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Zusammenfassung

Wie die Finanzkrise in 2007/08 eindrucksvoll zeigte, bergen Ansteckungseffekte in Finanznetz-
werken eine große Gefahr für die Stabilität des gesamten Systems. Ohne ausreichende Kapitalan-
forderungen an Banken und andere Finanzinstitutionen können sich anfangs lokal beschränkte
Schocks über verschiedene Ansteckungskanäle im gesamten System ausbreiten und sich dabei um
ein Vielfaches verstärken. Das Ziel dieser Dissertation ist es deswegen, zwei ausgewählte Anste-
ckungskanäle dieses sogenannten systemischen Risikos genauer zu untersuchen, mathematisch
zu modellieren und Konsequenzen für das systemische Risikomanagement von Finanzinstitutio-
nen abzuleiten.

Der erste Ansteckungskanal, welchen wir betrachten, ist Default Contagion. Der zugrunde-
liegende Effekt ist hierbei, dass insolvente Institutionen ihre Schulden oder andere finanzielle
Verpflichtungen nicht mehr – oder nur teilweise – bedienen können. Gläubiger oder anderweitig
direkt beeinflusste Parteien im System sind deshalb gezwungen, Abschreibungen vorzunehmen,
und werden durch die erlittenen finanziellen Verluste möglicherweise selbst in die Insolvenz ge-
trieben. Dies wiederum läutet eine neue Runde im Default Contagion-Prozess ein. In unserem
Modell beschreiben wir jede Institution vereinfacht durch die Gesamtheit der Finanzpositionen,
denen sie ausgesetzt ist, sowie ihr ursprüngliches Kapital. Unser Ausgangspunkt ist hierbei die
Arbeit von Detering et al. [54] – ein Modell für Ansteckung in ungewichteten Netzwerken – wel-
ches insbesondere die exakte Netzwerkkonfiguration als zufällig betrachtet und asymptotische
Ergebnisse für große Netzwerke herleitet. Wir erweitern dieses Modell, sodass auch gewichte-
te Netzwerke betrachtet werden können und dadurch eine Anwendung auf Finanznetzwerke
möglich wird. Genauer leiten wir für einen gegebenen anfänglichen Schock einen expliziten,
asymptotischen Ausdruck für den durch Ansteckung verursachten Gesamtschaden im System
her und liefern ein notwendiges und hinreichendes Kriterium dafür, dass ein ungeschocktes Fi-
nanznetzwerk stabil gegenüber kleinen Schocks ist. Ferner entwickeln wir eine explizite Formel
für notwendiges und hinreichendes Risikokapital auf Ebene der einzelnen Institutionen, sodass
die Stabilität des Finanznetzwerks gewährleistet wird. Durch Simulationen zeigen wir, dass un-
sere asymptotischen Resultate bereits für Finanznetzwerke in der typischen Größenordnung von
einigen tausend Institutionen eine sehr gute Beschreibung liefern.

In einem nächsten Schritt entwickeln wir eine mehrdimensionale Erweiterung unseres Mo-
dells für Default Contagion, um die in Finanznetzwerken beobachteten komplexen Strukturen
abbilden zu können – allen voran ist das die Core-Periphery Struktur, aber auch mehrschichtige
Strukturen, regionale Konzentrationen und Mischformen davon. Zu diesem Zweck weisen wir
jeder Institution im Netzwerk einen zusätzlichen Parameter zu, welcher deren Typ beschreibt.
Das Netzwerk wird dadurch in Subsysteme (Blöcke) eingeteilt. Dieses neue Modell ermöglicht
es insbesondere, die Auswirkungen eines lokalen Schocks in einem der Subsysteme (z. B. ein
bestimmtes Land) auf das Gesamtsystem zu quantifizieren. Unsere Resultate zeigen, dass diese
zusätzliche Komplexität die Stabilität des Finanzsystems stark beeinträchtigen kann, und wir
entwickeln Maßnahmen, mit denen sich einzelne Subsysteme vor der Ansteckung durch andere
Subsysteme schützen können. Außerdem gelingt es uns, realistischere finanzielle Verpflichtun-
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gen zu modellieren, deren Höhe von beiden Vertragsparteien abhängt. Bisher war es nur unter
der Annahme, dass das Ausmaß einer Ansteckung lediglich von der exponierten Seite abhängt,
möglich, aussagekräftige analytische Ergebnisse abzuleiten. Wie wir demonstrieren, kann diese
vereinfachende Annahme zu einer gravierenden Unterschätzung des Risikopotentials in einem
System führen, und die zusätzliche Komplexität in unserem Modell ist deswegen essentiell, um
die Stabilität eines Systems realistisch einschätzen zu können.

Als nächstes entwickeln wir ein Modell für den Ansteckungskanal Fire Sales, bei dem Insti-
tutionen auf einen anfänglichen Schock mit dem Verkauf von Aktien reagieren – z. B. aufgrund
entsprechender Regularien. Dadurch geraten die Aktienpreise unter Druck und Investoren erlei-
den weitere Verluste. Dies wiederum führt erneut zu Verkäufen und der Prozess setzt sich weiter
fort. Zur Modellierung dieses Ansteckungsprozesses beschreiben wir jede Institution durch die
Anzahl und Art ihrer gehaltenen Aktien sowie ihr ursprüngliches Kapital und den durch einen
anfänglichen Schock verursachten Verlust. Zusätzlich nehmen wir an, dass Institutionen ihre
Entscheidung zum Verkauf von Aktien anhand einer gegebenen Funktion treffen und auch die
Auswirkungen der Verkäufe auf die Aktienpreise durch eine gegebene Funktion beschrieben wer-
den. In unserer Modellierung greifen wir Ideen aus der Literatur zu Default Contagion auf und es
gelingt uns so, eine rigorose Beschreibung des Prozesses zu liefern. Insbesondere bestimmen wir
asymptotisch den Gesamtschaden im System, der durch den Anfangsschock und anschließende
Fire Sales verursacht wird, und wir liefern eine Klassifikation von stabilen Systemen sowie hin-
reichendes Risikokapital, um die Stabilität eines Finanzsystems sicherzustellen. Erneut belegen
wir die Anwendbarkeit unserer asymptotischen Resultate durch geeignete Simulationen.

Schließlich kombinieren wir die Modelle für Default Contagion und Fire Sales, um ein kom-
pletteres Bild von Ansteckungseffekten in Krisenzeiten zu bekommen. Unsere Ergebnisse zeigen,
dass sich die beiden Ansteckungskanäle gegenseitig enorm verstärken können, und unterstrei-
chen deswegen die Wichtigkeit von kombinierten Modellen für das Verständnis von systemischem
Risiko. Auch für den kombinierten Fall gelingt es uns, Kapitalanforderungen herzuleiten, die
ausreichen, um die Stabilität des Systems zu gewährleisten, und deshalb von großem Interesse
für regulatorische Einrichtungen sind.



Abstract

As impressively shown by the financial crisis in 2007/08, contagion effects in financial networks
harbor a great threat for the stability of the entire system. Without sufficient capital require-
ments for banks and other financial institutions, shocks that are locally confined at first can
spread through the entire system and be significantly amplified by various contagion channels.
The aim of this thesis is thus to investigate in detail two selected contagion channels of this
so-called systemic risk, provide mathematical models and derive consequences for the systemic
risk management of financial institutions.

The first contagion channel we consider is default contagion. The underlying effect is here
that insolvent institutions cannot service their debt or other financial obligations anymore –
at least partially. Debtors and other directly impacted parties in the system are thus forced
to write off their losses and can possibly be driven into insolvency themselves due to their
incurred financial losses. This on the other hand starts a new round in the default contagion
process. In our model we simplistically describe each institution by all the financial positions it
is exposed to as well as its initial capital. In doing so, our starting point is the work of Detering
et al. [54] – a model for contagion in unweighted networks – which particularly considers the
exact network configuration to be random and derives asymptotic results for large networks. We
extend this model such that weighted networks can be considered and an application to financial
networks becomes possible. More precisely, for any given initial shock we deduce an explicit
asymptotic expression for the total damage caused in the system by contagion and provide a
necessary and sufficient criterion for an unshocked financial system to be stable against small
shocks. Moreover, we develop an explicit formula for necessary and sufficient risk capital at
the level of single institutions that ensures stability of the financial network. We demonstrate
by simulations that our asymptotic results give a good description for financial networks of the
size of a few thousand institutions already.

In the next step, we develop a multi-dimensional extension of our model for default contagion
such that we can describe the complex structures observed in financial networks – particularly
core-periphery-structures but also multi-layered structures, regional concentrations and mix-
tures thereof. To this end, we assign to each institution in the network an additional parameter
describing its type. The network is thereby divided in different subsystems (blocks). In partic-
ular, this new model enables us to quantify the impact of a local shock in one of the subsystems
(e. g. a certain country) to the global system. Our results show that the additional complexity
can significantly affect the stability of the financial system and we develop measures for the
individual subsystems to secure themselves against contagion from other subsystems. Further-
more, we accomplish a more realistic modeling of financial obligations whose size may depend on
both contracting parties. So far, meaningful analytical results could only be derived under the
assumption that the amount of contagion only depends on the exposed party. We demonstrate
that this simplifying assumption can lead to a grave underestimation of the risk potential of a
system and the additional complexity in our model is thus essential for a realistic assessment of
a system’s stability.
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Next, we develop a model for the contagion channel of fire sales at which institutions react
to an initial shock by selling asset shares – forced by regulations for instance. As a result the
share prices come under pressure and investors suffer further losses. This in turn leads again to
asset sales and the process proceeds. For the modeling of this contagion channel, we describe
each institution by the number and kind of its held asset shares as well as its initial capital
and the losses suffered due to some initial shock. Additionally we assume that institutions
make their decision to sell shares according to some given function and also the price impact
of sales is described by a given function. In our modeling we resort to ideas from the default
contagion literature and we thus achieve a rigorous description of the process. In particular,
we asymptotically determine the total damage to the system caused by the initial shock and
the subsequent fire sales, and we provide a classification of stable systems as well as sufficient
risk capital to ensure stability of a financial system. Again we verify the applicability of our
asymptotic results by suitable simulations.

Finally, we combine the models for default contagion and fire sales to get a more complete
picture of contagion effects in periods of crisis. Our results show that the two contagion channels
can tremendously amplify each other and thus stress the importance of combined models for
the understanding of systemic risk. Also for the combined case we achieve to derive capital
requirements sufficient to ensure stability of the system that are hence of great interest to
regulatory institutions.
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Chapter 1

Introduction

We are living in an ever more connected world today providing us with uncountable possibilities
to make our lives more informed, more efficient, more profitable, more enjoyable and easier.
These benefits come at a cost, however. More precisely, the growing complexity of dependencies
in any kind of connected structure gives rise to concern regarding its stability. In many settings
an initial local shock to a system that considered for itself may be ever so innocuous can be
transmitted along the connections and grow to become a major threat to the entire system –
so-called systemic risk. While this type of risk certainly is of general importance, in this thesis
we focus on the area of financial systems where financial institutions are linked by various
types of dependencies that allow financial distress to spread. In particular, we aim to make a
contribution towards a better understanding of the underlying mechanisms, their joint impact
and how to prevent systemic cascades. As will be further discussed in Section 1.1, two of the
main drivers of systemic risk are the contagion channels default contagion and fire sales which
we will introduce in Sections 1.2 and 1.3 respectively. In Section 1.4, we will give an outlook
on the contributions made in the chapters to follow.

1.1 Systemic Risk

Today there are not one but many definitions of systemic risk emphasizing different aspects
of the same rough underlying idea [15, 61, 96, 97, 105, 109, 111]. As Hurd points out in [89],
however, the following three ingredients are essential for the concept of systemic risk.

1. A triggering event of some kind: This can be any stress scenario (external or internal)
impairing the institutions in the system. Examples could be a sudden drop in asset values,
the failure of one or more institutions due to mismanagement or crime, new legislation,
natural disasters, or terrorist attacks to mention just a few.

2. Propagation of distress within the financial system: The initially local shock event
(e. g. the burst of the US housing bubble in 2008) spreads to other parts of the system
by direct or indirect relations between institutions. This process bears an undeniable
resemblance with the contagion of diseases between humans – initially healthy people can
become infected if in contact with disease carriers and further communicate the disease
themselves afterwards – and it is thus termed financial contagion process nowadays. Hurd
lists the following four main channels of contagion.

a. Asset Correlation: Actually not being a contagion channel in the narrower sense,
similar or highly correlated asset portfolios can make different institutions susceptible
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to the same kinds of initial shock events, thus considerably weakening the system as
a whole and fueling other types of contagion.

b. Default Contagion: Also called balance sheet contagion, it describes the effect that
upon default of some institution i in the system all other institutions need to write
off according interbank assets (pending financial obligations of i) in their balance
sheet. These assets can be usual loans but also securities cross-holdings, derivatives
or foreign exchange (see [106] for instance). As a result other institutions may default
and more write-offs may be the consequence. For more details see Section 1.2.

c. Liquidity Contagion: Concerned with liquidity rather than solvency this contagion
channel explains how the shortage of funding can spread through the system. Some
institution i might find itself in the situation of not having enough liquidity to meet
short term obligations, thus recalling or not rolling over its issued loans. By this
decision on the other hand, i’s debtors can run into the danger of a liquidity shortage
and reclaim their issued loans for their part and so on.

d. Market Illiquidity and Asset Fire Sales: As in a., overlapping asset portfolios are
the catalyst of this channel of contagion. More than only a correlated initial shock,
however, it describes how financial distress can force institutions to sell off their
assets, hence depressing market prices and possibly forcing other institutions to react
to dropped values of their portfolios by selling off assets as well. For more details see
Section 1.3.

3. Significant macroeconomic impact: As the financial system serves several purposes
for the wider economy and society such as the provision of liquidity and credits or the
infrastructure for payment systems, a breakdown of large parts of it generally does great
harm also beyond the participating institutions.

Returning to the analogy of financial contagion to the contagion of diseases between humans,
in his famous speech [84] Haldane compared the global financial crisis of 2007/08 to the SARS
epidemic of 2002/03. Both started with an external trigger event. Uncertainty about its causes
and consequences lead to panic and overreaction spreading across the globe. In the end, the
macroeconomic impact was huge compared to the relatively moderate implications of the trig-
gering event.

In particular, the tremendous repercussions for economy and society of a global spread of
distress necessitate the intervention by regulating institutions to mitigate or even prevent such
cascades from happening in the future. In classical risk management before the latest crisis it
was generally accepted to measure risk on an institution level only, taking into account market
risk of falling asset prices and credit risk of defaulting direct counterparties, but neglecting
second-order and feedback effects due to contagion which were deemed negligible. It was one of
the main insights from 2007/08, however, that this was indeed an oversimplification of the real
situation.

Much work has hence been put into the proper understanding of contagion and amplification
effects over the last decade and despite it being a relatively young field of research the sheer
number of publications devoted to systemic risk once again stresses the importance of the topic.
In the following, we briefly summarize three of the main lines of research. For a more detailed
overview of research on systemic risk see [71] for example.

1.1.1 Systemic Risk Measures

The basic idea of this line of research is to generalize the classical notion of monetary risk
measures (see [68] for instance) to account for systemic effects. One can distinguish four different
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approaches to this problem. First, a rather direct approach applying the concept of value-at-risk
and expected-shortfall to systemic quantities. Prominent work here is SRISK from [3, 32], the
conditional value at risk (CoVaR) from [5] and the marginal expected shortfall (MES) as well
as the systemic expected shortfall (SES) from [4]. While CoVaR is concerned with the extent
of systemic damage given that a certain individual institution experiences large losses, SRISK,
MES and SES turn the tables and investigate the individual damage of a certain institution
in the event of a systemic crisis. Also see [26] for more details on the above mentioned and
other risk measures. Second, in a more axiomatic fashion, it is possible to consider a multi-
variate random vector of risk factors in a certain financial system and first aggregate those to a
single uni-variate systemic risk quantity before applying a classical uni-variate risk measure to
it (adding sufficient capital to make the risk factor acceptable) – see [39] and [102] for instance.
In the third approach, the order of adding capital and aggregating is reversed. That is, first
a sufficient multi-variate vector of capitals is determined to make the system acceptable from
a regulator’s perspective. Aggregating those capitals then leads to the systemic risk measure.
This approach is taken for example in the works [12], [22], [23] and [66]. Finally, emphasizing the
dependence of distress in financial systems, there is a line of research concerned with conditional
risk measures. See [2], [25], [59], [67], [85] and [87] for example.

1.1.2 Mean-field games

A further line of research was started by [72] and considers a system of diffusion dynamics
as a model for the capitals of institutions in the system. More precisely, the logarithm of

an institution i’s capital Y
(i)
t at time t is supposed to be driven by an individual Brownian

motion W (i) and borrowing/lending-activity between institutions i and j is modeled by a drift

term α
(
Y

(j)
t − Y (i)

t

)
for some positive constant α. In the mean-field limit, as the size of the

system becomes large, a propagation of chaos result is derived in the sense that the individual
capitals decouple and the random variables Y (i) are given as independent Ornstein-Uhlenbeck
processes. Furthermore, one of the main results in [72] is that the borrowing/lending according
to α stabilizes the system against small and medium-sized shocks, making a collapse of the
system less probable, but at the same time exacerbating the extent of cascades if those occur.
The model from [72] has been extended for example in [36], [37], [70] and [99] to capture effects
of core/periphery structures and borrowing from resp. lending to a central bank. By similar
means, [24] considers the effect of an asset bubble on the robustness of individual institutions in
a large network. Note that this line of research is rather abstract with regard to the modeling
of borrowing/lending as an institution j with higher capital will lend money to an institution i

with lower capital that it will never reclaim unless the sign of Y
(j)
t − Y (i)

t flips at some point in
time – even then there is no memory about the total amount owed between institutions.

1.1.3 Network models

Maybe the most direct approach of modeling contagion in financial systems – and the one
followed in this thesis – is to consider explicitly the financial system with its institutions and
linkages between them. That is, if we consider a financial system of n ∈ N institutions we
describe the direct exposures (liabilities) between institutions by a matrix e = (ei,j)1≤i,j≤n
where ei,j denotes the exposure that institution j has to i. Also other model parameters can be
considered for each institution such as its capital reserves or assets held for instance. Probably
the most prominent models following the network approach are the Eisenberg-Noe model from
[62] and the Gai-Kapadia model from [75] which we will discuss along with their respective
extensions in the following section. Moreover, in [35] the authors use matrix majorization tools
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to compare systemic losses in financial systems according to different concentration of liabilities.
The work [41] develops a structural model for default and allows to compute explicitly the joint
probabilities of default and survival by a Bayesian network approach. One drawback of network
models is that typically the whole network needed to be observed for calibration, while often
only aggregated data is available. The authors of [76] thus develop a Bayesian methodology
that allows to estimate the individual entries of the liability matrix e from this aggregated data
and they apply it to stress testing of European banks.

1.2 Default Contagion

As roughly outlined above, default contagion considers the progressive infection of direct credi-
tors in a financial system. Initially some distressed institutions in the financial system may not
be able to repay (in full) their pending loans or other liabilities and declare bankruptcy. As a
consequence exposed institutions in the network need to write off their losses. This is completely
analogue to classical credit risk management. However, due to these first-order losses further
institutions may become insolvent and more write-offs ensue. In particular, some institution
in the system that does not maintain a direct relationship with any of the initially distressed
institutions but is linked to them by some vulnerable joint business partner can still get into
trouble even though it may not even have knowledge of this indirect link. Furthermore, even for
directly exposed institutions classical risk management can significantly underestimate losses
as it only considers losses from the particular business relation itself but neglects exposures to
institutions that are driven into default themselves. During the financial crisis in 2007/08 it was
demonstrated that these second order effects neglected in classical risk management actually
play an important role when assessing a system’s stability with respect to initial shock events
and it is thus necessary to better understand those effects.

In this section, we want to elaborate on two intensively pursued approaches within the
network line of research from Subsection 1.1.3. While both consider contagion on a network
represented by some exposure matrix e, the methods used are quite different. Whereas the
Eisenberg-Noe (EN) model proposed in [62] and its extensions consider the final state of an
explicitly observed system after contagion via an equilibrium representation, the research branch
started by [75] and [8] models the network configuration e as a random sample calibrated to
some observed network and then considers the contagion cascade round by round.

1.2.1 Eisenberg-Noe-type Models

The seminal work [62] was one of the first papers of financial mathematics that systematically
addressed feedback effects of contagion in financial networks. The authors considered a financial
network consisting of n ∈ N institutions and described it by the observed liability matrix
e ∈ Rn×n+,0 and the vector c ∈ Rn+,0 of cash values available to each institution which may also
include external assets minus external liabilities that are of higher seniority than interbank
liabilities. The idea is now to assume that the whole financial system was cleared in the sense
that all liabilities were settled. If each institution i in the system is solvent in the sense that
its total assets c +

∑
1≤j≤n ej,i (cash + interbank assets) exceed or equal its total interbank

liabilities p̃i :=
∑

1≤j≤n ei,j , then it is always possible that all liabilities are repaid. The clearing
vector of the system is then given by p = p̃, where pi shall denote the total amount paid by
institution i. If, however, c+

∑
1≤j≤n ej,i < p̃i, then institution i is insolvent and cannot settle

all its liabilities in full. In fact, we assume that i repays as much of its debt as possible and the
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money available to it is split among its creditors j according to the relative liabilities

Πi,j =

{
ei,j p̃i

−1
, if p̃i > 0,

0, otherwise.

Note, however, that the value of i’s interbank assets further depends on the actual amount that
i’s debtors are able to clear and there is thus a potential interdependence. Nevertheless, for a
feasible clearing vector p = (pi)1≤i≤n it cannot be the case that pi < (ci +

∑
1≤j≤n Πj,ipj) ∧ p̃i

as i would end up with a positive amount of money although not repaying all of its debt. On
the other hand, i will not pay out more than its total outstanding loans p̃i and it cannot repay
more than it has available. Hence, it cannot be the case that pi > (ci +

∑
1≤j≤n Πj,ipj) ∧ p̃i.

Any adequate clearing vector p thus needs to satisfy

p =
(
c+ Π>p

)
∧ p̃. (1.2.1)

It is then the main result in [62] that indeed such p exists. Moreover, in general there are a least
and a largest solution to (1.2.1) but under mild assumptions on the model parameters those
actually coincide and there is a unique way to clear the financial system.

The EN-model therefore describes the final state of the system from an equilibrium perspec-
tive and thus loses the sequential notion briefly outlined before. We can, however, translate
this idea into an algorithm to determine the largest clearing vector p+ in rounds k ∈ N. We
initially assume that each institution clears all of its liabilities and set p(0) = p̃. Nevertheless,
any insolvent institution i can only repay a total amount of

p
(1)
i := ci +

∑
1≤j≤n

Πj,ip
(0)
j = ci +

∑
1≤j≤n

ej,i < p̃i = p
(0)
i .

Thus all institutions in the system have to write off their losses with initially insolvent institu-
tions and the money paid out by them is described by the vector

p(2) :=
(
c+ Π>p(1)

)
∧ p̃.

This in turn may further reduce the money available to already insolvent institutions and also
institutions that were solvent before may go bankrupt. Continuing the process, in round k ≥ 3
we thus derive

p(k) =
(
c+ Π>p(k−1)

)
∧ p̃

and it can be shown that indeed p(k) → p+ as k →∞.

For a given financial system and an according clearing vector we can now determine the losses
in the system and identify the institutions that default due to contagion effects. As remarked
earlier already, however, it is a strong assumption that the complete network configuration
is available. If at all possible (especially for international relations), above calculations have
to be performed by some regulating institution after collecting all the necessary data from
participating institutions. Moreover, the fixed point equation (1.2.1) is very high-dimensional
and as thus intuition about the solution p itself and its robustness to changes of the model
parameters is hard to find in general.

Nevertheless, due to its tractability the EN-model has proven to be a popular model. In
particular, there have been made many extensions to the original model from [62] to account for
a more realistic setting of the financial networks. In [63], [79] and [107] for instance, bankruptcy
costs have been included in the model representing losses in the enforcement process of claims
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and deductions on asset values when liquidating them. The latter one should not be equated
with fire sales, however, as there is no contagion considered in the before listed works. This
channel (for more details see Section 1.3) has been included in the EN-model by the works
[9], [38] and [43] for example. Moreover, the extensions [63] and [64] consider cross-holdings
between banks. In the model of [113], all the above mentioned effects are consolidated.

1.2.2 Random Graph Models

As mentioned earlier already, it is often unrealistic to assume a completely known network
configuration of the financial system. Even if a regulating institution may be able to collect
all the data about direct exposures in its area of responsibility, this becomes less reasonable
when considering also cross-border relations. Moreover, the precise network configuration may
exhibit changes over time maybe even on a daily basis. However, as has been shown in empirical
works (see [45] for instance) global statistics such as the degree distributions in the network
are relatively constant over time. A second popular approach to model default contagion in
financial networks is thus by means of random graphs, where vertices represent institutions in
the system and weighted, directed edges the exposures between them. The underlying prob-
ability measure can then be calibrated to observed data and the random samples are typical
configurations of the actual present or a future network. It is then one possibility to apply the
EN-methodology described in the previous subsection to any random configuration in order to
compute the final clearing vector (see [76] for example). In general this requires a numerical
dealing with the problem to derive statements about the typical magnitude of a cascade and the
corresponding stability of a system. Especially for large networks, however, one can employ the
powerful methodology of probabilistic limit theorems in random settings and the results derived
will hold for all typical realizations of the random network and in particular for the observed
configuration. Moreover, as those results are typically given in terms of the global statistics of
the system and these are relatively constant over time as remarked before, a strong robustness
over time is achieved.

To this end, we change our view of the default contagion process away from the equilibrium
perspective and towards a more direct modeling of the default process that resembles the al-
gorithm to obtain the largest clearing vector in the EN-model. That is, starting with a set of
initially defaulted institutions distress is transmitted to their direct neighbors in the first round.
This may cause new defaults in the system and start a second round of default contagion and so
on. Different than in the EN-setting where the actually repaid debt can be described according
to the severity of the default (the actual loss incurred), it is necessary here to consider a fixed
recovery rate (typically even 0%) regardless of the amount of money available to the defaulted
institution. This assumption can be justified by the fact that the processing of defaults may
take months or even longer and at the time of bankruptcy the actual value of the according
interbank assets are highly uncertain. One good example of this reasoning is the insolvency of
Lehman Brothers in 2008 which took years to liquidate completely and whose traded recovery-
rate amounted to only 8.625% in a bond auction for settling credit default swaps just three
weeks after the default [1].

The random graphs approach to default contagion was started with [75] and a well known
representative of this line of research is the model in [8] (also see [10]). There the authors chose
to describe the financial network by the so-called configuration model that takes as input the
observed empirical degree distribution (jointly for in- and out-degrees) of some financial network
and draws uniformly at random a configuration satisfying this distribution. The results in [8]
then allow for any given initial shock event to compute asymptotically for large networks the
size of the cluster of finally defaulted institutions. Similar at a first glance to the EN-setting,
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the final state of the system is described by a fixed point equation. Despite the large system
size, however, this equation is actually uni-variate and thus much more tractable than in the
EN-model. Moreover, in [8] a measure of resilience is derived for the financial system that
essentially counts the number of so-called contagious links, i. e. exposures that alone are large
enough to transmit default from one institution to another. A rather strong consequence of
this result is that financial systems can be seen as being resilient to small initial shocks as soon
as such contagious links are prohibited by a regulating institution. Put in other words, only
local effects are responsible for the spread of contagion. The description of resilience here shows
a general advantage of the asymptotic viewpoint in the random graphs line of research: For
infinitely large networks it is possible to choose arbitrarily small initial shocks for which the
final state of the system can be investigated. In comparison, for finite networks of size n ∈ N
the least possible positive shock size (expressed as the initial default fraction) is n−1. It is thus
necessary to choose certain parameters for the initial shock and specify a maximal amplification
to define resilience of a financial system. For infinitely large networks the notion of resilience
emerges completely natural, letting the initial shock size tend to zero (see Chapters 2, 3, 4 and
5 for more details).

To describe more realistic network topologies the works [89, 90] consider an assortative
version of the configuration model where edges are categorized according to the degrees of
their adjacent vertices. This allows for a better description of core/periphery structures where
periphery banks are almost exclusively connected to a small set of highly connected core banks.

There is a major point of criticism of the models [8, 10, 89, 90], however. To be precise,
the very heterogeneous nature of real financial networks cannot be reproduced sufficiently.
Many empirical analyses such as [30] for the Austrian banking network or [45] for the Brazilian
one show that typically observed degree sequences are asymptotically heavy-tailed and have
infinite second moment. In this case, however, [93] shows that with high probability (probability
converging to one as the network size diverges) the configuration model produces non-simple
graphs, i. e. there occur self-loops or multiple edges of the same direction between the same
institutions. That is, if we calibrate the configuration model to a specific observed financial
network which is by its nature described by a simple graph (no institution is exposed to itself
and if there are several contracts between the same institutions those are aggregated to a single
one) still in most cases the resulting network turns out to be non-simple and its characteristics
are distorted from the originally observed one. While this problem could in general be solved
by conditioning on the random graph being simple, the results from [8] are not applicable in
this case anymore as those are all formulated asymptotically with high probability only.

In [54], the authors thus switch to a different kind of random graph model that by definition
always produces simple configurations while at the same time allowing for degree sequences
with asymptotically infinite second moment and thus capturing the strong heterogeneity of
empirically observed data. The model they chose is a directed version of the well-known Chung-
Lu random graph [42] that assigns to each institution a certain vertex-weight describing its
tendency to form edges to/from other institutions. Especially in the literature of statistical
physics random graph models of this kind are referred to as fitness models [34, 76, 110].

[54] is formulated for unweighted edges only, however, and contagion is abstractly defined
according to certain individual thresholds for each institution that describe the number of
debtors that need to fail in order for the particular institution to fail itself. Calibrating these
thresholds is clearly a very challenging task as they depend on the capital of the institution,
the amounts of credit issued to other institutions and the order of their default. Nevertheless,
it is one of the main results in [54] that the mere absence of contagious links does not ensure
resilience of a financial system with strongly heterogeneous degrees. Moreover, a resilience
criterion extending the one from [8] is derived.
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In this thesis we will follow the random graphs approach to default contagion and in fact
[54] will be the starting point for two different models in the following. We thus summarize its
main findings in Subsection 2.1.2.

1.3 Fire Sales

While the previously discussed channel of default contagion distributes financial distress in
a system via direct contractual dependencies, the links between institutions relevant for the
channel of fire sales are their overlapping asset portfolios. The underlying dynamics are as
follows. Consider for simplicity a financial system in which institutions can invest in a single
common asset. Some initial shock event may now diminish the capital of at least one institution
in the system which reacts to this loss by selling some of its asset shares either due to external
regulations such as leverage constraints or internal preferences. If the number of sold shares is
large compared to typical trading volumes on the market (especially if multiple institutions start
to sell shares at the same time) the surplus on the market will reduce the share price by so-called
price impact. This has two consequences for the institutions in the system. First, the selling
institutions incur even further losses on the particular trades themselves and second, as asset
portfolios are marked-to-market each institution invested in the asset effectively loses money (at
least in the short term). These additional losses and a general uncertainty about the situation
on the financial markets can now provoke even more institutions to sell even more of their asset
shares thus further reducing prices and portfolio values and so on. By this iterated process a
propagation of distress through the system is described and the initial losses can be amplified
considerably. In particular, even institutions that were spared from the initial triggering event
come under pressure due to their asset portfolio’s overlap with distressed institutions that they
might not even have known of.

Additionally to the above mentioned works [9, 38, 43, 113] extending the EN-model to
account for fire sales there is a variety of different approaches to model fire sales in financial
systems. In a sense similar to the cascade models from Subsection 1.2.2, in [33] the authors
describe fire sales as a branching process and they find certain criteria for stability of a network.
In [91] the consequences of portfolio diversification are investigated and it is found that benefits
for individual institutions can come at a disadvantage for the system as a whole. Similar
considerations are made in [21]. The work [112] shows that institutions are motivated to create
heterogeneous portfolios to avoid the risk of joint liquidation. Related to these works is also [100]
for the setting of a reinsurance market with overlapping risky objects. For a continuous time
setting the effect of fire sales on the dynamics and correlations of asset prices are investigated
in [48]. Moreover, extending the work [98], in [49] the authors develop a model that can explain
volatility spikes and the increase of correlations in times of financial distress. The effects of
fire sales have also been the object of interest in a series of empirical papers. [82] for instance
analyzes the topology of the induced network of overlapping asset portfolios and [31] uses a
network representation to quantify dependencies. The authors of [46] propose a framework for
stress testing systems with regard to fire sales and develop centrality indices for institutions in
a network of common asset holdings. Other methods to quantify the dependencies due to asset
holdings have been developed for example in [78] by means of the scalar product of portfolio
weights or in [101] by the so-termed absorption ratio using a principal component decomposition
of asset returns. In [60] the authors develop a systemic index of aggregate vulnerability and
demonstrate the decreasing stability of the financial system in the years before the global crisis.
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1.4 Contribution of This Thesis

We will now give an outlook on the contributions towards the understanding of systemic risk
made in the following. The chapters of this thesis are in large parts adopted from the papers [57],
[56], [58] and [55] and are all devoted to different aspects of default contagion and fire sales. The
common thread of the different chapters is that we use random graph methods to model partic-
ular empirically observed network characteristics, we analyze asymptotically the effect of shock
events on the system and compute the final state of the system at the end of the contagion cas-
cade, we derive criteria for resilience and non-resilience in our models that allow us to understand
which network characteristics promote or hinder the spread of distress in the financial system,
and we derive sufficient systemic capital requirements that can be prescribed by some regulating
institution to all participants in the system in order to contain and prevent large cascades.

Contribution in Chapter 2: In Chapter 2, for the purpose of analyzing default contagion,
we develop a weighted, directed random graph model for financial networks of direct exposures
that allows to describe degree sequences with infinite second moment. The model thus extends
[8] and is applicable also to more realistic settings of financial networks.

Using a uni-variate fixed point equation, we then derive asymptotic results for large networks
about the final systemic damage caused by some given initial shock event. In particular, we
introduce an index of systemic importance for each bank and we consider the final systemic
damage to be the total systemic importance of all finally defaulted institutions. This approach
is new compared to [8] and allows for a more relevant assessment of systemic risk than only
considering the number of finally defaulted institutions. Further, this approach is in line with
and can easily be applied to current regulatory methods where institutions are assigned to
certain classes of systemic importance [17, 28].

We then apply our asymptotic results to derive criteria for resilience respectively non-
resilience. At this step we make use of the previously mentioned naturally emerging notion
of resilience where we let the relative size of the initial shock be arbitrarily small and we par-
ticularly call a system non-resilient if nevertheless the final relative systemic damage is lower
bounded by some positive constant.

We then go even one step further and apply the resilience criteria in order to obtain explicit
formulas for sharp capital requirements for each individual institution. In general (if asymp-
totically the degree distributions have an infinite second moment), these requirements are more
restrictive than the mere absence of contagious links in the system as in [8]. Instead they can be
identified with a sublinear function of the specific in-degree of an institution. In particular, di-
versification is encouraged by our systemic capital requirements which is for example in line with
the results in [35]. Moreover, a very appealing feature of our formulas for capital requirements
is that those can be computed locally by each institution itself if only a regulating institution
with knowledge about the global system statistics publishes two global constants. In particular,
it is completely transparent for each institution how the capitals are determined and as those
depend on the particular institution’s own business relations only, they prevent manipulation
by individual institutions either of their own capital requirements or their competitors. As the
derived capital requirements are sharp, one can interpret them as an allocation of the total
systemic risk (the total necessary capital to secure the system) to each individual institution.
This adds to research questions discussed in [23], [66] and [86], but to the best of our knowledge
is the first such allocation that does not rely on complete knowledge of the system but can be
computed locally.

Finally, we verify by numerical simulations that our asymptotic results and in particular the
systemic capital requirements are applicable also to financial systems of reasonable finite size.
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Contribution in Chapter 3: Looking for ways to benefit from portfolio diversification and
access to different international markets [11, 13, 14, 53, 65], over the last decades institutions
have entered more and more cross-border relationships [40, 52, 83, 104] thus leading to an
increasingly complex global network structure and linking different regional financial systems
all over the globe. Moreover, the modern financial landscape is typically described by tiered
structures usually referred to as core/periphery. Empirical evidence of this fact for several
countries is for example given in [30] for Austria, [45] for Brazil, [51] for Germany, [74] for
Italy, [92] for the Netherlands, [103] for the United Kingdom and [7] for the European interbank
network.

Motivated by this clustered and tiered observed network structures, in Chapter 3 we propose
a random graph model for default contagion in which each institution is given a certain type
(such as country, core/periphery or mixtures thereof) assigning it to a certain subsystem. Our
model constitutes a multi-variate extension of [54] and assigns to each institution a vector of dif-
ferent vertex-weights describing the different tendencies to develop edges to certain subsystems.
By this approach the above explained assortativity can be achieved. Note that for calibration
purposes the assignment to a certain subsystem poses an additional challenge but methods for
community detection and the identification of core respectively periphery vertices can be used.
See for example [27, 44, 50, 69, 116, 117] respectively [88, 108].

Moreover, in our proposed model we overcome an issue that persisted in the literature so far
and regards the distribution of exposures. While certainly exposures between core institutions
should be larger than an exposure between a core and a periphery institution intuitively, in
the literature (also in Chapter 2) it has so far been assumed that the distribution of such an
exposure only depends on the creditor bank. This allowed to decouple the actual exposures
from the network configuration. In Chapter 3, we develop new multi-variate tools to tackle this
issue directly, further increasing the dimensionality of the problem.

Yet, we achieve to derive analogue results as in [54] thus giving an explicit formula for the
final systemic damage caused by an initial shock and providing an understanding of network
structures promoting or obstructing the propagation of distress by deriving sharp criteria for
resilience and non-resilience. Due to the multi-dimensionality of the model parameters we have
to deal with a multi-variate fixed point equation but it is worth to note that the problem stays
low-dimensional compared to an EN-type problem. Using the criteria for resilience, we then
describe a family of sufficient systemic capital requirements securing the system against small
initial shocks. Furthermore, we integrate ideas of exposure modeling from Chapter 2 into our
new model to significantly reduce the dimensionality of the problem while at the same time
keeping the advantage of counterparty-dependent exposures.

Finally, we provide applications of our model in particular analyzing the effect of several
subsystems on the stability of the global network. Moreover, we demonstrate by a simple
example that the possibility to model counterparty-dependent exposures is a necessary feature
in models of financial networks in order not to underestimate the impact of contagion.

Contribution in Chapter 4: In Chapter 4, we seize on the idea of an asymptotic modeling
from the literature on default contagion and develop an asymptotic model for fire sales. The
underlying model parameters are for each institution a vector of share holdings of different
illiquid assets, its initial capital and an amount of initially incurred losses. Moreover, we choose
to consider an abstract function that describes the sales strategy for each institution and depends
on the incurred losses relative to an institution’s initial capital. Drops of asset values shall be
modeled by a certain price impact function. Our setup allows for a large degree of freedom
regarding the choice of these functions.
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Using global statistics of the institutions’ model parameters we are then able to describe the
final state of the system by a multi-variate fixed point equation where each dimension represents
one of the considered assets. An arising difficulty at this description, however, is the emergence
of discontinuities in the underlying system of functions. In addition to the final systemic damage
due to defaults the final state also includes information about the total number of shares of each
asset that were sold during the fire sales process and the hence induced total price impact that
is an important quantity as every investor in the asset – even if not participating in the fire sales
process – will effectively lose money by the devaluation of its portfolio (at least in the short
term). This includes in particular private investors, the wider economy and even countries
(e. g. the government pension fund of Norway).

Similar as in the setting of default contagion a notion of resilience is emerging in the limit
of large financial systems and we characterize systems as stable or unstable. Moreover, we are
again able to compute systemic capital requirements that ensure resilience of the system and
by numerical simulations we demonstrate their positive effect for system stability over classical
risk management policies according to Basel III [16] for instance.

We then employ our new theory to investigate positive and negative effects of portfolio
diversification adding to current research in [21, 73, 91, 112].

Contribution in Chapter 5: In Section 1.1, we explained that financial distress is propa-
gated through financial systems via several channels of contagion and we already analyzed in
detail two of the main drivers – default contagion and fire sales – individually. Clearly the
different effects can amplify each other, however, if considered simultaneously. Consider for ex-
ample a fire sales process and assume that due to the dropped value of its asset portfolio some
institution in the system defaults. Then as described before all creditors of this institution need
to write off their respective interbank assets and thus incur further losses. This in turn may
lead to further asset sales and devaluation of asset portfolios by price impact.

It is thus important to model the interplay of different contagion channels in order to get
a better picture of their joint impact on systemic risk. This is the purpose of Chapter 5. In
particular, we combine our models of default contagion and fire sales from Chapters 3 and 4
and consider a simultaneous cascade process for heterogeneous and assortative networks. As
before we take an asymptotic approach to the problem and describe the final systemic damage
as well as the final number of sold asset shares by a multi-variate fixed point equation where
the underlying functions reflect the joint impact of both contagion drivers.

In order to understand which structures of financial systems facilitate or prevent the propa-
gation of financial distress we extend our previous results on resilience and non-resilience and we
further derive sufficient systemic capital requirements to secure a system against the combined
effects of default contagion and fire sales.

Moreover, we demonstrate in a specific example that in fact the two channels can significantly
amplify each other which stresses the importance of integrated models in systemic risk research.





Chapter 2

A Model for Default Contagion in
Financial Networks

In this chapter, we propose a first model for default contagion in financial networks. Our main
motivation is to represent the large degree of heterogeneity that constitutes one of the defining
features of real financial networks (see [30] for Austria or [45] for Brazil for instance) but could
not be described sufficiently by previous works such as [8]. We build on the network model from
[54] and represent the financial network by means of a random graph in particular. Compared
to [54], however, we augment the underlying probability space such that exposures between
institutions as well as capitals of the institutions can be modeled by random variables. We can
thus describe exposures of different size in the network which makes our model applicable to
reasonable financial networks. Still the underlying random graph allows to construct asymptotic
degree sequences with infinite second moment, thus reflecting the networks’ strong heterogeneity.

In Section 2.1, we then describe the default contagion process and we determine the final
state of large financial systems hit by some initial shock. At this, in particular, rather than
considering the fraction of finally defaulted institutions only (cf. [8, 54]), we introduce an index
of systemic importance of each institution and we are thus able to determine the damage to the
financial system itself but also to the wider economy or society. In Section 2.2 we go one step
further and investigate the vulnerability of an a priori unshocked financial system to a small
shock. We derive criteria for resilience and apply them to derive sharp capital requirements
securing the system. In particular for the relevant case of degree sequences with infinite second
moment, these regulations are considerably more restrictive than the ones derived in [8]. We end
this chapter with a series of simulation results in Section 2.3 demonstrating the applicability of
our asymptotic theory also for finite systems of a size typical for the real world. All the proofs
are deferred to Section 2.4.

My own contribution: This chapter is in large parts adopted from [57] and is thus joint
work with Nils Detering, Thilo Meyer-Brandis and Konstantinos Panagiotou. I was significantly
involved in the development of all parts of that paper and did most of the editorial work. In
particular, I made major contributions to Lemma 2.1.4, Theorem 2.1.6, Proposition 2.2.5, The-
orem 2.2.6, Theorem 2.2.8, Theorem 2.2.10, Theorem 2.2.12, Proposition 2.2.13 and Theorem
2.2.15. Moreover, all simulations have been designed, implemented and interpreted by myself.
Subsection 2.3.1 is my own work and only contained in an earlier version of [57].
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2.1 Default Contagion on a Weighted, Directed Random Graph

We shall present a stochastic model for a weighted, directed financial network. It will be based
on the directed random graph model proposed in [54] (see Subsection 2.1.2) but complemented
by edge weights. The main objective will be to assess the damage caused by default contagion
asymptotically when the network size grows to infinity.

2.1.1 Default Contagion and Systemic Importance

We first describe the process of default contagion on a given (deterministic) financial network. If
n ∈ N is the size of the network, we label the institutions (for simplicity called banks hereafter)
by indices i ∈ [n], where [n] := {1, . . . , n}, and interpret them as vertices in a graph. If
furthermore ei,j ∈ R+,0 describes the exposure of bank j to bank i, then we draw a directed
edge of weight ei,j from i to j in the graph if ei,j > 0. We do not allow for self-loops or
multiple edges between two vertices pointing in the same direction. That is, ei,i = 0 for all
i ∈ [n] and the network structure is completely determined by the exposure matrix (ei,j)i,j∈[n].
Moreover, consider for each bank i ∈ [n] its capital/equity ci ∈ R+,0,∞ := R+,0 ∪ {∞} and a
value of systemic importance si ∈ R+,0 which measures the potential damage caused by the
default of bank i and could, for instance, be computed by a regulating institution according to
the indicator-based approach developed by the Basel Committee on Banking Supervision in its
framework text from 2013 in order to measure global systemic importance of banks [17]. The
focus is on the impact of a potential default on the global financial system and wider economy.
A similar approach is pursued by the Board of Governors of the Federal Reserve System [28].
Another example of deriving systemic importance values is to use DebtRank as introduced in
[19]. It focuses on the relative monetary impact of a bank in an interbank network.

We call bank i solvent if ci > 0 and insolvent/defaulted if ci = 0 (due to an exogenous shock
to the network). The set of initially defaulted banks is thus given by D0 = {i ∈ [n] : ci = 0}.
They trigger a default cascade D0 ⊆ D1 ⊆ ... given by

Dk =

{
i ∈ [n] : ci ≤

∑
j∈Dk−1

ej,i

}
, (2.1.1)

where in each round k ≥ 1 of the cascade process bank i has to write off its exposures to banks
that defaulted in round k− 1 and goes bankrupt as soon as its total write-offs exceed its initial
capital. The chain of default sets clearly stabilizes after at most n − 1 rounds and we call
Dn = Dn−1 the final default cluster in the network induced by D0. We could easily introduce a
constant recovery rate R ∈ [0, 1) to our model by multiplying exposures ej,i by a factor 1 − R
in (2.1.1).

A first approach, that is often pursued in current literature, is to identify the damage caused
to the financial network with the fraction n−1|Dn|. That is, damage is bearable if only few banks
default as a result of the external shock event and the thereby started cascade process and it
becomes the more threatening the larger the final fraction of defaulted banks n−1|Dn| gets. In
line with current regulator considerations, however, it is more realistic to consider the more
general index of systemic importance of defaulted banks to really measure the damage to the
economy. Instead of the size of the final default cluster Dn, in the following we hence consider
its total systemic importance Sn :=

∑
i∈Dn si as a measure for the damage caused. Clearly, the

special case Sn = |Dn| is covered by setting si = 1 for each i ∈ [n].
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2.1.2 A Special Case: the Threshold Model from [54]

Consider for now the special case that ei,j ∈ {0, 1} and ci ∈ N0,∞ := N0∪{∞}. That is, whether
or not a bank in the network defaults depends on the number of defaulted debtors (and the
bank’s individual integer-valued capital ci). This setting (we call it the threshold model) was
considered in [54] and we recall its model assumptions and the main result here.

Instead of a deterministic network structure, we describe the network as a random graph.
To this end, (in addition to capital ci and systemic importance si) assign to each vertex i ∈ [n]
two deterministic vertex-weights w−i ∈ R+,0 and w+

i ∈ R+,0 and define the probability pi,j of a
directed edge from vertex i to vertex j being present by

pi,j =

{
min{1, n−1w+

i w
−
j }, i 6= j,

0, i = j.
(2.1.2)

Further, let Xi,j be the indicator function for the event of edge (i, j) sent from vertex i to vertex
j being present and assume that these events are independent for all (i, j) ∈ [n]2. The role of
in-weight w−i respectively out-weight w+

i is to determine the tendency of vertex i ∈ [n] to have
incoming respectively outgoing edges. The vertex-weights are deterministic and purely used as
a mean to specify the edge probabilities. They should not be confused with the edge-weights
ei,j . The construction of the random graph via vertex-weights resembles the one in [42] or more
general in [29]. Note, however, that our random graph is a directed generalization as in [54].

For each random configuration of the network, we can then consider the cascade process
(2.1.1) to derive the random final default cluster Dn as well as its random systemic importance
Sn. The idea in the following is to let the network grow in a regular fashion (see Assumption
2.1.1) and to use law-of-large-numbers effects in order to derive a deterministic limit for n−1Sn.

For each network size n ∈ N letw−(n) = (w−1 (n), . . . , w−n (n)), w+(n) = (w+
1 (n), . . . , w+

n (n)),
s(n) = (s1(n), . . . , sn(n)) and c(n) = (c1(n), . . . , cn(n)) sequences of in-weights, out-weights,
systemic importances and capitals of the individual banks. We impose the following regularity
conditions:

Assumption 2.1.1. For each n ∈ N, denote the joint empirical distribution function of w−(n),
w+(n), s(n) and c(n) by

Fn(x, y, v, l) = n−1
∑
i∈[n]

1{w−i (n) ≤ x,w+
i (n) ≤ y, si(n) ≤ v, ci(n) ≤ l}, (x, y, v, l) ∈ R3

+,×N0,∞,

and let (W−n ,W
+
n , Sn, Cn) a random vector distributed according to Fn. We assume that:

1. Convergence in distribution: There exists a distribution function F on R3
+,0 × N0,∞

such that F (x, y, v, l) = 0 for all x, y ≤ x0 and x0 > 0 small enough, and such that
at all points (x, y, v, l) for which Fl(x, y, v) := F (x, y, v, l) is continuous in (x, y, v), it
holds limn→∞ Fn(x, y, v, l) = F (x, y, v, l). Denote by (W−,W+, S, C) a random vector
distributed according to F .

2. Convergence of average weights and systemic importance: W−, W+ and S are
integrable and E[W−n ]→ E[W−], E[W+

n ]→ E[W+] as well as E[Sn]→ E[S] as n→∞.

This assumption is of a technical nature and concerned with the behavior of the network pa-
rameters as the size of the network tends to infinity. For practical purposes one can think of
Assumption 2.1.1 ensuring that the limiting network keeps the observed parameter distribution
of some real network we want to investigate. In particular, the expected weights are assumed
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to stay finite. In [54] it was derived that Assumption 2.1.1 implies D−i ∼ Poi(w−i E[W+]) re-
spectively D+

i ∼ Poi(w+
i E[W−]) in the limit n→∞, where D−i and D+

i denote the random in-
respectively out-degree of vertex i with weights (w−i , w

+
i ). Conversely, one can show that for

an observed network topology, i. e. given in- and out-degrees, maximum likelihood estimators
of the in- and out-weights are approximately given by the in- and out-degrees (normalized by
some global factor) – see Subsection 2.3.1. That is, morally one can think of the in- respectively
out-weight of a vertex as its in- respectively out-degree.

Further, note that we did not assume W− or W+ to have finite second moment. By the
result from [54] that the empirical degree distribution for the model above converges weakly to
a random vector (D−, D+) distributed as Poi(W−E[W+],W+E[W−]), we see that our model
is hence capable of modeling networks without a second moment condition on their degree-
sequences. In particular, choosing W− and W+ power law distributed with parameters β−

respectively β+ results in power law distributions for the degrees D− and D+ with the very
same parameters. This allows to calibrate our model parameters to observed empirical in- and
out-degree sequences. As we will see in Subsections 2.2.2 and 2.2.3, these power law parameters
carry the most important information about the network when it comes to determining resilient
capital requirements.

Consider now the following heuristics: Let ζ ∈ [0,E[W+]] denote the total out-weight of
finally defaulted banks divided by n. Then in the limit n→∞ for any bank i ∈ [n] the number
of finally defaulted neighbors in the network is given by a random variable Poi(w−i ζ). Bank i is
thus finally defaulted itself if and only if Poi(w−i ζ) ≥ ci. Summing over all banks in the network
we therefore derive the following identity:

E[W+ψC(W−ζ)] = ζ,

where

ψl(x) := P (Poi(x) ≥ l) =

{∑
j≥l e

−xxj/j!, 0 ≤ l <∞,
0, l =∞.

Moreover, summing up the systemic importance values, the final damage caused by defaulted
banks should be given by E[SψC(W−ζ)].

Motivated by these heuristics consider now the function

f(z; (W−,W+, C)) := E
[
W+ψC(W−z)

]
− z.

By the dominated convergence theorem, f(z; (W−,W+, C)) is continuous and has a smallest
root ẑ ∈ [0,E[W+]]. Furthermore, let

d(z; (W−,W+, C)) := E[W−W+φC(W−z)]− 1,

the weak derivative of f (see Lemma 2.1.4), where

φl(x) := P (Poi(x) = l − 1) 1{l ≥ 1}.

A sequence of events (En)n∈N shall hold with high probability (w. h. p.) if P(En) → 1, as
n→∞. The following theorem for the threshold model will be used in the proofs of our main
results in this chapter.
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Theorem 2.1.2 (adapted from [54, Theorem 7.2]). Consider a sequence of financial systems
satisfying Assumption 2.1.1. Then the following holds:

1. For all ε > 0 with high probability:

n−1Sn ≥ E
[
SψC(W−ẑ)

]
− ε.

2. If d(z) is bounded from above by some constant κ < 0 on a neighborhood of ẑ, then

n−1Sn
p−→ E

[
SψC(W−ẑ)

]
, as n→∞.

The theorem thus allows us to compute the final damage Sn for n→∞.

2.1.3 The Exposure Model

On the base of the threshold model from the previous subsection, we will now construct our
weighted, directed random graph model for financial systems. At this, we uncouple the occur-
rence of an edge sent from i to j from the size of its possible edge-weight. That is, we model the
occurrence of edges by the random matrix X = X(n) = (Xi,j)i,j∈[n] from Subsection 2.1.2 and
we assign to each pair (i, j) ∈ [n]2 with i 6= j a random variable Ei,j > 0 representing j’s possible
exposure to i (set Ei,i = 0 for all i ∈ [n]) such that E = E(n) = (Ei,j)i,j∈[n] is independent of
X (clearly one can construct such a joint probability space). The random exposure of j to i is
then given by ei,j = Xi,jEi,j .

To make the model analytically tractable, we assume that for each bank j the list of possible
exposures E1,j , . . . , Ej−1,j , Ej+1,j , . . . , En,j is an exchangeable sequence of random variables.
That is, for each j ∈ [n] and each permutation π of [n]\{j}

(E1,j , . . . , Ej−1,j , Ej+1,j , . . . , En,j)
d
=
(
Eπ(1),j , . . . , Eπ(j−1),j , Eπ(j+1),j , . . . , Eπ(n),j

)
.

This is equivalent to taking for each bank j ∈ [n] an arbitrary sequence of random variables
Ẽ1,j , . . . , Ẽj−1,j , Ẽj+1,j , . . . , Ẽn,j and transforming them into a list of exposures E1,j , . . . , Ej−1,j ,
Ej+1,j , . . . , En,j by Ei,j = Ẽπ(i),j for some random permutation π independent of {Ẽi,j}i∈[n]\{j}
and uniformly drawn from the set of all permutations of [n]\{j}. We remark that the require-
ment of exchangeable exposures is a typical assumption made in the literature (such as [8]).
Note, however, that in this setting the distribution of the exposure size Ei,j only depends on
the creditor bank j and not on the debtor bank i, which might be a criticizable assumption
for example in strongly pronounced core/periphery networks where also the exposures might
exhibit stronger heterogeneity. The relaxation of this assumption is technically more demanding
and deferred to Chapter 3.

Furthermore, assign to each bank i ∈ [n] a possibly stochastic capital value ci ∈ R+,0,∞
and a deterministic systemic importance value si ∈ R+,0. Using (2.1.1) we can then again
determine the random final default cluster Dn and its systemic importance Sn. It is the aim of
the following subsection to derive results about convergence and deterministic bounds similar
as in Subsection 2.1.2 for the threshold model.

Table 2.1 summarizes all important parameters in the exposure model and compares them
to the observed quantities in a financial network.

2.1.4 Asymptotic Results for Default Contagion in the Exposure Model

The setting in the exposure model is more complex than in the threshold model since we
cannot decide if a bank defaults only based on the number of its neighbors that default: (2.1.1)
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Observed Network Exposure Model

capital ci ∈ R+,0, capital ci ∈ L0(R+,0,∞),
systemic importance si ∈ R+,0, systemic importance si ∈ R+,0,

in-degree d−i ∈ N0, in-weight w−i ∈ R+,0,
out-degree d+i ∈ N0, out-weight w+

i ∈ R+,0,
(edge probability pi,j = min{1, n−1w+

i w
−
j }1{i 6= j})

exposure sequence exchangeable sequence of possible edge weights
(ei,j)j∈[n]\{i} ⊂ R+,0 (Ei,j)j∈[n]\{i} ⊂ L0(R+)

Table 2.1: Comparison of observed quantities in a financial network and the model parameters
in the exposure model

asserts that this also depends on the actual exposures between the banks. However, one crucial
assumption that we made is that these exposures are exchangeable, so intuitively it should make
no difference which neighbors of a given bank default, but just their actual number.

To formalize this intuitive argument, define for each bank i ∈ [n] the random threshold value

τi(n) := inf

{
s ∈ {0} ∪ [n− 1] :

∑
`≤s

Eρi(`),i ≥ ci

}
, where ρi(`) := `+ 1{` ≥ i}, (2.1.3)

with the usual convention inf ∅ := ∞, that is, τi is allowed to take the value ∞ if capital ci
is larger than the sum of all possible exposures. In this case, bank i can never default. The
use of the enumeration ρi becomes necessary in (2.1.3) since we want to spare i in this natural
ordering. The value τi then determines the hypothetical default threshold of i, assuming that
i’s neighbors default in the order of their natural index given by ρi and that all edges (j, i),
1 ≤ j ≤ ρi(τi), i 6= j, are present in the graph. We denote the hypothetical threshold sequence
by τττ(n) = (τ1(n), . . . , τn(n)). The thresholds are only hypothetical, since not all of the first ρi(τi)
exposures must be present in the graph and the vertices do usually not default in their natural
order. However, we know that the exposures are exchangeable, so all these simplifications should
have no effect; it will turn out in the proof of Theorem 2.1.5 that indeed the value τi captures
the actual dynamics: the qualitative characteristics of the contagion process in the exposure
model are the same as in the threshold model with capital sequence τττ(n).

As an equivalent of Assumption 2.1.1 for the threshold model we need to impose the following
regularity conditions:

Assumption 2.1.3. For each n ∈ N, denote the random joint empirical distribution function
of w−(n), w+(n), s(n) and τττ(n) by

Gn(x, y, v, l) = n−1
∑
i∈[n]

1{w−i (n) ≤ x,w+
i (n) ≤ y, si(n) ≤ v, τi(n) ≤ l}, (x, y, v, l) ∈ R3

+,0×N0,∞.

Then we assume that:

1. Almost sure convergence in distribution: There exists a deterministic distribution
function G on R3

+,0 × N0,∞ such that G(x, y, v, l) = 0 for all x, y ≤ x0 and x0 > 0
small enough, and such that at all points (x, y, v, l) for which Gl(x, y, v) := G(x, y, v, l) is
continuous in (x, y, v), it holds almost surely limn→∞Gn(x, y, v, l) = G(x, y, v, l). Denote
by (W−,W+, S, C) a random vector distributed according to G.
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2. Convergence of average weights and systemic importance: W−, W+ and S are
integrable and

∫
R3
+,0×N0,∞

x dGn(x, y, v, l)→ E[W−],
∫
R3
+,0×N0,∞

y dGn(x, y, v, l)→ E[W+]

as well as
∫
R3
+,0×N0,∞

v dGn(x, y, v, l)→ E[S] as n→∞.

To ensure that Assumption 2.1.3 holds, a twofold regularity is needed. Firstly, for a vertex with
given in- and out-weight, the distribution of the threshold value must stabilize, even though
the number of exposures appearing in the sum in (2.1.3) increases. Secondly, a law of large
numbers for the empirical distribution of the threshold values has to hold. See Subsection 2.1.5
for general examples of financial systems satisfying Assumption 2.1.3.

For the remainder of this subsection, we consider a sequence of financial systems denoted as
(w−(n),w+(n), s(n), E(n), c(n)) and satisfying Assumption 2.1.3. In particular, we denote
by (W−,W+, S, T ) a random vector distributed according to the limiting distribution G from
Assumption 2.1.3. We assume that the financial systems have experienced an external shock
such that a positive fraction of banks have capital zero. In the notation from above this means
P(T = 0) > 0. Hence we are in a situation in which a default cascade is about to happen
and we are interested in the damage to the financial system and the wider economy, given by
Sn =

∑
i∈Dn si the total systemic importance of defaulted banks after the contagion process.

This damage Sn is a random number for each n ∈ N. As the network size gets large, however,
we show that n−1Sn converges to a deterministic value which we can determine exactly. To this
end, we denote

f(z; (W−,W+, T )) := E
[
W+ψT (W−z)

]
− z,

where as in Subsection 2.1.2

ψl(x) := P (Poi(x) ≥ l) =

{∑
j≥l e

−xxj/j!, 0 ≤ l <∞,
0, l =∞,

and
d(z; (W−,W+, T )) := E[W−W+φT (W−z)]− 1,

where again as in Subsection 2.1.2

φl(x) := P (Poi(x) = l − 1) 1{l ≥ 1}.

Whenever (W−,W+, T ) is clear from the context, we abbreviate f(z; (W−,W+, T )) by f(z)
and d(z; (W−,W+, T )) by d(z). The following lemma summarizes some properties of f and d.

Lemma 2.1.4. The function f(z) is continuous on [0,∞) and admits the following represen-
tation:

f(z) = E[W+1{T = 0}] +

∫ z

0
d(ξ)dξ (2.1.4)

If P(T = 0) > 0, then f(z) has a strictly positive root ẑ.

In particular, d(z) is the weak derivative of f(z) and if d(z) is continuous on some interval
I ⊂ [0,∞), then f(z) is continuously differentiable on I with derivative d(z).

We derive the following result about Sn, the damage caused to the system. It resembles
Theorem 2.1.2 for the threshold model and indeed in the proof we make use of this result.
However, due to the hypothetical nature of the threshold sequence τττ(n) this application is not
straight-forward and requires considerable effort.
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Theorem 2.1.5. Under Assumption 2.1.3, suppose P(T = 0) > 0 and let ẑ be the smallest
positive root of f(z). If the weak derivative d(z) of f(z) is bounded from above by some constant
κ < 0 on a neighborhood of ẑ, then

n−1Sn
p−→ E[SψT (W−ẑ)], as n→∞.

Two remarks are in order: First, if f(z) is continuously differentiable on a neighborhood of ẑ
with f ′(ẑ) < 0 (i. e. ẑ stable), then Theorem 2.1.5 is applicable. This is a standard assumption
in current literature. In [8], for instance, the authors assume degree sequences of finite second
moment. In this case, it is straight forward to show that f(z) is continuously differentiable.
Secondly, without the assumption of stableness, n−1Sn does not converge to a deterministic
number in general (see [94] for a comparable result in a much simpler setting). However, in the
following theorem we are still able to state asymptotic bounds rather than an exact limiting
value. We believe that the derived bounds are sharp in the sense that they cannot be improved
without further assumptions. Proving this, however, is beyond the scope of this work.

Theorem 2.1.6. Under Assumption 2.1.3, suppose P(T = 0) > 0 and let ẑ be the smallest
positive root of f(z). Further, let z∗ be the smallest value of z > 0 at which f(z) crosses zero,

z∗ := inf {z > 0 : f(z) < 0} .

Then the following holds:

1. For all ε > 0, with high probability n−1Sn ≥ E[SψT (W−ẑ)]− ε.

2. If further d(z) is continuous on some neighborhood of z∗, then for all ε > 0 with high
probability n−1Sn ≤ E[SψT (W−z∗)] + ε. In particular, if ẑ = z∗, then

n−1Sn
p−→ E[SψT (W−ẑ)], as n→∞.

Note that under the assumptions of Theorem 2.1.6 it holds that f(0) > 0. Together with
continuity of f from Lemma 2.1.4 this implies that z∗ ≥ ẑ. In general, however, it is possible
that z∗ > ẑ, for example if f has a local minimum at ẑ.

2.1.5 Examples for Financial Systems Satisfying Assumption 2.1.3

In this section, we want to demonstrate the wide applicability of our model. In Example 2.1.7,
we describe a financial system where banks are sorted into buckets according to their weight
and capitals as well as exposures have the same distributions for all banks within each bucket.

Example 2.1.7. Let (w−(n),w+(n), s(n)) be a triple consisting of in-weight, out-weight and
systemic importance sequences such that the empirical distribution

F̃n(x, y, v) = n−1
∑
i∈[n]

1
{
w−i (n) ≤ x,w+

i (n) ≤ y, si ≤ v
}
, (x, y, v) ∈ R3

+,0,

converges to some distribution function F̃ . To be consistent with Assumption 2.1.3, we require
F̃ (x, y, v) = 0 for all x, y ≤ x0 and some x0 > 0. Further, assume limn→∞ E[(W−n ,W

+
n , Sn)] =

E[(W−,W+, S)], where (W−n ,W
+
n , Sn) ∼ F̃n and (W−,W+, S) ∼ F̃ . Choose some partition of

[0,∞)3 into countably many sets Dk, k ∈ N, and denote Wk := {i ∈ [n] : (w−i , w
+
i , si) ∈ Dk}.

Let the distributions of Ej,i, j ∈ [n], and ci be equal across vertices i ∈ Wk and assume them
all to be independent. From this assumption it follows that for n ≥ l ∈ N0 the distribution of
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Y l
i := 1{τi ≤ l} only depends on the category Wk 3 i. Therefore, denote qlk := P(Y l

i = 1) for
i ∈ Wk.

We show that Assumption 2.1.3 is satisfied. For this let (x, y, v) ∈ R3
+,0 a point of continuity

of F̃ and define
W(x,y,v) := {i ∈ [n] : w−i ≤ x,w

+
i ≤ y, si ≤ v}.

The cardinality of W(x,y,v) ∩ Wk stabilizes as a fraction of n for all k by the regularity of the
weight sequences. Since clearly Y l

i ∈ L1, this yields that

G(x, y, v, l) := lim
n→∞

n−1
∑

i∈W(x,y,v)

E[Y l
i ] = lim

n→∞
n−1

∑
k∈N

∣∣∣W(x,y,v) ∩Wk

∣∣∣ qlk
exists. By the strong law of large numbers applied to each category, it follows that almost surely

lim
n→∞

Gn(x, y, v, l) = lim
n→∞

n−1
∑

i∈W(x,y,v)

Y l
i = G(x, y, v, l), (x, y, v, l) ∈ R3

+,0 × N0.

Note that, although dropped from the notation, the random variables {Y l
i }i∈W(x,y,v) depend on

n. Therefore, we need a strong law of large numbers for independent triangular arrays here.
Since Y l

i ∈ L4, the standard proofs of the strong law of large numbers using the generalized
Chebyshev’s inequality and the Borel-Cantelli Lemma carry over to this case.

Finally, complete G(x, y, v, l) also for points (x, y, v) ∈ R3
+,0 which are not continuity points

of F̃ simply by taking limits from above.

As already observed in a similar setting in [8], the independence of the exposure random variables
can be weakened.

Example 2.1.8. Similar as above, assume that vertices are partitioned into the K classes
W1, . . . ,WK with vertices with the same marginal distributions of the capitals and exposures.
The sets may depend on the network size n but we shall assume that limn→∞ n

−1 |Wk| =: λ(k),
k ∈ [K], i. e. the fraction of vertices of a given class stabilizes. For each class k ∈ [K] we are
given generating sequences {ckl }l∈N and {Ekl }l∈N of random variables in R+,0 resp. R+. Further,
we assume that {ckl }l∈N and {Ekl }l∈N are infinite exchangeable systems and independent of each
other for every k ∈ [K] (see for example [6] for the definition of exchangeability and infinite
exchangeable systems). For each network size n, assign now to every vertex i ∈ Wk a capital
from {ckl }l∈N and n − 1 exposures from {Ekl }l∈N according to any deterministic rule such that
no capital or exposure is used more than once. Define then the threshold value as in (2.1.3) and
for a fixed m ∈ N and vertex i in class k ∈ [K] the indicator random variable Y m

k,i := 1{τi = m},
that determines whether vertex i has threshold value m. Observe that for n ≥ m+1 every vertex
i ∈ [n] has more than m exposures and the distribution of Y m

k,i is thus independent of n. Let
βk(1), . . . , βk(|Wk|) the indices of the vertices in Wk. By construction then

L(Y m
k,βk(1)

, . . . , Y m
k,βk(|Wk|) = L(Y m

k,σk(βk(1))
, . . . , Y m

k,σk(βk(|Wk|))

for all σk ∈ Σ(Wk), that is, for each k ∈ [K], the random variables {Y m
k,i} build an exchangeable

system. Since for fixed n the sequence {Y m
k,i}i∈Wk

is just the restriction to a finite subset of
variables of an infinite exchangeable system for |Wk| → ∞ it converges in law to an infinite
exchangeable system. Let ∆k be its directing measure. This implies that the system of random
variables (Y m

k,i)k∈[K],i∈Wk
forms a multi-exchangeable system (see [80] for definition). Define the
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empirical measure by

Λmk := |Wk|−1
|Wk|∑
i=1

δYm
k,βk(i)

for each k ∈ [K]. By [80, Theorem 2] convergence in distribution of {Y m
k,i}i∈Wk

implies conver-
gence in distribution of the empirical measure sequence (Λk)k∈[K], without any assumptions on
the dependency structure across classes. Since the above considerations apply for all m ∈ N,
convergence in distribution of the empirical measure sequence

Λk := n−1
∑
i∈[n]

δτi

follows for all k ∈ [K]. By the Skorohod Coupling Theorem [95, Theorem 4.30], there exists a
probability space with random elements {Λ̃k}k∈[K] distributed as {Λk}k∈[K] such that {Λ̃k}k∈[K]

converges almost surely as required.

2.2 Resilient Networks and Systemic Capital Requirements

In the previous section, we quantified the default propagation in financial networks after an
external shock to banks’ capitals, i. e. in a network with initially defaulted banks. It is of
interest, however, to be able to determine how systemically risky a network is prior to a shock
event. That is, for a sequence of financial systems (w−(n),w+(n), s(n), E(n), c(n)) satisfying
Assumption 2.1.3 with P(T > 0) = 1 we want to observe today’s network topology and exposures
and, keeping them unchanged, apply some small random shock to the capitals only ex post. A
resilient, systemically unrisky network should only experience minor damage by this whereas in
non-resilient, systemically risky networks even a small shock can cause huge harm to the whole
system. An advantage over static models such as the Eisenberg-Noe model [62] is that we can
assess stability already for an unshocked system. Further, this section will show that whether
a financial network is judged resilient or non-resilient only depends on the distributions of W−,
W+ and T . These have been shown to be relatively stable over time even if locally the network
might change noticeably.

2.2.1 Resilience Criteria for Unshocked Networks

In order to incorporate such small random shocks into our model, we introduce a sequence
m(n) = (m1(n), . . . ,mn(n)) of binary marks mi ∈ {0, 1} to (w−(n),w+(n), s(n), E(n), c(n)),
where mi = 0 means that bank i defaults ex post due to some shock event and hence loses
all its capital to start the cascade process, i. e. the new capital is given by cimi for each bank
i ∈ [n]. Otherwise, the capital distribution stays the same. We extend Assumption 2.1.3 such
that there exists a distribution G and the new empirical distribution

Gn(x, y, v, l, k) = n−1
∑
i∈[n]

1{w−i (n) ≤ x,w+
i (n) ≤ y, si ≤ v, τi(n) ≤ l,mi(n) ≤ k}

converges almost surely at all continuity points (x, y, v) of Gl,k(x, y, v) := G(x, y, v, l, k) and
denote by (W−,W+, S, T,M) a random vector distributed according to G. We assume that
P(T = 0) = 0 < P(M = 0) such that indeed M causes ex post defaults in an unshocked system.

We want to consider a financial system as being non-resilient to initial shocks if even very
small shocks M can cause significant damage SMn , measured by the total systemic importance
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z0

f(z)

g(z)

(a)

f(z)

g(z)

(b)

Figure 2.1: Examples of functions f(z) = E[W+ψT (W−z)] − z (blue) satisfying conditions
(2.2.1) (a) respectively (2.2.2) (b). Orange: the function g(z) = E[SψT (W−z)]. Dashed: the
unshocked functions. Solid: the shocked functions.

of the defaulted banks DMn at the end of the contagion process triggered by M . Mathematically
this is expressed as follows:

Definition 2.2.1. A financial system is said to be non-resilient if there exists a constant ∆ > 0
such that for each ex post default M with P(M = 0) > 0 it holds that

n−1SMn ≥ ∆ w. h. p.

The following theorem states a sufficient criterion for a system to be non-resilient.

Theorem 2.2.2 (Non-resilience Criterion). Under Assumption 2.1.3 suppose that P(T = 0) = 0
and that there exists z0 > 0 such that

f(z) > 0, for all 0 < z < z0. (2.2.1)

Then it holds for all M with P(M = 0) > 0 that

n−1SMn ≥ E
[
SψT (W−z0)

]
w. h. p.

In particular, if E[S1{T <∞}] > 0, then the system is non-resilient.

The proof of Theorem 2.2.2 follows from Part 1. of Theorem 2.1.6 and arguments analogue to
ones used in [54, Theorem 7.3] and is thus omitted here.

We can interpret Theorem 2.2.2 as follows: If a financial network satisfies condition (2.2.1),
then no matter how small the fraction of banks which are driven to bankruptcy by an external
shock event, after the cascade process of defaults always a damage larger than the constant
E [SψT (W−z0)] is caused to the system. In the reasonable case that E[S1{T < ∞}] > 0, this
lower bound for the damage is strictly positive and the system is hence non-resilient according
to Definition 2.2.1. In particular, by choosing si = 1 for all i ∈ [n] and hence S ≡ 1, we derive
that the final default fraction n−1|DMn | is lower bounded by the constant E [ψT (W−z0)], which
is positive (unless P(T =∞) = 1).

Condition (2.2.1) is an assumption on f which is illustrated in Figure 2.1(a). Whereas
for P(M = 0) = 0 the first non-negative root of the function is zero, any howsoever small
increase in P(M = 0), and hence upwards shift of f(z), makes the first root jump above z0 and
causes default of a set of size larger than nE[ψT (W−z0)] and systemic importance larger than
nE[SψT (W−z0)].

If on the other hand function f(z; (W−,W+, T )) is such behaved that the first positive root
ẑM of f(z; (W−,W+, TM)) tends to zero as P(M = 0) becomes smaller, one can expect that
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also the final default cluster DMn and its systemic importance SMn vanish and the system can
hence be regarded as resilient to small shocks. See Figure 2.1(b) for an exemplary illustration.
This intuition is formalized in the following definition, theorems and proposition.

Definition 2.2.3. A financial system is said to be resilient if for each ε > 0 there exists δ > 0
such that

n−1SMn < ε w. h. p. for all M such that P(M = 0) < δ.

In words this means that the final damage to the system SMn can be controlled by the initial
default fraction P(M = 0). Theorem 2.2.4 is then the analogue of [54, Theorem 7.4] transferred
to our exposure model.

Theorem 2.2.4 (Resilience Criterion). Under Assumption 2.1.3 suppose P(T = 0) = 0 and
that there exists z0 > 0 such that

d(z) < 0, for all 0 < z < z0. (2.2.2)

Then for any sequence of ex post defaults {Mi}i∈N with limi→∞ P(Mi = 0) = 0, it follows that
for any ε > 0, there exists iε such that

n−1SMi
n ≤ ε w. h. p. for all i ≥ iε.

In particular, the system is resilient.

Theorem 2.2.4 states that the systemic importance of all finally defaulted banks tends to zero as
the initial default fraction tends to zero, which is exactly our definition of resilience. However,
it makes no statement about the rate of convergence. If we assume not only that d(z) < 0 for
z small enough but even lim supz→0+ d(z) < 0, then we derive the following result concerning
convergence speed.

Proposition 2.2.5. Under Assumption 2.1.3 suppose P(T = 0) = 0,

κ := lim sup
z→0+

d(z) < 0 and κS := lim sup
z→0+

E
[
W−SφT (W−z)

]
<∞.

Then for any sequence {Mi}i∈N with limi→∞ P(Mi = 0) = 0, it follows that w. h. p.

n−1SMi
n ≤ E[S1{Mi=0}]− κ−1κSE[W+1{Mi=0}] + o(E[W+1{Mi=0}]).

If f(z) and E[SψT (W−z)] are continuously differentiable from the right at z = 0 with derivatives
κ < 0 and κS <∞, then we derive

n−1SMi
n

p−→ E[S1{Mi=0}]− κ−1κSE[W+1{Mi=0}] + o(E[W+1{Mi=0}]).

In particular, if {Mi}i∈N is independent of W+ and S, then w. h. p.

n−1SMi
n ≤ P(Mi = 0)

(
E[S]− κ−1κSE[W+]

)
+ o(P(Mi = 0)) = O(P(Mi = 0))

and 1−κ−1κSE[W+]/E[S] can be regarded as the maximal amplification factor of the systemic
importance of initially defaulted banks E[S1{Mi = 0}] = P(Mi = 0)E[S]. If further S ≡ 1 and
W−W+ is integrable, above result is the analogon to [10, Corollary 20]:

n−1|DMi
n |

p−→ P(Mi = 0)

(
1 +

E[W+]E[W−1{T = 1}]
1− E[W−W+1{T = 1}]

)
+ o(P(Mi = 0))
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Both Theorem 2.2.4 and Proposition 2.2.5 are concerned with the behavior of the weak derivative
d(z) of f(z) near z = 0. The following criterion that rather focuses on the behavior of f(z) near
z = 0 will turn out to be useful later.

Theorem 2.2.6. Under Assumption 2.1.3 suppose P(T = 0) = 0, d(z) to be continuous on
(0, z0) for some z0 > 0 and

inf {z > 0 : f(z) < 0} = 0. (2.2.3)

Then for any sequence {Mi}i∈N with limi→∞ P(Mi = 0) = 0, it follows that for any ε > 0, there
exists iε such that

n−1SMi
n ≤ ε w. h. p. for all i ≥ iε.

In particular, the system is resilient.

Assumption (2.2.3) describes that f(z) becomes negative immediately after z = 0. It is in some
sense the opposite of assumption (2.2.1) and ensures that the roots z∗i (analogue as in Theorem
2.1.6 but for the shocked systems) tend to zero as the shock size P(Mi = 0) shrinks to zero.

2.2.2 Systemic Threshold Requirements

A natural problem that is also of highest interest to regulators is to identify capital requirements
for the individual banks which can be determined from observable quantities of the network and
that are sufficient to make the network resilient to external shocks. Observable quantities are the
in- and out-degrees (d−i )i∈[n] respectively (d+i )i∈[n], which function as estimators of the in- and

out-weights (w−i )i∈[n] respectively (w+
i )i∈[n], and interbank exposures. In this section we will

first focus on identifying threshold requirements in the threshold model (see Subsection 2.1.2)
that guarantee resilience. In the next section, we then discuss how to translate the threshold
requirements into systemic capital requirements in the exposure model.

More precisely, in this section we seek threshold requirements for bank i of the form
τi = τ(w−i ), where τ : R+,0 → N is a non-decreasing function. Such a functional form has
the interpretation that the threshold (capital) requirement of a bank only depends on its risk of
defaulting due to default of debtors (exposure risk). In contrast, if bank i’s threshold (capital)
requirement τ(w−i , w

+
i ) was also depending on the out-weight w+

i , this would also take possible
defaults caused by bank i into account. This risk management policy would not be in line with
traditional risk management techniques and would certainly be harder to communicate to the
banks.

Note, in particular, the changed nature of the threshold values τi. While, so far, the capitals
ci (which equal τi in the threshold model) were exogenous quantities in our model, we now aim
to determine them from the in-weights w−i under the constraint of building a resilient network,
hence making them endogenous quantities.

To investigate resilience of a financial system implementing threshold requirements given
by τ we want to use the resilience criteria from the previous section. In particular we have to
ensure that Assumption 2.1.3 is satisfied for the functional thresholds τi = τ(w−i ), i. e. we need

lim
n→∞

n−1
∑
i∈[n]

1{w−i (n) ≤ x,w+
i (n) ≤ y, si(n) ≤ v, τ(w−i (n)) ≤ l} = G(x, y, v, l)

for some distribution G : R3
+,0 × N0,∞ → [0, 1] and all points (x, y, v, l) ∈ R3

+,0 × N0,∞ for
which Gl(x, y, v) := G(x, y, v, l) is continuous. Note that depending on the choice of τ and
G for the limiting random vector (W−,W+, S, T ) ∼ G it does not necessarily hold that
P(T = τ(W−)) = 1. This is because W− could have positive mass at some point of discon-
tinuity of τ and it would then be important whether the in-weight distributions converge from
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below or from above. Instead one easily derives that P(
◦
τ(W−) ≤ T ≤ τ̄(W−)) = 1 where

◦
τ(w) := limε→0+ τ((1− ε)w) and τ̄(w) := limε→0+ τ(1 + ε)w) are the left-continuous resp. right-
continuous modifications of τ . If, however, τ only admits discontinuities at w̃ ∈ R+,0 such that
P(W− = w̃) = 0, then in fact P(T = τ(W−)) = 1 and we will assume this from now on. All our
results on resilience and non-resilience in the following can easily be extended for the functions
◦
τ resp. τ̄ .

Assumption 2.2.7. Consider sequences w−(n), w+(n) and s(n) of in-weights, out-weights
and systemic importance values such that their empirical distribution and mean converge to
those of a random vector (W−,W+, S). Moreover, let τ : R+,0 → N0 be a non-decreasing
function and assume that its points of discontinuity are all null-sets of W−. In particular,
letting τi(n) = τ(w−i (n)), i ∈ [n], Assumption 2.1.3 is satisfied and it holds T = τ(W−) a. s.

Empirical studies of financial networks such as [30] or [45] show that degrees follow Pareto
distributions (at least in the tail). We denote in the following X ∼ Par(β, xmin), β > 1,
xmin > 0, if the random variable X has density

fX(x) = (β − 1)xβ−1min x
−β1{x ≥ xmin}.

As mentioned before, to reproduce Pareto distributed degrees in our model we need to choose the
weights Pareto distributed as well. Hence let W− ∼ Par(β−, w−min) and W+ ∼ Par(β+, w+

min),
where β− > 2, β+ > 2, w−min > 0 and w+

min > 0. In particular, any choice of an increasing
function τ will satisfy Assumption 2.2.7. The main result of this section then identifies a
criterion for function τ that ensures resilience of the financial network.

Theorem 2.2.8. Suppose Assumption 2.2.7 for a non-decreasing function τ : R+,0 → N\{0, 1}
such that for each bank i ∈ [n] the threshold value τi depends on in-weight w−i by τi = τ(w−i ).
Moreover, assume for the limiting weight distributions that W− ∼ Par(β−, w−min) respectively
W+ ∼ Par(β+, w+

min), β−, β+ > 2, w−min, w
+
min > 0. Set

γc := 2 +
β− − 1

β+ − 1
− β− and αc :=

β+ − 1

β+ − 2
w+
min

(
w−min

)1−γc .
Then the system is resilient if one of the following holds:

1. γc < 0

2. γc = 0 and lim infw→∞ τ(w) > αc + 1.

3. γc > 0 and lim infw→∞w
−γcτ(w) > αc.

The theorem identifies different criteria for τ depending on the quantity γc and hence the values
of β− and β+. Since β− > 2 and β+ > 2, we note that always γc < 1. That is, also in Part 3. of
the theorem it is possible to choose a sub-linear threshold function τ that ensures resilience.
On the other hand, even the constant threshold function τ(w) = 2 for all w ∈ R+,0 ensures
resilience by Part 1. whenever γc < 0. This is in particular the case if β− > 3 and β+ > 3,
i. e. if W− and W+ both admit finite second moments. This is in line with the results from [8].
In addition, the theorem makes statements about cases when β− < 3 and β+ > 3 or vice versa.
Such parameters were observed on real markets for example in [45]. In these cases, all γc < 0,
γc = 0 or γc > 0 are possible and only the exact values of β− and β+ determine the condition
for resilience.
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Remark 2.2.9. In Theorem 2.2.8 we make the assumption of τ(w) ≥ 2. In other words, each
bank must at least be capable of sustaining the default of its largest debtor. This requirement has
already been implemented in an even stricter form in the Supervisory framework for measuring
and controlling large exposures by the Basel Committee on Banking Supervision from 2014 which
will become applicable as from 2019 [18]. While being economically sensible, the assumption
is actually not necessary in order to derive analytical results. For the case of γc < 0 it is
enough to postulate E [W−W+1{τ(W−) = 1}] < 1 in order to ensure resilience. Also in the
case of γc ≥ 0, it suffices to adjust αc for a factor (1− E[W−W+1{τ(W−) = 1}])−1, whenever
E [W−W+1{τ(W−) = 1}] < 1. Both results follow from a simple modification of our proof.

Note that Theorem 2.2.8 is formulated with assumptions on the marginal distributions of W−

and W+ only. Hence, the result is robust with respect to the dependency structure of the
weights, i. e. the resilience criteria are sufficient for all dependency structures. As Theorem
2.2.10 will show, in the case of comonotone weights, the values of γc and αc are sharp. Also in
the case of upper tail dependent weights (a reasonable assumption for real financial networks)
the value of γc is sharp. By W− and W+ being upper tail dependent we mean that

λ := lim inf
p→0

P(FW+(W+) > 1− p | FW−(W−) > 1− p) > 0.

If even
Λ(x) := lim

p→0
P(FW+(W+) > 1− xp | FW−(W−) > 1− p)

exists for all x ≥ 0, we are able to determine explicitly sharp thresholds αc(Λ) given by

αc(Λ) := w+
min(w−min)1−γc

∫ ∞
0

Λ
(
x1−β

+
)

dx.

For comonotone dependence (i. e. Λ(x) = 1 ∧ x), αc(Λ) coincides with αc from Theorem 2.2.8.

Theorem 2.2.10. Consider the same situation as in Theorem 2.2.8. If γc > 0, the following
holds:

1. If lim supw→∞w
−γcτ(w) < λβ

+−2
β+−1αc, then the system is non-resilient.

2. If Λ(x) exists for each x ≥ 0 and lim supw→∞w
−γcτ(w) < αc(Λ), then the system is

non-resilient. If lim infw→∞w
−γcτ(w) > αc(Λ), then the system is resilient.

In Part 2. of the theorem, we characterize threshold functions τ that are asymptotically smaller
respectively larger than αc(Λ)wγc . In the proof we calculate the derivative of f(z) at z = 0
in order to show non-resilience (f ′(0) > 0) respectively resilience (f ′(0) < 0). If τ(w) asymp-
totically behaves like αc(Λ)wγc , we obtain f ′(0) = 0 and hence both (2.2.1) and (2.2.3) are
possible (not simultaneously). In this case, the exact form of τ and not only its asymptotics
are important to decide whether the system is resilient or non-resilient.

Remark 2.2.11. If the weights W− and W+ are not upper tail dependent, the conditions from
Theorem 2.2.8 are generally too strict. If their dependency is such that E[W+(W−)1−γ ] < ∞
for some γ ∈ (0, γc] for example, then lim infw→∞w

−γτ(w) > 0 is already a sufficient criterion
for resilience of the system. This can easily be derived from line (2.4.1) in the proof of Theorem
2.2.8.

Theorems 2.2.8 and 2.2.10 both describe financial systems whose weights are given by Pareto
distributed random variables. While such random variables model the tails of empirical de-
gree distributions very well, typically for small weights there is a non-negligible discrepancy.
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However, the proofs of Theorems 2.2.8 and 2.2.10 show that it is in fact only the tail that
determines (non-)resilience of a financial system. Therefore, assume in the following that there
exist constants K−,K+ ∈ (0,∞) and β−, β+ > 2 such that

1− FW±(w) ≤
( w

K±

)1−β±
(2.2.4)

for w large enough. That is, the tails of the survival functions of W− and W+ are bounded by
the powers 1− β− resp. 1− β+. Then the following version of Theorem 2.2.8 holds.

Theorem 2.2.12. Suppose Assumption 2.2.7 for a non-decreasing function τ : R+,0 → N\{0, 1}
such that for each bank i ∈ [n] the threshold value τi depends on in-weight w−i by τi = τ(w−i ).
Moreover, let the distribution functions of W− and W+ satisfy (2.2.4). For γc defined as before,
the system is resilient if one of following holds:

1. γc < 0

2. γc = 0 and lim infw→∞ τ(w) > β+−1
β+−2K

+K− + 1

3. γc > 0 and lim infw→∞w
−γcτ(w) > β+−1

β+−2K
+(K−)1−γc

Note that by the same means also Theorem 2.2.10 can be generalized. For non-resilience the
inequality in (2.2.4) needs to be inverted such that it describes a lower bound on the tail of the
distributions.

2.2.3 Systemic Capital Requirements

In this section, we translate the threshold requirements from Theorem 2.2.8 to capital require-
ments in the exposure model. That is, we state explicit amounts of capital each bank has to be
able to procure in stress scenarios in order for the system to be resilient. As for the threshold
requirements, it is important to note that each bank can compute its capital requirements on its
own by just knowing its local neighborhood in the network. Further, a bank’s capital require-
ment only depends on the default risk the bank exposes itself to and not on the default risk the
bank poses to other banks. Proposition 2.2.13 states a straightforward robust way to translate
threshold requirements into sufficient capital requirements. In general, it might lead to capital
requirements that are too high and hence unnecessarily reduce interbank lending and liquidity,
however. Thus, we further provide Theorem 2.2.15 below, which accurately determines capital
requirements under a certain regularity assumption on the exposure lists.

Proposition 2.2.13. Suppose Assumption 2.2.7 for non-decreasing τ : R+,0 → N\{0, 1} and
limiting weights W− ∼ Par(β−, w−min) respectively W+ ∼ Par(β+, w+

min) with β−, β+ > 2,
w−min, w

+
min > 0. Further, assume that lim infw→∞ τ(w) > αc + 1 if γc = 0 respectively

lim infw→∞w
−γcτ(w) > αc if γc > 0, where the quantities γc and αc are as in Theorem 2.2.8.

Then the system is resilient if

ci > max

{∑
j∈J

Ej,i

∣∣∣∣∣ J ⊂ [n], |J | = τ(w−i )− 1

}
almost surely for all i ∈ [n],

i. e. capital ci of bank i ∈ [n] is larger than the sum of the τ(w−i )− 1 largest exposures of i.

Analogously, a robust translation of Theorems 2.2.10 and 2.2.12 to the exposure model is pos-
sible.
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Proposition 2.2.13 requires each bank i to be able to cope with default of its τ(w−i ) largest
exposures. But as we have seen in the proof of Theorem 2.2.8, only the thresholds and hence
the capitals of large banks in the network matter for resilience. For large banks with many
exposures on the other hand one can expect an averaging effect of the exposure sizes to occur
if they are not too irregular. Hence, one can presume that in this case multiplying threshold
values from the threshold model by average exposure sizes for each bank leads to the same
resilience characteristics. We formalize this in Theorem 2.2.15 under Assumption 2.2.14 on the
exposure sequences. This assumption is motivated by the following reasoning:

For each bank i, let {Ej,i}j∈N\{i} be a sequence of i. i. d. positive random variables. Let

λi := E[Eρi(1),i] < ∞ be their mutual expectation and denote Sik :=
∑k

j=1Eρi(j),i. If there is

some t > 1 such that E
[
|Eρi(1),i|t

]
< ∞, then by the Baum-Katz-Theorem from [20] for all

ε > 0,
kt−1P

(
Sik ≥ (1 + ε)kλi

)
→ 0, as k →∞, (2.2.5)

and for all x > 1,
ktx−1P

(
Sik ≥ ελikx

)
→ 0, as k →∞. (2.2.6)

Assumption 2.2.14. Motivated by the above, we assume that for each bank i ∈ [n] with expo-
sure list {Ej,i}j∈N\{i} of mutual mean λi, we can find t > 1 such that the convergences in (2.2.5)
and (2.2.6) hold. Moreover, we assume them to be uniform for i ∈ [n] (but not necessarily for
ε or x).

Assumption 2.2.14 ensures a certain regularity of the exposures without bounding their mean.

Theorem 2.2.15. Suppose Assumption 2.2.7 for non-decreasing τ : R+,0 → N\{0, 1} and such
that W− ∼ Par(β−, w−min) and W+ ∼ Par(β+, w+

min) with β−, β+ > 2, w−min, w
+
min > 0. The

quantities γc and αc shall be defined as in Theorem 2.2.8. Further, assume ci > maxj∈[n]\{i}Ej,i
almost surely for all i ∈ [n]. Then the following holds:

1. If γc < 0, then the system is always resilient.

Now further assume that the exposure lists {Ej,i}j∈N\{i}, i ∈ N, satisfy Assumption 2.2.14 for
some t > 1. Then the system is resilient if one of the following holds:

2. γc = 0 and there exist some γ > 0 such that lim infw→∞w
−γτ(w) > 0 and for all i ∈ [n],

ci ≥ τ(w−i )λi almost surely.

3. γc > 0, lim infw→∞w
−γcτ(w) > αc and for all i ∈ [n], ci ≥ τ(w−i )λi almost surely.

Theorem 2.2.15 provides the banks with a formula that is easy to use and only requires the
regulator to announce αc and γc. Resilient capital requirements are then determined according
to average exposure size λi and number of exposures d−i ∼ w−i . Since the average exposure
size λi is proportional to (d−i )−1 while the factor αc(d

−
i )γc is sublinear in d−i , in particular a

deconcentration of loans is favorable for the banks to reduce systemic risk charges.

Remark 2.2.16. Theorem 2.2.15 extends Theorem 2.2.8 to the exposure model under Assump-
tion 2.2.14 for the exposure sequences. By the same means, also Theorems 2.2.10 and 2.2.12
can be extended.
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2.3 Simulation Study

All previous chapters have been formulated in the limit as the number of banks n tends to ∞
and the fraction of initially defaulted banks p tends to 0. It is hence reasonable to investigate
whether the results are good approximations also for real networks which are finite with only
a few thousand institutions and experience a shock of a positive fraction of banks. Since our
model is based on the non-observable weight-parameters, one would have to estimate them from
the degree-sequences which are observable for real network configurations at least by regulating
institutions. Hence, we will start this section by a short note on weight-estimation. Since
specific transactions between banks are not disclosed to the public there is no data basis for
us to investigate real networks, however. Instead, we will subsequently discuss our findings
by simulating networks. For simplicity we consider the final default fraction n−1|Dn| as the
systemic risk measure, i. e. si = 1 for all banks i ∈ [n].

2.3.1 Estimation of Weights

Since the weight sequences are not directly observable from real networks, we give a few lines
here on how to estimate them from data that is observable. First note that for a network
G of size n with edge set E(G) the likelihood of weight sequences w− = (w−1 , . . . , w

−
n ) and

w+ = (w+
1 , . . . , w

+
n ) is given by

L(w−1 , w
+
1 , . . . , w

−
n , w

+
n | E(G)) =

∏
(i,j)∈E(G)

(
w+
i w
−
j

n
∧ 1

) ∏
(i,j)6∈E(G)

i 6=j

(
1−

w+
i w
−
j

n
∧ 1

)
.

One can always derive the maximum-likelihood estimators ŵ−1 , . . . , ŵ
−
n , ŵ

+
1 , . . . , ŵ

+
n by numer-

ically maximizing L. In order to obtain some intuition about them, we further want to derive
an approximation of the estimators. For this, we assume that w+

i w
−
j � n for all i, j ∈ [n]

which is a reasonable assumption at least when W+, W− are square-integrable. We can hence
approximate

L(w−1 , w
+
1 , . . . , w

−
n , w

+
n | E(G)) ≈ 1

ns

∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)
,

where s :=
∑

i∈[n] d
−
i =

∑
i∈[n] d

+
i . By the product form w+

i w
−
j in (2.1.2), we are free to multiply

all out-weights w+
i by some constant η if, at the same time, we multiply all in-weights by its

inverse η−1. Motivated by the fact that
∑

i∈[n] d
−
i =

∑
i∈[n] d

+
i , we use this degree of freedom to

set
∑

i∈[n]w
−
i =

∑
i∈[n]w

+
i and want to maximize the approximated likelihood function under

this constraint. (Other constraints, such as
∑

i∈[n]w
−
i = const, are also possible and lead to the

same result in the end.) By Lagrange’s multiplier method this leads to a maximization of

∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)
+ λ

∑
k∈[n]

w−k − w
+
k

 .

Differentiating with respect to w−l resp. w+
l for all l ∈ [n], we are left with solving the equations

0 =
∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)(
d−l
w−l
−
∑

k∈[n]w
+
k

n

)
+ λ
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respectively

0 =
∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)(
d+l
w+
l

−
∑

k∈[n]w
−
k

n

)
− λ.

In particular, d−l /w
−
l resp. d+l /w

+
l must be independent of l and we can thus find constants λ−

and λ+ such that w−l = λ−d−l and w+
l = λ+d+l . Using the constraints

∑
i∈[n]w

−
i =

∑
i∈[n]w

+
i

and
∑

i∈[n] d
−
i =

∑
i∈[n] d

+
i , we obtain that λ = 0 and λ− = λ+ =

√
n/
∑

i∈[n] d
−
i such that the

approximated likelihood function is maximized by

w−i = d−i

√
n∑

j∈[n] d
−
j

, w+
i = d+i

√
n∑

j∈[n] d
−
j

.

That is, the approximated weight estimators are proportional to the observed degrees and only
normalized in a certain sense. The normalization is necessary due to our choice of pi,j in (2.1.2).
If we had chosen pi,j = 1 ∧ w+

i w
−
j /
∑

k∈[n]w
+
k instead for example, then w−i and w+

i could be

interpreted directly as expected degrees and estimated by d−i respectively d+i . All previous
calculations would need to be adjusted by a factor n/

∑
k∈[n]w

+
k ≈ 1/E[W+] but analogous

results would still hold.

The smaller the observed fraction maxi,j∈[n] d
+
i d
−
j /
∑

k∈[n] d
−
k , the better is above approxi-

mation of w+
i w
−
j = d+i d

−
j n/

∑
k∈[n] d

−
k � n. On networks where maxi,j∈[n] d

+
i d
−
j /
∑

k∈[n] d
−
k is

large, w− and w+ have to be estimated numerically.

2.3.2 Simulations for the Threshold Model

For our simulations, we make use of the findings in [45] that the empirical in- and out-degrees
as well as the exposure sizes in the Brazilian banking network are power law distributed.
For November 2008, the authors of [45] estimated the power law exponents β− = 2.132 and
β+ = 2.8861 for the degree sequences and ξ = 2.5277 for the exposures. In our weight-based
model, these degree distributions are obtained by choosing in- and out-weights power law dis-
tributed with exponents β− and β+ as well. In addition to this, we assume them to be comono-
tone and Pareto distributed with minimal weights w−min = w+

min = 1.

In a first simulation, we consider a threshold model with above weight parameters and
assume absence of contagious links but nothing more. That is, we set τi = 2 for all i ∈ [n].
In order to start the cascade process, we assume initial default of p = 1% uniformly chosen
banks in the network. We then simulate the default process for n ∈ {100k : k ∈ [100]} and 100
different configurations of the random network for each n. The results for the final fraction of
defaulted banks are plotted in Figure 2.2(a). As can be seen from Figure 2.2(b), the theoretical
value of the final default fraction as n tends to infinity can be determined to be approximately
84.54%. This value is drawn as a red line in Figure 2.2(a). Already for small n, most of the
simulations yield results that are close to this theoretical value and the networks can hence
be understood as being non-resilient. As n grows to 104 the final fractions become even more
precise. In particular, there is not a single resilient sample anymore for n ≥ 500. Here and in
the following, by resilience for finite networks and positive shocks sizes we informally mean that
the final default fraction is small compared to some reference value (here 84.54%).

Instead of the absence of contagious links, Theorem 2.2.8 predicts certain threshold require-
ments to make our network model resilient to small initial shocks. Keeping above network
parameters unchanged, we compute αc ≈ 2.13 and γc ≈ 0.468. A natural choice for the thresh-
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Figure 2.2: (a) Convergence of the final fraction of defaulted banks in the threshold model
for networks of finite size. (b) Determination of the theoretical final default fraction in the
threshold model for networks whose sizes grow to infinity and with p = 1% initial defaults and
constant threshold 2. Blue: f(z) = (1−p)E[W+ψ2(W

−z)]+pE[W+]−z with root ẑ ≈ 1.94433.
Orange: g(z) = (1− p)E[ψ2(W

−z)] + p with g(ẑ) ≈ 0.845434.
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Figure 2.3: (a) Influence of δ on the shape of f(z) = E[W+ψT (W−z)] − z with capital re-
quirements τi = max{2, b(αc(1 + δ)(w−i )γc(1+δ)c}. (b) Influence of p on the shape of function
f(z) = (1− p)E[W+ψT (W−z)] + pE[W+]− z for the example of δ = 0.0839.

old of bank i ∈ [n] is then τi = max{2, bα(w−i )γc}, where α = αc(1 + δ), γ = γc(1 + δ) and
δ ∈ [−1,∞) denotes a (possibly negative) buffer. By Theorems 2.2.8 and 2.2.10, networks
are resilient to initial shocks for δ > 0 and non-resilient for δ < 0. The influence of δ on
f(z) can be seen in Figure 2.3(a). In particular, one notes that resilience for positive δ stems
from the negative hump of f(z) subsequent to zero. Further note, however, that resilience
is only guaranteed to shocks whose size tends to zero. Even networks, where the number of
banks tends to infinity but which are shocked by a strictly positive initial default fraction p,
will only be resilient for δ > δp for a certain δp > 0. This is because f(z) depends on p by
f(z) = (1−p)E[W+ψT (W−z)] +pE[W+]− z if a uniformly chosen fraction p of all banks in the
network defaults at the beginning. The influence of p on f(z) can be seen in Figure 2.3(b). In
order for a network to be resilient to an initial shock of p the hump subsequent to 0 needs to
become negative in Figure 2.3(b). By this, it is always possible to determine the least necessary
buffer δ to make a system resilient to a shock of initial default fraction p numerically (see Table
2.2 for the corresponding values δp for p = 0.001k, k ∈ [10]). Note that a buffer of δ = 0.0839
yields α = 2.31 and γ = 0.507 and hence the thresholds required to make the system resilient
to shocks of 1% are still strongly sublinear.
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Table 2.2: List of values for buffer δ corresponding to initial default of bpnc banks
p [%] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

δp [%] 2.35 3.44 4.30 5.04 5.71 6.36 6.89 7.42 7.91 8.39
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Figure 2.4: (a) A typical result for the final fraction in a network of 106 banks with initial
default fraction of p = 1% as δ varies between −1 and 1 in steps of 10−3. (b) The distribution
of jump points for 104 networks of size n = 106 with initial default fraction p = 1%.
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Figure 2.5: Average final fraction of defaulted banks in finite networks

We want to verify above results by simulations. For this, we simulate a very large network
consisting of n = 106 banks and keeping the network topology constant we let δ vary between
−1 and 1 in steps of 10−3. For each simulated network, we then find that it becomes resilient
for δ large enough. This becomes visible by a jump of the final fraction of defaulted banks at
this particular δ as illustrated in Figure 2.4(a) for a sample network. The jump shows that in
the end it is only one bank whose default lets the whole system crash.

Keeping track of the values of δ at which the final fraction drops near p = 1% for 104

simulated networks yields the distribution shown in Figure 2.4(b). It shows a peak at about
δ = 0.076 and hence supports our theoretical findings from above. Deviations from the theoret-
ical value δ0.01 ≈ 0.0839 are small and can be explained by the finite (albeit very large) network
size.

Having looked at the theoretical capital requirements for very large networks, it is now
sensible to turn our attention to networks of a few thousand banks as they arise in the real
world. Figure 2.5 shows the final fraction in networks of size n ≤ 104 with initial default
fraction p = 0.01 for δ between −0.3 and 0. For each n, we averaged over 105 simulations. The
figure shows that networks of size n ≤ 104 are already resilient for δ = 0. Even for δ = −0.2 the
network is rather resilient if n ≤ 2, 000 resp. for δ = −0.1 if n ≤ 6, 000. That is, our result is
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Table 2.3: List of values for buffer δ corresponding to initial default of the bpnc largest banks
p [%] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

δp [%] 4.09 6.05 7.61 8.90 10.0 11.0 11.9 12.7 13.4 14.1
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Figure 2.6: (a) Scatter plot of the final fraction of defaulted banks for weighted networks of
finite size without contagious links. Orange: average over all 100 configurations for each size.
(b) Scatter plot of the final fraction of defaulted banks for weighted networks of finite size. Blue:
Capitals determined by Theorem 2.2.15. Orange: Capitals determined by Proposition 2.2.13

robust in the sense that already lower threshold requirements are sufficient to make the systems
resilient to small shocks. The deviations stem from the relatively small network sizes of only
a few thousand. Here, rare extreme values of vertex weights fail to appear despite the missing
second moment condition or those large banks are not infected by the uniform initial infection.

For managing systemic risk in real networks it might, however, be of interest not only how
some uniform initial default influences the system but also how the default of the largest banks
does. In a further simulation, we hence choose the bpnc largest (by weights) banks in the
network to default at the beginning. The function f(z) then qualitatively keeps its shape as
in Figure 2.3 but is shifted upwards. Again, we can compute corresponding values of δ and p
numerically. We list our results in Table 2.3. As one expects, the values of δp are larger in this
case than the ones we obtained for uniform infection in Table 2.2, but only by a factor of about
2 and as before the resulting capital requirements are strongly sublinear.

2.3.3 Simulations for the Exposure Model

We can now turn to the simulation of a weighted network as in the exposure model. In addition
to the network parameters of the threshold model in the previous section, we assume that

for i 6= j, exposures Ej,i are given by Ej,i
d
= Ei for Pareto distributed random variables Ei

with exponent ξ = 2.5277 as in [45] and minimal value Emin,i. The exposures are assumed
independent of each other and the network topology. The minimal exposures Emin,i, can be
chosen arbitrarily since they act as a constant factor for all exposures Ej,i and capital ci.

In a first simulation, again we assume absence of contagious links but nothing more. That is,
we first simulate the network skeleton and the edge-weights independently and then determine
the banks’ capitals as their largest exposure value plus some small buffer ε > 0. For our
simulation, we choose ε = 10−3E[Ei] = 10−3Emin,i(ξ − 1)/(ξ − 2). As before, we assume initial
default of p = 1% uniformly chosen banks in the network and simulate the default process for
n ∈ {100k : k ∈ [100]} and 100 different configurations of the random network for each n. The
results for the final fraction of defaulted banks are plotted in Figure 2.6(a). We notice that
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already for small network sizes there are some non-resilient network samples with final default
fraction of about 80%. As the number of banks n grows, also the probability that the networks
are non-resilient significantly increases. This can be seen from the orange curve in Figure 2.6(a)
which shows the average final default fraction taken over all 100 configurations. The simulation
supports our analytical result that for networks without a second moment condition on their
degree sequences, simply the absence of contagious links does not ensure resilience.

In a second simulation, we keep the network topology and the exposure sizes from the
first simulation unchanged and choose capitals according to the formula in Proposition 2.2.13
with τ(w) = max{2, bαwγc} for α = αc(1 + δ), γ = γc(1 + δ) and δ = 8.39% as in Table
2.2. As can be seen from Figure 2.6(b), already for typical network sizes of less than 104,
these capital allocations make the system resilient (note the axis scale). The maximal final
fraction we observed was given by 1.33%. As mentioned before, the capital requirements in
Proposition 2.2.13 are too robust in general, however. In another simulation, we hence choose
capitals as determined in Theorem 2.2.15 again for τ(w) = max{2, bαwγc}. Figure 2.6(b)
shows that under these requirements the fundamental defaults still do not spread through the
network. All observed final fractions were less or equal 2.33%. However, keeping track of the
total capitalization of the system further reveals that the capital requirements from Theorem
2.2.15 only amount to about 61% of the ones from Proposition 2.2.13 for our chosen network
parameters.

2.4 Proofs

2.4.1 Proofs for Section 2.1

Proof of Lemma 2.1.4. Continuity of f follows directly from Lebesgue’s dominated convergence,
noting that W+ is integrable by Assumption 2.1.3. Further, f(0) = E[W+1{T = 0}] > 0 and
limz→∞ f(z; (W−,W+, T )) = −∞. Hence by the intermediate value theorem function f must
have a positive root ẑ. Representation (2.1.4) follows by an application of Fubini’s theorem:

f(z) = E
[
W+1{T = 0}+

∫ z

0
W−W+P

(
Poi(W−ξ) = T − 1

)
1{T ≥ 1} dξ

]
− z

= E
[
W+1{T = 0}

]
+

∫ z

0

(
E
[
W−W+φT (W−ξ)

]
− 1
)

dξ

Proof of Theorem 2.1.5. We want to make use of Theorem 2.1.2 for the threshold model. Thus
we describe an alternative description of default contagion compared to Subsection 2.1.1:

At the beginning we declare all initially defaulted vertices to be defaulted but yet unexposed.
At each step, a single defaulted, unexposed vertex i ∈ [n] is picked and exposed to its neighbors,
i. e. weighted edges to its neighbors are drawn. If bank j goes bankrupt due to the new edge
that is sent from i, it is added to the set of defaulted, unexposed vertices. Otherwise, the capital
of j is reduced by the amount ei,j . Afterwards, we remove i from the set of unexposed vertices.

We keep track of the following sets and quantities at different steps 0 ≤ t ≤ n− 1:

a. U(t) ⊂ [n]: the unexposed vertices at step t. We set U(0) := {i ∈ [n] : ci = 0}.

b. N(t) ⊂ [n]: the solvent vertices at step t. At t = 0, we set N(0) := [n]\U(0).

c. The updated capitals {c̃i(t)}i∈[n] with c̃i(0) = ci for all i ∈ [n].
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At step t ∈ [n− 1] the sets and quantities are updated according to the following scheme:

1. Choose a vertex v ∈ U(t− 1) according to any rule.

2. Expose v to all of its neighbors in N(t − 1). That is, for all vertices w ∈ N(t − 1) set
c̃w(t) := max{0, c̃w(t− 1)− ev,w}. Note that c̃w(t) = c̃w(t− 1) if ev,w = 0.

3. Set N(t) := {i ∈ N(t−1) : c̃i(t) > 0} and U(t) := (U(t−1)\{v})∪{i ∈ N(t−1) : c̃i(t) = 0}.

Edges that are sent to already insolvent vertices are not exposed (but they could). Above steps
are repeated until step t̂, the first time that U(t) = ∅. Note that t̂ is the final number of infected
vertices independent of the rule chosen in Step 1. Further, we can complete the exposition of
the entire graph by exposing also links to defaulted vertices and links sent from vertices in N(t̂).

Now, observe that the rule chosen in Step 1. defines a permutation of the t̂ elements of [n]
that go bankrupt. Further, for each j ∈ [n] it defines an ordering of the set of insolvent vertices
that send an edge to j, describing the order in which the edges are exposed. This ordering can
be completed to a bijective map πj : [n− 1]→ [n] \ {j} by adding vertices that either send no
edge to j or are still solvent in the end. To be precise, let πj denote the ordering for vertex
j and let this vertex (after the exposition) have l links sent from insolvent vertices. Then the
entries πj(1), . . . , πj(l) list defaulted neighbors in [n]\{j} in the order their edges are sent to
vertex j. The entries πj(l+ 1), . . . , πj(n− 1) are, in their natural order, the remaining vertices
in [n]\{j}.

In order to reduce the model to the threshold model from Subsection 2.1.2, we now want
to give a meaning to the so far only hypothetical threshold values τi, i ∈ [n]. The idea is
to construct a new random graph that has the same distribution (also of the threshold) as
the graph constructed in Subsection 2.1.3 but with thresholds that have a direct meaningful
interpretation:

We work on the same probability space as before but instead of assigning weight Ei,j to a
potential edge sent from i ∈ [n]\{j} to j, now the i−th (i ∈ [n−1]) edge that is sent to vertex j
during the sequential exposition described above shall receive weight Eρj(i),j , where as before ρj
is the natural enumeration of [n]\{j}. That is, edge-weights are not linked to the natural indices
of their vertices anymore, but instead to the order of the exposition of the edges. One notes,
however, that the random graph constructed that way has the same distribution as the random
graph constructed before. To see this, observe that by the sequential procedure described by the
orderings {πj}j∈[n] and the assignment of exposures as described above, a potential edge sent
from vertex i to vertex j is now assigned the edge-weight Eρj(π−1

j (i)),j . By exchangeability of the

lists {Ei,j}i∈[n]\{j} for j ∈ [n], the new random variables {Eρj(π−1
j (i)),j}i∈[n]\{j} have the same

multivariate distribution as {Ei,j}i∈[n]\{j}. Obviously, also the new exposures are independent
of the edge-indicator functions {Xi,j}i,j∈[n].

Hence, both constructions result in the same distribution for the random graph. Further,
note that the assignment of edge-weights has been conducted in such a way that the threshold
values in both versions of the network coincide. As before, they are given as

τi(n) := inf{s ∈ {0} ∪ [n− 1] :
∑
l≤s

Eρi(l),i ≥ ci}, i ∈ [n].

In the new random graph, however, the thresholds τi have the interpretation of actual thresh-
olds meaning that bank i goes bankrupt at the τi-th of one of its neighbors’ default. The
sequential description of the cascade process has then the advantage that we can reduce it
to the threshold model as described in Subsection 2.1.2. We can replace the capitals c̃i(t),
which represent monetary thresholds, by integer values τ̃i(t) (we set τ̃i(0) := τi), which count
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numbers of neighbors, and alter Steps 2. and 3. in the description of the sequential cascade
process according to the rule that if there is an edge sent from v to w (ev,w > 0), then set
τ̃w(t) := τ̃w(t − 1) − 1. If there is no edge from v to w (ev,w = 0), set τ̃w(t) := τ̃w(t − 1).
Then the sets N(t) and U(t) are defined by N(t) := {i ∈ N(t − 1) : τ̃i(t) > 0} respectively
U(t) := (U(t− 1)\{v}) ∪ {i ∈ N(t − 1) : τ̃i(t) = 0}. Everything else stays unchanged. Note
that the resulting threshold values τ̃i(t) are only valid for an exposition in the order as specified
above. In the threshold model, however, we are free to choose exactly the same rule as we chose
in Step 1. of our model since this does not affect the final set of defaulted vertices. Hence,
we can replace our exposure model by the threshold model from Subsection 2.1.2, resulting in
the same final set of defaulted vertices. In Theorem 2.1.2, a regularity condition on the capital
(here threshold) distribution T is required. This is ensured after conditioning on the values of
{τi}i∈[n] by Assumption 2.1.3 that Gn(x, y, v, l) converges to G(x, y, v, l) almost surely for all
(x, y, v, l). Applying Theorem 2.1.2 hence yields the desired statement.

Proof of Theorem 2.1.6. Part 1. follows from Theorem 2.1.2 by the same arguments as before.

In order to prove the second part, we will apply an additional small shock to the sys-
tem such that each bank i, regardless of its attributes w−i , w+

i and τi, has its capital ci
and hence its threshold τi set to 0 with probability p, where p is some fixed small number.
The new limiting distribution of the system is then given by (W−,W+, TMp), where Mp is a
{0, 1}-valued random variable independent of (W−,W+, T ) and with P(Mp = 0) = p. Instead
of f(z) = f(z; (W−,W+, T )) we then have to consider the function

fp(z) := f(z; (W−,W+, TMp)) = p(E[W+]− z) + (1− p)f(z).

Assuming P (T = 0) < 1 (the case P(T = 0) = 1 is trivial), it holds fp(z) > f(z) and hence we
conclude that the first positive root ẑp of fp(z) is larger than z∗. By definition of z∗ we further
derive that ẑp → z∗ as p → 0. The idea is therefore to choose p in such a way that ẑp satisfies
the assumptions of Theorem 2.1.5 and then conclude by coupling the original system with the

additionally shocked one to derive n−1Sn ≤ n−1S(p)n , where S(p)n :=
∑

i∈D(p)
n
si and D(p)

n denotes

the set of finally defaulted vertices in the additionally shocked system. Since z∗ is a root of the
continuously differentiable function f(z) it must hold d(z∗) ≤ 0. We distinguish two cases:

In the first case, we assume that κ := d(z∗) < 0. Then by continuity of d(z) on a neighbor-
hood of z∗, also

dp(z) := E
[
W−W+φTMp(W

−z)
]
− 1 <

κ

2
< 0

on a neighborhood of ẑp for p small enough. As indicated above, an application of Theorem
2.1.5 together with a coupling argument then yields

n−1Sn ≤ n−1S(p)n = E
[
SψTMp(W

−ẑp)
]

+ op(1) ≤ E
[
SψT (W−ẑp)

]
+ E[S1{Mp=0}] + op(1)

≤ E
[
SψT (W−z∗)

]
+ ε+ op(1)

by continuity of E [SψT (W−z)] (S is assumed integrable) and choosing p small enough.

In the second case, we have 0 = d(z∗) = limε→0 ε
−1f(z∗ + ε). For ε̃ > 0, let

δ(ε̃) := − inf
0<ε≤ε̃

ε−1f(z∗ + ε),

which is positive for all ε̃ by definition of z∗. We can therefore find ε̃ > 0 arbitrarily small such
that δ(ε) < δ(ε̃) for all ε < ε̃. We then derive that

0 ≤ f(z∗ + ε) + δ(ε)ε ≤ f(z∗ + ε) + δ(ε̃)ε
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for all ε ≤ ε̃ with equality only for ε = ε̃. Hence at ε = ε̃ the derivative of the last term
must be non-positive, i. e. d(z∗ + ε̃) ≤ −δ(ε̃) < 0. By continuity, also d(z) ≤ −δ(ε̃)/2 < 0 on
a neighborhood of z∗ + ε̃. Hence z∗ + ε̃ is a good candidate for the first positive root of the
additionally shocked system. All that is left to show is that there exists a certain value for the
shock size p such that z∗ + ε̃ becomes the first positive root. To this end, let

p(ε̃) :=
ε̃δ(ε̃)

E[W+]− z∗ − ε̃(1− δ(ε̃))
.

Note that for P(T = 0) < 1 the root z∗ is always less than E[W+] and hence for ε̃ small enough
p(ε̃) becomes positive. As ε̃→ 0, also p(ε̃) tends to zero. Now note that for all 0 < ε ≤ ε̃,

fp(ε̃)(z
∗ + ε) ≥ (1− p(ε̃))(−εδ(ε̃)) + p(ε̃)

(
E[W+]− (z∗ + ε)

)
≥ (ε̃− ε)δ(ε̃) ≥ 0

with equality only for ε = ε̃. The additional shock strictly increases f(z) and hence there cannot
be any root less or equal z∗. In particular, z∗ + ε̃ is the first positive root of the additionally
shocked system. By letting ε̃→ 0, we conclude for arbitrarily small ε > 0 that

n−1Sn ≤ E
[
SψT (W−z∗)

]
+ ε+ op(1).

For the case of ẑ = z∗, we simply need to combine Parts 1. and 2. of the theorem.

2.4.2 Proofs for Section 2.2

Proof of Proposition 2.2.5. By (2.1.4), we derive

fi(z) := f(z; (W−,W+, TMi)) ≤ E[W+1{Mi = 0}] + κz + o(z)

and similarly
E[SψTMi(W

−z)] ≤ E[S1{Mi = 0}] + κSz + o(z).

Hence we derive
ẑi ≤ −κ−1E[W+1{Mi = 0}] + o(E[W+1{Mi = 0}]),

where ẑi denotes the first positive root of fi(z). Together with Theorem 2.1.5 this shows that

w. h. p. n−1SMi
n ≤ E[S1{Mi = 0}]− κ−1κSE[W+1{Mi = 0}] + o(E[W+1{Mi = 0}]).

If f(z) and E[SψT (W−z)] are continuously differentiable from the right at z = 0 with derivatives
κ < 0 and κS <∞, then above inequalities are equalities and hence

n−1SMi
n

p−→ E[S1{Mi = 0}]− κ−1κSE[W+1{Mi = 0}] + o(E[W+1{Mi = 0}]).

Proof of Theorem 2.2.6. By (2.2.3), we derive that z∗i → 0 as i→∞, where

z∗i := inf
{
z > 0 : f(z; (W−,W+, TMi)) < 0

}
.

For i large enough such that z∗i < z0, we can then apply Part 2. of Theorem 2.1.6 to derive that

w. h. p. n−1SMi
n ≤ E

[
SψTMi(W

−z∗i )
]

+
ε

2
≤ E

[
SψT (W−z∗i )

]
+ E [S1{Mi = 0}] +

ε

2
.

Note that from continuity of d(z) it follows that also E [W−W+φTMi(W
−z)] is continuous by

dominated convergence. Since S is integrable, the first summand tends to zero as z∗i → 0 and
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also the second summand vanishes as P(Mi = 0) → 0. In particular, we can choose i large
enough such that

E
[
SψT (W−z∗i )

]
+ E [S1{Mi = 0}] ≤ ε

2
.

We now turn to the proofs of Theorems 2.2.8 – 2.2.12. To show resilience of the financial
system in Theorem 2.2.8, we want to use Theorem 2.2.6. In order for this to work, we need to
ensure that d(z) is continuous for z > 0. This is done in the following lemma.

Lemma 2.4.1. Assume that T = τ(W−) for some integer-valued function τ(w) = o(w). Then
d(z) is continuous on (0,∞).

Proof. We fix some z̃ < ∞ and aim to show that for some arbitrarily fixed δ < z̃ the family
{W−W+φT (W−z)}z∈[z̃−δ,z̃+δ] is bounded by some integrable random variable almost surely.
This will show continuity of d(z) by Lebesgue’s dominated convergence theorem.

By definition of a Poisson random variable, we derive

W−W+φT (W−z) = W−W+P
(
Poi(W−z) = T − 1

)
= W−W+e−W

−z (W−z)T−1

Γ(T )
.

Then, by applying Stirling’s approximation to the Γ-function,

W−W+φT (W−z) ≤W−W+ exp

{
−W−z

(
1− T − 1

W−z
+
T − 1

W−z
log

(
T − 1

W−z

))}
.

In the exponent, we identify the expression g ((T − 1)/(W−z)), where g(x) := 1− x+ x log(x).
The continuous function g admits the unique minimum g(x∗) = 0 at x∗ = 1. Since further
limx→0+ g(x) = 1, it holds that g(x) ≥ G for x < 1/2 and some suitable G > 0. Now choose w̃
large enough such that (τ(w)− 1)/(w(z̃ − δ)) < 1/2 for all w > w̃. We derive,

W−W+φT (W−z) ≤W+
(
W− exp

{
−W−(z̃ − δ)G

}
+ w̃

)
≤W+M(z̃) ∈ L1,

almost surely, where M(z̃) is a positive constant depending on z̃ only.

Remark 2.4.2. In Theorem 2.2.8, we have τ(w) = O(wγ) for 0 ≤ γ < 1 and hence τ(w) = o(w).

Proof of Theorem 2.2.8. In order to ease notation, we will assume throughout all the proofs
that w−min = w+

min = 1. The arguments for general w−min and w+
min are completely analogue.

Since E[W−W+] is maximized for comonotone weights, i. e. W+ = F−1
W+(FW−(W−)) =

(W−)
β−−1

β+−1 , we get E [W−W+] ≤ E
[
(W−)

1+β−−1

β+−1

]
= (β− − 1)

∫∞
1 wγc−1dw < ∞ for γc < 0.

By dominated convergence we conclude that f is continuously differentiable on [0,∞) with
f ′(z) = d(z). By T ≥ 2, in particular, f ′(0) = −1 and hence by Theorem 2.2.4 the system is
resilient to small shocks.

Now let γc = 0 and α := lim infw→∞ τ(w) > αc + 1. We assume that α <∞, otherwise we
could truncate τ(w) at some N 3 α > αc + 1. Since τ(w) ≥ 2 is an integer-valued function, we
observe that α ∈ N\{0, 1} and τ(w) ≥ α for all w > w̃ and some constant w̃ > 0. Since ψl(x)
is monotonically decreasing in l, we derive that, as z → 0,

E
[
W+ψT (W−z)

]
≤ E

[
W+ψα(W−z) +W+ψ2(W

−z)1{W− ≤ w̃}
]
≤ E

[
W+ψα(W−z)

]
+ o(z).
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Note that since ψα(x) is a strictly increasing function in x, this expression becomes maximized
for comonotone dependence of W− and W+. We derive

lim sup
z→0+

z−1E
[
W+ψT (W−z)

]
≤ lim sup

z→0+
z−1

∑
k≥α

E
[
(W−)

β−−1

β+−1 e−W
−z (W−z)k

k!

]

= lim sup
z→0+

αc

∑
k≥α

∫ ∞
z

x
β−−1

β+−1
−β−+k

e−x

k!
dx

= αc

∑
k≥α

Γ(k − 1)

k!
=

αc

α− 1
< 1.

In particular, lim supz→0+ z
−1f(z) < 0. By Lemma 2.4.1 and Remark 2.4.2, we also know that

d(z) is continuous for z > 0 (we can simply cut off τ(w) at α) and hence by Theorem 2.2.6 we
can conclude that the system must be resilient.

Finally, assume that γc > 0 and α := lim infw→∞w
−γcτ(w) > αc. We can then choose some

αc < α̃ < α and w̃ <∞ such that τ(w) ≥ dα̃wγce for all w > w̃. Hence we derive that

E
[
W+ψT (W−z)

]
≤ E

[
W+ψdα̃(W−)γce(W

−z)1{W− > w̃}
]

+ o(z).

By a Chernoff bound we get that ψl(x) ≤ (xe/l)le−x for x < l. Thus for w ≤
(
α̃−1(1 + ε)z

) 1
γc−1

and ε > 0,

ψdα̃wγce(wz) ≤
( wze
α̃wγc

)α̃wγc
e−wz = exp

{
−z

γc
γc−1 g

(
wz

1
1−γc

)}
,

where g(x) := x− α̃xγc log(ex1−γc/α̃). For arbitrary λ > 0, we can hence choose w̃ large enough

such that for all w̃ < w ≤
(
α̃−1(1 + ε)ez

) 1
γc−1 it holds

ψdα̃wγce(wz) ≤
( wze
α̃wγc

)α̃wγc
≤
( wze
α̃wγc

)1+λ
(1 + ε)−α̃w

γc+1+λ ≤
(
α̃−1ze

)1+λ
and

E
[
W+ψdα̃(W−)γce(W

−z)1
{
w̃ < W− ≤

(
α̃−1(1 + ε)ez

) 1
γc−1

}]
≤
(
α̃−1ze

)1+λ E[W+] = o(z).

For (α̃−1(1 + ε)ez)
1

γc−1 < w ≤ (α̃−1(1 + ε)z)
1

γc−1 , we have g(wz
1

1−γc ) ≥ δ for some δ > 0. Thus

E
[
W+ψdα̃(W−)γce(W

−z)1
{(
α̃−1(1 + ε)ez

) 1
γc−1 < W− ≤

(
α̃−1(1 + ε)z

) 1
γc−1

}]
≤ E[W+]e−δz

γc
γc−1

= o(z).

Hence, as z → 0, only W− >
(
α̃−1(1 + ε)z

) 1
γc−1 contributes to z−1E[W+ψT (W−z)]. On this

set, by bounding with the comonotone dependence, we compute

E

[
W+ψT (W−z)1

{
W− >

(
α̃−1(1 + ε)z

) 1
γc−1

}]
≤ E

[
W+1

{
W− >

(
α̃−1(1 + ε)z

) 1
γc−1

}]
(2.4.1)

≤ (β− − 1)

∫ ∞
(α̃−1(1+ε)z)

1
γc−1

w
β−−1

β+−1
−β−

dw = αc
(1 + ε)z

α̃
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Hence, lim supz→0+ z
−1f(z) = lim supz→0+ z

−1E[W+ψT (W−z)]−1 < 0 by choosing ε > 0 small
enough such that α̃−1αc(1 + ε) < 1. This shows resilience by the same arguments as in Part 2.,
noting that we can cut τ(w) at wη for some γc < η < 1.

Proof of Theorem 2.2.10. Again, we simplify notation be setting w−min = w+
min = 1.

We start by proving the second statement. Let α := lim supw→∞w
−γcτ(w) and choose

α < α̃ <
∫∞
0 Λ

(
x1−β

+
)

dx and w̃ < ∞ such that τ(w) ≤ bα̃wγcc for all w > w̃. Moreover,

choose ε > 0 and δ > 0 such that α̃ < (1 − ε)(1 − δ)
∫∞
0 Λ

(
x1−β

+)
dx and let z > 0 small

enough such that w̃ ≤
(
α̃−1(1− ε)z

) 1
γc−1 as well as z < (ε2δ)

1
γc
−1

(α̃/(1− ε))
1
γc . For such z and

w > (α̃−1(1− ε)z)
1

γc−1 it holds that

P (Poi(wz) ≥ bα̃wγcc) ≥ 1− P (|Poi(wz)− wz| ≥ εwz) ≥ 1− 1

ε2wz
≥ 1− 1− ε

ε2α̃wγc
≥ 1− δ,

by Chebyshev’s inequality. Therefore,

E
[
W+ψT (W−z)

]
≥ (1− δ)E

[
W+1

{
W− >

(
α̃−1(1− ε)z

) 1
γc−1

}]
= (1− δ)

∫ ∞
0
P
(
W+ > x,W− >

(
α̃−1(1− ε)z

) 1
γc−1

)
dx

= (1− δ)
(
α̃−1(1− ε)z

) 1
γc−1

β−−1

β+−1

×
∫ ∞
0
P
(
FW+(W+) > 1− x1−β+

p(z), FW−(W−) > 1− p(z)
)

dx

= α̃−1(1− ε)(1− δ)z
∫ ∞
0
P
(
FW+(W+) > 1− x1−β+

p(z)
∣∣∣FW−(W−) > 1− p(z)

)
dx,

(2.4.2)

where we substituted p(z) := (α̃−1(1 − ε)z)
1−β−
γc−1 . Note that the conditional probability is

bounded by 1 ∧ x1−β+
. Hence, by Lebesgue’s dominated convergence theorem

z−1E
[
W+ψT (w−z)

]
≥ α̃−1(1− ε)(1− δ)

∫ ∞
0

Λ
(
x1−β

+
)

dx+ o(1) > 1 + o(1)

and thus E [W+ψT (W−z)] > z for z small enough which implies non-resilience by Theorem
2.2.2.

For resilience in Part 2., we follow the same proof as for Theorem 2.2.8 until we arrive at
expression (2.4.1) which we can now evaluate with the same means as above. That is,

z−1E
[
W+1

{
W− >

(
α̃−1(1 + ε)z

) 1
γc−1

}]
→ α̃−1(1 + ε)

∫ ∞
0

Λ
(
x1−β

+
)

dx < 1, as z → 0.

For the first statement of the theorem, note that we can lower bound the integral in (2.4.2) by
P(FW+(W+) > 1−p(z) | FW−(W−) > 1−p(z)) and hence we derive non-resilience as above by

lim inf
z→0

z−1E[W+ψT (W−z)] ≥ α̃−1(1− ε)(1− δ)λ > 1.

Proof of Theorem 2.2.12. Let U ∼ U [0, 1] and

X± := (1− U)
1

1−β±K±.
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Then X± ∼ Par(β±,K±). Further, let W̃± := F−1
W±(U) such that W̃±

d
= W± but W̃− and W̃+

are comonotone. By (2.2.4) we then now that W̃± = F−1
W±(U) ≤ F−1

X±(U) = X± for U ≥ ũ large
enough and hence

E[W−W+] ≤ E[W̃−W̃+] ≤ w̃(E[W−] + E[W+]) + E[X−X+],

where w̃ = max{F−1
W−(ũ), F−1

W+(ũ)} <∞. Then for the case of γc < 0, by the same calculations
as in the proof of Theorem 2.2.8 we derive E[X−X+] <∞ and thus resilience of the system.

For γc = 0, as in the proof of Theorem 2.2.8 we have

E[W+ψT (W−z)] ≤ E[W+ψα(W−z)] + o(z),

where α = lim infw→∞ τ(w) ∈ N\{0, 1}. Hence

lim sup
z→0+

E[W+ψT (W−z)]

z
≤ lim sup

z→0+

E[W̃+ψα(W̃−z)]

z

≤ lim sup
z→0+

E[X+ψα(X−z)] + w̃ψ2(w̃z)

z

=
β+ − 1

β+ − 2
K+K−

1

α− 1

and the system is resilient for lim infw→∞ τ(w) = α > β+−1
β+−2K

+K− + 1.

For γc > 0, we follow the proof of Theorem 2.2.8 and replace the right-hand side of (2.4.1)
by

E
[
X+1

{
X− >

(
α̃−1(1 + ε)z

) 1
γc−1

}]
+ w̃1

{
w̃ >

(
α̃−1(1 + ε)z

) 1
γc−1

}
=
β+ − 1

β+ − 2
K+(K−)1−γc

(1 + ε)z

α̃
+ o(z).

Proof of Proposition 2.2.13. The capitals ci are chosen such that the threshold values τi are
at least τ(w−i ). Hence coupling the weighted network to the corresponding threshold network
yields the result.

Proof of Theorem 2.2.15. By the assumption of ci > maxj∈[n]\{i}Ej,i almost surely for all
i ∈ [n], we get τi ≥ 2 almost surely. The proof of Part 1. is thus completely analogue to
the one of Theorem 2.2.8.

We continue by proving Part 3. By the means of the proof of Theorem 2.2.8 we derive that
lim supz→0+ z

−1E [W+ψT (W−z)1 {T > (1 + ε)αc(W
−)γc}] < 1 for each ε > 0. It will hence

suffice to prove E [W+ψT (W−z)1 {T ≤ (1 + ε)αc(W
−)γc}] = o(z) in order to show resilience.

To this end, choose 0 < δ < γc(t− 1). Then

E
[
W+ψT (W−z)1

{
T ≤ (W−)δ

}]
≤ E

[
W+ψ2(W

−z)1
{
T ≤ (W−)δ

}]
= lim

M→∞
E
[(
W+ ∧M

)
ψ2(W

−z)1
{
T ≤ (W−)δ

}]
≤ lim inf

M→∞
lim inf
n→∞

n−1
∑
i∈[n]

(
w+
i ∧M

)
ψ2(w

−
i z)1

{
τi ≤ (w−i )δ

}
,

where we approximated the non-continuous integrand by continuous ones and used almost sure
weak convergence by Assumption 2.1.3. Now taking expectations with respect to the exposure
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lists, by Fatou’s lemma we derive

E
[
W+ψT (W−z)1

{
T ≤ (W−)δ

}]
≤ lim inf

M→∞
lim inf
n→∞

n−1
∑
i∈[n]

(
w+
i ∧M

)
ψ2(w

−
i z)P

(
τi ≤ (w−i )δ

)
≤ K1 lim inf

M→∞
lim inf
n→∞

n−1
∑
i∈[n]

(
w+
i ∧M

)
ψ2(w

−
i z)(w

−
i )δ−tγc

= K1 lim inf
M→∞

E
[(
W+ ∧M

)
ψ2(W

−z)(W−)δ−tγc
]

= K1E
[
W+ψ2(W

−z)(W−)δ−tγc
]
,

where we used Assumption 2.2.14 to bound

P
(
τi ≤ (w−i )δ

)
= P

( ∑
1≤j≤(w−i )δ

Eρi(j),i ≥ ci

)
≤ P

( ∑
1≤j≤(w−i )δ

Eρi(j),i ≥ τ(w−i )λi

)

≤ P

( ∑
1≤j≤(w−i )δ

Eρi(j),i ≥ αc(w
−
i )γcλi

)
≤ K1(w

−
i )δ−tγc ,

for w−i large enough and some uniform constant K1 > ∞. Note that for W− ≤ w̃, we have
E [W+ψT (W−z)1{W− ≤ w̃}] = o(z) as in the proof of Theorem 2.2.8. Hence it holds

z−1E
[
W+ψT (W−z)1

{
T ≤ (W−)δ

}]
≤ K1E

[
W+ψ2(W

−z)

W−z
(W−)1+δ−tγc

]
+ o(1).

Since ψ2(x) = o(x), by dominated convergence it is enough to prove E
[
W+(W−)1+δ−tγc

]
<∞

in order for E
[
W+ψT (W−z)1

{
T ≤ (W−)δ

}]
= o(z). We can easily choose t > 1 and δ > 0

in such a way that 1 + δ − tγc > 0 and can therefore estimate E[W+(W−)1+δ−tγc ] by the

comonotone expectation E
[
(W−)

β−−1

β+−1
+1+δ−tγc] which is finite since by our choice of δ,

β− − 1

β+ − 1
+ 1 + δ − tγc − β− = γc(1− t) + δ − 1 < −1.

Now let 2 ≤ N < γc/δ and consider E
[
W+ψT (W−z)1

{
(W−)(N−1)δ < T ≤ (W−)Nδ

}]
. As in

the proof of Theorem 2.2.8 it is enough to consider E
[
W+1

{
W− > z

1
(N−1)δ−1 , T ≤ (W−)Nδ

}]
.

Similar as above, we derive P
(
τi ≤ (w−i )Nδ

)
≤ KN (w−i )Nδ−tγc for some uniform KN <∞ and

E
[
W+1

{
W− > z

1
(N−1)δ−1 , T ≤ (W−)Nδ

}]
≤ KNE

[
W+1

{
W− > z

1
(N−1)δ−1

}
(W−)Nδ−tγc

]
≤ KNE

[
(W−)

β−−1

β+−1 1
{
W− > z

1
(N−1)δ−1

}]
z

Nδ−tγc
(N−1)δ−1

= KN
β− − 1

1− γc
z
γc−1+Nδ−tγc

(N−1)δ−1 = o(z)

since by the choice of δ and N , it holds γc − 1 +Nδ − tγc < (N − 1)δ − 1 < 0.

Finally, we have to consider the part E
[
W+ψT (W−z)1{(W−)γc−δ < T ≤ (1 + ε)αc(W

−)γc}
]
.

If we choose ε > 0 small enough such that (1 + 2ε)αc < lim infw→∞ τ(w)/wγc and denote
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τ̃(w) := (1 + ε)αcw
γc , then we observe that by Assumption 2.2.14 for w−i large enough

P
(
τi ≤ τ̃(w−i )

)
≤ P

τ̃(w−i )∑
j=1

Eρi(j),i ≥
1 + 2ε

1 + ε
τ̃(w−i )λi

 ≤ K ((1 + ε)αc(w
−
i )γc

)−(t−1)
for some K <∞. Since γc − 1− (t− 1)γc < γc + δ − 1 < 0, we then get

E
[
W+1{W− > z

1
γc+δ−1 , T ≤ (1 + ε)αc(W

−)γc}
]

≤ KE
[
W+1{W− > z

1
γc+δ−1 }

(
(1 + ε)αc(W

−)γc
)−(t−1)]

≤ K ((1 + ε)αc)
−(t−1) β

− − 1

1− γc
z
γc−1−(t−1)γc

γc+δ−1 = o(z).

Altogether, we derive (note that we decomposed the expectation in finitely many summands)

E
[
W+ψT (W−z)1

{
T ≤ (1 + ε)αc(W

−)γc
}]

= o(z)

and hence lim supz→0+ z
−1f(z) = lim supz→0+ z

−1E [W+ψT (W−z)] − 1 < 0, which shows re-
silience by Theorem 2.2.6. Note that we can cut off T at (W−)η for some γc < η < 1 to ensure
continuity of d(z) by Lemma 2.4.1 and Remark 2.4.2.

Part 2. follows by the same calculations replacing γc by γ and using γ > γc.



Chapter 3

A Model for Default Contagion in
Multi-type Financial Networks

Real financial networks exhibit various forms of complex structures. Typical examples are core-
periphery structures, geographically induced community structures, or mixtures of the two.
See Figure 3.1 for an exemplary illustration. While our model from Chapter 2 can describe
heavy-tailed degree distributions, one can argue that compared to real observed networks the
probability of exposures between periphery institutions is still too large. Moreover, communities
cannot be modeled by the means from Chapter 2. It is thus the aim of this chapter to provide
a model capable of representing these features. Again our starting point is the model from [54]
(called threshold model in Chapter 2) and we extend it in two directions in Section 3.1. First, we
divide the global financial system into subsystems of different institution types such as country,
core/periphery, a combination of the two, or any other reasonable segmentation. We then let
the connection probability of two institutions in the system depend on their respective types
– larger within communities or within cores, smaller between communities and for periphery
institutions for instance. Second, we allow for different exposure distributions between different
institution types – larger exposures between core-institutions for example. Our model can then
be considered a multi-dimensional threshold model in the sense that due to the two extensions
the analysis of the contagion process turns into a multi-dimensional problem. Thus, compared
to [54] novel techniques are required to derive asymptotic results for the final systemic damage
induced by some initial shock event in Section 3.2 and for the characterization of resilient and
non-resilient system structures in Section 3.3. Moreover in Section 3.4, we provide a family of
capital requirements sufficient to secure a multi-type network against small initial shocks. In
Section 3.5, we integrate the idea of exchangeable exposures from Chapter 2 into our multi-type
model to gain more flexibility at the modeling of exposures. This extension can be seen as a
multi-dimensional exposure model in analogy to Chapter 2. We then demonstrate the effects
that the complex structures of financial systems modeled in this chapter have on their stability
in Section 3.6. Finally, we provide all our proofs for this chapter in Section 3.7.

My own contribution: Except for Sections 3.4 and 3.5 which are entirely my own work and
have not been published elsewhere, so far, this chapter is mostly reproducing [56] which is joint
work with Nils Detering, Thilo Meyer-Brandis and Konstantinos Panagitou. I was significantly
involved in the development of all parts of that paper and did most of the editorial work. In
particular, I made major contributions to the model design, Corollary 3.1.3, Lemmas 3.2.1, 3.2.2
and 3.2.3, Theorem 3.2.4, Remark 3.2.5, Theorem 3.3.2, Definition 3.3.3, Corollary 3.3.4, Lemma
3.3.5, Theorem 3.3.6, Lemma 3.3.7, Examples 3.6.1, 3.6.2 and 3.6.3, the numerical simulations,
Proposition 3.7.2, Theorem 3.7.3, as well as Lemmas 3.7.4, 3.7.5 and 3.7.6. Compared to [56],
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Figure 3.1: A sample network consisting of two cores (darkblue resp. darkgreen) and the associ-
ated peripheries (lightblue resp. lightgreen). Vertex sizes correspond to the respective degrees.
For simplicity the network is depicted undirected and the strength of links is omitted.

in this chapter we additionally consider values of systemic importance for each institution as in
Chapter 2 to measure a more flexible final systemic damage than only the final default fraction.

3.1 Default Contagion on a Random Weighted Multi-type Net-
work

We describe a model for a financial network consisting of n ∈ N vertices (institutions) and ran-
dom directed edges between them. We usually think of an institution i ∈ [n] := {1, . . . , n} ⊂ N
as a bank in an interbank network and of a directed edge going from institution i ∈ [n] to
j ∈ [n] as a financial exposure of j which emanates from i, for example by an outstanding
interbank-loan from i to j. Our model accounts for two more features. First, we assign weights
to the edges which for now shall represent the amount of the loan. Later in Section 3.5, we will
generalize our model and identify an edge-weight as an abstract multiplier for the exposure. The
model from this section can thus be interpreted as a multi-dimensional extension of the thresh-
old model from Subsection 2.1.2 whereas Section 3.5 describes a multi-dimensional extension of
the exposure model from Subsection 2.1.3. As will be clear from the construction in the follow-
ing, the assignment of edge-weights depends on both the creditor- and the debtor-institution.
This feature is new as compared to previous literature such as [8] and Chapter 2, where the
amount of each loan did only depend on the creditor bank. Second, we assign different types
to the institutions in the network. This allows to describe more involved network structures
such as core-periphery networks – a two-type network in our terminology – and (dis-)assortative
structures.

3.1.1 Vertex Types

We begin by assigning to each institution i ∈ [n] a type αi ∈ [T ], where T ∈ N is the fixed
number of types. In the prominent case of a core-periphery network we choose T = 2 and a
bank i ∈ [n] shall be a core bank if αi = 1 resp. a periphery bank if αi = 2. Hence the financial
network is partitioned into sets of institutions of different types, which we also call blocks.

3.1.2 Vertex Weights and Random Weighted Edges

Next, we fix R ∈ N and we construct a random network with edge-weights in [R]. To this
end, assign to each institution i ∈ [n] a set {w−,r,αi , w+,r,α

i }1≤r≤R,1≤α≤T of non-negative vertex-

weights and denotew−i = (w−,r,αi )r∈[R],α∈[T ] ∈ R
[R]×[T ]
+,0 resp.w+

i = (w+,r,α
i )r∈[R],α∈[T ] ∈ R

[R]×[T ]
+,0 .

The weight w−,r,αi describes the tendency of bank i to develop incoming edges of weight r from
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institutions of type α. Similarly, w+,r,α
i describes the tendency of i to form outgoing edges of

weight r to institutions of type α. To formalize this, let Xr
i,j be the indicator random variable

which is 1 if there is an edge of weight r going from i to j and 0 otherwise and let Xr
i,j ∼ Be(pri,j)

be a Bernoulli random variable with expectation

pri,j :=

{
min{R−1, n−1w+,r,αj

i w−,r,αij }, i 6= j,

0, i = j.
(3.1.1)

To avoid multiple edges of different weights between the institutions, we assume {Xr
i,j}1≤r≤R

to be mutually exclusive in the sense that
∑

1≤r≤RX
r
i,j ≤ 1. Also, we assume that edges

between different pairs of institutions are independent, i. e. Xr1
i1,j1
⊥ Xr2

i2,j2
for all r1, r2 ∈ [R]

if (i1, j1) 6= (i2, j2). In particular, Xr1
i,j ⊥ Xr2

j,i for all i 6= j, r1, r2 ∈ [R]. This can for example
be achieved by introducing a sequence of independent random variables Ui,j , each distributed
uniformly on the interval [0, 1], and letting Xr

i,j = 1
{
Ui,j ∈

[∑
s≤r−1 p

s
i,j ,
∑

s≤r p
s
i,j

)}
. The

upper bound R−1 in (3.1.1) then ensures that
∑

s≤R p
s
i,j ≤ 1.

3.1.3 Capital and Default Contagion

We assign to each institution i ∈ [n] an initial amount of capital (equity) ci ∈ N0,∞. We call an
institution solvent if ci > 0 and insolvent if ci = 0 and we denote by D0 := {i ∈ [n] : ci = 0} the
set of initially defaulted institutions. The initial default shall be due to some exogenous event
such as a stock market crash. Because of the interconnections in the network the default of
the institutions in D0 will spread through the network. This happens since the defaulted banks
cannot (fully) repay their loans to their creditors. As first suggested in [75] it is a reasonable
assumption that defaulted debtors cannot repay any of their debts since processing their default
may take months or even years while financial contagion is a short term process. In fact, one
can generalize our model to the case of a fixed constant recovery rate simply by adjusting the
capitals. The default contagion process can then be described as follows. In round k ≥ 1 of the
default cascade the set of defaulted institutions is

Dk :=

{
i ∈ [n] : ci ≤

∑
r∈[R]

r
∑

j∈Dk−1

Xr
j,i

}
. (3.1.2)

In particular, D0 ⊆ D1 ⊆ · · · and the chain of default sets stabilizes at round n− 1 the latest.
We hence denote the final default set by Dn := Dn−1. Note that the only randomness in this
process stems from the random links in the network. Once a network configuration has been
fixed the whole default contagion sequence is fully determined.

Remark 3.1.1. To model realistic financial networks with general exposure values, it would be
a priori necessary to choose R very large and our model would become very high-dimensional.
Instead of considering an edge-weight r as the exposure between two institutions, however, one
can also interpret it as a more general factor of impact. It is then possible to model unbounded
exposure distributions also with a considerably small choice of R. We will discuss this idea more
precisely in Chapter 5.

3.1.4 Systemic Importance

The setDn introduced in the previous subsection describes the set of banks that are finally driven
into default by the initial default set D0. Only considering the size |Dn| of this set to measure
the damage to the financial system neglects the fact that there are larger/more important banks
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and smaller/less important banks in the system, however. Instead, analogously to Chapter 2
we finally assign to each bank i ∈ [n] a systemic importance value si ∈ R+,0 which reflects the
importance of the bank for the whole financial system or even the wider economy. See Chapter 2
for suitable examples of si. Instead of |Dn| we then consider

Sn :=
∑
i∈Dn

si

to measure the final damage caused by defaulted banks. Note that Sn = |Dn| if si = 1 for all
i ∈ [n], which is the special case considered in [56].

3.1.5 Regular Vertex Sequences

In the previous subsections we introduced several parameters and in particular, any random
ensemble is described by the weight sequences w− := (w−1 , . . . ,w

−
n ) and w+ := (w+

1 , . . . ,w
+
n ),

the systemic importance sequence s := (s1, . . . , sn), the capital sequence c := (c1, . . . , cn), and
the vertex type sequence α := (α1, . . . , αn). That is, much of the information about the system
– in particular the complexity of the network configuration – is contained in the empirical
distribution function

Fn(x,y, v, l,m) := n−1
∑
i∈[n]

∏
r∈[R],α∈[T ]

1
{
w−,r,αi ≤ xr,α, w+,r,α

i ≤ yr,α
}

1 {si ≤ v, ci ≤ l, αi ≤ m} ,

for x,y ∈ R[R]×[T ]
+,0 , v ∈ R+,0, l ∈ N0,∞ and m ∈ [T ].

The setting described so far puts us in the position to model a system with a given number n
of institutions. However, as already described in the introduction, our main focus is on studying
how the complex structures in the underlying network affect the contagion process and, more
generally, the (in-)stability of the system as a whole. Towards this aim we proceed as follows.
Instead of restricting our attention to a single system configuration, we consider an ensemble of
systems that are similar, where the structural similarity is measured precisely in terms of the
joint empirical distribution of all parameters that we consider. In particular, we assume that
we have a collection of systems with a varying number n of institutions with the property that
the sequence (Fn)n∈N of empirical distributions converges.

Definition 3.1.2. A sequence (w−(n),w+(n), s(n), c(n),α(n))n∈N of model parameters for
different network sizes n ∈ N is called a regular vertex sequence if the following conditions hold.

(a) Convergence in distribution: Let (W−
n ,W

+
n , Sn, Cn, An) be a random vector dis-

tributed according to the empirical distribution function Fn withW±
n = (W±,r,αn )r∈[R],α∈[T ].

Then there exists a distribution function F such that Fn(x,y, v, l,m) → F (x,y, v, l,m)
for all points (x,y, v, l,m) at which Fl,m(x,y, v) := F (x,y, v, l,m) is continuous. Denote
by (W−,W+, S, C,A) a random vector distributed according to F where similar to above
W± = (W±,r,α)r∈[R],α∈[T ].

(b) Convergence of average weights and systemic importance: S, W−,r,α and W+,r,α

are integrable for all r ∈ [R] and α ∈ [T ], and as n→∞ it holds

E[Sn]→ E[S], E
[
W−,r,αn

]
→ E

[
W−,r,α

]
, and E

[
W+,r,α
n

]
→ E

[
W+,r,α

]
.

Note that if we extract the subnetwork of edges with weight r going from banks of type α
to banks of type β we are exactly in the setting of [54] with limiting in-weight W−,r,β and
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out-weight W+,r,α (each of them scaled to account for the changed number of banks). We
hence derive the following corollary of [54, Theorem 3.3] which gives some intuition about the
geometry of the described random graph in our model.

Corollary 3.1.3. Consider a financial system described by a regular vertex sequence and let
D±,r,αn be the r-out/in-degree with respect to banks of type α of some bank in the network chosen
uniformly at random. Then for each (r, α) ∈ [R]× [T ], as n→∞, in distribution

D±,r,αn → Poi

(
W±,r,α

∑
β∈[T ]

ζr,β,α∓ 1{A = β}

)
, (3.1.3)

where ζr,β,α∓ := E
[
W∓,r,β1{A = α}

]
. In particular, the r-out/in-degree with respect to banks of

type α of some uniformly chosen bank of type β converges in distribution to Poi
(
W±,r,αζr,β,α∓

)
.

3.2 Asymptotic Results

This section presents results for the final default fraction n−1|Dn| triggered by some set of
initial defaults, which is one of the main contributions of this chapter – see Subsection 3.2.2.
In Subsection 3.2.1, we first introduce some functions that will play an important role. For the
sake of readability, most of the – mainly technical – proofs of this section are moved to the
appendix.

3.2.1 Preliminaries

Denote in the following V := [R] × [T ]2. Let ψl(x1, . . . , xR) := P
(∑

s∈[R] sXs ≥ l
)

for in-

dependent Poisson random variables Xs ∼ Poi(xs), s ∈ [R]. In the following, the functions
f r,α,β : RV+,0 → R, (r, α, β) ∈ V , and g : RV+,0 → R+,0 will play a central role. They are given by

f r,α,β(z) = E

[
W+,r,αψC

( ∑
γ∈[T ]

W−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]
− zr,α,β,

g(z) =
∑
β∈[T ]

E

[
SψC

( ∑
γ∈[T ]

W−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]

We begin by investigating some basic but important properties of these functions.

Lemma 3.2.1. The functions f r,α,β(z), (r, α, β) ∈ V , and g(z) are continuous at all z ∈ RV+,0.

Further, each function f r,α,β(z) is monotonically increasing in all of its coordinates except zr,α,β.

Proof. Continuity follows from Lebesgue’s dominated convergence theorem noting that the in-
tegrands are continuous in z and bounded by the integrable random variables W+,r,α resp. S.
Monotonicity of f r,α,β follows directly from the monotonicity of the Poisson-probabilities.

Let now P :=
⋂

(r,α,β)∈V {z ∈ RV+,0 : f r,α,β(z) ≥ 0}. Since f r,α,β(z) < 0 for any z ∈ RV+,0
with zr,α,β > E[W+,r,α1{A = β}] and P is an intersection of closed sets, P is in fact compact.
Note that clearly 0 ∈ P . In general P might consist of several disjoint, compact, connected
components. Let in the following P0 denote the component (i. e. the largest connected subset)
of P containing 0. Since P is a compact subset of RV+,0, so is P0. Define now z∗ ∈ RV+,0 by
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Figure 3.2: Plot of the root sets of the functions f1(z1, z2) (blue) and f2(z1, z2) (orange) for
two different example networks.

(z∗)r,α,β := supz∈P0
zr,α,β. The following lemma shows that in fact z∗ ∈ P0 and it can hence be

thought of as the maximal point of P0. Further it identifies z∗ as a joint root of all the functions
f r,α,β, (r, α, β) ∈ V , and shows the existence of a smallest joint root ẑ. It will turn out later
(see in particular Theorem 3.2.4) that the final systemic damage n−1Sn is intimately related to
these two (typically coinciding) joint roots of the functions f r,α,β, (r, α, β) ∈ V .

Lemma 3.2.2. There exists a smallest joint root ẑ ∈ RV+,0 of all functions f r,α,β, (r, α, β) ∈ V ,

in the sense that ẑ ≤ z̄ componentwise for all joint roots z̄ ∈ RV+,0. Further, z∗ as defined above

is a joint root of the functions f r,α,β, (r, α, β) ∈ V , and both ẑ ∈ P0 and z∗ ∈ P0.

The lemma identifies z∗ as the maximal joint root of f r,α,β, (r, α, β) ∈ V , in P0. However, if
P0 ( P , then there will exist joint roots z̃ 6∈ P0 such that z∗ � z̃.

Often ẑ and z∗ will coincide and then Theorem 3.2.4 below will show that the final systemic
damage n−1Sn converges to g(ẑ) in probability. But in some pathological situations this is not
the case and Theorem 3.2.4 will yield a lower bound on n−1Sn in terms of ẑ and an upper
bound in terms of z∗. Figures 3.2(a) and 3.2(b) show two-dimensional examples of f . In both
examples, we chose R = 2 and T = 1. In the first example, we further chose all weights to be 1
and the capital of each bank to be 3 with probability 80% respectively 0 with probability 20%.
The functions f1(z1, z2) := f1,1,1(z1, z2) and f2(z1, z2) := f2,1,1(z1, z2), where z1 := z1,1,1 and
z2 := z2,1,1, then have a unique joint root, i. e. ẑ = z∗. In the second example, we chose all
weights to be 2 and the capital of each bank to be 3 with probability ≈ 94.14% respectively 0
with probability ≈ 5.86%. In this case, there exist two distinct joint roots ẑ 6= z∗ in P0. At ẑ,
the root sets of f1 and f2 do not cross each other but only touch.

The next lemma provides two sufficient criteria to check if a joint root, such as ẑ, equals
z∗. These depend on the (weak) directional derivatives of f r,α,β, (r, α, β) ∈ V , and are hence
natural extensions of the stable fixed point assumption in previous literature such as [8, 54] and
Chapter 2.

Lemma 3.2.3. If z̄ ∈ P0 is a joint root of the functions f r,α,β, (r, α, β) ∈ V , then z̄ = z∗ if
one of the following holds:

(a) There exists v ∈ RV+ such that for all (r, α, β) ∈ V the directional derivatives Dvf
r,α,β(z̄)

exist and Dvf
r,α,β(z̄) < 0.
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(b) There exist v ∈ RV+, κ < 1 and ∆ > 0 such that for every δ ∈ (0,∆),

κvr,α,β ≥
∑
r′∈[R]

E

[
W+,r,α

( ∑
β′∈[T ]

vr
′,β,β′W−,r

′,β′

)
1{A = β}

× P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γ
(
z̄s,β,γ + δvs,β,γ

))
∈ {C − r′, . . . , C − 1}

)]
.

3.2.2 The Main Result for the Final Systemic Damage

We now provide an asymptotic formula for the final systemic damage n−1Sn in terms of function
g and the joint roots ẑ and z∗.

Theorem 3.2.4. Consider a financial system described by a regular vertex sequence and let ẑ
and z∗ be the smallest respectively largest joint root in P0 of the functions f r,α,β, (r, α, β) ∈ V .
Then

g(ẑ) + op(1) ≤ n−1Sn ≤ g(z∗) + op(1).

In particular, if ẑ = z∗, then n−1Sn
p→ g(ẑ) as n→∞.

Note that for the case R = T = 1, Theorem 3.2.4 extends [54, Theorem 7.2] by an upper bound
even if the requirements for the second part there are not satisfied. Also we do not require
continuous differentiability of f1,1,1(z1,1,1) in a neighborhood of (z∗)1,1,1 as in Theorem 2.1.6.

Remark 3.2.5. Theorem 3.2.4 determines ng(ẑ) as a lower bound on the damage caused by
finally defaulted banks in the network. In fact, g(z) is given by a sum over all the different
types β ∈ [T ] in the network and it is thus no surprise that by small changes in the proofs
of Theorems 3.7.3 and 3.2.4, one derives that the damage caused by finally defaulted banks of
type β is lower bounded by

nE

[
SP

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γ ẑs,β,γ

)
≥ C

)
1{A = β}

]
+ op(n).

The same reasoning allows to derive an upper bound in terms of z∗.

3.3 Resilient and Non-resilient Networks

In the previous section, we derived results that allow us to determine the typical final default
fraction in large financial systems caused by an exogenous shock. Another important question
from a regulator’s point of view that we study in this section is whether a given system in an
initially unshocked state is likely to be resilient to small shocks or susceptible to default cascades.

Note that for some fixed financial network (W−,W+, S, C,A) all information about the
initial shock stems from C and by “initially unshocked” we mean that ci > 0 for all i ∈ [n]. We
model small shocks to the system by an ex post infection in the following sense: we introduce
indicators mi ∈ {0, 1}, i ∈ [n], with the meaning that (the initially solvent) bank i becomes
insolvent if mi = 0. This amounts to setting its capital to cimi. In analogy to Definition 3.1.2
we assume regularity of {mi}i∈[n] (jointly with the rest of the parameters) and we denote by M
the limiting random variable of ex post infection. In particular, the financial system shall be
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Figure 3.3: Plot of the root sets of the functions f1(z1, z2) (blue) and f2(z1, z2) (orange) for
a financial system satisfying the condition in Theorem 3.3.2. Solid: the unshocked functions.
Dashed: the shocked functions.

described by the random vector (W−,W+, S, C,A,M) with P(C = 0) = 0 and P(M = 0) > 0.
Denote by DMn the random final default set that M triggers, by SMn =

∑
i∈Dn si the final

systemic damage, and by (fM )r,α,β, gM and (z∗)M the analogues of f r,α,β, g respectively z∗

with C replaced by CM .
From a regulator’s point of view a desirable property of a financial system is the ability to

absorb small local shocks M without larger systemically important parts of the system being
harmed. In our asymptotic setting, we can even choose M arbitrarily small and we call a
system resilient if the relative final damage n−1SMn tends to 0 as P(M = 0) → 0. If on the
other hand n−1SMn is lower bounded by some positive constant, we call the system non-resilient
(see Definition 3.3.3 below).

Definition 3.3.1 (Resilience). A financial system is said to be resilient if for each ε > 0 there
exists δ > 0 such that for all M with P(M = 0) < δ it holds n−1SMn ≤ ε w. h. p.

It will turn out that the resilience of the system strongly depends on the form of the set P0

which was introduced in Subsection 3.2.1. Our first result is a criterion guaranteeing resilience.

Theorem 3.3.2 (Resilience Criterion). Consider a financial system described by a regular vertex
sequence and assume that P0 = {0}. Then the system is resilient.

In particular for R = T = 1, resilience is ensured if 0 = inf{z > 0 : f1,1,1(z) < 0}. Theo-
rem 3.3.2 therefore extends [54, Theorem 2.7]. Moreover, by Lemma 3.2.3, if for some v ∈ RV+,
Dvf

r,α,β(0) exists and is negative for each (r, α, β) ∈ V , then P0 = {0} and Theorem 3.3.2 is
applicable.

Figure 3.3 shows a two-dimensional example satisfying the condition in Theorem 3.3.2. We
chose R = 2, T = 1, W±,1 = W±,2 = 1 and C = 3. It can be seen from the figure that
small shocks (here 5% of all banks) do only cause small jumps of the smallest joint root of
f1(z1, z2) = f1,1,1(z1, z2) and f2(z1, z2) = f2,1,1(z1, z2), where z1 := z1,1,1 and z2 := z2,1,1.

On the other hand, concerning the characterization of non-resilient networks, a difficulty that
arises is that the ex post shock M possibly targets only certain subnetworks. More precisely, if
Ṽ := {(r, α, β) ∈ V : E[W+,r,α1{A = β}] > 0}, then it is still possible that for (r, α, β) ∈ Ṽ it
holds E[W+,r,α1{A = β}1{M = 0}] = 0. Consider for example a financial network consisting
of banks of two types which are isolated of each other. Further, one of the two subnetworks



3.3. Resilient and Non-resilient Networks 53

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

z
1

z
2

P0

z
*

Figure 3.4: Plot of the root sets of the functions f1(z1, z2) (blue) and f2(z1, z2) (orange) for a
financial system with P0 6= {0}. Solid: the unshocked functions. Dashed: the shocked functions.

shall be resilient, whereas the other one is non-resilient (in the sense of Definition 3.3.3 (b)). In
order for the whole system to experience large damage, it is then necessary that M does not
only infect banks in the resilient subsystem but also in the non-resilient one. This explains why
we have to differentiate between different choices for M in the following to fully understand
non-resilience in our model.

Definition 3.3.3 (Non-resilience). (a) Let I ⊆ Ṽ . A financial system is called non-resilient
with respect to shocks on I if there exists a constant ∆I > 0 such that n−1SMn ≥ ∆I

w. h. p. for each shock M with E[W+,r,α1{A = β}1{M = 0}] > 0 for all (r, α, β) ∈ I.

(b) We call a financial system non-resilient if it is non-resilient w. r. t. shocks on some I ⊆ Ṽ .

Clearly a system is non-resilient if and only if it is non-resilient w. r. t. shocks on Ṽ .
Let us start by considering the special case that M infects every part of the system (i. e. a

shock on Ṽ ). This is the case for example if M is independent of type A, vertex-weights W±,r,α

and capital C. We can then formulate a corollary of Theorem 3.3.6 following later:

Corollary 3.3.4. Consider a financial system described by a regular vertex sequence and any
ex post infection M with E[W+,r,α1{A = β}1{M = 0}] > 0 for all (r, α, β) ∈ Ṽ . Then for any
ε > 0 w. h. p. n−1SMn ≥ g(z∗)− ε. If g(z∗) > 0, then the system is non-resilient.

Recall from Theorem 3.3.2 that a financial system is resilient if P0 = {0}. For most practical
purposes (e. g. P(S > 0) = 1) it will hold that g(z∗) > 0 if P0 ) {0} and hence z∗ 6= 0. Theorem
3.3.2 and Corollary 3.3.4 then completely characterize resilience of a financial system in terms
of P0.

See Figure 3.4 for an example where P0 6= {0}. In this example, we chose R = 2, T = 1,
weights W±,1 = W±,2 = 3/2 and capital C = 2. The figure shows the jump of the smallest
joint root from 0 to above z∗ for any small shock (here 10% of all banks).

We now aim to describe non-resilience with respect to shocks on I ( Ṽ . That is, we
consider shocks M such that E [W+,r,α1{A = β}1{M = 0}] > 0 for (r, α, β) ∈ I but possibly
E [W+,r,α1{A = β}1{M = 0}] = 0 for (r, α, β) ∈ Ṽ \I. To this end, denote

T (I) :=
⋂

(r1,α1,β1)∈I

{
z ∈ RV+,0 : f r1,α1,β1(z) < 0

}
∩

⋂
(r2,α2,β2)∈Ṽ \I

{
z ∈ RV+,0 : f r2,α2,β2(z) ≤ 0

}
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and define z0(I) by zr,α,β0 (I) := infz∈T (I) z
r,α,β. Lemma 3.3.5 shows that z0(I) is the smallest

joint root of f r,α,β , (r, α, β) ∈ V , that is stable with respect to shocks in the I-coordinates.

Lemma 3.3.5. It holds z0(I) ∈ P0 ∩ T (I) and it is thus a joint root of f r,α,β, (r, α, β) ∈ V .

We can state a general theorem for non-resilience in terms of z0(I), where I denotes the set of
coordinates impacted by M .

Theorem 3.3.6 (Non-resilience Criterion). Consider a financial system described by a regular
vertex sequence and any ex post infection M with E[W+,r,α1{A = β}1{M = 0}] > 0 for all
(r, α, β) ∈ I, where ∅ 6= I ⊆ Ṽ . Then for any ε > 0 it holds w. h. p. n−1SMn ≥ g(z0(I)) − ε. If
g(z0(I)) > 0, then the system is non-resilient with respect to shocks on I.

As before, usually (e. g. if P(S > 0) = 1) it will hold that g(z0(I)) > 0 whenever z0(I) 6= 0.
By Theorem 3.3.6 we derive for shocks on Ṽ that for any ε > 0 w. h. p. n−1SMn ≥ g(z0(Ṽ ))−ε

while in Corollary 3.3.4 we claimed n−1SMn ≥ g(z∗)− ε w. h. p. By the following lemma the two
are in fact equivalent.

Lemma 3.3.7. It holds z0(Ṽ ) = z∗.

The identity z0(I) = z∗ on the other hand does not necessarily imply I = Ṽ .

3.4 Systemic Capital Requirements

In this section, we apply the asymptotic theory developed in the previous sections in order to
determine sufficient capital requirements ensuring resilience of a multi-type financial network
to small initial shocks. This goes one step further than the resilience criterion from Theorem
3.3.2, enabling a regulator to actively manage the system’s stability. In fact, in Subsection 3.4.1,
we derive a whole family of different capital requirements parametrized by a vector v ∈ RV+.
Thus, in Subsection 3.4.2, we further provide an interpretation of v and we demonstrate how
for different stress scenarios, amplification due to contagion effects can be controlled by means
of our derived capitals.

3.4.1 A Family of Capital Requirements

By Theorem 3.3.2 and Lemma 3.2.3, for resilience of an a priori unshocked system it is sufficient
that the directional derivative Dvf

r,α,β(0) < 0 for all (r, α, β) ∈ V and some direction v ∈ RV+.
It is thus the aim of this subsection to construct capitals ci(v), i ∈ [n], for any given v ∈ RV+,
such that Dvf

r,α,β(0) exists and satisfies above condition.
In analogy to Chapter 2, for an institution i ∈ [n] of type αi = β, we choose the following

form for the capital:

ci(v) = max

{
R+ 1,

⌈
µβ
(
ei(v)

‖v‖

)νβ⌉}
, (3.4.1)

where {µβ}β∈[T ] ⊂ R+, {νβ}β∈[T ] ⊂ R+,0 and

ei(v) :=
∑
s∈[R]

s
∑
γ∈[T ]

w−,s,γi vs,β,γ

can be thought of as the total exposure of i weighted according to v. Taking the maximum
with R + 1 in (3.4.1) ensures that i does not have any contagious links to other institutions.
If W−,R,γ

∣∣
A=β

= 0 for all γ ∈ [T ] and institutions of type β thus do not have any R-edges
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(in the limit of large systems), then one could decrease this lower bound on ci(v) accordingly.
Moreover, as ei(v) linearly depends on v, it makes sense to normalize it in (3.4.1). By this
choice only the direction of v is important and µβ can be chosen independently of v in the
following. Finally, assume that the uncapitalized system is a regular vertex sequence according
to Definition 3.1.2 with limiting weights W±,r,α and limiting vertex type A. Denote the limiting
random variable of {ei(v)}i∈[n] by

E(v) =
∑
β∈[T ]

1{A = β}
∑
s∈[R]

s
∑
γ∈[T ]

W−,s,γvs,β,γ

and assume that also the limiting random variable of {ci(v)}i∈[n] exists and satisfies

C(v) =
∑
β∈[T ]

1{A = β}max

{
R+ 1,

⌈
µβ
(
E(v)

‖v‖

)νβ⌉}
a. s.,

which is true at least for absolutely continuously distributed in-weights (cf. Subsection 2.2.2).
Note, however, that also for more general distributions we can proceed similarly and derive
analogue results as in the following.

We can then describe the behavior of f r,α,β(z) near 0.

Proposition 3.4.1. For νβ ≥ 1, it holds

Dvf
r,α,β(0) = lim

h→0+
h−1f r,α,β(hv) = −vr,α,β.

For νβ < 1, it holds

lim sup
h→0+

h−1f r,α,β(hv) ≤ ‖v‖ lim sup
h→0+

h−1E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]
− vr,α,β,

and

lim inf
h→0+

h−1f r,α,β(hv) ≥ ‖v‖ lim inf
h→0+

h−1E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]
− vr,α,β.

We can then immediately conclude that the financial system becomes resilient if νβ ≥ 1 for all
β ∈ [T ] (also see Corollary 3.4.3). For νβ < 1, however, more work is needed and in particular
the choice of µβ becomes important. Note that analogue to Lemma 3.2.3 it is sufficient to
assume lim suph→0+ h

−1f r,α,β(hv) < 0 to ensure that z∗ = 0 and the system to be resilient.
We could therefore work with upper bounds throughout all of this section. For a more concise
presentation and a notion of sharpness regarding the capital requirements, however, we make
the following exact assumption on the distribution tails of W+,r,α

∣∣
A=β

and E(v)
∣∣
A=β

:

uk
+,r,α,β−1

(
1− FW+,r,α|A=β

(u)
)
→
(
w+,r,α,β
min

)k+,r,α,β−1
, as u→∞

for some constants k+,r,α,β > 2 and w+,r,α,β
min ∈ R+, respectively

uk
−,β−1

(
1− FE(v)|A=β

(u)
)
→
(
eβmin(v)

)k−,β−1
, as u→∞
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for some constants k−,β > 2 and eβmin(v) ∈ R+. That is W+,r,α
∣∣
A=β

and E(v)
∣∣
A=β

resemble

Pareto distributions in the tail. Moreover, for the dependence structure (i. e. the copula) of the
two random variables we make the assumption that

Λr,α,β(x) = P(A = β)−1 lim
p→0

P
(
FW+,r,α|A=β

(W+,r,α) > 1− xp
∣∣∣ FE(v)|A=β

(E(v)) > 1− p,A = β
)

exists for all x ≥ 0. Denote now

νr,α,βc := 2 +
k−,β − 1

k+,r,α,β − 1
− k−,β

and

µr,α,βc := ‖v‖ν
β
c P(A = β)

(
eβmin(v)

)1−νβc w+,r,α,β
min

∫∞
0 Λr,α,β(x1−k

+,r,α,β
) dx

vr,α,β
.

Then for each function f r,α,β, the values νr,α,βc and µr,α,βc correspond to γc resp. αc from Sub-
section 2.2.2. In particular, the following holds:

Proposition 3.4.2. Under above assumptions, the directional derivative of f r,α,β in direction
v is given by

Dvf
r,α,β(0) =


∞, if νβ < νβc ,(
µr,α,βc

µβ
− 1
)
vr,α,β, if νβ = νr,α,βc ,

−vr,α,β, if νβ > νr,α,βc .

Then as hinted at above using Theorem 3.3.2 and Lemma 3.2.3 we derive the following criterion
for resilience.

Corollary 3.4.3. The system is resilient for a certain choice of v ∈ RV+ and capitals as above
if for all (r, α, β) ∈ V one of the following holds

1. νβ > νr,α,βc ,

2. νβ = νr,α,βc and µβ > µr,α,βc .

Analogue to Lemma 3.2.3, we also derive that z∗ 6= 0 if there exists v ∈ RV+ such that for all
(r, α, β) ∈ V the directional derivative Dvf

r,α,β(0) exists and Dvf
r,α,β(0) > 0. Together with

Corollary 3.3.4 we then derive the following criterion for non-resilience.

Corollary 3.4.4. Let P(S > 0) = 1. Then the system is non-resilient for a certain choice of
v ∈ RV+ and capitals as above if for all (r, α, β) ∈ V one of the following holds

1. νβ < νr,α,βc ,

2. νβ = νr,α,βc and µβ < µr,α,βc .

To construct a resilient system by capitals of the form (3.4.1) we thus choose

νβ ≥ νβc := max
r∈[R],α∈[T ]

νr,α,βc

and µβ > 0 arbitrary if νβ > νβc respectively

µβ > µβc := max
{
µr,α,βc : (r, α) ∈ [R]× [T ] such that νr,α,βc = νβ

}
if νr,α,βc = νβ for some (r, α) ∈ [R]× [T ].
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Remark 3.4.5. Assume that νβ = νr,α,βc > 0 for all (r, α, β) ∈ V (in particular νr,α,βc ≥ 0).

Moreover, suppose that for a certain choice of v ∈ RV+ we find (s, γ, δ) ∈ V such that µs,γ,δc < µδc.
We can then decrease the coordinate vs,γ,δ to

ṽs,γ,δ =
w+,s,γ,δ
min

∫∞
0 Λ

(
x1−k

+,s,γ,δ)
dx

maxr∈[R],α∈[T ] (vr,α,δ)
−1
w+,r,α,δ
min

∫∞
0 Λ

(
x1−k+,r,α,δ

)
dx

< vs,γ,δ

and leaving all other coordinates unchanged this leads to new critical values µ̃βc < µβc , β ∈ [T ],

(while clearly νβc stays the same). That is, the capital requirements for each individual institu-
tion in the system can be lowered as compared to the initial choice v.

It is thus favorable to choose v such that µr,α,βc = µβc for all (r, α, β) ∈ V or equivalently

vr,α,β = κβw+,r,α,β
min

∫ ∞
0

Λr,α,β
(
x1−k

+,r,α,β
)

dx

for {κβ}β∈[T ] ⊂ R+. The family {κβ}β∈[T ] can then be understood as a choice by the regulator
which loans (i. e. the debtors of which subsystems β) to regulate more than others.

3.4.2 Interpreting Direction v

In the previous subsection, we have constructed capitals parametrized by some arbitrarily chosen
vector v ∈ RV+ that ensure resilience of a given financial system as Dvf

r,α,β(0) < 0 for all
(r, α, β) ∈ V . The proofs, however, do not convey any intuition about the direction v.

In this subsection, we therefore change our point of view on v and interpret it as a specific
stress scenario for the financial system. This perspective allows us to secure the system against
any anticipated shock and at this in particular to ensure that amplification does not exceed a
certain arbitrarily chosen factor.

Recall from Section 3.3 the notion of an ex post shock and consider a family of ex post
shocks {Mε}ε>0 such that

E
[
W+,r,α1{A = β}1{Mε = 0}

]
= εvr,α,β + o(ε) (3.4.2)

for some v ∈ RV+. If for example each institution defaults ex post with probability ε and
independent of its parameters, then

E
[
W+,r,α1{A = β}1{Mε = 0}

]
= εE

[
W+,r,α1{A = β}

]
and v = ζ, where ζr,α,β = E[W+,r,α1{A = β}] (if ζr,α,β = 0 for some (r, α, β) ∈ V , we leave
out the corresponding coordinate in the following). If, however, an institution of type β ∈ [T ]
defaults ex post with probability εηβ for a family {ηβ}β∈[T ] ⊂ R+ and independent of all other

parameters, then vr,α,β = ηβζr,α,β. While shocks of this type already provide a rich basis of
different stress scenarios, other shocks Mε, targeting institutions according to their weights, are
also feasible as long as they satisfy (3.4.2) for some v ∈ RV+.

The vector v then describes how different parts of the financial system are affected by the
initial shock. More precisely, by Corollary 3.1.3 and (3.4.2) one finds

nE[W+,r,α1{A = β}1{Mε = 0}]E[W−,r,β1{A = α}] + o(n) = nE[W−,r,β1{A = α}]εvr,α,β + o(n)
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for the number of r-edges from initially defaulted β-institutions to α-institutions. Thus

τβ :=
∑
r∈[R]

r
∑
α∈[T ]

E[W−,r,β1{A = α}]εvr,α,β (3.4.3)

can asymptotically be identified as the total monetary damage (not to be confused with the
systemic damage according to their systemic importance values) that initially defaulted insti-
tutions of type β cause to all the institutions in the system (as always in this thesis under the
assumption of zero recovery rate).

We now want to construct capitals ci(v) such that this initial damage is amplified by some
prescribed amplification factor B ≥ 1 at most. Note that analogue to (3.4.3) and using Theorem
3.2.4 the final damage is upper bounded (and typically precisely given) by∑

r∈[R]

r
∑
α∈[T ]

E[W−,r,β1{A = α}](z∗ε )r,α,β,

where z∗ε denotes the equivalent of z∗ for the shocked system and the proof of Theorem 3.2.4
shows that (z∗ε )r,α,β asymptotically equals the total (r, α)-out-weights of all finally defaulted
β-institutions divided by n.

Our goal can then be achieved in the spirit of the previous subsection choosing v from (3.4.2)

for ci(v) in (3.4.1) and letting νβ ≥ νβc and µβ ≥ µβc /(1 − B−1) for some B > 1 that can be
considered the maximal amplification factor according to the following result.

Theorem 3.4.6. With the above described capitals, the final damage in the system caused by
β-institutions is upper bounded by Bτβ asymptotically as ε→ 0.

Note that any choice for v ∈ RV+ would make the financial system resilient to any initial shock
by Corollary 3.4.3. Whereas resilience according to Definition 3.3.1 is to be understood in an
asymptotic sense with amplification factors not being relevant, however, for practical purposes
the notion of an amplification factor is very desirable. Albeit still in an asymptotic sense, using
Theorem 3.4.6 this can be achieved when calibrating v to the anticipated shock according to
(3.4.2). Finally note that different amplification factors Bβ for the different subsystems of type
β ∈ [T ] can be achieved by the same means as in Theorem 3.4.6 but choosing capitals ci(ṽ)
with

ṽr,α,β = Bβvr,α,β

and µβ ≥ µβc /(1− (Bβ)−1).

3.5 A Multi-type Exposure Model

So far, in this chapter we have proposed and analyzed a model for default contagion that can
be seen as a multi-variate version of the threshold model from Subsection 2.1.2 accounting
for multiple institution-types and allowing for assortative edge-weights regarding these types.
While it is possible to interpret these edge-weights as exposures between institutions directly, a
reasonable model for a financial network would certainly require a very large parameter R and
the model would thus become very high-dimensional. In this section, we therefore propose an
alternative model combining the ideas from this chapter so far with the exposure model from
Chapter 2.

In addition to all the previous model parameters, we thus assign to each institution i ∈ [n] an
exchangeable sequence of almost surely positive random variables {Ej,ri }j∈[n]\{i},r∈[R] ⊂ L0(R+)
that we interpret as possible exposures of i. Note that compared to Chapter 2 we consider not
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one but R possible exposures for every pair (i, j). This allows us to interpret the edge-weight
from Subsection 3.1.2 as a multiplier in the following sense:

Let as before Xr
i,j be the indicator random variable of an r-weighted edge going from in-

stitution i to j. As
∑

r∈[R]X
r
i,j ∈ {0, 1}, we can thus denote the edge-weight between i and j

by r(i, j) with r(i, j) = 0 if
∑

r∈[R]X
r
i,j = 0, or such that X

r(i,j)
i,j = 1 otherwise. Let then the

exposure ei,j be defined by

ei,j :=
∑

1≤s≤r(i,j)

Ei,sj ,

i. e. as the sum over the first r(i, j) possible exposures from the list {Ei,rj }r∈[R]. In particular,
ei,j = 0 if there is no edge going from i to j.

Moreover, we can allow for more freedom in the choice of the capitals ci, i ∈ [n]. Instead of
deterministic integer values we consider ci ∈ L0(R+,0,∞) in the following. We then define for
each institution i ∈ [n] the random threshold value qi similar as in Chapter 2,

qi := inf

q ∈ {0} ∪ [(n− 1)R] :
∑

1≤s≤q
Esi ≥ ci

 ,

where {Esi }s∈[(n−1)R] shall be an arbitrary (but fixed) enumeration of the set of random variables

{Ej,ri }j∈[n]\{i},r∈[R] and inf ∅ =∞ by convention. By exchangeability the distribution of qi does
not depend on the choice of the enumeration. We now adjust Definition 3.1.2 to this new setting:

Assumption 3.5.1. Consider a sequence (w−(n),w+(n), s(n), q(n),α(n)) of financial sys-
tems, where for n ∈ N as before w−(n) = (w−i (n))i∈[n], w

+(n) = (w+
i (n))i∈[n], s(n) = (si)i∈[n],

α(n) = (αi(n))i∈[n] and additionally q(n) = (qi)i∈[n]. For each n, we denote the random empir-
ical distribution function by

Gn(x,y, v, l,m) = n−1
∑
i∈[n]

∏
r∈[R],α∈[T ]

1
{
w−,r,αi ≤ xr,α, w+,r,α

i ≤ yr,α
}

1{si ≤ v, qi ≤ l, αi ≤ m},

for (x,y, v, l,m) ∈ U := R[R]×[T ]
+,0 ×R[R]×[T ]

+,0 ×R+,0×N0,∞× [T ]. Then we assume the following:

1. Almost sure convergence in distribution: There exists a deterministic distribution
function G on U such that all points (x,y, v, l,m) for which Gl,m(x,y, v) := G(x,y, v, l,m)
is continuous in (x,y, v), it holds almost surely limn→∞Gn(x,y, v, l,m) = G(x,y, v, l,m).
Denote by (W−,W+, S,Q,A) a random vector distributed according to G.

2. Convergence of average weights and systemic importance: The random variables
W±,r,α, (r, α) ∈ [R]× [T ], and S are integrable and

∫
U x

r,αdG(x,y, v, l,m)→ E[W−,r,α],∫
U y

r,αdG(x,y, v, l,m)→ E[W+,r,α] as well as
∫
U v dG(x,y, v, l,m)→ E[S] as n→∞.

We can then define the analogues of f r,α,β and g from Section 3.2 for the new setting by

f r,α,βQ (z) = E

[
W+,r,αψQ

( ∑
γ∈[T ]

W−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]
− zr,α,β,

gQ(z) =
∑
β∈[T ]

E

[
SψQ

( ∑
γ∈[T ]

W−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]
,

where as before ψl(x1, . . . , xR) := P
(∑

s∈[R] sXs ≥ l
)

for independent Poisson random variables
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Xs ∼ Poi(xs), s ∈ [R]. Clearly all results from Section 3.2 directly transfer to the new functions

f r,α,βQ and gQ. In particular, denote the analogues of ẑ and z∗ by ẑQ resp. z∗Q. Then we derive
the following generalization of Theorem 3.2.4.

Theorem 3.5.2. Consider a financial system satisfying Assumption 3.5.1 and let ẑQ, z∗Q as
described above. Then for the final systemic damage due to default contagion Sn it holds

gQ(ẑQ) + op(1) ≤ n−1Sn ≤ gQ(z∗Q) + op(1).

In particular, if ẑQ = z∗Q, then n−1Sn
p→ gQ(ẑQ) as n→∞.

By the same means as in Section 3.3 but applying Theorem 3.5.2 instead of Theorem 3.2.4,
we then derive the following characterizations of resilient (according to Definition 3.3.1) and
non-resilient (according to Definition 3.3.3) financial systems. To this end, we consider an ex
post infection that is described by the limiting random variable M ∈ {0, 1} (extend Assumption
3.5.1). In particular, note that it makes no difference if we apply the ex post shock on the capital
ci or the threshold qi.

Corollary 3.5.3. Consider a financial system satisfying Assumption 3.5.1 that is a priori
unshocked in the sense that P(Q = 0) = 0. If z∗Q = 0, then the system is resilient.

Corollary 3.5.4. Consider a financial system satisfying Assumption 3.5.1 that is a priori
unshocked in the sense that P(Q = 0) = 0. Moreover, let the ex post shock M be such that
E[W+,r,α1{A = β}1{M = 0}] > 0 for all (r, α, β) ∈ V such that E[W+,r,α1{A = β}] > 0. Then
for any ε > 0 w. h. p. n−1SMn ≥ g(z∗)− ε. If g(z∗) > 0, then the system is non-resilient.

In Corollary 3.5.4 we consider shocks that infect every possible part of the system. In the same
way also shocks on subsystems only can be considered as a corollary of Theorem 3.3.6.

Finally, we can also derive capital requirements for the multi-type exposure model similar as
in Subsection 2.2.3 but using Corollary 3.4.3. To this end, denote for i ∈ [n] by {Esi }s∈[(n−1)R]

an enumeration of i’s exposure list, by λi <∞ their mutual mean and Sik =
∑k

j=1E
j
i . Moreover,

assume that there exists t > 1 such that for all ε > 0 and uniformly for all i ∈ [n] it holds

kt−1P
(
Sik ≥ (1 + ε)kλi

)
→ 0, as k →∞,

and for all x > 1,
ktx−1P

(
Sik ≥ ελikx

)
→ 0, as k →∞.

Corollary 3.5.5. Fix some direction v ∈ RV+,0 and let νr,α,βc and µr,α,βc be as in Section 3.4.
Consider then the setting described above and assume that

ci > max

{∑
s∈S

Esi : |S| = R

}

as well as

ci ≥ λiµβ
(∑

s∈[R] s
∑

γ∈[T ]w
−,s,γ
i vs,β,γ

‖v‖

)νβ
, if αi = β,

for every i ∈ [n], where {νβ}β∈[T ] ⊂ R+,0 and {µβ}β∈[T ] ⊂ R+. Then the system is resilient if
for all (r, α, β) ∈ V one of the following holds

1. νβ > νr,α,βc ,

2. νβ = νr,α,βc > 0 and µβ > µr,α,βc .
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3.6 Applications

The theory developed in the previous sections allows to investigate many interesting novel
settings as compared to previous literature. In this section, we discuss some of them and
highlight their implications. Further, we demonstrate the applicability of our asymptotic results
also for finite networks of reasonable size by numerical simulations. To make the notion of non-
resilience easier accessible we consider the case of si = 1 for all i ∈ [n] and hence Sn = |Dn|
throughout this subsection. Generalizations under mild assumptions on S are straight-forward.

In the first example, we investigate the influence of a non-resilient subsystem in a global
system. Unsurprisingly the global system turns out to be non-resilient as well and we can further
show that even resilient network parts become non-resilient by their connections to the non-
resilient subsystem, i. e. every howsoever small infection that occurs only within the resilient
part of the system finally spreads to a lower bounded fraction of the resilient subsystem.

Example 3.6.1. For simplicity assume R = 1 and denote zα,β := z1,α,β, fα,β(z) := f1,α,β(z)
and W±,α := W±,1,α in the following. Consider then a 1-type banking system, described by the
random vector (W̃−, W̃+, C̃), where P(W̃+ > 0) = 1 and P(C̃ = 0) = 0, and assume that it is
non-resilient. In the 1-dimensional case this breaks down to the existence of z̃0 > 0 such that

f̃(z) := E
[
W̃+P

(
Poi

(
W̃−z

)
≥ C̃

)]
− z ≥ 0, for all z ∈ [0, z̃0].

Now introduce a second (possibly resilient) subsystem to the network. That is, the system is
now described by the random vector (W±,1,W±,2, C,A), where P(C = 0) = 0, A ∈ {1, 2} and
αi = 1 means that bank i ∈ [n] is in the non-resilient subsystem, whereas αi = 2 means that i
is part of the second subsystem. In order for the characteristics of the non-resilient subsystem

to be preserved, we require that W−,1|A=1
d
= W̃−, W+,1|A=1

d
= W̃+/P(A = 1) (to account for

the changed number of banks; due to the multiplicative form in (3.1.1) it is sufficient to adjust

either in- or out-weights by P(A = 1)) and C|A=1
d
= C̃. We derive that

f1,1(z) = E
[
W+,1P

(
Poi

(
W−,1z1,1 +W−,2z1,2

)
≥ C

)
1{A = 1}

]
− z1,1 ≥ f̃

(
z1,1
)
≥ 0

for all z = (z1,1, z1,2, z2,1, z2,2) with z1,1 ∈ [0, z̃0] and in particular z1,10 (I) ≥ z̃0 > 0, where
I := {(1, 1)}. An application of Theorem 3.3.6 then yields that the fraction of finally defaulted
banks in the network is lower bounded by

g(z0(I)) = E
[
P
(

Poi
(
W−,1z1,10 (I) +W−,2z1,20 (I)

)
≥ C

)
1{A = 1}

]
+ E

[
P
(

Poi
(
W−,1z2,10 (I) +W−,2z2,20 (I)

)
≥ C

)
1{A = 2}

]
w. h. p. for any ex post infection M satisfying P(M = 0, A = 1) > 0 (i. e. infecting some banks in
the non-resilient subsystem). That is, if a small fraction of banks in the non-resilient subsystem
defaults due to an external shock event, then this infection spreads to the whole system and the
fraction of finally defaulted banks in the second subsystem is w. h. p. lower bounded by

E
[
P
(

Poi
(
W−,1z2,10 (I) +W−,2z2,20 (I)

)
≥ C

) ∣∣∣ A = 2
]
. (3.6.1)

In fact, if we assume that W+,2|A=1 > 0 almost surely and P(W−,1 > 0, C < ∞, A = 2) > 0
(that is, there are some banks in the second subsystem lending to banks in the non-resilient
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subsystem), then it must hold that

z2,10 (I) ≥ E
[
W+,2P

(
Poi

(
W−,1z1,10 (I)

)
≥ C

)
1{A = 1}

]
> 0

and hence the lower bound (3.6.1) is strictly positive. That is, every howsoever small infected
fraction in the non-resilient subsystem spreads to a lower bounded fraction of finally defaulted
banks in the second subsystem as well.

Now finally assume that W+,1|A=2 > 0 almost surely and P(W−,2 > 0, C < ∞, A = 1) > 0
(that is, there are some banks in the non-resilient subsystem lending to banks in the second
subsystem). By considering the function

f1,2(z) = E
[
W+,1P

(
Poi

(
W−,1z2,1 +W−,2z2,2

)
≥ CM

)
1{A = 2}

]
− z1,2,

we derive that (ẑM )1,2 > 0 for any ex post infection M such that P(M = 0, A = 2) > 0 (that is,
infecting some banks in the second subsystem) and hence also (ẑM )1,1 > 0 by the form of f1,1(z)
(see above). By the same means as before, we hence conclude that in fact ẑM ≥ z0(I) and so
the lower bounds derived above still hold. In particular, this means that every howsoever small
initial shock to the second (possibly resilient) subsystem causes the default of a lower bounded
fraction of banks in the second subsystem. That is, by connecting to the non-resilient subsystem
the a priori possibly resilient second subsystem becomes non-resilient as well.

To better understand the phenomenon in Example 3.6.1, consider the following example: Let

W−,1|A=1 = w1, W+,1|A=1 = 2w1, C|A=1 = 1,

W−,2|A=2 = w2, W+,2|A=2 = 2w2, C|A=2 = 2,

for w1 > 1 and w2 > 0. It is then easy to confirm that the type-1 subsystem is in fact non-
resilient and the type-2 subsystem resilient. (Both subnetworks are Erdös-Rényi random graphs.
In the first subnetwork every edge is contagious, in the second none is.) Additionally, we assume
P(A = 1) = P(A = 2) = 1/2 and W±,1|A=2 = W±,2|A=1 = w3 > 0. In particular,

w3

(
f1,1(z) + z1,1

)
= 2w1

(
f2,1(z) + z2,1

)
, w3

(
f2,2(z) + z2,2

)
= 2w2

(
f1,2(z) + z1,2

)
and hence it must hold that z2,10 (I) = (2w1)

−1w3 z
1,1
0 (I) resp. z1,20 (I) = (2w2)

−1w3 z
2,2
0 (I). The

problem then reduces to f1(z1, z2) = 0 and f2(z1, z2) = 0, where z1 := z1,1, z2 := z2,2 and

f1(z1, z2) := w1

(
1− e−w1z1−(2w2)−1w2

3z
2
)
− z1,

f2(z1, z2) := w2

(
1− e−(2w1)−1w2

3z
1−w2z2

(
1 + (2w1)

−1w2
3z

1 + w2z
2
))
− z2.

Depending on the choice of the weights wi, i = 1, 2, 3, the system shows slightly different
behavior, as illustrated in Figures 3.5(a), 3.5(b) and 3.5(c). In all cases, z0(I) = z∗ 6= 0 which
determines a strictly positive lower bound on the final default fraction as shown in Example
3.6.1. However, z∗ shows a jump discontinuity at certain choices for the weights wi, i = 1, 2, 3,
where in particular (z∗)2 changes drastically. Revisiting the definition of z2 = z2,2, this can be
interpreted as the resilient subsystem suddenly experiencing a lot more defaults. See [94] for
similar results on the Erdös-Rényi random graph.
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Figure 3.5: Plot of the root sets of the functions f1(z1, z2) (blue) and f2(z1, z2) (orange) for
the system with (a) w1 = 2, w2 = 1 and w3 = 2, (b) w1 = 2, w2 = 2 and w3 = 3/4 respectively
(c) w1 = 2, w2 = 2 and w3 = 1/2.

Since all the main results of this chapter and the derivations in Example 3.6.1 are asymp-
totical for n → ∞, we demonstrate the applicability for finite networks numerically: For each
of the scenarios (a)-(c) in Figure 3.5 we performed 104 simulations on networks of varying size
n ∈ {100k : k ∈ [100]} with 1% initially defaulted banks. The outcomes are plotted in Fig-
ure 3.6 together with the theoretical asymptotic final default fraction (taking into account the
initial default fraction of 1%). For case (a), except for 6 simulations at n = 100 all results
lie considerably close to the theoretical final fraction of about 87.98% and their deviation be-
comes smaller the larger n grows. For case (b) and n < 103, some of the simulations ended
in final default fractions around 55%. (Graphically these come from deviations of the hump
(root set of f2, orange) in Figure 3.5(b) such that it intersects with the root of f1 (blue)).
For all other simulations and especially for n ≥ 103, the simulation results clearly converge
to the theoretical value of about 94.25%. For case (c) finally, some of the simulation out-
comes for n ≤ 500 were close to 0 and few around 92.63% (the value if one plugs in the
largest of the three joint roots into g). The majority of the simulations (in particular for
n ≥ 4000), however, resulted in final default fractions close to the theoretical value of 50.02%
and again deviations decrease as n increases. Altogether we conclude that already for finite
networks of a few thousand vertices our asymptotic results are applicable with good accuracy.

In particular, what we learn from Example 3.6.1 is that in order to ensure resilience of a par-
ticular subsystem, one needs to completely prohibit links to other non-resilient subsystems. It is,
however, also possible that two subsystems which are resilient on their own form a non-resilient
global system once connected to each other. It is therefore an interesting regulatory question
how to ensure also resilience of a global system composed of various resilient subsystems. In
general for our model the answer to this question is provided by Theorem 3.3.2. However, in
the following example we state a more intuitive criterion.

Example 3.6.2. Again, for simplicity assume that R = 1. Consider a financial network consist-
ing of T subnetworks (types) which shall satisfy the following 1-dimensional resilience conditions:
For each ε > 0 there exists zε > 0 such that for all z ∈ (0, zε) and α ∈ [T ] it holds

ε > E
[
W+,αW−,αP

(
Poi

(
W−,αz

)
= C − 1

)
1{A = α}

]
. (3.6.2)

Note that this condition implies E[W+,αP(Poi(W−,αz) ≥ C)|A = α] < 0 for all z small enough
and hence indeed it implies resilience of the subsystem by Theorem 3.3.2. In Section 2.2 explicit
capital requirements (i. e. a formula for C|A=α in dependence of W−,α|A=α) were derived for the
case of Pareto distributed weights (which are typically observed in real networks) which ensure
(3.6.2).
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Figure 3.6: Plot of the simulation results on networks of varying size (blue) and the theoretical
asymptotic final default fraction (red) for the system with (a) w1 = 2, w2 = 1 and w3 = 2,
(b) w1 = 2, w2 = 2 and w3 = 3/4 respectively (c) w1 = 2, w2 = 2 and w3 = 1/2.

Now further assume that there exists a constant K <∞ such that

W±,β|A=α ≤ KW±,α|A=α almost surely, (3.6.3)

for all α 6= β ∈ [T ], i. e. the tendency of institutions to develop links with institutions outside
their subnetwork is bounded by a constant multiple of their tendency to develop links with in-
stitutions within their subnetwork. In particular, this is the case if the external weights are
bounded from above and the internal weights are bounded from below.

Replacing W±,β|A=α by KW±,α|A=α only makes the system less resilient (if the weights
increase, the number of links increases and hence the total exposure of each institution). Hence

set W̃±,β|A=α = KW±,α|A=α for α 6= β and W̃±,α|A=α = W±,α|A=α. Now define v ∈ R[T ]×[T ]
+

by vα,β = K1{α 6=β}, α, β ∈ [T ]. Then we derive that

E

[
W̃+,α

( ∑
β′∈[T ]

vα,β
′
W̃−,β

′

)
P

(
Poi

( ∑
γ∈[T ]

W̃−,γzα,γ

)
= C − 1

)
1{A = α}

]

= E

[
W+,αW−,α(1 +K2(T − 1))P

(
Poi

(
W−,α

(
zα,α +K

∑
γ 6=α

zα,γ

))
= C − 1

)
1{A = α}

]
< (1 +K2(T − 1))ε = vα,α(1 +K2(T − 1))ε,



3.6. Applications 65

for zα,α +K
∑

γ 6=α z
α,γ < zε, and

E

[
W̃+,α

( ∑
β′∈[T ]

vβ,β
′
W̃−,β

′

)
P

(
Poi

( ∑
γ∈[T ]

W̃−,γzβ,γ

)
= C − 1

)
1{A = β}

]

= E

[
KW+,βW−,β(1 +K2(T − 1))P

(
Poi

(
W−,β

(
zβ,β +K

∑
γ 6=β

zβ,γ

))
= C − 1

)
1{A = β}

]
< K(1 +K2(T − 1))ε = vα,β(1 +K2(T − 1))ε,

for α 6= β and zβ,β +K
∑

γ 6=β z
β,γ < zε. If we now choose ε < (1 +K2(T − 1))−1, then

f̃α,β(δv) := E

[
W̃+,αP

(
Poi

(
δ
∑
γ∈[T ]

W̃−,γvβ,γ

)
≥ C

)
1{A = β}

]
− δvα,β < 0

for all δ > 0 small enough. It thus holds z∗ ≤ limδ→0+ δv = 0 and therefore P0 = {0}. We can
then apply Theorem 3.3.2 and obtain that the combined system is still resilient.

From a regulatory perspective it is hence enough to impose capital requirements described by
(3.6.2) and to restrict links between different subsystems in the sense of (3.6.3).

In our first two examples we concentrated on the (non-)resilience of multi-type networks. For
simplicity, we assumed that all edges carry the same weight (R = 1). Another interesting
feature of our model, however, is that it allows for edge weights that depend on the types of
both the creditor and the debtor bank. The following example shows that this can indeed make
a huge difference as compared to previous models in which exposures (edge weights) could only
depend on the size/degree/type of the creditor bank. It considers two very similar financial
systems whose only difference is that in one exposures depend on both the creditor and debtor
type and in the other they depend on the type of the creditor bank only. As a consequence the
first system will turn out to be non-resilient whereas the second one is resilient.

Example 3.6.3. Consider a network of size n ∈ N in which (asymptotically) p = 1/3 of all
banks have type 1 and the remaining 1 − p = 2/3 banks have type 2. That is, T = 2. Further
assume that for each pair of vertices (i, j) ∈ [n]2 an edge from i to j shall be present with
probability 4/n. Edges between two banks of type 1 shall carry weight 2 and all other edges
weight 1. That is, if αi = 1, then w±,2,1i = w±,1,2i = 2 and w±,1,1i = w±,2,2i = 0. If αi = 2, then

w±,1,1i = w±,1,2i = 2 and w±,2,1i = w±,2,2i = 0. Finally, all banks shall have capital 2.
Then similarly as for Example 3.6.1 the originally eight-dimensional system reduces to

f1(z1, z2) = 2pP
(
Poi(2z2) + 2Poi(2z1) ≥ 2

)
− z1,

f2(z1, z2) = 2(1− p)P
(
Poi(2(z1 + z2)) ≥ 2

)
− z2.

See Figure 3.7(a) for an illustration of the root sets of f1 and f2. This figure already shows
that z∗ 6= 0 and hence non-resilience by Theorem 3.3.6. Also for z1, z2 → 0, we can compute

∂f1

∂z1
(z1, z2) = 4pP

(
Poi(2z2) + 2Poi(2z1) ∈ {0, 1}

)
− 1→ 4p− 1 =

1

3
> 0,

which rigorously proves that the type-1 subnetwork and then also the whole system is non-resilient
(cf. Example 3.6.1). Numerically one derives that z∗ ≈ (0.601, 1.153) and g(z∗) ≈ 0.877. In
order to test this prediction, we performed 104 simulations of financial networks of size n = 104

with initial default probability 10−3. In only 5.32% of the simulations, we observed a resilient
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Figure 3.7: Plot of the root sets of the functions f1(z1, z2) (blue) and f2(z1, z2) (orange) for the
system with (a) neighbor-dependent exposures respectively (b) neighbor-independent exposures.

nature in the sense that the simulated final default fraction was lower than 3%. All of the
remaining simulations ended with a final default fraction within [85.65%, 89.73%] and are hence
of a non-resilient nature. Averaging over the latter ones yields a mean final default fraction of
87.71%.

Now consider the following modified network: Instead of assigning weight 2 to all links
between two type-1 banks and weight 1 to all other links, this time assign weight 2 with probability
p to any edge going to a type-1 bank (all other edges are assigned weight 1). That is, we keep
the skeleton of the network but we redistribute the edge-weights in such a way that they do only
depend on the creditor bank and not on the debtor bank. The total number of weight-2 edges
stays the same (note that in the first network the type-1 banks accounted to a fraction of p of all
the debtor banks of type-1 banks). This can be achieved by assigning the following new vertex-
weights: w+,1,1

i = w+,2,1
i = 2 for all i ∈ [n]. Further, if αi = 1, then w−,1,1i = w−,1,2i = 2(1− p)

and w−,2,1i = w−,2,2i = 2p. All other vertex-weights shall stay the same. The new system then
reduces to the following two functions, whose root sets are shown in Figure 3.7(b):

f1(z1, z2) = 2pP
(
Poi(2(1− p)(z1 + z2)) + 2Poi(2p(z1 + z2)) ≥ 2

)
− z1,

f2(z1, z2) = 2(1− p)P
(
Poi(2(z1 + z2)) ≥ 2

)
− z2

Figure 3.7(b) shows that the root set of f2 is being shifted to the left, now starting off above the
root set of f1. One can hence already expect that P0 = {0} and the new system to be resilient.
Also more rigorously, as z1, z2 → 0, we derive that

∂f1

∂z1
(z1, z2) = 4p(1− p)P

(
Poi(2(1− p)(z1 + z2)) + 2Poi(2p(z1 + z2)) = 1

)
+ 4p2P

(
Poi(2(1− p)(z1 + z2)) + 2Poi(2p(z1 + z2)) ∈ {0, 1}

)
− 1

→ 4p2 − 1 = −5

9
,

∂f1

∂z2
(z1, z2) = 4p(1− p)P

(
Poi(2(1− p)(z1 + z2)) + 2Poi(2p(z1 + z2)) = 1

)
+ 4p2P

(
Poi(2(1− p)(z1 + z2)) + 2Poi(2p(z1 + z2)) ∈ {0, 1}

)
→ 4p2 =

4

9
,
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∂f2

∂z1
(z1, z2) = 4(1− p)P

(
Poi(2(z1 + z2)) = 1

)
→ 0,

∂f2

∂z2
(z1, z2) = 4(1− p)P

(
Poi(2(z1 + z2)) = 1

)
− 1→ −1.

The directional derivatives Dvf
1(0) and Dvf

2(0) thus exist for every v ∈ RV+. Choose then for
example v = (v1, v2) = (1, 1) such that Dvf

1(0) = −1/9 and Dvf
2(0) = −1. From Lemma

3.2.3 we thus derive that z∗ = 0 and hence P0 = {0}. This allows us to apply Theorem 3.3.2
and hence the modified system is indeed resilient. Again this can be validated numerically. On
the same skeleton as for the previous simulation but with random edge-weights as described
above the simulated final default fractions are now all within the interval [0.11%, 0.63%] with an
average of 0.20%. The system is hence indeed of a resilient nature.

Although Example 3.6.3 is too simple to model a real financial network, it still shows that
counterparty-dependent exposures may have a significant impact on the stability of the system.
In general, it is also possible that they increase stability of the system, however.

3.7 Proofs

In this section, we provide the proofs of our results in Sections 3.2, 3.3 and 3.4. Theorem 3.2.4
will be proved in two steps. At this the underlying ideas are similar to [54] but at a considerable
number of steps novel methods have to be used and we will particularly discuss them in detail.
We use the notation

[a, b] :=
⋂

(r,α,β)∈V

{z ∈ RV : ar,α,β ≤ zr,α,β ≤ br,α,β}

for the cuboid spanned by the vectors a and b in RV in the following. Further, let ζ ∈ RV+,0 be

defined by ζr,α,β := E[W+,r,α1{A = β}].

3.7.1 Proofs of Lemmas 3.2.2 and 3.2.3

Proof of Lemma 3.2.2. Existence of a smallest joint root ẑ ∈ [0, ζ] is ensured by the Knaster-
Tarski fixed point theorem. We now construct a joint root P0 3 z̄ ≤ ẑ which shows that
ẑ = z̄ ∈ P0, in particular: It holds f r,α,β(ẑ) = 0 for all (r, α, β) ∈ V and then f r,α,β(z) ≤ 0 for
all ẑ ≥ z ∈ RV+,0 such that zr,α,β = ẑr,α,β by monotonicity of f r,α,β from Lemma 3.2.1. Consider

then the following sequence (zn)n∈N ⊂ RV+,0:

• z0 = 0

• z1 = (z1,1,11 , 0, . . . , 0), where z1,1,11 ≥ 0 is the smallest possible value such that f1,1,1(z1) = 0.

It is possible to find such z1,1,11 by the intermediate value theorem since f1,1,1 is con-
tinuous, f1,1,1(0) ≥ 0 and f1,1,1(ẑ1,1,1, 0, . . . , 0) ≤ 0. By Lemma 3.2.1, it then holds
f r,α,β(z1) ≥ f r,α,β(0) ≥ 0 for all (1, 1, 1) 6= (r, α, β) ∈ V . In particular, z1 ∈ P0.

• z2 = z1+(0, z1,1,22 , 0, . . . , 0), where z1,1,22 ≥ 0 is the smallest value such that f1,1,2(z2) = 0.

Again it is possible to find such z1,1,22 by the intermediate value theorem since f1,1,2 is
continuous, f1,1,2(z1) ≥ 0 and f1,1,2(z1 + (0, ẑ1,1,2, 0, . . . , 0)) ≤ 0. Since z1 ∈ P0, by
Lemma 3.2.1 it then holds f r,α,β(z2) ≥ f r,α,β(z1) ≥ 0 for all (1, 1, 2) 6= (r, α, β) ∈ V . In
particular, z2 ∈ P0.

• zi, i ∈ {3, . . . , RT 2}, are found analogously, changing only the corresponding coordinate.
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• zRT 2+1 = zRT 2 + (z1,1,1
RT 2+1

− z1,1,1
RT 2 , 0, . . . , 0), where z1,1,1

RT 2+1
≥ z1,1,1

RT 2 is the smallest value

such that f1,1,1(zRT 2+1) = 0, which is again possible by the intermediate value theorem.

In particular, it still holds z1,1,1
RT 2+1

≤ ẑ1,1,1. As before also zRT 2+1 ∈ P0.

• Continue for zi, i ≥ RT 2 + 2.

The sequence (zn)n∈N constructed this way has the following properties: It is non-decreasing
in each coordinate and (zn)n∈N ⊂ P0. Further, it is bounded inside [0, ẑ]. Hence by monotone
convergence, each coordinate of zn converges and so z̄ = limn→∞ zn exists. Now suppose there
is (r, α, β) ∈ V such that f r,α,β(z̄) > 0. By continuity of f r,α,β then also f r,α,β(zn) > ε for
some ε > 0 and n large enough. This, however, is in contradiction with the construction of
the sequence (zn)n∈N since f r,α,β(zn) = 0 in every RT 2-th step. Hence f r,α,β(z̄) ≤ 0 for all
(r, α, β) ∈ V . Also z̄ ∈ P0, however, since this is a closed set. Hence f r,α,β(z̄) ≥ 0 for all
(r, α, β) ∈ V and altogether this shows that z̄ is a joint root of all functions f r,α,β, (r, α, β) ∈ V .

Now turn to the proof that z∗ ∈ P0 and it is a joint root of all functions f r,α,β, (r, α, β) ∈ V :
First define the following sets for each ε > 0:

P (ε) :=
⋂

(r,α,β)∈V

{z ∈ RV+,0 : f r,α,β(z) ≥ −ε}

Further denote by P0(ε) the connected component of 0 in P (ε). By the same procedure as for ẑ
above, we now derive that there exists a smallest (componentwise) point ẑ(ε) ∈ P0(ε) such that
f r,α,β(ẑ(ε)) = −ε for all (r, α, β) ∈ V . Clearly, ẑ(ε) is non-decreasing in ε (componentwise) and
hence z̃ := limε→0+ ẑ(ε) exists (we will show that z̃ = z∗ in fact).

Now by monotonicity of P0(ε), we derive that ẑ(δ) ∈ P0(δ) ⊆ P0(ε) for all δ ≤ ε. Since
P0(ε) is a closed set, it must thus hold that also z̃ = limδ→0+ ẑ(δ) ∈ P0(ε) for all ε > 0 and
in particular, z̃ ∈

⋂
ε>0 P0(ε). Further, by continuity of f r,α,β, (r, α, β) ∈ V , we derive that⋂

ε>0 P0(ε) ⊆
⋂
ε>0 P (ε) ⊆ P . Moreover,

⋂
ε>0 P0(ε) is the intersection of a chain of connected,

compact sets in the Hausdorff space RV and it is hence a connected, compact set itself. Since
it further contains 0, we can then conclude that

⋂
ε>0 P0(ε) ⊆ P0 and thus z̃ ∈ P0.

We now want to show that z ≤ z̃ componentwise for arbitrary z ∈ P0. This clearly proves
z̃ = z∗. It thus suffices to show P0 ⊂ [0, ẑ(ε)]. Then z ≤ ẑ(ε) and z ≤ limε→0+ ẑ(ε) = z̃. Hence
assume that P0 6⊂ [0, ẑ(ε)]. By connectedness of P0 we find z̄ ∈ P0 with z̄r,α,β ≤ ẑr,α,β(ε) for all
(r, α, β) ∈ V and equality for at least one coordinate. W. l. o. g. let this coordinate be (1, 1, 1).
By monotonicity of f1,1,1 with respect to zr,α,β for every (r, α, β) 6= (1, 1, 1), we thus derive that

f1,1,1(z̄) ≤ f1,1,1(ẑ(ε)) = −ε.

However, we also assumed that z̄ ∈ P0 and hence f1,1,1(z̄) ≥ 0, a contradiction.

Finally, we obtain that f r,α,β(z∗) = f r,α,β(z̃) = limε→0+ f
r,α,β(ẑ(ε)) = limε→0+(−ε) = 0, by

continuity of f r,α,β. Hence z∗ is in fact a joint root of all the functions f r,α,β, (r, α, β) ∈ V .

Proof of Lemma 3.2.3. Note that it is sufficient to construct a sequence (zn)n∈N ⊂ RV+ such
that limn→∞ zn = z̄ and f r,α,β(zn) < 0 for all (r, α, β) ∈ V , n ∈ N. By monotonicity of f r,αβ

from Lemma 3.2.1 it then follows that z∗ ≤ zn and hence z∗ ≤ z̄. If condition 1. is satisfied,
we get limn→∞ nf

r,α,β
(
z̄ + n−1v

)
= Dvf

r,α,β(z̄) < 0 and we can hence choose zn := z̄+n−1v.
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If condition 2. is satisfied, note that by Fubini’s theorem for n > ∆−1 we derive

f r,α,β
(
z̄ + n−1v

)
=

∫ n−1

0
−vr,α,β +

∑
r′∈[R]

E

[
W+,r,α

( ∑
β′∈[T ]

vr
′,β,β′W−,r

′,β′

)
1{A = β}

× P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γ
(
z̄s,β,γ + δvs,β,γ

))
∈{C − r′, . . . , C − 1}

)]
dδ

≤ −n−1(1− κ)vr,α,β

and lim supn→∞ nf
r,α,β

(
z̄ + n−1v

)
≤ (1−κ)vr,α,β < 0. Thus choose zn := z̄+n−1v again.

3.7.2 Proof of the Main Result for Finitary Weights

In this section, we consider the special case that the vertex weights wr,α,βi and capitals ci can
only take values in a finite set. To formalize this, consider the following definition:

Definition 3.7.1 (Finitary Regular Vertex Sequence). A regular vertex sequence denoted by

(w−,w+, s, c,α) is called finitary if there exist J ∈ N, w̃−j ∈ R
[R]×[T ]
+,0 , w̃+

j ∈ R
[R]×[T ]
+,0 and

s̃j ∈ R+,0, j ∈ [J ], as well as cmax ∈ N0 such that for all n ∈ N and i ∈ [n], there exists
j = j(n, i) ∈ [J ] such that w±i (n) = w̃±j , si = s̃j and ci(n) ∈ [cmax] ∪ {0,∞}.

That is, in a finitary system there is a partition of the set of all institutions into TJ(cmax + 2)
sets. In particular, in this case all weights w±,r,αi are bounded from above by some constant
w ∈ R+ and hence by dominated convergence we can compute the partial derivatives of f r,α,β:

∂f r,α,β

∂zr′,α′,β′
(ẑ) = −δr,r′δα,α′δβ,β′ + δβ,α′E

[
W+,r,αW−,r

′,β′1{A = β}

× P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γzs,β,γ

)
∈ {C − r′, . . . , C − 1}

)]
,

where δa,b := 1{a = b}. Hence for any vector v ∈ RV , the directional derivative of f r,α,β in
direction v is given by the following continuous expression:

Dvf
r,α,β(ẑ) = −vr,α,β +

∑
r′∈[R]

E

[
W+,r,α

( ∑
β′∈[T ]

vr
′,β,β′W−,r

′,β′

)
1{A = β}

× P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γzs,β,γ

)
∈ {C − r′, . . . , C − 1}

)]

We can then prove the following asymptotic results for the final systemic damage in the network.

Proposition 3.7.2. Consider a financial system described by a finitary regular vertex sequence
and let ẑ be the smallest joint root of the functions f r,α,β, (r, α, β) ∈ V . Then it holds that
n−1Sn ≥ g(ẑ) + op(1). If additionally there exists v ∈ RV+ such that Dvf

r,α,β(ẑ) < 0 for all
(r, α, β) ∈ V , then n−1Sn = g(ẑ) + op(1).

See Figure 3.2(a) for an example where such v ∈ RV+ exists respectively Figure 3.2(b) for an
example where it does not. Theorem 3.7.3 below will analyze systems of the latter type as well.
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Proof. We begin by proving the lower bound: As in [54] and Chapter 2 we switch to a sequential
default contagion process. The idea is to collect defaulted institutions and instead of exposing
them all at once (as in (3.1.2)), only select one defaulted institution uniformly at random in
each round t ≥ 1 and expose it to its neighbors (draw edges). Using the finitary assumption, it
is then sufficient to keep track of the following sets and quantities during the default process:

Uα(t) := {i ∈ [n] : αi = α and i is defaulted but unexposed at time t} ,
Sαj,m,l(t) := {i ∈ [n] : αi = α, j(n, i) = j, ci = m and i has total exposure of l at time t} ,
Dj(t) := {i ∈ [n] : j(n, i) = j and i is defaulted at time t},

uα(t) := |Uα(t)| , cαj,m,l(t) :=
∣∣Sαj,m,l(t)∣∣ , s(t) :=

∑
j∈[J ]

s̃j |Dj(t)|, wr,α,β(t) :=
∑

i∈Uβ(t)

w+,r,α
i .

Let h(t) := (uα(t), cαj,m,l(t), s(t), w
r,α,β(t)) the vector of all tracked quantities at time t (for the

sake of a better readability we omitted the index sets) and H(t) = (h(s))s≤t. Then for n large
enough such that all pri,j < R−1 (possible by finitary weights), the expected evolution of the
system at time t is

E
[
cαj,m,l(t+ 1)− cαj,m,l(t)

∣∣ H(t)
]

=
1∑

β∈[T ] u
β(t)

∑
β∈[T ]

∑
v∈Uβ(t)

∑
r∈[R]

 ∑
i∈Sαj,m,l−r(t)

w+,r,α
v w−,r,βi

n
−

∑
i∈Sαj,m,l(t)

w+,r,α
v w−,r,βi

n


=
∑
r∈[R]

∑
β∈[T ]w

r,α,β(t)w̃−,r,βj∑
β∈[T ] u

β(t)

cαj,m,l−r(t)− cαj,m,l(t)
n

.

E [s(t+ 1)− s(t) | H(t)] =
∑
j∈[J ]

s̃j
∑
α∈[T ]

∑
r∈[R]

cmax∑
m=0

m−1∑
l=m−r

∑
β∈[T ]w

r,α,β(t)w̃−,r,βj∑
β∈[T ] u

β(t)

cαj,m,l(t)

n
,

E [uα(t+ 1)− uα(t) | H(t)] = − uα(t)∑
β∈[T ] u

β(t)
+
∑
j,m

∑
r∈[R]

∑
β∈[T ]w

r,α,β(t)w̃−,r,βj∑
β∈[T ] u

β(t)

m−1∑
l=m−r

cαj,m,l(t)

n
,

E
[
wr,α,β(t+ 1)− wr,α,β(t)

∣∣∣ H(t)
]

= − wr,α,β(t)∑
γ∈[T ] u

γ(t)
+
∑
j,m

w̃+,r,α
j

∑
s∈[R]

∑
γ∈[T ]w

s,β,γ(t)w̃−,s,γj∑
γ∈[T ] u

γ(t)

m−1∑
l=m−s

cβj,m,l(t)

n
.

The expressions on the right-hand side are all Lipschitz functions of uα(t), wr,α,β(t), cαj,m,l(t) as

long as
∑

β∈[T ] u
β(t) is bounded away from zero. All the remaining conditions in Wormald’s
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theorem [115] can be checked by similar means as in [54]. We can thus uniformly approximate

n−1cαj,m,l(t) = γαj,m,l(n
−1t) + op(1), (3.7.1)

n−1s(t) = σ(n−1t) + op(1), (3.7.2)

n−1uα(t) = να(n−1t) + op(1), (3.7.3)

n−1wr,α,β(t) = µr,α,β(n−1t) + op(1), (3.7.4)

where the functions γαj,m,l(τ), σ(τ), να(τ) and µr,α,β(τ) are defined as the unique solution of

d

dτ
γαj,m,l(τ) =

∑
r∈[R]

∑
β∈[T ] µ

r,α,β(τ)w̃−,r,βj∑
β∈[T ] ν

β(τ)

(
γαj,m,l−r(τ)− γαj,m,l(τ)

)
, (3.7.5)

d

dτ
σ(τ) =

∑
j∈[J ]

s̃j
∑
α∈[T ]

∑
r∈[R]

cmax∑
m=0

m−1∑
l=m−r

∑
β∈[T ] µ

r,α,β(τ)w̃−,r,βj∑
β∈[T ] ν

β(τ)
γαj,m,l(τ), (3.7.6)

d

dτ
να(τ) = − να(τ)∑

β∈[T ] ν
β(τ)

+
∑
j,m

∑
r∈[R]

∑
β∈[T ] µ

r,α,β(τ)w̃−,r,βj∑
β∈[T ] ν

β(τ)

m−1∑
l=m−r

γαj,m,l(τ), (3.7.7)

d

dτ
µr,α,β(τ) = − µr,α,β(τ)∑

γ∈[T ] ν
γ(τ)

+
∑
j,m

w̃+,r,α
j

∑
s∈[R]

∑
γ∈[T ] µ

s,α,γ(τ)w̃−,s,γj∑
γ∈[T ] ν

γ(τ)

m−1∑
l=m−r

γαj,m,l(τ). (3.7.8)

Approximations (3.7.1)-(3.7.4) hold uniformly for t/n < τ̂ := inf{τ ∈ R+,0 :
∑

β∈[T ] ν
β(τ) = 0}.

For zr,α,β(τ) :=
∫ τ
0 µ

r,α,β(s)/
∑

γ∈[T ] ν
γ(s)ds, an implicit solution of (3.7.5)-(3.7.8) is given by

γαj,m,l(τ) = P(W± = w̃±j , C = m,A = α)P

( ∑
s∈[R]

sPoi

( ∑
β∈[T ]

w̃−,s,βj zs,α,β(τ)

)
= l

)
,

σ(τ) = E

[
SP

( ∑
s∈[R]

sPoi

( ∑
β∈[T ]

W−,s,βzs,α,β(τ)

)
≥ C

)
1{A = α}

]
,

να(τ) = E

[
P

( ∑
s∈[R]

sPoi

( ∑
β∈[T ]

W−,s,βzs,α,β(τ)

)
≥ C

)
1{A = α}

]
−
∫ τ

0

να(s)∑
β∈[T ] ν

β(s)
,

µr,α,β(τ) = E

[
W+,r,αP

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γzs,β,γ(τ)

)
≥ C

)
1{A = β}

]
− zr,α,β(τ).

In particular, note that σ(τ) = g(z(τ)) and µr,α,β(τ) = f r,α,β(z(τ)). Thus for τ < τ̂ , it
holds f r,α,β(z(τ)) = n−1wr,α,β(bτnc) + op(1) ≥ 0 + op(1) and by letting n → ∞, it follows
f r,α,β(z(τ)) ≥ 0. By continuity of z(τ) and z(0) = 0, hence z(τ) ∈ P0. Further,

f r,α,β(z(τ)) = µr,α,β(τ) = n−1wr,α,β(bτnc) + op(1) ≤ n−1wuβ(bτnc) + op(1) = wνβ(τ) + op(1)

and as n→∞, f r,α,β(z(τ)) ≤ wνβ(τ).

As τ → τ̂ ,
∑

β∈[T ] ν
β(τ) → 0 and hence by continuity of z(τ), f r,α,β(z(τ̂)) = 0 for all

(r, α, β) ∈ V . Again by continuity of z(τ) and closedness of P0, we then conclude that z(τ̂) ≥ ẑ.
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In particular, using continuity of σ

g(ẑ) ≤ g(z(τ̂)) = lim
τ→τ̂

g(z(τ)) = lim
τ→τ̂

σ(τ) = σ(τ̂). (3.7.9)

Let now t̂ denote the first time that
∑

α∈[T ] u
α(t) = 0 (i. e. the number of steps until the

contagion process stops). We show that t̂/n ≥ τ̂ + op(1). Define Xn := (bτ̂nc ∧ t̂)/n− τ̂ . Then
t̂/n ≥ τ̂ +Xn. Further, for ε > 0 and n large enough such that τ̂ − bτ̂nc/n ≤ ε, we obtain

P(|Xn| > ε) = P(τ̂ − t̂/n > ε) ≤ P

( ∑
α∈[T ]

να(t̂/n) >
1

2
min

τ∈[0,τ̂−ε]

∑
α∈[T ]

να(τ), t̂/n < τ̂

)
,

using continuity of
∑

α∈[T ] ν
α(τ). Let now (Yn)n∈N such that

∣∣∣∑α∈[T ] u
α(t)/n− να(t/n)

∣∣∣ ≤ Yn

and Yn = op(1) (existence of (Yn)n∈N ensured by (3.7.3)). Since
∑

α∈[T ] u
α(t̂) = 0, we conclude

that

P(|Xn| > ε) ≤ P

(
Yn >

1

2
min

τ∈[0,τ̂−ε]

∑
α∈[T ]

να(τ)

)
→ 0, as n→∞.

But then by (3.7.6), for arbitrary ε > 0,

n−1Sn = n−1s(t̂) ≥ n−1s
(
t̂ ∧ n(1− ε)τ̂

)
= σ

(
t̂

n
∧ (1− ε)τ̂

)
+ op(1) = σ ((1− ε)τ̂) + op(1),

where for the last equality we used t̂/n ≥ τ̂ + op(1). Now letting ε → 0, using continuity of σ
and combining with (3.7.9) shows the lower bound.

In order to prove the second part, we first want to show that the existence of v implies that
in fact z(τ̂) = ẑ. To this end, assume that z(τ̂) 6= ẑ. Then there exists (r, α, β) ∈ V and δ > 0
such that zr,α,β(τ̂) > ẑr,α,β +δvr,α,β. Without loss of generality assume that zr,α,β(τ) is the first
coordinate that reaches ẑr,α,β + δvr,α,β, that is there exists τδ ∈ [0, τ̂ ] such that z(τδ) ≤ ẑ + δv
componentwise and zr,α,β(τδ) = ẑr,α,β + δvr,α,β. But by Dvf

r,α,β(ẑ) < 0 and continuity of
Dvf

r,α,β(z), we then derive for δ > 0 small enough that 0 > f r,α,β(ẑ + δv) ≥ f r,α,β(z(τδ)),
where we used monotonicity of f r,α,β from Lemma 3.2.1. This contradicts that f r,α,β(z(τ)) ≥ 0
for all τ ∈ [0, τ̂ ] and hence it must hold that z(τ̂) = ẑ. In particular, g(ẑ) = σ(τ̂) (cf. (3.7.9)).

The difficulty in the following is that the system is only described by the functions γαj,m,l(τ),

σ(τ), να(τ) and µr,α,β(τ) as long as τ < τ̂ , the first time at which
∑

α∈[T ] ν
α(τ) = 0. Wormald’s

theorem makes no statement about the system at or after τ̂ , however. The idea is hence the
following: We let τε be the first time at which µr,α,β(τ) ≤ vr,α,βε for all (r, α, β) ∈ V and choose
a sequence (εn)n∈N ⊂ R+ such that εn → 0 as n→∞. We then consider the cascade process as
before for the first bτεnnc steps and we show that the number of remaining defaults Rn divided
by n converges to 0 in probability as n→∞. In particular, this will show that

n−1|Sn| = n−1s
(
t̂
)

= n−1s (bτεnnc+Rn) ≤ σ (τεn) + op(1) ≤ σ (τ̂) + op(1) = g(ẑ) + op(1).

In order to show n−1Rn = op(1), we will expose the defaulted banks round by round as in (3.1.2),
i. e. we expose the banks in

⋃
α∈[T ] U

α(bτεnnc) at once and so on. However, banks with w+,r,α
i = 0

for all r ∈ [R] and α ∈ [T ] will never infect any new banks. Thus, we only need to consider
banks with

∑
r∈[R]

∑
α∈[T ]w

+,r,α
i > 0 in the following. Since we are in a finitary setting, this

means that there exists w0 > 0 such that
∑

r∈[R]

∑
α∈[T ]w

+,r,α
i ≥ w0 for all banks. Taking into

account also banks with total out-weight of zero only causes an extra bounded factor for Rn.
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For each solvent bank at step bτεnnc there are two possible ways to default: Either there is
one exposure to a defaulted bank that is larger than the remaining capital at step bτεnnc (the
bank defaults directly) or there are at least two exposures to defaulted banks that add up to an
amount larger than the remaining capital (the bank defaults indirectly). Therefore, for α ∈ [T ]
and l ≥ 1 we define the following sets:

Dαl = Dαl (τεn) = {i ∈ [n] : αi = α and i defaults directly in the l-th round after step bτεnnc}
Iαl = Iαl (τεn) = {i ∈ [n] : αi = α and i defaults indirectly in the l-th round after step bτεnnc}

Further, let T αl = Dα ∪ Iα. In particular, Rn =
∑

α∈[T ]
∑

l≥1 |T αl (τεn)|. Further, the following
quantities will play an important role:

Dr,α,β
l =

∑
i∈Dβl

w+,r,α
i , Ir,α,βl =

∑
i∈Iβl

w+,r,α
i and T r,α,βl =

∑
i∈T βl

w+,r,α
i , l ≥ 1, (r, α, β) ∈ V

We now exploit again the assumption that Dvf
r,α,β(ẑ) < 0 for all (r, α, β) ∈ V . Also recall that

the expression Dvf
r,α,β(z) is continuous in z since the weights are assumed finitary. Further

z(τ) is continuous in τ . Hence for ε > 0 small enough (i. e. z(τε) close to ẑ), it holds

0 > Dvf
r,α,β(z(τε))

=
∑
r′∈[R]

E

[
W+,r,α

( ∑
β′∈[T ]

vr
′,β,β′W−,r

′,β′

)

× P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γzs,β,γ(τε)

)
∈ {C − r′, . . . , C − 1}

)
1{A = β}

]
− vr,α,β

=
∑
j,m

w̃+,r,α
j

∑
r′∈[R]

( ∑
β′∈[T ]

vr
′,β,β′w̃−,r

′,β′

j

)
r′∑
s=1

γβj,m,m−s(τε)− v
r,α,β.

We can hence find c1 < 1 such that for all (r, α, β) ∈ V it holds

∑
j,m

w̃+,r,α
j

∑
r′∈[R]

( ∑
β′∈[T ]

vr
′,β,β′w̃−,r

′,β′

j

)
r′∑
s=1

γβj,m,m−s(τε) ≤ c1v
r,α,β.

By (3.7.1) and possibly slightly increasing c1, we then derive that

∑
j,m

w̃+,r,α
j

∑
r′∈[R]

( ∑
β′∈[T ]

vr
′,β,β′w̃−,r

′,β′

j

)
r′∑
s=1

cβj,m,m−s(bτεnc)
n

≤ c1vr,α,β

on a σ(h(bτεnc))-measurable set Ωε
n such that limn→∞ P(Ωε

n) = 1 for every ε > 0. Further, by
the definition of τε and (3.7.4), we can choose Ωε

n in such a way that n−1wr,α,β(bτεnc) ≤ 2εvr,α,β
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holds on Ωε
n for all (r, α, β) ∈ V . We can then compute on Ωε

n

n−1E
[
Dr,α,β

1

∣∣∣h(bτεnc)
]
≤
∑
j,m

w̃+,r,α
j

m−1∑
l=0

cβj,m,l(bτεnc)
n

∑
β′∈[T ]

∑
v∈Uβ′ (bτεnc)

R∑
r′=m−l

wr
′,+,β
v w̃−,r

′,β′

j

n

≤ 2ε
∑
j,m

w̃+,r,α
j

m−1∑
l=0

cβj,m,l(bτεnc)
n

∑
β′∈[T ]

R∑
r′=m−l

vr
′,β,β′w̃−,r

′,β′

j ≤ 2εc1v
r,α,β ,

n−1E
[
Ir,α,β1

∣∣∣h(bτεnc)
]
≤ n−1

∑
j,m

m−1∑
l=0

∑
i∈Sβj,m,l(bτεnc)

w

( ∑
β′∈[T ]

∑
v∈Uβ′ (bτεnc)

R∑
r′=m−l

wr
′,+,β
v w−,r

′,β′

i

n

)2

≤ w

( ∑
β′∈[T ]

R∑
r′=0

wr
′,β,β′(bτεnc)

n
w

)2

≤ Cε2,

where C := 4T 2(R + 1)2w3‖v‖2∞. In particular, for ε > 0 small enough we find c2 ∈ (0, 1− c1)
such that Cε2 ≤ 2εc2v

r,α,β for all (r, α, β) ∈ V and hence on Ωε
n it holds that

n−1E
[
T r,α,β1

∣∣∣h(bτεnc)
]

= n−1E
[
Dr,α,β

1

∣∣∣h(bτεnc)
]

+ n−1E
[
Ir,α,β1

∣∣∣h(bτεnc)
]
≤ 2ε(c1 + c2)v

r,α,β.

Let then c := c1 + c2 ∈ (0, 1). We continue inductively: Assume that on Ωε
n it holds for l ≥ 1

that n−1E
[
T r,α,βl

∣∣∣ h(bτεnc)
]
≤ 2εclvr,α,β. We then derive on Ωε

n that

n−1E
[
Dr,α,β
l+1

∣∣∣ h(bτεnc)
]

= n−1
∑
j,m

m−1∑
l=0

∑
i∈Sβj,m,l(bτεnc)

w+,r,α
i P

(
i ∈ Dβl+1

∣∣∣ h(bτεnc)
)

≤
∑
j,m

w̃+,r,α
j

m−1∑
l=0

cβj,m,l(bτεnc)
n

∑
β′∈[T ]

R∑
r′=m−l

w̃−,r
′,β′

j n−1E
[
T r
′,β,β′

l

∣∣∣ h(bτεnc)
]

≤ 2εcl
∑
j,m

w̃+,r,α
j

∑
r′∈[R]

( ∑
β′∈[T ]

vr
′,β,β′w̃−,r

′,β′

j

)
r′∑
s=1

cβj,m,m−s(bτεnc)
n

≤ 2εclc1v
r,α,β,

n−1E
[
Ir,α,βl+1

∣∣∣ h(bτεnc)
]

= n−1
∑
j,m

m−1∑
l=0

∑
i∈Sβj,m,l(bτεnc)

w+,r,α
i P

(
i ∈ Iβl+1

∣∣∣ h(bτεnc)
)

≤
∑
j,m

w̃+,r,α
j

m−1∑
l=0

cβj,m,l(bτεnc)
n

 ∑
β′∈[T ]

R∑
r′=m−l

w̃−,r
′,β′

j n−1E
[
T r
′,β,β′

l

∣∣∣ h(bτεnc)
]

×

 ∑
β′∈[T ]

R∑
r′=m−l

w̃−,r
′,β′

j n−1
∑
k≤l
E
[
T r
′,β,β′

k

∣∣∣ h(bτεnc)
]

≤ w
(

2εT (R+ 1)wclvr
′,β,β′

)(
2εT (R+ 1)w

∑
k≤l

ckvr
′,β,β′

)
≤ Ccl 1

1− c
ε2
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Now choose ε > 0 small enough such that even C
1−cε

2 ≤ 2εc2v
r,α,β and conclude that on Ωε

n

n−1E
[
T r,α,βl+1

∣∣∣ h(bτεnc)
]

= n−1E
[
Dr,α,β
l+1

∣∣∣ h(bτεnc)
]

+ n−1E
[
Ir,α,βl+1

∣∣∣ h(bτεnc)
]
≤ 2εcl+1vr,α,β,

n−1
∑
α∈[T ]

∑
l≥1
E [ |T αl | | h(bτεnc)] ≤ n−1

∑
α∈[T ]

∑
l≥1
E

[ ∑
i∈T αl

∑
r∈[R]

∑
γ∈[T ]w

+,r,γ
i

w0

∣∣∣∣∣h(bτεnc)

]

= w−10 n−1
∑
r∈[R]

∑
α,γ∈[T ]

∑
l≥1
E
[
T r,γ,αl

∣∣ h(bτεnc)
]

≤ 2εw−10 (R+ 1)T 2 1

1− c
‖v‖∞.

Consider now again the sequence (εn)n∈N from before and let ε, δ > 0 arbitrary. For n large
enough such that εn ≤ ε, we derive (using Markov’s inequality in the penultimate step)

P
(
n−1Rn ≥ δ

)
≤ P

(
n−1

∑
α∈[T ]

∑
l≥1
|T αl (τε)| ≥ δ

)
≤ E

[
δ−1n−1

∑
α∈[T ]

∑
l≥1
E
[
|T αl (τε)|

∣∣h(bτεnc)
] ]

≤ 2εδ−1w−10 (R+ 1)T 2 1

1− c
‖v‖∞ + (1− P(Ωε

n)).

Choosing ε small enough and n large enough, this quantity becomes arbitrarily small. Hence,
n−1Rn = op(1) and this finishes the proof as explained above.

Theorem 3.7.3. Consider a financial system described by a finitary regular vertex sequence and
let ẑ and z∗ be the smallest resp. largest joint root in P0 of the functions f r,α,β, (r, α, β) ∈ V .
Then g(ẑ)+op(1) ≤ n−1Sn ≤ g(z∗)+op(1). In particular, if ẑ = z∗, then n−1Sn = g(ẑ)+op(1).

The idea for the proof of Theorem 3.7.3 is to apply a small further shock to the financial
system such that the second statement in Proposition 3.7.2 becomes applicable. That is, we let
each solvent bank in the system default independently with probability ε > 0 and denote the
analogues of f r,α,β, g, ẑ and z∗ by f r,α,βε , gε, ẑ(ε) respectively z∗(ε). That is,

f r,α,βε (z) = ε
(
E
[
W+,r,α1{A = β}

]
− zr,α,β

)
+ (1− ε)f r,α,β(z), gε(z) = εE[S] + (1− ε)g(z).

We can assume in the following that E [W+,r,α1{A = β}] > 0 and hence f r,α,βε (z) > f r,α,β(z) for
all z, since otherwise f r,α,β(z) = −zr,α,β and we can simply leave out the (r, α, β)-component
in the proof. The following lemma describes z∗(ε) for small ε:

Lemma 3.7.4. The function z∗ : R+,0 → RV+,0 is right-continuous and monotonically increasing
in each component. In particular, the derivative (z∗)′(ε) exists for Lebesgue-almost every ε > 0
and z∗(ε)− z∗ ≥

∫ ε
0 (z∗)′(ξ)dξ componentwise.

Proof. For every z ∈ P0 and ε > 0 it holds f r,α,βε (z) ≥ f r,α,β(z) ≥ 0 and hence P0 ⊆ P0(ε), where
P0(ε) denotes the analogue of P0 for the additionally shocked case. In particular, z∗ ∈ P0(ε)
and hence z∗ ≤ z∗(ε) componentwise. The same argument shows that z∗(ε1) ≤ z∗(ε2) for any
ε1 ≤ ε2 and hence z∗(ε) is monotonically increasing in each component.

In particular, limε→0+ z
∗(ε) exists and limε→0+ z

∗(ε) ∈
⋂
ε>0 P0(ε). Now let δ > 0. By

continuity of f r,α,βε (z) with respect to ε and z, it holds f r,α,β(z) ≥ f r,α,βε (z) − δ for ε small
enough and all z in the compact set [0, ζ]. Hence for z ∈

⋂
ε>0 P0(ε), we obtain f r,α,β(z) ≥ −δ

for every δ > 0 and so
⋂
ε>0 P0(ε) ⊆ P . However, since

⋂
ε>0 P0(ε) is the intersection of a chain
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of connected, compact sets in the Hausdorff space RV , it is itself a connected, compact set.
Since further 0 ∈

⋂
ε>0 P0(ε), we thus derive that

⋂
ε>0 P0(ε) = P0. That is, limε→0+ z

∗(ε) ∈ P0

and hence limε→0+ z
∗(ε) = z∗. The same arguments show that limh→0+ z

∗(ε + h) = z∗(ε) for
every ε > 0, hence proving right-continuity of z∗(ε).

A classical result for derivatives of monotone functions (see [114, Theorem 7.21] for instance)
then yields the existence of (z∗)′ almost everywhere and

z∗(ε)− z∗ ≥ lim
h→0−

z∗(ε+ h)− lim
h→0+

z∗(h) ≥
∫ ε

0
(z∗)′(ξ)dξ.

Proof of Theorem 3.7.3. As outlined above, in order to reduce this general setting to the special
case from Proposition 3.7.2, we apply an additional small shock to the system. That is, if we
can find a vector v(ε) ∈ R+ such that Dv(ε)f

r,α,β
ε (ẑ(ε)) < 0 for all (r, α, β) ∈ V , then applying

Proposition 3.7.2, we derive for the final damage n−1Sεn in the additionally shocked system

n−1Sεn ≤ gε(ẑ(ε)) + op(1) ≤ gε(z∗(ε)) + op(1) ≤ ε+ g(z∗(ε)) + op(1).

We then conclude n−1Sn ≤ g(z∗) + op(1), as for arbitrary δ > 0 and ε > 0 small enough,

P
(
n−1Sn − g(z∗) > δ

)
≤ P

(
n−1Sεn − (ε+ g(z∗(ε)) > δ/2

)
→ 0, as n→∞.

So let us show the existence of the vectors v(ε): By Lemma 3.7.4 we know that (z∗)′(ε) exists
almost everywhere and that

∫ ε
0 (z∗)′(ξ)dξ ≤ z∗(ε)− z∗ <∞. By the integrability, we can hence

find a sequence (εn)n∈N ⊂ (0, 1) such that εn → 0 as n→∞ and for each εn it holds

(z∗)′(εn) < ε−1n (ζζζ − z∗ − δ1)

componentwise, where 0 < δ < ζr,α,β − (z∗)r,α,β for all (r, α, β) ∈ V and 1 = (1, . . . , 1) ∈ RV+.
This bound can be achieved with the same εn for each component, noting that the sum∑

(r,α,β)∈V ((z∗)r,α,β)′(ξ) which is still integrable. With

0 = f r,α,βε (z∗(ε)) = (1− ε)f r,α,β(z∗(ε)) + ε
(
E
[
W+,r,α1{A = β}

]
− (z∗)r,α,β(ε)

)
,

we then derive that

d

dε
f r,α,β(z∗(ε))

∣∣
ε=εn

= − 1

(1− εn)2

(
ζr,α,β − (z∗)r,α,β(εn)

)
+

εn
1− εn

d

dε
(z∗)r,α,β(ε)

∣∣
ε=εn

< − 1

1− εn

(
ζr,α,β − (z∗)r,α,β(εn)− εn

d

dε
(z∗)r,α,β(ε)

∣∣
ε=εn

)
< − 1

1− εn

(
(z∗)r,α,β + δ − (z∗)r,α,β(εn)

)
< 0

for n large enough such that (z∗)r,α,β(εn) < (z∗)r,α,β + δ. On the other hand,

d

dε
f r,α,β(z∗(ε))

∣∣
ε=εn

= Dv(εn)f
r,α,β(z∗(εn)) ≥ Dv(εn)f

r,α,β
εn (z∗(εn)),

where v(εn) := (z∗)′(εn). Hence altogether,

Dv(εn)f
r,α,β
εn (z∗(εn)) < 0.



3.7. Proofs 77

In fact, it also holds that

vr,α,β(εn) ≥ lim
h→0

E

[
W+,r,α1{A = β}P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γ(z∗)s,β,γ(εn + h)

)
< C

)]

≥ E

[
W+,r,α1{A = β}P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γζs,β,γ

)
< C

)]
> 0,

using that f r,α,βεn (z∗(εn)) = f r,α,βεn+h
(z∗(εn+h)) = 0. The proof is hence finished, if ẑ(εn) = z∗(εn).

Otherwise, note the following: For each δ > 0 it holds f r,α,βεn (ẑ(εn + δ)) < f r,α,βεn+δ
(ẑ(εn + δ)) = 0.

By monotonicity of f r,α,βεn from Lemma 3.2.1, we derive that z∗(εn) ≤ ẑ(εn + δ) ≤ z∗(εn + δ).
Hence as δ → 0, using z∗(εn+δ)→ z∗(εn) by Lemma 3.7.4, we conclude that ẑ(εn+δ)→ z∗(εn)

as δ → 0. Thus we derive that for δn > 0 small enough, it holds Dv(εn)f
r,α,β
εn+δn

(ẑ(εn+δn)) < 0 by

continuity of Dvf
r,α,β
ε (z) w. r. t. ε and z. Hence apply Proposition 3.7.2 to the financial systems

additionally shocked by εn + δn and choose vectors v(εn) for the directional derivative.

3.7.3 Proof of Theorem 3.2.4

In the previous section, we derived an explicit asymptotic expression for the final default fraction
if in our model we choose vertex-weights only from a finite set. While this gives a first important
insight into the behavior of large financial networks, it is not possible to model heavy tailed
degree distributions as observed for real financial networks by bounded vertex-weights. Theorem
3.2.4 hence extends Theorem 3.7.3 to the case of general (non-finitary) regular vertex sequences.

The outline for the rest of this section is the following: We want to approximate the general
regular vertex sequence by two sequences of finitary vertex sequences such that one of them de-
scribes a system that experiences less defaults and damage, and the other one experiences more
defaults and damage. To this end, we first construct the corresponding limiting distribution
functions {FAk }k∈N respectively {FBk }k∈N and then investigate the finitary systems with help of
Theorem 3.7.3.

Let D∞ :=
(
R[R]×[T ]
+,0

)2
×R+,0×N0× [T ] and for (r, α, β) ∈ V , (z,x,y, v, l,m) ∈ RV+,0×D∞,

hr,α,βf (z,x,y, v, l,m) := yr,αψl

( ∑
γ∈[T ]

x1,γz1,β,γ , . . . ,
∑
γ∈[T ]

xR,γzR,β,γ

)
1{m = β},

hg(z,x,y, v, l,m) := v
∑
β∈[T ]

ψl

( ∑
γ∈[T ]

x1,γz1,β,γ , . . . ,
∑
γ∈[T ]

xR,γzR,β,γ

)
1{m = β},

where as before ψl(x1, . . . , xR) := P(
∑

r∈[R] rPoi(xr) ≥ l). Note that although D∞ does not

contain
(
R[R]×[T ]
+,0

)2
× R+,0 × {∞} × [T ], it holds

f r,α,β(z) =

∫
D∞

hr,α,βf (z,x,y, v, l,m)dF (x,y, v, l,m)− zr,α,β

and

g(z) =

∫
D∞

hg(z,x,y, v, l,m)dF (x,y, v, l,m),

for F the limiting distribution of the weights, capital and type as given in Definition 3.1.2. This
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is because ψ∞(x1, . . . , xR) = 0. Let then Z := [0, ζζζ] and H := {hg} ∪
⋃

(r,α,β)∈V {h
r,α,β
f }.

As a first approximation of F , we choose the discretizations

FAj (x,y, v, l,m) := F

(
djxe
j

,
djye
j

,
djve
j
, l,m

)
, FBj (x,y, v, l,m) := F

(
bjxc
j

,
bjyc
j

,
bjvc
j
, l,m

)
for j ∈ N, where d·e and b·c shall be applied componentwise. That is, the sequences {FAj }j∈N
and {FBj }j∈N approximate F from above respectively below and the approximations become
finer as j increases. Since every h ∈ H is continuous in z, x, y and v, it is easy to obtain
(cf. [54]) that for each k ∈ N there exists jk large enough such that for all j ≥ jk it holds∣∣∣∣∫

Dk

h(z,x,y, v, l,m)dFA,Bj (x,y, v, l,m)−
∫
Dk

h(z,x,y, v, l,m)dF (x,y, v, l,m)

∣∣∣∣ ≤ k−1
for all z ∈ Z, where Dk := {(x,y, v, l,m) : xr,α ≤ k, yr,α ≤ k, v ≤ k, l ≤ k} ⊂ D∞. We denote

F
A
k := FAjk and F

B
k := FBjk in the following.

By construction, the distribution functions F
A,B
k clearly correspond to discrete weight and

systemic importance sequences that can be obtained from the original regular vertex sequence
by adjusting weights and systemic importance values upward respectively downward. However,

F
A,B
k (potentially) still assigns mass to infinitely many weights and capitals. For the case of

F
A
k , we can overcome this issue by setting

FAk (x,y, v, l,m) :=

{
F
A
k (x ∧ k,y ∧ k, v ∧ k, l ∧ k,m), if l <∞,

1, else,

where · ∧ k denotes componentwise truncation at k. That is, if the capital, the systemic im-
portance value or one of the weights of some bank in the system exceeds k (we call this bank
large in the following), then in the approximating finitary system described by FAk , this bank’s
weights and systemic importance value are all set to 0 and its capital is increased to ∞ (cf. [54]
for a rigorous definition of the approximating vertex sequences). Note that the type of each
bank stays the same. Clearly, this further reduces defaults in the system and the corresponding
systemic damage in the sense that if we couple the original system with the finitary approxi-
mating system, then the final systemic damage n−1(SAk )n is stochastically dominated by n−1Sn
for all k ∈ N.

If we wanted to apply exactly the same idea also to F
B
k , we would need to set all weights

and systemic importance values of large banks to∞, which is not possible by the definition of a
finitary regular vertex sequence. Still it will be possible to adjust weights, systemic importance
and capitals of large banks to finitely many values such that the final damage in the finitary
approximating system stochastically dominates n−1Sn. To this end, let

γβk :=

∫
Dck

1{m = β}dF (x,y, v, l,m),

where Dc
k := D∞\Dk, and

(wβk)r,α :=

2
(
γβk

)−1 ∫
Dck

yr,α1{m = β}dF (x,y, v, l,m) ≥ 2k, if γβk > 0,

2k, if γβk = 0,
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as well as

sβk :=

2
(
γβk

)−1 ∫
Dck

v1{m = β}dF (x,y, v, l,m) ≥ 2k, if γβk > 0,

2k, if γβk = 0.

Let then FBk be given by F
B
k on Dk. By this definition we know that it holds FBk (k, . . . , k, β) =

F (k, . . . , k, β) for each β ∈ [T ]. Moreover, let FBk assign the remaining mass γβk to the points

(0,wβ
k , s

β
k , 0, β). That is, if a large bank of type β originally has finite capital, then its approxi-

mated capital is set to 0 (it initially defaults), its in-weights are set to 0, its out-weights are set

to (wβk)r,α and its systemic importance is set to sβk (again cf. [54] for a rigorous definition of the
approximating vertex sequences). As before, their type does not change. Finally, we assign the
remaining mass P(A = β,C =∞) to the points (0,0, 0,∞, β) for each β ∈ [T ].

By construction, all large banks are initially defaulted in the approximating finitary sys-
tem. Also all the weights of small banks are increased as compared to the original system.
To show that there occurs more damage in the approximating system than in the original one
(i. e. n−1(SBk )n stochastically dominates n−1Sn), all that is left to show is that for each r ∈ [R]
the total r-out-weight of large β-type banks with respect to each type α ∈ [T ] in the approx-
imating system is larger than in the original one. But the total r-out-weight of large β-banks
with respect to type α is given by

n(wβk)r,α
(
γβk + o(1)

)
= 2n

∫
Dck

yr,α1{m = β}dF (x,y, v, l,m)(1 + o(1))

in the approximating system, whereas for the original system it is

n

∫
Dck

yr,α1{m = β}dF (x,y, v, l,m)(1 + o(1)).

Hence for each small bank i ∈ [n] the number of incoming r-edges from large banks in the
original system is stochastically dominated by the corresponding number in the approximating
system (for more details see [54]). In particular, the total exposure of i to the set of large banks
(the weighted sum of incoming edges) is stochastically dominated. This shows the following:

Lemma 3.7.5. Consider a regular vertex sequence and let sequences {FAk } and {FBk } be con-
structed as above. Further, let (SAk )n and (SBk )n be the total damage caused by finally defaulted
banks in the finitary approximating systems. Then with � denoting stochastic domination it
holds that

n−1
(
SAk
)
n
� n−1Sn � n−1

(
SBk
)
n
.

We have hence bounded the final damage n−1Sn from below and from above using finitary
approximations. We now want to compute the precise final damages for these approximating
systems using Theorem 3.7.3. Let(

fA,Bk

)r,α,β
(z) =

∫
D∞

hr,α,βf (z,x,y, v, l,m)dFA,Bk (x,y, v, l,m)− zr,α,β,

gA,Bk (z) =

∫
D∞

hg(z,x,y, v, l,m)dFA,Bk (x,y, v, l,m)

the corresponding analogues of f r,α,β and g. Further, denote by ẑAk and (z∗)Ak resp. ẑBk and

(z∗)Bk the smallest and largest joint roots of all functions
(
fAk
)r,α,β

resp.
(
fBk
)r,α,β

, (r, α, β) ∈ V .



80 Chapter 3. A Model for Default Contagion in Multi-type Financial Networks

Then we derive the following result comparing these quantities to the original system:

Lemma 3.7.6. It holds lim infk→∞ g
A
k

(
ẑAk
)
≥ g(ẑ) and lim supk→∞ g

B
k

(
(z∗)Bk

)
≤ g(z∗).

Proof. First note that uniformly for all z ∈ Z and h ∈ H it holds∣∣∣∣∫
Dk

h(z,x,y, v, l,m)dFA,Bk (x,y, v, l,m)−
∫
Dk

h(z,x,y, v, l,m)dF (x,y, v, l,m)

∣∣∣∣
=

∣∣∣∣∫
Dk

h(z,x,y, v, l,m)dF
A,B
k (x,y, v, l,m)−

∫
Dk

h(z,x,y, v, l,m)dF (x,y, v, l,m)

∣∣∣∣
≤ k−1 → 0, as k →∞.

Since further
∫
Dck
vdF → 0 and

∫
Dck
yr,α1{m = β}dF → 0, as k → ∞, and each h ∈ H is

bounded by the integrands v or yr,α1{m = β}, it holds uniformly for all z ∈ Z and h ∈ H that∫
Dck
hdF → 0. Together with

∫
Dck
hdFAk = 0, this implies∫

D∞

h(z,x,y, v, l,m)dFAk (x,y, v, l,m)−
∫
D∞

h(z,x,y, v, l,m)dF (x,y, v, l,m) = o(1)

(3.7.10)
uniformly for all z ∈ Z and h ∈ H.

For {FBk }k∈N, we further need to consider the term
∫
Dck
h(z,x,y, v, l,m)dFBk (x,y, v, l,m).

Thus∫
Dck

v dFBk (x,y, v, l,m) =
∑
β∈[T ]

sβkγ
β
k ,

∫
Dck

yr,α1{m = β}dFBk (x,y, v, l,m) = (wβk)r,αγβk .

All these quantities tend to 0 as k → ∞ (note that (wβk)r,αγβk = 2
∫
Dck
yr,α1{m = β}dF if

γβk > 0). Since each function h ∈ H is bounded by one of the (finitely many) integrands from
above, this implies that

∫
Dck
h(z,x,y, v, l,m)dFBk (x,y, v, l,m) → 0, as k → ∞, uniformly for

all z ∈ Z and h ∈ H. Therefore we can conclude that also uniformly for all z ∈ Z and h ∈ H,∫
D∞

h(z,x,y, v, l,m)dFBk (x,y, v, l,m)−
∫
D∞

h(z,x,y, v, l,m)dF (x,y, v, l,m) = o(1).

(3.7.11)
We now turn to the proof of the first statement: Let ε > 0 and define

Dε :=
⋂

(r,α,β)∈V

{z ∈ RV+,0 : f r,α,β(z) ∈ [0, ε]}.

Further let zε ∈ RV+,0 be defined by zr,α,βε := infz∈Dε z
r,α,β, (r, α, β) ∈ V . Then in particu-

lar, zε ≤ ẑ componentwise since ẑ ∈ Dε. Further, zε is clearly increasing componentwise as
ε→ 0. Hence the limit z̃ := limε→0 zε ≤ ẑ exists. Now note that for fixed (r, α, β) ∈ V , by

definition of zε, we find a sequence (zn)n∈N ⊂ Dε such that limn→∞ z
r,α,β
n = zr,α,βε and zn ≥ zε

componentwise. By monotonicity and uniform continuity of f r,α,β on Dε, we then get

f r,α,β(zε) ≤ f r,α,β(z1,1,1n , . . . , zr,α,βε , . . . , zR,T,Tn ) = f r,α,β(zn) + o(n) ≤ ε+ o(n)

and hence f r,α,β(zε) ≤ ε. Again by continuity of f r,α,β, we obtain f r,α,β(z̃) = limε→0 f
r,α,β(zε) ≤

limε→0 ε = 0. Replacing ẑ by z̃ in the proof of Lemma 3.2.2, we now get the existence of a
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joint root z̄ ≤ z̃ of all the functions f r,α,β, (r, α, β) ∈ V . Since ẑ is the smallest joint root
by definition, it thus follows that z̃ = ẑ. Now note that by (3.7.10) for k large enough we
derive that (fAk )r,α,β(z) ≥ f r,α,β(z) − ε for all z ∈ Z. Further, by construction of FAk , it
holds that (fAk )r,α,β(z) ≤ f r,α,β(z). In particular, we can conclude that ẑAk ∈ Dε for k large
enough and hence ẑAk ≥ zε. Thus, for each ε > 0 by (3.7.10) we derive lim infk→∞ g

A
k (ẑAk ) ≥

limk→∞ g
A
k (zε) = g(zε). Finally, using continuity of g and limε→0 zε = ẑ, we get the first

statement:
lim inf
k→∞

gAk (ẑAk ) ≥ g(ẑ)

If now as in the proof of Theorem 3.7.3 z∗(ε) is the largest joint root of the additionally

shocked system, we derive by (3.7.11) that for k large enough it holds
(
fBk
)r,α,β

(z∗(ε)) ≤
f r,α,β(z∗(ε))/2 < 0 for all (r, α, β) ∈ V and hence (z∗)Bk ≤ z∗(ε) componentwise. (Assume
E[W+,r,α1{A = β}] > 0 for all (r, α, β) ∈ V such that f r,α,β(z∗(ε)) < 0. Otherwise, we can
simply leave out the coordinates zr,α,β in all the proof since the (r, α, β)-coordinate of all joint
roots will be 0.) Again by (3.7.11), we then derive

lim sup
k→∞

gBk
(
(z∗)Bk

)
≤ lim

k→∞
gBk (z∗(ε)) = g(z∗(ε))

and by letting ε→ 0,
lim sup
k→∞

gBk
(
(z∗)Bk

)
≤ g(z∗).

Proof of Theorem 3.2.4. Let ε > 0. By Lemma 3.7.5, we obtain

P
(
n−1Sn − g(ẑ) < −ε

)
≤ P

(
n−1

(
SAk
)
n
− g(ẑ) < −ε

)
.

Further, by Lemma 3.7.6, for k large enough, we have gAk (ẑAk ) > g(ẑ)− ε/2 and hence

P
(
n−1Sn − g(ẑ) < −ε

)
≤ P

(
n−1

(
SAk
)
n
− gAk (ẑAk ) < −ε/2

)
.

Applying Theorem 3.7.3 to the finitary system, as n→∞ we derive P
(
n−1Sn − g(ẑ

)
< −ε)→ 0,

which shows the first part of the theorem.

Similarly, for the second part, by Lemma 3.7.5

P
(
n−1Sn − g(z∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− g(z∗) > ε

)
and by Lemma 3.7.6, for k large enough it holds that gBk ((z∗)Bk ) < g(z∗) + ε/2. Hence an
application of Theorem 3.7.3 yields that

P
(
n−1Sn − g(z∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− gBk ((z∗)Bk ) >

ε

2

)
→ 0, as n→∞.

3.7.4 Proofs for Section 3.3

Proof of Theorem 3.3.2. Let γ ∈ (0, 1) and define

(fγ)r,α,β(z) := (1− γ)f r,α,β(z) + γ
(
ζr,α,β − z

)
.

Further, let

P γ :=
⋂

(r,α,β)∈V

{z ∈ RV+,0 : (fγ)r,α,β(z) ≥ 0}
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and denote by P γ0 the largest connected component of P γ containing 0. Finally, define z∗(γ)
by

(z∗)r,α,β(γ) := sup
z∈P γ0

zr,α,β.

By the proof of Lemma 3.7.4 we know that z∗(γ)→ 0, as γ → 0, and hence also g(z∗(γ))→ 0,
using continuity of g. Choose now γ > 0 small enough such that g(z∗(γ)) ≤ ε/3 and δ > 0
small enough such that (fM )r,α,β(z) < (fγ)r,α,β(z) uniformly for all 0 ≤ z ≤ ζ componentwise
and P(M = 0) < δ. Then in particular (z∗)M ≤ z∗(γ) and g((z∗)M ) ≤ g(z∗(γ)) ≤ ε/3.

If we now possibly decrease δ such that δ ≤ ε/3, then by Theorem 3.2.4, we derive for the
final damage caused by defaulted banks in the shocked system n−1SMn that w. h. p.

n−1SMn ≤ gM ((z∗)M ) + ε/3 ≤ g((z∗)M ) + 2ε/3 ≤ ε.

Proof of Lemma 3.3.5. Let P0(ε, I) denote the largest connected subset of

P (ε, I) :=
⋂

(r,α,β)∈V

{
z ∈ RV+,0 : f r,α,β(z) ≥ −ε1{(r, α, β) ∈ I}

}
containing 0. Then by replacing P0 in the proof of Lemma 3.2.2 with P0(ε, I), we obtain
existence of a smallest (componentwise) point ẑ(ε, I) ∈ RV+,0 such that f r,α,β(ẑ(ε, I)) = −ε for

(r, α, β) ∈ I and f rα,β(ẑ(ε, I)) = 0 for (r, α, β) ∈ V \I. In particular, ẑ(ε, I) ∈ P0(ε, I). Let now

T (ε, I) :=
⋂

(r,α,β)∈V

{
z ∈ RV+,0 : f r,α,β(z) ≤ −ε1{(r, α, β) ∈ I}

}
.

Then clearly ẑ(ε, I) ∈ T (ε, I). Further, in the proof of the existence of ẑ(ε, I) we can use any
upper bound z ∈ T (ε, I), which shows that ẑ(ε, I) ≤ z componentwise. In particular, ẑ(ε, I) is
monotone in ε and therefore z̃(I) := limε→0+ ẑ(ε, I) exists.

Let now z̄ ∈ T (I) arbitrary. Then there exists a sequence (zk)k∈N ⊂ RV+,0 with f r,α,β(zk) < 0

for (r, α, β) ∈ I respectively f r,α,β(zk) ≤ 0 for (r, α, β) ∈ V \I such that limk→∞ zk = z̄. By
finiteness of I, we can then find εk > 0 such that f r,α,β(zk) ≤ −εk1{(r, α, β) ∈ I} for any
(r, α, β) ∈ V and k ∈ N. In particular, zk ∈ T (εk, I) and hence zk ≥ ẑ(εk, I) ≥ z̃. As k → ∞,
we can thus conclude that z̃ ≤ z̄ for any z̄ ∈ T (I) and hence z̃ ≤ z0(I). On the other hand,
z̃(I) ∈ T (I) by definition and therefore z̃(I) = z0(I).

Finally, note that

z0(I) = lim
ε→0+

ẑ(ε, I) ∈
⋂
ε>0

P0(ε, I) = P0,

where the last equality follows from
⋂
ε>0 P0(ε, I) ⊂ P and that

⋂
ε>0 P0(ε, I) must be a con-

nected set containing 0 since P0(ε, I) is a chain of connected, compact sets containing 0.

Proof of Theorem 3.3.6. Let ẑM denote the analogue of ẑ for the ex post shocked system. Then

f r,α,β(ẑM ) + E

[
W+,r,αP

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

W−,s,γ(ẑM )s,β,γ

)
≤ C − 1

)
1{A = β}1{M = 0}

]
= (fM )r,α,β(ẑM ) = 0

and hence f r,α,β(ẑM ) ≤ 0 with equality if and only if E[W+,r,α1{A = β}1{M = 0}] = 0. Define
now

ε := − max
(r,α,β)∈I

f r,α,β(ẑM ) > 0,
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so that ẑM ∈ T (ε, I), where T (ε, I) as in the proof of Lemma 3.3.5. In the construction of
ẑ(ε, I) (see Lemma 3.3.5), we can then use the upper bound ẑM and obtain that ẑ(ε, I) ≤ ẑM
and hence ẑM ≥ z0(I). We can then apply Theorem 3.2.4 to conclude that

lim
n→∞

P
(
n−1SMn < g(z0(I))− ε

)
≤ lim

n→∞
P
(
n−1SMn < g

(
ẑM
)
− ε
)

= 0

and hence n−1SMn ≥ g(z0(I))− ε w. h. p.

Proof of Lemma 3.3.7. By Lemma 3.3.5 clearly z0(Ṽ ) ≤ z∗. Assume now that z0(Ṽ ) � z∗.

Then for some (r, α, β) ∈ Ṽ it must hold zr,α,β0 (Ṽ ) < (z∗)r,α,β and by the construction of z0(Ṽ )

in the proof of Lemma 3.3.5 we can find ε > 0 such that zr,α,β0 (Ṽ ) ≤ ẑr,α,β(ε, Ṽ ) < (z∗)r,α,β.
Now by the definition of z∗ and connectedness of P0, we find a point P0 3 z̃ ≤ ẑ(ε, Ṽ ) such
that z̃r,α,β = ẑr,α,β(ε, Ṽ ). But then f r,α,β(z̃) ≤ f r,α,β(ẑ(ε, Ṽ )) = −ε < 0 which contradicts
z̃ ∈ P0.

3.7.5 Proofs for Sections 3.4 and 3.5

Proof of Proposition 3.4.1. Consider the case that νβ < 1. We start with the upper bound and
first derive a certain Chernoff bound. To this end, let {λs}s∈[R] ⊂ R+,0 and c ≥

∑
s∈[R] sλ

s.
Then using Markov’s inequality, we compute for a sum of independent Poisson random variables
and arbitrary θ ≥ 0 that

P

( ∑
s∈[R]

sPoi(λs) ≥ c

)
= P

(
exp

{
θ
∑
s∈[R]

sPoi(λs)

}
≥ eθc

)
≤ e−θc

∏
s∈[R]

E

[
exp

{
θsPoi(λs)

}]

= e−θc
∏
s∈[R]

exp
{
λs
(
eθs − 1

)}
≤ e−θc

∏
s∈[R]

exp

{
sλs

R

(
eθR − 1

)}
.

This expression is minimized for θ∗ = R−1(log c− log(
∑

s∈[R] sλ
s)) ≥ 0 and thus

P

( ∑
s∈[R]

sPoi(λs) ≥ c

)
≤ exp

{
R−1

(
c log

(
e
∑

t∈[R] tλ
t

c

)
−
∑
s∈[R]

sλs

)}
. (3.7.12)

Let now µ, h ∈ R+, 0 ≤ ν < 1 and {ds}s∈[R] ⊂ R+,0. Moreover, set λs = hds, d =
∑

s∈[R] sd
s

and c = dµdνe. Then for d ≤ (hµ−1)
1

ν−1 and ω(u) := u− µuν log(eµ−1u1−ν),

P

( ∑
s∈[R]

sPoi(hds) ≥ c

)
≤ exp

{
−h

ν
ν−1ω

(
dz

1
1−ν
)
R−1

}
.

Let now δ > 0 arbitrary. Then for d̃ large enough and d̃ < d ≤ ((1 + δ)ehµ−1)
1

ν−1 , we derive

P

( ∑
s∈[R]

sPoi(hds) ≥ c

)
≤
(
edh

µdν

)µdν

R

≤
(
edh

µdν

)2

(1 + δ)2−R
−1µdν ≤ h2 = o(h). (3.7.13)

Also for ((1 + δ)ehµ−1)
1

ν−1 < d ≤ ((1 + δ)hµ−1)
1

ν−1 , we obtain

P

( ∑
s∈[R]

sPoi(hds) ≥ c

)
≤ exp

{
−h

ν
ν−1k

}
= o(h), (3.7.14)
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where

k := min
{
ω(u) :

(
(1 + δ)eµ−1

) 1
ν−1 ≤ u ≤

(
(1 + δ)µ−1

) 1
ν−1

}
> 0.

Finally, for d ≤ d̃ and c ≥ R+ 1, we compute

P

∑
s∈[R]

sPoi(hds) ≥ c

 ≤ P
∑
s∈[R]

sPoi(hds) ≥ R+ 1

 ≤ P
Poi

h ∑
s∈[R]

ds

 ≥ R+ 1

R


≤ P (Poi(hd) ≥ 2) ≤ h2d2 ≤ h2d̃2 = o(h). (3.7.15)

Combining (3.7.13), (3.7.14) and (3.7.15), we can thus conclude that

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γvs,β,γh

 ≥ C(v)

1{A = β}

×1

E(v) ≤

(
(1 + δ)h‖v‖νβ

µβ

) 1

νβ−1


 = o(h)

and hence

f r,α,β(hv) ≤ o(h) + E

W+,r,α1{A = β}1

E(v) ≤

(
(1 + δ)h‖v‖νβ

µβ

) 1

νβ−1


− hvr,α,β.

In particular, this yields

lim sup
h→0+

h−1f r,α,β(hv)

≤ lim sup
h→0+

h−1E

W+,r,α1{A = β}1

E(v) >

(
(1 + δ)h‖v‖νβ

µβ

) 1

νβ−1


− vr,α,β

= (1 + δ)‖v‖ lim sup
h→0+

h−1E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]
− vr,α,β

and letting δ → 0 ends the proof of the upper bound.

For the lower bound, a similar calculation as above yields that for c − 1 ≤
∑

s∈[R] sλ
s and

θ ≤ 0, it holds

P

∑
s∈[R]

sPoi(λs) ≤ c− 1

 ≤ e−θ(c−1) ∏
s∈[R]

exp
{
sλs

(
eθ − 1

)}
and minimizing over θ we derive

P

∑
s∈[R]

sPoi(λs) ≤ c− 1

 ≤ exp

(c− 1) log

(
e
∑

t∈[R] tλ
t

c− 1

)
−
∑
s∈[R]

sλs

 .

Let now δ > 0 arbitrary. Then for c − 1 ≤ (1 − δ)
∑

s∈[R] sλ
s and

∑
s∈[R] sλ

s large enough it
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holds

P

∑
s∈[R]

sPoi(λs) ≤ c− 1

 ≤ exp


(

(1− δ) log

(
e

1− δ

)
− 1

) ∑
s∈[R]

sλs

 ≤ δ.
In particular,

lim inf
h→0+

h−1f r,α,β(hv)

≥ (1− δ) lim inf
h→0+

h−1E

W+,r,α1{A = β}1

E(v) >

(
(1− δ)h‖v‖νβ

µβ

) 1

νβ−1


− vr,α,β

= (1− δ)2‖v‖ lim inf
h→0+

h−1E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]
− vr,α,β

and letting δ → 0 ends the proof for νβ < 1.

Consider now the case that νβ ≥ 1. Clearly, lim infh→0 h
−1f r,α,β(hv) ≥ −vr,α,β by the

definition of f r,α,β. For the upper bound, let µ ∈ R+, ν ≥ 1, {ds}s∈[R] ⊂ R+,0, d̃ > (R/µ)1/ν

and h ≤ µd̃ν−1/e. Moreover, set λs = hds, d =
∑

s∈[R] sd
s and c = dµdνe. Then for d ≥ d̃, by

(3.7.12) we derive

P

∑
s∈[R]

sPoi(λs) ≥ c

 ≤ exp

{
R−1

(
µdν log

(
ehd

µdν

)
− hd

)}
≤
(

eh

µd̃ν−1

)µd̃ν

R

= o(h).

Together with (3.7.15) for d ≤ d̃, we conclude that for all d ≥ 0,

P

∑
s∈[R]

sPoi(λs) ≥ c

 ≤ ( eh

µd̃ν−1

)µd̃ν/R
+ h2d̃ 2

and hence f r,α,β(hv) ≤ o(h)− vr,α,β . In particular, this yields

lim sup
h→0

h−1f r,α,β(hv) ≤ −vr,α,β

and ends the proof.

Proof of Proposition 3.4.2. For νβ ≥ 1, this is just the result from Proposition 3.4.1. Therefore,
assume that νβ < 1 in the following.

For any fixed δ > 0, we find ũ ≥ 0 large enough such that for u ≥ ũ it holds

1− (1 + δ)

(
u

w+,r,α,β
min

)1−k+,r,α,β

≤ FW+,r,α|A=β
(u) ≤ 1− (1− δ)

(
u

w+,r,α,β
min

)1−k+,r,α,β

and

1− (1 + δ)

(
u

eβmin(v)

)1−k−,β

≤ FE(v)|A=β
(u) ≤ 1− (1− δ)

(
u

eβmin(v)

)1−k−,β

.
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Thus for h large enough

E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]

=

∫ ∞
0
P

(
W+,r,α > y,A = β,E(v) > ‖v‖

(
h

µβ

) 1

νβ−1

)
dy

≤
∫ ũ

0
P

(
A = β,E(v) > ‖v‖

(
h

µβ

) 1

νβ−1

)
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+

∫ ∞
ũ
P

FW+,r,α|A=β

(
W+,r,α
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A=β

)
> 1− (1 + δ)

(
y

w+,r,α,β
min

)1−k+,r,α,β

,

FE(v)|A=β

(
E(v)
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A=β

)
> 1− (1 + δ)p(h)

)
dy P(A = β)

≤
∫ ũ

0
P(A = β)P

(
E(v)

∣∣
A=β

> ‖v‖
(
h

µβ

) 1

νβ−1

)
dy

+

∫ ∞
ũθ−1(h)

P
(
FW+,r,α|A=β

(
W+,r,α
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A=β

)
> 1− (1 + δ)p(h)x1−k

+,r,α,β
,

FE(v)|A=β

(
E(v)
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A=β

)
> 1− (1 + δ)p(h)

)
dx θ(h)P(A = β)

≤ ũ(1 + δ)eβmin(v)‖v‖1−k−,β
(
h

µβ

) 1−k−,β

νβ−1

+

∫ ∞
0
P
(
FW+,r,α|A=β

(
W+,r,α

∣∣
A=β

)
> 1− (1 + δ)p(h)x1−k

+,r,α,β
∣∣∣

FE(v)|A=β

(
E(v)

∣∣
A=β

)
> 1− (1 + δ)p(h)

)
dx θ(h)P(A = β)(1 + δ)p(h)

= o(h) +

(∫ ∞
0

Λr,α,β
(
x1−k

+,r,α,β
)

dx+ o(1)

)

× P(A = β)w+,r,α,β
min

(
‖v‖

eβmin(v)

(
h

µβ

) 1

νβ−1

)νr,α,βc −1

(1 + δ)

where

p(h) =

(
‖v‖

eβmin(v)

(
h

µβ

) 1

νβ−1

)1−k−,β

,

we substituted y = θ(h)x with

θ(h) = w+,r,α,β
min (p(h))

1

1−k+,r,α,β ,

and in the last line we used dominated convergence noting that (bounding by comonotone

dependence) Λr,α,β(x1−k
+,r,α,β

) ≤ 1 ∧ x1−k+,r,α,β which is integrable as k+,r,α,β > 2.

In particular, with Proposition 3.4.1, we derive that lim suph→0+ h
−1f r,α,β(hv) ≤ −vr,α,β

for 1 > νβ > νr,α,βc , and for νβ = νr,α,βc as δ → 0,

lim sup
h→0+

h−1f r,α,β(hv) ≤

(
µr,α,βc

µβ
− 1

)
vr,α,β
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For the lower bounds, similarly as above

E

[
W+,r,α1{A = β}1

{
E(v)

‖v‖
>

(
h

µβ

) 1

νβ−1

}]

≥
∫ ∞
ũθ−1(h)

P
(
FW+,r,α|A=β

(
W+,r,α

∣∣
A=β

)
> 1− (1− δ)p(h)x1−k

+,r,α,β
∣∣∣

FE(v)|A=β

(
E(v)

∣∣
A=β

)
> 1− (1− δ)p(h)

)
dx θ(h)P(A = β)(1− δ)p(h)

≥
(∫ ∞

0
Λr,α,β

(
x1−k

+,r,α,β
)

dx+ o(1)

)

× P(A = β)w+,r,α,β
min

(
‖v‖

eβmin(v)

(
h

µβ

) 1

νβ−1

)νr,α,βc −1

(1− δ),

additionally noting that the lower integral bound ũθ−1(h) = o(1). Thus by Proposition 3.4.1,

we conclude that for νβ < νr,α,βc ,

lim inf
h→0+

h−1f r,α,β(hv) =∞,

for νβ = νr,α,βc as δ → 0,

lim inf
h→0+

h−1f r,α,β(hv) ≥

(
µr,α,βc

µβ
− 1

)
vr,α,β

and obviously for νβ > νr,α,βc ,

lim inf
h→0+

h−1f r,α,β(hv) ≥ −vr,α,β.

Proof of Theorem 3.4.6. Denote by f r,α,βε , (r, α, β) ∈ V , the functions for the system shocked
by Mε. Then

f r,α,βε (hv) ≤ f r,α,β(hv) + E
[
W+,r,α1{A = β}1{Mε = 0}

]
≤ −h+ o(h)

B
vr,α,β + εvr,α,β.

In particular, choosing h = (1 + δ)Bε for some arbitrary δ > 0, we derive

f r,α,βε ((1 + δ)Bεv) ≤ (−δε+ o(ε))vr,α,β.

For ε > 0 small enough, this expression becomes negative and thus it holds z∗ε ≤ (1 + δ)Bεv.
Finally, we can let δ → 0 to finish the proof.

Proof of Theorem 3.5.2. The idea is similar as in Theorem 2.1.5. We consider the contagion
process in sequential form, i. e. for steps 0 ≤ t ≤ n− 1 we let

a. U(t) ⊂ [n] be the unexposed institutions at step t with U(0) := {i ∈ [n] : ci = 0},

b. N(t) ⊂ [n] the solvent institutions at step t with N(0) := [n]\U(0),

c. the updated capitals {c̃i(t)}i∈[n] with c̃i(0) := ci for all i ∈ [n]

and at step t ∈ [n− 1] we update those sets and quantities as follows:
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1. We choose an institution v ∈ U(t− 1) according to any rule.

2. We expose v to all of its solvent creditors in N(t− 1) by setting

c̃w(t) := max{0, c̃w(t− 1)− ev,w}.

3. We let N(t) := {i ∈ N(t − 1) : c̃i(t) > 0} the new set of solvent institutions and
U(t) := (U(t− 1)\{v})∪ {i ∈ N(t− 1) : c̃i(t) = 0} the new set of unexposed institutions.

Then the rule chosen in Step 1. determines an ordering for the defaults (exposition) of all
institutions and thus also an ordering of the exposure list {Ej,ri }j∈[n]\{i},r∈[R] where unused

exposures Ej,ri are moved to the end of this ordered list if r > r(j, i). The ordering of the unused
exposures can be chosen arbitrarily. Let then {Esi }s∈[(n−1)R] be the ordered enumeration of i’s
exposure list. In particular, the random variable

pi = inf

p ∈ {0} ∪ [(n− 1)R] :
∑

1≤s≤p
Esi ≥ ci

 (3.7.16)

can be interpreted as a threshold in the sense of Section 3.1 (there called capital) since equiv-
alently to c. we can keep track of updated thresholds p̃i(t) with p̃i(0) = pi and in Steps
2. and 3. we set p̃w(t) = max{0, p̃w(t − 1) − r(v, w)}, N(t) = {i ∈ N(t − 1) : p̃i(t) > 0}
and U(t) = (U(t− 1)\{v}) ∪ {i ∈ [n] : p̃i(t) = 0}. Conditioning on {pi}i∈[n] we are thus in the
setting of Section 3.2 – note in particular that pi defined in (3.7.16) has the same distribution as
qi in Section 3.5 and thus by Assumption 3.5.1 the conditioned threshold system almost surely
defines a regular vertex sequence according to Definition 3.1.2 with a fixed deterministic limiting
distribution function. An application of Theorem 3.2.4 thus shows the desired result.

Proof of Corollary 3.5.5. By the proof of Proposition 3.4.2 all we need to show is

E

[
W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γhvs,β,γ

 ≥ R+ 1


× 1

{
Q ≤ (1 + ε)µβc

(
E(v)

‖v‖

)νβ}
1{A = β}

]
= o(h).

But this follows by exactly the same means as in the proof of Theorem 2.2.15, replacing W−

by ‖v‖−1E(v) and noting that in the present setting

ψR+1

∑
γ∈[T ]

w−,1,γhv1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γhvR,β,γ

 = o(h).



Chapter 4

A Model for Fire Sales in Financial
Networks

In the previous chapters, we gave a detailed analysis of the contagion channel default contagion.
As the latest financial crisis revealed, however, system instability is driven by multiple different
channels and fire sales are of particular importance. In this chapter, we thus propose a model
for the contagion effects due to distressed asset sales. We choose similar techniques as in the
previous chapters and adopt in particular the asymptotic perspective which will allow us later
in Chapter 5 to integrate our models into one. Similar as in Chapter 3 financial systems are
described by a set of multi-dimensional functions. One of the biggest challenges, however, is
connected to the fact that these functions can become discontinuous. We first derive results
about the final default fraction and the final price impact in a system hit by some initial shock
in Section 4.1, and then derive criteria for whether some initially unshocked system is vulnerable
to small shocks as well as formulas for capital requirements sufficient to secure the system in
Section 4.2. In Section 4.3, we apply our theory to investigate positive and negative effects of
asset diversification in financial systems and demonstrate the benefits of our systemic capital
requirements compared to the classical risk management approach. Proofs are postponed to
Section 4.4.

My own contribution: This chapter strongly resembles joint work with Nils Detering, Thilo
Meyer-Brandis and Konstantinos Panagiotou [58]. I was significantly involved in the develop-
ment of all parts of that paper and did much of the editorial work. In particular, I made major
contributions to the design of the model and the contagion process, Lemma 4.1.1, Proposition
4.1.2, Lemma 4.1.4, Theorem 4.1.5, Examples 4.1.6 and 4.1.7, Theorem 4.2.2, Corollary 4.2.3,
Theorem 4.2.5, Corollaries 4.2.6, 4.2.7, 4.2.8 and 4.2.9, Examples 4.3.1 and 4.3.2, Subsection
4.3.2, Remark 4.4.1, and Lemma 4.4.2. Whereas in [58] the final default fraction was chosen as
the systemic risk measure, here we include general systemic importance values as in the previous
chapters.

4.1 A Model for Fire Sales

In this section, we define two models of fire sales. The first considers an explicitly given finite
system of financial institutions and the second takes a stochastic, asymptotic perspective. We
first describe the parameters and assumptions and then determine the final state of the system
after the fire sales cascade has ended both in the deterministic as well as in the stochastic
setting.
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Figure 4.1: An illustration of a system with n = 6 financial institutions (circles) and M = 3
assets (squares). Edges represent investments of the institutions in the assets and their thickness
indicates the investment volume xmi . Furthermore, capitals ci are attached to the institutions.

Model parameters We consider a financial system consisting of n ∈ N institutions which
can invest in M ∈ N different (not perfectly liquid) assets or asset classes. That is, to each
institution i ∈ [n] := {1, . . . , n} we assign a number xmi ∈ R+,0 of held shares of asset m ∈ [M ]
(or any other index set of size M). See Figure 4.1 for an illustration. Further, we denote by
ci ∈ R+,∞ := R+ ∪ {∞} the initial capital of institution i (for example the equity for leveraged
institutions or the portfolio value for institutions that exclusively invest in assets) and we assume
that it incurs exogenous losses `i ∈ R+,0 due to some shock event. In the case of a market crash
for instance, it could be that `i =

∑
1≤m≤M xmi δ

mpm, where pm denotes the initial price of one
share of asset m ∈ [M ] and δm ∈ (0, 1] is the relative price shock on the asset. Finally, assign to
each institution a value of systemic importance si ∈ R+,0 that measures the potential damage
to economy and society in the case that institution i defaults (see Chapter 2 for more details).
Let then the empirical distribution function Fn : RM+,0 × R+,0 × R+,∞ × R+,0 → [0, 1] of the
institutions’ parameters be denoted by

Fn(x, s, c, `) = n−1
∑
i∈[n]

1{x1i ≤ x1, . . . , xMi ≤ xM , si ≤ s, ci ≤ c, `i ≤ `} (4.1.1)

and let in the following (Xn, Sn, Cn, Ln) be a random vector with distribution Fn.

Asset sales We assume that due to the exogenous losses some of the institutions are forced
to liquidate parts of their asset holdings in order to comply with regulatory or market-imposed
constraints (e. g. leverage constraints), self-imposed risk preferences and policies to adjust the
portfolio size, or to react to investor redemption. These sales are described by a non-decreasing
function ρ : R+,0 → [0, 1] such that each institution i ∈ [n] incurring a loss of Λ sells xmi ρ(Λ/ci)
of its shares of asset m. The fraction Λ/ci describes the relative loss of institution i measured
against its initial equity. It is hence sensible to assume that

ρ(0) = 0, ρ(u) ≤ 1 and ρ(u) = ρ(1) for all u ≥ 1.

If at default of an institution the whole portfolio is to be liquidated, then ρ(1) = 1. In general,
however, the remaining assets at default may be frozen by the insolvency administrator and
only be sold to the market on a longer time scale. In this case, ρ(1) ∈ [0, 1). Our assumptions
on ρ are rather mild and allow for a flexible description of various scenarios. Some concrete
examples for sales functions ρ are as follows:
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• The perhaps simplest non-trivial example is ρ(u) = 1{u ≥ 1}. It describes complete
liquidation of the portfolio at default (if the institution is leveraged) resp. dissolution.

• A more involved example can be derived from a leverage constraint that prohibits an
institution from investing more money into risky assets than a certain multiple λmax ≥ 1
of its capital/equity. In the one-asset case this means that xp/c =: λ ≤ λmax, where x
denotes the number of shares held, p is the price per share and c denotes the institution’s
capital. Assume now that while the asset price p stays constant, the institution suffers an
exogenous shock ` and c is reduced to c̃ = c− `.

– If ` ≤ (1 − λ/λmax)c, then the leverage constraint xp/c̃ ≤ λmax is satisfied and no
reaction is required by the institution.

– However, if ` > (1 − λ/λmax)c, then the institution must divest some of its shares;
suppose that it sells δx of them, for some 0 < δ ≤ 1. In order for the leverage
constraint (1− δ)xp/c̃ ≤ λmax to hold, it is easy to verify that δ ≥ 1− (1− `

c)
λmax
λ .

The relative asset sales are hence given by ρ(`/c), where ρ(u) := (1 − (1 − u)λmax/λ)+

for u ∈ [0, 1]; this amounts to linear sales (with respect to the losses) once the threshold
1− λλ−1max is reached.

• Taking an alternative route in the previous example, suppose that the loss of the institution
stems only from a price change p→ p̃ < p, which reduces the capital to c̃ = c−x(p− p̃). If
p̃ ≥ p(1− 1

λ)/(1− 1
λmax

), then no action is required to comply with the leverage constraint.

In the remaining cases, the institution must sell a fraction of 1− λmax + λmax
p
p̃(1− 1

λ) of

its assets, and we obtain ρ(u) = (1− λmax(1− u)/(λ− u))+ for u ∈ [0, 1].

• Finally, it can be shown that for price changes combined with exogenous losses the sale
function is bounded from above and below by the two previous cases. Leverage constraints
hence imply a sale function which is 0 below a certain threshold and then grows linearly.

The actual reasoning behind asset sales is in general more complex than the presented exam-
ples, and this is why we consider a general sale function ρ in this thesis. A natural assump-
tion is that ρ is right-continuous. By replacing ρ(u) with its right-continuous modification
ρ(u) := limε→0+ ρ((1 + ε)u) throughout this chapter, our results become applicable also for ar-
bitrary (not right-continuous) sale functions ρ. Finally, denote by

◦
ρ(u) := limε→0+ ρ((1 − ε)u)

the left-continuous modification of ρ.

Let us remark that more generally we may choose different sale functions ρm for all as-
sets m ∈ [M ]. It is then possible to replace the scalar function ρ(u) by the diagonal matrix
diag(ρ1(u), . . . , ρM (u)) in all the following considerations. Further, we may partition the set
of institutions into different types (banks, insurance companies, hedge funds, . . . ) and choose
different ρ or ρm for each type. Finally, our proofs in this chapter also work for other arguments
than Λ/ci for ρ (where Λ are the losses), but for simplicity we stick to this particular form.

Price impact Since the assets are not perfectly liquid (the limit order book has finite depth),
the sales of shares triggered by the exogenous shock cause prices to go down. This on the
other hand causes losses for all the institutions invested in the assets due to mark-to-market
accounting. We model the price loss of assetm ∈ [M ] by a continuous function hm : RM+,0 → [0, 1]

which is non-decreasing in each coordinate. That is, if y = (y1, . . . , yM ) ∈ RM+,0 and nym shares
of asset m have been sold in total, then we assume that the price of the asset m drops by
hm(y); hence each institution i ∈ [n] suffers losses of xi · h(y), where xi := (x1i , . . . , x

M
i ) and

h(y) = (h1(y), . . . , hM (y)).
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Two remarks are appropriate. First, note the relative parametrization with the number of
institutions n, where we assumed that nym (instead of ym) shares of asset m are sold. For
fixed n this is arbitrary; however, when we later consider the stochastic model (see Assumption
4.1.3), this parametrization will turn out to be rather convenient to state our results.

Further note that xi ·h(y) usually only describes an upper bound on institution i’s losses at
the time that y shares were sold, since in general i might already have sold parts of its shares at
an earlier time and thus higher prices. Our model is in this sense conservative and also incorpo-
rates implementation losses (price changes for the particular trade itself) by selling institutions.
Further, this will allow for explicit analytic results in the following. It is an interesting question
for future research to extend the model so that it also accounts for intermediate sales.

Fire sales The fire sales process that we consider is described by the combination of the
previous two ingredients. Triggered by some exogenous event the institutions start selling a
portion of their assets hence driving down prices. Due to mark-to-market effects, however, this
means that institutions experience further losses and are forced into further sales. This iterative
process continues until the system stabilizes and no further sales, losses and price changes occur.

4.1.1 Fire Sales – The Deterministic Model

In this section, we provide a complete description of the final state of the system after the
fire sales process is completed. We are interested in the vector χn of the number of finally
sold shares divided by n after the fire sales process and hence the final price impact hm(χn)
on any asset m ∈ [M ]. Further, for leveraged institutions such as banks or hedge funds, it
makes sense to consider also the the size of the set of finally defaulted institutions Dn and more
generally the damage Sn =

∑
i∈Dn si caused by their default. Given χn, we readily obtain that

Dn := {i ∈ [n] : `i + xi · h(χn) ≥ ci} and hence

n−1Sn = n−1
∑
i∈[n]

si1{`i + xi · h(χn) ≥ ci} = E [Sn1 {Ln +Xn · h(χn) ≥ Cn}] . (4.1.2)

Note that for the special case of si = 1 for all i ∈ [n] considered in [58], Sn = |Dn| and by our
results below we can thus also make statements about the final default fraction n−1|Dn|.

In order to derive χn we first consider the special case that the sale function ρ is continuous.
We consider the fire sales process in rounds, where in each round institutions react to the price
changes from the previous round. Denote by σ(k) = (σ1(k), . . . , σ

M
(k)) the vector of cumulatively

sold shares in round k. For k = 1, we readily obtain

σ(1) =
∑
i∈[n]

xiρ

(
`i
ci

)
= nE

[
Xnρ

(
Ln
Cn

)]
.

Similarly, in round k ≥ 2,

σ(k) =
∑
i∈[n]

xiρ

(
`i + xi · h(n−1σ(k−1))

ci

)
= nE

[
Xnρ

(
Ln +Xn · h(n−1σ(k−1))

Cn

)]
. (4.1.3)

Thus, by induction (σ(k))k∈N is non-decreasing componentwise and bounded by nE[Xn]. The
limit nχn := limk→∞ σ(k) – the vector of finally sold shares – must hence exist.
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Lemma 4.1.1. Consider the fire sales process with continuous ρ. Then χn = n−1 limk→∞ σ(k),
the number of sold shares divided by n at the end of the fire sales process, is the smallest
(componentwise) solution of

E
[
Xnρ

(
Ln +Xn · h(χ)

Cn

)]
− χ = 0. (4.1.4)

Proof. By continuity of ρ and the dominated convergence theorem

χn = n−1 lim
k→∞

σ(k) = lim
k→∞

E

[
Xnρ

(
Ln +Xn · h(n−1σ(k−1))

Cn

)]

= E

[
Xnρ

(
Ln +Xn · h(n−1 limk→∞ σ(k−1))

Cn

)]
= E

[
Xnρ

(
Ln +Xn · h(n−1χn)

Cn

)]
and χn is thus a solution of (4.1.4). By the Knaster-Tarski theorem there exists a least fixed
point χ̂n. Clearly, σ(0) := 0 ≤ nχ̂n. Hence assume inductively that σ(k) ≤ nχ̂n for k ≥ 1. Then

σ(k+1) =
∑
i∈[n]

xiρ

(
`i + xi · h(n−1σ(k))

ci

)
≤
∑
i∈[n]

xiρ

(
`i + xi · h(χ̂n)

ci

)
= nχ̂n (4.1.5)

by monotonicity of ρ, and hence χn = n−1 limk→∞ σ(k) ≤ χ̂n. By definition of χ̂n it thus holds
that χn = χ̂n.

It remains to study the case where the sale function ρ is only right-continuous. The following
simple example of a non-continuous ρ shows that also in this case it may be possible to determine
the final state of the system by the smallest solution of (4.1.4). Consider ρ(u) = 1{u ≥ 1}, that
is, institutions sell their portfolio as they go bankrupt. Then σ(k) 6= σ(k−1) only if in round k at
least one institution defaults that was solvent in round k−1. Since there are only n institutions,
the fire sales process stops after at most n − 1 rounds and the vector χn of finally sold shares
divided by n solves (4.1.4). Again by (4.1.5) we then obtain χn = χ̂n is the smallest solution
of (4.1.4).

Finally, consider an arbitrary right-continuous sale function ρ. Again by the Knaster-Tarski
theorem (4.1.4) has a smallest solution χn and by (4.1.5) it holds n−1 limk→∞ σ(k) ≤ χn. For
left-continuous ρ in fact we would derive equality but for right-continuous ρ it is in general
possible that n−1 limk→∞ σ(k) � χn. This is the case if limk→∞ σ(k) sold shares would be
enough to start a new round of fire sales but this quantity is actually never reached in finitely
many rounds. Then the following holds; the proof is straight-forward by bounding ρ from below
with its left-continuous modification

◦
ρ.

Proposition 4.1.2. Consider the fire sales process with a right-continuous sale function ρ and
the corresponding left-continuous modification

◦
ρ. Let χn ∈ RM+,0 denote the smallest solution of

(4.1.4). Moreover, let χ̂n ∈ RM+,0 be the smallest solution of

E
[
Xn

◦
ρ

(
Ln +Xn · h(χ)

Cn

)]
− χ = 0.

Then the number of sold shares divided by n at the end of the fire sales process satisfies

χ̂n ≤ n−1 lim
k→∞

σ(k) ≤ χn. (4.1.6)
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The equilibrium vector nχn (in the sense of (4.1.4)) is thus a conservative bound on the final
number of sold shares nχn = limk→∞ σ(k). However, as discussed above the convergence of the
fire sales process to a non-equilibrium heavily relies on the assumption of arbitrarily small sale
sizes towards the end of the process. For real systems this is obviously not realistic since the
least possible number of shares sold by an institution is lower bounded by 1. For all practical
purposes it will therefore hold that χn = χn and fire sales stop at an equilibrium state.

4.1.2 Fire Sales – The Stochastic Model

The previous section describes fire sales in any specific (finite) system. Our aim is, however, to
understand qualitatively how and which characteristics of a system promote or hinder the spread
of fire sales. In the following, we thus consider an ensemble of systems that are similar in the
sense that they all share some (observed) statistical characteristics. This similarity is measured
in terms of the most natural parameters, namely the joint empirical distribution function (4.1.1)
of the asset holdings, the capital/equity, and the initial losses. In particular, we assume that
we have a collection of systems with a varying number n of institutions with the property that
the sequence (Fn)n∈N stabilizes, i. e. has a limit. Additionally, we assume convergence of the
average asset holdings to a finite value; this is a standard assumption avoiding condensation of
the distribution of the asset holdings. Our assumptions are collected in the following definition.

Assumption 4.1.3. Let M ∈ N. For each n ∈ N consider a system with n institutions and M
assets specified by the sequences x(n) = (xi(n))1≤i≤n of asset holdings, s(n) = (si(n))1≤i≤n
of systemic importance values, c(n) = (ci(n))1≤i≤n of capitals and `(n) = (`i(n))1≤i≤n of
exogenous losses. Let Fn be the empirical distribution function of these parameters for n ∈ N
(as in (4.1.1)) and let

(Xn, Sn, Cn, Ln) =
(
(X1

n, . . . , X
M
n ), Sn, Cn, Ln)

)
∼ Fn.

Then assume the following.

(a) Convergence in distribution: There is a distribution function F such that as n→∞,
Fn(x, s, c, `)→ F (x, s, c, `) at all continuity points of F .

(b) Convergence of means: Let (X, S, C, L) = ((X1, . . . , XM ), S, C, L) ∼ F . Then as
n→∞,

E[Sn]→ E[S] <∞ and E[Xm
n ]→ E[Xm] <∞, m ∈ [M ].

An ensemble of systems satisfying Assumption 4.1.3 will be called an (X, S, C)-system with
initial shock L in the sequel. A particular and probably the most relevant scenario is as follows.
Suppose that the distribution F is specified, for example by considering a real system. Then,
for each n ∈ N we construct a system by assigning to each institution i ∈ [n] independently
asset holdings, capital and losses distributed like F . Then, by the strong law of large numbers,
with probability 1, the sequence of systems we obtain satisfies Assumption 4.1.3.

As in the deterministic model our aim is to describe in this broader setting the final state
of the system. Before we do so, let us give some definitions that are handy in the forthcoming
description. First, recall that for n ∈ N the eventual number of sold shares is characterized by
the smallest solution to (4.1.4), and the systemic importance of defaulted institutions is given
by (4.1.2). Let therefore fm, g : RM+,0 → R, m ∈ [M ] be analogously defined for the “limiting
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object” by

fm(χ) := E
[
Xmρ

(
L+X · h(χ)

C

)]
− χm, m ∈ [M ], (4.1.7)

g(χ) := E [S1 {L+X · h(χ) ≥ C}] ,

which are clearly upper semi-continuous, and let (cf. Proposition 4.1.2)

◦
fm(χ) := E

[
Xm ◦ρ

(
L+X · h(χ)

C

)]
− χm,m ∈ [M ], and

◦
g(χ) := E [S1 {L+X · h(χ) > C}]

(4.1.8)
be their lower semi-continuous modifications. Further, define the sets

◦
P :=

⋂
m∈[M ]

{
χ ∈ RM+,0 :

◦
fm(χ) ≥ 0

}
and P :=

⋂
m∈[M ]

{
χ ∈ RM+,0 : fm(χ) ≥ 0

}
and denote by

◦
P0 resp. P0 the largest connected subsets of

◦
P and P containing 0 (clearly

fm(0) ≥
◦
fm(0) ≥ 0 for all m ∈ [M ]). Note that P and P0 are closed sets by upper semi-

continuity of fm, m ∈ [M ].
Let us immediately give an illustrative explanation of all the quantities above. Leave aside

for the moment the
◦· modifications and assume that during the fire sales process assets are

sold continuously in time τ , that is, let nχ(τ) at any given time τ be the current vector of
sold shares. Then by definition of the process, nE[Xmρ((L+X ·h(χ(τ)))/C)] is the number of
shares of asset m the system as a whole needs to sell. Moreover, as χm(τ) is the current number
of sold shares, at any point in time τ it must hold fm(χ(τ)) ≥ 0. Since the process starts with
zero sold shares (χ(0) = 0) it is therefore intuitive that χ(τ) will never leave the set P0. At the
end of the fire sales process, however, the final number of sold shares must equal the required
number of sold shares for each asset m ∈ [M ] (cf. (4.1.4) for the deterministic model). So the
final state will be described by a joint root of the functions fm, m ∈ [M ], that lies in P0. The
◦· modifications come into play because in certain pathological cases it can be important if the
limiting system (as n→∞) is approached from below or from above.

To formalize this intuition about joint roots in P0, consider the following lemma. Let

χ∗ ∈ RM+,0 with (χ∗)m := sup
χ∈P0

χm.

Lemma 4.1.4. There exists a smallest joint root χ̂ of all functions
◦
fm(χ), m ∈ [M ] with

χ̂ ∈
◦
P0. Further, χ∗ as defined above is a joint root of the functions fm, m ∈ [M ], and

χ∗ ∈ P0.

At the end of this section we will give a couple of examples illustrating the situation in concrete
settings. Using the quantities χ̂ and χ∗ as well as the functions

◦
g and g, we can then describe

the final state of the system after the fire sales process asymptotically as n→∞.

Theorem 4.1.5. Consider a system satisfying Assumption 4.1.3. Then for the final systemic
damage n−1Sn and χmn , the number of finally sold shares of asset m ∈ [M ] divided by n it holds

◦
g(χ̂) + o(1) ≤ n−1Sn ≤ g(χ∗) + o(1), χ̂m + o(1) ≤ χmn ≤ (χ∗)m + o(1).

In particular, for the final price impact hm(χn) on asset m ∈ [M ], we obtain

hm(χ̂) + o(1) ≤ hm(χn) ≤ hm(χ∗) + o(1).
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Figure 4.2: Plot of the root sets of the functions f1(χ1, χ2) (blue) and f2(χ1, χ2) (orange) for
three different example systems. In gray the set P is depicted.

Only in rather pathological cases, when χ̂ is a point of discontinuity for some fm (cf. Figure 4.3)
or it is instable (compare Figure 4.2(b) to Figures 4.2(a) and 4.2(c)), it happens that χ̂ 6= χ∗.
Similarly it usually holds that

◦
g(χ̂) = g(χ∗). Then Theorem 4.1.5 determines the limits of χn

and n−1Sn as n→∞. We conclude this section with two illustrative examples.

Example 4.1.6. It is often (e. g. if ρ is continuous or X is absolutely continuous) the case

that fm(χ) =
◦
fm(χ) and hence P =

◦
P as well as P0 =

◦
P0. See Figure 4.2 for an illustration of

three different two-dimensional examples. We chose hm(χ) = χm, m = 1, 2, ρ(y) = 1{y ≥ 1},
X1 = X2 ∼ Exp(1), C = c, P(L = c) = 0.15 and P(L = 0) = 0.85, where c = 1.9 in (a),
c ≈ 1.82 in (b) and c = 1.5 in (c). Whereas in (a) and (c) it holds χ̂ = χ∗, in (b) the points
are distinct.

Example 4.1.7. Since it is of advantage for the proofs in the rest of this chapter to gain
intuition about the general case as well, in Figure 4.3 we further provide an example of a

system where
◦
fm 6= fm and

◦
P0 ( P0. Again we chose hm(χ) = χm, m = 1, 2, ρ(y) = 1{y ≥ 1}

and X1 = X2. Further, C = 0.1, P(X1 = 1, L = 0.1) = 0.1, P(X1 = 0.5, L = 0) = 0.1 and
with the remaining probability of 0.8 it holds that L = 0 and X1 is uniformly distributed on the
interval [0, 0.5].

4.2 Resilient and Non-resilient Systems

In the previous section, we derived results that allow us to determine the final default fraction in
(X, S, C)-systems caused by fire sales and sparked by some exogenous shock L. In this section,
we go one step further and investigate whether a given system in an initially unshocked state
is likely to be resilient to small shocks or susceptible to fire sales.

Note that all information about an initial shock comes from the random variable L, whereas
the system itself is specified by (X, S, C). So we can easily consider shocks of different magni-
tude L on the same a priori unshocked system. In the following, if we use the notation g, fm,
◦
g,

◦
fm, χ̂ and χ∗, we mean the quantities from the previous section (see Equations (4.1.7) and

(4.1.8)) for the (X, S, C)-system, that is, with initial shock L ≡ 0.
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Figure 4.3: Plot of the root sets of the functions f1(χ1, χ2) (blue), f2(χ1, χ2) (orange) in (a) and
◦
f1(χ1, χ2) (blue),

◦
f2(χ1, χ2) (orange) in (b) respectively. In gray the sets P0 and

◦
P0 respectively,

where the solid line in (a) belongs to P0 whereas the dashed line in (b) does not.

4.2.1 Resilience

From a regulator’s perspective a desirable property of an (X, S, C)-system is the ability to
absorb small local shocks L without larger parts of the system being harmed. In our model, we
can even choose L arbitrarily small. The following way of defining resilience is hence natural:
we let the shock L become small in the sense that E[L/C]→ 0, and we call the system resilient
if the asymptotic final systemic damage n−1Sn,L caused by L also tends to 0.

Definition 4.2.1 (Resilience). An (X, S, C)-system is said to be resilient if for each ε > 0
there exists δ > 0 such that for all L with E[L/C] < δ it holds lim supn→∞ n

−1Sn,L ≤ ε.

We chose our definition of resilience (and non-resilience in Definition 4.2.4 below) in terms of
the final systemic damage and thus in line with Chapters 2 and 3. Alternatively, depending on
the quantity of interest, it can also be sensible to define resilience via the final number of sold
shares nχn,L (and hence the final price impacts hm(χn,L) which also affect the wider economy).
Theorem 4.2.2 determines upper bounds for both n−1Sn,L and χn,L in the limit E[L/C]→ 0.

Theorem 4.2.2. For each ε > 0 there exists δ > 0 such that for all L with E[L/C] < δ it holds
for the final damage caused by defaulted institutions n−1Sn,L and the number nχmn,L of finally
sold shares of each asset m ∈ [M ] in the shocked system that

lim sup
n→∞

n−1Sn,L ≤ g(χ∗) + ε and lim sup
n→∞

χmn,L ≤ (χ∗)m + ε, m ∈ [M ].

We immediately obtain the following handy resilience criterion.

Corollary 4.2.3 (Resilience Criterion). If g(χ∗) = 0, then the (X, S, C)-system is resilient.

Note that g(0) = 0 and hence the system is resilient if χ∗ = 0 (i. e. P0 = {0}). It is possible,
however, that g(χ∗) = 0 while χ∗ 6= 0. In this case, by Theorem 4.2.5 below it is possible that
a large fraction of shares of assets is sold, but Corollary 4.2.3 ensures that the fraction of finally
defaulted institutions stays small.
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4.2.2 Non-resilience

To a large degree we can also characterize non-resilient systems. Note, however, that in our
model description we made the conservative assumption that each institution i ∈ [n] in the
system is exposed to the final price impact h(χn) with its total initial asset holdings xi. One
can argue that institutions sell off their assets gradually and are hence not exposed to the total
price change. The following result considers non-resilience under this conservative assumption.
For other scenarios it can serve as a first indication of non-resilience.

In this subsection, we restrict ourselves to initial shocks of the form `i ∈ {0, 2ci} for all
i ∈ [n], where P(L = 2C) > 0 and L/C is independent of (X, C). That is, each institution
i defaults initially with positive probability. Rather than `i = 2ci, the first natural choice
to model the default of institution i would be `i = ci. Note, however, that in the setting of
Section 4.1, even if P(L = C) > 0, it is possible that no initial defaults occur since (L,C) is
defined as the weak limit of a sequence (Ln, Cn) and it is possible that Ln < Cn for all n ∈ N
and still L = C almost surely. In order to derive meaningful results one therefore has to choose
`i = 2ci (or any other multiple larger than 1). Note that this does not change the outcome of
the fire sales process since ρ(u) = ρ(1) for all u ≥ 1.

We now call a financial system non-resilient if the damage caused by finally defaulted
institutions is lower bounded by some positive constant.

Definition 4.2.4 (Non-resilience). An (X, S, C)-system is said to be non-resilient if there
exists ∆ ∈ R+ such that lim infn→∞ n

−1Sn,L > ∆ for any initial shock L with the above listed
properties.

We derive the following lower bound on the final default fraction and finally sold shares.

Theorem 4.2.5. If the initial shock L satisfies above properties and hm(χ) is strictly increasing
in χm for all m ∈ [M ], then for any ε > 0 it holds

lim inf
n→∞

n−1Sn,L >
◦
g(χ∗)− ε and lim inf

n→∞
χmn,L > (χ∗)m − ε.

The assumption that hm(χ) is strictly increasing in χm excludes a rather pathological case. It is
satisfied by all the standard price impact functions in the literature such as linear price impact
hmlin(χ) = pmαχm or log-linear price impact hmloglin(χ) = pm(1 − exp(−αχm)) for initial share
price pm and some parameter α > 0.

Corollary 4.2.6 (Non-resilience Criterion). If hm(χ) is strictly increasing in χm for all m ∈ [M ],
and

◦
g(χ∗) > 0, then the (X, S, C)-system is non-resilient.

As remarked earlier already, for most practical purposes it will hold that
◦
g(χ∗) = g(χ∗). For

the reasonable case that hm(χ) is strictly increasing in χm for all m ∈ [M ], we can thus fully
describe stability of an (X, S, C)-system by the combination of Corollaries 4.2.3 and 4.2.6. Only
for rather pathological cases we cannot decide if an (X, S, C)-system is resilient or non-resilient.

4.2.3 Systemic Capital Requirements

Theorems 4.2.2 and 4.2.5 can be used to derive sufficient and necessary capital requirements to
make a given system resilient with respect to initial shocks. That is, given the asset holdings of
each institution, we want to determine sharp bounds for the capital that each institution must
hold so that the system is (non-)resilient in the sense of Definitions 4.2.1 and 4.2.4. Recall that
non-resilience according to Definition 4.2.4 is always under our conservative model assumption
that price impact is applied to all initially held shares of an asset. The derived requirements
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will generally depend on the actual sale function ρ and price impact h. In the following, we
demonstrate the procedure of deriving capital requirements along a series of examples of ever
increasing complexity culminating in a quite general setting with multiple assets. We always
consider systemic importance values si = 1 for all i ∈ [n].

One Asset with Sales at Default We start with considering a system with institutions
investing in one asset only. The distribution FX of asset holdings is assumed to have a power
law tail in the sense that there exist constants B1, B2 ∈ (0,∞) such that for x large enough

B1x
1−β ≤ 1− FX(x) ≤ B2x

1−β, (4.2.1)

for some β > 2. Whereas the reduction to one asset is a strong simplification, there is em-
pirical evidence for power laws in investment volumes, see e. g. [77]. Moreover, we assume
P(X ≥ 1) = 1 – institutions involved in the fire sales process hold at least one share. Further,
assume ρ(u) = 1{u ≥ 1}, i. e. institutions do not sell their assets until they default. Moreover,
for the price impact we also assume a power-law, that is, there are ν, µ1, µ2 ∈ R+ such that for
small χ

µ1χ
ν ≤ h(χ) ≤ µ2χν . (4.2.2)

A typical assumption in the fire sales literature, see e. g. [31, 33, 43, 46, 47], is (log-)linear price
impact, i. e. ν = 1. This choice can for example be justified by the fact that limit order books’
shape functions are approximately constant close to the bid price, see also [81].

We now derive necessary and sufficient requirements for the institutions’ capital buffers to
make the financial system resilient. That is, given the asset holdings (x1(n), . . . , xn(n))n∈N with
empirical distribution converging to FX we want to determine a sequence of minimal capitals
(c1(n), . . . , cn(n))n∈N sufficient for ensuring resilience of the system in the sense of Definition
4.2.1. It turns out that a natural description emerges when we choose the capitals in dependence
on the asset holdings by the following power form: ci = αxγi for α ∈ R+ and γ ∈ R+,0.

Corollary 4.2.7. Consider a system as specified above. Then,

1. if γ > 1− ν(β − 2), then the system is resilient.

2. if γ = 1− ν(β − 2) and α > µ2

(
B2

β−1
β−2

)ν
, then the system is resilient.

3. if γ = 1− ν(β − 2) and α < µ1

(
B1

β−1
β−2

)ν
, then the system is non-resilient.

4. if γ < 1− ν(β − 2), then the system is non-resilient.

Typically one can choose B1 and B2 resp. µ1 and µ2 arbitrarily close as x → ∞ resp. χ → 0.
Corollary 4.2.7 hence states necessary and sufficient conditions on the capital to make the
financial system resilient.

One Asset with Intermediate Sales In the previous example, we considered the conserva-
tive case of sales at default only. Intermediate sales will make the system less resilient, however,
and we consider an example of this kind here as well. We assume again (4.2.1) and (4.2.2),
that is, the asset holdings are power-law distributed with parameter β and the price impact
has a power-law approximation with exponent ν when χ → 0. Moreover, capitals are again
specified by ci = αxγi . In contrast to the assumptions in the previous paragraph we now choose
ρ(u) = 1 ∧ uq for some q ∈ R+. The parameter q can be understood as a measure for the
institutions’ confidence in the asset, since it describes the speed at which they sell it. The
outbreak of fire sales is then governed by ν (price impact) and q (speed of selling). In fact, the



100 Chapter 4. A Model for Fire Sales in Financial Networks

product νq is a crucial quantity in the decision whether a system is resilient. It is easy to show
that if νq < 1 the system is always non-resilient, as the institutions sell overproportionally fast
compared to the price fall. Note that this quantity cannot be influenced by regulations but is
intrinsic to the market in our setting.

Corollary 4.2.8. Consider a system as described above and assume that νq > 1. If
γ > 1 − ν(β − 2), then the system is resilient. If γ < 1 − ν(β − 2), then the system is
non-resilient.

Similar as in the proof of Corollary 4.2.7 it is possible to derive sufficient capital requirements
also at the critical values νq = 1 resp. γ = 1− ν(β − 2); the details are omitted.

Multiple Assets The two previous examples have already given first important insights into
the calculation of sufficient capital requirements for stability in a given system. Whereas these
concentrated on systems with one asset only, however, in reality institutions are invested in a
large number of assets M . We will derive sufficient capital requirements also in this setting.
In practice, linear capital requirements seem reasonable and the previous examples have shown
already that these are sufficient in the one-asset case. Furthermore, linear capitals allow for
tractable calculations in the following.

We keep the same assumptions as in the previous example. In particular, ρm(y) = 1 ∧ yqm

for some qm ∈ R+, m ∈ [M ] (recall the note in the beginning of Section 4.1 about different
sale functions for different assets) and hm(χ) ≤ µm(χm)ν for χm → 0 for some ν, µm ∈ R+.
Consider then linear capital ci =

∑
m∈[M ] θ

mxmi for each institution i ∈ [n], where θm,∈ R+,
m ∈ [M ].

Corollary 4.2.9. Consider a system with multiple assets as described above. Then the system
is resilient if for each m ∈ [M ] one of the following holds:

1. qm > ν−1,

2. qm = ν−1 and θm > µmE[Xm].

The first condition reflects the interplay of price impact and the speed of asset sales as for
the one-asset case. The second condition gives an explicit linear fraction of the institutions’
holdings of each asset that ensures resilience. It depends on the price impact function by µm

and the number of shares of the asset held on average by each other institution in the system
E[Xm]. While the condition qm > ν−1 is sufficient in the limit n → ∞ by our theory, for real
networks of finite size the quantity µmE[Xm] is of big interest as it gives a proper scaling factor
also for values of qm other than ν−1. The following sample calculations show that θm is of a
reasonable magnitude also under our conservative model assumptions: Assume that the price
impact is log-linear with hm(χ) = 1−e−αmχ for some αm ∈ R+ and that the sale of all assets in
the considered system reduces the asset price by 50%. This implies αm = log(2)/E[Xm]. Hence
µm = αm (ν = 1) and θm > log(2) ≈ 0.69 ensures resilience.

Corollary 4.2.9 thus derives linear capital requirements for institutions investing in more
than one asset which are already used in Basel III for instance. We can explicitly determine
the coefficients for these linear capital requirements in our model.

4.3 Applications and Simulations

In this section, we apply the theory developed in Sections 4.1 and 4.2 to investigate which
structures or properties of systems promote the emergence and spread of fire sales. To achieve
this our route is as follows. In Subsection 4.3.1 we consider systems parametrized by two
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orthogonal characteristic quantities: portfolio diversification and portfolio similarity. We first
analyze their effect in the setting from Sections 4.1 and 4.2, and we verify our findings also
with simulations for finite systems of reasonable size. At this we assume initial shocks on
institutions’ capitals directly rather than shocks on certain asset prices. In Subsection 4.3.2,
we concentrate on three fundamentally different system configurations and we test our derived
capital requirements for shocks on asset prices. As we will show, it is beneficial to combine
our capital requirements with classical risk capital in form of value-at-risk. While the value-at-
risk part of the capital ensures for any institution that an initial shock can be absorbed with
probability 1− ε (for some small ε > 0), the additional systemic surcharge in form of our capital
requirements makes sure that also in the unlikely event of initial distress the spread of fire sales
is locally confined. For simplicity we consider the case that si = 1 for all i ∈ [n] only.

4.3.1 The Effect of Portfolio Diversification and Similarity

For simplicity, throughout this section we assume that the limiting total asset holdings given
as Xtot = X1 + . . . + XM are Pareto distributed with density fXtot(x) = (β − 1)x−β1{x ≥ 1}
for some exponent β > 2. One can generalize our results also to more general distributions.
Further, we make the assumptions that ρ(u) = 1{u ≥ 1} and hm(χ) = 1 − e−χm to simplify
calculations, but also for other sensible choices our observations below are applicable.

In a first example, we consider a system of institutions whose investment in each asset
m ∈ [M ] makes up a fraction λm ∈ R+ of their total asset holdings, where

∑
m∈[M ] λ

m = 1. We

show that perfect diversification (λ1 = . . . = λM = M−1) maximizes stability of the system.

Example 4.3.1. For a system as described above the functions fm(χ) are given by

fm(χ) = λmE

[
X tot1

{
X tot

M∑
k=1

λk
(

1− e−χk
)
≥ C

}]
− χm, m ∈ [M ].

Let us write t =
∑

1≤k≤M λk(1 − e−χk) for short. Now assume similar to Corollary 4.2.7 that
C = α(X tot)γ for some constants α, γ ∈ R+,0. Then

fm(χ) = λmE
[
X tot1

{
X tot ≥ (α/t)

1
1−γ
}]
− χm

= λm
∫ ∞
max

{
1,(α/t)

1
1−γ

}(β − 1)x1−β dx− χm = λm
β − 1

β − 2
min

{
1, (tα−1)

β−2
1−γ
}
− χm.

Motivated by the symmetry of the functions, we consider fm(χ) along direction v ∈ RM+ , with
vm = (λm)−1. Then

fm(χv)

λm
=
β − 1

β − 2

(
α−1

M∑
k=1

λk
(

1− e−χ/λk
))β−2

1−γ

− χ

(λm)2
.

Let

γc := 3− β and αc :=
∑

1≤m≤M
(λm)2

β − 1

β − 2
.

We infer that if χ ∈ R+,0 is small enough and γ > γc or γ = γc and α > αc, then d
dχf

m(χv) < 0
for all m ∈ [M ]. That is, χ∗ = 0 and the system is resilient by Corollary 4.2.3. On the other
hand, if either γ < γc or γ = γc and α < αc, then d

dχf
m(χv) > 0 for all m ∈ [M ] and the

system is non-resilient by Corollary 4.2.6, as χ∗ 6= 0 and
◦
g(χ∗) = g(χ∗) > 0. Since γc does not
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depend on the choice of {λm}m∈[M ], it makes sense to consider αc as a measure for stability
of the system (the smaller αc, the more stable the system). Clearly, αc becomes minimized for
λm = M−1 for all m ∈ [M ] and hence a perfectly diversified system is the most stable.

Next, we consider a financial system that comprises of U ∈ N subsystems of equal size n/U .
For each subsystem u ∈ [U ] there shall exist a set of Du = D ∈ N specialized assets that can
only be invested in by institutions from subsystem s. In addition to these U · D specialized
assets, there shall exist a set of J ∈ N joint assets that can be invested in by any institution of
the whole system and that hence connect the different subsystems. Thus, each institution can
choose from ∆ := D+J different assets to invest in. We call ∆ the diversification of the system.
Further, for each institution a fraction Σ := J/∆ of its available assets is available also to every
other institution in the system. We call Σ the (portfolio) similarity in the system. Then, as in
Example 4.3.1 we could compute the optimal investments for each institution (which is shifted
towards investing in the specialized assets to avoid overlap with other subsystems). Instead we
assume in the following example that each institution still perfectly diversifies its investment
over the D + J assets available to it. This is reasonable if the single institutions do not have a
perfect overview of the whole financial system. The effect of diversification ∆ and similarity Σ
is similar for the two different allocations.

Example 4.3.2. Consider a system as described above consisting of U subsystems and allowing
each institution to invest in D specialized assets and in J joint assets in equal shares. Then the
system is described by the following functions:

f j(χ) := U−1
U∑
u=1

E

[
X tot

D + J
1

{
X tot

D + J

(
J∑
k=1

(
1− e−χk

)
+

D∑
d=1

(
1− e−χu,d

))
≥ C

}]
− χj ,

fu,d(χ) := U−1E

 X tot

D + J
1

 X tot

D + J

 J∑
j=1

(
1− e−χj

)
+

D∑
e=1

(
1− e−χu,e

) ≥ C

− χu,d,

where j ∈ [J ], u ∈ [U ], d ∈ [D] and χ = (χ1, . . . , χJ , χ1,1, . . . , χU,D) ∈ RJ+UD+,0 with small misuse
of notation. Similar as in Example 4.3.1 we derive that

γc = 3− β and αc =
J + D

U

(D + J)2
β − 1

β − 2
=

1 + (U − 1)Σ

∆U

β − 1

β − 2
.

From the formula it is obvious that αc decreases (i. e. stability of the system increases) as ∆
increases or Σ decreases.

Example 4.3.2 hence shows that diversification makes the system more stable (as already seen
in Example 4.3.1) whereas stronger similarity between the institutions’ portfolios makes the
system more fragile.

Note that all previous conclusions build on the (asymptotic) theory from Sections 4.1 and
4.2. To verify and back up the result for finite systems, however, we also give a simulation based
verification for a series of moderate size (n = 104) systems. We chose β = 3 and U = 2. For
D = J = 10, we then derive ∆ = 20, Σ = 0.5, γc = 0 and αc = 0.075. We therefore assigned
to each institution the capital ci = αc. Further, we drew the total asset holdings xtoti for each
institution i ∈ [n] as random numbers according to the above described Pareto distribution.
Finally, we randomly chose a set of initially defaulted institutions of size 0.01n and equally
distributed across the U subsystems. To see the effect of diversification, we first fix Σ = 0.5 and
let D = J vary from 1 to 20 (i. e. ∆ ∈ [40]). The results are plotted in Figure 4.4(a). Since we
calibrated the capitals ci = αc to the values ∆ = 20 and Σ = 0.5, the theoretical (asymptotic)
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Figure 4.4: (a) The effect of varying portfolio diversification ∆ as Σ = 0.5 is fixed. (b) The
effect of varying portfolio similarity as ∆ = 20 is fixed. In blue: the theoretical final default
fraction. In orange: 10 exemplary simulations. In green: the median over 103 simulations.

final default fraction is 1 for ∆ ≤ 20 and 0 otherwise. This curve is shown in blue. In orange we
exemplarily illustrate 10 of the 103 simulations. One can see that in each simulation the final
default fraction rapidly decreases at a certain value for ∆ close to the theoretical value of 20. In
green finally, we plot the median over all 103 simulations which is very close to the theoretical
curve despite the finite system size and hence verifies that systems become more resilient as ∆
increases. Deviations from the theoretical curve become smaller as n increases.

Furthermore, in the same setting we conducted simulations for systems of fixed diversifica-
tion ∆ = 20 and varying similarity Σ between 0 and 1 (J ∈ [0, 20] and D = 20−J). The results
are shown in Figure 4.4(b). Again, in blue we plot the theoretically predicted curve which is 0
for Σ < 0.5 and 1 otherwise. In orange 10 exemplary simulations are shown. For these, one can
see that either there exists an individual threshold for Σ close to 0.5 at which the final default
fraction rapidly increases or the final fraction stays constant at 1%. The median over the 103

simulations for each Σ can be seen in green and it verifies that the system becomes less resilient
as the similarity Σ increases. Again deviations from the theoretical curve are due to finite size
effects and become smaller as n increases.

4.3.2 Testing the Capital Requirements by Simulations

In contrast to the previous subsection, we will consider initial stress in a system in form of
shocks on asset prices. There are then two dimensions to consider regarding stability of a
system. First, for each institution the probability of initial default should be small. Second,
in the rare event that some institutions become initially distressed the remaining capital of the
institutions still needs to be high enough to stop the spread of fire sales. The latter of the two
is precisely the systemic risk capital derived in Subsection 4.2.3. To further ensure rare initial
distress we increase capital ci by i’s value-at-risk with respect to some level ε > 0 which is a
classical risk capital for example used in the Basel III framework. In that sense, our systemic
risk capital becomes a systemic risk surcharge to the classical risk capital:

ci = value-at-risk(i) + systemic risk surcharge(i), i ∈ [n] (4.3.1)

The aim of this subsection is to verify by simulations that capitals of the form as in (4.3.1)
indeed ensure resilience of a system to initial asset shocks.

In this analysis, we further want to demonstrate the effect of different system characteristics.
For simplicity, we choose to consider two subsystems S1 = [n/2] ⊂ [n] and S2 = [n]\S1; the
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(a) (b) (c)

Figure 4.5: Illustrations of different system configurations for subsystems 1 and 2, and as-
sets A and B. (a) Separated undiversified subsystems. (b) Connected diversified subsystems.
(c) Connected undiversified subsystems.

considerations extend readily to a larger number of subsystems. Further, there are two assets
A and B (i. e. M = 2) with uncorrelated price changes. Denote by xtoti = xAi + xBi the total
number of shares held by institution i ∈ [n] and denote the limiting random variable by Xtot.
We then consider the following three scenarios, see also Figure 4.5:

(a) The two subsystems invest in different assets.

(b) Each institution’s portfolio is perfectly diversified.

(c) All institutions in the system invest in the same asset.

More formally, if we denote by πjA resp. πjB the proportion invested in assets A and B by an
institution in subsystem Sj , j = 1, 2, we can express the three scenarios as follows:

(a) π1A = π2B = 1 and π1B = π2A = 0.

(b) π1A = π1B = π2A = π2B = 1/2.

(c) π1A = π2A = 1 and π1B = π2B = 0.

Remark 4.3.3. In terms of the dimensions ∆ and Σ from the previous subsection we can
characterize the three cases by

(a) ∆ = 1, Σ = 0, (b) ∆ = 2, Σ = 1, (c) ∆ = 1, Σ = 1.

From the previous results we would therefore expect that configurations (a) and (b) are more
stable than configuration (c), while we cannot make any statements about the relation between
(a) and (b). Note, however, that in the previous subsection we considered the initial shock
to consist of initial defaults of some institutions independent of the asset holdings. In this
subsection, we will consider initial shocks on the financial system by reducing asset prices (see
below). It will turn out that diversification can then have a positive effect on stability of the
system as in [73] because the variance of each institution’s initial loss becomes smaller, or it
can have a negative effect as in [21, 91, 112] because the system is exposed to more assets or
becomes more connected via assets.

Again, we assume that ρ(u) = 1{u ≥ 1} and hm(χ) = 1− e−χm , m = A,B. Further, let

fXtot(x) = (β − 1)x−β
(
κ1{1 ≤ x ≤ b}+ µβ−11{x > b}

)
, (4.3.2)

where β = 2.5, µ = 0.25, b = 101/(β−1)µ and κ = (1− µβ−1b1−β)/(1− b1−β). That is the tail of
the distribution resembles a Pareto distribution with exponent β and b is chosen such that the
tail describes 10% of the probability mass. For x ≤ b the exponent β stays the same but the
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Case ∅ initially infected fraction ∅ finally infected fraction amplification

(a) 1.35% 3.82% 1.83
(b) 0.80% 3.26% 3.06
(c) 0.56% 2.13% 2.84
(c’) 1.35% 5.00% 2.70

Table 4.1: Simulation results for capital allocation determined by the value-at-risk plus the
systemic risk surcharge

Case ∅ initially infected fraction ∅ finally infected fraction amplification

(a) 2.38% 8.95% 2.76
(b) 1.76% 15.1% 7.53
(c) 0.84% 5.58% 5.66
(c’) 2.38% 10.0% 3.21

Table 4.2: Simulation results for capital allocation determined by the systemic risk surcharge

coefficient κ is chosen such that the remaining mass of 90% is distributed on the interval [1, b]
(instead of [µ, b]). Note that for the computations of γc and αc in the previous subsection only
the tail of the distribution was relevant and so we know that αc = 1

2
β−1
β−2µ

β−1 for cases (a) and (b)

resp. αc = β−1
β−2µ

β−1 for case (c) and γc = 3−β in all cases. We consider these as the systemic risk
surcharges as discussed above. Further the value-at-risk capital for some institution i ∈ [n] is
given by θxtoti for some global parameter θ ∈ [0, 1] that needs to be calibrated to the confidence
level ε and the initial shock distribution (see below). The piecewise form of fXtot in (4.3.2)
rather than for example a perfect Pareto distribution ensures that capital ci is actually smaller
then the maximum potential loss xtoti also for institutions with small investments (note that the
systemic surcharge αc is determined from the tail of the distribution).

Finally, we model the initial shock on asset m = A,B as e−R
m

, where RA
d
= RB are

independent random variables such that P(RA = 0) = 90% and with the remaining probability
of 10% it holds RA = |T |/10 for T having Student’s t-distribution with 1.5 degrees of freedom
(Student’s t-distribution is a popular choice in market models since heavy tails can be modeled
by less than 2 degrees of freedom).

For each realization of (RA, RB) we can then numerically determine the asymptotic final
default fraction as in Section 4.1. We choose ε = 5% which yields θ ≈ 8.36% in cases (a) and
(c) resp. θ ≈ 8.47% in case (b) as the parameter for the value-at-risk capital. The numerical
average final default fraction for the three configurations is listed in Table 4.1. The most stable
configuration is (c). Recall, however, that in this case αc is the double amount than in cases (a)
and (b). Therefore, we further included case (c’) where we adjusted the value of αc accordingly.
It can then be seen that this configuration is in fact the least stable one and (b) becomes the
most stable one. Diversification is thus beneficial for the capital allocation value-at-risk plus
systemic risk surcharge. In comparison to this, we performed the same simulations with capitals
determined solely by the systemic risk charge. The results are listed in Table 4.2. Clearly, the
system becomes less stable. In particular, the least stable configuration is now (b), the diversified
one. For completeness also consider Table 4.3 listing the average fractions for systems equipped
exactly with the value-at-risk as capital. In this case, all final infections are already initial
infections and there is no amplification (final infection divided by initial infection minus 1).
So rather counterintuitively our systemic risk surcharge increases the amplification. This is
because due to the additional capital some institutions are initially saved from infection but
become infected in the course of the fire sales process. Overall, the combination of value-at-risk
with the systemic risk surcharge significantly increases stability of the financial system.
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Case ∅ initially infected fraction ∅ finally infected fraction amplification

(a) 5.00% 5.00% 0.00
(b) 5.00% 5.00% 0.00
(c) 5.00% 5.00% 0.00

Table 4.3: Simulation results for capital allocation determined by the value-at-risk

4.4 Proofs

4.4.1 Proofs for Section 4.1

Proof of Lemma 4.1.4. Existence of χ̂ follows from the Knaster-Tarski theorem. We now con-

struct a joint root
◦
P0 3 χ̄ ≤ χ̂ such that we can conclude χ̂ = χ̄ ∈

◦
P0.

It holds
◦
fm(χ̂) = 0 for all m ∈ [M ] and thus (for any fixed m ∈ [M ])

◦
fm(χ) ≤ 0 for all

χ̂ ≥ χ ∈ RM+,0 such that χm = χ̂m by monotonicity of
◦
fm. Consider then the following sequence

(χ(k))k∈N ⊂ RM+,0:

• χ(0) = 0 ∈
◦
P0

• χ(1) = (χ1
(1), 0, . . . , 0), where 0 ≤ χ1

(1) ≤ χ̂1 is the smallest possible value such that
◦
f1(χ(1)) = 0. It is possible to find such χ1

(1) since
◦
f1(χ) + χ1 is monotonically increasing

in χ1,
◦
f1(0) ≥ 0 and

◦
f1(χ̂1, 0, . . . , 0) ≤ 0. By monotonicity of

◦
fm with respect to χ1 for all

m ∈ [M ]\{1}, it then holds
◦
fm(χ(1)) ≥

◦
fm(0) ≥ 0 for all 1 6= m ∈ [M ] and in particular

χ(1) ∈
◦
P0.

• χ(2) = χ(1) + (0, χ2
(2), 0, . . . , 0), where 0 ≤ χ2

(2) ≤ χ̂2 is the smallest value such that
◦
f2(χ(2)) = 0. Again it is possible to find such χ2

(2) since
◦
f2(χ) + χ2 is monotonically

increasing in χ2,
◦
f2(χ(1)) ≥ 0 and

◦
f2(χ(1) + (0, χ̂2, 0, . . . , 0)) ≤ 0. By monotonicity of

◦
fm

with respect to χ2 for all m ∈ [M ]\{2}, it then holds
◦
fm(χ(2)) ≥

◦
fm(χ(1)) ≥ 0 for all

2 6= m ∈ [M ] and in particular χ(2) ∈
◦
P0.

• χ(i), i ∈ {3, . . . ,M}, are found analogously, changing only the corresponding coordinate.

• χ(M+1) = χ(M) + (χ1
(M+1) − χ

1
(M), 0, . . . , 0), where χ1

(M) ≤ χ1
(M+1) ≤ χ̂1 is the smallest

value such that
◦
f1(χ(M+1)) = 0, which is again possible by monotonicity of

◦
f1(χ) + χ1,

◦
f1(χ(M)) ≥ 0 and

◦
f1(χ(M)+(χ̂1−χ1

(M), 0, . . . , 0)) ≤ 0. Further, it still holds χ(M+1) ∈
◦
P0.

• Continue for χi, i ≥M + 2.

The sequence (χ(k))k∈N constructed this way has the following properties: It is non-decreasing
in each coordinate and bounded inside [0, χ̂]. Hence by monotone convergence, each coordinate
of χ(k) converges and so χ̄ = limk→∞χ(k) exists. Since the convergence is from below, it holds

◦
fm(χ̄) = E

[
Xm ◦ρ

(
L+X · h(limk→∞χ(k))

C

)]
− lim
k→∞

χm(k)

= lim
k→∞

E
[
Xm ◦ρ

(
L+X · h(χ(k))

C

)]
− χm(k) = lim

k→∞

◦
fm(χ(k)) ≥ 0
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and thus χ̄ ∈
◦
P0. Now suppose there is m ∈ [M ] such that

◦
fm(χ̄) > 0. By lower semi-

continuity of
◦
fm then also

◦
fm(χ(k)) > ε for some ε > 0 and k large enough. This, however, is

a contradiction to the construction of the sequence (χ(k))k∈N since
◦
fm(χ(k)) = 0 in every M -th

step. Hence
◦
fm(χ̄) = 0 for all m ∈ [M ] and χ̄ is a joint root of all functions

◦
fm, m ∈ [M ].

Now turn to the proof that χ∗ ∈ P0: We first consider the case that ρ is continuous. We
approximate χ∗ ∈ P0 by the sequence (χ̂(ε))ε>0 of smallest fixpoints for the functions fm(χ)+ε.
This allows us to apply the Knaster-Tarski Theorem and the monotonicity properties of fm + ε
similar as above. Simple topological arguments will then allow us to conclude that χ∗ ∈ P0.
Let for ε > 0

P (ε) :=
⋂

m∈[M ]

{
χ ∈ RM+,0 : fm(χ) ≥ −ε

}
and denote by P0(ε) the connected component of 0 in P (ε). By the same procedure as for χ̂
above, we now derive that there exists a smallest (componentwise) point χ̂(ε) ∈ P0(ε) such that
fm(χ̂(ε)) = −ε for all m ∈ [M ]. Clearly, χ̂(ε) is non-decreasing (componentwise) in ε and hence
χ̃ := limε→0+ χ̂(ε) exists (we will show that χ̃ = χ∗ in fact).

Now by monotonicity of P0(ε), we derive that χ̂(δ) ∈ P0(δ) ⊆ P0(ε) for all δ ≤ ε. Since
P0(ε) is a closed set, it must thus hold that also χ̃ = limδ→0+ χ̂(δ) ∈ P0(ε) for all ε > 0 and
in particular, χ̃ ∈

⋂
ε>0 P0(ε). Further, we derive that

⋂
ε>0 P0(ε) ⊆

⋂
ε>0 P (ε) ⊆ P . Moreover,⋂

ε>0 P0(ε) is the intersection of a chain of connected, compact sets in the Hausdorff space RM
and it is hence a connected, compact set itself. Since it further contains 0, we can then conclude
that

⋂
ε>0 P0(ε) ⊆ P0 and thus χ̃ ∈ P0.

Consider now an arbitrary χ ∈ P0. We want to show that χ ≤ χ̃ and thus χ̃ = χ∗.
It suffices to show that P0 ⊂ [0, χ̂(ε)] for all ε. Then χ ≤ χ̂(ε) and χ ≤ limε→0+ χ̂(ε) = χ̃.
Hence assume that P0 6⊂ [0, χ̂(ε)]. By connectedness of P0 we find χ̄ ∈ P0 with χ̄m ≤ χ̂m(ε)
for all m ∈ [M ] and equality for at least one coordinate (otherwise P0 ∩ ∂[0, χ̂(ε)] = ∅ and
P0 =

(
P0 ∩

(
RM+,0\[0, χ̂(ε)]

))
∪ (P0 ∩ [0, χ̂(ε))) is the union of two open non-empty sets and

hence not connected). W. l. o. g. let this coordinate be χ̄1. By monotonicity of f1 with respect
to χm for every 1 6= m ∈ [M ], we thus derive that f1(χ̄) ≤ f1(χ̂(ε)) = −ε < 0 which is a
contradiction to χ̄ ∈ P0.

Now consider the general case that ρ is right-continuous and let (ρr(u))r∈N be a sequence of
continuous sale functions approximating ρ from above. Denoting by P r the analogue of P for
the sale function ρr, we derive that P =

⋂
r∈N P

r since clearly P r ⊇ P for all r ∈ N and further
by dominated convergence for every χ ∈

⋂
r∈N P

r,

χm ≤ E
[
Xmρr

(
L+X · h(χ)

C

)]
→ E

[
Xmρ

(
L+X · h(χ)

C

)]
, as r →∞,

so that
⋂
r∈N P

r ⊆ P . If we further let P r0 denote the largest connected subset of P r containing
0, then P r0 is compact and connected for every r ∈ N and hence so is

⋂
r∈N P

r
0 . Since further

0 ∈
⋂
r∈N P

r
0 , we derive that

⋂
r∈N P

r
0 = P0. Let now χ∗r denote the analogue of χ∗ for the sale

function ρr. Then limr→∞χ
∗
r ∈ PR0 for all R ∈ N and hence limr→∞χ

∗
r ∈

⋂
R∈N P

R
0 = P0. Now

suppose there existed a vector χ ∈ P0 and m ∈ [M ] such that χm > limr→∞(χ∗r)
m. Then also

for R large enough, χm > (χ∗R)m and hence χ 6∈ PR0 . This, however, contradicts the assumption
that χ ∈ P0 =

⋂
R∈N P

R
0 . Hence there exists no such χ ∈ P0 and χ∗ = limr→∞χ

∗
r ∈ P0.

Finally, we show that χ∗ is a joint root of fm, m ∈ [M ]: Since χ∗ ∈ P0, it holds that
fm(χ∗) ≥ 0 for all m ∈ [M ]. Assume now that fm(χ∗) > 0 for some m ∈ [M ]. We can then
gradually increase the m-coordinate of χ∗ (until fm(χ∗) = 0). By monotonicity of fk(χ) with
respect to χm for every m 6= k ∈ [M ], however, we can be sure that we do not leave the set P0
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by this procedure which is a contradiction to the definition of χ∗. Hence χ∗ is a joint root of
fm, m ∈ [M ].

Remark 4.4.1. In the proof of Lemma 4.1.4, for the case that ρ is continuous, we constructed
χ∗ as the limit of a sequence (χ̂(ε))ε>0 such that fm(χ̂(ε)) = −ε for all m ∈ [M ]. For non-
continuous ρ by the Knaster-Tarski theorem we still know that there exists a smallest vector
χ̂(ε) such that fm(χ̂(ε)) = −ε, but the construction of χ̂(ε) as for χ̂ in the proof of Lemma
4.1.4 fails and we can hence not be sure a priori that χ̂(ε) ∈ P0(ε). Hence let further χ̃(ε) be
defined as the smallest vector in P0(ε) such that fm(χ̃(ε)) = −ε. This vector exists again by the
Knaster-Tarski theorem noting that analogue to Lemma 4.1.4 P0(ε) contains its componentwise
supremum χ∗(ε). Then by the same means as above, we derive that χ∗ = limε→0 χ̃(ε).

In Theorem 4.1.5 we are considering a sequence of financial systems. The following lemma
shows the convergence of the smallest joint roots under certain assumptions:

Lemma 4.4.2. Let a sequence (for r ∈ N) of financial systems be described by functions
◦
fmr ,

m ∈ [M ], with smallest joint root χ̂r. If lim infr→∞
◦
fmr (χ) ≥

◦
fm(χ) pointwise for every

m ∈ [M ], then lim infr→∞ χ̂r ≥ χ̂, where χ̂ denotes the smallest joint root of the functions
◦
fm, m ∈ [M ].

Proof. The main difficulty in showing the result is that we have lim infr→∞
◦
fmr (χ) ≥

◦
fm(χ)

only pointwise but not uniformly in χ. A further difficulty is the multidimensionality. The
main idea is to construct a path in analogy to the construction in Lemma 4.1.4 that leads to a

point χ̃(ε) smaller but close to χ̂. On this path the functions
◦
fmr , m ∈ [M ] are all positive for

r large. It can then be compared componentwise with a path leading to χ̂r.
For this consider the construction of χ̂ in Lemma 4.1.4 and change it in such a way that

in each step k = LM + m (where L ∈ N0 and m ∈ [M ]) a point χ(k)(ε) is chosen such that
◦
fm(χ(k)(ε)) ≤ ε for some fixed ε > 0 (choose χm(k)(ε) ≥ χm(k−1)(ε) as the smallest possible value

such that this inequality holds; it will then either be
◦
fm(χ(k)(ε)) = ε or χ(k)(ε) = χ(k−1)(ε)).

Note that
◦
fm(χ(k)(ε)) < ε can only happen if

◦
fm(0) < ε in which case there exists k0 ∈ N∞

such that χm(k) = 0 and
◦
fm(χ(k)) < ε for all k ≤ k0 but

◦
fm(χ(k)) ≥ ε and χm(k) > 0 for k > k0.

Then (χ(k)(ε))k∈N is a non-decreasing (componentwise) sequence bounded by χ̂ and hence

χ̃(ε) = limk→∞χ(k)(ε) exists. Further, it holds that
◦
fm(χ̃(ε)) ≤ lim infk→∞

◦
fm(χ(k)(ε)) ≤ ε.

Finally, χ̃(ε) is non-increasing componentwise in ε and bounded inside [0, χ̂] and thus the limit

χ̃ = limε→0+ χ̃(ε) exists. Moreover,
◦
fm(χ̃) ≤ lim infε→0+

◦
fm(χ̃(ε)) ≤ lim infε→0+ ε = 0 and in

particular χ̃ = χ̂.
Fix now δ > 0 and choose ε > 0 small enough such that χ̃m(ε) > χ̂m(1 − δ)1/2 for all

m ∈ [M ]. Further, choose K = K(ε) ∈ N large enough such that χm(K)(ε) > χ̃m(ε)(1− δ)1/2 for

all m ∈ [M ]. In particular, χm(K)(ε) > χ̂m(1 − δ). Now note that χ̂r can be constructed by a

sequence (χ(k,r))k∈N analogue to χ̂ in the proof of Lemma 4.1.4 as well. We can then in each
step k ∈ N cap the element of the constructing sequence χ(k,r) at χ(k)(ε), which clearly does not
increase the limit of the sequence. We want to make sure that in fact the cap is used in every step
k ≤ K if we only choose r large enough. Then we can conclude that χ̂r ≥ χ(K)(ε) ≥ χ̂(1− δ)
and hence letting δ → 0, lim infr→∞ χ̂r ≥ χ̂.

We now show that the cap is applied in every step k ≤ K for r large enough by an induction
argument. For k = 0, clearly χ(k,r) = χ(k)(ε) = 0 and the cap is applied. Now lets assume it
holds for k ≤ k0 < K. If χ(k0+1)(ε) = χ(k0)(ε), then of course the cap is also applied in step k0+1
as the sequence χ(k,r) is increasing. Otherwise, note that by definition of χ(k0+1)(ε), it holds
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◦
fm(χ) ≥ ε for all χ ∈ RM+,0 such that χm ∈ [χm(k0)(ε), χ

m
(k0+1)(ε)] and χ` = χ`(k0)(ε) = χ`(k0+1)(ε)

for all ` ∈ [M ]\{m}. Now choose a discretization {χj}0≤j≤J of [χm(k0)(ε), χ
m
(k0+1)(ε)] for J < ∞

such that χ0 = χm(k0)(ε), χJ = χm(k0+1)(ε) and χj−1 < χj < χj−1 + ε/3 for all j ∈ [J ]. We now

use the assumption that lim infr→∞
◦
fmr (χj) ≥

◦
fm(χj) for every 0 ≤ j ≤ J , where χmj = χj

and χ`j = χ`(k0)(ε) for ` ∈ [M ]\{m}. Then for r large enough,
◦
fmr (χj) ≥

◦
fm(χj) − ε/3 ≥ 2ε/3.

Finally, for any linear interpolation χ = αχj−1 + (1 − α)χj between χj−1 and χj (α ∈ [0, 1]),
it holds

◦
fmr (χ) ≥

◦
fmr (χj−1) + χmj−1 − χmj ≥ 2ε/3− ε/3 = ε/3.

Hence the cap is applied in step k0 + 1. As there are only finitely many steps k ≤ K, this
finishes the proof.

Proof of Theorem 4.1.5. We start by proving the lower bound. Recall from Proposition 4.1.2
that χn ≥ χ̂n. Using weak convergence of (Xn, Sn, Cn, Ln) and approximating

◦
ρ from below

by a sequence of continuous sale functions (ρr)r∈N, we derive for U ∈ R+ that pointwise

lim inf
n→∞

E
[
Xm
n
◦
ρ

(
Ln +Xn · h(χ))

Cn

)]
≥ lim

n→∞
E
[
(Xm

n ∧ U) ρr

(
Ln +Xn · h(χ))

Cn

)]
= E

[
(Xm ∧ U) ρr

(
L+X · h(χ))

C

)]
.

Hence as U →∞ and r →∞ by monotone convergence,

lim inf
n→∞

E
[
Xm
n
◦
ρ

(
Ln +Xn · h(χ)

Cn

)]
− χm ≥

◦
fm(χ) (4.4.1)

and we can use Lemma 4.4.2 to derive that lim infn→∞χn ≥ lim infn→∞ χ̂n ≥ χ̂.

We now want to show the lower bound on the final damage. Fix some δ > 0 and choose n
large enough such that χn ≥ χ̂n ≥ (1− δ)χ̂ componentwise. Then

n−1Sn = E [Sn1 {Ln +Xn · h(χn) ≥ Cn}] ≥ E [Sn1 {Ln +Xn · h((1− δ)χ̂) > Cn}] .

However, using weak convergence of (Xn, Sn, Cn, Ln) and approximating the indicator function
1{y > 1} from below by continuous functions (φt)t∈N, we derive for U ∈ R+

lim inf
n→∞

n−1Sn ≥ lim
n→∞

E
[
(Sn ∧ U)φt

(
Ln +Xn · h((1− δ)χ̂)

Cn

)]
= E

[
(S ∧ U)φt

(
L+X · h((1− δ)χ̂)

C

)]
and as U →∞ and t→∞,

lim inf
n→∞

n−1Sn ≥ E [S1 {L+X · h((1− δ)χ̂) > C}] =
◦
g((1− δ)χ̂).

This quantity now tends to
◦
g(χ̂) as δ → 0 by lower semi-continuity of

◦
g.

Now we approach the second part of the theorem. Recall from Proposition 4.1.2 that
χn ≤ χn. By the construction of χ∗ in the proof of Lemma 4.1.4, we have a non-increasing (as
ε→ 0) sequence (χ̂(ε))ε>0 such that limε→0+ χ̂(ε) = χ∗. (See Remark 4.4.1 for non-continuous
ρ.) In particular, χ∗ ≤ χ̂(ε) for every ε > 0 and fm(χ̂(ε)) = −ε. Using weak convergence
of (Xn, Sn, Cn, Ln) we derive for U ∈ R+ and (ρs)s∈N an approximation of ρ from above by
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continuous sale functions that

lim sup
n→∞

E
[
Xm
n ρ

(
Ln +Xn · h(χ̂(ε))

Cn

)]
= E[Xm]− lim inf

n→∞
E
[
Xm
n

(
1− ρ

(
Ln +Xn · h(χ̂(ε))

Cn

))]
≤ E[Xm]− lim inf

n→∞
E
[
(Xm

n ∧ U)

(
1− ρs

(
Ln +Xn · h(χ̂(ε))

Cn

))]
= E[Xm]− E

[
(Xm ∧ U)

(
1− ρs

(
L+X · h(χ̂(ε))

C

))]
and as U →∞, s→∞, by monotone convergence

lim sup
n→∞

E
[
Xm
n ρ

(
Ln +Xn · h(χ̂(ε))

Cn

)]
≤ fm(χ̂(ε)) + χ̂m(ε) = χ̂m(ε)− ε.

Hence for n large enough it holds

E
[
Xm
n ρ

(
Ln +Xn · h(χ̂(ε))

Cn

)]
− χ̂m(ε) ≤ −ε/2 < 0

for all m ∈ [M ]. In particular, we know that χn ≤ χ̂(ε). Letting ε → 0, this shows that
lim supn→∞ χ

m
n ≤ lim supn→∞ χ

m
n ≤ (χ∗)m for all m ∈ [M ] and hence completes the proof of

the upper bound on finally sold assets.
For the upper bound on the final damage n−1Sn = E[Sn1{Ln+Xn ·h(χn) ≥ Cn}], approxi-

mate the indicator function 1{y ≥ 1} from above by continuous functions (ψt)t∈N and use weak
convergence of (Xn, Sn, Cn, Ln) to derive for U ∈ R+

lim sup
n→∞

n−1Sn = E[S]− lim inf
n→∞

E
[
Sn

(
1− ψt

(
Ln +Xn · h (χ̂(ε))

Cn

))]
≤ E[S]− lim inf

n→∞
E
[
(Sn ∧ U)

(
1− ψt

(
Ln +Xn · h (χ̂(ε))

Cn

))]
= E[S]− E

[
(S ∧ U)

(
1− ψt

(
L+X · h (χ̂(ε))

C

))]
and as U →∞ and t→∞, lim supn→∞ n

−1Sn ≤ g(χ̂(ε)). Letting ε→ 0, thus shows the second
part of the theorem by upper semi-continuity of g.

4.4.2 Proofs for Section 4.2

As in Section 4.2 we use the notation g, fm,
◦
g,

◦
fm, χ̂ and χ∗ for an unshocked (X, S, C)-system.

If instead we index these quantities by ·L, we mean the system shocked by L.

Proof of Theorem 4.2.2. By Remark 4.4.1, there exists a sequence of vectors χ̃(γ) ∈ RM+,0 such
that fm(χ̃(γ)) = −γ for all m ∈ [M ] and arbitrary γ ∈ R+. Now for arbitrary α ∈ R+ it holds
that

fmL (χ) = E
[
Xmρ

(
L+X · h(χ)

C

)]
− χm

≤ E
[
Xm1

{
L

C
≥ α

}]
+ E

[
Xmρ

(
αC +X · h(χ)

C

)]
− χm.

Since E[L/C] < δ, by Markov’s inequality it holds that P(L/C ≥ α) ≤ δ/α and hence for δ > 0
small enough, we have E[Xm1{L/C ≥ α}] ≤ γ/3 (recall that E[Xm] < ∞). By dominated
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convergence and right-continuity of ρ, it thus holds that fmL (χ) ≤ fm(χ)+2γ/3 for α > 0 small
enough such that

E
[
Xmρ

(
αC +X · h(χ)

C

)]
≤ E

[
Xmρ

(
X · h(χ)

C

)]
+ γ/3.

In particular, fmL (χ̃(γ)) ≤ −γ/3 < 0 and hence χ∗L < χ̃(γ) for δ small enough. By similar
means, we further derive that for δ small enough it holds gL(χ̃(γ)) ≤ g(χ̃(γ)) + ε/3. Together
with Theorem 4.1.5, we thus derive that

lim sup
n→∞

n−1Sn,L ≤ gL(χ∗L) + ε/3 ≤ gL(χ̃(γ)) + ε/3 ≤ g(χ̃(γ)) + 2ε/3.

Now since χ̃(γ) → χ∗ and by upper semi-continuity of g, we can choose γ > 0 small enough
such that g(χ̃(γ)) ≤ g(χ∗) + ε/3 and conclude that lim supn→∞ n

−1Sn,L ≤ g(χ∗) + ε.

For the bound on χmn,L choose γ and δ small enough such that (χ∗L)m ≤ χ̃m(γ) + ε/3 ≤
(χ∗)m + 2ε/3 and conclude by Theorem 4.1.5 that

lim sup
n→∞

χmn,L ≤ (χ∗L)m + ε/3 ≤ (χ∗)m + ε.

Proof of Theorem 4.2.5. For any ε > 0 and any subset I ⊂ [M ] let

T (ε, I) :=
⋂
m∈I

{
χ ∈ RM+,0 :

◦
fm(χ) ≤ −ε

}
∩
⋂
k∈Ic

{
χ ∈ RM+,0 : χk ≥ E[Xk]

}
,

where Ic := [M ]\I. Analogously to the construction of χ̂ in the proof of Lemma 4.1.4, we

find the smallest (componentwise) point χ̂(ε, I) ∈ RM+,0 such that
◦
fm(χ) = −ε for m ∈ I and

χk = E[Xk] for k ∈ Ic. Clearly, χ̂(ε, I) ∈ T (ε, I) and χ̂(ε, I) ≤ χ for any other χ ∈ T (ε, I)
(choose χ as an upper bound in the construction).

In particular, χ̂(ε, I) is non-decreasing. As it is bounded by E[X], we therefore know that
it is continuous for almost every ε > 0. As moreover, E[Xmρ(X ·h(χ̂(ε, I))/C)] is bounded and
increasing in ε, we derive that for almost every ε > 0 and arbitrary δ > 0, we can find γ > 0
small enough such that

E
[
Xmρ

(
X · h(χ̂(ε, I))

C

)]
≤ E

[
Xmρ

(
X · h(χ̂(ε− γ, I))

C

)]
+ δ.

As χ̂m(ε, I) is strictly increasing for m ∈ I and by the assumption of hm(χ) being strictly
increasing in χm, we derive on {Xm > 0} that

ρ

(
X · h (χ̂(ε− γ, I))

C

)
≤ ◦
ρ

(
X · h (χ̂(ε, I))

C

)
and hence

E
[
Xm ◦ρ

(
X · h(χ̂(ε, I))

C

)]
≤ E

[
Xmρ

(
X · h(χ̂(ε, I))

C

)]
≤ E

[
Xm ◦ρ

(
X · h(χ̂(ε, I))

C

)]
+ δ.

Choosing δ arbitrarily small, we thus conclude that fm(χ̂(ε, I)) =
◦
fm(χ̂(ε, I)) = −ε for m ∈ I.

Suppose now there was some χ ∈ P0\[0, χ̂(ε, I)]. As P0 ⊂ [0,E[X]] and by monotonicity of
fm, we could then find some m ∈ I and χ̃ ∈ P0 such that χ̃ ≤ χ̂(ε, I) and χ̃m = χ̂m(ε, I). This
on the other hand would imply fm(χ̃) ≤ fm(χ̂(ε, I)) = −ε, which contradicts χ̃ ∈ P0. We can
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thus conclude that χ∗ ∈ P0 ⊂ [0, χ̂(ε, I)].
Consider now a certain L and let

I := {m ∈ [M ] : χ̂mL < E[Xm]}.

Then for m ∈ I, we have

◦
fm(χ̂L) =

◦
fmL (χ̂L)− P(L = 2C)(E[Xm]− χ̂mL )

P(L = 0)
< 0

since
◦
fmL (χ̂L) = 0 by definition. Let now

ε := −max
m∈I

◦
fm(χ̂L) > 0.

By construction, χ̂L ∈ T (ε, I) and thus χ̂L ≥ χ̂(ε, I) ≥ χ∗. By Theorem 4.1.5 we can thus
conclude that

n−1Sn,L ≥
◦
gL(χ̂L) + o(1) ≥ ◦

g(χ∗) + o(1)

and
χmn,L ≥ χ̂mL + o(1) ≥ (χ∗)m + o(1).

Proof of Corollary 4.2.7. First, let γ ≥ 1. Then

f(χ) = E[X1{Xh(χ) ≥ αXγ}]− χ ≤ E[X1{h(χ) ≥ α}]− χ = −χ

for χ small enough such that h(χ) < α. Hence χ∗ = 0 and g(χ∗) = P(Xh(χ∗) ≥ αXγ) = 0.
The system is hence resilient by Corollary 4.2.3.

Now assume that γ < 1. Then for χ small enough

f(χ) ≤ E

[
X1

{
X ≥

(
α

µ2
χ−ν

) 1
1−γ
}]
− χ

=

(
1− FX

((
α

µ2
χ−ν

) 1
1−γ
))(

α

µ2
χ−ν

) 1
1−γ

+

∫ ∞(
α
µ2
χ−ν

) 1
1−γ

(1− FX(t))dt− χ

≤ B2
β − 1

β − 2

(µ2
α
χν
)β−2

1−γ − χ

and lim infχ→0+ f(χ)χ−1 < 0 for γ > 1− ν(β − 2) or γ = 1− ν(β − 2) and α > µ2

(
B2

β−1
β−2

)ν
.

This implies χ∗ = 0 and hence resilience as above.
On the other hand, for χ small enough also

f(χ) ≥ B1
β − 1

β − 2

(µ1
α
χν
)β−2

1−γ − χ

and hence χ∗ > 0 for γ < 1− ν(β − 2) or γ = 1− ν(β − 2) and α < µ1

(
B1

β−1
β−2

)ν
. Then

◦
g(χ∗) = P

(
X >

(
α

h(χ∗)

) 1
1−γ
)
≥ B1

(
h(χ∗)

α

)β−1
1−γ

> 0

and the system is non-resilient by Corollary 4.2.6.
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Proof of Corollary 4.2.8. Non-resilience for γ < 1 − ν(β − 2) is trivial from Corollary 4.2.7
noting that the intermediate sales only make the system even less resilient.

So assume in the following that γ > 1− ν(β− 2): First, let γ ≥ 1. Then for χ small enough
(cf. the proof of Corollary 4.2.7) it holds

f(χ) ≤ E
[
X

(
Xh(χ)

αXγ

)q
1 {Xh(χ) < αXγ}

]
− χ ≤ E[X]µq2

α
χνq − χ

and by νq > 1, we derive χ∗ = 0 and resilience of the system by Corollary 4.2.3.
Now let γ < 1. Using B1x

1−β ≤ 1− FX(x) ≤ B2x
1−β for x ≥ x0, we derive

E

[
X1+q(1−γ)1

{
X <

(
α

h(χ)

) 1
1−γ
}]

=

∫ (
α

h(χ)

) 1
1−γ

0
(1 + q(1− γ))tq(1−γ)(1− FX(t))dt−

(
α

h(χ)

) 1
1−γ+q

(
1− FX

((
α

h(χ)

) 1
1−γ
))

≤
(
B2

1 + q(1− γ)

2− β + q(1− γ)
− B̃1

)(
α

h(χ)

) 2−β
1−γ+q

+ κ,

where κ > 0 accounts for the lower part of the integral from 0 to x0 and B̃1 is chosen such that
B̃1x

1−β ≤ 1− FX(x) for all x ≥ 0. For χ small enough (cf. the proof of Corollary 4.2.7) it then
holds

f(χ) ≤ B2
β − 1

β − 2

(µ2
α
χν
)β−2

1−γ
+ E

[
X1+q(1−γ)1

{
X <

(
α

h(χ)

) 1
1−γ
}](

h(χ)

α

)q
− χ

≤ B2
β − 1

β − 2

(µ2
α
χν
)β−2

1−γ
+

(
B2

1 + q(1− γ)

2− β + q(1− γ)
− B̃1

)(µ2
α
χν
)β−2

1−γ
+ κ

(µ2
α
χν
)q
− χ

and by ν(β− 2)/(1− γ) > 1 as well as νq > 1, we derive that χ∗ = 0 and the system is resilient
by Corollary 4.2.3.

Proof of Corollary 4.2.9. Let v ∈ RM+ be defined by vm := θm/µm. The functions fm, m ∈ [M ],
are given by

fm(χ) = E

[
Xmρm

(∑
m∈[M ]X

mhm(χ)∑
m∈[M ] θ

mXm

)]
− χm

and thus for χ ∈ R+,0 we have

fm(χv) = E[Xmρm(χν)]− χθ
m

µm
= E[Xm]

(
1{χ ≥ 1}+ χνq

m
1{χ < 1}

)
− χθ

m

µm
.

As χ→ 0,

lim inf
χ→0+

fm(χv)χ−1 =


−θm/µm, if qm > ν−1,

E[Xm]− θm/µm, if qm = ν−1,

∞, if qm < ν−1.

In particular, both 1. and 2. imply lim infχ→0+ f
m(χv)χ−1 < 0 and since this holds for all

m ∈ [M ], we can conclude that χ∗ = 0 and the system is resilient by Corollary 4.2.3.





Chapter 5

An Integrated Model for Default
Contagion and Fire Sales in
Multi-type Financial Networks

In the previous chapters, we have studied different aspects of systemic risk focusing on the two
contagion channels default contagion respectively fire sales and particularly derived ways to
prevent large default cascades. Each single chapter, however, was devoted to the understanding
of specific phenomena and to ensure a concise presentation left out aspects covered in other
chapters. The aim of this chapter is now to propose and analyze in detail a model combining
the model features from Chapters 3 and 4 and by this obtain a more comprehensive picture
of systemic risk. In particular, we will integrate the fire sales channel of systemic risk and
the default contagion channel which allows us to better understand their interlocking in a
cascade of financial distress. As in the previous chapters we will derive results about the final
state of an initially distressed financial system, a characterization of resilience, and capital
requirements. Moreover, we demonstrate that default contagion and fire sales can significantly
amplify each other and that these amplification effects can even cause a system to become non-
resilient. In Section 5.1, we describe the model and particularly emphasize the joint contagion
process of default contagion and fire sales. Next, we derive results about the final systemic
damage in Section 5.2 and identify resilient and non-resilient system characteristics in Section
5.3. In Section 5.4, we show that the combination of default contagion and fire sales can
have tremendous impact on the stability of the system and support this example by numerical
simulations. Moreover, we derive sufficient capital requirements to protect a financial system
against the joint effects of default contagion and fire sales. Finally, we give proofs for all our
results in Section 5.5.

My own contribution: This chapter presents an extended version of the model from [55].
Still many passages are adopted or slightly modified from there. [55] is joint work with Nils
Detering, Thilo Meyer-Brandis and Konstantinos Panagiotou. I was significantly involved in the
development of all parts of that paper and did most of the editorial work. In particular, I made
major contributions to the conceptualization of the model and the joint contagion process, as
well as Lemma 5.1.1, Proposition 5.1.2, Theorems 5.2.3, 5.3.2 and 5.3.5, Examples 5.4.1 and
5.4.2, Theorem 5.5.2, and Lemmas 5.5.3 and 5.5.4, that were included in [55] for the special
case of the threshold model from Chapter 2 (i. e. R = T = 1) and for the final default fraction
rather than a general measure of systemic importance (i. e. S ≡ 1).



116 Chapter 5. An Integrated Model for Default Contagion and Fire Sales in Multi-type Financial
Networks

5.1 An Integrated Model for the Financial System

In this section, we state our model for a financial system. It includes all the parameters we
need to investigate the interplay of the contagion channels fire sales and default contagion. We
assume that there are n ∈ N financial institutions. We use the term financial institutions in
a wide sense. It may include banks, insurance companies, mutual funds, asset managers but
also non-financial institutions as for example corporations if they hold a large number of the
assets and would sell them in case of a decline in value. We denote the set of institutions by
[n] := {1, . . . , n}. Further we consider M ∈ N assets. These are the assets institutions invest in
and that are considered relevant for potential fire sales. We denote by [M ] := {1, . . . ,M} the
set of these assets.

5.1.1 Model Parameters

Each institution i ∈ [n] has a set of parameters assigned:

1. The value of systemic importance si ∈ R+,0: It describes the potential damage that
a default of institution i will cause for the global financial system or the wider economy.
See Chapter 2 for more details and possible choices for si.

2. The initial capital parameter ci ∈ R+,∞ := R+ ∪ {∞}: This parameter determines
the monetary buffer of institution i against losses. For banks this is usually their equity
(assets minus liabilities) which is positive if the bank is solvent. For an asset manager it
could be the total value of assets managed. In the following, we refer to ci as capital for
simplicity.

3. The exogenous loss parameter `i ∈ R+,0: It models the impact of some external shock
on institution i. The specification of `i allows for a variety of stress tests for the financial
system, i. e. asset price shock, defaults of some institutions, etc. The actual magnitude of
`i will thus crucially depend on the stress testing and the business model of institution i.
The actual new capital of institution i after the shock is ci − `i.

4. The number xmi ∈ R+,0 of shares institution i holds of asset m ∈ [M ]: As we are
only interested in the effect of sales, we consider only positive holdings. If an institution
i is shortening asset m, we set xmi = 0. So for each institution we can assign a vector
xi := (x1i , . . . , x

M
i ) ∈ RM+,0 of asset holdings.

5. Direct exposures ei,j ∈ R+,0: In this section, we consider ei,j to be the observed
(deterministic) exposure of j to i. If ei,j > 0, this means that institution i owes a monetary
amount to institution j via for example a loan. In the next section, we will propose a
random model for {ei,j}i,j∈[n] using the ideas from Chapter 3.

In Figure 5.1 we summarize the parameters assigned to each institution.

5.1.2 Fire Sales

We repeat the most important notions about fire sales from Chapter 4. Fire sales are the
combination of asset sales and price impact. The exogenous losses `i, i ∈ [n], possibly drive
some institutions into selling parts of their assets. This can be due to their own risk preference
or regulation that forces them to stay within certain risk bounds or leverage constraints. We
model these asset sales by a function ρ : R+,0 → [0, 1], which describes the fraction of assets
sold after an institution lost a certain fraction of its capital, i. e. i ∈ [n] sells xmi ρ(Λ/ci) of its
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Figure 5.1: Model parameters for institutions i and j in the financial system as well as asset m

shares of asset m after it incurred losses of Λ. We refer to Chapter 4 for more details on the
specification of ρ. The setup can easily be extended to account for different sales behaviors
for different institutions. This is especially important if one goes beyond the banking network.
Then one has to reflect the fact that banks and insurance companies are regulated differently.
Also wealth managers will have a different sale function depending on their risk profile. For
the sake of notational simplicity we restrict ourselves to one sale function ρ here. We make the
following natural assumptions: the sale function ρ is non-decreasing, ρ(0) = 0 and ρ(u) = ρ(1)
for all u ≥ 1. Moreover to simplify notation in the following, we choose ρ to be right-continuous
and denote by

◦
ρ(u) := limε→0+ ρ((1− ε)u) its left-continuous modification.

The sales will cause prices to go down as the assets are not perfectly liquid (the limit
order book has finite depth). To model the decline in the asset prices we use functions
hm : RM+,0 → [0, 1] which are non-decreasing and continuous in each coordinate. After nym∈R+,0

shares of asset m have been sold, we assume that the share price of each asset m ∈ [M ] decreases
by hm(y), where y = (y1, . . . , yM ). Each institution i ∈ [n] is further assumed to suffer losses
of xi · h(y) due to mark-to-market valuation of its portfolio, where h(y) = (h1(y), . . . , hM (y)).

There are two remarks in order: First, we pick y as the argument of h instead of the actual
vector of sold shares ny; this choice is purely conventional for any fixed n but will be convenient
for our results (also cf. Assumption 5.2.1). Second, as institutions start selling assets during
the contagion process they actually reduce their exposure to future price drops and xi · h(y)
merely functions as an upper bound on i’s losses. In this sense, our model is conservative. In
particular, implementation costs for each trade are covered. Moreover, this assumption allows
for better analytic results in the following.

For a financial system without direct exposures, i. e. ei,j = 0 for all i, j ∈ [n], the contagion
process is then solely driven by rounds of alternating asset sales and price impact, i. e. fire sales.
Denoting by σ(k) = (σ1(k), . . . , σ

M
(k)) the vector of sold shares in round k ∈ N0 with σ(0) = 0 we

then derive

σ(k) =
∑
i∈[n]

xiρ

(
`i + xi · h(n−1σ(k−1))

ci

)
, k ≥ 1.

See Chapter 4 for results on the pure fire sales process.

5.1.3 Default Contagion

If on the other hand, we consider a financial system with xi = 0 for all i ∈ [n], then contagion
completely proceeds via the direct exposure network. That is, if `i ≥ ci and institution i ∈ [n]
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is therefore initially defaulted, then each institution j ∈ [n] suffers losses of ei,j . This possibly
causes further defaults in the system and so on. Note that this supposes a recovery rate of zero
which is a conservative yet reasonable assumption as the time horizon of the default contagion
process is short compared to the time the resolution of an insolvent institution takes and there
is a huge amount of uncertainty about the actual value of an insolvent institution immediately
after its default. One could easily implement other fixed recovery rates in our model.

Again we can consider the pure default contagion process in rounds analogue to Chapter 3.
Denoting D(k) ⊆ [n] the set of defaulted institutions in round k ∈ N0 with D(0) = ∅ we obtain

D(k) = {i ∈ [n] :
∑
j∈D(j)

ej,i ≥ ci − `i}, k ≥ 1,

and the contagion process ends after at most n− 1 rounds. In particular, Dn := D(n−1) consists
of all finally defaulted institutions and Sn =

∑
i∈Dn si amounts to the total final systemic

damage caused by defaults. See [8, 54] and Chapter 3 for more results on the pure default
contagion process.

5.1.4 The Contagion Process

The focus of this chapter is on the understanding of the joint effects of fire sales and default
contagion. We therefore combine the two processes from above and again consider contagion in
rounds: Let D(0) = ∅ and σ(0) = 0. Moreover, for k ≥ 1,

D(k) =

{
i ∈ [n] :

∑
j∈D(k−1)

ej,i ≥ ci − `i − xi · h
(
n−1σ(k−1)

)}

and

σ(k) =
∑
i∈[n]

xiρ

(∑
j∈D(k−1)

ej,i + `i + xi · h
(
n−1σ(k−1)

)
ci

)
.

Then D(0) ⊆ D(1) ⊆ · · · ⊆ [n] and σ(0) ≤ σ(1) ≤ · · · ≤
∑

i∈[n] xi. We can thus conclude that the
process converges as k →∞. Let then Dn :=

⋃
k∈ND(k) the set of finally defaulted institutions,

Sn =
∑

i∈Dn si their systemic importance and χn := n−1 limk→∞ σ(k) the vector of finally sold
shares divided by n.

For continuous ρ, we derive the following result.

Lemma 5.1.1. Consider above contagion process for continuous ρ. Then Dn ⊆ [n] and χn are
the smallest solution to

D =

{
i ∈ [n] :

∑
j∈D

ej,i ≥ ci − `i − xi · h(χ)

}
, (5.1.1)

χ =
∑
i∈[n]

xiρ

(∑
j∈D ej,i + `i + xi · h(χ)

ci

)
. (5.1.2)

That is, if (D̃, χ̃) also solves (5.1.1) and (5.1.2), then Dn ⊆ D̃ and χn ≤ χ̃.

One particular consequence of Lemma 5.1.1 is then that for continuous ρ we can alter the
contagion process in the following way. Let D0 = ∅ and χ0 = 0. Repeat the following for k ≥ 1
until Dk = Dk−1 and χk = χk−1.
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(i) Let Dk ⊆ [n] the smallest set such that

Dk =

{
i ∈ [n] :

∑
j∈Dk

ej,i ≥ ci − `i − xi · h(χk−1)

}
.

(ii) Let χk be the smallest vector such that

χk = n−1
∑
i∈[n]

xiρ

(∑
j∈Dk ej,i + `i + xi · h(χk)

ci

)

which exists by the Knaster-Tarski theorem.

That is, instead of considering fire sales and default contagion simultaneously, we first consider
a complete default contagion cascade, then a complete fire sales cascade and so on (compare
[113] for instance). This procedure ends after at most n steps in Dn and χn.

For general (not necessarily continuous) ρ, clearly the process described by (i) and (ii) still
converges to the smallest solution Dn and χn of (5.1.1) and (5.1.2). By similar means as in the
proof of Lemma 5.1.1 it then holds that Dn ⊆ Dn as well as χn ≤ χn.

Furthermore, consider the following process with strict inequality in (i’) and ρ replaced by
its left-continuous modification

◦
ρ in (ii’): Let D̂0 = ∅ and χ̂0 = 0. Repeat the following for

k ≥ 1 until D̂k = D̂k−1 and χ̂k = χ̂k−1.

(i’) Let D̂k ⊆ [n] the smallest set such that

D̂k =

{
i ∈ [n] :

∑
j∈D̂k

ej,i > ci − `i − xi · h(χ̂k−1)

}
.

(ii’) Let χ̂k be the smallest vector such that

χ̂k = n−1
∑
i∈[n]

xi
◦
ρ

(∑
j∈D̂k ej,i + `i + xi · h(χ̂k)

ci

)

which exists by the Knaster-Tarski theorem.

Again this process ends after at most n rounds in D̂n and χ̂n. Moreover, by the same means as
in the proof of Lemma 5.1.1 and since

◦
ρ is a lower bound on ρ, we then derive that D̂n ⊆ Dn

and χ̂n ≤ χn.
Finally, denote Ŝn =

∑
i∈D̂n si and Sn =

∑
i∈Dn si. Then altogether, we derive the following.

Proposition 5.1.2. For the set of finally defaulted institutions Dn, their total systemic impor-
tance Sn and the vector χn of finally sold shares divided by n it holds

D̂n ⊆ Dn ⊆ Dn, Ŝn ≤ Sn ≤ Sn, χ̂n ≤ χn ≤ χn.

The case that Dn ( Dn or χn < χn can happen if in the contagion process the sold shares
converge to a vector that would be large enough to cause new defaults or trigger further asset
sales but is actually never reached in finitely many steps. Then the process converges to a
non-equilibrium state. As for real financial systems the least possible number of sold shares in
each round is lower bounded by 1, this can actually never happen and for all practical purposes
the final set of defaulted institutions is given by Dn, their caused systemic damage by Sn and
the vector of finally sold shares is given by χn.



120 Chapter 5. An Integrated Model for Default Contagion and Fire Sales in Multi-type Financial
Networks

5.2 The Stochastic Model

In the previous section, we considered the combined contagion process of fire sales and default
contagion on any explicitly given financial system. In this section, we go one step further and
analyze a whole ensemble of systems simultaneously that share certain statistical characteristics.
This will ultimately allow us to understand which system structures promote global contagion
or contain it locally.

In a first step, we therefore replace the actual ei,j from the previous section by a ran-
dom sample instead of using the actual observed edges/exposures. As in Chapter 3 we let
R ∈ N the maximal exposure between two institutions and we define a probability measure P
on {0, . . . , R}|E|, where E is the set of possible directed edges E := {(i, j) ∈ [n]2 : i 6= j}. This
approach has several advantages:

1. The network of exposures can change significantly on a microscopic level but as empirical
studies show, the global statistics are reasonably stable (see e. g. [45]).

2. Often only the aggregated exposures
∑

j∈[n] ei,j are available to the regulator. Since the
individual exposures are unknown it is thus advisable to use the information available
and consider probabilistic samples. Ideally one obtains results that hold for all possible
realizations.

3. A random network is analytically more tractable and provides more understanding of the
impact of the network characteristics on the combined fire sales and contagion process.

Our choice of P has to be such that the generated networks share the characteristic of the
observed financial network. The actual network is thus replaced by a random network that
looks very similar to the original network but has better analytic properties.

As in Chapter 3, we assume the global financial system to be composed of T ∈ N subsystems
of different institution types. Then for each institution i ∈ [n] we replace the direct exposures
{ei,j}j∈[n] ⊂ R+,0 from Subsection 5.1.1 by

5’. (a) An institution-type αi ∈ [T ]: This parameter allocates institution i to a certain
subsystem such as country or core/periphery.

5’. (b) A vector of in-weights w−i ∈ R
[R]×[T ]
+,0 : The in-weight w−,r,αi describes the tendency

of institution i to be exposed to an institution of type α with an exposure of size r.

5’. (c) A vector of out-weights w+
i ∈ R

[R]×[T ]
+,0 : The out-weight w+,r,α

i describes the ten-
dency of institutions of type α to be exposed to i with an exposure of size r.

The occurrence of an edge of multiplicity r ∈ [R] going from i to j is then modeled by a Bernoulli
random variable Xr

i,j with success probability

pri,j :=

{
min

{
R−1, n−1w

+,r,αj
i w−,r,αij

}
, if i 6= j,

0, if i = j,
(5.2.1)

such that
∑

r∈[R]X
r
i,j ≤ 1 and Xr1

i1,j1
⊥ Xr2

i2,j2
for all r1, r2 and (i1, j1) 6= (i2, j2).

Now consider a collection of financial systems with varying size n. We want to ensure
that their statistical characteristics measured by means of the empirical distribution functions
stabilize as n → ∞. Moreover, we want to prohibit that exposures or asset holdings condense
in one institution.
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Assumption 5.2.1 (Regular Vertex Sequence). Let M ∈ N. For each n ∈ N consider a system
with n institutions and M assets specified by the sequences w−(n) = (w−i (n))i∈[n] of in-weights,

w+(n) = (w+
i (n))i∈[n] of out-weights, x(n) = (xi(n))i∈[n] of asset holdings, s(n) = (si(n))i∈[n]

of systemic importance values, c(n) = (ci(n))i∈[n] of capitals, `(n) = (`i(n))i∈[n] of exogenous
losses and α(n) = (αi(n))i∈[n] of institution types. Then the following shall hold:

(a) Convergence in distribution: For each n ∈ N let the random empirical distribution
function of the system parameters be denoted by

Fn(w−,w+,x, s, c, `, α)

:= n−1
∑
i∈[n]

∏
r∈[R],β∈[T ]

1
{
w−r,βi ≤ w−,r,β, w+,r,β

i ≤ w+,r,β
}

×
∏

m∈[M ]

1 {xmi ≤ xm}1{si ≤ s, ci ≤ c, `i ≤ `, αi ≤ α},

for w−,w+ ∈ R[R]×[T ]
+,0 , x ∈ RM+,0, s ∈ R+,0, c ∈ R+,0,∞, ` ∈ R+,0 and α ∈ [T ]. Let in the

following (W−
n ,W

+
n ,Xn, Sn, Cn, Ln, An) denote a random vector distributed according to

Fn. Then there exists a distribution function F such that

Fn(w−,w+,x, s, c, `, α;χ)→ F (w−,w+,x, s, c, `, α;χ), as n→∞,

at all continuity points of Fα(w−,w+,x, s, c, `) := F (w−,w+,x, s, c, `, α).

(b) Convergence of means: Denote by (W−,W+,X, S, C, L,A) a random vector dis-
tributed according to the limiting distribution F . Then as n→∞,

E[W−,r,αn ]→ E[W−,r,α] <∞, E[W+,r,α
n ]→ E[W+,r,α] <∞, for all r ∈ [R], α ∈ [T ],

E[Sn]→ E[S] <∞ and E[Xm
n ]→ E[Xm] <∞, for all m ∈ [M ].

Let V = [R]× [T ]2. Define now for z ∈ RV+,0 and χ ∈ RM+,0,

g(z,χ) :=
∑
β∈[T ]

E

[
Sψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

f r,α,β(z,χ) := E

[
W+,r,αψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β, (r, α, β) ∈ V,

fm(z,χ) :=
∑
β∈[T ]

E

[
Xmφ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ],

where we abbreviate
Yr,β :=

∑
γ∈[T ]

W−,r,γzr,β,γ , r ∈ [R], β ∈ [T ],

and for {qs}s∈[R] ⊂ R+,0 and independent Qs ∼ Poi(qs), s ∈ [R],

ψ(q1, . . . , qR; t) := P

∑
s∈[R]

sXs ≥ t

 ,
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respectively

φ(q1, . . . , qR; `, c) := E

[
ρ

(∑
s∈[R] sXs + `

c

)]
.

Let us give an intuitive explanation for the functions g, f r,α,β and fm first. For this we consider
the special case R = T = 1 and start looking at the fire sales and the default contagion process
separately.

We start with the default contagion process. Heuristically, for an externally given vector
of asset sales χ, the function f1,1,1(·,χ) describes (in the limit n → ∞) the intensity of the
default contagion process over time. Here time refers to steps in a sequential analysis of the
process which leads to the same set of defaulted institutions. Let now z̄ ∈ [0,E[W+]] denote the
total out-weight of finally defaulted banks divided by n. Then by the specification of pi,j for
any fixed bank i ∈ [n] the number of incoming edges (exposures) from finally defaulted banks
is given by a random variable Poi(w−,1,1i z̄). Institution i is hence finally defaulted itself if and

only if Poi(w−,1,1i z̄) ≥ ci − `i − xi · h(χ). Summing over all banks in the system we thus derive
the following identity:

z̄ = n−1
∑
i∈[n]

w+,1,1
i 1

{
Poi(w−,1,1i z̄) ≥ ci−`i−xi ·h(χ)

}
≈ E

[
W+,1,1ψ(W−,1,1z̄;C−L−X ·h(χ))

]
,

and therefore f1,1,1(z̄,χ) = 0. Further, the damage by finally defaulted banks is then given by

n−1
∑
i∈[n]

si1
{
`i + Poi(w−,1,1i z̄) +xi · h(χ) ≥ ci

}
≈ E

[
Sψ(W−,1,1z̄, C −L−X · h(χ))

]
= g(z̄,χ).

Hence if fire sales are ignored, meaning the initial capital is simply reduced by a fixed amount
accounting for some externally given sales vector χ, then in order to get the final state of the
system we only need to determine the (first) root z̄ of f1,1,1(·,χ) and plug it into g(·,χ).

Let us now look at the fire sales system with an externally given contagion result. For
the case of one asset with label 1, fixing the sum of the out-weights of defaulted institutions,
divided by n to be z, then the loss institution i receives due to the liabilities to defaulted banks
is described by the random quantity Poi(w−,1,1i z) and, for continuous ρ, similarly as in the
derivation of Lemma 5.1.1, the number of finally sold shares χ̄ solves

χ̄ = n−1
∑
i∈[n]

x1i ρ

(
`i + Poi(w−,1,1i z) + x1ih

1(χ̄)

ci

)
≈ E

[
X1φ(W−,1,1z;L+X1h(χ̄), C))

]
(5.2.2)

such that χ̄ is a root of f1(z, ·). Moreover, the final systemic importance of defaulted institutions
divided by n is given by

n−1
∑
i∈[n]

si1
{

Poi(w−,1,1i z) + `i + x1ih
1(χ̄) ≥ ci

}
≈ E

[
Sψ(W−,1,1z, C − L−X1h(χ̄))

]
= g(z, χ̄).

(5.2.3)
So the root χ̄ of f1(z, ·) determines the end of the process and again g yields the damage by
defaulted institutions.

These heuristics show that the joint fire sales and default contagion process should come
to an end at a joint root of the functions f r,α,β, (r, α, β) ∈ V , and fm,m ∈ [M ]. Under
some circumstances, however, if the distribution of (W−,W+,X, S, C, L,A) has atoms and the
function ρ is discontinuous, also the functions f r,α,β and fm might be discontinuous. Similar
as in the previous section, it is then in general not possible to determine the precise end state
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of the system. Still we will be able to derive lower bounds on the final default fraction and the
vector of finally sold shares. To this end, define lower semi-continuous modifications of g, f r,α,β,
(r, α, β) ∈ V , and fm, m ∈ [M ], by

◦
g(z,χ) :=

∑
β∈[T ]

E

[
S
◦
ψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

◦
f r,α,β(z,χ) := E

[
W+,r,α

◦
ψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β , (r, α, β) ∈ V,

◦
fm(z,χ) :=

∑
β∈[T ]

E

[
Xm

◦
φ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ],

where as before
Yr,β :=

∑
γ∈[T ]

W−,r,γzr,β,γ , r ∈ [R], β ∈ [T ],

and for {qs}s∈[R] ⊂ R+,0 and independent Qs ∼ Poi(qs), s ∈ [R],

◦
ψ(q1, . . . , qR; t) := P

∑
s∈[R]

sXs > t

 ,

respectively
◦
φ(q1, . . . , qR; `, c) := E

[
◦
ρ

(∑
s∈[R] sXs + `

c

)]

for
◦
ρ(u) := limε→0+ ρ((1− ε)u). Further, let

◦
P0 and P0 the largest connected subsets of

◦
P :=

⋂
(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
fm(z,χ) ≥ 0

}
respectively

P :=
⋂

(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 : f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 : fm(z,χ) ≥ 0

}
that contain (0,0) (note that f r,α,β(0,0) ≥

◦
f r,α,β(0,0) ≥ 0 for all (r, α, β) ∈ V as well as

fm(0) ≥
◦
fm(0) ≥ 0 for all m ∈ [M ]0 and thus 0 ∈

◦
P and 0 ∈ P ). We will later make use

of the fact that P and P0 are clearly closed sets. Finally, define z∗ ∈ RV+,0 and χ∗ ∈ RM+,0 by

(z∗)r,α,β := sup(z,χ)∈P0
zr,α,β and (χ∗)m := sup(z,χ)∈P0

χm. Then the following holds:

Lemma 5.2.2. There exists a smallest joint root (ẑ, χ̂) of all the functions
◦
f r,α,β, (r, α, β) ∈ V ,

and
◦
fm, m ∈ [M ]. It holds (ẑ, χ̂) ∈

◦
P0. Further, (z∗,χ∗) as defined above is a joint root of the

functions f r,α,β, fm and (z∗,χ∗) ∈ P0.

The proof is analogue to the one of Lemma 4.1.4.
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We can then describe the final default fraction and the final number of sold shares asymp-
totically as n→∞ in terms of (ẑ, χ̂) and (z∗,χ∗).

Theorem 5.2.3. Consider a financial system that fulfills Assumption 5.2.1. Then for the final
systemic damage n−1Sn and χmn , the number of finally sold shares of asset m ∈ [M ] divided by
n, it holds

◦
g(ẑ, χ̂) + op(1) ≤ n−1Sn ≤ g(z∗,χ∗) + op(1),

χ̂m + op(1) ≤ χmn ≤ (χ∗)m + op(1).

In particular, for the final price impact hm(χn) on asset m ∈ [M ] it holds

hm(χ̂) + op(1) ≤ hm(χn) ≤ hm(χ∗) + op(1).

In most cases, (ẑ, χ̂) and (z∗,χ∗) will coincide and
◦
g(ẑ, χ̂) = g(z∗,χ∗). Theorem 5.2.3 then

describes the limits in probability of χn and n−1Sn for n→∞.

5.3 Resilient and Non-resilient Systems

Our results from the previous section allow us to compute the final state of a system that was
initially hit by some exogenous shock starting a cascade of default contagion and fire sales. We
shall now go one step further and describe the vulnerability of an initially unshocked system to
small shocks. We achieve this goal by considering shocks L of different magnitude on the same
initially unshocked system described by (W−,W+,X, S, C,A). In the following, if we use the
notations g,

◦
g, z∗ and χ∗ from Section 5.2 we mean the unshocked system with L ≡ 0.

Our notion of resilience extends the one for pure fire sales systems in Chapter 4 and this
section heavily borrows from Section 4.2.

5.3.1 Resilience

When it comes to regulation of a financial system, one desirable property is the capability
to absorb local shocks rather than amplify them through large parts of the system. In our
asymptotic model we can consider arbitrarily small shocks L and the following natural notion
of resilience emerges: when considering initial shocks L such that E[L/C] → 0, then a system
is called resilient if also the induced asymptotic final damage n−1Sn,L tends to 0.

Definition 5.3.1 (Resilience). A financial system (W−,W+,X, S, C,A) is said to be resilient
if for each ε > 0 there exists δ > 0 such that for all L with E[L/C] < δ it holds n−1Sn,L ≤ ε
with high probability.

While this definition (and Corollary 5.3.3 below) is concerned with the final systemic damage
only, the following theorem also investigates the number of sold shares of the assets (and hence
the price impacts which also affect the wider economy) in the limit E[L/C]→ 0.

Theorem 5.3.2. For each ε > 0 there exists δ > 0 such that for all L with E[L/C] < δ it
holds for the final damage by defaulted institutions n−1Sn,L and the number nχmn,L of finally
sold shares of each asset m ∈ [M ] in the shocked system that w. h. p.

n−1Sn,L ≤ g(z∗,χ∗) + ε and χmn,L ≤ (χ∗)m + ε, m ∈ [M ].

In particular, we derive the following resilience criterion.

Corollary 5.3.3 (Resilience Criterion). If g(z∗,χ∗) = 0, then the system is resilient.
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It is thus sufficient for resilience if (z∗,χ∗) = (0,0) or equivalently P0 = {(0,0)}. If, however,
g(z∗,χ∗) = 0 while χ∗ 6= 0, then Corollary 5.3.3 still ensures that the final systemic damage
stays small and the system is resilient by Definition 5.3.1, while a large fraction of shares of
assets is sold due to fire sales as a reaction to small local shocks – see Theorem 5.3.5 below.

5.3.2 Non-resilience

We now aim at characterizing non-resilient systems. For this note that our fire sales model
is in itself a conservative model as for each institution i ∈ [n] the entire asset holdings xi are
exposed to the price impact h(χn). It therefore ignores intermediate sales at a more favorable
asset price level. We refer to Chapter 4 for more discussion on intermediate sales. The following
results still give a first indication of non-resilience for general financial systems.

We consider shocks of the form `i ∈ {0, 2ci} such that P(L = 2C) > 0 and L/C is inde-
pendent of (W−,W+,X, S, C,A). It may seem odd at first to choose `i = 2ci (or any other
multiple strictly larger than 1) instead of `i = ci to express the default of institution i. The
reason is that in the proof of Theorem 5.3.5 below we want to use Theorem 5.2.3 which only
considers the limiting random vector (W−,W+,X, S, C, L,A). It would then be possible that
L = C in the limit n → ∞ while Ln < Cn almost surely for all n ∈ N. This situation would
not be distinguishable from Ln = Cn for all n ∈ N and in order to derive meaningful results in
Theorem 5.3.5 we have to choose `i > ci. Since

◦
ρ(u) = ρ(u) = ρ(1) for all u > 1, this does not

affect the contagion process.
In contrast to Definition 5.3.1 of resilience, we call a financial system non-resilient if any

small shock causes a lower bounded linear damage by bankrupt institutions.

Definition 5.3.4 (Non-resilience). A financial system is said to be non-resilient if there exists
∆ > 0 such that n−1Sn,L > ∆ w. h. p. for any L with the above listed properties.

The following theorem identifies lower bounds for the final default fraction and finally sold
shares.

Theorem 5.3.5. If the initial shock L satisfies above properties and hm(χ) is strictly increasing
in χm for all m ∈ [M ], then for any ε > 0 it holds w. h. p. that

n−1Sn,L >
◦
g(z∗,χ∗)− ε and χmn,L > (χ∗)m − ε.

The assumption on h(χ) is a rather mild one and is satisfied for all standard choices for price
impact functions such as linear price or log-linear price impact.

Corollary 5.3.6 (Non-resilience Criterion). If hm(χ) is strictly increasing in χm for all m ∈ [M ]
and

◦
g(z∗,χ∗) > 0, then the system is non-resilient.

For most practical purposes Corollaries 5.3.3 and 5.3.6 hence fully determine whether a financial
system is resilient or non-resilient.

5.4 Applications & Simulations

In this section, we provide two applications of our theory. Example 5.4.1 has a twofold purpose:
It demonstrates the joint impact of default contagion and fire sales. The model parameters are
chosen in such a way that the financial system would be resilient with respect to either one
of them but non-resilient with respect to their combination. Further, we provide simulations
for finite networks in this setting to confirm the applicability of our asymptotic results also for
reasonably sized financial systems. In Example 5.4.2, we derive sufficient capital requirements
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for very general combined financial systems of default contagion and fire sales. This extends
results from Chapter 2 for pure default contagion and from Chapter 4 for pure fire sales. Besides
certain global parameters that need to be determined by a regulating institution, these capital
requirements for each institution i ∈ [n] only depend on its asset holdings xi and its in-weights
w−,r,αi which can be thought of as in-degrees (cf. Chapter 2). They are thus very transparent and
can be computed locally by the institutions themselves as they only depend on the institutions
own business decisions. Moreover, this prevents institutions from manipulating their own or
others’ capital requirements and serves as a fair allocation of risk in the financial system. For
simplicity we assume S ≡ 1 throughout this section and hence consider the final default fraction
as the measure of systemic damage.

Example 5.4.1. Consider a financial system with R = T = M = 1. For simplicity we omit
superscripts throughout this example where appropriate. Let w−i = w+

i = xi for each i ∈ [n] and
W− = W+ = X be Pareto distributed with density fX(x) = 2x−31{x ≥ 1}. Further, let ci = 3.5
for each i ∈ [n] and in particular C = 3.5. Finally assume h(χ) = 1−e−χ and ρ(u) = 1{u ≥ 1},
that is banks sell assets at default only.

Since ci > 3, the system without fire sales would then be resilient (see Theorem 2.2.8).
Also the pure fire sales system without loans would be resilient by Corollary 4.2.3 since for
χ ≤ h−1(3.5)

f(χ) = E[X1{X ≥ 3.5/h(χ)}]− χ =

∫ ∞
3.5/h(χ)

2x−2dx− χ =
4

7
h(χ)− χ =

4

7

(
1− e−χ

)
− χ

and hence f ′(0) = −3/7 < 0.

However, for the combined contagion system, we derive that

f1,1,1(z, χ) = 2 + 2z

(
Ei

(
− 7z

2h(χ)

)
− Ei

(
− 5z

2h(χ)

))
+

4h(χ)

7
e
− 7z

2h(χ) + ze
− 3z

2h(χ) − (z + 2)e−z

− z

3

(
−e−

z
2h(χ)

(
z

2h(χ)
+ 1

)
+ e−z(z + 1)

)
1{χ ≤ log 2} − z,

f1(z, χ) = f0(z, χ) + z − χ,

where Ei(x) :=
∫ x
−∞ t

−1etdt denotes the exponential integral. In particular, f1,1,1(z, z) = f1(z, z)
and

d

dz
f1,1,1(z, z)

∣∣
z=0

= −1

3
+

1

2
e−

1
2 + e−

3
2 +

4

7
e−

7
2 + 2

(
Ei

(
−7

2

)
− Ei

(
−5

2

))
≈ 0.2462 > 0.

Hence the directional derivatives of f1,1,1 and f1 in direction (1, 1) are both positive and thus
z∗ > 0 and χ∗ > 0. See Figure 5.2 for an illustration.

More precisely, we numerically determine (z∗, χ∗) ≈ (0.992, 0.992) and since g(z, χ) =
◦
g(z, χ)

is given by

g(z, χ) = 1 + z2
(

2Ei

(
− 5z

2h(χ)

)
− Ei

(
− 3z

2h(χ)

)
− Ei

(
− 7z

2h(χ)

))
− (z + 1)e−z

+
2h(χ)

7

(
2h(χ)

7
− z
)
e
− 7z

2h(χ) +
4

5
zh(χ)e

− 5z
2h(χ) +

z2

3

(
e
− z

2h(χ) − e−z
)

1{χ ≤ log 2}

a lower bound on the final default fraction is asymptotically given by g(z∗, χ∗) ≈ 29.24%. The
combined system is thus non-resilient.

If we let each bank in the system initially default with probability p = 1%, then we can
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Figure 5.2: Plot of the root sets of the functions f1,1,1(z, χ) (blue) and f1(z, χ) (orange). Solid:
the unshocked functions. Dashed: the shocked functions. In grey the set P = P0

determine (ẑp, χ̂p) = (z∗p , χ
∗
p) ≈ (1.028, 1.028) as the unique joint root of the functions

◦
f0(z, χ) =

f1,1,1p (z, χ) = (1− p)f1,1,1(z, χ) + p(2− z) and
◦
f1(z, χ) = f1p (z, χ) = (1− p)f1(z, χ) + p(2− χ).

Plugging it into
◦
gp(z, χ) = gp(z, χ) = (1 − p)g(z, χ) + p yields an asymptotic final fraction of

31.32%.

To verify this result for finite systems, we performed 105 simulations on systems of sizes
between 102 and 104 (1000 simulations for every multiple of 100) as well as 105 simulations
on systems of sizes between 103 and 105 (1000 simulations for every multiple of 1000), where
we drew xi randomly according to the limiting distribution of X. Figure 5.3 shows the mean
over all 1000 simulations as an orange curve. Additionally, 100 simulations for every system
size are depicted by blue dots. The theoretical final fraction of 31.32% is drawn as a red line.
While for small n only few simulations ended in a final default fraction significantly larger than
p = 1% and those which did were considerably higher than the theoretical value of 31.32%, as
n becomes larger, the average final fraction converges to 31.32% and the deviation around this
value becomes smaller and smaller. Already for n ≈ 4, 000 the simulated and the theoretical
results are considerably close.

Example 5.4.2 (Capital Requirements). In the previous example, we considered the case that
ρ(u) = 1{u ≥ 1} with sales at default only. Intermediate sales will make the system less resilient,
and we shall consider such an example now. We choose ρ(u) = 1 ∧ uq for some q > 0. We
consider one asset only and the parameter q could be understood as a measure for the banks’
confidence in the asset. Further, assume that the price impact is h(χ) = Θ(χν) for small χ and
ν ≥ q−1, i. e. there exist constants µ1, µ2 ∈ (0,∞) such that µ1χ

ν ≤ h(χ) ≤ µ2χ
ν for χ ≤ χ0

small enough. The generalization to multiple assets is straight forward in analogy to Corollary
4.2.9.

The distribution of asset holdings is assumed to have a power law tail in the sense that
1− FX(x) = Θ(x1−β) for some β ∈ (2,∞), i. e. there exist constants B1, B2 ∈ (0,∞) such that
B1x

1−β ≤ 1− FX(x) ≤ B2x
1−β for x ≥ x0 large enough.
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Figure 5.3: The simulation outcomes for systems as described in Example 5.4.1. In blue single
outcomes, in orange the mean over all outcomes and in red the theoretical asymptotic final
fraction.

First assume that R = T = 1. Recall then from Theorem 2.2.12 the sufficient (and nec-
essary) capital requirements for a pure default contagion model without fire sales: Assume
1− FW±(w) ≤ (w/K±)1−β

±
for constants K± ∈ (0,∞) and β± > 2, and for w ≥ w0 ∈ R+.

That is, the tails of the distributions of W− and W+ are at most of power β− resp. β+. If we

let γc := 2 + β−−1
β+−1 − β

− and ci = c(w−i ) for each bank i ∈ [n] with c : R+,0 → (1,∞), then the

(pure default contagion) system is resilient if either γc < 0, γc > 0 and lim infw→∞w
−γcc(w) >

β+−1
β+−2K

+(K−)1−γc =: αc or γc = 0 and lim infw→∞ c(w) > αc+ 1. It thus makes sense to define

capital requirements cdir(w) = max{2, αwγ} for some constants α > αc and γ ≥ γc.

Adding the capital requirements cdir against direct contagion to the capital requirements
cind(x) = θx (where θ > µE[X]) against fire sales (indirect contagion) found in Corollary 4.2.9,
we thus get the combined capital requirement ci ≥ c(w−i , xi) for each i ∈ [n], where

c(w, x) = max{2, αwγ}+ θx.

In fact, we can show that these capital requirements make the combined system resilient: By
Corollary 4.2.9 it holds

f1(0, χ) = E
[
X min

{
1,

(
Xh(χ)

C

)q}]
− χ < 0

for χ > 0 small enough since C ≥ θX. Since f1(z, χ) is continuous in z for fixed χ, we can then
choose z > 0 small enough such that still f1(z, χ) < 0. Furthermore, it holds for χ < h−1(θ)
and z > 0 small enough that

f1,1,1(z, χ) ≤ E
[
W+P

(
Poi(W−z) ≥ max

{
2, α(W−)γ

})]
− z < 0

by resilience of the pure default contagion system (see the proof of Theorem 2.2.12). By defi-
nition of (z∗, χ∗) we can then conclude z∗ < z and χ∗ < χ. However, z and χ can be chosen
arbitrarily small and thus z∗ = χ∗ = 0. The combined system is then resilient by Corollary
5.3.3.
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For the case of general R, T ∈ N, we obtain sufficient capital requirements against default
contagion from Corollary 3.4.3. Thus for an institution i ∈ [n] of type β ∈ [T ] choose

cdiri (v) = max

{
R+ 1,

⌈
µ

(∑
s∈[R] s

∑
γ∈[T ]w

−,s,γ
i vs,β,γ

‖v‖

)ν⌉}
,

where ν ≥ νβc and µ > µβc as defined in Section 3.4.1. By the same means as for the one-
dimensional case above, we then derive that

ci ≥ cdiri + cind(xi)

is sufficient for resilience of the financial system. Again the generalization to multiple assets
(M ≥ 2) is straightforward by Corollary 4.2.9.

5.5 Proofs

5.5.1 Proofs for Section 5.1

Proof of Lemma 5.1.1. Clearly,

D(k) =

{
i ∈ [n] :

∑
j∈D(k−1)

ej,i ≥ ci − `i − xi · h(n−1σ(k−1))

}

⊆
{
i ∈ [n] :

∑
j∈Dn

ej,i ≥ ci − `i − xi · h(χn)

}
and thus

Dn =
⋃
k∈N
D(k) ⊆

{
i ∈ [n] :

∑
j∈Dn

ej,i ≥ ci − `i − xi · h(χn)

}
.

On the other hand, if i ∈ Dn, then there exists ki ∈ N such that

0 ≥ ci − `i − xi · h(n−1σ(ki))−
∑

j∈D(ki)

ej,i ≥ ci − `i − xi · h(χn)−
∑
j∈Dn

ej,i

and thus

Dn ⊆
{
i ∈ [n] :

∑
j∈Dn

ej,i ≥ ci − `i − xi · h(χn)

}
.

That is, Dn and χn solve (5.1.1). Moreover, they solve (5.1.2) as

χn = n−1 lim
k→∞

σ(k) = lim
k→∞

n−1
∑
i∈[n]

xiρ

(∑
j∈D(k−1)

ej,i + `i + xi · h(n−1σ(k−1))

ci

)

= n−1
∑
i∈[n]

xiρ

(∑
j∈Dn ej,i + `i + xi · h(χn)

ci

)

where we used continuity of ρ and h and the fact that D(k) = Dn for k large enough.

Now assume that D̃ and χ̃ also solve (5.1.1) and (5.1.2). Clearly D(0) ⊆ D̃ and σ(0) ≤ nχ̃.
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Hence assume inductively that D(k) ⊆ D̃ and σ(k) ≤ nχ̃. Then

D(k+1) =

{
i ∈ [n] :

∑
j∈D(k)

ej,i ≥ ci − `i − xi · h(n−1σ(k))

}

⊆
{
i ∈ [n] :

∑
j∈D̃

ej,i ≥ ci − `i − xi · h(χ̃)

}
= D̃

and

σ(k+1) =
∑
i∈[n]

xiρ

(∑
j∈D(k)

ej,i + `i + xi · h(n−1σ(k))

ci

)

≤
∑
i∈[n]

xiρ

(∑
j∈D̃ ej,i + `i + xi · h(χ̃)

ci

)
= nχ̃.

In particular, Dn =
⋃
k∈ND(k) ⊆ D̃ and χn = n−1 limk→∞ σ(k) ≤ χ̃.

5.5.2 Proofs for Section 5.2

We first consider the special case, summarized in the following definition, where the weights,
asset holdings, capitals and exogenous losses take only finitely many different values.

Definition 5.5.1 (Finitary Regular Vertex Sequence). A regular vertex sequence (see Assump-
tion 5.2.1) denoted by (w−(n),w+(n),x(n), s(n), c(n), `(n),α(n))n∈N is called finitary if there

exist J ∈ N and a finite set {(w̃−j , w̃
+
j , x̃j , s̃j , c̃j ,

˜̀
j)}j∈[J ] ⊂ R

[R]×[T ]
+,0 × R[R]×[T ]

+,0 × RM+,0 × R+,0 ×
R+,∞ × R+,0 such that for all n ∈ N and i ∈ [n], there exists j = j(n, i) ∈ [J ] such that
(w−i ,w

+
i ,xi, si, ci, `i) = (w̃−j , w̃

+
j , x̃j , s̃j , c̃j ,

˜̀
j). Denote in the following

pβj (n) := P(W−
n = w̃−j ,W

+
n = w̃+

j ,Xn = x̃j , Sn = s̃j , Cn = c̃j , Ln = ˜̀
j , An = β)

and

pβj = lim
n→∞

pβj (n) = P(W− = w̃−j ,W
+ = w̃+

j ,X = x̃j , S = s̃j , C = c̃j , L = ˜̀
j , A = β).

We can then prove a version of Theorem 5.2.3 for the finitary case:

Theorem 5.5.2. Consider a financial system described by a finitary regular vertex sequence.
Then for the final systemic damage n−1Sn and χmn , the number of finally sold shares of asset
m ∈ [M ] divided by n, it holds

◦
g(ẑ, χ̂) + op(1) ≤ n−1Sn ≤ g(z∗,χ∗) + op(1),

χ̂m + op(1) ≤ χmn ≤ (χ∗)m + op(1).

In particular, for the final price impact hm(χn) on asset m ∈ [M ] it holds

hm(χ̂) + op(1) ≤ hm(χn) ≤ hm(χ∗) + op(1).

The difficulty for this problem lies in the fact that the functions f r,α,β are discontinuous in
χ. That is, there exist values for χ (sold assets) at which a linear fraction of banks defaults.
However, f r,α,β is discontinuous at (z,χ) only if (c̃j − ˜̀

j − x̃j · h(χ)) ∈ N for some j ∈ J and
there are hence only finitely many (possibly degenerated) hyperplanes of discontinuities.
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Proof. We start with the proof of the lower bounds. That is, for arbitrary ε > 0 we will show
that n−1Sn ≥ n−1Ŝn ≥ (1− ε) ◦g(ẑ, χ̂) and χmn ≥ χ̂mn ≥ (1− ε)χ̂m w. h. p. We therefore consider
the contagion process given by rounds (i’) and (ii’). That is, we first consider a cascade of
default contagion. Once this cascade has ended (after at most n − 1 steps) we start a cascade
of fire sales and so on.

In order to quantify the default contagion cascade we use Theorem 3.2.4. That is, if we
denote by ẑ1 ∈ RV+,0 the smallest vector such that

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ1

 > C − L

1{A = β}

 = ẑr,α,β1

for all (r, α, β) ∈ V , then the systemic importance of finally defaulted banks is lower bounded
by

(1− δ)n
∑
β∈[T ]

E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ1

 > C − L

1{A = β}


w. h. p. for any fixed δ > 0. In fact, by finitariness of the system we can find θ > 0 small enough
such that

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 > C − L

1{A = β}


= E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ dC − L+ θe

1{A = β}


(note that dC − L+ θe is the weak limit of dCn − Ln + θe again by finitariness) and we are thus
in the setting of Chapter 3. However, while Theorem 3.2.4 focuses on the systemic damage due
to defaulted banks only, here it is also important to keep track of all losses due to defaults. In
fact, the proof of Theorem 3.2.4 for finitary systems shows that the number qβj,k of institutions
of class j and type β with a total edge weight from finally defaulted neighbors of at least k ≤ c̃j
is lower bounded by

(1− δ)npβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

 ≥ k


w. h. p. for δ > 0. Since in this part of the proof we are interested in lower bounds, we assume
in the following that qβ

j,dc̃j−˜̀
je

= (1 − δ)npβj P(
∑

s∈[R] sPoi(
∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1 ) ≥ dc̃j − ˜̀

je),

qβj,k = (1 − δ)npβj P(
∑

s∈[R] sPoi(
∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1 ) = k) for 1 ≤ k ≤ dc̃j − ˜̀

je − 1, and

qβj,0 = npβj (n)−
∑dc̃j−˜̀

je
k=1 qβj,k w. h. p. That is, we increase the losses due to default contagion.

Next, we want to use Theorem 4.1.5 to quantify the impact of the round of fire sales. We
need to consider losses (and defaults in particular) due to the previous default contagion cascade.
That is, we need to add to the exogenous losses `i the edge weight from defaulted debtors of each
bank i ∈ [n]. This leads to a new loss vector

(
`′i
)
i∈[n]. Note that we can set `′i = ˜̀

j + dc̃j − ˜̀
je if

i is of type j and the total edge-weight k from finally defaulted debtors of i is larger or equal to
dc̃j − ˜̀

je. Denoting by L′n a random vector distributed according to the empirical distribution
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function of
(
`′i
)
i∈[n], we thus derive that w. h. p.

P
(
W−

n = w̃−j ,W
+
n = w̃+

j ,Xn = x̃j , Sn = s̃j , Cn = c̃j , L
′
n = ˜̀

j + k,An = β
)

=


(1− δ)pβj P

(∑
s∈[R] sPoi

(∑
γ∈[T ] w̃

−,s,γ
j ẑs,β,γ1

)
≥
⌈
c̃j − ˜̀

j

⌉)
, if k =

⌈
c̃j − ˜̀

j

⌉
,

(1− δ)pβj P
(∑

s∈[R] sPoi
(∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1

)
= k

)
, if 1 ≤ k ≤

⌈
c̃j − ˜̀

j

⌉
− 1,

pβj (n)− (1− δ)pβj P
(∑

s∈[R] sPoi
(∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1

)
≥ 1
)
, if k = 0.

For simplicity in the notation, we assume that from (x̃j , s̃j , c̃j , ˜̀
j) = (x̃k, s̃k, c̃k, ˜̀

k) it follows
j = k (i. e. classes j and k are not distinguished by their in- and out-weights only) in the follow-
ing. Otherwise consider sums over classes with the same asset holdings, systemic importance,
capital and exogenous loss.

In particular, for the weak limit (X, S, C, L′, A) of (Xn, Sn, Cn, L
′
n, An) and 0 ≤ k ≤ dc̃j− ˜̀

je
it holds,

P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j+k,A = β

)
≥ (1−δ)pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)
.

Let now
◦
fmδ (χ) := E

[
Xm ◦ρ

(
L′ +X · h(χ)

C

)]
− χm

the corresponding functions as in Chapter 4 and χ̂δ its smallest fixed point. Then

◦
fmδ (χ) + χm

=
∑
β∈[T ]

∑
j∈[J ]

∑
k≥0

x̃mj
◦
ρ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
P(X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j + k,A = β)

≥ (1− δ)
∑
β∈[T ]

∑
j∈[J ]

∑
k≥0

x̃mj
◦
ρ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)

= (1− δ)(
◦
fm(ẑ1,χ) + χm)

and
◦
fmδ (χ) ≥ (1−δ)

◦
fm(ẑ1,χ)−δχm ≥

◦
fm(ẑ1,χ)−δE[Xm]. In particular, lim infδ→0+

◦
fmδ (χ) ≥

◦
fm(ẑ1,χ) and by Lemma 4.4.2 we derive that lim infδ→0+ χ̂δ ≥ χ̂1, where χ̂1 denotes the

smallest joint root of the functions
◦
fm(ẑ1,χ), m ∈ [M ]0, for fixed z = ẑ1.

We can hence choose δ small enough such that the number of finally sold shares of asset m
is lower bounded by n(1− ε)χ̂m1 w. h. p. by Theorem 4.1.5. Further, for

◦
gδ(χ) := E

[
S1
{
L′ +X · h(χ) > C

}]
=
∑
β∈[T ]

∑
j∈[J ]

s̃j
∑
k≥0

1
{
k > c̃j − ˜̀

j − x̃j · h(χ)
}
P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j + k,A = β

)

≥ (1− δ)
∑
β∈[T ]

∑
j∈[J ]

s̃j
∑
k≥0

1
{
k > c̃j − ˜̀

j − x̃j · h(χ)
}
pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)
= (1− δ) ◦g(ẑ1,χ)

and possibly further reducing δ, we derive n−1Ŝn ≥
√

1− ε ◦gδ(χ̂δ) ≥ (1− ε) ◦g(ẑ1, χ̂1) w. h. p. So
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if (ẑ1, χ̂1) = (ẑ, χ̂), then this finishes the proof of the lower bounds.

If (ẑ1, χ̂1) 6= (ẑ, χ̂), then by construction of (ẑ, χ̂), ẑ1 and χ̂1 it must hold that χ̂1 ≤ χ̂ and
ẑ1 � ẑ2 ≤ ẑ, where ẑ2 ∈ RV+,0 denotes the smallest vector such that for all (r, α, β) ∈ V ,

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ2

 > C − L−X · h(χ̂1)

1{A = β}

 = ẑr,α,β2 .

The next step in the cascade process would now be the default contagion cascade from (i’)
starting from the state of the system after the fire sales cascade. Note, however, that (w. h. p.)
we can equivalently restart the whole cascade process if for the default contagion cascade we
choose capitals ci − `i − xi · h((1 − ε)χ̂1). If anything this reduces contagion effects which is
alright because we are interested in lower bounds.

By the finitariness of the system, if we choose ε small enough, then ẑ2 is also the smallest
solution of

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ2

 > C − L−X · h((1− ε)χ̂1)

1{A = β}

 = ẑr,α,β2 .

and we can hence use Theorem 3.2.4 to quantify the default contagion cascade. By exactly the
same means as above we can then translate the losses due to default contagion into exogenous
losses and investigate the fire sales process by Theorem 4.1.5 and we derive that the vector of
finally sold shares is lower bounded by n(1− ε)χ̂2 w. h. p., where χ̂2 denotes the smallest joint

root of the functions
◦
fm(ẑ2,χ) for fixed z = ẑ2, and n−1Ŝn ≥ (1− ε) ◦g(ẑ2, χ̂2) w. h. p.

Again, if (ẑ2, χ̂2) = (ẑ, χ̂), then this finishes the proof of the lower bounds. Otherwise we
can continue on for t ≥ 3. Note, however, that ẑ 
 ẑt is only possible if χ̂t−1 and χ̂t are
separated by a hyperplane of discontinuity of f r,α,β for some (r, α, β) ∈ V (and hence the fire
sales lead to further defaults in the system). However, as remarked earlier, there can only be
finitely many such hyperplanes for finitary systems. Hence by the procedure outlined above, we
will reach ẑ in finitely many steps and hence the end results still hold w. h. p.

We can now turn to the second part of the proof. We consider the contagion process in
rounds (i) and (ii) to derive upper bounds on Sn and χn. Let (z̃(δ), χ̃(δ))δ>0 be the constructing
sequence of (z∗,χ∗) analogue to Remark 4.4.1. Then note that by upper semi-continuity and
the discrete nature of f r,α,β we can find ∆ > 0 such that f r,α,β(z, χ̃(δ)) = f r,α,β(z,χ∗) for all
0 ≤ δ < ∆, (r, α, β) ∈ V and z ∈ RV+,0.

Fix now some δ ∈ (0,∆) and consider the financial system with reduced capital values
ci−`i−xi ·h(χ̃(δ)) for each bank i ∈ [n]. We only want to consider the default contagion process
in this new financial system and we are hence in the setting of Chapter 3 with limiting random
variables (W−,W+, S, dC − L − X · h(χ̃(δ))e+, A). Note that by finitariness the regularity
transfers. By the choice of δ above, we derive that for z∗δ in this new financial system, it holds
z∗δ = z∗ and by Theorem 3.2.4 we know that the final systemic damage in the new system is
upper bounded by

n
∑
β∈[T ]

E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ(z∗)s,β,γ

 ≥ C − L−X · h(χ̃(δ))

1{A = β}

+ op(n).

(5.5.1)
The proof of Theorem 3.2.4 actually shows that the number of banks of type β and class j
with at least an edge-weight of k from defaulted neighbors at the end of the default contagion
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process is upper bounded by

(1 + ε)npβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 ≥ k


w. h. p. for any fixed ε > 0.

Similarly as in the first part of this proof (for the lower bounds) we can then construct a
fire sales system (as in Chapter 4) with limiting random vector (X, S, C, L′) such that

P(X = x̃j , S = s̃j , C = c̃j , L
′ = ˜̀

j + k,A = β)

= (1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k

 , 0 ≤ k <
⌈
c̃j − ˜̀

j − x̃j · h(χ̃(δ))
⌉
,

P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j +

⌈
c̃j − ˜̀

j − x̃j · h(χ̃(δ))
⌉
, A = β

)
= pβj −

dc̃j−˜̀
j−x̃j ·h(χ̃(δ))e−1∑

k=0

(1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k


≤ (1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 ≥ ⌈c̃j − ˜̀
j − x̃j · h(χ̃(δ))

⌉
which dominates the stochastic final state after the default contagion cascade w. h. p.

Let now

fmε (χ) := E
[
Xmρ

(
L′ +X · h(χ)

C

)]
− χm

the corresponding functions for the fire sales system as in Chapter 4 and χ∗ε the corresponding
value for χ∗ in Chapter 4. Then for fm(z,χ) as in Section 5.2,

fmε (χ) + χm

=
∑
j∈J

∑
k≥0

x̃mj ρ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
P(X = x̃j , C = c̃j , L

′ = ˜̀
j + k)

≤
∑
β∈[T ]

∑
j∈J

∑
k≥0

x̃mj ρ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
(1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k


= (1 + ε)(fm(z∗,χ) + χm).

In particular, we can choose ε > 0 small enough such that

fmε (χ̃(δ/2)) ≤ fm(z∗, χ̃(δ/2)) + ε
(
fm(z∗, χ̃(δ/2)) + χ̃m(δ/2)

)
≤ −δ/2 + εE[Xm] < 0,

where in the last inequality it was used that fm(z∗, χ̃(δ/2)) ≤ fm(z̃(δ/2), χ̃(δ/2)) = −δ/2.
We can hence conclude that χ∗ε ≤ χ̃(δ/2) componentwise. By Theorem 4.1.5 we thus derive
that the number of finally sold shares of asset m in the fire sales system (X, S, C, L′) is upper
bounded by n((χ∗ε )

m + o(1)) ≤ n(χ̃m(δ/2) + o(1)) ≤ nχ̃m(δ), where the last inequality holds for
n large enough since χ̃m(δ) > 0.

The idea for the rest of this proof is now to apply this upper bound on the number of finally
sold shares inductively in each step of the contagion process. Again we consider the contagion
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process with steps (i) and (ii). Then in iteration 1 ≤ k ≤ n − 1 we derive the smallest set
Dk ⊆ [n] such that

Dk =

i ∈ [n] :
∑
j∈Dk

ej,i ≥ ci − `i − xi · h(χk−1)


and the smallest vector χk such that

χk = n−1
∑
i∈[n]

xiρ

(∑
j∈Dk ej,i + `i + xi · h(χk)

ci

)
.

In particular, since χ0 = 0 ≤ χ̃(δ), we derive that D1 ⊆ Dδ, where Dδ ⊆ [n] is the smallest set
such that

Dδ =

i ∈ [n] :
∑
j∈Dδ

ej,i ≥ ci − `i − xi · h(χ̃(δ))

 (5.5.2)

and hence χ1 ≤ χδ, where χδ denotes the smallest vector such that

χδ = n−1
∑
i∈[n]

xiρ

(∑
j∈Dδ ej,i + `i + xi · h(χδ)

ci

)
. (5.5.3)

However, (5.5.2) is exactly the cascade of default contagion with initial capitals given by
ci − `i − xi · h(χ̃(δ)), i ∈ [n], which we considered before and (5.5.3) the subsequent cascade
of fire sales for which we showed that the vector of finally sold shares is upper bounded by
nχ̃(δ) w. h. p. We can then consider the second iteration and derive that w. h. p. D2 ⊆ Dδ and
χ2 ≤ χδ. Inductively this shows that w. h. p. Dk ⊆ Dδ and χk ≤ χδ for each fixed k ∈ N
(independent of n).

Now note that because of the finitariness of the system, the contagion process stops after
a bounded (independent of n) number of iterations. We have thus shown that also for the
final vector of sold shares χn it holds χn ≤ χ̃(δ) w. h. p. Letting δ → 0 this proves the upper
bound on χn.

For the final systemic damage note that w. h. p. Dn ⊆ Dδ and hence n−1Sn ≤ n−1Sδ. But

n−1Sδ ≤ E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ(z∗)s,β,γ

 ≥ C − L−X · h(χ̃(δ))

+ op(1)

= g(z∗, χ̃(δ)) + op(1)

by (5.5.1). Using upper semi-continuity of g and letting δ → 0 this finishes the proof.

5.5.3 Proof of Theorem 5.2.3

In this section, we show how the validity of Theorem 5.5.2 can be extended to the case of
general (non-finitary) regular vertex sequences. The idea is the following: We will approximate
the given regular vertex sequence from below and from above by finitary vertex sequences and
couple the contagion processes in those system such that the final default fraction and the
number of sold shares is under- or overestimated by the finitary systems.

We will describe the finitary systems by their distribution functions {FAk }k∈N and {FBk }k∈N
respectively in the following and we need to ensure that the functions g and fm, m ∈ [M ], are



136 Chapter 5. An Integrated Model for Default Contagion and Fire Sales in Multi-type Financial
Networks

approximated close enough. To this end, consider the integrands

hg(z,χ;w−,w+,x, s, c, `, τ)

:= s
∑
β∈[T ]

ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β},

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)

:= w+,r,αψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β}, (r, α, β) ∈ V,

hmf (z,χ;w−,w+,x, s, c, `, τ)

:= xm
∑
β∈[T ]

φ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; l + x · h(χ), c

1{τ = β}, m ∈ [M ],

for (z,χ,w−,w+,x, s, c, `, τ) ∈ RV+,0 × RM+,0 × D∞, with w± = (w±,r,α)r∈[R],α∈[T ] as well as

D∞ :=
(
R[R]×[T ]
+,0

)2 × RM+3
+,0 × [T ] and where ψ and φ are as defined in Section 5.2. Then

g(z,χ) =

∫
D∞

hg(z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ),

f r,α,β(z,χ) =

∫
D∞

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− zr,α,β, (r, α, β) ∈ V,

fm(z,χ) =

∫
D∞

hmf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− χm, m ∈ [M ],

where F denotes the distribution function of (W−,W+,X, S, C, L,A) (note that the integrands
vanish for c =∞ and it is thus sufficient to integrate over D∞). We denote in the following

H := {hg} ∪
⋃

(r,α,β)∈V

{hr,α,βf } ∪
⋃

m∈[M ]

{hmf }

and Z := [0, ζ] × [0,η] ⊂ RV+,0 × RM+,0, for ζr,α,β = E[W+,r,α1{A = β}], (r, α, β) ∈ V , and
ηm = E[Xm], m ∈ [M ]. If we further let

◦
hg(z,χ;w−,w+,x, s, c, `, τ)

:= s
∑
β∈[T ]

◦
ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β},

◦
hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)

:= w+,r,α
◦
ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β}, (r, α, β) ∈ V,

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)

:= xm
∑
β∈[T ]

◦
φ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; l + x · h(χ), c

1{τ = β}, m ∈ [M ],
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where
◦
ψ and

◦
φ are defined as in Section 5.2, then it holds

◦
g(z,χ) =

∫
D∞

◦
hg(z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ),

◦
f r,α,β(z,χ) =

∫
D∞

◦
hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− zr,α,β, (r, α, β) ∈ V,

◦
fm(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− χm, m ∈ [M ].

Also denote
◦
H := {

◦
hg} ∪

⋃
(r,α,β)∈V {

◦
hr,α,βf } ∪

⋃
m∈[M ]0

{
◦
hmf }.

For j ∈ N, consider now discretizations

F̃Aj (w−,w+,x, s, c, `, τ) := F

(
djw−e
j

,
djw+e
j

,
djxe
j

,
bjsc
j
,
bjcc
j
,
dj`e
j
, τ

)
,

F̃Bj (w−,w+,x, s, c, `, τ) := F

(
bjw−c
j

,
bjw+c
j

,
bjxc
j

,
djse
j
,
djce
j
,
bj`c
j
, τ

)
,

where d·e and b·c shall be applied componentwise on the vectors jw−, jw+ and jx. In particular,
the distributions

{
F̃A,Bj

}
j∈N converge to F . Choose now k ∈ N, h ∈ H and let for 0 ≤ s ≤ 2k2

the sets

Is(z,χ) :=
{

(w−,w+,x, s, c, `, τ) : h(z,χ;w−,w+,x, s, c, `, τ) ≥ s

2k

}
which are closed by upper semi-continuity of h. Further, let

ĥ(z,χ;w−,w+,x, s, c, `, τ) :=
1

2k

2k2∑
s=0

1
{

(w−,w+,x, s, c, `, τ) ∈ Is(z,χ)
}

such that in particular h− (2k)−1 ≤ ĥ ≤ h ≤ k on RV+,0 × RM+,0 ×Dk with

Dk :=
{

(w−,w+,x, s, c, `, τ) : w− ≤ k1,w+ ≤ k1,x ≤ k1, s ≤ k, c ≤ k, ` ≤ k
}
.

By the Portmanteau theorem, we then know that for j ≥ jk large enough it holds∫
Dk

ĥdF̃A,Bj −
∫
Dk

ĥdF ≤ 1

2k

and hence∫
Dk

h(z,χ;w−,w+,x, s, c, `, τ)dF̃A,Bj −
∫
Dk

h(z,χ;w−,w+,x, s, c, `, τ)dF ≤ k−1 (5.5.4)

Completely analogue, but choosing

◦
Is(z,χ) :=

{
(w−,w+,x, s, c, `, τ) :

◦
h(z,χ;w−,w+,x, s, c, `, τ) >

s

2k

}
,

we derive for
◦
h ∈

◦
H and j ≥ jk (possibly increase jk) that∫

◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF̃A,Bj −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF ≥ −k−1, (5.5.5)
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where
◦
Dk := {(w−,w+,x, s, c, `, τ) : w− < k1,w+ < k1,x < k1, s < k, c < k, ` < k}. We

denote F
A
k := F̃Ajk and F

B
k := F̃Bjk in the following.

Note that F
A,B
k already describe discrete distributions approximating F from below and

from above. To qualify as a distribution function of a finitary vertex sequence, however, only
finitely many atoms are allowed. For the lower bound, we thus choose

FAk (w−,w+,x, s, c, `, τ) :=

{
F
A
k (w− ∧ k,w+ ∧ k,x ∧ k, s ∧ k, c ∧ k, ` ∧ k, τ), if c <∞,

1, else,

thus setting capital to ∞ for banks with in-weight, out-weight, asset holdings, capital or exoge-
nous losses larger than k. We call such banks large in the following. Banks with infinite capital
keep their capital. As banks with infinite capital cannot ever default or sell any asset shares
anyway we set their weights, asset holdings and losses all to zero. In particular, above choice
reduces contagion in the system even further and thus for all k ∈ N the final systemic damage
n−1(SAk )n is stochastically dominated by n−1Sn. The same holds for the number of finally sold
shares of the assets.

We now want to construct the upper bound distribution function FBk . That is, we need
to accumulate the contagious potential of all large banks to finitely many point masses. Thus
denote the fraction of large β-banks in the system by

γβk :=

∫
Dck

1{τ = β}dF (w−,w+,x, s, c, `, τ),

where Dc
k := D∞\Dk, and

(wβk)r,α :=

{
2(γβk )−1

∫
Dck
w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0,
(r, α, β) ∈ V,

(xβk)m :=

{
2(γβk )−1

∫
Dck
xm1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0,
m ∈ [M ],

sβk :=

{
2(γβk )−1

∫
Dck
s1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0.

Similar as for the lower bound before, we now let FBk be given by F
B
k on Dk. Moreover, let

FBk assign the remaining masses γβk to the points (0,wβ
k ,x

β
k , s

β
k , 0, 0, β). As we have left out

institutions with infinite capital thus far, finally let FBk assign masses P(C =∞, A = β) to the
point (0,0,0, 0,∞, 0, β) for each β ∈ [T ].

The construction above ensures that small banks are more contagious than in the original
system as their weights, asset holdings and losses are increased whereas their capitals are de-
creased. Moreover, all large banks are initially defaulted and their total number of shares held
of each asset m is given by

n
∑
β∈[T ]

(xβk)m(γβk + o(1)) = 2n

∫
Dck

xmdF (w−,w+,x, s, c, `, τ)(1 + o(1))
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which is larger than in the original system,

n

∫
Dck

xmdF (w−,w+,x, s, c, `, τ)(1 + o(1)).

Finally, also the total r-out-weight of large β-banks with respect to each type α ∈ [T ]

n(wβk)r,α
(
γβk + o(1)

)
= 2n

∫
Dck

w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ)(1 + o(1))

is increased by approximation FBk compared to the original system with

n

∫
Dck

w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ)(1 + o(1)).

Similar as in [54] for each r ∈ [R] the number of r-edges from large banks to a specific small
bank in the approximating system thus stochastically dominates their analogue in the original
system and in particular this property transfers to the total direct exposure from large banks
by summing over all r ∈ [R]. Altogether we derive the following result.

Lemma 5.5.3. Consider a regular vertex sequence and let sequences {FAk }k∈N and {FBk }k∈N be
constructed as above. Further let

(
SAk
)
n

and
(
SBk
)
n

be the total systemic importance of finally
defaulted institutions in the finitary approximating systems. Then it holds that

n−1
(
SAk
)
n
� n−1Sn � n−1

(
SBk
)
n
,

where � denotes stochastic domination. If further (χA,Bk )mn denotes the number of finally sold
shares of asset m divided by n, then it holds(

χAk
)m
n
� χmn �

(
χBk
)m
n
.

Denote

gA,Bk (z,χ) =

∫
D∞

hg(z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ),(
fA,Bk

)r,α,β
(z,χ) =

∫
D∞

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ)− zr,α,β,(
fA,Bk

)m
(z,χ) =

∫
D∞

hmf (z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ)− χm,

analogue to g, f r,α,β, (r, α, β) ∈ V , and fm, m ∈ [M ]. Moreover, let
◦
gA,Bk ,

( ◦
fA,Bk

)r,α,β
,
( ◦
fA,Bk

)m
,

(ẑA,Bk , χ̂A,Bk ) and ((z∗)A,Bk , (χ∗)A,Bk ) the analogues of
◦
g,
◦
f r,α,β , (r, α, β) ∈ V ,

◦
fm, m ∈ [M ], (ẑ, χ̂)

and (z∗,χ∗). Then by Theorem 5.5.2 we derive lower and upper bounds for the approximating
systems in terms of those quantities. The following lemma compares them to the original
quantities.

Lemma 5.5.4. It holds
lim inf
k→∞

◦
gAk
(
ẑAk , χ̂

A
k

)
≥ ◦
g(ẑ, χ̂)

and
lim sup
k→∞

gBk

(
(z∗)Bk , (χ

∗)Bk

)
≤ g(z∗,χ∗),

as well as lim supk→∞(χ̂Ak )m ≥ χ̂m and lim infk→∞((χBk )∗)m ≤ (χ∗)m for all m ∈ [M ].
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Proof. For
◦
h ∈

◦
H, using (5.5.5) we derive∫

◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF

=

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF̃Ajk −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF

≥ −k−1 → 0, as k →∞.

Moreover,
∫
◦
Dck
s dF → 0,

∫
◦
Dck
w+,r,α dF → 0, (r, α) ∈ [R]× [T ], and

∫
◦
Dck
xm dF → 0, m ∈ [M ], as

k →∞. In particular, it must then hold that
∫
◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF → 0. Together

with∫
◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk =

∫
Dk∩

◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk = o(1),

we can then conclude that∫
D∞

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk −

∫
D∞

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF ≥ o(1). (5.5.6)

For {FBk }k∈N, we further obtain∫
Dck

s dFBk (w−,w+,x, s, c, `, τ) =
∑
β∈[T ]

sβkγ
β
k ,∫

Dck

w+,r,α1{τ = β}dFBk (w−,w+,x, s, c, `, τ) = (wβk)r,αγβk ,∫
Dck

xmdFBk (w−,w+,x, s, c, `, τ) =
∑
β∈[T ]

(xβk)mγβk

and as k →∞, by definition of γβk , sβk , (wβk)r,α and (xβk)m all those terms vanish. In particular,∫
Dck

h(z,χ;w−,w+,x, s, c, `, τ)dFBk (w−,w+,x, s, c, `, τ)→ 0, as k →∞

and by (5.5.4)∫
D∞

h(z,χ;w−,w+,x, s, c, `, τ)dFBk −
∫
D∞

h(z,χ;w−,w+,x, s, c, `, τ)dF ≤ o(1). (5.5.7)

By (5.5.6) we can apply Lemma 4.4.2 (extend it by the z-dimensions) and thus derive that
lim infk→∞ ẑ

A
k ≥ ẑ and lim infk→∞ χ̂

A
k ≥ χ̂, where (ẑAk , χ̂

A
k ) denotes the smallest joint root of

the functions

(
◦
fAk )r,α,β(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dFAk (w−,w+,x, s, c, `, τ)− zr,α,β,

(
◦
fAk )m(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dFAk (w−,w+,x, s, c, `, τ)− χm.
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Now choose some δ > 0 and k large enough such that (ẑAk , χ̂
A
k ) ≥ (1−δ)(ẑ, χ̂). Then by (5.5.6),

lim inf
k→∞

◦
gAk (ẑAk , χ̂

A
k ) ≥ lim inf

k→∞
◦
gAk ((1− δ)(ẑ, χ̂)) ≥ ◦

g((1− δ)(ẑ, χ̂))

and using lower semi-continuity of
◦
g, as δ → 0,

lim inf
k→∞

◦
gAk
(
ẑAk , χ̂

A
k

)
≥ ◦
g(ẑ, χ̂).

For the second statement apply a small additional shock to the system in the sense that each
solvent institution defaults with probability ε > 0. Then the analogues of f r,α,β and fm in the
shocked system are given by

f r,α,βε (z,χ) = (1− ε)f r,α,β(z,χ) + ε(E[W+]− zr,α,β),

fmε (z,χ) = (1− ε)fm(z,χ) + ε(E[Xm]− χm).

Denote the analogues of (z∗,χ∗) for these functions by (z∗(ε),χ∗(ε)). Then using (5.5.7)
for k large enough it holds (fBk )r,α,β(z∗(ε),χ∗(ε)) ≤ f r,α,β(z∗(ε),χ∗(ε))/2 < 0, (r, α, β) ∈ V ,
and (fBk )m(z∗(ε),χ∗(ε)) ≤ fm(z∗(ε),χ∗(ε))/2 < 0, m ∈ [M ]. Note that actually it is pos-
sible that f r,α,β(z∗(ε),χ∗(ε)) = 0 resp. fm(z∗(ε),χ∗(ε)) = 0 if E[W+,r,α1{A = β}] = 0
resp. E[Xm] = 0. In this case, however, the corresponding coordinates zr,α,β resp. χm are
trivial and can be left out. Thus (z∗)Bk ≤ z∗(ε) and (χ∗)Bk ≤ χ∗(ε) componentwise and in
particular lim supk→∞((χBk )∗)m ≤ (χ∗)m for all m ∈ [M ]. Using (5.5.7) again, we now obtain

lim sup
k→∞

gBk
(
(z∗)Bk , (χ

∗)Bk
)
≤ lim sup

k→∞
gBk (z∗(ε),χ∗(ε)) ≤ g(z∗(ε),χ∗(ε))

and as ε→ 0 using upper semi-continuity of g we can conclude that

lim sup
k→∞

gBk
(
(z∗)Bk , (χ

∗)Bk
)
≤ g(z∗,χ∗).

We can then state the proof of the main theorem for general regular vertex sequences:

Proof of Theorem 5.2.3. For arbitrary ε > 0 we can apply Lemma 5.5.3 to derive

P
(
n−1Sn −

◦
g(ẑ, χ̂) < −ε

)
≤ P

(
n−1

(
SAk
)
n
− ◦
g(ẑ, χ̂) < −ε

)
.

Moreover, it holds
◦
gAk (ẑAk , χ̂

A
k ) >

◦
g(ẑ, χ̂)− ε/2 for k large enough by Lemma 5.5.4 and then

P
(
n−1Sn −

◦
g(ẑ, χ̂) < −ε

)
≤ P

(
n−1

(
SAk
)
n
− ◦
gAk (ẑAk , χ̂

A
k ) < −ε/2

)
.

Theorem 5.5.2 now yields

P
(
n−1Sn −

◦
g(ẑ, χ̂) < −ε

)
→ 0, as n→∞,

and thus n−1Sn ≥
◦
g(ẑ, χ̂) + op(1) as ε > 0 was arbitrary. Similarly,

P(χmn − χ̂m < −ε) ≤ P
(
(χAk )mn − χ̂m < −ε

)
≤ P

(
(χAk )mn − (χ̂Ak )m < −ε/2

)
→ 0

as n→∞ and hence χmn ≥ χ̂m + op(1) for all m ∈ [M ].

In the same way, by Lemma 5.5.3

P
(
n−1Sn − g(z∗,χ∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− g(z∗,χ∗) > ε

)
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and hence for k large enough it holds gBk
(
(z∗)Bk , (χ

∗)Bk
)
< g(z∗,χ∗) + ε/2 by Lemma 5.5.4.

Using Theorem 5.5.2 we thus conclude that

P
(
n−1Sn − g(z∗,χ∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− gBk ((z∗)Bk , (χ

∗)Bk ) > ε/2
)
→ 0, as n→∞,

as well as

P(χmn − (χ∗)m > ε) ≤ P
(
(χBk )mn − (χ∗)m > ε

)
≤ P

(
(χAk )mn − ((χ∗)Ak )m > ε/2

)
→ 0.

5.5.4 Proofs for Section 5.3

We keep the notation g, f r,α,β, fm, z∗, χ∗,
◦
g,

◦
f r,α,β,

◦
fm, ẑ and χ̂ for the quantities from Section

5.2 for the unshocked system and add the index ·L to indicate the corresponding quantities and
functions in the system shocked by L.

Proof of Theorem 5.3.2. For arbitrary α > 0, we derive

f r,α,βL (z,χ)

= E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ C − L−X · h(χ)

1{A = β}

− zr,α,β
≤ E

[
W+,r,α1{L ≥ αC}

]
− zr,α,β

+ E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ C(1− α)−X · h(χ)

1{A = β}

 .
Using that E[L/C] < δ, we derive with Markov’s inequality that P(L ≥ αC) < δ/α and as
E[W+,r,α] < ∞ it thus holds that E[W+,r,α1{L ≥ αC}] ≤ γ/3 for any arbitrary γ > 0 if we
choose δ > 0 small enough. Also the second summand in above inequality can be bounded by
f r,α,β(z,χ) + γ/3 if α is chosen small enough using the dominated convergence theorem.

Let now ((z̃(γ), χ̃(γ)))γ>0 ⊂ RV+,0 × RM+,0 be such that f r,α,β(z̃(γ), χ̃(γ)) = −γ for all
(r, α, β) ∈ V resp. fm(z̃(γ), χ̃(γ)) = −γ for all m ∈ [M ], which exists analogue to Remark 4.4.1

(extending it by the z-coordinates). By the above result then f r,α,βL (z̃(γ), χ̃(γ)) ≤ −γ/3 < 0
for δ small enough. Similarly, one derives that fmL (z̃(γ), χ̃(γ)) ≤ −γ/3 < 0 for δ small enough.
We can thus conclude that (z∗L,χ

∗
L) < (z̃(γ), χ̃(γ)). However, by Remark 4.4.1 we further know

that (z̃(γ), χ̃(γ)) → (z∗,χ∗) and hence by upper semi-continuity of g and possibly further
decreasing δ it holds

g(z∗L,χ
∗
L) ≤ g(z∗,χ∗) + ε/3 = ε/3. (5.5.8)

By similar means as for f r,α,β and fm above, we also derive that gL(z,χ) ≤ ε/3 + g(z,χ) for δ
small enough. By Theorem 5.2.3 we can thus conclude that w. h. p.

n−1Sn,L ≤ gL(z∗L,χ
∗
L) + ε/3 ≤ g(z∗L,χ

∗
L) + 2ε/3 ≤ ε.

Now let δ small enough such that also (χ∗L)m ≤ (χ∗)m + ε/2. Applying Theorem 5.2.3 we thus
derive that w. h. p.

χmn,L ≤ (χ∗L)m + ε/2 ≤ (χ∗)m + ε.
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Proof of Theorem 5.3.5. Define for ε > 0 and IV ⊂ V resp. IM ⊂ [M ] the set

T (ε, I) :=
⋂

(r,α,β)∈IV

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
f r,α,β(z,χ) ≤ −ε

}
∩

⋂
(s,θ,λ)∈IcV

{
(z,χ) ∈ RV+,0 × RM+,0 : zs,θ,λ ≥ E[W+,s,θ1{A = λ}]

}
∩
⋂

m∈IM

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
fm(z,χ) ≤ −ε

}
∩
⋂
k∈IcM

{
(z,χ) ∈ RV+,0 × RM+,0 : χk ≥ E[Xk]

}
where we denote IcV := V \IV and IcM = [M ]\IM . Moreover, denote by (ẑ(ε, I), χ̂(ε, I)) ∈
RV+,0 × RM+,0 the smallest vector such that

◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε for (r, α, β) ∈ IV and

ẑs,θ,λ(ε, I) = E[W+,r,α1{A = β}] for (s, θ, λ) ∈ IcV resp.
◦
fm(ẑ(ε, I), χ̂(ε, I)) = −ε for m ∈ IM

and χ̂k(ε, I) = E[Xk] for k ∈ IcM . The existence of such a vector is ensured analogue to
Lemma 5.2.2. In particular, it then holds (ẑ(ε, I), χ̂(ε, I)) ∈ T (ε, I) and by the construction of
(ẑ(ε, I), χ̂(ε, I)) analogue to Lemma 5.2.2 we obtain that (ẑ(ε, I), χ̂(ε, I)) ≤ (z,χ) for any other
(z,χ) ∈ T (ε, I)

In particular, this implies that (ẑ(ε, I), χ̂(ε, I)) is non-decreasing in ε and thus continuous
for almost every ε > 0. As moreover, the expressions f r,α,β(ẑ(ε, I), χ̂(ε, I)) + ẑr,α,β(ε, I) and
fm(ẑ(ε, I), χ̂(ε, I)) + χ̂m(ε, I) are bounded and increasing in ε, we derive that for almost every
ε > 0 and δ > 0, we can choose γ > 0 small enough such that

f r,α,β(ẑ(ε, I), χ̂(ε, I)) + ẑr,α,β(ε, I) ≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε− γ, I)) + ẑr,α,β(ε− γ, I) + δ

and

fm(ẑ(ε, I), χ̂(ε, I)) + χ̂m(ε, I) ≤ fm(ẑ(ε− γ, I), χ̂(ε− γ, I)) + χ̂m(ε− γ, I) + δ.

If (r, α, β) ∈ IV , as ẑ(ε, I) is strictly increasing, we derive that

◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) ≤ f r,α,β(ẑ(ε, I), χ̂(ε, I))

≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε− γ, I)) + δ

≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε, I)) + δ

≤
◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) + δ

and choosing δ arbitrarily small we conclude that for almost every ε > 0,

f r,α,β(ẑ(ε, I), χ̂(ε, I)) =
◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε.

Moreover, if m ∈ IM , then χ̂m(ε, I) is strictly increasing and by the assumption of hm(χ) being
strictly increasing in χm, we derive for xm > 0 that

ρ

(
`+ x · h(χ̂(ε− γ, I))

c

)
≤ ◦
ρ

(
`+ x · h(χ̂(ε, I))

c

)
.

Hence similarly as above, fm(ẑ(ε, I), χ̂(ε, I)) =
◦
fm(ẑ(ε, I), χ̂(ε, I)) = −ε.

Let us now show that (z∗,χ∗) ≤ (ẑ(ε, I), χ̂(ε, I)). To this end, suppose that we could choose
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some (z,χ) ∈ P0 such that zr,α,β > ẑr,α,β(ε, I) for some (r, α, β) ∈ V or χm > χ̂(ε, I) for some
m ∈ [M ]. Then by P0 ⊂ [0, ζ] × [0,η], where ζr,α,β = E[W+,r,α1{A = β}] and ηm = E[Xm],
and monotonicity of the functions f r,α,β resp. fm we would derive the existence of a point
P0 3 (z̃, χ̃) ≤ (ẑ(ε, I), χ̂(ε, I)) such that either z̃r,α,β = ẑr,α,β(ε, I) for some (r, α, β) ∈ IV
or χ̃m = χ̂M (ε, I) for some m ∈ IM . But then f r,α,β(z̃, χ̃) ≤ f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε
resp. fm(z̃, χ̃) ≤ fm(ẑ(ε, I), χ̂(ε, I)) = −ε and thus a contradiction to (z̃, χ̃) ∈ P0. It must
therefore hold (z∗,χ∗) ≤ (ẑ(ε, I), χ̂(ε, I)). Let now for given shock L,

IM := {m ∈ [M ] : χ̂mL < E[Xm]} and IV := {(r, α, β) ∈ V : ẑr,α,βL < E[W+,r,α1{A = β}].

If IV = ∅ and IM = ∅ the result is trivial, so assume that either IV 6= ∅ or IM 6= ∅. For m ∈ IM ,

using
◦
fmL (ẑL, χ̂L) = 0 we then derive

◦
fm(ẑL, χ̂L) =

◦
fmL (ẑL, χ̂L)− P(L = 2C)(E[Xm]− χ̂mL )

P(L = 0)
< 0

and analogously
◦
f r,α,β(ẑL, χ̂L) < 0 for (r, α, β) ∈ IV . For the choice

ε := −max

{
max

(r,α,β)∈IV

◦
f r,α,β(ẑL, χ̂L), max

m∈IM

◦
fm(ẑL, χ̂L)

}
> 0

it then holds (ẑL, χ̂L) ∈ T (ε, I) and further (ẑL, χ̂L) ≥ (ẑ(ε, I), χ̂(ε, I)) ≥ (z∗,χ∗). We can
then apply Theorem 5.2.3 and conclude

n−1Sn,L ≥
◦
gL(ẑL, χ̂L) + op(1) ≥ ◦

g(z∗,χ∗) + op(1)

as well as
χmn,L ≥ χ̂mL + op(1) ≥ (χ∗)m + op(1).
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