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1 Summary 

Despite high initial response rates for acute myeloid leukemia (AML) patients, fit enough to 

receive intensive chemotherapy, relapse remains common, underlying the fatal nature of the 

disease. Activating mutations in the fibroblast-macrophage stimulating factor like tyrosine kinase 

receptor 3 (FLT3) are frequent amongst AML patients. Most prevalent and associated with an 

unfavorable prognosis are in-frame internal tandem duplications (ITDs) in FLT3. Point mutations 

in FLT3 are capable of mediating tyrosine kinase inhibitor (TKI) therapy-resistance. Therefore, an 

accurate measurement of FLT3-ITDs and an early detection of relapse for clinical intervention 

are essential. This might be achieved by the higher sensitivity of next generation sequencing 

(NGS) applications. For FLT3-ITD detection this doctoral work proved the accuracy of NGS-based 

FLT3-ITD detection by high throughput amplicon sequencing (HTAS). The benefit of this tool was 

based on ITD detection with high sensitivity. A high ITD clonal heterogeneity by HTAS correlated 

with adverse prognosis. On the other hand, some challenges in ITD detection were revealed that 

require further improvement before implementation into routine diagnostics. In the context of 

relapse prediction, new and recurrent mutations in FLT3 require elucidation regarding their 

potential to drive disease progression and therapy-resistance. The role of the new and recurrent 

FLT3 mutation p.Q569Vfs*2 was therefore investigated. The mutation resulted in a truncated 

receptor lacking essential parts for autophosphorylation. A dominant-negative effect of FLT3-

p.Q569Vfs*2 on FLT3-WT was demonstrated in cells expressing both receptor variants. With 

regards to AML therapy, novel therapeutic approaches are needed to combat highly aggressive 

types of AML with high relapse rates, including leukemia driven by FLT3-ITD. Since differential 

TKI-responses were observed for AML patients, this doctoral work focused on investigation of 

AML cells regarding their TKI response based on their FLT3 genotype. A TKI-driven increase of 

the FLT3 surface localization was encountered in FLT3-mutated cells, which inversely correlated 

with proliferation. The TKI-mediated FLT3 surface expression was N-linked glycosylation 

dependent and correlated with the FLT3-ITD mRNA levels prior treatment. As response of AML 

patients to single agent TKI treatment is often temporary, our finding provided a rationale to 

combine TKIs with FLT3-direcetd immunotherapy. Proof-of-principle experiments confirmed a 

synergistic effect of a combined treatment with Quizartinib and a bispecific FLT3xCD3 antibody 

in FLT3-ITD positive AML cells. Thus, this doctoral work provided several interesting biological 

findings with clinical relevance for the diagnosis and therapy of FLT3-mutated AML. 
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2 Zusammenfassung 

Patienten mit einer Akuten Myeloischen Leukämie (AML) sprechen zu Beginn einer 

Chemotherapie gut auf die Behandlung an. Trotzdem kommt es aufgrund der Natur dieser 

Erkrankung  häufig zu einem Rezidiv. Aktivierende Mutationen im Fibroblasten-Makrophagen-

stimulierenden Faktor ähnlichen Tyrosinkinase-Rezeptor 3 (FLT3) werden oft bei AML Patienten 

nachgewiesen. Interne Tandem Duplikationen (ITDs) in FLT3 kommen am Häufigsten vor und 

sind mit einer ungünstigen Prognose assoziiert. Punktmutationen in FLT3 hingegen können eine 

Therapieresistenz gegenüber Tyrosinkinase-Inhibitoren (TKIs) vermitteln. Deshalb ist eine 

akkurate Messung von FLT3-ITDs sowie die Früherkennung eines Rezidivs enorm wichtig, um 

gegebenenfalls klinisch intervenieren zu können. Die hohe Sensitivität der 

Sequenzierungsanwendungen der nächsten Generation (NGS) könnte dazu maßgeblich 

beitragen. In dieser Doktorarbeit wurde die Genauigkeit des NGS-basierten FLT3-ITD Nachweises 

mittels Hochdurchsatz-Amplikon-Sequenzierung (HTAS) ermittelt. Ein großer Vorteil dieser 

Methode ist die ITD-Erkennung mit hoher Sensitivität. Die hohe klonale Heterogenität an ITDs 

gemessen durch HTAS korrelierte mit einer ungünstigen Prognose. Jedoch wurden auch ITD 

Detektionsschwierigkeiten dieser Methode aufgedeckt, welche behoben werden müssen bevor 

diese Methode in die Routinediagnostik implementiert werden kann. Um das Rezidiv-Risiko für 

Patienten mit neuen rekurrenten FLT3-Mutationen abschätzen zu können ist die funktionelle 

Untersuchung notwendig. Dadurch soll deren Beitrag zur Krankheitsprogression und 

Therapieresistenz ermittelt werden. Daher wurde die Rolle der neuen rekurrenten FLT3 

Mutation p.Q569Vfs*2 untersucht. Diese Mutation führte zu einem verkürzten FLT3 Rezeptor, 

dem wesentliche Teile für die Autophosphorylierung fehlen. Ein dominant-negativer Effekt von 

FLT3-p.Q569Vfs*2 auf FLT3-WT wurde in Zellen gezeigt, die beide Rezeptorvarianten 

exprimierten. Um hoch aggressive Arten der AML, einschließlich FLT3-ITD positiver Leukämien, 

mit hohen Rezidiv-Raten zu bekämpfen, sind neue therapeutische Ansätze erforderlich. Da AML-

Patienten ein unterschiedliches Ansprechen auf eine TKI-Therapie aufzeigen, wurden in dieser 

Doktorarbeit zudem AML-Zellen hinsichtlich ihres TKI-Ansprechens, basierend auf dem FLT3-

Genotyp untersucht. Ein TKI-basierter Anstieg der FLT3 Oberflächenexpression wurde in FLT3-

mutierten Zellen gezeigt, welcher invers mit der Proliferation korrelierte. Die TKI-vermittelte 

FLT3-Oberflächenexpression war abhängig von der N-Glykosylierung und korrelierte mit dem 

FLT3-ITD mRNA Level vor der Behandlung. Da das TKI-Therapieansprechen bei AML-Patienten 

nur von kurzer Dauer ist, lieferte diese Beobachtung eine rationelle Grundlage für eine 

Kombination von TKIs mit FLT3-gerichteter Immuntherapie. Unsere Experimente bestätigten 

eine synergistischen Wirkung der kombinierten Behandlung mit Quizartinib und einem 

bispezifischen FLT3xCD3 Antikörper in FLT3-ITD positiven AML-Zellen. Somit lieferte diese 

Doktorarbeit einige interessante biologische Ergebnisse mit klinischer Relevanz für die 

Diagnostik und Therapie von FLT3-mutierter AML. 
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3 Introduction 

Cancer is one of the leading disease-related causes of death worldwide. Amongst all cancer-

related deaths, approximately 7% are due to hematological malignancies, including lymphoma, 

leukemia and myeloma. Leukemia represents up to 2.6% of all cancer incidences worldwide. It is 

the second-most common type of hematological malignancy. [1, 2] In high income countries 

leukemia occurs 1.92-fold more frequent, with Germany in the upper third according to rates 

across Europe. [1-3] Despite rather low incidence rates, leukemia demonstrates a 

disproportional high mortality rate - irrespective of country-specific industrialization-state. After 

initial diagnosis, the relative five years survival rate for leukemia in Germany is 57-58%. [1, 2] 

Clinically, there are four major types of leukemia: acute myeloid leukemia (AML), acute lymphoid 

leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphoid leukemia (CLL). 

Depending on the onset of the disease leukemia clusters into an “acute” or “chronic” type. The 
chronic form evolves slowly over months and even years, with infrequent symptoms. The acute 

form is highly aggressive and progresses quickly, requiring immediate treatment. On a 

cytomorphological level, leukemia is furthermore classified into “lymphoid” and “myeloid” 
entities. Each refers to the respective disrupted hematopoietic lineage, microscopic features and 

expression of phenotypic markers. [4-6] 

In adults AML is the most common acute leukemia, with lowest survival rates. [7, 8] Mutations in 

the fibroblast-macrophage stimulating factor (FMS)-like tyrosine kinase receptor 3 (FLT3) occur 

in up to 30% of AML patients. Length mutations of FLT3 are known to confer a poor prognosis 

and these patients have a high relapse-risk. [9-13] Although research has led to better 

understand FLT3-mutated AML during the past years, treatment of FLT3-mutated AML remains 

challenging. Thus, it is important to translate the biological findings of mutated AML into new 

therapeutic approaches to overcome disease progression and novel diagnostic tools to 

accurately identify patients of this high-risk AML sub-group.  

3.1 Acute myeloid leukemia 

3.1.1 Epidemiology and incidence of AML 

AML accounts for 34% of all leukemia cases. Incidence dramatically increases with age. Per year 

1.3 cases per 100,000 individuals are below 65 years, whereas 12.2 cases per 100,000 individuals 

are above 65 years. The incidence in childhood or adolescence is lower. Of all pediatric 

leukemias, AML accounts for about 18%. [5, 7, 8, 14, 15] In Germany, every year 4 out of 100,000 

people are diagnosed with AML, with a median of 4,030 AML cases. Of those 3,950 are assigned 

to adults and 80 to children. Slightly higher rates are observed in men. [2, 7] 
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Corresponding to the etiology, only a few environmental and personal factors have been 

elucidated to be associated with the development of the disease. Apart from a steady increase 

of incidence with age, modifiable aspects such as exposure to benzene, radiation and 

chemotherapeutics are known contributors. On a genetic level, chromosomal alterations such as 

trisomy 21, causing Down syndrome, predispose to AML. Inherited syndromes, including Li-

Fraumeni syndrome and Fanconi anemia, are known risk factors for pediatric AML. Furthermore, 

polymorphic variants in genes responsible for metabolizing carcinogens or others known to 

effect genomic stability increase the risk of developing AML. [5, 14, 16, 17] Also a myelosarcoma, 

which is an extramedullar tumor of undifferentiated myeloic cells that frequently affect the skin, 

lymph nodes, liver, spleen or testis, can lead to AML within 5 to 12 months when untreated. [18, 

19] In the elderly, AML occasionally evolves from a concomitant hematopoietic neoplasia, such 

as myelodysplastic syndrome (MDS), or another malignancy treated 5 to 10 years earlier. Up to 

30% of AML cases are assigned to this category, which is termed secondary and therapy-related 

AML respectively (s-AML; t-AML). Cases without an identifiable leukemic cause evolve “de-

novo”. [5, 17, 20] 

3.1.2 Pathogenesis of AML 

In human adults, mature blood cells are constantly produced, with rates of more than one 

million cells per second. Specific functional cells originate from a self-renewing hematopoietic 

stem cell (HSC) population. In the normal hematopoiesis self-renewal and differentiation of the 

HSC compartment is tightly regulated by transcription factors and cytokines. They mediate signal 

transduction via specific receptors. These mechanisms are altered in AML (Figure 1; upper 

panel). [21-23] 

AML develops by a multistep process through a transformation of an HSC, multipotent 

progenitor (MPP) or common myeloid progenitor (CMP) cell in the bone marrow (BM). These 

cells accumulate epigenetic and genetic changes in different genomic loci. This leads to a block 

of differentiation and increased proliferation. [5, 14, 23] The so called leukemic stem cells (LSCs) 

can remain in a quiescent state of Go/G1 phase while sustaining their self-renewing capacity. 

LSCs can also give rise to several propagating clonogenic leukemic progenitor cells. Immature 

abnormal hematopoietic cells, so-called leukemic blasts, consequently outgrow in an 

uncontrolled manner. At the same time the number of mature blood cells decreases, since they 

are predominantly short-lived (Figure 1; lower panel). The permanent accumulation of blasts in 

the BM subsequently leads to their washout into the peripheral blood (PB) and infiltration of 

other organs, including the spleen, liver and lymph nodes. Thus, leukemia is clinically 

characterized by hematopoietic insufficiency of all lineages, resulting in anemia, 

thrombocytopenia and immunodeficiency. [21, 22, 24] 
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required for the removal of introns from a transcribed pre-mRNA. Both class VIII and IX are thus implicated in 

proper gene expression (modified from Thiede 2012and Chen 2013). [31, 33, 35-37] 

3.1.3 Diagnostic classification of AML subtypes 

The molecular and clinical heterogeneity of AML is reflected by its complex sub-classification. 

AML subtypes are distinguished by cytomorphologic and cytogenetic analyses of PB and BM 

specimens at diagnosis. [7, 38] 

On a cytomorphological level, AML is classified into eight sub-groups, according to cell type and 

differentiation status as defined by the French-American-British (FAB) cooperative groups (Table 

1). [39-41] 

Table 1: FAB-classification of AML according to cellular morphology, including associated molecular markers 

defined by the WHO. 

FAB type morphology molecular marker 

M0 myeloblastic with minimal 

maturation 

differentiation from ALL by immunophenotypic 

determination (CD13, CD14, CD15, CD33), frequently 

RUNX1 and ASXL1 mutated 

M1 myeloblastic without maturation frequently NPM1 and CEBPA mutated, FLT3-ITD 

M2 myeloblastic with maturation t(8;21)(q22;q22) RUNX1-RUNX1T1 fusion in one-third of 

cases, frequently ASXL1 mutated 

M3*  promyelocytic (hypergranular) t(15;17)(q22;q21) PML-RARA or other RARA-fusions e.g. 

t(11;17)(q23;q21) and t(5;17)(q13;q21) PLZF-RARA and 

NuMA-RARA respectively, frequently FLT3-ITD or FLT3-

TKD mutated 

 M3v promyelocytic (hypogranular) 

M4 myelomonocytic frequently NPM1, DNMT3A, NRAS and FLT3-TKD 

mutated 

 M4eo myelomonocytic with abnormal 

eosinophils 

frequently inv(16)(p13.1q22) CBFB-MYH11 fusion, 

frequently NRAS mutated 

M5 monocytic 11q23 rearrangements, frequently NPM1 mutated 

 M5a monoblastic t(9;11)(p22;q23) MLLT3-KMT2A fusion, t(6;11)(q27;q23) 

KMT2A-AFDN fusion, t(8;16)(p11;p13) KAT6A-CREBBP 

fusion, frequently ASXL1 mutated 

 M5b monocytic frequently DNMT3A mutated 

M6 erythroid frequently TP53 mutated 

M7 megakaryocytic diagnostic proof by immunophenotypic determination 

(CD13, CD33, CD34, CD41, CD42, CD61) 

*referred to as acute promyelocytic leukemia (APL) due to a promyelocytic pattern induced by inhibition of 

apoptosis and granulopoietic differentiation [42-44]; FAB (French-American-British) cooperative groups; WHO 

(world health organization); CD (cluster of differentiation); t (translocation); inv (inversion); (adapted from 

Bennett 1976, 1985, Rose 2014 and Ladines-Castro 2015). [39-41, 45] 

Cytogenetic changes in AML allow the sub-classification of patients into three groups, namely 

patients with a cytogenetically normal (CN), aberrant or complex karyotype. [38] Cytogenetic 

analysis is performed on BM cells in inter- or metaphase. Staining of chromosomes is performed 

on dividing cells in metaphase. This enables to identify each chromosome by its specific banding 
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pattern, size and centromere length. Specific genetic regions are visualized utilizing 

fluorescently-labeled DNA probes. Fluorescent in-situ hybridization (FISH), allows the detection 

of chromosomal alterations. This includes the detection of deletions of chromosomal regions, 

loss of a chromosome (monosomy), amplifications as well as structural chromosomal changes 

and rearrangements (translocations). [46-49] Using flow cytometry AML cells are investigated for 

their antigen expression profile (immunophenotype), aiding lineage classification. In addition, 

PCR or RT-PCR based methods, including capillary gel electrophoresis and sequencing, are 

performed to detect molecular alterations in known driver genes such as mutations in 

nucelophosmin 1 (NPM1) and FLT3. [50, 51] 

About half of all AML patients show a normal karyotype, frequently harboring mutations in 

NPM1, isocitrat-dehydrogenase 1 and 2 (IDH1/2), DNA-methyltransferase (DNMT3A) and FLT3. 

An aberrant karyotype implies balanced or unbalanced chromosomal translocations. These 

translocations lead to fusion genes, producing chimeric proteins. [31, 52, 53] Balanced 

translocations appear in approximately 20% of AML patients, with higher incidences in elderly. In 

addition, activating mutations in common driver genes, including KIT proto-oncogene receptor 

tyrosine kinase (KIT), Janus kinase 2 (JAK2) and FLT3 are frequent. [54, 55] A complex karyotype 

is present in 10 to 15% of de-novo AML as well as 25 to 27% of s- and t-AML respectively. It is 

characterized by at least three cytogenetic alterations in one AML clone. [52, 56-60] Frequently, 

translocations of chromosome 11 are implicated, involving the lysine methyltransferase 2A 

(KMT2A) gene (known as myeloid/lymphoid or mixed-lineage leukemia (MLL)). KMT2A-

rearrangements lead to fusion genes deregulating several homeobox (HOX) genes, which are 

responsible for governing stemness. [59, 61-63] Prevalently deletions of 17p13 occur, involving 

the tumor suppressor gene tumor protein p53 (TP53). [57] 

Based on combined information about the morphologic, cytogenetic, immunophenotypic and 

mutational profile as well as clinically relevant patient-derived factors, AML is categorized into 

four main groups according to the world health organization (WHO) (Table 2). [64-66] 
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Table 2: WHO-classification of AML, based on cytogenetics, morphology and clinically relevant patient-

derived factors. 

WHO type  sub-type according to molecular marker or morphologic pattern 

AML with recurrent genetic 

abnormalities 

t(8;21)(q22;q22) RUNX1-RUNX1T1 fusion 

inv(16)(p13.1q22) CBFB-MYH11 fusion 

t(15;17)(q22;q21) PML-RARA fusion (APL) 

t(9;11)(p22;q23) MLLT3-KMT2A fusion 

t(6;9)(p23;q34) DEK-NUP214 (one-third displays FLT3-ITD) 

inv(3)(q21q26.2) RPN1-MECOM, GATA2 mutated 

t(1;22)(p13;q13) RBM15-MKL1 (megakaryoblastic) 

t(9;22)(q34;q11.2) BCR-ABL1* 

NPM1 mutated 

CEBPA mutated (bi-allelic) 

RUNX1 muated* 

AML with myelodysplasia-related 

changes** 

n.a. 

Therapy-related myeloid neoplasms***  

(t-AML, t-APL, t-MDS) 

n.a. 

 

AML not otherwise specified (based on 

morphology; FAB-classification) 

with minimal differentiation 

without maturation 

with maturation 

myelomonocytic 

monoblastic and monocytic 

erythroid (pure erythroid and mixed erythroid-myeloid) 

megakaryoblastic 

basophilic 

panmyelosis with myelofibrosis 

** MDS according to medical history or complex karyotype (≥ 3 chromosomal alterations); involving the 
following unbalanced and balanced alterations and none of which are included in the “AML with recurrent 

genetic abnormalities” sub-type: 

unbalanced: 

-7 or del(7q) 

-5 or del(5q) 

i(17q) or t(17p) 

-13 or del(13q) 

del(11q) 

del(12p) or t(12p) 

del(9q) 

idic(X)(q13) 

balanced: 

t(11;16)(q23;p13.3) KMT2A-CREBBP fusion 

t(3;21)(q26.2;q22.1) RUNX1-MECOM fusion 

t(1;3)(q36.3;q21.1)  

t(2;11)(p21;q23) translocation without KMT2A-rearrangement 

t(5;12)(q33;p12)  

t(5;7)(q33;q11.2) HIP1-PDGFRB fusion 

t(15;17)(q33;p13)  

t(5;10)(q33;q21) CCDC6-PDGFRB fusion 

t(3;5)(q25;q34) NPM1-MLF1 fusion 

***frequently complex karyotype (-7 or del(7q), -5 or del(5q), TP53 deletion, t(9;11)(p22;q23) MLLT3-KMT2A, 

inv(16)(p13.1q22) CBFB-MYH11, t(8;21)(q22;q22) RUNX1-RUNX1T1, t(15;17)(q22;q21) PML-RARA) . Of note t-

APL and CBF-translocated t-AML display a better therapy response than other t-AMLs.  

*provisional entity; n.a. (not applicable); WHO (World Health Organization); AML (acute myeloid leukemia); t-

AML (therapy related AML); MDS (myelodysplastic syndrome); t (translocation); inv (inversion); del (deletion); i 

(isochromosome); idic (isodicentric); (adapted from Vardiman 2009 and De Kouchkovsky 2016). [8, 64] 
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Whilst a blast count above 30% in BM or PB is defined as AML according to FAB, above 20% is 

sufficient to distinguish AML from MDS according to WHO. In certain cases, genetic 

abnormalities enable to diagnose an AML below a blast count of 20%. These include the 

translocations t(15;17), which leads to a promyelocytic leukemia - retinoic acid receptor alpha 

(PML-RARA) fusion, t(8;21) encoding a RUNX1-RUNX1T1 fusion and inv(16) which leads to a core-

binding factor beta subunit - myosin heavy chain 11 (CBFB-MYH11) fusion. [64, 67] 

Since AML progresses quickly and symptoms appear at rather late stages, the disease is 

commonly first diagnosed when the leukemia is already fully established. Therefore a rapid risk-

stratification and therapy decision is essential. [50] 

3.1.4 Prognostic risk stratification and survival rates amongst AML patients 

Within the major types of leukemia, AML displays lowest survival rates. AML is lethal within 

weeks, if left untreated. After five years post-diagnosis, more than half of adult patients are 

deceased. Depending on the subtype and age, the survival rate ranges from 13 to 60%. [7, 68, 

69] To choose the appropriate therapy, evaluating the probable response to treatment and 

prognosis of outcome, firm risk stratification criteria have been established by the European 

Leukemia Net (ELN) and Medical Research Council (MRC). They divide AML into three risk-

groups: favorable, intermediate and adverse. [38, 50, 52, 70, 71] 

According to MRC AML is classified based on the patients’ cytogenetics and karyotype 
respectively. These parameters display strongest prognostic impact on induction therapy 

response and outcome (Table 3). [52, 70-72] 

Table 3: MRC risk stratification of AML patients based on cytogenetics. 

MRC risk-group cytogenetics 

favorable t(15;17)(q22;q21) PML-RARA fusion 

t(8;21)(q22;q22) RUNX1-RUNX1T1 fusion 

inv(16)(p13q22) or t(16;16)(p13;q22) CBFB-MYH11 fusion 

intermediate normal karyotype, other alterations neither specified as favourable nor as unfavourable 

adverse abnl(3q) except t(3;5)(q21~25;q31~35) NPM1-MLF1 fusion 

inv(3)(q21q26) or t(3;3)(q21;q26) RPN1-MECOM fusion 

add(5q), del(5q) or -5 

add(7q), del(7q) or -7 (except those with a favourable karyotype) 

t(6;11)(q27;q23) KMT2A-AFDN fusion 

t(10;11)(p11~13;q23) KMT2A-ABI1 fusion 

t(11q23) KMT2A-rearrangements, except t(9;11)(q21~22;q23) KMT2A-MLLT3 fusion or 

t(11;19)(q23;p13)KMT2A-ELL or KMT2A-ENL fusion 

t(9;22)(q34;q11) BCR-ABL1 fusion 

-17/abnl(17q) 

complex alterations (≥4 independent abnormalities) 

Of note, classification is based on patients younger than 60 years. t (translocation), inv (inversion), abnl 

(abnormal), add (additional), del (deletion), MRC (Medical Research Council); (adapted from Grimwade 2010). 

[70] 
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Since almost half of all AML patients show a normal karyotype, the ELN-classification further 

risk-stratify patients. This is based on incorporating prognostically relevant gene mutations, 

associated with a high risk of relapse (Table 4). [38, 50, 73] 

Table 4: ELN risk stratification of AML patients based on cytogenetics and relevant gene mutations. 

ELN risk-group cytogenetic and molecular markers 

favorable t(8;21)(q22;q22) RUNX1-RUNX1T1 fusion 

inv(16)(p13.1;q22) or t(16;16)(p13.1;q22) CBFB-MYH11 fusion 

mutated NPM1 without FLT3-ITD or with FLT3-ITD
low

 * (normal karyotype) 

bi-allelic mutated CEBPA (normal karyotype) 

intermediate mutated NPM1 with FLT3-ITD
high

 * (normal karyotype**)  

wild-type NPM1 without FLT3-ITD or with FLT3-ITD
low

 * (normal karyotype**) 

t(9;11)(p22;q23) KMT2A-MLLT3 fusion 

cytogenetic abnormalities not classified as favorable or adverse 

adverse inv(3)(q21q26.2) or t(3;3)(q21;q26.2) GATA2, MECOM-rearrangements 

t(6;9)(p23;34) DEK-NUP214 fusion 

t(v;11)(v;q23) KMT2A-rearrangements 

t(9;22)(q34.1;q11.2) BCR-ABL1 fusion 

del(5q) or -5; -7; abnl(17q) or -17 

complex or monosomal karyotype*** 

wild-type NPM1 and FLT3-ITD
high

 * 

mutated RUNX1 

mutated ASXL1 

mutated TP53 

*low allelic ratio (<0.50) determined by semi-qualitative assessment of FLT3-ITD allelic ratio by DNA fragment 

analysis; **other alterations not specified as adverse; ***≥3 different chromosomal alterations, in absence of 
one of the WHO designated recurring abnormalities including: t(15;17), t(8;21), inv(16) or t(16;16), t(9;11), 

t(v;11)(v;q23), t(6;9), inv(3) or t(3;3), t(9;22)(q34.1;q11.2) – a worse prognosis display monosomal karyotypes 

implying: a monosomy (e.g. -7, -5, -17, -18) in association with ≥1 additional monosomy or structural 
chromosome abnormality (excluding CBF-AML). t (translocation), inv (inversion), del (deletion), abnl 

(abnormal), v (variable), ELN (European Leukemia Net); (adapted from Döhner 2017). [50, 74, 75] 

Commonly, the prognostic impact of genetic markers is context-dependent. The most prominent 

example is the interplay between an NPM1 mutation and FLT3-ITD. Mutated NPM1 is associated 

with a good prognosis, however only if FLT3-ITD is absent or expressed at low levels. Likewise, 

TP53 mutations are associated with a complex and monosomal karyotype as well as a 

neoploidies of chromosome 5, 7 or 17. Both confer poor outcome, but in combination, outcome 

is even worse. Thus, cooperating mutations should be tightly monitored during treatment and 

beyond. [50, 73] 

Despite cytogenetic and molecular factors, risk stratification and therapy decision is based on 

the white blood cell (WBC) count, the immunophenotype and other factors, including the 

physiological condition (defined as performance status), concomitant diseases (e.g. infections) as 

well as the age and family history of the patient. [38, 50, 70] A low performance index is the 

major risk driver for the treatment-related mortality, which is defined as death before or within 

achieving complete remission (CR; commonly within 30 days of treatment). Key players for 

relapse are therapy-resistance mediating alterations, cytogenetic aberrations and mutations in 
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allogeneic hematopoietic stem cell transplantation (HSCT). For an HSCT patients have to 

demonstrate an adequate performance index and appropriate donor cells have to be available. If 

this is the case, patients first undergo a conditioning therapy. [50, 76, 81, 91, 97, 98] 

Conditioning therapy consists of chemotherapy and total body irradiation. This should eradicate 

leukemic blasts and remaining hematopoietic cells of the HSCT recipient. In HSCT, 

immunocompromised patients receive donor cells by an intravenous transfusion. Donor cells 

thereafter start to home in the recipients’ BM. In the BM donor cells generate new functional 

hematopoietic cells and initiate a graft versus leukemia effect. If donor cells of the other gender 

were used, engraftment and subsequent persistence of donor cells is monitored closely. This is 

performed by chimerism analysis performing FISH. A HSCT in first CR reduces the risk of relapse 

down to 25%, despite implying a 5-fold increased therapy-associated mortality rate. [38, 76, 97, 

99-101] If however, a resistant clone arises and grows out or leukemic stem cell (LSC) within the 

BM survives the anti-leukemic treatment and subsequently self-renew and proliferate, a relapse 

may arise. In case of a relapse so called “salvage” therapy is performed to reduce the leukemic 

burden and if possibly to bridge towards an HSCT. Alternatively individualized therapies may be 

applied. [12, 84, 102-107] 

Although treatment results of younger adults have improved, the prognosis of medically unfit 

patients above 60 years remains poor. Despite CR rates between 40 and 65%, the median 2-year 

survival rate is 6%. The poor outcome is mainly due to therapy-resistance, related to a complex 

karyotype, treatment-related toxicity and mortality. In addition, elderly are frequently not 

eligible for cytotoxic therapies due to reduced tolerability (e.g. conditioned by substantial co-

morbidities, including cardiovascular distress, metabolic disease as well as reduced liver and 

kidney function). Thus, only about 30% of medically-unfit patients above 60 years receive 

standard chemotherapy. Same applies to an HSCT, since preceding intensive conditioning 

therapy is a requirement, plus elderly patients have a higher risk of treatment-related 

complications (including serious to fatal graft-versus-host disease). [5, 7, 68, 69, 81, 108-111] 

Instead elderly AML patients receive a reduced-intensity conditioning, so-called “palliative 
treatment”. Palliative treatment consists of low-dose Cytarabine chemotherapy with 

hydroxyurea or a targeted therapy if applicable - or the combination of both. [81, 86, 110] 

Individualized treatments are mostly investigational therapy trials. They are mostly less toxic 

than standard chemotherapy and have the intent to reduce the leukemic burden. In few cases 

leukemia cells are reduced towards a CR enabling a trial-based HSCT. [76, 82, 110] For palliative 

treatment hypomethylating agents are an attractive targeted therapy, since they have relatively 

low side effects. Hypomethylating agents, such as Azacitinde and Decitabine, may counteract 

epigenetic changes due to mutations of IDH1/2 or DNMT3A. Azacitidine has been already 

approved for elderly AML patients with 20 to 30% leukemic burden. However, if no targeted 

therapy is applicable and patients do not tolerate palliative therapy, supportive treatment is the 

remaining therapeutic option. [34, 38, 82, 110] Supportive treatment in form of “best supportive 
care” intends to impede disease progression by stabilizing the disease. Symptoms are monitored 
and alleviated, to sustain the patient’s quality of life by prophylaxes reducing complications such 

as infections (using anti-bacterial and anti-fungal agents). Supportive treatment prolongs the 

patient’s life for a certain time period (11-20 weeks). [76, 83, 86, 112] 
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As with hypomethylating agents, individualized investigational therapies are selected based on 

AML-specific cell markers. Thereby, distinct biological features of leukemic cells are targeted. In 

clinical trials, many other treatments are currently under investigation. Immunotherapeutic 

agents for instance target proteins structures, so called “antigens” that are highly expressed on 
leukemic cells, preferably in a leukemia-specific manner. In this context, it has been shown that 

cytogenetically favourable patients, who display a high cluster of differentiation 33 (CD33) 

expression, profit from a combined therapy with a toxin-coupled CD33 antibody. Furthermore 

CD33/CD3-bispecific T-cell engaging antibodies are under investigation. They aid in cancer cell 

eradication by activating the patients’ own immune system. [113, 114] Another promising 

candidate for targeted therapy is FLT3. It is the most mutated mitogenic receptor in AML, with 

high aberrant expression in leukemic blasts and LSCs, while being rarely detectable in normally 

differentiated cells. [115, 116] Since length mutated FLT3 as well as certain activating FLT3-TKD 

mutants are associated with poor disease-free survival, there is high clinical interest in targeting 

FLT3. [9, 10, 12, 13] 

3.2 The receptor tyrosine kinase FLT3 

FLT3, also known as fetal liver kinase 2 (FLK2), stem cell kinase 1 (STK1) and CD135, belongs to 

the receptor tyrosine kinase (RTK) family III. The RTK family III is one out of about 20 RTK protein 

families, including 58 genes in the human genome. Besides FLT3, the family III comprises other 

transmembrane cytokine receptors namely the stem cell growth factor receptor (SCFR, also 

known as KIT), the platelet-derived growth factor receptor (PDGFR) α/β, and the colony-

stimulating factor 1 receptor (CSF1R). [117-120] 

The FLT3 gene is located on chromosome 13(q12-q13). FLT3 spans a genomic region of 

approximately 100 kilobases and comprises 24 exons (Figure 5a). [116, 118, 121, 122] It encodes 

a receptor, consisting of 993 amino acids. [116, 123] During protein processing, two 

differentially-glycosylated FLT3 forms are generated - an immature (~130 kDa) and a fully-

glycosylated form (~160 kDa). While the immature FLT3 merely localizes in the cytoplasm, the 

fully-glycosylated FLT3 is shuttled to the cell membrane. [124] Like all RTK family III members, 

FLT3 acts as a membrane-spanning signal transduction protein. It consists of five extracellular 

immunoglobulin-like globes (Ig1-5), a lipophil helical transmembrane domain (TM), followed by 

an intracellular juxtamembrane domain (JMD), a hinge region and two cytoplasmic tyrosine 

kinase domains (TKD1 and TKD2), which are separated by a hydrophobe kinase insert (Figure 

5b). While the extracellular part is responsible for ligand binding, the JMD and TKD region 

collectively mediate receptor activation and signalling. [123-126] Since the TKD region is key in 

the interaction with downstream signalling molecules, this region is highly conserved amongst 

tyrosine kinase receptors. [126, 127] 
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encases the adenine-triphosphate (ATP) binding site. A key regulatory element within the TKD 

region that controls confirmation of the activation loop is the catalytic loop. Upon ligand 

stimulation, FLT3 receptors dimerize. Thereby, several distinct intracellular amino acid residues 

are trans-phosphorylated, causing an unfolding of the binding pockets within the TKDs. [143, 

146-149] Leaving the activation loop in an open state, the encased tyrosine residues are then 

accessible for phosphorylation by transfer of an ATP derived γ-phosphate (Figure 6). Together 

with three to six adjacent amino acids, phosphorylated tyrosine residues form high-affinity sites 

for cytoplasmic signalling proteins, which contain either a phosphotyrosine binding (PTB) or Src-

homology 2 (SH2) domain. Activation of these relay molecules subsequently induces 

downstream signalling cascades, which mediate cell proliferation, apoptosis and differentiation. 

[116, 120, 148, 150-153] 

 

Figure 6: Inactive and ligand-activated FLT3 receptor. 

FLT3 receptors dimerize upon binding of its ligand. This results in conformational changes and activation of the 

kinase domains, including trans-phosphorylation of cytoplasmic tyrosine residues (grey squares). The ATP-

binding pocket is subsequently in an accessible state. Its accessibility enables the transfer of an ATP derived γ-

phosphate to tyrosine residues in the tyrosine kinase domain (TKD). Phosphorylated tyrosine residues in the 

TKD build high-affinity binding pockets (orange squares) for a variety of signalling proteins (green), which show 

compatible domains for docking. In a phosphorylated state they in turn mediate intracellular downstream 

signalling (modified from Swords 2012, Grafone 2012, Matrone 2017). [127, 148, 153-156] In the 3D-model the 

structure of the intracellular FLT3 domains are shown (inactive state), which mediate receptor activation. 

Within the JMD the binding motif (JM-B; turquoise) maintains the rotation of the two beta-sheets away from 

the C-terminus. Correct position of the C-terminus is regulated by the switch motif (JM-S; blue). Important 

tyrosine residues responsible for receptor activation are located within the switch and zipper motif (JM-Z; 

magenta) at amino acid position 589, 591 and 599. [116, 135, 143-145, 157] A key tyrosine residue in mediating 

the switch from a closed to an open activation loop (green) confirmation is Y842, which interacts with the 

catalytic loop (orange). The unfolding of the activation loop generates ATP-binding pockets (yellow sphere 

highlights the ATP binding region) within the TKDs. The structural model was generated utilizing the PyMOL 

software (PDB-code: 1RJB; Griffith 2004, Kiyoi 2015 and Lagunas-Rangel 2017). [143, 158-160] 

Through de-phosphorylation of the tyrosine residues in the JMD by tyrosine-phosphatases, such 

as the Src-homology 2 domain-containing phosphatase 2 (SHP2), FLT3 returns in its inactive 

state. [143, 161] A negative regulator of FLT3 activation and signalling is casitas B-lineage 

lymphoma (CBL). CBL is an E3-ubiquitin ligase, which competes with other compatible signalling 
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proteins for phosphorylated tyrosine residues, to ubiquitinate them. Upon ubiquitination, CBL 

mediates the internalization and proteasomal degradation of FLT3. Non-ubiquitinated receptors 

or those from which ubiquitin has been removed by deubiquitinases are recycled. [162-167] The 

half-life of FLT3 wild-type (WT) receptor is approximately two to three hours, decreasing to 

approximately half an hour upon stimulation. [167, 168] 

While in normal cells FLT3 expression and activation is tightly regulated, aberrant expression of 

FLT3 frequently leads to proto-oncogenic activation in hematopoietic malignancies, including 

MDS, ALL and AML. [55, 116, 169-172] 

3.2.2 Aberrant expression and signalling activation of FLT3 in AML 

In approximately 90% of AML cases FLT3 is aberrantly overexpressed or activated. [123, 148, 

173-175] Increased FLT3 signalling is mediated either by enhanced transcriptional upregulation, 

FLT3 gene mutations or increased ligand stimulation. Commonly, these factors collaboratively 

mediate an oncogenic transformation. [137, 145, 176-181] 

A high level of FLT3 mRNA expression is associated with an unfavourable prognosis in adult AML 

patients. In the case of FAB M5 subtype and cases with KMT2A rearrangements OS is impacted 

negatively by elevated FLT3 mRNA levels, both in pediatric and adult AML patients. Of note, 

similar FLT3 surface expression levels are found on FLT3-positive bulk and leukemic stem cells - 

irrespective of FLT3 mutational state. [115, 177, 181-183] Subsequent receptor activation occurs 

by exogenous FL or intrinsically produced FL, hence BM stromal cells as well as several primary 

leukemic cells and cell lines express FL. Based on this, most AML blast are capable of activating 

the receptor in an autocrine, paracrine or intracrine way. [115, 178] On the other hand, FLT3 can 

be constitutively activated by specific genetic alterations, belonging to “class V” activating 

mutations in leukemogenesis. Mutations of the FLT3 gene affect up to 40% of newly diagnosed 

AML patients – up to 28% of de-novo and 19% of t/s-AML cases. Consequently, FLT3 is the most 

recurrently mutated receptor in AML. [33, 115, 116, 184-187] 

There are two major types of FLT3 mutations. In-frame insertions of variable FLT3 nucleotide 

sequences so called “internal tandem duplications” (ITDs) and point mutations (PMs). 
Furthermore, however less frequent, in-frame deletions of a few nucleotides can occur. [116, 

184, 185, 188] Of all FLT3 mutations, FLT3-ITDs represent the most common type. FLT3-ITDs are 

most prominent in patients with a normal karyotype (CN-AML), in patients with the cytogenetic 

setting of a t(6;9)(p23;q34) DEK-NUP214 translocation and in APL patients positive for the 

translocation t(15;17)(q22;q21), which generates the PML-RARA fusion. In core-binding factor 

(CBF) AML or AML with a complex karyotype they are rather uncommon. [11, 53, 185, 186, 189, 

190]. Incidences of FLT3-ITDs increase with disease progression and genetic instability, since they 

occur relatively late in leukemogenesis. They affect prevalently elderly and relapsed AML 

patients – showing a 2-fold higher rate in adult compared to pediatric AML patients. [115, 116, 

145, 179, 191, 192] While always resulting in an in-frame transcript, FLT3-ITDs vary in length 

(between three to over 400 nucleotides) and sequence [11, 53, 145, 185, 193-195]. 
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form. [148, 184, 204-209] When activating STAT5 its subsequent dimerization leads to accessing 

the nucleus. Within the nucleus it activates the transcription of genes implied in cell 

proliferation, including cyclin D1 (CCND1) and MYC as well as of anti-apoptotic genes, including 

BCL-XL, MCL1 and of the gene encoding the serine/threonine kinases PIM1/2. Of note, PIM1 

provides a positive feedback loop in phosphorylating and stabilizing the immature FLT3 receptor. 

Thereby, the half-life of immature FLT3 is increased up to three hours, despite phosphorylation. 

Stabilized, phosphorylated cytoplasmic FLT3 in turn promotes aberrant STAT5 signalling. 

Moreover, activated STAT5 signalling increases the production of reactive oxygen species (ROS). 

ROS induce DNA double-strand breaks and DNA repair deficiency, causing genomic instability. 

[155, 205, 207, 208, 210-220] 

A second feedback loop governing a proliferative advantage is mediated by mutant FLT3 in 

increasing the expression of the receptor Frizzled-4 (encoded by FZD4; responsive to Wingless-

type (Wnt) ligands) and β-catenin (encoded by CTNNB1). Activation of Frizzled-4 leads to stability 

of β-catenin. Β-catenin then translocates to the nucleus and acts as a transcriptional co-activator 

for the transcription of MYC and CCND1. Activation of apoptosis is furthermore inhibited by 

preventing FOXO3-mediated transcription of BIM. [221] In addition, oncogenic FLT3 mutants 

contribute to leukemic progression by repression of myeloid transcription factors, including 

CCAAT-enhancer-binding protein alpha (CEBPA) and PU.1 (encoded by the gene SPI1). Targeting 

PU.1 is mediated by micro RNA 155 (miR-155), whose expression is upregulated by STAT5 and 

nuclear factor kappa B (NFκB) signalling. Repression of CEBPA and PU.1 enforces a block of 

differentiation. Other transcription factors, including RUNX1 and forkhead box 1 (FOXC1) are 

found upregulated in FLT3-ITD positive AML. They selectively mediate target gene expression 

increasing cell survival. For example, RUNX1 regulates the expression of the apoptotic regulator 

BCL2 (Figure 8). [137, 212, 215, 222-226] 

In case of small deletions and FLT3-PMs, the auto-inhibitory function of the JMD is destabilized 

and catalytic domains are activated. Therefore, they have higher constitutive dimerization rates 

than the WT receptor in the absence of FL, being able to constitutively phosphorylate 

downstream targets. FLT3-PMs induce a strong activation of PI3K/AKT and RAS/ERK signalling 

cascades. Expression of negative mediators of activated signalling cascades in turn is down-

regulated. This implies for instance sprouty RTK signalling antagonist 3 (SPRY3), which acts 

negatively on RAS/ERK signalling. [157, 188, 203, 206, 227, 228] Depending on the affected 

residue and its function, FLT3-PMs show stronger or weaker transforming potential. FLT3-PMs 

affecting residues in the catalytic domain are more oncogenic. Activating PMs in the catalytic 

domain as well as FLT3-ITDs are furthermore associated with high FLT3 expression levels and 

faster intracellular turn-around times. Besides the oncogenic mutational variants mentioned, 

several other FLT3-PMs are detectable in AML patients. Of these not all may confer a 

transforming potential. [9, 11, 115, 157, 167, 177, 213, 229] 
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death. In FLT3-ITD positive AML cells, moreover a downregulation of the equilibrative nucleoside 

transporter 1 (ENT1), responsible for Ara-C cellular uptake, has been noted. Additionally, in 

many AML cells increased FL levels are observed. [212, 235, 236] As FLT3 mutations appear with 

many other alterations, AML with aberrant FLT3 is not assigned as independent stratification 

group. Nonetheless, since affecting crucial cellular mechanisms being highly oncogenic, both 

FLT3-ITDs and activating FLT3–PMs imply prognostic relevance. [9, 11, 31, 115, 157, 229] 

3.2.3 Diagnostic identification and prognostic implication of FLT3 mutations 

Mutations in the FLT3 gene are routinely assessed at initial diagnosis of AML using standardized 

methods. Alterations affecting the size of FLT3, including FLT3-ITDs or deletions in FLT3 are 

detectable by fragment analysis or genescan analysis, respectively. Thereby, PCR amplification of 

exon 14 and 15 using either gDNA or cDNA samples as well as fluorescently-tagged primers is 

performed, followed by PCR product sizing using capillary electrophoresis (Figure 9a). To detect 

specific point mutations within FLT3, PCR amplification is followed by Sanger sequencing (Figure 

9b). TKD-PMs at codon D835, D836 and D839 can be further revealed by restriction 

endonuclease digestion of the PCR amplicon of exon 20, with subsequent polyacrylamide or 

agarose gel electrophoresis (Figure 9c). [38, 50, 51, 195, 237-241] FLT3 mutations are detectable 

in both leukemic blasts as well as LSCs. [242] 

 

Figure 9: Schematic illustration of FLT3 mutation detection. 

a) Electropherogramm of a fragment analysis of FLT3-ITD using denaturing capillary electrophoresis and 

fluorescence detection. PCR-fragment length is represented by number of base pairs, while the fragment count 

represents relative fluorescence intensity. In the presented case, two differently sized FLT3 fragments are 

detected (blue peaks): WT and a larger variant, representing a heterozygous ITD, with a lower fragment count 

for the ITD than for WT. Red peaks represent an internal size standard. Depending on the length of the PCR 

amplicon normal WT size fragments are distinguishable from smaller fragments (referring to deletions) and 

larger fragments (showing FLT3-ITDs). Absence of WT indicates loss of heterozygousity (LOH). LOH is commonly 

due to deletion of one allele. Another mechanism is copy-number-neutral LOH through recombination. Based 

on the fragment specific area under the curve the ratio of WT to ITD can be calculated semi-qualitatively, 

enabling estimation of the mutational load of a FLT3-ITD clone. b) Chromatogram showing two nucleotide 

variants at cDNA position NM_004119.2:c.2028 (C>A, represented by the nucleotide ambiguity code “M”; the 
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three nucleotides representing the codon are underscored). This variant refers to a heterozygous FLT3-TKD-PM 

(p.N676K). c) Exemplary detection of a TKD-PM by restriction enzyme digestion. FLT3-amplicon of exon 20 is 

digested with EcoRV endonuclease. While FLT3-WT is digested into 3 bands by EcoRV, point mutations either at 

location D835 or I836 disrupt the EcoRV site, resulting in slower migrating undigested fragments using agarose 

gel electrophoresis. For the detection of point mutations at location D839, a digestion with the restriction 

enzyme HinfI can be performed. Marker (M); (adapted from Yamamoto 2001, Thiede 2002, Mills 2005, Best 

2012 and Opatz 2013). [11, 131, 200, 238, 241] 

Although the number, size, position and mutational load of a FLT3-ITD can vary amongst 

patients, the presence of a FLT3-ITD itself negatively impacts on prognosis (except for APL 

patients). Harbouring a FLT3-ITD is associated with an unfavourable prognosis due to reduced 

chemotherapy-treatment response and a decreased duration of CR, shorter RFS and OS. In adult 

as well as in pediatric AML patients, a FLT3-ITD is associated with a high risk of relapse. [12, 95, 

145, 160, 185, 189, 194, 197, 233, 243-248] The ITD mutational load or mutant to WT allelic 

ratio, respectively, adds prognostic strength. A high allelic burden is associated with a very poor 

prognosis (shorter OS, RFS), with worse outcome for patients with loss of FLT3-WT during 

disease progression. By multivariate analysis the FLT3-ITD mutational load showed to be the 

second most-relevant prognostic factor besides cytogenetics. [11, 130, 145, 160, 185, 189, 193, 

237, 239, 249] Depending on the FLT3-ITD insertion site and respective functional domain, 

differential outcome and response to treatment with conventional chemotherapy, as well as 

tyrosine kinase inhibitors (TKIs) have been observed. Especially FLT3-ITDs outside of the JMD 

have been shown to be associated with an inferior outcome (RFS and OS) and resistance to TKIs 

(in vitro and in vivo) - however not in every cohort. [160, 196, 250-254] Similarly, the relation of 

ITD size and therapy outcome is discussed controversially. [160, 185, 194, 255-257] 

In comparison, FLT3-ITD predisposes to a worse outcome with lower survival rates than 

activating FLT3-PM. However, activating FLT3-PMs confer worse outcome compared to patients 

with FLT3-WT. [9, 115, 258] Of note, TKD-PM (especially D835 and I836), have been shown to 

play a role in resistance to standard and especially targeted therapies. These TKD-PMs mediate 

relapse and imply on RFS. Their impact, however, seems to depend on the presence of other 

mutations - as seen in conjunction with a FLT3-ITD, t(15;17) PML-RARA fusion or KMT2A- partial 

tandem duplication (PTD). [9, 202, 229, 243, 253, 259-267] 

During disease progression, FLT3 remains a rather diverse and changing marker, implying 

mutational shifts between diagnosis and relapse. In up to 20% of cases, mutational changes of 

FLT3 occur; frequently with increases in the mutational ITD load. In some cases, patients show a 

conversion of a heterozygous state at diagnosis to a homozygous state at relapse. In other cases 

subclonal ITDs detected at diagnosis are lost during disease progression, while others are gained 

or grow out at relapse. [27, 80, 268-276] Mutational shifts in FLT3 and a gain of new variants (ITD 

and/or activating TKD-PM) are associated with worse RFS for both, conventional or FLT3-

targeted therapies, compared to stability of FLT3 mutations during the course of the disease. 

[130, 264, 266, 269, 277, 278] When detected at initial diagnosis FLT3 mutations may therefore 

be followed up during disease progression and therapy as MRD marker. Several studies have 

pointed out the potential of quantitative RT-PCR, digital droplet PCR and next-generation 

sequencing (NGS) based approaches for molecular FLT3-ITD MRD assessment over conventional 
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diagnostic applications with regards to sensitivity of subclonal ITD detection. [80, 249, 259, 268, 

270, 279-286] For example, monitoring deep molecular response rates after treatment with a 

TKI, high responders (ITD level during treatment ≤10-2) amongst FLT3-ITD positive AML patients 

can be identified, who show a better prognosis implying longer OS. [287] Another important 

surrogate marker for initial response rates to TKIs is the reduction of phosphorylated FLT3 

(pFLT3), determined by a plasma inhibitory activity assay. Rates of above 85% of reduction in 

pFLT3 are being survival supportive. [288, 289] 

Since correlated with poor outcome, FLT3-ITDs as well as resistance-mediating FLT3-TKD-PM 

mutations have gained increased importance in AML therapy evaluation. Thus, the development 

and evaluation of FLT3-targeted therapy approaches are of high interest. [50, 80, 135] 

3.2.4 FLT3-targeted therapy approaches 

FLT3-targeted therapy is based on either interference with FLT3 activation and subsequent 

receptor signalling utilizing TKIs or FLT3 antigen identification and subsequent receptor blocking 

or cytolysis by FLT3-directed immunotherapy. [154, 290] 

TKIs are small molecules, preventing RTKs from activating signalling cascades. Up to date, there 

are many different TKIs available, with ongoing investigations concerning their inhibitory profile, 

pharmacodynamics, -kinetics and –vigilance as well as effective therapeutic use in clinical trials. 

First generation TKIs, such as Midostaurin (PKC-412, type I TKI), Sunitinib (SU11248, type I TKI), 

Lestauritinib (CEP-701, type I TKI) and Sorafenib (BAY43-9006, type II TKI), are multi-kinase 

inhibitors, showing a broad spectrum of kinase interactions. In contrast, next-generation TKIs, 

including Crenolanib (CP-868596, type I TKI), Gilteritinib (ASP-2215, type I TKI), Quizartinib 

(AC220, type II TKI), Cabozantinib (XL184, type II TKI) and Tandutinib (MLN-518, type III TKI), act 

more specifically against only a few RTKs. [291-297] Regarding their inhibitory mode of action, 

type I TKIs are ATP-competitive inhibitors, targeting the ATP-binding site of activated receptors. 

Both type II and III are so-called allosteric inhibitors, inducing a conformational change towards a 

kinase inactive state to inhibit kinase activity (Figure 10). [156, 298, 299] 
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activity and unfavorable pharmacokinetics with slow plasma level clearance, thus limiting its 

clinical utility for the treatment of AML. [154, 294, 325, 326] Thus, resistance to TKIs remains a 

challenging phenomenon.  

Resistance to TKI treatment is mediated by the acquisition of varying secondary FLT3-PMs (e.g. 

E608K, D835H/V/Y, Y842C/H and F691L), as well as intrinsic mechanisms mediated by mutant 

FLT3 as indicated in Figure 8. In the BM niche, stromal cells additionally govern protection 

against TKIs, enabling LSCs to survive this treatment. [222, 253, 260, 263-265, 306, 308, 327-331] 

To maintain the eradication of leukemic cells, combinatorial approaches of TKIs with 

chemotherapy have been investigated. In these studies TKIs were added to induction and 

consolidation therapy and subsequently administered as maintenance therapy. In newly 

diagnosed and relapsed / refractory AML patients younger than 60 years, Sorafenib and 

Midostaurin but not Lestauritinib, have proven their benefit in significantly increasing RFS. In the 

case of Midostaurin also OS has been prolonged. In elderly AML patients, however, higher 

toxicities and mortality rates for combinations of Sorafenib and chemotherapy were observed, 

thus lacking an improvement in survival. [93, 96, 308, 332-340] The benefit of a combination of 

Sunitinib, Crenolanib or Gilteritinib with chemotherapy is still under investigation in clinical 

studies. [13, 341, 342] Nonetheless, a recent major breakthrough was the FDA-approval of the 

TKI Midostaurin for FLT3-mutated AML in combination with induction chemotherapy. [92, 343] 

Another therapeutic approach to specifically target FLT3-expressing cells is antigen-directed 

immunotherapy. Up to date, FLT3-targeted immunotherapeutic approaches are either mediated 

by anti-FLT3 antibodies or FLT3-directed chimeric antigen receptor (CAR) T-cells. [154, 155, 186] 

So far three types of therapeutic antibodies have been constructed to target FLT3. First, 

antibodies that directly bind to FLT3, competing with FL for receptor docking (Figure 11a; purple 

background). They inhibit FL-induced signalling activation by receptor coupling and subsequent 

internalization. Monoclonal humanized antibodies bear an Fc-receptor compatible part that can 

recruit and activate Fc-receptor-bearing effector cells, including natural killer (NK) cells. [344-

348] Up to date, a number of fully human immunoglobulin anti-FLT3 monoclonal antibodies have 

been developed. They are derived from fragments, originally isolated from naïve human 

monovalent antibody fragment phage display libraries. In vitro anti-FLT3 antibodies show target 

specificity and anti-leukemic activity. [345, 347-349] Investigations with the humanized 

monoclonal FLT3-antibody LY30122218 (IMC-EB10) showed inhibition of receptor signalling and 

effectiveness in eradicating AML cells in vitro, however only moderately for FLT3-mutated cells 

(FLT3-ITD and FLT3-TKD). Nevertheless, engraftment of cells with either FLT3-genotype was 

reduced in mice by antibody administration. [346, 347, 350, 351] An initial phase I study is 

assessing the Fc-optimized anti-FLT3 antibody FLYSYN as monotherapy in adult MRD-positive 

AML patients (clinical trial identifier: NCT02789254). [352] 

Secondly, antibodies comprising two antigen recognition sites – one targeting FLT3 and the other 

one directed against CD3, for specifically recruiting and activating T-cells (Figure 11a; blue 

background). Hence, they are called “bispecific” antibodies. FLT3xCD3 antibodies are available in 
either a Fabsc or tandem double single chain variable fragment format (scFv and bssc, 
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respectively; Figure 11b). The latter is also known as bispecific T-cell engager (BiTE). [344-346, 

348, 350, 351, 353, 354] An initial phase I clinical trial has investigated the monoclonal bispecific 

FLT3-antibody LY30122218 (IMC-EB10) for the treatment of relapsed and refractory AML (26% 

FLT3-mutated; clinical trial identifier: NCT00887926). Although LY30122218 demonstrated to be 

safe, the antibody failed to show clinical activity as single agent and therefore the study was 

abrogated. [355] Optimized monoclonal bispecific antibodies BV10-SDIEM (BV10xUCHT1 in 

Fabsc-format) and 4G8-SDIEM (4G8xUCHT1 in Fabsc- and bssc-format), showed efficient 

antibody-dependent cytotoxicities in in vitro studies. In vivo assays in patient-derived xenograft 

(PDX) mice and non-human primates confirmed efficient anti-tumor activity. A more than 2-fold 

extended survival was revealed when treated with an optimized FLT3 BiTE. However, their 

clinical efficacy has not been evaluated so far. [182, 353, 354, 356] 

Thirdly, antibodies that carry cytotoxic cargos release their toxic payload after receptor 

internalization when bound to the target (Figure 11a; brown background). [344-347] Cytotoxine-

coupled anti-FLT3 antibodies, such as the anti-FLT3 antibody drug conjugate (ADC) AGS62P1, 

showed pre-clinical anti-tumor efficacy against FLT3-expressing AML cells (FLT3-ITD and non-ITD) 

in vitro. In vivo anti-FLT3 AGS62P1 impaired engraftment and outgrowth of primary AML cells in 

PDX mice. [357] ADCs mediate tumor cell killing by specifically delivering linker-conjugated high 

potent cytotoxic agents to FLT3-expressing cells, while stably remaining in the plasma. ADCs 

induce internalization upon cell surface binding to allow maximum delivery of conjugated agent 

into the intracellular compartment, where the cytotoxic agent is subsequently released by the 

cell endosomes or lysosomes. Cytotoxic payloads may be chemotherapeutics like Daunorubicin. 

Novel agents include microtubuline inhibitors such as auristatins. Auristatins interfere with the 

polymerization of α-tubulin. Thereby, they prevent the formation of the mitotic apparatus 

causing G2/M-phase cell cycle arrest. Furthermore, DNA-damaging drugs can be attached to 

antibodies. They have the benefit of being active during different cell cycle phases. There are 

DNA-alkylating bacteria-derived agents such as calicheamicin or duocarmycin. These agents bind 

to the minor groove of DNA, inducing DNA double-strand breaks. On the other hand, there are 

mushroom-derived toxins such as α-amanitin. A-amanitin inhibits the RNA polymerase II 

enzyme, thus inhibiting mRNA synthesis. Alternatively to a linker-conjugated drug, a potent DNA 

cross-linker can be incorporated into the structure of the antibody by conjugation with cysteine 

residues. Upon specific antibody-binding, the molecule is internalized, leading to cell cycle arrest 

and induction of apoptosis. [347, 358-360] 
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diagnostic and therapeutic application as well as the biological role of a new and recurrent FLT3-

PM in the setting of AML was addressed and investigated.  

3.3.1 The applicability of a NGS-based FLT3-ITD detection tool compared to 

standard routine assays 

In the first project, a new diagnostic approach to detect FLT3-ITDs with high sensitivity was 

established and assayed for its applicability and impact on FLT3 diagnostics. To this means we 

developed an amplicon-based high-throughput next generation sequencing (NGS) method for 

the detection of FLT3-ITDs. Sequencing of 267 AML samples from patients treated on trial was 

compared to the routine diagnostics, with regards to its accuracy and sensitivity. To this aim, 

barcode-primer combinations were used to enable sequencing of up to 96 amplicons at once. 

For validation purpose FLT3-targeted genomic sequencing and fragment analysis of FLT3-

amplified gDNA was used to evaluate data discrepancies of standard assays compared to the 

new method. While fragment analysis is still referred to as gold-standard it has limited sensitivity 

and does not provide any information about the altered FLT3-ITD sequence, including the 

insertion position. Both are of interest with regards to subclonal FLT3 mutations, which may 

mediate therapy-resistance and outcome. Moreover, ITD characteristics were evaluated 

regarding their impact on RFS and OS and compared between both methods to determine 

potential differences in data quality relevant for prognostics. Hence high-throughput sequencing 

costs decline and the hands-on-time is comparable, NGS-techniques applied to diagnostics may 

provide an attractive and feasible alternative to current standard methods.  

3.3.2 The relevance of a new and recurrent FLT3 deletion mutation in AML 

Moreover, high throughput sequencing approaches led to the discovery of several new FLT3 

mutations of which some likely are passenger mutations, not showing a transforming or therapy 

resistance-mediating potential [229]. Thus, the identification of their biological impact remains 

essential. To this aim, within the second project we investigated the biological relevance of a 

new and recurrent FLT3 mutation, detected by routine diagnostics in a relapsed AML patient. To 

functionally characterize the novel FLT3 mutation, pathway signalling activation, protein 

localization, ligand stimulation and cell proliferation was evaluated.  

3.3.3 TKI-mediated effects on FLT3 and the potential for a combination with 

FLT3-directed immunotherapy in AML 

Since risk factor research further aims for practical interventions, in the third project the 

influence of TKIs on different FLT3 genotypes was investigated systematically, hence variable 

responses have been reported in AML patients. [289] To this means, the impact of TKIs on the 

cellular localization and glycosylation of FLT3-WT and several mutants, including resistance-

mediating PMs, was investigated and correlated with inhibition of proliferation. To decipher the 
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impact of the FLT3 genotype on TKI response, we investigated different FLT3 genotypes in 

variable biological settings. Furthermore, the potency and kinetics of the TKI-mediated FLT3 

surface expression was investigated, comparing type I and type II TKIs. A TKI-mediated surface 

expression might also open up avenues for targeting FLT3 by immunotherapeutic approaches, 

especially for FLT3-ITD positive patients. Therefore, the hypothesis of a combinatorial 

therapeutic approach using TKIs and immunotherapy evolved. This has important clinical 

implications, since combinatorial approaches seem required in light of the unsatisfying results of 

TKI monotherapy with regards to RFS and OS due to resistance mechanisms. [13, 154, 308, 352, 

367] Proof-of-principle experiments were performed to assess the efficacy of a combined 

treatment using a TKI and a FLT3xCD3 antibody. In particular, the combinatorial effectiveness in 

eradicating FLT3-positive AML cells and the impact of the TKI AC220 on T-cell function were 

assessed. 
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4 Results 

4.1 Clonal heterogeneity of FLT3-ITD detected by high-throughput 

amplicon sequencing correlates with adverse prognosis in 

acute myeloid leukemia 
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ABSTRACT 50 

In acute myeloid leukemia (AML), internal tandem duplications (ITDs) of FLT3 are frequent 51 

mutations associated with unfavorable prognosis. At diagnosis, the FLT3-ITD status is 52 

routinely assessed by fragment analysis, providing information about the length but not the 53 

position and sequence of the ITD. To overcome this limitation, we performed cDNA-based 54 

high-throughput amplicon sequencing (HTAS) in 250 FLT3-ITD positive AML patients, 55 

treated on German AML Cooperative Group (AMLCG) trials. FLT3-ITD status determined by 56 

routine diagnostics was confirmed by HTAS in 242 out of 250 patients (97%). The total 57 

number of ITDs detected by HTAS was higher than in routine diagnostics (n=312 vs. n=274). 58 

In particular, HTAS detected a higher number of ITDs per patient compared to fragment 59 

analysis, indicating higher sensitivity for subclonal ITDs. Patients with more than one ITD 60 

according to HTAS had a significantly shorter overall and relapse free survival. There was a 61 

close correlation between FLT3-ITD mRNA levels in fragment analysis and variant allele 62 

frequency in HTAS. However, the abundance of long ITDs (≥ 75nt) was underestimated by 63 

HTAS, as the size of the ITD affected the mappability of the corresponding sequence reads. 64 

In summary, this study demonstrates that HTAS is a feasible approach for FLT3-ITD 65 

detection in AML patients, delivering length, position, sequence and mutational burden of this 66 

alteration in a single assay with high sensitivity. Our findings provide insights into the clonal 67 

architecture of FLT3-ITD positive AML and have clinical implications. 68 

  69 
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INTRODUCTION  70 

Muations in the fms-related tyrosine kinase 3 (FLT3) gene are prevalent in newly diagnosed 71 

acute myeloid leukemia (AML) cases, affecting up to 39% patients. Internal tandem 72 

duplications (ITDs) represent the most common type of FLT3 mutation, being most freuquent 73 

in patients with normal karyotype (cytogenetically normal AML, CN-AML) and in patients 74 

positive for the translocation t(6;9)(p23;q34) or t(15;17)(q22;q21) [1-4]. FLT3-ITD is 75 

associated with an unfavorable prognosis due to reduced duration of complete remsission 76 

(CR), shorter event free survival (EFS) and shorter overall survival (OS) [1, 5-7]. The 77 

European Leukemia Net included the FLT3-ITD mutation as prognostic risk factor into a 78 

clinical risk-stratification that may guide physicians in therapy decisions [8, 9]. Patients 79 

carrying FLT3-ITD mutations with high allelic ratio benefit from a more intensive 80 

consolidation treatment such as allogeneic stem cell transplantation [7, 10-12]. Since the 81 

recent approval of the tyrosine kinase inhibitor (TKI) Midostaurin in combination with 82 

induction chemotherapy, FLT3-mutated patients may profit from this targeted treatment. [13-83 

15] FLT3-ITDs are predominately located in exon 14 and 15, affecting the juxtamembrane 84 

domain (JM) and tyrosine kinase domain 1 (TKD1) of the FLT3 receptor [16]. Depending on 85 

the FLT3-ITD insertion site and respective functional domain, differential outcome and 86 

response to treatment with conventional chemotherapy as well as TKIs were observed; 87 

especially non-JM ITDs displayed a resistance to TKIs [10, 16-21]. Although always leading 88 

to an in-frame transcript, FLT3-ITDs vary in length (between three to over 400 nucleotides 89 

(nt)) and sequence [1, 2, 4, 6, 17, 22, 23]. Whether the ITD length has an impact on outcome 90 

remains controversial [1, 22, 24, 25]. However, a prognostic relevance was observed for the 91 

mutant to wild-type (WT) allelic ratio which corresponds to the size of the clone(s) with the 92 

FLT3-ITD. A high allelic burden is associated with poor prognosis (shorter OS, EFS), and 93 

outcome is even worse for patients with a loss of WT FLT3 [1, 4, 6, 16, 17, 26-29]. 94 

Additionally, up to five distinct clones with different FLT3-ITDs were observed per patient 95 

[16]. In light of these findings, the assessment of FLT3-ITD characteristics is of important 96 
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prognostic value. In routine diagnostics, the FLT3-ITD status is assessed by capillary 97 

electrophoresis of PCR-amplified cDNA (hereafter referred to as ‘fragment analysis’) [26]. 98 

However, this assay only provides the length but not the position and the sequence of the 99 

insertion. Therefore, it is attractive to overcome these methodological limitations by the use 100 

of high-throughput amplicon sequencing (HTAS) as an alternative strategy for FLT3-ITD 101 

detection. Techniques based on next generation sequencing (NGS) have the potential to 102 

assess multiple parameters simutaneously with scalable sensitivity [27, 30-32]. Previous 103 

studies already highlighted the potential of FLT3-ITD detection by NGS, especially with 104 

regards to diagnosis and disease monitoring, e.g. minimal residual disease (MRD) detection, 105 

as evaluation of treatment response and early detection of relapse [16, 17, 27, 30-34]. 106 

Establishment of NGS assays in diagnostic routine requires high sensitivity at low costs as 107 

well as fast turn around time and reliable results. To evaluate the applicability and accuracy 108 

of NGS-based FLT3-ITD detection for routine diagnostics, we compared FLT3-ITD detection 109 

by HTAS and fragment analysis in 250 adult FLT3-ITD positive AML patients. 110 

  111 
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RESULTS 112 

HTAS reliably identifies FLT3-ITD subclones of prognostic relevance 113 

For our comparative analysis we selected 250 AML patient samples obtained at initial 114 

diagnosis, all FLT3-ITD positive according to routine diagnostics (Figure 1), as well as 17 115 

FLT3-ITD negative AML samples. All patients were treated on AMLCG trials (AMLCG 1999 116 

[35], AMLCG 2004 [36] or AMLCG 2008 (ClinicalTrials.gov identifier: NCT01382147)) and 117 

received an intensive, high-dose cytarabine based induction therapy. The study cohort 118 

included patients with all cytogenetic aberrations and was not restricted to patients under the 119 

age of 60 years (Table 1). Performing HTAS, we sequenced the same FLT3-ITD mutational 120 

hot-spot region as covered by cDNA fragment analysis using identical primer sites in both 121 

assays (Figure 2 and Table 2). The output of both methods is shown by an exemplary patient 122 

in Figure 3. Overall, HTAS detected a total of 312 FLT3-ITDs in 242 of 250 FLT3-ITD positive 123 

patients (97%), compared to 274 ITDs detected by fragment analysis (Supplementary Table 124 

S1). The median length of ITD measured by HTAS was 51 nt (range: 12-175 nt) at a median 125 

allele frequency of 12.2% (range: 0.5-91.1%). By fragment analysis, the median ITD length 126 

was 54 nt (range: 15-153 nt) at a median FLT3-ITD mRNA level of 0.40 (range: 0.01 – 0.96). 127 

In 11 patients, we observed differences in length between HTAS and routine assays 128 

(fragment analysis or Sanger sequencing using cDNA template) with a median variation in 129 

length of 6 nt (range: 1-45 nt; median ITD size: 66 nt, range: 12-90 nt; n=11/242; 5%). 130 

Validation of the insertion length on the genomic level by targeted sequencing and/or 131 

fragment analysis of amplified gDNA confirmed either the results from HTAS or diagnostic 132 

routine, each in about half of the cases (Supplementary Table S2). In paired samples (HTAS 133 

and Sanger sequencing, n=182), we found identical insertion sites of the dominant ITD in all 134 

patients. The highest number of FLT3-ITDs was detected in the zipper motif of the JM, 135 

followed by the β1-sheet of the TKD1 and then the hinge region of the JM (Figure 4). Neither 136 

the insertion site nor the length of ITDs showed any significant correlations with clinical 137 

outcome (OS, RFS, and CR rate; Supplementary Table S3 and S4). In contrast to other 138 
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studies [16, 37], patients with ITDs in the TKD1 did not show worse clinical outcome 139 

compared to patients with ITDs in the JM domain (Supplementary Figure S1). Using HTAS, 140 

one ITD was detected in 190 (78.5%) patients, two ITDs were detected in 40 patients 141 

(16.5%), three ITDs were detected in nine patients (3.75%) and four ITDs were detected in 142 

three patients (1.2%; Figure 5a). In eight patients, who were tested FLT3-ITD positive in 143 

diagnostic routine, no ITD was detected by HTAS at a VAF above the detection limit (0.5%). 144 

However, in four of these eight patients, HTAS detected an ITD consistent with routine 145 

results regarding length and position at a VAF below the cut-off. According to routine, 146 

another two of these eight patients had each a deletion (three and ten nucleotides) 147 

neighbouring or within the ITD. For the remaining two patients, no information about the 148 

FLT3-ITD mutational burden (FLT3-ITD mRNA level) was available from routine diagnostics. 149 

Furthermore, HTAS missed eight subclonal ITDs each in one patient reported by routine 150 

diagnostics, including three with a length >75 nt (median FLT3-ITD mRNA level: 0.09, range: 151 

0.06-0.25), while 46 additional subclonal ITDs were detected in 34 patients by HTAS only 152 

(median VAF: 1.79%, range: 0.50-19.21%; median ITD-supporting reads: 1759, range: 460-153 

23878). The distribution of ITDs over FLT3 domains was the same in HTAS and Sanger 154 

sequencing with regards to the dominant clone (Supplementary Figure S2). Out of the 46 155 

additional FLT3-ITD clones by HTAS 38 (83%) were validated, ten of which displayed 156 

differences in length compared to the genomic level (targeted sequencing and / or fragment 157 

analysis with gDNA template; Supplementary Table S5). Overall, HTAS detected more ITDs 158 

per patient (mean: 1.27, range: 1-4) compared to fragment analysis (mean: 1.14, range: 1-3; 159 

Figure 5b). In contrast to fragment analysis, HTAS revealed a significantly shorter OS and 160 

RFS for patients with more than one ITD (HTAS: p-value (OS): 0.038 , p-value (RFS): 0.042; 161 

fragment analysis: p-value (OS): 0.230, p-value (RFS): 0.157; compare Figure 6 a and b 162 

versus c and d). However, the CR rate did not show any obvious correlation with the number 163 

of detected ITDs (data not shown). A multivariate analysis, including NPM1 mutation status,  164 

karyotype and number of FLT3-ITD mutations per patient (single versus multiple), did not 165 

show significant correlations with clinical outcome (Supplementary Table S6). However, 166 
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there was a trend for longer RFS associated with single FLT3-ITD mutations detected by 167 

HTAS (p-value: 0.057). A serial dilution of cDNA derived from the heterozygous FLT3-ITD 168 

positive cell line MOLM-13 in cDNA derived from the FLT3-WT cell line HL60 analysed by 169 

both methods confirmed higher sensitivity of HTAS (10-3, ITD-supporting reads: 58-73 with a 170 

coverage of 79,376x to 93,019x) in a 96 sample-setting as compared to fragment analysis 171 

(10-1, Figure 7). Out of 17 control patients which were FLT3-ITD negative according to 172 

routine diagnostics, HTAS detected a very small subclonal ITD (VAF: 0.58%) in one patient 173 

(UPN C-1; Supplementary Table S1). This subclone could not be validated by gDNA-based 174 

fragment analysis (Supplementary Table S5).  175 

HTAS reliably detects small and intermediate insertions but underestimates the 176 

mutational burden of long FLT3-ITDs 177 

The VAF in HTAS showed a strong correlation with the mutational burden detected by 178 

fragment analysis (Pearson: 0.758, p-value: 0.001, n=220; Figure 8). Consistent with 179 

previous reports [26, 38], high FLT3-ITD mRNA levels (>0.5) measured by fragment analysis 180 

showed a significant correlation with shorter relapse-free survival (RFS) and overall survival 181 

(OS) (Supplementary Figures S3a and S3b). This correlation could also be observed for 182 

FLT3-ITD levels by HTAS for RFS and as trend for OS (Supplementary Figures S3c and 183 

S3d). Given that the FLT3-ITD/FLT3-WT ratio based on the sum of all ITD clones is 184 

recommended by the ELN for standard of care [8], we calculated the total FLT3-ITD 185 

mutational burden per patient. Adding the mutational FLT3-ITD burden of ITD subclones 186 

increased the significance of the correlations between ITD load and outcome 187 

(Supplementary Figures S4a-c). This was also evident in multivariate analysis 188 

(Supplementary Table S6). A total FLT3-ITD mRNA load below 50% was an independent 189 

favorable prognostic factor for outcome measured by fragment analysis for both RFS (p-190 

value: 0.005) and OS (p-value: 0.020). For HTAS a low ITD mutation load correlated 191 

significantly with longer RFS in multivariate analysis (p-value: 0.025).  192 
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The VAF levels of FLT3-ITD measured by HTAS were up to 5-times lower than the FLT3-ITD 193 

mRNA level measured by fragment analysis. Interestingly, the difference in mutational 194 

burden between HTAS and fragment analysis increased with ITD length irrespective of clonal 195 

dominance (Spearman: 0.530, p-value: 0.001, n=220; Supplementary Figures S5a and S5b). 196 

Using HTAS, long ITDs were detected on average with lower VAF compared to short ITDs 197 

(Supplementary Figure S5c, Spearman: -0.249, p-value: 0.001, n=312), while fragment 198 

analysis measured FLT3-ITD mRNA levels more accurately, regardless of ITD length, with 199 

only a minor decrease for long ITDs (Supplementary Figure S5d; Spearman: -0.054, p-value: 200 

0.418, n=228). In HTAS, the number of ITD-supporting reads was negatively correlated with 201 

ITD length, while the total number of reads was similar in short and long ITDs (Pearson: 202 

0.309, p-value: 0.001, n=242). This correlation is likely due to the fact that long ITDs were 203 

more difficult to map to the reference sequence. Samples harbouring ITDs with a length <75 204 

nt showed significantly fewer unmapped reads compared to samples harbouring ITDs with a 205 

length >75 nt (Mann-Whitney-U test, p-value: <0.001; Figure 9). The ITD position was also 206 

related to the difference in mutational burden between HTAS and fragment analysis 207 

(Supplementary Figure S6), with longer insertions at cDNA nucleotide positions encoding C-208 

terminal domains of FLT3 (Spearman: 0.536, p-value: 0.001, n=312; Supplementary Figure 209 

S7). Validation of ITDs using gDNA in 43 patient samples furthermore revealed differences in 210 

the FLT3-ITD levels from those measured using cDNA in several cases. Besides the 211 

underestimation of the mutational burden for long ITDs by HTAS, discrepancies might be 212 

attributed to transcriptional imbalance favouring either the WT or the ITD allele. Overall and 213 

in line with published data [23, 39], FLT3-ITD levels measured by HTAS with cDNA template 214 

showed a strong correlation with the genomic levels measured by fragment analysis 215 

(Spearman: 0.846, p-value: <0.001, n=86 ITDs; Supplementary Figure S8a) and targeted 216 

haloplex sequencing (Spearman: 0.752, p-value: <0.001, n=41 ITDs, Supplementary Figure 217 

S8b). Comparison of genomic and transcriptional FLT3-ITD levels measured by fragment 218 

analysis excluded gross methodological differences. However, the distribution pointed 219 

towards a transcriptional imbalance in favour of the ITD allele, consistent with a moderate 220 
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correlation (Spearmann: 0.554, p-value: <0.001, n=40 ITDs, Supplementary Figure S8c). 221 

Internal cell line controls were sequenced in each of the four instrument runs. The FLT3-ITD 222 

positive cell line MOLM-13 displayed the expected FLT3-ITD (size: 21 nt; cDNA position: 223 

1774) [40]. Comparison of the mutational burden in the heterozygous FLT3-ITD positive cell 224 

line MOLM-13 between instrument runs revealed a lower experimental variance in HTAS 225 

(0.17%, mean VAF ± standard deviation: 49.24±0.36) compared to fragment analysis 226 

(4.92%, mean FLT3-ITD mRNA level ± standard deviation: 0.49±0.02; Supplementary Figure 227 

S9), indicating high inter-run reproducibility and accuracy of HTAS.  228 

FLT3-ITD detection by HTAS requires controls to exclude ITD artifacts 229 

We detected ITD artifacts, which were present in the negative control cell line HL60 and the 230 

FLT3-ITD negative patient samples, at VAF levels below our cut-off of 0.5% (Supplementary 231 

Table S7). By manual inspection, these two ITD artifacts were therefore excluded from the 232 

analysis, even if occurring in patient samples at VAFs above the cut-off of 0.5%. This applied 233 

for the artifact ITD at cDNA position 1712 in 148 (61%) of analysed samples (median VAF: 234 

0.99%; range: 0.5 – 4.71%). Furthermore, we identified and excluded a second ITD artifact 235 

within the primer region (cDNA position: 1831-1848), occurring at reference cDNA position 236 

1837 exclusively. This ITD artifact occurred as subclone in 36 patients (15%), at a median 237 

VAF of 0.93% (range: 0.5-3.71%) and a median size of 68 nt (range: 35-107 nt). These ITD 238 

artifacts showed high sequence similarity to the ITD of the predominant clone, however, they 239 

were one nt shorter and displayed 1/20 of the VAF of the original FLT3-ITD (median length: 240 

69 nt, range: 36-108 nt; median VAF: 20.57%, range: 6.38-79.49%, example shown in 241 

Supplementary Table S7). Thus, this points towards a PCR-based mispriming event, similar 242 

to those reported for false-positive calls in multiplex PCR-based NGS approaches [41].  243 

Mutations in other genes do not correlate with ITD position, length or clonality 244 

Individual patients were evaluated for mutations in NPM1, CEBPA, KIT, IDH1/2 and KMT2A-245 

PTD. One hundred nineteen of 182 patients (65%) were positive for an NPM1 mutation, nine 246 
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out of 112 patients (8%) were positive for a CEBPA mutation (three CEBPA-double positive), 247 

two out of 164 (1%) were positive for a KIT mutation, 14 out of 75 (19%) were positive for a 248 

IDH1/2 mutation, 19 out of 233 patients (8%) were positive for a KMT2A-PTD mutation. A 249 

point mutation in the TKD of FLT3 was found in six out of 208 patients (3%). Other 250 

mutations, in amongst others NRAS and RUNX1, occurred in up to four patients per affected 251 

gene. There was no correlation of FLT3-ITD clonality with other co-occurring mutations 252 

(Supplementary Figure S10). Mutations were equally distributed between the patients when 253 

clustered according to FLT3 domains (Table 3). Neither length nor position of FLT3-ITD 254 

correlated with the co-occurrence of other mutations. In agreement with published results 255 

[42], NPM1 mutations correlated with better clinical outcome in our study cohort 256 

(Supplementary Figure S11). Patients positive for FLT3-ITD and NPM1 mutation had a 257 

significantly increased RFS compared to FLT3-ITD positive and NPM1 negative patients (p-258 

value: 0.049). For OS, a similar trend with borderline significance was observed. In line with 259 

published results [35, 43-45], an NPM1 mutation remained an independent favorable 260 

prognostic factor in multivariate analysis (Supplementary Table S6). In contrast, the other 261 

evaluated mutations did not show any correlations with clinical outcome in our FLT3-ITD 262 

positive study cohort. 263 

  264 
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DISCUSSION 265 

In this study, we report the comparison of two different methods to detect FLT3-ITD 266 

mutations in 250 adult FLT3-ITD positive AML patients. Since FLT3-ITD parameters, 267 

including position and mutational burden, are of clinical relevance for risk stratification and 268 

therapy decision [1, 6, 9, 10, 16, 26, 46], a fast and reliable detection method for routine 269 

diagnostics is essential. Therefore, we established a high-throughput FLT3-ITD amplicon 270 

sequencing assay to gain information complementary to the results from routine fragment 271 

analysis. Although HTAS identified nearly all dominant ITD clones that were detected by 272 

routine diagnostics, we encountered technical limitations consistent with previous studies 273 

investigating smaller cohorts [47, 48]. In particular, we found methodological differences 274 

between HTAS and fragment analysis with respect to ITD length and the quantification of the 275 

FLT3-ITD mutational burden. In 5% of our patients the ITD length differed when comparing 276 

HTAS and fragment analysis results. In contrast to other studies with lower patient numbers 277 

[16, 22, 29], the ITD length and position did not correlate with clinical outcome in our study. 278 

Concordant with other reports [16, 17, 49, 50], the presence of ITDs with high mutational 279 

burden correlated with worse prognosis. In multivariate analysis, the FLT3-ITD level below 280 

50% was an independent favorable prognostic factor. In our study, HTAS revealed more 281 

subclonal ITDs compared to fragment analysis and the additional clonal complexity 282 

uncovered by HTAS correlated with adverse clinical outcome. In line with our findings, it was 283 

recently shown that the number of driver mutations has prognostic relevance in MDS and 284 

AML [3, 51, 52]. It has already been suggested by others to consider the number of FLT3-285 

ITD clones per patient for prognostic stratification [38, 49, 53]. Whereas in our analysis the 286 

FLT3-ITD clonality (single versus multiple) did not reach statistical significance in multivariate 287 

analysis, we observed a trend for better outcome associated with single alterations when 288 

evaluated by HTAS. Although the scalable sensitivity of NGS approaches based on read 289 

depth seems attractive, the sensitivity might be limited by false-positive variant calls as 290 

observed in the present study. Therefore, the implementation of appropriate negative 291 
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controls is essential. Moreover, NGS data has to be analyzed carefully to identify and to 292 

exclude ITD artifacts as detected at cDNA position 1837 in more than 15% of our patients.  293 

Besides clonalilty, another important prognostic parameter is the FLT3-ITD mutational 294 

burden. Although there was a significant correlation between FLT3-ITD mRNA level detected 295 

by fragment analysis and variant allele frequency by HTAS, the prognostic relevance of 296 

FLT3-ITD mutational burden was more pronounced when considering the results from 297 

fragment analysis. Of note, in fragment analysis the FLT3-ITD mRNA levels were up to five-298 

fold higher for patient samples compared to the VAF determined by HTAS. Consistent with 299 

results from a study utilizing Pindel software as well as a custom de-novo assembly 300 

approach for FLT3-ITD detection [54], we found that HTAS underestimated the FLT3-ITD 301 

mRNA levels of long ITDs, which are less likely to be mapped correctly compared to shorter 302 

ITDs. In our study, ITDs with a length of more than 75 nt showed inappropriate mapping to 303 

the reference sequence. Interestingly, ITD detection by Pindel was recently shown to be 304 

dependent on the length and on the relative position of the amplicon [47]. Thus, algorithms 305 

for read mapping and variant detection are currently limiting the detection of long ITDs. This 306 

limitation might be overcome with increasing read length, as in the present study 2x250 bp 307 

paired-end reads did not provide sufficient bi-directional coverage of long ITDs. Since the 308 

FLT3-ITD/FLT3-WT ratio, which is of prognostic value [4, 26, 28, 38, 49, 55], is currently 309 

measured more accurately by fragment analysis, ITD quantification by HTAS needs to be 310 

further optimized. On the other hand, detection of ITD subclones by NGS-based approaches 311 

with increased sensitivity contributes to the total FLT3-ITD mutational burden and thus 312 

increases the FLT3-ITD/FLT3-WT ratio. Superior sensitivity of NGS is also relevant for MRD 313 

monitoring in leukemia patients. In our serial dilution, HTAS reached a sensitivity of 10-3 for 314 

the heterozygous FLT3-ITD positive cell line MOLM-13, in a multi-sample sequencing setting 315 

of 96 samples per run, being superior to fragment analysis. Since sensitivity and coverage is 316 

scalable, depending on the number of samples per run, a higher sensitivity can be achieved, 317 

if required, as shown by others [30]. Although FLT3-ITD is a rather variable marker during 318 
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therapy and disease progression, with mutational plasticity between diagnosis and relapse 319 

[56-59], several studies [27, 30, 33] have pointed out the advantages of NGS approaches for 320 

FLT3-ITD MRD assessment over conventional diagnostic applications. Especially, the 321 

recently approved TKI treatment with Midostaurin in combination with induction 322 

chemotherapy for FLT3-mutated AML [13] requires the reliable reveillance of FLT3 mutations 323 

for initial risk assessment, monitoring and therapeutic intervention. In a recent study, FLT3-324 

mutation positive relapsed or refractory AML CHRYSALIS Phase I/II study patients were 325 

analysed for their TKI-response to Gilteritinib (ASP2215; clincal trail number: NCT02014558 326 

[60]). Interestingly, the clinical response correlated with the post-treatment FLT3-ITD MRD 327 

levels, evaluated by NGS [61]. In addition, the identification of the ITD position by NGS 328 

approaches might be of prognostic relevance considering the impact of FLT3-ITD insertion 329 

site on therapy resistance and outcome – for conventional chemotherapy as well as for TKI 330 

treatment [10, 16-21]. However, the clinical relevance of ITD position still remains 331 

controversial [22, 24, 25, 38]. Furthermore, newly arising FLT3 point mutations during clonal 332 

evolution, as for example D835Y and D835G, have prognostic impact as being capable of 333 

mediating TKI resistance [33]. Thus, reads spanning the FLT3 regions JM to TKD2 should be 334 

used in future approaches as sequence read length steadily increases. With multiple 335 

parameters obtained from a single assay and hands-on time for sample preparation and 336 

analysis similar to FLT3-ITD fragment analysis or Sanger sequencing, NGS techniques  337 

become more and more attractive for diagnostic laboratories. Down-scaling of our 96-sample 338 

setting according to the needs in diagnostic routine is feasible when using recently 339 

introduced scalable sequencing instruments and reagents. HTAS may enable more precise 340 

therapy decisions based on the detection of small ITD clones and has a strong pontential for 341 

monitoring of FLT3-directed interventions.  342 

In summary, our study demonstrates the feasibility of HTAS for FLT3-ITD detection in AML. 343 

We show that the sensitive FLT3-ITD subclone detection by HTAS is of prognostic relevance 344 

and has the potential to shed light on the clonal architecture of AML. However, the detection 345 
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of long ITDs and the detection of ITDs in combination with deletions remain challenging. 346 

Increasing read length as well as improving variant detection algorithms will likely help to 347 

overcome these limitations. After methodological improvement, HTAS may serve as a robust 348 

and sensitive tool that could be implemented in future diagnostic routines, essential for a 349 

rapid risk stratification and therapeutic intervention.   350 
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MATERIALS AND METHODS 351 

Patient samples. This study included 267 newly diagnosed patients with AML, of which 250 352 

were FLT3-ITD positive according to routine diagnostics (median age: 59, range: 18–80 353 

years; Figure 1). All patients were treated intensively according to the German Acute Myeloid 354 

Leukemia Cooperative Group (AMLCG) clinical trial study protocols with curative intent 355 

(AMLCG 1999 (ClinicalTrials.gov identifier: NCT00266136) and 2004 as published [35, 36], 356 

AMLCG 2008 (n= 38, ClinicalTrials.gov identifier: NCT01382147)), which were approved by 357 

the institutional review boards of the participating centers. Patients with acute promyelocytic 358 

leukemia (FAB M3) were not treated on these trials, and therefore not analysed in our study. 359 

Informed written consent was obtained from all patients in accordance with the Declaration of 360 

Helsinki. According to the ELN-classification [9] patients clustered into the following groups: 361 

intermediate I (70%), intermediate II (21%) or adverse (9%). A normal karyotype was 362 

observed in 70%, while 30% had a complex aberrant karyotype. After intensive induction 363 

chemotherapy, 142 (56.8%) patients achieved CR, 16 (6.6%) patients achieved CRi, while 364 

34 (13.6%) patients had refractory disease, 35 (14.0%) patients died during induction 365 

therapy, and for 23 (9.1%) patients no remission status was available. Hematopoietic stem 366 

cell transplantation in first CR was performed in 36 (14.4%) patients. After a median follow-367 

up of 50 months (range: 0–136), 97 (68.3%) patients that had reached CR eventually 368 

relapsed and 187 (74.8%) of all patients died. The median RFS and OS observed were 369 

seven and nine months, respectively. The two-year rates of RFS and OS were 20.0% and 370 

25.2%, respectively. Samples were collected at the University Hospital LMU Munich at the 371 

time point of first diagnosis. Mononuclear cells were isolated from bone marrow aspirates or 372 

peripheral blood and subjected to routine diagnostics for conventional cytogenetic and 373 

routine mutational analysis of known molecular markers, including NPM1, CEBPA and FLT3-374 

ITD, according to standard protocols [2, 26, 35, 62]. Patient characteristics and clinical 375 

parameters are provided in Table 1.  376 
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Cell lines. All cell lines were purchased from the German Collection of Microorganisms and 377 

Cell Culture (DSMZ, Braunschweig, Germany), with certified cell authentication using 378 

karyotyping and fluorescent in-situ hybridization, immunophenotyping, and testing of cancer-379 

type specific mutations using RT-PCR analyses [63, 64]. AML cell lines positive for FLT3-ITD 380 

(MOLM-13, ACC-554) and negative for FLT3-ITD (HL60, ACC-3) were cultivated according 381 

to the supplier’s recommendations. Cell lines were tested for a mycoplasma contamination 382 

on a regular basis (MycoAlert Mycoplasma Detection Kit, Lonza Rockland Inc., Rockland, 383 

ME, USA).  384 

DNA and RNA isolation. Extraction of DNA and RNA was performed using standard 385 

procedures. Per sample five million cells were used for DNA or RNA isolation each. gDNA 386 

and total RNA were extracted using the QIAamp DNA Mini Kit (51106, Qiagen) or RNeasy 387 

Mini Kit (74106, Qiagen, Hilden, Germany), respectively, utilizing a QIAcube (Qiagen) 388 

according to the suppliers’ recommendations. Purity of isolated RNA and DNA was verified 389 

by absorbance measurements (260/280 ratios) with a Nanodrop instrument (Peqlab 390 

Biotechnology, Erlangen, Germany).  391 

cDNA synthesis. cDNA synthesis was performed by reverse transcription (RT) using total 392 

RNA extracted out of five million cells, the Superscript II Reverse Transciptase and 393 

corresponding buffer (18064071, Invitrogen – ThermoFisher Scientific, Munich, Germany), 394 

100 mM dNTPs Set (10297-117, Invitrogen – ThermoFisher Sicientific), 25 µM Random 395 

Primer p(ND)6 (1034731, Roche Diagnostics, Penzberg, Germany) and RNAse Inhibitor 396 

(N2615, Promega, Mannheim, Germany). Reactions were performed on a thermocycler 397 

(Peqlab Biotechnology), according to the technical protocol of the Superscript II Reverse 398 

Transciptase (70°C 10 min, 37°C 120 min and 90°C 5 min, 1 cycle each).  399 

FLT3-ITD fragment analysis. For fragment analysis, PCR (amplification for 28 cycles –1 400 

min 95°C, 1 min 60°C, 1 min 72°C) with 1 µL patient or cell line cDNA or gDNA (10 ng/µL) 401 

template, respectively, was performed in a 25 µL reaction volume to amplify FLT3, utilizing 402 
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fluorescently-labelled primers (10 pmol each, Table 2, Metabion, Planegg, Germany) as 403 

published [65, 66] and the Taq PCR Master Mix (201445, Qiagen). Thereafter, 0.5 µL 404 

fragment-length standard (GeneScan (500) ROX Size Standard, 401734, Applied 405 

Biosystems, Foster City CA, USA) and 13.5 µL PCR-grade water were added to 1 µL PCR-406 

product. After initial denaturation of this mixture at 95°C, size-separation by capillary 407 

electrophoresis was performed on a Genetic Analyzer 3500xl (Applied Biosystems) using the 408 

separation matrix POP-6 polymer (4316357, Applied Biosystems). Data analysis was 409 

performed using the Gene-Mapper software (Version 3.5, Thermo Fisher Scientific). FLT3-410 

ITD mutational burden (FLT3-ITD mRNA level respectively) was calculated based on the WT 411 

to ITD ratio equation as previously published [26]. Comparative analysis of detected ITDs 412 

was based on cDNA fragment analysis, whilst gDNA fragment analysis, referred to as g(F), 413 

was performed as validation.  414 

FLT3 amplification and Sanger sequencing. For Sanger sequencing PCR (amplification 415 

for 35 cycles – 1 min 95°C, 1 min 60°C, 1 min 72°C) with 1 µL patient cDNA template was 416 

performed in a 25 µL reaction volume to amplify FLT3, using the FLT3 primers 11F and 12R 417 

(10 pmol each, sequence as described [65]) and Taq PCR Master Mix (201445, Qiagen). 418 

After PCR-product purification with the Qiaquick PCR Purifcation Kit (28106, Qiagen), 419 

bidirectional sequencing was performed with a second round of amplification using the Big 420 

Dye Terminator v1.1 kit (4337451, Life Technologies) and the FLT3 primer 11F and 12R (10 421 

pmol each, sequence as described [65]). Samples were purified using the CentriSep 8 422 

solution and Columns (CS-912, Princeton Separations) and subsequently sequenced using a 423 

Genetic Analyzer 3500xl (Applied Biosystems) according to the manufacturers’ instructions. 424 

Chromatograms were analyzed using Sequencher Software 5.1 (Gene Codes Cooperation, 425 

MI, USA) and the FLT3 cDNA reference sequence (NM_004119.2). 426 

High-throughput FLT3-ITD amplicon sequencing (HTAS) and genomic targeted 427 

sequencing. In case of HTAS, FLT3 amplicons were generated performing PCR (TD58, 428 

amplification for 30 cycles – 30 sec 95°C, 30 sec 58°C, 1 min 72°C) with 1 µL cDNA template 429 



 18 

 

in a 25 µL reaction volume, using the Taq PCR Master Mix Kit (201445, Qiagen) and custom-430 

designed FLT3 cDNA primers (10 pmol each, Table 2). The FLT3 cDNA primers, spanning 431 

the mutational hotspot region (spanning 366 base-pairs (bp)), included a barcode and 432 

Illumina-specific adapter-sequences (Supplementary Table S8), enabling a one-step PCR-433 

protocol for barcoded FLT3-targeted amplification and multiplex-sequencing. As controls, 434 

cDNA from FLT3-ITD positive (MOLM-13) and negative (HL60) human cell lines were 435 

amplified. Correct amplicon fragment size was verified by agarose gel-electrophoresis. The 436 

PCR-product was purified utilizing NucleoFast 96 PCR clean-up plates (743100, Machery-437 

Nagel, Düren, Germany) according to the manufacturers’ instructions. DNA concentration 438 

was measured using the Quant-iT dsDNA Broad Range High Sensitivity Kit (Q33120, 439 

Thermo Fisher Scientific) in compliance with the manufacturer’s protocol, following dilution to 440 

a final concentration of 4 nM (4 fmol/µL). Library preparation was performed according to the 441 

manufacturers’ instructions using the MiSeq Kit v2 500 cycles (MS-102-2003, Illumina, San 442 

Diego CA, USA), while adding PhiX control (PhiX Control v3 Kit, FC-110-3001, Illumina) in a 443 

ratio 4:1 (800 µL library, 200 µL PhiX control). Per library, up to 96 samples were pooled, 444 

adding 10 µL of each 4 nM sample. The cell lines HL60 and MOLM-13 were included in 445 

every instrument run, serving as inter-run FLT3-WT and FLT3-ITD control. Sequencing (2x 446 

250 bp paired end) was performed on a MiSeq Personal Sequencer instrument (Illumina, 447 

San Diego CA, USA) in four independent runs, yielding a median of 79,110 reads per 448 

amplicon (range: 31,996–259,783). For validation purposes genomic targeted sequencing 449 

data, was obtained from a previous study, generated by utilization of an HaloPlex target 450 

enrichment system (Agilent Technologies, Santa Clara, USA) as described previously [3]. 451 

Next generation sequencing data analysis. Raw sequence reads were aligned to the 452 

FLT3 cDNA reference sequence (NM_004119.2) using BWA [67]. Parameters were adjusted 453 

in order to allow the incorporation of long insertions, i.e. minimized gap open and gap 454 

extension penalties, maximum number of gap extensions. Analysis of NGS-data was 455 

performed using the Galaxy platform [68, 69]. Tandem duplications were called using Pindel 456 



 19 

 

(version 0.2.5a7) [70] with a minimum size of 6 bp and a minimum of 10 supporting reads. 457 

Pindel reports left-aligned positions of variants, which is the leftmost possible position of an 458 

alteration. As tandem repeats are two identical and consecutive sequences, Pindel reports 459 

the starting position of the first sequence (i.e. the 5’-template) by default. In order to indicate 460 

the position of the inserted sequence (i.e. the 3’-duplicate), we added the length of the ITD to 461 

the position reported by Pindel. Furthermore, the 5’-UTR region (82 nucleotides), included in 462 

the FLT3 cDNA reference sequence, were substracted from the variant position. Thus, 463 

results from HTAS could be compared to results from Sanger sequencing, which refer to the 464 

coding sequence. The variant allele frequency (VAF) was computed by dividing the number 465 

of supporting reads with the coverage at the insertion site. Minimum cut-off for VAF was set 466 

to 0.5% (HTAS), based on empirical analysis of FLT3-ITD negative control samples, to 467 

exclude any sequencing background noise (non-specific variants). Off-target ITDs and ITDs 468 

which appeared in the FLT3-WT cell line HL60 were excluded from further analysis. Per 469 

sample the median coverage per amplicon was 157,100x (range: 63,890x – 488,300x).  470 

Statistical analysis. SPSS (IBM, version 21.0) or R (GNU GPL, version 3.4.1) software was 471 

used for statistical analysis. Spearman rank correlation was used to examine correlations 472 

between continuous parameters. Two-sided log rank test was used for Kaplan-Meier 473 

diagrams to compute survival curves. Mann-Whitney-U test was performed to test for 474 

differences between groups. Results were considered as significant with a p-value less than 475 

0.05. Univariate and multivariate Cox-Regression analysis was performed to evaluate 476 

prognostic variables for OS and RFS. RFS was calculated from the time span between 477 

diagnosis and relapse [9, 71], failure to achieve a complete remission (CR) [35], last follow-478 

up or death. OS was evaluated from initial diagnosis to last follow up or death. The criteria of 479 

relapse, resistant disease and CR were assigned according to ELN [9]. Cox proportional 480 

hazard model was used to estimate hazard ratios for multivariate analysis. 481 

 482 
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TABLES 782 

Table 1. Patient characteristics. 783 

Characteristics 

cohort size (patients no.)  250 
median age (years; range) 59; 18-80 
sex (m/f) (patients no.; [%]) 121/129; 48/52 
median follow-up (months; range) 50; 0-136 
median overall survival (months; range) 9; 0-136 

Morphologic parameters 
median WBC count (n=243), (leucocytes/mL; range)  48,350; 100 – 391,200 
median BM-blasts (n=229), ([%]; range)  83; 10-100 
median PLT (n=243), (PLT/mL; range)  55,000; 1,220 – 592,000 
median LDH (n=239), (LDH/mL; range)  691; 87-6,251  
  

AML type (n=245) patients (no.) 

de novo 205 
s-AML 27 
t-AML 13 

FAB-type (n=236) patients (no.) 

M0 9 
M1 71 
M2 60 
M3 0 
M4 67 
M5 24 
M6 4 
M7 1 
  

Categories according to ELN (n=246) patients (no.; [%]) 

favourable  0; 0 
intermediate-I  172; 70 
intermediate-II  52; 21 
adverse  22; 9 
  

Karyotype (n=250) patients (no.; [%]) 

Normal 176; 70 
Complex 74; 30 
  

Molecular genetics patients (no.; [%]) 

FLT3-ITD+ (n=250) 250; 100 
NPM1+ (n=189) 118; 47 
CEBPA+ (n=116) 9; 4 
KMT2A-PTD+ (n=241) 20; 8 
 784 

WBC (white blood cell), PLT (platelet counts), BM (bone marrow), LDH (lactate 785 

dehydrogenase), AML (acute myeloid leukemia), MDS (myelodysplastic syndrome), ELN 786 

(European Leukemia Net), FAB (French American British Classification), ITD (internal 787 

tandem duplication), PTD (partial tandem duplication), no. (number). 788 

 789 

 790 



 28 

 

 791 

Table 2. FLT3 primers. 792 

Primer for fragment analysis of FLT3 

forward reverse 

cDNA 5’-FAM-tgt cga gca gta ctc taa aca 
tg-3’ (R5) 

5’-atc cta gta cct tcc caa act c-3’ (R6) 

gDNA 5’-FAM-gca aat tag gta tga aag cca 
gc-3’ (11F) 

5’-cct tca gca ttt tga cgg caa cc-3’ (12R) 
  

Primer for high-throughput amplicon sequencing of FLT3 
forward reverse 

5’-aat gat acg gcg aac aac gag atc tac act ctt 
tcc cta cac gac gct ctt ccg atc t – 
BARCODE– tgt cga gca gta ctc taa aca tg -3’ 

5’ - caa gca gaa gac ggc ata cga gat cgg tct 
cgg cat tcc tgc tga acc gct ctt ccg atc t – 
BARCODE – atc cta gta cct tcc caa act c – 3’ 

 793 

FAM (fluorescein amidite). 794 

 795 

Table 3. FLT3-ITD localization and co-occurrence of mutations in other cancer related 796 

genes. 797 

mutation juxtamembrane domain  tyrosine kinase domain total 
 

switch 

motif 
zipper 

motif 
hinge 

region 
beta1-sheet NBL  

FLT3-PM (TKD) 0 0(2) 3 2 1(1) 6(3) 

NPM1  3 58 18 29 7 115 

CEBPA 0 4 1 3 1 9 

KIT  0 1 1 0 0 2 

IDH1/2 0 7 2 5 0 14 

KMT2A-PTD 0 10 2 6 1 19 

FLT3-ITDs 4 128 35 62 13 242 

 798 

Distribution of concurrent mutations among the patients, clustered according to ITD location 799 

in functional FLT3 domain (n=242, according to FLT3-ITD position of the dominant clone by 800 

high-throughput amplicon sequencing (HTAS)). PM (point mutations; including D835N and 801 

V592L), ITD (internal tandem duplication), TKD (tyrosine kinase domain), NBL (nuclear 802 

binding loop), PTD (partial tandem duplication), no. (number). 803 

  804 
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FIGURE LEGENDS  805 

Figure 1. Study design. Flow chart illustrating the selection of patient samples. *Residual 806 

patients were lost during follow-up. HTAS (high-throughput amplicon sequencing), ITD 807 

(internal tandem duplication). 808 

Figure 2. FLT3 mutations. Schematic illustration displaying AML-specific FLT3 mutations 809 

according to their receptor domain localization (modified from Opatz et al. [72]). FLT3-ITDs 810 

are located within the juxtamembrane (JM) and tyrosine kinase domain (TKD) 1, whereas 811 

point mutations are frequently found in TKD1 and TKD2. FLT3 cDNA region covered by 812 

HTAS and fragment analysis is indicated by the primer binding marks (R5 and R6). ITD 813 

(internal tandem duplication), JM-B (JM binding motif), JM-S (JM switch motif), JM-Z (JM 814 

zipper motif), HR (hinge region), β1 (β1-sheet), NBL (nucleotide binding loop), β2 (β2-sheet). 815 

Figure 3. FLT3-ITD detection output by fragment analysis and by HTAS. Exemplary 816 

results are shown for UPN 42 a) Electropherogram displays FLT3 amplicon signals as 817 

fragment peaks, with the distance of the peak positions corresponding to the size of the ITD 818 

and the area under the peak curves used for calculation of the mutational burden. b) Tabular 819 

representation of variant detection results from HTAS in VCF format (Pindel output). WT 820 

(wild type), ITD (internal tandem duplication), Chrom (Chromosome), Pos (cDNA position), 821 

Ref (reference sequence), Alt (alternative sequence), VAF (variant allele frequency), 822 

*computed separately and added manually.  823 

Figure 4. FLT3-ITDs assigned to functional domains. Distribution of detected FLT3-ITDs 824 

by HTAS across functional domains according to insertion site and clone size. ITD (internal 825 

tandem duplication), JM (juxtamembrane), TKD (tyrosine kinase domain), NBL (nuclear 826 

binding loop).  827 

Figure 5. FLT3-ITD subclone detection. a) Number of detected FLT3-ITDs per patient 828 

(n=250), comparing HTAS to fragment analysis. b) Number of detected FLT3-ITDs per 829 
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method, comparing HTAS to fragment analysis according to clonal size. HTAS (high-830 

throughput amplicon sequencing), ITD (internal tandem duplication), sub (subclone).  831 

Figure 6. Impact of the number of FLT3-ITD clones on relapse-free and overall survival. 832 

a) Relapse-free and b) overall survival of patients according to number of FLT3-ITD clones 833 

detected by HTAS with cDNA template (n=242; one FLT3-ITD per patient (n=191), more than 834 

one FLT3-ITD per patient (n=51)). c) Relapse-free and d) overall survival of patients 835 

according to number of FLT3-ITD clones detected by fragment analysis with cDNA template 836 

(n=242; one FLT3-ITD per patient (n=212), more than one FLT3-ITD per patient (n=30). 837 

HTAS (high-throughput amplicon sequencing), ITD (internal tandem duplication).  838 

Figure 7. Sensitivity of FLT3-ITD detection by HTAS compared to fragment analysis. 839 

FLT3-ITD from the heterozygous FLT3-ITD positive cell line MOLM-13 detected after serial 840 

dilution in the FLT3-WT cell line HL60 by HTAS or fragment analysis using cDNA (n=3; 841 

log(10); 95% confidence interval). Cell line cDNA was derived from five million cells each. 842 

For amplification 1µL cDNA template of each serial dilution was used. The dashed line 843 

represents the cut-off defined for ITD-analysis in patient samples. HTAS (high-throughput 844 

amplicon sequencing), ITD (internal tandem duplication).  845 

Figure 8. FLT3-ITD mutational burden measured by fragment analysis and HTAS. 846 

Correlation of the FLT3-ITD mRNA level according to fragment analysis or according to the 847 

variant allele frequency in HTAS with cDNA template (n=220). HTAS (high-throughput 848 

amplicon sequencing), ITD (internal tandem duplication).  849 

Figure 9. Mappability of FLT3-ITD sequence reads. Mappability of sequence reads from 850 

HTAS according to length of ITD. P-value was computed using Mann-Whitney-U test. nt 851 

(nucleotide), HTAS (high-throughput amplicon sequencing), ITD (internal tandem 852 

duplication). 853 
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Supplementary Table S1: FLT3-ITDs per patient detected by HTAS and fragment analysis, 

displaying ITD position, size, length and mutational burden.  

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

1 1804 NA 69 69 NA 0.59 1.57 no 

2 
1781 NA 66 65 NA 0.82 5.30 no 

neg NA neg 112 NA neg 6.37 yes (F) 

3 1840 1843 111 111 111 0.96 13.34 no 

4 
1793 NA 66 66 NA 1.01 1.96 no 

1800 NA 57 57 NA 0.64 0.99 no 

5 1829 1831 75 75 75 1.02 4.94 no 

6 1805 1804 87 NA 87 1.12 NA no 

7 1806 NA 63 63 NA 1.23 3.75 no 

8 1839 NA 66 63 NA 1.38 3.66 no 

9 1844 1882 153 NA 153 1.62 NA no 

10 1810 1813 39 39 39 1.85 6.54 no 

11 
1793 NA 24 24 NA 1.92 4.47 no 

1795 NA 21 neg NA 0.50 neg yes (H) 

12 1811 1813 69 NA 69 2.01 NA no 

13 

1842 1843 54 NA 54 2.29 NA no 

1861 1867 78 NA 90 0.92 NA no 

1804 neg 27 NA neg 0.81 NA yes (H) 

1802 neg 54 NA neg 0.68 NA yes (H) 

14 1828 1831 93 93 93 2.32 15.54 no 

15 
1794 1813 24 24 24 21.77 35.36 no 

1831 neg 102 102 neg 2.77 20.51 no 

16 1782 1783 63 63 63 2.92 11.50 no 

17 1860 1867 81 NA 81 3.35 NA no 

18 1797 NA 18 18 NA 3.85 5.75 no 

19 

1825 1828 99 99 99 4.10 50.00 no 

1839 neg 57 neg neg 2.50 neg yes (H) 

1820 neg 33 neg neg 4.52 neg yes (H) 

20 1803 1810 72 72 72 4.14 22.12 no 

21 1836 NA 51 51 NA 4.46 23.55 no 

22 
1799 1810 24 24 24 4.71 17.01 no 

1876 neg 93 93 neg 5.96 6.89 no 

23 1832 1834 63 63 63 4.93 25.93 no 

24 
1789 NA 63 63 NA 5.05 37.66 no 

1787 NA 33 neg NA 0.94 neg yes (H) 

25 1862 1864 78 NA 78 5.20 NA no 

26 1794 1801 78 NA 78 5.21 NA no 

27 1830 NA 51 51 NA 5.44 19.87 no 

28 1802 1804 54 54 54 5.49 11.66 no 

29 1797 NA 78 78 NA 5.64 25.93 no 

30 1783 1786 33 NA 33 5.80 NA no 

31 1869 1870 87 87 87 5.86 37.97 no 

continued on next page 2 
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patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

32 
1836 1837 96 NA 96 5.91 NA no 

1796 neg 27 NA neg 4.70 NA yes (H) 

33 1797 1798 51 NA 51 5.94 NA no 

34 1852 1855 63 63 63 5.95 18.57 no 

35 1807 1810 60 60 60 6.06 12.20 no 

36 1794 1795 24 24 24 6.14 10.31 no 

37 

1841 NA 99 99 NA 6.38 36.39 no 

1794 NA 48 48 NA 45.95 36.39 no 

neg NA neg 30 NA neg 22.12 yes (F) 

38 1838 1840 60 60 60 6.43 27.33 no 

39 1794 1795 78 NA 78 6.77 NA no 

40 1777 NA 63 63 NA 6.79 26.09 no 

41 1818 NA 36 36 NA 6.89 13.12 no 

42 1839 NA 108 108 NA 6.93 68.35 no 

43 1838 1840 105 105 105 6.97 41.59 no 

44 1788 1789 57 57 57 7.15 43.98 no 

45 1825 NA 60 60 NA 7.20 15.47 no 

46 1823 1825 96 NA 96 7.29 NA no 

47 
1790 1792 72 72 72 7.48 39.02 no 

1824 neg 63 63 neg 7.33 47.89 no 

48 1793 1795 57 57 57 7.50 13.79 no 

49 
1801 1804 69 NA 69 7.79 NA no 

1799 neg 30 NA neg 5.19 NA yes (H) 

50 

1830 1831 90 90 90 7.94 33.20 no 

1838 neg 60 neg neg 5.26 neg yes (H) 

1793 neg 24 neg neg 0.79 neg yes (H) 

1814 neg 69 neg neg 0.69 neg yes (H) 

51 
1796 NA 27 27 NA 8.27 13.42 no 

1805 NA 96 96 NA 0.58 4.76 no 

52 1829 1831 84 84 84 8.29 24.87 no 

53 1792 1795 63 63 63 8.29 31.93 no 

54 1838 1840 102 102 102 8.63 7.32 no 

55 
1831 1834 60 60 60 8.72 22.84 no 

1838 1840 63 63 63 4.85 16.11 no 

56 1823 1825 39 39 39 8.73 15.97 no 

57 1793 1795 24 24 24 8.89 13.04 no 

58 

1786 1789 57 57 57 8.91 36.51 no 

1786 neg 21 neg neg 6.93 neg yes (H) 

1809 neg 27 neg neg 5.09 neg yes (H) 

59 1836 1837 66 66 66 8.99 17.08 no 

60 1843 1834 117 117 117 9.03 45.95 no 

61 1817 NA 102 102 NA 9.19 37.89 no 

62 1794 NA 21 21 NA 9.26 14.68 no 

63 1804 1807 48 48 48 9.33 37.38 no 

64 1817 1819 99 NA 99 9.40 NA no 

continued on next page 
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continued on next page 

Supplementary Table S1 continued.  

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

65 1796 1798 24 NA 24 9.60 NA no 

66 1793 NA 51 51 NA 9.67 20.06 no 

67 1790 1792 15 15 15 9.72 12.28 no 

68 1856 1858 66 66 66 9.83 30.75 no 

69 1802 1804 87 87 87 9.87 28.21 no 

70 1789 1792 30 30 30 9.91 15.54 no 

71 

1839 NA 102 102 NA 9.93 27.27 no 

1805 NA 60 60 NA 10.83 34.90 no 

1827 NA 72 neg NA 0.52 neg yes (H) 

72 1810 NA 21 21 NA 9.99 14.89 no 

73 1803 NA 24 24 NA 10.17 16.53 no 

74 

1841 1843 72 72 72 10.44 8.26 no 

1819 neg 33 neg neg 2.75 neg yes (H) 

1805 neg 30 neg neg 2.31 neg yes (H) 

75 1788 1789 75 75 75 10.77 23.49 no 

76 1804 NA 72 72 NA 11.09 25.30 no 

77 
1861 1855 126 126 126 11.23 31.27 no 

1792 neg 78 neg neg 0.64 neg yes (H) 

78 1834 1837 102 102 102 11.24 45.56 no 

79 

1829 1831 51 51 51 11.41 15.18 no 

1795 1798 36 36 36 7.02 28.16 no 

1819 neg 30 neg neg 0.78 neg yes (H) 

80 

1838 1840 30 30 30 11.44 20.32 no 

1796 1798 21 21 21 9.65 21.45 no 

1804 neg 60 neg neg 0.93 neg yes (H) 

1823 neg 51 neg neg 0.52 neg yes (H) 

81 1825 1828 51 NA 51 11.66 NA no 

82 1834 1837 93 93 93 11.81 16.60 no 

83 
1802 1804 75 75 75 11.93 49.52 no 

1834 neg 60 neg neg 0.54 neg yes (H) 

84 
1781 NA 30 30 NA 12.01 47.62 no 

neg NA neg 15 NA neg 7.75 yes (F) 

85 1797 1798 63 NA 63 12.03 NA no 

86 1806 NA 60 60 NA 12.10 24.24 no 

87 1844 1846 102 102 102 12.13 32.80 no 

88 

1791 1804 21 21 21 12.16 46.67 no 

1838 neg 36 36 neg 11.27 31.13 no 

1801 neg 21 neg neg 8.54 neg yes (H) 

89 1818 NA 60 66 NA 12.21 40.83 no 

90 1809 1810 27 27 27 12.27 18.17 no 

91 1799 1801 63 NA 63 12.38 NA no 

92 
1815 1816 30 30 30 12.64 7.49 no 

1793 neg 24 24 neg 3.82 20.70 no 

93 1787 1789 18 18 18 12.76 17.15 no 

94 1784 1786 69 NA 69 12.82 NA no 
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Supplementary Table S1 continued.  

continued on next page 

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

95 
1788 1789 39 39 39 12.84 18.50 no 

1825 neg 18 neg neg 0.81 neg yes (H) 

96 
1797 NA 42 42 NA 12.87 25.21 no 

neg NA neg 66 NA neg 9.17 yes (F) 

97 1817 1819 36 NA 36 12.93 NA no 

98 1784 1786 69 69 69 13.15 45.83 no 

99 
1838 1837 45 NA 45 13.24 NA no 

1803 neg 15 NA neg 3.82 NA yes (H) 

100 1867 1864 129 129 129 13.40 39.76 no 

101 1848 NA 90 90 NA 13.50 44.90 no 

102 1836 1837 90 90 90 13.54 40.93 no 

103 
1843 1846 63 63 63 13.63 29.63 no 

1784 neg 39 neg neg 0.89 neg yes (H) 

104 

1809 neg 30 30 neg 13.90 22.12 no 

1824 1828 93 93 93 10.33 19.55 no 

1833 neg 45 45 neg 3.81 13.94 no 

105 

1818 1819 36 36 36 14.01 26.79 no 

1808 neg 51 neg neg 2.26 neg yes (H) 

1819 neg 72 neg neg 1.85 neg yes (H) 

106 

1826 1828 51 51 51 14.13 43.57 no 

1840 1843 42 42 42 9.87 40.12 no 

1829 neg 78 neg neg 0.64 neg yes (H) 

107 1798 NA 21 21 NA 14.31 27.59 no 

108 1797 1798 81 81 81 14.31 47.09 no 

109 
1814 1814 21 21 21 14.31 16.94 no 

1835 neg 57 57 neg 10.89 23.08 no 

110 1830 1831 54 54 54 14.32 26.25 no 

111 1825 1828 87 87 87 14.82 44.44 no 

112 1864 NA 75 75 NA 14.86 50.00 no 

113 1839 NA 84 84 NA 14.96 35.98 no 

114 1840 1843 60 60 60 14.99 33.16 no 

115 1796 1798 21 21 21 15.04 21.26 no 

116 
1804 1807 18 18 18 15.80 42.20 no 

1778 neg 42 neg neg 0.62 neg yes (H) 

117 1834 1837 60 60 60 15.84 25.54 no 

118 1841 1843 66 NA 66 15.92 NA no 

119 1840 1843 90 90 90 16.09 43.91 no 

120 
1803 1804 30 30 30 16.34 27.01 no 

1793 1795 24 24 24 13.67 25.37 no 

121 1799 1801 30 30 30 16.35 26.56 no 

122 1841 NA 72 72 NA 16.56 22.53 no 

123 1793 NA 24 24 NA 16.71 23.02 no 

124 
1793 1795 24 24 24 16.92 19.35 no 

1886 1888 114 114 114 2.60 27.90 no 

125 1787 1789 45 45 45 17.07 29.43 no 
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Supplementary Table S1 continued.  

continued on next page 

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

126 1770 1771 48 NA 48 17.09 NA no 

127 1814 1816 18 18 18 18.77 29.18 no 

128 
1805 1807 21 21 21 18.83 31.97 no 

1856 1858 75 75 75 0.51 28.98 no 

129 1847 NA 75 75 NA 19.16 36.67 no 

130 

1849 1819 45 45 45 19.23 32.89 no 

1817 neg 45 neg neg 2.00 neg yes (H) 

1809 neg 75 neg neg 1.53 neg yes (H) 

131 
1793 1795 57 NA 57 19.38 NA no 

1794 neg 24 NA neg 3.11 NA yes (H) 

132 1830 1831 54 54 54 19.42 35.40 no 

133 1839 1840 96 96 96 19.62 49.11 no 

134 1808 1810 45 45 45 19.65 32.25 no 

135 
1833 1834 51 51 51 19.78 43.28 no 

1832 1825 87 78 78 9.77 24.30 no 

136 1793 1795 24 24 24 19.99 57.63 no 

137 
1799 1801 30 30 30 20.11 32.75 no 

1795 neg 36 neg neg 9.91 neg yes (H) 

138 1838 1840 69 69 69 21.52 42.73 no 

139 
1792 1795 27 27 27 21.73 30.65 no 

neg neg neg 96 neg neg 24.59 yes (F) 

140 1868 NA 114 114 NA 2.50 42.63 no 

141 1787 1789 18 18 18 21.78 32.20 no 

142 1800 NA 24 24 NA 21.82 50.15 no 

143 1823 1819 78 78 78 21.82 39.94 no 

144 1807 1810 63 63 63 21.95 39.06 no 

145 1842 1843 108 NA 108 22.05 NA no 

146 1782 1783 27 27 27 22.31 32.61 no 

147 1840 1843 69 69 69 22.34 50.93 no 

148 1826 1828 57 57 57 22.62 39.10 no 

149 

1795 1798 36 NA 36 23.07 NA no 

1792 neg 21 NA neg 4.22 NA yes (H) 

1853 neg 72 NA neg 0.50 NA yes (H) 

150 1804 1807 30 30 30 23.07 35.94 no 

151 1843 1846 60 60 60 23.36 43.63 no 

152 1847 1849 66 66 66 23.44 50.25 no 

153 1839 NA 60 60 NA 23.62 50.00 no 

154 1794 1795 60 NA 60 23.64 NA no 

155 1786 1789 27 27 27 23.74 28.88 no 

156 
1827 NA 33 33 NA 23.87 44.48 no 

neg NA neg 110 NA neg 6.54 yes (F) 

157 1800 1802 54 54 54 23.92 45.50 no 

158 1839 NA 51 45 NA 23.93 45.86 no 

159 1838 NA 36 36 NA 24.27 40.26 no 

160 1830 1831 57 57 57 24.50 42.43 no 
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Supplementary Table S1 continued.  

continued on next page 

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

161 
1826 NA 51 51 NA 24.98 27.54 no 

1817 NA 78 78 NA 1.60 11.89 no 

162 

1837 1840 66 66 66 25.01 49.55 no 

1834 neg 93 neg neg 2.74 neg yes (H) 

1792 neg 45 neg neg 0.58 neg yes (H) 

163 1792 1795 21 21 21 25.05 34.77 no 

164 1821 1822 42 42 42 25.53 50.52 no 

165 1793 1795 48 NA 48 25.71 NA no 

166 1836 NA 48 48 NA 25.80 50.47 no 

167 
1785 NA 24 24 NA 26.71 29.78 no 

1804 NA 18 18 NA 5.47 50.42 no 

168 1841 1843 57 NA 57 26.93 NA no 

169 1822 1825 39 NA 39 26.95 NA no 

170 1839 1840 63 63 63 26.97 50.74 no 

171 1792 1795 54 NA 54 27.30 NA no 

172 1818 NA 72 72 NA 27.58 53.92 no 

173 
1802 1804 57 57 57 27.59 32.43 no 

1848 neg 108 neg neg 0.60 neg yes (H) 

174 1795 1798 60 60 60 27.96 49.70 no 

175 1797 1798 27 NA 27 28.11 NA no 

176 1811 1812 21 NA 21 28.26 NA no 

177 1793 1795 72 72 72 28.39 86.48 no 

178 1795 NA 51 51 NA 28.44 40.41 no 

179 1802 1804 63 63 63 28.83 50.27 no 

180 1783 1786 42 42 42 29.03 41.55 no 

181 1809 1810 30 NA 30 29.27 NA no 

182 
1823 1825 75 75 75 29.40 35.32 no 

1787 neg 18 neg neg 0.96 neg yes (H) 

183 
1805 1807 36 36 36 29.98 43.15 no 

1797 neg 24 neg neg 3.23 neg yes (H) 

184 1793 1795 24 24 24 30.42 45.95 no 

185 1791 1792 51 51 51 30.42 49.75 no 

186 1797 1798 51 NA 51 31.03 NA no 

187 1825 NA 54 54 NA 31.08 50.00 no 

188 1792 1795 33 33 33 31.11 46.06 no 

189 1778 1780 33 33 33 31.76 47.64 no 

190 1793 NA 24 24 NA 31.84 44.17 no 

191 1812 NA 33 33 NA 31.91 49.57 no 

192 1819 NA 36 36 NA 32.15 48.85 no 

193 1792 NA 39 39 NA 32.28 48.72 no 

194 1837 1840 108 NA 108 32.42 NA no 

195 1810 1813 39 39 39 32.43 46.61 no 

196 1839 1840 36 36 36 32.85 47.31 no 

197 1805 1807 36 36 36 32.88 46.64 no 
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Supplementary Table S1 continued.  

continued on next page 

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

198 
1793 NA 18 15 NA 33.12 61.98 no 

neg NA neg 48 NA neg 5.66 yes (F) 

199 1821 1822 27 27 27 33.43 45.74 no 

200 1781 1795 12 24 24 33.75 50.98 no 

201 1808 1810 33 33 33 34.00 49.49 no 

202 1787 1789 18 18 18 34.46 41.18 no 

203 1805 1807 21 21 21 34.68 48.32 no 

204 1787 NA 18 18 NA 34.72 48.37 no 

205 1808 1810 27 27 27 34.82 45.05 no 

206 
1819 1822 45 45 45 34.96 60.06 no 

1843 neg 54 neg neg 3.89 neg yes (H) 

207 1801 1804 21 21 21 36.58 49.55 no 

208 1788 1789 36 36 36 36.99 48.45 no 

209 1771 NA 33 33 NA 37.02 50.00 no 

210 1783 NA 33 33 NA 37.06 47.45 no 

211 

1836 1837 81 81 81 37.31 72.77 no 

1836 neg 53 neg neg 11.06 neg yes (H) 

1866 neg 175 neg neg 1.72 neg yes (H) 

212 1800 1801 21 21 21 37.60 48.72 no 

213 1809 NA 15 15 NA 37.63 46.47 no 

214 1792 1795 42 NA 42 38.60 NA no 

215 1787 1789 60 60 60 38.76 96.15 no 

216 1773 1774 27 NA 27 39.75 NA no 

217 1830 1831 27 27 27 40.94 43.28 no 

218 
1841 1843 60 60 60 42.35 72.50 no 

1793 neg 24 neg neg 5.43 neg yes (H) 

219 1794 1795 51 51 51 44.55 56.52 no 

220 
1798 1801 48 48 48 47.08 96.15 no 

1826 neg 90 neg neg 19.21 neg yes (H) 

221 1838 1840 81 NA 81 48.06 NA no 

222 1794 1795 54 NA 54 48.17 NA no 

223 1826 1828 57 57 57 48.46 69.83 no 

224 1809 NA 33 33 NA 50.73 68.35 no 

225 1838 1840 36 36 36 50.85 69.81 no 

226 1795 1795 21 NA 66 52.06 NA no 

227 1827 1828 33 33 33 53.86 76.61 no 

228 
1784 1786 30 NA 30 58.71 NA no 

1843 1846 72 NA 72 7.70 NA no 

229 1826 1828 90 90 90 59.62 88.95 no 

230 1808 1810 51 51 51 60.04 79.38 no 

231 1830 1831 27 27 27 63.68 64.41 no 

232 1779 1780 36 36 36 64.18 81.35 no 

233 
1801 1804 21 21 21 66.13 79.46 no 

1796 neg 21 neg neg 0.58 neg yes (H) 

234 1792 NA 54 54 NA 70.94 75.83 no 



Supplementary Table S1 continued.  

Underlined ITD lengths highlight those which were not in-frame. Bold and italic ITD lengths 

highlight those which were different by HTAS and fragment analysis / Sanger sequencing.  Values in 

light grey and brackets were detected by HTAS below the VAF cut-off level (< 0.5%). UPN (unique 

patient number), C- (control, assessed FLT3-ITD negative according to routine diagnostics), HTAS 

(high-throughput amplicon sequencing), F (fragment analysis using cDNA), S (Sanger sequencing), 

nt (nucleotide), NA (not available), neg (negative, not detected).  

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] exclusively 

HTAS S HTAS F S HTAS F 

235 1839 1840 57 57 57 71.60 84.62 no 

236 
1837 NA 57 57 NA 75.57 92.88 no 

neg NA neg 24 NA neg 17.50 yes (F) 

237 1841 1843 60 NA 60 79.49 NA no 

238 1801 1804 60 NA 60 80.19 NA no 

239 1798 NA 33 33 NA 84.02 90.79 no 

240 1798 1843 33 66 66 84.02 42.26 no 

241 1797 1798 42 42 42 90.46 95.79 no 

242 1793 1795 24 24 24 91.08 96.15 no 

243 (1840) NA (102) 102 NA (0.46) 1.96 yes (F) 

244 neg 1784 neg 3 3 neg 41.42 yes (F) 

245 neg NA neg 10 NA neg 48.90 yes (F) 

246 neg NA neg 84 NA neg 6.54 yes (F) 

247 neg 1813 neg NA 57 neg NA yes (F) 

248 (1794) NA (78) 78 NA (0.22) 2.25 yes (F) 

249 (1788) 1783 (87) NA 81 (0.34) NA yes (F) 

250 (1833) 1834 (78) NA 78 (0.35) NA yes (F) 

C-1 1804 neg 30 neg neg 0.58 neg yes (H) 
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Supplementary Table S2. Validation of FLT3-ITD length for cases displaying length 

differences between  HTAS and fragment analysis.  

Underlined ITD lengths highlight those which were not in-frame. Bold and italic ITD lengths 

highlight those which were different by HTAS and gDNA fragment analysis / targeted genome 

sequencing. UPN (unique patient number), HTAS (high-throughput amplicon sequencing), F 

(fragment analysis using cDNA), S (Sanger sequencing), T(g) (targeted haloplex sequencing 

using gDNA), F(g) (fragment analysis using gDNA), nt (nucleotide), NA (not available), neg 

(negative, not detected).    

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] validated 

length 
HTAS S T(g) HTAS F  S T(g) F(g) HTAS F T(g) F(g) 

2 1781 NA NA 66 65 NA NA 66 0.82 5.30 NA 2.53 HTAS 

8 1839 NA NA 66 63 NA NA 66 1.38 3.66 NA 1.67 HTAS 

13 1861 1867 NA 78 NA 90 NA 78 0.92 NA NA 2.82 HTAS 

89 1818 NA NA 60 66 NA NA NA 12.21 40.83 NA NA NA 

135 1832 1825 1824 87 78 78 78 78 9.77 24.30 9.30 21.88 F 

158 1839 NA NA 51 45 NA NA 45 23.93 45.86 NA 1.09 F 

198 1793 NA NA 18 15 NA NA 18 33.12 61.98 NA 26.63 HTAS 

200 1781 1795 1794 12 24 24 24 24 33.75 50.98 40.33 44.13 F 

226 1795 1795 NA 21 NA 66 NA 66 52.06 NA NA 57.90 F 

240 1798 1843 NA 33 66 66 NA 66 84.02 42.26 NA 39.80 F 

249 (1788) 1783 NA (87) NA 81 NA neg (0.34) NA NA neg NA 
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patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] 

validated 

HTAS T(g) HTAS T(g) F(g) HTAS T(g) F(g) 

11 1795 neg 21 neg 15 0.50 neg 0.99 (yes) 

13 
1804 neg 27 neg 27 0.81 neg 1.09 yes 

1802 neg 54 neg 24 0.68 neg 0.60 (yes) 

19 
1839 NA 57 NA 57 2.50 NA 3.66 yes 

1820 NA 33 NA 33 4.52 NA 20.57 yes 

24 1787 NA 33 NA neg 0.94 NA neg no 

32 1796 NA 27 NA 27 4.70 NA 6.37 yes 

49 1799 1800 30 30 30 5.19 10.83 10.31 yes 

50 

1838 1837 60 60 60 5.26 13.53 17.15 yes 

1793 1794 24 24 24 0.79 1.56 2.15 yes 

1814 1815 69 69 69 0.69 1.25 1.77 yes 

58 
1786 1788 21 21 21 6.93 14.40 11.82 yes 

1809 1810 27 27 27 5.09 8.90 11.03 yes 

71 1827 NA 72 NA 72 0.52 NA 2.44 yes 

74 
1819 1820 33 33 33 2.75 2.02 3.48 yes 

1805 1806 30 30 30 2.31 1.52 5.12 yes 

77 1792 1794 78 78 78 0.64 0.87 1.96 yes 

79 1819 NA 30 NA 30 0.78 NA 1.67 yes 

80 
1804 NA 60 NA neg 0.93 NA neg no 

1823 NA 51 NA neg 0.52 NA neg no 

83 1834 neg 60 neg neg 0.54 neg neg no 

88 1801 NA 21 NA 12 8.54 NA 1.38 (yes) 

95 1825 NA 18 NA 51 0.81 NA 0.99 (yes) 

99 1803 NA 15 NA 15 3.82 NA 7.41 yes 

103 1784 neg 39 neg 39 0.89 neg 1.09 yes 

105 
1808 1809 51 51 51 2.26 2.03 4.67 yes 

1819 1821 72 72 72 1.85 1.58 5.66 yes 

106 1829 NA 78 NA 78 0.64 NA 1.38 yes 

116 1778 1779 42 42 42 0.62 3.20 6.80 yes 

Supplementary Table S5: Validation of subclonal FLT3-ITDs detected by HTAS exclusively.  

continued on next page 
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Supplementary Table S5 continued. 

Underlined ITD lengths highlight those which were not in-frame. Bold and italic ITD lengths highlight 

those which were different by HTAS and gDNA fragment analysis / targeted genome sequencing. UPN 

(unique patient number), C- (control), HTAS (high-throughput amplicon sequencing), T(g) (targeted 

haloplex sequencing using gDNA), F(g) (fragment analysis using gDNA), nt (nucleotide), NA (not 

available), neg (negative, not detected).    

patient 

(UPN) 

FLT3-ITD 

cDNA position length [nt] mutational burden [%] 

validated 

HTAS T(g) HTAS T(g) F(g) HTAS T(g) F(g) 

130 
1817 neg 45 neg neg 2.00 neg neg no 

1809 neg 75 neg neg 1.53 neg neg no 

131 1794 1797 24 24 24 3.11 1.40 3.29 yes 

137 1795 1800 36 36 36 9.91 13.87 19.49 yes 

149 
1792 NA 21 NA 21 4.22 NA 1.28 yes 

1853 NA 72 NA neg 0.50 NA neg no 

162 
1771 1800 93 30 57 2.74 1.37 1.28 (yes) 

1792 1789 45 45 45 0.58 2.86 3.20 yes 

173 1848 neg 108 neg 105 0.60 neg 5.66 (yes) 

182 1787 neg 18 neg NA 0.96 neg NA no 

183 1797 NA 24 NA 24 3.23 NA 9.75 yes 

206 1843 1837 54 54 54 3.89 4.90 9.50 yes 

211 
1836 neg 53 neg 165 11.06 neg 18.70 (yes) 

1866 1838 175 175 174 1.72 2.60 90.01 (yes) 

218 1793 1794 24 24 24 5.43 10.29 11.74 yes 

220 1826 NA 90 NA 39 19.21 NA 8.00 (yes) 

233 1796 neg 21 neg 12 0.58 neg 3.10 (yes) 

C-1 1804 NA 30 NA neg 0.58 NA neg no 

13 
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The new and recurrent FLT3 
juxtamembrane deletion mutation 
shows a dominant negative effect 
on the wild-type FLT3 receptor
Nadine sandhöfer1,2,3,*, Julia Bauer1,*, Katrin Reiter1,2,3, Annika Dufour1, Maja Rothenberg1, 

Nikola p. Konstandin1, evelyn Zellmeier1, Belay tizazu1, philipp A. Greif1,2,3, 

Klaus H. Metzeler1, Wolfgang Hiddemann1,2,3, Harald polzer1,2,3 & Karsten spiekermann1,2,3

In acute myeloid leukemia (AML), the Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently 

mutated genes. Recently, a new and recurrent juxtamembrane deletion mutation (p.Q569Vfs*2) 
resulting in a truncated receptor was identified. The mutated receptor is expressed on the cell surface 
and still binds its ligand but loses the ability to activate ERK signaling. FLT3 p.Q569fs-expressing Ba/F3 
cells show no proliferation after ligand stimulation. Furthermore, coexpressed with the FLT3 wild-type 
(Wt) receptor, the truncated receptor suppresses stimulation and activation of the Wt receptor. thus, 

FLT3 p.Q569Vfs*2, to our knowledge, is the first FLT3 mutation with a dominant negative effect on the 
Wt receptor.

The Fms-like tyrosine kinase 3 (FLT3) gene encodes a receptor tyrosine kinase (RTK), which is mostly expressed on 
hematopoietic progenitor cells and enables these cells to proliferate and differentiate. The high prevalence of activat-
ing mutations of the FLT3 gene in acute myeloid leukemia (AML) indicates the importance of FLT3 for physiological 
hematopoiesis1,2. The most common alterations occur in two functional domains of the receptor. Internal tandem 
duplications (ITD) disrupt the autoinhibitory function of the juxtamembrane domain and convey ligand-independent 
phosphorylation and activation of FLT33. Point mutations within the activation loop of the tyrosine kinase domain 
(TKD) mark another class of gain-of-function FLT3 mutations4. Both, ITD and TKD mutations, lead to a constitutive 
activation of downstream signaling pathways such as the ERK and STAT5 pathway3,4. With the technical improve-
ment of sequencing methods over recent years the number of novel identified FLT3 mutations is increasing. However, 
the evaluation of functional relevance remains difficult, since the mutation’s position in a mutational hotspot or in 
an important functional receptor domain alone cannot predict its oncogenic potential5. In this study we functionally 
characterized a novel frameshift deletion mutation in the juxtamembrane region (JM) of FLT3 found in a relapsed 
patient with AML. We investigated the functional properties of the truncated FLT3 receptor since truncated variants 
of other receptors have been shown to promote hematopoietic malignancies6–9.

Materials and Methods
FLT3 mutation analysis. A patient was referred to our hospital for treatment of AML relapse. Mononuclear 
cells were isolated from bone marrow aspirates and conventional cytogenetic and mutational analyses were per-
formed in accordance with described protocols10. Sequencing of the FLT3 gene was performed using Sanger 
sequencing. The FLT3 variant was described according to the guidelines of the Human Genome Variation Society 
(HGVS) (http://varnomen.hgvs.org). Mutations in further AML-related genes were analyzed using a targeted, mul-
tiplexed amplicon resequencing approach as previously described10. The experimental protocols were approved 
by the Institutional Review Board of the Department of Internal Medicine III, University Hospital Grosshadern, 
Ludwig-Maximilians-University (LMU), Munich, Germany and written informed consent was obtained in accord-
ance with the Declaration of Helsinki. The methods were performed in accordance with the approved guidelines.
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Figure 1. Identification of the mutation in the patient sample and expression of the truncated FLT3 
p.Q569Vfs*2 receptor. (a) Blast cells were isolated from the bone marrow of a relapsed AML patient. mRNA 
was isolated and reverse transcribed. The FLT3 cDNA was amplified and fragment analysis was performed. 
Arrows indicate fragments for FLT3 WT and FLT3 p.Q569Vfs*2. The peaks differ by eight base pairs in their 
fragment size. (b) Sanger sequencing revealed a deletion of eight nucleotides, leading to a frameshift and a 
premature stop codon within the FLT3 gene. The chromatogram is shown for the wild-type FLT3, nucleotide 
triplets and the corresponding amino acids are shown for the FLT3 WT and the frameshift mutation FLT3 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:28032 | DOI: 10.1038/srep28032

Cell culture and reagents. The Ba/F3, Hek-293T, and WEHI-3B cell lines were obtained from DSMZ 
(Braunschweig, Germany), the U2OS cell line from ATCC (Wesel, Germany) and cultured according to the 
supplier’s recommendation. The retroviral packaging cell line Phoenix eco was purchased from Orbigen (San 
Diego, CA, USA). Recombinant human FLT3 ligand (FL) was obtained from PromoKine (Heidelberg, Germany), 
recombinant murine IL-3 from ImmunoTools (Friesoythe, Germany) and AC220 was obtained form Selleck 
Chemicals (Houston, TX, USA).

Generation of cell lines. The FLT3 p.Q569Vfs*2 and the FLAG FLT3 p.Q569Vfs*2 cDNA were synthesized 
by GENEART (Life Technologies, Regensburg, Germany) and subcloned into the MSCV-IRES-eYFP retrovi-
ral expression vector. The empty vector, MSCV-IRES-eGFP-FLT3-WT, and MSCV-IRES-eGFP-FLT3-W51 have 
been described previously11. For the stable transduction of Ba/F3 cells the retroviral supernatant of Phoenix eco 
cells was used11. Stable expression of the receptor was confirmed by real time-PCR, Western blot, immunoprecipi-
tation and flow cytometry as described elsewhere11,12. The following antibodies were used as recommended by the 
manufacturer: anti FLAG (M2), alpha-Tubulin (T6199), goat anti rabbit secondary antibody from Sigma-Aldrich 
(St. Louis, MO, USA), FLT3 (SF1.340, S-18), phospho-tyrosine (PY99), goat anti mouse and goat anti rat second-
ary antibodies from Santa Cruz Biotechnology (CA, USA), ERK and phospho-ERK (Thr202/Tyr204) from Cell 
Signaling Technology (Danvers, MA, USA). The FLT3-antibody (4B12) was provided by Dr. Elisabeth Kremmer 
(Helmholtz Center Munich).

Cell proliferation assay. 4 ×  104/mL Ba/F3 cells were cultured in the presence or absence of 10 ng IL-3 and 
50 ng FL for 72 hours. Viable cells were counted by trypan blue exclusion using the cell viability analyzer Vi-CELL 
AS (Beckman Coulter, Krefeld, Germany)11.

FL binding assay. Binding of the FL was analyzed using the Fluorokine biotinylated human FL kit (NFFK0) 
and streptavidin-allophycocyanin (APC) (F0050) (R&D Systems, Minneapolis, MN, USA) according to the 
supplier’s recommendations. As a negative staining control cells were stained with biotinylated soybean trypsin 
inhibitor. To confirm staining specificity cells were incubated with unbiotinylated FL in parallel.

Immunofluorescent staining. U2OS cells were transiently transfected using the PolyFect transfection 
reagent (QIAGEN, Hilden, Germany). 50,000 cells were seeded on coverslips one day prior transfection. For 
transfection 1.5 µ g plasmid DNA, 5 µ L of transfection reagent and Opti-MEM Reduced Serum Medium (Thermo 
Fisher Scientific, Braunschweig, Germany) were used. The medium was changed six hours later. Glycoconjugates 
were stained 48 hours post-transfection using anti-wheat germ agglutinin (WGA)-488 fluorescein conjugate 
(1:1000; Life Technologies, Carlsbad, CA, USA) for 10 minutes. Thereafter cells were fixed on ice for 10 min-
utes using pre-cooled methanol and blocked for 1 hour with 2% BSA in DPBS. Cells were then incubated with 
monoclonal mouse or polyclonal rabbit FLT3 (SF1.340, S-18) antibody (1:200; Santa Cruz Biotechnology) for 
1 hour, followed by washing with DPBS-T (0.1% Tween 20; Carl Roth, Karlsruhe, Germany). Secondary antibody 
incubation was performed for 1 hour with anti-mouse IgG (H +  L), F (ab’) 2 fragment Alexa Fluor 594 Conjugate 
(1:500; Cell Signaling Technology). For counterstaining 1 µ g/mL 4’,6-diamidino-2-phenylindole (DAPI) was used 
(Sigma-Aldrich), followed by mounting. Specimens were finally analyzed utilizing a confocal fluorescence laser 
scanning system (TCS SP5 II; Leica, Wetzlar, Germany). For image acquisition and processing we used the LAS 
AF Lite Software (Leica).

Results
The FLT3 mutation (p.Q569Vfs*2), present only at relapse, results in a truncated FLT3 receptor 
lacking essential parts for autophosphorylation. The FLT3 mutation (FLT3 p.Q569Vfs*2) was found dur-
ing routine diagnostics in a patient with relapsed AML and 15% blasts in the bone marrow (Supplemental Table S1).  
Fragment size analysis from cDNA showed the FLT3 wild-type (WT) peak and an additional smaller and shorter 
fragment (Fig. 1a), indicating a smaller proportion of cells with an alternative FLT3 transcript. The allele fre-
quency of the detected mutation could not be determined as there was no patient gDNA material available. 
At the time point of first diagnosis, this fragment was not present (Supplemental Table S1). At the time point 
of initial diagnosis, the major leukemic clone carried an IDH2 mutation with an allele frequency of 20.4%. 
NPM1c was present only in a subfraction (7.2% allele frequency) and FLT3-ITD/TKD mutations were undetect-
able (Supplemental Table S1). By Sanger sequencing a deletion in the FLT3 gene of eight base pairs leading to a 
frameshift followed by a premature stop codon was identified (Fig. 1b). The mutant is predicted to result in a trun-
cated FLT3 protein, consisting of 570 amino acids and lacking the intracellular parts essential for autophosphoryl-
ation of the receptor and downstream signal transduction (Fig. S1). Due to lack of adequate patient material, it was 
not possible to finally prove the expression of the truncated protein in the patient’s bone marrow. To characterize 

p.Q569Vfs*2 sequence. (c) Phoenix eco cells were transfected with FLAG-tagged FLT3 WT and FLAG-tagged FLT3 
p.Q569Vfs*2. After cell lysis the FLT3 protein was immunoprecipitated from whole cell lysates with an N-terminal 
FLT3 antibody (SF1.340). After blotting the FLAG-tagged FLT3 was detected with an FLAG M2 antibody. One 
representative experiment is shown. The blot was cropped to improve the clarity of the image. (d) Ba/F3 cells stably 
expressing the indicated constructs. After cell lysis the FLT3 protein was detected with an N-terminal FLT3 antibody 
(4B12). One representative experiment is shown. FLT3 bands are indicated by asterisks. The blot was cropped to 
improve the clarity of the image (MT = FLT3 p.Q569Vfs*2). (e) Immunofluorescence of FLT3 (red), glycoconjugates 
(green) and counterstaining of DNA (blue) in transiently transfected U2OS cells. One representative image of each 
construct is shown.
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Figure 2. FL binding by the truncated FLT3 p.Q569Vfs*2 receptor, downstream signaling pathways, 
and proliferation of Ba/F3 cells. (a) Ba/F3 cells stably expressing the indicated constructs were incubated 
with biotinylated human FL. Receptor bound biotinylated FL was detected with streptavidin-APC using flow 
cytometry. As a negative control biotinylated soybean trypsin inhibitor was used. One out of at least three 
independent experiments is shown. (b) Ba/F3 cells stably expressing the indicated constructs were seeded at a 
density of 4 ×  104/mL in the presence or absence of 50 ng FL. Viable cells were counted by trypan blue exclusion 
after 72 hours. Shown are mean values ±  SEM of at least three independent experiments; *p <  0.05 (MT = 
FLT3 p.Q569Vfs*2). (c) Ba/F3 cells stably expressing the empty vector, FLT3 WT, FLT3 p.Q569Vfs*2 alone or 
both FLT3 WT and FLT3 p.Q569Vfs*2 were starved for 24 hours in cell culture media containing 0.3% fetal 
calf serum. Cells were left untreated (−) or stimulated (+ ) with 100 ng/mL FL for 60 minutes prior to cell lysis. 
Phosphorylation of ERK was analyzed by western blot. One representative experiment is shown. The blot was 
first incubated with phospho ERK antibody, stripped and reblotted with ERK and α -Tubulin antibody. The blot 
was cropped to improve the clarity of the image (MT = FLT3 p.Q569Vfs*2).
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the functional consequences of the deletion mutation we thus generated Ba/F3 cells stably expressing FLT3 
WT and FLT3 p.Q569Vfs*2. In Western Blot analysis we observed a band of lower molecular weight (110 kD)  
in FLT3 p.Q569Vfs*2-expressing cells in comparison to the WT receptor (140/160 kDa), confirming the expres-
sion of a truncated protein (Fig. 1c,d, the full-length blots are shown in supplemental Fig. S4a–c).

The loss of function FLT3 p.Q569Vfs*2 mutant suppresses FLT3 WT in a dominant negative manner  
by forming heterodimers with the WT FLT3 receptor. FLT3 p.Q569Vfs*2 receptor expression on the 
cell surface was confirmed by flow cytometry and immunofluorescent staining (Fig. 1e, Supplemental Fig. S2)  
and binding of FL by FL binding assays with biotinylated FL (Fig. 2a). After adding of unbiotinylated FL to the 
sample, the binding capacity for biotinylated FL decreased in a dose dependent manner indicating the speci-
ficity of the FL binding assay (Supplemental Fig. S3). By immunoprecipitation the truncated FLT3 protein in 
double-transfected Hek-293T cells, and immunoblot against a C-terminal FLT3 epitope, heterodimerisation 
of the truncated and the wildtype FLT3 receptor became detectable (Fig. S5b). In contrast to FLT3 WT, FLT3 
p.Q569Vfs*2-expressing Ba/F3 cells did not proliferate after FL stimulation (Fig. 2b). Furthermore, coexpres-
sion of WT and mutant FLT3 receptor also abolished the WT receptor’s proliferative effect on Ba/F3 cells when 
stimulated with FL (Fig. 2b). This observation was confirmed by analyzing the downstream signaling pathway. 
Stimulation of FLT3 WT-expressing cells with FL led to strong FLT3 and subsequent ERK phosphorylation which 
were absent in FLT3 p.Q569Vfs*2-expressing and FLT3 p.Q569Vfs*2/FLT3 WT-coexpressing cells, respectively 
(Fig. 2c, the full-length blots are shown in supplemental Fig. S4d,e and Fig. S5c,d).

In order to address a possible growth advantage of the FLT3 p.Q569Vfs*2-expressing cells, we performed 
proliferation assays in Ba/F3 cells treated with the highly potent FLT3 inhibitor AC220 in two different concen-
trations. Neither the FLT3 p.Q569Vfs*2 cells nor the double-transduced cells had a growth advantage under the 
chosen conditions (see supplemental Fig. S5a).

Discussion
AML-specific mutations within the FLT3 gene have been of high interest and were studied in detail over the past 
decades. In contrast to the highly prevalent activating mutations the impact of receptor truncating mutations 
in FLT3 remains largely unknown, especially regarding their proliferative activity. To our knowledge, this is the 
first study to functionally characterize a patient derived loss-of-function FLT3 mutation resulting in a dominant 
negative effect on the WT receptor. Our analysis demonstrated that the truncated FLT3 receptor lack both TKDs 
that are crucial for signal transduction, thus being unable to activate ERK phosphorylation and proliferation 
upon ligand binding. These effects were dominant negative on FLT3 WT in cells coexpressing both FLT3 WT and 
p.Q569Vfs*2.

In analogy, kinase-negative or truncated EGF receptors can exert a dominant negative effect on WT receptors 
by inhibiting the tyrosine kinase activity and suppressing the mitogenic response of WT receptors through het-
erodimerisation13,14. However, the receptor truncation does not always imply a loss of function. Alterations of the 
CSF3R gene, which lead to a truncated cytoplasmic tail, showed an activating and hyperresponsive phenotype and 
have been linked to the development of AML, chronic myeloid and neutrophilic leukemia6,7. Similary, truncations 
in the extracellular domain of the TrkA receptor (“Delta TrkA”) constitutively activate the receptor in fibroblast 
and epithelial cell lines8,9.

The loss-of-function phenotype of FLT3 p.Q569Vfs*2 suggests that the patient’s AML blasts proliferate 
independently of FLT3 kinase activity. We cannot exclude that FLT3 p.Q569Vfs*2 is a passenger mutation in a 
mutational hotspot region of the FLT3 gene and does not influence leukemogenesis. However, the same somatic 
deletion mutation has been reported recently as a somatic and recurrent mutation, detected in two out of 6843 
unselected AML patients resulting in a frequency of 0.03%15. It is tempting to speculate that a leukemic cell may 
benefit from truncating FLT3 mutations through escape from the FLT3 receptor mediated growth regulation. 
Functional characterization of FLT3 mutations nevertheless is of major importance to identify driver mutations, 
validate therapeutic targets and analyze the mechanisms of receptor interaction and activation. Our study shows 
that mutations of FLT3 do not always accompany a gain of function and functional relevance has to be investi-
gated on an individual basis.
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Tyrosine kinase inhibition increases the cell surface

localization of FLT3-ITD and enhances FLT3-directed

immunotherapy of acute myeloid leukemia
K Reiter1,2,3,12, H Polzer1,2,3,12, C Krupka1,4, A Maiser5, B Vick2,6, M Rothenberg-Thurley1,2,3, KH Metzeler1,2,3, D Dörfel7,8, HR Salih3,7,8,

G Jung9, E Nößner10, I Jeremias2,6,11, W Hiddemann1,2,3, H Leonhardt5, K Spiekermann1,2,3, M Subklewe1,2,3,4,12 and PA Greif1,2,3,12

The fms-related tyrosine kinase 3 (FLT3) receptor has been extensively studied over the past two decades with regard to oncogenic

alterations that do not only serve as prognostic markers but also as therapeutic targets in acute myeloid leukemia (AML). Internal

tandem duplications (ITDs) became of special interest in this setting as they are associated with unfavorable prognosis. Because of

sequence-dependent protein conformational changes FLT3-ITD tends to autophosphorylate and displays a constitutive intracellular

localization. Here, we analyzed the effect of tyrosine kinase inhibitors (TKIs) on the localization of the FLT3 receptor and its mutants.

TKI treatment increased the surface expression through upregulation of FLT3 and glycosylation of FLT3-ITD and FLT3-D835Y

mutants. In T cell-mediated cytotoxicity (TCMC) assays, using a bispecific FLT3 ×CD3 antibody construct, the combination with TKI

treatment increased TCMC in the FLT3-ITD-positive AML cell lines MOLM-13 and MV4-11, patient-derived xenograft cells and

primary patient samples. Our findings provide the basis for rational combination of TKI and FLT3-directed immunotherapy with

potential benefit for FLT3-ITD-positive AML patients.

Leukemia advance online publication, 12 September 2017; doi:10.1038/leu.2017.257

INTRODUCTION

In acute myeloid leukemia (AML), approximately one-third of
patients carry an activating mutation in the fms-related tyrosine
kinase 3 (FLT3) gene, prevalently an internal tandem duplication
(ITD) of varying length (affecting 20–30% of adult AML).1,2 FLT3-
ITD is associated with an unfavorable prognosis, characterized by
shorter event-free survival (EFS) and overall survival (OS) as well as
a high relapse rate.2–6 On a cellular level, the mutant FLT3 receptor
promotes cell proliferation of hematopoietic stem and myeloid
progenitor cells.2,3,6 FLT3-ITD mutations lead to sequence-
dependent protein conformational changes in the receptor and,
thus, to an endoplasmatic reticulum-retained intracellular localiza-
tion, constitutive autophosphorylation and induction of growth
factor signaling pathways.7–11 Therefore, FLT3-targeting therapies
are highly warranted to impede disease progression, alternatively
or in addition to convential chemotherapy. Promising agents are
second-generation tyrosine kinase inhibitors (TKIs), including
AC220 (quizartinib), PKC412 (midostaurin) and BAY43-9006
(sorafenib, nexavar), that block FLT3 phosphorylation.12–17

Although complete remission rates reach a moderate level, clinical
response to TKI monotherapy remains limited by the high risk of
relapse that often occures within months.18–21 However, the
SORAML trial (NCT00893373) demonstrated sorafenib to be a

benificial antileukemic additive to conventional chemotherapy
with regard to increased EFS and relapse-free survival for patients
aged ⩽ 60 years, regardless of FLT3 status.22 Furthermore, the
CALGB 10603/RATIFY trial (NCT00651261) demonstrated signifi-
cantly improved EFS and OS for patients, harboring a FLT3
mutation, when treated with PKC412 in addition to induction
chemotherapy and 1 year of maintenance therapy.23 Nevertheless,
TKIs still lack the efficiency to eradicate all FLT3-mutated AML cells
because of resistance mechanisms. In FLT3-ITD-positive AML,
resistance is frequently mediated by specific insertion sites of ITDs
(including β1- or β2-sheet), emerging secondary FLT3 point
mutations (PMs; such as D835Y, N676K), protection by the stromal
microenvironment and/or altered pathway signaling.24–31 The
subcellular localization of FLT3 matters for activation of signaling
cascades. For example, FLT3-N676K displays a mere wild-type
(WT)-like membrane localization and activates mitogen-activated
protein kinase signaling, whereas FLT3-D835Y localizes to the ER
and activates the signal transducer and activator of transcription 5
pathway.10,32 However, the effect of TKIs on the subcellular
localization of FLT3 and its mutants has not yet been examined
systematically. Therefore, we investigated the localization of FLT3
mutants under TKI treatment and observed an increase of FLT3 on
the cell surface that facilitated the application of FLT3-directed
immunotherapy.
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MATERIALS AND METHODS

Cell lines and reagents

All cell lines were purchased from the German Collection of Microorgan-
isms and Cell Culture (DSMZ, Braunschweig, Germany), except for U2OS
cells that were obtained from ATCC (American Type Culture Collection,
Wesel, Germany) and Phoenix eco, which were purchased from Orbigen
(San Diego, CA, USA). The B-cell lymphoma cell line OCI-Ly8 was a kind gift
from O Weigert (Department of Internal Medicine III, University Hospital of
the LMU Munich, Munich, Germany).33,34 All cell lines were cultivated
according to supplier’s instructions or as described elsewhere.35 Stably
transduced Ba/F3 cell lines were generated as described previously.36,37

Recombinant human FLT3 ligand (FL) was obtained from Promokine
(Heidelberg, Germany), recombinant murine interleukin-3 from Immuno-
tools (Friesoythe, Germany), cycloheximide and 2-deoxy-D-glucose from
Sigma-Aldrich (Taufkirchen, Germany). TKIs sorafenib (BAY43-9006, nex-
avar), midostaurin (PKC412) and quizartinib (AC220) were purchased from
Selleck Chemicals (Houston TX, USA). Cell lines were tested for a
mycoplasma contamination on a regular basis (MycoAlert Mycoplasma
Detection Kit, Lonza Rockland Inc., Rockland, ME, USA).

Plasmid constructs and mutagenesis

The following DNA constructs and vectors have been described
before:32,37,38 the expression vectors pcDNA6.2-V5-HisA, pcDNA6.2-V5-
HisA-FLT3-WT, pcDNA6.2-V5-HisA-FLT3-K602R(7) (described as W51) and
pcDNA6.2-V5-HisA-FLT3-E611C(28) (described as NPOS); the retroviral
expression vectors pMSCV-IRES-EYFP, pMSCV-IRES-EYFP-FLT3-WT, pMSCV-
IRES-EYFP-FLT3-N676K, pMSCV-IRES-EYFP-FLT3-D835Y and pMSCV-IRES-
EYFP-FLT3-E611C(28) (described as NPOS). The constructs pMSCV-
IRES-puro-EYFP-FLT3-WT, pMSCV-IRES-puro-EYFP-FLT3-E611V(32), pMSCV-
IRES-puro-EYFP-FLT3-G613E(33), pMSCV-IRES-puro-EGFP-FLT3-598/599(12),
pMSCV-IRES-puro-EGFP-FLT3-598/599(22), pMSCV-IRES-puro-EGFP-FLT3-
L601H(10) and pMSCV-IRES-puro-EGFP-FLT3-K602R(7) have been pre-
viously described39 and kindly provided by FH Heidel (Center of Internal
Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Ger-
many). Denotation of all FLT3-ITDs was adapted from a recent
publication.39 The mutations N676K and D835Y were introduced into
pcDNA6.2-V5-HisA-FLT3-WT and pMSCV-IRES-EYFP-FLT3-E611C(28), using
the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, Santa Clara,
CA, USA) according to the supplier’s instructions as previously described.32

Mutations were confirmed by Sanger sequencing.

Proliferation assay

Proliferation assays were performed as described before, utilizing the Vi-
Cell XR (Beckman Coulter, Munich, Germany).36 AML cell lines were seeded
at a density of 3 × 105/ml. Experiments were performed in biological
triplicates.

Immunofluorescence staining

Transient transfection of U2OS cells and subsequent immunofluorescence
staining was performed as previously described40 using the following
antibodies: anti-wheat germ agglutinin-488 fluorescein conjugate (catalog
number: W11261; Invitrogen–ThermoFisher Scientific, Munich, Germany),
rabbit anti-FLT3 (catalog number: sc-480, clone: S-18; Santa Cruz
Biotechnology, Heidelberg, Germany) and anti-rabbit IgG (H+L) F(ab’)2
fragment Alexa Fluor 594 Conjugate (catalog number: 8889S; Cell Signaling
Technology, Leiden, The Netherlands). Fixation was performed for 10 min
at room temperature with Dulbecco’s phosphate-buffered saline (DPBS)
2% formaldehyde (37% stock solution; Merck Schuchardt, Hohenbrunn,
Germany), followed by permeabilization for 10 min with DPBS 0.5% Triton
X-100 (Carl Roth, Karlsruhe, Germany). Before staining, cells were treated
with 50 nM AC220 for 6 h, whereas controls were left untreated. For
suspension cells, 8-well chamber slides (ibidi, Munich, Germany) were
precoated with poly-L-lysine hydrobromide (Sigma-Aldrich) according to
the supplier’s recommendations. Before seeding, cells were treated with
50 nM AC220, whereas controls were left untreated, washed twice with
DPBS and dissolved in H2F buffer (1 × Hanks’ balanced salt solution (w/o
calcium, magnesium and phenol red, ThermoFisher Scientific), 2% fetal
bovine serum (Biochrom, Berlin, Germany), 1% 1 M Hepes (Sigma-Aldrich)
and 1% penicillin/streptomycin (PAN Biotech, Aidenbach, Germany). After

30 min of detachment at 4 °C, glycoconjugates were stained as described
previously,40 followed by cell fixation using DPBS 4% formaldehyde for
5 min. For blocking, DPBS with 0.1% Tween 20 (Carl Roth) and 10% fetal
bovine serum (Biochrom) was used. Subsequent steps of the staining
procedure were performed as for U2OS cells.

T cell-mediated cytotoxicity (TCMC) assay

The in vitro cytotoxicity assays against AML cells were performed as
described previously.35,41 The bispecific FLT3 ×CD3 antibody construct
(4G8×UCHT1, Fabsc-format) was utilized as reported elsewhere.42 Con-
firmatory antibody serial dilution experiments with an effector-to-target
ratio of 1:2.5 were performed using CD3-positive isolated T cells from
healthy donors. For TCMC assays, AML cells and T cells were co-cultured
with an effector-to-target ratio between 1:2.5 and 1:4. Then 50 nM AC220
and 1–10 μg/ml FLT3× CD3 antibody were added at the beginning of each
experiment, whereas controls were left untreated. After 72 h, cell counting
and flow cytometry analysis was performed, determining the percentage
of cytotoxicity as described previously.35,41 FLT3 (CD135) surface expres-
sion was assessed simultaneously. Estimation of a potential additive effect
of combined treatment was computed based on the fractional product
method.43 Competitive lysis experiments were performed as described
previously,35 using 1–5 μg/ml FLT3× CD3 antibody. Untreated AML cells
(HL60 or MV4-11) were mixed 1:1 with corresponding 6 h AC220-pre-
treated AML cells (HL60 or MV4-11) and cultured with healthy donor T cells
at an effector-to-target ratio of 1:1 for 20–24 h. Cell membrane staining of
untreated AML cells (HL60 and MV4-11) was performed using the PKH26
red fluorescent cell linker kit (Sigma-Aldrich) according to the manufac-
turer’s protocol. Experiments were performed once, if not stated otherwise.
Additional materials and methods are provided in the Supplementary

Information.

RESULTS

TKIs increase the membrane localization of FLT3-V592A,
FLT3-D835Y and FLT3-ITD mutants

Cellular localization studies of seven ITD constructs with varying
length and position, as well as two activating PMs of FLT3
(Figure 1a), revealed an altered localization of FLT3 mutants D835Y
and ITDs upon TKI treatment. FLT3-ITD or FLT3-D835Y protein was
retained in the perinuclear ER and after addition of AC220 a cell
membrane localization similar to FLT3-WT or FLT3-N676K was
observed (Figures 1b and 2a). Flow cytometry confirmed that FLT3
(CD135) surface expression differed significantly between treated
and untreated FLT3-expressing Ba/F3 cells (Figure 2b and
Supplementary Figure S1a) not only for ITD and D835Y but also
for WT and N676K. However, the increase in surface FLT3 was
significantly higher in FLT3-D835Y or FLT3-ITD compared with
FLT3-WT-expressing cells (Student’s t-test: P= 0.003 and Po0.001,
respectively). In light of the recently reported in vitro and in vivo

experiments, displaying juxtamembrane domain (JMD)-ITD to be
more sensitive towards TKI-therapy than tyrosine kinase domain 1
(TKD1)-ITD,39 we evaluated four JMD-ITD and three TKD1-ITD
constructs with regard to TKI-induced FLT3 surface expression and
did not observe any significant differences (Figure 2b). In AML cell
lines, FLT3 surface expression levels were hardly altered in cells
with FLT3-WT status (THP-1, OCI-AML3) or a heterozygous FLT3-ITD
(MOLM-13, PL-21), whereas the cell lines MV4-11 with FLT3-loss of
heterozygosity (LOH) and MONO-MAC-6 (MM6) with an activating
PM FLT3-V592A44 responded with a significant increase in FLT3
surface expression upon AC220 treatment (Table 1 and Figures 3a
and b). The TKI response of MV4-11 was also obvious in
immunofluorescence staining (Supplementary Figure S1b). Addi-
tional FLT3-WT AML cell lines (HL60, Kasumi-1, EOL-1, NOMO-1,
MUTZ-2) confirmed this observation, except for MUTZ-2 (Student’s
t-test: Po0.001; Supplementary Figures S1c and d). In the AML
cell line KG-1a, the CML cell line K-562 and the B-cell lymphoma
cell line OCI-Ly8, we did not detect any FLT3 surface expression,
regardless of TKI treatment. In a time-course experiment over 24 h
with TKI-treatment, MV4-11 cells showed a steady increase in FLT3
surface expression, whereas untreated cells remained stable in
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FLT3 surface expression (Supplementary Figure S2a). MOLM-13
cells started to diverge from untreated cells after 12 h of TKI
treatment. Other TKIs (PKC412 and sorafenib) induced a similar
response in MV4-11 cells, however, with AC220 the effect was

strongest, when applying equal concentrations (Supplementary

Figures S2b and c). A dose escalation experiment, applying
concentrations up to 100 nM of AC220, sorafenib or PKC412,
revealed that AC220 was most efficient in inducing FLT3 surface
expression at concentrations from 5 to 25 nM (Supplementary

Figure S2d).
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Figure 1. FLT3 mutants and their subcellular localization with and without TKI treatment. (a) Schematic illustration of the FLT3 protein
(NP_004110.2) and mutant constructs with indication of amino acid substitutions and insertion sequences (modified from Arreba-Tutusaus
et al.

39). (b) Immunofluorescence staining of FLT3-WT, FLT3 mutants or empty vector with or without AC220 treatment in transiently
transfected U2OS cells. WGA (wheat germ agglutinin). Scale bar: 25 μm.
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TKI-induced increase in FLT3 surface expression in FLT3-mutated
cells correlates inversely with proliferation

Treatment of Ba/F3 cells, expressing various FLT3-ITD constructs,
with AC220 at nontoxic concentrations (⩽500 nM) revealed a
variable inhibition of proliferation without any obvious correlation
to ITD length or position (Figure 2c and Supplementary Table S1).

However, the AC220-mediated reduction in proliferation of
FLT3-ITD-positive cells correlated with the increase in surface

FLT3 (Pearson: − 0.931, P= 0.002, n= 7). Moreover, we confirmed
that the TKI resistance-mediating PMs32,45 reduced the TKI
response with regard to FLT3 surface expression when combined
with ITD (Supplementary Figures S3a–c and Supplementary Table S1).
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Figure 2. TKI treatment response of FLT3-expressing Ba/F3 cells. (a) Immunofluorescence staining of stably transduced Ba/F3 cells expressing
FLT3-WT, FLT3-ITD or empty vector with or without AC220 treatment. WGA (wheat germ agglutinin). Scale bar: 10 μm. (b) FLT3 surface
expression levels with or without AC220 treatment (mean± s.d.). (c) Viable cell counts of Ba/F3 cells expressing the indicated FLT3 mutants,
normalized to the empty vector transduced control cells, after 72 h of treatment with increasing concentrations of AC220 (n= 3, mean± s.d.).

Table 1. Classification of FLT3-mutated AML cell lines and PDX cells into FLT3 genotype categories: heterozygous FLT3-ITD and FLT3-LOH

AML cell lines/PDX cells FLT3 genotype ITD type ITD insertion sequence

MOLM-13 Heterozygous Y631F(7) F(Y)DFREYE/YDLK
PL-21 Heterozygous 569/570(42) FKSVQVTGSSDNEYFYVDFREYEYDLKWEFPRENLEFGKNGM
AML-573 Heterozygous E604D(21) D(E)PSDNEYFYVDFREYEYDLKW/EFPR
AML-640 Heterozygous L610F(28) F(L)GSSDNEYFYVDFREYEYDLKWEFPREN/LEFG

F612V(20) V(F)DFREYEYDLKWEFPRENLE/FGKV
MV4-11 LOH H633L(10) H(L)VDFREYEYD/LKWE
AML-415 LOH E598D(6) D(E)FREYE/EYDL
AML-579 LOH E598Y(8) Y(E)VDFREYE/EYDL

Abbreviations: FLT3, fms-related tyrosine kinase 3; ITD, internal tandem duplication; LOH, loss of heterozygosity; PDX, patient-derived xenograft. Underlined

amino acids are inserted before the ITD.
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The FLT3-LOH cell line MV4-11, which showed the highest increase
in FLT3 surface location upon TKI treatment, was more sensitive to
AC220, compared with the heterozygous FLT3-ITD cell lines
MOLM-13 and PL-21 (Figure 3c). Of note, PL-21 cells did not
respond to AC220 treatment during the proliferation assay,
although carrying a heterozygous FLT3-ITD and showing a slight
increase in FLT3 surface expression. Targeted multiplexed
amplicon sequencing revealed that the cell line PL-21 harbored
a KRAS mutation (c.437C4T:p.A146V, NM_033360), constituting a
potential mechanism of TKI resistance. The AML cell line MM6 with
a FLT3-V592A PM displayed a prominent increase in FLT3 surface
expression after AC220 treatment and responded with a moderate
decrease in proliferation (Figure 3c and Supplementary Table S2).
The FLT3-WT cell lines THP-1 and OCI-AML3 were resistant to
AC220 treatment. When comparing the antiproliferative potential
of various TKIs (PKC412, sorafenib, AC220) in the FLT3-LOH cell line
MV4-11, AC220 was the most potent agent at low nanomolar
levels (Supplementary Figure S2e and Supplementary Table S2). Of
note, several other FLT3-WT cell lines (HL60, MUTZ-2, NOMO-1)
and FLT3-expression-negative cell lines (KG-1a, K-562) also showed
TKI resistance. In contrast, the FLT3-WT cell lines Kasumi-1 and

EOL-1, which carry alterations of other receptor tyrosine genes (KIT
c.2466T4A:pN822K, NM_000222 in Kasumi-1 and FIP1L1-PDGFRA
rearrangement; del(4)(q12q12) in EOL-1), both responded,
consistent with the known target profile of the tested TKIs12,30

(Supplementary Table S2).

Induction of FLT3 surface expression depends on the
pretreatment FLT3-ITD mRNA levels

The AC220-induced FLT3 increase on the cell surface (CD135
mean fluorescence intensity ratio change, Supplementary Table
S2) tended to correlate with the pretreatment FLT3-ITD mRNA
levels (Supplementary Figure S4a) in tested AML cell lines
(Pearson: 0.864, P= 0.059, n= 5). Patient-derived xenograft (PDX)
cells with either FLT3-WT, heterozygous FLT3-ITD mutation or FLT3-
LOH status (Table 1) revealed a stable FLT3 surface expression in
FLT3-WT PDX cells (AML-372, AML-491), whereas the heterozygous
FLT3-ITD PDX cells (AML-573, AML-640) showed a minimal
response to AC220 treatment (Figures 4a and b). However, both
PDX cells with FLT3-LOH (AML-415, AML-579) showed a significant
FLT3 surface expression increase upon AC220 treatment (Stu-
dent’s t-test: both Po0.001). Thus, a difference between FLT3-WT
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Figure 3. TKI treatment response of AML cells. (a) Representative flow cytometry plots and (b) bar graph showing the FLT3 surface expression
in AML cells, harboring different FLT3 genotypes, with or without AC220 treatment (mean± s.d.). A mean fluorescence intensity (MFI) ratio
increase of ⩾ 0.50 is highlighted by an arrow. (c) Viable cell counts of selected AML cells, normalized to untreated control, after 72 h of
treatment with increasing concentrations of AC220 (n= 3, mean± s.d.).
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and FLT3-ITD samples was observed (Student’s t-test: Po0.001). In
addition, there was a positive correlation of the FLT3 expression
increase at the cell surface upon AC220 treatment with the
pretreatment FLT3-ITD mRNA level (Spearman: 0.971, P= 0.001,
n= 6; in case of AML-640, the pretreatment FLT3-ITD mRNA level
of the dominant clone was used for statistics). The correlation
remained significant when combining the data generated from
AML cell lines and PDX cells (Figure 4c; Spearman: 0.840, P= 0.001,
n= 11). Characteristics of PDX cells have been recently published46

and are summarized in Supplementary Table S3. The pretreatment
FLT3-ITD mRNA levels of the PDX cells are shown in
Supplementary Figure S4b.

FLT3 surface expression is glycosylation dependent

Western blot analysis showed an increase of the fully glycosylated
mature (160 kDa) form of all FLT3 constructs expressed in Ba/F3
cells after 6 h of TKI treatment (Figure 5a). This effect was also
obvious in the FLT3-LOH AML cell line MV4-11 and apparent in the
AML cell line MM6 that carries a FLT3-V592A PM. In contrast, FLT3-
WT and FLT3-expression-negative cell lines (KG-1a, K-562, OCI-Ly8)
remained mostly unaffected (Figure 5b and Supplementary
Figures S5a and b). The increase of mature FLT3 after TKI
treatment was smaller or absent, when combining ITD with a
resistance-mediating PM (Supplementary Figure S5c). Thus, the

altered glycosylation pattern of FLT3, represented by relative
changes of the two differentially glycosylated forms, was
consistent with the increase in surface FLT3 upon TKI treatment.
Consistently, the FLT3-WT PDX cells did not show any obvious
difference in glycosylation pattern after AC220 treatment, in
contrast to PDX cells harboring a FLT3-ITD, especially those with
FLT3-LOH (Figure 5c). Treatment of MV4-11 cells with 2-deoxy-D-
glucose, a compound inhibiting N-linked glycosylation,47 alone or
in combination with AC220, demonstrated that TKI not only
affects phosphorylation but also N-linked glycosylation
(Figure 5d). After a 24 h TKI treatment period, the glycosylated
form of FLT3 was increased 1.5- and four-fold for the FLT3-ITD-
positive cell lines MOLM-13 and MV4-11, whereas the immature
form decreased to 0.8-fold (Supplementary Figures S5d and e).
Moreover, the TKI-treated MV4-11 cells showed an increase in total
amount of FLT3 protein levels likely because of upregulation of
FLT3 mRNA expression (Supplementary Figure S5f). Whereas in
MOLM-13 cells the overall FLT3 mRNA level was not altered by
AC220 treatment, the ratio of FLT3-WT to FLT3-ITD changed
significantly (Student’s t-test: Po0.001) pointing toward allelic
expression in favour of the WT allele (Supplementary Figures S5g
and h). In addition, cycloheximide treatment indicated that TKI-
mediated differential expression of mature and immature FLT3
depends on biosynthesis. Furthermore, we confirmed that PKC412
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and sorafenib also have the potential to increase the glycosylation
of FLT3 in MV4-11 cells (Supplementary Figure S5i).

FLT3 upregulation by TKI in vivo

In vivo, cells of two AML patients with mutated FLT3 who received
sorafenib treatment (TKI-PT#1 and TKI-PT#2), after conventional
therapy had failed, showed a prominent increase in FLT3 surface
expression when comparing FLT3 expression at diagnosis of
relapse and after sorafenib treatment (Figure 6a). Sorafenib
treatment schemes are shown in Figure 6b and corresponding
patient characteristics are detailed in Supplementary Table S5 and
Supplementary Figure S6. For TKI-PT#1, sorafenib maintenance
monotherapy resulted in a reduction of leukemia burden (blast
count: 40% at diagnosis of relapse and 15% after 21 days of
treatment), whereas in TKI-PT#2, leukemic burden showed a
persistent increase over time (blast count: 48% at diagnosis of
relapse and 90% after 53 days of treatment).

AC220 treatment boosts FLT3 ×CD3 antibody-mediated
cytotoxicity against FLT3-ITD-positive AML cells

Besides TKIs, an alternative strategy to target FLT3 is immunother-
apy using a FLT3-directed antibody construct.42,48 However, FLT3-
directed immunotherapy might be limited by insufficient antigen
expression levels. In light of our findings, we hypothesized that
TKIs will increase anti-FLT3-directed antibody-mediated cytotoxi-
city through upregulation of the FLT3 target antigen (Figure 7a).
Therefore, we performed T-cell-mediated cytotoxicity (TCMC)
assays using a bispecific FLT3 ×CD3 antibody construct42 in
combination with AC220. FLT3-expression-specific cell lysis by the
FLT3 ×CD3 antibody was demonstrated by an antibody serial
dilution (Supplementary Figure S7a). Assessment of expression
kinetics of FLT3-ITD-positive AML cells over 72 h showed a steady
increase of FLT3 surface expression in MV4-11 cells upon addition
of AC220, whereas MOLM-13 cells showed a maximum at 24 h
(Supplementary Figure S7b). The FLT3 surface expression level in

the FLT3-WT AML HL60 cells was not significantly changed by
addition of AC220. In TCMC experiments, the combination of TKI
and FLT3 ×CD3 in HL60 cells showed no significant change in
cytotoxicity (Figure 7b and Supplementary Table S4). In contrast,
FLT3-ITD-positive MV4-11 cells were almost completely eradicated
by combined treatment with a mean CD33+ cell count lower than
the computed additive effect (Figure 7b and Supplementary Table
S4), pointing toward a synergism of TKI and FLT3-directed
immunotherapy. The difference between single-agent and com-
bined treatment was significant (Student’s t-test: Po0.001 AC220
only and P= 0.028 FLT3 × CD3 only). For the heterozygous FLT3-
ITD cell line MOLM-13, the FLT3 ×CD3 antibody treatment alone
was very efficient in eradicating nearly all CD33+ cells (Figure 7b
and Supplementary Table S4), and therefore no conclusion about
synergistic or additive effects could be drawn regarding the
increased lysis by combined treatment. Representative flow
cytometry plots of the TCMC assays are shown in
Supplementary Figure S7c. Competitive lysis experiments of
untreated and AC220-pretreated AML cells confirmed a prefer-
ential killing of AC220-pretreated MV4-11 cells with higher FLT3
surface expression levels (Supplementary Figure S7d). For PDX
cells a considerable increase in cytotoxicity was observed when
applying the combined treatment, especially in PDX cells with
FLT3-LOH (AML-415, AML-579; Figure 7c). For the heterozygous
FLT3-ITD PDX cells AML-573 the single FLT3 × CD3 antibody
treatment already resulted in almost complete eradication of
CD33+ cells, similar to the heterozygous FLT3-ITD cell line
MOLM-13 (Figures 7b and c). Moreover, two primary AML samples
(PT#1, PT#2) showed a decrease in CD33+ cells by combined
treatment below the computed additive effect (Figure 7c and
Supplementary Table S4). Patient characteristics are shown in
Supplementary Table S5; corresponding fragment analyses
representing the pretreatment FLT3-ITD mRNA level of the primary
samples are depicted in Supplementary Figure S6. Representative
flow cytometry plots of the TCMC assays are shown in
Supplementary Figure S7e.

Figure 5. TKI increases the glycosylation of FLT3-ITD. Western blot analysis of FLT3 or phospho-FLT3 (130 and 160 kDa) and α-tubulin (50 kDa)
in whole-cell lysates with or without AC220 and/or 2-DG (2-deoxy-D-glucose) of (a) Ba/F3 cells transduced with empty vector, FLT3-WT or
indicated FLT3 mutant construct, (b) AML cell lines, (c) PDX cells and (d) MV4-11 cells.
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DISCUSSION

FLT3-ITD is a common mutation in AML, associated with increased
relapse rates and poor prognosis.4,16 Novel treatment approaches
are therefore highly warranted for patients who are not eligible for
intensive treatment as well as for patients with failure of
conventional therapy or allogeneic stem cell transplantation.
Moreover, targeting FLT3 seems to be attractive for minimal
residual disease eradication during consolidation or maintenance
therapy to minimize relapse rates and to prolong EFS and OS. So
far, TKI is a promising approach to target FLT3, for instance as a
bridging therapy before stem cell transplantation and as
treatment of medically unfit patients. However, clinical trials using
TKI as a single agent indicate the need for combinatorial therapies
in order to prevent resistance toward TKI and to achieve
prolonged remission.18,20,21,49,50 The application of PKC412 in
combination with induction chemotherapy in the CALGB 10603/
RATIFY trial (NCT00651261) prolonged EFS and OS in FLT3-ITD- or
FLT3-TKD-positive patients.23 In our study, we demonstrated that
FLT3 surface expression could be significantly increased by TKI
treatment, particularly in FLT3-ITD- and FLT3-D835Y-mutant cells.
Of note, cells harboring FLT3-ITD in combination with a resistance
mediating point mutation showed a reduced FLT3 surface
increase upon TKI treatment consistent with TKI resistance.27,29

In contrast to CEP701 (Lestaurtinib), which was reported to
increase FLT3 surface expression in certain AML patients upon
treatment51 irrespective of FLT3 genotype, we showed that AML
cell lines and PDX cells responded to AC220 depending on the
FLT3 genotype and pretreatment FLT3-ITD mRNA level. An
exception was the AML cell line PL-21—although carrying a
heterozygous ITD, the TKI was not effective in reducing
proliferation, likely because of the presence of a KRAS mutation
that is known to be associated with TKI resistance.52,53 In line with
previous reports,12 comparison of several TKIs confirmed that the
second-generation TKI AC220 was more potent than multikinase
inhibitors, such as PKC412 and sorafenib. In this context, FLT3-ITD-
positive patients may benefit from the combination of TKI and
therapeutic FLT3-directed antibodies. This strategy may not only
overcome the limitation of FLT3 antigen availability in FLT3-ITD-
positive AML cells but could also prevent adaptive TKI-resistance
—a frequent problem in single-agent TKI-treatment. Although the
overall impact of TKI on immune response remains
controversial,54–57 we provide evidence that the combination of
TKI and FLT3 ×CD3 antibodies enhance the T cell-mediated lysis of
FLT3-ITD-positive AML cell lines, PDX cells and primary AML
patient samples. Beyond increased FLT3 surface expression in
FLT3-mutated cells as potential mechanism, TKI treatment may
also modulate immune response through post-translational
modifications as glycosylation matters in major histocompatibility
complex peptide presentation and antigen recognition of T cells.58

This may be linked to the demonstrated increase in the mature,
fully glycosylated form of FLT3 in FLT3-ITD-positive cells after TKI
treatment, in accordance with other publications.47,59,60 This result
suggests that autophosphorylation of the FLT3-ITD receptor may
prevent physiological processing that is required for maturation
and surface expression and possibly also for antigen processing
and recognition. Of note, altered FLT3 mRNA expression also
seems to contribute to the TKI-mediated increase in surface FLT3
that has been demonstrated in FLT3-TKI-resistant cells,21,61

pointing toward a feedback response mechanism to compensate
the lack of mature FLT3 receptor in the FLT3-mutated cellular
setting.
Taken together, we do not only provide insights into the cellular

effects of TKIs but also open up avenues to eradicate FLT3-
mutated AML by combination of FLT3-targeting strategies. Further
preclinical models and ultimately clinical trials are needed to
translate our findings into novel therapeutic approaches.
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Primary patient samples. Informed written consent was obtained from all patients in accordance with the 

Declaration of Helsinki. Institutional review board approval was obtained by the Ethics Committee of the 

participating centers. Patient samples were collected at the University Hospital of the LMU Munich, Medical 

Hospital for Haematology and Oncology, at the Charité Berlin, and at the University Hospital Tübingen at the time 

point of first diagnosis or follow up. Mononuclear cells were isolated from bone marrow (BM) aspirates or 

peripheral blood (PB) and subjected to routine diagnostics for conventional cytogenetic and routine mutational 

analysis of molecular markers, including FLT3-ITD, according to standard protocols.1, 3, 4 From the residual patient 

material and from PB of healthy donors, mononuclear cells were isolated by standard density gradient 

centrifugation procedure utilizing Biocoll Separating Solution (density 1.077 g/ml; Biochrom, Berlin, Germany) 

and DPBS 0.2% BSA (DPBS from Biochrom; Specific Albumin from Medion Diagnostics, Berlin, Germany), followed 

by cryoconservation at ≤ -80°C in 80% FBS (Biochrom) and 20% dimethyl sulfoxide (AppliChem, Darmstadt, 

Germany).  

 

Patient derived xenograft (PDX) cells. Primary patient cells were engrafted and serially passaged in NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice as reported recently.5 PDX cells were reisolated from mouse BM or spleen and 

cultured in StemPro-34 SFM Medium (StemCell Technologies, Vancouver, Canada) containing 2% FCS, 1% 

Pen/Strep, 1% L-Glutamine, 10 ng/ml SCF, TPO and IL-3 (all R&D, Abingdon, UK) according to standard protocols.6  

 

Patient treatment with sorafenib. Upon diagnosis of AML relapse after conventional therapy, patients received 

palliative treatment with 200 mg sorafenib, at the University Hospital Tübingen. Sorafenib was taken orally under 

clinical surveillance. Disease progression and tolerability of the drug were assessed in regular intervals. Patient 1 

(TKI-PT#1) received 400 mg twice daily. On day 11 sorafenib dosage was reduced to 400 mg in the morning and 

200 mg in the evening, due to thrombocytopenia (<100 G/L). Treatment was paused for four days from day 15, 

due to thrombocytopenia (<20 G/L) and neutropenia (≤500/µl), continuing the treatment on day 18 with 200 mg 

twice daily. Patient 2 (TKI-PT#2) received 400 mg daily. Treatment was paused for seven days from day 27, due 

to a bacterial infection (C-reactive protein (CRP): 21 mg/dl), continuing the treatment on day 34. FLT3-expression 

was monitored ex-vivo by flow cytometry of the patient’s BM or PB at relapse (day 0) and during TKI-treatment 

(indicated day) as described in the Materials & Methods section.  

 

Mutation profiling. Mutational analysis of FLT3 and further AML-related genes was performed for PDX cells and 

FLT3-ITD-positive cell lines, using a targeted, multiplexed amplicon sequencing approach as previously 

described.5 FLT3-ITD mutational status and FLT3-ITD mRNA level respectively, was assessed by qPCR for FLT3 

amplification followed by fragment length analysis as described elsewhere.1, 4  

Supplementary Material and Methods 



Immunoblotting. AML cell lines, stably transduced Ba/F3 and freshly isolated PDX cells (5*106 cells each) were 

treated for 6 h in the presence or absence of TKI (50 nM) and / or 2-DG (10 mM). Selected AML cell lines were 

treated for 24 h in the presence or absence of AC220 (50 nM) and / or cycloheximide (10 µM). Western blotting 

of whole-cell lysates was performed according to standard procedures as described previously,2 utilizing an 8% 

SDS-PAGE and the following antibodies as recommended by the supplier: rabbit anti-FLT3 (catalog number: sc-

480, clone: S-18; Santa Cruz Biotechnology), rabbit anti-pFLT3 (Tyr969, catalog number: 3463S, clone: C24D9; 

Cell Signaling Technology), mouse anti-GAPDH (catalog number: 32233, clone: 6C5; Santa Cruz Biotechnology), 

mouse anti-alpha-Tubulin (catalog number: T6199; Sigma-Aldrich), goat anti-rabbit IgG-HRP, goat anti-mouse 

IgG-HRP, goat anti-rat IgG-HRP (catalog numbers: sc-2004, sc-2005, sc-2006 respectively, Santa Cruz 

Biotechnology). Proteins were visualized by enhanced chemiluminescence using ECL Plus Western Blot Detection 

Kit (GE Health Care, Munich, Germany) utilizing the FusionSL detection system (PeqLab, Erlangen, Germany). 

Quantification of protein levels was performed by densitometry using Fusion software (PeqLab) according to the 

user manual.  Experiments were performed once, if not stated otherwise.  

 

Flow cytometry. AML cell lines, stable transduced Ba/F3 and freshly isolated PDX cells (1*106 cells each) were 

treated for 6 h with TKI (50 nM, unless otherwise specified) or left untreated. Cells were incubated with the 

following antibodies in the dark for 10 min at RT: mouse anti-CD135-PE (catalog number: IM-2234U, clone: 

SF1.340; Beckman Coulter, Munich, Germany) or isotype control IgG1-FITC/IgG1-PE (catalog number: A07794, 

clone: 679.1Mc7; Beckman Coulter). For analysis of the TKI-treated patient, whole blood or bone marrow (BM) 

was incubated with mouse anti-CD135-PE (catalog number: 558996, clone: 4G8 (RUO); BD Biosciences), mouse 

anti-CD45-FITC (catalog number: 347463, clone: 2D1 (RUO); BD Biosciences) or respective isotype control IgG1-

FITC / IgG1-PE-CF594 (catalog number: 562292, clone: X40 (RUO); BD Biosciences) for 15 min in the dark at RT. 

Furthermore, the sample was incubated with OptiLyse B (Beckman Coulter) for 15 min, followed by destilled 

water for the same time. For analysis of cells harvested from in-vitro cytotoxicity and AC220 inhibition assays on 

MS-5 feeder cells the following antibodies were used: mouse anti-CD135-PE (catalog number: 558996, clone: 

4G8 (RUO); BD Biosciences), mouse anti-CD2-FITC (catalog number: 309218, clone: TS1/8; BioLegend, Hamburg, 

Germany), mouse CD33-PE-Cy7 (catalog number: 25-0338-42, clone: WM53; e-bioscience, ThermoFisher 

Scientific, Munich, Germany), each in combination with the respective isotype control IgG1-FITC/IgG1-PE (catalog 

number: A07794, clone: 679.1Mc7; Beckman Coulter). In addition, these cells were fixed with 2% 

paraformaldehyde upon dissolving in FACS buffer (DPBS, 2% FBS (Biochrom) and 5 µg/ml Propidiumiodide (Carl 

Roth). All samples were analyzed in FACS buffer using a FACS Calibur or LS II instrument and Cell Quest Software 

(BD Biosciences, Heidelberg, Germany). Data were analyzed using FlowJo software (Tree Star, FlowJo LCC, 

Ashland, OR, USA). Surface expression intensity, defined as mean fluorescence intensity (MFI) ratios, was 

calculated using the geometric mean values of each antibody sample and corresponding isotype control. 

Experiments were performed once, if not stated otherwise.  
3 



4 

Quantitative real-time RT-PCR. Selected AML cell lines were treated for 24 h in the presence or absence of 

AC220 (50 nM). RNA was isolated using the RNAeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions, followed by reverse transcription of 2 µg RNA using the cDNA Synthesis Kit 

(ThermoFisher Scientific). Quantitative polymerase chain reaction was performed utilizing a LightCycler 480 

(Roche, Basel, Switzerland), 500 ng cDNA, the QuantiTect SYBR Green PCR Kit (Qiagen) and the following 

primers: CTGAATTGCCAGCCACATTTTG (FLT3, forward primer), GGAACGCTCTCAGATATGCAG (FLT3, reverse 

primer; melting temperature for both: 78°C), AATGAAGGGGTCATTGATGG (GAPDH, forward primer) and 

AAGGTGAAGGTCGGAGTCAA (GAPDH, reverse primer; melting temperature for both: 81.5°C).7,8 PCR steps 

included amplification (45 cycles at 58°C annealing temperature) and melting curve analysis (65°C - 95°C; using a 

temperature gradient of 0.11°C/sec). The quality of amplified PCR products was confirmed by agarose-gel-

electrophoresis. Relative quantification of FLT3 in comparison to GAPDH was performed using a mathematical 

model as described previously.9  Experiments were performed in biological triplicates. 

 

Statistics. Statistical significance was assessed for in-vitro results using Student’s t-test, Mann-Whitney-U-test, 

Pearson and Spearman Rho correlation (all two-tailed and unpaired) utilizing the SPSS (IBM, version 23.0) 

software. Variance and normality of data was evaluated using the Levene-test and Kolmogoroff-Smirnov-test, 

respectively. Results were considered significant at a P-value <0.05. 
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FLT3 expression 
IC(50)  

AC220 [nM] 
TKI-sensitivity 

CD135 MFI ratio change  

 (mean)         (s.d.)            (range) 

FLT3-WT 60.80 (yes) 4.02  0.91 2.98 - 5.20 

FLT3-N676K 3.00 yes 4.61 0.87 3.80 - 5.82 

FLT3-D835Y 8.30 yes 1.71 0.23 1.39 - 1.88 

FLT3-ITD 598/599(12) 3.80 yes 1.07  0.12 0.91 - 1.21 

FLT3-ITD 598/599(22) 3.50 yes 1.80 0.37 1.50 – 2.32 

FLT3-ITD L601H(10) 1.80 yes 2.99 0.23 2.81 – 3.31 

FLT3-ITD K602R(7)   1.20 yes 2.84 0.49 2.19 – 3.39 

FLT3-ITD E611C(28) 1.20 yes 2.85 0.47 2.19 – 3.22 

FLT3-ITD E611V(32) 2.30 yes 1.99 0.74 1.40 – 3.03 

FLT3-ITD G613E(33) 4.30 yes 1.34 0.23 1.04 – 1.59 

FLT3-ITD-PM E611C(28)-N676K 43.70 yes 1.20 0.37 0.83 – 1.71 

FLT3-ITD-PM E611C(28)-D835Y >220 no 0.65 0.36 0.31 – 1.41 

Supplementary Table S1: TKI-sensitivity of FLT3 expressing Ba/F3 cell lines. 

Supplementary Table S2: TKI-sensitivity of AML cell lines. 

AML  

cell line 

FLT3 

expression 

IC(50)  

AC220 [nM] 

IC(50)  

PKC412 [nM] 

IC(50)  

Sorafenib [nM] 

TKI-

sensitivity 

CD135 MFI ratio change 

 (mean)    (s.d.)          (range) 

THP-1 yes >220 >220 >220 no 0.08 0.06 0.02 – 0.17 

OCI-AML3 yes >220 >220 >220 no 0.15 0.01 0.14 – 0.16 

MOLM-13 yes 5.10 53.70 44.10 yes 0.07 0.09 -0.02 – 0.20 

PL-21 yes >220 >220 >220 no 0.66 0.21 0.50 – 0.95 

MV4-11 yes 1.80 45.70 10.90 yes 3.06 0.79 2.07 – 4.00 

MM6 yes >220* >220* >220* yes* 12.94 3.37 6.18 – 16.60 

HL60 no >220 >220 >220 no 0.01 0.02 -0.02 – 0.05 

Kasumi-1 no 197.5 >220* 185.7 yes -0.04 0.02 -0.06 – -0.01 

EOL-1 yes 1.1 73 0.9 yes -0.26 0.31 -0.44 – 0.03 

MUTZ-2 yes >220 >220 >220 no 1.13 0.19 0.92 – 1.40 

NOMO-1 yes >220 >220 >220 no 0.12 0.12 -0.01 – 0.33 

KG-1a no >220 >220 >220 no 0.01 0.02 -0.02 – 0.04 

K-562 no >220 >220 >220 no -0.01 0.05 -0.07 – 0.07 
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FLT3 (Fms-related tyrosine kinase 3); WT (wild-type); ITD (internal tandem duplication); TKI (tyrosine kinase inhibitor); 

MFI (mean fluorescence intensity); CD135 (cluster of differentiation antigen 135) s.d. (standard deviation).  

FLT3 (Fms-related tyrosine kinase 3); ITD (internal tandem duplication); TKI (tyrosine kinase inhibitor); MFI (mean fluorescence intensity); 

CD135 (cluster of differentiation antigen 135); s.d. (standard deviation); *IC(70) [nM] for MM6: 21 (AC220), 160 (PKC412), 155 (Sorafenib); 

IC(70) [nM] for Kasumi-1: 135 (PKC412).  



Sample Diagnosis FAB Disease Stage SCT Cytogenetics NPM1 FLT3 Sex Age 

[y] 

PB/BM Blasts 

[%] 

TKI-PT#1 AML M2 relapse yes complex WT ITD (84nt); 

level: 0.96 

M 29 BM 40 

TKI-PT#2 AML M5 relapse yes normal ND ITD (216nt); 

level: 0.84 

M 24 PB 48 

PT#1  AML M4 first diagnosis no normal Mut ITD (60nt); 

level: 0.50  

M 71 PB 78  

PT#2 AML NA first diagnosis no aberrant  ND ITD (24nt); 

level: 1 

M 74 BM NA 

PDX (patient derived xenograft); FAB (French-American-British classification system); SCT (stem cell transplantation); NPM1 (nucleophosmin-1); 

FLT3 (Fms-related tyrosine kinase 3); WT (wild-type); Mut (mutated); ITD (internal tandem duplication); LOH (loss of heterozygosity); F (female); 

M (male); PB (peripheral blood); BM (bone marrow); NA (not available); ND (not determined); KRAS (Kirsten rat sarcoma proto-oncogene); NRAS 

(neuroblastoma ras proto-oncogene); TP53 (tumor protein p53); DNMT3A (DNA methyltransferase 3 alpha); RUNX1 (runt related transcription 

factor 1); ETV6 (ETS variant 6); PTPN11 (protein tyrosine phosphatase, non-receptor type 11); BCOR (BCL6 corepressor); WT1 (Wilms tumor 1); 

IDH (isocitrate dehydrogenase (NADP(+)).  

AML cell 

CD33+ cells relative to control [%] (s.d.; range) 
experimental 

replicate (no.) AC220 FLT3xCD3 combination 
computed additive 

effect 

HL60 112 (22; 97 - 150) 102 (15; 82 - 119) 92 (16; 76 - 110) 114  4 

MOLM-13 76 (12; 61 - 93) 4 (2; 1 - 6) 2 (2; 0 - 5) 3 4 

MV4-11 59 (12; 43 - 78) 25 (17; 3 - 43) 2 (3; 0 - 7) 15  4 

AML-573 89 3 2 3 1 

AML-415 95 70 57 67 1 

AML-579 82 27 6 22 1 

PT#1 90 57 34 51 1 

PT#2 88 41 16 36 1 

Supplementary Table S5: Characteristics of primary patient samples. 

 

FAB (French-American-British classification system); SCT (stem cell transplantation); NPM1 (nucleophosmin-1); WT (wild-type); Mut (mutated); FLT3 

(Fms-related tyrosine kinase 3); ITD (internal tandem duplication); TKD (tyrosine kinase domain); F (female); M (male); PB (peripheral blood); BM 

(bone marrow); NA (not available); ND (not determined). The FLT3-ITD mRNA level was calculated according to Schneider et al.4 .  

Supplementary Table S4: Lysis of AML cells by combination or single-agent treatment (FLT3xCD3 or AC220). 

PDX (patient derived xenograft); no. (number); FLT3 (Fms-related tyrosine kinase 3); CD3 (cluster of differentiation antigen 3); 

s.d. (standard deviation). 

7 

PDX cell Diagnosis FAB Disease 

Stage 

SCT Cytogenetics NPM1 FLT3 Further mutated genes Sex Age 

[y] 

PB/BM Blasts 

[%] 

  AML-372 AML M0 relapse yes adverse WT WT KRAS, NRAS, TP53 M 42 PB 67 

  AML-491 AML NA relapse yes aberrant WT WT DNMT3A, RUNX1, ETV6, 

PTPN11, BCOR, KRAS, NRAS 

F 53 PB 44 

  AML-573 AML M1 relapse no aberrant  WT ITD (63nt) WT1, DNMT3A, IDH2 F 64 BM 90 

  AML-640 AML ND relapse no adverse Mut ITD (60nt) 

ITD (84nt) 

IDH1 M 79 PB 90 

  AML-415 AML NA relapse no normal Mut ITD (18nt); LOH DNMT3A, IDH1  F 68 BM NA 

  AML-579 AML ND relapse no normal Mut ITD (24nt); LOH DNMT3A, IDH1  M 51 PB 77 

Supplementary Table S3: Characteristics of PDX cells. 
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Supplementary Figure S4: FLT3-ITD mRNA levels based on fragment analysis by capillary electrophoresis.  
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Supplementary Figure S4 continued: FLT3-ITD mRNA levels based on fragment analysis by capillary electrophoresis.  

(a) AML, CML and B-cell lymphoma cell lines and (b) PDX cells.  
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Supplementary Figure S6: FLT3-ITD mRNA levels of primary AML samples.  
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Supplementary Figure S7 continued: Lysis of AML cells with regards to dynamics and antibody concentration. (a) Lysis of 

AML cell lines after 72 h treatment with increasing concentrations of FLT3xCD3. (b) FLT3 surface expression levels with or 

without AC220-treatment at time points while TCMC assay. Representative flow cytometry plots with or without  FLT3xCD3, 

AC220 alone or in combination with regards to specific T-cell mediated lysis of (c) AML cell lines, (e) PDX and primary AML 

cells. (d) Impact of FLT3 surface expression on specific T-cell mediated lysis comparing untreated PKH26+ to AC220-pre-

treated PKH26- AML cells. no. (number), w/o (without) 
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5 Discussion 

AML is an aggressive hematologic malignancy that, although being treated with well-defined 

chemotherapy regimens and HSCT, is ultimately fatal in half of all cases. [352, 368] Mutations in 

FLT3 are frequently observed in AML patients. If implicated in oncogenic receptor activation, 

FLT3 mutations impact negatively on therapy response and outcome. Especially FLT3-ITDs with a 

high mutational burden are associated with adverse prognosis, implicating high relapse rates and 

a poor OS. [12, 145, 187, 369] Over recent years, studies have highlighted the prognostic 

relevance of FLT3-ITDs, leading to their implementation in the ELN risk stratification. [9, 50, 189, 

197, 202, 233, 244, 245, 262] Investigations on FLT3-targeted therapy have succeeded in the 

FDA-approval of Midostaurin in combination with chemotherapy as new treatment option for 

FLT3-mutated AML patients in 2017. Thus, screening of the FLT3 mutational status at initial 

diagnosis is highly recommended for AML patients more than ever. [92, 93, 323, 343] 

5.1 The applicability of NGS-based FLT3-ITD detection compared to 

standard routine assays 

Recently, NGS-based approaches for the detection of known AML-driver genes have gained 

increasing importance. For FLT3-targeted NGS screening, benefits in the detection of FLT3 

mutations regarding sensitivity and MRD monitoring were highlighted. [259, 281, 286, 287, 370] 

Beyond sensitivity, equally important for diagnostic applications is the reliable detection of FLT3 

mutations. As comparison of FLT3-targeted NGS-approaches and standard methods has not 

been performed extensively, this was addressed within the first project of this doctoral work. 

This project provided insights into the methodological challenges and benefits of FLT3-ITD 

detection by high-throughput amplicon sequencing (HTAS).  

5.1.1 Challenges in FLT3-ITD detection based on NGS applications 

While HTAS detected nearly all dominant ITD clones (97%) in line with routine diagnostics, 

technical limitations occurred when detecting ITDs combined with a deletion nearby or within 

the duplicated sequence. Secondly, false-positive calls, termed as non-specific and artificial ITDs, 

had to be excluded manually. Empirical evaluation of these ITD artifacts led to the definition of a 

cut-off value, eliminating the sequencing background noise. Furthermore, challenges in the 

quantification of the FLT3-ITD mutational burden of long ITDs were encountered, when 

compared to fragment analysis. Although FLT3-ITD mRNA levels correlated with the variant allele 

frequencies (VAFs), the estimation of the FLT3-ITD mutational load was up to five-fold lower 

compared to those measured by fragment analysis. This was reflected by a weaker correlation of 

allelic FLT3-ITD/FLT3-WT ratio and total FLT3-ITD mutational burden, respectively, with clinical 

outcome (RFS and OS). The cause was likely inappropriate mapping of long ITDs (≥ 75 nt) to the 
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reference sequence. This phenomenon has been shown by recent studies in smaller cohorts too. 

They demonstrated that the ITD detection by Pindel is dependent on the length and on the 

relative position of the amplicon [282, 371, 372]. Therefore, algorithms for read mapping and 

variant detection are currently limiting the accurate calculation of the mutational load of long 

ITDs. To overcome this limitation, an increase in read length (more than 2x250 base pairs paired-

end) and thus bi-directional coverage may be beneficial. Since the FLT3-ITD mutational burden is 

of prognostic relevance [11, 130, 189, 237, 257, 373], optimization of the VAF calculation by 

HTAS is indispensable. A recent study compared FLT3-ITD sequencing results generated by 

capillary electrophoresis and an NGS-based approach, analysing refractory or relapsed AML 

patients (n=241) that underwent TKI-treatment with Gilteritinib (CHRYSALIS Phase I/II study, 

clinical trial identifier: NCT02014558 [322]). In contrast to our approach, they used genomic 

DNA, while utilizing the same instrument (llumina MiSeq). Their results were similar with regards 

to the FLT3-ITD mutational burden of the dominant ITD clone using both methods (concordance 

rate R
2
: 0.987). [374] 

In conjunction with improvements in bioinformatics algorithms for the detection of FLT3-ITDs, 

two novel tools have been presented in 2016. The first one, called ITDseek, shows improved 

detection of FLT3-ITD of varying length and position, being superior to Pindel with regards to the 

detection of long ITDs and those with a low mutational burden. [371] The other one, ITDetect, 

shows a profound ITD detection, revealing more ITDs than other reported ITD callers, including 

Pindel. Using this tool on whole-exome sequencing (WES) data, the authors stated to reveal 

additional clinically-relevant subclones. [375] ITD calling of Pindel versus ITDseek and ITDetect is 

shown in Figure 13a. These tools have only been tested in a small series of FLT3-ITD positive AML 

samples so far (n= 11 and 12, respectively), without providing evidence that the additional ITD 

subclones are valid. Re-evaluation of our cohort with these tools might be helpful to clarify 

whether the discrepancies of Pindel and fragment analysis could be diminished or if the same or 

even further valid ITD subclones would be detected. The other limitation in our study regarding 

the failure to call ITDs combined with deletion is unlikely to be overcome by these tools. 

Although NGS-approaches should be able to detect a deletion in combination with an ITD, 

current ITD detection tools fail to output the data correspondingly. Only by manual visualization 

of the raw sequencing reads of the BAM files in the IGV browser an ITD combined with a 

deletion can be assumed based on read drop outs (Figure 13b) [371]. 
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sequencing. The majority of them could be validated on a genomic level. The number of ITDs by 

HTAS had a prognostic impact on RFS and OS, which was seen only as a trend in Kaplan-Meier 

survival curves by standard routine assays. In multivariate analysis, single FLT3-ITD mutations 

detected by HTAS were associated with a trend for longer RFS. In line with this, a low ITD 

mutation load correlated significantly with longer RFS in multivariate analysis. The correlation of 

additional clonal FLT3-ITD complexity by HTAS with adverse clinical outcome is in line with 

recent findings, demonstrating that the number of driver mutations per patient has prognostic 

relevance in MDS and AML [386-388]. Concordantly, similar results for the impact of FLT3-ITD 

subclones on therapy response and outcome have been obtained. This suggests the 

implementation of the number of FLT3-ITD clones into prognostic stratification [189, 257, 259, 

389-391]. Contrarily, in a study of pediatric AML no effect of multiple ITD clones on outcome has 

been observed [392]. 

A higher sensitivity impacts on the therapy decision when considering the selection of patients 

for TKI treatment with Midostaurin in combination with induction chemotherapy or for TKI 

monotherapy bridging towards an HSCT. Therefore, a reliable and sensitive identification of 

FLT3-mutations in AML, including ITDs, is essential for initial risk assessment and therapeutic 

intervention. The additionally detected ITD subclones resulting from higher sensitivity would in 

turn contribute to the total FLT3-ITD mutational burden and FLT3-ITD/FLT3-WT ratio accordingly. 

In line with this, a higher clonal FLT3-ITD heterogeneity probably drives disease progression by 

variations of ITD clone sizes and of the FLT3-ITD/FLT3-WT ratio, respectively. Hence, a higher 

load of ITD mRNA level may result in more FLT3-mutated protein. Although FLT3-ITD is a rather 

variable marker during therapy and disease progression, with mutational plasticity between 

diagnosis and relapse [27, 106, 268, 269, 276], several studies have pointed out the potential of 

NGS approaches for FLT3-ITD MRD assessment in first CR over conventional diagnostic 

applications for the prediction of relapse [80, 189, 249, 259, 268, 270, 279, 281, 282, 286]. This 

also applies to the measurement of the anti-leukemic activity of TKI inhibitors in identifying 

patients who may require a more intensive treatment. In a recently published study, FLT3-ITD 

detection by NGS could distinguish patients with a good TKI-response, showing prolonged OS, 

from patients with a poor TKI-response based on their subclonal FLT3-ITD level (≤10
-2

; CHRYSALIS 

Phase I/II trial patients receiving Gilteritinib). They confirmed that the presence of an ITD at MRD 

level (>10
-4

) is predictive for OS in patients achieving clinical remission. By now, this FLT3-ITD 

MRD NGS test is commercially available. [287, 385] Consistently, other studies report that FLT3 

positivity in first remission impacts negatively on outcome in HSCT, even at MRD level [370, 393]. 

In contrast, this correlation was not observed in a cohort of FLT3-ITD positive patients who 

received T-cell repleted haploidentical stem cell transplantation. [394, 395] Overall, FLT3-ITD 

monitoring thus seems to be a powerful prognostic tool by assessment of the kinetics of early 

phase treatment response, apart from being used for initial risk stratification at diagnosis. 
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5.1.3 NGS compared to other sensitive FLT3-ITD detection strategies 

Besides NGS, researchers also investigate the applicability of other strategies for a sensitive 

FLT3-ITD detection and monitoring, including PCR-based tools such as real-time quantitative RT-

PCR (RQ-PCR) and digital droplet PCR (ddPCR).  

Utilizing RQ-PCR for the detection of FLT3-ITD transcripts, a sensitivity of 10
-3

 to 10
-4 

can be 

achieved [80]. Similar to NGS studies [259, 281], the higher sensitivity enables the detection of 

small transcript levels in follow-up samples during CR. These are not measurable by conventional 

PCR [278]. A 3-log reduction in the FLT3-ITD level by RQ-PCR forecasts a better outcome of AML 

patients compared to those showing lower reductions and MRD levels above 0.1% [396, 397]. A 

benefit of RQ-PCR is the normalization of FLT3-ITD transcripts to the transcripts of a 

housekeeping gene, preferably Abelson murine leukemia viral oncogene homolog 1 (ABL1) [286]. 

The implementation of this control might also be useful for cDNA based NGS-approaches. Since 

being PCR-based also RQ-PCR requires a threshold which might be above low level transcripts in 

remission samples [283]. A method with strong potential to discriminate ITDs from the 

background signal is ddPCR (Figure 15a). ddPCR performs multiple PCRs of separated target DNA 

molecules in parallel, yielding ITD levels approximately 2-fold higher than VAFs measured by NGS 

variant calling of FLT3-ITD [377, 398]. To discriminate WT from ITD amplicons and to enable a 

precise quantification of ITD copies this technique, similar to RQ-PCR, requires ITD clone-specific 

primer-probes for each patient. Being resource-consuming, is a major drawback of both RQ-PCR 

and ddPCR. Regarding MRD monitoring, RQ-PCR and ddPCR both are unable to detect subclonal 

ITDs, undiscovered by conventional tools at initial diagnosis. Subsequently, they fail to detect 

clinically relevant low-level subclones outgrowing at relapse. [283, 286, 377, 398] 

Other approaches try to improve the specificity and sensitivity of conventional PCR by using 

multiple standard set of primers. Examples are delta-PCR (using a triple-primer strategy) or 

nested-PCR (using two primer sets sequentially). Although revealing additional and clinically 

relevant FLT3-ITD subclones at initial diagnosis, that have not been detected with conventional 

methods but may grow out during disease progression, sensitivity appropriate for MRD cannot 

be reached. [280, 375] Another approach intends to solely detect duplication specific amplicons 

to reduce any WT allele competitive amplification bias that may limit ITD detection sensitivity of 

PCR-based assays. This inverse PCR method is named tandem duplication PCR (Figure 15b). 

Tandem duplication PCR has been shown to detect long ITDs with high sensitivity (up to 10
-4

), 

but it fails to identify ITDs smaller than 40 nt, whereby up to 40% of ITDs may be missed. 

Additionally, in two out of 24 BM samples of healthy transplant donors an ITD was detected, 

each not-in frame indicating that this technique still requires further validation. [279, 399] 
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revised version of the ELN guideline 2017 [50], gDNA is recommended as input for FLT3-ITD 

fragment analysis, avoiding any transcription bias. However, the assessment of cDNA might still 

be worthwhile and recommendable, since the pretreatment FLT3-ITD ratio based on cDNA 

seems to correlate with TKI response (as demonstrated by the third project of this doctoral work 

and by a study investigating ex vivo pediatric AML samples treated with Gilteritinib [392]). On 

the cDNA level any influence of TKI treatment on the FLT3-ITD ratio might however complicate 

accurate treatment response measurements. Hence, changes in FLT3-ITD mRNA level in the AML 

cell line MOLM-13 upon TKI treatment were observed. Further evaluation of this phenomenon in 

the heterozygous setting is required. So far, several NGS-based FLT3-mutation detection tools 

have been designed to analyse gDNA input, including targeted haloplex sequencing. The recently 

commercialized FLT3-ITD MRD NGS assay also relies on gDNA input. In our study the use of gDNA 

from selected samples seemed to further ease the identification of ITDs - especially those being 

expressed at low levels as determined by fragment analysis. A higher number of ITDs was 

detected by gDNA compared to cDNA fragment analysis, affirming additional subclones detected 

by HTAS. Since FLT3 is a rather variable marker during disease progression [106, 268, 269, 276, 

283] with ITDs often being subclonal or expressed at low levels at initial diagnosis and then 

promoting relapse, a sensitive determination irrespective of transcriptional bias is relevant. 

Nonetheless, sensitivity might be still a matter of technique rather than input DNA. 

5.1.5 Prospective NGS-application in future FLT3-ITD routine diagnostics 

Our and other published results highlight the potential and reliability of NGS-based FLT3-ITD 

detection applications for diagnosis as well as therapy response monitoring [259, 281, 385]. 

Therefore, the use for routine diagnostics seems promising and reasonable. With increasing read 

length the covered sequence within FLT3 may even be expanded to the TKD2 region. This would 

enable to simultaneously identify activating FLT3-PMs, such as D835Y, which mediate TKI 

resistance. Within our cohort a preliminary test with the six patient samples would be possible, 

which were routinely-assessed and harbour a TKD mutation. Including FLT3-PMs in the assay 

would follow the recent recommendation by the ELN to perform FLT3 testing for both ITD and 

TKD for all patients diagnosed with AML. With regards to the therapeutic application of 

Midostaurin in combination with chemotherapy they suggest the assessment of FLT3-mutation 

status receiving results within 3 days. [50, 401] Regarding our 96-well setting this would require 

down-scaling according to the needs in routine diagnostics based on incoming samples and an 

established bioinformatic output system. With decreasing sample number the sensitivity as well 

as the costs per sample will rise. Therefore, it might be worth to expand our approach to assess 

several prognostic markers at once by multiplexing different target-amplicons from mutational 

hotspots in further genes, including NPM1, CEBPA and WT1. Sequencing multiple targets in 

parallel, performing a gene panel, in turn reduces sensitivity for either target. When maintaining 

sensitivity, higher costs per sample are implicated. However, this would safe time compared to 

multiple Sanger sequencing runs [381]. An all-in-one genetic assay would enable classification of 

patients more accurately, considering that co-occurence with an NPM1 mutation partially 

improves response and survival outcomes of FLT3-ITD positive or FLT3-D835 mutated patients. 

[402-404]. Expecially for diagnosis, the assessment of a gene panel is attractive to accurately 
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classify molecularly heterogeneous AML patients and to define their best personalized 

therapeutic option.  

5.2 The relevance of new and recurrent FLT3 deletion mutations in 

AML 

Since not all mutations in the FLT3 gene found in AML patients have biological consequences 

[229], deciphering passenger from driver mutations remains essential. The second project 

provided insights about the impact of a new and recurrent FLT3 mutant p.Q569Vfs*2 on 

receptor function and downstream signalling. 

5.2.1 Deciphering the biological consequences of FLT3 p.Q569Vfs*2 

The FLT3 mutation p.Q569Vfs*2 was found in an AML patient at relapse. P.Q569Vfs*2 in FLT3 

leads to a frameshift deletion generating a truncated FLT3 receptor in transduced Ba/F3 cells, 

which likely represented the processed protein in the patient sample. In a study of a large AML 

cohort this mutation was detected with a frequency of 0.03% (two out of 6843 unselected AML 

patients) [405]. Functional characterization of AML patient-derived FLT3 mutations causing a 

truncated FLT3 receptor have not been performed yet. Only the combination of a JMD-ITD with 

an engineered truncation of the kinase domains has been investigated to demonstrate the JMD-

mediated impact on receptor activation and proliferation [220]. In contrast, FLT3-p.Q569Vfs*2 

only comprised the first amino acids of the JMD, while lacking the residual internal receptor 

region responsible for signalling activation. The FLT3 tyrosine residues 589 and 591 in the JMD 

have been reported to be essential for ligand-dependent activation of FLT3-WT as well as for the 

transforming potential of oncogenic FLT3 mutants [406]. Hence, a FLT3-mediated proliferation 

advantage was questionable. As expected, Ba/F3 cells expressing the truncated FLT3 mutant 

showed no proliferation upon ligand stimulation. This effect also occurred in the heterozygous 

setting. FLT3-p.Q569Vfs*2 influenced FLT3-WT receptor signalling in a dominant-negative way, 

due to the formation of receptor heterocomplexes. MRNA levels of FLT3-p.Q569Vfs*2 were 

lower compared to FLT3-WT in the patient sample. Nonetheless, evidence in Ba/F3 cells is 

required to proof that FLT3 heterodimerization is favoured compared to homodimerization upon 

FL stimulation. Subsequently, the amount of serum FL level in the patient sample might be 

informative. Nonetheless, heterodimer formation and influence on FLT3-WT has been shown for 

the engineered truncated JMD-ITD mutant too [220]. Similarly, for the truncated EGFR CD-533 a 

dominant negative effect on WT receptors has been observed, proposing heterodimerization as 

responsible mechanism for abrogation of tyrosine kinase activity and suppression of mitogenic 

response of WT receptors. [407, 408] Similar to the investigated truncated FLT3 variant 

p.Q569Vfs*2, EGFR CD-533 contains a premature stop following a few amino acids after the 

transmembrane domain, lacking all cytoplasmic phosphorylation residues. Therefore, 

autophosphorylation and subsequent receptor activation upon dimerization with the truncated 

form seems to be inhibited. Interestingly, the presence of EGFR CD-533 furthermore reduced the 
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amount of high-affinity ligand binding sites and subsequently the internalization of WT receptors 

in NIH 3T3 cells expressing both receptor types, slowing down receptor degradation. [408] This 

might also be the case for the heterozygous setting with FLT3 WT and FLT3 p.Q569Vfs*2 in Ba/F3 

cells which requires confirmation.  

The dominant negative effect of FLT3 p.Q569Vfs*2 on receptor signalling suggests that the 

patient’s AML blasts proliferate independently of FLT3 kinase activity. This raises the question 

about the role of this mutant in cancer evolution, disease progression and other mechanisms 

involved in the evasion of anti-leukaemia treatment. A potential role in the pathogenesis of AML 

might be the escape of FLT3 dependent signalling modulated by FL. However, the proof of 

protein expression of FLT3-p.Q569Vfs*2 in the patient sample was not possible due to lack of 

appropriate patient material. Following the evidence from expression in the Ba/F3 model 

system, FLT3-p.Q569Vfs*2 expression should be investigated in AML cell lines. Using targeted 

genome editing, for example clustered regularly interspaced short palindromic repeats (CRISPR) 

and CRISPR-associated protein 9 nuclease (Cas9), may be used to genetically introduce the 

p.Q569Vfs*2 mutation into FLT3 in AML cells. This would provide insights whether nonsense-

mediated mRNA decay (NDM) mechanisms affect this mutant in the setting of AML. In 

physiological conditions, NMD acts as surveillance mechanism balancing the abundance of 

cellular RNAs and as a translation-dependent quality control mechanism eliminating mRNA 

transcripts that contain premature stop codons. Thus, NMD prevents any dominant cellular 

toxicity of mutant proteins. [409, 410] However, the susceptibility to NMD seems to be different 

from case to case. For example, the truncated p53 protein encoded by the 770delT allele is as 

abundant as the WT protein due to increased protein stability governed by the removal of the C-

terminal p53 domain. [411] In AML cells, NMD activity declines during chemotherapy and during 

treatment using the hypomethylating agent Azacitidine. This results in an inefficient destruction 

of mRNAs containing a premature stop codon. [409, 412] In theory, upon treatment pressure 

with hypomethylating or chemotherapeutic agents, AML cells with FLT3-p.Q569Vfs*2 would 

have received a cell survival benefit, if FLT3-p.Q569Vfs*2 mediated oncogenic transformation. 

Same accounts for any TKI response to AC220 treatment, since the type II TKI competes with ATP 

binding targeting intracellular receptor regions lacking in the truncated variant. As expected, a 

growth advantage of mutant without or in combination with FLT3-WT under TKI treatment using 

AC220 in the Ba/F3 model system was not observed. Nonetheless, competitive growth of 

CRISPR-Cas9-modified AML cells under treatment might be different - although reconstruction of 

the complete biological picture as present in the AML patient sample would require a complete 

mutational profile. Due to the lack of remaining gDNA patient material mutational analysis of 

known driver genes was not possible. Only RNA patient material was available. Examination of 

allelic expression of interesting candidates by RNA sequencing might be worth it, to assess 

molecular alterations potentially causing the relapse aside from the detected FLT3 alteration.  

Although investigation of the truncated variant FLT3-p.Q569Vfs*2 conferred a loss-of-function 

phenotype with repression of FLT3-WT in an heterozygous cell culture setting, similar to the 

behaviour of EGFR CD-533, examples of truncated receptors fostering the onset of AML exist.  
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5.2.2 Consequences of truncations in other receptors associated with AML 

Truncated receptors showing the potential to promote leukemogenesis are for instance 

truncated variants of the colony-stimulating factor 3 receptor (CSF3R). CSF3R is a key player in 

neutrophil production, belonging to the hematopoietin receptor superfamily. In about 20% of 

patients suffering from severe congenital neutropenia (SCN), C-terminal truncated variants of 

CSF3R are detectable. They confer an increased risk of developing AML. Unlike RTKs, 

hematopoietin receptors are not capable of autophosphorylation. They require the recruitment 

of cytoplasmic tyrosine kinases of the JAK or Src kinase families for downstream signalling. 

Receptor signalling is furthermore tightly regulated by members of the suppressors of cytokine 

signalling (SOCS) family and tyrosine phosphatases SHP-1 and SHP-2. [413-415] Somatic 

mutations in CSF3R, that generate C-terminally truncated proteins lacking 82 to 98 amino acids 

implying tyrosine residues required for downstream signalling, typically affect a single allele. 

Nonetheless, truncated CSF3R mediates increased growth and abrogated maturation in response 

to their ligand CSF3 based on increased STAT5/STAT3 activation ratio. Thereby, truncated CSF3R 

act dominantly over CSF3R-WT. Compared to CSF3R-WT, truncated receptors are featured with a 

hyper-responsiveness to CSF3 inducing a higher and more sustained receptor activation, while 

facing a substantially reduced “off-rate”. This is based on defective internalization of truncated 

receptors as well as on abrogated negative feedback mechanisms on STAT5 activation, 

implicating the loss of tyrosine residues recruiting SOCS3 and SHP-2 (Figure 16a). Compared to 

FLT3-p.Q569Vfs*2, AML-associated truncated CSF3R still contains sites required for the 

recruitment of cytoplasmic tyrosine kinases as well as membrane-proximal region residing 

residues for STAT5 binding. In addition, truncated CSF3R frequently lacks both receptor 

inhibitory sites and sites required for mediators of cell differentiation. Although mediating a 

proliferative advantage, the mere expression of truncated CSF3R in mice is not leukemogenic. 

Only in cooperation with PML-RARA a CSF3-dependent decreased latency in AML induction is 

observable, accompanied by higher blast counts and increased myelosuppression. [413, 415] 

This demonstrates that the interplay of cooperating mechanisms such as other genetic 

alterations are essential to recapitulate and understand the complete mode of action truncated 

receptors can exert in forcing AML induction or progression.  

Another example of a truncated receptor being associated with AML is delta-tropomyosin-

related kinase A (TrkA). TrkA is involved in neuronal survival and maintenance. Beyond its 

function in neurons, TrkA is expressed at several stages of haematopoiesis and in primary 

leukemic cells from AML patients. [416] Delta-TrkA is an AML-patient derived truncated variant 

of the neutrophin receptor TrkA, lacking 75 amino acids of the extracellular domain. This 

includes the loss of the main part of the second Ig-like domain, responsible to inhibit 

spontaneous dimerization and subsequent autophosphorylation of the receptors, while 

intracellular receptor parts remain unaffected (Figure 16b). [417] Delta-TrkA thus leads to a 

constitutive activation of the receptor, mediating a leukemic transformation of primary murine 

HSCs via activation of PI3K and mammalian target of rapamycin (mTOR), but not STAT and MAPK 

pathway. Lin-negative BM cells transduced with delta-TrkA induced acute leukemia with signs of 

a maturation arrest of myeloid blasts when transplanted into mice. While half of the mice 



Discussion 

146 

developed AML with necrotic tumo

other half, surviving the early bla

leukemia with meningeal infiltration

Figure 16: Truncated CSF3R and TrkA. 

Illustration of the truncated receptors

extracellular second immunoglobulin-lik

CSF3R lacking cytoplasmic regions, invo

crossed domains). The hinge motif sepa

have also been shown to increase the p

(adapted from Liongue 2014). SP (signal 

JMD (juxtamembrane domain), TKD (tyro

These examples provide insights

leukemogenesis. They further indica

autophosphorylation and thus sig

there still might be a contributor

leukemogenic potential tends to be

mutations on receptor signalling 

function may be targetable. 

5.3 TKI-mediated effects

combination with FLT

With regards to TKI single-agent 

observed, irrespective of FLT3 state

mor emboli in the blood vessels of the lung, liver 

 blast crisis, subsequently developed ALL or MP

ation of leukemic cells. [416] 

 

tors a) delta-TrkA, which contains a 75 amino acid

like domain (modified from Reuther 2000 and Taccon

involved in mediating differentiation and proliferation

eparates the cytokine receptor homology (CRH) domain

he production of reactive oxygen species (ROS), creatin

nal peptide), Cys-rich (cysteine-rich cluster), TM (transme

(tyrosine kinase domain). [415, 417, 418] 

ights into the mechanisms involving truncati

ndicate that at least parts of the domains responsi

 signalling are required for any oncogenic pote

utory role of dominant-negative mutants in onc

o be marginal. Nonetheless, consequences of new

ing require elucidation, since alterations media

ects on FLT3 and the potential for a 

h FLT3-directed immunotherapy in A

ent treatment variable responses of AML patie

state. [289] Therefore, systematic evaluation of th

iver and kidney, the 

 MPD-like myeloid 

 

acid deletion of the 

cconelli 2005) and b) 

ion signalling (orange 

ain. Truncated CSF3R 

ating genotoxic stress 

smembrane domain), 

cating variants in 

onsible for receptor 

potential. Although 

 oncogenesis, their 

 new and recurrent 

ediating a gain-of-

r a 

in AML 

atients have been 

of the TKI response 



Discussion 

147 

on FLT3 localization and cell proliferation in differentially FLT3 mutated settings was performed 

in the third project of this doctoral work. The project revealed a TKI-mediated increase in FLT3 

surface expression based on the FLT3 genotype. This FLT3 surface increase was N-linked 

glycosylation-dependent and correlated inversely with proliferation. Sufficient target 

presentation at the cell surface is required for profound immunotherapy responses. Hence, this 

mechanism provided the basis for a rational combination of TKIs with FLT3-directed 

immunotherapy for the treatment of FLT3-mutated AML. Proof-of-principle experiments 

affirmed a synergistic anti-leukemic effect of Quizartinib and a bispecific FLT3xCD3 antibody in 

FLT3-ITD positive AML cells. This therapeutic approach might be especially interesting for elderly 

patients, harboring a FLT3-ITD mutation, neither eligible for the combination of TKI with 

chemotherapy nor for HSCT. 

5.3.1 The role of the FLT3-genotype on TKI response 

In our study TKIs increased the membrane localization of the FLT3-PM V592A, D835Y as well as 

of FLT3-ITDs. The increase in surface FLT3 correlated positively with the pretreatment FLT3-ITD 

mRNA level (also referred to as ITD ratio), being most prominent in samples harboring a 

homozygous ITD. Heterozygous ITD positive samples responded with a lower FLT3 surface 

increase after 6 hours. This is reflected by outliers in the respective scatter plot displaying the 

correlation between the change in FLT3 expression and the FLT3-ITD mRNA level. However, as 

shown for the AML cell line MOLM-13 – where FLT3 surface levels increased at a later time point 

– this might be attributed to a delay in TKI response. In line with this, a high increase in surface 

FLT3 was observed for an ex vivo sample of a FLT3-ITD heterozygous patient after day 55 of TKI 

treatment. Concordantly, a phase II trial with Lestaurtinib shows an increase in FLT3 surface 

levels in FLT3-mutated (ITD and TKD) AML patients at day 14, 28 and 56 after treatment [289], 

but also for patients with a FLT3-WT genotype. Thus, TKI-mediated changes in FLT3 surface 

expression might also be a matter of time in FLT3-WT expressing AML patients. Of note, also WT-

expressing cells demonstrate a reduction of BM blasts after Lestauritinib treatment, whilst one 

ITD-positive patient did not respond. Any late FLT3 expression increase during Lestauritinib 

treatment does not correlate with clinical outcome. [289] This was also the case for a Sorafenib-

treated ITD patient in our study, who demonstrated no reduction in blast count, although 

showing higher levels of FLT3 compared to prior treatment. Any late TKI responses might 

therefore be irrespective of the FLT3-genotype - which should be examined further. Early 

responses after 6 hours of Quizartinib treatment seem to depend on the mutation level of FLT3. 

Neither FLT3-WT AML nor PDX cells showed a significant increase in surface FLT3 in our study, 

except for the FLT3-WT AML cell line MUTZ-2. The underlying mechanisms of the early increase 

of FLT3 surface expression in this cell line should be investigated more closely, since it may 

indicate intracellularly retained FLT3 before treatment. Alternatively, transcriptional 

upregulation may be the cause for increased FLT3 surface levels. Moreover, the correlation 

between the pretreatment FLT3-ITD mRNA level and the early TKI-mediated increase in FLT3 

surface expression should be confirmed, since the sample number was relatively low in our study 

(n=11). Retrospective data analysis of TKI-treated patients regarding this correlation could be 



Discussion 

148 

done rather easily now, as Midostaurin has now been approved by the FDA for the treatment of 

FLT3-mutated AML patients in combination with chemotherapy [343, 419, 420]. 

Theoretically, a high ITD ratio implies a quantitatively greater expression of constitutively active 

FLT3, combined with a greater dependency on FLT3 signalling for cell survival and thus better TKI 

response [115]. In accordance, the increase in surface FLT3 correlated inversely with 

proliferation in our study. Nevertheless, also in this case, sample size should be increased to 

confirm the correlation of the early FLT3 surface increase and cytotoxicity in primary AML blasts. 

Subsequent investigations should also include a larger set of TKIs. In line with our findings, a 

study of 348 FLT3-ITD positive and 135 FLT3-ITD negative ex vivo samples showed FLT3-ITD to be 

predictably the strongest association with Midostaurin-response in vitro. In analogy, the ITD 

mutant allele fraction correlated strongly with the extent of Midostaurin sensitivity. 

Interestingly, FLT3-TKD positive samples showed responses similar to FLT3-WT samples after 

Midostaurin treatment. [421] Investigations with Sorafenib and Quizartinib affirmed that 

samples with a mutant allelic burden above 50% are more sensitive to the TKIs in vitro compared 

to those with a low ITD ratio [369]. An ITD ratio dependent cytotoxic response for the TKIs 

Lestauritinib and Gilteritinib is confirmed by ex vivo treatment of pediatric AML samples [115, 

392]. With regards to Lestauritinib, FLT3-WT and FLT3-TKD positive samples showed similar 

cytotoxicity, with responses in approximately 30% of cases in each group [115]. Biologically, the 

predictability of the ITD ratio for TKI response has been shown to be based on the amount of co-

expressed FLT3-WT. Co-expression of FLT3-WT attenuates the inhibitory effect of TKIs in 

heterozygous FLT3-ITD AML cells in a FL-dependent manner in vitro and in vivo [422]. Thus, 

samples with a high mutant allelic burden are more likely to be responsive to FLT3 inhibition, 

compared to samples with a low mutant allelic burden.  

Dose responses for samples with a low ITD ratio are concordant with the selectivity scores for 

the different TKIs [369]. Thus cytotoxic efficacy relies on the target spectrum of the TKI, since 

target selectivity affects target affinity [291, 292, 369]. In line with previous reports [291, 369, 

423], our study confirmed that the second-generation TKI Quizartinib was most potent against 

FLT3-ITD compared to multi-kinase inhibitors, such as Midostaurin and Sorafenib. Early increases 

in FLT3 surface level were highest at concentrations of 5 to 25 nM for the FLT3-ITD positive cell 

line MV4-11. Of importance, Midostaurin and Lestauritinib target both, FLT3-WT and mutant 

FLT3 (ITD and TKD), whilst Quizartinib and Sorafenib show higher potencies against FLT3-ITD 

than FLT3-TKD and FLT3-WT [301, 369, 422, 424] 

Although there might be a significant difference in vitro, clinical trials suggest that the benefit of 

TKIs might be irrespective of the FLT3-mutation state (TKD or ITD) or the ITD ratio. Within the 

CALGB10603/RATIFY trial the benefit of Midostaurin on outcome after conventional therapy was 

consistent across all FLT3-mutant subtypes (TKD mutated, low/high ITD ratio) [93, 425]. Similarly, 

the SORAML trial administering Sorafenib demonstrated Sorafenib to be a beneficial additive to 

conventional therapy irrespective of the FLT3 genotype [337]. Also FLT3-ITD positive patients 

treated with Gilteritinib within the CHRYSALIS trial benefited from TKI treatment irrespective of 

initial mutational ITD burden. FLT3-TKD positive patients with a mutational burden above 5% 

VAF in contrast tended to show a better OS response after 10 months of treatment. [287, 323, 
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374] This is probably attributed to the high efficacy of Gilteritinib in eradicating FLT3-TKD and 

FLT3-ITD-TKD mutant AML cells [426]. Furthermore, Gilteritinib has been shown to decrease the 

expression of anti-apoptotic proteins in MV4-11 cells, such as MCL-1 and survivin, which are 

reported to be essential in chemotherapy sensitivity [427]. No overall clinical benefit was 

observed when adding Lestauritinib to chemotherapy in FLT3-mutated AML (CALBG106603 trial). 

Lower rates of relapse and improved OS were only seen in patients who achieved sustained FLT3 

inhibition (more than 85%). [312] Insufficient FLT3-target inhibition might be due to resistance 

mechanisms, whereby broad-range TKIs might be of advantage – but also their efficacy has 

limits. Investigations on combining chemotherapy with the most potent FLT3 inhibitor 

Quizartinib are still ongoing. An interim analysis revealed that Quizartinib combined with low-

dose Cytarabine is highly active in AML patients with a FLT3-ITD mutation. [92, 428, 429] 

With regards to resistance, in our study the heterozygous FLT3-ITD positive AML cell line PL-21 

did neither respond with an increase in surface FLT3 nor with a reduction in proliferation, as 

expected based on the ITD ratio. This was likely due to its KRAS mutation, which is known to be 

associated with TKI-resistance [430, 431]. This is in line with previous reports, demonstrating 

sustained proliferation of FLT3-ITD positive samples not entirely relying on FLT3 signalling [369]. 

Mutations in KRAS and TP53 amongst FLT3-ITD positive patients are predictive towards 

Midostaurin resistance, while t(15;17) in ITD-positive patients increases Midostaurin efficiency. 

In contrast, in FLT3-ITD negative samples inv(16) confers increased sensitivity to Midostaurin. 

[421] Moreover, acquisition of activating PM in FLT3-ITD positive patients mediates resistance to 

TKI treatment [252, 253, 263, 264]. Concordantly, in our study, resistance mediating PM 

combined with an ITD required higher dose of Quizartinib to induce a reduction in proliferation 

compared to cells with ITD only. The TKI-mediated cell proliferation inhibition as well as the 

increase in FLT3 surface expression seemed not to be influenced by the ITD position. In contrast, 

a recent report demonstrated JMD-ITDs to be more sensitive towards TKI-therapy than TKD1-

ITDs in vitro and in vivo [251]. 

An exception of the inverse correlation of FLT3 surface increase and proliferation was the FLT3-

WT AML cell line MUTZ-2. MUTZ-2 did not show any inhibition of proliferation, although showing 

a significant increase in surface FLT3 levels upon TKI treatment. Phosphorylation levels of FLT3 

should thus be examined for any involvement of direct targeting by Quizartinib. Inhibition of 

FLT3 phosphorylation in turn should result in a reduction in cell proliferation. According to the 

online available cytogenetic profile provided by the DSMZ, MUTZ-2 harbors additional 

chromosomes 8 and 10, including the oncogenes MYC and RUNX1. Deregulated MYC and RUNX1 

have been shown to confer resistance to FLT3 inhibitors by mediating cell survival (Figure 17) – a 

mechanism frequently exploited by FLT3-ITD positive AML cells [215, 222, 223, 432].  
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conventional treatment, TKI treatment in combination with chemotherapy might not be 

essential.  

Although there is emerging evidence that the FLT3-genotype matters in TKI efficiency in vitro 

[115, 301, 369, 422], the biological picture might be more complex in vivo. Hence, clinical 

responses in FLT3-mutated as well as FLT3-WT cases might be influenced by intrinsic and 

extrinsic effects, involving alternative oncogenic pathways. Therefore, concomitant molecular 

alterations aiding in predicting TKI sensitivity or resistance should be routinely assessed when 

intending to apply TKIs. Moreover, biological mechanisms underlying TKI response or resistance 

have to be fully understood to apply TKIs as tailored as possible.  

5.3.2 Biological mechanisms behind the increase in surface FLT3 

Concordant with other reports [207, 442-447], our experiments revealed an increase of the fully 

glycosylated mature (160 kDa) form of FLT3 after TKI-treatment. The increase in the mature form 

was in compliance with the increase in surface FLT3. In the FLT3-ITD positive cell lines MOLM-13 

and MV4-11 as well as in the FLT3–PM cell line MM6, a decrease in the immature form was 

observed. On a biological level the increase in surface FLT3 by TKIs was dependent on N-linked 

glycosylation, as demonstrated by inhibition with 2-deoxy-D-glucose (2-DG). In line with this 

observation, others report that complex glycosylation of FLT3 at the Golgi compartment is 

important for its protein stability and trafficking to the cell surface [207, 208, 444, 448]. Thereby, 

the extracellular domains of FLT3 are of importance, because they carry most potential 

glycosylation sites [207]. Kinase activity involving tyrosine residue 842 and serine residue 935 are 

decisive for appropriate receptor folding and maturation in a chaperone-dependent manner. 

Consequently, also kinase inactivation promotes FLT3 maturation mediating the shift from the 

immature towards the mature receptor form. Inhibition of STAT5 activation in FLT3-ITD positive 

AML cells abrogates the positive feedback mechanism governed by its downstream target PIM1. 

The serine/threonine kinase PIM1 is capable of phosphorylating and stabilizing immature FLT3 

receptors in conjunction with the chaperones calnexin and heat shock protein 90 (HSP90). They 

assure glycoprotein maturation quality in the ER or cytosol, prior processing towards the Golgi 

complex. Immature but activated FLT3 is prevented from proteasomal degradation and enabled 

to further activate STAT5. [206-208, 217, 444, 449] Therefore, inhibition of STAT5 activation may 

release the cytosolic retained immature FLT3-ITD. Of note, MOLM-13 cells made resistant to 

Midostaurin (by sustained low-dose supplementation to the culture medium) showed higher 

levels and a reduced turnover of FLT3 with prolonged half-life [362, 442]. 

Besides phosphorylation and N-glycosylation, our experiments showed that the FLT3 surface 

expression was linked to transcriptional regulation of FLT3. Dependency on biosynthesis was 

indicated by experiments with cycloheximide. In the FLT3-ITD homozygous AML cell line MV4-11, 

a transcriptional upregulation of FLT3 mRNA expression upon Quizartinib treatment was 

observed, elevating the total amount of FLT3 protein. In the heterozygous FLT3-ITD AML cell line 

MOLM-13, FLT3 mRNA expression levels did not change significantly upon Quizartinib treatment. 

A transcriptional imbalance favoring the WT allele was observed. This might be attributed to the 
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delayed increase of surface FLT3 after TKI-treatment. The underlying cascade mediating these 

feedback responses should be investigated more closely to decipher which transcriptional 

activators are involved. Confirmation of this phenomenon in primary samples by other TKIs 

should be performed. Transcriptional upregulation of FLT3 in MV4-11 might somehow be 

associated with CD99 (MIC2) expression. Inhibition of CD99 expression leads to elevated FLT3 

levels in MV4-11 cells - a dual pattern also inducible upon Midostaurin treatment. [450] Anyhow, 

transcriptional upregulation of FLT3 and increase in protein stability may be an adaptive cellular 

attempt to rescue FLT3-mediated signalling by the concept of “oncogene addiction” to tolerate 

target inhibition. Frequently, gain of secondary point mutations mediating TKI resistance in FLT3-

ITD positive patients restores the activation of the FLT3 pathway [352, 451]. Compensatory 

upregulation of FLT3-WT might be an alternative way to increase the possibility for FL 

stimulation. In line with the transcriptional shift towards FLT3-WT seen in MOLM-13 in our 

study, co-expression of FLT3-WT has been shown to attenuate the inhibitory effect of TKIs when 

stimulated with FL via MAPK activation of fully glycosylated FLT3 [422]. Glycosylation is thereby 

the key to the FL-dependent resistance to TKIs [422].  

The TKI-mediated increase in mature surface FLT3 may also provide enhanced access to FL 

activation. Intrinsic upregulation of FL expression has been observed in response to TKI-

treatment in MV4-11 cells made resistant to FLT3 inhibitors [212]. After chemotherapy 

treatment, elevated serum FL levels are detectable in AML patients. [422, 452-454] Enhanced FL-

induced FLT3 activation might thus impede the efficacy of TKIs up to several fold in FLT3-ITD 

positive patients, hence being identified as potential resistance mechanism [115, 352, 422, 451-

453]. In adult FLT3-ITD positive AML patients, an increased level of FL was associated with 

decreased TKI sensitivity, requiring higher doses of Lestauritinib to overcome the lowered 

inhibitory efficacy [452]. Nevertheless, the combination of Midostaurin as well as Sorafenib with 

conventional chemotherapy improved patient outcomes in AML patients (CALGB 10603 / RATIFY 

and SORAML trial) [93, 337, 420]. Similarly, elevated FL levels might efficiently compete with 

FLT3-directed antibodies for target binding, lowering the pharmacodynamics and requiring 

higher antibody-doses. So far, initial experiments with anti-FLT3 antibodies indicate that they are 

still cytotoxic to FLT3 TKI-resistant clones and that they bind FLT3 regardless of the 

concentration of FL [354, 455]. 

Beyond these resistance mechanisms, the increase in surface FLT3 mediated by the TKI probably 

promoted NADPH oxidase (NOX)-generated ROS formation. Recently, researchers discovered 

that AKT signalling induced by FLT3 located at the plasma membrane is required for NOX-

generated ROS induction. NOX-generated ROS act as a pro-survival signal. However, 

concentrations beyond the tolerable threshold can enforce apoptosis inducing selective 

cytotoxicity. [456, 457] In response to oxidative stress, cells can induce autophagy as a 

protective response mechanisms [458]. Whether the TKI-mediated increase in surface FLT3 

induces cytotoxic ROS levels should be evaluated to assess any pro-survival feedback 

mechanism. 

Nonetheless, with regards to target recognition in immunotherapy, increased FLT3 surface 

expression might overcome the limitation of FLT3-antigen availability in FLT3-ITD positive AML 
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cells. Full glycosylation mediated by the TKI might also modulate immune response through 

post-translational modifications as glycosylation matters in major histocompatibility complex 

(MHC) peptide presentation and antigen recognition of T-cells. [459] 

Since TKI treatment seems to implicate a lot of biological responses based on individual 

molecular compositions, their therapeutic exploitability as well as the need for intervention has 

to be further investigated. Any of these response mechanisms should subsequently be carefully 

examined to determine the clinical applicability of the combination of TKIs with FLT3-directed 

immunotherapy.  

5.3.3 Clinical applicability of combining TKIs with FLT3-directed 

immunotherapy 

Relapse in FLT3-ITD positive AML patients remains common, due to resistance mechanisms 

towards standard treatment or novel single-agent targeted therapeutic approaches [212, 260, 

263, 267, 377, 451, 460-462]. Therefore, combinatorial approaches are highly warranted. In our 

study, we investigated the combination of TKIs with FLT3-targetd immunotherapy in T-cell 

mediated cytotoxicity (TCMC) assays, based on the finding that TKIs induced an increase in 

surface FLT3 presentation. A synergistic effect of Quizartinib with a bispecific FLT3xCD3 antibody 

was observed against homozygous FLT3-ITD positive MV4-11 cells, PDX samples and a primary 

AML patient sample. In the heterozygous FLT3-ITD AML cell line MOLM-13 as well as in a 

heterozygous FLT3-ITD PDX sample, antibody-treatment alone already resulted in very efficient 

eradication of AML cells, whereby no conclusion about synergistic or additive effects could be 

drawn. A synergism was shown for a heterozygous FLT3-ITD positive primary AML patient 

sample, harbouring a high ITD mutational load. Competitive lysis experiments of untreated and 

Quizartinib pre-treated FLT3-ITD homozygous MV4-11 cells confirmed a preferential killing of 

pre-treated cells with increased surface FLT3. In line with previous reports [463], any modulatory 

effect of 50nM Quizartinib on T-cell reactivity and function could furthermore be excluded. To 

finally provide evidence that the increase in fully glycosylated FLT3 mediates the benefit and to 

exclude any complementary mechanisms governing this synergism, a TCMC assay using 

Quizartinib with a CD33xCD3 antibody against MV4-11 cells should be performed. TCMC assays 

investigating the efficacy of the BiTE antibodies CD33xCD3 and FLT3xCD3 in eradicating AML 

blasts show faster lysis of AML cells highly expressing the target antigen compared to AML cells 

with a low target antigen expression. This indicates a target antigen-expression dependency of 

antibody efficacy [114, 356]. In line with previous reports [353], a FLT3-expression-specific cell 

lysis by the FLT3xCD3 antibody was demonstrated by an antibody serial dilution. TCMC efficacy 

thus depends on sufficient antigen expression and available antibody. Our and other studies 

provided evidence that the FLT3 surface increase in vitro seems to be influenced by the 

pretreatment FLT3-ITD mRNA level. Nevertheless, assessment of the native FLT3 surface 

expression remains essential in AML patients to determine the potency of the FLT3-antibody 

treatment without adding TKIs, since neither the FLT3-genotype nor the pretreatment FLT3 

mRNA level predict for the FLT3 surface expression per se [181, 356]. AML cases harbouring a 

LOH are expected to demonstrate little native FLT3 surface expression, due to their intracellular 
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retained localization profile of FLT3-D835Y and ITD mutants in vitro. Retention results in 

decelerated trafficking along the biosynthetic route, whereby any TKI-mediated acceleration 

would be beneficial with regards to surface antigen presentation. [207, 208, 213, 214] Since in 

our study the effect of enhanced TCMC was not consistently augmented in dependence of the 

TKI-mediated surface increase, further confirmation is required to link the synergy to the 

increase in antigen presentation. Additional experiments are required to investigate whether 

early or late FLT3 surface increase influences the therapeutic benefit by the TKI, when combined 

with the FLT3xCD3 antibody. This requires larger sample sizes of primary AML cells compared to 

our proof-of-principle study. Subsequently, FLT3-TKD and especially FLT3-ITD-TKD positive 

samples should be investigated to examine if dual targeting overcomes TKI-resistance 

mechanisms. Similarly, AML cells with upregulated immune checkpoint mediators that 

predictably govern resistance to targeted immunotherapy should be investigated. The proposed 

experiments should evaluate if the accelerated AML cell eradication, induced by combining TKIs 

with FLT3xCD3 antibodies, is sufficient for preventing long-term resistance to single agent 

treatment.  

For FLT3-WT AML cells, TCMC was not significantly improved by addition of Quizartinib in our 

study, as exemplified by HL60. Since HL60 expresses only little FLT3, further FLT3-WT expressing 

AML cell lines, PDX samples and following primary AML patient samples should be investigated 

to assess any FLT3-genotype specific pattern of this drug combination. Hence, cells with a higher 

FLT3 surface expression per se might result in a sufficient TCMC by single treatment with an anti-

FLT3 antibody. Hence, a potential advantage of adding Quizartinib might only be seen in FLT3-

WT cells responding to TKI treatment, due to other concomitant alterations, as for example 

Kasumi-1 or EOL-1. Therefore, the potential efficacy of TKI treatment towards clinical responses 

might be assessed beforehand. This should confirm AML blasts vulnerability towards FLT3-

targeted treatment and exclude any confounder mediating resistance as for example a KRAS 

mutation like in PL-21. To assess and monitor the inhibition of FLT3 activity plasma inhibitory 

activity (PIA) assays are used [288, 289, 312, 452]. Determination of the serum FL levels might 

further be informative. Investigating normal HSCs is of clinical relevance too. In normal HSCs 

neither single agent nor the combination should mediate any severe off-leukemia cytotoxicity.  

Since Quizartinib sensitized FLT3-ITD positive AML cells towards FLT3xCD3 therapy, 

investigations with other TKIs should be performed to show whether TKIs mediate a synergism 

with FLT3xCD3 antibody cytotoxicity in general. This is of special interest hence TKIs are 

generally capable of imparing T-cell function through inhibition of various signalling pathways. 

For the TKIs Dasatinib, Nilotinib and Sunitinib this has already been shown. They impair T-cells 

already at low nanomolar concentrations. Sorafenib inhibits the proliferation and activation of 

pimary human T-cells in vitro and lead to immunosupression in vivo at concentrations similar to 

those used in patients. [464] Clinically relevant doses of Quizartinib and Midostaurin (up to 50 

nM), in contrast, do not impair HD T-cell proliferation, reactivity or function. [463, 465, 466] This 

was also confirmed by our experiment. Of note, higher doses of Midostaurin (100 nM) reduce 

the proliferation of T-cells, which is not the case for Quizartnib [463]. Experiments adding 1000 

nM Midostaurin to a bispecific FLT3xCD3 BiTE antibody thus show reduced TCMC, due to a 

decrease in CD3/CD28-mediated T-cell proliferation. Hence, BiTE activity is reduced, because 
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proper cytotoxic T-cell function is impeded [356]. These experiments should therefore be 

repeated with a Midostaurin dose adjusted to clinically relevant concentrations, since higher TKI 

doses seem to make a difference. Importantly, the combination of Midostaurin and a bispecific 

FLT3xCD3 BiTE antibody has been tested in an autologous system, investigating the primary AML 

samples without adding HD T-cells. With regards to the condition in the clinical setting of AML, T-

cell efficacy would thus be better mimicked. In an autologous system, the effector to target ratio 

(E:T) is not fixed but merely influenced by the number of residual T-cells in the patient sample 

[356]. Hence, not only the TKI concentration might be problematic. Testing Quizartinib combined 

with the FLT3xCD3 antibody in further primary AML patient samples in an autologous system 

might be essential to gain insights of the efficacy of the cytotoxic T-cells in the AML patient. This 

may give a better estimate about the efficiency of T-cell mediated AML cell killing in combination 

with the TKI’s performance in vivo. Moreover, investigations on the applicability of other TKIs 

should follow - with special focus on their immunmodulatory effect on cytotoxic T-cells, based 

on T-cell propagation and function. Modulation of T-cell efficacy may also be relevant if 

expanding our findings to a combination with FLT3-primed CAR T-cells. 

Initial experiments testing this combination have been performed recently. Interestingly, FLT3-

primed CAR T-cells (BV10-scFv-IgG4hinge-CD28-CD3ζ-EGFRt) showed a synergism in cytotoxicity 

when combined with 10 to 50 nM Midostaurin against MOLM-13 cells engrafted in mice. In line 

with our hypothesis, a preferential killing of Midostaurin resistant MOLM-13 cells (with higher 

FLT3 surface levels) demonstrated a higher cytotoxic response compared to Midostaurin native 

MOLM-13 cells. [362] Similarly, FLT3-ITD positive AML cells treated with 10 nM Crenolanib show 

increased the surface FLT3 expression and consecutively enhanced the recognition by FLT3-CAR 

T-cells in vitro and in vivo. [365] FLT3 expression on normal HSC and FLT3-WT AML cells 

remained unaltered upon Midostaurin or Crenolanib treatment. Mice treated with the 

combination of Midostaurin or Crenolanib plus FLT3-primed CAR T-cells showed superior 

engraftment and expansion of FLT3-primed CAR T-cells and a higher overall response rate than 

mice receiving FLT3-CAR T-cells alone. Achievement of complete remission of AML from PB, BM 

and spleen was observed in the combination arm. Since BV10-scFv-IgG4hinge-CD28-CD3ζ-EGFRt 

has been shown to recognize normal HSCs in vitro and in vivo and interferes with normal 

hematopoiesis in colony formation assays in vitro, its clinical applicability, however, remains 

uncertain. Adoptive therapy with FLT3-CAR T-cells may be thus limited to the initial reduction of 

leukemic burden, requiring subsequent CAR T-cell depletion and allogeneic HSCT to reconstitute 

the hematopoietic system. [362, 365] Nonetheless, performance of other FLT3-primed CAR T-

cells in combination with TKIs might be more constructive and have to be evaluated. 

Furthermore, the combination of TKIs with monoclonal antibodies carrying a cytotoxic load 

should be tested, since their cytotoxic efficacy does not rely on immune cells.  

With regards to the in vivo efficacy of combining TKIs with FLT3-directed immunotherapy, 

microenvironmental factors should not be neglected - especially with regards to LSCs 

eradication. Particularly important is the chemo- and TKI protection governed by bone marrow 

stromal cells (BMSCs). In vitro and in vivo xenograft experiments demonstrate that BMSCs 

protect FLT3-ITD positive AML cells by highly expressing cytochrome P450 (CYP) enzymes, 

including CYP3A4. CYP3A4 is responsible for hepatic inactivation of chemotherapeutic drugs and 
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TKIs, including Quizartinib, Sorafenib and Gilteritinib. [467, 468] Through a combination of direct 

cell-to-cell contact and soluble factors, BMSCs activate protective anti-apoptotic pathways in 

AML blasts. Sustained cytokine-activation of ERK signalling is thereby essential in mediating the 

protective effect. FL furthermore augments the protection by increasing FLT3 phosphorylation 

and thus the requirement of higher drug doses for proper inhibition – TKI and perhaps also FLT3 

antibody. [352, 469] Although our in vitro TCMC assays were performed using MS-5 feeder cells, 

a resistance might only be visible after a longer treatment period. 

Another protective effect in AML cells is reached by binding to the BM extracellular matrix (ECM) 

through integrins. Integrins are transmembrane heterodimers, serving as cell-to-cell adhesion 

molecules to assist in the cell-to-cell contact as well as in attachment of cells to the ECM [470]. 

Osteopontin-mediated activation of integrin αvβ3 induces β-catenin signalling in FLT3-ITD 

positive AML cells through PI3K pathway activation, enforcing transcription of MYC and CCND1, 

thereby promoting TKI resistance. [221, 471] 

In the BM and HSC niche, microenvironmental hypoxia (low oxygen particle pressure) also leads 

to cell cycle arrest of AML blasts and inhibition of apoptosis by inducing the expression of the X-

linked inhibitor of apoptosis protein (XIAP) [472]. Of note, in some patients hypoxia is capable of 

downregulating FLT3 expression in AML blasts, independent of the FLT3 mutational state. The 

hypoxia-mediated FLT3 downregulation is proteasome-dependent and mediated by PI3K 

signalling. [473] This questions how effective the TKI-mediated FLT3 surface increase and thus 

induced antigen presentation for FLT3-targeted immunotherapy in a large cohort of AML 

patients will be. With regards to immune evasion, hypoxia-induced autophagy furthermore 

attenuates TCMC by upregulating miR-210 and subsequent silencing of protein tyrosine 

phosphatase non-receptor type 1 (PTPN1) and hypoxia inducible factor (HIF)-1α-dependent 

activation of STAT3 in target cells, demonstrated by experiments using non-small cell lung 

carcinoma cells [458, 474]. Consistently, overexpression of miR-210 as well as HIF-1 α is 

associated with a poor prognosis in AML [475, 476]. PTPN1 has just recently been discovered to 

act as a tumor suppressor in the myeloid lineage cells, with deficiency in PTPN1 being sufficient 

to drive AML in mice [477]. The generation of NOX-generated ROS by increased surface FLT3 as 

described above might additionally enforce autophagy in AML blasts. Hypoxia induced HIF-2α-

dependent upregulation of Tec family kinase BMX is also known to mediate chemotherapeutic 

and TKI resistance by sustained STAT5 and AKT signalling [478]. Thus, AML blasts might not only 

evade chemotherapy but also FLT3-targeted therapy due to hypoxic conditions.  

Regarding the in vivo immunogenicity, a pivotal role can be attributed to regulatory T (Treg) cells. 

Treg cells are a subset of CD4
+
 T-cells with a suppressive function on cytotoxic T-cells to sustain 

self-tolerance. In AML patients, they are frequently present at higher concentrations driving 

immune-surveillance of leukemic blasts. Essential for their development are Forkhead-Box-

Protein P3 (FOXP3), IL-2 and TGF-β signals. Modulation of these factors impacts on 

immunogenicity. [479-482] Of note, IL-2 cytokine release is influenced by the FLT3 antibody type 

and concentration. Increasing concentrations of the FLT3xCD3 antibody (FLT3 clone 4G8) leads 

to increased IL-2 releases, compared to other constructs based on different FLT3 clones. [353] 

This means that certain FLT3xCD3 clones might impede TCMC by increasing the IL-2 
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concentration, thereby enhancing Treg development and function and thus suppressing cytotoxic 

T-cell activity. This may influence the applicability of different FLT3 antibody constructs in AML 

immunotherapy. Importantly, TKIs might impact on FOXP3 depending on their target specificity. 

FOXP3 phosphorylation and subsequent proteasomal degradation can be induced by PIM 

kinases. [480-482] Inhibition of PIM kinases (either directly or indirectly) might thus be 

counterproductive with regards to TCMC. Since the target profile of Midostaurin includes PIM 

kinases [483], its applicability with FLT3-directed immunotherapy is further questionable. 

However, recent in vitro investigations revealed that upon Midostaurin treatment a significant 

reduction of the Treg population (CD4
+
/CD25

+
 T-cells) is observed in healthy and AML patient PB 

samples. Midostaurin also reduced FOXP3 mRNA expression. Sorafenib modestly decreased Treg 

cell number, while Tandutinib and Quizartinib did not affect the Treg cell population. In contrast, 

total lymphocytes, CD3
+
, CD4

+
 and CD8

+
 T-cell populations in the PB were not affected by these 

TKIs. [484] The inhibitory strength of different TKIs on FOXP3 should receive further attention. 

Different TKIs might be applied depending on their therapy intend. During graft transplantation, 

FOXP3 activation would be beneficial, hence enhancing the immunosuppressive activity of Treg 

cells. [480, 482] Thus, as bridging therapy towards HSCT TKIs are likely of added value. 

Conversely, during anti-cancer immunotherapy Treg cell activity should be down-regulated to 

improve T-cell mediated cytotoxicity [482, 485]. Since BM progenitors that seed the thymus are 

FLT3 positive and early thymic T-cell progenitors express FLT3 [486], the influence of the TKIs on 

T-cell population in the thymus might be differently affected. Furthermore, decreased 

expression of CD99 induced by Midostaurin [450], might hinder the TCR/CD3-dependent cellular 

activation of T-cells, involving CD99 engagement. [487, 488] Additionally, FL impacts on Treg 

propagation. FL-mediated DC expansion can induce proliferation of Treg cells and suppression of 

anti-tumor immune responses. [486] Systemic immunogenicity is therefore difficult to monitor in 

vitro. With regards to in vivo efficacy of our combinatorial approach combining TKIs with FLT3-

directed immunotherapy, any immune-modulatory impact of the TKIs should be noted and 

further evaluated. Based on the reviewed literature, Quizartinib seems to be the most promising 

agent for a combination with FLT3-directed immunotherapy. Since Tandutinib interferes 

differently with activated FLT3 compared to first- and second-generation TKIs, its exploitability in 

FLT3-directed immunotherapy requires evaluation.  

Considering all these resistance mediating mechanisms (Figure 18), it remains essential to 

investigate if any combination therapy is capable of cooperatively surpassing all these probable 

limitations. Estimations about any drug-interfering mechanism enabling persistence of leukemia 

or causing severe side effects should be examined beforehand. Although clinical trials assessing 

TKIs, FLT3-directed antibodies or CAR T-cells as single agent might provide an informative basis 

with regards to off-leukemia cytotoxicity, combined drug interactions or interferences might 

only be seen in vivo. Thus mimicking the conditions in patients best possible is essential - 

especially with regards to T-cell propagation and function. Subsequent pre-clinical xenograft 

experiments investigating any TCMC effects are limited and cumbersome. However, immune 

responses might be monitored using SCID (severe combined immunodeficiency) or RAG-1
-/-

 

(recombination activating gene 1 deficient) humanized mice, since they lack B- and T-cells, 

whereof a human immune system can be implanted using human BM or enriched T-cells 
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preventing AKT and ERK signalling activation. NOX-generated ROS induction as well as FL induced 

resistance is inhibited by cytosolic FLT3 retention. Fluvastatin also reduces the expression of 

immature and mature FLT3 in primary AML patient samples. With regards to any clinical 

applicability, fluvastatin is a widely prescribed cholesterol-lowering drug well tolerated in 

patients. [493, 494] 

Other approaches interfere with FLT3 protein stability and signalling. Addition of the PIM 

inhibitor LGB321 or Quercetagetin to TKIs resulted in increased cytotoxicity against FLT3-ITD 

mutated AML cell lines and primary AML patient samples, probably since abrogating its support 

in MYC transcription. [217, 495, 496] However, a clinical trial using a dual PIM/FLT3 inhibitor 

(SEL24), with promising anti-leukemic efficacy in vitro and in vivo in AML xenografts, is on hold at 

the moment due to severe adverse events [497, 498]. This might be attributed to the role of PIM 

kinases in modulating Treg cell propagation and function via FOXP3 [482]. The proteasome 

inhibitor Bortezomib in contrast induced an autophagy-mediated early degradation of FLT3-ITD 

but not FLT3-WT in AML cells. The combination of Sorafenib and Bortezomib for AML patients 

with a high FLT3-ITD burden is under investigation in a clinical trial. [497, 499] Other studies aim 

to interfere with cyclin-dependent kinases (CDK) 4 and 6, which are involved in cell cycle 

regulation [500]. CDK6 directly activates the transcription of FLT3 and PIM kinases [501]. 

Compared to single agent TKI treatment with Quizartinib or Sorafenib, the dual CDK4/6 inhibitor 

AMG925 conferred only a slight effect on tumor burden, induced by FLT3-ITD positive MOLM-13 

cells. Nonetheless, AMG925 might govern advantage against TKI-resistant cells with additional 

FLT3-TKD-PM [500, 502]. In contrast, combination of the dual CDK4/6 inhibitor Palbociclib with 

different TKIs against FLT3-ITD positive AML cells showed a synergistic effect in impairing the 

FLT3-dependent cell growth in vitro and leukemogenesis in vivo. [501] Important in this context 

is the capacity of FLT3 to phosphorylate p27. Phosphorylated p27 loses its inhibitory function on 

CDKs and thus enables cell proliferation. Accordingly, inhibition of FLT3 activity by TKIs reduced 

p27 phosphorylation in FLT3-WT AML patient samples. In contrast, in some FLT3-ITD positive 

AML patient samples, Quizartinib treatment led to increased phosphorylation of p27, induced by 

other tyrosine kinases. This was circumvented by treatment with the multipotent TKI Dasatinib. 

[503] 

Hence, many pathways and mediators are involved in TKI resistance; there exist a lot of potential 

targets and possible drug combinations [352]. Amongst them the ERK/MAPK signalling is highly 

reactivated in TKI-resistant FLT3-mutant AML cells [447, 455, 504]. Therefore, researchers 

investigated many agents to target both FLT3 and ERK/MAPK signalling mediators. Combination 

of Sorafenib with a low-dose MEK inhibitor (PD0325901) for example synergistically decreased 

AML cell proliferation and resulted in significant reduction of PB and BM blasts in AML 

xenografts [447]. Similarly, a novel dual MEK/FLT3 inhibitor (E6201) exerted cytotoxicity against 

TKI-resistant AML cells; even under hypoxic conditions and during co-culture with mesenchymal 

stem cells [505]. Another example is the inhibitor TP-0903, which inhibits both FLT3 and AXL. AXL 

is an upstream RTK of ERK/MAPK signalling, found to be highly phosphorylated in Quizartinib and 

Midostaurin resistant AML cells. [506, 507] The TKI Gilteritinib is a promising dual FLT3/AXL 

inhibitor, currently investigated in clinical trials [307, 322, 426]. FLT3 and JAK inhibitors in 

combination are further capable of overriding the BM stromal-mediated TKI resistance [508]. 
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Hence, multipotent TKIs might be of a higher value with regards to avoiding TKI resistance than 

more FLT3-specific TKIs – although implicating more side effects and a lower pharmacologic 

property.  

Several other studies and clinical trials investigated the use of TKIs with hypomethylating agents 

(e.g. Azacytidine and Decitabine) to enhance the eradication of LSCs [497]. LSCs frequently 

display a resistance pattern against TKIs with epigenetic gene mutations, resulting in altered 

gene expression. Tumor-suppressor genes (e.g. SHP-1, a negative regulator of the AKT/STAT 

pathway) or genes responsible for hematopoietic differentiation (e.g. GATA2) are genetically 

silenced, while the expression of stem and progenitor cell markers (e.g. SOCS) is increased. 

Commonly, co-occurring mutations in IDH1/2, TET2 and DNMT3A in AML cells modulate this 

epigenetic pattern. [461, 509-512] Therefore, hypomethylating agents are thought to sensitize 

AML cells towards TKI treatment by demethylating silenced genes. In addition, hypomethylating 

agents only minimally increase plasma FL concentrations, which might bypass FL-mediated 

resistance, as seen in conventional chemotherapy [513, 514] Crenolanib in combination with 

Azacytidine abrogates the stromal protection of niche cells, reducing the clonogenic capacity of 

FLT3-ITD positive LSCs in vitro and impairing engraftment of FLT3-ITD positive PDX cells in vivo 

[515]. In vitro experiments combining Quizartinib or Sorafenib with Azacytidine or Decitabine 

against FLT3-ITD positive AML cell lines and primary AML patient samples show a synergistic 

cytotoxicity, based on anti-leukemic effects mediated by induction of apoptosis and 

differentiation. Of note, simultaneous treatment was most effective. Adding Azacytidine or 

Decitabine after TKI treatment was antagonistic in primary patient samples. [514] A pre-clinical 

study using Gilteritinib in combination with Azacytidine against FLT3-ITD positive MV4-11 cells in 

vitro and in vivo showed superior anti-leukemic efficacy compared to single agent treatment 

[427]. In clinical trials, Sorafenib plus Azacytidine showed effectiveness in patients with relapsed 

and refractory FLT3-mutated AML [513]. Similarly, Midostaurin plus Azacytidine was safe and 

tolerable in AML patients. AML patients harboring a FLT3 mutation, who were not exposed to 

TKIs before and not previously transplanted, benefitted the most. In contrast, rates for AML 

patients without a FLT3-mutation were comparable to Azacytidine treatment alone. [497, 516, 

517] Combination of Quizartinib and Azacytidine was highly active amongst AML patients with a 

FLT3-ITD mutation [428]. 

Whether the combinatorial approach of our study or of those others mentioned is beneficial 

with respect to anti-leukemic efficiency, tolerability and clinical outcome is open for further 

investigations. 
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6 Conclusion 

Taken together, within this doctoral work research on FLT3-mutated AML was performed. The 

applicability of HTAS for FLT3-ITD detection in standard routine was investigated. Although the 

performance of NGS-based FLT3-ITD detection methods has been investigated already for 

several patient samples [249, 259, 281, 282], this study assessed its accuracy and benefit over 

routine diagnostic tools in a large cohort of FLT3-ITD positive patients. This work demonstrated 

HTAS to be accurate and highly sensitive, capturing a high ITD clonal heterogeneity in 

comparison to standard routine and to other available FLT3-ITD detection methods. After 

applying optimized bioinformatic algorithms, HTAS might provide a highly reliable tool with high 

sensitivity of prognostic value. Since novel diagnostic techniques reveal a lot of different FLT3 

mutations [229], the identification of gain-of-function mutations that may be targetable remains 

essential. Therefore, a patient derived recurrent FLT3 mutation was investigated on its 

oncogenic impact in mediating AML relapse. FLT3-p.Q569Vfs*2 displayed a truncation prior the 

JMD thus lacking essential residues for receptor autophosphorylation. Cells expressing both 

FLT3-p.Q569Vfs*2 and FLT3-WT, demonstrated a dominant-negative effect of FLT3-p.Q569Vfs*2 

on FLT3-WT. This highlights the importance of assessing the biological impact of novel FLT3 

mutations, since conclusions across truncated receptors with different protein structures are not 

possible plus not all resistance-specific mutations drive relapse and are targetable by TKIs. 

Furthermore, the cellular response upon TKI treatment was investigated systematically, in cells 

harbouring different FLT3 genotypes, since this has not been performed before in great detail. A 

TKI-driven restoration of the surface localization of intracellular retrained FLT3-mutants based 

on N-linked glycosylation was encountered. The FLT3 surface increase correlated inversely with 

proliferation and was dependent on the pretreatment FLT3-ITD mRNA level. This FLT3-mutant 

specific response provided a rational for combining TKIs with FLT3-directed immunotherapy. 

Proof-of-principle experiments adding AC220 to a bispecific FLT3xCD3 antibody confirmed a 

synergistic effect against FLT3-ITD positive AML cells. Thus, this was the first study to investigate 

the TKI-mediated FLT3 surface expression increase systematically and to exploit this mechanism 

for a combination with FLT3-directed immunotherapy to evade single-agent therapy-resistance. 

Besides combining TKIs with FLT3-directed antibodies, this approach might further be used for 

FLT3-primed CAR T-cell therapy. However, ongoing research is essential to confirm our proof-of-

principle with other TKIs as well as to investigate the immunological implications of this 

combination in vitro and in vivo. Although further research is still required to translate these 

approaches into clinical practice, this doctoral work provided several interesting findings with 

clinical relevance for the diagnosis, risk stratification and therapy of FLT3-mutated AML.  
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7.2 Abbreviations 

ABL1 Abelson murine leukemia viral oncogene homolog 1 

ADC antibody drug conjugate 

AI artificial intelligence 

ALL acute lymphoid leukemia 

AML acute myeloid leukemia 

ARaC, ATRA all-trans-retionic acid 

ATK serine/threonine-kinase or protein kinase B 

ATO arsentrioxid 

ATP adenine-triphosphate 

BiTE bispecific T-cell engager 

BM bone marrow 

BMSCs bone marrow stromal cells 

C cytosine 

CAR chimeric antigen receptor 

Cas9 CRISPR-associated protein 9 nuclease 

CBF core-binding factor 

CBFB-MYH11 core-binding factor beta subunit - myosin heavy chain 11 

CBL casitas B-lineage lymphoma 

CD33 cluster of differentiation 33 

CDK cyclin-dependent kinases 

CEBPA CCAAT-enhancer-binding protein alpha 

CFC colony forming cell 

CLL chronic lymphoid leukemia 

CLP common lymphoid progenitor 

CML chronic myeloid leukemia 

CMP common myeloid progenitor 

CN cytogenetically normal 

CR complete remission 

CRISPR clustered regularly interspaced short palindromic repeats 

CSF1R colony-stimulating factor 1 receptor 

CSF3R colony-stimulating factor 3 receptor 

2-DG 2-deoxy-D-glucose 

DCs dendritic cells 

ddPCR digital droplet PCR 

DNMT3A DNA-methyltransferase 

E:T effector to target ratio 

ECM extracellular matrix 

EGFR epidermal growth factor receptor 

ELN European Leukemia Net 

ENT1 equilibrative nucleoside transporter 1 

ERK extracellular signal-regulated kinase 

FAB French-American-British 

FISH fluorescent in-situ hybridization 

FL FLT3 ligand 
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FLK2 fetal liver kinase 2 

FLT3 FMS-related tyrosine kinase receptor 3 

FMS fibroblast-macrophage stimulating factor 

FOXC1 forkhead box 1 

FOXP3 forkhead-box-protein P3 

HD healthy donor 

HER2 epidermal growth factor receptor 2 

HIF hypoxia inducible factor 

HSC hematopoietic stem cell 

HSCT hematopoietic stem cell transplantation 

HSP 90 heat shock protein 90 

HTAS high-throughput amplicon sequencing 

IDH1/2 isocitrat-dehydrogenase 1 and 2 

Ig1-5 immunoglobulin-like globes 

IL-2 interleukin 2 

INF-γ interferon gamma 

INV inversion 

ITD internal tandem duplication 

JAK2 Janus kinase 2 

JMD juxtamembrane domain 

KIT proto-oncogene receptor tyrosine kinase 

KMT2A lysine methyltransferase 2A 

LSC leukemic stem cell 

MDS myelodysplastic syndrome 

miR micro RNA 

MLL mixed-lineage leukemia 

MPP multipotent progenitor 

MRC Medical Research Council 

MRD minimal residual disease 

mTOR mammalian target of rapamycin 

NDM nonsense-mediated mRNA decay 

NFκB nuclear factor kappa B 

NGS next generation sequencing 

NK-cells natural killer cells 

NOX NADPH oxidase 

NPM1 nucelophosmin 1 

OS overall survival 

PB peripheral blood 

PDGFR platelet-derived growth factor receptor 

PDX patient-derived xenograft 

pFLT3 phosphorylated FLT3 

PI3K phosphoinoside-3-kinase 

PML-RARA Promyelocytic leukemia - retinoic acid receptor alpha 

PMs point mutations 

PTB phosphotyrosine binding 

PTD partial tandem duplication 

PTPN1 protein tyrosine phosphatase non-receptor type 1 
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RAG-1
-/-

 recombination activating gene 1 deficient 

RAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

RFS relapse-free survival 

ROS reactive oxygen species 

RQ-PCR real-time quantitative RT-PCR 

RTK receptor tyrosine kinase 

RUNX1-RUNX1T1 runt-related transcription factor 1 - RUNX1 translocation partner 1 

s-AML secondary related AML  

SCFR stem cell growth factor receptor 

scFv single chain variable fragment 

SCID severe combined immunodeficiency 

SCN severe congenital neutropenia 

SH2 Src-homology 2 

SHP2 Src-homology 2 domain-containing phosphatase 2 

SOCS suppressors of cytokine signalling 

SPRY3 sprouty RTK signalling antagonist 3 

STAT5 signal transducer and activator of transcription 5 

STK1 stem cell kinase 1 

t-AML therapy-related AML 

TCMC T-cell mediated cytotoxicity 

TKD tyrosine kinase domains 

TKI tyrosine kinase inhibitor 

TM transmembrane domain 

TP53 tumor protein p53 

Treg regulatory T-cells 

UMIs unique molecular indexes 

VAFs variant allele frequencies 

WBC white blood cell 

WES whole-exome sequencing 

WHO world health organization 

Wnt Wingless-type 

WT wild-type 

XIAP X-linked inhibitor of apoptosis protein 
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7.3 Contribution 

Declaration of contributions to “Clonal heterogeneity of FLT3-ITD detected by high 

throughput amplicon sequencing correlates with adverse prognosis in acute myeloid 

leukemia” 

This project was conceived by Philipp A. Greif, Max Hubmann and Karsten Spiekermann. The 

study cohort was defined by Max Hubmann, Karsten Spiekermann and Egor Harin. Together with 

Philipp A. Greif, I performed the experimental study design and the project management.  

The FLT3-amplicon and library preparation of all analysed samples for the high-throughput 

amplicon sequencing (HTAS) was performed by me with the technical assistance of Kathrin 

Bräundl and Bianka Ksienzyk. The bioinformatic workflow for FLT3-ITD data analysis was 

established by Sebastian Vosberg, Aarif Mohamed Nazeer Batcha and Sebastian Schaaf. 

Together with Egor Harin I ran the FLT3-ITD workflow for all sequenced samples to generate 

FLT3-ITD sequencing data Pindel output files. I evaluated the raw sequencing data and defined 

the cut-off for the variant allele frequency in an empirical manner. Furthermore, I analysed and 

assessed the sensitivity of HTAS by serial dilution of cDNA derived from the FLT3-ITD positive cell 

line MOLM-13 in cDNA derived from the FLT3-WT cell line HL60. For validating ITD subclones of 

selected samples data from targeted FLT3 sequencing analysis was obtained, that had been 

generated by Tobias Herold, Klaus Metzeler, Maja Rothenberg-Thurley and Hanna Janke (part of 

Supplementary Table S1 and S5). Genomic DNA and cDNA sample preparation, FLT3-ITD 

fragment analysis as well as Sanger sequencing was performed by Bianka Ksienzyk and by 

routine diagnostics at the laboratory of leukemia diagnostics at the university hospital of the 

LMU Munich, respectively.  

Statistical analysis of the clinical data regarding RFS and OS was performed by Egor Harin and 

Max Hubmann with my contribution towards parameter selection, resulting in Figure 6, 

Supplementary Figure S1, S3, S4 and S11 as well as the data for Table 1 and 2, Supplementary 

Table S2, S3 and S6. I performed the statistical analysis for the methodological comparison of the 

ITD detection, resulting in Figure 4, 5, 7 and 8 as well as Supplementary Figure S2, S5, S6, S7, S8 

and S9. Furthermore, I prepared Figure 1, 2 and 3, Table 2, Supplementary Table S1, S4, S5, S7 

and S8 as well as Supplementary Figure S10. All tables and figures were edited and assembled 

for the manuscript by me. Together with Philipp A. Greif and Sebastian Vosberg I interpreted the 

data. I wrote the first draft of the manuscript (except for the method section “Patient samples” 
and “Statistical Analysis”, which was written by Max Hubmann and Egor Harin and only edited by 

me). Philipp A. Greif, Sebastian Vosberg, Max Hubmann, Klaus H. Metzeler, Stephanie Schneider 

and Stefan K. Bohlander proof-read the manuscript and provided intellectual input. Together 

with Philipp A. Greif and Max Hubmann, I revised and finalized the manuscript. 
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Declaration of contributions to “The new and recurrent FLT3 juxtamembrane deletion 
mutation shows a dominant negative effect on the wild-type FLT3 receptor”  

For this project I established and performed the immunofluorescent staining and subsequent 

data analysis, resulting in figure 1e. Moreover, I prepared the figure and wrote the 

corresponding method section “Immunofluorescent staining”. Furthermore I proofread the 
manuscript and assisted during the revision process.  

 

Declaration of contributions to “Tyrosine kinase inhibition increases the cell surface 

localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid 

leukemia” 

Under the supervision of Philipp A. Greif, Karsten Spiekermann and Heinrich Leonhardt I 

conceived this project and performed the project management. I designed the experimental set-

up for all experiments, except for figure 6, showing flow cytometry from diagnostic routine for 

disease monitoring of patients under TKI treatment at the University Hospital Tübingen and 

figure 7 b and c and supplementary figure 7, showing experiments designed by Christina Krupka 

and Marion Subklewe.  

I performed the vast majority of experiments, except for proliferation assays and RT-PCR assay*, 

which were performed by Harald Polzer (resulting in the data presented in figure 2c and 3c, 

supplementary figures S2e, S3c and S5f and Ic(50) values presented in supplementary table S1 

and S2), the TCMC assays which were performed by Christina Krupka (resulting in the data 

presented in figure 7b and c, supplementary figure S7 and supplementary table S4), the Western 

blot* resulting in supplementary figure S5i, which was performed by Belay Tizazu and the 

mutational profiling of AML cell lines and PDX samples, which was performed by Maja 

Rothenberg-Thurley (resulting in the mutation profiles presented in table 1 and supplementary 

table S3). The fragment analysis data (resulting in the data presented in supplementary figure S4 

and S5g) was compiled with technical assistance of Gudrun Mellert and Jutta Sturm, whereas I 

generated the input cDNA samples. Patient data presented in this publication (presented in 

figure 6, supplementary table S3 and S5 as well as supplementary figure S6) were obtained from 

diagnostic routine and assembled by myself. PDX samples for the assays were provided by Binje 

Vick and Irmela Jeremias. With technical assistance of Andreas Maiser I optimized the 

immunofluorescent staining protocol for the hematopoietic suspension cells, leading to the data 

presented in supplementary figure S1b. I performed the statistical analysis throughout this work.  

Furthermore, I wrote the first draft of the manuscript (except for the method draft for the 

supplementary method section “quantitative real-time RT-PCR”, which was written by Harald 

Polzer) and prepared most figures and tables, except for the graphs displaying the proliferation 

and RT-PCR data (figure 2c and 3c, supplementary figures S2e, S3c and S5f), fragment analysis 

images (supplementary figure S4, S5g and S6), flow cytometry plots displayed in figure 6a, 7b 

and c, supplementary figure S7) and the line graphs shown in supplementary figure S7a and b, 
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which I only assembled. Philipp Greif, Karsten Spiekermann, Marion Subklewe, Christina Krupka 

and Harald Polzer proof-read the manuscript and provided intellectual input. Together with 

Philipp Greif I revised and finalized the manuscript. 

*I generated the samples that were analysed (cDNA and whole cell lysates, respectively)  
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