
BIOZENTRUM DER LMU  DEPARTMENT BIOLOGIE II 

LMU Biozentrum • Großhaderner Str. 2 

 82152 Planegg-Martinsried • Germany 

pig-1 MELK and ced-3 Caspase cooperate to control cell 

polarity in the C. elegans NSM neuroblast 

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften 

Doctor rerum naturalium (Dr. rer. nat.) an der Fakultät für Biologie der 

Ludwig-Maximilians-Universität München 

Vorgelegt von Hai Wei 

aus Shandong, China 

31. 01. 2019



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Gutachter: Prof. Dr. Barbara Conradt

2. Gutachter: Prof. Dr. John Parsch
Tag der Abgabe: 31.01.2019 

Tag der mündlichen Prüfung: 22.05.2019 



Eidesstattliche Versicherung 

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbständig und 

ohne unerlaubte Hilfe angefertigt ist. 

Ort, datum 

 (Unterschrift)      

Erklärung 

Hiermit erkläre ich, 

o dass die Dissertation nicht ganz oder in wesentlichen Teilen einer anderen

Prüfungskommission vorgelegt worden ist.

o dass ich mich anderweitig einer Doktorprüfung ohne Erfolg nicht unterzogen habe.

o dass ich mich mit Erfolg der Doktorprüfung in keinem anderen Fach unterzogen habe.

o dass ich ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich der

Doktorprüfung zu unterziehen.

Ort, datum    

     (Unterschrift)      

22.05.2019, Munich

22.05.2019, Munich

Hai Wei

Hai Wei



Table of contents 
Abbreviations 

Lists of Publication 

List of Figures 

Declaration of Contribution 

Summary 
Part I: 
Abstract          1 

Introduction  

1. C. elegans is an ideal model for genetic and cell biological studies  3 

2. Embryonic cell lineages in C. elegans 4 

3. Central cell death pathway in C. elegans  6 

4. C. elegans NSM neuroblast lineage 9 

5. Asymmetric cell division and cell-fate determinants in the one-cell embryos 11 

6. Asymmetric cell division and cell-fate determinants in other cell lineages  17 

7. CES-1 Snail functions in C. elegans 19 

8. pig-1 MELK functions in C. elegans 23 

Part II (Results): 
Chapter I 

Caenorhabditis elegans ces-1 Snail represses pig-1 MELK expression to control asymmetric 

cell division. 25 

GENETICS 206: 2069–2084. https://doi.org/10.1534/genetics.117.202754 

Supplemental materials 41 

Chapter II 

Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate 

Cells Programmed To Die. 54 

GENETICS 210: 3 983-998. https://doi.org/10.1534/genetics.118.301500 

Supplemental materials 70 

Part III: 
Discussion      73 

1. CES-1 Snail acts as a transcriptional repressor of pig-1 MELK in the NSM neuroblasts

          74 

2. Other regulators of pig-1 MELK have similar functions in the NSM neuroblast         76 

3. ces-1 Snail is involved in various developmental processes 77 



4. pig-1 MELK is involved in various developmental processes                                      79 

5. pig-1 MELK may play a role in cell cycle progression in the NSMnb lineage             81                                                                                                                           

6. The correct asymmetric positioning of the NSMnb cleavage plane depends on CED-3 

caspase activity                                                                                                               82 

7. pig-1 MELK affects the kinetics of the NSMsc death by indirectly influencing the 

activity of CED-3 Caspase                                                                                             84 

8. pig-1 MELK and ced-3 Caspase cooperate to regulate asymmetric cell division in the 

NSMnb                                                                                                                           84 

References                                                                                                            86 

Acknowledgments                                                                                               99 

Curriculum Vitae                                                                                               100 
 



Abbreviations 
bHLH: basic region Helix-Loop-Helix 

ChIP-seq: chromatin immunoprecipitation sequencing 

ces: cell death specification 

EMT: Epithelial-Mesenchymal Transition 

GEFs: Guanine-nucleotide-exchange factors 

GAPs: GTPase-activating proteins 

gf: gain-of-function 

lf: loss-of-function 

MELK: Maternal Embryonic Leucine-zipper kinase 

NSMnb: NSM neuroblast 

NSMsc: NSM sister cell 

pig: par-1-like gene 

TFs: Transcription Factors 

TSS: transcriptional start sites 

 



List of Publications 
H. Wei*, B. Yan*, J. Gagneur, and B. Conradt, 2017 Caenorhabditis elegans ces-1 Snail 

represses pig-1 MELK expression to control asymmetric cell division. GENETICS 206: 2069–

2084. 

Mishra N., H. Wei, and B. Conradt, 2018 Caenorhabditis elegans ced-3 Caspase Is Required 

for Asymmetric Divisions That Generate Cells Programmed To Die. GENETICS 210: 3 983-

998. 

Qingliang Li* H. Wei* Lijing Liu Xiaoyuan Yang Xiansheng Zhang Qi Xie, 2017 Unfolded 

protein response activation compensates endoplasmic reticulum - associated degradation 

deficiency in Arabidopsis. Journal of Integrative Plant Biology 59: 7 506-52. 
 
* These authors contributed equally to this work. 



List of Figures 
Figure 1: Life cycle of C. elegans at 20 ℃                                                                                5 

Figure 2: Central cell death pathway in C. elegans                                                                    8 

Figure 3: Schematic of the asymmetric division of the NSMnb during embryogenesis          10 

Figure 4: Schematic of cell divisions in early C. elegans embryogenesis                                12 

Figure 5: Schematic of symmetry breaking in one-cell stage embryo                                    14 

Figure 6: AP cell polarity established during first round of asymmetric cell division    16 

Figure 7: A gradient of apoptotic potential formed in an engulfment pathway-dependent 

manner prior the NSMnb division                                                                                             18 

Figure 8: CES-1 Snail acts as a transcriptional repressor to control downstream targets        22                                                                                                               

Figure 9: Schematic of PIG-1 protein and % identity and (conserved) residues of C. elegans 

PIG-1 protein compared to MELK from other organisms                                                                             24 

Figure 10: Percent embryonic lethality in pig-1 and ced-3 lf mutants                                     80 

Figure 11: Expression of CED-3::GFP in the NSMnb lineage                                                 83 

 



Declaration of contribution 

In this thesis, I present my doctoral research, which was conducted in the last 4 

years. The results section comprises of two chapters, chapter I and chapter II. Both 

chapters represent cooperation with other scientists and have been published in the 

journal GENETICS in 2017 and 2018. 

Chapter I: 

H. Wei*, B. Yan*, J. Gagneur, and B. Conradt, 2017 Caenorhabditis elegans ces-1 Snail 

represses pig-1 MELK expression to control asymmetric cell division. GENETICS 206: 

2069–2084. https://doi.org/10.1534/genetics.117.202754  

In this chapter, Bo Yan and Julien Gagneur analyzed CES-1 ChIP-seq data that 

was acquired from the modENCODE Project (http://www.modencode.org). I 

determined the phenotype of the NSMnb in pig-1(lf) animals and conducted all genetic 

experiments. Barbara Conradt, Bo Yan and I prepared the manuscrip. I also helped with 

the manuscript revision. In this paper, I presented in Figure 5, 6, 7, 8, 9, S1, S2, S3, S4 

and wrote the respective figure legends. 

Chapter II: 

Mishra N., H. Wei, and B. Conradt, 2018 Caenorhabditis elegans ced-3 Caspase Is 

Required for Asymmetric Divisions That Generate Cells Programmed To Die. 

GENETICS 210: 3 983-998. https://doi.org/10.1534/genetics.118.301500 

In this chapter, Nikhil Mishra performed all experiments related to the QL/R.p 

lineages and I conducted all genetic experiments related to the NSMnb lineage. Barbara 

Conradt, Nikhil Mishra and I wrote the manuscript and I helped with the manuscript 

revision. In this paper, I generated the data presented in Figure 8 and wrote the 

respective figure legend.  

 

Signature: Hai Wei 

                   Bo Yan 

                   Nikhil Mishra 

                   Barbara Conradt 



Summary 

In Chapter I of Part II (Results), I address the question of how ces-1 Snail 

controls the establishment of cell polarity in the NSM neuroblast. Based on my 

studies, I identified pig-1 MELK as a downstream target of ces-1 Snail, which 

plays essential roles in establishing and/or maintaining cell polarity in the NSM 

neuroblast. 

In chapter II of Part II (Results), I attempt to answer the question of why 

CED-3 protein, which is the C. elegans Caspase and which acts as the executor 

of cell death, is present at a high level in the mother (NSM neuroblast) of the NSM 

and NSM sister cell, which normally doesn’t die. One possible reason may be that 

ced-3 Caspase plays a non-killing role in the NSM neuroblast. My studies indicate 

that ced-3 Caspase and pig-1 MELK acts in parallel to control the correct 

positioning of the cleavage plane of the NSM neuroblast. 

Taken together, these two studies demonstrate that pig-1 MELK and ced-3 

Caspase are two important factors that control cell polarity in the NSM neuroblast. 
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Part I 

 

Abstract 

Snail-like genes encode zinc-finger transcription factors that play essential roles in 

development, and one of their well-known functions is the epithelial-mesenchymal 

transition (EMT) induction. Many studies performed in organisms ranging from 

Drosophila melanogaster to mammals have reported that Snail transcription factors 

regulate various aspects of stem cell development, such as cell polarity and cell cycle 

progression. However, the mechanisms through which Snail-like genes regulate these 

developmental processes are not completely understood. To uncover these mechanisms, 

I studied the neurosecretory motor neuron neuroblast (NSMnb) lineage during C. 

elegans embryogenesis. In the NSMnb lineage, we have previously found that CES-1 

Snail controls cell cycle progression by regulating expression of the gene cdc-25.2 

CDC25. However, the mechanism by which ces-1 controls the asymmetric division of 

the NSMnb is unknown. By analyzing CES-1 ChIP-seq data acquired from the 

modENCODE Project, we identified more than 3,000 potential targets of CES-1 Snail. 

From the potential candidates that are involved in regulating asymmetric cell division, 

pig-1 was found to play an essential role in asymmetric NSMnb division. pig-1 encodes 

the sole C. elegans ortholog of Maternal Embryonic Leucine-zipper kinase (MELK) 

kinase. Through genetic studies, I confirmed that pig-1 acts downstream of ces-1 to 

control the asymmetric positioning of the NSMnb cleavage plane.  Furthermore, by 

using a single-copy transcriptional reporter of pig-1, I observed that loss of ces-1 

increases the transcriptional level of pig-1, while gain of ces-1 activity decreases the 

level of pig-1. Therefore, I conclude that CES-1 Snail regulates asymmetric positioning 

of the NSMnb cleavage plane by repressing expression of the gene pig-1. In the NSMnb, 

CES-1 Snail coordinates the cell cycle through cdc-25.2 and asymmetric positioning of 

the cleavage plane through pig-1 to ensure asymmetric cell division and the generation 

of two daughter cells of different sizes and fates: the larger NSM, which survives, and 

the smaller NSM sister cell (NSMsc), which dies. Apart from influencing the 

positioning of the cleavage plane, ces-1 and pig-1 also play roles in controlling the 

orientation of the NSMnb cleavage plane and in specifying the fate of the daughter cell, 

NSMsc.  

On the other hand, I show that ced-3, which encodes a Caspase and which usually 

executes cell death in C. elegans, also plays a role in regulating the asymmetric 
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positioning of the NSMnb cleavage plane. Loss of ced-3 alone did not affect the 

asymmetric positioning of the NSMnb cleavage plane at lateral-dorsal side, but loss of 

both ced-3 and pig-1 reversed the cleavage plane to the medial-ventral side and 

generated a small NSM and a large NSMsc. This indicates that in the NSMnb lineage, 

ced-3 may have other functions in addition to executing cell death in the smaller 

daughter (NSMsc). Furthermore, I confirmed that this function is dependent on the 

Caspase activity of CED-3 protein.  

Taken together, ces-1 Snail and pig-1 MELK are two key factors that coordinate cell 

polarity and cell fate in the NSMnb lineage during C. elegans embryogenesis. In 

addition, ced-3 Caspase acts in parallel to pig-1 and ces-1 to promote the correct 

positioning of the cleavage plane in the NSMnb. 
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Introduction  

1. C. elegans is an ideal model for genetic and cell biological studies 

C. elegans is an excellent genetic model to study developmental biology and 

neurobiology because of its small body size, short life cycle, transparency, well 

annotated genome and invariant cell lineage. Due to these advantages, forward and 

reverse genetics can be used at the level of the whole organism or in specific cell 

lineages to address various biological problems. The invariant cell lineage of C. elegans 

makes it possible to study asymmetric cell division and cell death at the single-cell level 

in vivo, which is difficult in other organisms.  

In addition, several other features make C. elegans a very powerful model organism in 

the lab. For example, C. elegans is a self-fertilizing hermaphrodite, capable of 

producing hundreds of offspring per animal. Larvae of C. elegans can be frozen at -80℃ 

and kept for many years. In addition, growth conditions of C. elegans vary from 12℃ 

to 25℃, which means that the rate of development can be controlled and temperature-

sensitive mutants can be isolated. Incubated at higher temperatures for a short time, C. 

elegans are able to generate males for genetic crosses or perform heat-shock 

experiments (Sulston and Hodgkin 1988). Furthermore, it is easy to collect enough 

materials for biochemical and cell-biology experiments, and it is cheap to maintain C. 

elegans in the lab. Overall, C. elegans is an excellent model organism for studying 

fundamental genetic and molecular mechanisms. Moreover, since ~ 40% of genes that 

are related to human diseases have orthologs in the C. elegans genome (Culetto 2000; 

Shaye and Greenwald 2011), studying C. elegans is very helpful in order to advance 

the knowledge of processes associated with human health and diseases. 
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2. Embryonic cell lineages in C. elegans 

The life of C. elegans begins as a zygote, which then develops through four different 

larval stages (L1, L2, L3 and L4) before maturing into an adult. At the end of each 

larval stage, it proceeds through a transition state in which a new cuticle is formed and 

the old cuticle is molted (Byerly et al. 1976). It needs only 2-3 days (depending on the 

incubation temperature) from a one-cell stage embryo to an adult (Figure 1) (Byerly et 

al. 1976). Using Differential Interference Contrast (DIC) microscopy, J. E. Sulston and 

H. R. Horvitz determined the post-embryonic cell lineages in 1977 (Sulston and Horvitz 

1977). Subsequently, J. E. Sulston, E. Schierenberg, J. G. White and J.N.Thomson 

identified all embryonic cell lineages in 1983 (Sulston et al. 1983). Based on their work, 

it is known that all the lineages in C. elegans are essentially invariant and reproducible 

between different individual animals. Therefore, through continuous observation of a 

live embryo, it is possible to track multiple cell lineages during embryogenesis and to 

identify the mother cell and the fates of their daughter cells.  

In C. elegans, the nomenclature of embryonic cell lineages includes a blast cell name 

(e.g. AB) followed by letters indicating either an anterior/posterior (a/p) or left/right 

(l/r) divisions without a period between them. The post-embryonic lineages are written 

as a blast cell name followed by a/p or l/r divisions separated by a period. For example, 

the embryonic NSMnb left (NSMnbL) cell is named as ABaraapapaa without a period. 

The post-embryonic PVM cell is named as QL.paa and SDQL cell is named as QL.pap 

with a period inside. 

As the NSMnbL and the NSMnbR divide along a ventral-lateral/dorsal-medial axis at 

~ 410 min after the first zygotic cell division (Albertson and Thomson 1976; Ellis and 

Horvitz 1986), the NSML and NSMR are named ABaraapapaav and ABaraapppaav 

respectively. In my thesis, I studied these two lineages, NSMnbL or NSMnbR, and tried 

to determine interrelationships between asymmetric cell division and apoptotic cell 

death. 
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Figure 1. Life cycle of C. elegans at 20 ℃. The life cycle of a C. elegans starts from a zygote. Once the 
impermeable eggshell is formed after fertilization, the embryo can develop independently from the 
mother. At 20 ℃, the embryo takes around 16 h to develop to the L1 stage and 2.5 days to reach the adult 
stage (developmental time is shown at the bottom in blue color). When an animal in the L1 stage cannot 
find food, it develops into a dauer, which can survive up to ~4 months at 15 ℃. Upon restoration of food 

supply, dauers can resume development and reach the L4 stage and develop to an adult (Byerly et al. 

1976; Kenyon 1988). 
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3. Central cell death pathway in C. elegans 

C. elegans is a transparent organism, which makes it possible to distinguish cell corpses 

from living cells based on the morphology and refractivity in vivo using DIC 

microscopy (Alison M. G. Robertson 1982). With this advantage, cell death lineages 

can be identified during embryogenesis and post-embryogenesis. In other words, we 

can make recordings of the animal’s development, identify dying cells and 

subsequently study their mother or founder cell (Sulston and Horvitz 1977; Sulston et 

al. 1983). 

Programmed cell death can be classified into different types based on the 

developmental stage during which it occurs, namely during embryogenesis or post-

embryogenesis, and based on the tissue in which it occurs, namely in the soma or 

germline (Sulston and Horvitz 1977; Sulston et al. 1983; Gumienny et al. 1999). I focus 

on the NSMnb lineage which occurs during embryogenesis and is part of the soma 

(Ellis and Horvitz 1986). In a wild-type hermaphrodite, out of the 1090 somatic cells 

generated, 131 cells undergo programmed cell death and 113 of these 131 cells die 

during embryogenesis (Sulston and Horvitz 1977; Sulston et al. 1983). Through 

morphological and genetic studies of C. elegans, the progression of cell death is 

separated into three sequential phases: specification phase, activation phase and 

execution phase (Horvitz 1999). In the specification phase, cells will be determined to 

undergo programmed cell death or to survive. Once the fate is decided, the cell activates 

the process of cell death in the following activation phase. Finally, during the execution 

phase, the cell undergoing cell death is engulfed and degraded by a neighboring cell. If 

any phase before engulfment and degradation is disrupted, it will lead to inappropriately 

surviving cells in some cell death lineages (Ellis and Horvitz 1986; Conradt and Horvitz 

1998). 

The core machinery of the cell death pathway in C. elegans consists of four factors: 

egl-1, ced-9, ced-4 and ced-3. These genes act in a linear pathway to trigger the cell 

death fate (Hengartner et al. 1992; Shaham and Horvitz 1996; Conradt and Horvitz 

1998). egl-1 encodes a pro-apoptotic protein, which contains a BH3 domain (Conradt 

and Horvitz 1998; Bouillet and Strasser 2002). This domain is important for binding to 

the anti-apoptotic CED-9 protein. ced-9 encodes a homolog of the human proto-

oncoprotein B-Cell Lymphoma 2 (Bcl-2), which acts as an anti-apoptotic factor 

(Hengartner and Horvitz 1994). ced-4 encodes an ortholog of human apoptotic protease 

activating factor 1 (Apaf-1), which forms the apoptosome and recruits and activates the 
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downstream Caspase (Yuan et al. 1992; Zou et al. 1997). C. elegans ced-3 encodes an 

aspartate specific cysteine protease and homolog of human Caspase-3 (and Caspase-7) 

(Yuan et al. 1993), which executes cell death in dying cells. CED-3 Caspase is 

synthesized as an inactive zymogen that is named pro-CED-3, which forms a 

homodimer and is activated by the CED-4 apoptosome to generate the active CED-3 

Caspase composed of two cleaved CED-3 proteins (Yang et al. 1998; Huang et al. 

2013). Through genetic studies, Conradt and Horvitz found that egl-1 acts upstream of 

ced-9 to promote the activation of CED-4 and CED-3 (Conradt and Horvitz 1998). 

While ced-9 acts upstream of ced-4 to inhibit the cell death process (Hengartner et al. 

1992), ced-4 acts upstream of ced-3 to facilitate the activation of ced-3 Caspase (Figure 

2B) (Shaham and Horvitz 1996). The activation of CED-3 Caspase and, hence, the 

activation of cell death, occurs in three sequential steps. In the first step, egl-1 is 

transcribed and EGL-1 protein is synthesized, which binds to CED-9. Second, binding 

of EGL-1 to CED-9 disrupts the interaction between CED-9 and CED-4 and releases 

CED-4 from the preexisting CED-9-CED-4 complex (Conradt and Horvitz 1998; Del 

Peso et al. 1998; Yan et al. 2004). Finally, four released CED-4 asymmetric dimers 

form an octameric apoptosome to facilitate the activation of CED-3 Caspase (Figure 

2A) (Xue et al. 1996; Chen et al. 2000; Huang et al. 2013). Once CED-3 is activated, 

it cleaves several downstream substrates to degrade and kill the cell. In addition, several 

other genes have been reported to be involved in regulating cell death in C. elegans. 

These include csp-1 (Caspase homolog-1) (Shaham 1998; Denning et al. 2013), csp-2 

(Caspase homolog-2) (Shaham 1998; Geng et al. 2009), dad-1 (dad, defender against 

apoptotic death) (Sugimoto et al. 1995) and ces-1 (ces, cell death specification) (Ellis 

and Horvitz 1991; Metzstein and Horvitz 1999). All these factors affect the apoptotic 

fate in different lineages by influencing the core killing machinery. 
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Figure 2. Central cell death pathway in C. elegans. (A) The activation of cell death executor CED-3 
Caspase occurs in three sequential steps. First, in response to cell death stimuli, pro-apoptotic factor 
EGL-1 is activated and binds to the mitochondria-localized anti-apoptotic factor CED-9. Second, 
physical interaction between EGL-1 and CED-9 disrupts the interaction between CED-9 and CED-4, 

which releases CED-4 from the CED-9/CED-4 complex. Finally, released CED-4 homodimers 
polymerize to form an octameric apoptosome to facilitate the activation of pro-CED-3 zymogen. (B) 

Factors of central cell death machinery in C. elegans act in a linear genetic pathway to initiate cell death. 
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4. NSM neuroblast lineage in C. elegans 

In wild-type C. elegans, two bilaterally symmetric NSM neuroblast cells exist 

(NSMnbL and NSMnbR), which originate from the AB blastomere cell and are 

generated around 230 min post fertilization. At ~ 410 min post fertilization, each of 

these two NSM neuroblasts divide asymmetrically to give rise to two daughter cells of 

different sizes and fates (Sulston et al. 1983; Hatzold and Conradt 2008). During the 

NSMnb division in wild-type embryos, the cleavage plane is oriented in a ventral-

lateral to dorsal-medial direction to give rise to two daughter cells.  The larger daughter 

cell (NSM) localizes to the ventral-medial side, and the smaller daughter cell (NSMsc) 

localizes to the dorsal-lateral side (Figure 3). The larger daughter cell (NSM) survives 

and differentiates into a serotonergic motor neuron, whereas the smaller daughter cell 

(NSMsc) dies ~ 22 min post its birth at 20℃ (Sulston et al. 1983; Hatzold and Conradt 

2008). 

As mentioned above, in wild-type embryos, each NSMnb divides asymmetrically to 

give rise to a smaller NSMsc, which undergoes cell death. In this process, active CED-

3 Caspase acts as a critical factor in executing the apoptotic fate of the smaller daughter 

cell (NSMsc). Loss of ced-3 causes 100% inappropriate NSMsc survival (Ellis and 

Horvitz 1986; Shaham et al. 1999). Therefore, the kinetics of cell death or execution of 

the apoptotic fate of the NSMsc depends on the central cell death pathway. In addition, 

using a NSM-specific tph-1 reporter, it has been reported that disruption of the 

asymmetric cell division of the NSMnb results in the formation of extra NSMs (Hatzold 

and Conradt 2008; Yan et al. 2013; Wei et al. 2017), which indicates that the apoptotic 

fate of the NSMsc is affected. Moreover, the Garriga lab found that loss of QL.p cell 

polarity also influences the fate of its daughter cells. Therefore, they proposed that cell 

polarity regulates the fate of daughter cells by controlling the asymmetric segregation 

of neural fate determinants to daughter cells (Guenther and Garriga 1996; Frank et al. 

2005; Cordes et al. 2006). However, the mechanisms of how these cell-fate 

determinants are asymmetrically distributed and which cell-fate determinants are 

involved in this process are poorly understood. Out of all cell death lineages during 

embryogenesis, the NSMnb lineage was chosen  to study this question. Using a cell 

boundary marker (ltIs44, Ppie-1mCherry::phPLCδ) (Kachur et al. 2008), I can distinguish 

the two NSM neuroblasts and follow their developmental progression easily during 

embryogenesis, allowing for studies to be performed at a single-cell level in vivo. By 

studying the NSMnb lineage, I can detect the expression or distribution of cell-fate 
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determinants during the asymmetric cell division or track these factors in the two 

daughter cells that have different fates. Based on the above mentioned advantages, the 

embryonic NSMnb lineage is a very useful tool to study asymmetric cell division and 

cell death.  

Figure 3. Schematic of the asymmetric division of the NSMnb during embryogenesis.  (A) The 
NSMnb lineage in wild type. The smaller daughter NSMsc dies around 22 min post its birth while the 
larger daughter survives. (B) Confocal images of the NSMnb before metaphase, at metaphase and during 

cell division. “V” means the ventral side and “D” means the dorsal side; the NSM and the NSMsc are 
marked in different colors. The cell boundary marker is an integrated transgene (ltIs44, Ppie-

1mCherry::phPLCδ) on chromosome V. (C) Schematic showing the location of the NSM and NSMsc post 
asymmetric division in a lateral view. The orange transparent rectangle indicates the orientation of the 
NSMnb cleavage plane. (D) Schematic showing the location of the NSM and the NSMsc post asymmetric 

division in an anterior view. The orange dotted line indicates the orientation of the NSMnb cleavage 

plane. 
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5. Asymmetric cell division and cell-fate determinants in one-cell embryos 

In all multicellular animals, asymmetric cell division is an essential and fundamental 

process that plays important roles during development. Live imaging of this process in 

specifically interested lineages is very challenging (or essentially impossible) in 

developing animals. Compared to other organisms, C. elegans is a good model to study 

progression of asymmetric cell division in developing embryos.  

The life cycle of C. elegans starts from a zygote and goes through many rounds of cell 

division and differentiation. It then finally develops into a multicellular organism with 

959 somatic cells (and 1031 somatic cells in an adult male) (Sulston and Horvitz 1977; 

Kimble and Hirsh 1979; Sulston et al. 1983). During this process, cells acquire different 

fates to form various organs or tissues. One of the prominent mechanisms in C. elegans 

to achieve this is through asymmetric cell division, which generates two daughter cells 

of different fates in which the smaller cell usually dies or differentiates into a specific 

type of cell while the larger cell usually survives or differentiates into another specific 

type of cell. At the beginning of embryogenesis, the first asymmetric division cleaves 

the zygote P0 into a larger anterior blastomere AB and a smaller posterior blastomere 

P1.  Subsequently, P1 divides asymmetrically to generate the two daughter cells, EMS 

and P2, which have different sizes and fates. Soon after, two additional asymmetric 

divisions divide EMS into MS and E, and divide P2 into C and P3. Thereafter, P3 

undergoes another asymmetric cell division to give rise to D and P4. In this manner, six 

founder cells, AB, MS, E, C, D and P4, are produced via 5 asymmetric divisions (Figure 

4) (Sulston et al. 1983). During these asymmetric cell divisions, cell-fate determinants 

are distributed asymmetrically into different daughter cells. For this reason, the 

descendants of each founder cell will finally develop into a specific kind of cell type. 

For instance, most of the hypodermis and pharyngeal neurons are generated from the 

AB blastomere, while intestine and germline originate from the E cell and P4 cell, 

respectively (Sulston et al. 1983).  

During the formation of cell polarity in early embryogenesis, four sequential steps 
namely symmetry breaking, polarity establishment, polarity maintenance and 

asymmetric division occur in an ordered way to ensure normal development. Based on 

decades of studies, many mechanisms of how cell polarity in early embryogenesis is 

established have been discovered. After fertilization, the entire actomyosin network 

localized under the cell membrane undergoes contractions, which depends on non- 
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Figure 4. Schematic of cell divisions in early embryogenesis of C. elegans. Left side is anterior and 
right side is posterior, top is dorsal and bottom is ventral. During early embryogenesis, six founder cells 
that are marked in different colors are generated through five asymmetric divisions. Various colors 

indicate that each founder cell has its own characteristic cell cycle and lineage in the further 
developmental process. For instance, hypodermis, some neurons and anterior pharynx are generated from 
AB cell. Muscle cells, somatic gonad, majority of the pharynx and gland cells are generated from MS 
cell. On the other hand, E and D cells give rise to intestine and muscle tissues, C cell differentiates into 

muscle, hypodermis and neurons, and P4 engenders germline precursor cells. 

muscle myosin II heavy chain NMY-2 and the associated light chain 4 MLC-4 (Shelton 

et al. 1999). Studies on the cortical contractions in early embryogenesis revealed that 

RHO-1 (a Rho family GTPase) and LET-502 (a Rho-binding kinase) work together to 

promote the activity of NMY-2 (Motegi and Sugimoto 2006; Schonegg 2006), thereby 

controlling the surface contractions of the whole cortical actomyosin network. 

Fertilization induces sequential events to break the symmetry of the oocyte. Before 

symmetry breaking, centrioles brought by the sperm recruit the pericentriolar material 

to assemble centrosomes and nucleate microtubules. Relying on short cortical 

microtubules, centrosomes walk randomly in the zygote. In the beginning of symmetry 

breaking, the random walking centrosomes juxtapose to the cell cortex which results in 

the formation of a small smooth cortical domain (Cuenca 2003; Cowan and Cowan 

2004; Bienkowska and Cowan 2012). This domain ceases surface contractions of the 

cortical actomyosin network and breaks the symmetry of the zygote. In this process, 
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microtubules play a minor role (Sonneville 2004; Tsai and Ahringer 2007). Following 

symmetry breaking, the local cessation of cortical contractions depends on RHO-1 

activity around centrosomes. Guanine-nucleotide-exchange factors (GEFs) promote the 

generation of active RHO-1-GTP, while GTPase-activating proteins (GAPs) promote 

the formation of inactive RHO-1-GDP. In C. elegans, ECT-2 and RGA-3/4 are GEF 

and GAPs of RHO-1 (Schmutz et al. 2007; Schonegg et al. 2007; Tse et al. 2012), 

respectively. In the symmetry breaking process, it has been proposed that the absence 

of ECT-2 in the vicinity of centrosomes is important for the inactivation of RHO-1, 

which leads to the local cessation of cortical contractions (Figure 5) (Motegi and 

Sugimoto 2006; Schonegg 2006). RGA-3, ECT-2 and RHO-1 present a similar 

localization under the cell cortex in one-cell embryos. It has been hypothesized that a 

balance existes between RGA-3/4 and ECT-2 on regulating RHO-1 activity, but it is 

yet unknown how this balance is established during polarization to promote generating 

anterior and posterior cortical contractions (Schonegg et al. 2007). In addition, CYK-4 

has also been reported to play a similar role like GAP to inhibit the function of RHO-1 

(Jenkins et al. 2006). However, detailed functions of CYK-4 seem to be unclear, 

because most of the CYK-4 is inactive at this stage (Jenkins et al. 2006; Tse et al. 2012). 

In addition, PAR-2 protein is also reported to act in a partial redundant pathway to break 

this symmetry.  

During polarity establishment in early embryogenesis, PAR proteins play a central role 

to set up an anterior-posterior (A-P) polarity with two mutually exclusive domains, 

PAR-3/PAR-6/PKC-3 localized to the anterior side and PAR-1/PAR-2 localized to the 

posterior side (Cuenca 2003; Munro et al. 2004; Goldstein and Macara 2007). This is 

important for the asymmetric distribution of cell-fate determinants (Figure 6). In 

addition, during this anteriorly-directed flow of cortical materials, contraction of the 

actomyosin network establishes different cortical tensions along the anterior-posterior 

axis. These different cortical tensions in anterior and posterior are important for the 

movements of surface materials (Hird and White 1993; Mayer et al. 2010). In other 

words, asymmetric distribution of PAR proteins and flow of actomyosin network act 

together to set up the polarity during early embryogenesis (Zonies et al. 2010; Motegi 

et al. 2011). After the polarity establishment phase, the cell polarity maintenance phase 

occurs and the mutual inhibition of anterior and posterior cortical localized PAR 

domains is important to maintain the established polarity. In this process, PAR-2 plays 

a critical role to maintain this mutual inhibition (Cuenca 2003). Centrosomes or the 
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cortical actomyosin network does not act or has a minor role during this maintenance 

(Cowan and Cowan 2004; Ai et al. 2011). Once cell polarity is established by these 

three subsequent steps, it results in the asymmetric distribution of cell-fate determinants 

in the anterior and posterior cytoplasm, which then give rise to two daughter cells that 

carry different fate determinants (Thorpe et al. 1997; Tabara et al. 1999; Takeshita and 

Sawa 2005; Zonies et al. 2010). In my study, I use the NSM neuroblast lineage to study 

the genetic mechanisms that are required for the asymmetric positioning and orientation 

of the cleavage plane and the asymmetric distribution of cell-fate determinants. 

Figure 5. Schematic of symmetry breaking in one-cell stage embryo. In the beginning of symmetry 
breaking, cortical contractions of the actomyosin network (blue marked wiggled line) are ceased when 
the centrosome becomes juxtaposed to the cell cortex, which results in the formation of a smooth domain 
along the cell cortex (grey marked smooth line). Following symmetry breaking, due to the inactivation 
of RHO-1 near centrosomes, the local cessation of cortical contractions extend to the whole posterior. 
Cortical contractions along the anterior-posterior generate cortical tensions, which induce cortical flows 

to distribute cortical materials. 
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Mechanisms of asymmetric distribution of cell-fate determinants are well studied in 

early embryogenesis. PAR proteins establish and maintain cell polarity before 

asymmetric division. Subsequently, other components that act downstream of PAR 

proteins promote the generation of cytoplasmic asymmetries to determine different 

fates in the daughter cells. In early embryogenesis, many factors have been shown to 

be asymmetrically distributed. MEX-5 and MEX-6 are considered to be the two 

primary asymmetry mediators, because the asymmetric localization of many factors 

depends on them in early embryos (Schubert et al. 2000). MEX-5/6 are enriched in the 

anterior part of the one-cell embryo since their cytoplasmic motility in the anterior and 

the posterior side is different (Tenlen et al. 2008; Daniels et al. 2010). PAR-1, which 

encodes a serine/threonine kinase, might act with PAR-4 to phosphorylate MEX-5/6 to 

increase their motility in the posterior, and hence, regulating MEX-5/6 asymmetric 

cytoplasmic localization (Tenlen et al. 2008; Griffin et al. 2011). Once the gradient of 

MEX-5/6 is formed in an anterior-posterior way, it then promotes the asymmetric 

localization of various cell-fate determinants (Figure 6). For instance, MEX-5/6 restrict 

the polarity mediators MEX-1, POS-1 and the cell-fate regulator PIE-1 to the posterior 

side of the one-cell embryo prior to division (Reese et al. 2000). Asymmetric 

localization of these three factors is dependent on MEX-5/6 induced degradation events. 

It has been reported that PIE-1, MEX-1 and POS-1 have tandem CCCH domains in 

their protein sequences. The first zinc finger (ZF1) domain is important for the 

degradation, because it binds to ZIF-1, which encodes a SOCS box protein and is an 

essential partner of the CUL-2 E3 Ubiquitin ligase complex to recruit substrates 

(DeRenzo et al. 2003). By checking a transgene reporter of zif-1 3’ UTR in early 

embryogenesis, MEX-5/6 was reported to play a key role in promoting the expression 

of ZIF-1 by binding to its 3’UTR (Oldenbroek et al. 2012). The synthesized ZIF-1 is 

necessary for the degradation of PIE-1, MEX-1 and POS-1 in the AB cell as well as in 

the daughter cell of subsequent P cell divisions. Such asymmetric localizations are 

established through translational regulation by MEX-5/6 (Guven-Ozkan et al. 2010). 

However, MEX-5/6 can also influence asymmetric localization through physical 

interactions. For example, the Polo-like kinases PLK-1 and PLK-2 are enriched in the 

anterior side of the one-cell embryo by directly binding to MEX-5/6 (Budirahardja and 

Gonczy 2008; Nishi et al. 2008). Moreover, MEX-3, a cell polarity mediator, also 

interacts with MEX-5/6 at the protein level (Huang et al. 2002).  
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Figure 6. AP cell polarity established during first round of asymmetric cell division. Interaction 
between centrosome and cell cortex in C. elegans zygote breaks the symmetric status to build an AP 

(anterior-posterior) polarity where PAR-3/PAR-6/PKC-3 localize to the anterior domain and PAR-
1/PAR-2 localize to the posterior domain. PAR-1 inhibits the accumulation of MEX-5/6 at the posterior 
side, which results in the enrichment of MEX-5/6 at the anterior. Thereafter, MEX-5/6 prevents the 
accumulation of PIE-1, MEX-1, POS-1 and P granules in the anterior domain, as well as enhances the 
asymmetric distribution of PAR-3/PAR-6/PKC-3. As a result of these asymmetric distributions in the 

one-cell embryo, P0 then divides asymmetrically to give rise to two daughter cells, AB and P1, with 

different fates. 
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6. Asymmetric cell division and distribution of cell-fate determinants in other cell 

lineages 

In addition to the one-cell stage, asymmetric distribution of cell-fate determinants is 

also observed in other embryonic lineages. Recently, our lab found that mRNA 

messages of egl-1, which encodes a pro-apoptotic BH3-only member of the Bcl-2 

family, are asymmetrically localized in the two daughter cells of the RID lineage 

(Sherrard et al. 2017). This asymmetric distribution of egl-1 mRNA could be enabled 

by the polarity of the mother cell. In addition, other studies from our lab have 

demonstrated that unequal amounts of TAC-1 are assembled on the two centrosomes 

during asymmetric division of the mother cell in two different cell lineages, the NSMnb 

and the QL.p lineages. Using fluorescently tagged TAC-1 (TAC-1::GFP and TAC-

1::mKate2) as reporter, more TAC-1 fluorescent signals were found to be associated 

with the ventral and anterior centrosomes in the NSMnb and the QL.p, respectively 

(Chakraborty et al. 2015; Mishra et al. 2018). TAC-1 is a substrate of CED-3 Caspase, 

which could be dissociated from the centrosomes upon being cleaved by CED-3. 

Therefore, the asymmetry in the amounts of centrosomal TAC-1 suggests that a 

gradient of active CED-3 Caspase may exist along the ventral-dorsal axis in the NSMnb 

and along the anterior-posterior axis in the QL.p (Figure 7).  

In addition, it has been reported that ces-1, which encodes a C2H2 zinc-finger 

transcription factor and functions as an anti-apoptotic factor to repress the central cell 

death pathway, has a much higher concentration in the large daughter (NSM) compared 

to the small daughter (NSMsc) (Hatzold and Conradt 2008). ces-1 was classified as an 

anti-apoptotic factor and was identified as a Snail family zinc-finger protein by the 

Horvitz lab (Ellis and Horvitz 1991; Metzstein and Horvitz 1999b). A subsequent study 

from our lab revealed that CES-1 blocks the cell death pathway by antagonizing 

HLH2/HLH3 in order to inhibit the expression of the proapoptotic gene egl-1 

(Thellmann 2003). This mechanism could explain why the large daughter cell (NSM), 

with higher CES-1 level, survives, whereas the small daughter cell (NSMsc), with 

lower CES-1 level, dies. Furthermore, studies with the embryonic HSN/PHB and 

NSMnb lineages and with the postembryonic QL and QR lineages suggest that the 

apoptotic fate of the small daughter cell is controlled by asymmetric division of the 

mother cell (Frank et al. 2005; Cordes et al. 2006; Wei et al. 2017).  

Taken together, these findings suggest that pro- or anti-apoptotic factors are segregated 

asymmetrically in the RID, NSMnb, QL, QR and potentially other cell death lineages 
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in a very organized manner, which indicates that the mother cell may determine the 

fates of the two daughter cells prior to their generation. In this study, I attempt to 

understand how asymmetric cell division is regulated in cell death lineages. To that end, 

I use the NSM neuroblast lineage as model. 

 

 

Figure 7. A gradient of apoptotic potential formed in an engulfment pathway-dependent manner 
prior to NSMnb division. ~5 min before the NSMnb metaphase, a basal level of the active CED-3 

Caspase promotes clustering of the engulfment factor CED-1 on the dorsal neighbor cells. In turn, this 
asymmetric enrichment of CED-1 reinforces the gradient of active CED-3 in the NSMnb, which divides 

to generate two daughter cells with unequal apoptotic potential.  
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7. CES-1 Snail functions in C. elegans 

Snail family members are transcription factors (TFs) that often function as 

transcriptional repressors. Snail TFs have been identified in various organisms, 

including the nematode C. elegans, and have been reported to be involved in many 

developmental processes, like epithelial-mesenchymal transition (EMT) (Nieto et al. 

1994; Batlle et al. 2000; Cano et al. 2000), neuronal differentiation (Blanco et al. 2002), 

cell death (Ellis and Horvitz 1991), tumorigenesis and carcinoma (Hemavathy et al. 

2000; Barrallo-Gimeno 2005). In 1984, the first member of the Snail family TFs was 

discovered in Drosophila (Grau et al. 1984; Nusslein-Volhard et al. 1984; Boulay et al. 

1987). Subsequently, more members were found in Drosophila, vertebrates and non-

vertebrate chordates (Corbo et al. 1997; Langeland et al. 1998; Sefton et al. 1998; 

Knight and Shimeld 2001; Manzanares et al. 2001). Snail family TFs can be classified 

into three major subclasses: Snail, Slug and Scratch (Nieto 2002). Analysis of their 

protein sequences have shown that most of them have a conserved C-terminus, which 

contains several zinc-finger domains. While their N-terminus are quite divergent, apart 

from the Snail and Gfi-1 (SNAG) domain (Thisse et al. 1995; Katoh and Katoh 2005), 

Slug family members also contain a distinct Slug domain and Scratch family members 

contain a unique Scratch domain at their N-terminus (Manzanares et al. 2001). Most of 

the Snail type proteins resemble to Snail (Barrallo-gimeno and Nieto; Manzanares et 

al. 2001). Snail-type TFs usually contain three to five C2H2 zinc finger domains, which 

are important for the DNA binding affinity (Evans and Hollenbergt 1988). From in vitro 

and in vivo studies, Snail-type TFs have high binding ability to CAGGTG (‘E-box’) 

(Reece-Hoyes et al. 2009) and ACAGGTG (‘Snail-box’) motifs (Thellmann 2003) and 

function as either repressors or activators to regulate transcription of their target genes. 

In vertebrates, the SNAG domain, which is responsible for recruiting histone 

deacetylases, is important for the repressor activity of Snail TFs (Peinado et al. 2004). 

However, Snail-type TFs in C. elegans and Drosophila do not have this domain. In 

addition to the one mediated by the SNAG repressor domain, other inhibitory 

mechanisms were also reported. For instance, Snail-type TFs can physically interact 

with dCtBP and Ebi to mediate the repression of their targets (Nibu et al. 1998; Qi et 

al. 2008). In addition, Snail-type TFs were also found to compete with the basic region 

helix-loop-helix (bHLH) members of TFs to bind to the same conserved motifs. 

Because of this competition, high level of Snail-type TFs prevent the binding of the 
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bHLH TFs to targets and thereby inhibit these transcription activators (Kataoka et al. 

2000; Thellmann 2003). 

In 1991, the Horvitz lab identified ces-1 as a suppressor of the apoptotic fate of the 

NSMsc and showed that this is accomplished through the regulation of an apoptotic 

gene that acts upstream of ced-4 and ced-3 (Ellis and Horvitz 1991). In 1998, the 

Horvitz lab found that ces-1 acts upstream of egl-1 to affect cell fate of the NSMsc 

(Conradt and Horvitz 1998). In 1999, the Horvitz lab reported that ces-1 encodes a zinc-

finger TF that is similar to the Drosophila neuronal differentiation protein Scratch and 

belongs to the Snail family (Metzstein and Horvitz 1999b). In Drosophila, three Snail 

members (snail, escargot and worniu) and three Scratch members (scratch, scratch-

like1 and scratch-like2) have been reported, while in C. elegans, only three Snail type 

C2H2 TFs (ces-1, K02D7.2 and scrt-1) have been identified according to the amino 

acid sequence similarity (Nieto 2002; Reece-Hoyes et al. 2009). The lack of neither 

K02D7.2 nor scrt-1 function has been found to cause any developmental defects, 

whereas a strong gain-of-function (gf) of ces-1 has been observed to result in a defective 

asymmetric cell division or perturbed cell fate in some neuroblasts (Thellmann 2003; 

Hatzold and Conradt 2008; Yan et al. 2013).  

The protein sequence of CES-1 is most homologous to the Snail type superfamily 

member Scratch. CES-1 has been found to act as a transcriptional repressor in the 

NSMnb lineage, which is similar to most Snail-type members that function as negative 

regulators of transcription in other organisms. Based on the study in the NSMnb lineage, 

CES-1 specifically inhibits egl-1 transcription by competing with HLH-2/HLH-3 

heterodimers to bind to the E-box or Snail-box motif in the egl-1 transcriptional 

regulatory region (Thellmann 2003). This binding represses the transcription of egl-1 

and is crucial for the fate determination of the NSMsc. In addition, CES-1 is also 

involved in controlling cell cycle by negatively regulating the transcription of cdc-25.2 

in the NSMnb (Yan et al. 2013). cdc-25.2 encodes a CDC25-like phosphatase, which 

is a regulator of cell cycle progression (Figure 8). Moreover, in animals carrying the 

ces-1(n703gf) mutation, the position and orientation of the NSMnb cleavage plane are 

abnormal (Hatzold and Conradt 2008). This suggests that ces-1, as a TF repressor, has 

a role in controlling cell polarity in the NSMnb and other cell lineages. However, the 

underlying mechanisms of how ces-1 controls cell polarity of the NSMnb are not yet 

clear. The Garriga lab found that pig-1, which is homologous to mammalian MELK, 

regulates cell polarity in the QL/R and the HSN/PHB lineages (Cordes et al. 2006). A 
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few years ago, the lab of Ou conducted a ChIP-seq analysis of HAM-1 (acquired from 

the modENCODE Project), which contains a winged helix DNA binding domain. They 

found that HAM-1 acts as an upstream transcriptional activator of pig-1 and controls 

the establishment and/or maintenance of cell polarity in the HSN/PHB and the Q.p 

lineages (Feng et al. 2013a). Based on the way that they identified pig-1 as a direct 

target of ham-1 in the Q.p, I attempt to determine some downstream targets of ces-1, 

which can regulate the establishment and/or maintenance of cell polarity in the NSMnb 

using a similar method. Therefore, we analyzed the CES-1 ChIP-seq data in order to 

identify new potential downstream targets that are involved in regulating cell polarity. 

Interestingly, pig-1 was also identified as a potential CES-1-target. To further 

understand this interaction, I investigated the role of pig-1 in the NSMnb lineage. 

Taken together, C. elegans CES-1, as a Snail-type transcriptional regulator, is not only 

involved in the determination of cell fate, but it is also involved in the regulation of cell 

cycle progression and cell polarity. 
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Figure 8. CES-1 Snail acts as a transcriptional repressor to control downstream targets. (A-B) 
CES-1 Snail competes with HLH-2/HLH-3 homodimer to bind to the egl-1 regulatory element (Region 

B domain). Due to the low levels of CES-1, HLH-2/HLH-3 binds to the Region B domain to promote 
transcription of egl-1 and to initiate the apoptotic process in the NSMsc. Conversely, excessive CES-1 
binds to the Region B domain to prevent HLH-2/HLH-3 from binding to the Region B domain and this 
inhibits the transcription of egl-1 in the NSM. (C) CES-1 Snail binds to the regulatory element of cdc-
25.2 to inhibit transcription in the NSMnb. (D) CES-1 Snail positively or negatively regulates an 

unknown target to control the establishment of cell polarity in the NSMnb. 
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8. pig-1 MELK functions in C. elegans 

Maternal embryonic leucine zipper kinase (MELK) encodes a serine/threonine kinase, 

which was first identified from cDNA libraries generated from mice using unfertilized 

oocytes and preimplantation embryos (Heyer et al. 1997). The determination of the 

protein structure of human MELK enabled us to study the functions of MELK orthologs 

in different organisms. Because of the serine/threonine kinase domain at the N-terminus, 

MELK is classified as a member of the AMPK/Snf1 superfamily (Heyer et al. 1999). 

The protein structure of MELK is highly conserved across a variety of mammalian and 

non-mammalian organisms (Figure 9) (Cordes et al. 2006; Ganguly et al. 2015), but 

the biological function appears to be distinct in different organisms. In mammals, 

MELK has been shown to be involved in cell cycle progression, stem cell proliferation, 

spliceosome assembly and carcinogenesis (Vulsteke et al. 2004; Nakano et al. 2005; 

Badouel et al. 2010; Du et al. 2014). In non-mammals, such as Zebra fish and Xenopus 

(Blot et al. 2002; Saito et al. 2005; Le Page et al. 2011), MELK has been reported to 

affect the progression of cell division, propagation and homeostasis of some organ-

specific stem cells. However, recent studies in C. elegans revealed that MELK plays a 

role in controlling cell polarity and cell fate in certain neuroblasts (Cordes et al. 2006; 

Wei et al. 2017), which has not been described in other organisms. 

pig-1 is a par-1-like gene, which encodes the sole C. elegans ortholog of MELK. As 

mentioned above, PAR-1 belongs to the serine/threonine kinase superfamily and is 

important for the establishment of cell polarity in the one-cell stage embryo (Guo and 

Kemphues 1995). Similar to other members of the AMPK/Snf1 family, pig-1 MELK 

also encodes a serine/threonine kinase that has a kinase domain at its N-terminus and a 

kinase-associated (KA) domain at its C-terminus. According to studies in mammals, 

the activity of AMPK/Snf1 family members depends on their phosphorylation status, 

and they are substrates of LKB1 kinase (Lizcano et al. 2004). LKB1 encodes a 

serine/threonine kinase that is highly conserved across various organisms and plays 

critical roles in the progression of tumorigenesis. Through further study, LKB1 was 

discovered to act together with a pseudokinase, STRAD, and an adaptor protein, MO25, 

in a complex (Baas et al. 2003; Boudeau et al. 2003). With combination of these two 

factors, LKB1 activates diverse downstream kinases through phosphorylating some 

conserved threonine residues in their activation loop (Hawley et al. 2003). After 

studying the orthologs of mammalian LKB1 (PAR-4), STRAD (STRD-1) and MO25 

(MOP-25.1 and MOP-25.2) in C. elegans, the Garriga lab discovered that the par-
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4/strd-1/mop-25.2 complex regulates the kinase activity of pig-1 MELK by 

phosphorylating a conserved threonine (T169) residue (Chien et al. 2013). This 

phosphorylation is important for the activity of pig-1 MELK to control the asymmetric 

positioning of the cleavage plane as well as the fate of the daughter cells in the 

HSN/PHB, the QL and the QR neuroblast lineages. However, loss of mop-25.1 did not 

result in any defects in these lineages. In addition, HAM-1, which has a winged helix 

DNA binding domain, has been reported to act upstream of pig-1 MELK to control the 

asymmetric cell division by positively regulating the transcription of the pig-1 gene in 

the HSN/PHB and the Q.p lineages (Frank et al. 2005; Feng et al. 2013b). The factors 

mentioned above are positive regulators of pig-1 MELK in C. elegans, while the 

negative regulators of pig-1 MELK in vivo are unclear so far. 

Figure 9. Schematic of PIG-1 protein and % identity and (conserved) residues of C. elegans PIG-
1 protein compared to MELK from other organisms. Schematic diagram of domain architecture of the 

PIG-1 protein, depicting the N-terminal kinase domain (blue color) and the C-terminal kinase-associated (KA) 
domain (grey color). The sizes of each domain are shown above the diagram. Below the diagram is a table comparing 

each domain of PIG-1 to orthologs in frog, fish, mouse and human. 
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Caenorhabditis elegans CES-1 Snail Represses pig-1
MELK Expression To Control Asymmetric Cell Division
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ABSTRACT Snail-like transcription factors affect stem cell function through mechanisms that are incompletely understood. In the
Caenorhabditis elegans neurosecretory motor neuron (NSM) neuroblast lineage, CES-1 Snail coordinates cell cycle progression and cell
polarity to ensure the asymmetric division of the NSM neuroblast and the generation of two daughter cells of different sizes and fates.
We have previously shown that CES-1 Snail controls cell cycle progression by repressing the expression of cdc-25.2 CDC25. However,
the mechanism through which CES-1 Snail affects cell polarity has been elusive. Here, we systematically searched for direct targets of
CES-1 Snail by genome-wide profiling of CES-1 Snail binding sites and identified .3000 potential CES-1 Snail target genes, including
pig-1, the ortholog of the oncogene maternal embryonic leucine zipper kinase (MELK). Furthermore, we show that CES-1 Snail
represses pig-1 MELK transcription in the NSM neuroblast lineage and that pig-1 MELK acts downstream of ces-1 Snail to cause
the NSM neuroblast to divide asymmetrically by size and along the correct cell division axis. Based on our results we propose that by
regulating the expression of the MELK gene, Snail-like transcription factors affect the ability of stem cells to divide asymmetrically and,
hence, to self-renew. Furthermore, we speculate that the deregulation of MELK contributes to tumorigenesis by causing cells that
normally divide asymmetrically to divide symmetrically instead.

KEYWORDS Snail-like transcription factor; ChIP-seq; maternal embryonic leucine zipper kinase (MELK); asymmetric cell division; Caenorhabditis elegans

SNAIL-LIKE zinc-finger transcription factors are critical for
animal development and their deregulation has been

implicated in tumorigenesis andmetastasis (Barrallo-Gimeno
and Nieto 2009; Puisieux et al. 2014; Nieto et al. 2016). The
best-known function of Snail-like transcription factors is
their role in orchestrating epithelial-mesenchymal transitions
(EMTs), which are essential for development. Through
EMTs, epithelial cells are converted into mesenchymal cells,
which lack apico-basal polarity but have migratory proper-
ties, and thus contribute to the formation of various tissues
and organs. In this context, Snail-like transcription factors
directly repress the transcription of genes required for

apico-basal polarity and cell adhesion and thereby promote
the induction of EMT. Snail-like transcription factors have
also been shown to regulate fundamental processes such as
cell proliferation and cell survival in animals as diverse as
nematodes andmammals (Metzstein and Horvitz 1999; Yan
et al. 2013; Puisieux et al. 2014). Recently, Snail-like tran-
scription factors have also been implicated in various as-
pects of stem cell function (Guo et al. 2012; Desgrosellier
et al. 2014; Hwang et al. 2014; Lin et al. 2014; Horvay et al.
2015; Ye et al. 2015; Tang et al. 2016). There is mounting
evidence that in stem cell lineages, Snail-like transcription
factors can promote not only self-renewal and, hence, the
maintenance of an undifferentiated state, but also cell fate
specification and, hence, the acquisition of a differentiated
state. How the functions of Snail-like transcription factors in
stem cell lineages are controlled, and through what mech-
anisms Snail-like transcription factors affect various aspects
of stem cell function, remains largely unknown.

In Caenorhabditis elegans, the function of the Snail-like tran-
scription factor CES-1 has been studied in the neurosecretory
motor neuron (NSM) neuroblast lineage. About 410 min after
the first cleavage of the C. elegans zygote, the NSM neuroblast
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(NSMnb) divides asymmetrically by size and fate and gives rise
to a larger daughter, the NSM, which differentiates into a sero-
tonergic motor neuron, and a smaller daughter, the NSM sister
cell (NSMsc), which dies within �20 min (Sulston et al. 1983).
The gene ces-2 encodes a bZIP transcription factor similar to the
mammalian Hepatic Leukemia Factor (HLF) and acts as a nega-
tive regulator of ces-1 Snail expression in the NSM neuroblast
lineage (Metzstein et al. 1996; Metzstein and Horvitz 1999;
Hatzold and Conradt 2008). Loss-of-function (lf) mutations of
ces-2 HLF or a gain-of-function (gf) mutation of ces-1 Snail
(n703gf) cause the NSMnb to divide symmetrically to give rise
to two daughter cells of similar sizes (Ellis and Horvitz 1991;
Hatzold and Conradt 2008). [The n703gf mutation is located
in a cis-regulatory region of the ces-1 gene and, as shown for
ces-2(lf)mutations, presumably causes themis- or overexpression
of the ces-1 gene in the NSM neuroblast lineage (Metzstein and
Horvitz 1999; Hatzold and Conradt 2008).] In addition, presum-
ably as a result of redundantly acting factors, the loss of ces-1does
not appear to cause defects in the NSM neuroblast lineage; how-
ever, the loss of ces-1does suppress defects in theNSMneuroblast
lineage caused by the loss of ces-2 HLF (Ellis and Horvitz 1991)
Moreover, rather than dividing along the ventral-lateral to
dorsal-medial axis, in ces-2 lf or ces-1 gf animals, the NSMnb
divides along different axes (Hatzold and Conradt 2008).
Furthermore, a weak lf mutation of the gene cya-1, which
encodes C. elegans Cyclin A, prevents the division of some
NSMnbs, and this effect is greatly enhanced by the loss of
ces-2 or by ces-1(n703gf) (Yan et al. 2013). Therefore, it has
been proposed that in the NSMnb, ces-1 Snail coordinates
cell polarity and cell cycle progression to allow the NSMnb
to divide asymmetrically along the appropriate axis. Finally,
ces-1 Snail affects cell cycle progression in the NSMnb by directly
repressing the transcription of the cdc-25.2 gene, which en-
codes a C. elegans CDC25 phosphatase protein (Kim et al.
2010; Yan et al. 2013). The mechanism through which ces-1
Snail affects cell polarity in this lineage is currently unknown.

In this study, we report results from our analysis of CES-1
Snail ChIP-seq data, which were acquired as part of the mod-
ENCODE project (Gerstein et al. 2010). Genome-wide profiling
of CES-1 Snail binding sites identifies .3000 potential target
genes in mixed-stage C. elegans embryos. In addition, gene on-
tology analysis of potential CES-1 Snail target genes confirms
known and predicts novel functions of CES-1 Snail. Further-
more, we investigate the function of one potential CES-1 Snail
target gene, the gene pig-1, which encodes an AMP-activated
protein kinase (AMPK)-related protein kinase most similar to
maternal embryonic leucine zipper kinase (MELK).We find that
pig-1MELK acts downstream of ces-1 Snail to cause the NSMnb
to divide asymmetrically by size and along the correct axis.

Materials and Methods

ChIP-Seq data processing and analysis

The raw sequencing files of the CES-1 ChIP-seq experiments
were obtained from the modENCODE website (DCCid;

modENCODE 3857). The alignment and all analyses were
based on C. elegans genomeWS220. Raw sequencing data from
CES-1 ChIP-seq experiments were mapped to the C. elegans
genome using bowtie2 (Langmead and Salzberg 2012).
For each sample, the numbers of total and mapped reads
are shown in Supplemental Material, Table S1. After map-
ping reads to the genome, peak calling algorithm MACS2
(Zhang et al. 2008) was used to identify regions of ChIP en-
richment. Each biological repeat and corresponding control
was used as treatment and control, respectively. The following
parameters were used to predict CES-1 binding sites: qvalue
(minimum FDR) cutoff 0.01 and mfold “5,50.”MACS2 report-
ed the summit, localization, and fold change of each binding
site (peak). To measure the consistency from replicated exper-
iments and identified reproducible binding sites, the IDR
(irreproducible discovery rate) was calculated between the
two repeats as described (Li et al. 2011). Only the reproducible
binding sites (IDR cut-offs 0.1) were used for subsequent anal-
ysis. To show the concordance of the two repeats, correlation
analysis was performed for the fold change of each pair of re-
producible peaks (Figure 2A). The reproducible peaks from the
two repeats were merged for downstream analysis.

The potential target genes of CES-1 were identified using
the following criteria: if a merged peak is located in the tran-
scription unit or within the 59 promoter region (2 kb upstream
of transcription start site) of a gene, this gene was defined as a
potential target. The potential target genes were used for gene
ontology (GO) analysis using DAVID6.8 (Huang da et al. 2009)
at biological level 4. The overrepresented GO terms of CES-1
were compared with the overrepresented GO terms of 10 addi-
tional transcription factors (embryonic stage) (PHA-4, NHR-2,
BLMP-1, ELT-3, LIN-13, CEH-39, GEI-11, MED-1, CES-1, MEP-
1, LSY-2) (Table S3). The potential targets of these transcription
factors were predicted using the same criteria based on the
peaks reported by the modENCODE pipeline. The interpreted
data files (gff3) containing the binding sites for each transcrip-
tion factor were downloaded from modENCODE database
(http://www.modencode.org).

Strains and genetics

All C. elegans strains were maintained at 20� as described in
Brenner (1974). Bristol N2 was used as the wild-type strain.
The following mutations and transgenes were used: LGI:
ces-1 (n703gf) ces-1(n703 n1434) (Ellis and Horvitz 1991), ces-
1(tm1036) (Yan et al. 2013), ces-2(bc213) (Hatzold and
Conradt 2008); LGII: bcSi50 (Pces-1ces-1::yfp) (this study),
bcSi43 (Ppig-1gfp) (this study), ltIs202 (Pspd-2gfp::spd-5)
(Woodruff et al. 2015); LGIII: bcIs66 (Ptph-1his-24::gfp) (Yan
et al. 2013); LGIV: pig-1(gm344) (Cordes et al. 2006), pig-
1(tm1510) (National BioResource Project; https://shigen.
nig.ac.jp/c.elegans/); and LGV: ltIs44 (Ppie-1mCherry::phPLCd)
(Audhya et al. 2005).

Molecular biology

Plasmid pBC1531 (Ppig-1gfp) was generated using Gibson
cloning. Briefly, using the primer pairs Ppig-1 vec F and Ppig-1
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gfp R, Ppig-1 gfp F and gfptbb2gb R, and gfp tbb-2utr F and
4BP-SpeI-tbb-2 r’ UTR, three DNA fragments (pig-1 promoter/
59 upstream region, gfp and tbb-2 39UTR) were generated and
combined using the primers Ppig-1 vec F and 4BP-SpeI-tbb-2 r’
UTR. The resulting full-length fragment was then cloned into
MosSCI vector pCFJ350 (Frokjaer-Jensen et al. 2012) sites AvrII
and SpeI using T4 ligase to generate plasmid pBC1531 (Ppig-1gfp).
Plasmid pBC1448 (Pces-1ces-1::yfp) was generated by digesting
the full-length ces-1 rescuing fragment from pBC510 (Hatzold
and Conradt 2008) using ApaI and SmaI enzymes, and
inserting this fragment into MosSCI vector pCFJ350.

Transgenic animals

Germline transformations were performed as described in
Mello and Fire (1995). For the generation of the Ppig-1gfp
MosSCI lines, plasmid pBC1531 was injected at a concentra-
tion of 10 ng/ml with the co-injection markers pCFJ601 at
50 ng/ml, pGH8 at 10 ng/ml, pCFJ90 at 2.5 ng/ml, and
pCFJ104 at 5 ng/ml into the Universal MosSCI strain
EG8079 (Frokjaer-Jensen et al. 2014) and integrated (single
copy) on chromosome II to generate bcSi43. For the genera-
tion of the Pces-1ces-1::yfpMosSCI line, plasmid pBC1448 was
injected at a concentration of 10 ng/ml with the co-injection
markers pCFJ601 at 50 ng/ml, pGH8 at 10 ng/ml, pCFJ90 at
2.5 ng/ml, and pCFJ104 at 5 ng/ml into the MosSCI strain
EG6699 (Frokjaer-Jensen et al. 2012) and integrated (single
copy) on chromosome II to generate bcSi50.

Phenotypic analyses and microscopy

The number of surviving NSMsc was determined in L4 larvae
using the bcIs66 (Ptph-1his-24::gfp) transgene as described in
Yan et al. (2013). NSM and NSMsc volume and the position
and orientation of the NSMnb division were analyzed using
the ltIs44 (Ppie-1mCherry::phPLCd) transgene essentially as de-
scribed (Chakraborty et al. 2015). The orientation of the
NSMnb cleavage planewas additionally analyzed using ltIs44
in combination with the ltSi202 (Pspd-2 gfp::spd-5) transgene,
with which the position of the two centrosomes prior to cell
division can be observed. Imaging was performed as follows.
Embryos were imaged using a Leica TCS SP5 II confocal mi-
croscope. For all confocal imaging, the laser power setting
was kept constant. Before confocal recording, all strains were
incubated at 20� overnight. Six to ten adults were dissected
to obtain mixed-stage embryos and embryos were mounted
on 2% agar pads. Slides were sealed with petroleum jelly to
avoid drying out and incubated at 25� until the embryos
reached the comma stage of development. For all reporters,
a Z-stack of 8–8.5 mm with a step size of 0.5 mm was used to
record the NSMnb and its two daughter cells. Recording was
started before NSMnb division and continued postcytokine-
sis. For determining “Dorsal-lateral/2nd cell volume ratio”
and the orientation of the NSMnb cleavage plane, a noise
reduction function was applied using the Leica Application
Suite (LAS) software to remove background. To determine
the cell volume of the NSM and the NSMsc, the ventral-
medially located NSM and the dorsal-laterally located NSMsc

were identified by following the division of the NSMnb. After
completion of cytokinesis, for every Z-slice, a region of in-
terest (ROI) was drawn around the cell boundary of either
the NSM or the NSMsc, the area of the ROI was determined
for every Z-slice, and all areas of a certain cell summed up to
obtain an estimate of the cell volume. The “Dorsal-lateral/
2nd cell volume ratio” was determined by dividing the vol-
ume of the daughter located dorsal-laterally (the NSMsc and
its derivatives) by the volume of the 2nd daughter (the NSM
and its derivatives). The expression of the bcSi43 (Ppig-1gfp)
transgene was quantified in the NSMnb before division using
the ltIs44 (Ppie-1mCherry::phPLCd) transgene to mark the
boundary of the NSMnb cell membrane. Quantification of
bcSi43 expression was performed on raw confocal images.
Following confocal acquisition, for every Z-slice in which
a distinct cell boundary of the NSMnb could be seen, the
intensity of GFP fluorescence within the cell boundary was
determined by drawing a ROI. The intensities of GFP
fluorescence obtained for all Z-slices of a certain cell (six
Z-slices) were summed up to obtain the total GFP fluores-
cence intensity of that particular cell. Total GFP fluorescence
intensity was then divided by the total area of the ROI in the
six Z-slices of that cell to obtain GFP concentration (fluores-
cence intensity/mm2). The same procedure was used to de-
termine GFP concentration in animals carrying the bcSi43
(Ppig-1gfp) transgene in Z3 (p4a). The mean “GFP concentra-
tion” of background signal obtained from a control strain only
carrying the ltIs44 (Ppie-1mCherry::phPLCd) transgene (1.7
fluorescence intensity/mm2) was too low to influence the
GFP concentration of +/+, ces-1(n703gf), +/+1, ces-1(tm1036),
and +/+2 during recordings. The same confocal laser power
setting was used for the control and all experimental strains
(+/+, ces-1(n703gf), +/+1, ces-1(tm1036), and +/+2).

Data availability

The raw sequencing files of the CES-1 ChIP-seq experi-
ments are available on the modENCODE website (DCCid;
modENCODE 3857). The worm strains and reagents used
in this study are available on request.

Results

To systematically identify CES-1 Snail binding sites in the
C. elegans genome, we analyzed ChIP-seq (chromatin
immuno-precipitation combined with massively parallel
DNA sequencing) data that had been generated as part of
themodENCODE Project (Gerstein et al. 2010). As previously
described, for ChIP-seq experiments, the modENCODE Proj-
ect used stable transgenic C. elegans lines, each of which
carries a transgene (for example, Pces-1ces-1::gfp referred to
as “wgIs174”) that mediates the synthesis of a specific, GFP-
tagged C. elegans transcription factor (i.e., CES-1::GFP) un-
der the control of its endogenous promoter and cis-regulatory
regions (Sarov et al. 2006, 2012). Chromatin bound by GFP-
tagged protein was precipitated using an anti-GFP antibody
and subjected to Illumina-based sequencing following the
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modENCODE pipeline (Zhong et al. 2010). The nonprecipi-
tated chromatin, which represents the total genomic DNA
(input), was used as control. As starting material for CES-1::
GFP ChIP-seq experiments, the modENCODE project used
mixed-stage embryos. Finally, we obtained the wgIs174 trans-
gene and confirmed that it is expressed in appropriate cells dur-
ing embryogenesis, such as cells of the developing pharynx
(Figure S1).

Identification and characterization of CES-1 Snail
binding sites

The modENCODE project performed CES-1::GFP ChIP-seq
experiments in two independent biological replicates (Re-
peat1 and Repeat2). This led to a data set of �7 million total
reads in each replicate (Table S1), which provides sufficient
coverage for ChIP-seq experiments of C. elegans transcription
factors (Landt et al. 2012). Here, we analyzed this data set
following the ENCODE and modENCODE guidelines (Landt
et al. 2012). The reads of the two biological replicates and the
corresponding controls were aligned with the C. elegans ge-
nome (WS220) and subjected to peak calling using MACS2
(Zhang et al. 2008). The CES-1 binding sites (peaks) were
visualized using Integrative Genomics Viewer (IGV) (Robinson
et al. 2011). As shown for chromosome IV in Figure 1A, the
two biological replicates generated highly similar binding
profiles. The reproducibility of the data was assessed by
estimating the IDR between the replicates (Landt et al.
2012). Applying FDR (false discovery rate; calculated
and reported by MACS2) and IDR cut-offs of #0.01
and # 0.1, respectively, we identified 3417 reproducible
CES-1 binding sites. Furthermore, for reproducible peaks,
we found that the fold change of CES-1 binding is highly
correlative (Pearson correlation 0.83) (Figure 2A). In ad-
dition, for the majority of reproducible peaks, the peak
summits obtained from the two replicates are located
within 100 bp of each other (Figure 2B), which indicates
good concordance between the replicates. For subsequent
analyses, we used the “merged peak” of reproducible
peaks, which is generated by combining each pair of re-
producible peaks.

The majority of merged peaks have lengths in the range of
200–500 bp (Figure 2C). Using MEME-chip (Bailey et al.
2009), we determined motifs enriched in these merged
peaks. One motif identified [CAGC(T/A)GC] is similar to
the classical Snail binding site (CAGGTG) (Figure 3), which
has previously been shown to function as a CES-1 binding site
(Metzstein and Horvitz 1999; Thellmann et al. 2003; Reece-
Hoyes et al. 2009). In addition, we identified two de novo
motifs [AAT(T/G/C)(A/C/G)AAT and AGACG(C/G)AG],
which are significantly enriched (Figure 3) and which have
previously not been shown to act as CES-1 binding sites.
Finally, we evaluated the locations of the CES-1 peaks relative
to protein-coding transcripts and observed a small yet signif-
icant enrichment of CES-1 peaks within 2 kb of transcrip-
tional start sites (TSS) (67 vs. 62% for spatially randomized
peak positions, P-value #0.0001; Figure 2D).

Identification of potential CES-1 Snail target genes

The proximity of a binding site to the promoter is currently the
best indicator for functional relevance. According to WS220,
thegenomesizeofC. elegans is 100megabases (Mb)andcontains
20,389 protein-coding genes. Genes are often located ,2 kb
from each other, either on the same or opposite strands. Fur-
thermore, in most cases, the cis-regulatory regions sufficient for
proper gene expression lie within 2 kb upstream of the TSS
(Reinke et al. 2013). Therefore, if a CES-1 peak is located
within the transcription unit or within 2 kb upstream of the
TSS of a gene, this gene can be considered a potential CES-1
target gene. Using these criteria, .80% of the CES-1 peaks
have at least one potential target gene, and a total of 3199
genes are identified as potential CES-1 target genes (Table
S2). Among these target genes are classical Snail targets
such as the gene hmr-1, which encodes C. elegans E-cadherin,
and sax-7, which encodes the C. elegans ortholog of the
human cell adhesion transmembrane-receptor L1 CAM
(Puisieux et al. 2014; Nieto et al. 2016).

Gene ontology analysis of potential CES-1 Snail
target genes

We performed GO analysis using the NIH Database for An-
notation, Visualization, and Integrated Discovery (DAVID)
(Huang da et al. 2009) to identify the “biological processes”
(at Level 4) that are enriched among potential CES-1 target
genes. This identified “cell cycle process” and “programmed
cell death” among the most highly enriched processes (Table
S3) confirming results from previous studies of ces-1 function
(Ellis and Horvitz 1991; Thellmann et al. 2003; Yan et al.
2013) (see below). GO analysis also predicts novel functions
of ces-1 Snail. For example, CES-1 target genes are overrep-
resented in biological processes related to sexual differentia-
tion, aging, nervous system development, and cell signaling.
Furthermore, we selected 50 of the most highly enriched
“biological processes” and assessed their enrichment among
the potential target genes of 10 other C. elegans transcription
factors for which embryonic ChIP-seq data sets are available
frommodENCODE (BLMP-1, CEH-39, ELT-3, GEI-11, LIN-13,
LYS-2, NHR-2, MED-1, MEP-1, and PHA-4) (Figure 4 and
Table S3). Broad GO terms that are related to animal devel-
opment (such as “larval development,” “embryo development,”
“system development,” or “animal organ development”) are
enriched among the target genes of most of these transcription
factors as expected due to the known importance of transcrip-
tion factors during development. Compared to the other tran-
scription factors, CES-1 shares more similarities with the FoxA
transcription factor PHA-4, the homeodomain transcription
factor CEH-39, and the zinc-finger transcription factor LIN-13,
which act as organ identity factor (PHA-4), X chromosome-
signal element (CEH-39), and cell fate regulator (LIN-13),
respectively (Figure 4) (Horner et al. 1998; Melendez and
Greenwald 2000; Gladden and Meyer 2007).

CES-1 Snail affects the ability of the NSMnb to divide asym-
metrically; however, the target gene or genes of CES-1 Snail in
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this context are unknown. For this reason, we screened bio-
logical processes enriched among CES-1 Snail target genes for
processes related to asymmetry and cell polarity and identified
“asymmetric cell division” as highly enriched (enrichment of
P-value 9.70E204) (Table S3). Furthermore, among the target
genes associated with “asymmetric cell division” (Table S5),
we identified the gene pig-1, which is also associated with
“programmed cell death” (enrichment of P-value 2.25E218)
(Table S4). pig-1 encodes an AMP-activated protein kinase
(AMPK)-related protein kinase most similar to MELK
(Cordes et al. 2006; Ganguly et al. 2015). Interestingly, the
pig-1 MELK gene has previously been implicated in the asym-
metric division of a number of C. elegans neuroblasts that
divide to generate a smaller daughter that dies (Cordes
et al. 2006) and in the programmed elimination of cells
during C. elegans embryogenesis (Denning et al. 2012; Hirose
and Horvitz 2013). Finally, the CES-1 Snail binding site pro-
file revealed that there is a strong binding site just upstream
of the TSS of the pig-1 MELK gene (Figure 1B).

ces-1 Snail represses pig-1 MELK expression in the NSM
neuroblast lineage

To test whether CES-1 Snail controls pig-1 MELK expression
in the NSM neuroblast lineage, we generated a transcrip-
tional reporter in which the expression of the gfp gene is
driven by an 850-bp fragment that spans bp 21 to bp 2850
of the region immediately upstream of the pig-1 TSS
(Ppig-1gfp) (Figure 1B). (This 850-bp fragment covers the
CES-1 binding site identified throughChIP-seq.)Wegenerated
a stable transgenic C. elegans line carrying a single copy of this
reporter (MosSCI allele) and analyzed gfp expression in the

NSMnb. We found that in wild-type animals, gfp is expressed
at a low level in the NSMnb (Figure 5, A and B; +/+). This
level was reduced by �20% in animals homozygous for the
ces-1 gf mutation n703gf. To confirm that this decrease was
specific to the presence of the ces-1 gf mutation, we out-
crossed this strain to remove n703gf (+/+1), and this
brought the level of gfp expression back to that observed in
the wild type. Furthermore, the level of gfp expression was
increased by �25% in animals homozygous for the ces-1 lf
mutation tm1036, and outcrossing to remove tm1036 (+/+2)
confirmed that this increase is specific to the loss of ces-1
(Figure 5, A and B). Finally, we analyzed gfp expression of
the Ppig-1gfp transgene in a second cell, Z3 (p4a). As shown
in Figure S2, gfp expression in Z3was not affected by the ces-1
mutations. Based on these results, we conclude that ces-1
Snail represses pig-1 MELK transcription and, hence, pig-1
MELK expression in the NSMnb.

pig-1 MELK is required for the correct position of the
NSMnb cleavage plane

To determine whether ces-1 Snail affects the asymmetric di-
vision of the NSMnb by acting through pig-1 MELK, we ana-
lyzed the NSM neuroblast lineage in animals homozygous
for strong lf mutations, pig-1(gm344) and pig-1(tm1510)
(Cordes et al. 2006). [Both alleles are deletions that remove
524 bp (gm344; bp 2381 to bp +143) or 1487 bp (tm1510;
bp+178 to bp+1664) of the pig-1 locus, respectively (Figure
S3).] First, we analyzed the position of the cleavage plane
during NSMnb division. In wild-type animals, the cleavage
plane is shifted toward the dorsal-lateral side of the NSMnb
(Sulston et al. 1983). Consequently, the NSMnb divides

Figure 1 Visualization of CES-1 binding sites.
CES-1 peaks from two biological replicates
were predicted using MACS2 and visualized
using IGV. (A) Overview of all CES-1 binding
sites on chromosome IV. (B) Representative
CES-1 binding sites in 20-kb region on chro-
mosome IV that spans the pig-1 locus. Red
arrows point to the CES-1 binding sites.
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asymmetrically by size to give rise to a smaller daughter lo-
cated dorsal-laterally, the NSMsc, and a larger daughter lo-
cated ventral-medially, the NSM, with an average ratio of
NSMsc to NSM volume of 0.69 (Figure 6). As shown below,
mutations in ces-2, ces-1, and pig-1 not only affect the position
of the NSM cleavage plane, but also its orientation (Figure 7).
However, regardless of the orientation of the cleavage plane,
one cell (presumably the NSMsc) immediatelymoves into the
dorsal-lateral position. For this reason, we determined the
volume ratio of the two daughter cells by dividing the volume

of the daughter located dorsal-laterally by the volume of the
other or “2nd” daughter (presumably the NSM) and refer to
this ratio as “dorsal-lateral/2nd cell volume ratio” (Figure 6).

As shown previously, in animals homozygous for a lf
mutation of ces-2 (bc213) or the ces-1 gf mutation n703gf,
the NSMnb divides symmetrically with an average dorsal-
lateral/2nd cell volume ratio of 1.05 and 1.08, respectively
(Figure 6) (Hatzold and Conradt 2008). We found that in
pig-1(gm344) or pig-1(tm1510) animals, the NSMnb also
divides symmetrically with an average ratio of 1.04 and 1.03,

Figure 2 Characterization of CES-1 binding sites. CES-1 peaks were predicted using MACS2. (A) Density plot comparison between the fold change
(fold enrichment for the peak summit against random Poisson distribution with local lambda, calculated by MACS2) of reproducible peaks from Repeat
1 and Repeat 2. Reproducible peaks from two biological replicates were identified using IDR cut-offs#0.1. Each dot represents a reproducible peak. Log
10 scale is used for x and y axis. (B) Distribution of the distances (in base pairs) between the summits of pairs of reproducible peaks. Reproducible peaks
from two biological replicates were identified using IDR cutoff #0.1. (C) Distribution of the lengths (in base pairs) of the merged peaks. (D) Distribution
of the distances (in kilobases) between CES-1 binding sites (peak summits of the merged peaks) and the TSS of the nearest protein-coding transcripts.
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respectively. Therefore, pig-1MELK is required for the ability
of the NSMnb to divide asymmetrically by size. Furthermore,
ces-1 acts downstream of ces-2 to affect NSMsc survival, and
the loss of ces-1 completely suppresses the defect in asymmet-
ric NSMnb division observed in ces-2(bc213) animals (Figure
6) (Hatzold and Conradt 2008). In contrast, the loss of ces-1
fails to suppress this defect in pig-1(gm344) animals, which
indicates that in the NSMnb, ces-1 Snail does not act down-
stream of pig-1 MELK.

pig-1 MELK is required for the correct orientation of the
NSMnb cleavage plane

Next,weanalyzed theorientationof thecleavageplaneduring
NSMnb division. In wild-type animals, the NSMnb divides
along the ventral-lateral to dorsal-medial axis so that its
daughter cells are positioned dorsal-laterally (NSMsc) and
ventral-medially (NSM) (Figure 7). However, as previously

shown, in the majority of ces-2(bc213) or ces-1(n703gf) ani-
mals, different cleavage planes are observed (Figure 7)
(Hatzold and Conradt 2008). We observed the same defect
in the majority of pig-1(gm344) or pig-1(tm1510) animals,
which demonstrates that pig-1 MELK is also required for the
polarization of the NSMnb and its ability to divide along the
ventral-lateral to dorsal-medial axis. Interestingly, we also
observed a defect in cleavage plane orientation in animals
homozygous for the ces-1 lf mutation tm1036. Specifically,
in 44% of ces-1(tm1036) animals, the cleavage plane of the
NSMnb was shifted by +90� (Type II cleavage) (Figure 7).
[This specific shift was also observed in 27% of animals ho-
mozygous for another ces-1 lf mutation, n703 n1434 (Figure
7B).] Furthermore, the same +90� shift was observed in
about half of ces-1(tm1036); ces-2(bc213) animals, confirming
that ces-1 is epistatic to ces-2. However, in both pig-1(gm344)
animals and ces-1(tm1036); pig-1(gm344) animals, various
cleavage planes other than the specific +90� shift were ob-
served in the majority of animals (Figure 7B). Therefore, pig-1
MELK is epistatic to ces-1 Snail, which indicates that pig-1MELK
acts downstreamof ces-1Snail to affect the orientation andmost
likely also position of the NSMnb cleavage plane.

pig-1 MELK function in the NSM neuroblast
is haploinsufficient

As described above, we found that ces-1(n703gf) reduces gfp
expression of the Ppig-1gfp transgene by �20% in the NSMnb
whereas the ces-1 lf mutation tm1036 increases it by �25%.
This suggests that relatively small differences in the level of
pig-1 expression affect pig-1 function in the NSMnb and cause
a detectable phenotype. To test whether pig-1 function in the
NSMnb is haploinsufficient, we analyzed the position and
orientation of the NSMnb cleavage plane in animals hetero-
zygous for pig-1(gm344) [pig-1(gm344)/+]. As shown in
Figure 6B and Figure 7B, we found that pig-1(gm344)/+
animals exhibit defects similar to the defects observed in
homozygous pig-1(gm344) animals. Therefore, pig-1 MELK
function in the NSMnb is haploinsufficient.

The loss of pig-1 MELK has a modest effect on the cell
death fate of the NSMsc

Apart from its roles in the NSMnb, ces-1 Snail also plays a role
in the daughters of the NSMnb. Immediately after NSMnb
division, CES-1 Snail protein is detectable in the larger NSM,
but not in the smaller NSMsc (Hatzold and Conradt 2008).
The absence of CES-1 Snail in the NSMsc allows a hetero-
dimer of HLH-2 and HLH-3 (HLH-2/HLH-3) (similar to the
Drosophila melanogaster bHLH proteins, Daughterless and
Achaete-scute, respectively) to activate transcription of the
proapoptotic gene egl-1 BH3-only and thereby trigger NSMsc
death (Conradt and Horvitz 1998; Thellmann et al. 2003). In
contrast, the presence of CES-1 Snail in the NSM blocks the
ability of HLH-2/HLH-3 to activate egl-1 BH3-only transcrip-
tion and thereby causes NSM survival (Thellmann et al.
2003). In ces-2 lf animals [and most probably in ces-
1(n703gf) animals], CES-1 Snail protein is present in both

Figure 3 Motifs enriched in CES-1 peaks. Motifs enriched in CES-1
peaks (merged peaks from two biological repeats) were identified using
MEME-chip. E-value represents fold enrichment. The last motif [CAGCA(T/A)G]
is similar to the classic Snail binding site (CAGGTG).
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Figure 4 Gene ontology analysis. The potential target genes of PHA-4, NHR-2, BLMP-1, ELT-3, LIN-13, CEH-39, GEI-11, MED-1, CES-1, MEP-1, and LSY-
2 were identified based on ChIP-seq experiments using C. elegans embryos as starting material that had been performed as part of the modENCODE
project. GO analysis was performed at biological process Level 4 using DAVID. The overrepresented GO terms of CES-1 were ranked by P-value, and
redundant GO categories were removed manually. The top 50 most highly enriched CES-1 GO terms were chosen for comparative GO study. The heat
map shows the P-values (log 10) of these GO terms for the different transcription factors. The hierarchical clustering (performed based on the average
agglomeration method) indicates the correlation between these transcription factors in embryos.
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daughters after NSMnb division (Hatzold and Conradt
2008). Consequently, egl-1 BH3-only transcription is re-
pressed in both daughters and both daughters survive and
differentiate into motor neurons (Ellis and Horvitz 1991;
Thellmann et al. 2003). Therefore, in the NSMnb daughters,
ces-1 Snail is critically involved in the coordination of cell
survival and cell fate specification.

To determine whether pig-1MELK also plays a role in cell
survival and cell fate specification in the NSMnb daughters,
we analyzed the effect of the loss of pig-1MELK on the fate of
the NSMsc. In wild-type animals, the NSMsc dies (0% NSMsc
survival); however, as previously shown (Ellis and Horvitz
1991; Hatzold and Conradt 2008), in ces-2(bc213) or ces-
1(n703gf) animals, 80.6 or 97.4% of the NSMsc inappropri-
ately survive, respectively (Figure 8A). We found that in
pig-1(gm344) or pig-1(tm1510) animals, 2.1 or 1.2% of the
NSMsc survived, respectively. Furthermore, while the loss of
ces-1 completely suppresses NSMsc survival in ces-2(bc213)
animals (Ellis and Horvitz 1991; Hatzold and Conradt 2008),
it had no effect on the modest NSMsc survival rate in pig-
1(gm344) animals (Figure 8A), demonstrating that in the
NSM neuroblast lineage, pig-1 MELK acts downstream of
ces-1 Snail in the coordination of cell survival and cell fate
specification as well.

Finally, we tested whether the loss of pig-1 affects the
kinetics of the NSMsc death. We found that in the wild type,
from the time it is born, it takes the NSMsc an average of
21.9min to become refractile and, hence, die (Figure 8, B and
C). In contrast, in pig-1(gm344) or pig-1(tm1510) animals, it
takes the NSMsc an average of 30.0 or 28.9 min, respectively,
to become refractile and die. Therefore, while the loss of pig-1
MELK only modestly affects the cell death fate of the NSMsc,
it decreases the speed with which this fate is executed.

Discussion

Genome-wide profiling of DNA binding sites identifies
novel functions of CES-1 Snail

The binding sites of the D. melanogaster Snail transcription
factor have previously been identified using chromatin
immuno-precipitation combined with microarray analysis
(ChIP-on-chip) (Zeitlinger et al. 2007; Rembold et al. 2014).
We analyzed data generated by the modENCODE Project for
C. elegans CES-1 Snail using chromatin immuno-precipitation
combined with massively parallel DNA sequencing (ChIP-seq)
(Gerstein et al. 2010). Our analyses indicate that during embry-
onic development, C. elegans CES-1 Snail may contribute to the
transcriptional regulation of.3000 genes. Among these genes

Figure 5 ces-1 Snail represses pig-1 MELK expression in the NSMnb. (A) Confocal images of representative NSMnbs at metaphase in control, wild-type
(+/+, +/+1, +/+2), ces-1(n703gf), and ces-1(tm1036) animals. Control animals were transgenic for ltIs44 (Ppie-1mCherry::phPLCd) transgene. Wild-type
(+/+, +/+1, +/+2), ces-1(n703gf), and ces-1(tm1036) animals were transgenic for bcSi43 (Ppig-1gfp) and ltIs44 (Ppie-1mCherry::phPLCd) transgenes. +/+1

indicates a strain from which ces-1(n703gf) was outcrossed. +/+2 indicates a strain from which ces-1(tm1036) was outcrossed. White arrow heads
indicate NSMnb. Bar, 2 mm. (B) GFP concentration [fluorescence intensity/mm2] in NSMnb in control animals (control) and in animals carrying the
transgene Ppig-1gfp (bcSi43) in various genetic backgrounds [+/+, ces-1(n703gf), +/+1, ces-1(tm1036), +/+2] (n = 11–13). Each dot represents the GFP
concentration in one NSMnb. Red horizontal lines indicate mean concentrations, which are stated on top. Gray dotted line indicates the mean
concentration in wild type (+/+). Statistical significance was determined using the Student’s t-test (**** P # 0.0001). All statistical analyses were done
in comparison to wild type (+/+).
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are genes whose orthologs inD. melanogaster and/or mammals
are known targets of Snail-like transcription factors, con-
firming conservation among Snail-like transcription fac-
tors of fundamental functions, such as in the control of
cell adhesion (Puisieux et al. 2014; Nieto et al. 2016).
Gene ontology analysis of potential CES-1 target genes
also reveals novel functions of CES-1 Snail; however,
the actual contribution of ces-1 Snail to these biological
processes is currently unknown.

Two CES-1 Snail target genes have previously been de-
scribed, the BH3-only gene egl-1 and the CDC25 gene cdc-
25.2 (Thellmann et al. 2003; Yan et al. 2013). Interestingly,
neither egl-1 nor cdc-25.2 are among the 3199 genes identi-
fied using the criteria that the CES-1 Snail binding site lies
within the transcription unit or within 2 kb upstream of the
TSS. In the case of egl-1 BH3-only, CES-1 Snail binds to and
acts through a conserved cis-regulatory element, which lies

�3 kb downstream of the egl-1 transcription unit (Thellmann
et al. 2003). (There is a CES-1 Snail peak�2.5–4.0 kb down-
stream of egl-1, which may represent CES-1 Snail binding to
region B.) In the case of cdc-25.2, a CES-1 Snail binding site is
found�4.8–6.5 kb upstream of the TSS of cdc-25.2 (Yan et al.
2013). Therefore, the CES-1 Snail binding sites in the egl-1
and cdc-25.2 loci are among the �20% of the 3417 binding
sites that could not be assigned to a target gene using our
criteria.

Our analysis of the sequences coveredbyCES-1Snail peaks
identified three motifs that are significantly enriched, among
them a motif that is similar to the Snail binding site, which
has been shown to function as a CES-1 binding site in vitro, in
C. elegans and in the yeast one-hybrid system (Metzstein and
Horvitz 1999; Thellmann et al. 2003; Reece-Hoyes et al.
2009). The two other motifs are more highly enriched and
potentially represent novel CES-1 binding sites. Interestingly,

Figure 6 pig-1MELK is required for the correct
position of the NSMnb cleavage plane. (A)
(Left) Fluorescence images of representative
wild-type (+/+) and pig-1(gm344) embryo car-
rying the transgene ltIs44 (Ppie-1mCherry::
phPLCd). The white arrow points to the NSMnb,
which is at metaphase. Bar, 10 mm. (Center)
Representative series of eight consecutive con-
focal fluorescence images (Z-stacks, from top
to bottom, 0.5-mm step size) of dorsal-lateral
cell and 2nd cell immediately after the NSMnb
divided in wild type (+/+) or pig-1(gm344). The
orange and blue arrows point to the dorsal-
lateral cell or the 2nd cell, respectively. (Right)
Schematic representations of the areas of
the dorsal-lateral (orange) or 2nd cell (blue) in
the consecutive images of the Z-stacks shown
in the center and volume ratio of these two
representative animals. (B) Volume ratio of dor-
sal-lateral daughter cell to 2nd daughter cell
postcytokinesis in different genotypes [wild
type (+/+), ces-2(bc213), ces-1(n703gf), ces-1
(tm1036), pig-1(gm344), pig-1(gm344)/+, pig-
1(tm1510), ces-1(tm1036); ces-2(bc213) and
ces-1(tm1036); pig-1(gm344)] (n = 12–23).
All strains were homozygous for the ltIs44
(Ppie-1mCherry::phPLCd) transgene. Each dot
represents the ratio of one pair of daughter
cells. Red horizontal lines represent the mean
ratio obtained for a given genotype, which is
stated on top. Gray dotted line indicates the
+/+ mean ratio. Statistical significance was de-
termined using the Student’s t-test (* P# 0.05,
**** P # 0.0001). All statistical analyses were
done in comparison to wild type (+/+).
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these two motifs differ from a motif that was recently iden-
tified for CES-1 Snail using protein-binding microarrays
(CCTGTTG) (Narasimhan et al. 2015). For protein-binding
microarrays, purified GST-tagged fusions of the DNA-binding
domain of the transcription factor of interest plus 50 flanking
amino acids are tested for “hybridization” to an array con-
taining DNA probes each 35 bp in length. In contrast, for
ChIP-seq, GFP-tagged, full-length CES-1 Snail protein is
tested for binding to chromatin in C. elegans embryos
(Gerstein et al. 2010). Hence, the different CES-1 Snail bind-
ing motifs identified might be a result of different experimen-
tal conditions.

ces-1 Snail affects the polarity of the NSMnb and its
ability to divide asymmetrically by size by repressing
pig-1 MELK expression

Among the potential CES-1 Snail target genes, we identified
the gene pig-1 MELK, which has previously been implicated
in asymmetric cell division and the programmed elimination
of cells during embryogenesis (Cordes et al. 2006; Denning
et al. 2012; Hirose and Horvitz 2013). We demonstrate that
pig-1MELK is required (in a haploinsufficientmanner) for the
correct position and orientation of the cleavage plane during
the division of the NSMnb. Furthermore, we provide evi-
dence that pig-1 MELK acts downstream of CES-1 Snail and

Figure 7 pig-1 MELK is required for the correct orien-
tation of the NSMnb cleavage plane. (A) (Left) Series of
8–10 consecutive confocal fluorescence images (0.5-mm
step size) from top to bottom of Z-stacks of represen-
tative wild-type (type I) or pig-1(gm344) (type II–IV)
animals exhibiting different orientations of the NSMnb
cleavage plane and, hence, different types of cell divi-
sions (type I–V). The orientation of the cleavage plane
was determined based on the position of the centro-
somes and the position of the daughter cells immedi-
ately after the completion of the NSMnb division.
Orange arrows point to the centrosomes that segre-
gate into the dorsal-lateral cell and blue arrows point
to the centrosomes that segregate into the 2nd cell. All
embryos analyzed were homozygous for the transgene
ltSi202 (Pspd-2::gfp::spd-5), which visualizes centro-
somes, and for the transgene ltIs44 (Ppie-1mCherry::
phPLCd), which labels the plasma membrane. Bar,
5 mm. (Right) Schematic representations of different
cell division types (type I–IV) observed for the NSMnb
in the animals shown left. Blue translucent rectan-
gles represent cleavage planes of the NSMnb. Red
numbers indicate the shifts (+ indicates clockwise
shift, 2 indicates counterclockwise shift) relative to
wild type (type I) (0�). (B) Percentage cell division types
observed in different genotypes [wild type (+/+),
ces-2(bc213), ces-1(n703gf), ces-1(tm1036), ces-1(n703
01434), pig-1(gm344), pig-1(gm344)/+, pig-1(tm1510),
ces-1(tm1036); ces-2(bc213) and ces-1(tm1036);
pig-1(gm344)] (n = 14–19). All strains were ho-
mozygous for the ltIs44 (Ppie-1mCherry::phPLCd)
transgene.
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that CES-1 represses pig-1 MELK transcription. Therefore,
we propose that CES-1 Snail affects the polarization of the
NSMnb and its ability to divide asymmetrically by repressing
pig-1 MELK expression (Figure 9A). Apart from blocking the
death of the NSMsc, ces-1(n703gf) blocks the death of the IL2
sister cell (Ellis and Horvitz 1991). Interestingly, the loss of
pig-1 has been shown to affect the survival of the IL2 sister
cell as well (Cordes et al. 2006). Therefore, ces-1 Snail may
also act through pig-1 MELK to control the asymmetric di-
vision of the IL2 neuroblast.

The loss of ces-2 or ces-1(n703gf) affect the position and
orientation of the NSMnb cleavage plane as well as the fate of
the NSMsc (Ellis and Horvitz 1991; Hatzold and Conradt
2008) (Figure 9B). The loss of pig-1MELK affects the position
and orientation of the NSMnb cleavage plane, but has only a
modest effect on NSMsc fate. [The fact that the loss of pig-1
MELK has only a modest effect on NSMsc fate explains why
pig-1 was previously thought to not play a role in the NSM
neuroblast lineage (Cordes et al. 2006).] The loss of ces-2 and
presumably also ces-1(n703gf) increases ces-1 Snail expression,
which, after NSMnb division, results in detectable levels of CES-
1 Snail protein and repression of egl-1 BH3-only transcription in

both daughter cells (Hatzold and Conradt 2008). In contrast,
the loss of pig-1 MELK does not increase ces-1 Snail expression
in the NSM neuroblast lineage (Figure S4). Therefore, we pro-
pose that NSMsc survival in ces-2(bc213) and ces-1(n703gf)
animals is a result of the inappropriate presence and amount
of CES-1 Snail in the NSMsc rather than the symmetric division
along different cell division axes of the NSMnb per se. CES-1
Snail could also potentially have additional target genes that are
required for the segregation of cell fate determinants, such as
“apoptotic potential,” during NSMnb division (Chakraborty
et al. 2015) (Figure 9A).

Regulation of PIG-1 MELK activity through control of
gene expression

The activity of AMPK-related protein kinases (of which MELK
kinases form a subgroup) can be regulated by upstream
kinases such as mammalian liver kinase B1 (LKB1) (Lizcano
et al. 2004), which forms a complex with the proteins STRAD
and MO25 (Alessi et al. 2006). Indeed, there is evidence that
in asymmetric cell division and in the programmed elimina-
tion of cells, pig-1 acts in a pathway that is also dependent on
par-4 and/or strd-1 and mop-25.2, which encode C. elegans

Figure 8 Loss of pig-1 MELK affects the cell
death fate of the NSMsc. (A) Percentage NSMsc
survival in different genetic backgrounds [wild
type (+/+), ces-2(bc213), ces-1(n703gf), ces-1
(tm1036), pig-1(tm1510), pig-1(gm344), ces-1
(tm1036); ces-2(bc213) and ces-1(tm1036);
pig-1(gm344)]. All strains were homozygous
for the bcIs66 (Ptph-1his-24::gfp) transgene. n
indicates the total number of NSMsc analyzed.
Statistical significance was determined using
the Student’s t-test (* P # 0.05, ** P #

0.005, **** P # 0.0001). All statistical analyses
were done in comparison to wild type (+/+). (B)
Nomarski images of representative wild-type
(+/+) and pig-1(gm344) embryos starting at
NSMnb metaphase (0 min). Bar, 5 mm. In the
wild type, the NSMsc is refractile and a cell
corpse at �22 min and can no longer be de-
tected at�30 min. In pig-1(gm344), the NSMsc
is refractile and a cell corpse at �30 min. In-
sets show NSMnb and NSMsc. Black arrow
heads point to relevant cells. (C) Quantifica-
tion of the time it takes the NSMsc to form a
cell corpse in wild-type (+/+), pig-1(tm1510),
and pig-1(gm344) animals. Each dot repre-
sents an individual NSMsc (n = 9–14). Red hor-
izontal lines represent the mean time for a given
genotype, which is stated on top. Gray dotted
line indicates the mean time in wild type. Sta-
tistical significance was determined using the
Student’s t-test (**** P # 0.0001).
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homologs of mammalian LKB1, STRAD, andMO25 (Denning
et al. 2012; Chien et al. 2013; Hirose and Horvitz 2013;
Pacquelet et al. 2015). Our results indicate that CES-1
Snail-dependent control of pig-1 MELK expression contrib-
utes to the regulation of PIG-1 MELK activity in the NSMnb
and that small changes in expression level (�20% more or
less) have phenotypic consequences. In support of the notion
that control of expression is a mechanism through which the
activities of MELK-like kinases are regulated, in the Q.a/p
neuroblast, pig-1 MELK expression is under the control of
the Storkhead-box protein 1-like transcription factor HAM-
1, whose loss also affects asymmetric cell division in this
lineage (Guenther and Garriga 1996; Feng et al. 2013).
Therefore, we speculate that transcriptional control of MELK
genes may be relevant in vertebrates as well and that Snail-

and Storkhead-box protein 1-like transcription factors might
contribute to this process.

How does pig-1 MELK affect the position and
orientation of the NSMnb cleavage plane?

In the C. elegans one-cell embryo, the loss of pig-1 MELK
synergizes with the loss of ani-1 [which encodes one of two
C. elegans anillins (Maddox et al. 2005)] to cause a defect in
the position of the cleavage plane (Pacquelet et al. 2015). In
this context, PIG-1 and ANI-1 may affect cleavage plane po-
sition by regulating the accumulation of myosin at the cell
cortex (Pacquelet et al. 2015). Indeed, in early embryos, PIG-1
MELK protein has been shown to localize to the cell cortex be-
tween adjacent cells. However, in the dividing Q.a/p neuro-
blasts, which like the NSM neuroblasts divide asymmetrically

Figure 9 ces-1 Snail controls the position and
orientation of the NSMnb cleavage plane by
repressing the expression of pig-1 MELK. (A)
Genetic model of the functions of ces-1 Snail
in the NSM lineage in wild type. See text for
details. (B) Schematics of NSMnb division and
fate of the NSM and NSMsc in wild type (+/+),
ces-1 gain of function or ces-2 loss of function,
and pig-1 loss of function. The red dotted lines
in the NSMnb indicate the position and orien-
tation of the cleavage plane. See text for details.
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to give rise to a daughter that is programmed to die, PIG-1
seems to localize to the two centrosomes (Chien et al. 2013).
This suggests that in neuroblasts, PIG-1 MELK most likely acts
through amechanism that differs from that in the early embryo.
Furthermore, we have recently shown that certain aspects of
the polarization of the NSMnb, such as the generation at meta-
phase of a gradient of apoptotic potential (i.e., active CED-3
caspase), depend on the activity of the central C. elegans cell
death pathway as well as the two parallel partially redundant
C. elegans engulfment pathways (Chakraborty et al. 2015;
Conradt et al. 2016; Lambie and Conradt 2016). How a pig-1
MELK-dependent pathway may intersect with these pathways
to cause the asymmetric division of the NSMnb is currently
unknown.

Relevance for stem cells and tumorigenesis

Snail-like transcription factors affect various aspects of stem
cell function such as self-renewal (Guo et al. 2012; Desgrosellier
et al. 2014; Hwang et al. 2014; Lin et al. 2014; Horvay et al.
2015; Ye et al. 2015; Tang et al. 2016). In order to self-renew,
stem cells need to divide asymmetrically and give rise to two
daughters of different fates. Interestingly, at least in mouse and
in the zebrafish, the MELK gene is expressed in stem cells, such
as neural and hematopoietic stem cells (Nakano et al. 2005;
Saito et al. 2005, 2012). Furthermore, there is increasing evi-
dence (including the evidence presented here) that MELK pro-
teins play a critical role in asymmetric cell division and that their
loss or overexpression causes cells that normally divide asym-
metrically to divide symmetrically instead (Cordes et al. 2006;
Tassan 2011; Pacquelet et al. 2015). Therefore, we speculate
that Snail-like transcription factors are critical for self-renewal
because they controlMELK expression in stem cell lineages and,
hence, the function of MELK in asymmetric cell division.

In some stem cell lineages, Snail-like transcription factors,
however, have also been shown topromote the acquisition of a
differentiated state (Lin et al. 2014; Horvay et al. 2015; Tang
et al. 2016). Studies of CES-1 Snail in the NSM neuroblast
lineage may provide a framework for how this could be ac-
complished mechanistically. In the NSM neuroblast lineage,
CES-1 Snail coordinates cell cycle progression and cell polar-
ity in the NSMnb and thereby enables this neuroblast to di-
vide asymmetrically (Hatzold and Conradt 2008; Yan et al.
2013). Immediately after NSMnb division, in contrast, CES-1
Snail is critical for cell fate specification and the acquisition of
a differentiated state: its absence in the NSMsc causes the
NSMsc to acquire the cell death fate and its presence in the
NSM allows the NSM to acquire a neuronal fate (Ellis and
Horvitz 1991; Thellmann et al. 2003; Hatzold and Conradt
2008). The different functions of CES-1 Snail in the NSMnb
and its daughter cells can be explained by differences in CES-1
Snail abundance: CES-1 Snail protein is present at a low,
undetectable level in the NSMnb and this low level may be
necessary and sufficient to control the transcription of pig-1
MELK and cdc-25.2 CDC25. Immediately after NSMnb divi-
sion, this level is increased to a detectable level in the NSM
and probably decreased to an even lower level in the NSMsc

(Hatzold and Conradt 2008). Therefore, a level sufficient for
transcriptional repression of egl-1 BH3-only is reached in the
NSM but not the NSMsc. [Indeed, the cis-acting element of
the egl-1 BH3-only locus necessary for CES-1 Snail-dependent
repression contains four Snail binding sites to which CES-1 pro-
tein binds in a cooperative manner, at least in vitro (Thellmann
et al. 2003).] By analogy to the C. elegans NSM neuroblast
lineage, we speculate that the concentrations and, hence, target
genes of Snail-like transcription factors in stem cell lineagesmay
change during asymmetric stem cell divisions to promote self-
renewal in stem cells, and cell fate specification and terminal
differentiation in the nonstem cell daughter.

Finally, the deregulation of both Snail-like transcription
factors and MELK has been implicated in tumorigenesis in
numerous types of cancers andmay even play a central role in
cancer stem cells (Puisieux et al. 2014; Ganguly et al. 2015).
Based on our findings in C. elegans, we speculate that the de-
regulation of Snail-like transcription factors or MELK results in
the inability of stem cells to divide asymmetrically, and that this
loss of self-renewal is a crucial step in tumorigenesis.
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Supporting Information Captions 1 

2 

Table S1. Number of ChIP-seq reads. 3 

ChIP-seq analysis for CES-1 binding. The numbers of total and unique ChIP-seq reads 4 

are shown for the two experiment repeats and their corresponding control. 5 

6 

Table S2. Potential CES-1 Snail target genes. 7 

List of the 3,199 potential CES-1 target genes identified by ChIP-seq. See text for details. 8 

9 

Table S3. GO analysis of target genes of 11 C. elegans transcription factors. 10 

GO analysis results for PHA-4, NHR-2, BLMP-1, ELT-3, LIN-13, CEH-39, GEI-11, 11 

MED-1, CES-1, MEP-1 and LSY-2. GO analysis was performed at biological process 12 

level 4 using DAVID6.8. See text for details. 13 

14 

Table S4. Programmed cell death - potential CES-1 Snail targets. 15 

List of potential CES-1 target genes that are related to programmed cell death 16 

(GO:0012501). 17 

18 

Table S5. Asymmetric cell division – potential CES-1 Snail targets. 19 

List of potential CES-1 target genes that are related to asymmetric cell division 20 

(GO:0008356). 21 

22 

Fig S1. ces-1 Snail expression during embryogenesis. 23 

DIC and epifluorescence images of wild-type (+/+) embryos carrying the integrated 24 

45



transgene wgIs174 (Pces-1ces-1::gfp) at different stages of development. Expression of gfp 25 

was first observed in the ABplpapaap/ABprpapaap lineages (red arrows) during the bean 26 

stage of embryogenesis. During the 1.5-fold stage, the expression was observed in many 27 

cells in the area of the developing pharynx, most of which are neurons (red arrows). 28 

29 

Figure S2. GFP level of pig-1 transcriptional reporter in Z3. 30 

(A) Confocal images of representative Z3 cells at metaphase in control, wild-type (+/+,31 

+/+1, +/+2), ces-1(n703gf) and ces-1(tm1036) animals. Control animal is transgenic for 32 

ltIs44 (Ppie-1mCherry::phPLCδ) transgene. Wild-type (+/+, +/+1, +/+2), ces-1(n703gf) and 33 

ces-1(tm1036) animals are transgenic for bcSi43 (Ppig-1gfp) and ltIs44 (Ppie-34 

1mCherry::phPLCδ)  transgenes. +/+1 indicates a strain from which ces-1(n703gf) was 35 

outcrossed. +/+2 indicates a strain from which ces-1(tm1036) was outcrossed. White arrow 36 

heads indicate Z3. Scale bar represents 2 μm. (B) GFP concentration [fluorescence 37 

intensity/μm2] in Z3 in control animals (control) and in animals carrying the transgene Ppig-38 

1gfp (bcSi43) in various genetic backgrounds (+/+, ces-1(n703gf), +/+1, ces-1(tm1036), 39 

+/+2) (n=11-13). Each dot represents the GFP concentration in one Z3. Red horizontal lines 40 

indicate mean concentrations, which are stated on top. Grey dotted line indicates the mean 41 

concentration in wild type (+/+). 42 

43 

Figure S3. Schematic representation of the pig-1 MELK transcription unit on 44 

Chromosome IV. 45 

(Top) The entire pig-1 transcription unit is shown with the two deletion alleles gm344 and 46 

tm1510. (Bottom) Detail of exons 1-6 of the pig-1 transcription unit. gm344 is a 524 bp 47 

deletion that removes parts of the 5’ UTR, exon 1 and parts of exon 2. tm1510 is a 1486 bp 48 

46



deletion that removes parts of exon 2 and exon 3 and 4. 49 

50 

Figure S4. Loss of pig-1 MELK does not affect the expression of ces-1 Snail in the 51 

NSM neuroblast lineage. 52 

(A) Confocal images of wild type (+/+), ces-2(bc213), pig-1(gm344) and ces-2(bc213);53 

pig-1(gm344) embryos transgenic for the integrated single-copy transgene (MosSCI allele) 54 

Pces-1ces-1::yfp (bcSi50) and the integrated transgene Ppie-1mCherry::plcδph (ltIs44). A 55 

higher magnification of the NSMnb is inserted at the bottom right corner of each image. 56 

Blue circles mark membrane boundaries of NSMnbs at metaphase and white arrowheads 57 

point to NSMnbs. The right column of confocal images are two-channel overlay 58 

projections of single plane confocal images of representative embryos of a given genotype 59 

shown in the two left columns. Scale bar represents 5 μm. (B) Summary of Pces-1ces-1::yfp 60 

(bcSi50) expression in the NSM neuroblast lineage in different genetic backgrounds. The 61 

NSMnb, the NSM and the NSMsc are indicated as circles. The yellow color indicates 62 

detectable CES-1::YFP signal in the NSMnb (at metaphase), the NSM or NSMsc 63 

(immediately post NSMnb division). n number of NSM neuroblast lineages analyzed. 64 

65 
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Table S1. Summary of CES-1 ChIP-seq raw data. 

Total reads Uniquely mapped reads (%) 

Repeat1 sample 7,354,875 6,142,087 (83%) 

Repeat1_control control 2,897,835 2,767,203 (95%) 

Repeat2 sample 7,460,381 6,224,070 (83%) 

Repeat2_control control 4,062,244 3,865,241 (95%) 
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Supplemental Table S2 and Table S3 are not shown in this dissertation since they are 

excel files and contains lots of information, which would be more than 700 pages if I print them. 

Therefore, I cannot present them here. While these data are available online, please visit the 

following GENETICS website: 

Table S2-Number of ChIP-seq reads. (.docx): 

http://www.genetics.org/content/206/4/2069.supplemental 

Table S3-Potential CES-1 Snail target genes. (.xlsx): 

http://www.genetics.org/content/206/4/2069.supplemental 
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Table S4. CES-1 target genes for GOterm programmed cell death 

GO:0012501~programmed cell death 
Count Pvalue 

202 2.25E-18 

Target gene with this GOterm: 
ifg-1,nud-1,lin-53,ubl-1,ubq-2,H28O16.1,ubq-1,T26G10.1,crt-1,his-61,cars-1,tba-1,his-
65,mrg-1,C23G10.8,his-57,mpk-1,vha-12,wts-1,dcr-1,imb-3,lpin-1,lin-41,C08B11.3,ify-
1,Y57G11C.15,his-47,icd-1,vars-2,pbs-2,mdt-15,npp-20,mes-2,unc-3,skr-
1,F43G9.12,R186.8,mep-1,R186.3,rfp-1,cmd-1,let-607,vps-4,Y49E10.23,pcn-1,nsf-1,pbs-
5,misc-1,tpxl-1,met-1,mdt-19,cnt-1,unc-32,fcd-2,rab-1,pcf-11,agef-1,C13B9.3,fem-2,gld-
3,ape-1,rab-5,snr-6,snx-6,snr-1,eef-1A.1,F09F7.3,W04A4.5,eef-2,Y54F10AR.1,rla-0,cdl-
1,F59E10.3,hrp-2,abl-1,ced-5,C14A4.11,ced-2,apb-1,dlc-1,cct-7,aps-3,lgg-1,daf-16,daf-
21,Y76B12C.6,Y37D8A.18,lgc-46,ect-2,hsp-1,unc-51,ire-1,him-17,eat-3,dnj-10,etr-1,arf-
1.2,rpl-20,rpl-18,mcd-1,atp-3,aex-3,eif-3.I,rpl-17,rpl-15,Y48G8AL.7,sca-1,rpl-13,rpl-
12,mog-5,snap-1,F09E5.2,Y105E8A.25,sop-2,eif-3.C,eif-3.E,npp-7,rpl-4,fis-2,gcn-1,rpl-
6,K12H4.4,mtp-18,eor-1,eor-2,syx-5,clpp-1,hpl-1,rpl-39,C45G9.5,nmt-1,sec-5,bir-1,nmy-
2,rpl-31,sec-23,bec-1,rpl-35,T27F7.4,T05H10.1,pdi-2,pig-1,sel-12,rpl-25.2,act-4,rps-
6,rps-5,rps-3,xnp-1,rps-1,hda-1,F43D9.3,F20D6.11,czw-1,pod-1,T14G10.5,C53A5.6,brc-
1,knl-2,rps-0,rpn-7,F32D8.5,rpn-3,rba-1,F32D8.13,R05D3.8,T13H5.8,tig-2,bmk-1,rpm-
1,let-526,eel-1,rps-23,eif-1,rps-28,cap-1,rps-26,hif-1,ubc-9,cyc-2.1,rps-19,usp-48,rps-
11,cgh-1,dad-1,his-68,F14B4.3,rps-16,F38E11.5,rps-17,atad-3,crn-1,hel-1,cct-5,cct-
6,lpd-2,T09E8.1,cct-1,let-70,ppk-1,arp-11,kin-19 
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Table S5. CES-1 target genes for GOterm asymmetric cell division 

GO:0008356~asymmetric cell division 

Count Pvalue 
19 9.70E-04 

Target gene with this GOterm: 
arf-3,dnj-11,arf-6,wrm-1,par-3,ham-1,par-2,ama-1,par-5,mig-5,par-1,pig-1,rab-5,nmy-
2,lit-1,cnt-2,mom-5,cam-1,csnk-1 
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Corrigendum for Wei et al., GENETICS 206 (4) 2069-2084. 

GENETICS, Vol 206, 2069-2084, August 2017, Copyright © 2017 Genetics Society of America. 

CORRIGENDUM 

In the article by H. Wei, B. Yan, J. Gagneur, and B. Conradt (GENETICS 206: 2069-2084) entitled 
“Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To Control Asymmetric Cell 
Division”, scholarship funding for H. W. was not included. The following sentence has been added to the 
Acknowledgments section: 

H. W. was supported by a predoctoral fellowship from the China Scholarship 
Council (https://www.csc.edu.cn/). 
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Caenorhabditis elegans ced-3 Caspase Is Required for
Asymmetric Divisions That Generate Cells

Programmed To Die
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ABSTRACT Caspases have functions other than in apoptosis. Here, we report that Caenorhabditis elegans CED-3 caspase regulates
asymmetric cell division. Many of the 131 cells that are “programmed” to die during C. elegans development are the smaller daughter
of a neuroblast that divides asymmetrically by size and fate. We have previously shown that CED-3 caspase is activated in such
neuroblasts, and that before neuroblast division, a gradient of CED-3 caspase activity is formed in a ced-1 MEGF10 (multiple EGF-like
domains 10)-dependent manner. This results in the nonrandom segregation of active CED-3 caspase or “apoptotic potential” into the
smaller daughter. We now show that CED-3 caspase is necessary for the ability of neuroblasts to divide asymmetrically by size. In
addition, we provide evidence that a pig-1 MELK (maternal embryonic leucine zipper kinase)-dependent reciprocal gradient of “mitotic
potential” is formed in the QL.p neuroblast, and that CED-3 caspase antagonizes this mitotic potential. Based on these findings, we
propose that CED-3 caspase plays a critical role in the asymmetric division by size and fate of neuroblasts, and that this contributes to
the reproducibility and robustness with which the smaller daughter cell is produced and adopts the apoptotic fate. Finally, the function
of CED-3 caspase in this context is dependent on its activation through the conserved egl-1 BH3-only, ced-9 Bcl-2, and ced-4 Apaf-1
pathway. In mammals, caspases affect various aspects of stem cell lineages. We speculate that the new nonapoptotic function of
C. elegans CED-3 caspase in asymmetric neuroblast division is relevant to the function(s) of mammalian caspases in stem cells.

KEYWORDS caspase; nonapoptotic function; asymmetric cell division; neuroblasts; C. elegans; pig-1 MELK

DURING embryonic and postembryonic Caenorhabditis
elegans development, 131 somatic cells reproducibly

die (Sulston and Horvitz 1977; Sulston et al. 1983). Genetic
screens resulted in the identification of four genes that can
mutate to block most of these cell deaths and that define a
conserved apoptotic cell death pathway (egl-1 BH3-only, ced-9
Bcl-2, ced-4 Apaf-1, and ced-3 caspase) (Horvitz 2003;
Conradt et al. 2016). Interestingly, most of the cells that are
programmed to die during development are generated
through divisions that are asymmetric by fate and size, and

that produce a smaller daughter that is programmed to die.
The apoptotic death of the smaller daughter is triggered
through the transcriptional upregulation (and, hence, in-
crease in expression) in that cell of egl-1 BH3-only, which
induces apoptosome formation, and the maturation and ac-
tivation of the protease CED-3 caspase. Active CED-3 caspase
cleaves specific substrates and thereby induces the killing, dis-
mantling, and phagocytosis of the cell in a cell-autonomous
manner. For example, CED-3 caspase cleaves and acti-
vates the lipid scramblase CED-8 Xkr8, which results in the
exposure of the “eat-me signal” phosphatidylserine (PS) on
the surface of the dying cell (Stanfield and Horvitz 2000;
Suzuki et al. 2013). This signal is recognized by receptors
on neighboring cells, namely CED-1 MEGF10 (multiple
EGF-like domains 10), which leads to receptor clustering
and the activation of two conserved parallel engulfment
pathways in the engulfing cell (Zhou et al. 2001; Venegas
and Zhou 2007). Recently, we demonstrated that active
CED-3 caspase is already present in the mother of at least

Copyright © 2018 by the Genetics Society of America
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one cell programmed to die, the embryonic neurosecretory mo-
tor neuron (NSM) neuroblast, which divides to give rise to the
larger NSM, which survives and differentiates into a serotoner-
gic motor neuron, and the smaller NSM sister cell (NSMsc),
which dies (Chakraborty et al. 2015; Lambie and Conradt
2016). Furthermore, this active CED-3 caspase causes the clus-
tering and activation (in a ced-8Xkr8- andPS-independentman-
ner) of CED-1MEGF10 and the two engulfment pathways in the
two dorsal neighbors of the NSM neuroblast. This activation of
the engulfment pathways in turn is necessary for the formation
and/or maintenance of a gradient of CED-3 caspase activity in
the NSM neuroblast, and the nonrandom segregation of active
CED-3 caspase into the smaller NSMsc, where it promotes the
robust and swift execution of apoptotic cell death (Chakraborty
et al. 2015; Lambie and Conradt 2016).

The formation of a gradient of CED-3 caspase activity in the
mother of a cell programmed to die has so far only been dem-
onstrated in the embryonic NSM neuroblast lineage. For this
reason, the generality of this phenomenon has so far been
unclear. In addition, whether active CED-3 caspase plays a role
in the mother other than promoting its own enrichment in one
part of the cell, has been unknown. To address these questions,
we examined the postembryonic QL.p neuroblast lineage. Our
results support the notion that the formation of a gradient of
CED-3 caspase activity is a general phenomenon. Furthermore,
we provide evidence that the ced-3 caspase gene plays an ac-
tive role in the asymmetric division ofmothers. Specifically, we
provide evidence that ced-3 caspase is required for their ability
to divide asymmetrically by size and fate, and, hence, to pro-
duce the smaller daughter, which is programmed to die.

Materials and Methods

Strains and genetics

All C. elegans strains analyzed were maintained at 25� on
Nematode Growth Medium, unless otherwise specified
(Brenner 1974). The following mutations and transgenes were
used in this study: LGI: ced-1(e1735) (Hedgecock et al. 1983);
LGIII: ced-4(n1162) (Ellis and Horvitz 1986), ced-6(n1813) (Ellis
et al. 1991), unc-119(ed3) (Maduro and Pilgrim 1995)
and rdvIs1(Pegl‐17mCherry::his‐24, Pegl‐17myristoylated mCherry,
Pegl‐17mig‐10::yfp) (Ou et al. 2010); LGIV: ced-2(n1994) (Ellis
et al. 1991), ced-3(n717) (Ellis and Horvitz 1986), ced-
3(n2433) (Shaham et al. 1999), ced-3(n2427) (Shaham
et al. 1999), pig-1(gm344) (Cordes et al. 2006), and bcSi82
(Ptoe-2mKate2::tac-1) (this study); andLGV: egl-1(n3330) (Sherrard
et al. 2017), bzIs190 (Pmec-4gfp) (M. Driscoll (Rutgers University),
personal communication), ltIs44 (Ppie-1mCherry::phPLCd) (Audhya
et al. 2005), and enIs1 (Pced-1ced-1DC::gfp) (Zhou et al. 2001).
Additional transgenes used in this study are: bcIs133 (Ptoe-2gfp)
(this study), bcEx1277 (Phyp7ced-1::gfp) (this study), and
bcEx1334 (Ptoe-2ced-1::mKate2) (this study).

Cloning

pBC1565 (Ptoe-2gfp): The toe-2 promoter (Ptoe-2) (2117 bp
immediately upstream of the toe-2 start site) was amplified

by PCR using N2 genomic DNA, and restriction sites for AgeI
and SacI were introduced at the ends of the PCR product.
Primers used to amplify Ptoe-2 were SacI Ptoe-2-F (59-aaaaa
GAGCTCttatctgtaccacaaattcc-39) and AgeI Ptoe-2-R (59-
aaaaaACCGGTttttgacctgaggacatgatg-39). The resulting PCR
product and plasmid pBC1408 (Pces-2gfp::unc-54 39UTR in pBlue-
script) were digested with AgeI and SacI (which drops out Pces-2
from pBC1408), and the PCR product cloned into the pBC1408
backbone using T4 ligation to obtain pBC1565 (Ptoe-2gfp).

pBC1591 (Phyp7gfp) and pBC1681 (Phyp7ced-1::gfp): The
promoter of gene Y37A1B.5 (Phyp7) (2910 bp immediately
upstream of the Y37A1B.5 start site) (Hunt-Newbury et al.
2007) was amplified by PCR using N2 genomic DNA, and
restriction sites for AgeI and SacI were introduced at the ends
of the PCR product. Primers used to amplify Phyp7 were Phyp7-F
(59-aaaGAGCTCaaactttattagacgtcgcaattt-39) and Phyp7-R
(59-aaaACCGGTtttggtttttgggatttttgatc-39). The PCR product
obtained (Phyp7) was used to replace Ptoe-2 in pBC1565 using
restriction digest with AgeI and SacI, and T4 ligation to gen-
erate plasmid pBC1591 (Phyp7gfp). A ced-1minigene was am-
plified from plasmid pZZ610 (Pced-1ced-1::gfp, Zhou et al.
2001) by PCR using the primers AgeI ced-1-F (59-aaaACCGG
Tatgcgtctcattctccttgtgctac-39) and ced-1-R (59-tttttctaccgg
tacttgaattcct-39). The resulting PCR product and pBC1591
were digested with AgeI, and the ced-1minigene was inserted
by T4 ligation into the linearized pBC1591 to obtain plasmid
pBC1681 (Phyp7ced-1::gfp).

pBC1805 (Ptoe-2ced-1::mKate2): pBC1805 was cloned by
Gibson cloning (Gibson et al. 2009). Primers pBSKPtoe-2-F
(59-ATCCCCCGGGCTGCAGGAATTCGATTTATCTGTACCACA
AATTCCTTG-39) and ced-1Ptoe-2-R (59-GAATGAGACGCATT
TTTGACCTGAGGACATG-39) were used to amplify Ptoe-2 using
pBC1565 as a template. A ced-1minigenewas amplified in two
parts: fragment 1 was amplified using primers Ptoe-2ced-
1_fwd (59-CCTCAGGTCAAAAATGCGTCTCATTCTCCTTG-39)
and ced-1_mini_(1)_rev (59-ccgggtcacagttGGCTCCATTTT
CACAGTC-39), whereas fragment 2 was amplified using the
primers ced-1_mini_(2)_fwd (59-tgaaaatggagccAACTGTGA
CCCGGAACTC-39) and ced-1_mini_(2)_rev (59-ccttgatgagct
cggaTTTTTCTACCGGTACTTGAATTC-39). pZZ610 was used
as a template for the amplification by PCR of both fragments
(Zhou et al. 2001). mKate2::tbb-2 39UTR was amplified
from plasmid pEZ167 (Pmex-5fkbp12::mKate2::tbb-2 39UTR;
E. Zanin (LMU Munich), personal communication, Turek
et al. 2013) as template with the help of the primers
mK_tbb-2_fwd (59-accggtagaaaaaTCCGAGCTCATCAAGGAG-39)
and mK_tbb-2_rev (59-ggtcgacggtatcgataagcttgatCAATGAG
ACTTTTTTCTTGGC-39). EcoRV-digested pBluescript II KS(+)
was used as backbone and all the above fragments were
assembled using Gibson assembly to obtain pBC1805 (Ptoe-2
ced-1::mKate2).

pBC1807 (Ptoe-2mKate2::tac-1): pBC1807was generated by
Gibson assembly (Gibson et al. 2009). Ptoe-2 was amplified
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using the primers NM1 (59-gagctctggtaccctctagtcaaggTTATC
TGTACCACAAATTCCTTG-39) and NM2 (59-tgagctcggacatTT
TTGACCTGAGGACATG-39), and pBC1565 as a template.
mKate2::tac-1 was obtained by PCR amplification using plas-
mid TMD34 (Pmex-5mKate2::tac-1::tbb-2 39UTR; T. Mikeladze-
Dvali, (LMU Munich) personal communication) as a tem-
plate, and the primers NM3 (59-cctcaggtcaaaaATGTCCG
AGCTCATCAAG-39) and NM4 (59-aattctacgaatgTTATGC
ATCCGTCGAAATAAC-39). Similarly, pBC1565 was used as a
template to amplify the unc-54 39UTRusing primers NM5 (59-
gacggatgcataaCATTCGTAGAATTCCAACTG-39) and NM6
(59-agtccgtaatacgactcacttaaggAAACAGTTATGTTTGGTATAT
TGG-39). These fragments were introduced into StuI-digested
pCFJ909 (Frøkjær-Jensen et al. 2014) using Gibson assembly
to obtain pBC1807 (Ptoe-2mKate2::tac-1).

Microinjection

bcIs133 (Ptoe-2gfp): pBC1565 (20 ng/ml) + pRF4 (80 ng/ml)
was injected into the gonads of young N2 adult hermaphro-
dites and extrachromosomal array was integrated by UV
irradiation to obtain bcIs133, which was 53 backcrossed
with N2.

bcEx1277 (Phyp7ced-1::gfp): pBC1681 (51 ng/ml) + IR101
(10 ng/ml) (Prps-0HygR::gpd-2/gpd-3::mCherry::unc-54
39UTR, Radman et al. 2013) was injected into the gonads of
young ced-1(e1735); ced-3(n2427); bcIs133 adult hermaph-
rodites to obtain ced-1(e1735); ced-3(n2427); bcIs133;
bcEx1277.

bcEx1334 (Ptoe-2ced-1::mKate2): bcEx1334 was generated
by injecting pBC1805 (26 ng/ml) + pCFJ90 (Pmyo-2::mCherry::
unc-54 39UTR; Frøkjaer-Jensen et al. 2008) (2.6 ng/ml) +
pBluescript II KS(+) (60 ng/ml) into the gonads of young ced-
1(e1735); ced-3(n2427); bcIs133 adult hermaphrodites to ob-
tain ced-1(e1735); ced-3(n2427); bcIs133; bcEx1334.

bcSi82 (Ptoe-2mKate2::tac-1): bcSi82 was generated
by miniMOS integration of pBC1807 (Ptoe-2mKate2::tac-1)
into HT1593 [unc-119(ed3)] animals (Frøkjær-Jensen et al.
2014). First, 10 ng/ml of pBC1807 was injected into the go-
nads of HT1593 animals along with pCFJ601 (50 ng/ml),
pGH8 (10 ng/ml), pCFJ90 (2.5 ng/ml), and pCFJ104
(5 ng/ml) (Frøkjær-Jensen et al. 2014). Worms were allowed
to starve for 1 week, after which wild-type movers were ex-
amined for integration.

Extra PVM neurons

Posterior ventral mechanosensory (PVM) neurons were visual-
ized using the transgene Pmec-4gfp (bzIs190), which labels all
mechanosensory neurons (Mitani et al.1993). Fourth larval stage
(L4) larvae of thedesiredgenotypewereanesthetized in adropof
sodiumazide solution (30mMinM9buffer) ona2%agarosepad
on a glass slide. A 1003/1.3NAoil-immersion objective lens on a
Zeiss ([Carl Zeiss], Thornwood, NY) Imager.M2 epifluorescence
microscope was used to visualize PVM neurons.

QL.pp survival

QL.pp survival was determined using the transgene Ptoe-2gfp
(bcIs133), which labels cells of the Q lineages (Gurling et al.
2014). In wild-type animals, QL.pp dies within �17 hr post-
egg laying during the first larval stage (L1 stage) (at 25�)
(Sulston and Horvitz 1977). To avoid false positives due to
delayed cell death, we used larvae of the second larval stage
(L2 larvae) (25–30 hr postegg laying) for analysis. Larvae
were anesthetized in a drop of levamisole solution (10 mM
in M9 buffer) on a 2% agarose pad on a glass slide. Ptoe-2gfp
was visualized with the help of a 100X/1.3 NA oil-immersion
objective lens on a Zeiss Imager.M2 epifluorescencemicroscope.
We only considered those worms for assessing QL.pp survival in
which QL.pa had divided and its daughters had formed visible
neurite extensions at the time of counting. Thus, we ensured
that slow-growing strains were not analyzed at an earlier de-
velopmental time point. Importantly, upon failure of death, QL.
aa, which is produced in the vicinity of QL.p, migrates toward
the tail, and therefore away from QL.pp. As a result, it does not
interfere with our determination of QL.pp survival.

Division of “undead” QL.pps

The division of undead QL.pps was determined using the
transgene Ptoe-2gfp (bcIs133). L2 larvae were prepared simi-
larly as for QL.pp survival. Animals were assessed after QL.pa
had divided to form PVM and SDQL neurons with visible
neurite outgrowths.

Live imaging of QL.p and QL.a divisions

The transgene Ptoe-2gfp (bcIs133) was used to identify QL.p
and QL.a, and to analyze their asymmetric divisions. L1 lar-
vae were immobilized in 1 ml polybead microsphere suspen-
sion (0.1 mm diameter, 2.5% w/v, catalog number 00876;
Polysciences, Warrington, PA) on a 10% agarose pad (agarose
was dissolved in 67%M9 buffer). A glass coverslip was placed
on the agar pad and the empty space around the agarose pad
underneath the coverslip was filledwith paraffin oil to prevent
dehydration. Image Z-stacks were acquired every 3 min with a
1-mm step size using a 633/1.4 NA oil-immersion objective
lens on the UltraVIEW VoX spinning disk microscope (Perkin
Elmer [Perkin Elmer-Cetus], Norwalk, CT).

QL.p and QL.a daughter cell sizes

Q-lineage cells are relativelyflat cells. As a result, single-plane
cell areas provide a fair estimation of cell sizes (i.e., area is
directly proportional to cell volume) (Cordes et al. 2006).
Therefore, the image Z-stacks acquired of the daughters of
QL.p and QL.a using the transgene Ptoe-2gfp (bcIs133) (see
Live imaging of QL.p and QL.a divisions) were converged to
obtain maximum-intensity Z-projections. Cell sizes were es-
timated by circumscribing the cells andmeasuring their areas
with Fiji (Schindelin et al. 2012; Schneider et al. 2012).

Determination of QL.p cleavage furrow position

Images of QL.p undergoing cytokinesis were obtained from
the movies generated to assess QL.p daughter cell sizes. The
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position of the cleavage furrowwas determined bymeasuring
its distance from the anterior periphery of QL.p and dividing it
by the total length of the cell (Figure 5D). Distances were
measured using Fiji (Schindelin et al. 2012; Schneider et al.
2012).

Localization studies for CED-1DC::GFP

CED-1 localization was analyzed using the transgene
Pced-1ced-1DC::gfp (enIs1) (Zhou et al. 2001). L1 larvae were
anesthetized with levamisole (0.1 mM in M9 buffer),
mounted on 3% agarose pads on glass slides, and examined
using 633/1.4 NA oil-immersion objectives on a Leica SP5
inverted confocal microscope. Q-lineage cells were identi-
fied with the help of the transgene Pegl‐17mCherry::his‐
24, Pegl‐17myristoylated mCherry, Pegl‐17mig‐10::yfp (rdvIs1)
(Ou et al. 2010).

TAC-1 ratio

The TAC-1 ratio was determined using the transgenes
Ptoe-2mKate2::tac-1 (bcSi82) and Ptoe-2gfp (bcIs133). L1 larvae
of the desired genotypes were grown at 20� and immobilized
in 1ml polybeadmicrosphere suspension, and slides prepared
as described earlier for live imaging of QL.p and QL.a divi-
sions. Image Z-stacks were acquired every 5 min with a
0.5-mm step size using a 1003/1.4 NA oil-immersion objective
lens on the UltraVIEW VoX spinning disk microscope (Perkin
Elmer). The time point at which QL.p was at metaphase was
used to determine the amount of TAC-1 associated with the
two centrosomes. Quantification of the amount of centro-
some-associated TAC-1 was performed as described previ-
ously (Chakraborty et al. 2015). A region of the same size
on the slide but outside the animal was considered as back-
ground noise, and its intensity was subtracted from the mea-
sured intensities of centrosome-associated TAC-1.

NSM neuroblast daughter cell sizes

The NSM and NSMsc were identified using the transgene
Ppie-1mCherry::phPLCd (ltIs44), and their sizes determined as
described (Chakraborty et al. 2015; Wei et al. 2017). All
images were acquired using a Leica TCS SP5 II confocal mi-
croscope. All strains were incubated at 20� overnight before
imaging.

Embryonic lethality

Five L4 larvae of each genotype were singled on seeded
NGM plates. These were allowed to lay eggs for 30 hr at 20�.
Two-days later, the numbers of larvae and dead eggs were
determined.

Statistical analysis

Proportions were compared using Fisher’s Exact Test, and
the obtained P-values were adjusted using the Benjamini
and Hochberg test for multiple comparisons (Fisher 1935;
Yoav 1995). Wherever applicable, data were tested for
normal distribution using the D’Agostino and Pearson nor-
mality test (D’Agostino and Pearson 1993). When data

were found to be distributed normally, the Student’s t-test
or parametric one-way ANOVA were performed to deter-
mine statistical significance between groups assuming that
the groups had unequal SD, and Tukey’s or the Benjamini
and Hochberg multiple comparisons test was applied
(Student 1908; Fisher 1921; Tukey 1949). When comparing
the amounts of TAC-1 on the anterior and posterior centro-
somes (where all posterior TAC-1 levels were set to 1), we
used theWilcoxon signed-rank test to determine if the groups
were statistically different (Wilcoxon 1945). The Mann–
Whitney test was used to compare the ratios of QL.a daughter
cell sizes in wild-type animals with those in ced-3(n717)
animals (Mann 1947).

Data availability

All reagents and strains generated for this study are available
from the authors upon request. The authors affirm that all
data necessary for confirming the conclusions of the article
are present within the article and figures. Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.7058609.

Results

A ced-1 MEGF10-dependent, but pig-1 MELK-independent,
gradient of CED-3 caspase activity is present in the
postembryonic QL.p neuroblast

During the L1 stage of postembryonicC. elegans development,
the neuroblast QL.p divides asymmetrically by size and fate
to produce a larger anterior daughter, QL.pa, which survives,
and a smaller posterior daughter, QL.pp, which is pro-
grammed to die (Sulston and Horvitz 1977; Cordes et al.
2006) (Figure 1, wild-type). The observation that defects in
the asymmetric division of QL.p by size can affect the fate of
its daughters (especially the fate of QL.pp) indicates that
daughter cell size and daughter cell fate are functionally
coupled (Cordes et al. 2006; Singhvi et al. 2011; Gurling et al.
2014; Teuliere et al. 2014; Teuliere and Garriga 2017). To
determine whether a gradient of CED-3 caspase activity
forms in QL.p prior to its division, we used a reporter for
the protein TAC-1 (Ptoe-2mKate2::tac-1). TAC-1 is a compo-
nent of the pericentriolar material and a substrate of CED-3
caspase (Bellanger and Gonczy 2003; Le Bot et al. 2003;
Srayko et al. 2003; Chakraborty et al. 2015). We have pre-
viously shown that in the embryonic NSM neuroblast, the
amount of TAC-1 associated with the centrosome that is
inherited by the larger daughter, which survives, is greater
(by 1.30-fold) than the amount of TAC-1 associated with the
centrosome that is inherited by the smaller daughter, which is
programmed to die (Chakraborty et al. 2015). This “TAC-1
asymmetry” is dependent on a functional ced-3 caspase gene
as well as a CED-3 caspase cleavage site in the TAC-1 protein
and, hence, reflects a gradient of CED-3 caspase activity
along the cleavage axis of the NSM neuroblast. Furthermore,
the establishment and/or maintenance of this gradient of
CED-3 caspase activity in the NSM neuroblast is dependent
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on the two conserved C. elegans engulfment pathways
(Chakraborty et al. 2015). We found that at QL.p metaphase,
the amount of TAC-1 associatedwith the anterior centrosome
is 1.25-fold greater than that associated with the posterior
centrosome (Figure 2, A and B). Furthermore, this asymme-
try is lost in the background of a strong loss-of-function (lf)
mutation of ced-3 caspase, n717, or a strong lf mutation of the
engulfment gene ced-1 MEGF10, e1735 (ratios of 0.97 and
0.99, respectively) (Figure 2, A and C). The gene pig-1 en-
codes a PAR-1-like kinase orthologous to mammalian MELK
(maternal embryonic leucine zipper kinase) and is important
for the asymmetric division of QL.p. Specifically, the loss of
pig-1 MELK causes QL.p to divide symmetrically by size
(Cordes et al. 2006) (see below). Interestingly, we found that
TAC-1 asymmetry at QL.p metaphase is not affected by a
strong lf mutation of pig-1MELK, gm344 (ratio of 1.28) (Fig-
ure 2, A and C). Therefore, a ced-1 MEGF10-dependent gra-
dient of CED-3 caspase activity is also formed in QL.p prior to
its division. This gradient is along the anterior–posterior axis
and presumably results in the nonrandom segregation of ac-
tive CED-3 caspase into the smaller posterior daughter QL.pp,
which is programmed to die. pig-1 MELK is not required
for the formation of this CED-3 caspase activity gradient.

However, because of its role in the asymmetric division of
QL.p by size, its loss nevertheless probably affects the con-
centration of active CED-3 caspase in QL.pp (the concentra-
tion is probably less than that in wild-type; see below).

Consistent with the notion that ced-1 MEGF10 and the
engulfment pathways play an instructive role in the estab-
lishment and/or maintenance of this gradient of CED-3 cas-
pase activity, we found that an asymmetric contact exists
between QL.p and a neighboring cell that exhibits detectable
levels of CED-1 MEGF10 on its cell surface (Figure 3, Supple-
mental Material, Figure S1 and File S1). Specifically, QL.p is
in contact with the syncytial cell hyp7, which is part of the
hypodermis that covers large parts of the animal and which,
after QL.p division, engulfs the QL.pp corpse (Sulston and
Horvitz 1977). Using a CED-1 MEGF10 reporter (Pced-1ced-
1DC::gfp) (Zhou et al. 2001), we detected CED-1 MEGF10 on
what appears to be the entire surface of hyp7 (Figure 3,
Figure S1, and File S1). However, we found that while there
is almost uniform contact between hyp7 and the lateral side
of QL.p, there is an asymmetric contact between hyp7 and the
medial side of QL.p. More specifically, the posterior, but not
the anterior, part of QL.p’s medial side contacts hyp7. There-
fore, a cell surface that contains detectable levels of CED-1

Figure 1 The C. elegans QL.p neuroblast lineage. (A) Schematic representation of the postembryonic QL.p neuroblast lineage in wild-type (left) and
mutant (right) worms. Vertical and horizontal lines represent individual cells and cell divisions, respectively. “X” denotes a cell death. (B) Schematic
representation of the cell sizes of the QL.p neuroblast and its daughter cells in wild-type (left) and mutant (right) worms. In wild-type worms, QL.pa is
nearly three times as large as its sister, QL.pp. However, in mutants with defects in the asymmetric division by size of QL.p, QL.pa and QL.pp can be of
similar sizes.
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MEGF10 apposes the part of QL.p that will later form the
smaller daughter, QL.pp, which is programmed to die, but
not the part of QL.p that will later form the larger daughter,
QL.pa, which survives (schematically represented in the
drawing in the lower left hand corner of Figure 3; this draw-
ing was compiled based on the images shown in Figure 3
and in Figure S1). We propose that this asymmetry in the
presentation of CED-1 MEGF10 on apposing cell surfaces
(and, hence, in the activation of CED-1 MEGF10 and the
engulfment pathways) is critical for the establishment of a
gradient of CED-3 caspase activity along the anterior–pos-
terior axis of QL.p.

The loss of ced-1 MEGF10 promotes the appearance of
extra PVM neurons

The larger daughter, QL.pa, not only survives but also divides
to generate the neurons PVM and SDQL (Figure 1A, wild-
type). To determine the possible function of the ced-1
MEGF10-dependent gradient of CED-3 caspase activity in
QL.p, we analyzed the number of PVM neurons generated
by this lineage. A block in apoptotic cell death prevents the
death of QL.pp, and this can lead to the presence of two,
rather than one, PVM neurons in L4 larvae (Figure 1A, Mu-
tants). For example, using a PVM-specific reporter (Mitani
et al. 1993), an extra PVM neuron is detected in 0% of
wild-type animals but in 2% of ced-3(n717) animals (Chien
et al. 2013) (Figure 4, A and B). In contrast, a compromised
apoptotic cell death pathway, such as in animals homozy-
gous for the weak ced-3 lf mutation n2427, does not lead
to the presence of an extra PVM neuron. We found that in a

ced-3(n2427), but not wild-type, background, ced-1(e1735)
causes the presence of an extra PVM neuron in 3% of the
animals (Figure 4B). We also analyzed ced-1(e1735) in the
background of pig-1(gm344). In an otherwisewild-type back-
ground, the loss of pig-1 MELK causes the presence of an
extra PVM neuron in 30% of the animals (Cordes et al.
2006) (Figure 4B). We found that ced-1(e1735) as well as
ced-3(n2427) significantly enhanced this phenotype to 58 or
70%, respectively. Furthermore, we found that 96% of the
triple-mutant animals had an extra PVM neuron. Therefore,
the loss of ced-1MEGF10 (and, hence, the loss of the gradient
of active CED-3 caspase in QL.p) promotes the presence of
extra PVM neurons in a background in which the apoptotic
cell death pathway is compromised as well as in a back-
ground in which QL.p divides symmetrically. Furthermore,
in a background in which QL.p divides symmetrically [i.e.,
in pig-1(gm344)], the enhancements of the extra PVM neu-
ron phenotype, either through compromising the apoptotic
cell death pathway or through the loss of ced-1 MEGF10, are
additive.

ced-1 MEGF10 is not required for the asymmetric
division of QL.p by size

The presence of an extra PVM neuron can be the result of a
defect in the asymmetric division of QL.p by size, the asym-
metric division of QL.p by fate, or a combination thereof.
To determine which of these processes is affected by ced-
1(e1735), we analyzed them individually. To analyze the
asymmetric division of QL.p by size, we used a GFP reporter
that is expressed in QL.p and its daughters (Ptoe-2gfp)

Figure 2 A ced-1 MEGF10-dependent gradient of
CED-3 caspase activity exists in QL.p at metaphase.
(A) Representative images of centrosome-associated
mKate2::TAC-1 in QL.p at metaphase in the indi-
cated genotypes. Bar, 3 mm. QL.p was identified
using Ptoe-2gfp (bcIs133) and TAC-1 was visualized
using Ptoe-2mKate2::tac-1 (bcSi82). (B) Bar graph
showing the comparison of total mKate2::TAC-1
signals associated with the anterior and posterior
centrosomes during QL.p metaphase in wild-type
animals. Total “Anterior” TAC-1 signal was normal-
ized to the total “Posterior” TAC-1 signal, which
was set to 1 for each animal. Wilcoxon signed-rank
test was used to determine statistical significance.
** P, 0.01, n = 11 QL.ps. (C) Dot plot showing the
spread of the TAC-1 ratios in QL.p (Anterior/Posterior)
among animals of each genotype. The horizontal
red lines indicate the mean for each genotype (also
mentioned above the spread for each group). The
dotted black line represents the mean for wild-type
(+/+). The dotted green line represents the ratio 1.
Each dot represents the TAC-1 ratio for one animal.
Statistical significance was determined using the
Student’s t-test and Benjamini and Hochberg multi-
ple comparisons correction. * P , 0.05, n $ 10 QL.ps.
n.s., not significant.
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(Gurling et al. 2014), and acquired image stacks of QL.p in
developing L1 larvae every 3 min. The first stack acquired
after the completion of QL.p cytokinesis was then used to
estimate the sizes of the two daughter cells (Figure 5A)
(Q-lineage cells are relatively flat cells. Hence, measurements
of their areas of maximum intensity projection images provide
reliable approximations of their cell sizes (Cordes et al.
2006)). In wild-type animals, QL.p divides asymmetrically
by size to produce the larger QL.pa and the smaller QL.pp
with a size ratio of QL.pa to QL.pp of �3.0 (Figure 1B, wild-
type; Figure 5, B and C). As was reported previously (Cordes
et al. 2006), in pig-1(gm344) animals, QL.p divides symmet-
rically to produce two cells of similar sizes with a size ratio of
QL.pa to QL.pp of 1.1 (Figure 5, B and C). Using this assay, we
did not observe a significant effect of ced-1(e1735) on the
asymmetric division by size of QL.p in a wild-type or ced-
3(n2427) background. Therefore, the loss of ced-1 MEGF10
does not promote the presence of additional PVM neurons by
affecting the asymmetric division by size of QL.p.

ced-1 MEGF10 promotes the apoptotic fate of QL.pp

QL.p divides asymmetrically by fate to produce QL.pa, which
survives and divides to generate two neurons, PVM and SDQL
(“mitotic fate”), and QL.pp, which is programmed to die by
apoptosis (“apoptotic fate”) (Figure 1A). We tested whether
the loss of ced-1MEGF10 affects the ability of QL.pp to adopt
the apoptotic fate. Using the Ptoe-2gfp reporter, we determined
the fraction of QL.pps that inappropriately survive (regard-
less of whether they subsequently divided or not) (Figure
6A). In wild-type animals, QL.pp always dies. In contrast,
in animals carrying strong lf mutations of egl-1 BH3-only,
n3330, ced-4 Apaf-1, n1162, or ced-3 caspase, n717, QL.pp
survives in almost all animals (Figure 6B). Furthermore, in
animals homozygous for ced-3(n2427), 37% of QL.pps sur-
vive. We found that while ced-1(e1735) does not cause QL.pp
survival in an otherwise wild-type background, it increases
QL.pp survival in a ced-3(n2427) background to 58%. Simi-
larly, lf mutations of ced-2 CrkII or ced-6 GULP (n1994 and

Figure 3 Asymmetric presence of CED-1 MEGF10
around QL.p. Schematic of an L1 larva with the
location of QL.p indicated is shown top-left. A: an-
terior, P: posterior, D: dorsal, V: ventral, L: left, and
R: right. Concentric circles represent the direction
projecting toward the reader, while the circle with
a cross represents the direction projecting away
from the reader. The schematic below the L1 larva
represents a transverse section through the larva at
the position where QL.p is localized. The section is
enlarged in the adjoining image on the right. This
and another section (bottom-left) shown were
drawn based on fluorescence images and images
of electron microscopy sections available on Wor-
mAtlas (http://www.wormatlas.org/). The key for
cell colors is at the top-right. Larvae were imaged
from the side, and individual image slices were ac-
quired while gradually moving from the left to the
middle of the worm. QL.p was labeled with the
transgene Pegl-17mCherry::his‐24, Pegl-17myristoylated
mCherry, Pegl-17mig‐10::yfp (rdvIs1) and hyp7 with
the transgene Pced-1ced-1DC::gfp (enIs1) (see
Materials and Methods for details). The diagram in
the middle-right represents the orientation of the
image planes, images for which have been shown
at the bottom-right. In these images, white arrow-
heads indicate a contact between CED-1DC::GFP
and QL.p, whereas blue arrowheads indicate the
lack of contact. Bar, 2 mm. It can be seen in the
images for slices 4–9 that CED-1DC::GFP is in con-
tact with the posterior half of QL.p but not with its
anterior part. The coronal section (bottom-left) has
been created based on the fluorescence images (sli-
ces shown at the bottom-right) and the images of
the electron microscopy sections. It can be seen in
this diagram that while hyp7 almost entirely enve-
lopes the posterior part of QL.p, it only forms con-
tact with the left side of the anterior part.
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n1813, respectively), two other engulfment genes, also en-
hance the ced-3(n2427) phenotype. To determine in which
cell or cells the engulfment genes act to enhance QL.pp sur-
vival, we performed rescue experiments using promoters that
drive transgene expression specifically in the Q lineage (toe-2
promoter) (Gurling et al. 2014) or in hyp7 (“hyp7 promoter”)
(Hunt-Newbury et al. 2007). We found that the expression of
a ced-1minigene under the control of the hyp7 promoter, but
not the toe-2 promoter, rescues the ced-1(e1735) phenotype
(Figure 6B). Therefore, in a background in which apoptotic
cell death is compromised, the loss of ced-1MEGF10 or other
engulfment genes increases the probability of QL.pp survival.
Hence, the engulfment genes act to promote the apoptotic
fate in QL.pp. Furthermore, in this context, ced-1 MEGF10,
and most probably the other engulfment genes, act in hyp7
and therefore in a cell nonautonomousmanner. Finally, based
on our finding that a ced-1 MEGF10-dependent gradient of
CED-3 caspase activity is established in QL.p before its divi-
sion, we propose that ced-1MEGF10 and the other engulfment
genes promote the apoptotic fate of QL.pp by causing the non-
random segregation of active CED-3 caspase into QL.pp.

pig-1 MELK, ced-1 MEGF10, and ced-3 caspase interact
to promote the apoptotic fate of QL.pp

Wealso determined the effect of ced-1(e1735)on the ability of
QL.pp to adopt the apoptotic fate in a background in which
QL.p divides symmetrically by size, i.e., in the pig-1(gm344)
background. In pig-1(gm344) animals, 45%of QL.pps survive
(Figure 6B). We found that the loss of ced-1 MEGF10
enhances QL.pp survival in this background to 86% (Figure
6B). Similarly, ced-3(n2427) enhances QL.pp survival in
pig-1(gm344) animals from 45 to 94%. Finally, in the triple
mutant, 100% of QL.pps inappropriately survive. The loss of
pig-1 MELK does not affect the formation of the gradient of
CED-3 caspase activity in QL.p (see above; Figure 2, A and C).
However, since the size of QL.pp in pig-1(gm344) animals is

increased by a factor of �2.0, the loss of pig-1 MELK probably
results in a significant reduction of the concentration of active
CED-3 caspase in QL.pp after QL.p division (since QL.p and its
daughters are relatively flat cells, an increase by a factor of�2.0
in cell size results in an increase by a factor of �2.0 in cell
volume as well; hence, the loss of pig-1 potentially could reduce
the concentration of active CED-3 caspase by as much as two-
fold). Furthermore, the loss of pig-1 MELK may also affect the
concentration in QL.pp of factors other than CED-3 caspase. For
example, the loss of pig-1 MELK may cause a reduction in the
concentration of other proapoptotic factors, such as transcrip-
tional activators of egl-1 BH3-only. Combined with a reduction
in the concentration of active CED-3 caspase, this may be suffi-
cient to cause 45% of the QL.pps to inappropriately survive.
Abolishing the gradient of CED-3 caspase activity in QL.p [i.e.,
ced-1(e1735)] or compromising the apoptotic cell death path-
way [i.e., ced-3(n2427)] is expected to reduce the concentra-
tion of active CED-3 caspase in QL.pp in pig-1(gm344)
animals even further, thereby increasing the fraction of an-
imals in which QL.pp inappropriately survives. Finally, in
ced-1(e1735); pig-1(gm344) ced-3(n2427) triple mutants,
the concentration of active CED-3 caspase in QL.pp is re-
duced below the threshold required to execute the apoptotic
fate in 100% of the animals.

pig-1 MELK, but not ced-1 MEGF10, is required to restrict
mitotic potential to QL.pa

Next, we asked whether the loss of ced-1MEGF10 affects the
ability of an undead QL.pp to inappropriately adopt the mi-
totic fate, i.e., the fate normally adopted by QL.pa. Specifi-
cally, using Ptoe-2gfp, we determined the fraction of undead
QL.pps that divide (Figure 7A). Since in ced-1(e1735) ani-
mals QL.pp always dies, we addressed this question in the
background of ced-3(n2427). In ced-3(n2427) or ced-
1(e1735); ced-3(n2427) animals, 37 or 58% of QL.pps inap-
propriately survive, respectively. We found that none of the

Figure 4 The loss of ced-1
MEGF10 enhances the extra
PVM phenotype of ced-3(n2427)
animals. (A) Schematic represen-
tation of assay and representative
images of L4 larvae with no extra
PVM neuron (top), or with an ex-
tra PVM neuron (bottom). Bar,
5 mm. PVM neurons were visual-
ized using Pmec-4gfp (bzIs190) as
reporter. (B) Bar graph showing
the fraction of animals with extra
PVM neurons for the indicated
genotypes. Statistical test: Fisher’s
exact test with Benjamini and
Hochberg multiple compari-
sons correction. * P , 0.05,
*** P , 0.001, **** P , 0.0001,
and n . 50 animals.
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undead QL.pps divide in either of these genetic backgrounds
(Figure 7B). In contrast, in pig-1(gm344) animals, in which
45% of QL.pps inappropriately survive, 56% of undead
QL.pps divide. Therefore, the loss of pig-1 MELK, but not ced-1
MEGF10, causes undead QL.pps to inappropriately adopt the
mitotic fate. Hence, pig-1 MELK, but not ced-1 MEGF10, is
required to restrict the mitotic potential to QL.pa. Based on
this observation, we propose that a pig-1 MELK-dependent,
ced-1 MEGF10-independent gradient of mitotic potential ex-
ists in QL.p prior to its division. Furthermore, we propose that
this gradient is along the anterior–posterior axis of QL.p re-
ciprocal to the gradient of CED-3 caspase activity (with a
higher concentration in the anterior rather than posterior
part of QL.p) and that during QL.p division, this gradient
results in the nonrandom segregation ofmitotic potential into
QL.pa, instead of QL.pp (Figure 9). According to this model,
the loss of this gradient in pig-1(gm344) animals should

result in the inappropriate presence of mitotic potential in
QL.pp after QL.p division, and, hence, the ability of undead
QL.pps to adopt the mitotic fate and divide. In support of
this model, Garriga and co-workers found that while the loss
of pig-1 MELK or strd-1 STRD1 causes similar defects in the
asymmetric division by size of QL.p and QR.p, pig-1mutants
have a more penetrant “extra neuron phenotype,” most
likely as a result of the division of more undead QL.pps
and QR.pps (Chien et al. 2013). Based on this observation,
the authors proposed that pig-1may act in a strd-1-indepen-
dent manner to affect the segregation of “fate determinants”
during QL.p and QR.p division. Alternatively, the mitotic
potential could be distributed throughout QL.p, and
inherited into QL.pa and QL.pp proportional to cell size,
but the small size of QL.pp (�1/3 of QL.pa) may prevent
its ability to divide. In that case, the loss of pig-1 MELK
would increase by a factor of �2.0 both the size of QL.pp

Figure 5 Genetic requirements for the asymmetric
division by size of QL.p. (A) Schematic representa-
tion of the assays. The division of QL.p was moni-
tored by live imaging. QL.p division asymmetry was
assessed at two stages during mitosis, specifically
during and after cytokinesis. During cytokinesis, we
determined the position of the cleavage furrow.
The first time point upon the completion of cytoki-
nesis was used to estimate daughter cell sizes based
on maximum intensity projection images, as de-
scribed in the Materials and Methods. QL.p and
its daughter cells were visualized using the trans-
gene Ptoe-2gfp (bcIs133). (B) Representative images
of QL.p daughters immediately after QL.p cytokine-
sis in the indicated genotypes. Bar, 3 mm. In the
image showing pig-1(gm344), the asterisk (*)
marks QL.aa present in the vicinity of QL.pa and
QL.pp. (C) Dot plot showing cell size ratios (QL.pa/
QL.pp) in the indicated genotype. Each dot repre-
sents the cell size ratio for one QL.p. The horizontal
red lines indicate the means for the respective ge-
notypes, which are also mentioned on top for each
genotype. The dotted black line represents the
mean in wild-type (+/+). The dotted green line rep-
resents the ratio 1. (D) Schematic representation of
the method used to determine the position of the
cleavage furrow during QL.p cytokinesis. We mea-
sured the distance of the cleavage furrow from the
anterior periphery of QL.p (FL), and divided it by
QL.p length (CL) to obtain the cleavage furrow
position. (E) Dot plot showing the position of the
cleavage furrow during QL.p cytokinesis. Each dot
represents the position in one QL.p. The horizontal
red lines indicate the means for the respective ge-
notypes, which are also mentioned at the top for
each genotype. The dotted green line represents
the position corresponding to 50% CL, and the
dotted black line represents the mean for wild-type
animals. Statistical test: one-way ANOVA followed
by Benjamini and Hochberg multiple comparisons
correction. ** P , 0.01, **** P , 0.0001, and n $

7 QL.ps. Statistical test: one-way ANOVA followed
by Benjamini and Hochberg multiple comparisons
correction. * P, 0.05, ** P, 0.01, **** P, 0.0001,
and n $ 7 QL.ps. n.s., not significant.
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as well as the total amount of mitotic potential in QL.pp (with
no change in its concentration), and this would lead to the
inappropriate division of 56% of undead QL.pps. Finally,
pig-1 MELK may also act in QL.pp to antagonize the activity
of mitotic potential, and this could lead to the division of
undead QL.pps in animals lacking pig-1.

Surprisingly, we found that ced-3(n2427) significantly
increases the fraction of undead QL.pps that divide in
pig-1(gm344) animals (from 56 to 80%; Figure 7B). In
contrast, ced-1(e1735) fails to do so in a pig-1(gm344)

(56 vs. 45%) or pig-1(gm344) ced-3(n2427) (80 vs. 87%)
background. Based on this, we propose that CED-3 caspase
antagonizes the activity of the mitotic potential. Furthermore,
the finding that compromising the apoptotic cell death path-
way [i.e., ced-3(n2427)] but not abolishing the gradient of
CED-3 caspase activity in QL.p [i.e., ced-1(e1735)] increases
the fraction of undead QL.pps that divide in pig-1(gm344)
animals, indicates that it is CED-3 caspase activity per se rather
than a gradient of CED-3 caspase activity that is capable of
antagonizing the activity of the mitotic potential. Possibly,
the functional interaction between CED-3 caspase and the mi-
totic potential could occur in QL.p (before the formation of the
gradient of CED-3 Caspase activity) and not in QL.pp after
QL.p division. Alternatively, the interaction could take place
in QL.pp; in this case, ced-3(n2427) but not ced-1(e1735)
would reduce the level of CED-3 caspase activity below the
threshold necessary to antagonize the activity of the mitotic
potential. Finally, the observation that ced-3(n2427) enhances
the fraction of undead QL.pps that divide in pig-1(gm344), but
not in wild-type animals, provides additional support for the
notion that a gradient of mitotic potential exists in QL.p and
that during QL.p division, little or no mitotic potential is nor-
mally segregated into QL.pp.

egl-1 BH3-only, ced-4 Apaf-1, and ced-3 caspase promote
the ability of QL.p to divide asymmetrically by size

Like ced-1 MEGF10, the genes egl-1 BH3-only, ced-4 Apaf-1,
and ced-3 caspase are required for the formation of the gra-
dient of CED-3 caspase activity in the NSM neuroblast and
presumably also in QL.p. However, egl-1 BH3-only, ced-4
Apaf-1, and ced-3 caspase, but not ced-1 MEGF10, are re-
quired for the initial maturation and full activation of CED-3
caspase. We found that unlike ced-1(e1735), egl-1(n3330),
ced-4(n1162), and ced-3(n717) affect the ability of undead
QL.pps to divide. Specifically, we found that in an otherwise
wild-type background, these mutations cause between 2 and
11% of undead QL.pps to divide (Figure 7B). We also tested
the ced-3mutation n2433, which is a missense mutation in the
coding region of the ced-3 gene and leads to the synthesis of
CED-3 protein that lacks protease activity. We found that, sim-
ilarly, ced-3(n2433) causes 4% of undead QL.pps to divide.
Hence, the loss of CED-3 caspase activity per se rather than
the loss of a gradient of CED-3 caspase activity can result in the
inappropriate presence of mitotic potential in undead QL.pps
after QL.p division. This suggests that it is the loss of ced-3
caspase in QL.p rather than QL.pp that causes the inappropri-
ate presence ofmitotic potential inQL.pp. Therefore,we tested
whether the loss of egl-1 BH3-only, ced-4 Apaf-1, or ced-3 cas-
pase affects the asymmetric division ofQL.p by size and, hence,
the partitioning of mitotic potential during QL.p division. We
found that rather than exhibiting a cell size ratio of QL.pa to
QL.pp of�3.0, in thesemutants, cell size ratios observed range
from 2.4 to 2.0, indicating that the cleavage plane has shifted
anteriorly resulting in larger QL.pps (Figure 5, B and C) [it has
previously been reported that the loss of ced-4 affects the cell
size ratio of QL.pa to QL.pp (Singhvi et al. 2011)]. To rule out

Figure 6 pig-1 MELK, ced-1 MEGF10, and ced-3 caspase interact to
promote the apoptotic fate in QL.pp. (A) Schematic representation of
assay and representative images of L2 larvae showing two, three, or four
cells of the QL.p lineage. Bar, 3 mm. Cells were visualized using the
transgene Ptoe-2gfp (bcIs133). For the purpose of this analysis, animals
with three or four QL.p lineage cells were counted as an instance of “QL.
pp survival,” and those with two QL.p lineage cells were counted as ones
of “QL.pp death.” (B) Bar graph showing the fraction of animals in which
QL.pp inappropriately survived for the indicated genotypes. Fisher’s
exact test was used to determine statistical significance. Benjamini and
Hochberg multiple comparisons correction was used to adjust individual
P values. * P , 0.05, **** P , 0.0001, and n . 50 animals.
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that the changes in cell size ratios observed are a result of
differences in the cell shape of undead QL.pps (and, hence,
our ability to estimate QL.pp size rather than the asymmetry of
the QL.p division), we determined the position of the cleavage
furrow in QL.p in the different mutant backgrounds. To that
end, we used the image stacks generated every 3 min of L1
larvae carrying the Ptoe-2gfp reporter that we generated to de-
termine the cell size ratio of QL.pa to QL.pp (Figure 5A), and
used the last stack before QL.p division to determine the posi-
tion of the cleavage furrow as outlined in Figure 5D. Using this
approach, we found that in wild-type animals, the cleavage
furrow is positioned at 62.4% QL.p length and in pig-
1(gm344) animals at 51.7% QL.p length (Figure 5E). Consid-
ering that the cell size ratio of QL.pa toQL.pp is 2.9 in thewild-
type and 1.1 in pig-1(gm344) animals, it is likely that small
changes in cleavage furrow position may result in significant
changes in QL.pa to QL.pp cell size ratio. Next, we analyzed
animals lacking egl-1 BH3-only, ced-4 Apaf-1, or ced-3 caspase,
and found significant changes in cleavage furrow position in
ced-4(n1162) and ced-3(n717) animals (57 and 56.9% of
QL.p length, respectively). In addition, we found small changes
in cleavage furrow position in egl-1(n3330) and ced-3
(n2433), but not ced-1(e1735), animals. As mentioned above,
small changes in cleavage furrow position may result in signif-
icant changes in QL.pa to QL.pp cell size ratio. The small
changes in cleavage furrow position detected in egl-1(n3330)
and ced-3(n2433) animals may therefore account for the signif-
icant changes inQL.pa toQL.pp cell size ratios observed in these
animals (Figure 5, C and E).

Based on these observations, we conclude that the loss of
egl-1 BH3-only, ced-4 Apaf-1, or ced-3 caspase compromises
the ability of QL.p to divide asymmetrically by size. There-
fore, CED-3 caspase contributes to the asymmetric division by
size of QL.p. Furthermore, we propose that through the ob-
served shift in cleavage plane toward the anterior, mitotic
potential is segregated inappropriately into QL.pp during
QL.p division, and that this accounts for the small fraction

of undead QL.pps that divide in these mutants. Finally, the
ability of CED-3 caspase to contribute to the asymmetric di-
vision by size of QL.p depends on its activation through egl-1
BH3-only and ced-4 Apaf-1, and, hence, the apoptotic cell
death pathway.

The function of the apoptotic cell death pathway in
asymmetric cell division by size is not restricted to the
QL.p neuroblast

To determine whether the function of the apoptotic cell
death pathway in asymmetric cell division by size is specific
to theQL.p neuroblast, we analyzed the postembryonic QL.a
neuroblast and the embryonic NSM neuroblast, both of
which divide asymmetrically by size and fate to produce a
smaller daughter that is programmed to die (Sulston et al.
1983; Hatzold and Conradt 2008). In wild-type animals,
QL.a divides to generate a larger posterior daughter,
QL.ap, and a smaller anterior daughter, QL.aa, with a cell size
ratio of QL.ap to QL.aa of 2.67 (Ou et al. 2010) (Figure 8, A
and B) (cells of the QL.a lineages are also relatively flat
cells; therefore, cell size was determined as for QL.p daugh-
ters). We found that in ced-3(n717) animals, this ratio was
reduced to 2.13. Furthermore, we observed an effect of the
loss of ced-3 caspase on the asymmetric division by size of
the NSM neuroblast; however, only in the background of
pig-1(gm344). Specifically, the NSM neuroblast divides to
produce a larger ventral daughter, the NSM, and a smaller
dorsal daughter, the NSMsc, with a cell size ratio of NSM to
NSMsc of 1.57 (Hatzold and Conradt 2008) (Figure 8, C and
D) (since cells of the NSM neuroblast lineage are not flat
cells, cell size was estimated as described in Figure 8C and
in the Materials and Methods). As reported previously, in
pig-1(gm344) animals, the NSM neuroblast divides symmet-
rically by size and generates two daughter cells of similar
sizes, with a cell size ratio of NSM to NSMsc of 1.00 (Wei
et al. 2017). In ced-3(n717) or ced-4(n1162) animals, the cell
size ratio is not significantly different from that of wild-type

Figure 7 pig-1 MELK and ced-3 caspase in-
teract to suppress the mitotic fate in QL.pp.
(A) Schematic representation of assay and
representative images of L2 larvae showing
three or four QL.p lineage cells. Bar, 3 mm.
Cells were visualized using the reporter
Ptoe-2gfp (bcIs133). Only those animals, in
which QL.pp failed to die were considered
for this analysis. Animals with four QL.p line-
age descendants were considered to have
had an instance of “undead QL.pp division,”
whereas the ones with three QL.p lineage
cells were counted as an instance of “no
undead QL.pp division.” (B) Bar graph show-
ing the fraction of undead QL.pps that di-
vided for the indicated genotypes. Statistical
test: Fisher’s exact test with Benjamini and
Hochberg multiple comparisons correction.
* P , 0.05, ** P , 0.01, **** P ,
0.0001, and n . 25 animals. NA, not appli-
cable.
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animals (1.47 and 1.51, respectively). However, in a pig-
1(gm344) background, the cell size ratio of ced-3(n717) or
ced-4(n1162) animals is significantly reduced compared to
that of pig-1(gm344) animals (0.84 and 0.83, respectively).
A reduction in the ratio below 1.0 is indicative of a reversal of
polarity. Indeed, in these double-mutant animals, the NSM is
smaller than the NSMsc. In summary, these results indicate
that the function of the apoptotic cell death pathway in asym-
metric neuroblast division, at least by size, is not restricted to
the QL.p neuroblast.

Our finding that ced-4(n1162) and ced-3(n717) affect the
asymmetric division of the NSM neuroblast in a pig-1(gm344),
but not wild-type, background suggests that in certain line-
ages, the apoptotic cell death pathway may act in parallel to
pig-1 MELK to affect cellular polarization. Therefore, we
tested whether ced-3(n717) enhances embryonic lethality
in pig-1(gm344) animals.

When grown at 20�, we observed 0% embryonic lethality
among ced-3(n717) animals (n = 1413) and 8% embryonic
lethality among pig-1(gm344) animals (n= 1514). However,
in pig-1(gm344) ced-3(n717) double mutants, 43% of the
animals arrested during embryonic development (n = 397).
Therefore, the apoptotic cell death pathway may play a more

general role in cellular polarization and asymmetric cell divi-
sion, and, in this context, act in parallel to pig-1 MELK.

Discussion

The formation of reciprocal gradients of mitotic and
apoptotic potential is critical for the asymmetric division
of the QL.p neuroblast by fate

Based on results presented here,we propose that prior toQL.p
division, reciprocal gradients of mitotic and apoptotic poten-
tial form in QL.p, and that these gradients result in the non-
random segregation of mitotic potential into QL.pa and of
apoptotic potential into QL.pp (Figure 9). We speculate that
the mitotic potential in QL.pa promotes its ability to divide,
and we provide evidence that the apoptotic potential in
QL.pp promotes its ability to execute apoptotic cell death. Fur-
thermore, while we know that apoptotic potential encom-
passes at least active CED-3 caspase, we do not know the
molecular nature of the mitotic potential. However, we spec-
ulate that it encompasses factors involved in cell cycle con-
trol, and/or molecules or organelles required for energy
production. We also provide evidence that distinct genetic
pathways are responsible for the establishment and/or

Figure 8 The apoptotic pathway pro-
motes asymmetric cell division in other
neuroblast lineages. (A) Representative
images and (B) dot plot showing relative
sizes of QL.a daughter cells in wild-type
and ced-3(n717) animals. Bar, 3 mm.
Cells were visualized using the reporter
Ptoe-2gfp (bcIs133). Statistical test:
Mann–Whitney test. * P , 0.05, n =
6 QL.as. (C) Representative images show-
ing NSM (Neurosecretory motor neuron)
neuroblast (NSMnb) daughter cells visu-
alized with Ppie-1mCherry::phplcd (ltIs44).
The circumferences of the daughter cells
were traced and are shown below the
respective images. Circumferences of
NSM sister cells (NSMsc) are shown in
blue and circumferences of NSM are
shown in orange. (D) Dot blot showing
cell size ratios (NSM/NSMsc) in the indi-
cated genotypes. One-way ANOVA with
Tukey’s multiple comparisons test was
used to determine statistical significance.
* P , 0.05, ** P , 0.01, **** P ,
0.0001, n . 11 NSM neuroblasts.
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maintenance of these two gradients in QL.p. Specifically, the
two conserved C. elegans engulfment pathways are necessary
for the gradient of CED-3 caspase activity but not the gradient
of mitotic potential. Conversely, a pig-1 MELK-dependent
pathway is necessary for the gradient of mitotic potential
but not the gradient of CED-3 caspase activity. How these
distinct pathways control the two reciprocal gradients, and
how these gradients are generated in the first place, remains
to be determined. Interestingly, in the case of the gradient of
CED-3 caspase activity, we found that there is a mechanistic
difference in the symmetry-breaking event that orients this
gradient along the dorsal–ventral axis in the NSM neuroblast
and along the anterior–posterior axis in the QL.p neuroblast.
In the case of the NSM neuroblast, all neighboring cells ap-
pear to present CED-1 MEGF10 on their cell surface; how-
ever, CED-1 MEGF10 clustering and activation specifically
occurs on the cell surface of the two dorsal neighbors
(Chakraborty et al. 2015). In contrast, in the case of QL.p,
at least on the medial side, CED-1 MEGF10 is asymmetrically

presented and, for this reason, results in CED-1 MEGF10
activation only on the posterior side. Finally, the results pre-
sented here indicate that the formation of a gradient of CED-3
caspase activity in a mother of a cell programmed to die is not
specific to the NSM neuroblast lineage. Based on this, we
speculate that it represents a general phenomenon of cell
death lineages in developing C. elegans animals.

The apoptotic cell death pathway is required for the
asymmetric division by size and fate of the QL.p neuroblast

The asymmetric division of mothers of cells programmed to
die is critical for the correct fate of their daughters and, in
particular, for the correct fate of thedaughters programmed to
die. Hence, it has been postulated that asymmetric cell di-
vision regulates the apoptotic cell death pathway (Hatzold
and Conradt 2008; Teuliere and Garriga 2017). We now
demonstrate that the apoptotic cell death pathway contrib-
utes to the ability of mothers of cells programmed to die to
divide asymmetrically. Specifically, we present evidence that
the apoptotic cell death pathway is required for the asymmet-
ric division of QL.p by size and, hence, the correct sizes of the
daughter cells QL.pa and QL.pp. In addition, we present ev-
idence that the apoptotic cell death pathway is also required
for the asymmetric division of QL.p by fate. Specifically, by
controlling the sizes of QL.pa and QL.pp, the apoptotic cell
death pathway indirectly influences the relative amounts of
mitotic potential or apoptotic potential that are segregated
into either QL.pa or QL.pp during QL.p division. In addition,
the apoptotic cell death pathway is required for the activation
of CED-3 caspase in QL.p, which we propose antagonizes the
mitotic potential. Hence, the apoptotic cell death pathway
controls the total amount of apoptotic and mitotic potential
present in QL.p, and, therefore, the amounts that can be
segregated into QL.pa and QL.pp. Based on these new find-
ings, we now postulate that not only does asymmetric cell
division regulate the apoptotic cell death pathway, but that in
the context of cell death lineages, the apoptotic cell death
pathway regulates asymmetric cell division. Furthermore,
this regulation of asymmetric cell division through the apo-
ptotic cell death pathway is necessary for the production of
smaller daughters that are programmed to die.

A new nonapoptotic function of the C. elegans apoptotic
cell death pathway in asymmetric neuroblast division

The C. elegans apoptotic cell death pathway, and CED-3
caspase in particular, has been implicated in a number of
nonapoptotic processes, which range from aging and neuro-
nal regeneration to the control of the expression of specific
genes, such as the heterochronic gene lin-28 (Pinan-Lucarre
et al. 2012; Weaver et al. 2014; Yee et al. 2014). Similarly,
mammalian caspases have been shown to have various non-
apoptotic functions during development (Nakajima and
Kuranaga 2017). We now present evidence that the apoptotic
cell death pathway is also involved in the asymmetric division
of neuroblasts that generate a smaller daughter that is pro-
grammed to die. How CED-3 caspase affects the position of

Figure 9 Working model. Schematic representation of QL.p neuroblast
at metaphase. We propose that reciprocal gradients of mitotic (red) and
apoptotic (blue) potential are present in QL.p along the anterior–posterior
axis in wild-type animals. The gradient of apoptotic potential is depen-
dent on ced-1 MEGF10 function and the gradient of mitotic potential
may be dependent on pig-1 MELK function. See text for details.
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the cleavage plane in these neuroblasts remains to be deter-
mined. In C. elegans, the positioning of the cleavage plane is
best understood in the one-cell embryo, which, like QL.p,
divides asymmetrically by size and fate (Rose and Gonczy
2014; Wu and Griffin 2017). In general, the cleavage plane
is perpendicular to and centered on the middle of the mitotic
spindle. As a result of unequal dynein-mediated pulling
forces emanating from the anterior and posterior poles (with
more pulling forces emanating from the posterior pole), in
one-cell embryos, the spindle is shifted posteriorly along the
anterior–posterior axis. As a result, the cleavage plane is
shifted posteriorly as well, generating a larger anterior cell,
AB, and a smaller posterior cell, P1. It has been shown pre-
viously that the spindle is shifted posteriorly in QL.p as well
(Ou et al. 2010), and we speculate that this is also caused by
unequal dynein-mediated pulling forces. However, whereas
the loss of pig-1 MELK causes QL.p to divide symmetrically
rather than asymmetrically, it fails to do so in the one-cell
embryo [however, the loss of pig-1MELK does synergize with
the loss of ani-1, which encodes one of two C. elegans anillin
genes, to affect the position of the cleavage plane in one-cell
embryos (Pacquelet et al. 2015)]. This suggests that the func-
tion of pig-1 MELK in the regulation of cleavage plane posi-
tion differs between the one-cell embryo and the QL.p
neuroblast lineage. Nevertheless, since the loss of ced-3 cas-
pase causes a partial defect in the posterior shift of the cleav-
age plane in QL.p, ced-3 caspase may be necessary for the
dynein-mediated pulling forces that emanate from the poste-
rior pole. However, the finding that the loss of ced-3 caspase
also affects the asymmetric division by size of the QL.a neuro-
blast suggests that dynein-mediated pulling forces may not
be the target of CED-3 caspase activity in this context. Spe-
cifically, like QL.p, the neuroblast QL.a divides asymmetri-
cally by size and fate to generate a larger daughter, which
survives, and a smaller daughter, which dies (in contrast to
QL.p, the smaller daughter of QL.a is the anterior rather than
the posterior daughter). However, rather than through a shift
of the mitotic spindle along the anterior–posterior axis, it has
been suggested that two daughter cells of different sizes are
generated from QL.a through asymmetric myosin-mediated
contractile forces duringQL.a division (Ou et al. 2010). Hence,
ced-3 caspase may be required for general cellular polarization
of QL.p and QL.a, and affect the position of the cleavage plane
or myosin-mediated contractile forces indirectly. Consistent
with the notion that ced-3 caspase may be required for general
cellular polarization, we found that in the embryonic NSM
neuroblast lineage, the loss of ced-3 caspase in a pig-1 MELK
mutant background causes a reversal of polarity. Finally, the
finding that the loss of ced-3 caspase enhances embryonic le-
thality in animals lacking pig-1 MELK function suggests that
ced-3 caspase (and possibly the entire apoptotic cell death
pathway) also functions in asymmetric cell division and cellu-
lar polarization in lineages other than cell death lineages, and
that this may be crucial for normal animal development.

Interestingly, there is increasing evidence that mammalian
caspases have functions in different types of embryonic and

adult stem cells (Baena-Lopez et al. 2017). Hence, our finding
that C. elegans CED-3 caspase plays a role in cellular polari-
zation, and the asymmetric division by size and fate of neuro-
blasts may very well be relevant to these nonapoptotic
functions of mammalian caspases in stem cell lineages.
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Legends 

Figure S1: CED-1 is in asymmetric contact with QL.p. 

(A) Individual image planes along the lateral-medial axis showing the localization of CED-
1∆C::GFP around QL.p. QL.p was labelled with the transgene Pegl-17mCherry::his-24,
Pegl-17myristoylated mCherry, Pegl-17mig-10::yfp (rdvIs1) and hyp 7 with the transgene Pced-1ced-
1∆C::gfp (enIs1) (see ‘Materials and Methods’ for details). Images were acquired as explained
for Fig. 3. It can be seen in the images for slices 8 and 9 that CED-1∆C::GFP is in contact with
the posterior part of QL.p (white arrowheads) but not with its anterior part (blue arrowheads). A:
Anterior, P: Posterior, D: Dorsal, V: Ventral. Scale bar: 2 µm. (B-C) Maximum-intensity Z-
projections generated using image planes shown in Fig. S1A (B) and in Fig. 3 (C). Scale bar: 2
µm. White arrowheads indicate contact between CED-1∆C::GFP and QL.p, whereas blue
arrowheads indicate the lack of contact.
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Part III 

pig-1 MELK and ced-3 Caspase cooperate to control the cell polarity in the C. elegans 

NSM neuroblast  

Discussion 

C. elegans ces-1 encodes an ortholog of Snail, which belongs to the family of C2H2 zinc-finger 

transcription factors. According to previous studies on ces-1 Snail, ces-1  Snail is involved in 

controlling cell polarity and cell cycle progression in the NSMnb during embryogenesis 

(Hatzold & Conradt, 2008). In 2013, the mechanism of how ces-1 Snail affects cell cycle 

progression in the NSMnb was revealed (Yan, Memar, Gallinger, & Conradt, 2013). According 

to this study, ces-1 Snail was found to act as an upstream transcriptional repressor of cdc-25.2, 

while cdc-25.2 acts together with cya-1 to control the cell cycle progression in the NSMnb. 

However, it was yet unknown how ces-1 Snail controls cell polarity in the NSMnb. In order to 

elucidate this mechanism, our goal was to find direct downstream targets of ces-1 Snail, which 

have roles in controlling cell polarity in the NSMnb.  

To this end, we analyzed the CES-1 ChIP-seq data that was acquired from the modENCODE 

Project (Gerstein et al., 2010) and identified more than three thousand (3417 reproducible sites) 

CES-1 binding sites throughout the whole genome. From the reproducible binding sites that 

were located upstream of transcriptional start sites (TSS), 3199 genes were identified as 

potential CES-1 target genes. Further, I identified pig-1 among the genes that were related to 

asymmetric cell division and cell fate. pig-1 has been reported to be associated with the 

asymmetric cell division and cell fate in the HSN/PHB and the QL.p lineages in C. elegans 

(Cordes, Frank, & Garriga, 2006). In addition, ham-1, which encodes a protein containing a 

winged helix DNA binding motif, acts as a transcriptional activator of pig-1 to influence 

asymmetric cell division in the Q.a lineage (Feng et al., 2013). According to my study, pig-1 

MELK is a direct target of CES-1 Snail in the NSMnb lineage. A gain-of-function (gf) mutation 

of ces-1 reduces the transcription of pig-1, and loss-of-function (lf) mutation of ces-1 

significantly increases the transcriptional level of pig-1 when compared to wild-type. Moreover, 

pig-1 MELK acts downstream of ces-1 Snail to control the asymmetric positioning and the 

orientation of the NSMnb cleavage plane, as well as the fate and the kinetics of NSMsc death. 

Moreover, ced-3, which encodes the C. elegans Caspase and which executes cell death in most 

of the cell death lineages, also plays a role in controlling the asymmetric positioning of the 

NSMnb cleavage plane and functions in parallel to pig-1 MELK. 

It has been shown that Snail TFs play important roles during Epithelial to Mesenchymal 

Transition (EMT) (Batlle et al., 2000; Cano et al., 2000; Nieto, Sargent, Wilkinson, & Cooke, 
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1994), which is a noteworthy process in tumorigenesis. The mammalian MELK kinase was 

shown to be involved in various processes, such as cell cycle regulation, cell proliferation and 

carcinogenesis (Du et al., 2014; Nakano et al., 2005; Vulsteke et al., 2004). According to 

previous studies in different organisms, no direct interaction was reported between Snail family 

members and MELK kinases, which is involved in regulating cell polarity. In my study, it is 

elucidated for the first time that Snail and MELK act in the same pathway to control cell polarity 

and cell death. However, the exact mechanisms of how ces-1 Snail and pig-1 MELK function 

in the process of asymmetric cell division and cell death remain elusive. Therefore, studying 

the interrelationships between ces-1 and pig-1 are important for us to understand these 

biological processes, and could provide insights for understanding human diseases.  

1. CES-1 Snail acts as a transcriptional repressor of pig-1 MELK in the NSM neuroblasts 

In order to find downstream targets of CES-1 that might be involved in controlling cell polarity 

in the NSMnb, we analyzed the CES-1 ChIP-seq data that was generated by the modENCODE 

project and obtained more than three thousand potential target genes of ces-1 (Gerstein et al., 

2010). Since a chromatin immuno-precipitation combined with microarray analysis (ChIP-on-

ChIP) of Snail TF has been performed in D. melanogaster (Zeitlinger et al., 2007), we compared 

our potential CES-1 targets with the orthologs of potential target genes obtained from D. 

melanogaster Snail. Many of them are conserved in some fundamental processes such as cell 

adhesion, which means that these Snail factors have some conserved functions across various 

species (Nieto, Huang, Jackson, & Thiery, 2016). On the other hand, certain potential targets 

of CES-1 Snail were specific to C. elegans indicating that Snail TFs may also have distinct 

roles in different species.  

It has been reported that the BH3-only gene egl-1 and the Cdc25 phosphatase gene cdc-25.2 

are two direct targets of CES-1 Snail in the NSMnb lineage (Thellmann, 2003; Yan et al., 2013). 

However, neither egl-1 nor cdc-25.2 were among the more than three thousand potential targets 

that were identified in our ChIP-seq analysis. Based on previous studies, the binding site of 

CES-1 Snail in the egl-1 cis-regulatory region is located ~ 3 kb downstream of the egl-1 

transcription unit. The binding site of CES-1 Snail in the regulatory region of cdc-25.2 is located 

~ 4.8-6.5 kb upstream of the cdc-25.2 TSS. Therefore, the criteria that we used to identify 

potential CES-1 binding sites was to check for binding sites that lie within the transcription unit 

or ~ 2 kb upstream or downstream of the transcriptional start sites. This might affect the 

identification of potential targets whose regulatory regions are further away than 2 kb, such as 

egl-1 and cdc-25.2. Moreover, by analysis of the CES-1 ChIP-seq data, ~ 20 % of the binding 
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sites cannot be identified as potential target genes of ces-1, which suggests that we might miss 

potential targets and that egl-1 and cdc-25.2 may exist among them. 

Through analysis of the CES-1 ChIP-seq data, we identified three CES-1 binding motifs, which 

consist of CAGC(T/A)GC, AAT(T/G/C)(A/C/G)AAT and AGACG(C/G)A G. As mentioned 

in my results, a strong CES-1 binding peak arises at - 200 bp upstream of the pig-1 start codon 

and spans more than 100 base pairs centered on this - 200 bp site. I checked the pig-1 genomic 

DNA sequence in this region and found sequences that are similar to one of the three CES-1 

motifs. This suggests that CES-1 may inhibit the transcription of pig-1 by binding multiple sites 

within these 100 base pairs in the pig-1 upstream regulatory region. Therefore, the precise 

binding motifs of CES-1 Snail in this region needs to be studied more extensively. The Ou lab 

found that ham-1 acts as a transcriptional activator of pig-1 to influence cell polarity in Q.a by 

promoting the transcription of pig-1 (Feng et al., 2013).  Based on HAM-1 ChIP-seq data, which 

was also acquired from the modENCODE project, a strong HAM-1 binding peak appears 

upstream of the pig-1 start codon, which spans from -42 bp to -266 bp. The overlap of these 

two binding peaks between CES-1 and HAM-1 suggests that CES-1 and HAM-1 may compete 

with each other for binding to the same motif or disrupt the binding affinity of each other 

through influencing some neighboring motifs in the upstream regulatory region of pig-1. On 

the other hand, it is possible that CES-1 and HAM-1 have distinct roles in different neuroblasts. 

The Garriga lab reported that no defect of NSMsc survival was observed in ham-1 lf mutants, 

but they only quantified the survival rate of the NSMsc using a NSM reporter (Teuliere, 

Kovacevic, Bao, & Garriga, 2018). More details of the asymmetric division of the NSMnb 

should be investigated, such as the asymmetric position and the orientation of the NSMnb 

cleavage plane. For instance, ham-1 (lf) does not affect asymmetric division in the Q.p lineage 

as well, but it indeed influences the expression level of pig-1 in Q.p (Feng et al., 2013).  

In addition, the Horvitz lab discovered that sptf-3, which encodes a Sp1 family transcription 

factor, directly drives the expression of pig-1 to influence the cell death of the M4 and the AQR 

sister cells (Hirose & Horvitz, 2013). SPTF-3 has a glutamine-rich domain and three C2H2 zinc 

finger domains. Through ChIP-seq analysis, a consensus CGCCC binding motif of SPTF-3 was 

identified, which is quite different from the CES-1 binding motifs. The SPTF-3 binding peak 

in pig-1 upstream regulatory region overlaps with the peak of CES-1 and HAM-1 as well. Hence, 

SPTF-3 might also affect the binding affinity of CES-1 or HAM-1 in the pig-1 upstream 

regulatory region. Whether HAM-1 or SPTF-3 function as positive transcriptional regulators in 

the NSMnb lineage needs to be further investigated in the future. Moreover, the precise locus 

of ces-1 binding motifs in the pig-1 upstream regulatory region are unknown. Considering that 
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the CES-1 binding peak in pig-1 upstream regulatory regions covers ~100 base pairs, I propose 

that CES-1 may regulate pig-1 through multiple sites.  

Taken together, I propose that ces-1 and ham-1 may have similar or distinct roles in regulating 

the expression levels of pig-1 to promote establishment of cell polarity in the NSM neuroblasts. 

Because of the overlap of their binding peaks in the upstream regulatory region of pig-1, ham-

1 is possible to play roles in the NSM neuroblasts. Future studies will reveal whether they act 

together to control cell polarity in the NSMnb. If this is the case, I then want to determine what 

elements CES-1 and HAM-1 bind to to regulate the transcription of pig-1. 

2. Regulators of PIG-1 MELK activity have similar functions in the NSM neuroblast 

Above, I discussed how pig-1 is regulated at the transcriptional level. However, post-

transcriptional regulators and post-translational regulators may also play critical roles in the 

regulation of PIG-1 activity by controlling translation progression or by influencing protein 

activity.  

In mammals, it has been reported that LKB1 acts upstream to phosphorylate MELK and this 

phosphorylation is crucial for functions of MELK protein (Lizcano et al., 2004). The activity 

of LKB1 depends on the combination of a pseudokinase, STRAD, and an adaptor, MO25, and 

this combination promotes the stability and activity of the LKB1 kinase and the translocation 

from the nucleus to the cytoplasm (Baas et al., 2003; Boudeau et al., 2003). In C. elegans, their 

orthologs are par-4, strd-1 and mop-25.1/25.2, respectively. Based on a study from the Garriga 

lab, this phosphorylation mechanism is also conserved in larval development of C. elegans and 

the function of pig-1 in Q.p asymmetric division depends on par-4, strd-1 and mop-25.2 

pathway. In the Q.p lineage, par-4, strd-1 and mop-25.2 were found to act together to play an 

important role in phosphorylating the Threonine 169 residue of PIG-1 protein. Mutations of 

this site influence the function of PIG-1 in controlling the asymmetric division of the Q.p (Chien, 

Brinkmann, Teuliere, & Garriga, 2013; Hirose & Horvitz, 2013). According to my studies, this 

mechanism is also conserved in the NSMnb. Loss-of-function mutations of these genes not only 

disrupt the asymmetric positioning of the cleavage plane but also affect the orientation of the 

cleavage plane in the NSMnb. Interestingly, I only observed defects when I knocked-down both 

mop-25.1 and mop-25.2 by RNAi (by injection) while I did not observe any defects when mop-

25.1 or mop-25.2 was knocked-down alone. This suggests that mop-25.1 and mop-25.2 have 

redundant roles in the NSM neuroblast, but not in the Q.p cell where only mop-25.2 is necessary. 

Therefore, I propose that mop-25.1 acts together with mop-25.2 to promote cell polarity 

establishment during embryogenesis, but that mop-25.2 alone plays a major role in this process 
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post-embryogenesis. This could be due to different expression levels or distinct protein 

activities of MOP-25.1 and MOP-25.2 in different neuroblasts. 

In addition to these upstream regulators of MELK, various microRNAs (miRNAs) have been 

shown to play critical roles in regulating the translation of MELK mRNA. For example, the 

role of hsa-miR-145-3p in regulating MELK has been found to be crucial for prostate cancer 

(PCa) (Atala, 2016; Mataki et al., 2016). Since malignant transformation of a normal stem cell 

often is accompanied with a high level of MELK expression, hsa-miR-145-3p could inhibit 

tumorigenesis through directly repressing MELK overexpression (Goto et al., 2017). In 

addition, hsa-miR-214-3p has been shown to mediate cell cycle progression and cell 

proliferation in hepatocellular carcinoma by retaining the expression of MELK (Lee et al., 

2013). On the other hand, it has been shown that hsa-miR27a-5p acts together with hsa-miR34b-

3p to inhibit carcinogenesis by regulating MELK expression (Mizuno et al., 2017). These 

mechanisms could potentially also be conserved in C. elegans. According to the prediction of 

microRNA targets of pig-1 from the TargetScanWorm website, miR-253, which encodes a non-

protein coding microRNA and is classified into the mir-220 family of  mircroRNAs with human 

mir-220 (Kaufman & Miska, 2010), could be a direct regulator of pig-1 through binding to its 

3’ terminal UTR. According to the predication from the website, it has a conserved seed match 

across C. elegans, C. briggsae, C. remanei, C. brenneri C. japonica and C. pacificus, which 

consists of 7 nucleotides, CUACUAA. However, the precise function of mir-253 is not yet 

known. In addition, no miRNAs have yet been reported to be involved in the post-

transcriptional regulation of pig-1 MELK in worms. Therefore, studying the function and 

mechanism of miR-253 in the NSMnb or other neuroblasts may shed light on how miRNAs are 

involved in mediating cell polarity establishment and reveal the post-transcriptional regulation 

of pig-1. 

3. ces-1 Snail is involved in various developmental processes 

As mentioned in the result section, we selected 10 other TFs of C. elegans for which the ChIP-

seq data sets are available from the modENCODE project to do a Gene Ontology (GO) analysis 

together with CES-1 Snail. Among the top 50 of the most highly enriched biological processes, 

processes related to larval development, embryonic development and system development are 

highly enriched in the case of all these TFs. This suggests that these TFs may have some 

redundant roles in regulating these fundamental biological processes. It is possible that these 

TFs have similar functions like ces-1 in the NSMnb or other neuroblast lineages. Due to 

redundant roles between these TFs, it could be one of the reasons why the loss of ces-1 alone 

does not cause strong defects during embryogenesis and post-embryogenesis. In addition, apart 
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from the top 12 biological processes that are enriched for most TFs in the GO analysis, CES-1 

involves in all the other 38 biological processes and contributes an average role to these 

processes based on the p-value, which is different for the other 10 TFs. This suggests that CES-

1 may have broad and some distinct functions during C. elegans development. However, how 

CES-1 contributes to these biological processes is unknown. Because RNA-seq method is able 

to reveal the presence and expression quantity of total RNAs in a biological organism or in a 

single cell. Therefore, using CES-1 ChIP-seq data together with a CES-1 RNA-seq data set 

would help to further discover new potential downstream targets of CES-1 and advance our 

understanding of how CES-1 Snail contributes in diverse biological processes. 

In addition to pig-1 MELK, the other two reported targets of CES-1 in the NSMnb lineage are 

egl-1 and cdc-25.2 (Thellmann, 2003; Yan et al., 2013). Each of them functions in different 

pathways to ensure normal development during embryogenesis. egl-1 acts as a pro-apoptotic 

factor to promote the activation of the ced-3 Caspase in the conserved cell death pathway 

(Conradt & Horvitz, 1998). cdc-25.2 encodes a putative homolog of CDC25 protein 

phosphatase, which acts together with cya-1 to control cell cycle progression in the NSMnb 

(Yan et al., 2013). As I mentioned above, more than 3000 genes were identified through the 

CES-1 ChIP-seq analysis, which suggests that CES-1 has many more potential direct targets 

that could affect the NSMnb developmental process or other biological progressions in other 

lineages. The most well-known cell polarity pathway in C. elegans involves the PAR complex, 

which was initially discovered because of its role in early embryogenesis in C. elegans 

(Kemphues, Priess, Morton, & Cheng, 1988). Interestingly, CES-1 binding peaks were 

identified in genes encoding some PAR complex components, such as PAR-3 and PAR-6 

(Etemad-Moghadam, Guo, & Kemphues, 1995; Hung & Kemphues, 1999). This suggests that 

PAR components could be involved in the regulation of NSMnb polarity through a ces-1-

dependent pathway. These PAR components could act in parallel or act together with PIG-1 to 

mediate cell polarity establishment in the NSMnb. In addition, certain components related to 

the Ras pathway and Wnt signaling pathway were also identified in the CES-1 ChIP data. The 

Ras superfamily encodes a class of proteins named small GTPases, which are involved in 

diverse processes like cell growth, cell differentiation and cell survival (Barbacid, 1987; Giehl, 

2005; Malumbres & Barbacid, 2003). It is possible that ces-1 influences the apoptotic fate of 

the small daughter (NSMsc) and the differentiation of the large daughter (NSM) by affecting 

the expression level of Ras components. The Wnt signaling pathway plays important roles in 

signal transductions between neighboring cells, and members of the Wnt family play roles in 

influencing cell specification, cell migration, cell proliferation etc (Nüsslein-volhard & 

Wieschaus, 1980; Reya & Clevers, 2005; Rijsewijk et al., 1987). Considering that CES-1 is 
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strongly expressed in the NSMnb neighboring cells, I therefore propose that Wnt signaling from 

the NSMnb neighboring cells may play critical roles in promoting NSMnb polarity 

establishment and additional developmental processes in the two daughter cells (NSM and 

NSMsc). Since only ~ 2% of the NSMsc abnormally survive in pig-1 lf mutants and ~ 90% of 

the NSMsc abnormally survive in ces-1 gf mutants, I propose that targets of CES-1 that belong 

to the Wnt signaling or Ras pathway may function in parallel or act together with pig-1 to 

control the cell fate of the NSMsc.  

4. pig-1 MELK is involved in various developmental processes 

In C. elegans, pig-1 encodes the sole ortholog of MELK and plays roles in controlling the 

position of the cleavage plane and the cell fate in the HSN/PHB and the Q.p lineages (Cordes 

et al., 2006). Based on my study, pig-1 not only affects the asymmetric position of the cleavage 

plane but also influences the orientation of the cleavage plane in the NSM neuroblasts. Loss of 

pig-1 disrupts the polarity of the NSMnb and affects the kinetics of the NSMsc death, while 

loss of pig-1 only represents a very low penetrance on the NSMsc survival rate. This suggests 

that pig-1 plays major roles in controlling asymmetric cell division but only plays a minor role 

in influencing the distribution of cell-fate determinants. One explanation could be that only a 

few cell-fate determinants are disrupted due to the lack of pig-1. In this case, the NSMsc still 

inherits enough apoptotic potential and initiates cell death. 

In addition to the effect on cell polarity and cell fate, pig-1 seems to have more roles especially 

during embryogenesis. Using a null allele of pig-1, gm344, I observed a high penetrance of 

embryonic lethality at 20 ℃ and this defect is even significantly enhanced by the weak loss of 

ced-3 mutation, n2427 (Figure 10). Moreover, the embryonic lethality caused by loss of pig-1 

seems to depend on temperature. Compared to the penetrance of embryonic lethality at 25 ℃, 

gm344 exhibits a much lower penetrance if it is incubated at 20 ℃ or 15 ℃. A similar phenotype 

is also observed for the double mutant of pig-1(gm344) ced-3(n2427). On the other hand, the 

Rose lab reported that the kinases par-1 and pig-1 act in parallel to influence the asymmetric 

cell division in the EMS (Liro, Morton, & Rose, 2018). According to their study, they observed 

a similar phenotype of embryonic and larval lethality in pig-1(gm344) animals at 19.5 and 25 ℃. 

Moreover, they observed a significant enhancement when gm344 was crossed into the 

background of a temperature-sensitive (ts) par-1 mutation, zu310, which is similar to what I 

observed in the double mutant of pig-1(gm344) ced-3(n2427). It suggests that ced-3 may act 

together or in parallel with par-1 to enhance this developmental defect that is caused by the loss 

of pig-1. Taken together, it seems that pig-1 MELK plays various roles during embryogenesis 

in addition to controlling cell polarity in some neuroblasts.  
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Figure 10. Percent embryonic lethality in pig-1 and ced-3 lf mutants at different temperatures. In addition 
to influencing the NSMnb cell polarity, loss of pig-1 also results in embryonic lethality. This defect is enhanced 

by a weak loss of ced-3 allele and displays a temperature sensitivity.  
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5. pig-1 MELK may play a role in influencing cell cycle progression in the NSMnb lineage 

In the NSMnb, ces-1 was reported to be involved in regulating cell cycle progression by 

controlling the transcription of cdc-25.2 (Yan et al., 2013), which encodes a CDC25-like 

phosphatase. In mammalian cells, CDC-25 has three isoforms: CDC25A, CDC25B  and 

CDC25C (Galaktionov & Beach, 1991; Nagata, Igarashi, Jinno, Suto, & Okayama, 1991; Sadhu, 

Reed, Richardson, & Russell, 1990). All of them are important for the checkpoint of cell cycle 

progression. They promote cell division by dephosphorylating cyclin dependent protein kinases 

(CDK) (Kaldis, 1999; Kristjánsdóttir & Rudolph, 2004). Misregulation of CDC25 phosphatase 

results in genomic instability or even carcinogenesis (Branzei & Foiani, 2008; Kastan & Bartek, 

2004; Meikrantz & Schlegel, 1995). Therefore, understanding the activation mechanisms of 

CDC25 is important for cancer therapy. In view of previous discoveries, CDC25 phosphatases 

themselves are highly controlled via various mechanisms, such as transcriptional regulation, 

subcellular or intracellular localization, binding to other partners etc. Among these mechanisms, 

phosphorylation of CDC25 plays an essential role in inhibition or activation of its phosphatase 

activity (Gabrielli, Clark, McCormack, & Ellem, 1997; Hoffmann, Clarke, Marcote, Karsenti, 

& Draetta, 1993; Izumi & Maller, 1993; Mailand et al., 2002). Interestingly, it has been reported 

that MELK is one of the upstream kinases that regulates the CDC25B activity by 

phosphorylating conserved serine sites. This phosphorylation of CDC25B on centrosomes is 

crucial for mitotic entry (Mirey et al., 2005; Schmitt et al., 2006). Similar to MELK localization 

in mammalian cells, pig-1 is also observed to localize to centrosomes during the division of the 

one-cell embryo, which hints at the possibility that pig-1 plays a similar role in controlling cell 

cycle progression by regulating the ortholog of CDC25B in C. elegans. Based on this 

hypothesis, I used a strong ced-3 lf allele, n717, which results in 100 % NSMsc survival, and 

crossed it with a pig-1 null allele, gm344, to investigate whether pig-1 affects the number of 

NSM cells. In ced-3(n717) animals, 100 % larvae have 4 NSM-like cells using the NSM 

reporter bcIs66 (Ptph-1his-24::gfp), whereas in the double mutant of pig-1(gm344) ced-3(n717), 

~84 % larvae show 4 NSM signals and ~16 % larvae show < 4 NSM signals. This suggests that 

pig-1 may inhibit the 100 % NSMsc survival of ced-3(n717) through influencing the cell cycle 

progression by mediating the phosphorylation of CDC-25.2 in the NSMnb. However, it is very 

difficult to track the NSMnb when embryo starts to twitch after the two-fold stage. In addition, 

it could be possible that the NSMnb in the pig-1(gm344) ced-3(n717) embryo may divide very 

late post the two-fold stage. Therefore, I cannot completely conclude that the ~16 % larvae 

showing < 4 NSM signals are due to the defect of the NSMnb division. Moreover, cdc-25.2 

was reported to act together with cya-1 to control cell division progression in the NSMnb. I 

then checked the number of the NSM signals in the triple mutant of cya-1(bc416); pig-1(gm344) 
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ced-3(n717) by using the NSM reporter bcIs66. I observed ~ 64 % larvae to have 4 NSM signals. 

Thus, the phenotype of the pig-1(gm344) ced-3(n717) double mutant was enhanced by the loss 

of cya-1. Therefore, pig-1 seems to act in parallel with cya-1 to influence cell cycle progression 

in the NSMnb. Moreover, the NSM neuroblasts took much longer time to divide in the pig-

1(gm344) or the pig-1(gm344) ced-3(n717) animals compared to wild-type. In addition, among 

tracking development process of ten NSM neuroblasts, one NSMnb did not divide when this 

embryo reached the comma stage. These data suggest that pig-1 MELK may act through a 

conserved manner, which is similar to the mechanism in mammalian cells, to promote NSMnb 

cell cycle progression by phosphorylating CDC-25.2 on some conserved serine residues to 

regulate its activity. 

6. The correct asymmetric positioning of the NSMnb cleavage plane depends on CED-3 

Caspase activity 

The most well-known function of ced-3 Caspase is to execute cell death in cells destined to die 
(Shaham & Horvitz, 1996; Xue, Shaham, & Horvitz, 1996; Yuan & Horvitz, 1990). However, 

ced-3 also seems to play non-killing roles important for embryogenesis or post-embryogenesis. 

For example, CED-3 acts with the miRNA-induced-silencing complex (miRISC) to regulate 

the levels of non-apoptotic proteins, such as LIN-14, LIN-28 and DISL-2 to mediate 

developmental processes in C. elegans (Weaver, Weaver, Mitani, & Han, 2017; Weaver et al., 

2014). In addition, it has also been reported that CED-3 plays roles in influencing aging and 

neural regeneration (Pinan-Lucarre et al., 2012; Yee, Yang, & Hekimi, 2014). Based on my 

study, I found that ced-3 Caspase affects the localization of the NSMnb cleavage plane in a pig-

1 lf background, which means CED-3 or pro-CED-3 has a role in mediating asymmetric cell 

division. Because the activation of ced-3 Caspase depends on the upstream factors egl-1 and 

ced-4 in vivo, loss of egl-1 or ced-4 blocks cell death that is executed by ced-3 Caspase. To 

confirm that this process is dependent on active CED-3 but not pro-CED-3, I checked the 

position of the cleavage plane in egl-1 (lf) and ced-4 (lf) mutants in a pig-1 lf background. A 

similar phenotype was observed between pig-1 (lf) ced-3 (lf) double mutants, ced-4 (lf); pig-1 

(lf) double mutants or pig-1 (lf); egl-1 (lf) double mutants. In wild-type embryos, the NSMnb 

cleavage plane usually localizes to the dorsal-lateral side and in pig-1 lf mutants, the 

asymmetric localization of the cleavage plane shifts to the middle of the NSMnb and gives rise 

to a symmetric division. Interestingly, the loss of the cell death components (egl-1, ced-4, ced-

3) along with pig-1 MELK shifts the cleavage plane from the dorsal-lateral to the ventral-medial 

side. This opposite localization of the NSMnb cleavage plane ultimately results in a smaller 

NSM and a larger NSMsc. This suggest that active ced-3 plays a role in controlling the correct 

positioning of the cleavage plane in the NSMnb. However, the detailed mechanisms through 
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which ced-3 Caspase regulates the positioning of the cleavage plane are unknown. It has been 

reported that CED-3::GFP is present in the mother cell  (the NSMnb) and that it promotes a 

gradient of apoptotic potential through an engulfment pathway-dependent manner 

(Chakraborty, Lambie, Bindu, Mikeladze-Dvali, & Conradt, 2015). However, the other 

functions of CED-3 in the mother cell (the NSMnb) are still unclear. Using a full-length CED-

3::GFP reporter, I observed that CED-3::GFP clustered around the cleavage plane during the 

NSMnb asymmetric division (Figure 11). I hereby propose that, the active CED-3 may activate 

or inhibit some components localized on the cleavage plane or that inactive Caspase pro-CED-

3 may physically interact with other components to regulate asymmetric cell division in the 

NSMnb. Because I cannot distinguish between pro-CED-3 and active CED-3 by using the full-

length CED-3::GFP reporter, a direct detector or reporter of active CED-3 needs to be 

developed to answer this question.  On the other hand, to reveal the mechanism through which 

CED-3 regulates asymmetric cell division, performing a Yeast Two Hybrid screen of active 

CED-3 could help us to find new interesting potential targets of CED-3 Caspase that are 

involved in regulating cell polarity and cell fate. On the other hand, we cannot exclude the 

possibility that pro-CED-3 may play important roles during this process since the pro-domain 

of CED-3 could also play certain roles during embryogenesis. Therefore, an additional pro-

CED-3 Yeast Two Hybrid screen is also important for answering whether pro-CED-3 plays 

roles in regulating the asymmetric division of the NSMnb. 

Figure 11. Expression of CED-3::GFP in the NSMnb lineage. Using a single-copy of ced-3::gfp transgene, 
fluorescence signals of CED-3::GFP are observed at the NSMnb metaphase and in the NSMnb division 
progression. CED-3::GFP seems to cluster around the cleavage furrow in the progression of asymmetric division 
in the NSMnb. V means ventral side and D means dorsal side. The NSM is marked in yellow and the NSMsc is 

marked in green. Error bar indicates 5 µm.  
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7. pig-1 MELK influences the kinetics of the NSMsc death through indirectly influencing 
the activity of CED-3 Caspase 

It has been reported that the asymmetric division of the NSMnb is critical for the correct fate 
of its daughter cells, and in particular, for the small daughter NSMsc that is destined to die 

(Hatzold & Conradt, 2008). Therefore, asymmetric cell division somehow influences the 

apoptotic cell death pathway. In the NSMnb lineage, the apoptotic fate of the NSMsc depends 

on ced-3 Caspase, loss of ced-3 results in 100 % survival of the NSMsc. However, disruption 

of the asymmetric NSMnb division that is caused by the loss of pig-1 only results in 2 % 

survival of the NSMsc. This suggests that pig-1 may only play a minor role or affect certain 

components that are involved in regulating the apoptotic cell death pathway. Since the NSMsc 

takes longer time (~ 30 min) to die in pig-1 (lf) animals compared to wild type (~ 22 min), it 

seems that pig-1 influences the apoptotic kinetics through repressing the activity of ced-3 

Caspase. Because of this repression, the NSMsc needs longer time to encounter enough active 

ced-3 Caspase to execute cell death. In view of previous studies, no physical interaction 

between pig-1 and ced-3 is reported. Therefore, I propose that pig-1 indirectly represses the 

activity of ced-3 Caspase in the NSMsc. To test this, it could be helpful to compare the 

distribution of upstream regulators of ced-3 Caspase in the NSMnb lineage in wild-type and 

pig-1 (lf) animals. Since pig-1 encodes a MELK kinase, the phosphatase activity of pig-1 

MELK could affect various targets that are involved in diverse biological processes, which 

makes it difficult to find a direct target of pig-1 that mediates the activity of ced-3 Caspase.  

8. pig-1 MELK and ced-3 Caspase cooperate to regulate asymmetric cell division in the 
NSMnb 

Asymmetric cell division is very important to generate diversity during animal development 

because it gives rise to two daughter cells with different fates. The asymmetric positioning of 

the cleavage plane is one of the crucial processes during this event. In C. elegans, the 

mechanisms of positioning of the cleavage plane is well studied in one-cell stage embryos (Rose 

& Gonczy, 2014). Centrosome and spindle positioning are two crucial steps for the correct 

positioning of the cleavage plane. The positioning of the mitotic spindle at the end of anaphase 

specifies the cleavage furrow, while the correct positioning of the anaphase spindle depends on 

the position of two centrosomes prior to mitosis. In these processes, microtubules and 

microtubule-associated proteins such as dynein and members of the dynein complex, generate 

the major pulling forces from the anterior and posterior poles for centrosome movement (Galli 

& van den Heuvel, 2008; Morin & Bellaïche, 2011). Therefore, checking the position of the 

two centrosomes and the localization of dynein in the NSMnb could reveal more details of how 
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pig-1 MELK and ced-3 Caspase cooperate to control the asymmetric positioning of the cleavage 

plane. However, due to the very small size, the spherical cell shape and the lack of a specific 

marker for the NSMnb lineage, many techniques cannot be applied in this lineage to obtain 

more data to elucidate detailed mechanisms of how the asymmetric cleavage plane is 

established in the NSMnb.  

Moreover, it has been reported that centrosome and spindle positioning are correlated with 

anterior-posterior polarity, which ensure coordination with the asymmetric distribution of cell-

fate determinants during asymmetric cell division (Betschinger & Knoblich, 2004; C. R. Cowan 

& Hyman, 2007; Carrie R. Cowan & Hyman, 2004; Galli & van den Heuvel, 2008). Therefore, 

checking the localization of components that are involved in establishing and maintaining the 

cell polarity or gradients of cell-fate determinants in one-cell stage embryos may provide more 

hints to understand how pig-1 and ced-3 contribute to asymmetric cell division in the NSMnb 

or other neuroblasts. For example, ect-2 (GEF) and nmy-2 (non-muscle myosin II) play 

important roles in symmetry breaking and in generating flows of cortical materials (such as 

PARs). Interestingly, the Gartner lab found that the phosphorylation of two serine residues in 

NMY-2 is decreased in pig-1 (lf) animals (Offenburger, Bensaddek, Murillo, Lamond, & 

Gartner, 2017), which indicates that NMY-2 may be phosphorylated by PIG-1. This is 

important since it has been shown that NMY-2 activity depends on its phosphorylation status 

(Guo & Kemphues, 1996). Therefore, I propose that pig-1 may regulate NSMnb polarity by 

influencing the activity of NMY-2, which generates different cortical contractions from anterior 

to posterior. Apart from these two factors, it would be interesting to check the localizations and 

functions of PAR components (such as par-1 and par-4) in the NSMnb lineages in the future. 

In addition, more evidence shows that mammalian Caspases have non-killing functions in 

different types of stem cells (Baena-Lopez, Arthurton, Xu, & Galasso, 2018). Therefore, my 

finding that CED-3 Caspase plays roles in mediating the asymmetric cell division of the NSM 

neuroblasts could be relevant to those non-killing functions of mammalian Caspases. 
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