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Ac  acetyl 

acac  acetylacetonate 

aq.  aqueous 

ATR  attenuated total reflection 

Bu  butyl 

Bz  benzoyl 

calc.  calculated 

dba  trans,trans-dibenzylideneacetone 

DMF  N,N-dimethylformamide 

e.g.  exempli gratia, for example 

EI  electron ionization (MS) 

equiv.  equivalent(s) 

Et  ethyl 

EX  electrophile 

FG  functional group 

GC  gas chromatography 

Hal  halogen 

Het  undefined heteroaryl substituent 

HRMS  high resolution mass spectrometry 

i  iso 

i.e.  id est, that is 

IR  infrared spectroscopy 

J  coupling constant (NMR) 

M  mol L-1 

Me  methyl 

Met  metal 

mol%  equiv.•10-2 

m.p.  melting point 

MS  mass spectrometry 
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NMP  N-Metyl-2-pyrrolidone 

NMR  nuclear magnetic resonance 
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Ph  phenyl 

Piv  pivaloyl 
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ppm  parts per million 

Pr  propyl 

R  undefined organic substituent 

sat.  saturated 

t  tert 

TBAF  tetra-N-butylammonium fluoride 

THF  tetrahydrofuran 

TLC  thin layer chromatography 

TMEDA N,N,N’,N’-tetramethylethylenediamine 

TMP  2,2,6,6-tetramethylpiperidine 

TP  typical procedure 

vol  volume 
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1 General Introduction 

In the 20th century the world population has increased from 1.6 billion to 6.1 billion people.1 Since then 

humanity continued to grow to approximately 7.7 billion up to the beginning of 2019 and is projected 

to grow up to 12.3 billion by the end of this century.2 This growth was facilitated by great scientific 

achievements throughout the last century. The Haber-Bosch process, patented in 1908, allowed the use 

of the unreactive atmospheric nitrogen to bind it into valuable ammonia, which can be used as fertilizer 

in crop production or as vantage point for explosives used in both, industrial and military areas.3 It is 

estimated that currently 40% of the human population is dependent on food grown, using nitrogen based 

fertilizers generated from this process. Agricultural research nowadays is focused on providing high 

yielding and robust crops, as well as crop protection chemicals such as fungicides like azoxystrobin,4 

herbicides like glyphosate5 or insecticides like imidacloprid6 (Scheme 1).  

 

Scheme 1: Currently used crop protecting agents in agriculture. 

However, even though these compounds are among the most widely used representatives of their 

classes, they are not without criticism. While azoxystrobin is not known to be harmful towards 

mammals, birds and insects, the compound itself and its degradation products pose a considerable risk 

for aquatic life.7 The herbicide glyphosate, which got a lot of media coverage in recent years, received 

a new evaluation by the “International Agency for Research on Cancer” regarding its cancerogenity in 

2015 and was therein classified as “probably cancerogenic to humans”.8 Finally, the neonicotinoide 

family of pesiticides, of which imidacloprid is a prominent member, is considered to be one of the 

                                                      
1 United Nations, Department of Economic and Social Affairs, Population Division, World Population 

Prosepects: The 2017 Revision, Key Findings and Advance Table, ESA/P/WP/248. 
2 a) P. Gerland, A. E. Raftery, H. Ševčíková, N. Li, D. Gu, T. Spoorenberg, L. Alkema, B. K. Fosdick, J. Chunn, 

N. Lalic, G. Bay, T. Buettner, G. K. Heilig, J. Wilmoth, Science, 2014, 346, 234. b) United Nations, Department 

of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision, 

custom data acquired via website. 
3 J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nature Geoscience 2008, 1, 636. 
4 a) M. E. Matheron, M. Porchas, Plant Disease 2000, 84, 454; b) J. R. Bertelsen, E. de Neergard, V. Smedegaard-

Petersen, Plant Pathology 2001, 50, 190. 
5 S. B. Powles, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 955. 
6 D. Bai, S. C. R. Lummis, W. Leicht, H. Breer, D. B. Sattelle, Pestic. Sci. 1991, 33, 197. 
7 a) European Food Safety Authority, EFSA Journal 2010, 8, 1542; b) J. L. Kunz, C. G. Ingersoll, K. L. Smalling, 

A. A. Elskus, K. M. Kuivila, Environ. Toxicol. Chem. 2017, 36, 2308. 
8 IARC Working Group, IARC Monog. Prog. 2015, 112, 321. 
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reasons for the bee colony collapse disorder.9 All these issues warrant the development of improved 

agents to diminish the potential side-effects as well as improve their performance. 

In 1928 Fleming’s discovery of penicillin, the first antibiotic, allowed the treatment of bacterially based 

infections such as streptococcal meningitis.10 Precise numbers how many lives were saved by antibiotics 

or specifically the penicillin class of antibiotics are not known, however considering that approximately 

one third of all deaths at the beginning of the 20th century were related to infectious diseases and that 

this number decreased to about 4% by the end of the last century, their impact on the growth and well 

being of our society can not be overestimated.11 However, antibiotic resistance has become a serious 

threat to the progress made. The time span between the release of an antibiotic and the discovery of a 

resistant strain of a bacterial class has steadily decreased to the point that in the same year levofloxacin 

was released on the US market, a levofloxacin-resistant pneumococcus was found.12 Therefore, to 

maintain our ability to fight against bacterial infections, efficient and fast development of novel 

antibiotic classes and derivatives thereof is necessary.  

Synthetic organic chemistry presents itself as a reliable tool in the development and modification of 

molecules, which ultimately might help in the pressing issues of our time. Regioselective activation and 

modifications of carbon based molecules are the quintessential backbone of organic chemistry. Modern 

synthetic approaches for the preparation of complex molecules rely heavily on organometallic 

chemistry, which offers a wide array of efficient, regioselective and unique transformations, making it 

an invaluable discipline.13 

  

                                                      
9 a) A. Decouryte, J. Devillers in Insect Nicotinic Acetylcholine Receptors. Advances in Experimental Medicine 

and Biology Vol. 683, (Eds.: S. H. Thany), Springer, New York 2010, p. 85; b) European Food Safety Authority, 

EFSA Journal 2013, 11, 3066. 
10 R. Gaynes, Emerg Infect Dis. 2017, 23, 849. 
11 N. Kardos, A. L. Demain, Appl. Microbiol. Biotechnol. 2011, 92, 677. 
12 C. L. Ventola, Pharmacy and Therapeutics 2015, 40, 277. 
13 For a general review, see: a) P. Knochel, H. Leuser, L.-Z. Gong, S. Perrone, F. Kneisel in Handbook of 

Functionalized Organometallics, (Eds.: P. Knochel), Wiley-VCH, Weinheim 2005. b) P. Knochel, P. 

Millot, A. L. Rodriguez, C. E. Tucker in Organic reactions, (Eds.: L. E. Overman), Wiley & Sons Inc., New 

York, 2001, p. 1. 
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2 Organometallic Chemistry 

Organometallic compounds contain a carbon-metal bond (C-Met), which gives the carbon the 

characteristics of a carbon-nucleophile equivalent. The first compound considered to be an 

organometallic reagent was prepared in 1757 by the French pharmacist and chemist Louis-Claude Cadet 

de Gassicourt, called “Cadet’s fuming liquid”.14 By mixing and heating As2O3 and KOAc, a red liquid 

was distilled, consisting of cacodyl (Me2As)2 and cacodyl oxide (Me2As)2O. Following this discovery 

several other organometallic reagents were discovered, among these were organozinc reagents like 

diethylzinc by Franklin (1849)15 or organomagnesium reagents by Grignard (1900).16 The common trait 

among these organometallic reagents is the polarization of the carbon-metal bond. However, the degree 

of this polarization has significant influence on the reactivity, stability and functional group tolerance 

of these reagents. Compounds with a high ionic character, such as organolithiums, are highly reactive, 

but often need cryogenic reaction temperatures13a and need to be stored in hydrocarbon solvents to avoid 

degradation by ethereal solvents.17 Also, due to their high reactivity, functional group tolerance is 

comparatively low, which can lead to side reactions. On the other hand, organometallic reagents with a 

lower ionic character, which contain a more covalent bond, have higher functional group tolerance but 

may need additional activation for certain reactions.18 In general, the polarization of a carbon metal 

bond can be deduced by the electronegativity difference of the carbon atom and the metal attached to it 

(Scheme 2).19 

 

Scheme 2: Electronegativity differences (ΔEN) between carbon and commonly used metals, calculated according 

to Allred-Rochow electronegativities (the most commonly assigned electronegativities were used, considering the 

dependency upon the state of hybridization). 

The most common preparation methods of organometallic reagents are the direct oxidative insertion of 

a metal, the halogen-metal exchange and the directed metalation. Additionally, organometallic reagents 

can be transmetalated to more electronegative metals via the corresponding metal halides (Scheme 3). 

                                                      
14 D. Seyferth, Organometallics 2001, 20, 14888. 
15 E. Frankland, Liebigs Ann. Chem. 1849, 71, 171. 
16 V. Grignard, Compt. Rend. Acad. Sci. Paris 1900, 130, 1322. 
17 H. Gilman, B. J. Gaj, J. Org. Chem. 1957, 22, 1165. 
18 J. Shannon, D. bernier, D. Rawson, S. Woodward, Chem. Commun. 2007, 3945. 
19 Electronegativities according to the Allred-Rochow scale were used: A. L. Allred, E. G. Rochow, J. Inorg. 

Nucl. Chem. 1958, 5, 264. 
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Scheme 3: Most frequently used preparation methods of organometallic reagents. 

2.1 Oxidative Insertion 

The oxidative insertion of a metal into a carbon-halogen bond is the most used preparation method for 

organometallic reagents. Many important reagents for both academic research and industrial use, like 

nbutyllithium, phenylmagnesium bromide or diethylzinc, are prepared by direct oxidative addition of 

the metal into the corresponding carbon-halogen bond. The following elaboration focuses mainly on 

the preparation of organomagnesium (Grignard) reagents, since the mechanism of the magnesium 

insertion is well studied and understood. 

The widely accepted mechanism for the oxidative addition of magnesium is a radical pathway via a 

sequence of single electron transfers (SET).20 Due to the radical nature of the reaction, partial to full 

racemization is a substantial problem. Experimental findings suggest, that both outer- as well as inner-

sphere radicals can be formed during the SET, which explains the sometimes encountered partial 

retention of chirality (Scheme 4).21  

 

Scheme 4: Example for an unsual retention of chirality during a magnesium insertion. 

Furthermore, the metal surface needs to be activated prior to use, to remove the passivation layer formed 

upon the metals exposure to air. Commonly used reagents for this activation include iodine, 1,2-

dibromoethane or diisobutylaluminium hydride.22 The original protocol for the preparation of 

organomagnesium reagents had severe drawbacks. High temperatures (30–60 °C), long reaction times 

(up to 23 h) and intensive activation steps limited the functional group tolerance as well as the 

applicability of this procedure.23 Rieke and co-workers developed a preparation method for 

                                                      
20 a) H. R. Rogers, C. L. Hill, Y. Fujiwara, R. J. Rogers, H. L. Mitchell, G. M. Whitesides, J. Am. Chem. Soc. 

1980, 102, 217; b) H. M. Walborsky, J. Rachon, J. Am. Chem. Soc. 1989, 111, 1897; c) Z.-N. Chen, G. Fu, X. Xu, 

Org. Biomol. Chem. 2012, 10, 9491. 
21 a) W. Kirmse, J. Rode, K. Rode, Chem. Ber. 1986, 119, 3672; b) H. M. Walborsky, Acc. Chem. Res. 1990, 23, 

286. 
22 a) H. Gilman, R. H. Kirby, Rec. Trav. Chim. 1935, 54, 577; b) D. E. Pearson, D. Cowan, J. D. Beckler, J. Org. 

Chem. 1959, 24, 504; c) U. Tilstam, H. Weinmann, Org. Proc. Res. Dev. 2002, 6, 906. 
23 H. E. Ramsden, A. E. Balint, W. R. Whitford, J. J. Walburn, R. Cserr, J. Org. Chem. 1957, 22, 1202. 
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unpassivated metals with a high surface, by reducing a solution of a metal halide salt using alkali metals 

such as lithium and a catalytic amount of an electron carrier like naphthalene or biphenyls.24 The 

generated highly active magnesium (Rieke magnesium) performs the oxidative addition reaction at 

cryogenic temperatures within minutes, while tolerating sensitive functional groups like esters, nitriles 

or intermediary formed ketones (Scheme 5). 

 

Scheme 5: Preparation of functionalized organomagnesium reagents using Rieke Magnesium. 

Further improvements were presented by Knochel and co-workers with their LiCl mediated magnesium 

insertion.25 The simple addition of LiCl facilitates the oxidative addition of commercial magnesium 

enabling the reaction to be performed even at −20 °C often within 30 min. Also, due to the fast reaction 

times and low temperatures needed, a high functional group tolerance was obtained. It was possible to 

prepare ortho-magnesiated benzonitrile at ambient temperature within 30 min, whereas 5 h were 

necessary in the absence of LiCl and considerable amounts of decomposition were observed. This 

method of promoting metal insertion reactions was extended to several other metals such as zinc, 

aluminium or indium.26 

2.2 Halogen-Metal Exchange 

Another method to prepare organometallic reagents from organic halides is the halogen-metal 

exchange. Therein, an already metalated reagent replaces the halide with its own metal, taking on the 

previous halide (Scheme 6).27 

 

Scheme 6: Schematic representation of a halogen-metal exchange. 

In 1931, Prévost reported the first bromine-magnesium exchange after cinnamyl bromide was treated 

with ethylmagnesium bromide to furnish cinnamylmagnesium bromide.28 The group of Wittig was the 

                                                      
24 a) R. D. Rieke, Science 1989, 246, 1260; b) J.-S. Lee, R. Velarde-Ortiz, A. Guijarro, J. R. Wurst, R. D. Rieke, 

J. Org. Chem. 2000, 65, 5428. 
25 F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802. 
26 a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; b) Y.-H. 

Chen, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 7648; c) T. D. Blümke, Y.-H. Chen, Z. Peng, P. Knochel, Nat. 

Chem. 2010, 2, 313. 
27 For a general overview, see: a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. 

Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302; b) D. Tilly, F. Chevallier, F. Mongin, P. C. Gros, 

Chem. Rev. 2014, 114, 1207; c) D. S. Ziegler, B. Wei, P. Knochel, Chem. Eur. J. 2019, 25, 2695. 
28 C. Prévost, Bull. Soc. Chim. Fr. 1931, 49, 1372. 
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first to identify and report the halogen-lithium exchange in 1938.29 After an ortho-lithiation of 4-

bromoanisole by phenyllithium was observed, they investigated this metalation with different aryl 

methyl ethers. However, when 1,3-dimethoxy-4,6-dibromobenzene was treated with phenyllithium no 

metalation occurred but instead a bromine was exchanged by lithium (Scheme 7). 

 

Scheme 7: Experiments conducted by Wittig and co-workers leading to the first identified halogen-lithium 

exchange. 

Shortly after, Gilman and co-workers reported their independent discovery of a halogen-lithium 

exchange.30 Contrary to the earlier approach nbutyllithium was used instead of phenyllithium. It is 

important to note that several other groups were close to observe the halogen-lithium exchange more 

than 10 years earlier, however due to the “established” radical theory they identified products like 1-

butyl-4-methylbenzene as products of a radical recombination or of a novel approach toward a Wurtz 

type reaction.31 

The halogen-metal exchange is an equilibrium reaction, whose driving force is the formation of the 

most stable organometallic species.13a,32 The stability of the organometallic species is dependent on the 

hybridization of the carbon atom (sp>sp2
vinyl>sp2

aryl>sp3
prim>sp3

sek>sp3
tert) and the influence of stabilizing 

electron withdrawing groups. A problem of the halogen-metal exchange is the in situ formed organo 

halide. It can lead to decomposition of the newly formed organometallic reagent via an elimination side 

reaction or form unwanted sideproducts in the following reactions like transition metal catalyzed cross-

coupling reactions.33 The elimination side reaction is particularly evident for tertiary aliphatic lithium 

exchange reagents such as tbutyllithium. Therefore, the exchange reagent is often used with an excess 

of 1.0 equiv. to promote the elimination by the exchange reagent and keep the desired metalated species 

intact (Scheme 8). 

                                                      
29 G. Wittig, U. Pockels, H. Dröge, Ber. Dtsch. Chem. Ges. 1938, 71, 1903. 
30 H. Gilman, W. Langham, A. L. Jacoby, J. Am. Chem. Soc. 1939, 61, 106. 
31 a) C. S. Marvel, F. D. Hager, D. D. Coffman, J. Am. Chem. Soc. 1927, 49, 2323; b) K. Ziegler, F. Crössmann, 

H. Kleiner, O. Schäfer, Justus Liebigs Ann. Chem. 1929, 473, 1. 
32 a) H. J. S. Winkler, H. Winkler, J. Am. Chem. Soc. 1966, 88, 964; b) H. J. S. Winkler, H. Winkler, J. Am. Chem. 

Soc. 1966, 88, 969. 
33 a) H. Neumann, D. Seebach, Tetrahedron Lett. 1976, 17, 4839; b) C. B. Rauhut, C. A. Vu, F. F. Fleming, P. 

Knochel, Org. Lett. 2008, 10, 1187. 
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Scheme 8: Iodine-lithium exchange with an additional equivalent of tBuLi to intercept the intermediary formed 

tBuI. 

Especially for the halogen-lithium exchange, low temperatures are a necessity to facilitate a certain 

degree of functional group tolerance as shown earlier by the groups of Köbrich and Parham.34 It is 

therefore favorable, that the rates of the halogen-exchange reaction often exceed possible side reactions, 

even at −78 °C.35 

To circumvent the need of these extreme cryogenic temperatures and to increase the functional group 

tolerance the attention was moved to less electropositive metals, to generate more general and stable 

organometallic species. The groups of Knochel and Cahiez reported the use of convenient iPrMgBr and 

iPr2Mg to generate magnesiated arenes by iodine-magnesium exchange at −40 °C within less than 

60 min.36 The reaction tolerated functional groups like ethyl esters, nitriles or amides and selectively 

exchanged iodide in the presence of a bromide. Organomagnesium reagents bearing the highly sensitive 

nitro-group were prepared from ortho-iodonitroarenes at −40 °C within minutes in good yields using 

phenyl or mesityl magnesium reagents.37 As they are less reactive than their corresponding lithium 

exchange reagents, magnesium based exchange reagents struggle with the replacement of bromides if 

they are not additionally activated by electron-withdrawing groups, even if stronger exchange reagents 

like iPr2Mg are used.38 Oshima and co-workers were able to perform fast bromine-magnesium exchange 

reactions of electron-rich bromoarenes at 0 °C by using highly reactive lithium trialkylmagnesium-ate 

complexes.39 Also, functional groups like nitriles or amides were tolerated if the reaction was performed 

at −78 °C. Further improvements were made by Knochel and co-workers with their introduction of the 

“Turbo-Grignard”.40 This reagent, consisting of LiCl complexed iPrMgCl, performed a fast bromine-

magnesium exchange reaction, while tolerating sensitive groups like esters or nitriles even at −15 °C. 

Compared to previous exchange reagents like iPr2Mg or iPrMgCl, higher yields were obtained and 

lower reagent amounts were needed using iPrMgCl•LiCl (Scheme 9).  

                                                      
34 a) G. Köbrich, P. Bruck, Chem. Ber. 1970, 103, 1412; b) W. E. Parham, C. K. Bradsher, Acc. Chem. Res. 1982, 

15, 300. 
35 W. F. Bailey, J. J. Patricia, T. T. Nurmi, W. Wang, Tetrahedron Lett. 1986, 27, 1861; b) I. S. Aidhen, J. R. 

Ahuja, Tetrahedron Lett. 1992, 33, 5431. 
36 a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 1701; b) G. Varchi, A. 

Ricci, G. Cahiez, P. Knochel, Tetrahedron 2000, 56, 2727. 
37 a) I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 1610; b) I. Sapountzis, H. Dube, R. Lewis, P. 

Knochel, J. Org. Chem. 2005, 70, 2445. 
38 M. Abarbri, F. Dehmel, P. Knochel, Terahedron Lett. 1999, 40, 7449. 
39 a) K. Kitagawa, A. Inoue, H. Shinokubo, K. Oshima, Angew. Chem. Int. Ed. 2000, 39, 2481; b) A. Inoue, K. 

Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66, 4333. 
40 a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; Angew. Chem. 2004, 116, 3396; b) L. 

Shit, Y. Chu, P. Knochel, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 202; c) L. Shi, Y. Chu, P. Knochel, H. Mayr, 

Org. Lett. 2012, 14, 2602. 
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Scheme 9: Bromine-magnesium exchange with various magnesium reagents, highlighting the improvements by 

the "Turbo-Grignard". 

iPrMgCl•LiCl also tolerateed the highly sensitive triazene group, whereas uncomplexed iPrMgCl lead 

to the formation of sideproducts.41 Furthermore, the reagent tolerated functionalized substrates like 

nucleosides and performed the halogen-metal exchange even if there were already negative charges 

present in the molecule (Scheme 10).42 

 

Scheme 10: Preparation of a functionalized nucleoside via iPrMgCl•LiCl mediated magnesiation. 

Recently, Knochel and co-workers reported a novel class of halogen-magnesium exchange reagents, 

which can prepare organomagnesium reagents in important industrial non-polar solvents like toluene 

and hydrocarbons.43 The toluene soluble reagents were prepared by mixing the magnesium alkoxide 

Mg(OR)2 (R = 2-ethylhexyl) with 1.0 or 2.0 equiv. of sBuLi forming sBuMgOR•LiOR and 

sBu2Mg•2LiOR, respectively. These reagents performed the bromine-magnesium exchange of electron-

rich bromides within minutes. For example, the exchange of 4-bromoanisole using iPrMgCl•LiCl was 

finished after 27 h in THF and does not occur in toluene at all. Whereas, the novel sBuMgOR•LiOR 

afforded the organomagnesium reagent in 85% yield after only 15 min and can go as high as 99% after 

addition of TMEDA. Aditionally, the also reported sBu2Mg•2LiOR (0.6 equiv.) used with the additive 

PMDTA (0.6 equiv.) is the first reported reagent mixture to perform the chlorine-magnesium exchange 

on electron rich substrates. 

                                                      
41 C.-Y. Liu, P. Knochel, Org. Lett. 2005, 7, 2543. 
42 T. Brückl, I. Thoma, A. J. Wagner, P. Knochel, T. Carell, Eur. J. Org. Chem. 2010, 6517. 
43 D. S. Ziegler, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2018, 57, 6701. 
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Finally, exchange reagents for more electropositive metals such as manganese,44 zinc45 and copper46 

have been developed. Especially, the halogen-zinc exchange was studied thoroughly as zinc reagents 

can be used for a wide array of reactions like transition metal catalyzed cross-coupling reactions47 or 

for the synthesis of functionalized ketones via acylation reactions.48 As organozinc reagents are even 

less polarized than their corresponding organomagnesium species, an additional activation was 

necessary for the halogen-zinc exchange. Therefore, tri- or tetra-alkyl zincates were used as exchange 

reagents. However, an excess of the metalated reagent (up to 4.50 equiv. of metalated alkyl reagent) 

and cryogenic reaction temperatures were often needed (Scheme 11).49 

 

Scheme 11: Zincate mediated iodine-zinc exchange, followed by an intramolecular epoxide opening. 

Knochel and co-workers were able to circumvent the previously reported excess of organometallic 

reagent by adding a catalytic amount of Li(acac) (10%) to iPr2Zn (0.6 equiv.) in a solvent mixture of 

Et2O/NMP (1:10) at 25 °C.45c,d In their proposed mechanism an initial iodine-zinc exchange takes place. 

The newly formed mixed zinc reagent, which was also observed as main product in the absence of 

Li(acac), was complexed by the acac ligand to form an intermediary zincate species, which was then 

capable of performing a second exchange reaction. This bisarylacetylaceton zincate collapsed, releasing 

the diarylzinc species and regenerating the Li(acac) (Scheme 12). They were able to perform this 

exchange reaction on various aryl iodides bearing both electron-withdrawing and electron-donating 

groups and even sensitive functional groups like free aldehydes were tolerated on the aryl iodides. 

                                                      
44 a) R. Inoue, H. Shinokubo, K. Oshima, Tetrahedron Lett. 1996, 37, 5377; b) H. Kakiya, R. Inoue, H. Shinokubo, 

K. Oshima, Tetrahedron Lett. 1997, 38, 3275; c) R. Inoue, H. Shinokubo, K. Oshima, J. Org. Chem. 1998, 63, 

910; d) H. Kakiya, H. Shinokubo, K. Oshima, Tetrahedron 2001, 57, 10063. 
45 a) Y. Kondo, M. Fujinami, M. Uchiyama, T. Sakamoto, J. Chem. Soc., Perkin Trans. 1 1997, 799; b) Y. Kondo, 

T. Komine, M. Fujinami, M. Uchiyama, T. Sakamoto, J. Comb. Chem. 1999, 1, 123; c) F. F. Kneisel, M. 

Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 1017; d) L.-Z. Gong, P. Knochel, Synlett 2005, 267. 
46 a) Y. Kondo, T. Metsudaira, J. Sato, N. Murata, T. Sakamoto, Angew. Chem. Int. Ed. 1996, 35, 736; b) C. 

Piazza, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 3263; c) F. F. Fleming, Z. Zhang, W. Liu, P. Knochel, J. 

Org. Chem. 2005, 70, 2200. 
47 a) S. Wunderlich, P. Knochel, Org. Lett. 2008, 10, 4705; b) A. Krasovskiy, B. H. Lipshutz, Org. Lett. 2011, 13, 

3818. 
48 a) E.-i. Negishi, V. Bagheri, S. Chatterjee, F.-T. Luo, J. A. Miller, A. T. Stoll, Terahedron Lett. 1983, 24, 5181; 

b) Y. Zhang, T. Rovis, J. Am. Chem. Soc. 2004, 126, 15964; c) A. Krasovski, V. Malakhov, A. Gavryushin, P. 

Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; d) A. D. Benischke, M. Leroux, I. Knoll, P. Knochel, Org. Lett. 

2016, 18, 3626. 
49 a) M. Uchiyama, M. Koike, M. Kameda, Y. Kondo, T. Sakamoto, J. Am. Chem. Soc. 1996, 118, 8733; b) M. 

Uchiyama, M. Kameda, O. Mishima, N. Yokoyama, M. Koike, Y. Kondo, T. Sakamoto, J. Am. Chem. Soc. 1998, 

20, 4934; c) M. Uchiyama, T. Furuyama, M. Kobayashi, Y. Matsumoto, K. Tanaka, J. Am. Chem. Soc. 2006, 128, 

8404. 
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Scheme 12: Proposed mechanism of the Li(acac) catalyzed iodine-zinc exchange using iPr2Zn. 

2.3 Directed Metalation 

Organometallic reagents can also be prepared via deprotometalation of C-H bonds using alkyl metal or 

metal amide bases. Among the earliest reported examples of a lithiation mediated by an alkyllithium 

reagent was the preparation of 9-fluorenyllithium from the reaction of ethyllithium with fluorene by 

Schlenk in 1928.50 A decade later, Wittig51 and Gilman52 independently reported their experiments 

leading selectively to ortho-lithiated anisole. This seminal work led to the concept of directed ortho 

metalation (DoM), which describes the phenomenon of aromatic C-H metalations adjacent to a directing 

metalation group (DMG).53 DMGs are functional groups that enable the kinetic metalation of their 

ortho-position either by a coordination induced proximity effect,54 in which they act as lewis-basic 

moieties coordinating to the lewis-acidic metal of the organometallic base, or by an electronic effect, 

wherein the C-H bond is acidified using the electron withdrawing effect of the DMG (Scheme 13). 

Commonly considered to be strong DMGs are e.g. amides, carbamates, sulfonamides or the oxazolyl 

group, whereas halides, ethers or amines are in general weak DMGs.53b 

 

Scheme 13: Schematic representation of a coordination induced ortho-lithiation. 

                                                      
50 W. Schlenk, E. Bergmann, Justus Liebigs Ann. Chem. 1928, 463, 98. 
51 G. Wittig, U. Pockels, H. Dröge, Chem. Ber. 1938, 71, 1903. 
52 H. Gilman, R. L. Bebb, J. Am. Chem. Soc. 1939, 61, 109. 
53 For a generel overview, see: a) H. W. Gschwend, H. R. Rodriguez, Org. React. 1979, 26, 1; b) V. Snieckus, 

Chem. Rev. 1990, 90, 879; c) J. Epsztajn, A. Józwiak, A. K. Szczesniak, Curr. Org. Chem. 2006, 10, 1817. 
54 a) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206; b) V. H. Gessner 

in Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry, (Eds.: B. Pignataro), Wiley-

VCH, Weinheim 2010. 
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Traditionally, highly reactive organolithium bases like PhLi or the butyllithiums have been used for 

these directed metalations. Additionally, the metalation rate and substrate scope of these reagents can 

further be increased through the application of additives like the tertiary amine TMEDA55 or the alkali 

metal alcoholate KOtBu (often called LiCKOR base or Schlosser’s base).56 However, the tendency to 

attack electrophilic functional groups and to undergo halogen-lithium exchange reactions made the 

development of more tolerant bases necessary.57 Sterically hindered amides (MetNRR’) are viable 

alternatives as their sterical bulk limits nucleophilic attacks, and they cannot perform halogen-exchange 

reactions. The most commonly used lithium amides are TMPLi, LiN(SiMe3)2 and LiN(iPr)2.58 However, 

the formed organolithium species still has limited functional group tolerance and their high reactivity 

can lead to multiple metalations, especially when used for the metalation of azines. 

Analog to the halogen-metal exchange reagents, the implementation of less electropositive metals like 

magnesium or zinc led to an increased tolerance towards sensitive functional groups and higher 

metalation temperatures could be used. Pioneering work by Hauser59 showed that Et2NMgBr and 

iPr2NMgBr are suitable bases for the enolization of esters while fully avoiding the acylation of the 

amide. Decades later, Eaton and co-workers reported the two magnesium amide bases TMPMgBr and 

TMP2Mg which were capable of performing DoM’s on very sensitive substrates like methyl benzoate 

(Scheme 14).60 

 

Scheme 14: Directed ortho-magnesiation of methyl benzoate using TMP2Mg. 

Further interest into the subject was generated, when Mulzer and co-workers showed that TMPMgCl 

efficiently and regioselectively metalates pyridine carboxamides, carbamates and derivatives thereof, 

whereas lithium bases like tBuLi and TMPLi afforded mixtures of regioisomers, while needing 

                                                      
55 a) D. B. Collum, Acc. Chem. Res. 1992, 25, 448; b) M. A. Nichols, P. G. Williard, J. Am. Chem. Soc. 1993, 

115, 1568; c) H. J. Reich, D. P. Green, M. A. Medina, W. S. Goldenberg, B. Ö. Gudmundsson, R. R. Dykstra, N. 

H. Phillips, J. Am. Chem. Soc. 1998, 120, 7201. d) V. H. Gessner, C. Däschlein, C. Strohmann, Chem. Eur. J. 

2009, 15, 3320; e) H. J. Reich, Chem. Rev. 2013, 113, 7130. 
56 a) M. Schlosser, S. Strunk, Tetrahedron Lett. 1984, 25, 741; b) M. Schlosser, Pure & Appl. Chem. 1988, 60, 

1627; c) M. Schlosser, Angew. Chem. Int. Ed. 2005, 44, 376. 
57 a) H. W. Gschwend, A. Hamdan, J. Org. Chem. 1975, 40, 2008; b) P. Beak, A. I. Meyers, Acc. Chem. Res. 

1986, 19, 356. 
58 a) R. A. Olofson, C. M. Dougherty, J. Am. Chem. Soc. 1973, 95, 581; b) R. A. Olofson, C. M. Dougherty, J. 

Am. Chem. Soc. 1973, 95, 582; 
59 a) C. R. Hauser, H. G. Walker, J. Am. Chem. Soc. 1947, 69, 295; b) F. C. Frostick, C. R. Hauser, J. Am. Chem. 

Soc. 1949, 71, 1350. 
60 a) P. E. Eaton, C.-H. Lee, Y. Xiong, J. Am. Chem. Soc. 1989, 111, 8016; b) P. E. Eaton, K. A. Lukin, J. Am. 

Chem. Soc. 1993, 115, 11370; c) K. W. Henderson, W. J. Kerr, Chem. Eur. J. 2001, 7, 3430. 
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cryogenic temperatures to avoid decomposition and side reactions.61 This highlighted the applicability 

of magnesium amides in organic synthesis. However, an issue were the long reaction times needed and 

the low solubility in THF. Furthermore, procedures used a considerable excess of the respective base, 

which was indefensible from an atom economic point of view. Knochel and co-workers were able to 

solve these issues with their introduction of Turbo-Hauser bases.62 Similar to the improvements seen 

for halogen-metal exchange reagents, the addition of LiCl to TMPMgCl considerably enhanced the 

kinetic basicity and solubility of the magnesium amide. The reagent can easily be prepared by 

magnesiation of TMP-H with iPrMgCl•LiCl and batches of this reagent are storeable for long periods 

of time. Substrates like brominated isophtalic esters were regioselectively magnesiated using only 1.1 

equivalents of the novel TMPMgCl•LiCl base within 30 minutes (Scheme 15).  

 

Scheme 15: Regioselective magnesiation of an isophtalic ester using TMPMgCl•LiCl. 

Additionally, both electronpoor63 and electronrich64 heteroarenes were metalated using TMPMgCl•LiCl 

(Scheme 16). 

 

Scheme 16: Synthesis of functionalized electronpoor and electronrich heteroarenes using TMPMgCl•LiCl. 

Also, N-heterocycles can be activated by addition of a Lewis-acid like BF3•OEt2. This activation allows 

for a change of regioselectivity or can enable the metalation at all. A prominent example is the 

metalation of 3-fluoropyridine, wherein a metalation in the absence of BF3•OEt2 regioselectively leads 

                                                      
61 a) W. Schlecker, A. Huth, E. Ottow, J. Mulzer, J. Org. Chem. 1995, 60, 8414; b) W. Schlecker, A. Huth, E. 

Ottow, J. Mulzer, Justus Liebigs Ann. Chem. 1995, 1441; c) W. Schlecker, A. Huth, E. Ottow, J. Mulzer, Synthesis 

1995, 1225. 
62 a) A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958; Angew. Chem. 2006, 

118, 3024; b) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9794; c) 

M. Balkenhohl, P. Knochel, Synopen 2018, 2, 78. 
63 a) Boudet, J. R. Lachs, P. Knochel, Org. Lett. 2007, 9, 5525; b) C. J. Rohbogner, G. C. Clososki, P. Knochel, 

Angew. Chem. Int. Ed. 2008, 47, 1503; c) L. D. Tran, O. Daugulis, Org. Lett. 2010, 12, 4277; d) C. J. Rohbogner, 

S. Wirth, P. Knochel, Org. Lett. 2010, 12, 1984. 
64 a) T. Kunz, P. Knochel, Chem. Eur. J. 2011, 17, 866; b) F. M. Piller, P. Knochel, Synthesis 2011, 1751. 
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in 2-position, while in the presence of BF3•OEt2 the 4-position is magnesiated selectively (Scheme 

17).65 

 

Scheme 17: Change in regioselectivity for the metalation of 3-fluoropyridine by addition of BF3•OEt2. 

However, some substrates were not sufficiently metalated by TMPMgCl•LiCl or made higher reaction 

temperatures necessary, which often hinders functional group tolerance. The more reactive 

TMP2Mg•2LiCl enabled the metalation of these substrates.66 Thus, tbutylbenzoate could efficiently be 

metalated using TMP2Mg•2LiCl, wheras TMPMgCl•LiCl only afforded traces of the magnesiated 

benzoate (Scheme 18). 

 

Scheme 18: Comparison between TMPMgCl•LiCl and TMP2Mg•2LiCl for the metalation of tbutyl benzoate. 

The tolerance of functional groups was further improved with the introduction of the kinetically active 

zinc amide TMPZnCl•LiCl.67 The base and its formed organozinc reagents tolerate highly sensitive 

functional groups like aldehydes or nitro groups (Scheme 19). 

                                                      
65 a) M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 5451; Angew. 

Chem. 2010, 122, 5582; b) M. Jaric, B. A. Haag, S. M. Manolikakes, P. Knochel, Org. Lett. 2011, 13, 2306; c) S. 

M. Manolikakes, M. Jaric, K. Karaghiosoff, P. Knochel, Chem. Commun. 2013, 49, 2124. 
66 G. C. Clososki, C. J. Rohbogner, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7681; Angew. Chem. 2007, 119, 

7825. 
67 a) M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837; b) T. Bresser, G. Monzon, M. Mosrin, P. Knochel, Org. 

Process Res. Dev. 2010, 14, 1299; c) F. Gosselin, S. J. Savage, N. Blaquiere, S. T. Staben, Org. Lett. 2012, 14, 

862; d) S. L. McDonald, C. E. Hendrick, Q. Wang, Angew. Chem. Int. Ed. 2014, 53, 4667. 
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Scheme 19: Zincation of electronrich heteroarenes bearing highly sensitive functional groups, using 

TMPZnCl•LiCl. 

Another valuable addition to the toolset of organometallic chemists was TMP2Zn•2MgCl2•2LiCl.68 It 

presents itself as a more powerful metalation reagent while largely maintaining the functional group 

tolerance of TMPZnCl•LiCl. The zincation of the previously shown thianaphtene-3-carboxaldehyde is 

completed within 15 min. Sensitive heterocycles like the easily decomposing oxadiazole can be 

metalated at 25 °C. Additionally, this base was shown to be stable at elevated temperatures and be used 

in a microwave reactor (Scheme 20).69 

 

Scheme 20: Microwave enabled zincation of ethyl benzoate. 

Finally, during their studies on the functionalization of nucleosides, Knochel and co-worker were able 

to show that TMP2Zn•2MgCl2•2LiCl can behave as a complementary base to TMPMgCl•LiCl, allowing 

for a change of regioselecivity of the metalation (Scheme 21).70 

 

Scheme 21: Different regioselective metalations of a protected uridine, dependent on the choice of metalated 

amide. 

                                                      
68 S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685. 
69 S. Wunderlich, P. Knochel, Org. Lett. 2008, 10, 4705. 
70 L. Klier, E. Aranzamendi, D. Ziegler, J. Nickel, K. Karaghiosoff, T. Carell, P. Knochel, Org. Lett. 2016, 18, 

1068. 
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2.4 Transmetalation 

Transmetalations offers another approach towards various organometallic reagents by treating a 

metalated reagent with the salt of a different metal. In general, the driving force of this metal metathesis 

is the formation of the most covalent bond i.e. it is possible to transmetalate an organolithium reagent 

using ZnCl2, whereas the generation of an organolithium reagent by treatment of an organozinc reagent 

with LiCl is not possible. The general use of transmetalations is the preparation of more stable, 

functional group tolerant organometallic reagents and to enable specific reactions like a Negishi cross-

coupling reaction or a copper-catalyzed allylation. A transmetalation is possible as either a followup 

reaction, e.g. after a successful metalation or halogen-metal exchange, or as an in situ process, where 

the metal salt is already present when the metalated reagent is prepared to immediately transmetalate it 

(Scheme 22).71 

 

Scheme 22: Preparation of a functionalized benzylzinc reagent via a magnesium insertion-in situ transmetalation 

sequence. 

  

                                                      
71 a) A. Metzger, F. M. Piller, P. Knochel, Chem. Commun. 2008, 5824; b) F. M. Piller, A. Metzger, M. A. Schade, 

B. A. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192; c) A. Frischmuth, M. Fernández, N. M. 

Barl, F. Achrainer, H. Zipse, G. Berionni, H. Mayr, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2014, 

53, 7928; d) M. R. Becker, P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 12501; e) M. Ketels, M. A. Ganieck, N. 

Weidmann, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 12770. 



A. INTRODUCTION   17 

3 Transition Metal Catalyzed Cross-Coupling Reactions 

A frequent application of organometallic reagents are transition metal catalyzed cross-coupling 

reactions.72 Even though metal mediated homocoupling reactions like the Wurtz,73 Pinacol74 or Glaser75 

coupling reactions have been known since the mid 19th century. The first report of a selective cross-

coupling reaction was in 1955 by Cadiot and Chodkiewicz.76 They described the copper(I)-catalyzed 

cross-coupling reaction of a terminal alkyne with a haloalkyne, which selectively led to mixed 1,3-

diynes. In the 1970s the groups of Kumada and Corriu,77 Heck,78 Sonogashira,79 Negishi,80 Stille81 and 

Suzuki82 reported the first palladium- and nickel-catalyzed cross-coupling reactions of organometallic 

reagents with organohalides, which enabled the C-C bond formation between two sp2-hybridized carbon 

centers. New elaborate catalytic systems83 have been developed which allowed this reaction to find 

widespread use in both academic and industrial synthesis of complex organic molecules.84 However, 

prices for palladium have been steadily rising and almost tripled within the last 3 years, leading to a 

current all time high.85 And although nickel shows a similar chemical behavior and is comparatively 

inexpensive, severe toxicity issues limit its use on industrial scale.86 The search for catalytically active 

replacement metals is therefore of utmost importance. In recent years’ first row transition metals like 

                                                      
72 C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 

5062. 
73 A. Wurtz, Justus Liebigs Ann. Chem. 1855, 96, 364. 
74 R. Fittig, Justus Liebigs Ann. Chem. 1859, 110, 17. 
75 a) C. Glaser, Chem. Ber. 1869, 2, 422; b) C. Glaser, Justus Liebigs Ann. Chem. 1870, 154, 137. 
76 a) W. Chodkiewicz, P. Cadiot, C. R. Hebd. Seances Acad. Sci. 1955, 241, 1055; b) W. Chodkiewicz, Ann. Chim. 

Paris 1957, 2, 819. 
77 a) R. J. P. Corriu, J. P. Masse, J. Chem. Soc., Chem. Commun. 1972, 144a; b) K. Tamao, K. Sumitani, M. 

Kumada, J. Am. Chem. Soc. 1972, 94, 4374. 
78 a) R. F. Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320; b) H. A. Dieck, R. F. Heck, J. Am. Chem. Soc. 1974, 

96, 1133. 
79 K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467. 
80 A. O. King, N. Okukado, E.-i. Negishi, J. Chem. Soc., Chem. Commun. 1977, 683. 
81 D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636. 
82 N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437. 
83 a) D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722; b) N. Hadei, E. A. B. Kantchev, 

C. J. O’Brie, M. G. Organ, Org. Lett. 2005, 7, 3805. 
84 Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, (Eds.: Á. Molnár), 

Wiley-VCH, Weinheim 2013. 
85 world market prices: 1214 €/31.1 g; https://www.finanzen.net/rohstoffe/palladiumpreis; retrieved in January 

2019. 
86 a) world market prices: 10.36 €/1 kg; https://www.finanzen.net/rohstoffe/nickelpreis; retrieved in January 2019; 

b) Handbook on the Toxicology of Metals (Eds.: L. Friberg, G. F. Nordberg, V. B. Vouk), Elsevier, Amsterdam, 

1986; c) K. S. Kasprzak, B. A. Diwan, J. M. Rice, M. Misra, C. W. Riggs, R. Olinski, M. Dizdaroglu, Chem. Res. 

Toxicol. 1992, 5, 809. 
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iron87 and cobalt88 have been studied extensively. Iron and cobalt cost only a fraction of palladium and 

are less toxic than nickel. Additionally, the reactivity and substrate scope of these metals has been 

shown to be comparable to classic palladium or nickel based cross-coupling reactions. However, the 

cross-coupling reactions of iron and cobalt are often contaminated with homocoupling side products of 

the used organometallic reagent. These are difficult to separate and decrease the efficiency of the 

reaction. However, the transition metal chromium has shown promising properties aswell. In 2013 a 

seminal study by Knochel and co-workers showed that arylmagnesium reagents react efficiently with 

(hetero)arene halides (Scheme 23).89 These cross-coupling reactions proceeded quickly and were often 

finished within 15 min at 25 °C, while no homocoupling formation was observed during the reaction. 

 

Scheme 23: Chromium-catalyzed cross-coupling of a 2-bromopyrimidine derivative and an aryl Grignard reagent. 

Additional research by the Knochel group has shown, that chromium catalyzes selectively the arylation 

of a halide adjacent to a heteroatom, even if other halides are present (Scheme 24).90 

 

Scheme 24: Regioselective arylation of a dichlorinated pyridine in the presence of CrCl2. 

Furthermore, both amination and oxidative coupling reactions catalyzed by chromium have been 

reported.91 Finally, the group of Zheng has shown that chromium halides can perform cross-coupling 

reactions between arylmagnesium reagents and aryl methyl ethers or aryl pyridyl ethers as 

electrophiles.92  

                                                      
87 for a general overview, see: a) A. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 

13856; b) I. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170; c) D. Haas, J. M. Hamann, R. Greiner, P. Knochel, 

ACS Catal. 2016, 6, 1540; d) T. L. Mako, J. A. Byers, Inorg. Chem. Front. 2016, 3, 766; e) A. Piontek, E. Bisz, 

M. Szostak, Angew. Chem. Int. Ed. 2018, 57, 11116. 
88 for a general overview, see: a) C. Gosmini, J.-M. Bégouin, A. Moncomble, Chem. Commun. 2008, 3221; b) C. 

Gosmini, A. Moncomble, Isr. J. Chem. 2010, 50, 568; c) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435; c) 

J. M. Hammann, M. S. Hofmayer, F. H. Lutter, L. Thomas, P. Knochel, Synthesis 2017, 3887. 
89 A. K. Steib, O. M. Kuzmina, S. Fernandez, D. Flubacher, P. Knochel, J. Am. Chem. Soc. 2013, 135, 15346. 
90 A. K. Steib, O. M. Kuzmina, S. Fernandez, S. Malhotra, P. Knochel, Chem. Eur. J. 2015, 21, 1961. 
91 a) O. M. Kuzmina, P. Knochel, Org. Lett. 2014, 16, 5208; b) A. K. Steib, S. Fernandez, O. M. Kuzmina, M. 

Corpet, C. Gosmini, P. Knochel, Synlett 2015, 26, 1049. 
92 a) X. Cong, H. Tang, X. Zeng, J. Am. Chem. Soc. 2015, 137, 14367; b) F. Fan, J. Tang, M. Luo, X. Zeng, J. 

Org. Chem. 2018, 83, 13549. 
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4 Objectives 

Based on previous results on transition metal catalyzed cross-coupling reactions, the scope of chromium 

based coupling reactions should be expanded. Especially as they show a low tendency to undergo side 

reactions such as homocouplings, which are often present in related reactions of metals like iron or 

cobalt. Notably alkylations of N-arenes and electron-deficient substrates would be a valuable addition 

to the scope of chromium-catalyzed C-C bond formations, considering the high reactivity of 

alkylmagnesium reagents towards electrophilic reagents and their tendency to undergo halogen-

magnesium exchange reactions (Scheme 25). 

 

Scheme 25: Schematic representation of the chromium-catalyzed alkylation of a halogenated quinoline. 

Furthermore, an expansion of regioselective metalations would be of major interest. The general 

tendency of metalations toward the ortho-position of a directing group, due to coordination induced 

proximity effects and inductive electronic effects, is a common motiv in organometallic chemistry. 

Remote metalations would be a valuable tool to simplify the generation of various substitution patterns. 

As inductive electronic effects are proximity based, an alternative steric directing effect seems feasible. 

The necessary shielding groups should be chosen large enough to avoid the metalation of their 

immediate ortho-positions and their removal needs to be possible to add additional synthetic value. The 

utility of these remote functionalized substrates needs to be shown regarding both their scalability and 

their followup functionalizations (Scheme 26).93 

 

Scheme 26: General depiction of a sterically induced remote metalation and its application for the generation of 

1,2,3,5-tetrafunctionalized arenes. 

 

 

 

 

 

 

                                                      
93 This project was based on preliminary experiments by Dr. Johannes Nickel, see: J. Nickel, Dissertation, LMU 

München, 2016.  
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1 Chromium-Catalyzed Cross-Coupling Reactions of Alkylmagnesium 

Reagents with Halo-Quinolines and Activated Aryl Chlorides 

1.1 Introduction 

Although palladium-94 and nickel-catalyzed95 cross-coupling reactions using organomagnesium 

reagents are well known, alternative cross-couplings using transition-metal catalysts such as iron,87,96 

cobalt97 or copper98 salts are cost efficient options and have therefore been studied with great attention.  

Recently, it was reported that chromium(II) chloride catalyzes the cross-coupling of various aryl- and 

heteroarylmagnesium reagents with electron-deficient aryl and heteroaryl halides.89,90,92,99 

Chromium(II) chloride also catalyzes the direct oxidative arylation of pyridines, aryl oxazolines and 

imines with aryl Grignard reagents.91a In addition, N-heterocyclic chlorides were aminated via 

chromium catalysis.91b 

Herein, a simple procedure is reported, which allows the cross-coupling of alkylmagnesium reagents 

with electron-deficient unsaturated substrates using CrCl3•3THF, a THF soluble chromium catalyst.100 

This complex was prepared by Soxhlet extraction of CrCl3 with THF and a catalytic amount of zinc 

powder (Scheme 27). 

 

Scheme 27: Preparation of the THF-soluble CrCl3•3THF complex. 

                                                      
94 a) R. Martin, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3844; b) G. Manolikakes, P. Knochel, Angew. 

Chem. Int. Ed. 2009, 48, 205; c) A. L. Krasovskiy, S. Haley, K. Voigtritter, B. H. Lipshutz, Org. Lett. 2014, 16, 

4066; d) X. Hua, J. Masson-Makdissi, R. J. Sullivan, S. G. Newmann, Org. Lett. 2016, 18, 5312. 
95 a) N. Yoshikai, H. Mashima, E. Nakamura, J. Am. Chem. Soc. 2005, 127, 17978; b) B.-T. Guan, X.-Y. Lu, Y. 

Zheng, D.-G. Yu, T. Wu, K.-L. Li, B.-J. Li, Z.-J. Shi, Org. Lett. 2010, 12, 396; c) A. Joshi-Pangu, C.-Y. Wang, 

M. R. Biscoe, J. Am. Chem. Soc. 2011, 133, 8478. 
96 a) A. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856; b) J. Quintin, X. Franck, 

R. Hocquemiller, B. Figadère, Tetrahedron Lett. 2002, 43, 3547; c) M. Hocek, H. Dvořáková, J. Org. Chem. 2003, 

68, 5773; d) H. Nishikado, H. Nakatsuji, K. Ueno, R. Nagase, Y. Tanabe, Synlett 2010, 14, 2087; e) O. M. 

Kuzmina, A. K. Steib, D. Flubacher, P. Knochel, Org. Lett. 2012, 14, 4818; f) O. M. Kuzmina, A. K. Steib, J. T. 

Markiewicz, D. Flubacher, P. Knochel, Angew. Chem. Int. Ed. 2013, 52, 4945; g) R. B. Bedford, T. Gallagher, D. 

R. Pye, W. Savage, Synthesis 2015, 47, 1761. 
97 a) T. Hatakeyama, S. Hashimoto, K. Ishizuka, M. Nakamura, J. Am. Chem. Soc. 2009, 131, 11949; b) G. Cahiez, 

A. Moyeux, Chem. Rev. 2010, 110, 1435; c) S. Gülak, O. Stepanek, J. Malberg, B. R. Rad, M. Kotora, R. Wolf, 

A. J. von Wangelin, Chem. Sci. 2013, 4, 776; d) J. M. Hammann, A. K. Steib, P. Knochel, Org. Lett. 2014, 16, 

6500; e) C. A. Malapit, M. D. Visco, J. T. Reeves, C. A. Busacca, A. R. Howell, C. H. Senanayake, Adv. Synth. 

Catal. 2015, 357, 2199; f) J. M. Hammann, D. Haas, C.-P. Tüllmann, K. Karaghiosoff, P. Knochel, Org. Lett. 

2016, 18, 4778. 
98 a) S. Thapa, A. Kafle, S. K. Gurung, A. Montoya, P. Riedel, R. Giri, Angew. Chem. Int. Ed. 2015, 54, 8236; b) 

Y.-A. Chen, S. S. Badsara, W.-T. Tsai, C.-F. Lee, Synthesis 2015, 47, 181.  
99 J. Yan, N. Yoshikai, Org. Lett. 2017, 19, 6630. 
100 R. J. Kern, J. Inorg. Nucl. Chem. 1962, 24, 1105. 
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1.2 Alkylation of quinolines and isoquinolines 

In a preliminary experiment, 2-chloroquinoline (1a) was treated with phenylethylmagnesium bromide 

(2a) (1.5 equiv.), prepared from the corresponding alkyl bromide and Mg/LiCl, in the presence of 

CrCl3•3THF (3 mol%) at 25 °C.25 Full conversion was observed after 15 min and the desired cross-

coupling product 3a was obtained in 91% isolated yield. In contrast to other transition metals such as 

iron or cobalt, no homo-coupling byproducts were observed. Furthermore, the catalyst loading could be 

reduced from 3 mol% to 0.5 mol% with no decrease in yield (Scheme 28). 

 

Scheme 28: Chromium(III)-catalyzed cross-coupling of 2-chloroquinoline (1a) and Grignard reagent 2a. 

This coupling reaction could be extended to primary alkylmagnesium derivatives such as 2b-c and the 

2-alkylated quinolines 3b-c were obtained in 65–79% yield under the same reaction conditions (Table 

1, entries 1–2). All organomagnesium reagents except 2d, were complexed by LiCl, however control 

experiments using Grignard reagent 2a without LiCl did not lead to differences in yield or reaction 

times. The related 2-chloro-4-methylquinoline (1b) reacted similarly with the Grignard reagents 2a–e 

leading, within 15 min at 25 °C, to the 2-alkylated quinolines 3d–h in 56–82% yield (entries 3–7). 

Electron-deficient 2,6-dichloroquinoline (1c) underwent a regioselective cross-coupling reaction with 

alkylmagnesium reagents 2a–e, furnishing the expected 2-alkylated 6-chloroquinolines 3i–m in 58–

84% yield (entries 8–12). 
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Table 1: Chromium-catalyzed cross-coupling reactions of alkylmagnesium reagents 2a–e with quinolines 1a–c. 

 

Entry Electrophile Magnesium reagent Product/Yield[a] 

 
  

 

1 1a 2b 3b, 79% 

 
 

 
 

2 1a 2c 3c, 65% 

 

 
 

 

3 1b 2a 3d, 82% 

 

 
 

 

4 1b 2b 3e, 79% 

 

 

 

 

5 1b 2c 3f, 79% 

 

 

 

 

6 1b 2d 3g, 56% 

 

 

 

 

7 1b 2e 3h, 69% 

 
   

8 1c 2a 3i, 58% 

 
  

 

9 1c 2b 3j, 77% 
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10 1c 2c 3k, 63% 

 
 

 
 

11 1c 2d 3l, 83% 

 
 

 
 

12 1c 2e 3m, 84% 

[a] Yield of isolated, analytically pure product.  

The reaction scope could be extended and functionalized 2-bromoquinoline 1d as well as 1-

iodoisoquinoline (1e) reacted well with the alkylmagnesium reagent 2a, tolerating an ethyl ester and 

avoiding possible halogen-metal exchanges, affording the expected products 3n-o in 50% yield each 

(Scheme 29). 

 

Scheme 29: Cross-coupling reaction of quinoline 1d and isoquinoline 1e with Grignard reagent 2a. 

1.3 Alkylation of electron-deficient aryl chlorides 

Interestingly, alkylmagnesium halides also reacted smoothly with aryl chlorides bearing an electron-

withdrawing function, such as the benzoyl group or an imine, in ortho-position. Thus, the Grignard 

reagent 2a reacted with 2-chlorobenzophenone (4a) in the presence of CrCl3•3THF (3 mol%) within 

15 min at 25 °C, furnishing the alkylated benzophenone 5a in 70% yield (Scheme 30). Using the less 

reactive Grignard reagent Me3SiCH2MgCl•LiCl (2f) provided benzophenone 5b in 88% yield, while 

completely avoiding the formation of a potential Peterson-olefination byproduct.101 Also, imine 4b was 

readily alkylated with 2a producing, after acidic hydrolysis, the ortho-alkylated benzaldehyde 5c in 

71% yield. Even though secondary alkylmagnesium halides normally undergo cross-coupling reactions 

in moderate yield,102 cyclopropylmagnesium bromide complexed with lithium chloride (2g) underwent 

a rapid cross-coupling with 4b leading to the aldehyde 5d in 74% yield. 

                                                      
101 J. S. Clark, F. Romiti, Angew. Chem. Int. Ed. 2013, 52, 10072. 
102 D. H. Burns, J. D. Miller, H.-K. Chan, M. O. Delaney, J. Am. Chem. Soc. 1997, 119, 2125. 
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Scheme 30: Chromium-catalyzed cross-coupling reactions of electron-deficient aryl chlorides 4a and 4b. 
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2 Regioselective Remote-Lithiation of 1,3-bis-Silylated (Hetero)Arenes 

2.1 Introduction 

The metalation of arenes and heteroarenes is an important functionalization method of these unsaturated 

cyclic systems.103 Usually a functional group is used to direct metalations into the ortho position.104 

However, metalation in meta or para positions are rare. Recently, the groups of Mulvey, O’Hara and 

others described selective meta-functionalizations using mixed alkali-metal-mediated metalations 

allowing the double functionalization of various aromatics in ortho-meta’ or even in meta-meta’ 

positions (Scheme 31).105  

 

Scheme 31: Mulvey and O'Hara’s double metalation and reaction with iodine. 

Additionally, the groups of Gaunt and Wu investigated a copper-catalyzed oxidative C-H-coupling 

leading to a meta-arylation of aniline derivatives.106 Using removable nitrile containing tethers, the 

groups of Yu107 and Tan108 were able to perform meta C-H activations using palladium-catalyzed Heck 

reactions (Scheme 32). 

                                                      
103 a) J. Clayden, Organolithiums: Selectivity for Synthesis (Eds.: J. E. Baldwin, R. M. Williams), Pergamon, 

Oxford, 2002; b) F. Mongin, A. Harrison-Marchand, Chem. Rev. 2013, 113, 7563; c) D. Tilly, F. Chevallier, F. 

Mongin, P. C. Gros, Chem. Rev. 2014, 114, 1207. 
104 a) P. Beak, V. Snieckus, Acc. Chem. Res. 1982, 15, 306; b) D. R. Ray, Z. Song, S. G. Smith, P. Beak, J. Am. 

Chem. Soc. 1988, 110, 8145; c) V. Snieckus, Chem. Rev. 1990, 90, 879; d) K. M. Bertini, P. Beak, J. Am. Chem. 

Soc. 2001, 123, 315; e) S. Usui, Y. Hashimoto, J. V. Morey, A. E. H. Wheatley, M. Uchiyama, J. Am. Chem. Soc. 

2007, 129, 15102; f) D. I. Coppi, A. Salomone, F. M. Perna, V. Capriati, Angew. Chem. Int. Ed. 2012, 51, 7532. 
105 a) D. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E. Mulvey, Angew. 

Chem. Int. Ed. 2006, 45, 3775; Angew. Chem. 2006, 118, 3859; b) R. E. Mulvey, Acc. Chem. Res. 2009, 42, 743; 

c) A. J. Martinez-Martinez, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, Science 2014, 346, 834; see also: d) C. 

J. Rohbogner, G. C. Closoki, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503; Angew. Chem. 2008, 120, 1526; 

e) J. P. Flemming, M. B. Berry, J. M. Brown, Org. Biomol. Chem. 2008, 6, 1215. 
106 a) R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593; b) B. Chen, C.-L. Hou, Y.-X. Li, Y.-D. Wu, J. Am. 

Chem. Soc. 2011, 133, 7668. 
107 a) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518; b) L. Wan, N. Dastbaravardeh, G. Li, J.-Q. Yu, 

J. Am. Chem. Soc. 2013, 135, 18056; c) G. Yang, P. Lindovska, D. Zhu, J. Kim, P. Wang, R.-Y. Tang, M. 

Movassaghi, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 10807; d) R.-Y. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 

215; e) L. Fang, T. G. Saint-Denis, B. L. H. Taylor, S. Ahlquist, K. Hong, S. Liu, L. Han, K. N. Houk, J.-Q. Yu, 

J. Am. Chem. Soc. 2017, 139, 10702; f) G. Yang, D. Zhu, P. Wang, R.-Y. Tang, J.-Q. Yu, Chem. Eur. J. 2018, 24, 

3434. 
108 S. Lee, H. Lee, K. L. Tan, J. Am. Chem. Soc. 2013, 135, 18778. 
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Scheme 32: Meta C-H activation, using the Thorpe-Ingold effect for an end-on nitrile-palladium coordination, 

reported by Yu and co-workers. 

Yu and co-workers performed an oxidative Pd-catalyzed Catellani-reaction, changing the 

regioselectivity of the C-H activation from ortho to the meta position.109 The Ackermann group reported 

a meta-selective ruthenium-catalyzed C-H alkylation using secondary alkyl halides.110 Maiti and co-

workers observed a para-selective oxidative acylation of arenes employing enol ethers as acylating 

reagents.111 Pioneering work by the Schlosser group showed that a bulky silyl-substituent between two 

chlorides on a benzene ring results in a buttress effect, which kinetically favors the meta-metalation 

relative to the halides.112 Therefore a remote metalation using the direct sterical bulk of two silyl groups 

was envisioned. Herein, a convenient, more general, 5-lithiation of arenes of type 6, leading to remote-

substituted aryllithiums of type 7 is reported (Scheme 33). 

                                                      
109 a) X.-C. Wang, W. Gong, L.Z. Fang, R.-Y. Zhu, S. Li, K. M. Engle, J.-Q. Yu, Nature 2015, 519, 334; b) P. 

Wang, G.-C. Li, P. Jain, M. E. Farmer, J. He, P.-X. Shen, J.-Q. Yu, J. Am. Chem. Soc. 2016, 138, 14092; c) P. 

Wang, M.E. Farmer, X. Huo, P. Jain, P.-X. Shen, M. Ishoey, J. E. Bradner, S. R. Wisniewski, M. D. Eastgate, J.-

Q. Yu, J. Am. Chem. Soc. 2016, 138, 9269; d) Q. Ding, S. Ye, G. Cheng, P. Wang, M. E. Farmer, J.-Q. Yu, J. Am. 

Chem. Soc. 2017, 139, 417; e) H. Shi, A. N. Herron, Y. Shao, Q. Shao, J.-Q. Yu, Nature 2018, 58, 581. 
110 N. Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135, 5877. 
111 A. Maji, A. Dahiya, G. Lu, T. Bhattacharya, M. Brochetta, G. Zanoni, P. Liu, D. Maiti, Nat. Commun. 2018, 

9, 3582. 
112 a) C. Heiss, E. Marzi, M. Schlosser, Eur. J. Org. Chem. 2003, 4625; b) J. Gorecka, C. Heiss, R. Scopelliti, M. 

Schlosser, Org. Lett. 2004, 6, 4591; c) M. Schlosser, C. Heiss, E. Marzi, R. Scopelliti, Eur. J. Org. Chem. 2006, 

4398; d) C. Heiss, E. Marzi, F. Mongin, M. Schlosser, Eur. J. Org. Chem. 2007, 669; e) T. Klis, S. Lulinski, J. 

Serwatowski, Curr. Org. Chem. 2008, 12, 1479. 
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Scheme 33: A buttress induced remote lithiation, reported by Schlosser and co-workers, and an extension to 

sterically hindered bis-silylated arenes of type 6. 

2.2 Optimization of the metalation conditions and investigation of the shielding trialkylsilyl group 

First, the conditions for the lithiation of the model substrate 2,6-bis(triethylsilyl)fluorobenzene (6a) 

were investigated. The formation of the lithiated arene 7a was determined by quenching reaction 

aliquots with MeSSMe leading to the thioether 8a. No lithiation was observed with standard lithium 

bases (Table 2, entries 1-4). The addition of TMEDA, a common reactivity enhancing agent of 

alkyllithium reagents, had no effect (entries 5-6).113 However, addition of PMDTA114 to either nBuLi 

or sBuLi afforded the expected metalation product 7a in 43% and 29% yield respectively, indicating 

that nBuLi is the superior alkyllithium base for these systems (entries 7-8). To improve the incomplete 

metalation, the amount of base was increased from 1.5 equiv. to 3.0 equiv. raising the yield to 58% 

(entry 9). Surprisingly, Schlosser’s base (nBuLi•KOtBu)115 drastically decreased the product yield to 

9% (entry 10). Finally, changing from ethereal solvents to non-coordinating hexane improved the 

lithiation considerably and the reaction of 6a with nBuLi•PMDTA led, after quench with MeSSMe, to 

an increased yield of 65% isolated product of 8a (entry 11). Realizing, that non-coordinating nhexane 

was the best solvent for the lithiation, TMEDA was tested again, still not leading to product formation 

(entry 12). Longer homologes of PMDTA like 1,1,4,7,10,10-hexamethyltriethylenetetramine 

                                                      
113 a) C. Heiss, E. Marzi, M. Schlosser, Eur. J. Org. Chem. 2003, 4625; b) J. Gorecka, C. Heiss, R. Scopelliti, M. 

Schlosser, Org. Lett. 2004, 6, 4591; c) M. Schlosser, C. Heiss, E. Marzi, R. Scopelliti, Eur. J. Org. Chem. 2006, 

4398; d) C. Heiss, E. Marzi, F. Mongin, M. Schlosser, Eur. J. Org. Chem. 2007, 669; e) T. Klis, S. Lulinski, J. 

Serwatowski, Curr. Org. Chem. 2008, 12, 1479. 
114 a) G. Katsoulos, S. Takagishi, M. Schlosser, Synlett 1991, 731; b) C. Strohmann, V. H. Gessner, Angew. Chem. 

Int. Ed. 2007, 46, 4566; Angew. Chem. 2007, 119, 4650; c) M. Porcs-Makkay, A. Komáromi, G. Lukács, G. Simig 

Tetrahedron 2008, 64, 1029; d) V. H. Gessner, C. Däschlein, C. Strohmann, Chem. Eur. J. 2009, 15, 3320; e) A.-

C. Pöppler, H. Keil, D. Stalke, M. John, Angew. Chem. Int. Ed. 2012, 51, 7843; Angew. Chem. 2012, 124, 7963. 
115 a) M. Schlosser, J. Organomet. Chem. 1967, 8, 9; b) P. Benrath, M. Kaiser, T. Limbach, M. Mondeshki, J. 

Klett, Angew. Chem. Int. Ed. 2016, 55, 10886; Angew. Chem. 2016, 128, 11045; c) e-EROS Encyclopedia of 

Reagents for Organic Synthesis: n‐Butyllithium–Potassium t‐Butoxide, DOI: 

10.1002/9780470842898.rb398m.pub2. 
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(HMTETA) or tris[2-(dimethylamino)ethyl]-amine (Me6TREN) were tested in an attempt to increase 

the lithium-chelation (entries 13-14). Surprisingly, these additives did not lead to product formation. 

Additionally, the bidentate additives trans-N,N,N’,N’-tetramethylcyclohexane-1,2-diamine 

(Me4DACH) and Me2N(CH2)2OLi116 afforded no product either (entries 15-16). 

 

Table 2: Optimization of the lithiation of bis-silylated fluorobenzene 6a. 

 

Entry Li reagent Additive Equiv. Solvent Yield [%][a] 

1 nBuLi - 1.5 Et2O 0 

2 sBuLi - 1.5 Et2O 0 

3 tBuLi - 1.5 Et2O 0 

4 TMPLi - 1.5 THF 0 

5 nBuLi TMEDA 1.5 Et2O 0 

6 sBuLi TMEDA 1.5 Et2O 0 

7 nBuLi PMDTA 1.5 Et2O 43 

8 sBuLi PMDTA 1.5  Et2O 29 

9 nBuLi PMDTA 3.0 Et2O 58 

10 nBuLi PMDTA/KOtBu 3.0 Et2O 9 

11 nBuLi PMDTA 3.0 nhexane 71 (65)[b] 

12 nBuLi TMEDA 3.0 nhexane 0 

13 nBuLi HMTETA 3.0 nhexane 0 

14 nBuLi Me6TREN 3.0 nhexane 0 

15 nBuLi Me4DACH 3.0 nhexane 0 

16 nBuLi Me2N(CH2)2OLi 3.0 nhexane 0 

[a] Yield of the thioether determined by GC analysis of reaction aliquots quenched with MeSSMe, using undecane 

as internal standard. [b] Yield of analytically pure isolated product. 

With these metalation conditions in hand, the nature of the trialkylsilyl-group necessary for a 

regioselective remote lithiation was investigated. Therefore, several 2,6-bis-silyl fluorobenzenes were 

prepared (Table 3). Trimethylsilyl chloride and triethylsilyl chloride afforded the desired products in 

88% and 95% yield, respectively (entries 1-2). However, the more sterically hindered triisopropyl 

chloride and tbutyldimethylsilyl chloride led only to the mono-silylated products (entries 3-4).  

                                                      
116 P. Gros, Y. Fort, G. Queguiner, P. Caubère, Tetrahedron Lett. 1995, 36, 4791.  
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Table 3: Preparation of various sterically hindered bis-silylated fluorobenzenes. 

 

Entry R R´ Yield [%] 

1 Me Me 88[a] 

2 Et Et 95[a] 

3 iPr iPr 0[b] 

4 Me tBu 0[b] 

[a] Yield of analytically pure isolated product. [b] Only mono-silylated product was observed. 

Finally, submitting bis(trimethylsilyl)fluorobenzene to the previously established metalation protocol 

and treatment with MeSSMe afforded a complex mixture of unidentifiable products. Therefore, the 

triethylsilyl group was the optimal sterically hindered trialkylsilyl group for this remote lithiation. 

2.3 Preparation of 5-functionalized arenes 

The aryllithium 7a generated under these optimized conditions was treated with various electrophiles 

leading regiospecifically to 5-substituted fluorobenzenes 8a–m in 51–89% yield (Table 4). Thus, a 

bromination was best performed by transmetallating 7a with ZnCl2 followed by quenching with 

bromine in THF to afford bromobenzene 8b in 89% yield. Treatment of 7a with Me3SiCl furnished the 

silyl derivative 8c in 83% yield. A methylation was achieved with methyl iodide affording the arene 8d 

in 74% yield. Allylations with allylic bromides of the zinc derivative of 7a in the presence of 10% 

CuCN•2LiCl117 furnished the allylated products 8e–f in 68–82% yield. Trapping with aldehydes or 

ketones produced the desired alcohols 8g–l in 61–80% yield. Acylations were successful with DMF, a 

Weinreb amide,118 CO2 or ethyl cyanoformate leading to the carbonyl derivatives 8j–m in 51–74% 

yield. 

Table 4: 5-lithiation of fluorobenzene 6a, leading to functionalized arenes of type 8. 

 

Entry Electrophile Product Yield (%)[a] 

 Br2 

 

 

1  8b 89[b] 

                                                      
117 P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390. 
118 S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815. 
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 Me3SiCl 

 

 

2  8c 83 

 MeI 

 

 

3  8d 74 

  

 

 

4  8e 82[b,c] 

 
 

 

 

5  8f 68[b,c] 

 

 

 

 

6  8g 61 

 
 

 

 

7  8h 80 

 
 

 

 

8  8I 76 

 
 

 

 

9  8j 74 
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10  8k 71 

 CO2 

 

 

11  8l 63 

 
 

 

 

12  8m 51[d] 

[a] Yield of analytically pure isolated product. [b] ZnCl2 (3.0 equiv.) was added. [c] CuCN•2LiCl (10 mol%) was 

added. [d] MgCl2 (3.0 equiv.) was added. 

It was assumed, that the fluoro-substituent of the bis-silyl arene 6a was essential for a fast metalation. 

However, after preparing analogs of 6a such as oxazolylbenzene 6b, it was apparent that other factors 

than the substituents electronegativity were important for such remote lithiations. Thus, oxazolyl 

derivative 6b was smoothly metalated with nBuLi•PMDTA (3.0 equiv., 25 °C, 6 h) to provide the 

lithiated arene 7b (Table 5). Quenching 7b with MeSSMe led to the corresponding thioether 9a in 89% 

isolated yield (entry 1). Trisilylbenzene 9b was obtained after treating lithium reagent 7b with 

trimethylsilyl chloride in 89% yield (entry 2). Halogenation was achieved by either reacting 7b with 

NFSI affording the fluorinated arene 9c in 62% yield (entry 3) or by transmetallating the lithium species 

with ZnCl2 and adding the zinc reagent to a THF solution of the elemental halogen to yield bromide 9d 

(this reaction was performed on a 30 mmol scale with no decrease in yield) and iodide 9e in 88-96% 

yield respectively (entries 4–5). A copper-catalyzed allylation of the zinc intermediate with 3-

bromocyclohexene furnished 9f in 86% yield (entry 6). Primary, secondary and tertiary benzylic 

alcohols 9g–i were accessible after reaction with paraformaldehyde, aldehydes and ketones in 79–86% 

yield (entries 7–9). The formylation using DMF yielded benzaldehyde 9j in 67% yield (entry 10). 

Finally, various acylation reactions successfully led to the respective ketone, acid or amides 9k–n in 

68–70% yield (entries 11–14). 
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Table 5: 5-Lithiation of oxazolyl arene 6b and reaction with various electrophiles leading to functionalized 

arenes of type 9. 

 

Entry Electrophile Product  Yield (%)[a] 

 MeSSMe 

 

 

1  9a 89 

 Me3SiCl 

 

 

2  9b 89 

 NFSI 

 

 

3  9c 62 

 Br2 

 

 

4  9d 96[b,c] 

 I2 

 

 

5  9e 88[b] 
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6  9f 86[b,d] 

 

 

 

 

7  9g 79 

 

 

 

 

8  9h 84 

 
 

 

 

9  9i 86 

 
 

 

 

10  9j 67 

 

 

 

 

11  9k 70 
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 CO2 

 

 

12  9l 68 

 
 

 

 

13  9m 70 

 

 

 

 

14  9n 68 

[a] Yield of analytically pure isolated product. [b] ZnCl2 (3.0 equiv.) was added. [c] Performed on a 30 mmol 

scale. [d] CuCN•2LiCl (10 mol%) was added. 

To investigate the influence of coordinating groups, the bis-silyl arenes 6c–e were prepared. Their 

lithiated intermediates 7c–e were treated with MeSSMe affording the corresponding thioethers 10a–

12a in 38–48% yield, indicating that the oxazolyl group has unique properties for this metalation (Table 

6, entries 1–3). The unsubstituted bis-silyl benzene 6f was metalated and the reaction of the lithiated 

species 7f with MeSSMe furnished thioether 13a in 42% yield, comparable to the previously mentioned 

arenes (entry 4). Metalation of and reaction of the lithiated arenes 7c-f with various electrophiles led to 

the functionalized arenes 10-13 in 34-58% yield (entries 5-17). 
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Table 6: 5-Lithiation of various functionalized bis-silyl arenes and their reaction with electrophiles. 

 

Entry Substrate Electrophile Product Yield (%)[a] 

 

 

MeSSMe 

 

 

1 6c  10a 44 

 

 

MeSSMe 

 

 

2 6d  11a 38 

 

 

MeSSMe 

 

 

3 6e  12a 48[b] 

 
 

MeSSMe 

 

 

4 6f  13a 42 

 

 

Me3SiCl 

 

 

5 6c  10b 39 

 

 

NFSI 

 

 

6 6c  10c 40 

 

 

Br2 

 

 

7 6c  10d 51[c] 
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8 6c  10e 39 

 

  
 

 

9 6c  10f 38 

 

  
 

 

10 6c  10g 44 

 

 
 

 

 

11 6c  10h 38 

 

 

Me3SiCl 

 

 

12 6d  11b 46 

 

 

PhSSPh 

 

 

13 6d  11c 44 

 

  
 

 

14 6e  12b 34[b] 

 

  

 

 

15 6e  12c 44[b] 
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16 6f  13b 58 

 
 

I2 

 

 

17 6f  13c 43[c] 

[a] Yield of analytically pure isolated product. [b] The metalation temperature was −10 °C. [c] ZnCl2 (3.0 equiv.) 

was added. 

2.4 Preparation of 1,2,3,5-tetrasubstituted arenes 

To demonstrate the utility of the prepared remote functionalized bis-silyl arenes, partially and fully 

desilylated derivatives were prepared. Therefore, halobenzene 8b underwent a selective ipso-iodinative 

desilylation with ICl, providing aryl iodide 14 in 90% yield.119 A selective iodine-magnesium exchange 

on 14 (iPrMgCl•LiCl, −40 °C, 15 min) furnished an aryl magnesium intermediate, which was quenched 

with a range of electrophiles affording the mono-silanes 15a–g in 71–94% yield (Table 7, entries 1-

7).40a 

Table 7: Trifunctional mono-silanes of type 15 prepared by selective iododesilylation, followed by iodine-

magnesium exchange and electrophile quenchings. 

 

Entry Electrophile Product Yield (%)[a] 

 MeSSMe 

 

 

1  15a 73 

 
 

 

 

2  15b 71[b] 

 
 

 

 

3  15c 93[c] 

                                                      
119 G. Félix, J. Dunoguès, F. Pisciotti, R. Calas, Angew. Chem. Int. Ed. 1977, 16, 488; Angew. Chem. 1977, 89, 

502. 
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4  15d 76 

 
 

 

 

5  15e 74 

 
 

 

 

6  15f 94[d] 

 
 

 

 

7  15g 77 

[a] Yield of analytically pure isolated product. [b] CuCN•2LiCl (10 mol%) was added. [c] ZnCl2 (1.1 equiv.), 

Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) were added. [d] CuCN•2LiCl (1.1 equiv.) was added. 

 

Subsequent treatment of arenes 15c and 15f with ICl afforded the silyl-free iodo-arenes 16a-b in 91–

94% yield (Scheme 34). 

 

Scheme 34: Iododesilylation of mono-silyl arenes 15 affording iodoarenes of type 16. 

An iodine-magnesium exchange on iodoketone 16b and quenching with an electrophile led to the 

tetrasubtituted fluorobenzenes 17a–c in 73–82% yield (Table 8, entries 1-3). 

Table 8: Tetrasubstituted arenes of type 17 prepared by iodine-magnesium exchange, followed by 

transmetallation and reaction with an electrophile. 

 

Entry Electrophile Product Yield (%)[a] 
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1  17a 73[b] 

 
 

 

 

2  17b 82[c] 

 
 

 

 

3  17c 75[c] 

[a] Yield of analytically pure isolated product. [b] CuCN•2LiCl (10 mol%) was added. [c] ZnCl2 (1.1 equiv.), 

Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) were added. 

Additionally, the oxazolyl arenes of type 9 were converted into partially- and fully-desilylated amides 

and lactones via short reaction sequences. Thus, in a one-pot procedure, oxazolyl arene 9d was 

methylated using Me3OBF4 (1.05 equiv., 0 °C, 2 h) followed by a reductive ring opening with LiEt3BH 

(1.2 equiv., −78 °C, 4 h), affording the benzamide 18 in 86% yield (Scheme 35).120 Treatment of 18 

with ICl provided iodoarene 19 in 89% yield. 

 

Scheme 35: Alkylation and reductive ring-opening of oxazoline 9d, followed by iododesilylation leading to 

iodobenzamide 19. 

Selective iodine-magnesium exchange of benzamide 19 and treatment of the intermediate magnesium 

species with various electrophiles afforded the mono-silyl arenes 20a–j in 65–99% yield (Table 9, 

entries 1-10). 

Table 9: Iodine-magnesium exchange of benzamide 19 followed by reaction with electrophiles furnishing 

amides and lactones of type 20. 

 

                                                      
120 a) E. M. Fry, J. Org. Chem. 1950, 15, 802; b) A. I. Meyers, M. Shimano, Tetrahedron Lett. 1993, 34, 4893. 
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Entry Electrophile Product Yield (%)[a] 

 − 

 

 

1  20a 91[b] 

 − 

 

 

2  20b 69[c] 

  

 

 

3  20c 93[d] 

 
 

 

 

4  20d 95[d] 

 
 

 

 

5  20e 65[e] 

 
 

 

 

6  20f 77[e] 

 

 
 

 

7  20g 68[f] 

 
 

 

 

8  20h 74 
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9  20i 72 

 
 

 

 

10  20j 99 

[a] Yield of analytically pure isolated product. [b] MeLi•LiBr (1.05 equiv.) at −78°C was used instead of 

iPrMgCl•LiCl. [c] nBuLi (1.05 equiv.) at −78°C was used instead of iPrMgCl•LiCl. [d] CuCN•2LiCl (10 mol%) 

was added. [e] ZnCl2 (1.1 equiv.), Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) were added. [f] The crude benzylic 

alcohol was heated in refluxing 1,4-dioxane. 

The mono-silyl benzamide 20a was further iodo-desilylated with ICl, leading to iodoarene 21 in 96% 

yield. Subsequent iodine-magnesium exchange followed by reaction with different electrophiles 

furnished the desired silyl-free tetrasubstituted arenes 22a–h in 61–86% yield (Table 10, entries 1-8). 

 

Table 10: Iododesilylation of amide 20a followed by a iodine-magnesium exchange and reaction with 

elecrophiles affording tetrasubstituted arenes of type 22. 

 

Entry Electrophile Product Yield (%)[a] 

 NH4Cl 

 

 

1  22a 86 

 MeSSMe 

 

 

2  22b 83 

 EtI 

 

 

3  22c 61[b] 
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4  22d 66[c] 

 
 

 

 

5  22e 68[c] 

 
 

 

 

6  22f 71[d] 

 

 
 

 

7  22g 61[e] 

 
 

 

 

8  22h 86 

[a] Yield of analytically pure isolated product. [b] tBuLi (2.05 equiv.) at −78°C was used instead of iPrMgCl•LiCl. 

[c] CuCN•2LiCl (10 mol%) was added. [d] ZnCl2 (1.1 equiv.), Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) were 

added. [e] The crude benzylic alcohol was refluxed in 1,4-dioxane. 

2.5 Preparation of 4-functionalized pyridines 

Based on the promising results for the remote lithiation of functionalized benzenes, an extension 

towards the 4-lithiation of pyridines was explored. Therefore, the readily available 

2,6-bis(triethylsilyl)pyridine (23) was prepared and its metalation was investigated. As a result of the 

inherent lower pKa values of pyridines, a lower amount of base could be used (1.1 equiv. instead of 

3.0 equiv.).121 The formation of the metalated pyridine was checked by quenching reaction aliquots with 

I2 in THF (Table 11). Treatment of 23 with the alkyllithium reagents nBuLi and tBuLi in nhexane as 

well as the isopropylmagnesiumchloride lithium chloride complex led to no lithiation (entries 1-3).40a 

Furthermore, no metalation was observed employing the lithium amide bases LiHMDS and TMPLi or 

                                                      
121 a) K. Shen, Y. Fu, J.-N. Li, L. Liu, Q.X. Guo, Tetrahedron 2007, 63, 1568; b) M. Hedidi, G. Bentabed-Ababsa, 

A. Derdour, Y. S. Halauko, O. A. Ivashkevich, V. E. Matulis, F. Chevallier, T. Roisnel, V. Dorcet, F. Mongin, 

Tetrahedron 2016, 72, 2196. 
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the Knochel-Hauser base TMPMgCl•LiCl (entries 4-6).62a Addition of the deaggregating TMEDA to 

nBuLi was inefficient as well (entry 7). However, PMDTA turned out to be the superior additive for 

the 4-lithiation forming the intermediary lithiated pyridine 24, which reacted with I2 affording the 

iodinated pyridine 25a in 95% GC yield (entry 8). 

Table 11: Optimization of the 4-metalation of 2,6-bis(triethylsilyl)pyridine (23). 

 

Entry Base Solvent Yield (%)[a] 

1 nBuLi nhexane 0 

2 tBuLi nhexane 0 

3 iPrMgCl•LiCl THF 0 

4 LiHMDS THF 0 

5 TMPLi THF 0 

6 TMPMgCl•LiCl THF 0 

7 nBuLi•TMEDA nhexane 0 

8 nBuLi•PMDTA nhexane 95 

[a] Yield of the iodide determined by GC analysis of reaction aliquots quenched with I2, using undecane as internal 

standard. 

Using these optimized conditions, 4-functionalized pyridines of type 25a–q were prepared in 60–96% 

yield (Table 12). Thus, 24 was treated with I2 affording the mono-silyl iodide 25a in 89% yield (entry 

1). A copper-catalyzed allylation with allylic bromides led, after transmetalation of 24 with ZnCl2, to 

the allylated pyridine 25b in 62% yield (entry 2). Furthermore, the zinc derivative of 24 was 

successfully used for Pd-catalyzed Negishi cross-coupling reactions furnishing the heterobiphenyls 

25c–f in 60–96% yield (entries 3–6). Addition of 24 to ketones provided the tertiary alcohols 25g–h in 

63–71% yield (entries 7–8). Surprisingly, all functionalized pyridines 25a–h were selectively mono-

desilylated during purification via silica flash column chromatography using silica gel as stationary 

phase. To keep both triethylsilyl-groups intact, the reaction leading to 25c was repeated and NEt3 

(2 vol%) was added to the eluent for flash column chromatography. The corresponding bis-silylated 

biaryl 25i was isolated in 75% yield (entry 9). This, in comparison to 25c, lower yield can be explained 

by a still occurring partial protodesilylation of pyridine 25i. Using this modified purification protocol, 

the bis-silylated thioether 25j, picoline 25k and benzylic alcohol 25l were prepared by reaction with 

corresponding electrophiles and by purification using NEt3 (2 vol%) as an additive to the eluent in 62–

90% yield (entries 10–11). Acylations of 24 with Weinreb-amides, cyanoformates, chloro formamides 

and isocyanates afforded the carbonyl derivatives 25m–q in 66–88% yield (entries 12–17). 
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Surprisingly, no NEt3 additive was necessary to maintain both silyl function during purification. The 

most likely reason for this observation is a protonated cationic intermediate formed on the acidic 

stationary phase. Electron rich substituents stabilize the cationic intermediate, promoting its formation 

and allowing the following protodesilylation. However, electron withdrawing groups destabilize 

potential cations and the corresponding electron-poor pyridines are therefore more inert to silica 

induced protodesilylation. 

Table 12: 4-Lithiation of pyridine 23, leading to functionalized pyridines of type 25. 

 

Entry Electrophile Product Yield (%)[a] 

 I2 

 

 

1  25a 89 

 
 

 

 

2  25b 62[b] 

 
 

 

 

3  25c 96[c] 

 
 

 

 

4  25d 83[c] 

 
 

 

 

5  25e 73[c] 
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6  25f 60[c] 

 
 

 

 

7  25g 71 

 

 
 

 

8  25h 63 

 
 

 

 

9  25i 75[c,d] 

 MeSSMe 

 

 

10  25j 66[d] 

 MeI 

 

 

11  25k 90[d] 

 

 
 

 

12  25l 62[d] 

 

 
 

 

13  25m 78 
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14  25n 76 

 
 

 

 

15  25o 88[e] 

 
 

 

 

16  25p 67 

 
 

 

 

17  25q 66 

[a] Yield of analytically pure isolated product. [b] ZnCl2 (1.1 equiv.) and CuCN•2LiCl (10 mol%) were added. 

[c] ZnCl2 (1.1 equiv.) and Pd(PPh3)4 (2 mol%) were added. [d] NEt3 was used during column chromatographical 

purification. [e] MgCl2 (1.0 equiv.) was added. 

2.6 Preparation of polyfunctionalized pyridines 

To emphasize the synthetic value of this remote functionalization, follow-up metalations of the 

pyridines of type 25 were investigated. The formation of metalated intermediate 26 was determined by 

quenching reaction aliquots with I2 leading to iodo pyridine 27a (Table 13). Thus, mono-silyl pyridine 

25c was treated with the lithium amide bases LiHMDS and TMPLi. Whereas LiHMDS did not form 

the desired iodide, TMPLi formed the iodinated pyridine 27a in 17% yield, while leaving large amounts 

of 25c unreacted (entries 1–2). Applying the magnesium amides TMPMgCl•LiCl and TMP2Mg•2LiCl 

without additives led to no conversion of the starting material, independent of the temperature used 

(entries 3–6).62,66 Adding BF3•OEt2 for an additional Lewis Acid activation was ineffective for 

TMPMgCl•LiCl at cryogenic temperatures (entries 7–8).65 However, at 0 °C full conversion of 25c was 

observed and iodide 27a was obtained in 86% yield (74% isolated yield) (entry 9). TMP2Mg•2LiCl 

reacted after addition of BF3•OEt2 even at −40 °C affording the iodinated pyridine 27a in 61% yield 

(entry 10). Finally, the TMP2Mg•2LiCl/BF3•OEt2 mixture at 0 °C raised the yield of 27a to 78% (entry 

11). 



B. RESULTS AND DISCUSSION    48 

Table 13: Base screening for the ortho-metalation of pyridine 25c. 

 

Entry Base Additive Temperature Yield (%)[a] 

1 LiHMDS  −40 °C 0 

2 TMPLi  −40 °C 17 

3 TMPMgCl•LiCl  −78 °C 0 

4 TMPMgCl•LiCl  −40 °C 0 

5 TMPMgCl•LiCl  0 °C 0 

6 TMP2Mg•2LiCl  −40 °C 0 

7 TMPMgCl•LiCl BF3•OEt2 −78 °C 0 

8 TMPMgCl•LiCl BF3•OEt2 −40 °C 0 

9 TMPMgCl•LiCl BF3•OEt2 0 °C 86[b] (74)[c] 

10 TMP2Mg•2LiCl BF3•OEt2 −40 °C 61 

11 TMP2Mg•2LiCl BF3•OEt2 0 °C 78 

[a] Yield of the iodide 27a determined by GC analysis of reaction aliquots quenched with I2, using undecane as 

internal standard. [b] The metalation was finished within 20 min. [c] Yield of analytically pure isolated product. 

 

TMPMgCl•LiCl and BF3•OEt2 at 0 °C were deemed the most efficient mixture for this ortho-metalation 

and were used for the functionalization of 25c (Table 14). Therefore, the pyridylmagnesium species 26 

was treated with bromine leading to 2-bromopyridine 27b in 83% yield (entry 1). Copper-catalyzed 

allylations with allylic bromides furnished the allylated products 27c–d in 52–73% yield (entries 2–3). 

Reaction of 26 with 4-chlorobenzaldehyde afforded benzylic alcohol 27e in 61% yield (entry 4). A 

copper-mediated acylation provided phenone 27f in 78% yield (entry 5). Finally, the reaction of 26 with 

ethyl cyanoformate led to ethyl picolinate 27g in 65% yield (entry 6). 

 

Table 14: BF3•OEt2 mediated ortho-magnesiation of pyridine 25c leading to functionalized pyridines of type 

27. 

 

Entry Electrophile Product Yield (%)[a] 
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 Br2 

 

 

1  27b 83 

  

 

 

2  27c 73[b] 

 
 

 

 

3  27d 52[b] 

 

 

 

 

4  27e 61 

 

 

 

 

5  27f 78[c] 

 
 

 

 

6  27g 65 

[a] Yield of analytically pure isolated product. [b] CuCN•2LiCl (10 mol%) was added. [c] CuCN•2LiCl 

(1.2 equiv.) was added. 

The second triethylsilyl group was readily removed by treating 27b with TBAF affording the 

disubstituted pyridine 28 in 98% yield (Scheme 36). 
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Scheme 36: Protodesilylation of pyridine 27b using TBAF. 

The disubstituted pyridine 28 was treated with different metal-amides to obtain metalated pyridines of 

type 29 (Table 15). Reaction of 28 with lithium-amide TMPLi led to the decomposition of the 

halopyridine (entry 1). TMPMgCl•LiCl afforded the desired dihalo-pyridine 30a in 44% yield (entry 

2). Surprisingly, contrary to the metalation of mono-silyl pyridine 25c, addition of BF3•OEt2 led to a 

decrease in product formation (entry 3). Due to the fact that longer reaction times led to decomposition 

of 29, the base amount was steadily increased. This raised the formation of 30a to 66% (for 2.0 equiv.) 

and 93% (96% isolated yield, for 4.0 equiv.) (entries 4–5). Also, the zinc-amide TMPZnCl•LiCl was 

tested, however no product was formed (entry 6). 

 

Table 15: Screening of the metalation conditions of pyridine 28. 

 

Entry Base Equivalents Additive Temperature Yield(%)[a] 

1 TMPLi 1.2 – −40 °C 0 

2 TMPMgCl•LiCl 1.2 – 0 °C 44 

3 TMPMgCl•LiCl 1.2 BF3•OEt2 0 °C 30 

4 TMPMgCl•LiCl 2.0 – 0 °C 66 

5 TMPMgCl•LiCl 4.0 – 0 °C 93(97)[b] 

6 TMPZnCl•LiCl 1.2 – 0 °C 0 

[a] Yield of the iodide 30a determined by GC analysis of reaction aliquots quenched with I2, using undecane as 

internal standard. [b] Yield of analytically pure isolated product. 

 

Using these optimized conditions, several trisubstituted pyridines of type 30 were prepared (Table 16). 

Magnesium pyridine 29 was treated with MeSSMe leading to the methyl thioether 30b in 86% yield 

(entry 1). A copper-catalyzed allyation using 3-bromocyclohexene provided 30c in 97% yield (entry 2). 

A Pd-catalyzed cross-coupling reaction of the zinc derivative of 29 and iodoanisole afforded 30d in 
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83% yield (entry 3). Finally, an acylation using tbutyl isocyanate furnished amide 30d in 79% yield 

(entry 4). 

Table 16: Preparation of trisubstituted pyridines of type 30 from bromopyridine 28. 

 

Entry Electrophile Product Yield (%)[a] 

 MeSSMe 

 

 

1  30b 86 

 
 

 

 

2  30c 97[b] 

 
 

 

 

3  30d 83[c] 

 
 

 

 

4  30e 79 

[a] Yield of analytically pure isolated product. [b] CuCN•2LiCl (10 mol%) was added. [c] ZnCl2 (1.1 equiv.), 

Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) were added. 
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2.7 Protodesilylation and functionalization of electron-deficient pyridines 

To gain access to substitution patterns different from the 2,4,6-pyridines of type 30, the directing group 

bearing 25p was to be functionalized. As mentioned in chapter 2.5 electron withdrawing substituents in 

4-position inhibited the protodesilylation during flash column chromatography. Therefore, the 

deprotection of the electron-deficient pyridine 25p to mono-silyl pyridine 31 was explored (Table 17). 

Stirring 25p in a suspension of silica gel in hexane did not lead to deprotected pyridine (entry 1). 

Furthermore, the strong desilylation reagent TBAF left both triethylsilyl groups intact (entry 2). Also, 

acid mediated protodesilylation was ineffective for a solution of HCl (2 M in MeOH) (entry 3). 

However, acetic acid selectively cleaved one silyl-group affording pyridine 31 in 83% yield (entry 4). 

Table 17: Investigation regarding the protodesilylation of pyridine 25p toward 31. 

 

Entry Reagent Solvent Yield(%)[a] 

1 silica gel hexane - 

2 TBAF THF - 

3 HCl MeOH - 

4 acetic acid – 83 

[a] Yield of analytically pure isolated product. 

 

Similarly to pyridine 28 an excess of the magnesium amide TMPMgCl•LiCl (4.0 equiv.) was necessary 

to ensure full conversion to the metalated pyridine 32. Thus, metalation of 31 led to the 5-magnesiated 

pyridine 32, which reacted with MeSSMe to furnish thioether 33a in 71% yield (Table 18, entry 1). 

Reaction of 32 with iodine afforded the 3-iodopyridine 33b in 47% yield (entry 2). A palladium-

catalyzed cross-coupling of the zinc species, obtained after transmetalation using a ZnCl2 solution, with 

4-iodoanisole successfully provided biaryl 33c in 43% yield (entry 3). Finally, the reaction of 32 with 

a sterically hindered ketone led to benzylic alcohol 33d in 66% yield (entry 4). 

Table 18: Ortho-metalation of amide 31 leading to trisubstituted pyridines of type 33. 

 

Entry Electrophile Product Yield (%)[a] 

 MeSSMe 
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1  33a 71 

 I2 

 

 

2  33b 47 

 
 

 

 

3  33c 43[b] 

 
 

 

 

4  33d 66 

[a] Yield of analytically pure isolated product. [b] ZnCl2 (1.1 equiv.), Pd(dba)2 (2 mol%) and P(2-furyl)3 (4 mol%) 

were added. 

2.8 Remote lithiation of bis(triethylsilyl)-biphenyls 

Finally, this remote lithiation was extended to biphenyl derivatives. Whereas the lithiation of 3,3’-

bis(triethylsilyl)-1,1’-biphenyl (34a) and its reaction with MeSSMe afforded thioether 35 as a single 

regioisomer in 38% yield (Table 19, entry 1), 2,2’-bis(triethylsilyl)-1,1’-biphenyl (34b) led to a 6:1 

mixture of 4-thioether (36a) and 5-thioether (37a’) in 62% yield (entry 2). The same product ratio was 

observed for the copper-catalyzed allylation and the formylation, which afforded the mixtures 36b/36b’ 

and 36c/36c’ in 69% and 66% respectively (entries 3–4). 
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Table 19: Remote lithiation of sterically hindered biphenyls of type 34. 

 

Entry Biphenyl Electrophile Products Yield(%)[a] 

 

 

MeSSMe 

 

 

1 34a  35 38 

 

 

MeSSMe 

 

 

2 34b  36a  36a’ 53/9 

 

 
 

 

 

3 34b  36b  36b’ 59/10[b] 

 

 
 

 

 

4 34b  36c  36c’ 57/9 

[a] Yield of analytically pure isolated product. The regioisomer ratio was determined by NMR analysis. [b] ZnCl2 

(3.0 equiv.) and CuCN•2LiCl (10 mol%) were added. 
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3 Summary 

In summary, this thesis was focused on two major topics.  

First, the alkylation of halo quinolines and activated aryl chlorides by alkylgrignard reagents via 

chromium catalysis was investigated. The THF soluble CrCl3•3THF complex was able to alkylate 

ortho-halogenated quinolines and electron-deficient 2-chloro arenes at room temperature within 

minutes. This reaction tolerated sensitive functional groups like ethyl esters and ketones at 25 °C. The 

alkylation occurred regioselectively with halides adjacent to a benzoazine nitrogen atom, while other 

halides were present within the molecule. Furthermore, no considerable amount of halogen-magnesium 

exchange was observed if halides like bromine or iodine were used. Finally, this reaction proceeded 

without the formation of homocoupling side products, which are common for the cross-coupling 

reactions of the related first row transition metals like iron and cobalt. 

Second, a novel protocol for the preparation of remote functionalized arenes and heteroarenes was 

developed. The convenient base nBuLi•PMDTA allowed for the regiospecific remote lithiation of bis-

triethylsilyl substituted unsaturated ring systems. These lithiated intermediates were then quenched with 

various electrophiles, affording 5-substituted benzenes and 4-substituted pyridines. Subsequent short 

reaction sequences allowed for the preparation of 1,2,3,5-tetrasubstituted benzenes and trisubstituted 

pyridines. Finally, this protocol was applied to the remote metalation of bis-triethylsilyl substituted 

biphenylic systems. 

3.1 Chromium-Catalyzed Cross-Coupling Reactions of Alkylmagnesium Reagents with Halo-

Quinolines and Activated Aryl Chlorides 

A range of alkylated quinolines, isoquinolines, benzophenones and benzaldehydes were prepared via 

chromium-catalyzed aryl-alkyl cross-coupling reaction. Various primary and secondary 

alkylmagnesium reagents reacted readily with halogenated electron-deficient aromatic ring systems 

using CrCl3•3THF within 15 min at 25 °C. This reaction protocol was able to tolerated sensitive 

carbonyl bearing groups like esters and ketones and no halogen-magnesium exchange was observed for 

the higher halides bromine or iodine. The catalyst loading for the cross-coupling reaction was reduced 

down to 0.5 mol%, while no decrease in product yield was observed, highlighting the catalytic activity 

of chromium. Furthermore, no homocoupling side products, which are common for other first row 

transition metal catalyzed coupling reactions, were observed (Scheme 37). 



B. RESULTS AND DISCUSSION    56 

 

Scheme 37: Chromium-catalyzed alkylation reactions, leading to 2-alkylated (hetero)arenes. 

3.2 Regioselective Remote-Lithiation of 1,3-bis-Silylated (Hetero)Arenes 

The regioselective remote lithiation of bis-triethylsilylated benzenes, pyridines and biphenyls using the 

activated base mixture nBuLi•PMDTA was described. Electrophilic trapping reactions led to a broad 

range of remote functionalized arenes and pyridines, demonstrating that remote functionalization can 

be achieved without the use of elaborate catalyst systems. The high practicality of this method was 

highlighted by reactions on scales up to 30 mmol without a decrease in yield. The subsequent full or 

partial functionalization of the obtained remote functionalized bis-silyl arenes either by a sequence of 

iodo-desilylation, iodine-magnesium exchanges and reactions with electrophiles, or by proto-

desilylation, directed metalation and reaction with electrophiles, demonstrates the full synthetic value 

of the used triethylsily groups and the method overall (Scheme 38). 

 

Scheme 38: Summary of regioselective remote-lithiation of 1,3-bis-silylated (hetero)arenes. 
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1 General Considerations 

If not otherwise stated, all reactions have been carried out using standard Schlenk-techniques in flame-

dried glassware under argon. Syringes which were used to transfer anhydrous solvents or reagents were 

purged with argon prior to use. Yields refer to isolated yields of compounds estimated to be >95% pure 

as determined by 1H-NMR (25 °C) and capillary GC. 

1.1 Solvents 

Solvents were dried according to standard methods by distillation from drying agents as stated below 

and were stored under argon. Otherwise they were obtained from commercial sources and used without 

further purification. 

 

THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen 

and stored over molecular sieves.  

Et2O was freshly distilled from sodium benzophenone ketyl under argon and stored over molecular 

sieves.  

nHexane was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen and stored over molecular sieves. 

Dichloromethane was continuously refluxed and freshly distilled from CaH2 under nitrogen. 

 

Solvents for column chromatography were distilled prior to use. 

1.2 Reagents 

All reagents were obtained from commercial sources and used without further purification unless 

otherwise stated. 

iPrMgCl•LiCl40a was prepared by careful addition of iPrCl (78.54 g, 91.3 mL, 1.00 mol, 1.0 equiv.) to 

a suspension of Mg (26.74 g, 1.1 mol, 1.1 equiv.) and LiCl (46.63 g, 1.1 mol, 1.1 equiv.) in dry THF 

(900 mL). The reaction mixture was stirred for 12 h and afterwards the floating particles were allowed 

to settle. The solution was cannulated into a flame-dried and argon flushed Schlenk-flask and its 

concentration was determined by titration against I2 in THF.122 

nBuLi, sBuLi, tBuLi solutions in hexane were purchased from Albemarle and their concentration was 

determined by titration against N-benzylbenzamide in THF at −20 °C.123 

TMPH was purchased from Albemarle, freshly distilled from CaH2 and stored over argon. 

                                                      
122 A. Krasovskiy, P. Knochel, Synthesis 2006, 5, 890. 
123 A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281. 
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PMDTA was purchased from TCI, distilled from sodium benzophenone ketyl under argon and stored 

in a Schlenk flask. 

BF3•OEt2 was distilled prior to use and stored under argon. 

CuCN•2LiCl117 solution (1.00 M in THF) was prepared by drying CuCN (44.78 g, 500 mmol, 1.0 

equiv.) and LiCl (42.39 g, 1.00 mol, 2.0 equiv.) in a Schlenk-flask under vacuum for 5 h at 150 °C. 

After cooling to 25 °C, dry THF (480 mL) was added and the suspension was stirred until all salts were 

dissolved. Then dry THF was added until a previously set 500 mL mark was matched. 

MgCl2 solution (0.50 M in THF) was prepared by suspending Mg turnings (6.68 g, 275 mmol) in dry 

THF (500 mL) in a flame-dried and argon flushed Schlenk-flask. Then 1,2-dichloroethane (24.74 g, 

19.70 mL, 250 mmol) was added carefully over 1 h (strong gas evolution), while the temperature was 

kept below 25 °C. The reaction mixture was stirred overnight at 25 °C until gas evolution was complete.  

ZnCl2 solution (1.00 M in THF) was prepared by drying ZnCl2 (68.15 g, 500 mmol, 1.0 equiv.) in a 

Schlenk-flask under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (480 mL) was added 

and stirred until all salts were dissolved. Then, dry THF was added until a previously set 500 mL mark 

was matched. 

TMPLi solution in THF was prepared by addition of nBuLi (38.2 mL, 2.62 M in hexane, 100 mmol, 

1.0 equiv.) to a solution of TMPH (14.13 g, 16.87 mL, 100 mmol, 1.0 equiv.) in THF (100 mL) 

at −40 °C. The mixture was allowed to warm up to 0 °C and its concentration was determined by 

titration against N-benzylbenzamide in THF at –20 °C. 

TMPMgCl•LiCl62a was prepared by addition of TMPH (14.83 g, 17.72 mL, 105 mmol, 1.05 equiv.) to 

iPrMgCl•LiCl (95.24 mL, 1.05 M, 100 mmol, 1.00 equiv.) at 25 °C. The mixture was stirred for 48 h 

until all gas evolution ceased. The concentration was determined by titration against benzoic acid in 

THF using 4-(phenylazo)diphenylamine as indicator. 

1.3 Chromatography 

Flash column chromatography was performed using SiO2 60 (0.040–0.063 mm, 230–400 mesh 

ASTM) from Merck.  

Thin layer chromatography (TLC) was performed using aluminum plates covered with SiO2 (Merck 

60, F–254). Spots were visualized by UV light irradiation and/or by staining of the TLC plate with one 

of the solutions below, followed by heating with a heat gun. 

 

 KMnO4 (0.3 g), K2CO3 (20 g) and KOH (0.3 g) in water (300 mL). 

 Ce(SO4)2 (5.0 g), (NH4)6Mo7O24•4H2O (25 g) and concentrated H2SO4 (50 mL) in water 

(450 mL). 

 Neat iodine absorbed on silica gel. 
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1.4 Analytical data 

NMR spectra were recorded on Bruker ARX 200, AC 300, WH 400 or AMX 600 instruments. 

Chemical shifts are reported as δ-values in parts-per-million (ppm) relative to the residual solvent peak: 

CDCl3 (δH: 7.26; δC: 77.16). For the observation of the observed signal multiplicities, the following 

abbreviations and combinations thereof were used: s (singlet), d (doublet), t (triplet), q (quartet), quint 

(quintet), sext (sextet), sept (septet), m (multiplet) and br (broad). If not otherwise noted, the coupling 

constants given are either H-H or H-F coupling constants for proton signals and C-F coupling constants 

for carbon signals.  

Melting points are uncorrected and were measured on a Büchi B.540 apparatus.  

Infrared spectra were recorded from 4000–650 cm−1 on a Perkin Elmer Spectrum BX-59343 

instrument. For detection a Smiths Detection DuraSampl IR II Diamond ATR sensor was used. The 

main absorption peaks are reported in cm−1.  

Gas chromatography (GC) was performed with instruments of the type Hewlett-Packard 6890 or 5890 

Series II, using a column of the tyoe HP 5 (Hewlett-Packard, 5% phenylmethylpolysiloxane; length: 

10 m, diameter: 0.25 mm, film thickness 0.25 μm). The detection was accomplished using a flame 

ionization detector.  

Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95Q 

or Finnigan MAT 90 instrument for electron impact ionization (EI). For the combination of gas 

chromatography with mass spectroscopic detection, a GC–MS of the type Hewlett-Packard 6890/MSD 

5793 networking was used (column: HP 5–MS, Hewlett–Packard; 5% phenylmethylpolysiloxane; 

length: 15 m, diameter: 0.25 mm, film thickness: 0.25 μm). 
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2 Chromium-Catalyzed Cross-Coupling Reactions of Alkyl  

2.1 Preparation of the CrCl3•3THF solution 

Preparation of CrCl3•3THF (0.1 M)100  

A dry and argon flushed Soxhlet extraction apparatus was charged with anhydrous CrCl3 (5.0 g, 

31.6 mmol, 1.0 equiv.) and zinc dust (62 mg, 0.95 mmol, 0.03 equiv.). The reaction mixture was 

extracted for 24 h with refluxing THF (250 mL). The mixture was allowed to cool to room temperature 

and the THF was removed in vacuo. The violet solid (11.5 g, 97%) was stored in a Schlenk flask under 

argon. 

10 mL of THF were added and the Cr(III) complex was partially dissolved. This solution was 

transferred into a tared Schlenk-flask under argon and the THF was removed in vacuo. The weight of 

the resulting solid was determined and enough THF was added to obtain a 0.1 M solution.  

2.2 Typical Procedures (TP) 

Preparation of Alkylmagnesium reagents25 

A dry and argon flushed Schlenk-flask, equipped with a stirring bar and a septum, was charged with 

Mg turnings (292 mg, 12 mmol, 1.2 equiv.) and LiCl (509 mg, 12 mmol, 1.2 equiv.). The solids were 

dried in vacuo at 400 °C for 3 min. After cooling to 25 °C the flask was flushed with argon and THF 

(8 mL) was added. The suspension was cooled to 0 °C and the corresponding alkyl bromide (10 mmol, 

1.0 equiv.) was added dropwise. After the addition was finished, the mixture was allowed to slowly 

warm to 25 °C. The concentration of the Grignard reagent was determined by iodometric titration.122 

 

Typical procedure for the Chromium-Catalyzed Cross-Couplings of Alkylmagnesium Reagents 

(TP1): 

A dry and argon-flushed 10 mL Schlenk-tube, equipped with a stirring bar and a septum, was charged 

with a solution of CrCl3·3THF (0.1 M in THF, 0.15 mL, 0.015 mmol, 0.03 equiv.), the corresponding 

(hetero)aryl halide (0.5 mmol, 1.0 equiv.) and THF (2.5 mL). The alkylmagnesium bromide solution 

(0.75 mmol, 1.5 equiv.) was added dropwise over 2 min by syringe at room temperature. After 15 min, 

the reaction mixture was quenched with a saturated aqueous NH4Cl solution (1 mL) and diluted with 

water (4 mL). The phases were separated and the aqueous phase was extracted with ethyl acetate 

(3x20 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO4 and 

filtered. The solvent was removed in vacuo and the crude product was purified by flash column 

chromatography furnishing the respective title compound. 
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2.3 Chromium-Catalyzed Cross-Coupling Reaction of Alkylmagnesium bromides and 

(Hetero)aryl halides 

2-Phenylethylquinoline (3a) 

 

A cross-coupling reaction was performed according to TP1 between 2-chlorquinoline (1a, 81 mg) and 

Grignard reagent 2a (0.85 mL, 0.88 M) with a catalyst loading of CrCl3·3THF (2.5 µmol, 25 µL, 

0.5 mol%). After purification by flash column chromatography (9:1, ihexane:ethyl acetate) the title 

compound 3a (106 mg, 91%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.14 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.81 (d, J 

= 8.1 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.39 – 7.21 (m, 6H), 3.34 (dd, J = 9.8, 

6.3 Hz, 2H), 3.21 (dd, J = 9.7, 6.3 Hz, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.87, 148.03, 141.57, 136.30, 129.49, 128.91, 128.59, 

128.47, 127.61, 126.86, 126.08, 125.87, 121.64, 41.08, 36.03. 

MS (EI, 70 eV): m/z (%) = 233 (95), 232 (100), 217 (17), 156 (55), 129 (23), 128 (14), 115 (11), 91 

(15). 

HRMS (EI): m/z calc. for [C17H15N]: 233.1204 [M]•+; found: 233.1204.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3026 (w), 2923 (w), 2856 (vw), 1618 (w), 1599 (s), 1502 (s), 

1452 (m), 1425 (m), 1310 (w), 819 (vs), 748 (vs), 694 (vs). 

 

2-(2-Cyclohexylethyl)quinoline (3b) 

 

A cross-coupling reaction was performed according to TP1 between 2-chlorquinoline (1a, 81 mg) and 

Grignard reagent 2b (0.87 mL, 0.86 M). After purification by flash column chromatography (9:1, 

ihexane:ethyl acetate) the title compound 3b (95 mg, 79%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.03 (dd, J = 10.9, 8.7 Hz, 2H), 7.74 (dd, J = 8.1, 1.4 Hz, 1H), 

7.66 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.45 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 3.01 

– 2.92 (m, 2H), 1.85 – 1.76 (m, 2H), 1.75 – 1.60 (m, 5H), 1.39 – 1.29 (m, 1H), 1.29 – 1.08 (m, 3H), 

1.04 – 0.90 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.50, 147.95, 136.22, 129.34, 128.85, 127.52, 126.73, 

125.65, 121.40, 37.83, 37.79, 36.94, 33.35, 26.72, 26.42. 

MS (EI, 70 eV): m/z (%) = 156 (38), 144 (10), 143 (100). 

HRMS (EI): m/z calc. for [C17H14N]: 238.1590 [M−H]•+; found: 238.1592.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2919 (vs), 2848 (s), 1600 (s), 1561 (w), 1502 (s), 1447 (m), 1425 

(m), 824 (vs), 749 (s). 



C. EXPERIMENTAL PART    63 

2-Ethylquinoline (3c) 

 

A cross-coupling reaction was performed according to TP1 between 2-chlorquinoline (1a, 81 mg) and 

Grignard reagent 2c (0.65 mL, 1.15 M). After purification by flash column chromatography (9:1, 

ihexane:ethyl acetate) the title compound 3c (51 mg, 65%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.04 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.76 (dd, J 

= 8.1, 1.4 Hz, 1H), 7.67 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.47 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.30 (d, J 

= 8.5 Hz, 1H), 3.00 (q, J = 7.6 Hz, 2H), 1.39 (t, J = 7.6 Hz, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.12, 147.94, 136.45, 129.44, 128.89, 127.58, 126.81, 

125.75, 120.95, 32.45, 14.18. 

MS (EI, 70 eV): m/z (%) = 157 (55), 156 (100), 129 (22), 128 (15). 

HRMS (EI): m/z calc. for [C11H10N]: 156.0808 [M−H]•+; found: 156.0806.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2969 (w), 2933 (vw), 1618 (w), 1602 (m), 1504 (s), 1426 (w), 

839 (vs), 753 (m). 

 

4-Methyl-2-phenylethylquinoline (3d) 

 

A cross-coupling reaction was performed according to TP1 between 2-chloro-4-methylquinoline (1b, 

89 mg) and Grignard reagent 2a (0.82 mL, 0.91 M). After purification by flash column chromatography 

(9:1, ihexane:ethyl acetate) the title compound 3d (101 mg, 82%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.07 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.69 (t, J = 

7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.34 – 7.15 (m, 5H), 7.11 (s, 1H), 3.24 (dd, J = 10.3, 5.8 Hz, 2H), 

3.14 (dd, J = 10.0, 5.5 Hz, 2H), 2.67 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.65, 147.94, 144.42, 141.81, 129.54, 129.24, 128.65, 

128.53, 127.01, 126.11, 125.69, 123.79, 122.40, 41.14, 36.14, 18.85. 

MS (EI, 70 eV): m/z (%) = 247 (100), 87 (246), 232 (28), 231 (13), 170 (67), 143 (32), 116 (12), 115 

(19), 91 (12). 

HRMS (EI): m/z calc. for [C18H17N]: 247.1361 [M]•+; found: 247.1356.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3061 (w), 3027 (w), 2923 (w), 1602 (vs), 1562 (w), 1496 (w), 

1450 (m), 754 (vs), 699 (s). 

 

2-(2-Cyclohexylethyl)-4-methylquinoline (3e) 
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A cross-coupling reaction was performed according to TP1 between 2-chloro-4-methylquinoline (1b, 

89 mg) and Grignard reagent 2b (0.87 mL, 0.86 M). After purification by flash column chromatography 

(9:1, ihexane:ethyl acetate) the title compound 3e (100 mg, 79%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.08 – 8.00 (m, 1H), 7.90 (dd, J = 8.4, 1.4 Hz, 1H), 7.64 (ddd, 

J = 8.4, 6.9, 1.5 Hz, 1H), 7.46 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.11 (d, J = 1.1 Hz, 1H), 2.98 – 2.85 (m, 

2H), 2.63 (d, J = 1.0 Hz, 3H), 1.85 – 1.77 (m, 2H), 1.76 – 1.58 (m, 5H), 1.41 – 1.08 (m, 4H), 1.03 – 

0.83 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.17, 147.75, 144.19, 129.34, 129.02, 126.79, 125.40, 

123.61, 122.08, 37.89, 37.82, 36.83, 33.35, 26.73, 26.42, 18.74. 

MS (EI, 70 eV): m/z (%) = 253 (2), 170 (37), 158 (11), 157 (100). 

HRMS (EI): m/z calc. for [C18H23N]: 253.1830 [M]•+; found: 253.1825.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2919 (m), 2848 (m), 2360 (vw), 1602 (m), 1561 (w), 1446 (m), 

754 (vs). 

 

2-Ethyl-4-methylquinoline (3f) 

 

A cross-coupling reaction was performed according to TP1 between 2-chloro-4-methylquinoline (1b, 

89 mg) and Grignard reagent 2c (0.65 mL, 1.15 M). After purification by flash column chromatography 

(9:1, ihexane:ethyl acetate) the title compound 3g (68 mg, 79%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.04 (dd, J = 8.5, 0.7 Hz, 1H), 7.91 (dd, J = 8.4, 0.8 Hz, 1H), 

7.65 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.47 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.12 (d, J = 1.0 Hz, 1H), 2.94 

(q, J = 7.6 Hz, 2H), 2.64 (s, 3H), 1.37 (t, J = 7.6 Hz, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.74, 147.72, 144.37, 129.35, 129.07, 126.82, 125.45, 

123.63, 121.58, 32.29, 18.75, 14.16. 

MS (EI, 70 eV): m/z (%) = 171 (48), 170 (76), 70 (12), 61 (18), 45 (15), 43 (100). 

HRMS (EI): m/z calc. for [C12H12N]: 170.0970 [M−H]•+; found: 170.0964.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2969 (w), 2933 (w), 2873 (vw), 1604 (m), 1562 (w), 1507 (vw), 

1448 (w), 862 (w), 754 (vs). 

 

2,4-Dimethylquinoline (3g) 

 

A cross-coupling reaction was performed according to TP1 between 2-chloro-4-methylquinoline (1b, 

89 mg) and commercial MeMgCl 2d (0.32 mL, 2.34 M). After purification by flash column 



C. EXPERIMENTAL PART    65 

chromatography (9:1, ihexane:ethyl acetate) the title compound 3f (44 mg, 56%) was obtained as a 

colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.01 (dd, J = 8.5, 1.2 Hz, 1H), 7.95 (dd, J = 8.4, 1.3 Hz, 1H), 

7.67 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.50 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.14 (d, J = 1.2 Hz, 1H), 2.70 

(s, 3H), 2.67 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 158.82, 147.80, 144.34, 129.26, 126.69, 125.56, 123.74, 

122.87, 25.40, 18.77. 

MS (EI, 70 eV): m/z (%) = 157 (100), 156 (19), 115 (13), 44 (12). 

HRMS (EI): m/z calc. for [C11H11N]: 157.0891 [M]•+; found: 157.0883.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (vw), 2922 (vw), 1604 (vs), 1564 (w), 1447 (w), 859 (w), 

758 (vs). 

 

2-(But-3-en-1-yl)-4-methylquinoline (3h) 

 

A cross-coupling reaction was performed according to TP1 between 2-chloro-4-methylquinoline (1b, 

89 mg) and Grignard reagent 2e (0.88 mL, 0.85 M). After purification by flash column chromatography 

(9:1, ihexane:ethyl acetate) the title compound 3h (63 mg, 69%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.08 – 8.00 (m, 1H), 7.94 (dd, J = 8.4, 1.4 Hz, 1H), 7.67 (ddd, 

J = 8.4, 6.9, 1.4 Hz, 1H), 7.49 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.13 (d, J = 1.1 Hz, 1H), 5.93 (ddt, J = 

16.9, 10.2, 6.6 Hz, 1H), 5.09 (dq, J = 17.1, 1.7 Hz, 1H), 5.04 – 4.95 (m, 1H), 3.06 – 2.97 (m, 2H), 2.66 

(d, J = 1.0 Hz, 3H), 2.63 – 2.53 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.78, 147.82, 144.36, 137.90, 129.43, 129.16, 126.92, 

125.60, 123.70, 122.21, 115.24, 38.55, 33.97, 18.82. 

MS (EI, 70 eV): m/z (%) = 197 (58), 184 (100), 170 (62), 157 (72), 144 (92), 130 (15), 115 (32). 

HRMS (EI): m/z calc. for [C14H15N]: 197.1204 [M]•+; found: 197.1207.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3063 (vw), 2975 (vw), 2921 (vw), 1602 (m), 1561 (w), 1508 (w), 

1446 (w), 1411 (w), 910 (m), 860 (m), 754 (vs). 

 

6-Chloro-2-phenethylquinoline (3i) 

 

A cross-coupling reaction was performed according to TP1 between 2,6-dichloroquinoline (1c, 99 mg) 

and Grignard reagent 2a (0.87 mL, 0.86 M). After purification by flash column chromatography (19:1, 

ihexane:ethyl acetate) the title compound 3i (78 mg, 58%) was obtained as a colorless solid. 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 7.99 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 7.72 (d, J 

= 2.4 Hz, 1H), 7.61 (dd, J = 9.0, 2.4 Hz, 1H), 7.33 – 7.16 (m, 6H), 3.30 – 3.24 (m, 2H), 3.20 – 3.11 (m, 

2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 162.18, 146.40, 141.39, 135.29, 131.47, 130.57, 130.31, 

128.57, 128.50, 127.42, 126.26, 126.14, 122.51, 40.95, 35.80. 

MS (EI, 70 eV): m/z (%) = 266 (100), 192 (17), 190 (48), 163 (18), 91 (26). 

HRMS (EI): m/z calc. for [C17H13
35ClN]: 266.0731 [M−H]•+; found: 266.0726.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2949 (vw), 2924 (w), 2856 (w), 1594 (s), 1558 (w), 1488 (s), 

1452 (w), 1308 (w), 1073 (s), 830 (m), 820 (s), 699 (vs). 

m.p. (°C): 94.6 – 95.8 °C 

 

6-Chloro-2-(2-cyclohexylethyl)quinoline (3j) 

 

A cross-coupling reaction was performed according to TP1 between 2,6-dichloroquinoline (1c, 99 mg) 

and Grignard reagent 2b (0.87 mL, 0.86 M). After purification by flash column chromatography (19:1, 

ihexane:ethyl acetate) the title compound 3j (105 mg, 77%) was obtained as a colorless solid. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.96 (d, J = 8.6 Hz, 2H), 7.74 (d, J = 2.4 Hz, 1H), 7.60 (dd, J 

= 9.0, 2.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 3.02 – 2.91 (m, 2H), 1.86 – 1.76 (m, 2H), 1.75 – 1.61 (m, 

4H), 1.41 – 1.12 (m, 4H), 1.03 – 0.90 (m, 2H), 0.90 – 0.80 (m, 1H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.96, 146.40, 135.37, 131.33, 130.57, 130.27, 127.39, 

126.28, 122.39, 37.89, 37.70, 36.94, 33.40, 26.77, 26.47. 

MS (EI, 70 eV): m/z (%) = 273 (3), 192 (12), 190 (38), 176 (100). 

HRMS (EI): m/z calc. for [C17H20
35ClN]: 273.1284 [M]•+; found: 273.1292.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2919 (s), 2849 (m), 1599 (m), 1557 (vw), 1489 (s), 1447 (w), 

1072 (m), 875 (m), 829 (vs), 810 (w). 

m.p. (°C): 69.2 – 70.3 °C 

 

6-Chloro-2-ethylquinoline (3k) 

 

A cross-coupling reaction was performed according to TP1 between 2,6-dichloroquinoline (1c, 99 mg) 

and Grignard reagent 2c (0.65 mL, 1.15 M). After purification by flash column chromatography (29:1, 

ihexane:ethyl acetate) the title compound 3k (60 mg, 63%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.02 – 7.94 (m, 2H), 7.76 (d, J = 2.4 Hz, 1H), 7.61 (dd, J = 

9.0, 2.4 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H), 2.99 (q, J = 7.7 Hz, 2H), 1.39 (t, J = 7.6 Hz, 3H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 164.49, 146.36, 135.54, 131.40, 130.58, 130.34, 127.44, 

126.30, 121.91, 32.41, 14.02. 

MS (EI, 70 eV): m/z (%) = 190 (100), 164 (16), 143 (22), 128 (13). 

HRMS (EI): m/z calc. for [C11H9
35ClN]: 190.0418 [M−H]•+; found: 190.0412.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2970 (w), 2934 (vw), 2874 (vw), 1598 (m), 1490 (s), 1302 (w), 

1188 (w), 1074 (w), 897 (m), 876 (m), 829 (vs). 

 

6-Chloro-2-methylquinoline (3l) 

 

A cross-coupling reaction was performed according to TP1 between 2,6-dichloroquinoline (1c, 99 mg) 

and Grignard reagent 2d (0.32 mL, 2.34 M). After purification by flash column chromatography (19:1, 

ihexane:ethyl acetate) the title compound 3l (74 mg, 83%) was obtained as a colorless solid. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.95 (d, J = 2.3 Hz, 1H), 7.93 (d, J = 3.2 Hz, 1H), 7.74 (d, J 

= 2.4 Hz, 1H), 7.60 (dd, J = 9.0, 2.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 2.73 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 159.49, 146.36, 135.33, 131.39, 130.39, 127.18, 126.29, 

123.00, 25.49. 

MS (EI, 70 eV): m/z (%) = 177 (100), 162 (11), 142 (26), 140 (11), 115 (21), 43 (29). 

HRMS (EI): m/z calc. for [C10H8
35ClN]: 177.0345 [M]•+; found: 177.0343.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (w), 2916 (w), 1597 (s), 1557 (w), 1489 (s), 1369 (m), 1066 

(m), 885 (m), 833 (vs), 805 (s). 

m.p. (°C): 95.2 – 96.0 °C. 

 

2-(But-3-en-1-yl)-6-chloroquinoline (3m) 

 

A cross-coupling reaction was performed according to TP1 between 2,6-dichloroquinoline (1c, 99 mg) 

and Grignard reagent 2e (0.88 mL, 0.85 M). After purification by flash column chromatography (39:1, 

ihexane:ethyl acetate) the title compound 3m (90 mg, 84%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.97 – 7.90 (m, 2H), 7.71 (d, J = 2.3 Hz, 1H), 7.58 (dd, J = 

9.0, 2.4 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 5.90 (ddt, J = 16.9, 10.2, 6.5 Hz, 1H), 5.06 (dd, J = 17.1, 1.7 

Hz, 1H), 4.98 (dd, J = 10.3, 1.6 Hz, 1H), 3.12 – 2.97 (m, 2H), 2.70 – 2.47 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 162.40, 146.35, 137.57, 135.31, 131.42, 130.54, 130.28, 

127.39, 126.23, 122.37, 115.46, 38.49, 33.69. 

MS (EI, 70 eV): m/z (%) = 216 (100), 204 (15), 190 (38), 177 (31), 163 (18), 140 (27). 

HRMS (EI): m/z calc. for [C13H11
35ClN]: 216.0575 [M−H]•+; found: 216.0568.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3076 (vw), 2920 (vw), 1640 (w), 1598 (s), 1556 (w), 1488 (s), 

1072 (m), 909 (s), 875 (s), 829 (vs), 811 (s). 

 

Ethyl 2-phenethylquinoline-4-carboxylate (3n) 

 

A cross-coupling reaction was performed according to TP1 between ethyl 2-bromoquinoline-4-

carboxylate (1d, 140 mg) and Grignard reagent 2a (0.87 mL, 0.86 M). After purification by flash 

column chromatography (19:1, ihexane:ethyl acetate) the title compound 3n (76 mg, 50%) was obtained 

as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.69 (dd, J = 8.5, 1.4 Hz, 1H), 8.12 (dt, J = 8.4, 1.0 Hz, 1H), 

7.76 – 7.69 (m, 2H), 7.58 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.32 – 7.22 (m, 4H), 7.22 – 7.14 (m, 1H), 4.47 

(q, J = 7.1 Hz, 2H), 3.38 – 3.27 (m, 2H), 3.23 – 3.09 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.49, 161.33, 149.00, 141.34, 135.53, 129.75, 129.54, 

128.61, 128.54, 127.37, 126.19, 125.52, 123.74, 122.80, 61.89, 40.90, 35.74, 14.41. 

MS (EI, 70 eV): m/z (%) = 305 (100), 274 (46), 231 (28), 199 (16), 91 (21), 71 (43), 57 (63), 43 (93). 

HRMS (EI): m/z calc. for [C20H19O2N]: 305.1416 [M]•+; found: 305.1408.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3063 (vw), 3027 (vw), 2981 (vw), 1721 (vs), 1594 (m), 1507 

(w), 1371 (w), 1268 (m), 1242 (vs), 1200 (s), 1147 (m), 1026 (m), 797 (w), 776 (m), 750 (w), 699 (m). 

 

1-Phenethylisoquinoline (3o) 

 

A cross-coupling reaction was performed according to TP1 between 1-iodoisoquinoline (1e, 128 mg) 

and Grignard reagent 2a (0.87 mL, 0.86 M). After purification by flash column chromatography (19:1, 

ihexane:ethyl acetate) the title compound 3o (58 mg, 50%) was obtained as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.41 (d, J = 5.7 Hz, 1H), 8.11 – 8.05 (m, 1H), 7.75 (d, J = 8.2 

Hz, 1H), 7.60 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.51 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.47 (dd, J = 5.8, 0.9 

Hz, 1H), 7.28 – 7.23 (m, 4H), 7.20 – 7.12 (m, 1H), 3.58 – 3.51 (m, 2H), 3.18 – 3.10 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.12, 142.03, 142.00, 136.33, 129.94, 128.59, 128.55, 

127.53, 127.21, 127.01, 126.16, 125.16, 119.54, 37.39, 35.59. 

MS (EI, 70 eV): m/z (%) = 232 (100), 217 (17), 156 (41), 129 (35), 115 (19), 91 (17), 43 (12). 

HRMS (EI): m/z calc. for [C17H14N]: 232.1121 [M−H]•+; found: 232.1117.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3052 (vw), 3026 (vw), 2929 (vw), 1622 (w), 1586 (w), 1562 (m), 

1496 (m), 1453 (w), 1388 (w), 1358 (w), 823 (s), 744 (vs), 699 (vs). 
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(2-Phenethylphenyl)(phenyl)methanone (5a) 

 

A cross-coupling reaction was performed according to TP1 between 2-chlorobenzophenone (4a, 

434 mg, 2.0 mmol) and Grignard reagent 2a (3.49 mL, 0.86 M) with CrCl3·3THF (0.6 mL, 0.06 mmol). 

After purification by flash column chromatography (29:1, ihexane:ethyl acetate) the title compound 5a 

(400 mg, 1.4 mmol, 70%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.78 – 7.68 (m, 2H), 7.56 – 7.47 (m, 1H), 7.42 – 7.31 (m, 3H), 

7.24 (dd, J = 7.6, 1.5 Hz, 2H), 7.20 (dd, J = 7.3, 1.3 Hz, 1H), 7.18 – 7.10 (m, 2H), 7.10 – 6.99 (m, 3H), 

2.99 – 2.88 (m, 2H), 2.85 – 2.75 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 198.60, 141.56, 140.84, 138.53, 137.90, 133.22, 130.45, 

130.33, 130.25, 128.80, 128.49, 128.47, 128.33, 125.95, 125.48, 38.18, 35.60. 

MS (EI, 70 eV): m/z (%) = 286 (2), 195 (100), 177 (13), 165 (20), 91 (22). 

HRMS (EI): m/z calc. for [C21H18O]: 286.1358 [M]•+; found: 286.1353.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3061 (vw), 3025 (vw), 2925 (w), 2860 (vw), 1662 (vs), 1597 

(w), 1494 (w), 1448 (m), 1314 (w), 1267 (m), 927 (w), 757 (m), 698 (vs). 

 

Phenyl(2-((trimethylsilyl)methyl)phenyl)methanone (5b) 

 

A cross-coupling reaction was performed according to TP1 between 2-chlorobenzophenone (4a, 

108 mg) and Grignard reagent 2f (1.03 mL, 0.73 M). After purification by flash column chromatography 

(39:1, ihexane:ethyl acetate) the title compound 5b (118 mg, 88%) was obtained as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.80 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 

7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.18 – 7.09 (m, 2H), 2.35 (s, 2H), -0.05 

(s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 198.57, 141.19, 138.38, 136.45, 132.86, 130.39, 130.33, 

130.26, 130.11, 128.40, 123.35, 24.34, -1.25. 

MS (EI, 70 eV): m/z (%) = 267 (100), 253 (24), 178 (14), 165 (23), 149 (18), 111 (12), 73 (47), 69 (18), 

57 (12), 43 (24). 

HRMS (EI): m/z calc. for [C17H19O28Si]: 267.1200 [M−H]•+; found: 267.1184.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3061 (vw), 2953 (vw), 2897 (vw), 1659 (s), 1597 (w), 1447 (w), 

1262 (s), 1246 (s), 1152 (m), 927 (m), 837 (vs), 760 (m), 699 (vs). 
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2-Phenylethylbenzaldehyde (5c) 

 

A cross-coupling reaction was performed according to TP1 between 1-(2-chlorophenyl)-N-

phenylmethanimine (4b, 108 mg) and Grignard reagent 2a (0.87 mL, 0.86 M). The reaction mixture 

was stirred with 2 M HCl (2 mL) for 1 h before workup. After purification by flash column 

chromatography (39:1, ihexane:ethyl acetate) the title compound 5c (75 mg, 71%) was obtained as a 

yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 10.18 (s, 1H), 7.82 (dd, J = 7.6, 1.5 Hz, 1H), 7.48 (td, J = 7.5, 

1.5 Hz, 1H), 7.38 (td, J = 7.5, 1.3 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.24 – 7.16 (m, 4H), 3.37 – 3.29 (m, 

2H), 2.94 – 2.87 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 192.43, 144.39, 141.27, 133.88, 133.85, 132.53, 131.33, 

128.67, 128.50, 126.80, 126.22, 38.36, 35.03. 

MS (EI, 70 eV): m/z (%) = 210 (16), 192 (10), 132 (12), 91 (100), 65 (29), 61 (11), 43 (48). 

HRMS (EI): m/z calc. for [C15H14O]: 210.1045 [M]•+; found: 210.1028.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3062 (vw), 3026 (vw), 2924 (vw), 2859 (vw), 1691 (vs), 1599 

(m), 1573 (w), 1495 (w), 1452 (w), 1191 (w), 755 (s), 724 (w), 698 (s). 

 

2-Cyclopropylbenzaldehyde (5d) 

 

A cross-coupling reaction was performed according to TP1 between 1-(2-chlorophenyl)-N-

phenylmethanimine (4b, 108 mg) and Grignard reagent 2g (0.86 mL, 0.87 M). The reaction mixture 

was stirred with 2 M HCl (2 mL) for 1 h before workup. After purification by flash column 

chromatography (39:1, ihexane:ethyl acetate) the title compound 5d (54 mg, 74%) was obtained as a 

colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 10.60 (s, 1H), 7.82 (dd, J = 7.7, 1.5 Hz, 1H), 7.48 (td, J = 7.6, 

1.6 Hz, 1H), 7.36 – 7.27 (m, 1H), 7.13 (d, J = 7.8 Hz, 1H), 2.63 (tt, J = 8.5, 5.3 Hz, 1H), 1.14 – 1.04 

(m, 2H), 0.82 – 0.76 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 192.87, 146.22, 134.99, 134.11, 130.16, 126.72, 126.22, 

11.92, 8.61. 

MS (EI, 70 eV): m/z (%) = 145 (22), 131 (69), 128 (21), 115 (100), 103 (44), 90 (49), 77 (32), 63 (29), 

51 (23). 

HRMS (EI): m/z calc. for [C10H9O]: 145.0648 [M−H]•+; found: 145.0651.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3005 (vw), 2854 (vw), 2758 (vw), 1689 (vs), 1599 (m), 1489 

(w), 1288 (vw), 1224 (w), 1191 (w), 1030 (vw), 823 (w), 757 (m).  
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3 Regioselective Remote-Lithiation of 1,3-bis-Silylated (Hetero)Arenes 

3.1 Typical Procedures 

Typical procedure for the preparation of o,o’-bissilylated arenes via an in situ lithiation and 

silylation sequence (TP2): 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the corresponding arene (1.0 equiv.) and silyl chloride (2.4 equiv.) in dry THF (0.5–1.0 M 

solution). The resulting solution was cooled to −78 °C and TMPLi (2.2 equiv.) was added dropwise. 

The mixture was allowed to warm to 25 °C and was subsequently quenched with sat. aq. NH4Cl. The 

aqueous phase was extracted with ethyl acetate (3 x 30 mL). The combined organic phases were washed 

with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Typical procedure for the preparation of o,o’-bissilylated arenes via in situ silylation of dibromo 

arenes (TP3): 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the corresponding dibromoarene (1.0 equiv.) and silyl chloride (2.5 equiv.) in dry THF 

(0.5–1.0 M solution). The resulting solution was cooled to −78 °C and nBuLi (2.2 equiv.) was added 

dropwise. The mixture was slowly warmed to 25 °C and subsequently quenched with sat. aq. NH4Cl. 

The aqueous phase was extracted with ethyl acetate (3 x 30 mL). The combined organic phases were 

washed with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Typical procedure for the preparation of para-lithiated arenes using nBuLi•PMDTA followed 

by the reaction with an electrophile (TP4): 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the corresponding bissilylated arene (1.0 equiv.) in dry nhexane (0.5 M solution) and PMDTA 

(3.0 equiv.) was added. The solution was stirred at 25 °C and nBuLi (3.0 equiv.) was added in one 

portion. After 6 h, the reaction mixture was cooled to –20 °C and THF (1 mL) or a metal salt solution 

(3.0 equiv.) were added, immediately followed by the corresponding electrophile (3.5 equiv.). The 

reaction mixture was allowed to warm to 25 °C, quenched with a sat. aq. NH4Cl solution (or sat. aq. 

Na2S2O3 for halogenolysis) and extracted with ethyl acetate (3 x 20 mL). The combined organic phases 

were washed with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Typical procedure for the iododesilylation using ICl (TP5): 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the corresponding silylated arene (1.0 equiv.) in dry CH2Cl2 (0.5 M solution) and ICl (1.3 equiv.) was 
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added in one portion at 25 °C. After 10 h, a sat. aq. Na2S2O3 (20 mL) was added and the aqueous phase 

was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine 

(20 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Typical procedure for the iodine/magnesium-exchange with iPrMgCl•LiCl followed by the 

reaction with an electrophile (TP6): 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the corresponding iodoarene (1.0 equiv.) in dry THF (0.5 M solution) and was cooled to –40 °C. 

iPrMgCl•LiCl (1.05 equiv.) was added dropwise and the mixture was stirred for 15 min. Then the 

electrophile (1.1 equiv.) was added in one portion and the mixture was allowed to warm to 25 °C. A 

sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with ethyl acetate (3 x 

20 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. 

Typical procedure for the magnesiation of pyridines using BF3ׇ•OEt2 and TMPMgCl•LiCl 

followed by the reaction with an electrophile (TP7): 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the monosilylated pyridine 25c (1.0 equiv.) in dry THF (0.5 M solution) and was cooled to 0 °C. 

TMPMgCl•LiCl (1.2 equiv.) was added in one portion, immediately followed by BF3•OEt2 (1.2 equiv.) 

and the mixture was stirred for 20 min. Then the electrophile (1.2 equiv.) was added in one portion and 

the mixture was allowed to warm to 25 °C. A sat. aq. NH4Cl solution (5 mL) was added and the aqueous 

phase was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with 

brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. 

Typical procedure for the magnesiation of pyridines with TMPMgCl•LiCl followed by the 

reaction with an electrophile (TP8): 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the corresponding pyridine in dry THF (0.5 mL) and was cooled to 0 °C. TMPMgCl•LiCl (0.50 mL, 

1.05 M in THF, 0.52 mmol, 4.0 equiv.) was added dropwise and the mixture was stirred for 60 min. 

Then the electrophile (0.52 mmol, 4.0 equiv.) was added in one portion and the mixture was allowed to 

warm to 25 °C. A sat. aq. NH4Cl solution (5 mL, or sat. aq. Na2S2O3 for halogenolysis) was added and 

the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were 

washed with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. 
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3.2 Preparation of bis-silylated (hetero)arenes 

(2-fluoro-1,3-phenylene)bis(triethylsilane) (6a) 

 

According to TP2, fluorobenzene (9.61 g, 100 mmol) and triethylchlorosilane (42 mL, 250 mmol) were 

dissolved in THF (150 mL). TMPLi (129 mL, 220 mmol) was slowly added to the mixture at −78 °C. 

Purification of the crude product by flash column chromatography (silica gel, ihexane) afforded the title 

compound as a colorless oil (31.0 g, 95 mmol, 95%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.47 (dd, J = 7.2, 5.7 Hz, 2H), 7.17 (td, J = 7.2, 1.7 Hz, 1H), 

1.08 – 0.97 (m, 18H), 0.97 – 0.85 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.39 (d, J = 236.0 Hz), 137.52 (d, J = 12.4 Hz), 123.65 (d, 

J = 3.0 Hz), 122.28 (d, J = 37.2 Hz), 7.56 (d, J = 0.9 Hz), 3.74 (d, J = 2.0 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −84.69. 

MS (EI, 70 eV): m/z (%) = 324 (1), 268 (11), 267 (38), 240 (10), 239 (41), 211 (30), 161 (19), 105 (11), 

77 (10), 70 (19), 61 (21), 45 (17), 43 (100).  

HRMS (EI): m/z calc. for [C18H33F28Si2]: 324.2105 [M]•+; found: 324.2102.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2910 (w), 2874 (m), 1581 (w), 1457 (w), 1417 (w), 

1384 (s), 1376 (s), 1239 (w), 1214 (w), 1190 (w), 1150 (vw), 1126 (w), 1003 (s), 972 (w), 818 (m), 773 

(vs), 748 (vs), 717 (vs), 686 (s). 

 

2-(2,6-bis(triethylsilyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (6b) 

 

According to TP2, 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (8.76 g, 50 mmol) and 

triethylchlorosilane (21 mL, 125 mmol) were dissolved in THF (100 mL). TMPLi (65 mL, 110 mmol) 

was slowly added to the mixture at −78 °C. Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a slight yellow 

solid (16.4 g, 40.6 mmol, 91%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.54 (d, J = 7.4, 2H), 7.32 (dd, J = 7.8, 7.2, 1H), 4.12 (s, 2H), 

1.45 (s, 6H), 0.97 – 0.79 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.31, 141.88, 136.42, 136.33, 127.31, 78.83, 68.50, 29.26, 

7.75, 4.32. 

MS (EI, 70 eV): m/z (%) = 403 (1), 303 (14), 302 (77), 292 (23), 290 (12), 274 (51), 264 (51), 250 (12), 

246 (87), 236 (15), 232 (40), 219 (32), 218 (36), 204 (18), 191 (32), 190 (18), 188 (11), 179 (15), 163 
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(35), 162 (19), 161 (29), 160 (14), 159 (13), 153 (24), 151 (15), 149 (13), 147 (11), 145 (11), 135 (30), 

133 (23), 132 (29), 131 (25), 117 (12), 105 (19). 

HRMS (EI): m/z calc. for [C23H41NO28Si2]: 403.2727 [M]•+; found: 403.2724.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3044 (vw), 2951 (m), 2935 (w), 2905 (w), 2869 (m), 1662 (m), 

1557 (vw), 1463 (w), 1455 (w), 1414 (w), 1394 (w), 1364 (w), 1340 (w), 1279 (m), 1247 (w), 1234 

(m), 1206 (w), 1162 (w), 1091 (m), 1036 (m), 1009 (s), 975 (m), 957 (s), 922 (m), 795 (w), 780 (s), 761 

(s), 716 (vs), 690 (vs), 669 (m). 

m.p. (°C): 69.3–70.8. 

 

(2-methoxy-1,3-phenylene)bis(triethylsilane) (6c) 

 

According to TP3, 1,3-dibromo-2-methoxybenzene (5.04 g, 19 mmol) and triethylchlorosilane 

(8.0 mL, 47.5 mmol) were dissolved in THF (40 mL). nBuLi (16.4 mL, 2.55 M in hexane, 41.8 mmol) 

was slowly added to the mixture at −78 °C. Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (5.1 g, 15 mmol, 

80%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.43 (d, J = 7.2 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 3.67 (s, 3H), 

1.03 – 0.76 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.33, 138.24, 128.64, 123.18, 63.65, 7.74, 4.27. 

MS (EI, 70 eV): m/z (%) = 307 (5), 297 (25), 280 (14), 279 (100), 269 (12), 251 (89), 223 (71), 221 

(17), 195 (47), 193 (23), 191 (12), 179 (14), 167 (27), 165 (24), 163 (17), 161 (30), 151 (22), 137 (19), 

135 (13), 133 (46), 131 (18), 117 (65), 115 (12), 111 (11), 107 (14), 105 (15), 97 (12), 91 (13), 89 (84), 

87 (27), 61 (26), 59 (13). 

HRMS (EI): m/z calc. for [C17H31O28Si2]: 307.1913 [M–Et]•+; found: 307.1910.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2874 (m), 1562 (w), 1457 (w), 1416 (w), 

1370 (s), 1236 (w), 1209 (m), 1170 (vw), 1148 (vw), 1120 (w), 1076 (vw), 1014 (s), 1003 (s), 973 (w), 

960 (w), 809 (w), 769 (vs), 717 (vs), 682 (m). 

 

N,N-diethyl-2,6-bis(triethylsilyl)benzamide (6d) 

 

According to TP2, N,N-diethylbenzamide (3.36 g, 30 mmol) and triethylchlorosilane (12.6 mL, 

75 mmol) were dissolved in THF (60 mL). TMPLi (39 mL, 66 mmol) was slowly added to the mixture 

at −78 °C. Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 19:1) afforded the title compound as a colorless solid (10.3 g, 25.5 mmol, 85%). 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 7.53 (d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 3.54 (q, J = 

7.2 Hz, 2H), 2.99 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.00 – 0.62 (m, 33H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.39, 149.62, 136.05, 133.46, 125.94, 43.29, 38.71, 13.33, 

12.89, 7.68, 3.92. 

MS (EI, 70 eV): m/z (%) = 404 (1), 377 (31), 376 (100), 318 (19), 260 (21), 232 (16), 87 (19), 59 (16). 

HRMS (EI): m/z calc. for [C23H42NO28Si2]: 404.2805 [M–H]•+; found: 404.2804.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (s), 2908 (m), 2872 (s), 1627 (vs), 1456 (m), 1434 (m), 

1380 (m), 1363 (m), 1280 (s), 1235 (m), 1219 (m), 1155 (w), 1124 (w), 1094 (m), 1062 (w), 1001 (vs), 

962 (m), 872 (w), 795 (vs), 782 (vs), 720 (vs), 682 (s). 

m.p. (°C): 77.8–79.3. 

 

2,6-bis(triethylsilyl)phenyl diethylcarbamate (6e) 

 

According to TP2, phenyl diethylcarbamate (1.93 g, 10 mmol) and triethylchlorosilane (4.2 mL, 

25 mmol) were dissolved in THF (20 mL). TMPLi (18.6 mL, 22 mmol) was slowly added to the 

mixture at −78 °C. Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 29:1) afforded the title compound as a colorless oil (3.3 g, 7.8 mmol, 78%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.47 (d, J = 7.2 Hz, 2H), 7.19 (t, J = 7.3 Hz, 1H), 3.59 (q, J = 

7.2 Hz, 2H), 3.37 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.96 – 0.90 (m, 

18H), 0.78 (dtd, J = 8.5, 7.2, 3.8 Hz, 12H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 161.68, 154.85, 137.60, 129.75, 124.73, 40.78, 40.69, 13.94, 

13.01, 7.59, 3.66. 

MS (EI, 70 eV): m/z (%) = 392 (80), 278 (32), 221 (14), 202 (14), 179 (12), 151 (30), 133 (16), 100 

(100), 72 (63). 

HRMS (EI): m/z calc. for [C21H38NO2
28Si2]: 392.2441 [M−Et]•+; found: 392.2442.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2936 (w), 2909 (w), 2874 (m), 1714 (vs), 1573 (w), 

1458 (w), 1422 (m), 1371 (s), 1350 (w), 1315 (vw), 1270 (vs), 1236 (w), 1211 (vw), 1178 (m), 1148 

(vs), 1118 (s), 1070 (w), 1003 (s), 962 (m), 935 (w), 772 (s), 756 (m), 720 (vs), 684 (m). 

 

1,3-bis(triethylsilyl)benzene (6f) 

 

According to TP3, 1,3-dibromobenzene (11.8 g, 50 mmol) and triethylchlorosilane (21 mL, 125 mmol) 

were dissolved in THF (100 mL). nBuLi (43.1mL, 2.55 M in hexane, 110 mmol) was slowly added to 
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the mixture at −78 °C. Purification of the crude product by flash column chromatography (silica gel, 

ihexane) afforded the title compound as a colorless oil (14.9 g, 48.6 mmol, 97%). 

1H-NMR: (400 MHz, Chloroform-d) δ 7.62 (dd, J = 2.2, 1.2 Hz, 1H), 7.48 (dd, J = 7.3, 1.3 Hz, 2H), 

7.32 (ddd, J = 7.7, 6.8, 0.7 Hz, 1H), 1.01 – 0.94 (m, 18H), 0.83 – 0.74 (m, 12H). 

13C-NMR: (101 MHz, CDCl3) δ / ppm = 140.32, 136.27, 134.68, 127.05, 7.57, 3.56. 

MS (EI, 70 eV): m/z (%) = 306 (1), 278 (11), 277 (71), 249 (76), 221 (100), 217 (14), 189 (23), 165 

(18), 163 (12), 161 (20), 137 (31), 135 (17), 135 (11), 133 (31), 131 (12), 115 (36), 107 (19), 105 (16), 

96 (10), 87 (16). 

HRMS (EI): m/z calc. for [C18H34
28Si2]: 306.2199 [M]•+; found: 306.2197.  

IR: 2952 (m), 2909 (w), 2874 (m), 1457 (w), 1415 (w), 1361 (w), 1236 (w), 1106 (m), 1002 (m), 972 

(w), 778 (vs), 729 (s), 714 (vs), 685 (s). 

 

2,6-bis(triethylsilyl)pyridine (23) 

 

In a modified version of TP3, 2,6-dibromopyridine (47.38 g, 200 mmol) and triethylchlorosilane 

(80 mL, 480 mmol, 2.4 equiv.) were dissolved in THF (400 mL). nBuLi (173 mL, 2.55 M in hexane, 

440 mmol) was slowly added to the mixture at −78 °C. Purification of the crude product by vacuum 

distillation (160 °C, 1.5 mbar) afforded the title compound as a colorless oil (41.5 g, 135 mmol, 67%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.41 (dd, J = 8.3, 6.8 Hz, 1H), 7.34 – 7.30 (m, 2H), 1.01 – 

0.95 (m, 18H), 0.87 – 0.80 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.29, 131.02, 128.15, 7.59, 3.29. 

MS (EI, 70 eV): m/z (%) = 306 (6), 280 (14), 279 (100), 278 (42), 251 (92), 250 (22), 223 (84), 222 

(68), 220 (20), 195 (30), 194 (12), 192 (34), 165 (10), 164 (32), 162 (19), 136 (29), 134 (16), 132 (13), 

106 (17), 97 (11), 59 (11). 

HRMS (EI): m/z calc. for [C17H32N28Si2]: 306.2073 [M−H]•+; found: 306.2068.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2873 (m), 1559 (vw), 1548 (vw), 1457 (w), 

1414 (w), 1237 (w), 1129 (vw), 1003 (m), 982 (w), 971 (w), 791 (s), 751 (m), 715 (vs), 686 (s). 

 

3,3'-bis(triethylsilyl)-1,1'-biphenyl (34a) 

 

According to TP3, 3,3’-dibromo-1,1’-biphenyl (6.24 g, 20 mmol) and triethylchlorosilane (8.4 mL, 

50 mmol) were dissolved in THF (40 mL). nBuLi (17.3 mL, 2.55 M in hexane, 44 mmol) was slowly 

added to the mixture at −78 °C. Purification of the crude product by flash column chromatography 

(silica gel, ihexane) afforded the title compound as a colorless oil (7.56 g, 19.8 mmol, 99%). 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 7.72 (dd, J = 2.0, 1.0 Hz, 2H), 7.59 (dq, J = 7.7, 1.4 Hz, 2H), 

7.51 (dq, J = 7.2, 1.2 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 1.08 – 0.99 (m, 18H), 0.92 – 0.82 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 140.99, 138.14, 133.33, 133.17, 128.15, 127.88, 7.61, 3.57. 

MS (EI, 70 eV): m/z (%) = 382 (28), 353 (64), 325 (75), 297 (27), 269 (32), 241 (39), 217 (27), 213 

(62), 209 (13), 205 (19), 201 (18), 199 (51), 189 (47), 183 (33), 181 (100), 180 (14), 161 (19), 133 (22), 

105 (22), 87 (15), 77 (31). 

HRMS (EI): m/z calc. for [C24H38
28Si2]: 382.2512 [M]•+; found: 382.2506.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2908 (w), 2873 (w), 1460 (w), 1415 (w), 1377 (vw), 

1359 (vw), 1236 (w), 1120 (w), 1004 (m), 972 (vw), 832 (vw), 779 (w), 716 (vs), 705 (vs), 678 (m). 

 

2,2'-bis(triethylsilyl)-1,1'-biphenyl (34b) 

 

According to TP3, 1,2-dibromobenzene (7.08 g, 30 mmol) and triethylchlorosilane (12.6 mL, 

75 mmol) were dissolved in THF (60 mL). nBuLi (25.9 mL, 2.55 M in hexane, 66 mmol) was slowly 

added to the mixture at –78 °C. Purification of the crude product by flash column chromatography 

(silica gel, ihexane) afforded the title compound as a colorless solid (2.1 g, 5.5 mmol, 37%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.58 – 7.53 (m, 2H), 7.35 – 7.28 (m, 4H), 7.15 – 7.10 (m, 2H), 

0.85 – 0.76 (m, 18H), 0.59 – 0.31 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 151.09, 135.99, 135.40, 130.33, 127.61, 126.13, 7.73, 4.32. 

MS (EI, 70 eV): m/z (%) = 382 (1), 227 (15), 209 (60), 199 (17), 181 (53), 115 (62), 87 (100), 59 (30). 

HRMS (EI): m/z calc. for [C24H38
28Si2]: 382.2512 [M]•+; found: 382.2511.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2910 (w), 2872 (w), 1456 (w), 1416 (w), 1233 (w), 

1121 (w), 1007 (w), 995 (m), 970 (w), 710 (vs), 675 (m). 

m.p. (°C): 89.9–91.4. 
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3.3 Preparation of 5-functionalized (hetero)arenes via remote lithiation 

(2-fluoro-5-(methylthio)-1,3-phenylene)bis(triethylsilane) (8a) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by MeSSMe (0.31 mL, 3.5 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (241 mg, 0.65 mmol, 

65%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.32 (d, J = 5.0 Hz, 2H), 2.48 (s, 3H), 0.98 (t, J = 7.6 Hz, 

18H), 0.85 (q, J = 8.2, 7.4 Hz, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.79 (d, J = 235.2 Hz), 136.87 (d, J = 12.5 Hz), 132.30 (d, 

J = 2.9 Hz), 123.42 (d, J = 38.2 Hz), 17.59, 7.50, 3.59 (d, J = 2.1 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −89.83. 

MS (EI, 70 eV): m/z (%) = 370 (32), 285 (22), 257 (15), 229 (20), 207 (28), 201 (26), 199 (11), 197 

(41), 179 (100), 171 (10), 151 (15), 125 (13), 123 (19), 105 (21), 95 (10), 91 (10), 87 (19), 77 (61), 75 

(30), 59 (12). 

HRMS (EI): m/z calc. for [C19H35
19FS28Si2]: 370.1982 [M]•+; found: 370.1976.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (s), 2909 (m), 2874 (m), 1566 (w), 1457 (w), 1436 (vw), 

1419 (w), 1386 (vs), 1271 (vw), 1238 (w), 1219 (w), 1195 (m), 1144 (s), 1090 (vw), 1003 (vs), 967 

(m), 872 (vw), 858 (w), 785 (vs), 743 (vs), 718 (vs), 688 (m), 670 (vs). 

 

(5-bromo-2-fluoro-1,3-phenylene)bis(triethylsilane) (8b) 

 

According to TP4, fluorobenzene 6a (9.73 g, 30.0 mmol) and PMDTA (18.8 mL, 90.0 mmol) were 

dissolved in nhexane (60 mL). nBuLi (35.3 mL, 2.55 M in hexane, 90.0 mmol) was added and the 

resulting solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (90 mL, 

1.0 M in THF, 90.0 mmol, 3.0 equiv.) was added, followed by a solution of Br2 (5.41 mL, 105 mmol) 

in THF (30 mL). Purification of the crude product by flash column chromatography (silica gel, ihexane) 

afforded the title compound as a colorless oil (10.7 g, 26.5 mmol, 89%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.43 (d, J = 4.7 Hz, 2H), 1.00 – 0.91 (m, 18H), 0.88 – 0.76 

(m, 12H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 170.92 (d, J = 236.1 Hz), 139.60 (d, J = 12.9 Hz), 125.95 (d, 

J = 39.7 Hz), 117.77 (d, J = 2.9 Hz), 7.45, 3.50 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −88.69 (t, J = 5.0 Hz). 

MS (EI, 70 eV): m/z (%) = 402 (2), 319 (71), 317 (73), 291 (51), 289 (50), 289 (50), 263 (39), 261 (37), 

241 (45), 239 (44), 235 (46), 233 (47), 231 (35), 229 (34), 213 (100), 211 (100), 189 (35), 179 (52), 

151 (40), 149 (46), 133 (84), 131 (46), 123 (54), 105 (65), 103 (55), 87 (56), 77 (98), 75 (67). 

HRMS (EI): m/z calc. for [C18H32
79Br19F28Si2]: 402.1210 [M]•+; found: 402.1203.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (s), 2936 (m), 2909 (m), 2874 (m), 1571 (w), 1457 (w), 

1418 (w), 1377 (vs), 1269 (w), 1238 (w), 1211 (m), 1193 (m), 1120 (vs), 1003 (vs), 972 (w), 883 (m), 

861 (vw), 779 (vs), 744 (vs), 721 (vs), 687 (m). 

 

(2-fluoro-5-(trimethylsilyl)-1,3-phenylene)bis(triethylsilane) (8c) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by Me3SiCl (0.45 mL, 3.5 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (330 mg, 0.83 mmol, 

83%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.57 (d, J = 6.3 Hz, 2H), 1.04 – 0.95 (m, 18H), 0.92 – 0.83 

(m, 12H), 0.29 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 173.40 (d, J = 238.0 Hz), 142.81 (d, J = 11.5 Hz), 134.37 (d, 

J = 3.6 Hz), 121.36 (d, J = 35.5 Hz), 7.60 (d, J = 0.8 Hz), 3.84 (d, J = 1.6 Hz), -0.76. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −84.30 (t, J = 5.6 Hz). 

MS (EI, 70 eV): m/z (%) = 381 (7), 339 (40), 311 (54), 283 (55), 255 (24), 247 (37), 237 (20), 227 (37), 

219 (73), 209 (38), 207 (16), 191 (26), 179 (17), 163 (44), 161 (16), 136 (17), 135 (31), 133 (31), 131 

(15), 127 (16), 119 (15), 77 (22), 75 (24), 73 (100), 59 (16).  

HRMS (EI): m/z calc. for [C20H38F28Si3]: 381.2265 [M−Me]•+; found: 381.2259.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2910 (w), 2875 (m), 1562 (w), 1457 (w), 1418 (w), 

1392 (m), 1260 (w), 1248 (m), 1224 (w), 1200 (vw), 1095 (m), 1003 (m), 974 (w), 873 (vs), 833 (vs), 

788 (s), 758 (m), 749 (m), 718 (vs), 687 (s), 677 (m), 670 (m). 
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(2-fluoro-5-methyl-1,3-phenylene)bis(triethylsilane) (8d) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by iodomethane (0.22 mL, 3.5 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (251 mg, 0.74 mmol, 

74%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.21 (d, J = 5.3 Hz, 2H), 2.35 (d, J = 1.0 Hz, 3H), 1.06 – 0.95 

(m, 18H), 0.92 – 0.81 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.70 (d, J = 233.5 Hz), 137.91 (d, J = 12.2 Hz), 132.32 (d, 

J = 3.0 Hz), 121.89 (d, J = 37.1 Hz), 20.95, 7.59, 3.73 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −90.76. 

MS (EI, 70 eV): m/z (%) = 338 (1), 281 (14), 253 (33), 225 (40), 197 (26), 193 (14), 179 (11), 175 (66), 

169 (37), 167 (14), 165 (27), 161 (10), 151 (17), 147 (100), 145 (23), 137 (12), 123 (11), 121 (10), 119 

(20), 105 (13), 95 (11), 77 (32), 75 (14). 

HRMS (EI): m/z calc. for [C19H35
19F28Si2]: 338.2261 [M]•+; found: 338.2254.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2937 (w), 2910 (w), 2874 (m), 1578 (m), 1457 (w), 

1418 (w), 1393 (vs), 1277 (vw), 1238 (w), 1218 (m), 1192 (m), 1111 (w), 1099 (w), 1003 (s), 972 (w), 

914 (m), 873 (w), 789 (vs), 745 (vs), 715 (vs), 689 (vs). 

 

(5-allyl-2-fluoro-1,3-phenylene)bis(triethylsilane) (8e) 

 

According to TP4, fluorobenzene 6a (162 mg, 0.5 mmol) and PMDTA (0.32 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (1.5 mL, 1.0 M in 

THF, 1.5 mmol, 3.0 equiv.) and CuCN•2LiCl (0.05 mL, 1.0 M in THF, 0.05 mmol, 0.1 equiv.) were 

added, followed by allyl bromide (0.15 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (149 mg, 

0.41 mmol, 82%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.17 (d, J = 5.3 Hz, 2H), 6.05 – 5.88 (m, 1H), 5.08 (d, J = 1.6 

Hz, 1H), 5.05 (dq, J = 6.1, 1.7 Hz, 1H), 3.39 – 3.32 (m, 2H), 1.01 – 0.91 (m, 18H), 0.88 – 0.76 (m, 

12H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 170.88 (d, J = 234.4 Hz), 137.77, 137.37 (d, J = 12.3 Hz), 

134.33 (d, J = 2.9 Hz), 121.95 (d, J = 37.3 Hz), 115.60, 39.56 (d, J = 1.4 Hz), 7.43, 3.56 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −89.77 (t, J = 5.1 Hz). 

MS (EI, 70 eV): m/z (%) = 364 (3), 307 (19), 279 (32), 251 (32), 223 (19), 219 (33), 207 (19), 203 (17), 

201 (66), 195 (33), 193 (22), 191 (31), 189 (14), 183 (15), 181 (35), 173 (100), 165 (35), 163 (72), 151 

(25), 145 (49), 143 (42), 117 (38), 115 (27), 105 (25), 103 (32), 91 (18), 87 (19), 77 (52), 75 (70), 59 

(14). 

HRMS (EI): m/z calc. for [C21H37F28Si2]: 364.2418 [M]•+; found: 364.2415.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2909 (w), 2874 (m), 1658 (s), 1598 (w), 1566 (m), 

1457 (w), 1447 (w), 1418 (w), 1395 (w), 1378 (m), 1317 (w), 1276 (vs), 1222 (m), 1198 (w), 1168 (m), 

1099 (s), 1001 (s), 970 (vs), 921 (w), 842 (w), 779 (vs), 755 (vs), 708 (vs), 689 (vs). 

 

ethyl 2-(4-fluoro-3,5-bis(triethylsilyl)benzyl)acrylate (8f) 

 

According to TP4, fluorobenzene 6a (162 mg, 0.5 mmol) and PMDTA (0.32 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (1.5 mL, 1.0 M in 

THF, 1.5 mmol, 3.0 equiv.) and CuCN•2LiCl (0.05 mL, 1.0 M in THF, 0.05 mmol, 0.1 equiv.) were 

added, followed by ethyl 2-(bromomethyl)acrylate124 (0.24 mL, 1.75 mmol). Purification of the crude 

product by flash column chromatography (silica gel, ihexane) afforded the title compound as a colorless 

oil (149 mg, 0.34 mmol, 68%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.18 (d, J = 5.3 Hz, 2H), 6.22 (d, J = 1.5 Hz, 1H), 5.37 (q, J = 

1.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.61 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.98 – 0.92 (m, 18H), 0.85 

– 0.79 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.14 (d, J = 234.9 Hz), 167.13, 141.04 (d, J = 0.9 Hz), 

138.04 (d, J = 12.4 Hz), 133.29 (d, J = 2.9 Hz), 125.74, 122.12 (d, J = 37.5 Hz), 60.84, 37.50 (d, J = 

1.4 Hz), 14.28, 7.51 (d, J = 0.7 Hz), 3.65 (d, J = 1.6 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −89.42 (t, J = 4.7 Hz). 

MS (EI, 70 eV): m/z (%) = 436 (1), 333 (10), 299 (10), 281 (10), 277 (10), 249 (14), 229 (14), 227 (21), 

226 (13), 225 (100), 217 (12), 209 (38), 207 (49), 201 (10), 199 (16), 191 (12), 155 (20), 149 (10), 145 

(11), 143 (13), 129 (21), 128 (14), 117 (10), 115 (12), 103 (16), 93 (28), 87 (10), 84 (12), 78 (14), 77 

(14), 75 (40), 59 (10). 

                                                      
124 J. Villieras, M. Rambaud, Synthesis 1982, 924. 
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HRMS (EI): m/z calc. for [C24H41FO2
28Si2]: 436.2629 [M]•+; found: 436.2617.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2937 (m), 2909 (m), 2874 (m), 1717 (s), 1629 (w), 

1577 (w), 1457 (m), 1392 (vs), 1324 (w), 1299 (w), 1279 (w), 1220 (m), 1192 (s), 1133 (s), 1104 (vs), 

1003 (s), 947 (m), 921 (w), 788 (vs), 748 (vs), 718 (vs), 686 (vs). 

 

(4-chlorophenyl)(4-fluoro-3,5-bis(triethylsilyl)phenyl)methanol (8g) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by 4-chlorobenzaldehyde (492 mg, 3.5 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless solid (282 mg, 0.61 mmol, 61%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.33 (d, J = 5.2 Hz, 2H), 7.32 – 7.30 (m, 4H), 5.80 (s, 1H), 

2.24 (s, 1H), 0.98 – 0.89 (m, 18H), 0.84 – 0.76 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.89 (d, J = 236.9 Hz), 142.47, 138.13 (d, J = 2.9 Hz), 

135.89 (d, J = 12.9 Hz), 133.33, 128.69, 127.88, 122.73 (d, J = 37.9 Hz), 75.58 (d, J = 1.3 Hz), 7.52, 

3.63 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −86.67 (t, J = 5.6 Hz). 

MS (EI, 70 eV): m/z (%) = 464 (9), 410 (12), 409 (42), 408 (35), 407 (100), 382 (10), 381 (30), 380 

(22), 353 (18), 352 (13), 351 (52), 333 (13), 315 (35), 314 (19), 313 (72), 277 (11), 193 (12), 165 (14), 

139 (15), 138 (11), 87 (16), 77 (28), 59 (21), 43 (17). 

HRMS (EI): m/z calc. for [C25H38Cl19FO28Si2]: 464.2134 [M]•+; found: 464.2125.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3261 (w), 2953 (s), 2935 (m), 2908 (m), 2874 (s), 1576 (m), 1490 

(m), 1456 (w), 1415 (m), 1388 (s), 1241 (m), 1219 (w), 1193 (m), 1102 (vs), 1013 (vs), 1004 (vs), 963 

(m), 926 (m), 905 (w), 853 (w), 839 (m), 829 (m), 783 (s), 748 (vs), 727 (vs), 713 (vs), 690 (vs). 

m.p. (°C): 50.2–52.4. 

 

1-(4-fluoro-3,5-bis(triethylsilyl)phenyl)-2,2-dimethylpropan-1-ol (8h) 
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According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by trimethylacetaldehyde (301 mg, 3.5 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless solid (330 mg, 0.80 mmol, 80%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.31 (d, J = 5.4 Hz, 2H), 4.39 (d, J = 2.0 Hz, 1H), 1.83 (d, J = 

2.4 Hz, 1H), 0.98 – 0.92 (m, 18H), 0.90 (s, 9H), 0.87 – 0.79 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.79 (d, J = 235.8 Hz), 136.63 (d, J = 12.5 Hz), 136.54, 

121.10 (d, J = 37.5 Hz), 82.27 (d, J = 1.2 Hz), 35.84 (d, J = 0.9 Hz), 26.01, 7.53 (d, J = 0.8 Hz), 3.70 

(d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −87.99 (t, J = 5.7 Hz). 

MS (EI, 70 eV): m/z (%) = 392 (8), 354 (24), 353 (100), 229 (14), 225 (27), 221 (11), 219 (15), 209 

(13), 207 (28), 201 (24), 193 (17), 163 (17), 149 (17), 145 (35), 143 (12), 141 (12), 129 (19), 128 (17), 

115 (13), 105 (13), 103 (11), 91 (17), 87 (39), 77 (24), 75 (43), 59 (27).  

HRMS (EI): m/z calc. for [C23H41F28Si2]: 392.2731 [M−H2O]•+; found: 392.2727.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3393 (br vw), 2952 (m), 2873 (m), 1684 (w), 1577 (w), 1456 

(w), 1417 (w), 1393 (m), 1291 (w), 1221 (m), 1194 (m), 1102 (s), 1058 (m), 1004 (s), 943 (m), 904 (m), 

875 (w), 783 (s), 719 (vs), 686 (vs), 668 (vs), 655 (s). 

m.p. (°C): 46.8–48.9. 

 

Dicyclopropyl(4-fluoro-3,5-bis(triethylsilyl)phenyl)methanol (8i) 

 

According to TP4, fluorobenzene 6a (162 mg, 0.5 mmol) and PMDTA (0.32 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by dicyclopropylketone (286 mg, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless solid (165 mg, 0.38 mmol, 76%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.64 (d, J = 5.4 Hz, 2H), 1.47 (d, J = 2.7 Hz, 1H), 1.18 (tt, J 

= 8.4, 5.5 Hz, 2H), 1.02 – 0.94 (m, 18H), 0.90 – 0.81 (m, 12H), 0.61 – 0.49 (m, 4H), 0.44 – 0.35 (m, 

4H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 171.44 (d, J = 235.6 Hz), 141.13 (d, J = 2.9 Hz), 135.23 (d, 

J = 12.4 Hz), 121.03 (d, J = 37.3 Hz), 73.94 (d, J = 1.0 Hz), 20.80, 7.58, 3.77 (d, J = 1.6 Hz), 1.96, 0.48. 
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19F-NMR: (377 MHz, CDCl3): δ / ppm = −88.99 (t, J = 5.5 Hz). 

MS (EI, 70 eV): m/z (%) = 434 (1), 406 (22), 302 (22), 245 (29), 243 (34), 225 (30), 217 (58), 215 (36), 

197 (59), 195 (32), 189 (20), 187 (22), 169 (40), 167 (100), 166 (33), 165 (95), 155 (23), 153 (63), 152 

(42), 141 (46), 128 (23), 115 (25), 105 (35), 103 (28), 87 (97), 77 (97), 75 (83), 59 (57). 

HRMS (EI): m/z calc. for [C25H43FO28Si2]: 434.2836 [M]•+; found: 434.2831.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3307 (br w), 3006 (vw), 2952 (s), 2909 (m), 2874 (s), 1577 (w), 

1457 (m), 1398 (s), 1340 (w), 1222 (w), 1153 (w), 1123 (w), 1094 (s), 1017 (s), 999 (vs), 977 (s), 897 

(s), 851 (vw), 818 (vw), 788 (vs), 752 (vs), 720 (vs), 685 (s). 

m.p. (°C): 48.5–50.2. 

 

4-fluoro-3,5-bis(triethylsilyl)benzaldehyde (8j) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by dimethylformamide (0.27 mL, 3.5 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a 

colorless oil (260 mg, 0.74 mmol, 74%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 9.98 (s, 1H), 7.93 (d, J = 5.4 Hz, 2H), 1.01 – 0.92 (m, 18H), 

0.89 (ddt, J = 9.1, 6.9, 1.1 Hz, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 191.66, 175.87 (d, J = 246.3 Hz), 140.09 (d, J = 14.8 Hz), 

132.36 (d, J = 2.4 Hz), 124.05 (d, J = 39.2 Hz), 7.43, 3.46 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −75.00 (t, J = 5.7 Hz). 

MS (EI, 70 eV): m/z (%) = 351 (1), 285 (100), 283 (14), 267 (55), 265 (17), 257 (99), 239 (50), 229 

(45), 227 (11), 225 (10), 211 (26), 209 (19), 203 (13), 201 (84), 199 (11), 183 (50), 179 (23), 161 (22), 

149 (12), 139 (11), 137 (11), 131 (11), 117 (20), 115 (19), 105 (12), 91 (47), 89 (12), 87 (13), 77 (48), 

75 (62), 63 (13), 59 (12). 

HRMS (EI): m/z calc. for [C19H32FO28Si2]: 351.1976 [M−H]•+; found: 351.1964.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2937 (w), 2910 (w), 2875 (m), 1692 (s), 1568 (m), 

1457 (w), 1418 (w), 1390 (m), 1364 (s), 1291 (w), 1217 (m), 1195 (w), 1095 (s), 1003 (s), 976 (w), 929 

(s), 907 (m), 795 (s), 772 (m), 755 (vs), 719 (vs), 689 (s). 
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(4-fluoro-3,5-bis(triethylsilyl)phenyl)(phenyl)methanone (8k) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by N-methoxy-N-methylbenzamide (578 mg, 3.5 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as 

a colorless oil (306 mg, 0.71 mmol, 71%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.91 (dd, J = 5.4, 1.2 Hz, 2H), 7.81 (dd, J = 8.2, 1.3 Hz, 2H), 

7.61 – 7.54 (m, 1H), 7.48 (td, J = 7.5, 1.2 Hz, 2H), 1.02 – 0.93 (m, 18H), 0.93 – 0.82 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 196.04, 174.70 (d, J = 243.6 Hz), 140.18 (d, J = 13.9 Hz), 

137.88, 133.14 (d, J = 2.5 Hz), 132.40, 130.07, 128.26, 122.79 (d, J = 38.6 Hz), 7.40, 3.49. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −78.64 (t, J = 5.8 Hz). 

MS (EI, 70 eV): m/z (%) = 428 (1), 400 (23), 399 (81), 390 (14), 389 (49), 372 (19), 371 (71), 362 (16), 

361 (69), 344 (21), 343 (100), 341 (33), 333 (54), 316 (14), 315 (88), 305 (20), 287 (33), 285 (18), 277 

(18), 259 (38), 257 (15), 237 (22), 229 (24), 213 (16), 207 (20), 178 (21), 165 (73), 105 (76), 77 (52), 

75 (28). 

HRMS (EI): m/z calc. for [C25H37
19FO28Si2]: 428.2367 [M]•+; found: 428.2354.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2937 (w), 2909 (w), 2874 (m), 1658 (s), 1566 (m), 

1464 (w), 1457 (w), 1447 (w), 1395 (w), 1378 (m), 1317 (w), 1276 (vs), 1221 (m), 1198 (w), 1168 (m), 

1099 (s), 1001 (s), 970 (vs), 921 (w), 843 (w), 779 (vs), 755 (vs), 733 (s), 707 (vs), 697 (vs), 688 (vs). 

 

4-fluoro-3,5-bis(triethylsilyl)benzoic acid (8l) 

 

According to TP4, fluorobenzene 6a (324 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were 

dissolved in nhexane (2 mL). nBuLi (1.18 mL, 2.55 m, 3.0 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added. A second 

glass vessel, which was connected by teflon tubing, was charged with dry ice, bubbling CO2 into the 

reaction mixture. Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 8:2) afforded the title compound as a colorless solid (231 mg, 0.63 mmol, 63%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.20 (d, J = 5.4 Hz, 2H), 1.07 – 0.82 (m, 30H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 175.76 (d, J = 245.0 Hz), 172.51, 140.49 (d, J = 14.4 Hz), 

124.95 (d, J = 2.5 Hz), 123.34 (d, J = 39.2 Hz), 7.47, 3.56. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −76.94. 

MS (EI, 70 eV): m/z (%) = 339 (4), 312 (26), 311 (88), 284 (20), 283 (100), 256 (17), 255 (60), 227 

(10), 217 (44), 199 (31), 127 (17), 77 (10), 43 (26). 

HRMS (EI): m/z calc. for [C17H28
19FO2

28Si2]: 339.1612 [M−Et]•+; found: 339.1603.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (s), 2936 (m), 2896 (m), 2872 (m), 2650 (w), 2552 (w), 

1684 (vs), 1576 (s), 1456 (w), 1436 (w), 1418 (w), 1383 (s), 1291 (vs), 1235 (m), 1221 (s), 1199 (m), 

1162 (s), 1102 (s), 1079 (w), 1004 (vs), 960 (s), 947 (s), 903 (s), 778 (vs), 751 (vs), 733 (s), 712 (vs), 

691 (s), 671 (m). 

m.p. (°C): 116.8–118.6. 

 

Ethyl 4-fluoro-3,5-bis(triethylsilyl)benzoate (8m) 

 

According to TP4, fluorobenzene 6a (162 mg, 0.5 mmol) and PMDTA (0.32 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M, 1.5 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and MgCl2 (3.0 mL, 0.5 M in THF, 

1.5 mmol, 3.0 equiv.) was added, followed by ethyl cyanoformate (0.17 mL, 1.75 mmol). Purification 

of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded 

the title compound as a colorless oil (102 mg, 0.26 mmol, 51%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.09 (d, J = 5.4 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 

7.1 Hz, 3H), 0.99 – 0.93 (m, 18H), 0.90 – 0.82 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 175.05 (d, J = 243.4 Hz), 166.61, 139.59 (d, J = 14.0 Hz), 

126.08 (d, J = 2.9 Hz), 122.87 (d, J = 38.6 Hz), 61.01, 14.51, 7.46, 3.53. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -78.78 (t, J = 5.6 Hz). 

MS (EI, 70 eV): m/z (%) = 367 (1), 357 (17), 339 (13), 329 (27), 311 (20), 301 (27), 283 (22), 273 (13), 

218 (12), 217 (100), 189 (17), 181 (12), 161 (11), 133 (14), 131 (11), 77 (15), 75 (17). 

HRMS (EI): m/z calc. for [C19H32FO2
28Si2]: 367.1925 [M–Et]•+; found: 367.1919. 

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2938 (w), 2910 (w), 2875 (m), 1720 (vs), 1576 (m), 

1457 (w), 1418 (w), 1386 (m), 1365 (m), 1269 (vs), 1239 (m), 1217 (m), 1173 (w), 1128 (vs), 1003 (s), 

975 (w), 922 (w), 866 (w), 786 (s), 771 (s), 750 (s), 720 (s), 687 (m), 656 (m). 
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4,4-dimethyl-2-(4-(methylthio)-2,6-bis(triethylsilyl)phenyl)-4,5-dihydrooxazole (9a) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by MeSSMe (0.16 mL, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil 

(201 mg, 0.45 mmol, 89%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.39 (s, 2H), 4.10 (s, 2H), 2.49 (s, 3H), 1.43 (s, 6H), 1.03 – 

0.71 (m, 30H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 164.03, 138.28, 137.82, 137.29, 133.82, 78.78, 68.46, 29.19, 

15.54, 7.77, 4.34. 

MS (EI, 70 eV): m/z (%) = 421 (10), 420 (29), 366 (46), 348 (54), 338 (59), 320 (44), 310 (75), 292 

(72), 282 (22), 281 (16), 265 (27), 264 (23), 255 (13), 237 (26), 225 (55), 209 (26), 207 (47), 199 (21), 

196 (14), 181 (16), 125 (24), 45 (18), 44 (66), 42 (100), 41 (16). 

HRMS (EI): m/z calc. for [C22H38NOS28Si2]: 420.2213 [M−Et]•+; found: 420.2213.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2935 (m), 2906 (w), 2872 (m), 1652 (m), 1549 (w), 

1463 (w), 1419 (w), 1397 (w), 1363 (w), 1343 (w), 1285 (w), 1238 (m), 1209 (w), 1182 (w), 1132 (m), 

1119 (m), 1037 (s), 1001 (s), 961 (s), 921 (w), 868 (w), 778 (s), 721 (vs), 688 (s). 

 

2-(2,6-bis(triethylsilyl)-4-(trimethylsilyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (9b) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by trimethylsilyl chloride (0.22 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a 

yellow oil (211 mg, 0.44 mmol, 89%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.70 (s, 2H), 4.11 (s, 2H), 1.44 (s, 6H), 1.04 – 0.73 (m, 30H), 

0.26 (s, 9H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 164.41, 141.26, 138.45, 136.33, 134.86, 78.87, 68.46, 29.22, 

7.81, 4.48, -1.10. 

MS (EI, 70 eV): m/z (%) = 461 (22), 446 (77), 392 (31), 375 (29), 374 (100), 364 (31), 347 (14), 346 

(53), 337 (11), 336 (469), 319 (17), 318 (91), 308 (16), 304 (11), 291 (25), 290 (40), 263 (21), 262 (15), 

252 (10), 235 (23), 234 (15), 233 (11), 225 (17), 207 (35), 161 (10), 159 (10), 73 (35), 41 (10). 

HRMS (EI): m/z calc. for [C25H46NO28Si3]: 460.2887 [M−Me]•+; found: 460.2881.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2908 (w), 2891 (w), 2873 (m), 1654 (m), 1464 (w), 

1418 (vw), 1400 (vw), 1363 (w), 1342 (vw), 1287 (w), 1248 (m), 1184 (vw), 1036 (s), 1002 (m), 961 

(m), 875 (s), 850 (s), 835 (vs), 782 (s), 720 (vs), 689 (s). 

 

2-(4-fluoro-2,6-bis(triethylsilyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (9c) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by N-fluorobenzenesulfonimide (552 mg, 1.75 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as 

a colorless oil (131 mg, 0.31 mmol, 62%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.21 (d, J = 9.2, 2H), 4.11 (s, 2H), 1.44 (s, 6H), 1.02 – 0.75 

(m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.50 (d, J = 37.5 Hz), 160.80, 140.64 (d, J = 3.7 Hz), 137.59 

(d, J = 3.2 Hz), 122.67 (d, J = 19.2 Hz), 78.88, 68.51, 29.19, 7.66, 4.20. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −114.3 (t, J = 9.2). 

MS (EI, 70 eV): m/z (%) = 420 (1), 320 (12), 310 (14), 308 (15), 292 (10), 282 (24), 268 (21), 264 (15), 

250 (36), 225 (10), 222 (15), 181 (11), 150 (11). 

HRMS (EI): m/z calc. for [C23H39FNO28Si2]: 420.2554 [M−H]•+; found: 420.2551.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2937 (w), 2908 (w), 2873 (m), 1654 (m), 1570 (m), 

1458 (w), 1418 (w), 1399 (w), 1342 (w), 1281 (m), 1218 (s), 1182 (m), 1106 (vw), 1040 (m), 1001 (s), 

961 (m), 930 (m), 882 (w), 860 (vw), 777 (s), 721 (vs), 691 (s). 

 

 

 

 



C. EXPERIMENTAL PART    90 

2-(4-bromo-2,6-bis(triethylsilyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (9d) 

 

According to TP4, oxazolylbenzene 6b (12.1 mg, 30.0 mmol) and PMDTA (18.8 mL, 90.0 mmol) were 

dissolved in nhexane (60 mL). nBuLi (35.3 mL, 2.55 M in hexane, 90.0 mmol) was added and the 

resulting solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (90 mL, 

1.0 M in THF, 90 mmol, 3.0 equiv.) was added, followed by a solution of Br2 (5.41 mL, 105 mmol) in 

THF (30 mL). Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless solid (13.9 g, 28.7 mmol, 96%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.62 (s, 2H), 4.11 (s, 2H), 1.43 (s, 6H), 1.07 – 0.74 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.54, 140.38, 140.10, 138.75, 124.14, 78.92, 68.60, 29.15, 

7.66, 4.19. 

MS (EI, 70 eV): m/z (%) = 454 (10), 452 (8), 380 (28), 370 (41), 354 (14), 352 (15), 344 (53), 342 (51), 

326 (21), 324 (18), 316 (13), 314 (13), 299 (15), 281 (13), 258 (12), 256 (11), 230 (10), 227 (17), 226 

(11), 225 (88), 212 (10), 209 (27), 207 (41), 93 (11), 81 (10), 79 (10), 75 (14), 45 (10), 44 (21), 42 

(100). 

HRMS (EI): m/z calc. for [C21H35
79BrNOS28Si2]: 452.1441 [M−Et]•+; found: 452.1439.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2906 (w), 2873 (m), 1656 (m), 1537 (vw), 1461 (w), 

1418 (vw), 1393 (w), 1341 (vw), 1276 (w), 1238 (w), 1179 (vw), 1109 (m), 1037 (s), 1003 (s), 959 (m), 

921 (w), 881 (w), 777 (s), 755 (w), 723 (vs), 691 (m).  

m.p. (°C): 48.5–50.4. 

 

2-(4-iodo-2,6-bis(triethylsilyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (9e) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (1.5 mL, 1.0 M in 

THF, 1.5 mmol, 3.0 equiv) was added, followed by a solution of I2 (444 mg, 1.75 mmol) in THF (1 mL). 

Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 

19:1) afforded the title compound as a colorless solid (232 mg, 0.44 mmol, 88%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.82 (s, 2H), 4.10 (s, 2H), 1.43 (s, 6H), 0.99 – 0.72 (m, 30H). 
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13C-NMR (151 MHz, CDCl3): δ / ppm = 163.59, 144.75, 140.87, 140.25, 136.32, 78.92, 68.63, 29.17, 

7.68, 4.18. 

MS (EI, 70 eV): m/z (%) = 500 (91), 447 (30), 428 (100), 418 (40), 401 (13), 400 (63), 391 (10), 390 

(54), 373 (15), 372 (90), 362 (11), 345 (27), 344 (24), 317 (22), 316 (11), 314 (10), 289 (23), 288 (10), 

287 (12), 279 (14), 261 (16), 155 (12), 127 (20), 44 (16), 42 (15), 41 (12). 

HRMS (EI): m/z calc. for [C21H35INO28Si2]: 500.1302 [M−Et]•+; found: 500.1302.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2905 (w), 2872 (m), 1652 (m), 1533 (vw), 1460 (w), 

1418 (vw), 1392 (w), 1365 (vw), 1340 (vw), 1277 (w), 1237 (w), 1177 (vw), 1102 (w), 1037 (m), 1002 

(s), 958 (m), 922 (w), 879 (vw), 776 (s), 755 (m), 721 (vs), 688 (s), 674 (s). 

m.p. (°C): 72.2–74.0. 

 

2-(3,5-bis(triethylsilyl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-4-yl)-4,4-dimethyl-4,5-

dihydrooxazole (9f) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and ZnCl2 (1.5 mL, 1.0 M in 

THF, 1.5 mmol, 3.0 equiv.) and CuCN•2LiCl (0.05 mL, 1.0 M in THF, 0.05 mmol, 0.1 equiv.) were 

added, followed by 3-bromocyclohex-1-ene (0.20 mL, 1.75 mmol). Purification of the crude product 

by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound 

as a colorless oil (207 mg, 0.43 mmol, 86%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.37 (s, 2H), 5.96 – 5.88 (m, 1H), 5.75 – 5.67 (m, 1H), 4.11 

(s, 2H), 3.39 (ddt, J = 8.1, 5.5, 2.8 Hz, 1H), 2.13 – 2.04 (m, 2H), 2.05 – 1.94 (m, 1H), 1.82 – 1.47 (m, 

2H), 1.43 (s, 7H), 0.99 – 0.79 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.64, 144.65, 139.33, 136.21, 135.87, 129.95, 128.62, 

78.83, 68.36, 41.80, 32.64, 29.22, 25.16, 20.98, 7.80, 4.40. 

MS (EI, 70 eV): m/z (%) = 482 (1), 455 (36), 454 (100), 382 (10), 344 (10), 326 (12), 312 (15), 284 

(12), 243 (11), 225 (30), 215 (14), 209 (16), 207 (46), 183 (10), 181 (11), 81 (13), 79 (12), 75 (14), 59 

(14). 

HRMS (EI): m/z calc. for [C29H48NO28Si2]: 482.3274 [M−H]•+; found: 482.3275.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2950 (m), 2933 (m), 2908 (m), 2872 (m), 1652 (m), 1460 (w), 

1418 (w), 1343 (w), 1287 (w), 1238 (w), 1206 (w), 1183 (w), 1127 (vw), 1040 (m), 1001 (s), 960 (m), 

782 (s), 720 (vs), 690 (s), 669 (m). 

 

(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)phenyl)methanol (9g) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by paraformaldehyde (53 mg, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a colorless solid 

(172 mg, 0.40 mmol, 79%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.52 (s, 2H), 4.70 (s, 2H), 4.11 (s, 2H), 1.66 (s, 1H), 1.44 (s, 

6H), 1.03 – 0.77 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.16, 141.32, 139.07, 136.95, 134.98, 78.83, 68.52, 65.75, 

29.23, 7.78, 4.31. 

MS (EI, 70 eV): m/z (%) = 433 (1), 419 (100), 406 (11), 405 (30). 

HRMS (EI): m/z calc. for [C24H43NO2
28Si2]: 433.2832 [M]•+; found: 433.2831.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3281 (br w), 2954 (m), 2937 (m), 2898 (m), 2876 (s), 1653 (m), 

1454 (m), 1419 (w), 1398 (w), 1367 (w), 1343 (w), 1283 (s), 1237 (m), 1203 (m), 1180 (w), 1125 (w), 

1045 (vs), 1002 (vs), 957 (vs), 933 (m), 913 (m), 880 (m), 861 (w), 783 (s), 759 (s), 718 (vs), 693 (s), 

681 (m). 

m.p. (°C): 181.7–183.6. 

 

(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)phenyl)(3-

methoxyphenyl)methanol (9h) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 
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solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by 3-methoxybenzaldehyde (238 mg, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (227 mg, 0.42 mmol, 84%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.54 (s, 2H), 7.22 (t, J = 8.0, 1H), 6.90 (dt, J = 7.5, 1.6, 2H), 

6.82 – 6.76 (m, 1H), 5.79 (s, 1H), 4.11 (s, 2H), 3.75 (s, 3H), 2.56 (s, 1H), 1.43 (s, 6H), 0.89 (td, J = 8.1, 

7.4, 3.2, 18H), 0.86 – 0.80 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.29, 159.81, 145.51, 141.87, 140.98, 136.72, 134.58, 

129.53, 119.04, 113.56, 111.71, 78.84, 76.24, 68.39, 55.25, 29.14, 7.70, 4.28. 

MS (EI, 70 eV): m/z (%) = 539 (1), 512 (12), 511 (34), 510 (100). 

HRMS (EI): m/z calc. for [C31H49NO3
28Si2]: 539.3251 [M]•+; found: 539.3236.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3212 (br w), 2953 (m), 2900 (m), 2872 (m), 2829 (w), 1648 (m), 

1601 (m), 1464 (m), 1344 (w), 1285 (m), 1256 (s), 1204 (m), 1180 (w), 1156 (m), 1047 (vs), 1003 (s), 

955 (s), 935 (m), 892 (w), 850 (w), 785 (s), 761 (s), 725 (s), 694 (s). 

m.p. (°C): 140.5–142.4. 

 

1-cyclopropyl-1-(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)phenyl) ethan-1-ol 

(9i) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by cyclopropyl methyl ketone (0.17 mL, 1.75 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (210 mg, 0.43 mmol, 86%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.72 (s, 2H), 4.11 (s, 2H), 1.70 (s, 1H), 1.49 (s, 4H), 1.44 (s, 

5H), 1.22 (tt, J = 8.2, 5.7 Hz, 1H), 0.98 – 0.90 (m, 18H), 0.90 – 0.82 (m, 12H), 0.54 – 0.31 (m, 4H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.41, 145.58, 140.20, 135.98, 133.23, 78.82, 73.40, 68.37, 

29.16, 28.42, 22.86, 7.76, 4.37, 1.90, 1.19. 

MS (EI, 70 eV): m/z (%) = 458 (55), 299 (16), 281 (14), 227 (19), 226 (14), 225 (100), 209 (32), 207 

(49), 191 (10), 42 (80). 

HRMS (EI): m/z calc. for [C26H44NO2
28Si2]: 458.2911 [M−Et]•+; found: 458.2908.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3275 (vw), 2952 (w), 2906 (w), 2873 (w), 1652 (w), 1460 (w), 

1419 (vw), 1403 (vw), 1383 (vw), 1365 (w), 1343 (w), 1285 (w), 1236 (w), 1208 (vw), 1182 (vw), 1112 

(m), 1094 (w), 1037 (m), 1018 (m), 1001 (m), 960 (m), 915 (m), 901 (w), 782 (m), 721 (vs), 687 (s). 

m.p. (°C): 98.6–100.1. 

 

4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)benzaldehyde (9j) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by dimethylformamide (0.14 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless oil (145 mg, 0.34 mmol, 67%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 10.04 (s, 1H), 8.02 (s, 2H), 4.15 (s, 2H), 1.45 (s, 6H), 1.02 – 

0.75 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 192.95, 163.37, 147.62, 138.12, 137.64, 134.07, 79.06, 68.75, 

29.08, 7.58, 4.11. 

MS (EI, 70 eV): m/z (%) = 402 (34), 348 (35), 331 (16), 330 (75), 320 (46), 303 (10), 302 (69), 292 

(77), 275 (14), 274 (100), 272 (11), 264 (22), 247 (30), 246 (42), 236 (11), 219 (30), 218 (20), 209 (14), 

191 (29), 190 (15), 189 (14), 181 (16), 163 (22), 145 (19), 143 (12). 

HRMS (EI): m/z calc. for [C22H36NO2
28Si2]: 402.2285 [M−Et]•+; found: 402.2282.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2935 (m), 2907 (w), 2873 (m), 1722 (w), 1702 (s), 

1654 (m), 1576 (w), 1464 (w), 1418 (w), 1395 (w), 1365 (w), 1342 (w), 1279 (m), 1239 (m), 1207 (m), 

1180 (w), 1140 (vw), 1116 (vw), 1038 (s), 1002 (vs), 960 (s), 913 (s), 892 (w), 858 (w), 782 (s), 717 

(vs), 685 (s). 

 

(4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)phenyl)(4-(trifluoromethyl)-

phenyl)methanone (9k) 
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According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by N-methoxy-N-methyl-4-(trifluoromethyl)benzamide (408 mg, 1.75 mmol). Purification of 

the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded 

the title compound as a colorless solid (201 mg, 0.35 mmol, 70%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.96 (s, 2H), 7.90 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 

2H), 4.17 (s, 2H), 1.47 (s, 6H), 1.01 – 0.80 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 195.89, 163.42, 146.33, 140.73 (q, J = 1.1 Hz), 137.73, 

137.61, 134.84, 133.98 (q, J = 32.7 Hz), 130.34, 125.43 (q, J = 3.7 Hz), 123.82 (q, J = 272.7 Hz), 79.10, 

68.80, 29.15, 7.65, 4.20. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −63.04. 

MS (EI, 70 eV): m/z (%) = 546 (100), 492 (28), 475 (23), 474 (70), 447 (21), 446 (70), 445 (23), 419 

(10), 418 (38), 390 (20), 362 (10), 307 (12), 224 (13), 210 (15), 207 (10), 195 (11), 176 (17), 173 (17), 

165 (23), 145 (17), 126 (10), 43 (12), 42 (16), 41 (17). 

HRMS (EI): m/z calc. for [C29H39F3NO2
28Si2]: 546.2471 [M−Et]•+; found: 546.2480.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2948 (w), 2935 (w), 2905 (w), 2872 (w), 1656 (s), 1572 (vw), 

1462 (vw), 1407 (w), 1324 (s), 1277 (s), 1246 (w), 1165 (s), 1132 (vs), 1106 (m), 1064 (s), 1042 (s), 

1015 (m), 977 (s), 960 (m), 923 (w), 860 (m), 783 (s), 719 (vs), 681 (s). 

m.p. (°C): 64.8–66.7. 

 

4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)benzoic acid (9l) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added. 

A second glass vessel, which was connected by teflon tubing, was charged with dry ice, bubbling CO2 

into the mixture. Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 9:1) afforded the title compound as a colorless solid (152 mg, 0.34 mmol, 68%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.25 (s, 2H), 4.18 (s, 2H), 1.51 (s, 6H), 1.06 – 0.60 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.40, 164.37, 146.16, 137.86, 137.16, 128.29, 79.30, 68.61, 

29.04, 7.54, 4.08. 

MS (EI, 70 eV): m/z (%) = 447 (1), 420 (10), 419 (28), 418 (100). 
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HRMS (EI): m/z calc. for [C24H41NO3
28Si2]: 447.2625 [M]•+; found: 447.2612.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (m), 2935 (m), 2907 (m), 2873 (s), 1692 (s), 1648 (s), 1579 

(w), 1458 (m), 1418 (w), 1395 (w), 1345 (w), 1277 (m), 1239 (s), 1208 (m), 1155 (w), 1139 (m), 1125 

(m), 1054 (m), 1040 (m), 1002 (vs), 959 (s), 921 (m), 889 (w), 853 (m), 774 (vs), 756 (m), 719 (vs), 

688 (vs). 

m.p. (°C): 172.8–174.9. 

 

N-(tert-butyl)-4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3,5-bis(triethylsilyl)benzamide (9m) 

 

According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by tert-butyl isocyanate (0.20 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (175 mg, 0.35 mmol, 70%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.84 (s, 2H), 5.88 (s, 1H), 4.11 (s, 2H), 1.47 (s, 9H), 1.43 (s, 

6H), 0.98 – 0.77 (m, 30H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 167.40, 163.54, 144.56, 137.27, 134.47, 134.04, 78.86, 68.64, 

51.70, 29.12, 28.97, 7.68, 4.23. 

MS (EI, 70 eV): m/z (%) = 473 (100), 225 (22), 207 (12), 42 (16). 

HRMS (EI): m/z calc. for [C26H45N2O2
28Si2]: 473.3020 [M−Et]•+; found: 473.3017.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3383 (br vw), 2955 (m), 2935 (w), 2872 (w), 1643 (s), 1576 (vw), 

1514 (s), 1454 (w), 1392 (w), 1364 (w), 1341 (vw), 1301 (w), 1284 (w), 1238 (m), 1202 (w), 1182 (w), 

1156 (vw), 1036 (m), 1000 (s), 960 (m), 909 (m), 775 (m), 725 (vs), 683 (m). 

m.p. (°C): 106.5–108.4. 

 

(S)-4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-N-(1-phenylethyl)-3,5-bis(triethylsilyl)benzamide 

(9n) 
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According to TP4, oxazolylbenzene 6b (202 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by (S)-(1-isocyanatoethyl)benzene (258 mg, 1.75 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (186 mg, 0.34 mmol, 68%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.90 (s, 2H), 7.43 – 7.34 (m, 4H), 7.31 – 7.26 (m, 1H), 6.25 

(d, J = 7.7 Hz, 1H), 5.34 (p, J = 7.1 Hz, 1H), 4.13 (s, 2H), 1.63 (d, J = 6.9 Hz, 3H), 1.45 (s, 6H), 0.97 – 

0.83 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.28, 163.53, 144.96, 143.39, 137.55, 134.67, 133.00, 

128.93, 127.60, 126.26, 78.95, 68.71, 49.47, 29.17, 22.10, 7.73, 4.31. 

MS (EI, 70 eV): m/z (%) = 521 (25), 281 (14), 225 (44), 209 (19), 208 (10), 207 (72), 191 (16), 105 

(40), 104 (100), 103 (56), 102 (13), 91 (11), 79 (10), 78 (66), 77 (43). 

HRMS (EI): m/z calc. for [C30H45N2O2
28Si2]: 521.3020 [M−Et]•+; found: 521.3016.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3308 (vw), 2953 (w), 2933 (w), 2872 (w), 2359 (vw), 1655 (w), 

1625 (s), 1577 (w), 1524 (s), 1456 (w), 1418 (vw), 1401 (vw), 1375 (vw), 1363 (w), 1332 (w), 1283 

(m), 1242 (w), 1207 (w), 1162 (w), 1124 (w), 1036 (m), 1001 (m), 959 (m), 912 (w), 864 (vw), 782 

(m), 727 (vs), 699 (vs), 666 (s). 

m.p. (°C): 168.0–169.8. 

 

(2-methoxy-5-(methylthio)-1,3-phenylene)bis(triethylsilane) (10a) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by S2Me2 (0.31 mL, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as a colorless oil (84 mg, 0.22 mmol, 

44%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.33 (s, 2H), 3.65 (s, 3H), 2.47 (s, 3H), 0.99 – 0.92 (m, 18H), 

0.89 – 0.79 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.54, 137.51, 131.70, 129.80, 63.67, 17.40, 7.71, 4.19. 

MS (EI, 70 eV): m/z (%) = 382 (1), 197 (16), 179 (31), 151 (15), 137 (10), 135 (24), 117 (56), 107 (42), 

91 (20), 89 (100), 87 (38), 77 (22), 75 (13), 61 (51), 59 (27). 

HRMS (EI): m/z calc. for [C20H38OS28Si2]: 382.2182 [M]•+; found: 382.2177.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2873 (m), 1541 (vw), 1456 (w), 1375 (s), 

1210 (s), 1137 (m), 1101 (w), 1003 (vs), 968 (w), 781 (s), 719 (vs), 663 (m). 

 

(2-methoxy-5-(trimethylsilyl)-1,3-phenylene)bis(triethylsilane) (10b) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by trimethylsilylchloride (0.22 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a 

colorless oil (79 mg, 0.19 mmol, 39%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.59 (s, 2H), 3.69 (s, 3H), 1.02 – 0.93 (m, 18H), 0.91 – 0.81 

(m, 12H), 0.26 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 173.11, 143.56, 133.46, 127.52, 63.52, 7.79, 4.42, -0.78. 

MS (EI, 70 eV): m/z (%) = 393 (6), 369 (37), 352 (25), 351 (100), 341 (18), 323 (66), 295 (50), 267 

(30), 265 (22), 249 (25), 247 (70), 239 (21), 235 (19), 221 (22), 219 (19), 207 (20), 193 (33), 191 (21), 

179 (25), 163 (22), 161 (23), 117 (30), 89 (66), 87 (32), 73 (57), 61 (27), 59 (25).  

HRMS (EI): m/z calc. for [C26H41O28Si3]: 393.2465 [M-Me]•+; found: 393.2457.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2874 (w), 1537 (w), 1457 (w), 1417 (vw), 

1382 (m), 1247 (m), 1215 (w), 1107 (m), 1003 (m), 974 (vw), 869 (vs), 834 (vs), 782 (s), 718 (vs), 686 

(s). 

 

(5-fluoro-2-methoxy-1,3-phenylene)bis(triethylsilane) (10c) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by N-fluorobenzenesulfonimide (582 mg, 1.75 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as 

a colorless oil (71 mg, 0.20 mmol, 40%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.05 (d, J = 8.4 Hz, 2H), 3.65 (s, 3H), 0.95 (td, J = 7.1, 1.1 

Hz, 18H), 0.90 – 0.78 (m, 12H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 158.98 (d, J = 245.0 Hz), 138.24, 131.43 (d, J = 3.7 Hz), 

123.72 (d, J = 20.7 Hz), 63.87, 7.63, 4.07. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -121.97 (t, J = 8.4 Hz). 

MS (EI, 70 eV): m/z (%) = 325 (3), 297 (27), 269 (23), 241 (24), 213 (16), 211 (42), 197 (10), 189 

(23), 185 (10), 183 (12), 169 (23), 163 (11), 155 (19), 153 (16), 151 (24), 149 (11), 133 (42), 131 

(12), 125 (28), 123 (13), 117 (53), 115 (22), 109 (15), 107 (16), 93 (10), 91 (34), 89 (100), 87 (46), 77 

(32), 75 (11), 61 (30), 59 (20). 

HRMS (EI): m/z calc. for [C17H30FO28Si2]: 325.1819 [M–Et]•+; found: 325.1820.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2909 (w), 2874 (m), 1572 (vw), 1457 (w), 1418 

(vw), 1372 (vs), 1236 (w), 1200 (m), 1163 (w), 1003 (s), 960 (w), 881 (w), 776 (s), 717 (vs). 

 

(5-bromo-2-methoxy-1,3-phenylene)bis(triethylsilane) (10d) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and ZnCl2 (1.5 mL, 1.0 M in 

THF, 1.5 mmol) was added, followed by a solution of Br2 (0.09 mL, 1.75 mmol) in THF (1 mL). 

Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 

99:1) afforded the title compound as a colorless oil (106 mg, 0.26 mmol, 51%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.45 (s, 2H), 3.65 (s, 3H), 0.99 – 0.89 (m, 18H), 0.89 – 0.78 

(m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.03, 140.33, 132.39, 117.83, 63.73, 7.64, 4.07. 

MS (EI, 70 eV): m/z (%) = 414 (2), 360 (15), 359 (60), 358 (15), 357 (55), 331 (28), 329 (30), 303 (10), 

301 (15), 273 (11), 244 (10), 165 (12), 151 (11), 150 (12), 118 (13), 117 (100), 115 (22), 89 (32), 87 

(24), 61 (15), 59 (19), 57 (15), 55 (11), 43 (69). 

HRMS (EI): m/z calc. for [C19H35
79BrO28Si2]: 414.1410 [M]•+; found: 414.1407.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2909 (w), 2874 (m), 1456 (w), 1417 (vw), 1368 (s), 

1238 (w), 1207 (m), 1114 (s), 1003 (s), 973 (w), 882 (w), 772 (s), 721 (vs), 683 (m). 

 

(4-methoxy-3,5-bis(triethylsilyl)phenyl)methanol (10e) 
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According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by paraformaldehyde (53 mg, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil 

(72 mg, 0.20 mmol, 39%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.40 (s, 2H), 4.64 (s, 2H), 3.67 (s, 3H), 1.63 (s, 1H), 0.99 – 

0.92 (m, 18H), 0.90 – 0.80 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.06, 137.38, 135.00, 129.01, 65.72, 63.64, 7.74, 4.22. 

MS (EI, 70 eV): m/z (%) = 366 (1), 310 (21), 309 (69), 281 (23), 253 (12), 205 (15), 203 (45), 117 

(13), 89 (14), 87 (12), 85 (15), 71 (22), 61 (14), 59 (12), 57 (33), 45 (15), 43 (100). 

HRMS (EI): m/z calc. for [C20H38O2
28Si2]: 366.2410 [M]•+; found: 366.2398.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3299 (br vw), 2951 (m), 2909 (w), 2873 (m), 1557 (w), 1456 

(w), 1417 (w), 1376 (s), 1210 (s), 1108 (m), 1003 (vs), 917 (vw), 889 (vw), 780 (s), 717 (vs), 685 (s). 

 

4-methoxy-3,5-bis(triethylsilyl)benzaldehyde (10f) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by dimethylformamide (0.14 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless oil (69 mg, 0.19 mmol, 38%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 9.96 (s, 1H), 7.94 (s, 2H), 3.74 (s, 3H), 0.98 – 0.83 (m, 30H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 192.17, 177.39, 140.63, 131.53, 130.08, 63.55, 7.73, 7.65, 

4.00. 

MS (EI, 70 eV): 335 (26), 325 (46), 307 (100), 297 (39), 279 (75), 277 (12), 269 (25), 267 (13), 251 

(55), 249 (20), 241 (22), 223 (44), 221 (15), 213 (12), 207 (13), 195 (28), 193 (24), 191 (17), 183 (20), 

179 (36), 165 (52), 163 (15), 161 (24), 149 (16), 145 (14), 135 (14), 117 (41), 107 (16), 91 (23), 89 

(79), 87 (24), 61 (34), 59 (18). 

HRMS (EI): m/z calc. for [C18H31O2
28Si2]: 335.1863 [M–Et]•+; found: 335.1855.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2909 (w), 2874 (m), 1698 (s), 1571 (w), 1554 (w), 

1456 (w), 1417 (w), 1380 (w), 1358 (m), 1212 (s), 1101 (s), 1003 (vs), 926 (m), 782 (m), 721 (vs), 684 

(m). 
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Cyclopropyl(4-fluorophenyl)(4-methoxy-3,5-bis(triethylsilyl)phenyl)methanol (10g) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by cyclopropyl 4-fluorophenyl ketone (0.25 mL, 1.75 mmol). Purification of the crude product 

by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound 

as a slight yellow oil (110 mg, 0.22 mmol, 44%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.46 (s, 2H), 7.41 – 7.35 (m, 2H), 7.02 – 6.92 (m, 2H), 3.67 

(s, 3H), 1.87 (d, J = 0.8 Hz, 1H), 1.56 (tt, J = 8.2, 5.5 Hz, 1H), 0.94 – 0.87 (m, 18H), 0.84 – 0.75 (m, 

12H), 0.69 – 0.61 (m, 1H), 0.58 – 0.39 (m, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.46, 161.84 (d, J = 245.0 Hz), 143.50 (d, J = 3.1 Hz), 

140.58, 137.11, 128.57 (d, J = 8.3 Hz), 127.89, 114.51 (d, J = 21.0 Hz), 63.57, 21.98, 7.70, 4.28, 2.38, 

1.40. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -116.49 – -116.64 (m). 

MS (EI, 70 eV): m/z (%) = 482 (1), 443 (15), 254 (13), 252 (14), 249 (12), 225 (17), 209 (12), 207 (39), 

203 (14), 202 (19), 196 (13), 189 (10), 183 (12), 165 (11), 123 (100), 117 (30), 115 (12), 109 (25), 107 

(20), 105 (11), 103 (24), 89 (78), 87 (76), 77 (12), 75 (37), 61 (39), 59 (54). 

HRMS (EI): m/z calc. for [C29H43FO28Si2]: 482.2836 [M–H2O]•+; found: 482.2829.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2874 (m), 1603 (vw), 1553 (vw), 1506 (m), 

1457 (w), 1418 (w), 1379 (m), 1314 (vw), 1221 (s), 1158 (w), 1107 (s), 1002 (vs), 898 (w), 839 (m), 

777 (s), 719 (vs), 684 (m). 

 

N-(tert-butyl)-4-methoxy-3,5-bis(triethylsilyl)benzamide (10h) 

 

According to TP4, anisole derivative 6c (168 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by tert-butyl isocyanate (0.20 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (83 mg, 0.19 mmol, 38%). 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 7.74 (s, 2H), 5.82 (s, 1H), 3.68 (s, 3H), 1.47 (s, 9H), 0.98 – 

0.90 (m, 18H), 0.90 – 0.80 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 174.68, 167.57, 136.90, 130.72, 129.16, 63.58, 51.61, 29.06, 

7.69, 4.12. 

MS (EI, 70 eV): m/z (%) = 434 (1), 406 (19), 380 (13), 379 (32), 378 (100), 351 (16), 350 (53), 322 

(12), 318 (10), 294 (10), 217 (14), 89 (12), 87 (11), 57 (24), 43 (17). 

HRMS (EI): m/z calc. for [C24H44NO2
28Si2]: 434.2911 [M–H]•+; found: 434.2899.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3318 (vw), 2953 (m), 2909 (w), 2874 (w), 1634 (m), 1573 (w), 

1532 (m), 1448 (w), 1365 (m), 1313 (m), 1211 (s), 1165 (vw), 1104 (m), 1003 (s), 908 (m), 785 (w), 

729 (vs). 

m.p. (°C): 56.4 – 58.2. 

 

N,N-diethyl-4-(methylthio)-2,6-bis(triethylsilyl)benzamide (11a) 

 

According to TP4, benzamide 6d (203 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, 

followed by dimethyl disulfide (0.16 mL, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil 

(86 mg, 0.19 mmol, 44%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.37 (s, 2H), 3.51 (q, J = 7.2 Hz, 2H), 2.98 (q, J = 7.2 Hz, 

2H), 2.49 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 0.93 – 0.80 (m, 30H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 172.08, 146.39, 135.81, 134.38, 133.74, 43.31, 38.74, 15.82, 

13.36, 12.85, 7.67, 3.82. 

MS (EI, 70 eV): m/z (%) = 451 (1), 424 (13), 423 (29), 422 (100). 

HRMS (EI): m/z calc. for [C29H46NOS28Si2]: 451.2760 [M]•+; found: 451.2767.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (w), 2873 (m), 1631 (s), 1548 (w), 1457 (w), 

1423 (m), 1378 (w), 1281 (m), 1237 (w), 1129 (m), 1065 (w), 1002 (s), 968 (w), 870 (w), 794 (vs), 721 

(vs), 686 (s). 

 

N,N-diethyl-2,6-bis(triethylsilyl)-4-(trimethylsilyl)benzamide (11b) 
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According to TP4, benzamide 6d (203 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by trimethylsilylchloride (0.22 mL, 1.75 mmol). Purification of the crude product by flash 

column chromatography (silica gel, ihexane) afforded the title compound as a colorless solid (110 mg, 

0.23 mmol, 46%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.66 (s, 2H), 3.54 (q, J = 7.2 Hz, 2H), 3.00 (q, J = 7.2 Hz, 

2H), 1.26 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H), 0.96 – 0.64 (m, 30H), 0.27 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.46, 149.82, 141.05, 136.61, 131.84, 43.31, 38.63, 13.36, 

12.90, 7.73, 4.05, -1.04. 

MS (EI, 70 eV): m/z (%) = 476 (1), 450 (15), 449 (37), 448 (100), 43 (17). 

HRMS (EI): m/z calc. for [C26H50NO28Si3]: 476.3200 [M–H]•+; found: 476.3202.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (s), 2909 (w), 2872 (m), 1622 (s), 1473 (w), 1456 (w), 1426 

(m), 1379 (w), 1286 (m), 1248 (m), 1069 (w), 1002 (m), 881 (w), 851 (vs), 800 (m), 766 (w), 726 (vs), 

689 (m). 

m.p. (°C): 67.6 – 69.2. 

 

N,N-diethyl-4-(phenylthio)-2,6-bis(triethylsilyl)benzamide (11c) 

 

According to TP4, benzamide 6d (203 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting 

solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) was added, 

followed by diphenyl disulfide (382 mg, 1.75 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane) afforded the title compound as an orange oil (112 mg, 0.22 mmol, 

44%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.42 (d, J = 0.8 Hz, 2H), 7.35 – 7.28 (m, 4H), 7.27 – 7.23 (m, 

1H), 3.52 (q, J = 7.2 Hz, 2H), 3.00 (q, J = 7.2 Hz, 2H), 1.25 (td, J = 7.3, 0.7 Hz, 3H), 0.96 (t, J = 7.3 

Hz, 3H), 0.88 – 0.60 (m, 30H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 171.98, 148.03, 137.72, 135.38, 135.08, 133.77, 131.38, 

129.32, 127.30, 43.29, 38.75, 13.32, 12.81, 7.58, 3.75. 

MS (EI, 70 eV): m/z (%) = 512 (1), 486 (10), 485 (38), 484 (100), 368 (13), 340 (16), 225 (16), 213 

(15), 207 (34), 109 (13), 87 (23), 75 (12), 59 (24). 

HRMS (EI): m/z calc. for [C29H46NOS28Si2]: 512.2839 [M–H]•+; found: 512.2836.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2908 (w), 2873 (m), 1632 (s), 1545 (w), 1473 (w), 

1457 (m), 1423 (m), 1378 (w), 1280 (m), 1222 (w), 1124 (m), 1067 (w), 1001 (s), 872 (w), 793 (vs), 

722 (vs), 688 (vs). 

 

4-(methylthio)-2,6-bis(triethylsilyl)phenyl diethylcarbamate (12a) 

 

In a modified version of TP4, carbamate 6e (177 mg, 0.42 mmol) and PMDTA (0.26 mL, 1.26 mmol) 

were dissolved in nhexane (1 mL) and cooled to –10 °C. nBuLi (0.50 mL, 2.55 M in hexane, 1.26 mmol) 

was added and the resulting solution was stirred for 6 h at –10 °C. Afterwards, the mixture was cooled 

to −20 °C and THF (1 mL) was added, followed by MeSSMe (0.13 mL, 1.47 mmol). Purification of the 

crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the 

title compound as a yellow oil (94 mg, 0.20 mmol, 48%). 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.35 (s, 2H), 3.56 (q, J = 7.2 Hz, 2H), 3.36 (q, J = 7.1 Hz, 

2H), 2.47 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H), 0.95 – 0.91 (m, 18H), 0.81 – 0.75 

(m, 12H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 159.69, 154.78, 136.50, 133.80, 130.78, 40.78, 40.73, 17.04, 

13.90, 12.96, 7.55, 3.60. 

MS (EI, 70 eV): m/z (%) = 438 (5), 324 (16), 281 (23), 225 (59), 209 (30), 208 (13), 207 (100), 191 

(21), 103 (53), 100 (50), 75 (77), 72 (35), 58 (10), 56 (12), 44 (28), 42 (56). 

HRMS (EI): m/z calc. for [C22H40NO2S28Si2]: 438.2318 [M−Et]•+; found: 438.2318.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2936 (w), 2873 (m), 1714 (vs), 1552 (vw), 1457 (w), 

1424 (w), 1375 (s), 1271 (s), 1223 (w), 1183 (m), 1136 (vs), 1003 (s), 963 (m), 782 (s), 726 (vs), 688 

(s). 

 

4-formyl-2,6-bis(triethylsilyl)phenyl diethylcarbamate (12b) 

 

According to TP4, carbamate 6e (177 mg, 0.42 mmol) and PMDTA (0.26 mL, 1.26 mmol) were 

dissolved in nhexane (1 mL) and cooled to –10 °C. nBuLi (0.50 mL, 2.55 M in hexane, 1.26 mmol) was 

added and the resulting solution was stirred for 6 h at –10 °C. Afterwards, the mixture was cooled to –

20 °C and THF (1 mL) was added, followed by dimethylformamide (0.11 mL, 1.47 mmol). Purification 

of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded 

the title compound as a slight yellow oil (65 mg, 0.14 mmol, 34%). 
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1H-NMR (599 MHz, CDCl3): δ / ppm = 10.00 (s, 1H), 7.97 (s, 2H), 3.58 (q, J = 7.2 Hz, 2H), 3.37 (q, 

J = 7.1 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.96 – 0.90 (m, 18H), 0.88 – 0.76 (m, 

12H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 192.09, 166.35, 154.02, 139.49, 132.61, 131.55, 40.82, 40.69, 

13.73, 12.78, 7.34, 3.35. 

MS (EI, 70 eV): m/z (%) = 448 (1), 422 (18), 421 (55), 420 (40), 179 (11), 168 (12), 100 (100), 72 (23). 

HRMS (EI): m/z calc. for [C24H42NO3
28Si2]: 448.2703 [M–H]•+; found: 448.2693.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (w), 2909 (w), 2874 (w), 1716 (s), 1696 (s), 1564 (w), 1457 

(w), 1424 (m), 1380 (m), 1363 (m), 1272 (s), 1221 (m), 1178 (m), 1145 (vs), 1100 (s), 1003 (s), 961 

(m), 936 (m), 807 (w), 784 (m), 726 (vs), 671 (m). 

 

4-benzoyl-2,6-bis(triethylsilyl)phenyl diethylcarbamate (12c) 

 

According to TP4, carbamate 6e (211 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were dissolved 

in nhexane (1 mL) and cooled to –10 °C.. nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and 

the resulting solution was stirred for 6 h at –10 °C. Afterwards, the mixture was cooled to –20 °C and 

THF (1 mL) was added, followed by N-methoxy-N-methylbenzamide (0.27 mL, 1.75 mmol). 

Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 

19:1) afforded the title compound as a slight yellow oil (116 mg, 0.22 mmol, 44%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.92 (s, 2H), 7.85 – 7.80 (m, 2H), 7.61 – 7.55 (m, 1H), 7.50 – 

7.44 (m, 2H), 3.60 (q, J = 7.2 Hz, 2H), 3.39 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.1 

Hz, 3H), 0.98 – 0.88 (m, 18H), 0.85 – 0.75 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 196.63, 164.95, 154.36, 139.81, 137.95, 133.71, 132.40, 

130.47, 130.21, 128.27, 40.93, 40.82, 13.87, 12.94, 7.50, 3.54. 

MS (EI, 70 eV): m/z (%) = 496 (19), 255 (17), 207 (35), 105 (12), 100 (100), 72 (55). 

HRMS (EI): m/z calc. for [C28H42NO3
28Si2]: 496.2703 [M–Et]•+; found: 496.2703.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (w), 2909 (w), 2874 (w), 1715 (s), 1657 (m), 1568 (vw), 

1457 (w), 1426 (w), 1375 (m), 1315 (w), 1267 (vs), 1219 (w), 1183 (m), 1146 (vs), 1099 (s), 1002 (s), 

967 (s), 852 (vw), 778 (s), 728 (s), 712 (vs), 691 (s). 

 

(5-(methylthio)-1,3-phenylene)bis(triethylsilane) (13a) 
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According to TP4, arene 6f (153 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were dissolved in 

nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, followed 

by MeSSMe (0.16 mL, 1.75 mmol). Purification of the crude product by flash column chromatography 

(silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a colorless oil (74 mg, 

0.21 mmol, 42%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.37 (s, 1H), 7.36 (s, 2H), 2.49 (s, 3H), 0.97 (t, J = 7.7 Hz, 

18H), 0.84 – 0.73 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 137.22, 137.16, 136.78, 132.95, 16.24, 7.55, 3.48. 

MS (EI, 70 eV): m/z (%) = 352 (4), 263 (28), 261 (17), 253 (100), 252 (17), 251 (60), 250 (10), 236 

(15), 235 (13), 219 (17), 187 (13), 45 (10), 44 (20), 42 (57). 

HRMS (EI): m/z calc. for [C19H36S28Si2]: 352.2076 [M]•+; found: 352.2069.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (s), 2936 (m), 2909 (m), 2874 (s), 1547 (w), 1458 (w), 1415 

(w), 1363 (w), 1237 (w), 1143 (m), 1006 (m), 968 (w), 796 (s), 731 (vs), 718 (vs), 691 (m). 

 

1-(3,5-bis(triethylsilyl)phenyl)-2,2-dimethylpropan-1-ol (13b) 

 

According to TP4, arene 6f (307 mg, 1.0 mmol) and PMDTA (0.63 mL, 3.0 mmol) were dissolved in 

nhexane (2 mL). nBuLi (1.18 mL, 2.55 M in hexane, 3.0 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (2 mL) was added, followed 

by trimethylacetaldehyde (0.38 mL, 3.5 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil 

(228 mg, 0.58 mmol, 58%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.55 (t, J = 1.2 Hz, 1H), 7.44 (d, J = 1.2 Hz, 2H), 4.42 (s, 1H), 

2.00 (s, 1H), 1.03 – 0.98 (m, 18H), 0.94 (s, 9H), 0.87 – 0.78 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 140.08, 139.40, 135.27, 133.98, 82.90, 35.80, 26.08, 7.55, 

3.58. 

MS (EI, 70 eV): m/z (%) = 374 (8), 345 (30), 335 (34), 317 (40), 289 (51), 260 (16), 258 (13), 231 (47), 

205 (17), 203 (82), 201 (19), 189 (13), 175 (100), 173 (39), 163 (13), 159 (14), 151 (31), 147 (13), 145 

(41), 144 (18), 143 (16), 141 (19), 133 (30), 131 (24), 129 (34), 128 (32), 123 (38), 115 (22), 105 (15), 

103 (23), 87 (68), 75 (17), 59 (45). 

HRMS (EI): m/z calc. for [C23H42
28Si2]: 374.2825 [M–H2O]•+; found: 374.2822.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3455 (vw), 2952 (m), 2908 (w), 2874 (m), 1737 (vw), 1458 (w), 

1416 (w), 1363 (w), 1235 (w), 1143 (w), 1055 (w), 1005 (s), 973 (w), 863 (vw), 801 (s), 719 (vs), 678 

(s). 
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(5-iodo-1,3-phenylene)bis(triethylsilane) (13c) 

 

According to TP4, arene 6f (153 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were dissolved in 

nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and ZnCl2 (1.5 mL, 1.0 M in THF, 

1.5 mmol) was added, followed by a solution of I2 (444 mg, 1.75 mmol) in THF (1 mL). Purification of 

the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded 

the title compound as a colorless oil (93 mg, 22 mmol, 43%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.77 (d, J = 1.0 Hz, 2H), 7.53 (t, J = 1.1 Hz, 1H), 1.01 – 0.93 

(m, 18H), 0.83 – 0.74 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 143.00, 140.27, 138.84, 96.88, 7.46, 3.40. 

MS (EI, 70 eV): m/z (%) = 432 (11), 405 (10), 404 (29), 403 (100), 376 (16), 375 (53), 348 (12), 347 

(48), 173 (12), 159 (18), 145 (14), 87 (15), 59 (13), 43 (42). 

HRMS (EI): m/z calc. for [C18H33I28Si2]: 432.1165 [M]•+; found: 432.1165.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2908 (w), 2873 (m), 1529 (w), 1457 (w), 1414 (w), 

1367 (w), 1235 (w), 1135 (s), 1099 (m), 1003 (s), 972 (w), 860 (w), 787 (vs), 716 (vs), 687 (vs). 
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3.4 Preparation of 1,2,3,5-tetrasubstituted arenes 

(5-bromo-2-fluoro-3-iodophenyl)triethylsilane (14) 

 

According to TP5, bis(triethylsilyl)benzene 8c (2.49 g, 6.17 mmol) was dissolved in CH2Cl2 (12 mL) 

and ICl (1.3 g, 8.0 mmol) was added in one portion. Purification by flash column chromatography 

(silica gel, ihexane) afforded the title compound as a colorless oil (2.3 g, 5.54 mmol, 90%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.86 (dd, J = 5.7, 2.4 Hz, 1H), 7.38 (dd, J = 4.0, 2.3 Hz, 1H), 

1.01 – 0.77 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 164.71 (d, J = 240.1 Hz), 142.27 (d, J = 2.1 Hz), 138.47 (d, 

J = 11.4 Hz), 127.32 (d, J = 36.9 Hz), 117.67 (d, J = 3.3 Hz), 82.65 (d, J = 33.2 Hz), 7.36, 3.33 (d, J = 

1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −83.73 (t, J = 4.5 Hz). 

MS (EI, 70 eV): m/z (%) = 416 (20), 414 (21), 359 (69), 357 (70), 331 (97), 329 (97), 260 (46), 258 

(44), 249 (20), 247 (20), 232 (46), 231 (74), 230 (45), 229 (76), 222 (23), 220 (24), 203 (60), 167 (39), 

151 (39), 149 (24), 141 (26), 127 (24), 123 (20), 104 (16), 93 (100), 87 (18), 77 (16), 75 (19), 65 (20). 

HRMS (EI): m/z calc. for [C12H17
79BrFI28Si]: 413.9312 [M]•+; found: 413.9306.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2909 (w), 2875 (w), 1538 (w), 1457 (w), 1404 (vs), 

1373 (w), 1218 (m), 1109 (w), 1074 (s), 1004 (s), 974 (w), 868 (m), 836 (w), 725 (vs), 690 (s). 

 

(5-bromo-2-fluoro-3-(methylthio)phenyl)triethylsilane (15a) 

 

According to TP6, iodoarene 14 (208 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 

15 min, dimethyl disulfide (0.05 mL, 0.55 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a colorless oil 

(123 mg, 0.37 mmol, 73%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.30 (dd, J = 6.8, 2.4 Hz, 1H), 7.20 (dd, J = 4.0, 2.4 Hz, 1H), 

2.45 (s, 3H), 1.00 – 0.91 (m, 9H), 0.90 – 0.76 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 162.98 (d, J = 238.4 Hz), 134.72 (d, J = 12.0 Hz), 130.84 (d, 

J = 3.2 Hz), 127.99 (d, J = 23.9 Hz), 126.18 (d, J = 34.7 Hz), 117.56 (d, J = 3.0 Hz), 15.15 (d, J = 2.3 

Hz), 7.41, 3.40 (d, J = 1.5 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −101.30 (t, J = 5.3 Hz). 
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MS (EI, 70 eV): m/z (%) = 336 (51), 334 (54), 296 (33), 294 (32), 278 (60), 276 (58), 268 (16), 266 

(16), 250 (80), 248 (82), 235 (18), 233 (20), 226 (74), 198 (100), 197 (30), 183 (15), 173 (16), 169 (28), 

155 (24), 151 (16), 134 (20), 123 (68), 121 (32), 77 (33), 75 (16). 

HRMS (EI): m/z calc. for [C13H20
79BrFS28Si]: 334.0222 [M]•+; found: 334.0214.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2934 (w), 2909 (w), 2873 (m), 1540 (w), 1456 (w), 

1401 (vs), 1375 (s), 1237 (w), 1203 (s), 1112 (vs), 1003 (s), 972 (w), 852 (m), 834 (m), 789 (m), 725 

(vs), 661 (s). 

 

Ethyl 2-(5-bromo-2-fluoro-3-(triethylsilyl)benzyl)acrylate (15b) 

 

According to TP6, iodoarene 14 (208 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.05 mL, 1.0 M in THF, 0.05 mmol, 0.1 equiv.) was added, followed by ethyl 2-

(bromomethyl)acrylate (89 mg, 0.55 mmol). Purification by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 99:1) afforded the title compound as a colorless oil (142 mg, 0.35 mmol, 71%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.37 – 7.27 (m, 2H), 6.27 (d, J = 1.1 Hz, 1H), 5.45 (t, J = 1.2 

Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.60 (d, J = 1.5 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.02 – 0.90 (m, 

9H), 0.88 – 0.77 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.62, 164.58 (d, J = 241.4 Hz), 138.36, 136.74 (d, J = 12.6 

Hz), 135.01 (d, J = 5.0 Hz), 127.64 (d, J = 22.0 Hz), 126.70, 126.55 (d, J = 35.2 Hz), 116.98 (d, J = 3.0 

Hz), 61.05, 31.23 (d, J = 3.0 Hz), 14.26, 7.42, 3.44 (d, J = 1.6 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −107.15 (t, J = 5.4 Hz). 

MS (EI, 70 eV): m/z (%) = 400 (3), 345 (17), 343 (17), 315 (50), 313 (50), 297 (11), 259 (14), 257 (14), 

225 (16), 223 (16), 221 (11), 206 (25), 205 (21), 195 (11), 193 (12), 141 (13), 128 (23), 116 (11), 115 

(100), 114 (14), 105 (16), 93 (18), 77 (43), 75 (24), 65 (13).  

HRMS (EI): m/z calc. for [C18H26BrFO2
28Si]: 400.0869 [M]•+; found: 400.0860.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2936 (w), 2909 (w), 2875 (w), 1717 (vs), 1635 (w), 

1414 (m), 1300 (m), 1277 (m), 1251 (m), 1193 (s), 1161 (vs), 1133 (vs), 1004 (s), 947 (m), 870 (m), 

830 (m), 817 (w), 725 (vs), 662 (s). 

 

Ethyl 5'-bromo-2'-fluoro-3'-(triethylsilyl)-[1,1'-biphenyl]-4-carboxylate (15c) 
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According to TP6, iodoarene 14 (830 mg, 2.0 mmol) was dissolved in THF (4 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (1.91 mL, 1.10 M in THF, 2.1 mmol) was added dropwise. After 

15 min, ZnCl2 (2.0 mL, 1.0 M in THF, 2.0 mmol, 1.0 equiv.) was added, followed by Pd(dba)2 (23 mg, 

0.04 mmol, 0.02 equiv.), P(o-furyl)3 (19 mg, 0.08 mmol, 0.04 equiv.) and ethyl 4-iodobenzoate 

(550 mg, 2.0 mmol, 1.0 equiv.). Purification by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 99:1) afforded the title compound as a colorless oil (810 mg, 1.85 mmol, 93%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.13 – 8.09 (m, 2H), 7.62 – 7.54 (m, 3H), 7.44 (dd, J = 3.9, 

2.5 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H), 1.04 – 0.80 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.43, 162.93 (d, J = 243.2 Hz), 139.52 (d, J = 1.7 Hz), 

138.18 (d, J = 12.8 Hz), 134.41 (d, J = 3.8 Hz), 130.13, 129.83, 129.70 (d, J = 19.8 Hz), 129.18 (d, J = 

3.2 Hz), 127.83 (d, J = 36.2 Hz), 117.53 (d, J = 3.0 Hz), 61.24, 14.49, 7.47, 3.48 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −106.83 (t, J = 5.3 Hz). 

MS (EI, 70 eV): m/z (%) = 438 (17), 436 (17), 391 (14), 382 (15), 381 (68), 379 (71), 354 (17), 353 

(100), 352 (17), 351 (97), 325 (53), 323 (53), 279 (20), 277 (19), 261 (72), 259 (74), 227 (14), 217 (29), 

207 (18), 199 (60), 197 (18), 179 (42), 178 (71), 177 (14), 176 (19), 170 (18), 165 (37), 154 (24), 153 

(25), 152 (75), 151 (43), 150 (71), 77 (24), 65 (29). 

HRMS (EI): m/z calc. for [C21H26
79BrFO2

28S1]: 436.0869 [M]•+; found: 436.0858.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (w), 2936 (w), 2909 (w), 2874 (w), 1718 (vs), 1611 (w), 

1457 (w), 1430 (w), 1397 (m), 1269 (vs), 1194 (s), 1101 (vs), 1058 (s), 1019 (s), 856 (s), 837 (w), 776 

(s), 701 (vs), 679 (m), 653 (m). 

 

4-((5-bromo-2-fluoro-3-(triethylsilyl)phenyl)(hydroxy)methyl)benzonitrile (15d) 

 

According to TP6, iodoarene 14 (208 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 

15 min, 4-cyanobenzaldehyde (72 mg, 0.55 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil 

(160 mg, 0.38 mmol, 76%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.65 – 7.61 (m, 2H), 7.60 – 7.57 (m, 1H), 7.54 – 7.49 (m, 2H), 

7.37 (dd, J = 4.2, 2.5 Hz, 1H), 6.12 (s, 1H), 2.36 (s, 1H), 0.96 – 0.88 (m, 9H), 0.85 – 0.76 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 162.92 (d, J = 240.8 Hz), 147.61, 138.24 (d, J = 13.0 Hz), 

132.57, 131.74, 131.54 (d, J = 4.4 Hz), 127.36 (d, J = 35.2 Hz), 127.01 (d, J = 1.4 Hz), 118.79, 117.90 

(d, J = 2.9 Hz), 111.70, 69.08 (d, J = 3.0 Hz), 7.37, 3.41 (d, J = 1.6 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −107.91 (t, J = 5.4 Hz). 
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MS (EI, 70 eV): m/z (%) = 419 (1), 281 (21), 270 (16), 268 (18), 227 (11), 226 (11), 225 (88), 209 (41), 

208 (13), 207 (100), 191 (24), 190 (20), 130 (30), 128 (17), 119 (10), 95 (12), 93 (11), 82 (13), 81 (62), 

80 (14), 79 (62), 77 (16), 75 (19), 42 (18). 

HRMS (EI): m/z calc. for [C20H23
79BrFNO28Si]: 419.0716 [M]•+; found: 419.0708.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3435 (br w), 2953 (m), 2908 (w), 2874 (m), 2230 (m), 1609 (w), 

1503 (vw), 1456 (w), 1412 (s), 1386 (m), 1237 (w), 1209 (w), 1154 (vs), 1048 (m), 1018 (s), 1004 (s), 

881 (m), 833 (s), 818 (s), 768 (m), 723 (vs), 682 (s). 

 

(5-bromo-2-fluoro-3-(triethylsilyl)phenyl)dicyclopropylmethanol (15e) 

 

According to TP6, iodoarene 14 (208 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 

15 min, dicyclopropyl ketone (0.06 mL, 0.55 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil 

(148 mg, 0.37 mmol, 74%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.72 (dd, J = 7.1, 2.6 Hz, 1H), 7.32 (dd, J = 3.8, 2.6 Hz, 1H), 

1.43 – 1.34 (m, 2H), 1.26 (s, 1H), 1.01 – 0.92 (m, 9H), 0.89 – 0.78 (m, 6H), 0.67 – 0.58 (m, 2H), 0.55 

– 0.46 (m, 2H), 0.39 – 0.31 (m, 4H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 163.62 (d, J = 240.4 Hz), 136.92 (d, J = 13.3 Hz), 135.79 (d, 

J = 18.4 Hz), 132.10 (d, J = 5.6 Hz), 127.11 (d, J = 38.0 Hz), 117.20 (d, J = 2.6 Hz), 73.28 (d, J = 4.5 

Hz), 19.90 (d, J = 3.9 Hz), 7.48 (d, J = 0.8 Hz), 3.63 (d, J = 1.9 Hz), 2.23 (d, J = 2.2 Hz), 0.53 (d, J = 

1.4 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −106.83 (t, J = 5.3 Hz). 

MS (EI, 70 eV): m/z (%) = 382 (6), 380 (6), 359 (16), 357 (17), 172 (11), 167 (28), 166 (21), 165 (69), 

153 (26), 152 (53), 146 (11), 141 (13), 139 (13), 128 (18), 115 (20), 105 (24), 87 (36), 77 (100), 75 

(47), 65 (11). 

HRMS (EI): m/z calc. for [C19H26
79BrF28Si]: 380.0971 [M−H2O]•+; found: 380.0959.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3087 (vw), 3009 (vw), 2954 (m), 2874 (m), 1457 (w), 1406 (vs), 

1378 (m), 1308 (w), 1270 (w), 1237 (w), 1206 (w), 1157 (m), 1133 (w), 1121 (w), 1000 (vs), 915 (m), 

879 (m), 865 (w), 835 (m), 826 (m), 742 (vs), 692 (m), 670 (vw), 658 (m). 

 

1-(5-bromo-2-fluoro-3-(triethylsilyl)phenyl)-2,2-dimethylpropan-1-one (15f) 

 



C. EXPERIMENTAL PART    112 

According to TP6, iodoarene 14 (3.0 g, 7.2 mmol) was dissolved in THF (14 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (6.9 mL, 1.10 M in THF, 7.6 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (7.9 mL, 1.0 M in THF, 7.9 mmol, 1.1 equiv.) and trimethylacetyl chloride 

(1.06 mL, 8.6 mmol, 1.2 equiv.) were added. Purification by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil (2.5 g, 6.8 mmol, 94%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.45 (dd, J = 4.2, 2.5 Hz, 1H), 7.25 (dd, J = 5.9, 2.5 Hz, 1H), 

1.22 (d, J = 1.0 Hz, 8H), 0.98 – 0.91 (m, 10H), 0.87 – 0.79 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 208.96 (d, J = 1.4 Hz), 160.87 (d, J = 240.2 Hz), 138.96 (d, 

J = 12.4 Hz), 131.05 (d, J = 5.3 Hz), 130.17 (d, J = 27.7 Hz), 127.67 (d, J = 35.3 Hz), 116.87 (d, J = 

3.0 Hz), 44.99, 26.43 (d, J = 1.9 Hz), 7.16 (d, J = 0.7 Hz), 3.19 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −102.26 (t, J = 5.2 Hz). 

MS (EI, 70 eV): m/z (%) = 372 (1), 318 (14), 317 (98), 316 (14), 315 (100), 142 (16), 77 (17). 

HRMS (EI): m/z calc. for [C17H26
79Br19FO28Si]: 372.0920 [M]•+; found: 372.0910.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (m), 2936 (w), 2909 (w), 2875 (m), 1699 (s), 1588 (w), 

1478 (w), 1458 (w), 1405 (vs), 1366 (w), 1279 (w), 1224 (w), 1173 (vs), 1039 (m), 990 (vs), 931 (w), 

877 (m), 824 (m), 769 (w), 729 (vs), 696 (m). 

 

Ethyl 5-bromo-2-fluoro-3-(triethylsilyl)benzoate (15g) 

 

According to TP6, iodoarene 14 (208 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 

15 min, ethyl cyanoformate (0.06 mL, 0.55 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a yellow oil 

(139 mg, 0.38 mmol, 77%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.01 (dd, J = 6.5, 2.6 Hz, 1H), 7.58 (dd, J = 3.8, 2.6 Hz, 1H), 

4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.00 – 0.80 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.08 (d, J = 254.4 Hz), 163.62 (d, J = 4.5 Hz), 142.78 (d, 

J = 13.4 Hz), 135.59 (d, J = 1.6 Hz), 129.06 (d, J = 35.6 Hz), 120.36 (d, J = 15.7 Hz), 116.90 (d, J = 

3.4 Hz), 61.78, 14.39, 7.38 (d, J = 0.7 Hz), 3.35 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −99.35 (t, J = 5.1 Hz). 

MS (EI, 70 eV): m/z (%) = 362 (8), 360 (7), 321 (41), 317 (26), 315 (28), 305 (64), 303 (100), 277 (80), 

275 (80), 273 (49), 267 (44), 265 (44), 249 (28), 247 (44), 245 (38), 231 (46), 229 (49), 224 (30), 223 

(37), 221 (30), 219 (32), 217 (30), 205 (35), 203 (39), 201 (37), 196 (31), 141 (25), 139 (39), 93 (55), 

77 (35), 75 (26), 65 (39). 

HRMS (EI): m/z calc. for [C15H22
79BrFO2

28Si]: 360.0556 [M]•+; found: 360.0548.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (m), 2937 (w), 2910 (w), 2875 (w), 1734 (s), 1716 (s), 1591 

(m), 1457 (w), 1415 (vs), 1364 (w), 1282 (vs), 1239 (vs), 1210 (vs), 1123 (vs), 1102 (vs), 1004 (s), 891 

(m), 833 (m), 786 (vs), 728 (vs), 693 (m), 657 (m). 

 

Ethyl 5'-bromo-2'-fluoro-3'-iodo-[1,1'-biphenyl]-4-carboxylate (16a) 

 

According to TP5, triethylsilylbenzene 15c (570 mg, 1.30 mmol) was dissolved in CH2Cl2 (3 mL) and 

ICl (341 mg, 2.1 mmol) was added in one portion. Purification by flash column chromatography (silica 

gel, ihexane) afforded the title compound as a colorless solid (530 mg, 1.18 mmol, 91%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.15 – 8.08 (m, 2H), 7.88 (dd, J = 5.1, 2.4 Hz, 1H), 7.57 – 

7.51 (m, 3H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.23, 157.91 (d, J = 248.0 Hz), 140.93, 138.29 (d, J = 1.9 

Hz), 133.66 (d, J = 2.9 Hz), 130.72, 130.35 (d, J = 17.3 Hz), 129.96, 129.02 (d, J = 3.1 Hz), 117.76 (d, 

J = 4.0 Hz), 83.60 (d, J = 28.7 Hz), 61.35, 14.48. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −98.72 (ddt, J = 6.6, 5.0, 1.7 Hz). 

MS (EI, 70 eV): m/z (%) = 450 (23), 448 (23), 422 (29), 420 (32), 405 (49), 403 (47), 296 (27), 250 

(17), 248 (18), 202 (13), 201 (14), 170 (13), 169 (29), 168 (36), 149 (13), 148 (19), 127 (100). 

HRMS (EI): m/z calc. for [C15H11
79BrFIO2]: 447.8971 [M]•+; found: 447.8962.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3062 (vw), 2999 (vw), 2979 (vw), 2910 (vw), 2362 (vw), 2338 

(vw), 1707 (vs), 1609 (w), 1543 (vw), 1477 (vw), 1443 (s), 1383 (w), 1366 (w), 1280 (vs), 1227 (m), 

1186 (m), 1126 (s), 1105 (s), 1040 (m), 1016 (m), 910 (vw), 856 (s), 772 (vs), 701 (vs), 676 (m). 

m.p. (°C): 121.6–124.4. 

 

1-(5-bromo-2-fluoro-3-iodophenyl)-2,2-dimethylpropan-1-one (16b) 

 

According to TP5, triethylsilylbenzene 15f (2.55 g, 6.83 mmol) was dissolved in CH2Cl2 (14 mL) and 

ICl (1.44 g, 8.9 mmol) was added in one portion. Purification by flash column chromatography (silica 

gel, ihexane) afforded the title compound as a colorless solid (2.47 g, 6.42 mmol, 94%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.90 (dd, J = 5.3, 2.3 Hz, 1H), 7.24 (dd, J = 5.2, 2.3 Hz, 1H), 

1.24 (d, J = 1.0 Hz, 9H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 207.18 (d, J = 1.5 Hz), 156.18 (d, J = 245.0 Hz), 142.05 (d, 

J = 1.3 Hz), 130.52 (d, J = 24.8 Hz), 130.45 (d, J = 4.1 Hz), 117.40 (d, J = 3.8 Hz), 83.12 (d, J = 28.6 

Hz), 45.30, 26.59 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −95.58 (t, J = 5.3 Hz). 

MS (EI, 70 eV): m/z (%) = 384 (18), 225 (42), 209 (14), 207 (18), 127 (100). 

HRMS (EI): m/z calc. for [C11H11
79Br19FIO]: 383.9022 [M]•+; found: 383.9012.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3063 (vw), 2977 (m), 2936 (w), 2873 (w), 1695 (vs), 1549 (w), 

1429 (vs), 1383 (m), 1277 (m), 1238 (m), 1222 (m), 1152 (vs), 1093 (w), 982 (s), 895 (w), 871 (vs), 

837 (m), 776 (w), 751 (s), 703 (m). 

m.p. (°C): 71.0–73.9. 

 

Ethyl 2-(5-bromo-2-fluoro-3-pivaloylbenzyl)acrylate (17a) 

 

According to TP6, iodoarene 16b (39 mg, 0.1 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.10 mL, 1.10 M in THF, 0.11 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.01 mL, 1.0 M in THF, 0.01 mmol, 0.1 equiv.) and ethyl 2-

(bromomethyl)acrylate (21 mg, 0.11 mmol) were added. Purification by flash column chromatography 

(silica gel, ihexane/ethyl acetate = 99:1) afforded the title compound as a colorless oil (27 mg, 

0.07 mmol, 73%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.38 (dd, J = 6.3, 2.5 Hz, 1H), 7.15 (dd, J = 5.3, 2.5 Hz, 1H), 

6.30 (d, J = 1.0 Hz, 1H), 5.52 (t, J = 1.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.63 (s, 2H), 1.28 (t, J = 7.1 

Hz, 3H), 1.23 (d, J = 0.9 Hz, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 208.65, 166.34, 155.41 (d, J = 246.8 Hz), 137.74, 134.68 (d, 

J = 4.5 Hz), 130.85 (d, J = 23.1 Hz), 129.05 (d, J = 18.0 Hz), 128.62 (d, J = 5.0 Hz), 127.32, 116.43 (d, 

J = 3.5 Hz), 61.20, 45.19, 31.08 (d, J = 3.0 Hz), 26.62 (d, J = 1.9 Hz), 14.27. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −119.67 (t, J = 6.0 Hz). 

MS (EI, 70 eV): m/z (%) = 370 (3), 315 (55), 313 (50), 133 (16), 61 (15), 57 (54), 45 (14), 43 (100), 

41 (19). 

HRMS (EI): m/z calc. for [C17H20
79BrFO3]: 370.0580 [M]•+; found: 370.0580.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2974 (w), 2936 (vw), 2907 (vw), 2872 (vw), 1699 (vs), 1633 

(w), 1479 (w), 1453 (m), 1395 (w), 1367 (w), 1285 (m), 1254 (m), 1205 (s), 1186 (vs), 1139 (vs), 1096 

(vw), 1057 (m), 1024 (m), 950 (w), 868 (m), 839 (vw), 817 (w), 665 (w). 
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1-(5-bromo-2-fluoro-3'-methoxy-[1,1'-biphenyl]-3-yl)-2,2-dimethylpropan-1-one (17b) 

 

According to TP6, iodoarene 16b (39 mg, 0.1 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.10 mL, 1.10 M in THF, 0.11 mmol) was added dropwise. After 

15 min, ZnCl2 (0.10 mL, 1.0 M in THF, 0.10 mmol, 1.0 equiv.) was added, followed by Pd(dba)2 (1 mg, 

0.002 mmol, 0.02 equiv.), P(o-furyl)3 (1 mg, 0.004 mmol, 0.04 equiv.) and 3-iodoanisole (26 mg, 

0.11 mmol, 1.1 equiv.). Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 99:1) afforded the title compound as a colorless oil (30 mg, 0.08 mmol, 82%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.59 (dd, J = 6.6, 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.24 

(dd, J = 5.1, 2.5 Hz, 1H), 7.07 (dtd, J = 7.6, 1.7, 0.9 Hz, 1H), 7.03 (dt, J = 3.1, 1.6 Hz, 1H), 6.95 (ddd, 

J = 8.3, 2.6, 0.9 Hz, 1H), 3.85 (s, 3H), 1.27 (d, J = 1.0 Hz, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 208.71, 159.82, 153.99 (d, J = 248.0 Hz), 135.15 (d, J = 1.3 

Hz), 134.11 (d, J = 3.5 Hz), 131.72 (d, J = 5.6 Hz), 131.52 (d, J = 13.4 Hz), 129.83, 129.10 (d, J = 5.0 

Hz), 121.49 (d, J = 2.9 Hz), 116.77 (d, J = 3.6 Hz), 114.80 (d, J = 3.1 Hz), 114.28, 55.52, 45.27, 26.64 

(d, J = 1.8 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −119.97 (t, J = 6.0 Hz). 

MS (EI, 70 eV): m/z (%) = 364 (1), 200 (18), 170 (12), 158 (12), 157 (100), 57 (15). 

HRMS (EI): m/z calc. for [C18H18
79BrFO2]: 364.0474 [M]•+; found: 364.0468.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2968 (w), 2934 (w), 2871 (vw), 2835 (vw), 1698 (vs), 1601 (m), 

1581 (m), 1564 (w), 1461 (m), 1426 (s), 1393 (w), 1365 (w), 1307 (m), 1278 (m), 1227 (s), 1206 (vs), 

1180 (m), 1113 (m), 1048 (s), 992 (s), 869 (m), 838 (w), 782 (m), 761 (w), 726 (w), 700 (vs), 680 (m). 

 

5'-bromo-2'-fluoro-3'-pivaloyl-[1,1'-biphenyl]-4-carbonitrile (17c) 

 

According to TP6, iodoarene 16b (39 mg, 0.1 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.10 mL, 1.10 M in THF, 0.11 mmol) was added dropwise. After 

15 min, ZnCl2 (0.10 mL, 1.0 M in THF, 0.10 mmol, 1.0 equiv.) was added, followed by Pd(dba)2 (1 mg, 

0.002 mmol, 0.02 equiv.), P(o-furyl)3 (1 mg, 0.004 mmol, 0.04 equiv.) and 4-iodobenzonitrile (25 mg, 

0.11 mmol, 1.1 equiv.). Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 99:1) afforded the title compound as a yellow oil (27 mg, 0.08 mmol, 75%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.78 – 7.73 (m, 2H), 7.62 (dq, J = 8.3, 1.7 Hz, 2H), 7.58 (dd, 

J = 6.6, 2.5 Hz, 1H), 7.32 (dd, J = 5.1, 2.5 Hz, 1H), 1.27 (d, J = 0.9 Hz, 9H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 208.02, 153.92 (d, J = 249.1 Hz), 138.39 (d, J = 1.4 Hz), 

133.80 (d, J = 2.9 Hz), 132.58, 131.89 (d, J = 23.6 Hz), 130.44 (d, J = 5.2 Hz), 129.85 (d, J = 3.2 Hz), 

128.82 (d, J = 57.6 Hz), 118.51, 117.22 (d, J = 3.7 Hz), 112.62, 45.31, 26.59 (d, J = 1.7 Hz). 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −120.14 (t, J = 5.4 Hz). 

MS (EI, 70 eV): m/z (%) = 361 (1), 304 (21), 302 (21), 196 (13), 195 (100), 168 (41), 57 (60). 

HRMS (EI): m/z calc. for [C18H15
81BrFNO]: 361.0301 [M]•+; found: 361.0299.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2970 (w), 2933 (vw), 2871 (vw), 2229 (w), 1696 (vs), 1608 (w), 

1509 (vw), 1478 (w), 1446 (s), 1410 (w), 1392 (m), 1365 (w), 1302 (m), 1279 (m), 1228 (m), 1210 (vs), 

1182 (w), 1116 (s), 1035 (vw), 1020 (w), 984 (s), 876 (w), 842 (vs), 834 (vs), 793 (vw), 768 (vw), 760 

(w), 736 (w), 719 (w), 668 (s). 

 

4-bromo-N-(tert-butyl)-N-methyl-2,6-bis(triethylsilyl)benzamide (18) 

 

Trimethyloxonium tetrafluoroborate (777 mg, 5.25 mmol, 1.05 equiv) was added to a solution of 

oxazolylbenzene 9d (2.41 g, 5.0 mmol, 1.0 equiv.) in CH2Cl2 (10 mL) at 0 °C. The mixture was allowed 

to warm to 25 °C. After 2 h, the dichloromethane was removed in vacuo and a solution of lithium 

triethylborohydride (6.0 mL, 1.0 M in THF, 6.0 mmol, 1.2 equiv.) was added at 0 °C. The resulting 

solution was stirred for another 4 h. The reaction mixture was quenched with a sat. aq. NH4Cl (20 mL) 

and extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine 

(20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (2.15 g, 4.31 mmol, 86%) 

1H-NMR (599 MHz, CDCl3): δ / ppm = 7.60 (s, 2H), 2.53 (s, 3H), 1.54 (s, 9H), 0.94 – 0.85 (m, 30H). 

13C-NMR (151 MHz, CDCl3): δ / ppm = 172.58, 151.07, 139.21, 136.29, 121.89, 57.60, 35.49, 28.58, 

7.54, 3.83. 

MS (EI, 70 eV): m/z (%) = 470 (17), 468 (15), 412 (16), 385 (22), 384 (100), 383 (27), 382 (97), 326 

(18), 324 (18). 

HRMS (EI): m/z calc. for [C22H39
79BrNO28Si2]: 468.1754 [M−Et]•+; found: 468.1749.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2933 (m), 2909 (w), 2874 (m), 1636 (s), 1536 (w), 

1457 (m), 1362 (m), 1341 (m), 1236 (m), 1225 (m), 1112 (m), 1037 (s), 1002 (s), 970 (m), 883 (w), 788 

(s), 719 (vs), 689 (vs). 

m.p. (°C): 58.1–61.7. 
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4-bromo-N-(tert-butyl)-2-iodo-N-methyl-6-(triethylsilyl)benzamide (19) 

 

According to TP5, bis(triethylsilyl)benzene 18 (3.42 g, 6.85 mmol) was dissolved in CH2Cl2 (15 mL) 

and ICl (1.45 g, 8.9 mmol) was added in one portion. Purification by flash column chromatography 

(silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless solid (3.1 g, 

6.07 mmol, 89%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.96 (d, J = 1.9, 1H), 7.57 (d, J = 1.9, 1H), 2.73 (s, 3H), 1.56 

(s, 9H), 1.00 – 0.71 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.04, 148.27, 141.96, 139.14, 138.35, 121.84, 95.41, 57.97, 

34.12, 28.13, 7.46, 3.47. 

MS (EI, 70 eV): m/z (%) = 482 (10), 480 (10), 426 (100), 425 (18), 424 (100), 296 (10), 127 (22), 42 

(11). 

HRMS (EI): m/z calc. for [C16H24
79BrINO28Si]: 479.9855 [M−Et]•+; found: 479.9852.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (w), 2928 (w), 2912 (w), 2893 (w), 2870 (w), 1636 (vs), 

1548 (w), 1517 (w), 1472 (w), 1455 (w), 1415 (vw), 1362 (m), 1237 (w), 1202 (w), 1178 (vw), 1157 

(vw), 1105 (s), 1085 (m), 1031 (s), 997 (s), 867 (w), 798 (w), 763 (w), 734 (vs), 704 (s), 689 (s), 660 

(vw). 

m.p. (°C): 76.7–77.7. 

 

4-bromo-N-(tert-butyl)-N,2-dimethyl-6-(triethylsilyl)benzamide (20a) 

 

In a modified version of TP6, iodoarene 19 (510 mg, 1.0 mmol) was dissolved in THF (2.0 mL). The 

mixture was cooled to −78 °C and MeLi•LiBr (0.74 mL, 1.42 M in Et2O, 1.05 mmol) was added 

dropwise. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) 

afforded the title compound as a colorless solid (362 mg, 0.91 mmol, 91%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.44 – 7.42 (m, 1H), 7.31 – 7.30 (m, 1H), 2.69 (s, 3H), 2.22 

(s, 3H), 1.54 (s, 9H), 1.06 – 0.67 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.81, 144.19, 136.49, 136.06, 135.49, 133.70, 121.75, 

57.34, 33.62, 28.10, 19.01, 7.51, 3.60. 

MS (EI, 70 eV): m/z (%) = 370 (10), 368 (10), 315 (14), 314 (100), 313 (17), 312 (100). 

HRMS (EI): m/z calc. for [C17H27
79BrNO28Si]: 368.1045 [M−Et]•+; found: 368.1043.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2908 (w), 2874 (w), 1624 (vs), 1556 (w), 1455 (m), 

1363 (vs), 1212 (w), 1187 (m), 1155 (w), 1110 (s), 1044 (vs), 1007 (s), 972 (w), 910 (vw), 883 (m), 

798 (m), 730 (vs), 692 (s).  

m.p. (°C): 74.6–76.1. 

 

4-bromo-N-(tert-butyl)-2-butyl-N-methyl-6-(triethylsilyl)benzamide (20b) 

 

In a modified version of TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The 

mixture was cooled to –78 °C and nBuLi (0.08 mL, 2.55 M, 0.21 mmol) was added dropwise. 

Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title 

compound as a yellow oil (61 mg, 0.14 mmol, 69%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.43 (d, J=2.0, 1H), 7.34 (d, J=2.0, 1H), 2.66 (s, 3H), 2.58 – 

2.38 (m, 2H), 1.71 – 1.55 (m, 2H), 1.54 (s, 9H), 1.36 (h, J=7.4, 2H), 0.96 – 0.88 (m, 15H), 0.88 – 0.81 

(m, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.69, 143.77, 140.45, 136.45, 136.03, 132.57, 121.91, 

57.29, 34.23, 32.85, 32.48, 28.14, 23.11, 14.09, 7.55, 3.66. 

MS (EI, 70 eV): m/z (%) = 412 (22), 410 (20), 402 (17), 357 (23), 356 (100), 355 (36), 354 (100), 353 

(10), 326 (16), 324 (14), 57 (37), 43 (51), 41 (18). 

HRMS (EI): m/z calc. for [C20H33
79BrNO28Si]: 410.1515 [M−Et]•+; found: 410.1507. 

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2932 (w), 2873 (w), 1636 (vs), 1557 (w), 1458 (m), 

1362 (vs), 1212 (w), 1185 (w), 1113 (m), 1040 (vs), 1003 (m), 871 (w), 800 (w), 723 (vs), 692 (s). 

 

2-allyl-4-bromo-N-(tert-butyl)-N-methyl-6-(triethylsilyl)benzamide (20c) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.02 mL, 0.02 mmol, 0.1 equiv.) and allyl bromide (0.02 mL, 0.22 mmol) were 

added. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded 

the title compound as a colorless solid (79 mg, 0.19 mmol, 93%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.46 (d, J=2.1, 1H), 7.35 (d, J=2.0, 1H), 5.97 – 5.84 (m, 1H), 

5.13 (dt, J=2.3, 1.1, 1H), 5.10 (dq, J=9.0, 1.6, 1H), 3.43 – 3.12 (m, 2H), 2.67 (s, 3H), 1.54 (s, 9H), 0.99 

– 0.68 (m, 15H). 



C. EXPERIMENTAL PART    119 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.56, 143.70, 137.72, 136.66, 136.55, 135.89, 132.82, 

122.08, 117.31, 57.42, 36.45, 34.33, 28.13, 7.52, 3.64. 

MS (EI, 70 eV): m/z (%) = 396 (8), 394 (8), 341 (16), 340 (100), 339 (18), 338 (99), 336 (11), 309 (19), 

307 (20), 228 (19), 199 (12), 115 (10). 

HRMS (EI): m/z calc. for [C19H29
79BrNO28Si]: 394.1202 [M−Et]•+; found: 394.1199.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2932 (w), 2872 (w), 1623 (s), 1555 (w), 1478 (w), 

1457 (w), 1364 (s), 1212 (m), 1183 (m), 1149 (w), 1107 (m), 1043 (s), 1004 (s), 919 (m), 872 (m), 798 

(m), 726 (vs), 691 (s). 

m.p. (°C): 60.4 – 62.0. 

 

Ethyl 2-(5-bromo-2-(tert-butyl(methyl)carbamoyl)-3-(triethylsilyl)benzyl)acrylate (20d) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.02 mL, 0.02 mmol, 0.1 equiv.) and ethyl 2-(bromomethyl)acrylate (0.03 mL, 

0.22 mmol) were added. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 19:1) afforded the title compound as a colorless oil (94 mg, 0.19 mmol, 95%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.48 (d, J=2.0, 1H), 7.24 (d, J=2.0, 1H), 6.33 (d, J=1.1, 1H), 

5.40 (d, J=1.4, 1H), 4.19 (q, J=7.1, 2H), 3.64 – 3.42 (m, 2H), 2.69 (s, 3H), 1.50 (s, 9H), 1.26 (t, J=7.1, 

3H), 0.97 – 0.70 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.27, 166.87, 144.19, 138.17, 136.93, 136.84, 136.47, 

132.75, 128.05, 122.03, 61.00, 57.38, 34.34, 34.15, 28.04, 14.31, 7.51, 3.62. 

MS (EI, 70 eV): m/z (%) = 468 (16), 466 (18), 413 (22), 412 (99), 411 (30), 410 (100), 384 (12), 382 

(10), 381 (12), 379 (13), 366 (28), 365 (12), 364 (27), 338 (32), 336 (34), 309 (24), 307 (25), 280 (10), 

278 (10), 256 (13), 234 (10), 228 (16), 199 (11). 

HRMS (EI): m/z calc. for [C22H33
79BrNO3

28Si]: 466.1413 [M–Et]•+; found: 466.1406.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (m), 2910 (w), 2874 (w), 1716 (s), 1636 (vs), 1557 (w), 

1459 (m), 1363 (vs), 1299 (w), 1279 (w), 1251 (m), 1210 (s), 1149 (s), 1107 (vs), 1041 (vs), 950 (w), 

870 (w), 800 (m), 730 (vs), 692 (s). 
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5-bromo-N-(tert-butyl)-4'-methoxy-N-methyl-3-(triethylsilyl)-[1,1'-biphenyl]-2-carboxamide 

(20e) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, ZnCl2 (0.2 mL, 0.2 mmol) was added, followed Pd(dba)2 (2 mg, 0.004 mmol, 0.02 equiv.), P(o-

furyl)3 (2 mg, 0.008 mmol, 0.04 equiv) and 4-iodoanisole (51 mg, 0.22 mmol). Purification by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless solid (64 mg, 0.13 mmol, 65%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.59 (d, J = 2.1 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H), 7.34 – 7.30 

(m, 2H), 6.91 – 6.85 (m, 2H), 3.82 (s, 3H), 2.35 (s, 3H), 1.18 (s, 9H), 1.01 – 0.77 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.14, 159.47, 143.17, 140.54, 137.81, 137.26, 133.55, 

132.06, 130.62, 121.90, 113.60, 57.12, 55.54, 33.93, 27.88, 7.61, 3.74. 

MS (EI, 70 eV): m/z (%) = 462 (25), 460 (29), 407 (25), 406 (82), 405 (28), 404 (100), 403 (10), 57 

(16), 55 (10), 43 (26), 41 (10). 

HRMS (EI): m/z calc. for [C23H31
79BrNO2

28Si]: 460.1307 [M−Et]•+; found: 460.1316.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (w), 2930 (w), 2906 (w), 2873 (w), 1629 (s), 1608 (m), 

1510 (s), 1457 (m), 1363 (vs), 1291 (w), 1248 (vs), 1211 (m), 1177 (m), 1108 (m), 1041 (vs), 1029 (s), 

1002 (s), 878 (w), 835 (vs), 799 (m), 771 (m), 729 (vs), 690 (s).  

m.p. (°C): 100.1 – 101.7. 

 

5-bromo-N-(tert-butyl)-N-methyl-3-(triethylsilyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-

carboxamide (20f) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, ZnCl2 (0.2 mL, 0.2 mmol) was added, followed Pd(dba)2 (2 mg, 0.004 mmol, 0.02 equiv.), P(o-

furyl)3 (2 mg, 0.008 mmol, 0.04 equiv) and 4-iodobenzotrifluoride (60 mg, 0.22 mmol). Purification by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as 

a colorless solid (81 mg, 0.15 mmol, 77%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.66 (d, J = 2.0 Hz, 1H), 7.62 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 

8.6 Hz, 2H), 7.39 (d, J = 2.0 Hz, 1H), 2.36 (s, 3H), 1.12 (s, 9H), 1.01 – 0.77 (m, 15H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 170.62, 143.10 (q, J = 1.2 Hz), 142.96, 139.27, 138.30, 

133.11, 130.13 (q, J = 32.6 Hz), 129.85, 125.09 (q, J = 3.7 Hz), 124.24 (q, J = 272.1 Hz), 122.09, 57.23, 

33.98, 27.63, 7.57, 3.69. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.6.  

MS (EI, 70 eV): m/z (%) = 500 (4), 498 (4), 442 (26), 440 (26), 299 (17), 281 (16), 227 (20), 226 (13), 

225 (100), 209 (29), 207 (47), 191 (10), 42 (72). 

HRMS (EI): m/z calc. for [C23H28
81BrF3NO28Si]: 500.1055 [M−Et]•+; found: 500.1054.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2957 (w), 2880 (vw), 1626 (s), 1557 (w), 1472 (w), 1398 (w), 

1366 (m), 1323 (vs), 1254 (w), 1191 (w), 1166 (s), 1127 (vs), 1107 (vs), 1073 (vs), 1038 (vs), 1015 

(vs), 974 (w), 882 (w), 848 (vs), 801 (m), 720 (s), 685 (w), 659 (w). 

m.p. (°C): 82.4 – 84.2. 

 

5-bromo-3-(4-chlorophenyl)-7-(triethylsilyl)isobenzofuran-1(3H)-one (20g) 

 

Iodoarene 19 (255 mg, 0.5 mmol) was dissolved in THF (1 mL). The mixture was cooled to -40 °C and 

iPrMgCl•LiCl (0.48 mL, 1.10 M in THF, 0.53 mmol) was added dropwise. After 15 min, 4-

chlorobenzaldehyde (77 mg, 0.55 mmol) was added and the mixture was allowed to warm up to 25 °C. 

A sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with EtOAc (3 x 

10 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. The crude benzylic alcohol was dissolved in 1,4-dioxane (2 mL) and HCl 

(0.5 mL, 2.0 M in H2O) was added. The solution was heated to 85 °C for 24 h. After cooling to 25 °C a 

sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with EtOAc (3 x 10 

mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 19:1) afforded the title compound as a colorless solid (148 mg, 0.34 mmol, 68%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.7 (dd, J=1.7, 0.6, 1H), 7.4 (dd, J=1.7, 0.9, 1H), 7.4 – 7.3 (m, 

2H), 7.2 – 7.2 (m, 2H), 6.3 (s, 1H), 1.1 – 0.9 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.22, 151.44, 142.51, 139.95, 135.58, 134.81, 129.47, 

129.43, 128.78, 128.38, 126.36, 80.84, 7.68, 2.97. 

MS (EI, 70 eV): m/z (%) = 409 (100), 408 (22), 407 (74), 163 (14), 44 (12), 43 (26). 

HRMS (EI): m/z calc. for [C18H17
79Br35ClO2

28Si]: 406.9870 [M–Et]•+; found: 406.9851.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (m), 2935 (w), 2911 (w), 2875 (w), 1767 (vs), 1636 (w), 

1566 (m), 1489 (w), 1464 (w), 1406 (w), 1308 (w), 1282 (m), 1231 (w), 1201 (m), 1167 (m), 1086 (vs), 

1058 (s), 1005 (vs), 972 (w), 848 (m), 816 (m), 721 (vs), 693 (s).  
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m.p. (°C): 88.0 – 90.1. 

 

4-bromo-N-(tert-butyl)-2-formyl-N-methyl-6-(triethylsilyl)benzamide (20h) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, dimethylformamide (0.02 mL, 0.22 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil 

(61 mg, 0.15 mmol, 74%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 10.05 (s, 1H), 8.01 (d, J=2.1, 1H), 7.83 (d, J=2.1, 1H), 2.65 

(s, 3H), 1.57 (s, 9H), 1.09 – 0.72 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 189.91, 169.58, 146.57, 144.15, 138.85, 133.75, 131.57, 

122.95, 58.21, 34.89, 28.03, 7.45, 3.62. 

MS (EI, 70 eV): m/z (%) = 396 (1), 327 (22), 326 (100), 324 (31), 270 (12), 268 (12), 56 (22). 

HRMS (EI): m/z calc. for [C18H27
79BrNO2

28Si]: 396.0994 [M−Me]•+; found: 396.0988.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2909 (w), 2873 (m), 1696 (vs), 1638 (vs), 1555 (m), 

1458 (m), 1380 (s), 1353 (s), 1251 (m), 1219 (s), 1181 (s), 1099 (m), 1042 (vs), 1003 (s), 890 (m), 799 

(m), 725 (vs), 692 (s). 

 

4-bromo-N-(tert-butyl)-2-cyano-N-methyl-6-(triethylsilyl)benzamide (20i) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, p-tosylcyanide (40 mg, 0.22 mmol) was added. Purification by flash column chromatography 

(silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a colorless solid (59 mg, 

0.14 mmol, 72%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.82 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 2.0 Hz, 1H), 2.81 (s, 

3H), 1.57 (s, 9H), 1.00 – 0.76 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 168.48, 147.01, 142.97, 140.20, 135.21, 121.90, 116.20, 

111.35, 57.89, 34.13, 27.52, 7.29, 3.27. 

MS (EI, 70 eV): m/z (%) = 381 (3), 379 (4), 324 (19), 323 (100), 267 (10), 265 (10), 225 (24), 207 (12), 

72 (10), 56 (12). 
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HRMS (EI): m/z calc. for [C17H24
79BrNO28Si]: 379.0841 [M−Et]•+; found: 379.0839.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (w), 2872 (w), 1635 (vs), 1552 (w), 1472 (w), 1366 (vs), 

1188 (m), 1156 (w), 1103 (m), 1047 (m), 1006 (s), 877 (m), 862 (m), 801 (m), 728 (vs), 694 (m). 

m.p. (°C): 64.8 – 68.4. 

 

Ethyl 5-bromo-2-(tert-butyl(methyl)carbamoyl)-3-(triethylsilyl)benzoate (20j) 

 

According to TP6, iodoarene 19 (102 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, ethyl chloroformate (0.02 mL, 0.22 mmol) was added in one portion. Purification by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless oil (90 mg, 0.20 mmol, 99%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.97 (d, J=2.1, 1H), 7.73 (d, J=2.1, 1H), 4.30 (qd, J=7.1, 1.9, 

2H), 2.62 (s, 3H), 1.52 (s, 9H), 1.34 (t, J=7.1, 3H), 0.96 – 0.78 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.72, 165.37, 145.38, 142.29, 137.65, 133.20, 129.97, 

121.43, 61.54, 57.40, 34.54, 27.95, 14.36, 7.47, 3.59. 

MS (EI, 70 eV): m/z (%) = 428 (6), 426 (5), 372 (26), 371 (11), 370 (26), 327 (13), 326 (100), 325 (26), 

324 (100), 323 (11), 313 (14), 311 (14), 298 (23), 296 (23), 270 (12), 268 (13). 

HRMS (EI): m/z calc. for [C19H29
81BrNO3

28Si]: 428.1080 [M–Et]•+; found: 428.1072.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (w), 2909 (w), 2874 (w), 1729 (s), 1642 (vs), 1555 (w), 

1459 (m), 1360 (s), 1267 (vs), 1233 (s), 1175 (m), 1118 (vs), 1103 (vs), 1041 (vs), 1002 (s), 888 (w), 

862 (vw), 794 (m), 721 (vs), 690 (s), 665 (w). 

 

4-bromo-N-(tert-butyl)-2-iodo-N,6-dimethylbenzamide (21) 

 

According to TP5, triethylsilylbenzene 20a (550 mg, 1.38 mmol) was dissolved in CH2Cl2 (3 mL) and 

ICl (292 mg, 1.8 mmol) was added in one portion. Purification by flash column chromatography (silica 

gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil (544 mg, 1.33 mmol, 

96%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.82 – 7.72 (m, 1H), 7.33 – 7.26 (m, 1H), 2.74 (s, 3H), 2.26 

(s, 3H), 1.55 (s, 9H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 169.91, 143.26, 138.52, 137.05, 133.01, 121.79, 92.90, 57.57, 

32.92, 28.07, 19.60. 

MS (EI, 70 eV): m/z (%) = 411 (5), 409 (4), 325 (98), 323 (100), 170 (11), 168 (11), 127 (13), 89 (13). 

HRMS (EI): m/z calc. for [C13H17
79BrINO]: 408.9538 [M]•+; found: 408.9536.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2974 (w), 2959 (w), 2921 (w), 2869 (vw), 1633 (vs), 1571 (m), 

1543 (w), 1473 (m), 1455 (m), 1373 (vs), 1364 (vs), 1257 (w), 1212 (m), 1183 (w), 1149 (w), 1103 (s), 

1044 (vs), 876 (w), 855 (m), 780 (w), 753 (w), 709 (m). 

 

4-bromo-N-(tert-butyl)-N,2-dimethylbenzamide (22a) 

 

According to TP6, iodoarene 21 (82 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, a sat. aq. solution of NH4Cl (1 mL) was added. Purification by flash column chromatography 

(silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil (49 mg, 0.17 mmol, 

86%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.35 – 7.29 (m, 2H), 7.01 (d, J=8.0, 1H), 2.73 (s, 3H), 2.27 (s, 

3H), 1.52 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.45, 138.44, 136.06, 133.31, 129.24, 127.30, 122.13, 

57.06, 33.84, 28.15, 18.72. 

MS (EI, 70 eV): m/z (%) = 284 (2), 282 (2), 199 (98), 197 (100), 171 (14), 169 (14), 90 (11), 89 (15). 

HRMS (EI): m/z calc. for [C13H17
79BrNO]: 282.0494 [M−H]•+; found: 282.0491.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2959 (w), 2922 (vw), 1632 (vs), 1588 (m), 1562 (vw), 1472 (m), 

1454 (m), 1364 (vs), 1255 (w), 1199 (m), 1156 (w), 1086 (m), 1046 (vs), 875 (m), 822 (m), 767 (w). 

 

4-bromo-N-(tert-butyl)-N,2-dimethyl-6-(methylthio)benzamide (22b) 

 

According to TP6, iodoarene 21 (62 mg, 0.15 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.14 mL, 1.10 M in THF, 0.16 mmol) was added dropwise. After 

15 min, dimethyl disulfide (0.02 mL, 0.17 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless 

solid (41 mg, 0.12 mmol, 83%).  
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1H-NMR (400 MHz, CDCl3): δ / ppm = 7.17 (d, J = 1.7, 1H), 7.13 (d, J = 1.8, 1H), 2.74 (s, 3H), 2.44 

(s, 3H), 2.21 (s, 3H), 1.55 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 169.04, 137.77, 136.64, 136.00, 130.06, 126.44, 121.96, 

57.39, 32.74, 28.19, 18.71, 16.23. 

MS (EI, 70 eV): m/z (%) = 331 (1), 329 (1), 258 (41), 245 (100), 244 (17), 243 (99), 242 (18), 230 (14), 

228 (14), 136 (28), 135 (27), 121 (20), 88 (11), 72 (23). 

HRMS (EI): m/z calc. for [C14H20
79BrNOS]: 329.0449 [M]•+; found: 329.0440.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2959 (w), 2922 (w), 1627 (vs), 1561 (m), 1453 (m), 1373 (vs), 

1255 (w), 1211 (m), 1183 (w), 1157 (w), 1109 (m), 1047 (vs), 895 (w), 842 (s), 798 (m), 768 (w), 730 

(w). 

m.p. (°C): 109.1–110.6. 

 

4-bromo-N-(tert-butyl)-2-ethyl-N,6-dimethylbenzamide (22c) 

 

In a modified version of TP6, iodoarene 21 (82 mg, 0.20 mmol) was dissolved in THF (0.5 mL). The 

mixture was cooled to –78 °C and tBuLi (0.21 mL, 1.95 M in heptane, 0.41 mmol, 2.05 equiv.) was 

added dropwise. After 15 min, iodoethane (0.2 mL, 0.22 mmol) was added. Purification by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

colorless solid (38 mg, 0.12 mmol, 61%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.20 – 7.18 (m, 1H), 7.18 – 7.15 (m, 1H), 2.71 (s, 3H), 2.58 – 

2.47 (m, 2H), 2.20 (t, J=0.7, 3H), 1.54 (s, 9H), 1.20 (t, J=7.6, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.67, 141.46, 137.86, 135.31, 130.51, 128.96, 121.65, 

57.13, 33.06, 28.19, 25.78, 18.70, 14.78. 

MS (EI, 70 eV): m/z (%) = 313 (3), 311 (4), 228 (11), 227 (100), 226 (77), 225 (100), 224 (77), 146 

(27), 118 (15), 117 (37), 115 (34), 91 (11), 81 (15), 79 (13). 

HRMS (EI): m/z calc. for [C15H22
79BrNO]: 311.0885 [M]•+; found: 311.0882.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2978 (w), 2957 (w), 2922 (w), 1632 (vs), 1575 (m), 1453 (m), 

1361 (vs), 1258 (vw), 1210 (m), 1157 (w), 1113 (w), 1043 (vs), 855 (s), 821 (m), 759 (w), 741 (vw). 

m.p. (°C): 82.6 – 84.5. 

 

2-allyl-4-bromo-N-(tert-butyl)-N,6-dimethylbenzamide (22d) 
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According to TP6, iodoarene 21 (62 mg, 0.15 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.14 mL, 1.10 M in THF, 0.16 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.02 mL, 0.02 mmol, 0.1 equiv.) was added, followed by allyl bromide 

(0.02 mL, 0.17 mmol). Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 19:1) afforded the title compound as a colorless solid (32 mg, 0.10 mmol, 66%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.20 – 7.18 (m, 2H), 5.96 – 5.81 (m, 1H), 5.13 – 5.09 (m, 1H), 

5.08 (t, J=1.4, 1H), 3.31 – 3.26 (m, 2H), 2.70 (s, 3H), 2.21 (s, 3H), 1.54 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.3, 137.8, 137.6, 135.9, 135.4, 130.8, 129.7, 121.5, 116.9, 

57.1, 36.8, 33.1, 28.1, 18.6. 

MS (EI, 70 eV): m/z (%) = 325 (1), 323 (1), 252 (19), 239 (32), 238 (81), 237 (33), 236 (88), 211 (22), 

209 (23), 158 (10), 157 (64), 130 (90), 129 (100), 128 (52), 115 (64), 84 (18). 

HRMS (EI): m/z calc. for [C16H22
79BrNO]: 323.0885 [M]•+; found: 323.0880.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2978 (vw), 2958 (w), 2920 (w), 2854 (vw), 1632 (vs), 1576 (m), 

1473 (w), 1457 (w), 1362 (vs), 1259 (w), 1208 (m), 1156 (w), 1111 (w), 1094 (w), 1044 (vs), 1002 (w), 

922 (m), 857 (m), 830 (w), 780 (vw), 759 (vw), 683 (w).  

m.p. (°C): 74.3 – 76.4. 

 

Ethyl 2-(5-bromo-2-(tert-butyl(methyl)carbamoyl)-3-methylbenzyl)acrylate (22e) 

 

According to TP6, iodoarene 21 (82 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, CuCN•2LiCl (0.02 mL, 1.0 M in THF, 0.02 mmol, 0.1 equiv.) was added, followed by ethyl 2-

(bromomethyl)acrylate (89 mg, 0.22 mmol). Purification by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil (54 mg, 0.14 mmol, 68%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.21 – 7.18 (m, 1H), 7.15 – 7.11 (m, 1H), 6.31 (q, J = 1.1, 

1H), 5.48 (q, J = 1.4, 1H), 4.18 (q, J = 7.1, 2H), 3.66 – 3.42 (m, 2H), 2.71 (s, 3H), 2.24 – 2.18 (m, 3H), 

1.51 (s, 9H), 1.26 (t, J = 7.1, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.23, 166.77, 138.38, 138.30, 136.56, 135.63, 131.25, 

129.91, 127.82, 121.58, 60.98, 57.21, 34.54, 33.14, 28.12, 18.74, 14.32. 

MS (EI, 70 eV): m/z (%) = 397 (3), 395 (3), 280 (56), 279 (23), 268 (40), 266 (43), 240 (12), 239 (41), 

238 (31), 237 (42), 236 (35), 235 (43), 209 (13), 207 (18), 186 (17), 158 (100), 157 (33), 156 (14), 155 

(14), 145 (14), 143 (17), 130 (51), 129 (65), 128 (75), 127 (13), 115 (33), 84 (17), 81 (24), 79 (23), 72 

(17), 56 (22). 

HRMS (EI): m/z calc. for [C19H26
79BrNO3]: 395.1096 [M]•+; found: 395.1094.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2978 (w), 2926 (w), 1714 (vs), 1633 (vs), 1577 (s), 1475 (m), 

1456 (m), 1366 (vs), 1300 (m), 1256 (s), 1209 (s), 1136 (s), 1107 (s), 1046 (vs), 1025 (s), 950 (w), 860 

(m), 836 (w), 817 (w).  

 

5-bromo-N-(tert-butyl)-4'-methoxy-N,3-dimethyl-[1,1'-biphenyl]-2-carboxamide (22f) 

 

According to TP6, iodoarene 21 (82 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, ZnCl2 (0.2 mL, 1.0 M in THF, 0.2 mmol, 1.0 equiv.) was added, followed Pd(dba)2 (2 mg, 

0.004 mmol, 0.02 equiv.), P(o-furyl)3 (2 mg, 0.008 mmol, 0.04 equiv) and 4-iodoanisole (51 mg, 

0.22 mmol) were added. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 19:1) afforded the title compound as a colorless oil (55 mg, 0.14 mmol, 71%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.39 – 7.34 (m, 2H), 7.32 – 7.31 (m, 1H), 7.30 – 7.29 (m, 1H), 

6.91 – 6.87 (m, 2H), 3.83 (s, 3H), 2.44 (s, 3H), 2.29 (s, 3H), 1.30 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.22, 159.48, 139.77, 137.34, 136.36, 131.72, 131.60, 

130.37, 130.05, 121.56, 113.71, 57.03, 55.48, 32.96, 27.97, 19.09. 

MS (EI, 70 eV): m/z (%) = 391 (18), 389 (17), 334 (18), 332 (18), 306 (14), 304 (18), 303 (77), 224 

(34), 181 (14), 153 (16), 152 (18), 61 (14), 57 (18), 45 (15), 43 (100). 

HRMS (EI): m/z calc. for [C20H24
79BrNO2]: 389.0990 [M]•+; found: 389.0990.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2957 (w), 2923 (w), 1738 (vw), 1631 (vs), 1567 (w), 1512 (s), 

1456 (m), 1364 (vs), 1286 (m), 1246 (vs), 1213 (m), 1178 (s), 1104 (m), 1044 (vs), 833 (vs).  

 

5-bromo-3-(4-chlorophenyl)-7-methylisobenzofuran-1(3H)-one (22g) 

 

Iodoarene 21 (62 mg, 0.15 mmol) was dissolved in THF (0.5 mL). The mixture was cooled to –40 °C 

and iPrMgCl•LiCl (0.14 mL, 1.10 M in THF, 0.16 mmol) was added dropwise. After 15 min, 4-

chlorobenzaldehyde (23 mg, 0.17 mmol) was added and the mixture was allowed to warm to 25 °C. A 

sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with ethyl acetate (3 x 

10 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. The crude benzylic alcohol was dissolved in 1,4-dioxane (1 mL) and HCl 

(0.2 mL, 2.0 M in H2O) was added. The solution was heated to 85 °C for 24 h. After cooling to 25 °C a 

sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with ethyl acetate (3 x 
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10 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate 

= 19:1) afforded the title compound as a colorless solid (31 mg, 0.09 mmol, 61%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.48 – 7.45 (m, 1H), 7.39 – 7.35 (m, 2H), 7.25 – 7.18 (m, 3H), 

6.26 (s, 1H), 2.71 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 169.60, 151.54, 141.71, 135.63, 134.76, 134.54, 129.49, 

129.35, 128.41, 123.63, 122.13, 80.56, 17.35. 

MS (EI, 70 eV): m/z (%) = 338 (14), 336 (11), 303 (36), 301 (37), 199 (96), 198 (38), 197 (100), 196 

(39), 178 (18), 176 (22), 170 (10), 168 (10), 165 (20), 163 (10), 139 (21), 118 (10), 89 (30), 77 (10). 

HRMS (EI): m/z calc. for [C15H10
79BrClO2]: 335.9553 [M]•+; found: 335.9549.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (vw), 2919 (vw), 2851 (vw), 1760 (vs), 1589 (m), 1490 

(m), 1455 (w), 1404 (w), 1377 (vw), 1333 (w), 1282 (m), 1235 (m), 1204 (m), 1089 (m), 1055 (m), 

1007 (vs), 848 (m), 810 (m), 767 (m), 670 (m).  

m.p. (°C): 120.6–122.1. 

 

4-bromo-N-(tert-butyl)-2-formyl-N,6-dimethylbenzamide (22h) 

 

According to TP6, iodoarene 21 (82 mg, 0.2 mmol) was dissolved in THF (0.5 mL). The mixture was 

cooled to –40 °C and iPrMgCl•LiCl (0.19 mL, 1.10 M in THF, 0.21 mmol) was added dropwise. After 

15 min, dimethylformamide (0.02 mL, 0.22 mmol) was added. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless 

solid (54 mg, 0.17 mmol, 86%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 9.95 (s, 1H), 7.88 – 7.82 (m, 1H), 7.61 – 7.55 (m, 1H), 2.71 

(s, 3H), 2.31 (d, J = 0.7 Hz, 3H), 1.58 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 189.74, 168.53, 140.15, 138.76, 136.93, 133.50, 130.25, 

122.27, 57.82, 33.32, 28.08, 18.15. 

MS (EI, 70 eV): m/z (%) = 256 (20), 255 (16), 254 (23), 253 (17), 227 (76), 225 (83), 199 (33), 198 

(26), 197 (33), 196 (32), 1194 (11), 171 (13), 170 (16), 169 (11), 168 (17), 118 (46), 90 (38), 89 (100), 

81 (20), 79 (20), 77 (12), 63 (25), 56 (36), 42 (12). 

HRMS (EI): m/z calc. for [C13H15
79BrNO2]: 296.0286 [M−Me]•+; found: 296.0284.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2977 (w), 2956 (w), 2922 (w), 1695 (s), 1635 (vs), 1577 (m), 

1473 (m), 1457 (m), 1400 (m), 1364 (vs), 1245 (m), 1221 (s), 1173 (w), 1156 (m), 1105 (m), 1045 (vs), 

950 (m), 867 (vs), 841 (m), 770 (w), 740 (m), 683 (m).  

m.p. (°C): 111.3–113.2.  
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3.5 Preparation of 4-functionalized pyridines 

4-iodo-2-(triethylsilyl)pyridine (25a) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol) was 

added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled to −20 °C and 

THF (1 mL) was added, followed by elemental iodine (152 mg, 0.60 mmol, 1.2 equiv.). Purification of 

the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the 

title compound as a colorless solid (142 mg, 0.44 mmol, 89%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.40 (dd, J = 5.2, 0.7 Hz, 1H), 7.80 (dd, J = 1.9, 0.7 Hz, 1H), 

7.57 (dd, J = 5.2, 1.9 Hz, 1H), 1.01 – 0.93 (m, 9H), 0.89 – 0.78 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 168.47, 150.63, 138.80, 131.98, 105.43, 7.44, 2.98. 

MS (EI, 70 eV): m/z (%) = 318 (21), 308 (12), 291 (100), 290 (44), 280 (20), 263 (44), 262 (59), 252 

(23), 235 (20), 234 (89), 232 (38), 205 (12), 155 (23), 127 (37). 

HRMS (EI): m/z calc. for [C11H17IN28Si]: 318.0175 [M−H]•+; found: 318.0167.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3189 (w), 3073 (w), 3017 (w), 2996 (w), 2949 (m), 2892 (w), 

2869 (m), 1637 (m), 1594 (s), 1579 (vs), 1558 (s), 1490 (m), 1457 (m), 1418 (s), 1399 (s), 1348 (m), 

1297 (m), 1254 (m), 1222 (s), 1205 (m), 1139 (s), 1077 (m), 1049 (w), 1008 (s), 999 (s), 986 (m), 917 

(w), 844 (m), 805 (vs), 734 (vs), 691 (vs). 

m.p. (°C): 86.9–88.5. 

 

Ethyl 2-((2-(triethylsilyl)pyridin-4-yl)methyl)acrylate (25b) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and ZnCl2 (0.55 mL, 1.0 M in THF, 0.55 mmol, 1.1 equiv.) and CuCN•2LiCl (0.05 mL, 1.0 M 

in THF, 0.05 mmol, 0.1 equiv.) were added, followed by ethyl 2-(bromomethyl)acrylate (116 mg, 

0.6 mmol, 1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil (95 mg, 0.31 mmol, 62%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.67 – 8.63 (m, 1H), 7.29 – 7.27 (m, 1H), 7.04 – 6.97 (m, 1H), 

6.26 (q, J = 0.9 Hz, 1H), 5.48 (t, J = 1.3 Hz, 1H), 4.18 – 4.10 (m, 2H), 3.60 – 3.54 (m, 2H), 1.21 (tt, J 

= 7.1, 0.9 Hz, 3H), 0.93 (tq, J = 7.3, 1.1 Hz, 9H), 0.86 – 0.77 (m, 6H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 166.52, 166.19, 150.27, 145.41, 138.93, 130.56, 126.93, 

123.14, 61.00, 37.70, 14.17, 7.44, 3.00. 

MS (EI, 70 eV): m/z (%) = 304 (5), 278 (10), 277 (46), 276 (100), 248 (20), 220 (22). 

HRMS (EI): m/z calc. for [C17H26NO2
28Si]: 304.1733 [M−H]•+; found: 304.1735.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2910 (w), 2874 (m), 2361 (vw), 2340 (vw), 1717 (vs), 

1715 (vs), 1635 (w), 1586 (m), 1457 (w), 1414 (w), 1298 (m), 1184 (s), 1141 (s), 1094 (w), 1018 (s), 

948 (m), 858 (w), 818 (w), 719 (vs), 689 (s). 

 

2-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (25c) 

 

In a modified version of TP4, pyridine 23 (3.08 g, 10.0 mmol) and PMDTA (2.30 mL, 11 mmol, 

1.1 equiv.) were dissolved in nhexane (10 mL). nBuLi (4.31 mL, 2.55 m in hexane, 11 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and ZnCl2 (11 mL, 1.0 m in THF, 11 mmol, 1.1 equiv.) was added, followed by Pd(PPh3)4 

(231 mg, 0.2 mmol, 0.02 equiv.) and 4-iodobenzotrifluoride (3.3 g, 12.0 mmol, 1.2 equiv.). Purification 

of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded 

the title compound as a colorless oil (3.25 g, 9.6 mmol, 96%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.88 (dd, J = 5.1, 0.9 Hz, 1H), 7.78 – 7.69 (m, 4H), 7.65 (dd, 

J = 2.0, 0.9 Hz, 1H), 7.39 (dd, J = 5.1, 2.0 Hz, 1H), 1.05 – 0.99 (m, 9H), 0.96 – 0.87 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.59, 150.91, 144.67, 142.68, 130.94 (q, J = 33.0 Hz), 

127.84, 127.67, 126.16 (q, J = 3.7 Hz), 124.18 (q, J = 272.0 Hz), 120.73, 7.57, 3.12. 

19F-NMR: (101 MHz, CDCl3): δ / ppm = −62.64. 

MS (EI, 70 eV): m/z (%) = 336 (35), 326 (15), 310 (17), 309 (100), 308 (60), 298 (15), 284 (15), 282 

(10), 281 (75), 280 (54), 270 (19), 253 (57), 252 (94), 250 (84), 223 (32), 204 (55), 154 (10), 151 (20). 

HRMS (EI): m/z calc. for [C18H21F3N28Si]: 336.1395 [M−H]•+; found: 336.1389.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (w), 2911 (w), 2875 (w), 2361 (vw), 2342 (vw), 1618 (vw), 

1585 (m), 1539 (w), 1457 (vw), 1413 (vw), 1322 (vs), 1238 (vw), 1166 (s), 1125 (vs), 1110 (s), 1071 

(vs), 1044 (w), 1016 (s), 988 (w), 857 (w), 826 (vs), 714 (vs), 689 (m). 
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4-(4-methoxyphenyl)-2-(triethylsilyl)pyridine (25d) 

 

In a modified version of TP4, pyridine 23 (3.08 g, 10.0 mmol) and PMDTA (2.4 mL, 11.0 mmol, 

1.1 equiv.) were dissolved in nhexane (10 mL). nBuLi (4.3 mL, 2.55 M in hexane, 11.0 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and ZnCl2 (11 mL, 1.0 M in THF, 11.0 mmol, 1.1 equiv.) was added, followed by Pd(PPh3)4 

(231 mg, 0.2 mmol, 0.02 equiv.) and 4-iodoanisole (2.81 g, 12.0 mmol, 1.2 equiv.). Purification of the 

crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the 

title compound as a colorless oil (2.49 g, 8.3 mmol, 83%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.79 (dd, J = 5.2, 0.9 Hz, 1H), 7.64 (dd, J = 2.0, 0.9 Hz, 1H), 

7.61 – 7.56 (m, 2H), 7.35 (dd, J = 5.2, 2.0 Hz, 1H), 7.03 – 6.97 (m, 2H), 3.85 (s, 3H), 1.07 – 0.97 (m, 

9H), 0.97 – 0.84 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.61, 160.45, 150.63, 145.45, 131.15, 128.29, 127.41, 

120.14, 114.60, 55.46, 7.56, 3.11. 

MS (EI, 70 eV): m/z (%) = 298 (14), 294 (18), 293 (12), 272 (17), 271 (63), 270 (35), 243 (28), 242 

(14), 215 (15), 214 (30), 212 (13), 186 (17), 185 (100), 183 (13), 170 (29), 142 (32), 115 (17), 107 (16), 

70 (11), 61 (14), 45 (12). 

HRMS (EI): m/z calc. for [C18H24NO28Si]: 298.1627 [M−H]•+; found: 298.1630.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3041 (vw), 3021 (vw), 2966 (w), 2938 (w), 2842 (vw), 1606 (m), 

1592 (m), 1577 (m), 1540 (w), 1521 (m), 1486 (m), 1457 (m), 1405 (m), 1288 (m), 1257 (m), 1224 (m), 

1185 (m), 1116 (w), 1036 (s), 1016 (s), 990 (m), 847 (m), 827 (m), 805 (vs), 719 (m). 

 

ethyl 3-(2-(triethylsilyl)pyridin-4-yl)benzoate (25e) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and ZnCl2 (0.55 mL, 1.0 M in THF, 0.55 mmol, 1.1 equiv.) was added, followed by Pd(PPh3)4 

(12 mg, 0.01 mmol, 0.02 equiv.) and ethyl 3-iodobenzoate (166 mg, 1.2 mmol, 1.2 equiv.). Purification 

of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded 

the title compound as an orange oil (125 mg, 0.37 mmol, 73%). 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 8.86 (dd, J = 5.1, 0.9 Hz, 1H), 8.30 (t, J = 1.8 Hz, 1H), 8.10 

(dd, J = 7.8, 1.4 Hz, 1H), 7.80 (ddd, J = 7.7, 2.0, 1.2 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.55 (t, J = 7.8 Hz, 

1H), 7.42 (dd, J = 5.2, 2.0 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.04 – 0.98 (m, 

9H), 0.95 – 0.87 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.21, 166.33, 150.74, 145.13, 139.30, 131.51, 131.47, 

129.85, 129.25, 128.33, 127.78, 120.70, 61.37, 14.44, 7.54, 3.11. 

MS (EI, 70 eV): m/z (%) = 340 (31), 330 (13), 314 (18), 313 (100), 312 (49), 302 (11), 296 (11), 288 

(12), 286 (12), 285 (76), 284 (38), 274 (11), 257 (60), 256 (61), 254 (26), 228 (11), 226 (50), 183 (11), 

182 (41), 180 (13), 154 (30), 115 (21), 106 (10). 

HRMS (EI): m/z calc. for [C20H26NO2
28Si]: 340.1733 [M−H]•+; found: 340.1725.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (w), 2908 (w), 2873 (w), 2360 (vw), 2340 (vw), 2326 (vw), 

1718 (s), 1581 (m), 1540 (w), 1457 (w), 1436 (w), 1367 (w), 1307 (m), 1281 (w), 1243 (vs), 1172 (w), 

1108 (s), 1084 (m), 1059 (w), 1016 (m), 844 (w), 814 (w), 757 (vs), 717 (vs), 692 (s), 672 (s). 

 

4-(3-methoxyphenyl)-2-(triethylsilyl)pyridine (25f) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and ZnCl2 (0.55 mL, 1.0 M in THF, 0.55 mmol 1.1 equiv.) was added, followed by Pd(PPh3)4 

(12 mg, 0.01 mmol, 0.02 equiv.) and 3-iodoanisole (140 mg, 1.2 mmol, 1.2 equiv.). Purification of the 

crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the 

title compound as a yellow oil (90 mg, 0.30 mmol, 60%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.83 (dd, J = 5.2, 0.9 Hz, 1H), 7.66 (dd, J = 2.0, 0.9 Hz, 1H), 

7.43 – 7.38 (m, 2H), 7.21 (ddd, J = 7.6, 1.7, 0.9 Hz, 1H), 7.15 (dd, J = 2.6, 1.7 Hz, 1H), 6.98 (ddd, J = 

8.3, 2.6, 0.9 Hz, 1H), 3.88 (s, 3H), 1.07 – 0.98 (m, 9H), 0.96 – 0.86 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.82, 160.25, 150.60, 146.03, 140.48, 130.27, 128.01, 

120.79, 119.68, 114.02, 113.21, 55.51, 7.57, 3.13. 

MS (EI, 70 eV): m/z (%) = 298 (31), 288 (13), 281 (20), 271 (62), 270 (33), 246 (15), 243 (49), 242 

(28), 232 (14), 225 (61), 215 (46), 214 (65), 212 (52), 209 (27), 208 (14), 207 (100), 191 (19), 185 (53), 

170 (15), 169 (34), 155 (15), 154 (23), 116 (17), 115 (19), 104 (14), 78 (15). 

HRMS (EI): m/z calc. for [C18H24NO28Si]: 298.1627 [M−H]•+; found: 298.1619.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (w), 2908 (w), 2872 (w), 2835 (w), 1592 (s), 1584 (vs), 

1548 (s), 1507 (w), 1477 (s), 1433 (m), 1407 (s), 1297 (s), 1216 (vs), 1172 (s), 1090 (w), 1054 (s), 1031 

(s), 998 (m), 872 (m), 856 (m), 822 (vs), 777 (vs), 714 (vs), 691 (vs). 

 

Dicyclopropyl(2-(triethylsilyl)pyridin-4-yl)methanol (25g) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and THF (1 mL) was added, followed by dicyclopropyl ketone (0.07 mL, 0.60 mmol, 

1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 9:1) afforded the title compound as a colorless solid (108 mg, 0.36 mmol, 71%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.72 (dd, J = 5.2, 0.9 Hz, 1H), 7.64 (dd, J = 2.0, 0.9 Hz, 1H), 

7.35 (dd, J = 5.2, 2.0 Hz, 1H), 1.90 (s, 1H), 1.19 – 1.10 (m, 2H), 1.02 – 0.95 (m, 9H), 0.92 – 0.82 (m, 

6H), 0.64 – 0.51 (m, 4H), 0.45 – 0.30 (m, 4H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.60, 153.47, 149.94, 127.03, 119.87, 73.30, 20.34, 7.56, 

3.15, 2.25, 0.15. 

MS (EI, 70 eV): m/z (%) = 302 (20), 284 (15), 276 (15), 100 (275), 274 (52), 264 (11), 256 (13), 250 

(10), 248 (12), 247 (85), 246 (34), 223 (14), 219 (56), 218 (56), 216 (16), 205 (22), 200 (13), 198 (10), 

176 (13), 172 (15), 156 (11), 130 (16). 

HRMS (EI): m/z calc. for [C18H28NO28Si]: 302.1940 [M−H]•+; found: 302.1935.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3122 (br w), 3088 (w), 3008 (w), 2948 (m), 2929 (w), 2870 (m), 

2361 (vw), 2340 (vw), 1588 (m), 1543 (w), 1456 (w), 1418 (w), 1374 (w), 1319 (w), 1237 (m), 1187 

(m), 1141 (w), 1098 (w), 1033 (m), 1010 (s), 998 (vs), 959 (w), 919 (m), 883 (m), 820 (s), 751 (m), 722 

(vs), 707 (vs), 689 (vs). 

m.p. (°C): 75.4–77.4. 

 

Cyclobutyl(phenyl)(2-(triethylsilyl)pyridin-4-yl)methanol (25h) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and THF (1 mL) was added, followed by cyclobutyl phenyl ketone (212 mg, 0.60 mmol, 
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1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 9:1) afforded the title compound as a colorless solid (111 mg, 0.31 mmol, 63%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.60 (dd, J = 5.2, 0.9 Hz, 1H), 7.50 (dd, J = 2.0, 0.9 Hz, 1H), 

7.37 – 7.27 (m, 4H), 7.26 – 7.19 (m, 1H), 7.08 (dd, J = 5.2, 2.0 Hz, 1H), 3.36 (tdd, J = 9.3, 8.2, 7.1 Hz, 

1H), 2.43 (s, 1H), 2.14 – 1.64 (m, 6H), 0.99 – 0.89 (m, 9H), 0.88 – 0.78 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.82, 152.03, 150.05, 145.11, 128.45, 127.46, 127.23, 

126.48, 120.41, 77.99, 43.74, 23.10, 22.51, 17.18, 7.50, 3.08. 

MS (EI, 70 eV): m/z (%) = 352 (4), 325 (35), 324 (18), 297 (21), 296 (11), 281 (22), 269 (19), 268 (20), 

225 (65), 213 (15), 212 (13), 209 (30), 208 (14), 207 (100), 191 (21), 168 (15), 167 (22), 115 (20), 105 

(31), 91 (11), 84 (12), 78 (13), 77 (18), 42 (19). 

HRMS (EI): m/z calc. for [C22H30NO28Si]: 352.2097 [M–H]•+; found: 352.2096.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3115 (br, w), 3057 (w), 2980 (w), 2951 (m), 2921 (w), 2869 (m), 

2360 (vw), 2342 (vw), 1585 (m), 1446 (m), 1242 (w), 1195 (w), 1148 (m), 1098 (w), 1073 (w), 998 

(vs), 969 (m), 906 (w), 821 (m), 771 (m), 735 (vs), 692 (vs). 

m.p. (°C): 139.2 – 141.6. 

 

2,6-bis(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (25i) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and ZnCl2 (0.55 mL, 1.0 M in THF, 1.1 equiv.) was added, followed by Pd(PPh3)4 (12 mg, 

0.01 mmol, 0.02 equiv.) and 4-iodobenzotrifluoride (163 mg, 0.6 mmol, 1.2 equiv.). Purification of the 

crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1, 2 vol% NEt3) 

afforded the title compound as colorless oil (170 mg, 0.38 mmol, 75%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.78 – 7.68 (m, 4H), 7.51 (s, 2H), 1.08 – 0.97 (m, 18H), 0.95 

– 0.84 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.19, 143.80, 141.93, 130.53 (q, J = 32.7 Hz), 127.76, 

126.08, 126.01 (q, J = 3.7 Hz), 124.30 (q, J = 272.0 Hz), 7.63, 3.33. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = δ -62.54. 

MS (EI, 70 eV): m/z (%) = 451 (1), 423 (14), 395 (10), 299 (11), 281 (11), 250 (14), 227 (22), 226 (14), 

225 (100), 209 (36), 207 (53), 191 (13), 127 (22), 84 (14), 78 (15), 42 (12). 

HRMS (EI): m/z calc. for [C24H36F3N28Si2]: 451.2338 [M]•+; found: 451.2323.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2936 (w), 2910 (w), 2874 (m), 2360 (vw), 2336 (vw), 

2324 (vw), 1576 (w), 1521 (w), 1457 (w), 1413 (w), 1322 (vs), 1238 (w), 1166 (s), 1128 (vs), 1109 (s), 

1076 (s), 1059 (m), 1017 (s), 972 (w), 840 (vs), 815 (m), 757 (w), 715 (vs), 690 (s). 

 

4-(methylthio)-2,6-bis(triethylsilyl)pyridine (25j) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and THF (1 mL) was added, followed by dimethyldisulfide (0.06 mL, 0.60 mmol, 1.2 equiv.). 

Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 

19:1, 2 vol% NEt3) afforded the title compound as a colorless oil (117 mg, 0.33 mmol, 66%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.15 (s, 2H), 2.46 (s, 3H), 1.03 – 0.94 (m, 18H), 0.89 – 0.77 

(m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.47, 144.90, 124.47, 13.68, 7.57, 3.28. 

MS (EI, 70 eV): m/z (%) = 353 (3), 326 (21), 325 (100), 324 (36), 298 (13), 297 (81), 296 (12), 269 

(63), 268 (44), 266 (15), 241 (23), 238 (20), 210 (19), 182 (31), 180 (13), 178 (10), 154 (11), 152 (17), 

120 (17), 115 (32), 106 (15), 87 (12), 59 (15).  

HRMS (EI): m/z calc. for [C18H35NS28Si2]: 353.2029 [M]•+; found: 353.2030.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (m), 2873 (m), 2361 (vw), 2342 (vw), 1542 (s), 

1507 (w), 1457 (w), 1437 (w), 1414 (w), 1366 (w), 1237 (w), 1176 (w), 1162 (w), 1003 (s), 979 (m), 

854 (w), 814 (s), 793 (w), 750 (s), 714 (vs), 688 (vs). 

 

4-methyl-2,6-bis(triethylsilyl)pyridine (25k) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and THF (1 mL) was added, followed by methyl iodide (0.04 mL, 0.60 mmol, 1.2 equiv.). 

Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl acetate = 

9:1 + 2 vol% NEt3) afforded the title compound as a colorless oil (144 mg, 0.45 mmol, 90%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.15 (d, J = 0.6 Hz, 2H), 2.28 (t, J = 0.6 Hz, 3H), 1.03 – 0.94 

(m, 18H), 0.87 – 0.76 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.66, 141.18, 129.31, 21.41, 7.62, 3.32. 
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MS (EI, 70 eV): m/z (%) = 321 (2), 294 (14), 293 (100), 292 (40), 265 (76), 264 (13), 237 (61), 236 

(42), 234 (14), 209 (17), 206 (19), 179 (23), 178 (16), 176 (12), 151 (15), 150 (17), 148 (13), 146 (11), 

122 (24), 120 (26). 

HRMS (EI): m/z calc. for [C18H35N28Si2]: 321.2308 [M]•+; found: 321.2306.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (m), 2873 (m), 1579 (w), 1457 (w), 1414 (w), 

1375 (w), 1236 (w), 1003 (s), 982 (w), 972 (w), 856 (w), 816 (s), 756 (s), 715 (vs), 691 (vs). 

 

(2,6-bis(triethylsilyl)pyridin-4-yl)(3,4,5-trimethoxyphenyl)methanol (25l) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and THF (1 mL) was added, followed by 3,4,5-trimethoxybenzaldehyde (118 mg, 0.60 mmol, 

1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 8:2, 2 vol% NEt3) afforded the title compound as a yellow solid (157 mg, 0.31 mmol, 62%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.35 (d, J = 0.7 Hz, 2H), 6.55 (s, 2H), 5.66 (d, J = 3.4 Hz, 

1H), 3.81 (s, 3H), 3.79 (s, 6H), 2.59 (dd, J = 3.5, 0.9 Hz, 1H), 1.02 – 0.91 (m, 18H), 0.89 – 0.78 (m, 

12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.40, 153.37, 146.18, 138.90, 137.53, 125.59, 103.79, 

75.86, 60.92, 56.08, 7.55, 3.25. 

MS (EI, 70 eV): m/z (%) = 503 (32), 502 (12), 501 (24), 477 (14), 476 (35), 475 (100), 474 (33), 473 

(22), 447 (19), 359 (11), 273 (13), 87 (12), 59 (12). 

HRMS (EI): m/z calc. for [C27H45NO4
28Si2]: 503.2887 [M]•+; found: 503.2886.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3503 (br w), 2952 (m), 2907 (w), 2873 (m), 1592 (m), 1506 (m), 

1457 (s), 1415 (m), 1334 (w), 1231 (s), 1180 (w), 1124 (vs), 1059 (m), 998 (s), 833 (w), 817 (s), 762 

(m), 740 (s), 715 (vs), 678 (s). 

m.p. (°C): 60.3 – 63.4. 

 

(2,6-bis(triethylsilyl)pyridin-4-yl)(phenyl)methanone (25m) 
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In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and THF (1 mL) was added, followed by N-methoxy-N-methylbenzamide (0.09 mL, 

0.60 mmol, 1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a yellow oil (161 mg, 0.39 mmol, 78%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.89 – 7.80 (m, 2H), 7.63 (tt, J = 7.0, 1.3 Hz, 1H), 7.56 (s, 

2H), 7.51 (tt, J = 7.6, 1.6 Hz, 2H), 1.03 – 0.96 (m, 18H), 0.90 – 0.82 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 197.46, 167.47, 139.31, 136.59, 133.38, 130.40, 128.62, 

126.44, 7.55, 3.23. 

MS (EI, 70 eV): m/z (%) = 411 (74), 383 (65), 382 (54), 381 (100), 355 (46), 354 (23), 353 (32), 327 

(36), 326 (50), 325 (22), 324 (32), 296 (39), 268 (32), 240 (43), 212 (25), 210 (34), 167 (24), 149 (23), 

144 (56), 135 (34), 105 (23), 87 (32), 77 (22), 59 (37). 

HRMS (EI): m/z calc. for [C24H37NO28Si2]: 411.2414 [M]•+; found: 411.2408.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2909 (m), 2873 (m), 2360 (vw), 2340 (vw), 1668 (s), 

1597 (w), 1522 (w), 1457 (w), 1448 (m), 1415 (w), 1375 (w), 1317 (w), 1282 (s), 1236 (m), 1172 (m), 

1120 (w), 1001 (s), 971 (s), 819 (m), 790 (s), 777 (w), 755 (m), 733 (s), 710 (vs), 690 (vs), 654 (s). 

 

(2,6-bis(triethylsilyl)pyridin-4-yl)(4-(trifluoromethyl)phenyl)methanone (25n) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to –20 °C and THF (1 mL) was added, followed by N-methoxy-N-methyl-4-

(trifluoromethyl)benzamide (160 mg, 0.60 mmol, 1.2 equiv.). Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a 

yellow oil (183 mg, 0.38 mmol, 76%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.96 – 7.91 (m, 2H), 7.81 – 7.75 (m, 2H), 7.55 (s, 2H), 1.03 – 

0.96 (m, 18H), 0.91 – 0.83 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 196.37, 168.00, 139.53, 138.39, 134.64 (q, J = 32.5 Hz), 

130.55, 126.17, 125.69 (q, J = 3.8 Hz), 123.72 (q, J = 272.8 Hz), 7.54, 3.21. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -63.08. 

MS (EI, 70 eV): m/z (%) = 479 (52), 451 (37), 450 (37), 449 (55), 423 (23), 422 (13), 421 (16), 395 

(20), 394 (24), 393 (13), 364 (15), 336 (16), 308 (25), 206 (16), 197 (14), 192 (25), 183 (20), 178 (44), 
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173 (31), 169 (34), 167 (15), 164 (100), 163 (22), 155 (53), 154 (14), 145 (40), 139 (44), 130 (22), 126 

(17), 87 (52), 59 (50). 

HRMS (EI): m/z calc. for [C25H36F3NO28Si2]: 479.2288 [M]•+; found: 479.2279.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2935 (w), 2912 (w), 2874 (m), 2360 (vw), 2336 (vw), 

2326 (vw), 1675 (m), 1457 (w), 1409 (m), 1375 (w), 1323 (vs), 1313 (s), 1279 (s), 1238 (w), 1169 (s), 

1132 (vs), 1108 (m), 1066 (vs), 1018 (s), 976 (s), 856 (m), 816 (s), 771 (m), 716 (vs), 668 (s). 

 

Ethyl 2,6-bis(triethylsilyl)isonicotinate (25o) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and MgCl2 (1 mL, 0.5 M in THF, 0.5 mmol, 1.0 equiv.) was added, followed by ethyl 

cyanoformate (0.06 mL, 0.60 mmol, 1.2 equiv.). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil 

(168 mg, 0.44 mmol, 88%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.85 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H), 

1.02 – 0.95 (m, 18H), 0.91 – 0.83 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.75, 167.12, 132.65, 126.34, 61.55, 14.40, 7.50, 3.22. 

MS (EI, 70 eV): m/z (%) = 379 (1), 351 (32), 350 (100), 323 (27), 322 (32), 320 (12), 295 (20), 294 

(30), 292 (12), 266 (14), 264 (22), 236 (25), 208 (25), 180 (15), 87 (16), 59 (13). 

HRMS (EI): m/z calc. for [C20H37NO2
28Si2]: 379.2363 [M]•+; found: 379.2360.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2953 (m), 2936 (w), 2910 (w), 2874 (m), 1729 (vs), 1534 (w), 

1457 (w), 1415 (w), 1375 (w), 1280 (vs), 1238 (w), 1173 (s), 1151 (vs), 1109 (w), 1005 (s), 973 (w), 

861 (vw), 814 (m), 768 (w), 715 (vs), 691 (vs). 

 

N,N-diisopropyl-2,6-bis(triethylsilyl)isonicotinamide (25p) 

 

In a modified version of TP4, pyridine 23 (3.08 g, 10.0 mmol) and PMDTA (2.4 mL, 11.0 mmol, 

1.1 equiv.) were dissolved in nhexane (10 mL). nBuLi (4.3 mL, 2.55 M in hexane, 11.0 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and THF (10 mL) was added, followed by N,N-diisopropylcarbamoyl chloride (1.96 g, 
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12 mmol, 1.2 equiv). Purification of the crude product by flash column chromatography (silica gel, 

ihexane/ethyl acetate = 19:1) afforded the title compound as a colorless oil (2.91 g, 6.7 mmol, 67%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.21 (s, 2H), 3.72 (s, 1H), 3.52 (s, 1H), 1.64 – 1.47 (m, 6H), 

1.19 – 1.07 (m, 6H), 1.02 – 0.92 (m, 18H), 0.89 – 0.78 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.30, 166.99, 140.82, 123.98, 51.04, 46.13, 20.81, 7.52, 

3.20. 

MS (EI, 70 eV): m/z (%) = 434 (13), 423 (14), 407 (15), 406 (53), 405 (44), 392 (18), 391 (65), 378 

(31), 363 (30), 361 (16), 350 (34), 349 (30), 347 (13), 321 (13), 305 (100), 291 (18), 289 (13), 277 (94), 

249 (23), 247 (81), 246 (23), 225 (18), 219 (17), 207 (41), 192 (17), 87 (62), 84 (16), 75 (22), 59 (54). 

HRMS (EI): m/z calc. for [C24H46N2O28Si2]: 434.3149 [M]•+; found: 434.3141.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (m), 2935 (m), 2909 (w), 2873 (m), 2360 (vw), 2343 (vw), 

1635 (s), 1517 (vw), 1438 (m), 1370 (m), 1330 (s), 1237 (w), 1206 (m), 1154 (w), 1135 (w), 1003 (s), 

974 (w), 889 (w), 824 (s), 714 (vs), 704 (vs), 691 (vs). 

 

N-(tert-butyl)-2,6-bis(triethylsilyl)isonicotinamide (25q) 

 

In a modified version of TP4, pyridine 23 (154 mg, 0.50 mmol) and PMDTA (0.12 mL, 0.55 mmol, 

1.1 equiv.) were dissolved in nhexane (1 mL). nBuLi (0.22 mL, 2.55 M in hexane, 0.55 mmol, 

1.1 equiv.) was added and the resulting solution was stirred for 3 h. Afterwards, the mixture was cooled 

to −20 °C and THF (1 mL) was added, followed by tert-butyl isocyanate (0.07 mL, 0.60 mmol, 

1.2 equiv.). Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 9:1) afforded the title compound as a colorless solid (134 mg, 0.33 mmol, 66%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.52 (s, 2H), 5.98 (s, 1H), 1.47 (s, 9H), 0.99 – 0.93 (m, 18H), 

0.88 – 0.80 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.55, 167.02, 137.86, 124.34, 52.01, 28.87, 7.50, 3.18. 

MS (EI, 70 eV): m/z (%) = 406 (4), 395 (11), 378 (10), 350 (12), 349 (65), 321 (30), 319 (23), 299 (11), 

293 (10), 291 (10), 281 (11), 265 (14), 263 (21), 235 (28), 227 (21), 226 (12), 225 (100), 209 (38), 207 

(44), 191 (11), 179 (23), 149 (10), 105 (20), 87 (34), 84 (11), 78 (13), 75 (28), 59 (34). 

HRMS (EI): m/z calc. for [C22H42N2O28Si2]: 406.2836 [M]•+; found: 406.2834.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3351 (br w), 2953 (m), 2936 (m), 2909 (m), 2874 (m), 2361 (vw), 

2337 (vw), 1638 (s), 1523 (vs), 1456 (m), 1414 (w), 1395 (m), 1361 (m), 1308 (s), 1218 (s), 1193 (m), 

1167 (w), 1116 (w), 1013 (s), 972 (m), 909 (w), 896 (w), 816 (s), 736 (vs), 713 (vs), 693 (vs). 

m.p. (°C): 146.5–148.9. 
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3.6 Preparation of polyfunctionalized pyridines 

2-iodo-6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (27a) 

 

According to TP7, pyridine 25c (169 mg, 0.5 mmol) was dissolved in THF (1 mL). TMPMgCl•LiCl 

(0.49 mL, 1.22 M in THF, 0.6 mmol) was added, followed by BF3•OEt2 (0.07 mL, 0.6 mmol). After 

20 min elemental iodine (152 mg, 0.6 mmol, 1.2 equiv.) was added. Purification of the crude product 

by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound 

as a colorless solid (171 mg, 0.37 mmol, 74%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.81 (d, J = 1.6 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 

8.2 Hz, 2H), 7.56 (dd, J = 1.7, 0.8 Hz, 1H), 1.05 – 0.98 (m, 9H), 0.93 – 0.84 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 171.11, 146.46, 141.10, 131.55, 131.36 (q, J = 32.5 Hz), 

127.70, 127.19, 126.24 (q, J = 3.7 Hz), 124.06 (q, J = 272.5 Hz), 121.08, 7.48, 3.06. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.69. 

MS (EI, 70 eV): m/z (%) = 462 (9), 435 (36), 434 (18), 407 (18), 406 (14), 378 (21), 376 (11), 250 (10), 

204 (15), 202 (18), 155 (30), 128 (10), 127 (100). 

HRMS (EI): m/z calc. for [C18H20F3IN28Si]: 462.0362 [M–H]•+; found: 462.0355.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2950 (w), 2908 (w), 2873 (m), 2358 (vw), 2341 (vw), 1619 (vw), 

1571 (m), 1505 (s), 1457 (w), 1408 (w), 1353 (w), 1322 (vs), 1282 (m), 1240 (w), 1163 (vs), 1121 (vs), 

1097 (vs), 1073 (vs), 1054 (s), 1016 (vs), 977 (m), 897 (w), 877 (w), 835 (vs), 776 (s), 737 (s), 708 (vs). 

m.p. (°C): 40.3 – 42.1. 

 

2-bromo-6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (27b) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the monosilylated pyridine 25d (1.01 g, 3.0 mmol, 1.0 equiv.) in dry THF (6 mL) and was cooled to 

0 °C. TMPMgCl•LiCl (3 mL, 1.2 M in THF, 3.6 mmol, 1.2 equiv.) was added in one portion, 

immediately followed by BF3•OEt2 (0.44 mL, 3.6 mmol, 1.2 equiv.) and the mixture was stirred for 

20 min. Then, elemental bromine (0.20 mL, 3.9 mmol, 1.3 equiv.) in THF (6 mL) was added dropwise 

and the mixture was allowed to warm to 25 °C. A sat. aq. Na2S2O3 solution (5 mL) was added and the 

aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed 
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with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a slight yellow 

solid (1.04 g, 2.5 mmol, 83%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.77 – 7.73 (m, 2H), 7.71 – 7.66 (m, 2H), 7.57 (d, J = 1.6 Hz, 

1H), 7.55 (d, J = 1.6 Hz, 1H), 1.05 – 0.98 (m, 9H), 0.94 – 0.85 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 170.19, 147.54, 144.21, 141.23, 131.45 (q, J = 32.6 Hz), 

127.75, 127.01, 126.28 (q, J = 3.8 Hz), 124.99, 124.05 (q, J = 272.2 Hz), 7.50, 3.04. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.72. 

MS (EI, 70 eV): m/z (%) = 416 (23), 414 (23), 404 (17), 389 (68), 388 (42), 387 (69), 386 (47), 361 

(34), 360 (42), 359 (35), 358 (44), 350 (24), 348 (24), 333 (19), 332 (53), 331 (20), 330 (53), 328 (35), 

250 (23), 222 (24), 204 (70), 202 (100), 151 (19), 109 (22), 107 (25).  

HRMS (EI): m/z calc. for [C18H20
79Br19F3N28Si]: 414.0500 [M−H]•+; found: 414.0493.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2958 (w), 2904 (w), 2874 (w), 1620 (w), 1571 (m), 1508 (s), 

1463 (w), 1410 (w), 1354 (w), 1323 (vs), 1283 (m), 1163 (s), 1112 (vs), 1073 (vs), 1017 (vs), 979 (m), 

959 (m), 877 (m), 837 (vs), 789 (s), 738 (m), 708 (vs). 

m.p. (°C): 53.9–55.7. 

 

2-allyl-6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (27c) 

 

According to TP7, pyridine 25c (169 mg, 0.5 mmol) was dissolved in THF (1 mL). TMPMgCl•LiCl 

(0.49 mL, 1.22 M in THF, 0.6 mmol) was added, followed by BF3•OEt2 (0.07 mL, 0.6 mmol). After 20 

min CuCN•2LiCl (0.05 mL, 1.0 M in THF, 0.1 equiv.) was added, followed by allyl bromide (0.05 mL, 

0.6 mmol). Purification of the crude product by flash column chromatography (silica gel, ihexane/ethyl 

acetate = 19:1) afforded the title compound as a colorless solid (138 mg, 0.37 mmol, 73%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.74 (t, J = 1.1 Hz, 4H), 7.50 (t, J = 2.0 Hz, 1H), 7.27 (t, J = 

1.8 Hz, 1H), 6.18 (ddtd, J = 15.5, 10.1, 6.8, 1.7 Hz, 1H), 5.26 – 5.11 (m, 2H), 3.73 – 3.69 (m, 2H), 1.05 

(ddt, J = 8.3, 7.0, 1.5 Hz, 9H), 0.92 (qt, J = 6.9, 1.8 Hz, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.13, 160.90, 145.01, 143.19, 136.48, 130.71 (q, J = 32.5 

Hz), 127.70, 126.03 (q, J = 3.8 Hz), 125.40, 124.26 (q, J = 272.2 Hz), 119.64, 116.58, 43.44, 7.63, 3.25. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.69. 

MS (EI, 70 eV): m/z (%) = 376 (4), 227 (23), 226 (13), 225 (100), 218 (13), 216 (12), 214 (12), 209 

(34), 207 (46), 191 (11), 151 (12), 91 (11), 84 (20), 78 (20), 42 (19). 

HRMS (EI): m/z calc. for [C21H25F3N28Si]: 376.1708•+; found: 376.1701.  
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IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2958 (w), 2912 (w), 2879 (w), 2365 (vw), 2333 (vw), 2229 (w), 

1653 (m), 1585 (m), 1533 (w), 1405 (w), 1320 (vs), 1260 (m), 1162 (s), 1123 (vs), 1113 (vs), 1076 (m), 

1062 (s), 1010 (s), 971 (m), 905 (w), 844 (s), 778 (m), 730 (s), 717 (s), 700 (s), 680 (m). 

m.p. (°C): 79.5 – 81.7. 

 

2-(cyclohex-2-en-1-yl)-6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridine (27d) 

 

According to TP7, pyridine 25c (1.01 g, 3.0 mmol) was dissolved in THF (6 mL). TMPMgCl•LiCl 

(2.95 mL, 1.22 M in THF, 3.6 mmol) was added, followed by BF3•OEt2 (0.44 mL, 3.6 mmol). After 

20 min CuCN•2LiCl (0.3 mL, 1.0 M in THF, 0.3 mmol, 0.1 equiv.) was added, followed by 3-

bromocyclohex-1-ene (0.42 mL, 3.6 mmol). Purification of the crude product by flash column 

chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound as an orange oil 

(652 mg, 1.56 mmol, 52%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.72 (d, J = 0.8 Hz, 4H), 7.45 (d, J = 1.8 Hz, 1H), 7.26 (d, J = 

1.9 Hz, 1H), 5.98 – 5.84 (m, 2H), 3.79 – 3.63 (m, 1H), 2.19 – 2.05 (m, 3H), 1.87 – 1.60 (m, 3H), 1.11 

– 0.83 (m, 15H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 166.80, 165.99, 144.88, 143.50 (q, J = 1.3 Hz), 130.62 (q, J 

= 32.6 Hz), 129.32, 128.90, 127.75, 127.72, 126.00 (q, J = 3.9 Hz), 124.29 (q, J = 272.0 Hz), 118.44, 

44.25, 30.50, 25.30, 21.26, 7.66, 3.32. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.62. 

MS (EI, 70 eV): m/z (%) = 417 (22), 406 (15), 390 (24), 389 (100), 388 (39), 361 (51), 360 (28), 351 

(16), 333 (50), 332 (69), 330 (46), 328 (22), 326 (27), 304 (31), 302 (33), 300 (40), 276 (83), 274 (35), 

264 (22), 250 (35), 225 (56), 209 (25), 207 (56), 151 (20).  

HRMS (EI): m/z calc. for [C24H30F3N28Si]: 417.2100 [M]•+; found: 417.2094.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (w), 2911 (w), 2874 (w), 1585 (w), 1539 (vw), 1457 (vw), 

1322 (vs), 1166 (s), 1125 (vs), 1110 (s), 1072 (s), 1016 (s), 827 (s), 716 (vs), 689 (m). 

 

(4-chlorophenyl)(6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)pyridin-2-yl)methanol (27e) 
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According to TP7, pyridine 25c (169 mg, 0.5 mmol) was dissolved in THF (1 mL). TMPMgCl•LiCl 

(0.49 mL, 1.22 M in THF, 0.6 mmol) was added, followed by BF3•OEt2 (0.07 mL, 0.6 mmol). After 

20 min 4-chlorobenzaldehyde (146 mg, 0.6 mmol) was added. Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 8:2) afforded the title compound as a 

colorless solid (146 mg, 0.31 mmol, 61%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.71 (d, J = 8.2 Hz, 2H), 7.64 – 7.60 (m, 2H), 7.57 (dt, J = 

1.6, 0.8 Hz, 1H), 7.39 – 7.29 (m, 4H), 7.15 – 7.12 (m, 1H), 6.15 (s, 1H), 5.78 (s, 1H), 1.05 (td, J = 7.9, 

1.3 Hz, 9H), 1.00 – 0.90 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 165.44, 160.43, 146.18, 142.25, 142.14, 133.83, 131.16 (q, J 

= 32.8 Hz), 128.96, 128.62, 127.79, 127.30, 126.14 (q, J = 3.8 Hz), 124.08 (q, J = 272.3 Hz), 118.60, 

74.27, 7.60, 3.19. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.69. 

MS (EI, 70 eV): m/z (%) = 477 (56), 452 (13), 451 (42), 450 (41), 449 (100), 448 (38), 447 (10), 421 

(13), 403 (10), 376 (11), 375 (22), 311 (14), 178 (13), 103 (17), 75 (44), 47 (12), 43 (12). 

HRMS (EI): m/z calc. for [C25H27ClF3NO28Si]: 477.1503 [M]•+; found: 477.1495.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3219 (br, vw), 2952 (w), 2936 (w), 2909 (w), 2872 (w), 2361 

(vw), 2344 (vw), 1618 (vw), 1591 (m), 1539 (w), 1489 (w), 1411 (w), 1323 (vs), 1241 (w), 1165 (s), 

1110 (vs), 1063 (vs), 1014 (vs), 965 (w), 915 (w), 893 (w), 840 (s), 832 (s), 806 (m), 766 (w), 741 (m), 

726 (vs), 701 (s), 672 (m). 

m.p. (°C): 78.1 – 80.9. 

 

4-(6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)picolinoyl)benzonitrile (27f) 

 

According to TP7, pyridine 25c (169 mg, 0.5 mmol) was dissolved in THF (1 mL). TMPMgCl•LiCl 

(0.49 mL, 1.22 M in THF, 0.6 mmol) was added, followed by BF3•OEt2 (0.07 mL, 0.6 mmol). After 

20 min CuCN•2LiCl (0.60 mL, 1.0 M in THF, 1.2 equiv.) was added, followed by 4-cyanobenzoyl 

chloride (99 mg, 0.6 mmol). Purification of the crude product by flash column chromatography (silica 

gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a colorless solid (183 mg, 0.39 mmol, 

78%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.35 – 8.30 (m, 2H), 8.29 (d, J = 1.8 Hz, 1H), 7.87 (dd, J = 

1.8, 0.8 Hz, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.78 (dd, J = 8.4, 2.2 Hz, 4H), 1.04 – 0.97 (m, 9H), 0.94 – 

0.87 (m, 6H). 
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13C-NMR (101 MHz, CDCl3): δ / ppm = 192.33, 167.35, 154.78, 146.16, 141.65, 140.14, 131.77, 

131.54, 131.35 (q, J = 32.9 Hz), 130.10, 127.73, 126.26 (q, J = 3.8 Hz), 124.02 (q, J = 272.2 Hz), 

121.68, 118.35, 115.76, 7.43, 3.06. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.68. 

MS (EI, 70 eV): m/z (%) = 466 (5), 438 (20), 437 (12), 381 (20), 380 (43), 337 (19), 281 (20), 265 (14), 

225 (74), 209 (31), 208 (14), 207 (100), 184 (13), 151 (11), 130 (24), 75 (17). 

HRMS (EI): m/z calc. for [C26H25F3N2O28Si]: 466.1688 [M]•+; found: 466.1678.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2959 (w), 2940 (w), 2912 (w), 2881 (w), 2360 (vw), 2342 (vw), 

2229 (w), 1653 (s), 1617 (w), 1584 (w), 1558 (w), 1533 (w), 1405 (w), 1321 (vs), 1260 (s), 1161 (s), 

1124 (vs), 1113 (vs), 1076 (m), 1063 (s), 1010 (s), 971 (m), 905 (w), 844 (vs), 817 (m), 778 (s), 731 

(s), 717 (s), 697 (vs). 

m.p. (°C): 122.5 – 124.9. 

 

Ethyl 6-(triethylsilyl)-4-(4-(trifluoromethyl)phenyl)picolinate (27g) 

 

According to TP7, pyridine 25c (169 mg, 0.5 mmol) was dissolved in THF (1 mL). TMPMgCl•LiCl 

(0.49 mL, 1.22 M in THF, 0.6 mmol) was added, followed by BF3•OEt2 (0.07 mL, 0.6 mmol). After 

20 min ethyl cyanoformate (0.06 mL, 0.6 mmol) was added. Purification of the crude product by flash 

column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title compound as a 

colorless oil (134 mg, 0.33 mmol, 65%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.20 (d, J = 1.8 Hz, 1H), 7.81 – 7.73 (m, 5H), 4.47 (q, J = 7.1 

Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H), 1.10 – 1.00 (m, 9H), 1.00 – 0.86 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 168.61, 165.93, 149.75, 145.45, 141.96, 131.20 (q, J = 32.5 

Hz), 129.91, 127.74, 126.20 (q, J = 3.8 Hz), 124.09 (q, J = 272.2 Hz), 121.95, 61.77, 14.34, 7.49, 3.17. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = -62.69. 

MS (EI, 70 eV): m/z (%) = 380 (100), 370 (45), 353 (10), 352 (51), 324 (17), 294 (46), 268 (10), 262 

(11), 252 (21), 250 (13), 240 (58), 225 (38), 223 (18), 222 (38), 209 (16), 207 (25), 203 (13), 202 (98), 

177 (10), 175 (15), 151 (31), 103 (33), 93 (29), 87 (16), 75 (75), 63 (11), 59 (20). 

HRMS (EI): m/z calc. for [C19H21F3NO2
28Si]: 380.1294 [M−Et]•+; found: 380.1288.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2955 (w), 2911 (vw), 2875 (w), 2360 (vw), 2337 (vw), 1743 (w), 

1717 (m), 1589 (w), 1321 (vs), 1250 (s), 1211 (w), 1166 (s), 1125 (vs), 1111 (vs), 1075 (m), 1060 (vs), 

1015 (s), 841 (s), 788 (m), 717 (s), 696 (s). 
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2-bromo-4-(4-(trifluoromethyl)phenyl)pyridine (28) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

mono-silyl pyridine 27b (363 mg, 0.87 mmol, 1.0 equiv.) in dry THF (1.6 mL). A solution of 

tetrabutylammonium fluoride (1.3 mL, 1.0 M in THF, 1.3 mmol, 1.5 equiv.) was added and the mixture 

was stirred for 2 h. Afterwards a sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was 

extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine 

(20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification of the crude product by 

flash column chromatography (silica gel, ihexane/ethyl acetate = 8:2) afforded the title compound as a 

colorless solid (258 mg, 0.85 mmol, 98%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.46 (dd, J = 5.2, 0.7 Hz, 1H), 7.80 – 7.68 (m, 5H), 7.47 (dd, 

J = 5.2, 1.6 Hz, 1H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 150.83, 149.92, 143.27, 140.42, 131.81 (q, J = 32.7 Hz), 

127.68, 126.39 (q, J = 3.8 Hz), 126.22, 123.96 (q, J = 272.4 Hz), 121.08. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.78. 

MS (EI, 70 eV): m/z (%) = 303 (42), 301 (42), 240 (30), 222 (63), 203 (13), 202 (100), 153 (14). 

HRMS (EI): m/z calc. for [C12H7
79BrF3N]: 300.9714 [M]•+; found: 300.9707.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3054 (vw), 3025 (vw), 2938 (vw), 1586 (s), 1526 (m), 1458 (w), 

1374 (m), 1322 (vs), 1173 (s), 1113 (vs), 1070 (vs), 1040 (vs), 1017 (s), 988 (m), 972 (m), 831 (vs), 

800 (s), 755 (s), 744 (s), 701 (s). 

m.p. (°C): 123.5–124.5. 

 

2-bromo-6-iodo-4-(4-(trifluoromethyl)phenyl)pyridine (30a) 

 

According to TP8, the metalated pyridine was treated with elemental iodine (127 mg, 0.53 mmol). 

Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title 

compound as a colorless solid (54 mg, 0.13 mmol, 97%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.90 (d, J = 1.4 Hz, 1H), 7.76 (dt, J = 8.1, 0.7 Hz, 2H), 7.68 

(dt, J = 8.1, 0.8 Hz, 2H), 7.66 (d, J = 1.4 Hz, 1H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 150.80, 141.55, 138.88 (q, J = 1.2 Hz), 132.17 (q, J = 33.0 

Hz), 132.12, 127.66, 126.42 (q, J = 3.7 Hz), 125.54, 123.77 (q, J = 272.4 Hz), 116.48. 
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19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.88. 

MS (EI, 70 eV): m/z (%) = 429 (27), 427 (28), 320 (17), 318 (17), 302 (30), 300 (30), 282 (10), 280 

(10), 222 (12), 221 (100), 220 (15), 202 (11), 201 (13), 200 (10), 171 (20), 127 (40). 

HRMS (EI): m/z calc. for [C12H6
79Br19F3IN]: 426.8680 [M]•+; found: 426.8668.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2928 (vw), 2913 (vw), 2859 (vw), 1570 (vs), 1508 (vs), 1352 

(m), 1321 (vs), 1282 (s), 1163 (vs), 1107 (vs), 1072 (vs), 1052 (vs), 1014 (vs), 978 (m), 880 (m), 836 

(vs), 814 (s), 757 (vs), 737 (vs), 713 (m). 

m.p. (°C): 133.1–135.2. 

 

2-bromo-6-(methylthio)-4-(4-(trifluoromethyl)phenyl)pyridine (30b) 

 

According to TP8, the metalated pyridine was treated with dimethyl disulfide (0.05 mL, 0.53 mmol). 

Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title 

compound as a yellow oil (39 mg, 0.11 mmol, 86%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.75 – 7.71 (m, 2H), 7.69 – 7.64 (m, 2H), 7.36 (d, J = 1.4 Hz, 

1H), 7.31 (d, J = 1.3 Hz, 1H), 2.61 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 162.19, 149.40, 142.45, 140.49 (d, J = 1.4 Hz), 131.72 (q, J 

= 32.8 Hz), 127.64, 126.29 (q, J = 3.8 Hz), 123.98 (q, J = 272.3 Hz), 121.34, 118.47, 13.75. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.81. 

MS (EI, 70 eV): m/z (%) = 349 (100), 347 (97), 346 (95), 303 (17), 301 (17), 253 (13), 225 (41), 222 

(27), 221 (31), 209 (17), 207 (30), 203 (12), 202 (94), 175 (15), 171 (17), 153 (30), 140 (15), 81 (28), 

79 (28). 

HRMS (EI): m/z calc. for [C13H9
79Br19F3NS]: 346.9591 [M]•+; found: 346.9585.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2926 (w), 2853 (vw), 2360 (vw), 2335 (vw), 1576 (m), 1516 (s), 

1355 (m), 1321 (vs), 1288 (m), 1166 (s), 1124 (vs), 1110 (vs), 1073 (vs), 1057 (vs), 1016 (s), 957 (w), 

832 (vs), 789 (s), 757 (s), 743 (m), 718 (w). 

 

2-bromo-6-(cyclohex-2-en-1-yl)-4-(4-(trifluoromethyl)phenyl)pyridine (30c) 
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According to TP8, after 60 min CuCN•2LiCL (0.02 mL, 1.0 M in THF, 0.02 mmol, 0.15 equiv.) was 

added to the metalated pyridine followed by 3-bromocyclohexene (0.06 mL, 0.53 mmol). Purification 

by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) afforded the title compound 

as a colorless oil (48 mg, 0.13 mmol, 97%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.74 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 

1.4 Hz, 1H), 7.34 (d, J = 1.4 Hz, 1H), 6.01 – 5.95 (m, 1H), 5.84 – 5.78 (m, 1H), 3.71 – 3.61 (m, 1H), 

2.21 – 2.06 (m, 3H), 1.81 – 1.60 (m, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.96, 150.15, 142.39, 140.98, 131.52 (q, J = 33.0 Hz), 

130.14, 127.73, 127.71, 126.23 (q, J = 3.6 Hz), 123.99 (q, J = 272.1 Hz), 123.57, 118.94, 43.81, 30.60, 

25.07, 20.86. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.67. 

MS (EI, 70 eV): m/z (%) = 383 (19), 381 (18), 380 (12), 368 (12), 366 (12), 354 (51), 352 (53), 342 

(11), 340 (11), 339 (10), 317 (26), 315 (26), 303 (19), 302 (100), 300 (13), 274 (17), 272 (11), 261 (11), 

204 (11), 202 (18). 

HRMS (EI): m/z calc. for [C18H15
79Br19F3N3]: 381.0340 [M]•+; found: 381.0330.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3024 (vw), 2932 (w), 2860 (vw), 2835 (vw), 2361 (vw), 2337 

(vw), 1589 (m), 1529 (s), 1385 (w), 1321 (vs), 1166 (s), 1123 (vs), 1110 (vs), 1062 (s), 1016 (s), 914 

(w), 835 (vs), 797 (m), 758 (s), 723 (m), 708 (m). 

 

2-bromo-6-(4-methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)pyridine (30d) 

 

According to TP8, ZnCl2 (0.53 mL, 1.0 M in THF, 0.53 mmol, 4.0 equiv.) was added, followed by 

Pd(dba)2 (1.5 mg, 2.6 µmol, 0.02 equiv.), P(o-furyl)3 (1.2 mg, 5.2 µmol, 0.04 equiv.) and 4-iodoanisole 

(37 mg, 0.16 mmol, 1.2 equiv.). The reaction mixture was allowed to warm to 25 °C and was stirred for 

another 2 h. Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 19:1) 

afforded the title compound as a colorless solid (44 mg, 0.11 mmol, 83%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.03 – 7.95 (m, 2H), 7.80 – 7.70 (m, 5H), 7.53 (d, J = 1.3 Hz, 

1H), 7.01 – 6.96 (m, 2H), 3.87 (s, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.31, 158.89, 150.42, 142.91, 141.03, 131.57 (q, J = 32.9, 

32.0, 32.0 Hz), 130.11, 128.61, 127.69, 126.28 (q, J = 3.8 Hz), 124.01 (q, J = 272.2 Hz), 123.55, 116.75, 

114.35, 55.52. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.67. 
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MS (EI, 70 eV): m/z (%) = 409 (97), 408 (20), 407 (100), 366 (13), 364 (13), 328 (20), 313 (10), 301 

(13), 285 (44), 284 (12), 281 (10), 227 (10), 225 (27), 216 (13), 215 (10), 214 (20), 209 (11), 207 (45), 

189 (20), 81 (11), 79 (11). 

HRMS (EI): m/z calc. for [C19H13
79Br19F3NO]: 407.0133 [M]•+; found: 407.0126.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 1607 (w), 1586 (m), 1526 (m), 1516 (m), 1456 (vw), 1419 (vw), 

1405 (vw), 1382 (w), 1323 (vs), 1256 (m), 1171 (s), 1113 (vs), 1072 (s), 1044 (m), 1015 (m), 830 (vs), 

807 (m), 765 (m), 659 (vw). 

m.p. (°C): 102.4–104.7. 

 

6-bromo-N-(tert-butyl)-4-(4-(trifluoromethyl)phenyl)picolinamide (30e) 

 

According to TP8, the metalated pyridine was treated with tert-butyl isocyanate (43 mg, 0.52 mmol). 

Purification by flash column chromatography (silica gel, ihexane/ethyl acetate = 9:1) afforded the title 

compound as a colorless solid (41 mg, 0.10 mmol, 79%).  

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.38 (d, J = 1.6 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.76 (s, 

4H), 1.50 (s, 9H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 161.68, 152.54, 150.88, 141.11, 139.72, 131.94 (q, J = 33.1 

Hz), 127.85, 127.58, 126.32 (q, J = 3.8 Hz), 123.78 (q, J = 273.0 Hz), 119.10, 51.39, 28.67. 

19F-NMR: (377 MHz, CDCl3): δ / ppm = −62.82. 

MS (EI, 70 eV): m/z (%) = 385 (1), 299 (12), 281 (15), 227 (18), 226 (13), 225 (100), 218 (11), 216 

(11), 209 (46), 207 (76), 191 (21), 151 (10), 86 (14), 84 (41), 78 (14), 73 (11), 42 (72). 

HRMS (EI): m/z calc. for [C16H13
79BrF3N2O]: 385.0163 [M−Me]•+; found: 385.0166.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 3388 (w), 3079 (vw), 3061 (vw), 2976 (w), 2937 (vw), 2361 

(vw), 2344 (vw), 1670 (vs), 1593 (m), 1517 (vs), 1457 (m), 1321 (vs), 1266 (m), 1225 (w), 1166 (s), 

1114 (vs), 1073 (s), 1057 (vs), 1017 (s), 884 (w), 837 (s), 783 (s), 758 (s), 722 (s). 

m.p. (°C): 133.1–134.8. 
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3.7 Preparation of partially functionalized electron-deficient pyridines 

N,N-diisopropyl-2-(triethylsilyl)isonicotinamide (31) 

 

Bis-silyl pyridine 25p (1.5 g, 3.45 mmol, 1.0 equiv.) was dissolved in glacial acetic acid (15 mL) and 

stirred at 25 °C for 2 h. A sat. aq. solution of Na2CO3 solution was added until the gas evolution ceased 

and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were 

washed with brine, dried over MgSO4 and the solvent was removed in vacuo. Purification by flash 

column chromatography (ihexane/ethyl acetate = 9:1) afforded the title compound as a colorless oil 

(920 mg, 2.87 mmol, 83%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.81 (dd, J = 5.0, 1.0 Hz, 1H), 7.34 (dd, J = 1.8, 1.0 Hz, 1H), 

7.09 (dd, J = 5.0, 1.7 Hz, 1H), 3.69 (s, 1H), 3.51 (s, 1H), 1.53 (d, J = 6.8 Hz, 6H), 1.25 – 1.04 (m, 6H), 

0.99 – 0.93 (m, 9H), 0.90 – 0.81 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 169.14, 167.40, 150.47, 143.81, 125.91, 119.02, 51.10, 46.20, 

20.74, 7.45, 2.96. 

MS (EI, 70 eV): m/z (%) = 319 (4), 309 (27), 292 (37), 291 (79), 281 (23), 277 (50), 264 (30), 263 (54), 

249 (40), 236 (81), 235 (100), 233 (22), 221 (21), 219 (31), 207 (32), 193 (25), 192 (29), 191 (89), 179 

(16), 177 (20), 163 (74), 149 (34), 135 (23), 133 (50), 106 (23), 87 (19).  

HRMS (EI): m/z calc. for [C18H31N2O28Si]: 319.2206 [M–H]•+; found: 319.2197.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2936 (w), 2910 (w), 2874 (m), 2357 (vw), 2340 (vw), 

1632 (vs), 1539 (w), 1456 (m), 1438 (s), 1370 (s), 1339 (vs), 1202 (m), 1135 (m), 1100 (w), 1037 (m), 

1003 (m), 843 (w), 778 (w), 720 (vs), 697 (vs). 

 

N,N-diisopropyl-5-(methylthio)-2-(triethylsilyl)isonicotinamide (33a) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

pyridine 31 (48 mg, 0.15 mmol, 1.0 equiv.) in dry THF (0.5 mL) and was cooled to 0 °C. 

TMPMgCl•LiCl (0.43 mL, 1.05 M in THF, 0.45 mmol, 3.0 equiv.) was added dropwise and the mixture 

was stirred for 60 min. Then dimethyldisulfide (0.04 mL, 0.45 mmol, 3.0 equiv.) was added in one 

portion and the mixture was allowed to warm to 25 °C. A sat. aq. NH4Cl solution (5 mL) was added 

and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic phases were 

washed with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by flash 

column chromatography (ihexane/ethyl acetate = 9:1) afforded the title compound as an orange oil 

(39 mg, 0.11 mmol, 71%). 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 8.72 (d, J = 0.8 Hz, 1H), 7.14 (d, J = 0.8 Hz, 1H), 3.50 (dp, J 

= 17.7, 6.7 Hz, 2H), 2.52 (s, 3H), 1.57 (d, J = 6.8 Hz, 6H), 1.13 (dd, J = 67.8, 6.5 Hz, 6H), 1.00 – 0.91 

(m, 9H), 0.89 – 0.78 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 167.33, 163.33, 149.01, 143.73, 130.01, 125.20, 51.29, 46.23, 

20.84, 16.33, 7.47, 3.01. 

MS (EI, 70 eV): m/z (%) = 366 (10), 355 (16), 338 (47), 337 (54), 323 (54), 319 (22), 310 (51), 295 

(17), 282 (76), 265 (38), 261 (25), 238 (48), 237 (100), 232 (73), 223 (20), 210 (25), 209 (33), 207 (24), 

181 (16), 179 (26), 154 (21), 152 (70), 124 (30), 106 (17), 87 (39), 84 (33), 59 (30). 

HRMS (EI): m/z calc. for [C19H34N2OS28Si]: 366.2161 [M]•+; found: 366.2158.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2933 (w), 2873 (m), 2362 (vw), 2342 (vw), 1634 (vs), 

1437 (s), 1369 (m), 1345 (vs), 1286 (m), 1212 (w), 1162 (w), 1136 (w), 1109 (w), 1048 (s), 1006 (m), 

972 (w), 888 (w), 856 (w), 789 (m), 720 (vs), 700 (vs). 

 

5-iodo-N,N-diisopropyl-2-(triethylsilyl)isonicotinamide (33b) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the pyridine 31 (64 mg, 0.20 mmol, 1.0 equiv.) in dry THF (0.5 mL) and was cooled to 0 °C. 

TMPMgCl•LiCl (0.57 mL, 1.05 M in THF, 0.60 mmol, 3.0 equiv.) was added dropwise and the mixture 

was stirred for 60 min. Then elemental iodine (152 mg, 0.6 mmol, 3.0 equiv.) was added in one portion 

and the mixture was allowed to warm to 25 °C. A sat. aq. Na2S2O3 solution (5 mL) was added and the 

aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic phases were washed with 

brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by flash column 

chromatography (ihexane/ethyl acetate = 9:1) afforded the title compound as a yellow solid (42 mg, 

0.09 mmol, 47%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 9.06 (d, J = 0.8 Hz, 1H), 7.20 (d, J = 0.8 Hz, 1H), 3.50 (dhept, 

J = 26.6, 6.7 Hz, 2H), 1.58 (dd, J = 6.8, 4.3 Hz, 6H), 1.27 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 

0.99 – 0.92 (m, 9H), 0.87 – 0.79 (m, 6H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 168.11, 166.17, 157.90, 148.65, 126.29, 91.79, 51.48, 46.40, 

20.92, 20.84, 20.81, 20.17, 7.42, 2.92. 

MS (EI, 70 eV): m/z (%) = 446 (1), 127 (100). 

HRMS (EI): m/z calc. for [C18H31IN2O28Si]: 446.1250 [M]•+; found: 446.1244.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2978 (w), 2947 (w), 2930 (w), 2872 (w), 1637 (vs), 1448 (m), 

1437 (m), 1368 (s), 1343 (s), 1282 (m), 1209 (w), 1155 (w), 1135 (w), 1108 (w), 1003 (s), 972 (w), 889 

(m), 856 (w), 782 (s), 742 (s), 722 (s), 688 (s). 

m.p. (°C): 95.9 – 97.8. 
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N,N-diisopropyl-5-(4-methoxyphenyl)-2-(triethylsilyl)isonicotinamide (33c) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the pyridine 31 (64 mg, 0.20 mmol, 1.0 equiv.) in dry THF (0.5 mL) and was cooled to 0 °C. 

TMPMgCl•LiCl (0.57 mL, 1.05 M in THF, 0.60 mmol, 3.0 equiv.) was added dropwise and the mixture 

was stirred for 60 min. Then ZnCl2 (0.6 mL, 1.0 m in THF, 0.6 mmol, 3.0 equiv.) was added, followed 

by Pd(dba)2 (2 mg, 0.04 mmol, 0.02 equiv.), P(2-furyl)3 (2 mg, 0.08 mmol, 0.04 equiv) and 4-

iodoanisole (51 mg, 0.22 mmol, 1.1 equiv.). The mixture was warmed to 25 °C and stirred for 2 h. A 

sat. aq. NH4Cl solution (5 mL) was added and the aqueous phase was extracted with EtOAc (3 x 20 mL). 

The combined organic phases were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated in vacuo. Purification by flash column chromatography (ihexane/ethyl acetate = 9:1) 

afforded the title compound as a yellow oil (37 mg, 0.09 mmol, 43%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.81 (d, J = 0.8 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.31 (d, J = 0.8 

Hz, 1H), 6.98 – 6.91 (m, 2H), 3.83 (s, 3H), 3.29 (dp, J = 15.6, 6.8 Hz, 2H), 1.53 (d, J = 6.8 Hz, 3H), 

1.32 (d, J = 6.8 Hz, 3H), 1.03 – 0.96 (m, 9H), 0.93 – 0.84 (m, 9H), 0.41 (d, J = 6.6 Hz, 3H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 168.76, 165.08, 159.94, 150.32, 142.04, 130.93, 130.64, 

129.19, 126.57, 114.19, 55.46, 50.83, 45.95, 20.93, 20.70, 19.74, 19.66, 7.51, 3.06. 

MS (EI, 70 eV): m/z (%) = 426 (40), 399 (23), 398 (89), 397 (57), 383 (100), 371 (22), 370 (85), 369 

(25), 355 (40), 342 (67), 341 (52), 339 (35), 298 (59), 297 (24), 269 (24), 239 (48), 225 (23), (212), 211 

(24), 207 (51), 196 (62), 130 (23), 87 (34), 59 (28). 

HRMS (EI): m/z calc. for [C25H38N2O2
28Si]: 426.2703 [M]•+; found: 426.2696.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (m), 2933 (m), 2909 (w), 2873 (m), 2361 (vw), 2340 (vw), 

1627 (vs), 1610 (s), 1510 (s), 1441 (vs), 1369 (m), 1349 (s), 1319 (m), 1292 (m), 1247 (vs), 1180 (s), 

1036 (s), 995 (s), 890 (w), 834 (s), 808 (m), 793 (w), 719 (vs), 701 (vs). 

 

5-(3-hydroxy-2,4-dimethylpentan-3-yl)-N,N-diisopropyl-2-(triethylsilyl)isonicotinamide (33d) 

 

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 

the pyridine 31 (64 mg, 0.20 mmol, 1.0 equiv.) in dry THF (0.5 mL) and was cooled to 0 °C. 

TMPMgCl•LiCl (0.57 mL, 1.05 M in THF, 0.60 mmol, 3.0 equiv.) was added dropwise and the mixture 

was stirred for 60 min. Then diisopropyl ketone (0.11 mL, 0.6 mmol, 3.0 equiv.) was added in one 

portion and the mixture was allowed to warm to 25 °C. A sat. aq. NH4Cl solution (5 mL) was added 

and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic phases were 
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washed with brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by flash 

column chromatography (ihexane/ethyl acetate = 8:2) afforded the title compound as a yellow oil 

(57 mg, 0.13 mmol, 66%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.73 (d, J = 0.8 Hz, 1H), 7.11 (d, J = 0.8 Hz, 1H), 3.58 (hept, 

J = 6.7 Hz, 1H), 3.48 (hept, J = 6.8 Hz, 1H), 3.01 (d, J = 1.1 Hz, 1H), 2.33 (hept, J = 6.8 Hz, 1H), 2.21 

(hept, J = 6.8 Hz, 1H), 1.54 (d, J = 1.8 Hz, 3H), 1.53 (d, J = 1.8 Hz, 3H), 1.15 (d, J = 6.6 Hz, 3H), 1.11 

(d, J = 6.6 Hz, 3H), 0.99 – 0.79 (m, 29H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 172.54, 163.14, 149.60, 142.50, 136.13, 126.99, 82.33, 51.01, 

46.00, 36.54, 35.40, 20.52, 20.49, 20.37, 20.11, 18.16, 18.08, 17.17, 16.95, 7.49, 3.00. 

MS (EI, 70 eV): m/z (%) = 416 (2), 299 (10), 290 (16), 281 (23), 225 (76), 209 (32), 208 (13), 207 

(100), 191 (18), 176 (23), 130 (17), 86 (19), 84 (25), 75 (13). 

HRMS (EI): m/z calc. for [C25H44N2O28Si]: 416.3223 [M−H2O]•+; found: 416.3222.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2954 (s), 2934 (m), 2873 (m), 2360 (vw), 2342 (vw), 1616 (vs), 

1440 (vs), 1379 (s), 1368 (s), 1342 (vs), 1294 (m), 1279 (m), 1210 (m), 1162 (m), 1066 (m), 1036 (m), 

1000 (vs), 896 (m), 846 (w), 796 (m), 723 (vs), 701 (vs), 676 (s). 
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3.8 Preparation of remote functionalized bis(triethylsiyl)-biphenyls 

(5-(methylthio)-[1,1'-biphenyl]-3,3'-diyl)bis(triethylsilane) (35) 

 

According to TP4, biphenyl 34a (191 mg, 0.5 mmol) and PMDTA (0.31 mL, 1.5 mmol) were dissolved 

in nhexane (1 mL). nBuLi (0.59 mL, 2.55 M in hexane, 1.5 mmol) was added and the resulting solution 

was stirred for 6 h. Afterwards, the mixture was cooled to −20 °C and THF (1 mL) was added, followed 

by S2Me2 (0.16 mL, 1.75 mmol). Purification of the crude product by flash column chromatography 

(silica gel, ihexane) afforded the title compound as a colorless oil (81 mg, 0.19 mmol, 38%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.67 (dt, J = 1.9, 0.8 Hz, 1H), 7.55 (dt, J = 7.6, 1.7 Hz, 1H), 

7.50 (dt, J = 7.3, 1.3 Hz, 1H), 7.45 (td, J = 2.9, 1.4 Hz, 3H), 7.38 (dd, J = 1.8, 1.0 Hz, 1H), 2.55 (s, 3H), 

1.06 – 0.97 (m, 18H), 0.90 – 0.79 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 141.68, 140.45, 138.87, 138.15, 138.03, 133.32, 133.16, 

131.22, 130.25, 128.05, 127.78, 126.07, 16.11, 7.47, 7.47, 3.43, 3.40. 

MS (EI, 70 eV): m/z (%) = 428 (5), 299 (10), 281 (15), 227 (17), 226 (12), 225 (100), 209 (44), 208 

(10), 207 (80), 191 (20), 151 (10), 42 (20). 

HRMS (EI): m/z calc. for [C25H40S28Si2]: 428.2389 [M]•+; found: 428.2385.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (m), 2908 (w), 2873 (w), 1556 (w), 1457 (w), 1415 (w), 

1363 (w), 1236 (w), 1140 (w), 1119 (w), 1005 (m), 968 (w), 853 (w), 805 (w), 716 (vs). 

 

(5-(methylthio)-[1,1'-biphenyl]-2,2'-diyl)bis(triethylsilane) (36a) 

 

According to TP4, biphenyl 34b (172 mg, 0.45 mmol) and PMDTA (0.28 mL, 1.35 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.53 mL, 2.55 M in hexane, 1.35 mmol) was added and the 

resulting solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) 

was added, followed by dimethyldisulfide (0.14 mL, 1.58 mmol). Purification of the crude product by 

flash column chromatography (silica gel, ihexane) afforded the title compound as a colorless oil 

(102 mg, 0.24 mmol, 53%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.58 – 7.54 (m, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.36 – 7.27 (m, 

2H), 7.20 (dd, J = 8.0, 2.0 Hz, 1H), 7.14 – 7.10 (m, 1H), 6.99 (d, J = 2.0 Hz, 1H), 2.47 (s, 3H), 0.87 – 

0.75 (m, 18H), 0.61 – 0.28 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 151.51, 150.59, 138.10, 135.95, 135.80, 135.49, 132.00, 

130.18, 127.71, 127.68, 126.31, 123.70, 15.07, 7.75, 7.69, 4.39, 4.29. 
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MS (EI, 70 eV): m/z (%) = 428 (1), 413 (19), 285 (11), 273 (18), 255 (40), 245 (11), 227 (25), 165 (13), 

115 (33), 105 (13), 87 (100), 59 (36).  

HRMS (EI): m/z calc. for [C25H40S28Si2]: 428.2389 [M]•+; found: 428.2382.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (w), 2908 (w), 2872 (w), 1573 (w), 1455 (w), 1420 (w), 

1239 (w), 1086 (w), 1055 (w), 1003 (m), 966 (w), 821 (w), 769 (m), 715 (vs), 685 (m). 

 

(5-allyl-[1,1'-biphenyl]-2,2'-diyl)bis(triethylsilane) (36b) 

 

According to TP4, biphenyl 34b (172 mg, 0.45 mmol) and PMDTA (0.28 mL, 1.35 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.53 mL, 2.55 M in hexane, 1.35 mmol) was added and the 

resulting solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and ZnCl2 (1.5 mL, 

1.0 M in THF, 1.5 mmol) and CuCN•2LiCl (0.05 mL, 0.05 mmol, 0.1 equiv.) were added, followed by 

allylbromide (0.14 mL, 1.58 mmol). Purification of the crude product by flash column chromatography 

(silica gel, ihexane) afforded the title compound as a colorless oil (112 mg, 0.27 mmol, 59%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 7.60 – 7.55 (m, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.36 – 7.29 (m, 

2H), 7.20 – 7.12 (m, 2H), 6.99 (d, J = 1.9 Hz, 1H), 6.14 – 5.90 (m, 1H), 5.17 – 5.04 (m, 2H), 3.43 – 

3.38 (m, 2H), 0.82 (td, J = 7.9, 1.2 Hz, 18H), 0.64 – 0.26 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 151.24, 151.16, 139.40, 137.20, 135.95, 135.66, 135.44, 

133.21, 130.75, 130.29, 127.58, 126.41, 126.08, 116.11, 40.26, 7.74, 7.73, 4.36, 4.32. 

MS (EI, 70 eV): m/z (%) = 422 (1), 306 (10), 267 (45), 250 (16), 249 (100), 239 (14), 221 (38), 217 

(12), 115 (40), 105 (14), 87 (98), 59 (36).  

HRMS (EI): m/z calc. for [C27H42
28Si2]: 422.2825 [M]•+; found: 422.2819.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2951 (w), 2908 (w), 2873 (w), 1458 (w), 1415 (w), 1235 (vw), 

1094 (w), 1003 (m), 973 (vw), 913 (w), 770 (w), 711 (vs), 677 (m). 

 

2',6-bis(triethylsilyl)-[1,1'-biphenyl]-3-carbaldehyde (36c) 

 

According to TP4, biphenyl 34b (172 mg, 0.45 mmol) and PMDTA (0.28 mL, 1.35 mmol) were 

dissolved in nhexane (1 mL). nBuLi (0.53 mL, 2.55 M in hexane, 1.35 mmol) was added and the 

resulting solution was stirred for 6 h. Afterwards, the mixture was cooled to –20 °C and THF (1 mL) 

was added, followed by dimethylformamide (0.12 mL, 1.58 mmol). Purification of the crude product 
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by flash column chromatography (silica gel, ihexane) afforded the title compound as a yellow oil 

(106 mg, 0.26 mmol, 57%). 

1H-NMR (400 MHz, CDCl3): δ / ppm = 10.02 (s, 1H), 7.82 (dd, J = 7.7, 1.7 Hz, 1H), 7.74 (d, J = 7.7 

Hz, 1H), 7.62 – 7.57 (m, 2H), 7.34 (pd, J = 7.4, 1.6 Hz, 2H), 7.12 – 7.07 (m, 1H), 0.80 (td, J = 7.9, 3.7 

Hz, 18H), 0.59 – 0.27 (m, 12H). 

13C-NMR (101 MHz, CDCl3): δ / ppm = 192.70, 151.93, 149.60, 145.16, 136.11, 136.08, 135.70, 

135.30, 131.16, 130.16, 127.87, 126.73, 126.67, 7.69, 7.64, 4.46, 4.17. 

MS (EI, 70 eV): m/z (%) = 410 (1), 381 (13), 209 (20), 115 (21), 105 (14), 87 (100), 59 (43). 

HRMS (EI): m/z calc. for [C25H38O28Si]: 410.2461 [M]•+; found: 410.2461.  

IR (Diamond-ATR, neat): 𝜈 / cm-1 = 2952 (w), 2909 (w), 2873 (w), 1701 (s), 1457 (w), 1416 (vw), 

1376 (w), 1237 (w), 1174 (w), 1121 (vw), 1091 (vw), 1003 (m), 962 (vw), 706 (vs). 

 


