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ABSTRACT 

The brain is organized into several large-scale functional networks. Such networks are 

primarily characterized by intrinsic functional connectivity, i.e. temporally synchronous 

activity between the different brain regions of a network. The functional connectivity of 

networks can be identified via functional MRI during resting state, i.e. without engaging 

the subject in a particular task. Resting-state fMRI is thus less demanding on the subject 

and therefore of particular interest from a clinical point of view to detect alterations in 

brain function. Applied to neurodegenerative disease including Alzheimer’s disease, 

resting-state fMRI has shown alterations in several resting-state networks, suggesting that 

basic network function is altered in AD. However, the interpretation of alterations in 

resting-state fMRI connectivity is inherently limited since no cognitive states are explicitly 

expressed during fMRI. In this regard, we aimed to elucidate how resting-state fMRI 

connectivity relates to 1) cognition-related brain activity and 2) markers of pathologically 

altered brain function in AD. In order to understand at a more basic level the association 

between resting-state and task-related fMRI, we first examined, in a group of elderly 

healthy subjects, the association between functional connectivity of major networks 

assessed during resting-state fMRI with those acquired during memory-task related fMRI, 

in the same individuals. Secondly, in order to assess whether alterations in AD are 

associated with already well-established markers of pathological brain function in AD, we 

compared resting-state fMRI functional network connectivity with that in FDG-PET 

metabolism in AD.  
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Project 1: We investigated the association between functional connectivity acquired 

during rest and the level of activation obtained during an episodic memory task that 

included the encoding and forced-choice recognition of face-name pairs in elderly 

cognitively normal subjects. Independent component analysis (ICA) was used to identify 

major resting-state networks in the brain. Next, we applied ICA to the task-fMRI data to 

determine the components (networks) that were significantly associated with the task 

regressors of successful vs unsuccessful learning or recognition trials. Spatial correlation 

analysis between the resulting extracted resting-state and task-related fMRI components 

showed a spatial match in several components such as medial temporal lobe centered 

components and posterior components. However, apart from the spatial correspondence, 

the level of resting state functional connectivity did not predict the level of task-related 

functional connectivity in spatially matching components. Together these results 

suggested that particular resting-state networks are activated during a memory task, 

however, the level of baseline connectivity does not predict to what extent a network 

becomes activated during a task. Future studies may assess whether pathological resting-

state connectivity predicts altered task-related connectivity in the same networks in AD.  

Project 2: We examined the association between resting-state fMRI functional 

connectivity within major functional networks and FDG-PET metabolism in those 

networks, assessed in elderly healthy controls, subjects with prodromal AD (mild 

cognitive impairment and amyloid PET biomarker confirmed AD etiology) and AD 

dementia. We found that FDG-PET was generally reduced in all networks in the course of 

AD. The main finding was that lower network functional connectivity was associated with 

lower FDG-PET uptake in the Default mode network and fronto-parietal attention 

network across the whole group and specifically in prodromal AD, suggesting that both 
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modalities are associated in higher networks affected in the course of AD. These results 

provide insightful comprehension of the hypometabolism patterns that are typically found 

in AD.  
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01.  

INTRODUCTION 

1.1. LARGE SCALE NETWORKS RELEVANCE IN HEALTH & 

DISEASE 

1.1.1. Brain organization in large scale intrinsic networks 

Higher cognitive abilities such as episodic memory are supported by multiple brain 

regions that show temporally coordinated activity (Vuilleumier & Driver, 2007). These 

regions form large scale functional networks (Bressler & Menon, 2010). Mesulam 

(Mesulam, 1990) was the first to report – based on the observation of brain lesions and 

neurological conditions –that cognitive functions rely on a set of large-scale networks. 

Since, the emergence of functional magnetic resonance imaging (fMRI), a noninvasive 

neuroimaging technique (for details refer to the next section on pages 7-8), has greatly 

contributed to the better understanding of neural functions and networks. Findings from 

fMRI studies during resting state (rsfMRI), when the person is not engaged in a particular 

task performance, suggest that the inherent neural architecture of a network doesn’t 
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“connect” solely during a given cognitive state, but is primarily characterized by ongoing 

intrinsic functional connectivity. Studying the brain at rest, in absence of any input or task 

requirements, offers an opportunity to easily investigate the intrinsic functional 

connectivity within large-scale functional networks. 

1.1.2. Large scale networks during rest 

RsfMRI has allowed the identification of a set of resting-state networks (RSN), which are 

essentially defined by intrinsic resting-state functional connectivity (rsFC) i.e. 

synchronized time courses of spontaneous blood oxygen level dependent (BOLD) signal 

between distinct brain regions. It has been suggested that the slow fluctuations that are 

measured during resting-state reflect a network “standby” state, that serves to maintain 

the functional networks integrity while keeping the energy costs low (Fox & Raichle, 2007). 

The first RSN that was discovered, somewhat accidentally, by analyzing the slow 

fluctuations that occur during rest, was the default mode network (DMN). Since then a 

dozen of large-scale networks can consistently be identified during resting-state. These 

RSN share, to a large extent, the same topology as patterns of co-activation that are related 

to cognitive tasks (Damoiseaux et al., 2006; Daselaar, Huijbers, Eklund, Moscovitch, & 

Cabeza, 2013; Hedden et al., 2009; Smith et al., 2009), which include RSNs that range from 

those related to more basic cognitive functions such as visual, auditory or motor networks 

but also more complex cognitive functions such as fronto-parietal attention network 

(FPAN), executive network and DMN.	

The DMN is a network that shows higher activity during rest compared during 

performance on tasks that require attention to external stimuli (Mazoyer et al., 2001; M E 
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Raichle et al., 2001; Shulman et al., 1997). Anatomically, the DMN comprises the medial 

frontal cortex, the precuneus and adjacent posterior cingulate cortex and retrosplenial 

cortex, the lateral parietal lobule and angular gyri and the medial temporal lobe, including 

the hippocampus (Buckner, Andrews-Hanna, & Schacter, 2008; Horn, Ostwald, Reisert, & 

Blankenburg, 2013). The DMN deactivates during externally oriented tasks, such as 

episodic memory encoding, working-memory or tasks that required attention to external 

stimuli and plays a central role in performing cognitively demanding tasks (Weissman, 

Roberts, Visscher, & Woldorff, 2006). The DMN can be further divided into anterior and 

posterior subnetworks. The anterior portion of the DMN (aDMN), comprising the medial 

frontal cortex is thought to be related to internally directed processes, such as 

autobiographical memory, thinking of the future and considering what others think or 

plan (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010). In contrast, the 

fronto-parietal attention network (FPAN) (also called dorsal attention network) shows the 

exact opposite activation pattern with decreased activation during rest and increased 

activation during externally oriented tasks (Carbonell et al., 2014; Chai et al., 2014; Fox et 

al., 2005). The FPAN comprises separate highly interconnected cortical regions in the 

lateral prefrontal cortex and temporo-parietal regions or hubs that regulate other 

functional networks such as the visual or auditory networks, motor network and salience 

network, depending on the type of cognitive task (Smith et al., 2009). Typically tasks that 

require maintaining or manipulating various sources of information while dealing with 

the other sources of stimuli, are memory and attention related tasks, including episodic 

memory recall or recollection and working memory. Such complex tasks are considerably 

impaired in normal aging (Anderson & Craik, 2000; Balota, Dolan, & Duchek, 2000; Grady 

& Craik, 2000; Kelley & Jacoby, 2000; Zacks, Hasher, & Li, 2000) and moreover in AD 
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(Alescio-Lautier et al., 2007; Blennow, Leon, & Zetterberg, 2006; B.C. Dickerson & 

Sperling, 2009; Minati, Edginton, Grazia Bruzzone, & Giaccone, 2009; Perry, Watson, & 

Hodges, 2000). 

1.1.3. Resting-state network impairments in aging and disease 

The age-related decline leads to difficulties in daily life, that are not solely due to sensory 

processing problems, but rather to changes in episodic memory, processing speed, 

working memory and executive functions (Hedden & Gabrieli, 2004). Several studies 

postulate that the age-related cognitive decline is not only the result of regional brain 

changes but also due to functional connectivity disruption with large-scale networks 

(Andrews-Hanna et al., 2007). Large-scale networks including the DMN and FPAN 

support the cognitive features that are most impaired with age. The DMN is mostly 

affected in it’s anterior to posterior components (Andrews-Hanna et al., 2007).  Older 

adults tend to have increased levels of activation in the fronto-parietal regions, that 

overlap with the DMN and FPAN, and hypo-activation in the occipital regions ( Li et al., 

2015). The increased activation in the fronto-parietal regions is thought to compensate for 

the deficits in sensory processing (Reuter-Lorenz & Park, 2010, 2014). Age-related changes 

in the activation of the FPAN, DMN have been observed in various tasks and have been 

linked to worse performance in episodic memory (Grady, 2012). Because of its simplicity 

of application, rsfMRI provides a useful tool to investigate brain changes that are 

associated with normal age-related or AD-related decline. Studying the brain of elderly 

people during rest has shown altered iFC of major RSN in many age-related 

neurodegenerative diseases such as AD. 
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In AD, regions overlapping with the DMN, are the first to be affected in early stages, such 

as mild cognitive impairment (Binnewijzend et al., 2012; Chhatwal et al., 2013; Greicius, 

Srivastava, Reiss, & Menon, 2004; Seeley, Crawford, Zhou, Miller, & Greicius, 2009) or in 

healthy elderly with elevated amyloid-beta (Aβ) burden (Bai et al., 2008; Buckner et al., 

2005; Hedden et al., 2009; Koch et al., 2015; Rombouts, Barkhof, Goekoop, Stam, & 

Scheltens, 2005; Sorg et al., 2007). 

1.1.4. Clinical relevance of rs-fMRI 

Resting-state fMRI is very attractive for clinical assessments, provided is task-free and 

therefore particularly easy and less stressful to implement in clinical procedures to assess 

brain damage or dysfunction in patients suffering from cognitive impairment or AD. The 

relevance of studying the brain at rest in order to gain insight in a clinical context has been 

shown by a couple of studies (Damoiseaux et al., 2008; Greicius, 2004). However, rsfMRI is 

obtained in absence of overt cognitive performance. Furthermore, the interpretability of 

rsFC changes that occur in age-related diseases remains poorly explained, although 

changes have consistently been observed. In order to better understand the clinical 

relevance of altered rsFC within large-scale networks, the relation with other well-

established measures needs to be elucidated. Two main approaches are commonly used 

in clinical procedures to evaluate the degree of cognitive impairment or brain changes. 

The first approach is based on neuropsychological test batteries, which enable to 

determine the level of impairment in one or more cognitive domains. One of the first 

cognitive domains to be impaired in aging is episodic memory and more severe episodic 

memory problems may indicate an elevated risk of developing AD in the coming years 

(Gauthier et al., 2006; Jorm, Christensen, Korten, Jacomb, & Henderson, 2001). Moreover, 
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the first changes in rsFC are noticed in RSNs that overlap with brain regions involved in 

episodic memory (Celone et al., 2006; Chhatwal et al., 2013; M. Greicius, 2004; Hedden et 

al., 2009; Sorg et al., 2007; Sperling et al., 2010). Recently proposed guidelines for diagnosis 

of AD (Mckhann et al., 2011) recommend the use of biomarkers to aid the clinical 

diagnosis of AD. Among neuroimaging based biomarkers of functional brain damage, 18F-

Fludedeoxyglucose positron emission tomography (FDG-PET) is the best-established 

imaging method. FDG-PET measures glucose metabolism in the brain. In AD posterior 

parietal and temporal brain regions show reduced levels of FDG-PET assessed glucose 

metabolism already at an early stage of the disease. Glucose metabolism is particularly 

reduced in the temporal and posterior parietal region and frontal regions as the disease 

progresses, regions that overlap with the DMN (for review (Herholz, 2003)).  

Even though changes in rsFC occur in regions involved with episodic memory and 

reduced glucose metabolism co-occurs in similar regions and at very early stages of AD, 

the association between rsFC changes and other well-established clinical procedures 

remains poorly understood.  

1.1.5. Overall goal of this thesis 

During the last two decades, extensive fMRI research has generated deeper understanding 

of the brain’s intrinsic network organization and it’s relevance in health, aging and 

neurodegenerative diseases. However, the relation between altered large-scale network 

rsFC and other recognized measures, such as glucose metabolism and episodic memory is 

still lacking. Hence the aim of this thesis is to better understand how large-scale rsFC 

changes are associated with brain activation during an episodic memory task as a 
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cognitive measure. The second aim was to test whether rsfMRI assessed functional 

network connectivity is related to FDG-PET metabolism and shows comparable sensitivity 

to detect AD related functional brain impairment. To this end, two studies were 

conducted. In the first study, we investigated the association between functional networks 

related to successful episodic memory encoding and recall during a face-name 

association task as well as during resting-state in healthy elderly subjects. In the second 

study we assessed the association between FDG-PET metabolism and resting-state 

functional connectivity in subjects with AD dementia and controls. 

1.2. FUNCTIONAL MAGNETIC RESONANCE IMAGING 

Brain activity can be investigated with functional MRI, a non-invasive imagine method 

that measures the BOLD signal (Buxton, 2009; Logothetis & Wandell, 2004; Marcus E 

Raichle & Mintun, 2006). The BOLD signal captures the difference in magnetic properties 

of hemoglobin and deoxyhemoglobin. When hemoglobin releases its oxygen to the tissue, 

the amount of deoxyhemoglobin increases and disrupts the MRI magnetic field 

proportionally to the amount of oxygen that was used by the surrounding tissue. Neural 

activity increase is coupled with a high increase in cerebral blood flow and glucose 

consumption that surpasses the actual oxygen need. This surplus of oxygenated 

hemoglobin leads to a local decrease in the amount of desoxyhemoglobin in the blood 

and the BOLD signal is increased in the area of high neural activity. The changes in BOLD 

signal can be analyzed in various ways, in order determine for example which areas are 

activated by a given task or which areas are functionally connected during resting-state.  
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When fMRI is used to investigate brain activation during a cognitive task, where the BOLD 

signal changes in relation to stimuli (event-related design) or blocks of stimuli (i.e. block 

design) are tested. The BOLD signal time course of each voxel of the brain is then 

correlated with the task design, in order to assess whether there is a significant increase in 

brain activation that is associated with the task compared to baseline or a control 

condition. This approach enables to relate the neural activity of a given region to 

perceptual or cognitive processes that are thought to be triggered by the task. When 

investigating the brain in absence of tasks, different strategies can be used to extract the 

rsFC.  One way to analyze FC, is to extract the BOLD signal time course (TC) from a 

predefined “seed region” and to correlate it with the TC of all the remaining brain voxels. 

Although this technique is simple and its interpretation is quite straight forward, it 

requires determining the seed regions based on an a priori hypothesis and is consequently 

limited to study system at a time. One way to circumvent these constraints is to apply 

techniques, such as independent component analysis (ICA). ICA is a data-driven 

approach to decompose the BOLD signal into a set of spatially independent components 

each of which is associated with a specific time course. ICA is commonly used to identify 

RSNs, but can also be used to extract networks related to a task. One of the still 

unanswered questions is: which brain networks are related to episodic memory and how 

are these related to know RSNs?  
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1.3. RESTING-STATE NETWORKS IN RELATION TO TASK FMRI 

& EPISODIC MEMORY 

1.3.1. Resting-state networks & cognition 

Studying the brain at rest has gained increasing interest in the last decades. Although a 

dozen of large-scale networks can consistently be identified during resting-state, it 

remains unclear how they are related to cognition. A major question is whether intrinsic 

connectivity between brain regions detected during resting-state is predictive of task-

related brain activation. In a meta-analytic study that included 30’000 subjects with task-

derived activation maps for different cognitive domains, Smith and colleagues were able 

to show that the networks extracted from task and from rest showed very close 

correspondence. This suggests that the brain regions that are intrinsically connected are 

more likely to be co-activated during a cognitive task (Smith et al., 2009). Many studies 

have combined task-fMRI and rsfMRI to try to better understand how the rsFC might be 

associated to the activation during a task. Most of the studies have used relatively simple 

tasks, such as motor (Arfanakis et al., 2000; Cole, Bassett, Power, Braver, & Petersen, 2014; 

Jiang, He, Zang, & Weng, 2004; Tavor et al., 2016), visual (Arfanakis et al., 2000; Fair et al., 

2007) or language (Arfanakis et al., 2000; Cole et al., 2014; Elton & Gao, 2013; Fair et al., 

2007; Tavor et al., 2016) to investigate whether rsFC and task evoked activity are 

independent of each other or not. Most studies report a spatial correspondence between 

rsFC networks and patterns of brain activation during visual, auditory or motor tasks. The 

use of more complex cognitive tasks, including working memory (Cole et al., 2014; Elton & 

Gao, 2013; Tavor et al., 2016), emotion (Cole et al., 2014; Elton & Gao, 2013; Tavor et al., 
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2016) or executive functions (Cole et al., 2014; Elton & Gao, 2013) have confirmed that 

these findings also apply to more elaborate cognitive states. A recent study showed that 

rsFC alone can be used to predict the individual variability in various task activation 

patterns (Tavor et al., 2016). Still, remarkably few studies investigated episodic memory 

using rsfMRI and task-related fMRI together. In a recent study, Huijbers and colleagues, 

showed that activation related to episodic memory span various networks (Huijbers et al., 

2013), suggesting that episodic memory relies on the interaction between multiple 

networks. The fact that episodic memory doesn’t rely on a unique, clear-cut network, may 

in part explain why so few studies have investigated the relation between episodic 

memory task and RSNs at the network level. 

Episodic memory relates to the capacity to encode and retrieve personal experiences in 

space and time, but also to build associations between previously unrelated items, such as 

names and faces. Encoding and retrieval processes rely on distinct cortical regions 

(Gabrieli et al., 1997 in (Chetelat et al., 2003; Sestieri et al., 2011). Various task-related 

fMRI studies have shown that these abilities are supported by the medial temporal lobe as 

well as a set of cortical areas, including the medial and lateral parietal and frontal regions, 

areas that overlap with the DMN (Dickerson et al., 2010, Nature Reviews). Encoding relies 

on a coordinated and reciprocal increase of activity in the fronto-parietal network 

together with the anterior part of the hippocampus, coupled with a deactivation of the 

posterior DMN (Daselaar, Prince, & Cabeza, 2004). In contrast, during recall, the 

activation patterns reverse, with an increase in activation of the DMN and the posterior 

portion of the hippocampus is activated (Bradford C Dickerson & Eichenbaum, 2010; 

Kahn, Andrews-hanna, Vincent, Snyder, & Buckner, 2008; Kim, 2015; Libby, Ekstrom, 

Ragland, & Ranganath, 2012; Wagner, Shannon, Kahn, & Buckner, 2005; L. Wang et al., 
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2010; Ward et al., 2014). The activation of the DMN during episodic memory retrieval 

rather than encoding is in line with the general role of the DMN for supporting inwardly-

directed, self-referential processing since recollection demands the retrieval of internal 

stimulus representations. It has also been shown that the magnitude of task-related 

deactivation in the posterior portions of the DMN are correlated with successful episodic 

memory and moreover that less deactivation was correlated with poor performance in 

elderly subjects (Miller et al., 2008). The DMN is thought to deactivate during external 

oriented processes, such as memory encoding and activate during internally oriented 

processes, such as memory retrieval. This change between deactivation and activation in 

the regions that are deactivated during encoding and subsequently activated during recall 

have been referred to as the “Encoding-retrieval flip” (Sander M. Daselaar et al., 2009; W 

Huijbers et al., 2012a; Kim, Daselaar, & Cabeza, 2010; Vannini et al., 2013). RsFC changes 

in these regions have been correlated with memory performance (Goveas et al., 2013). 

However, the relationship between resting-state connectivity and task-related activity still 

remains unclear. 

Surprisingly few studies have investigated the association between episodic memory 

related networks and RSNs. A question that has still not been answered is which intrinsic 

networks are related to successful episodic memory encoding and retrieval? Moreover, 

understanding the link between RSNs and activation during successful episodic memory 

in elderly subjects, would be of importance to better understanding the memory 

worsening that occurs with older age and in age-related diseases such as AD. 
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1.4. IMPLICATION OF LARGE SCALE NETWORKS IN AD 

1.4.1. Alzheimer’s Disease 

Alzheimer’s disease is the most frequent age-associated neurodegenerative disease and 

the most frequent cause of dementia, accounting for 60-80% of all dementias. The 

prevalence of AD in 2017 in the United-States is estimated to be 5.5 million people, this 

includes about 5.3 million over the age of 65 (Hebert, Weuve, Scherr, & Evans, 2013). 

Given that the number and proportion of the population to reach 65 and older is 

exponentially increasing, as the baby boom generation is getting older, the amount of 

people who will develop AD is estimated to almost double from 48 million to 88 million by 

2050 (He, Goodkind, & Kowal, 2016).  

The most important risk factor for late-onset AD is age (Querfurth & LaFerla, 2010). 

Indeed, the proportion of elderly people with AD expands drastically with age: 3 percent of 

people age 65-74, 17 percent of people age 75-84 and 32 percent of people age 85 or older 

(2017 Alzheimer’s disease facts and figures, 2017; Hebert et al., 2013). Generally after 60 

years old, neurodegenerative processes of AD gradually lead to disturbances of cognitive, 

memory and behavioral functions with subsequent loss of function in performing day-to-

day tasks and ultimately to death (Blennow et al., 2006).  

The neurodegenerative processes of AD starts about 20-30 years before the clinical 

manifestations emerge (Petersen, 2004). This phase is commonly known as mild cognitive 

impairment (MCI), which is a syndrome of cognitive decline substantially more 

pronounced than expected for an individual's age and educational level, but not severe 

enough to constitute dementia. Usually these patients have slight cognitive impairment, 
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yet not enough to remarkably interfere with daily life activities. About 15 to 20 percent of 

people over the age of 65 years old have MCI (Roberts & Knopman, 2013). The amnestic 

subtype has a particularly high risk of evolving into AD and is therefore considered as a 

prodromal stage of AD (Gauthier et al., 2006; Petersen, 2004). In over half of the cases, 

MCI progresses to dementia within five years. The first symptoms insidiously appear as an 

amnesic syndrome, typically as difficulties in forming and retaining new episodic 

memories. Memory function typically degrade progressively for several years before 

impairments in other cognitive domains emerge, such as attention, executive functions, 

visuospatial functions or language (Gauthier et al., 2006; McKhann et al., 1984; Petersen, 

2004).  

Neuropathological features of AD  

The two main neuropathological features of AD are the extracellular accumulation of 

amyloid-beta (Aβ) plaques and the intracellular accumulation of protein Tau 

neurofibrillary tangles, which lead to neurodegeneration and in turn to the manifestation 

of clinical symptoms (Querfurth & LaFerla, 2010; Scheltens et al., 2016). The loss of 

neuronal structures and functions is not specific to AD, however the locations where 

atrophy and neuronal activity may occur does allow to distinguish from other 

neurodegenerative diseases. Typically Aβ plaques and Tau tangles tend to accumulate in 

brain regions involved in episodic memory and that overlap with the DMN (Buckner et al., 

2005; Dickerson & Sperling, 2009; Klunk et al., 2004; Myers et al., 2014; Price & Morris, 

1999; Shin, Kepe, Small, Phelps, & Barrio, 2011). Various biomarkers can be used to 

evaluate the level of degeneration. For example structural MRI allows to measure the 

medial temporal lobe atrophy, reduced hippocampal volume is present at early stage of 
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AD already (Karow et al., 2010). Neurodegeneration and reduced brain function is also 

associated with glucose consumption. Studies using FDG-PET have consistently shown 

that glucose metabolism is strongly reduced in temporo-parietal and posterior cingulate 

cortex and moreover that this pattern of hypometabolism predicts the conversion from 

MCI to AD with a high accuracy (de Leon et al., 2001; Mosconi, 2005). An explanation that 

helps understand why glucose metabolism and AD pathology spreads throughout regions 

that overlap with the DMN, is the cascading network failure. This theory postulates that 

the first AD-related impairments occur in posterior DMN and only subsequently in 

anterior subsystems of the DMN. These impairments result in a transient increase in 

connectivity in the posterior regions (consistently found in aging and MCI) that leads to a 

possibly detrimental increased metabolic demands (Jones et al., 2016). 

1.4.2. rsfMRI changes in AD 

Resting-state fMRI offers the advantageous opportunity to non-invasively investigate 

brain changes in AD. The results in MCI and AD patients consistently show a progressive 

rsFC loss in the DMN, as well as in other RSNs including the FPAN, executive network and 

sensory motor-network (Brier et al., 2012; Sheline & Raichle, 2013a). The most frequent 

and well reproduced finding is a reduction of rsFC that starts in the posterior portions of 

the DMN and then progresses to the anterior portion (Greicius et al., 2004; for review: 

Sheline & Raichle, 2013; Sorg, Riedl, Perneczky, Kurz, & Wohlschläger, 2009). RsfMRI is 

very sensitive to very early and subtle changes. rsFC in the DMN is reduced, before 

cognitive impairments occur in asymptomatic subjects with genetic risk of AD, the 

(Chhatwal et al., 2013) or with elevated Aβ (Hedden et al., 2009). One explanation of why 

the first rsFC changes are found in the DMN, may be that these regions are the first to 
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gather accumulations of Aβ, and reductions of glucose metabolism (Benzinger et al., 2013; 

Buckner et al., 2008; Drzezga et al., 2011; Förster et al., 2012; Mutlu et al., 2016). 

1.4.3. FDG-PET changes in AD 

FDG-PET is a well-established measure to assess brain function and level of AD related 

neurodegeneration. FDG-PET measures the local metabolic rate of glucose consumption 

and thereby a reduction of FDG-PET update indicates loss of neurons and synaptic 

activity (Herholz, Carter, & Jones, 2007; Mosconi, 2005). In AD, glucose metabolism is 

particularly reduced in the temporal and posterior parietal region and frontal regions as 

the disease progresses (for review (Herholz, 2003)), areas that overlap with the DMN and 

regions that have high levels of Aβ (Vlassenko et al., 2010). Similarly to rsFC changes in the 

DMN, medial temporal and parietal FDG-PET hypometabolism predicts conversion to 

MCI and AD (de Leon et al., 2001; Mosconi, 2005). FDG-PET is also sensitive enough to 

pick up changes in subjects at risk of AD (Drzezga et al., 2011). Altogether it seems that 

FDG-PET hypometabolism and rsFC pick up similar aspects of AD and the spatial overlap 

of both modalities has been largely reported, however the question of whether and how 

they might be related, remains unanswered. 

Few previous studies have jointly studied both modalities. A study of combined fMRI and 

FDG-PET has shown that in healthy elderly subjects, higher FDG-PET metabolism in 

visual areas was associated with higher FC in the visual and saliency regions, suggesting 

that FDG-PET metabolism reflects at least partially brain activity as measured by FC (Riedl 

et al., 2014). In subjects with early stage AD, i.e. Aß positive MCI patients, reduced whole 

brain FC within the posterior cingulate cortex was related to hypometabolism in the same 
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cortical regions (Drzezga et al., 2011), suggesting a local correspondence between FDG-

PET hypometabolism and FC. Both of these studies focused only on small brain regions 

and not on large-scale intrinsic network. Di & Biswal were the first to show that networks 

similar to RSNs could be identified based on FDG-PET metabolism and that the metabolic 

covariance in these networks was comparable to the rsfMRI FC in these networks (Di, 

Biswal, & Alzheimer’s Disease Neuroimaging Initiative., 2012). Unfortunately, in this study 

FDG-PET and rsfMRI were collected in two different groups of subjects. Savio and 

colleagues used simultaneously acquired FDG-PET and rsfMRI in a single group of 

middles aged healthy subjects and could extract a set of spatially overlapping RSNs from 

FDG-PET images and rsfMRI images. This further supports the idea that RSNs share 

common underlying neural mechanisms, but does not answer the question of whether 

glucose metabolism and rsFC are associated at the network level in the course of AD. 

1.5. OPEN QUESTIONS 

The overall aim of this thesis was to assess the association and spatial correspondence 

between large-scale networks rsFC and well-established clinical measures in order to 

better interpret the significance of RSNs and their disease-related alterations. As a 

measure of brain activity, we chose well-established clinical markers of aging and AD, 

including episodic memory task-related brain activity, as a cognitive measure and glucose 

metabolism, as a more basic measure of brain activity. Previous studies, mostly assumed 

the association between rsFC and other biomarkers based on the topographical overlap 

that was observed (Di et al., 2012; Di, Gohel, Thielcke, Wehrl, & Biswal, 2017; Savio et al., 

2017), which gives a hint that both are related, but does not necessarily imply that they are 

associated. Few studies combined both rsFC and episodic memory or FDG-PET 
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modalities, but to our knowledge, none have until now associated both rsFC and episodic 

memory task activation patterns or FDG-PET patterns in the same subjects at the level of 

networks. To complete his gap and go one step further, we wanted to see if the rsFC in 

major resting-state networks can be used to predict the level episodic memory task 

activation of the level of FDG-PET uptake in the same networks. 

Project 1: In the first project we aimed to understand the association between resting-

state connectivity and task-related fMRI. We first examined in a group of elderly healthy 

subjects the association between functional connectivity of major networks assessed 

during resting-state fMRI with those acquired during a face-name association episodic 

memory-task related fMRI, in the same individuals. ICA was used to identify components 

related to successful episodic memory encoding and recognition during task-fMRI as well 

as during rsfMRI. Besides the assessment of spatial correspondence between components 

related to successful episodic memory, we aimed to test if resting-state network 

connectivity is predictive for the level of task-related activation.  

Project 2: In the second project, we aimed to investigate whether resting-state network 

alterations in AD are associated with already well established markers of pathological 

brain function in AD, to this end we compared resting-state fMRI functional network 

connectivity with patterns of FDG-PET metabolism in 27 amyloid-beta negative healthy 

controls, 44 amyloid positive MCI patients and 25 patients with AD. ICA was used 

separately for both rsfMRI and FDG-PET to estimate large-scale components. First the 

spatial correspondence of networks issued from rsfMRI and FDG-PET was compared. 

Second, the association between the rsFC and mean FDG-PET signal was computed for 
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each majors RSN component separately using linear regression. We hypothesized that 

higher rsFC would be associated with higher mean FDG-PET in majors RSNs. 
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2.1. SUMMARY 

The aim of this project was to understand the association between resting-state 

connectivity and episodic memory task-related fMRI. To this end, we examined, in a 

group of elderly healthy subjects, the association between functional connectivity of major 

networks assessed during resting-state fMRI with those acquired during a face-name 

association episodic memory-task related fMRI. Independent component analysis was 

used to identify components related to successful episodic memory encoding and 

recognition during task as well as during rsfMRI. Besides the assessment of spatial 

correspondence between components related to successful episodic memory during task 

and rsfMRI, we also aimed to test if resting-state network connectivity is predictive for the 

level of task-related activation.  
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ABSTRACT 

Resting-state fMRI (rsfMRI) based assessment of brain activity has revealed the 

existence of intrinsic functional networks, which are inherent to the brain organization 

and function. The resting-state functional connectivity (rsFC) within intrinsic networks 

is thought to be a proxy of brain activity during tasks. Still, the relation between rsFC 

and task-related activity remains incompletely understood. Previous findings in young 

subjects have shown that regions that are functionally connected during rest also 

become activated during specific tasks. However, none of the known intrinsic networks 

seems to be directly related to episodic memory (EM). A rsfMRI predictor of EM would 

be of great interest, particularly in the case of age-related diseases. Hence, the aim of 

this study was first to identify networks related to successful EM and subsequently to 

assess whether rsFC within these networks is predictive for the level of task-related 

brain activity. To this end, fMRI was acquired during both rsfMRI and face-name 

association tasks in 38 healthy elderly subjects. ICA was used to extract networks 

related to successful EM encoding and recognition as well as resting-state networks 

(RSNs). Spatial match between networks related to successful EM and RSNs was 

assessed. Finally, regression was used to predict task-related network activity based on 

rsFC. We found that networks centered in temporal, middle temporal and frontal areas 

showed increased activity during successful encoding and networks situated in 

posterior brain regions were related to successful recognition. However, rsFC was not 

predictive of the task-related activity in these networks. These results suggest that 

particular intrinsic networks become engaged in successful episodic memory, but 

higher intrinsic connectivity at rest may not translate into higher network expression 

during episodic memory. Keywords: Resting-state fMRI, task fMRI, episodic 

memory, resting-state network. 
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INTRODUCTION 

Functional MRI (fMRI) based assessment of brain activity during resting-state has 

gained a rapidly growing interest over the last couple of decades. Resting-state fMRI 

studies demonstrated the functional connectivity between different brain regions, 

suggesting the existence of intrinsic functional networks in the brain. Changes in 

resting-state connectivity in networks have been described in normal aging and most 

major psychiatric and neurodegenerative diseases (for review see Ferreira & Busatto, 

2013). From a clinical point of view, resting-state fMRI is of particular interest since the 

task-free fMRI assessment is easier to obtain in patients and thus may provide an 

attractive way to assess functional brain damage. The rationale is that resting-state 

fMRI assessed network connectivity is a proxy for brain activity during particular 

cognitive processes such as episodic memory (Andrews-Hanna et al., 2010). However, 

since resting-state fMRI is obtained without overt cognitive performance the 

understanding of the relationship between intrinsic network connectivity and task-

related connectivity is an open question (Elton and Gao, 2015; Shirer et al., 2012). 

Meta-analysis of task-based studies in more than 30,000 subjects showed task-related 

co-activation patterns that mapped onto major resting-state networks (Smith et al., 

2009), suggesting that regions intrinsically connected during resting-state become 

simultaneously activated during tasks. Several studies assessing functional connectivity 

during both resting-state and task-related fMRI in young healthy subjects have largely 

confirmed such a hypothesis for a variety of cognitive tasks (Calhoun et al., 2008; Cole 

et al., 2014; Greicius et al., 2003). In fact, resting-state fMRI activity levels in the brain 

were found together with morphological brain differences to be predictive of the spatial 

pattern of brain activation during perception and higher cognitive abilities such as 
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language and working memory (Tavor et al., 2016). These studies suggest a spatial 

match between resting-state networks and those patterns of task related brain 

activation. Most previous combined resting-state and task-related fMRI studies focused 

on tasks based on visual or auditory perception (Arfanakis et al., 2000; Bartels and Zeki, 

2005; Cole et al., 2014; Elton and Gao, 2015; Fair et al., 2007; Tavor et al., 2016), motor 

function (Arfanakis et al., 2000; Cole et al., 2014; Ganger et al., 2015; Jiang et al., 2004; 

Morgan and Price, 2004; Tavor et al., 2016), attention (Calhoun et al., 2008; Hellyer et 

al., 2014; Tomasi et al., 2014), language (Arfanakis et al., 2000; Cole et al., 2014; Elton 

and Gao, 2015; Fair et al., 2007; Hampson et al., 2010) or working memory function 

(Cole et al., 2014; Elton and Gao, 2015; Fransson, 2006; Tavor et al., 2016). Strikingly 

there is a dearth of studies testing the match between episodic memory related 

networks and resting-state networks. Huijbers and colleagues (2013) assessed in which 

resting-state networks activation peaks obtained during an episodic memory task fall, 

but did not attempt to test which resting-state networks showed task-related 

connectivity. A possible explanation for the lack of studies is the fact that none of the 

canonical set of large-scale resting-state networks corresponds to known patterns of 

episodic memory processes (Smith et al., 2009). From a clinical point of view, the 

establishment of a match between resting-state and episodic memory related network 

connectivity is of great importance to assess network failure underlying  memory 

impairment in aging and neurodegenerative disease including Alzheimer’s disease 

(Meskaldji et al., 2016; Zhang et al., 2016). In order to address this research gap, we 

assessed fMRI during both resting-state fMRI and an episodic memory task including 

face-name association learning in cognitive eldlerly subjects. Specifically, using 

independent-component analysis (ICA) (Calhoun et al., 2001), we assessed the 
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association between functional networks related to successful encoding or recognition 

and resting-state networks. In addition to testing the spatial match between task-

related networks and resting-state networks, we assessed whether resting-state 

component values are predictive of the level of the task-related network expression 

during successful encoding or successful recognition. We hypothesized that especially 

medial temporal components show a match between resting-state and memory-task 

related networks. Secondly, we hypothesized that the level of resting-state networks is 

predictive of the level of task-related network connectivity in medial temporal lobe 

components. 

 

MATERIALS AND METHODS 

Subjects 

For the current study, 38 cognitively healthy Elderly (HC) participants (age > 60) were 

included. All subjects were recruited at the Memory Clinic of the Institute for Stroke 

and Dementia Research (Klinikum der Universität Munich, Germany). In order to be 

classified as HC, the older adults had to perform within 1.5 SD of age and education 

adjusted norms on the neuropsychological tests included in the CERAD-Plus test 

battery. Exclusion criteria were: Presence of depressive symptoms, evidence of other 

acute or past neurological/psychiatric disorders, history of drug or alcohol abuse, 

diabetes mellitus, premorbid IQ < 85 and MRI contraindications such as presence of 

ferromagnetic implants, pacemakers or cochlear implants. The participants’ 

assessment was completed in two visits: on the first day, the subjects underwent a 

neuropsychological and physical examination, followed by a structural MRI (T1 

MPRAGE, FLAIR, DTI) and resting-state functional MRI (rsfMRI). On the second day, 
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the participants performed a face-name association task fMRI and subsequently 

rsfMRI. The study was approved by the ethics committee of the Ludwig Maximilian 

University, Munich. All participants provided written informed consent. The rsfMRI 

scan was acquired before the task fMRI (n = 30) or within 1 – 12 weeks after the task-

fMRI (n = 8). 

 

fMRI Memory task 

The face-name task contained 112 encoding and 112 recognition trials, divided into 14 

blocks of face-name encoding (of 8 trials), each followed by a recognition block (of 8 

trials). A total of 112 different faces were used (½ female, ½ male) from the Glasgow 

Unfamiliar Face Database (http://www.abdnfacelab.com). The criteria of selection for 

faces were direct gaze, European ethnicity, neutral expression and no face jewelry or 

hair accessories to standardize the facial features across different images. 168 different 

names (½ female, ½ male) were selected from the Leipzig Corpora Collection 

(http://corpora.informatik.uni-leipzig.de) matched for character length (5 or 6 letters) and 

frequency of occurrences. During an encoding trial, a photo of face and a first name 

shown below were presented and the participant was instructed to learn the name 

belonging to the particular person shown. During the subsequent recognition block the 

faces previously seen in the encoding block were presented again, but this time 

together with two juxtaposed names, one correct and one distractor. The participant 

had to decide, via left or right button press, which of the two names had been presented 

previously with that face. In each recognition trial, the presented distractor could be 

either a new name (that had never been seen before) (56 trials) or a name that had 

been associated with another face in the previous encoding block (56 trials).  Each 
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stimulus was presented for 5 seconds with a randomized inter-trial-interval (ITI) of 

1500-3000 ms between trials through vision goggles attached to the head coil, which 

could be corrected for individual eyesight differences. Correctly recalled trials were 

labeled as successful recognition and incorrectly recognition trials as unsuccessful 

recognition. The classification of encoding trials as successful or unsuccessful was 

determined based on whether the corresponding face-name pair was correctly 

recalled. The ratio of successfully recalled trials, relative to the total amount of trials 

assess the subject’s performance. The participants trained before the task on a laptop. 

The whole task took about 30 minutes to complete. 

MRI parameters 

A Siemens Verio 3T MRI scanner was used for all the scans. The functional task was 

acquired with a 12 channel head coil and a T2*-weighted echo-planar imaging (EPI) 

pulse sequence with 3mm x 3.4 mm x 3.4 mm slices (inter-slice gap = 1mm; echo time 

(TE) = 30ms, repetition time (TR) = 2000ms; flip angle = 90o; parallel acquisition 

(GRAPPA) with acceleration factor 2; field of view (FOV) = 220 x 220 mm; 64 x 64 data 

acquisition matrix). A high-resolution MPRAGE T1-weighted sequence with 1mm 

slices in the sagittal plain (interval time (TI) = 900 ms; TE = 2.52 ms; TR = 1750 ms; Flip 

angel = 90°; phasing encoding anterior to posterior; FOV = 256 x 256 mm2; matrix = 246 

x 256; single acquisition) was used for the structural image. Field maps were acquired 

to enable the post-hoc correction of susceptibility artifacts (same parameters as the 

EPI, TE = 4.92/7.38 ms, TR = 488 ms and flip angle = 60°). For the resting-state fMRI 

acquired on the subject’s first visit, a 32 channel head coil was used and an 8 minutes 

T2*-weighted echo-planar imaging (EPI) pulse sequence with 3.5mm voxel resolution 
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was acquired. The participants were instructed before the resting-state scan to keep 

their eyes closed and not to fall asleep.  

 

fMRI preprocessing and Analysis 

Preprocessing 

The preprocessing was done using SPM12 (Wellcome Trust Centre for Neuroimaging, 

UCL, London, UK). All images (T1 and EPI (task and rest) and field map images) were 

manually reoriented to the anterior commissure and angled to the posterior 

commissure. The T1-weighted MPRAGE scans were segmented into grey matter (GM), 

white matter (WM) and cerebro-spinal fluid (CSF) maps. The diffeomorphic high 

dimensional transformations were estimated based on the three segments using the 

DARTEL tool implemented in SPM12. The resulting GM group template was co-

registered to the (affine) MNI template in SPM12 and the two transformation matrices 

(high-dimensional and affine) were combined for spatial normalization into the MNI 

space. 

The task and resting-state EPI images were slice-time corrected, realigned and 

unwrapped applying the field map to account for scanner inhomogeneity variations. 

None of the subjects’ motion parameters were larger than 3 mm translation or 2 

degrees rotation. Subsequently, for each participant, the images were co-registered to 

the individual’s T1 image and normalized to MNI space by applying the transformation 

parameters estimated through DARTEL. An 8 mm Full width half maximum (FWHM) 

smoothing kernel was applied and the smoothed images were resampled to 1.5 mm 

voxel resolution. For resting-state images only, a linear trend was removed and a band 
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pass filter was applied to remove frequencies between 0.01 and 0.08 Hz. WM and CSF 

signal were regressed out of the time series voxel by voxel.  

General Linear Model 

A fixed-effects general linear model was used to test increased activation during correct 

vs incorrect trials of encoding or recognition. We created the regressors with time 

onsets for each stimulus presentation and convolved the time series with a canonical 

hemodynamic function, including six motions parameters, temporal and dispersion 

derivatives. Six regressors were included in the model (successful encoding, 

unsuccessful encoding, successful recognition, unsuccessful recognition, encoding 

instructions and recognition instructions). The regression models were computed at 

subject level for subsequent group analyses (see Statistics below). 

Independent Component Analysis 

We applied group independent component analysis (ICA) to decompose the fMRI data 

into a set of components, where spatial independence between components is defined 

based on maximizing the independence of the voxel-based BOLD time series between 

sets of voxels. The GIFT toolbox (GroupICAT v4.0a, 

http://mialab.mrn.org/software/gift/) was used to perform such a group spatial ICA 

using the Infomax algorithm (Bell and Sejnowski, 1995), separately for task fMRI and 

resting-state fMRI. For the task fMRI, we used the minimum description length 

algorithm (MDL) to estimate the ideal number of spatially independent components 

(IC) (Li et al., 2007), which resulted in 24 ICs. Prior to the estimation the image time 

courses were intensity normalized to a mean of 100. The ICA was repeated 20 times 

using ICASSO (Himberg et al., 2004), to verify that the component estimates were 

stable. The subject-specific spatial maps and associated time courses were generated 



Lee Simon-Vermot et al. 

 
31 

via back-reconstruction using the GICA3 method (Himberg et al., 2004). For rsfMRI, we 

applied the ICA with a fixed number of ICs (n=24). This number was chosen in order to 

have a comparable number of ICs for both tasks and rsfMR. The data was first 

preprocessed across subjects so that the image time courses are scaled to the same 

global mean, this was done by extracting the mean per time point from each volume.  

For the ICA on task fMRI, the association between a components time course and the 

task-design matrix was assessed via temporal sorting. To this end, regressors including 

the temporal onset and duration of each stimulus were constructed for each of the four 

trial types: “successful_encoding”, “unsuccessful_encoding”, “successful_recognition” 

and “unsuccessful_recognition”. This resulted for each participant into 4 beta-

coefficients for each component. In order to test which component’s time course was 

significantly associated with correct encoding or correct recognition, we applied a one-

sample t-test to the beta-weights across subjects. For those components that showed a 

significant association of the BOLD signal with stimulus presentation during either 

correct encoding or correct recognition we subsequently tested via two-sample t-test if 

the association was higher for successful vs unsuccessful condition. In order to spatially 

match the thus determined task-related components of either successful encoding or 

recognition against the rsfMRI components, we conducted spatial regression analyses 

between each pair of any of those task-related and any resting-state IC maps, i.e. 

Pearson product-moment correlations across z-score transformed voxel values of any 

given pair of IC maps. In addition, to test whether any matching components 

corresponded to previously established resting-state networks, we computed spatial 

regression between those ICs and template sets of 10 and 70 ICA components that were 

previously established based on resting-state fMRI scans (Smith et al., 2009). The 
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spatial overlap was further quantified with the Dice similarity coefficient. Specifically, 

both the Smith maps and task ICA components were thresholded at 3 and were 

binarized, using the threshold z > 1 and the Dice coefficient of the overlap between the 

binarized resting-state and task-associated IC maps were computed. The Dice 

coefficient were computed as the ratio of the number of voxels within overlapping 

regions of a given pair of binarized ICs and the total number of voxels of the two ICs.  

and is interpreted as following: <0.2 poor, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 good 

and >0.8 excellent correspondence. Bonferroni correction was applied to correct for 

multiple testing. 

Statistical Analysis 

For the memory task-related fMRI brain activation, the contrasts “successful_encoding 

> unsuccessful_encoding” and “successful_recognition > unsuccessful_recognition” 

were modeled for each individual, while correcting for age and gender. At the group 

level, the assessment of increased activation for successful encoding and successful 

recognition was computed using a full factorial model in which these contrasts were 

specified: “successful_encoding > unsuccessful_encoding” and “successful_recognition 

> unsuccessful_recognition”. The significance threshold was set at p=0.001 at the voxel 

level and FWE-corrected at p=0.05 at the cluster level. 

To assess whether higher network activation was present for successful encoding and 

successful recognition we computed paired t-tests on the beta-values comparing 

“successful_encoding > unsuccessful_encoding” and “successful_recognition > 

unsuccessful_recognition”. Before computing the paired t-test, all the data was 

checked for outliers and removed if the standard deviation was larger than 3. The 

normal distribution of the data was tested with the Shapiro test. The Shapiro test was 
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significant for recognition_correct for network 8 (posterior parietal network), networks 

9 (frontal) and 21 (auditory) for incorrect recognition. For these networks, a Wilcoxon 

signed rank test was used. 

Next we aim to examine - beyond the spatial correspondence between group-level 

resting-state and task-related ICs - the predictive value of the expression of resting-

state IC for predicting the degree of task-related activity of the spatially corresponding 

IC. To this end, we conducted a linear regression analyses according to: Yi ≈ Xi + Agei + 

Genderi + Ɛ. Where Yi is the predicted subject’s beta-value of given task-related IC and 

Xi is a subject’s beta value of the spatially matching resting-state IC. The beta-

coefficient Y to be predicted was derived in the previous regression analysis regression 

an IC time course onto the task-design matrix of either successful encoding or recall 

trials. The beta-coefficient X of the corresponding resting state IC was computed by 

regressing the subject-specific resting-state IC time-course onto the group-level IC time 

course, i.e. the beta-coefficient X indicates to what extent a group IC was expressed in a 

given subject. We corrected for type-1 error due to multiple comparison by applying 

Bonferroni correction. 

RESULTS 

Demographics details are displayed in table 1. 

Brain activation during successful memory 

Voxel-based GLM analysis of face-name task fMRI showed significant activation for 

successful encoding > unsuccessful encoding in fronto-temporal and parietal region of 

the left hemisphere (voxel-level threshold α=0.001 and FWE corrected cluster level at 

α=0.05, see Figure 1, left panel and table 2 for cluster statistics and peak locations). For 
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successful recognition > unsuccessful recognition we found bilateral clusters of 

activation mainly in the medio-frontal, posterior-cingulate, occipital and inferior 

temporal as well as in the hippocampus (voxel-level threshold α=0.001 and FWE 

corrected cluster level at α=0.05, see Figure 1, right panel and table 3 for cluster 

statistics and peak locations). 

ICA-based Network activity during successful encoding and recognition 

Paired t-tests were computed in order to find the networks that show higher task-

related activity during successful encoding compared to unsuccessful encoding. The 

same comparison was done between for successful vs unsuccessful recognition. For 

encoding, time courses of four ICs showed higher task-related variation during correct 

vs uncorrect trials a) medial orbito-frontal network (t(37)=2.0, p=0.026), b) lateral 

temporal-frontal network (t(37)2.74, p=0.0047) c) occipital network (t(37)=7.91, 

p<0.0001) and d) hippocampal network (t(37)=3.85, p<0.001) (Figure 2, left panel). For 

recognition, three ICs showed higher task-related BOLD signal variation during correct 

vs incorrect trials for: a) posterior parietal network (t(37)=1.84, p=0.037), b) occipital 

network (t(36)=1.98, p=0.025) and c) posterior cingulate-occipital network (V(36) = 561, 

p = 0.0006, Figure 3).  

Spatial correspondence between task-related and resting-state networks 

For each of the four task-related components associated with successful encoding, 

spatial regression analysis showed a unique match to a particular rsfMRI component, 

including a medial-orbito-frontal component (r=0.68, p <0.0001, Figure 2A), lateral 

fronto-temporal component (r=0.39, p <0.0001 , Figure 2B), visual component (r=0.61, 

p <0.0001, Figure 2C) and the hippocampal component (r=0.74, p <0.0001, Figure 2D). 
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For each of the 3 task-related components associated with successful recognition, 

spatial regression analysis showed a unique match to rsfMRI components for the 

posterior parietal network (r=0.64, p <0.00001, Figure 3A), the posterior-cingulate-

occipital network (r=0.57, p <0.0001, Figure 2B) and the occipital network (r=0.45, p 

<0.0001, Figure 2C). All presented p-values are Bonferroni corrected for multiple 

testing.  

To ensure that the spatial correlation found between task-associated networks and rest 

is not solely present within our sample, we computed the spatial correlation between 

the seven task activated network and the intrinsic resting-state networks reported 

previously in an independent sample (Smith et al., 2009). Spatial regression of these 

components (based on task for group rsfMRI) with a priori derived rsfMRI components 

based on a 10 component ICA rsfMRI analysis (Smith et al., 2009) yielded no significant 

spatial overlap (p > 0.05). When applying the spatial regression based on the 70 

component ICA analysis (Smith et al., 2009), we found significant spatial overlap for all 

seven task-fMRI components associated with either successful encoding or successful 

recognition (p<0.0001, details are listed in Table 4 and Figure 4).  

Prediction of network activity during successful encoding and recognition based on rsfMRI 
network expression 

As a last step, we aimed to see whether a subject’s network activity during successful 

performance on the episodic memory task could be predicted at subject’s level of 

expression of the spatially corresponding resting-state network. No association was 

found (p>0.05). 

 

 



Lee Simon-Vermot et al. 

 
36 

DISCUSSION 

The major findings of the current study were that task-related activity of 1) networks 

within the medial temporal lobe and temporal and medial frontal cortex were 

associated with successful memory encoding and 2) networks primarily within the 

posterior parietal and occipital brain regions were associated with successful memory 

recognition. Each of these networks showed a spatial match to resting-state 

components. However, higher resting-state connectivity did not predict higher task-

related network activity for these networks. Together these results suggest that 

particular intrinsic networks become engaged successful episodic memory, but higher 

intrinsic connectivity at rest may not translate into higher network expression during 

episodic memory. 

Our first findings showed that medial temporal and frontal networks were engaged 

during successful encoding but posterior parietal and occipital networks were engaged 

during successful recognition. These results are largely consistent with those of a recent 

meta-analysis of brain activation during episodic-memory task, demonstrating 

increased activation of the hippocampus, lateral prefrontal cortex, and lateral temporal 

brain areas during encoding, hippocampal and posterior parietal activation during 

recognition memory (Kim, 2015). Our findings are also consistent with previous 

findings of successful encoding-related hippocampus activity during face-name 

association learning in young subjects (Sperling et al., 2003; Zeineh et al., 2003) and 

cognitively healthy older subjects (Pariente et al., 2005). In contrast, our task-related 

activity in the posterior parietal brain regions during successful recognition but not 

encoding is consistent with the previous proposed encoding/retrieval flip hypothesis of 

stronger engagement of the posterior parietal brain regions during retrieval compared 
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to encoding (Daselaar et al., 2009). Activity in the occipital brain areas were associated 

with both successful encoding and recognition owing to the visual presentation of the 

stimuli on both conditions. Together, the current findings of the ICA based analysis of 

task-related brain activity recapitulates largely previous fMRI activation studies on 

episodic memory. 

For our second finding, we identified for each task-related network a unique match of a 

resting-state network. Importantly, in the current study those networks obtained during 

both task and rest corresponded to resting-state network components previously 

reported in an independent study using high dimensional ICA (i.e. N = 70 estimated 

ICs). In contrast, no significant overlap was found with large-scale networks, although a 

partial overlap with the DMN was evident for the medial temporal network during 

encoding and the posterior cingulate-occipital network during recognition. These 

findings suggest that smaller functional clusters rather than the entire large-scale 

networks are recruited during successful episodic memory. Our findings of such a 

spatially circumscribed successful memory related functional connectivity, also 

explains why the matching of large-scale resting state networks to episodic memory 

related patterns of brain activity among the canonical set of resting-state networks has 

been difficult so far (Smith et al., 2009). Large-scale networks such as the DMN and 

fronto-parietal controls networks are not singular networks but heterogeneous in 

nature (Cole and Schneider, 2007; Power et al., 2011), containing several distinct 

subcomponents where each supports different cognitive functions (Cole and 

Schneider, 2007; Cole et al., 2013). Subcomponents may be selectively activated during 

memory (Shirer et al., 2012) and couple across different large-scale networks in a task-

dependent manner (Bassett et al., 2011). For the DMN regions, we found that task-
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related network activity during successful retrieval overlapped with DMN selectively in 

posterior parietal regions. This is consistent with previous findings of the posterior 

parietal brain regions to be selective for successful retrieval of more “objective” facts 

(for meta-analysis see Spaniol et al., 2009), such as those tapped by the current 

recognition task of face-name pairs. In contrast, previous findings on autobiographical 

memory, i.e. memory of more personal events, have been found in both anterior and 

posterior regions of the DMN (Elton and Gao, 2015; Spreng and Grady, 2010). The 

selective involvement of the anterior medial frontal DMN may be specifically required 

for supporting self-referential processes during autobiographic memory (Andrews-

Hanna et al., 2010; Sestieri et al., 2011). Together the current findings suggest the 

involvement of intrinsically wired networks that depart from large-scale canonical 

networks and match smaller clusters that are selectively recruited during successful 

episodic memory encoding and retrieval. 

For our third result, we did not find the level of connectivity during resting-state to be 

predictive of the level of task-related connectivity. Note that this approach is 

fundamentally different from identifying intrinsic networks that may be recruited 

during a task (i.e. finding a spatial match), where in this case the strength of resting-

state connectivity is probed as a predictor of task-related network “activation”. Results 

from a seminal previous study suggested that the task-induced activation is the additive 

combination of ongoing resting-state network connectivity and task-specific 

recruitment of neural activity (Fox et al., 2006). In fact, during a finger-tapping task that 

led to unilateral motor cortex activation, functional connectivity of the non-activated 

contra-lateral motor cortex explained over 85% of the task-related activity in the 

activated side of the motor cortex (Fox et al., 2006). The current results are not in 
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conflict with previous results; rather they suggest that a higher resting-state 

connectivity per se does not translate into higher task-related synchronization of brain 

activity in that network. A recent study reported resting-state network connectivity to 

be predictive of task-related activity (Tavor et al., 2016). However, it is important to note 

that only the spatial extent and distribution of task-related brain activity was assessed 

and not the level of task-related connectivity or activation was predicted. Thus, that 

predictive power derives mostly from the spatial match between resting-state and task-

related networks.  

For the interpretation of the current results, some caveats must be taken into 

consideration. It is possible that task-related network activation couldn’t be predicted 

based on resting-state network connectivity, due to the measures we used as proxies of 

network “expression”. For resting-state we used values (time course) that express the 

strength of connectivity within a given network for given subject, in relation to group 

mean. For task-related activation we used the beta-values for each subject, as used in 

(Vannini et al., 2013) Concerned by the fact that, both might measure different 

processes and therefor fail to yield to significant results, we computed the regressions 

again; this time using network connectivity, in the same way as calculated for rest. The 

findings were comparable. Signaling that the first findings were most probably not due 

to the measures we used. There are many ways to analyze functional connectivity 

during resting-state and during task, all of which have their strengths, weaknesses, and 

vary in their interpretation. Although different methods merit to be investigated, this is 

not the focus of the current study. Another possibility could be that the successful 

episodic memory task-specific activation that is thought to be an additive effect on the 

ongoing resting-state activity is a too small difference in HC. This difference could be 
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changed in psychiatric diseases, such as Alzheimer’s disease. The association between 

episodic memory task activated networks and their equivalents in rest should be 

investigated in the future.  

In conclusion, we could show that specific networks are specifically activated during 

successful episodic memory and are also present during resting-state. The level of 

connectivity within these networks during resting-state was however not predictive of 

the level of task-related activation. 
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TABLES 
 

Table 1 

N Age Education MMSEa 
(z-score) 

CDR 

38 72.5 (5.78) 13.61 (3.04) 0.39 (0.99) 0.01 (0.08) 

 

a Z-scores are corrected for standard population ages and education based on CERAD population norm 

values. 
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Table 2: Local maxima of significant clusters associated with successful encoding 

  
MNI Coordinates 

Region Label Extent t-value x y z 

R Calcarine Gyrus 2589 6.844 13.5 -91.5 15.0 
L Lingual Gyrus 2589 5.581 -12.0 -90.0 -6.0 
L Inferior Occipital Gyrus 2589 4.434 -37.5 -81.0 -4.5 
L IFG (p. Triangularis) 1867 6.200 -45.0 15.0 24.0 
L Middle Frontal Gyrus 1867 3.989 -40.5 7.5 46.5 
R Caudate Nucleus 302 5.287 21.0 1.5 21.0 
L Middle Occipital Gyrus 797 5.103 -27.0 -70.5 33.0 
L Precentral Gyrus 820 5.097 -39.0 -12.0 42.0 
L Postcentral Gyrus 820 4.967 -55.5 -10.5 28.5 
L Middle Frontal Gyrus 390 4.922 -24.0 18.0 43.5 
L Superior Frontal Gyrus 710 4.840 -13.5 34.5 49.5 
L Superior Frontal Gyrus 710 4.495 -18.0 57.0 24.0 
L Middle Temporal Gyrus 318 4.726 -58.5 -36.0 12.0 
L Precentral Gyrus 315 4.676 -34.5 -6.0 49.5 
R Linual Gyrus 266 4.570 10.5 -66.0 1.5 
R Fusiform Gyrus 297 4.496 33.0 -72.0 -13.5 
L IFG (p. Triangularis) 328 4.254 -34.5 39.0 9.0 
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Table 3: Local maxima of significant clusters associated with successful recognition 

  
MNI Coordinates 

Region Label Extent t-value x y z 

L Mid Orbital Gyrus 2464 6.568 -9.0 48.0 -1.5 
R Mid Orbital Gyrus 2464 5.095 13.5 49.5 -1.5 
R Middle Temporal Gyrus 657 5.703 43.5 -72.0 3.0 
R Cerebelum (VI) 1680 5.386 21.0 -82.5 -13.5 
L Cerebelum (Crus 1) 1680 5.150 -7.5 -85.5 -15.0 
R Fusiform Gyrus 1680 3.687 31.5 -64.5 -13.5 
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Table 4: Spatial correlation and overlap between networks activated during successful 
episodic memory encoding or recognition and 70 resting-state maps from Smith et al. 
2009 
 

 

Task networks Dice Coefficient 
Dice coefficient. 

rating 
Spatial Correlation 

coefficient 
p-value 

             SUCCESSFUL ENCODING 

Med-orbito-frontal 0.29588 fair 0.299 <0.001 

Lateral fronto-temporal 0.39746 fair 0.365 <0.001 

Visual 0.68855 moderate 0.472 <0.001 

Hippocampal 1.0913 excellent 0.538 <0.001 

               SUCCESSFUL RECOGNITION 

Posterior parietal 0.52081 moderate 0.398 <0.001 

Posterior cingulate-
occipital 

0.82164 excellent 0.541 <0.001 

Occipital 0.44051 moderate 0.348 <0.001 
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Figure 1: fMRI brain activation during successful memory task  

L LR R

fMRI memory task activation

succesfull encoding > unsuccessful encoding succesfull recall > unsuccessful recall

3.34 6.84 3.34 6.57
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Figure 2: Network activation during successful encoding memory task and 

corresponding networks during rest. 
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Figure 3: Network activation during successful recognition memory task and corresponding 

networks during rest. 
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Figure 4: Spatial correspondence between 7 successful memory task networks and 70 

RSN (Smith et al. 2009).  
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3.1 SUMMARY 

The goal of the second project was to assess whether resting-state network alterations 

in AD are associated with already well-established markers of pathological brain 

function in AD. To this end, we compared resting-state fMRI functional network 

connectivity with patterns of FDG-PET metabolism in 27 amyloid-beta negative healthy 

controls, 44 amyloid positive MCI patients and 25 patients with AD. ICA was used 

separately for both rsfMRI and FDG-PET to estimate large-scale components. First the 

spatial correspondence of networks issued from rsfMRI and FDG-PET was compared. 

Second, the association between the rsFC and mean FDG-PET signal was computed for 

each major RSN component separately using linear regression. We hypothesized that 

higher rsFC would be associated with higher mean FDG-PET in major RSNs. 
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ABSTRACT  

In Alzheimer’s disease (AD), FDG-PET hypometabolism is a key pathological brain 

alteration that occurs particularly in temporo-parietal brain areas. This typical FDG-

PET hypometabolism pattern shows a large spatial overlap with particular resting-state 

networks such as the default-mode network (DMN). The intrinsic functional 

connectivity assessable via resting-state functional MRI is a defining feature of such 

networks, where functional connectivity of major networks spanning higher cortical 

brain areas, such as the DMN and fronto-parietal attention network, have been found 

altered in AD. However, the association between metabolic and functional connectivity 

network changes in AD remains poorly understood. In this study, we investigated the 

association between FDG-PET metabolism and functional connectivity in the major 

resting-state networks in elderly amyloid-beta negative healthy controls (HC, n=27), 

amyloid-beta positive subjects with mild cognitive impairment (MCI-Aβ+, n=44) and 

AD dementia (AD, n=25). We found that FDG-PET metabolism in the DMN and 

occipital brain areas was reduced in MCI-Aβ+, and globally in AD. For resting state 

fMRI networks extracted via independent component analysis, functional connectivity 

was increased in the anterior DMN and fronto-parietal control networks in MCI-Aβ+ 

and AD compared to HC. Lower FDG-PET was associated with lower functional 

connectivity exclusively in the DMN and fronto-parietal attention networks in the 

whole sample and in particular in MCI-Aβ+. These results suggest that lower FDG-PET 

metabolism is associated with lower functional connectivity in major cortical resting-

state networks in subjects with high Aβ load.  
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INTRODUCTION 

Reduced glucose metabolism as detected by FDG-PET is a major pathological brain 

change in Alzheimer’s disease (AD). Particularly, temporo-parietal brain areas exhibit 

reduced FDG-PET, which becomes detectable years before the onset of dementia 

symptoms [1–3]. FDG-PET is typically obtained during rest and thought to act as a 

marker of steady-state glucose metabolism of spontaneous brain activity, hence FDG-

PET hypometabolism may reflect impaired neural signaling in AD. Results from 

resting-state functional MRI (rsfMRI) studies suggest that spontaneous neural activity 

is not random but shows synchronicity between brain regions comprising functional 

networks [4,5]. The rsfMRI assessed functional connectivity (FC), i.e. correlation of 

rsfMRI BOLD signal changes between different brain regions, is a measure of network 

integrity. In AD, FC particularly in the posterior parietal default-mode network (DMN) 

is reduced [6], while more frontal networks such as the anterior DMN (aDMN) showed 

an increase in FC [7–9]. The regional distribution of FDG-PET hypometabolism largely 

overlaps with the DMN in subjects at genetic risk of AD [10] and predementia stages of 

AD [1], suggesting network-specific alterations of FDG-PET early in the course of AD 

[11,12]. However, the association between FDG-PET metabolism and rsfMRI FC in 

resting-state networks in AD is poorly understood. A common approach to assess the 

relation between FDG-PET and rsfMRI is to examine the spatial overlap between the 

covariance patterns in FDG-PET with those of rsfMRI networks [13]. Studies using such 

an approach have revealed significant spatial overlap in connectivity patterns between 

FDG-PET and rsfMRI in young and older healthy adults, although only inconsistently 

for the DMN [14,15]. A limitation of this approach is that the FDG-PET covariance 

patterns were estimated across subjects since only one average FDG-PET image per 
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subjects was available, preventing to assess directly FC between brain regions. An 

alternative is to test the association between rsfMRI connectivity and FDG-PET uptake 

across subjects [16]. So far, no study has tested at subject-level the association between 

FC within each of the major resting-state networks (RSN) and FDG-PET uptake in AD. 

In order to address this research gap, we investigated the association between FDG-

PET uptake and rsfMRI connectivity in major RSNs, where both modalities were 

assessed in amyloid negative healthy controls (HC), prodromal AD (i.e. amyloid-beta 

(Aβ) positive subjects with mild cognitive impairment (MCI-Aβ+)) and AD dementia. 

 

MATERIALS AND METHODS 

Participants 

For the current study, data were obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI, phases GO and II) database (adni.loni.usc.edu). ADNI is a 

longitudinal study started in 2003 as a public–private partnership, which was set up 

with the goal to investigate neuroimaging (MRI, PET) features, neuropsychological 

characteristics as well as other biomarkers in order to predict and monitor AD-related 

neurodegenerative and cognitive changes [17]. For up-to-date information, see 

www.adni-info.org. Ethical approval was obtained by the ADNI investigators. 

 
Apart from the inclusion criteria defined by ADNI, the following inclusion criteria were 

implemented: availability of rsfMRI, T1-weighted MRI, FDG-PET and AV45-PET. In 

addition, subjects had to fulfill diagnostic criteria including classification as normal 

controls with normal low amyloid deposition measured by global AV45 PET (HC Aβ-), 

mild cognitive impairment with abnormally high AV45 PET (MCI Aβ+) or AD dementia. 

In order to determine each subjects Aβ-status, we applied pre-established cut-off 
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values [18] to the global AV45-PET standardized uptake value ratio (SUVR), with 

abnormal amyloid uptake (i.e. Aβ+) defined as an AV45-PET SUVR>=1.11. To be 

defined as HC, subjects had to show normal cognitive performance in standardized 

neuropsychological testing. Amnestic MCI was diagnosed following the Mayo clinic 

criteria [19], and AD dementia was diagnosed following the National Institute of 

Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and 

Related Disorders Association (NINCDS-ADRDA) criteria. A total of N = 145 subjects 

met these criteria. Twenty seven subjects had to be excluded due to failed MRI 

processing, either due to an incomplete MRI scan (n = 1), signal loss or gross atrophy 

including large ventricles that did not allow for sufficient spatial normalization (n = 18), 

motion larger than 2mm (in any of the 3 translation directions) or 2° (in any of the 3 

rotation axes) visible in the functional MRI scans (n = 6). The final sample size (N=96) 

encompassed 27 HC, 44 MCI-Aβ+ and 25 AD. 

 

MRI acquisition 

Resting state-fMRI images were acquired using a single shot T2*-weighted echo planar 

imaging with a TR of 3000 ms, a flip angle of 80° and 3.3 mm isotropic voxel size, 

collecting a total of 140 volumes. Prior to the resting-state scan, all subjects were 

instructed to keep their eyes open. All MRI scans were collected on Philips 3T MRI 

scanners, using an 8-channel head matrix coil. High-resolution T1-weighted images 

were collected using a 3D MP-RAGE sequence, with whole-brain coverage at a voxel 

resolution of 1 × 1 × 1.2 mm. 
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AV45-PET  

AV45- PET scans were assessed during four time frames 300 seconds each measured 50 

minutes after intravenous tracer injection (http://adni.loni.usc.edu/wp-

content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf). Global AV45-PET 

uptake was assessed as a summary measure of the SUVR in a set of predefined cortical 

ROIs that have been described previously [20]. Details on the preprocessing of the 

AV45-PET images are available online (http://adni.loni.usc.edu/data-samples/pet/). 

 

FDG-PET acquisition 

FDG-PET scans were acquired on PET scanners from different manufacturers 

(Siemens, GE and Philips). Dynamic 3D scans were recorded in six 300 seconds time 

frames measured 30 minutes after an intravenous tracer injection. Each frame was 

registered to the first time frame of the raw image. Each subject’s co-registered, 

averaged images were subsequently reoriented to a standard grid parallel to the 

anterior commissure – posterior commissure (AC-PC) line. An averaged image was 

generated from these AC-PC co-registered frames and then intensity normalized 

facilitating comparability of PET images from different scanner types. Details on the 

FDG-PET acquisition protocol are available online at http://adni.loni.usc.edu/wp-

content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.pdf. 

 

FDG-PET preprocessing 

All preprocessing steps were performed with SPM 8 (Wellcome Trust Centre for 

Neuroimaging, University College London). Initially, all FDG-PET images were 

registered to the T1-weighed anatomic images. To spatially normalize the FDG-PET 

images, each subjects’ T1-weighted MRI scans were segmented in gray matter (GM), 
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white matter (WM), and cerebrospinal fluid (CSF) maps [21]. Spatial normalization 

parameters were estimated based on a high-dimensional non-linear registration 

algorithm included in SPM’s DARTEL toolbox to warp all GM maps to an average group 

specific GM template [22], which was subsequently registered to a T1 template in MNI 

standard space to estimate affine transformation parameters. Next, the normalization 

matrices including the non-linear and the affine normalization parameters were 

combined and applied to the segmented GM images as well as the co-registered FDG-

PET images. During normalization, all FDG-PET images were smoothed using an 8mm 

full width half at half maximum (FWHM) Gaussian kernel. To address inter-subject 

differences in the global FDG-PET signal, each spatially normalized FDG-PET images 

was individually adjusted to the mean FDG-PET signal of the pons and cerebellar 

vermis. 

 

MRI preprocessing 

In an initial step, we discarded the first 10 volumes of the rsfMRI images due to known 

signal instabilities at the beginning of an fMRI session. All remaining 130 volumes were 

realigned to the first volume to correct for motion, and co-registered to the T1-weighted 

anatomical images. Equivalent to the normalization of FDG-PET data, the non-linear 

and affine normalization parameters were combined and applied to the registered 

fMRI volumes for spatial normalization to MNI standard space. The images were 

smoothed using a 6 mm FWHM Gaussian kernel to increase signal-to-noise ratio and 

reduce inter subject differences. We further applied detrending to remove low 

frequency signal intensity drift and subjected the scans to a band-pass filter retaining a 

frequency band of 0.01-0.08 Hz. Lastly, we regressed out the 6 motion parameters, 
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which were derived during the motion correction procedure, and the BOLD signal 

averaged separately across the WM and CSF voxels. Global signal removal is an 

inherent part of the independent component analysis (ICA, see below) and was not 

conducted at this stage. 

Spatially normalized GM maps, smoothed with an 8mm FWHM Gaussian kernel (in 

line with the approach described in [23] were created for each subject in order to 

extract the GM volume. Modulation was applied during the normalization step, in 

order to maintain local GM concentrations after warping the images to the template. 

 

Independent component analysis of rsfMRI  

To extract functional networks from resting-state fMRI data, we conducted a group ICA 

analysis (Calhoun et al., 2001) on the whole sample, using the algorithms of the GIFT 

toolbox (http://mialab.mrn.org/software/gift/). The ICA was run on preprocessed 

rsfMRI data with the number of components to extract set a priori to 20, in line with 

various previous studies that this number of ICs yields a robust identification of core 

resting-state networks [24–26]. The ICA analysis was repeated 20 times using ICASSO to 

assess the stability of the resulting estimation and stability indices were above 0.95 for 

all components. Based on the group-level network estimation, subject-specific network 

maps were back-reconstructed using the GICA3 algorithm a subsequently transformed 

to z-scores.  

 

Extraction of mean FC and FDG-PET per network 

Based on previously established rsfMRI network templates [25,27], major intrinsic 

networks (n = 10) were readily identifiable by visual inspection of the rsfMRI ICA maps 
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in the current study. The rsfMRI ICA maps were thresholded at z > 1. As a measure of 

mean FC per network, the voxel-wise IC values were averaged within the thresholded, 

binarized and GM masked IC maps for each of the 10 resting-state networks, consistent 

with previous studies to derive average FC index based on ICA [28–30]. The mean 

signal-to-noise ratio (SNR) was extracted from each network, in order to control for the 

fMRI BOLD signal variability caused by field homogeneities. SNR is defined as signal 

intensity average across the entire time series, divided by the standard deviation of the 

signal within the time series [27]. In order to compute the average FDG-PET values 

within the resting-state networks, the binarized (z > 1) and GM-masked rsfMRI IC maps 

were superimposed onto the spatially normalized FDG-PET image in MNI space. The 

FDG-PET were averaged across the voxels covered by an IC mask was computed for 

reach resting-state network. Similarly, thresholded rsfMRI IC maps were superimposed 

onto the spatially normalized and modulated GM maps in order to extract the mean 

GM volume per resting-state network.  

 

Source based morphometry of FDG-PET 

In order to test the covariance pattern of FDG-PET across subjects, we used source-

based morphometry (SBM), an ICA based algorithm implemented in the GIFT Toolbox 

that allows extracting covariance patterns (i.e. functional networks) based on single 

time point measurements per subjects. Prior to running SBM, we estimated the optimal 

number of components encompassed in the FDG-PET data by applying the minimum 

description length algorithm, resulting in a total of 22 components. Subsequently, SBM 

was run on normalized FDG-PET images using the ICA infomax algorithm with the 

number of components set to 22. This analysis was repeated 20 times using ICASSO to 
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assess the stability of network estimation. The stability indices were above 0.9 for all 

components. Note that such IC maps of FDG-PET represent the covariance of FDG-

PET images across subjects and, in contrast to the ICA based on rsfMRI, no subject-

specific IC maps can be reconstructed. In order to assess whether the IC maps of FDG-

PET correspond to rsfMRI IC maps, we assessed the spatial similarity of the IC from the 

FDG-PET SBM analysis and rsfMRI derived networks. To this end, we computed the 

pair-wise spatial correlation between the 10 rsfMRI networks and each of the 22 FDG-

PET SBM components. The spatial overlap was further quantified with the Dice 

similarity coefficient. Specifically, the IC components from the rsfMRI were binarized, 

using the threshold z > 1 and GM and for FDG-PET the SBM components were 

binarized, using the threshold z > 1, and the Dice coefficient was computed for the 

overlap between the binarized component maps. The Dice coefficient measures the 

overlap between two images divided by their mean volume and is interpreted as 

following: <0.2 poor, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 good and >0.8 excellent 

correspondence. 

 

Statistical analysis 

Sample demographics and cognitive scores were compared between diagnostic groups 

using ANCOVAs for continuous measures and Chi-squared tests for categorical 

measures.  

First we assessed group differences in the mean FDG-PET and mean FC for each 

network. For each resting-state network (n = 10), we ran an ANCOVA, with mean FC (or 

mean FDG-PET) as the dependent variable, and group (i.e. HC vs. MCI-Ab+ vs. AD), 
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age, gender, years of education and SNR as predictors. In case of significant main effect 

of group, Tukey’s HSD post-hoc tests were applied for pair-wise group comparisons.  

Next, we tested for each resting-state network the association between FC and FDG-

PET within the whole sample. We applied linear regression analysis for each resting-

state network, with mean FDG-PET as dependent variable and mean FC as the 

independent variable, while correcting for network’s mean SNR, network’s mean GM 

volume, diagnosis, age, gender and education. All presented p-values are controlled for 

multiple testing using the Bonferroni method (for 10 tests). In addition, for exploratory 

reasons, we ran these regression analyses separately for each diagnostic group.  

 

RESULTS 

Sample demographics are shown in table 1. 

Group differences in FDG-PET and rsfMRI connectivity in resting-state networks 

Based on ICA applied to rsfMRI, we identified 10 major resting state networks that 

matched the canonical networks (supplementary figure 1). The other 10 components 

included mostly noise (supplementary figure 2). For each resting-state network, we 

used an ANOVA to compare the subject-specific average FDG-PET and rsfMRI FC 

values between the diagnostic groups. For FDG-PET, the MCI Aβ+ group showed 

reduced values selectively in the DMN and auditory network (auditory 2) compared to 

HC (table 2 & figure 1). AD subjects showed within each network decreased FDG-PET 

compared to MCI Aβ+ and HC, suggesting a global decrease in FDG-PET (table 2 & 

figure 1). For rsfMRI FC, we observed an increase in FC values within the aDMN from 

HC to AD, where the group difference became significant for AD > HC (table 3 & figure 

1). For the right fronto-parietal attention network (right FPAN), rsfMRI FC was 
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increased in MCI-Aβ+ compared to HC and AD. No decreases in rsfMRI FC values in 

MCI-Aβ+ or AD compared to HC were observed for any of the networks. 

Association between functional network FC values and FDG-PET 

Across all groups, there was a positive association between mean FDG-PET and mean 

rsfMRI FC within the DMN and bilateral FPAN components. Specifically, the linear 

regressions revealed a positive association for the aDMN (t(88) = 3.33, Slope Estimate 

(Beta)  /Standard Error (B/SE) = 0.94/0.28, p = 0.012), the DMN (t(88) = 3.28, B/SE = 

1.14/0.35, p = 0.015), the left FPAN (t(88) = 3.34, B/SE = 1.07/0.32, p = 0.012) and the 

right FPAN (t(88) = 3.21, B/SE = 0.89/0.28, p= 0.018, figure 2). When the association 

between FDG-PET and rsfMRI FC was tested separately for each diagnostic group, 

associations were found only for MCI-Aβ+ subjects: there was a positive association 

between mean FDG-PET and mean rsfMRI FC for the DMN (t(38) = 3.02, B/SE= 

1.8/0.59, p= 0.044), the left FPAN (t(38) = 3.03, B/SE = 1.79/0.59, p= 0.043), and right 

FPAN (t(38) = 3.17, B/SE = 1.25/0.39, p= 0.03). Although HC and AD groups showed 

associations in the same direction as in the MCI-Aβ+, the results were not significant. 

 

Network detection in FDG-PET across subjects 

In order to identify covariance patterns of FDG-PET across subjects, we ran an ICA 

across subjects, called SBM. In order to identify which FDG-PET components matched 

the rsfMRI derived resting state networks, we computed the spatial correlation and 

Dice coefficient of the overlap between the FDG-PET components and the 10 rsfMRI 

components. The Dice coefficient revealed a good overlap (Dice coefficient = 0.6-0.8) 

for the DMN, left FPAN and the first auditory network (Figure 3, table 4). A moderate 

overlap (Dice coefficient = 0.4-0.6) was found for the aDMN and the medial occipital 
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visual network. The spatial overlap was fair (Dice coefficient = 0.2-0.4) for the motor 

network, DAN and second auditory network. The right FPAN and lateral visual network 

(VISUAL 2) only had poor (Dice coefficient < 0.2) spatial correspondence in FDG-PET 

derived networks. Similarly, the spatial correlation between rsfMRI FC and FDG-PET 

was highest for those with good and moderate DICE coefficient, including the DMN, 

aDMN, left FPAN and an auditory network (table 4). The components that didn’t 

correspond to resting-state networks included mostly noise (Supplementary Figure 3). 

 

DISCUSSION 

The major finding of the current study was that higher functional connectivity within 

the resting-state networks, including the DMN and FPAN was associated with higher 

FDG-PET metabolism across elderly HC, MCI-Aβ+ and AD dementia subjects. These 

results suggest higher rsfMRI connectivity is associated with higher FDG-PET 

metabolism in major cortical networks that are affected in AD.  

Our first finding of the association between higher FDG-PET and higher rsfMRI FC in 

the DMN and FPAN across HC, MCI-Aβ+ and AD is in general agreement with results 

from previous findings in HC subjects, assessing rsfMRI connectivity, and in addition 

FDG-PET uptake [16] or arterial spinal labelling assessed cerebral blood flow, a proxy of 

glucose metabolism [31,32]. Similar to the current results, the associations between the 

modalities were highest in the DMN and FPAN [33–35]. Together these results suggest a 

network-specific correlation between modalities during rest. The question arises why 

the rsfMRI vs FDG-PET correlations were the strongest in the DMN and FPAN. One 

possibility is that the resting-state network specificity of findings was disease 

dependent. In the current study the cross-modal association between rsfMRI and FDG-
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PET was significant only in the MCI-Aß+ when analyzed group-wise, however, the 

smaller group sample size may have led to insignificant results in HC an AD. Given that 

the same resting-state network specificity of the FDG-PET vs rsfMRI association was 

observed also in previous studies in young healthy adults [33,35,36], it is thus unlikely 

that the regional heterogeneity in the FDG-PET vs. rsfMRI correlation was due to 

network-specific AD pathology. An alternative explanation is that the DMN, which 

shows high anti-correlated connectivity to the FPAN [4], is most active during rest, and 

thus the predominant fluctuations of activity in the DMN and FPAN during resting-

state may have contributed to the network-specific covariation of rsfMRI and FDG-PET. 

An activity-dependent association between FDG-PET and rsfMRI connectivity during 

resting-state was shown in an eyes-closed vs. eyes-open comparison, where the 

association between both modalities was stronger in the activated visual and salience 

networks during the eyes-open “task” [37]. From this perspective, the resting-state can 

be considered a condition where certain networks such as the DMN vs. FPAN show 

higher FC and thus higher glucose metabolism.  

For our second finding, FDG-PET and rsfMRI were differentially changed in prodromal 

AD, with FDG-PET being decreased, primarily in the DMN, but rsfMRI being increased 

in the right FPAN. The results are consistent with previous findings on lower FDG-PET 

metabolism [38] but increased FC in more frontal brain areas in AD [8,39–42]. One 

possible explanation for the differences in the AD-related change in FDG-PET 

compared to rsfMRI connectivity could be that fact that FDG-PET signal may be not 

only be driven by neural activity. It has previously been shown that glucose 

consumption by astrocytes significantly affects the FDG-PET signal [43]. Results from 

pharmacological stimulation of astrocytes in vivo have shown increased FDG-PET 
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signal [44], suggesting that FDG-PET levels are partially driven by astroglia activity 

independent from neural signaling. Amyloid-pathology may lead to impaired astrocyte 

activation and thus reduced FDG-PET signal. In fact, brain areas with highest aerobic 

glycolysis are preferentially distributed in regions of the DMN [45], which match the 

distribution of amyloid pathology [46]. The astrocyte induced FDG-PET signal changes 

may not impart on rsfMRI assessed neural activity, thus leading to a mismatch in the 

FDG-PET and rsfMRI signal changes in AD [47]. Other possible explanations are that 

rsfMRI exhibits a lower signal to noise ratio than FDG-PET, and thus the reduced brain 

activity may have been detected by FDG-PET in networks such as the DMN, but not by 

rsfMRI connectivity. 

For our third finding, a subset of rsfMRI networks showed a spatial match to the 

patterns of FDG-PET connectivity, suggesting presence of metabolic networks that 

correspond to rsfMRI detected functional networks [13,14]. Consistent with previous 

reports [15], FDG-PET covariance patterns corresponded to DMN and FPANs along 

with primary sensory networks. These results suggest that FDG-PET itself may show 

functional connectivity that matched that of neural activity as assessed by fMRI. 

However, since the assessment of FDG-PET covariant networks is derived from static 

FDG-PET acquisition, as done in these previous studies, it does not allow for the 

assessment of individual connectivity. Future studies with dynamic FDG-PET are 

needed in order to fully establish to what degree metabolic networks correspond to 

rsfMRI assessed networks. Altered FDG-PET connectivity assessed across subjects has 

been reported in groups of AD patients [48–50], thus FDG-PET connectivity assessed 

based on dynamic FDG-PET at the subject-level may prove a clinically useful marker of 

functional network damage in patients with AD.  
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For the interpretation of the current study, some caveats need to be taken into account. 

First of all, it is possible that the network-specific association between FDG-PET and 

rsfMRI connectivity might be due to regional variations in SNR in rsfMRI. For example, 

SNR is typically higher in frontal regions [51]. In order to guard against the influence of 

signal precision for the assessment of the FDG-PET vs. rsfMRI association, we have 

computed voxel-wise the SNR and controlled the regression analysis for SNR. Still, we 

cannot exclude that the absence of a cross-modal association may be partially due to 

such method dependent discrepancies in measurement precision rather than in true 

differences of underlying biological processes.  

Secondly, we used rsfMRI IC values as a measure of network connectivity as previously 

established [28,52] and applied in several previous studies as measures of resting state 

connectivity [53–55]. It needs to be acknowledged that resting-state networks can be 

characterized by a plethora of other measures such as seed-based functional 

connectivity [56], regional homogeneity [57], global connectivity [35], amplitude of low 

frequency fluctuations (ALFF) [58]. These measures have each a different 

interpretation and merit further investigation. Still, the systematic investigation of 

commonalities and differences in the result patterns is beyond the scope of the current 

study. Differences are likely to be small for the assessment between rsfMRI and FDG-

PET associations [35], and thus a large scale study would be needed to detect 

meaningful and reliable differences with sufficient statistical validity.  

Lastly, although the association between FC and FDG-PET was significant, the effect 

size was moderate, with only about maximally 25% of the variance of one modality 

explained by the other. Thus, a large extent of variability between both modalities 

remains unexplained. The relationship between neurovascular coupling and energy 
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metabolism is complex. Combinations of FDG-PET with additional measures including 

MR spectroscopy of glutamate [16], high-resolution EEG or molecular PET to test 

astrocyte activity [59] may be a promising to understand the association between 

metabolic and neural activity. Advanced methods of simultaneous acquisition of 

(dynamic) FDG-PET and fMRI provide powerful tools [15] to unravel the different 

sources that contribute to functional network connectivity.  
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TABLES:  

Table 1: Demographic data and neuropsychological characteristics 
 
  HC Aβ- 

(n=27) 
MCI-Aβ+ 

(n=44) 
AD- Aβ+ 

(n=25) 
ANOVA 

  Mean(SD/Range) Mean(SD/Range) Mean(SD/Range) F(df) p-value 

Gender (f/m) 18/9 18/26 13/12 χ2=4.45(
2) 

0.1077 

Age (years) 74.6 (6.33/24.5) 72.4 (6.52/28.2) 72.23 (7.18/30.6) 1.131 0.327 
Years of 
education 

16.11(2.17/8) 16.14 (2.57/8) 15.68 (2.34/8) 0.32 0.727 

MMSE score 28.88(1.31/5) 27.41(1.69/6) 23.00(2.53/8) 70.34 <0.001 

 

f = female, m = male, HC: healthy controls; MCI: mild cognitive impairment; AD: Alzheimer’s dementia; 
MMSE: Mini-Mental-State –Examination. For the MMSE, one subject (HC) had no MMSE score and was 
hence excluded from this ANOVA.



Simon-Vermot et al. 

 80  

Table 2: Group differences in FDG-PET for each resting-state network 

 Mean FDG-PET (SD) ANCOVA (DX) Tukey HSD  

Network HC MCI-Aβ+ AD F(dfM, dfR) p-value 
p (HC vs 
MCI-Aβ+ 

p (MCI-Aβ+ vs 
AD) 

p (HC vs 
AD) 

AUDITORY 1 1.23 (0.08) 1.19 (0.1) 1.13 (0.08) (2, 90)= 10.47 <0.0001 n.s 0.0036 0.0005 

AUDITORY 2 1.25 (0.08) 1.19 (0.09) 1.08 (0.12) (2, 90)= 22.94 <0.0001 0.013 <0.0001 <0.0001 

DAN 1.3 (0.1) 1.26 (0.09) 1.13 (0.13)  (2, 90)= 20.33 <0.0001 n.s <0.0001 <0.0001 

aDMN 1.29 (0.09) 1.26 (0.11) 1.16 (0.11) (2, 90)= 12.38 <0.0001 n.s 0.0003 <0.0001 

DMN 1.4 (0.09) 1.33 (0.12) 1.18 (0.12) (2, 90)= 28.42 <0.0001 0.016 <0.0001 <0.0001 

LFPAN 1.3 (0.09) 1.25 (0.11) 1.14 (0.13) (2, 90)= 15.12 <0.0001 n.s 0.0002 <0.0001 

MOTOR 1.24 (0.1) 1.23 (0.09) 1.17 (0.09) (2, 90)= 4.40 0.013 n.s 0.045 0.015 

RFPAN 1.35 (0.1) 1.29 (0.12) 1.17 (0.13) (2, 90)= 15.70 <0.0001 n.s 0.0002 <0.0001 

VISUAL 1 1.41(0.11) 1.38 (0.09) 1.29 (0.11) (2, 90)= 10.16 0.0001 n.s 0.0018 0.0001 

VISUAL 2 1.34 (0.) 1.3 (0.08) 1.22 (0.13) (2, 90)= 10.10 0.0001 n.s 0.0018 0.0001 

 
ANCOVA on network mean FDG-PET signal between the diagnostic groups (p-values are Bonferroni 
corrected for 10 tests). 
DX: Diagnostic group; aDMN: anterior default mode network; AUDITORY 1: first auditory network, 
AUDITORY 2: second auditory network; DAN: dorsal attention network; DMN: default mode network; 
LFPAN: left fronto-parietal attention network; Motor: motor network; RFPAN: right fronto-parietal 
attention network; VISUAL 1: medial occipital visual network; VISUAL 2: lateral occipital visual network.  
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Table 3 Group differences in rsfMRI FC for each resting-state network 

 Mean FDG-PET (SD) ANCOVA (DX) Tukey HSD  

Network HC MCI-Aβ+ AD F(dfM, dfR) p-value 
p (HC vs 
MCI-Aβ+ 

p (MCI-Aβ+ vs 
AD) 

p (HC 
vs AD) 

AUDITORY 1 1.05 (0.35) 1.1 (0.3) 1.05 (0.33) (2, 90)= 0.33 0.71 n.s n.s n.s 

AUDITORY 2 0.8 (0.68) 0.81 (0.27) 0.86 (0.27) (2, 90)= 0.31 0.74 n.s n.s n.s 

DAN 1.04 (0.3) 1.07 (0.33) 1.07 (0.33) (2, 90)= 0.07 0.93 n.s n.s n.s 

aDMN 0.82 (0.28) 0.96 (0.26) 1.01 (0.3) (2, 90)= 3.51 0.035 n.s n.s 0.038 

DMN 1.25 (1.24) 1.22 (1.23) 1.2 (1.15) (2, 90)= 0.1 0.91 n.s n.s n.s 

LFPAN 0.97 (0.33) 1.06 (0.38) 1.0 (0.29) (2, 90)= 0.63 0.54 n.s n.s n.s 

MOTOR 1.05 (0.39) 1.16 (0.31) 1.1 (0.35) (2, 90)= 0.91 0.41 n.s n.s n.s 

RFPAN 0.91 (0.31) 1.21 (0.30) 0.98 (0.36) (2, 90)= 8.42 0.0003 0.0006 0.013 n.s 

VISUAL 1 1.14 (0.44)  1.22 (0.46) 1.34 (0.55) (2, 90)= 1.31 0.28 n.s n.s n.s 

VISUAL 2 0.94 (0.35) 1.03 (0.38) 0.98 (0.32) (2, 90)= 0.73 0.49 n.s n.s n.s 

 
ANCOVA on network mean FC between the diagnostic groups (p-values are Bonferroni corrected for 10 
tests). 
DX: Diagnostic group; aDMN: anterior default mode network; AUDITORY 1: first auditory network, 
AUDITORY 2: second auditory network; DAN: dorsal attention network; DMN: default mode network; 
LFPAN: left fronto-parietal attention network; Motor: motor network; RFPAN: right fronto-parietal 
attention network; VISUAL 1: medial occipital visual network; VISUAL 2: lateral occipital visual network. 
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Table 4: Spatial correlation and overlap between independent components from rsfMRI and FDG-PET 

 
IC: independent component; DMN: default mode network; AUDITORY 1: first auditory network, aDMN: 
anterior default mode network; LFPAN: left fronto-parietal attention network; Motor: motor network; 
VISUAL 1: medial occipital visual network; AUDITORY 2: second auditory network; DAN: dorsal attention 
network; RFPAN: right fronto-parietal attention network; VISUAL 2: lateral occipital visual network.

ICA components Dice Coefficient 
Dice coefficient. 

rating 
Spatial Correlation 

coefficient 
p-value 

AUDITORY 1 0.66598 Good 0.54964 <0.001 

LFPAN 0.64737 Good 0.47187 <0.001 

DMN 0.62042 Good 0.57363 <0.001 

VISUAL 1 0.5918 Moderate 0.31522 <0.001 

aDMN 0.58993 Moderate 0.52805 <0.001 

MOTOR 0.35554 Fair 0.41055 <0.001 

DAN 0.34917 Fair 0.2863 <0.001 

AUDITORY 2 0.31822 Fair 0.31152 <0.001 

RFPAN 0.19931 Poor 0.15476 <0.001 

VISUAL 2 0.18863 Poor 0.09189 <0.001 
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Figure 2:  Scatterplots of the association between the mean level of glucose metabolism and the degree of 
resting-state functional connectivity (FC) in the whole pooled sample (dark blue line) for intrinsic 
networks derived from the ICA analysis. 
aDMN: anterior default mode network; DMN: default mode network; LFPAN: left fronto-parietal attention 
network; RFPAN: right fronto-parietal attention network. 
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Figure 3:  Superimposition of axial slices for each of the 10 ICA derived resting-state network maps and 
the SBM derived maps of FDG-PET. Each component map was thresholded at z > 1and masked by a binary 
GM template.   
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04. 

DISCUSSION 

1.1. GENERAL DISCUSSION  

Resting-state fMRI is a widely used method to investigate the brain’s organization and 

function in health, aging as well as in various psychiatric diseases, such as AD. Changes in 

rsFC within large-scale networks have been extensively reported in aging and in AD (for 

review Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Sheline & Raichle, 2013). 

RsFC is an attractive alternative to task-fMRI in order to assess brain activity, mostly 

because it is easier to obtain in patients who are cognitive impaired and have difficulties in 

following task instructions. However, the relationship between rsfMRI-assessed functional 

network connectivity and task-related functional network connectivity is not well 

understood and remains a largely under-investigated assumption of the rationale of 

rsfMRI studies on human brain function. In order to elucidate the relationship between 

rsfMRI and neural processes that underlie episodic memory, we examined the 

correspondence of functional networks related to successful episodic memory with those 

obtained during resting-state in healthy subjects. In a second step, we aimed to test 
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whether rsfMRI can be used to detect disease-related functional network abnormalities 

that may underlie cognitive impairment, such as those occurring in AD. To this end, a 

second study was conducted, where the aim was to test whether rsfMRI networks that are 

altered in AD are associated to FDG-PET hypometabolism, which is considered to be one 

of the most reliable biomarkers of functional impairment in AD. In the following sections, 

the main findings of both projects are detailed and discussed. 

4.1.1 Functional networks engaged during successful memory 

and encoding 

The major aim of this study was to investigate the association between rsfMRI assessed 

functional networks and the functional networks active during successful episodic 

memory encoding and recall during a face-name association task. The first finding was 

that successful encoding was associated with task-related functional networks that 

covered the medial temporal lobe and medial frontal areas. While the posterior parietal 

and occipital regions were activated during successful recognition of face-name pairs. 

These findings are consistent with previously reported functional networks underlying 

successful encoding and retrieval of episodic memory (Huijbers et al., 2012). A meta-

analysis showed that the hippocampus and regions that overlap with the fronto-parietal 

attention network are associated with episodic memory encoding, whereas regions 

associated with recognition span rather in posterior regions that associated with the DMN 

(Kim, 2015). The second finding was the unique spatial match between the task-related 

functional networks and the rsfMRI components obtained within the same subjects. In 

addition, those functional networks that showed intra-subject correspondence also 

showed a spatial match to previously reported resting-state subnetworks from the meta-
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analysis of 3,000 subjects, using a 70 component ICA (Smith et al., 2009). These smaller 

networks that well matched the task-related networks were subcomponents of large-scale 

RSNs including the DMN and FPAN. Together these results suggest that subcomponents 

of RSNs are recruited during episodic memory encoding and recognition. The fact that 

episodic memory processes seem to be supported by smaller fractions of multiple large-

scale RSNs may also explain why it has been previously difficult to identify a single 

network among the set of canonical large-scale networks that supports episodic memory. 

That is, large-scale networks underlying visual, motor, saliency detection or executive 

functions have been described, but no specific large-scale network has been assigned to 

episodic memory (Damoiseaux et al., 2006). Rather our results are consistent with 

previous attempts to map cognitive functions to subcomponents of larger RSNs (Shirer, 

Ryali, Rykhlevskaia, Menon, & Greicius, 2012), including, in particular, subcomponents of 

the DMN during memory retrieval (Andrews-Hanna et al., 2010). The activation of the 

posterior medial parietal cortex during retrieval but not encoding has been previously 

found to be predictive of successful memory performance (Daselaar et al., 2009; Huijbers 

et al., 2012; Huijbers et al., 2013; Vannini et al., 2013). Wang and colleagues showed that 

increased region-of-interest based rsFC between the posterior cingulate and the 

hippocampus predicted subsequent recall of a face-name association task in older adults 

(Wang et al., 2010). Together, these results suggest that the hippocampus network and the 

FPAN underlie successful encoding and subcomponents of the DMN support successful 

memory retrieval.  

Finally, we wanted to go one step further to better understand the relevance of resting-

state networks in the context of episodic memory. We assessed whether the level of task-

related activation within the network subcomponents could be predicted based on the 
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level of functional connectivity during resting-state. We found that the level of resting-

state connectivity wasn’t predictive of the level of task-related network expression. This 

approach is different to the methods generally used to assess how resting-state networks 

relate to task, which relies on the spatial match. In this case, the goal was to predict task-

related activation based on the connectivity strength during rest. In 2006, Fox and 

colleagues (Fox, Snyder, Zacks, & Raichle, 2006) suggested that task-related activation is 

the result of the additive combination between the resting-state connectivity and task-

specific neural activation. Our results do not contradict this postulate, but rather indicate 

that stronger rsFC does not translate into stronger task-related connectivity. 

Taken together, the results of the study indicate that rsfMRI can’t be used as a substitute 

for episodic memory task-related connectivity. However, the current findings suggest that 

a subset of regions that are part of intrinsic networks are selectively recruited during 

successful episodic memory encoding and retrieval. These results support the cognitive 

relevance of resting-state networks. Furthermore, they indicate that rsFC within these 

subnetworks could indeed be useful to investigate the changes in episodic memory that 

occur in the course of AD. 

Relevance of resting-state networks to predict cognitive performance and outlook to 

application in disease 

Multiple rsfMRI studies in AD demonstrated that rsfMRI assessed functional connectivity, 

particularly in the DMN, is reduced in MCI and AD dementia. Furthermore, that rsfMRI is 

a potential alternative to FDG-PET to detect disease specific functional brain changes that 

may underlie cognitive impairment. FDG-PET hypometabolism is considered as a core 

feasible biomarker of functional impairment in AD, but, is an invasive costly imaging 
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technique to detect altered brain function in MCI and AD. Typically, regions of FDG-PET 

hypometabolism in AD overlap with DMN regions. Still, the relationship between rsfMRI 

differences in DMN and FDG-PET hypometabolism remains poorly understood.  

4.1.2  Association of FDG-PET metabolism & resting-state 

connectivity in Alzheimer’s disease 

The main finding was that higher functional connectivity was associated with higher FDG-

PET metabolism specifically in the DMN and FPAN in the pooled group of healthy elderly 

subjects, MCI with high Aβ and patients with AD. When analyzed for each diagnostic 

group separately, a positive association between FDG-PET glucose metabolism and 

rsfMRI functional connectivity in the DMN and in the left and right FPAN was observed in 

MCI. The associations between rsfMRI connectivity and FDG-PET were also positive in 

the HC and AD groups but did not reach statistical significance probably due to the lower 

sample size when compared to MCI. These results suggest that both modalities are 

positively associated within major cortical functional networks. These results are 

consistent with findings from previous studies reporting associations between resting-

state connectivity and FDG-PET in the DMN (Passow et al., 2015) or cerebral blood flow, 

measured by arterial spin-labeling (Li, Zhu, Childress, Detre, & Wang, 2012; Liang, Zou, 

He, & Yang, 2013) in healthy subjects. The question arises why were the strongest 

associations observed specifically in the DMN and FPAN? One likely possibility is that the 

DMN shows the highest connectivity during resting state. The activity is typically 

anticorrelated with the FPAN during rest. Thus, in the current resting-state study, inter-

individual differences in network activity may be most sensitively measured by rsfMRI and 

FDG-PET in the DMN and FPAN, which may have facilitated the detection of the 
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intermodal correlations within these networks. Another possibility could be that the both 

networks are made of highly connected hubs, that also contain a higher proportion of long 

distance connections (Liang et al., 2013). This could require higher energy needs and 

therefore trigger the strongest association between both in the DMN and FPAN. 

For the group differences in rsFC and FDG-PET, we found that FDG-PET but not rsfMRI 

was decreased in the DMN of MCI and AD subjects compared to HC. In contrast, rsFC but 

not FDG-PET was increased in the right FPAN in the MCI and AD groups compared to HC. 

The change of direction in each modality is consistent with previous findings. Resting-

state FC increase in frontal areas has also been reported in people with a genetic risk 

factor for AD (Sala-Llonch et al., 2013) and in early AD (Damoiseaux, Prater, Miller, & 

Greicius, 2012; Jones et al., 2011; Wang et al., 2015; Zhang et al., 2016). For FDG-PET, 

hypometabolism in the posterior parietal lobe in MCI and AD has been reported in 

multiple studies (Teipel et al., 2015).  

Thus it is likely that although FDG-PET and rsfMRI are overall positively associated, 

disease related processes might alter glucose consumption and neural connectivity in 

partially different ways. Previous studies have shown that astrocyte glucose consumption 

significantly increases the FDG-PET signal (Pellerin & Magistretti, 1994; Zimmer et al., 

2017). Amyloid-pathology, which is strongest in the regions overlapping with the DMN 

(Vlassenko et al., 2010) could impact on the astrocytes activity and thereby lead to a 

reduction of the FDG-PET signal in the DMN. The astrocyte activity possibly impairs the 

FDG-PET signal, while not affecting rsfMRI derived neural activity and thereby lead to the 

different patterns found in FDG-PET and rsfMRI in AD.  
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It remains surprising that FDG-PET and rsfMRI were still positively associated despite the 

inconsistent direction of change in MCI and AD. One explanation is that the group 

differences within large-scale networks may not be homogeneous within the whole 

network but show local differences that were not accounted for in this case by averaging 

the connectivity of the entire network. Hence, an ICA with a higher number of estimated 

rsfMRI components may have revealed regional subcomponents (e.g. of the DMN) that 

show a similar direction of AD related change as was observed for FDG-PET. Due to the 

relatively small sample size in the current study, we did not conduct ICA with a higher 

number of components, which may be done however in future larger studies. 

4.2 IMPLICATIONS ACROSS PROJECTS 

The main question of this thesis was to investigate whether large-scale network rsFC is a 

valid proxy to assess the network activity that underlies brain function. With both studies 

we could demonstrate that resting-state networks, in particular the DMN and FPAN, are 

engaged in episodic memory processes. However, the level of rsfMRI connectivity was not 

predictive of the level of brain activation during successful memory task performance. 

Although resting-state FC was related to FDG-PET in MCI, disease specific changes in 

posterior parietal brain areas were detectable via FDG-PET but not in rsfMRI. Thus, the 

diagnostic reliability of rsfMRI to specifically detect early changes in AD is still open to 

debate. One of main difficulties of finding a good diagnostic measure is that AD is a very 

complex neurodegenerative disease that starts with insidious changes decades before the 

clinical manifestation episodic memory impairments. This implies the necessity of using 

methods that can pick up very subtle changes, which occur in distributed brain regions, 

i.e. neural networks. Previous studies have tried to establish rsfMRI as a feasible 
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biomarker of AD, but until now the diagnostic level is still not sufficient from a clinical 

point of view for the individual diagnosis. In 2004, Greicius et al. looked at how well the 

individual goodness-of-fit scores matched a DMN template and could correctly categorize 

11 of 13 AD subjects and 10 of 13 HC, which resulted in a sensitivity of 85% and specificity 

of 77% (Greicius et al., 2004). However, the study samples contained two extreme groups, 

namely healthy controls and AD patients and were very small; such a small group size isn’t 

optimal for extracting networks using ICA. A more recent study used the individual DMN 

connectivity of early AD patients and HC and compared them to an average DMN 

connectivity score to separate both groups, which yield to a sensitivity of 77.3% and a 

specificity of 70% (Balthazar, de Campos, Franco, Damasceno, & Cendes, 2014). A major 

concern about this study is that they calculated the reference DMN based on the HC in 

that sample, which could lead to over fitting the data. Taken together, it seems that rsfMRI 

lacks a satisfactory level of sensitivity and specificity (>80%) for the diagnosis of AD at an 

early stage. This may be due to the fact that the DMN as a whole isn’t specific enough and 

perhaps that looking at the subcomponents, which are specifically related to successful 

episodic memory, could be more accurate. However, before making any claim about the 

usability of these episodic memory-related subnetworks, future studies must be 

conducted. 

4.3 OUTLOOK 

Future studies should investigate whether and how the subnetworks related to episodic 

memory are impaired at various stages of AD. These should include combined dynamic 

FDG-PET and fMRI in healthy elderly, MCI and AD subjects in order to assess how these 

subnetworks are changed and impaired in the course of AD. Another possibility could be 
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to use dynamic rsfMRI analysis to gain more insight into how the networks activate vs 

deactivate during encoding and recall and how the coordination of these subnetworks is 

impaired by AD could be more informative, than just looking at one state. 

4.4 LIMITATIONS 

For the interpretation of the current project, some limitations must be taken into 

consideration. First, two different groups of subjects were used in both projects. In the first 

project, we only looked at HC. Having MCI and AD patients might have enabled us to 

generalize the findings in a more straightforward way. For the second project, the data was 

provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI), where multicenter 

variability may reduce the statistical power to detect disease related group difference in 

rsfMRI or FDG-PET.   
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