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Zusammenfassung 

Das Rubinstein-Taybi Syndrom (RTS) ist eine archetypische neurologische Entwicklungsstörung, 

die durch Mikrozephalie, geistige Behinderung, postnatale Wachstumsverzögerung und typische 

Körper- und Gesichtsmerkmale charakterisiert ist. Ursache des RTS sind unter Anderem 

Mutationen in den CBP (CREB binding protein) und p300 kodierenden Genen. Bei diesen 

Proteinen handelt es sich um homologe, ubiquitär exprimierte Ko-Aktivatoren der Transkription 

mit Histon-Acetyltransferaseaktivität. Obwohl Studien mit Mausmodellen für das Rubinstein-

Taybi Syndrom CBP und Histonacetylierung eine direkte Rolle für Kognition und 

Gedächtnisbildung postulieren, konnte bisher kein eindeutiges neuropathologisches bzw. 

anatomisches Korrelat für die beim RTS beobachteten Symptome geistige Behinderung und 

Lernschwäche, beschrieben werden. Um die Pathogenese des RTS besser zu verstehen, wurde 

im Rahmen dieser Arbeit die Rolle von CBP während der Entwicklung des Großhirns untersucht. 

Dabei wurde ein konditionales homozygotes CBP knock-out Maus Modell verwendet. Mit Hilfe 

eines cre-loxP Systems wurde das CBP Gen spezifisch in GFAP exprimierenden neuronalen 

Vorläuferzellen zu einem frühen embryonalen Zeitpunkt inaktiviert. Die Auswirkungen dieses 

frühen CBP Verlusts auf das sich entwickelnde Gehirn wurden mittels histologischer Auswertung 

von Gewebeproben, 3D Zell-Rekonstruktion und Verhaltenstests untersucht. 

In den transgenen Mäusen konnten Mikrozephalie, ein dünnerer Neocortex und Balken, sowie 

ein kleinerer Hippocampus und Bulbus Olfaktorius festgestellt werden, was die beschriebene 

besondere Bedeutung von CBP für regelhaftes Größenwachstums des Gehirns bestätigt. 

Weiterhin wurden verschiedene Hinweise auf eine gestörte Zelldifferenzierung beobachtet: 

einerseits ein verschobenes Verhältnis von exzitatorischen zu inhibitorischen Neuronen im 

Bulbus Olfaktorius, sowie anderseits ein vermindertes Zellvolumen von 3D-rekonstruierten 

Pyramidenzellneuronen der Lamina V des Neocortex. Außerdem konnte gezeigt werden, dass ein 

früher CBP Verlust zu einer verringerten Zellviabilität sowie verminderten Proliferationskapazität 

von embryonalen neuronalen Vorläuferzellen innerhalb der ventrikulären Keimzone führt. 

Darüber hinaus ließen sich ausgeprägte Störungen sowohl der radialen Vorläuferzell-Migration 

während der Entwicklung des Neocortex, als auch der tangentialen Vorläuferzell-Migration durch 

den rostralen migratorischen Strom (rostral migratory stream, RMS) oder während der 

Hippocampusentwicklung feststellen. Dies legt nahe, dass Migrationsstörungen auch während 

der Pathogenese des RTS eine wichtige Rolle spielen. Die beobachteten Fehlentwicklungen von 
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Neocortex, Corpus Callosum und Hippocampus nach CBP Verlust - insbesondere eine dabei 

verminderte adulte Neurogenese im Hippocampus - unterstützen insgesamt die bisherige 

Theorie, dass es sich bei diesen Hirnregionen um diejenigen zentral betroffenen Regionen 

handelt, die die klinischen neurokognitiven Befunde des RTS bedingen. Schließlich zeigten diese 

Ergebnisse auch deutliche Übereinstimmungen mit den Befunden struktureller Vermessungen 

von MRT Untersuchungen des Gehirns von RTS Patienten, welche ergänzend im Verlauf dieser 

Arbeit durchgeführt worden waren.  
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Summary 

Rubinstein-Taybi syndrome (RTS) is an archetypic neurodevelopmental disorder characterized by 

microcephaly and mental retardation, postnatal growth impairment and distinctive facial & 

skeletal features. It is associated with heterozygous mutations in the CREB binding protein (CBP) 

and p300 genes that code for two strongly homologous ubiquitously expressed transcription 

coactivators with intrinsic histone acetyltransferase (HAT) activity. Though studies in mouse 

models for RTS suggest a direct role of CBP and histone acetylation in cognition and memory, no 

anatomical substrates for the findings of mental retardation and learning disability in RTS 

patients have been pin-pointed so far. Thus, to elucidate RTS pathogenesis further, the role of 

CBP during forebrain development was studied in this work utilizing a conditional homozygous 

CBP knock-out mouse model. Using a cre-loxP system the CBP gene was knocked out specifically 

in GFAP expressing neural precursor cells at early embryonic stages. The effects of this early CBP 

loss where then studied in the developing brain through histological analysis of brain tissue, 3D 

cell reconstruction and behavioral testing.  

In the transgenic mice microcephaly, a thinner neocortex & corpus callosum as well as a smaller 

hippocampus & olfactory bulb were observed which corroborates a high importance of CBP for 

brain size regulation as postulated before. With disturbed excitatory and inhibitory balance of 

neurons in the olfactory bulb and a reduced cell volume of 3D reconstructed lamina V pyramidal 

neurons, cell differentiation was found to be disturbed after CBP depletion. It could furthermore 

be determined that a loss of CBP leads to diminished cell viability and reduced proliferation rates 

of neural precursor cells within the germinal ventricular zone during embryonal stages. 

Moreover, profound impairment of both radial migration during neocortex development, as well 

as of tangential migration through the rostral migratory stream and during hippocampus 

development were shown, strongly suggesting that impaired migration also plays an important 

role during RTS pathogenesis. In terms of an anatomical substrate for RTS related cognitive 

impairment, it can be noted that the alterations found in the neocortex, corpus callosum and 

hippocampus after loss of CBP - especially with a reduction of adult neurogenesis - heavily 

support the theory of these areas being the main substrates for the findings in RTS patients. 

Finally, these results were shown to be corresponding well with a structural analysis of acquired 

brain MRI images from RTS patients that was conducted additionally during the course of this 

work. 
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1. Introduction 

1.1 Rubinstein-Taybi syndrome  

Rubinstein-Taybi syndrome (RSTS or RTS; OMIM #180,849, #613,684), firstly described in 1963, 

is an archetypic neurodevelopmental, multiple congenital anomalies/mental retardation 

syndrome with a prevalence of 1:100,000 to 1:125,000 at birth1,2. Still primarily clinically 

diagnosed, RTS is characterized by microcephaly and mental retardation, postnatal growth 

impairment, specific facial abnormalities and broad & angulated thumbs and big halluces1,3,4. 

Genetic analysis uncovered heterozygous mutations in the strongly homologous CREB binding 

protein (CBP) and p300 (also called EP300 or E1A binding protein p300) genes to be causative for 

the development of RTS in about 50-70% of the cases, whereupon the cause of the other 30-50% 

remain unknown up to date5,6,7,8,9 (Fig. 1).  

 
1.1.1 Clinical characteristics  

Beside the striking broad thumbs and big toes of many RTS patients - especially those with p300 

mutations regularly have normally shaped thumbs and toes7,9 - affected children show 

characteristic facial abnormalities such as highly arched eyebrows, down slanting palpebral 

fissures, a broad nasal bridge and beaked nose with the nasal septum extending below the 

nostrils, a highly arched palate and mild micrognathia10. Eye (i.e. congenital glaucoma)11,12 and 

skin anomalies (i.e. hirsutism & keloid formation)11,12,13 as well as affections of internal organs 

including heart malformations (~33%), kidney abnormalities and increased risk of seizures are 

also common16,17. Furthermore, RTS patients have an increased risk of developing both benign 

and malignant tumors, especially of neural or developmental origin18,19. Mental retardation in 

RTS is described as moderate to severe (IQ: <25-75) with a progression throughout life being 

discussed12,19,20. While the ability to establish social contacts is usually well intact, RTS patients 

often show a short attention span and poor coordination as well as sudden mood swings that 

may increase from early adulthood on3.  

 
1.1.2 Genetics 

Though showing autosomal dominant character, RTS is caused by de novo mutations in most 

cases21,22. Causative mutations in the CBP gene include foremost point mutations, small deletions 
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and duplications that may lead to premature translations stops, substitutions or splicing defects, 

as well as, though less frequent, large deletions, translocations and inversions5,23–25 (Fig. 1). 

Mosaic carriers of mutations have also been described what could be an explanation for some 

cases where no RTS causing mutations had been detected26,27. With regard to genotype-

phenotype correlation, no striking correlations especially concerning mental retardation have 

been described up to date with the exception of the aforementioned often normally shaped 

thumbs and toes of patients with p300 mutations, more frequent growth retardation when the 

mutation did not lie within the CBP gene, a higher rate of seizure disorders in patients with CBP 

mutations and single cases of CBP missense mutations with milder phenotypes6,28,29. 

 

Figure 1: Causative mutations in Rubinstein-Taybi 
syndrome. The majority of RTS cases is caused by mutations 
in the CBP gene with point mutations & deletions making 
up for approximately 75% of all CBP mutations. (Others:  
insertions/deletions, insertions, translocations). In 8-10% of 
published RTS cases, p300 mutations have recently been 
discovered to be causative. CBP mutation type distribution 
is shown according to RTS cases listed in the Human Gene 
Mutation Database (HGMD, Qiagen Bioinformatics). 

 

1.2 CREB-binding protein (CBP)  

1.2.1 Function and structure 

CBP, as well as its paralogue p300, is an ubiquitously expressed transcription coactivator known 

to play an important role in embryonic development, growth control, and homeostasis30. It has 

an intrinsic histone acetyltransferase activity and stabilizes protein interactions with the 

transcription complex, thus mediating chromatin remodeling and transcription factor 

recognition31–33. By acetylating histones, CBP opens the chromatin structure at a gene, which is 

essential for gene expression34,35. Its name derives from its early described ability to bind cAMP-

response-element (CRE) binding protein (CREB)36,37, by now, however, it was shown to integrate 

signals from a multitude of signaling pathways, interacting with more than 400 transcription 

factors and other regulatory proteins38. It was found to be present at promotors of more than 

16000 human genes39. The CBP coding gene is situated at p13.3 of chromosome 16, with its 31 

exons encoding the 2442 amino acids long CBP protein40,41. Besides large intrinsically disordered 

regions - 60% of the sequence - CBP has a folded histone acetyltransferase (HAT) domain, that 

 
        p300 
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contains a 60 amino acid, disordered, auto-inhibitory loop residue that regulates 

acetyltransferase activity42, and several folded domains that form the interaction sites for 

activation domains of cellular transcription factors and other regulatory proteins like the 

transactivation domains 9aaTADs of the tumor suppressor p5343–46 (Fig. 2). 

 

  

 

Figure 2: Domain arrangement of CBP. Schematic overview of the 2442 amino acids long protein 
CBP, its protein binding sites and other regions of interest. NRID: nuclear receptor interaction 
domain; TAZ1, TAZ2: transcriptional adapter zinc-binding motifs; TAZ1 domain mediates 
transcription of genes related to hypoxic response, the immune and inflammatory response, and 
cellular proliferation and survival47,48. By recruiting CBP, through interactions with TAZ2, various 
promoter-bound transcription factors activate transcription30. KIX: partner of kinase-inducible 
domain (KID) of CREB. The primary interaction site for various cellular transcription factors related 
to hematopoietic differentiation49–52; CRD1: cyclin-dependent kinase inhibitor-reactive domain; 
BRD: bromodomain. Recognizes acetyl-lysine residues in histone tails and intrinsically disordered 
protein regions of transcription factors53; CH2: cysteine-histidine-rich domain 2. A non-canonical 
zinc finger interacting with the preceding bromodomain and mutually stabilizing each other54; 
HAT: (histone) acetyl transferase domain, including a disordered regulatory loop; ZZ: dystrophin-
like small zinc-binding domain; NCBD: nuclear receptor coactivator binding domain, also called 
iBiD; Q: Glutamin-rich region at the C-terminus55. Based on figure 1 from Dyson, H. J. & Wright, P. 
E. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional 
Coactivators CREB-binding Protein (CBP) and p300. J. Biol. Chem. 291, 6714–6722 (2016). 

 

1.2.2 Target of viral proteins 

CBP - and p300 - with their important role as hubs in critical signaling and transcriptional 

networks are both targeted by disordered viral proteins and oncoproteins, which compete with  

cellular proteins, disrupt cell signaling and manipulate the cell cycle56. These include, amongst 

others, oncoproteins encoded by DNA tumor viruses such as adenovirus E1A and human 

papillomavirus E7, Tax and HBZ proteins encoded by the human T-cell leukemia virus HTLV-1, 

and the HIV-1 Tat protein57–62.  

 
1.2.3 Role in oncology 

In terms of tumorigenesis and tumor progression, mutations in, or affecting the CBP gene have 

been reported in a number of malignancies. Chromosome translocations including the CBP gene 

locus that lead to a heterozygous loss of CBP have been found in acute myeloid leukemia and 
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treatment related hematological disorders41,63–65. Mutations especially in the HAT domain or 

domains important for transcription factor interaction were also described in cases of relapsed 

acute lymphoblastic leukemia and B-cell lymphomas66,67. In solid tumors, somatic mutations at 

the 16p13 CBP locus have been described for primary pulmonary cancer and pulmonary cancer 

cell lines68,69, as well as in human medulloblastoma70,71. This is in line with the aforementioned 

findings in RTS patients of an increased risk of developing tumors (see 1.1.1.). It is furthermore 

discussed whether CBP acts as a tumor suppressor in tumorigenesis.  On the one hand, CBP 

mutations especially in solid tumors are generally uncommon72 and studies showed reduced 

proliferative capacity after loss or knockdown of CBP73,74, what speaks against the role as a 

classical tumor suppressor. Studies on knock-out and conditional knock-out mice, on the other 

hand, confirmed a role as a tumor suppressor in hematological malignancies75 and recently also 

in sonic hedgehog (SHH) medulloblastoma development, suggesting a different role at different 

developmental time points. While at early embryonal stages indispensable for proliferation and 

growth of the developing organism, CBP might act as a tumor suppressor later on76. 

 

1.3 Development of the cerebrum in mice 

Approximately mid-gestation in rodents, on gestational day E9.0 - E9.5 of mice occurs the 

formation of the so called neural tube. A specialized fold of ectodermal tissue from which brain 

and spinal cord subsequently differentiate. This process is called neurulation and marks the first 

major step towards central nervous system (CNS) development in all vertebrates77,78. From the 

neuroectoderm of the anterior neural tube arises the forebrain (also called prosencephalon) 

which represents the foremost subdivision of the embryonic vertebrate brain. It further divides 

into the telencephalon, the diencephalon, that consists of structures such as thalamus and 

pretectum, and the hypothalamus79,80. From the telencephalon emerges eventually the 

cerebrum. It contains the cerebral cortex as well as subcortical structures like the hippocampus, 

basal ganglia and olfactory bulb. The other subdivisions, midbrain (also called mesencephalon), 

hindbrain (also called rhombencephalon) and spinal-cord develop into the respective parts of the 

CNS. With the dorsal bifurcation of the expanding telencephalon to form the two hemispheres 

and the patterning into ventral and dorsal telencephalon (also called subpallium and pallium) 

begins the development of distinct cerebral structures80,81 (Fig. 3).  
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Figure 3: Timeline overview of the cerebral development in mice. Different developmental processes of the 
cerebrum against the background of the general embryonic and postnatal development of mice. Time points 
are labeled as embryonic (E) and postnatal (P) days post fertilization. As onset time points and process 
durations may vary between different strains of mice and due to inconsistency in nomenclature all time 
points were used as published: Implantation82; Organogenesis83–85; Neurulation86; Neural tube closure & 
neurogenesis onset78,87; Telencephalon bifurcation88; Corpus callosum development89,90; Corticogenesis91; 
Hippocampus development92–94; Development of the olfactory system95; Gliogenesis96,97; Myelination98; 
Activation of GFAP promotor in neural precursor cells99,100. The figure was inspired by figure 1 out of Vorhees 
CV. Principles of behavioral teratology. In: Handbook of Behavioral Teratology (Riley EP, Vorhees CV, eds). 
New York:Plenum Press, 1986; 23-48.   

 

1.3.1 Corticogenesis 

The developed neocortex - the outer covering of the cerebral hemispheres - is the seat of higher 

cognitive functions and especially well-developed in mammals101. It consists of a mantle of gray 

matter and the underlying white matter. While the gray matter comprises a network of 

excitatory (glutamatergic) and inhibitory (GABAergic) neurons supported by glial cells and blood 

vessels, the white matter is formed by myelinated axons stemming from, or directed to the 

neurons of the gray matter102. In the radial dimension the neurons of the gray matter are 

organized in columns working as functional microunits with stereotypical interconnections 

between the respective neurons103,104. In the lateral dimension the neocortex is dividable in six 

laminae (I-VI, with lamina I at the surface). The laminae can be identified by cell types and 

connectivity patterns105. For example, layer V and VI pyramidal multipolar neurons preferentially 
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connect with subcortical structures, whereas upper layer neurons (I-IV) mainly form ipsi- or 

contralateral cortico-cortical connections106,107. Further, the cortex as a whole is subdivided into 

a number of areas that represent functionally specialized fields105.  

The neocortex is formed during corticogenesis primarily from the dorsal telencephalon. Its 

neurons thereby originate from two germinal compartments lining the cerebral ventricles - the 

ventricular zone (VZ) and the subventricular zone (SVZ)108. The VZ initially consists of 

neuroepithelial cells (NECs) that divide at the apical surface. Later, mitosis also occurs at the basal 

surface and forms the SVZ109,110. The emerging precursor cells from which cortical neurons 

originate can be divided into different types and subtypes of which three outstanding types shall 

be explained in detail here. Firstly, elongated bipolar apical radial glial cells (aRGCs), spanning 

the full thickness of the embryonic cortical wall that function on the one hand as primary 

progenitor cells capable of generating neurons, astrocytes and oligodendrocytes and on the 

other hand as scaffolds for migrating neurons travelling to their destination in the cortex108,111,112. 

Secondly, apical intermediate progenitor cells (aIP, also known as short neural precursor cells 

(SNPs)), also dividing at the apical surface of the VZ that produce post-mitotic neurons directly 

from the VZ113,114. And finally, from RGCs derived basal intermediate progenitor cells (bIPs) which 

divided away from the VZ into the SVZ to produce post-mitotic neurons from there109,115. In this 

context, it was shown through gene expression analysis that although the SVZ derives from the 

VZ the two zones have different precursor cell pools and that the VZ is generating only lower 

layer neurons while the SVZ generates both upper and lower layer neurons116. Before the 

neocortex laminae are formed the first generated neurons form a pre-plate that is then split by 

later-born cortical plate neurons into an outer marginal zone and inner sub-plate117,118. From 

then on newly generated postmitotic neurons migrate radially from the VZ and SVZ to the cortical 

plate to form the neocortical laminae. During this process deeper layers are formed by earlier-

generated neurons and the later-born neurons migrate to successively higher layers119,120. 

Laminar organization is thereby directed by reelin, a multifunctional extracellular protein, that 

controls neuronal radial migration and proper positioning in cortical layers121,122. Besides this 

process of radial migration, it was shown recently that the majority of GABAergic interneurons 

and a fraction of oligodendrocytes of the neocortex are generated in the ventral telencephalon 

and migrate tangentially to the cortical plate123–126 (Fig. 4). In terms of inter-species differences, 

it has to be noted that the human neocortex is not only comparably larger than that of the mouse 
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but also convoluted (gyrencephalic) with fissures (sulci) and ridges (gyri) while the mouse 

neocortex is smooth (lissencephalic)127,128. While basic principles are conserved between 

mammalian species, there are also notable differences in the process of corticogenesis such as 

differences regarding the abundance of certain NPC types129, the complexity of their 

lineages130,131 and their proliferative potential115,130,132,133. This has to be taken into account when 

making inter-species comparisons. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Corticogenesis in mice. (A) Migration movement during corticogenesis in a schematic coronal 
section. Radial migration (RM) of pyramidal neurons from the ventricular zone (VZ) and subventricular zone 
(SVZ) of the dorsal telencephalon (pallium) and tangential migration (TM) of interneurons to the developing 
neocortex from the striatum of the ventral telencephalon (subpallium). (B) Neural precursor cell (NPC) types 
during mammalian corticogenesis, classified according to cell polarity, the presence of ventricular contact, 
and the location of mitosis. Division behavior is labeled with curved black arrows. Neuroepithelial cells (NECs) 
that give rise to the following precursor cells are not depicted. Apical progenitor cells, which include apical 
radial glia (aRG) and apical intermediate progenitors (aIPs), are defined by mitosis occurring at the ventricular 
surface and the presence of ventricular contact. aIPS after being born from aRG follow one round of 
symmetric neurogenic division to givie rise to two neurons (N) that start migrating towards the cortical plate. 
Subapical progenitors (SAPs), a type of radial glia cells, are defined by mitosis occurring at an abventricular 
location and the presence of ventricular contact134. Basal progenitors (BPs), which comprise basal radial glia 
(bRG) and basal intermediate progenitors (bIPs), are defined by mitosis occurring at an abventricular location 
and the absence of ventricular contact129,130. The depicted bRG subtypes include bipolar bRG (bRG-both-P (P 
stands for process)), with both apical and basal processes, and monopolar bRGs: bRG-basal-P and bRG-apical-
P131,134. bIPs born from aRG or bRG follow either symmetric proliferative division or symmetric neurogenic 
division109,115,130. (C) Anatomical organization of the embryonic cortex of mice at different embryonal time 
points. Schematics depict transects through the presumptive area 17 (primary visual cortex). While the 
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subventricular zone increases progressively in thickness throughout corticogenesis the ventricular zone 
declines progressively after E14, the day when the pre-plate (PP) begins to be separated into marginal zone 
(MZ), cortical plate (CP) and sub-plate (SP). Fibre layer (FL). (A) was derived from fig. 2 out of Marin, O. & 
Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 
2, 780–790 (2001). (B) was derived from fig. 2 out of Florio, M. & Huttner, W. B. Neural progenitors, 
neurogenesis and the evolution of the neocortex. Development 141, 2182–2194 (2014).  (C) was derived from 
fig. 8 out of Smart, I. H. M. et al. Unique morphological features of the proliferative zones and posmitotic 
compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. 
Cortex 12, 37–53 (2002). 

 

1.3.2 Development of the hippocampus 

The hippocampus is a ridge of grey matter located in the medial temporal lobe, elevating from 

the floor of each lateral ventricle which mediates important functions in learning, spatial 

navigation and memory135–137. The following structures are thereby included in the hippocampal 

formation: The dentate gyrus (DG), a trilaminar, convoluted semilunar (C-shaped) gyrus as the 

most medial area of the formation; The hippocampus proper with its 4 subfields CA1-CA4; And 

the subiculum that lies between the entorhinal cortex and the CA1 subfield138. The entorhinal 

cortex is an atypical organized cortical area acting as the main interface between hippocampus, 

neocortical areas and limbic cortices139. Different circuits and pathways that interconnect the 

structures of the hippocampal formation and entorhinal cortex have been described. For 

example, in the so called perforans path, axons from entorhinal cortex cross the partially fused 

hippocampal fissure and terminate in the DG. In turn, DG efferent axons, known as mossy fibers, 

form prominent bundles that synapse on CA3 pyramidal neurons. Neurons of CA3 mainly project 

to CA1 from which pathways lead to the subiculum and directly back to the entorhinal cortex, 

thus completing this so called trisynaptic circuit140–142. The subiculum, as the main output of the 

hippocampus, projects thereby not only to the entorhinal cortex but also to structures like the 

nucleus accumbens, lateral hypothalamus and amygdala143.    

The formation of the hippocampus starts around E14 in the Mouse in response to active 

secretion of BMP and WNT molecules from the cortical ham (CH), a dorsomedial telencephalic 

structure that also organizes the choroid plexus, and that lacks the transcription factor 

Lhx2144,145,146. BMP and WNT particularly promote the proliferation of neural precursors and are 

important for NSC (neural stem cell) maintenance and differentiation in the adult organism147,148. 

Nevertheless, some mechanisms during the embryonic development of the hippocampus equal 

those in the neocortex. As in the neocortex, glutamatergic projection neurons emerge from 
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radial glia precursors (RGPs) and intermediate precursor cells (IPs) and GABAergic interneurons 

migrate to the hippocampal site from subcortical progenitor compartments. Laminar 

organization is also regulated through reelin signaling and the CA segments are also formed 

through radial migration149,150. Especially unique, in contrast, is the development of the DG. It 

differs in molecular expression, mode of cell migration, hippocampal fissure formation, 

dependence on cortical hem signaling and its Cajal-Retzius (CR) cells, and shows prolonged 

neurogenesis with the peak of DG neurogenesis in rodents in the first postnatal week151,152. The 

DG originates from the dentate neuroepithelium (DNE), also called primary matrix, a part of the 

VZ that stands out with high expression of Lef1, an important transcription factor downstream 

of Wnt signaling153,154. From there, mitotically active NPCs at different stages of differentiation - 

both gliogenic and neurogenic - migrate towards the nascent hippocampal fissure (HF) forming 

the dentate migration stream (DMS) also called the secondary matrix that is supported by a glial 

scaffold made up from radial glia fibers150,155,156. This process depends heavily on hem-derived  

CR cells. Emerging from the cortical hem they disperse widely throughout the cortex and produce 

reelin. While all cortical areas are influenced by the cortical hem and CR cells the DG is especially 

dependent on these elements for patterning, growth and morphogenesis and CR cells promote 

DG development not only through reelin-dependent, but also reelin-independent 

mechanisms157,158. Reaching the hippocampal fissure, the NPCs form another hub of proliferating 

cells called the tertiary matrix and the granular cell layer starts to be formed159. Its semilunar 

two-bladed shape is thereby dictated by CR cells surrounding the hippocampal fissure. Thus, the 

hippocampal fissure itself plays an important directive part during the DG development and CR 

cells migrate into subpial and compact zones of the hippocampal fissure while beeing essential 

for its lengthening160,153 (Fig. 5).  
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Figure 5: Development of the hippocampus in mice. Schematic representation of the pallium at different 
developmental stages. Squares indicate magnified hippocampal regions. (A) At E12.5, the presumptive, not 
yet distinguishable DNE is located between the hippocampal neuroepithelium (HNE) and the cortical hem 
(CH). CR cells (dark-brown) are shown lining the pial side of the cortex. (B) At E14.5 dentate precursor cells 
(blue circles) in the DNE, also called primary matrix (1ry), start migrating to the pial side of the cortex, thereby 
forming the dentate migration stream (DMS), the secondary matrix (2ry; gray circles). In the HNE segment of 
the VZ, RGPs are depicted (blue with process) that will give rise to neurons of the CA segments. (C) At E17.5 
the hippocampal fissure (HF) is formed, NPCs migrate towards it and accumulate there forming the tertiary 
matrix (3ry; light brown circles). The glial scaffold which directs the migration process and extends from the 
CH to the HF and pial surface is not depicted. Differentiated neurons (green) of the CA segments, born from 
the HNE migrated via radial migration along radial glia cells (blue circles with processes) to their final 
positions. (D) At birth, the blades of the DG start to form. Granule neurons of the DG (green) settle first in 
the upper blade below the HF. The formation of the lower blade is then promoted by immigrating Cajal-
Retzius cells after the upper blade is formed. NPCs in the primary and secondary matrix will then disappear 
leaving solely NPCs of the tertiary matrix with the postnatal production of granule neurons for the DG. The 
figure was derived from fig. 1 out of Urbán, N. & Guillemot, F. Neurogenesis in the embryonic and adult brain: 
same regulators, different roles. Front. Cell. Neurosci. 8, 396 (2014).  

 

1.3.3  Development of the olfactory bulb & the rostral migratory stream  

The olfactory system is being divided into two pathways. The primary olfactory pathway 

including the olfactory epithelium (OE) and the olfactory bulb (OB)161, and the secondary 

olfactory pathway that comprises multiple higher cortical regions referred to as the olfactory 
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cortex, directly innervated by mitral and tufted cells of the OB via the lateral olfactory tract 

(LOT)162. The olfactory epithelium, a pseudostratified neuroepithelium derived from the 

olfactory placodes - special areas of non-neural ectoderm in the rostrolateral regions of the head 

visible at E9 - contains the olfactory sensory neurons (OSNs)163. OSN axons, alongside other 

migrating cells, exit the OE and form a presumptive olfactory nerve layer (pONL) by E12. OSN 

axons thereby enter the CNS through small fenestrations and grow into the developing OB finally 

establishing synaptic connections with the mitral, periglomerular and tufted cells of the OB’s 

glomeruli164–166. The OB is the CNS structure where olfactory information is first processed and 

relayed before forwarded to higher cortical regions167. Olfactory signals are sharpened or filtered 

there through lateral inhibition mediated by the OBs granular cells, axonless local 

interneurons168,169. The formation of the OB begins slightly after the formation of the OE in a 

predetermined region of the rostral telencephalon, with mitral cell differentiation onset at E10.5-

E11170. It was shown that the OB initially develops independently from the OE and its penetrating 

OSN axons, although the exact nature of the signals that induce OB formation are yet to be fully 

understood171–173. While the OBs projection neurons - mitral and tufted cells - are born within 

the OB and only exhibit short way radial migration to the OB’s borders and undergo tangential 

reorientation there174, OB interneurons - granular and periglomerular cells - are born in the 

subventricular zone lining the lateral ventricles mainly during early postnatal life and migrate as 

still undifferentiated neuroblasts into the OB along the so called rostral migratory stream (RMS) 

(Fig.6)170,175. Beside the migrating neuroblasts organized in chains, the RMS contains specialized 

surrounding glial cells which postnatally form a so called glial-tube that then serves as a scaffold 

for the migrating neuroblasts during adult neurogenesis (see 1.4.2)176,177. While the initial 

formation of the RMS occurs between E15 and E17, it was shown that pioneer populations of OB 

interneurons are generated from precursors in the lateral ganglionic eminence (LGE) - a 

progenitor domain of the ventral telencephalon that gives later rise to the striatum and globus 

pallidum178 - between E12.5 and E14.  They migrate towards the presumptive OB in a passage 

that adumbrates the RMS179. In terms of inter-species differences, it can be noted that, although 

differences in RMS morphology and structure exist, human RMSs also contain migrating 

neuroblasts and OB neurogenesis also persists into adulthood180,181.  
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Figure 6: Overview of the adult olfactory bulb and neurogenesis via the rostral migratory stream. (A) 
Schematic sagittal paramedian section through an adult mouse head. Neuroblasts (green circles) born in the 
subependymal zone of the lateral ventricle (LV; blue) are shown forming the rostral migratory stream (RMS) 
and migrating towards the olfactory bulb (OB), where they then migrate radially (black arrows) towards their 
final destination within the OB. Corpus Callosum (CC); Olfactory epithelium (OE). The boxed area is shown 
enlarged in (B). (B) Schematic overview of the neuronal layers of the adult OB. Migratory neuroblasts (N) leave 
the RMS (black arrows) and differentiate into granule cells (GC) and periglomerular cells (PGC) residing in the 
granule cell layer (GCL) and glomerular layer (GL) respectively. Olfactory receptor neurons (ORN) in the 
olfactory epithelium (OE) project to the GL. The main projection neurons of the OB reside in the mitral cell 
layer (MCL) and external plexiform layer (EPL). Mitral cells (M) in the MCL and Tufted cells (T) in the EPL. 
Cribiforme plate (CP); Internal Plexiform layer (IPL). (A) was derived from fig. 1 out of Lim, D. A. & Alvarez-
Buylla, A. The Adult Ventricular–Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring 
Harb. Perspect. Biol. 8, a018820 (2016). (B) was inspired by fig. 2 out of Doty RL, Kamath V. The influences of 
age on olfaction: a review. Front Psychol 5: 20, 2014. 

 

1.4 Adult neurogenesis  

Besides neurons being generated during early embryonic development and early postnatal 

stages, only two main neurogenic regions remain in the adult brain that comprise of complex 

cellular microenvironments surrounding the NSCs keeping them quiescent and 

undifferentiated182–185. The subependymal zone of the lateral ventricles, also called the 

ventricular-subventricular zone (V-SVZ) that produces new neurons migrating to the OB182,186. 

And the non-periventricular subgranular zone (SGZ), the innermost layer of the DG in the 

hippocampus187–190. In contrast to the multipotency of embryonal NSCs, the different 

populations of stem cells in adult neurogenic regions are restricted to the generation of few types 

of neurons and glia cells. Granule neurons and astrocytes in the DG and granule or periglomerular 

neurons and oligodendrocytes or astrocytes in the V-SVZ184,186,191–194. Remaining in quiescence, 
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out of the cell cycle, in G0 for long periods - another difference to embryonal NSCs - is important 

for maintenance of tissue homeostasis and to avoid stem cell exhaustion195. The effects of 

signaling pathways, gene expression patterns and intrinsic factors on adult neurogenesis and its 

regulation mechanisms are the focus of current intensive research.   

  

1.4.1 Adult neurogenesis in the hippocampus 

During the second postnatal week, proliferation in the DG and former tertiary matrix declines 

and is eventually confined to the SGZ. The NSCs residing there throughout adulthood are called 

type-I cells or radial glia-like cells196. Thereby, it was shown recently that SGZ NSCs not only 

originate from the DNE but are also induced by sonic hedgehog (SHH) secreted from the 

amygdala at peri-natal stages in the ventral hippocampus and then migrate dorsally to seed the 

SGZ of the entire DG197. Granule cells in the adult DG are generated from type-I cells via a cell 

linage that includes rapidly dividing intermediate progenitor cells (IPCs) called type-IIa- and type-

IIb cells and neuroblasts (type-III)198. Selective elimination of IPCs by microglia during this process 

is an important mechanism of regulating neurogenesis in the DG199,200. The addition of new 

granule cells to the hippocampus circuitry was shown to be crucial for the acquisition of a certain 

type of contextual memory201,202. Furthermore, situations such as physical exercise, task learning 

but also seizures stimulate neurogenesis in the adult DG196. The aging of the brain on the other 

hand goes along with a major decrease in the number of new neurons generated in in the DG. 

For one thing through reduction of the NSC pool and secondly through an increased number of 

NSCs in quiescence203–205.  

 
1.4.2 Adult neurogenesis in the ventricular-subventrticular zone  

In the first postnatal weeks, the assembly of the glial-tube sheathing the RMS and changes in the 

cell populations within the subependymal zone along the lateral ventricles mark the transition 

towards adult neurogenesis176,206. The region is then called ventricular-subventricular zone as it 

shows characteristics similar to both the embryonic VZ and SVZ. During that process, embryonic 

NSCs which display undifferentiated radial glia characteristics differentiate to specialized 

astrocytes with ventricular contact called type-B1 cells that represent the primary NSCs of the V-

SVZ207–211. When activated from their quiescent state, type-B1 cells give rise to transit-amplifying 

precursor cells (type-C cells) which then produce neuroblasts (type-A cells) that travel to the 
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OB212–215. They can furthermore undergo asymmetric division for self-renewal or give rise to 

oligodendrocytes and non-neurogenic astrocytes216. However, type-B1 cells are thereby not a 

homogenous population of adult NSCs as their location throughout the V-SVZ determines the 

type of OB neurons they will produce217,218. For example, ventral type-B1 cells produce deep 

granule neurons and calbindin positive periglomerular cells, whereas dorsal type-B1 cells 

produce superficial granule cells and calbindin negative periglomerular cells. These regional 

specifications are moreover already established at early developmental prenatal stages210. Until 

now the number of subregions in the V-SVZ and how many different types of OB interneurons 

are produced is not known. It therefore remains uncertain whether type-B1 cells are to be 

considered multipotent and if both neuronal and glial linages can emerge from a single type-B1 

cell216,219. 

 

 

 

 

 

 

 

 

 



Objective 

 15 

2. Objective 

Using the definition of the European Commission for rare diseases of affecting less than 1 in 2000 

people and being life-threatening or causing chronic illness, this group entails 5000 - 8000 

different diseases with the majority being of genetic origin220,221. As published in a WHO 

background paper from 2013 this leads to the rough estimate of 1 in 15 people as a worldwide 

prevalence of rare diseases making this group a challenging global health issue both in terms of 

clinical diagnosis and treatment as well as investigatory approach, due to its enormous 

heterogeneity222. Accordingly, cause and symptoms causing pathophysiological processes are yet 

to be fully understood in a great number of these rare diseases. This work aims therefore to 

elucidate the pathophysiological mechanisms and changes occurring during brain development 

that lead to the clinical picture of mental retardation and cognitive impairment in one of these 

entities, the Rubinstein-Taybi syndrome. More specifically, the sub-group of RTS cases, where 

the cause of the disease lies within mutations affecting the CBP gene. While the causative role 

of the heterozygous loss of CBP or its HAT activity has been shown sufficiently at various 

occasions7,223, studies on heterozygous knock-out mouse models so far did not identify 

alterations in forebrain anatomy & -histology or pathological processes during their development 

that could explain satisfactorily the clinical findings of mental retardation and cognitive 

impairment in RTS patients224–226. Hence, in this work a different approach was chosen by 

studying the in vivo effects of a complete loss of CBP during embryonal development in a 

conditional homozygous CBP knock-out mouse model using a cre-loxP system. A focus was 

thereby placed on the analysis of integrity and development of the forebrain structures 

neocortex, hippocampus and olfactory bulb as well postnatal neurogenesis and developmental 

processes like precursor cell proliferation, neural migration and neural cell differentiation. 

Furthermore, the effect of CBP loss on neural cell structure was studied through 3D cell volume 

reconstruction of lamina V pyramidal cells. A mutation frequency analysis of mutations 

throughout the CBP gene in published RTS cases was conducted to validate the induced mutation 

in the used mouse model as a possible RTS causing mutation. Finally, data from magnetic 

resonance imaging (MRI) of the head and brain of RTS patients was acquired and analyzed in 

terms of structural parameters. Results were then compared to findings in the conditional CBP 

knock-out mouse model.  
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3. Material and methods 

3.1 Animal experiments  

For this work hGFAP-cre99 & CBPFl/Fl; 227 transgenic mouse lines were used. All animal procedures 

were performed in accordance with the policies on the use of animals established at the institute 

Zentrum für Neuropathologie und Prionforschung of the LMU Munich and the applicable animal 

protection law. All experiments were approved by the state of Bavaria under license number 

55.2-1-54-2532-10-14. Mice were held in groups of up to five animals in standard individually 

ventilated cages in an apathogenic environment at 23±2°C. They were separated according to 

their sex. A day/night cycle of 12 hours was maintained and the animals had free access to 

autoclaved food and water. For brain preparation, adult animals were sacrificed through manual 

cervical dislocation and animals aged younger than 14 days through decapitation. 

 

3.1.1 hGFAPcre::CBPFl/Fl  transgenic mouse model 

To assess the impact of CBP-knockout specifically in the developing brain hGFAP-cre & CBPFl/Fl 

mice were mated to generate hGFAPcre::CBPFl/Fl  transgenic mice. In this homozygous conditional 

knock-out model, the loxP flanked (floxed) CBP-gene is knocked out in those cells that start 

expressing GFAP and under its promoter the cre-recombinase (Fig.7). This accounts mainly for 

neural precursor cells at about E12.5 - E13.599,100. Male and female animals were used equally in 

the study. For control groups animals which were either categorized as wildtype or which had 

solely a hGFAPcre, CBPFl/Fl or CBPFl/+ genotype were used. hGFAPcre::CBPFl/+ heterozygous knock-

out mice were investigated additionally on a basic level.  

 

 

 

 

 
Figure 7: RTS mouse model: hGFAP-cre::CBPFl/Fl. In hGFAP-cre::CBPFl/Fl mice only CBPStop523, an 
insufficient C-terminally truncated version of the mouse CBP, is expressed in those cells that express 
the cre-recombinase under the GFAP promotor. CBPStop523 does no longer contain the HAT domain. 
LoxP: Cre-recombinase recognition and incision site, HAT: Histone acetyltransferase domain 
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3.1.2 Genotyping 

For genotyping biopsies of the tail from three-day old mice were used. The tissue was beeing 

lysed on the thermal mixer for two hours at 56 °C with 500 µl of a lysis buffer (200 mM NaCl, 100 

mM Tris-HCl pH 8.3, 5 mM EDTA, 0.2% SDS, 200 µg/ml protein kinase K in ddH2O). Afterwards, 

the probes were being centrifuged for 5min at 14000 g and the supernatant diluted with 500 µl 

isopropanol. Shaking then caused precipitation of the genomic DNA and the probe was again 

being centrifuged for 5 min at 14000 g. The pellet was dissolved in TE buffer (20 mM Tris-HCL pH 

8.3, 1 mM EDTA in ddH2O and stored at 4 °C. This genomic DNA served as raw material for the 

following process of determining the animal’s genotype: Genotype-specific regions of the 

genome were amplified via PCR utilizing primers inspired by the original publications (see 3.1.1) 

and a TAQ-Polymerase based standard reaction mixture (Table 1). Analysis of the amplified DNA 

fragments was conducted through gel electrophoresis using 1% agarose gel plates and a Syngene 

documentation system (Synoptics Limited). 
 

 

 

 

 

 

 

 

 

 
      Table 1: Primer sequences and PCR cycle specifications used for genotyping 

 

3.1.3 BrdU/EdU double pulse fate-mapping 

For measuring the proliferation rate in different cerebral structures in vivo, 25 µg 

bromodeoxyuridin (BrdU) per gram bodyweight was injected intraperitoneally two hours before 

sacrificing the animal. Analogous to the thymidine nucleoside, BrdU is integrated into newly 

formed DNA. Subsequently, it is possible to identify cells that passed the S-Phase during the two 

hours after the BrdU pulse using immunohistochemistry. To furthermore compare proliferation 

at different time points in the same animal and thus to be able to analyse cell migration from 

Primer name 5’ - 3’ Sequence 
Cre fwd. 
Cre rev. 
CBP fwd. 
CBP rev. 

TCCGGGCTGCCACGACCAA 
GGCGCGGCAACACCATTTT 
CCTCTGAAGGAGAAACAAGCA 
ACCATCATTCATCAGTGGACT 

 
PCR step               Temperature [°C] 

 
     Duration [s]               No. of repeats 

Denaturation                95 
Denaturation                95 
Annealing                      60 
Elongation                     72 
Elongation                     72 
Stop                                  4 

     120                                   1 
       30 
       30                                 35 
       60 
     120                                   1 
        - 
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stem cell rich regions to their respective destinations, a BrdU/EdU double pulse fate-mapping 

method was utilized. 5-ethynyl-2´-deoxyuridine (EdU), an alkyne-containing thymidine analogue, 

incorporated into DNA during active DNA synthesis like BrdU, was also administered 

intraperitoneally at 25µg per gram bodyweight. The double pulse method consisted of two 

injection steps. At a first time point, BrdU was injected and after a chosen interval, EdU was 

applicated and the animal was sacrificed. Hence, the stem cells were labeled with BrdU during 

active proliferation in the living animals, travelled to their destination and where identified 

histologically there (Fig.8). EdU on the other hand labeled new active stem cells in the area of 

their origin before migration in the same animal. Furthermore, this method also helped to rule 

out that the BrdU positive cells after migration were in fact stationary continuously proliferating 

cells of the destination region. Those cells would have been found to be both BrdU and EdU 

positive. For analysis, a fluorescence double staining of tissue sections was performed. EdU 

positive cells were stained by using the Click-IT® assay (ThermoFisher).  

 

 

 

 

 

 

Figure 8: Example for a BrdU EdU double pulse fate-mapping. To retrace cell migration from 
the ventricular-subventricular zone (V-SVZ) to the olfactory bulb (OB) via the rostral migratory 
stream (RMS) proliferating cells in the V-SVZ were marked at P15 through BrdU injection. 
Fifteen days later, EdU was injected and the animals were sacrificed for analyzing sections of 
the OB and RMS immunohistochemically. 

 
3.1.4 Behaviour testing 

To investigate whether structural and histological findings in the olfactory bulb and rostral 

migratory stream in hGFAPcre::CBPFl/Fl transgenic mice reflected in disorders of functional 

systems two behaviour tests that are used to assess the olfactory sense were conducted: a 

modified buried food and an olfactory habituation/dishabituation test228,229. Besides olfactory 

testing an anxiety/curiosity test was utilized to determine this confounding variable. All tests 

were conducted between 9 am and 9 pm. The animals were accustomed to the test room for at 

least 24 hours prior to testing. Gender-matched litter mates with genotypes as described in 3.1.1 

Animal age    P0                       P15                      P30                   
Migration of BrdU labeled cells  

from V-SVZ to OB via RMS 

Groups: 
Control (n=3)                    BrdU Pulse      EdU 2h Pulse 

                                          & Fixation hGFAP-cre::CBPFl/Fl (n=3) 
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where used as a control group. All tests were performed with animals at P30. The animals’ 

genotypes were unknown to the tester during testing. Females and males were tested separately 

but indiscriminately included in the analysis. 

To investigate anxiety and curiosity a light/dark box test was used. It is based on the fact that 

rodents react aversive when confronted with brightly illuminated areas on the one hand, but 

display exploratory behaviour in front of novel environment on the other hand230,231. The test 

box consisted of a smaller dark and closed chamber which was connected through a door to a 

bigger, illuminated and at the top open compartment painted in white. The box measured 60 cm 

in length, 40 cm in width and 40 cm in height with the bright compartment taking up two thirds 

of the floor space. Each animal was kept in the box for 5 minutes, whereby the latency until the 

first transition from the dark to bright compartment, the number of transitions and the total time 

spent in each compartment were measured. 

In the buried food test the test subjects were put into standard cages in which pieces of chocolate 

(1g) were buried under 0.5cm of bedding. Then, the time until the mice had dug up the piece of 

chocolate was measured. If it was not found after 5 minutes, the trial was ended. The test was 

repeated 6 more times for each animal to reduce susceptibility to faults. In the 7th run, a surface 

pellet trial was conducted with the piece of chocolate lying visibly on top of the bedding to 

determine whether the chocolate had not been dug up before because the mouse either wasn’t 

hungry or didn’t accept chocolate as aliment. Animals who had not dug up the chocolate for 

more than two times or rejected chocolate in the surface pellet trial were excluded from the 

experiment afterwards. To increase search behaviour the mice weight was reduced to about 90% 

in the days before testing and chocolate was presented to them as an alternative aliment.  

The used habituation/dishabituation test aims at determining whether a mouse can discriminate 

between familiar and novel, innocuous scents. Plastic cartridges carrying a piece of cotton 

impregnated with 20µl of either almond or banana extract were presented to the mice 

repeatedly for 30 seconds with 5 minute intervals. The first 6 trials almond extract was used for 

examining habituation and in a 7th trial banana extract was used as a novel scent to trigger 

dishabituation. The measured time variable ‘nose-contact with the cartridge’ was defined as the 

desired variable of ‘time spent sniffing’. Animals which had shown no interest at all for the 

cartridges were excluded from the study afterwards.  
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3.2 Histological methods 

3.2.1 Tissue preparation and standard staining 

After sacrificing the animal, its brain was separated from the skull and the dura mater removed. 

Phosphate-buffered saline (PBS) was used to keep the brain from desiccating during the 

dissection. Tissue that was meant to be analysed through confocal microscopy for 3D cell 

reconstruction was fixated overnight in 4% paraformaldehyde in PBS at 4 °C and then processed 

to 100 µm slices using a VT1000S microtome (Leica Biosystems). Tissue destined for light or 

fluorescence microscopy was fixated overnight in 10% formalin solution containing about 4% 

formaldehyde at room temperature and was subsequently embedded in paraffin. The paraffin 

blocks were sliced using a sliding microtome (Leica Biosystems) and 3 µm slices of the regions of 

interest were affixed to Superfrost Plus microscope slides (Fisher) using a water bath at 40 °C. 

Before further use, affixed paraffin-slices were dewaxed in xylol and rehydrated in a series of 

decreasing alcohol concentrations. General morphology was analysed by means of 

hematoxylin/eosin (H&E) staining. For H&E staining a standard protocol was used.  

 
3.2.2 Immunohistochemistry 

After dewaxing and rehydration, the slices were cooked five times for 4 minutes in citrate buffer 

(pH 6) for antigen unmasking. Next, slices were incubated in 5% H2O2 in methanol for 15 minutes 

to inactivate endogenous peroxidases. Subsequently, the tissue was blocked for 30 minutes with 

I-Block casein-based blocking reagent (ThermoFisher Scientific) and afterwards incubated 

overnight with primary antibodies at 4 °C (Table 2). On the next day, the slices were developed 

using a 3,3’-diaminobenzidine (DAB) chromogen – HRP system (DAKO EnVisionTM+ System, HRP) 

following the manufacturer’s instruction. A hemalum counter staining was performed as a 

nuclear staining for all chromogen procedures. For immunofluorescence staining, slices were 

incubated for one hour with species-specific fluorophore linked secondary antibodies (Alexa 488 

& Alexa 546; Invitrogen) instead of using the DAB kit. Nuclear counter staining was performed 

with 4’,6-diamidin-2-phenylindol (DAPI; Roth). PBS + 0.3% Triton X-100 (polyethylene glycol p-

(1,1,3,3-tetramethylbutyl)-phenyl ether) was used in all washing steps for BrdU staining. For 

other antibodies, solely PBS was used. The 100 µm slices for 3D cell reconstruction were stained 

directly with NeuroTrace 530/615 (1:100; ThermoFisher), a red fluorescent Nissl stain, and 

Hoechst (1:1000; Invitrogen) as a nuclear counter staining both diluted in PBS + 0.3% Triton X-
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100, after pre-incubating the slices for 30 minutes with PBS + 2% Triton X-100 to permeabilize 

the cells. All washing steps were performed with PBS. VECTASHIELD HardSet Antifade mounting 

medium (VECTOR Laboratories) was used for mounting. 

 

 

                                                     *The BrdU Mobu-1 clone was used in BdrU-EdU double staining as it does not cross react with the Click-It assay  

            Table 2: List of primary antibodies used 

 

3.3 Imaging and image analysis 

Chromogen histological slides were examined under an Olympus Bx50 microscope with 4x, 10x, 

20x and 40x objectives. Overview images were taken with an Olympus SZ51 stereo microscope. 

For fluorescence stained slides an Olympus IX50 microscope was used. Images were taken with 

the help of ColorView Soft Imaging Systems (Olympus). For 3D cell reconstruction z-stack series 

in layer V of the neocortex were acquired from 100 µm slices stained with NeuroTrace & Hoechst 

using a Zeiss LSM780 confocal microscope and ZEN microscope software (Zeiss). The 

hippocampus was used for orientation and determination of the region from which slices were 

used. The series were acquired at fixed intervals of 0.5 μm along the z-axis with an 20x objective 

and the same pinhole setting for both channels. Frame size was 1024x1024 pixels.  

 

Antigen Provider  Catalogue no° Dilution in I-Block 
BrdU 
BrdU (clone Mobu-1) * 
Calbindin 
Caspase 3 (Asp 175) 
CBP 
Cre 
HuB 
Ki67 
Map2 
MBP 
NeuN 
Olig2 
Pax6 
Prox1 
S100 
Sox2 
Synaptophysin 
Tbr2 
Wfs1 

Roche 
Invitrogen 
Chemicon 
Cell Signaling Tech 
Biozol 
Covance 
Sigma 
Abcam 
Abcam 
Abcam 
Abcam 
Abcam 
DSHB 
Abcam 
Abcam 
Abcam 
DAKO 
Millipore 
Proteintech 

11170376001 
B35128 
AB1778 
9664 
LS-B3360 
PRB-106P 
H1538 
ab16667 
ab5392 
ab40390 
ab104224 
ab109186 
Pax6 
ab199359 
14849 
ab79351 
A0010 
AB2283 
11558-1-AP 

1:500 
1:100 
1:100 
1:100 
1:50 
1:3000 
1:200 
1:200 
1:100 
1:100 
1:300 
1:100 
1:25 
1:500 
1:3000 
1:200 
1:100 
1:300 
1:50 
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3.3.1 Stereological measurements  

To increase validity and reduce variability a stereological approach was chosen for analysing the 

different forebrain structures. To account for its three-dimensional character, for each structure 

of interest three section planes were analysed in every animal of the hGFAPcre::CBPFl/Fl - or 

control group. In each section plane, several measurements were executed and averaged for 

parameters such as cell layer thickness, cell density or composition to further reduce variability 

(Fig. 9). Section planes were chosen by recognizable landmarks in light microscopy instead of 

predetermined intervals as brain size was not a stable constant (see 4.2.1). All measurements 

were conducted on pseudonymised images with the help of the open source image processing 

program ImageJ. This investigation aimed to investigate possible differences between the 

transgene mouse model and the control group rather than to provide accurate values for the in 

vivo situation. Consequently, confounding variables affecting both groups equally, i.e. tissue 

shrinking after preparation, were ignored. 

 

 

 

 

 

Figure 9: Stereological approach for estimating the corpus callosum thickness. (A) Top view on a mouse brain 
of a control animal at P30 displaying coronal section planes (B) Section planes projected on a sagittal section in 
a view from medial and running through the corpus callosum (CC). (C) High resolution image of the coronal 
section no° 1 in brain midline with repeated measurements of the corpus callosum thickness. Directions: caudal 
(C), dorsal (D), occipital (O), rostral (R); Scale bar: 800 µm (B), 100 µm (C)  

 

3.3.2 3D cell volume reconstruction of layer V giant pyramidal cells   

The z-stacks acquired through confocal microscopy were further analysed through custom-

written MATLAB (MathWorks) analysis and use of the microscopy image analysis software Imaris 

(Bitplane). It was utilized to conduct 3D reconstructions of neocortical layer V giant pyramidal 

cells (Fig. 10). The volumes of these reconstructed cells were then used for investigating 

differences in neuron cell size between trial and control group. The process of reconstruction 

included the following steps: First, the z-stacks were imported to Imaris that recognized the 

CC 
D 

R O 

C 
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NeuroTrace and Hoechst stained tissue as a multitude of voxels of two different colors when the 

voxel’s color intensity surpassed the 90th percentile of intensity as a minimal threshold. Voxels 

with color intensity levels below these thresholds were colored black and defined as free space. 

This step was executed to reduce background noise. Afterwards contiguous turquoise voxels 

(Hoechst) were defined as cell cores. Magenta voxels (NeuroTrace), that were defined as soma, 

were then assigned to the respective closest core. The distances from soma voxels to the 

different cores were identified by simultaneously projecting multiple spheres with raising radius 

around the cores on which the soma voxels came to lie. Then soma voxels were automatically 

assigned to the corresponding sphere’s core. When coming to lie on more than one sphere of 

different cores the sphere with the smallest radius was chosen. Cores and assigned soma voxels 

were then defined as cells and their volume was measured. To reduce the number of incorrect 

allocations and therefore falsely reconstructed cells thresholds for core volume size and cell 

volume size were implemented. Consequently, smaller cells like glial cells were excluded. 

Furthermore, cells that were located close to or touching the sections’ margins were also 

excluded. Finally, falsely reconstructed cells, such as fused cells - when two or more cores were 

defined as one by the algorithm - or structures like cut and stained vessels that had falsely been 

defined as cell cores, were excluded manually after the reconstruction process.  

 

 

 

 

 

 

   

Figure 10: 3D Cell reconstruction of layer V giant pyramidal cells using Imaris. (A) Z-stack of a NeuroTrace 
(magenta) and Hoechst (turquoise) stained section as displayed by Imaris after stack acquisition and 
adjustment using a Zeiss LSM780 confocal microscope and Zen imaging software. (B) Imaris 3D cell 
reconstruction with differentiation of cell cores (blue) and soma (gray) before manual selection. (C) Cell 
cores and (D) cell bodies with a color volume gradient that was used for identifying possible reconstruction 
mistakes for manual exclusion. Scale bar (white): 40 µm (A, B, C, D) 
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3.4 Human data  

To evaluate the structural findings in hGFAPcre::CBPFl/Fl transgenic mice and to assess the validity 

of this mouse line as a mouse model for Rubinstein-Taybi syndrome a series of cerebral 

measurements in cranial MR image sets from RTS patients was conducted. Furthermore, the 

gene mutation type- and localisation distribution in a larger number of published RTS cases was 

analysed to compare it to the truncated CBPstop523 variant expressed in used the mouse model.  

 
3.4.1 Acquisition of cranial MRI data sets from RTS patients  

For this study only pre-existing MRI data was used, therefore no direct patient contact or 

uncomfortable and compromising examination was necessary. Only RTS patients with a 

molecular-genetically assured diagnosis were included. The procedure and study design were 

approved by the ethics committee of the LMU faculty of medicine. The parents of RTS patients 

of the medical centre of the University of Munich or the kbo Children's Centre Munich were 

formally contacted and informed about the study. They were subsequently asked for their consent 

to request MRI data from external institutes and to include this data in the study in a 

pseudonymised manner. The children’s age at the time of MRI imaging ranged from one month to 

five years. Acquired data was stored in hard copy and digitally in the computerized data bank of 

the Institute for clinical radiology of the LMU university clinic. 

 
3.4.2 Measurement of structural parameters 

All measurements were conducted in T2 weighted images. They were repeated several times for 

each parameter and averaged to reduce variability. They include measurements of the corpus 

callosum (length, genu thickness and splenium thickness), the lateral ventricles (anterior and 

posterior horn thickness), cerebral diameters and the distance between the frontobasal plane 

and the sella floor. Cerebral diameters were measured at the level of the interventricular 

foramen. Both maximal anterior-posterior and left-right - at the level of the anterior and 

posterior horn of the lateral ventricle - diameters were determined. Analogue measurements 

were conducted with cranial MRI data from age matched controls selected from the database of 

the institute of radiology to perform matched-pair statistical analysis.  
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3.4.3 Gene mutation type & location in published cases of RTS  

To further investigate the role of the HAT and other domains of the CBP gene for the 

development of RTS, 193 published cases of RTS listed in the Human Gene Mutation Database 

(Qiagen Bioinformatics) were organized by type and localisation of the pathogenic mutation 

(table 3). A focus was put on point mutations for a more precise allocation concerning different 

domains and exons. For comparisons number of point mutations per 100 bp (base pairs) rates 

were calculated for exons, certain domains or regions of interest to take the different region sizes 

into account. Cases in which the pathogenic mutation did not lie within the CBP gene’s exons 

were not included.  
 

 

Table 3: Excerpt of mutation type and distribution in RTS cases (HGMD, QIAGEN) 

Type of mutation No° of reported cases  
Point mutations  
Duplications, Insertions & Indels 
Small deletions 
Large deletions (not used) 
Missense mutations in the entire gene 
Missense mutations in HAT domain 
Missense mutations in exons 1-17 (before HAT domain) 
Nonsense mutations in the entire gene 
Nonsense mutations in HAT domain 
Nonsense mutations in exons 1-17 (before HAT domain) 

97  
34 
62 
59 
54 
36 
9 
43 
16 
21 

Domain or gene region of 
interest 

Exons Segment 
length [bp] 

No° of point 
mutations  

No° of point 
mutations per 100 bp 

HAT-domain 
Non-HAT 
Non-HAT, non-Q 
before HAT 
Kix-domain 
Non-Kix 
Non-Kix, non-Q 
Non-Kix, non-HAT, non-Q 
Q domain 
Non-Q 
Exon 2 
Non-Exon 2 
Non-Ex. 2, non-HAT, non-Q 
Entire gene 

18-29 
1-17, 30, 31 
1-17, 30 
1-17 
5-9 
1-4, 10-31 
1-4, 10-30 
1-4, 10-17, 30 
31 
1-30 
2 
1,3-31 
1,3-17,30 
1-31 

1521 
5808 
3714 
3369 
725 
6599 
4442 
2926 
2157 
5172 
713 
6616 
2938 
7329 

52 
45 
34 
30 
9 
88 
77 
25 
11 
86 
6 
91 
27 
97 

3,42 
0,775 
0,915 
0,89 
1,24 
1,334 
1,733 
0,85 
0,51 
1,663 
0,84 
1,38 
0,92 
1,32 
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3.5 Statistical analysis 

Statistical analysis was conducted with Prism 5.0 and 6.0 software (Graphpad). The level of 

significance was defined at 5% with a two-sided p-value for all tests used. Consequently, a p-

value of <0.05 indicated a significant difference between the compared groups regarding the 

respective parameter tested. In these cases, the null hypothesis - that there was no significant 

difference between the compared groups - was rejected. If not stated differently results are 

shown graphically as mean value of the respective group ± SEM (standard error of mean). 

3.5.1 Kaplan-Meier survival curves and Log-rank test  

Survival rates of hGFAPcre::CBPFl/Fl transgenic mice and control animals are illustrated as Kaplan-

Meier curves. Starting with their birth the animals were observed for 100 days. Animals which 

were sacrificed beforehand were taken into account as drop outs. The survival distributions of 

the two groups were compared by means of the nonparametric Log-rank test.   

3.5.2 Chi-squared test for across gene mutation distribution analysis 

The C2(Chi-squared) test was used for comparing point mutation frequencies of specific domains 

and regions of the CBP gene. In the respective cases the no° of point mutations, missense 

mutations or nonsense mutations per 100bp were defined as the feature that was distributed 

between two groups. The region or domain of interest was defined as the first group and the rest 

of the gene or another region was defined as the second group.  

3.5.3 Parametric testing for differences between two groups  

Assuming approximate Gaussian distribution of the statistical population in the in vivo situation 

from which the collected data had been derived, parametric tests were used to analyse for 

differences between groups. For comparing the transgenic mice with the control group regarding 

different aspects the unpaired t-test was used. The same accounts for analysis of the buried food 

and light/dark box test. Further, a two-way repeated measurements ANOVA test and 

Bonferroni's multiple comparisons post hoc test as well as nonlinear regression using an 

exponential decay model were applied for evaluation of the habituation test. For comparing the 

MRI measurements, the paired t-test was used as for each RTS patient images of healthy children 

of the same age were analyzed. 



Results 

 27 

A        B 

4. Results 

4.1 Mutation types and location in the CBP gene of RTS patients  

In the hGFAPcre::CBPFl/Fl  transgenic mice a truncated CBPStop523 version of the wild-type CBP, with 

a missing HAT domain, is expressed. So, the question arose whether this kind of truncation with 

a loss of the HAT domain could be a typical RTS cause also in humans. It is suggested that 

mutations in the HAT domain which go along with a reduction of HAT activity are sufficient for 

the development of RTS223. To verify the major role of diminished HAT activity in RTS 

pathogenesis the mutation distribution in published RTS cases was analysed focusing on HAT 

domain mutation or loss and the frequency with which these were the sole cause for the 

development of RTS compared to mutations in other regions of the CBP gene.  

 

4.1.1 Pathogenic mutations are not distributed equally within the CBP gene 

Associating the published cases of RTS-triggering point mutations, duplications, insertions, indels 

and small deletions to the respective affected exon suggests an inhomogeneous distribution with 

a peak in exons belonging to the HAT domain. In line with previous findings7, subsequent 

statistical distribution analysis of point mutations per 100bp shows that there are significantly 

more point mutations leading to the development of RTS in the HAT than in other domains or 

regions. By contrast, the C-terminal Q domain contains significantly less disease-causing point 

mutations per 100bp than the rest of the gene. Point mutation freuquency for KIX domain and 

Exon 2 - which was previously described as an instable region for harboring translocation and 

inversion breakpoints41 - did not differ from the rest of the gene (Fig. 11). 
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Figure 11: Inhomogeneous mutation distribution in the CBP gene in published RTS cases. (A) 
Point mutations, duplications, insertions, indels and small deletions as mutations per 100bp 
sorted by affected exons with a visible peak of mutations within the HAT domain (Exons 18-29; in 
total 52 out of the 192 published RTS cases). (B) Point mutations per 100bp distribution analysis 
comparing different domains and regions of interest. The HAT domain was shown to harbor 
significantly more RTS causing point mutations than the rest of the gene and the C-terminal Q 
domain significantly less. **p < 0.01, ***p < 0.001 
 

4.1.2 Loss of HAT domain function plays a distinct role in RTS exegesis  

Previous findings suggest that most RTS causing mutations in the CBP gene lead to a premature 

translation stop with a stable but not functioning, truncated product7,19. To further investigate 

the role of reduced histone acetyl transferase activity in the development of RTS, missense and 

nonsense mutation frequencies within HAT domain and in exon 1-17 (before HAT domain) were 

compared. Nonsense mutations are bound to lead to a translation stop and subsequently to a 

loss of the HAT domain whereas missense mutations before the HAT domain could also lead to 

stable but dysfunctional proteins where the HAT domain was still intact. Distribution analysis of 

97 RTS causing missense & nonsense mutations showed that significantly more missense 

mutations are located in the HAT domain than in exon 1-17, while no significant clustering of 

nonsense mutations was observed. Accordingly, a significantly bigger percentage of all reported 

missense mutations compared to the percentage of all nonsense mutations (66.67% to 37.21%) 

where found within the HAT domain. In line with this, the percentage of all reported nonsense 

mutations in exons 1-17 were significantly higher than the respective percentage of missense 

mutations (48.84% to 16.67%) (Fig. 12). Thus, suggesting that point mutations in exons 1-17 are 

more likely to cause RTS when being nosense mutations that lead to a a loss of HAT activity.  

 

 

 

 

Figure 12: Predominant role of the loss of HAT domain function in published RTS cases with CBP 
mutations. (A) Missense and nonsense mutation distribution between HAT domain and exon 1-17 
(before HAT domain) as mutations per 100bp (B) Comparison of nonsense and missense mutation 
counts in the HAT domain as percentage of all reported cases (C) Comparison of nonsense and 
missense mutation counts in exons 1-17 as percentage of all reported cases. n1 (nonsense mutations) 
= 43, n2 (missense mutations) = 54; **p < 0.01, ***p < 0.001 
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4.2 General characteristics of conditional CBP knock-out mice 

4.2.1 hGFAPcre::CBPFl/Fl mice have a higher 30 day mortality and lower brain weight  

Non-conditional homozygous CBP-deficient mice die around E10 during embryonal 

development73,232. A comparable increase in embryonal mortality was not observed for 

hGFAPcre::CBPFl/Fl mice. However, a higher 30-day mortality compared to control animals or 

heterozygous knock-out animals was measured. The survival curve for hGFAPcre::CBPFl/+ 

heterozygous animals did also show a trend towards an increase in mortality during a 100 day 

observation period, although not statistically significant in comparison to the control group. 

While non-conditional heterozygous mutants exhibit skeletal abnormalities that correspond 

closely with those typical for RTS patients224,225, neither homozygous nor heterozygous 

conditional knock-out mice where distinguishable from control litter mates by their appearance 

and their body weight at P30 did not differ significantly. Brain weight at P30 on the other hand, 

was significantly lower both in hGFAPcre::CBPFl/Fl and hGFAPcre::CBPFl/+ mice (Fig. 13). 

 

 

 

 

 

 

Figure 13: General characteristics of conditional CBP knock-out mice. (A) Survival curves for mutant and control 
groups with a follow up duration of 100 days. Drop outs are depicted as decimal points in the respective curves. 
(B) Body weight at P30 measured shortly before killing. (C) Brain weight at P30, determined after preparation. *p 
< 0.05, ***p < 0.001    

 
4.2.2 Structural brain abnormalities in overview sections 

For general examination of forebrain structures, sagittal H&E stained sections of recently born 

(P0) and thirty-day-old (P30) animals from the different groups were compared. Except the 

tendency towards a dysmorphic cerebellum in P0 animals which could not be found at P30 and 

possibly smaller hippocampi at P30 no consistent and definite differences between heterozygous 

conditional knock-out mice and control animals could be observed. In contrast, homozygous 
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knock-out mice exhibited a clearly visible smaller hippocampus at P30, a disruption of the rostral 

migratory stream (RMS) in form of an apparent cell accumulation, and a diverging architecture 

of the olfactory bulb (OB), beside a dysmorphic cerebellum at all ages. For determining the 

efficiency of the CBP knock-out, sections were stained immunohistochemically with a C-

terminally binding CBP antibody that did not react with the truncated murine CBP in cells of the 

used transgenic mice. In those cells expressing GFAP during development, like neurons of the 

hippocampus233,234 or neocortex99,111,235, reduction of CBP expression in heterozygous and a 

complete loss in homozygous knock-out animals was confirmed (Fig. 14). Furthermore, dilated 

lateral ventricles could be observed in frontal sections at P30 (see Fig. 16). Besides, MBP - myelin 

basic protein, an extrinsic myelin membrane protein236 - staining did not show differences in 

myelination in hGFAPcre::CBPFl/Fl mice at different time points (App. 1).  

 

 

 

 

 

 

 

 

 

 

Figure 14: Structural brain abnormalities in overview sections of conditional CBP knock-out transgenic mice. (A-
C, M-O) Images of murine brains after preparation of transgenic and control animals at P0 and P30. The dismorphic 
cerebellum of a P30 homozygous knock-out mouse is marked with arrowheads (O). (D-F, P-R) Sagittal H&E stained 
sections through the rostral migratory stream (RMS) at P0 and P30 display aberrations of the cerebellum, 
hippocampus, RMS and olfactory bulb (OB) in hGFAPcre::CBPFl/Fl mice. Arrows mark a region in the RMS with a cell 
accumulation close to the ventricular-subventricular zone (V-SVZ) (F,R). (G-l, S-X) Magnifications of CBP stained 
regions of the hippocampus and neocortex displaying the reduction of CBP expression in the conditional knock-out 
mouse model. Scale bar: 900 µm (D-F),75 µm (S-L),1800 µm (P-R), 100 µm (S-X) 
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4.3 Corpus callosum (CC) development  

Consisting of axonal fibers which connect the right and left hemisphere, the corpus callosum 

plays an important role in the integration of information between different areas of the 

forebrain. Recent findings suggest that corpus callosum agenesis, hypoplasia or dysplasia relate 

to impairment of cognitive functions237,238. Corpus callosum dysgenesis or agenesis was also 

found repeatedly in RTS patients239,240,241.  

 
4.3.1 Early CBP depletion leads to decrease in corpus callosum midline thickness   

Corpus callosum midline thickness was measured at P15 and P30 in transgenic and control 

animals in H&E stained frontal sections. It was found to be significantly thinner at both time 

points in the transgenic mice suggesting a disturbed corpus callosum development (Fig. 15).  

 
4.3.2 Cell migration from the V-SVZ to the CC is disrupted in hGFAPcre::CBPFl/Fl postnatal mice  

A recent work showed that astroglial progenitor cells travel from the ventricular-subventricular 

zone to the corpus callosum in the adult organism242. To investigate this process in 

hGFAPcre::CBPFl/Fl  mice a BrdU fate-mapping approach was employed where BrdU was injected 

at P15 and preparation was performed 15 days later. At P30 a significantly reduced percentage 

of BrdU+ cells in the genu of the corpus callosum were measured in transgenic mice compared 

to the control group (Fig. 15). In the same setting, no differences in the proliferation- or apoptosis 

rate within the V-SVZ or CC were observed at P15 suggesting that indeed cell migration from the 

V-SVZ to the corpus callosum is impaired (App. 2 & 3). 

 

 

 

 

 

Figure 15: Corpus callosum development is impaired in hGFAPcre::CBPFl/Fl mice. (A,D) Exemplary repeated CC 
thickness measurements at P15 in frontal sections of the CC with the section plane indicated in sagittal sections 
(C,F). (B,E) BrdU staining of the CC genu in sagittal sections at P30 after BrdU injection at P15. BrdU+ cells in the CC 
are labelled with arrows. (G) Midline thickness of the corpus callosum is significantly smaller in hGFAPcre::CBPFl/Fl 
mice at P15 and P30. (H) A significantly lower percentage of BrdU+ cells were observed in the corpus callosum at 
P30 after BrdU injection at P15. Scale bar: 160 µm (A,D), 200 µm (B,E), 2200 µm (C,F); , *p < 0.05, **p < 0.01 
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4.4 Neocortical development 

4.4.1 Early loss of CBP leads to an impairment in postnatal neocortical growth  

Following embryonal development, the neocortical thickness in postnatal mammals increases 

further, whereby a continued rise in the number of neocortical neurons and glial cells can be 

observed243,244. To investigate the postnatal neocortical development of hGFAPcre::CBPFl/Fl mice 

and to look for structural alterations a mean neocortical thickness was determined at different 

time points in the region neighbouring the hippocampus. For each animal, repeated 

measurements where conducted and averaged at three levels in different section planes. While 

at P0 the mean neocortical thickness did not differ from the control group, the neocortex was 

found to be significantly thinner in animals aged 20 or 30 days (Fig. 16).   

 

 

 

 

 

 

Figure 16: Neocortical thickness at different ages. (A,B) Frontal H&E stained matched sections in the area of the 
hippocampus in which neocortical thickness was measured repeatedly at different levels. A dilated lateral ventricle 
is marked with a star (*). (C) Mean neocortical thickness did not differ significantly at P0 between control and 
transgenic mice. In older animals mean neocortical thickness was found to be significantly smaller in 
hGFAPcre::CBPFl/Fl  animals aged 20 or 30 days. At P15 a tendency was visibile that did not produce statistical 
significant differences due to heterogeneity in the control group. Scale bar: 1300 µm (A, B); *p < 0.05    

 
4.4.2 hGFAPcre::CBPFl/Fl mice develop a normal architecture of the neocortex with six 

distinguishable laminae 

To further investigate the postnatal neocortical development in the transgenic mice, 

cytoarchitecture, proliferation-rate, apoptosis-rate and neural differentiation were examined in 

the neocortex and ventricular zone at different ages between P0 and P30. At all time points a 

classical structure with six laminae was apparent and no differences in proliferation or apoptosis 

could be observed. This is in line with previous findings in a mouse model with conditional CBP 

knock-out in post mitotic principal neurons of the forebrain245. Concerning neural differentiation, 

C 
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though no difference in the density of NeuN positive neurons was measured, the transgenic 

mice’s neurons appeared smaller and dysmorphic especially in lamina V of the neocortex (Fig. 

17; App. 4 & 5). Besides, using antibodies against MAP2 - a microtubule regulating dendritic 

protein important for neurite stability246,247 -  and synaptophysin - a synaptic vesicle 

glycoprotein248 - for immuno-histochemical staining, no differences in neurite development were 

revealed suggesting architectural integrity (App. 6).  

Figure 17: Neocortical organization and neural 

differentiation at P30. (A,D) Frontal section of 
the neocortex architecture and formation of the 
six neocortical laminae (I-VI) with magnification 
of Layer V at P30 (B,E). (C,F) Neural 
differentiation in layer V of the neocortex, made 
visible through NeuN staining. Arrows mark 
lamina V giant pyramidal cells that appeared to 
be smaller and dysmorphic in transgenic mice. 
Scale bar: 130 µm (A,D), 50 µm (B,C,E,F) 

 
4.4.3 3D reconstruction suggests that CBP lacking giant pyramidal cell neurons of lamina five 

have a reduced cell volume  

To shed more light on the influence of early loss of CBP on the development and differentiation 

of neocortical neurons on a more cellular level 3D reconstruction of lamina V giant pyramidal 

cells was conducted. This cell population was chosen due to its cell size and relatively low density 

in lamina V that allowed an automated process of set stack analysis using Imaris. All animals were 

sacrificed at P30. After reconstruction and volume measurement, on the one hand, volume 

distribution curves for the two groups were generated. On the other hand, mean volume values 

were determined for each animal for more direct comparison between control and 

hGFAPcre::CBPFl/Fl groups. Statistical testing of mean volume values resulted in significant lower 

neuronal cell volume of transgenic mice. Supporting this finding, the volume distribution curves 

for the two groups differed and displayed a shift of the hGFAPcre::CBPFl/Fl mices curve towards 

smaller volumes (Fig. 18). This implicates that differentiation and development is disturbed in 

neocortical precursor cells lacking CBP, while not being inhibited completely. 
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Figure 18: Lamina V cell reconstruction and volume analysis. (A) Exemplatory 3D cell reconstruction of Lamina V 
giant pyramidal cells from hoechst and neurotracer stained 100 µm sections using z-stacks acquired through 
confocal microscopy and Imaris. (B) Cell volume distribution curves with rates of cells within a certain volume 
range. Error bars indicate inter-individual differences. The curve for neurons from the hGFAPcre::CBPFl/Fl group is 
shifted to the left towards smaller cell volumes. (C) Determined mean cell volume in the lamina V of the neocortex 
at P30 was found to be significantly smaller in the transgenic mice compared to control litter mates. **p < 0.01 

 
4.4.4 Early CBP knock-out leads to reduced proliferation- and increased apoptosis-rates in 

the ventricular zone during embryonal development. 

Embryonal neocortical development was investigated at E14.5 and E16.5 (embryonal age of 14.5 

and 16.5 days after conception). First it was confirmed that CBP knock-out was effective and that 

both ventricular zone stem cells at E14.5 as well as cells that migrated earlier were affected. 

Subsequent overview H&E staining of frontal sections at these time points showed no clearly 

visible differences between control and knock out animals concerning the constellation of 

ventricular zone and neocortex. Sox2 staining was then used to verify that cells in the ventricular 

zone of hGFAPcre::CBPFl/Fl exhibit a pluripotent neuronal stem cell character, too249,250. 

Furthermore, no differences in proliferation or apoptosis were observed within the already 

formed neocortical cell layers (App.7). In the VZ, however, differences between the two groups 

were found concerning both proliferation and apoptosis. The proliferation rate was observed to 

be significantly reduced in transgenic animals both at E14.5 and E16.5, what was validated 

statistically in BrdU and EdU stained frontal sections, whereby BrdU was injected 2h before 

preparation of the pregnant animals at E14.5 and EdU in an analogous manner at E16.5. The 

apoptosis rate was found to be significantly increased in the ventricular zone of 

hGFAPcre::CBPFl/Fl mice at E16.5, while no difference was found at E14.5 (Fig. 19). These results 

were supported by a significantly thinner ventricular zone at E16.5 measured in Sox2 and Ki67 

stained frontal sections (Fig. 19; App. 7).   
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Figure 19: A hGFAPcre::CBPFl/Fl genotype leads to alteration of proliferation- and apoptosis-rates in the 
ventricular zone during embryonal development. (A) Ventricular zone thickness is significantly reduced at 
E16.5 in transgenic mice with measurements conducted in Sox2 and Ki67 stained frontal sections (App.7). 
(B,C) No significant amount of Caspase 3+ apoptotic cells was found in the ventricular zone at E14.5. (D,E,F) 
The percentage of BrdU+ cells as a marker of proliferation within the ventricular zone at E14.5 were shown 
to be significantly lower in hGFAPcre::CBPFl/Fl animals compared to control litter mates. (G,H,K) A significant 
rise in apoptosis rates within the ventricular zone of transgenic mice was measured at E16.5. (I,J,L) A 
diminished proliferation rate of ventricular zone stem cells was confirmed also at E16.5 in EDU 2h injected 
animals. Here BrdU had been injected at E14.5 for migration analysis (see 4.4.5). Scale bar: 50 µm (B-E,G-J), 
*p < 0.05, **p < 0.01  

 
4.4.5 Radial migration during neocortex development is impaired when CBP is knocked out 

in neural progenitor cells.  

For assessing the migration process of neural precursor cells during neocortex development at 

embryonal stages a BrdU/EdU double pulse fate-mapping approach was used. Proliferating cells 

in the ventricular zone were marked with BrdU at E14.5 and tissue analysis was conducted at 

E16.5 after those cells traveled radially to form the neocortical layers. Additionally, a EdU pulse 

was administered two hours before sacrifice to differentiate cells that had migrated to their 

current location from stationary proliferating cells. BrdU+ rates did not differ significantly in 

statistical testing between control and transgenic animals in the respective areas of the 
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ventricular zone, the intermediate migration area and the area of destination after the two days 

of migration. However, to more accurately evaluate cell migration, the averaged percentage of 

those BrdU+ cells which reached their destination, hence the outer neocortical layers, compared 

to all BrdU+ cells that left the ventricular zone was determined. Here, a statistical significant 

difference between the two groups was observed, suggesting that in fact, less migrating cells 

reached the outer neocortical layers when CBP was knocked out in ventricular zone precursor 

cells. The second analysis was employed as solely examining the BrdU+ rate was considered to 

be vulnerable to confounding variables such as variable cell density and the earlier observed 

differences in apoptosis- and proliferation rates that were bound to have led to reduced total 

cell counts in the hGFAPcre::CBPFl/Fl group. In a setting in which only the percentage of BrdU+ 

cells  of the total cell count is determined, reduced total cell counts would mask a factual 

reduction of BrdU+ cells. (Fig. 20). 

 

 

 

 

 

 

Figure 20: Impairment of radial migration during neocortex development after early CBP knock-out. (A,B) 
Frontal section overview over the migration process from the ventricular zone to the outer neocortical layers 
which are marked with circles. BrdU was injected at E14.5 labeling proliferating and then migrating cells in the 
ventricular zone. (C) BrdU+ rate in the different migration areas after two days of migrating with no statistical 
significant difference between control and transgenic mice. (D) Percentage of BrdU+ cells that reached the circled 
outer layers of the neocortex compared to all BrdU+ cells that left the ventricular zone, with a statistical significant 
difference between the two groups, suggesting that less migrating cells reach their destination in 
hGFAPcre::CBPFl/Fl animals during the period between E14.5 and E16.5. Scale bar: 50 µm (A,B), *p < 0.05 
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4.5 Hippocampus development and adult neurogenesis 

4.5.1 Early CBP depletion leads to an underdeveloped hippocampus and a reduction of 

neurogenesis in the dentate gyrus of adult animals 

Frontal, H&E stained overview sections of the hippocampus showed a clearly dysmorphic and 

smaller hippocampus in hGFAPcre::CBPFl/Fl animals. Thickness measurements of the dentate 

gyrus at different time points delivered similar results to those in the neocortex. While at P0 the 

dentate gyrus thickness did not differ between control and transgenic animals, measurements 

at later time points produced highly significant differences suggesting an impairment particularly 

of postnatal hippocampal development when CBP is knocked-out (Fig. 21). The general 

development of the different hippocampal zones cornu ammonis (CA) I-III and the dentate gyrus 

however, was not halted (see also 4.5.2). To furthermore analyze the effect of early CBP 

depletion on postnatal neurogenesis in the subgranular zone (SGZ) of the dentate gyrus251,252, 

Sox2, Ki67 and Caspase 3  staining were used. Sox2 was shown to be a sensitive marker for 

hippocampal multipotent stem cells253. While no significant amount of apoptosis was detected 

(App. 8), Sox2+ and Ki67+ rates in the SGZ were significantly reduced at P30 indicating that a lack 

of CBP leads to a reduction of  postnatal neurogenesis in the hippocampal SGZ (Fig. 21).  
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Figure 21: Structural hippocampus alterations in postnatal hGFAP-cre::CBPFl/Fl animals and influence 
on adult neurogenesis. (A,B) Hippocampus overview showing a dysmorphic and smaller hippocampus in 
transgenic animals. Cornu ammonis I-III (CA1-CA3), Dentate gyrus (DG). (C-F) Sox2 stem cell staining and 
Ki67 proliferation staining of frontal sections through the dentate gyrus was used for analyzing adult 
neurogenesis. (G) No difference was observed concerning the mean dentate gyrus thickness at P0.  
Averaged thickness measurements of the dentate gyrus at P15, P20 and P30 on the other hand showed 
a significantly reduced thickness in knock-out animals. (H,I) Both the Sox2+ and Ki67+ rate were found to 
be significantly reduced in the subgranular zone of the dentate gyrus of hGFAP-cre::CBPFl/Fl mice at P30. 
Scale bar: 150 µm (A,B), 40 µm (C-F); **p < 0.01, ***p < 0.001 

 

4.5.2 HuB is temporarily translocated to the cell core in hippocampal and neocortical neurons 

during postnatal development when CBP is missing 

To differentiate between cornu ammonis segments, Wfs1 & HuB antibodies were used for 

immunohistochemical staining of frontal sections of the hippocampus. Wfs1, a transmembrane 

cation-selective ion channel, was found to be predominantly expressed in neurons of the CA1 

segment254,255. HuB, a neuronal member of the Hu protein family - a family of mRNA-binding and 

stabilizing proteins256,257 - on the other hand, was shown to be specifically and highly expressed 

in pyramidal cells of the CA3 segment258. Compared to control animals no difference in 

hippocampus segmentation was found in hGFAPcre::CBPFl/Fl animals at different postnatal time 

points (App. 9). However, at P15 a notable increase in HuB concentration in the pyramidal cell 

nuclei both in the hippocampus as well as the neocortical lamina V was observed in transgenic 

mice, while in sections from control animals at P15, HuB was mainly detected in the somata of 

these cells (Fig.22). This phenomenon did not occur at other time points (P0, P5, P20 or P30), 

suggesting a temporary translocation of HuB to the cell nuclei of neurons lacking CBP (App. 10). 

 

 

 

 

 

Figure 22: Hippocampal segmentation and HuB expression at P15. (A-D) Cornu ammonis segments CA1 & CA3 
made visible through Wfs1 and HuB staining at P15. (E-H) CA1 and CA3 close-up with HuB translocation to the 
cell nuclei of pyramidal cells in hGFAPcre::CBPFl/Fl animals indicated by arrows. (I-L) HuB expression in the 
neocortex at P15, particularly lamina V (K,L). Pyramidal cells with HuB detection in the nuclei are emphasized 
by arrows and circles. Scale bar: 200 µm (A-D,I,J), 40 µm (E-H,K,L) 
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4.5.3 Embryonal hippocampus development is impaired in hGFAPcre::CBPFl/Fl transgenic mice 

Analogous to the investigation of neocortical development, the time points E14.5 and E16.5 were 

chosen for the investigation of hippocampus-, and especially dentate gyrus development. First, 

a complete CBP depletion was shown at both E14.5 and E16.5 in the hippocampal area of 

hGFAPcre::CBPFl/Fl prenatal animals. Second, Sox2 and Prox1 - a homeobox transcription 

factor259, inter alia expressed in dentate gyrus precursor cells and essential for dentate gyrus 

development260,261 - antibodies were used to confirm an unaltered dentate gyrus granule cell 

lineage character of the dentate gyrus forming, migrating cells as well as an precursor cell 

character in the dentate neuroepithelium of transgenic mice despite lacking CBP (App. 11). 

Regarding structural differences between control and transgenic mice a significantly reduced 

thickness of the 1ry matrix was found at E16.5 while at E14.5 thickness measurements didn’t 

produce significant differences. Furthermore, area measurements in frontal sections confirmed 

significantly smaller 2ry and 3ry matrices at E16.5, thus indicating that alterations found in 

postnatal mice might root in a disturbed prenatal development of the hippocampus (Fig. 23).  

Figure 23: Structural alterations during 
hippocampal development at E16.5. 
(A,D) Overview over hippocampal 
formation at E16.5 in H&E staining of 
frontal sections displaying the cornu 
ammonis  (CA1 and CA3), the 
hippocampal neuroepethelium (HNE), the 
dentate neuroepithelium (DNE, 1ry) and 
2ry & 3ry matrix. (B,C,E,F) 2ry & 3ry matrix 
of the developing dentate gyrus at E16.5 
with a complete CBP depletion in both the 
DNE and in migrating cells. (G) The 1ry 
matrix (DNE) was measured to be 
significantly thinner in transgenic mice at 
E16.5, while measurements at E14.5 did 
not result in significant differences. (H) 
Area sizes of 2ry & 3ry matrix were shown 
to be significantly reduced in hGFAPcre: 
:CBPFl/Fl animals at E16.5. Scale bar: 50 µm 
(A-F); *p < 0.05, ***p < 0.001 
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4.5.4 CBP depletion leads to alterations in proliferation and apoptosis rates during 

hippocampal development 

To further investigate the cause of the structural alterations found in the transgenic mice, 

proliferation- and apoptosis rates were determined at E14.5 and E16.5 in different areas of 

interest using Caspase 3 antibodies for apoptosis- and BrdU & EdU antibodies for proliferation 

staining. At E14.5, regardless the genotype, no substantial apoptosis was observable in the DNE 

and no proliferation was seen among the migrating cells in the 2ry matrix. However, while the 

apoptosis rate in the 2ry matrix did not differ between the two groups, the proliferation rate in 

the DNE was significantly reduced in those transgenic embryos where CBP was missing (Fig. 24). 

In this setting, BrdU had been injected into the pregnant mouse 2 hours before sacrifice. 

 

 

 

 

 

 

 
Figure 24: Apoptosis and proliferation during dentate gyrus development at E14.5. (A,B,D,E) 1ry and 2ry matrix 
in Caspase 3 and BrdU stained frontal sections at E14.5. (C) No significant difference in the apoptosis rate among 
the migrating cells within the 2ry matrix was measured between the two groups. (F) Proliferation rate in the 1ry 
matrix of hGFAPcre::CBPFl/Fl mice at E14.5 was measured to be significantly reduced compared to the control group. 
Scale bar: 25 µm (A,B,D,E); *p < 0.05 

 

Analysis of apoptosis- and proliferation rates at E16.5 showed even more extensive effects of 

CBP depletion. On the one hand, at E16.5 apoptosis was detectable in the 1ry matrix of solely 

hGFAPcre::CBPFl/Fl animals, and at this time point the apoptosis rate was measured to be 

significantly increased in the area of 2ry and 3ry matrix of transgenic mice, too. On the other 

hand, while again reduced proliferation was measured in the 1ry matrix of CBP lacking mice, at 

E16.5 proliferation was also detected in the 2ry and 3ry matrix regardless the genotype. Here a 

significant reduction of proliferation was again observable in transgenic mice. Proliferation was 

thereby determined in BrdU/EdU double stained frontal sections with BrdU injection at E14.5 

and EdU 2 hours before sacrifice (Fig. 25).  



Results 

 41 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Apoptosis and proliferation during dentate gyrus development at E16.5. (A-C) Caspase 3 
apoptosis staining in frontal sections of 1ry, 2ry and 3ry matrix at E16.5. (E,F) Significant increase in 
apoptosis rates was found in the 1ry, 2ry and 3ry matrix of hGFAPcre::CBPFl/Fl mice at E16.5 compared 
to the control group. (G-J) EdU proliferation staining and BrdU fate-mapping in frontal sections of the 
1ry, 2ry and 3ry matrix at E16.5. Arrows mark EdU+ proliferating cells. No substantial overlap was 
observed. (K,L) Significant decrease in proliferation rates in the 1ry, 2ry and 3ry matrix of 
hGFAPcre::CBPFl/Fl mice at E16.5 was observed compared to the control group. Scale bar: 25 µm (A-D), 
30 µm (G-J); *p < 0.05, **p < 0.01 

 

4.5.5 Cell migration is compromised during the prenatal development of the hippocampus 

when CBP is knocked-out at an early time-point 

For analyzing migration processes during hippocampus development, the same BrdU/EdU 

double pulse fate-mapping setting was used as it was for investigations of the neocortex 

development. BrdU was administered at E14.5 and EdU at E16.5. As no substantial proliferation 

was observed in the 2ry and 3ry matrix at E14.5, only proliferating cells in the 1ry matrix of the 

DNE were labeled by BrdU. During the timespan between E14.5 and E16.5 these cells 

subsequently migrated to the 3ry matrix via the 2ry matrix before the animals were sacrificed 

and examined. Considering the reduced sizes of 2ry and 3ry matrix in transgenic mice averaged 

BrdU+ cell counts in the respective areas were analyzed instead of BrdU+ rates. As was 
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conjecturable, the BrdU cell counts were observed to be significantly lower in hGFAPcre::CBPFl/Fl 

animals. To further reduce the impact of the confounding variable of reduced proliferation in the 

DNE after CBP depletion the ratio of BrdU+ cells reaching the 3ry to all BrdU+ migrating cells was 

determined. The ratio was found to be significantly lower in transgenic mice suggesting an 

impairment of cell migration during hippocampus development after early loss of CBP (Fig. 26). 

Since no significant overlap was observed in BrdU/EdU double staining in the 2ry and 3ry matrix 

it is unlikely that the measured effects are explainable solely by differences in further 

proliferation of the migrating cells after leaving the DNE (see Fig. 25).  

 

 

 

 

 

 

Figure 26: Impairment of precursor cell migration during hippocampus development after early loss of 
CBP. (A,B) BrdU fate-mapping in frontal sections at E16.5 with BrdU injection at E14.5 displaying the 
developing hippocampus with 1ry, 2ry and 3ry matrix. (C) In line with reduced sizes of the 2ry and 3ry matrix 
the BrdU+ migrating cell counts were also found to be significantly reduced in hGFAPcre::CBPFl/Fl mice. (D) 
Percentage of BrdU+ cells that reached the 3ry matrix compared to all BrdU+ cells that left dentate 
neuroepithelium, suggesting that less cells reach their destination in transgenic mice during the period 
between E14.5 and E16.5. Scale bar: 50 µm (A,B); *p < 0.05, **p < 0.01 
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4.6 Olfactory bulb and olfaction 

4.6.1 Early CBP depletion leads to a reduced olfactory bulb size 

Following the leads found in overview sections of hGFAPcre::CBPFl/Fl animals (see 4.2.2) the 

olfactory system was analyzed more thoroughly in P30 animals. Besides the consistent 

observation of a cell accumulation at the beginning of the rostral migratory stream close to the 

ventricular-subventricular zone below the corpus callosum which could not be found in control 

animals, a significant reduction of the size of the olfactory bulb was measured in sagittal, H&E 

stained sections at P30 (Fig. 27). 

 

Figure 27: Olfactory bulb size at P30. (A,B) 
Sagittal overview sections at P30 
displaying the ventricular-subventricular 
zone (V-SVZ) highlighted with black 
arrowheads, the rostral migratory stream 
(RMS) and the olfactory bulb (OB) with 
measurements of olfactory bulb length 
and thickness indicated by arrows. (C) 
Length and thickness measurements show 
a significant reduction in olfactory bulb 
size in hGFAPcre::CBPFl/Fl mice at P30. Scale 
bar: 1000 µm (A,B); **p < 0.01 

 

4.6.2 Cytoarchitecture within the olfactory bulb is altered in hGFAPcre::CBPFl/Fl animals and 

the excitatory-inhibitory balance in the glomerular layer is disrupted 

Concerning structural differences, it was observed that neither the internal plexiform layer (IPL) 

nor the rostral migratory stream bundle within the olfactory bulb were consistently determinable 

in the olfactory bulb of transgenic mice. NeuN was then used as a neuronal marker to further 

investigate the composition and integrity of the different layers of the olfactory bulb. It was 

shown that both in the granule cell layer (GCL) as well as in the glomerular layer (GL) the 

percentage of NeuN positive neuronal cells are reduced in hGFAPcre::CBPFl/Fl animals. Mitral cells 

in the mitral cell layer (MCL) and tufted cells in the external plexiform layer (EPL) where not 

covered by this analysis since they do not express NeuN262. Cell subpopulation composition and 

excitatory-inhibitory balance in the glomerular layer was investigated further using Tbr2 and 

Calbindin staining. Tbr2 was shown to be expressed in a mitral cell and a tufted cell subpopulation 

as well as glutamatergic excitatoric juxtaglomerular neurons in the glomerular cell layer263,264. 
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Calbindin is expressed amongst others in GABAergic inhibitory periglomerular neurons in the 

granular cell layer265,266,267. Quantification resulted in a significantly higher Tbr2+ rate and a 

significantly lower Calbindin+ rate in the glomerular cell layer of the olfactory bulb at P30 when 

CBP was missing, thus suggesting that the early loss of CBP leads to an excitatory-inhibitory 

imbalance in the glomerular layer of the olfactory bulb (Fig. 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Cytoarchitecture of the olfactory bulb at P30. (A,G) Sagittal H&E stained sections of the 
olfactory bulb with granule cell layer (GCL), internal plexiform layer (IPL,*) mitral cell layer (MCL), external 
plexiform layer (EPL) and glomerular layer (GL). The arrow marks the continuation of the rostral 
migratory stream (RMS) within the olfactory bulb. It was frequently found to be undeterminable in 
transgenic mice. (B,D,E,H,J,K) NeuN neuronal staining of the GCL, MCL and GL. The IPL is indicated as a 
dotted line (E). It was not consistently determinable in hGFAPcre::CBPFl/Fl  mice (K). (C,F,I,L) Calbindin 
staining of GABAergic periglomerular neurons and Tbr2 staining of glutamatergic juxtaglomerular 
neurons in the glomerular layer at P30. (M,N) The rate of NeuN positive cells was found to be significantly 
lower after early loss of CBP in both the GCL and GL. (O,P) While the rate of calbindin positive inhibitory 
neurons was significantly reduced in the GL of the OB in hGFAPcre::CBPFl/Fl  mice, the rate of Tbr2 positive 
excitatory neurons was significantly increased compared to control animals, suggesting an excitatory-
inhibitory imbalance. Scale bar: 220 µm (A,G) 130 µm (B-F,H-L); *p < 0.05, ***p < 0.001 
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No substantial amount of proliferation or apoptosis that could have constituted these findings 

was observed in the olfactory bulb at P30 in Ki67 proliferation- and Caspase 3 apoptosis stained 

sections. Concerning gliogenesis and composition, no differences were found between 

transgenic and control mice in S100 and Olig2 stained sections of the olfactory bulb at P30 (App. 

12). The expression of S100 - a family of low-molecular-weight proteins with two calcium binding 

sites involved in different regulation processes in cells268 - characterizes thereby an advanced 

astroglial maturation after the loss of the cell’s neural stem cell character269. Frequently, S100 

was used as a marker for astrocytes. Olig2 on the other hand - a basic helix-loop-helix 

transcription factor - was previously described as a specific marker for oligodendrocytes270,271.  

 

4.6.3 Cells in the accumulation found in transgenic mice lose their stem cell character and 

partly differentiate towards mature neurons  

The observed cell accumulation close to the ventricular-subventricular zone was analysed at P15 

as this was the time point which was used for BrdU injection for a BrdU/EdU double pulse fate-

mapping experiment (see. 4.6.4). The accumulation was located between the the corpus 

callosum and the ceiling of the lateral ventricle at both sides of the brain. Cells closer to the 

ventricle were rather Sox2 positive and thus more premature and of stem cell character than 

cells farther from the ventricle. In contrast, more cells farther from the ventricle, closer to the 

corpus callosum where observed to be NeuN positive and consequently more differentiated than 

when located close to the ventricle. In conjunction with the findings in the olfactory bulb this 

suggests that cells closer to the ventricle were later born neuroblasts adding to the accumulation 

instead of travelling to the olfactory bulb. Besides, a significant amount of apoptosis within the 

cell accumulation was found using Caspase 3 apoptosis staining. On the other hand, only little 

proliferation was observed in the accumulation in Ki67 stained sections at P15 letting a neoplastic 

process as a cause for the cell mass appear unlikely (Fig. 29). 
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Figure 29: Characterisation of the cell accumulation found in hGFAPcre::CBPFl/Fl  mice. (A,F) 
H&E staining of frontal sections in the area of the ventricular-subventricular zone of the left 
lateral ventricle at P15 showing location and size of the cell accumulation found in transgenic 
mice. (B,G,C,H) Sox2 and NeuN stained frontal sections show that cells closer to the ventricle 
are rather Sox2 positive and thus of stem cell character while cells farther from the ventricle 
are rather NeuN positive and frequently more differentiated. Circles mark areas farther from 
the ventricle. (D,I) Caspase 3 apoptosis staining shows a significant apoptosis rate within the 
cell accumulation. (E,J) No substantial proliferation was observed within the cell accumulation 
in Ki67 stained frontal sections at P15. Scale bar: 150 µm (A,F) 75 µm (B-E,G-J) 

 

4.6.4 A migration deficit leads to cell accumulation and an underdeveloped olfactory bulb 

when CBP is missing during embryonal development.  

To confirm that a migration deficit indeed was the cause of the cell accumulation and the reduced 

NeuN positive rates in the olfactory bulb found at P30, another BrdU/EdU double pulse fate-

mapping experiment was conducted. BrdU was administered intraperitoneally at P15 and EdU 

15 days later at P30, two hours before preparation. Thus, neural stem cells in the ventricular-

subventricular zone were marked at P15 during proliferation before they travelled to the 

olfactory bulb via the rostral migratory stream. BrdU+ rates were determined in the V-SVZ of 

control animals, the cell accumulation of transgenic mice and in the granular cell layer & 

glomerular layer of all animals. While the BrdU+ rate in the cell accumulation of 

hGFAPcre::CBPFl/Fl mice was significantly higher than in the V-SVZ of control mice, the BrdU+ rate 

in the granular cell layer of the olfactory bulb was significantly lower, implicating a migration 

deficit that leads to the cell accumulation and underdeveloped olfactory bulb. In the glomerular 

layer only a tendency towards lower BrdU+ rates in hGFAPcre::CBPFl/Fl mice was observed. 

However, the reduced NeuN+ rate in the GL was not yet considered in this setting (see. 4.6.5).  
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At the same time, no cells were found to be both BrdU+ and EdU+ and thus still proliferating. 

Hence, the observed differences in BrdU+ rates in the different areas cannot be explained by 

differences in continued proliferation of the neuroblasts once they left the V-SVZ zone (Fig. 30).  

 

 

 

 

 

 

 

 

 

 

 

Figure 30: A migration deficit leads to cell accumulation near the ventricular-subventricular zone in 
hGFAPcre::CBPFl/Fl mice . (A,D) DAPI, nucleus stained272 overview of the ventricular-subventricular zone 
(V-SVZ), rostral migratory stream (RMS) and granular cell layer (GCL) of the olfactory bulb in sagittal 
sections at P30. (B,C,E,F) In BrdU/EdU immunofluorescence staining of the V-SVZ and GCL no cells that 
were both BrdU+ and EdU+ were found. BrdU was administered at P15 and EdU at P30, 2h before 
preparation. (G,H) BrdU+ cells in the V-SVZ of control animals and within the cell accumulation found in 
hGFAPcre::CBPFl/Fl mice 15 days after BrdU injection. (I) The BrdU+ rate was found to be significantly higher 
within the cell accumulation than in the V-SVZ of control animals. (J,K,L,M) BrdU+ cells in the GCL and 
glomerular layer (GL) of the olfactory bulb 15 days after injection. (N) The BrdU+ rate in the GCL of the 
olfactory bulb was measured to be significantly reduced in transgenic mice, whereas no significant 
difference between the two groups was found in the GL. Scale bar: 250 µm (A,D) 30 µm (B,C,E,F,G,H,J-M); 
**p < 0.01 

4.6.5 Neurogenesis in the olfactory bulb is impaired after early loss of CBP 

Following the lead that NeuN+ rates in the granular cell layer and glomerular layer of the OB in  

hGFAPcre::CBPFl/Fl animals are significantly reduced and that migration was found to be impaired, 

neurogenesis rates at P30 were estimated as BrdU+ cells per mm2 times the NeuN+ rate in the 

respective area as was done previously273. These so determined values were used for statistical 

comparison between CBP deficient animals and control litter mates. While the BrdU+ rate was 
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only significantly reduced in the granular cell layer of the olfactory bulb of transgenic mice at P30 

(see. 4.6.4), the estimated neurogenesis values were found to be significantly reduced both in 

the granular cell layer as well as the glomerular layer of hGFAPcre::CBPFl/Fl animals (Fig. 31). Thus, 

allowing the conclusion that a complete loss of CBP in GFAP expressing precursor cells during 

early development leads to a decrease in olfactory bulb neurogenesis.    

 

 

Figure 31: Neurogenesis in the olfactory bulb 
between P15 and P30. (A,B) Neurogensis was 
estimated in the granular cell layer and the 
glomerular cell layer of the olfactory bulb with 
BrdU injection at P15. Neurogenesis was shown 
to be significantly reduced in both the granular 
cell layer and the glomerular layer of 
hGFAPcre::CBPFl/Fl  mice. **p < 0.01 

 

4.6.6 Olfaction and olfactory-related behaviour is impaired in hGFAPcre::CBPFl/Fl transgenic 

mice 

Analyzing the food motivated aspect of olfaction through the buried food test produced a 

significant difference between transgenic mice and control litter mates. After early loss of CBP, 

mice spent significantly more time searching for the buried chocolate pellet than wild type 

animals suggesting that CBP depletion leads to reduced olfactory detection abilities (Fig. 26). The 

habituation/dishabituation test on the other hand led to more ambiguous findings. While curve 

appearance and a two-way repeated measurements ANOVA test confirmed that 

hGFAPcre::CBPFl/Fl mice did exhibit habituation and dishabituation behaviour in general, 

Bonferroni’s multiple comparisons post hoc test for the repeated habituation steps showed 

significant differences between the two groups at time points t3 and t4. At these time points, 

hGFAPcre::CBPFl/Fl mice spent significantly more time examining the presented scent (Fig. 32). 

Furthermore, non-linear regression analysis produced further differences between the two 

habituation curves as the habituation curve for transgenic mice showed a relatively bad fit (R2= 

0.3229) compared to the relatively good fit of the habituation curve for control animals (R2= 

0.8071) (App. 13) underlining the qualitative differences in curve appearance what suggests that 

habituation happens delayed in transgenic mice. 
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Figure 32: Differences in olfactory related behavior between transgenic- 
and control mice. (A) The buried food test (BFT) showed significant 
differences in time spent searching between the two groups suggesting 
reduced olfactory detection abilities of hGFAPcre::CBPFl/Fl mice. (B) In the 
habituation/ dishabituation test transgenic mice spent significantly more 
time examining the cartridge carrying the novel scent when presented for 
the 3rd and 4th time suggesting that CBP depletion leads to delayed 
habituation. *p < 0.05, **p < 0.01 

The dark/light box test was used to determine the influence of anxiety and curiosity on behavior 

as confounding variables. It was found that hGFAPcre::CBPFl/Fl mice spent significantly less time 

exploring the novel environment of the bright and open chamber of the box and accordingly 

transitioned less often between the two compartments (Table 4). This suggests that the early 

loss of CBP leads to a shifted anxiety/curiosity ratio towards more aversive behaviour compared 

to control animals. Nevertheless, with the alterations described in olfactory bulb anatomy and 

neural composition it seems more likely that a reduced olfactory sense leads to a more aversive 

behaviour in the transgenic mice, rather than a more anxiety driven behaviour leading to the 

observed results in olfactory testing. That is to say, a more anxiety driven behaviour cannot 

explain the longer sniffing times found in transgenic mice during habituation testing.  

Table 4: Dark/light behavior test 

Parameter Control group hGFAP-cre::CBPfl/fl p-value   Results 

Mean latency [s] 
+/- SE 
Mean no° of transitions [no°] 
+/- SE 
Mean time spent in light [s] 
+/- SE 

12.5 +/- 1.3 
 
23.7 +/- 1.3 
 
129.7 +/- 10.4 

26.0 +/- 10.6 
 
10.0 +/- 2.0 
 
73.5 +/- 14.8 

0.223 
 
0.0001 
 
0.0117 

n.s. 
 
*** 
 
* 
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4.7 Analysis of brain MR images from RTS patients  

4.7.1 RTS patients have a smaller sized brain compared to age-matched control children 

Microcephaly and smaller brain sizes as well as dysmorphia of the head have been described 

repeatedly in Rubinstein-Taybi syndrome patients274,275,276. In line with these mostly qualitative 

findings, significantly reduced anterior-posterior diameters of both hemispheres were verified in 

axial MRI sections when compared to anterior-posterior diameters in MR images from age-

matched control children. Left-right diameters, however, were found to be significantly reduced 

only on a level with the anterior horn of the lateral ventricles and thus in the anterior part of the 

brain, what is especially compatible with dysmorphia of the head (Fig. 33).  

 

 

 

 

 

 

 

 

 

 

Figure 33: Cranial MR images of Rubinstein-Taybi syndrome patients. (A-D) Sagittal T2 and T1 weighted MR 
images of a RTS patient and age matched control child aged 30 months. Microcephaly and a smaller brain can be 
observed in the RTS MR images. (E,F) Axial T2 weighted MR images with section level on a level with the 
interventricular foramen. Anterior-posterior and left-right diameter measurements are displayed as green 
arrows. Furthermore, myelination deficits and dysmorphic heads were found in the MR images of RTS patients. 
(G) The paramedian anterior-posterior diameter was measured to be significantly reduced in both hemispheres 
of RTS patient’s brain MR images. (H) The anterior left-right diameter, measured in axial sections on a level with 
the anterior horns of the lateral ventricles, was shown to be significantly smaller when compared to 
measurements in MR images of age-matched control children. No such difference was found for the measured 
posterior left-right diameter. **p < 0.01 
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4.7.2 Corpus callosum thickness is reduced in RTS patients  

Following reports of corpus callosum dysplasia in RTS patients240,241,277, the corpus callosum genu 

and splenium thickness as well as the anterior-posterior corpus callosum length were measured 

in sagittal MR sections. While splenium thickness and length measurement comparisons 

produced only trends towards smaller values due to the small number of patients and necessary 

case-control setting, the genu thickness was shown to be significantly reduced in RTS patients, 

hence supporting previous reports. Furthermore, as an additional finding, the distance between 

basis of the frontal lobe to the sellar floor was found to be significantly bigger in the MR images 

of RTS patients, which fits with reduced brain sizes. Width measurements of the anterior and 

posterior horns of the lateral ventricles, however, did not show differences between RTS patients 

and control children (Fig. 28).  

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Structural parameters in MR images of RTS patients and control children. (A,B) The corpus 
callosum in sagittal, T2 weighted MR sections. Thickness measurements of the genu and splenium are 
highlighted with green arrows. (C) The thickness of the corpus callosum genu was shown to be significantly 
reduced in RTS patients. For the CC splenium a clear trend towards smaller values was found. (D) Also, a trend 
towards a reduced corpus callosum length when being diagnosed with RTS was observable. (E,F) Sagittal MR 
sections magnified in the area of the pituitary gland. The distance between the base of the frontal lobe and 
the sellar floor is marked with green arrows. (G) It was shown to be significantly bigger in RTS patients. (H) 
Width measurements of the horns of the lateral ventricles did not produce differences between RTS patients 
and age-matched control children. **p < 0.01
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5. Discussion 

5.1 A homozygous knock-out model for a disease with a heterozygous 

genotype 

Previous loss-of-function approaches investigating the role of CBP in forebrain development and 

RTS related cognitive impairment were constrained by partial and uncertain levels of CBP 

function inhibition in heterozygous knock-out or other transgenic RTS mouse models226. A 

dominant negative effect of truncated or functionally impaired CBP variants was thereby 

described in different models implicating a reduced function also of the remaining CBP 

transcribed from the unaffected allele in those models or RTS cases278–280. Correspondingly, 

analogous to previous studies on heterozygous knock-out or transgenic models, a basic analysis 

of the heterozygous variant hGFAPcre::CBPFl/+ used in this work did not show consistent and 

striking abnormalities within the forebrain that could help explain the clinical findings of mental 

retardation and cognitive impairment in RTS or illuminate pathophysiological processes which 

lead to its clinical picture. Therefore, here a homozygous tissue-specific complete CBP knock-out 

model hGFAPcre::CBPFl/Fl was used to study more profoundly the role of CBP in forebrain 

development and identify developmental processes and forebrain structures that depend highly 

on CBP and hence are likely to also be impaired in their development in RTS. That the truncated 

variant CBPStop523 in the used model could also occur in RTS is furthermore likely, as it misses its 

HAT domain and thus does not bear HAT activity227. It had been shown before that loss of HAT 

activity was sufficient to cause RTS223. Hereby, this work adds further evidence to this theory - 

that the reduction of HAT-activity plays a central role in RTS genesis - through the conducted 

mutation frequency analysis. It shows an unequal distribution of mutations within the CBP gene 

of clinical apparent RTS cases with a clear accumulation of mutations affecting the HAT domain. 

This corresponds well with the fact that RTS is also caused by mutations within the p300 gene, 

also a transcription co-activator with HAT activity7,8. Finally, the concordance of microcephaly 

and reduced corpus callosum size found both in the used mouse model as well as the acquired 

cranial MR images of RTS patients further supports the used homozygous conditional knock-out 

mouse-model in being a viable model for studying basic pathophysiological processes that may 

lead to the development of mental retardation and cognitive impairment in RTS.  
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5.2 The role of CBP in forebrain development 

5.2.1 General remarks and CBP as a regulator of brain size  

Though of high importance for forebrain- and cognitive development - as seen from the example 

of RTS1,5 - the early depletion of CBP in the used model does not halt forebrain development 

completely and general structuring is conserved. Thus, although perturbed, the neocortex with 

its six layers, the hippocampus and the olfactory bulb are developed, animals are viable - though 

with an increased 30-day mortality - and show no overt behavioral deficits postnatally. 

Nevertheless, it has to be noted that the CBP depletion in the used model occurs after neural 

tube formation and onset of neurogenesis. Hence, it cannot be ruled out that CBP is indeed 

indispensable for general forebrain structuring or neural tube formation. However, hippocampus 

development initiates after the time point of complete CBP depletion and still is developed, 

although in an impaired manner, making a point for a certain expendability of CBP or 

compensation by other transcription co-activators with HAT activity like p300. Although general 

forebrain development proceeds, a loss of CBP led to a smaller brain-, neocortex-, hippocampus, 

olfactory bulb- and corpus callosum size in the analyzed knock-out model supporting previous 

postulations of its important role in brain size regulation. A heterozygous loss of CBP had been 

shown to lead to microcephaly both in mouse-models as well as in RTS patients281,9,239.  

5.2.2 Developmental processes depending on functioning CBP  

Regarding developmental processes a study using CBP siRNA knockdown in cortical precursor 

cell cultures and a study using a induced Pluripotent Stem Cell (iPSC)-neuronal model of RTS 

patients suggested an essential role of CBP in neural differentiation282,283. Both the findings of a 

disturbed excitatory and inhibitory balance of neurons in the glomerular layer of the OB and the 

reduced cell volume of 3D reconstructed lamina V pyramidal neurons as a marker for correct 

neural growth and differentiation in the used conditional knock-out model support these results. 

Moreover, while the incomplete siRNA knockdown and a postnatal conditional CBP knock-out in 

principal neurons of the forebrain did not show alterations in cell survival- and proliferation 

rates245,282 early CBP depletion leads to visibly increased apoptosis- and lower proliferation rates 

of neural precursor cells within the germinal ventricular zone during forebrain development. This 

suggests a higher dependence on CBP of neural precursor cells compared to already senescent 

neurons. It had thereby been shown before that CBP expression levels decrease with 
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developmental progress and especially postnatally282. In line with these findings adult 

neurogenesis with its specialized neural precursor cells was also found to be impaired in 

hGFAPcre::CBPFl/Fl mice, especially in the hippocampus. This also corresponds well with deficits 

in hippocampal synaptic plasticity and memory storage seen in transgenic mice that start 

expressing a truncated form of CBP in postnatal forebrain neurons280. Another important 

developmental process affected by the early loss of CBP, however, was neural precursor cell 

migration. In hGFAPcre::CBPFl/Fl mice neural precursor cell migration was visibly disturbed during 

forebrain development. Those deficits were not only measurable for radial migration during 

neocortex development but also for the unique migration processes during hippocampus 

formation and within the RMS, through which neuroblasts migrate tangentially towards the OB. 

For assessing the migration processes during neocortex- and hippocampus development the 

ratio of traveling cells, to cells reaching their destiny was used as a surrogate marker and found 

to be reduced compared to measurements in control animals. In the RMS, however, the deficits 

were of such extent that an accumulation of neural precursor cells that ceased migrating became 

visible close to their origin in the ventricular-subventricular zone. That these cells where indeed 

cells born in the V-SVZ was confirmed through the conducted fate mapping experiment. They 

furthermore started expressing NeuN as a marker of neural differentiation showing that their 

neurogenic character was preserved although migration was halted. This particularly important 

role of CBP during OB development and precursor cell migration through the RMS remains also 

throughout postnatal stages as the reduced number of migrating cells between P15 and P30 in 

the used knock-out model suggests. So far, numerous factors like DCX (doublecortin) - a 

microtubule stabilizing protein - or PSA-NCAM - a protein with antiadhesive properties providing 

a favorable extracellular environment for cell migration - have been found to be important for 

correct cell migration within the RMS284–286. As this is the first time CBP was found to play a 

central role for unimpaired migration through the RMS it remains to be further investigated 

which RMS migration regulating downstream factors are especially affected by a decrease in CBP 

availability. Factors to be examined in subsequent works might be DCX, NCAM, Integrin, Cdk5 

(cyclin dependent kinase 5) or BDNF (brain derived neurotrophic factor). They all have been 

shown to play a vital role in correct cell migration through the RMS and their genes are bound 

by CBP39,286. Reduction of BDNF was furthermore found to be involved with disrupted migration 

during cerebellar development related to early loss of CBP76. 
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5.3 Implications for Rubinstein-Taybi syndrome pathogenesis   

5.3.1 Anatomical substrates of mental retardation and cognitive impairment 

Neocortex and hippocampus have been postulated as main anatomical substrates of mental 

retardation and cognitive impairment in RTS in previous works245,280,282. With its new findings 

concerning the general role of CBP in forebrain development this work supports these 

postulations and identifies the corpus callosum as another structure important for correct 

cognitive development and affected by reduced CBP availability.  

It has been shown that a reduced HAT activity in postnatal transgenic mice leads to deficits in 

hippocampal synaptic plasticity and memory storage280,287,288. A lower CBP activity postnatally 

may therefore explain clinical findings in RTS patients, especially impairments in memory 

consolidation, to some extent. This falls in line with the reduced adult neurogenesis found in 

hGFAPcre::CBPFl/Fl mice after early CBP depletion as it had been shown that adult neurogenesis 

plays an important role in memory formation201,202. On the other hand, another study on 

conditional CBP knock-out in postnatal principal neurons of the hippocampus only found a very 

modest reduction in the expression of early genes in response to novelty exposure245. These 

unexpected findings could be due to the fact that the development of the hippocampus 

advanced without disturbance in the model used for this study. Some processes or functions, 

important for early gene expression and disturbed in RTS, are likely to be conserved and 

unaffected by solely postnatal depletion of CBP. This is supported by the fact that CBP plays a 

central role during development of forebrain structures as shown in this work. Neocortex, 

hippocampus and corpus callosum development are considerably impaired after early loss of CBP 

leading to the conclusion that their correct functioning is likewise not developed correctly and 

impaired from an early time point on. It is therefore recommendable to further study cognitive 

functionality and processes like hippocampal synaptic plasticity and expression of early genes in 

response to novelty exposure in the used conditional knock-out model or a similar model with 

early CBP depletion as models of RTS. In terms of the role of the neocortex in RTS , its impaired 

development and thus impaired functioning could explain especially symptoms such as 

difficulties in planning and executing motor acts as seen in RTS patients289,290. 
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5.3.2 RTS as a neural migration disorder 

It has only recently been suggested for the first time that RTS - so far mainly attributed as multiple 

congenital anomalies and mental retardation syndrome - should be included in the family of 

neuronal migration disorders due to commonalities with holoprosencephalic and 

arhinencephalic conditions as observed through in vivo MRI based volumetry of CBP 

haploinsufficient mice281. It is thereby necessary to highlight the fact that the spectrum of neural 

migration disorders is a large and heterogenous, loosely defined group of cerebral dysgenesis 

disorders, which share the ethiopathological role of distortion of neural precursor cell migration 

during central nervous system development. Depending on the source and definition the group 

entails entities such as schizencephaly, distortions of convulsion formation such as lissencephaly, 

agyria, macrogyria, microgyria, polymicrogyria, pachygyria, micropolygyria, neuronal 

heterotopias (including band heterotopia) and agenesis of the corpus callosum, to name just a 

few291,292,293. Many of these entities themselves being subdivided into different subgroups and 

different forms of manifastations294. In addition, there are a large number of syndromes which 

are associated with neuronal migration disorders, meaning that a disorder of neural migration is 

part of the syndrome’s pathogenesis or that signs of a neural migration disorder may be found 

in the phenotype, usually besides other disturbed processes or clinical findings. Hence, leading 

to the syndrome itself being named a neural migration disorder in the broader sense as well. This 

accounts for example for holoprosencephaly and arhincephaly as stated by Ateca-Cabarga et 

al.281,295,296 Depending on the entity or syndrome the distortion of neural migration can occur as 

a primary defect or secondarily and hence play a more or less significant role in defining the 

clinical picutre. This aspect can be highlighted by two examples: On the one hand lissencephaly 

– a disorder characterized by the absence of normal brain convulsions - with causative defects 

within the DCX and LIS1 gene. Here, molecular genetic analyis unveiled the direct importance of 

DCX and LIS1 protein function for unhindered neural precursor cell migration. The clinical picture 

results directly and nearly exclusively from a disturbance of correct neural progenitor 

migration297,298,299. On the other hand holoprosencephaly – a cerebral dysgenesis disorder in 

which the prosencephalon fails to develop into two hemispheres, whereby the degree of 

manifestation can vary wildely – with for example causative mutations affecting the SHH gene. 

SHH is thereby being involved in establishing cell fates at several points during early embryonic 

development and is a key inductive signal in patterning of the ventral neural tube295. In this case 
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one could say that neural migration deficits, for example a failed development of the body of the 

corpus callosum, occur secondarily due to these upstream distortions caused by SHH mutations. 

Thus, due to this heterogenity of phenotypical findings and in many cases uncertain connection 

of underlying causes and downstream effects, or simple co-appearance, the deduction of the 

causative of role of a neural migration disorder from clinical findings remains speculative in most 

cases. Keeping this in mind has the Rubinstein-Taybi Syndrome been associated with a number 

of findings typical of neural migration disorders such as the aforementioned holoprosencephaly 

and arhinecephaly300,301, an abnormally thin cortex and defects like (poli)microgyria, pachigyria 

and agenesis of the corpus callosum13,239,240,241,302,303. It has thereby been shown that 

microlissencephaly caused by a distortion of neuronal migration contributes to microcephaly, 

which is also frequently described in RTS and was also found in the MR images of RTS patients 

investigated in this study13,275,304. While our mouse model does not permit assumptions on 

the effect of CBP depletion on the formation of brain convulsions due to the lissencephalic 

composition of the mouse brain, other aspects coincided very well with these associations of 

RTS to neural migration disorders and the corresponding morphological aspects. This firstly 

includes the findings of microcephaly in our mouse model as seen in microlissencephaly. Or 

secondly, the reduced olfactory bulb size and neocortex size that resulted after CBP depletion 

and that are typical of the reduction of prosencephalic tissue as observed in arhincephaly and 

holoprosencephaly. Thirdly, the reduced corpus callosum size indicating a mild form of corpus 

callosum agenesis. And finally, the verification of profoundly disturbed migration processes 

during forebrain development unmasked through the performed fate-mapping experiments in 

hGFAPcre::CBPFl/Fl conditional knock-out mice that suggest the direct causative role of a 

distortion of neural migration leading the aforementioned phenotypical findings. Thus, with 

providing evidence that CBP acts as an upstream regulator of correct neural migration – 

upstream due to its function as a transcription coactivator and its HAT activity – it seems 

imperative to include the Rubinstein-Taybi syndrome in the spectrum of neural migration 

disorders in a broader sense as a type of secondary neural migration disorder where the primary 

genetic alteration goes along with a secondary downstream distortion of neural precursor cell 

migration besides other affected processes. At least, the results gathered in this work strongly 

support this assumption and make it also seem very likely that disrupted migration processes 

during brain development play an important role in RTS pathogenesis. Nevertheless, these 
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findings do not permit an assumption which pathophysiological process predominantly causes 

the development of the typical RTS related symptoms such as cognitive impairment and learning 

disabilities before others. Be it the migration disorder, alterations in germinal layers like the VZ, 

disturbed neural differentiation or impaired adult neurogenesis. To not narrow the scientific 

approach on elucidating the causes of these symptoms to one aspect and therefore dismiss or 

omit other important processes, the development of RTS should not be attributed to one single 

disrupted process during developmental stages but has to be seen rather as the result of 

continuous interference between multiple processes that are affected by diminished availability 

of CBP or its HAT activity. The collectivity of these affected developmental processes has 

consequently to be further investigated and further processes that might depend on CBP have 

to be identified. Of course, an in-depth comparison of findings between Rubinstein-Taybi 

syndrome and available mouse models to other entities such as neural migration disorders or 

disorders that result from distorted cell differentiation, hindered establishment of adult 

neurogenesis or impaired stem cell viability could allow deductions with regards to RTS 

pathogenesis as well and would be desirable. This comparison should include a solid statistical 

analysis of frequencies of findings and take the possibility of co-appearance of different genetic 

alterations into account. As this would require a well-planned methodical approach due to the 

vast heterogeneity and ambiguity - as set out above - to reduce bias and arbitrary acception of 

assumptions this would exceed the set framework and aim chosen for this work and should be 

done separately. Another aspect is that, while this work focused mainly on processes related to 

the neural cell line, the importance of the glial cell line for forebrain integrity and functionality is 

undisputed and effects of CBP depletion on glial cells and related processes should therefore be 

center of future investigations as well. To sum it up, while this work delivers strong evidence that 

neural precursor cell migration, neural cell differentiation, establishment of adult neurogenesis 

and precursor cell viability are processes that depend highly on CBP during brain development 

and hence are likely to be disturbed also during Rubinstein-Taybi syndrome development more 

consecutive research has to be done. That said, an advance in the field of understanding the 

pathogenesis of the Rubinstein-Taybi syndrome or other comparable rare diseases is eventually 

essential for their early diagnosis, a goal-orientated clinical approach and finally a first step in the 

search for ways of preventing the development of chronic conditions such as mental retardation 

and cognitive impairment. 
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CRE cAMP response element 

DAB 3,3’-Diaminobenzidine 

DAPI 4’,6-Diamidin-2-phenylindol 

DCX Doublecortin 

DG Dentate gyrus 

DNE  Dentate neuroepithelium 

DMS  Dentate migration stream 

DNE  Dentate neuroepithelium 

EdU  5-Ethynyl-2´-deoxyuridine 

E[no.] Embryonal age in days after  
  conception 

EPL External plexiform layer 

Fig.[no°] Figure [number] 

 

 

FL Fibre layer 

Fwd. Forward 

GC Granule cells 

GCL Granule cell layer 

GL Glomerular layer 

HAT Histone acetyltransferase  

HC Hippocampus 

H&E Hematoxylin & eosin 

HF  Hippocampal fissure 

HGMD Human Gene Mutation   
  Database (Qiagen Bioinformatics) 

HNE  Hippocampal neuroepithelium 

IPL  Internal plexiform layer 

LMU  Ludwig Maximilians University 

LGE  Lateral ganglionic eminence 

LOT  Lateral olfactory tract 

LV  Lateral ventricle 

MCL  Mitral cell layer 

MRI  Magnetic resonance imaging 

MZ  Marginal zone 

NC  Neocortex 

NEC  Neuroepithelial cell 

NPC  Neural precursor cell 

NSC Neural stem cell 

n.s.  ‘Not significant’  
(No significant statistical difference) 

OB  Olfactory bulb 

OE Olfactory epithelium 

ORN  Olfactory receptor neurons 

OSN  Olfactory sensory neurons 

PBS  Phosphate-buffered saline 

PGC  Periglomerular cells 
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P[no.]  Postnatal age in days 

pONL  Presumptive olfactory nerve layer 

PP  Pre-plate 

p  p-value 

Rev.  Reverse 

RGP  Radial glia precursor 

RM  Radial migration 

RMS  Rostral migratory stream 

RTS  Rubinstein-Taybi-Syndrome 

SAP  Subapical progenitor 

SEM  Standard error of mean 

SGZ  Subgranular zone 

SHH  Sonic hedgehog 

SNP  Short neural precursor  

SP  Sub-plate 

SVZ  Subventricular zone 

TM  Tangential migration 

V-SVZ  Ventricular-subventricular zone 

VZ  Ventricular zone 

C2  Chi-squared 
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App. 2: Apoptosis and Proliferation in the 
SVZ at P15. (A,B) No increase of apoptosis 
was observed in hGFAPcre::CBPFl/Fl mice in 
frontal Casp3 stained sections of the SVZ at 
P15. (C,D) Ki67 proliferation staining of 
frontal sections of the SVZ at P15. (F) No 
significant difference was measured for the 
Ki67+ rate in the SVZ at P15 between 
transgenic and control animals. Scale bar: 
150 µm (A-D) 

 

V-SVZ 

App. 3: Apoptosis and Proliferation in the 
CC at P15. (A,B) No increase of apoptosis 
was observed in hGFAPcre::CBPFl/Fl mice in 
sagittal Casp3 stained sections of the CC at 
P15. (C,D) Ki67 proliferation staining of 
sagittal sections of the CC genu at P15. (F) No 
significant difference was measured for the 
Ki67+ rate in the CC at P15 between 
transgenic and control animals. Scale bar: 
200 µm (A-D) 

 

App. 1: Myelination at different postnatal 
time points after CBP depletion. (A-F) MBP 
(myelin basic protein) staining of frontal 
sections at P5, P15 and P30. No substantial 
differences in MBP expression were 
observed between transgenic and control 
animals. Visible differences in the corpus 
callosum (midline) occur due to an altered 
corpus callosum development when CBP is 
missing rather than altered myelination (see. 
4.3). Scale bar: 1250 µm (A,B), 1000 µm (C-F) 

 

V-SVZ 
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App. 4: Apoptosis and proliferation in the 
neocortex at different postnatal time 
points. (A-C, G-I) No difference in 
proliferation was observed in frontal Ki67 
stained sections of the neocortex of 
hGFAPcre::CBPFl/Fl mice at P0, P15 or P30. (D-
F, J-L) Caspase 3 stained frontal sections of 
the Neocortex did not reveal differences 
between transgenic and control animals at 
P0, P15 or P30 neither in the neocortex nor 
the ventricular zone (VZ). Scale bar: 200 µm 
(A-L) 

 

VZ 
VZ 

App. 6: Neurite development. (A-
H) No difference in MAP2 and 
synaptophysin stained frontal 
sections was observed at P0 and 
P20, suggesting that neurite 
development is not impaired in 
hGFAPcre::CBPFl/Fl transgenic mice. 
Scale bar: 50 µm (A-H) 

 

App. 5: Postnatal proliferation-rate in the VZ. (A-H) Ki67 proliferation staining of frontal sections of the 
ventricular zone at different time points. (I) No statistical significant difference was measured for comparing 
the proliferation rate in the VZ at different postnatal time points between control and transgenic mice. Scale 
bar: 100 µm (A-D) 

 

I 
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App. 7: Prenatal development of the neocortex. (A,G,C,I) Overview over ventricular zone and the 
emerging neocortex at E14.5 and E16.5 in H&E staining of frontal sections. (B,E,H,K) Ventricular zone at 
E14.5 with extensive CBP knock-out in CBP stained sections of hGFAPcre::CBPFl/Fl animals. (D,F,J,L) Early 
formed layers of the neocortex at E16.5. CBP staining shows depletion in sections from transgenic mice. 
(M,Q) Sox2 staining unveiling stem cell character in the ventricular zone at E16.5. (N,R) Ki67 proliferation 
of the ventricular zone at E16.5 staining suggesting differences between control and transgenic mice. 
(O,P,ST) No significant amount of proliferating or apoptotic cells was observed in the evolving neocortex 
at E16.5. Scale bar: 80 µm (A,G), 20 µm (D,J,F,L), 40 µm (B,E,H,K), 50 µm (M-T).  

 

App. 8: Apoptosis and neural differentiation in the dentate gyrus 
at P30 . (A,B) No relevant amount of  apoptotic cells were 
observed in the dentate gyrus of hGFAPcre::CBPFl/Fl and control 
mice in Caspase 3 stained sections of the dentate gyrus at P30. 
(C,D) NeuN staining of the dentate gyrus shows a unaltered 
expression of the neural marker NeuN in the granular cell layer. 
Scale bar: 40 µm (A-D) 

 

App. 9: Cornu ammonis segments CA1 and CA3 in the 
hippocampus at P30. (A,B) Wfs1 stained frontal sections of the 
hippocampus showing the CA1 segment (C,D) ) HuB stained 
frontal sections of the hippocampus showing the CA3 segment. 
Scale bar: 200 µm (A-D) 
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App. 10: Cornu ammonis segments CA3 and HuB expression in pyramidal cells at P0 & P30. (A-
D, I-L) HuB expression in the hippocampus marking the CA3 segment at P30 and P0. (E-H, M-P)  
HuB expression in the neocortex, in particular in lamina V giant pyramidal cells at P30 and P0 
(F,H,N,P). Both in CA3 and lamina V pyramidal cells HuB is located predominantly in the cell 
somata rather than the cell nuclei at P0 and P30 with no difference between control and 
transgenic mice. Scale bar: 200 µm (A,C,E,G,I,K,M,O), 40 µm (B,D,F,H,J,L,N,P)  

 

App. 11: Hippocampal development at E14.5. (A,D) Overview over hippocampal formation at E14.5 in H&E 
staining of frontal sections with neuroepithelium (HNE), dentate neuroepithelium (DNE) and cortical hem 
(CH). (B,E,C,F) Dentate neuroepithelium and ongoing cell migration with complete CBP knock-out in 
transgenic animals at E14.5. (G,H) Prox1 staining at E14.5 confirming dentate granule neuron lineage 
character of migrating cells in both control and transgenic mice. (I,J) Sox2 staining showing stem cell character 
in the dentate neuroepithelium at E14.5. Scale bar: 35 µm (A,D), 15 µm (B,C,E,F), 25 µm (G-J).  
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App. 12: Apoptosis, proliferation, and glial differentiation in the olfactory 
bulb at P30. (A,B,E,F) No relevant amount of  apoptotic or proliferating cells 
were observed in the olfactory bulb of hGFAPcre::CBPFl/Fl or control mice in 
Caspase 3 (A,E) or Ki67 (B,F) stained sections of the olfactory bulb at P30. 
(C,D,G,H) S100 and Olig2 staining of astrocytes and oligodendrocytes in the 
olfactory bulb at P30 did not unveil striking differences in glial differentiation 
between transgenic mice and control litter mates. Scale bar: 80 µm (A-H) 

 

App. 13: Non-linear regression of habituation curves. A 
one phase exponential decay model (Y= 
(Y0 - Plateau)K*X + Plateau) was used for non-linear regression. 
The hGFAPcre::CBPFl/Fl could not be fitted in an 
exponential manner due to its more linear character and 
wider scattering (R2=0.3229), while regression of the 
control curve led to a rather good fit (R2=0.8071), 
indicating that the chosen exponential model describes 
the habitation curve of the control group relatively well.  
 

 

 


