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Zusammenfassung

Die Prozesse 𝐵 → 𝐾(∗)𝜈 ̄𝜈 bieten sich als ausgezeichneter Test für das Standardmodell an,
da sie Flavour-Changing Neutral Currents beinhalten und daher stark unterdrückt werden.
Das Belle II Experiment am 𝑒+𝑒− Beschleuniger SuperKEKB in Japan wird voraussichtlich
fünfzigmalmehrDaten als das Vorgängerexperiment Belle liefern. Bei dieser Datenmengewird
erwartet, dass diese und andere bisher noch nicht beobachtete Prozesse zum erstenMalmessbar
sind. Die Prozesse 𝐵 → 𝐾(∗)𝜈 ̄𝜈 sind interessant aufgrund ihrer sauberen theoretischen
Vorhersagen und ihrer Verbindung zu den präzisemessbaren𝐵 → 𝐾(∗)ℓ+ℓ− Prozessen, die in
Spannung zu Vorhersagen des Standardmodells stehen. In der erstenHälfte dieser Dissertation
schätze ich die Sensitivität auf𝐵 → 𝐾(∗)𝜈 ̄𝜈 ab.Mit demBelle II Rekonstruktionsalgorithmus
Full Event Interpretation rekonstruiere ich die volle Zerfallskette der 𝑒+𝑒− Zerfallsprodukte.
Anschließend entwickle ich ein Verfahren, um das Verzweigungsverhältnis zu bestimmen und
schätze die Sensitivität als eine Funktion der Menge der erfassten Daten ab.

Zur Vorbereitung auf Messungen von seltenen oder schwer zu messenden Prozessen, wie
beispielsweise 𝐵 → 𝐾(∗)𝜈 ̄𝜈, ist eine Simulation aller physikalischen Prozesse an Belle II min-
destens im Umfang des später aufgezeichneten Datenvolumens erforderlich. Mit der aktuell
verfügbaren Rechenleistung ist dies jedoch effektiv nicht möglich. Ohne eine signifikante
Verbesserung der Simulationsgeschwindigkeit erfordert dies daher die selektive Simulation von
Kollisionsereignissen, die für derartige Messungen relevant sind. In der zweiten Hälfte dieser
Arbeit entwickle ich daher ein Verfahren, um die Wahrscheinlichkeit, dass das simulierte Kolli-
sionsereignis für die Analyse relevant ist, zu berechnen. Diese Vorhersage wird mittels eines
neuronalen Netzes bereits vor den rechenintensiven Phasen des Simulationsverfahrens getrof-
fen. Ich zeige, dass mittels dieser Methode deutliche Einsparungen bei den Simulationszeiten
erreicht werden können. Das Ergebnis ist ein volsltändiges Trainings und Inferenzverfahren,
das sich direkt in das bestehende Belle II Software Analysis Framework einfügt.



Abstract

The 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes provide an excellent probe of the Standard Model as they
involve flavour-changing neutral currents and are therefore greatly suppressed. The Belle II
experiment, hosted at the 𝑒+𝑒− collider SuperKEKB in Japan, is expected to collect fifty times
the data of its predecessor, Belle. There, these and other not yet observed processes are expected
to be measurable for the first time. 𝐵 → 𝐾(∗)𝜈 ̄𝜈 are very interesting due to their clean
theoretical predictions and relation to the well measured 𝐵 → 𝐾(∗)ℓ+ℓ− processes, which
are in tension with Standard Model predictions. In the first half of this thesis, I give sensitivity
estimates for 𝐵 → 𝐾(∗)𝜈 ̄𝜈. Using the Belle II Full Event Interpretation reconstruction
algorithm, I reconstruct the entire decay chain of the 𝑒+𝑒− collision products. I develop the
procedure for extracting the branching fraction and estimate the sensitivity as a function of
amount of data collected.

To prepare for measurements of rare or difficult to measure processes, such as 𝐵 →
𝐾(∗)𝜈 ̄𝜈, a simulation of all physics processes at Belle II of at least the order of the real data
volume is required. Using current resources this is computationally infeasible. Until significant
improvements in the simulation speed aremade, selective simulation of collision events relevant
to these measurements is required. In the second half of this thesis, I develop a method of
predicting how likely the simulated collision event is to be useful to the targeted analysis. The
prediction is made, using a neural network, before the computationally expensive stages. I
show that this method of prediction produces marked savings in simulation times. The result
is a fully developed training and inference procedure that integrates directly into the existing
Belle II software analysis framework.
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Chapter 1

Introduction

This thesis presents two separate yet related studies, performed in preparation for the upcoming
Belle II experiment. The results of the first study act in part as a motivation for the second.
In both I attempt to provide the relevant background for their respective studies, with some
natural overlap between each.

In the first study, I establish the procedure for performing a hadronically tagged analysis of
the flavour-changing neutral-current processes 𝐵 → 𝐾(∗)𝜈 ̄𝜈 at Belle II using Monte Carlo
simulation data. This study, along with the corresponding semileptonic tagged study, has
been performed several times before at previous experiments. None have managed to record
any significant evidence of the processes so far. It is expected that at the upcoming Belle II
experiment a measurement will become possible. I introduce the theoretical motivations
and experimental tools necessary to perform the measurement, then detail the procedure for
extracting and measuring the signal processes with a preliminary projection of sensitivities. As
a result, I develop the signal extraction procedure within the context of the Belle II Analysis
Software Framework (basf2) [1], ready for fast reproduction with the advent of new, larger
simulation data volumes. I conclude, however, that the Monte Carlo simulations currently
available are not sufficient for the full systematic analysis necessary for the analysis of real
Belle II data or projections thereof. Nonetheless, this motivates the development of more
intelligent Monte Carlo simulation methods, which is a technical restriction on the capacity
of physics analysis preparation at Belle II.

The second study in this thesis is a technical work, in which I aim at leveraging the blos-
soming field of machine learning to provide one possible solution to the technical restriction
outlined above. The use ofmachine learning, and specifically neural networks, is still a relatively
new development within the high energy physics community, especially in relation to the
Monte Carlo simulation process. Therefore, in performing this study I have taken inspiration
from outside the physics community and introduce concepts and applications from other
fields that have already found success in machine learning; namely image classification and
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language processing. The goal of this study is to improve the simulation efficiency in a manner
that is applicable to all studies of rare physics processes at Belle II. I develop a solution that
natively integrates into the basf2 simulation process in a manner adaptable to any physics study
being performed.

Throughout this document charge conjugation is implied unless explicitly stated otherwise.
Variables and common abbreviations, are summarised with definitions in the glossary on page
146 for convenience.



Part I

𝐵 → 𝐾(∗)𝜈 ̄𝜈 hadronic tag sensitivity
study



Chapter 2

Introduction

In this half of this thesis I investigate the set of𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes at Belle II in the context
of the new Belle II Analysis Software Framework (basf2). My goal is to prepare a sensitivity
estimate for the measurement of these processes as data from Belle II begins being recorded
in 2019. Specifically, I set up the analysis procedure of the four processes: 𝐵+ → 𝐾+𝜈 ̄𝜈,
𝐵0 → 𝐾0

𝑆𝜈 ̄𝜈, 𝐵+ → 𝐾∗+𝜈 ̄𝜈, and 𝐵0 → 𝐾∗0𝜈 ̄𝜈.
The 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes are a subset of the class known as flavour-changing neutral

currents (FCNCs), which involve the transitions of quarks to a similarly charged quark of
another flavour, e.g. 𝑏 → 𝑑, 𝑐 → 𝑢, etc. The Belle II experiment is especially well equipped
to investigate the FCNC transition 𝑏 → 𝑞𝑑𝜈 ̄𝜈, (𝑞𝑑 = 𝑠, 𝑑), due to the high production
rate of 𝐵 mesons and clean detector environment afforded by the absence of partons in the
initial collision. Figure 2.1 shows the status of searches for 𝐵 → ℎ𝜈 ̄𝜈 processes after the most
recent𝐵 → 𝐾(∗)𝜈 ̄𝜈 search [2], where ℎ represent a meson containing either an 𝑠 or a 𝑑 quark.
Standard model predictions of the 𝐵 → 𝐾(∗)𝜈 ̄𝜈 channels are shown in grey. Currently all of
the 𝐵 → ℎ𝜈 ̄𝜈 searches have only been able to determine upper limits on branching fractions,
with statistics being the limiting factor. With the upcoming Belle II experiment, however, we
can expect to make a measurement of the branching fractions in the next few years, assuming
they are not significantly suppressed from the Standard Model predictions due to new physics.

The 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes are of particular interest due to their close relation to the
𝐵 → 𝐾(∗)ℓ+ℓ− processes. Both processes shareWilson coefficients in the effective theory, and
recent measurements at LHCb of lepton universality via the ratio𝑅(𝐾(∗)) ≡ ℬ(𝐵→𝐾(∗)𝜇+𝜇−)

ℬ(𝐵→𝐾(∗)𝑒+𝑒−)
have shown indications of deviation from StandardModel predictions [3, 4]. Additionally,
𝐵 → 𝐾(∗)𝜈 ̄𝜈 share the same missing energy signature as processes involving exotic final states
due to the invisible final state neutrinos. For example, 𝐵 → 𝐾(∗)𝑋 where 𝑋 is an exotic final
state. This makes them of great interest to new physics candidate searches.
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Figure 2.1: Observed limits for all 𝐵 → ℎ𝜈 ̄𝜈 channels in previous studies (adapted from [2]).
Theoretical predictions are from [5].



Chapter 3

Theoretical framework

The 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes belong to a class known as flavour-changing neutral currents
(FCNCs). The quark transition involved, 𝑏 → 𝑠, changes flavour while preserving its electric
charge (hence neutral). This transition is forbidden at tree-level within the StandardModel
because neutral bosons do not take part in flavour-changing quark transitions. Instead the
transition can only occur in higher order processes, involving multiple quark flavour changes.
The penguin and box diagrams in figure 3.1 show the leading-order contributions to the
𝐵 → 𝐾(∗)𝜈 ̄𝜈 amplitudes in the Standard Model. Only the top quark is shown inside the
loops as it dominates the contributions, though as I show later in this chapter the other up-type
quarks also contribute. The 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes are not yet observed but very interesting
due to their relation to the well-studied 𝐵 → 𝐾(∗)ℓ+ℓ− processes which are in tension with
the StandardModel. In addition, clean theoretical predictions make them excellent probes of
StandardModel parameters.

𝑏 𝑠
𝜈

̄𝜈

𝑡

𝑊 −

𝑍

(a) Penguin diagram.

𝑏 𝑠

𝜈
̄𝜈

𝑡

𝑊 𝑊
𝑙−

(b) Box diagram.

Figure 3.1: Feynman diagrams for dominant contributions to the 𝑏 → 𝑠𝜈 ̄𝜈 transition in the
StandardModel.
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3.1 Constructing the Standard Model

A key goal in high-energy physics is to find the Lagrangian density, ℒ. In the Lagrangian
formalism this is comprised of the kinetic energy density, 𝑇, and potential, 𝑈, of the system,

ℒ = 𝑇 − 𝑈. (3.1)

Measuring the parameters of the Lagrangian provides a complete description of nature. To
construct a Lagrangian, a model must first be hypothesised. The following components of a
model must be specified before a complete Lagrangian can be constructed:

1. the gauge group of the model,

2. the representations of fields within the model,

3. the patterns of spontaneous symmetry breaking.

Once these have been specified, the Lagrangian can be constructed in its most general, renor-
malisable form. General means that all possible terms that satisfy the model components
above are included, i.e. no terms can be left out based only on phenomenological/empirical
arguments1. Renormalisablemeans that all divergences can be absorbed by a finite number
of shifts (renormalisations) in the fields and couplings. In addition, Poincarè invariance is
required (invariance under boost, rotation, and translation). The Lagrangian parameters must
be measured as the model alone makes no specification of their values. The number of physical
parameters arises from the model itself, and is finite due to renormalisability. Any exact global
symmetries can either be imposed or arise as a result of the model; they are not necessarily an
input requirement.

The components of the StandardModel are:

1. Gauge groups SU(3)𝑐 × SU(2)𝐿 × U(1)Y , where SU(3)𝑐, SU(2)𝐿, and U(1)Y are
the colour, isospin, and hypercharge symmetry groups of the model.

2. Field (matter) representations, using the gauge notation (𝑐𝑜𝑙𝑜𝑢𝑟, 𝑖𝑠𝑜𝑠𝑝𝑖𝑛)hypercharge,

Left-handed quark doublets 𝑄𝑖 (3, 2)1/6

Right-handed up quarks 𝑈𝑐
𝑖 ( ̄3, 1)−2/3

Right-handed down quarks 𝐷𝑐
𝑖 ( ̄3, 1)1/3

Left-handed lepton doublets 𝐿𝑖 (1, 2)−1/2

1For example proton decay may be allowed within the theory but not something we want to include. In
practice in the StandardModel this does occur and terms are neglected which have no theoretical reason not to
exist, one example being CP-violation in the strong sector (strong CP problem).
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Right-handed charged leptons 𝐸𝑖 (1, 1)1

Scalar Higgs field 𝐻 (1, 2)1/2

The index 𝑖 indicates generation, in the StandardModel 𝑖 = 1, 2, 3.

3. Spontaneous symmetry breaking, for example SU(2)𝐿 × U(1)Y → U(1)EM.

From these components the most general, renormalisable Lagrangian can be constructed
as

ℒSM = ℒkin + ℒHiggs + ℒY , (3.2)

where the kinetic Lagrangian ℒkin contains the gauge interactions through the covariant
derivative and non-Abelian field strengths,ℒHiggs is the Higgs potential, andℒY is the Yukawa
Lagrangian describing the coupling of fermions to the Higgs field.

The particles of the StandardModel are shown in figure 3.2. Fermions (quarks and lep-
tons) are matter particles; bosons, force carriers. The StandardModel contains nineteen free
parameters in total: three from ℒkin defining the strength of the U(1), SU(2), and SU(3)
interactions; two from ℒHiggs associated with the vacuum expectation value and the Higgs
quartic interaction strength; thirteen from ℒY defining lepton and quark masses, and the
strength and asymmetry of flavour changing. In the StandardModel neutrinos are massless.
From experiment, however, we know that the neutrinos oscillate flavour, i.e. change genera-
tion during propagation (𝜈𝑒 → 𝜈𝜇), which requires they have a mass. An additional seven
parameters describe this, three neutrino masses, three mixing angles, and one CP-violating
phase2.

3.2 Flavour changing in the Standard Model

Intergenerational quark flavour changing in the StandardModel is described by the Yukawa La-
grangian via the coupling of fermions to theHiggs field. The Yukawa Lagrangian,ℒY, contains
flavour-changing interactions and can be written in terms of quark and lepton interactions as

ℒY = −𝑌 𝑖𝑗
𝑢 ̄𝑞′

𝑖𝐿
̃𝜙𝑢′

𝑗𝑅 − 𝑌 𝑖𝑗
𝑑 ̄𝑞′

𝑖𝐿𝜙𝑑′
𝑗𝑅 − 𝑌 𝑖𝑗

ℓ
̄ℓ′
𝑖𝐿𝜙𝑒′

𝑗𝑅 + h.c , (3.3)

where 𝑌 𝑖𝑗
𝑢,𝑑,ℓ are the Yukawa couplings (three 3 × 3 matrices) between fermion families 𝑖 and

𝑗, 𝑞′
𝐿 are the quark weak eigenstates with 𝑢′

𝑅 and 𝑑′
𝑅 denoting the up and down-types (𝐿 and

𝑅 indicating handedness), 𝜙 is the Higgs doublet, and ℓ′
𝐿 and 𝑒′

𝑅 are the left handed lepton
doublet and right handed charged lepton singlet.

2The exact number of phases depends on the nature of the neutrinos, for example Majorana neutrinos would
introduce two physical phases.
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Figure 3.2: From [6], the elementary particles of the StandardModel.

There are two relevant bases involved: themass basis, where themass terms are diagonal and
correspond to physical particles, and theweak or interaction basis, inwhich theweak eigenstates
are diagonal. The fact that these two bases are not the same results in flavour changing within
the Standard Model. The rotation between theses bases, and hence the strength of flavour
changing, is described explicitly by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

The Higgs vacuum expectation value, its ground state in vacuum, is non-zero and implies
spontaneous electroweak symmetry breaking,

SU(3)𝑐 × SU(2)𝐿 × U(1)Y
⟨𝜙⟩≠0
−−−→ SU(3)𝑐 × U(1)EM . (3.4)

U(1)EM is the resulting unified electromagnetic and weak force (electroweak) after symmetry
breaking. Note that the strong force, SU(3)𝑐 is conserved. The resulting Yukawa Lagrangian
for quarks is then

ℒY = −𝑌 𝑖𝑗
𝑢

𝑣√
2

�̄�′
𝑖𝐿𝑢′

𝑗𝑅 − 𝑌 𝑖𝑗
𝑑

𝑣√
2

̄𝑑′
𝑖𝐿𝑑′

𝑗𝑅 + h.c , (3.5)

where the SU(2)𝐿 quark components from equation (3.3) have been decomposed into their
components

𝑞′
𝑖𝐿 = (𝑢′

𝑖𝐿
𝑑′

𝑖𝐿
) . (3.6)

From this the mass terms can be identified as the matrices

𝑚𝑖𝑗
𝑞 = 𝑌 𝑖𝑗

𝑞
𝑣√
2

, 𝑞 = 𝑢, 𝑑 , (3.7)
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such that,
ℒY = −𝑚𝑖𝑗

𝑞 �̄�′
𝑖𝐿𝑢′

𝑗𝑅 − 𝑚𝑖𝑗
𝑞 ̄𝑑′

𝑖𝐿𝑑′
𝑗𝑅 + h.c , (3.8)

The mass matrices in the mass basis (recall we are currently working in the weak basis) are
by definition diagonalisable. It is always possible to find unitary matrices 𝑉𝑞𝐿 and 𝑉𝑞𝑅 such
that the mass matrix 𝑚𝑞 is diagonalised by

𝑉𝑞𝐿𝑚𝑞𝑉 †
𝑞𝑅 = 𝑚diag

𝑞 , (3.9)

where 𝑚diag
𝑞 is diagonal and real. To achieve diagonalisation, the weak eigenstate fields, 𝑞′

𝑖𝐿
and 𝑞′

𝑖𝑅, are rotated to the mass basis containing their mass eigenstates,

𝑞′
𝑖𝐿 = (𝑉𝑞𝐿)𝑖𝑗𝑞𝑗𝐿 , 𝑞′

𝑖𝑅 = (𝑉𝑞𝑅)𝑖𝑗𝑞𝑗𝑅 . (3.10)

The fields 𝑞𝑗𝐿 and 𝑞𝑗𝑅 then correspond to the physical quarks.

Performing this rotation, the 𝑉𝑞𝐿 and 𝑉𝑞𝑅 matrices drop away (i.e. are trivially 1 due to
unitarity) everywhere except in the quark couplings to the charged 𝑊 boson,

ℒ𝑞
𝑊 ± = − 𝑔√

2
�̄�𝐿𝑖𝛾𝜇(𝑉𝑢𝐿𝑉 †

𝑑𝐿)𝑖𝑗𝑑𝐿𝑗𝑊 +
𝜇 + h.c . (3.11)

The resulting unitary matrix
𝑉CKM = 𝑉𝑢𝐿𝑉 †

𝑑𝐿 ≠ 1 , (3.12)

formed by the 𝑉𝑞𝐿 which satisfy the mass matrix diagonalisation rotation, is known as the
Cabibbo-Kobayashi-Maskawa (CKM)matrix for quark mixing [7, 8]. Because 𝑉CKM is not
diagonal, the 𝑊 bosons are able to couple to quark mass eigenstates of different generations.
This is the only source of quark flavour changing within the Standard Model, with 𝑉CKM
describing the relative rates of flavour change.

The unitary 𝑉CKM can then be written with the quark generations ordered by mass as
follows

𝑉CKM = ⎡⎢
⎣

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

⎤⎥
⎦

, (3.13)

which can be parametrised with four free parameters; three real and one imaginary. It is useful
to write 𝑉CKM in an explicit parametrisation to show these, one common choice from [9] is

𝑉CKM = ⎡⎢
⎣

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−𝑖𝛿13

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿13 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿13 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿13 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖𝛿13 𝑐23𝑐13

⎤⎥
⎦

,

(3.14)
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where 𝑐𝑖𝑗 = cos 𝜃𝑖𝑗, 𝑠𝑖𝑗 = sin 𝜃𝑖𝑗, and the three 𝜃𝑖𝑗 are the real mixing parameters. 𝛿13 is
the imaginary Kobayashi-Maskawa (charge-parity violating) phase. These four parameters are
precisely those from the SM described in the previous section.

An alternative is the Wolfenstein parametrisation [10], which defines its parameters as

sin 𝜃12 = 𝜆, sin 𝜃13 = 𝐴𝜆2, sin 𝜃13𝑒𝑖𝛿 = 𝐴𝜆3(𝜌 + 𝑖𝜂) . (3.15)

The benefit of this choice of parametrisation is that 𝐴, 𝜌, and 𝜂 are all 𝒪(1), and 𝜆 can be
written as a Taylor expansion up to the precision required, for example

𝑉CKM = ⎡⎢
⎣

1 − 𝜆2/2 𝜆 𝐴𝜆3(𝜌 − 𝑖𝜂)
−𝜆 1 − 𝜆2/2 𝐴𝜆2

𝐴𝜆3(1 − 𝜌 − 𝑖𝜂) −𝐴𝜆2 1
⎤⎥
⎦

+ 𝒪(𝜆4) . (3.16)

Current experimental values for 𝑉CKM are[9]

𝑉CKM = ⎡⎢
⎣

0.974 46 ± 0.000 10 0.224 52 ± 0.000 44 0.003 65 ± 0.000 12
0.224 38 ± 0.000 44 0.97359+0.00010

−0.00011 0.042 14 ± 0.000 76
0.00896+0.00024

−0.00023 0.041 33 ± 0.000 74 0.999 105 ± 0.000 032
⎤⎥
⎦

.

(3.17)

3.3 Flavour-changing neutral currents

Up to this point I have shown that in mass basis, only the 𝑊 boson is able to change quark
flavour. Therefore flavour-changing neutral currents must proceed at the one-loop level or
higher; tree-level contributions are forbidden. For loop-level processes the Glashow-Iliopoulos-
Maiani (GIM)mechanism [11] describes the strength of interaction. The underlying principle
of the GIMmechanism is that for a unitary matrix any pair of rows or columns are orthogo-
nal. Inspecting the loop shown in for example the penguin diagram in figure 3.1, the CKM
dependence alone is

ℳ ∝ ∑
𝑖

𝑉 ∗
𝑖𝑏𝑉𝑖𝑠 = 0 , (3.18)

which vanishes by unitarity. The only other sources of flavour dependence in the SM are the
masses of the quarks themselves. I showed before that the flavour-changing effects occur purely
due to off-diagonal couplings, therefore couplings do not change flavour if they are diagonal.
It is possible, however, to change basis to produce off-diagonal couplings. Therefore this must
be generalised to involve strictly universal matrices, i.e. those proportional to the identity (1).
As the mass matrices, 𝑚𝑖, are not universal it is then possible to write down

ℳ = ∑
𝑖

𝑉 ∗
𝑖𝑏𝑉𝑖𝑠𝑓(𝑚𝑖) , (3.19)
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where any terms independent of𝑚𝑖 must vanish (i.e. can be rotated away). 𝑓(𝑚𝑖) is the Inami-
Lim function [12]which depends directly on 𝑚2

𝑖
𝑚2

𝑊
, i.e. 𝑓( 𝑚2

𝑖
𝑚2

𝑊
). Therefore heavier intermediate

quark masses are expected to dominate the loop contributions, hence the transition is expected
to be most sensitive to the top quark. With this mass dependence in mind, and noting the
unitarity relation in equation (3.18), the amplitude can be rewritten to show the destructive
interference between different flavour quark contributions explicitly,

ℳ = 𝑉 ∗
𝑡𝑏𝑉𝑡𝑠 [𝑓 ( 𝑚2

𝑡
𝑚2

𝑊
) − 𝑓 ( 𝑚2

𝑐
𝑚2

𝑊
)] + 𝑉 ∗

𝑢𝑏𝑉𝑢𝑠 [𝑓 ( 𝑚2
𝑢

𝑚2
𝑊

) − 𝑓 ( 𝑚2
𝑐

𝑚2
𝑊

)] . (3.20)

Therefore the closeness of quark masses of different generations directly suppresses the ampli-
tude, specifically in the second term as 𝑚𝑐 − 𝑚𝑢 ≪ 𝑀𝑊. This is what is referred to as GIM
suppression. This also highlights an important property of high precision experiments like
Belle II, that despite operating at energies lower than the mass of the top quark, the measure-
ment of its off-shell effects on higher order processes allows indirect probing of its properties.
Likewise, this is possible for any other heavy particles involved, e.g. Higgs or new physics
particles.

3.4 Theoretical predictions

Having two neutrinos in the final state means that the 𝑏 → 𝑠𝜈 ̄𝜈 subset of FCNCs are the clean-
est theoretically. They don’t suffer from the long-range effects experienced by the 𝑏 → 𝑠ℓ+ℓ−

transitions. In 𝑏 → 𝑠ℓ+ℓ−, the exchange of photons in the final state breaks factorisation,
introducing hadronic uncertainties beyond the form factors. In 𝑏 → 𝑠𝜈 ̄𝜈, however, the fac-
torisation is exact, meaning it is theoretically possible to performmeasurements of the form
factors via branching fraction measurements alone.

From [5], the effective Hamiltonian of 𝑏 → 𝑠𝜈 ̄𝜈 transitions in the StandardModel is

ℋ𝑆𝑀
𝑒𝑓𝑓 = −4𝐺𝐹√

2
𝑉𝑡𝑏𝑉 ∗

𝑡𝑠𝐶𝑆𝑀
𝐿 𝒪𝐿 + h.c , (3.21)

where 𝐺𝐹 is the Fermi coupling constant, 𝑉𝑡𝑏𝑉 ∗
𝑡𝑠 is the product of the dominant CKM

elements. The effective operator, 𝒪𝐿, is given by

𝒪𝐿 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝐿𝑏)( ̄𝜈𝛾𝜇(1 − 𝛾5)𝜈) . (3.22)

with an implicit summation across all three neutrino flavours as contributions, and where 𝑃𝐿
is the left handed chiral projection operator 1

2(1 − 𝛾5). The left-handedWilson coefficient,
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𝐶𝑆𝑀
𝐿 , is the coupling constant of 𝒪𝐿 and is known to a high precision from NLO QCD

corrections [13–15] and electroweak corrections [16] to be

𝐶𝑆𝑀
𝐿 = −𝑋𝑡

𝑠2
𝑤

, 𝑋𝑡 = 1.469 ± 0.017 ± 0.002 , (3.23)

where 𝑠𝑤 is the weak-mixing angle, sin2 𝜃𝑤. As no right-handed neutrinos are allowed within
the StandardModel, the complementary right-handedWilson coefficient𝐶𝑆𝑀

𝑅 is trivially zero.
From this, there are three observables that can be measured from the 𝐵 → 𝐾(∗)𝜈 ̄𝜈

processes [5, 17, 18],

ℬ(𝐵+ → 𝐾+𝜈 ̄𝜈)𝑆𝑀 = 𝜏𝐵+3|𝑁|2(𝐶𝑆𝑀
𝐿 )2⟨𝜌𝐾⟩ , , (3.24)

ℬ(𝐵0 → 𝐾∗0𝜈 ̄𝜈)𝑆𝑀 = 𝜏𝐵03|𝑁|2(𝐶𝑆𝑀
𝐿 )2⟨𝜌𝐴1

+ 𝜌𝐴12
+ 𝜌𝑉⟩ , (3.25)

𝐹 𝑆𝑀
𝐿 (𝐵 → 𝐾∗𝜈 ̄𝜈) = ⟨

𝜌𝐴12

𝜌𝐴1
+ 𝜌𝐴12

+ 𝜌𝑉
⟩ . (3.26)

These are the branching fractions of the unexcited and excited processes, as well as the 𝐾∗

longitudinal polarisation fraction. The latter is not considered in this study but should be
measured after measurements of the branching fractions have been obtained to provide addi-
tional SM constraints. Here I have given the expected SM branching fractions in terms of the
expectation values of the rescaled form factors, 𝜌𝑖, integrated over the dilepton invariant mass
squared, 𝑞2. The complete form factors are defined in [5] with current expectation values
given in [17]. 𝜏𝐵+/0 are the 𝐵 meson lifetimes. Since there is no isospin asymmetry involved,
the 𝐵0 and 𝐵+ branching fractions are simply obtained by rescaling by the corresponding
lifetime. The factor 3 in the branching fractions is to account for contributions from all three
neutrino flavours, and the factor 𝑁 contains the contributions from the CKM elements,

𝑁 = 𝑉𝑡𝑏𝑉𝑡𝑠
𝐺𝐹𝛼
16𝜋2 √𝑚𝐵

3𝜋
, (3.27)

where 𝐺𝐹 and 𝛼 are the normal Fermi coupling and fine-structure constants, and 𝑚𝐵 the
mass of the 𝐵 meson.

The resulting Standard Model predictions are shown in table 3.1. As a final note for
future iterations of this study, the recently published Flavio software package [19] provides
a simple interface for obtaining up-to-date Standard Model (and new physics) predictions.
The software release timing meant that it was too late to be used in this study but I strongly
recommend its usage in future.

3.5 Previous studies

There have been several studies performed that have tried to measure 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes
in the past, though so far only upper limits have been observed for all four channels. Table 3.1
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shows the current best experimental limit for each channel at 90% credibility level. In all cases
the upper limit is close to the Standard Model prediction, and expected to be measurable with
the increase in data expected at Belle II. [20] forecasts a measurement of branching fractions
with 10 − 11% uncertainty when the entire 50 ab−1 Belle II dataset is available.

The three studies which set the current best limits were:

Belle 2017 [2] This is the most recent study and used the full reconstruction [21] semilep-
tonic tagging algorithm at Belle to measure 𝐵 → ℎ𝜈 ̄𝜈 processes, where ℎ = 𝐾+, 𝐾0

𝑆,
𝐾∗+, 𝐾∗0, 𝜋+, 𝜋0, 𝜌+, and 𝜌0. First a semileptonically decaying 𝐵 meson was hierar-
chically reconstructed with the help of neural networks [22]. The reconstructed tag 𝐵
was then combined with a single signal-like ℎ candidate to form the fully reconstructed
initial Υ(4𝑆) candidate. The remaining energy in the electromagnetic calorimeter,
𝐸𝐸𝐶𝐿, was then fitted to directly measure the branching fractions. The upper lim-
its set by this study on all but the 𝐾+ and 𝐾∗+ channels are the most stringent to
date. Both this and the Belle 2013 study used the full Belle 771 fb−1 dataset containing
approximately 772 × 106 𝐵�̄� pairs.

Belle 2013 [23, 24] This study used the same full reconstruction tagging algorithm as that of
the Belle 2017, instead used to reconstruct a hadronically decaying tag-side𝐵meson (i.e.
no neutrinos in the final state). The reconstruction procedure was similar to that used
in the Belle 2017 study with the candidate selection requirements changed accordingly
and the same fitted observable 𝐸𝐸𝐶𝐿 used. This study additionally measured an upper
limit for the ℎ = 𝜙 channel.

Babar 2013 [25] The 2013 study from the BaBar collaboration holds the current world
best upper limit for the 𝐵+ → 𝐾+𝜈 ̄𝜈 channel. The study itself used a hadronic
tagging method, like that of the Belle 2013, but the final results are combined with the
semileptonic tag Babar 2010 study [26]. This study differs from the Belle analyses in
that the background models were fixed from data (sidebands or via relaxing selections)
and signal yields obtained from a cut-and-count (instead of a fit to signal region). A
data sample of 471 × 106 𝐵�̄� pairs (429 fb−1) was used.

All of the previous studies were dominated by statistical uncertainty, motivating the repeat
of both the hadronic and semileptonic searches at Belle II. Projections estimate observations of
the charged and 𝐾∗0 channels at 10 ab−1, and measurements with around 10% uncertainty
at the full 50 ab−1. The systematic uncertainties of the previous Belle studies were dominated
by the backgroundmodel. This was due to a lack of statistically significant backgroundMonte
Carlo events from which to obtain an accurate parametric background shape surviving the
signal selection procedure, despite usingMC samples five and ten times the nominal luminosity
for the hadronic and semileptonic tag studies respectively. Therefore, before an improved
analysis can be performed at Belle II, the volume of background Monte Carlo simulations
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Table 3.1: Standard Model predictions and current best upper limits from previous studies on
all signal channels [17].

Mode ℬ𝑆𝑀[10−6] ℬ𝑒𝑥𝑝[10−6] (90% C.L.)

𝐵+ → 𝐾+𝜈 ̄𝜈 4.68 ± 0.64 < 16 (BaBar 2013)
𝐵0 → 𝐾0

𝑆𝜈 ̄𝜈 2.17 ± 0.30 < 13 (Belle 2017)
𝐵+ → 𝐾∗+𝜈 ̄𝜈 10.22 ± 1.19 < 40 (Belle 2013)
𝐵0 → 𝐾∗0𝜈 ̄𝜈 9.48 ± 1.10 < 18 (Belle 2017)

will need to be increased significantly (this relates precisely to the second half of this thesis).
The Babar study’s major systematic uncertainty source was from peaking background yield
and signal efficiency estimates from Monte Carlo. The signal efficiency uncertainties were
due to kaon and pion selection windows used, while the peaking background uncertainty was
attributed to uncertainties in the branching fractions of the contributing processes.

It is worth noting here as well that the previous studies assumed an equal probability of
Υ(4𝑆) decay into neutral and charged 𝐵 meson pairs. This study does not, instead the cross
sections are based on the results of [27] and the world average [9] which found3a slightly lower
branching fraction of ℬ(Υ(4𝑆) → 𝐵0�̄�0) = 0.486.

3.6 New physics potential

I will end the discussion of theoretical considerations with a description of how new physics
(NP) could be expected to enter the 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes. Working with the Standard
Model effective Hamiltonian from equation (3.21), new physics can be introduced in general
in the form of an additional operator (e.g. 𝐶𝑅𝒪𝑅 for right handed neutrinos), a modification
to the existing operator (e.g. 𝐶𝑁𝑃

𝐿 𝒪𝑁𝑃
𝐿 ), or a combination of both.

Looking at the first case, the assumption is made that lepton flavour universality holds
and that new physics enters at scales above the mass of the 𝐵 meson. Equation (3.21) can be
extended to

ℋ𝑆𝑀
𝑒𝑓𝑓 = −4𝐺𝐹√

2
𝑉𝑡𝑏𝑉 ∗

𝑡𝑠(𝐶𝐿𝒪𝐿 + 𝐶𝑅𝒪𝑅) + h.c , (3.28)

where the additional 𝒪ℛ is simply

𝒪𝑅 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝑅𝑏)( ̄𝜈𝛾𝜇(1 − 𝛾5)𝜈) . (3.29)

3Assuming ℬ(Υ(4𝑆) → 𝐵�̄�) = 1.
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This change can be described by the two real quantities,

𝜖 =
√|𝐶𝐿|2 + |𝐶𝑅|2

|𝐶𝑆𝑀
𝐿 |

, 𝜂 = −Re(𝐶𝐿𝐶∗
𝑅)

|𝐶𝐿|2 + |𝐶𝑅|2
, (3.30)

with 𝜖 > 0 and 𝜂 ∈ [−1
2 , 1

2 ]. In the SM 𝜖 = 1 and 𝜂 = 0, with 𝜂 ≠ 0 indicating the presence
of right handed currents in FCNCs of quarks. Relating this back to observable quantities, the
following three ratios can be measured experimentally,

ℛ𝐾 = (1 − 2𝜂)𝜖2 = ℬ(𝐵 → 𝐾𝜈 ̄𝜈)
ℬ(𝐵 → 𝐾𝜈 ̄𝜈)𝑆𝑀

, (3.31)

ℛ𝐾∗ = (1 + 𝜅𝜂𝜂)𝜖2 = ℬ(𝐵 → 𝐾∗𝜈 ̄𝜈)
ℬ(𝐵 → 𝐾∗𝜈 ̄𝜈)𝑆𝑀

, (3.32)

ℛ𝐹𝐿
= 1 + 2𝜂

1 + 𝜅𝜂𝜂
= 𝐹𝐿

𝐹 𝑆𝑀
𝐿

, (3.33)

where 𝜅𝜂 is dependent on the form factors from eqs. (3.24) to (3.26).

The𝐵 → 𝐾(∗)𝜈 ̄𝜈processes receive contributions fromsomeof the sameSU(2)𝐿 invariant
four-fermion operators as 𝐵 → 𝐾(∗)ℓ+ℓ−. 𝐵 → 𝐾ℓ+ℓ−, however, contains additional
operators, for example dipole operators arising from the presence of right handed currents.
Recently, measurements of the ratio 𝑅(𝐾(∗)) = 𝐵→𝐾(∗)𝜇+𝜇−

𝐵→𝐾(∗)𝑒+𝑒− has shown signs of tension
with StandardModel predictions [3, 4]. Therefore, measuring 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes will
allow probing of the sharedWilson coefficients and isolation of the tension. It is also expected
that any lepton flavour universality violation (non-universality) will be more pronounced in
processes involving 𝜏 leptons. Therefore, any amplification in 𝐵 → 𝐾(∗)𝜈 ̄𝜈 will be extra
sensitive to the contributions from 𝜈𝜏 ̄𝜈𝜏 final states.

In the case of lepton flavour non-universality, where lepton flavour is still conserved within
physics processes but the lepton generations are treated differently, the left and right-handed
operators from eq. (3.29) simply obtain the index ℓ = 𝑒, 𝜇, 𝜏 to differentiate between neutrino
flavours,

𝒪ℓ
𝐿 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝐿𝑏)( ̄𝜈ℓ𝛾𝜇(1 − 𝛾5)𝜈ℓ) , (3.34)

𝒪ℓ
𝑅 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝑅𝑏)( ̄𝜈ℓ𝛾𝜇(1 − 𝛾5)𝜈ℓ) . (3.35)

Accordingly, 𝜖 and 𝜂 from (3.30) become

𝜖ℓ =
√|𝐶ℓ

𝐿|2 + |𝐶ℓ
𝑅|2

|𝐶𝑆𝑀
𝐿 |

, 𝜂ℓ =
−Re(𝐶ℓ

𝐿𝐶ℓ∗
𝑅 )

|𝐶ℓ
𝐿|2 + |𝐶ℓ

𝑅|2
, (3.36)
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and hence

ℛ𝐾 = 1
3

∑
ℓ

(1 − 2𝜂ℓ)𝜖2
ℓ = ℬ(𝐵 → 𝐾𝜈 ̄𝜈)

ℬ(𝐵 → 𝐾𝜈 ̄𝜈)𝑆𝑀
, (3.37)

ℛ𝐾∗ = 1
3

∑
ℓ

(1 + 𝜅𝜂𝜂ℓ)𝜖2
ℓ = ℬ(𝐵 → 𝐾∗𝜈 ̄𝜈)

ℬ(𝐵 → 𝐾∗𝜈 ̄𝜈)𝑆𝑀
, (3.38)

ℛ𝐹𝐿
=

∑ℓ 𝜖2
ℓ (1 + 2𝜂ℓ)

∑ℓ 𝜖2
ℓ (1 + 𝜅𝜂𝜂ℓ)

= 𝐹𝐿
𝐹 𝑆𝑀

𝐿
. (3.39)

Again the same measured quantities can be used to probe the new physics.
To extend this to lepton flavour violating processes, indices to distinguish neutrino flavour

can be introduced,

𝒪𝑖𝑗
𝐿 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝐿𝑏)( ̄𝜈𝑖𝛾𝜇(1 − 𝛾5)𝜈𝑗) , (3.40)

𝒪𝑖𝑗
𝑅 = 𝑒2

16𝜋2 ( ̄𝑠𝛾𝜇𝑃𝑅𝑏)( ̄𝜈𝑖𝛾𝜇(1 − 𝛾5)𝜈𝑗) , (3.41)

where 𝑖 ≠ 𝑗, and the measured observables are modified accordingly (all neutrinos are still
assumed to be left handed). A detailed description of further new physics model extensions
can be found in [5].

There is even the opportunity to performmore exotic searches, such as darkmatter searches
in 𝐵 → 𝐾(∗)𝑋𝐷𝑀 [28], or 𝐵 → 𝐾(∗)𝑋𝑑𝑎𝑟𝑘 with 𝑋𝑑𝑎𝑟𝑘 being some dark mesons (e.g. a
dark pion) [29]. Searches for intermediate vector boson resonances have also been proposed
[30] in the form of𝐵 → 𝐾(∗)𝑉 (→ 𝜒𝜒), where𝜒 is a Dirac fermion that may be, for example,
a sterile (right handed) neutrino. Such searches require careful consideration of kinematic
restraints on the reconstructed kaon.

Overall, the NP modifications described above are intended to demonstrate the wealth
of potential that 𝐵 → 𝐾(∗)𝜈 ̄𝜈 hold for probing new physics. Even if agreement with SM
predictions is found, the resulting new physics constraints alone will help narrow down the
viable NPmodels and bring us a step closer to isolating precisely where the StandardModel
breaks down.



Chapter 4

The Belle II experiment

The Belle II collaboration was formed in 2009 with the aim of taking everything learned from
the predecessor Belle experiment and using it to build a high statistics B-physics factory sensitive
enough to probe for new physics (NP). There was already a decade-long history of success at
𝑒+𝑒− colliders from not only Belle, but also its companion experiment BaBar. Most notably
for Belle was the confirmation of the Kobayashi-Maskawa mechanism [8] with the charge-
parity (CP) asymmetries in the transitions of b-quarks which led to the Nobel prize being
awarded to Kobayashi and Maskawa in 2008. Other great achievements in flavour physics,
including measurements of unitarity triangle angles, time-dependent CP- violation (CPV),
new resonances [31], etc., are summarised nicely in [32]. With the 50 ab−1 of data expected to
be collected at Belle II, the goal is to give insight into some of the big questions that plague the
SM. For example looking for new sources of CP-violation, as the Standard Model does not
provide enough to explain the matter-antimatter asymmetry we see in the universe today. In
addition, new physics in semileptonic and leptonic processes, along with other new physics
areas such as lepton flavour violation, dark sector, etc., searches will be performed.

There are several unique experimental advantages to using a B-factory, as opposed to
measuring 𝐵 meson decays from a hadron collider (as is done at the LHCb experiment). Most
prominently, direct branching fraction measurements can be performed as the number of
initial 𝐵 mesons produced is known within a small uncertainty. At hadron colliders only
ratios of branching fractions can be measured to high precision. The environment from
𝑒+𝑒− collisions is exceptionally clean: only the two Bmesons are produced and their initial
energy is very well known. This allows the full reconstruction of everything inside the detector
and therefore measurements of processes involving missing final states (e.g. neutrinos). The
precision of Belle II allows the analysis of processes that proceed only at higher order (forbidden
at tree-level). This makes Belle II sensitive to particles with masses above those that can be
produced directly from the collider’s energy. This enables a wide range of new physics searches
at higher energy scales.
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The lifetime of the Belle II experiment is divided into three major phases:

Phase 1 This ran from February until June of 2016 and involved the beam commissioning
with the commissioning detector BEAST II (described in [33]) used to take beam
background measurements.

Phase 2 Operating from February to July of 2017, phase 2 involved the tuning of collisions
at SuperKEKB. The Belle II detector was in place, without the VXD, taking calibration
measurements.

Phase 3 The final phase of Belle II, set to begin in the first half of 2019, is the full physics run.
For this the complete Belle II detector will be in place and recording physics data1.

4.1 SuperKEKB

The experiment is based at the JapaneseHigh-EnergyAcceleratorResearchOrganisation (KEK)
in Tsukuba, Japan. It will use SuperKEKB (figure 4.2), the upgraded KEKB electron-positron
collider. SuperKEKB is an asymmetric 𝑒+𝑒− collider with a 7Gev electron high energy ring
(HER) and a 4Gev positron low energy ring (LER) inside a 3 km circumference tunnel which
has been reused from KEKB. The centre of mass energy is at the Υ(4𝑆) resonance, which
is almost exactly double the B meson rest mass. Figure 4.1 shows the mass energy spectrum
of the Υ(𝑛𝑆) resonances, with the red line indicating the threshold for Υ(4𝑆) production
and the grey shaded line at 10.58GeV, the centre of mass energy at SuperKEKB. This energy
results in a very high production rate of B meson pairs which are essentially at rest in the centre
of mass frame. The key changes made from KEKB are the so called nano-beam scheme being
used which will squeeze the electron bunches and increase the instantaneous luminosity, and
a change in the beam energies from 8 and 3.5Gev to reduce emittance in the new scheme.
The nano-beam scheme involves minimising the longitudinal size of the interaction point (IP)
overlap region to effectively limit the minimum value of the beta function via the hourglass
effect. The Lorentz boost factor of the centre of mass system will be 𝛾 = 0.28, two thirds of
that in Belle. The trade-off of these changes made to increase the luminosity at Belle II is a
significant increase expected in beam-related backgrounds [33].

4.1.1 Beam backgrounds

This section briefly describes the various beam-related background sources at SuperKEKB. A
detailed description of each source can be found in [32, 33, 35].

1As of February 2019, only two of the twelve outer ladders of the PXD are installed. The remainder will be
installed at a later time during a servicing period of the detector.
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Figure 4.1: Spectrum of energy ranges covered by the Υ(𝑛𝑆) resonances and the underlying
continuum background.

Figure 4.2: Schematic of the SuperKEKB accelerator [34]. The Belle II detector lies at the
crossing point of the electron and positron beams.
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Touschek scattering This involves intra-bunch Coulomb scattering of two particles. The
interaction causes the involved particles’ energies to deviate from the energy of the
bunch: one higher and one lower. The aforementioned nano-beam scheme and changes
to the beam currents at SuperKEKB are expected to results in a Touschek scattering
background level ∼ 20 times higher than that of KEKB [33].

Beam gas scattering The vacuum in the beam pipe at SuperKEKB contains a small amount
of residual gas molecules unable to be removed. Scattering of beam particles off these
molecules can occur in two ways: Coulomb scattering, which will change the direction
of beam particles, and Bremsstrahlung scattering, which decelerates the beam particles.
Bremsstrahlung scattering is expected to be negligible compared to the Touschek scat-
tering backgrounds. The Coulomb scattering rate, however, is expected to be ∼ 100
times higher than that of KEKB due to the reduced beam pipe radius.

Synchrotron radiation As synchrotron radiation scales proportional to the square of both
the beam energy and magnetic field strength, therefore the high energy ring is expected
to produce the majority of this type of background. During the early stages of the
Belle experiment synchrotron radiation damaged the inner vertex detector, therefore
for Belle II special measures have been taken to prevent any substantial levels of this
background reaching the detector.

Radiative Bhabha process The radiative Bhabha process, 𝑒−𝑒+ → 𝑒−𝑒+𝛾, results in pho-
tons travelling approximately along the beam line which interact with the iron in the
accelerator magnets. This produces a large number of low energy photons as well as
neutrons entering the detector. The resulting electron and positron also have lower
energies after the Bhabha process, causing over-bending by the SuperKEKB focusing
magnets (those directly before the Belle II detector). These then hit the walls of the
magnets, sending electromagnetic showers into the detector. The rate of both of these
background sources is proportional to the luminosity which will be 40 times that of
KEKB.

Two-photon process This background comes from the very lowmomentum products of
the interaction 𝑒𝑒 → 𝑒𝑒𝑒𝑒, which can spiral within the magnetic field of the detector
leaving many hits within the inner detector components.

Injection background Each time a fresh beam bunch is injected into the accelerator a surge
in the beam-related backgrounds is seen. A trigger is applied to veto the time window
of the surge directly after each injection to mitigate this.

The key takeaway from all of these backgrounds is that at SuperKEKB the overall back-
ground level is expected to be significantly higher than that at KEKB. Recalling that the
background shape uncertainty was a major contributor to the systematic uncertainty of the
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previous experiments, it’s clear that a competitive measurement at Belle II will require a strong
understanding of the beam-related backgrounds in order for them to be adequately suppressed.

4.2 The Belle II detector

The Belle II detector is the centrepiece of the experiment. It is a 7 × 7.5m full-solid-angle
detector with many sub-detector layers surrounding the interaction point. The detector is
built as mostly a refurbished Belle detector, with the goal of maintaining the performance of
the Belle detector in the presence of the considerably higher background levels. A labelled
3D cross-section of the Belle II detector is shown in figure 4.3. The detector is comprised of
the following sub-detectors: Vertex detector (VXD), Central drift chamber (CDC), Particle
identification (PID), Electromagnetic calorimeter (ECL), K-Long and muon detector (KLM).

The key changes from the Belle detector are [32]:

• The beam pipe radius at the interaction point has been reduced from 15 to 10mm,
allowing the vertex detector to be closer to the interaction point.

• The old silicon strip detector immediately outside the beam pipe has been replaced with
a two-layer pixel detector.

• The remaining silicon strip detector has been extended to have a larger radius than in
Belle.

• The CDC has a larger volume and smaller cell sizes than in Belle.

• Particle identification is performed by entirely new devices using Čerenkov imaging,
with faster read-outs than in Belle.

• The end-cap scintillator crystals (CsI(Tl)) in the ECL have been replaced with faster,
more radiation tolerant pure CsI crystals, and new electronics will be used.

• The end-cap and inner layers of the KLM have been replaced with scintillators.

4.3 Vertex detector

The vertex detection module is comprised of two sub-detectors: a pixel detector (PXD) and a
silicon vertex detector (SVD). The PXD contains two layers of the DEPleted p-channel Field
Effect Transistor (DEPFET). The SVD is made of four layers of Double Sided Strip Detectors
(DSSD). The primary purpose of the vertex detection system is to measure the vertices of the
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Figure 4.3: Cross-section animation of the Belle II detector [34].

two 𝐵 meson decays for mixing-induced CPVmeasurements and the vertices of 𝐷 meson and
𝜏 lepton decays. Given the lower centre of mass boost in SuperKEKB, the two 𝐵 meson decay
vertices will have a smaller separation than in Belle. Nevertheless, the smaller beam pipe width
at the interaction region and the larger radius of the SVD are expected to allow Belle II to have
as good or better vertexing performance than Belle.

4.3.1 Pixel detector

At the high luminosity of SuperKEKB, the detector components closest to the beam pipe
will experience incredibly high hit rates coming from the beam-related backgrounds and low-
momentum-transfer QED processes (e.g. photon-photon interactions). The beam pipe radius
at the IP is only 10mm, and the background experienced increases in proportion to the inverse
square of the radius. Therefore strip detectors are no longer used for the innermost layer (as
was the case in Belle) due to the increased occupancy. Instead, pixel detectors are used for the
two innermost layers of the vertex detector. The two layers of the PXD are at radii 14mm and
22mm from the beam line. Pixel detectors have already been successfully used in detectors
at the LHC [36, 37]. The lower energy of SuperKEKB, however, means that thinner sensors
need to be used. DEPFET technology has been used and to allow for sensors as thin as 50
microns, which only require air cooling and can be engineered to be radiation hard enough to
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Figure 4.4: Ladder structure of pixel detector modules [32]. The light grey rectangles are the
arrays of pixels themselves with the remainder containing readout electronics.

withstand that expected in Belle II. A schematic of the DEPFET sensor layout in the PXD can
be seen in figure 4.4, note the ladder structure to ensure full coverage of the acceptance region.
The inner layer of the pixel detector contains 8 modules (ladders) with 3.072M pixels. The
outer layer will have 12 modules with 4.608M pixels (only two are installed currently). The
expected spatial resolution is ∼ 10m [32].

4.3.2 Silicon vertex detector

The silicon vertex detector (SVD) comprises the outer four layers of the vertex detection sub-
detector at radii38, 80, 115, 140mm[38]. Comparing thiswithBelle, which had its outermost
SVD layer at a radius of only 88mm, the reconstruction efficiency of low-momentum particles
and long-lived particles is expected to improve greatly. The SVD in Belle II covers the full
detector acceptance range of 17° < 𝜃 < 150°. The hit occupancy is required to be less
than 10% to ensure hits in the SVD are correctly associated with tracks in the CDC, and
the expected maximum average trigger rate is 30 kHz. The double-sided silicon microstrip
detectors used in the SVD provide excellent timing resolution (∼ 23 ns), which complement
the excellent spatial resolution of the PXD.

4.4 Central drift chamber

The central drift chamber (CDC) is the main tracker for charged particles in Belle II. It is
larger than in Belle with a smaller cell size, and contains 14, 336 sense wires and 42, 240 field
wires. A superconducting solenoid coil surrounds the ECL to supply a 1.5Tmagnetic field
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for the CDC. The CDC has three key roles in Belle II: to reconstruct charged tracks with
precision momentum measurements, to provide particle identification information using
measurements of energy loss (e.g. for identifying lowmomentum tracks which do not reach
the PID detector), and to provide efficient and reliable trigger signals for charged particles.
Given the success of the CDC design in Belle the same design structure is used in Belle II. A
comparison of the major parameters in Belle and Belle II can be seen in table 4.1.

The key changes to the CDC design are:

• New readout electronics are used to handle the expected higher trigger rates with less
deadtime.

• TheCDC inner radius andouter radii have been increased to avoid the highbackgrounds
near the IP and to make room for the new, larger VXD.

• The CDCwill generate 3D trigger information using a z-direction trigger.

Table 4.1: Comparison of main CDC parameters in Belle and Belle II.

Belle Belle II
Radius of inner cylinder (mm) 77 160
Radius of outer cylinder (mm) 880 1130
Radius of innermost sense wire (mm) 88 168
Radius of outermost sense wire (mm) 863 1111.4
Number of layers 50 56
Number of sense wires 8, 400 14, 336
Gas 𝐻𝑒 − 𝐶2𝐻6 𝐻𝑒 − 𝐶2𝐻6
Diameter of sense wire (𝜇m) 30 30

4.5 Particle identification

The particle identification (PID) sub-detector is completely new in Belle II and contains two
components: a time Of propagation (TOP) detector, and an aerogel ring imaging Čerenkov
(ARICH) detector. The TOP detector is used for particle identification in the barrel region of
Belle II. The ARICH detector performs particle identification in the forward end-cap region.

4.5.1 Time of propagation detector

The time-of-flight and Čerenkov detector in the barrel region of Belle has been replaced
by a time of propagation (TOP) counter in Belle II. The goal of the TOP is to improve



26 CHAPTER 4. THE BELLE II EXPERIMENT

Figure 4.5: Example of a single TOPmodule collecting a Čerenkov photon. Position informa-
tion is collected for the 𝑥 − 𝑦 directions and timing information is collected in the 𝑧 direction
to reconstruct the Čerenkov ring (blue cone) [32].

𝐾/𝜋 separation while coping with the increased backgrounds expected from SuperKEKB.
Overall the TOP contains sixteen modules with each module comprised of: two 2.7m long
quartz bars, a spherical mirror on one end, and an expansion prism on the other with an
array of photo-detectors. It uses micro-channel-plate photomultiplier tubes (MCP-PMTs)
and waveform sampling electronics for high precision position and timing measurements
(𝑂(100 ps) resolution). The Čerenkov ring, as shown in figure 4.5, is reconstructed in three-
dimensions from the detected time and the 𝑥 − 𝑦 position of the Čerenkov photon hits on
the MCP-PMTs.

4.5.2 Aerogel ring imaging Čerenkov detector

The Aerogel ring imaging Čerenkov detector (ARICH) detector is used for particle identifi-
cation in the forward end-cap. Each detector module contains two layers of aerogel together
(20 + 20mm thick) separated by an expansion volume (200mm) from an array of 420 Hy-
brid Avalanche Photo Detectors (HAPD). The two layers of aerogel have differing refractive
indices to provide overlapping of the Čerenkov rings for a better photon yield. The focusing
of the ARICH has been constructed to separate kaon Čerenkov photons from pion Čerenkov
photons across most of their momentum range, while also discriminating between pions,
muons, and electrons in the momentum range below 1GeV/c. This is exceptionally useful
for a B-factory, as most processes have an abundance of pions and kaons either in the primary
decay or as secondary particles to reconstruct. An example of how kaons and pions can be
discriminated between is shown in figure 4.6.

4.6 Electromagnetic calorimeter

Following the success of the electromagnetic calorimeter (ECL) in Belle, the Belle II detector
has reused the ECL design with upgrades to handle the higher backgrounds expected. The
material fromBelle has been reused in both the barrel and end-cap, containing Thallium doped
CsI(Tl) scintillating crystals. New electronics will also be used with bias filtering andwaveform
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Figure 4.6: ARICH setup demonstrating how kaons and pions with the same momentum
can be discriminated between [39].

sampling for faster readouts. The coverage of the ECL is 12.4° < 𝜃 < 155.1°, excluding two 1°
gaps where the barrel and end-caps join. The key roles of the ECL are to: detect photons with
precisionmeasurements, identify electrons, take on-line and off-line luminositymeasurements,
and help detect 𝐾0

𝐿 together with the KLM. The energy resolution of the ECL in Belle was
𝜎𝐸
𝐸 = 4% at 100MeV and 1.6% at 8GeV, with an angular resolution of 13(3)mrad at low
(high) energies [35]. It is expected achieve similar performance in Belle II, with the upgrades
compensating for the increased backgrounds.

4.7 𝐾𝐿 and 𝜇 detector

The K-long and muon detector (KLM) in Belle II is made of alternating layers of 470mm
thick iron plates and detector components. The resistive plate chambers (RPCs) that were
used throughout the entire Belle KLM to detect charged particles will not be efficient enough
to handle the ambient hit rate expected in the Belle II end-caps and barrel inner-layers. Instead
scintillators are being used in the entire end-cap and first two layers of the barrel section, with
RPCs used for the remaining barrel layers. In the barrel there are fifteen detector components
and fourteen ironplates. In the forward (backward) end-cap there are fourteen (twelve) detector
layers and iron plates. The iron plates also serves as a magnetic flux return for the solenoid and
provide interaction material in which 𝐾0

𝐿 mesons can shower hadronically. The total coverage
of the KLM (barrel + end-caps) is 20° < 𝜃 < 155°. The barrel KLMwas the first sub-detector
to be installed in Belle II in 2013. The end-caps were installed in 2014.
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Experimental tools

This study is performedwithin the context of the Belle II Analysis Software Framework (basf2)
[1, 40], with two key multivariate analysis (MVA) tools utilised throughout. In this chapter I
describe the two tools: fast boosted decision trees (section 5.1) and full event interpretation
(section 5.2). For a description of the operation and fundamental principles of the software
framework see section 10.2 of part II.

5.1 Fast boosted decision trees

Fast boosted decision trees (fBDTs) are an extension of traditional decision tree classifiers.
Decision trees (DTs) are simple classifiers that allow the dividing of a given phase space into
subsets relevant to the categories being classified. Figure 5.1 shows an example of a three level
decision tree, where the task is to identify signal (red) in the presence of some background
(blue) given some input variables 𝑥, 𝑦, and 𝑧. The values of the thresholds applied at each
node are adjusted during training, in which a sample of signal and background events are fed
into the tree with known labels (signal or background). The adjustments attempt to maximise
the separation gain between signal and background for each given sample. However, simple
decision trees are prone to overfitting of the training data and struggle to extrapolate well when
applied to new data. To combat this, in particular within the Belle II implementation, [41]
introduced a boosted component to the training procedure. A boosted decision tree (BDT)
constructs a series of shallow decision trees during the training stage. The restriction on the
depth of each shallow decision tree prevents overfitting by ensuring each individual DT is
only able to weakly classify the inputs. By combining many weak classifiers a robust, strongly
classifying decision tree can be constructed.

The fast in fast boosted decision tree simply refers to the CPU cache friendly implemen-
tation of fBDT which performs the training of the decision trees on each individual level
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Layer 1 x < 3

Layer 2 y < 1 z < 4

Layer 3 x < 1 z < 5 x < 9 y < 2

Terminal Nodes 0.1 0.2 0.3 0.8 0.4 0.7 0.5 0.9

Figure 5.1: A three layer decision tree using thresholds to classify sections of the input phase
space. Each level performs a binary decision until a final terminal node is reached [41]. The
numbers shown in the terminal nodes is the fraction of input data points that reach that node
which are signal, e.g. 0.9 means 90% of all inputs to reach that node are signal events.

sequentially, making use of the memory access patterns of modern CPUs. Additional pre-
processing and instruction-level parallelism is performed to provide further speedups and are
described in detail in [41].

5.2 Full event interpretation

Akeypart ofmissing energy studies atBelle II, those containingneutrinos in thefinal state, is the
ability to fully reconstruct the Υ(4𝑆) decay within the detector while also having knowledge
of the initial state of the Υ(4𝑆). This is what makes the Belle II experiment invaluable in
high energy physics research and distinguishes it from 𝐵 physics studies performed at hadron
colliders (e.g. LHCb).

The full event interpretation (FEI) [42] software is the tool usedwithin the Belle II software
to perform this full reconstruction of the Υ(4𝑆). The full FEI procedure is performed in six
sequential stages, shown in figure 5.2. Beginning with the reconstructed tracks and clusters,
FEI builds final state particle candidates. These are then combined in the following stages to
construct intermediate particles until finally a 𝐵 meson candidate is produced. FEI employs
a series of fast Boosted Decision Tree (fBDT) (section 5.1) to identify the likelihood of each
reconstructed candidate based on its properties and the previous stage’s output. To this effect
FEI is able to hierarchically reconstruct a candidate 𝐵 meson via a bottom-up approach.

Each stage in the FEI training is configurable along with the hyperparameters of the fBDTs
used. Two modes of training exist: generic and specific. Generic is the training of FEI on
simulated generic 𝐵 meson decays (Charged andMixed channels shown later in table 6.1).
This has the advantage that the training is agnostic to the signal process being searched for
in a particular analysis and can therefore be used by anyone needing FEI. For this purpose
two FEI generic trainings are performed centrally by the collaboration with eachMonte Carlo
campaign released (see section 10.3). Specific FEI training is the training of FEI on a particular
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signal channel, with the signal side 𝐵 meson being already reconstructed. The benefit here is a
training that is able to learn specifically the kinematics and subtle features of that particular
signal mode, making for a higher tag side reconstruction efficiency and purity. However, this
requires a large ((𝑂)(100𝑀) events) signal Monte Carlo sample and must be retrained for
every signal channel required. Given that each stage of the FEI training depends on the output
of the previous stage, training requires ∼ 1 week to complete, excluding validation, on a
specifically commissioned computing resource.

In addition to the generic and specific training modes, FEI may be further separated into
hadronic and semileptonic reconstructions. Hadronic reconstruction considers only the 𝐵
meson decay chains containing no leptons, excluding the case of decays involving a 𝐽𝜓 which
is detected via its ℓ+ℓ−(ℓ = 𝜇, 𝑒) daughters. Since all final state particles of the 𝐵 decay are
detectable and reconstructed its four-momentum is measured allowing for a very pure sample
to be extracted. Hadronic 𝐵 decays, however, have only a branching fraction of 𝒪(10−3) and
so this FEI sample suffers from a low reconstruction efficiency. Semileptonic reconstruction
deals with only the 𝐵 → 𝐷ℓ𝜈 and 𝐵 → 𝐷∗ℓ𝜈 decay channels. These decays have a higher
branching fraction and the lepton daughter of the𝐵 has in general a highmomentum allowing
for a higher overall reconstruction efficiency than the hadronic FEI. The trade-off for the
higher efficiency is the loss of purity, with the presence of an undetectable neutrino in the
final states meaning the four-momentum of the 𝐵 is not able to be fully reconstructed and
therefore signal decays better selected for.

Overall the FEI is able to reconstruct over 100 individual sub-decay chains, resulting in
a combined 𝒪(104) possible complete 𝐵 meson decays. The output of the FEI is a list of
reconstructed 𝐵 meson candidates for each input event. Each candidate has an associated
signal probability (sigProb) which indicates the predicted likelihood that the associated 𝐵
meson was correctly reconstructed.

For this study the generic training of hadronically tagged 𝐵0 and 𝐵+, trained centrally
by the Belle II collaboration on 10 × 108 events each. At the time of writing this is the latest
available training, the use of updated and specific trainings is discussed in section 8.1. The
correct reconstruction efficiencies of these trainings are 0.42% for 𝐵+ decays, and 0.24%
for 𝐵0. The difference between neutral and charged reconstruction efficiency is due to the
difference in coverage of decay modes between the 𝐵0 and 𝐵+ in FEI. The total branching
fraction coverage of the neutral 𝐵0, when taking into account decay modes of the daughters
of the 𝐵 mesons, is only about 60% that of the reconstructed charged 𝐵+.
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Figure 5.2: Hierarchical reconstruction approach used by FEI [42]. Reconstruction runs from
top to bottom sequentially to create 𝐵 meson candidates from a range of combinations of
intermediate particles.



Chapter 6

Experimental Procedure

In order for a branching fraction to be measured, the signal 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes must be
identified amongst all 𝑒+𝑒− collision events. In this study I use Monte Carlo simulations to
tune the analysis for identifying and isolating the signal and rejecting the non-signal (back-
ground) events. To achieve this a large simulation sample is required. The two invisible
neutrinos in the final state necessitates using information about of the second 𝐵 meson in the
𝑒+𝑒− → Υ(4𝑆) → 𝐵�̄� process.

6.1 Data Sample

The bulk of Monte Carlo (MC) samples used in this study are generated centrally by the
Belle II collaboration as part of the so-called ninthMC production campaign (MC9). This
includes all of the background categories described in table 6.1, as well as the two 𝐾∗ signal
modes: 𝐵 → 𝐾∗+𝜈 ̄𝜈 and 𝐵 → 𝐾∗0𝜈 ̄𝜈. The 𝐾∗+ decays generically in simulation, with
roughly 66.6% going to 𝐾0𝜋+ and 33.2% to 𝐾+𝜋01. The 𝐾∗0, however, is restricted to
decay exclusively to 𝐾+𝜋−, which makes up only 66.57% of the total expected 𝐾∗0 standard
model decays. I account for this factor in the branching fraction upper limit calculations in
section 7.1.2. The two unexcited 𝐾 signal modes, 𝐵 → 𝐾+𝜈 ̄𝜈 and 𝐵 → 𝐾0

𝑆𝜈 ̄𝜈, I simulated
using local computing resources. All of the background channels used in this study correspond
to 0.8 ab−1 integrated luminosity equivalent, with the exception being themixed backgrounds,
which at the time of this study contained only 0.672 ab−1 worth of events available. This
missing quantity I account for in the efficiency estimate performed later in this chapter. It
is convenient to group the mixed and charged backgrounds together under the name 𝐵𝐵
Background, and the uubar, ddbar, ccbar, and ssbar together as continuum. This is due to these
two groups’ components having similar topological decay features. All events in this thesis
are simulated using the Belle II Analysis Software Framework (basf2) version release-00-09-01.
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See section 10.2 for a detailed explanation of the software.
It is instructive at this point to make a quick calculation of the approximate number

of signal events that can be expected to be produced at Belle II if I assume Standard Model
branching fractions. This will provide some context for the final reconstruction efficiencies at
the end of this chapter in section 6.2.5). Using the values from table 3.1 along with the number
of 𝐵�̄� pairs expected per ab−1 from table 6.1, I obtain the per ab−1 mean values shown in the
latter table. The result is a 𝒪(106) difference between signal and background events present,
and indicates the level of the difference between these categories’ efficiencies to aim for.

A crucial difference between the study I perform in this thesis and the two previous Belle
studies (section 3.5) is the discrepancy inMonte Carlo simulation volumes used. The Belle
2013 hadronic tag study used five times the nominal data luminosity to prepare the analysis,
while the Belle 2017 semileptonic tag study used ten (six for continuum). The background
shape uncertainty, determined from simulation, was a major contribution to the systematic
uncertainty in these studies. The statistical uncertainty, however, dominated the signal yield
measurements. The increased data volume at Belle II is expected to reduce these statistical
uncertainties such that the systematic uncertainties will become relevant. Therefore, I expect a
significant increase in the Monte Carlo background simulation to be needed in order for this
study at Belle II to be performed at a comparable or improved level to the previous. Indeed in
the conclusion of this half of the thesis I find exactly that, that the currently available Monte
Carlo simulation volume is simply insufficient.

Finally, tree-level 𝐵+ → 𝜏+𝜈𝜏(𝜏+ → 𝐾+ ̄𝜈𝜏) processes [43, 44] have the same final state
signature as 𝐵+ → 𝐾+𝜈 ̄𝜈. These are not considered explicitly in this study as they are not
expected to contribute significantly to current backgrounds; the overall branching fraction
is of the order 10−7. Instead they are included in the background simulation and I model
them as such. A discussion of when they might be relevant and how they may be considered
in future is included in section 8.1. There I also explained why they are of greater significance
to other 𝐵 → ℎ𝜈 ̄𝜈 channel searches. x

6.2 Signal Event Selection

I perform the process of selecting signal events in several logically separate stages: first I re-
construct generically decaying 𝐵 mesons, labelled 𝐵tag, using the Full Event Interpretation
(FEI) software [42], then I reconstruct a signal-side 𝐵 meson, labelled 𝐵sig, pair it with the
generic candidates to produce an Υ(4𝑆). Finally I apply a series of selections to reduce the
background events while retaining as many signal events as possible. As the Full Event Interpre-
tation software requires by a significant margin the largest computing time and has the lowest
single retention rate (𝒪(1%)), it is performed first. The reconstructed 𝐵tag candidates are

1The remaining 0.2% decays to 𝐾+𝛾 and is ignored as negligible in the reconstruction in this study.
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Table 6.1: MCproduction categories, expectednumber of event per ab−1 integrated luminosity,
and corresponding luminosity equivalents of events simulated. An 𝑋 in the simulated decay
indicates any allowed StandardModel decay products (generic decay).

Channel Simulated Decay Expected per ab−1 Simulated ab−1

Signal (𝐾+) 𝐵+ → 𝐾+𝜈 ̄𝜈 5.29 × 103 9.43 × 102
Signal (𝐾0

𝑆) 𝐵0 → 𝐾0
𝑆𝜈 ̄𝜈 2.32 × 103 4.2 × 103

Signal (𝐾∗+) 𝐵+ → 𝐾∗+𝜈 ̄𝜈 11.56 × 103 3.46 × 103
Signal (𝐾∗0) 𝐵0 → 𝐾∗0𝜈 ̄𝜈 10.14 × 103 3.94 × 103
Charged Υ(4𝑆) → 𝐵+𝐵− → 𝑋 565.4 × 106 0.8
Mixed Υ(4𝑆) → 𝐵0�̄�0 → 𝑋 534.6 × 106 0.672
uubar 𝑒+𝑒− → 𝑢�̄� 1605 × 106 0.8
ddbar 𝑒+𝑒− → 𝑑 ̄𝑑 401 × 106 0.8
ccbar 𝑒+𝑒− → 𝑐 ̄𝑐 1329 × 106 0.8
ssbar 𝑒+𝑒− → 𝑠 ̄𝑠 383 × 106 0.8

saved as output with only loose selection criteria enforced (sec 6.2.1). This process is referred to
as skimming within Belle II, and for the data samples produced as part of MC9 it is performed
centrally by a skimming coordination group within the collaboration.

Throughout the remainder of this study I divide the reconstructed signal event candidates
into two categories: signal and self-crossfeed (SCF). Candidates reconstructed and displayed
as signal correspond to correctly reconstructed signal 𝐵 mesons. For these the reconstructed
particles have been cross-checked with the Monte Carlo simulation information to confirm
that the reconstructed particles and their combination into parent particle candidates are
correct. Self-crossfeed I use to refer to those candidates reconstructed from signal events
incorrectly, either through the misidentification of a final state particle, for example the 𝐾+

in 𝐵+ → 𝐾+𝜈 ̄𝜈 in fact being a misidentified 𝜋+, or the incorrect combination of particles
when reconstructing decaying candidates, for example the kaon in the aforementioned example
actually originating from the tag-side 𝐵 meson but falsely attributed to the signal side 𝐵 decay.

6.2.1 Hadronic tagging

In the case of this study, where the signal process contains at most two detectable final state
particles (FSPs), I inspect what remaining particles have been detected as a means of verifying
that the event did indeed contain a 𝐵 → 𝐾(∗)𝜈 ̄𝜈 signal process. The goal is to look for events
which, after the entireΥ(4𝑆) decay chain has been reconstructed, contain nothing else within
the detector aside from beam-related backgrounds. To do this I utilise the Full Event Inter-
pretation (FEI) software package [42] included in the Belle II Analysis Software Framework
(basf2), described in detail in section 5.2. The FEI software attempts to perform a hierarchical
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reconstruction of a generically decaying 𝐵 meson from the bottom up via 𝒪(1000) possible
combined decay channels. The goal being to cover the largest possible total branching fraction
of neutral and charged 𝐵 decays, providing the largest possible reconstruction efficiency.

Given the vast volume of MC data and that many analyses make use of FEI, it is practical
to commission a single global processing of backgroundMCwith loose selections applied to
produce the subset of output files containing reconstructed 𝐵tag candidates. In the aforemen-
tioned commissioned skims used in this study a pre-trained FEI network is used. The training
was performed on the previousMonteCarlo production campaign, known asMC7, whichwas
simulated with an earlier basf2 version (release-00-07-02). The commissioned FEI training and
selections are applied identically to the locally simulated 𝐾+ and 𝐾0

𝑆 signal channels as well.
For both the charged (𝐵+) and neutral (𝐵0) hadronic reconstruction channels, requirements
were placed on the following observables (see glossary for details)

nTracks ≤ 12

𝑀bc > 5.24GeV/c2

|Δ(𝐸)| < 0.2GeV

sigProb > 0.001

where nTracks is the total number of reconstructed charged particles in the event, 𝑀bc is the
beam-constrained mass of the reconstructed 𝐵tag defined as 𝑀𝑏𝑐 = √𝐸2

𝑏𝑒𝑎𝑚 − 𝑝2
𝐵tag

, Δ(𝐸)
is the reconstructed energy difference Δ(𝐸) = 𝐸𝐵tag

− 𝐸𝑏𝑒𝑎𝑚, and sigProb is the correct-
reconstruction probability output by FEI. The selections are included in the commissioned
skims. Figure 6.1 shows an example of the characteristic shapes of the𝑀bc,Δ(𝐸), and sigProb
for correctly and incorrectly reconstructed𝐵tag candidates. The skim selections applied exclude
regions outside those dominated by correctly reconstructed 𝐵tag candidates. Note that no
best-candidate selection, i.e. selection of at most a single signal candidate per event, has been
made at this stage of this analysis. The variables used in these skim selections are optimised
further in section 6.2.5 where appropriate.

The resulting event-level efficiencies for the given selections used in each FEI skim channel
are shown in table 6.2. These include events with incorrectly reconstructed candidates. The
simulated signal channels in general have a lower multiplicity (lower total number of particles
present), which translates to a lower number of possible combinations that can be used to
make up 𝐵tag candidates. The reconstructed 𝐵0 efficiencies are lower than the 𝐵+ due to the
lower branching coverage of 𝐵0 in FEI.
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Figure 6.1: Example of characteristic kinematic distributions of correctly (True Btag) and in-
correctly (False Btag) used tomotivate FEI skims (not stacked). Events shown are reconstructed
from hadronic FEI 𝐵+ skims.
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Table 6.2: FEI skim event retention rates of each channel reconstructed, before signal-side
reconstruction (sec. 6.2.2) has been performed.

Channel Had 𝐵+ Had 𝐵0

𝐾+ 3.10% –
𝐾0 – 1.30%
𝐾∗+ 3.26% –
𝐾∗0 – 1.27%
Mixed 5.62% 4.25%
Charged 8.35% 3.82%
𝑢�̄� 6.86% 3.78%
𝑑 ̄𝑑 7.20% 3.39%
𝑐 ̄𝑐 12.0% 5.73%
𝑠 ̄𝑠 6.13% 2.95%

6.2.2 Signal side reconstruction

The next step in signal selection is to identify the signal-side 𝐵 meson candidates. In all
four signal channels of this study the 𝐵 meson has only a single detectable daughter. In the
case of the two excited kaons and the 𝐾0

𝑆, the kaons themselves have two daughters that
must first be reconstructed. Therefore I begin the signal side reconstruction with the four
kaon reconstructions. I reconstruct the 𝐾+ with requirements on the particle ID and 𝜒2

probability such that they have a 95% reconstruction efficiency. The particle IDutilises particle
likelihood information, e.g. from Čerenkov rings in the ARICH detector (section 4.5.2), to
distinguish between particle types and determine how likely the reconstructed particle is indeed
a kaon.. The 𝜒2 track fit likelihood allows suppression of incorrectly reconstructed charged
tracks. 𝐾0

𝑆 are reconstructed during the reconstruction stage of Monte Carlo simulation
(Chapter 10) from charged pion pairs and are provided as-is by basf2. This process is known
in Belle II as 𝑉 0-like particle reconstruction, details of how it is performed are given in [35]. I
require reconstructed 𝐾0

𝑆 to be within 50MeV of the nominal 𝐾0
𝑆 mass and have daughters

which form a valid vertex (i.e. share the same origin). I reconstruct 𝐾∗+ candidates from a
combination of either𝐾+𝜋0 or𝐾0

𝑆𝜋+ pairs, with the mass 80MeV required to be within the
nominal mass. 𝐾∗0 candidates I reconstruct solely from a 𝐾+𝜋− pair, with a mass required
to be within 150MeV of the nominal 𝐾∗0 mass. For the kaon daughters of the 𝐾∗ modes, I
apply the same selection criteria as those used to reconstruct the unexcited signalmodes. I select
𝜋+ daughters with particle likelihoods and 𝜒2 requirements such that a 95% reconstruction
efficiency is achieved. I reconstruct the 𝜋0 daughters from photon pairs, with restrictions
on the reconstructed mass and individual photon daughter energies such that the 𝜋0 have a
40% reconstruction efficiency. Finally, each reconstructed kaon I attribute to a corresponding
parent 𝐵 meson with matching charge.
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6.2.3 Υ(4𝑆) reconstruction

The final step in the signal reconstruction is to produce anΥ(4𝑆) candidate for each event. To
do this, I pair every signal-side 𝐵 meson candidate with every tag-side 𝐵 candidate to produce
anΥ(4𝑆) candidate, with the pairing procedure ensuring that the paired signal and tag-side𝐵
mesons contain no overlapping daughter particles. The handling of event involving multiple
Υ(4𝑆) candidates is described in section 6.2.5.

What remains in the detector, excepting the Υ(4𝑆) candidate, I reconstruct in the form
of remaining charged tracks and ECL hits and referred to as the rest of event (ROE). I re-
quire charged tracks in the ROE to have a point of closest approach within the interaction
region, with 𝑑𝑟 < 2 cm and |𝑑𝑧| < 4 cm (see glossary on page 146 for details). These track
requirements remove secondary particles originating from long-lived particle decays (which
may result in double counting of particles) or detector interactions. The remaining tracks
should originate from the primary 𝐵 meson decays. This does, however, risk excluding 𝑉 0

particles (𝐾0
𝑆, 𝜆0, converted 𝛾). At the time of writing work is underway within the Belle II

collaboration to optimise the ROE track filtering with the use of trained decision trees and if
possible should be included in future iterations of this analysis. I place restrictions on the ECL
clusters considered in the ROE, outlined below. The outcome of this is the extraction of the
fit variable 𝐸ECL, defined as

𝐸ECL = 𝐸obs − 𝐸rec, (6.1)
where𝐸𝑜𝑏𝑠 is the total energy observed in the ECL, and𝐸𝑟𝑒𝑐 is the energy used to reconstruct
the Υ(4𝑆) candidate. For a signal event, since I have reconstructed every detectable particle
that took part in the decay, there should be nothing left in the detector except particle origi-
nating from beam-related backgrounds. For a background event, I expect additional particles
remaining on top of those from beam background or a reconstructed Υ(4𝑆) signature not
like that of a signal event. Therefore the reconstructed rest of event should have restrictions
such that the beam backgrounds are excluded as best as possible, and only particles originating
from the initial 𝑒+𝑒− collision (primary particles) remain. The resulting 𝐸ECL should then
show signal events peaking sharply at 0GeV and backgrounds having a non-zero-peaking
structure2. The 𝐸ECL energy in this study is specifically the neutral extra energy. I place
track restrictions on the ROE during the selection optimisation stage that discard any signal
candidates containing charged particles not associates with the reconstructed Υ(4𝑆). An
example of the characteristic shape of 𝐸ECL is shown in figure 6.2. Here the expected peaking
signal in the lowest energy bin can be seen. Further information about the ROE useful for
signal-background discrimination is also obtained, with the relevant variables introduced in
section 6.2.5.

To find the optimal ROE requirements for ECL clusters I tested five combinations of
varying ECL cluster timing, ECL cluster error timing, and cluster energy, E, against a baseline

2Due to the high statistical uncertainty of the previous experiments’ measurements there is no clear structure
for background 𝐸ECL distributions.
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Figure 6.2: Observed 𝐸ECL from previous Belle hadronically tagged study [23] for the
𝐵+ → 𝐾+𝜈 ̄𝜈 signal channel. The red line is the fitted signal and the blue shaded region
the background fit. The black data points are the observed events from data and the black line
is the combined fit.

photon requirement. ECL cluster timing is the difference in nano-seconds between the bunch
crossing (𝑒+𝑒− collision) and ECl hit. As the photons from beam-backgrounds are not associ-
ated with the bunch crossing I expect them to show a relatively uniform distribution across
the ECL cluster timing measurements. ECL cluster error timing is the ECL cluster’s timing
uncertainty range that contains 99% of true photons, and E is simply the total energy deposited
in the ECL cluster. I fix the requirement on charged tracks to the track origin requirements
outlined above. I obtain the baseline requirements for ECL hits from the physics photon
reconstruction requirements (see the neutral particle identification section of [35]) which are
as follows:

• The ECL cluster is hypothesised during the reconstruction stage to come from a photon,
i.e. no charged tracks are associate with the cluster as is the case for electrons.

• The cluster is contained entirely within the acceptance region of the tracking detectors
(deg 17 < 𝜃 < deg 150). This allows detection of clusters originating from charged
particles.

• The E1E9 energy concentration ratio is required to be greater than 0.4 or the total
energy of the photon greater than 75MeV. This is the ratio of energy deposited in the
central (highest energy) crystal in a cluster to the square of 9 crystals centred around
that central crystal. Photons originating from the primary decay are expected to have a
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narrower spread of energy than those from beam-related background photon showers
[35].

• The total energy of the photon is greater than 50MeV if it is detected in the barrel
or backward end-cap, and greater than 75MeV if in the forward end-cap. Photons
originating from the primary physics event are expected to have in general a higher energy
spectrum than those from beam-backgrounds. The asymmetric energy of SuperKEKB
means that beam-backgrounds are expected to have a larger impact on the forward
region of the detector, hence the higher minimum energy threshold.

This baseline filter is labelled asUpsilonROE_0 for the remainder of this thesis.

To motivate the various ROE requirements explored I use a test data sample of charged
generic𝐵+𝐵− pair decays. Figure 6.3 shows the relation between ECL cluster timing and ECL
cluster error timing forECLclusters reconstructed as photons. Bluepoints are primaryphotons
originating from the products of the 𝑒+𝑒− collision and red are the backgrounds I want to filter
out. From inspection, a linear function can be used to separate the two classes of reconstructed
photons. The three linear filters of |ECL cluster timing| < 𝑎 × ECL cluster error timing are
shown on the same figure, with 𝑎 = 1 (yellow), 0.5 (green), and 0.1 (orange). Figure 6.4
shows the reconstructed energies, E, for the same two classes of photons. Comparing this with
the ECL cluster timing in figure 6.5, it can be seen that the background clusters that can be
filtered using ECL cluster timing are predominantly in the lower energy region. Therefore
I also test a conditional threshold on the energy, keeping all clusters above 0.1GeV. This is
shown on the same figure with the green line.

The different filters tested, all added as additional requirements to the baseline, and their
associated names are:

UpsilonROE_1 |ECL cluster timing| < ECL cluster error timing

UpsilonROE_2 |ECL cluster timing| < 0.5 × ECL cluster error timing

UpsilonROE_3 |ECL cluster timing| < ECL cluster error timing or E > 0.1GeV

UpsilonROE_4 |ECL cluster timing| < 0.5 × ECL cluster error timing or E > 0.1GeV

UpsilonROE_5 |ECL cluster timing| < 0.1 × ECL cluster error timing or E > 0.1GeV

Using the figure of merit (FOM) 𝑆√
𝐵 , where 𝑆 is the number of reconstructed primary

photons, and 𝐵 the number of photons from beam-backgrounds, I obtain the values for each
filter shown in table 6.3. The ROE requirement categoryUpsilonROE_2 shows the best ratio
of retained good clusters to rejected background clusters. Therefore for the remainder of this
study I apply this ROE filter.
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Figure 6.3: Comparison of ECL cluster timing to ECL cluster error timing for primary (blue)
and background (red) photons. The lines show the 𝑎 = 1 (yellow), 0.5 (green), and 0.1
(orange) linear filter gradients as described in the text.
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Figure 6.4: Distribution of ECL cluster energies for primary (blue) and background (red)
photons. The green line shows the conditional threshold at 0.1GeV applied to several tested
ROE filters.
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Figure 6.5: Comparison of ECL cluster energy to ECL cluster timing for primary (blue) and
background (red) photons. The green line shows the conditional threshold at 0.1GeV applied
to several tested ROE filters.

Table 6.3: Resulting figure of merit ( 𝑆√
𝐵 ) for each rest of event filter tested in section 6.2.3.

UpsilonROE_0 is the benchmark, with UpsilonROE_2 obtaining the best results.

Filter Figure of merit

UpsilonROE_0 147
UpsilonROE_1 218
UpsilonROE_2 223
UpsilonROE_3 146
UpsilonROE_4 190
UpsilonROE_5 197
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Figure 6.6: Relative cross sections of 𝑒+𝑒− → 𝑞 ̄𝑞 transitions at Belle II.

Spherical Jet-like

𝑒+𝑒− → Υ(4𝑆) → 𝐵�̄�

𝑒+𝑒− → 𝑞 ̄𝑞

Figure 6.7: Typical 𝐵�̄� and continuum decay shapes.

6.2.4 Continuum suppression

Continuum represents the dominant background at Belle II due to the significant cross section
of 𝑒+𝑒− → 𝑞 ̄𝑞 transitions, where 𝑞 is one of 𝑢, 𝑑, 𝑐, 𝑠. Figure 6.6 shows the relative cross
sections of each quark pair production channel. It is named as such because of its continuous
presence across the entire energy range explored at SuperKEKB. Figure 4.1 shows the Υ mass
energy spectrum. The red dotted line indicates the Υ(4𝑆) production threshold, the purple
peak the Υ(4𝑆) events which are the target of this study, and the grey shaded line the centre
of mass (CoM) energy of SuperKEKB at 10.58GeV. This CoM energy is roughly double the
𝐵 meson mass, therefore the production and hadronisation of two quarks lighter than the 𝑏
quark results in a relatively large excess kinematic energy in the decay products. This translates
to a jet-like decay shape of the 𝑞 ̄𝑞 in the centre of mass reference frame, an example of which
is shown in figure 6.7. The spherical decay of the 𝐵 meson pair can be used to distinguish
between continuum and Υ(4𝑆) events.
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To perform this distinction, I train a fast Boosted Decision Tree (fBDT) [41] on a series
of kinematic variables calculated from both the 𝐵sig and 𝐵tag daughters of the Υ(4𝑆). The
variables are the CleoCones [45], Kakuno-Super-Fox-wolfram moments [46], and thrust
vectors [47]. I pass the set of all of these variables for a given signal candidate into the fBDT
and a probability of the event not being continuum is returned. I perform the training on
approximately 𝒪(105) signal and 𝒪(106) background events. I then evaluate the trained
fBDTs on an independent sample containing roughly 10% of the number of training events.
Figures 6.8 and 6.9 show the receiver operating characteristic (ROC) curves for each of the four
signal channels’ trainings. The area under curve (AUC) shown in each ROC figure provides a
metric for quantifying the performance. All channels achieve excellent AUC scores, indicating
strong signal-continuum discrimination. I also check the trainings for signs of overfitting. The
ROC curve for the 𝐾0 channel appears to have a difference in classification ability between
training (blue) and validation (orange). Figures 6.10 and 6.11 shows the difference between
the fBDT prediction outputs for the training data set (light shaded) and the independent
validation set (dark crosses). Here the blue is for signal events and orange for continuum.
Underneath each plot is the difference between the training and validation outputs. I observe
no overfitting, with almost all outputs showing less than 1% difference. In the 𝐾0 channel
several bins show a difference of 2%, with the remainder less than 1%. Therefore, I accept
this difference, and in future iterations of this study when more Monte Carlo simulations are
available these trainings can be repeated on larger data sets to further reduce this difference.

Even though the input variables of the fBDT are calculated from both the 𝐵sig and 𝐵tag,
only information from the𝐵tag provides an accurate measure of the sphericity of signal decays.
This is because the reconstructed 𝐵sig has only one daughter (with at most two final state
particles) from which to calculate the kinematics. Therefore, I expect the training to also be
sensitive to 𝐵�̄� backgrounds as these will almost always produce an apparently non-spherical
𝐵tag decay shape. An example of the predictive output of the fBDT is shown in figure 6.12.
There not only does the continuum peak at zero as expected, but also both channels of the𝐵�̄�
background. The signal and self-cross-feed (SCF) both show similar shapes, with the correctly
reconstructed signal showing a smaller tail-end peak at zero, as expected. The other signal
channels show similar distributions.

6.2.5 Selection optimisation

In this study I perform a cut-based selection. I place upper and lower bounds on individual
variables useful for discriminating between signal and background events. The selection I
optimise after all of the previous reconstruction stages are performed. This allows simultaneous
optimisation of each cut to ensure maximum signal purity is achieved.

In total I select eight variables for optimisation. They describe the single kaon daughter
of the reconstructed 𝐵sig, the 𝐵tag, and the Υ(4𝑆) candidate individually. The variables
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(a) 𝐾0

(b) 𝐾+

Figure 6.8: Receiver operating characteristic (ROC) curves for fast boosted decision tree
(fBDT) trainings of𝐾0 and𝐾+ channels in continuum suppression training. The blue curve
shows the fBDT performance on the data used to train it and the orange curve shows the
performance on independent validation data. The values shown in the legend are the area
under curve (AUC) of both samples.
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(a) 𝐾∗0

(b) 𝐾∗+

Figure 6.9: Receiver operating characteristic (ROC) curves for fast boosted decision tree
(fBDT) trainings of 𝐾∗0 and 𝐾∗+ channels in continuum suppression training. The blue
curve shows the fBDT performance on the data used to train it and the orange curve shows
the performance on independent validation data. The values shown in the legend are the area
under curve (AUC) of both samples.
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(a) 𝐾0

(b) 𝐾+

Figure 6.10: Corresponding overtraining checks for trainings shown in figure 6.8. The blue
shows the fBDT performance on signal data and the orange shows the performance on back-
ground.
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(a) 𝐾∗0

(b) 𝐾∗+

Figure 6.11: Corresponding overtraining checks for trainings shown in figure 6.9. The blue
shows the fBDT performance on signal data and the orange shows the performance on back-
ground.
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Figure 6.12: Example fBDT prediction output when applied to 𝐵+ → 𝐾+𝜈 ̄𝜈 reconstructed
candidates. The values shown here are for candidates with the preliminary selections outlined
in section 6.2.5 applied.

describing the 𝐵sig daughter are:

𝑝CMS The reconstructed kaon momentum in the centre-of-mass (CoM) frame.
I expect Kaons originating from signal decays to be more energetic than those coming
from other 𝐵 meson decays, e.g. sub-decays involving a 𝐷 meson. Therefore I search
for a cut on the low-end.

𝐾daughter angle The cosine of the angle between the signal-side kaon daughters.
For correctly reconstructed kaons I expect this to peak at one, as the daughters will be
boosted in the flight direction of the parent kaon. For incorrectly reconstructed kaons,
I expect the daughter angles to be distributed more uniformly from −1 to 1.

ROE(𝐸) Energy remaining in the detector once the 𝐵sig is removed.
This is the same as the rest of event described in section 6.2.3 but applied to the 𝐵sig
only instead. I apply the same restrictions used in the optimised UpsilonROE_2 filter.
For signal events this should be physically limited to the rest mass of the 𝐵 meson, i.e.
everything else in the detector comes from the 𝐵tag. In practice the ROE filter is not
perfect and the optimal upper limit can be slightly higher.

Those describing the 𝐵tag candidate are:



50 CHAPTER 6. EXPERIMENTAL PROCEDURE

𝑀bc Beam constrained mass of the reconstructed 𝐵.
Defined as 𝑀𝑏𝑐 = √𝐸2

𝑏𝑒𝑎𝑚 − 𝑝2
𝐵, where 𝐸𝑏𝑒𝑎𝑚 =

√
𝑠

2 is half the initial beam energy,
and 𝑝𝐵 is the reconstructed three-momentum in the CoM frame. This allows an
invariant mass measurement of the reconstructed 𝐵 meson with the known energy of
the beam substituted for the measured energy of the 𝐵. For correctly reconstructed 𝐵
mesons this will peak at the nominal 𝐵 mass.

sigProb The signal probability given by the FEI reconstruction.
As this is a score by FEI of how likely it believes the 𝐵tag was correctly reconstructed
this is a natural addition to optimise selection for.

Finally, the variables describing the reconstructed Υ(4𝑆) are:

E Reconstructed energy of the Υ(4𝑆).
I expect this to be higher for a correctly reconstructed Υ(4𝑆), with only the energy
of the two signal-side neutrinos missing. For misreconstructions, for example missing
muons which escaped the detector, the total energy should be lower.

𝑓𝐵𝐷𝑇 Fast Boosted Decision Tree (fBDT) calculated probability of an event originating
from continuum or not.

𝐸miss + 𝑃miss The sum of the missing energy and three-momentum of the Υ(4𝑆) in the
centre of mass frame.
The𝐸miss (𝑃miss) is the difference between initial and reconstructed energy (momentum).
This is expected to be less correlated to the 𝜈 ̄𝜈mass than𝐸miss or𝑃miss alone [35] which
makes it a suitable selection for model independent analyses.

Note that 𝐾daughter angle is not available for 𝐾+ channel. The choice of these variables
is motivated in part by those used in previous analyses’ selections as well as those proposed
in 𝐵 → 𝐾(∗)𝜈 ̄𝜈 Belle II prospects estimates in [35]. Unlike the previous hadronic tagging
study performed at Belle, here I have not included selection cuts on Δ(𝐸) as tightening those
applied to the skims in section 6.2.1 appears to provide no benefit.

Examples of the characteristic shapes of each variable before selection optimisation are
shown in figs. 6.14 and 6.15 for the 𝐾0 channel. The shapes are similar for all other channels
and included inAppendixA (figs.A.1 toA.6) for completeness. The data used to generate these
shapes and used to perform the cut search discussed below includes the following preliminary
selections to reduce processing times:

• No remaining charged tracks present after Υ(4𝑆) extraction.
This utilises the rest of event charge track requirement from section 6.2.3 to ensure all
particles from the primary physics event were used in the Υ(4𝑆) reconstruction.
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• 𝑀bc > 5.265GeV/c2
Recalling the 𝑀𝑏𝑐 distribution from figure 6.1, the correctly reconstructed 𝐵tag candi-
dates lie almost entirely in this region.

• sigProb > 0.005
Similar to the 𝑀𝑏𝑐 motivation, this requirement excludes the false 𝐵tag dominated
region of sigProb.

Additionally, I only consider the low-energy region of the fit variable, 𝐸ECL < 1.0GeV, as
this will ultimately be the fitted region in Chapter 7. Overall these preliminary selections keep
approximately 75% of correctly reconstructed signal events from the initial FEI skims and
remove roughly 99.5% of background events.

The resulting distributions of number of Υ(4𝑆) candidates per event for each signal
channel after these preliminary selections is shown in figure 6.13. I have truncated the number
of candidates at ten for clearer visualisation. Signal (correctly reconstructed) is not shown as
there is trivially only one candidate at most per event. To handle events with multiple Υ(4𝑆)
candidates I perform a best candidate selection. I choose the candidate remaining after all
cuts have been applied with the highest FEI signal probability (sigProb) as the final signal
candidate. The sigProb ranking is performed by FEI such that only one candidate per rank
exists, i.e. two Υ(4𝑆) candidates with the same 𝐵tag daughter (and different 𝐵sig daughters),
are given adjacent ranks randomly. The cut on 𝑓𝐵𝐷𝑇 output ensures this is possible without
the 𝐵sig candidate being incorrectly chosen at a high rate. The result is no signal Monte Carlo
𝐾∗+ → 𝐾+𝜋0 events falsely chosen as 𝐵+ → 𝐾+ signal candidates, and 𝐾∗0 → 𝐾0

𝑆𝜋0

misreconstructed as 𝐵0 → 𝐾0
𝑆𝜈 ̄𝜈 only 8% of the time. The restriction placed on remaining

charged tracks removes the potential for overlap of 𝐵sig candidates with only charged final
state particles. Therefore no further 𝐵sig candidate selection is required.

One key veto present in the previous semileptonic tagging study at Belle [2] which I have
not applied is the discarding of events containing a 𝐾0

𝐿. At the time of this study no usable
𝐾0

𝐿 identification information has been developed for Belle II. This feature is under active
development and expected to be available by the beginning of phase 3 data taking in early 2019
[35].

I optimise the cut selections using a random search to maximise a figure of merit (FOM).
The FOM is calculated as

FOM = 𝑆√
𝐵

, (6.2)

where𝑆 is the number of signal events and𝐵 is the number of background events. I perform the
best candidate selection described above after each trialled cut and before the FOM calculation
in each step of the cut search. I perform the random cut search in eight iterations of 4096
randomly selected sets of cuts, with each iteration reducing the available cut parameter space to
focus in on the FOMmaximum. I repeat the cut search several times to reduce the chance of
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Figure 6.13: Normalised distribution of number ofΥ(4𝑆) candidates per event for each signal
channel after preliminary selections described in section 6.2.5 have been applied.



6.2. SIGNAL EVENT SELECTION 53

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pCMS (Gev/c)

0.0

0.2

0.4

0.6

0.8

nE
ve

nt
s (

no
rm

al
ise

d)

Signal
SCF
BB Background
Continuum

0.0 0.2 0.4 0.6
fBDT output

10 2

10 1

100

101

102

nE
ve

nt
s (

no
rm

al
ise

d)

Signal
SCF
BB Background
Continuum

1.0 0.5 0.0 0.5 1.0
K daughter angle

0

1

2

3

4

5

6

7

nE
ve

nt
s (

no
rm

al
ise

d)

Signal
SCF
BB Background
Continuum

4 6 8 10
ROE(E) (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

nE
ve

nt
s (

no
rm

al
ise

d)

Signal
SCF
BB Background
Continuum

Figure 6.14: 𝐾0 hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots have been normalised to show relative number of events across
the full range.
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Figure 6.15: 𝐾0 hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots have been normalised to show relative number of events across
the full range.
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Table 6.4: Efficiency of each channel andmode after optimised cut selections andbest candidate
selection in section 6.2.5 have been applied.

Channel Signal SCF Background Continuum

𝐾+ 8.71 × 10−4 3.98 × 10−4 2.31 × 10−7 3.19 × 10−8

𝐾0 2.15 × 10−4 3.34 × 10−4 2.96 × 10−8 3.36 × 10−10

𝐾∗+ 1.05 × 10−4 4.78 × 10−5 6.48 × 10−8 1.11 × 10−8

𝐾∗0 3.17 × 10−4 1.11 × 10−4 1.39 × 10−7 1.75 × 10−8

Table 6.5: Belle 2013 hadronic tag [23] efficiencies. As no official numbers are given for the
background efficiencies I have estimated them from the total number of reconstructed events
minus the mean of the reconstructed signal events.

Channel Signal All backgrounds

𝐾+ 5.68 × 10−4 3.92 × 10−8

𝐾0 0.84 × 10−4 2.85 × 10−9

𝐾∗+ 1.47 × 10−4 2.72 × 10−8

𝐾∗0 1.44 × 10−4 1.30 × 10−8

identifying a local FOMmaximum and the resulting efficiencies (after best candidate selection)
are shown in table 6.4. The efficiencies of the previous 𝐵 → 𝐾(∗)𝜈 ̄𝜈 hadronic tag study
performed at Belle [23] are shown in table 6.5 for comparison. This provides a sanity check that
the FEI and cuts are performing at a reasonable efficiency level, recalling the signal-background
event volume difference discussed in section 6.1. As no official efficiencies for the backgrounds
were given from the previous study, I have estimated the combined background efficiency
values shown in table 6.5 from the total number of reconstructed events minus the mean of
the reconstructed number of signal events. The optimised cut values for each signal channel
are shown in Appendix B.

Comparing the efficiencies for both signal and background, this study is performing at
a comparable level to the previous. The efficiencies of this study are all marginally higher
than that of the previous, likely due to the significantly increased beam-related backgrounds
counterbalancing the improved reconstruction efficiency of the FEI tagging algorithm. The fit
results in Chapter 7 give a more quantitatively meaningful comparison as the efficiencies do
not account for the distributions of the fitted 𝐸ECL.

Applying the optimised cuts to the full set of Monte Carlo events, the resulting 𝐸ECL
distributions are shown in figs. 6.16 and 6.17. Each channel in the legends show the number
of candidates remaining from the original event volumes simulated in table 6.1. Inspecting the
shapes of each channel in 𝐸ECL I can verify that they match expectations. The signal shows
the characteristic peak at zero, with the non-zero tail due to imperfect requirements placed on
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the rest of event ECL clusters. Due to the requirement that no tracks remain in the event after
theΥ(4𝑆) has been reconstructed, it is reasonable that the ROE signature of the self-crossfeed
will be similar to that of the signal. They are still signal events and so by definition are cases
in which the signal side kaon was falsely attributed to the the 𝐵tag, and correspondingly a
kaon from the 𝐵tag was falsely attributed to the 𝐵sig. This type of misreconstruction of the
SCF is independent of the rest of event contents. The background shapes all appear to have
non-zero-peaking structures as expected. The low number of remaining events, however,
makes the interpretation of any parametrisable shape difficult. All previous studies suffered
from a similar problem, despite having significantly larger Monte Carlo simulation sample
sizes, and opted for histogram templates to describe the background shapes. The 𝐾0 channel
has no background events remaining in the higher energy region of 𝐸ECL. This is due in part
to the lower volume of Monte Carlo mixed background simulation available (the dominating
𝐵𝐵 background for the neutral signal channels), as well as the 𝐾0

𝑆 channel having a much
better background suppression than all other channels. A similar outcome regarding the latter
point was seen in the previous hadronic tag study at Belle, with the 𝐾0

𝑆 channel having both
the lowest signal and background efficiencies. I believe this is due to a combination of the FEI
hadronic 𝐵0 reconstruction having lowest retention rate, the 𝐾0

𝑆 being only reconstructed
from two charged pions withℬ(𝐾0

𝑆 → 𝜋+𝜋−) = 69.2%, and𝐾0
𝑆 having a flight time which

is used to check for a valid decay vertex during its reconstruction. The last point reduces the
number of combinations of charged pion daughters that can produce a 𝐾0

𝑆 candidate.
To check the impact that the choice of rest of event filter has on 𝐸ECL I inspect the change

in𝐸ECL when the baseline UpsilonROE_0 and second-best performingUpsilonROE_1ROE
filters from section 6.2.3 are applied. Figure 6.18 shows the changes to 𝐸ECL for signal and
background events separately in the𝐾+ channel, which canbe comparedwith figure 6.16b. All
channels show a shift towards a highermeasured𝐸ECL as theROE restrictions are relaxed. This
indicates that the measurement will be highly sensitive to which filter is applied, or conversely,
themodelling of𝐸ECL fromMonteCarlo relies heavily on the simulation accurately describing
the beam-related backgrounds at Belle II. Given the extent of background underestimation
found in [33], it’s likely they will be even higher still than expected in phase 3.



6.2. SIGNAL EVENT SELECTION 57

0.0 0.2 0.4 0.6 0.8 1.0
EECL (Gev)

0

100

200

300

400

500

600

nE
ve

nt
s

SCF (1670)
Signal (1076)

0.0 0.2 0.4 0.6 0.8 1.0
EECL (Gev)

0

1

2

3

4

5

6

nE
ve

nt
s

ssbar (1)
B0B0 (23)
B+B- (1)

(a) 𝐾0

0.0 0.2 0.4 0.6 0.8 1.0
EECL (Gev)

0

200

400

600

800

1000

1200

nE
ve

nt
s

SCF (1844)
Signal (4038)

0.0 0.2 0.4 0.6 0.8 1.0
EECL (Gev)

0

10

20

30

40

50

nE
ve

nt
s

ssbar (25)
ccbar (31)
ddbar (11)
uubar (28)
B+B- (203)

(b) 𝐾+

Figure 6.16: Resulting 𝐸ECL shapes (stacked) after cuts maximising the FOM 𝑆√
𝐵 have been

applied. Binning is selected to best demonstrate the distributions based on remaining number
of events.
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Figure 6.17: Resulting 𝐸ECL shapes (stacked) after cuts maximising the FOM 𝑆√
𝐵 have been

applied. Binning is selected to best demonstrate the distributions based on remaining number
of events.
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Figure 6.18: Example of changes to 𝐸ECL in the 𝐾+ channel for different rest of event restric-
tions in the signal region (𝐸ECL < 1GeV). All histograms shown here are stacked. The top
row shows the second best performing ROE filter from the tests in section 6.2.3. The bottom
row shows the baseline filter. The left column shows the change to signal and self-crossfeed,
and the right to the individual background channels.



Chapter 7

Fitting

The branching fraction of each 𝐵 → 𝐾(∗)𝜈 ̄𝜈 channel is obtained by performing a fit to signal
and background in𝐸ECL. The goal of the fit is to extract the number of signal events present in
the sample, known as the signal yield. To do so I first create probability distribution functions
(PDFs) that model the signal and background contributions to 𝐸ECL individually (section
7.1). I then combine the PDFs with all shape parameters fixed except for a scaling factor of
each component that represents the individual yields (section 7.1.1). After this I validate the
combined PDFs in a series of toyMC test (section 7.2), and finally I estimate the expected fit
sensitivity on real data (section 7.2.2).

As no phase 3 (physics run) data for Belle II exists at the time of writing, and due to the
lack of enough backgroundMonte Carlo to draw statistically significant sensitivity estimates,
this fit is only able to provide a framework for preparing the final 𝐵 → 𝐾(∗)𝜈 ̄𝜈 measurement
when the volume of backgroundMonte Carlo increases and the beam backgrounds due to the
increased luminosity of Belle II are better understood.

7.1 Fit model

I expect𝐸ECL to peak at zero for signal and SCF candidates and show a flat or non-zero peak for
background. Given the indistinguishable shapes of signal and SCF, I fit both together with a
single parametrisation. Similarly, I combine all background channels into a single fit to combat
the high statistical uncertainty that comes from fitting each individually. Previous studies [2,
23] fit both the background and signal with histogram templates of MC, therefore for this
study I first try histogram templates as a fit method. Figure 7.1 shows the individual histogram
templates obtained fromMC for each of the signal channels. The blue shaded regions show
the background templates, and the red shows signal scaled to a comparable size for clarity. The
black line shows the combined fit to the data points, which contain the entire background
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MC sample after selection and a comparably sized random subset of signal MC events. I also
test the use of parameterised PDFs, using the expected shape of the signal to guide the PDF
selection. Figure 7.2 shows the resulting PDFs; for signal, I used an exponential function; for
background, I fit a kernel density estimator (KDE) as I don’t know what structure to expect.
The individual parametric fit components are included in Appendix D.

7.1.1 Yield fit

To extract the signal yield from observed events I perform a combined fit of both signal and
background. I fix each components fit parameters and add the individual PDFs together with
a scaling factor for each representing the yields,

𝑃fit = 𝑌sig𝑃sig + 𝑌bkg𝑃bkg , (7.1)

where 𝑌 are the individual yields and 𝑃 the PDFs. To find the 𝑌sig and 𝑌bkg parameters I
perform a binned extended maximum likelihood fit, with the likelihood given by

ℒ(𝜆) = 𝜆𝑁𝑒−𝜆

𝑁!

𝑁
∏
𝑖=1

𝑃fit , (7.2)

where 𝜆 is the sum of events predicted in each category, 𝑁 is the total number of observed
events.

To calculate the significance of the fitted signal yield, I perform the toyMC experiments as
described in section 7.2 with the simulated number of signal events set to zero and the repeat
the fits. Using Wilk’s theorem [48] with one degree of freedom, I extract the significance from
the square root of the difference in log likelihoods of the fits to samples with and without
simulated signal,

Significance ≡ √Δ(− log(𝐿)) = √2 log
ℒ𝑆+𝐵
ℒ𝐵

. (7.3)

7.1.2 Upper limit calculation

As none of the 𝐵 → 𝐾(∗)𝜈 ̄𝜈 transitions have been observed yet, it is reasonable to expect that
in the first years of operation of Belle II no significant signal will be observed. Therefore I
include a calculation of the signal yield upper limit at 90% confidence level (C.L.).

Following the test statistic prescribed by [49], I constructed a profile likelihood as the ratio

𝑞𝑌sig
= −2 ln(

ℒ(𝐸ECL; 𝑌sig, 𝜃′(𝑌sig))

ℒ(𝐸ECL; ̂𝑌sig, ̂𝜃(𝑌sig))
) . (7.4)
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Figure 7.1: Histogram templates (top) and parametric fits (bottom) obtained individually
from signal and backgroundMC. Red shows the signal fits, blue the background. The solid
black line shows an example of a combined fit to a sample of the MC (data points), along with
the pull of the fit below each.
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Figure 7.2: Histogram templates (top) and parametric fits (bottom) obtained individually
from signal and backgroundMC. Red shows the signal fits, blue the background. The solid
black line shows an example of a combined fit to a sample of the MC (data points), along with
the pull of the fit below each.
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𝑌sig is the upper limit on the signal yield being searched for, and 𝜃 represents the all other
parameters given 𝑌sig (nuisance parameters). In the denominator 𝑌sig and 𝜃 are fit as ̂𝑌sig and ̂𝜃
simultaneously tomaximise their respectiveℒ. 𝜃′(𝑌sig) is the conditional maximum likelihood
estimator, which maximises ℒ in the numerator for a given 𝑌sig. The ratio approaches one if

the hypothesised 𝑌sig agrees well with the data. The PDF 𝑓 (𝑞𝑌sig
∣𝑌sig) of 𝑞𝑌sig

can be used to
compute a p-value from

𝑝𝑌sig
= ∫

∞

𝑞𝑌sig,obs

𝑓 (𝑞𝑌sig
∣𝑌sig) 𝑑𝑞𝑌sig

, (7.5)

where 𝑌sig,obs is the actual number of fitted signal events from data. FromWilks [48] andWald

[50], for a sufficient test statistic 𝑓 (𝑞𝑌sig
∣𝑌sig) follows a 𝜒2 distribution, in this case for one

degree of freedom. I then compute the p-value such that the 90% C.L. is set at the highest
fitted 𝑌sig for which the p-value is not less than 0.10.

Once the upper limit on signal yield has been calculated I convert it to an upper limit on
the branching fraction to allow direct comparison with current upper limits and the Standard
Model predictions. The conversion is calculated as

ℬ𝑈𝐿 = 𝑌UL
𝜖sig𝑁𝐵�̄�𝑁lum

, (7.6)

where ℬUL is the branching fraction upper limit given observed signal yield 𝑁UL at integrated
luminosity𝑁lum, 𝜖sig is the signal reconstruction efficiency obtained in section 6.2.5, and𝑁𝐵�̄�
is the number of simulated 𝐵�̄� pairs.

7.2 ToyMC tests

To probe the upper limit and yield fit significance I perform a series of toyMC experiments
(sometimes referred to as pseudo-experiments) using the two fit models from section 7.1. The
ToyMC experiments involve the repeated simulation and fitting of the fit variable,𝐸ECL, based
on the individual signal andbackgroundfitmodels obtained fromMonteCarlo. The individual
yields of each component are simulated according to a Poisson distribution with expectation
values set according to standardmodel predictions. This allows the uncertainty in the expected
number of signal and background events to be included in the toyMC experiments.

The goal here is two-fold:

1. Check that the fit models chosen are robust enough to handle expected fluctuations in
the data from the simulation.
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2. Obtain an estimate of the fit sensitivity at varying luminosities of Belle II based on the
expected number of events assuming standard model (table 6.1).

For each signal channel I simulated 5000 toyMC experiments at each integer integrated
luminosity equivalent ranging form 1 - 25 ab−1. From these the pull distribution for each
channel was calculated to verify the fits. Following the success of these the branching fraction
upper limits and signal yield significance was calculated.

7.2.1 Fit robustness tests

To verify the robustness of the combined fit model, and check for fit biases, the pull distribu-
tions of the fitted signal and background yields are recorded. The pull is defined as

Pull = 𝑥 − 𝜇
𝜎

, (7.7)

where 𝑥 in this case is the measured (fitted) value of 𝑌sig, simulated with mean 𝜇 and standard
deviation 𝜎. In the case of no biases the pull will correspond to a Gaussian distribution with a
mean of zero and a standard distribution of one.

Figures 7.3 and 7.4 show the pull distributions resulting from fits to the toyMC exper-
iments at 1 ab−1 using histogram templates, and Figures 7.5 and 7.6 show the same using
the parametric models. All channels in the histogram fits except the 𝐾0 show a reasonable
agreement with a zero mean and unit standard deviation, with the agreement only increas-
ing at higher simulated luminosity equivalents. Figures E.1 to E.4 in Appendix E show the
corresponding histogram template pull distributions at 2 and 5 ab−1 for demonstration (𝐾0

has been neglected as the fit is unstable). The highest deviation appears to be in the signal
yield pull of the 𝐾∗0 channel, with a −0.067 mean. This corresponds to a consistent signal
yield underestimation by 6.7% of the standard deviation of the expected signal yield. This is a
relatively small effect and can reasonably be expected to diminish as Monte Carlo volumes are
increased, therefore I make no further corrections to it.

In the parametric fits it appears as though there is a consistent systematic bias towards
underestimation of the signal yield and a corresponding compensating overestimation of the
background yield in all channels. The minimum in signal being −0.11 in the 𝐾+ channel.
Therefore I include the parametric fits in the upper limit test purely for completeness. Until
a better understanding of the expected background shape can be obtained from increased
Monte Carlo background simulations, however, the parametric fits don’t appear to provide
any benefit over histogram templates.

The 𝐾0 histogram template appears to never produce a stable fit, regardless of the in-
tegrated luminosity simulated or the fit shapes used. My estimation is that this is an issue
arising entirely from the volume of background Monte Carlo simulations available for the
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hadronically reconstructed neutral 𝐵 mesons. Relative to the 𝐾∗0 signal channel, the 𝐾0

channel has a significantly lower background efficiency, i.e. a much higher purity resulting
from the selection optimisation in section 6.2.5. Therefore not only is there no information
about the contributions from continuum backgrounds, but the 24 𝐵�̄� background MC
events remaining provide too little information to fit a statistically significant shape to. In-
specting fig. 6.16a, there is no information remaining in the bins above 0.6GeV, resulting in a
background fit dependent heavily on the signal populated region of 𝐸ECL.

It is apparent at this point that the low volume of Monte Carlo simulated events is the
restricting factor for continuing preparation of this analysis. Without a good statistical under-
standing of the background contributions to 𝐸ECL, a stable fit, and hence branching fraction
limit, cannot be extracted. For completeness I have implemented and performed the upper
limit and signal yield significance scaling tests in the following section, however this study
provides primarily a strong motivation for significant increases in the Monte Carlo simulation
volume capacity of the Belle II collaboration. This point is discussed further in the Summary
(Chapter 8).

7.2.2 Upper limit scaling tests

The final tests in the first part of this thesis demonstrate the prediction of branching fraction
upper limits and signal significance scaling with integrated luminosity. To test how the sensi-
tivity scales a series of upper limit measurements can be made on the toyMC studies across a
range of integrated luminosities. In particular there is great interest in whether the updated
tag-side reconstruction algorithm is enough to combat the expected increase in backgrounds
due to the higher luminosity of Belle II compared with Belle.

Figures 7.7 to 7.9 show the results of the calculated upper limits from fits (blue lines) to
batches of toyMC experiments at integrated luminosities ranging from 1 ab−1 to 25 ab−1, as
well as the square of the yield fit significance (orange lines). This range is of course only covering
half of the data volume expected from Belle II, however a refined repeat of this sensitivity
study will be performed before measurement of real data whenmoreMonte Carlo simulations
and a better understanding of the backgrounds present in Belle II from results of calibration
tests become available. Hence the ranges shown here are simply chosen to demonstrate that
the upper limit and signal yield scale as expected with the data volume. The green lines show
the current best limits, and the red the best limit from previous hadronic tag experiments.
The shaded regions show the uncertainty due to statistical uncertainties, which at 1 ab−1 are
𝒪(1) relative to the branching fraction uncertainty. The resulting values of all scaling tests are
included in tables F.1 to F.3 in Appendix F. From the large uncertainties it is not possible to
determine whether the analysis performs better or worse than the previous hadronic tag. It
does appear to be within the same order of magnitude at 1 ab−1 (recall the previous hadronic
tag studies used less than 1 ab−1), which indicates the overall procedure is working as expected.
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Figure 7.3: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 1 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Figure 7.4: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 1 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Figure 7.5: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 1 ab−1

luminosity equivalent using parametric fit models. The left plots with blue data points are the
results of the signal yield fits, and the right plots with red data points show the background
yield fits. The results here are for the parametric fits only.
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Figure 7.6: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 1 ab−1

luminosity equivalent using parametric fit models. The left plots with blue data points are the
results of the signal yield fits, and the right plots with red data points show the background
yield fits.



7.2. TOYMCTESTS 71

5 10 15 20 25
Luminosity equivalent (ab 1)

1

2

3

4

5
 u

pp
er

 li
m

it
1e 5

 upper limit
 UL curr. best
 UL had. best
( log(L)) significance

0

1

2

3

4

5

6

7

(
lo

g(
L)

) s
ig

ni
fic

an
ce

(a) Histogram template fits
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(b) Parametric (exponential + KDE) fits

Figure 7.7: Expected branching fraction upper limits at 90% C.L. obtained from toyMC
studies performed at varying luminosity equivalents for the 𝐾+ signal mode. The blue line
shows the mean of the fitted upper limits fromMC, red the best upper limit given by previous
hadronic tag studies, green the current world best upper limit from either hadronic or semilep-
tonic tagging studies, and orange the mean significance squared of the observed signal yield.
Shadings indicate one standard deviation due to statistical uncertainties alone.
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Figure 7.8: Expected branching fraction upper limits at 90% C.L. obtained from toyMC
studies performed at varying luminosity equivalents for the 𝐾∗+ signal mode. The blue
line shows the mean of the fitted upper limits from MC, red the best upper limit given by
previous hadronic tag studies, green the current world best upper limit from either hadronic
or semileptonic tagging studies, and orange the mean significance squared of the observed
signal yield. Shadings indicate one standard deviation due to statistical uncertainties alone.
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Figure 7.9: Expected branching fraction upper limits at 90% C.L. obtained from toyMC
studies performed at varying luminosity equivalents for the 𝐾∗0 signal mode. The blue
line shows the mean of the fitted upper limits from MC, red the best upper limit given by
previous hadronic tag studies, green the current world best upper limit from either hadronic
or semileptonic tagging studies, and orange the mean significance squared of the observed
signal yield. Shadings indicate one standard deviation due to statistical uncertainties alone.
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Summary

In this study I developed the procedure for measuring the sensitivity to the flavour-changing
neutral current (FCNC) processes 𝐵 → 𝐾(∗)𝜈 ̄𝜈. I utilised the reconstruction software Full
Event Interpretation (FEI) to perform a hadronically tagged search within the new Belle II
Software Analysis Framework. I demonstrated the procedure for extracting upper limit and ob-
servation significance sensitivities andmade an estimation from currently available background
Monte Carlo simulations.

FCNC processes have long been of interest due to their suppression at tree-level making
them excellent probes of the Standard Model. The high level of suppression due to the
Glashow-Iliopoulos-Maiani (GIM) mechanismmeans FCNCs in general are highly sensitive
to new physics contributions. The final state neutrinos in 𝑏 → 𝑞𝑑𝜈 ̄𝜈 , 𝑞𝑑 = 𝑑, 𝑠 makes this
particular subset of FCNCs the theoretically cleanest, allowing direct measurement of the
corresponding form factors. In 𝐵 → 𝐾(∗)𝜈 ̄𝜈 processes in particular, the final state kaons
allow for a direct comparison ofWilson coefficients of operators shared with the well measured
𝐵 → 𝐾(∗)ℓ+ℓ−.

I have added to the techniques employed in previous studies by optimising the selection
procedure prior to the full event reconstruction, along with the use of the improved tagging
algorithm FEI. I employed a specifically targeted rest-of-event filter aimed at handling the
increased beam-related backgrounds expected at Belle II. This will require further fine-tuning
as new information about the background levels at Belle II becomes available from calibration
tests performed during phase 2 of operation.

I performed the final signal yield extraction via a fit to the neutral extra energy remaining in
the electromagnetic calorimeter, 𝐸ECL. For correctly reconstructed 𝐵 → 𝐾(∗)𝜈 ̄𝜈 events this
is sharply peaking at 0GeV, and for backgrounds is distributed roughly evenly across higher
energies. The signal region I investigated in this study was the range 0GeV–1GeV.

Due to the low statistical significance of the Monte Carlo simulation volume available
at the time of this study, I was not able to ascertained a significant sensitivity estimate. The
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entire procedure, however, from reconstruction to selection optimisation and finally fitting
and branching fraction calculations, has been made available to the Belle II collaboration with
a focus on fast reproducibility. This will allow fast, updated estimates to be made as more
Monte Carlo simulated data becomes available in future.

The result of this study leads directly into part II of this thesis. The need for significantly
more Monte Carlo simulations, of which are currently very computationally expensive to pro-
duce, motivates the development of more intelligent simulation techniques. This is precisely
what I investigate in the second half of this thesis, with the work performed within the context
of the study of rare, fully reconstructed decay mode searches.

8.1 Outlook

The biggest improvement to this study will come from increasing the volume of background
Monte Carlo simulations. To produce a sensitivity estimate of equivalent significance to
the previous experiments, an integrated luminosity equivalent of at least 5 ab−1 should be
used. For accurate estimates of the latter half of the Belle II lifetime, significantly higher
simulation volumes will be required. This will be especially important as improvements in the
full reconstruction algorithm can be reasonably expected which will reduce the background
efficiency further.

The signal selection in this work used a simple cut-based approach. Even with the selection
optimisation performed this is always limited in its discriminating power as it does not consider
correlations between selection variables. Extending the selection to use a decision tree or neural
network instead would provide additional background suppression and warrants investigation.
This would require validation on a control sample containing a kinematically similar process to
the signal. The control could be used to ensure the decision tree or network is not susceptible
to differences between simulation and data.

A technique used in the BaBar 2013 analysis [25] to determine the background fit shapes
in the signal region was to use a region in 𝑀bc containing no signal events. Since 𝑀bc is
uncorrelated with 𝐸ECL it allows a determination of the background shape from data directly,
removing some of the dependence onMonte Carlo simulation volumes.

The Standard Model predictions used in this study are based on 2015 predictions [17].
The Flavio [19] package contains up to date Standard Model parameters which can be used to
produce updated branching fraction predictions. Using this will allowmore accurate Standard
Model sensitivity estimates.

With the recently finished phase 2 calibration run of Belle II, updated information about
the beam-related backgrounds is available and included in the latest commissioned Monte
Carlo simulations. Therefore the rest of event filter should be updated to account for any
changes. Additionally, investigations within the Belle II collaboration are being made into
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the use of decision trees for optimisation of a generic rest of event filter. This work should be
monitored and implemented when ready.

As discussed in the introduction to Chapter 3, the process 𝐵+ → 𝜏+𝜈𝜏(𝜏+ → 𝐾+ ̄𝜈𝜏)
contains the same final statemissing energy signature as some of the𝐵 → 𝐾(∗)𝜈 ̄𝜈 process. The
𝜏− decays into a single charged 𝐾− or to a charged-neutral pair, e.g. 𝐾−𝜋0, which may pro-
duce a false𝐾∗− candidate, would contributewith a signal-like structure in𝐸ECL. These poten-
tial background channels, however, have a branching fraction of order 𝒪(10−3). Combining
thiswith the current experimentalworld average forℬ(𝐵+ → 𝜏+𝜈𝜏) = (1.09±0.24)×10−4

[9], and the maximal contribution is at the 𝒪(10−7) level. This is before accounting for the
reconstruction efficiencies, which for the previous 𝐵+ → 𝜏+𝜈𝜏 hadronic tag study was at
the 𝒪(10−4) level. Therefore this appears to be a negligible background contribution until
significant improvements in the current tagging and background suppression techniques
are made. Furthermore, if the sub-decay involving 𝜏+ → 𝐾+ ̄𝜈𝜏 did eventuate as a non-
negligible background, it could be kinematically vetoed as it comprises of multiple two-body
decays (assuming this does not interfere with 𝑞2 regions of interest in the analysis). As the
current experimental results show agreement with standard model predictions, the full set of
𝐵+ → 𝜏−𝜈𝜏 background contributions to the fitted observable 𝐸ECL can also be modelled
with reliable accuracy from Monte Carlo simulation and included in the fit. Since the 𝜏+

decays relevant to 𝐵 → ℎ𝜈 ̄𝜈 signal channel studies are dominated by processes involving one
or more pions, this background is one that will be of greater significance to channels involving
ℎ = 𝜋, 𝜌 for example.



Part II

Selective background Monte Carlo
simulation at Belle II



Chapter 9

Introduction

The context of the problem that I address in this study lies in the drive to push the boundaries
of our understanding of the fundamental properties of nature. The field of high energy physics
(HEP) has two key frontiers which allow it to probe deeper into the current StandardModel of
particle physics: the energy frontier, which allows creation of new, heavy particles directly via a
brute force approach, and the precision frontier, which relies on the detailed knowledge of a
clean collision environment to observe the effects of the contributions of intermediate particles
to physics processes. Figure 9.1 shows the progression of HEP experiments through time as
they have pushed the boundaries of both. The Large Hadron Collider (LHC) at the European
Organization for Nuclear Research (CERN) is at the forefront of the energy frontier, and
SuperKEKB where the Belle II experiment is hosted will lead the high luminosity precision
frontier.

The goal of Belle II is to obtain an integrated luminosity of 50 ab−1 worth of data, or
roughly fifty times that of the Belle experiment. Performingmeasurements on this data requires
modelling of the experiment as best as possible to first prepare each analysis, in this case in the
form ofMonte Carlo simulations. This allows fine tuning physics analyses to be able to filter
the physics process being searched for, the signal, from everything else, the background. Since
a large portion of the measurements will be focused on so-called rare processes, processes with
a branching fraction of 10−6 and lower, a strong statistical knowledge of the backgrounds is
required to accurately distinguish the signal from the remaining background. The approach
taken during the Belle experiment was to simulate ten times the volume of measured data,
i.e an integrated luminosity of 10 × 0.711 ab−1. To use the same approach at Belle II would
then require simulations of an integrated luminosity of 500 ab−1. Chapter 10 describes in
detail the resource requirements of this level of data, however here I will simply state that
the time requirements for simulating ten times the expected Belle II data make it infeasible
using current or near-future resources available. Not only that, but for any given analysis, or
even class of analyses, a large portion of the data is trivially thrown away as irrelevant to the
particular study. Therefore more intelligent methods of simulation are required to produce
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Figure 9.1: Comparison of past, present, and proposed high energy physics experiments’ centre
of mass (CMS) energies and luminosities [51]. Currently the experiments at SuperKEKB and
LHC are at the forefront of the precision and energy frontiers.

large volumes of relevant data.
There are two immediately obvious ways to solve this problem: only simulate en masse

events relevant to the given study, or make the simulation of events fast enough that it can
be performed on-the-fly, thus removing entirely the existing bottleneck. While the second
solution is clearly the ideal for a multitude of reasons, it is also the most difficult given the sheer
complexity of simulating every individual component of the Belle II detector. In this study
I attempt instead to tackle the first solution with the use of neural networks. The end goal
is to develop a procedure for identifying useful events for any given study in a manner that
integrates into the existing Belle II software andMonte Carlo production paradigm.



Chapter 10

Monte Carlo simulation

As was described in part I of this thesis, to prepare an analysis for experimental data, signal
extraction and fitting is prepared on Monte Carlo simulations first. These simulations are
intended to represent the expected behaviour of the Belle II detector as best as possible. In this
chapter I will describe the Monte Carlo simulation procedure, as well as outline the operation
of the Belle II Analysis Software Framework (basf2) [1, 40]. I will finish with a brief discussion
of the grid-based mass production performed within the Belle II collaboration as it relates to
this study.

10.1 Monte Carlo production

Figure 10.1 shows the outline of the full analysis procedure (repeated here for convenience).
Within Belle II,Monte Carlo simulation refers to the output of the first three stages of the
full procedure shown (excluding the real data), which are the initial Monte Carlo generation
(MC), the detector simulation (Det. Sim), and the detected particle reconstructions (Reco.).
The skim (section 6.2.1, analyse (sections 6.2.2 to 6.2.5), and fit (Chapter 7) were described
for the particular study in part I of this thesis. The data represents the output of the actual
Belle II experiment, expected to become available within the first half of this year (2019).

The steps in figure 12.2, from left to right, are as follows:

MC This is the first step in the simulation process and involves the generation of the initial
collision event (labelled Event Generation in table 10.1) using the EvtGen package [52],
to simulate hadron decays, in conjunction with Pythia [53], used to simulate quark
hadronisation. This simply simulates the electron positron collision and subsequent
decays to stable final state particles (FSPs) in empty space. TheMonte Carlo particles
generated here are referred to as primary particles and are flagged by a status bit(see
Glossary on page 146 for details). This allows particles simulated in this stage to be
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distinguished from additional particles simulated later. Every collision event simulated
is assigned a unique event number.

Det. Sim. This step takes the simulated decay from the MC stage and simulates the particle
interactions with the Belle II detector. To do this the Geant4 toolkit [54] is used, cali-
brated to represent the Belle II detector. The output format of this stage is identical to
that of the real experiment output (detector hits, track candidates, etc.), except each
event also contains information about the decay simulated in the MC stage. At this
point in the simulation the beam backgrounds are added to the initially simulated decay,
as described in section 4.1.1. The strategy used to add backgrounds to the simulations
used in this study is known as background overlay [35]. Using random events the back-
ground overlay method creates background event samples which are then mixed in with
the simulated physics event. The mixing is performed during the simulation of the
digitisation of detector hits, before reconstruction of particle candidates is performed.
The other available method is background mixing of simulated backgrounds and is
described in detail in [35] but is not included in this study. The accurate understanding
of background sources and levels is expected to be the biggest cause of simulation - data
differences at Belle II. The large increase in instantaneous luminosity is expected to
produce significantly higher background levels than those at Belle, and indeed initial
measurements [33] indicate levels potentially orders of magnitude higher than those
predicted in simulation. This is one of the crucial systematic contributions to under-
stand and counteract in order to prepare analyses for early data taking. Throughout
this study the term nominal background is used to refer to the total background levels
expected at Belle II at the time of simulation.

Data This is the real life running of the experiment and is what the MC and Det. Sim. stages
attempt to simulate. No data is used or quoted in this study as none is available at the
time of writing.

Reco This step performs the reconstruction of detector information into particle candidates.
The output is a set of readily accessible potential final state particles with properties
that can then be used to identify each particle’s type, e.g. distinguish between kaons
and pions. This output is typically what is saved in MDST files, with all previous stages
being run consecutively. MDST is the name of the storage format used within Belle II
to efficiently store collision event information of varying sizes with fast access. For
the purposes of this study it is simply used to identify files containing reconstructed
simulation event data. The reconstruction procedure is provided as-is within basf2 and
developed within the collaboration.

Skim The skimming of data involves the selection of events which are of easily identifiable
interest to particular sub-groups within the Belle II collaboration. For example those
studying charmquark physics are all interested in events containing𝐷mesons, therefore
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MC
Skim

Det. Sim.
Reco Analyse Fit

Data

Figure 10.1: Data flow within a Monte Carlo based experiment. MC represents the event
simulation performed by the EvtGen software. Det. Sim. is the Geant4 detector simulation.
Reco is the reconstruction of detector hits into particle candidates. Skim is the collaboration
wide data skimming and basic decay reconstruction. Analyse and Fit are the study specific
analyses performed to measure observables within the data.

a charm skim will perform a simple reconstruction of many 𝐷 meson decay channels
with very loose selection requirements and keep only events involving potential𝐷meson
candidates. The study in this thesis is performed on the Full Event Interpretation [42]
skims which are described in section 6.2.1.

Analyse/Fit The analysis and fitting stages are specific to the particular process being studied,
and are not relevant for this study. I only note here that any modifications to the
preceding simulation steps must be cross-checked for potential biases introduced into
the final fitted observables. The risk is inducing a deviation from the correct modelling
of real experimental data. Section 12.5 of this study investigates mitigating such biases.

The corresponding execution times of each step in the simulation chain shown in figure
10.1 are shown in table 10.1 [55]. The times shown are a standardised measure of seconds
of simulation required per collision. Comparing these times with volume of Monte Carlo
simulated events shown in table 6.1 (𝒪(109) events), and recalling that this only represents
2% of the number of events expected at Belle II, it’s apparent that this is an unfeasible task.
Naively assuming 1HEPSPEC06min/event, this corresponds to almost 100.000 years worth
of processing time just to reproduce the volume of events expected at Belle II1. This point gets
at the key motivation of this study; until the simulation procedure is able to be performed at a
reasonable rate, the only option is to only simulate the events relevant to a particular study.

10.2 Belle II Analysis Software Framework

The Belle II Analysis Software Framework (basf2) [1] is the core framework used to manage
each stage in the data flow shown in figure 10.1. The framework has two main functions: to
provide a simple, consistent interface for users to create data via the chaining of modules into a
single processing path, and to manage the exchange of data between modules via a common
data store. Figure 10.2 shows an example of the basf2 processing flow can be conceptualised.

1Even with a high level of parallelisation, as is utilised in current collaboration commissionedMonte Carlo
production, the rate of simulation is roughly six months per inverse attobarn.



10.2. BELLE II ANALYSIS SOFTWARE FRAMEWORK 83

Table 10.1: Belle II Analysis Software simulation requirements estimates given as benchmarked
HEP-SPEC06 seconds per simulated event [55].

Stage HEP-SPEC06 s/event

Framework overhead 0.79
Event generation 0.11
Detector simulation 47.23
Event reconstruction 26.77

Figure 10.2: Outline of a simple execution path constructed of four sequential modules within
basf2, with the the underlying DataStore providing a consistent interface to all data [40].

An example of the modules used here could be the initial Monte Carlo simulation steps: event
generation, detector simulation, reconstruction, and writing to file. Any solutions that aim
to improve the simulation efficiency must also be able to integrate natively into the current
paradigm.

The basf2 software as a whole is logically separated into three parts: the framework itself,
which contains Belle II specific code, the externals, which contains additional third-party
dependencies, and the tools, containing the software installation and initialisation scripts. The
entire software is made available via the CERN Virtual Machine File System [56]. In this
study I have attempted to utilise libraries already available within the externals where possible
(Pandas [57], NumPy [58], etc.), and where unavailable have had them added. Execution of
so-called steering files, written in Python, are constructed by users and dictate the sequence
of execution of basf2 modules. The modules themselves are in general written in C++ and
compiled into shared libraries for fast, dynamic loading into basf2. The framework, however,
also supports modules written in Python. While this does result in a small increase in execution
time, as the modules are not pre-compiled for optimisation, it does allow the integration of
current machine learning libraries, all of which are developed almost exclusively for Python2.

2Or other common high-level languages such as R, Java, Matlab, etc., though Python is currently the most
popular by a significant margin.
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10.3 Grid-based production

To produce the large volume of Monte Carlo (MC) simulations required at Belle II, the
collaboration currently commissions so-calledMC campaigns [59]. These involve the large
scale, parallel production of both generic and signalMonte Carlo events on Belle II computing
resources [60] on grid-computing sites around the world. Therefore, any solutions developed
to improve the simulations must be compatible with the Belle II computing requirements.

The basic workflow of jobs (simulations, analyses, etc.) performed on the grid resources is
as follows: a user submits a job containing a steering file and any other supplementary local files,
the user also specifies which datasets if any they would like to include as input (the datasets
are collections of large files, e.g. simulation outputs, stored on the grid resources), the job is
received by the central Belle II computing servers and distributed to so-called worker nodes for
execution, once completed the output of the jobs can either be downloaded directly by the
user from some temporary storage (for small files) or stored as a dataset on the grid. There are
two important restrictions involved in the entire process, that is that the supplementary local
files and the small output files that can be directly downloaded must both individually total
less than ten megabytes. This restriction on the input file size is especially relevant in this study
as it places an upper limit on the size of any neural network models developed.



Chapter 11

Machine learning

Many resources exist on the topic of machine learning, for example [61] provides an excellent
free introduction to the basic mathematical concepts required and modern neural network
architectures used in practical applications today. In this chapter I introduce the concepts in
machine learning relevant to this study, along with the key architectures implemented in the
solutions.

Most modern machine learning fits roughly into one of three categories: supervised,
unsupervised, or reinforcement learning. Supervised machine learning involves the teaching
of a system by presenting it with examples and telling it the answer (also called the label). The
system attempts to guess each answer, is told the real answer, and then makes adjustments that
help it get a more accurate answer next time. Unsupervised learning is the same but without
the system being told the answer. The system must draw inferences from the data and learn to
recognise patterns on its own. Reinforcement learning is the teaching of a system to interact
with an external environment. The system learns the best action to take given the current state
of the environment in order to optimise some predefined reward. A good example is teaching
a neural network to beat a video game, where the reward is achieving the highest score. The
study in this thesis deals exclusively with supervised learning. I present examples of Monte
Carlo simulated physics events to the networks, labelled as whether that event was useful for a
given physics analysis. I then train the networks to accurately predict whether Monte Carlo
events will be useful in analysis.

Neural networks are based on a model of the neurons within the brain. They attempt to
create a general statistical estimator that can be used to give high accuracy results to problems
too difficult to be solved analytically. Using large combinations of simple functions neural
networks are able to learn an approximation of any given set of data [62]. A well trained
network will be able to generalise this approximation to new data and accurately perform the
specific task it was trained for.

For this study I use the Tensorflow [63] library as the backend to construct the neural
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Figure 11.1: Single neuron in a neural network, 𝑥𝑖 are the inputs.

networks and perform their training. I use the Keras [64] library as a high-level API running on
top of Tensorflow to allow for fast, simple construction of network architectures. Therefore
for the remainder of this document I will refer to the components of any networks by their
names as they are implemented in Keras where necessary, with the relevant components being
defined in the following sub-sections of this chapter.

A neuron is the simplest building block of a neural network. Figure 11.1 shows an example
of a single neuron with three inputs and a single output. In its simplest form the neuron takes
the multiple inputs 𝑥 and returns an output

𝑧 = ∑
𝑖

𝑤𝑖𝑥𝑖 + 𝑏, (11.1)

where 𝑤 is the weight applied to each input and 𝑏 is the bias added to the total. The ideal
combination of weight and bias values for each neuron is ultimately what the training process
attempts to learn. Each step in the training of the network adjusts the values of the weights
and biases according to how well the network approximates the training data1. The learned
parameters in the complete network are known in Keras as the trainable parameters. A more
complex neural network, involving more neurons, allows more combinations of equation
(11.1) and hence more complex functions to approximate the given data. Too many trainable
parameters, however, risks allowing the network to become too specialised towards the training
data provided, potentially learning statistical fluctuations contained in the data and losing
the ability to generalise to new, unseen data. More trainable parameters also translates to an
increased training time.

The output shown in equation (11.1) is only a linear output, however in general what
the neural network is attempting to model is not linear. Therefore non-linearities can be
introduced by applying an activation function to the output of each neuron. The choice of
activation functions used in each layer of a network is a hyperparameter to tune. Table 11.1
shows the definition of some common activations as they would be applied to the output
of equation (11.1). Figure 11.2 shows the corresponding plots of each. For the layer type

1For more advance neuron implementation the specific parameters to be trained changes, however the general
process remains the same.
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Table 11.1: Common activation function definitions applied to the output in equation (11.1)
of each neuron in a layer. Figure 11.2 shows the corresponding shape of each.

Name Definition

Sigmoid 𝑓(𝑧) = 1
1+𝑒−𝑧

Tanh 𝑓(𝑧) = tanh(𝑧)
ReLU 𝑓(𝑧) = max(0, 𝑧)

LeakyReLU 𝑓(𝑧) = {
𝑧, if 𝑧 > 0
𝑎𝑧, otherwise

implemented in this study the activation functions that provide a good general performance for
each are known. When designing network architectures in section 12.4 these are what I begin
with. For the final network layer, the network output, a classification prediction must be made
for this study. In the case of binary classification (true/false) this should be a number between
0 and 1 representing a probability as judged by the network. For this a sigmoid activation is
appropriate as it squashes the output to this range. If the classifier is extended to multiple
classes the softmax function should be used instead, defined as

𝑓(𝑧𝑖) = 𝑒𝑧𝑖

∑𝐾
𝑖 𝑒𝑧𝑖

, (11.2)

where 𝑖 indicates the class and 𝐾 the total number of classes. The sum in the denominator
ensures that the sum of outputs across all classes is 1. Again the output of every individual
class lies between 0 and 1.

The simplified outline of supervised training of a neural network is as follows:

1. The network is given a sample of data.

2. The network then makes a prediction of the label for that sample using its current
weights and biases.

3. The accuracy of the prediction is quantified using a loss function.

4. The weights and biases are all updated according to the loss.

This process is repeated until the loss function output reaches a satisfactory level or no longer
improves.

The training procedure should minimise the average loss across data samples as much as
possible to produce the best general accuracy. For the task of classifying data into discrete
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Figure 11.2: Example of activation functions used in this study, defined in table 11.1. ReLU
(not shown) is identical to LeakyReLU except all negative values are zeroed (lie on the x-axis).

categories the cross-entropy loss function is appropriate. The generalised cross-entropy for
multi-class classification (𝑀 classes) is

L = −
𝑀

∑
𝑐=1

𝑦𝑜,𝑐 ln 𝑝𝑜,𝑐, (11.3)

where 𝑦𝑜,𝑐 is a binary indicator of whether the class label being checked, 𝑐, is the correct classi-
fication for the observation 𝑜, and 𝑝𝑜,𝑐 is the network predicted probability that observation
𝑜 is of class 𝑐. When performing binary classification, as is the case in this study, the binary
cross-entropy can be written simply as

L = −(𝑦 ln 𝑝 + (1 − 𝑦) ln (1 − 𝑝)), (11.4)

where 𝑦 is the true label and 𝑝 is the predicted output of the network. For the remainder of
this study I use binary cross-entropy exclusively as the loss function. I use an additional metric,
accuracy, throughout this study to provide a more intuitive measure of network performance.
The accuracy of binary outputs in Keras is defined as

Accuracy = 1
𝑁

𝑁
∑ (𝑦 − ⌊𝑝⌉) , (11.5)

which is themean of the difference between the true label, 𝑦, and the rounded predicted output,
𝑝, across the input batch of 𝑁 events.

The details of how individual weights and biases are updated each training step is described
in detail in [61]. Here it suffices to know that the gradient of the loss function is calculated
with respect to the individual weights and biases, and used to adjust them in the direction of
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Figure 11.3: Example of over, under, and optimal fit stages during training, identified as the
similarity between network performance on training (blue) and validation (red) data, as well
as absolute loss. The green dashed line indicates the ideal stopping time when utilising early
stopping.

the loss gradient that minimises the loss. The calculation of the gradient is performed by a
process known as backpropagation. Using the gradient, changes to the weights and biases are
made backwards through the network layer by layer.

The specific optimisation process chosen, or optimiser, is a hyperparameter of the network.
Throughout this study the Adam optimiser [65], with the AMSGrad [66] variant enabled,
performs sufficientlywell and is used in the trainings described in section12.4. Other optimisers
such as Adadelta [67] and Adagrad [68] are also investigated but ultimately found to show
no additional benefit for the task in this study. How aggressively the optimiser updates the
network’s trainable parameters at each training step is an additional hyperparameters called
the learning rate. If the learning rate is too high the network may never find the optimal
parameters, forever overstepping the loss minima in its adjustments. If the learning rate is too
low the network may take an impractically long time to optimise.

To verify that the trained network is able to generalise to new data and not overfit the
training sample, I set aside a subset of the labelled data for validation. After a certain number
of training iterations have been performed I pass the network a sample of the validation data.
The network makes a prediction and calculates the loss, however the weights and biases are
not updated. I repeat this process is fixed intervals during training to prevent overfitting to the
training data. Figure 11.3 shows and example of how a typical training may proceed, ending in
overfitting, with the ideal time to stop training shown by the green dashed line.

When designing a neural network there aremany initial parameters that must be fine tuned
to produce optimal results; for example the number of neurons to use, or the optimisation
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Figure 11.4: Basic structure of multi-layer perceptron, information flows directly from input
to output. All nodes of previous layers are connected to all nodes of the following layer [69].

process the training should use. These parameters are collectively referred to as hyperparameters,
not to be confused with the aforementioned trainable parameters, and in general are fixed
before the start of training. The search for the optimal network and training configuration is
called hyperparameter optimisation.

The simplest implementation of a neural network is a multi-layer perceptron (MLP),
sometimes referred to as feed-forward or fully connected networks. Figure 11.4 shows a
simplified outline of the structure of an MLP, where each circle is a neuron (also referred to as
a node), and each column of neurons is a layer. Information flows only forwards from inputs
on the left to the output on the right. All nodes of each layer has a connection to all nodes
of the following layer. In Keras each individual fully connected layer is referred to as aDense
layer. The choice of howmany nodes are in each Dense layer is a hyperparameter.

11.1 Convolutional neural networks

Convolutional neural networks (CNNs) [70] expand on the multi-layer perceptron to in-
troduce spatial independence into the network’s capability. This makes them ideal for the
processing of images, in which the location of an object within an image is typically unrelated
to what the object is itself.

Convolutional layers are defined as those implementing a convolution as opposed to the
general matrix multiplication in multi-layer perceptrons. From [61], the discretised (discrete
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as each input is an individual pixel or time step) general form of a convolution is

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
inf

∑
𝑎=− inf

𝑥(𝑎)𝑤(𝑡 − 𝑎), (11.6)

where 𝑠(𝑡) is the output at time step (or pixel location) 𝑡, known as the feature map, 𝑥 is the
input, e.g. pixels of an image, and 𝑤 is the probability density function being convolved with
the input, referred to as the kernel. The kernel in a convolutional network contains the weights
to be learned during training. For two and higher dimensional inputs the kernel and feature
map also increase dimension accordingly with each new dimension also being summed across.
In practice the kernel is only non-zero for a small number of coordinates, with the number of
non-zero coordinates known as the kernel size. Figure 11.5 (from [61]) shows an example of a
single 2 × 2 kernel operating on a 4 × 3 input image. The four trainable parameters (w, x, y, z)
are learnt during training. The output, a 3 × 2 image, is the feature map. Each convolutional
layer typically contains multiple output feature maps, with the number of feature maps known
as the number of features or filters). Each output feature map trains its own individual set of
kernels, with a separate kernel for each input feature map within the set such that all input
featuremaps are inputs to each individual output featuremap. In the example shown the stride
is (1, 1), meaning the kernel moves one pixel in either direction at each evaluation. Increasing
the stride reduces the output filter size. The kernel size, number of features, and stride are all
hyperparameters of convolutional network layers.

Unlike the fully connected layers in a multi-layer perceptron, a convolutional layer does
not need to learn the weights and biases of every individual input pixel (which in the MLP
correspond to neurons). Instead only the weights of each kernel must be learnt, meaning that
the number of trainable parameters does not grow with input image size. This is a feature of
convolutional networks known as parameter sharing. Coupling this with the parallelisation
of the kernel matrix multiplication, something modern GPUs are highly optimised for, con-
volutional networks are able to train significantly faster than other network types. This is an
important technical consideration in tasks involving very large data sets, as physics problems
typically do.

Convolutional networks have the ability to handle inputs of arbitrary size, as the kernel
moving across the inputs removes the spatial dependence of input pixels and focuses instead on
local spatial dependence only. This is, however, only possible for fully convolutional networks
– networks containing only convolutional layers. In practice the inputs are padded or truncated
(covered in section 11.3) to a predetermined size to allow the building of Dense layers that
typically comprise the final layers of a convolutional network. Fully convolutional networks
are not covered in this study but a suggestion of why they may be useful in future iterations of
this work is discussed in section 13.1.

Within Keras, the implementation of a one-dimensional convolutional layer is known as
conv1D, and a two-dimensional layer as conv2D. In descriptions of network implementations
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Figure 11.5: From [61], an example of a convolutional layer operating on a 4 × 3 input image
(a – l), with stride (1, 1). The kernel, size 2 × 2, is convolved with each 2 × 2 square of input
pixels to produce a 3 × 2 output filter. The kernel values (w – z) are learned during training.
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Figure 11.6: Max pooling applied to a single feature map [71]. The max pool filter has a size of
2 × 2 and a stride of 2, hence it is only applied to each corner of the input.

throughout section 12.4 I use the notation Conv1D(k,f) to refer to a single one-dimensional
convolutional layer with kernel size 𝑘 and 𝑓 feature maps.

11.1.1 Pooling

Pooling is a function unique to convolutional networks which reduces the size of the outputs.
It applies a common function independently to every feature map to reduce the spatial size.
Figure 11.6 shows an example ofmax pooling applied to a single feature map. Looking again
at figure 11.5, max pooling replaces the kernel values with a single max() operation, again
with size and stride as hyperparameters. Unlike the typical convolutional operation, however,
pooling does not apply simultaneously to each input feature map, only to a single feature
map at a time. Therefore pooling does not modify the number of feature maps, only their
size. In addition to max pooling, there is also average pooling which simply averages across the
kernel window. Throughout this part of the thesis I refer to these operations asMaxPool(n)
and AvgPool(n), where 𝑛 indicates the pooling kernel size. Stride can be assumed to equal the
pooling kernel size unless explicitly stated otherwise. When not given, 𝑛 = 2.

In the final layers of a convolutional network a fully connected network is typically used to
consolidate the outputs into the output nodes necessary for classification. To do so requires
a dimensionality reduction down from the final feature maps to a one-dimensional array of
neurons. Two common methods exist to achieve this: flattening and global pooling. A simple
example of flatten is shown in figure 11.7, where all inputs from the previous layer are stacked
into a single dimension. Global pooling is shown in the same figure and is the extreme case of
the pooling operations described above, where the pooling kernel size is set to the feature size.
For example global max pooling will keep only the maximum value of each input feature map.
In describing network architectures I refer to the global pooling operations asGAvgPool and
GMaxPool for global average and max pooling.
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Flatten Global pool

Figure 11.7: Flatten (left) and global pooling (right) are used as dimensionality reductions to
transition between convolutional network layers and fully connectedMLP layers.

A common convolutional layer grouping scheme is multiple Conv1D layers followed by a
single pooling layer, described below. For this configuration I use the shorthandNode(n, k,
f, p), where 𝑛 indicates the number of successive convolutional layers with kernel sizes 𝑘 and
feature maps 𝑓, and 𝑝 indicates the pooling function applied, eithermax or avg.

11.1.2 ResNet and ResNeXt

In deeper implementations of neural networks, models with many sequential layers, a degrada-
tion problem begins to occur. It becomes difficult for the training to calculate the effect of
updates to earlier network layers, negatively impacting the overall performance of the network.
To combat this, residual networks (ResNet) [72] were proposed which introduce shortcuts
throughout the network. The left image of figure 11.8 shows an example of the shortcut
implementation, where the input to the first convolutional layer of the block is added to the
output of the final layer, and the intermediate layers preserve the initial input dimensions
(256). The notation used in this image for convolutional layers is (input dims, kernel size,
output filters). This increases the impact adjustments to earlier network layers has on the final
output loss.

A variant of ResNet, known as ResNeXt [73], builds on ResNet to aggregate many
connected layers in a single block. The right diagram in figure 11.8 shows a set of 32 aggregated
layer sequences, again with a shortcut connection and the total input dimensions preserved.
The number of aggregated sequences, 32 in this case, is known as the cardinality of the network.

In describing architectures in section 12.4, I use the shorthand for ResNet blocks of
ResNetNode(n,k,f,p), where 𝑛 refers to the number of intermediate convolutional layers with
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256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

+

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

....
total 32
paths

256-d in

+

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

+

256-d in

256-d out

256-d out

Figure 11.8: Example of ResNet (left) and ResNeXt (right) blocks from [73]. The input
to each block is added to the output. Intermediate convolutional layers are shown as (input
dimensions, kernel size, output filters).

kernel size 𝑘 and 𝑓 filters, and 𝑝 indicates the pooling procedure applied if any. All intermediate
layers have the same kernel size and number of filters unless explicitly stated otherwise. For
ResNeXt blocks I use the notation ResNeXtNode([a, b, c], f), where [a, b, c] indicates the
intermediate kernel sizes used in each aggregated layer sequence, and 𝑓 is the number of filters
of each intermediate layer (except the last which is fixed to the number of input filters to the
block). In this study I find a cardinality of 16 to be optimal in all implementations, therefore
this can be assumed if not stated.

11.1.3 1 × 1 convolutions

One of the more unintuitive applications of convolutional networks is the use of 1 × 1 convo-
lution kernels, first introduced in the Network In Network (NIN) architecture [74]. Unlike
traditional convolutional networks, the NIN structure first considers each pixel individually,
focusing the filters instead on the depth (colour) dimension of the pixels. In doing so, an initial
learned preprocessing of pixel features is essentially performed before a later layer in the network
is processed by larger convolutional kernels. Figure 11.9 shows a simplified one-dimensional
example of a single kernel convolution. All filter values of each previous layer’s individual pixels
are inputs to the following layer’s corresponding pixel, effectively applying a fully connected
MLP pixel-wise. To give a concrete example, consider an input consisting of some number of
particles each containing only their position in Cartesian coordinates (where the coordinates
are analogous to colours in an image). Now consider a problem that becomes trivially solvable
in cylindrical coordinates but is significantly more difficult in Cartesian space. Performing a
series of initial single kernel convolutions would in theory allow the network to first approxi-
mate the coordinate transformation before further processing2. These 1 × 1 convolutions
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Figure 11.9: One dimensional example of 1 × 1 convolutions. The network structure is of
four pixels input with three colour channels, followed by two layers containing six filters each
and a final three filter layer. Note that the total number of pixels (five) never changes as the
kernel size is one, i.e. there is a one-to-one mapping in the pixel locations. Instead only the
colour channels are mixed as inputs to the convolutions. The different colours indicated the
various connected pixels/filters. The dashed lines simply show connections to filters below the
top visual layer.

have also been used effectively to perform dimensionality reduction in GoogLeNet [75].

11.2 Recurrent neural networks

Recurrent neural networks (RNNs) are a class of specialised networks for processing sequential
data. The simplest example being the processing of individual sentences of text, in which
not only the individual words but also their location in the sentence relative to other words
is crucial for extracting the true meaning. Just like CNNs, recurrent networks can process
sequences of varying lengths. Though again in practice the sequences are padded to a fixed
length to simplify the building of the network.

Figure 11.10 shows a simplified example of a node in a recurrent network and the unrolled
projection of its processing of a sequence of inputs. The loop in the node allows information
fromprevious time steps to persist. The trade-off for this is the lack of parallelisation possible in
convolutional networks. Each neuron on a layer relies on the output of its neighbour resulting
in significantly longer training times. For this reason, a small number convolutional and
pooling layers are typically used before recurrent layers to downsample the inputs, reducing
the training time required with minimal impact on overall performance.

2Note the approximation of the transformation. There have been several interesting failings of convolutional
networks recently [76, 77] which motivate further improvements when dealing with inputs other than images.
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Figure 11.10: Recurrent network nodes contain loops allowing information from previous
time steps to be included in the output calculation [79]. The unrolled representation on the
right shows how information from previous time steps is used as input in addition to the
previous network layer’s input 𝑥𝑡 at time step 𝑡.

Long short-term memory networks (LSTMs) [78] are a special implementation of re-
current networks that were designed explicitly to solve the problem of RNNs struggling to
remember long term dependencies. Nowadays LSTMs are the standardmethod of implement-
ing RNNs, and in their Keras implementation are referred to as LSTM. In general LSTM
layers require little tuning, other than deciding an appropriate number of nodes to add to each
layer to train independently. When describing LSTM implementations in this study I use the
notation LSTM(n), where 𝑛 is the number of LSTM nodes in the layer. The tanh activation
is always used for LSTM layers.

11.3 Preprocessing

Neural networks are only able to handle specific types of inputs. In general there are two classes
of input that are accepted: continuous and discrete.

Continuous inputs can in theory be of any range, with the learned weights handling the
appropriate rescaling of each. For example, inspecting equations (11.1) and (11.6) it can
be seen that the neuron outputs will scale directly with the input. Therefore if one input,
for example a particle’s energy, has a significantly larger range than another, for example the
particle’s position, then the energy will dominate the influence on the output until it is scaled
down. As the ranges of most input variables in this study span many orders of magnitude
(e.g. energy ranges from Gev toMeV) I normalise all continuous input data. Two common
methods of normalisation are:

min-max: 𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

z-score: 𝑥−𝑥𝑚𝑒𝑎𝑛
𝜎𝑥

In this study I have chosen min-max normalisation, though possible alternatives that may be
tested in future work are discussed in section 13.1.
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Discrete inputs represent different classes of a particular input type. For example in this
study each input particle has an associated charge ranging from −2 to 2 in integer steps;
therefore there are five classes that all particles fit in to. To reflect this the charge value of each
particle can be encoded into a five bit vector, with each bit representing a flag for each charge
value. This process is called one-hot encoding. Each of the resulting five bits in the one-hot
encoded output are then used as individual inputs to the network, i.e. charge is represented
by five input nodes. Recalling the node output in equation (11.1), a one-hot encoded input
means that for a subset of the weights (𝑤𝑖) only one of them is active:

𝑧 = ∑
𝑖

𝑤𝑖𝑥𝑖 + ∑
𝑗

𝑤𝑗𝛿(𝑥𝑗 − 𝑐) + 𝑏 , (11.7)

where inputs 𝑗 are the one-hot encoded inputs for input category 𝑐 and 𝑖 are all other inputs.
This can be simplified to a conditional bias term

𝑧 = ∑
𝑖

𝑤𝑖𝑥𝑖 + 𝑏𝑐 , (11.8)

where the normal bias now includes the learnedweight for the input category (𝑐): 𝑏𝑐 = 𝑤𝑐 +𝑏.
Sometimes the number of classes of a discrete input is too high to practically one-hot

encode. In those cases a common solution is to perform what is called embedding. Other
solutions exist, such as the hashing trick [80], but are not covered in this study. Embedding is
outlined in section 11.5 as it is a learned representation of discrete inputs, however inputs to
embedding layers must undergo an initial preprocessing step called tokenization. This involves
the one-to-one mapping of each input to an integer, generally in the range [1, #categories],
with 0 reserved for padding as described below. For example the PDG codes assigned to each
MCParticle in section 12.3 ranges sparsely from 1 to ±1000020040. In total there are only
about 540 PDG codes, with the remainder being unused. Therefore it’s possible to map each
code directly to an integer in the range [1, 540] with this mapped integer then input to the
embedding layers.

As discussed in section 11.1, the inputs to any networks containing fully connected layers
must be of a fixed size. This is necessary for calculating the number of connections required in
the fully connected layers when building the network. As the number of inputs in this study,
particles in a simulated decay, can be of varying size I utilise padding and truncating to set all
to a predetermined size. Truncating simply drops particles from inputs exceeding this size as
necessary. Padding is the inverse, adding blank particles (particles with all properties set to
zero) to the end of the inputs as needed.

11.4 Hyperparameters

The architectures discussed in previous sections of this chapter have already introduced various
hyperparameters relating to the specific layers that each introduces. In addition to those there
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are hyperparameters that are variables of the network as a whole. The first being the overall
architecture of the network, that is the specific sequence of layers in the network and howmany
times they are repeated. The various combination patterns used in this study are explained in
section 12.4. There are also hyperparameters relating to the way in which data is fed to the
network, the two most important being batch size and epochs.

The number of epochs is simply the number of times the training will read the entire input
data set. The choice of number of epochs is made from a combination of technical constraints,
how long it takes to process the entire training data set, and performance results, howmany
epochs before the network begins overfitting the data and validation loss increases. With the
use of early stopping controls within this study, the latter is of less relevance to the choice of
epochs. Figure 11.3 showed an example of when the early stopping module would execute.

As mentioned in section 11, the training/updating of the network is performed on the
results of processing a small sample of the input data. The size of this sample is called the batch
size and set at the beginning of training. The batch size can range anywhere from one, known
as stochastic mode where the gradient and network parameters are updated after each input
sample, to the size of the entire training sample, known as batch mode where the network is
updated once per processing of all training data. The choice of batch size requires a trade-off
between accuracy gained per epoch, available memory, and size of each data sample. A good
general approach to finding the optimal batch size is to begin with something small, e.g. 16,
and increase through powers of 2 up to something large, e.g. 512.

The learning rate hyperparameter introduced in section 11 is explored during hyperparam-
eter optimisation. In this study I implement an adaptive learning rate. When the loss during
training is no longer improving the learning rate is lowered by a factor of 0.1. This allows
the training to effectively focus in on the optimal parameters as the loss approaches a minima.
Additionally, I implement early stopping to prevent overfitting. The network stops training
when its performance on validation data is no longer improving. This ensures that what the is
network learning is not only improving performance on the training data.

11.5 Additional operations

In addition to the components of neural networks discussed in the previous sections of this
chapter, there are further operations that are involved in the processing flow. In cases dealing
with different input types it is useful to be able to split the network into separate sub-networks
for individual processing. These sub-networks then need to be merged in order for a single
output to be given as a whole. To achieve this merging two methods were used in this study:
concatenate and add. Concatenation simply involves the linking of two ormore layer’s outputs
as a single input to the following layer. For example if the outputs of two networks with
individual output layers of length 10 and 20 are concatenated, the following layer with have
an input of length 30. Addition involves the adding of each output value from all input layers
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and therefore requires that the preceding outputs are all of the same length. For example if the
outputs of two networks both with output layers of length 10 are added, then the input to the
following layer will also be of length 10, with the first input being the sum of the first output
node from the two added networks and so forth. In Keras the layers for concatenation and
addition are referred to as Concatenate and Add.

Embedding, used for discrete network inputs, involves the conversion of a categorical
input into an N-dimensional vector whose direction relative to other categories represents
the relation in meaning of that category. For example in the case of word embeddings the
coordinates represent lexical semantics, and so the vectors between words will be similar for
those with similar differences in meaning. In the learned relations shown in figure 11.11, the
operation of vector(”King”)−vector(”Man”)+vector(”Woman”)would return a vector close
to that of the wordQueen [81]. As the embeddings must be learned they are included as an
initial layer in the neural network. In Keras the embedding layer is referred to as Embedding,
with the number of dimensions of the output vector being a hyperparameter to be tuned.

Dropout is a regularisation3technique used to help prevent overfitting of the network
[82]. During training, each neuron within a layer using dropout is only kept active with some
probability 𝑝. Otherwise the neuron and all connections in and out of it are deactivated (weight
set to zero). The remaining neurons are scaled by 1

1−𝑝 so that their sum is unchanged at training
and inference time. Figure 11.12 shows an example of dropout being applied to a hidden layer.
The choice of 𝑝 is a hyperparameter which as a general rule of thumb should increase with the
number of nodes in the layer it is being applied to. Importantly, dropout is turned off during
application of the network so that all connections are active during prediction. Therefore
it’s not uncommon to see higher performance during validation stages of training when high
dropout rates are used. Within Keras dropout is applied as a separate layer of the network,
namedDropout, between other core layers. This study uses dropout heavily in deep network
models to prevent overfitting as the number of training parameters grows quickly into the
millions. However, recently the usage of dropout in convolutional layers has fallen out of
favour amongst the machine learning community, with overfitting instead being handled with
batch normalisation.

Batch normalisation [83] is a regularisation technique created to combat a phenomenon
known as internal covariate shift. Internal covariate shift describes the change in each of the
network’s hidden layer inputs caused by updates to the previous layers. This is thought to slow
down training times as it requires each hidden layer to effectively aim for a moving goalpost.
Batch normalisation attempts to stabilise this effect by normalising the inputs of each hidden
layer so their distribution remains relatively constant throughout the training process. The
normalisation is performed across each training batch. There are additional regularisation
techniques, themost commonofwhich isL1&L2 regularisation [84]which involves updating

3Regularisation is a generic term used to describe any technique which reduces the generalisation (validation)
error of the network but not the training error, i.e. prevents overfitting.
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Figure 11.11: Example of learned vector representations between words with similar relative
meanings [81].

the cost function to include an additional regularisation term, however these were not used in
this study and are left for future work.

After training of a network is complete the state needs to be saved for later reapplication.
There are two ways to do this in Keras: save the entire model, or save only the trained weights.
Saving the model saves the architecture, weights, and optimiser state. Saving only the weights
requires the same architecture used in training to be built before loading the weights. In
the context of grid-based Monte Carlo simulations, saving the entire model is required for
flexible distribution. If only the weights are saved then the basf2 module which performs
the inference must be tailored to the specific architecture trained. Therefore in this study I
save the entire model of each trained network. This presents a limit on the complexity of the
network as the total saved model can not be larger than the maximum total supplementary
input file size of 10MB. Within the Belle II grid-computing infrastructure there is a so-called
conditions database [85] which interfaces with basf2 to provide downloadable payloads at
runtime. Currently, the uploading and downloading of Fast boosted decision tree and Full
event Interpretation trainings is supported. Support for saved neural network models is also
possible in theory, though this requires extensions to the existing interface to work for the
networks in this study. Use of the conditions database is not covered in this studybut something
worth investigating in future.
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(a) Without dropout applied (b) With dropout applied

Figure 11.12: Dropout randomly removes some fraction of connections during training to
discourage overfitting.



Chapter 12

Experimental procedure

The goal of this study is to be able to predict early on in the Monte Carlo simulation process
how likely a simulated event is to survive the reconstruction and selections applied later, i.e. a
pass event. Returning to the data flow shown in figure 10.1, the splitting of pass and fail events
after, for example, the skim process can be inserted. Figure 12.1 shows the updated data flow,
with fail events being discarded and only pass events continuing being processed. Here the real
events coming from the experiment, data, have been omitted.

Recalling the processing times of each stage of the simulation from table 10.1, the ability
to avoid performing the detector simulation and reconstruction for fail events would provide
a significant reduction in the simulation time required with no loss to the data volume of pass
events. Figure 12.2 shows the stages of the data flow that the neural network in the following
sections attempts to learn. That network then needs to be integrated into the simulation data
flow. Figure 12.3 shows where the network would integrate, as a basf2 processing module, and
preemptively discard or keep events based on their predicted pass/fail probability, denoted
pass* and fail*. The true values of which events pass or fail the skim stage are what will be used
as the training labels for the network.

As all Monte Carlo simulation production is now performed on grid computing resources
(section 10.3) the resulting module should ideally be compatible with the current grid job

MC SkimDet. Sim. Reco

Fail

Analyse
Pass

Figure 12.1: Monte Carlo simulation data flow with the retaining/rejection of events by the
skim procedure shown. Pass events, those with satisfy the selection requirements of the skim,
continue on to the physics analysis. Fail event are discarded and no longer processed.
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requirements, namely that the supplemental files required by the module (i.e. the saved trained
neural network model) total less than 10MB. Anything over this requires specialised solutions
that may involve changes to the Belle II grid computing setup itself, therefore remaining within
these restrictions is desired.

The solution I have opted for is to utilise the information contained in the output of the
MC stage of simulation, leveraging the existing large volume of simulation data available from
the FEI skims, to explore a range of suitable neural network architectures. This is a highly
data-driven solution and relies on the assumption that the kinematics of the primary decay
(the decay originating from the 𝑒+𝑒− collision) is the dominating factor in deciding whether
an event passes the skim. Recall that the selections applied in the commissioned FEI skims
from section 6.2.1 are:

nTracks ≤ 12

𝑀bc > 5.24GeV/c2

|Δ(𝐸)| < 0.2GeV

sigProb > 0.001

Table 12.1 shows the skim retention rates from the same section, repeated here for convenience.

An alternative approach is to design a solution based on the known selections applied
by FEI, for example to the kinematic requirements placed on the reconstructed 𝐵 meson
candidates. While this solution at first glance appears to be the simplest, it is in fact non-trivial
to implement and in certain cases not possible at all. The candidates reconstructed by FEI
are built from the final state particles reconstructed from detector hits, whereas the Monte
Carlo particles (MCParticles) output by the MC stage of simulation were those used to create
the detector hits. Therefore there is often not a direct mapping between reconstructed and
simulated particles. There can be misidentified particles (e.g. kaon identified as pion), ghost
particles (a particle reconstructed from a series of hits thatwas never there), or decaying particles
reconstructed with the wrong combination of daughters. In all of the aforementioned cases,
the kinematic selections placed on the FEI skims can not be applied directly to any of the
MCParticles. Indeed by definition at least one of these cases must have occurred for every pass
event in the continuum background samples. Therefore this approach is not investigated in
this study.

As this is a machine learning problem at heart, I follow the typical work-flow for tackling
supervised machine learning problems:

1. Data set generation
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MC
Skim

Det. Sim.
Reco Analyse Fit

Data

Figure 12.2: The data flow within aMonte Carlo based experiment as shown in figure 10.1.
The highlighted steps are what the neural network in this study will attempt to learn. The
network aims to be able to accurately predict the likelihood of an event output by the MC
stage surviving all the way to the Analyse stage.

MC SkimDet. Sim. Reco AnalyseNN
Pass*

Fail*

Figure 12.3: Monte Carlo simulation flowwith the selective backgroundmodule inserted. The
predicted pass∗ events are kept and continue along the simulation process, events predicted to
fail the skim (fail∗) are discarded and the simulation moves on to the next event.

Table 12.1: FEI skim event retention rates of each channel reconstructed (repeat of table 6.2
for convenience).

Channel Had 𝐵+ Had 𝐵0

𝐾+ 3.10% –
𝐾0 – 1.30%
𝐾∗+ 3.26% –
𝐾∗0 – 1.27%
Mixed 5.62% 4.25%
Charged 8.35% 3.82%
𝑢�̄� 6.86% 3.78%
𝑑 ̄𝑑 7.20% 3.39%
𝑐 ̄𝑐 12.0% 5.73%
𝑠 ̄𝑠 6.13% 2.95%
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A sample representative of the data the network will be applied to is required for
learning accurate classification. In general this should be as large as possible to
allow the greatest possible generalisation by the trained network. The data set is
split into training and testing/validation subsets (usually at a ratio of 0.9 ∶ 0.1),
though in practice this is usually performed directly prior to the training stage to
allow random subsets to be used for validation.

2. Feature generation

Information is extracted from the data in the form of individual features (e.g.
individual particle momentum and energy). These should attempt to encapsulate
enough information to wholly describe each event.

3. Feature preprocessing

Here the features expected to be most useful for training are selected. The data
is then reshaped into a format appropriate for a neural network that encourages
generalised learning.

4. Training

Various neural networks are constructed and trained on the preprocessed data. A
range of networks and techniques are explored along with different hyperparame-
ters for optimisation. The trainings are performed event-wise, with the network
learning to make a single pass prediction for each event based on the simulated
particles within.

5. Evaluation

A select set of trained networks are applied to a test case to get an independent
evaluation of performance. Specifically, how much speedup do the networks
provide and do the network outputs introduce bias?

12.1 Data set generation

Given that obtaining the final relevant background data for this study is by design difficult,
coupled with the fact that the multiplicity of possible decay topologies is intractable, I opt to
learn classifications of the output of the FEI skims (section 6.2.1). This has several benefits:

1. The background retention rate is high enough to provide the large volume of data
required for such a classification task (table 6.2).
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2. The data is already generated and readily available on the Belle II grid (section 10.3).
This means the techniques developed in this study can be applied directly by others.

3. The data skim selected is study independent. Anyone requiring the use of the full event
reconstruction tool Full Event Interpretation (FEI) can make use of the same resulting
concentrated data set.

4. It provides a good test bed for identifying introduced biases as the skim outputs a
reconstructed B meson allowing a statistical comparison of true positives and false
negatives (section 12.5).

The FEI skims I select are the charged FEI 𝐵+, with roughly 2 × 106 events total in the
data set, and the mixed FEI 𝐵0, containing roughly 4 × 106 events. I use these as the pass
event samples. The skim categories are those shown in table 6.2, where mixed/charged refers to
the simulated decay, and 𝐵+/0 refers to the charge of the 𝐵 meson reconstructed by FEI. The
fail event samples I obtain from events discarded by the FEI skims. I require the fail datasets to
contain roughly equal numbers of events as the pass sample, bringing the total training data set
sizes to 4 × 106 events for charged FEI 𝐵+ and 8 × 106 events for mixed FEI 𝐵0. I mark all
events saved during this stage with a boolean True/False flag for use as the training labels. True
indicates an event that survived the FEI reconstruction and selection cuts (pass), and False the
converse, events discarded during the reconstruction and selection stages (fail).

12.2 Feature generation

The goal in this step is to extract enough information from the available input data to be able
to accurately represent the decay event. The complete set of available Monte Carlo generated
information can best be thought of as a rooted tree graph with each node representing a single
particle and each edge representing the connection between parent and decay daughter and
each node carrying all of the information associated with the corresponding particle. Figure
12.4 shows an example of the tree structure of a single event. The data is stored in what is
known as anMCParticle array, with an individual array index assigned to each particle ordered
by the depth (the number of parent generations to the initial particle at array index 1). Note
the varying number of daughters of each decaying particle, the range of possible numbers of
daughters is an important factor thatmust be consideredwhen designing network architectures
for training.

The features available for each particle in an MCParticle array are homogeneous and
defined by the Belle II software framework [1]. Table 12.2 lists all of the available, relevant
variables for a particle and a brief explanation; for the full definitions see the glossary on page
146. For final state particles (FSPs), particles which are stable in the event generator, the
lifetime, and hence the decay time and decay vertex, is infinite. Therefore I do not include
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these variables in the features saved during this stage of processing. I expect that this will not
cause any significant information loss as it is already contained in the production vertex and
the connections via mother PDG code and PDG code of each particle and their mother.

Because the MCParticles present in the MDSTs used for data set generation are those
output by the reconstruction stage of simulation, there are additional MCParticles present not
generated by EvtGen in theMC stage, for example secondary decays of particle interactions
with the detector. Thesemust be removed as theywill not be available at the time of application
of the neural network (figure 12.3). To do so I place a requirement on the status bit such
that only features of primary particles are saved, with the remaining particles discarded. I also
discard the array index and No. daughters as they are only valid for the reconstruction stage
MCParticles.

The final choice of variables to be used for MCParticle processing are:

PDG code This alone contains information about the particle’s type and charge. Since each
MCParticles is simulated with exactly the nominal mass, the PDG code magnitude
implicitly contains the mass information too.

Mother PDG code This is included to help the network learn to associate the properties
of particles with the same mother PDG code. For example, if a low-momentum pion
emitted by decaying 𝐷∗ mesons provides useful identification information, inclusion
of the 𝐷∗ PDG code will help the network recognise this.

Charge Charge is included to be a one-hot encoded input. This is included to complement
the PDG code information and help the network identify valid particle combinations
based on charge conservation.

Kinematics Energy, Production time, production vertex, momentum.
The kinematic properties are selected such they completely describe the properties of
each particle relevant to a decay. Namely, where and when each particle was created,
as well as in which direction it travelled. Coupled with the same information from the
parent particle (indicated by the mother PDG code) this provides information about
the entire decay chain. Certain combinations of particles will be reconstruct-able by
FEI and others will not. To give an explicit example, consider a decay in which a charged
final state particle travels in the direction of the beam-pipe. This event may not be kept
by FEI as that particle is never detected, regardless of whether the decay is included in
those searched for by FEI. If the particle is a neutrino, however, then this decay can be
kept as no reconstructed decay information was lost.

For the purposes of enabling fast reprocessing, I save all particles originating from the
EvtGen generator with their corresponding variables in a Pandas [57] dataframe, with training
label, event number, and array index as the multi-index used to access each particle individually.
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Figure 12.5 shows an example snippet of a dataframe containingMCParticles, with the features
truncated for demonstration.

While the array of particles discussed above stored in the Pandas dataframe does technically
contain all of the possible information available fromEvtGen, it is not the onlyway to represent
each decay. When considering an experimental physics analysis, the first means of describing
the study target is to specify a decay, set of decays, or required sub-decay channel to be present.
For example in the study performed in part I of this thesis, one of the signal processes searched
for was introduced as 𝐵0 → 𝐾∗0(→ 𝐾+𝜋−)𝜈 ̄𝜈. While this is instantly understandable to a
particle physicist, who may trivially recognise this from the decay structure presented in figure
12.4, this is not the case for a neural network. It requires both an understanding that the PDG
code or array index is an identifier for a given particle, and also that the same feature for the
mother particle is what is needed to link the two. In the case of FEI, the processes being searched
for is a large set of mostly 𝐵 and 𝐷 meson decays. Therefore, I store an additional dataframe
containing the raw decay string, formatted with (--> and <--) separators enclosing all of the
preceding particle’s decay products. For example the decay 𝐾0

𝑆 → 𝜋0(→ 𝛾𝛾)𝜋0(→ 𝛾𝛾) is
represented as:
310 (--> 111 (--> 22 22 <--) 111 (--> 22 22 <--) <--)

Figure 12.6 shows an example snippet of the resulting stored Pandas dataframe, containing the
corresponding event numbers and training labels. This is now a familiar format used in natural
language processing tasks, of which current neural networks excel at classifying, where the
task is to understand the meaning (pass or fail) of a sentence (decay string). The hope is that
this can add additional discriminating power through the recognition of decay and sub-decay
patterns when combined with the information present in the MCParticles arrays.

12.3 Feature preprocessing

Arguably the most important stage in a functioning machine learning solution is the prepro-
cessing of the input data to a format learnable by a neural network. As discussed in section
11.3, data fed to a neural network is either continuous, such as momentum and production
vertex, or discrete, as PDG code and charge are. The discrete variables relevant are PDG code
and the corresponding mother PDG code, and the charge. The range of possible charge val-
ues is small enough, −2 to +2, that a one-hot encoding is appropriate. An example of the
encoding is shown in figure 12.8, where the single charge variable is expanded to five input
features. The No. daughters variable is excluded as its value is modified significantly during
the reconstruction phase of simulation, however if included in future it should be one-hot
encoded as the charges are.

The range of possible values for PDG code is too large for one-hot encoding, roughly 540
distinct codes, and instead I encode these using an initial embedding layer within the network.
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1 300553 (Upsilon(4S)) E: 1.100e+01 m: 1.058e+01 p:(...) v:(...)
2 521 (B+) E: 5.511e+00 m: 5.279e+00 p:(...) v:(...)
4 -421 (anti-D0) E: 1.939e+00 m: 1.865e+00 p:(...) v:(...)

10 310 (K_S0) E: 5.913e-01 m: 4.976e-01 p:(...) v:(...)
20 211 (pi+) E: 2.379e-01 m: 1.396e-01 p:(...) v:(...)
21 -211 (pi-) E: 3.534e-01 m: 1.396e-01 p:(...) v:(...)
11 211 (pi+) E: 3.484e-01 m: 1.396e-01 p:(...) v:(...)
12 -211 (pi-) E: 7.756e-01 m: 1.396e-01 p:(...) v:(...)
13 111 (pi0) E: 2.234e-01 m: 1.350e-01 p:(...) v:(...)
26 22 (gamma) E: 1.660e-01 m: 0.000e+00 p:(...) v:(...)
27 22 (gamma) E: 5.742e-02 m: 0.000e+00 p:(...) v:(...)
5 413 (D*+) E: 2.453e+00 m: 2.010e+00 p:(...) v:(...)

14 411 (D+) E: 2.239e+00 m: 1.870e+00 p:(...) v:(...)
28 -321 (K-) E: 8.801e-01 m: 4.937e-01 p:(...) v:(...)
29 211 (pi+) E: 5.853e-01 m: 1.396e-01 p:(...) v:(...)
30 211 (pi+) E: 7.737e-01 m: 1.396e-01 p:(...) v:(...)
15 22 (gamma) E: 2.138e-01 m: 0.000e+00 p:(...) v:(...)
6 313 (K*0) E: 1.111e+00 m: 8.617e-01 p:(...) v:(...)

16 321 (K+) E: 8.508e-01 m: 4.937e-01 p:(...) v:(...)
17 -211 (pi-) E: 2.683e-01 m: 1.396e-01 p:(...) v:(...)
3 -521 (B-) E: 5.493e+00 m: 5.279e+00 p:(...) v:(...)
7 43 (Xu0) E: 2.052e+00 m: 8.646e-01 p:(...) v:(...)

18 211 (pi+) E: 4.797e-01 m: 1.396e-01 p:(...) v:(...)
19 -211 (pi-) E: 1.572e+00 m: 1.396e-01 p:(...) v:(...)
8 11 (e-) E: 1.621e+00 m: 5.110e-04 p:(...) v:(...)
9 -12 (anti-nu_e) E: 1.820e+00 m: 0.000e+00 p:(...) v:(...)

Figure 12.4: Example of Υ(4𝑆) decay structure within an event as represented by the Belle II
software. The first two columns represent the (array index + 1) and particle (PDG code and
human readable name) respectively. The indentation level of the second column corresponds
to the depth of the particle within the decay, with all particles originating from the initial
Υ(4𝑆). The remaining columns show the (non-exhaustive) array of data for each particle,
shown simply for a visual demonstration of the data structure.
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Table 12.2: Information available for eachMC generated particle to input to network training.
A detailed description of each is available in the glossary on page 146.

Variable Definition

PDG code Identifier of particle type and charge [9].
Mother PDG code The particle’s parent PDG code.
Mass Particle mass in GeV/c2.
Charge Electric charge of the particle.
Energy Particle energy in GeV.
Production time Production time in ns relative to Υ(4𝑆) production.
Decay time Time stamp of the particle’s decay in ns relative to Υ(4𝑆) production time.
Lifetime Difference between decay and production time of the particle.
Production vertex Coordinates of the particle’s production vertex.
Momentum Three momenta of the particle in Gev/c.
Decay vertex Coordinates of the particle’s decay vertex.
Array index Unique 1-based per event index of the particle.
No. daughters Number of daughter MC particles.
Status bit Bitmask representing the particle’s MC production conditions.

PDG mass charge energy
label evtNum arrayIndex
False 681588002 0 300553 10.572033 0.0 10.996360

1 -511 5.279530 0.0 5.482315
2 511 5.279530 0.0 5.514045
3 413 2.010231 1.0 2.200882
4 13 0.105658 -1.0 1.210511
5 -14 0.000000 0.0 2.070864
6 22 0.000000 0.0 0.000058
7 333 1.016531 0.0 1.209051
8 -413 2.010280 -1.0 2.075037
9 211 0.139570 1.0 0.154342

Figure 12.5: Example snippet of the Pandas dataframe output of the feature generation stage.
Here the first ten particles of a single fail event are shown, sorted by array index and with the
MCParticles features truncated for demonstration.
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decay_str label
evtNum
681588002 300553 (--> -511 (--> 413 (--> 421 (--> 310 (... False
681588003 300553 (--> 511 (--> -421 (--> 323 (--> 311 (... False
681588004 300553 (--> 511 (--> -411 (--> 313 (--> 311 (... False
681588005 300553 (--> 511 (--> -413 (--> -411 (--> 313 ... False
681588006 300553 (--> 511 (--> -413 (--> -421 (--> 310 ... False

Figure 12.6: Example snippet of Pandas dataframe showing single event decay strings (de-
cay_str). The decay strings are truncated for demonstration.

As the PDG codes are sparse integers with values ranging from 1 to±1000020040 (𝛼 particle)
I first tokenize them: each code is mapped directly to a positive integer ranging from 1 to
𝑛𝑢𝑚(𝑃𝐷𝐺𝑐𝑜𝑑𝑒𝑠). 0 is a reserved index not assigned to any word, this is necessary for the
padding described below. The resulting tokens are then given as-is to the network during
training, with the training process learning an appropriate vector representation of each PDG
code on the fly in Embedding layers. I do the same for decay strings, with each particle in the
string being tokenized and embedded.

I normalise the continuous variables usingmin-max scaling to transform all variables to the
range [0, 1] (described in section 11.3). Theminimum andmaximum values for each variable I
obtain from the physical limits of the experiment itself, for example the min-max range for the
energies of particles is [0.0, 11.0]GeV with the upper limit given by the total initial energy of
the electron positron collision at SuperKEKB. The limit ranges for particle vertex positions and
momenta I obtain similarly, for example the vertex positions are determined by the physical
size of the Belle II detector (7 × 7.5m). For vertex position, the majority of particles are
created within a very small volume around the interaction point (i.e. most particles involved
decay rapidly). For this an alternative normalisation scheme which more evenly distributes the
particle positions may provide some benefit and is discussed in section 13.1.

Before the data is able to be fed into the networks for training a final preprocessing must
be performed. As discussed in section 11.1, convolutional networks are by themselves able
to handle arbitrary sized inputs (in the width and height dimensions, depth must always
be fixed). When the network contains fully connected (MLP) layers, however, the inputs
must then be padded or truncated to some fixed size. This is necessary for the calculation of
node connections and parameters when first building the network. Figure 12.7 shows the
distribution of number of particles in the MCParticles data and the lengths of decay strings. I
conservatively fix the sizes to 100 for the MCParticles (i.e. 100 particles at most per event) and
150 for the decay string (i.e. 150 PDG codes and (-->/<--) separators). Any events below
these sizes I pad with zeroes to populate the remainder, and any exceeding this I truncate. The
sizes are intended to include all possible input particle information.

Finally, any discrepancy between the number of pass and fail events must be accounted
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Figure 12.7: Distribution of number of MCParticles (orange) and length of decay strings
(blue) per event.

for, as an over-representation of either risks encouraging cheating by the network. In cases
where the network is unable to clearly classify an event it may learn that always guessing the
over-represented class results in a better performance. To combat this I use class weights. Class
weights tally the number of samples (labels) in the training data set of each class and add the
imbalance as a weighting factor to the loss function. Recalling the binary cross-entropy loss
from equation (11.4), the class weights are added to their corresponding label losses as

− (𝑤0𝑦 ln 𝑝 + 𝑤1(1 − 𝑦) ln 1 − 𝑝), (12.1)

where 𝑤0 and 𝑤1 correspond to the weights calculated for the fail and pass classes respectively.

12.4 Training

This section presents the results of network trainings and the various architectures tested.
The goal of this is to find the best network setup appropriate for the end use case and guide
future improvements to the simulation procedure when considering current machine learning
techniques. In the following sections I perform trainings of a range of common and state of the
art neural network architectures on the individual datasets corresponding to the event decay
strings (section 12.4.1), the MCParticles information (section 12.4.2), and the two combined
(section 12.4.3). Finally, I give my remarks on the training results overall (section 12.4.4).
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c_-2 c_-1 c_0 c_1 c_2
label evtNum arrayIndex
False 681588002 0 0 0 1 0 0

1 0 0 1 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 1 0 0 0
5 0 0 1 0 0
6 0 0 1 0 0
7 0 0 1 0 0
8 0 1 0 0 0
9 0 0 0 1 0

Figure 12.8: Example snippet of Pandas dataframe showing one-hot encoded charges of the
first ten particles in an event.

The rough procedure in each of the training sections is similar. I first create a benchmark
training using a simple fully connected feed-forward (MLP) network. This sets the baseline
performance from which to compare other trainings. I then test various architectures from
the literature and compare their training results to each other and the benchmark. I compare
the final score (validation loss and accuracy), in addition to the training time and model size.
Validation loss is a direct measure of how well the trained network will be able to reject fail
events. The training time on the other hand is an important consideration for scalability; if
the training is to be repeated for every channel of every skim within the collaboration, or by
individuals looking for analysis-specific background simulation, then the total training time
required should beminimal. This is an especially important point when considering that many
researchers and institutes may not have access to GPU resources for training, and hence suffer
from significantly slower training times. I also monitor model size for suitability of usage in
grid-basedMonte Carlo production (section 10.3).

For all of the trainings I vary the relevant hyperparameters described in Chapter 11 within
reasonable values until optimal training performances are found. In general this is done
according to the recommended ranges of the associated literature for the given network type.
In almost all hyperparameter optimisations tested I found that the Adam optimiser with an
initial learning rate of 0.001 provided as-good or better training performance as other common
optimisers. The reduction of the learning rate on training plateaus allows smaller learning
rates to also be accessed. AMSGrad [66] was left enabled in all cases. Similarly, I found the
LeakyReLUactivation to be robust in the various architectures tested and in all hyperparameter
optimisations tested achieved the maximal performance. I applied batch normalisation to
intermediate network layers where appropriate to mitigate overtraining and improve training
times. Therefore throughout the following sections these hyperparameters may be assumed
unless explicitly stated otherwise. In the training closing remarks in section 12.4.4 I comment



12.4. TRAINING 115

on how this simplification may be improved upon in future.

Throughout this section I present the results of network trainings as a best-of by showing
the progress of the following four metrics across epochs: binary cross-entropy loss (loss),
prediction accuracy (acc), and both of these when validated on independent data (val_loss and
val_acc). The significant size of the training data warrants the splitting of the total dataset
into sub-epochs to allow validation after reasonable time intervals required for monitoring
for overtraining. These sub-epochs are what is shown in the metric plots and I fix at four
sub-epochs during training1. Due to the use of early-stopping the number of epochs shown
in each metric plot may vary. I set the early-stopping requirement at three epochs (not sub-
epochs) such that if no improvement in the validation loss is seen after three consecutive
passes over the training data then training is stopped. The choice of three epochs is to allow
for several reductions in the optimiser’s learning rate. To prevent overfitting throughout
the trainings I relied heavily on regularisation (section 11.5), which is switched off during
validation. Therefore, many of the training metrics show a validation performance slightly
above that of training.

In reading the metrics plots the reader should look for the following:

• The final (rightmost) values of each metric. Due to the splitting of training and valida-
tion data into subsets the metrics are susceptible to small random statistical fluctuations,
therefore the metric values after several epochs are the better indication of each metric’s
final average.

• Differences between training and validation values. Because of the use of dropout regu-
larisation to prevent overfitting, a slight over-performance of the validation metrics can
be expectedwhen the network is able to generalisewell. A significant under-performance
of the validation metrics indicates a training too specialised towards the training dataset.

• A consistent trend of diminishing improvement of each metric. A well-tuned network
should show a consistent but decreasing improvement, especially in the training data
metrics, throughout the training lifetime. Note that in the case of very large datasetswith
long training times between measurements of metrics (as is the case for the mixed FEI
𝐵0 here) this can be less obvious, with the networks achieving near optimal performance
early on.

• Accuracy as an intuitive comparison and the loss for a quantitative comparison. As
explained in Chapter 11, the loss is a direct measure of the network’s prediction error,
whereas accuracy measures the mean of the difference between the rounded network
output and the true value (recall in binary classification the network outputs a value in
the range [0 − 1]).
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The architecture of each optimised network is given in tables at the end of each training
section. Where possible I have reused mixed and charged training architectures for simplicity.
In those cases I observed no noticeable penalty to training performance. Included in each table
is the best validation loss achieved by each network. In certain cases, especially in early stages of
mixed trainings, large fluctuations in the loss are seen. This can occur when the learning rate of
the network is high and the training is making large adjustments to the network as it explores
the network parameter space. While doing so the network may chance upon configurations
that perform exceptionally on a particular subset (sub-epoch) of the validation data. This
configuration, however, does not generalise to the entire data set and the fluctuations dissipate
as training progresses. Sometimes this produces a validation loss that is not representative of
the final performance of the network. In those cases I instead present the final validation loss.

All of the trainings in this study were performed on a host with Ubuntu 16.04 LTS, 64Gb
of local memory, 40 Intel Xeon E5-2660 v3 CPUs, and an NVIDIA GeForce GTX 1080Ti
GPU. Any times given with regards to training or inference are with respect to this host alone
and will vary when performed on other machines.

12.4.1 Decay string training

The first trainings I perform are on the decay strings alone. By construction, Full Event
Interpretation is targeted towards specific processes: it performs a bottom-up reconstruction
of a predefined set of sub-decays. Therefore, this is a reasonable first step. I equate each
sub-decay within the overall event decay string with the semantic components of a sentence.
Figure 12.9 shows and example of the analogous syntax tree representations of language and
particle decays, with the leaves (nodes) of the trees being the only components detected by the
observer, i.e. only final state particles are detected in experiment. Therefore, known solutions
to language processing problems provide a good starting point. There is a difference to be
noted here though: in the processing of the decay strings, I have access to information from the
entire syntax tree, whereasmost language processing tasksmust learn the tree from the sentence
words (leaves) themselves. An alternative approach to parsing syntax trees is the use of recursive
neural networks [86, 87] which are able to sequentially process the tree while maintaining
structural information. However the use of recursive networks is still in the primitive stages at
the time of this study and the majority of applications are on representations in the form of
binary trees (or at least each node having a fixed number of daughters). Given that particle
decays can results in a range of number of daughters this makes the use of a recursive network
here significantly more complicated. Therefore I neglect its use in this study and leave it as an
avenue for future investigation when the use of recursive networks in the machine learning

1Except in certain cases of the charged FEI𝐵+ trainings in which significantly larger epochs are seen. In those
cases I utilised a larger number of sub-epochs for fine-tuning of the networks, however it has no effect on the
overall training performance as it simply increases the number of times data validation is performed.
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Figure 12.9: Syntax tree representation examples of language (left) and particle decays (right).
Both exhibit similar semantic structures which allows established solutions for language pro-
cessing to be adapted to physics problems.

community is more well developed. This point I elaborate on in the Outlook (section 13.1)
where I discuss the use of graph neural networks instead [88, 89].

To asses the relative performance of various architectures and hyperparameter optimisa-
tions explored in this chapter, I first create a benchmark training. The baseline I use is a simple,
fully connected (MLP) network. The architecture I implement for the decay string training
benchmark is shown in figure 12.10a, with the corresponding best performing training’s met-
rics in figure 12.11. These results, after hyperparameter optimisations, set the decay string
benchmarks at the validation losses shown in table 12.3. The final trained network model
when saved is roughly 40MB in size. This is well above the 10MB limit outlined in section
10.3.

The next network architecture I train on decay strings is shown in figure 12.10b. This
architecture has been shown to perform optimally on a wide range of language processing tasks
[90] with the initial convolutional layer allowing the network to also extract any information
from spatial features of the decay string. As every input decay follows the structure Υ(4𝑆) →
𝐵(→ …)𝐵(→ …), where in the case of neutral 𝐵 mesons the two 𝐵’s are interchangeable,
the relative position of sub-decays in the complete decay string will affect which sub-decays the
FEI has attempted to reconstruct. Therefore a spatially aware recurrent network architecture
is a reasonable starting point.

LSTM layers cannot be processed in parallel within a processor as convolutional layers
can, where a single layer’s filter can be applied to all inputs simultaneously. This results in
significantly slower processing times for LSTM networks than convolutional networks. To
combat this, I use intermediate pooling layers to reduce the input parameters to the LSTM
layer, resulting in a significant reduction in training times.

Figure 12.12 shows the training results of the best LSTM architecture on both the charged
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Figure 12.10: Base network architectures trained on decay strings. As part of the hyperparame-
ter optimisation the number and sizes of layers used was varied, this diagram simply shows
their relative orderings within the network.
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Figure 12.11: Examples of training metrics of best performing fully connected (MLP) archi-
tecture on decay strings. The blue and green lines show the training and validation accuracy
respectively. The orange and red lines show the training and validation losses respectively.
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Figure 12.12: Examples of training metrics of best performing CNN-LSTM architecture on
decay strings. The blue and green lines show the training and validation accuracy respectively.
The orange and red lines show the training and validation losses respectively.

and neutral data samples. Both achieve a validation accuracy around the 80% range, with the
validation loss values given in table 12.3.

Another approach which has shown great promise in text classification tasks is the use of
convolutional layerswith fully connected final layers [91, 92]. This architecture is introduced in
[93], with the architecture used in the original study shown in figure 12.13. Mymotivation for
implementing this multi-kernel structure in this study is the variation in number of daughters
in any individual particle’s decay. For example, two-body decays in the decay string require five
characters (['X', '(-->', 'd0', 'd1', '<--)']), therefore a kernel size of five can
capture each of these in their entirety. In contrast, high multiplicity decays can have up to five
or six daughter particles, so larger kernel sizes are required to achieve the same encapsulation.
A key advantage to this setup is the immense speedup in training and inference times with
the absence of any recurrent layers. A single training epoch performed on the entire charged
FEI 𝐵+ input sample of decay strings with a batch size of 128 showed an average training
time of 190 s and 970 s for the wide CNN and CNN-LSTM respectively. This architecture of
multiple parallel kernel sizes I refer to as wide CNN for the remainder of this thesis.

I test variations on this wide convolutional architecture and find that the wide CNN
structure shown in figure 12.14 gives the best performance while retaining a fast training time
on GPU. The architecture takes the output of the embedding layer and inputs it into multiple
convolutional layers in parallel, each with differing kernel sizes ranging from four to nine. I
global average pool and concatenate each of the convolutional layer outputs before input to
the final set of Dense layers.

Figure 12.15 shows the characteristic optimal performance of the wide convolutional
network. The performance is slightly worse than that of the benchmark for the charged
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Figure 12.13: Wide convolutional architecture used in [93]. The inputs (far left) in this study
were word sequences (sentences) embedded into five dimensions (d = 5), with the embedding
layer not shown here. The second layer shows three kernel sizes (2, 3, 4) with two filters each.
The filters are then max pooled, concatenated, and finally output via a fully connected layer to
two classification nodes (far right).
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Figure 12.14: Wide convolutional architecture for processing of embedded decay string.

training. Nevertheless, the small training time per epoch and saved network size of 2.3MB
makes this an appealing architecture for use when scaling up the trainings for production use
in grid-basedMonte Carlo simulation.

12.4.2 MCParticles training

The next set of trainings I perform on the MCParticles array alone. In this solution I attempt
to classify each event from patterns in the kinematics of the decay. The initial trick here is to
equate the MCParticles structure (figure 12.4) with a picture, such that each particle is treated
as a pixel and each particle’s properties are the pixel’s colour. An image has three dimensions:
height, width, and colour. TheMCParticles array has instead only two: particles (width) and
their properties (colour). Therefore a one-dimensional convolutional network is appropriate.
As image processing via the use of convolutional networks is already a well-established field, I
make use of some known robust network architectures, in particular: vanilla CNN, ResNet
and ResNeXt (section 11.1.2), and 1 × 1 convolutions (section 11.1.3).

To provide a baseline for the convolutional networks I begin with a fully connected (MLP)
network. The base architecture I use is shown infigure 12.16a. I first embedboth the PDGcode
and mother PDG code inputs using a shared embedding layer to reduce training parameters.
I also test separate embedding layers and find no improvement in training loss. I follow this
with a flattening of the data to produce a one-dimensional array appropriate for input to
Dense layers. Figure 12.17 shows the metrics of the baseline training after hyperparameter
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Figure 12.15: Examples of training metrics of best performing wide convolutional architecture
ondecay strings. Theblue and green lines show the training and validation accuracy respectively.
The orange and red lines show the training and validation losses respectively.

Table 12.3: Optimised architectures for decay string trainings.

Model MLP (𝐵+) MLP (𝐵0) CNN-LSTM (𝐵+/𝐵0) wideCNN (𝐵+/𝐵0)

Layers

Embedding (8)

Flatten Flatten Conv1d(3, 64) Conv1d(4–10, 64)
Dense(1024) Dense(1024) MaxPool(2) GAvgPool
Dense(1024) Dense(1024) LSTM(64) Concatenate
Dense(1024) Dense(256) Dense(256) Dense(256)
Dense(512) Dense(64) Dense(64)

Val. loss 0.442 0.462 0.451/0.463 0.465/0.463
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Figure 12.16: Template of network architectures used to process MCParticles.

optimisation. The fully connected baseline is only able to achieve about an 80% validation
accuracy after optimisation (losses shown in table 12.4). Crucially, the number of training
parameters is 𝒪(107), resulting in a saved model file size range of 65 to 180MB (depending on
hidden layer sizes). As in the decay string trainings, this is well above the grid-based Monte
Carlo production limit of 10MB.

The basic architecture of vanilla convolutional networks I implement is shown in figure
12.16b. I perform the embedding-concatenate sequence to join the inputs, I then concatenate
the embedding outputs and pass them through a sequence of convolutional and pooling layers.
The sequence shown of multiple convolutional layers followed by a pooling layer is one I
use regularly in convolutional architectures in this study. Therefore, I refer to this specific
sequence when discussing convolutional networks as aNode(n,k,f,pool), where n is the number
of convolutional layers applied in the Node, k is the kernel size used in each convolutional
layer, f are the corresponding filter sizes, and pool describes the pooling operation performed.
If the filter sizes are not given they can be assumed to be 64.

The optimised results of the vanilla CNNare shown in figure 12.18. Immediately I observe
a slight increase in the final training loss, with a significant difference in training parameters
required to achieve it: 𝒪(105) for the CNN compared to 𝒪(107) for the MLP. The large
fluctuations seen in the early epochs of the mixed training are present in all hyperparameters
configurations I test. This doesn’t appear to affect the end result of the training, with the
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Figure 12.17: Baseline training metrics from fully connected (MLP) architecture trained on
MCParticles array.

fluctuations dissipating over training time. In an attempt to reduce this I try lower initial
learning rates and trainingwithoutAMSGrad enabled. This produces no significant changes to
the initial fluctuations. Overall, the vanilla CNN provides a competitive training performance
with significantly lower memory overhead and training time. The saved model size is only
roughly 3MB, making it suitable for grid-basedMonte Carlo production jobs.

Next I train both the ResNet and ResNeXt variants. Figures 12.19a and 12.19b show
the optimal training results of ResNet and ResNeXt respectively. I find no significant im-
provement over the vanilla CNN for ResNet. ResNext performs worse in both trainings,
though this is likely due to the smaller network size used. The large array of connections in each
grouped convolutional block significantly increases the training time required. Therefore to
allow reasonable training times necessary for themany training runs needed for hyperparameter
optimisation, I utilise pooling in the early layers to down-sample the data. Even with the use
of pooling, the ResNeXt trainings still requires almost nine times the vanilla CNN training
time per epoch.

Both ResNet and ResNeXt appear to significantly reduce the initial training fluctuations
in the mixed training. For the ResNet the total training time required is also less than that
of the vanilla CNN. This is not unexpected; the skip-connections in residual networks mean
that changes to earlier layers results in larger changes to the network output, i.e. have a greater
impact on the loss. Recall from Chapter 11 that the training procedure updates weights and
biases according to the gradient of the loss function. Therefore, residual networks have a finer
control over all network layers (see [94] for details of the gradient calculation for ResNets).

Finally, I train a 1 × 1 convolutional architecture. As discussed in section 11.1.3, when
stacked in successive layers the 1 × 1 convolutions effectively apply a standardMLP network
to each individual pixel. While this has uses in dimensionality reduction (e.g. as used in
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Figure 12.18: Training metrics from vanilla convolutional architecture trained onMCParticles
array.

GoogLeNet [75]), here I am interested in the direct application to theMCParticle inputs. The
individual particle properties are variables intuitive to humans performing physics calculations
(energy, three-momentum, etc.), however this does not guarantee they are optimal for a neural
network’s classification. Once individual particle propertymanipulations have been performed
by the 1 × 1 convolutions, I pass the resulting outputs to the vanilla convolutional layers. Note
that both of these steps are trained together (not as separate networks), it is simply convenient
for understanding the underlying operations to make the distinction. Figure 12.19c shows the
results of the 1 × 1 trainings. I observe a slight improvement in the mixed FEI 𝐵0 training,
especially with respect to the stability of the validation metrics.

All variants of the convolutional architectures outperform the benchmark and all decay
string trainings. I have summarised the best performing architectures and their losses in
table 12.4. I find the 1 × 1 convolutions to provide the most robust trainings, achieving the
best average loss when considering both charged and mixed. The key difference between the
convolutional architectures appears to be the training stability, with the results suggesting a
hypersensitivity to fluctuations in the particle property inputs. I infer this from the residual
network skip-connections showing that the instabilities are stabilised by greater control of
the early layers in the network. I also note that the 1 × 1 convolutional architecture has the
same final convolutional layers as the vanilla CNN. The non-linearities introduced to each
particle’s set of properties by the 1 × 1 convolutions allows for a non-linear renormalisation of
the particle’s properties as well as weighted combinations. To isolate this further, I recommend
exploration of different input normalisation schemes, though this is outside the scope of this
study and a point I outline in the Outlook (section 13.1).
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Figure 12.19: Training metrics for charged FEI 𝐵+ (left column) and mixed FEI 𝐵0 (right col-
umn) for the ResNet, ResNeXt, and 1×1 convolutional architectures trained onMCParticles
array.
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Table 12.4: Optimised architectures for MCParticle trainings.

Model MLP (𝐵+) MLP (𝐵0) Vanilla CNN (𝐵+) Vanilla CNN (𝐵0) ResNet (𝐵+/𝐵0)

Layers

PDG code/mother PDG code: Embedding (8)

Flatten Flatten Node(2, 4, 64) Node(1, 4, 64,Avg) ResNetNode(2, 3, 64, Avg)
Dense(2056) Dense(1024) Node(6, 3, 64) Node(1, 3, 64,Avg) ResNetNode(2, 3, 64, Avg)
Dense(2056) Dense(1024) GAvgPool Node(4, 3, 64) ResNetNode(2, 3, 64)
Dense(2056) Dense(1024) Dense(512) GAvgPool ResNetNode(2, 3, 64)
Dense(512) Dense(512) Dense(128) Dense(512) GAvgPool

Dense(128) Dense(256)
Dense(128)

Val. loss 0.422 0.470 0.378 0.406 0.388/0.401

Model ResNeXt (𝐵+/𝐵0) 1 × 1 CNN (𝐵+/𝐵0)

Layers

PDG code/mother PDG code: Embedding (8)

Conv1D(3, 64) Node(6, 1, 32)
MaxPool(2) Node(6, 3, 64)
ResNeXtNode([1, 3, 1], 4) GAvgPool
ResNeXtNode([1, 3, 1], 4) Dense(512)
GAvgPool Dense(128)
Dense(512)
Dense(128)

Val. loss 0.391/0.409 0.380/0.387
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Figure 12.20: Outline of the structure of the combined networks used in this section.

12.4.3 Combined trainings

The final classification model I investigate in this study is the combination of the previous two
training methods discussed. Here I combine the outputs of the best performing networks
for processing decay strings and MCParticles in a final combined network to make a single
prediction using all available information. Figure 12.20 shows the base structure I use, where
the initial embedding of inputs is the same and simply the final concatenate-NN before the
prediction is added. For these trainings I only copy the network architectures from the previous
sections; each training I perform from scratch on a re-initialised network.

Similar to the MCParticles trainings, I begin with a fully connected network for the MC-
Particles and decay string inputs as a benchmark. I use the already-optimised fully connected
network architectures from the previous two training sections. I follow these with three fully
connected layers of 256 nodes, each with a dropout of 0.2 for all but the last layer (selected
after hyperparameter tuning). I change the output of the decay string sub-network from
a single output with sigmoid activation to a size 32 output with LeakyReLU activation. I
remove the fully-connected layers following the global average pooling of the MCParticles
sub-network, and directly concatenate the output with that of the decay string sub-network.
Additionally, I lower the learning rate to 5 × 10−4 to encourage training stability in the mixed
FEI 𝐵0 training. Figure 12.21a shows the resulting benchmark training metrics. Immedi-
ately I observe an improvement in the training performance, with validation accuracy in both
training datasets jumping to the 0.86–0.88 range (and loss dropping correspondingly). This
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benchmark training does still suffer from the deficiencies of the previous sections’ benchmarks
though: the saved model is over 100MB and the trainable parameters are around 8.6 × 106.

Next I test the vanilla CNN ( fig. 12.21b), ResNet ( fig. 12.22a), ResNeXt ( fig. 12.22b),
and 1 × 1 convolution ( fig. 12.22c) architectures for the MCParticles sub-networks. In all
cases I use the wide CNN from section 12.4.1 for the decay string sub-network. I vary the
dense layers in the final combined sub-network as part of the hyperparameter optimisation, in
addition to exploring various combinations of the initial sub-networks (adding their outputs,
changing sub-network output sizes, etc.) Finally, for completeness, I also train the LSTM
architecture used in section 12.4.1. For I apply a vanilla CNN to the MCParticles input. The
results are shown in figure 12.21c.

The results of all combined trainings are summarised in table 12.5. Interestingly the
network using an LSTM on decay strings shows the top performance for charged trainings,
though as in the decay string trainings, it suffers from very slow training times. The 1 × 1
convolutions again shows the most robust performance across both mixed and charged, with
ResNet also showing similar results. Inspecting the training plots, the large validation metric
fluctuations in early epochs from the MCParticles mixed trainings appears to occur in the
combined trainings as well. I observe the same pattern, with vanilla CNN introducing the
biggest fluctuations, and residual and 1×1 convolutions reducing them as before. The charged
trainings show increased initial fluctuations, with all becoming stable after several iterations.

12.4.4 Training closing remarks

My first observation from the training results is that the combination of decay string informa-
tion with the individual particle properties provides a significant improvement in classification
power. Having the combination networks used in this study is therefore a warranted first step,
but motivates investigation into further methods of combining and representing input data.

There are three channels through which I believe immediate improvements can be made:
increasing the training data volume significantly, further augmenting the input particle prop-
erties/adding more properties (e.g. No. daughters), and implementation of more exotic or
powerful architectures (e.g. graph neural networks [89], very deep CNNs [95]). Given the
exceptionally large volume of simulation data that will be required as the Belle II experiment
ramps up data taking over the coming year, my assessment is that the aforementioned improve-
ment avenues offer a quick means of meeting that requirement while other more long-term
solutions are developed (e.g. on-the-fly simulation).

Due to the large range of possible hyperparameters to vary there is still plenty of room
for the fine-tuning of the networks. The time required for each training run and limited
computational power means that an exhaustive exploration of the hyperparameter space is
not feasible. In the last years there have been attempts at automating the hyperparameter
optimisation process, albeit for a currently limited range of applications. The two most



130 CHAPTER 12. EXPERIMENTAL PROCEDURE

0 10 20 30 40 50 60 70
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

acc
loss
val_acc
val_loss

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.4

0.5

0.6

0.7

0.8

acc
loss
val_acc
val_loss

(a) Fully connected (MLP)

0 25 50 75 100 125 150
Epoch

0.4

0.6

0.8

1.0

1.2

1.4 acc
loss
val_acc
val_loss

0 10 20 30 40 50
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

acc
loss
val_acc
val_loss

(b) Vanilla CNN (MCParticles) and wide CNN (decays string)
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Figure 12.21: Training metrics for charged FEI 𝐵+ (left column) and mixed FEI 𝐵0 (right
column) for the fully connected, vanilla, and LSTM based architecture combined trainings.
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Figure 12.22: Training metrics for charged FEI 𝐵+ (left column) and mixed FEI 𝐵0 (right
column) for the ResNet, ResNeXt, and 1 × 1 convolutional architecture combined trainings.
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Table 12.5: Optimised final architectures for combined trainings final sub-networks. MCParticle and decay string sub-networks use
the optimised architectures from sections 12.4.1 and 12.4.2. The input to the initial layers shown here are the concatenated outputs
of the previous sub-networks. In all models the architecture for charged FEI 𝐵+ and mixed 𝐵0 is reused, with the validation loss
values displayed as 𝐵+/𝐵0.

Model MLP Vanilla CNN ResNet ResNeXt 1 × 1 CNN Vanilla-LSTM

Layers
Dense(256) Dense(512) Dense(256) Dense(128) Dense(128) Dense(128)
Dense(256) Dense(512) Dense(128) Dense(64) Dense(64) Dense(64)
Dense(256) Dense(512) Dense(32) Dense(32) Dense(32)

Val. loss (𝐵+/𝐵0) 0.291/0.346 0.276/0.299 0.269/0.290 0.278/0.299 0.269/0.288 0.265/0.311
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notable are Google’s AutoML [96] and Auto-Keras [97], the latter of which is most relevant
to this study2. This technology is worth monitoring for future use in the continuation of this
study.

12.5 Evaluation

Following the results of the trainings in the previous section, I now demonstrate their applica-
tion in event simulation and present a means of evaluating their selection performance. The
goal here is two-fold: firstly to check that the trainings do provide a speedup in the simula-
tion of backgrounds, and secondly to provide the tools necessary for identifying any biases
introduced by the networks.

To perform the evaluation I selected two trainings from the combined trainings (section
12.4.3), one for charged and one for mixed generic backgrounds. I select the ResNet trained
networks as they were one of the best performing. The 1 × 1 CNN would also be a valid
choice as it performed excellently during training. The vanilla-LSTM training was not selected
due to the slow processing time required by the LSTM sub-network for decay strings.

To apply the trained networks I created a custombasf2module to insert into the simulation
data flow as shown in figure 12.3. This module reads the output of the MC stage and applies
the trained network to return a prediction of the pass likelihood. All of the preprocessing
described in section 12.3 is performed on the fly before features are passed to the network. For
the purposes of evaluation I keep all events, regardless of their predicted pass likelihood. The
purpose of this is to allow inspection of the impact of different likelihood thresholds on the
pass events. The execution time of the module is difficult to compare to the values shown in
table 10.1, as the HEP-SPEC06 benchmark software is proprietary. I can, however, compare
the execution over many simulated events to provide an estimate of the relative processing
times required. Table 12.6 shows the mean execution times per module call (± one standard
deviation) for the mixed channel across twenty individual simulation runs with 5000 events
simulated in each3. TheNNmodule indicates the time required by the basf2module described
above to perform both feature preprocessing and inference. The times are recorded by basf2
for all 5000 events and include the initialisation of each module which is performed prior to
the first event. The initialisation of the neural network includes loading of the pre-trained
network and the Tensorflow/Keras libraries which causes the large standard deviation seen.
Given that𝑛𝑢𝑚1.2𝑒5 events are typically simulated per job in the commissionedMonteCarlo
simulation campaigns, I expect the overall impact of the initialisation time to be negligible.

2Auto-Keras is open source and free, whereas Google’s AutoML is not.
3Execution time summaries are given by basf2 after all processing is finished, not recorded manually by me.

To separate initialisation times from execution times requires changes to basf2, but would allow a more precise
measure.
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Table 12.6: Simulation execution times with trained neural network inference included. Times
are given as average execution time per call (event) with one standard deviation.

Stage Time (ms) / Call

Event generation 5 ± 26
NNmodule 39 ± 201
Detector simulation 1970 ± 720
Event reconstruction 7000 ± 3000

Once the events have been simulated I repeat the FEI skim procedure performed in section
6.2.1 on all events, regardless of the neural network output. This allows an inspection of
the performance of the network (how accurately it rejected the true pass and fail events) at
varying thresholds applied to the pass prediction output. To demonstrate the performance
I compare the true positive (correctly classified pass events) and false positive (incorrectly
classified fail events) rates at varying thresholds. Figure 12.23 shows the resulting receiver
operating characteristic (ROC) curves [98] for both trainings applied. The area under curve
(AUC) is given to provide a quantitative means of comparing the network performances. The
charged training has anAUCof0.786while themixed has anAUCof0.795, indicating similar
simulation speedup provided by both. To quantify the simulation speedup, by inspecting the
ROC curves and arbitrarily selecting a pass event retention rate of 80%, a fail event rejection
rate of around 65% is achieved. Since this is a binary classification task (only two event options:
pass or fail), and neglecting the execution time of the network needed tomake the classification,
this translates directly into a 65% simulation time reduction in order for the production of
80% of the background events which will survive the FEI skim procedure. While this is not an
amazing jump in background simulation volumes accessible, as is required by those studying
rare or low efficiency 𝐵 decay channels, it is only a first attempt which can reasonably be
expected to be improved as more advanced machine learning techniques are explored.

The natural question following the performance seen here is: what are those misclassified
pass events (false negatives)4? The biggest concern is that they represent a specific part of the
background phase space; either some difficult to classify kinematic regions or certain decay
channels which the network tends towards rejecting. There are various potential solutions to
combating any of these biases should they be found, of which the following three I have listed
in order of preference:

1. Improve the classification performance to the point at which such biases disappear, i.e.
near perfect classification. This is would require significant increases in the training
data volumes used and may require training on specific analyses with clear kinematic

4I am not concerned with the details of the fail events outside of how well rejected they since they will never
enter into physics analysis and introduce potential biases. Instead they will simply be rejected by the FEI skims.
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Figure 12.23: Receiver operating characteristic curves of applied networks during evaluation
data production. The red dashed line indicates the performance of a naive untrained network
(i.e. flipping a coin). The blue line shows the performance of the networks at various pass
probability prediction thresholds. The area under curve (AUC) score is shown in the legend.

restrictions in place on signal candidates.

2. Construct anti-biasmeasures as a property of the network training. This is implemented
in practice in the loss function. One commonmethod is the inclusion of a divergence
term in the loss that is a measure of how correlated the network output is with the
variables being monitored for bias.

3. Weight the under-performing regions of phase space according to a baseline Monte
Carlo sample that did not involve the use of the classifier. This can be performed in bins
of the network output. I investigate this method in this section.

4. Identify regions of the simulation phase space which the classifier should ignore. For
example if it is found that all events containing three or less charged particles significantly
under-performs, while the remainder of pass events are rejected consistently, then it
may be acceptable to simply not apply the classifier to such events and perform the full
simulation for all of them. This results in an obvious loss in simulation efficiency but in
certain cases may be the most efficient way forward which reduces bias.

To assess potential bias I inspect the changes to the kinematics of the FEI skim output.
I select a moderate threshold for both channels of pass probability greater than 0.85 for the
charged 𝐵+ and 0.60 for mixed 𝐵0. These are selected such that the pass event retention rates
are roughly 78% for charged and 74% for mixed, and the corresponding fail event rejection
rates are 65% and 72%. I then choose variables which describe the reconstructed FEI B
meson, in particular those used typically in their selection (recall section 6.2.1): 𝑀bc, Δ(𝐸),
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sigProb, and nTracks. Additionally I select some rest of event (ROE) variables to represent the
kinematics of what remains in the detector aside from the reconstructed 𝐵 meson, namely the
thrust vectors [47], and the ratio of second to zeroth Fox-Wolframmoments [46], R2, from
section 6.2.4 These can help indicate any potential biases introduced in the remaining particles
that would be used to reconstruct the signal decay in an analysis.

At this point it is useful to clarify several definitions before continuing:

𝑁𝑁 This is the trained neural network applied to simulated events as shown in figure 12.3.

𝑃 (𝐹) Pass (Fail) events.
These are events which are kept (discarded) by the FEI skim.

𝑃 ∗ (𝐹 ∗) Pass* (Fail*) events.
Events predicted by the 𝑁𝑁 to be pass (fail) events.

𝑇 𝑃 ∗ True pass* events.
The set of pass events correctly predicted to pass by the 𝑁𝑁, i.e. events which would
make it through the entire simulation flow from figure 12.3.

𝐹𝐹 ∗ False fail* events.
These are pass events incorrectly classified as 𝐹 ∗ by the 𝑁𝑁. A perfect 𝑁𝑁 would
produce no false fail* events.

To measure the introduced bias I compare the distributions of all pass (𝑃) events to that of
the true pass* (𝑇 𝑃 ∗). As the 𝑇 𝑃 ∗ events are a subset of the 𝑃, I use a binomial distribution of
the 𝑃 events to quantify the agreement between the 𝑇 𝑃 ∗ from the 𝑁𝑁 and expected 𝑇 𝑃 ∗

from an unbiased classifier. I bin each observable, where each bin’s 𝑃 binomial distribution
has a mean of

𝜇𝑃,𝑖 = 𝜖𝑁𝑃,𝑖 , (12.2)

where 𝜖 is the total 𝑇 𝑃 ∗ efficiency of the 𝑁𝑁 (78% for charged and 74% for mixed), and
𝑁𝑃,𝑖 is the total number of 𝑃 events in that bin. I calculate standard deviation as

𝜎𝑃,𝑖 = 𝑁𝑃,𝑖𝜖(1 − 𝜖) . (12.3)

I compare the binomial distribution of 𝑃 with the each bin’s recorded 𝑇 𝑃 ∗ and calculate
the bin-wise p-value to check for agreement. Figures 12.24 and 12.25 show the resulting
plots for the charged FEI 𝐵+ channel. Blue shows the binomial distributions of 𝑃 with the
shaded region indicating one standard deviation. Orange shows the 𝑇 𝑃 ∗ distribution. The
accompanying red plot underneath each shows the p-value, with the orange line indicating a
p-value of 0.05 for reference. Note the log scale on the y-axis of the p-value plots and both
axes of the sigProb distributions. The corresponding plots for the mixed FEI 𝐵0 channel are
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Figure 12.24: Bias evaluation plots for charged FEI 𝐵+.

shown in figs. G.1 and G.2 in Appendix G. Inspecting these distributions, there is a significant
bias introduced in the number of tracks seen in figure 12.28d with an under-representation of
events with fewer tracks and over-representation of higher multiplicity events. A similar bias is
seen in the mixed 𝐵0 channel. Additionally, several bins in the ROE kinematic distributions
show disagreement. Overall the resulting 𝑇 𝑃 ∗ distributions indicate biases and motivate
investigating corrections.

In an attempt to curb this bias I introduce a second neural network that attempts to
discriminate between 𝑇 𝑃 ∗ and 𝐹𝐹 ∗ events. The output of the network can then be used to
weight simulated as a means of recovering the expected kinematic distributions. This second
network I then refer to as the biasNN to distinguish it from the originalNN. The biasNN
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Figure 12.25: Bias evaluation plots for charged FEI 𝐵+.
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Figure 12.26: Monte Carlo simulation flow with both the selective background module and
the bias correction neural network inserted.

predicted 𝑇 𝑃 ∗ and 𝐹𝐹 ∗ I refer to as bias𝑇 𝑃 ∗ and bias𝐹𝐹 ∗ respectively. Figure 12.26 shows
an example of where the biasNN could fit into the processing flow. The network uses the
variables shown in figs. 12.24 and 12.25 as inputs, along with two additional variables: the
cosine of the difference between the thrust of the FEI reconstructed 𝐵 meson and the beam-
pipe (cos(𝐵thrust − 𝑧)) and the ROE thrust (cos(𝐵thrust − ROEthrust)). The two additional
inputs were added as they improved the quality of discrimination of the network. Both are
shown for the mixed and charged FEI channels in figure G.3 in Appendix G.

The network architecture used is a simple feed forward network with three hidden dense
layers containing 64 neurons each. Each layer uses LeakyReLU activation, except the last
which uses sigmoid, and batch normalisation. I used the Adam optimiser for training with a
learning rate of 5 × 10−4, AMSGrad, and a binary cross-entropy loss as this showed the best
performance. I selected the charged FEI𝐵+ channel for training and evaluating the network as
a test-bed for this process of bias correction. As the classification andweightingmust ultimately
be performed on an event basis, not on individual 𝐵 candidates, I chose the reconstructed 𝐵
with the highest sigProb of each event for classification. The training dataset used contains
roughly 8.6 × 104 candidates, with an additional 2 × 104 candidates used for validation. An
alternative approach could be to use all 𝐵 meson candidates and average across the biasNN
output to obtain a bias𝑇 𝑃 ∗ for the whole event, or to use event-level variables (number of
charged tracks, ECL clusters, etc.) to make the bias prediction before FEI is performed. These
alternatives are not investigated in this study and left for future work.

The resulting normalised distribution of bias𝑇 𝑃 ∗ predictions from the trained network
are shown in figure 12.27, where the blue shows the subset of𝐹𝐹 ∗ events, and orange the𝑇 𝑃 ∗.
The final accuracy of the biasNN is around 58% (loss of 0.67). This level of performance
is reasonable given the levels of bias seen in most kinematic bins in the input variables (the
number of tracks alone is not enough to decide whether a single event is likely to contribute to
biases).

I applied the trained network to another independent sample of roughly 2.8 × 104 charged
FEI𝐵+ events and calculated the ratio 𝑃

𝑇 𝑃 ∗ for each bin in bias𝑇 𝑃 ∗. The goal being to recover
the original 𝑃 distribution, represented by the sum of 𝐹𝐹 ∗ and 𝑇 𝑃 ∗ in figure 12.27. Table
12.7 shows the corresponding bin ratios, normalised to the range [0, 1]. I then used the ratios
as a sampling weight for each bin, e.g. for a ratio of 0.75 only a random set of 75% of events
from that bin are retained. Figures 12.28 and 12.29 show the resulting corrected distributions.
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Figure 12.27: Normalised output predictions of the biasNN network on charge FEI 𝐵+ skim
events.

Note that the mean of the bin ratios is only 0.295, resulting in a very low final efficiency
and negating much of the speedup provided by the originalNN. Interestingly the correction
significantly improved the resulting distribution of number of tracks. Unfortunately this is to
the detriment of the other kinematic variables, although with the resulting low statistics it is
difficult to quantify precisely. Overall it appears as though this form of post hoc bias correction
is not a suitable solution. Even in the best-case scenarios involving minimal corrections it
involves the discarding of a portion of simulated pass events, working against the original goal
of this study. Instead, including the bias correction as a property of the network training would
be more appropriate. This point I discuss further in section 13.1.
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Bin in bias𝑇 𝑃 ∗ 𝑃
𝑇 𝑃 ∗ ratio

(0.192, 0.23] 1.000
(0.23, 0.268] 0.756
(0.268, 0.305] 0.734
(0.305, 0.343] 0.564
(0.343, 0.38] 0.453
(0.38, 0.418] 0.379
(0.418, 0.455] 0.332
(0.455, 0.493] 0.282
(0.493, 0.531] 0.256
(0.531, 0.568] 0.225
(0.568, 0.606] 0.197
(0.606, 0.643] 0.174
(0.643, 0.681] 0.138
(0.681, 0.718] 0.098
(0.718, 0.756] 0.094
(0.756, 0.793] 0.070
(0.793, 0.831] 0.057
(0.831, 0.868] 0.026
(0.868, 0.906] 0.000
(0.906, 0.944] 0.052

Table 12.7: Bin ratios corresponding to 12.27.
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Figure 12.28: Corrected bias evaluation plots for charged FEI 𝐵+.
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Figure 12.29: Corrected bias evaluation plots for charged FEI 𝐵+.



Chapter 13

Summary

In this study I developed a method of selective Monte Carlo simulation as a means of reducing
computational requirements. With the use of neural networks I showed it is possible to
predict early in the simulation procedure how likely a simulated event is to be useful in analysis.
I developed the procedure for extracting information from Monte Carlo data in Belle II
and performing the necessary preprocessing steps for input to a neural network. With this
I investigated three different methods of using simulated particles, decays strings, and the
combination of both to make predictions. The results showed that the networks with the
combination input had the best predictive power. I then showed, through the simulation of
an independent sample, that a trained network is able to reduce simulation time requirements.
Using the output of this independent sample I outlined a method of quantifying kinematic
biases introduced by the network. The biases found were non-negligible and so in the final
part of this study I investigated a method of bias correction which proved unable to recover
original kinematics. The results of this study are nonetheless promising and demonstrate that
selective background Monte Carlo simulations targeted to specific analyses are possible. If
the biases are able to be corrected then this is a powerful technique that will enable significant
increases in simulation volumes for Belle II.

13.1 Outlook

In the neural network implementations used in this study, the natural graph structure of the
data is never fully encapsulated. The data formats used, MCParticles equated with pixels and
decay strings as sentences, effectively flatten the data structures. The networks are then left
to infer the particle relations themselves, rather than having them included as an intrinsic
property of the data format itself. An alternative approach would involve the use of graph
neural networks [89] or graph convolutional networks [88] which are designed specifically to
handle graph-like structures. Investigation of their uses in other fields such as social network
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analysis and molecular chemistry would allow an analogous application here that may yield a
better predictive power.

The network architectures I used in this work all had architectures which required a fixed
length input and necessitated padding of the input data. The padding scheme applied used
zero-padding, where all padded input values were set to zero. Zero, however, is still a valid
input andmay inhibit the discriminating power of the networks. Fully convolutional networks
[99] offer a means of handling arbitrary sized inputs with a fixed size output. This removes
entirely the need for padding or truncating data during preprocessing.

The ideal handling of the kinematic biases discussed in section 12.5 would be to include
their mitigation in the training of the initial neural network. One method of achieving this
would be to introduce a penalty to the training loss. The penalty should be a measure of the
correlation between the network output and a collection of selected kinematic variables deemed
to be representative of the entire simulated event. For example, including the Kullback-Leibler
divergence [100] in the loss in a similar manner to its usage in variational autoencoders would
allow a controlled penalisation of induced bias.

Hyperparameter optimisation of neural networks is a time-consuming task with no guar-
antee of yielding better results. To automate this process when using Keras the Auto-Keras
[97] library could be used. This will remove the need for supervision of the training procedure,
creating extra time for other tasks and speeding up the entire investigative process in general.

The normalisation scheme I used in this studywasmin-max scalingwhich performs a linear
rescaling of continuous variables to the range [0, 1]. An alternative normalisation using for
example tanh may be better suited to the distribution of values in MCParticles. As a majority
of the simulated particles are produced and decay very close to the interaction point of the
Belle II detector differences between small values should be emphasised.
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𝐸ECL The unreconstructed energy remaining in the electromagnetic calorimeter in GeV.
Defined as 𝐸ECL = 𝐸obs − 𝐸rec, where 𝐸obs is the total energy observed, and 𝐸rec is
the total energy used in particle candidate reconstruction. . 38, 39, 51, 55–60, 64, 66,
74–76, 164–166, 168, 169

𝐸miss Missing energy of theΥ(4𝑆) in the event centre ofmass frame. Defined as the difference
between initialΥ(4𝑆) energy and the sumof the energy of all reconstructed daughters.
. 50, 162

𝐾daughter angle Cosine of the angle between the daughter particles of the signal side Kaon.
Expected to peak at 1 for correctly reconstructed Kaons. . 49, 50, 162

𝑀bc Beam-constrained mass in GeV/c2. Defined as 𝑀bc = √𝐸2
beam − 𝑝2

𝐵, where 𝐸beam is
half of the initial energy of the 𝑒+𝑒− collision in the centre of mass frame, and 𝑝𝐵 the
three-momentum of the reconstructed 𝐵 meson. . 35, 50, 51, 75, 104, 135, 137, 142,
157, 159, 161, 162, 180

𝑃miss Missing magnitude of the three-momentum of the reconstructed Υ(4𝑆). Defined as
the difference between the initial and reconstructedΥ(4𝑆)momentum. In the event
centre of mass frame this is trivially the reconstructed momentum of the Υ(4𝑆). .
50, 162

Δ(𝐸) Beam-constrained energy in GeV. Defined as Δ(𝐸) = 𝐸𝐵 − 𝐸beam, where 𝐸beam is
half of the initial energy of the 𝑒+𝑒− collision in the centre of mass frame, and 𝐸𝐵
the reconstructed 𝐵 meson energy. . 35, 50, 104, 135, 137, 142, 180

cos(𝐵thrust − ROEthrust) Cosine of the angle between the thrust of the given 𝐵 meson and
the thrust of the rest of event. . 139, 182

cos(𝐵thrust − 𝑧) Cosine of the angle between the thrust of the given 𝐵 meson and the z-axis
(beam-pipe). . 139, 182

ROE(𝐸) Rest of event energy in GeV. The energy remaining in the detector once the energy
associated with the reconstructed particle is removed. Restrictions are places on the
tracks and ECL hits included in the measurement to remove likely contributions to
the total energy from beam-background related sources. . 49, 162

𝑓𝐵𝐷𝑇 Fast Boosted Decision Tree (fBDT) calculated probability of an event originating
from continuum or not. 0 indicates that the input was likely a continuum event, 1 a
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Υ(4𝑆) → 𝐵�̄� event. . 50, 51, 162
𝑝CMS Momentum in GeV/c of the signal side kaon in the centre of mass reference frame. .

49, 162

array index Unique, per event index number of theMonte Carlo simulated particle (zero-
based). . 108–111

charge Electric charge of the particle.. 108, 109, 111

decay time Time stamp of the particle’s decay in ns relative to Υ(4𝑆) production time.. 107,
111

decay vertexCoordinates of the particle’s decay vertex.. 107, 111
dr Transverse (radial) distance of closest approach of the reconstructed track to the interaction

point in cm. . 38
dz Distance of closest approach of the reconstructed track to the interaction point in the

z-axis (along the beam-pipe) in cm. . 38

E Reconstructed energy of the particle in GeV. . 38–40, 50, 162
E1E9 The ratio of energies for a given ECL cluster of the central crystal and 3x3 crystals

around the central crystal. . 39
ECL cluster error timing ECL cluster timing uncertainty range that contains 99% of true

photons. . 38–41
ECL cluster timing Difference in nano-seconds between the bunch crossing (𝑒+𝑒− collision)

and activation of the highest energy crystal for the given particle’s ECl hit. Photons
from beam-related backgrounds are not associated with the bunch crossing and are
expected to show a uniform distribution. . 38–42

energy Particle energy in GeV.. 108, 111

FSP Final state particles. These are the eventual decay daughters of the initial 𝑒+𝑒− collision
that have a lifetime long enough to be detected by Belle II. This is a catch-all term
to describe all the particles that can be combined in various ways to reconstruct the
particular decay being searched for. . 34, 107

lifetimeDifference between decay and production time of the particle.. 111

mass Particle mass in GeV.. 111
MDST Mini-DST (data summary tapes). The event storage format used in Belle II for direct

user analysis. Combines the online reconstruction of raw subdetetector output with
calibration constants. . 81, 108

momentumThree-momentum of the particle in Gev/c.. 108, 109, 111
mother PDG code PDG code of the particle’s parent.. 108, 111, 121, 127

No. daughtersNumber of decay daughter particles.. 108, 109, 111, 129
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nTracks Total number of charged tracks in the event. When working with simulations this
is the true number of tracks in the event. For reconstructed particles it is only the
number of tracks reconstructed from detector hits. . 35, 104, 136, 137, 142, 180

PDG codeUnique identifier for that particle type and charge. [9] contains the rules necessary
for translating each code to it’s particle type.. 98, 108–112, 121, 127

Production time Production time in ns relative to Υ(4𝑆) production.. 108, 111
production vertexCoordinates of the particle’s production vertex.. 108, 109, 111

sigProb Signal probability output by the Full Event Interpretation software to indicate the
confidence that the associated 𝐵 meson was correctly reconstructed. 0 indicates that
the 𝐵 meson was not correctly reconstructed, 1 means a high level of confidence that
it was. . 30, 35, 50, 51, 104, 136, 137, 139, 142, 162, 180

status bit Bitmask representing how the particle was created during simulation, e.g. by
EvtGen, whether it is a virtual particle, whether it originates from initial or final state
radiation. . 80, 108, 111
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Appendix A

Cut Selection Variables
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Figure A.1: 𝐾+ hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots have been normalised to show relative number of events across
the full range.
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Figure A.2: 𝐾+ hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots (except 𝑀bc) have been normalised to show relative number of
events across the full range.
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Figure A.3: 𝐾∗0 hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots have been normalised to show relative number of events across
the full range.
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Figure A.4: 𝐾∗0 hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots (except 𝑀bc) have been normalised to show relative number of
events across the full range.
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Figure A.5: 𝐾∗+ hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots have been normalised to show relative number of events across
the full range.
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Figure A.6: 𝐾∗+ hadronic reconstruction selection variables with preliminary selections from
section 6.2.5 applied. All plots (except 𝑀bc) have been normalised to show relative number of
events across the full range.



Appendix B

Optimised cut values

Table B.1: Cut selections obtained from optimisation performed in section 6.2.5.

Variable 𝐾0 𝐾+ 𝐾∗0 𝐾∗+

𝑝CMS(Gev/c) > 0.50 0.53 0.76 0.57
𝐾daughter angle(rad) > 0.63 – 0.11 0.49
ROE(𝐸)(GeV) < 6.42 6.04 6.08 5.91
𝑀bc(Gev/c2) > 5.2738 5.2730 5.2742 5.2735
sigProb > 3.43 × 10−2 2.64 × 10−2 4.04 × 10−2 8.17 × 10−2

E(GeV) > 7.40 7.18 7.41 7.36
𝑓𝐵𝐷𝑇 > 0.28 0.39 0.39 0.32
𝐸miss + 𝑃miss > 3.71 4.12 4.13 4.14
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Figure C.1: Example of changes to 𝐸ECL in the 𝐾0 channel for different rest of event restric-
tions in the signal region (𝐸ECL < 1GeV). All histograms shown here are stacked. The top
row shows the second best performing ROE filter from the tests in section 6.2.3. The bottom
row shows the baseline filter. The left column shows the change to signal and self-crossfeed,
and the right to the individual background channels.
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Figure C.2: Example of changes to 𝐸ECL in the 𝐾∗+ channel for different rest of event restric-
tions in the signal region (𝐸ECL < 1GeV). All histograms shown here are stacked. The top
row shows the second best performing ROE filter from the tests in section 6.2.3. The bottom
row shows the baseline filter. The left column shows the change to signal and self-crossfeed,
and the right to the individual background channels.
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Figure C.3: Example of changes to 𝐸ECL in the 𝐾∗0 channel for different rest of event restric-
tions in the signal region (𝐸ECL < 1GeV). All histograms shown here are stacked. The top
row shows the second best performing ROE filter from the tests in section 6.2.3. The bottom
row shows the baseline filter. The left column shows the change to signal and self-crossfeed,
and the right to the individual background channels.
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Figure D.1: Individual signal exponential (top) and background KDE (bottom) fit shapes to
𝐸ECL obtained fromMonte Carlo simulations.
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Figure D.2: Individual signal exponential (top) and background KDE (bottom) fit shapes to
𝐸ECL obtained fromMonte Carlo simulations.
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Figure E.1: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 2 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Figure E.2: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 2 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Figure E.3: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 5 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Figure E.4: Pulls and corresponding Gaussian fits of the set of fits to toyMC tests at 5 ab−1

luminosity equivalent using histogram templatemodels. The left plotswith blue data points are
the results of the signal yield fits, and the right plots with red data points show the background
yield fits.
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Luminosity Upper limit Δ(− log(𝐿)) ℬ upper limit
equiv. (ab−1) Mean Std. dev. Mean Std. dev. Mean Std. dev.

1 45 26 0.7 0.9 3.23 × 10−5 1.92 × 10−5

2 70 36 0.8 1.0 2.53 × 10−5 1.31 × 10−5

3 93 44 0.9 1.2 2.24 × 10−5 1.07 × 10−5

4 114 50 1.1 1.3 2.06 × 10−5 9.12 × 10−6

5 134 56 1.2 1.4 1.93 × 10−5 8.07 × 10−6

6 153 63 1.3 1.5 1.83 × 10−5 7.57 × 10−6

7 172 67 1.4 1.5 1.77 × 10−5 6.88 × 10−6

8 192 72 1.6 1.7 1.72 × 10−5 6.53 × 10−6

9 209 75 1.7 1.7 1.66 × 10−5 6.03 × 10−6

10 229 79 1.9 1.9 1.64 × 10−5 5.72 × 10−6

11 247 83 2.0 2.0 1.61 × 10−5 5.47 × 10−6

12 266 88 2.2 2.0 1.59 × 10−5 5.28 × 10−6

13 282 88 2.3 2.0 1.56 × 10−5 4.90 × 10−6

14 297 95 2.4 2.2 1.52 × 10−5 4.89 × 10−6

15 318 96 2.6 2.2 1.52 × 10−5 4.62 × 10−6

16 332 99 2.7 2.2 1.49 × 10−5 4.47 × 10−6

17 348 104 2.9 2.3 1.47 × 10−5 4.40 × 10−6

18 366 106 3.0 2.4 1.46 × 10−5 4.23 × 10−6

19 384 106 3.2 2.4 1.45 × 10−5 4.03 × 10−6

20 400 113 3.3 2.5 1.43 × 10−5 4.05 × 10−6

21 415 115 3.4 2.5 1.42 × 10−5 3.93 × 10−6

22 432 118 3.6 2.6 1.41 × 10−5 3.86 × 10−6

23 450 117 3.8 2.6 1.40 × 10−5 3.67 × 10−6

24 464 120 3.8 2.7 1.39 × 10−5 3.59 × 10−6

25 482 123 4.0 2.7 1.38 × 10−5 3.54 × 10−6

Table F.1: 𝐾+ upper limit scaling test values from toyMC tests performed in section 7.2.2.
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Luminosity Upper limit Δ(− log(𝐿)) ℬ upper limit
equiv. (ab−1) Mean Std. dev. Mean Std. dev. Mean Std. dev.

1 24 16 0.5 0.8 1.44 × 10−4 9.85 × 10−5

2 35 23 0.6 0.8 1.06 × 10−4 7.01 × 10−5

3 46 28 0.6 0.8 9.17 × 10−5 5.54 × 10−5

4 54 32 0.6 0.8 8.05 × 10−5 4.82 × 10−5

5 63 36 0.6 0.9 7.49 × 10−5 4.37 × 10−5

6 70 40 0.7 0.9 7.00 × 10−5 3.95 × 10−5

7 78 43 0.7 0.9 6.65 × 10−5 3.71 × 10−5

8 84 45 0.7 0.9 6.23 × 10−5 3.38 × 10−5

9 91 48 0.7 1.0 6.05 × 10−5 3.17 × 10−5

10 99 51 0.8 1.0 5.88 × 10−5 3.05 × 10−5

11 104 54 0.8 1.0 5.64 × 10−5 2.91 × 10−5

12 111 54 0.8 1.0 5.52 × 10−5 2.71 × 10−5

13 119 57 0.8 1.1 5.45 × 10−5 2.62 × 10−5

14 123 59 0.8 1.1 5.22 × 10−5 2.53 × 10−5

15 132 62 0.9 1.1 5.23 × 10−5 2.45 × 10−5

16 137 64 0.9 1.1 5.09 × 10−5 2.39 × 10−5

17 142 66 0.9 1.2 4.99 × 10−5 2.30 × 10−5

18 148 68 1.0 1.2 4.90 × 10−5 2.27 × 10−5

19 153 69 1.0 1.2 4.80 × 10−5 2.18 × 10−5

20 160 71 1.0 1.2 4.75 × 10−5 2.13 × 10−5

21 166 73 1.0 1.2 4.70 × 10−5 2.08 × 10−5

22 172 75 1.1 1.3 4.65 × 10−5 2.03 × 10−5

23 177 77 1.1 1.3 4.57 × 10−5 1.99 × 10−5

24 182 79 1.1 1.3 4.50 × 10−5 1.97 × 10−5

25 189 81 1.2 1.4 4.50 × 10−5 1.93 × 10−5

Table F.2: 𝐾∗+ upper limit scaling test values from toyMC tests performed in section 7.2.2.
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Luminosity Upper limit Δ(− log(𝐿)) ℬ upper limit
equiv. (ab−1) Mean Std. dev. Mean Std. dev. Mean Std. dev.

1 30 19 0.6 0.8 6.41 × 10−5 4.17 × 10−5

2 46 27 0.7 0.9 4.89 × 10−5 2.95 × 10−5

3 58 33 0.7 1.0 4.17 × 10−5 2.35 × 10−5

4 70 37 0.7 1.0 3.76 × 10−5 1.98 × 10−5

5 82 41 0.8 1.0 3.49 × 10−5 1.76 × 10−5

6 93 44 0.8 1.1 3.30 × 10−5 1.59 × 10−5

7 104 48 0.9 1.2 3.17 × 10−5 1.48 × 10−5

8 114 53 1.0 1.2 3.03 × 10−5 1.41 × 10−5

9 125 55 1.1 1.3 2.96 × 10−5 1.30 × 10−5

10 133 57 1.1 1.3 2.83 × 10−5 1.22 × 10−5

11 143 61 1.2 1.4 2.77 × 10−5 1.19 × 10−5

12 152 62 1.2 1.3 2.70 × 10−5 1.10 × 10−5

13 160 66 1.2 1.4 2.62 × 10−5 1.09 × 10−5

14 172 68 1.4 1.5 2.62 × 10−5 1.04 × 10−5

15 178 70 1.4 1.4 2.53 × 10−5 9.99 × 10−6

16 187 73 1.4 1.5 2.49 × 10−5 9.76 × 10−6

17 197 75 1.5 1.6 2.46 × 10−5 9.41 × 10−6

18 209 76 1.6 1.7 2.47 × 10−5 9.07 × 10−6

19 215 80 1.6 1.7 2.41 × 10−5 9.01 × 10−6

20 224 82 1.7 1.8 2.39 × 10−5 8.72 × 10−6

21 234 85 1.8 1.8 2.37 × 10−5 8.62 × 10−6

22 239 84 1.8 1.8 2.31 × 10−5 8.19 × 10−6

23 249 86 1.8 1.8 2.30 × 10−5 8.03 × 10−6

24 257 90 1.9 1.9 2.28 × 10−5 7.99 × 10−6

25 265 90 2.0 1.8 2.26 × 10−5 7.69 × 10−6

Table F.3: 𝐾∗0 upper limit scaling test values from toyMC tests performed in section 7.2.2.
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Figure G.1: Bias evaluation plots for mixed FEI 𝐵0.
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Figure G.2: Bias evaluation plots for mixed FEI 𝐵0.
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Figure G.3: Additional thrust vector inputs to biasNN for charged FEI 𝐵+ (top) and mixed
FEI 𝐵0 (bottom).
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