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Zusammenfassung

Die Verteilung der Dichte der Valenzelektronen in Materialien definiert deren chemische,
optische und biologische Eigenschaften. Daher ist die direkte Darstellung von Valenzelek-
tronen in Festkörpern von höchster Wichtigkeit. Röntgenelektronen- und Neutronenbeu-
gung liefern essentielle Informationen über die atomaren Positionen in Materialien, aber
versagen bei der Messung der Dichte der Valenzelektronen. Diese Arbeit konzentriert ihre
Bestrebungen auf dieses essentielle Problem.

Durch die Erzeugung Hoher-Harmonischer in Gasen konnten bereits erfolgreich die
Bewegungen von Molekülorbitalen dargestellt und Valenzelektronenbewegungen gemessen
werden. Die kürzliche Entdeckung Hoher-Harmonischer in kondensierter Materie stellt
daher ein vielversprechend Mittel dar, um dieses Potential auch auf Festkörper auszuweiten.
Durch die Verwendung starker Laserfelder, die Elektronen in Festkörpern auslenken, und
durch die Messung ihrer hohen-harmonischen Emissionsspektren, welche aus der Streuung
der Elektronen mit dem periodischen Potential resultieren, versuchen wir das periodische
Valenzpotential von Festkörpern zu entschlüsseln.

Es wird diskutiert, dass unter dem Einfluss starker Felder und der hoch-frequenten
Anregung von Festkörpern sich Valenzelektronen im Laserfeld wie nahezu freie Teilchen
verhalten und dass das periodische Potential lediglich eine schwache Störung ihrer Be-
wegung darstellt. Dies erlaubt es, bereits entwickelte kinematische Modelle auszuweiten,
um die Erzeugung Hoher-Harmonischer zu beschreiben und ihre Charakteristiken wie die
Cutoff- Energie und Intensität mit dem periodischen Potential und der Elektronendichte
des Festkörpers zu verknüpfen.

Diese Arbeit zeigt theoretisch und beweist experimentell, dass die Cutoff-Energie der
hoch-harmonischen Emission es nun erstmalig erlaubt, den ionischen und den kovalenten
Radius von Atomen in einem Kristall direkt zu bestimmen. Des Weiteren zeigt sie, dass
die Messung der Intensitätsausbeute der Hohen-Harmonischen in Abhängigkeit der Anre-
gungsstärke und für verschiedene Kristallwinkel die gesamte Rekonstruktion des periodis-
chen Potentials und der Elektronendichte im Festkörper erlaubt. Diese Technik erlaubt es
somit zum ersten Mal, das “Phasenproblem” zu adressieren. Hohe-Harmonische, die vom
Festkörper ausgehen, verkörpern Informationen über die Amplitude und die Phase der
Fourier-Komponenten des periodischen Potentials. Das Potential zweier kristalliner Ma-
terialien, MgF2 und CaF2, konnte so mit einer Auflösung besser als 50 pm rekonstruiert
werden. Studien mehrerer Materialien wie SiO2, Diamant, MgO, SiC, und ZnO erlauben
es, die Maßtäbe der neuen Mikroskopietechnik zu setzen.
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Abstract

The valence electron density distribution of materials determine their chemical, optical,
electronic and biological properties. Hence the direct imaging of valence electrons in solids
is of paramount importance. X-ray, electron and neutron diffraction provide essential
information about the position of atoms in materials but fail to probe the valence electron
density. This thesis attempts to solve this essential problem.

The technique of high harmonic generation in gases have successfully imaged molecular
orbital and has allowed observation of valence electron motion. The recent discovery of
high harmonic generation (HHG) in condensed matter systems holds promise for extending
this capability in solids. Using strong laser fields to drive electrons in the bulk of a material
and by recording high harmonics emitted as a result of the scattering of electrons by the
periodic potential we attempt to decipher the valence electron potential of solids.

It is argued that under the strong field and high-frequency driving of solids, valence
electrons can be treated as nearly free particles in the laser field and that the periodic
potential contributes only a weak perturbation in their motion. That allows extending the
earlier developed kinematic models to describe the high harmonic generation and to link,
their characteristics, such as cutoff energy and intensity with the periodic potential and
the electron density of the solid.

The thesis shows theoretically and proves experimentally that the cutoff energy of the
high harmonic emission allows for the first time the direct probe of the ionic and covalent
radius of atoms inside the crystal. Moreover, it shows that by recording the intensity yield
of high harmonics versus the driving strength for various angles of the crystal permits
the complete reconstruction of the periodic potential and electron density inside the solid.
The technique allows addressing for the first time the “phase problem”. High harmonics
emanating from the crystal embody information about the amplitude and the phase of
the Fourier components of the periodic potential. For two crystalline materials MgF2, and
CaF2 the potential is reconstructed with a resolution better than 50 pm. The study of
more materials such as SiO2, Diamond, MgO, SiC, and ZnO allows benchmarking the new
microscopy technique.
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Introduction

The knowledge of the distribution of electric charges in a material is of great importance
in physics, chemistry, material science and biology. This is because the arrangements of
atoms inside the crystal and the electron distribution around the atoms describe the me-
chanical, the chemical, the electronic and the optical properties of the material. This thesis
presents a method to image the valence electron distribution of bulk solids. In the following
introduction, I provide a brief outline of three major fields of physics: solid state physics,
crystallography and ultrafast nonlinear optics, which forms the backbone of the research
work presented in this thesis.

A key method for scientific progress is to break a complex problem into small pieces
and analyze them individually. In order to understand the properties of matter, several
methods have been proposed throughout history. The ancient philosophies attempted to
divide matter into elements. Indian philosophers from Vedic times classified material into
the earth (Prithvi), fire (Agni), air (Maya) and water (Apa). Greeks introduced the con-
cept of matter being made of invisible and indivisible units. The scientific revolution,
beginning in the 17th century, saw the question of “what matter is” as a central theme.
At the start of the revolution, Isaac Newton believed that matter consisted of solid, hard,
impenetrable, massive and movable particles. The atomic theory, as we know it today,
came into existence in its primitive form only in the beginning of the 20th century with
the discovery of electrons by J.J. Thompson [1]. Rutherford later provided a model for
how electrons are arranged in an atom [2]. Things seemed to fall into place when Drude
proposed his theory of electrical and thermal conduction in the 1900s [3]. Although we
understood the basic constituents of matter, a complete theory which could describe the
underlying physical laws and chemical properties of material was missing.

During the beginning of 20th century, with the basic building blocks of matter already
understood, the drive was towards understanding the thermal properties of various objects.
The black body, an idealized model, was used to understand radiative properties of matter.
The classical physics describes the intensity of blackbody radiation to be proportional
to frequency for a fixed temperature. This is known as Rayleigh-Jeans law. It works
for the low frequencies but diverges quadratically for high-frequencies. This presented
a paradoxical problem that the energy of high-frequency light should be higher, thereby
diverging and leading to the infinite energy of the system. This paradox came to be
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known as the Ultraviolet Catastrophe. In 1900, Max Planck postulated the concept of
“quanta” to assert that energy of modes can only be in discrete packets. Using statistical
mechanics and the concept of quanta he was able to resolve the ultraviolet paradox by
explaining why high-frequency packets are less likely to be excited and thus have lower
magnitude, matching the experimental results. This revolutionary idea of quanta was later
used by Einstein to explain the photoelectric effect in his seminal papers of 1905. Arthur
Compton, C.V. Raman and Pieter Zeeman were among the first to study the quantum
aspect of nature, each having a quantum-effect named after them. This ushered in a new
era of science and led to the development of quantum physics. Modern quantum mechanics,
however, started in the second quarter of the twentieth century with the works of Bohr,
Dirac, Heisenberg and Schrödinger, and was further unified and formalized by Hilbert, and
John von Neumann.

The missing theory which could explain the fundamental physics at the smallest scales
was now found. The foundations of quantum mechanics revolutionized our understanding
of the matter. Quantum theory can describe the physical laws of the system if we can
mathematically describe all the parameters involved in it. Even if we are able to fully
describe the system, a complete analytical solution of the equations is often impossible.
“The general theory of quantum mechanics is now almost complete. The underlying phys-
ical laws necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that exact application of
these laws leads to equations much too complicated to be soluble” remarked P.A.M. Dirac
in 1929, which still holds true today. A mere accurate description of the system does not
guarantee a closed-form solution of the Schrödinger equation.

In order to describe a many-body quantum system, the wave-function is written in
terms of the position of all N electron and all I nuclei present in the system. In the Born-
Oppenheimer approximation, the motion of atomic nuclei and electrons can be separated
and for many scenarios, the nuclear motion is neglected. Hence for N electrons present,
the system may have 3N degrees of freedom. One may comprehend the insurmountable
challenge posed by many electrons from the fact that even obtaining energy eigenfunctions
for a helium atom (2 electrons) is analytically impossible. Hence solid systems require
another approach to solve this problem. Here we turn to a well-established approach to
solve this problem, density functional theory (DFT).

In 1895 the discovery of X-rays by Wilhelm Röntgen led to the birth of crystallography.
The advent of crystallography also initiated the quest for understanding the microscopic
structure of materials and the arrangement of atoms and electrons inside. The field of
X-ray diffraction started in the heart of Munich - Englischer Garten - where conversations
between Paul Peter Ewald and Max von Laue sparked the idea that crystals may be used as
diffraction gratings. Von Laue worked with Walter Freidrich and Paul Knipping to observe
for the first time in 1912 the diffraction of light by copper sulfate crystals. The diffraction
showed well-defined spots in a geometric pattern, Laue later developed laws to explain the
scattering and was awarded the Nobel prize in Physics (1914) for it. This would be one of
the most important discoveries of the century. The discovery provided a non-destructive
technique to obtain information about a crystals structure. William Bragg and Lawrence
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Bragg developed the law which connects the observed diffraction pattern to the reflection
of X-rays from parallel, evenly spaced planes of the crystal. They shared the Nobel prize
for it in 1915. The first structures of NaCl, KCl, KbR and KI were published in 1913.
The effect of temperature on the crystal structure was studied by Debye in 1913-1914,
where he defined a B-factor to incorporate the effects thermal motion, subsequently, this
factor was corrected by Waller (1923). The importance of group symmetry to describe
crystal structure was realized and in 1919 Niggli published 230 space groups which are still
used today. Wyckoff (1922) and Astbury(1924) later published other space-group tables.
By 1920 all the basic knowledge and theory of crystallography used today was already
developed. However, the necessary instruments to make sense of the complex diffraction
patterns were yet to be developed.

William Coolidge constructed completely enclosed X-ray tubes by making ductile tung-
sten. Coolidge tubes provided an X-ray source of extraordinary brilliance, whose intensity
could be controlled. This tube was the workhorse for crystallographers for several decades
and was improved upon until the invention of microfocus tubes. Many improvements were
made in building high brilliance diffractometers. The next major advance in X-ray sci-
ence came with the development of synchrotron sources for X-rays, where a magnetic field
bends accelerating electrons to generate very bright, intense, coherent, monochromatic but
tunable X-ray radiation. Now many countries have also invested in tabletop free electron
sources which also provide bright X- rays. These two technologies have revolutionized
experimental capabilities. Henceforth, structures of macromolecules such as proteins are
obtained on a regular basis. However, the structure determination of large non-symmetric
structures brings two major problems to the table: One is the so-called phase problem and
the other is the computational challenge.

Periodic potentials of crystalline materials can be decomposed into Fourier components.
If the material does not possess an inversion symmetry, Fourier components will also have
an imaginary part, in addition to an amplitude. Alas, X-ray diffraction patterns only pro-
vide information about the amplitude of Fourier coefficients of the material! The Phase
information, necessary for retrieval of electron density of the crystal, is lost in such exper-
iments. In the early years of crystallography, the method of “guess and check” was used.
The extensive knowledge of diffraction patterns, symmetry, and geometry of the crystal
was used to guess the crystal structure. By 1930 crystalline structures of many inorganic
materials and alloys were discovered. Patterson described a method to obtain the crystal
structure only with amplitude information, but this method was only applicable to systems
with a small number of atoms. Later on, mathematical methods were developed to deter-
mine the phases of the Fourier coefficients. These methods seldom require large computing
capacities. Before the 1960s the determination of crystal structure was a tedious task but
the advancement of computing capabilities also led to the refinement of crystallography.
Though mathematical methods are available, direct experimental observation of phases is
not yet possible.

The beginning of nonlinear light-matter interaction and the resulting observed phe-
nomena (such as HHG) can be attributed to the invention of the laser in 1960 by Maiman.
The theory behind lasers was proposed in 1958 by Townes and brought into existence
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two years later. The invention of the laser revolutionized numerous fields namely, laser
physics, atomic physics, plasma physics, solid state physics, astrophysics, elementary par-
ticle physics etc. Before the invention of lasers, the basic concepts in conventional optics
such as reflection, dispersion, and scattering were all linear in nature. The interaction
of intense pulses with matter led to various exotic, nonlinear phenomena. The first non-
linear phenomenon was observed when a pulsed laser beam was sent into a piezoelectric
crystal, leading to the observation of the second harmonic generation (SHG) at an op-
tical frequency. Many other phenomena such as frequency mixing, optical rectification,
parametric amplification etc. have since been discovered.

For understanding the microcosm, apart from examining ever smaller structures, an-
other pursuit of mankind has been to examine ever faster phenomena. The journey which
began by taking the snapshot of motion of a horse has now reached the point of taking
snapshots of the motion of electrons. The discovery of the laser was a major leap in this
journey. Shortly after the discovery of continuous monochromatic laser beams, pulsed laser
bursts were produced. These bursts continued advancing to shorter and shorter pulse du-
ration from the picosecond to femtosecond and further. Currently, femtosecond lasers are
commercially available and serve as a workhorse for most optics laboratories worldwide.
Examples of phenomena which are now observable thanks to these super short pulses are
the rotational dynamics of molecules, which take place in the picosecond regime, and vi-
brational dynamics, which take place in the femtosecond regime. The processes of bond
formation and dissociation can be understood as vibrational dynamics. In the femtosec-
ond regime, the motion of the nucleus is negligible and the vibration of electrons within
molecules can be studied. This provides the technique to study the processes of bond
making, bond breaking, chemical reactivity and transition rates. Ahmed H. Zewail used
the ”concept” of flash photolysis (pump-probe), where a strong femtosecond pulse is used
to excite the system in the study and a delayed pulse, called probe pulse, is used to capture
the evolution at various time delays by observing the absorption or fluorescence signal this
absorption may present. With this technique, the real-time electron motion in molecules
could be observed. Zewail used systems with increasing complexity to establish the field
of femtochemistry. The first work was done using cyanogen iodide (ICN), where disso-
ciation was observed to produce free CN molecules after 200 fs. In the famous study of
NaI molecules, the contribution of vibration states to non-adiabatic transition rates was
studied. The Nobel Prize in Chemistry 1999 was awarded to Zewail “for his studies of
the transition states of chemical reactions using femtosecond spectroscopy”. During the
same period, other phenomena were being observed in the field of light-matter interactions.
Multi-photon ionization, above-threshold ionization and high harmonic generation led to
the development of pulses with attosecond pulse duration. In high harmonic generation
(HHG), the nonlinear polarization in the atoms of noble gases is induced by the intense
laser field which leads to ionization, excursion and recollision of the electron from the par-
ent atom. This process is so called the three step model and was first proposed by Paul
Corkum.

The field of attosecond science first came into existence during the first years of the
new millennium with the successful generation of extreme ultraviolet pulses with sub-
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femtosecond duration [4, 5, 6]. These sub-femtosecond pulses were then used to study
physical processes with attosecond time resolution. The orbital period of an electron in
the ground state of a hydrogen atom is 150 as, according to Bohr’s model. The unfolding
of ultrashort attosecond pulses opened the door for the first time into real-time observation
of electron dynamics. The major early works in the field of attosecond science included the
lifetime measurement of inner-shell vacancies of Kr atoms [7], ultrafast control of electronic
processes [8], imaging the molecular orbitals [9], time-resolved observation of laser-induced
tunnel ionization of atoms [10] and electric charge transport through atomic layers of
solids [11]. In 2004, the first direct measurement of a short pulse of a visible laser light
wave was performed [12] with the concept of attosecond streaking. Ever since its first
demonstration, this technique has been used as the main tool to characterize ultrashort
pulses on a routine basis and serves as a benchmark for attosecond precision metrology.
Attempts were also made to answer some of the fundamental questions in science such as
the length of the delay during single photo-ionization processes [13]. The real motion of
valence-shell electrons in atoms was observed [14] and delay in non-linear response of bound
electrons were tracked [15]. Attosecond science during its first decade demonstrated the
unique capabilities that can be provided by its primary tool, the sub-femtosecond pulse.
Moving into its second decade, the field is now delving deeper into increasingly fundamental
questions and increasingly complex systems such as molecules and solids.

High harmonic generation, is a typical feature of strong field interactions and is the
process at the heart of attosecond pulse generation. In 2011, HHG was extended to bulk
crystalline materials such as ZnO [16] with mid-infrared frequency pulse, GaSe [17] with
THz pulse and SiO2 with optical pulses. The tools developed to understand electron
dynamics in gases can now be used to understand much more sophisticated dynamics in
solids. This motivation kindled a plethora of investigations demonstrating HHG in various
dielectrics and semiconductors, establishing this process as a ubiquitous phenomenon [17,
18, 19, 20, 21, 22, 23, 24, 25]. The harmonic generation mechanism was explained using the
Bloch equation [19, 17], semiconductor Bloch equations [26], time-dependent perturbation
theory [27] and ab-initio calculations. A universal understanding of the mechanism in all
insulators and semiconductors remains elusive. Experimental and theoretical works have
debated the dominant mechanism of HHG in solids [28].

Understanding electron motion in the periodic structure of solids under ordinary elec-
tric field was one of the major breakthroughs in the last century of physics, which led
to the invention of all the electronics we use in our day-to-day lives. The invention of
intense and ultra-short pulses now provides us with ”new eyes” to peer deeper into the
electronic and optical properties of a material without destroying them. The phenomenon
of HHG in solids [29] is the result of the interaction of electrons driven by short pulses with
the periodic potential of the solids. Such interactions embody the information about the
potential structure of solid. Initial research was conducted with the goal of determining
fundamental features of a crystal such as its band structures using HHG [18]. Understand-
ing the phenomenon of HHG can not only provide us with access to the dynamics of an
electron inside solids but also access to the underlying valence periodic potential on which
it is traversing. This is also the motivation and the main research question of this thesis.
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Mapping atomic arrangement is a century-old science. The importance of crystallog-
raphy can be gauged by the path-breaking discoveries done in the field, which has earned
its biggest contributors 29 Nobel prizes. For bulk periodic or crystalline materials X-ray
or electron beams can be used to decipher the crystalline arrangement and thereby map
the electron density. However, even with these techniques at hand, the direct visualization
of the electronic potential and valence electron densities inside solids remains an insur-
mountable challenge. X-ray diffraction patterns only contain the amplitude information
and hence suffer from a poor final reconstruction of electron density due to ambiguity in
phase information. Aron Klug realized that electron microscopy, however, does contain this
phase information and was awarded Nobel Prize in 1982 for using it to elucidate the struc-
ture of protein complexes [30]. However, electron diffraction requires very thin samples to
mitigate the effects of multiple scattering and is also very sensitive to space charge effects.
A robust technique which can look into valence electron densities and provide information
of both amplitude and phases of the electron density components is much needed.

This work presents experiments in which intensities of emitted harmonics were carefully
measured and characterized for different orientation of the crystal. Theoretical concepts
were developed for extracting the information of valence electron densities from the inten-
sity and angular dependence of the obtained data. The valence electron densities of MgF2

and CaF2 were successfully extracted and compared with the existing theoretical model.
The contents of the thesis are briefly outlined below.

• Chapter 1 presents a brief review of the current methods used to visualize matter to
the smallest possible scale.

• In Chapter 2 the features of HHG in solids are discussed. Most widely accepted
existing theoretical frameworks to understand the HHG phenomenon in solids are
briefly presented.

• Chapter 3 discusses the foundation of picoscopy. It shows how the high harmonic
generation process can be discussed without invoking the band picture. It first ar-
gues that in the high-frequency regime the motion of an electron in solids can be
treated similarly to the motion of a nearly-free electron in the laser field, where the
potential only acts as a perturbation. Based on this, a theory to understand HHG in
solids which connects the intensity of emitted harmonic radiation with the Fourier
coefficients of the valence potential of the periodic crystal is discussed.

• Chapter 4 presents analogies and differences between the intensity of emitted harmon-
ics in the HHG process and the intensity of the diffracted X-rays in crystallography.

• Chapter 5 presents the methods for analyzing the experimentally obtained intensity
yield of emitted harmonic radiation. It discusses how the amplitude and phase of the
Fourier coefficients of the periodic crystal can be obtained from the intensity yields.
It also details the method to obtain the 2D images of valence electron density.
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• Chapter 6 presents the experimental setup. Essential elements for developing a pi-
coscope are first identified and the apparatus of the picoscope is presented.

• Chapter 7 interrogates the validity of high-frequency approximation in solids by prob-
ing the valence radii of ions/atoms in the various crystalline system such as MgF2,
MgO, ZnO, SiO2, SiC and Diamond.

• Chapter 8 presents experiments and analysis to measure the valence potential of
crystalline MgF2. The two-dimensional slice of the valence potential of MgF2 is
reconstructed and compared with the potential obtained from density functional
theory.

• Chapter 9 extends the experiment and analysis to the crystal of CaF2 and presents
its experimentally measured valence electron potential.

• Chapter 10 presents the conclusions and the outlook.



8 Introduction and Motivation



Chapter 1

Visualizing the microcosm

From seeing too much of the world, We do not understand it.
There is something unknown in knowing. Unfaith is what keeps the faith going.

-Richard Eberhart

A human eye is the result of a million years of evolution. Although it is one of the
most complex organs in a human body still its spatial and temporal resolutions are limited
to about 100 µm and few milliseconds. Today, we are assisted by several tools which can
observe in angstrom scale or can examine the motion up till attosecond duration. In this
chapter, the current methods for observing matter to its minutest scale are reviewed.

1.1 Ways to determine the crystal structure of matter

The obvious way of determining the crystal structure is to magnify the objects to the size
such that the human eye can understand and resolve them. With this aim, the field of
microscopy and crystallography evolved and can currently resolve the molecules of nm size.

Crystalline material can either be resolved by magnifying its image or by knowing its
Fourier coefficients. The latter part is done through the process of diffraction which gives
us the information of the amplitude of the Fourier coefficients of the crystalline material.

Fig. 1.1 succinctly explains the two methodologies. In the case of microscopy, the image
in real space is magnified to resolve finer features. On the other hand, in crystallography,
the Fourier coefficients are obtained and the real space image is reconstructed. The first
microscope was developed in 1600 by Antonie van Leeuwenhoek also known as “the father
of microbiology”. He recorded the minute details in natural samples using a simple lens
microscope.

The field of crystallography, on the other hand, is a century old. It started with the
discovery of X-rays and is currently the most widely used method to determine the structure
of the crystalline material. In the following, we will first review the important microscopy
methods and then look at the fundamentals of crystallography.
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Figure 1.1: (a) Illustrates the principles of microscopy. The object is magnified using an
objective lens. (b) Illustrates the principle of X-ray crystallography. A source containing
photon(X-rays), electrons or neutrons gets diffracted by the crystalline object. The diffrac-
tion peaks are recorded and along with the phase information obtained by other sources
the final image is reconstructed by Fourier transforming the diffraction peak amplitude
along with correct phases.

1.2 Microscopy

The most widely used microscopy techniques are presented below along with their advan-
tages, disadvantages and present resolution power.

1.2.1 Optical microscope

Developed in 17th century, this is the most widely used form of microscopy. Fig. 1.1
describes the basic principle of optical microscopy. It is extensively used in microbiology,
mineralogy, pharmaceutic research, etc. The major limitation of optical microscopy is that
the resolution is diffraction limited [31]. The resolution d of the microscope can be stated
as:

d =
λ

2NA
(1.1)



1.2 Microscopy 11

Optical X-ray Electron Probe Acoustic Neutron

Simple

Scanning
transmis-
sion X-ray
microscope

Transmission
electron
microscope

Scanning tun-
nelling micro-
scope

Scanning
acoustic
microscope

Neutron mi-
croscope

Compound
Transmission
X-ray micro-
scope

Scanning
electron
microscope

Atomic force
microscope

Confocal
scanning
acoustic
microscope

Stereoscopic
Photoemission
electron mi-
croscope

Scanning
tunneling
electron
microscope

Magnetic
force micro-
scope

Confocal
Reflection
electron
microscope

Chemical
force micro-
scope

Electrostatic
force micro-
scope

Table 1.1: Summary of microscopy techniques.



12 1. Visualizing the microcosm

where λ is the wavelength of the light source and NA is the numerical aperture of
an objective lens which describes the range of angle over which the system can emit or
accept light. In 2014 E. Betzig, W. Moerner and S. Hell were awarded the Nobel prize in
chemistry for the development of super-resolved fluorescence microscopy which increases
the resolution of the optical microscopy to nm scale [32].

1.2.2 X-ray microscope

It is based on the principle of contrast imaging where the difference in absorption of X-rays
in water window region (280-530 eV) and by carbon and oxygen atoms are used to map
the image of the object. They are widely used for medical applications. The resolution of
X-ray microscopes lies between optical microscopes and electron microscopes.

1.2.3 Electron microscope

First built in 1933 by Ernst Ruska, electron microscopes are similar to optical microscopes
and also rely on the principle of magnifying the image to observe the matter but with
electrons instead of photons. The wavelength of an electron can be hundreds of thousands
of times shorter than visible light photons and hence have higher resolving power. These
microscopes have reached up to 50 pm resolution.

1.2.4 Scanning probe microscope (SPM)

In 1981 Gerd Binning and Heinrich Rohrer demonstrated that the surface topology of
material could be mapped using a scanning tunnelling microscope (STM) [33]. With this,
a new branch of microscopy known as scanning probe microscopy emerged. Herein, the
images of the surfaces are obtained using a physical probe. The image is formed by raster
scanning a probe tip on the surface of the material. The value of the probe is recorded at
discrete points which depends on the type of microscope and the mode of operation. Using
these recorded values the image of the surface is obtained.

Advatanges: The resolution of SPM depends on the interaction volume of the probe
and surface which can reach a picometer scale. Hence very fine features of the surface can
be resolved by such a technique. This microscopy technique does not require high vacuum
conditions.

Disadvatanges: This technique can only be used to look into surfaces and not in bulk
hence also requires sensitive sample preparation techniques. The knowledge of the shape of
the scanning probe, which is difficult to determine, is essential for the correct measurement
of the surface’s topology. Being a scanning technique the procedure is inherently time-
consuming and can only be used to measure a small portion of the surface. Moreover,
the inherent assumption in the technique is that while rastering the surface is stationary
however effects like specimen drift, vibrations etc may affect the obtained image.
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Scanning tunneling microscopy (STM)

STM is widely used to image a surface at an atomic level. They can be used at a wide
range of temperature and pressure. The principle behind STM is that they measure the
differential change in tunneling current given a differential change in voltage dI

dV
. This

quantity is proportional to the local density of state of the surface and provides information
about the LDOS with a few hundreds of picometer resolution.

Atomic force microscopy (AFM)

AFM uses a precisely fabricated tip placed on a cantilever which rasters over the surface of
the material. A laser beam is reflected from the cantilever and detected by the quadrant
photo-diode. As the position of the cantilever changes, while mapping the topology of
the surface, the laser beam is deflected at different positions of the quadrant photodiode,
which is correlated to the properties of the surface. The properties of the probe, cantilever
and their alignment, affects the final reconstruction. AFM can reach a sensitivity of 10
pm. Highly sensitive alignment procedure along with sensitivity to thermal drifts make
this technique very difficult [34].

1.3 Crystallography

Crystallography is now a century old science, the impact of which can be gauged from
the fact that 29 Nobel prizes [35] have been awarded for scientific achievements related
to, or involving the use of crystallography. Also, in a comment written on 100 years of
this field [36], Robert Crease describes the discovery of X-ray diffraction in crystals as
“the amazing turning point” and “central event” in modern physics. It has transformed
our understanding of nature by revealing the structure of materials down to the Angstrom
scale. The birth of this field could be attributed to the discovery of X-rays by Wilhelm
Röntgen in 1895. Since then there has been a series of regular advancements in the field,
some of which are chronologically mentioned in Fig. 1.2. In this section, the conventional
crystallographic methods are briefly touched upon, and the importance of crystallography
for understanding the structure and dynamics of the matter is explained. The procedure
to obtain the total electron density from the diffraction data is also briefly touched upon.

1.3.1 X-ray crystallography and its principles

The aim of crystallography is to resolve the crystal structure of a material, i.e., to determine
the precise arrangement of all atoms along with their electron density inside a molecule or
periodic crystal. The knowledge of the precise crystal structure and atomic arrangement
provide access to a large range of information such as bond length, bond angles and other
chemical and optical properties of the materials [37, 38]. The interatomic distance is
around 100 - 300 pm for most molecules and solids. To observe such small features, one
needs the light wavelength of the comparable order. The photon energy of such light
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X-ray diffraction Electron diffraction Neutron diffraction

X - ray diffraction uses high
energy photons to diffract
from the electrons of the
matter and hence provide
information about the total
electron density

Electrons are charged par-
ticle and interact with ma-
terial through the Coulomb
forces. They are sensitive to
both protons and electrons
in the matter and hence
probe the total charge
density.

Neutrons being the neu-
tral particle interacts with
the atomic core through
strong nuclear forces and
hence are useful in differ-
entiating isotopes. In ad-
dition, they also interact
with the magnetic fields as
they have non zero mag-
netic moments and can be
used to study wide variety
of magnetic phenomenon.

For 1Å resolution, X-ray re-
quires 1000 eV energy

For 1Å resolution, electron
beam requires 40 eV en-
ergy

For 1Å resolution, Neutron
beam require 0.08 eV en-
ergy

Normal penetration Less penetration High penetration

Table 1.2: Diffraction techniques and their properties.
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Figure 1.2: Chronological milestones in crystallography.
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Figure 1.3: Schematic depiction of Bragg’s law.

would be ~ω = hc
λ

= hc/1e−10 ∼ 12.3× 103eV , which is characteristic of X-rays. Thus, the
discovery of X-rays paved the way to the direct observation of features on such small length
scales. X-rays of commensurate wavelengths would diffract from the material revealing the
interatomic distance. Two equivalent points of view are used to understand the scattering
of X-ray from a crystalline structure, one provided by Bragg and another from Laue.
Although both viewpoints are well described in the literature, we will still review the
salient points from both of them. This will later help us understand the analogies between
conventional crystallography, and picoscopy presented in this thesis.

Bragg formulation of diffraction

William Bragg and Lawrence Bragg realized that when X-rays are diffracted from a crys-
talline material, very sharp peaks are observed, for a given incident wavelength and direc-
tion, which was in contrast to those produced from X-ray diffraction with liquids. They
accounted for this by considering the crystal to be made of a periodic arrangement of
atoms, in contrast to liquids, and specular reflection from these periodically arranged lay-
ers constructively interfere to produce a sharp diffraction peak.

The specular reflections from two consecutive planes in a crystal have a path difference
of 2dsin(θ) where θ is the angle of incidence of the X-ray beam and d is the distance
between two planes. If the path difference between specular reflection from two planes
is an integral multiple of the wavelength of incident pulse (nλ = 2dsin(θ)), then the
interference between these two reflections will be constructive leading to a sharp peak at
an angle theta from the crystal plane. The integer n is the order of the corresponding
reflection. Thus, one plane configuration( d) can give multiple (higher order) reflections.
Also in a crystal, depending on the orientation, several choices of sets of planes (ds) are
possible. By measuring the angle of reflection from the crystal and the order of reflection
one can obtain the characteristic distance between two planes, yielding the first insight
into inter-atomic distances.
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Figure 1.4: Diffraction pattern of a powdered sample. Each peak is labeled with a Miller
index. Figure reproduced from the Journal of the Korean Physical Society, Vol. 53, No.
6, 2008, pp. 3588-3592.

Von Laue formulation of diffraction

Max Von Laue, who was working in Arnold Sommerfelds Institute for Theoretical Physics
in Ludwig-Maximilians-Universität, prompted by discussion with Peter Paul Ewald started
studying X-ray diffraction from crystals and formulated a new approach for understanding
diffraction. In this approach, no particular sectioning of the crystal is assumed. To obtain
constructive interference, the Laue condition requires that the change in wave vector or
incident and outgoing wave must be equal to the vector of the reciprocal lattice. This
means that an incident wave vector will only then satisfy the Laue condition if the tip of
this vector falls on a Bragg plane (the plane forming the boundary of the Brillouin zone).

Inverse problem: Diffraction data to real image

The scattering of X-rays from atoms produces a diffraction pattern, which itself contains
the information about the atomic arrangement of the crystal. The diffraction pattern from
a powdered sample is displayed in Fig. 1.4.

Each diffraction peak is labeled with Miller indices (hkl). They are used to identify
different plane of atoms which assist in analyzing the crystal structure and denote family
of planes orthogonal to hb1 + kb2 + lb3 where bi are the basis vectors of reciprocal space.
The Intensity of the diffracted peak is given by

Ihkl ∝ |Fhkl|2 (1.2)
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where,

Fhkl =
m∑
j=1

Njfj exp[2πi(hxj + kyj + lzj)] (1.3)

where (xj,yj,zj) represents the coordinates of the atoms, Fhkl is the structure factor, Nj is
the fraction of every equivalent position that is occupied by atom j and fj is the scattering
factor which quantifies the efficiency of scattering by electrons. The structure factor Fhkl
sums the scattering from all atoms in a unit cell.

The intensity of the diffracted peak is used to obtain the relevant structure factor.
However, the hurdle in obtaining the correct structure factor values is the knowledge of
phase which is lost in the intensity information. This is famously known as the Phase
problem [39, 40]. Currently, various numerical and mathematical techniques are used to
obtain the phase and retrieve the structure of the material.

1.4 Towards picoscopy of valence electrons

A Holy Grail of the ultrafast science is the direct, real-time imaging of valence electron
densities. Constant development is made to step towards this goal. Optical microscopy
techniques do not have enough sensitivity to probe the electron densities in a linear regime
as they are restricted by the diffraction limit, However, the resolution increases dramatically
in the non-linear regime. Using the non-linear mixing of X-rays and optical waves attempt
had been made to probe valence electron density [41]. THz fields were used to nonlinearly
drive the lattice vibration in solids to probe the inter-atomic potential. In gases, non-
linear interaction of atoms and molecules with intense laser field was used to reconstruct
the valence orbitals [42, 9, 43] and their dynamics[44].

This thesis is aimed at imaging valence electron distribution of solids for which a new
kind of microscopy is developed which is termed as picoscopy. The development of a
Picoscope require some fundamental conditions to be fulfilled so as to allow for the sub-
angstrom scale imaging.

• Sensitive The probing tool must be sensitive to the valence electrons. Currently, avail-
able techniques are only sensitive to the core electrons of the potential. The extraction
of the valence electron density from the measurements which are sensitive to the core
electrons is challenging since the valence electrons are significantly less compared to
core electrons.

• Fast The probing of the system must occur on time scales faster than the internal time
scales such as rotational, vibrational, thermal motions etc. to obtain the maximum
spatial resolution. Ultrafast pulses have made this possible in atomic and molecular
systems by allowing the mapping of valence electron motion [14]. The ultrafast pulses
used in our experiments to generate the HHG signal ensure that the probe is faster
than the internal dynamics.
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• Phase Complete imaging of the potential not only requires the information of the am-
plitude of the Fourier coefficients of the potential but also the information of the
phase of the Fourier coefficients. Currently, the experimental techniques are unable
to directly access the phase information of crystalline materials. To image the valence
density of material only from the experimental data, a device which can measure both
amplitude and phase of the coefficients is required.

The developments in ultrafast optics coupled with the capabilities provided by the high
harmonic generation in solids now allow us to fulfill all the critical conditions mentioned
above. The non-linear interaction of intense laser field with the crystal structure has led to
the generation of high harmonics in solids. This interaction can be leveraged to obtain the
valence electron density and develop picoscopy of valence electron density. In the following
chapter, we first describe the current models to understand HHG in solids and later using a
semiclassical approach and without invoking band picture, we show how picoscopy emerges!
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Chapter 2

Strong field physics

The invention of the laser [45], a device producing intense coherent electromagnetic fields,
has paved the way for the investigation of nonlinear light-matter interactions. Before the
invention of the laser, solely the linear interactions of light with matter and the concurrent
phenomena such as reflection, refraction, interference were understood and studied [46]. In
its simplest form, the non-linear interaction can be described by a Taylor-series expansion:

P (E) = εo(χ
(1)E + χ(2)E2 + χ(3)E3 + ...) (2.1)

Here P is the polarization, εo is the vacuum permittivity, χ is the electric susceptibility
and E is the electric field. In the non-linear light-matter interaction, the optical properties
depend on the intensity of the field. This leads to the observation of important nonlinear
phenomenon such as second harmonic generation(SHG) [47], sum and difference frequency
generation, wave mixing, non-linear refraction and absorption etc.

2.1 High harmonic generation (HHG) in gases

High harmonic generation is a highly non-perturbative process. An intense laser pulse
ionizes the atoms which in turn emit electrons. This electron accelerates in the laser field,
returns when the field direction changes, and with some finite probability recombines with
the parent ion radiating a photon of higher energy. This picture is famously known as
the three-step model [48]. During the re-collision process, the electron emits a high energy
photon corresponding to the energy it has acquired during its excursion. More precisely,
the energy of the emitted photon is given by Ip + 3.17Up [49], where Ip is the ionization
potential and Up is the ponderomotive energy. Depending on the number of cycles in
the driving pulse, each sufficiently intense half-cycle may produce a burst of XUV light,
resulting in an attosecond pulse train. Moreover, few-cycle pulses can be used to obtain
the isolated attosecond pulses [50].
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Figure 2.1: The three-step model of HHG in gases. The exciting field bends the potential
so as to facilitate tunnel ionization. The resulting free electron is driven by the laser field.
As the field reverses its direction the electron re-collides with the parent ion, emitting a
high energy photon.

2.2 High harmonic generation in solids

The density of electrons at the surface of a solid is much larger than the atoms. Hence, it
was of equal interest to investigate the generation of harmonics by shining laser light on
a solid. High harmonic phenomenon was first extended to metals surface[51] and recently
to bulk semiconductors and dielectrics [52]. With the discovery of HHG in bulk solids,
the tools developed to understand electron dynamics in gases could be used to understand
more sophisticated dynamics in solids. This motivation kindled a plethora of investigations
demonstrating HHG processes in various dielectric and semiconductor materials [17, 18,
19, 20, 21, 22, 23, 24, 25]. In these works, the strong field induced currents[53, 54, 55] and
the process of HHG was explained by using perturbative concepts[55, 56, 57] developed
earlier for gas phase physics.

2.3 Major models of HHG in solids

The first intuitive explanation was provided in terms of a single band motion known as
intraband motion of electrons in solids (Bloch oscillations) [16, 58]. A more microscopic
theory which took into account both valence and conduction bands, known as the semicon-
ductor Bloch equations was then proposed [17, 59]. Analogous to HHG in gases, HHG in
solids was attempted to be explained in terms of a recollision-based model [21, 60]. A real
space semi-classical analysis predicting electron trajectory in a unit cell was also presented
[61]. More descriptive, quantum mechanical solutions of the time-dependent Schrdinger
equation [27] and ab-initio methods [62] have also been presented.
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2.3.1 Bloch oscillations

The simplest model for HHG in solids was explained using the Bloch oscillation. An
electron wave packet is driven by a laser field in a non parabolic band dispersion of a
conduction band of the solid. The dynamics of the wave packet in the reciprocal space
can be calculated using the usual classical equation of motion for a particle with the
crystal momentum ~k, given as mṙ = ~k = F. In the presence of an electromagnetic
field with electric component E and magnetic component B, the equation becomes ~k̇ =
−e(E + 1

c
v × B). In this thesis we will remain in the non-relativistic regime and hence

neglect the magnetic field. The equation then reduces to

dk(t)

dt
= − e

~
E (2.2)

The above equation is also known as the acceleration theorem which suggests that the
external field changes the crystal momentum of the particle. For constant field strength
the solution of this equation is k(t) = k(0)− eE

~ t. The dynamics in k-space mirror exactly
the vector potential A(t) =

∫
E(t)dt = Et. However, it folds into the first Brillouin zone

by Bragg reflecting at the zone boundary. Given the dispersion of the conduction band
ε(k), the group velocity of the electron wave packet is given by

vg(k) =
1

~
∂ε(k)

∂k
(2.3)

Where, in the tight-binding model, the band dispersion (ε(k)) can defined as ε(k) =
∆ cos(kd). Hence the group velocity vg(k) = −∆d

~ sin(dk) and the electron position x

using Eq.2.2 comes out x(t) =
∫ t

0
v(k(t′))dt′ = x(0)− ∆

eE
cos(deE~ t). Clearly we observe that

eventhough a unidirectional constant electric field acts on electron wave packet, it oscillates
in the real space. This non-intuitive phenomenon is known as Bloch oscillation. The
frequency of oscillation is known as Bloch frequency and is given by ΩB = edE

~ which is
proportional to the static electric field.

HHG from Bloch Oscillations

In the semi-classical approach, instead of assuming a classical particle we assume some
initial distribution of the electrons f(k, t) and also instead of a constant electric field we
assume an oscillating electric field. Then, the dynamics in the presence of an electric field
is given by the Boltzmann equation [63].

∂f(k, t))

∂t
= − e

~
E(t)

∂f(k, t)

∂k
(2.4)

with the solution given by:

f(k, t) = f(k +
e

~
A(t), 0);A(t) = −

∫ t

−∞
E(t′)dt′ (2.5)
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Here A(t) is the vector potential of the electric field. Evidently, the initial distribution
of charge is merely translated in reciprocal space by the vector potential, while the shape of
the distribution remains unchanged. The electron wavepacket traverse in the anharmonic
dispersion of the conduction band which can be decomposed into its Fourier components.
The acceleration of the electron wavepacket on the band dispersion can then be understood
as its motion on these individual Fourier components which leads to the generation of
HHG. The accelerating electron wave packet generate current density given by J(t) ∝
e
∫ pi/d
−pi/d vg(k)f(k, t)dk. The source of radiation in the wave equation ∂j(t)/∂t, hence the

spectrum of the emitted radiation can be calculated from Irad ∝ |ωj(ω)|.2. This picture
is based on the assumption that pre-excited carriers are present in the conduction band
of solids. For a complete description of the HHG process, one must also account for the
transition of carriers from valence to conduction band.

2.3.2 Semiconductor Bloch equations

Semiconductor Bloch equations (SBE) takes into account both the excitation process
within the band and dynamic of the electron inside individual bands. We will here sketch
the multi-band SBE approach and understand how different interactions play a role in
HHG. Only critical steps are outlined. A more comprehensive derivation can be found in
reference[26, 64].

A general many-body Hamiltonian in second-quantization for the electronic system
(neglecting defects and electron-phonon interactions) is given as [59]

Ĥ = Ĥo + Ĥv + Ĥls

Ĥ =
∑
λ,k

ελkâ
†
λ,kâλ,k +

1

2

∑
λλ′

∑
k,k’

∑
q 6=0

Vλλ′

q â†λ,kâ
†
λ′,k’âλ′,k’+qâλ,k−q′ − E(t)

∑
λ,λ′>λ,k

(dλλ
′

k â†λ,kâλ′,k + c.c).

(2.6)

Where â†λ,k and âλ,k denotes the creation and annihilation operators for an excitation
of momentum k. The Hamiltonian is divided into three components. The first term
describes an electron in a band structure with energy εk. The second term describes the
Coulomb interaction between electrons either in the same band or in different bands. Vq

are the Fourier coefficients of the real space Coulomb potential. The third term is the
laser-solid interaction where the electron is annihilated from one of the bands and created
in another band. All terms except the Coulomb interaction terms have two operators.
When we write the equations of motion, these operators recursively increase and end
up in infinite hierarchy of coupled differential equations. In order to truncate this and
obtain closed set of differential equations we make the random phase approximation i.e,
(〈â†λ,kâ

†
λ,k’âλ,kâλ,k’〉 → 〈â

†
λ,kâ

†
λ,k’〉〈âλ,kâλ,k’〉 − 〈â

†
λ,kâλ,k〉〈â

†
λ,k’âλ,k’〉+ 〈â†λ,kâλ,k’〉〈â

†
λ,k’âλ,k〉)

The expectation value of these two operators are either population (fe,h) or polarization

(pλλ′) of electrons/holes. Specifically, fe = 〈â†e,kâe,k〉, fh = 〈â†h,kâh,k〉, phe = 〈â†h,kâe,k〉,
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pee′ = 〈â†e,kâe′,k〉, phh′ = 〈â†h,kâh′,k〉, with e and h denoting electron and hole band indices.
With the above approximation the equation of motion in the Heisenberg picture can be
solved to obtain the set of coupled differential equations, known as semiconductor bloch
equations (see Appendix A). Finally, the emitted harmonic field is evaluated as

E(t) =
∂

∂t
P (t) + J(t), (2.7)

where P (t) =
∑
λλ′kpλλ′(k)dλλ′(k) is the total polarization, contributing to high harmonic

due to interband motion of electrons and J(t) =
∑
λkfλ(k)vg,λ(k) is the total current,

contributing to high harmonic due to intraband motion of electrons.
In the above picture, electrons are excited to higher bands due to its interaction with

a laser pulse, leaving holes in the low lying valence bands. After traversing through these
bands these electrons and holes pairs may recombine, emitting high-energy photons in the
process. Such emission processes are denoted by interband HHG emission. Otherwise,
there is the possibility that electrons, upon interaction with a laser pulse, accelerate in
the anharmonic band of the solid, thus generating high harmonics (Fig .2.2). Dominant
mechanics among the two is still being debated [65, 66, 67, 68, 69, 70]. The experiment
performed with an optical driving field in the wide bandgap dielectric, quartz, showed
Intraband picture to be the dominant mechanism [68].

2.3.3 Features of HHG in solids

In this section, by comparing the features of HHG in solids with that of well established
and understood features of HHG in gases, our effort is to gain insight into HHG process in
solids.

• Cutoff The cutoff energy law is well established in gases where the cutoff energy is
proportional to the intensity of the driving field and scales quadratically with the
wavelength. It weakly depends on the ionization potential of the target gas atom.
On the other hand, in solids the cutoff energy is observed to scale linearly with the
field strength (Eo) [16, 19, 17]. No agreement is being established on scaling of the
cutoff energy with the wavelength. Some studies have claimed linear dependence [16,
63, 56, 72] on wavelength while others have claimed cutoff energies to be wavelength
independent [27, 73]. A systematic study is at the moment absent. The cutoff energy
in solids also strongly depends on the material properties such as the dispersion of
the band. In the Bloch oscillation picture, the maximum cut off energy was found
to be linked to the highest Fourier component of the band[74]. In the interband
model, the cutoff energy is found to be limited to the maximum band gap of the
material. This sets an upper bound, which can however be breached if higher bands
are involved. In the HHG process, this phenomenon is predicted to be manifested as
the multiple plateaus in the HHG signal [75] and was also experimentally observed
in HHG emitted from a solid Ar [76]. However unlike gases where the prediction for
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Figure 2.2: Interband and intraband mechanism of harmonic emission are schematically
depicted. The valence bands are depicted by the blue coloured curves and conduction band
by green coloured curves. The motion of carriers (electrons and holes) are depicted by the
arrows. The shaded area (magenta and cyan) depict the density of states in the valence
and the conduction bands respectively. Adapted from reference [71].
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cut off energy is well established and is given by Ip+ 3.17Up, in solids a law for cutoff
energy dependence of wavelength of the driver is still blurred.

• Ellipticity HHG from gases shows a strong dependence on the ellipticity of the excit-
ing field where small deviation from the linear polarization of the exciting pulse lead
to a strong suppression of HHG signal. The circularly polarized driver completely
prohibits the harmonic emission. This feature is often used to generate the isolated
attosecond pulses by polarization gating [77] and double optical gating [78]. The ini-
tial experimental investigations in solids does not show a very strong dependence of
emitted spectra on the polarization of the light [52, 79]. Unlike gases, the maximum
intensity of harmonic emission in solids may not be from a linearly polarized driver
but from an elliptically polarized driver [80]. Also, a circularly polarized driver may
also generate the harmonic radiation from solids. Moreover, unlike gases, harmonics
can be generated both parallel and perpendicular to the polarization vector of the
driver. [23].

• Isolated Attosecond pulses are possible One of the major success of gas phase
HHG is the generation of attosecond pulses. One of the features of attosecond pulses
from gas is the chirp which is a consequence of the re-collision model. Recently the
HHG processes in solids have also been used to generate isolated attosecond pulses
[28]. However unlike gases, these pulses were found to be chirp-free when driven by
optical pulses. This result was only compatible with the intraband picture.

• Symmetry properties High harmonic spectrum in solids is highly related to the sym-
metry properties of the crystal under consideration [16]. The crystals with inversion
symmetry only emit odd harmonics while others may emit both even and odd har-
monics, unlike gases where atoms have inherent inversion symmetry and generate
only odd harmonics. Also, a strong dependence on the position of the atom inside
the crystal structure was observed where harmonic emission is enhanced or sup-
pressed when its classical trajectory connects or misses the nearest neighbor atom,
respectively [61].

2.4 Summary

This chapter discussed the current understanding of HHG in solids, where an intuitive
picture such as Bloch oscillations only involving single band and semiconductor Bloch
equations involving multiple bands to explain the HHG process in solids were outlined.
These pictures were used to probe the band dispersion of the solid [19, 18]. However,
probing more fundamental properties of solid such as its valence potential requires associ-
ating HHG process to the crystal potential. With this motivation, we develop a picture of
high harmonic generation due to scattering of electrons in the periodic potential of solids,
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without invoking band picture and in subsequent chapters attempt to understand how this
picture can predict features such as cutoff energy law and intensity dependence.



Chapter 3

Foundations of optical picoscopy

3.1 Introduction to high frequency approximation

In the physics of stimulated coherent bremsstrahlung [81], electron dynamics in the presence
of a laser field has been long treated using a kinematic description. In this picture, the
kinetic energy of the electron is much higher than the energy of crystal potential which it
experiences. Hence, the crystal potential force can only introduce a weak perturbation to
the motion of an electron. As a result, the velocity of the particle traversing the crystal is
nearly identical to the particle which is free from forces of the periodic potential.

In the band picture of solids, the laser-driven electron cannot be treated as a free
particle. Here, the motion of an electron in a periodic potential is very different from its
motion in a vacuum. Hence, the concept of an effective mass is essential. However, on a
more fundamental level, one can understand the laser-driven motion of an electron in a
periodic potential differently. It is possible to drive an electron in a potential as a nearly-free
particle if the external force is able to suppress the binding force the electron experiences
while traversing the crystal potential. It has been long understood that this is possible
when the frequency of the driving laser is much higher than the inherent frequencies of the
binding potential. In strong field atomic physics, high-frequency driving leads to important
phenomenon such as atomic stabilization [82]. Here we explore if similar concepts are valid
in solids.

3.2 Understanding valence potential

To understand whether the high frequency regime and the ideas related to it can be ex-
tended to solids, we must first understand the properties of the potential experienced by
a valence electron in a real crystal. In solids, periodic arrangement of the atomic poten-
tial creates the crystal potential. Fig. 3.1 depicts the formation of crystal potential by
superimposition of various atomic potentials separated from each other at fixed distance
d which is defined as the lattice constant. The strength of the total potential experienced
by a valence electron in a crystalline solid is given as Utot(x) = U0 + Uin where U0 is a
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Figure 3.1: Left: The core potential (V a
core(r)) and the valence potential V a(r) of an atom

along with the energy levels. Vion is the ionization potential of the atoms. The electronic
wavefunction of the ground state of the atom is represented by the yellow area. Right:
Illustrates the potential of solid formed by superimposing the atomic potentials at regular
distance d. The discrete energy levels of atoms are replaced by valence band (VB) and
conduction band (CB), in solids. The total potential experienced by a valence electron
(Utot) is the sum of constant offset U0 and the inner potential whose amplitude is given by
Uin. The value of Uin is given by the difference between the top of the valence band and
Fermi level. Ea is the electron affinity and Eg is the band gap.

constant offset generated due to the summation of individual atomic potentials and Uin is
the amplitude of the inner potential. Here, U0 is spatially invariant and Uin is associated
with the local electron density near the Fermi level. The amplitude of the inner potential
(Uin) is given by the difference in the energy of top of the valence band (VB) and the Fermi
level (Fig. 3.1). U0 is constant and therefore does not yield any force on the electrons.
However, the inner potential follows the spatial variation of the potential of the crystal and
plays an important role in determining the dynamics of the electron driven by the intense
laser field.

One of the systems under study in this work is MgF2. A one dimensional slice of valence
potential of MgF2 along F-Mg-F molecular axis calculated from the density functional
theory(DFT) is shown in 3.2. The inner potential (Uin) of MgF2 is calculated to be 1eV.
Hence, the high frequency regime for this system, where valence electron can follow the
light field as a nearly free particle, is achieved when ~ω > Uin = 1eV .
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Figure 3.2: Figures illustrates the valence potential and the valence band energy of MgF2

calculated using density functional theory. The inner potential (Uin) of MgF2 is 1eV.
Hence, the high frequency regime if achieved for driving pulses having carrier photon
energy greater than 1eV (~ω > 1eV )

3.3 High frequency approximation

Now, we demonstrate the validity of our approximation suing classical, quantum mechani-
cal and finally using time dependent density functional theory. In addition, we explore the
frequency regimes in which it is valid.

3.3.1 Classical perspective

Using the classical equations of motion, we try to discern the difference between the motion
of an electron driven by pulses with photon energies lower and higher than the inner
potential of the solid under investigation. Fig. 3.3a depicts a periodic potential of a solid
(blue curve) modeled as a Mathieu potential which is defined as V (x) = Uin cos(kx), where
Uin is the amplitude of the potential and k is the wave vector. The dynamics of an electron
in the periodic potential driven by the laser field can be understood to resemble a damped
driven oscillator and the same equations can be used for the numerical analysis. Fig. 3.3b,c
compare the motion of a laser-driven electron with and without the periodic potential for
the two regimes. In Fig. 3.3b the electron is driven by laser field with carrier photon energy
0.4 eV ( ~ω < Uin). Positions of the bound and the free electrons (Fig. 3.3b), are recorded
at three different instances to map the trajectory of the electrons. It shows that in the low
frequency regime the electron is bound to the potential and its trajectory deviates from
the trajectory of the free electron. However, in Fig. 3.3c, where electron is driven by the
laser field with a carrier photon energy of 2eV ( ~ω > Uin), the trajectory of the bound
electrons follows that of the free electron.

Fig. 3.3d,e compare the velocities of a free and a bound electron in the high and
the low frequency regimes, respectively. In the low frequency regime, where the photon
energy is lower than the inner potential ( ~ω < Uin), the velocity of the electron in the
periodic potential (red line) is significantly lower compared to the velocity of the free
electron. However for the high frequency regime,( ~ω > Uin), the velocity of the electron
experiencing the periodic potential follows the velocity of the free particle very closely,
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supporting the fact that for fields with photon energy higher than the inner potential, a
valence electron bound to the crystal potential can be treated as a nearly free particle. In
the high frequency regime, the potential barrier is sufficiently suppressed to make way for
the electrons to move as nearly free particles.

3.3.2 Quantum mechanical perspective

The high frequency approximation was also examined using the single-electron quantum
mechanical simulations. The time dependent schrödinger equation (TDSE) was solved for
a Hamiltonian containing a periodic potential and a time dependent electric field.

i~
∂Ψ(r, t)

∂t
= HΨ(r, t); |Ψ(r,∆t)〉 = e−

iH∆t
~ |Ψ(r, 0)〉 (3.1)

For most Hamiltonians, an analytical solution of the TDSE is not viable. Therefore, we
resort to numerical methods for solving it. Time propagation is solved using the split
operator method. Again, ground state electron wavefunction (yellow) Fig. 3.3a is driven
by the laser field on a Mathieu potential and the velocities were obtained by applying
momentum operator. Fig. 3.3d,e show the velocities of the electron obtained from solving
the TDSE. The same conclusion, that velocity of an electron bound to crystal in the high
frequency regime follows the velocity profile of a free electron, can be inferred.

3.3.3 Time dependent density functional theory

Method

The three dimensional, time dependent density functional theory (TDDFT) simulations,
performed by our collaborators, Shiqi Hu and Dr. Sheng Meng at The Institute of Physics,
Chinese Academy of Sciences, are consistent with the conclusions obtained from the classi-
cal and the quantum mechanical one dimensional calculations. TDDFT calculations were
performed for the rutile-type MgF2 unit cell (P42/mnm). The unit cell contains 2 Magne-
sium and 4 Fluorine atoms with the lattice constants a = b = 4.628 Å and c = 3.051 Å
[83]. The density functional theory (DFT) calculations were performed using the Quantum
ESPRESSO package (QE) to obtain the ground state properties, using a norm-conserving
(NC) pseudopotential in conjunction with the Perdew BurkeErnzerhof (PBE) functional
[84] and plane-wave (PW) basis set with energy cutoff at 400 eV. The energy conver-
gence threshold for self-consistent calculations was set at 10−6 (a.u). In the ground state
calculations, 12 × 12 × 24 k-points were used for sampling and a direct band gap of 7
eV was obtained which was 3.8 eV lower than the experimental value. The excited-state
simulations were performed within the real-time time dependent density functional theory
(TDDFT) formalism using the time-dependent Kohn-Sham equation (TDKS) i~∂ψ

∂t
= Ĥψ

to simulate the excitation process [85]. Higher harmonic spectra were obtained by Fourier
transforming the current HHG(ω) ∝ ω2|FT[I(t)]|2.
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Figure 3.3: (a) Mathieu potential (blue) and the ground state (yellow) wavefunction of
the potential. (b),(c) The position of crystal/bound electron (red dot) and free electron
(green dot) driven by pulse with career photon energy 0.4 eV (b) and for 2 eV (c) on
potential (blue lines) at 3 instances of laser field. A trajectory connecting these three
positions is marked by dashed line. For ~ω < Uin trajectory of crystal electron does not
follow free electron(b) contrary to the case where crystal electron follows free electron(c).
(d)(e) Comparison of the velocity of a crystal electron (green) to that of a free electron
using quantum mechanical calculations (orange) and classical calculations (red), in low
frequency regime ~ω < Uin (d) and the high frequency regime ~ω > Uin (e). In the high
frequency regime velocity of crystal electron follows the velocity of free electron
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Figure 3.4: Velocity Vc of particle in MgF2 crystal compared to velocity of free particle
(VF ) for the low frequency (~ω < Uin) and the high frequency (~ω > Uin) regime. In the
high frequency regime particle experiencing MgF2 potential force, behaves as a nearly free
particle.

Analysis

Fig. 3.4 compares the velocity of a free electron to the velocity of an electron experiencing
the periodic potential of MgF2, along the F-Mg-F molecular axis for ~ω < Uin and ~ω > Uin
conditions extracted from TDDFT. When the electron is driven by a laser pulse with a field
strength 0.5V/Å and a carrier photon energy 0.4 eV in the low frequency regime (~ω < Uin),
the velocity of electron experiencing the potential force is much lower than that of a free
electron. However, when the electron is driven by the same laser field strength but a higher
carrier photon energy (2 eV) in the high frequency regime ~ω > Uin the velocity of the
electron experiencing potential force follows closely the velocity profile of a free electron
as suggested by the classical and the quantum mechanical analyses. Hence the TDDFT
calculations provide conclusive evidence for the validity of our approximation in the high
frequency regime.

To infer the range of frequencies where an electron behaves as a nearly-free particle in
the MgF2 crystal, the ratio of the maximum velocity of the free particle and the particle
experiencing the crystal potential was calculated. Fig. 3.5 highlights the onset of the
high frequency regime where ~ω > Uin (∼ 1eV) and show that the free electron improves
asymptotically for the higher frequencies.
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Figure 3.5: Ratio of velocity of free electron to that of crystal electron at various driving
carrier photon energy. The ratio tends towards unity in the high frequency regime (~ω >
Uin)

3.4 Semiclassical scattering of high harmonic genera-

tion in solids

The above study demonstrates that a laser-driven electron motion in the high frequency
regime affords a semiclassical analysis, as the potential barrier is largely suppressed in this
regime and the periodic potential acts as a perturbation to the free electron motion. The
theoretical description of high harmonic generation in terms of an electron motion driven
by a intense laser field in a periodic lattice of solids is explained both classically [86, 87]
and quantum mechanically [88, 89] in previous works. In these earlier works, HHG from
solids under very strong laser fields were studied, where electrons move over many lattice
periods and scan its periodic structure. An extremely intense laser field exceeding the
potential by several orders allows the electron motion to be nearly free. However, such
models require very intense fields of the order of 1017 W/cm2. Hence, they could not
become experimentally alluring owing to the low damage threshold of most of the solids.
Nevertheless, as shown in the previous section, a periodic potential can be treated as a
perturbation in the high frequency regime too. This regime does not require relativistic
fields to apply this approximation. Here, we will adopt some important features from the
above works to establish a basis for the optical picoscopy.

Briefly, we are interested in describing the process of high harmonic generation driven
by a laser field E(t) in a periodic potential V (r) =

∑
k uke

−(ik.r) where, uk = <uk + i=uk,
is a complex number and <uk and =uk is the real and the imaginary part of the Fourier
coefficients of the potential, respectively.
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High Harmonic Generation

High harmonic generation can be obtained from the Fourier transform of the time-dependent
acceleration

I(n) ∝ |
∫ ∞

0

e−ιnωt ~̈d(t)dt|2 (3.2)

where time-dependent dipole acceleration ~d(t) is conventionally defined as

~d(t) = 〈Ψ(r, t)|er|Ψ(r, t)〉 (3.3)

Dipole in the laser field

In the zeroth order approximation the potential can be neglected then the wave function
is superposition of the Volkov states.

Ψ(x, t) =

∫
c(k(t))Φk(x, t)d3k =

∫
c(k(t))eikxeiφ(k,t)d3k (3.4)

Here the dipole approximation is taken such that the light field only depends on time.
The time-dependent phase is given by

φ(k, t) =
1

2

∫ t

0

(k− E0 cos(ω2τ))2 dτ. (3.5)

The dipole in the presence of laser field can now be obtained as:

〈Φk(t)|x̂|Φk′(t)〉 = (3.6)

=

∫
ei(k−k

′)xeiφ(k,t)−iφ(k′,t)d3x = (3.7)

= ei(
1
2

(k2−k′2)t−(k−k′)
E0
ω2 sin(ωt))

∫
x ei(k−k

′)xd3x = (3.8)

= ei(
1
2

(k2−k′2)t−(k−k′)
E0
ω2 sin(ωt)) (−i(2π)3)δ′(k− k′) (3.9)

and thus the dipole is given by
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〈Ψt|x̂|Ψt〉 = (3.10)

=

∫
ckc
∗
k′〈Φk(t)|x̂|Φk′(t)〉d3kd3k′ = (3.11)

=

∫
ckc
∗
k′e

i( 1
2

(k2−k′2)t−(k−k′)
E0
ω2 sin(ωt))(−i(2π)3)δ′(k− k′)d3kd3k′ = (3.12)

substitute a = k− k′, b = k + k′. Jacobian determinant is
1

8
(3.13)

∝
∫
c(a+b)/2c

∗
(b−a)/2e

i(abt/4−aE0
ω2 sin(ωt))(−i)δ′(a)d3ad3b = (3.14)

= −i
∫
∇a

∣∣∣
a=0

{
c(a+b)/2c

∗
(b−a)/2e

i(abt/4−aE0
ω2 sin(ωt))

}
d3b = (3.15)

= −i
∫ (

c′b/2c
∗
b/2 − cb/2c′∗b/2 + cb/2c

∗
b/2i(bt/4−

E0

ω2
sin(ωt))

)
d3b = (3.16)

∝
∫

Im(ck∇c∗k) d3k + t

∫
|ck|2k d3k +

E0

ω2
sin(ωt). (3.17)

The three terms have an obvious interpretation as

〈Ψt|x̂|Ψt〉 = x0 + tv0 +
E0

ω2
sin(ωt), (3.18)

where x0 and v0 are, respectively, the expectation values of position and velocity in the
initial electron wave packet at t = 0. The motion of electron wavepacket can be understood
as the classical trajectory starting from the point of symmetry (x0) and following the path
defined by the laser field. As is in gas phase physics, it is safe to assume that the particle
has no initial velocity.

d(t) = x0 +
E0

ω2
sin(ωt) (3.19)

Crystal potential as perturbation

The dominant contribution to the emitted radiation is due to the quiver motion (d(t)) in
the laser field which contributes only to the fundamental frequency. High harmonics are

generated due to interaction with crystal potential whose dipole acceleration term (¨̃d(t))
is given as

¨̃d(t) =
e

m
∇V (d(t)) (3.20)

Now, we proceed to write the periodic potential in terms of its Fourier coefficients.
For inversion symmetric potentials the form of the potential can be further simplified and
written as V (r) =

∑
k uk cos(k.r). In this case, the dipole acceleration can be further
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simplified to

¨̃
d(t) =

e

m
∇
∑
k

uke
−ιk·d(t) (3.21)

= −ιk e

m

∑
k

uke
−ιk·(x0+

E0
ω2 sin(ωt)) (3.22)

(3.23)

without loss of generality we can choose our origin to be at a symmetry point x0.

¨̃
d(t) = −ι e

m

∑
k

kuke
−ιk·(E0

ω2 sin(ωt)) (3.24)

(3.25)

Splitting the equation into the real and the imaginary parts and using the Jacobi-
Anger expansion sin(z sin θ) = 2

∑∞
n=1 J2n−1(z) sin[(2n − 1)θ] , cos(z sin θ) = J0(z) +

2
∑∞

n=1 J2n(z) cos[(2n)θ], the real part of the dipole acceleration can be decomposed into

sum of two terms such as ¨̃d(t) = ¨̃d
odd

(t) + ¨̃d
even

(t).

¨̃
d
odd

(t) =
e

m

∑
k

k<uk
∑
N

JN

(
k · E0

ω2

)
sin ((2N − 1)ωt) (3.26)

¨̃d
even

(t) =
e

m

∑
k

k=uk
∑
N

JN

(
k · E0

ω2

)
cos (2Nωt) (3.27)

(3.28)

where, ¨̃
d
odd

(t) is termed as odd dipole acceleration and ¨̃
d
even

(t) is termed as even
dipole acceleration. Field of emitted harmonics can be obtained by Fourier transforming
the obtained dipole accelerations as:

Eodd
2N−1(t) =

e

m

∑
k

k<ukJ2N−1

(
k · E0

ω2

)
(3.29)

Eeven
2N (t) =

e

m

∑
k

k=ukJ2N

(
k · E0

ω2

)
(3.30)

(3.31)

The intensity of the emitted harmonics in the direction of laser polarization is then
given as:
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Iodd2N−1(t) = | e
m

∑
k

(k · e0)<ukJ2N−1

(
k · E0

ω2

)
|2 (3.32)

Ieven2N (t) = | e
m

∑
k

(k · e0)=ukJ2N

(
k · E0

ω2

)
|2 (3.33)

(3.34)

where IN is the intensity of the Nth harmonic in the direction of laser polarization, e0 is
the unit vector in the direction of laser polarization, E0 is the electric field strength and ω
is the laser frequency.

3.5 Cutoff law

For a given field strength (E0), laser frequency (ω) and highest significant reciprocal space
vector (kmax) of the potential, the cutoff harmonic is the value of N which maximizes the
intensity equation Eq.3.32. The cutoff energy is then given as

Ncutoff = kmax
E0

ω2

Ecutoff = kmax
E0

ω
(3.35)

where ω is the frequency of the input pulse. Compared to gases, where cutoff energy is
directly proportional to the intensity of driving field, in solids the cutoff energy is experi-
mentally observed to be proportional to the field strength.

The equation for the cutoff energy is analogous to the one obtained from the Smith
Purcell effect. In this effect, electromagnetic radiation is generated when an electron beam
moves over a periodic structure, such as a grating. The process is intuitively explained as
the scattering of the Coulomb field of the electrons on the periodic grating structure. The
frequency of the scattered radiation is given by the ratio of velocity of the electron to the
grating periodicity ω = 2πve

d
= kve. The cutoff energy of high harmonic radiation in solids

can also be interpreted as the energy of the electron with velocity (v = E0/ω) scattering
on the smallest structure with the radius rs (kmax = π

rs
). Hence it can also be written as

Ecutoff =
π

rs

Eo
ω

(3.36)

The measurement of the cutoff energy of harmonic spectra from a crystalline solid can
be used to obtain the valence electron radius of the smallest specimen inside the crystal.
This equation hence provides direct insight into the crystal structure.
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3.6 Tool box for picoscopy

The most significant equations are summarized here. In this thesis, only crystals with
symmetric potentials are studied so the Fourier coefficients will be real numbers and will
generate only odd harmonics. Hence only the equations for odd harmonics are summarized
here.

3.6.1 Starting point is symmetry point

〈Ψt|x̂|Ψt〉 = x0 + tv0 +
E0

ω2
sin(ωt) (3.37)

This equation suggests that the dynamics of the dipole acceleration term can be un-
derstood as a classical motion of electron starting from the expectation value of the initial
position and following the vector potential of the laser field. The expectation value of
the initial position (x0) or ground state of the electron wave will be a symmetry point in
the crystal. Hence, in a high frequency regime, time-dependent dipole acceleration can
be obtained from the classical motion of electron starting from the symmetry point of the
crystal.

3.6.2 Dipole related to solid structure

¨̃
d
odd

(t) =
e

m

∑
k

k<uk
∑
N

JN

(
k · E0

ω2

)
sin ((2N − 1)ωt) (3.38)

The dipole term ¨̃dodd(t) is a vector, which implies that the electric field polarization of
the radiated harmonics may deviate from the laser polarization (Eo) as described in other
works [90]. This deviation from laser polarization direction is due to the topology of the
lattice on which electron accelerates. It also provides a direct link between the Fourier
coefficients of the potential (uk) which allows us to provide a description of harmonic
emission in any kind of periodic material without invoking a band picture.

3.6.3 Intensity related to structure factors

IN ∝ |
e

m

∑
k

(k · e0)ukJN(k · e0
E0

ω2
)|2 (3.39)

The intensity of emitted harmonic is directly linked to the Fourier coefficients and provides
the way for optical picoscope. Inverting this equation provides directs access to the Fourier
coefficients (uk) of the material. The methods to extract Fourier coefficients of the potential
using this equation is detailed in chapter 5.
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3.6.4 Cutoff links to the smallest specimen in the valence poten-
tial

Ecutoff = kmax
Eo
ω

(3.40)

rs =
2π

Ecutoff

Eo
ω

(3.41)

The cutoff energy of the material depends on the smallest specimen it contains. This
equation provides direct access to the ionic/covalent radii of the smallest specimen in
the system. Chapter 7 presents the experimentally observed cutoff energy and measured
valence electron radius of the smallest specimen in various crystalline materials.
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Chapter 4

Analogies and differences with
crystallography

To associate with crystallography, we write the equations derived in chapter 3, in terms
of the crystallographic notation. First, we review the following important equation in
crystallography, describing the intensity of the diffracted X-rays.

Ihkl ∝ |Fhkl|2 (4.1)

Figure 4.1: Schematic of X-ray diffraction from crystalline solids.

Here Fhkl are known as the structure factors of the crystal, with hkl being the indices for
vectors in reciprocal space. The amplitude of the structure factor depends on the electron
density as follows

Fhkl =

∫
Vcell

ρXY Ze
−i2π(hX+KY+lZ)dV (4.2)
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Here ρ denotes electron density and X, Y , Z are real space coordinates.
The equation for intensity of emitted harmonics from solids can also be written in terms

of crystallographic notations as:

IN(Eo, ωL) ∝ |
∑
k

(k · eo)ukJN(k · eo
Eo
ω2

)|2 (4.3)

where eo = Eo

|Eo| = Xî+Y ĵ+Zk̂ is the unit vector in the direction of laser polarization

and k = 2π
d

(hî + kĵ + lk̂) is the reciprocal space wave vector. The intensity of the Nth
harmonic can then be expressed as,

IN(Eo, ωl) ∝ |
∑
hkl

(hX + kY + lZ)uhklJN

(
2π

d
(hX + kY + lZ)

Eo
ω2
L

)
|2 (4.4)

Equations Eq.4.1 and Eq.4.4 are very similar in notation except in equation Eq.4.4
the Fourier coefficients (uhkl) are besselized and summed over to obtain the intensity of
Nth order harmonic. Here “besselized” means that the amplitude of the coefficients is
multiplied by a Bessel function, which is a function of laser field strength and frequency.

4.1 Amplitude of Fourier coefficients

In diffraction, the amplitude of Fourier coefficients of the electron density(Fhkl) is directly
related to the amplitude of individual order of the diffraction pattern(Ihkl) Eq.4.1. Sim-
ilarly, in HHG in solids, the intensity of Nth harmonic (IN) for a given laser field with
strength E0 and laser frequency ω , depends on the Fourier coefficients of potential (uk)
and the N th order Bessel function (JN(k)) Eq.3.39. Here, in contrast to diffraction, a single
intensity contains the contribution of all the Fourier coefficients(uk) of the potential. How-
ever, only a few Fourier coefficients contribute significantly to the intensity of particular
laser harmonic. The following two sections explain the selectivity of laser harmonic to the
Fourier coefficients.

The intensity(IN) of Nth harmonic is directly proportional to the product of Nth order
Bessel function JN(k) and uk. Hence, the intensity will maximize when each one of them
maximizes. For the sake of simplicity, if we assume that all Fourier coefficients are one then
the intensity maximizes when the Bessel function maximizes. To understand the behaviour
of Bessel function, we describe its behaviour with varying harmonic order (N). For a given
driving field with strength (E0) and frequency (ω), the Bessel function (JN(kE0

ω2 )) as a
function of the reciprocal vector (k) acts like a weighing factor for individual Fourier
coefficients. In other words, it acts as a bandpass filter for the Fourier coefficients by
enhancing only a few of them and suppressing the rest. Fig. 4.2 shows 3rd to 13th order
Bessel functions, terminated at its first root, as a function of reciprocal space vector (k).
The blue stems depict the position of Fourier coefficients with each coefficient having the
same amplitude. We observe that the lower(higher) order Bessel functions are sensitive
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Figure 4.2: Bessel functions JN(k.Eo
ω2 ) versus reciprocal lattice vector k plotted for order N =

3,5,7,9,11,13, (3rd to 13th laser harmonic) for photon energy ~ω = 2.1eV and E=0.75V/Å.
Blue stem are hypothetical Fourier coefficients (uk) spaced at regular interval(2π/d). Lower
order(N) Bessel function peaks at low spatial frequency(uk) and vice versa.

to lower(higher) Fourier coefficients. More specifically, for a pulse with field strength
0.75V/Å and centered at 585nm (2.1eV), the 13th harmonic has significant value at 6th

to 10th Fourier coefficients and 3rd harmonic maximizes at 1st to 3rd Fourier coefficients.
Intuitively, this means that lower harmonics are generated by the coarse features of the
potential and higher harmonics are generated from the sharper features inside the potential.

Now, we proceed to understand the behaviour of the Bessel function for varying field
strength (Eo) for a given of harmonic order (N) and frequency ω. Fig. 4.3 shows sensitivity
of 5th order Bessel function (5th harmonic) over reciprocal space vector (k) at 5 different
field strength. We observe that Bessel function at higher(lower) field strengths peaks at
lower(higher) order Fourier coefficients. Importantly, by observing the emitted intensity
over a broad range of driving fields, sensitivity to all the Fourier coefficients can be achieved
using only a single laser harmonic. However, damage of crystalline material at very high
field strength constraints the range of driving field strengths for which emitted harmonics
can be observed.

In conclusion, to measure all Fourier coefficients with significant precision, one needs
to measure the emitted intensity till the highest field strength sustained by the sample so
that lower spatial frequencies can be properly reconstructed, and take the highest number
of laser harmonics possible so that higher Fourier coefficients are obtained with significant
precision.

The above analysis suggests that measuring the emitted intensity for all observed har-
monics at various driving field strengths can provide information about the Fourier coeffi-
cients of the periodic potential.
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Figure 4.3: Bessel functions JN(k.E
ω2 ) versus reciprocal lattice vector k plotted for order N

=5 (5th laser harmonic) for photon energy ~ω = 2.1eV and E=0.72, 0.64, 0.56, 0.49, 0.41
V/Å. Blue stem are hypothetical Fourier coefficients (uk) spaced at regular interval(2π/d).
Bessel function at higher field strength peaks at low spatial frequency(uk) and vice versa.

4.2 Phase of Fourier coefficients

Measuring the diffraction intensity is at the heart of crystallography. Unfortunately, the
phase information is lost as it only contains the absolute value of Fhkl .

In the technique presented in this thesis, even though we still measure the intensity
of emitted harmonics, the phase information is still preserved. The sum over all the con-
tributing coefficients along with their respective phases before taking the modulus square
preserves the phase information, which is manifested in the cross terms. In this thesis, only
centrosymmetric systems are analyzed. In such systems, the phase problem is reduced to
a sign (±) problem.

Fig. 4.4 presents simulation to understand how the information of phase (sign) of
Fourier coefficients is manifested in the intensity dependence of the harmonics. As a
reference calculation we first take the periodic potential generated using single Fourier
coefficient Fig. 4.4a. The harmonic spectra obtained by driving electron on this potential
and the intensity scaling of the 7th harmonic is shown in Fig. 4.4b,c. Note, the cutoff
energy from this potential (14 eV) and the build-up of the intensity scaling of the 7th

harmonic.

When another Fourier coefficient is added with an opposite phase (d) or the same
phase (g), the harmonic spectra and the intensity yield of 7th harmonic changes Fig. 4.4.
In case of opposite phase, the build-up of intensity scaling of the 7th harmonic (f) changes
significantly from the reference (c). Here, the slope of the build-up is less aggressive
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compared to the reference. However, when both the Fourier coefficients of the potential
are of the same phase, the slope of intensity scaling of 7th harmonic is more aggressive than
the reference (c).

In conclusion, comparison of intensity dependence between the two cases suggests that
intensity yield of high harmonics contains not only the information of the amplitude but
also of the phase of the individual Fourier coefficient of valence potential of a crystal.
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Figure 4.4: Periodic Potential (a) generated using single Fourier coefficient, emits harmonic
signal (b) of laser pulse centered at 2eV. The intensity scaling of 7th harmonic centered at
14 eV is shown in (c). Potential generated using two Fourier coefficients of opposite phase,
harmonic spectra emitted from it and intensity scaling of the 7th harmonic are shown in
blue in (d)(e)(f) respectively. Potential of individual coefficients their respective harmonic
spectra and the intensity scaling is shown in red and magenta in (d)(e)(f) respectively.
(g)(h)(i) show the same for the potential generated from the coefficients having the same
phase. The slope of intensity yield of the 7th harmonic from total potential is less aggressive
when the phase of the coefficient is opposite. However, when the constituent Fourier
coefficients of the potential have the same phase, the slope of the intensity yield of the 7th

harmonic from total potential is more aggressive than the reference (c).



Chapter 5

Methods

5.1 Data analysis methods

Having understood how the amplitude and phase information is contained in the Eq.3.39,
we now delve into the details of how experimentally obtained intensity yields of different
harmonics can be analyzed to obtain the valence potential of a crystal.

5.1.1 Analytical method

In this section, first the theoretical method for obtaining Fourier coefficients of the potential
is presented.

IN(ω,Eo) = |
∑
k

k.eoukJN(k.eo
Eo
ω2

)|2 (5.1)

A closer scrutiny of the above equation reveals its resemblance with the discrete Hankel
transform. The properties of the Hankel transform can hence be used to obtain the Fourier
coefficients of the potential.

Hankel transform

The Hankel transform of order ν of a function f(r) is given by Fν(k) =
∫∞

0
f(r)Jν(kr) r dr

, where Jν is the Bessel function of the first kind of order ν with ν ≥ −1/2. Similarly, the
inverse Hankel transform is defined as: f(r) =

∫∞
0
Fν(k)Jν(kr) k dk

High harmonic intensity dependence analogy with Hankel transform

Eq.5.1 can be rewritten in terms of the Hankel transform. First the discrete equation is
written in continuous form. Let EN(Eo) =

√
IN(ω,Eo) be the electric field of the emitted
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harmonic for the incident field of strength Eo, then for a one dimensional potential

EN(Eo) =

∫ ∞
0

ukJN(k
Eo
ω2

) k dk (5.2)

The above equation is similar to the equation for the inverse Hankel transform. In
principle, the Fourier coefficients of the potential uk can now be obtained by just performing
a Hankel transformation.

uk =

∫ ∞
0

EN(Eo)JN(k
eo
ω2

)Eo dEo (5.3)

If the intensity of emitted harmonics could be recorded for all possible field strengths
then the above transformation can directly provide the values of uk and hence we would be
able to reconstruct the periodic potential analytically. However, in practice the sample is
damaged after a high driving field strength thereby limiting the experimental capabilities to
small range of field strengths. It is currently not feasible, even with some approximations,
to perform the Hankel transform in the bounded range without passing through any of its
roots. Hence, we have to resort to numerical methods to obtain the value of the Fourier
coefficients.

5.1.2 Numerical method

The intensity yield versus driving field strength data can be fitted to obtain the Fourier
coefficients (uk) along with their phases. We seek to minimize the objective function f
over the independent variables uk, i.e. we minimize min{uk} f({uk}). f has the form
f({uk}) = (

∑
N

∑
Eo
IN(Eo; {uk})−gN(Eo))

2 where IN(Eo) and f({uk}) denote the spectral
intensity of the Nth harmonic (which depends on field strength Eo) and the coefficients we
would like to ascertain are f{uk}; gN(Eo) is the data obtained from experiment, respectively.
We next try to obtain the condition number to verify if the problem is well posed. The
condition number of an algorithm quantifies how large the function deviates in response to
a deviation of the initial conditions. We calculated the condition number of the algorithm
for various u’s and all were less than one (typically on the order of 10−1), indicating that
our problem is well-conditioned. Now the experimentally obtained data can be fit to obtain
the uk

In principle, all the significant Fourier coefficients uk can be extracted from the intensity
yield of a single harmonic. However, experiments put constraint on the field strength for
which the signal can be recorded. Hence, we fit all the harmonics simultaneously. The
fitting of the experimental intensity scaling data obtained when laser is polarized along the
major crystal axes [100] and [110] is explained below. Fitting in other crystal direction is
also done in a similar manner.



5.1 Data analysis methods 51

Figure 5.1: (a) Reciprocal space of a symmetric system. Amplitude of the Fourier coeffi-
cients is depicted by the size of the ball. Laser polarization is along [100] direction of the
crystal. (b) Uh obtained by summing the Fourier coefficients along the direction perpen-
dicular to laser polarization. (c) Symmetric potential obtained by Fourier transforming
the coefficients in (a). (d) Slice of potential along [100] direction of crystal, which is also
the Fourier transform of Uh according to projection-slice theorem.

Fitting along the [100] direction of crystal

Eq.4.4 simplifies for the case when the laser is polarized along the direction of a symmetry
axis. When the laser is polarized along [100] or eo = î, then Eq.4.4 reduces to

IN(Eo, ω) ∝ |
∑
h

hJN

(
h

2π

d

Eo
ω2

)
Uh|2 (5.4)

where Uh =
∑

kl uhkl is the sum of all coefficients on plane perpendicular to eo = î at
distance h from origin.

To understand this equation and its implications we take a hypothetical symmetric
2D potential. Fig. 5.1 shows the Fourier coefficients where the size of the dot shows the
magnitude of the Fourier coefficient. The unit cell valence potential of this hypothetical
system obtained by Fourier transformation of the coefficients is shown in Fig. 5.1(c).
Uh =

∑
kl uhkl is obtained by summing the coefficients along ky axis and is shown in 5.1(b).

These coefficients ‘Uh’ are also spaced with spacing (2π
d

). The Fourier transform of these
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coefficients is shown in Fig. 5.1(d)
The projection-slice theorem in 2D states that, the Fourier transform of the projection

of a 2D function in 1D is equal to the 1D slice of 2D Fourier transform of that function
through the origin of the axes of the Fourier transform. This means that line (d) which is
a Fourier transform of the projection of 2D reciprocal space is a slice through the origin of
the unit cell potential. The slice is shown as dotted line in the potential (c). Indeed, the
fitted coefficients along [100] direction of the crystal provides direct access to the slice of
the potential cut along this direction passing through the symmetry point (origin) of the
potential.

Fitting along the [110] direction

Similarly when laser is polarized along eo = 1√
2
(̂i+ ĵ), then Eq.4.4 reduces to

IN(Eo, ω) ∝ |
∑
m

m√
2
JN

(
2π

d

m√
2

Eo
ω2

)
Um|2 (5.5)

where Um =
∑

h+k=m uhkl is sum of all coefficients on the plane perpendicular to eo =
1√
2
(̂i + ĵ) defined by h + k = m. The coefficients perpendicular to the polarization are

again summed up as shown in Fig. 5.2 (b). In this case spacing between the coefficient
is reduced to 2π√

2d
. The Fourier transform of the coefficients is shown in (d). Again, from

the projection slice theorem, this line is the cut along [110] direction of the unit cell of the
potential (b) passing through its origin. This line will have Fourier coefficients spaced at√

2d distance.
Hence, a laser projection along [110] direction will probe the slice of the potential along

this direction. A two dimensional potential can, in principle, be probed by obtaining the
lines at all possible orientation of the crystal. However, for any arbitrary direction of the
crystal, given by tan−1(p/q) where p, q are integers with q ≥ 0, the spacing between the
coefficients reduces to 2π

d(p2+q2)
. This increases the number of coefficients needed for fitting

and reduces the confidence of fitting significantly making the technique error prone.
But, the fitting along the [100] and [110] directions already contain the information

of all the Fourier coefficients. Using fitting along one more direction [120], provides us
enough information to extract all the coefficients and hence obtain an image of the two
dimensional valence potential. The method for this is detailed in the next section.

5.2 2D reconstruction from few projections

The reconstructed Fourier coefficients along a particular crystal direction comprises of
the sum of projections of the all coefficients along that direction. Hence, apart from the
coefficients perpendicular to that direction, which have zero projection, all other coefficients
contribute along this direction. For a complete knowledge of Fourier coefficients of the 2D
slice of valence potential, a sufficient condition is the reconstruction in a few directions,
using which a system of linear equations can be solved to obtain all the Fourier coefficients.
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Figure 5.2: (a) Reciprocal space of a symmetric system. Amplitude of the Fourier coef-
ficients is depicted by the size of the filled circle. The laser is polarized along the [110]
direction of the crystal. (b) (Um) obtained by summing the Fourier coefficients along the
direction perpendicular to laser polarization. (c) The symmetric potential obtained by
Fourier transforming the coefficients in (a). (d) Slice of potential along [110] direction of
crystal, which is also the Fourier transform of Uh according to projection-slice theorem.
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5.2.1 Principles of the 2D reconstruction method

Given a limited number of projections, which are obtained from experimental data, the
aim is to reconstruct a 2D slice of the periodic potential in one unit cell.

Assuming for simplicity a square unit cell with lattice constant a, we are interested in
obtaining the 2D potential slice U(x, y), which, when expanded in a Fourier series, takes
the form

U(x, y) =
∑
kl∈Z

Ukle
i 2π
a
kxei

2π
a
ly, (5.6)

where Ukl are the structure factors of the 2D potential. We assume as given a number
of projections, which can be obtained either from theoretical calculations or from fitting to
experimental data. A projection Ppq is a list of complex numbers that can be obtained by
summing the structure factors along parallel lines through reciprocal lattice points oriented
at an angle of arctan(q/p). Here p, q are integers with q ≥ 0, which specify the angle at
which the projection is performed. Since q/p is a rational number, the 1D real space slice
of the periodic potential through the origin along such a direction is a periodic function
of the line parameter. Accordingly, the Projection-Slice theorem applies and can be made
use of to establish a relationship between lines in real space and projections of structure
factors in reciprocal space. In detail, the projections are calculated as

Ppq(b) =
∑
k,l∈Z

Ukl∆(b+ kq − lp). (5.7)

Here the Kronecker delta function ∆(k) equals one when k = 0 and zero otherwise. The
parameter b specifies along which of the parallel lines a summation was performed.

In practice only a finite number of projections (parameterized by a finite number of
values for b) is obtained for a given angle (p, q) by fitting to experimental data. This
corresponds to a finite resolution. Although any angle can be approximated by a pair of
integers (p, q), it is difficult to obtain projections for large values p, q from experimental
data. This is because the number of projections that have non-vanishing contributions
from structure factors within a given radius in reciprocal space (corresponding to a given
resolution in real space) quickly increases for larger values of p, q. For the present approach
we only use a limited number of angles, i.e. sets of integers (p, q).

Using the known symmetries of the potential, we then solve a system of linear equa-
tions to obtain all structure factors within a certain radius from data corresponding to
a few projection angles. The symmetries of the 2D potential lead to a number of linear
constraints. In practice these constraints can imply that the structure factors are real for
inversion symmetric potentials, as well as modeling mirror axes and rotations as linear
maps between sets of N × N coefficients. No interpolation is necessary at this step since
the axes and rotation angles necessary for the materials always map the lattice to itself.

The system of equations is solved by standard linear least squares methods. We seek
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to find the Fourier coefficients U ∈ CN×N as the solution for

minimize ‖L[U ]− h‖2 (5.8)

subject to S[U ] = 0, (5.9)

where h is a vector containing the projections for all angles in use and L is a linear map
stringing the projections as given by Eq.5.7 with summation indices restricted to the N×N
grid. Finally, S is another linear map implementing the condition that coefficients be real
and symmetric with respect to given mirror axes or rotations, depending on the material.

The final result is a 2D slice of the potential. The approach requires that structure
factors outside the specified radius are zero and thus the validity of all the results hinges
on the assumption that they are in fact negligible. This leads to a delicate balance: on
the one hand, the cutoff radius can not be taken arbitrarily large. This is due to the
requirement that the limited projection data and symmetry constraints on the potential
should be sufficient to uniquely reconstruct the Fourier coefficients of a plane. On the other
hand, the cutoff radius needs to be sufficiently large for the actual physical potential to
have vanishing structure factors outside it. Whether the cutoff radius used is sufficiently
large can be judged in practice from the quality of the least square fit upon solving the
over-determined system of equations with linear constraints, and by comparing the end
result to potentials obtained theoretically or experimentally by other methods.
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Chapter 6

Experimental setup

You become responsible forever for what you have tamed. You are responsible for your rose.

- Antoine de Saint-Exupry, Le Petit Prince

This chapter provides the experimental details of the picoscope apparatus. We start
with presenting the basic elements needed to build such device and then discuss in detail
each of the elements and how they function in our laboratory setup.

6.1 Elements needed for the picoscope

The development of a picoscope requires the following basic elements:

• Laser Source A pulsed light source must have photon energy higher than the inner
potential of the crystal to be in high frequency regime. The laser pulses must be well
characterized with precise knowledge of its amplitude and waveform. In our exper-
iments, this information is obtained by the attosecond streaking technique (section
6.3.1).

• Crystalline sample The crystalline sample must be thin so that the propagation of
laser pulses inside the sample does not distort the waveform. The experimental setup
used in this thesis can only support free-standing samples however picoscopes can
also be developed to support crystalline material coated on a substrate.

• Rotatable sample holder In order to probe the potential of crystal in different di-
rections, a rotatable sample holder is needed. The sample holder presented in the
thesis allows rotation only along one axis of the crystal. Hence, the valence potential
of a 2D slice of the crystal can be imaged. It can be upgraded in order to provide
rotation along the other axis of the crystal and thereby reconstruct the 3D valence
densities.

• Spectrometer The spectrometer must be able to record all the harmonics emanating
from the crystalline sample and hence must be sensitive to a wide range of frequencies.
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6.2 Picoscope apparatus

Figure 6.1 shows a schematic of the picoscope. A crystalline sample is exposed to a laser
beam whose amplitude and waveform has been precisely characterized at the position where
laser-sample interaction takes place. The intensity yield of the emitted laser harmonics
from the crystal for an increasing field strength of driving pulse is recorded using the
spectrometer. The procedure is repeated for different crystal orientations.

Figure 6.1: Schematic diagram of a picoscope. The crystalline sample is placed on a
rotation stage and exposed to a intense laser pulse (red beam). The emitted harmonic
spectrum (blue beam) from the crystal is recorded by the EUV spectrometer.

6.3 Details of the developed picoscope

6.3.1 Light Source

Oscillator

A Titanium Sapphire crystal based oscillator system (RAINBOWTM) is pumped by 3W,
532 nm, Nd-YAG continuous-wave Verdi V6TM laser and generates pulses with the energy
of 3-4 nJ, the pulse duration of 6 fs and repetition rate of 78 MHz.
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Amplifier

The process of chirped pulse amplification [91] is used to amplify the energy of each pulse
from the oscillator. The pulses exiting the oscillator are first stretched to 25 picoseconds via
propagation through a thick slab of flint glass and then seeded to a multi-pass amplifier
to increase their energy. Faraday isolator is used to prevent the amplified pulses from
returning to the oscillator and avoid damaging the crystal. The amplifier system consists
of a Titanium Sapphire crystal pumped by a Q switched Nd:YLF pump laser. The seed
pulse from the oscillator is amplified by first passing it four times through the crystal in a
crossed-beam setup as shown in Fig. 6.2. After the fourth pass, the beam is passed through
the Pockel cell. The Pockel cell reduces the repetition rate from 78 MHz to 3 KHz. The
p-polarized pulses are amplified further, by passing it 5 times through the crystal. The
seed pulse experiences the process of gain narrowing every time it passes through the
crystal where the central region of the spectrum experiences higher gain compared to the
wings, thereby reducing the spectral bandwidth. To compensate for the gain narrowing,
the pulses are passed through a dazzler. The dazzler works on the principle of acousto-optic
dispersion. It consists of a birefringent crystal sandwiched between RF (radio frequency)
generators. The acoustic waves inside the crystal, generated by the RF generators, diffract
the seed pulse where its diffraction efficiency can be programmed according to the need.
In our system, the dazzler is programmed to create a hole in the spectra to compensate
for the gain narrowing. It is also used to compensate for the higher-order dispersions in
the pulse. The amplified pulses are compressed using two transmission gratings to produce
nearly Fourier-limited 3W, 1mJ, 21fs pulses at 3KHz with central wavelength of 800nm
and bandwidth of 60nm.

Hollow-core fiber

The amplified pulses are further spectrally broadened in a hollow-core fiber compressor.
They are focused with 1.8 m focal length lens on the entrance of the 1.1 m long hollow-
core fiber having 250 µm core diameter. The fiber is filled with neon gas at around 2 bar
pressure. The beam enters the tube containing hollow-core fiber through a 500 µm thick
anti-reflection window and exits from a second 500 µm thick fused silica window mounted
at Brewster’s angle. Each window is mounted at 0.8 m distance from the fiber. The pulses
undergo self-phase modulation inside the fiber to increase their frequency components (Fig.
6.3). The output from the fiber is a supercontinuum with wavelengths ranging from deep
ultraviolet (230 nm) to infrared (1100 nm). The initially diverging beam emerging from
the fiber is collimated using a toroidal mirror with Rh of 8000 mm and Rv of 260 mm and
then compressed by dispersive mirrors in the Synthesizer (section 6.3.1).

Phase stabilization of the pulse

The change in the dispersion inside the cavity due to thermal fluctuations can change
the carrier offset frequency. We apply two mechanisms to lock the fCEO to a predefined
value. The first method uses the concept of difference frequency generation. The difference
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Figure 6.2: Schematic of the laser setup used for the experiment in this thesis. Adapted
from PhD thesis of Manish Garg.

frequency defined as fdiff = fCEO + nfrep − fCEO −mfrep = (n−m)frep is inherently free
from a carrier envelope phase and can be used as the reference. Inside the oscillator,
a periodically poled lithium niobate crystal (PPLN) is used to generate the difference
frequency spectrum. The difference frequency spectrum and the cavity spectrum have
some overlap, which causes interference and yield a beat signal which also contains the
carrier envelope phase fCEO + nfrep − nfrep = fCEO. The beat signal has a very low
frequency and is separated from the rest of the signal by using a low pass radio frequency
filter. The filtered signal is detected using an avalanche photodiode. If fCEO is stabilized
to frep

4
, every fourth pulse in the oscillator will then have the same phase. Since we already

reduce the frequency from 78MHz to 3KHz while amplifying the pulse, all pulses from



6.3 Details of the developed picoscope 61

Figure 6.3: (a) Schematic of spectral broadening using a gas filled hollow-core fiber. (b) The
spectra of the emitted super continuum encompassing multi-octave bandwidth. Adapted
from reference [92].
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the amplifier have the same phase. After detecting the phase of the pulse, feedback is
provided to the acousto-optic modulator (AOM) to modulate the intensity of the pump
laser entering the oscillator. The changes in intensity of the pumps change the phase of
pulses exiting the cavity due to the Kerr effect.

A phase slippage is acquired by the pulses while they propagate through the amplifier
and the hollow-core fiber. We again correct this phase slippage using another technique.
In this technique, a beta barium borate (BBO) crystal is used to generate a second har-
monic signal. The interference between the frequency doubled spectrum at its low end and
fundamental spectrum at its high end, i.e. fCEP - 2nfrep - 2(fo - nfrep) = fCEP is used to
obtain the carrier envelope phase. Feedback is given to the glass wedges in the stretcher
of the amplifier to correct for the phase offset.

Light Field Synthesis

The most popular method to compress the pulses down to few-fs pulse duration after exiting
the hollow-core fiber is to reflect them off a series of chirped mirrors. In our laboratory,
we have enhanced the capabilities of tailoring and controlling light sources to fit our needs
by synthesizing the electric field, while compressing it down to sub-fs pulse duration. The
technology of light field synthesis made possible the production of the shortest pulse in
optical wavelength regime with around 400 attosecond duration [15].

The broadband light emanating from the fiber is split into four spectral bands (four
channels) of nearly equal width using dichroic beamsplitters as shown is Fig. 6.4. Pulses
in each channel are compressed by reflection off six chirped mirrors. The pulses from each
channel are characterized using transient grating- frequency-resolved optical gating (TG-
FROG). Each channel, except one (yellow) consists of a set of two mirrors placed on the
piezoelectric stage to control the relative delay between them. Finally, the pulses from
each channel are recombined using the dichroic beam-splitters of the same type to produce
a synthesized pulse.

The spatial overlap of the beam profile is ensured by overlapping the beams from the
individual channel in the focal plane using a CCD camera. The temporal overlap between
pulses in different channels is attained by maximizing the highly non-linear process of high
harmonic generation from the Neon gas.

The Synthesizer is actively and passively stabilized to ensure long term sustainability
of the synthesized fields. For passive stabilization, the whole setup is assembled on a
monolithic aluminum base plate whose temperature is stabilized by circulating water at
20oC. The active stabilization is achieved by interferometric path length stabilization. More
details about the synthesizer can be found in the references [93] and [15].

The frequency-resolved optical gating (FROG) technique is only suitable for finding the
amplitude and phase of many-cycle pulses. The light pulses produced from the synthesizer,
however, may contain close to or less than a single cycle of a pulse. Attosecond streaking,
discussed in the next section, provides a way to characterize the pulses from the light
field synthesizer. Once the field form is known, pulses in each channel can be delayed by a
known amount to synthesize the required pulses. Repeating the procedure of synthesis and
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characterization finally results in the desired waveform which can be actively stabilized.

Figure 6.4: Schematic diagram of the light field synthesizer. Supercontinuum with multi-
octave spectral bandwidth is split using the dichroic beamsplitters (DBS) into 4 different
spectral channels, shown with 4 different colors. Pulses in each channel are compressed by
reflections off 6 chirped mirrors. Aperture and wedge, placed in each arm of the synthe-
sizer, control the amplitude and the carrier envelope phase, respectively. The beams from
the individual channel are combined again using the same type of beam splitter to produce
the synthesized field at the exit of the apparatus. Adapted from reference [92].

Attosecond streaking

In the experiments presented in this thesis, precise knowledge of the laser waveform and
its amplitude is of immense importance.

The short intense optical pulse obtained from the synthesizer is directed into the first
chamber- the HHG chamber. They are focused into a nickel tube (2.2mm thick) filled
with neon gas using a 32.5 cm focusing mirror. The interaction of the high-intensity laser
pulse with the gas atoms leads to the generation of extreme ultraviolet (EUV) pulses.
The emitted EUV pulse and the optical pulse co-propagate through differentially pumped
chambers towards the experimental chamber. Owing to the lower divergence of EUV pulses
(inner beam) compared to the optical pulses (outer beam) they can be spatially separated
using a metallic filter (zirconium/ aluminum) suspended on thin 30 µm tungsten wire
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having the same diameter as the EUV beam. The metallic filter is selected such that it
only transmits the high-energy spectral part of the EUV pulse so as to generate an isolated
attosecond pulse. The beam profile and the intensity of the beam EUV pulse is measured
using a EUV-CCD camera placed at the end of the experimental chamber. Both the EUV
and optical pulses are focused into another gas target by a 12.5 cm concave dual-mirror
module made by concentrically cutting a single concave mirror. The two mirrors can be
delayed relative to each other using the piezo stages. The inner mirror is an EUV multi-
layer mirror optimized at 80 eV, while the outer mirror is optimized to boost the signal
from blue and UV channels and suppress the frequency components from the red channel
so as to compensate for the skewness in the spectra of the optical pulses. The pulses from
both mirrors are then focused on Ne gas nozzle. The high photon energy EUV beam ionizes
the Ne atoms. A time of flight (TOF) spectrometer mounted on top of the gas jet is used
to capture electrons emitted along the laser polarization vector. The TOF spectrometer
measures the kinetic energy of electrons by measuring the delay between the trigger and
arrival of the electron on an MCP plate. The TOF spectrometer is pumped with a dedicated
turbopump which maintains vacuum around 10−7 mbar pressure. The gas jet target is also
placed on a 3D piezo stage so that once the field is characterized at the location of the
gas target, the jet can be moved out and the sample under study can be placed. This
allows for knowledge of exact field strength at the position where laser interacts with the
sample. The inner and outer beams can also be imaged and spatially overlapped using
the imaging setup placed at one of the exit ports of the chamber. These beams are picked
up by the translation D mirror and passed through an aberration-corrected biconvex lens,
which collimates and magnifies the beam size by a factor of four on the camera. The coarse
temporal overlap between the beams is achieved by maximizing the overlap signal on the
camera. The power of each beam is also measured on the same port using a power meter.

Pulse measurement with attosecond streaking

The temporally and spatially overlapping XUV and optical pulses are shot on the neon
gas jet. The XUV pulse with central energy of around 80 eV ionizes the neon gas atoms.
The electron emitted from gas atoms are then moved by few-cycle optical pulse and finally,
these electrons are detected by the TOF spectrometer. The intensity of the optical pulse
is adjusted so that it does not ionize the atoms and merely modifies the momentum of
the electron. The momentum gained by the electrons due to the optical field is given by
∆p = −e

∫∞
t0
EL(t)dt, where t0 is the time of birth of the electron and ENIR is the electric

field of the optical pulse. The TOF spectrometer measures the time of flight of electrons,
which corresponds to the kinetic energy of the particle. Assuming the initial velocity at the
time of birth is v(to), then using the change in momentum formula above, the kinetic energy

can be given as EKE(∞, to) = 1
me

[
v(to)

2 − 2e
me
AL(to)v(to) + ( e

2me
)2AL(to)

2
]

where AL(t) =∫∞
to
EL(t)dt is the vector potential. As stated earlier, we keep the intensity relatively low so

as not to ionize the neon with the optical pulse, thus AL(to)
2 can be neglected. The change

in kinetic energy is then given by ∆EKE ≈ −2e
m
AL(to)v(to) . Delaying the XUV pulse with
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Figure 6.5: a. Schematic diagram of the attosecond streaking setup b.From the right side,
a single-cycle optical pulse from the synthesizer enters the first chamber maintained at
10−3 mbar. The optical pulse is focused on the HHG target, which is a tungsten tube with
a hole of around 250 µm filled with the noble gas (Ne), to generate EUV pulse shown in
blue. The second chamber is the experimental chamber maintained at 10−6 mbar in which
both attosecond streaking and picoscopic measurements are performed. Adapted from the
thesis of Dr. Manish Garg.
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respect to the optical pulse would mean changing the time of birth of the electron with
respect to the optical pulse. This pump-probe technique provides a trace at every delay
point as shown in the Fig. 6.6 which is directly related to the optical field as shown in
the equation above. For quick, but still precise analysis, the centroid of the momentum
distribution from the streaking trace is calculated. This centroid can be interpreted as the
vector potential A(t) from which the electric field can be deduced. Using the knowledge
of the spectral bandwidth, the spectrum of the individual channel is retrieved. Knowledge
of field strength and waveform of pulses in each channel is used to obtain the desired
waveform of the output pulses from the light field synthesizer.

6.3.2 Crystalline sample

The crystalline samples used in the experiments were commercially obtained. Figure 6.7
shows a freestanding crystalline sample. Polishing and etching techniques were used to
decrease the thickness of the bulk crystal to the desired size. The thickness of the com-
mercially obtained films was confirmed using a white light interferometer.

6.3.3 Rotation stage and sample holder

The concepts presented in this thesis requires sampling of the intensity of harmonics at
various orientations of the crystal. Also, the sample must be placed at the location inside
the experimental chamber where the field strength is characterized. The streaking nozzle
is placed 5 mm below the TOF spectrometer hence our sample holder of the crystal must
be constrained to that location. We constructed the sample holder using a rotation stage,
two gears and a belt. The gear with a smaller radius was placed exactly at the location
of streaking nozzle. This gear was attached to larger gear, placed on the rotation stage,
with a conveyor belt. The whole system was mounted on a translation stage so that after
streaking measurement of the field of the pulse is performed, the position of streaking
target and sample holder can be exchanged. The same stage was also used to change the
spot exposed to the laser beam so that a fresh spot on the sample can be exposed after
potential damage.

6.3.4 EUV spectromter

In our experiments, using the optical fields, the harmonics from solid samples are generated
with a cutoff around 40 eV. To capture all the harmonics, we built a spectrometer which
covers the spectral range of 8eV to 45eV using a Hitachi flat field grating with 1200
grooves/mm and the blaze angle of 3.2 degrees. The grating was mounted on a rotation
stage and was housed inside a custom-built vacuum chamber. In our spectrometer design,
instead of moving the detector we rotate the grating so that the grazing angle of incidence
of the incident beam can be changed. Rotating the grating gives us the freedom to select
the spectral range captured by the detector. A 3 stage (z-stack) multi-channel plate (MCP)
was used to detect the EUV photons and the fluorescence signal on the MCP phosphor
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Figure 6.6: (a) and (b) show streakings with superimposed centroid (blue). (c) and (d)
show the corresponding channel decomposition. (e) and (f) show the total electric field
and (g) and (h) the intensity. The left side shows inital waveform, the right side after
optimization.

screen was then imaged using an optical camera. The energy calibration of the spectrometer
was performed using gas harmonics. To detect the low harmonics in VUV range i.e. 3eV
to 8 eV, a commercial spectrometer from McPherson was used.
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Figure 6.7: MgF2 crystal with 5 µm thickness and 2 mm diameter mounted on an cylindrical
frame.

6.4 Picoscope

Fig. 6.9 shows a schematic of the picoscope apparatus used in the experiments. After the
fields are characterized at the location of the streaking target, the position of the target
and the sample is exchanged. Owing to the versatility of the light field synthesizer, 5 fs
pulses centered at 585 nm exiting from the single channel of the synthesizer is used for the
experiments while the other channels were blocked. The intensity of the beam is controlled
by a motorized iris and the inner part of the beam is blocked with an aluminum filter.
Outer mirror of the dual mirror module directs the pulses to the crystalline sample placed
on the rotation stage. The spectrum emanating from the crystalline sample is focused
using a pair of rhodium mirrors to the entrance of the spectrometer. The optical beam
is dumped inside the spectrometer and the harmonic spectra is recorded. To measure
the third harmonic (∼6 eV) a focusing mirror is placed at the position of the translation
mirror and beam is directed towards the McPherson spectrometer. The optical beam is
attenuated by reflecting the beam at Brewster angle off the Silicon wafers.

The close loop adjustable iris, the rotation stage, the optical camera on home built
spectrometer and the CCD camera of the McPherson spectrometer were interfaced using
the LabView software. This allowed quick and automatized acquisition of HHG spectra
of the EUV pulse at required orientations of crystal and for required field strengths of the
optical beam.
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Figure 6.8: Schematic diagram of the sample holder. A conveyor belt connects the mo-
torized rotation stage to the crystal sample holder. The distance between the center of
the crystal sample holder to the TOF spectrometer is 5mm. This particular design allows
the experiments to be performed at the exact streaking nozzle position and provides exact
knowledge of field strength at sample location.
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Figure 6.9: Schematic diagram of the picoscope. A few-cycle (5 fs) Pulses centered at
the carrier photon energy of 2.1 eV is exposed to sample. The intensity of the beam is
controlled by the closed loop adjustable iris. It is focused on the sample by reflection off
the outer section of the concave mirror with 12.5 cm focal length. The beam exiting the
sample is directed to a CCD camera and power meter by a mirror placed on a translation
stage. This mirror is then removed and the harmonics generated (blue) by the sample is
focused by double rhodium reflecting mirror on the spectrometer entrance. The optical
beam is dumped inside the spectrometer and the HHG spectrum is measured using a 3
stage MCP phosphor screen detector. To measure third harmonic, the beam is directed
to McPherson spectrometer using a focusing mirror. The optical beam is attenuated by 2
reflections off a Si wafer placed at Brewster’s angle.



Chapter 7

Probing the radius of the smallest
valence specimen in a crystal

7.1 Introduction

An essential implication of the high-frequency approximation is that the cutoff energy of
the harmonic spectra is directly related to the radius of the smallest valence specimen in
a crystal. High frequency approximation predicts that the cutoff energy Ecutoff is directly
proportional to the driving field strength Eo and inversely proportional to the radius of the
smallest specimen rs and the frequency ω of the driving pulse. The radius of the smallest
specimen can be obtained as (chapter 3)

rs =
2π

Ecutoff

Eo
ω

(7.1)

Here we derive the radius (rs) of the smallest atom in different crystalline solids using
the Eq.

7.2 Shannon radius

The most widely accepted radius of an ionic specimen is empirically calculated by Shannon
[94]. The ionic radius has not been possible to measure. Conventionally, to estimate the
ionic radius, atoms or ions were treated as hard spheres filling the unit cell. The internuclear
distance was determined by X-ray crystallography which provides the length of each side
of the unit cell. For example, in a crystal of NaCl, the length of the unit cell is measured
as 5.64 Å. Ions in each side of the crystal have an arrangement given by Na+ - Cl− - Na+

... and so on. Hence, the sum of the ionic radii of Na+ and Cl− is equal to 2.82 Å which is
half of unit cell length as depicted in Fig. 7.1. Shannon used the value of the ionic radius
of O2− = 140 pm as a reference to estimate the ionic radius of all other species in crystals
using the above method.
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Figure 7.1: The internuclear distance measured using X-ray crystallography is apportioned
between sodium and chlorine ions to calculate the ionic radius of the individual specie.

Figure 7.2: (a) Schematic diagram of experimental setup. (b) High harmonic spectra
emanating from the MgF2 crystal.

7.3 Measuring the radius of the smallest specimen

(Mg) in MgF2

In order to estimate the cutoff energy the high harmonic spectrum emanating from MgF2

was measured as shown in Fig. 7.2.
The dependence of cutoff energy of crystalline magnesium fluoride on driving field

strength is shown in Fig. 7.3. It was obtained by recording the value of field strength
when a harmonic peak was first observed in the spectrometer. It shows the values of cutoff
energy at various driving field strength along [100] and [110] direction of the crystal. The
error in the measurement of electric field strength is defined by the quanta with which
driving field strength is increased. The blue and green shaded areas represent all the
possible values that best fit of the experimental data along with its error.

The radius of the smallest specimen (Mg ion) in the crystal was obtained from the slope
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Figure 7.3: The dependence of cutoff energy (Ec) on the driving field strength for [100]
(blue) and [110] (green) crystal orientations of MgF2. The width of the line shows all
possible least square fitting of cutoff energy versus driving field strength.

of data in Fig. 7.3. We obtain rs = 62 ± 4 pm in [100] direction of crystal and rs = 59 ±
4 pm in [110] direction of crystal. The Shannon radius of Mg++ ion is 65 pm and Shannon
radius of F− ion is 126 pm [94]. Our experiment suggests that the smallest entity will have
around 59 pm size in [110] direction of the crystal and 62 pm in [100] direction, which
matches well the Shannon radius of the magnesium ion, the smallest valence specimen in
MgF2 crystal.

The difference between the radius of magnesium observed in [100] and [110] directions
suggests that the magnesium potential may not be completely symmetric but rather oblong
shaped. In [110] crystal orientation, where magnesium shares an electron with the fluorine,
its radius becomes smaller compared to the [100] orientation where it does not share any
electron. The valence electron density calculated from DFT does not show the oblong
magnesium because of the inherent assumption of spherical electron densities at the atomic
sites.
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7.4 Radius of smallest valence specimen in various

crystals

We generalize the validity of the high-frequency approximation by experimentally mea-
suring the cutoff energies for both wide and narrow band gap, ionic as well as covalent
crystals. For this purpose we measure cutoff energies for two other ionic crystals, periclase
(MgO) [95] with band gap 7.8 eV and zinc oxide (ZnO) with band gap 3.3 eV [96]. Fur-
thermore, we measure cutoff energies for three covalent crystals, quartz (SiO2), diamond
(C) and carborundum (SiC-6H) with band gap of 9.2 eV [97], 5.47 eV [98] ) and 3.05 eV
[99] respectively. These materials were chosen so that the approximation could be tested
on materials with both a narrow and wide band gap.

Table 7.1: Shannon radius (rs)of Ions and Atoms

Ionic Radius

Ion Ionic Radii (in pm) [94]

Zn+2 60

Mg+2 65

F− 129

O−2 135

Covalent Radius

Ion Covalent Radii (in pm) [100]

C 75

O 64

Si 116

The experimentally observed cutoff energies for maximum driving field strength sus-
tained by all the above-mentioned materials are shown in Fig. 7.4. The measured values of
the radii(rs) of the smallest specimen in all these crystalline systems, extracted using their
cutoff energy (Fig. 7.4) are shown in Fig. 7.5. Alongside, the ionic/covalent radii for all
the specimens in the respective crystal obtained from Shannon theory is also mentioned for
comparison. The measured ionic radii of the smallest specimens in the crystalline mate-
rial match well with the radii obtained from Shannon theory. Hence, these measurements
further corroborate the validity of high-frequency approximation in the studied solids.

7.5 Picometer scale resolution

By providing the direct access to the radius of the smallest valence specimen in various
crystals which matches the Shannon radius very well we not only bolster the validity of our
technique but also provide a method to directly access the valence radii with picometer-
scale resolution. The measured radii of Mg, C and Zn are 59 pm, 70 pm and 64 pm,
respectively.
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Figure 7.4: Measured cutoff energy as a function of driving field strengths for various
crystalline materials.

Figure 7.5: Comparison of the radius of the smallest specimen obtained experimentally
(blue bar) with that of Shannon radius (red and yellow bars) for all the specimens present
in the crystal.
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Chapter 8

Picometer scale reconstruction of the
valence potential of MgF2

When you come to the end of your rope, tie a knot and hang on.

- Franklin D. Roosevelt

Utilizing the foundation laid in previous chapters, I attempt here to reconstruct the
periodic potential of MgF2 crystal and compare it with the valence potential obtained from
the density functional theory.

8.1 Crystal structure of MgF2

The unit cell of crystalline MgF2 (Sellaite) as shown in Fig. 8.1 has a lattice constant of
4.64 Å along a, b axis and 3.05 Å along the c axis. In our experiments, laser impinges along
the c axis of the crystal. The crystallographic direction [110] matches with the F-Mg-F
molecular axis in the crystal shown in Fig. 8.1. The MgF2 crystal has two symmetry points,
both located on the Mg ions. The two planes containing these non-equivalent symmetry
points are highlighted in Fig. 8.1. These planes have exactly the same arrangement of ions
but rotated by 90◦ and are shifted by half of the lattice constant along a and b axis.

8.2 The MgF2 potential calculated using DFT

The valence potential of MgF2 was calculated using the density functional utilizing the
Pseudodojo pseudopotentials and the FHI pseudopotentials as the basis set for the fluorine
and the magnesium atoms, respectively. The Hartree density mesh cutoff was kept at 95
Hartree and 164 reciprocal space grid points were used to calculate the valence potential
using commercially available DFT package (ATK-Quantumwise).

Fig. 8.2(a) shows the 2D slice of the valence potential of MgF2 calculated with DFT
for the (001) and (002) planes (Fig. 8.1). The two non-equivalent symmetry points of
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Figure 8.1: Unit cell of MgF2.

Figure 8.2: (a) Valence electron potential of MgF2 for (001) and (002) planes as calculated
by DFT. C1 and C2 are symmetry points of the crystal which coincide with the position of
Mg. (b) Total potential calculated by summing the potential on each plane shown in (a).
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Figure 8.3: High harmonic spectra from MgF2 crystal driven by the laser pulses with a
carrier photon energy of 2.1 eV polarized along the [100] direction shown in red curve and
[110] direction shown in blue curve.

the crystal, located at the Mg atoms, are marked as C1 and C2. Fig. 8.2(b) shows the
sum of the planes of the valence potential such that their symmetry points coincide. The
electric field of the high harmonic signal from both planes will be coherently added to form
a summed up potential (Appendix B).

8.3 Experiments

An approximately 5µm thick c-cut MgF2 crystal was exposed to few-cycle pulses with a
central photon energy of ∼2.1eV. The emanating HH spectra from the MgF2 crystal is
shown in Fig. 8.3. The peak energy spacing of the harmonic spectrum matches well with
the odd harmonics of the carrier frequency of the driving laser field verifying the coherence
between the driving laser pulse and emitted EUV radiation.

Fig. 8.4(a) shows high harmonic spectra recorded when the driving field strength was
varied from 0.46 to 0.71 V/Å. The spectral intensity scaling of individual harmonics with
respect to driving field strengths shows a highly non-linear behaviour as shown in Fig.
8.4(b). The strength of driving electric fields in the experiments within +- 10 % was
obtained by using the attosecond streaking technique (chapter 5).

The sample was rotated with respect to the c-axis and the intensity yield of high
harmonics for increasing driving field strengths were recorded for various orientations of
the crystal. Figure 8.5 shows the harmonic spectrum recorded for 0 to 2π rotation of the
crystal. The step size of rotation was 5◦ and the driving field strength was 0.7 V/Å. The
intensity yield at only 3 different orientations of the crystal was required for the valence
potential reconstruction (section 5.2). The fitting in each direction provides the amplitude
and phase of the Fourier coefficients in that direction.
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Figure 8.4: (a) MgF2 Harmonic spectra recorded for increasing field strength along [110]
crystal direction. (b) Intensity yield versus field strength for 4 different high harmonic
orders (shown in legend) as a function of increasing driving field strengths.

8.4 Retrieving the Fourier coefficients of MgF2 poten-

tial

In order to retrieve the Fourier coefficients, the intensity yield of the emitted harmonics
for various driving field strength along the [100] direction and [110] direction of the MgF2

were fitted using Eq.3.39. The mean of four consecutive measurements of intensity yield
taken along [100] and [110] directions are depicted by red points along with their standard
deviation in Fig. 8.6 and Fig. 8.7). The least square fitting, shown in blue curve, matches
well with the intensity yield data where even the finer undulation of its build-up is captured
precisely with our model.

8.5 Potential along [100] and [110] crystal direction of

MgF2

The coefficients Uh (described in Eq.5.4) retrieved by least square fitting of the field de-
pendence on driving field strength along the [100] direction are plotted in Fig. 8.8. In
addition, the coefficient Um retrieved by fitting (Eq.5.5) along [110] direction is also shown
in Fig. 8.8. It needs to be emphasized once again that coefficient along individual direction
are not the cut along this direction in reciprocal space but the sum of the projection of
all the coefficients along these directions (section 5.1.2)). Fourier transforming these coef-
ficients gives us the cut along the [100] and [110] direction in the real space, as suggested
by the Fourier slice theorem (Appendix D). Since the experimental data is normalized
before fitting we are left with the ambiguity of the depth of the potential, just as in any
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Figure 8.5: MgF2 harmonic spectra recorded for different crystal orientations with 5◦ step
size. The carrier frequency of few-cycle pulses is 2.1 eV with their electric field strength is
0.7 V/Å.
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Figure 8.6: High harmonic yield versus field strength of the driving pulse aligned along
[100] direction of the crystal. The least square fitting obtained using equation 3.39 is shown
in the blue curve. The Intensity yield for each harmonic order (N) is normalized by the
maximum yield.

crystallographic measurement. The slices of the valence potential of MgF2 in real space
obtained experimentally are shown in Fig. 8.8 and the corresponding slices of the potential
from density functional theory are also plotted for comparison. The depth of the retrieved
potential is chosen so as to match the DFT calculation to ease the comparison.

Fig. 8.8 shows that the along [100] direction of the crystal only Mg+2 ion is solely
present. However, along the [110] direction 3 ions (F−1-Mg+2-F−1) are observed. As men-
tioned earlier MgF2 has two non-equivalent symmetry points on (001) and (002) planes.
Hence the measured valence potential curve along the [100] and [110] axes comprise the
addition of two parallel lines lying on these planes passing through the symmetry point.
This means that the potential of Mg will be twice deeper than Mg potential on a single
plane. The Mg+2 ion is smaller in size compared to the F−1 ion because of the electron
transfer from Mg+2 to F−1. Along the F−1-Mg+2-F−1 molecular axis ([110] crystal direc-
tion), sharing of electrons or bonding between Mg+2 and F−1 is also observed which is
also in agreement with the theoretical predictions [101]. The measured potential is also in
excellent agreement with the potential obtained from DFT.
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Figure 8.7: High harmonic yield versus field strength of the driving pulse aligned along
the [110] direction of the crystal. The least square fitting obtained using equation 3.39 is
shown in the blue curve. The Intensity yield for each harmonic order (N) is normalized by
the maximum yield.

8.6 Reconstructing the potential of MgF2 on planes

(001) and (002)

The reconstructed coefficients from [100], [110] and [120] directions of the crystal were
solved using the system of linear equation to obtain the Fourier coefficients as mentioned in
the section 5.2. The approach required that structure factors outside the specified radius
are set to zero. The cutoff diameter of 7 was chosen and 7x7 Fourier coefficients were
reconstructed. The resolution in real space is hence d

2M
= 0.74 Å, where M is the highest

order Fourier coefficient which is M = 3 and d = 4.624 Å is the lattice constant. The
real space image of MgF2 obtained by Fourier transforming the experimentally obtained
coefficients is shown in Fig. 8.9. As mentioned earlier we observe that harmonics from
both the planes coherently add up, hence the summed up plane is observed in Fig. 8.2.
The measured valence potential shows a weaker potential of Mg ion at the center of the
unit cell surrounded by four stronger potential of F ions. The electron density is obtained
by solving the Poisson equation and is presented in Fig. 8.10(a). The electronegative F
ions have a higher electron density compared to the Mg ions. The weak electron density
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Figure 8.8: (a) 1D slice (blue) of the MgF2 potential retrieved by Fourier transforming
the coefficients (c) obtained from fitting the intensity yield along [110] direction of the
crystal. (b) 1D slice (blue) obtained by Fourier transforming the coefficients (d) obtained
from [100] direction of the crystal. In (a),(b) experimentally retrieved slices are compared
with the theoretically obtained slices (red dash) from the density functional theory (c),(d).
The right column depicts experimentally obtained Fourier coefficients and the left column
depicts the theoretical Fourier coefficients from DFT. They are plotted in log scale and the
negative coefficients are represented by dark red.

in the interstitial space between Mg and F ions suggest the ionic character of the bonding.
The potential calculated from DFT along with its electron density is also presented for
comparison. They are in excellent agreement with the picometer resolution image obtained
experimentally.
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8.7 Fitting fidelity analysis

The experimentally obtained electric field from attosecond streaking measurements have
an error of ±5%. The stability and sensitivity of the fitting procedure to the input field
strength is tested by varying the electric field by -20% to 20%. In Fig. 8.11, panels (a),(b)
and (c) show the fitting of experimental high harmonic intensity yield along [100] and
[110] orientation when the electric field is changed by -15%, -5% and 0 % respectively.
The fitting yields the best regression when the electric field is only changed by ±5%. For
greater variation, the regression becomes worse. The 3rd harmonic does not fit at all when
the electric field is varied by more than -15 %. This can be explained by the selectivity
of Bessel function on Fourier coefficients i.e. high field strengths are needed for the Bessel
function to be sensitive to the lower Fourier coefficients shown previously in Fig. 4.3. The
potential reconstructed along [110] and [100] direction from three fittings are shown in Fig.
8.11(d). When the electric field is changed by - 15 % the Mg ions almost disappear- in the
reconstructed potential as shown in Fig. 8.11(e). The fitting error calculated by changing
the field strength from -20% to 20 % in discrete steps of 5 % is shown in panel Fig. 8.11(f).
For both [100] and [110] directions the fitting error increases for more than ± 5 % change
of field strength. However, within the ± 5 % change fitting error is low, and stable at
similar value for all the fittings. Hence, the numerical fitting is stable for ± 5 % change of
field which is also the amount of error we have in the measured value of the electric field
strength. This study shows that our technique has a great fidelity in reconstructing the
potential of MgF2 along [100] and [110] crystal directions.
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Figure 8.11: (a),(b) and (c) shows the least square fitting of intensity yield of 3rd to 13th

harmonic of MgF2 for various driving field strength (red and green dots) along [100] (red
solid curve) and [110] (green solid curve) orientation when the electric field is changed by
-15%, -5% and 0 % respectively. (d) The potential reconstructed along [110] and [100]
direction from all these 3 fittings. (e),(f),(g) The 2D potential reconstructed from the lines
along [100] and [110] directions when field is changed by 0%, -5% and -15 % respectively.
(h) The fitting error calculated by changing the field strength from -20% to 20 % in discrete
steps of 5 % change.



Chapter 9

Reconstructing the valence potential
of CaF2

Two are better than one

- Every guide

To further verify the applicability of optical picoscopy to different systems, we extend our
study to another crystalline material, CaF2. It is a wide band gap material with similar
chemical formula as MgF2 but has a very different lattice structure.

9.1 Structure of CaF2

Fig. 9.1(a) shows the arrangement of atoms in a CaF2 crystal. In contrast to MgF2, CaF2

has Ca and F atoms on different planes when seen along c axis. The symmetry point in
the crystal is at the origin of the unit cell. The plane on which symmetry point exists is
shaded for the reference. The line along next nearest calcium atoms (Ca-Ca) is referred
to as [100] direction of the crystal which is also parallel to the conventional axis (a,b).
The line along the next nearest fluorine atoms (F-F) is referred to as [110] direction of the
crystal. The space-filling model of the crystal is also presented alongside in Fig. 9.1(b).
This shows the exact ionic radius as given by Shannon radius of the individual specimen.

9.2 The CaF2 potential (DFT)

The valence potential of CaF2 was evaluated by a commercially available density functional
theory package known as Quantumwise. The generalized gradient approximation (GGA)
with Perder-Burke-Erzerhof (PBE) functionals along with optimized norm-conserving pseu-
dopotentials (ONCVPSP) were used. The density mesh cutoff energy was kept at 75 eV
and electron temperature at 300K. 270 reduced reciprocal space k points were used to
generate the valence potential and the valence electron density.
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Figure 9.1: (a) Unit cell of calcium fluoride (CaF2) crystal. The laser pulse impinges
through the c axis. The plane containing the symmetry point is shaded. (b) A space filling
model of CaF2 where size of ions are based on Shannon radius.

Figure 9.2 shows the valence potential of CaF2 calculated from DFT for the plane (001)
which contains the symmetry point (0,0,0). The symmetry point in CaF2 is equidistant
from all the Ca atoms. In figure 9.2 this is exactly at the center of the unit cell.

9.3 Experiment and Analysis

Having seen the structure of CaF2 and its valence potential obtained from DFT, we now
move on to reconstruct its valence potential experimentally. An approximately 8 µm thick,
c - cut CaF2 crystal was exposed to few-cycle pulses with a carrier photon energy of 2eV .
The harmonic signal emitting for the crystal was recorded using the spectrometer. Fig. 9.3
(a) shows the high harmonic spectra form thin CaF2 film when the driving laser field was
oriented along the [100] and [110] directions of the crystal. More intense harmonics near
cutoff energy were observed when the laser field was polarized along the [110] direction
compared to the [100] direction of the crystal. Also, the spectral intensities of different
harmonics do not maximize at the same orientation of the crystal. This may be attributed
to the fact that the Fourier coefficients of the potential vary differently along the different
orientations of the crystal. Fig. 9.3(b) shows the variation of intensity of emitted harmonics
with increasing field strength. The spectral intensity yield of all the harmonics show a
highly non-linear behaviour.

The high harmonic spectra were also recorded for the other directions of the crystal
apart from the two directions mentioned above. Fig. 8.5 shows the harmonic spectra
recorded for 0◦ to 360◦ rotation of the crystal with 5◦ step size at a driving field strength
of 0.7 V/Å. The 90◦ periodicity of the emitted intensity for varying crystal orientations
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Figure 9.2: The valence potential of CaF2 on the plane (001) calculated from density
functional theory.

of CaF2 is evident and is also in agreement with the periodicity of the crystal. Similar
measurements were repeated for the various field strengths of the driving pulse until the
damage threshold of the sample was reached.

9.4 Potential along [100] and [110] direction of CaF2

crystal

The intensity dependence of recorded harmonics for various driving field strengths when the
laser polarization vector is aligned along [100] and [110] orientation of the crystal is shown
in Fig. 9.5 and Fig. 9.6 respectively. These plots are normalized for all the harmonics
and every point in the plot is the average of 4 consecutive measurements conducted under
identical experimental conditions. Using the earlier derived equation, Eq. 3.39, based on
high-frequency approximation the experimental intensity dependence of high harmonics
were fitted. The black line is the least square fitting of the intensity dependence data.
The fitting along both [100] and [110] direction of the crystal matches precisely with the
experimental data. The fitting parameters - Fourier coefficients of the potential - extracted
by fitting the intensity yield in [100] and [110] direction of the crystal are shown in Fig. 9.5b
and Fig. 9.6b alongside the Fourier coefficients obtained from DFT. Fourier transforming
these coefficients provide us with the slice of potential along [100] and [110] direction of
the crystal as shown in Fig. 9.6(c). The experimentally obtained potential is in good
agreement with the valence electron potential of CaF2 obtained using density functional
theory. The absolute strength of the potential- zeroth order Fourier coefficient of potential-
is not known experimentally so it is assumed to be of the same strength as the prediction
from DFT. The valence potential along [100] direction shows the presence of only one
specimen along that direction as the potential comprises of a single valley as presented in
Fig. 9.6(c). This specimen is identified as a calcium ion on comparison with the potential
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Figure 9.3: (a) High harmonic spectra of CaF2 along Ca-Ca, [100] crystal direction shown
in red curve and F-F [110] crystal direction shown in blue line. (b) Intensity yield of
emitted harmonics with increasing incident field strengths for 5th to 13th laser harmonic
orders.

obtained from DFT. Two valleys seen along the direction [110] can be identified as F−

ions. The slices of crystal potential along two directions are enough to obtain the image of
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Figure 9.4: Each panel depicts the spectral intensity of emitted odd harmonics (N = 7 to
13) as a function of crystal angle for 4 driving field strengths (0.485, 0.560, 0.615 and 0.650
V/Å). The radial direction is the intensity of emitted harmonics while azimuthal direction
is the angle at which crystal is rotated.

2D valence potential of CaF2 (section 5.2).

9.5 Reconstruction of the potential of CaF2 on (001)

plane

The Fourier coefficients extracted for the slice of potential along [100] and [110] directions
of the crystal were used to obtain the Fourier coefficients of the 2D slice of the potential
for (001) plane as described in the section 5.2. The cutoff diameter of 7 was chosen and
7x7 Fourier coefficients were reconstructed. The resolution of the 2D slice of the valence
potential is hence d

2M
= 0.91 Å where M is the highest order Fourier coefficient which is

M = 3 while d = 5.46 Å is the lattice constant. The reconstructed potential is depicted
in panel (a) of Fig. 9.7. In the experimental potential, at the center of each side of the
unit cell is a calcium ion and between two nearest calcium ion is a fluorine ion. The
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calcium ion is stronger in strength and bigger in size compared to the fluorine ions, in
this plane. In the ball model shown in Fig. 9.1(a), the fluorine ions are not present in
this plane. However, the electron density of the fluorine ions could still be observed on
this plane. This is because the radius of valence density of fluorine is (∼1.4 Å) which is
higher than the distance between the two planes (1.35Å) Fig. 9.1b. The effective potential
experienced by the electrons in CaF2 as retrieved from experimental measurement matches
well with the effective potential obtained from density functional theory. The sensitivity
of our technique to the penetrating valence potential of F− confirms that it observes the
valence potential of the solid.
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Figure 9.5: (a) The intensity of emitted harmonics as a function of increasing driving
field strength along [100] direction of the crystal. The black curve is the least square
fitting of the intensity yield of individual harmonic. (b) The Fourier coefficients of the
periodic potential obtained by fitting the intensity yield vs electric field strength. (c) The
slice of valence potential of CaF2 along [100] direction of the crystal obtained by Fourier
transforming the retrieved coefficients. The dashed curve represents the cross cut from the
potential obtained by DFT.
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Figure 9.6: (a) The intensity of emitted harmonics versus field strength along [110] direction
of crystal. The black curve is the least square fitting of the intensity yield of individual
harmonic. (b) The Fourier coefficients of the periodic potential obtained by fitting the
intensity yield vs electric field strength. (c) The slice of valence potential of CaF2 along
[110] direction of the crystal obtained by Fourier transforming the retrieved coefficients.
The dashed curve represents the cut from the potential obtained by DFT.
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Chapter 10

Conclusion and Outlook

Set thy heart upon thy work, but never on its reward

- The Bhagwad Gita

10.1 Conclusion

In this work, we showed how the high frequency approximation can be extended to solids.
In this regime, where an incident pulse has photon energy higher than the inner potential
energy of solids (~ωL > Uin), the velocity of valence electrons inside a crystal potential
driven by a laser field follows the vector potential of the incident field. In other words, the
electrons are predominantly driven by the laser field and the periodic potential only act as
a perturbation to the laser motion. The first principle time dependent density functional
theory (TDDFT) verified the high frequency approximation by conducting simulations of
electron dynamics in MgF2 crystal exposed to an intense optical pulses where the velocity
of the crystal electron nearly matched the velocity of the free electron. TDDFT also
attested to our intuition that the nearly free electron regime sets in when the frequency of
the driving field is higher than the inner potential of the solid (~ωL > Uin).

A direct implication of the high frequency approximation was that we could use the long
understood concepts of high frequency driving in atoms and solids to our exact problem
of understanding HHG process in solids. Building on these concepts, we presented a semi-
classical picture for explaining HHG process in solids without invoking the band picture.
The high harmonic emission was found to be associated with the classical motion of an
electron beginning from a symmetry point in a periodic potential of the crystal. The
complete electron dynamics was found to be linked to this single trajectory of the electron.
This provided us with the ability to link the intensity of emitted harmonic radiation to the
periodic potential of the crystal along this trajectory.

Furthermore, the law for the cutoff energy of harmonic radiation derived using this
approximation was found to be dependent on the radius of the smallest valence specimen
in the crystal. The validity of high frequency approximation was experimentally established
by measuring the valence radii of the smallest specimen in various systems such as MgF2,
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ZnO, SiC, MgO and Diamond. This provided the first direct measurement of the ionic
radii of solids. The measured radii matched well with the most widely used database for
ionic radii empirically calculated by Shannon.

Having developed the theoretical toolbox, in high frequency regime, which connects
the intensity of emitted harmonics to the Fourier coefficients of the potential, we set the
foundation for new microscopy technique sensitive to the valence electron density of solids.
We successfully established this new kind of microscope, termed as picoscope, and provided
the first measurements of the valence electron density of MgF2 and CaF2 crystals with
picometer resolution. The shape of the ions in MgF2 and CaF2 crystals were found to be
non-spherical. Sharing of the electron between cationic and anionic species in the crystals
were also evident from the measurement.

This paved the way for observation of valence electron density inside the crystals for
the first time and opened up new avenues where dynamics of valence electrons in solids
can also be probed.

10.2 Outlook: Picoscopy

• Non-centrosymmetric crystal In the framework of this thesis, the electron density
of centrosymmetric structures was imaged. Now the work is continued to also image
the electron densities of the non-centrosymmetric crystal, such as quartz, where both
the even and the odd harmonics are observed. The Fourier coefficients of the periodic
potential of the symmetric crystal contain only the real part however for asymmetric
crystals both the real and the imaginary part are present. The even harmonic is
generated due to the asymmetry of the crystal and hence contain the information
about the imaginary part of the crystal. Fitting the intensity yield of both even and
odd harmonics with our model, the potential of the asymmetric crystal can be also
obtained.

• 3D reconstruction The reconstruction technique is sensitive to the plane of the crys-
tal perpendicular to the laser polarization direction. Due to this, reconstruction from
a single plane of the crystal was obtained. A 3D reconstruction of a periodic poten-
tial of a valence crystal can be obtained by either revolving the crystal or using the
crystals cut along different planes.

• Time resolved observation of electron density The dynamic electron density
information might also be obtained using the similar techniques incorporated in a
pump-probe experiment where a weak and slow pump pulse excites the dynamics in
the system and a strong and fast probe pulse observe such dynamics in real time by
imaging the electron density of the crystal which is stretched/bend in a controlled
manner.



Appendix A

Semiconductor Bloch equations with
coulombic interaction

A general many-body Hamiltonian in second-quantization for the electronic system ne-
glecting the defects and the electron-phonon interactions is given as [59]

Ĥ = Ĥo + Ĥv + Ĥls

Ĥ =
∑
λ,k

ελkâ
†
λ,kâλ,k +

1

2

∑
λλ′

∑
k,k’

∑
q 6=0

Vλλ′

q â†λ,kâ
†
λ′,k’âλ′,k’+qâλ,k−q′ − E(t)

∑
λ,λ′>λ,k

(dλλ
′

k â†λ,kâλ′,k + c.c).

(A.1)

Where â†λ,k and âλ,k denotes the creation and the annihilation operators for an ex-
citation of particle with momentum k. The Hamiltonian is divided into three compo-
nents. The first term describes an electron in a band structure with an energy given
by εk. The second term describes the Coulomb interaction between electrons either in
the same band or in different bands. Vq are the Fourier coefficients of the real space
Coulomb potential. The third term is laser-solid interaction where the electron is anni-
hilated from one of the bands and created in other band. Only interband interactions
are currently taken in the laser-solid interaction term, in the next section intraband in-
teractions are also included. All terms except the Coulomb interaction terms have two
operators. When we write the equations of motion, these operators recursively increase
and end up in infinite hierarchy of coupled differential equations. In order to truncate this
and obtain closed set of differential equations we make the random phase approximation i.e.
(〈â†λ,kâ

†
λ,k’âλ,kâλ,k’〉 → 〈â

†
λ,kâ

†
λ,k’〉〈âλ,kâλ,k’〉 − 〈â

†
λ,kâλ,k〉〈â

†
λ,k’âλ,k’〉+ 〈â†λ,kâλ,k’〉〈â

†
λ,k’âλ,k〉)

The expectation value of these two operators are either population (fe,h) or polarization

(pλλ′) of electrons/holes. Specifically, fe = 〈â†e,kâe,k〉, fh = 〈â†h,kâh,k〉, phe = 〈â†h,kâe,k〉,
pee′ = 〈â†e,kâe′,k〉, phh′ = 〈â†h,kâh′,k〉, with e and h denoting electron and hole band indices.
With the above approximation, the equations of motion can be described as
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~
∂fe
∂t

= −2Im [
∑

λ Ωeλ(pλe)
∗]− ( ~

T1
)fe (A.2)

~
∂fh
∂t

= −2Im [
∑

λ Ωλh(phλ)
∗]− ( ~

T1
)fh (A.3)

~
∂phe
∂t

= (εe + εh − i~/T2)phe − Ωeh(1− fe − fh) (A.4)

+
∑

λ(Ωλhpλe − Ωeλphλ) (A.5)

~
∂pee′

∂t
= (εe − εe′ − i~/T2)pee′ − Ωe′e(fe′ − fe) (A.6)

+
∑

λ(Ωλepλe′ − Ωe′λpeλ) (A.7)

~
∂phh′

∂t
= (εh − εh′ − i~/T2)phh′ − Ωh′h(fh − fh′) (A.8)

+
∑

λ(Ωλhpλh′ − Ωh′λphλ) (A.9)

Here εe(k) = εe(k)−
∑

q= 6=k V|k−q|ne(k) and εh(k) = −εh(k)−
∑

q=0 Vq−
∑

q=6= V|k−q|nh(k)

are the renormalized bands and Ωk
λλ′ = dkλλ′E(t) +

∑
q 6=k V|k−q|Pλλ′(q) is the renormalized

Rabi frequency. T2 is the dephasing time for polarization and T1 is the dephasing time of
population. The dephasing time is the time it takes for the polarization or the population
to become decoherent. This is used to take into consideration interaction of electron with
phonons or other impurities.

The above equations carry the intraband term only due to Coulomb interactions. The
term similar to semiclassical Bloch equation, due to the acceleration of charge carriers,
is not yet included in the equation. To include the Boltzmann drift term we follow the
procedure suggested in [102]. We start with the Hamiltonian of the system in the presence
of laser field, H = 1

2m
(p − e

c
A)2 + V (r). The eigenstates of the Hamiltonian are Volkov

states ψi(r, t) = e
ieAr
~c φnk(r). Since the Hamiltonian is invariant under lattice translations,

the allowed values of k are: eA
~c + k = n

N
K, where N are the number of unit cell and ni are

integers with −N/2 < n < N/2 to avoid extra redundant solutions. As n
N
K is constant

and A(t) varies with time, k must be function of time such that:

∂k

∂t
= − e

~c
∂A

∂t
=
e

~
E (A.10)

Hence in the above SBE equation we must replace k with time dependent k(t) or with
eE(t) ∂

∂k
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~
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+ieE(t)∂phe
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λ(Ωλhpλe − Ωeλphλ) (A.14)
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= (εe − εe′ − i~/T2)pee′ − Ωe′e(fe′ − fe) (A.15)

+ieE(t)∂pee
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~
∂phh′
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= (εh − εh′ − i~/T2)phh′ − Ωh′h(fh − fh′) (A.17)

+ieE(t)∂phh
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+
∑

λ(Ωλhpλh′ − Ωh′λphλ) (A.18)

Now the total polarization (interband) and current (intraband) terms can be extracted
as follows:

P (t) =
∑
λλ′kpλλ′(k)dλλ′(k) (A.19)

J(t) =
∑
λkfλ(k)vg,λ(k) (A.20)

The total emitted intensity is the sum of harmonics from the terms given by

Irad(ω) ∝ |ωP (ω) + iJ(ω)|2 (A.21)
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Appendix B

Coherent sum of equivalent planes

In this appendix we show that total observed high harmonic signal is due to the sum of
high harmonics from individual plane containing symmetry points. Hence the reconstructed
image is the sum of planes of the potential containing symmetry points.

A 3D potential can be written as a series of Fourier coefficients as following,

V (r) =

∫
d3gṼ (g) exp(ig · r) (B.1)

where the Ṽ (g) are Fourier coefficients of periodic potential. For simplicity, suppose
that the polarization of laser is along x-direction, E(t) = Eî, and electrons are initially
located at (x0, y0, z0). Then, the position of electrons can be (x0+x′(t), y0+y′(t), z0+z′(t)).
However, excursion of electrons along y and z direction is negligible compared to direction
of laser polarization, y(t) = z(t) = 0. The radiation along the laser polarization can be
calculated from acceleration of electrons as a function of initial position, r0 = (x0, y0, z0).

ax(r0 : t) =

∫
d3gṼ (g)igx exp(ig · r0) exp(igxx

′(t)) (B.2)

Total radiation from electron acceleration is sum over all possible initial points with charge
distribution, ρ(r0).

Erad(t) ∝
∫
d3r0ρ(r0)ax(r0 : t) (B.3)

=

∫
d3r0

∫
d3kρ̃(k) exp(ik · r0)

∫
d3gṼ (g)igx exp(ig · r0) exp(igxx

′(t))(B.4)

=

∫
d3kρ̃k(k)

∫
d3gṼ (g)igx exp(igxx

′(t))

∫
d3r0 exp(ig · r0) exp(ik · r0)(B.5)

=

∫
d3gρ̃(−g)Ṽ (g)igx exp(igxx

′(t)) (B.6)

=

∫
dgxigx

[ ∫
dgydgzṼ (g)ρ̃(−g)

]
exp(igxx

′(t)) (B.7)
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The radiation of N-th harmonic is Fourier transform of acceleration with respect to time
as following

IN(E, ωL) ∝
∣∣∣∣ ∫ dgxgxUproj(gx)Jn

(
egxE

meω2
L

)∣∣∣∣2 (B.8)

where Uproj(kx) is defined as

Uproj(gx) =

∫
dgydgzρ̃(−g)Ṽ (g) (B.9)

By the convention of crystallography above equation can be written with the Miller indices
where g = 2π

d
(hî+ kĵ + lk̂).

IN(E, ωL) ∝
∣∣∣∣∑

h

hUhJn

(
h
ekE

meω2
L

)∣∣∣∣2 (B.10)

Uh =
∑
k,l

ρ̃h̄k̄l̄Ṽhkl (B.11)

Case: MgF2 structure (Rutile Structure)
Since crystal structure can be decomposed into basis and lattice and total periodic potential
in real space is convolution of them.

V (r) = f(r) ~ l(r) (B.12)

where f(r) and l(r) refer to potential of basis and lattice function respectively. The lattice
function, l(r), is described as a comb function. In the Fourier space, convolution can be
simply written as a multiplication of two function.

Ṽ (g) = f̃(g)l̃(g) (B.13)

It is valid for all kind of crystal structures. Crystalline MgF2 consists of two same cuboid
lattice structures [d, d, d’], (lattice 1 and 2) but spatially separated by [d/2, d/2, d’/2],
and two different bases, one and 90deg rotated with respect to the other, (basis 1 and 2).
Basis 1 and 2 are located at each point of lattice 1 and 2, respectively.

Ṽ1(g) = f̃1(g)l̃1(g) (B.14)

Ṽ2(g) = f̃2(g)l̃2(g) (B.15)

Ṽ (g) = Ṽ1(g) + Ṽ2(g) (B.16)

Spatial separation creates phase difference between two lattices. From now the conven-
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Figure B.1: Contruction of MgF2 crstal

tion of Miller indices is used.

l̃2(hkl) = l̃1(hkl) exp(iπ(h+ k + l)) (B.17)

Then, the Eq. B.16 is rewritten as

Ṽ (hkl) = f̃1(hkl)l̃1(hkl) + f̃2(hkl)l̃1(hkl) exp(iπ(h+ k + l)) (B.18)

= l̃1(hkl)[f̃1(hkl) + f̃2(hkl) exp(iπ(h+ k + l))] (B.19)

Supposing that one basis or one MgF2 molecule provides one trajectory of electron, a
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charge or trajectory density at initial position, r0 is defined as the lattice function.

ρ̃(hkl) = l̃1(hkl) + l̃2(hkl) = l̃1(hkl)(1 + exp(iπ(h+ k + l))) (B.20)

Substitution of Eq. B.18 and Eq. B.20 into Eq.B.11 gives

Uh =
∑
k,l

ρ̃h̄k̄l̄Ṽhkl (B.21)

=
∑
k,l

l̃1(hkl)l̃1(h̄k̄l̄)[1 + exp(−iπ(h+ k + l))][f̃1(hkl) + f̃2(hkl) exp(iπ(h+ k + l))](B.22)

=
∑
k,l

l̃1(hkl)l̃1(h̄k̄l̄)[f̃1(hkl) + f̃2(hkl)][1 + cos(π(h+ k + l))] (B.23)

If coordinate is chosen such that lattice 1 is centered at 0, the lattice function, l̃1(hkl) is
a centrosymmetric comb function with uniform phase. It implies, l̃1(h̄k̄l̄) = l̃1(hkl) and
(l̃1(hkl))2 = αl̃1(hkl), where α is a constant. Then, the final result is

Uh = α
∑
k,l

l̃1(hkl)[f̃1(hkl) + f̃2(hkl)][1 + cos(π(h+ k + l))] (B.24)

= α
∑
k,l

[f̃1(hkl) + f̃2(hkl)][l̃1(hkl) + l̃2(hkl)] (B.25)

This result is equivalent to the result of one trajectory with double lattice and superposition
of two bases, ρ′(hkl) = const and Ṽ ′ = [f̃1(hkl) + f̃2(hkl)][l̃1(hkl) + l̃2(hkl)].

a. b. 

Figure B.2: Radiation from MgF2 crstal Radiation from MgF2 or rutile crystal, co-
herent sum from all bases (a), is equivalent to radiation from a single superimposed basis
(b).
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Calculating harmonic current from
time dependent density functional
theory

Calculation Method

The TDDFT calculations were performed for the rutile-type MgF2 unit cell (P42/mnm)
[83]. Initially, density functional theory (DFT) was performed with the Quantum ESPRESSO
package (QE) to obtain the ground state properties, using a norm-conserving (NC) pseu-
dopotential in conjunction with the Perdew Burke Ernzerhof (PBE) functional [84] and
plane-wave (PW) basis set with energy cutoff at 400 eV. The energy and forces convergence
threshold for ionic minimization were kept at 10−4 (a.u) and 10−3 (a.u) respectively. The
energy convergence threshold for self-consistent calculations was 10−6 (a.u). In the ground
state calculation we used 12× 12× 24 k-points sampling and obtained a direct band gap
is of about 7 eV (10.8 eV in experiment)

Excited state dynamics

The excited-state simulations were performed with real-time time dependent density func-
tional theory (TDDFT). We start the calculation by adding the laser-matter interaction
term in the Hamiltonian to simulate the external laser field:

Ĥ =
1

2m
(~k̂ − e

c
ˆA(t))2 + V̂ , (C.1)

where m is the electron mass, k is the electron momentum and V is the periodic lattice
potential of the crystal. In velocity gauge the time-dependent vector field A(t) can be
written as the integral of electric field E(t):

A(t) = − e
~

∫
E(t)dt. (C.2)
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theory

With the time-dependent Hamiltonian, time-dependent Kohn-Sham equation (TDKS)
i~∂ψ

∂t
= Ĥψ is solved to simulate the excitation process.[85] To save computational time

and maintain accuracy, we made use of L-W Wang’s algorithm[103, 104] and expressed the
propagator operator within the Crank-Nicholson scheme[105, 85]. Then the TDKS orbitals
ψl,G,k,σ(t) as well as time dependent charge density ρ(t) were available. The population
ni,G,k,σ(t) and induced current density jG,k,σ(t) were obtained by expanding the TDKS
orbital in the adiabatic basis φi,G,k,σ(t):

ni,G,k,σ(t) =
∑
l

|cil,G,k,σ(t)|2, (C.3)

jG,k,σ(t) =
e~
m

∑
i

ni,G,k,σ(t)<[φi,G,k,σ(t)∗∇φi,G,k,σ(t)]. (C.4)

where ψ(t)l,G,k,σ =
∑

i cil,G,k,σ(t)φi,G,k,σ(t).The labels i, l denote band index and G, k, σ
are the PW basis index, K points and spin index, respectively. cil,G,k,σ is the coefficient
in adiabatic basis. At t = 0 fs, cil,G,k,σ = δil,G,k,σ. Summing up j(t) we obtain the overall
current as:

I(t) =
∑
G,k,σ

jG,k,σ(t). (C.5)

Being interested mainly in the microscopic dynamics of HHG, the macroscopic prop-
agation and screening effects were neglected. This approximation can be reasonable as
previous works have described[72].

Using the current expression for the HHG spectra, namely, HHG(ω) ∝ ω2|FT[I(t)]|2,
we can obtain the spectra of different harmonics.

In calculations we considered a laser pulse with:

E(t) =
E0

e(t−t0)/τ + e−(t−t0)/τ
cos(2πω(t− t0) + φ), (C.6)

being the envelope, where τ = 3.63 fs. The pulse duration is about 50 fs and the pulse center
is located at 25 fs. The carrier wavelength λ ranges between 400-800 nm, corresponding
to the photon energy of 3.1 to 0.41 eV. The electric field peak ranges from 0.43 V/Å to
0.7 V/Å. Correspondingly, the peak intensity inside matter takes value from 1.47× 1012 to
3.41× 1012 W/cm2. These pulse parameters are identical with those from the experiment.

Given the primary convenience for plane wave (PW) to deal with gradient in reciprocal
space, simulations were performed using a homemade time dependent plane wave(TDPW)
package with PW basis to obtain the induced current. We used a norm-conserving pseu-
dopotential with the PBE functional[84] and the PW basis energy cutoff of 400 eV. The
k-point sampling was 6×6×9. To make the MgF2 DFT band gap real, we applied a scissor
correction[72] ∆ = 3.8 eV by artificially shifting the conduction bands to higher energy.
The evolution of excited states was achieved by an electron density self-consistently propa-
gating at every electronic step of 0.0483 fs. After a 1040 steps of evolution, we get a direct
microscopic picture on the electron dynamics.



Appendix D

Projection-slice theorem

The projection-slice theorem in 2D states that, the Fourier transform of the projection
of 2D function in 1D is equal to the 1D slice of 2D Fourier transform of that function
through the origin of the Fourier transform. This statement can be trivially generalized to
higher dimensions. We present the proof in 2D dimension. Without loss of generality the
projection axis can be chosen to be kx axis. If F (kx, ky) is a 2D function, then projection
onto kx axis is given by

p(kx) =

∫ ∞
−∞

F (kx, ky)dky (D.1)

The Fourier transform of F(kx,ky) is

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e
−2πi(kxx+kyy)dkydkx (D.2)

The slice is then s(x)

s(x) = f(x, 0) =

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e
−2iπxkxdkydkx (D.3)

=

∫ ∞
−∞

[∫ ∞
−∞

F (kx, ky)dky

]
e−2πixkxdkx (D.4)

=

∫ ∞
−∞

p(kx)e
−2πixkxdkx (D.5)

(D.6)

which is just the Fourier transform of p(kx).
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[88] P. Kálmán and T. Brabec, “Evolution of coherent hard-x-ray radiation generated
in crystalline solids by high-intensity femtosecond laser pulses,” Physical Review A,
vol. 53, pp. 627–629, jan 1996.

[89] P. Kalman and T. Brabec, “coherent hard-x-ray radiation,” vol. 52, no. 1, 1995.

[90] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-
harmonic generation from an atomically thin semiconductor,” Nature Physics, vol. 1,
no. November, pp. 2–4, 2016.

[91] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,”
Optics Communications, vol. 56, pp. 219–221, dec 1985.
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