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1 Einleitung 

Im Rahmen dieser Doktorarbeit wurden Mammakarzinome, welche nach dem Reak-

torunfall in Tschernobyl entstanden sind, auf strahlenassoziierte molekulare Verän-

derungen hin untersucht. Dabei konnten hsa-miR-26b-5p und dessen Zielprotein 

trichorhinophalangeal syndrome type 1 (TRPS1) als strahlenspezifische Marker nach-

gewiesen werden. Zudem erfolgte eine funktionelle Charakterisierung von TRPS1 in 

strahlentransformierten Brustzellen. Desweiteren wurden strahlenassoziierte und 

sporadische Mammakarzinome auf genomischer Ebene mittels Array Comparative 

Genomic Hybridization (Array-CGH) charakterisiert. Es wurde eine genomische Ko-

pienzahl-Signatur, die aus chromosomalen Kopienzahlveränderungen besteht, nach-

gewiesen. Diese Signatur ermöglicht den Expositionsstatus einer Patientin vorherzu-

sagen. Die Ergebnisse konnten in drei Veröffentlichungen in peer-reviewed Journalen 

publiziert werden und stellen die Grundlage für diese kumulative Doktorarbeit dar. 

 

1.1 Mammakarzinom 

1.1.1 Epidemiologie und Histologie  

Das Mammakarzinom ist die häufigste Krebserkrankung der Frau weltweit mit jähr-

lich ca. 1.700.000 Neuerkrankungen und 522.000 Todesfällen. Bis 2050 wird ein dras-

tischer Anstieg der weltweiten Inzidenzrate auf ca. 3.200.000 Neuerkrankungen pro 

Jahr erwartet.1 

Mammakarzinome lassen sich histopathologisch in invasive und nicht invasive Karzi-

ome unterteilen. Die Tumorzellen des nicht invasiven Karzinoms haben die Basal-

membran noch nicht durchbrochen und sind auf das Ursprungsgewebe begrenzt. 

Beim invasiven Karzinom haben die Tumorzellen bereits das umgebende Gewebe 

infiltriert.2 Invasive Mammakarzinome vom nicht speziellen Typ (NST) sind mit einem 
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Anteil von etwa 70-80% die am häufigsten diagnostizierten sporadischen Mammakar-

zinome, gefolgt vom invasiv lobulären Mammakarzinom (ILC) mit einem Anteil von 

etwa 15% aller Mammakarzinome3-5. Das NST, in der früheren Nomenklatur als inva-

siv duktales Karzinom (IDC) bezeichnet, bildet sich in den meisten Fällen aus einer 

Präkanzerose (duktales Karzinom in situ) und hat seinen Ursprung in den Milchgän-

gen der Brust2, 3. Routinemäßig wird das NST anhand immunhistochemischer Analy-

sen in vier Subtypen unterteilt, die sich in ihrem Therapieansprechen und klinischen 

Verlauf unterscheiden: Luminal A, Luminal B, Her2-positiv und Triple-negativ4, 6. Die 

Klassifizierung erfolgt basierend auf dem Östrogen-, Progesteron-, Her2-Status und 

der Expression des Proliferationsmarkers Ki67. Die Bestimmung der Subtypen hat 

therapeutische Relevanz für die Indikation einer systemischen Chemotherapie.2, 6 Das 

ILC hingegen wächst ausgehend von den Drüsenlappen der Brust, zeichnet sich häufig 

durch ein niedriges histologisches Grading aus und hat in den meisten Fällen eine gu-

te Prognose2, 5. Neben den bereits genannten Tumortypen existieren noch weitere 

seltene Brustkrebs-Formen, z.B. muzinöse, medulläre, invasiv papilläre und invasiv 

tubuläre Subtypen3.  

 

1.1.2 Risikofaktoren  

Beim Mammakarzinom handelt es sich um eine heterogene Erkrankung, die in den 

meisten Fällen sporadischen Ursprungs ist und ohne familiäre Häufung auftritt7. Die 

Entstehung des Karzinoms ist multifaktoriell bedingt, da es auf Grund einer Interakti-

on zwischen Lebensstil und genetischer Suszeptibilität hervorgerufen wird. Zu den 

Hauptrisikofaktoren an einem Mammakarzinom zu erkranken, gehören neben dem 

Alter der Frau auch hormonelle Einflüsse. Eine frühe Menarche, ein später Eintritt in 

die Menopause, eine Nulliparität, eine späte Erstparität und eine kurze Stillperiode 

erhöhen das Risiko an einem Brustkrebs zu erkranken.8 Desweiteren erhöht eine 

Hormonersatztherapie mittels Östrogen-Gestagen-Therapie in den Wechseljahren 

das relative Risiko ein Mammakarzinom zu entwickeln9. Ebenfalls wird durch die lang-
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fristige Einnahme von oralen Kontrazeptiva das relative Brustkrebsrisiko erhöht10. 

Neben den erwähnten hormonellen Risikofaktoren sind noch weitere Prädispositions- 

und Risikofaktoren zu nennen. Unter anderem lassen eine erhöhte Gewebsdichte, 

vorangegangene benigne Erkrankungen der Brust, ein hoher insulin-like growth factor 

1 (IGF1)- Spiegel, ein erhöhter Alkoholkonsum, Übergewicht bei postmenopausalen 

Frauen und Zigarettenkonsum das Brustkrebsrisiko ebenfalls ansteigen8, 11. Zudem 

sind Frauen aus Nordeuropa und Nordamerika weitaus häufiger von der Erkrankung 

betroffen als Frauen aus dem ostasiatischen Raum, Südamerika und Afrika. Die große 

Varianz der Brustkrebsinzidenz in verschiedenen Regionen der Welt kann genetischen 

Unterschieden zwischen Populationen sowie verschiedenen Lebensstilen in den ein-

zelnen Regionen zugeschrieben werden.8 

Etwa 10% aller Mammakarzinome sind genetischen Ursprungs12. Am häufigsten sind 

Mutationen in den Tumorsuppressorgenen breast cancer gene 1 (BRCA1) und breast 

cancer gene 2 (BRCA2) zu finden. Diese sind für etwa 50% aller vererbten 

Mammakarzinome verantwortlich.13 Weitere Genveränderungen, die das Brustkrebs-

risiko erhöhen, betreffen unter anderem Mutationen von PALB2, p53 (Li-Fraumeni-

Syndrom), PTEN (Cowden-Syndrom), STK11 (Peutz-Jeghers-Syndrom) sowie CDH1, 

CHEK2, ATM, MRE11, RAD50, NBS1, BRIP1, FANCA, FANCC, FANCM, RAD51, RAD51B, 

RAD51C, RAD51D und XRCC2 14, 15. 

Neben den bereits erwähnten Risikofaktoren hat eine erhöhte Exposition mit ionisie-

render Strahlung z.B. im Rahmen von medizinischer Diagnostik- und Therapieverfah-

ren sowie nukleärer Unfälle eine große Bedeutung bei der Karzinogenese des Brust-

gewebes. Ionisierende Strahlung gibt Energie an Zellen ab und kann dadurch Läsionen 

wie z.B. Desoxyribonukleinsäure (DNA)-Doppelstrangbrüche hervorrufen, die im Pro-

zess der Tumorentstehung eine entscheidende Rolle spielen16. Die weibliche Brust 

zählt neben der kindlichen Schilddrüse und dem Knochenmark zu einem der strah-

lenempfindlichsten Organe17. Vor allem zeigen junge Frauen, die zum Zeitpunkt der 

Exposition jünger als 20 Jahre alt sind, ein erhöhtes Risiko einen strahleninduzierten 

Brustkrebs zu entwickeln. Während der Entwicklung im Uterus, der Pubertät und der 
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Schwangerschaft findet in den Brustdrüsen eine vermehrte Zellproliferation statt. 

Während dieser Phasen der vermehrten Zellproliferation haben die Zellen der Brust 

ein erhöhtes Risiko zu entarten, da proliferierendes Gewebe eine erhöhte Strahlen-

empfindlichkeit zeigt. Frauen, die sich bereits in der Menopause befinden haben da-

gegen ein geringeres Risiko einen strahleninduzierten Brustkrebs zu entwickeln. Des 

Weiteren konnte gezeigt werden, dass auch durch vorangegangene benigne Bruster-

krankungen das Risiko für die Entstehung eines strahleninduzierten Mammakarzi-

noms beeinflusst wird.18 Darüber hinaus reagieren Frauen die Trägerin einer 

BRCA1/2-Mutation sind, sensitiver auf die schädlichen Effekte ionisierender Strah-

lung. Dies ist zurückzuführen auf die Beeinträchtigung in der Reparatur von DNA-

Doppelstrangbrüchen.19 

Epidemiologische Studien legen nahe, dass eine Exposition mit ionisierender Strah-

lung erhöhte Tumorraten in der Brust bewirkt. Dabei kommen die Erkentnisse aus 

Studien, welche die Auswirkungen der Expostition mit ionisierender Strahlung im 

Rahmen von medizinischer Diagnostik- und Therapieverfahren, nukleären Unfällen 

und den Atombombenabwürfen in Japan beschreiben. Die Life Span Study, eine epi-

demiologische Kohortenstudie an ca. 120.000 Atombombenüberlebenden, zeigte 

einen signifikanten Anstieg der Krebsrate, insbesondere des Magens, des Darms, des 

Ovarials, der Mundhöhle, der Speiseröhre, der Harnblase, der Schilddrüse, der Brust, 

der Leber, der Lunge, der Haut, des Nervensystems und der lymphatischen Systeme, 

bei den Überlebenden der Atombombenabwürfe20, 21. Personen, die im Kindesalter 

exponiert wurden zeigten dabei ein höheres Risiko für strahleninduzierten Krebs als 

diejenigen, die im höheren Alter exponiert wurden22. In diesem Zusammenhang zeig-

te eine Studie an Überlebenden der Atombombenabwürfe von Hiroshima und Na-

gasaki einen dosisabhängigen Anstieg der Brustkrebsrate nach Exposition mit ionisie-

render Strahlung. Dieser Anstieg konnte besonders bei jüngeren Frauen, welche sich 

zum Zeitpunkt der Exposition noch in der Entwicklung befanden und das 20. Lebens-

jahr noch nicht erreicht hatten, beobachtet werden.23 Eine erhöhte Rate der Brust-

krebsinzidenz konnte auch nach Strahlenexposition im Rahmen medizinischer Thera-

https://www.bfs.de/SharedDocs/Glossareintraege/DE/K/kohortenstudie.html;jsessionid=3C3CB3FE41308F1255D22C70B74759AB.2_cid391?view=renderHelp
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pie- und Diagnostikverfahren gezeigt werden. Unter anderem zeigten epidemiologi-

sche Studien an Patientenkollektiven aus Schweden und Frankreich, dass Patienten, 

welche während der frühen Kindheit zur Behandlung eines Hämangioms insbesonde-

re mit 226Radium (Ra) bestrahlt wurden, ein erhöhtes Risiko für ein strahleninduzier-

tes Karzinom sowie für eine krebsbedingte Mortalität haben24-26. Studien am schwe-

dischen Hämangioma-Kollektiv, bestehend aus ca. 17.000 Kindern, zeigten einen line-

aren dosisabhängigen Anstieg des Brustkrebsrisikos. Das Risiko nahm mit zunehmen-

den Alter der Expostion ab und blieb bis zu 50 Jahre nach der Bestrahlung 

bestehen.27, 28 Des Weiteren konnte gezeigt werden, dass eine Strahlentherapie zur 

Behandlung einer postpartalen Mastitis sowie eines vergrößerten Thymus in jungen 

Jahren das Brustkrebsrisiko erhöht29. Zudem wiesen Patientinnen, welche zur Be-

handlung eines Non-Hodgkin Lymphoms im Kindes- und Jugendalter eine Radiothe-

rapie erhielten, ein erhöhtes Risiko auf einen Brustkrebs als Sekundärtumor zu entwi-

ckeln30. Auch nach diagnostischer Strahlenexposition konnte bereits eine erhöhte 

Brustkrebsrate beobachtet werden: Frauen die zur Behandlung einer Tuberkulose 

oder Skoliose regelmäßig eine Röntgen-Fluoroskopie erhielten, zeigten ebenfalls ein 

signifikant erhöhtes Risiko für die Entstehung eines Mammakarzinoms31, 32. Immer 

wieder diskutiert wird die Exposition mit ionisierender Strahlung im Rahmen von 

Mammographie-Untersuchungen. In Relation zum potentiellen Nutzen des Untersu-

chungsverfahrens (Früherkennung von Mammakarzinomen), wird das kanzerogene 

Risiko nach wiederholten Mammographien (ca. 1,5-2 Millisievert (mSv) Dosisbelas-

tung pro Mammographie) als gering eingestuft, wenn ein bestimmtes Lebensalter 

überschritten ist (Mammographie-Screening für Frauen zwischen 50 und 74 Jahren). 

Jedoch wird Trägerinnen einer risikoerhöhenden genetischen Variante, z.B. einer 

BRCA1/2-Mutation oder einer erblich bedingten Disposition für Brustkrebs, empfoh-

len, auf einen Ultraschall bzw. eine Magnetresonanztomographie zurückzugreifen.33  

Weitere Studien beschäftigten sich mit Personen, die der ionisierenden Strahlung der 

Nuklearkatastrophe von Tschernobyl ausgesetzt waren, der größte nukleäre Unfall 

der Geschichte, welcher sich am 26.04.1986 in der früheren Sowjetunion ereignete34. 
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An diesem Tag explodierte der Reaktorblock 4 des Kernkraftwerks von Tschernobyl 

nahe der ukrainischen Stadt Prypiat beim Versuch einen Ausfall der externen Strom-

versorgung zu simulieren. Als Folge der Explosion des Reaktorblockes gelangte radio-

aktives Material in die Erdatmosphäre. Die radioaktive Wolke breitete sich über die 

gesamte nördliche Halbkugel aus und setzte insgesamt eine Aktivität von mehreren 

Trillionen Bequerel frei. Darunter waren ca. 1.76x1018 Becquerel Iod (I)-131, 

0.085x1018 Becquerel Caesium (Cs)-137 und weitere kurzlebige Iodisotope. Gebiete 

im Norden der Ukraine sowie die ehemaligen Sowjetrepubliken Weißrussland und 

Russland wurden dabei am stärksten mit radioaktivem Material kontaminiert.35  

Mehr als 2.000.000 Personen waren von der Reaktorkatastrophe betroffen. Davon 

waren ca. 200.000 registrierte Liquidatoren, welche aus der Ukraine, Russland und 

Weißrussland stammten. Die Liquidatoren wurden direkt nach der Katastrophe für 

die Verrichtung von Aufräumarbeiten und die medizinische Versorgung am Unglücks-

ort eingesetzt.36 Im Schnitt wurden die Liquidatoren mit einer Strahlendosis von etwa 

90 Milligray (mGy) exponiert36, 37. Neben den Liquidatoren waren auch Arbeiter des 

Kernkraftwerkes und große Teile der Bevölkerung der ionisierenden Strahlung ausge-

setzt. Etwa 90.000 Personen wurden von 1986 bis 1990 evakuiert und umgesiedelt37. 

Es gibt bereits eine Reihe von epidemiologischen Studien über die gesundheitlichen 

Konsequenzen des Reaktorunfalls. Die bislang am besten charakterisierte Gesund-

heitsfolge des Unglücks ist ein eindeutiger Anstieg in der Rate von Schilddrüsenkarzi-

nomen im Kindesalter34. Zudem konnten epidemiologische Studien von Prysyazhnyuk 

et al. und Pukkala et al. einen Anstieg der Brustkrebsrate nachweisen. Prysyazhnyuk 

et al. zeigten, dass Liquidatorinnen aus der Ukraine im nationalen Vergleich einen 

signifikanten Anstieg der Brustkrebsrate aufwiesen38, 39. Bewohnerinnen hoch konta-

minierter Regionen in Weißrussland und der Ukraine zeigten ebenfalls eine erhöhte 

Brustkrebsrate, besonders junge Frauen40.  
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1.1.3 Mammakarzinom Kollektiv von Liquidatorinnen und Dosimetrie 

Um an den von Prysyazhnyuk et al. und Pukkala et al. publizierten Daten anzuknüp-

fen, wurde im Rahmen dieser Doktorarbeit in Kooperation mit Wissenschaftlern in 

der Ukraine zum ersten Mal ein Kollektiv, bestehend aus Brustkrebsgewebeproben 

von Liquidatorinnen und Bewohnerinnen kontaminierter Gebiete der Ukraine, erstellt 

und analysiert. Neben epidemiologischen Daten und Dosisdaten konnten zum ersten 

Mal auch Gewebeproben der exponierten Brustkrebspatientinnen gewonnen wer-

den. Zur Etablierung des Kollektivs der Liquidatorinnen und der Bewohnerinnen kon-

taminierter Gebiete wurden Brustkrebsfälle des staatlichen Tschernobyl Registers aus 

den Kliniken von Kiev, Sumy, Chernihiv, Cherkassy, Zchitomyr, Bilaja, Cerkov, Rivno 

und Donetsk mit dem nationalen Krebsregister der Ukraine abgeglichen und Fälle in 

das Kollektiv eingeschlossen, von denen Gewebeproben sowie klinische Daten vor-

handen waren. Auf der Grundlage des Kollektivs von bestrahlten Patientinnen wurde 

das Kontrollkollektiv aus dem nationalen Krebsregister der Ukraine ausgewählt und 

hinsichtlich Alter, Tumortyp, Residenz (Ukraine), histologischem Grading und TNM-

Klassifizierung an das bestrahlte Patientenkollektiv angeglichen. Ein Limitationsfaktor, 

welcher die Zusammenstellung der Kollektive erschwert, ist das Alter. Da mit zuneh-

mendem Alter das Risiko für die Entstehung eines sporadischen Mammakarzinoms 

stetig ansteigt, wurde darauf abgezielt, möglichst junge Patientinnen in die Kollektive 

zur Erforschung der strahlenassoziierten Mammakarzinogenese einzuschließen. Die-

ser Limitationsfaktor begrenzt die Kollektivgröße. Ein weiterer Limitationsfaktor bei 

der Erforschung der strahlenassoziierten Mammakarzinogenese ist die Dosimetrie. In 

den meisten Fällen liegen keine direkten Dosisdaten für die strahlenexponierten Po-

pulationen vor. Folglich bedient man sich der indirekten Dosisabschätzung, welche 

große Unsicherheiten mit sich trägt. Die Dosis mit der die bestrahlte Patientengruppe 

exponiert wurde, konnte mit der Realistic Analytical Dose Reconstruction with 

Uncertainty Estimation (RADRUE)-Methode bestimmt werden. Diese wurde von Ex-

perten der internationalen Dosimetriegruppe aus der Ukraine, Russland, Frankreich, 

USA, Litauen und Weißrussland entwickelt. Die RADRUE-Methode rekonstruiert die 
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individuellen Dosen, mit der die Liquidatorinnen exponiert wurden, basierend auf 

Daten von persönlichen Interviews, welche von erfahrenen Dosimetristen durchge-

führt wurden. Zur genauen Dosisrekonstruktion wurden Informationen zur physikali-

schen Aktivitätsmessung in der Umwelt und regionalen Strahlenkontamination her-

angezogen.41-43 Mit Hilfe dieser Informationen lässt sich die externe Dosis als ein Pro-

dukt aus Expositionsrate und Bestrahlungszeit errechnen44. Die Dosen, die mit der 

RADRUE Methode rekonstruiert wurden, sind mit einer relativ hohen Unsicherheit 

behaftet. Diese lässt sich in zwei Kategorien unterteilen, die als „intrinsische“ und 

„menschliche“ Unsicherheiten bezeichnet werden. Die „intrinsische“ Kategorie setzt 

sich aus Unsicherheiten in Bezug auf Expositionsdaten, zeitliche und räumliche Inter-

polation der Daten sowie Ungenauigkeiten aus den Fragebögen zusammen. Die 

„menschlichen“ Unsicherheiten resultieren aus Fehlern bei der Beantwortung von 

Fragen des Interviewformulars.45 Dennoch ist es gelungen mit Hilfe der RADRUE Me-

thode die Dosen für ein Brustkrebs Kollektiv von Liquidatorinnen und Bewohnerinnen 

kontaminierter Gebiete der Ukraine, zu rekonstruieren. Die Ergebnisse der Dosisab-

schätzung führten zu einer Publikation (Chumak et al., 2018), die Teil dieser kumula-

tiven Dissertation ist46.    

 

1.1.4 Molekulare Subtypen und Biomarker  

In der Routinediagnostik werden Mammakarzinome zunächst histopathologisch an-

hand des TNM-Status klassifiziert, welcher Tumore nach ihrer Größe und anatomi-

schen Ausbreitung beschreibt. Dieser setzt sich aus den nachfolgend genannten drei 

Komponenten zusammen: T (Ausbreitung des Primärtumors), N (regionäre Lymph-

knotenmetastasen) und M (Fernmetastasen). Zudem werden die Tumore mit dem 

histologischen Grading, welches den histopathologischen Differenzierungsgrad des 

Tumorgewebes angibt, beschrieben.2 Neben der TNM-Klassifikation, dem histologi-

schen Grading, ist die Identifizierung von Biomarkern ein wichtiger Schritt auf dem 

Weg zu einer individualisierten Behandlung von Mammakarzinomen. Wie bereits un-
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ter 1.1.1 erwähnt, werden Mammakarzinome (NST) basierend auf tumorbiologischen 

Parametern (Östrogen-, Progesteron-, Her2-Status und Ki67-Expression), welche an-

hand immunhistochemischer Analysen bestimmt werden, in die vier Subtypen lumi-

nal A, luminal B, Her2-positiv und Triple-negativ unterteilt. Anhand von Genexpressi-

onsprofilen lassen sich diese molekularen (intrinsischen) Subtypen (luminal A, luminal 

B, Her2-positiv, basal-like) sowie weitere Gruppen (normal-like und claudin-low) 

ebenfalls ableiten.4, 6 Anhand der Genexpressionsprofile war es möglich, die tumorbi-

ologischen Eigenschaften der molekularen Subtypen weiter zu entschlüsseln und die 

Patienten in Risikogruppen einzuteilen, was für die individuelle Therapiewahl wichtig 

ist47-49. Folglich wurden für die klinische Diagnostik kommerziell verfügbare Genex-

pressionstests (wie z.B. der PAM50 Test) entwickelt. Diese ermöglichen den Nachweis 

der molekularen Subtypen und geben gleichzeitig Auskunft über den weiteren Krank-

heitsverlauf des Patienten und das Therapieansprechen (z.B. auf eine Chemothera-

pie)50. Der luminale Subtyp des Mammakarzinoms zeichnet sich durch einen positiven 

Östrogen- und Progesteronrezeptorstatus aus und hat eine relativ gute Prognose. Typ 

B (luminal B) ist im Gegensatz zu Typ A (luminal A) für das zellzyklusspezifische Anti-

gen Ki67 positiv. Der normal-like Tumor ist wie der luminal A Tumor Hormonrezeptor-

positiv sowie Ki67-negativ und ist gekennzeichnet durch eine normale Brustgewebs-

proliferation. Der Her2-positiv-klassifizierte molekulare Subtyp zeichnet sich durch 

einen positiven human epidermal growth factor receptor 2 (Her2/neu)-

Rezeptorstatus aus. Der basal-like Tumor ist wie der Triple-negative Tumor Hormon-

rezeptor-negativ sowie Her2-negativ. Die Patienten haben eine signifikant schlechte-

re Überlebensrate.6, 51 Die Mehrheit der claudin-low Tumore ist ebenfalls Hormonre-

zeptor-negativ sowie Her2-negativ. Zudem zeichnen sie sich durch eine geringe bis 

fehlende Expression von luminalen Differenzierungsmarkern, eine hohe Anreicherung 

für epitheliale bis mesenchymale Übergangsmarker, Immunantwortgene und krebs-

stammzellartige Merkmale aus. Sie zeigen eine niedrige Genexpression von Claudin 3, 

4 und 7 sowie E-Cadherin.52 Zentrale prädiktive und prognostische Marker des 

Mammakarzinoms sind die Östrogen- und Progesteronrezeptoren, welche als tran-
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skriptionelle Regulatoren den Hormonhaushalt regeln53. Die Überexpression der 

Hormonrezeptoren, insbesondere von ERα, korreliert mit einer günstigen Prognose 

für den weiteren Krankheitsverlauf des Patienten54, 55. Durch die Hormonrezeptoren 

werden viele Gene reguliert, die bei der Angiogenese, Zellproliferation, Apoptose und 

Metastasierung eine Rolle spielen56. Bei Hormonrezeptor-positiven Patienten wird 

die adjuvante endokrine Therapie mit herangezogen. Es werden Anti-

Östrogene, Aromatasehemmer und Gonadotropin-Releasing Hormon (GnRH)-Analoga 

eingesetzt, um die hormonabhängige Proliferation der Tumorzellen zu unterbinden. 

Dabei wird oft der selektive Östrogen-Rezeptor-Modulator Tamoxifen eingesetzt. Die 

Wirkungsweise von Tamoxifen beruht auf der kompetitiven Hemmung der Östrogen-

rezeptoren.2 Der Wirkmechanismus der Aromatasehemmer besteht darin, das Enzym 

Aromatase, welches die Umwandlung von Androgenen zu Östrogenen bewirkt, zu 

inhibieren57. Die dritte Medikamentengruppe, welche zur antihormonellen Therapie 

eingesetzt wird, sind die GnRH-Analoga. Diese binden an die GnRH-Rezeptoren in der 

Hypophyse, wodurch es langfristig zu einer verminderten Freisetzung der Sexualhor-

mone FSH (follikelstimulierendes Hormon) und LH (luteinisierendes Hormon) kommt. 

Als Folge davon sinkt der Östrogenspiegel.2 Ein weiterer relevanter Biomarker für die 

Therapie des Mammakarzinoms ist der (Her2/neu)-Rezeptor. Etwa 15-20% aller 

Mammakarzinome zeigen eine Überexpression des Her2/neu-Rezeptors58. Die Über-

expression des Proto-Onkogens Her2/neu, welcher zur Familie der epidermalen 

Wachstumsfaktoren gehört, korreliert mit einer schlechteren Überlebensrate der Pa-

tienten. Durch die Überexpression des Her2-Rezeptors kommt es zur Inhibition der 

Apoptose über den mTOR-Signalweg und zur Stimulation der Zellproliferation über 

den RAS-MAP Kinase-Weg.59 Zur Behandlung wird bei Her2-positiven Patienten der 

humanisierte Antikörper Trastuzumab erfoglreich eingesetzt. Trastuzumab bindet an 

die extrazelluläre Domäne des epidermalen Wachstumsfaktorrezeptors Her2/neu. 

Infolgedessen wird die Proliferation der Tumorzellen gehemmt und die Apoptoserate 

der transformierenden Zellen steigt deutlich an.59, 60 Zudem wird durch Trastuzumab 

eine Expression von anti-angiogenen Faktoren sowie eine Antikörper-abhängige Zer-
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störung von Tumorzellen durch das Immunsystem (ADCC, antibody-dependent cellu-

lar cytotoxicity) ausgelöst61, 62. Ein weiterer klassischer Biomarker des Mammakarzi-

noms ist das zellzyklusspezifische Antigen Ki67, welches in die Zellzyklusproliferation 

involviert ist und folglich Rückschlüsse auf das Wachstumsverhalten des Tumors zu-

lässt63, 64. Ein weiteres Onkogen, das in der Mammakarzinogenese eine wichtige Rolle 

spielt, ist c-myc. Dessen Expressionsstatus wird in der Mammakarzinomdiagnostik oft 

bestimmt und korreliert mit einem schlechteren Überleben65, 66. Einige dieser bereits 

etablierten Biomarker spielen auch eine Rolle bei der strahleninduzierten 

Mammakarzinogenese. Studien an Überlebenden der Atombombenabwürfe von Hi-

roshima und Nagasaki zeigten eine Assoziation der c-myc- und Her2/neu-

Amplifikation mit der Strahlenexposition67. Des Weiteren konnte eine Assoziation 

zwischen genomischer Instabilität und einem höheren histologischen Grading in den 

strahlenexponierten Fällen gezeigt werden67, 68. Studien an Brustkrebsgeweben von 

Frauen, die zuvor unter anderem zur Behandlung eines Non-Hodgkin Lymphoms the-

rapeutisch bestrahlt wurden, zeigten teils kontroverse Ergebnisse. Einige Studien 

zeigten eine höhere Rate an Hormonrezeptor- und Her2-negativen Mammakarzino-

men in bestrahlten Frauen, wohingegen andere eine höhere Rate der Her2-

Amplifikation nachweisen konnten69-71. Zudem  zeigten Brustkrebszellen von be-

strahlten Frauen eine erhöhte Proliferationsrate, gemessen am Ki67-Marker70, 71. Ins-

gesamt sind die bisher vorliegenden Daten zu Mammakarzinomen von exponierten 

Frauen teilweise widersprüchlich und beziehen sich weitgehend auf bekannte Brust-

krebsgene. Anknüpfend an diese Erkentnisse ist es das Ziel der vorliegenden Arbeit zu 

analysieren, ob es weitere Marker gibt, die speziell bei der strahlenassoziierten 

Mammakarzinogenese eine Rolle spielen und geeignet sind, sporadischen Brustkrebs 

von strahlenassoziiertem Brustkrebs zu unterscheiden. In strahlenassoziierten Schild-

drüsentumoren konnte bereits ein persistenter Marker (CLIP2) nachgewiesen wer-

den, welcher noch lange Zeit nach der Strahlenexposition gemessen und erfasst wer-

den kann72. Neben persistenten Biomarkern gibt es auch Biomarker der Exposition. 

Diese sind bereits kurz nach der Strahlenexposition messbar und im späteren Verlauf 
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kaum mehr nachzuweisen. Biomarker der Suszeptibilität können vor, während oder 

nach der Exposition erfasst werden und ein erhöhtes Risiko für strahleninduzierte 

Auswirkungen auf die Gesundheit vorhersagen. Biomarker von Spätfolgen der Exposi-

tion sind erst nach einer gewissen Latenzzeit detektierbar.73 Ein geeigneter Strahlen-

biomarker sollte sensitiv und spezifisch sein und auf Kollektive mit großen Fallzahlen 

anwendbar sein74. Ziel ist es, die Strahlenmarker funktionell zu charakterisieren, um 

sie in mechanistische Modelle der Karzinogenese zu integrieren. Mit Hilfe des CLIP2-

Markers ist dies bereits in strahlenassoziierten Schilddrüsentumoren gelungen. Mit 

Hilfe des Markers kann ein strahleninduzierter Fall erkannt werden und somit die 

Kausalität der Tumorentstehung nachgewiesen werden72. Somit war die Etablierung 

von Strahlenmarkern in Mammakarzinomen und dessen funktionelle Charakterisie-

rung mittels Netzwerk-Rekonstruktion ein wichtiger Aspekt dieser Doktorarbeit.  

 

1.2 MicroRNAs   

MicroRNAs (miRNAs) sind in den letzten Jahren immer mehr in den Fokus der For-

schung gerückt, um verbesserte und gezieltere Therapien gegen Krebs zu entwickeln. 

Sie besitzen das Potential als Biomarker in der Diagnostik und Therapie von Krebser-

krankungen zu fungieren75, 76. MiRNAs sind nicht kodierende, hoch konservierte RNA-

Moleküle mit einer Länge von ca. 22 Nukleotiden, welche die Genexpression auf post-

transkriptioneller Ebene steuern77-79. Bereits 1993 wurde die erste miRNA lin-4 im 

Nematoden Caenorhabditis elegans identifiziert80. In den letzten Jahren wurden viele 

weitere miRNAs entdeckt, so dass bis heute über 2500 humane miRNAs in der Da-

tenbank miRBase (Relase 21.0) gelistet sind81. Die Expression von über 60% aller hu-

manen Gene wird von miRNAs reguliert82. Die Biogenese der miRNAs gliedert sich in 

zwei Schritte. Die für die miRNAs codierenden Sequenzen befinden sich in der geno-

mischen DNA und werden zunächst von der RNA-Polymerase II oder III zum Primär-

transkript der primary precursor miRNA (pri-miRNA) transkribiert. Diese faltet sich zu 
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einer Schleife zusammen. Anschließend wird im Zellkern die pri-miRNA vom RNase III-

Enzym Drosha endonukleolytisch in die precursor (pre-miRNA) gespalten. Die pre-

miRNA weist eine charakteristische Haarnadelstruktur (hairpin) auf und ist ca. 60-70 

Nukleotide lang. Die pre-miRNA wird mittels Exportin-5 in das Cytoplasma exportiert. 

Dort wird mittels des RNase III-Enzyms Dicer die Haarnadelstruktur entfernt. Dadurch 

entsteht die ca. 22 Nukleotide lange, einzelsträngige miRNA. Diese wird anschließend 

an den RNA-induced silencing complex (RISC)-Komplex, dessen Hauptkomponente 

Argonaute (AGO)-Proteine darstellen, transportiert, der wiederum an komplementä-

re Sequenzen in der 3’-untranslatierten Region der messenger RNA (mRNA) von Ziel-

genen bindet.83, 84 Dabei kann eine mRNA Bindesequenzen für mehrere miRNAs be-

sitzen oder auch eine miRNA die Expression mehrerer Ziel-mRNAs steuern. Abhängig 

vom Grad der Komplementarität der Bindesequenzen kommt es zur Inhibition der 

Translation (partielle Komplementarität) oder zur Degradation der mRNA (perfekte 

Basenpaarung)85. Um den Einfluss von miRNAs auf die komplexen molekularen Netz-

werke der strahlenassoziierten Mammakarzinogenese zu entschlüsseln, ist es wichtig, 

die Ziel-mRNAs und deren funktionale Netzwerke zu analysieren. Dafür stehen Zell-

kulturmodelle zur Verfügung, in denen Gene hoch- bzw. herunterreguliert werden 

können, und anschließend der Einfluss auf das Transkriptom mit Hilfe von mRNA-

microarrays gemessen werden kann. Dass miRNAs eine Rolle bei der Karzinogenese 

spielen, konnte erstmals 2002 von Calin et al. gezeigt werden. Calin et al. zeigten, 

dass die chromosomale Region 13q14, in der hsa-miR-16-1 und hsa-miR-15a lokali-

siert sind, in über 65% aller Patienten mit chronisch lymphatischer Leukämie deletiert 

ist86. Daran anknüpfend zeigten in den folgenden Jahren eine Reihe von Studien glo-

bale Deregulationen von miRNAs in Tumoren87. In diesem Kontext steuern miRNAs 

zellproliferierende und apoptotische Prozesse der Karzinogenese, indem sie als On-

kogen oder Tumorsuppressor fungieren88. Des Weiteren konnte bereits mit Hilfe von 

miRNA-Expressionsanalysen die Untergliederung des Mammakarzinoms in den lumi-

nalen und basalen molekularen Subtyp des sporadischen Mammakarzinoms vorge-

nommen werden. Hinsichtlich weiterer klinischer Faktoren (z.B. Östrogenrezeptor-, 
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Progesteronrezeptor-, T- und N-Status), welche in der Mammakarzinogenese eine 

zentrale Rolle spielen, zeigen miRNA-Profile unterschiedliche Expressionsmuster. Die-

se können zur Tumor-Diagnostik sowie Klassifizierung genutzt werden.79, 89 Die Ex-

pression von miRNAs wird durch Stressfaktoren wie Hypoxie, Nährstoffmangel, 

Krankheiten und ionisierende Strahlung verändert90, 91. Dass durch ionisierende Strah-

lung eine Veränderung in der Expression von miRNAs ausgelöst wird, konnte bereits 

an bestrahlten Brust(krebs)zelllinien gezeigt werden92-94. Stankevicins et al. fanden 

eine Hochregulation von hsa-miR-34a nach Röntgenbestrahlung in p53-positiven 

Brustzellen (MCF-10A) und Brustkrebszellen (MCF7) im Vergleich zu p53-negativen 

Brustkrebszellen (T-47D). Folglich wird hsa-miR-34a eine Beteiligung an den Prozes-

sen der DNA-Schadensantwort zugeschrieben.93 In diesem Zusammenhang wurde 

auch herausgefunden, dass p53 im Bezug auf die Schadensantwort die Expression von 

miRNAs beeinflusst und umgekehrt auch p53 von mehreren miRNAs reguliert wird95. 

Darüber hinaus wurde beobachtet, dass miRNAs mit einer Reihe von Genen, welche 

in der DNA-Schadensantwort eine Rolle spielen, interagieren und folglich das Poten-

zial haben, die Empfindlichkeit von Tumoren gegenüber strahlentherapeutischen Be-

handlungen zu beeinflussen. Des Weiteren konnte bereits nach Strahlentherapie im 

Rahmen einer Brustkrebstherapie eine veränderte Expression von miRNAs im Serum 

gemessen werden.92, 96, 97 Dies macht miRNAs zu geeigneten Markern für die Diagnos-

tik und Therapie. Anknüpfend daran war ein Ziel dieser Arbeit zu analysieren, ob 

miRNAs und deren Zielproteine auch eine Rolle in strahlenassoziierten Mammakarzi-

nomen von Frauen, die als Folge der Tschernobyl-Reaktorkatastrophe mit ionisieren-

der Strahlung im niedrigen Dosisbereich exponiert wurden, spielen. Diese könnten 

folglich für die Diagnostik von strahlenassoziiertem Brustkrebs eingesetzt werden und 

zur Aufklärung der molekularen Mechanismen der strahlenassoziierten Mammakar-

zinogenese beitragen. Diese Analyse führte zu einer Publikation (Wilke et al., 2018), 

die Teil dieser kumulativen Doktorarbeit ist98. 
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1.3 Genomische Kopienzahlveränderungen 

Wie bereits erwähnt, haben Studien an Überlebenden der Atombombenabwürfe von 

Hiroshima und Nagasaki eine Assoziation mit typischen Brustkrebsmarkern (c-myc 

und Her2/neu-Amplifikation) gezeigt67. Des Weiteren konnte auch eine Assoziation 

mit genomischer Instabilität und einem höheren Grading in den strahlenexponierten 

Fällen nachgewiesen werden67, 68. Genomische Instabilität zeichnet sich durch ver-

mehrtes Auftreten von Punktmutationen und anderen genomischen Veränderungen 

aus wie zum Beispiel Deletionen, Duplikationen, Amplifikationen, Inversionen, Inser-

tionen und Translokationen99. Eine Möglichkeit, genomische Instabilität genauer zu 

messen, ist, die Kopienzahl von DNA-Abschnitten zu untersuchen. Kopienzahlverän-

derungen der DNA sind DNA-Zugewinne oder DNA-Verluste von Regionen größer als 

50 Basenpaaren100. Diese Einzel- wie auch Doppelstrangbrüche in der DNA, werden 

typischerweise durch ionisierende Strahlung induziert101. Mit Hilfe der Array-CGH ist 

es möglich, Kopienzahlveränderungen in der DNA zu messen. Kopienzahlveränderun-

gen sind für 85% der Varianz in der Genexpression verantwortlich und spielen im Pro-

zess der Tumorentstehung eine entscheidende Rolle102. Curtis et al. charakterisierten 

die Kopienzahlveränderungen und Genexpressionsprofile von etwa 2000 Mammakar-

zinomen und zeigten Assoziationen von Kopienzahlveränderungen mit entsprechend 

aberranten Genexpressionsprofilen103. In diesem Zusammenhang konnte gezeigt 

werden, dass Kopienzahlveränderungen die molekulare Pathogenese der Tumore 

bestimmen. Des Weiteren erfolgte anhand von Kopienzahl- und mRNA-

Expressionsanalysen bereits eine Untergliederung in die unterschiedlichen molekula-

ren Subtypen des sporadischen Mammakarzinoms (luminal, basal-like und Her2-

positiv)104. Mit der zunehmenden Generierung von hochdimensionalen Datensätzen 

durch Hochdurchsatzmethoden wie Array-CGH, mRNA- und miRNA-Expressionsarrays 

haben sich neue mathematische und bioinformatische Methoden für die Auswertung 

und Interpretation dieser Daten ergeben. In diesem Zusammenhang wurden in den 

letzten Jahren zahlreiche mRNA- und miRNA-Signaturen aus Expressionsdaten in vie-

len Tumorentitäten entwickelt, welche mit prognostischen Parametern assoziiert 
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sind105. Im sporadischen Mammakarzinom wurde bereits eine Genexpressions-

Signatur  gefunden, die Auskunft über das Überleben eines Patienten geben kann106. 

Genexpressionstests wie z.B. der Mammaprint-Test, welcher die mRNA-Expression 

von 70 Genen analysiert, werden bereits für eine individuell optimierte Brustkrebs-

therapie eingesetzt107, 108. Der Mammaprint-Test gibt eine Auskunft über die Wirk-

samkeit einer adjuvanten Chemotherapie sowie eine Prognose für den weiteren 

Krankheitsverlauf des Patienten6, 107. Des Weiteren wurde eine Signatur auf miRNA-

Ebene gefunden, welche den Hormonrezeptorstatus und den Her2/neu-Status be-

stimmen kann109. Brustkrebs ist eine Erkrankung mit heterogenen biologischen und 

klinischen Merkmalen12. Die Progression eines Tumors ist abhängig von der Aktivie-

rung/Inaktivierung molekularer Signalwege, die ganze Gengruppen und nicht nur ein-

zelne Genveränderungen umfassen. Aus diesem Grund wird anhand von Signaturen 

die genomische Komplexität dieser Karzinome besser abgebildet. In diesem Zusam-

menhang wurden bereits statistische Ansätze zur Modellierung einer Signatur basie-

rend auf Kopienzahlaberrationen entwickelt. Anhand dieser Signaturen war es bereits 

möglich, die Abstammung von Individuen vorherzusagen oder histologische Subtypen 

von Endometriumkarzinomen zu klassifizieren110, 111. Eine genomische Kopienzahl-

Signatur für Mammakarzinome, für die Vorhersage eines klinischen Endpunkts oder 

einer vorausgegangenen Strahlenexposition des Patienten, gibt es bis heute jedoch 

noch nicht. Anknüpfend an diese Erkentnisse war es ein Ziel dieser Arbeit, erstmals 

eine biostatistische Methode zur Generierung einer genomischen Kopienzahl-

Signatur in strahlenassoziierten Mammakarzinomen zu entwickeln, welche die Vor-

hersage des Expositionsstatus erlaubt. Dies erfolgte mit Unterstützung mathemati-

scher Expertise. Dieser Ansatz führte zu einer Veröffentlichung, die Teil dieser kumu-

lativen Dissertation ist112. 
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1.4 Ziele der Arbeit  

Um die Auswirkungen ionisierender Strahlung auf den Menschen besser verstehen zu 

können, ist die Erforschung von Strahlenmarkern in den entstandenen Tumoren 

wichtig. Sie ermöglichen die individuelle Unterscheidung von sporadischen und strah-

lenassoziierten Karzinomen und können so zu einer verbesserten Risikoabschätzung 

einer Strahlenexposition beitragen. Die molekularen Mechanismen der strahlenasso-

ziierten Mammakarzinogenese sind bis heute weitestgehend unklar. Deshalb war das 

übergeordnete Ziel der vorliegenden Arbeit, durch die Charakterisierung strahlenspe-

zifischer Veränderungen in Mammakarzinomen zu einem verbesserten Verständnis 

der molekularen Mechanismen beizutragen. Dabei sollten die Expression von ausge-

wählten miRNAs und deren Zielgenen/Zielproteinen sowie genomische Kopienzahl-

veränderungen untersucht werden. Hierfür sollten sowohl Experimente an Patien-

tenmaterial als auch im Zellkulturmodell durchgeführt werden. Dazu sollten ein Un-

tersuchungskollektiv und ein Validierungskollektiv sowohl von strahlenassoziierten 

Mammakarzinom-Geweben von Liquidatorinnen als auch von Bewohnerinnen kon-

taminierter Regionen des Tschernobyl-Unfalls untersucht werden. Zudem sollte ein 

hinsichtlich des Alters, Tumortyps, Residenz (Ukraine), histologischem Grading und 

TNM-Klassifizierung an das bestrahlte Patientenkollektiv angeglichenes Kontrollkol-

lektiv ohne Strahlenvorgeschichte analysiert werden. Die Expression ausgewählter 

miRNAs sollte mittels quantitativer real time reverse transcription PCR (qRT-PCR) in 

den strahlenassoziierten und sporadischen Mammakarzinomen untersucht und auf 

Assoziation mit der Strahlenexposition getestet werden. Die dadurch identifizierten 

miRNA-Kandidaten sollten anschließend mittels qRT-PCR im Validierungskollektiv un-

abhängig voneinander validiert werden. Um die Mechanismen der strahlenassoziier-

ten Mammakarzinogenese weiter zu entschlüsseln, sollten anschließend mögliche 

Zielgene ermittelt und analysiert werden. Um Hinweise zu bekommen, in welchen 

Signalwegen die identifizierten miRNA-Kandidaten und deren Zielgene eine Rolle 

spielen, sollte im Rahmen der vorliegenden Arbeit ein Zellkulturmodell entwickelt 
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werden. Dafür sollte in strahlentransformierten Brustzellen das ermittelte Zielgen der 

Kandidaten-miRNAs mittels siRNA-Transfektion herunterreguliert werden. Nach glo-

baler mRNA-Analyse sollten mögliche funktionelle Netzwerke der durch die Herunter-

regulierung verändertern mRNAs erstellt werden. Um mögliche Unterschiede der 

strahlenassoziierten und sporadischen Mammakarzinogenese aufzudecken, sollten 

zum Vergleich globale mRNA-Expressionsdaten des The Cancer Genome Atlas (TCGA)-

Datensatzes herangezogen werden. Anhand dieser sollte ebenfalls ein funktionelles 

Netzwerk basierend auf Korrelationen der mRNA-Expression mit der Expression des 

Kandidatengens erstellt werden. Anschließend sollte dieses Netzwerk mit dem strah-

lenassoziierten Modell aus strahlentransformierten Brustzellen verglichen werden. 

Darüber hinaus sollten anhand der veränderten mRNAs Signalwege identifiziert wer-

den, die von der Herunterregulation des Kandidatengens betroffen waren. In einem 

zweiten Aspekt dieser Doktorarbeit sollten mittels Array-CGH genomische Kopien-

zahlveränderungen in den Mammakarzinomen der strahlenexponierten und nicht 

exponierten Patientinnen identifiziert und verglichen werden. Schließlich sollte mit 

Unterstützung mathematischer Expertise ein biostatistisches Modell zur Generierung 

einer genomischen Kopienzahl-Signatur etabliert werden, welches es erlaubt, den 

Expositionsstatus einer Patientin vorherzusagen. Der daraus resultierende Kopien-

zahlstatus der Signatur sollten mittels quantitative real time PCR (qPCR) technisch 

validiert werden. 
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2 Publizierte Ergebnisse 

2.1 Zusammenfassung 

Das Mammakarzinom zählt zu der am häufigsten diagnostizierten Krebsart bei Frau-

en. Trotz der fortschreitenden medizinischen und molekulargenetischen Forschung 

sterben immer noch viele Frauen an dieser Erkrankung. Ionisierende Strahlung stellt 

einen entscheidenden Risikofaktor für die Enstehung eines Mammakarzinoms dar. 

Knapp 30 Jahre nach der Tschernobyl-Reaktorkatastrophe konnte ein signifikanter 

Anstieg der Brustkrebsrate bei Liquidatorinnen aus der Ukraine im nationalen Ver-

gleich beobachtet werden. Die molekularen Mechanismen der strahlenassoziierten 

Mammakarzinogenese sind bis heute jedoch weitestgehend unklar. Ein Ziel dieser 

Arbeit war der Nachweis von differenziell exprimierten miRNAs und deren gemein-

samer Zielgene/Zielproteine in Mammakarzinomen von strahlenexponierten und 

nicht exponierten Patientinnen, die mögliche strahlenspezifische Marker darstellen 

könnten. Dafür wurden Mammakarzinom-Gewebe von Liquidatorinnen, die im Rah-

men der Tschernobyl-Katastrophe eingesetzt waren, als auch Bewohnerinnen konta-

minierter Regionen analysiert. Zum Vergleich wurden auch die Mammakarzinom-

Gewebe von Patientinnen ohne Strahlenvorgeschichte untersucht. Das Patientin-

nenenkollektiv ohne Strahlenvorgeschichte war hinsichtlich des Alters, Tumortyps, 

Residenz (Ukraine), histologischem Grading und TNM-Klassifizierung an das bestrahl-

te Patientinnenenkollektiv angeglichen. Für einen Teil des strahlenexponierten Kol-

lektivs konnten mittels der RADRUE-Methode die Dosen, mit denen die Patientinnen 

exponiert wurden, rekonstruiert werden. Strahlenassoziierte Veränderungen in der 

Expression von miRNAs, welche im Untersuchungskollektiv (n=76) identifiziert wur-

den (hsa-miR-221-3p, hsa-miR-222-3p und hsa-miR-26b-5p), konnten teilweise in ei-

nem Validierungskollektiv (n=78) validiert werden. Dabei konnte in beiden Kol-

lektiven gezeigt werden, dass hsa-miR-26b-5p in der exponierten Gruppe im Ver-
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gleich zur nicht exponierten Gruppe signifikant überexprimiert war. Darüber hinaus 

konnte gezeigt werden, dass eine Herunterregulation des validierten Zielproteins die-

ser miRNA, TRPS1, ebenfalls mit der Strahlenexposition der Patientinnen assoziiert 

war. Da eine Überexpression des TRPS1-Proteins in sporadischem Brustkrebs häufig 

auftritt und in der Literatur bereits gut beschrieben ist, sollte die Bedeutung der be-

obachteteten Herunterregulation des Proteins in strahlenassoziierten Brustkrebs auf-

geschlüsselt werden. Zur Bestimmung der Funktion von TRPS1 im strahlenassoziier-

tem Brustkrebs wurde der Einfluss von TRPS1 auf das Transkriptom mittels mRNA-

microarray in zwei strahlentransformierten Brustzelllinien nach siRNA-knockdown 

analysiert. Gene, die nach TRPS1-knockdown dereguliert vorlagen, waren mit folgen-

den biologischen Prozessen assoziiert: DNA-Reparatur, Zellzyklus, Mitose, Zellmigra-

tion, Angiogenese und epithelial-mesenchymaler Transition (EMT). Des Weiteren 

wurden die Interaktionspartner von TRPS1 aus Gen-Korrelationsnetzwerken von Ge-

nexpressionsdaten der strahlentransformierten Brustzelllinien B42-11 und B42-16 

und sporadischem Brustkrebsgewebe der TCGA-Datenbank identifiziert. Die Gene, 

welche mit TRPS1 in den strahlentransformierten Brustzelllinien korrelierten, waren 

hauptsächlich mit biologischen Prozessen der DNA-Schadensantwort und Chromo-

somensegregation verknüpft. Die transkriptionellen Interaktionspartner der sporadi-

schen Mammakarzinome waren vorwiegend mit dem Prozess der Apoptose assozi-

iert.  

Ein weiteres Ziel dieser Arbeit war es, mit Hilfe eines neu etablierten statistischen 

Modells, eine genomische Kopienzahl-Signatur zu finden, mit welcher der Expositi-

onsstatus eines Patienten bestimmt werden kann. Zunächst wurden an den bereits 

vorgestellen Mammakarzinom-Kollektiven (Untersuchungskollektiv und Validierungs-

kollektiv) von Liquidatorinnen und Bewohnerinnen kontaminierter Gebiete sowie von 

Patientinnen ohne Strahlenvorgeschichte die genomischen Kopienzahlveränderungen 

mittels Array-CGH bestimmt. In einem nächsten Schritt konnte mit Unterstützung 

mathematischer Expertise eine biostatistische Methode generiert werden, über die 

eine genomische Kopienzahl-Signatur entwickelt wurde. Die Signatur ermöglicht es, 
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den Expositionsstatus einer Patientin vorherzusagen. Mit Hilfe eines stepwise combi-

ned forward-backward selection approach wurde eine genomische Kopienzahl-

Signatur mit geringer Komplexität im Trainingsset (n=68) identifiziert, welche an-

schließend im Validierungsset (n=68) validiert werden konnte. Die Signatur bestand 

aus neun Kopienzahlregionen, welche in folgenden chromosomalen Banden lokali-

siert waren: 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 

2q35, 2q35, 6p22.2. Der Kopienzahlstatus der Signatur konnte mittels qPCR technisch 

validiert werden. Zusammenfassend konnte eine genomische Kopienzahl-Signatur 

nachgewiesen werden, welche die Identifikation von strahlenassoziiertem Brustkrebs 

auf individuellem Level erlaubt. 

Die in dieser Arbeit gewonnenen Daten und Erkentnisse stellen einen wichtigen Bei-

trag zur Erforschung der strahlenassoziierten Mammakarzinogenese dar. Es konnten 

molekulare Marker und Mechanismen der strahlenassoziierten Mammakarzinogene-

se aufgedeckt werden, welche für die Diagnose von strahlenassoziierten Mammakar-

zinomen und für mechanistische Risikomodelle eingesetzt werden könnten. 

 

2.2 Summary 

Breast cancer is one of the most common diagnosed types of cancer in women. De-

spite the recent advances in medical and molecular research, many women die as a 

consequence of this disease. Ionizing radiation represents a critical risk factor for the 

development of breast cancer.  A significant increase in the rate of breast cancer of 

clean-up workers was determined in an epidemiologic study almost 30 years after the 

nuclear disaster of Chernobyl. However, the molecular mechanisms in radiation asso-

ciated breast cancer are largely unclear. One aim of this thesis was to detect differen-

tially expressed miRNAs and their common target genes/proteins of exposed and 

non-exposed patients, which could represent possible radiation associated markers. 

For this purpose, post-Chernobyl breast cancer tissues from radiation exposed female 
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clean-up workers and evacuees have been analyzed and compared to breast cancer 

tissues of non-exposed patients. Exposed patients and non-exposed controls for this 

study were frequency matched for age, tumor type, residence (Ukraine), histological 

grading and TNM-classification. The absorbed doses for some of the patients were 

reconstructed by the RADRUE-method of the radiation exposed cohort. Radiation 

associated alterations of miRNA expressions were identified in the discovery cohort 

(n=76, hsa-miR-221-3p, hsa-miR-222-3p and hsa-miR-26b-5p) and could be partially 

validated in the validation cohort (n=78). Hsa-miR-26b-5p was significantly overex-

pressed in the exposed group compared to the non-exposed group in both of the co-

horts. Furthermore, it was demonstrated, that a downregulation of the validated tar-

get protein TRPS1 of hsa-miR-26b-5p was associated with radiation exposure as well. 

A downregulation of TRPS1 in radiation associated breast cancer needed further clari-

fication, since an overexpression of the TRPS1-protein in sporadic breast cancer is 

quite common and reported in the published literature. For this purpose, the impact 

of TRPS1 on the transcriptome was characterized by a global mRNA expression analy-

sis in two radiation-transformed breast cell culture models (B42-11, B42-16) after a 

siRNA-knockdown of TRPS1 expression. Differentially expressed genes upon TRPS1 

knockdown were associated with crucial cellular functions such as mitosis, cell cycle, 

DNA-repair, cell migration, angiogenesis and EMT. Moreover differences in the tran-

scriptomic TRPS1 correlation networks between sporadic breast cancers (transcrip-

tome data from TCGA) and radiation transformed breast cells were explored. The 

genes correlating with TRPS1 in the sporadic breast cancers revealed an association 

with apoptosis. The transcriptional interaction partners in the radiation-transformed 

breast cell lines were mostly linked to chromosome segregation and DNA damage 

response.  

Another aim of this thesis was to develop a signature from genomic copy number 

alterations (CNA) using a newly established statistical model that predicts the expo-

sure status of patients. In a first step, the CNAs of the exposed breast cancer cohorts 

(discovery cohort and validation cohort) and of non-exposed patients were deter-
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mined using array-CGH. In a next step, a forward-backward selection approach was 

used to develop a signature from the genomic CNAs that is predicitive for the expo-

sure status of patients. The resulting signature was selected in a training data set 

(n=68) with a smallest possible complexity and consisted of nine copy number re-

gions. It could be subsequently validated in an independent validation data set 

(n=68). The nine copy number regions of the signature are located on chromosomal 

bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 

2q35, 6p22.2. The copy number status of the nine signature CNAs was technically 

validated by qPCR. 

The markers discovered in this thesis at different molecular levels represent an im-

portant contribution to the research in the field of radiation associated breast cancer. 

The molecular markers point to specific mechanisms of radiation associated breast 

carcinogenesis and can be further used for inclusion in mechanistic risk models that 

determine radiation related risks for the development of breast cancer. 
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2.3 Beschreibung des Journals International Journal of Cancer 

2.3.1 International Journal of Cancer 

Das International Journal of Cancer (ISI Abkürzung: Int. J. Cancer) publiziert For-

schungsergebnisse aus den Bereichen der experimentellen und klinischen Krebsfor-

schung. Der Fokus des Journals liegt auf folgenden Aspekten: Krebsentstehung, 

Krebszellbiologie, Krebsgenetik, infektiöse Krebsursachen, Tumorimmunologie, Früh-

erkennung und Diagnose, Epidemiologie und Krebstherapie. 

Das erstmals 1966 erschienene Journal wird von Prof. Dr. Peter Lichter geführt und 

hat einen impact factor von 7,360 (2017/2018). 

 

2.3.2 Radiation and Environmental Biophysics 

Das Journal Radiation and Environmental Biophysics (ISI Abkürzung: Radiat. Environ. 

Biophys.) publiziert Forschungsergebnisse aus den Bereichen Biophysik und Strahlen-

biologie. Der Fokus des Journals liegt auf folgenden Aspekten: Gesundheits- und Bio-

physik, Umweltschutz, Strahlenschutz, Ökosysteme, Risikoabschätzung und ange-

wandte Strahlenforschung.  

Das erstmals 1963 erschienene Journal wird von PD Dr. Anna Friedl, Prof. Dr. Werner 

Rühm und Prof. Dr. Andrzej Wojcik geführt. 2017 betrug der impact factor 1,527.  

 

2.4 Eigener Beitrag zu den Publikationen 

2.4.1 International Journal of Cancer 

An der Arbeit „Expression of miRNA-26b-5p and its target TRPS1 is associated with 

radiation exposure in post-Chernobyl breast cancer“, publiziert im International Jour-

nal of Cancer, beträgt der von mir durchgeführte Anteil die experimentelle Durchfüh-

rung von RNA- und DNA-Isolation aus formalin-fixed paraffin-embedded (FFPE)-

Gewebeschnitten mit anschließender qRT-PCR und Immunhistochemie sowie die 
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Durchführung von Zellkulturexperimenten mit siRNA-Transfektion und anschließen-

der qRT-PCR, Western Blot und mRNA-microarrays inklusive Probenvorbereitung, 

Datenerfassung, statistischer Auswertungen, Erstellen von Abbildungen und Verfas-

sen des Manuskripts.   

 

An der Arbeit „A genomic copy number signature predicts radiation exposure in 

post‐Chernobyl breast cancer“, publiziert im International Journal of Cancer, beträgt 

der von mir durchgeführte Anteil die experimentelle Durchführung von DNA-Isolation 

aus FFPE-Gewebeschnitten mit anschließender Array-CGH sowie qPCR inklusive Da-

tenerfassung, statistischer Auswertungen, Erstellen von Abbildungen und Verfassen 

des Manuskripts. Die geteilte Erstautorenschaft berücksichtigt große Anteile der sta-

tistischen Methodenentwicklung für die Generierung der genomischen Kopienzahl-

Signatur in strahlenassoziierten Mammakarzinomen. Dieser Beitrag wurde von einem 

Mathematiker geleistet.  

 

2.4.2 Radiation and Environmental Biophysics 

An der Arbeit „Doses of Ukrainian female clean-up workers with diagnosed breast 

cancer“, publiziert im Journal Radiation and Environmental Biophysics, beträgt der 

von mir durchgeführte Anteil die Datenerfassung und Erstellung von Tabellen für das 

Manuskript. 
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2.5 Publikationen 

2.5.1 Publikation 1: Expression of miRNA-26b-5p and its target TRPS1 is associated 

with radiation exposure in post-Chernobyl breast cancer 

 

Wilke CM, Hess J, Klymenko SV, Chumak VV, Zakhartseva LM, Bakhanova EV, Feucht-

inger A, Walch AK, Selmansberger M, Braselmann H, Schneider L, Pitea A, Steinhilber 

J, Fend F, Bösmüller HC, Zitzelsberger H, Unger K 

 

Int J Cancer 2018;142(3):573-83 

 

doi: 10.1002/ijc.31072 
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2.5.2 Publikation 2: A genomic copy number signature predicts radiation exposure 

in post-Chernobyl breast cancer 

 

Wilke CM†, Braselmann H†, Hess J, Klymenko SV, Chumak VV, Zakhartseva LM, 

Bakhanova EV, Walch, AK, Selmansberger M, Samaga D, Weber P, Schneider L, Fend 

F, Bösmüller HC, Zitzelsberger H, Unger K 

 

Int J Cancer 2018;143(6):1505-15 

 

doi: 10.1002/ijc.31533 
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2.5.3 Publikation 3: Doses of Ukrainian female clean-up workers with diagnosed 

breast cancer 

 

Chumak VV, Klymenko SV, Zitzelsberger H, Wilke C, Rybchenko LA, Bakhanova EV 

 

Radiat Environ Biophys 2018;57(2):163-68 

 

doi: 10.1007/s00411-018-0738-5 
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3 Schlussfolgerung und Ausblick 

Ein wesentliches Ziel der vorliegenden Arbeit war der Nachweis von differenziell ex-

primierten miRNAs und deren gemeinsamer Zielgene/Zielproteine in Mammakarzi-

nomen von strahlenexponierten und nicht exponierten Patientinnen. Mit diesem An-

satz sollten mögliche strahlenspezifische Marker entschlüsselt werden. Die Ergebnis-

se dieser Arbeit ergaben die differenziell exprimierte miRNA hsa-miR-26b-5p (Hoch-

regulation) und das differenziell exprimierte Zielprotein TRPS1 (Herunterregulation). 

Die Resultate wiesen zudem darauf hin, dass die Herunterregulation von TRPS1 die 

Expression einer Reihe von mRNAs beeinflusst, welche in Prozessen wie Zellzyklus, 

Mitose, Zellmigration, Angiogenese und EMT eine Rolle spielen. Des Weiteren sind 

TRPS1 und dessen Interaktionspartner in Prozesse der DNA-Reparatur und Chromo-

somensegregation involviert. In einem weiteren Aspekt dieser Doktorarbeit konnte 

mit Unterstützung mathematischer Expertise eine statistische Methode etabliert 

werden. Die Methode erlaubt, anhand einer genomischen Kopienzahl-Signatur, den 

Expositionsstatus eines Patienten zu bestimmen. 

Die vorliegende Arbeit beschreibt somit mögliche molekulare Strahlenmarker in 

Mammakarzinomen. Nach einem allgemein anerkannten und vor kurzem publizierten 

Strategieplan zur Entwicklung von Strahlenmarkern müssen verschiedene Entwick-

lungsstadien durchlaufen werden. Die Marker der vorliegenden Arbeit befinden sich 

dabei im ersten Schritt (Discovery) und erfordern eine weitere Optimierung und Vali-

dierung. Dazu müssen in einem nächsten Schritt (Development) standard operating 

procedures (SOPs) für die Marker entwickelt werden, die eine Reproduzierbarkeit und 

eine Vergleichbarkeit der Analysen in verschiedenen Laboren gewährleisten können 

sowie die Verteilung der Marker im Gewebe und die dynamische Bandbreite der Ex-

pression aufzeigen müssen. In einem anschließenden Validierungsschritt (Validation) 

muss geprüft werden, ob die Marker auch in weiteren unabhängigen Kollektiven und 

in verschiedenen Laboren validiert werden können. Bevor der Biomarker schließlich 
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in molekularen, epidemiologischen Studien eingesetzt werden kann (Application), 

muss dieser in prospektiven Studien getestet werden (Qualification).74  

Die in dieser Arbeit nachgewiesenen Strahlenmarker könnten in der Diagnostik von 

strahlenassoziierten Mammakarzinomen eingesetzt werden. Eine klinische Anwen-

dung der nachgewiesenen, strahlenassoziierten, molekularen Veränderungen setzt, 

wie oben aufgeführt, jedoch deren Validierung in weiteren größeren unabhängigen 

Patientenkollektiven und eine Etablierung standardisierter Nachweisverfahren vo-

raus. Im Rahmen des Projektes dieser Doktorarbeit wurde noch ein weiteres Patien-

tinnenenkollektiv untersucht. Dieses unabhängige Validierungskollektiv setzte sich 

wiederum aus strahlenassoziierten Mammakarzinom-Geweben von Liquidatorinnen 

und Bewohnerinnen kontaminierter Regionen des Tschernobyl-Unfalls zusammen. 

Ferner wurden Brustkrebs-Gewebeproben von Arbeiterinnen der kerntechnischen 

Anlage Majak in Russland in die Untersuchung einbezogen. In der kerntechnischen 

Anlage Majak wurden die Produktion von Radionukliden und die Wiederaufarbeitung 

von Kernbrennstoffen durchgeführt. Als Folge des Kyschtym-Unfalls Im Jahr 1957 ge-

langten sehr große Mengen an radioaktiven Substanzen in die Atmosphäre, mit de-

nen die Majak-Arbeiterinnen exponiert wurden113. Die Expression der Strahlenmarker 

hsa-miR-26b-5p und TRPS1 sowie die Vorhersage des Expositionsstatus anhand der 

genomischen Kopienzahl-Signatur wurden in diesem weiteren Validierungskollektiv 

bestimmt und bestätigten die Befunde der ursprünglich publizierten Analysen. Die 

Daten des zweiten Validierungskollektivs sind bislang jedoch noch nicht publiziert und 

wurden deshalb nicht im Rahmen dieser kumulativen Dissertation dargestellt. Basie-

rend auf diesen ermutigenden Ergebnissen sollten weitere Validierungs-Studien in 

der Weise vorangetrieben werden, dass auch Kollektive von Patientinnen, die nach 

einer Strahlentherapie zur Behandlung eines Non-Hodgkin-Lymphoms als Sekundär-

tumor ein Mammakarzinom entwickelt haben, einbezogen und untersucht werden. 

Auch Brustkrebsfälle von Hämangioma-Patientinnen, welche in jungen Jahren einer 

therapeutischen Bestrahlung ausgesetzt waren, würden sich sehr gut als weiteres 

Validierungskollektiv eignen. Eine zusätzliche Untersuchung sollte eine dosisabhängi-
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ge Ausprägung des Markers in den Blick nehmen. Die Rekonstruierung der Strahlen-

dosen, mit denen die Patientinnen der vorliegenden Studie exponiert wurden, ist mit 

großer Unsicherheit versehen. Dabei wäre ein Vorteil der oben erwähnten klinischen 

Kollektive, dass die Dosen der Bestrahlungsfelder, in denen sich zu einem späteren 

Zeitpunkt ein Mammakarzinom entwickelt hat, sehr genau und zuverlässig bestimmt 

werden können.  

Ein innovativer Aspekt dieser Dissertation war die Etablierung einer genomischen Ko-

pienzahl-Signatur. Diese Signatur ermöglicht den Expositionsstatus einer Patientin in 

Mammakarzinomen zu bestimmen. Bisher war es gängige Praxis aus kontinuierlichen 

Variablen (mRNA- und miRNA-Expressionsdaten) Signaturen für prognostische End-

punkte im Mammakarzinom zu entwickeln107, 109. Es gab bisher jedoch keinen For-

schungsansatz, um eine Signatur zur Vorhersage eines klinischen Endpunkts in 

Mammakarzinomen aus binären bzw. kategorischen Variablen, wie dem Kopienzahl-

status, zu etablieren. Im Rahmen dieser Arbeit wurde erstmals eine multivariate lo-

gistische Regressionsanalyse zur binären Klassifikation der Strahlenexposition für die 

Generierung einer genomischen Kopienzahl-Signatur im Mammakarzinom mit Hilfe 

mathematischer Expertise entwickelt (siehe Material und Methoden Teil, Wilke et al., 

2018). Dieses biostatistische Modell kann in Zukunft als Methode zur Detektion von 

genomischen Kopienzahl-Signaturen für die binäre Klassifizierung in verschiedenen 

Tumorentitäten angewendet werden. Des Weiteren ist eine Integration der Kopien-

zahldaten mit Transkriptomdaten geplant, die es erlauben, mögliche neue molekulare 

Subtypen von strahlenassoziierten Mammakarzinomen zu bestimmen. Globale Gen-

expressionsdaten würden, zusammen mit den Ergebnissen dieser Arbeit, einen wich-

tigen Schritt zur Aufklärung der molekularen Mechanismen von strahlenassoziiertem 

Brustkrebs leisten. 

Die in dieser Promotionsarbeit nachgewiesenen molekularen Strahlenmarker eröff-

nen somit die Möglichkeit einer Integration in epidemiologische Studien, um das 

Brustkrebsrisiko, vor allem im niedrigen Dosisbereich besser bewerten zu können. 

Damit wäre eine genauere Risikovorhersage möglich, wie sie bei strahlenasszoziierten 
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Schilddrüsentumoren schon gezeigt werden konnte114. Epidemiologische Risikoab-

schätzungen zur Krebsentstehung nach medizinischer, diagnostischer Bestrahlung im 

niedrigen Strahlendosenbereich wurden bereits von Brenner et al. durchgeführt. Sie 

postulierten, dass insbesondere junge Patienten, welche wiederholt computertomo-

graphischen Untersuchungen ausgesetzt waren, ein erhöhtes Krebsrisiko haben115, 116. 

Basierend auf solchen epidemiologischen Studien können die identifizierten Strah-

lenmarker in bereits bestehende mechanistische Risikomodelle integriert und die Ri-

sikoabschätzung für ein strahleninduziertes Mammakarzinome verbessert werden. 
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