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Abstract 

PART I: Benzylisoquinoline alkaloids derived from either enantiomer of reticuline represent 

a large class of secondary metabolites that occur across many families of herbaceous plants. Oxidative 

enzymatic transformations give rise to a variety of skeletal subtypes and complex polycyclic 

frameworks that have been used as therapeutic agents for centuries, often serving as lead compounds 

for the development of new drugs. While different enantiomers of the same molecule are known to be 

produced across plants of different species, the occurrence of the same compound in scalemic fashion 

in the same host is highly unusual, given that the enzymes involved in their biosynthesis normally 

operate with very high enantioselectivity. Sinoracutine however (I, Scheme A), which was isolated 

from Stephania cepharantha and Sinomenium acutum, was found to occur in different optical purities 

across the different source plants. With the ultimate goal to determine the origin of discrepancy, we 

devised an enantioselective approach to sinoracutine, in which the stereochemistry could be controlled 

by a benzylic alcohol introduced early in the synthesis. Starting from inexpensive isovanillin, an 

enantioselective reduction delivered enantiopure II which was transformed into tricycle III by 

Pauson–Khand reaction. Stereoselective reduction and Claisen rearrangement gave aldehyde IV. After 

reductive amination, a iodoamination-Kornblum oxidation sequence delivered tetracycle V, which 

could provide sinoracutine in excellent optical purity. We determined that upon mild heating in protic 

solvent, this material underwent complete racemization within five days. Our results suggest that the 

pyrrolidine ring of sinoracutine could undergo ring-opening and closure to factually destroy the 

stereochemical configuration of the all-carbon quaternary stereocenter and allow for the formation of 

(+)-sinoracutine, explaining the optical variability observed in plant-derived samples of sinoracutine.  

 

Scheme A. Enantioselective synthesis of (–)-sinoracutine using a series of  

diastereoselective synthetic transformation and its facile racemization  
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PART II: The second part of this thesis describes investigations towards the strained 

piperazine alkaloids herquline A (VI) and B (VII, Scheme B). Isolated from the fungus Penicillium 

herquei, they have shown interesting blood-platelet aggregation activity, as well as anti-influenza 

proprieties. In our synthetic approaches, we wanted to take advantage of the pseudosymmetrical nature 

of herquline B and devise a two-directional strategy aimed at the first total syntheses of these unique 

natural products. 

An oxidative enolate coupling strategy was pursued for the formation of the 12-membered 

ring. The required precursor (VIII) could be prepared from two L-tyrosine units by a short reaction 

sequence. Several conditions for the formation of IX were investigated, either from VIII itself, its 

derived bis-enolate, or the bis-silyl enol ether. Unfortunately, IX was not formed, and studies on 

different model systems suggest that β,γ-unsaturated ketones are not able to undergo radical 

dimerization at the α-position under the conditions examined.  

A second approach based on the early introduction of the 1,4-dicarbonyl moiety was next 

investigated. For the synthesis of the bis-cyclohexenone rings of herquline B, a twofold allylation 

strategy was investigated. After extensive optimization, we determined that bifunctional allylboron 

reagent X was uniquely suited for the formation of the required products. The reactivity of X is 

explored, and its use in the double allylation / double ring-closing metathesis sequence has been 

demonstrated on model substrates (e.g. giving XI) to successfully form the northern bis-cyclohexene 

segment featured in herquline B (VI). 

 

Scheme B. Synthetic approaches towards herquline B outlined in this thesis:  

oxidative coupling strategy (top) and two-fold allylation – metathesis sequence (bottom) 
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 General introduction – Alkaloids 1.

1.1. The Beginning of Alkaloid Chemistry 

Although only defined and classified for the first time at the beginning of the 19
th
 century, for 

thousands of years the naturally occurring small molecules known today as “alkaloids” have played a 

central role in the evolution of human society. The causality link that was recognized between the 

ingestion of a certain alkaloid-containing plants and the resulting effect on the body was documented 

as early as 5000 years ago in the form of a Sumerian clay slab from Nagpur (India), which comprised 

twelve recipes for drug preparation containing over 250 various plants.
[1]

 Independently, similar 

knowledge developed in China, with the drafting of the botanical treaty “Pen T’Sao” (2500 BC), 

describing the proprieties of 365 medicinal herbs.
[2]

 Over the centuries, based on empirical 

observations, virtually every literate society developed their own compendium of bioactive plants and 

described their therapeutic (and sometimes toxic) proprieties: from the Ebers papyrus (1550 BC) in 

Ancient Egypt to the Historia Plantarum of Theophrastus of Eresos (372–287 BC), as well as the 

works of Pliny the Elder (23–79) and Galen  (129–199).
[3]

 

With the advent of the moveable type printing press in the 15
th
 century, several so-called 

“herbals” based on the abovementioned compendia became widely distributed to inform scholars 

about the identity and proprieties of hundreds of plants.
[4]

 As we know today, many of them owe their 

bioactivity to the alkaloids they contain. However, the idea that a single molecule can produce a 

determined effect on the body with perfect cause-effect relationship, the very mechanism on which 

modern medicine is based, was recognized only in the 17
th
 century. 

Interestingly, many researchers attribute the paradigm shift to Paracelsus (1493–1541), whose 

iconoclast ideas revolutionized the medieval conceptions of anatomy and physiology passed down by 

Avicenna and Galen.
[5]

 Paracelsus’ teachings entailed that within every object there was a “spirit”, the 

so-called quintessence, which was ultimately responsible for the experienced effect. This substance 

was “contained in the mystery of nature, which is termed “purity”, while the remainder of the body, in 

which the quintessence was trapped, was termed “impurity”.
[6,7]

 For example, searching for the spirit 

of wine, he was able to isolate its “essence”, ethanol, by distillation.
[8]

 Although Paracelsus’ alchemy 

was guided by astrological and mystical theories, with the ultimate goal of freeing substances from 

their earthly qualities and to elevate them to a spiritual level, his chemical approach to medicine lived 

on through the centuries. In the late 18
th
 century, the concept of “purity” and of “pure substance”, now 

more aligned with contemporary meaning, together with the advances in analytical chemistry 

(specifically the concepts of solubility solvent extraction methods), stimulated pharmacists to analyze 

vegetable drugs in common use at the time.
[9]

 

The most popular among them was opium, the dried latex originating from the seed pods of 

Papaver somniferum, which had a reputation as a panacea (Figure 1). It was used against diarrhea for 
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its constipating effect, was prescribed as a cough suppressant in cases of bronchitis and tuberculosis, 

and its sedative proprieties were recognized in the treatment of insomnia and mental illness. It had an 

exquisite capability to relieve pain and also to induce euphoria, relaxation and dream-like states, which 

propagated its recreational use.
[10]

 However, it was also known that its consumption was accompanied 

with severe addiction and withdrawal symptoms, while higher doses could lead to unconsciousness 

and death. Nevertheless, the opium trade became a worldwide operation by the end of  18
th
 century, 

and prompted several investigations into its composition with the aim of finding a way to precisely 

dose the drug to avoid health risks, as well as discover adulterated batches with inferior quality and 

potency.
[11]

 

   

Figure 1. F. W. A. Sertürner (left), who isolated morphine, the active ingredient from raw opium 

(middle), the dried latex from the seed pods of Papaver somniferum (right).
[12–14]

 

First reports on the successful extraction and purification of opium were carried out between 

1803 and 1806 by the pharmacists Friedrich Wilhelm Adam Sertürner (1783–1841), Charles Derosne 

(1780–1846), Armand Seguin (1767–1835) and Bernard Courtois (1777–1838).
[15]

 Although their 

preparations had similar effect to opium, they did not pose significant advantages and were likely 

mixtures of compounds. Sertürner continuously experimented with new procedures, and in 1817 he 

described the successful isolation of a pure compound from raw opium after extraction with hot water 

and precipitation using ammonia.
[16]

 The obtained white crystals were poorly soluble in water, but 

soluble in alcohol. Most importantly, they reacted with acids to neutralize them and to form fully 

water-soluble salts. Hence, he had demonstrated the isolation of a compound with “basic” proprieties. 

Sertürner stated that it was similar to ammonia “in the order of salifiable bases”.
[17]

 

This finding was groundbreaking: at the time, only acidic compounds were thought to exist in 

plants (Sertürner himself isolated meconic acid from Papaver somniferum 1805).
[18]

 Furthermore, 

“because experiments on animals do not give exact results”, he also described dosing himself and 

three young men with the compound.
[19]

 The experiment caused confusion and fatigue in the test 

subjects, one of his friends suffered severe nausea and headaches after being rendered unconscious by 

the drug for several hours. However, at lower doses Sertürner experienced relief for his toothache, and 

drowsiness if he doubled the amount of compound.
[20]

 He named the compound morphium, in honor of 

the Greek god of dreams Morpheus, and anticipated that other alkalis were to be found in other plants. 

In the following years, compounds such as the highly toxic strychnine (2), the cycloplegic atropine (3), 



General Introduction – Alkaloids 

 

3 

the antimalarial quinine (4), and the stimulant caffeine (5), were isolated in pure form, giving birth to 

the modern era of alkaloid chemistry, pharmacy, and medicine (Figure 2).
[21]

 

 

Figure 2. Prominent alkaloids isolated at the beginning of the 19
th

 century. 

1.2. Definition of Alkaloid 

The word “alkaloid” was coined in 1818 by the German pharmacist Carl Friedrich 

Wilhelm Meißner (1792–1853) by merging the Arabic word alkali “al-quali”, referring to the 

calcinated ashes of plants, and the Greek suffix “-oid” meaning “alike”. This name reflects the basic 

nature of these compounds, but stresses their different chemical composition compared to the known 

alkalis of the time (essentially potash, soda, and ammonia).
[17]

 Anecdotal evidence resulting from the 

discoveries since 1815 led to the belief that they would only occur in higher plants (see above). 

Therefore, a first definition of alkaloid was: “the plant component which shows basic properties and a 

strong biological effect”.
[22]

 Over the past decades, as the chemistry of natural products progressed and 

broadened its hunting ground, it allowed the isolation of compounds with similar proprieties, but from 

sources other than plants (Figure 3). For example, the highly toxic batrachotoxin (6) was isolated from 

the skin of Dendrobates “poison dart” frogs, and polycyclic alkaloids such as precoccinelline (7) were 

found to occur in the ladybug beetle. The cytotoxic dragmacidin A (8) was isolated from a deep sea 

sponge, and the macrocyclic pheromone muscopyridine (9) is found in the ventral glands of the musk 

deer.
[23–26]

 

 

Figure 3. Structurally diverse alkaloids from sources other than plants.
[27–30]
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Although all the above mentioned molecules react as bases due to the presence of a non-

bonding electron pair on the nitrogen atom, other compounds that do not possess such functionality are 

still classified as alkaloids (Figure 4). Colchicine (10) is commonly used for the treatment of gout, and 

capsaicin (13) is responsible for the hot sensation of chili peppers.
[31,32]

 Furthermore, biosynthetic 

processing targeting the nitrogen atom can give rise to oxidized compounds such as the aristolochic 

acid (11), which contains a nitro group, and lycopsamine N-oxide (12).
[33,34]

 However, not all nitrogen-

containing metabolites are classified as alkaloids. Early biosynthetic intermediates and primary 

metabolites indispensable for the organism’s survival such as simple amino acids, purines and 

pyrimidines, as well as complex polypeptides and proteins, do not fall into this category. Nevertheless, 

amino acids can, through enzymatic processing and the merger of different biosynthetic pathways, 

give rise to alkaloidal metabolites such as cytochalasin A (14), which incorporates phenylalanine into 

a polyketide-derived alkyl chain. Glutamic acid and a monoterpene unit are the bioprecursors for 

kainic acid (16), while nominine (15) contains a C20-diterpene scaffold in which a nitrogen atom is 

introduced. 
[29–31]

 Furthermore, the notorious pufferfish poison tetrodotoxin (17) is likely derived from 

arginine, although its origin is still under debate despite extensive studies since its isolation in 1909.
[35]

 

 

Figure 4. Examples of non-basic plant alkaloids (top);  

Alkaloids derived from mixed polyketide or terpenoid biosynthetic pathways (bottom). 

Based on the above examples, structurally diverse compounds originating from all living 

domains can be classified as alkaloids as long as they contain a nitrogen atom. Despite the fact that 

this principle might seem vague, if contextualized within the experience accumulated in the past 200 

years, a sensible classification of alkaloids is possible. As famously put by natural product isolation 

chemist Geoffrey Cordell: “You know one when you see one”.
[36]
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1.3. Significance and Opportunities 

In a series of reviews, Newman
 
and Cragg estimated that about 64% of the all marketed drugs 

between 1981 and 2014 were either directly or indirectly derived from natural products.
[37]

 Although 

only 6% of these were unmodified natural products, the remaining 58% is made up by: a) 

semisynthetic modifications of natural products, b) entirely synthetic molecules whose pharmacophore 

was originally discovered owing to a natural product, or c) synthetic natural product mimics and 

analogues with the same mode of action as the natural product itself. 

The century-long tradition in their use as medicines has been the main source of inspiration for 

these developments. The advances initiated by the discovery of morphine are a glaring example of 

this. Not only did it mark the dawn of alkaloid chemistry and their use in therapy, it also sparked 

several forays into the investigation of its biosynthesis and its structure-activity relationships. It led to 

the discovery of the complex physiological mechanisms of endogenous opioid regulation and, along 

with advances in analytical instrumentation and synthetic chemistry, several new drugs. Figure 5 

shows how structural modifications (both semi-synthetic and totally synthetic) of morphine (1) did 

lead to several essential therapeutic agents: oxycodone (18) is an excellent analgesic that has been 

widely prescribed in the past 20 years. It also exhibits high addiction potential and often initiates illicit 

drug abuse.
[38]

 The O-demethylated and N-allylated analogue naloxone (19) can counteract its effect, 

and is a ubiquitous emergency medication in response to an opioid overdose. Removal of functional 

groups in the optical antipode of morphine leads to the phenantrenoid skeleton of dextromethorphan 

(20), which is used as a cough suppressant and has highly diminished analgesic and anesthetic 

proprieties relative to the (S)-configured series. Although their structure suggest otherwise, the fully 

synthetic analogues fentanyl (21) and sufentanyl (22) are respectively 100 and 500 times more potent 

than morphine. The former is used for the control of severe pain, and the latter is used as a sedative 

during general surgical anesthesia.
[39]

 The structurally closely related loperamide (23) on the other 

hand, has been used for the past 50 years as an antidiarroic.
[40]

 If taken orally, it has very low central 

nervous system penetration, thereby selectively manifesting only the constipating proprieties (i.e. 

promotes intestinal water absorption) of morphine without sedative and euphorizing effects. Most 

importantly, many other alkaloids have served as inspiration for the development of drugs, either as 

structural templates or as physiochemical probes. Among them are tubocurarine, atropine, 

camptothecin, staurosporine, and vinblastine.
[41,42]
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Figure 5. Morphine and six derivatives with improved therapeutic profiles. 

Although alkaloids comprise only about 15% of all the known natural products, they account 

for 46% of all plant-derived pharmaceuticals.
[43]

 While it may be argued that their centennial history 

and availability have led plants to be investigated in much more detail compared to other sources of 

natural products (e.g. marine organisms or fungi), this percentage is still remarkably high. 

Furthermore, a study among the 21.120 known plant-derived alkaloids described in the “Natural 

Products Alert” database  (out of approximately 27000 in total) has shown that only 24% have been 

evaluated for bioactivity at all.
[44]

 Considering these numbers in relation to the historical success of 

alkaloids in therapy and the nearly limitless possibilities of synthetic chemistry, many more interesting 

discoveries lie ahead of us. 
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1. Introduction 

1.1.  Structural Variety of Benzylisoquinoline Alkaloids 

Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites that 

include more than 2500 structures and share a common benzylisoquinoline skeleton (24, Figure 6) in 

different oxidation and substitution patterns.
[45]

 Their topological complexity is increased by 

intramolecular cyclization and ring-opening reactions resulting in diverse structures and biological 

activity (Figure 6). For example, they include the narcotic analgesic morphine (1), the antibiotic 

berberine (25), the muscle relaxants tubocurarine (26) and papaverine (27), the cough suppressant 

noscapine (28), the antiparkinsonian apomorphine (29), and the anticancer drug dauricine (30). All 

these alkaloids stem from the same fundamental biosynthetic pathway using metabolites derived from 

shikimic acid, and exhibit plant-specific diversity as a result of the enzymatic array present in the 

producing organism.   

 

Figure 6. Structural variety of plant-derived alkaloids with benzylisoquinoline core structure. 

In contrast to wooden phenotypes, where the shikimate pathway primarily serves to form 

cinnamic acids and alcohols necessary for the formation of lignin and condensed tannins, BIAs can be 

found in herbaceous plant families (Papaveraceae, Ranunculaceae, Berberidaceae and 
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Menispermaceae). Here, the products of the shikimate pathway are heavily diverted towards 

phenylalanine, the primary substrate for the biosynthesis of BIAs (Scheme 1). Oxidation of 

phenylalanine to L-tyrosine followed by oxidative deamination and decarboxylation leads to the 

formation of 4-hydroxyphenylacetaldehyde. Alternatively, aromatic oxidation of L-tyrosine followed 

by decarboxylation leads to the synthesis of dopamine.
[46]

 Condensation of these two intermediates and 

Pictet–Spengler reaction forms norcoclaurine (31), the first benzylisoquinoline alkaloid encountered in 

the biosynthetic pathway. Four additional enzymatic steps result in the formation of reticuline (32), the 

most important branching point in the formation of several benzylisoquinoline alkaloids.  

 

Scheme 1. Biosynthesis of (S)-reticuline from (S)-phenylalanine. 

(S)-Reticuline (32) features an (S)-configured benzylic stereocenter at C9. This stereochemical 

information is retained in further downstream transformations except in cases where aromatization to a 

benzylisoquinoline occurs (e.g. papaverine 27, Figure 6). In certain plants however, (S)-reticuline can 

be isomerized via oxidation and enzymatic reduction to its antipode (R)-reticuline (33, Scheme 2).
[47,48]

 

The dextrorotatory reticuline can also undergo similar downstream transformations with conservation 

of the benzylic stereocenter (now in (R)-configuration). Among the most important enzymatic 

conversions of reticuline (in either enantiomeric form) is the phenolic o,o-coupling between positions 

12 and 13 (Scheme 2) that leads to a phenantrenoid ring system. So, starting from (R)-reticuline this 

oxidative coupling forms (+)-salutaridine (35), which serves as the gateway to the morphine alkaloids. 

This pathway is operative in several species of the Papaveraceae family such as Papaver Somniferum, 

which delivers morphine (1). Conversely, (S)-reticuline can undergo the oxidative coupling to form    

(–)-salutaridine (34), widely referred to as sinoacutine, which is the entry point into the hasubanan 

alkaloids. This transformation is predominant in the Menispermaceae family, prominently represented 

by species such as Sinomenium acutum. Further plant-specific downstream transformations in either 

enantiomeric series greatly increase the structural variety of these tetracyclic alkaloids. However, a 

common denominator is an all-carbon quaternary stereocenter in the benzylic position, from which a 

two-carbon chain terminating in a nitrogen atom projects. This nitrogen can be connected to the 

remainder of the skeleton at different positions to provide structures that contain various five- or six-

membered heterocycles (Scheme 2).  
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Scheme 2. Tetracyclic alkaloids derived from (S)- and (R)-reticuline. 

In the morphinan series, exemplified by morphine, the original C–N connection at C9 is 

preserved to form a piperidine ring. In the hasubanan series, exemplified by hasubanonine (36), the 

nitrogen substituent is moved from the C9 to the C14 position, forming a 5-membered ring and a 

[4.4.3]aza-propellane.
[49]

 Oxidative transformations can lead to hydroxylation at C10 as seen in 

metaphanine (37).
[50]

 C–N bond fission can also occur with concomitant ring closure at C6, giving rise 

to cepharatine-type alkaloids such as cepharatine A (38).
[51–53]

 Further enzymatic processing of 

hasubanan-type alkaloids can also lead to skeletal rearrangements and loss of carbon atoms, for 

example in the acutumine alkaloid series, where the northern aromatic ring is cleaved and rearranged 

to a cyclopentenone through a Favorskii rearrangement followed by decarboxylation.
[54–56]

 

Although most of the skeletal subtypes mentioned above have been known for decades, many of 

them have succumbed to total synthesis only recently (e.g. acutumine (39) was isolated in 1929 and 

first synthesized in 2009). New compounds belonging to these structural classes are being discovered 

in present times and continue to capture the attention of organic chemists.
[56,57]

 Occasionally, new 

alkaloids containing unprecedented skeletal subtypes are also discovered. One such alkaloid is 

sinoracutine, which is the present object of study.  
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1.2. Sinoracutine 

1.1.1. Isolation, Structure and Absolute Stereochemistry. 

In 2009, a structurally unusual alkaloid was isolated from the dried stems of Sinomenium 

acutum. It was termed sinoracutine and was fully characterized by NMR, IR, and mass spectroscopic 

methods (40, Figure 7).
[58]

 Additional structural proof was obtained by X-ray crystallographic analysis. 

Sinoracutine features an unprecedented 6/6/5/5 tetracyclic skeleton with an aromatic ring bearing a 

methoxy and a hydroxyl group. A benzylic quaternary carbon connects an N-methyl pyrrolidine ring 

to a cyclopentenone moiety which is, in turn, connected to the aromatic ring through a cyclohexene 

ring. As a result, a highly conjugated -system (n–* = 393 nm) is formed.  

 

 

 
 

Figure 7. Leaves of Sinomenium acutum (left); structure and ORTEP plot of sinoracutine (right). 

 

The X-ray structure shows that the phenolic hydroxy group engages in an intramolecular 

hydrogen bond with the tertiary amine in the pyrrolidine ring. The pyrrolidine ring stands 

perpendicular to the carbocyclic 6/6/5 system, which assumes a slightly helical conformation. 

Moreover, the isolated sample exhibited a levorotatory optical power of –7.4 (c = 0.35, CHCl3). 

In 2010, (–)-sinoracutine was also found to occur in Stephania cepharantha, another member of the 

Menispermaceae family. In this case, the optical rotation was reported to be considerably higher: 

–754.5 (c = 1.14, CHCl3).
[59]

 Interestingly, in 2014, the “optical isomer” of (–)-sinoracutine, namely 

(+)-sinoracutine, was reportedly isolated from Sinomenium acutum.
[60]

 The structural assignment was 

carried out exclusively using X-ray crystallography, and no optical rotation was reported to 

substantiate this unusual finding. 

Interestingly, a closer look at the two available X-ray structures reveals that they depict the 

same enantiomer, namely the molecule bearing (R)-configuration at C13, which was assigned as (–)-

sinoracutine by Bao. However, this could be the result of a production error during manuscript 

preparation. Nevertheless, inspection of the crystallographic data of purported (+)-sinoracutine 

revealed the centrosymmetric space group Pbca, whose unit cell contains both enantiomers. 

Furthermore, examination of the crystallographic data file for the X-ray structure of purported (–)-

sinoracutine also exhibited a centrosymmetric unit cell with both enantiomers present, namely P21/n. It 
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was erroneously reported in the publication as the chiral space group P21. Taken together, these data 

suggest that in Sinomenium acutum sinoracutine occurs in scalemic form, but that the racemate 

crystallizes preferentially. Furthermore, the large differences in the absolute values of the optical 

rotations indicate that (–)-sinoracutine isolated from Stephania cepharanta is also scalemic, albeit of 

higher optical purity than the material derived from Sinomenium acutum. This is a very interesting 

circumstance and hints either to a biosynthetic pathway that operates with imperfect enantioselectivity, 

which has never been observed in reticuline-derived alkaloids, or to a partial racemization of the 

natural product either upon storage or isolation. However, no studies to assess the veracity of these 

hypotheses have been carried out by the isolation teams. 

 

 

 

Figure 8: ORTEP rendering of the crystal structure of sinoracutine reported by Bao, in which 

the unit cell contains both (R)- and (S)-sinoracutine (H-atoms omitted for clarity). 

1.1.2. Biosynthesis 

Several alkaloids that are believed to be biosynthetically related to sinoracutine have been 

isolated from Sinomenium acutum and Stephania cepharanta. Although the reported X-ray structures 

of sinoracutine represent racemic material, the published CD spectrum obtained from a sample 

originating from Sinomenium acutum suggests the configuration at the benzylic quaternary carbon to 

be (R). Thereby in the biosynthesis of sinoracutine, the morphinan-type alkaloid sinoacutine (34, 

Scheme 2) could be enlisted as the first committed biosynthetic intermediate after the phenolic o,o-

coupling of (S)-reticuline. This intermediate has been isolated from both Sinomenium acutum and 

Stephania cepharanta.
[59]

 A biosynthetic proposal, shown in Scheme 3, was put forth by the isolation 

team led by Bao. It involves an oxidative deamination of sinoacutine to cleave the piperidine bridge to 

give ketone 42.
[58]

 Reduction and elimination of the resulting alcohol would give 43 featuring the fully 

conjugated eastern backbone of sinoracutine.  Conjugate addition of the secondary amine to the α-

methoxy enone gives pyrrolidine 44. Then, Baeyer–Villiger oxidation would furnish 7-membered 

lactone 45 which upon hydrolysis undergoes a Dieckmann-type condensation to form sinoraculine 

(46), the carboxylated congener of sinoracutine (40). This compound was isolated in 2012 from 
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Stephania cepharanta as well and is very likely to occur in Sinomenium acutum as well.
[61]

 With the 

6/6/5/5 system in place, ester hydrolysis to 47 and decarboxylation of the exocyclic carboxylic acid 

finally results in sinoracutine (40).  

 

Scheme 3. Proposed biosynthesis of sinoracutine (40) from sinoacutine (34). 

1.1.3. Bioactivity 

Sinomenium acutum and Stephania cepharanta, from which sinoracutine has been isolated, are 

commonly used in traditional Chinese medicine for the treatment of inflammatory diseases such as 

rheumatoid arthritis, neuralgia, and edema.
[62]

 A root cause for these diseases is prominently linked to 

oxidative stress resulting from the surplus of reactive oxygen species (
•
O

−
2 ,

•
OH, H2O2) that are either 

byproducts of cell metabolism or generated by external stimuli (e.g. radiation, metabolism of 

xenobiotics).
[63]

 Increased levels of ROS lead to chronic inflammation that is manifested by the 

abovementioned pathologies and plays a major role in a variety of other degenerative illnesses 

including cancer, diabetes, pulmonary hypertension, coronopathy, as well as Alzheimer’s or 

Parkinson’s diseases.
[64]

 

In this context, sinoracutine has been investigated by Bao and co-workers for its antioxidant and 

cell-protective effects.
[58]

 As a neuronal replacement model, the rat pheochromocytoma derived PC12 

cells were treated with hydrogen peroxide to simulate endogenously produced ROS and induce 

oxidative stress. When PC12 cells were incubated with (–)-sinoracutine prior to exposure to hydrogen 

peroxide cell viability was increased and the survival rate rose from 59.4% in the control sample to 
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62.5% in the cultures treated with sinoracutine (1 µM). These values show the same trend as those 

obtained for the positive control huperzine A (64.3%, 10 µM), a lycopodium-type alkaloid first 

isolated from Huperzia serrata which is marketed as a dietary supplement for memory improvement. 

It has also been demonstrated that it can improve cognitive function and daily living activity in 

subjects with Alzheimer’s disease.
[65,66]

 

1.3. Project Aims 

The unique structure of sinoracutine and the open questions concerning its optical purity, together 

with the probable biosynthetic and pharmacological implications, prompted us to devise a synthetic 

route that could access the natural product both in a racemic as well as in enantiopure form. Given its 

high lipophilicity by virtue of an intramolecular hydrogen bond, that effectively mitigates the polarity 

of a basic tertiary amine and free phenolic OH, sinoracutine could serve as a template for the synthesis 

of new neuroprotective agents with central nervous system penetration ability. 
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 Results and Discussion 2.

2.1. Retrosynthesis 

The projected key transformation for the synthesis of sinoracutine was envisaged to be a 

Pauson–Khand reaction of 3-aryldihydropyrroline 48 bearing a pendant alkyne (Scheme 4). This 

retrosynthetic disconnection would allow the synthesis of two of the four rings of the natural product 

in a single step. Completion of the synthesis would then require elimination of the benzylic alcohol.   

 

Scheme 4. Proposed key disconnection via Pauson–Khand reaction. 

Enamines are known to engage in Pauson–Khand reactions, although the literature precedent 

is thin (Scheme 5). Interestingly, every example reported employs an N-carbamoyl-pyrrolidine and 

forms a quaternary carbon at the cyclopentenone junction, the same arrangement required for this 

synthetic plan. 
[67–70]

 

 

Scheme 5. Representative Pauson–Khand reaction employing an enamine. 

Additionally, this Pauson–Khand disconnection could enable a stereoselective synthesis of 

sinoracutine by exploiting the steric bulk of an appropriately protected enantiomerically pure alcohol 

48 (Scheme 6). The configuration of the secondary alcohol and its protecting group could conceivably 

promote the formation of a single diastereoisomer during the Pauson–Khand reaction by imparting a 

decisive conformational preorganization of the starting enyne. This intermediate could be prepared in 

enantioenriched form from aldehyde 49. Several methods for the synthesis of enantiopure 48 could be 
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employed, such as an asymmetric propargylation of aldehyde 49 or an asymmetric reduction of the 

ketone derived from racemic secondary alcohol 48 itself.
[71–76]

 

The required aldehyde 49 is the product resulting from a cross-coupling of literature-known 

iodoenamine 50 with boronate 51, which is easily derived from inexpensive isovanillin (Scheme 6).  

Although the steric hindrance of 49 is worthy of note, the coupling of o,o-disubstituted arenes has 

been reported several times in literature, establishing isovanillin as a convenient entry to the aromatic 

portion of many natural products.
[77–79]

 The second building block (50) is derived from pyrrolidinone 

52 (Scheme 6).
[80]

.  

 

Scheme 6. Retrosynthetic analysis of 1,7-enyne 48. 

2.1.1. Synthesis of the Pyrrolidine Coupling Partner 

The synthesis of halogenated enamine 50 commenced from commercially available Boc-

protected pyrrolidinone 53 (Scheme 7).
[80]

 Reduction of the carbonyl to give a hemiaminal, followed 

by in situ elimination furnished 2-pyrroline 54, which was subjected to halogenation conditions. 

 

Scheme 7. Reduction and elimination of lactam 53. 

As summarized in Table 1, bromination using NBS in the presence of base gave no reaction, 

while the use of molecular bromine resulted only in low product yield and partial decomposition of the 

starting material even at –78 °C (Entries 1 to 3).
[81–83]

 The reaction was more successful after the 

addition of 4 Å MS and bromide 55 could be isolated in moderate yield, provided the reaction was 

stopped as soon as the disappearance of 54 was observed by TLC (Entry 4). 
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Table 1. Bromination of Boc-protected pyrroline 54. 

 

Entry Reagent Base Solvent Additive Temp. (°C) Time (h) Yielda (%) 

1 NBS Et3N CH2Cl2 - rt 16 - 

2 Br2 Et3N CH2Cl2 - 0 2 32 

3 Br2 DIPEA toluene/CH2Cl2 - –78 2 38 

4 Br2 Et3N CH2Cl2 4 Å MS rt 2 47 

a) decomposition of 55 was observed; 

 

Iodide 50 was synthesized next. Analogous to the synthesis of bromide 55, a one-step 

preparation was attempted by direct iodination of 54 (Table 2). Although the reaction is known to 

proceed on the corresponding Boc-dehydropiperidine, either no conversion at room temperature 

(Entries 1 to 3) or slow decomposition of the starting material at higher temperatures was observed 

under the examined conditions (Entries 4 and 5). 
[84–86]

 

Table 2. Iodination of Boc-protected pyrroline 54. 

 

Entry Reagent Base Solvent Temp. (°C) Time (h) Yielda 

1 NIS Et3N CH2Cl2 rt 17 - 

2 I2 Cs2CO3 1,4-Dioxane rt 10 - 

3 I2 K2CO3 THF rt 10 - 

4 I2 Cs2CO3 1,4-Dioxane 65 6 - 

5 I2 K2CO3 THF 80 6 - 

a) decomposition of 54 was observed; 

 

Consequently, we turned to a previously reported two-step preparation of 50 (Scheme 8).
[87]

 

Pyrroline 54 was treated with ICl in methanol to give addition product 56. Subsequent acid-mediated 

elimination of MeOH with citric acid led to decomposition of the starting material. Changing the acid 

to TFA and reducing its stoichiometry to 0.1 eq provided moderate yields of  50.
[88]

  

 

Scheme 8. Synthesis of iodinated pyrroline 50.  

Unfortunately, the TFA-mediated elimination reaction did not prove amendable to scale-up 

beyond 1.5 mmol. The reaction time increased with scale, which invariably led to lower yields due to 
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the concomitant decomposition of the product under the reaction conditions. Therefore, the route to 

iodinated pyrroline was modified (Scheme 9).
[89]

 After Boc-protection of p-tosyl amine (57) and 

subsequent Mitsunobu reaction of 58 with but-3-yn-1-ol to give 59, detosylation furnished alkyne 60. 

Diiodination and intramolecular Ullman-type reaction afforded vinyl iodide 50.
[90–93]

 With gram-

quantities of 50 in hand, we focused on the preparation of different isovanillin type building blocks. 

 

Scheme 9. Alternative route to iodinated pyrroline 50. 

2.1.2. Synthesis of the Aromatic Coupling Partner 

As previously shown by Curran and co-workers, iodide 50 can be successfully coupled to 

arylboronic esters using the Suzuki reaction.
[87]

 Fortunately, the functional group compatibility of this 

method is excellent and can be carried out in the presence of aldehydes.
[94]

 As shown in Scheme 10, 

iodination of isovanillin followed by benzylation furnished 63. Borylation using 

bis(pinacolato)diboron proceeded well, whereas the use of less expensive pinacolborane was found to 

be slightly inferior.
[78,95,96]

 

 

Scheme 10. Synthesis of the borylated isovanillin 64. 

A second substrate, in which the hydroxy group of 2-iodoisovanillin (62) was protected as the 

corresponding isopropoxy ether, was prepared next (65, Scheme 11). The isopropoxy group was 
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chosen because cross-coupling reactions of this building block are known and a selective deprotection 

of the isopropyl ether in presence of the methyl ether is possible using Lewis acids.
[97]

 Using a 

Miyaura borylation, the corresponding pinacol ester 66 was obtained in good yield (Scheme 11).
.[95]

  

 

Scheme 11. Synthetic route to access different isovanillin type building blocks.  

Other borylated building blocks were obtained from 2-bromoisovanillin 67 (Scheme 12): 

Williamson ether synthesis and olefination delivered styrene 69 which was treated with n-BuLi at low 

temperature followed by addition of isopropoxyboronic acid pinacol ester to give boronic ester 70 in 

excellent yield. To further increase the options for the cross-coupling reaction, the potassium 

trifluoroborate analog of 70 was prepared.
[98,99] 

 

 

Scheme 12. Synthetic route to access borylated aromatic building blocks. 

The use of styrene 70 in the cross-coupling could give an alternative precursor for the Pauson–

Khand reaction after oxidation to aldehyde 73 and acetylide addition (Scheme 13).
[100–102]

 As 74 

contains a propargylic alcohol instead of a homopropargylic alcohol (48), the effect on 

diastereoselectivity in the cyclization reaction could be probed.  

 

Scheme 13. Proposed conversion of styrene 72 into sinoracutine. 

  



Part I: Results and Discussion 

20 

2.1.3. Cross-Coupling Attempts 

With building blocks 50 and 64 in hand, several cross-coupling conditions used successfully 

for sterically hindered aryl coupling partners as well as for electron-rich heteroatom-bearing vinyl 

halides were screened.
[87,103–105]

 The formation of 76 could not be observed, and protodeborylated 64 

was the major byproduct (Table 3). Iodide 50 was completely consumed in every instance, indicating 

that oxidative addition proceeded well, but the subsequent transmetallation step, even in the presence 

of alcoholic solvents and water that activate the boron center through formation of a boronate 

complex, did not proceed at all.
[106]

 

Table 3. Suzuki cross-coupling of iodoenamine 50 with aldehyde 64. 

 

Entry Pd Sourcea Ligandb Base Solvent System Temp. (°C) Time (h) Yieldc 

1 Pd(PPh3)4 - K2CO3 Benzene/MeOH/H2O 70 14 - 

2 Pd(PPh3)4 - Na2CO3 Toluene/EtOH 105 16 - 

3 Pd(PPh3)4 - KOH Toluene/H2O 105 16 - 

4 Pd(dppf)Cl2 - K2CO3 DMSO 80 16 - 

5 Pd(OAc)2 CyJohnPhos Ba(OH)2 1,4-Dioxane 80 2 - 

6 Pd(OAc)2 CyJohnPhos K3PO4 1,4-Dioxane 80 2 - 

7 Pd(OAc)2 SPhos K3PO4 Toluene/H2O 80 5 - 

a) 10 mol%;    b) 20 mol%;    c) decomposition of 50 observed, protodeboronation of 64 as determined by LCMS. 

 

Similar results were observed in the attempted coupling of iodoenamine 50 with isopropoxy-

protected aldehyde 66 (Table 4) as well as styrene 70 (Table 5). Using potassium tetrafluoroborate 71 

in conjunction with iodide 50 was not successful either (Table 6).
[107–110]

 These results suggest that 

steric hindrance, and not electronic bias, might be the culprit for the failure of this cross-coupling. 

Additionally, since 66 had been reported to undergo cross-coupling with aryl bromides, the 

halogenated enamine seems to be the main problem for the unsuccessful reaction outcomes. In fact, 

using this building block, only one example of cross-coupling can be found in literature.
[87]
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Table 4. Suzuki cross-coupling of iodoenamine 50 with isopropoxy-protected aldehyde 66. 

 

Entry Pd Sourcea Ligandb Base Solvent System Temp (°C) Time (h) Yieldc 

1 Pd(PPh3)4 - K2CO3 benzene/MeOH/H2O 70 14 - 

2 Pd(PPh3)4 - Na2CO3 toluene/EtOH 105 16 - 

3 Pd(PPh3)4 - K3PO4 1,4-dioxane 80 7 - 

4 Pd(OAc)2 CyJohnPhos Ba(OH)2 1,4-dioxane 60 48 - 

5 Pd(OAc)2 SPhos K3PO4 toluene/H2O 100 5 - 

a) 10 mol%;    b) 20 mol%;    c) decomposition of 50 observed, protodeboronation of 66 as determined by LCMS. 

 

Table 5. Suzuki cross-coupling of iodoenamine 50 with isopropoxy-protected styrene 70. 

 

Entry Pd Sourcea Ligandb Base Solvent System Temp (°C) Time (h) Yieldc 

1 Pd(PPh3)4 none K2CO3 benzene/MeOH/H2O 70 14 - 

2 Pd(PPh3)4 none Na2CO3 toluene/EtOH 105 16 - 

3 Pd(PPh3)4 none K3PO4 1,4-dioxane 80 16 - 

4 Pd(OAc)2 CyJohnPhos Ba(OH)2 1,4-dioxane 80 16 - 

5 Pd(OAc)2 SPhos K3PO4 toluene/H2O 100 5 - 

a) 10 mol%;   b) 20 mol%;    c) decomposition of 50 observed, protodeboronation of 70 as determined by LCMS. 

 

Table 6. Suzuki cross-coupling of iodoenamine 50 with potassium tetrafluoroborate 71. 

 

Entry Pd Sourcea Ligandb Base Solvent System Temp (°C) Time (h) Yieldc 

1 Pd(dppf)Cl2 none Ag2O toluene 100 18 - 

2 PdCl2(PhCN)2 none K2CO3 1,4-dioxane/H2O 80 16 - 

3 PdCl2 none K2CO3 1,4-dioxane/H2O 80 16 - 

4 Pd(PPh3)4 none K2CO3 DMF/H2O 100 12 - 

5 Pd(dppf)Cl2 none CsCO3 toluene 100 18 - 

6 Pd(OAc)2 PPh3 K3PO4 THF/H2O 60 24 - 

a) 10 mol%;   b) 20 mol%;    c) decomposition of 50 observed, protodeboronation of 71 as determined by LCMS. 
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We attempted to overcome the lack of reactivity in the cross-coupling by substituting the 

boronic ester-based Suzuki reaction with a Negishi reaction of organozinc reagents, which have been 

shown to participate in cross-coupling reactions even at ambient temperature.
[111]

 Styrene 69 was 

chosen as the substrate this study. After Br/Li exchange with t-BuLi, lithiated 69 was treated with 

ZnCl2 and subjected to various Pd-mediated cross-coupling protocols (Table 7).
[112]

 Although 50 was 

completely consumed in the reaction, no desired product was formed, and the main side-product was 

dehalogenated 69 resulting from protolysis of the intermediate organozinc species.  

Table 7. Negishi cross-coupling of 50 and 69 to form enamine 79. 

 

Entry Pd Sourcea Ligandb Solvent  Temp (°C) Time (h) Yieldc 

1 Pd2dba3 SPhos THF 60 16 - 

2 Pd2dba3 RuPhos THF 60 16 - 

3 Pd2dba3 XPhos THF 60 16 - 

a) 5 mol%;    b) 20 mol%;    c) decomposition of 50, protodemetalation of 69 observed. 

 

Next, the brominated enamine was examined as cross-coupling partner, as it was believed to 

be less reactive than the iodide which was evidently too unstable under the reaction conditions (see 

Table 8, next page). Despite using the very general systems reported by Buchwald and co-workers, the 

Negishi cross-coupling reaction of 55 and 69 did not lead to product formation.
[113,114]

 Examination of 

H2O-quenched reaction aliquots after 2 h indicated only the Br/H exchange of 69 and traces of 55. 

After 16 h, 55 was completely consumed and only the Br/H exchange product could be identified in 

the crude reaction mixture. These disappointing results on the cross-coupling of halogenated enamines 

50 and 55 led us to reverse the polarity of the coupling partners. 
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Table 8. Negishi cross-coupling reaction of bromoenamine 55 and styrene 69. 

 

 Entry Pd Sourcea Ligandb Solvent  Temp. (°C) Time (h) Yieldc  

 1 SPhos G2 SPhos THF 60 16 -  

 2 XPhos G3 XPhos THF 60 16 -  

 3 RuPhos G2 RuPhos THF 60 16 -  

 4 PEPPSI-IPr none THF 60 16 -  

 5 Pd(P(o-tolyl)3)2Cl2 none THF 60 16 -  

 6 Pd(dppf)Cl2 none THF 60 16 -  

 a) 10 mol%;    b) 10 mol%;    c) decomposition of 55, protodemetalation of 69 observed.  

2.1.4. Alternative Fragment Union 

Placement of the halogen on the isovanillin building block, rendered electron-poor by the 

presence of the aldehyde moiety, should favor oxidative addition during the Pd-catalyzed cross-

coupling process (Scheme 14). In fact, similar compounds have shown to engage in cross-coupling 

reactions.
[115–117]

 The electron-rich nature of the enamine should facilitate the introduction of a boron 

atom and the subsequent Suzuki cross-coupling. Furthermore, we decided to employ unprotected 2-

bromo isovanillin 67 in the cross-coupling. The benzyl group was left out to remove any possible 

steric hindrance during oxidative addition.  

 

Scheme 14. Envisioned building blocks for the formation of aldehyde 80. 

For the synthesis of borylated enamine 81 conditions similar to the Pd-catalyzed borylation of 

isovanillin were investigated.
[118–121]

 As shown in Table 9, all the conditions tested resulted in 

degradation of vinyl iodide 50  
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Table 9. Formation of borylated enamine 81 using palladium catalysis. 

 

Entry Pd Sourcea Ligandb Base Solvent Temp. (°C) Time (h) Yieldd 

1c Pd(OAc)2 CyJohnPhos Et3N 1,4-dioxane 80 1 - 

2d Pd(dppf)Cl2 none K2CO3 1,4-dioxane 80 16 - 

3d Pd(dppf)Cl2 none KOAc DMSO 80 3 - 

4d Pd(OAc)2 none KOAc DMF 80 5 - 

a) 10 mol%;    b) 20 mol%;    c) HBPin was used as the boron source;    d) B2pin2 was used as the boron source;    

d) decomposition of 50 was observed. 

 

Therefore, a microwave accelerated C–H borylation of enamine 54 was investigated using the 

conditions reported by Steel and co-workers for the borylation of pyrrole (Scheme 15).
[122]

 This 

reaction formed the desired borylated enamine in moderate yield and gram-quantities of 81 could be 

synthesized using sequential reactions on 1 mmol scale. Brominated isovanillin 67 was prepared 

following a literature procedure (Scheme 15).
[123]

 

 

Scheme 15. Synthesis coupling partners with reversed polarity. 

With borylated enamine 81 and bromoisovanillin 67 in hand, another screening of conditions 

for the Suzuki cross-coupling was performed using catalytic systems known to engage boronic esters 

containing free phenols (Table 10).
[52,82,124]

 While reactions carried out at 100 °C resulted in complex 

mixtures (Entries 1 and 2), a reaction carried out at room temperature did not show appreciable 

conversion (Entry 3). The use of microwave irradiation, which is routinely used to accelerate 

challenging Suzuki coupling, also resulted in a complex mixture of products despite the moderate 

temperature and short reaction time (Entries 5 and 6).
[125,126]
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Table 10. Suzuki cross-coupling of boronate 81 and bromoisovanillin 67. 

 

Entry Pd Sourcea Ligandb Base Solvent System Temp. (°C) Time(h) Yieldd 

1 Pd(PPh3)4 none K2CO3 1,4-dioxane/H2O 100   2 - 

2 Pd(PPh3)4 none K3PO4 DMF 100 18 -  

3 Pd(OAc)2 SPhos K3PO4 DMC r.t. 48 - 

4 Pd(OAc)2 SPhos K3PO4 n-BuOH/H2O 100 1 - 

5c Pd(OAc)2 SPhos K3PO4 MTBE/H2O 100 0.15 - 

6c Pd(dppf)Cl2 none KOH MTBE/H2O 80 0.15 - 

a) 10 mol%;    b) 20 mol%;    c) reaction performed in the microwave;    d) decomposition of 81 was observed. 

2.1.5. Stepwise Construction of the Pyrroline Ring 

Our unsuccessful attempts at a convergent cross-coupling of an aromatic building block with a 

pyrroline unit prompted us to devise a stepwise construction of the pyrroline ring from a substrate that 

already incorporates the o,o-disubstituted aromatic ring. Previous work conducted by Andreas Bellan 

showed that that a high-yielding Negishi coupling of acetal 82 with bromoacrylate 83 could afford 

α,β-unsaturated ester 84 (Scheme 16).
[127]

 Subsequent 1,4-addition of nitromethane followed by 

reduction and cyclization gave lactam 85 after N-methylation. Efforts to reduce this compound to the 

desired enamine 86, or effect enolization to form a vinyl triflate or vinyl phosphonate, remained 

unsuccessful. Steric hindrance due to the flanking ortho-substituents on the aromatic ring severely 

obstructs productive reactivity of the five-membered ring and forced us to revise our synthetic 

approach. 

 

Scheme 16. Stepwise construction of 3-aryl substituted lactam 85. 
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2.2.  Revised Retrosynthesis 

Failure to synthesize a pyrrolidine ring in the sterically hindered position of an o,o-disubstituted 

arene led us to modify our synthetic approach and focus on the introduction of a less bulky substituent, 

thereby postponing the formation of the pyrrolidine ring at a later stage in the synthesis. As shown in 

Scheme 17, the ring closure was planned to be performed on ketone 86 bearing a pendant amine 

following treatment with an amination agent. Pertinent examples for this reaction, that constitutes a 

formal umpolung of the -position of a ketone, have been employed in total synthesis (Scheme 

17).
[128–134]

  

 

Scheme 17. Proposed α-amination of 86 and relevant literature precedents. 

Formation of the crucial benzylic quaternary stereocenter could be achieved by a [3,3]-

sigmatropic rearrangement, i.e. the oxy-Cope rearrangement, in which alkene 87 could be formed in 

high stereoselectivity after the addition of allylmagnesium bromide to ketone 88 (Scheme 18).
[56]

 

Alternatively, a 1,4-addition of an allyl or vinyl nucleophile could allow the introduction of the C2-

unit after appropriate functional group manipulations. In any case, the required tricycle bearing 

α,β-unsaturated ketone (88) would result from a Pauson–Khand reaction of enyne 89 that could be 
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accessed from isovanillin following Sonogashira coupling and allylation. As put forth in Section 2.1, 

the allylic alcohol may serve as a stereocontrolling element to enable a diastereoselective Pauson–

Khand reaction and therefore an enantioselective synthesis of sinoracutine. The rigidity of the formed 

tricycle should allow for the stereoselective introduction of the allyl group required for the projected 

oxy-Cope rearrangement and stereochemical relay from 88 to the final product.
[135]

 

 

Scheme 18. Full retrosynthetic plan for sinoracutine starting from isovanillin. 

2.2.1. Synthesis of the Isovanillin Portion 

Isovanillin was regioselectively iodinated to give 62, whose free hydroxyl group was 

benzylated to afford 63 (shown in Scheme 10).
[136]

 Sonogashira cross-coupling of 63 with 

trimethylsilyl-acetylene and subsequent allylation with allylmagnesium bromide afforded enyne 91 

(Scheme 19).
[137]

 Cleavage of the terminal TMS group with K2CO3 in MeOH proceeded smoothly on 

small scale, but side products and lower yields were observed during scale-up. Instead, deprotection of 

91 using TBAF proceeded in excellent yield and Pauson–Khand precursor 93 was obtained after 

treatment with TBSCl and imidazole. 

 

Scheme 19. Synthesis of TBS-protected enyne 93 from protected iodoisovanillin 63. 
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2.2.2. Pauson–Khand Reaction 

Addition of solid Co2(CO)8 to 93 in CH2Cl2 led to the formation of an alkyne cobalt complex 

within 4 hours as determined by TLC analysis. Then, slow addition of NMO delivered the desired 

tricycle 94 in moderate yield and as a single diastereoisomer (Scheme 20). The relative configuration 

could be assigned on the basis of NOE data.  

 

Scheme 20. Pauson–Khand reaction to form the 6,6,5-carbocycle (94) of sinoracutine. 

Assuming that the steric demand of the TBS group might be responsible for the moderate 

yields, the reaction was performed with free benzylic alcohol 92.  As seen in Table 11, application of 

the same reaction conditions resulted in only 24% yield (Entry 1). By modification of the reaction 

parameters, we determined that oxidatively promoted reactions at ambient temperature performed 

better than thermally promoted cyclizations. Between the oxidative protocols, TMANO consistently 

showed better results than NMO (Entry 3). Among the thermal protocols, the reaction with Co2(CO)8 

in substochiometric amounts (0.5 eq.) using TMTU as an additive under CO atmosphere (balloon) 

gave the best result (Entry 9).
[138]

 

Table 11. Conditions for the Pauson–Khand reaction with free benzylic OH-group. 

 

Entry Solvent Co2(CO)8 (eq.) Oxidant/Additive Temp. (°C) Time (h) Yield (%) 

1 benzene 1.2 NMO (3 eq.) 0 to r.t. 16 24 

2 THF 1.2 NMO (3 eq.) 0 to r.t. 16 40 

3 benzene 1.2 TMANO (3 eq.) 0 to r.t. 16 52 

5 THF 1.2 TMANO (3 eq.) 0 to r.t. 16 53 

4 benzene 1.2 TMANO (3 eq.) 70 16 31 

6 benzene 1.2 none 70 24 35 

7 benzene 1.2 TMTU (3 eq.) 70 24 37 

8 benzene 1.2 TMTU (6 eq.) 70 24 24 

9a benzene 0.5 TMTU (3 eq.) 70 24 46 

a) under CO pressure (balloon). 
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Next, reaction conditions for the TBS protected enyne 93 were examined (Table 12). In 

accordance with the previous results, TMANO proved to be more efficient than NMO, and the 

reaction showed solvent-specific variability, with DCE being the solvent of choice (Entry 9). Thermal 

promotion also afforded the desired product in good yields (Entry 12), and commonly employed 

additives such as n-BuSMe, celite or 4 Å molecular sieves did not provide benefit (Entry 13 to 

15).
[70,139] Consistently higher yields were achieved compared to precursor 92 bearing a free benzylic 

OH group. Upon scale-up, we observed decreased yields (cf. Entries 9 and 10), presumably due to the 

insolubility of TMANO in DCE and inefficient mixing of the reaction partners. Therefore, continuous 

and vigorous stirring had to be ensured, and was best realized using round bottom flasks no larger than 

250 mL equipped with appropriately sized stirring bars (3 cm length). Scale-up reactions were 

performed in parallel batches and could be combined for work-up and purification to allow reliable 

material throughput. Also, the use of a freshly opened bottle of Co2(CO)8 was crucial to achieve 

reproducibly high yields, whereas bottles that had been opened for longer than 1 week resulted in yield 

drops in the range of 20 to 25%, despite using every precaution to prologue its shelf-life (storage under 

a blanket of argon in a –25 °C freezer). 

Table 12. Conditions for the Pauson–Khand reaction with benzylic TBS ether 93. 

 

Entrya Solvent Co2(CO)8 (eq.) Oxidant/Additive Temp. (°C) time (h) Yield (%) 

1 benzene 1.2 TMANO (3 eq.) 0 to rt 16 41 

2 benzene 1.2 NMO (3 eq.) 0 to rt 16 31 

3 THF 1.2 TMANO (3 eq.) 0 to rt 16 58 

4 THF 1.2 NMO (3 eq.) 0 to rt 16 16 

5 THF 1.2 TMANO (6 eq.) 0 to rt 16 50 

6 CH2Cl2 1.2 TMANO (3 eq.) 0 to rt 16 50 

7 CH2Cl2 1.2 TMANO (6 eq.) 0 to rt 16 66 

8 CH2Cl2 1.2 NMO (6 eq.) 0 to rt 16 50 

9 DCE 1.2 TMANO (6 eq.) 0 to rt 16 75 

10b DCE 1.2 TMANO (6 eq.) 0 to rt 16 56 

11 toluene 1.2 TMANO (6 eq.) 0 to rt 16 68 

12 toluene 1.2 - rt to 70 24 61 

13 toluene 1.2 BuSMe (3.5 eq.) rt to 70 24 60 

14 toluene 1.2 Celite (10x w/w) rt to 70 24 64 

15 toluene 1.2 4 Å MS (10x w/w) rt to 70 24 27 

a) all reactions performed on 0.2 mmol scale except Entry 10;  b) carried out on 1 mmol scale. 

 

To probe if the presence of coordinating or bulky functionalities had detrimental effect on the 

yield of the reaction, the TBS ether was removed via ionic reduction and the resulting product 97 was 



Part I: Results and Discussion 

30 

submitted to Pauson–Khand reaction conditions (Scheme 21). A low yield of cyclization product 98 

was obtained, even lower that the reaction of 92 bearing the free benzylic hydroxyl group. This 

suggests that while a possible coordination site is advantageous to the reaction, a high steric demand 

of the benzylic position in proximity of the alkene is crucial for optimal reactivity by enforcing a 

favorable conformation between the alkyne-Cobalt complex and the approaching alkene.
[140]

 

 

Scheme 21. Removal of benzylic alcohol followed by Pauson–Khand reaction. 

2.2.3. Introduction of the Quaternary Stereocenter 

2.2.3.1. 1,4-Addition  

Having constructed the tricyclic framework of sinoracutine, we proceeded with the 

introduction of the last ring. The first strategy pursued was analogous to the Mulzer–Trauner morphine 

synthesis, i.e. vinylcuprate addition to an enone.
[141]

 Andreas Bellan showed that Pauson-Khand 

product 99 could undergo 1,4-addition with vinylmagnesium bromide, but despite several optimization 

attempts, the reaction was low-yielding and irreproducible, and plagued by the concomitant formation 

of 1,2-addition product (Scheme 22).
[127]

 Therefore, the addition of ionic vinyl- or allylmetal species 

was not further investigated. 

 

Scheme 22: Previously investigated 1,4-addition with vinylcopper reagent. 

Next, the conjugate addition of allyltributylstannane to enone 94 was investigated in 

collaboration with Till Reinhardt according to the procedure developed by Trauner and coco-

workersworkers.
[142]

 They reported the successful 1,4-addition to cyclic enones upon prior 

electrophilic activation of the carbonyl with trifluoroacetic anhydride (TFAA) or 

trifluoromethanesulfonic anhydride (Tf2O).
[143]
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Table 13. Conditions examined for the 1,4-allylation and enolate trapping. 

 

Entry Activating agent  Allyltributyltin Additives Solvent Yield (101 or 102)a 

1 TFAA (1.2 eq.) 1.2 eq. DTBP, 4 Å MS CH2Cl2/MeCN = 1/1 no reaction 

2 TFAA (1.2 eq.) 1.2 eq. DTBP, 4 Å MS CH2Cl2 no reaction 

3 Tf2O (1.2 eq.) 1.4 eq. DTBP, 4 Å MS CH2Cl2/MeCN = 1/1 101, 47% 

4 Tf2O (1.2 eq.) 1.4 eq. DTBP, 4 Å MS CH2Cl2 101, 26% 

DTBP = 2,6-di-tert-butylpyridine;    a) stereochemsitry of the addition not determined. 

 

As shown in Table 13, TFAA was not successful in activating enone 94, and neither the enol 

trifluoroacetate 102 nor its desired hydrolysis product 103 could be observed. On the other hand, the 

reaction with Tf2O furnished a single intermediate, tentatively assigned as vinyl triflate 101. 

Attempted hydrolysis of this compound to the desired ketone 103 could  not be effected under several 

base-mediated conditions (Scheme 23).
[144,145]

 Therefore, we explored an alternative strategy that 

would yield intermediate 103 by intramolecular allyl transfer – namely the anionic oxy-Cope reaction. 

 

Scheme 23. Attempted hydrolysis of presumed enol triflate to ketone 103. 

2.2.3.2. Oxy-Cope Rearrangement 

The oxy-Cope reaction has been successfully employed in various alkaloid syntheses that bear 

a benzylic quaternary stereocenter.
[55,56,105]

 In contrast to the neutral variant of the reaction that requires 

prolonged times at elevated temperature (> 200 °C), the  [3,3]-sigmatropic rearrangement of 1,5-diene 

alkoxides proceeds at very high rates due to the weakening effect by the alkoxide anion on the 

adjacent carbon-carbon bond.
[146]

 This allows the reaction to be performed at cryogenic temperatures 

within a few hours. A literature review reveals a strong counterion dependence (order of reactivity: 

K>Na>Li), and that further acceleration can be achieved by addition of appropriate ionophores to 

generate a more reactive “naked” anion. Additionally, a model study by Evans and co-workers 

illustrated that maximum yield and rate improvements were achieved using no more than 3.0 eq. of 

18-crown-6.
[147]

 With these considerations in mind, treatment of 94 with allylmagnesium bromide 

afforded allylic alcohol 104, the precursor for the rearrangement, as a single diastereomer (Scheme 
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24). It proved unstable to silica gel chromatography and was subjected to anionic oxy-Cope reaction 

conditions immediately after aqueous workup.  

 

Scheme 24. Preparation of tertiary allylic alcohol 104. 

 

Table 14. Conditions applied for the anionic oxy-Cope rearrangement of 104. 

 

 Entrya Base Additive Temp. (°C) Time (h) Yield (%)  

 1b KOt-Bu (2.0 eq.) 18-crown-6 (2.0 eq.) 0 to rt 3 10  

 2 KHMDS (3.0 eq.) 18-crown-6 (3.0 eq.) 0 to rt 3 41  

 3 KHMDS (3.0 eq.) 18-crown-6 (3.0 eq.) –5 to rt 3 48  

 4 KHMDS (1.5 eq.) 18-crown-6 (1.5 eq.) –5 to rt 3 43  

 5 LiHMDS (1.5 eq.) 12-crown-4 (1.5 eq.) 0 to rt to 60 48 -  

 6 NaHMDS (1.5 eq.) 18-crown-5 (1.5 eq.) 0 to rt to 60 48 -  

 a) all reactions conducted in THF    b) TBS-cleavage product 105 was isolated in 46% yield.  

   

As seen in Table 14, employing KOt-Bu as base afforded the desired product 103 only in poor 

yield. Additionally, cleavage of the TBS group was observed. Under the reaction conditions and in the 

presence of the crown ether, the naked t-butoxy anion was able to attack and cleave the silyl ether. 

Hence, we decided to employ the non-nucleophilic base KHMDS and were able to improve the yield 

to 48% (Entry 3).  While no TBS-cleavage product was observed in this case, the starting material was 

completely consumed and gave rise to non-specific decomposition products as evidenced by darkening 

of the reaction mixture. By comparison, the corresponding lithium and sodium HMDS-bases with the 

appropriately sized crown ether ionophores were investigated (Entries 5 and 6). Even after prolonged 

reaction times, no rearrangement product was observed, and the starting allylic alcohol slowly 

decomposed. Due to these problems and the limited options for improvement, primarily due to the 

instability of alcohol 103, we decided to investigate an alternative approach. 

2.2.3.3. Claisen Rearrangement 

The required allylic alcohol for the introduction of the quaternary carbon at C13 by Claisen 

rearrangement was envisaged to be accessed diastereoselectively by reduction of 94 (Scheme 25). The 
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reaction was expected to be highly diastereoselective, as the addition of allylMgBr had proceeded in a 

completely diastereoselective manner (Scheme 24). After successful rearrangement, the last ring could 

be formed by cyclization of the pendant amine onto cyclopentene 108 (Scheme 25). 

 

Scheme 25. Envisaged synthesis of sinoracutine via Claisen rearrangement of allyl alcohol 106. 

Reduction of 94 was successful using different reducing agents (NaBH4/CeCl3, DIBALH), but 

LiAlH4 provided the cleanest reaction profile and most convenient workup, merely necessitating a 

filtration of the reaction mixture over a pad of silica after quenching with H2O and NaOH (Scheme 

26). As anticipated, 106 was formed as a single diastereomer and its relative stereochemistry could be 

established through X-ray crystallographic analysis by Nynke Vepřek.  

 

Scheme 26. Diastereoselective reduction of enone 94 and X-ray structure of allylic alcohol 106. 

With gram-quantities of alcohol 106 in hand, we turned our attention to the Claisen 

rearrangement. First, an Eschenmoser–Claisen reaction was attempted (Scheme 27).
[148]

 Unfortunately, 

the starting material decomposed within 5 minutes upon heating to 100 °C and the reaction mixture 

turned bright red, suggesting that a major decomposition pathway might include quinoidal 

intermediates likely to be formed after solvolytic removal of the benzylic silyl ether by liberated 

methanol (112) or by ionization of the conjugated allylic alcohol (113). The same red color was 

observed under Johnson–Claisen conditions employing triethyl orthoacetate in the presence of either 

propionic acid or 2-nitrophenol.
[149]

 Control experiments carried out by heating the reaction mixture in 

the presence of triethyl orthoacetate without acid additive also resulted in decomposition. Another 

experiment carried out using boiling ethanol, which is liberated by triethyl orthoacetate during the 
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rearrangement reaction, resulted in the same red color, confirming the instability of intermediate 106 

to protic solvent at high temperatures.  

 

Scheme 27. Attempted Claisen-type rearrangements and possible decomposition intermediates. 

 

Next, protocols that involve the formation and rearrangement of vinyl ether 114 were 

examined. As shown in Table 15, palladium-mediated vinyl ether formation was attempted.
[150,151]

 

Unfortunately, the desired product was not formed (Entries 1 to 4). Therefore, we turned to the well-

precedented formation of vinyl ethers assisted by mercury salts.
[152]

  As previously shown by Nynke 

Vepřek, reacting 106 with mercury acetate in the presence of either ethyl vinyl ether or the higher-

boiling butyl vinyl ether afforded 114, which was used after filtration over alumina to remove Hg-salts 

(Entries 5 and 6). Unfortunately, heating of 114 in either xylene or benzonitrile did not form any 

aldehyde product and resulted in decomposition (Table 16). We also tested the rearrangement in wet 

dioxane, which was reported by Grieco to occur at lower temperatures, but this resulted in no product 

formation and hydrolysis of the labile vinyl ether (Entry 3).
[153]
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Table 15. Conditions examined for the formation of vinyl ether 114 from alcohol 106. 

 

Entry Catalysta Vinyl Ether Donor Temp. (°C) Yield (%) 

1 116 tris(diethyleneglycol) divinyl ether 130 complex mixture 

2 116 butyl vinyl ether 75 no reaction 

3 115 butyl vinyl ether 75 no reaction 

4 115 ethyl vinyl ether 35 no reaction 

5 Hg(OAc)2 ethyl vinyl ether 35 83b 

6 Hg(OAc)2 butyl vinyl ether 75 61b 

a) 10 mol%     b) crude yield reported; product contaminated with unidentified impurities. 

 

Table 16. Conditions examined for the thermal rearrangement of vinyl ether 114. 

Entry Solvent Temp. (°C) Time (h) Yield Comment 

1 benzonitrile 160   5  n.d. decomposition 

2 xylene 140   5 n.d. decomposition 

3 dioxane/H2O 110 48 n.d. no rearrangement, hydrolysis to 106 

      

 

The results involving the synthesis and isolation of vinyl ether 114 led us to consider a Claisen 

strategy originally reported by Mandai in which the isolation of hemistable vinyl ether 114 is not 

necessary.
[154]

 Instead, the required intermediate is formed in situ starting from sulfoxide 117 which 

undergoes Grieco-type elimination with expulsion of a sulfenic acid at elevated temperature (>150 

°C), where the subsequent sigmatropic rearrangement occurs readily (Scheme 28). Therefore, we 

prepared sulfoxide 117 through conjugate addition of 106 to phenyl vinyl sulfoxide using NaH and 

catalytic KH. The adduct was isolated in very good yield as an inseparable mixture with excess vinyl 

sulfoxide. Thankfully, subjection of the crude reaction mixture to methylamine in isopropanol 

scavenged unreacted vinyl sulfoxide and rendered the isolation of pure 117 possible.  
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Scheme 28. Synthesis of sulfoxide 117 and proposed conversion into aldehyde 107. 

Heating of 117 in o-dichlorobenzene showed that the desired product was formed, but yields 

were variable and longer reaction times were necessary on larger scales, which resulted in side product 

formation and lower overall yield.
[155]

 Attempts to shorten the reaction time by the use of microwave 

irradiation were also unsuccessful.
[156]

 Therefore, we investigated the reaction variables in more detail. 

As can be seen in Table 17 the reaction provides variable yields, even if set up in parallel on 

the same scale (Entries 2 to 5). In line with the original report, NaHCO3 was the base of choice but we 

observed higher yields when a large excess of base was used (>50 eq.), as opposed to 30 eq. in the 

original publication. Furthermore, NaHCO3 outperformed other bases such as NaOAc and KOAc 

(Entries 20 and 21). The absence of base resulted in no product formation, whereas the use of a 

thiophilic scavenger (PPh3) to trap liberated sulfenic acid was possible, but not advantageous (Entries 

22 and 23).
[157]

 For reactions conducted in screw-cap vials using a heated metal block, a temperature of 

165 °C was optimal (Entries 24 - 26), while lower temperatures resulted in prolonged reaction times 

and a slight decrease in yield (entries 6 to 11). Reactions above 200 mg of substrate, exemplified by 

entry 27, were conducted in a round bottom flask and heated in an oil bath set at a temperature of 

10 °C higher than desired to compensate for heat dissipation. The reaction was monitored by 
1
H NMR 

of reaction aliquots withdrawn every hour.  

Figure 9 shows that the starting material is consumed at a higher rate compared to the rate of 

product formation. Additionally, the product aldehyde 107 is not stable under the reaction conditions, 

resulting in low isolated yields if the reaction is not monitored frequently and stopped after the 

disappearance of 117. Taking these findings into account, the reaction reproducibly afforded aldehyde 

107 in 60 to 65% isolated yield on scales up to 3 mmol.  
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Table 17. Conditions examined for the thermolysis and Claisen rearrangement of sulfoxide 117. 

 

Entrya Scale (mg) Base Eq. Solvent Conc. (mM) Temp. (°C) Time (h)b Yield (%)c 

1 8 NaHCO3 30 Mesitylene 4 150 8 31 

2 10 NaHCO3 30 1,2-DCB 4 150 6 42 

3 10 NaHCO3 30 1,2-DCB 4 150 6 41 

4 10 NaHCO3 30 1,2-DCB 4 150 6 27 

5 10 NaHCO3 30 1,2-DCB 4 150 6 28 

6 66 NaHCO3 30 1,2-DCB 4 150 11 40 

7 9 NaHCO3 5 1,2-DCB 5 150 8 51 

8 9 NaHCO3 10 1,2-DCB 5 150 8 55 

9 9 NaHCO3 25 1,2-DCB 5 150 8 56 

10 9 NaHCO3 50 1,2-DCB 5 150 8 58 

11 9 NaHCO3 100 1,2-DCB 5 150 8 49 

12 10 NaHCO3 50 1,2-DCB 5 170 5 29 

13 53 NaHCO3 50 1,2-DCB 5 170 2 38 

14 48 NaHCO3 50 1,2-DCB 5 170 2 37 

15 48 NaHCO3 50 1,2-DCB 2.5 170 2 29 

16 50 NaHCO3 83 1,2-DCB 5 170 2 38 

17 40 NaHCO3 100 1,2-DCB 5 170 2 35 

18 40 NaHCO3 100 1,2-DCB 5 160 4 35 

19 40 NaHCO3 100 1,2-DCB 5 160 5 40 

20 36 NaOAc 35 1,2-DCB 5 170 2 27 

21 36 KOAc 35 1,2-DCB 5 170 2 29 

22 36 PPh3 3 1,2-DCB 5 170 2 25 

23 36 PPh3 10 1,2-DCB 5 170 2 36 

24 90 NaHCO3 80 1,2-DCB 5 165 6 85 

25 90 NaHCO3 80 1,2-DCB 5 165 4 72 

26 90 NaHCO3 80 1,2-DCB 5 165 4 81 

27d 1818 NaHCO3 90 1,2-DCB 5 175 6 73 

a) all reactions carried out with catalytic amounts of BHT as additive;    b) time until disappearance of starting material as 
monitored by 1H NMR every hour;   c) NMR yield using phenanthrene as internal standard;   d) isolated yield: 61%. 
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a) Product distribution calculated by 1H NMR against phenanthrene as internal standard; 

Figure 9. Time-dependent formation and decomposition of aldehyde 107. 

Hoping to improve the yield further, we turned to the reaction of p-chloro phenyl sulfone 118, 

reported to give higher yields than the parent phenyl sulfone 117.
[154]

 Table 18 shows that, for chloro-

substituted arene 118, KOAc was the best base for the transformation. Although 140 °C was sufficient 

to effect the rearrangement (Entry 7), shorter reaction times were achieved at 160 °C (Entry 6). 

Interestingly, NaHCO3 was ineffective for this substrate (Entries 2 and 14). Nevertheless, yields were 

lower compared to the parent system using 117. Given that p-chloro phenyl vinyl sulfoxide is not 

commercially available and requires multistep synthesis, the use of 118 was not implemented.
[158]

 

Table 18. Conditions examined for the thermolysis and Claisen rearrangement of sulfoxide 118. 

 

Entrya Base Eq. Temp. (°C) Timeb (h) Yield (%)c 

1 no base 10 175 3 0 

2 NaHCO3 10 175 3 0 

3 NaOAc 10 175 3 33 

4 KHCO3 10 175 3 16 

5 KOAc 10 175 3 59 

6 KOAc 10 160 2 71 

7 KOAc 10 140 16 68 

8 KOAc 10 150 18 60 

9 BaCO3 10 150 3 0 

10 no base 10 150 18 35 

11 KHCO3 10 150 18 73 

12 KH2PO3 10 150 18 0 

13 K2HPO3 10 150 18 0 

14 NaHCO3 10 150 18 0 

15 NaH2PO3 10 150 18 0 

16 Na2HPO3 10 150 18 0 

a) all reactions carried out using 10 mg of 118 in 1,2-DCB (4 mM) and catalytic 

amounts of BHT;    b) time until disappearance of starting material as monitored by 
1H NMR every hour;    c) NMR yield using phenanthrene as internal standard. 

0%

20%

40%

60%

80%

100%

120%

0 h 2 h 4 h 6 h 8 h 31 h 52 h 79 h

Y
ie

ld
a

 
Starting material (117)

Product (107)



Part I: Results and Discussion 

39 

2.2.4. Formation of the Pyrrolidine Ring 

Reductive amination of aldehyde 107 using an ethanolic solution of methylamine proceeded 

smoothly to deliver secondary amine 108 (Scheme 29). Since direct oxidative cyclization to 120 was 

not viable, we decided to activate the alkene electrophilically to effect the attack of the pendant 

nitrogen and form the pyrrolidine ring. The ketone could then be introduced at a later stage.
[156]

 

 

Scheme 29. Reductive amination and projected ring closure to ketone 120. 

Nynke Vepřek demonstrated that treatment of 108 with NIS resulted in rapid conversion of the 

starting material to a single intermediate (119, Scheme 30). This compound proved to be unstable to 

aqueous workup, but structural assignment was possible by NMR analysis and mass spectrometry. 

When crude 119 was treated with 1 M aqueous LiOH solution in DME, introduction of a hydroxyl 

group was effected to give secondary alcohol 121.
[159]

 Unfortunately, the yield for the transformation 

was low and not reproducible. In addition, secondary alcohol 121 did not deliver ketone 120 under 

standard alcohol oxidation conditions.  

 

Scheme 30. Formation of the pyrrolidine ring and introduction of oxygen functionality. 
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Although the product derived from the reaction using NIS defied our isolation attempts, we 

decided to carry on with the formed intermediate and optimize its formation. From a screening of 

several electrophilic iodination reagents and their stoichiometry, NIS (2 eq.) emerged as the optimal 

reagent (Table 19).
[160–162]

  

Table 19. Conditions for the iodocyclization of 108. 

 

 Entrya Reagent Eq. Solvent Yieldb (%)  

1 NIS 2 CH2Cl2 64 

2 122 2 CH2Cl2 58 

3 123 2 CH2Cl2 43 

4 124 2 CH2Cl2 12 

5 125 1 CH2Cl2 49 

6 126 2 CH2Cl2 12 

7 NIS 0.5 CD2Cl2 7 

8 NIS 1 CD2Cl2 33 

9 NIS 1.5 CD2Cl2 42 

11 NIS 2.5 CD2Cl2 38 

12 NIS 2 MeCN 45 

13c NIS 2 MeCN 52 

 a) Reactions performed at room temperature except entries 12 

and 13 (–20 °C)    b) determined by 1H NMR using diphenyl-

methane as internal standard    c) solution of NIS added slowly 

via syringe pump. 

 

   

As can be seen in Table 20, treatment of 108 with NIS in different aprotic solvents led to the formation 

of the product in low to moderate yields. The reaction occurred in all the solvents examined, but 

CH2Cl2 and MeCN provided the cleanest reaction profile and were selected for further optimization 

(Entries 1 and 5).  
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Table 20. Solvents examined for the iodocyclization of 108 using NIS. 

 

Entry Solvent Yielda (%) Comment 

1 CH2Cl2 47 clean conversion 

2 CHCl3 56 several side products 

3 DCE 42 - 

4 DME 40 - 

5 MeCN 53 clean conversion 

6 THF 42 - 

7 DMF 44 several side products 

8 benzene 42 - 

9 DMSO 27 several side products 

10 toluene 42 - 

a) determined by 1H NMR using diphenylmethane as internal standard. 

 

We observed that in all cases the consumption of starting material was very fast (< 10 

minutes), but the product yield was moderate. Therefore, we attempted to lower the reaction 

temperature and decrease the concentration to slow down the reaction, diminish side product 

formation, and improve the yield of the major product (Table 21).  

Table 21. Variation of reaction conditions for iodocyclization reaction of alkene 108. 

 

 

 

 Entrya Solvent Conc. (mM) Temp. (°C) Yieldb (%)  

1 CH2Cl2 12 –20 55 

2 CH2Cl2 20 –20 49 

3 CH2Cl2 40 –20 56c 

4 CH2Cl2 12 rt 53 

5 CH2Cl2 25 rt 53 

6 CH2Cl2 50 rt 53 

7 CH2Cl2 62 rt 38 

8 MeCN 10 –20 54 

9 MeCN 20 –20 59 

10 MeCN 40 –20 51 

11 MeCN 75 –20 48 

12 MeCN 150 –20 46 

a) reaction time 30 min;    b) determined by 1H NMR of the crude 

mixture using diphenylmethane as internal standard; c) incomplete 
consumption of starting material observed. 
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Although the reaction was complete within 30 minutes even at –20 °C, lowering the 

temperature only gave minimal improvements in yield. For example, a reaction in CH2Cl2 at 12 mM 

carried out at –20 °C gave the product in 55% yield, while the reaction at room temperature gave the 

product in 53% yield (cf. Entries 1 and 4). Furthermore, NMR analysis showed that increasing 

concentration led to several unidentified side products and lower overall yields. Optimum 

concentrations for the CH2Cl2 reaction was found to be 12 mM, while in MeCN the best yield was 

achieved at 20 mM and at ambient temperature. 

To displace the iodine atom with an oxygen nucleophile, the reaction mixture containing 119 

was diluted with DMSO in the presence of halophilic silver tetrafluoroborate.
[163]

 Addition of an amine 

base (i.e. triethylamine) would then effect deprotonation of the sulfonium ion resulting from 

substitution of the secondary iodide, lead to the loss of dimethyl sulfide, and give ketone 120 (see 

Scheme in Table 22). Indeed, the desired ketone could be synthesized in moderate yield. Whereas in 

typical Kornblum conditions the base is added after several hours in order to complete the substitution 

reaction of DMSO with the halide, we found that the Et3N could be added to the reaction from the 

beginning to achieve the same result. Furthermore, these substitutions in Kornblum oxidations 

generally require elevated temperatures and are only successful for activated alkyl halides (i.e. 

primary, or benzylic, allylic).
[164]

 In our case, the reaction proceeds readily at room temperature, and is 

similarly efficient if carried out without silver salts (cf. Entries 1 and 2 or Entries 3 and 4). These 

results suggest the neighboring group participation of the adjacent amine to form aziridinium 127 that 

obviates the use of silver salts by internal displacement of the iodide and conformationally locks 

intermediate 127 to favor the attack by DMSO.  

Table 22. Proposed neighboring-group participation Kornblum reaction of iodide 119. 

 

 

 

 Entrya Solvent Base Additive Yieldb  

1 50% DMSO in CH2Cl2 Et3N AgBF4 54% 

2 50% DMSO in CH2Cl2 Et3N none 53% 

3 50% DMSO in CH2Cl2 Et3N AgBF4 53% 

4 50% DMSO in MeCN Et3N none 50% 

a) substitution reaction carried out at –15 °C to room temperature for 16 hours; 

b) determined by 1H NMR using diphenylmethane as internal standard. 
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As can be seen in Table 23, the requirement for low concentrations during the oxidation is 

instrumental for high yield of ketone 120 in both CH2Cl2 and MeCN. Decreasing the temperature for 

the addition of Et3N from room temperature to –20 °C gave similar yields for both solvent mixtures 

when the reaction was performed in comparable concentrations (Entries 2 and 10). 

Table 23. Reaction conditions for the synthesis of ketone 120 via Kornblum oxidation. 

Entry 
Cyclizationa  Oxidationb 

Yieldc 
solvent Temp. (°C) Conc. (mM)  solvent Temp. (°C) Conc. (mM) 

1 MeCN –20 °C 20  50% MeCN in DMSO –15 10 63% 

2 MeCN –20 °C 40  50% MeCN in DMSO –15 20 52% 

3 MeCN –20 °C 72  50% MeCN in DMSO –15 38 53% 

4 MeCN –20 °C 150  50% MeCN in DMSO –15 75 38% 

5 MeCN 0 °C 20  50% MeCN in DMSO rt 10 65% 

6 MeCN –20 °C 40  50% MeCN in DMSO rt 20 56% 

7 MeCN –20 °C 75  50% MeCN in DMSO rt 38 48% 

8 MeCN –20 °C 150  50% MeCN in DMSO rt 75 42% 

9 MeCN –20 °C 20  50% MeCN in DMSO rt 10 62% 

10 CH2Cl2 –20 °C 40  50% CH2Cl2 in DMSO –15 20 54% 

11 CH2Cl2 –20 °C 20  50% CH2Cl2 in DMSO rt 10 58% 

12 CH2Cl2 0 °C 20  50% CH2Cl2 in DMSO rt 10 61% 

a) performed using 2 eq. of NIS; time: 15 min;    b) performed using 3 eq. of Et3N, time: 24 h;    c) isolated yield. 

 

In a last series of experiments we examined the possibility of performing a solvent switch to 

DMSO after the iodocyclization reaction. As 119 was not stable towards aqueous workup and silica 

gel chromatography, we feared it would also be unstable during the required manipulations. In fact, we 

determined that solvent removal had to be performed in the dark while setting the water bath 

temperature below 25 °C (at 35 °C, 50% of the product decomposed upon redissolution). In doing so, 

solvent-free 119 could be handled in air for short time and used for the substitution reactions.  

As can be seen by the comparison of Table 23 with Table 24, DMSO alone was slightly superior for 

the Kornblum oxidation to mixtures containing either MeCN of CH2Cl2. For example, oxidation in 

DMSO at room temperature in 5 mM solution yielded in 73% (Table 24, Entry 3), whereas the highest 

yields achieved with 1/1 mixtures of MeCN/DMSO or CH2Cl2/DMSO were 65% and 61% 

respectively (Table 23, Entries 5 and 12).  

Table 24 Variation of reaction conditions for the synthesis of ketone 120 in pure DMSO. 

Entry 
Cyclizationa  Oxidationb 

Yieldc 
solvent Temp. (°C) Conc. (mM)  solvent Temp. (°C) Conc. (mM) 

1 CH2Cl2 –20 °C 12.5  DMSO rt 5 64 

2 CH2Cl2 rt 12.5  DMSO rt 5 73 

3 CH2Cl2 –20 °C 12.5  DMSO rt 10 67 

4 CH2Cl2 rt 25  DMSO rt 10 65 

5 CH2Cl2 rt 12.5  DMSO rt 20 45 

6 CH2Cl2 rt 50  DMSO rt 20 58 

a) performed using 2 eq. of NIS; time: 15 min;    b) performed using 3 eq. of Et3N, time: 24 h;   c) isolated yield. 
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Additionally, we determined that ketone 120 was heavily retained on regular silica gel, which 

led to a yield loss of 20%. This issue could be resolved by pretreatment of silica gel with the eluent 

mixture containing 1% Et3N followed by loading and elution with amine-free eluent. Interestingly, 

purification using Et3N in the eluent mixture resulted in lower yields (10%). Using the optimized 

conditions described above, 120 could reliably be accessed on scales up to 1 mmol in 60 to 70% 

isolated yield. 

2.2.5. Completion of the Synthesis 

The one-pot iodoamination–Kornblum oxidation sequence successfully installed the 

tetracyclic ring system of sinoracutine. The fully conjugated eastern backbone required elimination of 

the benzylic TBS ether and oxidation of the ketone to the α,β-unsaturated ketone. 

Styrene 128 could be best accessed by treatment of silyl ether 120 with CSA (Scheme 31). Its structure 

was established by X-ray crystallographic analysis and confirmed the diastereoselective installation of 

the quaternary stereocenter and the anti-orientation of the pyrrolidine ring with respect to the angular 

proton of the cyclopentene moiety. For the introduction of unsaturation, we decided to apply the 

method of Mukaiyama using LDA followed by sulfimidoyl chloride (130).
[165–167]

 Gratifyingly, this 

oxidation protocol cleanly afforded benzylsinoracutine 129 in good yield as an intensely yellow oil.  

 

Scheme 31. Elimination of benzylic alcohol to tetracycle 128 and its Mukaiyama oxidation. 

Final debenzylation was attempted using BCl3 in the presence of pentamethylbenzene, a 

reagent combination that has shown to selectively remove benzyl groups in presence of methoxy 

groups and other Lewis basic sites.
[168,169]

 As shown in Table 25, BCl3 did not react with starting 

material at –40 °C but cleavage of the benzyl ether could be observed at –20 °C. However, significant 

amounts of demethylated product were observed by LCMS, reflecting the electron-deficient nature of 

the methoxy group that is in direct conjugation with the carbonyl (Entry 4). When the stronger Lewis 
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acid BBr3 was used, both benzyl- and methyl ethers were cleaved at competing rates even at –78 °C 

(Entry 5).  Trifluoroacetic acid was examined next, as it had been reported to cleave phenolic benzyl 

groups in complex peptides.
[170]

 When used in conjunction with electron-rich aromatic compounds 

such as trimethoxybenzene or pentamethylbenzene, dramatic rate acceleration and higher yields were 

observed, likely a result of efficient scavenging of the generated benzylic cation.
[171]

 Upon treatment of 

129 in neat TFA with pentamethylbenzene for 48 h, selective removal of the benzyl group was 

effected to afford sinoracutine. The reaction could be carried out at 40 °C with comparable efficiency 

(Entry 7).  

Table 25. Conditions examined for the debenzylation of 129 to give sinoracutine. 

 

Entry Reagenta Temp. (°C) Time (h) 
Product distribution (%, HPLC relative peak area) 

Starting material (129) Sinoracutine (40) 131 (undesired) 

1 BCl3 –40 24 - no reaction - 

2 BCl3 –20 12 10 80 10 

3 BCl3 –15 6 10 85 15 

4 BCl3 0 6 5 50 50 

5 BBr3 –78 2 3 0 97 

6 TFA rt 48 15 85 0 

7 TFA 40 24 11 89 0 

a) All reactions carried out in the presence of pentamethylbenzene (10.0 eq.). 

 

In an effort to shorten the overall reaction sequence, silyl ether 120 was oxidized under 

Mukaiyama conditions to afford enone 132, which was subjected to trifluoroacetic acid at 40 °C 

(Scheme 32). The elimination of the benzylic alcohol to 129 could be observed by LCMS within 10 

minutes and subsequent debenzylation progressed over the course of 16 hours. Sinoracutine could be 

isolated after extractive workup and chromatography on silica gel to remove excess 

pentamethylbenzene. We experienced difficulties in obtaining an analytically pure sample of 40, 

which is not stable to silica gel as evidenced by two-dimensional TLC analysis and could not be 

purified on aluminum oxide. Gratifyingly, purification by semipreparative HPLC (reverse phase, 

H2O/MeCN + 1% FA) followed by direct lyophilization of the product-containing fractions was 

successful. This material could also be recrystallized from slow diffusion of hexane into a solution of 

40 in CH2Cl2. 
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Scheme 32. Oxidation of silyl ether 120 followed by sequential elimination/debenzylation. 

2.2.6. Asymmetric Synthesis of Sinoracutine 

With a reliable route to racemic sinoracutine in hand, we moved on to render our synthesis 

asymmetric. As stated in Chapter 2.2, preparation of Pauson–Khand precursor 94 in enantiopure form 

should allow the enantioselective synthesis of sinoracutine by virtue of the stereoselectivity exhibited 

by Pauson–Khand reaction, the 1,2-reduction, and by the ensuing Claisen rearrangement.  

2.2.6.1. Enantioselective Allylation 

A literature review showed that catalytic enantioselective methods for the allylation of o-

substituted benzaldehydes tend to give low enantioselectivities and are highly substrate dependent.
[172]

 

Among the methods investigated (chiral N-oxide catalysts in conjunction with allyltrichlorosilane, 

titanium-BINOL complexes with allyltributyltin, chiral phosphoric acids with allylpinacolborane) all 

exhibited moderate enantioselectivities, especially with o-alkynyl-substituted substrates relevant for 

this project.  

Therefore, we started our investigations using stoichiometric chiral allylation reagents. Among 

the methods at our disposal, the allylsilane developed by Leighton was tested first.
[173]

 The reaction 

was performed using TMS-protected 90 under standard conditions (Table 26). At room temperature, 

no reaction took place. Heating did not improve conversion and led to decomposition of the starting 

material. Also the addition of Sc(OTf)3, reported to improve reactivity in reluctant substrates, was not 

successful in our hands.
[174]
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Table 26. Asymmetric allylation of TMS-alkyne 90 with Leighton’s chiral allylsilane 133. 

 

Entry Solvent Additive Temp. (°C) Time (h) Yielda (%) ee (%) 

1 CH2Cl2 none 4 012 - n.d. 

2 CH2Cl2 none rt 012 - n.d. 

3 CH2Cl2 none rt to 40 036 - n.d. 

4 CH2Cl2 Sc(OTf)3 (8 mol%) rt to 40 100 - n.d. 

a) decomposition of 90 was observed; n.d. =  not determined. 

 

A recent protocol using a cinchona-alkaloid based catalyst in conjunction with 

allyltrichlorosilane and DIPEA as Lewis-basic activator was examined next.
[175]

 To determine the 

influence of the protecting group on the allylation, in addition to the TMS-protected Sonogashira 

product (90), we also used the free alkyne (134), which could easily be accessed by TBAF-promoted 

desilylation. Unfortunately, both aldehydes did not give the allylated product and decomposed under 

the reaction conditions (Table 27). 

Table 27. Asymmetric allylation mediated by chiral organocatalyst 135. 

 

Entry Substrate Solvent Temp. (°C) Time (h) Yielda (%) ee (%) 

1 90 (R = TMS) toluene rt 12 - n.d. 

2 134 (R = H) toluene rt 12 - n.d. 

a) decomposition of 90 or 134 was observed;     n.d. =  not determined. 

 

Due to these unsatisfactory results using silicon-based reagents, we turned our attention to the 

highly powerful and well-established allylboranes derived from terpene-based chiral auxiliaries 

introduced by Brown and co-workers (138, Scheme 33).
[176,177]

 They can be prepared in situ from 

pinene-derived B-diisopinocampheylmethoxyborane (136) or B-chlorodiisopinocampheylborane (137) 

by treatment with allylmagnesium bromide.  
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Scheme 33. Synthesis of B-allyldiisopinocampheylborane from α-pinene. 

Furthermore, treatment of the so-formed reagent with pentane effects complete precipitation of 

the formed inorganic salts (MgCl2 or Mg(OMe)2) that slow down the reaction by complexation with 

the allylborane. Filtration through a pre-dried glassfiber filter can increase the reaction rate 

markedly.
[178]

 This is especially important as the reaction is usually performed at –100 °C for several 

hours resulting in a complicated experimental setup requiring constant monitoring and refrigerant 

addition.  

Table 28. Brown allylation of 90 by in situ-generated B-allyldiisopinocampheylborane. 

 

Entry Filtration solvent Temp. (°C) Time (h) Yielda (%) eeb (%) 

1 yes Et2O –100 to rt 3.5 76 58.4 

2 yes Et2O 0–78 to rt 3.5 70 19.7 

3 no Et2O 0–78 to rt 3.5 90 89.7 

4 no THF 0–78 to rt 3.5 91 90.2 

a) contaminated with isopinocampheol, component ratio calculated by 1H NMR;  

b) determined by HPLC analysis on chiral stationary phase. 

 

The reactions performed after filtration of the precipitated magnesium salts exhibited lower 

enantioinduction than the unfiltered experiments (Table 28, Entries 1 and 2). This is probably due to 

the presence of unreacted allylmagnesium bromide that was preferentially transferred to the reaction 

flask. Also, Brown’s allylation reagent partially decomposed during filtration, thereby increasing the 

relative ratio of achiral reagent. Although we achieved good yields and enantiomeric excess without 

filtering the in situ formed allylborane (Entry 4), it was impossible to separate 91 from 

isopinocampheol, which was formed after the oxidative scission of the pinene-derived chiral auxiliary.  
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To examine the effect of alternative chiral auxiliaries on optical purity and ease of purification, 

we decided to substitute the pinene-derived allyldiisopinocamphenylborane (138, Scheme 33) by 

allylbis(4-isocaranyl)borane  (140, Scheme 34), which is reported to achieve higher 

enantioselectivies.
[179] 

Its precursor (139) was prepared by hydroboration of (+)-3-carene with 

BH3∙SMe2 and subsequent methanolysis (Scheme 34). 

 

Scheme 34. Preparation of B-allyldi-4-isocaranylborane from (+)-3-carene. 

As can be seen in Table 29, decreasing the temperature from –78 °C to –100 °C revealed no 

improvement but slight deterioration of the enantioselectivity (Entries 1 and 2). The reaction carried 

out without filtration gave the product with very high enantiomeric excess, albeit with moderate yield 

(Entry 3). For the unprotected substrate, we determined that THF was inferior to diethyl ether (cf. 

Entries 4 and 5), likely due to its coordinating ability. Again, the low temperature did not improve the 

enantioinduction and resulted only in lower yields and a slower reaction. Increasing the stoichiometry 

of the reagent to 2.2 equivalents was beneficial (entries 8 and 10), but also resulted in a very 

challenging purification due to the presence of caranyl alcohol. At this point, although we were able to 

access the desired alcohols in enantioenriched form in moderate yields, we decided to investigate 

asymmetric reduction methods before implementing the Brown allylation in our synthesis. The better 

result obtained for the TMS-protected substrate also place the labor- and mass-intensive allylation 

reaction one step earlier in the synthesis. 
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Table 29. Allylation of aldehyde 90 or 134 with in situ-generated B-allyldi-4-isocaranylborane. 

 

Entry Filtration Solvent Allylborane 140 generation Temp. (°C) Time (h) Yielda (%) eeb (%) 

For R = TMS (90) 

1 yes Et2O 
2 eq. 139 

1.5 eq. AllylMgBr 
–100 to rt 7 72 84.9 

2 yes Et2O 
2 eq. 139, 

1.5 eq. AllylMgBr 
–78 to rt 7 67 82.3 

3 no Et2O 
2 eq. 139, 

1.5 eq. AllylMgBr 
–78 to rt 7 58 95.6 

For R= H (134) 

4 no Et2O 
1.5 eq. 139, 

1.5 eq. AllylMgBr 
–78 to rt 8 38 93.9 

5 no THF 
1.5 eq. 139, 

1.5 eq. AllylMgBr 
–78 to rt 8 61 34.8 

6 no Et2O 
1.5 eq. 139, 

1.5 eq. AllylMgBr 
–100 to rt 8 22 85.3 

7 no THF 
1.5 eq. 139, 

1.5 eq. AllylMgBr 
–100 to rt 8 32 37.8 

8 yes Et2O 
2.9 eq. 139, 

2.2 eq. AllylMgBr 
–100 to rt 7 67 86.2 

9 yes Et2O 
2.9 eq. 139, 

2.2 eq. AllylMgBr 
–78 to rt 7 20 89.4 

10 no Et2O 
2.9 eq. 139, 

2.2 eq. AllylMgBr 
–78 to rt 7 59 93.4 

a) contaminated with 4-caranol, ratio calculated by 1H-NMR;     b) determined by HPLC analysis on chiral stationary phase. 

2.2.6.2. Asymmetric Reduction of Prochiral Ketones. 

Oxidation of racemic allylation product 91 using Dess–Martin periodinane gave prochiral 

ketone 141 (Scheme 35). Similarly, ketone 142 bearing a free alkyne group was prepared by DMP-

oxidation of deprotected allylation product 92. 

 

Scheme 35. Oxidation of allylic alcohol using Dess-Martin periodinane. 

First, asymmetric reduction employing the Corey–Bakshi–Shibata protocol was investigated 

on both the protected and the free alkyne substrates (Table 30). To determine the maximum achievable 

enantioselectivity, the reactions were carried out using a stoichiometric amount of chiral borane 
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(formed by treating oxazabrolidine 143 with a borane source).
[180]

 An initial experiment conducted 

according to a general procedure determined that the TMS-protected substrate 141 produced the 

corresponding alcohol in lower yield and enantiomeric excess (Table 30, entries 1 and 2).
[181]

 Further 

experiments carried out on free alkyne 142 were not promising: lowering the reaction temperature was 

detrimental to the yield (Entry 4), while a reaction at ambient temperature resulted in complete 

decomposition of the starting material (Entry 3). The use of the sterically more hindered and less 

reactive catecholborane as hydride source was unsatisfactory with respect to yield and 

enantioinduction both at room temperature and at low temperature (Entries 5 and 6).  

Table 30. Enantioselective reduction of ketones 141 or 142 with CBS-reagent. 

 

Entry Substrate Conditions Temp (°C) Time (h) Yield (%) eeb (%) 

1 141 (R = TMS) 1 eq. 143, 1.5 eq. BH3·SMe2 –20 5 54 73.0 

2 140 (R = H) 1 eq. 143, 1.5 eq. BH3·SMe2 –20 5 65 84.6 

3 140 (R = H) 1 eq. 143, 1.5 eq. BH3·SMe2 rt 21 -a n.d. 

4 140 (R = H) 1 eq. 143, 1.5 eq. BH3·SMe2 –78 21 4 87.0 

5 140 (R = H) 1 eq. 143, 2.3 eq. HBcat rt 21 38 60.8 

6 140 (R = H) 1 eq. 143, 2.3 eq. HBcat –78 21 17 73.7 

a) decomposition of 140 was observed;    n.d. =  not determined;    HBcat = catecholborane;    b) determined by 
HPLC analysis on chiral stationary phase. 

 

Parallel to our efforts in using the CBS-reagent 143, we investigated the reduction mediated by 

DIP-Cl.
[182–184]

 Exposure of the protected ketone 141 to DIP-Cl (137) in THF at –40 °C furnished 

homoallylic alcohol in 70% yield with an excellent enantiomeric excess of 93% (Table 31). Even 

better results were achieved by reduction of the free alkyne (cf. Entries 2 and 3). Reduction of 142 

delivered multigram quantities of corresponding alcohol 92 in 72% yield and an excellent optical 

purity approaching 99% ee (Entry 5).  
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Table 31. Enantioselective ketone reduction mediated by DIP-Cl. 

 

 Entry Substrate Scale (mg) Yield (%) eea (%)  

 1 141 (R = TMS) 64 80% 87.7  

 2 141 (R = TMS) 64 70% 93.2  

 3 142 (R = H) 79 76% 97.1  

 4 142 (R = H) 79 73% 96.4  

 5 142 (R = H) 4200 72% 98.7  

 a) determined by HPLC analysis on chiral stationary phase.  

2.2.6.3. Completion of the Enantioselective Synthesis  

Silylation of enantioenriched alcohol 92 delivered enyne 93, which was subjected to 

previously optimized conditions for the Pauson–Khand reaction. Tricycle 94 was obtained in good 

yield and excellent enantiomeric excess. It could be recrystallized to afford crystals suitable for X-ray 

analysis, allowing us to assign the absolute configuration (Scheme 36).  

 

Scheme 36. Pauson-Khand reaction and absolute configuration of enone 94. 

Reduction of 94 followed by Mandai–Claisen rearrangement delivered aldehyde 107 which 

was treated with methylamine and NaBH4 to give 108. Tandem Iodocyclization-Kornblum oxidation 

delivered Ketone 120 which, under Mukaiyama conditions, was transformed into enone 132. 

Elimination and debenzylation with TFA in the presence of pentamethylbenzene finally afforded 

(–)-sinoracutine (40) in excellent enantiopurity (see Section 2.2.7). 
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Scheme 37. Completion of the enantioselective synthesis of (–)-sinoracutine. 

2.2.7. Stereochemical Identity and Racemization of Sinoracutine 

Using a racemic sample of sinoracutine, we developed a method to separate its enantiomers 

using HPLC on chiral stationary phase. (see Experimental Part for further details). Pleasingly, the 

material resulting from our asymmetric synthesis showed an enantiomeric excess of 98.9%. This 

material also exhibited the same levorotatory optical power as the natural isolate from Sinomenium 

acutum. With an optical rotation of     
  = –1067.3 (c = 0.35, CHCl3), the magnitude of the synthetic 

sample was considerably higher than the value of the original isolation report by Bao:     
  = –7.4 (c = 

0.35, CHCl3). Furthermore, the sample of sinoracutine from Stephania cepharantha also exhibited a 

lower optical power:     
  = –754.5 (c = 1.14, CHCl3). Although different factors can influence the 

value of optical rotation (water content in solvent, pH, presence of nonchiral impurities that interact 

with the compound of interest), this supports the observation that the enantiopurity of sinoracutine 

varies in nature. In particular, the X-ray of purported (+)-sinoracutine, where no value for optical 

rotation was reported, stands in contrast to the original isolation report of (–)-sinoracutine, which also 

features crystallographic structural proof. Since we had the crystallographic data for racemic 

sinoracutine available, the three datasets were compared. 
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Table 32. Selected crystallographic parameters for available X-ray structures of sinoracutine. 

 This work (2016) Wang et al. (2014)[60]  Bao et al. (2009)[58] 

net formula C17H17NO3 C17H17NO3  C17H17NO3 

Mr (g/mol) 283.31 283.31  283.31 

crystal size (mm) 0.10 × 0.07 × 0.01 0.20 × 0.43 × 0.50  0.56 x 0.48 x 0.06 

T (K) 100.(2) 93  293 

crystal system orthorhombic orthorhombic  monoclinic 

space group Pbca Pbca  P21/n 

a (Å) 14.8795(5) 14.888(3)  8.6507 (14) 

b (Å) 10.3203(3) 10.331(2)  10.4644(16) 

c (Å) 17.7065(6) 17.724(4)  16.078(3) 

α (°) 90 90  90 

β (°) 90 90  104.9 

γ (°) 90 90  90 

V (Å3) 2719.03 2726.3  1406.5 

Z 8 8  4 

 

As can be seen in Table 32, the crystal structure of our racemic compound is identical to the 

structure reported by Wang and co-workers in 2014. Both crystals have identical cell parameters and 

belong to the centrosymmetric space group Pbca whose unit cell contains both enantiomers. The same 

goes for the purported structure of (–)-sinoracutine, which belongs to the centrosymmetric P21/n. So 

far, all crystallographic data in the literature and available to us describe racemic samples of 

sinoracutine, which might explain the high variability in optical rotation in the different reports.  

The existence of racemic sinoracutine in nature and the variable optical rotations raise the 

question on the origin of these stereochemical differences. It seems very unlikely that the enzymes 

involved in the biosynthesis of sinoracutine are able to process both enantiomers of every intermediate 

in the biosynthetic pathway and funnel them towards the final product, which would then appear as a 

scalemic mixture. Another possibility is that sinoracutine is subject to racemization once formed. 

Reasonable mechanisms, which could occur without enzymatic assistance, are shown in Scheme 38. 

They both rely on the planarization of the benzylic all-carbon quaternary stereocenter. Thereby, a 

retro-Mannich reaction would lead to ring-opening of the pyrrolidine ring to an intermediate eight-

membered azocane 145, in which the benzylic quaternary carbon is destroyed and becomes sp
2
-

hybridized. The resulting vinylogous enolate intermediate can undergo a Mannich-type ring-closure to 

reform the pyrrolidine ring and give sinoracutine, now in racemic form. Alternatively, after proton 

transfer from the phenolic oxygen to the carbonyl oxygen, a retro-Michael reaction through the 

intermediacy of o-quinone methide 146 occurs to give a ring opened intermediate – again with loss of 

stereochemical information.  Ring closure of the resulting enol to the newly formed, highly 

electrophilic o-quinone methide affords racemic sinoracutine after proton transfer. 
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Scheme 38. Racemization mechanisms of sinoracutine via ring-opening and -closure. 

Interestingly, the final reaction in the synthesis uses forcing conditions to achieve 

debenzylation of 132 (neat TFA, 40 °C, 14 hours), but delivered an enantiopure sample of 

sinoracutine. Under these conditions it can be assumed that the nitrogen is fully protonated. This 

indicates that protonation of the tertiary amine might inhibit a racemization through the indicated 

mechanisms above either by discouraging the imminium ion formation of 145, or by preventing proton 

transfer and ketone enolization to give 146. Under neutral conditions on the other hand, racemization 

occurs. 

Therefore, we set out to examine the racemization of sinoracutine experimentally under 

neutral conditions. A protic solvent was added to a sample of enantiopure sinoracutine to encourage 

proton transfer, as it is a requirement for the proposed mechanisms shown above to be operative. 

Fascinatingly, when a sample of sinoracutine exhibiting 98.9% ee that had been stored in a solution of 

heptane/iPrOH/MeOH = 6/2/2 was kept at room temperature for 67 days, we noticed a very small but 

measurable erosion of enantiopurity to 95.7% ee. Heating the same sample to 60 °C for 5 days 

delivered a nearly racemic product (3.2% ee). A control experiment with a sample that was kept neat 

at –25 °C for the same time, still showed an enantiomeric excess of 98.7%. Indeed, racemization of 

sinoracutine does occur slowly at ambient temperature and can be accelerated thermally.  

It is likely that during the isolation process (e.g. during solvent evaporation or recrystallization) 

racemization of sinoracutine might have occurred. Alternatively, during the natural life cycle of the 

plant, which lasts several years, accumulated sinoracutine might have undergone gradual racemization. 

Although further studies are necessary to determine the culprit of this erosion of stereochemistry in 

nature, theoretical calculations are being performed to assess the legitimacy of the mechanisms 

proposed in Scheme 38. These results represent a highly unusual, and to the best of our knowledge, 

unique racemization of an all-carbon substituted quaternary stereogenic center. 
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 Summary 3.

Part I of this thesis described the total synthesis of the tetracyclic alkaloid sinoracutine, which 

was isolated from Sinomenium Acutum and Stephania cepharanta. It occurs as scalemic mixture in 

contrast to the vast majority of reticuline-derived alkaloids, which occur as single enantiomers. Two 

strategies were pursued to synthesize an appropriately protected 2-arylpyrrolidine bearing a pendant 

alkyne as substrate for an enamine Pauson–Khand reaction (Scheme 39). A cross-coupling strategy 

using halogenated dihydropyrroles of type 147 in conjunction with o,o-disubstituted aromatic partners 

(148) was not successful. Several possible coupling partners were investigated without success, and 

the polarity reversal of the partners was also unfruitful. Failure of the approach lies in the steric 

hindrance of the aromatic substrate and the instability of the pyrroline coupling partner under the 

reaction conditions examined. A stepwise construction of the pyrrolidine ring was successful and gave 

rise to N-methylated lactam 85. However, attempted reduction or enolization of the pyrrolidinone in 

order to introduce the required enamine functionality (86), was not possible.  

 

Scheme 39. Failed approaches for the synthesis of sinoracutine. 

Therefore, the synthetic plan was modified to employ a 1,7-enyne bearing a benzylic silyl 

ether as a stereocontrolling element and to introduce the pyrrolidine ring at a later stage in the 

synthesis (Scheme 40). The construction of a 6,6,5-tricycle was achieved by Pauson–Khand reaction. 

Installation of the quaternary benzylic stereocenter was best accomplished by the Mandai–Claisen 

protocol after diastereoselective reduction of the allylic alcohol derived from Pauson–Khand product 

94. From this intermediate, reductive amination followed by a tandem iodocyclization–Kornblum 

oxidation delivered tetracyclic intermediate 120. Oxidation, elimination and debenzylation afforded 

racemic sinoracutine. The route could be rendered asymmetric by using enantiopure enyne 92, 

synthesized by an enantioselective reduction of the corresponding ketone mediated by DIP-Cl. To 

explain the scalemic occurrence of sinoracutine in variable optical purity across different natural 
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isolates, we set out to determine whether enantiopure (–)-sinoracutine could undergo racemization. 

While in acidic medium the enantiomeric purity of the natural product remains constant, we were able 

to demonstrate the exceptionally facile racemization of (–)-sinoracutine in protic solvent. Presumably, 

the mechanism of racemization involves ring-opening of the cyclopentenone ring followed by ring-

closure. Most notably, this results in the loss of stereochemical information of an all-carbon 

substituted quaternary stereocenter, and represents a highly unusual result that had never been 

observed in the series of reticuline-derived alkaloids, as well as other natural product classes.  

 

Scheme 40. Synthesis of (–)-sinoracutine and its racemization. 
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 Experimental Part 4.

4.1. General Experimental Details 

4.1.1. Materials and Methods 

Unless noted otherwise, all reactions were performed in flame-dried glassware fitted with rubber septa 

under a positive pressure of nitrogen. Air- and moisture-sensitive liquids were transferred via syringe 

or stainless steel cannula through rubber septa. Solids were added under inert gas or were dissolved in 

appropriate solvents. The reactions were magnetically stirred and monitored by NMR spectroscopy 

where noted or analytical thin-layer chromatography (TLC) using glass plates precoated with silica gel 

(0.25 mm, 60-Å pore size, Merck) impregnated with a fluorescent indicator (254 nm). TLC plates 

were visualized by exposure to ultraviolet light (UV, 254 or 366 nm), were stained by submersion in 

either aqueous potassium permanganate solution (KMnO4), ceric ammonium molybdate solution 

(CAM) or acidic p-anisaldehyde solution (PAA) and were developed by heating with a heat gun. 

Flash-column chromatography on silica gel (60 Å pore size, 40–63 µm, Merck KGaA) was performed 

as described by Still
[185]

 or using a Biotage Isolera™ Prime Automated Flash Purification system. 

Triethylamine-deactivated silica was obtained by preparing a slurry of silica gel (20% v/v in the initial 

eluent mixture + 5% v/v Et3N) followed by magnetic stirring for 1 h. The slurry was poured into a 

chromatography column and flushed with 5 column volumes of amine-free eluent prior to sample 

loading and elution.  

Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled from Na/benzophenone prior to use. 

Dichloromethane (CH2Cl2), triethylamine (Et3N), N,N-diisopropylamine (DIPA) were distilled under 

nitrogen atmosphere from CaH2 prior to use. Benzene, 1,2-dichloroethane (DCE), dimethyl sulfoxide 

(DMSO), 1,2-dichlorobenzene (DCB) were purchased from Acros Organics as 'extra dry' and used as 

received. All other reagents and solvents were purchased from chemical suppliers (Sigma-Aldrich, 

Acros Organics, Alfa Aesar, Strem Chemicals, ABCR) and were used as received. Solvents for 

extraction, crystallization and flash-column chromatography on silica gel were purchased as technical 

grade and distilled under reduced pressure prior to use. The molarity of n-butyllithium solutions was 

determined by titration to a blue endpoint against N-benzylbenzamide
[186]

  at −40 °C (average of three 

determinations).  

Unless noted otherwise, yields refer to chromatographically and spectroscopically (
1
H and 

13
C NMR) 

pure material. 
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4.1.2. Melting Point  

Melting points were measured on a Stanford Research Systems MPA120 EZ-Melt apparatus in open 

glass capillaries. 

4.1.3. NMR Spectroscopy  

NMR spectra were measured at room temperature (22 °C) on a Bruker Avance III HD 800 MHz 

spectrometer equipped with a CryoProbe
TM

 operating at 800 MHz for proton nuclei and 200 MHz for 

carbon nuclei or a Bruker Avance III HD 400 MHz spectrometer equipped with a CryoProbe
TM

 

operating at 400 MHz for proton nuclei and 100 MHz for carbon nuclei. Proton chemical shifts are 

expressed in parts per million (ppm, δ scale) and are referenced to residual protium in the NMR 

solvent (CHCl3: δ 7.26, C6HD5: 7.16). Carbon chemical shifts are expressed in parts per million (ppm, 

δ scale) and are referenced to the carbon resonance of the NMR solvent (CDCl3: δ 77.16, 

C6D6: 128.06). 
1
H NMR spectroscopic data are reported as follows: Chemical shift in ppm 

(multiplicity, coupling constants J (Hz), integration intensity). The multiplicities are abbreviated with 

s (singlet), d (doublet), t (triplet), q (quartet), app (apparent), broad (br), combinations thereof, and m 

(multiplet). In case of combined multiplicities, the multiplicity with the larger coupling constant is 

stated first. Except for complex and overlapping multiplets, where a resonance range is given, the 

chemical shift of all other symmetric signals is reported as the center of the resonance range. 
13

C NMR 

spectroscopic data are reported as follows: Chemical shift in ppm. Additionally to 
1
H and 

13
C NMR 

measurements, 2D NMR techniques such as homonuclear correlation spectroscopy (COSY), 

heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond coherence (HMBC) 

were used to assist signal assignment. For further elucidation of 3D structures of the products, nuclear 

Overhauser enhancement spectroscopy (NOESY) was conducted. All raw FID files were processed 

and the spectra analyzed using the program Mnova 10.0.2 from Mestrelab Research S. L.  

4.1.4. Mass Spectrometry  

All mass spectra were measured by the Analytical division of the Department of Chemistry, Ludwig-

Maximilians-Universität München. Mass spectra were recorded on the following spectrometers 

(ionisation mode in brackets): MAT 95 (EI) and MAT 90 (ESI) from Thermo Finnigan GmbH and 

were recorded in high-resolution. The method used is reported in the relevant section of the 

experimental part.  
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4.1.5. IR Spectroscopy  

IR spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and the compound was 

applied as thin film directly on the ATR unit (either as neat substance or as solution in CH2Cl2). Data 

are represented as follows: absorption frequency (expressed in cm
−1

) and intensity of absorption: s 

(strong), m (medium), w (weak), br (broad).  

4.1.6. Optical Rotation  

Optical rotation values were recorded on an Anton Paar MCP 200 polarimeter. The specific rotation is 

calculated as follows:  

    
 

 
       

   
 

Thereby, the wavelength λ is reported in nm and the measuring temperature in °C. α represents the 

recorded optical rotation, c the concentration of the analyte in 10 mg/mL and d the length of the 

cuvette in dm. Thus, the specific rotation is given in 10
−1

·deg·cm
2
 ·g

−1
 . Use of the sodium D line 

(λ = 589 nm) is indicated by D instead of the wavelength in nm. The sample concentration as well as 

the solvent is reported in the relevant section of the experimental part 

4.1.7. HPLC Analyses 

Analytical HPLC on Chiral Stationary Phase was performed on a computer-operated Shimadzu system 

(Windows 10, LabSolutions Software, two LC-20AP pumps, manual injection (2 mL sample loop), 

CTO-20A column oven, SPD-M20A Diode Array detector). Column, oven temperature, solvent 

system, flow rate, detection mode and retention times are given in the relevant section of the 

experimental part.  

Preparative HPLC was performed on a computer-operated Varian instrument (Windows XP, Galaxie 

Chromatography Software, two PrepStar SD-1 pumps, manual injection with 2 mL sample loop, 

ProStar 335 Photo Diode Array Detector, Agilent 440-LC Fraction Collector). Column, solvent 

system, flow rate, detection mode and retention times are given in the relevant section of the 

experimental part. 

4.1.8. X-ray Diffraction Analysis 

Experiments were carried out by Dr. Peter Mayer (Ludwig-Maximilians-Universität München). The 

data collections were performed an a Bruker D8Venture using MoKα-radiation (λ = 0.71073 Å, 

graphite monochromator). The CrysAlisPro software (version 1.171.33.41) was applied for the 

integration, scaling and multi-scan absorption correction of the data. The structures were solved by 
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direct methods with SIR9713 and refined by least-squares methods against F2 with SHELXL-97.14. 

All nonhydrogen atoms were refined anisotropically. The hydrogen atoms were placed in ideal 

geometry riding on their parent atoms. Further details are summarized in the tables at the different 

sections. Plotting of thermal ellipsoids in this document and in the main text was carried out using 

Ortep-3 for Windows.
[187]

 

 

4.2. Experimental Procedures  

tert-Butyl 2,3-dihydro-1H-pyrrole-1-carboxylate (54) 

 

To a solution of N-Boc-pyrrolidin-2-one (10.0 g, 54.0 mmol, 1.00 eq.) in toluene (74 mL) at –78 °C 

was added lithium triethylborohydride (1 M in THF, 59.0 mmol, 1.10 eq.) over 40 min using a syringe 

pump. After stirring for 1 h at –70 °C (internal temperature), DMAP (66.0 mg, 0.54 mmol, 0.01 eq.) 

was added. DIPEA (54.0 mL, 318 mmol, 5.40 eq.) was added dropwise over 10 min. Then TFAA 

(9.1 mL, 65.0 mmol, 1.20 eq.) was added dropwise over 20 min in order to keep the internal 

temperature below –70 °C. After complete addition the cooling bath was removed and the mixture was 

stirred for further 2 h at room temperature. The solution was quenched by dropwise addition of water 

(80 mL). The phases were separated and the organic layer was washed with water (3 x 30 mL) and 

brine (3 x 30 mL). The mixture was dried over MgSO4, filtered and the solvent was removed in vacuo. 

The crude product was submitted to flash column chromatography (SiO2, hexanes/EtOAc = 19/1) to 

afford 54 as a colorless liquid (6.20 g, 36.7 mmol, 68 %). Spectral data match the previously reported 

values.
[188]

 

Rf = 0.26 (hexanes/EtOAc = 19/1). 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3): δ = 6.52 – 6.38 (m, 1H), 4.94 – 4.90 (m, 1H), 3.68 – 3.61 (m, 2H), 

2.60 – 2.51 (m, 2H), 1.41 (s, 9H). 

13
C NMR (100 MHz, CDCl3): δ = 130.0, 107.6, 80.1, 45.4, 44.9, 29.9, 28.6. 

Note: The carbonyl carbon was not visible in the 
13

C spectrum. 

HRMS (EI) for C9H15NO2 [M]
∙+

: calcd.: 169.1103, found: 169.1106. 

IR (ATR):  ̃ = 2976 (w), 1697 (s), 1618 (w), 1478 (w), 1405 (s), 1378 (s), 1258 (m), 1174 (m), 1132 

(s), 1092 (m). 
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tert-Butyl 4-bromo-2,3-dihydro-1H-pyrrole-1-carboxylate (55) 

 

A solution of bromine (30.0 μL, 0.59 mmol, 1.00 eq.) in CH2Cl2 (1.20 mL) was added over 1 h to a 

suspension of enamine 54 (0.50 g, 2.95 mmol, 1.00 eq.), Et3N (1.44 mL, 10.3 mmol, 3.50 eq.) and 

activated 4 Å molecular sieves (114 mg) in CH2Cl2 (10.0 mL) at 0 °C. After addition was completed 

the ice bath was removed and the mixture was stirred for another hour at room temperature. 

Afterwards the mixture was filtered through a Celite pad, the solvent was removed under reduced 

pressure and the crude product was purified by flash column chromatography (SiO2, hexane/EtOAc = 

19/1) to afford 55 as yellow oil (346 mg, 37.0 mmol, 47 %). 

Note: The product was unstable upon storage at room temperature and therefore stored in a benzene 

matrix at −25 °C (100 mg/10 mL). 

Rf = 0.46 (hexanes/EtOAc = 19/1). 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 6.62 (s, 1H), 3.89 − 3.67 (m, 2H), 2.84 (t, J = 9.1 Hz, 2), 1.45, 

(s, 9H). 

13
C NMR (100 MHz, CDCl3) δ = 151.5, 151.0, 129.9, 100.2, 100.0, 80.9, 80.7, 46.2, 45.6, 36.6, 35.6, 

29.8, 28.4. 

HRMS (EI) for C9H14BrNO2
∙+

 [M]
∙+

: calcd.: 247.0208, found: 247.0207. 

IR (ATR):  ̃ = 2975 (w), 1694 (s), 1628 (w), 1478 (w), 1381 (s), 1366 (s), 1324 (m), 1255 (m), 1007 

(s), 962 (m), 918 (m), 876 (s), 844 (m), 772 (m). 

Rac-tert-butyl (2S,3R)-3-iodo-2-methoxypyrrolidine-1-carboxylate (56)  

 

ICl (1 M in CH2Cl2, 29.25 mmol, 1.1 eq.) was added dropwise to a solution of sodium methoxide 

(2.87 g, 53.2 mmol, 2.00 eq.) and N-Boc-2,3-dihydro-1H-pyrrole 54 (4.5 g, 26.6 mmol, 1.00 eq.) in 

MeOH (95 mL) at room temperature. After stirring for 30 min, a saturated solution of Na2S2O3 

(20 mL) was added and the mixture was stirred for further 30 min. The phases were separated and the 

aqueous phase was extracted three times with Et2O (40 mL). The combined organic layers were 
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washed with water (3 x 30 mL) and brine (3 x 30 mL), dried over MgSO4, filtered and the solvent was 

removed in vacuo. The crude product was purified by flash column chromatography (SiO2, 

hexane/EtOAc = 5/1) to afford 56 as beige oil (5.91 g, 18.08 mmol, 68 %). Spectral data match the 

previously reported values.
[87]

 

Rf = 0.31 (hexanes/EtOAc = 5/1) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 5.37 and 5.24 (s, 1H), 4.21 (d, J = 5 Hz, 1H), 3.69 – 3.55 (m, 1H), 

3.48 – 3.42 (m, 1H), 3.40 and 3.35 (s, 3H), 2.54 – 2.43 (m, 1H), 2.15 – 2.07 (m, 1H), 1.49 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ = 155.2, 154.6, 96.6, 96.4, 80.7, 80.5, 56.4, 56.1, 45.1, 44.5, 33.9, 

33.1, 28.5, 27.2, 26.3. 

HRMS (EI) for C10H18INO3
∙+

 [M]
∙+

: calcd.: 327.0331, found: 327.0343. 

IR (ATR):  ̃ = 2976 (w), 1702 (s), 1478 (w), 1378 (s), 1258 (w), 1162 (s), 1115 (m), 1076 (s), 

1030 (w). 

tert-butyl 4-iodo-2,3-dihydro-1H-pyrrole-1-carboxylate (50)  

 

A solution of trans-tert-butyl 3-iodo-2-methoxypyrrolidine-1-carboxylate 56 (700 mg, 2.14 mmol, 

1.00 eq.) and TFA (15 µL, 0.2 mmol, 0.10 eq.) in toluene (46 mL) was submerged in an oil bath 

preheated to 130 °C for 90 min. After cooling to room temperature with the aid of an ice bath, Et3N 

(90 µL, 0.6 mmol, 0.30 eq.) was added, the solvent was removed in vacuo and the residue was 

submitted to flash column chromatography (SiO2, hexane/EtOAc = 19/1) to afford 50 as colorless oil 

(450 mg, 1.51 mmol, 71%). Spectral data match the previously reported values.
[87]

 

Note: The product is sensitive towards light and temperature. It can be stored in a benzene matrix at –

25 °C in dilute solution (0.1 M). A 0.5 M solution was found to decompose within 14 days even if 

stored at –25°C. 

Rf = 0.29 (hexanes/EtOAc = 19/1) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 6.76 and 6.62 (s, 1H), 3.76 – 3.71 (m, 2H), 2.86 – 2.79 (m, 2H), 

1.45 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ = 151.1, 150.5, 136.0, 81.0, 80.7, 66.3, 46.7, 46.1, 39.9, 38.9, 28.5. 
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HRMS (EI) for C9H15O2NI
∙+

 [M]
∙+

: calcd.: 296.0142, found: 296.0134. 

IR (ATR):  ̃ = 2976 (w), 2931 (w), 1702 (s), 1478 (w), 1455 (w), 1391 (s), 1284 (w), 1243 (m), 1173 

(m), 1127 (m). 

tert-butyl tosylcarbamate (58)  

 

To a solution of 4-methylbenzenesulfonamide 57 (20.03 g, 117.0 mmol, 1.00 eq.), Et3N (16.8 mL, 

120.5 mmol, 1.03 eq.) and DMAP (1.43 g, 11.70 mmol, 0.10 eq.) in CH2Cl2 (190 mL) at 0 °C was 

added a solution of Boc2O (29.11 g, 133.4 mmol, 1.14 eq.) in CH2Cl2 (100 mL). The reaction mixture 

was stirred for 14 h. Then, the solvent was removed under reduced pressure and the residue was taken 

up in EtOAc (200 mL), washed with aqueous HCl (1 M, 100 mL), water (100 mL), brine (100 mL), 

dried over MgSO4 and filtered. The solvent was removed in vacuo and the crude product was 

recrystallized from EtOAc/hexanes (280/100 mL) to afford, after filtration, 58 as white crystalline 

solid (21.0 g, 77.2 mmol, 66 %). Spectral data match the previously reported values.
[189]

  

Rf = 0.19 (hexanes/EtOAc = 7/3). 

Melting point = 97.0 – 99.2 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.90 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.08 (br s, 1H), 

2.45 (s, 3H), 1.39 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ = 149.0, 144.9, 136.0, 129.7, 128.4, 84.2, 28.0, 21.8. 

HRMS (EI) for C12H17NO4S
∙+

 [M]
∙+

: calcd.: 271.0837, found: 271.0878. 

IR (ATR):  ̃ = 3246 (w), 2982 (w), 1746 (m), 1598 (w), 1435 (w), 1347 (m), 1238 (w), 1147 (s), 1090 

(m), 912 (w), 830 (w).  

tert-butyl but-3-yn-1-yl(tosyl)carbamate (59)  

 

To a solution of tert-butyl tosylcarbamate 58 (8.28 g, 30.5 mmol, 1.00 eq.), 3-butyn-1-ol (2.77 mL, 

36.6 mmol, 1.20 eq.) and triphenylphosphine (16.0 g, 61.0 mmol, 2.00 eq.) in THF (165 mL) at 0 °C 

was slowly added diethyl azodicarboxylate (40% in toluene, 9.56 g, 54.9 mmol, 1.80 eq.,) was added 

dropwise via syringe pump. The solution was stirred at 0 °C while slowly warming to room 
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temperature over 4 h. The solvent was removed in vacuo and the resulting solid was submitted to flash 

column chromatography (SiO2, hexane/EtOAc = 8/2 to 1/1) to afford 59 as a white solid 

(6.88 g, 21.3 mmol, 70%). Spectral data match the previously reported values.
[190]

 

Rf = 0.50 (hexanes/EtOAc = 7/3). 

Melting point = 77.0 – 79.0 °C 

1
H NMR (400 MHz, CDCl3) δ = 7.80 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 4.00 (t, J = 7.4 Hz, 

2H), 2.66 (td, J = 7.4 Hz, 2.7 Hz, 2H), 2.44 (s, 3H), 2.02 (t, J = 2.7 Hz, 1H), 1.35 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ = 150.9, 144.4, 137.3, 129.4, 128.1, 84.7, 80.6, 70.6, 45.4, 28.0, 21.8, 

20.1. 

HRMS (EI) for C16H21NO4S
∙+ 

[M]
∙+

: calcd.: 323.1191, found: 323.1301. 

IR (ATR):  ̃ = 3295 (m), 2982 (w), 1722 (s), 1597 (m), 1494 (w), 1448 (w), 1372 (m), 1355 (s), 1327 

(m), 1287 (m), 1167 (s), 1135 (s), 1093 (s), 1077 (m), 970 (w). 

tert-butyl but-3-yn-1-ylcarbamate (60) 

 

To a solution of tert-butyl but-3-yn-1-yl(tosyl)carbamate 59 (5.87 g, 18.2 mmol, 1.00 eq.) in MeOH 

(180 mL) were added magnesium turnings (4.42 g, 182 mmol, 10.00 eq.). The reaction mixture was 

sonicated for 2 h after which all magnesium has been dissolved. The solvent was removed in vacuo, 

diluted with CH2Cl2 (100 mL), poured onto aqueous HCl (0.5 M, 100 mL) and the resulting white 

precipitate was filtered off. The organic phase was separated, washed with saturated aqueous NaHCO3 

(100 mL), brine (100 mL), dried over MgSO4 and filtered. The solvent was removed in vacuo and the 

crude product purified by flash column chromatography (SiO2, hexanes/Et2O = 8/2, to 7/3) to afford 

60 as colorless oil (1.93 g, 11.4 mmol, 63 %). Spectral data match the previously reported values.
[191]

 

Rf = 0.39 (hexanes/EtOAc = 7/3). 

Melting point = 77.0 – 79.0 °C 

1
H NMR (400 MHz, CDCl3) δ = 4.84 (br s, 1H), 3.28 (d, J = 6.4 Hz, 2H), 2.38 (td, J = 6.4, 2.7 Hz, 

2H), 2.00 (t, J = 2.7 Hz, 1H), 1.45 (s, 9H) 

13
C NMR (100 MHz, CDCl3) δ = 155.8, 81.8, 79.6, 70.0, 39.4, 28.5, 20.1. 

HRMS (EI) for C9H16NO2
∙+ 

[M]
∙+

: calcd.: 170.1181, found: 170.1181. 
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IR (ATR):  ̃ = 3306 (w), 2979 (w), 2935 (w), 1692 (s), 1513 (m), 1456 (w), 1392 (w), 1366 (m), 1251 

(m), 1169 (s), 1074 (w). 

tert-butyl 4-iodo-2,3-dihydro-1H-pyrrole-1-carboxylate (50) 

 

Note: The following reaction was performed under the exclusion of light: laboratory and fume hood 

lights were turned off, the reaction flask wrapped in aluminum foil and flasks connected to a rotary 

evaporator were covered with aluminum foil. 

To a solution of tert-butyl but-3-yn-1-ylcarbamate 60 (1.86 g, 11.0 mmol, 1.00 eq.) in anhydrous 

CH2Cl2 (76 mL), were added sodium iodide (8.81 g, 58.7 mmol, 5.30 eq.) and iodine (6.00 g, 

23.7 mmol, 2.15 eq.). The reaction mixture was stirred for 15 h in and quenched with a saturated 

aqueous Na2S2O3 (120 mL). The phases were separated and the aqueous phase was extracted with 

CH2Cl2 (3 × 50 mL). The combined organic layers were washed with brine (100 mL), dried over 

MgSO4, filtered and concentrated in vacuo. The resulting crude tert-butyl (E)-(3,4-diiodobut-3-en-1-

yl)carbamate 61 appeared as yellow oil and was immediately used for the next step without further 

purification. 

To a solution of crude (E)-(3,4-diiodobut-3-en-1-yl)carbamate (4.65 g, 11.0 mmol, 1.00 eq., based on 

a hypothetical 100 % yield of the diiodination reaction) toluene (170 mL) was added CuI (1.05 g, 

5.50 mmol, 0.50 eq.), K3PO4 (7.01 g, 33.0 mmol, 3.00 eq.), 2,2'-bipyridine (1.72 g, 11.0 mmol, 

1.00 eq.) and water (0.178 mL, 9.90 mmol, 0.90 eq.) and the resulting red mixture was heated to reflux 

for 72 h. The solution was allowed to cool to room temperature, filtered through a pad of celite and 

concentrated in vacuo. The residue was directly submitted to flash column chromatography (SiO2, 

hexane/EtOAc = 10/1) and afforded 50 as colorless oil (1.04 g, 3.41 mmol, 32%). 

Spectral data matched the values reported on page 63. 

Note: The product is sensitive towards light and temperature. It can be stored in a benzene matrix at –

25 °C in dilute solution (0.1 M). A 0.5 M solution was found to decompose within 14 days even if 

stored at –25°C. 
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tert-butyl-4-boropinacolato-2,3-dihydro-1H-pyrrole-1-carboxylate (81)  

 

A solution of bis(pinacolato)diboron (254 mg, 1.0 mmol, 1.00 eq.), 4,4'-di-tert-butyl-2,2'-dipyridyl 

(8 mg, 30.0 µmol, 0.03 eq.) and (cycloocta-1,5-diene)(methoxy)iridium(I) dimer (9.9 mg, 15.0 µmol, 

0.015 eq.) in methyl tert-butyl ether (2.4 mL) was degassed (freeze-pump-thaw, three cycles). The 

resulting solution was added to 54 (169 mg, 1.0 mmol, 1.00 eq.) in a 10 mL glass microwave tube. 

The vessel was sealed and irradiated in a CEM Discover microwave apparatus (200 Watt, 80 °C) for 

13 min. The resulting mixture was directly applied onto a chromatography column. After 

chromatography (SiO2, hexanes/EtOAc = 19/1) 81 was obtained as colorless liquid (142 mg, 480 

µmol, 48 %). 

Note: The solution of bis(pinacolato)diboron, 4,4'-di-tert-butyl-2,2'-dipyridyl and (cycloocta-1,5-

diene)(methoxy)iridium(I) dimer in methyl tert-butyl ether can be prepared and stored in a Schlenk 

tube under Argon and used for subsequent experiments. This solution was found to be functional after 

14 days if stored under the exclusion of light. 

Rf = 0.29 (hexanes/EtOAc = 19/1, UV 254 nm, CAM) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 7.18, 7.03 (s, 1H), 3.77-3.72 (m, 2H), 2.70-2.66 (m, 2H), 1.47 (s, 

9H), 1.27 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 151.2, 141.9, 83.5, 83.1, 80.8, 46.2, 29.8, 28.6, 28.4, 25.1, 24.8. 

HRMS (EI) for C15H26BNO4 [M]
∙+

: calcd.: 295.1955, found: 295.1959. 

IR (ATR):  ̃ = 2976 (w), 1742 (w), 1695 (m), 1610 (w), 1474 (m), 1380 (m), 1368 (s), 1328 (s), 1269 

(m), 1140 (s), 983 (m), 851 (s), 774 (m), 676 (s). 

3-hydroxy-2-iodo-4-methoxybenzaldehyde (62) 

 

An aluminum-foil wrapped dropping funnel was charged with 1,4-dioxane (611 mL) and ICl (100 g, 

616 mmol, 1.03 eq.) in 1,4-dioxane (611 mL). This solution was added dropwise to a solution of 

isovanillin (91.0 g, 598 mmol, 1.00 eq.) in pyridine (340 mL, 4.19 mol, 7.00 eq.) in a 2 L round-

bottom flask. The reaction mixture was stirred for 8 d under the exclusion of light. After the solvents 
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were removed in vacuo, water (500 mL) was added and the aqueous layer was acidified with aqueous 

HCl (1 M, 800 mL). The aqueous layer was extracted with EtOAc (3 x 1.2 L). The combined organic 

layers were washed with NaHSO3 (2 x 600 mL) and brine (600 mL), dried over MgSO4, filtered and 

concentrated under reduced pressure. 

The solid residue was filtered over a Büchner funnel and washed with cold EtOAc (3 x 100 mL). 

Arene 62 was obtained as a light-yellow solid (127 g, 457 mmol, 76%) and as a 9/1 ratio of product 

and starting material (determined by 
1
H NMR) that was used for the next step without further 

purification. An analytically pure sample was obtained by flash column chromatography (SiO2, 

hexanes/EtOAc = 7/3). Spectral data match the previously reported values.
[137]

 

Rf = 0.29 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

Melting point = 171.1 – 173.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 10.03 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 6.32 

(s, 1H), 4.00 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 195.0, 150.8, 145.8, 128.8, 124.0, 111.1, 88.2, 56.7. 

HRMS (ESI) for C8H6IO3
–
 [M–H]

–
: calcd.: 276.9367, found: 276.9370. 

IR (ATR):  ̃ = 4241 (w), 1558 (s), 1584 (m), 1558 (m), 1488 (m), 1460 (m) 1436 (m), 1386 (w), 1330 

(w), 1281 (s), 1201 (s), 1166 (m), 1126 (m), 1011 (s), 982 (m), 822 (m), 808 (s), 781 (m), 654 (m). 

3-(benzyloxy)-2-iodo-4-methoxybenzaldehyde (63)  

 

To a solution of iodoisovanillin (62) (45.1 g, 162 mmol, 1.00 eq.) in acetonitrile (550 mL) were added 

potassium carbonate (67.3 g, 487 mmol, 3.00 eq.)  and benzyl bromide (21.3 mL, 178 mmol, 1.10 eq.). 

The resulting yellow suspension was heated to 60 °C and stirred for 2.5 h. The dark orange precipitate 

was filtered over celite, rinsed with EtOAc (3 x 200 mL) and the filtrate was concentrated under 

reduced pressure. Upon addition of Et2O, the product 63 precipitated as light-yellow solid (47.5 g, 

129 mmol, 83%).  Spectral data match the previously reported values.
[136]

 

Rf  = 0.29 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

Melting point = 89.3 – 90.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 10.03 (s, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.45 –

 7.32 (m, 3H), 7.00 (d, J = 8.6 Hz, 1H), 5.04 (s, 2H), 3.97 (s, 3H). 
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13
C NMR (100 MHz, CDCl3) δ = 195.3, 158.0, 147.6, 136.7, 129.2, 128.7, 128.6, 128. 4, 127.7, 112.0, 

101.1, 74.6, 56.4. 

HRMS (ESI) for C15H14IO3
+

 [M+H]
+
: calcd. 368.9982, found: 368.9985. 

IR (ATR):  ̃ = 2944 (w), 2850 (w), 1675 (s), 1574 (m), 1555 (w), 1495 (w), 1479 (m), 1453 (w), 1437 

(w), 1382 (w), 1360 (w), 1302 (w), 1278 (s), 1252 (s), 1221 (m), 1177 (w), 1134 (w), 1080 (w), 1021 

(s), 1000 (m), 940 (w), 911 (m), 845 (w), 821 (m), 779 (w), 750 (w), 739 (w), 696 (m). 

3-Benzyloxy-2-boropinacolato-4-methoxybenzaldehyde (64) 

 

A solution of aldehyde 63 (200 mg, 0.54 mmol, 1.00 eq.), bis(pinacolato)diboron 

(152 mg, 0.60 mmol, 1.10 eq.) and KOAc (160 mg, 1.63 mmol, 3.00 eq.) in DMF (2.1 mL) was 

degassed by subsurface sparging with Ar for 15 min. Then, Pd(OAc)2 (3.7 mg, 16 µmol, 0.03 eq.) was 

added. The mixture was stirred for 5 h at 85 °C. After cooling to room temperature, water (10 mL) was 

added and the mixture was extracted using EtOAc. The organic phase was washed with LiCl 

(10% w/w, 3 x 10 mL), water (3 x 20 mL), brine (20 mL), dried over MgSO4 and filtered. The solvent 

was removed in vacuo and the crude product was purified by flash column chromatography (SiO2, 

pentane/EtOAc = 9/1) to afford 64 as a colorless solid (103 mg, 0.33 mmol, 61%). 

Rf = 0.24 (pentane/EtOAc = 9/1, UV 254 nm, KMnO4) 

Melting point = 85.6 – 93.1 °C 

1
H NMR (200 MHz, CDCl3) δ = 9.82 (s, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.53-7.48 (m, 2H), 7.39-7.34 

(m, 2H), 7.33- 7.28 (m, 1H), 7.02 (d, J = 8.3 Hz, 1H), 5.04 (s, 2H), 3.92 (s, 3H), 1.34 (s, 12H). 

13
C NMR (75 MHz, CDCl3) δ = 191.6, 157.5, 151.7, 137.9, 133.7, 130.6, 128.4, 128.2, 127.9, 112.4, 

84.4, 75.7, 56.0, 25.1. 

Note: The peak belonging to the boron-bound carbon was not observed due to quadrupolar 

relaxation. 

HRMS (FAB) for C21H26O5B
∙+ 

[M+H]
 ∙+

: calcd.369.1868, found: 369.1860. 

IR (ATR):  ̃ = 2976 (w), 1683 (m), 1561 (m), 1455 (m), 1435 (m), 1372 (m), 1336 (s), 1312 (s), 1267 

(s), 1232 (m), 1169 (w), 1138 (m), 1050 (m). 
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2-Iodo-3-isopropoxy-4-methoxybenzaldehyde (65)  

 

To a solution of 3-hydroxy-2-iodo-4-methoxybenzaldehyde 62 (11.5 g, 41.3 mmol, 1.00 eq.) in DMF 

(75 mL) were added K2CO3 (8.56 g, 62.0 mmol, 1.50 eq.), tetrabutylammonium iodide (3.81 g, 

10.3 mmol, 0.25 eq.) and isopropyl bromide (5.66 mL, 60.3 mmol, 1.46 eq.). The reaction mixture was 

stirred for 5 h at 60 °C. The mixture was cooled to room temperature, diluted with water (20 mL) and 

extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with aqueous HCl (1 

M, 50 ml) and brine (50 mL), dried over MgSO4 and filtered. The solvent was removed in vacuo and 

the crude product was purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1) to 

afford 65 as light yellow solid (8.37 g, 26.0 mmol, 63%). 

Rf = 0.40 (hexanes/EtOAc = 9/1, UV 254 nm, CAM). 

Melting point = 34.1 – 35.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 10.04 (s, 1H), 7.68 (d, J = 8.6 Hz), 6.95 (d, J = 8.6 Hz, 1H), 4.71 

(sep, J = 6.2 Hz, 1H), 3.92 (s, 3H), 1.37 (d, J = 6.2 Hz, 6H). 

13
C NMR (100 MHz, CDCl3) δ = 195.7, 158.0, 147.0, 129.3, 126.7, 111.7, 102.3, 76.3, 56.3, 22.8. 

HRMS (ESI) for C11H13IO3
∙+ 

[M]
∙+

: calcd.: 319.9909, found: 319.9906. 

IR (ATR):  ̃ = 2973 (w), 2933 (w), 2841 (w), 1675 (s), 1569 (s), 1473 (m), 1369 (m), 1296 (m), 1269 

(s), 1203 (m), 1098 (s), 1017 (s).  

3-Isopropoxy-4-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzaldehyde (66) 

 

To a mixture of 2-iodo-3-isopropoxy-4-methoxybenzaldehyde 65 (1.00 g, 3.13 mmol, 1.00 eq.), 

KOAc (2.78 g, 9.38 mmol, 3.00 eq.) and bis(pinacolato)diboron (952 mg, 3.75 mmol, 1.20 eq.) in 

DMF (11.6 mL) was added a solution of Pd(OAc)2 (42.1 mg, 0.19 mmol, 0.06 eq.) in DMF (11.6 mL). 

The black suspension was stirred for 48 h at 80 °C. The reaction was diluted with water (20 mL) and 

EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc 

(5 × 10 mL). The combined organic layers were washed with water (50 mL), brine (50 mL), dried over 

MgSO4 and filtered. The solvent was removed under reduced pressure and the crude product was 
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purified by flash column chromatography (SiO2, hexanes/EtOAc = 7/3) to afford 66 as light yellow 

solid (731.8 mg, 2.28 mmol, 73%). 

Rf = 0.39 (hexanes/EtOAc = 7/3). 

Melting point = 80 – 83 °C. 

1
H-NMR (400 MHz, CDCl3): δ = 9.79 (s, 1H), 7.50 (d, J = 8.3 Hz), 6.97 (d, J = 8.3 Hz, 1H), 4.72 

(sept, J = 6.2 Hz, 1H), 3.90 (s, 3H), 1.46 (s, 12H), 1.27 (d, J = 6.2 Hz, 6H). 

13
C-NMR (100 MHz, CDCl3): δ = 191.8, 157.7, 150.2, 133.7, 130.1, 112.1, 84.3, 74.4, 55.9, 25.3, 

22.6. 

Note: The peak belonging to the boron-bound carbon was not observed due to quadrupolar 

relaxation. 

HRMS (EI) for C17H25BO5
∙+ 

[M]
∙+

: calcd.: 320.1795, found: 320.1798. 

IR (ATR):  ̃ = 2973 (w), 1675 (s), 1564 (m), 1438 (m), 1370 (m), 1334 (m), 1302 (s), 1269 (s), 1235 

(m), 1108 (m), 1031 (s), 917 (m). 

2-Bromo-3-hydroxy-4-methoxybenzaldehyde (67)  

 

To a suspension of isovanillin (20.0 g, 131.0 mmol, 1.00 eq.), NaOAc (21.6 g, 263 mmol, 2.00 eq.) 

and iron powder (734 mg, 13 mmol, 0.10 eq.) in acetic acid (131.5 mL), a solution of bromine (7.4 

mL, 145 mmol, 1.10 eq.) in acetic acid (20 mL) was added dropwise over 20 min using a syringe 

pump. After 2 h, the mixture was poured into an ice bath. The resulting precipitate was filtered, 

washed with cold water (100 mL) and recrystallized from hot ethanol (1 L) to afford, after filtration, 

67 as light brown solid (25.1 g, 108.7 mmol, 83%). Spectral data match the previously reported 

values.
[123]

  

Rf = 0.29 (hexanes/EtOAc = 2/1). 

Melting point = 195.0 – 199.2 °C. 

1
H NMR (400 MHz, CDCl3): δ = 10.26 (s, 1H), 7.58 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 

6.06 (s, 1H), 4.01 (s, 3H). 

13
C NMR (101 MHz, CDCl3): δ = 191.0, 151.8, 143.3, 127.4, 122.9, 113.0, 109.4, 56.7. 

HRMS (ESI) for C8H8BrO3
+
 [M+H]

+
: calcd.: 230.9651, found: 230.9652. 
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IR (ATR):  ̃ = 3221 (br, m), 1667 (s), 1592 (m), 1563 (s), 1461 (m), 1385 (w), 1334 (w), 1277 (s), 

1233 (m), 1204 (s), 1168 (m), 1131 (m), 1015 (s). 

2-Bromo-3-isopropoxy-4-methoxybenzaldehyde (68)  

 

To a solution of 2-bromo-3-hydroxy-4-methoxybenzaldehyde 67 (7.94 g, 34.3 mmol, 1.0 eq.) in DMF 

(62 mL) were added K2CO3 (7.12 g, 51.5 mmol, 1.5 eq.), isopropyl bromide (4.71 mL, 50.2 mmol, 

1.46 eq.), and tetrabutylammonium iodide (3.17 g, 8.59 mmol, 0.25 eq.). The reaction mixture was 

stirred for 2.5 h at 60 °C. The mixture was cooled to room temperature, diluted with water (60 mL) 

and extracted with EtOAc (4 × 50 mL). The combined organic layers were washed with 1 M HCl (50 

mL) and brine (50 mL), dried over MgSO4 and filtered. The solvent was removed in vacuo and the 

residue was purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 7/3) to afford 68 

as slightly yellow solid (9.17 g, 33.6 mmol, 98%). Spectral data match the previously reported 

values.
[193]

 

Rf = 0.41 (hexanes/EtOAc = 7/1). 

Melting point = 33.0 – 34.0 °C. 

1
H NMR (400 MHz, CDCl3): δ = 10.26 (s, 1H), 7.70 (d, J = 8.7 Hz, 1H), 6.93 (d, J = 8.7 Hz, 1H), 

4.59 (sep, J = 6.2 Hz, 1H), 3.92 (s, 3H), 1.34 (d, J = 6.2 Hz). 

13
C NMR (101 MHz, CDCl3): δ = 191.5, 158.9, 144.6, 127.6, 126.0, 124.1, 110.8, 76.4, 56.3, 22.6. 

HRMS (EI) for C11H13BrO3
∙+ 

[M]
∙+

: calcd.: 272.0048, found: 272.0037. 

IR (ATR):  ̃ = 2973 (w), 2929 (w), 2863 (w), 1675 (s), 1576 (s), 1482 (m), 1376 (m), 1303 (m), 1275 

(s), 1211 (m), 1097 (s), 906 (s). 

2-Bromo-3-isopropoxy-4-methoxy-1-vinylbenzene (69)  

 

To a suspension of NaH (60% w/w in mineral oil, 432 mg, 18.0 mmol, 1.50 eq.) in THF (72 mL) at 

0 °C was portionwise added methyltriphenylphosphonium iodide (5.82 g, 14.4 mmol, 1.20 eq.). The 

mixture was stirred for 5 min at 0 °C and for 25 min at room temperature. 2-Bromo-3-isopropoxy-4-

methoxybenzaldehyde 68 (3.28 g, 12.0 mmol, 1.00 eq.) was added portionwise slowly and the 
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resulting white suspension was stirred for 16 h, quenched by slow addition of water (60 mL) and 

extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with water (50 mL) and 

brine (50 mL), dried over MgSO4 and filtered. The solvent was removed in vacuo and the residue was 

purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 7/3) to afford 69 as a 

colorless oil (2.83 g, 10.4 mmol, 87%). Spectral data match the previously reported values.
[193]

 

Rf = 0.41 (hexanes/EtOAc = 7/1). 

1
H NMR (400 MHz, CDCl3): δ = 7.27-7.24 (m, 1H), 7.03 (dd, J = 17.4, 10.9 Hz, 1H), 6.84 (d, J = 8.6 

Hz, 1H), 5.56 (dd, J = 17.4, 1.2 Hz, 1H), 5.24 (dd, J = 10.9, 1.2 Hz, 1H), 4.56 (sept, J = 6.2 Hz, 1H), 

3.84 (s, 3H), 1.33 (d, J = 6.2 Hz, 6H). 

13
C NMR (101 MHz, CDCl3): δ = 153.4, 144.6, 136.1, 131.5, 121.3, 120.7, 114.9, 111.4, 76.0, 56.2, 

22.7. 

HRMS (EI) for C12H15O2Br
∙+

[M]
∙+

: calcd.: 270.0255, found: 270.0246. 

IR (ATR):  ̃ = 2973 (w), 2929 (w), 2863 (w), 1675 (s), 1576 (s), 1482 (m), 1376 (m), 1303 (m), 1275 

(s), 1211 (m), 1097 (s), 906 (s). 

2-(2-Isopropoxy-3-methoxy-6-vinylphenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (70) 

 

A solution of 69 (1.00 g, 3.70 mmol, 1.00 eq.) in THF (18.6 mL) was cooled to –78 °C and a solution 

of t-BuLi (2.1 M in heptane, 1.93 mL, 4.07 mmol, 1.10 eq.) was added. The resulting mixture was 

stirred for 30 min at –78 °C and 1-Isopropoxy-3,3,4,4-tetramethylborolane (1.12 mL, 5.51 mmol, 

1.49 eq.) was added dropwise. After stirring for 2 hat −78 °C, the cooling bath was removed and the 

mixture stirred for additional 90 min. The reaction was quenched with water (20 mL) and extracted 

with Et2O (3 × 30 mL). The combined organic layers were washed with water (50 mL) and brine (50 

mL), dried over MgSO4 and filtered. The solvent was removed under reduced pressure and the crude 

product was purified by flash column chromatography (SiO2, hexanes/Et2O = 9/1 to 7/3) to afford 70 

as a white solid (1.12 g, 3.51 mmol, 95%). Spectral data match the previously reported values.
[193]

 

Rf = 0.16 (hexanes/Et2O = 9/1). 

Melting point = 73.0 – 75.0 °C. 
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1
H NMR (400 MHz, CDCl3): δ = 7.21 (d, J = 8.4, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.75 (dd, J = 17.4, 

10.8 Hz, 1H), 5.56 (dd, J = 17.4, 1.2 Hz, 1H), 5.12 (dd, J = 10.8, 1.2 Hz, 1H), 4.68 (sept, J = 6.2 Hz, 

1H), 3.80 (s, 3H), 1.39 (s, 12H), 1.25 (d, J = 6.2 Hz, 6H). 

13
C NMR (101 MHz, CDCl3): δ = 151.6, 149.2, 136.7, 134.7, 120.5, 114.0, 113.4, 84.0, 73.9, 55.9, 

25.2, 22.6. 

HRMS (EI) for C18H27O4B
∙+ 

[M]
∙+

: calcd.: 318.2003, found: 318.1997. 

IR (ATR):  ̃ = 2975 (w), 2933 (w), 1562 (w), 1472 (m), 1430 (m), 1328 (s), 1303 (s), 1261 (s), 

1140 (m), 1106 (m), 1045 (s) 991 (m). 

Trifluoro(2-isopropoxy-3-methoxy-6-vinylphenyl)-l4-borane, potassium salt (71) 

 

To a solution of 70 (101.8 mg, 0.32 mmol, 1.00 eq) in MeOH (1.0 mL) was added aqueous KHF2 

(4.5 M, 2 mL). The reaction mixture was stirred at room temperature for 40 min and the solvent was 

removed under reduced pressure. The residue was redissolved in methanol/water (3 mL, 50% v/v) and 

the solvent was removed under reduced pressure. This procedure was repeated three times. The 

resulting white residue was suspended in hot acetone (2 mL), the supernatant was filtered through a 

syringe filter (glassfiber, 45 μm) and the solvent was removed in vacuo to afford 71 as white solid 

(77.3 mg, 0.26 mmol, 81%). 

Rf = 0.16 (hexanes/Et2O = 9/1). 

Melting point = > 200 °C (decomposition). 

1
H NMR (400 MHz, CDCl3): δ = 7.33 (dd, J = 17.8, 10.8 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 6.66 (d, 

J = 8.3 Hz, 1H), 5.24 (d, J = 17.8 Hz, 1H), 4.78 (d, J = 10.8 Hz, 1H), 4.18 (sept, J = 6.1 Hz, 1H), 3.65 

(s, 3H), 1.06 (d, J = 6.1 Hz, 6H). 

13
C NMR (101 MHz, CDCl3): δ = 152.3, 149.6, 141.3, 135.5, 119.2, 109.7, 108.0, 73.8, 55.3, 22.3. 

HRMS (ESI) for C12H15BF3O2
- 
[M−K]

-
: calcd.: 259.1117, found: 259.1120. 

IR (ATR):  ̃ = 2973 (w), 2936 (w), 1563 (w), 1458 (m), 1417 (w), 1285 (m), 1207 (m), 1117 (m), 

966 (s). 
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3-(benzyloy)-4-methoxy-2-((trimethylsilyl)ethynyl)benzaldehyde (90)  

 

To a solution of benzyl iodoisovanillin (63) in THF (130 mL) was added triethylamine (26.3 mL, 

189 mmol, 6.00 eq.), giving a dark-brown solution. CuI (0.30 g, 1.58 mmol, 0.05 eq.), Pd(PPh3)2Cl2 

(0.55 g, 0.79 mmol, 0.025 eq.) and TMS-acetylene (11.2 mL, 78.8 mmol, 2.50 eq.) were added. The 

reaction was stirred at 60 °C for 12 h under air. The reaction was cooled to room temperature, filtered 

over celite and the filter cake rinsed with EtOAc (3 x 50 mL). The solvent was removed under reduced 

pressure and the crude product was purified by flash column chromatography (SiO2, Hex/EtOAc = 9/1 

to 8/2), giving 90 as orange crystalline solid (10.6 g, 31.3 mmol, 99%). 

Crystals suitable for X-ray analysis were grown from EtOAc. 

Rf = 0.61 (hexanes/EtOAc = 9/1, UV 254 nm, PAA). 

1
H NMR (CDCl3, 400 MHz) δ = 10.40 (s, 1H), 7.72 (d, J = 8.7 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.45 –

 7.28 (m, 3H), 6.98 (d, J = 8.7 Hz), 5.13 (s, 2H), 3.92 (s, 3H), 0.26 (s, 9H). 

13
C NMR (CDCl3, 100 MHz) δ = 190.9, 158.0, 137.2, 130.0, 128.4, 128.4, 128.2, 124.4, 122.2, 112.3, 

107.1, 96.2, 75.3, 56.3, 56.3, –0.12. 

HRMS (ESI) for C20H23O3Si
+ 

[M+H]
+
: calcd.: 339.1411, found: 339.1412. 

IR (ATR):  ̃ = 3032 (w), 2959 (w), 2899 (w), 2841 (w), 2744 (w), 2151 (w), 1687 (s), 1580 (s), 1497 

(w), 1482 (m), 1455 (w), 1438 (m), 1386 (w), 1373 (w), 1307 (m), 1280 (s), 1251 (s), 1194 (w), 1167 

(w), 1080 (s), 1016 (w), 962 (w), 904 (w), 840 (s), 786 (m), 760 (m), 731 (m), 697 (m).  

1-(3-(benzyloxy)-4-methoxy-2-((trimethylsilyl)ethynyl)phenyl)but-3-en-1-ol (91) 

 

Sonogashira product 90 (9.97 g, 29.5 mmol, 1.00 eq.) was dissolved in benzene and concentrated in 

vacuo. The residue was dissolved in THF (120 mL) and cooled to 0 °C. A solution of allylmagnesium 

bromide (1 M in diethyl ether, 35.3 mL, 35.3 mmol, 1.20 eq.) was added dropwise to the reaction. 

After 1 h, the reaction was quenched with saturated aqueous NH4Cl (100 mL). After the addition of 

EtOAc (50 mL) the layers were separated and the aqueous phase was extracted with EtOAc 
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(2 x 100 mL). The combined organic layers were dried over MgSO4, filtered and concentrated under 

reduced pressure. Purification of the crude product by flash column chromatography 

(SiO2, hexanes/EtOAc = 9/1) gave 91 as a yellow oil (10.6 g, 27.9 mmol, 89%).  

Rf = 0.5 (hexanes/EtOAc = 9/1, UV 254 nm, PAA). 

1
H NMR (CDCl3, 400 MHz) δ = 7.58 – 7.56 (m, 2H), 7.39 – 7.29 (m, 3H), 7.18 (d, J = 8.56 Hz, 1H), 

6.92 (d, J = 8.56 Hz), 5.86 (dddd, J = 16.9 Hz, 10.1 Hz, 7.6 Hz, 6.5 Hz, 1H), 5.21 – 5.06 (m, 3H, H-

10), 5.11 (s, 2H), 3.85 (s, 3H), 2.71 – 2.58 (m, 1H), 2.47 – 2.36 (m, 1H), 2.30 (d, J = 4.2 Hz, 1H), 0.25 

(s, 9H). 

13
C NMR (CDCl3, 100 MHz) δ = 151.9, 149.5, 139.5, 137.7, 135.1, 128.4, 128.3, 128.0, 121.0, 118.1, 

116.0, 113.2, 104.7, 98.9, 75.1, 71.3, 56.2, 42.8, 0.0. 

HRMS (ESI) for C23H27O2Si
+
 [M–OH

–
]

+
: calcd.: 363.1775, found: 363.1779. 

IR (ATR):  ̃ = 3404 (w), 2957 (m), 2150 (w), 1598 (w), 1482 (m), 1433 (m), 1372 (w), 1272 (m), 

1249 (s), 1085 (s), 1025 (w), 914 (w), 843 (s), 759 (w), 696 (w). 

Enantiomeric excess of 91 was determined by HPLC analysis on chiral stationary phase (DAICEL 

CHIALPAK IC, 4.6 x 250 mm, 25 °C, 1 mL/min, 3% i-PrOH in heptane, detection at 254 nm); tR first 

enantiomer = 11.390 min, tR second enantiomer = 14.840 min. 

Rac-1-(3-(benzyloxy)-2-ethynyl-4-methoxyphenyl)but-3-en-1-ol (92) 

 

A solution of alcohol 91 (10.6 g, 27.9 mmol, 1.00 eq.) in THF (220 mL) was cooled to 0 °C and a 

solution of TBAF (1 M in THF, 33.4 mL, 33.4 mmol, 1.20 eq.) was added dropwise over 15 minutes. 

The brown reaction was stirred for 45 min at 0 °C, quenched with saturated aqueous NH4Cl (70 mL) 

and diluted with EtOAc (70 mL). The two layers were separated and the aqueous phase was extracted 

with EtOAc (3 x 70 mL). The combined organic layers were washed with brine, dried over MgSO4 

and concentrated under reduced pressure. Purification by flash column chromatography (SiO2, 

hexanes/EtOAc = 8/2 to 6/4) gave 92 as a yellow oil (5.50 g, 17.8 mmol, 98%).  

Rf = 0.35 (hexanes/EtOAc = 7/3, UV 254 nm, PAA). 

1
H NMR (100 MHz, CDCl3) δ = 7.57 – 7.51 (m, 1H), 7.40 – 7.28 (m, 3H), 7.21 (d, J = 8.6 Hz, 1H), 

6.95 (d, J = 8.6 Hz, 1H), 5.85 (dddd, J = 16.9, 10.2, 7.7, 6.5, 1H), 5.19 – 5.09 (m, 3H), 5.10 (s, 

2H), 3.85 (s, 3H), 3.51 (s, 1H), 2.69 – 2.56 (m, 1H), 2.49 – 2.39 (m, 1H), 2.21 (d, J = 3.4 Hz, 1H). 



Part I: Experimental Procedures 

77 

13
C NMR (100 MHz, CDCl3) δ = 151.8, 149.7, 139.2, 137.4, 134.8, 128.4, 128.2, 128.0, 121.1, 118.2, 

115.2, 113.3, 86.6, 77.6, 75.1, 70.8, 56.0, 42.7. 

HRMS (ESI) for C20H19O2
+ 

[M–OH
–
]

+
: calcd.: 291.1380, found: 291.1381. 

IR (ATR):  ̃ = 3280 (m), 3065 (w), 3031 (w), 2939 (w), 2837 (w), 1740 (w), 1642 (w), 1601 (w), 

1570 (w), 1480 (s), 1454 (m), 1374 (m), 1321 (w), 1293 (m), 1267 (s), 1249 (s), 1218 (s), 1193 (m), 

1169 (w), 1117 (w), 1066 (s), 1021 (m), 994 (m), 981 (s), 930 (w), 913 (s), 891 (m), 871 (s), 842 (m), 

809 (s), 791 (w), 747 (s), 700 (s). 

Enantiomeric excess of 92 was determined by HPLC analysis on chiral stationary phase. Conditions 

for the separation of the enantiomers are reported on page 80. 

Telescoped Procedure for the synthesis of Rac-92. 

 

To a solution of benzyl iodoisovanillin (63) (10.5 g, 28.5 mmol, 1.00 eq.) in THF (120 mL) were 

added triethylamine (23.8 mL, 171 mmol, 6.00 eq.), CuI (0.27 g, 1.42 mmol, 0.05 eq.), Pd(PPh3)2Cl2 

(0.5 g, 0.71 mmol, 0.025 eq.) and TMS-acetylene (10.1 mL, 71.2 mmol, 2.50 eq.) in sequence. The 

reaction flask was sealed with a plastic cap and heated to 60 °C for 12 h.  

After full conversion of the starting material 63 (Rf = 0.53 in hexanes/EtOAc = 7/3) to the 

intermediate Sonogashira product 90 (Rf = 0.61 in hexanes/EtOAc = 9/1), the solution was cooled to 0 

°C (ice-acetone bath) and allylmagnesium bromide (1 M in diethyl ether, 71.2 mL, 71.2 mmol, 

2.50 eq.) was added dropwise to the reaction via cannula.  

After stirring for 2 h, the dark grey reaction mixture was cooled to 0 °C (ice-acetone bath) and MeOH 

(117 mL, 2.88 mol, 100 eq.) was added dropwise. Then, KOH pellets (7.99 g, 142 mmol, 9.29 eq.) 

were added. After 7 h, TLC showed incomplete consumption of the starting material S4 (Rf = 0.5 in 

hexanes/EtOAc = 9/1), and a second charge of KOH pellets (7.99 g, 142 mmol, 9.29 eq.) was added. 

After further 3 h the reaction was complete, and the mixture was filtered over a pad of celite and 

washed with MeOH (300 mL). The solvent was evaporated under reduced pressure, and the black 

residue was taken up in water (100 mL), saturated aqueous NH4Cl (100 mL) and EtOAc (100 mL). 
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The layers were separated and the aqueous phase was extracted with EtOAc (2 x 100 mL). The 

combined organic layers were dried over MgSO4, filtered and concentrated under reduced pressure. 

Purification of the crude product by flash column chromatography (SiO2, hexanes/EtOAc = 8/2) gave 

92 as a clear yellow oil (6.47 g, 21.0 mmol, 74%).  

Spectral data matched the ones reported on page 76. 

1-(3-(benzyloxy)-2-ethynyl-4-methoxyphenyl)but-3-en-1-one (142) 

 

A solution of allylic alcohol 92 (6.47 g, 21.0 mmol, 1.00 eq.) in CH2Cl2 (213 mL) was cooled to 0 °C 

and powdered NaHCO3 (7.93 g, 94.5 mol, 4.50 eq.) was added, followed by Dess-Martin periodinane 

(10.1 g, 23.7 mmol, 1.13 eq.). After 1 h, a half-saturated solution of Na2SO3 (100 mL) was added and 

the reaction mixture was vigorously stirred for 30 minutes. The reaction was diluted with water (100 

mL) and CH2Cl2 (100 mL). The layers were separated and the aqueous layer was extracted with 

CH2Cl2 (2 x 100 mL). The combined organic layers were washed with aqueous NaOH (1 M, 150 mL), 

brine (150 mL), dried over MgSO4, filtered and concentrated under reduced pressure. Purification of 

the crude product by flash column chromatography (SiO2, hexanes/EtOAc = 20/1 to 6/4) gave 142 as a 

white solid (4.20 g, 13.7 mmol, 66%).  

Rf = 0.57 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

Melting point = 61.0 – 62.3 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.57 – 7.48 (m, 3H), 7.41 – 7.29 (m, 3H), 6.94 (d, J = 8.7 Hz, 1H), 

6.05 (ddt, J = 17.1, 10.4, 6.8 Hz, 1H), 5.25 – 5.14 (m, 2H), 5.10 (s, 2H), 3.89 (s, 3H), 

3.85 (dt, J = 6.7, 1.5 Hz, 2H), 3.59 (s, 1H). 

13
C NMR (CDCl3, 100 MHz) δ = 198.9, 155.9, 150.8, 137.2, 134.3, 131.4, 128.5, 128.5, 128.4, 128.4, 

128.3, 128.2, 125.9, 118.6, 116.5, 112.0, 87.7, 78.3, 77.4, 75.2, 56.1, 46.3. 

HRMS (EI): for C20H18O3
∙+

 [M
∙+

]: calcd.: 306.1256, found: 306.1250. 

IR (ATR):  ̃ = 3273 (w), 3030 (w), 2841 (w), 2357 (w), 1650 (m), 1582 (m), 1562 (m), 1453 (m), 

1269 (s), 1246 (s), 1171 (m), 1096 (m), 1072 (s), 991 (m), 809 (m), 697 (s). 
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(S)-1-(3-(benzyloxy)-2-ethynyl-4-methoxyphenyl)but-3-en-1-ol (92) 

 

Ketone 4 (4.20 g, 13.7 mmol, 1.00 eq.) was dissolved in THF (14.6 mL) and cooled to −60 °C.  A 

solution of (−)-B-Chlorodiisopinocampheylborane (60% in heptane, 12.4 mL, 20.6 mmol, 1.50 eq.) 

was added at −60 °C. The mixture solidified and was placed in a −40 °C cooling bath (dry 

ice/isopropanol) connected to a cryostat and was stirred at this temperature for 3 days.  After complete 

consumption of the starting material (TLC taken directly from the reaction mixture), acetaldehyde 

(3.46 mL, 61.7 mmol, 4.50 eq.) was added dropwise and the solution was warmed to room 

temperature over the course of 1 h. The solvent was removed under reduced pressure and the residue 

was dissolved in Et2O (47 mL) and diethanolamine (2.89 mL, 30.2 mmol, 2.20 eq.) was added at room 

temperature. The formation of a white precipitate was observed. The suspension was stirred for 2 h 

before it was filtered over a silica plug (d = 5 cm, h = 2 cm) and the filter cake was rinsed with EtOAc 

(4 x 50 mL). Removal of the volatiles in vacuo and purification by flash column chromatography 

(SiO2, hexanes/EtOAc = 8/2) afforded alcohol 92 as a yellow oil (3.05 g, 9.88 mmol, 72%). 

Rf = 0.35 (hexanes/EtOAc = 7/3, UV 254 nm, PAA). 

Melting point = 79.4 − 81.7 °C. 

    
   = –58.2° (c = 2.60, CH2Cl2). 

Spectral data matched the racemic sample prepared according to the procedure reported on page 76. 
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Enantiomeric excess of 92 was determined by HPLC analysis on chiral stationary phase 

(DAICEL CHIALPAK IC, 4.6 x 250 mm), 25 °C, 1 mL/min, 15% i-PrOH in heptane, detection at 269 

nm) to be 95.5% by comparison with a racemic sample and coinjection; tR major enantiomer = 14.221 

min, tR minor enantiomer = 35.710 min. 
d 

- Racemic sample of 92: 

 

- Enantioenriched sample of 92: 

  

- Coinjection: 
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(S)-((1-(3-(benzyloxy)-2-ethynyl-4-methoxyphenyl)but-3-en-1-yl)oxy)(tert-

butyl)dimethylsilane (93) 

 

To a stirred solution of 92 (5.74 g, 18.6 mmol, 1.00 eq.) in DMF (87 mL) imidazole (3.17 g, 

46.5 mmol, 2.50 eq.) and TBSCl (3.37 g, 22.3 mmol, 1.20 eq.) were added. Stirring was continued for 

4 h at room temperature before the reaction was quenched with saturated aqueous NH4Cl. The layers 

were separated and the aqueous layer was extracted with EtOAc (3 x 80 mL). The combined organic 

layers were washed with aqueous LiCl (10% w/w, 4 x 50 mL), dried over MgSO4, filtered and 

concentrated under reduced pressure. Purification of the crude product was performed by flash column 

chromatography (SiO2, hexanes/EtOAc = 9/1) to afford 93 as a yellow oil (7.02 g, 16.6 mmol, 89%).  

Rf = 0.54 (hexanes/EtOAc = 9/1, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.56 – 7.51 (m, 2H), 7.40 – 7.27 (m, 3H), 7.22 (d, J = 8.6 Hz, 1H), 

6.93 (d, J = 8.6 Hz, 1H), 5.84 (ddt, J = 19.1, 9.3, 7.1, 1H), 5.16 – 5.09 (m, 2H), 5.11 (s, 2H), 5.05 –

 5.01 (m, 1H), 5.00 – 4.97 (m, 1H), 3.84 (s, 3H), 3.48 (s, 1H), 2.48 – 2.28 (m, 2H), 0.88 (s, 9H), 0.03 

(s, 2H), –0.13 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 151.4, 149.1, 140.9, 137.6, 135.6, 128.6, 128.3, 128.1, 121.9, 116.9, 

114.8, 113.3, 86.2, 77.8, 75.1, 72.0, 56.1, 44.4, 26.0, 18.4, –4.6, –4.8. 

HRMS (ESI) for C26H38O3NSi
+
 [M+NH4]

+
: calcd.: 440.2615, found: 440.2623. 

IR (ATR):  ̃ = 3287 (w), 2929 (m), 2856 (m), 1598 (w), 1483 (s), 1432 (m), 1372 (w), 1294 (m), 

1256 (s), 1077 (s), 1002 (m), 912 (m), 835 (s), 811 (m), 776 (m), 740 (w), 698 (w). 

    
   = –40.0 (c = 1.35, CH2Cl2). 

(3aR,5S)-9-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-8-methoxy-3,3a,4,5-

tetrahydro-2H-cyclopenta[a]naphthalen-2-one (94) 
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Note: Due to a 15% yield drop upon further scale-up, the following procedure was performed in two 

separate flasks with identical amounts of substrate, which were combined for purification. The use of 

a new bottle of Co2(CO)8 provided better and more reproducible results.  

In a 250 mL round-bottom flask, enyne  93 (1.64 g, 3.88 mmol, 1.00 eq.) was dissolved in DCE 

(78 mL) and stirred at room temperature. Under exclusion of light, Co2(CO)8 (1.59 g, 4.66 mmol, 1.20 

eq.) was added in one portion and the reaction was stirred in the dark. After successful complexation 

(monitored by TLC in hexanes/Et2O = 9/1; Rf of 93 = 0.32; Rf of Co-complex = 0.9; approx. 4 h) the 

reaction was cooled to 0 °C and trimethylamine N-oxide dihydrate (2.59 g, 23.3 mmol, 6.00 eq.) was 

added portionwise to the light-protected brown reaction mixture. Stirring was continued for 12 h and 

the reaction was allowed to warm to room temperature while a color change to dark violet was 

observed. The reactions were filtered over silica (ø = 6 cm, h = 4 cm) and the filter pad was rinsed 

with EtOAc until only colorless filtrate was obtained. Concentration of the filtrate under reduced 

pressure and purification by flash column chromatography (SiO2, dry loading by adsorption on SiO2, 

hexanes/EtOAc = 98/2 to 5/5) afforded tricycle 94 as an off-white solid (2.46 g, 5.46 mmol, 70%).  

Crystals suitable for X-ray analysis were grown from EtOAc by slow evaporation. 

Rf = 0.11 (hexanes/EtOAc = 95/5, UV 366 nm, CAM). 

Melting point = 128.3 – 132.7 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.42 – 7.37 (m, 2H), 7.37 – 7.27 (m, 3H), 7.04 (d, J = 5.5 Hz, 1H), 

7.01 (d, J = 4.5 Hz, 1H), 6.90 (d,  J = 1.9 Hz, 1H), 5.06 (d, J = 10.7 Hz, 1H), 4.97 (d, J = 10.7 Hz, 

1H), 4.86 (t, J = 2.8 Hz, 1H), 3.90 (s, 3H), 3.55 – 3.44 (m, 1H), 2.67 (dd, J = 18.5, 6.7 Hz, 1H), 2.24 –

 2.18 (m, 1H), 2.07 (dd, J = 18.5, 3.3, 1H), 1.73 (td, J = 13.1, 3.0 Hz, 1H), 0.88 (s, 9H), 0.17 (s, 3H),  

0.10 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 209.9, 171.0, 152.6, 147.0, 136.8, 133.2, 129.7, 128.7, 128.5, 128.3, 

126.3, 124.8, 115.0, 74.6, 68.4, 56.1, 41.0, 39.0, 34.9, 25.9, 18.2, –4.1, –4.2. 

HRMS (ESI) for C20H24O2N
+
 [M+NH4]

+
: calcd.: 310.1802, found: 310.1806. 

IR (ATR):  ̃ = 2953 (m), 2927 (m), 2875 (w), 2855 (m), 1699 (m), 1676 (s), 1592 (m), 1480 (m), 

1470 (m), 1454 (m), 1442 (m), 1404 (w), 1358 (w), 1346 (w), 1333 (w), 1315 (w), 1302 (m), 1261 (s), 

1246 (s), 1232 (m), 1215 (w), 1206 (w), 1178 (m), 1112 (m), 1060 (s), 1041 (s), 1006 (m), 968 (s), 

944 (m), 911 (w), 898 (m), 874 (w), 831 (s), 811 (m), 795 (s), 771 (s), 762 (s), 725 (m), 700 (s). 

     
   = –29.9 (c = 1.5, CH2Cl2). 

  



Part I: Experimental Procedures 

83 

Enantiomeric excess of 94 was determined by HPLC analysis on chiral stationary phase (DAICEL 

CHIALPAK IC, 4.6 x 250 mm, 25 °C, 1mL/min, 30% i-PrOH in heptane, detection at 254 nm) to be 

97.7% by comparison with a racemic sample and coinjection; tR major enantiomer = 12.780 min, tR 

minor enantiomer = 19.122 min. 

 

- Racemic sample of 94: 

 

- Enantioenriched sample of 94: 

  

- Coinjection: 
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Rac-9-(benzyloxy)-5-hydroxy-8-methoxy-3,3a,4,5-tetrahydro-2H-

cyclopenta[a]naphthalen-2-one (95) 

 

To a solution of enyne 92 (60.0 mg, 195 µmol, 1.00 eq.) in THF (3.2 mL) was added Co2(CO)8 

(79.8 mg, 223 µmol, 1.20 eq.) in one portion and the reaction was stirred in the dark. After successful 

complexation (monitored by TLC, 6h) the reaction was cooled to 0 °C and N-methylmorpholine N-

oxide (68.4 mg, 584 µmol, 3.00 eq.) was added portionwise to the light-protected brown reaction 

mixture. After 16 h, the reaction mixture was filtered over silica (ø = 2 cm, h = 2 cm) and the filter pad 

was rinsed with EtOAc until only colorless filtrate was obtained. Concentration of the filtrate under 

reduced pressure and purification by flash column chromatography (SiO2, dry loading by adsorption 

on SiO2, hexanes/EtOAc = 1/1 to 3/7) afforded tricycle 95 as a colorless oil (26.0 mg, 

77.3 µmol, 40%).  

Rf = 0.10 (hexanes/EtOAc = 1/1, UV 254 nm, KMnO4) 

1
H NMR (400 MHz, CDCl3) δ = 7.40 (d, J = 6.8 Hz, 2H), 7.37 – 7.29 (m, 3H), 7.16 (d, J = 8.4 Hz, 

1H), 7.04 (d, J = 8.4 Hz, 1H), 6.88 (s, 1H), 5.04 (d, J = 10.6 Hz, 1H), 4.94 (d, J = 10.6 Hz, 1H), 4.89 

(t, J = 2.5 Hz, 1H), 3.89 (s, 3H), 3.50 – 3.40 (m, 1H), 2.68 (dd, J = 18.6 Hz, 6.6 Hz, 1H), 2.35 (d, J = 

13.1 Hz, 1H), 2.28 (br s, 1H), 2.07 (dd, J = 18.6, 3.2 Hz, 1H), 1.75 (td, J = 13.1 Hz, 3.2 Hz, 1H). 

13
C NMR (100 MHz, CDCl3) δ = 209.8, 170.3, 153.0, 147.1, 136.7, 132.4, 129.9, 128.6, 128.5, 128.4, 

126.3, 124.7, 115.3, 74.7, 67.7, 56.1, 40.9, 37.8, 34.8. 

HRMS (ESI) for C21H21O4
+
 [M+H]

+
: calcd.: 337.1434, found: 337.1436. 

IR (ATR):  ̃ = 3386 (br, m), 3031 (w), 2938 (w), 2839 (w), 2361 (s), 1699 (m), 1665 (s), 1583 (s), 

1479 (s), 1454 (m), 1439 (m), 1406 (w), 1374 (w), 1340 (s), 1304 (m), 1263 (s), 1196 (m), 1178 (m), 

1112 (s), 1056 (m), 1035 (s), 1002 (m), 964 (w), 921 (w), 876 (m), 846 (w), 820 (m), 752 (w), 733 

(w), 697 (m), 682 (w). 

2-(benzyloxy)-4-(but-3-en-1-yl)-3-ethynyl-1-methoxybenzene (97) 
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Allylic alcohol 92 (100 mg, 324 µmol, 1.00 eq.) was dissolved in CH2Cl2 (1.70 mL) and the solution 

cooled to –5 °C. Triethylsilane (210 µL, 1.30 mmol, 4.00 eq.) was added, followed by the dropwise 

addition of boron trifluoride etherate (80.0 µL, 649 µmol, 2.00 eq.). After 30 minutes, the reaction was 

quenched with sat. NaHCO3 (5 mL) and the layers were separated and the aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL). The combined organic phases washed with brine (20 mL) and 

dried over MgSO4. The crude product was purified by flash column chromatography 

(SiO2, hexanes/Et2O = 20/1) to afford 97 as a pale yellow oil (66.0 mg, 226 µmol, 70%). 

Rf  = 0.50 (hexanes/Et2O = 9/1, UV 254 nm, CAM). 

Melting point = 171.1 – 173.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.57 (d, J = 7.0 Hz, 2H), 7.42 – 7.29 (m, 3H), 6.91 (d, J = 8.4 Hz, 

1H), 6.86 (d, J = 8.4 Hz, 1H), 5.88 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.12 (s, 2H), 5.05 (dd, J = 17.0, 

1.7 Hz, 1H), 4.99 (dd, J = 10.2 ,1.7 Hz, 1H), 3.83 (s, 3H), 3.46 (s, 1H), 2.83 (t, J = 8.0, 6.6 Hz, 2H), 

2.39 (q, J = 8.0, 6.6 Hz, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 151.0, 150.1, 138.3, 137.7, 128.5, 128.3, 128.0, 124.3, 117.3, 114.9, 

113.2, 85.2, 78.6, 75.2, 56.2, 34.7, 33.5. 

HRMS (ESI) for C20H24O2N
+
 [M+NH4]

+
: calcd.: 310.1802, found: 310.1806. 

IR (ATR):  ̃ = 3286 (w), 3065 (w), 3031 (w), 3001 (w), 2935 (w), 2837 (w), 2361 (w), 2101 (w), 

1639 (w), 1598 (w), 1570 (w), 1482 (s), 1463 (m), 1453 (m), 1433 (m), 1372 (m), 1335 (w), 1265 (s), 

1221 (m), 1162 (w), 1105 (w), 1074 (s), 1026 (s), 996 (m), 909 (s), 806 (m), 735 (s), 697 (s). 

Rac-9-(benzyloxy)-8-methoxy-3,3a,4,5-tetrahydro-2H-cyclopenta[a]naphthalen-2-

one (98)  

 

To a solution of enyne 97 (180 mg, 615 µmol, 1.00 eq.) in CH2Cl2 (24 mL) was added Co2(CO)8 (252 

mg, 738 µmol, 1.20 eq.) in one portion and the reaction was stirred in the dark. After successful 

complexation (monitored by TLC, 2 h) the reaction was cooled to 0 °C and trimethylamine N-oxide 

dihydrate (410 mg, 3.69 mmol, 6.00 eq.) was added portionwise to the light-protected brown reaction 

mixture. After 16 h, the reaction mixture was filtered over silica (ø = 3 cm, h = 4 cm) and the filter pad 

was rinsed with EtOAc until only colorless filtrate was obtained. Concentration of the filtrate under 

reduced pressure and purification by flash column chromatography (SiO2, dry loading by adsorption 
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on SiO2, hexanes/EtOAc = 9/1 to 1/1) afforded tricycle 98 as a colorless oil (52.0 mg, 162 µmol, 

26%).  

Rf  = 0.30 (hexanes/EtOAc = 8/2). 

1
H NMR (CDCl3, 400 MHz): δ = 7.42 (d, J = 6.6 Hz, 2H), 7.37 – 7.28 (m, 3H), 6.98 (d,

 
J = 8.4 Hz, 

1H), 6.93 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 1.7 Hz, 1H), 5.04 (d, J = 10.7 Hz, 1H), 4.96 (d, J = 10.7 Hz, 

1H), 3.88 (s, 3H), 2.99 – 2.88 (m, 3H), 2.67 (dd, J = 18.5, 6.6 Hz, 1H), 2.25 – 2.18 (m, 1H), 2.07 

(dd, J = 18.5, 3.2 Hz, 1H), 1.63 – 1.53 (m, 1H). 

13
C NMR (CDCl3, 100 MHz): δ = 209.8, 171.2, 151.2, 147.5, 136.9, 132.4, 129.2, 128.6, 128.5, 128.2, 

125.1, 124.9, 115.4, 74.5, 56.3, 41.4, 41.0, 30.2, 29.8. 

HRMS (ESI) for C21H21O3
+
 [M+H]

+
: calcd.: 321.1485, found: 321.1487. 

IR (ATR):  ̃ = 2938 (w), 2906 (s), 2836 (s), 2361 (w), 2340 (w), 1701 (s), 1678 (s), 1584 (s), 1479 

(s), 1455 (m), 1439 (m), 1375 (s), 1298 (m), 1275 (s), 1263 (s), 1171 (m), 1111 (s), 1053 (m), 1022 

(m), 997 (m), 963 (s), 911 (w), 845 (s), 804 (w), 747 (w), 698 (w). 

9b-allyl-9-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-8-methoxy-1,3,3a,4,5,9b-

hexahydro-2H-cyclopenta[a]naphthalen-2-one (103) 

 

The Pauson–Khand product 94 (200 mg, 444 µmol, 1.00 eq.) was dissolved in benzene (10 mL) and 

the solvent was removed under reduced pressure. The residue was dissolved in THF (16 mL) and the 

solution was cooled to –78 °C. Allylmagnesium bromide (1.06 M in Et2O, 460 µL, 488 µmol, 1.1 eq.) 

was added dropwise, the yellow solution was stirred for 2 h. Subsequently, the reaction was quenched 

with saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and 

the combined organic phases were washed with saturated aqueous NaHCO3 (30 mL), brine (30 mL), 

dried over MgSO4 and filtered. The solvent was removed in vacuo to afford 104 (143.8 mg, 292 µmol, 

66%) that was directly subjected to the next step without further purification.  

Note:  104 could be stored for several weeks in a benzene matrix at –25 °C (100 mg/5 mL). Attempts 

to purify it by silica gel chromatography resulted in decomposition. 

To a solution of tertiary alcohol 104 (100 mg, 203 µmol, 1.0 eq.) in THF (4 mL) at –5 °C was added 

18-crown-6 (161 mg, 609 µmol, 3.00 eq.) followed by KHMDS (1M in THF, 609 µL, 609 µmol, 

3.00 eq.). The orange solution was stirred for 3 h and was slowly allowed to warm to room 
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temperature in the cooling bath. The reaction mixture was cooled to 0 °C and quenched with 

pH 7 buffer. The solution was extracted with EtOAc (3 x 20 mL), successively washed with saturated 

aqueous KCl (2 x 20 mL), brine (20 mL) and dried over MgSO4. After filtration the crude product was 

purified by purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1) to yield the 

rearrangement product 103 as a yellow oil (40.8 mg, 82.8 µmol, 48%).  

Rf  = 0.42 (hexanes/Et2O = 8/2) 

1
H NMR (CDCl3, 400 MHz): δ = 7.48 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.33 (t, J = 7.3 Hz, 

1H), 6.97 – 6.90 (m, 1H), 6.89 – 6.83 (m, 1H), 5.60 – 5.47 (m, 1H), 5.16 (d, J = 11.3 Hz, 1H), 5.04 (d, 

J = 11.3 Hz, 1H), 4.97 (d, J = 17.1 Hz, 1H), 4.91 (d, J = 10.5 Hz, 1H), 4.79 – 4.72 (m, 1H), 3.87 (s, 

3H), 3.18 – 3.02 (m, 2H), 2.82 (d, J = 19.2 Hz, 1H), 2.78 – 2.66 (m, 1H), 2.53 – 2.42 (m, 1H), 2.41 – 

2.28 (m, 1H), 2.04 (d, J = 19.2 Hz, 1H), 1.92 – 1.80 (m, 1H), 1.70 – 1.56 (m, 1H), 0.89 (s, 9H), 0.17 

(s, 3H), 0.15 (s, 3H). 

13
C NMR (CDCl3, 100 MHz): δ = 220.2, 152.6, 146.7, 138.0, 136.0, 135.2, 132.3, 128.6, 127.8, 127.4, 

124.9, 117.0, 111.0, 73.6, 68.6, 55.8, 50.5, 44.6, 43.3, 43.0, 36.6, 32.6, 25.9, 18.1, -4.1, -4.4. 

HRMS (ESI) for C30H44O4NSi
+
 [M+NH4]

+
: calcd.: 510.3034, found: 510.3043. 

IR (ATR):  ̃ = 3069 (w), 3032 (w), 2953 (m), 2928 (m), 2855 (w), 2361 (w), 2252 (w), 1737 (s), 1638 

(w), 1598 (w), 1577 (w), 1483 (m), 1463 (m), 1434 (m), 1403 (w), 1353 (m), 1324 (w), 1297 (m), 

1270 (s), 1251 (s), 1201 (w), 1172 (m), 1136 (w), 1079 (s), 1055 (s), 1025 (m), 1002 (s), 974 (s), 947 

(m), 910 (m), 878 (w), 833 (s), 815 (m), 795 (m), 773 (s), 732 (s), 696 (s).  

Rac-(3aR,5S,9bR)-9b-allyl-9-(benzyloxy)-5-hydroxy-8-methoxy-1,3,3a,4,5,9b-

hexahydro-2H-cyclopenta[a]naphthalen-2-one (105) 

 

To a solution of the rearrangement product 103 (23.0 mg, 46.7 µmol, 1.00 eq.) in THF (1.70 mL) was 

added tetrabutylammonium fluoride hydrate (1 M in THF, 100 µL, 0.10 mmol, 2.14 eq.) at 0 °C. The 

reaction mixture was stirred at room temperature for 12 h and subsequently quenched with saturated 

aqueous NH4Cl (5 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL) and combined 

organic phases were washed with brine (20 mL) and dried over MgSO4. The crude product was 

purified by purified by flash column chromatography (SiO2, hexanes/EtOAc = 1/1) to yield the 

rearrangement product 105 as a pale yellow oil (12.0 mg, 31.7 µmol, 68 %). 

Rf  = 0.26 (hexanes/EtOAc = 1/1). 



Part I: Experimental Procedures 

88 

1
H NMR (CDCl3, 400 MHz): δ (ppm) = 7.43 (d, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz), 7.11 (t, J = 7.4 

Hz, 1H), 6.88 – 6.77 (m, 1H), 6.50 (d, J = 8.3 Hz, 1H), 5.52 – 5.35 (m, 1H), 5.19 (d, J = 11.2 Hz, 1H), 

4.89 – 4.74 (m, 3H), 4.50 (s, 1H), 3.26 (s, 3H), 3.14 (dd, J = 13.0, 5.6 Hz), 2.85 – 2.75 (m, 2H), 2.42 – 

2.29 (m, 2H), 2.07 – 1.97 (m, 1H), 1.76 (d, J = 19.0 Hz, 1H), 1.70 – 1.60 (m, 1H), 1.24 (t, J = 13.6 Hz, 

1H). 

13
C NMR (C6D6, 100 MHz): δ (ppm) = 216.5, 153.1, 147.3, 138.5, 136.2, 135.5, 132.6, 128.8, 128.1, 

125.3, 117.5, 111.6, 74.0, 68.2, 55.4, 50.6, 44.7, 43.0, 35.3, 32.6. 

(2S,3aS,5S)-9-(benzyloxy)-5-((tert-butyldimethylsilyl) oxy)-8-methoxy-3,3a,4,5-

tetrahydro-2H-cyclopenta[a]naphthalen-2-ol (106) 

 

Enone 94 (1.56 g, 3.47 mmol, 1.00 eq.) was added portionwise to a stirred suspension of LiAlH4 

(92.3 mg, 2.43 mmol, 0.70 eq.) in Et2O (30 mL) placed in an ice-acetone bath (0 °C). The reaction was 

stirred for 45 minutes and quenched by sequential slow addition of water (125 µL), 

aqueous NaOH (2.5 M, 125 µL) and water (375 µL). The yellow suspension was filtered over a pad of 

silica (d = 5 cm, h = 3 cm) and the filter cake rinsed with EtOAc (200 mL). Evaporation of the filtrate 

gave a white foam, which was triturated with EtOAc and hexanes under sonication to afford 7 as white 

solid (1.55 g, 3.44 mmol, 98%).  

In the racemic series, crystals suitable for X-ray analysis were grown from EtOAc by slow 

evaporation.  

Rf = 0.23 (hexanes/EtOAc = 8/2, UV 254 nm, CAM). 

Melting point = 111.8 – 113.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.51 – 7.45 (m, 2H), 7.41 – 7.29 (m, 3H), 6.98 (d, J = 8.4 Hz, 1H), 

6.86 (d, J = 8.4 Hz, 1H), 6.64 (t, J = 2.1 Hz, 1H), 5.01 (d, J = 10.6 Hz, 1H), 4.97 (d, J = 10.8 Hz, 1H), 

4.76 (t, J = 3.0 Hz, 1H), 3.86 (s, 3H), 3.21 – 3.08 (m, 1H), 2.62 (dt, J = 12.5, 7.2 Hz, 1H), 2.07 (dt, J = 

13.0, 3.7 Hz, 1H), 1.64 (s, 1H), 1.59 (dt, J = 13.2, 3.4 Hz, 1H), 1.31 – 1.18 (m, 1H), 0.88 (s, 9H), 0.15 

(s, 3H), 0.06 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 152.5, 146.2, 140.2, 137.8, 132.7, 131.9, 128.4, 128.4, 128.0, 125.9, 

125.6, 112.0, 78.0, 73.6, 69.3, 56.1, 41.2, 39.3, 37.7, 26.0, 18.2, –4.1, –4.2. 

HRMS (ESI) for C27H33O3Si
– 
[M–H3O

+
]: calcd.: 433.2215, found: 433.2209. 
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IR (ATR):  ̃ = 3343 (br, w), 2952 (m), 2928 (m), 2883 (m), 2866 (m), 2361 (w), 1597 (w), 1571 (w), 

1479 (s), 1440 (m), 1408 (w), 1377 (m), 1350 (m), 1327 (m), 1303 (m), 1267 (s), 1255 (s), 1220 (m), 

1164 (w), 1124 (m), 1109 (m), 1052 (s), 977 (s), 920 (m), 832 (s), 808 (m), 795 (m), 773 (s), 752 (m), 

731 (m), 696 (m), 677 (m). 

    
   = −17.2 (c = 2.95, CH2Cl2). 

(((2S,3aS,5S)-9-(benzyloxy)-8-methoxy-2-(2-(phenylsulfinyl)ethoxy)-3,3a,4,5-

tetrahydro-2H-cyclopenta[a]naphthalen-5-yl)oxy)(tert-butyl)dimethylsilane 

(117) 

 

To a suspension of NaH (60% w/w in mineral oil, 103 mg, 2.58 mmol, 1.00 eq.) in THF (30 mL) was 

added dropwise a solution of alcohol 106 (1.13 g, 2.58 mmol, 1.00 eq.) in THF (8 mL). The reaction 

was stirred for 30 minutes and phenyl vinyl sulfoxide (1.09 mL, 7.73 mmol, 3.00 eq.) was added, 

followed by catalytic amount of washed KH (oil free, stored under argon, tip of a Pasteur pipette). The 

reaction was stirred at room temperature for 21 h and then quenched at 0 °C with saturated aqueous 

NH4Cl (50 mL). After separation of the layers, the aqueous layer was extracted with EtOAc 

(3 x 50 mL) and the combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo to afford a mixture of 117 and unreacted phenyl vinyl sulfoxide. Although 

remaining phenyl vinyl sulfoxide does not interfere with the subsequent reaction, spectral analysis, 

was facilitated if it was removed. To this end, the crude reaction mixture was dissolved in i-PrOH, and 

a solution of methylamine was added (33% in EtOH, 33.2 mmol, 3.63 mL, 10.00 eq.). The light 

orange solution was stirred for 3 h at room temperature, upon which time TLC analysis indicated 

complete disappearance of phenylvinlyl sulfoxide (Rf = 0.48 in hexanes/EtOAc = 6/4, stains very 

strongly with KMnO4). The solvent was removed in vacuo and the crude reaction mixture was purified 

by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 2/8) to give 117 as a colorless oil 

(1.74 g, 2.95 mmol, 89%). 

Rf = 0.52 (hexanes/EtOAc = 6/4, UV 254 nm, CAM). 

Note: NMR spectra are complex due to the presence of diastereoisomers resulting from the sulfoxide 

moiety. 
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1
H NMR (400 MHz, CDCl3) δ = 7.74 – 7.58 (m, 2H), 7.48 (ddt, J = 7.6, 5.8, 1.6 Hz, 5H), 7.42 – 7.28 

(m, 3H), 6.97 (dd, J = 8.4, 3.0 Hz, 1H), 6.85 (dd, J = 8.4, 1.7 Hz, 1H), 6.71 – 6.59 (m, 1H), 5.30 (s, 

1H), 4.99 (d, J = 1.9 Hz, 2H), 4.84 – 4.59 (m, 2H), 4.02 – 3.79 (m, 4H), 3.62 (ddt, J = 18.0, 10.2, 5.1 

Hz, 1H), 3.13 (d, J = 9.8 Hz, 1H), 3.07 – 2.85 (m, 2H), 2.52 (ddt, J = 26.8, 12.3, 7.2 Hz, 1H), 2.24 – 

1.97 (m, 1H), 1.63 (ddd, J = 12.7, 7.2, 3.1 Hz, 2H), 1.47 – 1.19 (m, 2H), 0.87 (s, 9H), 0.14 (d, J = 1.7 

Hz, 3H), 0.05 (d, J = 2.3 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 152.5, 152.4, 146.3, 146.2, 144.2, 144.2, 140.7, 140.7, 138.0, 137.8, 

132.7, 132.6, 131.1, 129.3, 128.6, 128.5, 128.5, 128.4, 128.3, 128.0, 127.9, 125.9, 125.8, 125.5, 124.1, 

124.1, 112.1, 112.1, 85.8, 85.7, 73.7, 73.6, 69.3, 61.6, 61.2, 60.5, 58.8, 58.7, 56.1, 39.2, 39.1, 37.5, 

37.3, 37.3, 26.0, 21.2, 18.2, 14.3, -4.1, -4.2. 

HRMS (ESI) for C35H44NaO5SSi
+
 [M+H]

+
: calcd.: 627.2576, found: 627.258. 

IR (ATR):  ̃ =  3403 (br, w), 2953 (m), 2928 (m), 2855 (m), 1596 (w), 1570 (w), 1479 (m), 1442 (m), 

1339 (m), 1305 (m), 1269 (s), 1221 (w), 1164 (w), 1129 (m), 1085 (s), 1049 (s), 980 (m), 932 (m), 834 

(s), 809 (m), 796 (m), 775 (m), 747 (m), 695 (m). 

    
   = +18.0° (c = 0.66, CH2Cl2). 

2-((3aS,5S,9bS)-9-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-8-methoxy-

3,3a,4,5-tetrahydro-9bH-cyclopenta[a]naphthalen-9b-yl)acetaldehyde (107) 

 

A 500 mL three-neck round-bottom flask fitted with a water-cooled Liebig-type reflux condenser, an 

internal thermometer and a rubber septum was charged with 117 (1.67 g, 2.83 mmol, 1.00 eq.), DCB 

(115 mL), NaHCO3 (21.34 g, 254 mmol, 90.0 eq.), and 3,5-di-tert-4-butylhydroxytoluene (31.1 mg, 

141 µmol, 0.05 eq.). Phenanthrene (262 mg, 1.47 mmol, 0.52 eq.) was added as internal standard and 

nitrogen was bubbled through the reaction mixture for 20 minutes via a 22-gauge steel needle under 

vigorous stirring (800 rpm). The needle was retracted from below the solvent surface and the setup 

was lowered in a preheated oil bath (197 °C). In the next hour, the clear reaction mixture foams and 

vapor accumulates in the head of the reflux condenser. After 2 h, the internal temperature reaches and 

stabilizes at 176 °C under moderate refluxing and occasional fizzing. 
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Every hour, a 0.1 mL aliquot is withdrawn with a syringe from the hot reaction mixture, diluted with 

CDCl3 and analyzed by 
1
H NMR (integration of signals against phenanthrene). After disappearance of 

the starting material 117 (6 h), the reaction is lifted from the oil bath, left to cool for one hour while 

stirring and filtered (porosity 3 glass frit covered with a thin layer of sand). The filter cake is washed 

with CHCl3 (2 x 100 mL) and the resulting orange solution is concentrated on a rotary evaporator (40 

°C water bath, 10 mbar) followed by distillation in a short-path apparatus (50 °C water bath, 3 mbar) 

to remove residual DCB. The brown residue was purified via flash column chromatography (SiO2, 

hexanes/Et2O = 100/1 to 85/15) to afford aldehyde 107 as light brown oil (838 mg, 1.80 mmol, 64%).  

Note: The reaction must be stopped as soon as the starting material is fully converted as judged by 

NMR analysis. Longer reaction times invariably lead to lower isolated yields. 

Rf = 0.52 (hexanes/EtOAc = 9/1, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 9.63 (t, J = 3.3 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.44 – 7.37 (m, 2H), 

7.36 – 7.31 (m, 1H), 7.22 (dd, J = 8.5, 0.9 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 6.87 – 6.82 (m, 1H), 

5.93 (ddd, J = 5.9, 3.0, 1.6 Hz, 1H), 5.26 (d, J = 11.2 Hz, 1H), 4.94 (ddd, J = 7.2, 2.0, 0.9 Hz, 1H), 

4.84 (d, J = 11.2 Hz, 1H), 3.86 (s, 3H), 2.58 – 2.47 (m, 1H), 2.36 – 2.18 (m, 4H), 2.03 – 1.92 (m, 2H), 

0.95 (s, 9H), 0.19 (s, 3H), 0.18 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 204.1 , 151.7 , 143.8, 138.0, 137.9, 136.5, 132.9, 132.4, 128.9, 

127.8, 127.6, 125.7, 111.0, 74.5, 68.1, 55.9, 51.4, 50.2, 45.1, 33.6, 32.9, 26.1, 18.3, –4.0, –4.4. 

HRMS (ESI) for C29H42O4NSi
+
 [M+NH4]

+
: calcd.: 496.2878, found: 496.2886. 

IR (ATR):  ̃ = 2929 (s), 2855 (s), 2740 (w), 2359 (w), 1718 (s), 1601 (w), 1573 (w), 1497 (w), 1474 

(s), 1439 (m), 1374 (m), 1345 (w), 1301 (m), 1256 (s), 1219 (m), 1165 (w), 1145 (m), 1130 (m), 1100 

(m), 1076 (m), 1049 (s), 987 (m), 938 (m), 910 (m), 832 (s), 812 (m), 775 (s), 732 (m), 697 (m).  

    
   = –18.2 (c = 0.66, CH2Cl2). 

2-((3aS,5S,9bS)-9-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-8-methoxy-

3,3a,4,5-tetrahydro-9bH-cyclopenta[a]naphthalen-9b-yl)-N-methylethan-1-amine 

(108) 

 

Claisen rearrangement product 107 (836 mg, 1.80 mmol, 1.00 eq.) was dissolved in methanol (45 mL) 

and MgSO4 (867 mg, 7.20 mmol, 4.00 eq.) was added in one portion. Then a solution of methylamine 

(33% in EtOH, 1.97 mL, 18.00 mmol, 10.0 eq.) was added dropwise to the reaction. Upon 
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disappearance of the starting material (monitored by 1H NMR following withdrawal of a 0.1 mL 

aliquot of the reaction mixture, evaporation, and dissolution in CDCl3), the reaction was cooled to 

0 °C and NaBH4 (204.0 mg, 5.40 mmol, 3.00 eq.) was added in one portion. After stirring at room 

temperature for 3 h the reaction was quenched by the addition of water (20 mL) and diluted with brine 

(50 mL) and CHCl3 (50 mL). The layers were separated and the aqueous phase was extracted with 

CHCl3 (4 x 50 mL). The combined organic layers were washed with brine, dried over MgSO4, filtered 

and concentrated under reduced pressure to afford a brown oil. Purification was performed by flash 

column chromatography (SiO2, CHCl3/MeOH = 95/5 + 1% Et3N to 9/1 + 1% Et3N) and the reductive 

amination product 108 was obtained as a brown foam (865 mg, 1.75 mmol, 97%).  

Rf = 0.47 (CHCl3/MeOH = 9/1 + 1% Et3N, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.43 – 7.39 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 7.16 

(dd, J = 8.6, 0.9 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 6.68 (d, J = 6.0 Hz, 1H), 5.75 (ddd, J = 6.0, 2.9, 

1.5 Hz, 1H), 5.07 (d, J = 11.0 Hz, 1H), 4.9 (td, J = 5.5, 1.0 Hz, 1H), 4.59 (d, J = 11.0 Hz, 1H), 3.76 (s, 

3H), 2.57 (td, J = 11.4, 5.2 Hz, 1H), 2.45 (td, J = 11.5,
 
5.1 Hz, 1H), 2.31 – 2.25 (m, 2H), 2.20 (s, 3H), 

2.18 –2.10 (m, 1H), 1.99 – 1.88 (m, 1H), 1.85  – 1.77 (m, 1H), 1.50 (td, J = 11.8, 5.2 Hz, 1H), 1.36 (td, 

J = 11.7, 5.0 Hz, 1H), 0.86 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 151.3, 143.9, 138.8, 138.2, 138.0, 132.9, 131.8, 128.5, 127.8, 127.7, 

124.6, 74.5, 67.6, 55.8, 52.0, 48.4, 46.0, 35.9, 35.6, 33.7, 33.6, 26.1, 18.3, –4.00, –4.5. 

HRMS (ESI) for C30H44O3NSi
+
 [M+H]

+
: calcd.: 494.3085, found: 494.3091. 

IR (ATR):  ̃ = 2929 (m), 2884 (w), 2855 (m), 1600 (w), 1573 (w), 1472 (m), 1439 (m), 1374 (m), 

1300 (m), 1253 (s), 1167 (w), 1144 (w), 1116 (m), 1076 (m), 1048 (s), 990 (m), 937 (m), 909 (m), 

813 (s), 773 (s), 729 (s), 697 (m). 

    
   = +22.6 (c = 0.21, CH2Cl2). 

(3aR,5aR,7S,11bS)-11-(benzyloxy)-7-((tert-butyldimethylsilyl)oxy)-10-methoxy-

3-methyl-1,2,3,3a,5,5a,6,7-octahydro-4H-benzo[6,7]indeno[1,7a-b]pyrrol-4-one 

(120) 
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Note: The following reaction was performed under the exclusion of light: laboratory and fume hood 

lights were turned off, the reaction flask wrapped in aluminum foil and flasks connected to a rotary 

evaporator were covered with aluminum foil. 

Reductive amination product 108 (350 mg, 0.709 μmol, 1.00 eq.) was dissolved in CH2Cl2 (64 mL). 

NIS (319 mg, 1.42 mmol, 2.00 eq.) was added in one portion at room temperature and the mixture was 

stirred for 10 min. The flask was moved to a rotary evaporator and the solvent was removed in vacuo 

(25 °C water bath, 5 mbar) followed by drying on high vacuum for 5 min (0.5 mbar). The resulting 

rusty brown foam (119) was dissolved in DMSO (143 mL) and stirred for 5 min at room temperature 

before Et3N (296 μL, 2.13 mmol, 3.00 eq.) was added. The reaction was sealed with a polyethylene 

cap and stirred for 22 h at room temperature. The solution was cooled to 0 °C and water (100 mL) was 

added. After the mixture was stirred for 5 min, it was diluted with EtOAc (100 mL) and 10% LiCl 

(200 mL). The aqueous layer was extracted with EtOAc (3 x 100 mL) and the combined organic layers 

were washed with 10% LiCl (3 x 100 mL), brine, dried over MgSO4 and filtered. The solvent was 

removed in vacuo and the resulting brown oil was purified by flash column chromatography (Et3N-

deactivated SiO2, hexanes/EtOAc = 9/1 to 8/2) to afford 120 as light yellow oil (231 mg, 455 μmol, 

64%).  

Rf = 0.39 (hexanes/EtOAc = 8/2, UV 254 nm, CAM). 

1
H NMR (400 MHz, C6D6) δ = 7.61–7.53 (m, 2H), 7.42 (dd, J = 8.5, 1.0 Hz, 1H), 7.25 (dd, 

J = 8.3, 6.9 Hz, 3H), 6.60 (d, J = 8.5 Hz, 1H), 5.14 (d, J = 11.1 Hz, 1H), 4.91 (d, J = 11.1 Hz, 1H), 

4.80 (ddd, J = 7.7, 4.6, 1.1 Hz, 1H), 3.98 (s, 1H), 3.29 (s, 3H), 2.90 (dt, J = 8.4, 6.8 Hz, 1H), 2.48 (s, 

3H), 2.42 (td, J = 7.6, 5.1 Hz, 1H), 2.17 – 2.04 (m, 1H), 2.03 – 1.79 (m, 5H), 1.44 (ddd, J = 12.2, 6.7, 

5.2 Hz, 1H), 1.07 (s, 9H), 0.20 (s, 3H), 0.15 (s, 3H). 

13
C NMR (100 MHz, C6D6) δ = 213.4, 152.4, 144.3, 139.1, 138.8, 132.7, 128.6, 128.5, 123.5, 110.5, 

75.1, 73.9, 67.8, 55.4, 55.2, 53.7, 39.2, 37.0, 35.4, 35.0, 26.2, 18.4, –4.1, –4.6. 

HRMS (ESI) for C30H42O4NSi [M+H]
+
: calcd.: 508.2878, found: 508.2874. 

IR (ATR):  ̃ = 2929 (w), 2886 (m), 2856 (w), 2794 (w), 1736 (m), 1600 (w), 1576 (w), 1472 (m), 

1375 (w), 1304 (m), 1253 (s), 1156 (w), 1125 (m), 1077 (m), 1052 (m), 986 (m), 929 (m), 833 (s), 774 

(s), 733 (m), 697 (m), 678 (w). 

    
   = –99.3 (c = 0.22, CH2Cl2). 
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Rac-(3aR,5aS,11bS)-11-(benzyloxy)-10-methoxy-3-methyl-1,2,3,3a,5,5a-

hexahydro-4H-benzo[6,7]indeno[1,7a-b]pyrrol-4-one (128) 

 

Kornblum oxidation product 120 (120 mg, 237 μmol, 1.00 eq.) was dried on high vacuum for 5 min 

before it was dissolved in benzene (25 mL). Camphor-10-sulfonic acid (165 mg, 71.0 μmol, 3.00 eq.) 

was added at room temperature and the flask was sealed with a polypropylene cap. After stirring for 

1 h, saturated aqueous NaHCO3 (50 mL) was added and the mixture was diluted with EtOAc (50 mL). 

The aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined organic layers were 

washed with brine, dried over MgSO4 and concentrated under reduced pressure. Purification by flash 

column chromatography (Et3N-deactivated SiO2, hexanes/EtOAc = 8/2) gave the elimination product 

128 as a colorless oil that solidified upon standing (61.2 mg, 163 μmol, 69%) 

Crystals suitable for X-ray analysis were grown from benzene by slow evaporation.  

Rf = 0.8 (hexanes/EtOAc = 8/2, UV 254 nm, CAM). 

Melting point = 111.8 – 113.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.61 – 7.45 (m, 2H), 7.43 – 7.28 (m, 3H), 6.92 (d, J = 8.2 Hz, 1H), 

6.78 (d, J = 8.3 Hz, 1H), 6.53 (dd, J = 9.3, 3.0 Hz, 1H), 6.02 (dd, J = 9.2, 2.5 Hz, 1H), 5.23 (d, J = 

10.7 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 3.88 (s, 3H), 3.77 (s, 1H), 2.93 (ddt, J = 14.7, 7.8, 2.8 Hz, 

1H), 2.74 (td, J = 8.5, 6.0 Hz, 1H), 2.55 (ddd, J = 8.6, 6.8, 4.2 Hz, 1H), 2.51 – 2.30 (m, 2H), 2.35 (s, 

3H), 1.65 (ddd, J = 13.0, 6.1, 4.3 Hz, 1H). 

13
C NMR (100 MHz, CDCl3) δ = 216.8, 152.8, 143.8, 137.8, 137.3, 130.2, 128.5, 128.4, 128.2, 128.0, 

127.1, 123.7, 109.7, 75.3, 72.3, 55.8, 54.7, 54.2, 39.9, 39.9, 39.1, 35.1. 

HRMS (ESI) for C24H26O3N
+
 [M+H]

+
: calcd.: 376.1907, found: 376.1911. 

IR (ATR):  ̃ = 3032 (w), 2933 (m), 2840 (w), 2793 (w), 1735 (s), 1596 (w), 1562 (w), 1471 (s), 1438 

(m), 1305 (m), 1292 (w), 1259 (s), 1188 (w), 1161 (w), 1136 (m), 1081 (m), 1061 (m), 1050 (m), 1029 

(m), 929 (w), 909 (w), 816 (m), 735 (m), 697 (m). 
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Rac-(3aR,11bS)-11-(benzyloxy)-10-methoxy-3-methyl-1,2,3,3a-tetrahydro-4H-

benzo[6,7]indeno[1,7a-b]pyrrol-4-one (129) 

 

A solution of ketone 128 (33.0 mg, 87.9 µmol, 1.00 eq., dried by 3 times by azeotropic removal of 

water with benzene) in THF (1.8 mL) was cooled to –78 °C. A solution of LDA (0.2 M in THF, 132 

µmol, 659 µL, 1.5 eq., prepared 30 minutes prior from DIPEA in THF and n-BuLi (2.3 M in hexane) 

at 0 °C) was added and the resulting yellow solution was stirred for 30 min at the same temperature. 

Then, a freshly prepared solution of N-tert-butylbenzenesulfinimidoyl chloride (130 handled and 

stored in a freezer inside an Ar-filled glovebox) in THF (0.25 M, 132 µmol, 529 µL, 1.50 eq.) was 

added dropwise and stirring was continued for 1 h at –78 °C. A solution of AcOH in THF (0.1 M, 879 

µmol, 879 µL, 10.00 eq.) was injected into the cold, bright yellow reaction mixture. After 10 minutes, 

the reaction was placed in an ice-water bath and saturated aqueous NaHCO3 (4 mL) was slowly added 

dropwise (bubbling). After 10 minutes, the reaction was diluted with EtOAc (20 mL) and the aqueous 

phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine 

(50 mL), dried over MgSO4, filtered and evaporated. The crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 95/5 to 1/1) to deliver benzyl-sinoracutine 129 as an 

intensely yellow oil (22.0 mg, 58.9 µmol, 87%). 

Rf = 0.21 (hexanes/EtOAc = 7/3, UV 254 nm, UV 366 nm, CAM). 

1
H NMR (400 MHz, C6D6) δ = 7.73 – 7.50 (m, 2H), 7.33 – 7.23 (m, 2H), 6.63 (d, J = 8.3 Hz, 1H), 

6.35 (d, J = 8.3 Hz, 1H), 6.28 (d, J = 9.4 Hz, 1H), 6.10 – 5.98 (m, 1H), 5.80 – 5.70 (m, 1H), 5.18 (d, J 

= 10.4 Hz, 1H), 4.88 (d, J = 10.3 Hz, 1H), 4.36 (s, 1H), 3.22 (s, 3H), 2.63 (s, 3H), 2.52 (ddd, J = 10.3, 

9.1, 5.4 Hz, 1H), 2.17 (ddd, J = 12.2, 5.4, 2.0 Hz, 1H), 1.79 (ddd, J = 12.2, 10.3, 6.8 Hz, 1H). 

13
C NMR (100 MHz, C6D6) δ = 205.8, 173.3, 154.8, 146.0, 138.8, 137.5, 135.2, 130.4, 128.7, 126.6, 

126.3, 125.5, 119.8, 110.5, 74.7, 70.9, 56.6, 55.4, 50.8, 41.5, 38.0. 

HRMS (ESI) for C24H24NO3
+
 [M+H]

+
: calcd.: 374,1751, found: 374,1747. 

IR (ATR):  ̃ = 3790 (w), 3061 (w) 2934 (w), 2841 (w), 2360 (w), 1682 (s), 1610 (s), 1576 m, 1475 

(m), 1440 (m), 1375 (w), 1336 (w), 1264 (s) 1260 (w), 1176 (w), 1096 (w),  1061(w), 986 (w), 892 

(w), 858 (w) 764 (w) 741 (m). 
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(3aR,7S,11bS)-11-(benzyloxy)-7-((tert-butyldimethylsilyl)oxy)-10-methoxy-3-

methyl-1,2,3,3a,6,7-hexahydro-4H-benzo[6,7]indeno[1,7a-b]pyrrol-4-one (132) 

 

A solution of ketone 120 (213 mg, 420 µmol, 1.00 eq., dried 3 times by azeotropic removal of water 

with benzene) in THF (8.5 mL) was cooled to –78 °C. LDA (0.2 M in THF, 139 µmol, 694 µL, 1.5 

eq., prepared 30 minutes prior by addition of n-BuLi (2.3 M in hexanes) to DIPEA in THF at 0 °C) 

was added and the resulting yellow solution was stirred for 30 min at the same temperature. Then, a 

freshly prepared solution of N-tert-butylbenzenesulfinimidoyl chloride (stored in a freezer and handled 

inside an Ar-filled glovebox) in THF (0.25 M, 139 µmol, 557 µL, 1.50 eq.) was added dropwise and 

stirring was continued for 1 h at –78 °C. A solution of AcOH in THF (0.1 M, 926 µmol, 926 µL, 10.00 

eq.) was injected into the cold reaction mixture. After 10 minutes, the reaction was placed in an ice-

water bath and saturated aqueous NaHCO3 (4 mL) was slowly added dropwise (bubbling). After 10 

minutes, the reaction was diluted with EtOAc (20 mL) and the aqueous phase was extracted with 

EtOAc (3 x 20 mL). The combined organic layers were washed with brine (50 mL), dried over 

MgSO4, filtered and evaporated under reduced pressure. The crude product was purified by flash 

column chromatography (Et3N-deactivated SiO2, hexanes/EtOAc = 95/5 to 6/4) and furnished the title 

compound 132 as light yellow oil (38.0 mg, 75.1 µmol, 81%).  

Rf = 0.43 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

1
H NMR (400 MHz, C6D6) δ = 7.61 – 7.50 (m, 2H), 7.25 (t, J = 7.5 Hz, 2H), 7.19 – 7.05 (m, 3H), 6.92 

(d, J = 8.4 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H), 6.25 – 5.94 (m, 1H), 5.10 (d, J = 11.0 Hz, 1H), 4.78 (t, J 

= 3.7 Hz, 1H), 4.72 (d, J = 11.0 Hz, 1H), 3.69 (s, 1H), 3.26 (s, 3H), 2.82 (ddd, J = 9.0, 7.0, 2.3 Hz, 

1H), 2.60 (s, 3H), 2.58 – 2.36 (m, 3H), 2.22 (ddd, J = 12.0, 9.8, 7.0 Hz, 1H), 1.66 (ddd, J = 12.0, 5.7, 

2.3 Hz, 1H), 0.90 (s, 9H), 0.08 (s, 3H), 0.02 (s, 3H). 

13
C NMR (100 MHz, C6D6) δ = 203.7, 175.7, 153.5, 146.8, 139.1, 136.1, 131.6, 131.1, 127.6, 124.8, 

111.7, 74.1, 73.9, 70.8, 57.1, 55.4, 53.6, 38.4, 37.8, 36.3, 26.0, 18.3, –4.1, –4.1. 

HRMS (ESI) for C30H40NO4Si
+
 [M+H]

+
: calcd.: 506.2721, found: 506.2719. 

IR (ATR):  ̃ = 3854 (w), 3746 (w), 3676 (w), 2955 (m), 2929 (m), 2856 (m), 2360 (w), 1734 (w), 

1695 (s), 1635 (m), 1599 (w), 1481 (m), 1300 (m), 1275 (m), 1154 (m), 1095 (m), 1047 (m), 834 (s). 

    
   = +23.0 (c = 0.17, CH2Cl2).  
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Sinoracutine - (3aR,11bS)-11-hydroxy-10-methoxy-3-methyl-1,2,3,3a-tetrahydro-

4H-benzo[6,7]indeno[1,7a-b]pyrrol-4-one (40) 

 

A 25 mL-round bottom flask was charged with 132 (122 mg, 241 µmol, 1.00 eq.), 

pentamethylbenzene (2.41 mmol, 358 mg, 10 eq.) and placed in an ice-water bath. Then, TFA 

(181 mmol, 13.4 mL, 750 eq.) was added dropwise under heavy stirring (800 rpm), resulting in a dark 

orange solution. The flask was sealed with a polypropylene cap, lifted from the ice bath, and placed in 

a 40 °C oil bath. After 14 h, excess TFA was removed by rotary evaporation (100 mbar, 40 °C). The 

dark brown residue was dissolved in DCM (50 mL) and water (25 mL) was added. Aqueous NH3 

(10 M, 5 mL) was added dropwise and the biphasic mixture was stirred for 5 minutes. The bright 

yellow organic layer was separated and the aqueous layer was extracted with CH2Cl2 (4 x 25 mL). The 

combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo. Purification of the resulting orange oil by flash column chromatography (SiO2, hexanes/CH2Cl2 

= 1/1 to CH2Cl2 to CH2Cl2/MeOH = 95/5) afforded sinoracutine (40) as an orange solid that was 

contaminated with slight impurities. Based on NMR integration against tetrachloroethane as internal 

standard, the yield for this step amounts to 80% (0.196 µmol, 54 mg). 

Note: Sinoracutine is not stable to silica as evidenced by two-dimensional TLC analysis. Purification 

on Et3N–deactivated silica or Davisil (eluents used: hexanes/CHCl3, hexanes/acetone, hexanes/EtOAc, 

CH2Cl2/MeOH) did not improve the purity of the product, while chromatography on basic Alumina 

(Macherey Nagel, 50–200 μm, Brockmann I grade) resulted in complete degradation. 

Spectroscopically pure sinoracutine was isolated by purification of the abovementioned sample by 

semipreparative HPLC (Dynamax Microsorb 60-8 C18, 250 x 21.4 mm; H2O/Acetonitrile containing 

0.1% formic acid; gradient: 10% to 90% acetonitrile over 30 minutes; flow rate 20 mL/min; detection 

at 254 nm; tR = 12.2 min). The product-containing fractions were combined and freeze-dried on a 

Christ Alpha 2-4 LDplus lyophilizer to afford sinoracutine as a yellow powder (91% recovery) 

Note: Attempted extraction of the purified product (dissolved in H2O/MeCN + 0.1% FA) with 

aqueous NH3 and CH2Cl2 resulted in impure product. In another attempt, removal of the purified 

product dissolved in the HPLC solvent mixture on a rotary evaporator (10 mbar, 35 °C) resulted in 

partial decomposition. 

When this protocol was applied to 132 on a 59 µmol scale, racemic sinoracutine (40) could be 

obtained in 72% isolated yield after HPLC purification (42 µmol, 12 mg).  
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In the racemic series, orange crystals suitable for X-ray analysis were grown from a CH2Cl2 solution 

by slow vapor diffusion of pentane at room temperature. 

Rf = 0.28 (hexanes/EtOAc = 1/1, visibly yellow, UV 254 nm, UV 366 nm, CAM) 

1
H NMR (800 MHz, CDCl3) δ = 6.78 (d, J = 9.4 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 6.74 (d, J = 8.2 

Hz, 1H), 6.54 (d, J = 9.4 Hz, 1H), 5.84 (s, 1H), 3.91 (s, 3H), 3.77 (s, 1H), 3.17 (app tt, J = 9.7, 8.5, 1.0 

Hz), 2.92 (s, 3H), 2.86 – 2.78 (m, 1H), 2.37 (ddd, J = 13.6, 8.0, 1.3 Hz, 1H), 2.10 (ddd, J = 13.6, 10.8, 

8.5 Hz, 1H). 

13
C NMR (200 MHz, CDCl3) δ = 206.77, 175.06, 151.22, 145.74, 138.31, 127.75, 124.25, 123.40, 

121.36, 118.14, 109.54, 72.48, 56.01, 53.85, 51.60, 41.69, 36.49. 

HRMS (ESI) for C17H18NO3
+
 [M+H]

+
: calcd.: 284.1281, found: 284.1284. 

IR (ATR):  ̃ = 3554 (br, w), 3057 (w), 2944 (w), 2834 (w), 2582 (br, w) 1680 (s), 1600 (s), 1569 (s), 

1547 (s), 1503 (w), 1453 (s), 1437 (s), 1401 (s), 1339 (s), 1293 (w), 1254 (s), 1228 (m), 1202 (m), 

1158 (m), 1099 (m), 1086 (m), 1058 (m), 986 (w), 948 (w), 886 (w), 840 (m), 810 (w), 759 (w), 751 

(w), 675 (w). 

    
   = −1067.3 (c = 0.35, CHCl3). 
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Enantiomeric excess of sinoracutine was determined by HPLC analysis on chiral stationary phase 

(DAICEL CHIALPAK ID, 4.6 x 250 mm), 25 °C, 1 mL/min, 40% i-PrOH in heptane 

+ 0.1% diethylamine, detection at 269 nm) to be 98.9% by comparison with a racemic sample and 

coinjection; tR major enantiomer = 15.848 min, tR minor enantiomer = 24.214 min. 

- Racemic sample of sinoracutine: 

 

- Enantioenriched sample of sinoracutine: 

 

- Coinjection: 
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4.3. Experimental Study on the Racemization of (–)-Sinoracutine 

A sample of (–)-sinoracutine, synthesized and purified according to the procedure reported on page 97, 

was dissolved in 60% heptane, 20% i-PrOH  and 20% MeOH at a concentration of 1.2 mg/ml in a 

borosilicate glass vial. Aliquots were withdrawn and directly injected into the HPLC instrument. 

After three days of storage at room temperature without precautions to exclude air or ambient light, the 

enantiomeric excess was determined to be 98.9%. After 67 days of storage at room temperature, the 

same sample was found to have an enantiomeric excess of 95.7%.  

- After room temperature storage in solution for 67 days: 

 

To accelerate the racemization, the same sample was then placed in an aluminum heating block 

thermostated to 60 °C. After the stated timepoints (see table below), the vial was cooled to room 

temperature, an aliquot was injected into the HPLC instrument, and heating was continued until the 

next withdrawal.  

Time (h) ee (%) 

0 95.7 

16 91.2 

30 51.7 

46 35.7 

60 20.2 

84 11.2 

100 6.2 

124 3.2 

 

Note: Retention times vary slightly due to the high volatility of diethylamine (0.1%) used as additive in 

the mobile phase, which was manually added via microsyringe to the i-PrOH/heptane mixture (also 

prepared manually using graduated cylinders).  
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- After room temperature storage for 67 days, followed by heating to 60 °C for 16h: 

 

- After room temperature storage for 67 days, followed by heating to 60 °C for a total of 30h: 

 

- After room temperature storage for 67 days, followed by heating to 60 °C for a total of 46h: 
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After room temperature storage for 67 days, followed by heating to 60 °C for a total of 60h: 

 

- After room temperature storage for 67 days, followed by heating to 60 °C for a total of 84h: 

 

- After room temperature storage for 67 days, followed by heating to 60 °C for a total of 100h: 
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- After room temperature storage for 67 days, followed by heating to 60 °C for a total of 124h: 

 

By comparison, an aliquot of the sample that was withdrawn prior to heating at 60 °C and stored at 

room temperature while the bulk of the sample underwent thermal treatment, still showed an 

enantiomeric excess of 95.7%. 

- After room temperature storage for 73 days: 
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Meanwhile, a sample originating from the same batch of synthetic (–)-sinoracutine used for the 

experiments at ambient temperature and at 60°C was stored in a freezer (–25 °C) for 67 days as a 

solution in CH2Cl2. After evaporation of the solvent and dissolution in 60% heptane, 20% i-PrOH and 

20% MeOH at a concentration 1.9 mg/ml. The enantiomeric excess of this sample was determined to 

be 98.5%. 

- After storage in solution for 67 days at –25 °C 
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4.4. Comparison of Natural and Synthetic Sinoracutine 

 

 

 1H NMR (δ in ppm, multiplicity, J in Hz)  13C NMR (δ in ppm) 

pos. Natural[58] 

(500 MHz) 

Natural[59] 

(400 MHz) 

Synthetic 

(800 MHz) 

 Natural[58] 

(125 MHz) 

Natural[59] 

(100 MHz) 

Synthetic 

(200 MHz) 

1 6.75 (d, 8.2) 6.75 (d, 8.2) 6.75 (d, 8.2) 
 

121.24 121.2 121.36 

2 6.73 (d, 8.2) 6.73 (d. 8.2) 6.74 (d, 8.2) 
 

109.42 109.3 109.54 

3 - - - 
 

151.07 151.0 151.22 

4 - - - 
 

145.58 145.5 145.74 

5 3.77 (s) 3.77 (s) 3.77 (s) 
 

72.31 72.3 72.48 

7 - - - 
 

206.56 206.6 206.77 

8 5.84 (s) 5.84 (s) 5.84 (s) 
 

123.27 123.2 123.4 

9 6.54 (d, 9.4) 6.55 (d, 9.4) 6.54 (d, 9.4) 
 

118.00 117.9 118.14 

10 6.78 (d, 9.4) 6.78 (d, 9.4) 6.78 (d, 9.4) 
 

138.11 138.1 138.31 

11 - - - 
 

124.11 124.0 124.25 

12 - - - 
 

127.59 127.5 127.75 

13 - - - 
 

53.71 53.6 53.85 

14 - - - 
 

174.94 174.9 175.06 

15 

 

2.73 (m)  

2.10 (m) 

2.78 (m)  

2.14 (m) 

2.37 (ddd,  13.6, 8.0, 1.3)  

2.10 (ddd,  13.6, 10.8, 8.5)  

41.52 

 

41.5 

 

41.69 

 

16 

 

3.18 (dd, 9.7, 8.7)  

not tabulated 

3.18 (m)  

not tabulated 

3.17 (app tt, 9.7. 8.5. 1.0)  

2.86 – 2.78 (m)  

51.46 

 

51.4 

 

51.60 

 

OCH3 3.91 (s) 3.91 (s) 3.91 (s)  55.87 55.8 56.01 

NCH3 2.92 (s) 2.92 (s) 2.92 (s)  36.35 36.3 36.49 

 

Notes: NMR spectra were recorded in CDCl3.  

 

The slight downfield drift in the δ-values of the 13C spectrum is attributed to different standards in spectral referencing (SiMe4 

in the isolation papers and CHCl3 in this work). 

 

The atom numbering follows the isolation paper in which the canonical numbering for morphinan and hasubanan structures is 

used. Since C6 is believed to be lost during biosynthesis, this atom is not reported in the table. 
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4.5. X-Ray Crystallographic Data  

Data for Alkyne 90. 

 

Figure 10. ORTEP plot of the molecular structure of alkyne 90. 

CCDC 1499487 contains the supplementary crystallographic data for 90. These data can  be  obtained  

free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via 

www.ccdc.cam.ac.uk/data_request/cif 

net formula C20H22O3Si 

Mr/g mol−1 338.46 

crystal size/mm 0.100 × 0.070 × 0.020 

T/K 100.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system monoclinic 

space group 'P 1 21/c 1' 

a/Å 11.1809(4) 

b/Å 12.2862(5) 

c/Å 13.8451(6) 

α/° 90 

β/° 107.4580(10) 

γ/° 90 

V/Å3 1814.30(13) 

Z 4 

calc. density/g cm−3 1.239 

μ/mm−1 0.144 

absorption correction Multi-Scan 

transmission factor range 0.9414–0.9705 

refls. measured 34131 

Rint 0.0482 

mean σ(I)/I 0.0258 

θ range 3.085–26.414 

observed refls. 3252 

x. y (weighting scheme) 0.0320. 1.1010 

hydrogen refinement constr 

refls in refinement 3705 
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parameters 221 

restraints 0 

R(Fobs) 0.0328 

Rw(F2) 0.0834 

S 1.052 

shift/errormax 0.001 

max electron density/e Å−3 0.279 

min electron density/e Å−3 −0.267 

 

Data for Ketone 94. 

 

Figure 11. ORTEP plot of the molecular structure of ketone 94. 

CCDC 1499488 contains the supplementary crystallographic data for 94. These data can  be  obtained  

free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via 

www.ccdc.cam.ac.uk/data_request/cif 

net formula C27H34O4Si 

Mr/g mol−1 450.63 

crystal size/mm 0.100 × 0.080 × 0.040 

T/K 153.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system orthorhombic 

space group 'P 21 21 21' 

a/Å 12.5438(4) 

b/Å 14.0646(4) 

c/Å 42.9806(11) 

α/° 90 

β/° 90 

γ/° 90 

V/Å3 7582.8(4) 

Z 12 

calc. density/g cm−3 1.184 

μ/mm−1 0.122 

absorption correction Multi-Scan 

transmission factor range 0.8767–0.9705 

refls. measured 55451 

Rint 0.0385 

mean σ(I)/I 0.0419 
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θ range 3.191–27.482 

observed refls. 14643 

x. y (weighting scheme) 0.0512. 2.6535 

hydrogen refinement constr 

Flack parameter 0.03(3) 

refls in refinement 17251 

parameters 913 

restraints 0 

R(Fobs) 0.0492 

Rw(F2) 0.1196 

S 1.044 

shift/errormax 0.001 

max electron density/e Å−3 0.503 

min electron density/e Å−3 −0.335 

  

Partially disordered. Split models applied. Underoccupied regions refined isotropically. The 

asymmetric unit contains three formula units. The figure shows all formula units in their most 

probable orientation, as well as in a further figure the only non-disordered molecule. 

Data for Alcohol 106. 

 

Figure 12. ORTEP plot of the molecular structure of alcohol 106. 

CCDC 1499486 contains the supplementary crystallographic data for 106. These data can  be  

obtained  free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via 

www.ccdc.cam.ac.uk/data_request/cif 

net formula C27H36O4Si 

Mr/g mol−1 452.65 

crystal size/mm 0.100 × 0.080 × 0.060 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system triclinic 

space group 'P -1' 

a/Å 6.3389(3) 

b/Å 8.0829(4) 

c/Å 26.1368(11) 

α/° 81.4534(12) 
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β/° 88.7849(12) 

γ/° 67.2793(11) 

V/Å3 1220.56(10) 

Z 2 

calc. density/g cm−3 1.232 

μ/mm−1 0.127 

absorption correction multi-scan 

transmission factor range 0.7996–0.9585 

refls. measured 11997 

Rint 0.0285 

mean σ(I)/I 0.0399 

θ range 2.366–26.44 

observed refls. 4111 

x. y (weighting scheme) 0.0314. 0.8752 

hydrogen refinement mixed 

refls in refinement 4865 

parameters 299 

restraints 0 

R(Fobs) 0.0456 

Rw(F2) 0.1036 

S 1.096 

shift/errormax 0.001 

max electron density/e Å−3 0.342 

min electron density/e Å−3 −0.291 

  

C-H: constr. O-H: refall. 

Data for Tetracycle 128. 

 

Figure 13. ORTEP plot of the molecular structure of tetracycle 128. 

CCDC 1499484 contains the supplementary crystallographic data for 128. These data can  be  

obtained  free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via 

www.ccdc.cam.ac.uk/data_request/cif 

net formula C24H25NO3 

Mr/g mol−1 375.45 

crystal size/mm 0.060 × 0.050 × 0.040 

T/K 100.(2) 

radiation MoKα 
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diffractometer 'Bruker D8 Venture TXS' 

crystal system triclinic 

space group 'P -1' 

a/Å 9.7230(4) 

b/Å 9.8365(4) 

c/Å 10.4360(4) 

α/° 80.7375(14) 

β/° 79.5349(15) 

γ/° 74.6194(14) 

V/Å3 939.63(7) 

Z 2 

calc. density/g cm−3 1.327 

μ/mm−1 0.087 

absorption correction Multi-Scan 

transmission factor range 0.8879–0.9590 

refls. measured 10343 

Rint 0.0411 

mean σ(I)/I 0.0531 

θ range 3.179–27.482 

observed refls. 3318 

x. y (weighting scheme) 0.0482. 0.4974 

hydrogen refinement constr 

refls in refinement 4298 

parameters 255 

restraints 0 

R(Fobs) 0.0491 

Rw(F2) 0.1275 

S 1.033 

shift/errormax 0.001 

max electron density/e Å−3 0.340 

min electron density/e Å−3 −0.255 

Data for Racemic Sinoracutine. 
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Figure 14. ORTEP plot of the molecular structure of racemic sinoracutine (40). 

CCDC 1499485 contains the supplementary crystallographic data for racemic sinoracutine (40). These 

data can  be  obtained  free  of  charge  from  The  Cambridge  Crystallographic  Data  Centre  via 

www.ccdc.cam.ac.uk/data_request/cif 

net formula C17H17NO3 

Mr/g mol−1 283.31 

crystal size/mm 0.100 × 0.070 × 0.010 

T/K 100.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system orthorhombic 

space group 'P b c a' 

a/Å 14.8795(5) 

b/Å 10.3203(3) 

c/Å 17.7065(6) 

α/° 90 

β/° 90 

γ/° 90 

V/Å3 2719.03(15) 

Z 8 

calc. density/g cm−3 1.384 

μ/mm−1 0.095 

absorption correction Multi-Scan 

transmission factor range 0.8819–0.9593 

refls. measured 29303 

Rint 0.0827 

mean σ(I)/I 0.0460 

θ range 3.327–28.280 

observed refls. 2556 

x. y (weighting scheme) 0.0364. 2.0197 

hydrogen refinement C-H constr. O-H refall 

refls in refinement 3364 

parameters 196 

restraints 0 

R(Fobs) 0.0537 

Rw(F2) 0.1194 

S 1.080 

shift/errormax 0.001 

max electron density/e Å−3 0.255 

min electron density/e Å−3 −0.236 
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4.6. NMR Spectra 
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   Introduction 1.

1.1. Peptide-derived Natural Products of Nonribosomal Origin 

The serendipitous discovery of penicillin and its antibiotic activity in 1928 represented one of 

the greatest medical advances in human history.
[194]

 This small molecule, produced by the fungal strain 

Penicillium notatum, not only pioneered the widespread use of antibiotics to universally improve 

healthcare from surgical outcomes to epidemic control, but also fostered several technological 

advancements in microbiology, chemical engineering, and synthetic organic chemistry. It also 

promoted the exploration of metabolites originating from microorganisms as a new source of 

pharmaceutical agents, which led to the discovery of numerous compounds with antimicrobial, 

immunosuppressive, antiviral, and antitumor activities. Interestingly, a large fraction of their structures 

can be traced back to a simple peptidic chain.
[195]

  

Although these natural products are based on amino acids, from a structural standpoint their 

makeup goes far beyond the 20 standard amino acids that are genetically encoded in eukaryotic cells 

and used by the ribosome to synthesize proteins.
[196]

 Penicillin G, for example, stems from a tripeptide 

containing two proteinogenic amino acids, cysteine and valine. The third building block, however, is 

the nonproteinogenic L-α-aminoadipic acid. Additionally, valine is present in its unnatural 

D-configuration. Early on, the biosynthetic origin of penicillin was proposed to be completely 

independent from the ribosome. In fact, large enzyme complexes, referred to as nonribosomal peptide 

synthetases (NRPS), have been identified as the biosynthetic machinery of penicillin as well as the 

large portion of peptide-derived natural product of fungal origin.
[197]

 They rely on a thiotemplation 

mechanism to produce polypeptide chains from single α-amino acids in an assembly-line process, 

similar to polyketide synthetases. As seen in Scheme 41, such an enzyme generates the precursor for 

penicillin termed ACV-tripeptide.
[198]

 Other than effecting the union of the three amino acids, this 

enzyme also subjects the Val-residue to epimerization. After release of ACV (150) from the NPRS, 

so-called tailoring enzymes process the linear peptide: 150 undergoes oxidative cyclization to 

thiazolidine containing 151 mediated by isopenicillin N synthase, and an acyltransferase enzyme then 

exchanges the adipic acid side-chain with a phenacetyl moiety to generate penicillin G (152), the 

archetypical penicillin that was discovered first.  
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Scheme 41. Biosynthesis of penicillin G. 

In general, the incorporation of several non-natural amino acids in the NRPS assembly line is 

common. Cyclization, dehydration, racemization and epimerization are also frequently encountered. 

Moreover, the NPRS-derived products are often macrocyclic, because along with hydrolysis, 

intramolecular cyclization is a standard release mechanism for the peptide chain from the thiol anchor 

on the NRPS.
[196]

 Ulterior processing by a variety of enzymes (e.g. methyltransferases, oxidases, 

reductases, cyclases, dehydrogenases, halogenases, acyltransferases, sulfotransferases, 

glycosyltransferases) that are either embedded in the NPRS multidomain or stand alone as tailoring 

enzymes makes the possibilities of diversification virtually limitless.
[199]

  

Figure 15 shows a small selection of natural products that derive from nonribosomal peptide 

synthetases.
[200]

 Besides penicillin, the most notorious nonribosomal peptide is vancomycin (153, from 

the bacterium Amycolatopsis orientalis), which is used as a last resort to fight antibiotic-resistant 

bacterial strains. It features five non-natural amino acids produced either by halogenation or 

hydroxylation.
[201–203]

 Additionally, oxidatively generated C-C and C-O biaryl rings and glycosylation 

patterns heavily modify the structure of this heptapeptide. The potent antimitotic agent diazonamide A 

(154, from the ascidian Diazona chinensis) can originally be traced back to a TyrValTrpTrp 

tetrapeptide, but extensive oxidative crosslinking, halogenation, and oxidation/cyclodehydration 

reactions generate a highly complex structure which could be verified only by total synthesis.
[204–206]

 

Molecules incorporating both polyketide and peptide building blocks are also associated with NRPS 

enzymatic machineries, such as bleomycin (155, from the bacterium Streptomyces verticillus), which 

is used to treat testicular, ovarian, and cervical cancer.
[207,208]

 Additionally, structures consisting of as 

few as two amino acids are also encountered. Often, they are classified as alkaloids. As such, 

azonazine (156, from Aspergillus insulicola) features a highly strained 10-membered ring resembling 
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diazonamide A and is derived from tyrosine and tryptophan.
[209,210]

 Mycocyclosin (157, from 

Mycobacterium tubercolosis) is derived from two molecules of tyrosine, and features an o,o-phenolic 

linkage between the aromatic rings to assemble a cyclophane-like 12-membered ring.
[211]

 Apart from 

oxidative transformations, which are ubiquitous in NRPS-derived products, reductive transformations 

are also sometimes encountered. It is the case for the antibiotic piperazinomicin (158, from 

Streptoverticillium neoenacticusi), also derived from two molecules of tyrosine.
[212–215]

 It features an 

oxidative phenolic C–O linkage (similar to vancomycin), but displays a piperazine ring resulting from 

reduction of a diketopiperazine moiety. In the following sections, we present our studies towards the 

related alkaloids herquline A and B, which are also biosynthetically derived from two molecules of 

tyrosine but have undergone extensive reductive metabolic processing. 

 

Figure 15. Natural products derived from nonribosomal peptide synthetases. 
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Herqulines A & B 

1.1.1. Isolation, Structure and Biosynthesis 

Herquline A (160) was isolated in 1979 from the culture broth of Penicillium herquei (strain 

FG 372).
[216]

 The isolation team, led by Prof. Satoshi Omura at the Kitasato Institute of Tokyo, 

classified it as an alkaloid due to positive reaction to Draggendorff’s stain. Judging by its IR, UV-Vis 

and mass spectrum it was structurally not related to other known alkaloid classes known to be 

produced by penicillium strains. This hypothesis was confirmed one year later, when the X-ray 

structure of its hydrobromide derivative was obtained (Figure 16).
[217]

 Despite its low molecular 

weight of 314 g/mol, herquline A features five rings including a central and highly strained nine 

membered ring that is nestled between a southern dodecahydropyrazino[1,2-a]indole core and a 

northern cyclohex-2-ene ring. The six stereocenters, of which four are contiguous, are all tertiary, and 

contribute to the bowl-like shape of this unique natural product. 

Continuing their search for other alkaloids from Penicillium herquei, Omura and co-workers 

discovered a novel compound in the fermentation broth.
[218]

 This molecule, which was termed 

herquline B (161), was isolated as a minor component during the isolation process (5.2 mg in 

comparison to 110 mg of herquline A, which was reisolated in the same campaign). It was found to be 

a structural isomer of herquline A, differing in the cleavage of the pyrrolidine ring and the concomitant 

introduction of a second alkene group, resulting in a twelve-membered ring (Figure 16). 

    

Figure 16. Scanning electron micrograph of Penicillium herquei (left); molecular and X-ray 

structures of herquline A (middle, HBr salt), and molecular structure of herquline B (right). 

Early on, it was postulated that herquline B could serve as a biosynthetic precursor for 

herquline A.
[218]

 As shown in Scheme 42, enolization of the ketone and tautomerization via dienolate 

162 followed by protonation in γ-position could reveal transient α,β-unsaturated ketone 163. 

Intramolecular 5-exo-trig attack by the pendant secondary amine would then give 160. Feeding 

experiments also showed that herquline A is overproduced in tyrosine-enriched medium. A plausible 

biosynthesis would begin with the condensation of two molecules of L-tyrosine to cyclodityrosine 

(164), followed by an oxidative phenolic coupling to yield mycocyclosin (157, Scheme 42). N-

Methylation and two reductive events need to take place to convert mycocyclosin into herquline B. 

While the reduction of a diketopiperazine is possible as seen in piperazinomycin (also produced by a 
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fungus), the dearomatization of the phenolic moiety to yield a cyclohex-2-one by formal addition of an 

H2-equivalent is rare.
[219]

 This reductive dearomatization could be facilitated by the high strain of the 

12-membered macrocycle, which can be relieved by pyramidalization of the sp
2
-carbon atoms in the 

ring after dearomatization and isomerization.
[220]

 

 

Scheme 42. Formation of herquline A from herquline B and biosynthetic proposal. 

In October 2016, while this thesis was in preparation, Tang, Houk and co-workers were able to 

defuse any doubts surrounding the biosynthesis of these alkaloids by isolating the gene cluster 

responsible for the production of the herqulines from Penicillium herquei.
[221]

 As shown in Figure 17, 

this cluster contains six genes that encode one nonribosomal peptide synthetases (hqlA), one 

N-methyltransferase (hqlE), one CYP450-dependent oxidase (hqlC), and three short-chain NADP-

dependent dehydrogenases (hqlB, hqlD, hqlF).  

 

Figure 17. Gene cluster from Penicillium herquei involved in herquline biosynthesis. 

Through a series of heterologous expression experiments in Aspergillus nidulans, it was 

demonstrated that hqlA activates tyrosine as the thioester and mediates the reduction to aminoaldehyde 

165, which spontaneously condenses to 166 (Scheme 43). Then, hqlB reduces the diimine 166 to 

piperazine 167. Without this reductase, pyrazine 168 is formed by spontaneous air oxidation. Under 

the influence of the hqlC, oxidative radical coupling to 169 can be effected. This intermediate, which 

represents a doubly dearomatized phenol tautomer, has been proven to be highly unstable and to 

spontaneously convert to biaryl piperazine 170. However, in the presence of hqlF and NADH, twofold 

reduction of the cyclohexadienone to bis-β,γ-unsaturated ketone 171 is possible to give desmethyl-

herquline B (171). This twofold reduction is very remarkable, and most likely facilitated by the 

macrocyclic framework of 169, which considerably slows down rearomatization to 170. Nevertheless, 

minor quantities of monoreduced product 172, resulting from incomplete reduction of 169, are also 
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observed. Using purified hqlE from E.coli in the presence of SAM, 171 gave herquline B (161) within 

2 hours. The relative stereochemistry of 161 could be assigned on the basis of NOE data. Furthermore, 

in slightly basic (pH = 8) aqueous solution, 161 underwent stereoselective formation of herquline A 

(160). DFT calculations also showed that only if the N-methyl group is in place a conformational 

change occurs and intramolecular aza-Michael type reaction takes place at all (intermediate 173 is not 

observed starting from 171).  

 

Scheme 43. Biosynthesis of herquline B and spontaneous conversion into herquline A. 

1.1.2. Bioactivity 

Herqulines A and B were shown to inhibit blood platelet aggregation, the process by which 

thrombocytes adhere to each other at sites of vascular injury. While blood clot formation is a critical 

requirement for effective hemostasis, unwanted activation of the clotting mechanism can lead to 

arterial thrombosis, with potentially fatal consequences. In fact, atherothrombosis is the leading cause 

of mortality in the industrialized world.
[222]

 It is associated with widespread conditions such as obesity, 

diabetes, smoking, hypertension, and very often medication to manage acute thrombogenesis is 

necessary as a result of stroke, atrial fibrillation, heart attack, or vascular surgery. The physiological 

mechanisms of the formation and lysis of blood clots are complex, and a variety of agents to dissolve 
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already formed clots (thrombolytics) as well as to prevent blood coagulation are available, such as 

antithrombotics, anticoagulants, and antiplatelet drugs (for a small collection, see Scheme 44).
[223]

 The 

different therapeutic options, based on distinct mechanism of action, are often used in combination to 

effectively treat underlying conditions that could be exacerbated by a constitutionally upregulated 

clotting mechanism.
[224]

 For example, patients that have suffered ischemic events are treated with both 

acetylsalicylic acid to inhibit COX-mediated production of proinflammatory prostaglandins, as well as 

the selective compound clopidogrel, which blocks the so-called P2Y12 receptor (whose endogenous 

ligand is ADP) found on the cell membrane of thrombocytes that play a key role in activation of 

platelets.
[225]

 

 

Scheme 44. Drugs with anti-platelet aggregation activity having different mechanisms of action. 

In an essay conducted with rabbit blood, herqulines A and B showed promising activity 

against platelet aggregation induced by both PAF and ADP, which are released at sites of 

inflammation and vascular injury.
[218]

 In both cases, herquline B was demonstrated to be roughly 50 

times more active in the PAF-promoted, and 100 times more active in the ADP-promoted pathways. 

The molecular target and exact mechanism of action have yet to be elucidated, but the non-selective 

blocking of two major aggregation pathways implies that a downstream receptor might be the actual 

target of the herqulines, and might open new therapeutic avenues for thrombosis-related diseases. 

Table 33. Antiplatelet activity of herqulines A and B. 

compound 
 

IC50 (μM) 

PAF aggregation ADP aggregation 

herquline A 240.0 180.0 

herquline B 5.0 1.6 

   

In 2016, during the course of an activity-based screening campaign for new anti-influenza 

compounds derived from fungal cultures, herquline A was found to inhibit replication of the influenza 

A virus (H1N1 subtype, “swine flu”).
[226]

 Between 1918 and 1920, this virus killed more than 

50.000.000 people (between three and five percent of the world population) during a worldwide 

pandemic and reemerged prominently in 2009, causing roughly 17,000 deaths by early 2010.
[227]

 

Although vaccines for common seasonal influenza infections are available, zoonotic variants of the 

virus have been shown to be particularly deadly. In these cases, vaccination cannot be implemented 

quickly enough to prevent a pandemic, and antiviral drugs are the only other treatment option.
[228]

 Due 

to the relatively simple viral architecture, only three mechanisms of action for antiviral drugs are 
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currently exploited in therapy - the inhibition of neuraminidase, the M2 proton channel, and viral 

replication.
[229]

 However, resistance to M2 channel inhibitors such as amantadine (174) and 

rimantidine (175) has widely been reported, limiting treatment options to very few candidates: the 

neuraminidase inhibitors zanamivir (176) and oseltamivir (177), and the replication inhibitor ribavirin 

(178, Table 34).
[230,231]

 In a plaque assay, herquline A was shown to inhibit viral replication of the 

A/PR/8/34 strain (responsible for the 2009 influenza pandemic) with comparable potency to ribavirin 

and amantadine. It exhibited very interesting subtype selectivity, as it tested inactive against several 

other influenza strains to which the drugs shown in Table 34 respond. This suggest that the molecular 

target of 160 might be different from that of the other influenza drugs, and holds promise for 

developing new lead compounds against influenza pandemics. 

Table 34. Known antiinfluenza drugs and selected activities against influenza subtypes. 

 
     

 
Strain Subtype 

IC50 (μM)  

 herquline A amantadine  zanamivir ribavirin  

 A/PR/8/34 H1N1 10 60 0.0002 13  

 A/WSN/33 H1N1 >300 18 0.0010 42  

 A/Guizhou/54/89 H3N2 >300 87 0.0010 60  

 A/Aichi/2/68 H3N2 >300 4 0.0100 38  

 B/Ibaraki/2/85 B >300 100 0.0020 69  

        

 

1.2. Previous Synthetic Efforts  

Several synthetic approaches towards the total synthesis of herqulines have been reported in the 

past 20 years, a testimony to the active pursuit of a target that has yet to surrender to total synthesis 37 

years after its original isolation.  

In 1997, Kim reported an approach towards herquline A relying on an epoxide opening reaction 

of intermediate 179 to form the 9-membered ring of herquline A, followed by elimination of the 

resulting secondary alcohol to introduce the β,γ-unsaturated ketone moiety (Scheme 45).
[232]

 Epoxide 

179 could be accessed through coupling of an N-methyl tyrosine derivative with a protected version of 

octahydroindole 180, which is also derived from tyrosine. 



Part II: Introduction 

162 

 

Scheme 45. Retrosynthesis of herquline A by Kim and co-workers. 

Bicycle 182 was formed in low yield via oxidative dearomatization of tyrosine to 181 

followed by base-mediated transesterification and aza-Michael addition (Scheme 46).
[233]

 Reductive 

manipulations and alcohol protection furnished bicycle 183 which was submitted to peptide coupling 

with N- and O-methylated tyrosine derivative 184. Unfortunately, the desired product 185 was not 

observed and no further progress on this route was reported. 

 

Scheme 46. Synthesis of octahydroindole 183 by Kim and attempted peptide coupling. 

In 2003, a poster abstract from the “Conference of the Chemical Society of Japan” outlined a 

synthetic approach by Kawai and co-workers following the biosynthetic origin starting from two 

tyrosine molecules. It relied on an intramolecular Ni-catalyzed Ullman-type coupling to form the 

12-membered ring (Scheme 47).  

 

Scheme 47. Retrosyntehsis of herqulines A and B by Kawai and co-workers. 

Iodotyrosine 186 was chosen as the starting material and was converted to cyclic 

diketopiperazine dimer 187. Subsequent intramolecular aryl coupling of 187 using transition metals 
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did not proceed (Scheme 48). However, they converted 187 into imino ether 188. Reductive 

intramolecular homocoupling of the aromatic iodides gave the desired target compound 189 in good 

yield.
[234]

 Although this product features the required atom connectivity (with exception of an N-

methyl group) and is only two reductive manipulations away from herquline B, completion of the 

synthesis was not possible. 

 

Scheme 48. Synthesis and macrocyclization via bislactim ether 188. 

In 2004, Hart described several strategies towards the herqulines based on the reduction of 

macrocyclic diketopiperazine 157, identical to the structure of mycocyclosin (see Figure 15).
[235]

 This 

key intermediate was planned to be formed either by direct phenolic coupling of cyclic tyrosine dimer 

164 or linear tyrosine dimer 190 followed by formation of the six-membered ring (Scheme 49). 

 

Scheme 49. Retrosynthetic plan by Hart and Johnson. 

As shown in Scheme 50, several direct oxidative intramolecular phenolic coupling reactions of 

diketopiperazine 164 were not successful. Similarly, the cyclization of protected dityrosine 190 to give 

12-membered ring 191 was not possible under conditions reported by Evans and co-workers.
[236]

 A 

nickel-mediated intramolecular coupling of iodinated dityrosine 192 was also not feasible. 
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Interestingly, similar reaction conditions did furnish, albeit in low yield, biaryl-linked tyrosine dimer 

194 starting from protected iodotyrosine 195. Clearly, conformational bias prevented the cyclizations 

from proceeding.  Furthermore, several model studies on 4-alkyl substituted phenols were also 

undertaken, but none of the strategies and methods could successfully be rerouted towards the target 

molecules (not depicted). 

 

Scheme 50. Attempted direct oxidative phenolic coupling (top),  

and transition-metal catalyzed homocoupling of iodoarenes (bottom). 

In 2012, Philipp Stawski reported an approach towards the synthesis of herqulines A and B 

using a two-directional strategy starting from a low-oxidation state building block derived from 

glutamic acid (Scheme 51).
[237]

 Herquline B was the primary target, to be accessed via isomerization of 

the C2-symmetical enone 196. Macrocyclization was envisaged to be achieved by homocoupling of α-

iodo cyclohexenone 197.  

 

Scheme 51. Retrosynthetic analysis via α,β-unsaturated ketone by Stawski and Trauner. 

Dimerization of pyroglutamic acid to the 2,5-diketopiperazine followed by hydrolysis and 

esterification gave 200 (Scheme 52). Dialdehyde 203 was obtained after redox-adjustments and N-

protection. Twofold 1,4-addition of methyl vinyl ketone, intramolecular aldol condensation and 

iodination gave rise to macrocyclization precursor 197. Separation of the three possible isomers (197a 

to c) by preparative HPLC set the stage for the key metal-mediated homocoupling reactions. Although 

several conditions for the formation of the 12-membered ring were investigated, the desired product 
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196 could not be isolated, and only dimers such as 208 or 209 were formed as only identifiable 

products. 

 

Scheme 52. Intramolecular cross-coupling approach by Stawski and Trauner. 

Through a private communication with Prof. Nigel Simpkins, we were able to access a PhD 

thesis by his student He Yang, who completed his doctorate in 2015.
[238]

 The retrosynthetic plan relied 

on the conversion of herquline B into herquline A (Scheme 53). Herquline B would be accessed from 

reductive dearomatization of N-methylated biaryl 211. 

 

Scheme 53. Retrosynthesis by Yang and Simpkins. 

Several intermediates with different protecting group patterns were prepared and subjected to 

attempted ring closure under a variety of conditions (Scheme 54). First, the phenolic coupling of 

cyclodityrosine-derived piperazines was investigated without success. Then, an oxidative 

dearomatization strategy of the same intermediate (212) was pursued, which delivered the tricyclic 

6,5,6-motif (214) found in herquline A (160). Unfortunately, ring closure to form the nine-membered 

ring was not successful.  
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Scheme 54. Attempted oxidative transformation of tyrosine-derived piperazine. 

Additionally, metal-mediated cyclization reactions were attempted on functionalized 

congeners of 212 (see Scheme 55). While the desired ring was formed on several occasions, the 

prohibitively low yield (4 to 6%) of the cyclization products 217 and 218 prevented further progress. 

Interestingly, on the related diketopiperazine substrate 219, the cyclization proceeded in good yield 

(220). This clearly indicates that the sp
2
-hybridized atoms in the boat-shaped diketopiperazine favor 

the ring closure by enforcing close proximity between the aromatic rings. On piperazine substrates 215 

and 216, which reside in a chair conformation, the cyclization is highly disfavored and very low yields 

of 217 or 218 were obtained. Nevertheless, after preparation of an appropriately protected macrocycle 

220, both the reduction of the aromatic ring with Birch conditions, as well as the reduction of the 

diketopiperazine to the piperazine were not successful, thereby stopping the advancement of the 

synthesis a mere three steps before its completion.  

An additional strategy based on an oxidative enolate coupling is also featured. A very similar 

approach was investigated independently in our laboratories. The discussion of this last approach, 

together with our results, can be found in Chapters 2.1.2 and 2.1.3. 
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Scheme 55. Attempted intramolecular coupling of iodoarenes for 12-membered ring formation. 

1.3. Project Aims 

The polycyclic strained architectures of herqulines A and B are unique among natural products.  

Despite their low molecular weight, they have never been synthesized. Several synthetic approaches 

were unsuccessful due to the difficulties in accessing either the 9-membered macrocycle of herquline 

A, or the 12-membered ring of herquline B. Moreover, the nonconjugated cyclohexenone moiety 

represents a very rarely encountered motif in natural products. The idiosyncratic relationship between 

the highly reduced piperazine ring and the northern cyclohexenone rings add to the synthetic 

challenge. Together with an interesting, but largely unexplored bioactivity, they are worthy targets for 

total synthesis.  
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 Results and Discussion 2.

2.1. Retrosynthesis: Early Introduction of the Piperazine Ring 

Following the biosynthetic considerations outlined in Chapter 1.2.1, herquline A can be 

accessed from herquline B. Clearly, the β,γ-unsaturated ketone (featured in herquline B) and the 

corresponding α,β-unsaturated ketone (163, Scheme 43), the necessary intermediate in the 

biosynthesis of herquline A, are comparable from an energetic point of view, as isomerization occurs 

under mildly basic conditions at ambient temperature.
[221]

 Within the macrocyclic framework provided 

by the 12-membered ring, the stability gained through conjugation is similar to the presence of 

trisubstituted, albeit nonconjugated olefin.
[239]

 

Previous approaches by the Trauner group investigated the intramolecular homocoupling of 

α,β-unsaturated ketones (see Scheme 52), which would then be subjected to isomerization. This 

strategy was not successful, and instead we decided to directly target the β,γ-unsaturated ketone. To 

exploit the C2-symmetry of the product, a two-directional approach can be pursued, where the key 

disconnection is the central C–C bond between the 1,4-dicarbonyl moiety of the two cyclohexenones. 

This substitution pattern requires the application of an “umpolung” strategy such as an oxidative 

enolate coupling reaction, in which a ketone enolate is oxidized by one-electron oxidation and the 

resulting diradical (222, Scheme 56) undergoes dimerization.
[240]

 Regioselective enolate generation on 

the β,γ-unsaturated ketone 207 should be feasible by taking advantage of the higher stability of the 

resulting dienolate 223 through conjugation.
[241]

 

 

Scheme 56. Umpolung strategy for the synthesis of the herqulines via oxidative enolate coupling. 
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The one-electron oxidation and resulting “umpoled” reactivity of enolate anions has been used 

in synthetic chemistry since the 1970’s.
[242]

 Deprotonated esters, amides, carboxylic acids, and 

malonates have been shown to undergo efficient radical coupling to assemble 1,4-dicarbonyl 

compounds in a convergent manner. Based on the same mechanistic fundament, several experimental 

protocols have been developed. For example, ketones, predominantly via their lithium enolates, 

undergo dimerization upon treatment with Fe or Cu salts (Scheme 57).
[243,244]

 Silyl enol ethers have 

also been shown to undergo coupling both in intermolecular fashion as well as intramolecular fashion, 

most notably starting from a silyl-tethered dienol ether.
[245,246]

  

Several applications of the reaction in complex molecule synthesis have been reported to date, 

and three are shown below (Scheme 58). In the first example, the homodimerization of the enolate 

derived from 224 gives symmetrical product 225.
[247]

 If non-symmetrical products need to be 

synthesized, the reaction can be modified by synthesizing silyl dienol ethers such as 226 from the 

corresponding ketones.
[248]

 Intramolecular oxidative coupling gives the desired 1,4-dicarbonyl 227. In 

a third example, the intramolecular coupling with formation of a 6-membered ring leading to bicycle 

229 was effected starting from a ketone and a malonate as reaction partners (228).
[249]

 This result 

especially demonstrates that oxidative coupling is, in principle, possible in intramolecular fashion as 

required for the realization of our synthetic design. 

 

Scheme 57. Representative methods for oxidative enolate coupling. 
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Scheme 58. Recent applications of oxidative ketone coupling in natural product synthesis. 

As shown in Scheme 59, the required nonconjugated ketone 207 could arise from 

isomerization of enone 205, traced back to inexpensive pyroglutamic acid and methyl vinyl ketone. 

This compound was previously synthesized in the group.
[237]

 Alternatively, 207 could be synthesized 

from a protected tyrosine dimer bearing a piperazine ring (230) following partial reduction of the aryl 

rings using a Birch reduction. 

 

Scheme 59. Strategies for the synthesis of β,γ-unsaturated ketone 207. 
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2.1.1. Synthesis of C2-symmetric β,γ-unsaturated Ketone 

2.1.1.1. From L-Pyroglutamic Acid 

L-Pyroglutamic acid was treated with acetic anhydride in pyridine to furnish diketopiperazine 

198, which was hydrolyzed in neat sulfuric acid to yield glutamic diketopiperazine 199.
[250]

 

Esterification under previously optimized conditions furnished the methyl ester 200 which was taken 

on towards reduction.
[251]

 After several attempts at complete reduction using LiAlH4, we were unable 

to isolate the intermediate piperazine-diol (201, Scheme 60).  

  

Scheme 60. Synthesis and attempted reduction of glutamic diketopiperazine 200. 

Quenching the reaction with a minimal amount of water followed by in situ protection was 

possible to afford 202, whose structure could be proven by X-ray crystallographic analysis. This 

procedure was found to be highly irreproducible on larger scale (> 10 mmol) and called for alternative 

reaction conditions (Table 35). In situ generated AlH3 was also ineffective (Entry 6), whereas LiBH4 

(Entry 5) afforded a mixture of products.
[252]

 The use of borane, previously reported by Jung as the 

reagent of choice for reduction of simple diketopiperazines, was investigated next.
[253]

 While the use of 

in situ generated BH3 and its commercially available dimethyl sulfide adduct was not effective 

(Entries 7 and 8), the use of borane-THF complex was instrumental to obtaining a high yield, although 

we observed batch-related variabilities. Excess borane could be quenched with methanolic HCl, which 

allowed for the isolation of piperazine-alcohol 201 as its HCl salt, whose structure could also be 

verified by X-ray crystallographic analysis (see Page 236). Subjection of this compound to Boc-

protection then gave 202 (see Page 237 for X-ray analysis). Swern oxidation delivered dialdehyde 203 

which was reacted with methyl vinyl ketone using aminocatalyst 204.
[254]

 Robinson annulation of the 

so-obtained ketoaldehyde 204 under phase-transfer conditions and high dilution afforded 205 on a 

multigram scale as a mixture of diastereoisomers.
[255,256]

 



Part II: Results and Discussion 

172 

Table 35. Conditions for the reduction and N-Boc protection of diketopiperazine 200. 

 

Entry Reagent Solvent Temp. (°C) Time (h) Quenching method Yield of 202 (%)  

1 LiAlH4 (15.0 eq.) THF 0 to 60 30 Fieser Workupa 37%b 

2 LiAlH4 (15.0 eq.) THF 0 to 60 30 Rochelle’s Salt - 

4 LiAlH4 (15.0 eq.) THF 0 to 60 24 Na2SO4·10H2O - 

5 LiBH4 (10.0 eq.) THF 0 to rt 24 aq. NH4Cl - 

6 AlH3 (20.0 eq.)c THF 0 to 60 24 aq. NH4Cl - 

7 BH3 (16.0 eq.)d THF 0 to 60 14 conc. HCl - 

8 BH3·SMe2 (16.0 eq.) THF 0 to 60 14 conc. HCl - 

9 BH3·THF (16.0 eq.) THF 0 to 60 13 conc. HCl 27%e 

10 BH3·THF (16.0 eq.) THF 0 to 60 13 HCl in MeOH 49%e 

11 BH3·THF (13.0 eq.) THF 0 to 60 17 HCl in MeOH 40%e 

12 BH3·THF (10.0 eq.) THF 0 to 60 17 HCl in MeOH 67%e 

13 BH3·THF (10.0 eq.) THF 0 to 60 11 HCl in MeOH 63%f 

a) Fieser workup: for every 1 g LiAlH4, 1 g H2O, 1 g aq. NaOH (10%), and 3 g H2O were added in sequence;    b) after 

protection using Boc2O (2.2 eq), NaHCO3, H2O/THF, 24 h;    c) generated from LiAlH4 (15.0 eq) and AlCl3 (5.0 eq);               

d) generated from NaBH4 (16.0 eq.) and I2 (8.0 eq.)    e) after protection using Boc2O (2.2 eq), Et3N (4.5 eq), CH2Cl2, 16 h;      
f) after Boc-protection using Boc2O (2.2 eq), NaOH (4.5 eq), 1,4-dioxane, 18 h. 

 

 

Scheme 61. Synthesis of N-protected C2-symmetric α,β-unsaturated cyclohexenone. 

Several strategies to effect the direct alkene isomerization of 205 to the desired trisubstituted 

β,γ-position were investigated (Table 36). Unfortunately, the use of acid catalysts that had been 

successfully used in olefin isomerization did not deliver any product (Entries 1 to 5).
[257–259]

 Basic 

conditions resulted in the reisolation of starting material  when a weak base was used (Entries 6 or 7), 

whereas stronger bases (e.g. t-BuOK) resulted in rapid degradation of 205 (Entries 8 and 9). Formation 

of the dienolate using various bases followed by kinetic protonation in the α-position was also not 

possible (Entries 11 to 14).  
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Table 36. Attempted direct isomerization reactions for ketone 205. 

 

Entry Reagent(s) Solvent Temp. (°C) Time (h) Outcome 

1 RhCl3 (0.1 eq.) EtOH rt 8 no reaction 

2 RhCl3 (0.1 eq.) EtOH 80 1 complex mixture 

3 HCl (0.1 eq.) Et2O rt  24 no reaction 

4 HCl (0.1 eq.) EtOH rt to 60 24 complex mixture 

5 p-TSA (0.2 eq.) toluene rt to 80 16 no reaction 

6 DBU (2 eq.) toluene  rt 24 no reaction 

7 DBU (2 eq.) toluene 80 24 no reaction 

8 t-BuOK (6 eq.) t-BuOH rt 1 complex mixture 

9 t-BuOK (1 eq.) DMSO rt 0.1 complex mixture 

10a LDA (2 eq.), then AcOH (4 eq.) THF –78 to rt 1 no reaction 

11a LiHMDS, (2 eq.), then AcOH (4 eq.) THF –78 to rt 1  no reaction 

12a LiHMDS, (2 eq.), then AcOH (4 eq.) THF/HMPA –78 to rt 1 complex mixture 

13a NaH (2 eq.), then AcOH (4 eq.) THF 0 to rt 1 no reaction 

14a NaH (2 eq.), then AcOH (4 eq.) THF rt to 60 1 complex mixture 

a) addition of AcOH was performed at –78 °C; 

 

We next investigated two-step protocols for olefin isomerization through intermediate silyl 

dienol ether 231, which could be unmasked to the β,γ-unsaturated ketone after desilylation.
[260]

 As can 

be seen in Table 37, deprotonation using lithium amide bases (LDA or LiHMDS) followed by trapping 

with TMSCl or TBSOTf did not result in the desired product even after addition of HMPA (Entries 1 

to 3). Application of the Kharash–Grignard reagent was examined next, in which the addition of 

catalytic FeCl3 to MeMgBr allows for the generation of an iron “ate” complex that engages in 

γ-selective deprotonation of α,β-unsaturated ketones.
[261,262]

 Unfortunately, the desired product was not 

observed. Similarly, the use an amidocuprate reagent generated in situ from LDA and CuCN was also 

not fruitful.
[263]

 Next, we employed thermodynamic conditions to enforce formation of the desired 

product with TMSI or TMSBr (generated in situ).
[264]

 The reactions gave a complex mixture of 

products and low overall mass balance (Entries 7 to 10).  
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Table 37. Attempted formation of silyl dienol ether 231. 

 

Entry Reagent(s) Solvent Temp. (°C) Time (h) Outcome 

1 LiHMDS (2 eq.), then TMSCl (2.2 eq.) THF –78 to rt 3 mainly 205 

2 LiHMDS (2 eq.), then TBSOTf (2.2 eq.) THF –78 to rt 3 complex mixture 

3 LDA (2 eq.), then TMSCl (2.2 eq.) THF/HMPA –78 to rt 3 complex mixture 

4 LDA (4 eq.), LiCl (2 eq.), CuCN (2 eq.),  

then TMSCl, (4 eq.) Et3N (4 eq.) 

THF –78  complex mixture 

5 FeCl3 (0.1 eq), MeMgBr (2.5 eq.),  

then TMSCl, Et3N (3 eq. each) 

Et2O –78 2 no reaction 

6 FeCl3 (0.1 eq), MeMgBr (2 eq.),  

then TMSCl, Et3N (3 eq. each) 

THF/DMPU 0 12 complex mixture 

7 TMSCl (2 eq.) NaI (2 eq.), Et3N (2.2 eq.) MeCN –78 to rt 12 complex mixture 

8 TMSCl (2 eq.) NaI (2 eq.), Et3N (2.2 eq.) THF –78 to rt 12 mainly 205 

9 TMSCl (2 eq.) LiBr (2 eq.), Et3N (2.2 eq.) MeCN 0 to 60 12 complex mixture 

10 TMSCl (2 eq.) LiBr (2 eq.), Et3N (2.2 eq.) THF 0 to 60 12 complex mixture 

 

Previous attempts at thermodynamic deprotonation only returned starting material, and none 

of the desired nonconjugated isomer. Evidently, there is no energetic advantage to the formation a 

trisubstituted, albeit nonconjugated olefin at the expense of a conjugated ketone, and the stability gain 

through conjugation is too high to allow isomerization to occur. However, by masking the ketone 

functionality and removing this possibility for mesomeric stabilization, the desired double bond 

isomerization should be more facile and lead to the thermodynamically more stable olefin with a 

higher degree of substitution (Table 38). Afterwards, mild acidic hydrolysis could unmask the desired 

deconjugated product 207. This method, in the form of acid-mediated ketal formation, has been 

applied on decalin systems and steroidal carbocycles to effect deconjugation of an α,β-unsaturated 

ketone.
[265–267]

 

When 205 was treated with ethylene glycol at elevated temperature, we could indeed observe 

formation of isomeric olefin products by NMR spectroscopy (Table 38, entry 3). However, we also 

observed the product of direct ketal formation without double bond isomerization. Concomitant 

decomposition of the substrate was evident by darkening of the reaction mixture and resulted in very 

low overall yield. Exploratory studies conducted on the isomeric mixture of 232 indicated that either 

oxalic acid or diluted HCl could liberate the ketone functionality.
[268,269]

 Unfortunately, the products 

207 and 205 were found to be chromatographically inseparable in a variety of solvent systems. Paired 

with the long reaction times and low overall yield for the two step sequence, we were forced to 

abandon the glutamate-based route to cyclohexanone 207 in favor of an alternative approach.   
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Table 38. Ketal formation and alkene isomerization. 

 

Entry Catalyst Solvent Additive Temp. (°C) Time (h) Outcome 

1 p-TSA (0.2 eq.) toluene none 40 16 no reaction 

2 p-TSA (0.2 eq.) toluene MgSO4 rt to 100 24 decomposition 

3 p-TSA (0.2 eq.) toluene trimethyl orthoformate rt to 100 24 mixture, 13% overalla 

3 p-TSA (0.2 eq.) toluene trimethyl orthoformate rt to 100 72 decomposition 

4 (+)-CSA (0.2 eq.) toluene MgSO4 rt to 100 24 decomposition 

a) 205/207 = 1.5/1, inseparable by chromatography;  

2.1.1.2. From L-Tyrosine 

According to Scheme 59, an alternative route to β,γ-unsaturated ketone from L-tyrosine was 

investigated (Scheme 62). L-tyrosine methyl ester was coupled with Boc-protected tyrosine to yield 

the dipeptide 233.
[211]

 Removal of the Boc group followed by basification and heating in an 

s-butanol/toluene mixture led to cyclization and afforded the highly insoluble diketopiperazine 164, 

which could be isolated in good yield after centrifugation. The phenolic hydroxyl group was 

selectively methylated to yield 234.
[270]

 

 

Scheme 62. Synthesis of O-methylated diketopiperazine 234. 

Reduction of 234 was performed according Jung and co-workers to give, after quenching with 

HBr, piperazine 235 as the bishydrobromide salt.
[253]

 An X-ray structure was obtained, confirming the 

cis-stereochemistry and that no racemization had occurred during the previous synthetic manipulations 

(Scheme 63). To avoid the use of corrosive HBr, the reaction mixture following the borane reduction 

was quenched with MeOH, and the solvent could be evaporated to give the piperazine-monoborane 

complex as determined by LCMS. Pd/C was added to a methanolic solution of 235 to effect 

decomplexation. After filtration over celite, the solution containing the free secondary amine could be 

protected in situ and gave Boc-protected piperazine 230 in moderate yield.
[271]
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Scheme 63. Reduction and protection of O-methylated cyclo-TyrTyr (234). 

Piperazine 230 was subjected to Birch reduction using elemental lithium in liquid 

ammonia.
[272]

 Success of the reaction was confirmed by NMR, but isolation of the enol ether 236 was 

not possible and resulted in partial rearomatization during chromatography. Instead, treatment of the 

crude reaction mixture with diluted HCl afforded ketone 207, which could be purified by column 

chromatography and was found to be stable upon storage in a benzene matrix. With a reliable route to 

the β,γ-unsaturated ketone 207 in hand, the regioselectivity of deprotonation of β,γ-unsaturated ketone 

207 was assessed. Gratifyingly, treatment with LiHMDS at –78 °C followed by addition with TESCl 

delivered conjugated dienol ether 237 as the only observed product.  

 

Scheme 64. Synthesis and deprotonation of the oxidative enolate coupling precursor. 
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2.1.2. Oxidative Enolate Coupling Reaction 

A systematic investigation of reaction conditions for the oxidative enolate coupling of ketone 

207 was performed. As shown in Table 39, the use of lithium amide bases with several Fe
3+

 salts was 

examined, as well as the influence of solvent additives such as DMF and HMPA, which are shown to 

improve the solubility of the oxidant and allow for productive reaction (entries 1 to 9).
[273]

 In every 

case, the desired coupling product could not be isolated. Similarly, Cu
2+

 salts were also ineffective in 

the formation of 221.
[274]

 Direct coupling of 207 without formation of the enolate was attempted using 

Cu(OAc)2 but did not convert the starting material, whereas NiO2 at elevated temperatures led to rapid 

degradation (Entry 20).
[275,276]

 In the majority of cases, we could determine that a mixture of products 

were formed, judging by the multitude of olefinic and aromatic signals present in the 
1
H NMR spectra. 

The use of alternative oxidants which are used for the oxidative coupling of oxazolidinone enolates 

(TiCl4) or ketone-indole systems (I2) were also investigated without success (Entries 10 and 11).
[277]

 

Table 39. Conditions examined for the intramolecular oxidative coupling of ketone 207. 

 

Entry 
Deprotonationa Oxidative couplingb Outcome 

Baseb Solvent Temp. (°C) Oxidant Temp. (°C) Time (h)  

1c LDA THF –78 FeCl3 (2.2 eq.) –78 to rt 16 complex mixture 

2c LDA Et2O –78 FeCl3 (2.2 eq.) –78 to rt 16 complex mixture 

3d LiHMDS THF –78 FeCl3 (2.2 eq.) –78 to rt 16 complex mixture 

4 LDA THF –78 FeBr3 (2.2 eq.) –78 to rt 24 complex mixture 

5 LiHMDS THF –78 Fe(acac)3 (2.2 eq.) –78 to rt 16 complex mixture 

6 LiHMDS THF –78 FeCl3/DMF complex (2.2 eq.) –78 to rt 24 complex mixture 

7c LiHMDS THF –78 FeCp2PF6 (5.0 eq.) –78 to rt 16 complex mixture 

8 LiHMDS THF –78 FeCp2BF4 (5.0 eq.) –78 to rt 16 complex mixture 

9 LDA Et2O –78 FeCl3 (2.2 eq.) –78 to rt 24 complex mixture 

10 LDA THF –78 TiCl4 (2.2 eq.) –78 to rt 20 complex mixture 

11 LDA THF –78 I2 (2.2 eq.) –78 to rt 20 complex mixture 

12 none DMF rt Cu(OAc)2 (2.2 eq.) 0 to rt 16 no reaction 

13 LDA THF –78 CuCl2 (2.2 eq.) –78 to rt 24 complex mixture 

14 LDA THF –78 Cu(2-ethylhexanoate)2 (4.5 eq.) –78 to rt 20 complex mixture 

15 LDA THF –78 Cu(acac)2 (4.5 eq.) –78 to rt 20 complex mixture 

16e LDA THF –78 Cu(OTf)2 (2.2 eq.) –78 to rt 24 complex mixture 

17f LDA THF –78 Cu(OTf)2 (2.2 eq.) –78 to rt 1 complex mixture 

18c LDA THF –78 Cu(OTf)2 (2.2 eq.) –78 to rt 1 complex mixture 

19 LDA THF –78 CuCl2 (2.2 eq.) –78 to rt 24 complex mixture 

20 none MeCN rt NiO2 (5.0 eq.) rt to 60 3 complex mixture 

a) reaction time: 30 min;    b) 2.2 eq. of base were used;    c) oxidant added as solution in DMF;   d) oxidant added as 

solution in HMPA;    e) oxidant added as solution in i-PrCN;    f) oxidant added as solution in pyridine; 
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Additionally, the silyl enol ether 231 could be prepared by treatment with TBSOTf/Et3N 

(Table 40). It was immediately subjected to oxidative coupling conditions due to its instability upon 

storage. The addition of several oxidants known to promote the intermolecular coupling of silyl enol 

ethers was not successful and resulted in degradation of 231 or desiliylation to give ketone 207.
[278–281]

 

The conditions reported by Thompson or Wirth for the intermolecular reaction of tethered silyl bis-

enol ethers were also ineffective (Entries 6, 7 and 10, 11).
[245,282]

 

Table 40. Conditions examined for the intramolecular coupling of silyl dienol ether 231. 

 

Entry Reagent Solvent Temp. (°C) Time (h) Outcome 

1 Ag2O (2.2 eq.) DMSO 100 4 complex mixture 

2 Ag2O (2.2 eq.) MeCN 100 4 complex mixture 

3 VOCl3 (3.0 eq.) CH2Cl2 –78 to rt 1 complex mixture 

4a VOCl3 (3.0 eq.) CH2Cl2 –78 4 desilylation of 231 

5a PhI(OAc)2 (2.1 eq.) CH2Cl2 –10 1 desilylation of 231 

6 PhI(OAc)2 (2.1 eq), BF3·OEt2 (3.0 eq.) MeCN –10 2 complex mixture 

7 PhI(OAc)2 (2.1 eq), BF3·OEt2 (3.0 eq.) CH2Cl2 –10 2 complex mixture 

8a Cu(OTf)2 (2.2 eq.) CH2Cl2 rt 12 desilylation of 231 

9 Pb(OAc)4 (2.1 eq.) CH2Cl2/THF –78 to rt 1 complex mixture 

10 CAN (2.2 eq.), NaHCO3 (4.4 eq.) DMSO/MeCN –10 to rt 16 complex mixture 

11 CAN (2.2 eq.), NaHCO3 (4.4 eq.) MeCN –10 to rt 16 complex mixture 

a) desilylation of 231 resulted in mixtures of 205 and 207; 

 

Next, we planned to preorganize the two reactive sites for oxidative coupling by tethering 

them to give 238, and perform the coupling on this precursor (Scheme 65). Unfortunately, only 

starting material could be reisolated after deprotonation and addition of siliyl-biselectrophiles.
[245]

 As 

silyl tethered bis-enol ethers have been shown to be stable upon aqueous workup, we suspect that 

cyclization to 238/239 did not occur at all, and conformational constrains prevented substrate 207 

from adapting a conformation necessary to allow the formation of 17-membered dioxasilacycle 238. 

 

Scheme 65. Attempted formation of macrocyclic silyl dienol ether 238. 

Intermolecular coupling experiments on model substrates were carried out to investigate 

whether the β,y-unsaturated ketone 207 might be at fault for the failure of the reaction (Scheme 66). 



Part II: Results and Discussion 

179 

Treatment of the literature-known cyclohexenone 240 under several conditions only resulted in 

decomposition of the starting material or isomerization to the α,β-unsaturated ketone. The use of the 

extended silyl enol ether 241, or its silicon-tethered congener 242 also did not afford any coupling 

product. Clearly, enolate-derived radicals that benefit from allylic stabilization such as 243 are not 

able to undergo productive formation of 244 and allow for the synthesis of herqulines A and B. 

 

Scheme 66. Attempted oxidative coupling of model β,γ-unsaturated ketone or silyl enol ether. 

2.1.3. Conclusion and Analysis 

Starting from inexpensive and readily available amino acids, we prepared the desired 

N-protected β,γ-unsaturated ketone 221 and subjected it to oxidative coupling conditions. The desired 

cyclization product could not be observed either by using its enolate, or 221 itself. Similarly, the 

preformed silyl dienol ether 231 could also not be converted into the desired 12-membered ring. 

Tethering the reactive sites by formation of cyclic bis-enol ethers 238 or 239 was also not possible. As 

previously mentioned in chapter 1.3, we became aware of the work by Yang and Simpkins, who also 

investigated an oxidative enolate coupling in one of their approaches towards herqulines A and B.
[238]

 

They prepared sulfonyl-protected dienone 245 (see Scheme 67) and attempted the oxidative coupling 

reaction using conditions similar to those reported in Table 39. Unfortunately, no cyclization product 

was formed. Both the direct enolate coupling as well as the coupling of preformed silyl enol ethers 

was not possible. The reaction was also investigated on related substrates, such as the monomethylated 

compound 246 and the Boc-protected piperazine 207 (Scheme 67). On the sulfonylated substrate 245 

however, a product bearing the required mass of cyclization product was found to be present in trace 

quantities, but no spectral data were reported to confirm its identity. 
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Scheme 67. Oxidative enolate coupling strategy pursued by Simpkins and Yang. 

Taken together, these independently obtained results reinforced our conviction that β,γ-

unsaturated ketones with an isolated double bond are not competent substrates in oxidative enolate 

coupling. Although the formation of an 12-membered ring via intramolecular dimerization of two 

radicals represents a considerable challenge, model studies showed that the inability of β,γ-unsaturated 

ketones to undergo radical coupling even in intermolecular fashion is at fault. 

A main reason for the failure of previously reported approaches based on 12-membered ring 

formation via the union of two cyclohexene rings through C–C bond formation (e.g. via transition-

metal catalyzed coupling) lies in the preference of piperazines to adapt a chair conformation and the 

difficulty in bringing about a ring-flip to a boat or twist-boat conformation required for the junction of 

the two cyclohexenone fragments. To solve this problem, the synthesis of a cyclization precursor in 

which the piperazine ring adopts a boat conformation was thought to solve this issue. Literature 

precedent showed that sp
2
-hybridization of the ring atoms (as seen in a 2,5-diketopiperazine or 

bislactim ether 188) can allow the formation of a 12-membered ring (see Section 1.2, Scheme 48).
[211]

 

However, after following this insight, the reduction of either the aryl ring or the diketopiperazine 

moiety has proven challenging (see Section 1.2, Scheme 48 and Scheme 55). Although masking 

strategies for the double bond could be imagined, we decided to redesign our approach to avoid the 

late-stage formation of the central C–C bond of the 1,4-dicarbonyl moiety. 
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2.2. Revised Retrosynthesis: late-stage Piperazine Formation 

Until now, efforts from our and other research groups have relied on the early introduction of the 

piperazine ring and the construction of the 1,4-diketone moiety – and the required macrocycle – by 

joining the α-position of two cyclohexene ring. In the following sections, a strategically opposite 

approach is discussed. The two cyclohexenone rings are put in place early on in the synthesis, the 12-

membered macrocycle is closed thereafter, and the piperazine ring is formed last. Epimerization of the 

stereogenic center α to the ketone moiety, as well as the possibility of enforcing a favorable 

conformation of the cyclohexenone rings by templation of the 1,4-diol, should allow ring closure to 

the 12-membered ring either via Mitsunobu reaction or peptide bond formation (Scheme 68). A 

twofold ring-closing metathesis disconnection could afford the bis-cylohexenone motif starting from 

251, which results from the twofold allylation of an aldehyde (252) with the synthetic equivalent of a 

hexadienyl anion that bears two adjacent nucleophilic sites (253). The aldehyde coupling partner could 

be prepared from readily available L-glutamic acid and allows the introduction of several different 

oxidation and protecting group patterns (highlighted in the grey box, Scheme 68). 

 

 

Scheme 68. Retrosynthesis of herquline B using a late-stage piperazine formation strategy. 

For the formation of the 12-membered ring (247), literature precedent suggests that an intramolecular 

Mitsunobu–Fukuyama type reaction of an aminoalcohol of type 248 using the highly nucleophilic 

nosyl amine could be employed (Scheme 68). Beside amide bond formation, an intramolecular aza-
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Wittig reaction using an electrophilic pentafluorophenyl ester derived from 250 could also be 

investigated.
[283,284]

 The combination of the two strategies has, for example, been demonstrated by 

Fukuyama and co-workers in the total synthesis of orantine (254, Scheme 69), while the 

intramolecular cyclization of a Ns-amide is featured in the synthesis of the northern fragment of 

vinblastine (255, 11-membered ring formation), and lipogrammistin A (256, 18-membered ring 

formation).
[285–287]

 

 

Scheme 69 Macrocyclization via Mitsunobu reaction or intramolecular aza-Wittig reaction 

(top), or via epoxide opening or nucleophilic substitution using Ns-protected amines (bottom). 
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2.2.1. Development of a Bifunctional Allylation Reagent 

The substitution pattern of 251 (Scheme 68) has rarely been accessed using a short and 

convergent reaction sequence.
[288]

 One pertinent example pertains to the in situ generation of 

allylindium compound 257 (Scheme 70) starting from 1,2-diol 258, which gives the desired bis-

homoallylic 1,4-diol (259) in low yield, and as a diastereoisomeric mixture due to prominent side-

reactions (protodemetalation and 1,6 diol formation).
[289]

 Using a covalent allylic metal species, such 

as bisallylic silane 260, the same type of reaction can be imagined. Reagent 260 is obtained as an 

isomeric mixture by reaction of hexadiene with n-BuLi/TMEDA and addition of 2 eq. of TMSCl to 

the previously formed dianion.
[290]

 It was shown to react with 2 eq. of aldehyde under activation by 

Lewis acids to form tetrahydrofuran 261.
[291]

 Evidently, the desired 1,4-diol of type 259 is formed 

during the reaction, but suffered intramolecular nucleophilic substitution induced by the added Lewis 

acid (BF3 or TiCl4). Circumventing the use of a Lewis acid would require an inherently more Lewis-

acidic reagent that would not ionize the just formed alcohol. Along these lines, Bubnov and co-

workers developed an allylboron analog to silane 260.
[292]

 It is also synthesized by deprotonation of 

hexadiene followed by quenching with an electrophilic boron source (Et2BCl). The pyrophoric reagent 

262, which is isolated as a mixture of olefin isomers, reacts readily with aldehydes without the 

necessity for external Lewis acid activation, and ionization of the allylic alcohol to tetrahydrofuran 

261 is not observed (Scheme 70).
[293]

 Although the product is obtained as a mixture of 

diastereoisomers, it represented a good starting point for our investigations, as the stereochemistry of 

the 1,4-diol could be corrected at a later stage in the synthesis. 

 

Scheme 70. Synthetic approaches to 1,4-divinyl alcohols. 
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2.2.2. Exploratory Studies 

The synthesis of diallylborane 262 was attempted from freshly prepared diethyl chloroborane 

according to Bubnov’s procedure (Scheme 71).
[293,294]

 Although the desired product was observed after 

reaction of benzaldehyde, the reagent was found to be inactive two days later in our hands, despite 

being stored at –20 °C under inert atmosphere. In an attempt to increase the ease of synthesis, 

diethylchloroborane was substituted with dicyclohexylchloroborane, a non-pyrophoric reagent widely 

used in aldol reactions.
[295]

 Application of the same reaction conditions led to the isolation of a 

colorless oil (263) that also proved competent in the double allylation reaction, albeit in low yield (< 

20%). However, also in this case, the reagent lost its activity within two days, both when stored neat 

and as solution in hexane.  

 

Scheme 71. Preparation of dialkylchloroboranes and reaction with hexadienyl anion. 

Alternative approaches that involved the formation of highly reactive allylmetal reagents 

without the necessity for isolation of reactive intermediates were evaluated. First, Barbier-type 

reaction of dialkyl halides (264 or 265) with elemental In, Sn, and Mg followed by treatment with 

benzaldehyde did not furnish the desired product, and resulted in decomposition of the starting 

materials.
[296–299]

 Confirming the presence of allylmetal species 266 by treatment of the reaction 

mixture with an electrophilic boron source to generate 268 were not successful. Protocols for the in-

situ formation of allylboronic esters were also explored following literature precedent by Szabo and 

co-workers.
[300,301]

 Although two possible precursors, the isomeric diols 258 and 269 were evaluated, 

268 was not formed and the reaction delivered a mixture of products. 

 

Scheme 72. Alternative approaches to bifunctional allylation reagents 266 and 268. 
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So far, our experiments did not lead to a practical synthesis of the desired 1,4 diol motif. 

Further developments and optimization efforts were discouraged by the lack of isolable and 

characterizable reaction intermediates, as well as the absence of any distinct side-products resulting 

from unwanted reaction pathways. However, we were convinced that it should be possible to find a 

more stable analog to trialkylborane 262 that would still be able to react in the desired manner. Hoping 

that the structural variety of allylboron reagents, whose reactivity can be modulated by the substituents 

on the boron atom, might allow us to find a suitable candidate, we examined this possibility in more 

detail. 

2.2.3. Synthesis and Reactivity of Bifunctional Allylboration Reagent (268) 

Allylboron reagents are among the most popular organometallic compounds for the synthesis 

of homoallylic alcohols.
[302]

 Their most important feature is that, despite a great structural diversity 

conferred to them by different ligands on the boron atom (vide infra), the same well-established 

mechanistic rationale applies to explain their reactivity in carbonyl addition. In fact, the majority of 

allylboron reagents react via a chair-like, rigid transition state.
[301]

 As shown in Scheme 73, 

minimization of 1,3-diaxial interactions paired with the inherent Lewis acidity of the boron atom lead 

to a  Zimmerman–Traxler transition state (270) in which the  aldehyde residue is placed in the 

equatorial position. By virtue of this assembly, the reaction is highly stereospecific. So, (Z)-

allylboranes (271) provide the syn-product 272, and the (E)-allylborane generates the corresponding 

anti-homoallylic alcohol 273 (Scheme 73).
[303]

 

 

Scheme 73. Diastereospecific allylboration reaction via chair-like transition state 

Several structural classes of allylboron reagents, which differ in the nature of the ligands on 

the boron atom, are used in the addition to carbonyl compounds (Scheme 74). The substitution pattern 

modulates the Lewis acidity of the boron center, and therefore the reactivity towards aldehydes. For 

example, difluoroallylboranes and alkylboranes react with aldehydes at very low temperatures.
[176]

 Due 

to their high Lewis acidity, they also suffer from rapid 1,3-borotropic shift resulting from 

intramolecular attack of the pendant allyl group to the boron atom that leads to the loss of 

stereoisomeric purity. To avoid the necessity for careful monitoring of the reaction conditions, 

heteroatom-substituted allylboron reagents have been developed, in which the empty p orbital of the 

boron atom can be populated with electron density from adjacent alkoxy or amido substituents.
[302]

 So, 

if one alkoxy ligand is present, the resulting allylborinic ester (276, Scheme 74) reacts with aldehydes 
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at –78 °C, but undergoes undergo 1,3-borotropic shift only upon warming to ambient temperature.
[304]

 

Allylboronic esters of type 274 bearing two alkoxy ligands, however, do not undergo 1,3-shift even at 

elevated temperatures and are usually slower to react with aldehydes. Minimization of the steric 

environment on the boron atom can enhance their reactivity, as does the manipulation of electronic 

properties on the diol backbone. For example, electron-withdrawing groups (e.g. tartaric esters, 275) 

allow similar reactivity to trialkylboron compounds due to enhanced Lewis-acidity and enable 

enantioselective addition with formation of chiral homoallylic alcohols.
[305]

  

 

Scheme 74. Reactivity and stability of various hydroxyl-substituted allylboron reagents. 

In general, reactivity towards carbonyl compound is proportional to the instability of the 

reagent towards hydrolysis and oxidation. Trialkylboranes (277) for instance are usually prepared and 

reacted in situ, and purification can be carried out exclusively by distillation under inert atmosphere. 

Only boronate esters of bulky diols (pinacol, pinanediol, benzopinacol) are stable towards routine 

manipulations, and can even be purified by column chromatography.
[306]

 The higher stability makes 

their addition to aldehydes less facile, with reaction times of several days, sometimes requiring 

elevated temperatures and ultrahigh pressure. Recently, it has been demonstrated that Lewis or 

Brønsted acids enhance the rate of allylboration while maintaining high diastereoselectivities (e.g. 

pinacol allylboronates react under the influence of AlCl3 even at –78 °C).
[307,308]

 Moreover, the advent 

of BINOL-derived chiral Lewis and Brønsted acids can impart high enantioselectivity and avoid using 

reagents that incorporate chiral auxiliaries, further increasing the synthetic utility of reagents of type 

274.
[74,309–312]

  

We wanted to address the challenge of synthesizing 1,4-bishomoallylic diols with an 

isomerically pure and structurally well-defined bifunctional allylation reagent. It should be readily 

prepared, amendable to storage, and easy to handle at room temperature. As discussed above, 

allylboronic esters (i.e. pinacolboronates) should provide the necessary stability upon storage and 

allow for the synthesis of a stereoisomerically pure reagent not suffering from 1,3-borotropic shift, 

while still allowing productive reaction with aldehydes – if needed under activation by Brønsted or 

Lewis acid catalysts. The mechanistic rationale of allylboration presented in Scheme 73 led us to 

maintain the 1,6-diborylhexadiene structural motif employed by Bubnov and Miginiac.
[290,293]
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We started our investigations with the implementation of the conditions for hexadiene 

deprotonation using the mixed alkyllithium/potassium alkoxide system developed by Schlosser (Table 

41).
[313]

 As already observed in the reactions towards the synthesis of allylborane 262, upon addition of 

hexadiene to the base, the reaction turned to a rusty red, unstirrable slurry, indicating formation of a 

highly conjugated carbanion. Cooling of the reaction mixture and addition of i-PrOBpin  led to 

complete solidification of the mixture and partial discoloration. After standard aqueous extractive 

workup, we obtained a complex mixture of products. Clearly, the formation of the hexadienyl anion 

was successful, but the heterogeneous reaction conditions prohibited a selective incorporation of boron 

into the terminal position due to the formation of concentration gradients within the reaction flask. The 

deprotonation conditions using alkyllithiums in the presence of TMEDA were investigated next, with 

the hope that the resulting dianion would be better solvated by the diamine.
[290]

 The resulting rusty red 

mixture was then treated with different trialkoxyboron species as electrophiles. In the case of 

(i-PrO)3B, transesterification with pinacol was performed to facilitate comparison with the other 

reactions (Entries 5 and 6). Although all experiments yielded the desired product, the use of i-PrOBpin 

was preferred as it favored the formation of a single predominant product, while the other electrophiles 

gave unselective addition leading to product mixtures.  

Table 41. Conditions investigated for the synthesis of hexadienyl pinacolboronate 

 

Entry Base/Additivea Temp. (°C) Time (h) Electrophile addition Outcome/Yield 

1 
n-BuLi (2.1 eq.),  

KOt-Bu (2.1 eq.),  
0 to rt 6 

i-PrOBpin (2.5 eq.) in Et2O,  

–78 °C to rt, 18 h 
complex mixture 

2 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 2 

MeOBpin (2.1 eq.) in Et2O,  

–78 °C to rt, 3 h 
mixture of isomers 

3 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 6 

MeOBpin (2.5 eq.) in Et2O, 

 –78 °C to rt, 3 h 
mixture of isomers 

4 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 6 

MeOBpin (2.5 eq.) in Et2O,  

–78 °C to rt, 10 h 
mixture of isomers 

5 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 2 

B(i-PrO)3 (2.2 eq.) in Et2O, 

 –78 °C to rt, 8 h 
mixture of isomersb 

6 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 2 

B(i-PrO)3 (2.2 eq.) in Et2O,  

–30 °C to rt, 8 h 
mixture of isomersb 

7 
s-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 12 

i-PrOBpin (2.5 eq.) in Et2O, 

 –78 °C to rt, 24 h 

one major isomer 

(>80% purity) 

8 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 12 

i-PrOBpin (2.5 eq.) in Et2O, 

 –78 °C to rt, 24 h 

one major isomer 

(>80% purity) 

9 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 24 

i-PrOBpin (2.5 eq.) in Et2O, 

 –78 °C to rt, 24 h 

one major isomer  

(85% purity) / 42%c 

10 
n-BuLi (2.1 eq.),  

TMEDA (2.1 eq.) 
–30 to rt 24 

i-PrOBpin (2.5 eq.) in Et2O,d 

 –78 °C to rt, 24 h 

one major isomer  

(94% purity) / 39%e 

a) hexane was used as solvent;    b) after aqueous workup and transesterification with pinacol;    c) after aqueous 
workup and Kugelrohr distillation;    d) precooled to –78 °C;    e) after aqueous workup and crystallization. 
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After acidic aqueous workup and extraction using diethyl ether, 268 could be isolated as a 

mixture with n-BuBpin resulting from incomplete consumption of hexadiene and direct addition of n-

BuLi to i-PrOBpin. Removal of this byproduct was successful via chromatography, but 268 slowly 

decomposed on all the stationary phases examined (Al2O3, SiO2, Davisil, B(OH)2-modified SiO2, 

Et3N-treated SiO2).
[314]

 Nevertheless, isolation of a pure sample of the major product formed during the 

reactions was possible, and definitive structural proof was obtained by X-Ray analysis. As shown in 

Scheme 75, The (Z,Z)-stereochemistry of the product 268 suggests that in the hydrocarbon solvent 

TMEDA stabilizes the hexadienyl dianion in an S-shaped conformation that is retained to a high 

degree during the addition of i-PrOBpin even in the more coordinating Et2O. In a final optimization 

round, conducted in collaboration with Marius Schmicker, we realized that complete deprotonation of 

hexadiene was slow and required longer (at least 24 h) to reach appreciable conversion.
[315]

 

Furthermore, 268 could be purified via Kugelrohr distillation to with an isomeric purity of 85:7:7 

(Z,Z):(E,E):(E,Z) (Table 41, entry 9). This additional purification step could be avoided with cautious 

monitoring or the reaction temperature and by slow addition of a precooled (–78 °C) solution of 

i-PrOBpin, together with vigorous stirring to ensure adequate mixing of the reaction partners. In doing 

so, 268 solidified directly after aqueous workup and removal of the solvent, and could be isolated on a 

110 mmol scale in 94% isomeric purity and 38% yield after precipitation from hexane at –25 °C 

(Table 41, entry 10). 

 

Scheme 75. Synthesis of (Z,Z)-bisallylboronic acid pinacol ester 268. 

Both (Z)- and (E)-pinacol crotylboronates are reported to react with equimolar amounts of 

aldehydes in non-polar, aprotic solvents to afford homoallylic alcohols in good yield.
[303]

 We expected 

that the C2-symmetrical bifunctional allylation reagent 268 should afford a twofold addition product. 

Compared to the pioneering work by Bubnov (see Scheme 70), the diastereoselectivity should be 

enhanced for reagent 268 given its higher isomeric purity compared to 262, which exists as mixture of 

interconverting stereoisomers. 

Dienyl boronate 268 was treated with an excess of phenylpropionaldehyde at room 

temperature for 48 h (Table 42, Entry 1). An oxidative workup was performed to facilitate product 

isolation by destruction of the intermediate O-bound pinacolboronate. Unfortunately, no double 

allylation product (278) was obtained. The major product was determined to be the 1,5-diol 279 

resulting from single addition of 268. Interestingly, it was isolated as a 9 to 1 mixture of 

diastereoisomers and thorough purification and spectroscopic analysis by Belinda Hetzler showed that 

the major product formed is the syn-product (in accordance with the Zimmerman-Traxler transition 
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state depicted in Scheme 73).
[316]

 Twofold addition product 278 could not be observed at higher 

temperatures either (Entry 3). The addition of Brønsted and Lewis acid catalysts was investigated by 

Belinda Hetzler and did not change the outcome, although it did improve the rate of single 

allylboration at ambient temperature (Entries 6 and 7). Under more forcing conditions, complex 

mixtures were obtained (Entry 8). Evidently, the additional steric hindrance of the pinacolboronate 

ester transferred in the first allylation step combined with the branched substitution adjacent to the 

pendant allylboronic ester discourage compound 280 from undergoing a second allylboration reaction 

to give 278.  

Table 42. Screening of conditions for the allylation of phenylpropionaldehyde with 268. 

 

 Entrya Catalystb Solvent Temp (°C) Time (h) Outcome/Yield (%)  

1 none CH2Cl2 rt 48 only 279 / n.d. 

2 none toluene rt 72 only 279 / 67 

3 none toluene 100 24 only 279 / n.d. 

4 Sc(OTf)3 toluene rt 24 decomposition 

5 In(OTf)3 toluene rt 24 decomposition 

6 AlCl3 toluene rt 24 only 279 / n.d. 

7 TFA CH2Cl2 rt 24 only 279 / 57 

8 TFA toluene 100 24 decomposition 

a) all reactions performed with 3.0 eq. of phenylpropionaldehyde;   b) 10 mol %;     

c) after oxidative workup with NaOH/H2O2. 

   

A similar difficulty was faced by Aggarwal and co-workers in their investigation of sterically 

hindered 3,3-disubstituted allylpinacolboronates.
[317,318]

 By converting the boronic ester to the more 

reactive borinic ester, the desired addition to aldehydes was found to take place. The mechanism of 

this activation mode, together with its intended application to 268, is shown in Scheme 76. At low 

temperature, alkyllithium reagents can add to the electrophilic boron center to form intermediate 

borate 281. Addition of an oxophilic electrophile such as TFAA leads to ring-opening of 281 with 

scission of the B–O bond, and the expelled alkoxide is trapped to form a trifluoroacetyl ester. This 

effectively generates the tricoordinated borinic ester 282, a more Lewis acidic species that is markedly 

more reactive towards carbonyl compounds. If 282 could indeed be generated, it might be reactive 

enough to undergo a second allylation to give 278 despite the added steric bulk imparted by the first 

carbonyl addition. 
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Scheme 76. Projected activation of 268 via borinic ester and twofold aldehyde allylation. 

After treatment of 268 with n-BuLi (2 eq.) at 78 °C for 15 minutes, TFAA was added. After 

30 minutes at 78 °C, phenylpropionaldehyde (2 eq.) was added and the mixture was allowed to reach 

ambient temperature (Scheme 77). Following aqueous workup, one major product was obtained in 

62% yield. Its structure could be confirmed by X-ray crystallography, indicating that the desired 

allylation does indeed proceed as desired. The plane of symmetry exhibited by 278 reflects the 

stereospecific reactivity of C2-symmetric reagent 268 via a chair-like transition state. Additionally, the 

syn-stereochemistry of the homoallylic alcohol product confirms that the (Z)-allylboron species 

underwent allylation without isomerization via 1,3-borotropic shift. Having successfully developed a 

more practical preparation of the desired 1,4-diol motif, we moved to apply the reaction to the 

synthesis of herqulines A and B. 

 

Scheme 77. Diastereoselective double allylation of borinic ester 282 with phenylpropionaldehyde. 
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2.2.4. Application Towards the Synthesis of Herqulines A and B. 

2.2.4.1. Model Studies 

Before submitting an elaborated aldehyde partner to the abovementioned double allylation 

reaction, we wanted to systematically assess eventual limitations and functional group compatibility of 

the method. In this context, Lewis-basic protecting groups might inhibit the desired reactivity towards 

the aldehydes in both the allylation as well as the metathesis reactions. Therefore, a model substrate 

was prepared with the intent to test the suitability and robustness of the planned sequence. 

Phenylpropionaldehyde was chosen as starting material, and allylic alcohol 284 was obtained 

after α-methenylation to 283 and reduction (Scheme 78).
[319]

 Chain extension via Eschenmoser–

Claisen rearrangement and reduction furnished aldehyde 286, which was subjected to the allylation 

protocol with in situ generated borinic ester 282 to give 287.
[148,320]

 Ring closing metathesis reaction of 

286 was successful using the Hoveyda–Grubbs’ 2
nd

 generation catalyst.
[321]

 The relative configuration 

of the product (288) could be assigned by X-ray crystallographic analyses. Analogous to the model 

reaction with phenylpropionaldehyde, the twofold allylation reaction proceeded without isomerization 

of the allylborinic ester to give syn-homoallylic alcohol 287.  

 

Scheme 78. Model study for the double allylation / ring closing metathesis sequence. 

A second substrate bearing a protected hydroxyl functionality as a handle for amin oacid 

synthesis was synthesized starting from PMB-protected allyl alcohol (289). After hydroboration using 

9-BBN, Suzuki cross-coupling with alkenyl bromide 290, derived from 4-pentynol, delivered the 

allylic alcohol 291.
[322,323]

 Swern oxidation to the aldehyde followed by double allylation delivered diol 

293, which was subjected to RCM conditions. Interestingly, this substrate proved more reluctant to 
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participate in metathesis reaction than 287. While first-generation metathesis catalysts converted the 

product even at high temperature (Entries 2 and 6), second-generation catalysts bearing an NHC-

ligand delivered the tandem metathesis product, although the reaction did not exhibit a clean reaction 

profile with Grubbs’ 2
nd

 generation catalyst (Entry 4). The use of phosphine-free Hoveyda–Grubbs’ 

2
nd

 generation catalyst, on the other hand, delivered the desired product 294 in good yield but required 

elevated temperatures. (Entries 11 and 12).
[324]

  

 

Scheme 79. Synthesis of long-chain model study via twofold allylation and metathesis.  

 

 Entry Catalysta Solventb Conc. (mM) Temp (°C) Time (h) Yieldc (%)  

1 G1 toluene 0.01 rt 7 no reaction 

2 G1 toluene 0.01 90 7 no reaction 

3 G2 toluene 0.01 rt 3 <5% 

4 G2 toluene 0.01 90 7 18% 

5 HG1 toluene 0.01 rt 7 no reaction 

6 HG1 toluene 0.01 90 7 no reaction 

7 HG2 benzene 0.025 40 16 38% 

8 HG2 CH2Cl2 0.025 40 16 <5% 

9 HG2 1,2-DCE 0.025 40 16 <5% 

10 HG2 toluene 0.01 rt 7 no reaction 

11 HG2 toluene 0.025 40 16 39% 

12 HG2 toluene 0.01 90 4 75%d 

a) 10 mol%;  b) solvents were deoxygenated by purging with N2 for 20 min;    c) determined 

by NMR using tetrachloroethane as external standard, except for entry 12;   d) isolated yield 
after silica gel chromatography. 
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2.2.4.2. Synthesis of Amino Acid-derived Coupling partners 

Both model substrates 292 and 286 underwent allylation and ring-closing metathesis reaction, 

but the reaction conditions for the formation of the cyclohexenone rings needed to be adjusted for the 

more sterically hindered and more coordinating PMB-protected 293. Further aldehyde substrates 

exhibiting variation of oxidation state and protecting group patterns on the amino acid-derived 

terminus were prepared next.  

2.2.4.2.1. Aminoalcohol Oxidation Level 

L-glutamic acid was treated with TMSCl in MeOH to give 295, which was Boc-protected to 

afford 296. After ester reduction to alcohol 297, the Boc-protected amine and the proximal hydroxyl 

group were protected as the N,O-acetonide (298).
[325]

 Then, the primary alcohol was oxidized under 

Swern conditions to give aldehyde 299. Organocatalytic methylenation gave 300, but proceeded only 

in moderate yield (see Table in Scheme 80 , entry 1), analogous to reactions using Bohme’s salt (302) 

or Eschenmoser’s salt (303).
[326]

 The in situ generation of the electrophilic iminium intermediate was 

more successful, and best results were obtained using TFAA as the activating agent for the 1,3-

diamine 304.
[327,328]

 Next, aldehyde 300 reduced to corresponding alcohol 301.
[329]

  

Scheme 80. Synthesis of Claisen rearrangement precursor from L-glutamic acid. 

 

Entry Reaction conditions Solvent Temp (°C) Time (h) Yield (%) 

1 
Formaldehyde (1.0 eq.), pyrrolidine (0.1 eq.), 

4-dimethylaminobenzoic acid (0.2 eq.) 
CH2Cl2 45 2 47 

2 DIPEA (1.0 eq.), TFA (1.0 eq), 1,3,5-Trioxane (2.0 eq.) THF 60 6 29 

3 Eschenmoser’s salt (303) (2.0 eq.), Et3N (3.0 eq.) CH2Cl2 0 to rt 2 48 

4 Böhme’s salt (302) (2.0 eq.), Et3N (3.0 eq.) CH2Cl2 0 to rt 4.5 51 

5 AcOH (2.4 eq), 304 (4.2 eq) THF 0 to rt 18 56 

6 TFAA (1.1 eq.), 304 (1.1 eq) CH2Cl2 0 to rt 18 66 

 

Direct access to the desired aldehyde required a two-carbon homologation, which was 

attempted via Claisen rearrangement of vinyl ether 305.  The desired product was best synthesized 
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using conditions reported by Fukuyama and coworker´s using the high-boiling n-butyl vinyl ether 

(Scheme 81).
[330]

  

 

Scheme 81. Mercury-catalyzed Claisen rearrangement to give aldehyde 306.  

Nevertheless, the low yield prompted us to examine different Claisen protocols (Scheme 82). 

While Ireland–Claisen rearrangement of allylic acetate derived from 301 was not successful (not 

depicted), Aylin Hirschvogel has shown that Johnson–Claisen protocol afforded the product in 

acceptable yield, provided the reaction was carried out under microwave irradiation (8 min at 

150 °C).
[331]

 Unfortunately, material throughput was only possible using sequential reactions carried 

out on 150 mg scale, as larger reaction volumes led to longer reaction times and lower yields due to 

slow decomposition of the acid-sensitive substrate (e.g. a reaction carried out on 1.99 gram scale gave 

307 in only 34 % yield). Reduction of the ester followed by oxidation afforded the target aldehyde 

(306). In an effort to avoid redox manipulations, we conducted an Eschenmoser–Claisen 

rearrangement to obtain tertiary amide 309. The reduction to aldehyde 306 using the conditions that 

were successful on the model systems (Ti(Oi-Pr)4/Ph2SiH2) afforded the product in 30% yield, but 

better results were obtained using a hydridic aluminate complex generated in situ from DIBALH and 

lithium morpholide (Scheme 82).
[332]

 

 

Scheme 82. Synthesis of allylation precursor with aminoalcohol oxidation level. 

2.2.4.2.2. Amino Acid Oxidation Level 

For the synthesis of aldehyde 306 described above, a linear synthetic route starting with the 

reduction of both the ester functions of L-glutamic acid was used, wherein the side-chain was oxidized 

as at a later stage while the 1,2-aminohydroxy group was protected as the acetonide. If the desired 

product was an α-amino acid, the synthesis would require additional protection and oxidation steps. 
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Alternatively, a synthesis starting from L-glutamic acid featuring the selective reduction of the 

side chain is conceivable. However, literature precedent suggests that a judicious choice of protecting 

groups would be necessary to differentiate the two ester portions of L-glutamate.
[333]

 This would 

invariably add additional steps to the synthesis. Therefore, we decided to pursue a cross-coupling 

strategy of an amino acid-derived building block with a pre-reduced side chain. Jackson and co-

workers demonstrated that serine-derived organozinc reagents can be coupled with alkenyl and aryl 

halides under palladium catalysis to deliver unnatural amino acids, and we chose this method to access 

the desired substrates.
[167,334]

 Synthesis of protected iodoalanines 311 and 317 was carried out via 

iodination of the respective serine derivatives (310 and 316).
[335,336]

 The side chain was synthesized 

from TBS-protected 4-pentynol followed by Ni-catalyzed branch-selective alkyne hydroalumination-

bromination reaction.
[323]

 Formation of the organozinc reagent from the iodide, followed by Negishi 

coupling with 315, delivered TBS protected methallylglycine derivative 312. Desilylation to afford the 

free alcohol 313 and Dess–Martin oxidation gave aldehyde 314. The same sequence was also applied 

to the Cbz-derived substrate to afford, 320 in a similar overall efficiency. 

 

Scheme 83. Synthesis of two allylation precursors bearing amino acid oxidation level. 
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 Summary and Future Work 3.

In summary, two strategies for the synthesis of the alkaloids herquline A and B were pursued. 

Following previous work carried out in the Trauner group, L-glutamic acid could be converted into 

α,β-unsaturated ketone 205. Attempted isomerization to the β,γ-unsaturated isomer 207 required for an 

intramolecular oxidative enolate coupling reaction was not possible. However, 207 could be prepared 

from L-tyrosine. Several reaction conditions for the formation of the 12-membered ring in 221 were 

examined. Unfortunately, the desired product could not be isolated, and control experiments suggest 

that β,γ-unsaturated ketones are not viable substrates for oxidative coupling reaction both in intra-, as 

well as intermolecular fashion.  

 

Scheme 84. Oxidative enolate coupling approach starting from glutamic acid or tyrosine. 

All previous synthetic efforts that relied on the early formation of a piperazine (or 

diketopiperazine) ring were thwarted by the inability to form the required 12-membered ring by C-C 

bond formation. This prompted us to redesign our approach and carry out the piperazine formation at a 

later stage in the synthesis. Inspired by the pseudosymmetrical nature of herquline B, a twofold 

allylation-metathesis approach was devised. Using an isomerically pure bifunctional allylboron 

reagent (268) activated in situ by formation of a borinic ester, several aldehydes were shown to 

undergo sequential double allylation to deliver 1,4-divinyl alcohol in a diastereospecific manner. Ring-

closing metathesis on model systems could afford the bis-cyclohexenone core of herquline B. 

Additionally, several aldehyde precursors bearing different oxidation states and protecting groups 

were prepared.  
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Scheme 85. Model studies towards the cyclohexenone moiety of herquline B via allylation. 

In future, they will be subjected to the twofold allylation conditions using 268. Two different 

aldehyde substrates bearing either different oxidation states or protecting group patterns could be 

added sequentially to the allylboron reagent 268 to afford unsymmetrical products of type 321 in order 

to facilitate intramolecular macrocyclization after ring-closing metathesis. Formation of the 12-

membered ring could be achieved by alkylation or amide bond formation, and the six-membered ring 

could be formed thereafter. After routine manipulations and N-methylation, herquline B could be 

accessed, and herquline A could be formed by olefin isomerization and aza-Michael reaction. 

 

Scheme 86. Planned fragment union of two different aldehydes via double allylation 

for the total synthesis of herqulines A and B. 
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 Experimental Part 4.

4.1. General Experimental Details 

4.1.1. Materials and Methods 

Unless noted otherwise, all reactions were performed in flame-dried glassware fitted with rubber septa 

under a positive pressure of nitrogen. Air- and moisture-sensitive liquids were transferred via syringe 

or stainless steel cannula through rubber septa. Solids were added under inert gas or were dissolved in 

appropriate solvents. The reactions were magnetically stirred and monitored by NMR spectroscopy 

where noted or analytical thin-layer chromatography (TLC) using glass plates precoated with silica gel 

(0.25 mm, 60-Å pore size, Merck) impregnated with a fluorescent indicator (254 nm). TLC plates 

were visualized by exposure to ultraviolet light (UV, 254 or 366 nm), were stained by submersion in 

aqueous potassium permanganate solution (KMnO4), ceric ammonium molybdate solution (CAM) or 

acidic p-anisaldehyde solution (PAA) and were developed by heating with a heat gun. Flash-column 

chromatography on silica gel (60 Å pore size, 40–63 µm, Merck KGaA) was performed as described 

by Still
[185]

 or using a Biotage Isolera™ Prime Automated Flash Purification system. Triethylamine-

deactivated silica was obtained by preparing a slurry of silica gel (20% v/v in the initial eluent mixture 

+ 5% v/v Et3N) followed by magnetic stirring for 1 h. The slurry was poured into a chromatography 

column and flushed with 5 column volumes of amine-free eluent prior to sample loading and elution.  

Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled from Na/benzophenone prior to use. 

Dichloromethane (CH2Cl2), triethylamine (Et3N), N,N-diisopropylamine (DIPA) were distilled under 

nitrogen atmosphere from CaH2 prior to use. Benzene, 1,2-dichloroethane (DCE), dimethyl sulfoxide 

(DMSO), 1,2-dichlorobenzene (DCB) were purchased from Acros Organics as 'extra dry' and used as 

received. All other reagents and solvents were purchased from chemical suppliers (Sigma-Aldrich, 

Acros Organics, Alfa Aesar, Strem Chemicals, ABCR) and were used as received. Solvents for 

extraction, crystallization and flash-column chromatography on silica gel were purchased as technical 

grade and distilled under reduced pressure prior to use. The molarity of n-butyllithium solutions was 

determined by titration to a blue endpoint against N-benzylbenzamide
[186]

  at −40 °C (average of three 

determinations).  

Unless noted otherwise, yields refer to chromatographically and spectroscopically (
1
H and 

13
C NMR) 

pure material. 



Part II: General Experimental Details 

199 

4.1.2. Melting Point  

Melting points were measured on a Stanford Research Systems MPA120 EZ-Melt apparatus in open 

glass capillaries. 

4.1.3. NMR Spectroscopy  

NMR spectra were measured at room temperature (22 °C) on a Bruker Avance III HD 800 MHz 

spectrometer equipped with a CryoProbe
TM

 operating at 800 MHz for proton nuclei and 200 MHz for 

carbon nuclei or a Bruker Avance III HD 400 MHz spectrometer equipped with a CryoProbe
TM

 

operating at 400 MHz for proton nuclei and 100 MHz for carbon nuclei. Proton chemical shifts are 

expressed in parts per million (ppm, δ scale) and are referenced to residual protium in the NMR 

solvent (CHCl3: δ 7.26, C6HD5: 7.16, CH3SOCD2H: 2.50, MeOH: 3.31). Carbon chemical shifts are 

expressed in parts per million (ppm, δ scale) and are referenced to the carbon resonance of the NMR 

solvent (CDCl3: δ 77.16, C6D6: 128.06, CH3SOCD2H: 39.52, MeOH: 49.0). 
1
H NMR spectroscopic 

data are reported as follows: Chemical shift in ppm (multiplicity, coupling constants J (Hz), 

integration intensity). The multiplicities are abbreviated with s (singlet), d (doublet), t (triplet), q 

(quartet), app (apparent), broad (br), combinations thereof, and m (multiplet). In case of combined 

multiplicities, the multiplicity with the larger coupling constant is stated first. Except for complex and 

overlapping multiplets, where a resonance range is given, the chemical shift of all other symmetric 

signals is reported as the center of the resonance range. 
13

C NMR spectroscopic data are reported as 

follows: Chemical shift in ppm. Additionally to 
1
H and 

13
C NMR measurements, 2D NMR techniques 

such as homonuclear correlation spectroscopy (COSY), heteronuclear single quantum coherence 

(HSQC) and heteronuclear multiple bond coherence (HMBC) were used to assist signal assignment. 

For further elucidation of 3D structures of the products, nuclear Overhauser enhancement 

spectroscopy (NOESY) was conducted. All raw FID files were processed and the spectra analyzed 

using the program Mnova 10.0.2 from Mestrelab Research S. L.  

4.1.4. Mass Spectrometry  

All mass spectra were measured by the Analytical division of the Department of Chemistry, Ludwig-

Maximilians-Universität München. Mass spectra were recorded on the following spectrometers 

(ionisation mode in brackets): MAT 95 (EI) and MAT 90 (ESI) from Thermo Finnigan GmbH and 

were recorded in high-resolution. The method used is reported in the relevant section of the 

experimental part.  
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4.1.5. IR Spectroscopy  

IR spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and the compound was 

applied as thin film directly on the ATR unit (either as neat substance or as solution in CH2Cl2). Data 

are represented as follows: absorption frequency (expressed in cm
−1

) and intensity of absorption: s 

(strong), m (medium), w (weak), br (broad).  

4.1.6. Optical Rotation  

Optical rotation values were recorded on an Anton Paar MCP 200 or a Krüss Optronic  P8000-T 

polarimeter. The specific rotation is calculated as follows:  

    
 

 
       

   
 

Thereby, the wavelength λ is reported in nm and the measuring temperature in °C. α represents the 

recorded optical rotation, c the concentration of the analyte in 10 mg/mL and d the length of the 

cuvette in dm. Thus, the specific rotation is given in 10
−1

·deg·cm
2
 ·g

−1
 . Use of the sodium D line 

(λ = 589 nm) is indicated by D instead of the wavelength in nm. The sample concentration as well as 

the solvent is reported in the relevant section of the experimental part 

4.1.7. HPLC Analyses 

Analytical HPLC on Chiral Stationary Phase was performed on a computer-operated Shimadzu system 

(Windows 10, LabSolutions Software, two LC-20AP pumps, manual injection (2 mL sample loop), 

CTO-20A column oven, SPD-M20A Diode Array detector). Column, oven temperature, solvent 

system, flow rate, detection mode and retention times are given in the relevant section of the 

experimental part.  

Preparative HPLC was performed on a computer-operated Varian instrument (Windows XP, Galaxie 

Chromatography Software, two PrepStar SD-1 pumps, manual injection with 2 mL sample loop, 

ProStar 335 Photo Diode Array Detector, Agilent 440-LC Fraction Collector). Column, solvent 

system, flow rate, detection mode and retention times are given in the relevant section of the 

experimental part. 

4.1.8. X-ray Diffraction Analysis 

Experiments were carried out by Dr. Peter Mayer (Ludwig-Maximilians-Universität München). The 

data collections were performed an a Bruker Nonius KappaCCD, Bruker D8Venture, or an Oxford 

Xcalibur diffractometer using MoKα-radiation (λ = 0.71073 Å, graphite monochromator). The 

CrysAlisPro software (version 1.171.33.41) was applied for the integration, scaling and multi-scan 
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absorption correction of the data. The structures were solved by direct methods with SIR9713 and 

refined by least-squares methods against F2 with SHELXL-97.14. All nonhydrogen atoms were 

refined anisotropically. The hydrogen atoms were placed in ideal geometry riding on their parent 

atoms. Further details are summarized in the tables at the different sections. Plotting of thermal 

ellipsoids in this document and in the main text was carried out using Ortep-3 for Windows.
[187]
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4.2. Experimental Procedures  

(5aS,10aS)-tetrahydro-3H,5H-dipyrrolo[1,2-a:1',2'-d]pyrazine-3,5,8,10(2H,5aH)-

tetraone (198) 

 

To a preheated (110 °C) solution of acetic anhydride (442 mL, 4.70 mol, 6.10 eq) and pyridine 

(82 mL, 1.00 mol, 1.30 eq) was added (S)-pyroglutamic acid (99.5 g, 771 mmol, 1.00 eq) portionwise. 

After 5 min, 198 began to precipitate and a slight orange discoloration of the reaction mixture was 

observed. After 10 min, the vessel was cooled to 0 °C (ice bath), the precipitate was collected by 

filtration and transferred to an Erlenmeyer flask containing cold MeOH (200 mL). The solid was 

filtered on and washed with cold water (200 mL). The product was dried overnight under vacuum to 

give 198 (45.9 g, 208 mmol, 54%) as a colorless crystalline solid. Spectral data match the previously 

reported values.
[250]

 

Rf = not determined. 

Melting point = 284 °C (decomposition). 

1
H NMR (400 MHz, DMSO) δ = 4.84 (t, J = 8.5 Hz, 2H), 2.64 – 2.38 (m, 4H, partially obscured by 

solvent), 2.27 – 2.13 (m, 4H). 

13
C NMR (100 MHz, DMSO) δ = 172.7, 165.7, 58.4, 31.2, 18.9. 

HRMS (EI) for C10H10N2O4
·+

 [M]
·+

: calcd.: 222.0641, found: 222.0634. 

IR (ATR):  ̃ = 2941 (w), 1764 (s), 1690 (m), 1463 (w), 1353 (m), 1273 (s), 1247 (s), 1148 (m), 

927 (m). 

    
   = −96.1 (c = 1.00, DMSO). 

3,3'-((2S,5S)-3,6-dioxopiperazine-2,5-diyl)dipropanoic acid (199) 
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Pyroglutamic diketopiperazine (198) (45.9 g, 207 mmol, 1 eq) was added portionwise and under rapid 

magnetic stirring to H2SO4 (96% w/w 166 mL, 15 eq). The reaction mixture was stirred until complete 

dissolution of 198 (3 hours). The resulting solution was cooled to 0 °C and H2O (300 mL) was added 

slowly dropwise. The mixture was stirred for 1 hour and the resulting precipitate was collected by 

filtration to afford 199 as white solid (35 g, 136 mmol, 66%). Spectral data match the previously 

reported values.
[250]

 

Rf = not determined. 

Melting point = 242 °C (decomposition). 

1
H NMR (400 MHz, DMSO) δ = 12.13 (s, 2H), 8.20 (s, 2H), 3.88 (t, J = 5.3 Hz, 2H), 2.38 – 2.23 

(m, 4H), 2.01 – 1.77 (m, 4H). 

13
C NMR (100 MHz, DMSO) δ = 173.9, 167.9, 53.2, 39.5, 29.3, 28.1. 

HRMS (EI) for C10H14N2O6
∙+ 

[M]
∙+

:
 
calcd.: 258.0852, found: 258.0831. 

IR (ATR):  ̃ = 3200 (b, w), 2822 (b, w), 2518 (b, w), 1677 (s), 1640 (s), 1402 (s), 1291 (s), 1266 (s), 

1192 (s), 887 (m), 814 (s). 

    
   = –41.9 (c = 1.00, DMSO). 

dimethyl 3,3'-((2S,5S)-3,6-dioxopiperazine-2,5-diyl)dipropanoate (200) 

 

A suspension of 199 (6.25 g, 24.2 mmol, 1.00 eq), MeOH (300 mL) and CBr4 (803 mg, 2.42 mmol, 

0.10 eq) was heated to reflux for 36 hours under. The resulting solution was cooled to room 

temperature and concentrated in vacuo to ca. 50 mL, at which point a white solid formed. Et2O 

(150 mL) was added and the reaction flask was stored overnight at –25 °C to ensure complete 

precipitation. Filtration of the solid afforded, after drying at 60 °C for 2 hours, 200 as a white solid 

(6.33 g, 22.0 mmol, 91%). Spectral data match the previously reported values.
[250]

 

Rf = 0.17 (CH2Cl2/MeOH = 95/5, CAM).  

Melting point = 183.2 – 186.6 °C. 

1
H NMR (400 MHz, DMSO) δ = 4.84 (t, J = 8.5 Hz, 2H), 2.64 – 2.38 (m, 4H, partially obscured by 

solvent), 2.27 – 2.13 (m, 4H). 

13
C NMR (100 MHz, DMSO) δ = 172.7, 165.7, 58.4, 31.2, 18.9. 



Part II: Experimental Part 

204 

HRMS (ESI) for C12H18N2O6Na
 
[M+Na]

+
: calcd.: 309.1057, found: 309.1058. 

IR (ATR):  ̃ = 2941 (w), 1764 (s), 1690 (m), 1463 (w), 1353 (m), 1273 (s), 1247 (s), 1148 (m), 

927 (m). 

    
   = −42.5 (c = 1.00, DMSO). 

(2S,5S)-di-tert-butyl 2,5-bis(3-hydroxypropyl)piperazine-1,4-dicarboxylate (202) 

 

A suspension of 200 (1.11 g, 3.88 mmol, 1.00 eq.) in THF was cooled to 0 °C and LiAlH4 (2.21 g, 

58.2 mmol, 15.00 eq) was added in five portions. The grey suspension was refluxed for 30 h under N2 

atmosphere and then cooled to 0 °C. Then, H2O (2.2 mL) was added dropwise, followed by aqueous 

NaOH (10% w/w, 2.2 mL), and H2O (6.6 mL). The reaction mixture was heated to reflux for 30 min, 

cooled to ambient temperature and filtered over a glass sintered funnel (Por. 3). To the resulting clear 

filtrate was added 10 mL sat aqueous NaHCO3, and the resulting biphasic mixture with precipitate 

formed was cooled to 0 °C. Boc2O (1.78 g, 8.14 mmol, 2.10 eq) was added in one portion and the 

reaction was stirred for 24 h at room temperature. The solvent was evaporated and the crude oil was 

redissolved in water and extracted with EtOAc (5 x 50 mL). The combined organic layers were 

washed with brine (200 mL), dried over Na2SO4, filtered, and the solvent was evaporated. Purification 

of the crude material by silica gel flash chromatography (SiO2, EtOAc) afforded 202 as a colorless oil, 

which solidified upon trituration with Et2O (577 mg, 1.44 mmol, 37%). 

Crystals suitable for X-ray analysis were grown from Et2O. 

Rf = 0.34 (EtOAc, CAM). 

Melting point = 103 – 104 ºC. 

1
H NMR (600 MHz, CHCl3) δ = 3.97 (br s, 4H), 3.64–3.55 (m, 4H), 2.63 – 2.53 (m, 2H), 1.57 – 1.49 

(m, 6H), 1.40 (br s, 18 H). 

13
C NMR (150 MHz, CHCl3) δ = 155.6, 80.2, 62.4, 53.1, 42.06, 28.6, 28.5. 

HRMS (ESI) for C20H39N2O6 [M+H]
+
: calcd.: 403.2808; found: 403.2808. 

IR (ATR):  ̃ = 3450 (m), 2941 (w), 2866 (w), 1669 (s), 1419 (s), 1366 (m), 1151(s), 1052 (s), 

993 (w), 878 (m), 767 (m). 

    
   = +84.2 (c = 0.50, CH2Cl2). 
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(2S,5S)-di-tert-butyl 2,5-bis(3-oxopropyl)piperazine-1,4-dicarboxylate (203) 

 

To solution of DMSO (0.81 mL, 11.4 mmol, 5.00 eq.) in CH2Cl2 (15 mL) at –78°C was added oxalyl 

chloride (2.0 M in CH2Cl2, 2.86 mL, 5.71 mmol, 2.50 eq.) dropwise. After complete addition, the 

reaction mixture was stirred at –78 °C for 15 min. Then a solution of 202 (920 mg, 2.29 mmol, 1.00 

eq.) in dry CH2Cl2 (10 mL) was added dropwise. After complete addition the reaction mixture was 

stirred at –78°C for 45 min, followed by the dropwise addition of Et3N (3.18 mL, 22.9 mmol, 10.00 

eq.) at the same temperature. The cooling bath was removed, and the reaction was stirred for 1 h. 

Water (20 mL) was added, and the aqueous phase was extracted with CH2Cl2 (2 x 20mL). The 

combined organic phases were washed successively with aqueous HCl (1 M, 30 mL) saturated 

aqueous NaHCO3 (30 mL) and brine (30 mL), dried over Na2SO4, filtered, and concentrated in vacuo. 

Purification by flash column chromatography (SiO2, hexanes/EtOAc = 6/4) afforded aldehyde 203 

(590 mg, 7.41 mmol, 65%) as a clear oil. 

Rf = 0.53 (hexanes/EtOAc = 1/1, PAA). 

1
H NMR (400 MHz, CDCl3) δ = 9.83 – 9.71 (m, 2H), 4.16 – 3.83 (m, 4H), 2.56 – 2.44 (m, 6H), 1.78 – 

1.62 (m, 4 H), 1.43 (s, 18H). 

13
C NMR (100 MHz, CDCl3) δ = 201.5, 155.7, 80.6, 52.7, 42.0, 40.4, 28.5, 24.0. 

HRMS (EI) for C20H34N2O6
∙+ 

[M]
∙+

: calcd.: 398.2411, found: 398.2410. 

IR (ATR):  ̃ = 2973 (w), 2712 (w), 1773 (m), 1684 (s), 1403 (b, m), 1364 (s), 1247 (m), 1153 (s), 

866 (m), 770 (m). 

    
   = +71.3 (c = 1.00. CH2Cl2). 

di-tert-butyl (2S,5S)-2,5-bis(2-formyl-5-oxohexyl)piperazine-1,4-dicarboxylate 

(204) 
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To solution of aldehyde 203 (3.00 g, 7.53 mmol, 1.00 eq.) in MeCN (100 mL) was Et2NSiMe3 

(713 µL, 3.77 mmol, 0.50 eq.). The resulting solution was heated to 80 °C for 16 h. The resulting 

orange solution was cooled to room temperature and concentrated in vacuo. Purification of the crude 

product by flash column chromatography (SiO2, hexanes/EtOAc = 1/1) afforded ketoaldehyde 204 

(3.30 g, 6.13 mmol, 81%) as a light yellow oil and as a 1/1 mixture of diastereoisomers. Spectral data 

match the previously reported values.
[237]

 

Rf = 0.40 (hexanes/EtOAc = 3/7, CAM).  

Note: NMR spectra are complex due to the presence of diastereoisomers.  

1
H NMR (600 MHz, CHCl3) δ = 9.60 (t, J = 2.5 Hz, 1H), 9.54 (t, J = 3.3 Hz, 1H), 4.28 – 3.82 

(m, 4H), 2.55 – 2.36 (m, 8H), 2.13 (d, J = 2.2 Hz, 6H), 1.99 – 1.85 (m, 3H), 1.84 – 1.74 (m, 3H), 1.47 

– 1.39 (m, 20H). 

13
C NMR (150 MHz, CHCl3) δ = 207.6, 203.5, 203.2, 155.5, 80.8, 51.8, 51.5, 48.0, 47.3, 42.2, 40.5, 

40.4, 31.2, 30.8, 30.7, 30.2, 28.5, 23.1, 22.8. 

HRMS (EI) for C28H46N2O8
∙+ 

[M]
∙+

: calcd.: 538.3254, found: 538.3264. 

IR (ATR):  ̃ = 2975 (w), 2931 (w), 1686 (s), 1478 (w), 1413 (m), 1365 (m), 1247 (w), 1153 (m), 

1108 (m), 875 (w), 789 (w). 

    
   = +42.6 (c = 1.0, CH2Cl2). 

di-tert-butyl (2S,5S)-2,5-bis((4-oxocyclohex-2-en-1-yl)methyl)piperazine-1,4-

dicarboxylate (205) 

 

To a mixture of ketoaldehyde 204 (3.86 g, 7.17 mmol, 1.00 eq.) in THF (700 mL), Et2O (1500 mL) 

and aqueous KOH (0.1 M, 700 mL) was added n-Bu4NOH (1 M in MeOH, 1.43 mL, 1.43 mmol, 

0.20 eq.) at 0 ºC and the mixture was heated to 40 °C for 24 h. The organic layer was separated and 

saturated aqueous NH4Cl (500 mL) was added, followed by EtOAc (400 mL). The organic layer was 

separated and the aqueous layer was extracted with EtOAc (2 x 400 mL). The combined organic layers 

were washed with brine (400 mL), dried over MgSO4 and concentrated in vacuo. The crude product 

was purified by flash column chromatography (SiO2, hexanes/EtOAc = 1/1) to afford α,β-unsaturated 
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ketone 205 as an inseparable diastereoisomeric mixture and as colorless oil (2.74 g, 5.45 mmol, 76%). 

Spectral data match the previously reported values.
[237]

 

Rf = 0.21 (hexanes/EtOAc = 4/6, CAM). 

Note: NMR spectra are complex due to the presence of diastereoisomers.  

1
H NMR (400 MHz, CDCl3) δ = 7.03 – 6.89 (m, 2H), 6.81 (ddd, J = 10.4, 2.9, 1.2 Hz, 1H), 5.99 (ddd, 

J = 10.0, 5.3, 2.3 Hz, 2H), 4.27 (s, 2H), 4.05 (s, 3H), 2.65 – 2.43 (m, 4H), 2.43 – 2.26 (m, 2H), 2.22 –

2.06 (m, 1H), 1.84 – 1.52 (m, 5H), 1.52 – 1.39 (m, 18H), 1.40 – 1.25 (m, 1H), 1.03 – 0.79 (m, 1H). 

13
C NMR (100 MHz, CDCl3) δ = 199.3, 199.2, 155.5, 155.4, 153.7, 129.4, 129.1, 80.7, 51.2, 51.1, 

50.8, 50.7, 36.7, 36.6, 33.0, 32.5, 29.0, 28.9, 28.4, 28.4. 

HRMS (EI) for C28H42N2O6
∙+ 

[M]
∙+

: calcd.: 502.3037, found: 502.3032. 

IR (ATR):  ̃ = 3353 (w), 2973 (w), 2929 (w), 1737 (w), 1676 (s), 1392 (w), 1665 (m), 1245 (m), 

1153 (m), 1033 (w). 

    
   = –6.2 (c = 1.0, CH2Cl2). 

(3S,6S)-3,6-bis(4-methoxybenzyl)piperazine-2,5-dione (264) 

 

NaH (60% w/w in mineral oil, 515 mg, 12.9 mmol, 2.10 eq.) in DMF (47 mL) was cooled to 0 °C and 

diketopiperazine 164 (2.00 g, 6.13 mmol, 1.00 eq.; prepared according to Hutton and co-workers)
[211]

 

was added. After 30 minutes, MeI (1.14 mL, 18.4 mmol, 3.00 eq.) was added dropwise and the 

reaction mixture was stirred for 6 h while warming to room temperature. Then, it is cooled to 0 °C and 

saturated aqueous NH4Cl (30 mL) was added, followed by CHCl3 (50 mL) and i-PrOH (10 mL). The 

layers are separated and the aqueous layer is extracted with an 8/2 mixture of CHCl3/i-PrOH (2 x 50 

mL). The combined organic layers are washed with LiCl (10% w/w, 3 x 30 mL), brine (30 mL), dried 

over MgSO4 and filtered. The solvent is removed in vacuo and the resulting solid is triturated with 

MeOH (20 mL) and filtered to afford 234 as a white solid (1.85 g, 5.22 mmol, 85%).  

Rf = not determined. 

Melting point = 295 °C (decomposition). 

1
H NMR (400 MHz, DMSO) δ = 7.85 (d, J = 2.5 Hz, 2H), 6.95 (d, J = 8.3 Hz, 4H), 6.84 (d, J = 8.5 

Hz, 4H), 4.00 – 3.84 (m, 2H), 3.69 (s, 6H), 2.58 – 2.45 (m, 2H), 2.21 (dd, J = 13.7, 6.2 Hz, 2H). 

13
C NMR (100 MHz, DMSO) δ = 166.2, 158.0, 130.8, 128.4, 113.7, 55.5, 55.0, 38.4. 
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HRMS (ESI) for C20H23N2O4
+

 [M+H]
+
: calcd.: 355.1652, found 355.1651.  

IR (ATR):  ̃ = 3210 (w), 3051 (w), 2933 (w), 1674 (s), 1656 (s), 1612 (m), 1512 (s), 1456 (s), 1338 

(m), 1245 (m), 1179 (m), 1037 (m), 925 (w), 834 (m), 686 (w). 

    
   = –114.4 (c = 0.5, DMSO) 

(2S,5S)-2,5-bis(4-methoxybenzyl)piperazine (235) 

 

Diketopiperazine 234 (2.00 g, 5.64 mmol, 1.00 eq) was added to THF (46 ml) followed by BH3·THF 

complex (1 M in THF, 33.9 mL, 33.9 mmol, 6.00 eq.). The suspension was stirred for 1 h at room 

temperature. Then, the resulting solution was heated to reflux for 36 h. The hot solution was filtered 

(por. 4 glass frit) into a separate flask containing a teflon-coated stir bar and cooled to 0 °C. Then, HBr 

(30% in AcOH, 30.6 ml, 169 mmol, 30.0 eq) was added dropwise (gas evolution!), followed by 

hexane (50 mL). The resulting slurry was aged in a freezer (–24 °C for 12 h). The suspension was 

filtered, and the resulting light yellow solid was recrystallized from EtOH to afford 235 as light tan 

crystals (1.19 g, 2.44 mmol, 43%). 

Crystals suitable for X-ray analysis were grown from EtOH. 

Rf = not determined. 

1
H NMR (400 MHz, MeOD) δ = 7.41 – 7.31 (m, 4H), 7.01 – 6.91 (m, 4H), 4.00 (dtd, J = 9.2, 6.7, 

4.2 Hz, 2H), 3.79 (s, 6H), 3.48 (qd, J = 14.3, 5.4 Hz, 4H), 3.31 – 3.17 (m, 4H). 

13
C NMR (100 MHz, MeOD) δ = 160.98, 131.62, 126.80, 115.73, 55.77, 54.12, 42.32, 34.67 

HRMS (ESI) for C20H27N2O2
+

 [M+H]
+
: calcd.: 327.2076, found: 327.2068 

IR (ATR):  ̃ = 2902 (w), 2718 (m), 1612 (m), 1551 (w), 1514 (s), 1454 (m), 1433 (m), 1257 (s), 1177 

(s), 1097 (m), 1064 (m), 1034 (m), 961 (w), 838 (m), 740 (w), 666 (m). 

    
   =  –3.0 (c = 0.2, MeOH) 

di-tert-butyl (2S,5S)-2,5-bis(4-methoxybenzyl)piperazine-1,4-dicarboxylate (230) 
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Hydrobromide salt 235 (50 mg, 102 μmol, 1.00 eq.) was suspended in CH2Cl2 (650 μL) and Et3N was 

added (62.6 μL, 45.6 μmol, 4.40 eq.), followed by Boc2O (49.2 mg, 225 μmol, 2.20 eq.). After stirring 

for 24 hours, the reaction was diluted with CH2Cl2 (5 mL) and saturated aqueous NH4Cl (5 mL). The 

layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 10 mL). The combined 

organic layers were washed with brine (20 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure. Purification of the crude product by flash column chromatography (SiO2, 

hexanes/EtOAc = 9/1) gave 230 as a colorless oil (50 mg, 101 mmol, 98%).  

 Rf = 0.69 (hexanes/EtOAc = 8/2, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.03 – 6.97 (m, 4H), 6.83 – 6.76 (m, 4H), 4.04 (d, J = 7.7 Hz, 2H), 

3.79 (overlap, app s, 6H), 2.78 (dd, J = 13.4, 4.0 Hz, 2H), 2.59 (td, J = 13.1, 8.7 Hz, 4H), 1.43 

(s, 18H). 

13
C NMR (100 MHz, CDCl3) δ = 158.3, 155.1, 130.3, 129.1, 113.9, 80.0, 55.3, 54.5, 41.1, 37.1, 28.4. 

HRMS (ESI) for C30H43N2O6
+ 

[M+H]
+
: calcd.: 527.3116, found: 527.3124. 

IR (ATR):  ̃ = 2973 (w), 2933 (m), 2936 (m), 1688 (s), 1512 (s), 1456 (w), 1404 (m), 1392 (m), 1365 

(m), 1300 (m), 1246 (s), 1113 (m), 1035 (m), 944 (w), 879 (w), 767 (m). 

    
   = +33.4 (c = 2.11, CH2Cl2). 

di-tert-butyl-(2S)-2,5-bis((4-oxocyclohex-1-en-1-yl)methyl)piperazine-1,4-

dicarboxylate (207) 

 

Liquid ammonia (170 mL) was condensed into a three-neck round bottom flask fitted with a teflon-

coated stirbar and a dry ice condenser placed in a –78 °C cooling bath. A solution of 230 (2.10 g, 

3.99 mmol 1.00 eq) in t-BuOH (15 mL) and THF (50 mL) was added slowly. Lithium chips (553 mg, 

79.7 mmol, 20.00 eq.) with vigorous stirring.  The dark blue solution was stirred at –78 °C and the 

reaction progress was monitored by 
1
H NMR after evaporation of withdrawn reaction aliquots and 

dissolution in CDCl3. After 2 h the reaction was deemed complete and H2O was added until 

disappearance of the blue color. The cooling bath was removed and excess ammonia was allowed to 

evaporate under an N2 stream (ca. 6 h). The orange residue was taken up in water (200 mL) and 

extracted with Et2O (3 x 200 mL). The combined organic layers were washed with water (2 x 100 
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mL), brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo to afford the intermediate 

methyl enol ether (236), which was used directly for the next step. 

To a stirred solution of the intermediate methyl enol ether in dioxane (30 mL) was added aqueous HCl 

(1 M, 4 mL). After 2 h, pH 7 buffer (50 mL) and Et2O (50 mL) are added. The layers are separated and 

the aqueous layer was extracted with Et2O (3 x 50 mL). The combined organic layers were washed 

with water (2 x 100 mL), brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo. The 

resulting crude product was purified by flash column chromatography (SiO2, hexanes/EtOAc = 8/2) to 

afford 207 as colorless oil (1.31 g, 2.61 mmol, 66%). 

Note: 207 is sensitive to air oxidation and decomposes if stored at room temperature within 3 days. It 

can be stored in a benzene matrix at –25 °C for > 1 year, and routine manipulations can be 

performed. 

Rf = 0.29 (hexanes/EtOAc = 6/4, KMnO4). 

1
H NMR (400 MHz, CDCl3) δ = 5.48 (t, J = 3.6 Hz, 2H), 4.15 – 3.89 (m, 4H), 2.81 (d, J = 3.6 Hz, 

4H), 2.65 (dd, J = 14.2, 10.5 Hz, 2H), 2.56 – 2.28 (m, 10H), 2.06 (dd, J = 13.3, 8.3 Hz, 2H), 1.41 (s, 

18H). 

13
C NMR (100 MHz, CDCl3) δ = 210.1, 155.0, 134.9, 121.2, 80.3, 51.6, 41.8, 39.7, 38.7, 28.5. 

HRMS (ESI) for C28H46N3O6
+

 [M+NH4]
+
: calcd.: 520.3387, found: 520.3398. 

IR (ATR):  ̃ = 3419 (w), 3052 (w), 2929 (w), 2341 (w), 2177 (w), 2159 (s), 1690 (s), 1478 (w), 1405 

(m), 1366 (m), 1337 (m), 1264 (m), 1161 (m), 1114 (m), 1062 (m), 734 (m) 

    
   = +37.7 (c = 0.60, CH2Cl2). 

di-tert-butyl (2S,5S)-2,5-bis((4-((triethylsilyl)oxy)cyclohexa-1,3-dien-1-

yl)methyl)piperazine-1,4-dicarboxylate (237) 

 

A solution of 207 (107 mg, 213 μmol, 1.00 eq.) in THF (2 mL) was cooled to –78 °C and a solution of 

LiHMDS (1M in THF, 468 μL, 468 μmol, 2.20 eq.) was added dropwise. After 45 min, Et3SiCl was 

introduced and the reaction was allowed to warm to room temperature over the course of 8 hours. 

Then, pH 7 buffer (4 ml) was added, followed by EtOAc (10 mL). The organic layer was separated 

and the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic layers were 

washed with brine (10 mL), dried over Na2SO4 and filtered over a plug of silica gel (2 x 2 cm, elution 

with EtOAc). The solvent was removed in vacuo to afford 237 (110 mg, 150 μmol 71%). 
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Note: 237 degrades upon storage at room temperature neat and in solution (CDCl3) within 3 days. 

Rf = 0.81 (hexanes/EtOAc = 9/1, UV 254 nm, KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.54 (d, J = 5.9 Hz, 2H), 5.02 (d, J = 5.9 Hz, 2H), 4.00 (s, 4H), 2.68 (d, J = 

14.2 Hz, 2H), 2.43 – 2.31 (m, 2H), 2.31 – 2.14 (m, 7H), 2.05 (dd, J = 13.2, 9.0 Hz, 2H), 1.45 (s, 18H), 0.97 (t, J 

= 7.9 Hz, 18H), 0.72 – 0.59 (m, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 166.2, 158.0, 130.8, 128.4, 113.7, 55.5, 55.0, 40.1, 39.9, 39.7, 39.5, 39.3, 

39.1, 38.9, 38.4. 

(2Z,4Z)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-2,4-diene (268) 

 

A solution of TMEDA (35 mL, 231 mmol, 2.10 eq.) in hexanes (40 mL) was cooled to –30 °C and 

n-BuLi (11 M in hexanes, 20.5 mL, 225 mmol 2.05 eq.) was added dropwise and the resulting light 

yellow slurry was vigorously stirred until homogeneous.  Hexadiene (13.1 mL, 110 mmol, 1.00 eq.) 

was added dropwise. After complete addition, the flask was sealed with a glass stopper and allowed to 

warm to room temperature over the course of 24 hours. The resulting dark red mixture was shaken 

manually to triturate solid aggregates and is cooled to –78 °C while Et2O (114 mL) was added under 

vigorous stirring. A precooled (–78 °C, jacketed addition funnel) solution of i-PrOBpin (50 mL, 

242 mmol, 2.20 eq.) in Et2O (57 mL) was added dropwise under vigorous stirring (700 rpm). The 

reaction mixture solidifies after addition of approx. 75% of the solution. The setup is allowed to reach 

room temperature over the course of 24 h. Then, saturated aqueous NH4Cl (200 mL) and Et2O 

(300 mL) were added and the mixture was vigorously shaken and triturated with a glass rod to ensure 

adequate mixing. The mixture is filtered through a glass frit (por. 3), the aqueous phase is separated 

and extracted with Et2O (2 x 200 mL). The combined organic layers are washed with brine (300 mL), 

dried over MgSO4 and filtered. The solvent is removed in vacuo and the crude product is dissolved in 

hexanes (50 mL) and left to crystallize at –24 °C. The mother liquor is removed by syringe and hexane 

(30 mL) is added. After aging at –24 °C for further 6 h, the resulting off-white solid is collected by 

filtration (14.06 g, 42.0 mmol, 39%). 

Crystals suitable for X-ray analysis were obtained from pentane by slow evaporation under N2. 

Note: 268 degrades upon prolonged exposure to silica gel. It can be purified in a Kugelrohr apparatus 

(oven temperature = 163 to 245 °C at 2.5 x 10
-2

 mbar) 

Rf = 0.6 (hexanes/Et2O = 8/2, UV 254 nm, CAM). 

Melting point = 67.1 °C. 
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1
H NMR (400 MHz, CDCl3) δ = 6.31 – 6.21 (m, 1H), 5.56 (dt, J = 9.7, 7.6 Hz, 1H), 1.82 (d, J = 8.2 Hz, 2H), 

1.24 (s, 21H). 

13
C NMR (150 MHz, CDCl3) δ = 126.2, 123.8, 83.4, 24.9. 

Note: The peak belonging to the boron-bound carbon was not observed due to quadrupolar 

relaxation. 

HRMS (EI) for C18H32B2O4
∙+ 

[M]
∙+

: calcd.: 334.2487, found: 334.2479. 

IR (ATR):  ̃ = 3403 (w), 2978 (w), 2931 (w), 2166 (w), 1986 (w), 1596 (w), 1479 (w), 1467 (w), 

1379 (m), 1369 (s), 1319 (s), 1271 (m), , 1213 (w), 1164 (m), 983 (w), 964 (m), 844 (m), 817 (w). 

Rac-(4S,5R,Z)-7-phenyl-4-vinylhept-2-ene-1,5-diol (279) 

 

Allylpinacolboronate 268 (167 mg, 500 µmol, 1.00 eq., dried by azeotropic evaporation from benzene) 

was dissolved in toluene (3 mL) and 3-phenylpropionaldehyde (79 µL, 600 µmol, 1.20 eq.) was added 

dropwise and the resulting clear solution was stirred for 3 days at room temperature. After cooling to 

0 °C, THF (3 mL) was added, followed by aqueous NaOH (10% w/w, 600 µL, 1.02 mmol 3.00 eq.) 

and aqueous H2O2 (30% w/w, 610 µL, 6.00 mmol 12.00 eq.). After warming to room temperature over 

the course of 2 h, saturated aqueous NH4Cl (10 mL) was added, followed by EtOAc (20 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined 

organic layers were washed brine (30 mL), dried over MgSO4 and filtered. The solvent was removed 

in vacuo and the crude product was purified by flash column chromatography (SiO2, hexanes/EtOAc = 

7/3) to afford 278 as colorless oil and as a 9/1 mixture of diastereomers (78 mg, 336 µmol, 67%).  

Note: 278 is copolar with pinacol and separation can only be achieved by careful chromatography 

(staining with PAA). Alternatively, pinacol can be removed by azeotropic removal using MeOH and 

H2O according to Aggarwal and coworkers, or by submitting the crude reaction mixture to NaIO4.
[337]

 

The diastereomers of 278 could also be separated by semipreparative HPLC (Dynamax Microsorb 

60-8 C18, 250 x 21.4 mm; H2O/Acetonitrile containing 0.1% formic acid; gradient: 5% to 50% 

acetonitrile over 55 minutes; flow rate 20 mL/min; detection at 210 nm; tR major isomer = 38.7 min; tR 

minor isomer = 40.0 min) Spectral data match the previously reported values.
[316]

  

Data for syn-279 (major isomer) 

Rf = 0.23 (hexanes/EtOAc = 1/1, PAA).  

1
H NMR (600 MHz, CHCl3) δ = 7.32 – 7.16 (m, 5H), 5.89 – 5.68 (m, 2H), 5.50 (ddt, J = 11.1, 9.9, 1.3 Hz, 

1H), 5.21 – 5.06 (m, 2H), 4.26 – 4.11 (m, 2H), 3.56 (ddd, J = 9.4, 6.3, 2.6 Hz, 1H), 3.22 (dddd, J = 10.0, 7.5, 6.3, 
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1.2 Hz, 1H), 2.85 (ddd, J = 13.7, 10.0, 5.1 Hz, 1H), 2.65 (ddd, J = 13.7, 9.6, 6.8 Hz, 1H), 1.86 (dddd, J = 13.9, 

9.7, 6.8, 2.6 Hz, 1H), 1.64 (dtd, J = 14.5, 9.7, 5.2 Hz, 2H). 

13
C NMR (150 MHz, CHCl3) δ = 142.0, 137.5, 131.0, 130.9, 128.6, 128.6, 126.0, 117.4, 73.1, 58.6, 49.1, 

35.6, 32.5. 

HRMS (ESI) for C15H21O2
+ 

[M+H]
+
: calcd.: 233.1536, found: 233.1539. 

IR (ATR):  ̃ = 3332 (br), 3083 (w), 3024 (w), 2919 (w), 2861 (w), 2361 (w), 2340 (w), 1949 (w), 

1635 (w), 1602 (w), 1495 (w), 1454 (m),  1417 (w), 1316 (w), 1154 (w), 1132 (w), 1029 (s), 823 (w), 

747 (s), 699 (s), 668 (s). 

 

Data for anti-279 (minor isomer) 

Rf = 0.23 (hexanes/EtOAc = 1/1, PAA).  

1
H NMR (600 MHz, CHCl3) δ = 7.47 – 7.07 (m, 5H), 5.93 (dt, J = 10.6, 6.9 Hz, 1H), 5.76 (ddd, J = 17.5, 9.9, 

7.7 Hz, 1H), 5.59 (td, J = 10.4, 9.8, 1.2 Hz, 1H), 5.20 – 5.09 (m, 2H), 4.28 (ddd, J = 12.5, 7.4, 1.4 Hz, 1H), 4.14 

(ddd, J = 12.6, 6.4, 1.0 Hz, 1H), 3.55 (ddd, J = 9.1, 7.3, 2.9 Hz, 1H), 3.28 – 3.17 (m, 1H), 2.92 (ddd, J = 13.7, 

10.0, 5.1 Hz, 1H), 2.72 (ddd, J = 13.7, 9.7, 6.8 Hz, 1H), 1.95 (dddd, J = 14.0, 9.9, 6.8, 2.9 Hz, 1H), 1.75 (dtd, J = 

14.3, 9.5, 5.1 Hz, 1H). 

13
C NMR (150 MHz, CHCl3) δ = 142.1, 137.5, 131.8, 130.9, 128.6, 128.5, 126.0, 117.0, 72.5, 58.3, 49.4, 

36.3, 32.1. 

(3R,4S,5R,6S)-1,8-diphenyl-4,5-divinyloctane-3,6-diol (278) 

 

Allylpinacolboronate 268 (170 mg, 509 µmol, 1.00 eq., dried by azeotropic evaporation from benzene) 

was dissolved in THF (5 mL) and was cooled to –78 °C. Then, n-BuLi (2.5 M in hexanes, 448 µL, 

1.12 mmol, 2.20 eq.) was added dropwise and the light red colored solution was stirred for 15 minutes 

at 78 °C. Afterwards, TFAA (171 µL, 1.23 mmol, 2.40 eq.) was added dropwise and the resulting 

white suspension was stirred for 30 min. Then, a solution of 3-phenylpropionaldehyde (201 µL, 

1.53 mmol, 3.00 eq.) was added dropwise and the resulting mixture was left to warm to room 

temperature over the course of 16 h. After cooling to 0 °C, aqueous NaOH (10% w/w, 407 µL, 

1.02 mmol 2.00 eq.) was added, followed by aqueous H2O2 (30% w/w, 520 µL, 5.09 mmol 10.00 eq.). 

After warming to room temperature over the course of 2 h, saturated aqueous NH4Cl (20 mL) was 

added, followed by EtOAc (20 mL). The layers were separated and the aqueous layer was extracted 

with EtOAc (2 x 20 mL). The combined organic layers were washed brine (30 mL), dried over MgSO4 
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and filtered. The solvent was removed in vacuo and the crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 9/1 to 8/2) to afford 278 as colorless oil that solidified upon 

standing (109 mg, 311 µmol, 61%).  

Crystals suitable for X-ray analysis were obtained from hexane/i-Pr2O. 

Rf = 0.30 (hexanes/EtOAc = 8/2, PAA).  

Melting point = 86.8 – 88.5 °C. 

1
H NMR (400 MHz, CHCl3) δ = 7.20 – 7.11 (m, 4H), 7.09 – 7.02 (m, 5H), 5.52 (dt, J = 17.1, 10.0 Hz, 

2H), 5.05 – 4.89 (m, 4H), 3.54 (ddd, J = 10.0, 5.7, 2.4 Hz, 2H), 2.73 (ddd, J = 13.6, 10.2, 5.1 Hz, 2H), 

2.47 (ddd, J = 13.7, 9.8, 6.6 Hz, 2H), 2.32 – 2.19 (m, 4H), 1.71 (dddd, J = 14.1, 10.1, 6.7, 2.4 Hz, 2H), 

1.42 (dtd, J = 14.9, 9.8, 5.1 Hz, 2H). 

13
C NMR (100 MHz, CHCl3) δ = 142.3, 136.8, 128.6, 128.5, 125.9, 118.8, 71.5, 52.5, 35.6, 32.4. 

HRMS (ESI) for C24H31O2
+ 

[M+H]
+
: calcd.: 351.2319, found: 351.2327. 

IR (ATR):  ̃ = 3344 (b, w), 3064 (w), 3002 (w), 2860 (w), 1944 (w), 1706 (m), 1637 (w), 1603 (w), 

1584 (w), 1495 (m), 1453 (m), 1419 (m),  1220 (w), 1042 (m), 1030 (m), 999 (m), 916 (s),  844 (w), 

819 (m), 746 (s), 697 (s). 

2-benzylacrylaldehyde (283) 

 

To a solution of 3-phenylpropionaldehyde (2.90 mL, 22.0 mmol, 1.00 eq.) in CH2Cl2 (55 mL) were 

added formaldehyde (37% w/w in H2O, 1.98 ml, 26.4 mmol, 1.20 eq.), pyrrolidine (181 μL, 2.20 

mmol, 0.10 eq) and 4-Dimethylaminobenzoic acid (363 mg, 2.20 mmol, 0.10 eq.). The mixture was 

heated to 35 °C for 2 h. Afterwards, the solution was cooled to room temperature and saturated 

aqueous NaHCO3 (50 mL) was added. The organic layer was separated, and the aqueous layer was 

extracted with CH2Cl2 (2 x 30 mL). The combined organic layers were washed with brine, dried over 

MgSO4, filtered and concentrated in vacuo. The resulting oil was purified by flash column 

chromatography (SiO2, hexane/Et2O = 9/1) to afford 283 as a colorless oil (1.975 g, 13.5 mmol, 61%). 

Spectral data match the previously reported values.
[319]

 

Rf  = 0.52 (hexanes/Et2O = 9/1, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 9.57 (s, 1H), 7.29 – 7.11 (m, 5H), 6.08 – 6.05 (m, 1H), 

6.03 (d, J = 0.9, 1H), 3.53 (t, J = 1.1, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 194.1, 149.8, 138.2, 135.4, 129.3, 128.7, 126.6, 34.3. 



Part II: Experimental Procedures 

215 

HRMS (EI) for C10H10O
·+

: calcd.: 146.0732 [M]
·+

, found: 146.0708. 

IR (ATR):  ̃ = 3361 (w), 3086 (w), 3029 (w), 2922 (w), 2700 (w), 1686 (s), 1602 (w), 1496 (m), 1453 

(m), 1344 (w), 1313 (w), 1245 (w), 1075 (w), 950 (m), 737 (m), 698 (s). 

2-benzylprop-2-en-1-ol (284) 

 

Aldehyde 283 (2.70 g, 18.5 mmol, 1.00 eq.) was dissolved in MeOH (22 mL). CeCl3·H2O (8.95 g, 

24.00 mmol, 1.30 eq.) was added and the solution was cooled to 0 °C. NaBH4 (838 mg, 22.2 mmol, 

1.20 eq.) was added slowly (gas evolution) and the mixture was allowed to warm to room temperature 

for 2 h. Saturated aqueous NaHCO3 (20 mL) was added and the aqueous layer was and extracted with 

EtOAc (3 x 20 mL). The combined organic layers were washed with brine (25 mL), dried over MgSO4 

and concentrated in vacuo. The crude product was purified by flash column chromatography (SiO2, 

hexanes/EtOAc = 8/2) to afford allylic alcohol 284 (1.65 g, 11.10 mmol, 60%) as colorless oil. 

Spectral data match the previously reported values.
[338]

 

Rf  = 0.78 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.34 – 7.28 (m, 2H), 7.25 – 7.20 (m, 3H), 5.13 (q, J = 1.6 Hz, 1H), 

4.91 (p, J = 1.3 Hz, 1H), 4.04 (s, 2H), 3.42 (s, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 148.3, 139.1, 129.0, 128.5, 126.4, 111.5, 65.4, 40.0. 

HRMS (EI) for C10H12O
·+

 [M]
·+

: calcd.: 148.0888, found: 148.0881. 

IR (ATR):  ̃ = 3321 (br, w), 3027 (w), 2915 (w), 1882 (w), 1650 (w), 1494 (m), 1452 (m), 1432 (w), 

1226 (w), 1154 (w), 1054 (m), 899 (m), 739 (m), 696 (s). 

4-benzyl-N,N-dimethylpent-4-enamide (285) 

 

Alcohol 284 (1.66 g, 11.2 mmol, 1.00 eq.) was dissolved in toluene (48 mL) and 

N,N-dimethylacetamide dimethyl acetal (2.46 mL, 16.8 mmol, 1.50 eq.) was added. The colorless 

solution was heated to 110 °C open to air and a gentle stream of N2 was bubbled through the solvent 

via a thin glass capillary to remove liberated MeOH. After 3 h, the resulting yellow solution was 

cooled to room temperature and the volatiles were removed in vacuo. The crude product was purified 
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by flash column chromatography (SiO2, hexanes/EtOAc = 7/3) to give 285 (2.23 g, 10.3 mmol, 92%) 

as colorless oil. 

Rf  = 0.18 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.37 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 4.86 (dd, J = 14.7, 1.9 Hz, 

2H), 3.41 (s, 2H), 2.94 (d, J = 1.6 Hz, 6H), 2.53 – 2.29 (m, 4H). 

13
C NMR (100 MHz, CDCl3) δ = 172.2, 148.0, 139.3, 128.8, 128.2, 126.0, 111.2, 43.3, 37.0, 35.2, 

31.6, 30.5. 

HRMS (ESI) for C14H20ON
+

 [M+H]
+
: calcd.: 217.1467, found: 218.1537. 

IR (ATR):  ̃ = 3062 (w), 2917 (w), 1946 (w), 1639 (s), 1493 (m), 1452 (m), 1432 (w), 1395 (m), 

1265 (m), 1137 (m), 1029 (w), 981 (w), 891 (m), 828 (w), 735 (m), 699 (s). 

4-benzylpent-4-enal (286) 

 

Amide 285 (1037 mg, 4.77 mmol, 1.00 eq.) was dissolved in THF (24 ml), cooled to 0 °C and 

Ti(Oi-Pr)4 (1.50 ml, 5.01 mmol, 1.05 eq.) was added. Then, diphenylsilane (1022 μL, 5.49 mmol, 1.15 

eq.) was added dropwise and the resulting solution was stirred for 15 h while warming to room 

temperature. Then, the solution was cooled to 0 °C and aqueous HCl (1 M, 10 mL) was added slowly 

(exotherm!) and a white precipitate was observed. Et2O (30 mL) was added, the phases were separated 

and the aqueous layer was extracted with Et2O (2 x 30 mL). The combined organic layers were 

washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The resulting crude product 

was purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 7/3) to afford 286 as 

colorless oil (587 mg, 3.37 mmol, 70%). Spectral data match the previously reported values.
[151]

 

Rf  = 0.29 (hexanes/EtOAc = 7/3, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 9.72 (t, J = 1.7, 1H), 7.34 – 7.28 (m, 2H), 7.25 – 7.16 (m, 2H), 4.85 

(dd, J = 8.6, 1.4, 2H), 3.38 (s, 2H), 2.56 (td, J = 7.5, 1.7, 2H), 2.35 – 2.29 (m, 2H).
 
 

13
C NMR (100 MHz, CDCl3) δ = 202.1, 147.0, 139.2, 129.0, 128.5, 126.4, 112.0, 43.5, 41.8, 27.5. 

HRMS (EI) for C12H14O
·+ 

[M]
·+

: calcd.: 174.1045, found: 174.1042. 

IR (ATR):  ̃ = 3431 (br, w), 3066 (w), 3026 (w), 2918 (w), 2724 (w), 2362 (w), 2138 (w), 1950 (w), 

1722 (m), 1645 (w), 1601 (w), 1591 (w), 1494 (w), 1452 (w), 1429 (m), 1388 (w), 1335 (w), 1262 

(w), 1182 (w), 1124 (m), 1074 (m), 1028 (m), 997 (w), 949 (w), 893 (m), 822 (w), 737 (m), 716 (m), 

697 (s). 
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(5R,6S,7R,8S)-2,11-dibenzyl-6,7-divinyldodeca-1,11-diene-5,8-diol (287)  

 

Allylpinacolboronate 268 (511 mg, 1.53 mmol, 1.00 eq., dried by azeotropic evaporation from 

benzene) was dissolved in THF (15 mL) and was cooled to –78 °C. Then, n-BuLi (2.3 M in hexanes, 

1.46 mL, 3.37 mmol, 2.20 eq.) was added dropwise and the light red colored solution was stirred for 

15 minutes at 78 °C. Afterwards, TFAA (515 µL, 3.7 mmol, 2.40 eq.) was added dropwise and the 

resulting white suspension was stirred for 30 min. Then, a solution of aldehyde 286 (587 mg, 

3.37 mmol, 2.20 eq.) in THF (1 mL) was added dropwise and the resulting mixture was left to warm to 

room temperature over the course of 16 h. After cooling to 0 °C, aqueous NaOH (10% w/w, 1.22 mL, 

3.06 mmol, 2.00 eq.) was added, followed by aqueous H2O2 (30% w/w, 1.56, 15.3 mmol, 10.00 eq.). 

After warming to room temperature over the course of 2 h, saturated aqueous NH4Cl (30 mL) was 

added, followed by EtOAc (50 mL). The layers were separated and the aqueous layer was extracted 

with EtOAc (2 x 50 mL). The combined organic layers were washed brine (50 mL), dried over MgSO4 

and filtered. The solvent was removed in vacuo and the crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 9/1) to afford 287 as colorless oil (440 mg, 1.02 µmol, 

67%).  

Rf = 0.66 (hexanes/EtOAc = 8/2, PAA, violet). 

1
H NMR (400 MHz, CDCl3) δ = 7.31 – 7.25 (m, 4H), 7.22 – 7.16 (m, 6H), 5.74 – 5.60 (m, 2H), 5.17 – 

5.04 (m, 4H), 4.81 (dd, J = 30.5, 1.8 Hz, 4H), 3.59 (ddd, J = 9.3, 5.7, 2.4 Hz, 2H), 3.34 (s, 4H), 2.41 

(s, 2H), 2.37 – 2.28 (m, 2H), 2.19 (ddd, J = 15.0, 10.0, 5.1 Hz, 2H), 1.98 (ddd, J = 15.3, 9.7, 6.5 Hz, 

2H), 1.69 (dddd, J = 13.9, 10.0, 6.3, 2.6 Hz, 2H), 1.45 – 1.23 (m, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 149.0, 139.7, 137.1, 129.1, 128.4, 126.2, 118.4, 111.5, 71.6, 52.4, 

43.2, 31.9, 31.8. 

HRMS (ESI) for C30H39O2
+

 [M+H]
+
: calcd.: 431.2945, found: 431.2945. 

IR (ATR):  ̃ = 3697 (w), 3663 (w), 3275 (w), 3072 (w), 1805 (w), 1642 (m), 1511 (w), 1494 (m), 

1452 (m), 1332 (w), 1072 (m), 999 (w), 915 (m), 734 (s), 697 (s). 
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(1R,1'S,2S,2'R)-5,5'-dibenzyl-[1,1'-bi(cyclohexane)]-5,5'-diene-2,2'-diol (288) 

 

A solution of 287 (113 mg, 262 µmol, 1.00 eq) in CH2Cl2 (10.8 mL) was deoxygenated by subsurface 

purging of N2 for 20 min. Then, HG2 (16.5 mg, 26.2 µmol, 0.1 eq.) was added and the green solution 

was heated to 40 °C. After 24 h, the brown solution was cooled to room temperature and the solvent 

was removed in vacuo. The resulting crude product was purified by flash column chromatography 

(SiO2, hexanes/EtOAc = 9/1 to 1/1) to afford 288 as a light grey solid (56 mg, 150 µmol, 57%). 

Crystals suitable for X-ray analysis were obtained from CH2Cl2 by slow evaporation. 

Rf = 0.32 (hexanes/EtOAc = 2/1, CAM). 

Melting point = 141.1 – 143.5 °C. 

1
H NMR (400 MHz, CDCl3) δ = 7.28 – 7.14 (m, 4H), 7.15 – 7.10 (m, 2H), 7.08 – 7.03 (m, 4H), 5.07 

(q, J = 1.6, 2H), 3.73 (ddd, J = 11.2, 7.9, 3.6, 2H), 3.19 (s, 4H), 2.38 (dt, J = 8.0, 2.2, 2H), 2.27 (s, 

2H), 1.96 – 1.87 (m, 4H), 1.80 (dq, J = 12.1, 4.0, 2H), 1.53 (tt, J = 11.9, 8.7, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 139.9, 138.8, 128.8, 128.3, 126.1, 123.8, 69.6, 45.8, 44.0, 31.9, 27.4. 

HRMS (ESI) for C26H34NO2
+

 [M+NH4]
+
: calcd.: 392.2584, found: 392.2588. 

IR (ATR):  ̃ = 3300 (br, w), 2930 (w), 2828 (w), 1599 (w), 1349 (w), 1224 (w), 1157 (w), 1080 (m), 

1038 (m), 785 (w), 746 (w), 699 (s), 597 (m). 

7-((4-methoxybenzyl)oxy)-4-methyleneheptan-1-ol (291) 

 

 

To a solution of 289 (891 mg, 5.00 mmol, 1.0 eq.) in THF (10 mL) at 0 °C was added 

9-Borabicyclo[3.3.1]nonane (0.5 M in THF, 12.0 mL, 6.00 mmol, 1.2 eq.) and the reaction mixture 

was stirred for 2 h. In a separate flask, a solution of Cs2CO3 (3.25 g 10.0 mmol, 2 eq.) in H2O (5 mL) 

and DMF (10 mL) was deoxygenated by subsurface purging with N2 for 20 minutes. Then, the 

reaction mixture containing hydroborated 289 was added to the Cs2CO3 solution via cannula. 

Thereafter, 2
nd

 generation SPhos palladacycle (90.3 mg, 125 µmol, 0.025 eq.), SPhos (51.3 mg, 

125 µmol, 0.025 eq.), and 290 (825 mg, 5.00 mmol, 1.0 eq., prepared according to Hoveyda and 
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Gao)
[323]

 were added. The resulting orange mixture was heated to 40°C for 2 h. Then, it was cooled to 

room temperature and saturated aqueous NH4Cl (30 mL) was added, followed by EtOAc (30 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined 

organic layers were washed with LiCl (10% w/w, 3 x 30 mL), brine (30 mL), dried over MgSO4, 

filtered and concentrated in vacuo. The crude product was purified by flash column chromatography 

(SiO2, hexanes/EtOAc = 8/2 to 1/1) to afford 291 as colorless oil (810 mg, 3.06 mmol, 61%).  

Rf = 0.50 (hexanes/EtOAc = 1/1, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.29 – 7.23 (m, 2H), 6.92 – 6.84 (m, 2H), 4.77 – 4.72 (m, 2H), 4.43 

(s, 2H), 3.81 (s, 3H), 3.69 – 3.60 (m, 2H), 3.45 (t, J = 6.5 Hz, 2H), 2.10 (t, J = 7.7 Hz, 4H), 1.78 – 1.65 

(m, 4H). 

13
C NMR (100 MHz, CDCl3) δ = 159.2, 148.9, 130.8, 129.4, 129.4, 113.9, 109.5, 72.7, 69.8, 62.9, 

55.4, 32.6, 32.5, 30.8, 28.0. 

HRMS (ESI): for C16H25O3
+ 

[M+H]
+ 

calcd.: 265.1798, found: 265.1798.
 

IR (ATR):  ̃ = 3379 (br, w), 2397 (m), 1612 (m), 1513 (m), 1548 (w), 1502 (w), 1462 (w), 1302 (m), 

1247 (s), 1173 (m), 1099 (m), 1035 (w), 861 (w), 820 (m), 611 (w), 556 (w). 

7-((4-methoxybenzyl)oxy)-4-methyleneheptanal (292) 

 

To solution of DMSO (537 µL, 7.57 mmol, 4.00 eq.) in CH2Cl2 (9 mL) at –78°C was added oxalyl 

chloride (2.0 M in CH2Cl2, 1.89 mL, 3.78 mmol, 2.00 eq.) dropwise. After complete addition, the 

reaction mixture was stirred at –78 °C for 15 min. Then a solution of 291 (500 mg, 1.89 mmol, 

1.00 eq.) in CH2Cl2 (128 mL) was added dropwise. After complete addition the reaction mixture was 

stirred at –78°C for 45 min, followed by the dropwise addition of Et3N (1.57 mL, 11.3 mmol, 6.00 eq.) 

at the same temperature. The cooling bath was removed, and the reaction was stirred for 1 h. Water 

(100 mL) was added, and the aqueous phase was extracted with CH2Cl2 (2 x 100 mL). The combined 

organic phases were washed successively with aqueous HCl (1 M, 100 mL) saturated aqueous 

NaHCO3 (100 mL) and brine (100 mL), dried over MgSO4, filtered, and concentrated in vacuo. 

Purification by flash column chromatography (SiO2, hexanes/EtOAc = 8/2) afforded aldehyde 292 

(450 mg, 1.72 mmol, 91%) as a clear oil. It was immediately used for the next step (synthesis of 293) 

without further purification. 
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 (7R,8S,9R,10S)-1,17-bis((4-methoxybenzyl)oxy)-4,14-dimethylene-8,9-

divinylheptadecane-7,10-diol (293) 

 

Allylpinacolboronate 268 (287 mg, 858 µmol, 1.00 eq., dried by azeotropic evaporation from benzene) 

was dissolved in THF (6 mL) and was cooled to –78 °C. Then, n-BuLi (2.14 M in hexanes, 882 µL, 

1.89 mmol, 2.20 eq.) was added dropwise and the light red colored solution was stirred for 15 minutes 

at 78 °C. Afterwards, TFAA (289 µL, 2.08 mmol, 2.40 eq.) was added dropwise and the resulting 

white suspension was stirred for 30 min. Then, a solution of aldehyde 292 (450 mg, 1.72 mmol, 

2.00 eq.) in THF (3 mL) was added dropwise and the resulting mixture was left to warm to room 

temperature over the course of 16 h. After cooling to 0 °C, aqueous NaOH (10% w/w, 1.02 mL, 

2.57 mmol 3.00 eq.) was added, followed by aqueous H2O2 (30% w/w, 964 µL, 9.43 mmol 11.00 eq.). 

After warming to room temperature over the course of 2 h, saturated aqueous NH4Cl (20 mL) was 

added, followed by EtOAc (20 mL). The layers were separated and the aqueous layer was extracted 

with EtOAc (2 x 20 mL). The combined organic layers were washed brine (30 mL), dried over MgSO4 

and filtered. The solvent was removed in vacuo and the crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 9/1 to 3/7) to afford 293 as colorless oil (208 mg, 461 µmol, 

54%).  

Rf  = 0.45 (hexanes/EtOAc = 1/1, UV 254 nm, PAA). 

1
H NMR (400 MHz, CDCl3) δ  = 7.31 – 7.21 (m, 4H), 6.92 – 6.83 (m, 4H), 5.68 (ddd, J = 17.1, 11.2, 

8.5 Hz, 2H), 5.24 – 5.00 (m, 4H), 4.73 (s, 4H), 4.42 (s, 4H), 3.80 (s, 6H), 3.69 – 3.58 (m, 2H), 3.44 (t, 

J = 6.5 Hz, 4H), 2.41 – 2.32 (m, 3H), 2.23 (ddd, J = 14.9, 9.9, 5.1 Hz, 3H), 2.14 – 1.92 (m, 6H), 1.85 – 

1.54 (m, 6H), 1.34 (dtd, J = 14.6, 9.7, 5.2 Hz, 2H). 

13
C NMR (100 MHz, CDCl3) δ = 159.1, 149.2, 137.0, 130.7, 129.3, 118.4, 113.8, 109.3, 72.6, 71.7, 

69.7, 55.3, 52.4, 32.5, 32.4, 31.8, 27.8. 

HRMS (ESI) for C38H58NO6
+

 [M+H]
+
: calcd.: 624.4259, found: 624.4279. 

IR (ATR):  ̃ = 3374 (br, w), 3073 (w), 2936 (w), 2857 (w), 1612 (m), 1512 (m), 1463 (w), 1245 (s), 

1172 (m), 1097 (m), 1034 (m), 912 (m), 819 (m), 731 (s), 574 (m). 
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(1R,1'S,2S,2'R)-5,5'-bis(3-((4-methoxybenzyl)oxy)propyl)-[1,1'-bi(cyclohexane)]-

5,5'-diene-2,2'-diol (294) 

 

A solution of 293 (22 mg, 36.3 µmol, 1.00 eq) in toluene (1.45 mL) was deoxygenated by subsurface 

purging of N2 for 20 min. Then, HG2 (2.27 mg, 3.63 µmol, 0.1 eq.) was added and the green solution 

was heated to 90 °C. After 4 h, the brown solution was cooled to room temperature and the solvent 

was removed in vacuo. The resulting crude product was purified by flash column chromatography 

(SiO2, hexanes/EtOAc = 1/1 to EtOAc) to afford 294 as a colorless oil (15 mg, 27.2 µmol, 75%). 

Rf = 0.58 (EtOAc, UV 254 nm, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.18 (dd, J = 8.3, 1.8 Hz, 4H), 6.86 – 6.74 (m, 4H), 4.97 (s, 2H), 4.34 

(s, 4H), 3.72 (s, 8H), 3.34 (t, J = 6.6 Hz, 2H), 2.36 – 2.18 (m, 2H), 2.04 – 1.89 (m, 4H), 1.88 – 1.79 

(m, 1H), 1.70 – 1.48 (m, 8H). 

13
C NMR (100 MHz, CDCl3) δ = 159.1, 138.7, 130.7, 129.3, 121.9, 113.8, 72.6, 69.7, 69.7, 55.3, 45.8, 

33.8, 31.9, 27.9, 27.6. 

HRMS (ESI) for C34H50NO6
+

 [M+NH4]
+
: calcd.: 568,3638, found 568.3647. 

IR (ATR):  ̃ = 3377 (br, w), 2926 (m), 2855 (m), 1725 (w), 1691 (w), 1658 (w), 1513 (w), 1462 (w), 

1365 (w), 1302 (w), 1247 (m), 1173 (m), 1097 (m), 1035 (m), 819 (w), 612 (w). 

tert-butyl (S)-(1,5-dihydroxypentan-2-yl)carbamate (297) 

 

L-glutamic acid (20.0 g, 135.9 mmol, 1.00 eq.) was dissolved in MeOH (220 mL) and the solution was 

cooled to 0 °C. TMSCl (64.9 g, 598.1 mmol, 4.40 eq.) was added dropwise and the reaction mixture 

was stirred at room temperature for 16 hours.  
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The resulting solution containing L-glutamic acid dimethyl ester (295) was cooled to 0 °C and Et3N 

(146 mL, 1052 mmol, 6.50 eq.) was added dropwise. Then, a solution of Boc2O (38.9 g, 178.1 mmol, 

1.10 eq.) in MeOH (80 mL) was added slowly and the reaction mixture was stirred at room 

temperature for 24 h. The solvent was removed in vacuo and the residue was dissolved in water (100 

mL). The aqueous layer was extracted with EtOAc (3 x 100 mL), the combined organic layers were 

washed with water (150 mL) and brine (150 mL), dried over MgSO4 and concentrated in vacuo. 

The crude product (296) was dissolved in THF (250 mL) and MeOH (50 mL) and the solution was 

cooled to 0 °C. NaBH4 (16.6 g, 438 mmol, 4.00 eq.) was added slowly (gas evolution!). The mixture 

was stirred for 24 h and allowed to warm to room temperature. The solvent was removed under 

reduced pressure and the residue was diluted in water (200 mL). Citric acid was added until pH = 6. 

The aqueous solution was extracted with EtOAc (3 x 150 mL) and the combined organic layers were 

dried over MgSO4 and concentrated in vacuo. The resulting crude product 297 was used in the next 

step without purification. An aliquot was purified by flash column chromatography (SiO2, 

hexanes/EtOAc = 7/3) for analysis. Spectral data match the previously reported values.
[325]

 

Rf = 0.10 (hexanes/EtOAc = 8/2, CAM). 

Note: NMR spectra are complex due to the presence of rotamers.  

1
H NMR (400 MHz, CDCl3) δ = 4.86 (br s, 1H), 3.84-3.50 (m, 5H), 2.84 (br s, 1H), 2.29 (br s, 1H), 

1.85–1.55 (m, 3H), 1.52–1.28 (m, 10H). 

13
C NMR (100 MHz, CDCl3) δ = 156.7, 79.8, 79.4, 65.6, 62.5, 62.0, 52.5, 50.3, 28.9, 28.5, 28.1. 

HRMS (ESI): for C10H22O4N
+ 

[M+H]
+
:
 
calcd.: 220.1549, found: 220.1543. 

IR (ATR):  ̃ = 3338 (m), 2938 (m), 1688 (s), 1530 (m), 1392 (m), 1366 (m), 1170 (s), 1052 (m). 

    
   = –15.7 (c = 1.00, CH2Cl2).  

tert-butyl (S)-4-(3-hydroxypropyl)-2,2-dimethyloxazolidine-3-carboxylate (298) 

 

Crude product 297 (24.0 g, 109.5 mmol, 1 eq., 100% yield assumed from the previous step) was 

dissolved in acetone (200 mL) and 2,2-Dimethoxypropane (60 mL) was added. The solution was 

cooled to 0 °C and boron trifluoride diethyl etherate (0.31 g, 2.17 mmol, 0.02 eq.) was added. After 

24 h the solvent was removed under reduced pressure and the residue was diluted with water (100 mL) 

and the pH adjusted to 7 using saturated aqueous NaHCO3. The aqueous layer was extracted with 

EtOAc (3 x 100 mL) and the combined organic layers were washed with water (100 mL) and brine 



Part II: Experimental Procedures 

223 

(100 mL). The solution was dried over MgSO4 and concentrated in vacuo. An aliquot of the crude 

product was separated for the analytical data and purified by flash column chromatography (SiO2, 

hexanes/EtOAc = 4/6). Protecting product 298 was obtained as colorless oil. The residual crude 

product (27.1 g, 104.4 mmol, 95 %) was used in the next step without purification. Spectral data match 

the previously reported values.
[325]

 

Rf = 0.14 (hexanes/EtOAc = 3/7, CAM). 

Note: NMR spectra are complex due to the presence of rotamers.  

1
H NMR (400 MHz, CDCl3) δ = 3.98–3.66 (m, 5H), 2.24 (br, 1H), 1.86–1.71 (m, 1H), 1.66–

1.31 (m, 18H). 

13
C NMR (100 MHz, CDCl3) δ = 152.6, 151.9, 93.9, 93.4, 80.4, 79.7, 67.2, 62.8, 62.6, 57.2, 30.1, 

29.9, 29.5, 29.1, 28.6, 27.7, 26.9, 24.6, 23.4. 

HRMS (ESI) for C13H26O4N
+ 

[M+H]
+
: calcd.: 260.1856, found: 260.1858.  

IR (ATR):  ̃ = 3442 (w), 2936 (w), 2870 (w), 1692 (s), 1364 (s), 1256 (m), 1171 (m), 1083 (s), 844 

(m), 768 (m). 

    
  = +21.9 (c = 0.98, CH2Cl2). 

tert-butyl (S)-2,2-dimethyl-4-(3-oxopropyl)oxazolidine-3-carboxylate (299) 

 

To solution of DMSO (4.69 mL, 66.0 mmol, 3.30 eq.) in CH2Cl2 (15 mL) at –78°C was added oxalyl 

chloride (2.0 M in CH2Cl2, 12.00 mL, 24.00 mmol, 1.20 eq.) dropwise. After complete addition, the 

reaction mixture was stirred at –78 °C for 15 min. Then a solution of 298 (5.19 g, 20.0 mmol, 1.00 eq.) 

in CH2Cl2 (128 mL) was added dropwise. After complete addition the reaction mixture was stirred at  

–78°C for 45 min, followed by the dropwise addition of Et3N (18.3 mL, 132.0 mmol, 6.60 eq.) at the 

same temperature. The cooling bath was removed, and the reaction was stirred for 1 h. Water 

(100 mL) was added, and the aqueous phase was extracted with CH2Cl2 (2 x 100 mL). The combined 

organic phases were washed successively with aqueous HCl (1 M, 100 mL) saturated aqueous 

NaHCO3 (100 mL) and brine (100 mL), dried over MgSO4, filtered, and concentrated in vacuo. 

Purification by flash column chromatography (SiO2, hexanes/EtOAc = 8/2) afforded aldehyde 299 

(3.66 g, 14.2 mmol, 71%) as a clear oil. Spectral data match the previously reported values.
[325]

 

Rf = 0.42 (hexanes/EtOAc = 7/3, CAM) 

Note: NMR spectra are complex due to the presence of rotamers.  
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1
H NMR (400 MHz, CDCl3) δ = 9.77 (br, 1H), 4.02–3.80 (m, 2H), 3.73-3.68 (m, 1H), 2.55–2.33 (m, 

2H), 2.05–1.84 (m, 2H), 1.56–1.52 (m, 3H), 1.47 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 201.7, 201.4, 152.6, 151.9, 94.1, 93.6, 80.4, 80.0, 67.1, 56.7, 56.3, 

40.6, 40.4, 28.7, 28.6, 28.5, 28.5, 28.4, 27.7, 26.9, 26.1, 26.0, 24.6, 24.4, 23.1. 

HRMS (ESI) for C13H24O4N
+ 

[M+H]
+
: calcd.: 258.1700, found: 258.1700.  

IR (ATR):  ̃ = 2979 (w), 1695 (s), 1390 (s), 1367 (s), 1257 (m), 1171 (m), 1084 (m), 855 (w), 767 

(w). 

    
  = +3.8 (c = 1.05, CH2Cl2). 

tert-butyl (S)-4-(2-formylallyl)-2,2-dimethyloxazolidine-3-carboxylate (300) 

 

N,N,N′,N′–Tetramethyldiaminomethane (2.00 mL, 14.7 mmol, 1.10 eq.) was dissolved in CH2Cl2 

(25 mL) and the solution was cooled to 0 °C. TFAA (2.10 mL, 14.7 mmol, 1.10 eq.) was added slowly 

dropwise. The cooling bath was removed and the reaction mixture was stirred at room temperature for 

5 min and cooled to 0 °C. A solution of aldehyde 299 (3.45 g, 13.4 mmol, 1 eq.) in CH2Cl2 (20 mL) 

was prepared in a second flask, cooled to 0 ° and transferred to the other flask via cannula. After 

stirring at room temperature for 18 h, it saturated aqueous NaHCO3 (40 mL) was added and the 

organic layer was and extracted with EtOAc (3 x 50 mL). The combined organic layers were washed 

with brine (75 mL), dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

flash column chromatography (SiO2, hexanes/EtOAc = 7/3) to afford 300 (2.37 g, 8.80 mmol, 66%) as 

colorless oil. Spectral data match the previously reported values.
[329]

 

Rf = 0.46 (hexanes/EtOAc = 7/3, CAM) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 9.53 (d, J = 8.5 Hz, 1H), 6.27 (d, J = 18.0 Hz, 1H), 6.05 (d, J = 24.0 

Hz, 1H), 4.18 – 3.95 (m, 1H), 3.86 (ddd, J = 14.1, 8.9, 5.6 Hz, 1H), 3.69 (d, J = 9.0 Hz, 1H), 2.69 – 

2.39 (m, 2H), 1.59 (d, J = 22.8 Hz, 3H), 1.49 – 1.42 (m, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 194.3, 194.2, 152.4, 151.9, 147.2, 146.9, 136.6, 135.3, 94.1, 93.6, 

80.3, 80.1, 67.0, 66.7, 56.5, 55.9, 32.8, 31.9, 28.6, 28.5, 27.8, 27.2, 24.5, 23.3. 

HRMS (ESI) for C14H24O4N
+ 

[M+H]
+
: calcd.: 270.1700, found: 270.1701.  
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IR (ATR):  ̃ = 2980 (w), 1688 (s), 1456 (w), 1385 (s), 1364 (s), 1255 (m), 1172 (m), 1059 (m), 

949 (w), 856 (m), 769 (m).  

    
   = –4.0 (c = 1.09, CH2Cl2). 

tert-butyl (S)-4-(2-(hydroxymethyl)allyl)-2,2-dimethyloxazolidine-3-carboxylate 

(301) 

 

Enal 300 (0.25 g, 0.91 mmol, 1.00 eq.) was dissolved in MeOH (4.4 mL). CeCl3 H2O (0.41 g, 1.09 

mmol, 1.20 eq.) was added and the solution was cooled to 0 °C. NaBH4 (0.04 g, 1.09 mmol, 1.20 eq.) 

was added slowly (gas evolution!). The mixture was allowed to warm to room temperature over the 

course of 2 h, and saturated aqueous NaHCO3 (10 mL) was added. The mixture was extracted with 

EtOAc (3 x 15 mL) and the combined organic layers were washed with brine (25 mL), dried over 

MgSO4 and concentrated in vacuo. The crude product was purified by flash column chromatography 

(SiO2, hexanes/EtOAc = 6/4). Allylic alcohol 301 (0.22 g, 0.81 mmol, 88%) was obtained as colorless 

oil.  

Rf = 0.36 (hexanes/EtOAc = 6/4, CAM) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 5.21 – 4.78 (m, 2H), 4.21 (q, J = 6.6 Hz, 1H), 4.16 – 4.05 (m, 2H), 

3.98 – 3.67 (m, 2H), 3.61 – 3.53 (m, 1H), 2.58 – 2.18 (m, 2H), 1.59 (s, 3H), 1.46 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 152.9, 151.7, 146.0, 145.8, 113.4, 112.6, 94.0, 93.7, 80.7, 79.9, 67.5, 

67.0, 66.5, 65.7, 56.6, 56.1, 39.0, 37.5, 28.6, 28.5, 27.9, 27.1, 24.5, 23.3. 

HRMS (ESI) for C14H26O4N
+ 

[M+H]
+
: calcd.: 272.1856, found: 272.185. 

IR (ATR):  ̃ = 3436 (w), 2979 (w), 2874 (w), 1694 (m), 1386 (s), 1365 (s), 1246 (m), 1171 (m), 

1096 (m), 900 (w), 852 (m), 769 (w).  

    
   = +10.8 (c = 1.03, CH2Cl2). 
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tert-butyl (S)-4-(5-methoxy-2-methylene-5-oxopentyl)-2,2-dimethyloxazolidine-

3-carboxylate (307) 

 

Alcohol 301 (150.0 mg, 550 mol, 1.00 eq.), propionic acid (2 μL, 30.0 μmol, 0.05 eq.) and 1,1,1-

trimethoxyethane (1.06 mL, 8.29 mmol, 15.0 eq.) were added in a 10 mL glass microwave tube. The 

reaction mixture was irradiated in a CEM Discover microwave apparatus (200 watt, 150 °C) for 8 min. 

After cooling to room temperature, the solvent was removed under reduced pressure. The crude 

product was purified by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 8/2) to afford 

rearrangement product 307 (130 mg, 380 μmol, 69%) as colorless oil. 

Rf = 0.18 (hexanes/EtOAc = 9/1, CAM) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 4.81–4.78 (m, 2H), 4.09–3.76 (m, 3H), 3.66 (s, 3H), 2.60–2.04 (m, 

6H), 1.58 (app d, J = 20.0 Hz, 1H), 1.48 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 173.5, 173.4, 152.0, 151.6, 145.1, 144.7, 112.7, 112.1, 93.8, 93.3, 

80.0, 79.7, 66.1, 66.0, 55.8, 55.7, 51.6, 51.6, 40.3, 39.3, 32.4, 32.3, 30.8, 30.5, 28.5, 28.5, 28.4, 27.8, 

26.9, 24.5, 23.2. 

HRMS (ESI) for C17H30O5N
+ 

[M+H]
+
: calcd.: 328.2124, found: 328.2119. 

IR (ATR):  ̃ = 2980 (w), 1740 (m), 1693 (s), 1438 (w), 1385 (s), 1364 (s), 1244 (m), 1170 (s), 1078 

(m), 898 (w), 852 (m), 769 (m).  

    
   = +11.8 (c = 1.11, CH2Cl2). 

tert-butyl (S)-4-(5-hydroxy-2-methylenepentyl)-2,2-dimethyloxazolidine-3-

carboxylate (308) 

 

Methyl ester 307 (650 mg, 1.99 mmol, 1.00 eq.) was dissolved in THF (16.1 mL) and the solution was 

cooled to 0 °C. LiAlH4 (2 M in THF, 1.09 mL, 2.18 mmol, 1.10 eq.) was added dropwise and the 
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reaction mixture was stirred at 0 °C for 2 h. The reaction was quenched by the slow addition of EtOAc 

(20 mL). Water (20 mL) was added, the layers were separated and the aqueous layer was extracted 

with EtOAc (3 x 25 mL). The combined organic layers were washed with brine (50 mL), dried over 

MgSO4 and concentrated in vacuo. The crude product was purified by flash column chromatography 

(SiO2, hexanes/EtOAc = 6/4) to afford 308 as colorless oil (587 mg, 1.98 mmol, 99%).  

Rf = 0.23 (hexanes/EtOAc = 7/3, CAM). 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3) δ = 4.80 (app dd, J = 22.3, 10.4 Hz, 2H), 4.15 – 3.56 (m, 6H), 2.63 – 

2.42 (m, 1H), 2.25 – 1.99 (m, 3H), 1.80 – 1.66 (m, 2H), 1.58 (app d, J = 18.8 Hz, 3H), 1.47 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 152.3, 151.7, 146.3, 146.1, 113.5, 112.7, 112.2, 93.9, 93.5, 80.3, 

79.8, 66.3, 62.5, 62.3, 55.9, 40.0, 39.7, 32.2, 31.7, 30.8, 28.7, 28.6, 28.5, 27.9, 27.1, 24.6, 23.3. 

HRMS (ESI) for C16H30O4N
+

 [M+H]
+
: calcd.: 300.2169, found: 300.2172.  

IR (ATR):  ̃ = 3441 (w), 2979 (w), 2873 (w), 1694 (s), 1386 (s), 1365 (s), 1254 (m), 1171 (m), 1061 

(s), 897 (w), 850 (m), 768 (m).  

    
   = +16.8 (c = 1.01, CH2Cl2). 

 

tert-butyl(S)-4-(5-(dimethylamino)-2-methylene-5-oxopentyl)-2,2-

dimethyloxazolidine-3-carboxylate (309) 

 

Alcohol 301 (4.81 g, 17.7 mmol, 1.00 eq.) was dissolved in toluene (150 mL) and N,N-

dimethylacetamide dimethyl acetal (3.89 mL, 26.6 mmol, 1.50 eq.) was added. The colorless solution 

heated to 100 °C open to air and a gentle stream of N2 was bubbled through the solvent via a thin glass 

capillary to remove liberated MeOH. After 3 h, the resulting yellow solution was cooled to room 

temperature and the volatiles were removed in vacuo. The crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 1/1) to afford 309 as light yellow oil (5.30 g, 15.6 mmol, 

88%). 

Rf = 0.21 (hexanes/EtOAc = 1/1, KMnO4). 

Note: NMR spectra are complex due to the presence of rotamers. 
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1
H NMR (400 MHz, CDCl3) δ = 

1
H NMR (400 MHz, CDCl3) δ 4.78 – 4.67 (m, 2H), 4.06 – 3.86 (m, 

1H), 3.83 – 3.76 (m, 1H), 3.76 – 3.67 (m, 1H), 2.96 (d, J = 3.6 Hz, 3H), 2.88 (d, J = 2.8 Hz, 3H), 2.61 

– 2.19 (m, 5H), 2.10 (ddd, J = 23.4, 13.7, 11.0 Hz, 1H), 1.52 (app d, J = 20.9 Hz, 3H), 1.41 (s, 12H). 

13
C NMR (100 MHz, CDCl3) δ = 172.6, 172.2, 152.2, 151.8, 145.9, 112.2, 93.9, 93.4, 80.1, 79.8, 66.3, 

66.3, 56.0, 56.0, 40.6, 39.3, 37.4, 37.3, 35.6, 31.7, 31.6, 31.4, 30.8, 28.7, 28.6, 27.9, 27.1, 24.6, 23.3. 

HRMS (ESI): for C18H33N2O4
+ 

[M+H]
+
: calcd.: 341.2435, found:  341.2437. 

IR (ATR):  ̃ = 2978 (m), 2935 (w), 3029 (w), 1692 (s), 1643 (m), 1686 (s), 1547 (w), 1480 (w), 1446 

(m), 1365 (s), 1256 (m), 1173 (m), 1096 (m), 1061 (m), 894 (w), 848 (w). 

    
   = +16.0 (c = 2.00, CH2Cl2). 

tert-butyl(S)-2,2-dimethyl-4-(2-methylene-5-oxopentyl)oxazolidine-3-carboxylate 

(306) 

 

DMSO (90 μL, 1.27 mmol, 4.00 eq.) was diluted with CH2Cl2 (2 mL) and the solution was cooled to 

–78 °C. Oxalyl chloride (2 M in CH2Cl2, 270 μL, 540 μmol, 1.70 eq.) was added dropwise and the 

reaction mixture was stirred at –78 °C for 15 min. Alcohol 308 (100 mg, 320 μmol, 1.00 eq.) was 

dissolved in CH2Cl2 (1 mL) and the solution was added dropwise to the reaction mixture. After further 

stirring at –78 °C for 45 min, Et3N (350 μL, 2.54 mmol, 8.00 eq.) was slowly added. The cooling bath 

was removed and the mixture was allowed to reach room temperature for 2 h. The reaction was 

quenched with water (5 mL) and extracted with CH2Cl2 (3 x 10 mL). The combined organic layers 

were washed with aqueous HCl (1 M, 20 mL), saturated aqueous NaHCO3 (20 mL), brine (20 mL), 

dried over MgSO4 and concentrated in vacuo. The crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 8/2) to afford aldehyde 306 as colorless oil (70 mg, 

240 μmol, 74%). 

 

Alternative Procedure for the Synthesis of 306 by reduction of 309: 
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Morpholine (227 μL, 2.29 mmol, 1,70 eq.) was dissolved in THF (4.4 mL) and cooled to 0 °C and 

n-BuLi (2.4 M in hexane, 900 μL, 2.17 mmol, 1.60 eq.). After 30 minutes, DIBALH (1.0 M in THF, 

1.00 mL, 2.03 mmol, 1.50 eq.) was added. The resulting aluminate reagent solution was allowed to 

warm to room temperature over 2 h and added dropwise to a precooled solution (0 °C) of amide 309 

(460 mg, 1.35 mmol, 1.00 eq.) in THF (8 mL). After 2 hours, the reaction was quenched with 

saturated aqueous NH4Cl (20 mL). After the addition of EtOAc (20 mL) the layers were separated and 

the aqueous phase was extracted with EtOAc (2 x 20 mL). The combined organic layers were dried 

over MgSO4, filtered and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography (SiO2, hexanes/EtOAc = 8/2) to afford aldehyde 306 as colorless oil 

(312 mg, 1.05 mmol, 78%). 

Rf = 0.43 (hexanes/EtOAc = 8/2, CAM) 

Note: NMR spectra are complex due to the presence of rotamers. 

1
H NMR (400 MHz, CDCl3): δ = 9.77 (s, 1H), 4.82 – 4.78 (m, 2H), 4.07 – 3.67 (m, 3H), 2.69 – 2.25 

(m, 5H), 2.21 – 2.10 (m, 1H), 1.58 (d, J = 19.6 Hz, 1H), 1.46 (s, 12H). 

13
C NMR (100 MHz, CDCl3): δ = 202.2, 201.6, 152.2, 151.6, 144.8, 144.6, 113.0, 112.7, 94.0, 93.5, 

80.2, 79.8, 66.2, 66.2, 55.8, 55.8, 41.9, 41.8, 40.5, 39.5, 28.7, 28.6, 28.5, 28.5, 28.2, 27.9, 27.8, 27.0, 

24.5, 23.3. 

IR (ATR):  ̃ = 2979 (w), 1726 (w), 1692 (s), 1454 (w), 1386 (s), 1365 (s), 1256 (m), 1172 (m), 

1097 (m), 852 (w), 769 (w).  

HRMS (ESI) for C16H28O4N
+ 

[M+H]
+
: calcd. 298.2013, found: 298.2014.  

    
   = +15.2 (c = 1.08, CH2Cl2).  

methyl (R)-2-((tert-butoxycarbonyl)amino)-3-iodopropanoate (311) 

 

Methyl (tert-butoxycarbonyl)-L-serinate (310, 3.00 g, 13.7 mmol, 1.00 eq.) was dissolved in DMF 

(30 mL) and methyltriphenoxyphosphonium iodide (6.50 g, 14.4 mmol, 1.05 equiv.) was added 

portionwise. After 4 h, the reaction mixture was cooled to 0 °C and solid NaHCO3 (3.45 g, 41.1 mmol, 

3.00 eq.) was added. The mixture was stirred vigorously for 15 min, and Et2O (50 mL) and H2O 

(50 mL) were added. The organic phase was separated and the aqueous layer was extracted with Et2O 

(2 x 50 mL). The combined organic extracts were washed with aqueous NaOH (0.2 M, 4 x 20 mL), 

brine (50 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified 

by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 7/3) to afford 311 as a light orange 
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oil that solidified upon storage at–24 °C (3.74 g, 11.4 mmol, 83%). Spectral data match the previously 

reported values.
[339]

 

Note: 311 degrades upon prolonged exposure to silica gel; rapid chromatography is recommended.  

Rf  = 0.55 (hexanes/EtOAc = 8/2, KMnO4). 

HRMS (ESI) for C9H16INO4Na
+

 [M+Na]
+
: calcd.: 352.0016, found: 352.0021. 

    
   =  –3.7 (c = 2.78, MeOH). 

methyl (S)-2-((tert-butoxycarbonyl)amino)-7-((tert-butyldimethylsilyl)oxy)-4-

methyleneheptanoate (312) 

 

Zn dust (2.05 g, 31.4 mmol, 4.0 eq.) was added to DMF (31.6 mL). 1,2-dibromoethane (295 mg, 1.57 

mmol, 0.2 eq.) was added and the suspension was brought to ebullition by heating with a heat gun. 

After cooling to room temperature, TMSCl (201 µL, 1.57 mmol, 0.2 eq.) was added and the reaction 

mixture was stirred for 15 min. Then, a solution of 311 (2.58 g, 7.85 mmol, 1.0 eq., prepared 

according to Hoveyda and Gao)
[323]

 in DMF (2 mL) was added and the reaction mixture is stirred until 

complete disappearance of the starting material (1 h, monitored by TLC of reaction aliquots quenched 

with NH4Cl). Then, stirring was discontinued and after 5 min. To remove excess Zn dust the 

supernatant solution was transferred via syringe to a separate flask (washing with DMF 2 x 2 mL). To 

the solution was added Pd2(dba)3 (144 mg, 0.157 mmol, 0.02 eq.), SPhos (129 mg, 0.314 mmol, 0.02 

eq.), and vinyl bromide 316 (1.75 g, 6.28 mmol, 0.8 eq.). The resulting red solution was heated to 40 

°C for 2 h. Then, it is cooled to room temperature and saturated aqueous NH4Cl (50 mL) was added, 

followed by EtOAc (50 mL). The mixture was filtered over cotton, the aqueous layer was separated 

and extracted with EtOAc (2 x 50 mL). The combined organic layers are washed with brine, dried over 

MgSO4, filtered and evaporated in vacuo. The crude product was purified by flash column 

chromatography (SiO2, hexanes/EtOAc = 1/0 to 9/1) to afford 312 as an orange oil (2.11 g, 5.26 mmol, 

84%).  

Rf  = 0.72 (hexanes/EtOAc = 8/2, KMnO4). 

1
H NMR (400 MHz, CDCl3) δ = 4.92 (d, J = 8.0 Hz, 1H), 4.88 – 4.75 (m, 2H), 4.38 (td, J = 8.2, 5.5 

Hz, 1H), 3.71 (s, 3H), 3.59 (t, J = 6.4 Hz, 2H), 2.53 (dd, J = 14.2, 5.6 Hz, 1H), 2.35 (dd, J = 14.2, 8.3 

Hz, 1H), 2.05 (dd, J = 8.7, 6.7 Hz, 2H), 1.69 – 1.57 (m, 2H), 1.42 (s, 9H), 0.88 (s, 9H), 0.03 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ = 173.2, 155.3, 144.2, 113.5, 80.0, 62.7, 52.3, 52.1, 39.2, 31.5, 30.8, 

28.4, 26.1, 18.5, -5.2. 
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HRMS (ESI) for C20H40O5NSi
+

 [M+H]
+
: calcd.: 402.2676, found: 402.2676. 

IR (ATR):  ̃ = 3444 (w), 3378 (br, w), 3076 (w), 2953 (m), 2857 (m), 1746 (m), 1719 (s), 1501 (m), 

1439 (m), 1390 (m), 1366 (m), 1213 (w), 1168 (s), 1053 (m), 1023 (s), 939 (w). 

    
   =  +3.7 (c = 2.78, CH2Cl2). 

methyl (S)-2-((tert-butoxycarbonyl)amino)-7-hydroxy-4-methyleneheptanoate 

(313) 

 

A solution of alcohol 312 (2.11 g, 5.26 mmol, 1.00 eq.) in THF (28 mL) was cooled to 0 °C and a 

solution of TBAF (1 M in THF, 7.89 mL, 1.50 eq.) was added dropwise over 15 minutes. The reaction 

was stirred for 2 h 0 °C, quenched with saturated aqueous NH4Cl (20 mL) and diluted with EtOAc 

(30 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 30 mL). 

The combined organic layers were washed with brine, dried over MgSO4 and concentrated under 

reduced pressure. Purification by flash column chromatography (SiO2, hexanes/EtOAc = 7/3 to 1/1) 

gave 313 as a yellow oil (1.80 g, 6.28 mmol, 98%).  

Rf  = 0.31 (hexanes/EtOAc = 1/1, KMnO4). 

1
H NMR (400 MHz, CDCl3) δ = 5.05 (d, J = 8.3 Hz, 1H), 4.87 – 4.75 (m, 2H), 4.37 (td, J = 8.4, 5.4 

Hz, 1H), 3.68 (s, 3H), 3.59 (t, J = 6.4 Hz, 2H), 2.55 – 2.25 (m, 3H), 2.16 – 2.01 (m, 2H), 1.73 – 1.63 

(m, 2H), 1.38 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ = 173.1, 155.4, 143.8, 113.4, 80.0, 61.9, 52.3, 52.0, 39.6, 31.0, 30.3, 

28.3. 

HRMS (ESI) for C14H26NO5
+

 [M+H]
+
: calcd.: 288.1805, found: 288.1808. 

IR (ATR):  ̃ = 3361 (br, w), 3077 (w), 2977 (m), 2875 (w), 1740 (m), 1692 (s), 1648 (m), 1612 (m), 

1562 (m), 1513 (m), 1248 (w), 1163 (s), 1053 (m), 1023 (s), 901 (m). 

    
   = +6.9 (c = 2.86, CH2Cl2). 

methyl (S)-2-((tert-butoxycarbonyl)amino)-4-methylene-7-oxoheptanoate (314) 

 



Part II: Experimental Part 

232 

A solution of 313 (110 mg, 383 µmol, 1.00 eq.) in CH2Cl2 (3.93 mL) was cooled to 0 °C and powdered 

NaHCO3 (276 mg, 2.29 mmol, 6.00 eq.) was added, followed by Dess-Martin periodinane (276 mg, 

651 µmol, 1.70 eq.). After 1 h, a half-saturated solution of Na2SO3 (10 mL) was added and the reaction 

mixture was vigorously stirred for 30 minutes. The reaction was diluted with water (10 mL) and 

CH2Cl2 (20 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 20 

mL). The combined organic layers brine (20 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure. Purification of the crude product by flash column chromatography (SiO2, 

hexanes/EtOAc = 8/2) gave 314 as a yellow oil (108 mg, 383 µmol, 99%).  

Note: 314 decomposes within a week if stored neat at room temperature. 

Rf  = 0.67 (hexanes/EtOAc = 1/1, KMnO4). 

1
H NMR (400 MHz, CDCl3) δ = 9.75 (t, J = 1.6 Hz, 1H), 4.99 (d, J = 8.4 Hz, 1H), 4.85 (d, J = 7.8 Hz, 

2H), 4.43 (td, J = 8.3, 5.6 Hz, 1H), 3.72 (s, 3H), 2.65 – 2.46 (m, 3H), 2.43 – 2.28 (m, 3H), 1.42 (s, 

9H). 

13
C NMR (100 MHz, CDCl3) δ = 201.9, 173.0, 155.3, 142.7, 114.1, 80.1, 52.4, 52.1, 41.7, 39.8, 28.4, 

28.3, 27.4. 

HRMS (ESI) for C14H24NO5
+

 [M+H]
+
: calcd.: 286.1654, found: 286.1650. 

IR (ATR):  ̃ = 3790 (w),  3363 (br, w),  3082 (w),  2932 (w),  2728 (w),  1742  (m),  1711 (s), 1512 

(m), 1438 (m), 1391 (m),  1366 (m),  1277 (m), 1249 (m),  1164 (s), 1052 (m),  904 (m). 

    
   = +10.2 (c = 1.26, CH2Cl2). 

methyl (R)-2-(((benzyloxy)carbonyl)amino)-3-iodopropanoate (317) 

 

methyl ((benzyloxy)carbonyl)-L-serinate (316, 1.00 g, 3.95.7 mmol, 1.00 eq.) was dissolved in DMF 

(10 mL) and methyltriphenoxyphosphonium iodide (1.87 g, 4.15 mmol, 1.05 equiv.) was added 

portionwise. After 4 h, the reaction mixture was cooled to 0 °C and solid NaHCO3 (995 mg, 11.8 

mmol, 3.00 eq.) was added. The mixture was stirred vigorously for 15 min, and Et2O (20 mL) and H2O 

(20 mL) were added. The organic phase was separated and the aqueous layer was extracted with Et2O 

(2 x 20 mL). The combined organic extracts were washed with aqueous NaOH (0.2 M, 4 x 20 mL), 

brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified 

by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 7/3) to afford 317 as a light yellow 

oil (1.21 g, 3.3 mmol, 84%). Spectral data match the previously reported values.
[340]

 

Note: 317 degrades upon prolonged exposure to silica gel; rapid chromatography is recommended.  
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Rf  = 0.50 (hexanes/EtOAc = 8/2, KMnO4). 

HRMS (ESI) for C12H14INO4Na+ [M+Na]+: calcd.: 385.9860, found: 385.9862. 

    
   =  –6.3 (c = 1.01, CHCl3). 

methyl (S)-2-(((benzyloxy)carbonyl)amino)-7-((tert-butyldimethylsilyl)oxy)-4-

methyleneheptanoate (318) 

 

Zn dust (1.37 g, 21.0 mmol, 4.00 eq.) was added to DMF (24.0 mL). 1,2-dibromoethane (91 µL, 1.05 

mmol, 0.20 eq.) was added and the suspension was brought to ebullition by heating with a heat gun. 

After cooling to room temperature, TMSCl (134 µL, 1.05 mmol, 0.20 eq.) was added and the reaction 

mixture was stirred for 15 min. Then, a solution of 317 (1.91 g, 5.25 mmol, 1.0 eq.) in DMF (2 mL) 

was added and the reaction mixture is stirred until complete disappearance of the starting material (1 h, 

monitored by TLC of reaction aliquots quenched with NH4Cl). Then, stirring was discontinued and 

after 5 min. To remove excess Zn dust the supernatant solution is transferred via syringe to a separate 

flask (washing with DMF 2 x 2 mL). To the solution was added Pd2(dba3) (48.1 mg, 52.5 µmol, 0.01 

eq.), SPhos (43.1 mg, 105 µmol, 0.02 eq.), and vinyl bromide 315 (1.3 g, 4.68 mmol, 0.89 eq.). The 

resulting red solution was heated to 40 °C for 2 h. Then, it is cooled to room temperature and saturated 

aqueous NH4Cl (50 mL) was added, followed by EtOAc (50 mL). The mixture was filtered over 

cotton, the aqueous layer was separated and extracted with EtOAc (2 x 50 mL). The combined organic 

layers are washed with brine, dried over MgSO4, filtered and evaporated in vacuo. The crude product 

was purified by flash column chromatography (SiO2, hexanes/EtOAc = 95/5 to 8/2) to afford 318 as a 

slightly red oil (1.71 g, 3.92 mmol, 75%).  

Rf = 0.62 (hexanes/EtOAc = 8/2, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.32 – 7.21 (m, 4H), 5.23 (d, J = 8.1 Hz, 1H), 5.03 (s, 1H), 4.88 – 

4.68 (m, 2H), 4.41 (td, J = 8.2, 5.5 Hz, 1H), 3.66 (s, 3H), 3.54 (t, J = 6.4 Hz, 2H), 2.51 (dd, J = 14.2, 

5.5 Hz, 1H), 2.33 (dd, J = 14.2, 8.4 Hz, 1H), 2.00 (t, J = 7.7 Hz, 2H), 1.69 – 1.39 (m, 2H), 0.84 (s, 

9H), -0.01 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ = 172.8, 155.8, 143.9, 136.3, 128.5, 128.2, 128.1, 113.6, 67.0, 62.6, 

52.4, 52.3, 39.0, 31.4, 30.7, 26.0, 18.4, -5.2. 

HRMS (ESI) for C23H41N2O5Si
+

 [M+NH4]
+
: calcd.: 453.2779, found: 453.2786 

IR (ATR):  ̃ = 3344 (br, w),  2952 (m),  2929 (m),  2857 (m),  1724 (s),  1647 (w), 1521 (m), 1472 

(m), 1347 (s),  1254 (s),  1212 (s), 1100 (s),  1053 (m), 1028 (m),  899(m). 

    
   = +5.3 (c = 1.90, CH2Cl2). 
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methyl (S)-2-(((benzyloxy)carbonyl)amino)-7-hydroxy-4-methyleneheptanoate 

(319) 

 

A solution of alcohol 318 (1.50 g, 3.44 mmol, 1.00 eq.) in THF (17.2 mL) was cooled to 0 °C and a 

solution of TBAF (1 M in THF, 5.16 mL, 1.50 eq.) was added dropwise over 15 minutes. The reaction 

was stirred for 2 h 0 °C, quenched with saturated aqueous NH4Cl (20 mL) and diluted with EtOAc 

(30 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 30 mL). 

The combined organic layers were washed with brine, dried over MgSO4 and concentrated under 

reduced pressure. Purification by flash column chromatography (SiO2, hexanes/EtOAc = 9/1 to 1/9) 

gave 319 as a yellow oil (930 mg, 2.89 mmol, 84%).  

Rf = 0.32 (hexanes/EtOAc = 1/1, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 7.29 – 7.22 (m, 5H), 5.16 (t, J = 6.9 Hz, 1H), 5.00 (d, J = 2.2 Hz, 

2H), 4.86 – 4.67 (m, 2H), 4.40 (td, J = 8.4, 5.3 Hz, 1H), 3.64 (s, 3H), 3.52 (t, J = 6.5 Hz, 2H), 2.48 

(dd, J = 14.1, 5.4 Hz, 1H), 2.29 (dd, J = 14.1, 8.5 Hz, 1H), 2.02 (q, J = 7.6 Hz, 2H), 1.84 – 1.41 (m, 

3H). 

13
C NMR (100 MHz, CDCl3) δ = 172.8, 156.0, 143.6, 136.3, 128.7, 128.3, 128.2, 113.9, 67.2, 62.2, 

52.5, 52.5, 52.4, 39.6, 31.1, 30.3. 

HRMS (ESI) for C17H24NO5
+
 [M+H]

+
: calcd.: 322.1649, found: 322.1650. 

IR (ATR):  ̃ = 3349 (br, m), 3068 (w), 2950 (m), 1703 (s), 1647 (w), 1530 (m), 1438 (m), 1345 (m), 

1265 (m), 1215 (s), 1180 (m), 1054 (m), 1028 (m), 904 (m). 

    
   = +2.2 (c = 1.20, CH2Cl2). 

methyl (S)-2-(((benzyloxy)carbonyl)amino)-4-methylene-7-oxoheptanoate (320) 

 

A solution of 319 (122 mg, 380 µmol, 1.00 eq.) in CH2Cl2 (3.65 mL) was cooled to 0 °C and powdered 

NaHCO3 (159 mg, 1.90 mmol, 5.00 eq.) was added, followed by Dess-Martin periodinane (242 mg, 

569 µmol, 1.50 eq.). After 1 h, a half-saturated solution of Na2SO3 (10 mL) was added and the reaction 

mixture was vigorously stirred for 30 minutes. The reaction was diluted with water (10 mL) and 

CH2Cl2 (20 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 20 
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mL). The combined organic layers brine (20 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure. Purification of the crude product by flash column chromatography (SiO2, 

hexanes/EtOAc = 9/1 to 1/1) gave 320 as a yellow oil (100 mg, 313 µmol, 83%).  

Rf  = 0.62 (hexanes/EtOAc = 1/1, CAM). 

1
H NMR (400 MHz, CDCl3) δ = 9.72 (d, J = 1.7 Hz, 1H), 7.37 – 7.27 (m, 5H), 5.34 (d, J = 8.3 Hz, 

1H), 5.08 (d, J = 2.6 Hz, 2H), 4.88 – 4.77 (m, 2H), 4.50 (td, J = 8.3, 5.6 Hz, 1H), 3.72 (s, 3H), 2.63 – 

2.49 (m, 3H), 2.46 – 2.28 (m, 3H). 

13
C NMR (100 MHz, CDCl3) δ = 201.7, 172.6, 155.8, 142.4, 136.3, 128.6, 128.3, 128.2, 114.2, 67.1, 

52.5, 52.4, 41.6, 39.6, 27.3. 

HRMS (ESI) for C17H22NO5
+
 [M+H]

+
: calcd.: 320,1492, found: 320,1494. 

IR (ATR):  ̃ = 3338 (br, w), 3066 (w), 3034 (w), 2953 (w), 2846 (w), 1715 (s), 1648 (w), 1524 (m), 

1454 (m), 1437 (m), 1345 (m) 1261 (m), 1213 (s), 1050 (m), 1027 (m), 905 (w) 741 (w), 698 (m).  

    
   = +3.1 (c = 1.86, CH2Cl2). 
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4.3. X-Ray Crystallographic Data  

Data for piperazine 201 (hydrochloride salt). 

  

Figure 18. ORTEP plot of the molecular structure of 201. 

net formula C10H24Cl2N2O2 

Mr/g mol−1 275.21 

crystal size/mm 0.100 × 0.080 × 0.040 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system orthorhombic 

space group 'P 21 21 21' 

a/Å 5.9400(2) 

b/Å 12.7285(4) 

c/Å 18.5201(6) 

α/° 90 

β/° 90 

γ/° 90 

V/Å3 1400.25(8) 

Z 4 

calc. density/g cm−3 1.305 

μ/mm−1 0.454 

absorption correction Multi-Scan 

transmission factor range 0.9211–0.9590 

refls. measured 69977 

Rint 0.0392 

mean σ(I)/I 0.0163 

θ range 2.720–27.52 

observed refls. 3166 

x, y (weighting scheme) 0.0225, 0.3030 

hydrogen refinement mixed 

Flack parameter −0.011(13) 

refls in refinement 3214 

parameters 169 

restraints 0 

R(Fobs) 0.0177 

Rw(F2) 0.0484 

S 1.115 

shift/errormax 0.001 

max electron density/e Å−3 0.252 

min electron density/e Å−3 −0.154 

  

C-H: constr, N-H and O-H: refall. 
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Data for Boc-piperazine 202. 

  

Figure 19. ORTEP plot of the molecular structure of piperazine 202 

net formula C20H38N2O6 

Mr/g mol−1 402.526 

crystal size/mm 0.16 × 0.12 × 0.09 

T/K 173(2) 

radiation MoKα 

diffractometer 'KappaCCD' 

crystal system orthorhombic 

space group P212121 

a/Å 9.4705(6) 

b/Å 10.3778(6) 

c/Å 23.7593(14) 

α/° 90 

β/° 90 

γ/° 90 

V/Å3 2335.1(2) 

Z 4 

calc. density/g cm−3 1.14499(10) 

μ/mm−1 0.084 

absorption correction none 

refls. measured 9417 

Rint 0.1936 

mean σ(I)/I 0.1095 

θ range 3.24–23.07 

observed refls. 1498 

x, y (weighting scheme) 0.0637, 2.5081 

hydrogen refinement constr 

Flack parameter 5(4) 

refls in refinement 1872 

parameters 259 

restraints 0 

R(Fobs) 0.0829 

Rw(F2) 0.1736 

S 1.099 

shift/errormax 0.001 

max electron density/e Å−3 0.232 

min electron density/e Å−3 −0.291 

  

The absolute configuration could not be determined due to a meaningless Flack-parameter (caused by 

missing heavy atoms und the use of MoKα radiation) 
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Data for piperazine 235 (hydrobromide salt). 

 

Figure 20. ORTEP plot of the molecular structure of piperazine 235. 

net formula C20H28Br2N2O2 

Mr/g mol−1 488.257 

crystal size/mm 0.132 × 0.107 × 0.034 

T/K 173(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group P21 

a/Å 13.0595(6) 

b/Å 6.0367(3) 

c/Å 27.1867(14) 

α/° 90 

β/° 101.8222(15) 

γ/° 90 

V/Å3 2097.83(18) 

Z 4 

calc. density/g cm−3 1.54594(13) 

μ/mm−1 3.881 

absorption correction multi-scan 

transmission factor range 0.8118–0.9585 

refls. measured 23315 

Rint 0.0437 

mean σ(I)/I 0.0630 

θ range 2.30–26.45 

observed refls. 6964 

x, y (weighting scheme) 0.0292, 0.4909 

hydrogen refinement mixed 

Flack parameter −0.005(10) 

refls in refinement 8497 

parameters 490 

restraints 1 

R(Fobs) 0.0395 

Rw(F2) 0.0823 

S 1.037 

shift/errormax 0.001 

max electron density/e Å−3 1.020 

  

C-bound H: constr, N-bound H: refxyz. Disorder in phenyl ring and methyl moiety handled by split 

models. The figure shows only one (the better one) of the two symmetrically independent formula 

units. 
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Data for allylic boronate 268. 

 

Figure 21. ORTEP plot of the molecular structure of 268. 

net formula C18H32B2O4 

Mr/g mol−1 334.05 

crystal size/mm 0.574 × 0.435 × 0.366 

T/K 173(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system monoclinic 

space group 'C 2/c' 

a/Å 12.4424(5) 

b/Å 11.3140(6) 

c/Å 14.7187(7) 

α/° 90 

β/° 99.507(4) 

γ/° 90 

V/Å3 2043.55(17) 

Z 4 

calc. density/g cm−3 1.086 

μ/mm−1 0.072 

absorption correction 'multi-scan' 

transmission factor range 0.94622–1.00000 

refls. measured 5891 

Rint 0.0206 

mean σ(I)/I 0.0232 

θ range 4.568–26.367 

observed refls. 1697 

x, y (weighting scheme) 0.0573, 1.3019 

hydrogen refinement constr 

refls in refinement 2083 

parameters 113 

restraints 0 

R(Fobs) 0.0491 

Rw(F2) 0.1328 

S 1.055 

shift/errormax 0.001 

max electron density/e Å−3 0.299 

min electron density/e Å−3 −0.172 
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Data for 1,4-diol 278. 

 

Figure 22. ORTEP plot of the molecular structure of 1,4-diol 278. 

net formula C78H104O7 

Mr/g mol−1 1153.61 

crystal size/mm 0.447 × 0.283 × 0.130 

T/K 123(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system monoclinic 

space group 'P 21/n' 

a/Å 17.4355(13) 

b/Å 12.1380(7) 

c/Å 32.989(2) 

α/° 90 

β/° 101.288(7) 

γ/° 90 

V/Å3 6846.6(8) 

Z 4 

calc. density/g cm−3 1.119 

μ/mm−1 0.069 

absorption correction 'multi-scan' 

transmission factor range 0.95282–1.00000 

refls. measured 35251 

Rint 0.0743 

mean σ(I)/I 0.1065 

θ range 4.227–25.024 

observed refls. 6026 

x, y (weighting scheme) 0.0640, 0.6413 

hydrogen refinement mixed 

refls in refinement 12035 

parameters 791 

restraints 9 

R(Fobs) 0.0742 

Rw(F2) 0.1907 

S 1.020 

shift/errormax 0.001 

max electron density/e Å−3 0.434 

min electron density/e Å−3 −0.243 
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Only one molecule shown (solvent omitted); C-H: constr; O-H: located from difference map, then 

fixed, U(H)=1.5U(O). Each hydroxyl function has two hydrogen positions, each with sof 0.5. 

Disorder described by split models. 

Data for cyclohexene 288. 

  

Figure 23. ORTEP plot of the molecular structure of cyclohexene 288. 

net formula C26H30O2 
Mr/g mol−1 374.50 

crystal size/mm 0.434 × 0.066 × 0.054 
T/K 123(2) 

radiation MoKα 
diffractometer 'Oxford XCalibur' 
crystal system monoclinic 
space group 'C 2' 

a/Å 18.945(2) 
b/Å 5.3576(6) 
c/Å 20.611(2) 
α/° 90 
β/° 90.200(9) 
γ/° 90 

V/Å3 2092.0(4) 
Z 4 

calc. density/g cm−3 1.189 
μ/mm−1 0.073 

absorption correction 'multi-scan' 
transmission factor range 0.83264–1.00000 

refls. measured 5427 
Rint 0.0355 

mean σ(I)/I 0.0793 
θ range 4.303–25.342 

observed refls. 2651 
x, y (weighting scheme) 0.0262, 0.0000 

hydrogen refinement mixed 
Flack parameter 0.5 

refls in refinement 3470 
parameters 261 
restraints 1 
R(Fobs) 0.0511 
Rw(F2) 0.0917 
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S 0.996 
shift/errormax 0.001 

max electron density/e Å−3 0.161 
  

Refined as perfect racemic twin. C-H: constr, O-H: refall. 
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4.4. NMR Spectra 

 

 

 

  



Part II: NMR Spectra 

244 

 

 

 

  



Part II: NMR Spectra 

245 

 

 

 

  



Part II: NMR Spectra 

246 

 

 

 

  



Part II: NMR Spectra 

247 

 

 

 

  



Part II: NMR Spectra 

248 

 

 

 

  



Part II: NMR Spectra 

249 

 

 

 

  



Part II: NMR Spectra 

250 

 

 

 

  



Part II: NMR Spectra 

251 

 

 

 

  



Part II: NMR Spectra 

252 

 

 

 

  



Part II: NMR Spectra 

253 

 

 

 

  



Part II: NMR Spectra 

254 

 

 

 

  



Part II: NMR Spectra 

255 

 

 

 

  



Part II: NMR Spectra 

256 

 

 

 

 



Part II: NMR Spectra 

257 

 

 

 

  



Part II: NMR Spectra 

258 

 

 

 

  



Part II: NMR Spectra 

259 

 

 

 

  



Part II: NMR Spectra 

260 

 

 

 

  



Part II: NMR Spectra 

261 

 

 

 

  



Part II: NMR Spectra 

262 

 

 

 

  



Part II: NMR Spectra 

263 

 

 

 

  



Part II: NMR Spectra 

264 

 

 

  



Part II: NMR Spectra 

265 

 

 

 

  



Part II: NMR Spectra 

266 

 

 

 

  



Part II: NMR Spectra 

267 

 

 

 

  



Part II: NMR Spectra 

268 

 

 

 

  



Part II: NMR Spectra 

269 

 

 

 

  



Part II: NMR Spectra 

270 

 

 

 

  



Part II: NMR Spectra 

271 

 

 

 

  



Part II: NMR Spectra 

272 

 

 

 

  



Part II: NMR Spectra 

273 

 

 

 

  



Part II: NMR Spectra 

274 

 

 

 

  



Part II: NMR Spectra 

275 

 

 

 

  



Part II: NMR Spectra 

276 

 

 

 

  



Part II: NMR Spectra 

277 

 

 

 

  



Part II: NMR Spectra 

278 

 

 

 

  



Part II: NMR Spectra 

279 

 

 

 

  



Part II: NMR Spectra 

280 

 

 

 

  



Part II: NMR Spectra 

281 

 

 

 

  



Part II: NMR Spectra 

282 

 

 

 

  



Part II: NMR Spectra 

283 

 

 

 



References 

284 

References 

[1] B. B. Petrovska, Pharmacogn. Rev. 2012, 6, 1–5. 

[2] J. P. Hou, Comp. Med. East West 1977, 5, 117–122. 

[3] A. G. Atanasov, B. Waltenberger, E.-M. Pferschy-Wenzig, T. Linder, C. Wawrosch, P. Uhrin, 

V. Temml, L. Wang, S. Schwaiger, E. H. Heiss, et al., Biotechnol. Adv. 2015, 33, 1582–1614. 

[4] G. Bagetta, M. Cosentino, M. T. Corasaniti, S. Sakurada, Herbal Medicines: Development and 

Validation of Plant-Derived Medicines for Human Health, CRC Press, 2016. 

[5] J. F. Borzelleca, Toxicol. Sci. 2000, 53, 2–4. 

[6] J.-P. Llored, The Philosophy of Chemistry: Practices, Methodologies, and Concepts, 

Cambridge Scholars Publishing, 2014. 

[7] W. Pagel, Paracelsus: An Introduction to Philosophical Medicine in the Era of the 

Renaissance, Karger Medical And Scientific Publishers, 1982. 

[8] C. Cobb, H. Goldwhite, Creations of Fire: Chemistry’s Lively History from Alchemy to the 

Atomic Age, Springer Science & Business Media, 2013. 

[9] W.-D. Müller-Jahncke, J. Pharm. Belg. 2005, 60, 35–40. 

[10] R. L. Myers, The 100 Most Important Chemical Compounds: A Reference Guide, ABC-CLIO, 

2007. 

[11] C. Krishnamurti, S. C. Rao, Indian J. Anaesth. 2016, 60, 861–862. 

[12] J. Giere, Friedrich Wilhelm Adam Sertuerner, 1830. 

[13] E. Fenderson, Raw Opium, 2005. 

[14] F. Dodds, Opium Poppy (Papaver Somniferum), 2010. 

[15] B. Zebroski, A Brief History of Pharmacy: Humanity’s Search for Wellness, Routledge, 

Abingdon, 2015. 

[16] F. W. Sertuerner, Ann. Phys. 1817, 57, 183–202. 

[17] J. E. Lesch, Hist. Stud. Phys. Sci. 1981, 11, 305–328. 

[18] T. Thomson, R. Philips, E. W. Brayley, The Annals of Philosophy, Baldwin, 1818. 

[19] A. Cohen, Br. J. Clin. Pharmacol. 2007, 64, 249–252. 

[20] R. J. Huxtable, S. K. W. Schwarz, Mol. Interv. 2001, 1, 189. 

[21] W. Sneader, in Drug Discov., John Wiley & Sons, Ltd, Hoboken, 2005, pp. 88–105. 

[22] M. Hesse, Alkaloids, Wiley-VCH, Weinheim, 2002. 

[23] D. Daloze, J.-C. Braekman, J. M. Pasteels, Chemoecology 1994, 5–6, 173–183. 

[24] J. W. Daly, B. Witkop, P. Bommer, K. Biemann, J. Am. Chem. Soc. 1965, 87, 124–126. 

[25] S. Kohmoto, Y. Kashman, O. J. McConnell, K. L. Rinehart, A. Wright, F. Koehn, J. Org. 

Chem. 1988, 53, 3116–3118. 

[26] K. Biemann, G. Büchi, B. H. Walker, J. Am. Chem. Soc. 1957, 79, 5558–5564. 

[27] P. Ryan, Dendrobates Azureus, Blue Poison Dart Frog, Captive, 2016. 



Refences 

285 

[28] H. Braxmeier, Ladybug, 2016. 

[29] Khaled bin Sultan Living Oceans Foundation, Dragmacidon Reticulatum, 2016. 

[30] N. Usik, Taiga Musk Deer, Siberian Musk Deer, 2011. 

[31] N. L. Sass, M. Rounsavill, H. Combs, J. Agric. Food Chem. 1977, 25, 1419–1420. 

[32] A. A. Abdellatif, N. Elkhalili, Am. J. Ther. 2014, 21, 523–534. 

[33] A. A. Abdelgadir, E. M. Ahmed, M. S. Eltohami, Environ. Health Insights 2011, 5, 1–8. 

[34] S. M. Colegate, D. R. Gardner, T. Z. Davis, S. L. Welsh, J. M. Betz, K. E. Panter, Biochem. 

Syst. Ecol. 2013, 48, 132–135. 

[35] R. Chau, J. A. Kalaitzis, B. A. Neilan, Aquat. Toxicol. 2011, 104, 61–72. 

[36] S. Funayama, G. A. Cordell, Alkaloids: A Treasury of Poisons and Medicines, Elsevier, 

Amsterdam, 2014. 

[37] D. J. Newman, G. M. Cragg, J. Nat. Prod. 2016, 79, 629–661. 

[38] K. Kenan, K. Mack, L. Paulozzi, Open Med. 2012, 6, e41–e47. 

[39] T. H. Stanley, J. Pain Symptom Manage. 1992, 7, S3-7. 

[40] C. J. E. Niemegeers, F. C. Colpaert, F. H. L. Awouters, Drug Dev. Res. 1981, 1, 1–20. 

[41] G. M. Cragg, D. J. Newman, Biochim. Biophys. Acta BBA - Gen. Subj. 2013, 1830, 3670–

3695. 

[42] K. Speck, T. Magauer, Beilstein J. Org. Chem. 2013, 9, 2048–2078. 

[43] E. O. Wilson, F. M. Peter, Screening Plants for New Medicines, National Academies Press, 

Washington, D.C., 1988. 

[44] G. A. Cordell, M. L. Quinn-Beattie, N. R. Farnsworth, Phytother. Res. 2001, 15, 183–205. 

[45] J. M. Hagel, P. J. Facchini, Plant Cell Physiol. 2013, 54, 647–672. 

[46] G. A. W. Beaudoin, P. J. Facchini, Planta 2014, 240, 19–32. 

[47] K. Hirata, C. Poeaknapo, J. Schmidt, M. H. Zenk, Phytochemistry 2004, 65, 1039–1046. 

[48] W. De-Eknamkul, M. H. Zenk, Phytochemistry 1992, 31, 813–821. 

[49] A. Hager, N. Vrielink, D. Hager, J. Lefranc, D. Trauner, Nat. Prod. Rep. 2016, 33, 491–522. 

[50] Y. Watanabe, M. Matsui, M. Uchida, Phytochemistry 1975, 14, 2695–2698. 

[51] L. He, Y.-H. Zhang, H.-Y. Guan, J.-X. Zhang, Q.-Y. Sun, X.-J. Hao, J. Nat. Prod. 2011, 74, 

181–184. 

[52] P. Magnus, C. Seipp, Org. Lett. 2013, 15, 4870–4871. 

[53] K. V. Chuang, R. Navarro, S. E. Reisman, Angew. Chem. Int. Ed. 2011, 50, 9447–9451. 

[54] T. Furumoto, Y. Sugimoto, Planta Med. 2001, 67, 194–195. 

[55] N. A. Calandra, S. M. King, S. B. Herzon, J. Org. Chem. 2013, 78, 10031–10057. 

[56] F. Li, S. S. Tartakoff, S. L. Castle, J. Am. Chem. Soc. 2009, 131, 6674–6675. 

[57] M. Carraz, A. Jossang, P. Rasoanaivo, D. Mazier, F. Frappier, Bioorg. Med. Chem. 2008, 16, 

6186–6192. 



References 

286 

[58] G.-H. Bao, X.-L. Wang, X.-C. Tang, P. Chiu, G.-W. Qin, Tetrahedron Lett. 2009, 50, 4375–

4377. 

[59] L. He, Z. Yuanhu, T. Lijia, S. Shaohui, S. Qianyun, China J. Chin. Mater. Medica 2010, 35, 

1272–1275. 

[60] B.-R. Liu, X.-L. Wang, J.-R. Wang, Z. Für Krist. - New Cryst. Struct. 2014, 225, 733–734. 

[61] L. He, L.-L. Deng, S.-Z. Mu, Q.-Y. Sun, X.-J. Hao, Y.-H. Zhang, Helv. Chim. Acta 2012, 95, 

1198–1201. 

[62] X.-X. Zhao, C. Peng, H. Zhang, L.-P. Qin, Pharm. Biol. 2012, 50, 1053–1061. 

[63] K. Apel, H. Hirt, Annu. Rev. Plant Biol. 2004, 55, 373–399. 

[64] X. Chen, C. Guo, J. Kong, Neural Regen. Res. 2012, 7, 376–385. 

[65] G. Yang, Y. Wang, J. Tian, J.-P. Liu, PLOS ONE 2013, 8, e74916. 

[66] B.-F. Qi, F.-W. Wu, Y.-Y. Han, Y.-Z. Zhou, C.-M. Yu, Y.-L. Zhu, J.-S. Liu, Can. J. Chem. 

1986, 64, 837–839. 

[67] F. Inagaki, M. Kinebuchi, N. Miyakoshi, C. Mukai, Org. Lett. 2010, 12, 1800–1803. 

[68] Y. Hayashi, F. Inagaki, C. Mukai, Org. Lett. 2011, 13, 1778–1780. 

[69] P. Magnus, M. R. Fielding, C. Wells, V. Lynch, Tetrahedron Lett. 2002, 43, 947–950. 

[70] T. Sugihara, M. Yamada, M. Yamaguchi, M. Nishizawa, Synlett 1999, 1999, 771–773. 

[71] S. K. Woo, L. M. Geary, M. J. Krische, Angew. Chem. Int. Ed. 2012, 51, 7830–7834. 

[72] D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, W. Tang, A. G. Capacci, S. Rodriguez, J. 

J. Song, H. Lee, N. K. Yee, et al., J. Am. Chem. Soc. 2010, 132, 7600–7601. 

[73] L. C. Hirayama, K. K. Dunham, B. Singaram, Tetrahedron Lett. 2006, 47, 5173–5176. 

[74] P. Jain, H. Wang, K. N. Houk, J. C. Antilla, Angew. Chem. Int. Ed. 2012, 51, 1391–1394. 

[75] S. Konishi, H. Hanawa, K. Maruoka, Tetrahedron Asymmetry 2003, 14, 1603–1605. 

[76] J. Wang, X. Jia, T. Meng, L. Xin, Synthesis 2005, 2005, 2838–2844. 

[77] J. Choi, H. Kim, S. Park, J. Tae, Synlett 2013, 24, 379–382. 

[78] K. L. Billingsley, S. L. Buchwald, J. Org. Chem. 2008, 73, 5589–91. 

[79] K. Uchida, S. Yokoshima, T. Kan, T. Fukuyama, Org. Lett. 2006, 8, 5311–5313. 

[80] Y. Jurong, V. Truc, P. Riebel, E. Hierl, B. Mudryk, Org. Synth. 2008, 85, 64–71. 

[81] A. Padwa, P. Rashatasakhon, A. D. Ozdemir, J. Willis, J. Org. Chem. 2005, 70, 519–528. 

[82] A. H. Clark, J. D. McCorvy, J. M. Conley, W. K. Williams, M. Bekkam, V. J. Watts, D. E. 

Nichols, Bioorg. Med. Chem. 2012, 20, 6366–6374. 

[83] N. O. Silva, A. S. Abreu, P. M. T. Ferreira, L. S. Monteiro, M.-J. R. P. Queiroz, Eur. J. Org. 

Chem. 2002, 2002, 2524–2528. 

[84] A. Larivée, A. B. Charette, Org. Lett. 2006, 8, 3955–3957. 

[85] P. M. T. Ferreira, L. S. Monteiro, G. Pereira, Amino Acids 2010, 39, 499–513. 

[86] P. M. T. Ferreira, L. S. Monteiro, G. Pereira, Eur. J. Org. Chem. 2008, 2008, 4676–4683. 

[87] H. Zhang, D. P. Curran, J. Am. Chem. Soc. 2011, 133, 10376–10378. 



Refences 

287 

[88] K. Kiewel, Z. Luo, G. A. Sulikowski, Org. Lett. 2005, 7, 5163–5165. 

[89] H. Zhang, K. O. Jeon, E. B. Hay, S. J. Geib, D. P. Curran, M. G. LaPorte, Org. Lett. 2014, 16, 

94–97. 

[90] Q. Wu, J. Hu, X. Ren, J. Zhou, Chem. Weinh. Bergstr. Ger. 2011, 17, 11553–11558. 

[91] M. H. Becker, P. Chua, R. Downham, C. J. Douglas, N. K. Garg, S. Hiebert, S. Jaroch, R. T. 

Matsuoka, J. A. Middleton, F. W. Ng, et al., J. Am. Chem. Soc. 2007, 129, 11987–12002. 

[92] P. A. Vadola, D. Sames, J. Org. Chem. 2012, 77, 7804–7814. 

[93] H. Zhang, K. O. Jeon, E. Ben Hay, S. J. Geib, D. P. Curran, M. G. LaPorte, Org. Lett. 2014, 

16, 94–7. 

[94] Y. Xia, P. Qu, Z. Liu, R. Ge, Q. Xiao, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2013, 52, 

2543–2546. 

[95] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508–7510. 

[96] L. Zhu, J. Duquette, M. Zhang, J. Org. Chem. 2003, 68, 3729–3732. 

[97] P. Zhao, C. M. Beaudry, Org. Lett. 2013, 15, 402–405. 

[98] A. K. L. Yuen, C. A. Hutton, Tetrahedron Lett. 2005, 46, 7899–7903. 

[99] V. Bagutski, A. Ros, V. K. Aggarwal, Tetrahedron 2009, 65, 9956–9960. 

[100] P. Teo, Z. K. Wickens, G. Dong, R. H. Grubbs, Org. Lett. 2012, 14, 3237–3239. 

[101] Z. K. Wickens, B. Morandi, R. H. Grubbs, Angew. Chem. Int. Ed. 2013, 52, 11257–11260. 

[102] B. M. Trost, A. H. Weiss, Adv. Synth. Catal. 2009, 351, 963–983. 

[103] E. R. Ashley, E. G. Cruz, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125, 15000–15001. 

[104] A. Speicher, M. Groh, M. Hennrich, A.-M. Huynh, Eur. J. Org. Chem. 2010, 2010, 6760–

6778. 

[105] S. B. Jones, L. He, S. L. Castle, Org. Lett. 2006, 8, 3757–3760. 

[106] A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412–443. 

[107] C. M. So, F. Y. Kwong, Chem. Soc. Rev. 2011, 40, 4963–4972. 

[108] R. M. Gay, F. Manarin, R. Brandão, G. Zeni, J. Braz. Chem. Soc. 2010, 21, 1635–1641. 

[109] N. Y. Adonin, D. E. Babushkin, V. N. Parmon, V. V. Bardin, G. A. Kostin, V. I. Mashukov, 

H.-J. Frohn, Tetrahedron 2008, 64, 5920–5924. 

[110] B. Schmidt, S. Krehl, A. Kelling, U. Schilde, J. Org. Chem. 2012, 77, 2360–2367. 

[111] J. Liu, Y. Deng, H. Wang, H. Zhang, G. Yu, B. Wu, H. Zhang, Q. Li, T. B. Marder, Z. Yang, 

et al., Org. Lett. 2008, 10, 2661–2664. 

[112] J. E. Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028–32. 

[113] Y. Yang, N. J. Oldenhuis, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 615–619. 

[114] C. Valente, M. E. Belowich, N. Hadei, M. G. Organ, Eur. J. Org. Chem. 2010, 2010, 4343–

4354. 

[115] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483. 



References 

288 

[116] J. Carreras, G. Gopakumar, L. Gu, A. Gimeno, P. Linowski, J. Petuškova, W. Thiel, M. 

Alcarazo, J. Am. Chem. Soc. 2013, 135, 18815–18823. 

[117] R. Singha, S. Dhara, M. Ghosh, J. K. Ray, RSC Adv. 2015, 5, 8801–8805. 

[118] O. Baudoin, D. Guénard, F. Guéritte, J. Org. Chem. 2000, 65, 9268–71. 

[119] M. Heffernan, L. Hardy, F. Wu, L. Saraswat, K. Spear, WO2012/170845A2, 2012. 

[120] A. B. Northrup, M. H. Katcher, M. D. Altman, M. Chenard, M. H. Daniels, S. V Deshmukh, 

D. Falcone, D. J. Guerin, H. Hatch, C. Li, et al., J. Med. Chem. 2013, 56, 2294–2310. 

[121] L. Zhu, J. Duquette, M. Zhang, J. Org. Chem. 2003, 68, 3729–3732. 

[122] P. Harrisson, J. Morris, T. Marder, P. Steel, Org. Lett. 2009, 11, 3586–3589. 

[123] B. Cheng, S. Zhang, L. Zhu, J. Zhang, Q. Li, A. Shan, L. He, Synthesis 2009, 2009, 2501–

2504. 

[124] P. Magnus, N. Sane, B. P. Fauber, V. Lynch, J. Am. Chem. Soc. 2009, 131, 16045–16047. 

[125] L. McMurray, E. M. Beck, M. J. Gaunt, Angew. Chem. Int. Ed. 2012, 51, 9288–9291. 

[126] P. Harrisson, J. Morris, T. B. Marder, P. G. Steel, Org. Lett. 2009, 11, 3586–3589. 

[127] A. Bellan, Master´s Thesis, LMU München, 2014. 

[128] P. Rabe, K. Kindler, Berichte Dtsch. Chem. Ges. 1918, 51, 466–467. 

[129] J. I. Seeman, Angew. Chem. Int. Ed. 2007, 46, 1378–1413. 

[130] A. S. Lee, B. B. Liau, M. D. Shair, J. Am. Chem. Soc. 2014, 136, 13442–13452. 

[131] L. M. Kreis, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3436–3439. 

[132] J. S. Clark, C. Xu, Angew. Chem. Int. Ed. 2016, 55, 4332–4335. 

[133] K. Ogasawara, M. Kawamura, Heterocycles 1997, 44, 129. 

[134] C. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2015, 54, 8287–8291. 

[135] E. Rodríguez, M. N. Grayson, A. Asensio, P. Barrio, K. N. Houk, S. Fustero, ACS Catal. 

2016, 6, 2506–2514. 

[136] C. Y. Hong, N. Kado, L. E. Overman, J. Am. Chem. Soc. 1993, 115, 11028–11029. 

[137] J. Fischer, G. P. Savage, M. J. Coster, Org. Lett. 2011, 13, 3376–3379. 

[138] Y. Tang, L. Deng, Y. Zhang, G. Dong, J. Chen, Z. Yang, Org. Lett. 2005, 7, 593–595. 

[139] L. Pérez-Serrano, L. Casarrubios, G. Domínguez, J. Pérez-Castells, Org. Lett. 1999, 1, 1187–

1188. 

[140] D. Lesage, A. Milet, A. Memboeuf, J. Blu, A. E. Greene, J.-C. Tabet, Y. Gimbert, Angew. 

Chem. Int. Ed. 2014, 53, 1939–1942. 

[141] J. Mulzer, G. Dürner, D. Trauner, Angew. Chem. Int. Ed. Engl. 1996, 35, 2830–2832. 

[142] M. A. Grundl, A. Kaster, E. D. Beaulieu, D. Trauner, Org. Lett. 2006, 8, 5429–5432. 

[143] T. Reinhardt, Bachelor´s Thesis, LMU München, 2015. 

[144] A. García Martínez, E. Teso Vilar, A. García Fraile, S. de la Moya Cerero, P. Martínez Ruiz, 

L. R. Subramanian, Tetrahedron Asymmetry 1996, 7, 2177–2180. 



Refences 

289 

[145] S. N. Chavre, H. Choo, J. K. Lee, A. N. Pae, Y. Kim, Y. S. Cho, J. Org. Chem. 2008, 73, 

7467–7471. 

[146] D. A. Evans, A. M. Golob, J. Am. Chem. Soc. 1975, 97, 4765–4766. 

[147] L. A. Paquette, Tetrahedron 1997, 53, 13971–14020. 

[148] A. E. Wick, D. Felix, K. Steen, A. Eschenmoser, Helv. Chim. Acta 1964, 47, 2425–2429. 

[149] M. Ichiki, H. Tanimoto, S. Miwa, R. Saito, T. Sato, N. Chida, Chem. – Eur. J. 2013, 19, 264–

269. 

[150] S. Handerson, M. Schlaf, Org. Lett. 2002, 4, 407–409. 

[151] X. Wei, J. C. Lorenz, S. Kapadia, A. Saha, N. Haddad, C. A. Busacca, C. H. Senanayake, J. 

Org. Chem. 2007, 72, 4250–4253. 

[152] W. H. Watanabe, L. E. Conlon, J. Am. Chem. Soc. 1957, 79, 2828–2833. 

[153] P. A. Grieco, E. B. Brandes, S. McCann, J. D. Clark, J. Org. Chem. 1989, 54, 5849–5851. 

[154] T. Mandai, M. Ueda, S. Hasegawa, M. Kawada, J. Tsuji, S. Saito, Tetrahedron Lett. 1990, 31, 

4041–4044. 

[155] A. Nakayama, N. Kogure, M. Kitajima, H. Takayama, Angew. Chem. 2011, 123, 8175–8178. 

[156] N. Vepřek, Master´s Thesis, LMU München, 2016. 

[157] S. E. Denmark, J. H.-C. Liu, J. M. Muhuhi, J. Org. Chem. 2011, 76, 201–215. 

[158] N. M. Benjamin, S. F. Martin, Org. Lett. 2011, 13, 450–453. 

[159] Q.-Y. Hu, P. D. Rege, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 5984–5986. 

[160] C. S. Schindler, C. R. J. Stephenson, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 8852–

8855. 

[161] C. Grandclaudon, V. Michelet, P. Y. Toullec, Org. Lett. 2016, 18, 676–679. 

[162] D. Dolenc, Synth. Commun. 2003, 33, 2917–2924. 

[163] B. Ganem, R. K. Boeckman, Tetrahedron Lett. 1974, 15, 917–920. 

[164] H. Nace, J. Monagle, J. Org. Chem. 1959, 24, 1792–1793. 

[165] T. Mukaiyama, J. Matsuo, H. Kitagawa, Chem. Lett. 2000, 29, 1250–1251. 

[166] P. S. Baran, N. Z. Burns, J. Am. Chem. Soc. 2006, 128, 3908–3909. 

[167] M. Matveenko, G. Liang, E. M. W. Lauterwasser, E. Zubía, D. Trauner, J. Am. Chem. Soc. 

2012, 134, 9291–9295. 

[168] K. Okano, H. Tokuyama, T. Fukuyama, Chem. – Asian J. 2008, 3, 296–309. 

[169] K. Okano, K. Okuyama, T. Fukuyama, H. Tokuyama, Synlett 2008, 13, 1977–1980. 

[170] H. Yoshino, M. Tsuji, M. Kodama, K. Komeda, N. Niikawa, T. Tanase, N. Asakawa, K. Nose, 

K. Yamatsu, Chem. Pharm. Bull. (Tokyo) 1990, 38, 1735–1737. 

[171] H. Yoshino, Y. Tsuchiya, I. Saito, M. Tsujii, Chem. Pharm. Bull. (Tokyo) 1987, 35, 3438–

3441. 

[172] F. Hessler, R. Betík, A. Kadlčíková, R. Belle, M. Kotora, Eur. J. Org. Chem. 2014, 2014, 

7245–7252. 



References 

290 

[173] K. Kubota, J. L. Leighton, Angew. Chem. Int. Ed. 2003, 42, 946–948. 

[174] H. Kim, S. Ho, J. L. Leighton, J. Am. Chem. Soc. 2011, 133, 6517–6520. 

[175] Y. Huang, L. Yang, P. Shao, Y. Zhao, Chem. Sci. 2013, 4, 3275–3281. 

[176] H. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. 1983, 105, 2092–2093. 

[177] P. V. Ramachandran, G.-M. Chen, H. C. Brown, Tetrahedron Lett. 1997, 38, 2417–2420. 

[178] U. S. Racherla, H. C. Brown, J. Org. Chem. 1991, 56, 401–404. 

[179] H. C. Brown, R. S. Randad, K. S. Bhat, M. Zaidlewicz, U. S. Racherla, J. Am. Chem. Soc. 

1990, 112, 2389–2392. 

[180] E. J. Corey, C. J. Helal, Angew. Chem. Int. Ed. 1998, 37, 1986–2012. 

[181] M. A. Brimble, C. J. Bryant, Chem. Commun. 2006, 4506. 

[182] H. C. Brown, J. Chandrasekharan, P. V. Ramachandran, J. Am. Chem. Soc. 1988, 110, 1539–

1546. 

[183] F.-X. Felpin, G. Vo-Thanh, J. Villiéras, J. Lebreton, Tetrahedron Asymmetry 2001, 12, 1121–

1124. 

[184] F.-X. Felpin, M.-J. Bertrand, J. Lebreton, Tetrahedron 2002, 58, 7381–7389. 

[185] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923–2925. 

[186] A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281–283. 

[187] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854. 

[188] J. Yu, V. Truc, P. Riebel, E. Hierl, B. Mudryk, Tetrahedron Lett. 2005, 46, 4011–4013. 

[189] M. Spittler, K. Lutsenko, C. Czekelius, J. Org. Chem. 2016, 81, 6100–6105. 

[190] J. F. Teichert, S. Zhang, A. W. van Zijl, J. W. Slaa, A. J. Minnaard, B. L. Feringa, Org. Lett. 

2010, 12, 4658–4660. 

[191] P. A. Vadola, D. Sames, J. Org. Chem. 2012, 77, 7804–7814. 

[192] H. Zhang, K. O. Jeon, E. Ben Hay, S. J. Geib, D. P. Curran, M. G. LaPorte, Org. Lett. 2014, 

16, 94–97. 

[193] P. Zhao, C. M. Beaudry, Org. Lett. 2013, 15, 402–405. 

[194] N. Kardos, A. L. Demain, Appl. Microbiol. Biotechnol. 2011, 92, 677. 

[195] S. A. Sieber, M. A. Marahiel, J. Bacteriol. 2003, 185, 7036–7043. 

[196] S. A. Sieber, M. A. Marahiel, Chem. Rev. 2005, 105, 715–738. 

[197] S. Ōmura, Tetrahedron 2011, 67, 6420–6459. 

[198] C. J. Schofield, J. E. Baldwin, M. F. Byford, I. Clifton, J. Hajdu, C. Hensgens, P. Roach, Curr. 

Opin. Struct. Biol. 1997, 7, 857–864. 

[199] C. T. Walsh, H. Chen, T. A. Keating, B. K. Hubbard, H. C. Losey, L. Luo, C. G. Marshall, D. 

A. Miller, H. M. Patel, Curr. Opin. Chem. Biol. 2001, 5, 525–534. 

[200] T. Hamada, S. Matsunaga, M. Fujiwara, K. Fujita, H. Hirota, R. Schmucki, P. Güntert, N. 

Fusetani, J. Am. Chem. Soc. 2010, 132, 12941–12945. 

[201] D. L. Boger, Med. Res. Rev. 2001, 21, 356–381. 



Refences 

291 

[202] D. A. Evans, M. R. Wood, B. W. Trotter, T. I. Richardson, J. C. Barrow, J. L. Katz, Angew. 

Chem.-Int. Ed. 1998, 37, 2700–2704. 

[203] E. Black, T. T. Y. Lau, M. H. H. Ensom, Ann. Pharmacother. 2011, 45, 629–638. 

[204] M. Lachia, C. J. Moody, Nat. Prod. Rep. 2008, 25, 227–253. 

[205] K. C. Nicolaou, J. L. Hao, M. V. Reddy, P. B. Rao, G. Rassias, S. A. Snyder, X. H. Huang, D. 

Y. K. Chen, W. E. Brenzovich, N. Giuseppone, et al., J. Am. Chem. Soc. 2004, 126, 12897–

12906. 

[206] R. R. Knowles, J. Carpenter, S. B. Blakey, A. Kayano, I. K. Mangion, C. J. Sinz, D. W. C. 

MacMillan, Chem. Sci. 2011, 2, 308–311. 

[207] B. Shen, L. Du, C. Sanchez, D. J. Edwards, M. Chen, J. M. Murrell, J. Nat. Prod. 2002, 65, 

422–431. 

[208] H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot. (Tokyo) 1966, 19, 200–209. 

[209] J.-C. Zhao, S.-M. Yu, Y. Liu, Z.-J. Yao, Org. Lett. 2013, 15, 4300–4303. 

[210] J.-C. Zhao, S.-M. Yu, H.-B. Qiu, Z.-J. Yao, Tetrahedron 2014, 70, 3197–3210. 

[211] J. R. Cochrane, J. M. White, U. Wille, C. A. Hutton, Org. Lett. 2012, 14, 2402–2405. 

[212] D. Boger, J. Zhou, J. Am. Chem. Soc. 1993, 115, 11426–11433. 

[213] S. Ghosh, A. S. Kumar, G. N. Mehta, R. Soundararajan, S. Sen, Arkivoc 2009, 72–78. 

[214] R. Beugelmans, A. Bigot, M. BoisChoussy, J. P. Zhu, J. Org. Chem. 1996, 61, 771–774. 

[215] M. Kaneda, S. Tamai, S. Nakamura, T. Hirata, Y. Kushi, T. Suga, J. Antibiot. (Tokyo) 1982, 

35, 1137–1140. 

[216] S. Omura, A. Hirano, Y. Iwai, R. Masuma, J. Antibiot. (Tokyo) 1979, 32, 786–790. 

[217] A. Furusaki, T. Matsumoto, H. Ogura, H. Takayanagi, A. Hirano, S. Omura, J. Chem. Soc. 

Chem. Commun. 1980, 698–698. 

[218] Y. Enomoto, K. Shiomi, M. Hayashi, R. Masuma, T. Kawakubo, K. Tomosawa, Y. Iwai, S. 

Omura, J. Antibiot. (Tokyo) 1996, 49, 50–53. 

[219] M. Boll, J. Mol. Microbiol. Biotechnol. 2006, 10, 132–142. 

[220] S. P. Roche, J. A. Porco, Angew. Chem. Int. Ed. 2011, 50, 4068–4093. 

[221] X. Yu, F. Liu, Y. Zou, M.-C. Tang, L. Hang, K. N. Houk, Y. Tang, J. Am. Chem. Soc. 2016, 

138, 13529–13532. 

[222] J. F. Viles-Gonzalez, V. Fuster, J. J. Badimon, Eur. Heart J. 2004, 25, 1197–1207. 

[223] D. Capodanno, J. L. Ferreiro, D. J. Angiolillo, J. Thromb. Haemost. 2013, 11, 316–329. 

[224] C. Geeganage, R. Wilcox, P. M. Bath, BMC Med. 2010, 8, 36. 

[225] D. J. Angiolillo, J. Luis Ferreiro, Rev. Esp. Cardiol. Engl. Ed. 2010, 63, 60–76. 

[226] T. Chiba, Y. Asami, T. Suga, Y. Watanabe, T. Nagai, F. Momose, K. Nonaka, M. Iwatsuki, H. 

Yamada, S. Ōmura, et al., Biosci. Biotechnol. Biochem. 2016, 0, 1–4. 

[227] E. D. Kilbourne, Emerg. Infect. Dis. 2006, 12, 9–14. 

[228] M. R. Hilleman, Vaccine 2002, 20, 3068–3087. 



References 

292 

[229] G. Stiver, CMAJ Can. Med. Assoc. J. 2003, 168, 49–57. 

[230] H. Suzuki, R. Saito, H. Masuda, H. Oshitani, M. Sato, I. Sato, J. Infect. Chemother. Off. J. 

Jpn. Soc. Chemother. 2003, 9, 195–200. 

[231] K. M. Chan-Tack, J. S. Murray, D. B. Birnkrant, N. Engl. J. Med. 2009, 361, 1713–1714. 

[232] G. T. Kim, PhD Thesis, Korea Advanced Institute of Science and Technology, 1997. 

[233] P. Wipf, Y. Kim, D. M. Goldstein, J. Am. Chem. Soc. 1995, 117, 11106–11112. 

[234] G. Lin, R. Hong, J. Org. Chem. 2001, 66, 2877–2880. 

[235] J. M. Hart, PhD Thesis, University of Leeds, 2004. 

[236] D. A. Evans, C. J. Dinsmore, D. A. Evrard, K. M. DeVries, J. Am. Chem. Soc. 1993, 115, 

6426–6427. 

[237] P. Stawski, PhD Thesis, LMU München, 2012. 

[238] H. Yang, PhD Thesis, University of Birmingham, 2015. 

[239] J. H. Lee, L. Deng, J. Am. Chem. Soc. 2012, 134, 18209–18212. 

[240] D. Seebach, Angew. Chem. Int. Ed. Engl. 1979, 18, 239–258. 

[241] Y. Zhang, B. O’Connor, E. Negishi, J. Org. Chem. 1988, 53, 5588–5590. 

[242] F. Guo, M. D. Clift, R. J. Thomson, Eur. J. Org. Chem. 2012, 2012, 4881–4896. 

[243] Y. Ito, T. Konoike, T. Harada, T. Saegusa, J. Am. Chem. Soc. 1977, 99, 1487–1493. 

[244] R. H. Frazier, R. L. Harlow, J. Org. Chem. 1980, 45, 5408–5411. 

[245] C. T. Avetta, L. C. Konkol, C. N. Taylor, K. C. Dugan, C. L. Stern, R. J. Thomson, Org. Lett. 

2008, 10, 5621–5624. 

[246] R. M. Moriarty, R. Penmasta, I. Prakash, Tetrahedron Lett. 1987, 28, 873–876. 

[247] L. C. Konkol, F. Guo, A. A. Sarjeant, R. J. Thomson, Angew. Chem. Int. Ed. 2011, 50, 9931–

9934. 

[248] B. T. Jones, C. T. Avetta, R. J. Thomson, Chem. Sci. 2014, 5, 1794–1798. 

[249] C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2010, 132, 4894–4906. 

[250] D. A. Parrish, L. J. Mathias, J. Org. Chem. 2002, 67, 1820–1826. 

[251] M.-Y. Chen, A. S.-Y. Lee, J. Chin. Chem. Soc. 2003, 50, 103–108. 

[252] H. C. Brown, P. V. Ramachandran, in Reduct. Org. Synth., American Chemical Society, 1996, 

pp. 1–30. 

[253] M. E. Jung, J. C. Rohloff, J. Org. Chem. 1985, 50, 4909–4913. 

[254] H. Hagiwara, N. Komatsubara, H. Ono, T. Okabe, T. Hoshi, T. Suzuki, M. Ando, M. Kato, J. 

Chem. Soc. [Perkin 1] 2001, 316–322. 

[255] K. Chen, Y. Ishihara, M. M. Galán, P. S. Baran, Tetrahedron 2010, 66, 4738–4744. 

[256] K. C. Nicolaou, S. Sanchini, T. R. Wu, D. Sarlah, Chem. – Eur. J. 2010, 16, 7678–7682. 

[257] P. A. Grieco, M. Nishizawa, N. Marinovic, W. J. Ehmann, J. Am. Chem. Soc. 1976, 98, 7102–

7104. 

[258] P. A. Grieco, R. P. Nargund, D. T. Parker, J. Am. Chem. Soc. 1989, 111, 6287–6294. 



Refences 

293 

[259] R. Ding, J.-G. Fu, G.-Q. Xu, B.-F. Sun, G.-Q. Lin, J. Org. Chem. 2014, 79, 240–250. 

[260] T. Hamura, S. Tsuji, T. Matsumoto, K. Suzuki, Chem. Lett. 2002, 31, 280–281. 

[261] M. E. Krafft, R. A. Holton, J. Am. Chem. Soc. 1984, 106, 7619–7621. 

[262] A. Fürstner, H. Krause, C. W. Lehmann, Angew. Chem. Int. Ed. 2006, 45, 440–444. 

[263] O. Z. Pereira, T. H. Chan, Tetrahedron Lett. 1995, 36, 8749–8752. 

[264] M. Ogasawara, Y. Ge, K. Uetake, T. Takahashi, Org. Lett. 2005, 7, 5697–5700. 

[265] S.-P. Luo, L.-D. Guo, L.-H. Gao, S. Li, P.-Q. Huang, Chem. – Eur. J. 2013, 19, 87–91. 

[266] T.-L. Ho, R.-J. Chein, Helv. Chim. Acta 2006, 89, 231–239. 

[267] I. S. Marcos, F. A. Hernández, M. J. Sexmero, D. D  ez, P. Basabe, A. B. Pedrero, N. Garc  a, J. 

G. Urones, Tetrahedron 2003, 59, 685–694. 

[268] B. V. S. Reddy, B. Someswarao, N. Prudhviraju, B. J. M. Reddy, B. Sridhar, S. K. Kumar, 

Org. Biomol. Chem. 2015, 13, 6737–6741. 

[269] T. Ibuka, G. N. Chu, Chem. Pharm. Bull. (Tokyo) 1986, 34, 2380–2390. 

[270] Y. Hitotsuyanagi, S. Motegi, T. Hasuda, K. Takeya, Org. Lett. 2004, 6, 1111–1114. 

[271] M. Couturier, J. L. Tucker, B. M. Andresen, P. Dubé, J. T. Negri, Org. Lett. 2001, 3, 465–467. 

[272] Z. Shao, J. Chen, R. Huang, C. Wang, L. Li, H. Zhang, Synlett 2003, 2003, 2228–2230. 

[273] E. Dinca, P. Hartmann, J. Smrček, I. Dix, P. G. Jones, U. Jahn, Eur. J. Org. Chem. 2012, 

2012, 4461–4482. 

[274] J. McNulty, M. J. Millar, G. Bernardinelli, C. W. Jefford, J. Org. Chem. 1999, 64, 5312–5314. 

[275] C. Kitamura, C. Matsumoto, N. Kawatsuki, A. Yoneda, K. Asada, T. Kobayashi, H. Naito, 

Bull. Chem. Soc. Jpn. 2008, 81, 754–756. 

[276] S. Mao, Y.-R. Gao, S.-L. Zhang, D.-D. Guo, Y.-Q. Wang, Eur. J. Org. Chem. 2015, 2015, 

876–885. 

[277] N. Kise, T. Ueda, K. Kumada, Y. Terao, N. Ueda, J. Org. Chem. 2000, 65, 464–468. 

[278] R. M. Moriarty, O. Prakash, M. P. Duncan, J. Chem. Soc. Chem. Commun. 1985, 0, 420–420. 

[279] M. Schmittel, A. Burghart, W. Malisch, J. Reising, R. Söllner, J. Org. Chem. 1998, 63, 396–

400. 

[280] T. Fujii, T. Hirao, Y. Ohshiro, Tetrahedron Lett. 1992, 33, 5823–5826. 

[281] E. S. Krygowski, K. Murphy-Benenato, M. D. Shair, Angew. Chem. Int. Ed. 2008, 47, 1680–

1684. 

[282] P. Mizar, T. Wirth, Angew. Chem. Int. Ed. 2014, 53, 5993–5997. 

[283] J. Burés, M. Martín, F. Urpí, J. Vilarrasa, J. Org. Chem. 2009, 74, 2203–2206. 

[284] C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509–524. 

[285] S. Yokoshima, T. Ueda, S. Kobayashi, A. Sato, T. Kuboyama, H. Tokuyama, T. Fukuyama, J. 

Am. Chem. Soc. 2002, 124, 2137–2139. 

[286] A. Fujiwara, T. Kan, T. Fukuyama, Synlett 2000, 2000, 1667–1669. 

[287] W. Kurosawa, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2003, 125, 8112–8113. 



References 

294 

[288] A. de Meijere, B. Stecker, A. Kourdioukov, C. M. Williams, Synthesis 2000, 2000, 929–934. 

[289] T. Hirashita, S. Kambe, H. Tsuji, H. Omori, S. Araki, J. Org. Chem. 2004, 69, 5054–5059. 

[290] C. Brouard, J. Pornet, L. Miginiac, Tetrahedron 1992, 48, 2385–2400. 

[291] J. P. Foulon, M. Bourgain-Commerçon, J. F. Normant, Tetrahedron 1986, 42, 1389–1397. 

[292] A. N. Anfimov, S. Y. Erdyakov, M. E. Gurskii, A. V. Ignatenko, K. A. Lyssenko, Y. N. 

Bubnov, Mendeleev Commun. 2011, 21, 1–3. 

[293] M. E. Gursky, A. V. Geiderikh, A. V. Ignatenko, Y. N. Bubnov, Russ. Chem. Bull. 1993, 42, 

144–148. 

[294] R. Köster, H. Bellut, G. Benedikt, E. Ziegler, Justus Liebigs Ann. Chem. 1969, 724, 34–55. 

[295] K. M. Cergol, M. J. Coster, Nat. Protoc. 2007, 2, 2568–2573. 

[296] M. D. Clay, D. Riber, A. G. Fallis, Can. J. Chem. 2005, 83, 559–568. 

[297] A. Melekhov, A. G. Fallis, Tetrahedron Lett. 1999, 40, 7867–7870. 

[298] O. Kwon, S. B. Park, S. L. Schreiber, J. Am. Chem. Soc. 2002, 124, 13402–13404. 

[299] T. Hiyama, K. Kimura, H. Nozaki, Tetrahedron Lett. 1981, 22, 1037–1040. 

[300] N. Selander, K. J. Szabó, J. Org. Chem. 2009, 74, 5695–5698. 

[301] C. Diner, K. J. Szabo, J. Am. Chem. Soc. 2016, 137, 11262–11265. 

[302] H. Lachance, D. G. Hall, in Org. React., John Wiley & Sons, Inc., Hoboken, 2004. 

[303] R. W. Hoffmann, H.-J. Zeiss, Angew. Chem. Int. Ed. Engl. 1979, 18, 306–307. 

[304] F. W. van der Mei, H. Miyamoto, D. L. Silverio, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 

55, 4701–4706. 

[305] W. R. Roush, A. E. Walts, L. K. Hoong, J. Am. Chem. Soc. 1985, 107, 8186–8190. 

[306] J. Pietruszka, N. Schöne, W. Frey, L. Grundl, Chem. – Eur. J. 2008, 14, 5178–5197. 

[307] H. Lachance, X. Lu, M. Gravel, D. G. Hall, J. Am. Chem. Soc. 2003, 125, 10160–10161. 

[308] J. W. J. Kennedy, D. G. Hall, J. Am. Chem. Soc. 2002, 124, 11586–11587. 

[309] T. Ishiyama, T. Ahiko, N. Miyaura, J. Am. Chem. Soc. 2002, 124, 12414–12415. 

[310] V. Rauniyar, H. Zhai, D. G. Hall, J. Am. Chem. Soc. 2008, 130, 8481–8490. 

[311] M. Chen, W. R. Roush, J. Am. Chem. Soc. 2012, 134, 10947–10952. 

[312] M. Chen, W. R. Roush, J. Am. Chem. Soc. 2013, 135, 9512–9517. 

[313] M. Schlosser, Pure Appl. Chem. 2009, 60, 1627–1634. 

[314] S. Hitosugi, D. Tanimoto, W. Nakanishi, H. Isobe, Chem. Lett. 2012, 41, 972–973. 

[315] M. Schmicker, Bachelor´s Thesis, LMU München, 2016. 

[316] B. Hetzler, Master´s Thesis, 2016. 

[317] J. L.-Y. Chen, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 10992–10996. 

[318] J. L.-Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis, V. K. Aggarwal, J. Am. Chem. Soc. 2013, 

135, 5316–5319. 

[319] A. Erkkilä, P. M. Pihko, Eur. J. Org. Chem. 2007, 2007, 4205–4216. 

[320] S. Bower, K. A. Kreutzer, S. L. Buchwald, Angew. Chem. Int. Ed. Engl. 1996, 35, 1515–1516. 



Refences 

295 

[321] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 

8168–8179. 

[322] S. R. Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. Int. Ed. 2001, 40, 4544–4568. 

[323] F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10961–10963. 

[324] M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543–6554. 

[325] Z. Xu, F. Zhang, L. Zhang, Y. Jia, Org. Biomol. Chem. 2011, 9, 2512–2517. 

[326] H. Böhme, E. Mundlos, O.-E. Herboth, Chem. Ber. 1957, 90, 2003–2008. 

[327] C. Nsanzumuhire, J.-L. Clément, O. Ouari, H. Karoui, J.-P. Finet, P. Tordo, Tetrahedron Lett. 

2004, 45, 6385–6389. 

[328] N. M. Barl, E. Sansiaume-Dagousset, G. Monzón, A. J. Wagner, P. Knochel, Org. Lett. 2014, 

16, 2422–2425. 

[329] G. Raju, J. P. Rao, B. V. Rao, Helv. Chim. Acta 2014, 97, 861–867. 

[330] H. Tokuyama, T. Makido, T. Ueda, T. Fukuyama, Synth. Commun. 2002, 32, 869–873. 

[331] A. Hirschvogel, Bachelor´s Thesis, LMU München, 2015. 

[332] Y. R. Kim, D. K. An, Bull Korean Chem Soc 2012, 33, 4194–4196. 

[333] J.-C. Hannachi, J. Vidal, J.-C. Mulatier, A. Collet, J. Org. Chem. 2004, 69, 2367–2373. 

[334] A. J. Ross, H. L. Lang, R. F. W. Jackson, J. Org. Chem. 2010, 75, 245–248. 

[335] T. Okitsu, S. Yumitate, K. Sato, Y. In, A. Wada, Chem. – Eur. J. 2013, 19, 4992–4996. 

[336] L. Nolasco, M. Perez Gonzalez, L. Caggiano, R. F. W. Jackson, J. Org. Chem. 2009, 74, 

8280–8289. 

[337] V. Bagutski, A. Ros, V. K. Aggarwal, Tetrahedron 2009, 65, 9956–9960. 

[338] L. Nielsen, T. Skrydstrup, J. Am. Chem. Soc. 2008, 130, 13145–13151. 

[339] R. F. W. Jackson, M. Perez-Gonzalez, in Org. Synth., John Wiley & Sons, Inc., Hoboken, 

2003. 

[340] Y. Hattori, T. Asano, M. Kirihata, Y. Yamaguchi, T. Wakamiya, Tetrahedron Lett. 2008, 49, 

4977–4980. 

 


