
Parametric Instabilities of
Interacting Bosons in Driven Optical

Lattices

Jakob Näger

München, 2019





Parametric Instabilities of
Interacting Bosons in Driven Optical

Lattices

Dissertation
an der Fakultät für Physik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Jakob Näger
aus Nürnberg

München, 01. März 2019



Erstgutachter: Prof. Immanuel Bloch

Zweitgutachter: Prof. Frank Pollmann

Weitere Prüfungskommissionsmitglieder: Prof. Matthias Punk, Prof. Jan Lipfert

Tag der mündlichen Prüfung: 08. April 2019



Zusammenfassung

Periodisch getriebene Quantengittersysteme sind interessante Untersuchungsobjekte, um
neue topologische Phasen zu realisieren. Ultra-kalte Atome eignen sich optimal für diese
Floquet-Engineering Ansätze, da sich ihre Eigenschaften, wie Bandstrukturen und Wech-
selwirkungen, gut kontrollieren lassen. Während sowohl wechselwirkende Systeme als
auch topologische Bandstrukturen schon erfolgreich demonstriert wurden, haben die ho-
hen Heizraten, die mit periodischem Treiben aus einem effektiv unerschöpflichen En-
ergiereservoir verbunden sind, bisher eine Kombination der beiden verhindert. Daher
stellen Enthüllung, Verständnis und letzten Endes Kontrolle über die Mechanismen der
Energieabsorption einen großen Schritt in Richtung topologischer, wechselwirkender Sys-
teme dar. Diese Dissertation berichtet von der Entdeckung theoretisch vorhergesagter
parametrischer Resonanzen in Bose-Einstein-Kondensaten in periodisch getriebenen op-
tischen Gittern. Diese Resonanzen führen zu einem exponentiellen Anwachsen instabiler
Impulsmoden in den ersten Zyklen des Treibens und stellen somit den Beginn der Zer-
störung des Kondensats durch Heizen dar.

Wir beobachten die Entwicklung dieser Impulszustände, nutzen Time-of-Flight Mes-
sungen zur Identifikation der instabilsten Moden und erfassen die entsprechenden Wachs-
tumsraten quantitativ. Die gewonnenen Ergebnisse werden mit Vorhersagen aus der
Bogoliubov-Theorie verglichen.

Unsere Ergebnisse bestätigen außerdem die zentrale Rolle, die kontinuierliche Frei-
heitsgrade spielen, d.h. Dimensionen ohne Gitter, die das zuvor stabile Regime oberhalb
der Bogoliubov-Bandbreite instabil machen.

Außerdem haben wir mit der harmonischen Falle, die das Kondensat hält, noch eine
weitere Quelle störender Einflüsse gefunden. Sie erzeugt Zustände in der Bandlücke, die
das System auch für Treibefrequenzen oberhalb der Bandbreite instabil machen. Da der
Überlapp dieser Tamm-Zustände mit dem Kondensat für zunehmende Energie abnimmt,
nimmt auch die Instabilität des Systems zu noch größeren Treibefrequenzen hin ab.
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Abstract

Periodically driven quantum lattice systems are an interesting subject of investigation in
view of reaching new topological phases of matter. Ultra-cold atoms are well suited for
these Floquet-engineering approaches, as they offer great control over their properties,
such as band structures and interactions. While both interacting systems and topologi-
cal band structures have been successfully demonstrated, the high heating rates that are
associated with periodically driving an interacting system from an effectively infinite en-
ergy reservoir, have so far prevented the combination of both features. One step towards
the realization of topological interacting systems is thus to unveil, understand and finally
control the mechanisms responsible for energy absorption. This thesis reports on the iden-
tification of theoretically predicted parametric resonances in a Bose-Einstein condensate
in a periodically driven one-dimensional optical lattice. These resonances lead to an expo-
nential growth of unstable momentum modes in the first few cycles of the periodic driving,
marking the onset of the destruction of the condensate by heating.

We monitor the time evolution of these modes, identify the momentum of the most
unstable modes in time of flight measurements and quantitatively capture the respective
growth rates. We compare these findings to predictions from Bogoliubov theory.

Our findings also confirm the crucial role played by continuous degrees of freedom,
i.e. dimensions without lattice, which render the previously stable regime above the Bo-
goliubov bandwidth unstable.

We also discovered an additional destructive feature in the harmonic confinement of
the condensate, which produces states located in the band gap that keep the system unsta-
ble even for driving frequencies higher than the bandwidth. Because the overlap of these
Tamm states with the condensate decreases with increasing energy, so does the instability
of the system for even higher driving frequencies.
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Introduction



2 Introduction

Based on works of Satyendra Nath Bose on the quantum statistics of photons [1]
in 1924, Albert Einstein made the prediction that an ideal gas of Bosons will condense
into the ground state at low temperatures [2] in 1925. While reaching the necessary
low temperatures seemed impossible for decades, the invention of the laser by Theodore
Maiman [3] in 1960, based on stimulated emission, another prediction from Albert Ein-
stein [4], brought a new, powerful tool into the game. It lead to the idea that atoms
moving with thermal velocities could be slowed down by nearly resonant light [5]. This
was first achieved with ions [6], as they are more easily confined than neutral atoms.
With the invention of the magneto-optical trap (MOT) [7] it was finally possible, to not
only cool down atoms to temperatures below 1mK, but also to hold them for seconds or
even minutes. With even further increase of phase-space density by evaporative cooling
in magnetic and optical dipole potentials, the first Bose-Einstein condensates (BEC) of
alkali atoms were finally observed in 1995 [8–13]. Since then, Fermions have also been
cooled to quantum degeneracy [14, 15], molecules have been cooled down to their ground
state [16–18], and even Bose-Fermi mixtures have been investigated [19]. Excitations of
degenerate gases have been studied, e.g. vortices [20, 21] and phonons [22, 23]. Feshbach
resonances made it possible to tune interactions in cold gases [24, 25], so e.g. a Tonks-
Girardeau gas could be realized [26, 27]. Improvements in imaging systems allowed for
observation [28–34] and manipulation [35] of individual atoms.

Numerous direct applications for cold atoms have also been found since. They in-
clude the measurement of very low pressures via the loss rate of cold atoms trapped in a
MOT [36]. Atomic interferometry [37–40] is used in atomic clocks, e.g. strontium lattice
clock which have recently reached a stability of 5 · 10−19 with averaging over 1 hour [41]
which corresponds to detecting a difference of ≈5mm in the gravitational potential of the
earth. Gravimeters in turn have reached a sensitivity of 39nm

s2 [42, 43] and are used to e.g.
map the geoid [44] or locate mineral deposits [45]. Technological advances in the field
made it possible to cheaply work with cold atoms in atom-on-a-chip applications, e.g. a
MOT etched in silicon [46].

A very interesting application form a fundamental point of view is the realization of
Richard Feynman’s proposal of using a well controllable quantum system to simulate an-
other quantum system of interest [47]. For example, there are proposals to simulate
quantum lattice gauge theories with ultra-cold atoms [48, 49]. A big step in that direction
has been made with the advent of optical lattices [50] in multiple geometries, including
square [51], honeycomb [52, 53], checkerboard [54], triangular [55] and Kagome [56].
They were used to realize the Hubbard model [15, 51, 57, 58], study magnetic frustra-
tion [59], or produce synthetic magnetic fields [60, 61]. In disorder potentials [62–64]
Anderson [63, 65, 66] and many-body localization [67–70] have been shown and thor-
oughly investigated.

High efforts and hopes are also put in the investigation of topological band struc-
tures [71, 72]. While topology has been studied in mathematics for a long time [73, 74],
it is a relatively young field in physics that historically is tightly connected to the discovery
of the quantum Hall effect in 1980 [75], which lead to the discovery of new topologi-
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cal phases of matter [76–79]. Due to its topological protection, the quantum Hall effect
proved very robust against shape and distortions in the material [80] and is now used as a
practical standard of resistance [81]. The concept of geometric phases [82–85] is very im-
portant to topology. After the quantum Hall effect had been discovered, geometric phases
have been observed in photons [86, 87] and nuclear spins [88–90]. With cold atoms, a
direct observation of topological band-structures was possible [91–93]. To what extent
topology survives in the presence of strong interactions [94] is still under investigation, as
are fractional quantum Hall states [95–97].

Topological band structures can be characterized e.g. by transport dynamics [98, 99],
quenching the band structure [92, 100], or by observation of edge states [101–103].

The area of Floquet-engineering is concerned with the creation of tailored band-
structures, especially topological ones [96, 104–107]. Circular shaking has been used to
create topologically non-trivial band structures and realize the Haldane model [108–110].
Numerous works have been published on the creation of artificial gauge fields by periodic
driving [111–116], e.g. artificial magnetic fields [104, 107, 117]. A big goal is the realiza-
tion of a Floquet topological insulator [118–120]. Recently, these techniques have been
applied in order to develop protocols for engineering Z2 lattice gauge theories [121].

The effects of periodic driving have been studied for a long time [122]. In lattice
systems, periodic driving has been shown to hybridize bands in the resonant case [123]
or affect the tunneling rate [124, 125] due to a suppression of Bloch bands [126–129].
This effect of dynamical localization [130, 131] survives even in the presence of interac-
tions [132, 133]. It was possible to use this effect to observe a dynamical transition from
a super-fluid to a Mott insulating phase [134].

A great problem that arises in periodically-driven systems is their trend to infinite tem-
peratures [135, 136]. This is due to the provision of an effectively infinite energy reservoir
by the external drive and imposes a fundamental limit on the timescales experiments in
driven ultra-cold atoms can be performed on. Many groups have worked towards under-
standing the fundamental mechanisms behind heating in driving systems [137–141]. This
even lead to the idea of characterizing a system’s topology via its heating rates [142, 143].

This thesis reports on the identification of parametric resonances in a BEC in a
periodically-driven one-dimensional optical lattice. These resonances lead to dynamical
instabilities that grow exponentially in the first few cycles of the driving and lead to
measurable population of momentum modes outside the BEC. We observe the growth of
the respective modes stroboscopically over many cycles and identify a regime in which the
linear Bogoliubov description of the instability is valid. In this regime, we determine the
most unstable mode and compare its momentum components to theoretical predictions,
as we do for its growth rate. This reveals the detrimental effect of continuous degrees
of freedom perpendicular to the lattice. In the context of this work, we also identify the
harmonic confinement of the BEC as another source of instability.



4 Introduction

The results of this work have been published in:

• J. Näger, K. Wintersperger, M. Bukov, S. Lellouch, E. Demler, U. Schneider, I. Bloch,
N. Goldman, and M. Aidelsburger. Parametric instabilities of interacting bosons in
periodically-driven 1D optical lattices. arXiv (2018)

Another group has also found signatures of these parametric resonances with a differ-
ent approach [144].

Apart from this work, I also contributed to a publication on heating rates in a shaken
one-dimensional optical lattice, however these findings are not part of this thesis and have
been presented in the PhD thesis of Martin Reitter [145]:

• M. Reitter, J. Näger, K.Wintersperger, C. Sträter, I. Bloch, A. Eckardt, and U. Schnei-
der. Interaction Dependent Heating and Atom Loss in a Periodically-Driven Optical
Lattice. Physical Review Letters 119 (2017)

https://arxiv.org/abs/1808.07462
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.200402
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6 Theory

This part shall give an overview of the most important theoretical concepts behind the
experiments performed in this thesis. During the execution of this project, many problems
and misunderstandings arose from the usage of different conventions by different parties
of the team. To avoid or at least reduce problems like this in the future, this part shows a
very detailed, consistent version of all relevant theoretical frameworks, down to relevant
derivations in the appendix.

We will start with a short chapter about the thermodynamics in an ultra-cold Bose gas
in chapter 2.1 as a general background, explaining how many particles macroscopically
occupy the same state at low temperatures, forming a Bose-Einstein condensate (BEC).
Then we move on to lattice physics and the associated band structures as well as the
connected basis states based on Bloch and Wannier functions in chapter 2.2. Afterwards,
in chapter 2.3 we introduce the non-linear Gross-Pitaevskii equation (GPE) by including
contact interactions in the Hamiltonian of the previously non-interacting Bose gas. chap-
ter 2.4 contains an explanation of how collective excitations on top of the BEC can be
described with the help of the Bogoliubov transformation. The first part of this transfor-
mation will also help us arrive at the Bose-Hubbard Hamiltonian, which we use in the
theoretical description of our experiment. In the Thomas-Fermi approximation in chap-
ter 2.5, we will neglect the kinetic term in the GPE, arriving at an explicit formula for
the radii of a harmonically trapped BEC in a 1D lattice. In chapter 2.6 we introduce the
concepts of Floquet physics describing the dynamics of periodically-driven systems. There,
we will also shortly visit the Floquet Fermi’s golden rule approach to estimating heating
rates of the driven BEC on long timescales, a concept described in detail in the PhD thesis
of Martin Reitter [145] and the corresponding publication [146]. From there, we move
on to the parametric oscillator in chapter 2.7, a model connected to the interpretation of
the observations in our experiments. Finally, the Bogoliubov-de Gennes (BdG) formalism
will be introduced in chapter 2.8, where we derive the BdG equations of motion for the
BEC’s excitations.
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2.1 Ultra-cold Bose Gases

All experiments were performed on ultra-cold Bosons. In an ideal, non-interacting gas of
Bosons in a thermal state of temperature T , the average number of atoms in any given
state is [147, 148]:

f 0
i =

1
e(εi−µ)/(kB T ) − 1

, (2.1)

with the energy εi of state i, the Boltzmann constant kB and the chemical potential
µ, which is fixed by the total particle number N =

∑

i f 0
i . This means that with lower

temperatures, the occupation of the ground state n0 rises and gets macroscopically occu-
pied. This happens when the fugacity ζ= eµ/(kB T ) becomes of order unity

�

for ζ= 1 the
occupation of the ground state diverges

�

. The collective of particles in the ground state
is then called a "Bose-Einstein condensate" (BEC) and constitutes the initial state for us
to start our experiments from. In the high-temperature limit kB T�∆ε (∆ε denotes the
level spacing) the particle number sum N =

∑

i f 0
i can be approximated by an integral

N≈
∫∞

0 dε g(ε) f 0(ε), with g(ε) the density of states, which fails for low temperatures due
to the large occupation of the ground state. However, a valid description is recovered, if
the number of particles in the ground state N0 is carried along separately in addition to
the integral [147]. This way, the number of thermal atoms Nth:=N−N0 can be written as:

Nth =

∫ ∞

0

dε g(ε) f 0(ε) . (2.2)

In a harmonic oscillator with quadratic potential V (x , y , z)= 1
2 m

�

ω2
x x2 +ω2

y y2 +ω2
z z2

�

,

the density of states can be evaluated to g(ε)= ε2

2ħh3ωx ωy ωz
in a straight forward man-

ner [147]. The critical temperature Tc at which Bose-Einstein condensation occurs, is
reached when the number of thermal atoms Nth can only account for all atoms N if the
chemical potential vanishes (µ=0). Below that temperature, the ground state becomes
macroscopically occupied N0>0 to compensate for the missing atoms:

N
!
= Nth(Tc) =

∫ ∞

0

dε
ε2

2ħh3ωx ωyωz

1
e ε/(kB Tc) − 1

, (2.3)

which evaluates to:

N =
ζ(3)

�

kB Tc
�3

ħh3ωx ωyωz
(2.4)

⇒ Tc =
ħh
kB

�ωx ωyωz N

ζ(3)

�

1
3

, (2.5)

with ζ(·) the Riemann zeta function. This puts the critical temperature in our exper-
iment (see part 3) to Tc ≈ 100 nK. The number of atoms in the excited thermal states at
any temperature T<Tc can be calculated by inserting T in eq.2.4 :
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Nth =
ζ(3)

�

kB T
�3

ħh3ωx ωyωz
(2.6)

N0 = N − Nth (2.7)
N0

N
= 1 −

Nth

N
(2.8)

N0 = N

�

1 −
�

T
Tc

�3
�

. (2.9)

In any experimental setup, the gas has to be confined by some means, else it will
expand due to its finite temperature (in our experiment, the expansion velocity is on the
order µm/ms) and fall due to gravity. While the latter can be circumvented by so called
"Zero-G" experiments in outer space or drop tubes [149, 150], the former always calls for
a confining potential if some steady state is to be achieved. Making use of the AC-Stark
effect [151], such potentials can be obtained optically by using beams of light, whose
frequency is red detuned with respect to a transition of two internal states of the used
atomic species (see section 3.2.4). Such potentials can be almost arbitrary in shape, e.g.
box-like, if created by a digital micro-mirror device [152] or spacial light modulator [153].
In our experiment however, we use the much simpler harmonic confinement created at the
center of overlapping Gaussian beams (which from now on will be refereed to as optical
dipole trap, see section 3.2.4).
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2.2 Band Theory

Our experiment is conducted in a 1D optical lattice. The lattice has a big impact on the
dispersion relation of the captured atoms: The free space parabola is deformed into a set
of bands. In this chapter, we will show how Bloch’s theorem can be used to theoretically
understand what the energy eigenstates of the lattice Hamiltonian look like. Then we will
solve for the band structure in the special case of a sinusoidal lattice. Finally, we will show
how Wannier functions can be used as a different basis to help describe the Hamiltonian
in terms of states that are maximally localized at one lattice site. They will later be used
in the derivation of a Bose-Hubbard model of the experiment.

2.2.1 Bloch’s Theorem

Bloch’s theorem deals with Hamiltonians that are periodic in real space [154–156]:

Ĥ(x) =
p̂2

2m
+ V (x) (2.10)

V (x)
!
= V (x + d) (2.11)

⇒ V (x) =
∑

j

Vj e i ( jG) x (2.12)

d =
2π
G

(2.13)

⇒ Ĥ(x) = Ĥ(x + d) , (2.14)

with the periodic potential V (x), period d and reciprocal lattice constant G. The peri-
odicity defined by eq.2.11 implies the possibility to expand the potential in a Fourier series
(eq. 2.12). It is important to note that because the potential breaks continuous transla-
tional invariance, momentum conservation, which is connected to translational invariance
by Noether’s theorem [157], is lost. Instead, a quantity called quasi-momentum q, that
is only conserved up to multiples of ħhG, is connected to discrete translational invariance.
Bloch’s theorem states that the eigenstates of this Hamiltonian will have the form:

ψk(x) := uk(x) e i k x (2.15)

uk(x)
!
= uk(x + d) , (2.16)

which means: The eigenfunctions of a Hamiltonian with a potential periodic in space
have the form of a plane wave multiplied by a function that has the same periodicity as
the Hamiltonian. A simple proof of Bloch’s theorem can be found in appendix A.1. We
will call ψk(x) the Bloch function and uk(x) the Bloch mode.

It follows from Bloch’s theorem, that states with Bloch functions ψk(x), with wave
numbers k that differ by multiples of G, are equal (see section A.1), so we can restrict
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wave numbers to the range k ∈
�

−πd , πd
�

, with k = −πd and k = π
d describing the same

state. This range is called the Brillouin zone (BZ). A more intuitive approach is to think
about the wave function as being sampled at the lattice sites [154]. In this case, the
Nyquist–Shannon sampling theorem limits the bandwidth of wave numbers |k|< 2π

2 d [158].
The formation of the band structure in a periodic potential is depicted in figure 2.1.

Bloch functions form an orthonormal basis of the Hilbert space, see appendix A.2.
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Band Structure in 1D sine lattice

V0 =0Er V0 =1Er
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Figure 2.1: Band structure. The dispersion relation of a 1D sinusoidal lattice is shown for different

lattice depths. The top right panel shows the limit of no lattice for reference: A free space dispersion

folded in on the Brillouin zone (BZ). The gray lines indicate the BZ borders and the original free space

dispersion is plotted in light colors.

The other panels display the dispersion relation for lattice depths of V0=1Er , 3Er and 11Er , where

Er is the recoil energy as defined in chapter 3.3 and 11Er corresponds to the lattice depth used for

the experiments described in part 4.
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2.2.2 Sinusoidal Lattice

In the experimental setup used in this work, the atoms are confined within an optical lat-
tice that imposes a sinusoidal potential via the AC-Stark shift (see part 3), so the effective
single-particle Hamiltonian differs from a free-space one in a manner that can be handled
using Bloch’s theorem.

Ĥ =
p̂2

2m
+ V (x) (2.17)

V (x) = V0

�

1+ cos(G x)
�

2
(2.18)

=
V0

2
+

V0

4
e i G x +

V0

4
e−i G x (2.19)

The eigenfunctions ψ(x) of this Hamiltonian can be easily found by equating the coef-
ficients of the Fourier series of ψ(x) and Ĥψ(x). We end up with an equation of the form
(see appendix A.3) [154]:

ψ(x) =
∑

k

ck e i k x , (2.20)
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= 0. (2.21)

Eq.2.21 can be solved numerically using standard techniques for sparse matrices. This
involves for example solving only a a finite block (like the one depicted in eq. 2.21).
Obviously, the amount of solutions (i.e. bands) will be equal to the size of the used matrix,
so the higher number of the bands of interest, the larger the matrix has to be. At this
point, we introduce the quasi-momentum q = ħhk (in vector notation to allow for higher
dimensions), as announced before, and denote the resulting dispersion relation by εn

q ,
where n denotes the band number.

We can see another intuitive argument for the restriction of q the Brillouin zone here:
Because the matrix is infinite, shifting the quasi-momentum q by multiples of the lattice
constant ħhG= h

d will not affect the band structure or states. So quasi-momenta are only
defined modulo ħhG and we can restrict wave numbers to the range

�

−πd , πd
�

, with k=−πd
and k= πd describing the same state. The form of a few selected Bloch functions is depicted
in figure 2.2.



12 Theory

− 2 − 1 0 1 2

x(d)

− 1

0

1

2
ψ

(x
)

− 2 − 1 0 1 2

− 1

0

1

2

ψ
(x

)

− 2 − 1 0 1 2

− 1

0

1

2

Re
ψ

(x
),
Im

ψ
(x

)

− 2 − 1 0 1 2

− 1

0

1

2

|ψ
(x

)|,
Ar

g
ψ

(x
)

π

Bloch Functions in 1D sine lattice
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Figure 2.2: Bloch functions. The top panels show Bloch functions in a V0=11Er 1D lattice of the

lowest (solid blue) and first excited band (dotted red) for quasi-momentum q=0 (left) and q= π
d

(right). They can be defined to be real in these cases.

The bottom panels show the case of q = 0.5 π
d in the lowest band (also V0 = 11Er ), where the

complex phase is position dependent. The left panel shows real and imaginary part, the right panel

displays absolute value and phase (modulo π). The lattice is sketched in the background for refer-

ence. The ordinate is somewhat arbitrary, as Bloch functions are not L2-integrable.

2.2.3 Wannier Functions

If dealing with particles that are not in one defined momentum state and thus maximally
delocalized over the whole lattice, Bloch functions are not the best choice of basis to
describe them. A more suitable description can be made with the help of Wannier func-
tions [159, 160]. These functions are defined in such a way that they are maximally
localized at one lattice site (sacrificing a well defined associated energy, i.e. they are not
an eigenstate of the Hamiltonian) [161]. The Wannier function wn(x) of the n-th band is
an integral over all Bloch modes in that band within the BZ. For the Wannier function to
be maximally localized at x = 0, the phases of the Bloch functions have to be chosen so
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Wannier Functions in 1D sine lattice
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Figure 2.3: Wannier functions. The Wannier functions of the a) lowest and b) first excited band are

shown. The transparent lines indicate neighboring Wannier functions.

they are all equal at that point. This ensures both that their sum has its maximum at x=0
and that they never interfere constructively at any other lattice site, as they don’t have a
common period.

wn(x) =
1

p

Nw

∫

k∈BZ
dkψn,k(x) , (2.22)

again with a factor 1p
Nw

ensuring normalization. This Wannier function can be gener-

alized to an orthonormal set of Wannier functions, localized at each one lattice site j:

wn, j(x) =
1

p

Nw

∫

k∈BZ
dkψn,k(x− jd) (2.23)

=
1

p

Nw

∫

k∈BZ
dk un,k(x− jd) e i k (x− jd) (2.24)

=
1

p

Nw

∫

k∈BZ
dk e−i k j d un,k(x) e i k x (2.25)

=
1

p

Nw

∫

k∈BZ
dk e−i k j dψn,k(x) , (2.26)

where in eq. 2.24 we used the periodicity of the Bloch modes un,k(x). Wannier func-
tions of different sites are orthogonal, see section A.4. Figure 2.3 shows the Wannier
functions of the two lowest bands.



14 Theory

2.3 Gross-Pitaevskii Equation

Because the temperatures and densities in the BEC are very low, the collision energies in-
volved are low enough so all interactions in the cloud are due to s-wave scattering [147].
This means that interactions can be described by only one parameter, the interaction
parameter U0 =

4πħh2as
m arising from s-wave scattering theory [147], with ħh the reduced

Planck’s constant, as the scattering length and m the mass of the atomic species. So,
a theory describing interactions in the cloud can easily be constructed by starting with
the Hamiltonian of a non-interacting Bose gas and adding a term for contact interactions
[147, 148]:

Ĥ =
N0
∑

i=1

�

p̂2
i

2m
+ V (ri)

�

+ U0

∑

〈i, j〉

δ
�

ri−r j

�

, (2.27)

where p̂=−iħh∂r is the momentum operator and 〈i, j〉 indicates the sum running over
all possible pairs of particles. It should be noted that this ansatz will seize to be valid if
the particle density ρ becomes so big that three-body collisions start playing a role, which
should happen around ρ≈ 1

a3
s
.

The BEC will minimize the Hamiltonian, so we can simply write down the energy E of
the N0-particle wave function and then minimize E.

All N0 atoms in the condensate occupy the same single-particle state Φ(r), which is
normalized, so

∫

dr |Φ(r)|2 !
= 1. (2.28)

The N0-particle wave function can be written as:

Ψ
�

r1, r2, ...rN0

�

=
N0
∏

i=1

Φ(ri) . (2.29)

E = 〈Ψ| Ĥ |Ψ〉 (2.30)

=

∫ N0
∏

k=1

drk Ψ
�

r1, r2, ...rN0

�

Ĥ Ψ
�

r1, r2, ...rN0

�

(2.31)

Eq.2.31 can be evaluated to eq.2.32, see appendix B:

E =

∫

dr
p

N0Φ
∗(r)

�

p̂2

2m
+ V (r) +

U0

2
N0Φ

∗(r) Φ(r)

�

p

N0Φ(r) (2.32)

We can now introduce the wave function of the condensate ψ(r) :=
p

N0Φ(r), which
will give us:

E =

∫

dr ψ∗(r)

�

p̂2

2m
+ V (r) +

U0

2
ψ∗(r) ψ(r)

�

ψ(r) , (2.33)
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The correct ground state wave function ψ(r) will now be the one that minimizes E,
while still satisfying atom number conservation, as described by eq. 2.34. It can be found
by independent variation of ψ(r) and its complex conjugate ψ∗(r), which is equivalent to
an independent variation of its real and imaginary part. To minimize eq. 2.33 under the
condition eq. 2.34 we use the method of Lagrange multipliers [147]:

N0 =

∫

dr ψ∗(r) ψ(r) (2.34)

δE − µδN0 = 0, (2.35)

where the chemical potential µ takes the role of the Lagrange multiplier. Varying
eq. 2.35 with respect to ψ∗(r) results in the semi-classical time-independent Gross-
Pitaevskii equation of the condensate:

�

p̂2

2m
+ V (r) + U0 |ψ(r)|

2

�

ψ(r) = µψ(r) . (2.36)
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2.4 Bogoliubov Approximation

The Bogoliubov approximation can be used to obtain collective excitations of the atoms
in the condensate to leading order in their creation/annihilation operators. This will be
very helpful in the description of the instabilities of the driven condensate. We will bring
the Gross-Pitaevskii equation (GPE, see chapter 2.3) in the form of a Hamiltonian and
expand it with respect to the creation/annihilation operators of the q = 0 mode to get
the Bogoliubov Hamiltonian. This Hamiltonian will then be transformed so its harmonic
quasi-particle excitations, with a dispersion relation that depends on interactions, appear
explicitly.

2.4.1 Bogoliubov Hamiltonian

If we recast the GPE (eq. 2.33) in the form of a Hamiltonian (i.e. applying second quanti-
zation), we get:

Ĥ =

∫

V
dr ψ̂†(r)

�

p̂2

2m
+ V (r) +

U0

2
ψ̂†(r) ψ̂(r)

�

ψ̂(r) (2.37)

Ĥ =

∫

V
dr ψ̂†(r)

p̂2

2m
ψ̂(r) + V (r) ψ̂†(r) ψ̂(r) +

U0

2
ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r) , (2.38)

with ψ̂(r) the field operator of a particle in the condensate. Here, we explicitly include
the volume V in the integral (which we can send to infinity, while keeping the density
constant, in the end). This can now be transformed into momentum space (for detailed
derivation see appendix C.1) with b̂p the annihilation operator in momentum space [147]:

b̂p =
1
p

V

∫

V
dr e−i pr

ħh ψ̂(r) (2.39)

ψ̂(r) =
1
p

V

∑

p

ei pr
ħh b̂p (2.40)

Ĥ =
∑

p

ε0
p b̂†

p b̂p +
U0

2V

∑

p,p′,p′′
b̂†
p+p′′ b̂†

p′−p′′ b̂p′ b̂p, (2.41)

where the sums run over all (equally spaced) allowed momentum modes and ε0
p is the

single-particle dispersion that depends on the potential V (r). Because we have a lattice
potential, we will relabel the operators to indicate the transition from momentum p to
quasi-momentum q:

Ĥ =
∑

q

ε0
q b̂†

q b̂q +
U0

2V

∑

q,q′,q′′
b̂†
q+q′′ b̂†

q′−q′′ b̂q′ b̂q (2.42)

To perform the Bogoliubov approximation, we can now draw all operators of the zero-
momentum mode b̂0 outside the sum, replace them with their expectation value b̂0≈

p

N0
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and restrict to terms up to second order in annihilation operators of other momentum
modes O

�

b̂2
q 6=0

�

. Appendix C.2 illustrates how this leads us to a Hamiltonian that describes
the excitations atop the condensate:

Ĥ = −
g N0

2
+
∑

q>0

�

�

ε0
q + g

� �

b̂†
q b̂q + b̂†

−q b̂−q
�

+ g
�

b̂†
q b̂†
−q + b̂q b̂−q

�

�

, (2.43)

with the interaction parameter g := n0 U0, which is equal to the chemical potential µ.

2.4.2 Bogoliubov Transformation

Appendix C.3 shows how a Hamiltonian Ĥ of the form:

Ĥ = ε0

�

â†â+ b̂† b̂
�

+ ε1

�

â† b̂† + â b̂
�

, (2.44)

with the bosonic annihilation operators â and b̂ can be transformed so it becomes ex-
plicit that it features two kinds of harmonic excitations, described by α̂ and β̂ respectively.

α̂ = u â + v b̂† (2.45)

β̂ = u b̂ + v â† (2.46)

⇒ Ĥ = ε
�

α̂†α̂ + β̂†β̂
�

+ ε − ε0 (2.47)

ε :=
q

ε2
0 − ε

2
1 (2.48)

Applied to the Bogoliubov Hamiltonian 2.43, the transformation to be performed is:

b̂q = uq α̂q − vq α̂
†
−q (2.49)

b̂−q = uq α̂−q − vq α̂
†
q (2.50)

This results in:

εq =
r

ε0
q

2 + 2ε0
q n0 U0 (2.51)

u2
p =

1
2

�

ε0
q + n0 U0

εq
+ 1

�

(2.52)

v2
p =

1
2

�

ε0
q + n0 U0

εq
− 1

�

(2.53)

Ĥ = −
g N0

2
+
∑

q>0

�

εq

�

α̂†
qα̂q + α̂

†
−qα̂−q

�

+ εq − ε0
q − g

�

(2.54)
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To summarize, we now have a Hamiltonian (eq.2.55) that explicitly features harmonic
quasi-particle excitations on top of the BEC with a dispersion relation according to eq.2.51:

Ĥ = −
g N0

2
+
∑

q 6=0

�

εq α̂
†
qα̂q +

1
2

�

εq − ε0
q − g

�

�

(2.55)

These excitations are observed as instabilities when driving a BEC in a one-dimensional
optical lattice as observed in our experiment. The Bogoliubov dispersion εq is depicted in
figure 2.4.

-π
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π
d

q

0

1

2

3

ε q
in
ε 0

Boguliubov Dispersion

Figure 2.4: Bogoliubov Dispersion εq for a lattice dispersion (black) of cosine shape with a band-

width of ε0. The dispersion of the excitations is shown for a value of n0U0=g =1.5 ε0 (light blue)

and g=4 ε0 (dark blue).

2.4.3 Bose-Hubbard Hamiltonian

Our experiment is well described by a periodically-driven Bose-Hubbard model [162]. It
can be derived from Hamiltonian 2.42 by a change of basis from momentum states q to
Wannier states (see sec.2.2.3) located on site i with coordinates Ri according to:

Ĥ =
∑

q

εq b̂†
q b̂q +

U0

2V

∑

q,q′,q′′
b̂†
q+q′′ b̂

†
q′−q′′ b̂q′ b̂q

âi =
1

p

Ns

∑

q

e i q
ħh Ri b̂q (2.56)

b̂q =
1

p

Ns

∑

j

e−i q
ħh R j â j (2.57)

Here Ns is the number of sites, which is equal to the number of momentum states.
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If we insert eq.2.57 in Hamiltonian 2.42, we arrive at (see appendix C.4):

Ĥ =
∑

j,l

â†
j âl

1
N

∑

q

εq e i q
ħh (R j−Rl) +

U0 N
2 V

∑

j

â†
j â

†
j â j â j (2.58)

The second term running only over one (site) index represents the interactions being
contact-only, as designed. In the first term, physics is a bit richer. One can see that in the
limit of a very deep lattice, when εq becomes effectively constant (εq= ε independent of
q), this kinetic term will contribute exactly ε per particle:

∑

j,l

â†
j âl

1
N

∑

q

ε e i q
ħh (R j−Rl) = ε

∑

j,l

â†
j âl

1
N

N δ j,l (2.59)

= ε
∑

j

â†
j â j (2.60)

= ε
∑

j

n̂ j (2.61)

= εN (2.62)

If we start from this limit (of flat bands) and make εq increasingly dispersive, terms
with differing positions R j and Rl will start to play a role. Obviously, the more dispersive
the band, the larger R j−Rl can be for the term to contribute. If we take just neighboring
sites into account and neglect the on-site kinetic term (which doesn’t give rise to any
physics), we arrive at the Bose-Hubbard Hamiltonian [162, 163]:

Ĥ = − J
∑

〈 j,l〉

�

â†
j âl + â†

l â j

�

+
U
2

∑

j

â†
j â

†
j â j â j , (2.63)

with the term 〈 j, l〉 indicating the sum running over all pairs of neighboring sites,
J := − 1

N

∑

q εq e i qħh (R j−Rl) the tunnel element, for R j a neighbor of Rl , and U= U0 N
V .

We can now extend the the model to account for a a force applied to the particles.
In the experiment (see part 4), we subject them to a periodic sinusoidal drive. A force
constant in space implies a potential linear in space, i.e.∝

∑

j j n̂ j. To make that periodic
in time, we introduce the term K cos(ωt+ϕ)

∑

j j n̂ j [164]:

Ĥ(t) = − J
∑

〈 j,l〉

�

â†
j âl + â†

l â j

�

+ K cos(ω t +ϕ)
∑

j

j n̂ j +
U
2

∑

j

n̂ j

�

n̂ j−1
�

, (2.64)

with driving frequency ω, phase ϕ and amplitude K. In our experiment, we set ϕ=0.
Also, on the 1D lattice we can simplify 〈 j, l〉:

Ĥ(t) = −J
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+ K cos(ωt)
∑

j

j n̂ j +
U
2

∑

j

n̂ j

�

n̂ j−1
�

. (2.65)
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2.5 Thomas-Fermi Approximation

If we take a closer look at the Gross-Pitaevskii equation, specifically its kinetic and inter-
action energy terms, we can easily see that as more particles are added, the interaction
will dominate the kinetic part due to their scaling with the atom number N0: the kinetic
energy scales Ekin∝N0, while the interaction energy scales Eint∝N2

0 [147]. We will now
estimate their magnitude and check that this hierarchy is already fulfilled in the case of the
harmonically trapped BEC in our experiment (see chapter 3.1). With the Thomas-Fermi
approximation, we can explicitly formulate the dependence of the cloud radii Ri on atom
number N0, which we use in the calibration of N0.

Eint ≈ N0 U0 n = N0 U0
N0

R3
=

4πħh2as N2
0

mR3
, (2.66)

with n= N0
R3 the particle density as particle number per typical length scale, i.e. size, of

the cloud R to the power of three and U0 =
4πħh as

m the interaction parameter as obtained
from s-wave scattering [147]. From the typical length scale of the cloud R, we can estimate
the typical momentum ħh

R via Heisenberg’s uncertainty principle and thus estimate the
kinetic energy:

Ekin ≈ N0
1

2m
ħh2

R2
. (2.67)

With a typical scattering length used in the experiment of as = 20a0, with the Bohr
radius a0, and R=20µm, which is the longest extent of the cloud (see chapter 3) the ratio
of interaction and kinetic energy is:

Eint

Ekin
≈ 8π

as

R
N0 ≈

N0

750
. (2.68)

In the experiment we usually work with N0 ≈ 105 atoms, so Eint� Ekin, even in the
compressed vertical direction, where the cloud is almost an order of magnitude smaller.
This justifies neglecting the kinetic term in the Gross-Pitaevskii equation and we find the
Thomas-Fermi approximation [147]:

�

V (r) + U0 |ψ(r)|
2 �ψ(r) = µψ(r) . (2.69)

2.5.1 Thomas-Fermi Approximation in the Trap

It is trivial to solve eq.2.69 for the density n(r)= |ψ(r)|2:

n(r) =

¨

µ−V(r)
U0

where V (r)≤µ
0 else,

(2.70)

where the lower case is due to atom number conservation and the fact that n(r) has
to be non-negative. Figure 2.5 shows the resulting shape to the density distribution n(r).
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Figure 2.5: Left: Schematics of a condensate (blue) in a harmonic trap (black) as described by the

Thomas-Fermi approximation.

Center: Thomas-Fermi density profile. Rx marks the Thomas-Fermi radius in the x -direction.

Right: Thomas-Fermi density profile integrated along one dimension as seen in imaging (see chap-

ter 3.4).

For a BEC confined in an optical dipole trap that can be described by a potential of the
form Vtrap (r) =

1
2 m

�

ω2
x x2 +ω2

y y2 +ω2
z z2
�

, with m the mass of the trapped atoms and ωi

the trapping frequency along direction i, the density takes the shape of a paraboloid, just
like the potential. However, the density is high in the center and tends to zero at the border
of the cloud, where a sharp edge is predicted. This means that the approximation is good
in the center, but will fail in predicting the proper shape of the edges, where the interaction
energy drops to zero and is dominated by the kinetic part. A failure of the approximation
at the edges is obvious anyway from the fact that sharp edges are predicted.

We could now solve for the size of the cloud, the Thomas-Fermi radii, as a function
of trapping frequencies, atom number and scattering length. However, as the case of a
trapped cloud is contained in a description of a trapped cloud overlaid with a 1D lattice
for vanishing lattice depth, we will not solve this easier case. All relevant formulas can be
taken from sec.2.5.2 for ζ=1. In the following section, the Thomas-Fermi approximation
will be extended to include a periodic one-dimensional optical lattice.

2.5.2 Thomas-Fermi Approximation in the 1D lattice

If the trapped cloud is superimposed with a one-dimensional lattice along the x-direction,
the BEC is cut in slices by the additional potential [146, 165]. These slices are usually
referred to as "pancakes". In this case, the wave operators ψ̂(r) are expressed via the
Wannier functions of the lowest band w0(x) along x and some L2-integrable functions
φ j,⊥(r⊥) with j the site index and r=(x ,r⊥) along y and z:

ψ̂(r) =
∑

j

w0

�

x−x j

�

φ j,⊥(r⊥) â j , (2.71)

where â j annihilates a particle on site j.
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Now the interaction Hamiltonian takes the form:

Ĥint =
∑

i, j,k,l

∫

dr
1
2

U0 w0

�

x−x i

�∗
w0

�

x−x j

�∗
w0

�

x−xk

�

w0

�

x−x l

�

·φi,⊥(r⊥)
∗φ j,⊥(r⊥)

∗φk,⊥(r⊥) φl,⊥(r⊥) â†
i â†

j âk âl . (2.72)

Due to the localization of the Wannier functions at their respective sites, terms where
i= j=k=l is not fulfilled are suppressed by at least ≈U/J with the (Bose-Hubbard) tunnel-
ing element J and the (Bose-Hubbard) on site interaction U . As we have no 3D lattice but
pancakes, the on site interaction is quite small and we can neglect these terms. For the
remaining terms, we define the Wannier integral of the lowest band w0I :=

∫

dx |w0(x)|
4

that only depends on the lattice depth.
We are looking for the density distribution that describes the ground state of this

Hamiltonian. However, this result would only be of limited help for us, as it will yield
an array of 2D densities n j,⊥(r⊥), one for each lattice site j where the density modulation
along the lattice direction would be described by Wannier functions. Because the optical
resolution in the experiment is not high enough to observe this site-to-site modulation, it
would be desirable to have instead a full 3D density n(r) that resembles an envelope of the
cloud without modulations. Appendix D details the way to consistently derive this 3D den-
sity. The result is a modified effective interaction characterized by the effective interaction
parameter U0ζ, with ζ := w0I d the zeta parameter which is the only thing reminiscent of
the lattice in our energy term. We can now add the effective trap potential Vtrap(r):

Vtrap(r) =
1
2

mK

�

ω2
x x2 + ω2

y y2 + ω2
z z2

�

, (2.73)

to get the total potential energy of the particles in the trap Etrap. Note that the effective
trap potential holds all confining and deconfining effects of lattice and dipole beams, but
no lattice features:

Epot := 〈ψ| Ĥint + V (r) |ψ〉 (2.74)

=

∫

dr
�

1
2

U0 ζn2(r) + V (r) n(r)
�

(2.75)

The proper density distribution n(r) will minimize this energy while conserving atom

number N0 and satisfying non-negativity n(r)
!
≥0 ∀ r.
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The method of Lagrange multipliers with the chemical potential µ as Lagrange multi-
plier yields (see appendix D):

δEpot − µδN0
!
= 0 (2.76)

n(r) =

¨

µ−Vtrap(r)
U0 ζ

where Vtrap(r)≤µ
0 else,

(2.77)

with the chemical potential µ fixed by the total atom number N0:

N0 =

∫

dr n(r) (2.78)

We can now define the Thomas-Fermi radii Ri as the point on each axis where the
density n(r) goes to zero:

0
!
= n

�

ri=Ri , ri 6= j=0
�

(2.79)

⇒ µ = Vtrap
�

ri=Ri , ri 6= j=0
�

(2.80)

This can be solved for µ and Ri as functions of atom number N0, trapping frequencies
ωi, scattering length as and lattice depth

�

implicitly contained in ζ
�

, see appendix D:

µ =

�

15ħh2as

2 mK
N0 ζωxωyωz

�mK

2

�
3
2

�
2
5

(2.81)

Ri =

�

15ħh2

m2
K

ωxωyωz

ω5
i

N0 ζ as

�
1
5

(2.82)

The values for a system without lattice are reproduced for ζ= 1.
It should be noted at this point, that we will end up with a profile that is not quite an

envelope, but rather a scaled envelope. The reason for this is that the integral over the
envelope does of course not yield the atom number, but is larger. However, the density we
get with this value of the chemical potential µ is scaled so its integral yields exactly the
number of atoms in the condensate.
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2.6 Floquet Theory

Analogously to the case of Hamiltonians periodic in real space, Hamiltonians can be pe-
riodic in time, as in the present case of periodically-driven systems. Periodically-driven
band structures like the one we are concerned with in this work are sometimes referred to
as spacio-temporal crystals [166]. In this chapter, we outline how Floquet’s theorem can
be used to theoretically describe periodically-driven systems.

2.6.1 Floquet’s Theorem

Floquet’s theorem [156, 167, 168] concerns itself with ordinary differential equations and
states the following: Each equation of the form of eq.2.83, with the operator Â(t) periodic
in t, i.e. Â(t)= Â(t+T ), has solutions of the form eq.2.84, with |y(t)〉= |y(t+T )〉 having
the same periodicity T as Â(t)

∂t |x(t)〉 = Â(t) |x(t)〉 (2.83)

⇒ |x(t)〉 = e−iωt |y(t)〉. (2.84)

This can be understood intuitively, if we think back to the proof of Bloch’s theorem
(which is one special case of Floquet’s theorem) - if we think about the Fourier transform
of the problem, it makes sense that the solution only has Fourier components that show
up in the problem. Thus, if we consider a periodic Hamiltonian:

Ĥ(t)
!
= Ĥ(t + T ) (2.85)

⇒ Ĥ(t) =
∞
∑

m=−∞
e i mω t Ĥ(m) (2.86)

Ĥ(m) :=
1
T

∫ T

0

dt e−i mω t Ĥ(t) , (2.87)

with period T= 2π
ω , it has solutions called Floquet states of the form [169]:

ψ(t) = e−i εħh t Φ(t) , (2.88)

with periodic Floquet modes Φ(t)
!
= Φ(t+T ). The Schrödinger equation can be rear-

ranged to get the quasi-energy ε:

Ĥ(t) ψ(t) = iħh∂tψ(t) (2.89)

Ĥ(t)
�

e−i εħh t Φ(t)
�

= iħh∂t

�

e−i εħh t Φ(t)
�

(2.90)

e−i εħh t Ĥ(t) Φ(t) = ε e−i εħh t Φ(t) + e−i εħh t iħh∂t Φ(t) (2.91)

εΦ(t) =
�

Ĥ(t) − iħh∂t

�

Φ(t) (2.92)

Q̂(t) := Ĥ(t) − iħh∂t (2.93)
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with the quasi-energy operator Q̂(t) [169], also called Floquet Hamiltonian. The quasi-
energy takes the place of energy in this system with a broken continuous translational
symmetry in time, just like the quasi-momentum replaces momentum in a system with a
broken continuous translational symmetry in space. As Φ(t) is periodic in time, we can
write down its Fourier series:

Φ(t) =
∞
∑

m=−∞
e i mω t Φ(m) (2.94)

Inserting eq.2.94 and eq.2.86 into eq.2.92, leads to an equation defining the Fourier
coefficients Φ(m) (see appendix E.1):

�

mħhω − ε
�

Φ(m) +
∞
∑

m′=−∞
Ĥ(m−m′) Φ(m

′) = 0 (2.95)

Just as in the case of Bloch functions, this can be seen as an eigenvalue/eigenvector
problem:
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= 0. (2.96)

This matrix shows close resemblance to the case of a quantum system driven by coher-
ent radiation described by the dressed-state picture [170]. A bit of insight can be gained
by looking at the matrix this way: The diagonal blocks are the time-average of the Hamil-
tonian, offset by integer multiples of the driving energy quantum. The off-diagonal blocks
mediate the coupling of the diagonal blocks and are the harmonics of the Hamiltonian.
This means that in the case of harmonic (i.e. sinusoidal) driving, just as in the case of
a sinusoidal lattice, only the terms Ĥ(−1), and Ĥ(1) will differ from zero. Higher order
transitions can only be mediated by absorbing/emitting many photons at once from/into
the drive. Like in the case of Bloch functions, this problem can be approached by truncat-
ing the determinant to a finite number of blocks. There is however another approach: If
the kick operator K̂F , the micro motion operator M̂F and the effective Hamiltonian ĤF are
known, the dynamics can be computed numerically (all these operators will be introduced
in the next section).

If we take a look at eq. 2.88, we can see that energies are only defined modulo ħhω:

ψ(t) = e−i
ε1
ħh t Φ1(t) (2.97)

= e−i
ε1+ħhω
ħh t e iωt Φ1(t) (2.98)

:= e−i ε2ħh t Φ2(t) (2.99)
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This means that we can identify states with energies that differ by multiples of ħhω
and restrict ourselves to a Brillouin zone [169] of e.g. ε ∈ [0, ħhω], like in the case of a
Hamiltonian that is periodic in space.

2.6.2 Transformation to the Floquet Frame

We will now show how the dynamics of the driven system can be described more elegantly
by transforming the system into another frame using the unitary micro-motion operator
M̂F (t) 1. In this frame, the dynamics will be described by the time-independent effective
Hamiltonian ĤF .

Because we are concerned with finite time scales, we can restrict ourselves to a finite
Hilbert space [169, 171] and we can construct a periodic operator M̂F ′(t)

!
= M̂F ′(t+T ),

called micro-motion operator that transforms the Floquet statesψ(t) in such a way that the
transformed state ψF ′(t) evolves according to a time-independent effective Hamiltonian
ĤF ′

�

the frame labeled F ′ will help us get to a nicer frame F where the micro-motion
operator M̂F (t0)=1 for an arbitrary t0

�

[169]:

ψ(t) := M̂F ′(t) ψF ′(t) (2.100)

⇒ ĤF ′ = M̂†
F ′(t) Ĥ(t) M̂F ′(t) − iħh M̂†

F ′(t)
˙̂MF ′(t) , (2.101)

with the effective Hamiltonian ĤF ′ (a derivation of ĤF ′ can be found in appendix E.2).
We denote this frame of reference as F ′ because we will now change to a more convenient
one labeled F . We now define the time-evolution operator Û(t, t0) [169]:

Û(t, t0) := Tt e−
i
ħh

∫ t
t0

dt ′ Ĥ(t ′), (2.102)

with the time-ordering operator Tt . Appendix E.3 shows how the effective Hamiltonian
ĤF ′ can be used to simplify Û(t, t0) by transforming to the Floquet frame and back [169]:

Û(t, t0) = M̂F ′(t) e−
i
ħh (t−t0) ĤF ′ M̂†

F ′(t0) . (2.103)

As a final simplification, we can now invoke a second, time-independent unitary trans-
formation. This will leave the resulting Hamiltonian time-independent, but can simplify
the stroboscopic dynamics. As the unitary operator, we choose M̂F ′(t0) and define a new
micro-motion operator M̂F (t):

M̂F (t) := M̂F ′(t) M̂†
F ′(t0) , (2.104)

So for an arbitrary t0, we can set M̂F (t0)=1.

ĤF = M̂F ′(t0) ĤF ′ M̂†
F ′(t0) (2.105)

1Micro-motion operators are canonically usually labeled ÛF (t), but we choose M̂F (t) to avoid a mix up
with the time-evolution operators Û(t, t0) and ÛF (t, t0)
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With this Hamiltonian, the time-evolution operator Û(t, t0) (eq. 2.103) becomes [169]:

Û(t, t0) = M̂F ′(t) M̂†
F ′(t0) e−

i
ħh (t−t0) ĤF (2.106)

For evolution over full cycles, we can use the periodicity of M̂F ′(t) to get the strobo-
scopic time-evolution operator Û(t0+nT , t0):

Û(t0+nT , t0) = e−
i
ħh nT ĤF , (2.107)

The time-evolution operator Û(t1, t2) has the following interesting properties [172] (a
derivation can be found in appendix E.3):

Û(nT+ t0+ t, nT+ t0) = Û(t0+ t, t0) (2.108)

Û(nT+ t, 0) = Û(t, 0) Û(nT , 0) (2.109)

Û(nT , 0) = Û(T , 0)n (2.110)

The first equation (eq.2.108) represents periodicity of Û(t1, t2) with respect to a shift
by multiples of the driving period T . Eq. 2.109 shows how the time-evolution over an
integer number of cycles can be split from Û(t1, t2). Finally, we can see how repeated
time-evolution over one cycle mediates evolution over many cycles from eq.2.110.

We can also define the periodic kick operator K̂F (t) which describes the effect of in-
stantly switching on the drive [104]:

M̂F (t) := e−i K̂F (t) (2.111)

2.6.3 Properties

For completeness, we should mention a few properties of Floquet systems. It makes sense
to define a new extended Floquet Hilbert space F =H⊗T for the Floquet modes Φ(t),
where H is the original Hilbert space of L2-integrable functions, with a scalar product
of [169]:

〈v(r) |w(r)〉 =
∫

dr v∗(r) w(r) , (2.112)

and T is the Hilbert space of functions that are periodic with period T and have a
scalar product according to:

〈v(t) |w(t)〉 =
1
T

∫ T

0

dt v∗(t) w(t) . (2.113)
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The new scalar product of F is then denoted by 〈〈v(r, t) |w(r, t)〉〉 and defined accord-
ing to:

〈〈v(r, t) |w(r, t)〉〉 =
1
T

∫ T

0

dt

∫

dr v∗(r, t) w(r, t) . (2.114)

If the driving frequencyω is large compared to the inverse of characteristic time scales,
i.e. elements of the Hamiltonian, an inverse frequency expansion [104, 169, 173–175] can
be used to approximate the problem. Due to the driving frequency determining the largest
energy scale in this case, this is called a high-frequency expansion:

ĤF ≈
mmax
∑

m=1

Ĥ(m)F (2.115)

Ĥ(1)F = Ĥ(0) (2.116)

Ĥ(2)F =
∑

m6=0

Ĥ(m) Ĥ(−m)

mħhω
(2.117)

Ĥ(3)F =
∑

m6=0

 
�

Ĥ(−m),
�

Ĥ(0), Ĥ(m)
��

2 (mħhω)2
+

∑

m′ 6={0,m}

�

Ĥ(−m′),
�

Ĥ(m′−m), Ĥ(m)
��

3mm′ (ħhω)2

!

, (2.118)

with Ĥ(m) the Fourier component according to eq. 2.87. Variants include the Floquet-
Magnus expansion [176–178].

2.6.4 Transformation to the Rotating Frame

While we do now have the necessary tools to compute the time-evolution of a Floquet
system, it is still a bit cumbersome to do in the present reference frame. However, the
Hamiltonian can be simplified by a transformation to the rotating frame. We will now
show how this transformation can be performed.

A Hamiltonian that is periodic in time can always be put in the following form:

Ĥ(t) = Ĥ0 + λ(t) Ĥ1, (2.119)

A transformation V̂ †(t) that removes Ĥ1 from the Hamiltonian is called a transforma-
tion to the rotating frame [179]

�

by convention V̂ (t) describes the transformation from
the rotating frame to the lab frame

�

. The transformed Hamiltonian Ĥrot is equal to (see
appendix E.4):

|ψrot〉 = V̂ †(t) |ψ〉 (2.120)

Ĥrot (t)
!
= V̂ †(t) Ĥ0 V̂ (t) (2.121)

⇒ V̂ (t) = e−
i
ħh Ĥ1

∫ t
t0

dt ′ λ(t ′) (2.122)
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From eq. 2.121 we see that there is a transformation V̂ (t) to a frame, that yields
a Hamiltonian that is void of the original time-dependent part λ(t), at the cost of po-
tentially introducing a time-dependence in the original Hamiltonian Ĥ0 (unless Ĥ0 and
V̂ (t) commute). In our experiment, the Hamiltonian belongs to the Dunlap-Kenkre class
as it features periodic coupling to the single particle potential and to the Kapitza class
as it is quadratic in momentum [179]. Applied to our time-periodic extension of the
Bose-Hubbard Hamiltonian (eq. 2.65), we make the following transformation (see ap-
pendix E.4):

Ĥ(t) = − J
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+ K cos(ωt)
∑

j

j n̂ j +
U
2

∑

j

n̂ j

�

n̂ j−1
�

(2.123)

⇒ V̂ (t) = e−i K
ħh
∑

j j n̂ j
∫ t

t0
dt ′ cos(ωt ′), (2.124)

with J the tunneling, K the driving amplitude and U the on-site interaction energy. For
t0=0 and α= K

ħhω the driving strength, V̂ (t) evaluates to:

V̂ (t) = e−iα sin(ωt)
∑

j j n̂ j (2.125)

Appendix E.4 shows how this transformation leads to the rotating Hamiltonian
Ĥrot(t) [164]:

Ĥrot(t) = − J
∑

〈i, j〉

�

e−iα sin(ωt) â†
i â j + e iα sin(ωt)â†

j âi

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

(2.126)

Effectively, we created a Hamiltonian Ĥrot(t) that is stripped of the former driving part
and instead features a periodically modulated hopping element.

2.6.5 Renormalized Tunneling

Eq. 2.126 tells us that the Hamiltonian of the driven system can be seen (in the rotating
frame) as a Hamiltonian with unchanged interactions, but a hopping that is modulated
over a full cycle. As a final simplification, we will now get rid of this time-dependence in
the hopping by averaging over a full cycle. This makes sense from an experimental point
of view because we will probe the driven system stroboscopically after an integer number
of cycles. A mathematically rigorous derivation of this renormalization of the tunneling
can be found in appendix B of [104].

Ĥrot(t) can now be averaged over a full driving cycle using:

1
T

∫ T

0

dt e±iα sin(ωt) = J0(α) , (2.127)

with J0 the zeroth Bessel function of the first kind.
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Ĥeff :=
1
T

∫ T

0

dt Ĥrot(t) (2.128)

= − J J0(α)
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

(2.129)

Ĥeff = − Jeff

∑

j

�

â†
j â j+1 + â†

j+1â j

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

(2.130)

Here, we introduced the renormalized tunneling [130] Jeff := JJ0(α). We can see
from eq. 2.130 that for integer cycles the driven system to first order in a high-frequency
expansion effectively behaves as though its hopping element had been changed. Because
J0(α) can also go to zero or even assume negative values, periodic driving allows for the
realization of interesting effects, namely dynamical localization for Jeff=0 or an inverted
band that is adiabatically connected to the lowest band in the un-driven case with its
maximum at q=0 and minimum at the BZ edge for Jeff<0 [124].

In figure 2.6, we see the renormalized tunneling elements used in the experiment.
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Figure 2.6: The effective tunneling Jeff is shown as a function of driving strength α. The vertical

lines indicate the position of α1=1.44 and α2=1.78, the driving strengths used in the experiments.

2.6.6 Floquet Fermi’s Golden Rule

Fermi’s golden rule (FGR) [180, 181] can be used to calculate transition rates in various
quantum mechanical system. In the case of a periodically driven system, it is usually
referred to as Floquet Fermi’s golden rule (FFGR). However, there are two limits linked
to this method. The transition has to go into a continuum of states, which means that
transition times have to be small compared to level spacing, so individual levels can’t be
resolved. This is usually true in the case of a periodic lattice structure. The other limit is,
however, that transition times have to be large compared to inverse driving frequencies,
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which means that the FFGR ansatz only yields meaningful results after multiple driving
cycles. That means that since in this work we want to measure the onset of excitations
over the first few driving cycles, we expect the FFGR ansatz to be invalid. However,
for comparison, we will briefly give an overview of the relevant formulas and use them
to show the difference in timescales between FFGR decay rates and the growth rate of
excitations in the experiment. In general, FFGR results in a differential equation for the
atom number in the BEC N0 of the form:

Ṅ0(t) = − ΓFFGR N0(t) , (2.131)

which means there’s an exponential decay of the BEC with rate ΓFFGR. In the case of
a BEC confined in a harmonic trap (see chapter 3.1), the rate ΓFFGR depends on the atom
number N0, because density changes with atom number, as described by the Thomas-
Fermi model (see chapter 2.5). This changes the form of the decay slightly from being
exponential, see figure 2.7. These transition rates were studied by our team and theoret-
ically explained in [146]. However, as we are only interested in the low depletion limit,
we can assume N0 to be constant for our estimates. In the case of a driving frequency that
lies below the band gap between the two lowest bands (as is the case in the experiments
performed for this work), loss rates can be computed according to the intra-band heating
rates for harmonically trapped condensates[146]:

Ṅ0(t) = − ΓFFGR N0(t) (2.132)

ΓFFGR =
24π
7 d

152/5 mK
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1/5
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ħhω
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·
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+

sin(dkmax)
3 d

�
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(
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�

1−2 ω
ωBW

�

d ω≤ωBW
π
d ω>ωBW

(2.134)

ωBW =
4 J J0(α)
ħh

, (2.135)

with ωBW the effective bandwidth, J the tunnel element of the still lattice, Jn(·) the
n-th Bessel function of the first kind, ħh the reduced Planck’s constant, kmax indicating the
highest mode available for scattering, mK the mass of a potassium atom, ωH= 3

p

ωxωyωz ,
ζ=w0I d the zeta parameter as defined in sec. 2.5.2, ω the (angular) driving frequency
and a the scattering length.
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Figure 2.7: Decay of the condesate (normalized to N0=1, arbitrary time axis). The red line obeys

the differential equation Ṅ0(t)= −κbgN0(t) −κN
7
5
0 (t) that combines the exponential decay due

to collisions with particles from the background gas in the chamber with rate κbg with the decay

predicted by a Floquet Fermi’s Golden rule approach. The blue lines show exponential decays for

reference. Dark blue: decay according to Ṅ0(t) = −κbg N0(t), light blue: decay according to

Ṅ0(t)= −κ′bg N0(t), with κ′bg = κbg + κN
2
5
0 (t=0) chosen so its initial rate equals the red line.

Left and right panel show the same curves on a a) linear and b) logarithmic scale.
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2.7 Parametric Oscillator

The instabilities observed in our experiment on ultra-cold atoms can be mapped on the
quantum mechanical version of a parametric oscillator. In this chapter, we explain what a
parametric oscillator is in the classical case and show how its dynamics can be solved. We
then reveal the connections to the excitations in the Bogoliubov Hamiltonian.

2.7.1 Classical Parametric Oscillator

Any system whose dynamics can be described by a homogeneous differential equation of
second order:

ẍ(t) + β(t) ẋ(t) + ω2(t) x(t) = 0, (2.136)

with β(t) and ω2(t) having a common period (i.e. their periods are commensurable)
can be mapped onto the Hill differential equation (for derivation see appendix F.1) [182,
183]:

q̈(t) + ω′ 2(t) q(t) = 0 (2.137)

x(t) := q(t) e−
1
2

∫ t
0 dt ′β(t ′) (2.138)

ω′ 2(t) := ω2(t) −
1
4
β2(t) −

1
2
β̇(t) , (2.139)

which G. W. Hill introduced when investigating the movement of the lunar perigee
(closest point to earth) [184]. Performing a Fourier series expansion of ω′ 2, keeping just
the two lowest order terms we end up with the differential equation of the parametric
oscillator:

0 = q̈(t) + ω2
0

�

1+ A cos(Ω t)
�

q(t) (2.140)

ω2
0 :=

1
T

∫ T

0

dtω′ 2(t) . (2.141)

Here, ω2
0 is the temporal average of ω′ 2, Ω the largest common frequency of β(t)

and ω2(t), and ω2
0 A the series coefficient. A system described by this equation is called a

parametric oscillator. The name stems from the fact that it resembles a harmonic oscillator
with its eigen-frequency as a modulated parameter.

The most famous case of a parametric oscillator is the vertically forced pendulum, also
called Kapitza pendulum [185, 186]. The eigen-frequency of a pendulum isω0 =

q

g
L with

g the gravitational acceleration and L the length of the pendulum. This eigen-frequency
can be modulated by varying L as in the case of a pendulum consisting of a thread and
a mass particle with periodic pulling on the thread and a fixed suspension point (see
figure 2.8) or by varying g as in the case of a mass particle attached to a solid rod with
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a suspension point that is moved up and down periodically. In both cases, the instability
of the parametric oscillator will lead to a rapid growth of the oscillation amplitude until
losses, that are not included in this model, damp out further intake of energy.

Parametric Oscillator

Figure 2.8: Parametric Oscillator: A string attached to a mass particle (black) is pulled periodically

so it reaches its maximum length whenever the particle goes through the center or a turnaround

point. Its motion follows the dark blue curve. The light blue curve shows the motion of a harmonic

oscillator for reference.

In the case of a thread being pulled periodically over a fixed suspension point, it is
intuitively understandable that a resonance will occur if the thread is pulled whenever the
pendulum crosses its lowest point. Because there are two crossings in every period, the
driving frequency has to be equal to twice the eigen-frequency. This can be tested easily
on a playground with a sturdy swing: While from a sitting position it is commonly driven
harmonically [187], it can be driven parametrically from a standing position by raising
and lowering one’s center of mass [188]. In the first case the period of one’s movement
will be equal to the swing’s period, while it will be halved in the second case.

This motivates a transformation of parameters to Ω :=2ω0+ε, so we can analyze the
system for small deviations |ε|�ω0 from the expected resonance 2ω0.

While the driven harmonic oscillator always oscillates with the driving frequency, the
parametric oscillator’s dynamics is governed by the current eigen-frequencyω2

0

�

1+Acos(Ωt)
�

on short timescales ∆t� 1
Ω . Its equation of motion can be retrieved with the ansatz:

q(t) = c1(t) cos
�

Ω

2
t
�

+ c2(t) sin
�

Ω

2
t
�

(2.142)
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Ansatz 2.142 leads to the following differential equations for the time-evolution of the
parameters c1(t) and c2(t), see appendix F.2 [186]:

c̈1(t) =
1
16

c1(t)
�

ω2
0 A2 − ε2

�

(2.143)

c̈2(t) =
1
16

c2(t)
�

ω2
0 A2 − ε2

�

(2.144)

We can see from eqs. 2.143 and 2.144 that c1(t) and c2(t) obey the same differential
equation and will differ only by their initial conditions. We can thus limit our analysis on
c1(t) (eq.2.143) and choose the ansatz:

c1(t) = c e γt , (2.145)

which trivially results in:

γ = ±
1
4

q

ω2
0A2 − ε2 . (2.146)

Because a negative sign results in an exponentially decreasing term, we can neglect its
contribution on long timescales, as long as the square root retains a real value, which it
will do for |ε|<ω0A, which is the width of the resonance.

To summarize, in contrast to the harmonic oscillator that can be driven at any fre-
quency, the parametric oscillator has a resonance with a finite width 2ω0A. For small
detunings within the resonance |ε| < ω0 b, the parametric oscillator is unstable and its
amplitude grows exponentially, with the instability rate γ=±1

4

q

ω2
0A2 − ε2 :

q(t) = c1 e γ t cos
�

Ω

2
t
�

+ c2 e γ t sin
�

Ω

2
t
�

, (2.147)

In contrast to the driven harmonic oscillator, there will be an oscillating amplitude and
no net intake of energy from the drive for large detunings |ε|≥ω0A.



36 Theory

2.7.2 Mapping to Bogoliubov Hamiltonian

The quantum mechanical version of the parametric oscillator can be mapped onto the
Bogoliubov Hamiltonian [164]. We will show this by mapping onto Hamiltonian eq.2.43.
We start by writing down the quantum mechanical version of the parametric oscillator:

Ĥ =
p̂2

2 m
+

1
2

mω2
0

�

1+α cos(Ω t)
�

x̂2 (2.148)

Standard annihilation operators γ̂ are used like for the harmonic oscillator:

γ̂ :=
s

mω0

2

�

x̂ + i
p̂

mω0

�

(2.149)

Appendix F.3 shows how inserting this annihilation operator in the Hamiltonian and
then shifting by a trivial time-dependent energy offset, results in:

Ĥpara = ω0

�

1+
α

2
cos(Ω t)

�

γ̂†γ̂ +
αω0

4
cos(Ω t)

�

γ̂†γ̂† + γ̂ γ̂
�

(2.150)

At this point, we can see the correspondence with Hamiltonian2.43 if we identify the
modes q and −q. This step is justified because these modes will always be excited together.



2.8 Bogoliubov-de Gennes Formalism 37

2.8 Bogoliubov-de Gennes Formalism

The Bogoliubov-de Gennes formalism can be used to study the time-evolution of the con-
densates excitations [189]. We change to the Heisenberg formalism, i.e. we put the
time-dependence in the operators, derive Heisenberg’s equations of motion (EOM) for
the annihilation operator b̂q and then perform the Bogoliubov transformation.

2.8.1 Bogoliubov-de Gennes Equations of Motion

We use a Bogoliubov Hamiltonian in the Heisenberg’s EOM and for q 6= 0 we get (see
appendix G):

Ĥ = −
g N0

2
+
∑

q>0

�

�

ε0
q + g

� �

b̂†
q b̂q + b̂†

−q b̂−q
�

+ g
�

b̂†
q b̂†
−q + b̂q b̂−q

�

�

iħh∂t b̂q(t) =
�

b̂q(t) , Ĥ(t)
�

(2.151)

=
�

ε0
q + g

�

b̂q(t) + g b̂†
−q(t) (2.152)

At this point, we perform the Bogoliubov transformation (eqs. 2.49 and 2.50) and put
the time dependence into the factors uq and vq [164]:

b̂q(t) = uq(t) α̂q − vq(t) α̂
†
−q (2.153)

b̂−q(t) = uq(t) α̂−q − vq(t) α̂
†
q (2.154)

Appendix G shows how to get two equivalent forms of the time-derivative of b̂q from
eqs.2.152 and 2.153. By comparison of coefficients of α̂q, we arrive at the coupled equa-
tions of motion for uq and vq, the Bogoliubov-de Gennes (BdG) equations:

iħh∂t

�

uq(t)
vq(t)

�

=

�

ε0
q + g −g

g −ε0
q − g

�

�

uq(t)
vq(t)

�

(2.155)

The stroboscopic propagator matrix Φ(T ) is obtained by evolving eq. 2.155 over a
complete driving cycle. Its eigenvalues εq with a positive imaginary part indicate unsta-
ble modes of the system. They grow with the rate sq =

1
ħh Im

�

εq
�

. Since this growth is
exponential, the most unstable mode quickly dominates all others and the instability rate
of the system can be defined as Γ = maxq sq. The position of the most unstable mode is
qmum = argmaxq sq [164].
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2.8.2 Parametric Oscillator Mapping

The BdG equations of motion (eqs. 2.155) can be mapped to a parametric oscillator [190,
191].

For the case present in our experiments, this corresponds to assigning a parametric
oscillator q̈(t) +ω2

0

�

1+A cos(Ω t)
�

q(t)=0 (see equation 2.140) to each momentum mode
[164]. The following substitutions have to be made [192]:

• The driving frequency Ω is substituted with 2ω, with ω the driving frequency in the
experiment. The factor of 2 emerges from the fact that absorption of a single photon
is not possible due to conservation of momentum [164]. Instead, two atoms absorb
two photons and are exited to opposing momentum states.

• The natural frequency ω0 is substituted with the effective Bogoliubov dispersion
EB

eff(q)/ħh (which corresponds to the dispersion term ε0
q + g in the previous section).

• The amplitude A is substituted with Aq, an amplitude that depends on momentum.

In our experiment, the tunneling element in the still lattice is J/h=(108± 7) Hz and
the interaction parameter g/ħh= (870± 100) Hz, so for the driving amplitudes α1 = 1.44
and α1=1.78 used in the experiment, we get Jeff,1 = (59± 4) Hz and Jeff,1 = (38± 2) Hz,
see figure 2.9.

With a change of basis and dropping all terms that are irrelevant to the emergence of
parametric instabilities, eqs. 2.155 become (this can in detail be seen in the supplementary
material of [190] - to make the notation equivalent, we set ħh= d = 1 for the rest of this
section) [192]:

iħh∂t

�

ūq

v̄q

�

=

�

EB
eff(q)

Aq

2 EB
eff(q) cos(2ωt) e−2iEB

eff(q)t

−Aq

2 EB
eff(q) cos(2ωt) e−2iEB

eff(q)t EB
eff(q)

�

�

ūq

v̄q

�

(2.156)
with the effective, i.e. time-averaged Bogoliubov dispersion EB

eff(q) and the amplitude
Aq [192]:

EB
eff(q) =

√

√

√

�

4 |Jeff| sin2
�qx

2

�

+
q2
⊥

2 m

� �

4 |Jeff| sin2
�qx

2

�

+
q2
⊥

2m
+ 2 g

�

(2.157)

Aq = 16 JJ2(α) sin2
�qx

2

� g

EB
eff(q)

2 , (2.158)

where J2 denotes the second Bessel function of the first kind. We can now extract
the instability properties of the system [189] and find that the system features resonances
whenever the condition ω=EB

eff(q) is met.
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Figure 2.9: Effective Bogoliubov dispersion for driving amplitudes α1 = 1.44 (dark blue) and

α1=1.78 (dark blue). The Bogoliubov dispersion of the still lattice is shown for reference (black).

The respective bandwidths are Weff,1 = (680± 30) Hz and Weff,2 = (540± 30) Hz for the driven

cases and Weff = (970± 40) Hz in the still lattice.

The instability arises in a finite momentum range around this point and on resonance
has the maximum instability rate Γq [192]:

Γq =
1

4ħh
Aq EB

eff(qres) (2.159)

= 4 JJ2(α) sin2
�qx ,res

2

� g
ħh EB

eff(qres)
(2.160)

The resonance condition is usually met by a continuum of momenta
�

with different
values for qx and q⊥

�

, of which the maximally unstable mode always maximizes qx [164].
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from [192].
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We can distinguish two cases, which are depicted in figure 2.10:

(I) The driving frequencyω lies within the effective bandwidthω<
p

4 |Jeff| (4 |Jeff|+ 2g) ,
the most unstable mode qmum=(qx , q⊥) and the instability rate Γ are [164]:

qx =
2ħh
d

arcsin





√

√

√

Æ

g2 + (ħhω)2 − g
4 |Jeff|



 (2.161)

q⊥ = 0 (2.162)

Γ =

Æ

g2 + (ħhω)2 − g
ħh
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J2(α)
J0(α)
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�

�

�

g
ħhω

(2.163)

(II) For larger driving frequencies ω, which lie above the effective bandwidth
ω>

p

4 |Jeff| (4 |Jeff|+ 2g) , we have [164]:

qx =
π

d
(2.164)

|q⊥| =
r

2 m
q

g2 + (ħhω)2 − g − 4 |Jeff| (2.165)

Γ = 4
J
ħh
J2(α)

g
ħhω

(2.166)
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2.8.3 Limitations of the Bogoliubov-de Gennes Description

The Bogoliubov approximation only holds if certain conditions are met. The first one is
that interactions are small (U� J), so collisions between quasi-particles, which are not
captured by the model, are rare. Also, the approximation starts from a constant conden-
sate with a constant chemical potential. As the model does not conserve particle number,
this condition is not met if there is distinct depletion from the BEC, as will be the case for
heating at long time scales. Finally, it should be noted that extracting Lyaponov exponents
to quantify the instability of a system can always just describe the instantaneous instability
rate of the the system in the initial state. If the system changes due to evolution in time,
so can/will the rates.



CHAPTER 3

Experimental Setup
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All experiments were performed on a Bose-Einstein condensate (BEC) in an ultra-high
vacuum. During the imaging, the condensate is destroyed by the energy intake from
absorbing resonant light. So after every image, a new BEC has to be formed by cooling
down vapor of≈300K to a few tens of nK. This takes up most of the time in the preparation
of each shot, ≈40s compared to the actual experiment with only ≈10ms. The whole setup
used to produce a BEC has been described in the PhD thesis of Lucia Duca [193]. In
this part of this thesis, we shall give a brief summary of the setup and describe the most
important principles.

In chapter 3.1 we give an overview of the experimental setup and the procedure for
the production of the BEC.

We then move on to a more detailed description of the most important physical effects
and experimental concepts for cooling of the atoms in chapter 3.2. These include the
magneto-optical trap and optical molasses as a means for pre-cooling atoms, trapping and
evaporative cooling in the quadrupole and dipole trap, and finally Feshbach resonances as
a means of controlling interactions in a cloud of ultra-cold atoms.

The optical lattice is described in chapter 3.3, including the production of the lattice
potential at the intersection of two blue detuned beams of light, the generation of inertial
forces via acceleration of the lattice, and the band-mapping method to measure the band-
resolved population of momentum-states.

Finally, the imaging procedure is explained in chapter 3.4, focusing on the challenges
arising from the need to use high imaging intensities due to the high optical density of the
cloud.
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3.1 Setup

The first step in the production of a BEC of 39K is to get a dilute gas of 39K and 87Rb in
an ultra-high vacuum. A schematic of the setup can be seen in figure 3.1. 87Rb is used
cool down 39K more efficiently than it is possible with 39K alone. This is done by attaching
two ovens, one for each species, to the vacuum system and evaporating 39K and 87Rb from
bulk material1.

Ion pump

2D+ MOT

Cooling block, 
magnetic 
transport 
and 
experimental 
coils

Glass cell

3D MOT

Ion pumpTitanium 
sublimator

Titanium 
sublimator

Figure 3.1: Experimental Setup. Schematic of the experimental setup without optics and the two

ovens. The sequence begins in the 2D+ MOT (beige). From there, a beam of pre-cooled atoms

is guided through a differential pumping section into the 3D MOT. After further cooling and spin

polarizing, the atoms are magnetically transported through another differential pumping section into

the science chamber by an array of anti-Helmholtz coil pairs (brown). The bend grants better optical

access. In the science chamber, the atoms are finally cooled down to quantum degeneracy and

experiments are performed. Image taken from [194].

A 2D+ magneto-optical trap (MOT) [195–199], which is a combination of magneto-
optical Doppler cooling along two (transverse) dimensions and assisting molasses (see
sec. 3.2.2) along the third dimension2, is loaded from the background gas for initial pre-
cooling of the atoms. A near resonant beam of light assists in the production of a beam
of relatively cool atoms by pushing them with radiation pressure. The beam is pointed
through a differential pumping section at the subsequent 3D MOT chamber. This makes
it possible to have a relatively high pressure and thus a big reservoir of atoms in the 2D+
MOT and a lower pressure and thus longer lifetimes in the 3D MOT. In the center of the 3D
MOT is a dark spot [200] (≈9mm in diameter) that blocks the repumping beam so light-

1After the MOT chamber has been flooded in the early stages of the experiment, the valves of the ovens
now have been closed for years.

2The additional molasses cooling beam (labeled "axial cooling") is used for 39K but not 87Rb
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assisted 39K -39K
∗

collisions which can release a lot of kinetic energy can be suppressed at
the point of highest density.

Here, the atoms are cooled from all three directions while a constant influx from the
2D+ MOT increases the atom number in the trap over time (this takes about 6.5s for 87Rb
and 0.5s for 39K). The center of mass positions are slightly shifted against each other by a
few mm via beam alignment, so losses from interspecies collisions are minimized.

At the end of the loading sequence, we increase the magnetic field by a factor of ≈1.3,
decrease the cooling power by a factor of ≈ 0.5 and adjust the detunings to go into the
compressed MOT (cMOT) [201] phase, which lasts 10ms. This increases the density of
the cloud. The parameters are chosen to yield a maximum number of atoms at minimum
temperature after this phase. This phase results in a temperature of a few 100µK.

Afterwards, the beam parameters are changed once more for the optical molasses
(polarization gradient cooling) phase which takes 4.15ms and cools down the atoms below
the Doppler temperature. The hyperfine splitting is very small for 39K (≈35MHz compared
to a detuning of ≈40MHz), so this step is not very effective there [202, 203].

Next, the atoms are subjected to a spin polarizing pulse that pumps them into the
|F=2, mF=2〉 state. Atoms that fail to reach this state are not captured by the following
weaker quadrupole trapping phase.

From this quadrupole trap, there is a magnetic transport [204] performed by partially
overlapped pairs of coils that brings the cloud through another differential pumping sec-
tion into the science chamber, a glass cell with even lower pressure and no parallel surfaces
to allow for optical access without Fabry-Pérot resonances.

Here, forced microwave evaporation is performed on 87Rb in the quadrupole field of
the last pair of coils for ≈10s. To avoid Majorana losses in the center of the trap [205–
207], where the sign of the field abruptly changes at the zero crossing so the spin of
passing atoms can’t adiabatically follow, a blue detuned optical "plug" beam (wavelength
λ= 760nm, 30µm waist) projects a repulsive potential in the trap center [9, 208]. The
microwave evaporation sweep transfers 87Rb atoms at some distance from the trap cen-
ter defined by the instantaneous frequency and thus a given minimum energy from the
magnetically trapped |F=2, mF=2〉 to the un-trapped |F=2, mF=0〉 state. The frequency
of this sweep is lowered over time to successively evaporate the hottest 87Rb atoms, thus
decreasing the overall temperature of the cloud. The duration of the sweep is set by the
condition that the cloud needs keep to re-thermalizing for this step to be efficient. Mean-
while, 39K is sympathetically cooled by 87Rb -39K collisions [209].

To cool down the cloud even further, it is finally loaded into an optical dipole trap [210,
211] formed by two perpendicular high power beams of λ=1064nm light and all atoms
are transfered to the |F=1, mF=1〉 state with an RF-sweep. Any atoms remaining in
the |F=2, mF=2〉 state are blown away with a pulse of resonant light. Again, the most
energetic particles are evaporated by slowly ramping down the trap confinement. Rapid
thermalization is assured by controlling the scattering rate of 87Rb -39K collisions with
a Feshbach resonance [25, 212–214]. Near the end of the evaporation, the remaining
much heavier 87Rb atoms fall out of the trap as its confinement along the vertical direction
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becomes too low to counteract gravity, leaving only 39K behind. At that point, the Feshbach
field is adjusted to mediate 39K -39K collisions and allow for further cooling by evaporation
of 39K [214, 215] until quantum degeneracy is reached and the 39K atoms form an almost
pure BEC at the trap center. In the end, we arrive at a BEC that is so pure that the fraction
of thermal atoms is below the detection limit.

At this point, a 1D optical lattice is ramped up linearly to 11 recoil energies (Er) in
100ms. This is slow enough so we don’t see any excitations to higher bands even if we
go to the deepest lattice potential possible in the setup. The potential is formed by two
beams intersecting at 120◦ at a wavelength of 736.8nm (i.e. blue detuned). The reason
for this angle is that the system was built to produce a 2D honeycomb potential, which is
generated by interfering three beams intersection at 120◦, but only a 1D lattice was used
for all the work covered by this thesis, so one beam is always switched off.

The lattice potential’s position is modulated periodically in time over an integer num-
ber of cycles by modulating the phase of one lattice beam with an AOM3. Finally, after the
modulation is over, band-mapping is performed by linearly ramping down the lattice in
0.1ms and absorption imaging is performed by shining a 40µs pulse of resonant light on
the atoms and comparing the transmission to the case of the same pulse running through
the chamber with no atoms.

3Both lattice beams go through AOMs for regulation purposes
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3.2 Physical Principles

In this chapter, we briefly describe the most important parts of the experimental setup.
We start with the magneto-optical trap, where the atoms are captured in the first place, in
section 3.2.1. The principle of optical molasses, the last non-evaporative step of cooling
is explained in section 3.2.1. From there we move on to trapping principles, namely the
magnetic quadrupole trap and the optical dipole trap in sections 3.2.3 and 3.2.4. Finally,
we explain Feshbach resonances in section 3.2.5, a means to control the interactions of
the ultra-cold atoms.

3.2.1 Magneto-Optical Trap

The magneto-optical trap (MOT) is the first step in the production of the BEC. Here,
atoms are first cooled down and captured. The main idea behind the MOT [7, 211, 216]
is Doppler-cooling, where red-detuned light is irradiated along both the positive and nega-
tive direction for each dimension onto an atom (though other geometries, e.g. tetrahedral
are also possible [217]). This detuning has the effect that absorption increases if the atom
moves towards the incident light, Doppler-shifting the light closer to resonance. Combined
with isotropic decay back into the lower state, this effectively slows down the atom over
many cycles. The fundamental limit for temperatures achievable with this method is de-
fined by the photon scattering rate Γ . Equating the slowing rate with the scattering rate,
one finds that the minimum temperature achievable in this way, the so called Doppler-
temperature is TD=

ħhΓ
2kB

, with kB the Boltzmann constant, is reached for a detuning δ=− Γ2 .
For the D2-line of 87Rb, this temperature is TD=146µK [218], for the D2-line of 39K it is
TD=145µK [219].

To keep the atoms from drifting out of the cooling region, a coil pair in anti-Helmholtz
configuration produces a magnetic quadrupole field. This quadrupole field has the feature
of varying linearly in every dimension at its center. This is used to selectively shift different
mF sub-levels in and out of resonance with the irradiated light via the Zeeman effect [220].
By using opposing circular polarizations (σ+ and σ−) for opposing beams of light, the
atoms can effectively be pushed into the zero-field center of the coils (see figure 3.2).

3.2.2 Optical Molasses

The next step in the cool down of captured atoms are optical molasses. The polarization-
gradient cooling in an optical molasses is a way to cool atoms below the Doppler
limit [203, 221]. In this scheme (see figure 3.3), red detuned opposing beams of per-
pendicular polarization are irradiated onto the cloud of atoms. They interfere to form a
pattern where the polarization of the resulting standing wave changes from P to σ+ to S to
σ+ to P within half a wavelength. As the polarization affects the effective potential of the
atoms according to their hyperfine state, see section 3.2.4, a situation can be realized in
which atoms have to climb up a potential hill, loosing kinetic energy in the process, from
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Figure 3.2: Magneto-optical trapping. Top: Simplified scheme of magneto-optical trapping (MOT):

A pair of anti-Helmholtz coils (black) produces a magnetic quadrupole field (blue). Circularly po-

larized light (red) with opposing polarizations shines on the cloud of atoms (gray) from opposite

directions.

Center: The magnetic field vanishes in the center of the MOT and varies linearly along each coordi-

nate.

Bottom: Depending on an atoms position, its mF sub-levels are shifted in and out of resonance so

the atom always preferably absorbs light pushing it towards the center of the MOT.

where they can be optically pumped into an internal state with lower potential energy.
Afterwards, the atom can climb up the next hill and the procedure can be repeated, as
long as the atom has enough kinetic energy.

The natural limit for this cooling scheme is the temperature associated with the recoil
energy Er=

ħh2k2

2m =kB Tr , so Tr=362nK for 87Rb [218] and Tr=418nK for 39K [219].

3.2.3 Magnetic Quadrupole Trap

Magnetic confinement in quadrupole traps is used at many points in the experiment, but
they can summarized in three groups. The first trap is formed by the 3D MOT coils and
is switched on as the atoms are spin polarized right after the optical molasses sequence.
The second group consists of many pairs of coils in the magnetic transport section. These
coils produce a quadrupole field that moves with time, keeping the cloud in its center
and moving them from the MOT chamber into the experimental chamber. Here, the last
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Figure 3.3: Polarization-gradient cooling. Two beams of red detuned light from opposing direc-

tions and of perpendicular polarization interfere (big red arrows), forming a pattern of alternating

(opposing) linear and circular polarized standing waves (black arrows). This imposes a light shift on

the hyperfine levels of an atom (red, blue and black line) with a period of λ
2 . The irradiated light

optically pumps the atom from the high-energy state to the low-energy state via an excited state. If

the atom still has enough kinetic energy left, it can move over λ
4 to reach a point where the states are

inversed and the process can be repeated.

quadrupole trap confines the atoms while forced evaporative cooling is performed on
them.

The principle behind the magnetic quadrupole trap is the Zeeman effect, an energy
shift EZ of atomic hyperfine levels depending on their magnetic quantum number mF due
to a magnetic field with magnetic field B(r) [220]:

EZ(r) = µB gF mF |B(r)| , (3.1)

with µB the Bohr magneton and gF the Landé factor. This means that for a posi-
tive Landé factor, atoms in a hyperfine state with gF mF > 0 ("weak-field seekers") can
be trapped at local minima of magnetic fields, e.g. in the center of magnetic quadrupole
fields.
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3.2.4 Optical Dipole Trap

After the forced evaporation sequence in the quadrupole trap, the atoms are loaded into
an optical dipole trap. Here they are held via the AC-Stark shift [222], where an optical
intensity distribution I(r) imposes a dipole potential Udip(r). For large detunings ∆D1 and
∆D2 from the D1 and D2 line, i.e. much larger than the hyperfine splitting∆D1,∆D1�∆HF,
the potential imposed on an alkali-atom can be calculated according to [222]:

Udip(r) =
π c2

2

�

ΓD2

ω3
D2

2+P gF mF

∆D2
+
ΓD1

ω3
D1

1−P gF mF

∆D1

�

I(r) , (3.2)

with the natural line width Γ , transition frequencyω of the respective line, polarization
P (0 for π- and ±1 for σ±-polarized light), Landé factor gF and the magnetic quantum
number mF (of the current ground state). The spatial profile of the light intensity results
in an optical potential due to the AC-Stark shift [151, 223]. Because the photon scattering
rate scales as 1

∆2 [222], it is desirable to make the detuning as large as possible, countering
a linear decrease in potential depth due to the detuning ∆ by an increased beam intensity.
In our experiment, we use red-detuned light (∆<0) at λ=1064nm in the dipole trap to
create an attractive potential and blue-detuned light (∆>0) at λ=736.8nm in the lattice
to obtain a repulsive potential.

The dipole trap is formed by two perpendicular Gaussian beams in the horizontal
plane. The intensity profile I(r) of a Gaussian beam along the x-direction can be described
by [224]:

I(r) =
2 P

πw y(x) wz(x)
e
−2

�

y2

w2
y (x)
+ z2

w2
z (x)

�

(3.3)

wi(x) = w0,i

√

√

√

1+

�

x
xR,i

�2

(3.4)

xR,i =
πw2

0,i

λ
, (3.5)

with P the beam power, w y(x) and wz(x) the beam radius in the y- and z-directions
where the intensity falls off to 1

e2 , w0,y(x) and w0,z(x) the smallest beam waist radius in
the y- and z-directions and xR,y and xR,z the Rayleigh length in the y- and z-directions.
To avoid any unwanted interference between the beams, their polarizations are chosen to
be orthogonal and their frequencies are set ≈160MHz apart by the AOMs used to regulate
their intensity. Their waists are chosen to be w0,x/y ≈ 300µm in the horizontal plane
and w0,z ≈ 35µm in the vertical direction, resulting in a horizontally disk shaped cloud
of atoms. Additionally, after the formation of the BEC is completed, we use a third beam
along the z-direction called the dimple that is used to increase the horizontal confinement.
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3.2.5 Feshbach Resonance

To control the scattering rate of the atoms in the dipole trap, we use a magnetic Feshbach
resonance [212], see figure 3.4. It enables us to ensure thermalization in the evaporation
sequence and tune the interactions when the experiment is performed.

A Feshbach resonance occurs, when a magnetic field shifts the energies of an open and
a closed (bound state) scattering channel into resonance [212, 225]. Tuning an external
magnetic field close to a Feshbach resonance, one can adjust the scattering rate as in an
ultra-cold gas [226–229]:

as (B) = aBG

�

1−
∆B

B − B0

�

, (3.6)

with aBG the background scattering rate, B the magnetic field, ∆B the width of the
resonance, and B0 the position of the resonance.
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Figure 3.4: Feshbach resonance The Feshbach resonance of 39K-39K collisions in the ground

state is shown. It is described by the equation as = −29a0
(
1 + 52G

B − 403.4G

)
, with a0 the Bohr

radius [219]. We use this resonance in the experiment, to control the interactions in the BEC.
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3.3 1D Lattice

The final step in the preparation of the BEC for the experiment is loading it into an optical
1D lattice. The lattice potential is produced via the AC-Stark effect, just like in the dipole
trap. However, the lattice is blue detuned and thus has a deconfining effect on the atoms.
In this chapter, we describe how the 1D lattice is formed by two intersecting beams of light
in section 3.3.1. We then show how the periodic drive can implemented via acceleration
of the lattice itself in section 3.3.2. Finally, we explain how the population of different
momentum-states can be measured with the band-mapping technique in section 3.3.3.

J

z

x
y

ω1 ω2(t )

F(t+T)=F(t)

Figure 3.5: Schematic of the driven 1D lattice. Two beams of blue detuned light interfere at an

angle of 120◦ (blue arrows). They form a 1D lattice of "pancakes" (blue ovals), that are coupled by

a tunneling constant J . By periodically varying the frequency ω2(t) of one of the beams, an effective

periodic force F (t) is applied to the atoms. This figure is adapted from [192].

3.3.1 Lattice Potential

The experiment was originally built to produce a honeycomb lattice [53], so it features
three coplanar beams of lattice light at the same frequency and out-of-plane polariza-
tion, intersecting each other at 120◦. They are produced by splitting the beam of a titan-
sapphire laser (TiSa). To produce the 1D lattice that we used in this work, we switch off
one of these beams and end up with a lattice formed by two beams intersecting at 120◦

with a lattice constant d= π
kL
= λ

2 sin(60◦)≈425nm, λ=736.8nm being the laser wavelength.
Their waists are w0,z≈100µm in the vertical direction and w0,x/y≈400µm in the horizon-
tal direction which is much larger than the respective extent of the BEC, so they can be
modeled as two interfering plane waves:
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with E1/2(x , y) the electrical field of the two plane waves, ω1 the frequency of the first
beam, ∆ω the frequency detuning of the second beam with respect to the first,

�

kx , ky

�t
=

�

kL cos
�

θ
2

�

, kL sin
�

θ
2

��t
the wave vector (where we neglect the detuning from the begin-

ning, because it will never become significant here) satisfying
q

k2
x + k2

y =kL=
2π
λ , I(x , y)

the overall intensity, ε0 the vacuum permittivity, "RWA" indicating the rotating wave ap-
proximation, and θ=120◦ the angle between the two beams.
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3.3.2 Lattice Acceleration

Since the phase velocity of the sinusoidal wave is given by cL =
∆ω
kL

, we can produce a
standing (∆ω=0) or running (∆ω 6=0) wave. We use this feature to periodically drive the
BEC. The inertial force F=ma, which atoms of mass m will feel in a dragged lattice under
acceleration a=∂t cL, is:

F = m a (3.17)

= m∂t cL (3.18)

= m∂t
∆ω

kL
(3.19)

=
m
kL
∂t∆ω (3.20)

F = m d ∂t∆ν, (3.21)

with the lattice spacing d= 2π
kL

and ∆ν= ∆ω2π the frequency offset of the second beam.
For a periodic drive of the form ∆ν=ν0 sin(ωt), this evaluates to:

F = m dν0ω cos(ωt) (3.22)

= F0 cos(ωt) (3.23)

F0 = m dν0ω (3.24)

This force can be used to compute the so called driving amplitude K and the driving
strength α:

K = F0 d (3.25)

= m d2ν0ω (3.26)

α =
K
ħhω

(3.27)

=
m d2ν0

ħh
(3.28)

=
ħhπ2ν0

2 Er
, (3.29)

with Er=
ħh2k2

L
8m the recoil energy. Note that we use the definition of recoil energy derived

from the effective lattice constant kL
2 for easy comparison with theoretical models instead

of the photonic recoil energy based on the photon wave number k.
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3.3.3 Band-Mapping

In order to obtain information about the population of different bands and quasi-
momenta, we perform a technique called band-mapping. Here, the atoms are adia-
batically transfered to a specific real space momentum state depending on their band and
momentum state in the lattice by slowly ramping down the lattice beam power [230, 231].
In order to achieve this, two fundamental limits have to be considered. On one hand,
the band-mapping duration has to be long compared to the band gap so populations are
adiabatically transfered and no mapping on other free space states takes place. On the
other hand, the duration has to be short compared to the tunneling time so no consider-
able dynamics can take place in the cloud, which might change the population already
while still in the lattice4. In our setup, the energy gap is 42kHz for q = 0 in the 11Er

lattice we use in the experiment, corresponding to a timescale of 24µs and shrinks to
28kHz, respectively 35µs in the limit of 0Er . The tunneling rate is 108Hz, corresponding
to 9.3ms, so the ramp down duration of the lattice trd has to satisfy 35µs< trd<9.3ms. In
our experiment, this ramp down duration was optimized to trd=100µs.

4This is of course a problem because during the ramp down, the tunneling time goes to zero. However, it
still makes sense to think about this limit.
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3.4 Imaging

To evaluate the atoms positions, we use absorption imaging [11]. To this means, a beam of
resonant light is targeted at the atoms and directed onto a charge-coupled device (CCD),
where an image focused on the cloud is taken. By comparing images of the beam with
atoms present, casting a shadow on the CCD camera, and without atoms present, it is
possible to evaluate the number of atoms projected on each pixel by their scattered light.

We take four images in total: One of the atoms illuminated by the imaging beam, one
of the imaging beam without atoms and two dark images that are subtracted from them.
The two resulting subtracted images are then used in eq.3.31 to get the column density of
atoms.

While for low imaging intensities far below the saturation intensity, the Beer–Lambert
law could be used to evaluate the optical column density, due to the high column densities
involved, we have to use high saturation imaging and thus need to use a more complex
approach [232]:

ncol(x , y) = α′ ln
Ii(x , y)
I f (x , y)

+
Ii(x , y) − I f (x , y)

IS
, (3.30)

for imaging along the z-axis with ncol(x , y)=
∫

dz n(x , y , z) the column density, α′ a di-
mensionless parameter that usually has to be gauged, Ii(x , y) the intensity without atoms,
I f (x , y) the intensity with atoms and IS the saturation intensity. While it is tempting to use
this equation as it is written down, experimental imperfections block this route. Instead,
we use an expression with another degree of freedom in place of the saturation intensity
IS and with C(x , y) the counts per pixel on the CCD:

ncol(x , y) = α ln
Ci(x , y)
C f (x , y)

+ β
�

Ci(x , y) − C f (x , y)
�

. (3.31)

We calibrate the factors α and β on a set of images of BECs with the same atom
number taken at different imaging intensities. We then fit the ratio γ = α

β to minimize
the normalized variation of the atom number N=

∫

dx
∫

dy ncol(x , y) over the sample with

N the average atom number and ∆N2 its variance: γ= argmin
γ

∆N2

N . The absolute atom

number is afterwards calibrated independently (see section 4.2.3).
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CHAPTER 4

Measurements
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4.1 Dynamical Instabilities

The central part of this work is the measurement and characterization of parametric in-
stabilities. While quantifying loss rates in the BEC directly has proven very fruitful in
previous experiments [146], where incoherent processes that lead to a decay of the BEC,
described by Fermi’s golden rule, were investigated, the depletion is not a good observable
for the investigation of these instabilities. On the relevant time scale for the observation
of the coherent dynamics in the first few driving cycles, it is too small to directly quantify
rates in the same manner as in [146]. The loss rates turn out to be masked by imaging
artifacts that arise from the high densities in the BEC. Specifically, we found a breathing
mode of the condensate, i.e. a collective mode excitation that modulates density and ex-
tension [233, 234]. Because the imaging signal depends on density in a nonlinear way
(see chapter 3.4), this leads to a modulation of the integrated pixel counts and in turn
appears as atom number fluctuation.

To get past this obstacle, we do not measure the particle loss in the BEC but instead the
population of the excited modes directly in momentum space via band-mapping and time
of flight (TOF) measurements. While this approach is experimentally more challenging, it
provides a lot of additional information compared to the time traces of particle number in
the BEC from previous measurements. First of all, as there is no quantitative agreement
between theory and observation in the instability rates, a direct measurement is better
suited than indirect determination via loss rates in the condensate. Second, our approach
allows for the assessment of both the parallel and the perpendicular (with respect to the
lattice) component of the instabilities’ momentum. This, in turn, allows to directly observe
the transition between two regimes, distinguished by a driving frequency above or below
the effective Bogoliubov bandwidth.

While it would in principle be desirable to perform the measurement at long TOF to
maximally disentangle insitu size and momentum distribution, the diminutive nature of
the signal limits the realizable TOF in our case to about 6ms as the number of relevant
pixels on the CCD (and thus noise) increases quadratically with TOF. For longer TOF the
density in the instability peaks becomes too low.

We cannot quantify the number of atoms per pixel in the excited modes because the
calibration is only valid in the very dense condensate. However, because the density is
very low in the excited modes, we can assume that the pixel counts there are proportional
to the atom number. This means that while we cannot determine the population of each
mode, we can determine their exponential growth rates.

We have a clear prediction of what the population the most unstable mode should look
like [164], see eqs. 2.161-2.166 in section 2.8.2. In short, we expect the most populated
mode to be the one that puts as much energy as possible in the qx -momentum compo-
nent. This means that as the driving frequency is increased, all energy that goes from the
absorption of two quanta from the drive to into the excitation of two atoms is used to max-
imize the momentum along the lattice. Only after the BZ edge is reached and there cannot
be any more energy stored in momentum along the lattice, perpendicular momenta are
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excited. We distinguish regime (I) with a driving frequency below the effective Bogoli-
ubov bandwidth and regime (II) with a driving frequency above the effective Bogoliubov
bandwidth, see figure 2.10.

4.1.1 Experimental Sequence

To begin our measurement, we start with a BEC of (37± 4) · 104 39K atoms in the dipole
trap. We then linearly ramp up the 1D lattice to 11Er in 100ms. Afterwards, we turn on
the drive instantly (quench), drive for an integer number of cycles and instantly turn off
the drive. The reason we do this is that it is more simple to simulate the dynamics that
way and it is not possible to well define the onset of the drive with ramp up. This is not
a problem if the BEC depletion is measured for many driving cycles �1, but in our case
with a ramp up over just 5 cycles, the interesting coherent dynamics would already be
over as decoherence/dephasing takes over after a few driving cycles due to interactions
between the excitations and the condensate. After turning off the drive we linearly ramp
down the lattice in 100µs (band-mapping, see chapter 3.4) and image after 6ms of TOF.

We take data sets for two driving amplitudes α1 = 1.44 and α2 = 1.78, with driving
frequencies in the range ω∈ [500Hz, 900Hz] · 2π. For each pair of parameters, we vary
the driving duration in integer cycles from ≈3 to ≈13.

4.1.2 Evaluation of the qx -Component of the Most Unstable Mode

We select a region of interest (ROI) that is large compared to the first Brillouin zone (BZ)
in the x-direction and captures all atoms well in the y-direction, see figure 4.1. This ROI
is the same for all images. The resulting set of cut out images is then integrated along the
y-direction to get a 1D profile in the x-direction, as shown in figure 4.2. Each integrated
profile is convolved with a Gaussian of width σ=0.04 πd (for calibration of the qx -axis see
section 4.2.5). This step is necessary to get rid of the detection noise still present in the
profiles so local maxima can be properly determined, which has turned out to work much
better than fitting due to the asymmetric shape of the peaks. In the next step, we subtract
an inhomogeneous background from the images, that is due to fluctuations in the imaging
beam. To first oder, these fluctuations imprint a linearly varying offset. It is corrected
by averaging the outermost 100 pixels on both the negative and positive momentum side
(which is still well outside the first BZ) and defining a linear function through them. This
line is subtracted from the whole profile. The last correction performed on the profiles is a
shift to center. The position of the BEC varies from shot to shot, mostly due to fluctuations
in the pointing of the dipole beams. To properly average over many profiles, we perform
a Gaussian fit on the central BEC peak in all profiles for each parameter set and shift
them to perfectly coincide in position along the qx -axis. For each set of parameters, we
take ≈10 measurements. Taking more data points turned out to be counterproductive due
to atom number drifts in the setup on long time scales that limit the total duration of a
measurement series.
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Figure 4.1: Camera Image. The image shows a BEC centered at qx =0 and instability peaks close

to the BZ edge. The cloud was driven for 6 cycles with an amplitude of α=1.44 at a frequency of

ω= 2π · 750Hz.
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Figure 4.2: Raw qx -profile. Image of cloud integrated along the y -direction. The cloud was driven

for 6 cycles with an amplitude of α=1.44 at a frequency of ω= 2π · 750Hz.

The averaged profile for the initial BEC (shaking duration t = 0) n0(q) is taken as
a reference to extract the very small signal of excitations from the background at each
shaking duration t > 0. Because the depletion of the condensate is ® 10% on the time
scales probed in the experiments, the profile of the BEC does not change very much and
can well be approximated to zeroth order as an overall scaling. So, for each profile i in
each shaking duration t>0 we scale the initial profile n0(q) to the same maximum value
as nt,i(q) and subtract the two. This leaves the excited side peaks as dominant features of
the remaining profiles, see figure 4.3.
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Figure 4.3: Processed qx -profile. The image of cloud is integrated along the y -direction, averaged

over 10 realizations, convolved with a Gaussian and a scaled initial profile for zero shaking duration

is subtracted (black). The initial profile is shown in blue for reference. The cloud was driven for 6

cycles with an amplitude of α=1.44 at a frequency of ω= 2π · 750Hz.

While we could well extract the position of the maximum and average the 10 profiles
for each set of parameters, to estimate the error we need to use a bootstrapping approach.
This is due to the fact that the peaks do not have a nice Gaussian or similar shape and
retain small distortions even after smoothing. From the set of 10 profiles for each set of
parameters, we randomly draw 10-combinations with repetition, i.e. we end up with a
set of 10 profiles in which a single profile might be repeated arbitrarily often. These 10
sets are then averaged to a single profile nt, j(q) of which we extract the position of the
maximum qmax,t, j,± on both the negative and the positive momentum side (denoted by
±) independently. This process is repeated 100 times, so we end up with a set of 100
instances of qmax,t, j,±. On this set, we compute the average q̄max,t,± and the standard error
∆qmax,t,± as width of the distribution of qmax,t,±. The average of these effectively 1000
profiles is very close to the average of the original 10, so we do not introduce a relevant
error there. The error might be just an estimate, however, it should be close to the correct
value.

It should be noted, that due to confinement and interactions, the condensate does
have a spread in momentum space. This spread can be modeled with a Gaussian of σq=
0.25± 0.05 πd in both directions. This is important for two reasons: Firstly, due to its far
greater population this means that the condensate still dominates the population of modes
at some distance form the BZ center (see figure 4.3) and it is experimentally challenging
to investigate low-momentum excitations. Secondly, the finite width of the condensate
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masks the width of the resonance even at infinite TOF, so the observed momentum peaks
will be wider than the resonance itself.

For driving durations t ® 9T , qmax,t,± is fairly constant, but for longer durations ther-
malization processes start to become relevant: Additional momentum components start
to be populated and the mode with the largest occupation tends to move towards the
center of the BZ. To exclude these data points from our evaluation of the most unstable
mode qmum, we define a cutoff criterion as maximum deviation between consecutive maxi-
mum positions qmax,t,± as

�

�qmax,t,± − qmax,t+T ,±
�

�< 0.05 πd . Also, because data points at very
short driving durations tend to have very large error bars due to the very low signal to
noise ratio at these durations, we define another cutoff criterion for single data points as
a maximum error bar of ∆qmax,t,±< 0.12πd . All remaining positions qmax,t,± are averaged
(taking into account different signs) and finally we arrive at a value for the most unsta-
ble mode qmum. Their respective driving durations are considered to make up the "short
time regime", in which the position of the maximally populated momentum mode stays
constant, see figure 4.4.
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Figure 4.4: Position of most unstable mode qmum
x as a function of modulation duration t for the

negative (dark blue) and positive (light blue) momentum side for α = 1.78 and ω = 720Hz ·
2π. The shaded region indicates the short time regime for this parameter set, that is used in the

determination of the properties of the most unstable mode. The dashed black lines mark the BZ

edges. This figure is adapted from [192].

We evaluate the qx -profiles at qmum to get the height of the instability peak for all
driving durations within the short time regime. Because an exponential growth of the
unstable modes is expected, a least squares linear fit is performed through these heights
on a logarithmic scale. The slope of this fit is equal to twice the instability rate Γ . The
factor of 2 comes from the fact that the instability rate Γ describes the growth of the wave
function, but we measure densities which are proportional to the squared absolute value
of the wave function.
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4.1.3 Evaluation of the qy -Component of the Most Unstable Mode

As the confinement in the z-direction is approximately an order of magnitude larger than
along the other two directions, the dynamics in the x y-plane are expected to be well
decoupled from the z-direction and an evaluation of these two momentum components,
disregarding the qz-component seems appropriate. It is expected that the most unstable
mode has zero momentum perpendicular to the lattice up to the point where qx reaches
the band edge (see section 2.7.2). From that point on, all additional energy is put into
perpendicular momentum. While we cannot resolve distinct peaks for finite momentum
in the y-direction, we can still analyze the profiles for signatures of such an effect. To
this end, we take the same images of atom column density as for the evaluation of the
qx -component (see section 4.1.2) and choose two ROIs, around the positive and negative
momentum peak respectively, excluding the central BEC. We integrate both regions along
the x-direction to end up with a profile for qy . Just like in the case for qx , we convolve this
profile with a Gaussian of width σ=0.04 πd to reduce noise. Again, we take the outermost
100 pixels and use them to construct a linear function to correct for an inhomogeneous
background to first order and fit a Gaussian to the profiles that we use to center them.
Finally, we average the 10 profiles for each set of parameters and use their standard de-
viation on each pixel as an error bar. This error bar is then used to construct an outer
and inner error profile, which we use to estimate the error of the widths δqy . The width
is evaluated at 80% maximum of the peak. We choose this value as a trade-off between
different high noise effects at the top and at the bottom of the peak. At the top, there
is a small slope transforming small deviations in height into big deviations in position
of the maximum. The closer to the bottom of the peak we get, the bigger the effect of
background noise becomes, lowering the signal to noise ratio. Finally, the relative sig-
nal is larger at the top, where the overall width is smallest, which elevates the optimum
evaluation height above the common 50% level.



66 Measurements

4.2 Calibration

Because of little changes in the setup due to drifts and realignment, there are a few pa-
rameters that need regular calibration. To make the measurements as precise as possible,
we calibrated all relevant parameters at the time the data was taken. The only exception
is the magnification factor of the imaging system, which is so stable that it only needs
recalibration after changes in the imaging system. The calibration of the Brillouin zone
width is necessary to quantitatively evaluate the momentum of all excitations. The mea-
surement of trapping frequencies is used in the determination of atom number, which is
in turn used to estimate the interaction parameter g in the cloud.

4.2.1 Magnification Factor

To calibrate the magnification of the imaging systems, we start with a BEC of 39K in the
dipole trap and monitor its free fall in the yz-plane (we label all imaging directions via the
axis of their imaging beams and call this x-imaging) after switching off the trap. We fit a
Gaussian model to the image of the BEC and extract its center of mass position in (y ′, z′).
From the array of position tuples we fit the direction of gravity z (the perpendicular direc-
tion is labeled y accordingly) and fix the origin (0, 0) with the position of the BEC at the
time of release. Finally, we fit a model of the form:

αx z =
1
2

ga t2, (4.1)

with αx =(1.699± 0.003) µm
px the magnification (µm per pixel) in x-imaging and ga=

9.81m
s2 the gravitational acceleration. The same calibration is done in the (x , z)-plane,

where the value is αy=(1.797± 0.003) µm
px .

In the (x , y)-plane, we have to use a different approach, however, since gravity is
perpendicular to that plane. Instead, we load the BEC in a 1D lattice and instantly switch
off lattice and dipole trap simultaneously, exciting Bragg peaks in the lattice direction at
q= 2πħh

d , with d the lattice constant. We image the free falling cloud after 3.5ms and extract
the Bragg peaks position (x ′, y ′) from a Gaussian fit. We use the two positions of the Bragg
peaks to find the rotation angle that the camera is turned with respect to the lattice and
define the x-direction to be along the lattice (and y to the perpendicular direction) and
fix the origin to (0,0). Finally, we fit the x-position of the Bragg peaks to a model of the
form:

αz x =
q

mK
t (4.2)

=
2πħh
dmK

t, (4.3)

with αz the magnification (µm per pixel) in z-imaging fitted to αz=(0.466± 0.001) µm
px

and mK the mass of a 39K atom.
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4.2.2 Dipole Trapping Frequencies

To calibrate the trapping frequencies, we force harmonic oscillations of the 39K BEC in the
dipole trap. This calibration is done right after taking the actual data to ensure that the
dipole trap has the same parameters as it had during the experiments. We hold the BEC
in the trap and then increase the power of one of the dipole trap beams1 by a factor 1.5 in
500ms, which adiabatically brings the BEC to a new, slightly different equilibrium position.
We then instantly switch it back to the normal value, which leaves the BEC in an excited
position in the trap, forcing it into oscillations. A time trace of this oscillation is recorded
by imaging the position of the BEC after 10ms TOF. This TOF gives a much better signal
than direct imaging of the small insitu oscillations. We fit a damped sinusoidal to the time
trace in both directions to get the dipole trapping frequencies ω x̃ = (26.5± 0.7) · 2πHz
and ω ỹ= (27.0± 0.8) · 2πHz.

To get the trapping frequency ωz = (189± 3) · 2πHz, we perform the same measure-
ment, but image along the x-axis with 15ms TOF.

4.2.3 Atom Number

We can extract the atom number N in the BEC from a Thomas Fermi model. To this end,
we need the calibrated trapping frequencies ωi, at least one Thomas Fermi radius Ri and
the scattering length as (see eq.2.82).

To make use of this, we take insitu images of the BEC in z-imaging in the dipole trap for
different scattering lengths as= 5− 160a0, with a0 the Bohr radius, tuning the scattering
length with the Feshbach resonance depicted in figure 3.4. We fit a Thomas Fermi profile
for each scattering length and extract the Thomas Fermi radii Rx and R y . Finally, we fit the
atom number to both sets of Thomas Fermi radii versus scattering length, see figure 4.5.
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Figure 4.5: Atom number calibration. The Thomas-Fermi radius Rx of the cloud is measured for

different scattering lengths as . An atom number N0 if fitted according to a Thomas-Fermi model.

The figure shows the Thomas-Fermi radius along the x -direction for N0= 223000± 8000.

1The Dipole-X and dipole-Y beams are actually rotated by 38◦with respect to the lab frame (x,y,z).
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Because the atom number is not constant in the experiment, but shows variations
on both long and short time scales, we calibrate the atom number at the maximum
(N0= 506000± 9000) and minimum (N0= 223000± 8000) count value measured for the
BEC during the time the data was taken. This is necessary because the clouds are very
dense and we are imaging in the high saturation regime. This makes the integrated pixel
counts on the camera a nonlinear function of atom number. This nonlinearity also means
that we can not tell how many atoms we have in the excitations outside the BEC as the
density there is very different from the density during calibration. We can however mea-
sure the BEC depletion.

4.2.4 Trapping Frequencies in the Presence of the Lattice

Obtaining the trapping frequencies in the presence of the lattice proves to be highly non-
trivial because firstly, instead of free space oscillations there are Bloch oscillations along
the lattice direction, with their frequency depending on the local potential gradient. Sec-
ondly, the oscillations along perpendicular directions turn out to be damped very fast in
the presence of the lattice. This means that we can only measure the trapping frequency
ωz = (156± 5) · 2πHz in the z-direction directly as explained above (section 4.2.2) as it
is large enough for us to observe a few complete cycles before all motion is completely
damped out. In the (x , y)-plane, however, we can still measure the Thomas Fermi radii
very well, just as in the case without a lattice. We then use the calibrated atom num-
ber, the trapping frequency in the z-direction and the Thomas Fermi radii in the x- and
y-directions to fit a Thomas Fermi model. That way we end up with trapping frequencies
ωx= (24.2± 0.8) · 2πHz, ωy= (27.6± 0.9) · 2πHz and ωz= (156± 5) · 2πHz.

4.2.5 Brillouin Zone Width

The width of the Brillouin zone (BZ) is calibrated by adiabatically loading a BEC in the
lattice and then instantly switching it off. This excites Bragg peaks in momentum space
that we image after 6ms time of flight (same time of flight as used in the characterization
of the dynamical instabilities, see chapter 4.1). The peaks are located at the outer edge of
the second BZ at q=±2π

d , so their distance is twice the width of the first BZ
�

q ∈
�

−πd , πd
��

.
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Results



70 Results

5.1 qx -Component of the Most Unstable Mode

We first take a look at the qx -component of the most unstable mode, see upper panel
in figure 5.1. As expected from a theoretical point of view, qx increases with increasing
driving frequency ω until it matches the bandwidth of the effective Bogoliubov dispersion.
At that point no more energy can be deposited into qx and a further increase of ω will not
change the momentum along x .
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Figure 5.1: Upper panel: Experimental values of the position of the most unstable mode qxmum for

two modulation amplitudes α1 = 1.44 (blue) and α2 = 1.78 (red) with effective hopping Jeff,1 =

59Hz 1
ħh and Jeff,2 = 38Hz 1

ħh . The dashed lines are guides to the eye, indicating the transition

between the two regimes at ωsat(α). The solid lines display the analytic result based on eq. 2.157

for g/h=1300 Hz. Each data point is an average of ≈ 10 independent measurements. The error

bars were evaluated based on a bootstrapping approach (see section 4.1.2). Lower panel: Full

width of the momentum distribution of the excitations δqy along the y -axis, which was evaluated

at 80% of the peak amplitude (see section 4.1.3). The offset δqy ≈ 0.27 π
d for low frequencies is

determined by the width of the condensate both in real and momentum space and the width of the

parametric resonance. The dotted lines are guides to the eye. Each data point is an average of

≈ 10 independent measurements and the error bars display the corresponding standard deviation.

This figure is adapted from [192].

The experimentally determined values of qmum,x saturate considerably before reaching
the BZ edge. This can be explained by the combined effect of band-mapping and time
of flight imaging. Band-mapping imposes a sharp cut on the momentum distribution at
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qx = ±
π
d . While qx = ±

π
d can clearly be identified as labeling the same state in the

lattice, in free space these two momenta obviously label different states. A momentum
peak at qx = ±

π
d has wings on both the positive and negative momentum side of the BZ.

These get band-mapped to significantly differing real space momenta. They become two
separable momentum distributions, one with a (relatively) sharp edge on the negative
side of qx = −

π
d and the other with a (relatively) sharp edge on the positive side of qx =

π
d .

The word "relatively" is inserted in brackets here, because during band-mapping the band
gap to the next band closes at the BZ edge. This means that the transition to free space
dispersion can never be adiabatic here and there will always be excitations into the next
band.

These excitations will be band-mapped right next to the BZ edge on the other side,
i.e. 2π

d will be added on the negative momentum side and 2π
d will be subtracted on the

positive momentum side. The result is schematically shown in figure 5.2. It models the
number of atoms in the next band in the simplest possible way: Adiabaticity is maximally
broken at the band edge, where the bands eventually touch. Here, half of all atoms
should be excited because firstly, the difference between the q=±πd states in both bands
vanishes, and secondly, this is the only way to continuously model the distribution at
q=±πd . From |q|= πd to lower momentum values, the amount of atoms excited to the next
band is modeled to decay linearly, down to zero at some finite momentum. Because for a
vanishing lattice the gap between the two bands increases linearly with distance from the
Brillouin zone edge, this seems like a good approximation in the vicinity of |q|= π

d . This
effect will move the center of both momentum peaks towards zero, keeping the mean of
zero qx = 0 untouched but shifting the mean of the absolute momentum |qx |<

π
d .

Furthermore, time of flight imaging imposes a transformation on the cloud that
closely resembles a convolution of in situ distribution and momentum distribution
�

multiplied by t
mK

�

, which is also shown in figure 5.2. This has a broadening effect
on the measured peaks, but has little impact on the position of the peaks.

It should be noted that there is a significant discrepancy between the interaction pa-
rameter g/h = (870± 30) Hz, that is estimated from our Thomas-Fermi model, and the
interaction parameter g/h=1300 Hz used to produce the guides to the eye in figure 5.1.
These interaction parameters lead to a discrepancy of about 20% between the expected
and measured saturation frequencies. This offset might in principle be explained by a sys-
tematic error of about 30% in our calibrated atom number. However, we expect this error
to be below 20%. Moreover, we believe that there might additional effects induced by the
3D trap that are not properly captured by the 1D simulations.
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Figure 5.2: Band-mapping and finite time of flight. The effect of band-mapping and finite time

of flight on the position of the momentum distribution’s maximum is shown schematically. Panel a)

shows the initial momentum distribution of the excitations in the lattice. b) During band-mapping,

modes in the next band are populated. Because closer to the BZ edge more atoms are excited,

the maximum of the distribution is shifted to lower momenta. c) After the short time of flight used in

the experiment, the momentum distribution is effectively convolved with the insitu size of the cloud.

Panels d), e) and f) show the same distributions as a), b) and c), respectively.

The simple model used for this scheme is indicated in panel d): Because the band gap is closed

at q = π
d and in order to avoid discontinuity, 50% of atoms at the band edge have to be excited

to the next band. As the gap between the two bands now increases linearly with distance from the

BZ edge, the most simple model possible is to assume the amount of atoms excited to the higher

band decreases linearly down to 0 at some arbitrary momentum q. The thin red line indicates

the fraction of atoms excited to the higher band. The dotted red line in panel e) indicates the

momentum distribution without excitations and the dashed red line in panel f) marks the maximum

of the momentum distribution after convolution with the insitu shape of the cloud.

5.2 qy-Component of the Most Unstable Mode

The behavior of the qy -component of the most unstable mode is also consistent with the-
oretical expectations (see section 2.8.2 and figure 2.10), see lower panel in figure 5.1. We
cannot experimentally resolve a splitting into two distinct peaks in qy , so we have to settle
for evaluating the width of the peak δqy (see figure 5.3). We can see that this width stays
constant with increasing frequency until the qx -component saturates. At that point, excess
energy is transfered into qy and the peak supposedly splits into two still overlapping peaks
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at a finite momentum
�

�qy

�

�>0. This is reflected in the data as an increase in the measured
width of the single visible peak, as shown exemplary in figure 5.3.
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Figure 5.3: Mean integrated momentum distribution of the atoms perpendicular to the lattice for

one driving frequency (500Hz, red) within regime (I) and one driving frequency (900Hz, blue) within

regime (II). The dashed black line indicates the evaluation height (see figure 5.1). This figure is

adapted from [192].

5.3 Instability Rate

We also evaluate the growth of the most unstable mode qmum over time. To this end, we
track the amplitude of the density profile along qx at qmum as described above. We confine
the evaluation to the short time regime as determined in section 4.1.2.

Comparing the extracted instability rates to the rates produced by a Floquet Fermi’s
Golden rule (FFGR) and a Bogoliubov-de Gennes (BdG) calculation (see figure 5.4), we
find that our results are almost two orders of magnitude larger than expected from FFGR.
We interpret this as a clear sign that the dynamics is different from an FFGR description,
which well describes the long term decay of the condensate as an incoherent process. At
the same time, our results are almost an order of magnitude below the coherent BdG rates.
This is hard to justify quantitatively without further theoretical modeling, but might be a
hint that we are not probing the system on time scales short enough to extract the pure
initial instability rate before terms neglected in the theoretical models become relevant,
even though coherent processes are still playing the dominant role.
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Figure 5.4: Instability rates extracted from the measured populations nqmum of the most unstable

mode for α = 1.44 as displayed in figure 5.1. Each data point is obtained from ≈ 10 individual

data sets. The error bars are evaluated based on a bootstrapping approach (see section 4.1.2) and

are generally smaller than the data points. The black dashed line shows the result obtained from

the BdG equations for g/h = 1300 Hz and the blue shaded area the ones obtained for g/h =

(870± 30) (see eqs.2.163 and 2.166), where the width reflects the uncertainty in the atom number

calibration. Orange shaded area: rates expected from an FFGR approach (see section 2.6.6) for

the same parameters. Its width is also determined by the experimental error in the atom number

calibration. Inset: Measured populations for ω=667Hz · 2π and exponential fit used to extract the

instability rate (solid line). This figure is adapted from [192].

5.4 Benchmarking the Bogoliubov-de Gennes Model

To investigate how well the BdG model is suited for the quantitative prediction of growth
rates in our system, we compare the predicted time-evolution of the most unstable mode to
the prediction of two other models, the weak coupling conserving approximation (WCCA)
and the truncated Wigner approximation (TWA). Both models restore the U(1)-symmetry
associated with particle number conservation and are thus well suited for an estimation
of the point where the BdG description seizes to be exact. A description of these two
models can be found in appendix H and I respectively. As shown in figure 5.5, the BdG
description coincides well with the other models in the short time regime, where we eval-
uate the growth rates. The coincidence increases for larger values of g (not shown). The
simulations were performed by Marin Bukov at the University of California.
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Figure 5.5: Numerical simulations of the occupation of the most unstable mode nqmum for a ho-

mogeneous 2D system (1D lattice and one continuous direction) for g = 9.52 J , ω = 9.25 J
ħh and

α=1.44. The solid line displays the rate obtained from the analytic formulas (eqs.H.3-H.5), which

is in agreement with the BdG simulations (dark blue) for t¦5T . The TWA (blue) and WCCA (light

blue) partially capture additional non-linear effects and thermalization dynamics, which result in a

time-dependent instability rate. Blue shaded area: Experimentally accessible time window. This

figure is adapted from [192].

5.5 Effect of Harmonic Confinement

If we take a closer look at the saturation point and the dependency of the qx -component
of the most unstable mode on driving frequency, we can clearly see that it does not reflect
the effective driven band structure for an interaction parameter g as we would calculate
it from the determined Thomas Fermi profiles. We attribute this effect to the harmonic
confinement. Due to the confinement, the interaction parameter g becomes position de-
pendent, varying from zero at the edge of the cloud to gmax in the center. While it seems
reasonable to use the average ḡ to calculate the effective bandwidth, we find gmax to better
reflect the experimental results (see section 5.6.2 for the calculation of ḡ). We believe the
reason for this behavior lies in the exponential nature of the parametric resonance. While
there are many atoms sitting at an effective g< gmax, the highest instability rate is found
in the center for g= gmax and the excitations arising there quickly dominate other modes
growing with smaller rates.

A second effect induced by the harmonic confinement is the absence of a stable regime.
While in a 1D system, there are no modes located in regime (II) as it is per definition in
the band gap, this is not the case in a trapped system. The presence of the trap breaks
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discrete translational symmetry and gives rise to Tamm surface states (modes located at
both sides of the trap) [235, 236], see figure 5.6. These modes render the system unstable
even above the band edge (see figure 5.7). This means that if one desires to suppress
the growth of parasitic modes to increase the lifetime of a driven BEC by constricting its
density of states with a 3D lattice in a way so the driving frequency falls within the band
gap, instabilities will still arise if the system is harmonically trapped. Because the overlap
of these Tamm states with the BEC decreases with energy, instability rate also decreases
with driving frequency. Thus, there might still be a regime, where the system is stable for
the duration of an experiment. The simulations were performed by Marin Bukov at the
University of California.
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5.6 Interaction Parameter g

A very important part of the main project was understanding that a mapping of the simu-
lated 1D and 2D systems’ Hamiltonian onto the experimental 3D system cannot be done in
a way that allows for quantitative predictions regarding e.g. lifetimes. The considerations
leading to this observation are presented in this chapter.

5.6.1 Definition of g

We recall the interaction part Ĥint of Hamiltonian 2.38:

Ĥint =
1
2

U0

∫

dr ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r) ,

where the interaction parameter U0 depends only on the dimensionality of the system
�

e.g. U0,3D =
4πħh2as

mK

�

and can be calculated from s-wave scattering theory [147]. Decom-

posing ψ̂(r) := ψ(r) â into the wave-function ψ(r) and the annihilation operator â, this
yields:

Ĥint =
1
2

U0 â†â†â â

∫

dr |ψ(r)|4 (5.1)

=
1
2

U0

�

n̂2 − n̂
�

∫

dr |ψ(r)|4 (5.2)

≈
1
2

U0 n̂2

∫

dr |ψ(r)|4 (5.3)

≈
1
2

∫

dr

∫

drU0 〈n̂〉
2 |ψ(r)|4 (5.4)

≈
1
2

∫

drU0 n(r)2 (5.5)

Ĥint ≈
1
2

∫

dr g(r) n(r) , (5.6)

with the particle density density n(r) := 〈n̂〉 |ψ(r) |2, the expectation value 〈·〉 and the
interaction parameter g(r):=U0 n(r). Note the particle number 〈n̂〉 ≡ N0.
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5.6.2 ḡ vs. gmax

The average ȳ of a variable y(r) over any distribution x(r) is:

ȳ :=

∫

dr y(r) x(r)
∫

dr x(r)
, (5.7)

so it is reasonable to assume that a proper simplification of the Hamiltonian is pro-
duced by the extension:

Ĥint ≈
1
2

∫

dr g(r) n(r) (5.8)

≈
1
2

�∫

dr g(r) n(r)

�

∫

dr n(r)
∫

dr n(r)
(5.9)

≈
1
2

∫

dr g(r) n(r)
∫

dr n(r)

∫

dr n(r) (5.10)

Ĥint ≈
1
2

ḡ N . (5.11)

However, we find that in the case of the parametric resonance the system is better
described by the maximum value gmax :=max

r
g(r), see figure 5.8. We attribute this to the

fact that the parametric instability gives rise to exponential growth in the observed modes.
Because the associated growth rate is bigger for bigger values of g, modes excited at the
center of the cloud where g(r)= gmax quickly dominate the dynamics.

5.6.3 Difference 2D - 3D

The big problem in converting from a true 2D system to a true 3D system is the scattering
parameter U . While it is sensible to write:

U⊥ = U3D w0I , (5.12)

which gives U⊥ the same dimension as U2D, the two cannot be treated as equal. An
insightful way to look at this problem is by taking a look at a diverging lattice depth,
which effectively compresses the atoms on site to a true 2D system. This also makes w0I

diverge and thus also U⊥. This contradiction can only be resolved by taking into account
the dynamics in the third dimension, which is still there for any true 3D system, even if it
is trivial and does not explicitly show up in the Hamiltonian.

This means that 2D simulations cannot make a quantitative prediction of the instability
rates in the experiment.
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Figure 5.8: Numerical simulations of the saturation frequency ωsat for a homogeneous 1D sys-

tem (light green, g = 10.2 J) and for a harmonically trapped one (dark green, trap frequency

ωx =0.26 J
ħh , gmax =10.2 J). The system size is Lx =201d and the atom number is N0 =1000.

The solid line is the analytic prediction of the saturation frequency as ħhωsat =Weff with the effec-

tive bandwidth Weff for a homogeneous 1D lattice with interaction energies g and gmax based on

eq. 2.157. Inset: Initial density distribution ρ1D(x) in the harmonically trapped 1D lattice, which is

well described by a Thomas-Fermi profile. It induces a position dependence in the interaction param-

eter g , where the maximum value gmax is determined by the central density. This figure is adapted

from [192]. The simulations were performed by Marin Bukov at the University of California.
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In conclusion, we have found strong evidence for the appearance of parametric insta-
bilities after few driving cycles in periodically-driven BECs in a 1D optical lattice. These
parametric instabilities are responsible for the depletion at the early stage of the driving.
We have investigated both the qx - and qy -component of the instabilities’ momentum in
time-of-flight measurements and found that the dynamics is dominated by the most unsta-
ble mode, as predicted [164]. In the evaluation of the qx -component, we found that it in-
creases with driving frequency, until it reaches the band edge. At that point, excess energy
is transferred to the qy -component, which manifests in a broadening of the momentum
distribution in that direction. That way, we unveiled the destructive role of the transverse
degrees of freedom for the lifetime of the BEC, as it is reasonable to assume that the coher-
ent exponential growth of instabilities at the early stages of the driving is linked to heating
at later stages. Also, numerical simulations revealed that a broken discrete translational
symmetry, as in our case mediated by harmonic confinement, leads to unstable modes in
energy ranges, where the density of states vanishes in the homogeneous lattice. This leads
to a depletion of the BEC in naively stable frequency ranges. This has large implications
for experiments, as harmonically confined atomic clouds are used in many setups. Para-
metric resonances are expected to occur whenever the BdG equations of motion feature
time-periodic driving, indicating that full-lattice systems without harmonic confinement
are necessary to find true stable parameter regimes for periodically-driven systems, such
as super-fluids and superconductors [237] and photonic devices [238, 239]. The growth
rates of the maximum unstable mode lies more than an order of magnitude above the
depletion rates predicted by a Floquet Fermi’s Golden rule estimation, which also hints at
different mechanisms being at work. We attribute the overestimation of the growth rate
by Bogoliubov theory to a rapid saturation happening in the experimentally not accessible
time period of the very first <5 driving cycles, leading to non-linear corrections. This ef-
fect can be described by more evolved theories, like the truncated Wigner approximation
or the weak-coupling conserving approximation, which take into account the coupling of
the excitations to the condensate and are in principle capable of capturing the dynamics
beyond the low depletion limit, as they conserve particle number.

The logical next step at our setup would be to investigate heating in the hexagonal
lattice and look for possibilities to suppress heating even in the harmonically trapped
periodically-driven gas. A possible route to this goal might be the utilization of the addi-
tional vertical lattice that has already been built into the setup. If lifetimes of more than a
few ms can be achieved, it might be possible to realize an interaction-driven transition into
a Mott insulating phase in the honeycomb lattice [94]. Also, producing artificial gauge
fields in the p-bands of the honeycomb lattice, it might be possible to realize fractional
quantum Hall states [240] that feature anyonic excitations [241]. The exotic properties
of anyons are considered for the realization of a topological quantum computer that is
resistant to external perturbations [242].
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A different experimental route that can be taken is the realization of the optical flux
lattice, which yields narrow energy bands with non-zero Chern number without Floquet-
engineering [243, 244]. In these bands, strong correlation phenomena related to the
fractional quantum Hall effect might be studied.

Finally, another way towards the generation of artificial gauge fields is strained
graphene [245–248], which emulates magnetic fields and can be realized by non-isotropic
tunneling in a static honeycomb lattice [249]. These magnetic fields can be probed using
Bragg-spectroscopy [250] to identify Landau levels in band gaps opening at the Dirac
points.
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APPENDIX A

Band Structure

A.1 Proof of Bloch’s Theorem

Bloch’s theorem can be easily proven by choosing a Fourier series ansatz for the eigen-
functions ψ(x), with the normalization factor 1p

N [154]:

ψ(x) =
1
p
N

∑

k

ck e i k x (A.1)

Ĥψ(x) = εψ(x) (A.2)

1
p
N

 

−ħh2

2m
∂ 2

x +
∑

j

Vj e i ( jG) x

!

∑

k

ck e i k x = ε
1
p
N

∑

k

ck e i k x (A.3)

∑

k

�

ck
ħh2k2

2m
e i k x

�

+
∑

k, j

�

ck Vj e i (k+ jG) x
�

= ε
∑

k

ck e i k x (A.4)

∑

k

�

ck
ħh2k2

2m
e i k x

�

+
∑

k′, j

�

ck′− jG Vj e i k′x
�

= ε
∑

k

ck e i k x (A.5)

∑

k

 

ck

�

ħh2k2

2m
− ε

�

e i k x +
∑

j

�

ck− jG Vj e i k x
�

!

= 0 (A.6)

∑

k

 

ck

�

ħh2k2

2m
− ε

�

+
∑

j

�

ck− jG Vj

�

!

e i k x = 0 (A.7)

ck

�

ħh2k2

2m
− ε

�

+
∑

j

�

ck− jG Vj

�

= 0, (A.8)

where from eq. A.4 to eq. A.5 we substitute k+ jG= k′ and from eq. A.5 to eq. A.6 we
relabel k′ = k. Because eq. A.7 has to hold for all x and the exponentials e ikx form an
orthonormal basis, all terms have to be equal to zero. From eq. A.8 we can see that all
constants ck, that are separated by multiples of the lattice constant G, form a common
system of countably infinitely many equations, which can be solved numerically, yield-
ing infinitely many solutions, that can be grouped (for different k) in bands of increasing
energy ε, labeled by n (this is done explicitly for the case of a sinusoidal lattice in sec-
tion 2.2.2). Constants cn,k whose k are not separated by multiples of G do not depend on
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each other and belong to different states. After solving for the constants cn,k, we can write
the eigenstates ψn,k(x) as:

ψn,k(x) =
1
p
N

∑

j

cn,k+ jG e i (k+ jG) x (A.9)

ψn,k(x) =

 

1
p
N

∑

j

cn,k+ jG e i j G x

!

e i k x := un,k(x) e i k x (A.10)

From eg. A.9 we can see, that states ψn,k(x), with wave numbers k that differ by
multiples of G, are equal as they correspond to a different labeling of the constants cn,k+ jG.
Thus, we can restrict wave numbers to the range k ∈

�

−πd , πd
�

, with k = −πd and k = π
d

describing the same state. This range is called the Brillouin zone (BZ).

A.2 Orthonormal Bloch Functions

Bloch functions form an orthonormal basis of the Hilbert space
�

with normalization by
choice of cn,k

�

[154]:

∫

dxψ∗n,k(x) ψn′,k′(x) =

∫

dx

 

1
p
N

∑

j

c∗n,k+ jG e−i (k+ jG) x

·
1
p
N

∑

j′
cn′,k′+ j′G e i (k′+ j′G) x

!

(A.11)

=
1
N
∑

j, j′
c∗n,k+ jG cn′,k′+ j′G

∫

dx e i (k′−k+( j′− j)G) x (A.12)

=
1
N
∑

j, j′
c∗n,k+ jG cn′,k′+ j′G 2πδ

�

k′− k+
�

j′− j
�

G
�

(A.13)

The argument of the delta function is zero if k−k′=mG, with m= j′− j ∈ N, so only if
k and k′ define the same state. Because we constrained k ∈

�

−πd , πd
�

, k and k′ need to be
equal and only the case of j= j′ is relevant:

∫

dxψ∗n,k(x) ψn′,k′(x) =
1
N
∑

j

c∗n,k+ jG cn′,k′+ jG 2πδ
�

k′−k
�

(A.14)

=
∑

j

c∗n,k+ jG cn′,k+ jG δk,k′ , (A.15)

with 2πδ(0)=N fixing the normalization constant N .
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Finally, because eigenvectors to different eigenvalues are orthogonal:

∑

j

c∗n,k+ jG cn′,k+ jG = δn,n′ (A.16)

⇒
∫

dxψ∗n,k(x) ψn′,k′(x) = δn,n′ δk,k′ (A.17)

A.3 Equation for Bloch Functions

The eigenfunctions ψ(x) of the Hamiltonian in eq. 2.17 can be easily found by equating
the coefficients of the Fourier series [154]:

ψ(x) =
∑

k

ck e i k x (A.18)

Ĥψ(x) = εψ(x) (A.19)
�

−ħh2

2m
∂ 2

x +
V0

2
+

V0

4
e i G x +

V0

4
e−i G x

�

∑

k

ck ei k x = ε
∑
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4
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V0

4
= 0, (A.24)

where from eq.A.21 to eq.A.22 we regroup the sum to accumulate all terms with the
same exponential e ikx . Because eq. A.23 has to be fulfilled for all x and the exponentials
e ikx are orthogonal, all terms have to be equal to zero. We can see that all constants ck that
are separated by multiples of the lattice constant G form a common system of countably
infinitely many equations. This allows us to put eq. A.24 in matrix form [154]:
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A.4 Orthogonal Wannier Functions

Wannier functions of different sites j or bands n are orthogonal [154]:

∫

dx w∗n, j(x) wn′, j′(x) (A.26)

=

∫

dx
1

p

Nw

∫

k∈BZ
dk e i k j dψ∗n,k(x)

1
p

Nw
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dk′ e−i k′ j′dψn′,k′(x) (A.27)

=
1
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dk dk′ e i (k j d− k′ j′d)

∫
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1
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=
2π
N Nw
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k∈BZ
dk e i k ( j− j′) d (A.31)

=
2π
N Nw

δn,n′ 2πδ
�

j− j′
�

(A.32)

= δn,n′ δ j, j′ , (A.33)

where we have used the orthonormality of Bloch functions ψn,k(x) in eq.A.28 and the
normalization factor of Bloch functions N =2πδ(0) in eq.A.30 (see page 88). In eq.A.32,
(2π)2

N δ(0)=2π=Nw fixes the normalization constant Nw.
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Energy of the BEC in Hamiltonian 2.27

Hamiltonian 2.27 reads:

Ĥ =
N0
∑

i=1

�

p̂2
i

2m
+ V (ri)

�

+ U0

∑

〈i, j〉

δ
�

ri−r j

�

,

with p̂ = −iħh∂r the momentum operator, U0 =
4πħh2as

m the interaction parameter and
〈i, j〉 indicating the sum running over all possible pairs of particles.

All N0 atoms in the condensate occupy the same single-particle state Φ(r), which is
normalized, so

∫

dr |Φ(r)|2 !
= 1. (B.1)

The N0-particle wave function can be written as:

Ψ
�

r1, r2, ...rN0

�

=
N0
∏

i=1

Φ(ri) . (B.2)

The BEC will minimize the Hamiltonian, so we can simply write down the energy E of
the N0-particle wave function and then minimize E [147]:

E = 〈Ψ| Ĥ |Ψ〉 (B.3)

=
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∏

k=1

drk Ψ
�

r1, r2, ...rN0

�
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The three products can be written into one as they are in turn multiplied with each
other:

E =

∫ N0
∏

k=1

drk Φ
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At this point, it makes sense to split the Hamiltonian in two parts (the non-interacting
single-particle part and the interactions) and draw the sum in front of the integral:

E =
N0
∑

i=1

∫ N0
∏
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drk Φ
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i
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2 δ
�
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�

(B.7)

In the single-particle part, wave functions Φ(r) with k 6= i are unaffected by the mo-
mentum operator and thus commute with it. In the second part, we will also separate all
terms Φ(r) that are not affected by the delta function:

E =
N0
∑

i=1

∫ N0
∏

k=1
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Most terms can now be integrated out to 1:

E =
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∑
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Since the contribution of all particles is equal, the first sum can be written as a multi-
plication with the particle number N0. In the second term, we can integrate out the delta
function:

E = N0

∫

dr Φ∗(r)
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In the remaining sum, there are N0(N0−1)
2 identical terms, one for every pair of particles

(by design), so the whole term can be cast together again as:

E = N0

∫

dr Φ∗(r)

�

p̂2

2m
+ V (r)

�

Φ(r)
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E ≈
∫
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N0Φ
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2
N0Φ
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�

p

N0Φ(r) , (B.12)

where we approximated N0 (N0−1)≈N2
0 , which is valid for N0�1.
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APPENDIX C

Bogoliubov Approximation

C.1 Transformation to Momentum Space

We will now transform Hamiltonian 2.38 into momentum space [147]:

Ĥ =

∫

V
dr ψ̂†(r)

p̂2

2m
ψ̂(r) + V (r) ψ̂†(r) ψ̂(r) +

U0

2
ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r) ,

with ψ̂(r) the field operator of a particle in the condensate. The volume V is included
explicitly in the integral and we can later send it to infinity while keeping the density
constant. We use the following definition for b̂p the annihilation operator in momentum
space [147]:

b̂p :=
1
p

V

∫

V
dr e−i pr

ħh ψ̂(r) (C.1)

⇒ ψ̂(r) =
1
p

V

∑

p

ei pr
ħh b̂p, (C.2)

where the sum runs over all (equally spaced) allowed momentum modes. If we insert
eq. C.2 into the Hamiltonian, we get:
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Ĥ =
∑

p,p′

−ħh2

2m
b̂†
p b̂p′

1
V

∫

V
dr e−i pr

ħh ∂ 2
r ei p

′r
ħh

+
∑

p,p′
b̂†
p b̂p′

1
V

∫

V
dr e−i (p′−p) r

ħh V (r)

+
U0

2

∑

p,p′,p′′,p′′′
b̂†
p b̂†

p′ b̂p′′ b̂p′′′
1

V 2

∫

V
dr ei (p′′+p′′′−p−p′) r

ħh (C.4)

Now we can start using eq.C.5 to get rid of the integral over r:

V δp,p′ =

∫

V
dr ei (p−p′) r

ħh (C.5)
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To keep this simple, we will assume V (r) = 0 at this point and end up with the free
space single-particle dispersion ε f

p=
p2

2m , which we will later replace by an arbitrary single-
particle dispersion ε0

q, the zero index marking ’single-particle’ as opposed to the collective
excitations’ dispersion that we will obtain later and q instead of p indicating a change
from momentum to quasi-momentum as we introduce the lattice.

Ĥ =
∑

p,p′

p′
2

2m
b̂†
p b̂p′

V
V
δp′,p

+ 0

+
U0

2V

∑
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b̂†
p b̂†

p′′+p′′′−p b̂p′′ b̂p′′′ (C.7)

In the last term, we will now substitute p= q +p′′′:

Ĥ =
∑

p

p2

2m
b̂†
p b̂p +

U0

2V

∑

q,p′′,p′′′
b̂†
p′′′+q b̂†

p′′−q b̂p′′ b̂p′′′ (C.8)

Now we substitute once again p′′′ = p, p′′ = p′ and q = p′′:

Ĥ =
∑

p

ε f
p b̂†

p b̂p +
U0

2V

∑

p,p′,p′′
b̂†
p+p′′ b̂†

p′−p′′ b̂p′ b̂p (C.9)

Eq.C.9 shows Hamiltonian 2.38 in momentum space. To allow for an arbitrary disper-
sion, we can also replace the free-particle dispersion ε f

p by ε0
p.
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C.2 Extraction of the zero-Momentum Mode

As most particles will be in the ground state q=0, operators that work on that state will
carry a much greater weight and it makes sense to expand the sum in eq.2.42 with respect
to b̂0. The whole sum will be called X for concise representation:

X =
∑

q,q′,q′′
b̂†
q+q′′ b̂†

q′−q′′ b̂q′ b̂q

= b̂†
0 b̂†

0 b̂0 b̂0

+
∑

q′′ 6=0

b̂†
0 b̂†

0 b̂q′′ b̂−q′′ +
∑

q′′ 6=0

b̂†
0 b̂†
−q′′ b̂0 b̂−q′′ +

∑

q′ 6=0

b̂†
0 b̂†

q′ b̂q′ b̂0

+
∑

q 6=0

b̂†
q b̂†

0 b̂0 b̂q +
∑

q′ 6=0

b̂†
q′ b̂†

0 b̂q′ b̂0 +
∑

q′′ 6=0

b̂†
q′′ b̂†

−q′′ b̂0 b̂0

+ O
�

b̂3
q 6=0

�

(C.10)

It can be easily seen that there cannot be a term with exactly one operator having
non-zero momentum, which can physically be explained by momentum conservation, so
second order is next to leading and we will neglect all higher order terms O

�

b̂3
q 6=0

�

:

X ≈ b̂†
0 b̂†

0 b̂0 b̂0

+
∑

q 6=0

b̂†
0 b̂†

0 b̂q b̂−q +
∑

q 6=0

b̂†
0 b̂†

q b̂0 b̂q +
∑

q 6=0

b̂†
0 b̂†

q b̂q b̂0

+
∑

q 6=0

b̂†
q b̂†

0 b̂0 b̂q +
∑

q 6=0

b̂†
q b̂†

0 b̂q b̂0 +
∑

q 6=0

b̂†
q b̂†
−q b̂0 b̂0 (C.11)

= b̂†
0 b̂†

0 b̂0 b̂0

+ b̂†
0 b̂†

0

∑

q 6=0

b̂q b̂−q + b̂†
0 b̂0

∑

q 6=0

b̂†
q b̂q + b̂†

0 b̂0

∑

q 6=0

b̂†
q b̂q

+ b̂†
0 b̂0

∑

q 6=0

b̂†
q b̂q + b̂†

0 b̂0

∑

q 6=0

b̂†
q b̂q + b̂0 b̂0

∑

q 6=0

b̂†
q b̂†
−q (C.12)

Again, because we have many (N0) atoms in the ground state, we can approximate
b̂†

0≈ b̂0≈
p

N0 :

X ≈ N2
0 + N0

 

4
∑

q 6=0

b̂†
q b̂q +

∑

q 6=0

�

b̂†
q b̂†
−q + b̂q b̂−q

�

!

(C.13)

Now we put back eq.C.13 in the complete Hamiltonian (eq.2.42) and we get:

Ĥ =
N2

0 U0

2 V
+
∑

q 6=0

�

εo
q +

2 N0 U0

V

�

b̂†
q b̂q +

N0 U0

2 V

∑

q 6=0

�

b̂†
q b̂†
−q + b̂q b̂−q

�

(C.14)



98 Appendix

We introduce the condensate density n0 =
N0
V and let the sum run only over positive

values of q to get the Hamiltonian into a more symmetrical form:

Ĥ =
N0 n0 U0

2
+
∑

q>0

�

�

ε0
q + 2 n0 U0

� �

b̂†
q b̂q + b̂†

−q b̂−q
�

+ n0 U0

�

b̂†
q b̂†
−q + b̂q b̂−q

�

�

(C.15)

Finally, we introduce the interaction parameter g := n0 U0, which happens to be equal
to the chemical potential µ, and shift the whole Hamiltonian, i.e. all modes, by Eµ. This is
sensible because we are interested in the excitations atop the condensate.

Eµ = −N0 g −
∑

q>0

g
�

b̂†
q b̂q + b̂†

−q b̂−q
�

(C.16)

Ĥ = −
g N0

2
+
∑

q>0

�

�

ε0
q + g

� �

b̂†
q b̂q + b̂†

−q b̂−q
�

+ g
�

b̂†
q b̂†
−q + b̂q b̂−q

�

�

(C.17)

C.3 Bogoliubov Transformation

We start with a Hamiltonian Ĥ of the form:

Ĥ = ε0

�

â†â+ b̂† b̂
�

+ ε1

�

â† b̂† + â b̂
�

, (C.18)

with the bosonic annihilation operators â and b̂ that satisfy:

�

â, â†
�

=
�

b̂, b̂†
�

= 1 (C.19)
�

â, b̂
�

=
�

â, b̂†
�

= 0 (C.20)

We now transform the Hamiltonian by introducing new bosonic annihilation operators
α̂ and β̂ with real valued factors u, v according to [147]:

α̂ = u â + v b̂† (C.21)

β̂ = u b̂ + v â† (C.22)

⇒ â = u α̂ − v β̂† (C.23)

⇒ b̂ = u β̂ − v α̂†, (C.24)

that satisfy the same commutation relations:

�

α̂, α̂†
�

=
�

β̂ , β̂†
�

= 1 (C.25)
�

α̂, β̂
�

=
�

α̂, β̂†
�

= 0 (C.26)
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While eq. C.26 is trivially true, eq. C.25 yields the condition:

u2 − v2 = 1 (C.27)

We can now substitute eqs.C.23 and C.24 into eq. 2.44 and end up with:

Ĥ = 2 v2 ε0 − 2 u v ε1 +
�

ε0

�

u2 + v2
�

− 2 u v ε1

�

�

α̂†α̂ + β̂†β̂
�

+
�

ε1

�

u2 + v2
�

− 2 u v ε0

�

�

α̂ β̂ + α̂†β̂†
�

(C.28)

The remaining degree of freedom in u and v can be fixed by making the last term in
eq.C.28 vanish:

ε1

�

u2 + v2
�

− 2 u v ε0
!
= 0 (C.29)

For this it makes sense to parametrize u and v to make eq.C.27 trivially fulfilled:

u = cosh(t) (C.30)

v = sinh(t) (C.31)

At this point, we should recall the following hyperbolic trigonometric identities:

cosh(2x) = cosh2(x) + sinh2(x) (C.32)

sinh(2x) = 2 cosh(x) sinh(x) (C.33)

artanh(x) =
1
2

log
�

1+ x
1− x

�

(C.34)

cosh2(x) =
1
2
+

1
2

cosh(2x) (C.35)

If we insert eqs. C.30 and C.31 in eq. C.29 and then use the identities eqs. C.32 and
C.33, we can solve for the parameter t:

0 = ε1

�

cosh2(t) + sinh2(t)
�

− ε02cosh(t) sinh(t) (C.36)

= ε1 cosh(2t) − ε0 sinh(2t) (C.37)

tanh(2t) =
ε1

ε0
(C.38)

t =
1
2

artanh
�

ε1

ε0

�

(C.39)

x :=
ε1

ε0
(C.40)
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Inserting eq. C.40 and eq. C.34 in eq. C.39 makes it possible to get t(x) in a form that
is suitable to simplify the cosh() function:

t =
1
2

artanh(x) (C.41)

=
1
4

log
�

1+ x
1− x

�

(C.42)

Squaring eq.C.30 using eq.C.35 and inserting eq.C.42, we get u2(x):

u2 =
1
2
+

1
2

cosh(2t) (C.43)

=
1
2
+

1
2

cosh

�

1
2

log
�

1+ x
1− x

�

�

(C.44)

=
1
2
+

1
2

cosh

�

log

√

√1+ x
1− x

�

(C.45)

=
1
2
+

1
2

 

e log
q

1+x
1−x + e− log

q

1+x
1−x

2

!

(C.46)

=
1
2
+

1
4

�√

√1+ x
1− x

+

√

√1− x
1+ x

�

(C.47)

=
1
2
+

1
4

�√

√(1+ x) (1+ x)
(1− x) (1+ x)

+

√

√(1− x) (1− x)
(1+ x) (1− x)

�

(C.48)

=
1
2
+

1
4

�

(1+ x) + (1− x)
p

1− x2

�

(C.49)

=
1
2
+

1
2

�

1
p

1− x2

�

(C.50)

Now, we can insert eq.C.40 in eq.C.50 and use eq.C.27 to also get an expression for v:

u2 =
1
2
+

1
2







1
s

1− ε2
1

ε2
0






(C.51)

=
1
2

 

ε0
q

ε2
0 − ε

2
1

+ 1

!

(C.52)

u2 =
1
2

� ε0

ε
+ 1

�

(C.53)

⇒ v2 =
1
2

� ε0

ε
− 1

�

(C.54)

ε :=
q

ε2
0 − ε

2
1 (C.55)
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The Hamiltonian from eq. C.28 can now be simplified by inserting eqs. C.53 and C.54
and using eq.C.55:

Ĥ = 2ε0
1
2

�ε0

ε
− 1

�

− 2ε1

√

√1
2

�ε0

ε
+ 1

�

√

√1
2

�ε0

ε
− 1

�

+

 

ε0

�

1
2

�ε0

ε
+ 1

�

+
1
2

�ε0

ε
− 1

�

�

− 2ε1

√

√1
2

�ε0

ε
+ 1

�

√

√1
2

�ε0

ε
− 1

�

!

�

α̂†α̂ + β̂†β̂
�

(C.56)

= ε0

�ε0

ε
− 1

�

− ε1

s

�ε0

ε
+ 1

� �ε0

ε
− 1

�

+

�

ε0
ε0

ε
− ε1

s

�ε0

ε
+ 1

� �ε0

ε
− 1

�

�

�

α̂†α̂ + β̂†β̂
�

(C.57)

=
ε2

0

ε
− ε0 − ε1

√

√

√ε2
0

ε2
− 1 +





ε2
0

ε
− ε1

√

√

√ε2
0

ε2
− 1





�

α̂†α̂ + β̂†β̂
�

(C.58)

=
ε2

0

ε
− ε0 − ε1

√

√

√ε2
0 − ε2

ε2
+





ε2
0

ε
− ε1

√

√

√ε2
0 − ε2

ε2





�

α̂†α̂ + β̂†β̂
�

(C.59)

=
ε2

0

ε
− ε0 − ε1

ε1

ε
+

�

ε2
0

ε
− ε1

ε1

ε

�

�

α̂†α̂ + β̂†β̂
�

(C.60)

=
ε2

0 − ε
2
1

ε
− ε0 +

�

ε2
0 − ε

2
1

ε

�

�

α̂†α̂ + β̂†β̂
�

(C.61)

Ĥ = ε
�

α̂†α̂ + β̂†β̂
�

+ ε − ε0 (C.62)

C.4 Bose-Hubbard Hamiltonian

Our experiment is well described by an extension of the Bose-Hubbard Hamiltonian. It
can be derived from Hamiltonian 2.42 by a change of basis from momentum states q to
Wannier states (see sec.2.2.3) located on site i with coordinates Ri according to:

Ĥ =
∑

q

εq b̂†
q b̂q +

U0

2V

∑

q,q′,q′′
b̂†
q+q′′ b̂

†
q′−q′′ b̂q′ b̂q (C.63)

âi =
1

p

Ns

∑

q

e i q
ħh Ri b̂q (C.64)

b̂q =
1

p

Ns

∑

j

e−i q
ħh R j â j (C.65)

Here Ns is the number of sites, which is equal to the number of momentum states.
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We can now perform the change of basis by inserting eq.C.65 in Hamiltonian 2.42:

Ĥ =
∑

q

εq b̂†
q b̂q +

U0

2V

∑

q,q′,q′′
b̂†
q+q′′ b̂

†
q′−q′′ b̂q′ b̂q (C.66)

=
∑

q

εq
1
N

∑

j

e i q
ħh R j â†

j

∑

l

e−i q
ħh Rl âl

+
U0

2V

∑

q,q′,q′′

1
N2

∑

j

ei q+q′′
ħh R j â†

j

∑

l

ei q′−q′′
ħh Rl â†

l

∑

m

e−i q′
ħh Rm âm

∑

n

e−i q
ħh Rn ân (C.67)

=
∑

j,l

â†
j âl

1
N

∑

q

εq e i q
ħh (R j−Rl)

+
U0 N
2 V

∑

j,l,m,n

â†
j â

†
l âmân

1
N3

∑

q

e i q
ħh (R j−Rn)

∑

q′

e i q′
ħh (Rl−Rm)

∑

q′′

e i q′′
ħh (R j−Rl) (C.68)

=
∑

j,l

â†
j âl

1
N

∑

q

εq e i q
ħh (R j−Rl)

+
U0 N
2 V

∑

j,l,m,n

â†
j â

†
l âmân

1
N3

Nδ j,n Nδl,m Nδ j,l (C.69)

Ĥ =
∑

j,l

â†
j âl

1
N

∑

q

εq e i q
ħh (R j−Rl) +

U0 N
2 V

∑

j

â†
j â

†
j â j â j (C.70)



APPENDIX D

Thomas-Fermi Approximation in the Lattice

Because there are many subtleties in the definition of the relevant parameters of the
Thomas-Fermi approximation in the lattice, we will show the whole derivation with all
relevant steps in this appendix [146, 165].

We start with the wave operators ψ̂(r) expressed via the Wannier functions of the
lowest band w0(x) along x and some L2-integrable functions φ j,⊥(r⊥) with j the site
index and r=(x ,r⊥) along y and z according to eq.2.71:

ψ̂(r) =
∑

j

w0

�

x−x j

�

φ j,⊥(r⊥) â j ,

where â j annihilates a particle on site j. Now the interaction Hamiltonian takes the
form:

Ĥint =
∑

i, j,k,l

∫

dr
1
2

U0 w0

�

x−x i

�∗
w0

�

x−x j

�∗
w0

�

x−xk

�

w0

�

x−x l

�

·φi,⊥(r⊥)
∗φ j,⊥(r⊥)

∗φk,⊥(r⊥) φl,⊥(r⊥) â†
i â†

j âk âl . (D.1)

Due to the localization of the Wannier functions at their respective sites, terms where
i= j=k=l is not fulfilled are suppressed by at least ≈U/J with the (Bose-Hubbard) tunnel-
ing element J and the (Bose-Hubbard) on site interaction U . As we have no 3D lattice but
pancakes and so the on site interaction is quite small, we can make this approximation:

Ĥint ≈
1
2

U0

∑

j

â†
j â†

j â j â j

∫

dx
�

�w0

�

x−x j

��

�

4
∫

dr⊥
�

�φ j,⊥(r⊥)
�

�

4
(D.2)

The integral along the x-direction yields the same for all sites j, so we define the
Wannier integral of the lowest band w0I :=

∫

dx |w0(x)|
4 that only depends on the lattice

depth and draw w0I in front of the sum as a constant
�

is index 0I indicates that it is the
integral of the Wannier function of the lowest band, which we refer to as the zeroth

�

. We
further approximate â†

j â
†
j â j â j≈ n̂2

j , with the number operator n̂ j= â†
j â j, which is valid for

large atom numbers:

Ĥint ≈
1
2

U0 w0I

∑

j

∫

dr⊥ n̂2
j

�

�φ j,⊥(r⊥)
�

�

4
(D.3)
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We can now define the 2D density operator n̂ j,⊥(r⊥)= n̂ j

�

�φ j,⊥(r⊥)
�

�

2
which describes

the 2D density in pancake j along r⊥. For small fluctuations
¬

n̂ j,⊥(r⊥)
¶2
≈
¬

n̂ j,⊥(r⊥)
2
¶

it is valid to classically approximate the density as its expectation value n j,⊥(r⊥) :=
¬

n̂ j,⊥(r⊥)
¶

≈ n̂ j,⊥(r⊥). This yields the interaction energy in state ψ:

Eint := 〈ψ| Ĥint |ψ〉 (D.4)

≈
1
2

U0 w0I

∑

j

∫

dr⊥ n2
j,⊥(r⊥) (D.5)

The 2D density n j,⊥(r⊥) is now an array of 2D functions, one for each lattice site. To
make it continuous along the lattice direction, we define a 3D density n′(r) by approxi-
mating the sum

∑

j with an integral 1
d

∫

dx [146]:

n′(r) :=
nd x

d c,⊥(r⊥)

d
(D.6)

⇒ Eint ≈
1
2

U3D w0I d

∫

dr n′2(r) , (D.7)

where d·c denotes the rounding operation, so d x
d c ∼= j. This means that the density

n′(r) is uniform within each site and we have steps between neighboring sites. We should
emphasize at this point that n′(r) is a 3D density that does not feature the modulation
imprinted by the lattice. We will now go one step further and define a new 3D density
n(r), that does not depend explicitly on any density we introduced before. The reason for
this is that up till now, we worked towards a useful expression for the interaction energy
Eint, which we achieved in eq. D.7. Now we want to solve this equation for a smooth
density n(r), that does not show any modulation features or steps. We can interpret this
as the envelope of the density in the experiment, which is what we see in the experiment
due to the finite resolution. It should be noted at this point, that we will end up with a
profile that is not quite an envelope, but rather a scaled envelope. The reason for this is
that the integral over the envelope does of course not yield the atom number, but is larger.
The final density will be scaled so its integral yields exactly the number of atoms in the
condensate.

We now add the effective trap potential Vtrap(r):

Vtrap(r) =
1
2

mK

�

ω2
x x2 + ω2

y y2 + ω2
z z2

�

, (D.8)

to get the total potential energy of the particles in the trap Etrap. Note that the effective
trap potential holds all confining and deconfining effects of lattice and dipole beams, but
no lattice features.
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Finally, we introduce the zeta parameter ζ := w0I d and note that it is the only thing
reminiscent of the lattice in our energy term:

Epot :=
1
2

U0 ζ

∫

d3r n2(r) +

∫

dr V (r) n(r) (D.9)

=

∫

dr
�

1
2

U0 ζn2(r) + V (r) n(r)
�

(D.10)

The proper density distribution of the ground state n(r) will minimize this energy
while conserving atom number N0. We can now use the method of Lagrange multipliers
with the chemical potential µ as Lagrange multiplier:

δEpot − µδN0
!
= 0 (D.11)

N0
!
=

∫

dr n(r) (D.12)

⇒ 0
!
=
δEpot

δn(r)
− µ

δN0

δn(r)
(D.13)

0
!
=

∫

dr
�

U0 ζn(r) + Vtrap(r) − µ
�

(D.14)

This is fulfilled if the integrand is zero: U0ζn(r) + Vtrap(r) − µ = 0. Combined with

non-negativity of the density n(r)
!
≥0 ∀ r, we end up with:

n(r) =

¨

µ−Vtrap(r)
U0 ζ

where Vtrap(r)≤µ
0 else.

(D.15)

We can now define the Thomas-Fermi radii Ri as the point on each axis where the
density n(r) goes to zero:

0
!
= n

�

ri=Ri , ri 6= j=0
�

(D.16)

⇒ µ = Vtrap
�

ri=Ri , ri 6= j=0
�

, (D.17)

which if inserted in eq.D.8 yields:

µ =
1
2

mKω
2
i R2

i (D.18)

⇒ Ri =
1
ωi

√

√2µ
mK

(D.19)
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The Thomas-Fermi radii Ri can now be used to evaluate the integral in eq. D.12 and
solve for µ by substituting qi := ri

Ri
, which with the help of eq. D.18 simplifies the trap

potential in eq.D.81:

Vtrap(Rq) =
1
2

mK

�

ω2
x R2

x q2
x + ω

2
y R2

y q2
y + ω

2
z R2

z q2
z

�

(D.20)

= µq2 (D.21)

⇒ N0 =

∫

V≤µ
dr
µ − Vtrap(r)

U0 ζ
(D.22)

= Rx R y Rz

∫

V≤µ
dq
µ − Vtrap(Rq)

U0 ζ
, (D.23)

N0 = Rx R y Rz

∫

|q|≤1

dq
µ − µq2

U0 ζ
, (D.24)

In eq. D.24 we adjusted the integration limits using the fact that the transformation
r→ q made the Thomas-Fermi profile spherically symmetric. The integral can now easily
be solved using spherical coordinates with q := |q|:

N0 = Rx R y Rz
µ

U0 ζ

∫

|q|≤1

dq
�

1−q2
�

(D.25)

= Rx R y Rz
µ

U0 ζ

∫ 1

0

dq 4πq2
�

1−q2
�

(D.26)

N0 = Rx R y Rz
µ

U0 ζ
4π

2
15

(D.27)

We insert eq. D.19 in eq. D.27 to make all dependence on the chemical potential µ
explicit:

N0 =
8π
15

1
ωxωyωz

�

2µ
mK

�
3
2 µ

U0 ζ
(D.28)

Solving for µ yields the chemical potential as a function of atom number N0, trapping
frequencies ωi and lattice depth

�

implicitly contained in ζ
�

:

µ =

�

15
8π

N0 U0 ζωxωyωz

�mK

2

�
3
2

�
2
5

(D.29)

1This notation is actually a bit shady as Rq in Vtrap(Rq) is not a scalar product, but stands for
�

Rx qx , R yqy , Rzqz

�

. We use it in these lines for lack of a better concise expression.
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Eq.D.29 can now be in turn plugged in eq.D.19 to get the Thomas-Fermi radii Ri:

Ri =
1
ωi

√

√ 2
mK

�

15
8π

N0 U0 ζωxωyωz

�mK

2

�
3
2

�
1
5

(D.30)

=

�

15
8π

N0 U0 ζ
ωxωyωz

ω5
i

�

2
mK

�− 3
2
�

2
mK

�
5
2

�

1
5

(D.31)

=

�

15
8π

N0 U0 ζ
ωxωyωz

ω5
i

2
mK

�
1
5

(D.32)

Ri =

�

15
4π

N0 U0 ζ

mK

ωxωyωz

ω5
i

�
1
5

, (D.33)

finally plugging in U0 =
4πħh2 as

mK
, we get the chemical potential µ and the Thomas-Fermi

radii Ri as functions of atom number N0, trapping frequencies ωi, lattice depth
�

implicitly
contained in ζ

�

and scattering length as:

µ =

�

15ħh2as

2 mK
N0 ζωxωyωz

�mK

2

�
3
2

�
2
5

(D.34)

Ri =

�

15ħh2

m2
K

ωxωyωz

ω5
i

N0 ζ as

�
1
5

(D.35)

The values for a system without lattice are reproduced for ζ= 1.
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APPENDIX E

Floquet Theory

E.1 Fourier Coefficients Φ(m) of Φ(t)

As Φ(t) is periodic in time, we can write down its Fourier series (eq.2.94):

Φ(t) =
∞
∑

m=−∞
e i mω t Φ(m)

Inserting eq.2.94 and eq.2.86 into eq.2.92, we get:

ε

∞
∑

m=−∞
e i mω t Φ(m) =

� ∞
∑

m′=−∞

�

e i m′ω t Ĥ(m
′)
�

− iħh∂t

� ∞
∑

m′′=−∞
e i m′′ω t Φ(m

′′) (E.1)

∞
∑

m=−∞
e i mω t εΦ(m) =

∞
∑

m′,m′′=−∞

�

e i (m′+m′′)ω t Ĥ(m
′) Φ(m

′′)
�

+
∞
∑

m′′=−∞
e i m′′ω t m′′ħhω Φ(m

′′) (E.2)

After relabeling the first term on the right hand side with m′=m−m′′ and then again
with m′′=m′, and the second term with m′′=m, we get:

∞
∑

m=−∞
e i mω t εΦ(m) =

∞
∑

m,m′=−∞

�

e i mω t Ĥ(m−m′) Φ(m
′)
�

+
∞
∑

m=−∞
e i mω t mħhωΦ(m) (E.3)

Because eq.E.3 has to be fulfilled for all t, all coefficients of the exponential e imωt need
fulfill:

εΦ(m) =
∞
∑

m′=−∞

�

Ĥ(m−m′) Φ(m
′)
�

+ mħhωΦ(m) (E.4)

0 =
�

mħhω − ε
�

Φ(m) +
∞
∑

m′=−∞
Ĥ(m−m′) Φ(m

′) (E.5)



110 Appendix

E.2 Effective Hamiltonian ĤF ′

From the definition of the micro-motion operator M̂F ′(t) (eq. 2.100) that transforms the
stateψ(t) into the Floquet frame, we can derive the form of the Hamiltonian in the Floquet
frame ĤF ′:

ψ(t) := M̂F ′(t) ψF ′(t)

iħh∂t |ψ(t)〉 = Ĥ(t) |ψ(t)〉 (E.6)

M̂†
F ′(t) iħh∂t |ψ(t)〉 = M̂†

F ′(t) Ĥ(t) |ψ(t)〉 (E.7)

iħh M̂†
F ′(t) ∂t

�

M̂F ′(t) |ψF ′(t)〉
�

= M̂†
F ′(t) Ĥ(t) M̂F ′(t) |ψF ′(t)〉 (E.8)

�

iħh M̂†
F ′(t)

˙̂UF ′(t) + iħh∂t

�

|ψF ′(t)〉 = M̂†
F ′(t) Ĥ(t) M̂F ′(t) |ψF ′(t)〉 (E.9)

iħh∂t |ψF ′(t)〉 =
�

M̂†
F ′(t) Ĥ(t) M̂F ′(t) (E.10)

− iħh M̂†
F ′(t)

˙̂MF ′(t)
�

|ψF ′(t)〉 (E.11)

iħh∂t |ψF ′(t)〉 := ĤF ′ |ψF ′(t)〉 (E.12)

ĤF ′ = M̂†
F ′(t) Ĥ(t) M̂F ′(t) − iħh M̂†

F ′(t)
˙̂MF ′(t) , (E.13)

where we started from the Schrödinger equation, multiplied by M̂†
F ′(t) from the left

and the inserted eq.2.100.

E.3 Time-Evolution Operator Û(t2, t1)

The effective Hamiltonian ĤF ′ can be used to simplify the time-evolution operator Û(t, t0)
by transforming to the Floquet frame and back. We start from the definition of the time-
evolution operator in eq.2.102:

Û(t, t0) := Tt e−
i
ħh

∫ t
t0

dt ′ Ĥ(t ′)

ÛF ′(t, t0) = Tt e−
i
ħh

∫ t
t0

dt ′ ĤF ′ (E.14)

= e−
i
ħh (t−t0) ĤF ′ , (E.15)

with the time-ordering operator Tt . Here we make use of the fact that the effective
Hamiltonian ĤF ′ was designed to be time-independent.
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The norm of states can now be used to get to equal formulations of Û(t, t0):

1 = 〈ψF ′(t) |ψF ′(t)〉 (E.16)

= 〈ψF ′(t) | ÛF ′(t, t0) |ψF ′(t0)〉 (E.17)

= 〈ψ(t) | M̂F ′(t) ÛF ′(t, t0) M̂†
F ′(t0) |ψ(t0)〉 (E.18)

1 = 〈ψF (t) |ψF (t)〉 (E.19)

= 〈ψ(t) | Û(t, t0) |ψ(t0)〉 (E.20)

By equating eqs.E.18 and E.20, and inserting eq.E.15, we arrive at:

Û(t, t0) = M̂F ′(t) e−
i
ħh (t−t0) ĤF ′ M̂†

F ′(t0) , (E.21)

The time-evolution operator Û(t, t0) has the following interesting properties:

1.) Periodicity with respect to a shift by multiples of the driving period T :

Û(nT+ t0+ t, nT+ t0) = Tt e−
i
ħh

∫ nT+t0+t
nT+t0

dt ′ Ĥ(t ′) (E.22)

= Tt e−
i
ħh

∫ t0+t
t0

dt ′ Ĥ(t ′−nT) (E.23)

= Tt e−
i
ħh

∫ t0+t
t0

dt ′ Ĥ(t ′) (E.24)

Û(nT+ t0+ t, nT+ t0) = Û(t0+ t, t0) , (E.25)

where we make use of the periodicity of the Hamiltonian Ĥ (t).

2.) An operator mediating time-evolution over more that one cycle can be split into
two operators starting evolution at t = 0:

Û(nT+ t, 0) = Û(nT+ t, nT ) Û(nT , 0) (E.26)

Û(nT+ t, 0) = Û(t, 0) Û(nT , 0) , (E.27)

where we make use of eq.E.25.

3.) An operator mediating time-evolution over multiple cycles is equal to repeated
application of evolution over a single-cycle:

Û(nT , 0) = Û(nT , T ) Û(T , 0) (E.28)

= Û
�

(n−1) T , 0
�

Û(T , 0) (E.29)

⇒ Û(nT , 0) = Û(T , 0)n , (E.30)

where we also make use of eq.E.25.
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E.4 Transformation to the Rotating Frame

If we have a Hamiltonian of the form:

Ĥ(t) = Ĥ0 + λ(t) Ĥ1, (E.31)

we can transform it to the rotating frame by applying a transformation V̂ (t) (by con-
vention V̂ (t) describes the transformation from the rotating frame to the lab frame) that
effectively annuls the effect of λ(t) [179]:

|ψrot〉 = V̂ †(t) |ψ〉 (E.32)

Ĥrot (t) = V̂ †(t) Ĥ(t) V̂ (t) − iħh V̂ †(t) ˙̂V (t) (E.33)

= V̂ †(t)
�

Ĥ0 + λ(t) Ĥ1

�

V̂ (t) − iħh V̂ †(t) ˙̂V (t) (E.34)
!
= V̂ †(t) Ĥ0 V̂ (t) (E.35)

⇒ λ(t) Ĥ1 V̂ (t)
!
= iħh ˙̂V (t) (E.36)

⇒ V̂ (t) = e−
i
ħh Ĥ1

∫ t
t0

dt ′ λ(t ′) (E.37)

Applied to our extended Bose-Hubbard Hamiltonian (eq.2.65), we make the following
transformation [164]:

Ĥ(t) = − J
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+ K cos(ωt)
∑

j

j n̂ j +
U
2

∑

j

n̂ j

�

n̂ j−1
�

⇒ Ĥ0 = − J
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

(E.38)

Ĥ1 =
∑

j

j n̂ j (E.39)

λ(t) = K cos(ωt) (E.40)

⇒ V̂ (t) = e−i K
ħh
∑

j j n̂ j
∫ t

t0
dt ′ cos(ωt ′), (E.41)

with J the tunneling, K the driving amplitude and U the on-site interaction energy. For
t0=0 and α= K

ħhω the driving strength, V̂ (t) evaluates to:

V̂ (t) = e−iα sin(ωt)
∑

j j n̂ j (E.42)

(E.43)
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Performing this transformation results in Ĥrot(t):

Ĥrot(t) = e iα sin(ωt)
∑

k k n̂k

 

−J
∑

j

�

â†
j â j+1 + â†

j+1â j

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

!

· e−iα sin(ωt)
∑

l l n̂l (E.44)

Ĥrot(t) = − J e iα sin(ωt)
∑

k k n̂k

∑

j

�

â†
j â j+1 + â†

j+1â j

�

e−iα sin(ωt)
∑

l l n̂l

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

, (E.45)

where we used that a function of an operator commutes with that operator to move
the interaction part of the Hamiltonian past V̂ (t). To also move the tunneling part of the
Hamiltonian, we use the commutators

�

â, ex n̂
�

and
�

â†, ex n̂
�

as derived in appendix E.5
(eqs.E.68 and E.87) and arrive at:

â e x n̂ = e x n̂ â e x

â† e x n̂ = e x n̂ â† e−x

We can rearrange eq.E.45 using the fact that creation and annihilation operators com-
mute for different sites:

e iα sin(ωt)
∑

k k n̂k
�

â†
j â j+1 + â†

j+1â j

�

e−iα sin(ωt)
∑

l l n̂l (E.46)

= e iα sin(ωt)( jn̂ j +( j+1) n̂ j+1)
�

â†
j â j+1 + â†

j+1â j

�

e−iα sin(ωt)( jn̂ j +( j+1) n̂ j+1) (E.47)

= e iα sin(ωt)( jn̂ j+( j+1) n̂ j+1) e−iα sin(ωt)( jn̂ j+( j+1) n̂ j+1)

·
�

â†
j e i jα sin(ωt) â j+1 e−i ( j+1)α sin(ωt) + â†

j+1 e i ( j+1)α sin(ωt) â j e−i jα sin(ωt)
�

(E.48)

= e−iα sin(ωt) â†
j â j+1 + e iα sin(ωt) â†

j+1 â j (E.49)

Because this rearrangement is independent of the site index j, we can do it for all pairs
〈 j, j+1〉 and insert eq.E.49 into eq.E.45:

Ĥrot(t) = − J
∑

〈i, j〉

�

e−iα sin(ωt) â†
i â j + e iα sin(ωt)â†

j âi

�

+
U
2

∑

j

n̂ j

�

n̂ j−1
�

(E.50)
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E.5 Commutators
�

â, ex n̂
�

and
�

â†, ex n̂
�

To get the commutator
�

â, en̂
�

, we will start with two functions f (x), g(x), the commutator
�

â, â†â
�

and show that these two functions are equal1:

�

â, â†â
�

=
�

â, â†
�

â+ â† [â, â]

=
�

â, â†
�

â
�

â, â†â
�

= â (E.51)

f (x) := e−x â† â â ex â† â (E.52)

g(x) := ex â (E.53)

f (0) = e−0 â e0 = â (E.54)

g(0) = e0 â = â (E.55)

⇒ f (0) = g(0) (E.56)

Both functions are equal at x = 0. We will show that they also satisfy the same first
order differential equation:

∂

∂x
f (x) = e−x â† â

�

−â†â
�

â ex â† â + e−x â† â â ex â† â
�

â†â
�

(E.57)

= − e−x â† â
�

â†â
�

â ex â† â + e−x â† â â
�

â†â
�

ex â† â (E.58)

= e−x â† â
�

â, â†â
�

ex â† â (E.59)

= e−x â† â â ex â† â (E.60)
∂

∂x
f (x) = f (x) (E.61)

where from eq.E.57 to eq.E.58 we used that a function of an operator commutes with
that operator.

∂

∂x
g(x) = ex â (E.62)

= g(x) (E.63)

So f (x) and g(x) satisfy the same differential equation with the same boundary con-
dition.

1 This proof was posted on https://www.physicsforums.com/threads/creation-anhilation-operator-
exponential-commutator-relation.793052/ by arkajad in response to a question by teroenza.
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â, ex n̂
�

and
�
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They must therefore be equal:

f (x) = g(x) (E.64)

e−x â† â â ex â† â = ex â (E.65)

We can now rearrange eq.E.65 to get the original commutator:

e−x â† â â ex â† â = e−x â† â ex â† â ex â (E.66)

e−x â† â â ex â† â = e−x â† â ex ex â† â â (E.67)

â ex â† â = ex ex â† â â (E.68)

â ex â† â − ex â† â â = ex ex â† â â− ex â† â â (E.69)
�

â, ex â† â
�

= (ex − 1) ex â† â â (E.70)
�

â, ex n̂
�

= (ex − 1) ex n̂ â (E.71)

Analogously, we get the commutator
�

â†, ex n̂
�

by redefining f (x) and g(x):

f (x) := e−x â† â â† ex â† â (E.72)

f (0) = e−0 â† e0 = â† (E.73)
∂

∂x
f (x) = e−x â† â

�

−â†â
�

â† ex â† â + e−x â† â â† ex â† â
�

â†â
�

(E.74)

= e−x â† â
�

â†, â†â
�

ex â† â (E.75)

= − e−x â† â â† ex â† â (E.76)
∂

∂x
f (x) = − f (x) , (E.77)

so the proper definition for g(x) is now:

g(x) := e−x â† (E.78)

g(0) = e−0 â† = â† (E.79)

⇒ f (0) = g(0) (E.80)
∂

∂x
g(x) = − e−x â† (E.81)

= − g(x) (E.82)
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Again, due to the uniqueness of the solution to a first-order differential equation with
one boundary condition:

f (x) = g(x) (E.83)

e−x â† â â† ex â† â = e−x â† (E.84)

e−x â† â â† ex â† â = e−x â† â ex â† â e−x â† (E.85)

â† ex â† â = ex â† â e−x â† (E.86)

â† ex â† â = e−x ex â† â â† (E.87)

â† ex â† â − ex â† â â† = e−x ex â† â â† − ex â† â â† (E.88)
�

â†, ex â† â
�

=
�

e−x − 1
�

ex â† â â† (E.89)
�

â†, ex n̂
�

=
�

e−x − 1
�

ex n̂ â† (E.90)



APPENDIX F

Parametric Oscillator

F.1 Mapping to Hill Differential Equation

A homogeneous differential equation of second order as eq. 2.136 with β(t) and ω2(t)
having a common period can be mapped onto the Hill differential equation.

ẍ(t) + β(t) ẋ(t) + ω2(t) x(t) = 0

We perform this mapping by choosing the ansatz eq.F.1 :

x(t) := q(t) e−
1
2

∫ t
0 dt ′β(t ′) (F.1)

⇒ ẋ(t) = q̇(t) e−
1
2

∫ t
0 dt ′β(t ′) + q(t) e−

1
2

∫ t
0 dt ′β(t ′)

�

−
1
2
β(t)

�

(F.2)

⇒ ẍ(t) = q̈(t) e−
1
2

∫ t
0 dt ′β(t ′) + q̇(t) e−

1
2

∫ t
0 dt ′β(t ′)

�

−
1
2
β(t)

�

+ q̇(t) e−
1
2

∫ t
0 dt ′β(t ′)

�

−
1
2
β(t)

�

+ q(t) e−
1
2

∫ t
0 dt ′β(t ′)

�

−
1
2
β(t)

�2

+ q(t) e−
1
2

∫ t
0 dt ′β(t ′)

�

−
1
2
β̇(t)

�

(F.3)

Inserting x(t), ẋ(t) and ẍ(t) in the original differential equation 2.136 yields a new
differential equation for q(t) :

0 = q̈(t) + 2 q̇(t)
�

−
1
2
β(t)

�

+ q(t)
�

−
1
2
β(t)

�2

+ q(t)
�

−
1
2
β̇(t)

�

+ q̇(t) β(t) + q(t) β(t)
�

−
1
2
β(t)

�

+ ω2(t) q(t) (F.4)

0 = q̈(t) −
1
4
β2(t) q(t) −

1
2
β̇(t) q(t) + ω2(t) q(t) (F.5)

(F.6)
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All pre-factors of q(t) can be summed up to define the effective time-dependent fre-
quency ω′ (t):

0 = q̈(t) + ω′ 2(t) q(t) (F.7)

ω′ 2(t) := ω2(t) −
1
4
β2(t) −

1
2
β̇(t) (F.8)

F.2 Classical Parametric Oscillator

While the driven harmonic oscillator always oscillates with the driving frequency, the para-
metric oscillator’s dynamics is governed by the current eigen-frequency ω2

0

�

1+Acos(Ωt)
�

on short timescales ∆t� 1
Ω .

The differential equation of the parametric oscillator (eq. 2.140) can be solved using
ansatz F.9 [186]:

0 = q̈(t) + ω2
0

�

1+ A cos(Ω t)
�

q(t)

q(t) = c1(t) cos
�

Ω

2
t
�

+ c2(t) sin
�

Ω

2
t
�

(F.9)

With this ansatz, the derivatives of q(t) are:

q̇(t) = ċ1(t) cos
�

Ω

2
t
�

− c1(t)
Ω

2
sin
�

Ω

2
t
�

+ ċ2(t) sin
�

Ω

2
t
�

+ c2(t)
Ω

2
cos

�

Ω

2
t
�

(F.10)

q̈(t) = c̈1(t) cos
�

Ω

2
t
�

− 2 ċ1(t)
Ω

2
sin
�

Ω

2
t
�

− c1(t)
Ω2

4
cos

�

Ω

2
t
�

+ c̈2(t) sin
�

Ω

2
t
�

+ 2 ċ2(t)
Ω

2
cos

�

Ω

2
t
�

− c2(t)
Ω2

4
sin
�

Ω

2
t
�

(F.11)

If we assume that the coefficients c1(t) and c2(t) vary slowly in time compared to the
main oscillation with frequency Ω

2 and their second derivatives c̈1(t) and c̈2(t) are small,
we can neglect the respective terms in eq.F.11 [186]:

q̈(t) ≈ − 2 ċ1(t)
Ω

2
sin
�

Ω

2
t
�

− c1(t)
Ω2

4
cos

�

Ω

2
t
�

+ 2 ċ2(t)
Ω

2
cos

�

Ω

2
t
�

− c2(t)
Ω2

4
sin
�

Ω

2
t
�

(F.12)
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We can now put eqs.F.9 and F.12 in eq.2.140 :

0 = − 2 ċ1(t)
Ω

2
sin
�

Ω

2
t
�

− c1(t)
Ω2

4
cos

�

Ω

2
t
�

+ 2 ċ2(t)
Ω

2
cos

�

Ω

2
t
�

− c2(t)
Ω2

4
sin
�

Ω

2
t
�

+ ω2
0

�

1+ A cos(Ω t)
�

�

c1(t) cos
�

Ω

2
t
�

+ c2(t) sin
�

Ω

2
t
�

�

(F.13)

The following trigonometric identities can be used to simplify the last term:

cos(x) cos(2 x) =
e i x + e−i x

2
e 2 i x + e−2 i x

2
=

e 3 i x + e−3 i x + e i x + e−i x

4

=
1
2

�

cos(3 x) + cos(x)
�

(F.14)

sin(x) cos(2 x) =
e i x − e−i x

2
e 2 i x + e−2 i x

2
=

e 3 i x − e−3 i x − e i x + e−i x

4

=
1
2

�

sin(3 x) − sin(x)
�

(F.15)

If we put eqs.F.14 and F.15 in eq.F.13, we get:

0 = − 2 ċ1(t)
Ω

2
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�
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2
t
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− c1(t)
Ω2

4
cos

�
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t
�
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4
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t
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Ω

2
t
�

+ c2(t) ω
2
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�

Ω

2
t
�

+
1
2

c1(t) ω
2
0 A cos

�

3Ω
2

t
�

+
1
2

c1(t) ω
2
0 A cos

�

Ω

2
t
�

+
1
2

c2(t) ω
2
0 A sin

�

3Ω
2

t
�

−
1
2

c2(t) ω
2
0 A sin

�

Ω

2
t
�

(F.16)

In eq. F.16 we neglect the fast terms sin
�3Ω

2 t
�

and cos
�3Ω

2 t
�

, because c1(t) and c2(t)
are supposed to vary slowly compared to Ω

2 [186]:

0 =

�

−2ċ1(t)
Ω

2
− c2(t)

Ω2

4
+ c2(t) ω

2
0 −

1
2

c2(t) ω
2
0 A

�

sin
�

Ω

2
t
�

+

�

− c1(t)
Ω2

4
+ 2ċ2(t)

Ω

2
+ c1(t) ω

2
0 +

1
2

c1(t) ω
2
0 A

�

cos
�

Ω

2
t
�

(F.17)

= −

 

ċ1(t) Ω + c2(t)

�

Ω2

4
− ω2

0 +
ω2

0 A

2

�

!

sin
�

Ω

2
t
�

+

 

ċ2(t) Ω − c1(t)

�

Ω2

4
− ω2

0 −
ω2

0 A

2

�

!

cos
�

Ω

2
t
�

(F.18)
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Since eq. F.18 has to be satisfied at all times, the pre-factors of sin
�

Ω
2 t
�

and cos
�

Ω
2 t
�

have to vanish:

0 = ċ1(t) Ω + c2(t)

�

Ω2

4
− ω2

0 +
ω2

0 A

2

�

(F.19)

= ċ1(t) + c2(t)

�

Ω

4
−
ω2

0

Ω
+
ω2

0 A

2Ω

�

(F.20)

= ċ1(t) + c2(t)

�

2ω0 + ε
4

−
ω2

0

2ω0 + ε
+

ω2
0 A

4ω0 + 2ε

�

(F.21)

≈ ċ1(t) + c2(t)
�

ω0

2
+
ε

4
−
ω0

2
+
ω0 A

4

�

(F.22)

0 = ċ1(t) + c2(t)
�

ε

4
+
ω0 A

4

�

(F.23)

ċ1(t) = − c2(t)
�

ε

4
+
ω0 A

4

�

(F.24)

0 = ċ2(t) Ω − c1(t)

�

Ω2

4
− ω2

0 −
ω0 A

2

�

(F.25)

ċ2(t) = c1(t)
�

ε

4
−
ω0 A

4

�

(F.26)

We can now differentiate once more and then insert eqs. F.24 and F.26 into eqs. F.27
and F.28, respectively:

c̈2(t) = ċ1(t)
�

ε

4
−
ω0 A

4

�

(F.27)

c̈1(t) = − ċ2(t)
�

ε

4
+
ω0 A

4

�

(F.28)

c̈1(t) = − c1(t)
�

ε

4
−
ω0 A

4

� �

ε

4
+
ω0 A

4

�

(F.29)

= −
1

16
c1(t)

�

ε2 − ω2
0 A2

�

(F.30)

=
1
16

c1(t)
�

ω2
0 A2 − ε2

�

(F.31)

c̈2(t) = − c2(t)
� ε

4
−
ω0

4
A
� � ε

4
+
ω0

4
A
�

(F.32)

=
1
16

c2(t)
�

ω2
0 A2 − ε2

�

(F.33)
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F.3 Mapping to Bogoliubov Hamiltonian

We can map the quantum mechanical parametric oscillator onto the Bogoliubov Hamilto-
nian. We will show this by mapping onto Hamiltonian 2.43. Starting from the quantum
mechanical version of the parametric oscillator (eq.2.148),

Ĥ =
p̂2

2 m
+

1
2

mω2
0

�

1+α cos(Ω t)
�

x̂2,

we introduce a standard annihilation operator γ̂:

γ̂ :=
s

mω0

2

�

x̂ + i
p̂

mω0

�

(F.34)

⇒ γ̂† =
s

mω0

2

�

x̂ − i
p̂

mω0

�

(F.35)

⇒ x̂ =

√

√ 1
2 mω0

�

γ̂† + γ̂
�

(F.36)

⇒ p̂ = i
s

mω0

2

�

γ̂† − γ̂
�

(F.37)

1 =
�

γ̂, γ̂†
�

(F.38)

To insert eqs.F.36 and F.37 in the Hamiltonian, we square them:

x̂2 =
1

2 mω0

�

γ̂† + γ̂
�2

(F.39)

=
1

2 mω0

�

γ̂†γ̂† + γ̂†γ̂ + γ̂ γ̂† + γ̂ γ̂
�

(F.40)

=
1

2 mω0

�

γ̂† γ̂† + 2 γ̂†γ̂ + γ̂ γ̂ + 1
�

(F.41)

p̂2 = −
mω0

2

�

γ̂† − γ̂
�2

(F.42)

= −
mω0

2

�

γ̂†γ̂† − 2 γ̂†γ̂ + γ̂ γ̂ − 1
�

(F.43)
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Now we can insert x̂2 and p̂2 (eqs.F.41 and F.43) in eq.2.148:

Ĥ = −
1

2 m
mω0

2

�

γ̂†γ̂† − 2 γ̂†γ̂ + γ̂ γ̂ − 1
�

(F.44)

+
1
2

mω2
0

�

1+α cos(Ω t)
� 1

2 mω0

�

γ̂†γ̂† + 2 γ̂†γ̂ + γ̂ γ̂ + 1
�

(F.45)

=
ω0

4

�

− γ̂†γ̂† + 2 γ̂†γ̂ − γ̂ γ̂ + 1
�

(F.46)

+
ω0

4

�

1+α cos(Ω t)
��

γ̂†γ̂† + 2 γ̂†γ̂ + γ̂ γ̂ + 1
�

(F.47)

=
ω0

4

�

4 γ̂†γ̂ + 2
�

+
αω0

4
cos(Ω t)

�

γ̂†γ̂† + 2 γ̂†γ̂ + γ̂ γ̂ + 1
�

(F.48)

Ĥ = ω0

�

1+
α

2
cos(Ω t)

� �

γ̂†γ̂ +
1
2

�

+
αω0

4
cos(Ω t)

�

γ̂†γ̂† + γ̂ γ̂
�

(F.49)

All that is left to do now is shifting the Hamiltonian by the time-dependent vacuum
energy ω0

2

�

1+ α2 cos(Ωt)
�

:

Ĥpara = ω0

�

1+
α

2
cos(Ω t)

�

γ̂†γ̂ +
αω0

4
cos(Ω t)

�

γ̂†γ̂† + γ̂ γ̂
�

(F.50)
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Bogoliubov-de Gennes Equations of Motion

The Bogoliubov-de Gennes formalism can be used to get the time-evolution of the con-
densates’ excitations. We start with Heisenberg’s equations of motion (EOM) for the anni-
hilation operator b̂q and then perform the Bogoliubov transformation.

We use Hamiltonian 2.43 in the Heisenberg’s EOM and for q 6=0 we get [164]:

Ĥ = −
g N0

2
+
∑

q>0

�

�

ε0
q + g

� �

b̂†
q b̂q + b̂†

−q b̂−q
�

+ g
�

b̂†
q b̂†
−q + b̂q b̂−q

�

�

iħh∂t b̂q(t) =
�

b̂q(t) , Ĥ(t)
�

(G.1)

=

�

b̂q(t) , −
g N0

2
+
∑

q′>0

�

�

ε0
q′ + g

� �

b̂†
q′(t) b̂q′(t) + b̂†

−q′(t) b̂−q′(t)
�

+ g
�

b̂†
q′(t) b̂†

−q′(t) + b̂q′(t) b̂−q′(t)
�

�

�

(G.2)

=



b̂q(t) ,
∑

q′ 6=0

�

�

ε0
q′ + g

�

b̂†
q′(t) b̂q′(t)

�





+



b̂q(t) ,
∑

q′ 6=0

�

g
2

�

b̂†
q′(t) b̂†

−q′(t) + b̂q′(t) b̂−q′(t)
�

�



 (G.3)

=
�

ε0
q + g

� �

b̂q, b̂†
q(t)

�

b̂q(t)

+
g
2

�

b̂q(t) , b̂†
q(t) b̂†

−q(t) + b̂†
−q(t) b̂†

q(t)
�

(G.4)

=
�

ε0
q + g

�

b̂q(t) + g
�

b̂q(t) , b̂†
q(t)

�

b̂†
−q(t) (G.5)

iħh∂t b̂q(t) =
�

ε0
q + g

�

b̂q(t) + g b̂†
−q(t) (G.6)
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At this point, we perform the Bogoliubov transformation (eqs. 2.49 and 2.50) and put
the time dependence into the factors uq and vq:

b̂q(t) = uq(t) α̂q − vq(t) α̂
†
−q

b̂−q(t) = uq(t) α̂−q − vq(t) α̂
†
q

iħh∂t b̂q = iħh∂t

�

uq(t) α̂q − vq(t) α̂
†
−q

�

(G.7)

= iħh∂t uq(t) α̂q − iħh∂t vq(t) α̂
†
−q (G.8)

Here, we applied eq.2.49. We can also use eq.G.6:

iħh∂t b̂q =
�

ε0
q + g

�

�

uq(t) α̂q − vq(t) α̂
†
−q

�

+ g
�

uq(t) α̂
†
−q − vq(t) α̂q

�

(G.9)

=
�

�

ε0
q + g

�

uq(t) − g vq(t)
�

α̂q +
�

g uq(t) −
�

ε0
q + g

�

vq(t)
�

α̂†
−q (G.10)

By comparing coefficients of α̂q in eqs. G.8 and G.10, we arrive at the coupled equa-
tions of motion for uq and vq, the Bogoliubov-de Gennes (BdG) equations:

iħh∂t

�

uq(t)
vq(t)

�

=

�

ε0
q + g −g

g −ε0
q − g

�

�

uq(t)
vq(t)

�

(G.11)
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Weak Coupling Conserving Approximation

The Weak coupling conserving approximation (WCCA) builds on the Bogoliubov model,
but also restores the global U(1)-symmetry associated with particle conservation [190].
It works in momentum space, so we assume a finite number of equal sites with periodic
boundary conditions. In particular, this means that the trap has to be neglected and the
condensate is carried by the p= 0 mode completely. Within the WCCA, we define new
annihilation operators β̂q(t) in a manner so their expectation value always vanishes:

b̂q=0(t) :=
Æ

N0(t) + β̂q=0(t) (H.1)

b̂q 6=0(t) := β̂q 6=0(t) (H.2)

The quantities of interest are the order parameter (i.e. condensate mode in momentum
space) Φ(t) and the quasiparticle correlators F11(t,q) and F12(t,q), which are defined
according to [190]:

Φ(t) :=



b̂q=0(t)
�

=
Æ

N0(t) (H.3)

F11(t,q) :=
1
2

¬¦

b̂q(t) , b̂†
q(t)

©¶

C
=

1
2

¬¦

β̂q(t) , β̂
†
q(t)

©¶

(H.4)

F12(t,q) :=

�

b̂q(t) , b̂†
−q(t)

	�

C
=

�

β̂q(t) , β̂
†
−q(t)

	�

, (H.5)

where 〈·〉C denotes the correlation function



ÂB̂
�

C=



ÂB̂
�

−



Â
�


B̂
�

, 〈·〉 the expectation
value and {·, ·} the anti-commutator. If we minimize the effective action of the Bose-
Hubbard model with respect to the order parameter and these correlators as shown in
the supplementary material of [190], we get the following system of coupled integro-
differential equations:
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iħh∂t Φ(t) =
�

εqBEC
(t) − µ(t)

�

Φ(t)

+
U
Ns

 

Φ(t)∗ Φ(t)2 + 2Φ(t)
∑

q′

F11

�

t,q′
�

+ Φ(t)∗
∑

q′

F12
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t,q′
�

!

(H.6)

ħh∂t F11(t,q) = 2 Im





U
Ns

 

Φ(t)2 +
∑

q′

F12

�

t,q′
�

!

F12(t,q)
∗



 (H.7)

iħh∂t F12(t,q) =
�

εq(t) + ε−q(t) − 2µ(t)
�

F12(t,q)

+ 2
U
Ns



2

 

|Φ(t)|2 +
∑

q′

F11

�

t,q′
�

!

F12(t,q)

+

 

Φ(t)2 +
∑

q′

F12

�

t,q′
�

!

F11(t,q)



 (H.8)

Because the chemical potential µ(t) is real, it has no effect on observables in the WCCA
equations of motion. In the Bogoliubov-de Gennes formalism however, it is crucial since it
fixes the condensate background for the described quasi-particle excitations. To compare
the two schemes, it makes sense to fix the chemical potential to µ(t)=εqBEC

(t)+g.
It is interesting to note what happens if the summation terms

∑

q′ are neglected in
eqs.H.6 to H.8: From eq.H.6 we recover the Gross-Pitaevskii equation in the presence of
the periodic drive

�

manifesting itself in the time-dependence of εqBEC
(t)
�

. Using the defi-

nition eq.H.3 it follows that
�

neglecting the summations
∑

q′

�

:

∂t F11(t,q) =
1
2

�

�

�uq(t)
�

�

2
+
�

�vq(t)
�

�

2
�

(H.9)

∂t F12(t,q) = uq(t) vq(t) , (H.10)

making the system equivalent to the Bogoliubov-de Gennes system again. From there
it is easy to convince oneself that it is these summation terms that provide the necessary
coupling to restore U(1)-symmetry and thus particle number N0 conservation in the model.

N0 = |Φ(t)|
2 +

∑

q

nq(t) (H.11)

= |Φ(t)|2 +
∑

q

�

F11(t,q) −
1
2

�

It is not possible to find simple analytical solutions to the WCCA EOM due to their non-
locality in momentum space. Also, because collisions of quasi-particles are not modeled
�

they happen at O
�

U2
� �

, the system cannot thermalize at long times and the model is
bound to fail in the prediction of the later stages of time-evolution. However, we have to
point out that a description at O

�

U2
�

has recently be done [251, 252].
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Truncated Wigner Approximation

The Truncated Wigner approximation (TWA) is a particle number conserving semi-
classical model that has the advantage of being more easy to analyze than full-quantum
models like for example BdG and WCCA [253, 254]. It is well suited for the kind of
situation present in this work as the condensate is in the superfluid phase, which is
well described also by the calssical GPE (see chap. 2.3). Also, it is capable of describing
thermalization and recent works indicate that thermalization works alike in classical and
the respective quantum systems [255–257].

In a homogeneous system with periodic boundary conditions, the classical ground state
of the condensate is the q= 0 mode and the dynamics can be described by the GPE-like
equation:

iħh∂t Φ(t) =
�

εq(t) − µ(t)
�

Φ(t) + U0 |Φ(t)|
2 Φ(t) , (I.1)

where like in the WCCA, the chemical potential µ(t) is irrelevant to any observable
and only adds an overall energy offset.

To go from classical to semi-classical, we can model the finite quantum mechanical
occupation of higher modes (quantum depletion) in a statistical way.

We start from the quantum mechanical operator â j that annihilates a particle on site j:

â j =
1

p

Ns
b̂q=0 +

1
p

Ns

∑

q 6=0

b̂q e−i q
ħh R j (I.2)

=
1

p

Ns
b̂q=0 +

1
p

Ns

∑

q 6=0

�

uq γ̂q e−i q
ħh R j − vq γ̂

†
−q e−i q

ħh R j
�

, (I.3)

where Ns is the number of sites or momentum states and γ̂q denotes the annihilation
operator of Boguliubov mode q. We can classically model the order parameter




â j

�

on

site j via the mean ak
j of the classical ensemble ak

j , where k runs over the ensemble. Also,
the annihilation operator of the ground state is approximated by its expectation value
b̂q=0≈

p

N0 and the mean density n:=
Ç

N0
Ns

is introduced:

ak
j =

p
n +

1
p

Ns

∑

q 6=0

�

uq γ
k
q e−i q

ħh R j − v∗q γ
k∗
−q e−i q

ħh R j
�

(I.4)
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Mean and variance of the Gaussian distribution of γk
q are chosen in such a way that

they correctly reproduce the quantum mechanical fluctuations up to quadratic order. The
expectation value of any observable can now be calculated by time-evolving all realizations
of ak

j to the point of interest, evaluating the observable for each realization and averaging
in the end.

Within TWA, collisions of quasi-particles are captured to some extent. However, be-
cause there are higher-order moments beyond the quadratic one captured in this model,
the dynamics cannot be exact within TWA. It is of course possible to extend the model to
higher-order moments, but this is usually not done due to increasing complexity.
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[175] T. P. Grozdanov and M. J. Raković. Quantum system driven by rapidly varying
periodic perturbation. Physical Review A 38, 1739–1746 (1988). Cited on page: 28

[176] M. M. Maricq. Application of average Hamiltonian theory to the NMR of solids. Phys-
ical Review B 25, 6622–6632 (1982). Cited on page: 28

[177] K. F. Milfeld and R. E. Wyatt. Study, extension, and application of Floquet theory for
quantum molecular systems in an oscillating field. Phys. Rev. A 27 (1983).

[178] F. Casas, J. A. Oteo, and J. Ros. Floquet theory: exponential perturbative treatment.
Journal of Physics A: Mathematical and General 34 (2001). Cited on page: 28

[179] M. Bukov, L. D’Alessio, and A. Polkovnikov. Universal high-frequency behavior of
periodically driven systems: From dynamical stabilization to Floquet engineering. Ad-
vances in Physics 64, 139–226 (2015). Cited on pages: 28, 29, 112

[180] P. A. M. Dirac. The Quantum Theory of the Emission and Absorption of Radiation.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 114, 243–265 (1927). Cited on page: 30

http://dx.doi.org/10.1103/PhysRevA.81.063612
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://dx.doi.org/10.1088/0305-4470/14/4/003
http://dx.doi.org/10.1088/0305-4470/14/4/003
http://dx.doi.org/10.1103/PhysRevA.10.461
http://dx.doi.org/10.1103/PhysRevA.10.461
http://dx.doi.org/10.1088/0305-4470/34/16/305
http://dx.doi.org/10.1088/0305-4470/34/16/305
http://dx.doi.org/10.1103/PhysRevA.68.013820
http://dx.doi.org/10.1103/PhysRevA.38.1739
http://dx.doi.org/10.1103/PhysRevB.25.6622
http://dx.doi.org/10.1103/PhysRevB.25.6622
http://dx.doi.org/10.1103/PhysRevA.27.72
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1098/rspa.1927.0039


BIBLIOGRAPHY 143

[181] F. Schwabl. Quantenmechanik (QM I). Springer Verlag, Berlin, 7. auflage edition
(2007). Cited on page: 30

[182] W. Magnus and S. Winkler. Hill’s Equation. Interscience Publishers John Wiley &
Sons, New York, London, Sydney (1966). Cited on page: 33

[183] G. Teschl. Ordinary Differential Equations and Dynamical Systems. American Math-
ematical Society, Wien (2012). Cited on page: 33

[184] G. W. Hill. On the part of the motion of the lunar perigee which is a function of the
mean motions of the sun and moon. Acta Mathematica 8, 1–36 (1886). Cited on
page: 33

[185] P. Kapitza. Dynamical Stability of a Pendulum When its Point of Suspension Vibrates.
Sov. Phys. JETP 21 (1951). Cited on page: 33

[186] W. Demtröder. Experimentalphysik 1. Springer-Lehrbuch. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2015). Cited on pages: 33, 35, 118, 119

[187] W. B. Case and M. A. Swanson. The pumping of a swing from the seated position.
American Journal of Physics 58, 463–467 (1990). Cited on page: 34

[188] W. B. Case. The pumping of a swing from the standing position. American Journal
of Physics 64, 215–220 (1996). Cited on page: 34

[189] C. E. Creffield. Instability and control of a periodically driven Bose-Einstein conden-
sate. Physical Review A - Atomic, Molecular, and Optical Physics 79, 1–5 (2009).
Cited on pages: 37, 38

[190] M. Bukov, S. Gopalakrishnan, M. Knap, and E. Demler. Prethermal Floquet Steady
States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard
Model. Physical Review Letters 115, 205301 (2015). Cited on pages: 38, 125

[191] L. D. Landau and E. M. Lifshitz. Theoretical Physics - Vol. 1 Mechanics. Pergamon
Press, New York (1969). Cited on page: 38

[192] J. Näger, K. Wintersperger, M. Bukov, S. Lellouch, E. Demler, U. Schneider, I. Bloch,
N. Goldman, and M. Aidelsburger. Parametric instabilities of interacting bosons in
periodically-driven 1D optical lattices. arXiv pages 1–18 (2018). Cited on pages: 38,
39, 40, 53, 64, 70, 73, 74, 75, 76, 77, 80

[193] L. Duca. Probing topological properties of Bloch bands with ultracold atoms in a
honeycomb optical lattice. PhD Thesis (2015). Cited on page: 44

[194] L. Duca. Probing topological properties of Bloch bands with ultracold atoms in a hon-
eycomb optical lattice. PhD thesis, Ludwig-Maximilians-Universität (2015). Cited
on page: 45

http://dx.doi.org/10.1007/BF02417081
http://dx.doi.org/10.1119/1.16477
http://dx.doi.org/10.1119/1.18209
http://dx.doi.org/10.1119/1.18209
http://dx.doi.org/10.1103/PhysRevA.79.063612
http://dx.doi.org/10.1103/PhysRevLett.115.205301


144 BIBLIOGRAPHY

[195] S. Chaudhuri, S. Roy, and C. S. Unnikrishnan. Realization of an intense cold Rb
atomic beam based on a two-dimensional magneto-optical trap: Experiments and
comparison with simulations. Physical Review A 74, 023406 (2006). Cited on
page: 45

[196] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven. Two-
dimensional magneto-optical trap as a source of slow atoms. Physical Review A 58,
3891–3895 (1998).

[197] J. Catani, P. Maioli, L. De Sarlo, F. Minardi, and M. Inguscio. Intense slow beams of
bosonic potassium isotopes. Physical Review A 73, 033415 (2006).

[198] J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and
T. Pfau. Intense source of cold Rb atoms from a pure two-dimensional magneto-optical
trap. Physical Review A 66, 023410 (2002).

[199] T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. T. M. Walraven. High-flux two-
dimensional magneto-optical-trap source for cold lithium atoms. Physical Review A
80, 013409 (2009). Cited on page: 45

[200] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard. High densities
of cold atoms in a dark spontaneous-force optical trap. Physical Review Letters 70,
2253–2256 (1993). Cited on page: 45

[201] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell. Behavior of atoms in
a compressed magneto-optical trap. Journal of the Optical Society of America B 11,
1332 (1994). Cited on page: 46

[202] C. Fort, A. Bambini, L. Cacciapuoti, F. Cataliotti, M. Prevedelli, G. Tino, and M. In-
guscio. Cooling mechanisms in potassium magneto-optical traps. The European Phys-
ical Journal D - Atomic, Molecular and Optical Physics 3, 113–118 (1998). Cited
on page: 46

[203] M. Landini, S. Roy, L. Carcagní, D. Trypogeorgos, M. Fattori, M. Inguscio, and
G. Modugno. Sub-Doppler laser cooling of potassium atoms. Physical Review A
84, 043432 (2011). Cited on pages: 46, 48

[204] M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger. Magnetic transport of trapped
cold atoms over a large distance. Physical Review A 63, 031401 (2001). Cited on
page: 46

[205] E. Majorana. Teoria Relativistica di Particelle Con Momento Intrinseco Arbitrario. Il
Nuovo Cimento 9, 335–344 (1932). Cited on page: 46

[206] D. S. Naik and C. Raman. Optically plugged quadrupole trap for Bose-Einstein con-
densates. Physical Review A 71, 033617 (2005).

http://dx.doi.org/10.1103/PhysRevA.74.023406
http://dx.doi.org/10.1103/PhysRevA.58.3891
http://dx.doi.org/10.1103/PhysRevA.58.3891
http://dx.doi.org/10.1103/PhysRevA.73.033415
http://dx.doi.org/10.1103/PhysRevA.66.023410
http://dx.doi.org/10.1103/PhysRevA.80.013409
http://dx.doi.org/10.1103/PhysRevA.80.013409
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1364/JOSAB.11.001332
http://dx.doi.org/10.1364/JOSAB.11.001332
http://dx.doi.org/10.1007/s100530050154
http://dx.doi.org/10.1007/s100530050154
http://dx.doi.org/10.1103/PhysRevA.84.043432
http://dx.doi.org/10.1103/PhysRevA.84.043432
http://dx.doi.org/10.1103/PhysRevA.63.031401
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1103/PhysRevA.71.033617


BIBLIOGRAPHY 145

[207] D. M. Brink and C. V. Sukumar. Majorana spin-flip transitions in a magnetic trap.
Physical Review A 74, 035401 (2006). Cited on page: 46

[208] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf. First
Observation of Magnetically Trapped Neutral Atoms. Physical Review Letters 54,
2596–2599 (1985). Cited on page: 46

[209] L. De Sarlo, P. Maioli, G. Barontini, J. Catani, F. Minardi, and M. Inguscio. Col-
lisional properties of sympathetically cooled 39-K. Physical Review A 75, 022715
(2007). Cited on page: 46

[210] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental Observation of
Optically Trapped Atoms. Physical Review Letters 57, 314–317 (1986). Cited on
page: 46

[211] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne. Experiments and theory in
cold and ultracold collisions. Reviews of Modern Physics 71, 1–85 (1999). Cited on
pages: 46, 48

[212] H. Feshbach. Unified Theory of Nuclear Reactions. Reviews of Modern Physics 36,
1076–1078 (1964). Cited on pages: 46, 52

[213] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, and A. Si-
moni. Feshbach spectroscopy of a K-Rb atomic mixture. Physical Review A 73, 040702
(2006).

[214] G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Ingus-
cio, and G. Modugno. 39-K Bose-Einstein Condensate with Tunable Interactions G.
Physical Review Letters 99, 010403 (2007). Cited on pages: 46, 47

[215] C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Si-
moni. Feshbach resonances in ultracold 39-K. New Journal of Physics 9, 223–223
(2007). Cited on page: 47

[216] D. E. Pritchard, E. L. Raab, V. Bagnato, C. E. Wieman, and R. N. Watts. Light Traps
Using Spontaneous Forces. Physical Review Letters 57, 310–313 (1986). Cited on
page: 48

[217] M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold. Single-laser, one beam, tetra-
hedral magneto-optical trap. Optics Express 17, 13601 (2009). Cited on page: 48

[218] D. A. Steck. Rubidium 87 D Line Data. Technical report, Los Alamos National
Laboratory, Los Alamos (2001). Cited on pages: 48, 49

[219] T. G. Tiecke. Properties of Potassium. Physics 02, 1–14 (2010). Cited on pages: 48,
49, 52

http://dx.doi.org/10.1103/PhysRevA.74.035401
http://dx.doi.org/10.1103/PhysRevLett.54.2596
http://dx.doi.org/10.1103/PhysRevLett.54.2596
http://dx.doi.org/10.1103/PhysRevA.75.022715
http://dx.doi.org/10.1103/PhysRevA.75.022715
http://dx.doi.org/10.1103/PhysRevLett.57.314
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.36.1076
http://dx.doi.org/10.1103/RevModPhys.36.1076
http://dx.doi.org/10.1103/PhysRevA.73.040702
http://dx.doi.org/10.1103/PhysRevA.73.040702
http://dx.doi.org/10.1103/PhysRevLett.99.010403
http://dx.doi.org/10.1088/1367-2630/9/7/223
http://dx.doi.org/10.1088/1367-2630/9/7/223
http://dx.doi.org/10.1103/PhysRevLett.57.310
http://dx.doi.org/10.1364/OE.17.013601


146 BIBLIOGRAPHY

[220] P. Zeeman. On the influence of magnetism on the nature of the light emitted by a
substance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 43, 226–239 (1897). Cited on pages: 48, 50

[221] V. Gokhroo, G. Rajalakshmi, R. K. Easwaran, and C. S. Unnikrishnan. Sub-Doppler
deep-cooled bosonic and fermionic isotopes of potassium in a compact 2D+ 3D MOT
set-up. Journal of Physics B: Atomic, Molecular and Optical Physics 44, 115307
(2011). Cited on page: 48

[222] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps for Neutral
Atoms. Advances in Atomic, Molecular and Optical Physics 42, 95–170 (2000).
Cited on page: 51

[223] C. H. Townes and F. R. Merritt. Stark Effect in High Frequency Fields. Physical
Review 72, 1266–1267 (1947). Cited on page: 51

[224] B. E. A. Saleh and M. C. Teich. Grundlagen der Photonik. Wiley-VCH, Berlin, 2.
auflage edition (2008). Cited on page: 51

[225] U. Fano. Effects of Configuration Interaction on Intensities and Phase Shifts. Physical
Review 124, 1866–1878 (1961). Cited on page: 52

[226] a. J. Moerdijk, B. J. Verhaar, and A. Axelsson. Resonances in ultracold collisions of
6-Li, 7-Li, and 23-Na. Physical Review A 51, 4852–4861 (1995). Cited on page: 52

[227] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman. Feshbach resonances in
atomic Bose–Einstein condensates. Physics Reports 315, 199–230 (1999).

[228] K. Góral, T. Köhler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne. Adiabatic associa-
tion of ultracold molecules via magnetic-field tunable interactions. Journal of Physics
B: Atomic, Molecular and Optical Physics 37, 3457–3500 (2004).

[229] T. Köhler, K. Góral, and P. S. Julienne. Production of cold molecules via magnetically
tunable Feshbach resonances. Reviews of Modern Physics 78, 1311–1361 (2006).
Cited on page: 52

[230] A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen. Adia-
batic Cooling of Cesium to 700 nK in an Optical Lattice. Physical Review Letters 74,
1542–1545 (1995). Cited on page: 56

[231] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger. Exploring Phase
Coherence in a 2D Lattice of Bose-Einstein Condensates. Physical Review Letters 87,
160405 (2001). Cited on page: 56

[232] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin. Strong saturation absorption
imaging of dense clouds of ultracold atoms. Optics Letters 32, 3143 (2007). Cited
on page: 57

http://dx.doi.org/10.1080/14786449708620985
http://dx.doi.org/10.1080/14786449708620985
http://dx.doi.org/10.1088/0953-4075/44/11/115307
http://dx.doi.org/10.1088/0953-4075/44/11/115307
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1103/PhysRev.72.1266
http://dx.doi.org/10.1103/PhysRev.72.1266
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevA.51.4852
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1088/0953-4075/37/17/006
http://dx.doi.org/10.1088/0953-4075/37/17/006
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1364/OL.32.003143


BIBLIOGRAPHY 147

[233] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G.
Townsend, and W. Ketterle. Collective Excitations of a Bose-Einstein Condensate in a
Magnetic Trap. Physical Review Letters 77, 988–991 (1996). Cited on page: 60

[234] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Collective
Excitations of a Bose-Einstein Condensate in a Dilute Gas. Physical Review Letters
77, 420–423 (1996). Cited on page: 60

[235] I. Tamm. Über eine mögliche Art der Elektronenbindung an Kristalloberflächen.
Zeitschrift für Physik 76, 849–850 (1932). Cited on page: 76

[236] F. Damon, B. Georgeot, and D. Guéry-Odelin. Probing surface states with many-
body wave packet scattering. EPL (Europhysics Letters) 115, 20010 (2016). Cited
on page: 76

[237] M. Babadi, M. Knap, I. Martin, G. Refael, and E. Demler. Theory of parametrically
amplified electron-phonon superconductivity. Physical Review B 96, 014512 (2017).
Cited on page: 82

[238] A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble. Sub-
wavelength vacuum lattices and atom–atom interactions in two-dimensional photonic
crystals. Nature Photonics 9, 320–325 (2015). Cited on page: 82

[239] V. Peano, M. Houde, F. Marquardt, and A. A. Clerk. Topological Quantum Fluctua-
tions and Traveling Wave Amplifiers. Physical Review X 6, 041026 (2016). Cited on
page: 82

[240] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma. Nearly Flatbands with Nontrivial
Topology. Physical Review Letters 106, 236803 (2011). Cited on page: 82

[241] F. Wilczek. Quantum Mechanics of Fractional-Spin Particles. Physical Review Letters
49, 957–959 (1982). Cited on page: 82

[242] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma. Non-Abelian
anyons and topological quantum computation. Reviews of Modern Physics 80, 1083–
1159 (2008). Cited on page: 82

[243] N. R. Cooper. Optical Flux Lattices for Ultracold Atomic Gases. Physical Review
Letters 106, 175301 (2011). Cited on page: 83

[244] N. R. Cooper and J. Dalibard. Optical flux lattices for two-photon dressed states. EPL
(Europhysics Letters) 95, 66004 (2011). Cited on page: 83

[245] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto,
and M. F. Crommie. Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla
in Graphene Nanobubbles. Science 329, 544–547 (2010). Cited on page: 83

http://dx.doi.org/10.1103/PhysRevLett.77.988
http://dx.doi.org/10.1103/PhysRevLett.77.420
http://dx.doi.org/10.1103/PhysRevLett.77.420
http://dx.doi.org/10.1007/BF01341581
http://dx.doi.org/10.1209/0295-5075/115/20010
http://dx.doi.org/10.1103/PhysRevB.96.014512
http://dx.doi.org/10.1038/nphoton.2015.54
http://dx.doi.org/10.1103/PhysRevX.6.041026
http://dx.doi.org/10.1103/PhysRevLett.106.236803
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://dx.doi.org/10.1209/0295-5075/95/66004
http://dx.doi.org/10.1209/0295-5075/95/66004
http://dx.doi.org/10.1126/science.1191700


148 BIBLIOGRAPHY

[246] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres. Tight-binding approach to
uniaxial strain in graphene. Physical Review B 80, 045401 (2009).

[247] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-field quantum
Hall effect in graphene by strain engineering. Nature Physics 6, 30–33 (2010).

[248] M. O. Goerbig. Electronic properties of graphene in a strong magnetic field. Reviews
of Modern Physics 83, 1193–1243 (2011). Cited on page: 83

[249] G. Salerno, T. Ozawa, H. M. Price, and I. Carusotto. How to directly observe Lan-
dau levels in driven-dissipative strained honeycomb lattices. 2D Materials 2, 034015
(2015). Cited on page: 83

[250] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and
W. Ketterle. Bragg Spectroscopy of a Bose-Einstein Condensate. Physical Review
Letters 82, 4569–4573 (1999). Cited on page: 83

[251] S. A. Weidinger and M. Knap. Floquet prethermalization and regimes of heating in a
periodically driven, interacting quantum system. Scientific Reports 7, 45382 (2017).
Cited on page: 126

[252] A. Chandran and S. L. Sondhi. Interaction-stabilized steady states in the driven O(N)
model. Physical Review B 93, 174305 (2016). Cited on page: 126

[253] P. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner. Dynamics and statistical
mechanics of ultra-cold Bose gases using c-field techniques. Advances in Physics 57,
363–455 (2008). Cited on page: 127

[254] A. Polkovnikov. Phase space representation of quantum dynamics. Annals of Physics
325, 1790–1852 (2010). Cited on page: 127

[255] O. Howell, P. Weinberg, D. Sels, A. Polkovnikov, and M. Bukov. Frequency-Controlled
Thermalization Phase Transition in a Chaotic Periodically-Driven Classical Spin Chain.
ArXiV (2018). Cited on page: 127

[256] A. Rajak, R. Citro, and E. G. Dalla Torre. Stability and pre-thermalization in chains
of classical kicked rotors. Journal of Physics A: Mathematical and Theoretical 51,
465001 (2018).

[257] S. Notarnicola, F. Iemini, D. Rossini, R. Fazio, A. Silva, and A. Russomanno. From
localization to anomalous diffusion in the dynamics of coupled kicked rotors. Physical
Review E 97, 022202 (2018). Cited on page: 127

http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1088/2053-1583/2/3/034015
http://dx.doi.org/10.1088/2053-1583/2/3/034015
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1038/srep45382
http://dx.doi.org/10.1103/PhysRevB.93.174305
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1088/1751-8121/aae294
http://dx.doi.org/10.1088/1751-8121/aae294
http://dx.doi.org/10.1103/PhysRevE.97.022202
http://dx.doi.org/10.1103/PhysRevE.97.022202


Danksagung

Eine Doktorarbeit ist ein großes Projekt, das nicht alleine bewältigt werden kann. Ich
möchte all den Leuten danken, die mir auf die ein oder andere Weise geholfen haben und
durch die diese Arbeit erst möglich wurde:

Immanuel Bloch dafür, dass er mir die Promotion an seinem Lehrstuhl ermöglicht hat.

Ulrich Schneider dafür, dass er mich in seine Arbeitsgruppe aufgenommen und mich
mit täglichem Coaching durch die ersten Monate geleitet hat.

Dem Fermi II Team um Lucia Duca, Tracy Li und Martin Reitter dafür, dass sie mich in
ihr Team integriert und mir viele Fragen (auch mehrfach) beantwortet haben.

Martin Reitter dafür, dass er mehrere Jahre darauf verwendet hat, mir geduldig so viel
wie möglich über den experimentellen Aufbau bei zu bringen.

Michael Schreiber, Henrik Lüschen und Martin Reitter dafür, dass sie sich viel Zeit
genommen haben, mit mir fachliche Probleme zu erörtern und mich an ihrem reichen
Erfahrungsschatz teilhaben ließen.

Karen Wintersperger für die gute Zusammenarbeit und die vorbildliche Arbeitsmoral.

Unseren Kollaborateuren Marin Bukov, Nathan Goldman, André Eckardt, Christoph
Sträter, Samuel Lellouch und Eugene Demler für gute Arbeit in der Theorie und viel
Geduld mit nicht funktionsfähigen Setups.

Marin Bukov, Nathan Goldman, André Eckardt für die Zeit, die sie sich genommen
haben, um mir während des Verfassens der Dissertation vieles zu erklären, das ich schon
vorher hätte verstehen sollen.

Monika Aidelsburger dafür, dass sie die Betreuung unseres Experiments mitten im
laufenden Projekt übernommen und dieses zu einem guten Ende geführt hat.

Den Lektoren Monika Aidelsburger, Karen Wintersperger, Christoph Braun und Sebas-
tian Scherg für das Korrekturlesen der Arbeit.



150 Danksagung

Monika Aidelsburger dafür, dass sie in den letzten Zügen des Schreibens meiner Arbeit
viel Zeit auf die kleinen Details verwendet hat und das Niveau der Arbeit damit deutlich
angehoben hat.

Dem Fermi I Team um Henrik Lüschen, Pranjal Bordia, Sean Hodgeman, Sebastian
Scherg und Thomas Kohlert für ihr gut sortiertes Ersatzteillager, aus dem zahllose optische
Komponenten für das Fermi II Experiment gestohlen wurden.

Ildiko Kecskesi dafür, dass sie den Lehrstuhl so gut im Griff hat und einem jedes
organisatorische Problem abnimmt und zuverlässig löst.

Bodo Hecker dafür, dass er mir die Grundlagen der Elektronik beigebracht hat, seine
Zeit für meine privaten Fortbildungsprojekte geopfert hat und dafür, dass er zuverlässig
dafür sorgt, dass wir Doktoranden uns nicht mit unsachgemäß verbauter Hochspannung
umbringen.

Henrik Lüschen, Martin Reitter, Sebstian Scherg und Thomas Kohlert dafür, dass sie
stets wussten, wann die Mensa die richtige Anlaufstelle zum Mittagessen ist (immer).

Frau Baumgärtner dafür, dass sie mir in den ersten Monaten in München ein Dach
(und einen Fußboden) über dem Kopf gegeben hat.

Rainer Dietrich dafür, dass er mich mit einem exzellenten Physik Leistungskurs her-
vorragend auf das Physikstudium vorbereitet hat.

Matthias Zorn dafür, dass er drei Jahre ein hervorragender Mitbewohner war, mit dem
das Zusammenleben riesigen Spaß gemacht hat.

Meinen Eltern dafür, dass sie mich all die Jahre nach Kräften in meiner Ausbildung
unterstützt und mir diese ermöglicht haben.

Meinem Papa dafür, dass er schon in jungen Jahren den Forscherdrang in mir geweckt
hat.

Angela Huber dafür, dass sie mir während des Schreibens den Rücken frei gehalten
und den Haushalt praktisch alleine geschmissen hat.

Zu guter Letzt dem gesamten Lehrstuhl Bloch für die gute Atmosphäre und vier tolle
Jahre.


	Zusammenfassung
	Abstract
	Introduction
	Theoretical Concepts
	Ultra-cold Bose Gases
	Band Theory
	Bloch's Theorem
	Sinusoidal Lattice
	Wannier Functions

	Gross-Pitaevskii Equation
	Bogoliubov Approximation
	Bogoliubov Hamiltonian
	Bogoliubov Transformation
	Bose-Hubbard Hamiltonian

	Thomas-Fermi Approximation
	Thomas-Fermi Approximation in the Trap
	Thomas-Fermi Approximation in the 1D lattice

	Floquet Theory
	Floquet's Theorem
	Transformation to the Floquet Frame
	Properties
	Transformation to the Rotating Frame
	Renormalized Tunneling
	Floquet Fermi's Golden Rule

	Parametric Oscillator
	Classical Parametric Oscillator
	Mapping to Bogoliubov Hamiltonian

	Bogoliubov-de Gennes Formalism
	Bogoliubov-de Gennes Equations of Motion
	Parametric Oscillator Mapping
	Limitations of the Bogoliubov-de Gennes Description


	Experimental Setup
	Setup
	Physical Principles
	Magneto-Optical Trap
	Optical Molasses
	Magnetic Quadrupole Trap
	Optical Dipole Trap
	Feshbach Resonance

	1D Lattice
	Lattice Potential
	Lattice Acceleration
	Band-Mapping

	Imaging

	Measurements
	Dynamical Instabilities
	Experimental Sequence
	Evaluation of the qx-Component of the Most Unstable Mode
	Evaluation of the qy-Component of the Most Unstable Mode

	Calibration
	Magnification Factor
	Dipole Trapping Frequencies
	Atom Number
	Trapping Frequencies in the Presence of the Lattice
	Brillouin Zone Width


	Results
	qx-Component of the Most Unstable Mode
	qy-Component of the Most Unstable Mode
	Instability Rate
	Benchmarking the Bogoliubov-de Gennes Model
	Effect of Harmonic Confinement
	Interaction Parameter g
	Definition of g
	 vs. gmax
	Difference 2D - 3D


	Conclusion and Outlook
	Appendix
	Band Structure
	Proof of Bloch's Theorem
	Orthonormal Bloch Functions
	Equation for Bloch Functions
	Orthogonal Wannier Functions

	Energy of the BEC in Hamiltonian 2.27
	Bogoliubov Approximation
	Transformation to Momentum Space
	Extraction of the zero-Momentum Mode
	Bogoliubov Transformation
	Bose-Hubbard Hamiltonian

	Thomas-Fermi Approximation in the Lattice
	Floquet Theory
	Fourier Coefficients (m) of (t)
	Effective Hamiltonian F
	Time-Evolution Operator  (t2,t1)
	Transformation to the Rotating Frame
	Commutators [, ex  ] and [, ex  ]

	Parametric Oscillator
	Mapping to Hill Differential Equation
	Classical Parametric Oscillator
	Mapping to Bogoliubov Hamiltonian

	Bogoliubov-de Gennes Equations of Motion
	Weak Coupling Conserving Approximation
	Truncated Wigner Approximation
	References
	Danksagung

