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Deutschsprachige Zusammenfassung

Numerische Untersuchungen stark korrelierter fermionischer Systeme sind schwierig und
beinhalten noch heute essentielle Probleme. Die Hauptgründe dafür sind das exponen-
tielle Wachstum des Hilbertraumes der Quantenzustände mit der Systemgröße und das
fermionische Vorzeichenproblem bei Monte-Carlo-Rechnungen. Eine der am häufigsten
verwendeten Methoden zur Untersuchung zweidimensionaler Gittersysteme sind Cluster-
Erweiterungen der dynamische Molekularfeld Theory (DMFT), wie zum Beispiel die dy-
namische Cluster Approximation (DCA). Diese Methoden bilden mehrdimensionale Git-
tersysteme auf eindimensionale Störstellen-Probleme ab. 2015 wurde gezeigt, dass DMFT
auf der imaginären Frequenzachse kombiniert mit der Dichtematrix-Renormierungsgruppe
(DMFT+DMRG) Mehrband- und Multisite-Systeme schneller lösen kann, als wenn an-
dere Störstellen-Löser verwendet werden.
In dieser Arbeit entwickeln wir diesen Ansatz weiter und wenden ihn auf Modelle realer
Materialen an. Am Anfang dieser Arbeit besprechen wir relevante Methoden für DMRG+
DMFT, wie zum Beispiel Matrix-Produkt-Zustände, die Dichtematrix-Renormierungs-
gruppe und mehrere Zeitentwicklungs-Methoden. In diesem Zusammenhang werden wir
auch mehrere Verbesserungen besprechen, die von methodischen Anpassungen von Zeit-
entwicklungen bis hin zur Neuordnung des Tensornetzwerkes basierend auf Verschrän-
kungs-Eigenschaften reichen. Danach werden wir uns detailliert mit den methodologischen
und programmiertechnischen Aspekten von DMFT beschäftigen. Dieses Kapitel dient als
Grundlage für andere Forscher, die eigene DMRG+DMFT-Codes programmieren wollen.
Abschließend werden wir drei verschiedene Modelle besprechen, um das Ausmaß der Sys-
teme zu zeigen, die mit diesem Ansatz gelöst werden können. Wir werden uns im Kon-
text des Hubbard-Modells detailliert mit Multisite-DCA beschäftigen und zeigen, dass
DMRG+DMFT Ergebnisse für Systeme mit mittleren Wechselwirkungsstärken bei niedri-
gen Temperaturen erzeugen kann. Das ist mit anderen Störstellen-Lösern bisher nicht
möglich. Im zweiten Fall beschäftigen wir uns mit Strontiumvanadat Sr2VO4 und werden
die ersten Zweisite-DCA-Ergebnisse für ein realistisches Dreiband-Modell präsentieren.
Im Gegensatz zu bisherigen Erwartungen führt die teilweise Wiedereinführung der Im-
pulsabhängigkeit der Selbstenergie nicht zu einer besseren Übereinstimmung von Theorie
und Experiment. Das dritte Modell beschreibt Strontiumruthenat Sr2RuO4. In diesem
Fall besprechen wir den Einfluss der Spin-Bahn-Kopplung auf DMFT und wie die damit
verbundenen Probleme optimal gelöst werden können. Abschließend zeigen wir die ersten
Ergebnisse für dieses Modell bei niedrigen Temperaturen.
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Abstract

Numerical studies on strongly correlated fermionic systems are very complicated and
still provide essential problems. The main reason is the exponential growth of the un-
derlying Hilbert state space with the system size and the fermionic sign problem for
Monte Carlo studies. Among the most widely employed numerical techniques for study-
ing two-dimensional quantum many-body systems are cluster extensions of the dynamical
mean-field theory (DMFT), e.g. dynamical cluster approximation (DCA). They map an
infinitely large multi-dimensional lattice problem to a one-dimensional impurity problem.
In 2015 it was shown that the density matrix renormalisation group (DMRG) used as an
impurity solver for DMFT (DMFT+DMRG) on the imaginary-frequency axis allows to
solve multi-site and multi-band problems extremely fast compared to other solvers.
Within this thesis, we further develop this DMRG+DMFT approach to apply the method
on real material settings. The step from artificial, completely degenerate multi-band mod-
els with simple dispersion relations on a Bethe lattice, studied in 2015, to systems with
realistic band structures and lifted degeneracies involves more challenges than originally
suspected.
In this thesis, we will first recapitulate relevant methods for our approach like matrix prod-
uct states, the density matrix renormalisation group and several time evolution methods.
In this context we will present several improvements ranging from optimised time evo-
lutions to entanglement based optimisations of tensor networks. Second, we will present
a very detailed description of the dynamical mean field theory. We will focus on both
methodological aspects and implementation details. This chapter is intended to allow
other researcher to implement their own DMFT code using DMRG as an impurity solver.
Third, we will discuss three different models to show the extent of problems DMRG+
DMFT is able to solve. We will focus on multi-site DCA calculations in the case of the
two-dimensional Hubbard model and show that DMRG allows to tackle systems with
intermediate interaction strengths at low temperatures, which are unsolvable with other
solvers. In the second case, the real material Sr2VO4, we will show the first two-site DCA
results for a realistic three-band model. In contrast to assumptions, partly reintroducing
the momentum dependence of the self-energy does not improve agreement between exper-
imental observations and theoretical results. Finally, we will move on to another realistic
three-band model, which describes Sr2RuO4, to show how to deal with the influence of
spin-orbit coupling on DMFT. We will present the first low-temperature results for this
material and will confirm previous results of simplified model calculations.
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Chapter 1

Introduction

The aim of Quantum mechanics is to understand and predict the behaviour of electrons,
atoms, photons and molecules at atomic scales. In turn, this determines the macroscopic
properties of materials such as, for example, electrical and thermal conductivity, and re-
sistance as well as their magnetic behaviour. Condensed matter theory focuses on trying
to understand the origin of these properties and determining how they are influenced by
the spatial distribution of atoms and orbitals in unit cells, temperature, pressure, doping
and other parameters. With this knowledge at hand one can deliberately identify or de-
sign compounds that exhibits certain characteristics under clearly defined conditions.
Many of these properties are interesting because they promise to lead to new technical
revolutions similar to how the understanding of semi-conductors in the last century led
to the development of computers, smartphones and microcontrollers. A comparable un-
derstanding of strongly correlated materials could for instance allow to design compounds
that are tuned close to phase transitions and react extremely fast to parameter changes
like applied currents or pressure. This would decrease the amount of energy needed to
control these devices and lower their response times significantly [1,2,3] compared to semi
conductors. Another interesting phenomenon is high-temperature superconductivity. Un-
derstanding the mechanisms behind this behaviour could allow to design materials that
exhibit this property at room temperature, which definitely would change our society
dramatically [4,5,6].
However, the wide variety of interaction types and strengths between electrons and be-
tween electrons and atoms give rise to an enormous range of different physical phenom-
ena [7,8,9,10,11,12]. Studies of strongly correlated materials are very complicated and de-
manding. First, it is challenging to determine the important processes and properties
of a material to build a reasonable model. For example, it has to be evaluated whether
the system can be described by an effective lower-dimensional model or whether the full
three-dimensional system has to be considered, whether the geometrical structure of the
compound has an important influence on the physics, which orbitals of which atoms
are vital for electronic properties, of which type the interactions between the different
electrons are and which regimes of dopings, interaction strengths and temperatures are
interesting. The description of the system should be as simple as possible and only include
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relevant aspects since the difficulty and runtime of computations is affected strongly by
the complexity of the model. This leads us to the second step: The model has to be
solved. While multiple methods exist that produce results for one-dimensional problems
very efficiently such as density matrix renormalisation group [13], exact diagonalisation [14]

or continuous time quantum Monte Carlo [15], in general, two-dimensional problems still
provide significant problems and three-dimensional models are not solvable at all.
Recent years have seen great interest in two-dimensional quantum many-body systems in
both theoretical and experimental physics. On the theoretical side, new non-perturbative
approaches are developed [16,17,18] inspired by ideas of different fields. With the help of
quantum information theory more efficient tensor networks are invented [19], quantum
chemistry provides useful insights on highly correlated models and optimal representa-
tions of quantum problems [20,21], while machine learning techniques are used to study
quantum many-body states [22,23,24] and to optimise existing numerical techniques [25]. On
the experimental side, developments in the field of cold atomic gases and quantum optics
allow for the setup and manipulation of quantum lattice systems under controlled and
repeatable conditions [26]. This opens completely new possibilities for comparisons and
mutual influence between experiment and theory for future research.
These developments are not only interesting from a theoretical point of view but also lead
to an increasing amount of research on more and more complex and realistic solid state
models. Accordingly, the demand for numerical resources is strongly increasing and many
numerical methods that have been very successful so far seem to have reached their lim-
its. Correspondingly, many improvements to these kinds of methods are being developed
and are still the main focus of many researchers. However, the most reliable methods
to study quantum-mechanical systems so far, exact diagonalisation [27] and Monte Carlo
sampling [28], still encounter large difficulties. The former is limited by the exponential
growth of the Hilbert state space and fails to tackle relevant systems sizes. The latter is
often limited by the so-called sign problem that is encountered in many fermionic systems.
If present, it prevents Monte Carlo from determining the behaviour of complex models
at low enough temperatures. Among the most widely employed numerical techniques
for studying quantum many-body systems are the dynamical mean-field theory [29,30,31]

(DMFT) and its cluster extensions, e.g. dynamical cluster approximation [32,33] (DCA).
These methods map an infinitely large multi-dimensional lattice problem to an auxiliary
problem, consisting of impurity sites coupled to a non-interacting environment. The in-
teraction on and between the impurity sites is similar to the interaction in the original
multi-dimensional model. The artificial coupling between impurity sites and environment
has to be determined self-consistently in such a way that the physics taking place on the
impurity sites is the same as on the lattice sites. This is done, as in all mean-field theo-
ries, via a self-consistency equation and an iterative procedure that updates the auxiliary
problem until self-consistency is reached. The main physical assumption of dynamical
mean-field theory is to approximate the electron self-energy as frequency-dependent but
momentum-independent. Cluster extensions such as DCA reintroduce the momentum-
dependence of the self-energy partly by creating more complex models that become more
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and more similar to the original lattice problem. Unsurprisingly, that causes computation
times to increase exponentially.
DMFT is successful because of two main reasons: First, over the time it was shown that
many models and materials are well described by DMFT results, despite the fact that
self-energies are momentum-independent. Second, the success and failure of DMFT for
arbitrary systems depends strongly on the method chosen to solve the auxiliary impurity
problem, also called impurity-solver. There exist a wide variety of impurity solvers that
make DMFT so flexible and versatile. The most prominent examples are continuous time
quantum Monte Carlo [34] (CTQMC), exact diagonalisation [14] (ED), the numerical renor-
malisation group (NRG) [35] and the density matrix renormalisation group (DMRG) [17,36]
CTQMC is widely and very successfully used as an impurity solver. Unfortunately, com-
puting low-temperature results is computationally highly expensive and limits the use
of CTQMC in many cases to unsuitable high temperatures. Since CTQMC solves the
impurity problem on the imaginary-frequency axis, calculating real-frequency quantities
requires analytical continuations. Unfortunately, they are numerically ill-posed and suffer
from severe practical difficulties. Furthermore, the application of CTQMC in some cases
is highly limited by the fermionic sign problem, which often occurs for systems with mul-
tiple relevant orbitals, non-Hubbard interactions or large cluster DCA calculations at low
temperatures.
Exact diagonalisation solves the impurity problem on the imaginary-frequency axis with-
out making any kind of assumptions. It suffers under no general limitations and is only
restricted by the size of the Hilbert space of the impurity problem. This restrains the num-
ber of correlated impurity sites and associated bath sites that describe the non-interacting
environment. In practice, this limits ED to systems with only a couple of relevant orbitals
and small cluster DCA calculations, albeit there have been recent developments with re-
stricted Hilbert spaces [37,38] that increase accessible systems sizes slightly.
In contrast to the previous two methods, NRG solves the auxiliary problem on the real-
frequency axis and obtains high-quality results for the low-frequency limit especially. Due
to its way of solving the impurity problem, NRG is limited strongly by the number of
correlated sites, which hardly can exceed one or two impurity sites. Only recently NRG
was pushed to solve a three-band problem in the context of DMFT [18] but it remains
questionable how far it can be extended.
The density matrix renormalisation group (DMRG) was first used as an impurity solver
for DMFT in 2004 [36,39]. In contrast to NRG, the high-quality results obtained on the
real-frequency axis are not focused on the low-frequency regime, which makes DMRG
more versatile. The impurity problems obtained from DMFT are typically represented
as one-dimensional chains. For DMRG this means, that adding additional correlated
sites results in creating artificial long-range interactions. They increase entanglement and
runtimes dramatically, which was probably the reason why DMRG has not been widely
accepted as an impurity solver for DMFT. Originally, only results for a single-band Hub-
bard model were presented. Recently, in 2017 changes to the topology of the impurity
problem, which removed a large portion of artificial long-range interactions, allowed to
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solve a three-band model on the real-frequency axis with DMRG [40]. However, it is still in
questionable whether DMRG+DMFT is able to solve multi-band models or higher-order
DCA calculations of real materials.
Wolf et al. in 2015 [17] followed a different road by proposing to solve DMFT on the
imaginary-frequency axis with DMRG. While impurity problems on the real-frequency
axis consists of 60 to 100 bath sites per correlated site, on the imaginary axis only three
to ten are necessary for an excellent description of the non-interacting environments. Wolf
et al. showed that these small systems lead to very fast runtimes compared to other solvers
and at the same time to remarkable agreements with CTQMC results. Instead of using
analytic continuations to obtain real-frequency results after DMFT is converged, they pro-
posed to perform an additional real-frequency calculation based on the converged impurity
problem. With this approach they were able to compute the first spectral functions of a
completely degenerate three-band Hubbard-Kanamori model at zero temperature with a
two-site DCA calculation. The results were not of a high quality but allowed to determine
whether a system is an insulator or a metal. Albeit this system was far from being realis-
tic, the remarkably short computations times indicated that more complex and realistic
models could be solvable with this ansatz. Thus, they proposed to use DMRG+DMFT
on the imaginary axis as an effective low-cost solver for DMFT and DCA problems that
were not accessible with other impurity solvers.
Within this thesis, we further develop DMRG+DMFT on the imaginary-frequency axis
to be able to apply the method on real material settings. The step from a completely
degenerate multi-band problem with a simple dispersion relation on a Bethe lattice to a
system with a realistic band structure and lifted degeneracies involved more challenges
than originally suspected. The entanglement growth is significant, convergence problems
occur due to more complex phases being present and symmetries become more important
for the performance and convergence of DMFT. Therefore, to obtain results for real ma-
terial models, it is necessary to improve methodological aspects such as, for example, a
better Krylov method for computing time evolutions or model representations such as the
reordering of the lattice sites based on entanglement properties. Additionally, improv-
ing implementational details such as optimised parallelisations and determining which
symmetry quantum numbers can and should be implemented is also necessary to obtain
results for most model calculations.
We will begin this thesis by introducing matrix product states (MPSes) and matrix prod-
uct operators (MPOs) for lattice problems [41,42] in chapter 2. They form the basis to
easily understand tensor networks, DMRG and all MPS-related methods. All necessary
operations such as scalar products and operator applications can be performed easily in
the MPS language and also be represented graphically. Afterwards, the concept of entan-
glement, and its relation to MPS will be introduced.
With this fundament we will focus in chapter 3 on discussing the density matrix renor-
malisation group [43], which can be used to variationally find an optimised representation
of the ground state of impurity problems created within DMFT. Furthermore, we will
introduce several improvements such as a reordering of lattice sites based on entangle-
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ment properties [21], which can improve the runtime of DMRG by up to a factor of ten.
We will also discuss different network topologies such as binary tree tensors, minimum-
spanning trees or minimum-entangled trees. The former were developed during this thesis
and proved in its first and not very refined implementation only to be competetive with
one-dimensional reordered MPSes for larger system sizes. The latter are lattice topologies
that are determined based on entanglement properties and are used frequently in quan-
tum chemistry [44]. They form a natural next step for improving the network topologies
of impurity problems originating from more complex DMFT systems.
In the context of DMFT, impurity solvers are used to compute the self-energy of the
auxiliary system. In the case of DMRG, this requires to compute the time-dependent
interacting single-particle Green’s functions of all impurity sites, which is, in general, the
most time-consuming part of each DMFT iteration. Therefore, the choice of the time-
evolution method is crucial for the performance of the whole calculation. In chapter 4
we will discuss several time evolution methods such as time evolution with block decima-
tion [45], the time-dependent variational principle [46] and the Krylov subspace method [47].
We will show that the Krylov method can be improved significantly by several adaptations
of the standard approach. However, we will argue that time-dependent variational prin-
ciple is the fastest method available for all models we encountered during this thesis. We
will end the chapter by introducing different ansatzes to compute the long-time behaviour
of the Green’s functions in much cheaper ways by linear prediction or by projecting out
the energetically low-lying eigenstates of the Hamiltonian.
After introducing all necessary ingredients to use DMRG as an impurity solver for DMFT,
in chapter 5 we will focus on both the theoretical derivation of DMFT and the detailed
discussion on the implementation of each step of a DMFT iteration. We will take special
care to emphasise on typical parameter and threshold choices and the ideas and experi-
ences behind certain approaches. At the end of this chapter we will introduce multi-site
DCA.
The Hubbard model is considered to be the simplest model containing correlated electrons.
It is displaying a wide range of different phenomena [48,49,50,51] and is also known to describe
high-temperature copper-oxide superconductors relatively well [52]. A key ingredient for
the description of high temperature superconductivity is the momentum-dependence of
the electrons that form cooper pairs. Since DMFT assumes momentum-independence of
the electron self-energy, it is obvious that cluster methods such as DCA are needed to de-
scribe the underlying physics of these properties. It is believed that the Hubbard model at
intermediate interaction strengths U ≈ 9t is especially interesting to understand systems
that exhibit high-temperature superconductivity [10,53]. So far multi-site DCA calculations
for intermediate interaction strengths and moderately large cluster sizes at low enough
temperatures are unfeasible with any kind of impurity solver. In the beginning of chapter
6 we will introduce the two-dimensional Hubbard model Hamiltonian for multi-site DCA
calculations. We will put special focus on the implementation of momentum quantum
numbers, which describe the conserved total momentum of the impurity problem. They
are necessary to reliably obtain the global ground state of multi-site DCA systems with



6

four or more patches with DMRG. Without them DCA calculations show strong con-
vergence problems. Afterwards, we will show that DMRG+DMFT results are in perfect
agreement with CTQMC results for clusters with up to four sites and that eight-site DCA
systems are not accessible due to unfeasibly long runtimes. We will close the chapter by
presenting the first multi-site DCA results for intermediate interaction strengths U = 9t
and U = 11t at temperature T = 0. Since the numerical effort is independent of the choice
of U , DMRG+DMFT is shown to be the method of choice for investigating momentum
properties in context of DMFT at low temperatures.
In chapter 7 we will focus on real material calculations of the layered perovskite Strontium
Vanadate Sr2VO4. While experiments show that the Sr2VO4 is a small gap correlation
driven insulator [54], single-site DMFT calculations yield metallic solutions for any reason-
able choice of interaction strengths [55]. It is believed that the momentum-independence of
the DMFT calculations is the reason for this discrepancy. Unfortunately, to our knowledge
no impurity solver was able to combine the three-band model with Hubbard-Kanamori
interaction with a multi-site DCA calculation at low temperatures so far. Indeed, the
three-band structure and the real material dispersion relation of the Vanadates provide
completely different challenges than the single-band multi-site DCA calculations of the
Hubbard model. As will be discussed, the most prominent one is the oscillation between
two competing solutions due to the degeneracy of two of the three bands. In this context
we will also discuss the band parity symmetry of the Hubbard-Kanamori Hamiltonian
in much detail and its influence on the convergence properties of DMFT and DCA. We
will end the chapter by showing, to our knowledge, the first two-site DCA results for a
three-band model with realistic band structure at temperature T = 0. A comparison
with single-site DMFT reveals that both calculations yield similar results for the layered
perovskite Sr2VO. This suggests that the momentum-independence of single-site DMFT
is not the reason for the discrepancies between experiment and theory.
In compounds that involve heavier elements, additional interaction types such as spin-
orbit coupling are necessary to describe the physics. This is the case for the perovskite ox-
ide compound Strontium Ruthenate Sr2RuO4. Unfortunately, the spin-orbit coupling in-
troduces single-particle interactions between different orbitals. This results in off-diagonal
components in Green’s functions and self-energies, which lead to a severe sign-problem
for CTQMC. For ED and DMFT they give rise to the not well-understood mathematical
problem of fitting matrix-valued functions. In the beginning of chapter 8 we will show
how to deal effectively with this problem in the context of the Ruthenates by transform-
ing the problem into a more suitable basis representation. This allows us to calculate
the first results for the Sr2RuO4-model with spin-orbit coupling at low temperatures and
without any simplifications of the model. We will confirm previous results of simplified
models that show an effective correlation-enhancement of the spin-orbit coupling by ap-
proximately a factor of two [56].
Chapter 9 will conclude this thesis and will give an outlook on future research.
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Tensor Networks

In this chapter we will define matrix product states and matrix product operators as tensor
network representations of states and operators on finite Hilbert spaces. They are the key
objects to understand the density matrix renormalisation group (DMRG) and the various
time evolution methods, which we will discuss in chapter 3 and 4. Essentially, they are
very efficient ways to represent a certain, but very relevant, class of quantum mechanical
states and operators that allow for easy approximations. All necessary operations like
overlaps, expectation values, applications of operators and simple scalar multiplications
as well as additions of matrix product operators can all be easily defined and represented
graphically. For further details we refer the interested reader to the extensive literature
about this topic [43,57]. In this thesis we will only define the necessary ingredients to follow
the discussion in the other chapters.
Originally, matrix product states (MPS) were developed in 1968 in the context of analyt-
ical studies on an interesting class of quantum states and proved to be simple and at the
same time very useful to describe certain kind of problems [41]. In fact, they can be seen
as an example of the simplest useful kind of tensor networks. They can be found in the
linear algebra community most commonly as so-called tensor trains [42] but during the last
60 years several other names were used as well [58,59]. After extensive studies on the sub-
class of translationally invariant MPSes [60], several analytical variational methods based
on the MPS language were developed, which for example allowed to work on Heisenberg
antiferromagnets [61,62] and ferrimagnets [63].
MPSes got even more attention after they were first connected to infinite-system [64] and
finite-system DMRG [65] in the late 90s. But the DMRG community only started to take
these developments seriously after Cirac et al. in 2004 [66,67] showed the effectiveness of
MPSes more systematically. It was an important step when people realised that MPSes
were not only conceptually useful but also allow for powerful extensions after reexpressing
DMRG completely in MPS language. The most valuable are arguably real-time evolutions
at zero [45,68] and finite temperature [69], periodic boundary conditions [70], infinite [71] and
continuous [72] systems and the generalisation to higher dimensions [66].
While the precision of DMRG in MPS formulation for one-dimensional problems is essen-
tially limited only by machine precision and quite independent of the detailed nature of
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the Hamiltonian, for two-dimensional models the necessary numerical resources for precise
results increase exponentially [73]. There exist several ansatzes based on tensor networks to
tackle two-dimensional problems ranging from mapping the problem back to long-ranged
one-dimensional systems [74] to projected entangled pair states called PEPS [75,76].
To understand all these methods and the strengths and weaknesses of the dynamical
mean-field theory with DMRG as an impurity solver, it is necessary to understand the
concepts of the MPS language. Therefore, we want to focus in this chapter first on how
any quantum state can be written in a very specific form, which is already defining an
MPS. In this context we will introduce important canonical forms and their connection to
the Schmidt decomposition, which provides a way of measuring entanglement in MPSes.
The concept of entanglement and its connection to singular values allows for efficient
truncation schemes, which are a key ingredient of MPSes being so useful for describing
so many physical systems. We will close this chapter with introducing matrix product
operators (MPO) in the same way as MPSes. Additionally, over the whole chapter we
will introduce graphical representations of MPSes and MPOs, which allow to describe
concepts and methods very efficiently.

2.1 Matrix Product States
The discussion of this chapter is based on Schollwöcks review from 2011 [43]. We start
with a general quantum many body state described by a wave function |ψ〉 defined on a
lattice. We consider a lattice with L sites and each site l consists of a number of local
basis states |σl〉. Thus, we can write a general state as

|ψ〉 =
∑

σ1,...,σL

cσ1,...,σL|σ1, . . . , σL〉. (2.1.1)

The coefficients cσ1,...,σL are complex and describe the weight of each combination of local
basis states to the state |ψ〉. We now want to write the state as a matrix product state.
We can consider these coefficients as a multi-dimensional tensor and reshape it to the
matrix

Ψσ1,(σ2,...,σL) = cσ1,...,σL . (2.1.2)

This allows us to perform a singular value decomposition Ψ = USV † on it, separating the
matrix U from the new multi-dimensional tensor ca1,σ2,...,σL

cσ1,...,σL = Ψσ1,(σ2,...,σL) =
r1∑
a1

Uσ1,a1Sa1,a1(V †)a1,(σ2,...,σL) =
r1∑
a1

Uσ1,a1ca1,σ2,...,σL . (2.1.3)

At this point we reshape Uσ1,a1 back into a tensor with three dimensions Aσ1
1,a1 . The

coefficient tensor can again be reshaped into a matrix

cσ1,...,σL =
r1∑
a1

Aσ1
1,a1Ψ(a1σ2),(σ3,...,σL). (2.1.4)
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The index σ1 of Aσ1
1,a1 labels the local basis of site 1 and the index a1 labels the product

with the remaining tensor. Since we consider the leftmost tensor in this case, the index on
the left of Aσ1

1,a1 is just 1 because we need to obtain a simple scalar after the contraction
of the indices. The 1 is usually omitted.
At this stage we perform a singular value decomposition again similar to Eq. (2.1.3)

cσ1,...,σL =
r1∑
a1

r2∑
a2

Aσ1
a1U(a1σ2),a2Sa2,a2(V †)a2,(σ3,...,σL)=

r1∑
a1

r2∑
a2

Aσ1
a1A

σ2
a1,a2Ψ(a2σ3),(σ4,...,σL). (2.1.5)

This time the new tensor Aσ2
a1,a2 of site 2, reshaped from the matrix U(a1σ2),a2 , has three

indices that are in general not equal to 1. Repeating the procedure to the right end of
the system, we can rephrase the multi-dimensional tensor cσ1,...,σL as a product of three-
dimensional tensors

cσ1,...,σL =
∑

a1,...,aL

Aσ1
a1A

σ2
a1,a2 · · ·AσL−1

aL−2,aL−1
AσLaL−1

= Aσ1Aσ2 · · ·AσL−1AσL , (2.1.6)

which allows us to write the wave function as

|ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 · · ·AσL−1AσL|σ1, . . . , σL〉. (2.1.7)

Note that this expression is exact since we did not make any assumptions. A graphical
representation of this construction can be seen in Fig. 2.1. A tensor is represented as a
square with lines connecting tensors, called bonds, indicating the contractions. We ordered
the indices on the tensors Aσlal,al in such a way that they correspond to the positions of
the lines, i.e. left, right and top.
The singular value decomposition produces matrices U , S and V † with certain properties.
One of the most important property for us is the orthogonality property of U and V †.
Since the former matrices are orthogonal when multiplied with U † from the left, we obtain

δal,a′l =
∑

al−1,σl

(U)†al,(al−1σl)U(al−1σl),a′l =
∑
al−1σl

(Aσl†)al,al−1A
σl
al−1,a

′
l

=
∑
σl

(Aσl†Aσl)al,a′l . (2.1.8)

We can also write that property as a matrix product of the tensors A of site l
∑
σl

Aσl†Aσl = I, (2.1.9)

where I is the unit matrix. See Fig. 2.2 a) for a graphical representation. A matrix
product state where all tensors have this property is called left-canonical and the tensors
are called left-normalised. Applying the singular value decompositions from the left to
the right of the system was somehow arbitrary. We could also have started on the right
site of our system and performed exactly the same steps up to the point where we reach
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...

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

A1

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

A1 A2

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

Figure 2.1: Graphical representation of a construction of a matrix product state. In each step a
singular value decomposition is performed and a three-dimensional tensor Aσl is produced, rep-
resented by a square. Since we start from the left end of the system, we obtain a left-canonical
MPS as indicated by the triangles pointing to the right. The lines connecting the squares sym-
bolise the contractions that have to be summed over, also called bonds. The left- and rightmost
line has dimension one, such that after the contraction of all tensors we obtain a simple scalar.

the left edge of the system

cσ1,...,σL = Ψ(σ1,...,σL−1),σL =
∑
aL−1

U(σ1,...,σL−1),aL−1SaL−1,aL−1(V †)aL−1,σL

=
∑
aL−1

Ψ(σ1,...,σL−2),(σL−1aL−1)B
σL
aL−1

=
∑

aL−2,aL−1

U(σ1,...,σL−2),aL−2SaL−2,aL−2(V †)aL−2,(σL−1aL−1)B
σL
aL−1

=
∑

aL−2,aL−1

Ψ(σ1,...,σL−3),(σL−2aL−2)B
σL−1
aL−2,aL−1

BσL
aL−1

= · · · =
∑

a1,...,aL−1

Bσ1
a1B

σ2
a1,a2 · · ·BσL−1

aL−2,aL−1
BσL
aL−1

. (2.1.10)

The tensors we obtain with this approach are in general different from the ones we obtained
previously. Thus, we label them as B-tensors. A graphical representation can be seen in
Fig. 2.3. Of course, we can also write down the matrix product state

|ψ〉 =
∑

σ1,...,σL

Bσ1Bσ2 · · ·BσL−1BσL|σ1, . . . , σL〉, (2.1.11)
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Bl

A∗l

Al

=

B∗l

Bl

=

a) b)

Figure 2.2: Graphical representation of the contraction properties of left a) and right b) nor-
malised tensors obtained from singular value decompositions. We write the complex conjugate
tensors A∗l and B∗l such that the local index points to the bottom to allow an easy distinction
between a ket and a bra state and to connect the local basis indices easily. Since the contraction
over the two indices results in an unit matrix, we can write the two matrices as a single line
contracting the remaining index.

but this time we exploit the orthogonality properties of the V † matrices, leading to a
slightly different identity on site l∑
σl

BσlBσl† = I, (2.1.12)

which we depicted in Fig. 2.2 b). States with tensors that all fulfil this property are
called right-canonical while the tensors themselves are named right-normalised. Instead
of creating the A tensors from the left to the right or the B tensors from the right to the
left end of the system, we can also mix the decompositions. Therefore, we first decompose
the coefficient tensor c from the left up to site l

cσ1,...,σL =
∑
al

(Aσ1 · · ·Aσl)alSal,al(V †)al,(σl+1,...,σL ), (2.1.13)

and then we decompose the remaining matrix (V †)al,(σl+1,...,σL ) with singular value decom-
positions from the right end of the system L to site l

(V †)al,(σl+1,...,σL ) =
∑

al+1,...,aL−1

(Bσl+1
al+1
· · ·BσL

aL−1
)al . (2.1.14)

Thus, we obtain left-normalised A tensors from site 1 to site l, right-normalised B tensors
on sites l + 1 to L and a diagonal square matrix S in between, which consists of singular
values. We call this representation a mixed-canonical MPS (Fig. 2.4), regardless of the the
S matrix being contracted with one of the neighbouring tensors or being kept separated

|ψ〉 = Aσ1 · · ·AσlSBσl+1 · · ·BσL|σ1, . . . , σL〉
= Aσ1 · · ·Aσl−1MσlBσl+1 · · ·BσL|σ1, . . . , σL〉
= Aσ1 · · ·AσlMσl+1Bσl+2 · · ·BσL|σ1, . . . , σL〉. (2.1.15)

Especially the last two forms in Eq. (2.1.15) are used frequently in the context of multiple
methods, which we describe later on such as ground state searches or time evolutions,
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B7

...

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

B10

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

B10B9

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

B1 B2 B3 B4 B5 B6 B8 B9 B10

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

Figure 2.3: Graphical representation of a construction of a matrix product state. In each step
a singular value decomposition is performed and a three-dimensional tensor Bσl is produced,
represented by a triangle. Since we start from the right end of the system, we obtain a right-
canonical MPS as indicated by the triangles pointing to the left.

while the first form is used mostly in the context of truncation. We can combine the A
and B tensors with the corresponding local bases states to orthonormal basis sets
|al〉A =

∑
σ1,...,σl

(Aσ1 · · ·Aσl)1,al |σ1, . . . , σl〉, (2.1.16)

|al〉B =
∑

σl+1,...,σL

(Bσl+1 · · ·BσL)al,1|σl+1, . . . , σL〉, (2.1.17)

and write the MPS as a Schmidt decomposition of the state |ψ〉 at the bond between site
l and l + 1.
|ψ〉 =

∑
al

sa|al〉A|al〉B. (2.1.18)

The singular values obtained from the singular value decompositions iterated through the
system are the Schmidt coefficients. They are strictly positive and the squared values
sum up to one ∑α s

2
α = 1 if the state is normalised. They also indicate the amount of

entanglement between the two halves of the system described by |al〉A and |al〉B, which
can be seen by the von Neumann entropy
S = −

∑
α

s2
α ln s2

α. (2.1.19)
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A1 A2 A3 A4 A5 B6 B7 B8 B9 B10

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

S

A1 A2 A3 A4 M5 B6 B7 B8 B9 B10

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

a)

b)

Figure 2.4: a) Graphical representation of a mixed-canonical matrix product state. All tensors
on site 1 to 5 are left-normalised and all states form site 6 to 10 are right-normalised. The
singular values are collected in the centre bond matrix S. This representation is used especially
for the truncation of MPSes since the tensors to the left of S together with their local bases form
an orthogonal basis set as well as the tensors to the right combined with their |σl〉. This results
in a Schmidt decomposition. b) The centre bond matrix was contracted with the A tensor of site
5. This mixed canonical state with respect to site l(= 5) is the key representation of most MPS
methods since in most calculations the orthogonality properties of the A and B tensors can be
used to simplify contractions enormously.

If only one Schmidt coefficient is non-zero, it must be equal to one. Then, the von
Neumann entropy is zero and Eq. (2.1.18) reduces to a simple product state. Thus, the
two halves of the system are not entangled and the dimension of the index connecting the
tensors on site l and l + 1, called bond dimension, is m = 1. Contrarily, the entropy is
maximised by all singular values being equal s2

α = 1/rl, where rl is the bond dimension
of the tensor on site l and therefore the number of singular values. The MPS becomes
a maximally entangled state. It is obvious that the distribution of the singular values
determines the entanglement of the system halves and the actual size of the sα how
important each contribution is to the complete state |ψ〉.
This provides a natural way to truncate an MPS, i.e. to approximate the state |ψ〉 with
another state |ψ′〉 that has a smaller bond dimension. This is necessary because, in
general, the dimension of the tensors increases exponentially. If the dimension of the
local basis |σ〉 is indicated by d, the first tensor will have the dimension 1 on the left side,
a local dimension d and on the right also the dimension d. The next tensor will have the
bond dimension d2 on the right hand side. This increases to the middle of the system
where the bond dimension is dL/2 and decreases in the same manner to the right hand side
of the system. Therefore, in any reasonable system the bond dimensions are too large to
be feasible and we need to find a better approximation, preferable while monitoring the
induced error. So, we note that the the norm of a state written in the mixed-canonical
decomposition is given by

norm(|ψ〉) =
∑
α

s2
α, (2.1.20)
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and the overlap of two states |ψ〉 and |ψ′〉, if they share the same left- and right-hand
Schmidt basis |al〉A and |al〉B with different coefficients sα and s′α by

〈ψ|ψ′〉 =
∑
α

sαs
′
α. (2.1.21)

If we now select only the largest r singular values s′α = sα if α ≤ r and set the remaining
values to zero s′α = 0 for α > r, we will obtain a state with the norm

√
R =

√∑
α≤r s2

α.
This is called a truncation on a single bond of a matrix product state. Let us now define
the discarded weight D = ∑

α>r s
2
α ∈ [0, 1] with the property D + R = 1. We can write

the error induced by such a truncation of singular values between normalised states |ψN〉
and |ψ′N〉 as

|||ψ′N〉 − |ψN〉|| = ||R−
1
2 |ψ′〉 − |ψ〉||2

= 1
R
〈ψ′|ψ′〉 − 2R−1

2〈ψ
′|ψ〉+ 〈ψ|ψ〉

= 1−
√
R + 1

= 2− 2
√

1−D = 2− 2
√

1−
∑
α>r

s2
α. (2.1.22)

In general, we want to truncate the bond dimension on each bond of the MPS. By using
the triangle inequality we can find an upper bond to the error between the state |ψN〉 and
the state |ψ′′N〉

|||ψ′′N〉 − |ψN〉|| ≤ |||ψ′′N〉 − |ψ′N〉||+ |||ψ′N〉 − |ψN〉||, (2.1.23)

where |ψ′′N〉 is the state |ψ〉′N truncated a second time on another bond. Putting this
together we can bound the error incurred by a series of SVDs with truncations on each
bond by

|||ψ′N〉 − |ψN〉|| ≤
L∑
l=1

√√√√2− 2
√

1−
∑
α>r

s2
l,α, (2.1.24)

where |ψ′N〉 is the new normalised state after all the truncations. Thus, the amount of
singular values we discard not only reduces the numerical effort dramatically, but it also
defines an upper bound for the induced error. Typically in the literature, the degree of
truncation is given by the truncation threshold t up to which all singular values are kept
s′α = sα for sα ≥ t and s′a = 0 for sα < t or by the truncated weight w = ∑

α>r s
2
l,α. In

the latter case the smallest singular values are discarded until their squared sum reaches
w. The truncated weight is a much better truncation criterium since it directly offers the
possibility to calculate the upper bond of the induced error in Eq. (2.1.24) and thus gives
a reliable idea of how severe a truncation is independent of the distribution of singular
values. In contrast, the same truncation threshold t can induce errors of completely
different orders of magnitude depending on the distribution of the singular values. In
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Figure 2.5: Two singular value distributions (solid lines) and a fictitious truncation threshold
t = 10−4 (black dashed line). The same value of t results in different errors after the truncation
at the bond according to Eq. (2.1.22) since the distribution of singular values is different.

Fig. 2.5 two different distributions of singular values sα can be seen and a line at a
fictitious truncation threshold t = 10−4. The corresponding sum of the discarded squared
values is very different in both cases and without knowing the distribution of the singular
values one can not determine how big the corresponding error is after the truncation.
However, in most calculations those two truncation measures can roughly be connected
by w ≈ t2. For all our calculations we will denote the amount of truncation in terms of a
truncated weight.
We want to emphasise again the very important connection between the entanglement of
a state and the bond dimension needed to describe the state accurately. The stronger
entangled a state is, the more non-zero singular values of approximately the same size
exist, which does not allow for an efficient truncation and thus leads to a high bond
dimension. Matrix product states are only an efficient description for relatively lowly
entangled states. Fortunately, it has been shown that for ground states of systems with
size L and a gap between the ground state and excitations the entanglement between
two halves of the system goes with ∼ LD−1, where D denotes the spatial dimension of
the system. This is known as the area law [73,77] and states for one-dimensional systems
that the entanglement is essentially independent of system size. The vast success of
MPSes for one-dimensional and small two-dimensional problems and its failure for larger
two-dimensional systems [78,79] can be explained very well by this.



16 2.2. MATRIX PRODUCT OPERATORS

2.2 Matrix Product Operators
It is not only possible to decompose any state |ψ〉 into a product of matrices but also any
operator. These so-called matrix product operators (MPOs) can be constructed in the
same fashion as MPSes. Given a Hilbert space H = ⊗Ll Hl and corresponding basis states
{|σl〉} of the Hilbert spaces Hl we can write any operator Ĥ : H → H as

Ĥ =
∑
σ1,τ1

∑
σ2,τ2

· · ·
∑
σL,τL

cσ1,σ2···σL
τ1,τ2···τL |τ1〉 ⊗ |τ2〉 ⊗ · · · ⊗ |τL〉〈σ1| ⊗ 〈σ2| · · · 〈σL|. (2.2.1)

Analogously to the decomposition of the multi-dimensional coefficient tensor of the matrix
product state in the previous section, we can decompose the coefficient tensor c of the
operator Ĥ with size Πld

2
l into a series of tensors {W σl,τl

wl−1,wl
} of rank 4

cσ1,σ2···σL
τ1,τ2···τL =

∑
w1

∑
w2

· · ·
∑
wL

W σ1,τ1
1,w1 W

σ2,τ2
w1,w2 · · ·W σL,τL

wL−1,wL
. (2.2.2)

A graphical representation of an MPO is depicted in Fig. 2.6 as well as an MPO-MPS
application in Fig. 2.7. It can be seen that after the contraction of the indices connect-

W5

|τ1〉 |τ2〉 |τ3〉 |τ4〉 |τ5〉 |τ6〉 |τ7〉 |τ8〉 |τ9〉 |τ10〉

W2W1 W4W3 W10W7W6 W9W8

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉
Figure 2.6: Graphical representation of a matrix product operator. In contrast to an MPS, now
we have two local indices, one located on the bottom of each square representing a tensor and
one at the top. Again, connecting lines are indicating contractions and are called bonds (as for
MPS).

ing the MPO and MPS we will obtain an MPS again. In general, the bond dimension
mR
i = wOi m

ψ
i of the new MPS tensor of site i will be the product of the bond dimension

of the MPO mO
i and MPS mψ

i , which normally will be truncated immediately to some
smaller value w̃Ri ≤ mR

i . Since this is rather inefficient, other approaches like the zip-up
algorithm [80] or a variational approach [43] are recommended. The key idea of the zip-up
algorithm is to contract the tensors of MPS and MPO consecutively and truncating each
tensor directly before contracting the next site. This approach has proven to be as accu-
rate as the naive contraction of MPS and MPO and significantly faster. The intermediate
tensors occurring during the computation only have a bond dimension of mR

i ×di×wOi mψ
i

with di being the bond dimension of the local state space |σi〉. In contrast, during the
the naive approach tensors with bond dimension wOi m

ψ
i × di×wOi ×mψ

i occur, which are
larger in general.
For very large MPOs even the zip-up algorithm can be very inefficient. Thus, it can be
advantageous to use a variational approach. We describe this ansatz in detail in section
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Figure 2.7: Graphical representation of a multiplication of an MPO to an MPS. After the
contraction of the MPO and MPS a new matrix product state is obtained. In general the bond
dimension of the new MPS is much higher than of the original MPS.

4.2.1 in the context of orthogonalisation, except that the environment tensor must be
replaced by the contraction of the MPS, MPO and current estimate MPS.
Since we now have MPSes and MPOs defined, we are able to construct overlaps, op-
erators and scalar applications as well as expectation values, which form the building
blocks of any MPS method. For further definitions and discussions about runtimes, scal-
ings and implementation details we will refer the reader at this point to more in-depth
literature [43,57].
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Chapter 3

Density Matrix Renormalisation
Group

The density matrix renormalisation group (DMRG) was developed by Steve White in
1992 [13] for infinite systems and soon became the most powerful numerical method for
studying one-dimensional quantum lattices and determining their ground states [81]. The
key idea is to consider an increasing number of lattice sites and truncating the number of
states describing the system to keep the size of the Hilbert space manageable. For that
it is assumed that there exists a reduced state space that describes the essential physics
of the system effectively and that DMRG can identify this subspace. Later, because of
its great success, DMRG was extended to finite systems and systems with long-range cor-
relations too. This is achieved by building up a one-dimensional lattice with the desired
system size with infinite DMRG and afterwards using iterative sweeps over the system to
determine a converged ground state description of the system [43,81].
While DMRG was initially only used to compute ground states and static properties of
low-energy spectra of strongly correlated Hamiltonians such as the Heisenberg, Hubbard
and t− J model, it was extended to study dynamic properties such as frequency depen-
dent conductivities and dynamical structure factors [82,83,84] as well.
As described in the introduction of the previous chapter, in the late 90s the connection
between DMRG and matrix product states (MPS) was discovered [64,65], which finally led
to the very effective and adaptive MPS-based formulation of DMRG [45,68]. Nevertheless,
it is still true that two-dimensional systems can only be solved for very small system
sizes, while one-dimensional systems are typically solvable with DMRG up to an accu-
racy that is only limited by machine precision. There exist several ides how to tackle
two-dimensional systems, such as mapping the problem to an one-dimensional system [74]

or using projected entangled pair states [75,76], but all methods have in common that the
required numerical resources increase drastically.
However, research is still ongoing with the aim of improving the performance of DMRG
further. This includes the combination of tensor networks with global symmetries [85,86,87]
as well as developments from the field of Quantum Information [88,89] and Quantum Chem-
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istry [21]. This is even more important since model Hamiltonians become more and more
realistic and consequently more complex. In this context, DMRG is also combined with
other methods like dynamical mean-field theory which generates Hamiltonians that in-
clude long-range interactions between numerous lattice sites, which give rise to small but
at the same time very strongly entangled systems. Thus, ideas and methods from other
fields such as Quantum Chemistry can lead to huge performance improvements. Most
of these methods has been validated in calculations of highly correlated molecules for
decades and still have not found their way into the condensed matter community. Some
concepts as reordering of lattice sites based on entanglement information [21,89], variation-
ally obtaining better bases sets for the lattice sites [90] or even changing the topology of
the whole lattice system [40,44] are focused on reducing the entanglement in systems and
thus can lower bond dimension of MPSes significantly. Other approaches try to systemat-
ically find better starting states based on Hartree-Fock orbitals to reduce the convergence
times [88,91] compared to using arbitrary random starting states. Overall, improvements
based on these concepts can very often lead to performance increases by factors up to
ten or higher. Therefore, it is not surprising that DMRG is still considered to be a key
method for tackling two-dimensional problems for the future.
In this chapter we want to present the fundamental concept of DMRG based on the MPS
formalism and several improvements we find useful for the rest of the thesis, This includes
the formulation of strictly single-site DMRG as well as the reordering of lattices based
on entanglement information. In the end of this chapter we will shortly focus on binary
tree tensors, which were developed by us together with collaborators during this thesis. A
first implementation showed that they start to be competitive with usual one-dimensional
MPSes for system sizes that were slightly larger than necessary for our models. However,
other lattice topologies used in quantum chemistry, such as minimal entangled trees or
minimal spanned trees, are a promising route to decrease entanglement in systems further
and should be kept in mind for further research. Therefore, we will end this chapter by
providing a short introduction to these very interesting concepts.

3.1 Single-Site-DMRG
The aim of DMRG is to find the state |ψ〉 represented by a matrix product state which
minimises the energy of a Hamiltonian Ĥ, represented as an MPO,

min
|ψ〉

(
E = 〈ψ|Ĥ|ψ〉〈ψ|ψ〉

)
. (3.1.1)

We can reformulate the problem to the minimisation of 〈ψ|Ĥ|ψ〉 under the constraint that
〈ψ|ψ〉 = 1. This can be solved using a Lagrangian multiplier [92] λ, resulting in

min
|ψ〉

(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
. (3.1.2)
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Optimising the complete MPS corresponds to solving a highly complex non-linear problem
which is nearly impossible to do efficiently and reliably. Instead, the key idea of DMRG is
to optimise the tensors of the MPS iteratively one after the other while moving through
the system using SVDs. This reduces the problem to a multi-linear optimisation problem
which can be solved efficiently via the following trick: We assume the the state |ψ〉 is in the
mixed-canonical representation with the tensors on sites 1 to l − 1 being left-normalised
and the tensors on site l+1 to L being right-normalised. In the notation of matrix product
states we can write the overlap 〈ψ|ψ〉 as

〈ψ|ψ〉 =
∑
σl

∑
al−1al

∑
a′
l−1a

′
l

ΨA
al−1,a

′
l−1
M

σ†
l

al−1,alM
σl
a′
l−1,a

′
l
ΨB
al,a
′
l
, (3.1.3)

where we kept the tensor of site l explicitly. The tensors on the left and right hand site
of site l we combined as

ΨA
al−1,a

′
l−1

=
∑

σ1,...,σl−1

(Mσl−1† · · ·Mσ1†Mσ1 · · ·Mσl−1)al−1,a
′
l−1
, (3.1.4)

ΨB
al,a
′
l

=
∑

σl+1,...,σL

(Mσl+1 · · ·MσLMσL† · · ·Mσl+1†)a′
l
,al . (3.1.5)

Because of the chosen representation and the orthogonality properties of the tensors, par-
ticularly clear in the graphical representation (Fig. 3.1), the last two expressions simplify
to unit matrices

ΨA
al−1,a

′
l−1

= δal−1,a
′
l−1

and ΨB
al,a
′
l

= δal,a′l . (3.1.6)

Let us now consider the term 〈ψ|Ĥ|ψ〉, with Ĥ written in MPO language

〈ψ|Ĥ|ψ〉 =
∑
σl,σ

′
l

∑
a′
l−1,a

′
l

∑
al−1,al

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a
′
l

bl
Mσl∗

al−1,al
M

σ′l
a′
l−1,a

′
l

(3.1.7)

with L being the contraction of all tensors left of site l with the MPO tensors and R equiv-
alently defined for the tensors on the right of site l. In Fig. 3.2 a graphical representation
of these to operators can be seen. If we now consider the extremum by differentiating
with respect to A† and setting the equation equal to zero, we find
∑
σ′
l

∑
a′
l−1,a

′
l

∑
bl−a,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a
′
l

bl
M

σ′l
a′
l−1,a

′
l
− λMσl

a′
l−1,a

′
l

= 0, (3.1.8)

which is depicted completely in Fig. 3.2. This is an eigenvalue equation. That can be seen
by introducing the matrixH by reshapingH(σlal−1al),(σ′la

′
l−1a

′
l
) = ∑

bl−1,bl L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a
′
l

bl

as well as the vector ν with νσlal−1al = Mσl
al−1,al

and arriving at

Hν − λν = 0 (3.1.9)
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A1 A2 A3 A4 B10B9B8B7B6M5

A∗1 A∗2 A∗3 A∗4 B∗10B∗9B∗8B∗7B∗6M∗
5

M5

M∗
5

Figure 3.1: a) Graphical representation of the overlap of a state |ψ〉 with itself. The ket state
is depicted on the bottom while the bra state 〈ψ| is on the top. Since the state is written in
the mixed canonical representation with respect to site l(= 5), the contractions of the tensors
A and B with their complex conjugated counter parts result in unit matrices, leaving only the
contraction of the centre tensor Mσl as seen in b).

with matrix dimension (dm2 × dm2) for H. Solving for the lowest eigenvalue λ and its
eigenvector ν will result in the locally optimal tensor Mσl

al−1,al
after reshaping ν. A simple

SVD lets us move to the next site while staying in the mixed canonical representation.
We can then optimise the local tensor on site l+1 by solving another eigenvalue problem.
This can be done very efficiently when the operators L and R are saved and updated
iteratively instead of calculated completely anew. We can sweep back and forth from the
left edge to the right edge of the system in this manner, visiting and updating each site
for the lowest eigenvalue until we observe convergence. The eigenvalue solver best suited
for DMRG is, depending on details, the Lanczos or the Jacobi-Davidson method since, in
general, the matrix dimension of H dD2 is too large for an exact diagonalisation. Lanczos
only requires the application of H onto the local tensor Al with costs O(2m3dw+m2d2w2)
and thus equally much as the contraction of the left and right part of the Hamiltonian L
and R but significantly more than the SVD O(m3d). It is therefore not surprising that
between 75% and 95% of the total runtime of the single site DMRG algorithm is spent on
the eigensolver step. However, the single-site DMRG algorithm is a very easy and cheap
way of finding the ground state of a system.
The left and right sweeps are repeated until convergence is achieved which is measured
with respect to the energy. Typical values which we want to reach are changes below
∆E < 10−10. A much better test is to consider 〈ψ|Ĥ2|ψ〉 − (〈ψ|Ĥ|ψ〉)2 to check whether
DMRG found an eigenstate. Therefore, the expression should approach 0 as closely as
possible. Unfortunately, for large bond dimension of the Hamiltonian (mH ≈ 16) the
calculation of Ĥ2|ψ〉 becomes too demanding, not allowing us to follow this route.
As for all variational methods the convergence towards the solution of the considered
problem can depend on the starting state. At least a part of the randomly generated
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Figure 3.2: Graphical representation of the eigenvalue equation with the definition of the matrices
L and R describing the effective basis of the left and right part of the system.

starting state |ψ〉 has to be parallel to the global ground state to allow DMRG to converge
to it. A significant drawback of single-site DMRG is that the bond dimension during the
optimisation procedure cannot be increased but only decreased during the SVDs. If the
ground state |E0〉 has a higher amount of entanglement than the initial state |ψ〉 and
therefore needs a larger bond dimension, it is impossible to obtain a good description of
|E0〉. The usual way of solving this issue is to optimise not only a single site but two
adjacent sites at the same time. In the so-called two-site DMRG algorithm, the tensors
of site l and l + 1 are combined before and split up after the solution of the eigenvalue
problem. The split up with the SVD allows for an increase of the bond dimension of the
tensor Ml. However, this increases the size of the effective matrix H and thus slows the
algorithm down significantly.

3.2 Strictly Single-Site DMRG

In 2015 Hubig et al. developed a version of the single site DMRG which optimises a
single site tensor with an additional subspace expansion [93]. The subspace expansion al-
lows an increase of the bond dimension and thus improves the convergence properties
substantially. This new approach performs DMRG calculation significantly faster since
the scaling of single-site DMRG O(m3dw) is better by a factor of d than the scaling of
two-site DMRG O(m3d2w). This improvement is scaled down slightly by the fact that
the single-site DMRG method needs more sweeps to converge.
The idea of a subspace expansion originates from the numerical lineal algebra commu-
nity [94,95] and relies on the fact that a matrix product of two matrices A ∈ Rm×n and
B ∈ Rn×p can be expanded with another matrix P in A and zeros in B while keeping
their product A ·B ∈ Rm×p invariant

A ·B →
[
A P

]
·
[
B
0

]
= A ·B + P · 0 = A ·B. (3.2.1)
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A1 A2 A3 A4 M5

A∗1 A∗2 A∗3 A∗4

L4

Figure 3.3: Graphical representation of the expansion term defined in Eq. (3.2.4) for a left-to-
right sweep after the optimisation of site 5. The indices on the left of site 1 and the right of site
i are fused together.

This also can be done in the MPS context. The expansion over the bond ml from the left
is written as

Mσl
l → M̃σl

l =
[
Mσl

l P σl
l

]
, (3.2.2)

M
σl+1
l+1 → M̃

σl+1
l+1 =

[
M

σl+1
l+1
0

]
. (3.2.3)

With this approach single site DMFT can optimise the site l+ 1 with the increased bond
dimension ml +mPl where ml is the original bond dimension and mPl is the dimension of
the added rows of site l. If the optimisation finds out that elements of the enlarged space
are not lowering the energy they are simply discarded by setting the associated factors
on site l + 1 to zero.
It is noteworthy that after the expansion, as in standard DMRG, an SVD is used to
move to the next site. During the SVD the most relevant states mr of the enlarged space
ml+mPl are selected. This allows to increase the bond dimension adaptively but can also
lead to original states of the matrix Mσl

l being discarded. Unless the expansion states are
lower in energy, this can increase the energy slightly.
Mathematically, choosing the local components of the exact residual written in MPS
notation as the expansion term offers global convergence to the minimum as Dolgov and
Kressner showed in their original work [94]. Since this is in general very costly to compute,
Hubig et al. [93] proposed an expansion term of the form

Pl = αLl−1MlWl, (3.2.4)

also depicted in Fig. 3.3. The term MlWl on the l-th site describes the application of the
MPO Wl to the current MPS Ml, while the left-contraction Ll−1 is a projection of the
left-hand side basis of this new tensor to the basis of the original tensor. Therefore, the
whole term describes the states generated by applying the Hamiltonian on the entire left
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of the system and thus incorporates some global information. The expansion term when
moving from the right to the left of the system is defined accordingly

Pl = αMlWlRl+1. (3.2.5)

α is a scalar controlling the magnitude of the expansion. The choice of α is subtle
and depends on multiple observations including the amount of increase or decrease of the
energy during an expansion or whether the actual state is an eigenstate or not. For a more
detailed discussion of the adaptive choice of α we refer to Hubig et al. [57]. The expansion
term has a certain bond dimension depending on the size of the Hamiltonian and the state
|ψ〉. During our DMFT calculation we observed much better convergence properties if
the expansion is limited to a maximal bond dimension of 500 allowing a rapid expansion
of the bond dimension. This is especially true for so called tunnelling Hamiltonians which
have to be introduced artificially to Hamiltonians to break symmetries which have not
explicitly been implemented to ensure convergence to the global ground state (see chapter
5.3.2).

3.3 Optimal Order of Tensors
During the construction of an MPO, we encountered the Schmidt decomposition Eq. (2.1.18)
which describes the amount of entanglement between the left and right part of the system
expressed by effective basis sets. The Schmidt coefficients, or singular values, are directly
related to the bond dimension by the fact that they also indicate how much weight each
basis combination carries to the whole state |ψ〉. This can be used to approximate the
MPS by keeping only the most important states, setting all other singular values to zero
while moving successively through the system. At this point truncated weights and trun-
cation threshold are typically introduced. They give a measure on how many states have
to be discarded.
However, since the order of the MPS sites is arbitrarily chosen when constructing the
system, it seems natural to ask whether better ways to order a system exist in order to
achieve an overall decrease of entanglement in the system as well as of the bond dimen-
sion of the MPS states. In quantum chemistry this question has been asked for a long
time and several methods were developed to determine an optimal ordering of the MPS
sites [21]. We want to introduce a very simple and the same time efficient ansatz useable
for one-dimensional tensor topologies. We start with the mutual information

Ii,j = Si + Sj − Si,j, (3.3.1)

between two sites i and j. Si describes the von Neumann entropy of the single site i

Si = −
∑
α

s2
a,i ln s2

a,i, (3.3.2)

with sa,i being the singular values of site i in the mixed-canonical basis with respect to
this site, while Si,j is the von Neumann entropy of a subsystem consisting of site i and j
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together. We express the overall entanglement encoded in the wave function in form of a
cost function

Isystem =
∑
i,j

Ii,jd
η
i,j. (3.3.3)

Since the information about the entanglement between two sites i and j must be car-
ried from one site to the other, it increases the bond dimension of all sites in between.
Therefore, it is reasonable to introduce a distance function

di,j = |i− j|, (3.3.4)

in the cost function to indicate that strongly entangled sites should be close together. In
principle, the exponent η has to be chosen in a way that reflects the physical behaviour
of the overall entanglement. However, taking η = 2 over any other choice of η allows us
to calculate the optimum of Eq. (3.3.3) directly by using spectral graph theory instead of
performing an optimisation procedure. More precisely, with this choice the problem can
be written in the form

F (x) = x†Lx =
∑
i,j

Ii,j(xi − xj)2 (3.3.5)

by defining the Laplacian

Li,j = Di,j − Ii,j, (3.3.6)

with the diagonal

Di,j = δi,j
∑
j′
Ii,j′ . (3.3.7)

This optimisation problem can be solved by using spectral graph theory [96]. Under the
constraints∑
i

xi = 0 and
∑
i

x2
i = 1. (3.3.8)

the second eigenvector of the Laplacian, the so-called Fiedler vector, is the solution that
minimises F (x). Ordering the entries of the Fiedler vector in an increasing or decreasing
way provides the optimal ordering of the system. Unfortunately, this approach requires
us to have knowledge about the mutual information between all sites of the system. That
information can only be obtained from the wave function itself and therefore requires a
DMRG calculation to determine Ii,j. To save computation time we perform the DMRG
calculation to determine the mutual information with a low bond dimension, e.g. m = 500.
That is reasonable since DMRG always keeps the biggest singular values and thus also
describes the most important entanglement in the system. In our experience that is
enough to obtain a very good approximation of the mutual information and therefore a
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a)

I2 I3 I4 B3,1 B3,2 B4,1I1B2,2B2,1B1,2B1,1 B4,2

b)

B2,1 B3,1 B3,2B1,1B4,2B1,2B4,1 B2,2I1 I2 I3I4

Figure 3.4: a) The four-site dynamical cluster approximation Hubbard model ordering in our
dynamical mean-field theory calculations. We typically place the impurities in the middle of the
system and the bath sites symmetrically around it so the distance to the impurity sites is not
too large. The bath sites only have an on-site energy and couple via single-particle hopping with
only one impurity. The impurities themselves couple with each other in a more complicated way
explained in section 6. The second and third impurity as well as their bath sites are completely
degenerate. b) New ordering of the same system obtained with the Fiedler vector. Our initial
ordering was a good choice since we observe only small changes. The impurity sites are still all
located in the middle of the system but it seems that the degenerate sites are sufficiently strongly
entangled that the method wants to place them close to each other in the same system half. The
data was obtained with an interaction strength U = 7, nearest neighbour hopping tx = ty = 1,
next-nearest neighbour hopping tp = 1, chemical potential µ = 1.3 and a bond dimension for the
ground state search m = 2000.

good approximation of the optimal ordering of the system for a very cheap extra DMRG
run. Subsequent reorderings yield less and less reordering of the sites, supporting our
assumption.
Depending on how bad the original ordering of the system with respect to entanglement
properties was, we observe reductions of the bond dimension by a factor between 1 and 5
while obtaining the same or a better energy for the ground state. Since the computation
time of the SVDs scales with the bond dimension cubed, we were able to observe speedups
of a factor 100 in the best cases, but more often around 2− 10.
In Fig. 3.4 a) we depicted the typical setup of a DMFT impurity Hamiltonian. In this
case it is a Hubbard model with four-site dynamical cluster approximation in momentum
space. That means we have four impurities I1, I2, I3 and I4 which interact with each other
(red lines) while each impurity has its own non-interacting bath consisting of two sites
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Figure 3.5: Mutual information Ii,j as defined in Eq. (3.3.1) for the system described in Fig. 3.4.
a) Mutual information for the unordered system according to panel a) of Fig. 3.4. The highest
entanglement is clearly present between the impurity sites and between the bath sites of the
degenerate impurities. b) Mutual information after the reordering as described in panel b) of
Fig. 3.4. The stronger entangled sites are laying closer together which is reflected in Ii,j being
more diagonal. The stronger entangled degenerate sites are now located on the upper right part
of the system. This is also advantageous since the possible maximal bond dimension there is
much smaller than in the middle of the system. The systems parameters are described as in
Fig. 3.4.

Bi,n which only couple via simple single particle hopping to their impurity (black lines).
The impurities 2 and 3 and their bath sites are degenerate. Since we assume that the
interaction between the impurity sites generate much more entanglement, we placed them
close to each other and tried to keep the distance between impurity sites and bath sites
to a minimum. In panel b) the system after reordering is displayed. While the impurity
sites are still located in the middle of the system, they are reshuffled as well as the bath
sites. In the reordered system the degenerate sites are located next to each other on the
right hand site of the system. They are strongly entangled with each other which can
be seen clearly in Fig. 3.5 where we show the mutual information before a) and after
b) the reordering. The reordering clearly locates the stronger entangled sites near each
other as indicated by the more diagonal form of Ii,j in figure b). The cost function value
was decreased by the reordering from originally χ = 79.5 to χordered = 44.3 indicating a
moderate improvement. Another reordering of the already reordered system only yields
swapping between one ore two of the degenerate sites with nearly constant cost function
values. This clearly shows that we obtained the optimal ordering or at least an ordering
which is very close to it.
It is not always as obvious as in this case how to order the sites optimally or what kind of
order is good starting guess. System size, other physical parameters or other models can
alter the structure significantly. In Fig. 3.6 a) we show our standard ordering for the real
three band material Sr2VO4 with two-site dynamical cluster approximation in real space.
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a)

b)

I21,1 I1 I3 I4 I5 I61,2 2,1 2,2 3,1 3,2 4,1 4,2 5,1 5,2 6,1 6,2

6,1 I1I2 I5 I46,2 3,1 I3 I6 3,2 4,1 5,1 4,2 5,21,2 2,2 2,1 1,1

Figure 3.6: a) The two-site dynamical cluster approximation Sr2VO4 model ordering in our
dynamical mean-field theory calculations. We typically place the impurities in the middle of the
system and the bath sites symmetrically around it so the distance to the impurity sites is not too
large. The model consists of three bands, with band 2 and 3 being degenerate. Because of the
two-site dynamical cluster approximation each band is described by two impurity sites (I1 and
I4 for band 1, I2 and I5 for band 2, and I3 and I6 for band 3) each having a bath. The bath sites
only have an on-site energy and couple via single-particle hopping with two impurities belonging
to the same band. The impurities themselves couple with each other in a more complicated way
explained in section 7. Between the impurities belonging to the same band exist single-particle
hopping. b) New ordering of the same system obtained with the Fiedler vector. Our initial
ordering was not a good choice since we observe significant changes. While the impurity sites
describing the degenerate bands are still located next to each other, the third band was separated
and placed on the left edge of the system. As for the Hubbard model, the bath sites are located
around the impurity sites. But It seems that the entanglement generated by the dynamical cluster
approximation is stronger than the entanglement generated by the model specific interactions. In
the new ordering the Hubbard-Kanamori interaction is long-ranged while interaction induced by
the dynamical cluster approximation is short-ranged. The data was obtained with an interaction
strength U = 6, J = 0.7, chemical potential µ = 1.3 and a bond dimension for the ground state
search m = 2000.

In this case we have six impurities, where I1, I2 and I3 as well as I4, I5 and I6 interact
with each other via a complex interaction Hamiltonian. Because of the dynamical cluster
approximation there is also single particle hopping between the impurity sites I1 and I4,
I2 and I5, and I3 and I6, which describe different momentum patches on the bands 1,
2 and 3 respectively. The second and third band are degenerate. As with the Hubbard
model we place the impurity sites in the middle of the system and the bath sites sym-
metrically around them. This time in the reordered system Fig. 3.6 b) the impurity sites
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Figure 3.7: Mutual information Ii,j as defined in Eq. (3.3.1) for the system described in Fig. 3.6.
a) Mutual information for the unordered system according to panel a) of Fig. 3.6. There exist
very strong entanglement between some bath sites of the same bath which are located next to
each other (e.g. site 14 and 15) as well as very long-ranged entanglement (e.g. between site 0
and 9). In general the system seems to be very entangled over a wide range of sites. b) Mutual
information after the reordering as described in panel b) of Fig. 3.6. The stronger entangled sites
are laying closer together which is reflected in Ii,j being more diagonal. While the impurity sites
describing the degenerate bands are mostly entangled with themselves, the impurities of band 1
are strongly entangled with their bath as well. This shows that even for one system there can be
different entanglement structures present and that an investigation of this structure can possible
yield interesting insights of the physics taken place. The systems parameters are described as in
Fig. 3.6.

are split up. The impurity sites describing the degenerate bands are kept together while
the first band and the associated bath sites are located on the left edge of the system.
It seems that at least for the chosen physical parameters, the entanglement generated by
the dynamical cluster approximation is much bigger than the entanglement created by
the normal interaction between band 3 (impurity sites 5 and 6) and band 1 or 2 (impurity
sites 1, 2 and 3, 4).
In general, Fig. 3.7 shows significantly more entanglement than was present in the Hub-
bard model. This is also reflected by the cost function value of χ = 202.7 before and
χordered = 121.0 after the reordering. Even after the reordering localises the entangle-
ment clearly, it is obvious that this system still exhibits long-range entanglement and will
need a much higher bond dimension for the MPS describing the ground state. The one-
dimensional structure is clearly not the optimal choice to minimise the distance between
all strongly entangled sites.
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3.4 Other Network Topologies

Instead of changing the order of the sites of our MPS to minimise the overall entanglement
Eq. (3.3.3), it is also possible to change the topology of our MPS network. A very typical
example are multi-band DMFT problems or a multi-site dynamical cluster approximation
of a single-band problem. In all these cases we have several impurity sites which interact
with each other in a complex way. This does not have to generate strong entanglement
between the impurity sites, but is often a good guess for strong correlations. Thus, it is
preferable to locate the impurity sites very close to each other. Since each of the impurity
sites has its own bath, this will necessarily generate artificial long range interactions if we
choose an one-dimensional chain as MPS topology. On the one hand, this increases the
bond dimension of the Hamiltonian, which by itself leads to longer computation times.
On the other hand, this ordering increases the chance of having long range entanglement.
It is therefore definitely worth avoiding these structures.

a) b)
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Figure 3.8: a) Graphical representation of a BTT for the same system as in Fig. 3.4, namely
the four-site dynamical cluster approximation Hubbard model. We depicted the tensor structure
here, i.e. each black line connecting two tensors is representing a contraction while open lines
indicating the local index connecting with the local basis. Each impurity couples only to its
own bath and to the other impurities. In this structure the bath sites are directly located next
to their impurities which avoids the main bulk of artificial long-range interactions. Instead of
directly connecting the impurity sites, we introduce four-dimensional auxiliary tensors connecting
always two of them. This reduces the amount of entanglement information carried through the
impurity and thus increasing their bond dimensions. b) In this figure we depicted the interactions
occurring in the model. The impurity interactions (red lines) are drawn around the auxiliary
sites to indicate the way the information about them has to be carried through the system with a
series of SVDs. The interactions between the impurity sites and the bath sites are very local.
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Instead of using an one-dimensional chain as our system topology, together with C.Hubig
we developed the idea to use binary tree tensors (BBT) depicted in Fig. 3.8. In this sense,
we introduce four-dimensional auxiliary tensors (grey sites in the figure) each connect-
ing two impurity tensors. If there are more than two impurities, the auxiliary tensors
are connected by another auxiliary tensor and so on. This reduces the distance between
strongly interacting sites, e.g. the impurity sites with their bath sites and the impurity
sites with themselves. For a large number of impurity sites it also avoids the entangle-
ment information between two impurities being transported through impurities located
in between. Instead the information about the entanglement of two impurities is only
transported through auxiliary tensors. The drawback is that the auxiliary sites are four-
dimensional tensors which have much worse scaling properties than the three-dimensional
ones of normal MPS.
However, DMRG and time evolution methods are all easily generalised to BTTs. In
Fig. 3.8 a) we also display a typical sweep through a BTT which produces, as is the
case of standard MPS on an one-dimensional chain, a unique left or right canonical state.
This structure looks advantageous compared to a normal one-dimensional MPS chain.
Especially if we compare which sites are interacting with each other (Fig. 3.8 b) and
Fig. 3.4), the BTT structure seems to be more local. Unfortunately, entanglement is not
only generated by direct interactions between sites. As can be seen in the data of the
mutual information, the bath sites of different impurities are also entangled with each
other. Especially the degenerate sites are good examples for this. BTTs can increase the
distance of these entangled bath sites compared to reordered MPS systems, which makes
them unfavourable for small systems. Since the average distance between two sites in an
one-dimensional chain increases much faster than in our BTT structure, we expect better
performance of BTTs for large systems. This was confirmed with our first test calcula-
tions where we observed that BTTs perform better than MPS only for systems which are
sufficiently large enough, i.e. at least four impurity sites and each impurity site coupled
to at least six bath sites. Unfortunately, we do not deal with such big systems in our
DMFT calculations.
A more common approach used in quantum chemistry [21,44,90,97] and since 2017 also in the
many-body community [40] are so-called tree tensor networks (TTN) or fork tensor-product
states. The fork tensor-product states introduced by Bauernfeind et al. are comparable
to our BTTs without the auxiliary tensors. Therefore, the impurity sites itself are repre-
sented by four-dimensional tensors. As we already discussed, this leads to tensors with
very high bond dimensions, limiting the usage of these structures. The model discussed by
Bauernfeind et al. [40] was a very simple, completely degenerate three-band model. To our
knowledge any step towards more realistic models was accompanied with an unfeasible
increase of bond dimensions and computation times.
The TTN are more general since they allow the dimension of tensors to vary from site to
site depending on the entanglement structure of the system. Instead of fixing the topol-
ogy based on intuition and on possible interactions as done with our BTTs and the fork
tensor-product stated of Bauernfeind et al., for TTN the mutual information of a system
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a) b)

Figure 3.9: a) An example of an approximated minimum spanning tree (MST). Each dot rep-
resents a site described by a tensor connected via the black lines to different number of other
tensors. For the sake of clarity we resigned from drawing the lines for the physical indices. The
maximum dimension of the tensors is therefore four. The structure is given completely by the
entanglement structure of a foregoing calculations or by the existing interactions of the model. b)
An example of a minimum entangled tree (MET). Again, we neglected the lines for the physical
indices which have to be added to each site. The shape of the tree for a given maximal dimension
(in this case 4) is given by the minimisation of the number of renormalised states needed for
an exact solution. After the shape of the tree is determined, the sites of the lattice have to be
mapped to it via an optimisation of the overall mutual information, e.g. a genetic algorithm.

is calculated and used to build up a general network system. In general, one can dis-
tinguish minimum-spanning trees (MST) and minimum-entangled trees (MET) [44]. The
MST (Fig. 3.9a) ) are obtained by taking the entanglement spectrum and ordering the
sites according to the strongest entanglement interactions. The dimension of the tensors
can vary depending on the number of strongly entangled sites. E.g. if a site is strongly
entangled with three other sites, it will be connected directly to all three of them, forming
a node. A site only strongly entangled with a single other site will only be connected to
that site, forming the end of a branch. Thus, an MST is an irregular formed network with
probably the lowest bond dimension needed to obtain a good ground state. This does not
necessarily mean that this structure is the optimal topology for DMRG and time evolu-
tion methods. Convergence and sweep times can be slower because the irregular structure
can lead to very slow information transport through the system or a lot of unnecessary
optimisations are performed if a branch is already converged but must be transferred. A
different approach is to optimise the convergence properties by defining the tree such that
the number of renormalised states required to achieve an exact calculation is minimised.
After obtaining such a so-called MET (Fig. 3.9b) ), a genetic algorithm [98] is used to
place the system sites optimally in this tree. Nakatani et al. [44] showed that MST con-
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verge slower but produce better energies as METs which confirms our argumentations.
Using entanglement information to reorder not only the order of the tensor sites but the
network topology itself seems to be a promising ansatz to improve computations even
further. The entanglement is not only determined by the present interactions between
sites but also by their filling, by the physical parameters of the system and by the state
we are calculating. Thus, it is recommended to use generic algorithms to determine the
optimal topology for each ground state search and each time evolution performed in the
context of DMFT. For further improvements we definitely recommend to consider MST
and MET as an alternative route to normal one-dimensional MPS or BTTs.



Chapter 4

Time Evolution Methods

Dynamical quantities are typically the most interesting properties of real materials and
theoretical models. The computation of these quantities, such as dynamical structure fac-
tors, correlations functions, decay times, thermalisation properties and other dynamical
quantities requires to develop suitable methods for time-evolving an MPS.
In principle, two approaches can be distinguished for tensor networks. The first class con-
sists of methods that compute a time dependent state |ψ(t)〉 or an operator Ô(t) explicitly
as a time dependent tensor network. The Taylor expansion of the evolution operator, the
time evolution with block decimation (TEBD) [45,68,99] and the time-dependent variational
principle (TDVP) [46,100] are methods that are based on this idea. These approaches create
explicit time-evolved states |ψ(t)〉 at discrete times with time step δt that can be further
manipulated and used to compute observables at the corresponding times t. Typically
for this kind of methods, the computation of each time step is quite costly, which renders
the choice of very small time steps δt impractical. Therefore, the resulting data sets for
time-dependent observables tend to be sparsely discretised. These methods can further be
distinguished into two sub categories. Some methods like TEBD or Padé expansions [101]
construct a suitable approximation of the exact time evolution operator U(t) and then
apply this operator consecutively on the MPS. Other methods project the Hamiltonian
first into a suitable subspace and then evolve the projected MPS in this subspace exactly
with the projected Hamiltonian. This ansatz was first proposed by Feiguin et al. [102] and
was reworked seven years later by Haegeman to TDVP. While the first category of ap-
proaches offers more freedom in the sense of allowing to choose suitable approximations to
the current physical system and is, in general, easier to implement since it only requires
to construct the operator Û(t), the second category has the advantage that important
properties like the norm and energy conservation are guaranteed by construction.
The fundamental idea of the second class of approaches for time-evolving an MPS is to
construct a suitable subspace of the whole Hilbert space with a very small dimension in
which time-dependent observables can be computed numerically exactly. Methods based
on this ansatz allow to compute observables at arbitrary times t without computing the
actual states explicitly, which is much cheaper, in general, than computing explicit states.
Furthermore, the arbitrarily dense structure of the data points for the time-dependent ob-
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servables is very useful for the high-frequency regime of frequency-dependent observables
obtained with subsequent Fourier transforms, which can be limited by the discretisa-
tion of the data otherwise. The best-known scheme using this idea is the Chebyshev
method [103,104].
Finally, we want to mention the Krylov subspace method [105,106], which combines advan-
tages of both classes. A subspace is created that allows to evaluate observables at arbitrary
time points but the subspace is also used to compute an explicit state |ψ(t)〉 represented
as an MPS. This allows to combine the advantages of both methods at moderate numeral
costs.
The aim of this chapter is not to give an overview over all possible time evolution meth-
ods but rather to present the three most important ones in the context of DMRG as an
impurity solver of dynamical mean-field theory. In this regard, we will start this chapter
with an introduction to TEBD that will be short since we cannot use it due to long-range
interactions being present in our models. Although it can be extended from systems with
next-nearest neighbour interaction to problems with arbitrary interaction types [80], it is
questionable if the method after this adaptation is still competetive with other meth-
ods when applied to larger systems. The focus of this this chapter will be more on the
Krylov subspace method, its MPS based implementation and several improvements we
developed during this thesis to increase its performance significantly. However, even with
these improvements the Krylov method is still not competitive with the time-dependent
variational principle in most cases. Consequently, TDVP will be the method of choice in
all our calculations. It will also be the last method we present in this chapter.
In the end we will discuss possible ways of computing the long-time behaviour with cheaper
methods than Krylov, TDVP and TEBD. The best-known method is linear prediction [107].
These ideas are crucial to reduce numerical artefacts in Green’s functions, self-energies
and other physical quantities without increasing the numerical effort dramatically.

4.1 Time Evolution with Block Decimation

In 2004 Guifre Vidal et al. [45] developed the algorithm "time-evolution with block deci-
mation" (TEBD) directly within the MPS formalism. Similar ideas have been pursued
starting from the traditional DMRG formulation, which resulted in a fast success of TEBD
also for the environment-system formulation of DMRG [68,99]. Numerous methods widely
known under the terms "Trotter decompositions", "tDMRG, ""tMPS" and "TEBD" as well
as methods that do not use any of these labels explicitly are all referring to the same
fundamental concept when applied to MPSes or the traditional DMRG and are used in a
completely confusing manner [43,101,106,108].
All these methods follow the same idea. First, they approximate the time evolution op-
erator Û(δt) via a Trotter-Suzuki decomposition of Ĥ into parts Ĥ1, Ĥ2, . . . that consists
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of mutually commuting small operators

Ĥi =
Ni∑
k=1

ĥi,k. (4.1.1)

The fundamental idea now is that while the time evolution operator Û(δt) = exp(−iĤδt)
is difficult or impossible to compute, the exponential exp(−iĤit) can be computed exactly
if Ĥi only acts non-trivially on a small part of the system. The only conditions are that the
terms ĥi,k can be diagonalised efficiently and that all terms commute [ĥi,k, ĥi,l] = 0 ∀i, k, l.
For the sake of clarity, for the remaining part of the explanation we will consider an explicit
example for Ĥ, i.e. the Heisenberg spin chain with nearest-neighbour interactions

Ĥ =
L∑
i=1

ŝiŝi+1. (4.1.2)

To follow the idea of TEBD we have to split Ĥ into parts that only contain mutually com-
muting operators that act non-trivial on a small part of the system. In this example it is
advantageous to collect ŝiŝi+1 for all even i into Ĥ1 and all terms with odd i into Ĥ2. Since
calculating exp(−iŝiŝi+1δt) only requires the exponentiation of a (2S+1)2×(2S+1)2 ma-
trix, with S being the length of the local spin, each term of exp(−iĤAδt) and exp(−iĤBδt)
can be computed individually. E.g., for S = 1

2 the fundamental step is to diagonalise and
hence exponentiate a 4× 4 matrix, which can be done exactly and efficiently.
Then, with the first order Baker-Campbell-Hausdorff formula we can write the time evo-
lution operator as

e−iĤδt = e−i(Ĥ1+Ĥ2)δt = e−iĤ1δte−iĤ2δte−i[Ĥ1,Ĥ2]δt2 . (4.1.3)

If the decomposition into Ĥ1 and Ĥ2 is fixed, we can write the first order TEBD time
evolution as

ÛTEBD1(δt) = e−iĤ1δte−iĤ2δt +O(δt2), (4.1.4)

and clearly see that we have a second-order error in t as long as we exponentiate Ĥ1 and
Ĥ2 exactly. In this case, the approach generates a unitary approximation of Û(δt) and
hence preserves the norm of the time evolved state.
The second order symmetrised Trotter-Suzuki decomposition allows us to write

ÛTEBD2(δ) = e−iĤ1
δt
2 e−iĤ2

δt
2 e−iĤ2

δt
2 e−iĤ1

δt
2 +O(δt3) (4.1.5)

= e−iĤ1
δt
2 e−iĤ2δte−iĤ1

δt
2 +O(δt3), (4.1.6)

with a third-order error in t. The generalisation of the first- and second-order TEBD
algorithm to more complex Hamiltonians with possibly more than two summands Ĥi is
straightforward. In the first step, the decomposition of Ĥ has to be determined. Af-
terwards, for first-order TEBD all Ĥi are exponentiated sequentially. For second-order
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M1 M2 M3 M5 M6 M7 M8 M9 M10

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

M4

W ′
1 W ′

2 W ′
3 W ′

4 W ′
5 W ′

6 W ′
7 W ′

8 W ′
9 W ′

10

M1 M2 M3 M5 M6 M7 M8 M9 M10M4

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉

|σ1〉 |σ2〉 |σ3〉 |σ4〉 |σ5〉 |σ6〉 |σ7〉 |σ8〉 |σ9〉 |σ10〉
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e−iŝ2ŝ3δt e−iŝ4ŝ5δt e−iŝ6ŝ7δt e−iŝ8ŝ9δt

a)

b)

Figure 4.1: a) Graphical representation of the application of the two parts of the Hamiltonian
Ĥ1 and Ĥ2 in a single TEBD step. All terms of H1 can be applied at the same time as well
as all terms of H2. Since the terms ŝiŝi+1 are small, they can be exponentiated without any
problems. b) As during the construction of an MPS the operators acting on several sites can be
expressed in terms of single site operators after applying SVDs, thus conserving the structure of
an MPS. After the contraction of the MPOs and the MPSes and a possible truncation, the next
TEBD step can be performed immediately with the same operators.

TEBD all terms Ĥi have to be exponentiated with half the time step applied sequentially
to |ψ〉 and then the process is repeated in reverse order as indicated in Eq. (4.1.5). A
graphical representation of a single TEBD step for our example of the Heisenberg spin
chain is depicted in Fig. 4.1.
Time evolution with TEBD is extremely fast and well-behaved. The two only sources of
errors are the Trotter error from the decomposition and the truncation error during the
evolution. Both can be tuned to be arbitrarily small with additional numerical effort. The
main drawback of this method is the analytical effort to separate the Hamiltonian Ĥ into
mutually commuting parts and the need of nearest-neighbour interactions. Especially for
complicated Hamiltonians with a lot of interactions between different sites of the system,
it can be impossible or very hard to find commuting parts that are sufficiently large so
that only a limited number of Hamiltonians Hi has to be considered. In case of Hamilto-
nians with long-range interactions, the corresponding sites can be moved adjacent to each
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other, previous to each time step, with the help of so called swap gates [40]. However, this
is not only cumbersome to implement, but also increases the numerical effort.

4.2 Krylov Approximation
The key idea of the Krylov subspace method is to evade costly matrix-matrix operations,
which become easily infeasible in the MPS setting. This can be done by not applying
exp(−iĤδt) to |ψ〉 directly, but rather constructing a suitable low-dimensional subspace
and projecting the operator application into this subspace. In this subspace one can
approximate the operator by a simpler effective matrix and can set up a minimisation
problem to search for the tensor that minimises the distance to the actual solution of
the problem, i.e. the time evolved state. This is more effective than solving the original
problem because the Krylov method can construct this subspace by a series of cheaper
matrix-vector and vector-vector operations that successively construct an orthonormal
basis. The method presented here is basically a variation of the Lanczos algorithm and a
well-known approach in the numerical linear algebra community [47].
We start with defining the set of vectors

Km(Ĥ, |ψ〉) := span{Ĥk|ψ〉|0 ≤ k ≤ m}, (4.2.1)

which form a span of the Krylov subspace based on the initial vector |ψ〉 and several
multiplications of the matrix Ĥ. We construct the orthonormal basis {|φk〉}0≤k≤m of
Km(Ĥ, |ψ〉) and at the same time a matrix T̂ that is the projection of Ĥ in that subspace
iteratively as follows:

• We first set the initial vector as first basis vector |φ0〉 = |ψ〉 under the assumption
that |ψ〉 is normalised.

• Any other basis vector |φk+1〉 for 0 ≤ k ≤ m−1 can be constructed from {|φ0〉, . . . , |φk〉}
by

– computing |vk〉 = Ĥ|φk〉,
– computing Tk,k = 〈vk|φk〉
– orthogonalising the new vector with respect to all previous basis vectors
|wk〉 = |vk〉 −

∑k
j=1〈vk|φj〉|φj〉,

– normalising the new basis vector |φk+1〉 = |wk〉
|||wk〉||

.

– computing Tk,k+1 = Tk+1,k = 〈ψk+1|Ĥ|φk〉

If the matrix Ĥ is hermitian, the procedure simplifies, since |vk〉 only has a non-zero
overlap with the two previous basis states |φk−1〉 and |φk〉.
After we build up the subspace, we can apply the Krylov method to the time evolution
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by searching for the vector |u〉 of the Krylov subspace that minimises the distance to the
exact time evolved state Û(δt)|ψ〉

Û(δt)|ψ(t)〉 ≈ arg min
|u〉∈K(Ĥ,|ψ(t)〉)

|||u〉 − Û(δt)|ψ(t)〉||2 =: |ψ′(t+ δt)〉. (4.2.2)

Since Û is linear, the solution of equation Eq. (4.2.2) is given by

|ψ′(t+ δ)〉 = P̂ †Û(δ)P̂ |ψ(t)〉, (4.2.3)

with P̂ := ∑m−1
j=0 |φj〉〈φj| being the projector on the Krylov subspace Km(Ĥ, |ψ(t)〉). We

now want to expand the time evolution operator in the previous equation

|ψ′(t+ δt)〉 =
m−1∑
j=0
|φj〉〈φj|

∞∑
n=0

(−iδt)n
n! Ĥn|φ0〉

=
m−1∑
j=0

m−1∑
n=0

(−iδt)n
n! |φj〉〈φj|Ĥn|φ0〉+O

(
δtm

m!

)
. (4.2.4)

Here we used the fact that the first basis vector |φ0〉 of the Krylov subspace is equal to |ψ〉
and that for sufficiently large m we can neglect the higher order terms of the exponential.
If the size of the Krylov subspace is chosen large enough, all vectors Ĥn|φ0〉 ∈ Km(Ĥ, |ψ〉)
are located in the subspace. Thus, we can replace Ĥ with the effective matrix (Heff)j,k =
〈φj|Ĥ|φk〉 and reintroduce the exponential under the assumption that m is sufficiently
large

|ψ′(t+ δt)〉 =
m−1∑
j=0

m−1∑
n=0

(−iδt)n
n! |φj〉(Hn

eff)j,0 +O
(
δtm

m!

)

=
m−1∑
j=0
|φj〉(e−iHeffδt)j,0 +O

(
δtm

m!

)
. (4.2.5)

Heff can be computed very efficiently during the construction of the Krylov subspace basis
and its dimension is in general very small, i.e. in most cases significantly smaller than 12.
This means the exponential can be computed fast through direct diagonalisation.
In the end, the time-evolved state is obtained by summing up the MPSes representing the
Krylov vectors with the appropriate pre-factors given by (e−iHeffδt)j,0. Since the summation
of MPSes increases the bond dimension significantly, the time evolved state |ψ′(t + δt)〉
will have a much higher bond dimension than |ψ(t)〉. To keep the bond dimension low
for the next time step, a couple of SVDs are used to truncate |ψ′(t + δt)〉 while moving
through the state from left to right and back. Afterwards, the next time step can be
computed with the exact same approach.
Additionally, to the step size and truncation error in the Krylov method we also have to
check convergence with respect to the Krylov space dimension. Since the subspace is build
iteratively by adding newly calculated basis vectors, there is a good way of doing this.
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Computing the effective matrix Heff and the coefficient vector (e−iHeffδt)j,0 is cheap and
can be done easily in every iteration of the creation of the Krylov basis. If the changes of
this vector are below a desired threshold, which should be of the order of the truncation
threshold, the size of the Krylov subspace is sufficiently large.

4.2.1 Variational Orthogonalisation

Lanczos algorithms and thus also the Krylov method are suffering from orthogonality
problems. The iterative construction of the Krylov basis is inherently unstable for finite
precision arithmetics. This becomes even worse for MPS arithmetics where the constant
addition and subtraction of states leads to an increased bond dimension. It is there-
fore crucial to truncate states to the desired precision to keep operations feasible. The
truncation does not take the previously achieved orthogonality properties of the basis set
into account and tends to destroy them even faster than typically for Lanczos methods.
Simply constantly checking for orthogonality and if necessary reorthogonalising the basis
set, will not only increase the numerical effort significantly but also introduce new trun-
cation errors, which may often entail the same problem as before. This happens because
every orthogonalisation consists of additions and subtractions, which will increase the
bond dimension of the MPS significantly. In our experience the better approach is to
use a variational procedure to construct the basis vector under the constraint that it is
orthogonal to all previous MPSes. This can be done with a previously set bond dimension
and thus truncation becomes unnecessary.
To explain how this works, we define a set of M other MPSes {|oA〉, |oB〉, . . . , |oM〉}
against which we want to orthogonalise a given MPS |ψ〉 on a system of size N to ob-
tain a new state |r〉. The corresponding tensors describing the MPS are {Ψl}Nl=1 for |ψ〉,
{{OA

l }Nl=1, . . . , {OM
l }Nl=1} for the M MPSes we want to orthogonalise against, and {Rl}Nl=1

for our resulting state |r〉. The following procedure is done iteratively over all sites of the
system. We therefore assume that each state is always in the mixed-canonical form with
respect to site l. Our aim is to minimise the distance

|| |ψ〉 − |r〉||, (4.2.6)

under the constraint that the resulting state |r〉 is orthogonal to the other given MPSes
〈r|ojJ〉 = 0 ∀ J ∈ [A,M ]. We can rewrite this problem by using Lagrange multipliers
λJ . Then, we have to minimise

〈r|ψ〉+ 〈r|r〉+
M∑
J=A

λJ〈r|oJ〉 = 0, (4.2.7)
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with respect to 〈r| and λJ . We now want to focus on optimising a single tensor on site l
and differentiate with respect to the tensor R†l and λJ to obtain the equations

− ψE +Rl +
M∑
j=A

λJoJE = 0, (4.2.8)

oJE ·R†l = 0⇔ oJ†E ·Rl = 0 ∀ J ∈ [A,M ]. (4.2.9)

We define ΨE and oJE as the tensors obtained from taking the overlap between |r〉 and
|ψ〉 and between |r〉 and |oJ〉 respectively and removing the tensor R†l . Vectorising Rl as
r, ψE as ψ and collecting the vectorised tensors oJE as columns in the matrix o as well as
the Lagrange multipliers in the vector λ, we can summarise the equations in two compact
matrix equation

r = ψ − oλ, (4.2.10)
0 = o†r. (4.2.11)

Multiplying the first equation from the left with o† allows us to insert the second equation
into the first and solving for λ

λ = (o†o)−1o†ψ. (4.2.12)

o†ψ denotes the vector of overlaps between the vectors we want to orthogonalise against
〈oJ | and the input state |ψ〉, while o†o is the matrix of overlaps between the states |oJ〉.
Since we typically have a limited number of constraints, this matrix is in general relatively
small and can be inverted exactly. Inserting Eq. (4.2.12) into Eq. (4.2.10) we obtain

r = ψ − o(o†o)−1o†ψ, (4.2.13)

which can be reshaped back into the optimised tensor Rl. As in DMRG we move to the
next site with help of an SVD and repeat the procedure there, thus optimising the state
|r〉 iteratively in the whole system. Since this is a variational approach, it is necessary
to do several sweeps through the whole system to guarantee a converged and globally
optimised result.
There are two issues with this approach that have to be treated carefully:

1. We optimise each tensor inside of the space spanned by a single tensor. Thus, we
limit our bond dimension similarly to single site DMRG. This can result in a result-
ing state |r〉 that differs from the result obtained from the normal Gram-Schmidt
procedure. However, in general these differences are so small that we can neglect
them and even if not, we can adjust the method to optimise two neighbouring sites
at the same time similarly to two-site DMRG allowing for an increase of the bond
dimension. Since the SVD used to split the merged sites is truncating the MPS
again after we orthogonalised the tensor, it is necessary to add a few additional
sweeps after the two-site orthogonalisation where we use single-site orthogonalisa-
tion. The latter ensures that the orthogonalisation is exact since it does not require
truncations.
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2. The bond dimension at the boundaries of an MPS is typically very small and thus
limits the variational space to e.g. only d parameters. Orthogonalising an MPS
against multiple other states {|oA〉, |oB〉, . . . , |oM〉} in such a small optimisation
space can be challenging or impossible. Our solution is to orthogonalise only against
a small number of states in the beginning, if the norm of the resulting tensor Rl

does not become too small. While moving towards the centre of the MPS, the
bond dimension and therefore the optimisation space become large enough that
this criterium can be weakened or abandoned completely. In the following sweeps
we give up this criterium completely to ensure that we obtain the solution of our
optimisation.

4.2.2 Tensor-Optimised Implementation
There is a crucial difference between numerical linear algebra and tensor networks. For
dense matrices the expectation value aXb, with a and b being vectors and X being a
matrix only can be computed by first applying X to a and then computing the overlap
with b. For tensor networks there is a difference between calculating the expectation value
〈a|X̂|b〉 represented by a tensor network directly or first evaluating X̂|b〉 = |b̃〉 and then
computing 〈a|b̃〉. In principle, the same contractions are performed but in different orders.
This makes a huge difference and in fact calculating the overlap is much cheaper than
even the application X̂|b〉. To illustrate this, we displayed the contraction order of both
cases in Fig. 4.2. Keeping this in mind, it is efficient to reorder the Krylov algorithm such
that we need one MPO-MPS application less to calculated the Krylov space. Since we
build up around several thousand Krylov subspaces per DMFT iteration, this sums up to
a reasonable improvement of the time evolution. The adapted Krylov method is used as
follows:

• The initial vector is set as first basis vector |φ0〉 = |ψ〉 under the assumption that
|ψ〉 is normalised.

• The first matrix element T0,0 = 〈φ0|Ĥ|φ0〉 is calculated.

• Any other basis vector |φk+1〉 for 0 ≤ k ≤ m − 1 and the presentation of Ĥ in the
Krylov space T̂ is constructed from {|φ0〉, . . . , |φk〉} by

– computing |vk〉 = Ĥ|φk〉,
– orthogonalising the new vector with respect to all previous basis vectors
|wk〉 = |vk〉 −

∑k
j=1〈vk|φj〉|φj〉,

– normalising the new basis vector |φk+1〉 = |wk〉
|||wk〉||

,

– computing Tk+1,k = Tk,k+1 = 〈φk+1|Ĥ|φk〉,
– and computing Tk+1,k+1 = 〈φk+1|Ĥ|φk+1〉.
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Figure 4.2: Graphical representation of the expectation value 〈ψ|Ĥ|ψ〉 written in MPS notation.
a) The expectation value can be computed by first applying the Hamiltonian on the state |φ〉 =
Ĥ|ψ〉 and then determining the overlap 〈ψ|φ〉. This means the tensors in the yellow block have
to be contracted first and then with the A, M and B tensors on the top. b) The most efficient
way of contracting the whole network would be to start with the left-most or right-most tensors
(yellow block) and contracting them. The results is contracted with the tensors next to them up
to the other end of the system.

The application of an MPO to an MPS becomes significantly costly for large MPOs.
Additionally, it is necessary to orthogonalise the resulting state against at least two other
Krylov vectors. Therefore, another important tensor network related improvement is the
application of an MPO to an MPS with a simultaneous orthogonalisation to a set of other
vectors. This is done in the same manner as the orthogonalisation in section 4.2.1, except
that the target environment tensor is not just the input MPS but the contraction of the
input MPS |ψ〉, input MPO Ĥ and the MPS |r〉 that is to be optimised.
This reduces the increase of computation time for each additional Krylov vectors (in line
with the exponential growth of the bond dimension during very operator application step)
to a much slower rate. It is recommended to introduce a subspace expansion step similarly
to the DMRG procedure in section 3.2, to capture the increase of the minimal necessary
bond dimension rather than generating an MPS with a large bond dimension and then
truncating it.
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4.2.3 Reusing the Krylov-Subspace
If we have a set of Krylov vectors that proved sufficient to calculate eiĤ(t+δt), that same
Krylov subspace can also be sufficiently big to calculate eiĤ(t+2δt) and potentially eiĤ(t+3δt),
eiĤ(t+4δt) etc. Using the same Krylov subspace to calculate several time steps instead of
computing a new Krylov subspace for each time step is desirable since it saves a lot of
computational effort.
As described above, we need a certain number of Krylov vectors m to represent the
Hamiltonian Heff in the Krylov subspace precisely enough for a good description of the
time evolved state |ψ′(t+δt)〉. From Eq. (4.2.5) it is obvious that this number m depends
on the time step size δt since

|ψ′(t+ δt)〉 =
m−1∑
j=0
|φj〉(e−iHeff,exactδt)j,0 +O

(
δtm

m!

)

=
m−1∑
j=0
|φj〉(e−iHeffδte−iHerrorsδt)j,0 +O

(
δtm

m!

)
. (4.2.14)

The bigger the time step, the bigger the errors introduced by Heff, exact = Heff +Herrors in
the exponential, since they get multiplied by δt. Additionally, the time step error O

(
δtm

m!

)
itself is growing with larger time steps. Assume that the Krylov subspace used to deter-
mine the time evolved state |ψ′(t + nδt)〉 cannot be used to compute an additional time
step |ψ′(t + (n + 1)δt)〉, because the errors would be too large. Adding another Krylov
vector m→ m+ 1 can lower the errors enough for determining additional time steps with
the same Krylov basis. The advantage is that the numerical effort for computing another
Krylov vector can in some cases be smaller than setting up a complete new Krylov basis.
A. Swoboda in collaboration with us developed a heuristic estimator to decide whether
building up a new Krylov basis or adding just a new Krylov vector to the already existing
basis is better in terms of computation times. Apart from the actual computation cost
for a single Krylov vector compared to a complete new Krylov basis, the heuristic also
takes into account how many time steps can possibly be calculated with both ansatzes.
The heuristic is based on observations on the last calculations of Krylov vectors and is
not simple to tune due to the increasing cost to generate each Krylov vector. Without
truncating the generated Krylov vectors, the bond dimension of each new vector will grow
by a factor proportional to the MPO bond dimension. That means, even if generating a
third basis vector was much cheaper than calculating a new set of Krylov vectors in the
previous step, generating a new basis consisting of three vectors can be much cheaper than
adding a fourth one in the next iteration. Where exactly the crossover of both approaches
is located depends on the initial state, the system and the time step. Thus, the heuristic
has to be constantly adapted during the calculation of the time evolutions.
The reuse of the Krylov subspace is obviously more effective for imaginary time than for
real time evolutions. The former is basically a projection to the ground state for τ →∞.
For short times the time evolved state will change fast, because of the exponentially fast
decaying high energy contributions of the Hamiltonian spectrum, while for longer times
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Figure 4.3: Runtimes of Krylov time evolutions with different options for the two-site DCA
model in momentum space with interaction strength U = 7t, nearest neighbour hopping t = 1,
next-nearest neighbour hopping tp = −0.15t and five bath sites. The classic implementation of
the Krylov method (blue line) is the slowest calculation. By adapting the method to be tensor
optimised and orthogonalising the Krylov basis states variational (green line) the method can be
improved significantly. Reusing the Krylov subspace based on our heuristic (red line) leads to
the fastest calculation. Up to τ = 22 the heuristic is not optimally tuned and leads to a bad
performance. From there on the Krylov subspace can be used for the rest of the time evolution
leading to a very fast computation.

the time evolved state |ψ(t)〉 approaches the ground state exponentially slow. Since |ψ(t)〉
is changing slowly, the Krylov basis will also change only slowly over time. Especially at
later times in the time evolution, this allows to reuse the Krylov subspace over long time
periods, which generates a massive decrease of computation times.
In contrast, for real-time evolutions the heuristic has problems to predict the number of
needed Krylov vectors for the next time step, since the oscillating behaviour of the evo-
lution and finite-size effects are hard to predict without taking into account the complete
previous time evolution.
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4.2.4 Conclusion
With all improvements mentioned, time evolution with the Krylov method becomes rel-
atively fast and well-controlled. Furthermore, the Krylov method can be easily applied
to all kind of Hamiltonians without any changes of the method and generalises very eas-
ily to other tensor network states such as binary tree tensors. The only parts needing
adaptation for other network topologies are the calculation of expectation values as well
as the operator application with simultaneous orthogonalisation against previous Krylov
vectors.
In Fig. 4.3 the runtime changes of the different improvements can be seen for a simple
imaginary-time evolution. In this case all improvements lead to a reduction of the runtime
by a factor 3.5. Depending on the model and the form of the time evolution the runtime
reduction can be even bigger.

4.3 Time-Dependent Variational Principle
We assume that the state |ψ〉 is in a mixed canonical representation with respect to site
l. As a starting point we define the single-site tangent space T|ψ〉 of a given MPS |ψ〉 as
the space spanned by all variations of a single tensor of the MPS |ψ〉. In general, an MPS
has more than one tensor and thus the space is spanned by all possible variations on all
existing tensors in the MPS, but a variation is always only done on a single tensor while
all others are kept constant.
If we consider a time evolution of the state |ψ(t)〉 with an infinitesimally small time step
δt, the time evolved state |ψ(t+ δt)〉 is an element of the tangent space. The key idea of
the time-dependent variational principle (TDVP) is to approximate a time evolution with
a finite time step by projecting the time evolution, represented by the time-dependent
Schrödinger equation, into the tangent space and solving it there. This results in time
evolution equations for each tensor of the MPS in the tangent space, which are solved
subsequently. The approach was first proposed in the context of MPSes by Haegeman et
al. [46].
We now want to derive the time-evolution equations for the tensors of the state |ψ〉.
Therefore, we define the projector P̂T|ψ〉 onto the tangent space as

P̂T|ψ〉 =
L∑
l=1

P̂
L,|ψ〉
l−1 ⊗ 1̂l ⊗ P̂R,|ψ〉

l+1 −
L−1∑
l=1

P̂l
L,|ψ〉 ⊗ P̂R,|ψ〉

l+1 , (4.3.1)

with P̂L
l projecting on the part of the state |ψ〉 from the left edge of the system up to site

l. P̂R
l projects on the part of the state |ψ〉 from the right edge of the system up to site l,

respectively. If we write the state |ψ〉 in the mixed-canonical representation

|ψ〉 = Aσ1 · · ·Aσl−1MσlBσl+1 · · ·BσL|σ1, . . . , σL〉
=

∑
al−1,bl

Mσl
al−1,bl

|al−1〉A|σl〉|bl〉B, (4.3.2)
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Figure 4.4: Graphical representation of the projector P̂L4 ⊗ 1̂5 ⊗ P̂R6 , which is representative for
the terms of the first sum in Eq. (4.3.5). The A and B tensors are the left- and right-normalised
tensors of the state |ψ〉. The terms of the second sum are constructed in the same manner, by
replacing the straight vertical line in the fifth bond by the corresponding A matrices.

with |al−1〉A and |bl〉B as defined in Eq. (2.1.17) and Eq. (2.1.17) respectively, the projec-
tors take the following form
P̂L
l =

∑
al−1

|al−1〉A〈al−1|A, (4.3.3)

P̂R
l =

∑
bl

|bl〉B〈bl|B. (4.3.4)

The first sum consists of terms that project all tensors to the left and right of site l on
the state |ψ〉 while the site l stays unchanged, see Fig. 4.4 for a graphical representation.
Thus, they filter for all states that have only changes on a single tensor. The second term
removes all those states that are identical with the state |ψ〉 itself.
The key idea is now to insert the projector in the time dependent Schrödinger equation
∂

∂t
|ψ〉 = −iP̂T|ψ〉Ĥ|ψ〉

= −i
L∑
l=1

P̂
L,|ψ〉
l−1 ⊗ 1̂l ⊗ P̂R,|ψ〉

l+1 Ĥ|ψ〉+ i
L−1∑
l=1

P̂
L,|ψ〉
l ⊗ P̂R,|ψ〉

l+1 Ĥ|ψ〉. (4.3.5)

This equation is still not solvable, but we can approximate it by solving each term indi-
vidually. By applying a symmetrised second error Suzuki-Trotter decomposition similarly
to TEBD we separate the time evolution of |ψ〉 into individual and sequentially applicable
time evolutions. If we define
ĥ1,l = P̂L

l−1 ⊗l 1̂l ⊗ P̂R
l+1Ĥ, (4.3.6)

ĥ2,l = P̂L
l ⊗ P̂R

l+1Ĥ, (4.3.7)
we can write the time evolution operator with the symmetrised second order Suzuki-
Trotter decomposition as

Û(t+ δt) = e−ih1,1
δt
2 eih2,1

δt
2 e−ih1,2

δt
2 . . . e−ih1,2

δt
2 e−h2,1

δt
2 e−ih1,1

δt
2 +O(δt3). (4.3.8)
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This means we have to solve L equations describing a forward time evolution of the form

∂

∂t
|ψ〉 = −iP̂L

l−1 ⊗ 1̂l ⊗ P̂R
l+1Ĥ|ψ〉, (4.3.9)

and L− 1 terms describing a backward time evolution written as

∂

∂t
|ψ〉 = +iP̂L

l ⊗ P̂R
l+1Ĥ|ψ〉. (4.3.10)

We can obtain effective single-site equations by multiplying each individual equation of
the form of Eq. (4.3.9) with |ψ〉 from the left but omitting the tensor on site l. Another
set of equations can be obtained by multiplying each individual equation of the form of
Eq. (4.3.10) from the left with the state |ψ〉 having an open bond between site l − 1 and
l. Thus, the equations can be written as

∂

∂t
Ml = −iĤeff

l Ml, (4.3.11)
∂

∂t
Cl = i ˆ̃Heff

l Cl, (4.3.12)

with Ml being just the tensor of |ψ〉 on site l while Cl is the singular value matrix
between site l and l + 1 obtained after bringing all tensors to the left of site l + 1 into
the left-canonical form and all tensors to the right of site l into right canonical form with
successively applied SVDs. We refer from defining the effective matrices ˆ̃Heff

l and Ĥeff
l

of the two time evolution equations in form of equations, but rather give a graphical
definition in Fig. 4.5 and Fig. 4.6. At this stage we just have to use one of the usual
methods for exponentiating a matrix to solve all 2L− 1 equations successively and apply
the resulting operators in the correct order to |ψ〉 according to Eq. (4.3.8).
TDVP is advantageous for multiple reasons: First, it is unitary, i.e. preserves both the
norm and the energy of the time-evolved state by construction. Second, it exists in a
single-site and two-site version with the single-site version scaling similar to the single-
site DMRG. This is the case because TDVP in the limit of taking t→ −i∞ represents a
ground state search. In other words, TDVP and DMRG without subspace expansion just
differ in the sense that in TDVP the local eigensolver is replaced by a local exponentiation.
Third, it calculates the time-evolved state directly instead of building up a subspace,
which potentially can involve heavy calculations including basis states with high bond
dimensions. Finally, it requires only a single MPO representation of the Hamiltonian Ĥ.
We do not have to analytically separate the Hamiltonian as in TEBD.
One of the disadvantages of TDVP is that even if one time step with time δt has an
error of O(δt3), we observe relatively large errors due to the projection in the tangent
space itself if the Hamiltonian has long range interaction (i.e. not nearest-neighbour).
This is not surprising since even for a Hamiltonian with nearest-neighbour interaction the
single-site TDVP induces a projection error while two-site TDVP does not [46]. Therefore,
it seems reasonable that a higher order TDVP like three-site or even more would be able
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Figure 4.5: Graphical representation of the right-hand side of the effective single-site time for-
ward evolving Schrödinger equation Eq. (4.3.11). The first row from the bottom is the original
MPS in the mixed-canonical representation, the second row is the Hamiltonian, the third and
fourth row is representing the the projector P̂L4 ⊗ 1̂5 ⊗ P̂R6 and the last row is the state |ψ〉
with site 5 missing, which we multiplied from the left to the Schrödinger equation. Because of
the orthogonalisation properties of the A and B matrices, the upper two rows simplify to unit
matrices.

to overcome this drawback at the cost of longer calculation times. Unfortunately, this
error increases with smaller time steps indicating a competition between the time-step
error and the truncation error.
After testing the presented time evolutions extensively, two-site, second-order TDVP is
the method of choice for all our calculations if not stated otherwise.

4.4 Long Time Behaviour
For real-time as well as for imaginary-time evolutions we have to deal with the fact that
we cannot evolve our states with these methods until infinity. In the context of DMFT
we only consider physical quantities that approach zero for large, but not excessive times.
However, to save a lot of computational effort and to guarantee that the computed quan-
tities are evolved far enough for further computations, it is important to think about up
to which times the states have to be time-evolved.
A reasonable approach for states being evolved long enough as well as for observables
being simple enough is so-called linear prediction [107,109]. For cases where we cannot reach
the regime that allows linear prediction to be applicable, we propose an ansatz that, at
least for imaginary-time evolution, can allow us to shorten computation times. By pro-
jecting the low-energy states out of the state |ψ〉, which is to be time-evolved, we only
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Figure 4.6: Graphical representation of the right hand site of the effective centre matrix backward
evolving Schrödinger equation Eq. (4.3.12). The description of each row is explained in Fig. 4.5.

have to evolve the relatively fast decaying high energy contribution. The drawback for
this approach is that we have to perform more DMRG calculations to determine the low-
energy spectrum.
In the following two subsections we will discuss the linear prediction as well as the pro-
jection ansatz.

4.4.1 Linear Prediction
We start with a series of complex data x0, x1, . . . , xN obtained at equidistant time points
tn = nδt. For the times t > tN the data points x̃N+1, x̃N+2, . . . can be predicted with the
ansatz

x̃n = −
p∑
i=1

αixn−i. (4.4.1)

The predicted values x̃n for n > N are assumed to be linear combinations of the previous
p data points. The coefficients αi are determined from the known data set by minimising
the cost function

χ =
∑

n∈Nfit
|x̃n − xn|2/wn, (4.4.2)

in the fit interval Nfit = {n|tn ∈ (tN− tfit, tN ]}. We have to choose tfit, the starting point
of the fit interval, in such a way that we avoid to include the short-time in the prediction
of the long time behaviour and such that we include enough data points for the fit to a
have good statistic and to use a large number p of coefficients. Barthel et al. proposed
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tfit = tN/2 [107] and we stick to it. The weights wn are typically chosen to be one in our
calculations. We can solve the minimisation problem by differentiation with respect to
the coefficients ai. After defining

Rj,i =
∑

n∈Nfit
x∗n−jxn−i/wn, (4.4.3)

rj =
∑

n∈Nfit
x∗n−jxn/wn, (4.4.4)

we can rewrite the problem as a matrix equation

Ra = −r. (4.4.5)

For positive wn the matrix R is positive-definite and the minimisation problem can readily
be solved by a = −R−1r. This ansatz generates exponentially decaying and increasing
as well as oscillating data points. This can be seen when we introduce the vectors xn :=
[xn−1, . . . , xn−p] and write Eq. (4.4.1) as a matrix equation

x̃n+1 = A · xn, (4.4.6)

with the matrix

A =



−a1 −a2 −a3 . . . −ap
1 0 0 . . . 0
0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0

 . (4.4.7)

We can clearly see that any predicted data point xN+m for m > 0 is obtained by applying
powers of A to the initial vector xN and taking the first element of the resulting vector

x̃N+m = [Am · xN ]1 =
p∑
i=1

ciα
m
i . (4.4.8)

In the last step we performed a right eigenvector decomposition of A with eigenvalues αi
and eigenvectors vi. The ci are obtained form the overlap of xN and the eigenvectors of
A.
Since each complex number can be written as an exponential, we define αi = eia−b, see-
ing that linear prediction uses a combination of p exponentially decaying, exponentially
growing and oscillating functions to predict the data points xN+m for m > 0. Physical
insights dictate to exclude exponentially growing terms and impose that all |αi| ≤ 1 since
we predict the long-time behaviour of physical observables. Barthel et al. proposed to
discard all numerically obtained coefficients with αi > 1 to enforce this physical property.
These unphysical solutions can be obtained because of finite-size effects being present in
the fitting data or because of a very bad fitting result. Since the error of linear prediction
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is approximately a function of pδt, Barthel et al. [107] proposed to use p = tfit
2δt moments

for the fitting procedure to achieve a good compromise between having a large number of
exponentials to superpose , i.e. a large p, and having a good statistics for the fit of the
coefficients αi, i.e. a small p.
In practice, we start with the fit interval Nfit = {n|tn ∈ (tN − tfit, tN ]}, the interval
border tfit = tN/2 and p = tfit

2δt moments as discussed above and check the quality of the
fit by computing the cost function value and by determining the proportion of discarded
coefficients ci, which we call discarded weight d. For imaginary time evolution there is,
in general, no reason to change any of these choices. If, in the case of real-time evolution,
we observe that the discarded weight is to big (i.e. d > 0.1), we assume that this is due
to finite size effects. Therefore, we shift the interval by 40 data points to earlier times,
determine a new value for p and fit the data set anew. This is repeated until the discarded
weight drops below the threshold of 0.1. In extensive tests this has been proven to yield
the best result.
In both cases, real-time as well as imaginary-time evolution, the calculated Green’s func-
tions are expected to decay exponentially for large times, making linear prediction a
well-suited method to predict the functions to large times in the context of DMFT.

4.4.2 Projection of Low Energy States

For imaginary time-evolution it is clear that the long time behaviour of observables like
the Green’s function G(τ) are determined by the low-energy part of the Hamiltonian
spectrum. If |φn〉 denotes the eigenbasis of the Hamiltonian Ĥ with eigenenergies En in
ascending order, we can write any state |ψ〉 as a superposition of eigenbasis vectors

|ψ〉 =
∑
n

cn|φn〉, (4.4.9)

with complex coefficients cn = 〈ψ|φn〉. E.g. a typical observable that we have to calculate
in the context of DMFT is the greater Green’s function G>(τ)

G>(τ) = 〈φ0|c(0)c†(τ)|φ0〉 = 〈φ0|c(0)e−τ(Ĥ−E0)c(0)|φ0〉
=
∑
n

|cn|2e−τ(En−E0). (4.4.10)

Depending on the energy difference of the low lying states of the Hamiltonian spectrum,
the state c(τ)|φ0〉 := |ψ(τ)〉 has to be calculated to very high times τ to simply decay
exponentially with only a couple of relevant terms. This is necessary for linear prediction
to be successfully applicable. But if we know the Nlow lowest states of the Hamiltonian
spectrum and their eigenenergies, we can separate the observable into a part that we can
calculate exactly and another part that we have to treat with one of our time evolution
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methods

G>(τ) = 〈φ0|c(0)c†(τ)|φ0〉 =
Nlow∑
n=0
|cn|2e−τ(En−E0) +

∑
n=Nlow+1

|cn|2e−τ(En−E0)

= G>
low(τ) +G>

high(τ). (4.4.11)

The slowly decaying part G>
low(τ) is known exactly for arbitrary times while G>

high(τ)
decays much faster as long as we extracted enough low lying states. For the latter we can
use linear prediction to extrapolate the observable to small values if we have time evolved
the state long enough.
With DMRG, in principle, it is possible to compute the whole spectrum of the Hamiltonian
iteratively. After we found the ground state |φ0〉 we start a new DMRG search with the
condition that the new state must be orthogonal to the already found ground state |φ0〉.
DMRG should calculate in this case the lowest lying excited eigenstate |φ1〉 of Ĥ. In the
next step we start DMRG with the condition that the new state should be orthogonal
to |φ0〉 and |φ1〉. In practice, we are only interested in the low energy spectrum and
practice showed that we only have to determine the 4− 6 lowest-lying eigenstates to see
a significantly faster decay for observables like the greater or lesser Green’s function.
There are several drawbacks with this approach:

• The low-lying eigenstates have to be determined iteratively one by one. There is
no way of parallelising the computation. For relatively strong entangled systems
performing six DMRG calculations one after the other with the sufficient precision
can take some time and may take longer than the time saved during the time
evolution.

• It is not known beforehand how many states actually have to be calculated. The
number depends, on the one hand, on the eigenenergies. A significant energy jump
from one state to the next is needed to see any difference in decaying times of the
observables if those states are projected out of the excited state |ψ(τ)〉. Especially
for degenerate systems this can be hard to achieve, if, for example, the four low-lying
eigenstates next to the ground state have the same energy.
On the other hand, the calculated eigenstates |φn〉 need to have a significant weight
in |ψ(τ)〉, i.e. cn = 〈φn|ψ(τ)〉 should be large enough. If the weights are too small,
the contribution of this state to the observable is negligible and we see no change
in the decay times.

• In general, the high energy states of the spectrum are more entangled than the low
energy ones. Using the same truncation threshold or the same truncated weight
for the time evolution of |ψ〉high as for the full state |ψ〉 = |ψ〉low + |ψ〉high can
lead to higher bond dimensions and thus slower computation. Therefore, it must
be checked how much the precision for the time evolution of |ψ〉high can be tuned
down. This can highly depend on the amount of states projected out of |ψ〉 and
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their total weight as well as on the system and its entanglement properties itself. It
is therefore difficult to find a general rule for this issue.

• If symmetries are used, the low energy spectrum has to be determined for each
symmetry sector of the excited states separately. This increases the numerical effort
significantly.

Summarising, this method is useful, if DMRG calculations of the low-lying eigenstates
can be performed much faster than the time evolution and if the low-energy spectrum
is not strongly degenerate. Furthermore, the observables that are to be computed have
to decay very slowly for gaining a significant speed-up by projecting out the low-energy
states. Finally, it must be clear how precise the DMRG calculations have to be performed
to obtain sufficiently good enough results. These conditions are very hard to guarantee
for widely changing Hamiltonians in DMFT calculations. Unfortunately, we did not find
any situation to apply this approach in a general way in the DMFT context.
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Chapter 5

Dynamical Mean-Field Theory

One of the fundamental aims of solid state physics is the description of real materials. Un-
fortunately, the quantum lattice models for these real three-dimensional materials become
so complicated and strongly entangled that these interesting compounds cannot be solved
efficiently. In fact, there exist several methods, so-called mean-field techniques, that can
solve such kind of problems with increasing accuracy in higher dimensions (e.g. more
than three). Furthermore, multiple methods are known that solve one-dimensional prob-
lems very efficiently such as DMRG or exact diagonalisation (ED) [14,110,111]. A reasonable
ansatz is to use these methods that perform great in one dimension and apply them to
two-dimensional finite problems. Even if large two-dimensional systems are not treatable,
by solving small systems and increasing the system size in an appropriate manner, results
can be extrapolated to the thermodynamic limit while getting rid of finite-size effects.
However, these ansatzes are still work in progress and suffer under severe limitations with
respect to entanglement properties, sign problems and more.
Another approach is to use so-called quantum embedding techniques like density functional
theory (DFT) [33,112,113,114], dynamical mean-field theory (DMFT) [29,31,32,33] or density ma-
trix embedding theory (DMET) [6,16,115]. The core idea is to treat only a part of the
infinitely large lattice exactly, which is called the impurity cluster, and summarise the
rest of the lattice in a mean-field environment that is acting on the impurity cluster it-
self. The "artificial" interaction between cluster and environment has to be approximated
consistently during the calculations. Essentially, these methods consist of mapping a
complex lattice problem to an auxiliary impurity problem, solving it with an appropriate
method and using the result to update the interaction between environment and cluster.
As in other mean-field theories, these steps are repeated iteratively until convergence of
physical quantities is observed. The approach considers all local interactions completely
and even allows for time-dependent fluctuations while approximating the environment as
non-interacting (see Fig. 5.1). This reduces the complexity significantly and at the same
time results in very good descriptions of real materials. Therefore, even if the full lattice
problem cannot be solved, this approach allows to compute interesting and important
physical quantities to a very high quality.
A great deal of these methods like DFT, DMFT or spectral density functional theory
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Figure 5.1: Conceptional idea of DMFT. A single site of the infinitely large lattice is taken
out of the system and placed in a non-interacting environment. On this site, called impurity,
the electrons interact normally. We consider systems where the local state space consists of
no electrons, a single electron or two electrons. Over time, the electrons can jump from the
environment on the impurity site and back into the environment. This interaction is described
by the hybridisation, which has to be determined self-consistently during DMFT.

(SDFT) originate from the Baym-Kadanoff equations [33,116]. They differ mainly in the
physical quantity they aim to calculate and the physics they consider to do so. In this
thesis, we work with DMFT to determine the local interacting single-particle Green’s
function of the Hubbard model and real materials. This quantity already contains a lot of
interesting information that allow for instance to compute local observables or the spec-
tral function of the interacting model, which allows to determine whether the system is
an insulator, a conductor or a superconductor.
In the following sections we will first discuss the theoretical background of DMFT based
on the Baym-Kadanoff equations following Kotliar et al. [33]. Afterwards, we will present
different impurity solvers, which can be used to solve the auxiliary impurity problem
generated by DMFT and argue why we use DMRG. The specific details of a DMFT
iteration in terms of formulas, assumptions, conditions and chosen numerical parame-
ters is discussed in great detail afterwards. This allows other researchers to build there
own working DMFT+DMRG code and reproduce our data. Model specific details of
the implementation and deviations from the standard approach are discussed in chap-
ter 6 for the case of the Hubbard model and in the chapters 7 and 8 for real material
studies of Sr2VO4 and Sr2RuO4, respectively. We close the discussion about dynamical
mean-field theory by introducing cluster extensions to DMFT, specifically the dynamical
cluster approximation (DCA). Since DMRG approximates the complex interactions tak-
ing place in two-dimensional lattice models by only taking into account local interactions,
all computed quantities, such as self-energies, Green’s functions, and hybridisations, are
momentum independent. DCA in its different forms restores some of the momentum de-
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pendence by reintroducing non-local interactions. This allows to deal with full models on
a more realistic level, but it also restores some of the complexity of the original problem.

5.1 Baym-Kadanoff Equations
The aim of this section is to give an idea of how to derive the relationship between the
infinitely large lattice problem and the auxiliary cluster plus environment system. We
will follow Kotliar et al. [33] in the next sections to derive the so-called Baym-Kadanoff
equations, which allow to determine physical quantities such that they satisfy macroscopic
conservation laws [117]. The first step is to choose the quantity that is to be computed. In
the case of DMFT this is the local electron Green’s function

Gσ′,σ(x′, x) = −〈Tτ ψ̂σ′(x′)ψ̂†σ(x)〉. (5.1.1)

ψ̂†σ and ψ̂σ are the creation and annihilation operators of an electron with spin σ at
position ~r and time τ , which are summarised in the variable x = (~r, τ). Tτ denotes the
time ordering operator with respect to the time τ . To keep the notation clean, we will omit
the spin indices. We now want to determine a set of equations that allow to determine
G. Therefore, we define the action

S =
∫

dxψ̂†(x)∂τ ψ̂(x) +
∫

dτĤ(τ), (5.1.2)

with Ĥ(τ) being the Hamiltonian of the lattice system. By adding a source term J(x, x′)
to S and writing the partition sum in the following way

Z[J ] = exp(−F [J ]) =
∫
D[ψ†ψ]e−S−

∫
dxdx′J(x,x′)ψ†(x)ψ(x′), (5.1.3)

we can find an expression for the Green’s function via a variation of the free energy with
respect to the source term. This will yield the expectation value of ψ†(x)ψ(x′), which
results in the relationship

G(x, x′) = −〈Tτ ψ̂σ′(x′)ψ̂†σ(x)〉 = δF

δJ(x, x′)

∣∣∣∣∣∣
J=0

. (5.1.4)

The equation determines the Green’s function dependent on the source term and vice
versa. At this point, we will split up the action S = S0 + λS1 into a non-interacting part
S0, which can be solved easily, and an interacting part S1, which contains the complicated
physics. With the parameter λ the interacting part can be turned on and off. In the non-
interacting case λ = 0, the following expression for the free energy can be obtained

e−F0[J0] =
∫
D[ψ†ψ] exp

[
−
∫

dxdx′ψ†(x)
(
∂

∂τ
− µ+ Ĥ0 + J0

)
ψ(x′)

]

= Det
(
∂

∂τ
− µ+ Ĥ0 + J0

)
. (5.1.5)
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By taking the logarithm, we obtain

F0[J0] = −Tr ln(G−1
0 − J0). (5.1.6)

G0 = (∂τ − µ + Ĥ0)−1 is the usual non-interacting Green’s function since Ĥ0 is the non-
interacting Hamiltonian. By performing a variation of the free energy with respect to J0
as derived in Eq. (5.1.4), we can write down the interacting Green’s function

G = δF0[J0]
δJ0

= (G−1
0 − J0)−1. (5.1.7)

It follows that the source field J0 is the interacting self-energy J0 = Σ, which describes
all the interactions of the system. Thus, we recovered the usual Dyson equation, which
allows to compute the Green’s function when knowing the self-energy. To determine an
equation for Σ, we perform a Legendre transformation on the free energy F [J ] and obtain
the functional

Γ[G] = F [J [G]]− Tr(J [G]G), (5.1.8)

dependent only on the Green’s function G with the trace defined as

Tr(JG) =
∫

dxdx′J(x, x′)G(x′, x). (5.1.9)

For λ = 0, we replace J with the self-energy and obtain

Γ0[G] = −Tr ln[G−1
0 − Σ[G]]− Tr[Σ[G]G]. (5.1.10)

Now, in the interacting case λ = 1 the functional is changed slightly to

ΓBK[G] = −Tr ln[G−1
0 − Σ[G]]− Tr[Σ[G]G] + ΦBK[G], (5.1.11)

where all the complicated interaction physics is put into the non-trivial functional ΦBK[G].
We will refer to ΓBK[G] as the Baym-Kadanoff functional. From the derivation of Eq. (5.1.7)
it is clear that in the interacting case J vanishes. This must be the case since for λ = 1
the non-interacting Hamiltonian Ĥ0 becomes the interacting Hamiltonian Ĥ, which by
definition already includes all the interaction physics. Thus, Eq. (5.1.7) becomes

G = (G−1 − J)−1, (5.1.12)

leading to J = 0. Therefore, the differential of the Baym-Kadanoff functional

δΓBK = −Tr[JδG], (5.1.13)

shows that in the interacting case Γ[G] is stationary and equal to the free energy of
the system. With the property of stationary we can use the saddle-point equation with
Eq. (5.1.11) and obtain

δΓBK[G]
δG

= Tr
[
δΣ
δG

[(G−1
0 − Σ)−1 −G]

]
− Σ + δΦBK[G]

δG
= 0. (5.1.14)
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The first term in parentheses vanishes because of the Dyson equation. This leaves us with

Σ[G] = δΦBK[G]
δG

, (5.1.15)

with the exact form of ΦBK unknown. In principle, the Green’s function G and self-
energy Σ can be determined self-consistently with the two equations Eq. (5.1.7) and
Eq. (5.1.15). Solving the exact functional in Eq. (5.1.15) results in the so-called spectral
density functional theory. Unfortunately, summing up the diagrams describing ΦBK is
nearly impossible. However, DMFT approximates this functional by a sum of all two-
particle irreducible skeleton graphs [33]. This approximation becomes exact in the limit
of an infinite lattice coordination number [29] and corresponds to having a momentum-
independent self-energy. The sum can be performed exactly by introducing an auxiliary
quantum impurity model with a self-consistency condition [30,31] and solving it with an
impurity solver.

5.2 Impurity Solvers
Since DMFT reduces the complex two-dimensional lattice problem to an impurity problem
coupled to a non-interacting bath, which must be solved self-consistently, the fundamen-
tal question of DMFT is which kind of impurity solver is to be used. There exists a
wide variety of solvers each with their unique approaches and, therefore, with their own
strengths and weaknesses. In the following, we will focus on some of the more known
solvers to provide a context to understand why we have chosen to work with DMRG on
the three problems presented in the chapters 6, 7 and 8.

• We will start with the widely known continuous-time quantum Monte Carlo [15,34,118]

(CTQMC) approach, which is the method of choice for a wide variety of quantum
impurity models. For a very detailed description of the development, concepts,
implementation details and examples of CTQMC we refer to Gull et al. [34]. The basic
idea is very simple and begins with a Hamiltonian split into two parts Ĥ = Ĥ1 +Ĥ2.
Then, the partition sum can be written by expanding it in powers of Ĥ2

Z = Tr Tτe−βĤ1 exp
(
−
∫ β

0
dτĤ2(τ)

)

=
∑
k

(−1)k
∫ β

o
dτ1 . . .

∫ β

τk−1
dτk Tr

(
e−βĤ1Ĥ2(τk)Ĥ2(τk−1) . . . Ĥ2(τ1)

)
. (5.2.1)

It is necessary that the spectrum of the perturbation term Ĥ2 is bounded from above
such that the terms are exponentially suppressed by the factor k! of the exponential.
The decomposition can be chosen quite freely with the only requirement being that
the time evolution with respect to Ĥ1 and the contractions of fermion operators Ĥ2
can be performed easily. However, in the context of impurity models a couple of



62 5.2. IMPURITY SOLVERS

typical decompositions known as hybridisation or interaction expansions exist, the
latter sometimes also called weak coupling expansions. They are based on different
ways of splitting up the Hamiltonian and are suited to different extents for certain
classes of problems.
Anyways, Monte Carlo methods are statistical methods and a physical quantity A,
as for example a Green’s function, is calculated via an expectation value over the
configuration space C with weight p of the quantity A(x)

〈A〉p = 1
Z

∫
C

dxA(x)p(x). (5.2.2)

This approach becomes problematic if the weights p(x) become negative due to, for
example, the anti-commutation relations of fermionic operators. The weights can
no longer be regarded as probabilities and are replaced by the absolute value of the
weight ρ(x) = |p(x)|. Therefore, the expectation value has to be written as

〈A〉 = 〈A · sign〉|p|
〈sign〉|p|

, (5.2.3)

which suffers under exponentially growing errors with decreasing temperature. The
so-called sign-problem is the accurate measurement of the near-zero sign from in-
dividual measurements that have either +1 or −1 as a pre-factor. This problem
has been proven to be nondeterministic polynomial (NP) hard [119]. The severity of
the sign problem depends significantly on the model and the chosen representation,
i.e. basis choices etc. In general, impurity models have a much less severe sign
problem than full lattice problems. However, if the sign problem is present, because
the temperature is too low, the problem is not symmetric enough or an interac-
tion is too strong, it prevents CTQMC from obtaining trustworthy results. Because
of its formulation, CTQMC computes the Green’s functions and self-energies on
the imaginary-frequency axis. Unfortunately, interesting physical quantities such as
spectral densities A(ω) or response functions are defined on the real-frequency axis.
The standard approach is to use analytical continuations like max-Ent or Padé to
extrapolate the physical quantities to the real-frequency axis. This has to be done
very carefully since analytic continuations are in general numerically ill-defined.

• The numerical renormalisation group (NRG) developed in 1975 by K.G. Wilson [35]

allows to calculate physical quantities directly on the real-frequency axis at zero
temperature. The key idea is to course grain the hybridisation Λ, which describes the
interaction of the impurity with the environment, via a logarithmic discretisation.
This generates a so-called semi-infinite Wilson chain, which is cut after some number
of sites to allow numerical calculations. This Wilson chain consists of sites with
on-site energies and nearest neighbour hopping terms whose amplitudes decrease
exponentially fast along the chain. NRG starts with diagonalising the combined
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system of the impurity site and the first site of the Wilson chain. Due to the very
specific setup, the Wilson chain guarantees so-called energy-scale separation. This
allows NRG to discard the high energy spectrum of the combined sites and merge
the remaining energy levels into an effective site while still having a very good
description of the low-energy spectrum of the system. This effective site is then
combined with the next site of the Wilson chain and the procedure is repeated until
the last site of the system is reached. In the end, NRG produces a very precise
low-energy spectrum of the lattice model and thus also a very good description of
the ground state and the interacting zero-temperature Green’s function.
NRG generates physical quantities with a very high resolution at low frequencies.
However, it can be problematic and numerically unfeasible if the spectral function
has a rich structure at high frequencies since NRG with its logarithmic discretisation
is focused on the low-energy behaviour.
Anyways, only recently it was shown that NRG is able to successfully calculate the
Green’s function of a multi-band problem with more than two bands [18]. Since each
band has its own exponentially decaying Wilson chain, it is challenging how to adapt
NRG to ensure energy scale separation and efficiency at the same time. It is therefore
questionable if NRG will be able to deal with dynamical cluster approximations or
multi-band systems where multiple impurities with their own baths are present. For
further details on NRG and its applications we refer the interested reader to the vast
amount of literature [120,121,122,123].

• Exact diagonalisation (ED) as an impurity solver for DMFT was first presented by
Caffarel and Krauth in 1995 [14]. ED diagonalises either the whole Hamiltonian or
at least the symmetry sectors in which the global ground state and the interacting
Green’s functions are located. This part is very time consuming and is severely
limited by the size of complete system because the relevant Hilbert space grows
exponentially with system size.
While with CTQMC the infinitely large environment is typically integrated out and
therefore treated exactly, with ED a finite and discrete approximation of the envi-
ronment has to be found. We will refer to this approximation as the bath. Given
a hybridisation ∆(z), which describes the interaction between impurity sites and
the continuous environment, a finite discretised version of the bath can be con-
structed either on the real-frequency or on the imaginary axis. How this can be
done is described in detail in section 5.3.1. The energies of the environment are
represented by poles in the hybridisation and are located close to the real-frequency
axis. Therefore, it is clear that we can find a very good description of the hybridi-
sation on the imaginary-frequency axis with only a few effective discrete energies
since the detailed structure of the distribution and strength of the poles is smeared
out far away of the real-frequency axis. Typically, we need two to ten sites to have
a reasonable description of ∆(iωn) on the imaginary axis. In contrast, on the real
axis typical bath sizes for a good description of the hybridisation ∆(ω) are 80 to
120 sites.
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For systems with up to six sites, ED can, in general, calculate the whole spectrum
of the Hamiltonian and therefore also the Green’s function pretty easily. For larger
systems this is not possible anymore, but for up to 16 sites the zero-temperature
Green’s function can still be determined with the Lanczos algorithm [110,124] effi-
ciently. This obviously limits ED in the context to DMFT on the imaginary axis.
Furthermore, it limits ED to DMFT problems with only a couple of conducting
bands or with a low-order dynamical cluster approximation. We want to end the
paragraph about ED with presenting the two step procedure that is the heart of
ED. First, the ground state |E0〉 of the system has to be determined with the usual
Lanczos procedure. Second, the Green’s function is split into the lesser and greater
Green’s function

G(iωn) = G>(iωn) +G<(iωn), (5.2.4)

which correspond to particle and hole excitations, respectively. Then, the Green’s
functions are written down as continued-fraction expansions

G>(iωn) =
〈E0|dd†|E0〉

iωn − a>0 −
(b>1 )2

iωn − a>1 −
(b>2 )2

iωn − a>2 − . . .

, (5.2.5)

G<(iωn) =
〈E0|d†d|E0〉

iωn − a<0 −
(b<1 )2

iωn − a<1 −
(b<2 )2

iωn − a<2 − . . .

. (5.2.6)

For simplicity we will skip the superscripts > and < for the following definitions.
The coefficients ai and bi can be determined during the Lanczos algorithm and are
just expectation values of the Hamiltonian

ai = 〈pi|Ĥ|pi〉, (5.2.7)

or overlaps of Lanczos vectors

b2
i = 〈pi|pi〉
〈pi−1|pi−1〉

, (5.2.8)

with |pi+1〉 = Ĥ|pi〉 − ai|pi〉 − b2
i |pi−1〉. The greater and lesser Green’s function only

differ in their starting state |p>0 〉 = d†|E0〉 and |p<0 〉 = d|E0〉, respectively. As for
CTQMC calculations, ED produces physical quantities on the imaginary-frequency
axis and have to be extended to the real-frequency axis with analytic continuations
to obtain most of the physically interesting quantities.
Typical problems for ED that require fine tuning for most models, are degeneracies
of ground states and numerical instabilities of the Lanczos method. However, ED
has proven to be a reliable and high quality impurity solver for small systems and
is still widely used [37,125,126].
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• An alternative to ED is the density matrix renormalisation group (DMRG), which
we described in the previous chapters in great detail. DMRG computes the ground
state of the lattice directly with a variational approach. This is much cheaper than
computing the whole spectrum, especially for large systems. The drawback com-
pared to ED is that determining the Green’s functions and self-energies after the
ground state search requires more numerical effort. Nevertheless, this approach
allows to solve much bigger systems than with ED while preserving a reasonable
resolution for physical quantities.
DMRG can be used to compute Green’s function on the real-frequency axis [36,39,127,128]
as well as on the imaginary axis [40,129] and produces in both cases very good results
that are in agreement with other methods like CTQMC [103,129]. ED and DMRG are
both methods working at temperature T = 0, but can, in principle, be extended to
finite but low temperatures as long as the low-energy spectrum can be computed.
With ED this can be done quite easily for small systems while for DMRG this re-
quires performing additional ground state searches in the subspace of the Hilbert
space orthogonal to all already found eigenstates. These calculations are in general
more time consuming due to bad entanglement properties since area laws do not
apply.
Because interesting physical quantities like the spectral density A(ω) or response
functions in general are defined on the real-frequency axis, there is a strong tendency
to work directly with real frequencies. However, DMRG reaches its limits with most
multi-band band models or dynamical cluster approximations. In those systems in
general three or more impurity sites have to be considered, each with its own bath.
The total system size can easily exceed 300 sites with potentially artificial long-range
interactions. This increases entanglement in those systems dramatically and leads
to unbearable computation times. Therefore, a reasonable approach for multi-band
and dynamical cluster approximation problems is to perform DMFT+DMRG on
the imaginary axis since the smaller systems can be considered to have less numer-
ical complexity. Then, analytical continuations or other approaches can be used to
obtain physically more interesting real-frequency Green’s function G(ω). This is the
approach we will follow in the remaining part of the thesis.

After we presented a small excerpt of the wide variety of impurity solvers, it is obvious
that all methods have certain strengths and weaknesses. It is not always clear whether
a specific model can be solved with a certain impurity solver, especially in the case of
CTQMC with its sign problem or in the case of DMRG where entanglement properties
of a system are not predictable. Since the more interesting physical systems tend to
have multiple bands, momentum-dependent properties or both, an impurity solver that
can deal with big systems, multiple impurities and is able to produce reliable results at
sufficiently low enough temperatures is definitely needed in the solid state community.
Using DMRG as an imaginary-time impurity solver for DMFT proposed by Wolf et al.
in 2015 [129] was motivated by exactly this reasoning. In the following sections we will
present the ideas and underlying derivations of this method following Wolf et al. We will
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do this in great detail and will also comment on implementation issues and parameter
choices to allow other researchers to reproduce our results.

5.3 Step By Step: A Full DMFT Iteration
In the following sections we want to give a detailed overview of the different steps of a
full DMFT iteration with DMRG used as impurity solver. This will not only include
analytical expressions, but also typical choices of numerical parameters, thresholds and
implementation details. We will also discuss why we choose certain approaches over others
and which parts of the method can be improved in the future and in which way.
This section is the basis of the following chapters where we will discuss different models
and the results obtained with DMFT+DMRG.

5.3.1 Hybridisation
Each DMFT iteration starts with a hybridisation ∆(z) describing the coupling between
the impurity sites and the environment with z being a complex or real frequency. The
hybridisation has to be determined with the help of the self-consistency equations of
DMFT in such a way that the impurity problem gives rise to the same Green’s function
and self-energy as the original two-dimensional lattice model. This means ∆(z) obtained
in iteration n is used as the starting ground for iteration n + 1 until the hybridisation
of consecutive iterations does not change anymore. At the very start of the DMFT
calculation any kind of hybridisation can be used. However, the choice determines how
many iterations are needed to converge to the self-consistent DMFT solution and how
complicated the calculations will be numerically because of entanglement properties of
the constructed impurity problems. In section 5.3.4 we will discuss the self-consistency
equation of DMFT and also comment on how to determine a start hybridisation for the
first iteration.
Given a hybridisation function ∆(z), there are two ways to set up an impurity problem:
On the real-frequency axis one can use typical schemes described by Bulla et al. [130],
Žitko [131] and others [35,132] to find a discretisation of the continuous bath. Typically in
this schemes, the hybridisation is separated into intervals and the average and mean values
in these intervals are used as bath energies and hopping elements.
On the imaginary axis, also called Matsubara axis, the hybridisation is fitted with an
analytic expression. For impurity problems this expression can be obtained from the
definition of the non-interacting single-particle impurity Green’s function G0(z) as an
inverse operator of the Hamiltonian

(z − Ĥ)G0(z) = 1. (5.3.1)

We consider a general impurity Hamiltonian Ĥ, which consist of a local model-dependent
interaction Hamiltonian Ĥint, a single-particle Hamiltonian Ĥsingle describing on-site ener-
gies of the impurity sites and single-particle hopping between them, the coupling between
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impurity and bath sites Ĥhyb and the non-interacting bath itself Ĥbath

Ĥ = Ĥint + Ĥsingle + Ĥhyb + Ĥbath, (5.3.2)
Ĥsingle =

∑
αβ

µαβd
†
αdβ (5.3.3)

Ĥhyb =
∑
l,α,σ

Vl,α,σd
†

α,σcl,α,σ + h.c., (5.3.4)

Ĥbath =
∑
l,α,σ

εl,α,σc
†

l,α,σcl,α,σ. (5.3.5)

d†α and dβ are creation and annihilation operators on the impurity sites denoted with α
and β, while c†k and c act on the bath site k, which is describing an environment mode.
Each bath site has an on-site energy εk and couples to the impurity sites via the hopping
elements Vα,k. The on-site energies and the single-particle hoppings between the impurity
sites are described by µαβ. In the following, we will consider only the single-particle
Hamiltonian that is given by Eq. (5.3.2) without Ĥint. We evaluate Eq. (5.3.1) by taking
expectation values with respect to the complete basis set of bath states |k〉 and impurity
states |α〉 and inserting 1 = ∑

k |k〉〈k| +
∑
α |α〉〈α| between the Hamiltonian and the

Green’s function. Then, we obtain

1 = 〈α|(z − Ĥ)G0(z)|α〉
= (z − Ĥαβ)G0,βα(z)− ĤαkG0,kα(z)
= (z − µαβ)G0,βα(z)− V ∗αkG0,kα(z), (5.3.6)

and

0 = 〈k|(z − Ĥ)G0(z)|α〉
= −ĤkβG0,βα(z) + (z − Ĥkk)G0,kα(z)
= −VkβG0,βα(z) + (z − εk)G0,kα(z). (5.3.7)

Solving the last equation for G0,kα(z) and inserting it into Eq. (5.3.6) results in the non-
interacting impurity Green’s function

G0,βα(z)−1 = z − µαβ − V ∗αk(z − εk)−1Vkβ, (5.3.8)

which can be written as

G0(z) = (z − µ−∆(z))−1, (5.3.9)

which defines the hybridisation

∆(z) =
∑
k

~V †k
~Vk

(z − εk)
. (5.3.10)
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~Vk = (V1k V2k . . . VNimpk) constitutes of hopping elements from bath site k to each of the
Nimp impurity sites while ~V †k is the transposed and complex conjugated vector. Thus, for
an impurity model the hybridisation describes the single-particle hopping between bath
and impurity sites as well as the on-site energies of the bath modes.
Now, on the imaginary-frequency axis we can define a cost function

χ =
∑
n

ω−αn ||∆(iωn)−∆discr(iωn)||2. (5.3.11)

to determine the on-site energies and hopping elements of the bath sites. Numerically,
this is not feasible for real frequencies. The poles, i.e. the on-site energies, are located on
the real-frequency axis and for analytical reasons are typically slightly shifted to negative
or positive imaginary values by introducing z → ω ± iη with an infinitesimal η ∈ R.
However, when performing integrations or summations on the real-frequency axis, ∆(ω)
varies from very big values near to the poles to smaller ones far away from them. This
will introduce numerical errors large enough to prevent qualitatively good solutions. On
the imaginary axis z → iω, the poles are located so far away that the hybridisation is
sufficiently smooth to perform numerical operations precisely enough.
By using Eq. (5.3.10) to have an expression for ∆discr(iωn) and fixing the number of
bath sites Lb, the optimal bath parameters of the impurity problem can be found using a
gradient search algorithm. In the cost function α is used to weight the fit more to small or
high frequencies. Since we want to focus on the low-energy spectrum, typically we choose
α = 1 to enforce very good fits in the low-frequency regime even if there are not enough
parameters to obtain a good fit over the whole frequency spectrum. Fig. 5.2 shows the
obtained, optimal, discretised hybridisations for different bath sizes. For this model and
parameter choice a bath with Lb = 8 sites gives perfect agreement while Lb = 4 sites are
definitely not enough to even capture the qualitative behaviour of the hybridisation.
Since DMRG is working at temperature T = 0, the Matsubara frequencies ωn = (2πn +
1)/β with β = 1/T form a continuous set. Due to numerical limitations on a computer,
continuous functions are saved only on so-called grid points. In our calculations we choose
Matsubara frequencies at a fictitious temperature βeff as grid points. This has no effect
on any physics taking place in the model as long as all steps in the DMFT calculation
are performed precise enough. Of course, βeff sets a lower bound for the Matsubara
frequencies ω0 = 1/βeff and has to be chosen large enough so that no relevant part of the
hybridisation, self-energy or Green’s function are cut away. Typically, we choose βeff = 100
in our calculations. We also choose an upper limit ωmax = 6 for the Matsubara frequencies
to improve the calculation speed for the fitting procedure and other computations during
the DMFT loops. Similar to the lower bound, this can be done if the functions for
arguments above ωmax do not incorporate additional information.
In general, the hybridisation is a matrix-valued function and the Frobenius norm has to
be used to determine the distance between the fit and the continuous hybridisation in the
cost function χ. However, in the majority of problems treated by DMFT the impurity sites
decouple and it exists no single-particle hopping between them. Then, the hybridisation is
reduced to a diagonal matrix, which allows to fit each diagonal component independently.
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Figure 5.2: Left panel: Different fits of a hybridisation function ∆(iωn) (blue dashed line) on
the imaginary axis with Lb = 4, 6, 8 bath sites for the xy-band of the three-band model Sr2RuO4.
Only the imaginary part is displayed. Clearly a fit with Lb = 4 bath is not good enough, while
Lb = 6 sites only show small deviations for large frequencies. Right panel: The same functions
as in the left figure but zoomed in for small small frequencies. Is is much better to see that only
the fit with Lb = 8 bath sites gives very good agreement.

i.e. each bath site couples only to a single impurity site independently on the rest of the
lattice. That reduces the numerical effort for fitting ∆ dramatically since significantly
less parameters have to be considered for the gradient search algorithm. In this case the
norm in Eq. (5.3.11) reduces to a simple scalar norm.
Our standard approach to find the optimal fit ∆discr(iωn) is to use a global gradient search
algorithm implemented in PYTHON named basinhopping [133]. It consists of the following
steps

• It generates random real values as hopping elements and on-site energies in the
interval [−1, 1]. Those values are the starting point x0 for the optimisation.

• Beginning from x0 a gradient search algorithm calculates the gradient at the cur-
rent position, uses this information to guess in which direction the next minimum
is located and changes the parameter set to xnew by moving in the direction of
the guessed minimum. The program spends most of the time evaluating the cost
function to determine the actual value of χ and calculate the gradient numerically.
Implementing an analytic expression of the gradient reduces the amount of function
calls dramatically and reduces the computations time (see Fig. 5.3b) ). To improve
the performance further, the cost function and the gradient are compiled in c-code,
which gives another huge speed-up.

• To avoid being stuck in local minima, after each local minimisation a test is per-
formed to accept or reject the new parameters based on the cost function value. If
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the cost function value is smaller after the optimisation, the new parameter set is
accepted always. If not, the new parameter set is accepted with the probability

exp{−(χ(xnew)− χ(xold))/T}. (5.3.12)

This probability is strongly dependent on the choice of the temperature T , which
should roughly be comparable with the cost function values at the occurring minima
to be efficient. Unfortunately, since we deal with different kind of models, hybridi-
sations and numbers of bath sites Lb, the cost function values at the minima vary
from 10−2 to 10−9. Experience shows that we can reliably determine the global
minimum with T = 1. This means that nearly each step of the optimisation scheme
is accepted.

• Since the optimisation routine cannot identify whether a minimum is local or global
and the gradient search can move out of a found minimum at any time due to the
choice T = 1, there is no clear criterium whether the algorithm was successful and
can be stopped. Thus, we let the optimisation procedure perform 100 optimisation
iterations and take the parameter set with the smallest cost function value as result.
To avoid a dependence on the starting parameters and ensure that the global and
a local minimum is found, we perform 20 independent optimisations from different
starting sets x0. In our experience several up to all of the independent calculations
find the same optimal parameter set, which supports the claim that it is really the
global minimum.

• The runtime is very dependent on the problem we have to deal with and in general
relatively large for bigger systems. Experience shows that in later DMFT iterations
the hybridisations only differs slightly from iteration to iteration. Therefore, in those
cases it is advantageous to use the parameter set of the last iteration as a starting
point for the fitting procedure and only perform a local search. To be reasonable
sure that the global minimum is found, we perform five independent optimisations
and take the best result. This reduces the numerical effort while allowing to find the
ground state reliably. We do this from the fifth DMFT iteration on, where changes
of the hybridisation from one iteration to the other are typically of the order 10−2.

Before we go over to the ground state search, we want to shortly comment on some pa-
rameter and PYTHON oriented choices regarding the optimisation scheme. PYTHON
offers a wide variety of different minimisation functions [134] that are based on gradient
algorithms (Powell [135], CG [136]), quasi Newton methods, which are working only with
first derivatives (BFGS [136]) or methods, which are even using the Hessian (dogleg [136]).
All these methods have their strength and weaknesses for different problems, but all give
the same results in the test case of a Single-Impurity-Anderson-model. This is a very
good sign for the reliability of our results.
Furthermore, all methods show an overfitting problem at the same number of parameters.
This manifests itself in a lower bound of the cost function value (around 10−6 down to
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Figure 5.3: Left panel: Best cost function value for fits of the hybridisation with different bath
sizes Lb. The data was obtained from single site DMFT calculations of the Hubbard model with
interaction strength U = 5t, next nearest neighbour hopping tp = −0.15t and at half filling in
the first iteration. The hybridisation to fit is obtained from the non-interacting model. How
to do this is explained in the end of section 5.3.4. Up to ten bath sites, each bath site more
improves the fit quality. From there on we see overfitting, i.e. an increase of parameters do
not improve the fit quality. There is no difference in the behaviour between using an analytic
gradient and evaluating the gradient numerically. Right panel: Runtimes for the calculations
in the left figure. Evaluating the gradient numerically takes more and more time the more bath
sites and parameters we consider. Using the analytic gradient keeps the runtime approximately
constant in this rather simple case. For other models there is also a significant increase of the
computation time dependent on the number of parameters when using the analytic gradient.

10−9), which cannot be exceeded with any increase of the number of parameters as can
be seen in Fig. 5.3. Each fitting procedure results in significantly different parameter sets
while obtaining very similar cost function values. This means that two optimisations,
described as above, will give two qualitatively different results for the global minimum.
This not only leads to convergence problems in DMFT but also to solutions that have to
be considered as unphysical. For instance, in the Hubbard-model without next-nearest
neighbour hopping we expect at half-filling a completely antisymmetric set of bath pa-
rameters. This leads to the real part of the Green’s function G(iω) being zero and the
imaginary part of G(ω) being symmetric with respect to ω = 0. In other words the sys-
tem is particle-hole symmetric. In the case of overfitting, in general, we do not obtain an
antisymmetric parameter set, which leads to an asymmetric spectrum of the Hamiltonian
and to no particle-hole symmetry.
Since the choice of the actual optimisation method seems to be without much influence,
we choose the method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS), which has
proven to have good performance even for non-smooth optimisations [137].
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The hybridisation fit can be further improved by adjusting the temperature T of the
acceptance probability to values close to typical results of χ at local minima or by a
more evolved global optimisation scheme like simulated annealing [138] or particle swarm
optimisation [139]. If runtimes of the fitting procedures exceed a tolerable limit, an imple-
mentation of the analytic expression of the Hessian and applying a method that is using
the second order derivatives can improve the runtimes significantly.

5.3.2 Ground State Calculation
After a discrete description of the bath is found via the fitting procedure, the parts of
the Hamiltonian Eq. (5.3.4) and Eq. (5.3.5) are completely defined. The remaining parts
of the Hamiltonian Ĥ, namely Ĥsingle in Eq. (5.3.3) and Ĥint, are defined by the chosen
model and will be discussed in more detail in the model-specific sections. We consider
them as given here.
Thus, the Hamiltonian is completely defined and the ground state search with DMRG
can be started. Depending on the form of Ĥint and Ĥsingle, we can implement different
symmetry quantum numbers in the MPS related methods. The conserved total particle
number N described by an U(1)-symmetry or the conserved z-component of the total spin
of the system ~Sz, also described by an U(1)-symmetry, are typical examples. In general,
any number of symmetries of any symmetry group can be implemented as long as it can
clearly be defined how a creation or annihilation operator changes the quantum numbers
locally and independently of the state of the rest of the system.
In tabular 5.1 we listed the symmetries that are present in the models we work with.
It is important to know at this level that DMRG can have problems with finding the

Hubbard model Hubbard-Kanamori Spin-Orbit-coupling
U(1): N U(1): N U(1): N

SU(2): ||~S|| SU(2): ||~S|| U(1): ~Jz
Z4 × Z4: (kx, ky) Z4 × Z4: (kx, ky)

Z2: band parity

Table 5.1: Present symmetries in the models we are dealing with in this thesis. A more detailed
discussion about the symmetries and their origin is discussed in the model specific chapters. The
total number of particles N is conserved in each model. If there is a conserved total spin ||~S||, we
can choose between conserving the SU(2) symmetry explicitly or just the z-component of the total
spin ~Sz, which is described by a U(1) symmetry. The Z4 × Z4 quantum number describing the
conserved momentum vector, is only present if we work with the dynamical cluster approximation
in momentum-space. For high patch numbers this symmetry can change to a different symmetry-
class. Each band present in the Hubbard-Kanamori model has a conserved band parity. That
symmetry as well as the conservation of the spin is vanishing if we add spin-orbit-coupling.
However, in the correct basis we can use the conservation of the z-component of the total angular
momentum ~Jz.



CHAPTER 5. DYNAMICAL MEAN-FIELD THEORY 73

ground state reliably if not all symmetries are implemented. To ensure convergence to
the global ground state, DMRG starts its optimisation with a randomly generated state.
If a symmetry is not implemented, it can happen very easily that the starting state is
located in a different symmetry sector than the global ground state or that during the
early optimisations steps the part of the starting state in the correct symmetry sector is
discarded. In those cases it is impossible for DMRG to converge to the global ground state
and it simply computes the ground state of the accessible Hilbert space. Thus, repeated
calculations with different random starting states can result in different results with sig-
nificant energy differences. For DMFT, this can lead to severe convergence problems and
unphysical results for the hybridisation or Green’s function.
However, one can of course always insert artificial terms Ĥtunnel in the Hamiltonian to
break the symmetries that are not implemented and allow DMRG to have access to all
symmetry sectors, i.e. the whole Hilbert space. We will refer to those terms as the "tun-
nelling Hamiltonian". This approach has its disadvantages. To obtain the real ground
state of the Hamiltonian Ĥ, the artificial terms have to be removed at some point of the
calculation. This has to be done over several sweeps with a slowly decreasing amplitude
of Ĥtunnel to allow DMRG to have enough overlap with the global ground state when
the artificial terms are removed completely and the symmetries are present again. If this
is not the case, again DMRG will not be able to converge to the global ground state.
Unfortunately, this ansatz slows down the DMRG ground state search significantly.
Usually, in DMRG calculations it is recommended to start with a very small bond dimen-
sion and increase it during the calculation to the desired value. In general, the starting
state differs very strongly from the global ground state and thus even an imprecise op-
timisation step will change the state into the direction of the global ground state. By
keeping bond dimensions low in those first steps improves the performance noteworthy.
In contrast, in later iterations it is necessary to have a precise optimisation and thus a
high bond dimension to allow for correct optimisations. Summarising, starting with a
low bond dimension and increasing it during the DMRG calculation will generate a nice
speed-up and not influence convergence negatively.
However, this approach is not compatible with the tunnelling Hamiltonian ansatz. To
be sure that DMRG has enough overlap with the global ground state when Ĥtunnel is re-
moved, the bond dimension must be high enough such that DMRG can take into account
all relevant correlations and interactions. This means we have to determine the ground
state of the original Hamiltonian Ĥ plus the tunnelling Hamiltonian and then slowly re-
move Ĥtunnel while staying close to the global ground state. This requires a high bond
dimension before turning down the amplitude of Ĥtunnel. Additionally, the artificial terms
induce extra entanglement, which results, in general, in a higher bond dimension needed
for the DMRG calculations. To avoid convergence issues, we rather implement all present
symmetries of the Hamiltonian than to deal with the fine tuning of bond dimensions,
number of sweeps and the amplitude of the tunnelling Hamiltonian. Especially, because
the latter can be very parameter and model specific.
The other advantage and typically the main reason to implement symmetries is that the



74 5.3. STEP BY STEP: A FULL DMFT ITERATION

dense tensors of the MPSes and MPOs decompose into separate blocks each describing a
certain symmetry sector. These symmetry blocks can be treated independently of each
other in most of the MPS operations, which allows to parallelise computations effectively.
Additionally, each of those blocks has a smaller bond dimension m than the original dense
tensor. Since the computational cost of most MPS operations scales with O(m3), this re-
sults into another speed-up.
The drawback of implementing symmetries in the context of DMFT is that we do not
know in which symmetry sector the global ground state is located beforehand. Since the
symmetry sectors are all orthogonal to each other, DMRG calculations have to be started
in each sector separately, and the results have to be compared to determine the global
ground state. This can be very time consuming if a lot of symmetries are implemented.
Therefore, we developed the following scheme to reduce the amount of symmetry sectors
in which we have to perform DMRG calculations. Note, that Fig. 5.4 shows a typical
example for the ground states energies in different symmetry sectors and can help to
understand the assumptions described in our approach.

• Before starting with the ground state search, we typically limit the range of certain
quantum numbers if we have a strong indication that this can be done.
E.g. in systems where the SU(2)-symmetry of the conserved total spin is present
but only the U(1)-symmetry of the z-component is used, we can in general restrict
ourself to positive or negative values of the quantum number related to ~Sz. A
high quantum number associated with ||~S|| or ~Sz restricts the free movement of
particles in the system. In general, this increases the energy of the ground states.
Thus, we assume that the global ground state is located in symmetry sectors with
smaller quantum numbers. In the case of the Hubbard-model with dynamical cluster
approximation in momentum-space the vector of the total momentum is conserved.
In general, we assume that the global ground state is located in the (kx, ky) = (0, 0)
symmetry sector.
All these assumptions are based on experience and have to be checked regularly for
new systems and parameter choices.

• Now we focus on the ground state search. Consider a system with a conserved total
number of particles described by the quantum number on N and a second quantum
number A. We fix A = Afix and search for the ground state with respect to different
quantum numbers N

min
N

E(N,Afix). (5.3.13)

Experience shows that E(N,Afix) is a convex function of N in all our models and
thus has a unique minimum with respect to N . Instead of computing the ground
state for each possible particle number, we use a bifurcation procedure to determine
symmetry sector Nmin with tho smallest energy. Additionally, we can guess Nmin
based on three computed ground states energies and a parabola fit to focus the
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bifurcation procedure on the region that contains the minimum most probably (see
Fig. 5.4).

• To find the global ground state with respect to all values of all quantum numbers, we
chose the smallest value for the second quantum number Afix = Amin and determine
the ground state with respect to N . Then, we increase the value of A and again
search for the ground state with respect to N . After this is done for all possible
values of A, a comparison of the energies gives us the global ground state.
In our experience, the minima of the ground state energy with respect to N typically
are located in symmetry sectors that are located very close to each other, in terms of
the particle number N , when changing the second quantum number A. The sectors
of the minimal ground state energy for different values of A differ in most cases only
by one particle more or less or have even the same particle number. In a typical
example displayed in the right plot of Fig. 5.4, the ground state energies are found
in the symmetry sectors with N = 14 or N = 15 particles.
This property can be used to improve the ground state search performance further.
After the ground state for a fixed second quantum number Afix is found atNmin, for a
higher value of A the first ground state searches are performed in the allowed sectors
close to Nmin. In most cases this will yield the global ground state immediately.
Nevertheless, it has to be checked that the found minimum is indeed the global
one with respect to N by proofing that the neighbouring symmetry sectors have
a higher ground state energy. However, this approach can reduce the necessary
number of ground state searches from ten to three, which is a significant reduction
of computation time in some models.

• If we have additional quantum numbers like the band parity in the Hubbard-
Kanamori Hamiltonian or the momentum vectors in the DCA Hubbard model, we
still follow the previously described approach. For each choice of A and N , we search
through all allowed choices of the additional quantum numbers and only save the
one with lowest energy as E(N,A). Then, all previous schemes can still be used.

As seen in Fig. 5.4, guessing were the minimum can be found based on a parabola fit
is a good first try but far from being efficient. We recommend to improve this scheme
after investigating how to describe E(N,Afix) analytical or after making a more extensive
numerical analysis of the ground state energy behaviour.
Another important observation is that ground state energies of different sectors are typ-
ically very close to each other. In terms of the smallest hopping element Vmin of the
Hamiltonian the energy differences are δE ≈ 0.05Vmin and for models with more com-
plicated interactions even smaller, e.g. around δE ≈ 10−4Vmin. Therefore, it is highly
recommended to perform the DMRG calculations with precisions being high enough and
with enough sweeps to really obtain the correct ground state energies and be able to find
the global ground state.
In general, we do not truncate the MPSes during the DMRG ground state search accord-
ing to any truncation threshold or truncated weight since this can arise in bad convergence
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Figure 5.4: Left panel: Ground state energies E for different symmetry quantum numbers. N
describes the total number of particles and S the total spin length according to ||~S||2 = S(S+ 1).
The system consist of 14 sites and can only contain 28 particles at most. The data was obtained
from single site DMFT calculations of the Hubbard model with interaction strength U = 5t,
next nearest neighbour hopping tp = −0.15t and at half filling in the first iteration. Thus, we
expect to find the global ground state around N = 14 particles. We see clearly that the energy
E(N) is convex but that a parabola fit is definitely not sufficient to describe the functional form
correctly. Right panel: Zoom in of the interesting area around N = 14. We see a nice parabola-
like behaviour for each spin quantum number S and that the lowest energies for each value of S
are lying close to each other in terms of the quantum number N (S = 0 and S = 1: Nmin = 14
while for S = 0.5 and S = 1.5: N = 13).

properties. Instead, we stop our DMRG calculations after the ground state energy change
from two consecutive sweeps drops below 10−7. After we determined the global ground
state, we perform additional DMRG sweeps on it until the energy change is smaller than
10−11. The maximal bond dimension we choose for the ground state calculations depends
on the actual model we investigate in. A typically choice for us is m = 2000 while using
the SU(2)-symmetry of the conserved length of the total spin.
Another important aspect when using symmetries is how to deal with degenerate sym-
metry sectors. We encounter this problem mainly in the context of the Sr2VO4, which is
a three band model with the first two bands being degenerate. The band parity quantum
numbers fix an odd or even number of particles in the bands. It can happen that the sys-
tem has degenerate global ground states |φ1〉 and |φ2〉 with the same energy but different
particle distributions in the bands. E.g. the state |φ1〉 can have a particle distribution
on the three bands (N1, N2, N3) = (6, 7, 6) while state |φ2〉 has (N1, N2, N3) = (7, 6, 6). In
principle any combination of this eigenstates can be the ground state realised by the phys-
ical system and each choice give rise to different Green’s functions. In a first approach,
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we choose a symmetric combination as global ground state

|E0〉 = 1√
2

(|φ1〉+ |φ2〉), (5.3.14)

to have the degeneracy of the bands being reflected in observables like the occupation
number of the bands. Then, all following steps of the DMFT iteration are performed
on these two ground states separately and the physical results are combined accordingly.
This is of course completely arbitrary and we could also have taken the combination

|E0〉 = 1√
2

(|φ1〉 − |φ2〉), (5.3.15)

which also gives rise to observables displaying the symmetry of the two degenerate bands.
Or we could have taken any other combination, allowing spontaneous symmetry breaking.
Unfortunately, only by using these superpositions we were able to reach convergence
in some models for certain parameter regimes. But we also observed that DMFT was
oscillating between two solutions back and forth while using this approach. However, it
must definitely be investigated more rigorously how to deal with these situations.
Additionally, we want to remind the reader of section 2 where we discussed the geometry
and reordering of an MPS. The optimal topology and ordering of the impurity model
must be fixed during the ground state search and, in general, differs for the ground
states of different symmetry sectors. Typically, we only reorder the global ground state.
However, it can be advantageous to reorder the states during each DMRG calculation in
each symmetry sector if the systems exhibits a lot of entanglement. Thus, reordering the
MPSes reduces bond dimensions drastically and helps to find the global ground state with
a high precision and small numerical effort.
In this section, we discussed in detail symmetry quantum numbers, the reasons why in
general all of the symmetries of a Hamiltonian should be considered and implemented
and how to obtain the ground state efficiently. After settling all these issues for a given
model and finding the global ground state, we can proceed with computing the Green’s
function and self-energy of the system.

5.3.3 Matsubara Green’s Functions
In the next step of the DMFT iteration, the interacting, single-particle, impurity Mat-
subara Green’s function G(τ) has to be computed

Gi,j(τ) = −〈E0|Tτci(τ ′ = 0)cj(τ)†|E0〉
= −θ(τ)〈E0|cie−(Ĥ−E0)τc†j|E0〉+ θ(−τ)〈E0|c†ie(Ĥ−E0)τcj|E0〉
= −θ(τ)G>

i,j(τ) + θ(−τ)G<
i,j(τ). (5.3.16)

|E0〉 denotes the global ground state with ground state energy E0, c†i and cj are creation
and annihilation operators acting on the impurity sites i and j, Tτ is the time-ordering
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operator with respect to the time τ and θ is the Heaviside step function. By measuring
the decay over time of particle and hole excitations, the Green’s function incorporates
information over the single-particle spectrum.
To make discussion in this chapter easier, we define the greater G>(τ) and lesser Green’s
functions G<(−τ) in Eq. (5.3.16). The computation of G(τ) can be shortened by deter-
mining the greater and lesser Green’s function separately and in parallel. Afterwards, the
can be combined combine to the Matsubara Green’s function. In practice, we will first
calculate the excited states

|ψ>j 〉 = c†j|E0〉, (5.3.17)
|ψ<j 〉 = cj|E0〉, (5.3.18)

and evolve them in time with TDVP or another method to

|ψ>j (τ)〉 = e−(Ĥ−E0)τ |ψ<j 〉, (5.3.19)
|ψ<j (τ)〉 = e−(Ĥ−E0)τ |ψ>j 〉, (5.3.20)

respectively. By computing the overlaps of |ψ>j (τ)〉 and |ψ<i (τ)〉 with the excited states
at τ = 0, G>

i,j(τ) and G<
i,j(τ) can be determined for each time τ . In total, to determine

an n× n Greens function at most 2n time evolutions have to be performed, i.e. the time
evolutions for particle and hole excitations of each impurity. With those, all components of
the impurity Green’s function can be determined with appropriate overlaps. The number
of time evolutions can be further reduced by exploiting degeneracies of bands and DCA
patches or by using existing symmetries, e.g. a particle-hole symmetry.
Calculating the time evolution is in general the most time-consuming step of the whole
DMFT iteration. The necessary time can be massively reduced by performing these
calculations in parallel on multiple cores. The different time evolutions for holes and
particles as well as for different bands differ significantly in their runtime. Thus, an
intelligent core handling results in further improvements.
Since we do imaginary-time evolutions, G>(τ) and G<(−τ) decay exponentially fast to
zero as can be seen in the left panel of Fig. 5.5. The short-time behaviour incorporates
the high energy information of the Hamiltonian spectrum while the long-time behaviour
is governed by the lowest lying eigenstates of the spectrum. This can also be seen very
clearly if we expand the excited state |ψ>j (τ)〉 in the eigenstates of the Hamiltonian |φn〉

G>
i,j(τ) = 〈ψ>i (0)|ψ>j (τ)〉 =

∑
n

e−(En−E0)τ . (5.3.21)

The high energy contributions will decay much faster because En−E0 in the exponential is
much smaller. For later times, the greater and lesser Green’s functions will only constitute
of a couple of slowly decaying exponential functions with a decay time determined com-
pletely by the low-energy spectrum of Ĥ. In the next step, we want to Fourier transform
G>(τ) and G<(τ) to obtain the Green’s function G(iωn). To avoid numerical oscillations
in G(iωn), the time-dependent Green’s functions have to be computed up to times where
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Figure 5.5: Left panel: Greater and lesser Green’s function. The data is obtained from single
site DMFT calculation of the Hubbard model with interaction strength U = 5t, next nearest
neighbour hopping tp = −0.15t, nearest neighbour hopping t = 1 and at half filling in the first
iteration. It is clear that the Green’s functions decay exponentially fast but are not close to zero
at τ = 100. Right panel: The typical ansatz to extrapolate the Green’s function to small values
so numerical problems during the Fourier transform occur, is linear prediction. The plot shows
the extrapolated Green’s functions based on the same data set but cut off at different maximal
times. It is obvious that G(τ) has to computed for large enough times such that the short-time
behaviour is already decayed sufficiently. If the calculation is stopped too early, linear prediction
will generate wrong Green’s functions.

G>(τ) and G<(τ) are close to zero. We clearly want to avoid to use any expensive MPS
methods to do these calculations up to such long times because the long-time behaviour
typically does not include any new information. At this stage, the time evolution can be
stopped and linear prediction can be used to extrapolate G>

i,j(τ) and G<
i,j(−τ) to times

where they decay below a threshold, e.g. 5 · 10−8.
The right panel of Fig. 5.5 shows extrapolated Green’s functions obtained with linear
prediction from the same data set cut at different maximal times τmax. If the maximal
time is chosen too small, typically, the linear prediction will not capture the low energy
physics correctly and the extrapolation will decay too fast. In our experience it is always
a secure and good choice to time-evolve the states until τmax = 100 but the choice depends
highly on the low-energy spectrum of the Hamiltonian and more precisely on the energy
differences between the low-energy states. The difference is bounded from below by the
smallest energy scale in the impurity Hamiltonian, which is, in general, an on-site energy
εk of a bath site.
The Hamiltonian parameters are obtained with the fit of the hybridisation ∆(iωn). In
general, we observe that the fitting procedure tends to locate several of the on-site ener-
gies at values that are smaller than ω0, i.e. the lower end of the fitting interval, which is
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Figure 5.6: Left panel: Imaginary part of the hybridisation (blue line) of the first iteration of
a single-site DMFT calculation of the Hubbard model with nearest neighbour hopping t = 1
and next-nearest neighbour hopping tp − 0.15t, interaction strength U = 7t, chemical potential
µ = −2t and Lb = 7 bath sites. The effective temperature is β = 100. The optimal fit (green line)
obtained in the fitting interval [ω0, 6] seems to have a very good agreement with the hybridisation.
If we plot the same function on more densely spaced grid points starting from ωn = 0 (red line),
we see significant differences between the two functions. A very strong oscillation is located
outside of the fitting interval, which clearly indicates that we need more bath sites to describe
the hybridisation correctly. Right panel: The same model with the same functions but with a
different effective temperature β = 400. It is now more obvious that the amount of bath sites is
not sufficient for a good fit. Additionally, since the fitting interval was moved to smaller values
the extremum of the fit is also pushed to smaller frequencies such that it is still located outside
of the fitting interval.

set by βeff. We believe that is the case because the hybridisation is a sum of functions of
the form

∆discr,k(iωn) =
~V †k
~Vk

iωn − εk
. (5.3.22)

These functions have a pole at iωn = εk and therefore the imaginary part has a minimum
at iωn = εk and the real part at iωn = 0. The strongest change of these functions with
respect to iωn is always near the extrema. Summing up the terms ∆discr,k and obtaining a
function similar to the form of ∆ without oscillations is, in general, very hard to achieve
with a limited number of terms, especially near the extrema. Since we typically use only
a small number of bath sites, it is reasonable for the fitting procedure to locate some of
the poles at frequencies below the fitting interval. By doing this, the oscillations of the
fit are not so strong inside the fitting interval, which leads to better cost function values.
This can be seen clearly in the left panel of Fig. 5.6. The extremum is located outside
of the fitting interval and the remaining oscillations are intersecting the hybridisation
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Figure 5.7: Left panel: The lesser Green’s function obtained for different effective temperatures
β for the same model as in Fig. 5.6. For β = 100 (blue line) the Green’s function decays with a
constant rate towards zero from τ ≈ 20 on. For β = 400 the constant decay starts at τ =≈ 100
or even later. For linear prediction to be reliably applicable, the Green’s functions have to decay
linearly for a sufficiently large period. Right panel: Corresponding Matsubara Green’s functions.
The differences between the two cases are very small and most notably at small frequencies.

directly at the grid points. Thus, a very good value for χ can be obtained. By increasing
βeff and thus lowering the lower bound of the fitting interval, the strongest oscillations
are pushed to smaller frequencies. This is shown by the right plot of Fig. 5.6 where the
effective temperature is changed from β = 100 to β = 400. The extremum is now located
nearer to the fitting interval, which leads to stronger oscillations and less good agreement
inside the fitting interval. Most importantly, this also lowers some of the on-site energies
of the bath sites.
For the shown examples, the smallest on-site energy is εlow ≈ 1.0 · 10−2 for β = 100
and εlow ≈ 2.6 · 10−3 for β = 400. In the latter case, this obviously leads to smaller
energy differences between the low-energy eigenstates and therefore to a slower decay of
the Green’s functions, which can be seen in the left plot of Fig. 5.7 for the lesser Green’s
function. Evolving the Green’s function up to τmax = 100 for β = 100 is sufficient to see
the linear decay clearly, but for β = 400 this is not a good choice since the decay rate
of G<(τ) is still changing. Therefore, linear prediction cannot extrapolate the Green’s
function reliably, which can result in a wrong long-time behaviour that depends strongly
on the current iteration and thus can hinder convergence. The right plot of Fig. 5.7 shows
the corresponding Matsubara Green’s functions, which differ mainly in the low-frequency
regime related strongly to the long-time behaviour. Even small changes in this regime
can be problematic for the convergence of DMFT since the fit of the hybridisation has a
strong weight for small frequencies.
Concluding, the choice of the maximal time τmax up to which the state |ψ〉(τ) has to
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be evolved in a way that linear prediction is applicable is influenced by the Hamiltonian
parameters. Since they are obtained with a fit of the hybridisation, they depend on the
used frequency grid and thus on the choice of βeff.
Additionally, there are a couple of things that have to be taken care of:

• For each calculation it has to be checked whether the time evolution is computed
with a precision that is high enough. If not, the Green’s function typically decays too
fast and has a wrong long-time behaviour. This leads to a wrong small frequency
behaviour of the Green’s function, self-energy and hybridisation. If this error is
severe, the imaginary part of the hybridisation will be positive for small Matsubara
frequencies, which clearly indicates unphysical behaviour.

• If a Green’s function starts growing for long times, this is a clear indication that the
ground state found is not the global one.

• If the norm of the time-evolved state decays faster to zero than the Greens function
itself, this can lead to numerical instabilities and wrong results. Therefore, we stop
calculations if

|||ψ(τ)〉||2 < 10−6 (5.3.23)

Typically, in these cases the Green’s function has already decayed so much in a
linear fashion that linear prediction can be applied safely.

After computing the time evolutions correctly and combining the results according to
Eq. (5.3.16) to Gi,j(τ), each component of the Green’s function can be Fourier trans-
formed separately. Since DMRG works at temperature T = 0, the integral in the Fourier
transform has to be computed over the whole τ -axis

Gi,j(iωn) =
∫ ∞
−∞

dτGi,j(τ)e−iωnτ . (5.3.24)

Practically, Gi,j(τ) decays to zero at finite times and only has to be integrated on its finite
support. The Green’s function is known only at certain supporting points (τm, Gi,j(τm))
given by the time step δτ . If the grid points are located close enough together, the Green’s
function can be assumed to be linear in between. This allows the Fourier transform
integral to be computed analytically

Gi,j(iωn) =
∫ ∞
−∞

dτGi,j(τ)e−iωnτ =
N∑
m=0

∫ τm+1

τm
dτ(amτ + bm)e−iωnτ

=
N∑
m=0

am
ωn

(( 1
ωn
− iτm+1

)
eiωnτm+1 −

( 1
ωn
− iτm

)
eiωnτm

)

− ibm
ωn

(
eiωnτm+1 − eiωnτm

)
, (5.3.25)
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where we defined

am = Gi,j(τm+1)−Gi,j(τm)
τm+1 − τm

, (5.3.26)

bm = Gi,j(τm)− amτm. (5.3.27)

The difference between the numerical approach and the analytical solution is that the
latter treats the exponential in the integral exactly. This is important since numerical
methods for calculating integrals, like the Trapez rule or the Simpsons rule, assume that
the whole integrand is linear between the supporting points or can be approximated by
polynomials up to a certain order. For the integrand in Eq. (5.3.24) this is definitely
not true for high frequencies since the exponential starts oscillating strongly on a period
smaller than the time step δτ . This reflects itself in Gi,j(iωn) being periodic with a
period 2π/δτ (see the left panel of Fig. 5.8). Solving the integral analytical will avoid this
artificial behaviour and additionally results in a computational speed-up.
The time step δτ determines the resolution of the time-dependent Green’s function, which
has a direct influence on the quality of G(iω). The right plot of Fig. 5.8 shows the high-
frequency behaviour of the Matsubara Green’s function, which clearly depends on δτ . The
diagonal elements ofG(iω) for high frequencies have to decay with =Gj,j(iωn)→ −1/ωn as
ωn →∞, which is clearly not the case for the TDVP calculation with δτ = 0.1 (blue line)
in Fig. 5.8. Since the high frequency behaviour incorporates information mainly about
the small-scale structure of Gi,j(τ), the time step δτ = 0.1 is too large and cannot resolve
the correct fine structure of the time-dependent Green’s function. This also prevents to
resolve the derivatives of Gi,j(τ) correctly, which are zero for too-large time steps. Since
Gi,j(τ) changes the fastest for small times, smaller time steps are especially needed for
small times.
It is not recommended to just decrease the time step in TDVP calculations since the
projection error of TDVP becomes significantly large for small time steps, as discussed
in section 4.3. Additionally, the computation time would increase dramatically if the
time step is decreased by a factor ten or 100. Therefore, we propose to use the Krylov
method to determine |ψ(τ)〉 up to a time τc where the time evolution is proceeded with
TDVP. The advantage of Krylov is that the original, relatively large time step δτ = 0.1
can still be used since any state |ψ(τ ′)〉 at times τ < τ ′ < τ + δτ can algebraically be
calculated without much additional effort. To see this we start from Eq. (4.2.5) where
the evolved state |ψ′(t + δτ)〉 is computed by the application of the exponential of the
effective Hamiltonian Heff in the Krylov subspace. In a next step we have to diagonalise
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the effective Hamiltonian Heff = V −1DV and sum up Krylov vectors

|ψ′(t+ δτ)〉 =
m−1∑
j=0
|φj〉(e−iHeffδτ )j,0 +O

(
δτm

m!

)

=
m−1∑
j=0
|φj〉

V −1


e−id1δτ 0 0 . . .

0 e−id2δτ 0 . . .
... ... ... . . .

V

j,0

+O
(
δτm

m!

)

=
m−1∑
j=0
|φj〉

∑
n

V j,nV0,ne
−idnδτ +O

(
δτm

m!

)
, (5.3.28)

with dn denoting the eigenvalues of Heff and V being the complex conjugate vector of V .
To compute the time evolved state |ψ(τ+nδτ ′)〉 at intermediate time points with step size
δτ ′ � δτ and n ∈ [1, 2, . . . , δτ/δτ ′], the δτ in Eq. (5.3.28) has to be replaced by nδτ ′. This
obviously only changes the coefficients for the summation of the Krylov vectors. These
algebraic calculations are comparatively cheap. Thus, we can easily determine Gi,j(τ) on
a very fine time grid without much additional effort. Furthermore, the errors of the Krylov
time evolution, namely time step error as well as the error of an insufficiently large Krylov
subspace, are even smaller because δτ ′ � δτ . This means the function values Gi,j(τ) at
the intermediate time points are computed with a very good accuracy.
In our experience one can obtain very good results for the Fourier transformed Green’s
function G(iω) with a time step δτ = 0.1 for both the Krylov and the TDVP time
evolution and a step size δτ ′ = 5 · 10−4 between the intermediate time points obtained
during the Krylov calculation. Typically, at τc ∈ [2, 4] the Krylov method is stopped
and replaced by a TDVP calculation. In the right plot of Fig. 5.8 (green line) it can
be seen that the correct high-frequency behaviour is restored by this ansatz. The higher
resolution for small times is not only crucial for the correct high-frequency behaviour of
the Green’s function but also has an immediate effect on the high-frequency behaviour
of the self-energy Σ(iωn) and the hybridisations via the Dyson equation and the self-
consistency equations of DMFT.
We want to end this section with a short remark about calculations involving SU(2)-
symmetric operators. If the ground state |E0〉 itself has a non-zero SU(2) quantum
number, an excitation will lower and rise the quantum number at the same time creating a
superposition of states from different symmetry sectors. In general, this will lead to higher
bond dimensions and slower calculations. Instead of time evolving this superposition, it
is more efficient to project the state in the different symmetry sectors, evolve each state
separately and combine the Green’s functions in the end

Gi,j(τ) = −θ(τ)〈E0|cie−(Ĥ−E0)τc†j|E0〉+ θ(−τ)〈E0|c†ie(Ĥ−E0)τcj|E0〉
= −θ(τ)〈E0|ci(P↑ +P↓)e−(Ĥ−E0)τ (P↑ +P↓)c†j|E0〉

+ θ(−τ)〈E0|c†i (P↑ +P↓)e(Ĥ−E0)τ (P↑ +P↓)cj|E0〉
= −θ(τ)(G>,↑

i,j (τ) +G>,↓
i,j (τ)) + θ(−τ)(G<,↑

i,j (τ) +G<,↓
i,j (τ)). (5.3.29)
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Figure 5.8: Left panel: Real part of the Matsubara Green’s function G(iωn). Using a standard
numerical integration method to solve the Fourier integral, e.g. the Numpy trapez function or
the Scipy Simpson rule, a periodic signal with period T = 2π/δt ≈ 62 is obtained (blue line).
We only display half of the period because the deviation from the result where the integral was
solved analytically (green line) is obvious. The differences originate solely from whether the
exponential in the integrand is treated exactly or approximately. Right panel: Imaginary part of
the Green’s function multiplied by ωn. The TDVP calculation with δt = 0.1 is not showing the
correct high-frequency behaviour (blue line). Since the high frequencies mainly give information
about the small scale behaviour of G(τ), smaller time steps allow to obtain the correct Green’s
function. Since G(τ) is changing the fastest for small times, it is sufficient to use a higher
resolution only for the first time steps. The Krylov+TDVP approach with the changing time
tc = 4 serves exactly this purpose and shows the correct behaviour (green line).

The projectors P↑ and P↓ project into the SU(2) symmetry sectors with the lower and
higher quantum number, respectively. We also define the greater Green’s functions in the
upper and lower sector

G>,↑
i,j (τ) = 〈E0|c†iP↑e(Ĥ−E0)τ

P↑cj|E0〉 (5.3.30)
G>,↓
i,j (τ) = 〈E0|c†iP↓e(Ĥ−E0)τ

P↓cj|E0〉 (5.3.31)

and respectively the lesser Green’s function. After computing the greater and lesser
Green’s functions in the different symmetry sectors, they have to be combined to the full
Green’s functions G>

i,j(τ) and G<
i,j(τ) according to Eq. (5.3.29). In general, the Green’s

functions G>,↑
i,j (τ) and G>,↓

i,j (τ) are calculated up to different times due to the different
energy spectra in the different symmetry sectors. A simple addition of these two functions
leads to a small but significant jump in the resulting data set, which results in oscillations
in the Fourier transformed Green’s function Gi,j(iω). To avoid those numerical artefacts,
both functions G>,↑

i,j (τ) and G>,↓
i,j (τ), must be extrapolated with linear prediction to the

same time τ . This has to be done similarly for the corresponding terms of the lesser
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Green’s function.

5.3.4 Self-Consistency Equation
After the non-interacting impurity Green’s function G(z) is computed, a new hybridi-
sation can be computed and used as to start the next DMFT iteration. This is done
by using the self-consistency equation of DMFT. Since all derivations in this section are
valid on the imaginary as well as on the real-frequency axis, we will denote all functions
as depending on the variable z, which can either be the Matsubara frequency iωn or the
real-frequency ω.
The self-consistency equation of DMFT is given by

G(z) = Glatt(z), (5.3.32)

with Glatt being the local interacting lattice Green’s function

Glatt(z) =
∫

1.BZ
d~k 1
z1− ε(~k)−Σlatt(z)

. (5.3.33)

Thus, Glatt can be calculated by integrating the lattice self-energy Σ(z)latt and lattice
dispersion relation ε(~k) over the 1st Brillouin zone (BZ) in momentum-space. For sim-
plicity, we well omit the unit matrix 1 next to the variable z for the rest of the section.
To determine the new hybridisation ∆(z) for the next DMFT iteration n + 1, the self-
energy Σ(z) of the impurity problem in the actual DMFT loop n has to be computed.
Since the hybridisation of iteration n is known, the non-interacting Green’s function
G−1

0 (z) can always be computed with Eq. (5.3.9). For this computation, the discretised
version ∆discr of the hybridisation has to be used always. Then, the impurity self-energy
can be obtained with the help of the Dyson equation

Σ(z) = G−1
0 (z)−G−1(z). (5.3.34)

From the Dyson equation it is also possible to derive the analytic form of the interacting
impurity Green’s function

G(z) = 1
z − µ−∆(z)−Σ(z) . (5.3.35)

This form can be inserted in the consistency equation Eq. (5.3.32), which leads to the
new hybridisation

G(z) = Glatt(z)

⇔ 1
z − µ−∆(z)−Σ(z) = Glatt(z)

⇔∆(z) = z − µ−Σ(z)−G−1
latt(z). (5.3.36)
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To determine the new hybridisation ∆(z) for the next DMFT iteration n + 1, the self-
energy Σ(z) of the impurity problem has to be inserted in Eq. (5.3.36) directly as well as
in the lattice Green’s function Glatt(z) under the assumption

Σ(z) = Σlatt(z). (5.3.37)

The hybridisation obtained with the self-consistency equation is used to built up the
impurity Hamiltonian for the next DMFT iteration. Only if the obtained impurity self-
energy gives rise to the same Green’s function in the impurity problem and the lattice
problem, the hybridisation will not change anymore from one DMFT iteration to the next.
The straightforward ansatz to determine Σ(z) via the Dyson equation and inserting it into
Eq. (5.3.36) is numerically not optimal. Small numerical errors in calculated quantities,
like the interacting impurity Green’s function, can be blown up by the multiple inversions.
A much better way of calculating the hybridisation was proposed by Aoki et al. [140] in
the context of non-equilibrium DMFT but is also applicable in the equilibrium case.
The fundamental idea is to rearrange all necessary formulas such that all inversion are
performed on functions of the form 1 + f(z).
We start with the interacting impurity Green’s function and reformulate it in an integral
form

G = g + g∆G (5.3.38)
= g +G∆g, (5.3.39)

where we defined the isolated impurity Green’s function

g(z) = 1
z − µ−Σ(z) . (5.3.40)

This means g can be calculated from G via

g = (1 +G∆)−1G. (5.3.41)

Next, the momentum-resolved Green’s functions Gk is computed

Gk = 1
g−1 − εk

, (5.3.42)

which, too, can be written in an integral form

Gk = g + gεkGk

Gk = g +Gkεkg. (5.3.43)

As before, we can reformulate the last equation to obtain

Gk = (1− gεk)−1g. (5.3.44)
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In the next step, we sum Eq. (5.3.43) over ~k and use G = ∑
~kGk as well as ∑~k εk = 1 to

obtain

G = g + g
∑
~k

εkGk. (5.3.45)

Comparing this equation with Eq. (5.3.38) we realise that

∆G =
∑
~k

εkGk = G1. (5.3.46)

Before we can solve for ∆, we insert Eq. (5.3.39) and Eq. (5.3.43) on the left and right
hand side of the last equation, respectively, and obtain

∆ + ∆G∆ =
∑
~k

εk + εkGkεk = G2. (5.3.47)

Now, we can determine the hybridisation via a stable inversion

∆ = (1 +G1)−1G2. (5.3.48)

Summarising, starting with the interacting impurity Green’s function G we can calculate

1. the isolated impurity Green’s function g via Eq. (5.3.41)

2. the momentum-resolved Green’s function Gk with Eq. (5.3.44)

3. the auxiliary Green’s functions G1 and G2 with Eq. (5.3.46) and Eq. (5.3.47)

4. and finally the hybridisation ∆ via Eq. (5.3.48)

By avoiding to invert the functions itself and inverting only quantities of the structure
1 + f(z), in some calculations we were able to reduce the precision of the time evolutions
needed for convergence of DMFT by one order of magnitude. With the obtained hybridi-
sation ∆(z) the next DMFT iteration can be started with the same steps as described in
the previous sections.
At this point, we want to answer the question how to start the first DMFT iteration. An
obvious choice for the initial hybridisation is to use a converged result of a DMFT calcu-
lation based on a model that does not differ strongly from the actual problem. That can
be the same model with a slightly different chemical potential or interaction strength or
a single-site DMFT solution as the starting point for a two-site DCA calculation. Some-
times none of these hybridisations are obtainable, the DMFT calculation is not supposed
to be biased by the available hybridisations or another result is to be confirmed by using
a different initial ∆(z),. In those cases the hybridisation of the non-interacting model can
always be determined with the consistency equation of DMFT and used as the starting
point of the first DMFT loop. Since the chemical potential and the dispersion relation are
known, by simply setting the self-energies Σ = Σlatt = 0 the non-interacting hybridisation
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can obtained from Eq. (5.3.36).
Different starting hybridisations can influence the convergence properties of DMFT dras-
tically. Not only the number of iterations until convergence can change but also the
entanglement properties of the created impurity problems. Therefore, it is strongly rec-
ommended to start DMFT calculations with hybridisations that are as close as possible
to the suspected converged result. With the ongoing development of neural networks,
it could be worth trying to design an artificial intelligence that is able to guess starting
hybridisation based on already converged results.

5.3.5 Mixing Iteration Results
DMFT can be understood as a map Γ from one hybridisation ∆i to a new one ∆i+1

Γ{∆i} = ∆i+1. (5.3.49)

Convergence can only be obtained if this map is a contraction close to the solution of the
self-consistency equation Γ{∆∗} = ∆∗. The properties of the map, namely how many fix-
points exist and how strong the contraction towards a stable fix-point is, are determined by
the model and the chosen physical parameters. During the DMFT calculation, information
about the map Γ can be obtained from the series of computed hybridisations and also
from their changes, e.g. how they change and how strong based on the input of Γ. This
information can be used to improve convergence by increasing or decreasing modifications
on the hybridisations. This can be especially useful in cases of a critical slowing down of
the convergence near physically interesting points or for models near a phase transitions
where DMFT tends to jump back and forth between two alternating solutions. These
methods are known as mixing schemes and a lot of effort has been devoted to developing
very efficient schemes to accelerate convergence [141,142].
The standard ansatz we described in the previous section, i.e taking the determined
hybridisation from the DMFT consistency equation as the input for the next iteration, is
not using any information obtainable from the ∆i form different iterations i. A slightly
improved ansatz is so-called linear mixing where the last two hybridisations are combined
to get a new hybridisation for the next iteration

∆i,lin(z) = α∆i(z) + (1− α)∆i−1(z). (5.3.50)

The mixing factor α ∈ (0, 1] determines how strong the hybridisations of the two con-
secutive iterations are mixed. It has been shown for a small enough α that DMFT is
guaranteed to converge for most systems [143] with the drawback of a very slow conver-
gence rate. This is similar to a gradient search algorithm where it can be beneficial to
reduce the step size to reach the minimum one is seeking. Since each iteration of the
DMFT calculation is, in general, very expensive, it is not practical to choose α too small.
Of course, an adaptive choice of α, which lead to smaller values during the calculation
if needed, seems to be a reasonable approach if convergence problems are encountered.
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However, up to now we have not found an efficient and automatic way to determine con-
vergence problems and adjusting α accordingly.
A more sophisticated approach was developed by Broyden in 1965 [144]. The underlying
idea is to take into account the information gathered during the exploration of the opti-
misation space by DMFT. In the following paragraph, we will present Broyden’s mixing
scheme based on Rok Žitko [145] who showed that Broyden’s method, up to that point
widely used only in the DFT community, can be successfully applied to DMFT problems.
Let V be an N -dimensional vector and F a mapping. In the DMFT context V (i) is the dis-
cretised hybridisation of iteration i with N data points and F is the vectorised difference
between the input hybridisation and output hybridisation of one DMFT loop

F (∆input) = ∆output{∆input} −∆input. (5.3.51)

Convergence of the DMFT calculation corresponds to solving F (V ) = 0. An iterative
approach for solving this problem is to use quasi-Newton-Raphson methods in which a
new approximation for the hybridisation is given by

V (i+1) = V (i) − [J (i)]−1F (i), (5.3.52)

with J (i) being the Jacobian of the DMFT convergence problem in iteration i and F (i) =
F (V (i)). Since the Jacobian is unknown, typically one starts with an initial and simple
approximation

J (i) = − 1
α
1, (5.3.53)

which corresponds to a simple linear mixing in the first iteration with mixing parameter
α. The more DMFT iterations are performed, the more information about the mapping
is known. This can be used to update the Jacobian or better its inverse B(i) = −[J (i)]−1

iteratively

B(i+1) = B(i) + (δV (i) −B(i)δF (i))⊗ δF (i), (5.3.54)

with

δV (i) = V (i+1) − V (i)

|F (i+1) − F (i)| , (5.3.55)

δF (i) = F (i+1) − F (i)

|F (i+1) − F (i)| . (5.3.56)

This scheme can be improved in such a way that it uses the information of all previous
iterations to update the Jacobian [146]. Additionally, it can be optimised such that only
the input V (i) and output hybridisations F (i) have to be saved instead of the whole
Jacobian [147]. Combined together [148], Broyden’s mixing can be written as

V (i+1) = V (i) + αF (i) −
i−1∑
j

i−1∑
k

wjwkc
(i)
k β

(i)
k,jU

(j), (5.3.57)
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with

c
(i)
k = (δF (k))†F (i), (5.3.58)

U (j) = αδF (j) + δV (j), (5.3.59)

and (i− 1)× (i− 1)-dimensional matrices

β
(i)
k,j = [(w2

01+ A(i))−1]k,j, (5.3.60)
A

(i)
k,j = wkwj(δF (j))†δF (k). (5.3.61)

If we use Broyden’s mixing, we always use (5.3.57). The first two terms are describing
simple linear-mixing while the last term are corrections originating from the previous
iterations including the updates to the initial Jacobian. The weights wj can be chosen
depending on the problem but are typically set to 1 [147,149]. The only exception is the first
weight, which is chosen to be w0 = 0.01, since in most cases the starting hybridisation
is a bad choice and thus should be taken into account with less weight. By choosing
the weights accordingly, one can reduce Broyden’s mixing to Pulay mixing [150] or other
mixing schemes like Anderson mixing [151].
In theory, the output hybridisation from one DMFT iteration (F (i)) is at the same time
the input hybridisation (V (i+1)) of the next iteration. When mixing schemes are used, the
hybridisations are altered of course, e.g. according to Eq. (5.3.57). But, with DMRG as
an impurity solver the actual input hybridisation is always the discretised version ∆discr
of the hybridisation after the fitting procedure. Especially if the number of used bath
sites is too small to fit ∆ perfectly, there are significant differences between the obtained
hybridisation from iteration i and the used discretisation ∆discr of iteration i + 1. This
can lead to wrong and overestimated corrections due to Broyden’s mixing. Therefore, it
is crucial to use the discretised hybridisations as V (i).
The mixing procedure can be refined by only taking into account a certain number rather
than all recent iterations or by restarting the mixing scheme after a couple of DMFT loops.
E.g. this can be helpful if the first steps of the DMFT calculations lead through a bad
and untypical regime of hybridisations. In general, Broyden’s mixing can overestimate
corrections to ∆ easily, which can result in unphysical hybridisations, e.g. with a positive
imaginary part for small frequencies. We recommend to supervise Broyden’s mixing
extensively and adjust the parameters to avoid unphysical results if they occur. Up to
now, we only used the standard Broyden’s mixing in situations where a convergence with
the standard approach or simple linear mixing was not successful.

5.3.6 Convergence and Real Frequency Green’s Function
All steps described in the previous sections combined form a single DMFT iteration, also
called a single loop. At the end of each loop, the difference between the interacting
impurity Green’s functions G(iωn) of the last two subsequent iterations is computed. We
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define that DMFT has reached the self-consistent solution if the maximal difference over
all frequencies is smaller than the chosen threshold 10−3

∀i,j max
ωn

(
G

(m)
i,j (iωn)−G(m−1)

i,j (iωn)
)
< 10−3, (5.3.62)

with m indicating the current iteration. It can be useful in certain situations to check
convergence with respect to the iteration m−2 if a small oscillating behaviour is observed
and cannot be removed. The bound of 10−3 seems to be a very strong convergence
criterium compared to other methods but is at the same time very reliable. Quite often, we
observe that DMFT results change by less than 10−2 over several iterations but suddenly
change in the order of 10−1. This indicates problems with the approached solution, which
would not be be realised when taking 10−2 as a convergence criterium. However, we never
observed this kind of behaviour when the maximal difference was dropping below 10−3.
Fig. 5.9 shows the rate of convergence over a couple of iterations in the case of a DMFT
calculation with four-site dynamical cluster approximation. The rate of convergence and
the actual changes can differ strongly between the different Green’s function components.
For example, the degenerate (π, 0)-patch Green’s function needs three iterations longer to
converge because the changes in the first iterations were much smaller compared to the
other Green’s function components.
After convergence is observed, the interacting impurity Green’s function G(ω) on the
real-frequency axis has to be computed. There are a couple of ways to do this:

1. We can take the converged Hamiltonian and the corresponding ground state of
the last iteration and perform a real-time evolution instead of an imaginary-time
evolution

Gi,j(t) = −iθ(t)(〈E0|cie−i(Ĥ−E0)tc†j|E0〉+ 〈E0|c†iei(Ĥ−E0)tcj|E0〉)
= −iθ(t)(G>

i,j(it) +G<
i,j(it)). (5.3.63)

A Fourier transform of this function will result in the desired interacting impurity
Green’s function

Gi,j(ω) =
∫ ∞
−∞

dtGi,j(t)e−iωt. (5.3.64)

This approach has several disadvantages. First, the Hamiltonian Ĥ is optimised and
converged for calculations on the imaginary axis, i.e. for imaginary-time evolutions,
the Matsubara Green’s function and fits of the hybridisation on the imaginary-
frequency axis. If, instead, real-time evolutions and real-frequency Green’s func-
tions are computed, the question arises whether the important physics on the real
axis is even correctly described by the Hamiltonian. Typically, if DMFT is used
for real-frequency calculations, the bath is discretised by approximately 100 sites
to reflect the rich structure of the physical functions on the real-frequency axis.
Thus, it is doubtful that the Hamiltonian of the converged DMFT calculation on
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Figure 5.9: Changes of the Green’s functions in a four-site DCA calculation over all iterations
until convergence. The data was obtained from a Hubbard model calculation with interaction
strength U = 7t, next-nearest neighbour hopping tp = −0.15t, nearest neighbour hopping t = 1
and µ = 1.3t. Because of symmetry reasons, the Green’s functions of the (π, 0) and (0, π) are
degenerate. This seems to be the reason why the Green’s functions of those patches takes longer
to converge below the threshold of 10−3. However, the change of the Green’s functions of the
other patches decreases even further, which supports that we really found a fix point of the DMFT
iteration.

the imaginary axis with bath sizes of ten or even less sites is sufficient to obtain
good real-frequency results.
Second, we have to account for finite size effects. Typically, for real-time evolution
studies one considers DMRG systems with around 100 bath sites. This allows exci-
tations to move around in the system and only be reflected at the end of the system
at such long times that computed quantities already show pseudo convergence.This
means that the long-time physics is already so dominant that extrapolation tech-
niques like linear prediction can ignore the short-time physics and extrapolate the
calculated quantities before finite size effects influence the signal.
With imaginary-time DMRG as an impurity solver for DMFT the bath sizes are
typically smaller than 10. This means that finite size effects will be present be-
fore pseudo convergence sets in, which makes linear prediction untrustworthy. In a
regime where it is not clear whether the short-time behaviour is still and finite size
effects are already present, it is especially hard to determine a fitting interval for the
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Figure 5.10: Left panel: Comparison between the real part of the real-time Greens functions
G11(t) obtained with DMRG and with CTQMC. From t ≈ 2 on the two curves start to differ
qualitatively. The linear prediction preferred to fit the DMRG on the time interval [3.4, 4.5]
indicating that for later times there are already finite size effects present. Forcing the linear
prediction to fit the DMRG data on different intervals and with different numbers of moments
p, leads to strongly oscillating extrapolations. Right panel: Spectral functions A(ω) obtained via
a Fourier transform of the Green’s function of the left plot. The best agreement with CTQMC is
obtained with the automatically determined fitting interval at small times. Other fitting intervals
result in strong oscillations. However, we are not able to resolve the small peak at ω = 0.
The data was obtained from a real material study on Sr2RuO4 with a filling of four particles,
U = 2.3eV, J = 0.4eV and Lb = 8 bath sites. The CTQMC data was calculated at temperature
β = 200.

linear prediction. This can be seen in the left panel of Fig. 5.10 where we compared
the extrapolated real-frequency Green’s functions G(t) of DMRG with the Green’s
function obtained from CTQMC. The comparison has to be taken with care since
the CTQMC data was computed with numerically ill-defined analytical continua-
tion methods from G(τ) and thus is very dependent on the used data. Therefore,
we only expect to observe qualitative agreement. However, since CTQMC treats
the infinitely large bath exactly and does not suffer under finite size effects, the
dramatic differences from τ = 2 on are a strong hint for finite size effects in the
DMRG data.
This is confirmed by using linear prediction on the DMRG data. As described in
section 4.4.1, linear prediction adjusts the fitting interval such that the discarded
weight of the computed coefficients in the exponentials drops below 0.1. In this case,
linear prediction prefers to fit G(t) in the interval [3.4, 4.5] with p = 5 moments,
although G(t) was computed with MPS methods until tmax = 13.5. This indicates
that finite size effects influence G(t) strongly from t = 4.5 on, at least. By enforcing
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other fitting intervals and other amounts of moments p for the linear prediction, we
can increase agreement with the computed DMRG data for longer times, but at the
cost of introducing slowly decaying oscillations in the extrapolation regime. This is
another indication for the finite size effects present in the DMRG data.
The right plot Fig. 5.10 shows the corresponding spectral functions A(ω) to the
Green’s functions in the left panel. The best agreement with CTQMC is ob-
tained with the automatically determined interval. But even then strong oscilla-
tions around the CTQMC results can be observed and the peak at ω = 0 cannot
be resolved. By shifting the fitting interval to later times, stronger oscillations, i.e.
finite size effects, are created. When fitting the complete DMRG data until t = 13.5
the oscillations on the spectral function turn negative, which clearly indicates un-
physical behaviour. Putting all these observations together, it is clear that the bath
is too small to obtain qualitatively good real-time Green’s function.
Another way of reducing finite size effects is to introduce a broadening term in the
Fourier transform, which can for example be a Gaussian

Gi,j,η(ω) =
∫ ∞
−∞

dtGi,j(t)e−
1
2η

2t2e−iωt, (5.3.65)

or a Lorentzian broadening

Gi,j,η(ω) =
∫ ∞
−∞

dtGi,j(t)e−ηte−iωt. (5.3.66)

The broadening term η will suppress any long-time behaviour for times roughly
larger than t ≈ 1/(2η). This ansatz is only useful if the finite size effects are
not already present on very short time scales as in our example. Typically chosen
values for the broadening term are in the range of η ≈ 103 to η ≈ 10−1 and thus
start to suppress G(t) significantly between t ≈ 500 to t ≈ 5. Since a product of
two functions turns into a convolution after a Fourier transform, the real-frequency
Green’s function with the broadening function fη(t) will have the form

Gi,j,η(ω) =
∫ ∞
−∞

dνGi,j(ν)f̃η(ν − ω), (5.3.67)

where f̃η(ω) is the Fourier transform of fη(t). Thus, small features in the spectral
function G(ω), which can originate from physical processes, are smeared out and
lost in Gη(ω).
Another disadvantage of real-time evolutions is that these calculations are very
expensive because entanglement grows exponentially during the time evolutions.
Since the impurity systems in our models are, from the beginning on, very strongly
entangled, this is especially inconvenient. One can limit the entanglement growth by
splitting the time evolution in a way that the left and right state in the definition of
the Green’s function G(t) are evolved backwards and forwards in time, respectively,
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Figure 5.11: Spectral functions A(ω) obtained via Maxent and Padé from CTQMC and DMRG
data for the two relevant bands in the Sr2RuO4 model. The agreement between DMRG and
CTQMC as well as the agreement between Maxent and Padé is very good. For the xz band,
the Padé results seem to have a small issue at ω = 0, where the spectral function is unphysical.
The data was obtained from a real-material study on Sr2RuO4 with a filling of four particles,
U = 2.3eV, J = 0.4eV and Lb = 8 bath sites. The CTQMC data was calculated at temperature
β = 200.

with halved time steps

G>
i,j(t) = 〈E0|cie−i(Ĥ−E0)tc†j|E0〉

= (〈E0|cie−i(Ĥ−E0)t/2)(e−i(Ĥ−E0)t/2c†j|E0〉)
= 〈ψ>i (−t/2)|ψ>j (t/2)〉. (5.3.68)

This done by default in all our real-time calculations. However, for the example
displayed in Fig. 5.10, computing a single time step at t = 13.5 we took two days,
which is several times longer than the computation time of a complete DMFT loop
on the imaginary axis. This shows that even if finite size effects set in at later times,
it can be impossible to compute G(t) long enough due to the entanglement growth.

2. The real-frequency Green’s function can also be obtained with the help of analytic
continuations, like Maxent [152,153] or Padé [154,155], from the converged Matsubara
Green’s function G(iωn). Of course, these methods strongly depend on even small
details of the provided data and thus are critical by itself. Additionally, to be
able to apply analytic continuations on DMRG data, the data has to be combined
with normal distributed noise. This will hide finite size effects, which become the
stronger the less noise is used. However, Fig. 5.11 shows the comparison between
the spectral functions A(ω) obtained with Maxent and Padé from CTQMC and
DMRG data. We obtain qualitatively very good agreement. Additionally, the best
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spectral function obtained from the real-time evolution is plotted to emphasise the
differences between both approaches. It is obvious that the analytic continuation
approach is much better suited to obtain good quality results on the real-frequency
axis.
Since there is a lot of adjusting and guessing of parameters in the real-time evolution
approach and because the analytic continuations are much faster and are giving
better results, we prefer, if possible, to use analytic continuations methods to obtain
the real-frequency Green’s functions.

5.4 Dynamical Cluster Approximation
Dynamical mean-field theory focuses on a single site of an infinitely large lattice and
treats this site and all local interactions exactly while the remaining sites are summarised
as a mean-field acting on the single site. This approach is reasonable as long as non-local
interactions are negligible. This locality means that the electron self-energy is momentum
independent. In some models this is an insufficient ansatz and it is necessary to restore
the ~k-dependence to obtain reasonable results. A couple of methods exist for correlated
electron systems that approximate non-local correlations to different degrees. The three
most established methods are cellular DMFT, cluster perturbation theory and dynamical
cluster approximation (DCA). We will focus in the following on DCA since it conserves
the translational invariance of the lattice in contrast to cellular DMFT.
The fundamental idea of DCA is to partition the 1st Brillouin zone into Nc patches in
which the Green’s function and self-energy are averaged over, respectively. In the limit
Nc → ∞ this approach is obtaining the exact result while Nc = 1 reproduces DMFT.
This coarse graining can be written as

ΣDCA(~k) '
∑
~K

Φ ~K(~k)Σc( ~K), (5.4.1)

with

Φ ~K(~k) =
1, if k in patch ~K,

0, otherwise,
(5.4.2)

since we describe each patch by a representative cluster momentum ~K, as can be seen in
Fig. 5.12. We now proceed from the free energy, written down in Eq. (5.1.11), according
to the work of Potthoff [156] and Okamato [157]. This time, we write the functional in terms
of the self-energy Σ instead of the Green’s function

Ω[Σ] = −Tr ln
[
G−1

0 [Σ]−Σ
]
− (LΦ)[Σ]. (5.4.3)

The last term is obtained from a Legendre transformation

(LΦ)[Σ] = ΦBK[G[Σ]]− Tr[ΣG[Σ]]. (5.4.4)
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At the stationary point δΩ[Σ]/δΣ = 0 we obtain the Dyson equation G = G−1
0 −Σ with

G = −δ(LΦ)[Σ]/δΣ, similar to the derivation of the self-consistency equation of DMFT.
Since, in general, the Baym-Kadanoff functional ΦBK[G] is unknown, the same is true for
(LΦ)[Σ]. While DMFT was approximating the Baym-Kadanoff functional, DCA keeps
the exact functional but replaces the self-energy by the averaged version from Eq. (5.4.1).
Thus, the complexity of the functional is reduced significantly, because the degrees of
freedom are reduced to those of a finite-size cluster

(LΦ)[Σc] = ΦBK[Gc]−
N

Nc

∑
~K

Tr[Σc( ~K)Gc( ~K)], (5.4.5)

with

Gc( ~K) = Nc

N

∑
~k

φ ~K(~k)G(~k) = Nc

N

∑
~k

φ ~K(~k) 1
G−1

0 (~k)−ΣDCA(~k)
. (5.4.6)

The last equation shows that the cluster Green’s function Gc is equal to the coarse-
grained lattice Green’s function on the right hand side. Similar to the derivation of the
DMFT self-consistency equations, we can deduce from the stationary condition and the
saddle-point equation

ΩDCA[Σc] = −Tr ln
[
−(G−1

0 −ΣDCA)
]

+ ΦBK[Gc[Σc]]−
∑
~K

Tr[Σc( ~K)Gc( ~K)], (5.4.7)

together with the help of Eq. (5.4.1), namely δΣDCA(~k)/δΣc( ~K) = φ ~K(~k), that

δΩDCA[Σc]
δΣc

= −Tr
∑

~k

φ ~K(~k)((G−1
0 −ΣDCA)−1 −Gc

+ δΦBK[Gc[Σc]]
δΣc

−Gc[Σc] = 0.

(5.4.8)

The first term vanishes equivalently to the DMFT case because of the Dyson equation.
Thus, we obtain

δΦBK[Gc[Σc]]
δΣc

= Gc[Σc], (5.4.9)

which allows us to solve the coarse-grained self-energy and the corse-grained Green’s func-
tion with the help of Dyson equation and Eq. (5.4.9) self-consistently. After we showed
analogously to the DMFT case in a rather theoretical derivation that the piecewise con-
stant self-energies ΣDCA and Green’s functions GDCA are indeed solutions to the Baym-
Kadanoff functional, we now want to focus on what exactly will change in our presented
DMFT scheme and how we will implement DCA in all its details.
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Figure 5.12: Typical choices of the DCA patches in the 1st Brillouin zone for different number
of patches. The red dots are the representative vectors ~Kk and the thin lines equipotential lines
of the dispersion relation. Alternative choices of the patch form can be better suited to describe
certain models. For four patches an alternative form is given in the picture. We will discuss the
influences of different patch forms for the same number of patches in detail in chapter 6. The
picture is taken from Gull et al. [53].

• First, we introduce patches P ~K in the 1st Brillouin zone and indicate them with a
representative vector ~K. Typically, we discretise the 1st Brillouin zone into 1000×
1000 momentum vectors (kx, ky). Of course, any other number of data points can
be used as long as the resolution of the dispersion relation is good enough. As long
as the volume of all patches is the same, the DCA functional expressed in real-
space coordinates has only local interactions that are identical to the ones of the
original DMFT problem. This means that no additional multi-particle interactions
are introduced by DCA . The interaction Hamiltonian is just the same as for single-
site DMFT applied to all DCA sites separately. The actual form of the patches is
completely free. From a physical point of view it is recommended to choose patches
such that they include regions with the same physical properties. In Fig. 5.12 typical
momentum patches are shown as used by Gull et al. [53] or Ferrero et al. [50].

• Typically, we stay in the momentum-space representation of the DCA. In this case
the self-energy, Green’s function and hybridisation are all diagonal matrices and
each diagonal element describes a single patch. Thus, they all get a label ~K

G ~K(iωn) = 1
iωn − µ− t ~K − Σ ~K(iωn)−∆ ~K(iωn) . (5.4.10)

To ensure that the impurity Green’s functions G ~K(iωn) decay with 1/ω2
n, a shift

of the chemical potential t ~K = ∑
~k∈P ~K

ε~k has to be introduced. If the sum runs
over the whole Brillouin zone, as in single-site DMFT, this shift becomes zero t ~K =∑

1stBZ ε~k = 0 and the usual Green’s function is obtained. Accordingly, the lattice
Green’s functions in DCA are also averaged over the patches and not the whole
Brillouin zone anymore,

Glatt
~K

(iωn) =
∑
~k∈P ~K

1
iωn − ε~k − Σ ~K(iωn) . (5.4.11)
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Table 5.2: Representative vectors ~Kk for the patches in momentum-space and vectors ~Rj for the
corresponding real-space sites for different numbers of patches in DCA. Together with Eq. (5.4.12)
and Eq. (5.4.13) they form the proper Fourier transform between real- and momentum-space.

• Each patch is represented by a single impurity and its corresponding self-energy
and Green’s function. Since we have several impurity sites, we can define a Fourier
transformation and consider the model in momentum-space or in real-space by map-
ping the creation c†j and annihilation operators cj of site j from real-space to their
counterparts in momentum-space c̃†k and c̃k on site k

cj =
∑
k

ei
~Rj ~Kk c̃k, (5.4.12)

c†j =
∑
k

e−i
~Rj ~Kk c̃k. (5.4.13)

~Rj and ~Kk and are the representative vectors of the sites in the real-space lattice and
the patches in momentum-space. In Tab.5.2 the real- and momentum-space vectors
for different numbers of patches are listed. In momentum-space the hybridisation
is diagonal, i.e. each impurity couples only to its own bath. Therefore, the fitting
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procedure can be performed for each component separately. Unfortunately, since the
interaction term in real-space has the same structure as in DMFT on each impurity
site, in momentum-space the interaction term is very complicated. In general, due
to the Fourier transform it will generate interactions between all impurity sites.
However, the structure of the Hamiltonian will reflect momentum conservation by
construction. Therefore, between the impurity sites all interactions are allowed
that conserve the total momentum of the system. This is guaranteed through the
Fourier transform and the exponential pre-factors. Particles leaving the impurity
sites correspond to a momentum transfer to the environment, which is conserved
too. Thus, bath sites are only coupled to a single impurity site.
In contrast, the interaction Hamiltonian in real-space is quite simple, but due to
the Fourier transform each bath site couples to all impurity sites. Additionally,
the Fourier transform will introduce single-particle hopping between the impurities
in real-space because of the different on-site energy shifts t ~K of each impurity in
momentum-space. These changes reflect the physical processes in a lattice since
particles are allowed to jump between neighbouring sites back and forth and are
also allowed to jump into the environment, move around there and come back to a
different impurity site.
However, in each DMFT iteration it has to be decided if the Hamiltonian has to be
represented in momentum-space with a complicated interaction term but a diagonal
hybridisation or in real-space with a simple interaction Hamiltonian but impurity
sites that couple to all bath sites of all impurities. In general, we cannot say that one
of the two representations is better suited for DMFT calculations. While it seems
that entanglement properties are, typically, better in real-space, in momentum-space
additional quantum numbers are usable. Based on our experience, we suggest to
implement the impurity Hamiltonian in momentum-space.

• After finding the ground state either in momentum- or real-space, the excited states
for each impurity site and the time evolutions are computed. If the Hamilto-
nian was represented in real-space, the Green’s functions are combined accord-
ing to the Fourier transformation to obtain the imaginary-time Green’s function
in momentum-space. The determined Green’s functions are Fourier transformed
to the frequency domain and used to compute the new hybridisation for the next
DMFT iteration with the help of the self-consistency equation and the adjusted
Green’s functions Eq. (5.4.10) and Eq. (5.4.11). Since the hybridisation is deter-
mined in momentums-space, it is diagonal and can be fitted according to the scheme
described in the beginning of this chapter.

• If the dispersion relation ε~k has certain symmetries, it is advantageous to distribute
the patches in the 1st Brillouin according to those symmetries. In that way, the
corresponding impurity sites, Green’s functions, self-energies and hybridisations are
strongly degenerate. Thus, the computational effort of a DMFT loop can be re-
duced significantly by only computing some of the Green’s function and using the
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degeneracies to determine the remaining ones. For example, the dispersion relation

ε~k = t cos kx + t cos ky + t′ cos kxt cos ky (5.4.14)

with any choice of t and t′ is axially symmetric to the diagonal from (−π,−π) to
(π, π). In other words ε~k is invariant under kx ↔ ky. All patches in Fig. 5.12 are
distributed with the same symmetry. In the case of four-site DCA the (π, 0)- and
(0, π)-patch are completely degenerate. Therefore, only one of these two Green’s
functions has to be determined as long as this symmetry is not spontaneously bro-
ken. The amount of degeneracies is even increasing for higher patch numbers, which
reduce the numerical effort for higher DCA approximations significantly. To illus-
trate this, all degenerate patches in Fig. 5.12 are painted in the same colour.

The alternations and changes to our method when using DCA are small and simple. Sig-
nificant changes for the calculations are the increased system size, compared to single-site
DMFT, and the increased amount of interactions between the impurity sites. Unfortu-
nately, this will also lead to a huge increase of the amount of entanglement in the systems,
as we will discuss in the context of the Hubbard model. This is slightly countered by the
fact that the necessary bath sizes for a reasonable fit of the hybridisation for each impu-
rity site seem to decrease slightly with the number of patches. We assume this is due to
the fact that smaller patches include less variation of the physics and therefore less bath
sites are needed to describe the correct physical behaviour. This will be discussed in more
detail in section 6 too.



Chapter 6

The Two-Dimensional Hubbard
Model

The Hubbard model is considered to be the simplest model containing correlated electrons
at arbitrary fillings. Moreover, it describes relatively well the physics of solid state lattices
as well as numerous systems in quantum chemistry and material science. Especially the
physics of correlation-driven Mott insulating states and their behaviour upon electron
doping is a particularly interesting feature of the Hubbard model and is essential for a
wide class of materials. A very important example are high-temperature copper-oxide
superconductors, which are also known as cuprates [52]. A lot of these materials consist of
weakly coupled two-dimensional layers of atoms organised in rectangular lattices. Very
often, their properties can be described successfully by the two-dimensional Hubbard
model.
Originally, the low-temperature physics of doped Mott insulators was described as be-
ing a Fermi liquid with a quasiparticle mass that diverges as the Mott insulating state
is approached. This explanation by Brinkman and Rice [158] not only gave an intuitive
picture of most data but also was supported by results of single-site DMFT calculations.
However, since the fundamental assumption of DMFT is the locality of correlations, or
in other words the momentum-independence of the electron self-energy, this approach is
not well suited for materials such as the cuprates where electronic properties are essen-
tially two-dimensional functions. Studies of cuprate materials show isotropic behaviour
for quasiparticle lifetimes, velocity renormalisation for very high doping [159], strong mo-
mentum dependence for dopings that maximise the superconductivity transition temper-
ature [7] and, close to the insulating phase, even pseudogap behaviour [8].
There also has been a lot of theoretical work like resonating valence bond theories [160,161],
semianalytic ansatzes based on antiferromagnetic [162], or charge-density wave correla-
tions [163], confirming the importance of momentum-dependent approaches beyond DMFT.
But only the development of cluster dynamical mean-field methods, e.g. as DCA, allowed
to tackle these kind of problems without using assumptions that bias certain solutions and
causing debates on which correlations are physically more important to include. With
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these cluster dynamical mean-field theories it had been shown that the two-dimensional
Hubbard model can exhibit a pseudogap [164], Fermi arcs [9], and several other interesting
features around the Fermi surface [9,165]. Furthermore, it had been shown that the insu-
lating phase is separated from the region where the model is a weakly correlated metal
by a sector-selective phase, which is characterised by some regions of the Brillouin zone
exhibiting insulating and others metallic behaviour [48,165].
A drawback of cluster methods is that they approximate the complete model in an uncon-
trolled manner. Cluster sizes, cluster forms, and the number of clusters site can change
physical quantities remarkably. Gull et al. [53] were the first to make an intensive study
on which physical properties of the doping-driven Mott transition in the two-dimensional
Hubbard model are robust features and which vary when certain features of cluster DMFT
are changed. Furthermore, they were also the first to systematically investigate the dif-
ferences between different cluster sizes and geometries.
These studies were performed with CTQMC and thus are only reliable for finite tempera-
tures and weak interaction strengths. In fact, the interaction strength U = 7t, chosen by
Gull et al., is slightly smaller than U ≈ 9t which is believed to be more relevant for sys-
tems that exhibit high-temperature superconductivity [10]. Another limitation of CTQMC,
including the studies of Gull et al., is the sign-problem at low temperatures, which pre-
vents to investigation of interesting questions like the exact nature of the low-temperature
metallic state in the nodal region of the sector-selective phase, or the quantitative evolu-
tion of Fermi arcs with temperature and doping.
Therefore, in this chapter we want to show that DMRG+DMFT is not only able to repro-
duce the CTQMC data of Gull et al. [53] with U = 7t reliably and comparably fast but is
also able to produce results for intermediate interaction strengths at temperature T = 0.
This regime can neither be reached by CTQMC with large clusters sizes at sufficiently
low temperatures due to the sign problem nor by any other available method.
We start this chapter by presenting the Hubbard model, the occurring symmetries, and
our implementation of the momentum quantum numbers, which plays a vital role for
convergence properties in the case of four-site and eight-site DCA. Afterwards, we com-
pare the results with Gull et al. to verify our method and investigate whether there exist
qualitative differences between our DMRG results at T = 0 and the finite temperature
computations of CTQMC. We will shortly discuss why eight-site DCA systems are cur-
rently not solvable with DMRG+DMFT and end the chapter by presenting our results
for the intermediate interaction strengths U = 9t and U = 11t at temperature T = 0.
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6.1 The Hubbard Hamiltonian
The starting point of each DMFT and DCA calculation is the definition of the model
Hamiltonian Ĥlatt for the underlying infinitely large two-dimensional lattice. In the case
of the Hubbard model the system is described by

Ĥlatt =
∑
~k,σ

ε~kd̃
†
~k,σ
d̃~k,σ + U

∑
i

ni,↑ni,↓ − µ
∑
i

(ni,↑ + ni,↓)

=
∑
~k

ε~kÑ~k + U

2
∑
i

Ni(Ni − 1)− µ
∑
i

Ni. (6.1.1)

with the typical Hubbard interaction on each site i of the real-space lattice with strength
U and a chemical potential µ to control the filling of the lattice. The particle number
operators are defined as

Ni = ni,↑ + ni,↓ = d†i,↑di,↑ + d†i,↓di,↓, (6.1.2)
Ñ~k = d̃†~k,↑d̃~k,↑ + d̃†~k,↓d̃~k,↓. (6.1.3)

The first term of Ĥlatt represents the kinetic energy written in momentum space. To make
the notation clearer, we denote all creation and annihilation operators acting in momen-
tum space with a tilde. The kinetic energy of the single-particle states in momentum
space is given by the dispersion relation

ε~k = −2t(cos kx + cos ky)− 4t′ cos kx cos ky, (6.1.4)

with nearest neighbour hopping t = 1, next-nearest neighbour hopping t′ = −0.15t, and
two-dimensional momentum ~k = (kx, ky).
As described in the previous section, in the context of DMFT an auxiliary impurity
problem is created by taking a single site out of the infinitely large lattice. On this site,
called impurity, the same interaction as on each site of the lattice is present. Thus, we
define the interaction Hamiltonian of our impurity model as

Ĥint = U

2 N(N − 1), (6.1.5)

and the single-particle on-site energy as

Ĥsp = −µN, (6.1.6)

both acting on the impurity site. The kinetic term vanishes since the dispersion relation
averaged over the whole Brillouin zone is zero. Furthermore, the impurity is coupled
via single-particle hopping to a non-interacting environment called bath. The coupling
between impurity and environment is completely described by the hybridisation ∆(iωn),
which has to be determined self-consistently within DMRG. A discretisation of the bath
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into a finite number of Lb bath sites allows to write down the coupling and the bath
Hamiltonian of the impurity problem as

Ĥhyb =
∑
l,σ

Vl,σd
†

σcl,σ + h.c., (6.1.7)

Ĥbath =
∑
l,σ

εl,σc
†

l,σcl,σ, (6.1.8)

where c†l,σ and cl,σ denote the creation and annihilation operators of an electron on bath
site l. The on-site energies of the bath sites εl,σ and the single-particle hopping elements
Vl,σ are obtained by a fit of the hybridisation ∆(iωn). Combining all terms, we obtain the
complete Hamiltonian describing the impurity problem

Ĥimp = Ĥint + Ĥsp + Ĥhyb + Ĥbath. (6.1.9)

All DMFT results in this chapter are obtained with Ĥimp.
When using multi-site DCA the resulting Hamiltonian is more complex. It is very im-
portant for entanglement properties and implementational details whether the impurity
Hamiltonian is represented in real or momentum space. We will first show the momentum-
space representation and afterwards transform the Hamiltonian to real space.
As discussed in the previous section, in the case of multi-site DCA each impurity site
describes a single patch of the Brillouin zone. Thus, the number of patches is equivalent
to the number of impurity sites Nimp. As for DMFT, in real-space the same interaction
as in the original lattice model is present on each site

Ĥreal
int =

Nimp∑
i=1

U

2 Ni(Ni − 1). (6.1.10)

The interaction Hamiltonian Ĥreal
int has to be Fourier transformed, as defined in Eq. (5.4.12),

Eq. (5.4.13) and Tab. 5.2, to obtain the impurity Hamiltonian in momentum space

Ĥmom
int = U

2
∑
σ,σ′

Nimp∑
r,s,m,n=1

δ( ~Kr − ~Ks + ~Km − ~Kn)d̃†r,σd̃s,σd̃
†
m,σ′ d̃n,σ′ −

U

2
∑
i

Ñi. (6.1.11)

The term δ( ~Kr − ~Ks + ~Km − ~Kn) together with the representative momentum vectors ~K
of the DCA patches assures that only two-particle interactions are allowed that conserve
the total two-dimensional momentum. In general, those terms create a lot of entangle-
ment between the impurity sites and between their corresponding bath sites, especially
for higher DCA approximations.
The kinetic term in the momentum-space representation corresponds to an on-site en-
ergy and is obtained by averaging over the the dispersion relation inside of each patch
t̃i = ∑

~k∈P ~Ki
ε~k. As discussed in section 5.4, this guarantees the correct high frequency
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behaviour of the Matsubara Green’s function. Combining these terms with the on-site
energy given by µ, we obtain

Ĥmom
sp = −

Ñimp∑
i=1

(µ− t̃i)Ñi. (6.1.12)

Because each impurity site corresponds to an momentum ~K and because the model ex-
plicitly conserves the momentum between the patches, no single-particle hopping exists
between the impurity sites in momentum space. This is reflected by the fact that the hy-
bridisation, the self-energy, and the Green’s function are all diagonal matrices. Therefore,
each impurity site has an independent hybridisation, which can be fitted efficiently and
in parallel with only a few parameters corresponding to a small number of bath sites Lb,i.
This results in significant runtime improvements for large systems. In general, each bath
can consist of a different number of bath sites, but in most cases they are all set to the
same size Lb,i = Lb for simplicity.
Since each impurity site can only couple to its own bath, we can label each bath site by
an index i for the impurity it belongs to and an index l numbering the Lb sites of this
bath. Thus, we can write the bath and the coupling Hamiltonian in momentum space as

Ĥmom
hyb =

∑
l,i,σ

Vl,i,σd̃
†

i,σcl,i,σ + h.c., (6.1.13)

Ĥmom
bath =

∑
l,i,σ

εl,i,σc
†

l,i,σcl,i,σ. (6.1.14)

The bath sites are not denoted with a tilde because they are neither located in momentum
nor in real space. The complete Hamiltonian is obtained by summing all terms

Ĥmom
imp = Ĥmom

int + Ĥmom
sp + Ĥmom

hyb + Ĥmom
bath . (6.1.15)

If we refer to momentum-space DCA, all results are obtained with Ĥmom
imp .

Obviously, the whole Hamiltonian can also be represented in real space by applying the
inverse Fourier transform on the impurity sites. The advantage of the real-space repre-
sentation is that the interaction on the impurity sites is much simpler and completely
local

Ĥreal
int =

Nimp∑
i=1

U

2 Ni(Ni − 1), (6.1.16)

because it only consists of the typical Hubbard interaction on each site. Since DCA
restores some of the momentum dependence of the original lattice model, single-particle
hopping between the impurity sites exists in real space

Ĥreal
sp = −

Nimp∑
i=1

µNi +
∑
σ

Nimp∑
i,j=1
i 6=j

ti,jc
†
i,σcj,σ, (6.1.17)
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with hopping strength

ti,j = 1
Nimp

Nimp∑
n=1

t̃ne
−(~Ri−~Rj) ~Kn . (6.1.18)

Mathematically, the finite hopping elements originate from the difference of the on-site
energies of the impurities in momentum space. If all on-site energies were the same,
t̃n = t̃, Eq. (6.1.18) would result in a Kronecker delta and the single-particle hopping
would vanish ti,j = δi,jt.
While the Hamiltonian of the non-interacting bath stays unchanged under the transfor-
mation of the impurity sites, the form of the coupling Hamiltonian changes significantly

Ĥreal
hyb =

∑
l,i,j,σ

Ṽl,i,j,σd
†

j,σcl,i,σ + h.c., (6.1.19)

Ĥreal
bath =

∑
l,i,σ

εl,i,σc
†

l,i,σcl,i,σ. (6.1.20)

Due to the Fourier transform, each bath site is now coupling with each impurity site with
coupling strength

Ṽl,i,j,σ = 1√
Nimp

Vl,i,σe
−~Rj ~Ki . (6.1.21)

This not only creates a complicated impurity system with a lot of single-particle hopping
terms between many sites but also results in hybridisations, Green’s functions, and self-
energies having non-zero off-diagonal elements. Thus, fitting the hybridisation turns into
a highly complicated and not well understood mathematical problem. Fortunately, it is
always possible to fit the diagonal hybridisation in momentum space and transform the
complete Hamiltonian into real space.
After we defined all necessary terms, the whole real-space Hamiltonian can be written as

Ĥreal
imp = Ĥreal

int + Ĥreal
sp + Ĥreal

hyb + Ĥreal
bath. (6.1.22)

It is not known beforehand and has to be determined for each model heuristically whether
the real-space or momentum-space representation of the DCA Hamiltonian is better suited
for a specific problem in terms of entanglement and convergence properties.
However, we now focus on the symmetries present in the Hubbard model regardless of
its representation. We want to emphasise that the DMFT Hamiltonian can be seen as
a special case of Ĥreal

imp with only one impurity Nimp = 1 and thus will not be mentioned
specifically. Furthermore, the real-space and momentum-space representation of the Hub-
bard model are connected by a unitary Fourier transformation, which does not change the
symmetry properties of the model. Therefore, for simplicity, we will only refer to Ĥmom

imp
in the following discussion.
• The full Hamiltonian is clearly conserving the total particle number of the system,

which is described by an U(1)-symmetry with quantum number N since only pairs
of creation and annihilation operators occur in Ĥmom

imp .
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• The length of the total spin ||~S||2 is also conserved because all pairs of annihilation
and creation operators in the Hamiltonian act on electrons with the same spin. This
corresponds to an SU(2)-symmetry with quantum number S via ||~S||2 = S(S+1/2).

• The Hubbard model also conserves the total momentum of the whole system. As
described in section 5.4, each impurity site and also its corresponding bath sites in
momentum-space belong to a patch in the first Brillouin zone. Each of those patches
is associated with a representative momentum vector ~Ki. Adding or removing a
particle from an impurity site or a corresponding bath site will add or remove the
associated momentum vector ~Ki from the total momentum of the system. The
conservation of the total momentum in the interaction term Ĥmom

int is ensured by the
Kronecker delta. Since each bath site only couples via single-particle hopping to
a single impurity, it is clear that the whole Hamiltonian Ĥmom

imp conserves the total
momentum.
Due to the choice of the representative vectors in Tab. 5.2, we can describe the total
momentum occurring in our multi-site DCA calculations by

~K = (kx, ky) =
(
π

2n,
π

2m
)
, (6.1.23)

with n,m ∈ N0 denoting the necessary two quantum numbers. Because the first
Brillouin zone {(kx, ky)|kx, ky ∈ [−π, π]} is 2π-periodic, each momentum vector
with quantum numbers n > 3 or m > 3 corresponds to a vector inside the Brillouin
zone described by quantum numbers n,m ∈ {0, 1, 2, 3}. Thus, the momentum
conservation is described by a Z4 × Z4-symmetry group.
As an example we will consider a two-site DCA system with k particles on the
impurity site and bath sites corresponding to the first patch and l particles on
the impurity site and bath sites belonging to the second patch. Then, the total
momentum of the system is given by

~K = (kx, ky) = k · (0, 0) + l · (π, π) = (lπ, lπ) =
(0, 0) for l even

(π, π) for l odd
, (6.1.24)

because of the translational properties of the Brillouin zone. The corresponding
quantum numbers are

(n,m) = k · (0, 0) + l · (2, 2) = (2l, 2l) =
(0, 0) for l even

(2, 2) for l odd
, (6.1.25)

due to the group properties of Z4 × Z4. Thus, the total momentum of the system
can be determined by the quantum numbers. The same is valid, even if more com-
plicated, for four-site and eight-site DCA.
The number and the choice of the patches, or more specific the choice of the rep-
resentative vectors, determines which symmetry group can be used to describe the
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momentum quantum numbers. In the case of two-site DCA and four-site DCA,
all momentum vectors can also be described by ~K = (kx, ky) = (nπ,mπ) with
n,m ∈ N0. Then, by the same argumentation as above, the quantum numbers
belong to the symmetry group Z2 × Z2. That both symmetry groups can be used
in those cases is not surprising because Z2 is a subgroup of Z4. For two-site and
four-site DCA not all allowed values for n and m are used when using the Z4 × Z4
symmetry group, but only the even values, which directly correspond to the sub-
group Z2×Z2. Similarly, the quantum numbers for eight-site and 16-site DCA with
the representative vectors chosen in Tab. 5.2 can only be described by the Z4 × Z4
symmetry group or by groups that include this symmetry.
In our calculations we limit the ground state search to symmetry sectors with total
momentum ~K = (0, 0) since up to now, global ground states were always located in
this sector for all parameters choices. This is reasonable since states with a higher
total momentum have higher kinetic energies and are, in general, not the ground
states of impurity systems.

Our experience with the Hubbard model implies that, in general, the real-space represen-
tation of the model generates less entanglement than the momentum-space representation.
This results in significantly different runtimes and convergence properties in favour of a
real-space description. This difference is even increasing for DCA approximations with a
higher number of impurity sites.
Unfortunately, the momentum quantum numbers can not be implemented in real space.
A necessary condition for implementing a quantum number is that the change of all
quantum numbers of the system has to be well-defined for any application of creation or
annihilation operators. This must be clear independently of the state of the rest of the
system. In momentum space, adding a particle to an impurity site will increase the total
momentum by the associated momentum vector regardless of the rest of the system. A
creation operator d†j in real space corresponds, via the Fourier transform, to a sum of
creation operators acting on all impurity sites in momentum space d̃†k. Without having
information about the occupation of all other impurity sites in real space, and thus about
the occupation in momentum space, it is not clear how the creation operator d†j is chang-
ing the quantum numbers of the total momentum.
This is problematic because we observed significant convergence problems for higher order
DCA calculations when not using momentum quantum numbers. Our DMRG calculation
are always initialised with a random state. If a symmetry is not explicitly implemented,
it may happen that the starting state of DMRG is located in a part of the Hilbert space
that is orthogonal to the ground state. But even if a part of the randomly generated
starting state has a non-orthogonal component with respect to the correct ground state,
it can happen that DMRG is discarding these parts first few iterations. Both situations
prevent DMRG from ever reaching the true ground state. To avoid this, we strongly rec-
ommend to use the momentum-space representation of the Hubbard model and implement
momentum quantum numbers.
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6.2 Bath Size

In this section we want to discuss the behaviour of the fitting procedure of the hybridisa-
tion and show that only small bath sites are necessary to obtain converged DMFT results
with respect to the number of bath sites. If not stated otherwise, presented results are
obtained for a system with interaction strength U = 7t and a chemical potential µ = −3t.
DMRG was performed with a maximal bond dimension m = 2000 and the time evolution
with a truncated weight w = 10−9. We used the Krylov method for the time evolution
until τc = 4 and TDVP afterwards until τmax = 100. The Krylov subspace is considered
to be converged if the state |ψ〉(τ) changes by less than 10−8 when adding an additional
Krylov vector. Each calculation is initialised with the hybridisation of the non-interacting
system. For DCA calculations we will use the patches defined by Gull et al. shown in
Fig. 5.12.
We will focus in this section on DMFT and DCA with four or less patches and discuss the
case of eight patches in a later section. The left panel of Fig. 6.1 shows the cost function
χ of the fitting procedure of the hybridisation of the (0, 0) patch for single-site DMFT
and multi-site DCA. χ decays exponentially with the number of bath sites Lb for DMFT
as well as for DCA. The cost function approaches a lower bound at a certain bath size,
which is approximately around 10−8. Adding additional sites does not decrease the cost
function any further. This is the regime of overfitting, where different optimisations can
lead to very similar cost function values but significantly different parameter sets due to
the numerous local minima. Typically in this regime, we observe convergence problems
of DMFT because the impurity Hamiltonian often changes significantly from iteration to
iteration.
When using the same amount of bath sites, we observe better fit results in the case of
DCA calculations with more patches than with less. Since for a higher number of patches
each patch is getting smaller, the physical quantities like the Green’s function or the hy-
bridisation are averaged over smaller areas in the first Brillouin zone. Thus, they include
less physics and describe less energy modes. Consequently, a smaller number of effective
bath sites is needed to discretise the hybridisation in these patches. This explains why
overfitting sets in at different bath sizes for DMFT and DCA and begins at smaller bath
sizes for systems with more patches.
We only show results up to Lb = 7 for the four-site DCA calculations because the run-
times were too large for Lb = 8. While a single iteration of the two-site calculation with
Lb = 12 takes only two hours, each iteration of the four-site case with Lb = 8 is running
approximately a day. We believe that this exponential increase in runtimes is caused by
the complex Hubbard model interaction. However, the behaviour of the four-site case is
qualitatively similar to the two-site case.
The right panel of Fig. 6.1 shows the expectation value of the total filling of the lattice
n for DMFT and the DCA calculations. It is obtained by computing and summing up
the occupation numbers of all impurity sites and normalising them by the number of
patches. We observe very small even-odd oscillations of n with the number of bath sites
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Figure 6.1: Left panel: Cost function value χ of the (0, 0) patch for different numbers of bath
sites Lb. We display results for single-site DMFT (1s), two-site DCA (2s) and results obtained
with two different four-site patchings (4s and 4s∗). χ decreases exponentially with the number
of bath sites. Higher DCA approximations lead to better fit results for the same number of bath
sites. In all cases a region of overfitting is reached when the cost function drops to approximately
10−8. This can not be seen for four-site DCA since we only considered Lb < 8 bath sites due
to the very long runtimes for bigger bath sizes. Right panel: The converged total filling of the
lattice n. Small even-odd oscillations can be seen around the converged filling from Lb = 4 bath
sites on for all cluster sizes. The value of n depends on the number of patches but is located in
the same region for all DCA calculations.

Lb in all cases. Since the Hamiltonian parameters, obtained with the hybridisation fit,
vary from iteration to iteration by 10−3, it is reasonable that occupation values vary on
the same scale. This is also the case for calculations with different bath sizes. An even or
odd number of bath sites can bias the fit for certain solutions and occupation numbers.
However, it is obvious that the filling of the lattice is, in general, already converged for
relatively small bath sizes of around four bath sites. This corresponds to cost function
values of the order 10−3 − 10−2, which indicates relatively bad fits of the hybridisation.
Furthermore, the filling of the lattice is dependent on the number of patches. We will
discuss this in more detail when we compare our results with CTQMC.
In Fig. 6.2 the cost function values of all hybridisations in the first and last iteration of
single-site DMFT and different multi-site DCA calculations are displayed. In general, the
fit results of the later iterations are significantly better. It seems that the non-interacting
hybridisation, which is used to initialise DMFT, is a comparable bad choice.
Interestingly, the hybridisations of the distinct patches behave significantly different. Es-
pecially the patches located near the (π, π) patch are, in general, fitted much better than
all others when using the same number of bath sites. Since these patches are connected
to energetically higher states in the lattice, they are only occupied by a small amount of
electrons. This seems to make the interaction with the environment much simpler, which
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Figure 6.2: Cost function values of the fits of the hybridisation for all patches in the first
(circles) and last iteration (squares) of a single-site DMFT calculation (upper left), two-site
DCA calculation (upper right), and four-site DCA calculation with conventional (lower left)
and alternative patching (lower right). The qualitative behaviour in all cases is similar. The fit
results can differ by up to one order of magnitude between the first and last iteration. In general,
the hybridisation of the (π, π) patch is fitted much better than the other patches for the same
number of bath sites.

is reflected in the small number of bath sites needed for a good description of ∆(iωn). If
only a certain quality of the hybridisation fit is needed, this fact can be used to reduce
computation times by attributing different bath sizes to the impurity sites in order to
reduce the total system size.
This explanation is supported by the behaviour of the four-site DCA system with alter-
native patching. The different way of dividing the Brillouin zone changes the filling of
the impurity sites and thus the physics the hybridisations have to describe. This clearly
changes the behaviour of χ(Lb), especially for the patch around the (π, π) point. And
indeed, the occupation of the (π, π) patch is lower for the alternative patching compared
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Figure 6.3: Difference of the real (left) and imaginary (right) part of the hybridisation ∆(iωn)
and its discretisation ∆discr(iωn) for different numbers of bath sites Lb in the case of single-site
DMFT. The hybridisation is fitted better for small frequencies since α = 1 in the cost function χ.
Because of the limited number of parameters, the fit oscillates around the hybridisation, which
can be seen by the kinks in the curves. As already shown in Fig. 6.2, the results for Lb = 10
and higher numbers of baths sites are qualitatively similar. This can be seen explicitly for the
imaginary part where we either observe no improvements at all or only small ones. Nevertheless,
the parameter sets obtained from the fit can differ significantly.

to the usual one, as can be seen in the following section.
We based our analysis so far only on the cost function values χ. For the sake of complete-
ness, we now want to show the actual differences between a typical hybridisation ∆(iωn)
and its discretised version ∆discr(iωn) in Fig. 6.3. Obviously, since we choose α = 1 in the
cost function (see Eq. (5.3.11)), the fits are in better agreement with the hybridisation
for small than for large frequencies. Due to the finite number of parameters and the
finite superposition of summands in Eq. (5.3.11), the fits oscillate around ∆(iωn), which
is indicated by the kinks in the plot. These kinks correspond to intersections between the
fit and the hybridisation. We see that the real and imaginary parts of the hybridisation
are fitted equally well and that the differences between ∆(iωn) and thew fit are typically
of the order √χ.
In agreement to the behaviour of χ, the absolute value of the differences between the
hybridisation and its discretised version are staying nearly constant for a high number of
bath sites. However, the parameter sets can differ strongly, which can be seen especially
well for the results with Lb = 10 and Lb = 12 where the real parts are remarkably different
for the very small difference in the cost function value χ.
To avoid the regime of overfitting and the possible corresponding convergence problems,
we choose to use Lb = 9 bath sites for single-site DMFT, Lb = 8 bath sites for two-site
DCA, and Lb = 5 for both four-site DCA calculations. With this choice we observe very
good fitting results for the first as well as the last iterations of DMFT and DCA. For
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all calculations with µ = −3 we observe convergence after six iterations, which results in
very fast runtimes ranging from one hour to one day. Of course, this behaviour is strongly
influenced by the chemical potential, which not only determines the filling of the lattice
and the different patches but is also setting the complexity of the hybridisation, the con-
vergence properties, and whether the system exhibits metallic or insulating behaviour.
We will discuss this in more detail in the next sections.
While for single-site and two-site calculations no convergence issues are observed for any
choice of µ, for four-site DCA it is strongly recommended to use momentum quantum
numbers to achieve convergence over a wide range of values for the chemical potential.
Only with the momentum quantum numbers we were able to determine global ground
states in each iteration reliably. This is in strong contrast to the single-site and two-site
case where global ground states can be found easily and repeatedly even without momen-
tum quantum numbers. Since for higher number of patches the Hamiltonian is getting
more complicated and the Hilbert space more fractured into different symmetry sectors, it
is comprehensible that DMRG is strongly dependent on the randomly generated starting
state if not all symmetries are implemented.

6.3 Comparison with CTQMC Results
After we specified the DMFT settings, we can now compare our DMRG+DMFT results
with the results from Gull et al. [53] obtained with CTQMC at βt = 20. This is the check
whether our implementation of the model is correct before we focus on regimes where no
comparisons are possible as in the case of intermediate interaction strengths. We expect
small differences next to the Mott insulating regime due to finite temperature effects but
nearly no differences otherwise. We will follow Gull et al. when arguing about the physical
behaviour of the Hubbard model and the form of CTQMC or DMRG results.
Fig. 6.4 shows the total filling of the lattice n dependent on the chemical potential µ
for DMFT and DCA with different patches. A filling of n = 2 corresponds to doubly
occupied lattice sites, n = 1 corresponds to half-filling, and n = 0 denotes an empty
lattice. The CTQMC results show a Mott insulating regime at half-filling with DCA
with two or more sites. The spatial correlations taken into account by DCA stabilise
the insulating state at interaction strengths smaller than U = 12t, which is the onset of
the insulating behaviour at half-filling for single-site DMFT [166]. The actual size of the
plateau depends not only on the number of patches but also on their form. This can
be seen when comparing the results for the different four-site patchings. The two-site,
the alternative four-site as well as the eight-site (not displayed), and 16-site DCA (not
displayed) all show similar but slightly different sizes of the Mott plateau. We will discuss
later why the conventional four-site patching is not able to represent a similar behaviour.
Far away from the Mott plateau, both on the hole and electron doped site, all calculations
show the same density, and the physical behaviour is well described by single-site DMFT.
This indicates no momentum dependence for nearly empty or full systems, which is in
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Figure 6.4: Total electron density n dependent on the chemical potential µ for single-site DMFT
and different multi-site DCA calculations. Our DMRG results (dots) are in agreement with the
CTQMC results (lines) from Gull et al. [53]. The temperature difference between the two methods
explains why DMRG predicts a slightly larger gap in the Mott insulating regime. However, all
patch choices show the same behaviour for high electron- and hole-doping and differ close to
half-filling dependent on the number of patches.

agreement with previous studies [9].
Our DMRG results show very good agreement with all CTQMC results. We only see
small deviations next to the Mott plateau where DMRG predicts a slightly larger gap.
This is reasonable since DMRG produces results at T = 0 while the finite temperature
in CTQMC causes the onset of metallic behaviour for slightly smaller chemical potentials
due to thermal excitations.
Fig. 6.5 and Fig. 6.6 show the partial occupation of the patches nk as a function of
the chemical potential µ and as a function of the total filling n. Our DMRG+DMFT
results are, again, in full agreement with the CTQMC results by Gull et al. [53] and show
slightly larger gaps in correspondence with the total filling of the lattice. The behaviour
of nk(n) in Fig. 6.6 shows that with the alternative four-site patching the (π, 0) sector
is incompressible while the other sectors can still be doped. This feature is reproduced
for higher cluster DCA calculations with CTQMC and thus can be considered as robust.
This physical behaviour is a signature of a sector-selective regime [167], and it is interesting
to see that the conventional patching does not exhibit this feature. Gull et al. [53] explain
this by the missing possibility to distinguish the nodal and anti-nodal excitations in the
conventional patching. The inset of Fig. 6.6 shows clearly that the sector-selective regime
is only located on the hole-doped site, which is in agreement with higher cluster CTQMC
results.
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Figure 6.5: Occupation in the different patches nk as a function of the chemical potential µ
(left) and the total electron density n (right) for two-site DCA. We observe very good agreement
between CTQMC (lines) and DMRG results (dots). Despite the fact that the bands have different
fillings, they behave qualitatively similar. The slightly larger gap for DMRG compared to CTQMC
observed in Fig. 6.4 can also be seen in the partial occupations.

While the sector-selective regime is not present in the conventional four-site patching,
the region where the (π, 0) patch is half-filled is found for both patchings. Gull et al.
suggest that the conventional (π, 0) patch has to represent the pseudogap behaviour of
the (π, 0) patch as well as the physics of the gapless nodal quasiparticles located at the
Fermi surface. The alternative patching avoids this problem by locating the nodal portion
of the Fermi surface in the (0, 0) patch.
Our DMRG+DMFT results are again in excellent agreement with the CTQMC+DMFT
results while being computed extraordinarily fast. For the single-site and two-site case we
observe convergence in less than ten iterations and runtimes for each iteration of around
15 minutes in the case of single-site DMFT and 40 minutes in the case of two-site DCA
while using six cores. Unfortunately, in the four-site calculations the runtime per iteration
increases from five to 15 hours. However, convergence is, in general, still observed in less
than ten iterations, which results in total runtimes for DMFT of around a day or two
with ten cores.
The runtime for the four-site cases can probably be reduced by not using momentum
quantum numbers. For the ground state search we observe similar runtimes when using
or not using momentum quantum numbers. But for the time evolutions using these
additional quantum numbers slows down the computation by roughly a factor of two.
However, using these quantum numbers is vital for finding the global ground state reliably,
which means they cannot simply be abandoned. Rather, we suggest to determine the
global ground state with the help of the momentum quantum numbers. Afterwards,
the ground state has to be computed a second time without the quantum numbers in
the pre-determined symmetry sector. Unfortunately, this second step can require several
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Figure 6.6: Occupation in the different patches nk as a function of the chemical potential µ
(upper panels) and the total electron density n (lower panels) for four-site DCA with the con-
ventional (left) and the alternative patching proposed by Gull et al. [53] (right). We observe very
good agreement between CTQMC and DMRG results. Most notably, a range of chemical poten-
tials exist where the (π, 0) patch is half-filled. The partial occupation nk as a function of the total
density n reveals qualitative differences between the conventional and alternative patching. In
the latter, the (π, 0) remains at half-filling for a range of densities while the other patches accom-
modate the electrons. The inset shows the zoomed-in area of the plateau. Using the conventional
patching this behaviour is missing.

attempts due to the previously described convergence problems of the DMRG calculations
in multi-site DCA calculations. However, for four-site DCA this should still be a net-win
in computation times since a single DMRG run only takes a minute.
We want to mention here that we observed convergence issues for the four-site calculation
with standard patching and µ = −2. The issues were neither related to overfitting nor
was DMFT oscillating between two solutions. Up to now, we were not able to deduce
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what exactly causes the seemingly random behaviour.

6.4 DCA with Eight Sites
Several features mentioned in the previous sections, like sector-selective doping and pseu-
dogap behaviour, are only observed for DCA calculations with four or more patches. Since
DCA is not a perturbation theory, some features can occur for a certain number of patches
and vanish again if the patch number is increased. Thus, it is important to have results
for at least eight-site DCA to have an indication if features observed with four patches
are robust physical properties of the model or only artefacts due to the DCA description.
The development of runtimes from DMFT to multi-site DCA indicates that calculations
with eight patches could show dangerously long iteration times mainly caused by very slow
time evolutions. A closer investigation shows that we already encounter problems when
trying to determine the global ground state. For single-site DMFT with Lb = 9, two-site
DCA with Lb = 8, and both four-site DCA calculations with Lb = 5 a bond dimension of
m = 2000 is enough to ensure very well converged ground state energies with DMRG. But
in the case of eight patches with Lb = 2 even a bond dimension of m = 6400 seems not
to be sufficient. The left panel of Fig. 6.7 shows the energy difference ∆E = Em − E6400
between calculations with different bond dimensions m and a reference calculation with
m = 6400 states. For eight patches we still observe an energy change of about 10−2 when
increasing the bond dimension from m = 3200 to m = 6400. This is in strong contrast to
single-site and two-site calculations where from m = 2000 on, numerically, no differences
can be observed. And even in the four-site cases we can only observe small changes below
10−7 for bond dimensions larger than m = 2000. Since ∆E(m) decays nearly linearly in
the semi-logarithmic plot, this indicates that for eight-site DCA at least a bond dimen-
sion of m = 6400, or an even larger one, is needed to obtain well converged ground state
energies.
The sufficiently precise computation of the ground state is very important for the calcula-
tion of the Green’s function, which is strongly dependent on the ground state energy EGS
due to the exponential e−(H−EGS)τ . If EGS is not correct by a large margin, the self-energy
Σ(iωn) = G−1

0 (iωn) − G−1(iωn) can behave unphysical or can simply cause convergence
problems for DMFT. Because EGS only influences the interacting G−1(iωn), but not the
non-interacting Green’s function G−1

0 (iωn), each imprecision of EGS is directly interpreted
by DMFT as an interaction effect. DMFT can exhibit convergence problems since these
imprecisions can be different in each iteration.
If symmetries are used during the ground state search, neighbouring symmetry sectors can
have ground state energies that lie very close to each other. Dependent on the Hamiltonian
parameters, in some models we observed differences between the ground state energies of
different sectors of the order of 10−3. If ground state energies have a large uncertainty due
to insufficient bond dimensions, it can happen that a ground state of a wrong symmetry
sector is identified as the global ground state. This clearly leads to convergence problems
or unphysical behaviour of DMFT.
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Figure 6.7: Left panel: Difference ∆E(m) = Em − E6400 between the ground state energy Em
obtained with bond dimension m and a reference calculation with m = 6400 for different numbers
of patches. For two-site DCA and single-site DMFT, DMRG with a bond dimension of m = 2000
clearly finds the global ground state up to machine precision (differences around 10−16). For four-
site DCA a reasonably good approximation of the ground state can be obtained with m = 2000.
The energy difference to a calculation with m = 6400 is roughly 10−7 and therefore still small.
However, for the eight-site DCA systems the difference between m = 2000 and m = 6400
is already 10−2, which definitely will cause problems for DMFT. Right panel: Runtimes for
a single ground state search in a single symmetry sector for single-site DMFT and different
DCA calculations with m = 2000. Additionally, the runtime to compute all Green’s function
components G(τ) in the first and last iteration of DMFT is shown. The numerical effort scales
exponentially with the cluster size.

Further, we also observe a strong dependence of our DMRG results on the initial state
used for the ground state search. It is nearly impossible to obtain the same ground state
energy in separate calculations with more than two or three digits being equal. Typically,
we observe this behaviour if symmetries, which are present in the Hamiltonian, are not
implemented in DMRG. So far, we use the SU(2)-symmetry of the conserved length of the
total spin of the system ||~S||2, the U(1)-symmetry of the conserved number of particles N ,
and the Z4×Z4-symmetry of the conserved momentum. We doubt that this is the reason
for this problem because we cannot find any other symmetries in the model Hamiltonian.
It seems that the Hubbard-interaction of eight DCA sites in momentum space (compare
Eq. (6.1.12)) is so complicated, that DMRG, in general, has problems to converge to the
correct ground state. In fact, the bond dimension of the Hamiltonian itself is mHam = 48,
which is quite large compared to typical Hamiltonian dimensions of around ten. This
indicates that there are many interactions present.
In most cases, reordering the lattice problem can improve the ground state energies com-
pared to unordered systems with the same bond dimension significantly. In general, this
is also the case for this model. However, we do not observe that the reordering improves
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the convergence properties. Contrarily, since the optimal order of the lattice is obtained
from a DMRG calculation itself, the reordering depends strongly on the convergence of
the used DMRG state. Since that is already questionable, the reordering is not very effi-
cient. Moreover, it increases the fluctuations of the obtained ground state energies even
more. How to solve these problems is a topic for further research.
Apart from the convergence properties of the ground state search, runtimes are the second
biggest problem of eight-site DCA. In the right panel of Fig. 6.7 we compare runtimes for
a single ground state calculation as well as for the time needed to compute the complete
time evolution of a single DMFT iteration for single-site DMFT and different orders of
DCAs. In general, we see that computing the Green’s function roughly takes 100-500
times longer than a single DMRG run for all cluster sizes. Unfortunately, for eight-site
DCA a single ground state search with m = 2000 already runs longer than ten minutes.
Putting aside the fact that this bond dimension is probably not large enough, the runtime
for the time evolution could increase to one up to three days.
An increase of the bond dimension, which seems utterly necessary, would definitely ex-
ceed reasonable computation times for DCA. We also want to emphasise that we only
considered the case of Lb = 2 bath sites, which is the smallest non-trivial bath size and
most probably not enough to describe the hybridisation of this model correctly.
Without significant improvements of the ground state search and time evolution by a bet-
ter setup of the problem through basis transformations of the Hamiltonian or by a suitable
topology change of the MPS, eight-site DCA will not be solvable with DMRG+DMFT.

6.5 Intermediate Interaction Strengths
In this last section we want to focus on intermediate interaction strengths. CTQMC has
severe problems reaching this regime at low temperatures with large DCA clusters since
it is based on an expansion from large or small interaction strengths. From a physical
point of view, the region of U = 9t is particularly important since it is believed to be
more relevant for systems that exhibit high-temperature superconductivity.
With DMRG as an impurity solver there exist no systematic problems when increasing
the interaction strength. It is more important whether an increase of U will increase the
entanglement of the system significantly such that calculations will become unfeasible.
Fig. 6.8 shows the cumulated runtimes for different numbers of patches and different
interaction strengths. We chose chemical potentials µ = 2t, µ = 3t, and µ = 4t so the
filling of the lattice n for the different interactions strengths U = 7t, U = 9t, and U = 11t
is roughly similar (see Fig. 6.9). Thus, we can expect similar physical behaviour of the
models and can deduce the influence of U on the runtimes. While for the single-site
DMFT calculations we used six cores in parallel, all other calculations were performed
with ten cores. For all calculations it can clearly be seen that the choice of U does not
influence the runtimes. The small differences in runtimes probably originate from the
slightly different fillings. The biggest influence on the runtime of the whole calculation is
how many patches are chosen for the system and how they are distributed. It is interesting
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Figure 6.8: Runtimes cumulated over all DMFT iterations j until convergence for single-site
DMFT (upper left), two-site DCA (upper right), four-site DCA with standard patching (lower
left) and alternative patching (lower right) for different interaction strengths U . We have chosen
different chemical potentials µ = 2t, µ = 3t, µ = 4t for the different interaction strengths
U = 7t, U = 9t, U = 11t such that the filling of the lattice is similar in all cases. Thus, we can
expect similar physics and can deduce the influence of U on the runtimes. We see that in all cases
the runtimes are quite similar, independently of the interaction strength, and that the number
of iterations until convergence is reached is independently of the choice of U , too. However, the
form and location of the patches influence the runtimes significantly, as the comparison of the
different four-site patchings reveals.

to see that the alternative patching for four-site DCA results in runtimes roughly being 1.5
times longer compared to the standard patching. Also important for the runtime is how
many iterations are needed for convergence, which fluctuate at most by a single iteration
and seem to be independent of the interaction strength and number of patches, too. Of
course, other choices of µ, which correspond to other physical regimes, can change the
number of iterations needed for convergence drastically. In the case of four-site DCA with
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Figure 6.9: Filling of the lattice n as a function of the chemical potential µ for different inter-
action strengths U for single-site DMFT (upper left), two-site DCA (upper right) and four-site
DCA with standard (lower left) and alternative patching (lower right). For the single-site case all
interaction strengths show a metallic behaviour, but the developing Mott insulator plateau around
the half-filled lattice can already be observed. In all DCA calculations the Mott insulating regime
is present and grows for larger U both on the hole and the electron-doped site.

the alternative patching this can lead to runtimes of several days. However, choosing a
higher interaction strength does not increase runtimes and numerically requires the same
effort as calculations at U = 7t, which is quite encouraging for DMRG+DMFT.
Now we can focus on Fig. 6.9, which shows the total filling of the lattice for different
interaction strengths and different numbers of patches. In each panel the cluster size
is fixed and U is varied. While single-site DMFT obviously is approaching the Mott
insulating regime, which sets in at U = 12t, in the DCA calculations the Mott insulating
regime is already present and grows on the electron-doped as well as on the hole-doped
site with an increasing interaction strength.
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Figure 6.10: The total filling n dependent on the chemical potential µ for U = 9t (left) and
U = 11t (right) similar to Fig. 6.4 for U = 7t. The size of the Mott insulating plateau around
half-filling is similar for all multi-site DCA calculations.

For single-site DMFT and two-site DCA we observe no convergence problems at all. In
contrast, in the case of four-site DCA with the conventional patching with U = 9t and
µ = −3t, no convergence was possible. This seems to be similar to the U = 7t and µ = −2t
case, which also showed convergence problems and had a similar filling. This suggests that
these convergence problems are connected to physical properties in this regime. Further
investigation is needed to understand this behaviour and its origin. However, for all other
choices convergence was achieved without any problems.
Similar to Fig. 6.4, where CTQMC and DMRG data for U = 7t was shown, Fig. 6.10
compares the lattice filling for U = 9t and U = 11t obtained with different cluster
sizes. Thus, it can easily be seen that, similar to U = 7t, the DCA calculations agree
approximately on the size of the Mott insulating regime. The qualitative behaviour of
n(µ) is the same for all choices of the interaction strength.
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6.6 Summary
We showed that DMRG+DMFT is able to obtain results at T = 0 for the Hubbard model
for single-site DMFT, two-site DCA, and four-site DCA. The outcomes are in perfect
agreement with the CTQMC results obtained by Gull et al. [53] despite small differences
due to finite temperature effects. The total runtime for all calculations is very small and
ranges from one hour for single-site DMFT to two days in the case of of four-site DCA,
which makes DMRG+DMFT highly competitive with CTQMC.
Furthermore, we showed that the different patches in multi-site DCA not only differ in
their physical observables, like the filling of the bands nk, but also show significantly
different behaviour during the fitting procedure. The hybridisation of patches that are
nearly filled completely or are nearly empty are fitted better than hybridisations of patches
that are nearly half-filled, when using the same amount of parameters. In the future, this
feature can be used to reduce the numerical effort for multi-site DCA calculations with
large clusters by using different bath sizes for different patches. In this context we also
discussed overfitting and its influence on convergence properties of DMFT.
While CTQMC is not able to produce results for the Hubbard model with intermediate
interaction strengths at sufficiently low temperatures and for high numbers of patches,
we were able to show that DMRG+DMFT can easily access this regime. The results
obtained in this thesis for intermediate interaction strengths are the first DMFT results
for multi-site clusters at T = 0. Most notably, they show that runtimes and convergence
properties are independent of the interaction strength, which is in strong contrast to the
increasing problems CQTMC encounters in this regime.
Unfortunately, with the current implementation it seems that eight-site DCA systems
are not treatable with DMRG+DMFT for any kind of interaction strengths. Even the
computations of the ground states in the smallest non-trivial system with Lb = 2 bath
sites are showing convergence problems as well as unreliable und imprecise results, already.
At the same time, the runtime of a single DMRG ground state is of the order of ten
minutes, which leads to runtimes for a whole DMFT iteration of several days. For these
very complex systems it can be worthwhile to use variational ansatzes to determine the
optimal basis representation or the most suitable topology of the system. Similar ideas
used to reorder systems show a significant effect on runtimes for highly entangled systems.
Eight-site DCA calculations are very important in the DCA analysis to evaluate whether
properties found in four-site calculations are robust physical features or simply artefacts
of the dynamical cluster approximation.
Nevertheless, we showed that DMRG+DMFT can reproduce CTQMC+DMFT results
in comparably short times up to four-site DCA and at the same time has access to
regimes where CTQMC has severe and systematic problems due to the sign problem.
After further progress is made to run eight-site DCA calculations at reasonable times, the
low-temperature physics of the Hubbard model with intermediate interaction strengths
can immediately be investigated with respect to momentum properties in the context of
DMFT.
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Chapter 7

A Real Material Study: Sr2VO4

Many transition metal oxides are believed to undergo a Mott metal-insulator transition [168]

as chemical composition, temperature or pressure is changed. This is especially important
since it is believed that strong electron-electron correlations near these Mott insulating
regimes give rise to interesting physical phenomena like high transition-temperature super-
conductivity, high Curie-temperature magnetism or electric-field driven metal-insulator
transitions [11]. Therefore, it is very important, from a theoretical and practical point of
view, to understand the physics of the Mott insulating regimes in order to to predict
which material compounds exhibit desired correlated electron effects.
We will focus in this chapter on the layered perovskite Sr2VO4. They belong to the
family of compounds Srn+1VnO3n+1, which share a fixed number of electrons. In the op-
posite limits for the configuration number n one obtains the material Sr2VO4 (for n = 1),
which is experimentally measured to be a small gap correlation-driven insulator [54], and
the compound SrVO3 (for n = ∞), which is experimentally measured to be a moder-
ately correlated metal [169]. DFT+DMFT calculations based on the Hubbard-Kanamori
Hamiltonian though yield metallic solutions in both cases for any reasonable choice of
electron-electron interaction strengths.
Single-site DMFT overestimates the true value of the critical interaction for the Mott
metal-insulator transition in many effectively two-dimensional materials by about a fac-
tor of two [55]. This, for example, also happens for LaTiO3 and LaVO3

[170]. Therefore,
Ab initio predictions for the early transition metal oxides, in general, are known to be
difficult [55].
In 2015, Wolf et al. [129] showed that DMRG as an imaginary time impurity solver for
DMFT in the case of a completely degenerate three-band model with the Hubbard-
Kanamori Hamiltonian produces very good results compared to CTQMC in very short
computation times. In agreement with previous calculations, DMFT produces a metallic
solution for small values of the interaction strength U and a Mott insulating phase for
higher U . Additional calculations with a two-site dynamical cluster approximation result
in a Mott metal-insulator transition at much lower interaction strength than with single-
site DMFT. Wolf et al. proposed that a similar effect could also be observed in the real
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Sr2VO4 material, which would lead to better agreement between experiment and theory.
Since Sr2VO4 is described by an effective three-band model with Hubbard-Kanamori
interaction, a two-site DCA approach results in six impurity sites with a complicated
interaction Hamiltonian. At low temperature, these kind of models are problematic for
nearly all impurity solvers out of various reasons. Since each impurity comes with its
own bath, the system size is too large for ED. Even after recent improvements [18], six
impurity sites still provide an insurmountable problem for NRG while for CTQMC the
sign problem prevents solutions at low enough temperatures. After the first promising
test by Wolf et al., DMRG seems to be the candidate of choice due to its fast performance
and quantitative good results compared to CTQMC for three-band models with two-site
DCA.
However, the step from a purely theoretical model that has completely degenerate bands
and a simply dispersion relation only including nearest-neighbour interaction to a real
material study is challenging. The entanglement properties, the behaviour of the model
with respect to quantum numbers and convergence properties of DMFT change dramati-
cally if the band degeneracy is partly broken and if an approximation of a real dispersion
relation is used. This leads to a significantly higher computational effort than expected
from the initial tests made by Wolf et al.. Several of the improvements introduced in this
thesis were necessary to obtain results for two-site DCA calculations of Sr2VO4.
To understand this behaviour we want to discuss the Hubbard-Kanamori Hamiltonian
for Sr2VO4 and the symmetries being present in single-site DMFT and two-site DCA in
the beginning of this chapter. Afterwards, we will show results obtained with single-site
DMFT for the dependence of the lattice filling on the chemical potential and interaction
strength. This allows to identify the onset of Mott-insulating behaviour for Sr2VO4. Fi-
nally, we will present DCA results and show that reintroducing non-local interactions via
two-site DCA does not change the critical interaction strength significantly.

7.1 The Hubbard-Kanamori Hamiltonian
In this section, we want to discuss the model Hamiltonian used to describe the three-
dimensional material Sr2VO4 in the thermodynamic limit of having an infinitely large
lattice. The first thing we notice from DFT calculations is that the material is built
up of two dimensional layers that are interacting very weakly with each other. This is
also reflected in the band structure being effectively two-dimensional and having no kz-
dependence. Thus, we can focus on describing the physics of the two dimensional layers,
which will result in a reasonable good description of the three-dimensional compound
Sr2VO4.
Vanadium (denoted with the chemical symbol V) is a transition element with 23 electrons
in total. The outermost occupied orbitals of Vanadium are the 4s and 3d orbitals. Since
they are only partly occupied, they are the most important ones for defining the electronic
properties in every chemical compound. Thus, we only have to consider the two electrons
located in the 4s orbital and the three electrons located in the 3d orbitals. In the layered
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Figure 7.1: Left panel: Dispersion relation ε(kx, ky) for Sr2VO4 along the direct path from
Γ to X and finally to M in the 1st Brillouin zone obtained from density functional theory
calculations (yellow lines) [171]. As described in the text, the interaction between different two-
dimensional layers in z-direction is neglected. This reduces the dispersion relation to be essen-
tially kz-independent. Neglecting the very weak coupling between the Strontium atoms will allow
to describe the problem with only three-bands. The corresponding band structure is plotted with
green dashed lines. Right panel: Dispersion relation obtained when only taking nearest and next-
nearest neighbour interaction into account. We see very good agreement with the full dispersion
relation, i.e. with the green dashed lines of the left panel. This will also cause the bands xz and
yz to be degenerate.

perovskite Sr2VO4, Vanadium is forming a chemical compound together with the Oxygen
(O) and Strontium atoms (Sr). The oxygen atoms have a very high negativity and will
fill their shells with the four electrons of the Strontium atoms and with four electrons
from the Vanadium atom. Consequently, only one electron will remain in the five bands
of Vanadium. Since in our compound the outer lying orbitals 4s have more overlap with
the electron orbitals of the neighbouring atoms, their energy is increased with respect to
the inner lying 3d orbitals. Thus, the properties of Sr2VO4 can be described pretty well
by only considering the three energetically lower lying 3d orbitals.
Furthermore, DFT predicts the strength of the coupling terms between the Strontium
atoms to be smaller than 0.03eV, which is, compared to the interaction strengths present
for Sr2VO4, very small. Neglecting them reduces the six-band problem to a much simpler
three-band problem, which lowers computations times dramatically. This affects the band
structure of the model as illustrated in the left panel of Fig. 7.1. Therein, the full band
structure of the six-band problem (solid lines) is compared to the band structure that
emerges from the decoupled three-band problem (dashed lines) in the first Brillouin zone
next to some high symmetry points. The strongest differences can be observed close to
the Γ-point but overall the differences are very small or non-existing. Thus, neglecting the
coupling between the Strontium atoms still allows to describe the behaviour of Sr2VO4
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reasonably well.
The orbitals of each lattice site have a finite overlap with the orbitals of sites that are
nearest neighbours, next-nearest neighbours, or with sites that are located even farther
away. Sometimes, finite overlaps can be obtained with twenty or more different lattice
sites. These overlaps define the single-particle hopping elements of the lattice model and
when Fourier transformed, they give rise to the band structure displayed in Fig. 7.1. The
model can be further simplified by only taking into account on-site energies and nearest
as well as next-nearest neighbour hopping terms. The resulting band structure for this
case is plotted in the right panel of Fig. 7.1 and has very good agreement with the full
three-band model. This simplification reduces the numerical effort for DMFT and DCA
calculations further while having no significant effect on the physical quantities we will
compute.
The actual mathematical form of the single-particle Hamiltonian Ĥkin and the interaction
Hamiltonian Ĥint depends on the type of functions that are chosen to describe the orbitals.
Because of the geometrical structure of the unit cell of Sr2VO4, which is slightly distorted,
the cubic harmonics reflect the symmetry of the problem best and are well suited to
describe the 3d orbitals of Sr2VO4 in an efficient way. Since the three orbitals of Vanadium
are described by the cubic harmonics labeled with xz, yz and xy, we will also label the
bands of our lattice problem accordingly. At this point we want to introduce the creation
d†α and annihilation operators dα of an electron in orbital α ∈ [xz, yz, xy]. By grouping
them into vectors ~d = (dxz dyz dxy)T and ~d † = (d†xz d†yz d†xy), the single-particle Hamiltonian
can be defined as Ĥkin = ~d †Hkin~d, with Hkin being a 3× 3 matrix

Hkin =

 εxz(kx, ky) ∼ 0 0
∼ 0 εyz(kx, ky) 0
0 0 εxy(kx, ky)

 , (7.1.1)

and

εα(kx, ky) = εα + 2tα,1x cos(kx) + 2tα,1y cos(kx) + 4tα,2 cos(kx) cos(ky), (7.1.2)

the dispersion relation of band α. Because of the spatial structure of the material, the
bands xz and yz are degenerate. We neglect the coupling between those two bands, i.e.
the off-diagonal terms in Hkin indicated with ∼ 0, since it is of the order O(10−3)eV, which
is smaller by at least an order of magnitude than the values for the nearest neighbour
hoppings txz,1x = tyz,1y = −0.24eV, txz,1y = tyz,1x = −0.05eV, txy,1x = txy,1y = −0.28eV
and for the next-nearest neighbour hoppings txz,2 = tyz,2 = 0.01eV, txy,2 = −0.09eV. The
average energy of the bands is given by εxz = εyz = 5.01eV and εxy = 5.05eV. All values
have been rounded to two digits.
In the case of single-site DMFT, only a single site is taken out of the infinitely large lattice
and used as the impurity of an auxiliary problem, which has to be solved self-consistently.
Thus, the single-particle Hamiltonian

Ĥsp = −
∑
α,σ

(µ− εα)n̂α,σ, (7.1.3)
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simply consists of the on-site energies εα, which are resulting from the dispersion relation
Eq. (7.1.2) and determine the average energy of each orbital. These energies are shifted
by the chemical potential µ, which can be used to control the number of electrons in the
lattice. n̂α,σ = d†α,σdα,σ denotes the occupation number operator for electrons with spin σ
in orbital α.
The interactions in the layered perovskite Sr2VO4 are well described with the three-band
Hubbard-Kanamori model, which is defined as

Ĥint =
∑
α

Un̂α,↑n̂α,↓ +
∑
α>β

[U ′n̂α,σn̂β,−σ + (U ′ − J)n̂α,σn̂β,σ]

−
∑
α 6=β

J(d†α,↓d
†
β,↑dβ,↓dα,↑ + d†β,↑d

†
β,↓dα,↑dα,↓ + h.c.), (7.1.4)

where J denotes the interaction strength for the Hund’s coupling and pair-hopping terms,
U determines the strength of the intra-orbital and U ′ the strength of the inter-orbital
Coulomb interaction. α and β are indices running over the three band labels. We will
adopt the conventional choice of U ′ = U−2J , which follows from symmetry considerations
for the d-orbitals in free space and also holds, at least for reasonably symmetric situations,
for solids [172]. The local state space of each impurity site consists of four states, namely
being empty, having a single electron with spin-up or spin-down, or being doubly occupied.
The interaction Hamiltonian can be written in a more compact form if we define the total
number of particles N̂ , the total spin ~S and the orbital isospin ~Lα

N̂ =
∑
ασ

n̂ασ, (7.1.5)

~S = 1
2
∑
α

∑
σσ′

d
†

ασ~τσσ′dασ′ , (7.1.6)

L̂α = i
∑
β,γ

∑
σ

εαβγd
†

βσdγ,σ. (7.1.7)

εαβγ is denoting the Levi-Civita-symbol and ~τσσ′ the Pauli matrices. With these definitions
the Hamiltonian can be rewritten as

Ĥint = (U − 3J)N̂(N̂ − 1)
2 − 2J ~S2 − 1

2J
~L2 + 5

2JN̂. (7.1.8)

The impurity problem is completed by introducing a non-interacting bath describing the
rest of the infinitely large lattice that is coupled to the impurity sites. Since no single-
particle hopping exists between the impurity sites describing the orbitals, each impurity
site is only coupled with its own non-interacting bath

Ĥhyb =
∑
l,α,σ

Vl,α,σd
†

α,σcl,α,σ + h.c., (7.1.9)

Ĥbath =
∑
l,α,σ

εl,α,σc
†

l,α,σcl,α,σ, (7.1.10)
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where c†l,α,σ creates a fermion on the bath site l associated with impurity α, Vl,α,σ describes
the coupling strength of the bath site l with the corresponding impurity α and εl,α,σ is
the on-site energy of the bath site l. This is similar to the multi-site DCA calculations of
the Hubbard model and is reflected in diagonal hybridisations, self-energies, and Green’s
functions. As described chapter 5 about DMFT, the on-site energies and coupling ele-
ments are obtained via independent fits of the diagonal elements of the hybridisation.
The complete impurity Hamiltonian Ĥimp, used for all following single-site DMFT calcu-
lations, is the sum of all previous Hamiltonian terms

Ĥimp = Ĥint + Ĥsp + Ĥhyb + Ĥbath. (7.1.11)

This Hamiltonian exhibits several symmetries:

• In Eq. (7.1.4) it is easy to see that Hint conserves the total number of particles N
since it consists only of density operators n̂, pair-hopping, and spin-flip terms. Also
Ĥhyb and Ĥbath conserve the total particle number, trivially. This U(1)-symmetry
is described by the quantum number N ∈ N0 with a maximum of two times the
lattice sites. The corresponding operator N̂total measuring N is

N̂total =
∑
j,σ

n̂j,σ, (7.1.12)

where j runs over all sites of the impurity problem.

• At the same time, the z-component of the total spin ~S is conserved. Hopping
terms conserve this quantity clearly. The spin-flip terms in Hint always flip the spin
of two particles in different bands in the opposite direction and thus conserving
the z-component. We denote the corresponding quantum number to this U(1)-
symmetry with Sz ∈ [−S, S], where S is the quantum number denoting the total
spin ||~S||2 = S(S + 1). We can measure Sz with

Ŝz,total = 1
2
∑
j

(n̂j,↑ − n̂j,↓). (7.1.13)

• It can also be shown that the Hubbard-Kanamori Hamiltonian not only conserves
the z-component but also the length of the total spin ||~S||2. This corresponds to
a SU(2)-symmetry described by the quantum number S = 1

2n with n ∈ N0 via
||~S||2 = S(S + 1). It is preferable to use the SU(2)-symmetry rather than the
U(1)-symmetry because bond dimensions and computation times can be reduced
significantly. The total spin operator ~S2 is defined as ~S2 = ∑

j
~S2
j with

~S2
j = 1

2
∑
σσ′

d
†

j,σ~τσσ′dj,σ′ , (7.1.14)

as in Eq. (7.1.6) with the difference that now all sites j of the lattice are included.
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• Additionally, the total angular momentum ||~L||2 = L(L + 1) with L ∈ N0 is con-
served by Hint. Unfortunately, we cannot use the SO(3)-symmetry of the conserved
total angular momentum, since it is not defined locally. Note that we need a clearly
defined change of all implemented quantum numbers if we apply a single creation or
annihilation operator on any site of the lattice independent of the state of the other
sites. On top, since the symmetry is not defined locally on the impurity sites, the
introduction of bath sites makes an implementation impossible. Electrons can move
into the bath and therefore reduce the angular momentum on the impurity sites but
at the same time it is not clear how they should increase L on the non-interacting
bath sites. We cannot even write down an operator that can measure ||L||2 in the
whole system.

• A single impurity with its associated bath sites describes a single band of the system.
The interaction between the different bands takes place only on the impurity sites
via density terms (i.e. the first four terms of Eq. (7.1.4)), pair spin-flip, and two-
particle hoppings of Hint. There is no single-particle hopping present. Thus, the
parity of the number of particles in each band is conserved. In total, this is a
Z2 ×Z2 ×Z2 symmetry since the parity for each of the three bands has to be fixed
with a single quantum number. The operator measuring the parity P̂α of the band
α can be defined as

P̂α =
∑
j,σ

n̂j,σ mod 2, (7.1.15)

with j belonging to the band α. A zero indicates an even number while a one
indicates an odd number of particles in the band. We will refer to the three combined
symmetries as the band parity of the system.

It is highly recommended to use all quantum numbers that can be implemented for the
following DMFT calculations, not just to reduce the numerical effort of the computations
but also to improve convergence properties of the ground state search. Especially the
band symmetry ensures that global ground states can be found reliably. This is similar
to the four-site DCA calculations of the Hubbard model, where using the momentum
quantum numbers is vital for determining the global ground states in each iteration.
After we discussed the Hamiltonian for DMFT calculations of Sr2VO4 in detail, we now
want to focus on the two-site DCA case. As in chapter 6, we introduce two patches P ~Ki

in the first Brillouin zone with representative momentum vectors ~K0 = (kx, ky) = (0, 0)
and ~K1 = (kx, ky) = (π, π) for each patch, respectively. The patches are defined as in
Fig. 5.12 and are each represented by a single impurity site. Since the Brillouin zone is
separated for each band, we end up with six impurity sites. From now on, we will label
the impurities with K,α, where α denotes the band and K = 0 and K = 1 the patches
~K = (0, 0) and ~K = (π, π), respectively. We will also denote all operators acting in
momentum space with a tilde to make the notation more clear. With the same reasoning



134 7.1. THE HUBBARD-KANAMORI HAMILTONIAN

as during the derivation of the Hubbard model Hamiltonian for multi-site DCA, we obtain
the single-particle Hamiltonian

Ĥmom
sp = −

∑
K,α,σ

(µ− εα + t̃K,α)ñK,α,σ, (7.1.16)

in momentum space with

t̃K,α =
∑
~k∈PK

ε~k,α, (7.1.17)

denoting the shift of the chemical potential that ensures the correct high-frequency be-
haviour of the Green’s functions. In momentum space the hybridisation is completely
diagonal and each impurity site couples only to its own non-interacting bath. Thus, we
can write the Hamiltonians describing the non-interacting baths and the coupling between
impurity sites and bath sites as

Ĥmom
bath =

∑
l,K,α,σ

εl,K,α,σc
†

l,K,α,σcl,K,α,σ, (7.1.18)

Ĥmom
hyb =

∑
l,K,α,σ

Vl,K,α,σd̃
†

K,α,σcl,K,α,σ + h.c.. (7.1.19)

In the real-space representation of multi-site DCA the usual Hubbard-Kanamori interac-
tion Ĥint is present on each site since the momentum patches are chosen such that they all
have the same weight. The momentum-space representation of the interaction Hamilto-
nian is obtained via a Fourier transform of the impurity sites according to the definitions
in Eq. (5.4.12), Eq. (5.4.13) and Tab. 5.2. Written out, the transformations are defined
as

d†0,α,σ = 1√
2

(d̃†0,α,σ + d̃†1,α,σ), (7.1.20)

d†1,α,σ = 1√
2

(d̃†0,α,σ − d̃†1,α,σ). (7.1.21)

We will not present the exact form of the interaction Hamiltonian in momentum space
Ĥmom

int since it will be highly complicated and will not provide any new insights. However,
the whole real-space Hamiltonian for two-site DCA is given by the sum

Ĥmom
imp = Ĥmom

int + Ĥmom
sp + Ĥmom

hyb + Ĥmom
bath . (7.1.22)

As already mentioned, the real-space representation of the interaction Hamiltonian is
simply Ĥint acting on both real-space sites

Ĥreal
int =

∑
K,α

Un̂K,α,↑n̂K,α,↓ +
∑

K,α>β

[(U − 2J)n̂K,α,σn̂K,β,−σ + (U − 3J)n̂K,α,σn̂K,β,σ]

−
∑

K,α6=β
J(d†K,α,↓d

†
K,β,↑dK,β,↓dK,α,↓ + d†K,β,↑d

†
K,β,↓dK,α,↑dK,α,↓ + h.c.). (7.1.23)
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The single-particle Hamiltonian Fourier transformed into real space features a hopping
term between the impurity sites

Ĥreal
sp = −

∑
K,α,σ

(µ− εα)n̂K,α,σ +
∑

K 6=K′,α
tαd
†
K,α,σdK′,α,σ, (7.1.24)

which, as in the case of the Hubbard model, originates from the on-site energy differences
of the impurity sites in momentum-space

tα = 1
2
(
t̃0,α − t̃1,α

)
. (7.1.25)

The Hamiltonians describing the baths and the coupling between bath sites and impurity
sites transformed into real space

Ĥreal
bath =

∑
l,K,α,σ

εl,K,α,σc
†

l,K,α,σcl,K,α,σ, (7.1.26)

Ĥreal
hyb =

∑
l,δ,α,σ

Vl,δ,α,σd̃
†

δ,α,σcl,δ,α,σ + h.c.

=
∑
l,α,σ

Vl,1,α,σ
2 (d†1,α,σ + d†2,α,σ)cl,1,α,σ +

∑
l,α,σ

Vl,2,α,σ
2 (d†1,α,σ − d†2,α,σ)cl,2,α,σ + h.c.,

(7.1.27)

show that each bath site is coupled to both impurity sites of the same band. Summing
up all terms, we can write the complete real-space Hamiltonian as

Ĥreal
imp = Ĥreal

int + Ĥreal
sp + Ĥreal

hyb + Ĥreal
bath. (7.1.28)

For each DCA calculation it has to be decided whether the momentum- or real-space
representation of the Hamiltonian is used. While the computation of the new hybridisa-
tion at the end of an iteration is always performed in momentum space, because Green’s
functions, self-energies, and hybridisations are diagonal in this representation, the ground
state search and the computation of G(t) can be done in either one of the two repre-
sentations. This choice can have dramatic influence on computation times, convergence
properties, and usable symmetries.
While the quantum numbers for the total number of particles N , the length of total spin
S, as well as for the band parity can be used in both representations, only in momentum
space the Z4 × Z4-symmetry, which is describing the conserved total momentum of the
system, can be implemented. See chapter 6 for a detailed discussion of this symmetry
and the reason why it only can be implemented in a momentum-space representation.
From DCA calculations of the Hubbard model we know that DMRG can find the global
ground state of two-site DCA calculations without using momentum quantum numbers
quite reliably when using an artificial tunnelling Hamiltonian that breaks the symmetry.
Convergence problems of DMRG only start to occur when the Brillouin zone is separated
into more patches (e.g. four or more) and the Hilbert space starts to break up into orthog-
onal subspaces. In general, this causes also convergence problems of DCA calculations
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and should be avoided.
However, it seems that also for two-site DCA calculations of the three-band Hubbard-
Kanamori model the momentum quantum numbers are not necessary to determine the
global ground state in each DCA iteration reliably. Additionally, we observed that the
real-space representation of the Hubbard-Kanamori Hamiltonian exhibits better entangle-
ment properties. Runtimes per iteration can be increased up to a factor of two compared
to calculations in momentum space. It is for these these reasons that all results in this
chapter for two-site DCA are obtained with the Hamiltonian in real-space representation.

7.2 Single-Site DMFT and Two-Site DCA
As for the Hubbard model, we first have to evaluate how many bath sites are needed to
obtain reasonable good discretisations of the hybridisations while avoiding overfitting and
overlong runtimes. If not stated otherwise, presented results are obtained for a system
with interaction strength U = 6eV, Hund’s coupling strength J = 0.7eV and a chemical
potential µ = 9eV. DMRG and DCA are performed with a maximal bond dimension
m = 2000 and the time evolution with a truncated weight w = 10−9. We use TDVP to
time evolve the excited states ψ(τ) until τmax = 100. Each calculation is initialised with
the hybridisation of the non-interacting system.
The left panel of Fig. 7.2 shows the cost function values χ for the degenerate xz- and
yz-band as well as for the xy-band. We display results for the first and last iteration of
a single-site DMFT calculation. The cost function values decay exponentially with an
increasing number of bath sites Lb for both bands and are fitted better in the first than
in the last iteration. Out of experience with the Hubbard model, we expect the onset of
overfitting when χ is of the order 10−8. We expect this to happen for the xz-band with
Lb = 7 or more bath sites and in fact, for all bath sizes larger than Lb = 6 we observe
convergence problems. It seems that the overfitting in the first iterations prevents DMFT
from approaching close enough to the converged solution, where fit results with the same
number of bath sites should be worse and no overfitting should be present for Lb = 7 and
Lb = 8 at least. Therefore, starting the calculations with a hybridisation that is closer
to the converged solution could allow to obtain results with slightly more bath sites. A
typical choice would be a hybridisation obtained from a converged calculation with Lb = 6
bath sites and the same µ or a converged hybridisation for a slightly different chemical
potential. However, since the behaviour of χ is strongly influenced by the choice of µ,
we will use Lb = 5 bath sites per impurity for all following DMFT calculations to avoid
convergence problems. Then, the resulting cost function values in the last iteration before
convergence are of the order of 10−5, which is sufficient for well converged results.
In the case of two-site DCA we are not able to use more than Lb = 2 bath sites per
impurity because runtimes are increasing too fast. While for Lb = 2 computing a single
time step is taking about t = 2min, the runtime increases to t = 30min per time step for
Lb = 3. We want to mention at this point that it is very useful to reorder DCA systems
with respect to the global ground state. Thus, the runtime of the time evolution can be
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Figure 7.2: Left panel: Cost function values χ of the different bands in DMFT in the first
(circles) and last (squares) iteration depending on the number of bath sites Lb. We observe an
exponential decay of χ in the case of DMFT. While for small bath sizes the cost function value
is, in general, smaller in the last than in the first iteration, we observe the opposite behaviour
for a large number of bath sites. DMFT calculations with more than six bath sites were not
converging due to overfitting. Right panel: Cost function values of different bands and patches
in the case of two-site DCA. We display results obtained in the last iteration before convergence
for U = 6t, Lb = 2, and for different choices of µ. The actual size of χ is varying a lot and
depends strongly on the physical behaviour.

reduced by up to a factor of three. For the cost of calculating the mutual information
and computing a new ground state, both together typically taking less than a minute, the
runtime of a single iteration of two-site DCA with Lb = 2 can be reduced from 15 to five
hours. But even with these significant improvements, calculations with Lb = 3 bath sites
are out of the scope.
The right panel of Fig. 7.2 shows the cost function values of different bands and patches
obtained in the last iteration before convergence of two-site DCA calculations with Lb = 2
for different choices of µ. First of all, the obtained cost function values vary a lot in a very
large range χ ∈ [10−2, 10−9]. The best values are obtained for chemical potentials where
the system is a Mott insulator. This can be seen best in comparison with Fig. 7.4, which
we will discuss in more detail later on. In these cases Lb = 2 is more than sufficient to
obtain very good DCA results. Additionally, very close to these regimes the cost function
values are of the order 10−5, which, by experience, leads to reasonable well converged
results with respect to the bath size. The worst cost function values are obtained when
the system behaves metallic between the Mott plateaus. In these cases, χ is of the order
10−2 to 10−3, which typically means that larger bath sizes still result in small changes of
the Green’s functions and physical observables. Since the hybridisations of the xz-band,
in general, seem to be fitted worse than the ones of the xy-band, we suggest to add a
single bath site more to the xz-band in those regimes. This could be sufficient to obtain
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Figure 7.3: Left panel: Filling of the two degenerate bands n1 = n2, the third band n3 and
the total system ntot dependent on the chemical potential µ for U = 4eV obtained with single-
site DMRG. The system exhibits a half-filled Mott-insulating state for µ ∈ [10, 13] and behaves
metallic otherwise. The global ground state has different symmetry quantum numbers S over the
range of chemical potentials µ. While in the Mott-insulating regime we observe S = 1.5, directly
next to this regime the quantum number changes to S = 1 and afterwards to S = 0. Right panel:
Same picture as in the left panel but for U = 6eV. The system exhibits additional Mott-insulating
regimes at n = 1/3, n = 2/3, n = 4/3, and n = 5/3 filling. The insulating regimes for 1/3 and
5/3 filling are accompanied with the total spin quantum number S = 0.5. In the regimes where
the spin quantum number is not specified we obtained S = 0. We observe oscillating behaviour
of DMFT in the regions of n = 1/3, n=2/3 and n = 5/3 filling as well as for µ = 8. In those
cases we show both solutions, one with a dashed and the other with a solid line.

well converged DCA results also for the metallic regimes and it could also prevent the
runtimes of two-site DCA calculations from increasing too dramatically. Unfortunately,
this was out of the scope of this thesis and should be pursued in further research. There-
fore, all DCA results presented in this chapter are obtained with Lb = 2 and should, at
least around the Mott plateaus, be precise and reliable.
Now, we can focus on the results for single-site DMFT. Fig. 7.3 shows the total filling
ntot of the lattice, the filling of the two degenerate bands nxz = nyz, and the filling of the
third band nxy for different chemical potentials. The left panel shows results for U = 4eV
where only at half-filling a Mott insulating plateau can be seen. Interestingly, the quan-
tum number for the length of the total spin ||~S||2 = S(S+1/2) is varying strongly. While
we observe S = 1.5 when the system is a Mott insulator and S = 1 directly next to this
regime, for all other choices of µ the global ground state of the system is located in the
S = 0 symmetry sector. This can be explained with the form of the Hubbard-Kanamori
Hamiltonian, which mimics the Hund’s rules known from atomic physics. They state that
first the total spin of all electrons in a shell is maximised and afterwards the angular
momentum. This is reflected in the Hamiltonian Ĥint by the fact that the energy of the
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system is minimised the most by the term −2J ~S2 and by a smaller amount by −1
2J
~L2.

Therefore, if possible, the system prefers to align the spins of all electrons on the impurity
sites. Consequently, if the three impurity sites are half-filled, this corresponds to a total
spin quantum number S = 1.5 on the impurity sites. Next to the Mott insulating regime,
the non-degenerate band xy is populated first when doping the system with electrons or
holes, respectively. The degenerate bands xz and yz are still close to fully occupied, which
corresponds to states with two electrons on the impurity sites and thus a spin quantum
number S = 1. The remaining system, consisting only of non-interacting bath sites, has
no preference for any kind of spin alignment and has spin quantum number S = 0. There-
fore, the spin quantum number of the whole system is determined only by the physics
taking place on the impurity sites.
When increasing the interaction strength to U = 6eV , additional Mott plateaus form at
fillings n = 1/3, n = 2/3, n = 4/3, and n = 5/3, which can be seen in the right panel
of Fig. 7.3. This is expected to happen for all multi-band Hubbard models at sufficiently
large interaction strengths due to the Hubbard-term U/2 · N(N − 1) in the Hubbard-
Kanamori Hamiltonian (see Eq. (7.1.8)). Since N = ∑

i ni is the sum of expectation
values of the number particles in all bands, there will be Mott plateaus for every integer
number of particles. Normalised by the number of bands, Mott plateaus are observed at
every fractional filling.
While for U = 4eV all calculations converge without having any kind of problems, for
U = 6eV and some choices of µ DMFT oscillates between two different solutions. This
behaviour occurs only in the Mott insulating regimes with n = 1/3, n = 2/3, and n = 5/3
filling and prevents DMFT from converging. For those cases we show both solutions in
Fig. 7.3, one indicated by a dashed and the other by a solid line.
In the Mott insulating regime with n = 1/3 filling one solution of DMFT seems to be a
state where the non-degenerate xy band is half filled and the degenerate bands are empty.
The other solution exhibits degenerate ground states that differ in their band symmetry
quantum numbers. In the one case only the impurity corresponding to the xz band,
and in the other case only the one corresponding to the yz band, is half-filled while the
other impurities are empty. Since the two bands are completely degenerate, both ground
states have the same energy. Due to the different quantum numbers, these two states are
orthogonal to each other and form a basis for the degenerate ground state space. Any
kind of combination of these two states can be the true global ground state realised by the
system. We choose to take the symmetric combination of both states as the global ground
state for the DMFT calculation as described in chapter 5. With this choice, both bands
show the same filling n = 0.5, and DMFT oscillates between both described solutions
back and forth. The same behaviour is observed for the Mott plateau at n = 5/3 filling.
The calculations for the Mott plateau with filling n = 2/3 show similar behaviour with the
difference that two particles have to be distributed over three bands. One of the DMFT
solutions has half-filled, degenerate bands and an empty non-degenerate band. The other
solution is a superposition of two degenerate ground states where the non-degenerate band
and either the xz or the yz band is half-filled.
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Choosing only one of the degenerate ground states, or not using the band symmetry at all
and leaving DMRG to determine its own ground state superposition, leads to a seemingly
chaotic behaviour of DMFT with no oscillations but also no convergence. Therefore, we
assume that using the band symmetry and superposing the degenerate ground states is
the correct ansatz, especially since the oscillating behaviour between the two rivalling
DMFT solutions seems very robust. Breaking the degeneracy of the xz and yz band by
shifting the on-site energies of their impurity sites by ±0.01eV does not prevent DMFT
from oscillating between two solutions. Only with a relatively large shift of ±0.1eV DMFT
converges again. However, this shift is so large that the non-degenerate band xy, which
had the highest energy before the shift, now has an energy that is located between the
energies of the previously degenerate bands. Thus, the whole structure of the problem
has changed. In this case, the DMFT solutions show that the band with lowest energy
is filled first until it is half-filled. Then, with an increasing chemical potential, the band
with next-lowest energy and finally the band with the highest energy is populated until
it is half filled.
We changed the bond dimension of the ground state search, the precision for the time
evolution, the number of bath sites, we examined mixing iteration results and starting
from a nearby converged solution, but none of these approaches changed this behaviour.
This suggests that these oscillations are the result of the physics of the model. Contrarily,
calculations in the Mott plateau with n = 4/3 filling have converged smoothly without
showing any kind of convergence problems. This is an indication that the oscillations are
not entirely determined by the physics of the model and perhaps are influenced by param-
eter choices or implementation details. By finding the exact origin of this qualitatively
different behaviour, it could be possible to get rid of the oscillations in the other plateaus.
This is definitely a topic of further research. However, it is important to note that the
total filling of the lattice ntot for both oscillating solutions is very similar and seems to fit
well into the global behaviour of n(µ). Therefore, we assume that these oscillations do
not influence the comparison with DCA and the following conclusions significantly.
We now want to focus on the DCA results for n(µ) shown in Fig. 7.4. We want to empha-
sise at this point that the two sites of each band in real-space two-site DCA calculations
describe sites of the original lattice. Therefore, it is not surprising to find that they are
degenerate and have the same occupation numbers. Thus, we show only the total filling
ntot and the filling of the bands nxz and nxy in Fig. 7.4. In both cases, U = 4eV and
U = 6eV, we observe qualitatively similar behaviour compared to the DMFT results.
The U = 4eV calculations only exhibit a Mott insulating plateau at half-filling and for
U = 6eV we observe additional Mott insulating regimes for fractional filling. The sizes
of the plateaus are very similar. The biggest difference is that the global ground state in
all DCA calculations is located in the S = 0 sector for all choices of µ. Because of the
two-site DCA calculation in real space, the system consists of six impurity sites that can
be grouped into two sets of three. On each set the Hubbard-Kanamori Hamiltonian acts
independently and aligns the electrons such that the energy is minimised. However, the
two sets of electrons can always be aligned in different directions, which corresponds to a
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Figure 7.4: Left panel: Filling of the two degenerate bands n1 = n2, of the third band n3 and of
the total system ntot depending on the chemical potential µ for U = 4eV obtained with two-site
DCA. We only show the occupation of the first site in each band since for two-site DCA in
real space both sites of the same band show the same occupation. The system exhibits a single
half-filled Mott-insulating state and behaves metallic otherwise. Right panel: Same picture as
in the left panel but for U = 6eV. The system exhibits additional Mott-insulating regimes at
n = 1/3, n = 2/3, n = 4/3, and n = 5/3 filling. We observe oscillating behaviour more often
than for DMFT but in similar regions. To be precise, DMFT oscillates between two solutions
for µ ∈ [6, 7, 8, 9, 11, 12, 24]. In those cases we show both solutions, one with a dashed and the
other with a solid line.

total spin quantum number S = 0. This is energetically favourable because it imposes less
constraints on the movement of the electrons than a high spin quantum number would
do. This implies that the electrons on neighbouring sites in the infinite lattice are aligned
in different directions, similar to an antiferromagnetic order.
In Fig. 7.5 we compare the total filling n obtained with DMFT and DCA for both inter-
action strengths. For U = 4eV we see small differences, which could originate from the
very small bath Lb = 2 for the DCA calculation. While the fillings obtained with DCA
are slightly smaller than the ones obtained with DMFT on the hole-doped site, on the
electron-doped site the behaviour is reversed. This can also be seen for the case U = 6eV.
This is contradicting the observations in the Hubbard model where an increasing inter-
action strength was shifting the filling more towards the Mott plateau for both doping
regimes. However, the differences between the results of the two methods are so small
that they could change when using larger bath sizes for DCA.
We suspect that the Mott insulating plateaus are slightly larger for the DCA calculations,
but to make a definite statement more data points are needed. The DMFT calculations
predict that the Mott plateaus at fractional filling form at an interaction strength Uc
between U = 4eV and U = 6eV. From the current DCA results we can judge that the
interaction strength Uc is still located inside of this region. Even if two-site DCA increases
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Figure 7.5: Left panel: Comparison of the total filling obtained with DMFT (blue circles) and
DCA (green squares) for U = 4eV (left) and U = 6eV (right). For U = 4eV we see only small
differences between the two methods, which could get even smaller when using bigger bath sizes
for DCA. For U = 6eV the Mott-insulating phases sets in at slightly larger values of µ in the case
of DCA. It also seems that the Mott plateaus are slightly larger for DCA and that the increase
of the filling between the plateaus is steeper.

the Mott plateaus slightly for U = 6eV, the changes are too small to indicate a change
of Uc by more than a couple of 0.1eV from DMFT to DCA. Therefore, the difference of
nearly a factor of two [170] between the critical interaction strength Uc determined with
DMFT and determined in experiments cannot be reduced with DCA. This indicates that
the momentum dependence that is neglected in DMFT and partly captured with DCA is
not the reason for this discrepancy.
Of course, larger bath sizes can still influence the DCA results and increase the change
in Uc but we doubt that the effect will be noteworthy. In the case of the Hubbard model
large differences were observed between the qualitative behaviour of two-site and four-site
DCA. This could also be true for Sr2VO4. Thus, DCAs with larger cluster sizes could still
lead to the desired change in Uc. However, since the differences between single-site DMFT
and two-site DCA in the case of the Hubbard model were already much larger than the
ones we observe for Sr2VO4, we assume that the momentum dependence of Sr2VO4 is
quite small. Since we already observe very long runtimes for the two-site DCA calcu-
lations with very small bath sizes, right now four-site DCA calculations on three-band
models are out of reach for DMRG+DMFT without significant improvements. While a
change of the MPS topology to MET or MST should allow to calculate two-site DCA
with larger bath sites, it is questionable if these changes are sufficient to make four-site
DCA calculations feasible.
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7.3 Summary
In this chapter we discussed the real material Sr2VO4, which can be described by a
three-band model with lattice filling n = 1/3 and a Hubbard-Kanamori interaction.
While experiments show that this material is a small gap correlation-driven insulator [54],
DMFT calculations predict metallic behaviour for any reasonable choice of interaction
strengths [55]. When using DMRG+DMFT, we obtain a Mott-insulating plateau at half
filling for the interaction strengths U = 4eV and U = 6eV, but additional Mott insulating
site plateaus of significant size only for U = 6eV. Thus, the critical interaction strength
Uc defining the Mott metal-insulating transition for Sr2VO4 is located between those two
interaction strengths.
Previously, Wolf at al. showed that using two-site DCA on an artificial, completely degen-
erate three band model can lower the critical interaction strength significantly [17]. This
was impressive since up to that point three-band models were not accessible in the con-
text two-site DCA with any kind of impurity solver at low temperatures. They suggested
that reintroducing non-local interactions via DCA could also lower Uc for real materials
like Sr2VO4. However, we observed that introducing a real band structure and lifting the
degeneracy of the three bands partly increases the complexity of these three-band mod-
els dramatically compared to the benchmark calculations made by Wolf et al.. Only by
introducing additional symmetries, improving time evolutions, and reordering the MPS
systems, we were able to obtain results with DMFT and DCA on the imaginary axis at
temperature T = 0. With these improvements we were able to show that two-site DCA
and single-site DMFT results only differ slightly, and that the critical interaction strength
Uc, which defines the onset of Mott insulating behaviour for Sr2VO4, is either not lowered
at all or only changed by a couple of 0.1eV. Therefore, missing non-local interactions in
single-site DMFT do not explain the differences between theory and experiment.
However, we want to emphasise that these results are obtained with very small bath sizes
Lb = 2. Thus, they still can change slightly with larger system sizes. Unfortunately,
already for these relatively small impurity systems the runtime of one DCA iteration is
close to a day, which results in runtimes of a couple of days up to a week until convergence
is achieved. This is relatively fast considering that no other impurity solver can produce
results for this model at T = 0. Adding a single bath site more per impurity increases
the runtime up to 20 days per iteration, which is too large for any reasonable calculation.
However, Sr2VO4 shows a similar behaviour as we observed in the Hubbard model. For a
good fit of the hybridisations the necessary number of bath sites per impurity decreases
when separating the Brillouin zone into more patches. While the effect in the Hubbard
model decreases the bath sizes by one site per impurity when doubling the number of
patches, the effect in the three-band model seems to be stronger. We showed that es-
pecially in or very close to Mott insulating regimes Lb = 2 bath sites are completely
sufficient to obtain very good hybridisation fits. This is promising for further studies on
multi-band problems with multi-site DCA since it could partly counter the exponential
growth of computation times we observed.
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Chapter 8

Spin-Orbit coupling: Sr2RuO4

In this chapter we want to discuss the perovskite oxide compound Sr2RuO4. Sr2RuO4 has
attracted attention [173] since it was shown to exhibit non-conventional superconductiv-
ity [174] in 1994. It has been of interest both to experimentalist [175,176] and theorists [177,178]
due to its nearly perfect Fermi liquid behaviour [179], its characteristics of a Hund’s metal [12]
and its superconducting ground state. Of special interest is the interplay between of spin-
orbit coupling (SOC) and electronic correlations. SOC has significant influence on the
topography of the Fermi surface [56,180], leads to a mixed orbital character of the individual
fermi surface sheets and was shown to lead to an effective correlation-enhancement of the
spin-orbit coupling by approximately a factor of two [56,181].
More precisely, while the influence of SOC is well understood for weakly correlated met-
als [182], Mott insulators [183], and heavy-fermion compounds [184], the situation for interme-
diate interaction strengths is less clear. Ruthenate is a notable example of this regime.
Several physical properties are well described by Sr2RuO4 being a Hund’s metal, which
indicates that SOC plays no important role for this material. But it cannot be neglected
since the SOC interaction strength λ ≈ −0.11eV is comparable to the Hund’s coupling
J = 0.4eV [185] and much larger than low-energy scales like the Fermi-liquid temperature
TFL or spin-degrees of freedom. Accordingly, angle-resolved photoemission spectroscopy
experiments [186] and DMFT [56] calculations emphasise the influence of SOC. Therefore,
understanding the explicit nature of SOC and its influence on the physics of correlated
metals is still an interesting field of research.
Beside the physical importance of this material and despite the fact that Sr2RuO4 was
studied extensively with DFT+DMFT since 2000 [177], methodologically Sr2RuO4 is espe-
cially interesting for us. Up to now DMFT, combined with any impurity solver, cannot
access the Fermi-liquid regime if SOC is present: Spin-orbit coupling creates single-particle
hopping between different bands and therefore off-diagonal components in hybridisations,
self-energies, and Green’s functions. For CTQMC this results into a severe sign problem
at low temperatures [56,181]. In the case where DMRG or ED are used as impurity solvers
for DMFT, this requires fitting matrix-valued functions to setup the impurity Hamiltoni-
ans. To our knowledge, there are no efficient schemes to do this.
In this chapter we tackle the problem and first discuss the influence of SOC on our
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DMRG+DMFT scheme. Important effects are the breaking of the SU(2)-symmetry of
the conserved length of the total spin of the system as well as the occurrence of matrix-
valued physical quantities. In this context we will introduce a suitable basis to minimise
the negative influences of those changes on the DMFT calculation and discuss how to
fit matrix-valued hybridisations effectively. To check the quality of DMRG as an im-
purity solver and the correct parameter options for this model, we will first compare
CTQMC and DMRG results without SOC. We end the chapter by discussing our re-
sults obtained with SOC at temperature T = 0, which confirm frequency independence
in the off-diagonal components of the self-energy for small frequencies, and an effective
correlation-enhancement of SOC by about a factor two.

8.1 The Hamiltonian
Sr2RuO4 is described by an effective three-band model with the Hubbard-Kanamori
Hamiltonian:

Ĥint = −
∑
α,σ

(µ− εα)n̂α,σ + (U − 3J)N̂(N̂ − 1)
2 − 2J ~S2 − 1

2J
~L2 + 5

2JN̂, (8.1.1)

as introduced for Sr2VO4 in chapter 7. Similar to Sr2VO4, we can restrict ourselves to
consider only the three 3d orbitals from the Ruthenium atom. The Hamiltonian can be
written in second quantisation by choosing or example the cubic harmonics as a basis set.
With this choice the operators are defined as

N̂ =
∑
ασ

n̂ασ, (8.1.2)

~S = 1
2
∑
α

∑
σσ′

d
†

ασ~τσσ′dασ′ , and (8.1.3)

L̂α = i
∑
σ

3∑
β,γ=1

εαβγd
†

βσdγ,σ. (8.1.4)

Here, ~τ are the Pauli matrices, d†α,σ and dα,σ creation and annihilation operators for the
three relevant orbitals indicated with α ∈ {123} and spin σ, and εαβγ the Levi-Civita
tensor with the convention ε1,2,3 = 1. The three relevant orbitals correspond to the cubic
harmonics labeled with α ∈ {yz, xz, xy}.
The spin-orbit coupling of Sr2RuO4 is described by

ĤSOC = λ~̂si · ~̂Li, (8.1.5)

where the spin ~̂si of each electron couples first with its own angular momentum ~̂Li with
strength λ. To express the SOC-term in the basis of the cubic harmonics, we switch
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from summing over all electrons on the impurity sites, to summing over all orbitals and
introduce the corresponding single-particle states |φβ,σ〉. Thus, we can write ĤSOC as

ĤSOC = ~̂s · ~̂L =
∑
σ,σ′

∑
α,β,γ

〈φγ,σ′ |ŝαL̂α|φβ,σ〉 |φγ,σ′〉〈φβ,σ|. (8.1.6)

After inserting 1 = ∑
δ,σ′′ |φδ,σ′′〉〈φδ,σ′′ | between the operators und using the definitions

from Eq. (8.1.2) we can deduce

~̂s · ~̂L =
∑

σ,σ′,σ′′

∑
α,β,γ,δ

〈φγ,σ′|ŝα|φδ,σ′′〉〈φδ,σ′′ |L̂α|φβ,σ〉 |φγ,σ′〉〈φβ,σ|

= 1
2
∑

σ,σ′,σ′′

∑
α,β,γ,δ

τ
(α)
σ′,σ′′δγ,δiεα,δ,βδσ′′,σ |φγ,σ′〉〈φβ,σ|

= i

2
∑
σ,σ′

∑
α,β,γ

τ
(α)
σ′,σεα,γ,β |φγ,σ′〉〈φβ,σ|

= i

2
∑
α

τ
(α)
σ,σ′εα,β,γ d

†
β,σdγ,σ′ . (8.1.7)

In the last line we relabelled γ ↔ β, replaced the vectors |φγ,σ′〉 and 〈φβ,σ| with their
corresponding annihilation and creation operators, and followed the convention that all
indices occurring twice have to be summed over.
The spin-orbit term in this basis has the following disadvantages:
• Obviously the SOC flips the spin of an electron and thus breaks the U(1)-symmetry

of the conserved z-component of the total spin and the SU(2)-symmetry of the con-
served length of the total spin ||~S||2. This will increase computation times because
less symmetry quantum numbers can be used, and will also cause all quantities to
be spin-dependent.
Thus, we have to compute the full 6 × 6 single-particle Green’s function G. This
is in contrast to the case of Sr2VO4, where we could compute only the spin-up
components and assumed similarity to the spin-down components.

• The SOC is a single-particle hopping term between the orbitals, which can be seen
in Eq. (8.1.7). Written in matrix form

ĤSOC = ~d †HSOC~d, (8.1.8)

where we order the orbitals like ~d =
(
dxy,↑ dxy,↓ dyz,↑ dyz,↓ dxz,↑ dxz,↓

)T
, and

the spin-orbit interaction term takes the form

HSOC =



0 0 0 −λ
2 0 − iλ

2
0 0 λ

2 0 − iλ
2 0

0 λ
2 0 0 iλ

2 0
−λ

2 0 0 0 0 − iλ
2

0 iλ
2 − iλ

2 0 0 0
iλ
2 0 0 iλ

2 0 0


. (8.1.9)
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Consequently, the SOC generates non-zero off-diagonal terms in the non-interacting
single-particle Green’s function, the interacting single-particle Green’s function, the
hybridisation, and the self-energy. In fact, in all these cases, exactly the same com-
ponents as in the SOC term are non-zero.
The main consequence of off-diagonal terms is that the fitting procedure is dramat-
ically complicated. Instead of fitting decoupled diagonal elements, a matrix-valued
function has to be fitted. This is a complex and not well understood problem that
we will discuss in detail in section 8.3. Additionally, the self-consistency equations
and the computation of the hybridisation of the next DMFT iteration have to be
evaluated for the whole matrix-valued quantities and can not be parallelised over the
diagonal elements as before. However, the numerical effort of the latter is negligible
compared to the fitting procedure of the hybridisation.

• The single-particle coupling between the orbitals together with the spin-flip intro-
duces additional entanglement between the orbitals and the corresponding bath
sites, especially since the interaction between the orbitals is now also present on a
single-particle level. This will increase the computation time of the time evolution
significantly.

To define the model completely a dispersion relation describing the single-particle be-
haviour is needed, which we obtained from a DFT calculation with the TRIQS [187] toolkit
based on the WIEN2k package [188]. In Fig. 8.1 the band structure of Sr2RuO4 with (right)
and without (left) spin-orbit coupling is displayed. It is clear that only three bands are
relevant for the low-energy physics due to their vicinity to the Fermi surface. In the
next step maximally localised Wannier functions are generated out of the band structure,
which roughly match the form of the xy, xz and yz orbitals of the cubic harmonics. By
Fourier transforming the overlaps of the orbitals of different lattice sites, one can compute
a dispersion relation for the three relevant bands, which is plotted as red lines in Fig. 8.1.
The agreement between the DFT band structure and the computed dispersion relation
for the three-band model is perfect for the three relevant bands.
Now the interaction Hamiltonian can be combined with the environment, as in the pre-
vious cases

Ĥ = Ĥint + ĤSOC + Ĥhyb + Ĥbath,

Ĥhyb =
∑

l,α,β,σ,σ′
Vl,α,β,σ,σ′d

†

β,σ′cl,α,σ + h.c., and

Ĥbath =
∑
l,α,σ

εl,α,σc
†

l,α,σcl,α,σ. (8.1.10)

As before εl,α,σ denotes the on-site energy of the l-th bath sites associated with the im-
purity site α with spin σ. Since the Hamiltonian describing the spin-orbit coupling is
complex, we also consider complex single-particle hopping elements Vl,α,β,σ,σ′ between an
impurity β with spin σ′ and the bath site l associated with impurity α with spin σ. As in
the case of the real-space DCA of the Hubbard model, bath sites can couple with multiple
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Figure 8.1: Band structure of Sr2RuO4 obtained with DFT without (left) and with (right) spin-
orbit coupling. Only three bands are important for the low-energy physics since they are the
only bands intersecting the Fermi surface εk = 0. The red lines are representing the dispersion
relation used in the impurity model. It is obtained by generating maximally localised Wannier
functions out of the DFT band structure. As they match the form of the cubic harmonics orbitals,
the can be used to calculate the overlaps between different overlaps. Fourier transforming the
results generates an effective dispersion relation. The agreement in both cases is very good.

impurity sites due to the off-diagonal elements of the hybridisation.
All calculations for Sr2RuO4 are performed with an interaction strength U = 2.3eV, a
Hund’s coupling J = 0.4eV and, if spin-orbit coupling is considered, with an SOC strength
λ = −0.11eV.
With the completely defined Hamiltonian and dispersion relation in hand the DMFT cal-
culations can in principle be started. But it is worthwhile to discuss the representation
of the model in the basis of the cubic harmonics in more detail first.
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8.2 Basis Transformation
We already mentioned some of the negative consequences of the SOC term on the DMFT
calculation. In this and the next section we want to show how to diminish some of those
consequences. Basically, we will show that for this model it is convenient to switch to
the common eigenbasis of the total angular momentum ~̂J2, its z-component Ĵz, ~̂L2, and
~̂S2. We will call this basis the J-basis for the rest of this chapter. In the J-basis we can
rewrite the SOC with the help of

~̂J2 = (~̂s+ ~̂L)2

= ~̂s2 + ~̂L2 + ~̂s~̂L+ ~̂L~̂s

= ~̂s2 + ~̂L2 + ŝxL̂x + ŝyL̂y + ŝzL̂z + L̂xŝx + L̂yŝy + L̂z ŝz

= ~̂s2 + ~̂L2 + 2L̂z ŝz + L̂+ŝ− + ŝ+L̂−

= ~̂s2 + ~̂L2 + 2~̂s~̂L, (8.2.1)

where working in the common eigenbasis of ~̂S2, ~̂L2 and Ĵz = L̂z + ŝz allows us to commute
the operators ~̂L and ~̂S and also L̂z and ŝz. Rearranging the equation results in

~̂s~̂L = 1
2( ~̂J2 − ~̂L2 − ~̂S2), (8.2.2)

which shows that the SOC is diagonal in the J-basis. To investigate whether the J-basis
is better suited to describe Sr2RuO4, we need to study the whole Hamiltonian in the new
basis. Thus, we need to derive the transformation T from the basis of the cubic harmonics
to the J-basis.
The best way to do this is to decompose the transformation T into

T = TYm1 →JT
−1
Ym1 →X1c , (8.2.3)

i.e. a transformation T−1
Ym
l
→Xlc from the cubic harmonics Xlc to the spherical harmonics

Y m
l and a transformation TYm

l
→J from there to the J-basis, defined via Clebsch-Gordan

coefficients.
For Sr2RuO4 the same argumentation is valid as for Sr2VO4 (see chapter 7), i.e. the
three orbitals, which are described by the Hubbard-Kanamori Hamiltonian, belong to the
five d-orbitals with angular momentum quantum number l = 2. The dz2 and the dx2−y2

orbitals have a much higher energy in compounds like Sr2VO4 and Ru2VO4 because of
their vicinity to the oxygen atoms and thus are typically neglected. Unfortunately, in
the naive approach the transformation T has to include all five orbitals of X2c, which
corresponds to ten states due to the spin-degrees of freedom. Since all states of X2c are
coupled in the J-basis, none of the basis states can be neglected. Instead of having to
consider six states in the X2c basis, we would have to consider ten states in the J-basis.
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However, the trick is to find a transformation that is valid on the subspace of the three
relevant orbitals in the basis of the cubic harmonics, which would lead to only six states
in the J-basis. To find this transformation, we first define the transformation TYm2 →X2c

from the spherical harmonics Y m
2 to the cubic harmonics X2c with angular momentum

quantum number l = 2. m denotes the quantum number for the z-component of the
angular momentum and goes from l to −l in integer steps. Thus, the transformation is
given by

dz2

dxy
dyz
dxz
dx2−y2

 =



0 0 1 0 0
i√
2 0 0 0 −i√

2
0 i√

2 0 i√
2 0

0 1√
2 0 −1√

2 0
1√
2 0 0 0 1√

2


︸ ︷︷ ︸

≡TYm2 →X2c


Y −2

2
Y −1

2
Y 0

2
Y 1

2
Y 2

2

 , (8.2.4)

and the transformation for l = 1 from Y m
1 to X1c bypzpx

py

 =


0 1 0
1√
2 0 −1√

2
i√
2 0 i√

2


︸ ︷︷ ︸
≡TYm1 →X1c

Y
−1

1
Y 0

1
Y 1

1

 . (8.2.5)

Comparing the components of the angular momentum operators in the basis of the cubic
harmonics for l = 2

LY
m
2
x = TYm2 →X2c



0 1 0 0 0
1 0

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


T−1
Ym2 →X2c =


0 0 −i

√
3 0 0

0 0 0 i 0
i
√

3 0 0 0 i
0 −i 0 0 0
0 0 −i 0 0

 , (8.2.6)

LY
m
2
y = TYm2 →X2c



0 i 0 0 0
−i 0 i

√
3
2 0 0

0 i
√

3
2 0 i

√
3
2 0

0 0 i
√

3
2 0 i

0 0 0 −i 0


T−1
Ym2 →X2c =


0 0 0 −i

√
3 0

0 0 i 0 0
0 −i 0 0 0
i
√

3 0 0 0 −i
0 0 0 i 0

 ,

(8.2.7)

LY
m
2
z = TYm2 →X2c


−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

T−1
Ym2 →X2c =


0 0 0 0 0
0 0 0 0 −2i
0 0 0 −i 0
0 0 i 0 0
0 2i 0 0 0

 , (8.2.8)
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with the operators for l = 1

LY
m
1
x = TYm1 →X1c


0 1√

2 0
1√
2 0 1√

2
0 1√

2 0

TYm1 →X1c =

0 0 −i
0 0 0
i 0 0

 , (8.2.9)

LY
m
1
y = TYm1 →X1c


0 i√

2 0
−i√

2 0 i√
2

0 −i√
2 0

TYm1 →X1c =

0 −i 0
i 0 0
0 0 0

 , (8.2.10)

LY
m
1
z = TYm1 →X1c

−1 0 0
0 0 0
0 0 1

TYm1 →X1c =

0 0 0
0 0 i
0 −i 0

 , (8.2.11)

it can be seen that in the relevant subspace for Sr2RuO4 (the cubic harmonics basis set
X2c without the elements dz2 and dx2−y2) the angular momentum operators are the same
up to a minus sign. Therefore, if we restrict ourselves to the subspace of the relevant
three orbitals, the operators can be transformed with −TYm1 →X1c according to a fictitious
angular momentum l = 1 with an additional minus sign.
The transformation from the spherical harmonics to the J-basis can be derived via
Clebsch-Gordan coefficients



q 3
2
q 1

2
q− 1

2
q− 3

2
d 1

2
d− 1

2


=



0 0 0 0 1 0
0 0

√
2
3 0 0 1√

3
1√
3 0 0

√
2
3 0 0

0 1 0 0 0 0
0 0 −1√

3 0 0
√

2
3

−
√

2
3 0 0 1√

3 0 0


︸ ︷︷ ︸

≡TYm1 →J



Y −1
2,↑
Y −1

2,↓
Y 0

2,↑
Y 0

2,↓
Y 1

2,↑
Y 1

2,↓


. (8.2.12)

With quantum numbers l = 1 and s = 1/2 for each single-particle state in Y m
1 , the J-basis

has quantum numbers j = l + s = 3/2 (described by operators q) and j = l − s = 1/2
(described by the operators d) with corresponding jz values running from j to −j in
integer steps. Combining the transformations from X1c to Y m

1 and to the J-basis, we
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obtain the complete transformation

q 3
2
q 1

2
q−1

2
q−3

2
d 1

2
d−1

2


=



0 0 −1√
2 0 −i√

2 0√
2
3 0 0 −1√

6 0 −i√
6

0
√

2
3

1√
6 0 −i√

6 0
0 0 0 1√

2 0 −i√
2

−1√
3 0 0 −1√

3 0 −i√
3

0 1√
3

−1√
3 0 i√

3 0


︸ ︷︷ ︸

≡T=TYm1 →J
T−1
Ym1 →X1c



dxy,↑
dxy,↓
dyz,↑
dyz,↓
dxz,↑
dxz,↓


. (8.2.13)

After we derived the transformation to the J-basis, we want to mention some advantages
this representation offers. First, it can be shown that the SOC is a diagonal matrix in
the new basis either by transforming the SOC term ĤSOC from Eq. (8.1.9) to the J-basis
with T or by evaluating Eq. (8.2.2) directly in the J-basis with the eigenvalues J = 3/2,
jz = 1/2, L = 1 and S = 1/2

(
~s~L
)J

=



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

2 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


. (8.2.14)

Since the SOC interaction strength for Sr2RuO4 (λ = −0.11eV) is comparatively small
compared to the on-site energies of the orbitals ε ≈ −5, the spin-orbit coupling will,
in general, not generate much entanglement. Unfortunately, the pair-hopping and pair
spin-flip terms in the Hubbard-Kanamori Hamiltonian will consist of two-particle hop-
ping terms between all impurity sites due to the structure of the transformation. The
only constraint is that the z-component Jz of the total angular momentum is conserved.
Nevertheless, the Hubbard-Kanamori Hamiltonian consist of around a hundred terms in
the J-basis and will create strong entanglement between the impurity sites independently
of the spin-orbit coupling strength λ. Especially for higher values of λ this is an advantage
compared to the form of the impurity Hamiltonian in the basis of the cubic harmonics
where stronger SOC leads to stronger single-particle interaction and therefore entangle-
ment between the different bands.
Second, the interaction Hamiltonian in the J-basis is completely real. Thus, we can also
assume that the Hamiltonian of the non-interacting bath and the coupling between bath
and impurity sites is described by real parameters. This simplifies the fitting procedure of
the hybridisation significantly. Finally, if the three bands of the model are completely de-
generate, the single-particle term in Ĥint is proportional to a unit matrix and will keep its
form under the transformation with T . In this case, there exists no single-particle hopping
between the impurity sites in the J-basis, leading to completely diagonal single-particle



154 8.3. FITTING OF MATRIX-VALUED HYBRIDISATIONS

Green’s functions, self-energies, and hybridisations. This means that in the J-basis the
computation and discretisation of the diagonal hybridisation is separated into the six
bands, as in the case of the Hubbard model and Sr2VO4. The Hamiltonian in the J-basis
for this case conserves the total number of particles described by an U(1)-symmetry and
the z-component of the total angular momentum ~J , which is another U(1)-symmetry.
However, the single-particle on-site energies of the impurity sites are not entirely degen-
erate for Sr2RuO4 since εxy 6= εyz = εxz. Thus, transformed into the J-basis the first term
of Eq. (8.1.1) takes on the form

µJ = T



εxy − µ 0 0 0 0 0
0 εxy − µ 0 0 0 0
0 0 εyz − µ 0 0 0
0 0 0 εyz − µ 0 0
0 0 0 0 εxz − µ 0
0 0 0 0 0 εxz − µ


T−1 (8.2.15)

=



a 0 0 0 0 0
0 b 0 0 d 0
0 0 b 0 0 −d
0 0 0 a 0 0
0 d 0 0 c 0
0 0 −d 0 0 c


. (8.2.16)

From (8.2.16) one can see, that the single-particle hopping connects only impurity sites
with the same quantum number Jz. Therefore the U(1)-symmetry of the z-component of
~J is still conserved.
In summary, in both the cubic harmonics and the J-basis the hybridisations, Green’s
functions, and self-energies of Sr2RuO4 have non-zero off-diagonal components. But the
advantage of the J-basis is that there are only four instead of twelve non-zero components,
and two U(1)-symmetries can be used instead of only a single one. Additionally, the form
of the physical quantities is more symmetric, which can be used to reduce the amount of
computations and the Hamiltonian is completely real. Out of those reasons we use the
J-basis for Sr2RuO4 calculations.

8.3 Fitting of Matrix-Valued Hybridisations
As described in section 5 the usual form of the hybridisation,

∆(z) =
∑
k

~V †k
~Vk

(z − εk)
, (8.3.1)

is also valid for matrix-valued hybridisations if the vector of hopping elements from bath
site k to each of the Nimp impurities is defined as ~Vk = (V1k V2k . . . VNimpk) with ~V †k
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being the transposed and complex conjugated vector of ~Vk. For Sr2RuO4, the number
of impurity sites is Nk = 6. Trying to fit the 6 × 6 matrix directly will result in un-
bearable computation times and in fits with relatively bad accuracy because of the high
amount of parameters and bad convergence properties of the gradient descent methods
due to numerous local minima. For example, if we consider three bath sites per impurity,
we have in total 18 bath sites. This amounts into 18 parameters describing the on-site
energies and 18 · 6 = 98 parameters describing the possible hopping elements. Because
the SOC term in the Hamiltonian is complex, the hopping elements of the hybridisation
should be considered to be complex too. In total there are 194 parameters to fit if real
and imaginary part of the hopping elements are described by independent real numbers.
This is a dramatic increase of parameters compared to the other models where typically
six to 18 parameters are considered per fit.
However, as in the other models it is possible to decouple the problem into independent fits
of parts of the hybridisation matrix. This reduces the number of parameters significantly
and allows for better parallelisation. Fig. 8.2 shows a typical hybridisation for Sr2RuO4
in the basis of the cubic harmonics. It can be seen that the hybridisation couples the
impurities 1, 4 and 6 and independently of them the impurities 2, 3 and 5. This means
in the case of SOC we can decompose the problem into the fit of two 3 × 3 matrices.
This will reduce the number of parameters in a single fit from 194 to 63 in our example.
Because of the non-linearity of the problem this reduction will reduce the numerical effort
significantly.
As can be seen in Fig. 8.3, the hybridisation has a better structure after switching to
the J-basis. The form of the hybridisation allows to decouple the 6 × 6-matrix into two
scalar functions and two 2× 2-matrices. These sub-matrices can be fitted independently.
Additionally, since the Hamiltonian in this basis is real, we can assume that the hybridis-
ation can be described by real parameters only. Thus, in our example of three bath sites
per impurity the 2 × 2-matrices can be fitted by 18 parameters. This is comparable to
the amount of parameters in the other models we discussed in this thesis and where the
fitting procedure poses no problems.
It is also noteworthy that the off-diagonals components of the hybridisation are one or-
der of magnitude smaller in the basis of the cubic harmonics while they are only smaller
by a factor of two in the J-basis. This can not be seen in the plots since we rescaled
the components to improve the quality of the figure. Since the fitting procedure tries to
minimise the distance between the fit and the original hybridisation, the quality of the
results is better if all occurring quantities in the cost function χ are of the same order of
magnitude. Else, the gradient descent method will focus on the components that are the
largest because there even small deviations lead to big changes in χ.
The symmetry between the components of the hybridisation in the J-basis seen in Fig. 8.3
is reflected in the parameters. While the fit of the components ∆1,1 and ∆4,4 results in
the same parameters, the fit of the two 2 × 2 matrices produces on-site energies and
hopping elements that differ by a minus sign. This can be used to reduce the numerical
effort for the fitting procedure and at the same time increase the the quality of the results
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Figure 8.2: Real (red lines) and imaginary (blue lines) parts of the components of the hybridis-
ation ∆ in the basis of the cubic harmonics. The first two rows correspond to the spin-up and
spin-down orbitals of the xy-band, the second and third to the orbitals of the yz-band and the last
two to the orbitals of the xz-band. The columns are ordered in the same way. The off-diagonal
components are smaller by a factor of ten compared to the diagonal elements. They are rescaled
to the same order of magnitude to improve the quality of the plot. The matrix decouples into
two independent 3 × 3-matrices consisting of the impurities 1, 4 and 6 and the impurities 2, 3
and 5. The hybridisation was obtained after convergence of the DMFT calculation.

significantly. Note, this feature is up to now not implemented in our code and thus results
displayed in this chapter are obtained without exploiting this symmetry. Nevertheless, it
can be seen in the data that this symmetry is reproduced by our method to a very high
degree.
Compared to the fitting procedure described in section 5.3.1 we only alter the method
in one point when fitting matrix-valued functions. To improve the quality of the results
we first fit only the diagonal elements of the hybridisation ∆ independently of each other
and combine those results into a parameter set used as the starting point for the matrix
fit. Since the off-diagonal components are small compared to the diagonal elements, it
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Figure 8.3: Real (red lines) and imaginary (blue lines) parts of the components of the hybridisa-
tion ∆ in the J-basis. The first four rows correspond to the states with J = 3/2 and the last two
to the states with J = 1/2, with descending Jz quantum number respectively. The columns are
ordered in the same way. The off-diagonal components are smaller by a factor of two compared
to the diagonal elements. They are rescaled to improve the quality of the plot. The number of
off-diagonal components is reduced significantly in his basis, namely from twelve to four. Addi-
tionally, they display a symmetry ∆25 = ∆52 and ∆36 = −∆63. This symmetry is also reflected
in the fitting parameters and can be exploited to reduce the numerical effort and improve the
quality of the fitting results. The matrix decouples into two independent 2× 2-matrices and two
degenerate scalar functions. This allows to reduce the amount of parameters even further. The
hybridisation was obtained after convergence of the DMFT calculation.

seems reasonable that the resulting parameters are quite similar to the purely diagonal
case. Good results could be obtained by performing 20 independent calculations, each
consisting of fits of the diagonal elements with 100 iterations and followed by fits of the
matrix-valued hybridisation with 50 iterations.
We end the description of the fitting procedure with a comparison of the fit results ob-
tained with the three different ansatzes described in this section and with Lb = 3 bath
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Figure 8.4: Fit results obtained either in the J-basis or in the basis of the cubic harmonics with
three bath sites per impurity for a diagonal (left) and an off-diagonal element of the hybridisation
(right) in the basis of the cubic harmonics. For the fits in the basis of the cubic harmonics we
distinguish between fitting the whole 6 × 6 matrix with complex and with real parameters. We
also show results obtained by separating the problem into two 3 × 3 matrices and using either
real or complex parameters. For the diagonal element we obtain similar good results for the
fit in the J-basis and the two fits with real parameters, which are lying on top of each other.
The results with the complex parameters are significantly off. For the off-diagonal component
we again observe very good agreement with the fit in the J-basis. The real-parameter fit in the
basis of the cubic harmonics produces curves nearly identical to zero and the complex results are
again significantly off.

sites. In Fig. 8.4 the results are displayed in the basis of the cubic harmonics. For the sake
of completeness we perform fits in the basis of the cubic harmonics with complex as well
as with real parameters. We only display a representative example of a diagonal and on
off-diagonal element of ∆ and its fits to allow for more detailed plots. First of all we note
that the fit in the J-basis, rotated back to the basis of the cubic harmonics, is the only
result being in good agreement with ∆. While the fits in the basis of the cubic harmonics
with real parameters give the same results for the diagonal elements they fail to describe
the off-diagonal components because they are nearly identical to zero. The fit with the
complex parameters results in non-zero off-diagonal elements but differs significantly from
the hybridisation for the diagonal, as well as for the off-diagonal elements.
The complex fits are probably stuck in one of the numerous local minima due to the
large amount of parameters while the real parameter fits are simply not able to reproduce
all non-zeros off-diagonal elements. However, not only do we obtain better results with
the fit in the J-basis, we are also considerably faster with this approach. The fit in the
J-basis is 2.4 times faster compared to the fit of the decoupled 3 × 3 matrices with real
parameters, 15 times faster compared to the fit with complex parameters, 11 times faster
compared to the fit of the whole 6× 6 matrix with real parameters, and 160 times faster
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Figure 8.5: Left panel: Cost function values χ of the fits of the hybridisation ∆ in the first
DMFT calculation for different numbers of bath sites Lb. Squares indicate results for the fits of
the scalar-valued hybridisations in the case of no spin-orbit coupling (λ = 0eV). In this case the
hybridisation is a diagonal 3× 3-matrix with ∆11 6= ∆22 = ∆33. The component ∆ij is denoted
by i−j in the legend. Circles denote results for the calculations with SOC (λ = −0.11eV), where
the hybridisation can be fitted completely with two scalar functions ∆11 and ∆44 and two 2× 2
matrix-valued functions. The latter are denoted with 2 − 5 and 3 − 6 in the plot. Right panel:
Corresponding runtimes T in minutes for both cases. The runtimes are increased by one up to
two orders of magnitude if SOC is present. This fact is caused by the loss of symmetries and
the additional off-diagonal components.

compared to the fit of the whole 6× 6 with complex parameters.
Concluding, the fitting procedure is better behaved, scales significantly better and gives
better results in the J-basis than in the basis of the cubic harmonics. This strengthens
our decision to perform all DMFT calculations with SOC in the J-basis.

8.4 Comparison between DMFT and CTQMC with-
out SOC

We shortly want to mention some implementation related details of our DMFT compu-
tations before we now focus on the discussion of the obtained results. If not stated other-
wise, all ground state search calculations are performed with a maximal bond dimension
m = 2000. The time evolution is computed with the Krylov method up to τc = 4eV−1

and afterwards with TDVP up to a maximal time τmax = 100. We use a truncated weight
w = 10−9. The MPS used in the case without SOC are normal Hubbard sites with a local
dimension of four, describing spin-down and spin-up electrons. In the case with SOC, the
spin-degeneracy is lifted, which forces us to use separate sites for spin-up and spin-down
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Figure 8.6: Upper panels: Real (left) and imaginary (right) part of the converged self-energy
for the xy band in the case λ = 0eV. The results are obtained by calculations that use different
grid points defined by Matsubara frequencies iωn = (2n+ 1)π/β. As described in chapter 5, the
choice of the grid points changes the lower limit of the fitting interval of the hybridisation. This
influences the Hamiltonian parameters and the resolution of the low-energy behaviour. Obviously,
DMFT for this model and with these parameters is quite robust under changes of the grid points
and results in similar self-energies. Lower panels: The same plot for the degenerate yz band.
The data is obtained with Lb = 4 bath sites.

particles with two local states describing a filled or an empty site, respectively. Sr2RuO4
is described by a Hubbard interaction strength U = 2.3eV, a Hund’s coupling strength
J = 0.4eV and a spin-orbit coupling strength λ = 0.11eV.
Before we focus on the DMFT calculations with spin-orbit coupling, we first want to
compare our DMRG with CTQMC results obtained for Sr2RuO4 without SOC. This is
interesting because it is the first comparison for imaginary-time DMRG as an impurity
solver for a real material computation. Furthermore, it is the first time we use TRIQS to
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Figure 8.7: Left panel: Time-dependent lesser Green’s function G<(τ) of the yz-band for different
artificial temperatures βeff in the last iteration before convergence. Albeit the DMFT calculations
give rise to the same self-energies, the G<(τ) behave differently. The different choices of βeff
change the lower bound of the fitting interval of the hybridisation, which effects merely the low-
energy spectrum. Consequently, we see the biggest differences for large times. While the results
for βeff = 200 show linear behaviour from τ = 50 on and the results for βeff = 300 from τ = 80
on, the lesser Green’s function for βeff = 400 either just started to decay linearly or still changes
the decay rate slightly. Right panel: Corresponding runtimes T to compute the lesser Green’s
functions from the left panel. We see a small increase of runtimes for larger βeff. At τc = 4 the
Krylov evolution is replaced by TDVP, which can be seen clearly by the change of the slope. At
the kinks around τ = 70 and τ = 90 the number of cores for the time evolution is increased. Up
to those points all calculations are performed with the same number of cores.

perform all DMFT related steps such as determining the dispersion relation from a DFT
calculation, calculating the new hybridisation for the next iteration from the consistency
equation, or computing the chemical potential from the self-energy such that the system
exhibits the desired filling of n = 4 particles. In this context we also want to investigate
the influence of the artificial temperature βeff, which we use to set up the discrete grid
points for our continuous Green’s functions, hybridisations and self-energies.
In Fig. 8.5 we compare cost function values and runtimes of the fitting procedure for
Sr2RuO4 with and without spin-orbit coupling. At this point we only want to focus on
the left panel and the fact that we obtain very good fitting results with Lb = 8 bath
sites for both, the degenerate yz- as well as the xy-band. For more bath sites we see the
onset of overfitting, which correspond to unreliable fit results and possible convergence
problems. Accordingly, we choose Lb = 8 bath sites for all Sr2RuO4 calculations without
SOC.
As described in chapter 5, the choice of the grid points used for describing physical
quantities like the self-energy, the hybridisation, or the Green’s function determines the
resolution of the underlying physics in the model. Using higher values of βeff shifts the
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lower bound of the fitting interval of the hybridisation closer to zero. This forces the fit
to emulate the low-energy physics more accurately, which can allow DMFT to resolve
low-energy structures in the Green’s function and hybridisation.
In Fig. 8.6 we display the converged self-energies for different choices of βeff. We only
observe very small differences and that the low-energy behaviour has not changed note-
worthy. However, the increase of βeff comes not without cost. The on-site energies of
the bath sites εk are typically pushed to smaller values if the lower bound of the fitting
interval is lowered. In general, the εk set the smallest energy scale in the impurity Hamil-
tonian, which in turn strongly influences the long-time behaviour of the greater and lesser
Green’s functions. In Fig. 8.7 we show the Green’s functions G(τ) corresponding to the
self energies in Fig. 8.6 and the runtimes of the time evolutions needed to compute them.
It can be seen clearly that the linear decay of G(τ) for large times sets in at later times
for higher βeff. Consequently, it is not surprising that DMFT with βeff = 400 converges
only after the maximal time up to which the time evolution is performed is increased
from τmax = 100eV−1 to τmax = 300eV−1. This allows G(τ) to decay linearly sufficiently
long for the linear prediction to produce correct results. Of course, this increases the run-
time significantly. Additionally, each single time step of the time evolution takes longer
if the artificial temperature is increased, which can be seen in the right panel of Fig. 8.7.
Concluding, an increase of βeff increases computation times significantly and does not
necessarily produces qualitatively different results. Since for Sr2RuO4 we cannot see any
qualitative and only minor quantitative changes in the converged results, we will stick
with βeff = 200 for the following DMFT calculations.
After we have clarified the convergence of DMFT with respect to the number of bath
sites and the artificial temperature βeff, we can focus on the comparison between DMRG
and CTQMC results. In Fig. 8.8 we show the converged Matsubara self-energy Σ(iωn)
obtained with CTQMC at temperature β = 200 and with DMRG at temperature T = 0.
Overall, we observe very good agreement on the whole Matsubara axis with slightly big-
ger deviations for higher frequencies. For small frequencies, even after zooming-in, we see
that both methods are in agreement. The very small differences are probably due to finite
temperature effects.
We want to emphasise that is necessary to compute very dense grid points for G(τ), at
least for small times, so that the high-frequency behaviour of all physical functions is
correct and in agreement with CTQMC. We ensure this by computing the time evolu-
tions as described in chapter 5 with the Krylov method until τc = 4eV−1 and afterwards
with TDVP. Effectively, we use a step size of δτ = 0.0005eV−1 for times τ < τc and
δτ = 0.1eV−1 for times τ > τc. The remaining differences between DMRG and CTQMC
for higher frequencies may be reduced further by increasing τc or computing more dense
values for G(τ).
The drawback of using Krylov is a significant increase of numerical demands and the total
runtime. In most of the calculations the time evolution with Krylov until τc = 4eV−1 is
responsible for 33 percent of the runtime of the whole time evolution. The small frequency
behaviour is not influenced by the choice of τc nor by moderate changes of the time step
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Figure 8.8: Upper panels: Real (left) and imaginary (right) part of the converged Matsubara
self-energy obtained with CTQMC and DMRG for the bands xy and xz in the case of no SOC.
Lower panels: The same plot zoomed-in for small frequencies. The agreement between CTQMC
and DMRG is extraordinary good. Small differences are probably due to temperature effects since
CTQMC was running at temperature β = 200 and DMRG at T = 0.

size. Consequently, the convergence of DMFT is independent of these parameters since
it is only checked on the interval ωn ∈ [0, 6]. Therefore, we propose to converge DMFT
while only using TDVP. After convergence an additional iteration is performed with the
Krylov+TDVP approach. This guarantees the correct high-frequency behaviour of the
Green’s function and self-energies while keeping runtimes comparably low.



164 8.5. THE INFLUENCE OF SPIN-ORBIT COUPLING

8.5 The Influence of Spin-Orbit Coupling
In this section we will focus on Sr2RuO4 with SOC and corresponding interaction strength
λ = −0.11eV. In Fig. 8.5 we compare typical cost function values (left panel) and runtimes
(right panel) for Sr2RuO4 with and without spin-orbit coupling. We observe that the
scalar-valued components of the hybridisation are fitted slightly better in the presence of
spin-orbit coupling then without, and that the matrix-valued elements are fitted slightly
worse. This can partially be explained with the form of the cost function

χ =
∑
n

ω−αn ||∆(iωn)−∆discr(iωn)||2. (8.5.1)

When using the Frobenius norm, the cost function for matrix-valued functions with di-
mension n×n consists of n2 summands while a scalar fit only consists of one term. Thus,
the value of χ is higher for a matrix-fit than for a scalar fit even if both fits have the
same quality. Of course that can be countered by an appropriate pre-factor, which we
have not included yet. Furthermore, fitting a matrix is obviously harder than fitting a
scalar-function. If the components of the matrix have different orders of magnitude, fit-
ting procedures tent to focus on the components with the largest amplitude, which can
result in suboptimal fits. This can be countered by rescaling the smaller contributions in
the cost function accordingly. However, up to now the fit results are so good that this
approach does not seem necessary. We also assume that components of the matrix-values
hybridisations with a higher amplitude are, in general, more important for the behaviour
of the model. Consequently, they should have more weight in the cost function.
Similar to the case without SOC, overfitting sets in roughly at Lb = 9 bath sites. Un-
fortunately, the runtimes of the time evolutions with SOC increase so fast that a single
DMFT iteration with Lb = 4 bath sites already take two days. The cost function values
in this case are around 10−4, which is sufficient for our calculations but not optimal. How-
ever, due to the strong increase of runtimes we have to perform all following calculations
including SOC with Lb = 4 bath sites.
The right panel Fig. 8.5 shows the runtimes of the fitting procedures in both cases, with
and without SOC. First, it can be observed that the runtimes increase by up to two or-
ders of magnitude when introducing spin-orbit coupling. Second, increasing the number
of bath sites has only a small effect on the runtime in the case that no SOC is present
but lead to a significant increase if spin-orbit coupling is there. This can be explained by
the fact that a 6× 6 instead of a 3× 3 matrix has to be fitted because the spin-symmetry
is gone. If off-diagonal components exist the scaling of the number of parameters is
unfavourable. While in the case without SOC we have to consider two fits with 2 · Lb
parameters, in the case with SOC we have two fits of scalar functions with 2 · Lb and
two fits of matrix-valued functions with 6 ·Lb parameters. The scaling of the latter is the
reason for the dramatic increase of the runtimes. The runtimes can be reduced by at least
a factor of two by using the symmetries of the parameters as described in the previous
section.
We now focus on the comparison between the converged self-energies with and without
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Figure 8.9: Real (red lines) and imaginary (blue lines) parts of the components of the converged
self-energy Σ in the basis of the cubic harmonics with SOC (crosses) and without (circles). The
off-diagonal components are again smaller by a factor of ten compared to the diagonal elements
and are rescaled with this factor. The real part of the self-energy on the diagonal is shifted by the
on-site energy of the corresponding impurity site (∼ 5eV) to have both the real and imaginary part
on the same scale. The agreement of the results obtained with and without spin-orbit coupling
on the diagonal are extraordinary good. The off-diagonal components of the self-energy stay
approximately constant in the displayed region of small frequencies. This is according to our
expectations.

spin-orbit coupling displayed in Fig. 8.9. The diagonal elements of the self-energy in
both cases agree perfectly. The real part of the self-energy on the diagonals is shifted to
smaller values by the corresponding on-site energy of the impurity to ensure a compact
and detailed figure. The off-diagonal elements are multiplied by a factor of ten such that
all pictures have the same scale. They display a symmetry that reflects the form of the
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spin-orbit coupling Eq. (8.1.9) when we break up the symmetry of the components slightly

HSOC =



0 0 0 −λxy
2 0 − iλxy

2
0 0 λxy

2 0 − iλxy
2 0

0 λxy
2 0 0 iλz

2 0
−λxy

2 0 0 0 0 − iλz
2

0 iλxy
2 − iλz

2 0 0 0
iλxy

2 0 0 iλz
2 0 0


. (8.5.2)

λxy and λxy describe different couplings which we set to be similar λxy = λz = λ for
Sr2RuO4. We also observe that the off-diagonal elements are nearly frequency-independent
for small frequencies. Thus, they can be considered as additional single-particle terms that
can be added to the existing ones [56]. Since they correspond directly to the single-particle
terms of the SOC with the same symmetry this leads to an effective correlation-enhanced
SOC

λ̃xy = λ+ 2<Σxy↑,xz↓(iωn) ≈ 0.18eV, and (8.5.3)
λ̃z = λ+ 2<Σxz↑,yz↑(iωn) ≈ 0.17eV, (8.5.4)

which is roughly enhanced by a factor of two compared to the bare SOC. Thus, our
results are in agreement with CTQMC calculations at higher temperature with simplified
models [56,181].
In some off-diagonal components we observe that the first Matsubara frequency is shifted
significantly compared to the other frequencies. This originates from the relatively small
number of bath sites Lb = 4 used in our calculations, which results in oscillating fit
functions ∆discr. Unfortunately, the calculation with Lb = 4 already takes two days per
iteration, and adding one bath site more per impurity increases the runtime to three up
to four days. Considering the 20 iterations needed for convergence, it was not feasible to
start another calculation at the end of this thesis.

8.6 Conclusion
We were able to show that DMRG+DMFT produces very good results for the three-band
model of the real material Sr2RuO4 without SOC at zero temperature, which are in agree-
ment with CTQMC results. For the calculations with spin-orbit coupling, we introduced
a transformation from the basis of the cubic harmonics to the common eigenbasis of the
total angular momentum ~J , its z-component, the angular momentum ~L, and the total
spin ~S. We showed that the fit of the 6× 6 matrix describing the hybridisation decouples
into the fit of two scalar functions and two 2 × 2 matrices in this new eigenbasis. Ad-
ditionally, while the Hubbard-Kanamori Hamiltonian in the basis if the cubic harmonics
is complex because of the SOC term, in the new basis the Hamiltonian is complete real
again. Both advantages together are necessary to obtain very good fit results at relatively
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short runtimes.
This allowed us to converge DMRG+DMFT calculations for Sr2RuO4 successfully with
SOC and without any simplifications of the underlying model. Up to now a three-band
model at low temperatures with spin-orbit coupling was not solvable with any kind of im-
purity solver. However, our results are in agreement with previously obtained results of
CTQMC calculations of simplified models [56,181]. The off-diagonal parts of the self-energy
are nearly constant for small frequencies and can be understand as a correlation-enhanced
increase of the SOC by a factor slightly smaller than two.
The runtimes for DMRG+DMFT with SOC are roughly two days per iteration. Those
runtimes can still be reduced by exploiting the symmetries in the model. Not only the
degeneracy of the components in the hybridisation can be used to improve the fitting
procedure but also the degeneracy of the Green’s function components can be used to
reduce the number of necessary time evolutions. With those tricks alone a reduction of
runtimes by a factor of two is possible. Additionally, we recommend to investigate the
influence of reordering on the performance. Since the model consist of 6 impurities with
multiple interactions between the different bath sites considerable speed-ups are possible.
With those improvements it should be possible to increase the number of bath sites per
impurity and to improve the quality of the DMFT results.
For further research it is interesting to see which properties influence the structure of the
off-diagonal components of the self-energy. By changing the filling of the lattice or the
strength of the Hund’s coupling J it can be investigated which role the Hund’s metal
physics play and how robust observed features are under model changes. This can help
to understand the origin of the self-energy behaviour with respect to SOC.
Furthermore, it is interesting to investigate the behaviour of Sr2RuO4 under compres-
sive or tensile strain, which is supposed to influence superconductivity [189]. This can be
achieved by changing the dispersion relation obtained from a previous DFT calculation.
Should the degeneracy of the xy- and yz-band get lifted in this new setup, it is interesting
to see whether the J-basis is still offering better performance compared to the basis of
the cubic harmonics. In summarise, our methodological progress opens the possibility
of investigating a wide range of questions regarding SOC and Sr2RuO4 that were not
accessible before.
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Chapter 9

Conclusion

In the beginning of this thesis, the idea to use DMRG as an impurity solver for DMFT on
the imaginary-frequency axis was brand-new. Initial studies were performed on a com-
plicated but still not realistic three-band model and showed impressive performance and
high quality results on the imaginary axis that were in perfect agreement with results
obtained with other solvers such as CTQMC. As it has been shown in this thesis, the
step from describing an artificial system to describing a real material is more challenging
than originally suspected. Thus, we introduced several improvements to DMRG ranging
from methodological advancements for time evolution methods like Krylov to ideas orig-
inating from other fields such as restructuring the MPS lattice system. In addition, our
implementation of several quantum numbers describing symmetries, so far considered as
not being important in the Hubbard and Hubbard-Kanamori model, were key elements
for ensuring convergence of DMFT in several cases. With all these improvements we were
able to access systems and parameter regimes with DMRG +DMFT that are still out of
reach for other solvers.
In the case of the Hubbard model we were able to produce results for intermediate interac-
tions strengths and up to four cluster sites with DCA at moderate computation times. We
showed that the numerical effort stays constant for systems with the same filling but dif-
ferent interaction strengths, which is impressive since CTQMC encounters more and more
numerical problems when moving towards this regime. We also showed that increasing
the number of patches for DCA decreases the number of bath sites needed for a good fit
of the hybridisations. This partly counters the exponential growth of entanglement that
we observe when considering larger cluster sizes in the context of DCA. Nevertheless,
eight-site DCA calculations with DMRG are not possible so far due to the large runtimes
we already encounter when searching for the global ground state.
To extend the analysis of the Hubbard model to DCA calculations with more than four
patches, we suggest to minimise the entanglement of the impurity systems significantly
by using other topologies for the lattice systems. Our work shows that large cluster
systems suffer on two contradicting demands. The Hubbard interaction in momentum
space generates strong entanglement between the different impurity sites. Therefore, it
is preferable to locate these sites close together. The drawback is that this locates bath
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sites far away from their associated impurity sites, which generates artificial long-range
interactions. Additionally, higher order DCA calculations of the Hubbard model produce
many patches that are degenerate. The bath sites associated to these degenerate impu-
rity sites are very strongly entangled with each other. Thus, it is preferable to locate the
bath sites close to the impurity sites for large cluster calculations. A different topology
could fulfil both requirements and reduce runtimes significantly. A better initial setup of
the DMRG ground state search based on ideas originating from quantum chemistry [21]

should also lower the runtimes for global ground state searches noteworthy and is worth
pursuing. It could also be interesting to investigate how the Green’s functions of different
patches change when the cluster sizes or the patching itself is altered. This can be used
to find better starting hybridisations for the calculations and could lower the number of
necessary iterations until convergence is reached. These ideas will be especially useful
when the runtime of a single iteration increases significantly.
In the case of the layered perovskite Sr2VO4, we produced the first two-site DCA results
of a realistic three-band model at zero temperature. Similarly to the Hubbard model, we
observed that the amount of bath parameters needed for a good fit of the hybridisations
is significantly smaller for the two-site DCA than for the single-site DMFT calculations.
Therefore, albeit only calculations with two bath sites were possible in the two-site DCA
case, we are sure that the results are reliable with respect the bath size. We observe
that single-site DMFT and two-site DCA give similar results for the critical interaction
strength that marks the onset of the Mott insulating behaviour of Sr2VO4. Thus, in
contrast to expectations, the difference between experiment and theory is not reduced by
partially reintroducing non-local interactions and the momentum-dependence of Green’s
functions.
The results obtained for the two-site DCA calculations can still be improved by introduc-
ing different bath sizes for different impurity sites. Some of the patches are fitted already
with a very high quality while some are fitted more poorly for some choices of the chemical
potential. The reliability of the results can be improved by only increasing the number of
bath sites for those patches while keeping the runtimes relatively small. Nonetheless, we
will expect only small changes of our results. This gives rise to the question whether a
four-site DCA calculation supports our result that the onset of Mott insulating behaviour
of Sr2VO4 is not changed significantly by introducing momentum-dependent self-energies
and Green’s function. Since significant differences between two-site and four-site DCA
results in the case of the Hubbard-model can be observed, it is reasonable to suspect a
similar behaviour for Sr2VO4. Unfortunately, a four-site DCA calculation of a three-band
model would involve 12 impurity sites. Based on the runtimes of our calculations in the
Hubbard model and for Sr2VO4, we believe that these four-site DCA calculations are
only possible after further improvements of DMRG+DMFT. From our perspective, most
promising are ansatzes involving a better topology structure of the impurity problem such
as MSTs or METs which we discussed at the end of chapter 3.
The second real material we discussed was the perovskite oxide compound Sr2RuO4. It
is described by a three-band model with Hubbard-Kanamori interaction and an addi-
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tional term that describes spin-orbit coupling. This term breaks the spin symmetry of
the impurity system and couples different orbitals with each other. While the former in-
creases computation times, the second introduces off-diagonal components in self-energies
Green’s functions and hybridisations. The latter poses a not well-considered mathemati-
cal problem of fitting a matrix-valued function. We show that by introducing a suitable
basis, the problem of fitting the matrix-valued hybridisation becomes much simpler. In
this basis we reliably obtain reasonably good results for the matrix fit, which are much
better than the ones obtained in original basis. Additionally, the calculations are much
faster due to the better structure of the matrix. With this approach we were able to show
that the diagonal elements of the converged self-energy of the system with and without
the spin-orbit coupling term are in perfect agreement. The off-diagonal elements are
nearly frequency-independent for small frequencies and can be interpreted as correlation-
enhanced spin-orbit coupling of a factor slightly smaller than two. These results are in
agreement with expectations based on simplified models. However, up to now no results
existed for the Hubbard-Kanamori model with spin-orbit coupling without any kind of
approximations.
For further research it is interesting to change the interaction strengths, the material fill-
ing and the dispersion relation. This could help to further understand the influence of
SOC and whether its behaviour is robust or simply extraordinary in the case of Sr2RuO4.
It is also interesting to see whether our ansatz of transforming the Hamiltonian into the
eigenbasis of the angular momentum operator is still helpful when the degeneracy of the
xy- and yz-band is lifted. Since we solved the material without making any kind of as-
sumptions specific to Sr2RuO4, these studies should pose no problems.
Concluding, we improved the DMRG+DMFT method in many areas to an extent that we
were able to access regimes and problems that were not solvable with any other impurity
solver up to now. However, albeit we already implemented several improvements with
great success, many ideas we mentioned in this thesis are very promising and have not
been implemented so far and should be further exploited to tackle new materials and
more complex configurations. In this regard, we also want to mention the PhD thesis
of Alex Wolf [190] where many other ideas are presented that we have not pursued so far.
Particularly promising are ideas found in quantum chemistry and are based on entangle-
ment analyses. In this field, DMRG calculation of highly complex and strongly entangled
Hamiltonians with up to 50 sites are performed while in this thesis we started to encounter
problems for systems with around 24 sites. The difference suggest that there are still sig-
nificant improvements possible. With all the progress we made during the last years, we
are confident that DMRG has established itself already now as a trustworthy and promis-
ing impurity solver for multi-band and larger-cluster DMFT problems. Following some
of the more encouraging ideas, it could be possible in near future to calculate three-band
problems with four-site DCA or systems with more bands and two-site DCA. These are
important steps forward, to tackle, for example, pnictide superconductors, which are be-
lieved to be described by five-band models and at least two momentum patches. These
kind of models are so far out of reach with any other impurity solver.
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