false positives (FP, number of noninformative
variable that were selected as stable predictors).

Considering stability selection, the most obvious con-
trol parameter to influence false- and true-positive rates is
the threshold πthr. To evaluate the algorithms depending on
the settings of stability selection, we consider several val-
ues for the number of variables to be included in the model
q ∈ {8, 15, 25, 50} and the threshold πthr (varying between
0.55 and 0.99 in steps of 0.01). A third factor is the number of
(noise) variables in the model: We consider p = 50, 250 or

q = 8 q = 15 q = 25 q = 50

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

p = 50
p = 250

p = 500

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
πthr

Av
er

ag
e 

nu
m

be
r o

f T
ru

e/
Fa

ls
e 

po
si

tiv
es

Measure
FP

TP

Method
cyclical

noncyc.

Fig. 4 Balanced case with normal distribution (Scenario 1A)

500 covariates (including the six informative ones). It should
be noted that the actual number of possible base-learners
is p times the number of distribution parameters, as each
covariate can be included in one or more additive predictors.
To visualize the simulation results, the progress of true and
false positives is plotted against the threshold πthr for dif-
ferent values of p and q, where true and false positives are
aggregated over all distribution parameters. Separate figures
for each distribution parameter can be found in the web sup-
plement. The setting p = 50, q = 50 is an edge case that
would work for some assumptions about the distribution of
selection probabilities (Shah and Samworth 2013). Since the
practical application of this scenario is doubtful, we will not
further examine it here.

3.2.1 Results

It can be observed that with increasing threshold πthr, the
number of true positives as well as the number of false pos-
itives declines in all six scenarios (see Figs. 4, 5, 6, 7, 8, 9)
and for every combination of p and q. This is a natural con-
sequence as the threshold is increased, the less variables are
selected. Furthermore, the PFER,which is to be controlled by
stability selection, decreases with increasing threshold πthr

(see Eq. 9).
Results for the normal distribution

In the balanced case (Fig. 4), a higher number of true posi-
tives for the noncyclical algorithm can be observed compared
to the cyclical algorithm for most simulation settings. Partic-
ularly for smaller q values (q ∈ {8, 15}), the true-positive
rate was always higher compared to the cyclical variant. For
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Fig. 5 Unbalanced case with normal distribution (Scenario 1B)
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Fig. 6 Balanced case with negative binomial distribution (Scenario
2A)

higher q values, the margin decreases and for the highest
settings both methods have approximately the same progres-
sion over πthr, with slightly better results for the cyclical
algorithm. Overall, the number of true positives increases
with a higher value of q. Hofner et al. (2015) found similar
results for boosting with one-dimensional prediction func-
tions, but also showed that the true-positive rate decreases
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Fig. 7 Unbalanced case with negative binomial distribution (Scenario
2B)
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Fig. 8 Balanced case with zero-inflated negative binomial distribution
(Scenario 3A)

again after a certain value of q. This could not be verified for
the multi-dimensional case.

The false-positive rate is extremely low for both methods,
especially in the high-dimensional settings. The noncyclical
fitting method has a constantly smaller or identical false-
positive rate and the difference reduces for higher πthr, as
expected. For all settings, the false-positive rate reaches zero
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Fig. 9 Unbalanced case with zero-inflated negative binomial distribu-
tion (Scenario 3B)

for a threshold higher than 0.9. The setting with the highest
false-positive rate is p = 50 and q = 25, a low-dimensional
case with a relatively high threshold. This is also the only
settingwhere on average all 8 informative variables are found
(for a threshold of 0.55).

In the unbalanced case (Fig. 5), the results are similar.
The number of false positives for the noncyclical variant is
lower compared to the cyclical approach in almost all set-
tings. The main difference between the balanced and the
unbalanced case is that the number of true positives for the
p = 50, q = 25 setting is almost identical in the former
case, whereas in the latter case the noncyclical variant is
dominating the cyclical algorithm. On the other hand, in the
high-dimensional case with a small q (p = 500, q = 8) both
fitting methods have about the same true-positive rate for all
possible threshold values.

In summary, it can be seen that the novel noncyclical
algorithm is generally better, but at least comparable, to the
cyclicalmethod in identifying informative variables. Further-
more, the false-positive rate is less or identical to the cyclical
method. For some scenarios in which the scale parameter σi
is higher compared to the location parameter μi , the cyclical
variant achieves slightly better results than the noncyclical
variant regarding true positives at high p and q values.
Results for the negative binomial distribution

In the balanced case of the negative binomial distribution
(Fig. 6), the number of true positives is almost identical for
the cyclical and noncyclical algorithm in all settings, while
the number of true positives is generally quite high. It varies
between 6 and 8 in almost all settings, except for the cases

with a very small value of q (=8) where it is slightly lower.
This is consistent with the results for stability selection with
one-dimensional boosting (Hofner et al. 2015; Mayr et al.
2016). The number of false positives in the noncyclical vari-
ants is smaller or identical to the cyclical variant in all tested
settings.

In the unbalanced case, the true-positive rate of the non-
cyclical variant is higher compared to the cyclical variant,
whereas the difference reduces for larger values of q. The
results are consistent with the normal distribution setting but
with smaller differences between both methods.
Results for ZINB distribution

The third considered distribution in our simulation setting
is the ZINB distribution, which features three parameters to
fit.

In Fig. 8, the results for the balanced case (scenario 3A)
are visualized. The tendency of a larger number true positives
in the noncyclical variant, which could be observed for both
two-parametric distributions, is not present here. For all set-
tings, except for high-dimensional settings with a low q (i.e.,
p = 250, 500 and q = 50), the cyclical variant has a higher
number of true positives. Additionally, the number of false
positives is constantly higher for the noncyclical variant. For
the unbalanced setting (Fig. 9), the results are similar in true
positives and negatives between both methods.

The number of true positives is overall considerably
smaller compared to all other simulation settings. Particu-
larly in the high-dimensional cases (p = 250, 500), not even
half of the informative covariates are found. In settings with
smaller q, the number of true positives is lower than two.
Both algorithms obtain approximately the same number of
true positives for all settings. In cases with a very low or a
very high number q (i.e., q = 8 or 50), the noncyclical algo-
rithm is slightly better. The number of false positives is very
high, especially compared with the number of true positives
and particularly for the unbalanced case. For a lot of settings,
more than half of the included variables are noninformative.
The number of false positives is higher for the noncyclical
case. The difference are especially present in settings with
a high q and a low πthr, those settings which also have the
highest numbers of true positives.

Altogether, the trend from the simulated two-parameter
distributions is not present in the three parametric settings.
The cyclical algorithmoverall is notworse or even betterwith
regard to both true and false positives for almost all tested
scenarios.

4 Modeling sea duck abundance

A recent analysis by Smith et al. (2017) investigated the
abundance of wintering sea ducks in Nantucket Sound,
Massachusetts, USA. Spatiotemporal abundance data for
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Fig. 10 Nantucket sound—research area of the seabird study by Smith
et al. (2017). Squares are the discretized segments in which bird abun-
dance was studied. Gray lines indicate all aerial transects flown over
the course of the study. The black polygon indicates the location of
permitted wind energy development on Horseshoe Shoal

common eider (among other species) were collected between
2003 and 2005 by counting sea ducks on multiple aerial strip
transects from a small plane. For the subsequent analysis, the
research area was split in 2.25km2 segments (see Fig. 10).
Researchers were interested in variables that explained and
predicted the distribution of the common eider in the exam-
ined area.

As the data were zero-inflated (75% of the segments
contained no birds) and highly skewed (a small number of
segments contained up to 30,000 birds), a hurdlemodel (Mul-
lahy 1986) was used for estimation. Therefore, the model
was split into an occupancy model (zero part) and an abun-
dance model (count part). The occupancy model estimated
if a segment was populated at all and was fitted by boost-
ing a generalized additive model (GAM) with binomial loss,
i.e., an additive logistic regression model. In the second step,
the number of birds in populated segments was estimated
with a boosted GAMLSS model. Because of the skewed
and long-tailed data, the (zero-truncated) negative binomial
distribution was chosen for the abundance model (compare
Mullahy 1986).

We reproduce the common eidermodel reported by Smith
et al. (2017) but apply the novel noncyclical algorithm; Smith
et al. used the cyclic algorithm to fit the GAMLSS model.
As discussed in Sect. 3.2, we apply the noncyclical algorithm
with inner loss. In short, both distribution parameters, mean
and overdispersion of the abundance model, and the proba-
bility of bird sightings in the occupancymodelwere regressed

on a large number of biophysical covariates, spatial and spa-
tiotemporal effects, and some pre-defined interactions. A
complete list of the considered effects can be found in the
web supplement. To allow model selection (i.e., the selec-
tion between modeling alternatives), the covariate effects
were split into linear and nonlinear base-learners (Hothorn
et al. 2011; Hofner et al. 2011). The step length was set
to sl = 0.3, and the optimal number of boosting iterations
mstop was found via 25-fold subsampling with sample size
n/2 (Mayr et al. 2012). Additionally, we used stability selec-
tion to obtain sparser models. The numbers of variables to
be included per boosting run was set to q = 35, and the
per-family error rate was set to 6. With unimodality assump-
tion, this resulted in a threshold of πthr = 0.9. These settings
were chosen identically to the original choices in Smith et al.
(2017).

4.1 Results

Subsampling yielded an optimal mstop of 2231, split in
mstop,μ = 1871 and mstop,σ = 336. The resulting model
selected 46 out of 48 possible covariates in μ and 8 out of 48
in σ , which is far too complex of a model (especially in μ)
to be useful.

With stability selection (see Fig. 12), 10 effects were
selected for the location: the intercept, relative sea surface
temperature (smooth), chlorophyll a levels (smooth), chro-
mophoric dissolved organic material levels (smooth), sea
floor sediment grain size (linear and smooth), sea floor sur-
face area (smooth), mean epibenthic tidal velocity (smooth),
a smooth spatial interaction, the presence of nearby ferry
routes (yes/no) and two factors to account for changes in 2004
and 2005 compared to the year 2003. For the overdispersion
parameter, 5 effects were selected: sea surface temperature
(linear), bathymetry (linear), the mean (smooth) and stan-
dard deviation (linear) of the epibenthic tidal velocity, and
the linear spatial interaction. For the location, all metric vari-
ables entered themodel nonlinearly.Only sediment grain size
was selected linearly as well as nonlinearly in the model. The
converse was true for the overdispersion parameter: Only the
mean epibenthic velocitywas selected as a smooth effect, and
all others were selected as linear effects. In Fig. 11, the spa-
tial effects for the mean and overdispersion can be seen. The
segment size is based on the spatial covariate with the coars-
est resolution, so different resolutions of the segments and
their stability were not explored further, though it is likely
that this will have some influence on the model performance
and the results in Fig. 11.

4.2 Comparison to results of the cyclic method

Comparing the model with the results of Smith et al. (2017),
the noncyclical model was larger in μ (10 effects, compared
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Fig. 11 Spatial effects for mean (upper figure) and overdispersion
(lower figure) of seabird population. The shaded areas in the both fig-
ures show the research area

to 8 effects), but smaller in σ (5 effects, compared to 7
effects). Chlorophyll a levels, mean epibenthic tidal veloc-
ity, smooth spatial variation and year were not selected for
the mean by stability selection with the cyclical fitting algo-
rithm. On the other hand, bathymetry was selected by the
cyclical fitting method, but not by the noncyclical. For the
overdispersion parameter, the cyclical algorithm selected the
year and the northing of a segment (the north–south posi-
tion of a segment relative to the median) in addition to all
effects selected by the noncyclical variant. Most effects were
selected by both the cyclical and the noncyclical algorithm,
and the differences in the selected effects were rather small.

0.0 0.2 0.4 0.6 0.8 1.0

Common Eider
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Fig. 12 Selection frequencies of the 20 most frequently selected
biophysical covariate base-learners of common eider abundance, deter-
mined by stability selection with q = 35 and PFER = 6. The gray line
represents the corresponding threshold of 0.9

In the simulation study for the negative binomial dis-
tribution (Sect. 3), the noncyclical variant had a smaller
false-positive rate and a higher true-positive rate. Even
though the simulation was simplified compared to this appli-
cation (only linear effects, known true number of informative
covariates, uncorrelated effects), the results suggest to pre-
fer the noncyclical variant. Nonetheless, the interpretation of
selected covariate effects and final model assessment rests
ultimately with subject matter experts.

5 Conclusion

The main contribution of this paper is a statistical model
building algorithm that combines the three approaches of gra-
dient boosting, GAMLSS and stability selection. As shown
in our simulation studies and the application on sea duck
abundance in Sect. 4, the proposed algorithm incorporates
the flexibility of structured additive regression modeling via
GAMLSS, while it simultaneously allows for a data-driven
generation of sparse models.

Being based on the gamboostLSS framework by Mayr
et al. (2012), the main feature of the new algorithm is a new
“noncyclical” fitting method for boosted GAMLSS mod-
els. As shown in the simulation studies, this method does
not only increase the flexibility of the variable selection
mechanism used in gamboostLSS, but is also more time effi-
cient than the traditional cyclical fitting algorithm. In fact,
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even though the initial runtime to fit a single model may be
higher (especially if the base-learner selection is done via the
outer loss approach), this time is regained while finding the
optimal number of boosting iterations via cross-validation
approaches. Furthermore, the convergence speed of the new
algorithm proved to be faster, and consequently, fewer boost-
ing iterations were needed in total.

Regarding stability selection, we observed that the non-
cyclical algorithm often had fewer false positives as well
as more true positives compared to the cyclical variant in the
two-parameter distribution tested in our simulation study. For
high-dimensional cases, however, the differences between
both methods reduced and, especially with regard to the
number of true positives, approximately equal results were
achieved. For three-parameter distribution, the cyclical vari-
ant achieved better values throughout with respect to both
true- and false-positive rates. This may be due to the fact
that for more complex distributions, similar densities can be
achieved with different parameter settings. For example, in a
zero-inflated negative binomial setting, a small location may
be hard to distinguish from a large zero inflation. Obviously,
the behavior of the cyclical variant is more robust in these
situations than the noncyclical variant, which tends to fit very
differentmodels on each subsample and consequently selects
a higher amount of noninformative variables.

In summary, we have developed a framework for model
building in GAMLSS that simplifies traditional optimization
approaches to a great extent. For practitioners and applied
statisticians, the main consequence of the new methodology
is the incorporation of fewer noise variables in the GAMLSS
model, leading to sparser and thusmore interpretablemodels.
Furthermore, the tuning of the new algorithm is far more
efficient and leads to much shorter run times, particularly for
complex distributions.

6 Implementation

The derived fitting methods for gamboostLSS models
are implemented in the R add-on package gamboostLSS
(Hofner et al. 2017). The fitting algorithm can be speci-
fied via the method argument. By default, method is set
to “cyclical” which is the originally proposed algo-
rithm. The new inner variant of the noncyclical fitting can
be selectedwith method = “noncyclic”. Based on the
results of our simulation study,wedecided to only support the
inner variant in the final package. To ensure reproducibility
of the experiments, the state of the package with both inner
and outer variants is kept in a separate github branch for this
publication, which can be found at http://www.github.com/
boost-R/gamboostLSS/tree/stco_paper.

Base-learners and some of the basic methods are imple-
mented in the R package mboost (Hothorn et al. 2010;

Hofner et al. 2014; Hothorn et al. 2017). The basic fitting
algorithm for each distribution parameter is also imple-
mented in mboost. For a tutorial and an explanation of
technical details of gamboostLSS, see Hofner et al. (2016).
Stability selection is implemented in the R package stabs
(Hofner and Hothorn 2017; Hofner et al. 2015), with a
specialized function for gamboostLSS models, which
is included in gamboostLSS itself. The development of
mboost, gamboostLSS and stabs is hosted openly at

http://www.github.com/boost-R/mboost
http://www.github.com/boost-R/gamboostLSS
http://www.github.com/hofnerb/stabs.

Bug reports and requests should be made there. All packages
are also available for installation directly from CRAN.

Acknowledgements We thank Mass Audubon for the use of common
eider abundance data.
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Abstract

Understanding the influence of hyperparameters on the performance of a machine learning
algorithm is an important scientific topic in itself and can help to improve automatic hy-
perparameter tuning procedures. Unfortunately, experimental meta data for this purpose
is still rare. This paper presents a large, free and open dataset addressing this problem,
containing results on 38 OpenML data sets, six different machine learning algorithms and
many different hyperparameter configurations. Results where generated by an automated
random sampling strategy, termed the OpenML Random Bot. Each algorithm was cross-
validated up to 20.000 times per dataset with different hyperparameters settings, resulting
in a meta dataset of around 2.5 million experiments overall.

1. Introduction

When applying machine learning algorithms on real world datasets, users have to choose
from a large selection of different algorithms with many of them offering a set of hyper-
parameters to control algorithmic performance. Although sometimes default values exist,
there is no agreed upon principle for their definition (but see our recent work in in (Probst
et al., 2018) for a potential approach). Automatic tuning of such parameters is a possible
solution (Claesen and Moor, 2015), but comes with a considerable computational burden.

Meta-learning tries to decrease this cost (Feurer et al., 2015), by reusing information
of previous runs of the algorithm on similar datasets, which obviously requires access to
such prior empirical results. With this paper we provide a freely accessible meta dataset
that contains around 2.5 million runs of six different machine learning algorithms on 38
classification datasets.

Large, freely available datasets like Imagenet (Deng et al., 2009) are important for the
progress of machine learning, we hope to support developments in the area of meta-learning
and benchmarking, meta-learning and hyperparameter tuning with our work here.

While similar meta-datasets have been created in the past, we were not able to access
them by the links provided in their respective papers: Smith et al. (2014) provides a repos-
itory with Weka-based machine learning experiments on 72 data sets, 9 machine learning
algorithms, 10 hyperparameter settings for each algorithm, and several meta-features of
each data set. Reif (2012) created a meta-dataset based on machine learning experiments
on 83 datasets, 6 classification algorithms, and 49 meta features.

In this paper, we describe our experimental setup, specify how our meta-dataset is
created by running random machine learning experiments through the OpenML platform
(Vanschoren et al., 2013) and explain how to access our results.

Email addresses: daniel.kuehn.87@gmail.com (Daniel Kühn*), philipp_probst@gmx.de (Philipp
Probst*), janek.thomas@stat.uni-muenchen.de (Janek Thomas), bernd_bischl@gmx.net (Bernd Bischl)
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2. Considered ML data sets, algorithms and hyperparameters

To create the meta dataset, six supervised machine learning algorithms are run on
38 classification tasks. For each algorithm the available hyperparameters are explored in
a predefined range (see Table 1). Some of these hyperparameters are transformed by the
function found in column trafo of Table 1 to allow non-uniform sampling, a usual procedure
in tuning.

algorithm hyperparameter type lower upper trafo
glmnet alpha numeric 0 1 -

lambda numeric -10 10 2x

rpart cp numeric 0 1 -
maxdepth integer 1 30 -
minbucket integer 1 60 -
minsplit integer 1 60 -

kknn k integer 1 30 -
svm kernel discrete - - -

cost numeric -10 10 2x

gamma numeric -10 10 2x

degree integer 2 5 -
ranger num.trees integer 1 2000 -

replace logical - - -
sample.fraction numeric 0 1 -
mtry numeric 0 1 x · p
respect.unordered.factors logical - - -
min.node.size numeric 0 1 nx

xgboost nrounds integer 1 5000 -
eta numeric -10 0 2x

subsample numeric 0 1 -
booster discrete - - -
max depth integer 1 15 -
min child weight numeric 0 7 2x

colsample bytree numeric 0 1 -
colsample bylevel numeric 0 1 -
lambda numeric -10 10 2x

alpha numeric -10 10 2x

Table 1: Hyperparameters of the algorithms. p refers to the number of variables and n to the number
of observations. The used algorithms are glmnet (Friedman et al., 2010), rpart (Therneau and Atkinson,
2018), kknn (Schliep and Hechenbichler, 2016), svm (Meyer et al., 2017), ranger (Wright and Ziegler, 2017)
and xgboost (Chen and Guestrin, 2016).

These algorithms are run on a subset of the OpenML100 benchmark suite (Bischl et al.,
2017), which consists of 100 classification datasets, carefully curated from the thousands of
datasets available on OpenML (Vanschoren et al., 2013). We only include datasets without
missing data and with a binary outcome resulting in 38 datasets. The datasets and their
respective characteristics can be found in Table 2.
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Data id Task id Name n p majPerc numFeat catFeat
3 3 kr-vs-kp 3196 37 0.52 0 37

31 31 credit-g 1000 21 0.70 7 14
37 37 diabetes 768 9 0.65 8 1
44 43 spambase 4601 58 0.61 57 1
50 49 tic-tac-toe 958 10 0.65 0 10

151 219 electricity 45312 9 0.58 7 2
312 3485 scene 2407 300 0.82 294 6
333 3492 monks-problems-1 556 7 0.50 0 7
334 3493 monks-problems-2 601 7 0.66 0 7
335 3494 monks-problems-3 554 7 0.52 0 7

1036 3889 sylva agnostic 14395 217 0.94 216 1
1038 3891 gina agnostic 3468 971 0.51 970 1
1043 3896 ada agnostic 4562 49 0.75 48 1
1046 3899 mozilla4 15545 6 0.67 5 1
1049 3902 pc4 1458 38 0.88 37 1
1050 3903 pc3 1563 38 0.90 37 1
1063 3913 kc2 522 22 0.80 21 1
1067 3917 kc1 2109 22 0.85 21 1
1068 3918 pc1 1109 22 0.93 21 1
1120 3954 MagicTelescope 19020 12 0.65 11 1
1461 14965 bank-marketing 45211 17 0.88 7 10
1462 10093 banknote-authentication 1372 5 0.56 4 1
1464 10101 blood-transfusion-service-center 748 5 0.76 4 1
1467 9980 climate-model-simulation-crashes 540 21 0.91 20 1
1471 9983 eeg-eye-state 14980 15 0.55 14 1
1479 9970 hill-valley 1212 101 0.50 100 1
1480 9971 ilpd 583 11 0.71 9 2
1485 9976 madelon 2600 501 0.50 500 1
1486 9977 nomao 34465 119 0.71 89 30
1487 9978 ozone-level-8hr 2534 73 0.94 72 1
1489 9952 phoneme 5404 6 0.71 5 1
1494 9957 qsar-biodeg 1055 42 0.66 41 1
1504 9967 steel-plates-fault 1941 34 0.65 33 1
1510 9946 wdbc 569 31 0.63 30 1
1570 9914 wilt 4839 6 0.95 5 1
4134 14966 Bioresponse 3751 1777 0.54 1776 1
4534 34537 PhishingWebsites 11055 31 0.56 0 31

Table 2: Included datasets and respective characteristics. n are the number of observations, p the number
of features, maj.class the percentage of observations in the largest class, numFeat the number of numeric
features and catFeat the number of categorical features.

3. Random Experimentation Bot

To conduct a large number of experiments a bot was implemented to automatically plan
and execute runs, following the paradigm of random search. The bot iteratively executes
these steps:

1. Randomly sample a task T (with an associated data set) from Table 2.

2. Randomly sample one ML algorithm A.

3. Randomly sample a hyperparameter setting θ of algorithm A, uniformly from the
ranges specified in Table 1, then transform, if a transformation function is given.

4. Obtain task T (and dataset) from OpenML and store it locally.

5. Evaluate algorithm A with configuration θ on task T , with associated 10-fold cross-
validation from OpenML.

6. Upload run results to OpenML, including hyperparameter configuration and time
measurements.

7. OpenML now calculates various performance metrics for the uploaded cross-validated
predictions.

8. The OpenML-ID of the bot (2702) and the tag mlrRandomBot is used for identification.

A clear advantage of random sampling is that all bot runs are completely independent of
each other, making all experiments embarrassingly parallel. Furthermore, more experiments
can easily and conveniently added later on, without introducing any kind of bias into the
sampling method.
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The bot is developed open source in R and can be found on GitHub1. The bot is
based on the R packages mlr (Bischl et al., 2016) and OpenML (Casalicchio et al., 2017)
and written in modular form such that it can be extended with new sampling strategies
for hyperparameters, algorithms and datasets in the future. Parallelization was performed
with R package batchtools (Lang et al., 2017).

After more than 6 million benchmark experiments the results of the bot are downloaded
from OpenML. For each of the algorithms 500000 experiments are used to obtain the final
dataset. The experiments are chosen by the following procedure: For each algorithm, a
threshold B is set (see below) and, if the number of results for a dataset exceeds B, we
draw randomly B of the results obtained for this algorithm and this dataset. The threshold
value B is chosen for each algorithm separately to exactly obtain in total 500000 results for
each algorithm.

For kknn we only execute 30 experiments per dataset because this number of experiments
is high enough to cover the hyperparameter space (that only consists of the parameter k
for k ∈ {1, ..., 30}) appropriately, resulting in 1140 experiments. All in all this results in
around 2.5 million experiments.

The distribution of the runs on the datasets and algorithms is displayed in Table 3.

Data id Task id glmnet rpart kknn svm ranger xgboost Total
3 3 15547 14633 30 19644 15139 16867 81860
31 31 15547 14633 30 19644 15139 16867 81860
37 37 15546 14633 30 15985 15139 16866 78199
44 43 15547 14633 30 19644 15139 16867 81860
50 49 15547 14633 30 19644 15139 16866 81859
151 219 15547 14632 30 2384 12517 16866 61976
312 3485 6613 13455 30 18740 12985 15886 67709
333 3492 15546 14632 30 19644 15139 16867 81858
334 3493 15547 14633 30 19644 14492 16867 81213
335 3494 15547 14633 30 15123 15139 10002 70474
1036 3889 14937 14633 30 2338 7397 2581 41916
1038 3891 15547 5151 30 5716 4827 1370 32641
1043 3896 6466 14633 30 10121 3788 16867 51905
1046 3899 15547 14633 30 5422 8842 11812 56286
1049 3902 7423 14632 30 12064 15139 4453 53741
1050 3903 15547 14633 30 19644 11357 13758 74969
1063 3913 15547 14633 30 19644 7914 16866 74634
1067 3917 15546 14632 30 10229 7386 16866 64689
1068 3918 15546 14633 30 13893 8173 16866 69141
1120 3954 15531 7477 30 3908 9760 8143 44849
1461 14965 6970 14073 30 2678 14323 2215 40289
1462 10093 8955 14633 30 6320 15139 16867 61944
1464 10101 15547 14632 30 19644 15139 16867 81859
1467 9980 15547 14633 30 4441 15139 16866 66656
1471 9983 15547 14633 30 9725 13523 16866 70324
1479 9970 15546 14633 30 19644 15140 16867 81860
1480 9971 15024 14633 30 19644 15139 16254 80724
1485 9976 8247 10923 30 10334 15139 9237 53910
1486 9977 3866 11389 30 1490 15139 5813 37727
1487 9978 15547 6005 30 19644 15139 11194 67559
1489 9952 15547 14633 30 17298 15139 16867 79514
1494 9957 15547 14632 30 19644 15139 16867 81859
1504 9967 15547 14633 30 19644 15140 16867 81861
1510 9946 15547 14633 30 19644 15139 16867 81860
1570 9914 15546 14632 30 19644 15139 16867 81858
4134 14966 1493 3947 30 560 14516 2222 22768
4534 34537 2801 3231 30 2476 15139 947 24624
Total 257661 486995 485368 1110 485549 484860 486953 2430835

Table 3: Number of experiments for each combination of dataset and algorithm.

1https://github.com/ja-thomas/OMLbots
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4. Access to the results

The results of the benchmark can be accessed in different ways:

• The easiest way to access them is to go to the figshare repository (Kühn et al.,
2018) and to download the .csv files. For each algorithm there is a csv file that
contains a row for each algorithm run with the columns Data id, the hyperparameter
settings, the performance measures (auc, accuracy and brier score), the runtime, the
scimark reference runtime and some characteristics of the dataset such as the number
of features or the number of observations.

• Alternatively the code for the extraction of the data from the nightly database snap-
shot of OpenML can be found here: https://github.com/ja-thomas/OMLbots/bl

ob/master/snapshot_database/database_extraction.R. With this script all re-
sults that were created by the random bot (OpenML-ID 2702) are downloaded and
the final dataset is created. (Warning: As the OpenML database is updated daily,
changes can occur.)

5. Discussion and potential usage of the results

The presented data can be used to study the effect and influence of hyperparameter
setting on performance in various ways. Possible applications are:

• Obtaining defaults for ML algorithm that work well across many datasets (Probst
et al., 2018);

• Measuring the importance of hyperparameters, to investigate which should be tuned
(see van Rijn and Hutter, 2017; Probst et al., 2018);

• Obtaining ranges or priors of tuning parameters to focus on important regions of the
search space (see van Rijn and Hutter, 2017; Probst et al., 2018);

• Meta-Learning;

• Investigating, debugging and improving the robustness of algorithms.

Possible weaknesses of the approach, which we would like to address in the future, are:

• For each ML algorithm, a set of considered hyperparameters and their initial ranges
has to be provided. It would be much more convenient if the bot could handle the
set of all technical hyperparameters, with infinite ranges.

• Smarter, sequential sampling might be required to scale to high-dimensional hyperpa-
rameter spaces. But note that we not only care about optimal configurations but much
rather would like to learn as much as possible about the considered parameter space,
including areas of bad performance. So simply switching to Bayesian optimization or
related search techniques might not be appropriate.
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Abstract

Automatic machine learning performs predictive modeling with high performing machine
learning tools without human interference. This is achieved by making machine learning
applications parameter-free, i.e. only a dataset is provided while the complete model selec-
tion and model building process is handled internally through (often meta) optimization.
Projects like Auto-WEKA and auto-sklearn aim to solve the Combined Algorithm Selection
and Hyperparameter optimization (CASH) problem resulting in huge configuration spaces.
However, for most real-world applications, the optimization over only a few different key
learning algorithms can not only be sufficient, but also potentially beneficial. The latter be-
comes apparent when one considers that models have to be validated, explained, deployed
and maintained. Here, less complex model are often preferred, for validation or efficiency
reasons, or even a strict requirement. Automatic gradient boosting simplifies this idea one
step further, using only gradient boosting as a single learning algorithm in combination
with model-based hyperparameter tuning, threshold optimization and encoding of categor-
ical features. We introduce this general framework as well as a concrete implementation
called autoxgboost. It is compared to current AutoML projects on 16 datasets and despite
its simplicity is able to achieve comparable results on about half of the datasets as well as
performing best on two.

Keywords: AutoML, Gradient Boosting, Bayesian Optimization, Machine Learning

1. Introduction

Machine Learning, Predictive Modeling and Artificial Intelligence are ongoing topics in re-
search as well as in industrial applications. While data are gathered everywhere nowadays,
many potential insights are often not fully achieved since data science and ML experts are
still a rare commodity. While many stages of a data analysis project still need to be done
manually by human data scientists, model search and optimization can be done automati-
cally. Automatic machine learning (AutoML) simplifies the workload by making decisions
for common predictive modeling tasks like regression or classification. We distinguish be-
tween single-learner AutoML methods which aim to make single algorithms parameter-free
and more general approaches, which combine several learning algorithms into one opti-
mization problem. These multi-learner methods solve the Combined Algorithm Selection
and Hyperparameter optimization (CASH) problem (Thornton et al. (2013)). Modern ap-
proaches that include pre- and postpressing methods are referred to as machine learning
pipeline configuration.

c© 2018 J. Thomas, S. Coors & B. Bischl.
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There is a growing number of open source approaches for automating machine learn-
ing available for non-professionals. As one of the first frameworks, Auto-WEKA (Thorn-
ton et al. (2013)) introduced a system for automatically choosing from a broad variety of
learning algorithms implemented in the open source software WEKA (Hall et al. (2009)).
Hereby, Auto-WEKA simultaneously tunes hyperparameters over all learning algorithms
model using the Bayesian optimization framework SMAC (Hutter et al. (2011)). Similar to
Auto-WEKA is auto-sklearn (Feurer et al. (2015)), which is based on the scikit-learn toolkit
for python and includes all of its learners as well as available preprocessing operations. It
stacks multiple models to achieve high predictive performance. Another python-based Au-
toML tool is called Tree-based Pipeline Optimization Tool (TPOT) by Olson et al. (2016)
and uses genetic programming instead of Bayesian optimization to tune over a similar space
as auto-sklearn.

Only few single-learner AutoML methods exist. A lot of services, for example Google’s
Cloud AutoML, focus on specialized application domains like image recognition using deep
neural networks. For general machine learning tasks, Probst et al. (2018) introduced the
tuneRanger software, which automatically tunes a random forest. Another algorithm ap-
proach is called Parameter-free STOchastic Learning (PiSTOL) (Orabona (2014)) and di-
rectly tries to optimize the generalization performance of a learning algorithm, in a stochas-
tic approximation way.

Our proposed approach reduces the AutoML framework to the construction of an opti-
mal gradient boosting model (Friedman (2001)), which is a strong predictive algorithm, as
long as its hyperparameters are adequately tuned. Besides tuning the hyperparameters via
Bayesian optimization, categorical feature transformation is performed as a preprocessing
step. Moreover, for classification tasks, thresholds are optimized repeatedly. By focusing
on a single learning algorithm, hyperparameters can be optimized much more thoroughly
and the resulting model can be analyzed and deployed much easier.

2. Method

This section introduces the structure of the automatic gradient boosting framework. The
general workflow of the approach can be seen in Figure 1. Automatic gradient boosting uses
gradient boosting with trees (GBT) as its only learning algorithm. GBT is popular due
to its strong predictive performance and robustness. A large number of machine learning
competitions were won by these algorithms, see Chen and Guestrin (2016) for an overview.
Furthermore it possesses multiple highly desirable properties for an AutoML system: It
is insensitive to outliers, as the trees used in gradient boosting are invariant to monotone
transformations of the data, which makes scaling the data obsolete; GBT implementations
are usually able to handle missing values in the data directly by learning default split
directions for missing values (Chen and Guestrin (2016)); In addition, they are capable of
handling high dimensional feature spaces, as features are evaluated separately for each split
in a tree, which can be parallelized and does not result in a harder optimization problem for
more features. One last important aspect to consider is that boosting can be easily adapted
to tasks like ranking (Li et al. (2008)) or survival analysis (Chen et al. (2013)). Modern
GBT frameworks like xgboost (Chen and Guestrin (2016)) or lightgbm (Ke et al. (2017))
are highly configurable with a large number of hyperparameters for regularization and
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Figure 1: Workflow of the automatic gradient boosting approach. Blue lines indicate input
by human.

optimization. With the recent addition of dropout boosting (Rashmi and Gilad-Bachrach
(2015)) to these frameworks, it is possible to let the boosting algorithms behave similar, or
even identical to random forests by setting hyperparameters accordingly.

The large number of hyperparameters makes tuning for GBT a necessity. Different
methods like grid or random search can be used for simple hyperparameter optimization
problems, but to achieve more efficient optimization, adaptive strategies should be em-
ployed. Sequential model-based optimization (SMBO), also known as Bayesian optimization
is one of the state-of-the-art adaptive hyperparameter optimization strategies (Snoek et al.
(2012)). Depending on the difficulty of the hyperparameter space in terms of categorical
and dependent hyperparameters, different surrogate models are used. In Table 1 two differ-
ent possible hyperparameter spaces are proposed, a fully numeric one (denoted Simple=Y ),
which can be optimized with Gaussian process surrogate models, and a more complex one
(denoted Simple=N), which can be optimized with a random forest surrogate. Arguably
the most important hyperparameter in GBT is the number of boosting iterations, which is
efficiently found by early-stopping, i.e., measuring the performance on validation data after
each iteration. An advantage of combining early stopping with SMBO is that the validation
error can be directly returned to the optimizer without the need of an additional holdout
set or resampling. No necessity for internal resampling and the parallel implementation
of GBT algorithms allow to mitigate the disadvantage of the sequential nature of SMBO
without using parallel SMBO variants (see Bischl et al. (2014) for an overview), such that
parallel system architectures can be fully utilized.

Most boosting implementations cannot natively handle categorical variables and it is
necessary to transform such features. The simplest possibility is to encode these features
into integers, with the drawback that the optimal order is unknown and a random one
is used. The concept of dummy encoding is to create one separate feature for each level,

3
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i.e., a feature x with levels a, b, c is dummy encoded into binary features x∗a, x∗b and x∗c . No
information is lost by this encoding but it can be infeasible for high cardinality features with
a high number of unique feature levels. A third method of transforming categorical features
is impact encoding (Micci-Barreca (2001)). Features are encoded by replacing categories
with aggregated values of the target in the respective group, e.g., ȳ|x=a for regression or
P (y|x = a) for classification. We evaluate different combinations of these encodings, mainly
based on a threshold, e.g., features with less than k levels are dummy encoded while integer
or impact encoding is done for the remaining categorical features. It is also possible to tune
this threshold k together with the GBT hyperparameters. For datasets with few categorical
features the encoding can also be learned separately for each feature.

Depending on the overall performance metric that should be optimized, it can be difficult
to find the best loss function for GBT since not every performance metric can be directly
plugged in as loss functions. For binary- and multiclass classification it is often useful to
optimize classification thresholds of each class directly with regard to the used performance
metric. The threshold is optimized for each iteration of the model-based optimization on the
validation set that was already used for early stopping. The resulting internal performance
value is hence biased, but since the tuning error of the optimizer is biased anyways, we
let this slide, especially since reducing training data size or extra resampling is much less
efficient. This design decision should be investigated in more details in future studies,
though.

Combining all of the above components, we achieve a fast, scalable and robust AutoML
solution that can handle categorical parameters (even with many levels), outliers and miss-
ing data, while having a much smaller configuration space compared to existing solutions.

3. Implementation

This section introduces an implementation of the described automatic gradient boosting
framework. In general, the introduced framework could use a large number of available
boosting library (e.g., xgboost or lightgbm) as well as different SMBO libraries (e.g., SMAC,
Spearmint or mlrMBO). We decided to implement it in R using xgboost as a GBT imple-
mentation, mlrMBO (Bischl et al. (2017)) for SMBO and mlr (Bischl et al. (2016)) as a
general machine learning framework as well as for threshold optimization. For threshold
optimization a multi-start linesearch is used for binary classification and for multiclass clas-
sification Generalized Simulated Annealing (GSA) (Tsallis and Stariolo (1996)) is applied.
The software is available via Github1 and is currently able to handle binary and multiclass
classification as well as regression. It can be used in a standalone version or within the mlr
framework as a learner. Other than the data itself no further information has to be passed
to autoxgboost, but it may be useful to define the performance metric (otherwise a default
will be used depending on the type of the data) and the maximum runtime. The result is
a reusable machine learning pipeline based on the library mlrCPO2 that can be deployed
or saved for later use. Currently two different hyperparameter spaces are predefined (see
Table 1) and the simpler one (where Simple=Y ) is used by default.

1. https://github.com/ja-thomas/autoxgboost
2. https://github.com/mlr-org/mlrCPO
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4. Benchmark

We compare the performance of autoxgboost to the AutoML solutions Auto-WEKA and
auto-sklearn. In order to ensure comparability, we evaluate autoxgboost on a subset3 of the
datasets Auto-WEKA and auto-sklearn used in their respective publications. This includes
identical training- and test-data splits and the same performance measure. The chosen
datasets are very different regarding the number of numeric and factor features, as well as
the number of target class levels and the train and test dataset sizes. Hence, the datasets
chosen by Thornton et al. (2013) serve as an adequate heterogeneous base for an initial
performance evaluation in different situations. Moreover, like in the paper of Thornton
et al. (2013), 25 runs were performed.
The parameter settings of autoxgboost were mostly left at their default values discussed in
the previous section. However, at most 160 tuning iterations were allowed with a maximum
runtime of 10 hours. The benchmark was run on Intel Xeon E5-2697 v3 processors with 28
cores and 64gb RAM. The hyperparameter ranges corresponded to the ones from Table 1
(simple).

For evaluation, 100000 bootstrap samples of size 4 were drawn from all 25 runs to
simulate 4 parallel runs. Finally, the median of those 100000 mean misclassification error
values is returned and presented in Table 2. The bold numbers in each row indicates the best
performing algorithm for the specific dataset. We added a simple majority class baseline

3. The subset was selected to reduce computational demand. It was not cherry picked or altered in any
way to improve results. A larger benchmark on more datasets is planned. An overview of the datasets
can be found at https://github.com/ja-thomas/autoxgboost

Name Range Dependency log2 scale Simple

eta [0.01, 0.2] N Y
gamma [−7, 6] Y Y
max depth {3, 4, . . . , 20} N Y
colsample bytree [0.5, 1] N Y
colsample bylevel [0.5, 1] N Y
lambda [−10, 10] Y Y
alpha [−10, 10] Y Y
subsample [0.5, 1] N Y
booster gbtree, gblinear, dart N N
sample type uniform weighted dart N N
normalize type tree, forest dart N N
rate drop [0, 1] dart N N
skip drop [0, 1] dart N N
one drop TRUE, FALSE dart N N
grow policy depthwise, lossguide N N
max leaves {0, 1, . . . , 8} lossguide Y N
max bin, {2, 3, . . . , 9} Y N

Table 1: Proposed hyperparameter spaces to tune over in autoxgboost. The first 8 param-
eters are defined as the simple space (default).
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Dataset baseline autoxgboost Auto-WEKA auto-sklearn

Dexter 52.78 12.22 7.22 5.56
GermanCredit 32.67 27.67∗ 28.33 27.00
Dorothea 6.09 5.22 6.38 5.51
Yeast 68.99 38.88 40.45 40.67
Amazon 99.33 26.22 37.56 16.00
Secom 7.87 7.87 7.87 7.87
Semeion 92.45 8.38 5.03 5.24
Car 29,15 1.16 0.58 0.39
Madelon 50.26 16.54 21.15 12.44
KR-vs-KP 48.96 1.67 0.31 0.42
Abalone 84.04 73.75∗ 73.02 73.50
Wine Quality 55.68 33.70 33.70 33.76
Waveform 68.80 15.40∗ 14.40 14.93
Gisette 50.71 2.48 2.24 1.62
Convex 50.00 22.74 22.05 17.53
Rot. MNIST + BI 88.88 47.09∗ 55.84 46.92

Table 2: Benchmark results are median percent error across 100 000 bootstrap samples (out
of 25 runs) simulating 4 parallel runs. Bold numbers indicate best performing
algorithms. Stars indicate a relative difference of less than 5% to auto-sklearn.

as an indicator that all implementations work as they should, i.e., they should significantly
outperform this baseline. As we can see easily in Table 2, only for the dataset Secom, the
baseline achieves the same performance as the AutoML frameworks. On 9 of the 16 datasets,
auto-sklearn provides the best results. So does Auto-WEKA on four and autoxgboost on
two datasets. autoxgboost and Auto-WEKA slightly perform better than auto-sklearn on
the Wine Quality dataset.

5. Conclusion

The benchmark results of Section 4 showed that autoxgboost was outperformed on the
larger number of datasets by auto-sklearn, but was able to achieve competitive results on
some datasets, providing state-of-the-art performance with only a single learning algorithm
instead of using a whole library of possibly ensembled algorithms. This is not too surprising
as the tuning space is much smaller and on some of the datasets very different learning
algorithms might have an edge. Obviously, this is only a small initial benchmark that is not
necessarily representative. We plan to evaluate on a larger set of OpenML (Vanschoren et al.
(2014)) datasets in the future. One clear advantage of this approach is that the resulting
models are boosting models, which can be deployed more easily and allow some form of
interpretability for example via feature importance and individualized feature attribution
(Lundberg and Lee (2017)). Our AutoML implementation autoxgboost is still in an early
state and some of the design decisions are not final and will be evaluated and optimized in
the future. Furthermore, we plan to extend the automatic gradient boosting framework to
optimize for simultaneously sparse and well performing models using multiobjective SMBO
strategies by Horn and Bischl (2016).
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Summary

In high-dimensional prediction problems, especially in the p ≥ n situation, feature selec-
tion is an essential tool. A fundamental method for problems of this type is component-
wise gradient boosting, which automatically selects from a pool of base learners – e.g. sim-
ple linear effects or component-wise smoothing splines (Schmid and Hothorn 2008) – and
produces a sparse additive statistical model. Boosting these kinds of models maintains
interpretability and enables unbiased model selection in high-dimensional feature spaces
(Hofner et al. 2012).
The R (Team 2016) package compboost, which is actively developed on GitHub (https://
github.com/schalkdaniel/compboost), implements component-wise boosting in C++ using
Rcpp (Eddelbuettel 2013) and Armadillo (Sanderson and Curtin 2016) to achieve efficient
runtime behavior and full memory control. It provides a modular object-oriented system
which can be extended with new base-learners, loss functions, optimization strategies, and
stopping criteria, either in R for convenient prototyping or directly in C++ for optimized
speed. The latter extensions can be added at runtime, without recompiling the whole
framework. This allows researchers to easily implement more specialized base-learners,
e.g., for spatial or random effects, used in their respective research area.
Visualization of selected effects, efficient adjustment of the number of iterations, and
traces of selected base-learners and losses to obtain information about feature importance
are supported.
Compared to the reference implementation for component-wise gradient boosting in R,
mboost (Hothorn et al. 2017), compboost is optimized for larger datasets and easier to
extend, even though it currently lacks some of the large functionality mboost provides.
A detailed benchmark against mboost can be viewed on the project homepage and on
GitHub.
The modular design of compboost allows extension to more complicated settings like func-
tional data or survival analysis. Further work on the package should include parallelized
boosting, better feature selection, faster optimization techniques such as momentum and
adaptive learning rates, as well as better overfitting control.
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Figure A.1.: Distribution of gradient boosting and random forest performance over 38 datasets. task de-
notes the id of the OpenML task, the numbers after gb and rf denote the best performance for gradient
boosting and the random forest respectively. Overall 50000 evaluations of each algorithm with random
hyperparameters are shown. A detailed description of the distribution of evaluations, selection of datasets
and hyperparameter ranges can be found in Kühn et al. (2018).
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