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“Let us try to teach generosity and altruism, because we are 
born selfish. Let us understand what our own selfish genes are 
up to, because we may then at least have the chance to upset 
their designs, something that no other species has ever aspired 
to do.”  
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Zusammenfassung 

Murine Double Minute 2 (Mdm2) Protein ist ein wichtiger negativer Regulator des 

Tumorsuppressors p53. Mdm2, eine E3-Ubiquitin-Ligase, unterdrückt p53-Aktivität 

vor allem durch Ubiquitinierung und führt zum proteasomalen Abbau von p53. Um-

gekehrt stimuliert p53 die Mdm2-Expression durch transkriptionale Aktivierung. Somit 

steuern Mdm2 und p53 ihre Konzentrationen gegenseitig in einer autoregulatori-

schen Rückkopplungsschleife. Mdm2 und p53 spielen bedeutende Rollen bei der 

Zellzykluskontrolle und beim Zelltod, während deren Dysregulation mit verschiede-

nen Pathologien wie z. B. Tumor assoziiert ist. Klinisch werden niedermolekulare 

MDM2-Antagonisten aufgrund ihrer Fähigkeit, die p53-Aktivität wiederherzustellen, 

als vielversprechende Tumormedikamente untersucht. 

Bei akutem Nierenversagen hat Mdm2 ambivalente Eigenschaften: auf der einen 

Seite pro-inflammatorisch (schädlich) und auf der anderen Seite pro-proliferativ (vor-

teilhaft). Unter physiologischen Bedingungen wird Mdm2 in renalen Tubuluszellen 

stark exprimiert, aber der Grund dafür ist noch nicht bekannt. Wir stellten die Hypo-

these auf, dass Mdm2 die Homöostase von renalen Tubuluszellen und ihre physiolo-

gischen Funktionen aufrechterhält. Um diese Hypothese zu testen, wurden induzier-

bare Tubuluszellen-spezifische Mdm2-Knockout-Mäuse Pax8rtTA-Cre;Mdm2flox/flox 

generiert. Unter Doxycylin-Induktion exprimieren diese Mäuse Cre Rekombinase, die 

loxP-Stellen erkennt und Mdm2 Gendeletion ausschließlich in den renalen Tubulus-

zellen hervorruft (als Mdm2-/-tubulus bezeichnet). Mit diesem transgenen Mausmodell 

können die Rollen von Mdm2 in renalen Tubuluszellen präzise untersucht werden. 

Unter kontinuierlicher Doxycyclin-Behandlung für 4, 8 oder 11 Tage zeigten erwach-

sene Mdm2-/-tubulus Mäuse im Vergleich zu ihren Kontrollmäusen beeinträchtigte Nie-

renfunktion und histologische Tubulusschäden mit zunehmender Zeit. Dieser Phäno-

typ stimmt mit akutem Nierenversagen überein. Außerdem wurden Mdm2-/-tubulus 

Mäuse oligurisch, moribund und starben wenige Tage nach der Doxycyclin-

Behandlung. Darüber hinaus war die intrarenale Genexpression von p53 und seine 

Effektorgene p21 und Puma in Knockoutmäusen signifikant erhöht, was zu Zelltod 

und einem fortschreitenden Zellverlust in den Nierentubuli führte. Ein erheblicher An-

stieg der Biomarker für Tubulusschaden wurde ebenfalls festgestellt. Diese Daten 

legen nahe, dass Mdm2 und seine negative Regulation von p53 für das Überleben 
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der renalen Tubuluszellen unerlässlich ist. Ohne Mdm2 verlieren Tubuluszellen ihre 

physiologischen Funktionen und sterben aufgrund der p53-Überaktivierung. 

Um die hohe Letalität der kontinuierlichen Doxycyclin-Behandlung bei Mdm2-

Knockout-Mäusen zu vermeiden, wurde eine intermittierende Doxycyclin-Behandlung 

angewandt. Mdm2-Knockout-Mäuse überlebten während der gesamten Versuchs-

dauer von 4 Wochen und waren äußerlich unauffällig. Sie wiesen jedoch eine promi-

nente Nierenfibrose und eine deutlich erhöhte intrarenale Expression von Fibrose-

Markern auf. Dies ist vergleichbar mit einer unzureichenden Heilung („maladapative 

repair“) nach dem akuten Nierenversagen, die das Fortschreiten zu chronischen Nie-

renerkrankungen begünstigt. Wir schließen daraus, dass renale Tubuluszellen den 

durch die Mdm2-Deletion verursachten Zellverlust nicht vollständig kompensieren 

können. 

Zusammenfassend liefert unsere Studie den ersten Beweis dafür, dass Mdm2 die 

Homöostase der renalen Tubuluszellen aufrechterhält. Mdm2-Deletion führt zum 

spontanen Zelltod und akutem Nierenversagen. Diese Beobachtungen tragen zu ei-

nem besseren Verständnis der Nierenphysiologie bei, insbesondere in Bezug auf 

Zellzykluskontrolle und Zelltod. Nicht zuletzt ist bei der Tumorbehandlung mit MDM2-

Antagonisten besondere Vorsicht hinsichtlich der Nierenfunktion erforderlich, da so-

wohl akutes Nierenversagen als auch chronische Nierenerkrankung auftreten kön-

nen. 
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Summary 

Murine double minute 2 (Mdm2) is the key negative regulator of tumor suppressor 

p53. Mdm2 downregulates p53 by ubiquitination, nuclear export and direct binding. In 

turn, p53 upregulates Mdm2 by transactivation. Thus, Mdm2 and p53 control their 

levels mutually in an autoregulatory feedback loop. Mdm2 and p53 together play im-

portant roles in cell cycle control and cell death, and an imbalance can lead to dis-

eases, such as tumor. Clinically, small molecule MDM2 antagonists are studied as 

promising anticancer drugs due to its ability to restore p53 activity.  

In acute kidney injury, Mdm2 exerts dual functions: pro-inflammatory (harmful) and 

pro-proliferative (beneficial). Under physiological conditions, Mdm2 is highly ex-

pressed in renal tubular cells, but what for is not known. We hypothesized that Mdm2 

maintains the homeostasis of renal tubular cells and their physiological functions. To 

test our hypothesis, we generated inducible tubule-specific Mdm2 knockout mice 

Pax8rtTA-Cre;Mdm2flox/flox mice. Upon doxycycline induction, these mice express Cre 

recombinase, which recognizes loxP sites and causes Mdm2 gene deletion exclu-

sively in renal tubular cells (referred as Mdm2-/-tubulus). The transgenic mouse model 

provides an exceptional way to precisely study roles of Mdm2 in renal tubular cells. 

Subjected to continuous doxycycline treatment for 4, 8 and 11 days, adult Mdm2-/-

tubulus mice showed progressively impaired kidney function and tubular damage in the 

histology with increasing time, compared to their control littermates. This phenotype 

is consistent with acute kidney injury. Also, Mdm2-/-tubulus mice became oliguric, mori-

bund and died rapidly upon doxycycline treatment. Moreover, intrarenal gene ex-

pression of p53 and its downstream genes p21 and Puma was significantly upregu-

lated, leading to progressive cell death in renal tubules. Substantial increase of tubu-

lus damage markers were detected as well. These data suggest that Mdm2 and its 

negative regulation of the p53 are indispensable for the survival of the renal tubular 

cells. Without Mdm2, renal tubules loss their physiological functions and undergo cell 

death due to p53 overactivation.  

To avoid the high lethality of the continuous doxycycline treatment in knockout mice, 

we exploited intermittent doxycycline administration regime on Mdm2-/-tubulus mice. 

Knockout mice survived during the whole experimental period of 4 weeks and ap-

peared normal. However, they developed profound kidney fibrosis as detected by 
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histopathology and markedly increased gene expression of fibrosis markers such as 

TGF-beta. This is reminiscent of maladaptive repair after acute kidney injury, which 

accelerates the progression into chronic kidney disease. We conclude that renal tub-

ular cells cannot fully compensate for cellular loss caused by Mdm2 deletion. 

In summary, our study provides the first evidence that Mdm2 maintains homeostasis 

in renal tubular cells by preventing spontaneous cell death and acute kidney injury. 

Moreover, tubular cells can only partially recover from Mdm2 deletion. These findings 

help shed additional light on understanding the physiology in homeostatic kidneys, 

especially concerning cell cycle control and cell death. On the other hand, extra cau-

tion regarding kidney function is required when treating cancer with MDM2 antagonist, 

as both acute kidney injury and chronic kidney disease can occur in the absence of 

MDM2. 
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1 Introduction 

1.1 Acute kidney injury  

Acute kidney injury is a global health concern that is associated with increasing inci-

dence, high mortality and economic burden [1-4]. Yearly, AKI impacts about 13,3 mil-

lion patients, contributes to about 1,7 million deaths in the world [5] and causes 

enormous costs [6-8]. Moreover, there is no pharmacological cure or therapeutic in-

terventions for AKI other than dialysis, which can significantly improve survival or 

promote recovery [2]. It is also noteworthy that long-term complications of AKI repre-

sent a social burden. Progression of AKI into chronic kidney disease and end-stage 

renal disease requiring dialysis or transplantation can lead to poor life quality or disa-

bility of patients [5]. Thus, a better awareness and understanding of AKI is of para-

mount importance. 

1.1.1 Epidemiology and clinical aspects 

Acute kidney injury is characterized by rapid decline of kidney function, as measured 

by serum creatinine (SCr) and urine output. The 2012 guideline of Kidney Disease: 

Improving Global Outcomes (KDIGO) defines AKI as any of the following [9]: 

• Increase in SCr by ≥ 0.3 mg/dl (≥ 26.5 µmol/l) within 48 hours; or 

• Increase in SCr to ≥1.5 times baseline, which is known or presumed to have 

occurred within the prior 7 days; or 

• Urine volume < 0.5 ml/kg/h for 6 hours. 

As illustrated in Table 1, AKI has a worldwide high incidence in hospitalized patients 

despite geographic differences [5]. Approximately one in five hospitalized patients is 

affected by AKI by KDIGO definition, predominately at KDIGO stage 1 [5]. Moreover, 

patients with critical illness and cardiovascular surgery are more susceptible to de-

velop acute kidney injury [5, 10, 11]. In intensive care unit, more than 50% of patients 

suffer from AKI [12] and 4-5% of patients require renal replacement therapy, which 

contributes to prolonged hospital stay, worse outcomes and greater costs [1].  
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Table 1: Pooled incidence rate of acute kidney injury in hospitalized patients.  
These data are derived from Mehta et al., 2015 [5]. 

 Region Pooled incidence rate of AKI 

Europe Northern Europe  19.3%	
 Eastern Europe 23.8%	
 Southern Europe 25.2% 

 Western Europe 20.8% 

Asia Central Asia	 9.0% 

 Eastern Asia 19.4% 

 Southern Asia 7.5% 

 Southeastern Asia 31.0% 

Africa Eastern Africa 13.4% 

 Middle Africa 23.5% 

America  North America 22.3 % 

 South America 31.0% 

Australia Australia and New Zealand 16.9% 

 

AKI is associated with high mortality —the overall pooled mortality of AKI in hospital-

ized patients is 20%-30% [5, 10]. Furthermore, patients with severe AKI at KIDGO 

stage 3 and those who need dialysis have a high mortality of 42% and 46% respec-

tively [5]. 

AKI can be acquired in community, hospitals or critical care settings. According to its 

etiology, AKI can be divided into three following categories [6, 13, 14]: 

1) Prerenal: caused by decreased renal blood flow, e.g. due to intravascular vol-

ume depletion (in cases of vomiting, diarrhea, hemorrhage and burns etc.), 

heart failure, hypotension or shock. Approximately 70 percent of community 

acquired AKI is attributable to prerenal causes [14, 15].  

2) Intrinsic renal: caused by pathological processes within the kidney. It could be 

categorized by the primarily affected renal components: glomerular, tubular, 

interstitial or vascular [13, 14]. Overall, acute tubular necrosis is the most fre-

quent cause of intrinsic renal AKI in hospitalized patients, which is commonly 

triggered by ischemic or toxic injury [6, 14]. Nephrotoxic compounds can be 

exogenous such as contrast agents or medications, and can also be endoge-

nous such as myoglobin released from rhabdomyolysis [14]. 
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3) Postrenal: caused by impeded drainage of urine distal to kidneys, e.g. due to 

intrarenal obstruction by stones or crystals, or extrarenal obstruction such as 

prostate hypertrophy that is the most common cause in older men [13, 14].  

Notably, the causes of AKI vary from country to country. Whereas sepsis, cardiovas-

cular surgery and polypharmacy are main insults to trigger AKI in high-income coun-

tries, the more frequent causes of AKI in low-income countries include diarrhea, trop-

ical diseases such as malaria, animal venoms such as from snake bites and intake of 

traditional herbal preparations [5].  

Risk factors for AKI have been increasingly recognized. There are patient-modifiable 

risk factors including dehydration, volume depletion and exposure to nephrotoxic 

drugs. On the other hand, patient-non-modifiable risk factors contribute to the pa-

tient´s individual susceptibility, such as comorbidities (preexisting chronic kidney dis-

ease, diabetes, cancer, chronic heart disease and chronic lung disease) and demo-

graphic aspects (female gender, older age and black race) [5].  

Clinical symptoms of patients suffering from AKI are unspecific, varying from asymp-

tomatic over oliguria to confusion and lethargy, the latter due to accumulation of ni-

trogen-containing metabolic wastes such as urea in blood. Staging of AKI is per-

formed based on serum creatinine and urine output, to evaluate disease severity 

(Table 2). 

Diagnosis of AKI relies on the combination of a patient´s history, physical examina-

tion, kidney function assessment, renal imaging studies and eventually renal biopsy 

[6]. Urine output and serum creatinine as two parameters for AKI definition should be 

promptly determined. Also, blood test covering blood urea nitrogen (BUN), GFR and 

electrolytes, as well as urine studies with urine osmolality and sediment analysis help 

estimate injury severity and localize injury site. Furthermore, renal ultrasound can 

reveal or exclude post-renal obstructions. Renal biopsy is helpful for diagnosis or ex-

clusion of rapid progressive glomerulonephritis, vasculitis and interstitial nephritis.  
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Table 2: Staging of acute kidney injury (table from KDIGO 2012 [9])  

Stage Serum creatinine Urine output 

1 1.5–1.9 times baseline OR 

≥ 0.3 mg/dl (≥ 26.5 µmol/l) increase 

< 0.5 ml/kg/h for 6–12 hours 

 

2 2.0–2.9 times baseline < 0.5 ml/kg/h for ≥12 hours 

3 3.0 times baseline OR 

Increase in serum creatinine to ≥ 4.0 mg/dl 

(≥	353.6 µmol/l) OR 

Initiation of renal replacement therapy OR, in 

patients < 18 years, decrease in eGFR to < 

35 ml/min per 1.73 m2 

< 0.3 ml/kg/h for ≥ 24 hours 

OR 

Anuria for ≥12 hours 

 

 

Management of AKI is complex. First of all, identify the underlying cause as a timely 

causal treatment may help kidney recover completely. Second, stop any administra-

tion of nephrotoxic agents if possible. Third, closely monitor the patient´s volume sta-

tus and electrolyte levels, and subscribe medications for supportive treatment if indi-

cated, such as diuretics. Finally, renal replacement therapy should be started imme-

diately in cases of life-threatening changes in fluid, electrolyte, and acid-base bal-

ance. 

AKI can lead to a multitude of complications. The short-term complications include 

electrolytes disorders, metabolic acidosis, fluid overload, uremia and coagulopathy 

[6]. Moreover, AKI can induce dysfunction of distant organs including heart, lung, liv-

er and central nerve system [16-20], thereby increasing the risk of multi organ failure 

in critically ill patients [6]. The long-term complications of AKI include accelerated 

chronic kidney disease, end stage renal disease and death. Remarkably, even subtle 

increases of serum creatinine can lead to long-term complications. 

Last but not least, prevention of AKI is of paramount importance. One key preventive 

strategy is identification of patients at risk and correction of modifiable risk factors 

such as volume depletion [13]. Avoidance of nephrotoxic drugs and drug dose ad-

justment in patients with impaired kidney function is of great importance. In incipient 

acute kidney injury, prompt diagnosis and appropriate treatment can prevent irre-

versible loss of nephrons and thus save the kidney [13]. 
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1.1.2 Pathophysiology of ischemic acute kidney injury 

Ischemia is one of the most common causes for acute kidney injury. The complex 

pathophysiology of ischemic AKI has been intensively studied in animal models. In 

simple words, the reduced renal blood flow disrupts the homeostasis in kidneys, 

which is maintained by coordinated communication and interactions of various cell 

types [21]. Inadequate oxygen and nutrient supply to the kidney results in tissue inju-

ry (especially in renal epithelium and endothelium) and sterile inflammation, followed 
by repair process [22].  

Epithelial injury 

Proximal tubular cells are the most susceptible component of the nephron during is-

chemic injury [22]. Tubular epithelial cells are very sensitive to hypoxia, because their 

metabolic rate is high which is required for maintaining ion and molecule transport 

[22]. Additionally, there is markedly reduced perfusion in the outer medulla after inju-

ry, making tubules in this region particularly vulnerable [23]. Even after restoration of 

total renal blood flow, this reginal hypoperfusion persists and mediates continued 

hypoxia. This phenomena is known as extension phase of AKI [24]. 

Proximal tubular cells display characteristic morphological changes during ischemia 

injury (Figure 1), which is caused by impaired cytoskeletal integrity and loss of cell 

polarity and tight junctions. The morphological hallmarks include loss of apical brush 

border caused by disrupted microvilli, tubular dilatation as a compensation to cell 

loss, and intraluminal cast formation containing exfoliated cells and microvilli rem-

nants [25]. Cast formation can obstruct tubular lumen, thereby increasing the intralu-

minal pressure and further impairing the glomerular filtration rate [22]. Injured tubular 

cells fail to maintain ion and molecule transport, which causes direct decline of renal 

function. 

Sustained hypoxia leads to cellular injury, and if severe enough, cell death by necro-

sis and apoptosis [22]. Apoptosis is a programmed, highly organized cell death with-

out causing inflammation, whereas necrosis is induced by extreme injury and triggers 

inflammatory responses. Apoptosis is regulated by p53 and its effector genes such 

as PUMA and BAX, which is described in detailed in the capital 1.2.2. Several stud-

ies have reported that intrarenal p53 expression is increased during AKI and inhibi-
tion of p53 can protect kidneys from ischemic injury [26-28].  
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Tubular cells are not only passive victims, but also active contributors to acute kidney 

injury by mediating inflammation [23]. Injured tubular cells release cytokines and 

chemokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß and IL-8 

that attract inflammatory cells [23, 29]. Additionally, tubular cells express increased 

Toll-like receptors during AKI, which initiate a proinflammatory response [23]. Moreo-

ver, tubular cells undergo cell death if the injury is lethal, resulting in inevitable loss of 

function of affected cells [30]. Damage-associated molecular patterns (DAMPs) are 

frequently released during death of tubular cells, thereby amplifying the inflammation 
in tissue damage [30, 31].  

 
Figure 1: Morphological hallmarks of tubular epithelial cells during ischemic injury.  
Illustrations are depicted left and PAS staining of kidney sections are shown right.  
A. Normal proximal tubules are characterized with brush border composed of surface micro-
villi, and abundant mitochondria along the tubular basement membrane. 
B. Tubular cells undergoing acute ischemic injury display morphological hallmarks. These 
include loss of brush border, sparser mitochondria in comparison with normal tubules and 
loss of epithelial cell-cell contacts. Also, tubular dilatation and cell death can be observed. 
Further hallmarks are reduced number of nuclei (⇒) and intraluminal cast formation (à), as 
shown in the PAS staining. 
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Endothelial injury 

Ischemia has also profound effects on renal endothelium of microcirculation, causing 

increased vascular permeability, vasoconstriction and occlusion of microvasculature 

[22, 32, 33]. During ischemic injury, endothelial cells increase the expression of cell 

adhesion molecules such ICAM-1, which activate patrolling leukocytes in the blood 

stream [34]. Also, tight junctions and adherent junctions among endothelial cells are 

disrupted, leading to the loss of cell-cell contacts and breakdown of endothelial barri-

er function [22]. Moreover, sustained vasoconstriction impairs blood flow and further 

compromises microcirculation. Finally, platelet aggregation and decreased level of 

protein C contribute to a hypercoagulable environment. These together leads to mi-

crovascular dysregulation in the kidney. Consequently, leukocytes transmigrate 

through injured renal endothelium into tissues and produce pro-inflammatory cyto-

kines, which aggravates AKI [22]. 

Inflammation 

Ischemic acute kidney injury is accompanied by sterile inflammation, which occurs in 

the absence of infection by microorganisms [22, 23, 35, 36]. Similar to microbially 

induced inflammation, sterile inflammation is characterized by recruitment of neutro-

phils and macrophages, release of cytokines and activation of T and B lymphocytes 

[35]. Here, both innate and adaptive immune system are involved. The innate im-

mune response is the first line of defense [36] and comprises neutrophils, monocytes, 

macrophages, dendritic cells and natural killer cells [23]. During AKI, the innate im-

mune response is initiated by Toll-like-receptors (TLRs) [37]. TLRs are transmem-

brane proteins and located at cell surface or in endosomes [35, 38]. TLRs belong to 

pathogen recognition receptors (PRRs), and can recognize pathogen-derived as well 

as nonpathogen-derived immunogenic molecules [37]. Particularly TLR 2 and 4 play 

a key role to trigger inflammatory responses in AKI [39, 40] . They are stimulated by 

endogenous non-infectious materials released during tissue injury, referred as dam-

age-associated molecular pattern (DAMP) [35]. This results in production of pro-

inflammatory cytokines such as IL-1ß, type I interferon and NF-kB-dependent cyto-

kines and chemokines [37], which amplify immune responses and attract inflammato-

ry cells [23, 36]. TLR-2 and -4 are expressed on immune cells and renal tubular cells, 

and their expression is significantly increased during AKI [41, 42].  
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Repair 

Tubular epithelial cells play a key role in kidney repair after ischemic injury. During 

homeostasis, most renal tubular cells are quiescent and remain in the post-mitotic G0 

phase of the cell cycle. They have a low turnover—less than 1% of renal tubular cells 

are proliferating [43-45]. After injury, however, studies suggest that surviving tubular 

cells dedifferentiate, spread across to denuded basement membrane, reenter into 

cell cycle and proliferate [46-48]. This is followed by differentiation of cells with reas-

sembly of cytoskeleton and reestablishment of cell polarity, so that renal epithelium 

regenerate with restoration of cell number as well as cell function [49] (Figure 2). Due 

to the high proliferative capacity of renal tubular cells, the kidney can completely re-

cover from an ischemic insult, namely “restitution at integrum” [23, 48]. This is de-

scribed as adaptive repair. Nevertheless, the mechanisms of kidney repair are under 

ongoing debate, another opinion is that the tubular compartment is repaired by prolif-

eration of tubular progenitor cells. 

However, incomplete repair after kidney injury occurs frequently, especially when 

injury is severe or sustained, resulting in serious sequelae such as fibrosis. Different 

factors contribute to this maladaptive repair. First, incompletely repaired tubular cells 

are arrested in the G2/M phase of the cell cycle and fail to proliferate properly. More-

over, growth-arrested tubular cells secrete profibrotic growth factors such as TGF-ß, 

leading to increased production of extracellular matrix [44]. Second, it is observed 

that the capillary density in kidneys can be reduced after AKI, known as the phenom-

ena of vascular dropout [50, 51]. This results in chronic hypoxia in kidneys due to 

decreased blood supply and hypertension. Third, pathological immune responses 

participate in post-ischemic fibrosis, including chronic activation of macrophages and 

release of pro-fibrogenic cytokines such as IL-13 and TGF-ß [23]. As a result, fibro-

blasts are activated, inducing interstitial fibrogenesis. Finally, kidney function is im-

paired due to loss of functional nephrons. Notably, maladaptive repair after AKI ac-

celerates the progression into CKD with more rapid onset of ESRD, which are clinical 

important long-term complications of AKI. 
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Figure 2: Ischemic injury and adaptive repair in renal epithelium.  
With ischemic injury, proximal epithelial cells loss their brush border due to disrupted cyto-
skeletal integrity. Moreover, Na+/K+-ATPase pumps and adhesion molecules, which are lo-
cated at the basolateral membrane under physiological conditions, redistribute to the apical 
membrane of proximal tubular cells, leading to loss of cell polarity. With increasing time or 
severity of ischemia, cells undergo either necrosis or apoptosis, whereas the dead and de-
tached viable cells can obstruct the tubular lumen. After injury, surviving epithelial cells or 
progenitor cells migrate to denuded basement membrane, differentiate and replace the lost 
cells. Integrity of functional nephrons is restored. This picture is adapted from Bonventre et 
al., 2011 [23]. 
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1.1.3 Biomarkers for acute kidney injury 

Biomarkers are objectively measured indicators for various biological processes, in-

cluding disease [52, 53]. For instance, serum creatinine is an endogenous produced 

substance and is mainly excreted by kidneys, thus it is used for diagnosis and stag-

ing of acute kidney injury. However, serum creatinine as a biomarker of AKI has its 

limitations. First, level of serum creatinine depends on its generation and secretion, 

whereas the former is influenced by liver synthesis function and muscle mass [3]. 

Second, serum creatinine is determined as a concentration and varies by volume 

status. For example, the value decreases in patients with volume overload, such as 

in case of congestive heart failure [3]. Finally, serum creatinine rises delayed, namely 

after the actual occurrence of renal parenchymal damage or functional deterioration, 

thus hindering early detection of AKI [3, 54-56]. This has led to great enthusiasm in 

discovery and validation of more sensitive and specific biomarkers for AKI. The aim 

is to detect AKI faster, before there is an irreversible loss of organ function [2]. 

Biomarkers for AKI can be categorized in inflammatory, tubular injury and cell cycle 

arrest markers [54, 57] (Table 3). Neutrophil gelatinase-associated lipocalin (NGAL) 

and interleukin 18 (IL-18) mediate inflammation and are elevated already in the early 

stage of AKI [58-60]. Tubular injury markers include kidney injury molecule-1 (KIM-1) 

and liver-type fatty acid-binding protein (L-FABP) that are released during tubular 
damage [57, 61]. 

Table 3: Novel biomarkers for acute kidney injury (modified from [57, 62]) 

Biomarker types Biomarkers Samples Production 
Inflammatory NGAL Urine 25 kDa glycoprotein produced by 

epithelial tissues 

IL-18 Urine,  
serum 

18 kDa cytokine released from prox-
imal tubules, macrophages and in-
testines  

Tubular injury KIM-1 Urine Transmembrane glycoprotein pro-
duced by proximal tubules 

L-FABP Urine 14 kDa intracellular lipid chaperone 
produced in proximal tubules, liver, 
intestines and lung 

Cell cycle arrest TIMP-2  

IGFBP-7 

Urine Produced by all epithelial cells 
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Recently, two mediators for cell cycle arrest have been identified as novel biomarkers 

for AKI, namely urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-

like growth factor-binding protein-7 (IGFBP7). They were discovered and validated in 

independent, multicenter prospective clinical studies in over 1,000 critically ill patients 

[54, 63]. TIMP2 and IGFBP7 are expressed in tubular cells in response to DNA dam-

age and initiate cell cycle arrest at G1/S checkpoint [64, 65]. This is a protective ef-

fect, because division and proliferation of damaged cell can be avoided [57, 66]. In-

terestingly, the product of these two markers, i.e. [TIMP-2] x [IGFBP7] were found to 

have a significantly superior performance in risk stratification for AKI, compared to all 

previously known biomarkers. These findings also underscore the importance of cy-

cle arrest implicated in AKI, providing new insights into the pathophysiology of AKI. 

 

Figure 3: Potential use of new biomarkers for acute kidney injury.  
Conventional markers for AKI such as creatinine is insensitive and non-specific, which can 
lead to delayed recognition and treatment of disease. A series of new biomarkers is discov-
ered as more sensitive and specific in kidney injury and can be utilized in all stages of dis-
ease development. Biomarkers tested in urine or plasma may facilitate identification of sus-
ceptibility of individual patients, early detection of kidney damage, differentiation of injury 
mechanism and track disease progression at advanced stage. Thus, new biomarkers can 
promote timelier diagnosis and therapy, thereby reducing complications and improving the 
overall outcomes. This picture is modified from Lameire et al., 2008 [67]. 

  



Introduction 

 16 

Kidney-specific biomarkers may provide valuable aid in the assessment and man-

agement of AKI (Figure 3). First, they can detect renal structural damage even before 

kidney functional alterations occurs or serum creatinine rises [60, 68]. An early diag-

nosis of acute kidney injury is thus possible, and supportive interventions could be 

timely implemented, such as avoidance of nephrotoxic drugs and optimization of fluid 

management [62]. Second, biomarkers may inform the location and underlying etiol-

ogy of AKI, such as differentiation between prerenal and intrinsic causes [62]. Third, 

biomarkers can help assess the severity and staging of AKI. Finally, biomarkers can 
provide information on prognosis and risk stratification for further complications [55].  

However, these biomarkers have been only very limitedly applied in clinical settings 

[6, 55, 69]. Aside from the cost factors, the interpretive and practical issues need to 

be addressed and there exist no specific clinical recommendations. When should 

clinicians apply biomarker assays? Which one should they choose? What´s the cut-

off value? How can they interpret these data and make their decisions depending on 

the measurement results? Concerning this gap between existing knowledge and pa-

tient management, more research work requires to be accomplished in the future 

[55].  

 

 

Acute kidney injury activates pathways of cell death, which contributes significantly to 

the severity of the syndrome [45]. Especially the injury and death of renal tubular 

cells are precipitating factors and major events during AKI [30]. As p53 plays an im-

portant role in regulating cellular life and death, we focused our research interest on 

roles of molecule p53 and its major negative regulator Mdm2 in renal tubular cells. 
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1.2 p53: guardian of genome 

1.2.1 The protein p53 

p53, well known as „guardian of genome” [70], has been rigorously studied since its 

identification and shed light on the understanding of cellular life and death. In 1979, 

p53 was found as a 54K Dalton protein in cells undergoing malignant transformation 

induced by simian virus 40 or adenovirus [71, 72]. Structural analysis reveals that 

human p53 protein consists of 396 amino acids and is encoded by TP53 gene in 

chromosome 17 [73]. As illustrated in Figure 4A, p53 protein contains structurally and 

functionally four domains [74]. First, a N-terminus transcriptional activation domain 

that interacts with its transcriptional machinery and its negative regulator Mdm2 [74]. 

Second, a proline-rich domain that is important for the apoptotic activity of p53. Third, 

central DNA-binding domain where mutations in cancers usually occur. Fourth, C-

terminus oligomerization domain.  

p53 is ubiquitously expressed in cells, and mainly acts as a transcription factor by 

activating a plethora of target genes. In response to cellular stress such as DNA 

damage, ionizing radiation and oncogene activation, p53 is activated and can induce 

three pathways [75] (Figure 4B):  

1) cell cycle arrest, to ensure time for DNA repair and prevent cells from dividing 

incorrectly; 

2) cell death, such as caspase-dependent apoptosis, to selectively destroy 

stressed cells and protect against tumor formation; 

3) senescence, an irreversible cell-cycle arrest that stops damaged cells from dy-

ing [76]. 

Which scenario occurs, depends ultimately on the extent of injury: cell cycle progres-

sion is stopped if the injury is mild or moderate, whereas cells suffering a severe or 

sustained injury commit suicide when DNA damage cannot be repaired [77-79]. p53-

dependent cell cycle arrest at G1/S checkpoint is mediated via induction of p21 [44].  
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Figure 4: Schematic structure of p53 protein and p53-induced pathways.  
A. p53 protein contains a N-terminus activation domain, a proline-rich domain, a DNA-
binding domain and oligomerization domain. Point of mutations in cancers occur mostly in 
four “hotpots” of the central DNA-binding domain of p53 protein [80], causing loss of p53 
function and malignant transformation of cells. This picture is modified from Vousden et al., 
2007 [81]. B. p53 is a cellular stress sensor. In response to DNA-damage, UV radiation and 
oncogene activation, p53 accumulates and stimulates expression of abundant target genes, 
directing cells either to undergo cell cycle arrest, cell death or senescence. This picture is 
modified from Alberts, Molecular Biology of The Cell, sixth edition, page 1116 [76].  

p21 gene encodes p21 protein, which inhibits the cyclin-dependent kinase (Cdk), an 

essential enzyme of cell cycle. By blocking G1/S-Cdk or S-Cdk, p21 protein breaks 

S-phase progression and stops replication of cellular DNA. Additionally, p53 can ar-

rest cells at G2/M checkpoint, preventing cells to undergo mitosis. Upon lethal dam-

age, p53 can drive cells to exit from cell cycle toward senescence or cell death [44]. 

p53-induced pathways prevent the proliferation of genetic errors during cell replica-

tion and division, and protect cells against malignant transformation [82]. Conversely, 
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reduced p53 level results in decreased cell death and increased proliferation, thereby 

providing advantageous conditions for tumor survival and progression [82, 83]. p53 

was identified as a tumor suppressor protein in 1989, a decade after its discovery. 

Chromosome 17 deletions occur in over 75% of colorectal carcinomas, and p53 turns 

out to be a target of the deletions [84]. With further research, p53 mutation is also 

found in other solid tumors, namely in more than 50% of human cancers overall [85, 

86], a higher rate than for any other known cancer-critical gene [76]. Most point muta-

tions occur in the central DNA-binding domain with abrogation of p53 binding to its 

target DNA sequences, thereby blocking transcriptional activation of these genes 

[87]. In mouse models, p53-null mice spontaneously develop a variety of tumors in-

cluding malignant lymphoma and sarcomas, indicating that p53 deficiency increases 

the susceptibility to neoplasm [88]. Another striking example is Li-Fraumeni-

syndrome, a rare autosomal dominant hereditary syndrome characterized by a high 

risk for various malignancies including sarcoma, leukemia, cancers of breast, brain 

and adrenal gland [89]. It is associated with germline mutation of TP53 gene [90], 

which leads to loss of function of the tumor suppressor protein p53 [90, 91]. The find-

ing of p53 provides new insights in cancer treatments, such as reactivating p53 to kill 

cancer cells. Due to such a great breakthrough in the life science, p53 was named 

“molecule of the year” in 1993 [92]. 

Normally, p53 is maintained at a low concentration in cells by its relatively short half-

life (about 20 min) [87] and its negative regulator Mdm2 [93]. Furthermore, p53 activi-

ty is regulated by a variety of posttranscriptional mechanisms including phosphoryla-

tion, acetylation, sumoylation and glycosylation [94]. Under stress conditions, p53 is 

phosphorylated and cannot be degraded due to abrogation of p53-Mdm2 interaction. 

The level of p53 increases, leading to cycle arrest, apoptosis or senescence.  
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1.2.2 p53 and apoptosis 

Activated p53 can induce apoptosis, directing cells to die. Apoptosis means “falling 

off” in Greek language, as leaves from a tree or petals from flowers [95]. It is a pro-

grammed cell death, through which cells destroy themselves in a highly regulated 

and controlled way. Cells undergoing apoptosis display characteristic morphological 

changes, including cell shrinkage, chromatin condensation (pykosis), nuclear frag-

mentation (karyorrhexix) and membrane blebbing with formation of apoptotic bodies 

[96]. Finally, they are engulfed and “eaten” by neighboring cells or macrophages, 

without leaking any cellular contents or causing a deleterious inflammatory response. 

Apoptosis eliminates cells when they are no longer needed, irreversibly injured, or 

turn to be a threat to the organism [76]. In the human embryonic development, the 

individual fingers and toes separate because apoptosis of cells between them oc-

curs. In homeostatic adult tissues, cell death and cell division must be kept in bal-

ance. Both excessive and insufficient apoptosis are associated with pathological pro-

cesses: while accelerated apoptosis contributes to acute and degenerative disease, 

deficient apoptosis can give rise to tumorigenesis or autoimmune disorders [97]. 

The underlying biochemical mechanism for apoptosis is a caspase-mediated proteo-

lytic cascade (Figure 5). Caspases are intracellular proteases that can cleave specific 

sequences in proteins, thereby activating signal transduction for cell death. There are 

initiator caspases (caspase 8,9) and executioner caspases (caspase 3,6,7), both 

normally exist as inactive precursors in cells and only activated during apoptosis [76]. 

Two best-understood apoptotic pathways are intrinsic and extrinsic pathways [81] 

with considerable crosstalk in between [22, 81]. The intrinsic pathway is mostly trig-

gered by intracellular stress and starts from mitochondrial outer membrane permea-

bilization (MOMP). During MOMP, Cytochrome c, a protein that resides in the inter-

membrane space of mitochondria, is released into the cytoplasm, leading to activa-

tion of initiator caspase 9. MOMP is tightly controlled by BCL-2 family of proteins, 

including pro-apoptotic proteins such as BAX, BAK, PUMA and NOXA and anti-

apoptotic proteins such as BCL and BCX. On the other hand, the extrinsic pathway is 

initiated by the binding of extracellular death ligands (FAS, TNF α) to their responsi-

ble death receptors on the surface of target cells, which recruits initiator caspase 8. 

In both intrinsic and extrinsic apoptotic pathways, executioner caspases are activated 
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by initiator caspases through proteolytic cleavage, thereby performing widespread 

intracellular protein cleavage that kill the cell. 

p53 protein plays a key role in apoptosis. As a transcriptional factor, p53 upregulates 

genes that encode pro-apoptotic proteins PUMA, NOXA and BAX [93]. Moreover, 

p53 has transcriptionally independent activities such as transport of death receptors 

from the Golgi complex to cell surface, thereby engaging extrinsic pathway [98]. 

To date, there are numerous cell death modalities proposed based on morphology 

and signal transduction beyond apoptosis, such as necrosis and autophagy (Table 

4). In contrast to apoptosis, cells undergo necrosis in response to extreme injuries or 

acute insults, such as trauma or toxins. Morphologically, necrotic cells swell instead 

of shrinking, they loss their membrane integrity, burst or disintegrate and spill out 

their cellular contents into extracellular space, causing an inflammatory response 

(Figure 6). Autophagy is a self-eating or self-cleaning process with massive vacuoli-

zation of the cytoplasm [99]. Autophagy can be a pro-survival mechanism that helps 

cells to survive, but can also induce cell death under certain circumstances [100]. 

The mechanism of autophagy is not fully understood and under current debate. 

 

Figure 5: Intrinsic and extrinsic apoptotic pathways.  
p53-induced apoptosis can engage intrinsic and extrinsic pathways. Intrinsic apoptotic path-
way occurs in response to stress stimuli, and is initiated by mitochondria outer membrane 
permeabilisation (MOPS) with release of cytochrome C into cytoplasm. On the other hand, 
extrinsic apoptotic pathway is triggered by the binding of death ligand to their respective cell-
surface receptors. Both pathways trigger a cascade of events, leading to activation of initiator 
and executioner caspases and cell death. 
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Table 4: Comparison of apoptosis, necrosis and autophagy 

Cell death 
mode 

Apoptosis Necrosis Autophagy 

Activation Moderate stress Extreme, acute 
stress like trauma or 
toxins 

Mild stress 

Definition/ 
Category 

Programmed cell death Programmed and not 
programmed cell 
death 

“Self-eating” catabol-
ic process involving 
lysosomes 

Morphology * Cell shrinkage 
* Membrane blebbing 
with maintained integrity 
* chromatin condensa-
tion, nuclear fragmenta-
tion 
* Apoptotic bodies for-
mation 

* Cellular swelling 
* Loss of membrane 
integrity 
* Release of intracel-
lular contents 

* Massive vacuoliza-
tion of the cytoplasm  
* Increased quantity 
of autophagosomes 
formation 

Inflammatory 
response 

No Yes No 

Destiny Cell death: engulfed by 
neighboring phagocytes 

Cell Death: ingested 
by macrophages 

Survival or death 

 

 

Figure 6: Distinct morphological features of apoptosis and necrosis. 
Apoptotic cell shows nuclear fragmentation, while the cell membrane remains intact. The 
formatted apoptotic bodies are engulfed by a phagocytic cell. On the other hand, necrotic cell 
explodes, loses membrane integrity and releases its intracellular contents. 
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1.3 Mdm2: master inhibitor of p53 

In 1987, Cahilly-Synder et al. identified Murine Double Minute 2 (Mdm2) gene as a 

strongly amplified DNA sequence present in a spontaneously transformed murine 

fibroblast cell line 3T3-DM [101]. Mdm2 gene is found in double minutes, which are 

paired acentric chromatin bodies observed in abundant tumors [101]. Mdm2 gene is 

evolutionarily conserved [102], located on chromosome 10 in mice and chromosome 

12 in human [103]. Fakharzadeh et al. provided further in vivo evidence that Mdm2 

gene is tumorigenic, as Mdm2-overexpressing cells transfected in nude mice give 

rise to tumors rapidly [102].  

1.3.1 The protein Mdm2 

The murine Mdm2 gene product is an intracellular protein with a molecular weight of 

54 kDa [102]. Mdm2 protein consists of 489 amino acid [102], including a p53-binding 

domain, an acidic amino acid-rich domain, a zinc-finger-domain and a ring- finger-

domain, as shown in Figure 7 [104, 105]. The ring domain of Mdm2 has E3 ligase 

activity, which is responsible for ubiquitination and degradation of proteins, including 

p53 and itself [106].  

 

Figure 7: Schematic structure of Mdm2 protein.  
From N- to C-terminus, the main motifs of Mdm2 protein are represented as p53 binding do-
main, acidic domain, Zink-finger domain and ring-finger domain. The numbers above the 
figure represent amino acid numbers. This figure is modified from Iwakuma et al., 2003 [104] 

1.3.2 p53-Mdm2 autoregulatory feedback loop 

Why can Mdm2 enhance transformation potential? Momand et al. revealed the rea-

son, as they showed that Mdm2 can bind to the tumor suppressor protein p53 and 

inhibit p53-mediated cell cycle arrest, DNA repair and cell death [107]. In unchal-

lenged cells, p53 and Mdm2 mutually regulate their levels tightly through an autoreg-

ulatory feedback loop (Figure 8). Mdm2 negatively regulates p53 in three ways: 

1) Mdm2 functions as a E3 ubiquitin ligase and target p53 for proteasomal deg-

radation. 
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2) Mdm2 chaperons p53 out of nucleus, namely out of the transcriptional center 

and causes loss of p53 function. 

3) Mdm2 directly blocks the transcriptional activity of p53 by binding to its N-

terminus transactivation domain and causing its configuration change [108]. 

The transcription of p53 target genes is thus diminished.  

In turn, p53 activates the transcription of Mdm2 gene by binding to its P2 promoter. 

That is to say, p53 can upregulate its own inhibitor transcriptionally. During homeo-

stasis, p53-Mdm2 autoregulatory feedback loop keeps both molecules in balance. In 

response to cellular stress, p53 and Mdm2 are posttranslationally modified such as 

with phosphorylation [93, 108], which blocks the p53- Mdm2 interaction. Also, Mdm2 

can ubiquitinate itself upon DNA damage, resulting in auto-degradation [109]. The 

restoration of p53 results in consequent transcriptional activation of p53 target genes, 

leading to cell cycle arrest, cell death or senescence. 

 
Figure 8: p53-Mdm2 autoregulatory feedback loop. 
The E3-ubiquitin ligase Mdm2 negatively regulates p53 by ubiqutination, direct binding and 
nuclear export of p53. Mdm2 can also ubiquitinate itself for proteasomal degradation. In turn, 
p53 activates transcription of Mdm2 gene, resulting in increased level of Mdm2. Thus, p53 
and Mdm2 mutually regulate their levels through an autoregulatory feedback loop. 
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1.3.3 Biological functions of Mdm2 

Mdm2 molecule exerts diverse biological functions in tumor development, embryo-

genesis, homeostatic adult tissues, inflammation and wound healing. 

Mdm2-overexpression promotes tumorigenesis  

Mdm2 is well known as an oncoprotein for its tumorigenic potential, as evidenced by 

numerous animal studies. Jones et al. generated transgenic mice that overexpress 

Mdm2 to 4-fold in comparison with control mice. Strikingly, all these transgenic mice 

develop tumors spontaneously, such as malignant lymphomas and sarcomas [110]. 

Also, mice with Mdm2-overexpression in mammary epithelium or skin are more sus-

ceptible to spontaneous tumor formation compared with control mice [111, 112]. 

Mechanistically, Mdm2-overexpression results in decreased activity of p53-mediated 

cell cycle control and cell death and increased proliferation. This provides growth ad-

vantages for tumor development. 

In human sarcomas, Oliner et al. discovered significant Mdm2 gene amplification and 

overexpression in more than third of 47 analyzed samples [103]. In human leukemias 

and lymphomas, overexpression of Mdm2 gene was observed despite the absence 

of amplification [113]. Furthermore, Momand et al. examined over 3500 samples from 

28 tumor types, and detected Mdm2 amplification in 19 tumor types with an overall 

frequency of 7%. The highest frequency of Mdm2 amplification was found in soft tis-

sue tumors (20%), osteosarcomas (16%) and esophageal carcinomas (13%). [114].  

Although both Mdm2- and p53-muation were observed in abundant malignancies, 

they generally do not occur simultaneously within the same tumor sample [114]. In 

other words, Mdm2 is overexpressed predominantly in cancers with wild-type p53 

[115]. The explanation is that Mdm2 amplification or mutation is a growth advantage, 

only when p53 is wildtype and its activity can be inhibited by Mdm2-overexpression 

[116]. 

Mdm2 is essential for embryogenesis and homeostatic adult tissues 

A complex network of growth stimulatory and differentiation signals is required during 

embryogenesis and organ formation [117]. To check the necessity of Mdm2 for em-

bryonic development, transgenic mice with germline Mdm2-depletion were created. 

Mdm2-null mice die in early embryonic phase prior to implantation and present with 

developmental defects in histological analysis. Strikingly, these lethal phenotypes are 
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completely rescued by co-depletion of p53, as all Mdm2/p53 double-null mice are 

viable and develop normally [118, 119]. These data indicate that Mdm2 is vital for the 

embryonic development, and loss of Mdm2 results in p53-overactivation which leads 

to unimpeded apoptosis and lethality. 

Is Mdm2 also necessary for homeostatic adult tissues? To answer this question, 

Zhang et al. generated inducible Mdm2 knockout mice. Strikingly, global Mdm2 dele-

tion induced by tamoxifen injection causes 100% lethality in both young adult mice 

(2-4 months old) and aged mice (16-18 months), and this phenotype is p53-

dependent [120].  

Experiments with hypomorphic and haploinsufficient mice provided further evidence 

for the necessity of Mdm2 in adult tissues. Mendrysa et al. created mice carrying a 

hypomorphic allele of Mdm2 with a reduction of mRNA levels to approximately 30% 

in all tissues compared to wild-type mice. These genetically altered mice are viable 

and develop normally, but display relative to wild-type mice smaller body size, de-

creased body weight and lighter organs, especially in lymphoid organs such as 

spleen and thymus. This is consistent with major defects in lymphopoiesis presenting 

with markedly declined lymphocytes number in peripheral blood, spleen, thymus and 

bone marrow. Moreover, these mice are more sensible to ionizing radiation in com-

parison with wild-type mice. Interestingly, all these observed abnormalities are 

proofed to be p53-dependent, as crosses with p53-null mice completely rescue the 

deleterious phenotypes [121]. Terzian et al. generated haploinsufficient mice 

(Mdm2+/-) which only have one functioning copy of the wild-type Mdm2 allele, i.e. 50% 

of normal expression. These mice live an average life span but exhibit increased ra-

diosensitivity in a p53-dependent manner, emphasizing the importance of sufficient 

Mdm2 level in response to DNA damage [122]. 

Mdm2 has a proinflammatory role 

Mdm2 has also a p53-independent function in nuclear factor-kappa beta (NF-κB) sig-

naling [115]. NF-κB proteins are transcription regulators that play a central role in 

inflammatory responses. NF-κB-dependent signaling pathway can be activated by 

various cell-surface receptors, such as Toll, Toll-like, IL-1 and TNF receptors. Acti-

vated NF-κB turns on transcription of numerous target genes that participate in in-

flammatory responses [76]. Mdm2 is a transcriptional target as well as a regulator of 
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NF-κB signaling [123-125]. By facilitating NF-κB signaling, Mdm2 has a proinflamma-

tory role [123], which is evidenced by various in vivo studies.  

For instance, in a lupus nephritis mouse model (MRL-Faslpr mice), disease progres-

sion is associated with increased Mdm2 mRNA expression in the spleen and kidneys. 

Mdm2 inhibitor nutlin-3a ameliorates systemic inflammation, as documented by a 

reduction of plasma cells, production of lupus autoantibodies and expansion of T 

cells compared to control mice. Also, nutlin-3a prolongs survival of lupus mice. This 

study suggests that Mdm2 drives inflammation in systemic lupus erythematodes 

(SLE) and antagonizing Mdm2 may have therapeutic potential in SLE [126]. In an-

other mouse model for lipopolysaccharide (LPS)-induced acute lung injury, Mdm2 

antagonist nutlin-3a suppresses lung inflammation by suppressing NF-κB DNA-

binding activity in neutrophils and macrophages [127]. Moreover, MDM2 is overex-

pressed in cells in human atherosclerosis plaques [128], and nutlin-3 significantly 

attenuates NF-kB-dependent inflammation in vascular smooth muscle cells [129]. 

Mdm2 fosters tissue repair and wound healing 

Wound healing is a complex biological process which occurs after an injury [130]. 

Despite the differences of insults and organs, the wound repair process is similar in 

almost all tissues and consists of four overlapping but distinct phases: clotting, in-

flammation, reepithelialization and tissue remodeling [130, 131]. Mdm2 has a propro-

liferatory function by inhibiting p53-mediated cell cycle arrest and apoptosis [123]. 

The growth-promoting effect of Mdm2 is required for tissue repair and wound healing, 

which is elucidated by a study with skin epithelium-specific Mdm2 knockout mice. 

Mice lacking Mdm2 in epidermis develop an accelerated aging phenotype with pro-

gressive hair loss, decreased skin elasticity and thinning epidermis layer over time, 

compared with controls. In wound healing assay by a biopsy on the dorsum, these 

knockout mice exhibit slower wound healing process. Also, in hair growth assay by 

hair shaving, fur re-growth is delayed in knockout mice due to reduced tissue regen-

erative potential upon Mdm2 deletion [132].  
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1.3.4 Mdm2 in the kidney 

In developing mammalian kidneys, Mdm2 and p53 is highly expressed in all cell line-

ages including epithelial, mesenchymal and stromal compartments [133]. To check 

the role of Mdm2 in kidney development, Hilliard et al. created mice with conditional 

deletion of Mdm2 in the ureteric bud epithelium (UBMdm2-/-), which give rise to collect-

ing duct system [117, 133]. These mice die soon after birth and show severe renal 

hypodysplasia, branching defects and nephron deficit caused by aberrant apoptosis 

and growth arrest due to p53 accumulation [133, 134]. In another study, Hilliard et al. 

reported that germline Mdm2 deletion in nephron genitor cells (NPC) leads to perina-

tal lethality as well [135]. NPCs are housed in cap mesenchyme from metanephric 

mesenchyme and have self-renewing ability [117]. NPCMdm2-/- mice display hypo-

plastic kidneys, NPC loss and nephron deficit with increased apoptosis and reduced 

proliferation due to unconstrained p53 activity [135]. The fatal phenotype of both UB-
Mdm2-/- and NPCMdm2-/- mice is rescued by concomitant p53 deletion, suggesting that 

Mdm2 is indispensable during nephrogenesis by restraining p53 activity [117, 133, 

135]. 

Mdm2 mRNA expression in kidneys declines after birth [117]. Nevertheless, Mdm2 is 

consecutively expressed in podocytes and tubular epithelium in adult kidneys [136, 

137] (Figure 9), but what for is not fully understood. To examine the role of Mdm2 in 

homeostatic podocytes, Thomasova et al. generated transgenic mice with podocyte-

specific Mdm2 knockout (Mdm2-/-podocyte) [138]. These mice are vital and phenotypi-

cally indistinguishable from the wildtype until 3 weeks of age. With increased age, 

Mdm2-/-podocyte mice develop evident focal segmental glomerulonephritis with progres-

sive podocyte loss, accompanied by significant proteinuria and reduced lifespan. This 

detrimental phenotype is completely rescued by podocyte-double-knockout 

Mdm2/p53-/-podocyte, indicating that Mdm2 is required for podocytes to maintain home-

ostasis by keeping p53 at low levels [138]. However, whether Mdm2 is also essential 

for renal tubular epithelial cells has not been investigated, which motivates us to ac-

complish further studies as described in this dissertation. 
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Figure 9: Mdm2 is strongly expressed in renal tubular cells. 
Representative images of kidney sections of wildtype mice with C57BL/6 background, 
stained with Lectin tetragonolobus that marks living proximal tubular cells, Mdm2 immunoflu-
orescence and the fusion of both (Lectin/Mdm2). With permission of Dr. Dana Thomasova 
[139]. 

 

Mdm2 drives inflammation by facilitating NF-κB signaling in kidney disease, vice ver-

sa, Mdm2 inhibitor can dampen inflammatory response in kidneys. For instance, in a 

mouse model of adriamycin induced focal segmental glomerulosclerosis, treatment 

with Mdm2 antagonist nutlin-3a significantly attenuates disease progression com-

pared to control mice, as evidenced by reduction of intrarenal cytokine and chemo-

kine expression, glomerular macrophage and T cell amounts, and serum creatinine 

and blood urea nitrogen levels [137]. Also, in experimental rapidly progressive glo-

merulonephritis, either pre-empitive or delayed Mdm2 blockade with nutlin-3a shows 

protective effects by dampening NF-κB dependent inflammation [140]. 

In acute kidney injury, Mdm2 acts like a double-edged sword in mediating both harm-

ful and beneficial effects [141]. Mdm2 fosters inflammation by facilitating NF-kB sig-

naling in the early stage of AKI, but promotes renal regeneration by limiting p53-

mediated cell death in the later stage of AKI [136]. Kidney repair following ischemic, 

septic or toxic injury is conceptually similar to epithelial regeneration in other organs 

including skin wound repair [130, 136]. Adaptive repair after AKI is predominately 

mediated by regeneration of surviving tubular epithelial cells, which finally leads to 

restoration of physiological nephron structure and function [142]. Treatment with 

Mdm2 antagonist nutlin-3a attenuates inflammation, but aggravates acute kidney 

injury in the healing phase, as the growth stimuli of surviving cells are suppressed by 

p53 activation [136]. 
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1.4 Targeting p53-MDM2 interaction: clinical potential 

Human MDM2 protein represents an attractive therapeutic target for cancer therapy 

[143]. Antagonism of MDM2 results in restoration of p53 activity, which leads to cell 

cycle arrest, apoptosis and subsequently suppression of tumor growth. Among differ-

ent approaches of releasing p53 from MDM2 control, inhibition of MDM2-p53 interac-

tion appeared the most progressed strategy [144, 145]. Using the crystallographic 

structures of MDM2 and p53, the first potent and selective small-molecule MDM2 

antagonist nutlin was identified by Vassilev et. al in 2004 [146]. As shown in Figure 

10, Nutlin has a strong affinity to MDM2 and binds to its hydrophobic pocket of N-

terminus, thereby blocking the interaction of MDM2 and p53 specifically [146]. There 

are nutlin-1, nutlin-2 and nutlin-3, whereas nutlin-3 possess the most potent binding 

activity and most commonly used in cancer research [146, 147]. The anti-cancer ef-

fects of nutlin is evidenced by numerous in vivo and in vitro studies. For instance, 

nude mice bearing human cancer xenografts showed successful tumor-growth inhibi-

tion and tumor regression after 3 weeks treatment with nutlin injection [148]. Im-

portantly, nutlin requires wild-type p53 in cancer cells for their effectiveness [144]. 

However, nutlin was found to have poor bioavailability and high toxicity, which pre-

vented its translation to the clinic [145]. Recently, new nutlin-derivatives with optimi-

zation in bioavailability and potency were discovered, some of which have advanced 

into clinical trials for treatment of human cancers [145, 149, 150], such as the most 

developed compound RG7112 [151-153]. 

Nevertheless, potential adverse effects of MDM2 inhibitors are important issues to be 

addressed. One key concern is drug safety regarding the toxicity on normal tissues 

[144]. The desired anti-proliferative and pro-apoptotic effects of MDM2 antagonist in 

cancer can also affect healthy organs and tissues, especially those with a high prolif-

erative index such as hematopoietic system and intestinal epithelium. For instance, 

grad 4 neutropenia and thrombocytopenia were observed in 30% and 15% of pa-

tients in the clinical trial of RG7112 in liposarkoma respectively [154, 155]. Also, long-

term toxicities of exposure to MDM2 inhibitors are not examined [145]. Another con-

cern is acquired resistance of tumor cells to cancer drugs [144]. Taken together, the 

clinical potential of small molecule MDM2 antagonist is promising, yet remains to be 

further studied. 
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Figure 10: Nutlin inhibits p53-MDM2 interaction 
(a) Crystallographic structure of p53-MDM2 binding illustrates that the three amino acid resi-
dues of the p53 protein (green) are inserted into a deep pocket of MDM2 (yellow). (b) Nutlin-
2 (red) mimics the three amino acid residues of p53 (green) and binds to the pocket of 
MDM2 (yellow), thereby efficiently blocking the p53-MDM2 binding. Picture taken from 
Vassilev et al., 2007 [144] with permission (licence number 4335880094078, licence date 
Apr 25, 2018). 
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2 Research hypothesis 

Renal tubular cells are a central component in the pathophysiology of acute kidney 

injury (AKI): they are not only passive victims, but also active participants by mediat-

ing sterile inflammation. Tubular cells also contribute to the kidney regeneration after 

injury. Despite the ongoing debates, one well-recognized theory is that tubular cells 

dedifferentiate and proliferate to replenish the lost cells and restore the functional 

integrity of the nephron. A maladaptive repair, however, can lead to kidney fibrosis 

and chronic kidney disease, which are serious long-term complications of AKI.  

Murine Double Minute 2 (Mdm2) is a key negative regulator of p53. During acute kid-

ney injury, Mdm2 plays dual roles: on one hand Mdm2 promotes inflammation in the 

early stage, which aggravates AKI; on the other hand Mdm2 fosters regeneration in 

the later stage, which is beneficial for the healing after AKI [136].  

However, the role of Mdm2 in homeostatic renal tubular cells is not fully understood. 

Renal tubular cells constitutively express high levels of Mdm2 under physiological 

conditions [136], but what for is unknown. Studies published to date have not investi-

gated the role of Mdm2 in unchallenged tubular cells of adult healthy kidneys in a 

tissue-specific manner. Moreover, MDM2-antagonists such as nutlin and its analogs 

are extensively researched for anti-cancer therapy, which can however suppress 

Mdm2 levels in kidneys with potential side effects. In this background, we studied the 

role of Mdm2in quiescent renal tubular cells with the following hypothesis: 

Mdm2 and its negative regulation of p53 is essential for the homeostasis of renal 

tubular epithelial cells. Deletion of Mdm2 can lead to p53-upreguation, causing disor-

ders and even death of renal tubular cells. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Instruments 

Pipettes 

Serological pipettes 5ml, 10ml, 25ml BD, Heidelberg, DE 

Pipette Pipetman Gilson, Middleton, WI, USA 

Multichanal pipette Eppendorf AG, Hamburg, DE 

Pipette Easypet Eppendorf AG, Hamburg, DE 

Pipette Pipetus Hirschmann Laborgeräte, DE 

Pipetting aid Pipetus-classic Hirschmann Laborgeräte, DE 

Pipette tips 1 - 1000 µl TypGilson Peske, Aindling-Arnhofen, DE 

Pipette tips epT.I.P.S Eppendorf AG, Hamburg, DE 

Balances 

Analytic Balance, BP 110 S Sartorius, Göttingen, DE 

Mettler PJ 3000 Mettler-Toledo, Greifensee, CH 

ELISA 

ELISA reader Tecan, GENios Plus Tecan, Crailsheim, DE 

ELISA Micoplate Strip Washer ELx50 BioTek, Bad Friedrichshall, DE 

Centrifuges 

Centrifuge Heraeus, Minifuge T VWR Internation, Darmstadt, DE 

Centrifuge Heraeus, Sepatech Biofuge A Heraeus Sepatech, Osterode, DE 

Centrifuge 5415 C Eppendorf, Hamburg, DE 

Centrifuge 5418 C Eppendorf, Hamburg, DE 

Universal 16 Hettich, Bäch, CH 

RNA isolation, gel electrophoresis, cDNA and Real-time PCR 

Homogenizer Ultra Turrax T25 IKA GmbH, Staufen, DE 

Nano drop PEQLAB Biotechnology, Erlangen DE 

Electrophoresis gel chamber MiniVE Amersham, Glattbrugg, CH 

Electrophoresis voltage power PAC 3000 BioRad, Munich, DE 

LightCycler 480 Real-Time PCR System Roche, Basel, CH 

Adhesive Foil Roche, Basel, CH 
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LightCycler 480 Multiwell-Plate 96 Roche, Basel, CH 

Histology and Microscopes 

Microtome HM 340E Microm, Heidelberg, DE 

Tissue processors Leica Microsystems, Wetzlar, DE 

Light microscope Leitz DM IL Leica Microsystems, Wetzlar, DE 

Light microscope Zeiss Axioplan 2 Carl-Zeiss AG, Oberkochen, DE 

LSM 510 confocal microscope Carl-Zeiss AG, Oberkochen, DE 

Libra 120 Carl-Zeiss AG, Oberkochen, DE 

CCD camera Tröndle, Moorenwies, DE 

Axiocam HR Carl-Zeiss AG, Oberkochen, DE 

JEOL 1200 EX electron microscope JEOL, Tokyo, Japan 

Miscellaneous 

Disposable cuvettes 1,5m Brand, Gießen, DE 

Eppendorf tubes 1,5ml TPP, Trasadingen, CH 

Falcons 15ml, 50ml BD, Heidelberg, DE 

Thermomixer 5436 Eppendorf, Hamburg, DE 

Vortex Genie 2TM Bender & Hobein AG, Zürich, CH 

pH meter WTW WTW GmbH, Weilheim, DE 

3.1.2 Materials for animal experiments 

Doxycycline Sigma-Aldrich, Steinheim, DE 

Sucrose B. Braun, Melsungen, DE 

Blood sample collection 

EDTA Biochrom, Berlin, DE 

Isofluran Forene Abbott, Chicage, USA 

Mikropipetten 20µl Blau, Wertheim, DE 

Kidney isolation 

Formaldehyde ThermoFischer, Waltham, USA 

RNA-later Qiagen GmbH, Hilden, DE 

Embedding cassettes Simport, St.-M.-de-Beloeil, CA 

3.1.3 Materials for molecular biology methods 

DNA isolation 

QIAamp DNA Mini Kit Qiagen GmbH, Hilden, DE 
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Proteinkinase K Merck, Darmstadt, DE 

RNA isolation 

PureLink® RNA Mini Kit Qiagen GmbH, Hilden, DE 

RNase free Spray Gene Choice, Frederick, USA 

RNase-Free® DNase Set Qiagen, Hilden, DE 

β-Mercaptoethanol Carl Roth, Karlsruhe, DE 

100 % Ethanol Merck, Darmstadt, DE 

Gel electrophoresis 

Agarose powder Invitrogen, Karlsruhe, DE 

Ethidium bromide Roth, Karlsruhe, DE 

RNA loading buffer Sigma-Aldrich, St. Louis, USA 

10x MOPS buffer 200 mM MOPS, 50 mM sodium acetat, 10 

mM EDTA, 50 mM sodium acetate, adjust 

pH to 7.0 with 1 N NaOH, solved in 1 L water 

I x TBE buffer 108g Tris, 55g boric acid, 5.84g EDTA, 

solved in 10 L water 

cDNA Synthesis  

Nano drop PEQLAB Biotechnology, Erlangen DE 

Thermomixer 5436 Eppendorf, Hamburg, DE 

Superscript II (Reverse transcriptase) Invitrogen, Karlsruhe, DE 

Linear Acrylamid Ambion, Darmstadt, DE 

0,1M DTT Invitrogen, Karlsruhe, DE 

25 mM dNTPs GE Healthcare, München, DE 

5x First Strand Buffer Invitrogen, Karlsruhe, DE 

Diethyl pyrocarbonate (DEPC) Sigma-Aldrich, St. Louis, USA 

RNAsin® Promega, Fitchburg, USA 

Hexanucleotide-Mix Roche Life Science, Basel, CH 

 

Real time polymerase chain reaction (RT-PCR) 

Primer Metabion GmbH, Planegg, DE 
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Table 5: Primers used for PCR 

Gene Primer sequence  

18s Forward primer 5´-GCA ATT CCC CAT GAA CG-3´ 

 Reverse primer 5´-AGG GCC TCA CTA AAC CAT CC-3 

Mdm2 Forward primer 5´-TGT GAA GGA GCA CAG GAA AA -3´ 

 Reverse primer 5´-TCC TTC AGA TCA CTC CCA CC -3´ 

Cre Forward primer 5´-GCA TAA CCA GTG AAA CAG CAT TGC TG-3´ 

 Reverse primer 5´-GGA CAT GTT CAG GGA TCG CCA GGC G-3´ 

Pax8 Forward primer 5´-CCA TGT CTA GAC TGG ACA AGA-3´ 

 Reverse primer 5´-CTC CAG GCC ACA TAT GAT TAG-3´ 

p53 Forward primer 5'-CTA GCA TTC AGG CCC TCA TC-3´´ 

 Reverse primer 5'-TCC GAC TGT GAC TCC TCC AT-3' 

p21 Forward primer 5´-CGGTGTCAGAGTCTAGGGGAn-3´ 

 Reverse primer 5´-ATCACCAGGATTGGACATGG-3´ 

Puma Forward primer 5´-CACCTAGTTGGGCTCCATTT-3´ 

 Reverse primer 5´-ACCTCAACGCGCAGTACG-3´ 

Kim-1 Forward primer 5'-TGG TTG CCT TCC GTG TCT CT-3' 

 Reverse primer 5'-TCA GCT CGG GAA TGC ACAA-3' 

Ngal-1 Forward primer 5´-TGA ACT TCT GAA AAC GGCT-3 

 Reverse primer 5´-AGC AGC AAG GGC ACA AT-3´ 

Timp-2 Forward primer 5´-CGT TTT GCA ATG CAG ACG TA-3´ 

 Reverse primer 5´-GAA TCC TCT TGA TGG GGT TG-3´ 

Tgf-beta Forward primer 5′-GGA GAG CCC TGG ATA CCA AC-3′ 

 Reverse primer 5′-CAA CCC AGG TCC TTC CTA AA-3′ 

Fibronectin Forward primer 5′-GGA GTG GCA CTG TCA ACC TC-3′  

 Reverse primer 5′-ACT GGA TGG GGT GGG AAT-3′  

Collagen 1a1 Forward primer 5′-ACA TGT TCA GCT TTG TGG ACC-3′  

 Reverse primer 5′-TAG GCC ATT GTG TAT GCA GC-3′  

Collagen 4a1 Forward primer 5′-GTC TGG CTT CTG CTG CTC TT-3′  

 Reverse primer 5′-CAC ATT TTC CAC AGC CAG AG-3′  

a-Sma Forward primer 5′-ACTGGGACGACATGGAAAAG-3′ 

 Reverse primer 5′-GTTCAGTGGTGCCTCTGTCA-3′ 
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10x Taq buffer without detergent Fermentas, St. Leon-Rot, DE 

SYBR Green Dye detection Applied Biosystems, Norwalk, USA 

BioStab PCR Optimizer Bitop, Witten, DE 

10 x PE-buffer ThermoFisher, Waltham, USA 

1,25mM dNTPs Metabion GmbH, Planegg, DE 

Taq-DNA-Polymerase New England BioLabs, Ipswich, USA 

Diethyl-Pyrocarbonat (DEPC) Sigma-Aldrich, St. Louis, USA 

SYBR Green  Roche, Mannheim, DE 

 

Creatinine FS kit DiaSys, GmBH, Holzheim, DE 

Urea FS kit DiaSys, GmBH, Holzheim, DE 

3.1.4 Materials for histological methods 

PAS stain 

Periodic acid-Schiff (PAS)  Sigma-Aldrich, St. Louis, USA 

Xylene Merck, Darmstadt, DE 

Immunohistochemistry and immunofluorescence 

Unmasking solution Vector Laboratories, Burlingame, USA 

Avidin/biotin blocking kit Vector Laboratories, Burlingame, USA 

Avidin/biotin complex reagent Sigma-Aldrich, St. Louis, USA 

Tris-hydrochlorid Sigma-Aldrich, St. Louis, USA 

Nickel (II)-chloride Sigma-Aldrich, St. Louis, USA 

Hydrogen peroxide (H2O2)  Sigma-Aldrich, St. Louis, USA 

DAB Sigma-Aldrich, St. Louis, USA 

DAB staining solution 200 ml TRIS-HCL (37°C), 4ml DAB, 1ml 

NiCl2, 500 µl 3% H2O2 

Methyl green  Sigma-Aldrich, St. Louis, USA 

Vecta Mount mounting medium 

 

Antibodies 

Vector Laboratories, Burlingame, USA 

Anti-mouse Mdm2 (rabbit)  Abcam, Cambridge, UK 

Anti-mouse p53 (rabbit) Vector Laboratories, Burlingame, USA 

Anti-mouse Ki-67 (rabbit) Dako Deutschland GmbH, Hamburg, DE 

Anti-mouse cleaved caspase-3 (rabbit) Cell signaling Technology, USA 

Lotus Tetragonolobus Lectin Vector Laboratories, Burlingame, USA 

Tamm-Horsfall protein Santa Cruz, CA, USA 
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Anti-mouse Aquaporin 2 (rabbit) Abcam, Cambridge, UK 

DAPI Sigma-Aldrich, St. Louis, USA 

Cell death detection (TUNEL) kit Roche, Mannheim, DE 

Electron microscope 

Glutaraldehyde Sigma-Aldrich, St. Louis, USA 

Paraformaldehyde Sigma-Aldrich, St. Louis, USA 

Sodium cacaodylate (buffer 7.4) Sigma-Aldrich, St. Louis, USA 

Propylene oxide Sigma-Aldrich, St. Louis, USA 

Embed-812 EM Sciences, Hatfield, USA 

Uranyl acetate Sigma-Aldrich, St. Louis, USA 

Lead(II) nitrate Sigma-Aldrich, St. Louis, USA 

3.1.5 Softwares 

Microsoft Office 365 Microsoft, WA, USA 

Graphpad Prism 6 GraphPad Software, Inc., CA, USA 

Endnote X8 Thomson- Reuters, NY, USA 

Adobe Illustrator CC 2017 Adobe Systems Incorporated, USA 

Software LSM Carl Zeiss, Oberkochen, DE 
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3.2 Animal experiments 

3.2.1 Animal housing 

All mice were raised in poly-propylene cages under standard conditions with the 

room temperature of 22±2°C and 12 hours light and dark cycle. Maximal 5 mice were 

housed in each cage. All mice were supplied with water and standard chow diet 

(Sniff, Soest, Germany) ad libitum for the entire duration of the study. Cages, bed-

ding, nestles, food, and water were sterilized by autoclaving before contact with mice. 

Transferring and separating the young animals was always performed in a sterile 

environment. The regulations of Deutsches Tierschutzgesetz and the European Di-

rective 2010/63/EU were strictly followed all the time. All animal handlings and exper-

iments were performed with approval of the Regierung von Oberbayern. 

3.2.2 Generation of Pax8rtTA-Cre;Mdm2flox/flox mouse line 

We generated inducible tubular cell-specific Mdm2 knockout mice Pax8rtTA-

Cre;Mdm2flox/flox. This novel mouse model allows us to specifically study the roles of 

Mdm2 in tubular epithelium in vivo.  

Transgenic animals are nowadays widely used in the scientific research to explore 

functions of certain genes in complex biological processes such as embryogenesis or 

cancer, or to establish disease models. Different genetic alteration strategies in ex-

perimental animals are compared in Table 6. In traditional gene-knockout model, 

gene of interest is deleted in all cells, thus not specific for a certain cell lineage. In 

contrast, conditional gene-knockout targets a specific cell type and allows a more 

precise investigation of the gene functions in the organism. Moreover, with inducible 

gene knockout system, gene of interest is only deleted upon induction, thereby cir-

cumventing any developmental abnormalities or neonatal lethality caused by gene 

knockout. Also, this provides an exquisite way to study on adult organ physiology. 

The inducible system, in which the investigators can turn genes on and off when and 

where they choose, is therefore a breakthrough in the methodology of life science 

research [156]. 

 

 

 



Materials and Methods 

 40 

Table 6: Comparison of different gene alterations in transgenic animals 

Gene-
knock-out 

Traditional gene-
knockout 

Non-selective gene deletion in the germline 

Conditional gene-
knockout 

Tissue-specific gene deletion with high selectivity, e.g. 
by using Cre/loxP or CRISPR/Cas9 system 

Inducible gene-
knockout 

Gene deletion only upon induction, e.g. by using tetra-
cycline-dependent (Tet) system 

Gene knock-down The genome of the organism is unchanged. The gene 
expression is decreased by interfering RNA or inhibi-
tors.  

Gene knock-in An additional gene of interest is inserted in the 
germline 

Here, we exploited Cre/loxP and Tet (tetracycline-dependent) system to generate 

tubular cell-specific Mdm2-knockout mice. Cre recombinase (cause recombination) is 

an enzyme originally found in the bacteriophage P1, a virus which infects and repli-

cates in a bacterium. Cre is required by bacteriophage P1 for integration and excision 

of its own DNA into the chromosome of infected bacterium [157, 158]. LoxP (locus of 

crossing over of P1 phage) is a short DNA motif acting as the recognition site for Cre 

recombinase. Enzymatically, Cre catalyzes DNA recombination between two loxP 

sites, resulting in removal of DNA-sequence from the chromosome [158]. To gener-

ate inducible tissue-specific knockout mice, we crossed transgenic mice carrying Cre 

recombinase gene under the control of Pax8 promoter (Pax8-rtTACre) and mice with 

Mdm2 gene flanked by loxP (Mdm2flox/flox) (Figure 11). Promoter Pax8 is highly ex-

pressed in all proximal, distal tubules and the whole conducting system of both fetal 

and adult kidney [159, 160], but almost absent in other organs except for the thyroid 

gland [160, 161]. The Pax8-rtTACre mice were kindly provided by T. Huber (Universi-

ty of Freiburg, Freiburg, Germany), and Mdm2flox/flox mice were from laboratory of G. 

Lozano (University of Texas, Huston, USA). Both mice lines were characterized and 

described before [161, 162]. 

The crossbreeding yielded double-transgenic mice Pax8rtTA-Cre;Mdm2flox/flox which 

were born at expected Mendalian ratios. These transgenic mice developed normally 

and were phenotypically indistinguishable from the wildtype mice. Mdm2flox/flox litter-

mates lacking the Pax8rtTA-Cre transgene served as controls. Pax8rtTA-

Cre;Mdm2flox/flox mice express Cre recombinase under control of Pax 8 promoter in a 

tetracycline-dependent manner.  
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Figure 11: Generation of tubular cell-specific Mdm2 knockout mice. 
A. We crossbred Pax8-rtTACre mice and Mdm2flox/flox mice to generate double-transgenic 
Pax8rtTA-Cre;Mdm2flox/flox mice. B. Pax8rtTA-Cre;Mdm2flox/flox mice expresses reverse tetra-
cycline-dependent transactivator (rtTA) in all renal tubular epithelial cells under the control of 
Pax8 promoter. In absence of the inducer doxycycline (doxy), no genetic alteration occurs in 
Pax8rtTA-Cre;Mdm2flox/flox mice and the Mdm2 alleles should have wild-type activity [156]. 
Upon doxycycline induction, doxycycline forms a complex with rtTA dimers which specifically 
binds to tet operon (TetO), leading to activation of a minimal promotor (TATA) and transcrip-
tion of Cre recombinase. Cre recognizes both loxP sites flanking Mdm2 gene and causes 
recombination, resulting in Mdm2 gene excision. This picture is modified from Lewandoski et 
al., 2001 [156]. 

3.2.3 Doxycycline treatment regime 

To induce Cre recombinase expression and subsequent Mdm2 deletion in tubular 

cells, we subjected experimental and control mice to different doxycycline treatment 

regimes (2mg/ml in drinking water supplemented with 5% sucrose):  

1) Continuous treatment regime: both Pax8rtTA-Cre;Mdm2flox/flox and control mice 

were administered with doxycycline continuously for 4, 8 and 11days in three groups. 

Each group consisted of 4-6 mice that were matched in sex, age and weight. 
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2) Intermittent treatment regime: both Pax8rtTA-Cre;Mdm2flox/flox and control mice 

were administered with doxycycline for only 2 days and then with pure water for 5 

days before they were induced again, repeated for 4 weeks. 

3.2.4 Genotyping 

Mouse genotype was determined with DNA samples obtained from 2 mm tissues of 

mouse tail tips. Gene sequences to be determined were amplified by PCR and eval-

uated by gel electrophoresis. Genotyping was performed in three steps: 

1) DNA isolation: The mouse tissues were lysed in proteinase-K buffer at 56°C 

under constant shaking for 4 hours, so that proteins were hydrolyzed and ge-

nomic DNA were exposed. The genomic DNA were eluted after serial steps of 

centrifugation and purification with DNA kit (Qiagen GmbH, Hilden, DE) as per 

manufacturer’s instructions. 

2) Polymerase chain reaction (PCR): Genes of interest were amplified by PCR, 

namely wild-type and floxed Mdm2, Pax8 and Cre. 0.5 μl of the isolated DNA 

was mixed with 1 μl of each 1:10 diluted forward and reverse primers and a 

master mix of 2.5 μl of 10 × PE buffer, 4.0 μl of 1.25 mM dNTPs, 5 μl of PCR 

optimizer, 0.2 μl of Taq polymerase and 13.0 μl of H2O to a total volume of 

27.2 μl. For Mdm2 genotyping, wildtype as well as floxed Mdm2 were exam-

ined with the respective primers (Figure 12). Samples with distilled water in-

stead of mouse DNA served as negatives controls. 

3) Gel electrophoresis: The evaluation of the amplicons was carried out by aga-

rose gel electrophoresis (Figure 12). Expected bands length:  

Pax8rtTA 640 bp 
Cre recombinase 300 bp 
Mdm2 Wildtype 342 bp 
Mdm2 flox 474 bp 
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Figure 12: Genotyping for wild-type and floxed Mdm2 gene 
Wild-type Mdm2 gene as well as floxed Mdm2 gene were examined for mouse genotyping. 
Evaluation of DNA samples relies on the reading of the bands on gel electrophoresis. In the 
picture from left to right: negative control, Mdm2wt/wt, Mdm2wt/flox and Mdm2flox/flox for the last 4 
bands. WT: wild-type. 

3.2.5 Blood sample collection 

Mice were anesthetized using 2.5 % isoflurane in oxygen with a flow rate of 2 L/h. 

Blood were taken from retrobulbar plexus using micro lancet and collected into 

EDTA-containing centrifuge tubes (10 μl of 0.5 M EDTA solution for 200 μl of blood). 

Blood samples were subsequently centrifuged at 8000 rpm for 5 minutes. The col-

lected plasma was stored at -20°C until further use.  
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3.3 Molecular biological methods 

3.3.1 RNA isolation 

RNA isolation from mice kidneys was performed with RNA isolation kit (PureLink® 

RNA Mini Kit, Qiagen GmbH). Kidneys were extracted from sacrificed mice, immedi-

ately preserved in RNA-later solution and stored at -20°C until processed for RNA 

isolation. Because a stable enzyme RNAse exists ubiquitously and can split up RNA, 

we used disposable gloves and RNase-free water during the whole procedure to 

avoid RNA degradation by RNase. There were two main steps for RNA isolation: 

1) Lysis and homogenization: Lysis buffer (600 μL) containing guanidine isothi-

ocynate and 1% β-mercaptoethanol (10 μL/mL) were freshly prepared. Next, 

kidney tissues were homogenized in lysis buffer with blade homogenizer for 30 

seconds at speed level 4. The homogenate was centrifuged at 6000 rpm for 5 

minutes. 550 μL of supernatant were transferred into a DEPC-treated RNase-

free tube. Subsequently, 550 μL 70 % ethanol was added to the tube and 

mixed gently, until visible precipitate was dispersed. The whole mixture was 

then transferred into a RNA column. 

2) RNA purification: We proceeded RNA isolation by steps of binding, washing 

and elution of RNA as per manufacturer’s instruction. The chemical chloroform 

and centrifugation processes led to separation of the mixture in 3 layers: the 

upper layer contained RNA, the middle layer contained DNA and the lowest 

layer contained proteins. RNA in watery supernatant was separated from other 

two layers and then precipitated with ethanol. Finally, the membrane of spin 

cartridge with bound RNA was dried to get rid of ethanol and RNA was eluted 

in RNase-free water. 

Next, the amount, purity and integrity of the isolated RNA were checked as described 

below, and RNA samples were kept on ice for immediate downstream application or 

stored at -80°C for long-term storage.  

3.3.2 RNA quantification and purity check 

The isolated RNA samples were quantified with Nano drop based on the principle of 

absorption spectroscopy. DNA and RNA molecules absorb ultraviolet light with an 
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absorption maximum at wave length of 260 nm, so that their concentration can be 

determined by a spectral photometer according to Beer-Lambert law (Figure 13): 

E λ =- lg
I0
I1

=eλ×c×d 

In case of Nano drop, 2 μL of RNA sample was added in a quartz cuvette in a meas-

urement chamber of a spectral photometer, and ultraviolet light with a wave length of 

260 nm was emitted from one side the of cuvette. On the other side of cuvette, the 

intensity of transmitted UV was detected (Figure 13). The more light absorption in the 

cuvette, the higher is the concentration of RNA. 

The contamination of nucleic acid with proteins can be checked with OD260 nm/OD280 

nm ratio (OD: optical density), as proteins have an absorption maximum at wave 

length of 280 nm. Only if the OD ration is between 1.8 and 2.0, the RNA or DNA 

samples were considered as approximately protein-free and of acceptable quality.  

 

Figure 13: Principle of Nano drop.  
I0: intensity of entering UV-light, I1: intensity of transmitted UV-light, λ: wave length, d: thick-
ness of cuvette. According to Beer-Lambert law, i.e. E λ =- lg I0 I1 =eλ×c×d (E: extinction 
coefficient or optical density, c: concentration of RNA samples), concentration of RNA sam-
ples can be calculated. This figure is modified from BASIC Experimentelle Doktorarbeit, 2010 
[163]. 

3.3.3 RNA integrity check 

If necessary, RNA quality check for its integrity was carried out by agarose gel elec-

trophoresis, which was commonly used for separation and analysis of nucleic acids. 

Nucleic acids are negative charged molecules and migrate from cathode to anode in 

the electric field through the porous agarose gel at different rates, which are largely 

dependent on their molecular mass. 
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A RNA denaturing gel consisting of agarose and MOPS buffer was placed in a buffer-

filled electrophoresis chamber. RNA samples were dissolved in 3µL DEPC-treated 

water, 2µL 10xMOPS buffer, 10µL formamide, 4µL formaldehyde 37% and 1µL eth-

idium bromide. Ethidium bromide was used for detecting nucleic acids, because it 

intercalates with base pairs of nucleic acids and fluoresces under ultraviolet light. 

Next, RNA samples, markers and tracking dye (bromophenol blue) were added into 

wells of the agarose gel and an electrical field with approximately 80 volts was 

charged for 1 hour. Bands on the gel were visualized on a gel documentation device 

under a UV lamp and printed out (Figure 14). Single bright bands in the agarose gel 

indicated good quality of RNA samples, whereas smears in the gel revealed loss of 

RNA integrity.  

 

Figure 14: RNA integrity check with gel electrophoresis. 

3.3.4 cDNA synthesis 

The isolated RNA samples were as next converted to cDNA (complementary DNA), 

because only DNA but not RNA can be amplified by PCR. To do so, reverse tran-

scriptase (RT) II from Invitrogen was used, which is a modified version of MMLV 

(Moloney murine leukemia virus-)-RT. Reverse transcriptase was originally found in 

retroviruses such as HIV. As a RNA-dependent DNA-polymerase, reverse transcrip-

tase can transcript RNA to complementary, double-stranded DNA and integrate virus 

genome into host genome.  

To conduct cDNA conversion, RNA samples were diluted with RNase-free water to 

reach a concentration of 1μg/20 μL. Next, Master Mix was prepared as a mixture of 4 

μl of 5x first strand buffer, 0.4 μl of 25 mM dNTP, 1 μl of 0.1 M DTT, 0.25 μl of linear 

acrylamide, 0.215 μl of Hexanucleotide, 0.5 μl of 40U/μl RNAsin, 0.435 μl of Super-
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script or ddH2O in the case of negative control. To start reverse transcription, 6.8 µl 

of Master Mix was added to each diluted RNA sample to a total volume of 20 μl, and 

the tubes were incubated on a thermal shaker at 42°C for 1.5 hours. The enzymatic 

reaction was ended by heating the tubes at 85°C for 5 minutes to denature the en-

zymes. The cDNA samples were diluted 1:10 and stored at -20°C until used for real-

time PCR. 

3.3.5 Real-time quantitative polymerase chain reaction (RT-PCR) 

Polymerase chain reaction (PCR) was carried out as a central part of molecular biol-

ogy methods. With the technique of PCR, small amount of DNA can be exponentially 

amplified in vitro and therefore easily detected in a sufficient amount. To do so, DNA 

polymerase, nucleotides, primers specific for genes of interest, SYBR Green and ap-

propriate buffer system were required. Taq DNA polymerase was commonly used for 

PCR because it is heat-resistant, as it was originally found in a bacteria species 

named Thermus aquaticus that lives in hot springs and tolerates high temperature up 

to 100°C. SYBR Green was applied for DNA detection, as it intercalates with double-

stranded DNA and fluoresces under light stimulation. The increase of florescence 

signal from cycle to cycle is directly proportional to the increase of the amplified DNA. 

2 μl of the 1:10 diluted cDNA samples were mixed with 10 μl of SYBR green master 

mix, 0.6 μl of each 1:10 diluted forward primer and reverse primer, which are specific 

for the gene of interest, 0.16 μl of Taq polymerase and 6.64 μl of distilled water to a 

total volume of 20 μl. RT minus and ddH2O served as negative controls. 

Real-time quantitative PCR was performed in a programmed thermal cycler (Light 

Cycler 480). Each amplification cycle consisted of three steps and was repeated for 

45 cycles:  

1) Denaturation at 95°C: denaturation and complete separation of double-

stranded DNA to single-stranded DNA; 

2) Annealing at 60°C: gene-specific primers (Table 5) bind complementary to 

single-stranded DNA and represent the starting point of amplification; 

3) Elongation at 72°C: Taq polymerase works in its optimal temperature. It be-

gins at 3´ end of primer and adjoins nucleotides to form a new, complementary 

DNA fragment. 
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Figure 15: Principle of real-time quantitative PCR 
A. Each amplification cycle of PCR consisted of denaturation, annealing and elongation. This 
picture is modified from BASICS Experimentelle Doktorarbeit, 2010 [163]. B. Example ampli-
fication curves of cDNA samples. C. Example melting curves for quality check.  
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The RT-PCR results were illustrated on amplification curves (Figure 15), as fluores-

cence signal was plotted against the number of cycles on a logarithmic scale. To 

quantify gene expression, Ct value was introduced and defined as the number of cy-

cles at which the fluorescence exceeds the threshold. ΔCt was calculated by sub-

tracting Ct value of a housekeeping gene from Ct value of gene of interest (ΔCt = 

CtSample-Ct18s). 18s gene is constitutively expressed in all cells and used as the 

housekeeping gene in our experiments. In this way, the variation in amount and qual-

ity of different samples could be normalized. The calculation was performed as fol-

lows: 

R=2-(CtSample-Ct18s)  

The melting curves were generated at the end of RT-PCR and analyzed for each 

sample to detect unspecific products and primer dimers (Figure 15). 

3.3.6 Creatinine measurement 

Plasma creatinine levels were measured with Creatinine FS kit based on Jaffe reac-

tion, which is a colorimetric method firstly described by German biochemist Max Jaffe 

(1841-1911) in 1886. In Jaffe reaction, creatinine reacts with picric acid in an alkaline 

solution and forms an orange-red complex: 

 Creatinine + Picric acid → Creatinine picrate complex	 

As the color change is directly proportional to creatinine concentration, creatinine 

levels can be determined by the difference in absorbance of the complex at defined 

times. Although Jaffe reaction is non-specific for creatinine, it is till now the most 

widely used method in clinical chemistry for creatinine analysis.  

As instructed by the manufacturer, we prepared serial dilutions of the standard and 

mono reagent by mixing 4 parts of reagent 1 (R1, sodium hydroxide) and 1 part of 

reagent 2 (R2, picric acid). Next, 10 μl of each defrozen plasma sample and stand-

ards were added to a 96-well flat bottom plate (Nunc maxisorb plate), followed by 

adding the mono reagent (200 µl) to each well. We incubated the reaction mixture at 

20-25°C for 60 seconds and read the absorbance A1 at 492 nm by using an ELISA 

plate reader. After 120 seconds, absorbance was measured again as A2. The 

change in absorbance (Δ A) was defined as Δ A = [(A2 – A1) sample or standard] – 
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[(A2 – A1) blank]. Finally, calculation of creatinine concentration in the samples was 

performed as follows: 

Creatinine mg/dl =  
ΔA sample

ΔA standard × Concentration of standard (mg/dl) 

3.3.7 BUN measurement 

Plasma BUN levels were measured using Urea FS kit. The principle of the measure-

ment is an enzymatic UV test with urease and GLDH: 

  Urea+2 H2O 
Urease

 2 NH4
++2 HCO3

-  

  2-Oxoglutarate+ NH4
++NADH 

GLDH
 L-Glutamate	+	NAD++  H2O  

GLDH: Glutamate dehydrogenase 

According to manufacturer’s instructions, we prepared serial dilutions of standard 

which is provided in the kit. Mono reagent was made as a mixture of 4 parts of rea-

gent 1 (R1, containing TRIS, 2-Oxoglutarate, ADP, urease and GLDH) and 1 part of 

reagent 2 (R2, NADH) provided in the kit. Next, 2 μl of each of plasma sample and 

standards were added to a 96-well flat bottom plate (Nunc maxisorb plate), followed 

by adding the mono reagent (200 µl) to each well. We incubated the reaction mixture 

at 25°C for 60 seconds and read the absorbance A1 at 360 nm by using an ELISA 

plate reader. After 120 seconds, absorbance was measured again as A2. The 

change in absorbance (Δ A) was defined as Δ A = [(A2 – A1) sample or standard] – 

[(A2 – A1) blank]. Finally, calculation of urea concentration in the samples was per-

formed as follows: 

Urea mg/dl =  
ΔA sample

ΔA standard × Concentration of standard (mg/dl) 

Urea was converted to BUN as: 

BUN mg/dL × 2.14 =Urea (mg/dL) 
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3.4 Histological methods 

3.4.1 Histological sections 

To study the microscopic structures and pathology, histological sections of mice kid-

neys were carried out with the following steps: 

1) Fixation: The isolated kidney tissues were fixed in 4% neutral-buffered forma-

lin overnight to preserve tissues from degradation. Formalin can cross-link 

basic amino acids of proteins irreversibly and maintain the structural integrity 

of cells and subcellular components. 

2) Processing and embedding: Kidney tissues were deprived of water by incubat-

ing in gradually more concentrated alcohol baths, followed by using a hydro-

phobic clearing agent xylene to remove the alcohol. Then the tissues were 

embedded in lipophilic paraffin which replaced xylene and solidified. The par-

affin blocks were cooled down and sliced into 4 µm sections using a micro-

tome. 

3) Deparaffinization and rehydration: The sections were deparaffinised with xy-

lene, the rehydrated by incubating in a graded serious of ethanol (100%, 95%, 

70% and 50%) and washed with distilled water.  

3.4.2 Periodic acid-Schiff (PAS) staining  

The periodic acid-Schiff (PAS) staining was performed for routine kidney histology in 

our studies. After deparaffinization and rehydration, the sections were incubated in 

periodic acid solution (2 % in distilled water) for 10 minutes and then washed with 

distilled water. Next, the sections were incubated in Schiff solution for 20 minutes and 

then washed wit tap water. This was followed by dehydration by incubating sections 

in serials of alcohol solutions with increased concentration. Finally, the microscope 

slides were closed with glass coverslips. 

3.4.3 Immunohistochemistry 

Immunohistochemistry was used to visualize certain antigens by specific antigen-

antibody-reaction. Tissue antigens of interest in our experiments included Mdm2, 

p53, caspase 3 and Ki-67. Also, living proximal and distal tubular cells as well as col-

leting ducts were identified with appropriate antibodies, i.e. lectin, THP and aqua-

porin. Here, indirect method with avidin-biotin-complex (ABC) was applied: firstly pri-
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mary antibodies target the tissue antigens of interest, then secondary antibodies la-

belled with biotin bind Fc regions of primary antibodies. Finally, the marker substance 

ABC with reporter enzymes is added, detecting secondary antibodies and stains with 

a brown color (Figure 16). Multiple secondary antibodies can bind a single primary 

antibody, thus generating signal amplification by increasing the number of chromo-

genic substrates per antigen. ABC method has the highest sensitivity in immuno-

histochemistry, because of the strong affinity between avidin and biotin and the im-

mense signal amplification.  

 

Figure 16: Avidin-biotin-complex method for immunohistochemistry staining.  
 

For immunohistochemical staining, 2 μm paraffin sections were deparaffinized, rehy-

drated and washed with PBS (2x7 minutes). Prior to antibody staining, the endoge-

nous peroxidase contained in the sections was blocked by incubating sections in 

H2O2 and methanol mixture (20 ml of 30% H2O2 in 180 ml of methanol) for 20 

minutes, followed by washing with PBS (2x7 minutes). As fixation process with for-

malin could lead to cross-links of proteins, the epitope conformation of antigens could 

have changed and the antibody may not bind the specific antigens. To unmask the 

antigens, the sections were placed into a mixture of 3 ml of antigen-masking solution 

and 300 ml of H2O, and heated in a microwave (4 x 2.5 minutes). This was followed 

by washing with PBS (2x7 minutes). After the sections were cooled to room tempera-

ture, the endogenous biotin contained in the sections was blocked with avidin for 15 
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minutes. This was followed by a quick wash of the sections and incubation with biotin 

for 15 minutes, then washed again with PBS (2 x 7 minutes). 

To reduce non-specific binding and background staining to minimum, the sections 

were incubated in 10% goat serum for 10 minutes, blocking the reactive sites to 

which the primary or secondary antibodies may otherwise bind. The sections were 

subsequently incubated with diluted primary antibodies for 1 hour at room tempera-

ture or overnight at 4°C in a wet chamber, and then washed with PBS for 7 minutes. 

This was followed by incubation with the respective diluted biotinylated secondary 

antibody for 30 minutes at room temperature, and washing with PBS for 7 minutes. 

The ABC substrate solution (15 μl of reagent A and 15 μl of reagent B to 1 ml of 

PBS) for secondary antibodies was then added, incubated for 30 minutes in a wet 

chamber at room temperature and then washed again with PBS. Immediately after-

wards, sections were washed with TRIS hydrochloride for 5 minutes. Next, the re-

porter enzyme DAB solution was added for 1 to 10 minutes to stain. DAB was oxi-

dized in the presence of hydrogen peroxide, producing a brownish product that was 

easily observed. The stain intensity was controlled with microscope. This was fol-

lowed by counterstaining with methylene green to increase the color contrast. The 

sections were washed with 96% ethanol (2 x 10 seconds), followed by washing with 

100% ethanol (3 x10 seconds) to remove excess stain. Finally, a drop of VectaMount 

mounting medium was added and the slides were covered with cover lids. Negative 

controls were performed for each immunostaining by incubating with the respective 

isotype antibody instead of the primary antibody. 

3.4.4 Immunofluorescence 

Immunofluorescence relies on fluorescent instead of chromogenic detection. The 

evaluation was performed on LSM 510 confocal microscope and LSM software. 

TUNEL/DAPI staining was conducted to detect apoptotic cell death and nuclei re-

spectively. TUNEL (TdT-mediated dUTP nick-end labeling) is a sensitive method to 

identify DNA strand breaks (“nicks”) generated during endonucleolysis, which is a 

key biochemical event of apoptosis. These DNA fragmentations can be labelled with 

TdT (terminal deoxynucleotidyl transferase) in an enzymatic reaction and subse-

quently detected with fluorochrome-labelled deoxynucleotides which fluoresce in 

green. DAPI (4',6-diamidino-2-phenylindole) was applied to label DNA in nuclei, as it 

binds to A-T rich regions of double-stranded DNA and fluoresces in blue. 
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TUNEL/DAPI immunofluorescent staining was carried out as following: First, forma-

lin-fixed, paraffin-embedded kidney sections were dewaxed by washing in xylene for 

5 minutes and rehydrated through a graded serious of ethanol (100%, 96%, 70%) for 

2 minutes, followed by washing with PBS (2 x 7 minutes). Second, the sections were 

incubated with proteinase K (50 µg/ml in Tris/HCl) for 10 minutes. Next, 50 µl en-

zyme solution was added to each section, followed by incubation for 1 hour at 37°C. 

Finally, each section was added with 1-2 drops mounting medium containing DAPI, 

closed with coverslips and analyzed by confocal microscopy. 

3.4.5 Histopathological evaluations 

Tubulus damage Score 

To evaluate the severity of the tubulus damage in PAS-stained kidney sections, tubu-

lus damage score was carried out as an established, semi-quantitative method. 

Three major aspects were analyzed during scoring:  

1) Tubular injury (cellular swelling, vacuolization and loss of brush border etc.), 

2) Cast formation,  

3) Tubular dilation. 

For each PAS-stained kidney section, 25 representative fields were analyzed under 

light microscope with 200 x magnification. The scoring was performed for each as-

pect as follows: 

Score Damage level 

0 None 

1 ≤ 10% 

2 21% to 40% 

3 41% to 60% 

4 61% to 80% 

5 81% to 100% 

3.4.6 Transmission Electron Microscopy 

Transmission electron microscope permits the visualization of cellular ultrastructure 

inclusive subcellular components with a much higher resolution (0.2 nm) than light 

microscope (200 nm). A beam of high voltage accelerated electrons is transmitted 
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through the sample and detected by the camera, creating a unique image of the 

sample. 

For transmission electron microscope, the extracted kidneys were cut into 1x1 mm 

cubes and immediately immersed in fixation solution containing 3% glutaraldehyde 

and 1% paraformaldehyde in PBS. This was followed by post-fixation in 2% glutaral-

dehyde and 2% paraformaldehyde in sodium cacodylate buffer (pH 7.4) for 24 hours. 

The fixation was completed by incubation in phosphate cacodylate-buffered 2% 

OhsO4 for 1 h. Next, dehydration was carried out by incubating kidneys in graded 

ethanol and lastly in propylene oxide. The kidneys were embedded in Embed-812 

resin and sliced into ultrathin sections (~90-nm thick). The sections were stained with 

uranyl acetate and Venable's lead citrate and evaluated under the JEOL model 

1200EX electron microscope. The image taking was performed by Prof. Dr. Helen 

Liapis at Washington University in St. Louis, Missouri, USA. 

3.5 Statistical analysis 

All Data are presented as mean ± SEM (standard error of the mean). SEM was cal-

culated as follows: 

x =
xi

n
i=1
n  

s =
(xi-	x)2n

i=1
n-1  

SEM= 
s
n

 

x: sample mean, n: size of the sample, s: standard deviation	, SEM: standard error  

The statistical significance was calculated using the bilateral Student's t-test, and a p-

value of <0.05 was considered statistically significant. p <0.05, p <0.01 and p <0.005 

were marked with *, ** and *** respectively. Survival rates were presented in Kaplan-

Meier's survival curve. 
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4 Results 

4.1 Mdm2 expression is reduced exklusively in renal tubular epithelial cells of 
Pax8rtTA-Cre;Mdm2flox/flox mice treated with doxycycline (Mdm2-/-tubulus) 

We crossbred Mdm2flox/flox mice and Pax8rtTA-Cre mice to generate a new condition-

al gene knockout mouse line Pax8rtTA-Cre;Mdm2flox/flox. Theoretically, upon induction 

with tetracycline or its derivative doxycycline, Pax8rtTA-Cre;Mdm2flox/flox mice express 

Cre recombinase under the control of tubular cell-specific Pax8 promotor. Cre re-

combinase then recognizes loxP sites, which flank exon 4 and 5 of Mdm2 gene, 

thereby enzymatically causing Mdm2 gene deletion in all tubular cells in proximal 

tubules, distal tubules and collecting ducts. 

The genotype of tubular cell-specific Mdm2 knockout mice was verified by PCR and 

electrophoresis of DNA samples isolated from mouse tissues. We proceeded to ex-

amine if tubular cell-specific Mdm2 knockout indeed occurred upon doxycycline in-

duction, in other words, if doxycycline dependent Cre/loxP-system worked success-

fully in our new mouse models. 

We fed 5-week-old Pax8rtTA-Cre;Mdm2flox/flox mice with 2mg/ml doxycycline in 

drinking water continously for 4, 8 and 11 days respectively. Their littermates 

Mdm2flox/flox mice served as controls. At the end of treatment, experimental and con-

trol mice were sacrificed and their kidneys were extracted for analysis. mRNA from 

total kidneys was isolated and quantified by real-time PCR. As demonstrated in Fig-

ure 17, intrarenal Mdm2 mRNA expression of knockout mice exhibited a progressive 

decrease with the length of doxycycline treatment, compared with control mice. While 

on day 4 there was no change in Mdm2 mRNA level in kidney tissues of knockout 

mice, a significant decrease of Mdm2 mRNA expression was evident on day 8 (39% 

reduction) and on day 11 (49% reduction), compared with control mice. 
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Figure 17: Mdm2 expression was reduced in Pax8rtTA-Cre; Mdm2flox/flox mice treated 
with doxycycline.  
A: Schematic view of continuous doxycycline treatment regime. Experimental and control 
mice were treated with 2mg/mL doxycycline for 4, 8 and 11 days. B: Real-time PCR detected 
progressive decrease of Mdm2 mRNA levels in kidney lysates of Pax8rtTA-Cre; Mdm2flox/flox 
mice upon doxycycline induction (n=5-6 mice/group). Data are means ±S.E.M. *P<0.05, 
**P<0.01, ***P<0.005. C: Mdm2 immunostaining was diminished in tubular epithelial cells, 
while staining of podocytes and other cell types within the kidney remained intact. The 
selectivity of Mdm2 knockout in renal tubular cells was confirmed. 
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Next, intrarenal expression of Mdm2 protein was determined by immunohistochemis-

try with Mdm2 antibody in kidney sections. Consistent with PCR results, there was 

diminished Mdm2 protein detected in renal tubular cells of Pax8rtTA-Cre;Mdm2flox/flox 

mice treated with doxycycline, compared with control mice (Figure 17). In contrast, 

the glomeruli and mesenchymal tissues within the kidney remained unchanged in all 

sections, which authenticated the selectivity of Mdm2 knockout in renal tubular epi-

thelial cells of Mdm2-/-tubulus mice. 

Taken together, genotype of Pax8rtTA-Cre;Mdm2flox/flox mice was confirmed, and 

real-time quantitative PCR detected decreased intrarenal Mdm2 mRNA expression in 

Pax8rtTA-Cre;Mdm2flox/flox mice treated with doxycycline. Furthermore, Mdm2 

immunostaining of kidney sections showed that Mdm2 protein was depleted 

exklusively in renal tubular cells of knockout mice (referred as Mdm2-/-tubulus in the fol-

lowing text). Hence, tubular cell-specific Mdm2 knockout was successful in Pax8rtTA-

Cre;Mdm2flox/flox upon doxycycline induction. 

  



Results 

 59 

4.2 Continous tubule-specific Mdm2 depletion results in acute kidney injury 

We characterized the phenotype of Pax8rtTA-Cre;Mdm2flox/flox mice treated with 

doxycycline continuously. To study the concrete biological effects of tubular cell-

specific Mdm2 depletion in mice, following aspects in transgenic mice were analyzed: 

1) Clinical parameters such as urine production, body weight and life span; 

2) Serum creatinine and urea for assessment of renal function; 

3) Intrarenal mRNA expression of p53 and its effector genes, as well as tubulus 

damage markers by real-time PCR; 

4) Histopathological evaluations of kidney sections by light microscopy, and ul-

trastructural analysis by electron microscopy. 

We observed that Mdm2-/-tubulus mice experienced severe deterioration of kidney func-

tion, upregulation of tubulus damage markers in kidneys and acute tubular injury with 

progressive cellular loss in the histology. These pathological processes together 

were in line with acute kidney injury. Also, continuous doxycycline treatment caused 

rapid lethality in Mdm2-/-tubulus mice, but did not affect their control littermates. We 

conclude that tubular cell-specific Mdm2 knockout results in acute kidney injury. 

4.2.1 Oliguria, weight loss and shortened life span 

With the length of doxycycline treatment, Mdm2-/-tubulus mice became moribund, 

developed oliguria and weight loss. By contrast, all Mdm2flox/flox control mice lacking 

Cre transgene remained active and healthy throughout the entire time course of 

doxycycline treatment. Moreover, Mdm2-/-tubulus mice showed a significant shortened 

life span compared with their control littermates, as demonstrated in Kaplan-Meyer 

survival curve (Figure 18). The first Mdm2-/-tubulus mouse died already on day 6 of 

doxycycline treatment, and the majority of knockout mice died between day 7 and 

day 10. Furthermore, no knockout mouse survived longer than 14 days. The high 

mortality of experimental mice is presumbaly attributable to the development of 

devastating acute kidney injury, because no other tissue but tubular epithelium in the 

kidney is affected by Mdm2 knockout. 
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Figure 18: Kaplan-Meyer survival curve of Mdm2-/-tubulus and control mice.  
While all Mdm2flox/flox control mice survived through doxycycline treatment, Pax8rtTA-
Cre;Mdm2flox/flox mice treated with doxycycline died rapidly from day 6 and survived no longer 
than 14 days. Data are based on n=17 mice/group. 

4.2.2 Impaired renal function 

We measured creatinine and urea concentration in serum to assess kidney function. 

Blood samples were collected from retrobulbar venous plexus of mice at the end of 

doxycycline treatment before they were sacrificed.  

As illustrated in Figure 19, serum creatinine and urea concentration of Mdm2-/-tubulus 

mice displayed a progressive increase with the length of doxycycline treatment, com-

pared with control mice. Whereas on day 4 the kidney function of Mdm2-/-tubulus mice 

was normal, serum creatinine of Mdm2-/-tubulus mice increased by twofold on day 8 

and by fivefold on day 11 compared with control mice (Figure 19). Also, serum BUN 

showed a fivefold and sixfold elevation on day 8 and day 11 respectively, in compari-

son with control mice (Figure 19). Furthermore, glomerular filtration rate (GFR) of 

Mdm2-/-tubulus mice decreased rapidly from day 4, and the knockout mice were critical-

ly oliguric on day 8, compared with their control littermates which had constant GFR 

during the whole doxycycline treatment (data not shown, published in [139]). 
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Figure 19: Serum creatinine and urea concentration.  
Pax8rtTA-Cre;Mdm2flox/flox mice treated with doxycycline underwent a progressive deteriora-
tion of renal function, as detected by significantly increased levels of serum creatinine and 
BUN compared with control mice (n=5-6 mice in each group). Data are means ±S.E.M. 
*P<0.05, **P<0.01, ***P<0.005. 

4.2.3 Upregulation of p53, p21 and Puma in the kidney 

We further examined with real-time quantitative PCR, whether or not stabilization of 

p53 molecule occurred in response to Mdm2 deletion through their autoregulatory 

feedback loop in Mdm2-/-tubulus mice kidneys. As illustrated in Figure 20, intrarenal p53 

mRNA level in Mdm2-/-tubulus mice elevated by 65% on day 8 of doxycycline treatment, 

compared with their control littermates.  

Additionally, we measured mRNA expression of p53 downstream genes p21 and 

Puma. p21 gene encodes a 21-kDa protein that is constitutively expressed at low 

levels under physiological conditions [45, 164]. p21 protein inhibits cycline-dependent 

kinase (Cdk) that is a necessary enzyme in the cell cycle progression, thereby caus-

ing the cell cycle arrest at checkpoint G1/S or G2/M [44]. Puma (p53-upregulated 

mediator of apoptosis) encodes pro-apoptotic protein of BCL-2 family, and is a key 
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apoptotic transcriptional target gene of p53. Mice lacking Puma show profound de-

fects in apoptotic processes in many tissues, thus “no Puma, no cell death” [165-167]. 

Strikingly, intrarenal p21 and Puma mRNA level of Mdm2-/-tubulus mice increased sub-

stantially on day 8 of doxycycline treatment respectively, compared with control mice 

(Figure 20). The elevation of p21 and Puma mRNA was sixfold and threefold on day 

11. Together, Mdm2 depletion resulted in upregulated mRNA levels of p53 and its 

target genes p21 and Puma in renal tubular epithelial cells. Also, increased p53 pro-

tein expression was detected by immunostaining as described in 4.2.8. 

 

Figure 20: Upregulation of p53, p21 and Puma in renal tubules lacking Mdm2.  
Mdm2-/-tubulus mice showed no change of p53 mRNA expression on day 4 of doxycycline 
treatment, but a significant increase on day 8 and day 11 compared to control mice. Fur-
thermore, mRNA levels of p53 target genes p21 and Puma elevated markedly from day 8 of 
doxycycline treatment (n=5-6 mice/group). Data are means ±S.E.M. *P<0.05, **P<0.01, 
***P<0.005. 
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4.2.4 Upregulation of tubulus damage markers in the kidney 

As mentioned in introduction 1.1.3, serum creatinine and BUN are standardly used 

parameters to assess kidney function, but not highly specific or sensitive for acute 

kidney injury. Also, serum creatinine is a late marker, as loss of more than 50% of 

kidney function must occur before serum creatinine rises [168]. Kidney-specific bi-

omarkers aiming to recognize AKI faster have emerged during the last decade. Some 

of these biomarkers have shown good performance in early diagnosis and prognosis 

prediction of AKI in clinical trials, and their translation into clinical practice is promis-

ing.  

 

Figure 21: Upregulation of tubulus damage markers in Mdm2-/-tubulus mice kidneys. 
Kim-1, Timp-2 and Ngal-1 are newly identified biomarkers for tubulus damage with high sen-
sitivity. Their mRNA levels in kidney lysates of Mdm2-/-tubulus mice increased progressively 
with the length of doxycycline treatment, in comparison with controls (n=5-6 mice/group). 
Data are means ±S.E.M. *P<0.05, **P<0.01, ***P<0.005. 
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Here, we screened a series of tubulus damage biomarker in kidney lysates of Mdm2-

/-tubulus mice, including Kim-1, Timp-2 and Ngal-1. Strikingly, intrarenal mRNA levels of 

Kim-1, Timp-2 and Ngal-1 in Mdm2-/-tubulus mice were substantially upregulated from 

day 8 of doxycycline treatment compared with control mice, as shown in Figure 21. 

On day 11, the elevation of Kim-1, Timp-2 and Ngal-1mRNAs was measured as15-

fold, 2-fold and 15-fold respectively. 

The data are consistent with progressively impaired kidney function, as documented 

by increased serum creatinine, BUN and decreased GFR in Mdm2-/-tubulus mice. 

Marked upregulation of tubulus damage markers suggest further the ongoing injury in 

renal tubular epithelium upon Mdm2 deletion/p53 activation. 

4.2.5 Acute tubular injury under light microscope 

To further investigate structural abnormalities in Mdm2-/-tubulus mice kidneys, we per-

formed periodic acid-Schiff (PAS) staining of kidney sections and analyzed them un-

der light microscope. Kidney sections of Mdm2-/-tubulus mice appeared normal on day 

4 of doxycycline treatment, but showed apparent pathological features such as tubu-

lar epithelial cells swelling and vacuolization on day 8 (Figure 22). On day 12, kidney 

sections of knockout mice revealed widespread severe tubular damage, including 

massive tubular dilatation, cast formation and cellular loss with exfoliation of tubular 

cells into lumen. On the contrary, no pathology in control mice kidneys was detected. 

We also performed semi-quantitative tubulus damage score (described in method 

3.4.5) for PAS-stained kidney sections of Mdm2-/-tubulus mice. As shown in Figure 22, 

the score for each category (tubular injury, cast formation and tubular dilatation) in-

creased with the length of doxycycline treatment. 
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Figure 22: Acute tubular injury in Mdm2-/-tubulus mice kidneys.  
Representative images of PAS-stained kidney sections of Pax8rtTA-Cre;Mdm2flox/flox mice 
treated with doxycycline for 4, 8 or 11 days displayed tubular injury with progressive severity, 
compared to controls mice. While on day 4 no tubular damage was evident, on day 8 
pronounced tubular cells swelling and vacuolization was detected. On day 11, severe tubular 
injury with massive tubular dilation, cast formation and exfoliation of tubular cells into lumen 
was observed. Images are shown at a magnification of x 200. Semiquanatitive scoring of 
tubulus injury, cast formation and tubulus dialation in Mdm2 knockout mice kidneys is 
depicted below the PAS-images.  
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4.2.6 Cellular loss in proximal tubules, distal tubules and collecting ducts 

With measurement of biomarkers and histopathological analysis, we detected that 

the severity of tubular cell damage increased with the length of doxycycline treat-

ment. Further, we investigated the survival rate of tubular cells upon Mdm2-knockout-

induced injury. To do so, we stained kidney sections of experimental and control mice 

with the following compounds: 

1) Lotus Tetragonolobus Lectin, identifying living proximal tubular cells; 

2) Tamm-Horsfall protein (THP) identifying living distal tubular cells; 

3) Aquaporin identifying living collecting ducts. 

As shown in Figure 23, staining in proximal and distal tubules as well as in collecting 

ducts of knockout mice kidneys was progressively diminished, compared to controls. 

This suggests that cellular demise occurred in renal epithelium in the absence of 

Mdm2.  

To quantify the cellular survival rate, tubules with intact staining patterns was counted 

under microscope. The bar charts in Figure 23 illustrated a significant reduction in 

percentage of living cells in all tubular compartments from day 8 of doxycycline 

treatment. Moreover, the proximal tubules were the most affected site by cellular loss, 

compared with distal tubules and collecting ducts. On day 8 of doxycycline treatment, 

53% of proximal tubular cells survived. On day 11, merely 26% of proximal tubular 

cells were viable; in other words, 73% of proximal tubular cells underwent cell death 

caused by Mdm2 deletion. The percentage of cellular loss in distal tubules and col-

lecting ducts on day 11 were 29% and 21%, respectively. 

Together, tubular epithelial cells underwent spontaneous cell death upon Mdm2-

depletion, predominantly in proximal tubules.  
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Figure 23: Cellular loss in renal tubules of Mdm2-/-tubulus mice.  
Representative images of kidney sections from Mdm2-/-tubulus and control mice, stained with 
Lotus Tetragonolobus Lectin, Tamm-Horsfall protein (THP) and Aquaporin, which identified 
living tubular cells in proximal, distal tubules and collecting ducts respectively. Tubules with 
intact staining patterns decreased progressively with length of doxycycline treatment in 
Mdm2-/-tubulus mice kidneys, compared to control mice. Images are shown at a magnification 
of x 100. The quantitative evaluation of kidney sections is depicted in the percentage of living 
tubular cells. Proximal tubules suffered the most cellular loss, compared with distal tubules 
and collecting ducts. Data are means ± S.E.M, n=5-6 mice/group. *P<0.05, **P<0.01, 
***P<0.005.  
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4.2.7 Ultrastructural pathology of tubular cells under electron microscope 

Following the histopathological analysis of kidney sections by light microscopy, we 

further checked ultrastructural changes in renal tubular epithelial cells with Mdm2 

depletion by electron microscopy. As shown in Figure 24, tubular cells lacking Mdm2 

exibited multiple ultrastructural abnormalities. The first apparent pathological feature 

was cytoplasmic swelling without membrane blebbing, which emerged on day 4 of 

doxycycline treatment and became prominent on day 8. Also, mitochondria appeared 

swollen and displayed loss of cristae with their transformation into vacuoles. Moreo-

ver, the nuclei were edematous with intact nuclear membrane, but did not show signs 

of consolidated chromatin which is characteristic for apoptosis. Taken together, these 

morphological patterns under electron microscope indicate that tubular epithelial cells 

experienced a stage of asphyxia upon Mdm2 depletion/p53 activation. With the injury 

persistent, tubular cells could not compensate for intracellular damage and started 

dying from the cytoplasm with dead mitochondria. Eventually, complete disintegration 

of tubular epithelial cells was observed on day 11 of doxycycline treatment, along 

with rupture of plasma membrane and release of nuclei and other cytoplasmic orga-

nelles into the tubular lumen. 

Together, tubular cells upon Mdm2 depletion showed pathological changes in ultra-

structure such as cytoplasmic swelling and mitochondria degradation with vacuoles. 

However, characteristic morphologic features of apoptosis were not detected by elec-

tron microscopy in Mdm2-/-tubulus mice kidneys [96] . 
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Figure 24: Ultrastructural pathology in tubular cells of Mdm2-/-tubulus mice.  
Electron microscopy detected cytoplasmic swelling of tubular cells on day 4 of continuous 
doxycycline treatment, which exacerbated on day 8. With persistent Mdm2 depletion, nuclei 
became edematous but nuclear membrane remained intact, and mitochondria lost cristae 
which transformed into vacuoles. On day 11, tubular cells completely disintegrated with rup-
ture of cytoplasmic membrane, degradation of mitochondria and release of cellular contents 
into the tubular lumen. Images are shown in 1500–12000 magnification (successively low–
medium–high). Bb, brush border; BL, basal lamina; L, lysosome; M, mitochondria; N, nucleus. 
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4.2.8 Apoptosis and proliferation assays with immunostaining 

How did tubular epithelial cells die in the absence of Mdm2? Was apoptotic pathway 

activated in response to p53 activation? To answer these questions and to study the 

mechanism for cellular loss, we performed apoptosis analysis with various im-

munostaining methods for kidney sections of experimental and control mice. We ap-

plied p53 and cleaved caspase 3 (also referred as activated caspase 3) immuno-

histochemical staining as well as TUNEL immunofluorescence staining (Figure 25 

and Figure 26). Tubular compartment of Mdm2-/-tubulus mice kidneys stained increas-

ingly with p53 antibodies, suggesting a progressively enhanced expression of p53 

protein in tubular cells upon Mdm2 depletion. By contrast, p53 expression remained 

constantly undetectable in tubular cells of control mice, as p53 protein is kept at low 

levels under physiological conditions. The data confirmed again that Mdm2 depletion 

results in p53 activation in renal tubular cells, which is in line with PCR results. 

However, only marginal expression of caspase 3 was identified by immunostaining in 

tubular cells of Mdm2-/-tubulus mice. Caspase 3 is an executioner caspase and activat-

ed in both p53-induced intrinsic and extrinsic apoptotic pathways. Also, TUNEL stain-

ing, which detects DNA fragmentation and is considered as “gold standard” to inves-

tigate apoptosis in situ [96], showed just modest positivity in tubular cells. The activa-

tion level of capsase-3 did not correlate with p53 activation level and the extent of the 

tubular damage, indicating that rather secondary cell apoptosis occurred.  

Additionally, we checked the proliferation activity in renal epithelium by Ki-67 im-

munohistochemistry and immunofluorescence (Figure 25 and Figure 26), as Ki-67 is 

a marker for cellular proliferation or hypertrophy. Marked Ki-67 activation in tubular 

cells where the Mdm2 deletion was incomplete was observed, suggesting that surviv-

ing tubular cells reentered into cell cycle, proliferated or hypertrophied upon injury in 

order to compensate for the cellular loss. Nonetheless, tubular cells could not com-

pensate for Mdm2-deletion/p53-activation mediated cell death through enhanced re-

generative activity.  
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Figure 25: Caspase-3, Ki-67 and p53 immunostaining in kidney sections. 
Representative images of kidney sections of Mdm2-/-tubulus and control mice, stained with 
caspase 3, Ki-67 and p53 respectively. Caspase 3 (marker for apoptosis) staining was only 
marginal in tubular cells of Mdm2-/-tubulus mice. By contrast, Ki-67 (marker for proliferation) and 
p53 (marker for cell cycle arrest, cell death and senescence) was increasingly expressed in 
tubular cells lacking Mdm2. On day 11 of doxycycline treatment, Ki-67 and p53 was substan-
tially upregulated in tubular cells of Mdm2-/-tubulus mice, compared to control mice kidneys. All 
images are shown at a magnification of × 100. 
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Figure 26: p53/Ki-67 and TUNEL immunofluorescence in kidney sections. 
A. Representative images of kidney sections from Pax8rtTA-Cre;Mdm2flox/flox and control mice 
treated with doxycycline for 8 and 11 days, stained with p53 (red) and Ki-67 (green) simulta-
neously. Both p53 and Ki-67 were markedly upregulated in tubular cells of knockout mice, 
but no co-localization of Ki-67 and p53 positive cells was detected. Images are shown at a 
magnification of x200. B. Representative images of kidney sections from knockout mice sub-
jected to 11 days doxycycline treatment, stained with TUNEL/DAPI. TUNEL (TdT-mediated 
dUTP nick-end labeling) identifies DNA strand breaks generated typically during apoptosis, 
and DAPI (4',6-diamidino-2-phenylindole) labels nuclei. Only a few tubular cells were posi-
tively stained with TUNEL. Image is shown at a magnification of x 100.  
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4.3 Intermittent tubule-specific Mdm2 depletion results in kidney fibrosis 

To avoid the rapid lethality in Mdm2 tubule-specific knockout mice upon continuous 

doxycycline treatment, we applied an intermittent doxycycline administration regime 

as described in Materials and Methods. The discontinuous treatment regime was al-

so used as a strategy in other studies to overcome the problem of early lethality, be-

cause transgene expression is reversible and drops sharply when treatment is 

stopped. Thus, mice have time to recover from the detrimental effects of gene dele-

tion [161]. Previously, Valentin-Vega et al. reported that intestinal epithelium as a 

tissue with high turn-over capacity can fully compensate for Mdm2-deletion/p53-

activation mediated cell death over time [169]. The possible compensation mecha-

nism is negative selection against Mdm2-null cells, and enhanced proliferation of 

cells with retained Mdm2 activity due to loss of Cre recombinase. Additionally, intes-

tinal stem and progenitor cells multiply to increase crypt fissions and thus intestine 

growth [169]. We investigated if this phenomenon would occur to tubular epithelial 

cells as well, which have low turn-over during homeostasis but are highly proliferative 

in response to injury.  

Over the course of the 4-week-long discontinuous doxycycline treatment, all 

Pax8rtTA-Cre;Mdm2flox/flox mice appeared healthy and active. However, a deteriora-

tion of renal function was detected in knockout mice (Figure 27). After 4 cycles of in-

termittent doxycycline administration, both serum creatinine and urea of knockout 

mice were elevated by twofold in comparison with controls. Furthermore, intrarenal 

mRNA levels of tubular damage markers Kim-1, TIMP-2 and Ngal-1 in knockout mice 

increased significantly by 60-fold, 2.5-fold and 30-fold respectively, compared to con-

trol mice. 
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Figure 27: Pax8rtTA-Cre;Mdm2flox/flox mice subjected to intermittent doxycycline treat-
ment showed impaired kidney function und upregulated tubulus damage markers.  
A. Schematic view of discontinuous doxycycline treatment regime: experimental and control 
mice were administered with 2mg/mL doxycycline for only 2 days and then with pure water 
for 5 days, repeated for 4 weeks. B. Intrarenal mRNA levels of Mdm2 and p53 in knockout 
and control mice. C. Knockout mice showed a deterioration of kidney functions compared to 
control mice. D. mRNA expression of tubulus damage markers Kim-1, TIMP-2 and Ngal-1 
significantly increased in kidney lysates of knockout mice, compared to control mice. N=5-6 
mice/group. Data are means	±S.E.M. *P<0.05, ** P <0.01, *** P <0.001. 
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Notably, the macroscopic appearance of kidneys isolated from Mdm2-/-tubulus mice was 

pale and fibrotic, and multiple nodules on the organ surface were visible and palpable. 

We further analyzed kidney sections of experimental and control mice under light 

microscope. As shown in Figure 28, PAS staining revealed focal tubular damage and 

increased extracellular matrix in knockout mice kidneys. Furthermore, Masson´s tri-

chrome staining confirmed overproduction of fibrotic tissue in kidneys. Additionally, 

immunochemical staining showed moderate p53 accumulation in kidneys, with espe-

cially high expression in the medullar region.  

We subsequently screened expression of fibrosis markers in kidney lysates of 

knockout mice, namely Tgf-beta 1, fibronectin1, collagen 1a1, collagen 4a1 and a-

Sma. Transforming growth factor beta 1 (Tgf-β1) is a central mediator of kidney fi-

brogenic process by stimulating the synthesis of extracellular matrix within the kidney 

[170]. Fibronectin is a glycoprotein in extracellular matrix. Collagen 1a1 belongs to 

type I collagen that exists in most connective tissues. Collagen 4a1 is a subunit of 

type IV collagen, which is the major structural component of basement membrane. 

Alpha smooth muscle actin (a-Sma) is commonly used as a marker of myofibroblast 

formation. Strikingly, all these tested pro-fibrotic genes except a-Sma were signifi-

cantly upregulated in kidneys of Pax8rtTA-Cre;Mdm2flox/flox mice subjected to intermit-

tent doxycycline treatment (Figure 29). mRNA levels of Tgf-beta 1, fibronectin, colla-

gen 1a1 and collagen 4a1 significantly increased by 2-fold, 8-fold, 13-fold and 2-fold 

respectively. 

In summary, unlike intestinal epithelium, tubular epithelium cannot completely com-

pensate for the cell loss due to Mdm2 deletion/p53 activation. Instead, the repair pro-

cess after injury was incomplete and kidney fibrosis occurred. With impaired kidney 

function and sustained parenchymal damage, Pax8rtTA-Cre; Mdm2flox/flox mice did not 

fully recover from Mdm2 depletion, but progressed into chronic kidney disease.  



Results 

 76 

 
Figure 28: Intermittent Mdm2 depletion in tubular cells results in kidney fibrosis.  
Representative images of kidney sections from Pax8rtTA-Cre;Mdm2flox/flox and control 
Mdm2flox/flox mice subjected to discontinuous doxycycline treatment for 4 weeks. Kidney sec-
tions were stained with PAS, Masson´s trichrome and p53 antibody. PAS and Masson´s tri-
chrome staining revealed overproduction of extracellular matrix and fibrotic tissues in knock-
out mice kidneys. Immunochemical staining detected p53 activation in knockout mice kid-
neys, especially in the medullar region. All images are shown at a magnification of x 200. 
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Figure 29: Upregulation of fibrosis markers in kidney lysates of Pax8rtTA-Cre; 
Mdm2flox/flox mice subjected to intermittent doxycycline treatment.  
Increased intrarenal mRNA levels of Tgf-beta 1, fibronectin1, collagen 1a1 and collagen 4a1 
were detected in knockout mice, compared to control mice. No significant difference of a-
SMA mRNA expression between experimental and control mice. N=5-6 mice/group. Data are 
means ±S.E.M. *P<0.05, **P<0.01, ***P<0.005. 
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4.4 Summary of results 

We induced Mdm2 deletion in renal epithelium of Pax8rtTA-Cre;Mdm2flox/flox mice by 

continuous doxycycline administration (Mdm2-/-tubulus) for 4, 8 and 11 days. The tu-

bule-specific Mdm2-knockout was successful and confirmed by real-time PCR and 

immunohistochemistry. With increasing doxycycline treatment time, Mdm2-/-tubulus 

mice showed a progressive reduction of intrarenal Mdm2 mRNA levels compared 

with control mice. Also, Mdm2 immunostaining was diminished in renal epithelium of 

Mdm2-/-tubulus mice but remained intact in glomerulus and other cell types within the 

kidney, thus corroborating the selectivity of Mdm2 deletion in tubular cells.   

With the length of doxycycline treatment, kidney function of Mdm2-/-tubulus mice was 

progressively deteriorated as detected by elevated serum creatinine and BUN levels. 

Clinically, Mdm2-/-tubulus mice developed oliguria, weight loss and had a shortened life 

span. Moreover, mRNA expression of p53 and its effector genes p21 and Puma as 

well as tubular damage markers Timp-2, Kim-1 and Ngal-1 was upregulated. Under 

light microscope, kidney sections of Mdm2-/-tubulus mice exhibited profound tubular 

damage from day 8 of doxycycline treatment, which was characterized by tubular cell 

injury, casts formation, tubular dilatation and progressive cell loss. Under electron 

microscopy, tubular cells of Mdm2-/-tubulus mice displayed ultrastructural pathology, 

including cytoplasm swelling and mitochondria degradation on day 8, and complete 

disintegration of tubular cell structure with rupture of plasma membrane on day 11 of 

doxycycline treatment. Taken together, Mdm2 deletion in renal tubular epithelium 

results in p53-activation mediated cell death and acute kidney injury. 

Besides, we applied intermittent doxycycline administration regime on Mdm2-/-tubulus 

mice, to circumvent the rapid lethality of continuous doxycycline induction. Within the 

experimental period of 4 weeks, all Mdm2-/-tubulus mice survived and appeared normal. 

However, impaired renal function of the knockout mice was detected and histo-

pathology of their kidneys revealed pronounced kidney fibrosis with overproduction of 

extracellular matrix. Furthermore, renal mRNA levels of fibrosis markers Tgf-β, fi-

bronectin 1, collagen1a1 and collagen 4a1 of Mdm2-/-tubulus mice increased markedly. 

This suggests that tubular cells can only partially compensate for the cellular loss due 

to Mdm2 deletion, unlike intestinal epithelium that can fully compensate for Mdm2 

deficiency. We conclude that Mdm2 is indispensable for the survival and homeosta-

sis of renal tubular cells. 
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5 Discussion 

Mdm2 is the key negative regulator of tumor suppressor p53. Mdm2 downregulates 

p53 activity in three ways: it targets p53 with ubiqutination for proteasomal degrada-

tion, it transports p53 out of nucleus and it blocks the p53 activity by direct binding. In 

turn, p53 upregulates Mdm2 activity by transactivation of its gene expression. Thus, 

p53 and Mdm2 titrate their levels exquisitely in an autoregulatory feedback loop. 

Despite extensive research of Mdm2 in cancer therapy, the function of Mdm2 in ho-

meostatic kidneys remains not well explored. Previously, our research group corrobo-

rated the requirement of Mdm2 in unchallenged podocytes [138]. Mdm2-deletion in 

podocytes leads to p53-overactivation mediated cellular loss and focal segmental 

glomerular sclerosis [138]. In this study, we focused on the role of Mdm2 in quiescent 

renal tubular cells, which represent a distinct cell type in comparison to podocytes. 

Tubular cells exert important physiological functions of secretion and reabsorption of 

small molecules, and play a key role in the pathophysiology of acute kidney injury. 

With ischemic injury, tubular cells are extremely susceptible to oxygen depletion and 

thus become a main victim of AKI. Also, they contribute to sterile inflammation during 

AKI via releasing proinflammatory cytokines and expressing TLRs. Besides, tubular 

cells with their substantial regenerative capacity contribute to tissue recovery after 

AKI.  

We had hypothesized that resting renal tubular cells require MDM2 to maintain their 

homeostasis. Without MDM2, tubular cells undergo p53-mediated cell death. To test 

this hypothesis, we generated tubule-specific Mdm2-knockout mice and induced 

Mdm2 deletion with doxycycline treatment (Mdm2-/-tubulus). By continuous induction, 

Mdm2-/-tubulus mice displayed reduced life expectancy and rapid deterioration of renal 

function. Moreover, significant increase of mRNA levels of tubular damage markers, 

pronounced cellular injury and cell death in the renal tubular compartment of Mdm2-/-

tubulus mice were detected. All these pathological changes developed in homeostatic 

kidneys and were in line with acute kidney injury.  

Furthermore, by intermittent induction of Mdm2-knockout, tubular epithelium could 

not completely compensate for the cell loss by proliferation of tubular cells with re-

tained Mdm2 activity due to loss of Cre recombination, unlike the intestinal epithelium 

[169]. Instead, mesenchymal healing occurred and kidney fibrosis with overproduc-
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tion of extracellular matrix was observed. To our knowledge this is the first study that 

examined the role of Mdm2 in quiescent tubular cells of adult healthy kidneys in a 

tissue-specific manner. 

Aside from the phenotypical characterization of tubule-specific Mdm2-knockout mice, 

we have derived the following conclusions from this study: 

1. Mdm2 is indispensable for the homeostasis of renal tubular cells in adult 

healthy kidneys. In unchallenged renal tubular cells, Mdm2 deletion results in 

spontaneous tubular cell death and acute kidney injury. Our hypothesis is con-

firmed. 

 

2. Tubular epithelium lacking Mdm2 cannot compensate for the cell loss due to 

Mdm2 deletion. Inadequate tissue repair after Mdm2-deletion/p53-activation 

mediated acute kidney injury leads to chronic nephropathy.  

 

3. MDM2 inhibitors (such as family of nutlins and their derivatives) as new cancer 

therapeutics can have dose-limiting detrimental effects on healthy kidneys. 

Special caution such as regular monitoring of kidney function is thus required, 

when MDM2 inhibitors are systemically administered.  
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5.1 Mdm2 is required for the homeostasis of renal tubular cells 

We demonstrated that tubular cell-specific Mdm2 deletion results in spontaneous cell 

death and acute kidney injury, which underscores the non-redundant role of Mdm2 

for tissue homeostasis and survival. The importance of Mdm2 in negatively regulating 

p53 activity during embryogenesis is emphasized by Mdm2-null mice. Loss of Mdm2 

leads to embryonic lethality, which is completely rescued in the absence of p53 [118, 

119, 171]. Mechanistically, Mdm2 deletion results in p53 activation and p53-mediated 

cell cycle arrest and cell death. As embryonic development requires an exquisite bal-

ance of apoptosis and proliferation, Mdm2-null embryos are not viable due to uncon-

trolled apoptotic cell death.  

Recently, a growing body of studies has investigated the role of Mdm2 during organ-

ogenesis in a tissue-specific manner, e.g. by engineering conditional knockout mice 

with Cre/loxP system. Mostly, mice display deleterious phenotypes upon specific 

Mdm2-deletion in tissues, ranging from embryonic lethality [172, 173], morphological 

and functional abnormalities [174, 175] to compensation of the tissues for Mdm2 loss 

[169] (Table 7). All tissues experience p53 activation in the absence of Mdm2, how-

ever, the severity of the phenotypical defects differs from tissue to tissue [106]. 

For example, mice lacking Mdm2 in the central nervous system die very soon after 

birth and present with dome-shaped head and hydranencephaly [176, 177]. Loss of 

Mdm2 in cardiomyocytes in mice causes heart failure and embryonic lethality [82]. 

Also, Mdm2 deletion in lens epithelial cells results in aphakia and neonatal lethality of 

unknown reasons [178]. Moreover, Mice with Mdm2-deletion in smooth muscle cells 

(SMC) of intestines die rapidly after inactivation of Mdm2 and exhibit severe lesions 

in the SMC-containing layers of the intestinal wall [179]. Removing Mdm2 in the oo-

cytes results in impaired fertility, irregular menstruation and small ovaries [174, 175]. 

Conditional inactivation of Mdm2 in erythroid progenitor cells disrupts the primitive 

erythropoiesis. Such knockout mice are non-viable and show dramatically reduced 

number of erythrocytes, most of which undergo apoptotic cell death [173]. As for 

skeletal development, Mdm2 deletion causes pronounced impairment of bone for-

mation and embryonic lethality [172]. Strikingly, all these deleterious phenotypes are 

proved to be p53-dependent. In contrast, intestinal epithelial cells can bypass Mdm2 

loss with time due to their high proliferative capacity and overgrowth of cells that re-

tain Mdm2 activity [169].  
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Table 7: Phenotypes of mice with tissue-specific Mdm2-knockout 

Tissues Genotype Phenotype Refs 
CNS Mdm2FM/FM; Nestin-Cre Neonatal lethal; domed-head 

and hydrocephaly 
[176, 177] 

Heart Mdm2FM/-; αMyhc-Cre Embryonic lethal; heart fail-
ure 

[82] 

Lens Mdm2FM/FM; Le-Cre Neonatal lethal; eyeless [178] 

Smooth 
muscle 

Mdm2FM/FM; Sm22-CreERT2 Rapid lethality after Mdm2 
inactivation; severe cellular 
loss of intestinal SMCs 

[179] 

Ovary Mdm2FM/-; Zp3-Cre Impaired fertility, small ova-
ries 

[174, 175] 

Blood Mdm2flox/flox; EporGFP-Cre Embryonic lethal; erythropoi-
etic defects 

[173] 

Bone Mdm2flox/-; Col3.6-Cre Embryonic lethal; impaired 
bone formation 

[172] 

Intestine Mdm2FM/FM; Villin-Cre Intestinal abnormalities, 
which disappear with age 

[169] 

Kidney Mdm2flox/+; αHoxb7-Cre Perinatal lethal, severe renal 
hypodysplasia 

[133] 

Mdm2flox/flox; Six2-GFP::Cretg/+ Perinatal lethal, hypodys-
plastic kidneys 

[135] 

Mdm2flox/flox; Nphs2-Cre Focal segmental glomerulo-
nephritis 

[138] 

CNS: central nervous system; SMC: smooth muscle cells; Mdm2FM: exons 5 and 6 of Mdm2 
gene are flanked by loxP sites; Mdm2flox: exons 7 and 9 of Mdm2 gene are flanked by loxP 
sites; Cre: Cre recombinase; GFP: green fluorescent protein. 
Tissue-specific promoters: Nestin: promotor specific for neurons; αMyhc (α-myosin heavy 
chain): promoter specific for cardiomyocytes; Le: promotor specific for lens epithelial cells; 
Sm22: promoter specific for smooth muscle cells; Zp3 (Zona pellucida glycoprotein 3): pro-
moter specific for growing oocytes; Epor (endogeneous erythryopoietin receptor promoter): 
promotor specific for erythroid progenitor cells; Col3.6: promoter specific for osteoblasts; Vil-
lin: promoter specific for epithelial cells of small and large intestines; αHoxb7 (Homobox B7): 
promoter specific for ureteric bud and mesonephric duct; Six2: promoter specific for nephron 
progenitor cells; Nphs: podocin promoter specific for podocytes. 
 
To explore the redundancy of Mdm2 in kidney development, Hiliard et al. engineered 

mice with conditional Mdm2-knockout in the ureteric bud epithelium (UBMdm2-/-) and 

nephron progenitor cells (NPCMdm2-/-) respectively. None of these mice survive after 

birth and display aberrant nephrogenesis and hypodysplasia. Moreover, Thomasova 

et al. deleted Mdm2 in podocytes in mice (Podocyte Mdm2-/-), which are viable but de-

velop focal segmental glomerulonephritis with time. All these phenotypes are rescued 

by concomitant p53 deletion, demonstrating that Mdm2 and its negative regulation of 

p53 is a prerequisite for kidney development and long-term survival of kidneys as 
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well. However, there is to date no published data about the role of Mdm2 in renal 

tubular cells, which motivated us to conduct this study.  

In consistence with above mentioned mouse experiments, our data fortify the fact 

that Mdm2 has a non-redundant role in homeostatic tissues. We explored the signifi-

cance of Mdm2 function, also in a tissue-specific manner by generation of tubule-

specific knockout mice using Cre/loxP system. Different from those studies, we fo-

cused on the role of Mdm2 in adult tissues instead of during embryonic development. 

Using conditional gene expression system, we could study adult organ physiology in 

transgenic mice by exerting strict control on transgene expression and circumventing 

any developmental defects [161]. Our data demonstrated that also within adult kid-

neys under physiological conditions, proper level of Mdm2 is required to maintain 

homeostasis. Renal epithelium experiences cellular injury and cell death upon Mdm2 

deletion, leading to acute kidney injury associated with high mortality. 

Further on, our findings are in line with another study conducted by Zhang et al., who 

generated a tamoxifen-inducible mouse line Mdm2FM/-;CAG-CreER [120]. Zhang et al. 

aimed to identify the effects of global Mdm2 loss on adult tissues and thus address 

the question, whether Mdm2 inhibitors have adverse effects on normal tissues. Ta-

moxifen injections were administered in transgenic mice at young adult age (2-4 

months) and at advanced adult age (16-18 months) as well. All these mice, regard-

less of age, became moribund within 1-2 days after daily tamoxifen injection for 3 

consecutive days and were sacrificed. Necropsies of knockout mice show evident 

morphological abnormalities in all examined tissues including kidneys, which exhibit 

tubule dilation and protein cast. However, kidney functional parameter BUN remains 

normal, suggesting that the renal phenotypical defects are not severe enough to 

cause functional change within this time period. The requirement of Mdm2 during the 

whole life span of the mouse has been thus confirmed [120]. 

Similarly, Ringshausen et al. generated a tamoxifen-inducible, switchable p53 mouse 

model Mdm2-/-; p53KI/- to determine the effects of global Mdm2 loss in adult mice [94]. 

In the absence of tamoxifen, the knock-in allele p53KI is in a non-functional state. Up-

on tamoxifen injection, p53 activity is rapidly restored. In this way, the embryogenic 

lethality of Mdm2-null mice is circumvented and Mdm2-/-; p53KI/- mice can develop 

normally and live to adulthood. After reactivation of systemic p53 activity through dai-

ly tamoxifen injection, these adult Mdm2-null mice die within 6 days. Analysis of the 
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harvested organs of Mdm2-/-; p53KI/- mice reveals profound damage with atrophy and 

widespread apoptosis in radio-sensitive organs, i.e. thymus, spleen, bone marrow 

and intestines. However, the radio-insensitive organs, including kidney, are morpho-

logically not affected by unbuffered p53 activity, which differs from our and Zhang´s 

findings. Nevertheless, the kidneys display upregulation of p53 target genes such as 

p21 and Puma, suggesting that kidneys are still affected by restoration of p53 to a 

certain extent [94]. It is to note that the results of Ringshausen et al. should be inter-

preted cautiously, because Mdm2-/-; p53KI/-  mice only express one copy of p53 upon 

tamoxifen induction, which does not faithfully mimic the clinical conditions of tumors 

that express two wild type p53 alleles [120]. In contrast, our study allows upregulation 

of both wild type p53 alleles upon Mdm2 deletion, thus more authentic to the afore-

mentioned clinical situation. 

Last but not least, our results are in accordance with experiments with haploinsuffi-

cient and hypomorphic mice as well. Haploinsufficient mice (50% of wild type Mdm2 

expression) and hypomorphic mice (30% of wild type Mdm2 expression) exhibit in-

creased radiosensitivity, the latter also with small body size and hematopoietic de-

fects [121, 122]. This indicates that alterations of Mdm2 levels alone are sufficient to 

cause detrimental effects due to Mdm2 suppression/p53 activation [106]. 

In summary, our study provides first in vivo evidence that Mdm2 is required for ho-

meostasis in unchallenged tubular epithelial cells of healthy adult kidneys. Tubule-

specific Mdm2 knockout results in spontaneous cell death and acute kidney injury. 

This observation fits into the big picture that Mdm2 plays a key role in restraining p53 

at a low level in homeostatic tissues. This is not only important for understanding re-

nal physiology, but also clinically relevant for evaluating the potential toxicities of 

Mdm2 inhibitors on healthy kidney tissues.  
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5.2 Tubular cells cannot fully recover from Mdm2-deletion induced injury 

We also applied intermittent doxycycline treatment regime on Mdm2-/-tubulus mice, to 

avoid rapid lethality observed during continuous doxycycline induction. Surprisingly, 

Mdm2-/-tubulus mice survived within the whole experimental period and appeared nor-

mal. However, kidneys of Mdm2-/-tubulus mice exhibited pronounced interstitial fibrosis 

with overproduction of extracellular matrix, as detected by PAS and Masson tri-

chrome´s stain under light microscope. Kidney function parameter BUN was elevated 

by 2-fold compared to control mice. Moreover, renal mRNA expression of profibrotic 

markers was significantly enhanced compared to control mice, including Tgf-beta, 

fibronectin, collagen1a1 and collagen 4a1. Further on, Mdm2-/-tubulus mice displayed 

significantly increased intrarenal mRNA level of p53 and enhanced p53 immunostain-

ing in kidneys in comparison with control mice. Taken together, the data suggest that 

tubular cells cannot fully compensate for cell death due to Mdm2 depletion/p53 acti-

vation; instead, kidney scarring and renal fibrosis occurred. 

In contrast, Valentin-Vega et al. reported that intestinal epithelial cells lacking Mdm2 

can compensate for cellular loss with time [169]. Transgenic mice Mdm2flox/flox; Villin-

Cre lacking Mdm2 in the intestinal epithelium (Mdm2-/-intestines) were born viable but 

displayed multiple adverse phenotypes early in life: significantly lower body weight 

compared to their control littermates, hyperplasia of intervillus pockets and inflamma-

tion of intestinal epithelium. Besides, upregulation of p53 and its target genes, and 

widespread apoptosis in intestinal epithelium of Mdm2-/-intestines mice were detected. 

Unexpectedly, these intestinal abnormalities disappeared with increased age. Intes-

tines can recover completely from the Mdm2-deletion mediated cellular loss through 

a series of compensation mechanisms, including selection against Mdm2-null cells, 

overgrowth of Mdm2-retaining cells due to loss of Cre recombinase and accelerated 

proliferative capacity of intestinal epithelial cells. Eventually, the organism survived 

and bypassed the Mdm2 deletion in intestinal epithelium [169].  

Contrary to their findings, renal tubular epithelial cell cannot completely compensate 

for Mdm2-deletion mediated cell death, as we demonstrated in our experiments. It is 

noteworthy that intestinal epithelial cells have an extremely rapid cellular turn-over 

and only take 24 and 60 hours to renew the entire epithelial layer [106, 180]. On the 

other hand, renal tubular cells are mainly quiescent and have a low turn-over under 

physiological conditions [43, 44], but turn to be highly proliferative after injury [181]. 
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Our observation of renal fibrosis is in accordance with Zhang´s study, in which also 

interrupted induction regime on conditional knockout mice was applied [120]. Similar-

ly, kidneys of experimental mice upon discontinuous and global Mdm2 deletion ex-

hibit a fibrosis phenotype. Zhang attributed this phenomenon to remodeling process 

of epithelial-mesenchymal-transition (EMT) [120]. However, a growing number of re-

cent studies have doubted the role of EMT, or even its existence in renal fibrosis 

[182, 183]. Herein, we presume that the observed renal fibrosis in Mdm2-/-tubulus mice, 

which is a common feature of chronic kidney disease, is driven by maladaptive repair 

in response to acute kidney injury.  

Recently, there is an emerging concept that acute kidney injury and chronic kidney 

disease are not distinct pathological processes, but represent a continuum and are 

interconnected with each other [2, 170, 184, 185]. Acute kidney injury (AKI) is an in-

dependent risk factor for development of chronic kidney disease (CKD), and in turn, 

patients with CKD are more susceptible to AKI (“acute-on-chronic renal failure”) [184, 

186-188]. Patients with AKI in the history have a 9-fold higher risk to develop CKD, 

and a 3-fold higher risk for progression into ESRD than have matched patients with-

out AKI [189].  

How does AKI accelerate the progression of CKD? An increasingly accepted theory 

is that maladaptive repair following AKI drives persistent organ dysfunction and thus 

predisposes to CKD [184] (Figure 30). Maladaptive repair is more likely to happen, 

especially when the kidney injury is severe and persistent and/or the patient is elder-

ly. During maladaptive repair in response to AKI, complex changes in heterogeneous 

cell population within the kidney environment occur. These include vascular dropout, 

recruitment of profibrotic and pro-inflammatory macrophages and premature cell-

cycle arrest of injured tubular cells [2, 184]. Notably, tubular cells that arrested at 

G2/M checkpoint for a prolonged period release increased amount of profibrotic fac-

tors such as transforming growth factor beta (Tgf-beta), which contributes to over-

production of extracellular matrix and progressive fibrosis [44, 190]. The underlying 

pathophysiological mechanism for the AKI to CKD transition is not well understood 

yet and remains under controversy and debate [2]. 

 



Discussion 

 87 

 

Figure 30: Maladaptive repair after acute kidney injury leads to chronic kidney disease  
Acute kidney injury is potentially reversible and resolves after adaptive repair. However, if the 
injury is severe or persistent, maladaptive repair is more likely to occur. Recruited macro-
phages, growth-arrested tubular cells and proliferating myofibroblasts mediate inflammation 
and fibrogenesis within the kidney. Moreover, dissociation of endothelium and pericytes re-
sults in endothelial dysfunction and vascular dropout, which exacerbates tissue hypoxia. Fi-
nally, accumulation of extracellular matrix, chronic inflammation and sustained cellular mal-
function lead to renal parenchymal scarring, decline of kidney function and chronic kidney 
disease. Picture taken from Zuk et al. [2] with permission (order license Id: 433590886439, 
confirmation number: 11713651). 
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5.3 MDM2 inhibitors might have detrimental effects on patients 

Over the last decade, MDM2 inhibitors have been rigorously researched in treating 

cancer with wild type p53, which constitutes approximately half of all tumors. As 

MDM2 is the chief negative regulator of tumor suppressor protein p53, antagonizing 

MDM2 protein results in restoration of p53 activity. Consequently, p53-mediated 

pathways of apoptosis and cell cycle arrest are activated, which suppresses tumor 

development and progression. Among various approaches of antagonizing MDM2, 

blockade of protein-protein interaction is the most developed strategy. For example, 

the sensationally discovered small molecule nutlin occupies the p53-binding pocket 

of MDM2 and abrogates their interaction. As a result, p53 molecule accumulates and 

its tumor suppressor network is fostered [191]. Interestingly, nutlins were found to 

have additional anti-angiogenic effects, thereby reducing blood supply for tumor and 

starving cancer cells [191, 192]. The successful anti-cancer efficacy of nutlins and 

nutlin-derivatives were authenticated by proof-of-concept studies [144, 146, 148]; 

some of such compounds are being probed in clinical trials [145].  

Despite the promising clinical prospects of MDM2 inhibitors as anti-cancer therapeu-

tics, their potential adverse effects can be dose-limiting and should be kept in mind 

(Table 8).  

First, MDM2 inhibitors may have toxicities on normal tissues. Upon systemic MDM2 

administration, not only tumor cells are exposed to the drug effects, but also normal 

tissues such as bone marrow, gastrointestinal tract and kidney. For example, small 

molecule MDM2 antagonist RG7112 was evaluated in a clinical trial of patients with 

liposarcoma, which is characterized by a high frequency of MDM2 gene amplification 

and wild-type p53 [145, 154]. All enrolled patients experienced at least one adverse 

event, most commonly nausea (82%), vomiting (65%), asthenia (53%) and diarrhea 

(53%). Moreover, serious hematologic adverse effects were observed in patients, 

such as neutropenia (35%) and thrombocytopenia (18%) [154]. In another clinical 

study of RG7112 in patients with hematologic malignances, severe adverse effects 

were reported in more than 10% patients, with most frequent being grade 4 febrile 

neutropenia (3%) and pneumonia (2%). 

As for kidneys, our study demonstrates that renal epithelial tubular cells experience 

deleterious effects upon Mdm2 deletion, regardless of treatment regime. Both acute 

kidney injury and chronic kidney disease can occur in the absence of Mdm2 in tubu-
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lar epithelium. Our finding is consistent with the previous study of podocyte-specific 

Mdm2-knouckout mice, which developed focal segmental glomerular nephritis, ac-

companied with proteinuria, progressive loss of podocytes and reduced life span. 

This study suggests that podocytes lacking Mdm2 undergo cell death and fail to 

maintain the glomerular filtration barrier. Taken together, special caution regarding 

kidney´s homeostasis should be taken when treating cancer with MDM2 inhibitors, 

and a close monitoring of the patient´s kidney function is necessary. 

Second, MDM2 inhibitors can impair wound healing [123]. For example, nutlin inhibits 

tissue regeneration and repair process after acute kidney injury, as the pro-

proliferative effect of Mdm2 is dampened [136, 193, 194]. Patients treated with nutlin 

can be therefore more susceptible to undergo maladaptive repair and incomplete 

healing following acute kidney injury. Third, there exists a concern that prolonged use 

of MDM2 inhibitors can induce mutations in wild type p53 gene, thereby favoring de-

velopment of second tumor [195]. 

In summary, MDM2 inhibitors in cancer therapy are promising, but more studies are 

required for further evaluations.  

 

Table 8: Effects of MDM2 inhibitors 

Desired effects Potential adverse effects 

Suppression of tumor development via 

Ø Upregulation of p53 activity 

Ø Anti-angiogenic effects 

Ø Toxicities on normal tissues 

Ø Impairment of wound healing 

Ø p53 mutation by prolonged use of 

MDM2 inhibitor 

Ø Induction of second tumor develop-

ment  
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5.4 How do tubular cells die in the absence of Mdm2? 

We reported that Mdm2-/-tubulus mice underwent acute kidney injury with upregulation 

of p53 and its target genes p21 and Puma in the kidney. How do tubular cells die up-

on Mdm2 deletion? We expected that activated p53 would induce apoptotic pathway. 

However, Mdm2-/-tubulus mice kidneys exhibit only modest apoptotic activity on cleaved 

caspase 3 and TUNEL immunostaining, which did not correlate with the extent of cell 

loss and tubular injury in renal epithelium. Furthermore, light microscopy as well as 

electron microscopy did not detect characteristic morphological features of apoptosis 

in tubular cells, such as cellular shrinkage, membrane blebbing and chromatin con-

densation. Additionally, necrosis or autophagy were not detected by morphology nei-

ther. The exact cell death mode in tubular cells upon Mdm2 deletion remains un-

known and need to be further explored.  

Previously, Thomasova et al. proposed a new cell death mode, namely podoptosis 

(p53-overactivation related cell death) observed in podocyte-specific Mdm2 knockout 

mice and podocytes cell culture [138]. Based on biochemical signaling pathway, their 

in vitro data excluded apoptosis and other recognized regulated cell death pathways 

such as necroptosis, pyroptosis, pyronecrosis, ferreoptosis and parthanatos etc. 

Thus, they defined this distinct, p53-overactivation-related form of cell death, referred 

as “podoptosis”. Whether podoptosis also occurs in renal tubular cells, remains un-

known. Nowadays, cell death modalities are not defined by morphological but by bio-

chemical criteria according to the Nomenclature Committee on Cell Death (NCCD) 

[196]. Thus, comprehensive in vitro experiments should be accomplished to define 

the molecular mechanism of cell death in renal tubular cells upon Mdm2 depletion. 
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5.5 Limitations of study and future directions 

We determined the effects of Mdm2 deletion in renal tubular epithelial cells by gener-

ation of conditional gene knockout mice. However, our study has methodic limita-

tions. First, the results rely on animal models with transgenic mice, which do not fully 

exemplify the complexity of human biology. A direct translation from laboratory into 

clinical situations is thus restricted. Second, the Cre/loxP system may not have 100% 

efficacy of Cre recombination, thus 100% Mdm2 gene deletion may not have oc-

curred. Such phenomenon is also reported in other mouse experiments using 

Cre/loxP system [120, 169]. Third, we isolated RNA from total kidneys, hence, the 

measured intrarenal mRNA expression is not specific for the tubules, but for the en-

tire cell populations within the kidney. 

Future studies include generation of p53 and MDM2 double knockout mice (p53-/-

tubulus;Mdm2-/-tubulus) to examine if the deleterious phenotype of Mdm2-/-tubulus mice is 

p53-dependent. Also, in vitro experiments with primary cells isolated from mice 

and/or human kidneys should be performed, to define the precise molecular mecha-

nism of cell death upon Mdm2-deletion in tubular epithelium, as described in 5.4. 

Moreover, our hypothesis can be tested in other animal models, such as in estab-

lished zebrafish model with Mdm2 knockdown through injection of specific morpho-

linos into fertilized eggs [139]. Finally, in clinical studies of treating cancers with 

MDM2 inhibitors, follow-up of patients´ kidney function and biopsies can reveal short-

term as well as long-term effects of low MDM2 levels on human kidneys.  
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6 Abbreviations 

Listed alphabetically 

AKI Acute kidney injury 

ABC Avidin-biotin-complex 

a-Sma Alpha smooth muscle actin 

BUN Blood urea nitrogen  

cDNA Complementary DNA 

CKD Chronic kidney disease 

Cdk Cycline-dependent kinase 

Cre Cause recombination 

DAMP Damage-associated molecular pattern 

DAPI 4',6-diamidino-2-phenylindole 

DNA Deoxyribonucleic acid 

EMT Epithelial-mesenchymal-transition 

ESRD End stage renal disease 

FSGN Focal segmental glomerulonephritis 

GFR Glomerular filtration rate 

IGFBP7 Insulin-like growth factor-binding protein-7 

IL Interleukin 

kDa Kilo Dalton 

Kim-1 Kidney Injury Molecule-1 

L-FABP Liver-type fatty acid-binding protein 

LoxP Locus of crossing over of P1 phage 

mRNA Messenger RNA 

Mdm2 Murine double minute 2 



Abbreviations 

 93 

MOMP Mitochondrial outer membrane permeabilization 

NF-κB Nuclear factor-kappa-light-enhancer of activated B-Cells 

Ngal Neutrophil gelatinase-associated lipocalin 

NPC Nephron genitor cells 

PAS Periodic acid-Schiff 

PCR Polymerase chain reaction 

Podoptosis p53-overactivation related cell death 

PRR Pathogen recognition receptors 

Puma p53-upregulated mediator of apoptosis 

RNA Ribonucleic acid 

RT Reverse transcriptase 

RT-PCR Real-time polymerase chain reaction 

SEM Standard error of the mean 

SLE Systemic lupus erythematodes 

Tgf-β Transforming growth factor β 

THP Tamm-Horsfall protein 

Timp-2 Tissue inhibitor of metalloproteinases 2 

TLRs Toll-like receptors 

TNF Tumor necrosis factor 

TUNEL Terminal Deoxytranserase Uridine Triphosphate Nick End Labeling 

UB Ureteric bud  
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