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Abstract

Recurrent mutated genes in acute myeloid leukaemia are suspected to contribute
to leukaemogenesis by different mechanisms but the ratios in which the
recurrently mutated alleles are transcribed from DNA to RNA in the respective
genes are widely unknown. A systematic comparison of variant allele frequencies
of recurrent mutated genes was carried out using a large AML cohort (N=499).
Around 95% of variants were detected to be transcribed from DNA to RNA by the
application of a minimum read depth cut-off of 10x (90% transcribed among
recurrent mutations). The analysis on 11 recurrently mutated genes in AML
determined preferential mutant allele transcript abundance for GATA2MUT,
RUNXIMUT TET2MUT SRSF2MUT [DHZ2MUT and NPMIMUT and preferential wild-type
transcript abundance for PTPN1IMUT, CEBPAMUT and WTIMUT, respectively.
Presence of allelic imbalances among the common variants of GATAZWT, RUNXIWT
and IDH2WT were also demonstrated in patients without recurrent mutations in
the respective genes. Further inquiry based on the differential expression of genes
and transcript isoforms between patients with and without recurrent mutations in
the respective genes showed no significant difference except for SRSF2, CEBPA and
WTI1. In summary, this study compared the variant allele frequencies of
recurrently mutated genes and exhibits allele-specific transcript abundance of
these genes in AML. The observed differences can be interpreted as a novel,
currently underestimated mechanism how mutations contribute to

leukaemogenesis and necessitate further analysis.
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1 Introduction

Advancements in next generation sequencing (NGS) technologies have allowed us
to study the heterogeneous and complex alterations in cancer genomes.1?
Although several optimized variant calling procedures and best practice guidelines
are available for processing DNA sequencing (DNA-Seq), it still remains a challenge
in the case of RNA sequencing (RNA-Seq).3-> The somatic sequence alterations
obtained from variant calling procedures in the cancer genome are thought to
disturb physiological protein function or gene expression, but the extent of such
mutations transcribed from DNA to RNA are largely unknown.® Few studies have
examined the variant allele frequency correlation between DNA and RNA and
investigated the allelic imbalance among the somatic mutations in cancer
genomes.’-? This study aims to improve the existing variant calling pipelines for
targeted DNA-Seq and RNA-Seq and examine the differences in allelic proportions

of recurrently mutated genes in acute myeloid leukaemia (AML).
1.1 DNA and RNA sequencing

Deoxyribonucleic acid (DNA) is the hereditary material in humans and most of the
living organisms. The hereditary information is stored in the DNA sequences which
consist of four nucleotide bases: adenine, guanine, thymine and cytosine, being
chained by phosphate-deoxyribose backbones. Chromosomes are linear
arrangement of condensed form of DNA molecules and histone proteins and the
organisms containing two complete sets of homologous chromosomes in their cells
are called diploid organisms (e.g.: Humans). Some of the DNA sequence fragments
which code for protein molecules are termed as genes. A gene is the basic physical
and functional unit of heredity. The variant form of any given gene is termed as
allele. Diploid organisms with two identical alleles of the gene are known as
homozygous at a gene locus, whereas those with two different alleles are termed
as heterozygous. The process of determining the order of the arrangement of
nucleotide bases in a DNA strand is called DNA sequencing. The sequence of DNA
fragments contain the majority of genetic information necessary for life and thus
any knowledge of it is helpful for the fundamental researches in biology. The
Sanger sequencing technique is one of the initial sequencing methods for
determining longer DNA molecules, proposed by Frederick Sanger (1977) using
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chain termination inhibitors.19 The improvement and implication of this technique
revolutionized the field of biological research and led to the development of NGS
technologies (also known as high-throughput or second generation sequencing) at
the beginning of the millennium. In the last decade, rapid advancements in NGS
machineries introduced sequencing techniques such as sequencing by synthesis
(SBS), sequencing by ligation (SBL), cyclic reversible termination (CRT) and single-
molecule real-time sequencing (SMRT).1112 Based on these techniques, different
types of NGS technologies have been developed and were commercially offered in
the form of various platforms: Illumna (Solexa) sequencing, Roche 454 sequencing,
Ion torrent: Proton/PGM sequencing and ABI SOLiD sequencing. The initial
process of any NGS workflow is the template preparation (amplification), followed
by sequencing and imaging.1! Widely used NGS methods in DNA-Seq are whole-
genome sequencing (WGS), whole exome sequencing (WES), targeted sequencing
and de novo sequencing. WGS consists of sequencing the entire genome of the
species of interest (e.g. 3.2 billion bases in the human genome), whereas WES
involves sequencing a selective capture of the known protein-coding regions of an
entire genome (less than 2% in human genome). Thus WES is a cost-effective
approach when compared to WGS with the drawback of losing non-coding but
relevant regions, e.g. those with regulatory functions.13 Targeted sequencing is
another alternative for WGS and WES, when the research focus is highly restricted
to specific regions of interest. Due to the short range of the areas of interest, typical
targeted sequencing provides more than 10 times the confidence obtained by WGS
(in terms of ‘coverage’). This in turn provides greater opportunities for the
researchers to identify and analyse variations in sequences with a much higher
accuracy. De novo sequencing refers to sequencing a new genome without any
reference sequences available for alignment. This involves sequencing reads with
different fragment lengths (‘insert sizes’) and assembled into a set of overlapping

segments which in turn represent a consensus region of DNA (sequence contigs).

Ribonucleic acid (RNA) are single-stranded polymeric molecules, which are
transcribed from DNA and are involved in several biological processes such as
gene expression and regulation. RNA also comprises of four nucleotide bases:
adenine, guanine, cytosine and uracil. Similar to DNA-Seq, RNA-Seq is the process

of determining the arrangement of nucleotides within RNA. The library
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preparation of RNA involves additional steps in which the RNA fragments are
chemically labelled and are reverse-transcribed to complementary DNA (cDNA)
fragments. This is followed by library amplification and sequencing, similar to that
of the DNA-Seq. Different RNA-Seq methods in NGS include total RNA sequencing,
mRNA sequencing, targeted RNA sequencing, small RNA and non-coding RNA
sequencing. Researchers employ different sequencing methods based on the
scientific question, sample type, read length, accuracy, time, cost, required read

coverage and quality of the sequence data.11-13

1.2 Allelic imbalance

Transcription is a process in which the information encoded within the sequence
of DNA (genes) are copied or transcribed into strands of RNA. The transcription is
regulated by transcription factors, enhancers and other proteins through a variety
of mechanisms.1* Thus, the differences in gene regulation may be due to cis-
regulatory or trans-regulatory changes. In a diploid cell, two allelic copies of each
gene are present and thus the transcribed RNA strands can carry information from
both alleles. However, the rate of expression of these two alleles must not
necessarily be the same and can result in allelic imbalance (AI).!> This
phenomenon might be due to allele-specific expression, stability of the transcripts,

copy number alterations or uniparental disomy.

Allele-specific expression (ASE) refers to the difference in the transcript
abundance of the two allelic copies in a diploid organism. The ASE might be
influenced by the variations in the enhancers or cis-regulatory elements (CRE), a
non-coding DNA sequence with multiple activator and repressor binding sites for
transcription regulation. The allele-specific differences in gene expression are also
associated with the epigenetic phenomena of genomic imprinting and X-
chromosome inactivation. Epigenetic phenomena refer to heritable changes in
gene expression without any actual sequence alterations in the coding regions of
DNA.16 In the case of the X-chromosome, most of the genes on one copy of it are
silenced in female mammals resulting in X-chromosome inactivation.l” The whole
inactivation of one copy of a gene lead to mono-allelic expression. Many other
autosomal genes also show random choice of mono-allelic expression between

maternal and paternal alleles due to genomic imprinting.181° For example, the
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DIRAS3 gene in humans is a paternally expressed gene which is located on
chromosome 1 (maternally imprinted). This gene acts as a tumour suppressor
gene and a loss of function of this gene is observed in ovarian and breast cancers.2°
In this case, the gene will not be expressed if an individual received both copies of
chromosome 1 from the mother (uniparental disomy), which results in an
increased risk of breast and ovarian cancer.2! Other cause of Al might be due to the
degradation of allele-specific transcript isoforms. RNA decay plays a major role in
the process of gene expression and post-transcriptional regulation.2223 The
presence of somatic mutations might affect the half-life of the mRNA transcripts

and thus result in the premature decay of allele-specific transcript isoforms.
1.3 Variations in the sequences

Sequence variation on the DNA level refers to any genomic alterations in relation
to the reference sequence (Figure 1).24 The sequence variations are considered as
either mutations (disease-causing change) or polymorphisms (non-disease-
causing change). The most common form of sequence variations are single
nucleotide variants (SNVs) and short insertions and deletions (INDELs).25-27 The
term SNV most often refers to a single nucleotide substitution of bases in a
sequence when compared with the reference genome, irrespective of the
frequency of its occurrence in a population. Any single nucleotide alteration which
is observed in more than 1% of the population is considered as single nucleotide

polymorphisms (SNPs).
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Figure 1: Types of base-level and structural variations in DNA. The dashed line separates the base-
level variants (occurs few bps) and structural variants (1Kbp or more).28 The numbers indicate the
order of DNA fragments. Yellow bar indicates single nucleotide substitution. Black bars represent
insertion of sequence fragments. MGS represents mobile genetic elements like transposons and
bacteriophage elements. Figure modified from Rahim et al.2’

Sequence variations comprise of insertions or deletion of one or more nucleotide
bases are termed as INDELs. The relative frequency of such variants when
compared with the reference genome is termed as variant allele frequency (VAFs).
In the case of SNPs, the major and minor alleles refer to the first and second most
common alleles occurring in a given population, respectively. These variants aid in
understanding the pathogenesis of a disease and can also be used as a genetic
markers.230 They also help in understanding the structural and functional aspects
of the protein biosynthesis.3132 Several annotation databases, such as dbSNP,
COSMIC, ClinVar etc. have been developed. These databases include the
information of SNP frequencies of existence in different population subsets as well
as its prognostic information and clinical relevance.33-35 Other sequence variations
such as inversions, tandem duplications, dispersed duplications, copy number
variations, insertions of mobile genetic elements (such as retro-transposons,
bacteriophage elements (Mu) etc.), and translocations are termed as structural

variants (Figure 1).2836-39 Effective identification of such genomic variants might
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assist in investigating and inferring the associations between genotype and

phenotype.

As mentioned before, the three major processes of variant detection are sequence
alignment, variant calling and variant filtering. Thus, selecting and optimizing a
sequence aligner and a variant caller followed by defining adequate filtering
criteria are essential for detecting true variants and removing potential artefacts.
The sequence variants are detected by aligning the digital sequence information
generated by NGS machinery to the reference genome build. The reference genome
to be used to align the read sequences is to be indexed using hash-based tables or
Burrows-Weeler transform depending on the aligner algorithms along with the

implementation of Ferragina - Manzini index.#041

Some aligners are designed for short-read mapping (oligonucleotide fragments)
such as SOAP, CUSHAW, MOM etc. whereas BWA-MEM, Bowtie2, CUSHAWS3 etc.
are optimized for longer read lengths (= 100bps).#2-47 Although these aligners
perform relatively well in mapping DNA-Seq to the reference genome, they suffer
from huge loss in alignment rates when mapping RNA-Seq, due to the innate
complexity of the transcriptome sequencing.#® RNA-Seq reads are not a continuous
copy of genes which are transcribed from DNA. Since the non-contiguous exons are
spliced together to form mature mRNA transcripts, the alignment of these
sequence reads should account for such splice sites. This is achieved by the
aligners by discovering splice junctions from the read coverage or by providing
known exon-intron junctions, externally. Aligners such as TopHat, HISAT and STAR
are optimized splice-aware aligners which are widely used for processing RNA-
Seq.#9-51 Most of the sequence aligners are developed with multiple optimization
parameters for addressing sensitivity, accuracy, memory, speed, alignment and
mismatch rate. Selection of an optimal read aligner depends on the sequence read
length, available hardware resources, alighment speed and time. An alternative of
aligning sequence reads to the reference genome is to assemble short nucleotide
sequences by using sequence overlaps (de novo assembly), but this is outside the

focus of this study.1152

The aligned reads are then processed to call the variations in the sample sequence

when compared to the reference genome. The detection of such variants depends
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on accurate and precise identification of differences between reference genome
and the aligned sequence reads and any form of bias might lead to erroneous
results. The aligned reads tend to have systematic or random artefacts due to
experimental or technology-specific errors and thus it is subjected to post-
processing to mitigate these artefacts.>3->> One of the main steps in the post-
processing is the removal of duplicate reads in order to reduce the effect of PCR
amplification bias, introduced during library preparation. The extent of the
duplicate read removal depends on the depth and type of library sequenced and
thus its accuracy mainly relies upon the error rate of the libraries prepared.>¢
Several tool programs such as Picard, SAMtools, SEAL, FastUniq etc. process the
aligned reads to remove or mark PCR duplicates.>4555758 Qther post-processing
steps include adding read group information, re-order aligned reads and sorting
them in accordance with chromosomal position, name etc. and performing local re-
alignment of INDELs in order to increase the detection rate and accuracy.>45559.60
This is followed by the variant calling procedure. Many variant calling algorithms
have been developed for a fast and accurate detection of the sequence variants.
Most commonly used variant callers are VarScan, Genome Analysis Tool Kit
(GATK) - Haplotype Caller, FreeBayes and SAMtools.>>60-62 Other variant callers
including PINDEL, BreakDancer and CREST are used for calling larger structural
variants.®3-6> The focus of this study relies on SNVs and short INDELs

1.4 Acute myeloid leukaemia

Acute myeloid leukaemia (AML) is one of the most common acute blood cancer
diseases in adults in which abnormal myeloblasts are found in blood and bone
marrow. AML has an incidence rate of 3 to 4 cases per 100,000 individuals per year
and is more frequent in older people.6667 It is a prognostic heterogeneous disease
with characteristic set of cytogenetic abnormalities and somatic mutations.®86° The
sequence of leukaemogenic events resulting in the transformation of normal
haematopoietic stem cells into leukaemic blasts are reviewed by Horton et al.”°
The current treatment of AML mainly rely on chemotherapy and did not change
substantially in the last 30 years.”172 The standard initial treatment of AML is the
conventional 7+3 regimen, which consists of standard dose of cytarabine and
anthracycline antibiotic (daunorubicin) for seven and three days, respectively.”2

Patients receiving such induction chemotherapy go to remission with no signs of
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symptoms or disease, but this depends largely on the prognostic factors such as
age and genetic abnormalities. With the current regimen, about 50% of patients
can be cured but the majority of older patients have a very unfavourable outcome.
They eventually relapse and become non-responsive to further treatment. The
identification of distinct genetic alterations has already resulted in the
development of more targeted treatment approaches (e.g. FLT3-inhibitors) that
are currently entering routine treatment.’374 In recent years, other targeted
therapies using immune checkpoint inhibitors, monoclonal or bi-specific T-cell
engager antibodies, metabolic and pro-apoptotic agents are being heavily
investigated.’+-7¢ These novel substances will hopefully help to improve the

current unsatisfying results achieved with chemotherapy.
1.4.1 Classification of acute myeloid leukaemia

In 1976 and 1985, the French-American-British (FAB) co-operative group
classified AML into eight subtypes (MO - M7), whereas the identification of specific
genetic aberrations, biological and clinical features led to a new classification
scheme by the world health organization (WHO) in 2008.77-79 Many cases were
identified to have well characterized chromosomal aberrations, such as the
chromosomal translocation t(8;21) and the chromosomal inversion inv(16),
although many others were classified to be cytogenetically normal (CN-
AML).688081 The chromosomal abnormalities lead to the formation of recurrent
fusion genes such as RUNXI1-RUNX1T1, BCR-ABL1, PML-RARA in AML.%#82
Additionally, patients were observed to have point mutations in genes such as
CEBPA, RUNX1 etc.8384 [n 2017, the European LeukemiaNet (ELN) classified the
AML genetic abnormalities into three risk categories (favourable, Intermediate and
Adverse) and suggested to report the frequencies, response rates and outcome

measures in one of these categories (Table 1).
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Table 1: 2017 ELN risk stratification by genetics”?

Risk category* Genetic abnormality

t(8;21)(q22;q22.1); RUNX1-RUNX1T1

inv(16)(p13.1922) or t(16;16)(p13.1;q22); CBFB-MYH11
Mutated NPM1 without FLT3-1TD or with FLT3-1TDlowt
Biallelic mutated CEBPA

Favorable

Mutated NPM1 and FLT3-1TDhight

Wild-type NPM1 without FLT3-ITD or with FLT3-ITD!w} (without adverse-
Intermediate risk genetic lesions)

t(9;11)(p21.3;923.3); MLLT3-KMT2A%

Cytogenetic abnormalities not classified as favorable or adverse

t(6;9)(p23;q34.1); DEK-NUP214

t(v;11923.3); KMT2A rearranged

t(9;22)(q34.1;q11.2); BCR-ABL1

inv(3)(q21.3926.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM(EVI1)
-5ordel(5q); - 7;-17/abn(17p)

Complex karyotype,§ monosomal karyotype||

Wild-type NPM1 and FLT3-ITDhight

Mutated RUNX19

Mutated ASXL1q

Mutated TP53#

Adverse

The table shown above is taken from the 2017 ELN risk classification by Dénner et al.”>
Frequencies, response rates, and outcome measures should be reported by risk category, and,
if sufficient numbers are available, by specific genetic lesions indicated.

*Prognostic impact of a marker is treatment-dependent and may change with new therapies.
tLow, low allelic ratio (<0.5); high, high allelic ratio (20.5); semiquantitative assessment of
FLT3-ITD allelic ratio (using DNA fragment analysis) is determined as ratio of the area under the
curve “FLT3-ITD” divided by area under the curve “FLT3-wild type”.

¥The presence of t(9;11)(p21.3;923.3) takes precedence over rare, concurrent adverse-risk
gene mutations.

§Three or more unrelated chromosome abnormalities in the absence of 1 of the WHO-
designated recurring translocations or inversions, that is, t(8;21), inv(16) or t(16;16), t(9;11),
t(v;11)(v;923.3), t(6;9), inv(3) or t(3;3); AML with BCR-ABL1.”

| | Defined by the presence of 1 single monosomy (excluding loss of X or Y) in association with
at least 1 additional monosomy or structural chromosome abnormality (excluding core-binding
factor AML).

i These markers should not be used as an adverse prognostic marker if they co-occur with
favorable-risk AML subtypes.

#TP53 mutations are significantly associated with AML with complex and monosomal
karyotype.”

1.4.2 Recurrent mutations in AML

Somatic mutations in AML are thought to contribute to leukaemogenesis either by
improving the ability of hematopoietic cells to proliferate or by preventing cells
from maturing. The proliferation might be through the activation of intracellular
signals that contribute to growth and survival (eg: FLT3, KIT), whereas the
inhibition might be by blocking cell differentiation or enhancing self-renewal using

altered transcription factors (CEBPA, NPM1, RUNX1, etc.).8586
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Fraction of pts. with mutation
0 0.1 0.2 0.3 0.4

FLT339%
NPM1 33%
DNMT3A 31%
NRAS 22%
RUNX115%
TET215%
IDH2 14%
WT113%
ASXL111%
PTPN1110%
SRSF210%
TP53 9%
CEBPA 8%
IDH1 7%
BCOR 7%
KMT2A-PTD 6%
KRAS 6%
SRAG2 6%
RAD21 5%
KIT 4%
U2AF1 4%
GATA2 4%
EZH2 4%
SF3B1 3%
SMC3 3%
ETV6 2%
BCORL1 2%
PHF6 2%
KDM6A 2%
CSF3R 2%
SMC1A 2%
miR142 2%
CBL 2%
HNRNPK 1%
ZRSR2 1%
JAK2 1%

Activated signaling RNA splicing

DNA methylation Tumor suppressors
Transcription factors Cohesin complex
Chromatin modifiers NPM1

Others

Figure 2: Overview of driver gene mutations in AML. Histogram showing the frequency of driver gene

mutations detected in >1% of patients (N=664). Bars are colored according to the functional category

assigned to each driver gene. The figure is taken from the the overview of driver mutations in AML by
Metzeler et al.8”

Extensive analyses on 200 AML patients by The Cancer Genome Atlas (TCGA)
showed that 23 genes were recurrently mutated in AML.° A recent study by
Lindsley et al. showed the presence of somatic mutations in genes such as SRSF2,
SF3B1, U2AF1, ZRSR2, ASXL1, EZHZ2, BCOR or STAGZ to be distinct genetic subtype
for secondary AML diagnosis.88 The proportion of the occurrence of these
recurrent ‘driver mutations’ differ among the particular genes (Figure 2).987
Mutations in NPM1 and CEBPA as well as FLT3-internal tandem duplications (FLT3-
ITDs) are widely used as prognostic and predictive markers as per the suggestions
of the ELN.72 In the case of CEBPA, bi-allelic mutations are considered as a

distinctive entry because only those cases define a clinical and pathologic entity,
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and are associated with favourable outcome.8990 However, other recurrent
somatic mutations in DNMT3A, IDH1, IDHZ etc. and their significance in disease
prognosis are still under study. Germline mutations in at least 10 genes were
associated with the inherited forms of myeloid neoplasm.?°1.92 This thesis focuses
on the 36 genes which were observed in more than 1% of the AML study
population in a previous study trial (Figure 2) and the proportion of somatic
mutations transcribed from DNA to RNA in these recurrently mutated genes in

AML.87
1.5 Study background

The selection of a sequence aligner and variant caller highly influence the accuracy
of variant detection.?3-95 One of the major difficulties in implementing a standard
variant calling procedure for RNA-Seq is its inherent intricacies.#® Recent
advancement in computation algorithms enabled the researchers to develop and
establish efficient splice-aware aligners to map the transcriptome sequence to the
reference genome.>%>1 However, an accurate and reliable variant calling procedure
in RNA-Seq is still a challenge.?® Some of the best practice guidelines for variant
calling are available for DNA-Seq, but no gold-standard pipelines have been
established for both DNA-Seq and RNA-Seq.397.8 The reliability of the detected
variants in RNA are determined by comparing those variants in DNA.?69° An
observation of mutation in DNA will have a 100% allele frequency in RNA in a
haploid region, whereas around 50% or 100% of allele frequencies would be
observed in the case of heterozygous or homozygous variants, respectively.
However, the abundance of the heterozygous SNPs can be different in tumour cells
when compared with the normal cells.100 Some studies showed high correlation
between the mutant allele frequencies of DNA and RNA.7101 Castle et al.’s study on
mice tumour cell lines demonstrated a 99% concordance among the tumour
mutations between DNA and RNA.7 This study used the exome and transcriptome
sequencing to determine the correlation between the mutation allele frequency in
DNA and RNA followed by the measurement of Al (Box 1). They also suggested
that the genes are equally transcribed in proportion to their DNA VAFs irrespective

of mutated and wild-type allele.”
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Imbalance = (RNA mutation allele frequency)
minus (DNA mutation allele frequency)

Box 1: Definition of allelic imbalance used by Castle et al.”

In another study, O’'Brien et al. showed only 14% overlap among the detected SNVs
when comparing the WES and the RNA-Seq from 27 lung cancer pairs of tumour
and matched normal samples.192 Main reasons discussed by the authors were the
presence of SNVs in the low coverage regions in either WES or RNA-Seq, allele-
specific transcript abundance in RNA-Seq, location of SNVs outside the WES
capture regions or RNA-editing.192 However, another study on RNA-editing sites
suggest very few DNA and RNA sequence differences and the occurrence of RNA-
editing sites are quite rate.193 Rhee et al. studied the Al of more than 100,000
somatic mutations from more than 2,000 cancer specimens across five human
solid tumour types in TCGA cohort (AML not included).8 They compared the WES
and transcriptome sequencing and observed the Al among the nonsense SNVs and
frameshift INDELs as well as among splice site mutations.8 The splice site
mutation-harbouring alleles were observed to be relatively over-expressed when
compared with the wild-type alleles.8 A Comprehensive analysis of AML patients
by TCGA (151 paired DNA- and RNA-Seq samples) showed allelic biases in the
expression of mutations among DNMT3A, PHF6, RUNX1, TET2, TP53 and WT1.°
TCGA compared either WGS or WES with the RNA-Seq and included only the SNVs
which were detected at a minimum read depth cut-off of 10x in the RNA-Seq.’
Some of the imbalances were discussed to be due to copy number events,
hemizygous variants (all PHF6 mutations were from male patients and were
located on X chromosome) or the loss of heterozygosity.? Celton and colleagues
also observed the existence of ASE among the low expressed GATAZ-mutated AML

samples.104

The phenomenon of Al was observed in different cancer types and was associated
with genomic imprinting, copy number alterations or epigenetic mechanisms.
Although allele-specific transcript abundance was observed among the AML
samples, there was no systematic understanding of such imbalances among the

recurrently mutated genes in AML. Mutational screening of NPM1, FLT3, RUNX1
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and CEBPA are recommended by ELN to be in routine practice for AML prognosis
and the investigation of Al among these genes in a large cohort might provide

additional knowledge in understanding the development of leukaemia.
1.6 Objectives of this study

The overall objective of this thesis was to compare the allelic proportions of
recurrent mutations transcribed from DNA to RNA and to determine the existence
of allelic imbalance among genes which are recurrently mutated in AML. The

following are the objectives of this study.

1. To detect potential sequence variants (SNVs and small INDELs) from the
targeted DNA- and RNA-Seq using optimized sequence aligners and variant
callers.

2. To define, implement and optimize the imperative filtering criteria on raw
variants in order to eliminate potential sequence artefacts and enrich the
called variants.

3. To evaluate the proportions of recurrent mutations transcribed from DNA
to RNA and to investigate the existence of Al among the genesMUT which are
recurrently mutated in AML.

4. To analyse the presence of Al among the genesWT which did not harbour
any recurrent mutations and to study the impact of recurrent mutations on

their respective gene and transcript isoform expression levels.
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2 Methods

The overall work in this thesis involves the improvement of the conventional
variant calling pipeline for targeted DNA-Seq and RNA-Seq followed by the
analysis and validation of Al among the recurrently mutated genesMUT in AML. The
processing of raw sequencing reads of both DNA and RNA to call the sequence
variants and the comparison of sequence aligners and variant callers are discussed
in section 2.2 and 2.3. The called raw variants from both sequences were filtered
for potential sequence artefacts (section 2.4) and were used for downstream
analyses. The comparison of VAFs of the genesMUT and mutation typesMUT in
patients harbouring recurrent mutations and genesWT in patients with wild-type
status were analysed to detect any Al among them (section 2.6). Finally, the gene-
level and transcript-level differential expression analyses were carried out
between the patients with mutant and wild-type status in the respective genes

(section 2.7).
2.1 Study population

This study included 499 AML samples from four independent cohorts: the German
AML co-operative group (AMLCG), the German cancer consortium (Deutsches
Konsortium fiir Translationale Krebsforschung, DKTK), the Cancer Genome Atlas
(TCGA) and the HELSINKI cohort. The primary cohort consisted of 246 samples
from the AMLCG study population. The participants sequenced for both DNA and
RNA in AMLCG-1999 (n=45) and AMLCG-2008 (n=201) trials were included in this
study®7.105. The diagnosis of AML was based on the criteria recommended by the
WHO.7? All the patients included in the primary cohort received cytarabine- and
anthracycline- based induction treatment. Further details regarding the treatment
protocols and patient selection were published in previous studies.87.105 The study
protocols were in accordance with the Declaration of Helsinki and approved by the
institutional review boards of the participating centres. All patients provided
written informed consent for inclusion on the clinical trial and genetic analyses.
Additional exclusion criteria based on the coverage statistics of the variants on the
genes of interest were described in the later sections (Figure 3). The validation
cohort includes AML samples from three external cohorts: DKTK (n=40), TCGA
(n=116) and HELSINKI (n=97) cohorts?106-108 The targeted DNA-Seq covering the
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genes of interest was available in the case of DKTK samples, whereas only WES
data sets were available for TCGA and the HELSINKI cohorts. Nevertheless, the
downstream processing and analyses were carried out in all three validation

cohorts by considering the differences among them as well.

AMLCG (n=246)
DKTK (n=40)
Primary Cohort B .| Validation Cohort
(n=246) TCGA (n-116) (n=253)
HELSINKI (n=97)

Study Population
(n=499, targeted-Seq
Genes=68)

Excluded (n=96, Genes=57)
Subsetting 36 recurrently
mutated genes’® (n=5, Genes=32)
Filtering criteria applied on
variants (n=5, Genes=8)

Common and homozygous
variants (n=75, Genes=7)

Excluded (n=107)

Restricting to 9 significant genes
(n=97)

Filtering criteria applied and
Homozygous variants removed

Genes with <5 SNVs/INDELs (n=11, (n=10)
Genes=10)
Primary cohort for analysis Validation cohort for analysis
(n=150, Genes=11) (n=146, Genes=9)

Figure 3: Flow diagram of primary and validation cohorts.

2.2 Sequencing and quality trimming in AMLCG cohort
2.2.1 Targeted DNA sequencing

In the primary cohort, a total of 68 genes, which are recurrently mutated in
myeloid malignancies, were sequenced using a custom amplicon-based targeted
enrichment assay (Haloplex, Agilent, Boeblingen, Germany). The entire coding
region of 37 genes was sequenced along with recurrently mutated regions from 31
genes.?34 List of all 68 genes and the regions defined in targeted DNA-Seq are
shown in the appendix (Table 4). All 246 samples were sequenced (250 base pairs
(bp), paired-end) on an [llumina MiSeq instrument (Illumina, SanDiego, CA). The
sequence information was obtained as a text-based FASTQ format files from

multiple samples with unique infused barcodes (multiplexing). These sequences
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were de-multiplexed using Je (v1.0) de-multiplexer in order to isolate individual
samples.109 After de-multiplexing, the Illumina adapters from the sequences were
removed and were quality trimmed using Trimmomatic (v0.32).110 The leading
and trailing bases were cut off from the start and end of the reads, respectively,
when the read quality threshold dropped below a score of 15. All reads below the
read length of 45bp were filtered out as well. Further, a sliding window trimming
(window size: 6bp) was also performed once the average quality within the
window fell below 20. The quality of the sequence reads were determined using
FastQC (v0.10.1) and MultiQC (v1.5) before and after the quality trimming

procedure (Figure 5).111,112
2.2.2 RNA sequencing

Transcriptome Sequencing libraries were prepared using the Sense mRNA-Seq
Library kit V2 (Lexogen). All the sequences were 100bp length, paired-end, strand-
specific and were performed using a poly(A)-selected protocol.195 Similar to DNA-
Seq, RNA-Seq were also de-multiplexed to isolate individual samples.199 In order to
reduce the proportion of errors due to non-specific hybridization, nine and six
bases were removed from the forward and reverse reads, respectively.113 This was
followed by adapter trimming using Cutadapt (v1.7.1).114 The sequence reads were
then quality-trimmed using adaptive quality-trimming with a minimum read
length of 40bp and strictness of 0.5 to retain maximum number of reads
possible.110 The base quality statistics before and after quality trimming are shown

in Figure 6.
2.3 Variant calling pipeline

Extraction of sequence variants from quality-trimmed reads is a multi-step process
including alignment of sequences to the reference genome, post-processing aligned
reads, selection of specific regions of interest when necessary, local re-alignment of
INDELSs, application of variant calling algorithm, annotation of called variants using
external databases and filtering artefacts. Conventional sequence processing
procedures were improved from available best practice guidelines.”” Many
sequence aligners and variant callers were considered for both DNA- and RNA-Seq

to determine an optimal aligner and variant caller for both sequences.
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2.3.1 Selection of sequence aligner

A random selection of a sample from the AMLCG cohort was carried out and its
DNA- and RNA-Seq reads were aligned using different aligners for the comparison
of speed and accuracy. Although there are a large number of sequence aligners
available for DNA, three commonly used mappers were compared: BWA-MEM
(v0.7.10), Bowtie2 (v2.2.6) and CUSHAW3 (v3.0.3).45-47 In the case of RNA-Seq,
three splice-aware aligners were considered: TopHat2 (v2.0.14), HISATZ2 (v2.0.0)
and STAR (v2.5.1b).#9-51 The sample reads were aligned to the human (hg19)
reference genome build. In the case of RNA-Seq aligners, the gene transfer format
(GTF) file containing the definitions of the gene structure was also provided based
on the reference genome build used. For each aligner, the reference genome
indices were built and the selected sample data was aligned using default
parameters. The alignment summary metrics from the above mentioned aligners
were observed along with the time taken for creating genomic indices and sample
processing in order to determine their performance. The superior sequence aligner
for DNA- and RNA-Seq was selected based on the observed factors. The chosen
aligner parameters were further optimized to yield better alignment for targeted

DNA-Seq and whole RNA-Seq (discussed in section 3.1).
2.3.2 Post-processing of the aligned sequences

Most of the aligners output the mapped reads in Sequence Alignment/Map format
(SAM) or it's in its binary version (BAM).5> The DNA- and the RNA-Seq were
processed differently due to the inherent differences in their sequences as well as
the sequencing methods used. The aligned reads of DNA-Seq were re-ordered and
sorted based on their chromosomal co-ordinates. The duplicate sequence reads in
amplcon-based targeted DNA-Seq have the same start and end positions as the
initial read as they originate from the same amplicon and thus they were not
removed. The sequencing reads which were mapped outside the recurrently
mutated regions of interest were excluded. All the above processing was done
using the Picard tool-box (v1.136).>4 The INDELs were then re-aligned using the
GATK (v2.7.4).52 In the case of RNA-Seq, the aligner generated properly paired and
discordantly paired sequences separately. These were merged initially, followed

by re-ordering sequence reads and sorting based on chromosomal co-ordinates.
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The duplicate reads in RNA-Seq were removed to reduce sequence over-
representation. The reads which were mapped outside the regions of interest were
also excluded in the RNA-Seq. Due to the missing intronic regions in the RNA-Seq, a
large number of “N” CIGAR strings were introduced by the aligners while mapping.
These reads with “N”s in the middle were split into two reads and the CIGAR
strings were converted into soft clips with the splitNRead tool.11> All the INDELs
were left aligned using bamleftalign from the Freebayes packages.®® These

processed sequences were used for further variant calling procedures.
2.3.3 Selection of variant caller

Similar to sequence aligners, there are several variant calling algorithms available
for detecting SNVs and INDELs®0-62116 This study focused on two variant callers:
VarScan (v2.3.5) and VarDict.61116 VarScan requires the input in SAMtools mpileup
format, in which it extracts coverage and quality information from sequence
alignment SAM/BAM files.5> The mpileup files are then used to detect SNVs and
INDELs. In the case of VarDict, It takes the aligned BAM files directly to perform
further local re-alignment to enrich INDEL detections, followed by variant calling.
All 246 AMLCG samples were used to compare the variant callers. For DNA-Seq,
loci with minimum read-depth cut-off of 30x was considered, along with mapping
quality score of 10, base quality of 20 and minor allele frequency >2% for both
variant callers. A VarScan p-value of 0.01 was also employed as a preliminary cut-
off for DNA variants. Regarding RNA-Seq, a less stringent read-depth cut-off of 4x
was used, along with a mapping quality score of 13 and a minor allele frequency
>1% in order to avoid premature elimination of reputed variants. Subsequently,
the called variants were functionally annotated using Annovar (vAug2013).117
Publicly available databases such as COSMIC, dbSNP, ClinVar, RADAR and 1000
Genomes Project were used for annotating chromosomal position, clinical
relevance and its frequency of occurrence in general population.33-35118119
Mutation prediction scores such as SIFT, PolyPhen and MutationTaster were also

calculated using Annovar.120-122
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2.4 Application of variant filtering criteria

Several filtering criteria were employed on called raw variants, to improve the
sensitivity and specificity of the variant calling pipeline (Figure 4a). The minimum
read depth cut-off was raised to 10x based on the variant distribution across RNA
read depths (Figure 9). All the variants, which were annotated in the RADAR
database containing known RNA editing sites (post-transcriptional modification of
RNA nucleotides), were removed.!18 Variants detected in the regions containing
simple tandem repeats defined by UCSC were also excluded. To further determine
the mapping quality bias, base quality bias, strand and tail-distance biases, all the
detected variants were recalled using SAMtools (v0.1.19) and BCFtools (v0.1.19).55
The p-value for base quality bias, mapping quality bias and tail-distance bias were
calculated using t-test, whereas for strand bias, exact test was used.>> Variant with
a p-value < 0.05 in any of the biases were filtered out. Furthermore, custom
regions were defined to filter out artefacts and enrich the true positive variants

(Figure 4b-d). They are listed below:

¢ A low mapping quality region was defined as a locus with more than 1/3rd
of the supporting reads being of low mapping quality (<10).

e An error-prone region was defined as a 25bp upstream and 25bp
downstream window around the variant of interest, in which the alternate
allele frequency in the window (excluding the variant of interest) is > 1%.

e Position based filtering was carried out in a region which is defined as a
10bp upstream and 10bp downstream window around the variant of
interest, in which the total number of bases (irrespective of the allele) on
either left or right side of the variant of interest should be <50% of the total

number of bases on the other side.

Variants which were annotated to be in one of the above defined regions were
filtered out. The filtered alterations of transcribed and DNA-exclusive variants
were used for VAF analysis, whereas those of RNA-exclusive variants were filtered
further for detecting potential RNA edit sites. These sites were further filtered

depending on their occurrence in at least 5% of the primary study population.
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Figure 4: Filtering criteria and visualization of criteria definitions. A) List of criteria applied. B) Low
mapping quality region cut-off >=1/3rd reads. C) Error-prone region cut-off <=1% alternate allele

2.5 Sequence alignment, variant calling and filtering in validation

All the DNA-Seq in the validation cohort were aligned using BWA/MAQ and
variants were called using VarScan.?106107 [n the case of RNA-Seq, STAR aligner
was used for mapping followed by variant calling using VarScan in both the DKTK
and TCGA cohorts. In the case of the HELSINKI cohort, GATK best practice
guidelines were followed.?7 All the above mentioned filtering criteria were applied

on the called variants except for recalling variants using SAMtools and BCFtools.
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2.6 Variant allele frequency comparison among recurrent

mutations

All the recurrent mutations detected in the AMLCG cohort by Metzeler et al. were
extracted from the filtered variants list and their VAFs were compared.87.105 The
mutations with alternate allele frequency between 2% and 75% were considered
as heterozygous genotype and only those mutations were included in the analysis.
All the other homozygous variants and the RNA-exclusive variants were dropped
off. In order to determine Al among the genes, a linear regression model was used
to compare the observed and expected RNA variant allele read depth in sequence
fragments and the allele specific transcript abundance was calculated in the form
of weighted allelic imbalance (WAI). The WAI is the estimation of Al by
transforming the VAFs of DNA and RNA into the expected and observed variant
read depth in RNA. The definition of expected variant read depth of RNA from the
VAF of DNA is shown in Box 2. All the mutations were grouped for each genesMUT
separately and were adjusted for different mutation types (Box 2, model 1) to
study the association of mutations and the VAF difference among DNA and RNA.
The mutations were also grouped according to the mutation typesMUT and were
adjusted for the genes (Box 2, model 2). The common SNPs were extracted from
the filtered variants (based on dbSNP annotations, build 138) and the proposed
model was applied on it in patients without recurrent mutations in their respective
genesWT to investigate the existence of allele-specific transcript abundance in

general, irrespective of the mutation status (Box 2, model 3).
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Expected Variant allele read depth Definition:

RNAVariant Depth; g,, = DNA VAF; o5 * RNA Total Depth; op,5/100
Linear regression model 1 applied on each geneMUT'
RNA Variant Depth; o, ~ RNA Variant Depth; g, + Variant Type;

Linear regression model 2 applied on each variant type"™':
RNA Variant Depth; o,s ~ RNA Variant Depth; g, + Gene;
Linear regression model 3 applied on each gene"':
RNA Variant Depth; o,s ~ RNA Variant Depth; g, + Variant Type;

Box 2: Expected variant allele read depth definition and linear regression model employed. Gene
denotes the recurrently mutated genes selected for the analysis and Variant Type denotes the
annotated mutation types such as non-synonymous SNVs, stopgain SNVs, frameshift and non-

frameshift insertions, deletions and substitutions. The ‘Exp’, ‘Obs’ and ‘i’ denotes the expected and

observed values for every variant i.

2.7 Differential expression based on the recurrent mutations

2.7.1 Gene and transcript isoform quantification

The conventional procedure for differential expression analysis uses the alignment
based quantification of reads. In this method, the raw or quality trimmed reads are
aligned using a splice-aware aligner as described above (section 2.3.1), followed by
the quantification of read counts per gene using tools such as htseq-count or
featureCounts.123124 The obtained read counts are then used for gene-level
differential expression analysis using R packages such as DESeq2 or edgeR.125126
The procedure for the quantification of transcript isoforms using tools such as
Cufflinks or RSEM, followed by transcript-level differential expression
analyses.127.128 However, in recent years, tools such as Kallisto and Salmon
proposed to use the raw or quality trimmed reads directly to quantify the
transcript isoforms.129.130 These tools extract k-mers from the reads followed by
the exact matching of them using the hash tables and thus greatly reducing the
processing time when compared to the alignment-counting routines.!31 This
methodology does not determine the exact alignment location within a transcript
but rather provides a probabilistic measure of the transcript from which it could
have been extracted. In our analysis, the transcript quantification was carried out
using Salmon (v0.9.1) and the gene quantification was performed by aggregating

the transcript counts.!30 Salmon uses a quasi-mappings method in which it
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computes the mapping of reads to transcript positions without performing a base-

to-base alignment of the reads to the transcript.130
2.7.2 Gene-level and transcript-level differential expression analysis

The differential expression of the genes and transcript isoforms were studied by
grouping the patients with and without recurrent mutations in the respective
genes to further investigate the Al and allele-specific transcript abundance. The
quantified counts were used to conduct the gene- and the transcript-level
differential expression analyses using limma (v3.34.9).132 The total count of reads
mapped to a gene or transcript depend on their own expression level, the length of
the sequence reads, the read depth and the expression of other genes within the
sample. In order to account for such variability and their systematic effects, the
quantified read counts are filtered for low gene or transcript counts and
normalization procedure. In our analyses, tool edgeR (v3.20.9) was used for
filtering out all the genes or transcript isoforms with less than one count per
million in 5 samples, followed by the Trimmed Mean of M-values (TMM)
normalization.}26 The counts were then transformed with sample-specific quality
weight adjustment in the experiment design (limma, voomWithQualityWeights)
and fitted to linear model based on the mutation status in the genes with
substantial WAI in the previous analyses (section 3.7.1).132 The fold changes were
calculated for both gene and transcript isoforms and were adjusted for multiple

testing.

All the data processing of DNA- and RNA-Seq were carried out using an in-house
Galaxy platform (v15.10.2).133 All the statistical analyses were performed using R
(v3.4.3) and were adjusted for multiple testing using Benjamini & Hochberg
procedure.134135 The R session information is provided in the appendix (Box 7).
We considered an adjusted p-value cut-off of <0.05 to determine the significance of

the results obtained.
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3 Results

A total of 499 AML patients were included in the analysis the study design is
shown in Figure 3. The sequence coverage information and alignment statistics of
the AMLCG cohort are shown in Table 2. One of the main difference between the
targeted DNA- and RNA-Seq is the average coverage in the targeted regions (542x
and 85x in the case of DNA-Seq and RNA-Seq, respectively). This conspicuous
difference is due to the differences in the sequencing techniques used. The
sequence per base quality of raw DNA-Seq reads (Figure 5a) showed almost 90%
of low quality bases towards the end of the reads, whereas fewer reads in the RNA-
Seq also showed a similar trend (Figure 6a). The application of adapter trimming
and quality filtering eliminated a large number of low quality reads in both
sequences (Figure 5b). The enrichment in read quality due to the removal of 9 and
6 bases from the forward and reverse reads in RNA-Seq is also clearly

distinguishable (Figure 6b).

Table 2: DNA and RNA Sequence Information

Info Targeted DNA-Seq Total RNA-Seq

custom amplicon-based targeted

Sequencing kit enrichment assay (Haloplex)

Lexogen SENSE mRNA-Seq kit V2

Sequence length 250bp 100bp

Reference genome

build hg19 (Human) hg19 (Human)

Average Total

Aligned Reads 722755 (301046-2208674) 57568431 (36418879~
167296173)

(range)

Properly Paired 99.6 % 99.4 %

Reads

Average Coverage In

Target Regions 542.3x (196.3 x - 2653.5 %) 85.32x (33.2x - 301.4x)

(range)

Average of Mean 178.6 (166.6 - 193.2) 308.0 (134.9 - 583.9)

Insert Size (range)
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Figure 5: DNA-Seq quality information of (a) raw and (b) quality trimmed reads per base level in
AMLCG (n=246). The green, yellow and red colours indicate the high, medium and low quality reads.
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Figure 6: RNA-Seq quality information of (a) raw and (b) quality trimmed reads per base level in
AMLCG (n=246). The green, yellow and red colours indicate the high, medium and low quality reads.

After the adapter clipping and quality trimming processes, both the processed

sequences were considered to be valid for the subsequent analyses.

3.1 Sequence aligner comparison

The comparison of DNA-Seq aligners (Table 3) showed similar results when
comparing the percentage of mapped and properly paired reads, whereas
CUSHAWS3 performed relatively well while indexing hg19 reference genome build
(3 Gbp). However, BWA-MEM outperformed Bowtie2 and CUSHAW3 in the
number of reads processed per second. In the case of RNA-Seq aligners, both
HISATZ2 and STAR excelled TopHat2 in most scenarios. Although STAR has inferior

mapped and properly paired read proportions and requires substantially more
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indexing time when compared to HISAT2, its processes almost three times the
number of reads when compared to HISAT2. As the genomic indexing is done only
once per reference genome build and the sequence alignment rate is better than its
peers, BWA-MEM and STAR were preferred to be used for processing the DNA- and
the RNA-Seq, respectively.

Table 3: Aligner Comparison for DNA and RNA Sequencing

el Properly Indexing hg19 | Sequence
Aligners Reads (%) Paired Singletons (%) | Genome Alignment Rate
Reads (%) (time) (reads/second)
DNA
bowtie2 96.56 % 93.80 % 2.29% 96m 11.577s 3960.79
BWA-MEM | 99.25 % 98.67 % 0.55% 73m 26.007s 7076.86
CUSHAW3 | 98.82 % 98.60 % 0.15% 35m 3.980s 440.016
RNA
HISAT2 97.64 % 91.02 % 1.83 % 62m 17.826s 11340.5
STAR 95.42 % 90.55 % 0.68 % 165m 32.375s | 29270.5
TopHat2 88.92 % 70.23 % 9.09 % 96m 11.577s 1272.7

3.2 Variant caller comparison

The VAFs of recurrent mutations in AML were called using VarScan and VarDict
and were plotted against each other for both the DNA- and the RNA-Seq (Figure
7). The VAF of the detected SNVs from both callers showed a similar trend.
However, some differences were detected among the called INDELs. Even though a
few INDEL VAFs were deviated from the expected values in the case of DNA, a large
dispersion was observed among RNA variants. A handful of INDELs were not
detected at all by VarScan. We also observe a trend in underestimation of INDEL
VAFs by VarScan when compared to VarDict. This might be due to the in-built local

realignment procedure in VarDict, enabling it to detect INDELs more accurately.
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Figure 7: Variant Allele Frequency differences of recurrent mutations between VarScan and VarDict
in (a) DNA and in (b) RNA. The solid diagonal lines represent the expected VAF trend among the called
variants.

3.3 DNA and RNA variant calling pipeline

Both BWA-MEM (v0.7.10) and STAR (v2.5.1b) aligners were finalized for mapping
the DNA- and the RNA-Seq, respectively, due to their superior performances. The
optimized parameters used are shown in the appendix (Box 3 and Box 4). The
alignment performance of BWA-MEM on targeted DNA-Seq is improved by raising
the penalty for mismatch of the sequence reads and reducing the limits of re-
seeding. Although these parameters decrease the processing speed of the aligner, it
greatly increases the accuracy. As the targeted DNA-Seq has large sequence
coverage, accuracy of base-to-base alignment of reads is crucial for any
downstream analysis. Also, the parameters to mark shorter split hits as secondary
reads was also included to make it compatible with the Picard toolbox for
downstream processing (Box 3).5* In the case of RNA-Seq, the quality trimmed
reads from all the samples in the primary AMLCG cohort were initially aligned to
the previously indexed reference genome (with known gene definitions) using
STAR aligner. The computed splice junctions output from all the samples were
pooled, followed by filtering out previously annotated known splice junctions and
mitochondrial regions. The un-annotated splice junctions were used to index the
reference genome for the second time. This is followed by the alignment of all the

samples to the newly indexed reference genome. This process is called the STAR
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second pass alignment and this increases the accuracy of sequence alignment (Box
4). Regarding the variant callers, VarScan and VarDict were employed for calling
SNVs and INDELs, respectively in both sequences. The parameters used for both
variant callers were shown in the appendix (Box 5 and Box 6) and discussed in the
section 2.3.3. Thus the variant calling pipeline established in both sequences was
exhibited in Figure 8. The called raw variants were further enriched by the

application of filtering criteria defined (section 2.4).

AMLCG Cohort

V

( Sequence Reads )

!

Adapter Clipping

v

Quality Trimming

I Varscan II Varsdict l

( Variant Annotation )

Figure 8: Variant calling pipeline.
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3.4 Called variants in both sequences

The raw variants detected in both DNA and RNA were classified into three groups
based on their detected sequences: transcribed (present in both DNA and RNA),
DNA-exclusive (not detected in RNA with sufficient read depth) and RNA-exclusive
(not detected in DNA with sufficient read depth) variants. The total number of
variants called in both sequences distributed across different RNA read depths is
shown in Figure 9. Variant calling in the recurrently mutated genes in both
sequences resulted in a total of 8,052 variants (89.3% were SNVs and 10.7% were
INDELs). Among the detected variants, 47.9% of them were RNA-exclusive,
whereas 3.8% belong to DNA-exclusive variants. Some of the RNA-exclusive
variants might be potential RNA editing sites, but most of them were suspected to
be sequence artefacts.103136 The presence of DNA-exclusive variants might be due
to a strong preferential allele-specific transcript abundance towards the wild-type
allele or alternative mechanisms such as rapid RNA decay, epigenetic mechanisms
of genomic imprinting or copy number alterations. The observed larger proportion
among the exclusive variants also demonstrates the accuracy of variant calling in

DNA-Seq when compared to RNA-Seq (Figure 9a-b).
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Figure 9: RNA-Seq read depths of all detected variants. (a) RNA-Seq read depths grouped based on the
different variant classes. (c) RNA-Seq read depth of transcribed variants grouped according to variant
genotype information. (b,d) Read depth distribution based on variant groups.

Initial variant calling in RNA-Seq was carried out with a minimum read depth cut-
off of 4x. Thus to improve the reliability of the called variants, the proportion of the
transcribed variants between homozygous (BB) and heterozygous (AB) genotypes
were calculated (Figure 9c-d). The proportion of homozygous and heterozygous
variants was observed to converge with the increase in RNA read depth.
Observation of the differences between the proportions stabilized beyond a read
depth of 10x. Strikingly, TCGA also employed a 10x read depth cut-off for detecting
variants in RNA-Seq.? However, the distribution of SNVs and InDels separately

showed that this cut-off might not be ideal for INDEL detection (Figure 10). The
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cut-off was established based on the distribution of homozygous and heterozygous
variants per RNA read depth and thus it required sufficient variant count in each
read depth category. The average variant count calculated until read depth of 20
was found to be very low for the INDELs (mean INDEL count: 5.5) when compared
to that of the SNVs (mean SNV count: 54.8). Due to such low INDEL counts per RNA
read depth bin, it was not optimal to select an independent minimum read depth
cut-off for INDELs (Figure 10d). Thus, an overall minimum read depth cut-off of

10x was defined to call the sequence variants.
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Figure 10: RNA-Seq read depth of different variant classes for (a) SNVs and (b) INDELs. RNA-Seq read
depth of transcribed SNVs (c) and INDELs (d) grouped according to variant genotype information.
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3.5 The effect of filtering criteria on called variants

The filtering criteria applied on SNVs and INDELs were plotted separately to
understand their effect on both variants (Figure 11). Even though 24% of the
transcribed variants failed due to the minimum read depth cut-off, overall
application of the filtering criteria resulted in excluding 36.2% of all transcribed
variants (2,302 SNVs and 182 INDELs). Among DNA-exclusive variants, 59.7% of
them were filtered out leaving 106 SNVs and 16 INDELs. In the case of RNA-
exclusive variants, around 67% of them failed due to position bias alone and thus
resulted in excluding 91% variants as potential sequence artefacts. Further
filtering for the occurrence of potential RNA editing sites in at least 5% of the study
population and visualizing the variants using IGV removed all RNA-exclusive
variants.137 The proportion of variants removed was also similar for SNVs,

whereas, larger differences were found among INDELs.
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3.6 DNA and RNA variant comparison

Due to the inherent differences in the sequencing techniques employed for both
DNA and RNA, a huge difference in their mean coverage was observed in the
recurrently mutated regions (Table 2). After excluding the artefacts, the VAFs
among the transcribed and DNA-exclusive variants were compared (2606
variants). Based on the genotype information alone, 92.3% of the filtered variants
showed no noticeable VAF change (Figure 12). The observed dispersion of
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heterozygous DNA variants along the RNA VAF axis was due to the relatively low
read coverage of the RNA-Seq when compared with the targeted DNA-Seq. A
similar trend was found among the recurrent mutations in genesMUT (83.5%). A
5.3% over-representation of mutated alleles in RNA-Seq was also observed in
comparison to the DNA-Seq. However, 9.9% of recurrent mutation in RNA-Seq

were unable to be detected in the DNA-Seq, indicating a lack of transcription, DNA

degradation etc. (Figure 13).
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Figure 12: Variant allele frequency differences of all variants between DNA and RNA for SNVs (a) and
INDELs (b). The dotted diagonal lines represent the expected DNA vs RNA trend.

3.7 Regression Analysis
The VAFs of DNA and RNA were transformed into expected and observed RNA
variant read depths in order to account for the differences in their read coverage.

The VAF distributions of SNVs and INDELs are shown in Figure 13. The regression

model applied on both primary and validation cohorts are presented below.
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Figure 13: Variant allele frequency differences of recurrent mutation between DNA and RNA for SNVs
(a) and INDELs (b). Expected and observed RNA variant read depths of SNVs (c) and INDELs (d). The
dotted diagonal lines represent the expected DNA vs. RNA trend. The genotype conversion of AB->AA

and AB->BB represent the allele specific transcript abundance of wild-type and mutant allele,
respectively. The observation of BB->AB genotype change might be due to the arbitrary definition of
homozygous and heterozygous variants.

3.7.1 Weighted allelic imbalance of genesMUT and mutation typesMUT in the

AMLCG cohort

The linear regression model used in the analyses estimate WAI and the substantial
increase or decrease of WAI infer to preferential allelic transcript abundance of
mutant and wild-type allele, respectively. The model was restricted to 11 genes

from the initial consideration of 36 genes of interest due to the following reasons:
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e Variants removed due to the application of filtering criteria (excluded: 8
genes)

¢ Common variants (dbSNP build 138 NonFlagged) were removed along with
homozygous variants (excluded: 7 genes)

® Genes with less than five SNVs or INDELs were dropped off (excluded: 10

genes)

The exclusion of genes and samples from the analysis is depicted in the Figure 3.
The model applied on SNVs showed a significant decrease in the WAI of mutant
allele reads in PTPN1IMUT, whereas among genes such as GATAZMUT, RUNXIMUT,
TET2MUT, SRSF2MUT and IDH2MUT, a substantial increase of the WAI was observed
when compared to the expected values (Figure 14). In the case of INDELs,
CEBPAMUT and WTIMUT demonstrated a considerable WAI decrease, whereas
NPMIMUT and RUNXIMUT showed a significant increase in the number of reads
supporting the mutant allele. In spite of many genes showing a significant change,
the effect size was observed to be for GATA2MUT, CEBPAMYT and WTIMUT, There
were no Al observed among UZAFIMUT and FLT3MUT (which includes both FLT3-ITD
and FLT-TKD variants). The analyses on the mutation typesMUT showed a
significant increase in the WAI among non-synonymous SNVMUT and frameshift
INDELsMUT and a reversal effect among non-frameshift insertionsMUT. Interestingly,

stopgain SNVsMUT exhibited no sign of Al among the variants.
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Figure 14: WAI of recurrent mutations per geneMVT in the AMLCG cohort for SNVs (a) and INDELs (b).
WALI of recurrent mutations per mutation typeMUT in the AMLCG cohort for SNVs (c) and INDELs (d)

3.7.2 Weighted allelic imbalance of genesMUT in validation cohort

External data sets were used to independently validate the main findings. Due to
the unavailability of large and comprehensive data sets at the current time point, I
pooled all the mutations in those nine genesMUT of interest from the DKTK, TCGA
and the HELSINKI cohorts. The regression model was modified to account for the
difference in the cohorts and applied on the pooled cohort. I was able to validate a
significant increase in the WAI of GATAZ2MUT (p-value = 4.9x10-7) and a significant
decrease in their WAIs of WTIMUT (p-value = 3.8x10-3) and CEBPAMUT (p-value =

2.7x10-12). These observations were consistent with the obtained results in
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AMLCG, indicating preferential allelic transcript abundance (Figure 15). However,
NPMIMUT showed a substantial decrease in the WAI and thus preferring wile-type
allelic transcript abundance. This in turn is in contradiction with the initial
findings. In addition, genes such as SRSFZMUT, RUNXIMUT [DH2ZMUT TET2MUT and
PTPN1IMUT were unable to be validated, most of which might be due to their

relatively small effect size.
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Figure 15: Weighted allelic imbalance of recurrent mutations per geneMUT among DKTK, TCGA and
HELSINKI cohorts for SNVs (a) and INDELs (b).

3.7.3 Weighted allelic imbalance of genes"T based on SNPs

In order to determine if the allele-specific transcript abundance generally exist
among the variants in the nine significant genes of interest from the previous
section (SRSF2, RUNX1, IDH2, TET2, PTPN11, GATAZ, NPM1, WT1 and CEBPA), 1
performed the WAI analysis based on the common SNPs in those genes. All the
SNPs in these genes were pooled from the AMLCG, the DKTK and TCGA cohorts
which did not have recurrent mutations in the respective genesWT. The potential

sequence artefacts were filtered out as described previously. All the SNPs which
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were dbSNP annotated (build 138, NonFlagged) in the genesWT of interest were
filtered out and the WAI analysis was carried out (Figure 16). The analysis was
restricted to genes with =5 SNPs, similar to the previous analyses. As expected, no
evidence of Al was observed for WTIWT, TET2WT and SRSF2WT, whereas SNPs in
GATAZWT, RUNXIWT and IDHZWT showed significant WAI indicating the existence of
Al in general among the AML patients. Interestingly, all three genesWT showed
preferential major allelic transcript abundance, which was reversed when
compared to the genesMUT with recurrent mutations. However, the effect of

genesWT was rather small in comparison to the genesMUT,
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Figure 16: Weighted allelic imbalance of common SNPs in AMLCG, DKTK and HELSINKI cohorts
without recurrent mutations in the respective genes.

3.8 Internal validation for allelic imbalance

The differential gene expression between patients harbouring recurrent mutations
in respect to genesMUT and patients with wild-type status (genes“T) showed no
significant difference in the nine genes of interest with the exception of CEBPA
(Figure 17). In the case of profiling transcript isoforms, one transcript isoform
exhibited differentially expression in each of CEBPA, WT1 and SRSF2. However, the
presence of mutations was observed not only in these transcript isoforms. Other
transcript isoforms, which did not show any noticeable difference in their

expression levels, also harboured the recurrent mutations in the case of WT1 and
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SRSF2. Thus, there was no conclusive evidence of the effect of recurrent mutations
on differential expression of WT1 and SRSF2. We were unable to compare the
presence of mutations among other CEBPA transcript isoforms because of their

low read counts (filtered out).

PTPN11 GATA2 TET2

CEBPA WT1 RUNX1

Fold Change

IDH2 SRSF2 NPM1

Differential . Gene .Transcript x Significant @ Mutation located

isoform Foldchange difference ~ onthe Transcript

Expression:

Figure 17: Gene-level and transcript-level differential expression calculated with limma after
precision-weighting with voom for all recurrently mutated genes with a significant WAI in the AMLCG
cohort. Dots below or above the bars represent recurrent mutations present inside the transcripts.
Crosses represent significant fold change differences.
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4 Discussion

The aim of my thesis project was the systematic comparison and characterisation
of the transcription of variants from DNA to RNA. To this aim, I improved the
conventional variant calling pipeline for the processing both targeted DNA-Seq and
whole transcriptome RNA-Seq and defined a set of variant filtering criteria to
eliminate potential sequence artefacts. I applied this pipeline on a large AML
cohort (N=499) with the matched DNA- and RNA-Seq, and analysed the extent to

which the recurrent mutations in AML are transcribed from DNA to RNA.

Several studies have proposed workflows for the alignment of sequencing reads
and calling variants.311.97.138 [ examined different alignment and variant calling
algorithms for their performance and constructed an optimized pipeline for DNA-
and RNA-Seq. Default parameters were used to evaluate the aligners’ performance
in terms of accuracy and the time taken for the process. Despite the observations
on BWA-MEM and STAR’s better performance, optimizing aligner parameters
based on sequence coverage, read length, bin range etc. might greatly increase the
overall performance of any aligner.13? The aligned reads from DNA- and RNA-Seq
were processed separately due to the missing intron regions in RNA-Seq. In the
case of the variant caller comparison, many previous studies showed the
proportion of commonly called INDELs to be very low when compared to the SNVs
detected.140-142 Hasan et al. analysed seven INDEL callers including VarScan and
showed a large number of known INDELs were still remained undetected in their
analysis.1#0 In this study, VarDict performed well when compared to VarScan in
detecting INDELs which is consistent with Lai et al’s systematic comparison of
different variant callers, although there was not much difference in the case of SNV
detection.116 The variant calling parameters were optimized for DNA- and RNA-
Seq, respectively, based on the alignment accuracy, read depth, mapping and base

quality followed by variant filtration.

The comparison of weighted VAFs between DNA and RNA showed Al in nine
genesMUT recurrently mutated in the homogenously treated primary cohort.
Among the six genes with substantial increase in the WAI (p < 0.05), GATAZMUT
showed the largest effect size. This in turn infer to an increased mutant-allele

specific transcript abundance of GATAZMUT, A similar trend of mono-allelic
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expression towards the mutant allele in GATAZ was also observed by Al Seraihi and
colleagues.143 Celton et al studied the normal karyotype AML samples and
observed preferential mutant allelic expression among low-GATAZ-expressing
specimens.104 In addition, they demonstrated that the hypermethylation of the
silenced allele can be reversed by the exposure to demethylating agents and thus
suggesting the requirement of DNA methylation for ASE of GATAZ2.19% Another
transcriptional analysis in mouse model demonstrated the down-regulation of
GATAZ to be a crucial step in the progression of leukaemia.l#* The term minimal
residual disease refers to a small number of leukaemic cells that remains in the
person during treatment or after in the remission stage. The differences in the
preferential allelic transcript abundance in some cases might suggest RNA to be a
better source for the measurement of minimal residual disease than DNA,
especially in the case of NPM1.145 Kronke et al. defined the time points for
monitoring NPM1 transcript levels and MRD assessment for the identification of
high risk of relapse among the AML patients.146 | was able to independently
validate the effect of GATAZMUT, WTIMUT and CEBPAMUT using the pooled validation
cohort, irrespective of the differences in the sequencing techniques and differences
in the population under study. Unfortunately, large and homogenous cohorts of
AML patients with matched DNA- and RNA-Seq data were not available at this
point. Therefore, the direct comparison of the results of the primary discovery
cohort and the pooled validation cohorts was difficult. The existance of Al was not
observed for SRSFZMUT, RUNXIMUT, |DH2ZMUT, TETZMUT and PTPNI1IMUT in the
validation cohort. However, NPMIMUT in our validation cohort showed the Al
towards the wild-type allele, which is in contradiction to our finding in the primary
cohort. This does not prove the absence of Al as ‘no evidence for a difference is not
an evidence for no difference’. Most of these discrepancies might be due to their
smaller effect size in the primary cohort and thus would require a larger number of
mutations to be analysed in order to gain enough power for the analysis. Also bias
might be introduced due to the different sequencing techniques used in the

validation cohort.

The largest study regarding this topic in AML was conducted by Ley and colleagues
in TCGA.? The allelic expression biases were detected by them among RUNX1, TETZ
and WT1 mutated patients, along with three other genes in AML samples.®
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Although some of my results might be associated with copy number alterations,
genomic imprinting, uniparental disomy or differences in RNA half-life between
the mutated and wild type allele, we claim the significant change in the WAI might
be due to allele-specific transcript abundance which might be a common
phenomenon among genes frequently altered by mutations in AML. At least, some
of the findings could be validated in external independent data sets which points
toward an additionally biologic regulative mechanism which might be associated
with leukaemogenesis.147 It is difficult to simulate these small expression changes
in an in vitro model and larger studies including other disease are necessary to
draw a conclusive picture. However, it is highly likely that this phenomenon
contributes to leukaemogenesis. Further investigation of WAI based on common
SNPs in WTIWT, TET2WT and SRSF2WT revealed no Al among AML samples without
any recurrent mutations in the respective genesWT. This in turn implies an indirect
association of Al with the recurrent mutations harboured in these genes. We also
observed a significant WAI among genesWT towards major allele transcript
abundance and an Al shift in the opposite direction, towards mutant allele among
genesMUT, One interpretation might be due presence of functional variations in the
cis-regulatory regions of these genes.1¥® Adoue et al.” work on multiple cell lines,
identified cis-regulatory variants based on mapping the differential allelic
expression and reported 40-60% of these variants are shared across all cell
types.148 Despite the observations of the WAI of recurrent mutations and common
SNPs among genesMUT and genesWT, respectively, [ was unable to detect any
consistent impact in the differential expression of genes and transcript isoforms
between patients with and without recurrent mutations. Especially among the
significant differentially expressed transcript isoforms, the mutations harboured in
them were also found in the isoforms which did not show any significant
expression. Thus, it was unclear to interpret the sole attribution of the harboured
mutations and the transcript-level differential expression. However, a differential
expression of transcript isoforms could be observed in three genes, which might
suggest an inadequate increase of mutant alleles or, in the case of SRSF2, an effect
of counteracting mechanisms regarding preferential wild-type allelic transcription.
Further analysis by grouping the mutations based on mutation type showed
frameshift INDELsSMUT to have an enhanced mutant allele expression. This in turn is

in contradiction with Rhee et al’s demonstration of a negative allelic fraction
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difference.® In addition, we were also unable to validate their negative allelic
fraction difference among stopgain SNVMUT 8 However, Rhee et al. determined the
Al of somatic mutations using five different tumour sample types (BRCA, HNSC,
KIRC, LUAD and STAD) from TCGA (excluding AML). Thus the discrepancy might
be due to the difference in the tumour types under study. In addition, they
compared the RNA-Seq with the WES whereas we used the targeted DNA-Seq and
this might have also been contributed to the inconsistancies.8 The discovery cohort
consists of homogeneously treated AML patient samples and the differences in the
findings might suggest the observed variation in the allele-specific transcript

abundance might depend on the tumour entity under study.

This analysis on quantifying imbalances in a uniform cohort reduces ascertainment
bias and thus improves the validity of the results.149.150 Previous studies compared
the Al in terms of allele fraction difference (Al = RNA VAF minus DNA VAF).78
Thus, the effect was determined when the difference is not equal to zero with a
defined cut-off. It was not suitable to use this approach directly, since | compared
the targeted DNA-Seq (with relatively high sequence coverage) to the RNA-Seq. In
order to overcome this issue, the VAFs of both sequences were transformed into
expected and observed mutant allele reads. In this approach, the Al was
determined when the difference is not equal to 1 (RNA VAF = a x DNA VAF). This
weighted approach ensures comparability between two data sets with huge
differences in read coverage (542 fold in the DNA-Seq vs. 85 fold in the RNA-Seq).
The exploratory analysis was based on classical linear regression (excluding the
intercept), assuming normal homoscedastic distribution of residuals. It was not
possible to prove a non-normal distribution of residuals due to the low number of
sample points per gene. The exact false detection rate was not known and due to
the assumption it fell below the significance level (5% in our case). I addressed this
issue by performing validation of our results on independent cohorts using the

same algorithm.

One of the major limitations in using whole RNA-Seq for variant calling is the
inherent low coverage in the regions of interest when compared to the targeted
DNA-Seq. We were able to detect the majority of the genomic variants (95.4%)
which is in accordance with the previous publication, although the frequencies of
the variants varied considerably.?® Nevertheless, employing variant discovery
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solely in RNA-Seq could not be recommended due to the large number of potential
false positive variant calls (>52% in our analysis). Also, the variant discovery in
RNA-Seq also depends on the expression of those regions in the genes. Less
stringent parameters were used for calling variants in RNA-Seq to avoid premature
filtration of putative variants. One of the important aspects of this study is to
eliminate potential artefacts and achieve enriched variants. Selection of ideal read
depth cut-off is essential for any variant filtering procedure. I optimized the
parameters for variant calling in DNA-Seq and then visualized the concordance
rate of homozygous and heterozygous variants with respect to incremental variant
read depth. By assuming similar proportions of homozygous and heterozygous
variants for any given read depth, I observed a convergence of proportions at the
read depth of 10x. The proportions remain stable for higher read depths, showing
a reliable cut-off for RNA-Seq, which stands in agreement with the Ley et al’s
defined cut-off (TCGA).? Similarly, Quinn and colleagues showed 89% specificity in
calling SNPs in RNA-Seq with a read cut-off of 10x, although different sequence
aligner (TopHat) and variant caller (GATK and SAMtools) was employed.> Defining
a reliable read cut-off was possible among the SNV due to the detection of large
number of SNVs per RNA read depth. However, same was not possible among
INDELSs due to their lower numbers per read depth in the RNA-Seq. The application
of other filtering criteria and the proportions of potential artefacts suggested the
importance of the defined criteria. Variant calling and variant discovery in RNA-
Seq are hampered by several factors including read coverage, expression of the
genes, RNA-editing sites, repeat regions and regions nearby splice junctions.
However, application of the proposed filtering criteria might assist in enriching the

called variants in the RNA-Seq.
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5 Conclusion

In this study, I compared commonly employed sequence aligners and variant
callers to construct a variant calling pipeline for targeted DNA- and RNA-Seq.
Several filtering criteria were defined to remove potential artefacts by considering
varying read depths, error-prone regions, edit and repeat loci, biases due sequence
strand, position of the variant, mapping and base quality. I determined the extent
of allelic proportion of recurrently mutated genesMUT being transcribed from DNA
to RNA and the existence of Al among them in AML. Allele-specific transcript
abundance of GATAZ2MUT, WTIMUT and CEBPAMUT were detected and validated in
independent cohorts. The presence of Al in general was also demonstrated among
some genesWT in patients who did not harbour any recurrent mutations in the
respective genes. This study acquaints the notion of preferential wild-type or
minor allelic transcript abundance to be a common and underestimated
mechanism in the pathogenesis of AML. Further research will be required to
determine any association of allele-specific transcript abundance with the
epigenetic mechanisms inside the intricate pathomechanisms of recurrent

mutations in AML.
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Appendix

Table 4: List of genes and the regions of interest analysed using targeted DNA-Seq.87 CDS represent

the coding sequence of the gene.

Gene Region Gene Region Gene Region
ABCB1 entire CDS GATA1 exons 2,3 PTEN entire CDS
ABCG2 entire CDS GATAZ exons 4-6 PTPN11 exons 3,13
ADA entire CDS GATA3 exons 3-5 PTPRT entire CDS
ASXL1 exon 12 HNRNPK entire CDS RAD21 entire CDS
BCOR entire CDS HRAS exons 2,3 RUNX1 entire CDS
BCORL1 entire CDS IDH1 exon 4 SETBP1 exon 4
BRAF exons 11,12,15 IDH2 exon 4 SF1 entire CDS
CBL exons 8,9 IL7R exon 6 SF3A1 entire CDS
CDA entire CDS JAK1 exons 13-15 SF3B1 exons 14-16
CDKNZ2A entire CDS JAK2 exons 12-16 SMC1A entire CDS
CEBPA entire CDS JAK3 entire CDS SMC3 entire CDS
CSF3R exons 12-16 KDMG6A entire CDS SRSF2 exon 1
CSFR1 exons 7, 22 KIT exons 8,9,11,17 STAG2 entire CDS
DAXX entire CDS KMTZ2A exons 1,3,4,33 TERC entire CDS
DCK entire CDS KRAS exons 2,3 TERT exons 1,15
DCLK1 entire CDS MIR-142 entire CDS TET2 entire CDS
DIS3 entire CDS MPL exon 10 TP53 entire CDS
DNMT3A exons 7-23 MYD88 exons 3-5 U2AF1 exons 2,6
ETV6 entire CDS NOTCH1 exons 26-28,34 U2ZAF2 entire CDS
EZH2? entire CDS NPM1 exons 10,11 WAC entire CDS
FAM5C entire CDS NRAS exons 2,3 WT1 entire CDS
FBXW?7 exons 8-12 NT5C2 entire CDS ZRSR2 entire CDS
FLT3 exons 13-16, 20 PHF6 entire CDS
## BWA-MEM parameters on DNA-Seq
$ bwa mem \

-t "7" -v 1 -k "19" -w "150" "100" -r "1.4" -y "20" -c "500" \

-b "9.5" -W "@" -m "50" -A "1" -B "5" -0 "6,6" -E "1,1" -L "3" \

-U "17" -T "3@0" -h "5" -M “$reference" "$readl" "$read2" \

> "$output”

Box 3: Optimized BWA-MEM parameters for targeted DNA sequencing alignment.
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## STAR first pass parameters on RNA-Seq
$ STAR \

--runThreadN "7" --genomeLoad NoSharedMemory --genomeDir
"$reference”

--readFilesIn "$readl" "$read2"

## Pooling splice junction from all samples

$ cat splice_junctions_* | grep -v ~chrM | sort -V | uniq | \
awk -F"\t" '$6=="0"{ print $1"\t"$2"\t"$3"\t"$4; }' | sort | \
uniq > pooled_splice_junctions

## STAR genomic index using pooled splice junctions are created

## STAR second pass parameters on RNA-Seq with new indices

$ STAR --runThreadN "7" --genomeLoad NoSharedMemory
--genomeDir "$reference_new" --readFilesIn "$readl” "$read2" \
--quantMode "TranscriptomeSAM" --outReadsUnmapped Fastx \
--chimSegmentMin 12 --chimJunctionOverhangMin 12 \
--alignSJDBoverhangMin 10 --alignMatesGapMax 200000 \
--alignIntronMax 200000

Box 4: Optimized STAR parameters for total RNA sequencing alignment

## DNA - VarScan parameters

$ samtools mpileup \
-f "$reference" -1 "$regionbed" -A -C "0" -d "1000000" -q "10" \
-Q "20" "s$input" | java -jar Varscan.jar mpileup2snp \
--min-coverage 30 --min-reads2 6 --min-avg-qual 20 \
--min-var-freq 0.02 --min-freq-for-hom 0.75 --p-value 0.01 \
--strand-filter 1 --output-vcf 1 --variants 1 > $output

## DNA - VarDict parameters

$ vardict -G "$reference” -b "$input” -k 1 -c 1 -S 2 -E 3 -g 4 \
"$regionbed"” | teststrandbias.R | var2vcf_valid.pl -E -f 0.01 \
> $output

Box 5: Optimized variant calling parameters for DNA-Seq.

## RNA - VarScan

$ samtools mpileup -f "$reference" -A -B -C "@" -d "250" -q "@" \
-Q "13" "$input" | java -jar Varscan.jar mpileup2snp \
--min-coverage 4 --min-reads2 1 --min-avg-qual 15 \
--min-var-freq 0.01 --min-freq-for-hom 0.75 --p-value 0.01 \
--strand-filter @ --output-vcf 1 --variants @ > $output

## RNA - VarDict
$ vardict -G "$reference" -b "$input" -k 1 -c 1 -S 2 -E 3 -g 4 \
"$regionbed” | var2vcf_valid.pl -E -f 0.01 > $output

Box 6: Less stringent variant calling parameters used for RNA-Seq
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> sessionInfo()

R version 3.4.3 (2017-11-30)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1

Matrix products: default

locale:

[1] LC_COLLATE=German_Germany.1252
[2] LC_CTYPE=German_Germany.1252
[3] LC_MONETARY=German_Germany.1252
[4] LC_NUMERIC=C

[5] LC_TIME=German_Germany.1252

attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

other attached packages:

[1] edgeR_3.20.9 limma_3.34.9 viridis_0.5.0

[4] viridislLite _©0.3.0 gdata_2.18.0 RColorBrewer_1.1-2
[7] wesanderson_©.3.2 reshape2_1.4.3 cowplot_0.9.2

[10] gridExtra_2.3 ggplot2_2.2.1

loaded via a namespace (and not attached):

[1] Rcpp_©.12.15 magrittr_1.5 munsell 0.4.3
[4] lattice_©.20-35 colorspace_1.3-2 rlang_0.2.0
[7] stringr_1.3.0 plyr_1.8.4 tools_3.4.3
[10] grid_3.4.3 gtable_0.2.0 gtools_3.5.0
[13] lazyeval 0.2.1 digest_0.6.15 tibble_1.4.2
[16] labeling 0.3 stringi_1.1.6 compiler_3.4.3
[19] pillar_1.2.1 scales_0.5.0 locfit_1.5-9.1

Box 7: R session information including all additional packages used for the analysis and plotting.
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